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Abstract

The subject of this PhD thesis is the propagation of nonlinear waves in
1D acoustic metamaterials. More specifically we aim to study the interplay
between nonlinearity, loss and dispersion. Our studies combine analytical
calculations, numerical simulations and experimental results. In particular
we focus our analysis on two main phenomena: the second harmonic gener-
ation and the formation of solitary waves. Two different acoustic metama-
terials are studied: (i) A waveguide loaded with a periodic distribution of
side holes (featuring negative effective bulk modulus) and (ii) a waveguide
periodically loaded with clamped plates (featuring negative effective mass
density). Relying on the electroacoustic analogy and the transmission line
approach, we derive a discrete lattice model for each system. The correspond-
ing long wavelength, continuum approximation of the lattice models, leads
to a nonlinear, dispersive and dissipative wave equation. From the latter, by
utilizing a perturbation method, we obtain analytical results regarding the
second harmonic generation. Furthermore with the use of a multiple scale
analysis we find various envelope (bright, gap, black and gray) soliton so-
lutions supported by the acoustic metamaterial. The analytical predictions
are corroborated by direct numerical simulations. We finally perform exper-
iments on an acoustic waveguide loaded with a periodic distribution of side
holes and measure the second harmonic generation in close agreement with
our theoretical predictions.



Résumé

Cette thése porte sur la propagation dondes non-linéaires dans des métamatériaux
acoustiques unidimensionnels. Plus précisément, nous voulons étudier les in-
teractions entre les non-linéarités, les pertes et la dispersion. Ce travail
combine des calculs analytiques, des simulations numériques et des résultats
expérimentaux. En particulier, nous concentrons notre analyses sur deux
phénomènes : la génération du second harmonique et la formation de soli-
tons acoustiques. Deux types différents de métamatériaux sont étudiés : (i)
un guide donde chargé par une distribution périodique de trous latéraux (mi-
lieu à densité effective négative) et (ii) un guide donde chargé périodiquement
par des plaques lastiques encastres (milieu à masse effective négative). En
sappuyant sur une analogie électroacoustique et sur la théorie des lignes
de transmission, un modèle discret de la propagation est développé pour
chaque système. Lapproximation des grandes longueurs dondes est ensuite
utilisée pour obtenir une modèle continu permettant détablir une équation
non-linéaire, dispersive et dissipative pour la propagation. Cette dernière
est analysée à laide de la méthode des perturbations conduisant à une ex-
pression analytique pour la génération du second harmonique. De plus, la
méthode des échelles multiples est utilisée pour obtenir les diverses solutions
de solitons denveloppe (bright, dark et gray) présents dans les systèmes. Les
prédictions analytiques sont corroborées par des simulations numériques di-
rectes et des mesures de la génération de second harmonique sont effectuées
mettant en lumière un bon accord avec le modèle théorique.
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Chapter I

Introduction

Over the past years, acoustic metamaterials have been widely developed to deeply

control and manipulate waves in unconventional ways. As a result, a plethora of ap-

plications have been developed, including acoustic diodes, perfect absorbers, acoustic

lenses for sub-diffraction imaging, acoustic sound focusing based on gradient index

lenses, acoustic topological systems and acoustic cloaking, among others have been

developed. Despite this extensive body of works, only few studies exist regarding

nonlinear effects in acoustic metamaterials, which is the topic of this thesis. In this

first chapter, we present and review some details about artificial materials, acoustic

metamaterials, non-linear acoustic metamaterials and solitons. Then, we point out the

objectives and organization of this PhD thesis.
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I.1 Artificial materials: Metamaterials and Photonic/Phononic crystals

I.1 Artificial materials: Metamaterials and Pho-

tonic/Phononic crystals

In nature, the properties of conventional materials depend on the composed atom-

s/molecules and the chemical bonds, while their physical properties, such as mass

density and bulk modulus, are always positive. Metamaterials, namely periodic or ran-

dom man-made structures composed of meta-atoms, (subwavelegth resonators the size

of which is bigger than the atomic scale but much smaller than the relevant radiated

wavelength) are designed to exhibit exotic properties not commonly found in nature.

The physical properties of metamaterials are described by effective parameters which

could be positive, negative, near-zero or approaching-infinity, as shown in Fig. I.1 [1].

The concept of metamaterials was firstly theorized by the Russian physicist Vese-

lago [2] for electromagnetic waves in 1968. Veselago considered the possible existence

of metamaterials with simultaneously negative permittivity and permeability, referred

to as left-handed materials or double negative metamaterials, in which electromagnetic

waves propagate with group and phase velocities that are anti-parallel, namely a phe-

nomenon associated with negative index of refraction. Three decades later, Shelby et

al. [3] experimentally demonstrated the existence of double negative metamaterials

consisted of copper split-ring resonators and thin metallic wires. After the experimen-

tal verifications [3, 4, 5], left-handed materials, attracted substantial attentions in the

scientific communities. Metamaterials were considered as one of top ten breakthroughs

of 2003 [6].

Another kind of artificial materials is the photonic crystals. These systems are

composed by periodic distributions of dielectric scatterers embedded in another dielec-

tric medium with a periodicity of the same scale as the radiated wavelength. The

periodicity introduces anisotropy in wave propagation and dispersion relation that are

characterized by band gaps for the electromagnetic waves, namely range of frequencies

for which the electromagnetic waves can not propagate. In the same spirit, the periodic

structure of solid scatterers embedded in another solid medium, known as phononic

crystal, introduces the presence of band gaps for elastic waves due to Bragg scatter-

ing.The concept of phononic crystal was firstly proposed by Kushwaha et al. [7] and

Economou et al. [8] in 1993. In 1995, Martinez-Sala et al. [9] experimentally verified

the properties of phononic crystal by a minimalist sculpture in Madrid. The studies of

phononic crystals pave the way to design sound insulators and filters [10, 11].

3



Chapter I: Introduction

Fig. I.1. Effective mass density ρeff and bulk modulus Beff diagram [1]. vph denotes the

phase velocity. R and I indicate purely real and imaginary part of phase velocity, respectively.

Normal materials in nature belong to (a) with double positive parameters. Metamaterials

can be classified as negative mass density (b), double negative parameters (c), negative bulk

modulus (d) and near-zero mass density (e).

In 2000, Liu et al. [12] introduced inner local resonators in a phononic crystal

by arranging a centimeter-sized lead balls with relatively high density and a coating

of silicone rubber in an 8 × 8 × 8 cubic crystal with a lattice constant two orders of

magnitude smaller than the relevant wavelength, meaning that the effects of periodicity

are at very high frequencies, see Fig. I.2. Due to the inner local resonators (the lead

ball plays the role of a heavy mass while the soft silicone rubber the role of the spring),

there is another band gap at low frequencies, much lower than the frequencies of the

Bragg scattering. In the long wavelength limit, this local resonant phononic crystal is

called acoustic metamaterial, which could be described by effective negative dynamic

density at certain frequency ranges. If a wave with frequency ω interacts with this

acoustic metamaterial carrying the local resonators with resonant frequency ω0, the

effective mass density will be proportional to 1/(ω2
0 −ω2). At certain frequency ranges

on the higher frequency side of the resonance, the effective mass density is negative,

implying a purely imaginary wave vector k and exponential attenuation of the wave.

4



I.2 Acoustic Metamaterials

Fig. I.2. (a) Cross section of a coated lead sphere that forms the basic structure unit; (b)

An 8× 8× 8 cubic crystal. (a) and (b) are adapted from [12].

I.2 Acoustic Metamaterials

Over the past years, acoustic metamaterials have been widely developed to deeply

control and manipulate waves due to their exotic properties not found in nature. Several

applications including acoustic diodes [13, 14], perfect absorbers [15, 16], acoustic lenses

for sub-diffraction imaging [17], acoustic sound focusing based on gradient index lenses

[18, 19, 20], acoustic topological systems [21, 22, 23] and acoustic cloaking [24, 25, 26,

27, 28, 29], among others have been developed. In this section, we present acoustic

metamaterials in details.

Wave propagation in an elastic medium is controlled by the mass density and the

bulk modulus of medium. For the conventional media composed by atoms, molecules

and chemical bonds, the mass density and the bulk modulus are always positive and

hard to be modified. However, in acoustic metamaterials, due to the strong dispersion

introduced by the inner local resonators, these effective acoustic parameters could

be positive, negative, near-zero or approaching-infinity. This behavior is similar in the

electromagnetic metamaterial counterparts (permittivity ǫ and permeability µ). In this

section, we start by introducing the effective negative mass density and bulk modulus.

I.2.1 Effective mass density

The concept of effective negative mass density was firstly theorized by Milton et al. [31]

through a mass-spring system in 2007. The corresponding experimental visualization

about the periodic 1D mass-spring system [32] was made by Yao et al. The summary

about effective mass density was shown in Ref. [33]. The simple mass-spring system

5



Chapter I: Introduction

Fig. I.3. (a) Simple mass-spring system; (b) Effective inertial response as a function of

angular frequency. (a) and (b) are adapted from [30] and [1] respectively.

[30, 1] is composed by two masses M1 and M2 which are coupled by a spring of strength

K, as shown in Fig. I.3 (a), where F is an external force. Assumed that there is no

friction, we obtain the corresponding equations of motion based on the Newton’s second

law, for the masses M1 and M2,

M1ẍ1 = −K(x1 − x2) + F, (I.1)

M2ẍ2 = −K(x2 − x1), (I.2)

where x1 and x2 are the displacements of M1 and M2 respectively. Assuming that x1,

x2 and F vary time-harmonically with frequency ω, Eq. (I.2), one obtains

− ω2M2x2 = −K(x2 − x1), (I.3)

i.e.,

x2 =
ω2
0

ω2
0 − ω2

x1, (I.4)

with ω0 =
√

K/M2 being the local resonance frequency. Substituting Eq. (I.4) into

Eq. (I.1), we have

F =

(
M1 +

K

ω2
0 − ω2

)
ẍ1, (I.5)

i.e., in the view of external force, this system could be considered as an object system

with a resonance frequency ω0 and an effective mass density,

Meff = M1 +
K

ω2
0 − ω2

. (I.6)

6



I.2 Acoustic Metamaterials

Fig. I.4. (a) Membrane-type acoustic metamaterial with effective negative mass density; (b)

Hole-type acoustic metamaterial with effective negative bulk modulus; (c) Double negative

acoustic metamaterials. (a)-(c) are adapted from Ref. [35].

As shown in Fig. I.3 (b), the effective mass density (black line) is negative around the

resonant frequency of the system (between the red continue and blue dotted vertical

lines, i.e., ω0 < ω <
√

K/M1 + ω2
0). Regarding wave propagation, effective negative

mass density introduces a pure imaginary wave vector k, as well as a pure imaginary

phase velocity, in other words waves are evanescent, as shown in Fig. I.1 (b).

In airborne sound acoustic metamaterials, effective negative mass density can be

achieved by a membrane-type system [34, 35] [see Fig. I.4(a)]. Membrane-type acoustic

metamaterials with effective negative mass density have been used for the design of

sound absorbers [34, 36, 37, 38, 15, 39].

I.2.2 Effective bulk modulus

As shown in Fig. I.4 (b), acoustic metamaterials with effective negative bulk modulus

could be achieved by a waveguide periodically side-loaded with holes [35], where the

period constant of the waveguide is d (distance between two side holes), the cross

section of the waveguide and of the side holes are Sw = πr2 and S0 = πa2 respectively

(r and a being the radius of the waveguide and of the side holes respectively), and the

length of the side holes is l. This is a sub-wavelength structure where d ≪ λ (λ being

the wavelength of sound wave).

7



Chapter I: Introduction

Recalling the three basic acoustic equations, i.e., the momentum, continuity and

constitutive equations in one dimensional system,

∂p

∂x
+ ρ

∂v

∂t
= 0, (I.7)

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (I.8)

c2 =

(
dp

dρ

)

adiabatic

, (I.9)

where p is the sound pressure, v is the particle velocity, c is the speed of sound, ρ is the

density being sum of the static density ρ0 and the change of density ρ′, we can write

the momentum and continuity equations inside the waveguide,

Sw
∂p

∂x
+ ρ

∂u1

∂t
= 0, (I.10)

Sw
∂ρ

∂t
+

∂

∂x
(ρu1) +

ρu2

d
= 0, (I.11)

where u1 = v1Sw and u2 = v2S0 are the volume velocity in the waveguide and side

holes respectively, v1 and v2 are the particle velocity in the waveguide and side holes

respectively. Considering l ≪ λ, i.e., the side holes can be taken as lumped parameter

systems, the momentum equation inside the side holes is,

pS0 = ρl′S0
∂v2
∂t

+ ηv2, (I.12)

where l′ = l + 1.46a is the effective length of the side holes, and η is the dissipation

constant.

Equation (I.11) and Eq. (I.12) can be written in one equation,

(
η
∂

∂t
+ ρl′S0

∂2

∂t2

)
ρ+

(
η
∂

∂x
+ ρl′S0

∂2

∂x∂t

)
(ρv1) +

ρS2
0

Swd
p = 0. (I.13)

Equation (I.10) and Eq. (I.13) are the momentum and continuity equations in this

sub-wavelength structure. Under the linear approximation, the momentum equation

[Eq. (I.10)], the continuity equation [Eq. (I.13)] and the constitutive equation [Eq. (I.9)]

turn to
∂p

∂x
+ ρ

∂v1
∂t

= 0, (I.14)

(
η
∂

∂t
+ ρl′S0

∂2

∂t2

)
ρ′ + ρ0

(
η
∂

∂x
+ ρl′S0

∂2

∂x∂t

)
(v1) +

ρ0S
2
0

Swd
p = 0, (I.15)

p

ρ′
= c20 =

κ

ρ0
(I.16)

8



I.2 Acoustic Metamaterials

Fig. I.5. (a) Simple Helmholtz system; (b) Acoustic metamaterial with effective negative

bulk modulus. (a) and (b) are adapted from Ref. [41].

where κ is the bulk elastic modulus under adiabatic conditions. Assuming that p and

v vary time-harmonically with frequency ω, and recalling Eq. (I.16), Eq. (I.15) turns

to [
jω

1

κ
+

1

η Swd
S2
0
+ jωρ0l′

Swd
S0

]
p+

∂

∂x
v = 0. (I.17)

Comparing Eq. (I.17) with Eq. (I.8), we can get the expression for the effective bulk

modulus κeff [40],

κ−1
eff (ω) = κ−1

(
1− F

ω2 + iΓω

)
, (I.18)

with

F =
S0κ

ρ0Swdl′
, Γ =

η

ρ0l′S0

.

In this case, the effective bulk modulus is negative in the low frequency regime.

Another system with negative effective bulk modulus is made of building blocks

with Helmholtz resonators composed by a narrow neck and a cavity, shown in Fig. I.5

(a). Fang et al. obtained the expression for effective negative bulk modulus [41],

κ−1
eff = κ−1

[
1− Fω2

0

ω2 − ω2
0 + iΓω

]
, (I.19)

where ω0 is the resonant frequency, F is a geometrical factor and Γ accounts for the dis-

sipation. Similar to the case of effective negative mass density, effective bulk modulus

turns to negative values when the external force oscillates near the resonant frequency.

Fang et al. also experimentally demonstrated that acoustic metamaterials with ef-

fective negative bulk modulus could be achieved by a waveguide periodically loaded

by Helmholtz resonators [41], shown in Fig. I.5 (b). Since then, there is a lot of

9



Chapter I: Introduction

Fig. I.6. Dispersion relation for double negative acoustic metamaterials, adapted from

Ref. [40].

works [42, 43, 44, 45] talking about acoustic metamaterials with effective negative bulk

modulus with side holes [45, 46] and Helmholtz resonators.

For wave propagation, similar to effective negative mass density, effective negative

bulk modulus also introduces a pure imaginary wave vector k, as well as a pure imag-

inary phase velocity, i.e., waves are evanescent, as shown in Fig. I.1 (d). Based on

this property, i.e., single negative parameter (mass density or bulk modulus) produces

an evanescent wave, researchers designed nearly perfect sound absorbers by combining

resonators [47, 48], and other composite structures to tailor acoustic waves. Works

about the acoustic metamaterials with single effective negative parameter pave the

way to study the double negative acoustic metamaterials.

I.2.3 Double negative acoustic metamaterials

As it was noticed in Sections I.2.1 and I.2.2, when the mass density or the modulus

of acoustic metamaterials turns to negative, wave can not propagate. However, when

both of them are simultaneously negative, i.e., in double negative acoustic metamate-

rials, waves can propagate, see Fig. I.1 (c). In the past twenty years, many double

negative acoustic metamaterials have been proposed [49, 50, 51, 52]. and experimen-

tally tested [35, 53, 54]. For example, Lee et al. demonstrated that double negative

acoustic metamaterials [35] could be realized by combing directly membrane-type res-

onators (effective negative mass density) and Helmholtz-type ones (effective negative

10



I.2 Acoustic Metamaterials

bulk modulus), see Fig. I.4.

Li. et al [40] studied the derivation of double negative parameters for a structure

[see Fig. I.4 (c)] composed of a waveguide periodically loaded with clamped plates and

side holes, where the period constant of the waveguide is d, the cross section of the

waveguide and side holes are Sw = πr2 and S0 = πa2 respectively (r and a being the

radius of waveguide and side holes respectively), and the length of side holes is l. The

mass of the vibration plates is Mm and its compliance Cm. This is a sub-wavelength

resonator where d ≪ λ (λ being the wavelength of sound wave). The momentum and

continuity equations in the waveguide can be obtained as

Sw
∂p

∂x
+ ρ

∂u1

∂t
+

Mm

d

∂v1
∂t

+
1

Cmd

∫ t

−∞

v1dt = 0, (I.20)

Sw
∂ρ

∂t
+

∂

∂x
(ρu1) +

ρu2

d
= 0, (I.21)

where p is the sound pressure, v1 and v2 are the particle velocity in the waveguide and

side holes respectively and u1 = v1Sw and u2 = v2S0 are the volume velocity in the

waveguide and side holes respectively. ρ is the density, sum of the static density ρ0

and the change of the density ρ′. Considering l ≪ λ, i.e., the side holes can be taken

as lumped elements and the momentum equation inside the side holes becomes,

pS0 = ρl′S0
∂v2
∂t

+ ηv2, (I.22)

where l′ = l + 1.46a is the effective length of the side holes, and η is the dissipation

constant.

As mentioned in Section I.2.2, Eq. (I.21) [i.e., Eq. (I.11) in Section I.2.2] and

Eq. (I.22) [i.e., Eq. (I.12) in Section I.2.2] can be written in one equation, Eq. (I.13).

Equation (I.20) and Eq. (I.13) are the momentum and continuity equations in this dou-

ble negative acoustic metamaterial. Under the linear approximation, the momentum

equation [Eq. (I.20)], the continuity equation [Eq. (I.13)] and the constitutive equation

[Eq. (I.9)] turn to

∂2p

∂x∂t
+ ρ0

∂2v1
∂t2

+
Mm

Swd

∂2v1
∂t2

+
1

CmSwd
v1 = 0, (I.23)

(
η
∂

∂t
+ ρ0l

′S0
∂2

∂t2

)
ρ′ + ρ0

(
η
∂

∂x
+ ρ0l

′S0
∂2

∂x∂t

)
v1 +

ρ0S
2
0

Swd
p = 0, (I.24)

p

ρ′
= c20 =

κ

ρ0
. (I.25)
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Assuming that p and v vary time-harmonically with frequency ω, and recalling Eq. (I.25),

Eq. (I.23) and Eq. (I.24) turn to

∂p

∂x
+

[
jωρ0 + jω

Mm

Swd
+

1

jωCmSwd

]
v1 = 0, (I.26)

[
jω

1

κ
+

1

η Swd
S2
0
+ jωρ0l′

Swd
S0

]
p+

∂

∂x
v = 0. (I.27)

Comparing Eq. (I.26) and Eq. (I.27) with Eq. (I.8) and Eq. (I.7), we can get the

expression for effective mass density ρeff and bulk modulus κeff [40],

ρeff (ω) = ρ0

(
1− ω2

0 − ω2

Gω2

)
, (I.28)

κ−1
eff (ω) = κ−1

(
1− F

ω2 + iΓω

)
, (I.29)

with

ω2
0 =

1

MmCm

, G =
ρ0Swd

Mm

, F =
S0κ

ρ0Swdl′
, Γ =

η

ρ0l′S0

.

In this case, both the effective mass density and bulk modulus are negative in the low

frequency regime. In this double negative regime, waves can propagate, see Fig. I.1

(c). and the direction of group velocity and phase velocity is opposite, as shown in the

Fig. I.6 plotting the dispersion relation obtained by Li et al. [40].

These works pave the way to design new acoustic devices, for examples, acoustic

superlensing and cloaking.

I.2.4 The effects of losses

Wave propagation in acoustic metamaterials is subject to losses such as viscothermal

losses at the solid-fluid interface. This can have deleterious consequences [55]. For ex-

ample, Henŕıquez et al. [56] found that viscothermal losses could destroy the predicted

behavior of double negative acoustic metamaterials designed by Graćıa-Salgado et al.

[57], and they even speculated that rigid-based metamaterials could become absorbers

in particular situations. Previously, Guild et al. [58] and Romero-Garćıa et al. [16]

proposed specific acoustic metamaterial absorbers based on dissipative effect. Losses

could also change the dispersion relation of the system. For example, Theocharis et al.

[59] show that near-zero group velocity dispersion band disappears in the presence of

the viscothermal losses. Thus, losses are non-negligible in such kind of materials and

should be not ignored.
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I.2 Acoustic Metamaterials

I.2.5 Nonlinear acoustic metamaterials

Recently, in addition to the more standard case of linear metamaterials, the study of

nonlinear ones has been receiving increased attention [60, 61, 62], for example, in 2003,

Lapine et al. proposed the concept of nonlinear metamaterials in the filed of electro-

magnetism [63]. In the case of acoustic metamaterials, the presence of nonlinearity,

which is naturally introduced at high acoustic levels, is less studied.

Higher orders in Taylor series expansions of the equation of stat along the isentrope

p =

(
∂p

∂ρ

)
(ρ− ρ0) +

1

2!

(
∂2p

∂ρ2

)
(ρ− ρ0)

2 + . . . , (I.30)

are due to the nonlinearity of acoustics [64], where p, ρ and ρ0 are sound pressure, den-

sity and ambient value respectively. Equation (I.30) can be expressed more succinctly

in the form

p = A

(
ρ− ρ0
ρ0

)
+

B

2!

(
ρ− ρ0
ρ0

)2

+
C

3!

(
ρ− ρ0
ρ0

)3

+ . . . , (I.31)

with

A = ρ0

(
∂p

∂ρ

)
= ρ0c

2
0, (I.32)

B = ρ20

(
∂2p

∂ρ2

)
, (I.33)

C = ρ30

(
∂3p

∂ρ3

)
. (I.34)

B/A is important nonlinear parameter

B

A
=

ρ0
c20

(
∂2p

∂ρ2

)
. (I.35)

The significance of B/A in acoustics is its effect on the sound speed,

cNL =

√(
∂p

∂ρ

)
= c0

(
1 +

β0p

ρ0c20

)
, (I.36)

where

β0 = 1 +
B

2A

is the non-linearity coefficient. As a result, the wave with high pressure phase travels

faster compared to a wave of low pressure phase.

Here we have to mention that there is another choice to define B/A which is as a

function of velocity [64],
B

A
= 2ρ0c0

(
∂cNL

∂p

)
. (I.37)
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In this thesis, we choose to consider that all the nonlinearity only in the velocity, while

the density is linear. [44]

Only a few works have exploited the combined role of nonlinear effects and other

fundamental features of the system, such as dispersion or losses. Due to the strong dis-

persion effect around the resonance frequency introduced by the resonators in acoustic

metamaterials, which was firstly observed by Bradley [66] and Sugimoto [67], acous-

tic metamaterials are good candidates to study the combination of nonlinearity and

dispersion. During the nonlinear wave propagation, higher harmonics are generated.

Dispersion effect introduced by the resonators and periodicity of the acoustic metama-

terials could tailor both the source and the generated harmonics. In some situations

we could observe the beating of the higher generated harmonics [68, 69, 70] because of

mismatched phases or we can remove some higher harmonics if they are place in some

of the band gaps of the system. Acoustic diodes have been also designed based on the

combination of nonlinearity and dispersion. Here are some examples: Liang et al. re-

alized the nonreciprocal acoustic transmission by breaking the linearity, which violates

some assumptions of Onsager-Casimir principle [13]. In granular crystals, Boechler et

al. envisaged the bifurcation-based acoustic switching and rectification [71]. Devaux et

al. achieved asymmetric acoustic propagation by a nonlinear self-demodulation effect

[65]. There are many other nonlinear processes, for example, nonlinear acoustic lenses

[72], waves coupling in nonlinear metamaterials [73], discrete breathers [74].

In general, the combination of nonlinearity and dispersion has revealed different

effects, such as the nonlinear dispersion relation [75], the self-demodulation effect [64,

76, 77], the generation of higher harmonics [68, 69, 70] and the formation of acoustic

solitons [78] of various types–pulse-like [79, 44] and envelope bright ones [44, 80], namely

robust localized waves propagating undistorted due to a balance between dispersion

and nonlinearity. In acoustic metamaterials –and until now– only few works have

systematically consider the interplay between dispersion, nonlinearity and dissipation.

In the context of electromagnetic (EM) metamaterials, there exist many works

devoted to the nonlinear behavior [81, 82, 83, 84, 85]. Typically, metamaterials can be

realized or modeled by a quasi-lumped transmission line (TL), with elementary cells

consisting of a series inductor and a shunt capacitor, the dimensions of which are much

less than the wavelength of the operating frequency. The TL approach is a powerful tool

for studying nonlinear phenomena in EM metamaterials, such as soliton formation and

nonlinear propagation [82, 83, 84, 85]. In the context of acoustic metamaterials, one

may similarly employ an acoustic circuit modeling, in which the voltage corresponds
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I.3 Solitons

Fig. I.7. In the first (third) panel: contour plot of a bright (dark) soliton. In the second

(fourth) panel, the black continuous (red dashed) line depicts the numerical (analytical) result

for the sech- (tanh-) shaped envelope. [44].

to the acoustic pressure and the current to the volume velocity flowing through the

waveguide. The extension of linear to nonlinear transmission lines can be done by

considering nonlinear elements of the circuit. In Chapter II, we will introduce the

Transmission Line approach in details.

I.3 Solitons

In mathematics and physics, soliton is a self-reinforcing solitary wave (a wave packet

or pulse) that maintains its permanent wave form while it propagates at a constant

velocity. Solitons have been studied in many different fields, such as hydrodynamics,

nonlinear optics, plasma physics and biology [86, 87, 88, 89, 90, 91, 92, 93]. Solitary

waves were firstly observed by the James Scott Russell in 1834 in Edinburgh of Scot-

land. He observed that a heap of water in a canal propagated undistorted over several

kilometers. Here is one part of his report in 1844 [94],

“I was observing the motion of a boat which was rapidly drawn along a narrow

channel by a pair of horses, when the boat suddenly stopped – not so the mass of

water in the channel which it had put in motion; it accumulated round the prow of the
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vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward

with great velocity, assuming the form of a large solitary elevation, a rounded, smooth

and well-defined heap of water, which continued its course along the channel apparently

without change of form or diminution of speed. I followed it on horseback, and overtook

it still rolling on at a rate of some eight or nine miles an hour, preserving its original

figure some thirty feet long and a foot to a foot and a half in height. Its height gradually

diminished, and after a chase of one or two miles I lost it in the windings of the channel.

Such, in the month of August 1834, was my first chance interview with that rare and

beautiful phenomenon which I have called the Wave of Translation . . .”

Solitons are caused by a cancellation of nonlinear and dispersive effects in the

medium. Consider a pulse with different frequencies traveling within a dispersive

medium. Due to the dispersion, these different frequencies will travel at different

speeds, and the shape of the pulse will therefore spread over time. However, if nonlin-

earity exactly cancels the dispersion effect, the pulse shape will not change over time.

Periodicity and/or subwavelength resonators introduce dispersion, thus nonlinear peri-

odic/metamaterial systems are perfect candidates for the observation of solitary waves.

For example, in granular chains, an array of beads in contact, [95, 96, 97, 98, 99], the

periodicity introduces dispersion while the Hertzian contact law between the beads

introduces the nonlinearity. Thus, spatial localized solitary wave can propagate in 1D

granular chains.

In a nonlinear, dispersive medium, there are several methods to look for solitons.

For example, looking for pulse solitons, one can apply the continuum approximation

and asymptotic perturbation methods to derive the Korteweg–de Vries (KdV) equa-

tion and thus find analytical soliton solutions [95, 98]. On the other hand, looking for

wavepacket solitons, one can apply multiple scale perturbation to the famous nonlinear

Schrödinger (NLS) equation which supports two distinct types of localized solutions,

envelope bright and dark solitons, depending on the sign of group-velocity dispersion.

Bright solitons are localized waves with vanishing tails towards infinity, see Fig. I.7. As

another soliton solutions of nonlinear Schrödinger (NLS) equation, a dark soliton is an

envelope soliton that has the form of a density dip with a phase jump across its density

minimum, see last two figures in Fig. I.7. This localized waveform is supported on

the top of a stable continuous wave background. Since dark solitons are fundamental

nonlinear excitations of a universal model, the defocusing nonlinear Schrödinger (NLS)

equation, they have been studied extensively in diverse branches of physics. These

include chiefly nonlinear optics [100] and Bose-Einstein condensates [101], but also
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discrete mechanical systems [102], thin magnetic films [103], complex plasmas [104],

water waves [105], and so on. The interest of dark solitons arises from the fact that

–since they are composite objects, consisting of a background wave and a soliton– have

a number of interesting properties which may find important applications. Indeed,

as compared to the bright solitons (which are governed by the focusing NLS equa-

tion), they can be generated by a thresholdless process, are less affected by loss and

background noise, and are more robust against various perturbations [100, 101]. In

addition, in optics, dark solitons have potential applications, e.g., in inducing steerable

waveguides in optical media, or for ultradense wavelength-division-multiplexing [100].

For solitons propagation in acoustic metamaterials –and until now– only few works

have systematically consider the presence of unavoidable viscous and thermal bound-

ary layers at the solid-fluid interface. For example, as far as dark solitons are con-

cerned, they were predicted to occur in acoustic waveguides loaded with an array with

Helmholtz resonators [44], while the effect of dissipation was neglected. To the best of

our knowledge, the dissipation-induced dynamics of dark solitons in acoustic metama-

terials, has not been investigated so far.

I.4 Objective of thesis

The objective of this thesis is to study analytically, numerically and experimentally

nonlinear wave propagation in 1D acoustic metamaterials, taking into account the

losses. We will pay attention to two main phenomena: the second harmonic generation

and the generation of solitary waves in acoustic metamaterials.

To achieve this goal, we will analyze the nonlinear wave propagation in two different

systems: A waveguide loaded with a periodic distribution of side holes and a waveguide

periodically loaded with clamped plates. Below the first cut-off frequency, the side

holes type acoustic metamaterials possess effective negative bulk modulus, while the

clamped plates type acoustic metamaterials possess effective mass density. Waves

with low frequencies cannot propagate in these two structures. The scatters introduce

strong dispersion around the first cut-off frequency. Thus, these two structures are good

candidate to study the combined effect of dispersion, nonlinearity and dissipation.

During the nonlinear wave propagation, second harmonic can be easily generated.

Due to the dispersion effect introduced by the resonators of the acoustic metamaterials,

we can study the dispersion managed, the second harmonic generation. When the

frequency of the source is in the pass band, we can observe the beatings of the generated

17



Chapter I: Introduction

second harmonic because of the phase mismatch. When the frequency of the source is in

the band gap, but close to the cut-off frequency, the frequency of the generated second

harmonic is located at the pass band. Thus, we can observe that when the source

is evanescent, the generated harmonic could propagate in the acoustic metamaterials.

We have analytically and numerically studied these behaviors in these two systems.

Based on the transmission line approach, we derive the corresponding lattice models

which, in the continuum limit, leads to the nonlinear dispersive and dissipative wave

equations. The latter are studied by means of a perturbation method, which leads to

analytical expressions for the first and second harmonics, in very good agreement with

numerical results. We also did the experiments for the second harmonic generation

in an acoustic waveguide loaded with a periodic distribution of side holes, where we

observe the beatings of the generated second harmonic.

After understanding the properties of the nonlinear acoustic metamaterials by using

a driver with only one frequency, we study the nonlinear wave propagation of a wave

package with many frequencies. In the linear regime, the wave packet disperses as it

propagates in the acoustic metamaterials because of the dispersion effect. However, at

high acoustic levels, solitons, i.e., robust localized waves propagating undistorted, can

be found, when there is a balance between dispersion and nonlinearity. In the conven-

tional acoustic materials, for example, air, water and other fluids, solitons do not exist,

because of the lacking of dispersion effect to balance the nonlinearity, while the acoustic

metamaterials possessing dispersion properties are good candidates to study solitons.

As a nonlinear, dispersive, energy-perserving system, acoustic nonlinear metamaterials

give rise to the nonlinear Schrödinger (NLS) equation which could support envelope

bright and dark solitons. Bright solitons founded in the focusing regime are localized

waves with vanishing tails towards infinity, while dark (black and gray) solitons in the

defocusing regime are density dips, with a phase jump across the density minimum

on top of a nonvaninishing continuous wave background. We have analytically and

numerically studied the envelope solitons in these two systems. By using the multiple

scales method, the nonlinear, dispersive and dissipative wave equation of the system

is reduced to the nonlinear Schrödinger (NLS) equation which leads to the envelope

soliton solutions. The dissipative dynamics of these structures are studied via soliton

perturbation theory. We investigate the role—and interplay between—nonlinearity,

dispersion and dissipation on the soliton formation and dynamics. Our analytical pre-

dictions are corroborated by direct numerical simulations.

The studies of second harmonic generation and envelope (bright, gap, black, gray)
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solitons in acoustic mematerials with effective negative bulk modulus or mass density,

pave the way to analyze the nonlinear wave propagating in double negative acous-

tic metamaterials. Due to the unconventional properties of double negative acoustic

metamaterials, we could study the backwards-traveling second-harmonic sound wave,

etc.

I.5 Organization of thesis

This thesis is structured in 6 chapters.

In this thesis, we employ the electro-acoustic analogy to theoretically and numer-

ically analyze the nonlinear acoustic metamaterials, which is based on the transmis-

sion line approach. Thus we firstly introduce this analytical tool, the transmission

line approach in Chapter II, which allows us to study nonlinear wave propagation in

acoustic metamaterials with lumped elements (series branch and parallel branch) in

Chapter III, IV and V. An one-dimensional (1D) acoustic metamaterial with effective

negative mass density, composed by a waveguide periodically loaded by clamped plates,

could be modeled by acoustic transmission line metamaterial with series branches; while

an one-dimensional (1D) acoustic metamaterial with effective negative bulk modulus,

composed by a waveguide periodically loaded by side holes, could be modeled by acous-

tic transmission line metamaterial with parallel branches.

Based on the electro-acoustic analogy and the transmission line approach, we model

the system by a nonlinear dynamical lattice. In the continuum approximation, the lat-

ter leads to a nonlinear wave equation. In Chapter III, we analyze the nonlinear wave

equations with lumped elements, which could be solved analytically in the following

chapters. By using a perturbative scheme we derive analytical expressions for the first

and second harmonics. In Chapter IV, we analytically, numerically and experimentally

study the second-harmonic generation in acoustic metamaterials. Employing the mul-

tiple scales perturbation method, we derive an effective nonlinear Schrödinger (NLS)

equation which supports envelope soliton solutions. The effect of dissipation is also

taken into regard, and is studied analytically by means of perturbation theory for soli-

tons. In Chapter V, we analytically and numerically study the envelope (bright, gap,

black and gray) solitons in acoustic metamaterials.

Finally, in Chapter VI, we present our conclusions and discuss some future research

directions.
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Chapter II

Transmission Line Approach

The transmission line (TL) approach (a circuit-based concept) is widely used in elec-

tromagnetics and acoustics, and has recently gained considerable attention due to its

applicability in the analysis and design of metamaterials. However it is worth noting

that analogies between mechanic, acoustic and electric quantities were studied already

since Lord Kelvin from the XIX century. In the case of the acoustics, if the acoustic

pressure is considered as the voltage, and the volume velocity as the intensity of a

electrical circuit, the equations describing the electrical and acoustical phenomena are

analogues. This approach has been exploited in the literature to understand the linear

propagation in metamaterials. Moreover, nonlinear effects can be taken into regard by

incorporating nonlinear elements in the unit-cell circuit. TL approach has been then

shown as a powerful tool for studying nonlinear phenomena in electromagnetic and

acoustic metamaterials [81, 82, 83, 84, 85, 44]. In this chapter, we introduce the TL

approach used though this thesis. We start by the linear elements and finish with the

nonlinear elements.
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II.1 Introduction

The TL approach (a circuit-based concept) is of great interest in many practical situa-

tions in both electromagnetism and acoustics. However, in the case of metamaterials,

the TL approach is particularly interesting as these systems are discrete systems work-

ing in the long-wavelength regime. In this conditions the dimensions of the building

blocks of the metamaterial are much smaller than the working wavelength and then the

governing equations can be discretized and the electro-acoustical analogy can be ap-

plied. The fundamental elements used in the modeling consist of circuits representing

the elementary cells made of combinations of acoustic masses, resistances and acoustic

compliances as introduced in section II.2.

The linear TL description of acoustic metamaterials has gained considerable atten-

tion the last few years [106, 107, 108, 109, 110], where the presence of resonators in

the acoustic system could be done simply by adding resonant branches in the circuit.

Moreover, the TL approach has been shown as a powerful tool for studying nonlinear

phenomena as for example, in electromagnetic metamaterials, such as soliton forma-

tion [81, 82, 83, 84, 85] or in acoustics describing the nonlinear propagation in acoustic

metamaterials made of a periodic distribution of Helmholtz resonators [44]. We will

show the details of the extension of linear to nonlinear TLs in section II.2.3 and II.4.2.

In this thesis, we employ the electro-acoustic analogy to theoretically analyze the

nonlinear acoustic metamaterials. In this situation, two nonlinear partial differential

equations for the pressure and velocity field coupled at specific points (where the res-

onators are located) with ordinary differential equations that describe the dynamics of

the resonators (in our case the clamped plates or the side holes) must be solved. In

most of the situations, this kind of modeling is very difficult to treat analytically and

one has only to rely on numerical simulations. On the contrary, if the hypothesis of the

TL approach are assumed, then the electro-acoustical analogy can be used to derive a

nonlinear discrete wave equation, describing wave propagation in an equivalent electri-

cal transmission line, which can be solved by means of perturbation methods, multiple

scales methods or coupled mode theory in the continuum limit. Such an approach is

much simpler than the one relying on the study of a nonlinear acoustic wave equation

coupled with a set of differential equations describing the dynamics of each resonators.

Furthermore, our approach allows for a straightforward analytical treatment of the

problem by means of standard techniques that are used in other physical systems [78].

This chapter is structured as follows. After an introduction in Section II.1, we start
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with the electro-acoustic analogue modelling for the fundamental acoustical elements

in Section II.2. Then we model resonant elements (clamped plates and side holes) in

Section II.3. In Section II.4, we study linear and nonlinear acoustic wave equation in

a uniform 1D waveguide. Finally, in Section II.5, we present our conclusions.

II.2 Electro-acoustic analogue modelling

The TL approach is based on the electro-acoustical analogy, i.e., on the similarity of

equations describing electrical and acoustical phenomena. In this section we introduce

the hypothesis in which the analogy is based and the fundamental elements used to

build the different building blocks of the analyzed metamaterials though this thesis.

As a summary of the fundamental elements and the analogy between the electrical

quantities and the acoustical ones, Table II.1 is given at the end of this section.

II.2.1 Hypothesis, approximation

We study acoustic wave propagation in sub-wavelength structures, i.e., structures made

of unit cells much smaller than the wavelength of the analyzed wave. We restrict our

analysis to one-dimensional (1D) systems. We consider that the fluid in the acoustic

metamaterials is a perfect gas.

II.2.2 The fundamental linear acoustical elements

II.2.2.1 The acoustic mass

The acoustic mass is associated with the 1D motion of a fluid element of length d,

in our case, along the x direction. The dimensions of this element are significantly

smaller than the wavelength considered, λ. The motion is induced by the difference

δp = pn+1−pn between the input acoustic pressure pn and the output acoustic pressure

pn+1 on the element. Under the long wave approximation, the Euler’s linear equation,

ρ
∂v

∂t
= −∂p

∂x
, (II.1)

where v is the particle velocity and ρ is the density of the fluid, reads as

ma
∂u

∂t
= δp, (II.2)
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II.2 Electro-acoustic analogue modelling

where

ma ≡ L =
ρd

S
(II.3)

is the acoustic mass and δp
d
≃ − ∂p

∂x
. The velocity distribution along the normal surface

of fluid flow is assumed uniform. Under this assumption, the acoustic volume velocity

u is simply product of particle velocity and entire surface u = Sv. Assuming that

u varies time-harmonically with frequency ω, Eq. (II.2) turns to Zu = δp with the

impedance (lossless case)

Z = iωL. (II.4)

II.2.2.2 The acoustic compliance

Consider the elastic reaction of a volume of a perfect gas V varying around a mean

value V0, the dimensions of which are significantly smaller than the wavelength con-

sidered (V1/3 << λ) and within which the density and pressure remain uniform. This

corresponds to a reaction to a flow variation through a boundary surface S associated

with a uniform displacement η = Ξ/S, where Ξ is the volume displacement. It is worth

noting here that in a perfect gas the bulk modulus can be expressed as ρ0c
2
0 = γP0 and

that in the linear approximation, the acoustic pressure p can be related to the acoustic

density ρa = ρ− ρ0 by ρa = p/c20.

Applying the mass conservation equation,

∂ρ

∂t
= −ρ0

∂v

∂x
, (II.5)

to a volume V0 = Sd of perfect gas in a 1D waveguide of section S, and considering

the long-wavelength approximation (d << λ), we obtain

1

c20

∂p

∂t
= ρ0

δv

d
. (II.6)

Again, the velocity distribution along the normal surface of fluid flow is assumed uni-

form. Under this assumption, u = Sv, and then

Sd

ρ0c20

∂p

∂t
= δu. (II.7)

One can now define the compliance C (or its reciprocal stiffness s) by

C =
1

s
=

V0

γP0

=
Sd

ρ0c20
. (II.8)
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Then using the conservation of mass, one obtain p =
1

C

∫
udt. Assuming that p varies

time-harmonically with frequency ω, Eq. (II.7) turns to

Y p = δu (II.9)

with the admittance (lossless case)

Y = iωC.

II.2.2.3 Acoustic resistance

The propagation of an acoustic harmonic wave in a dissipative gas (viscous and heat

conducting) contained in a cylindrical tube with a circular cross-section of radius r, is

governed by the following equation

∂p

∂x
+ Zu = 0. (II.10)

In the long-wavelength regime, this equation reads as

−δp

d
+ Zu = 0. (II.11)

Considering Z as independent of frequency, we define the acoustic resistance as

R =
p

u
=

Z

d
. (II.12)

Deriving Eq.(II.11) with respect to x and considering Y p = δu, Eq.(II.10) turns to

∂2p

∂x2
+

ZY

d
p = 0. (II.13)

The solution of Eq. (II.13) could be written in the form of

p = (Aekx +Be−kx)eiωt, (II.14)

where k is the wavenumber. Substituting Eq. (II.14) into Eq. (II.13), we obtain

k =

√
−ZY

d
. (II.15)

The acoustic characteristic impedance is

Zc =

√
Z

dY
(II.16)

26



II.2 Electro-acoustic analogue modelling

Thus the impedance Z could be written as a function of wavenumber and the acoustic

characteristic impedance

Z = Im(kZc)d, (II.17)

with Im() being the imaginary part, describes the viscothermal losses at the boundaries

of the waveguide wall, where the wavenumber and acoustic characteristic impedance

of the waveguide are given by [111]:

k =
ω

c0

(
1 +

1− i

s
(1 + (γ − 1)/

√
Pr)

)
, (II.18)

Zc =
ρ0c0
S

(
1 +

1− i

s
(1− (γ − 1)/

√
Pr)

)
. (II.19)

Here, γ is the specific heat ratio, Pr is the Prandtl number, and s =
√

ωρ0r2/η, with

η being the shear viscosity.

Table II.1: Electro-acoustical analogy. Expressions given for a volume of perfect gas

made from a length d in a cylindrical section S, V = Sd.

Electrical Acoustical

voltage, v [V] pressure, p [Pa]

intensity, i [A] volume-velocity, u [m3/s]

charge, q [C] volume displacement, Ξ [m3]

Impedance, Ze Impedance, Z

v/i = Ze p/u = Z

Admittance, Ye Admittance, Y

Ye = 1/Ze Y = 1/Z

Inductance, Le Acoustic mass, ma

v = Le
∂i

∂t
p = ma

∂u

∂t
, L =

ρd

S
Capacitance, Ce Compliance, C

v =
1

Ce

∫
idt p =

1

C

∫
udt, C =

Sd

ρ0c20
.

Resistance, Re Resistance, R

v = Rei p = Ru
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Chapter II: Transmission Line Approach

II.2.3 The fundamental nonlinear acoustical elements

For the weakly nonlinear wave propagation in acoustic waveguide, it is well known

that, due to the compressibility of air, the wave celerity cNL is considered amplitude

dependent [112, 64, 44], with the approximated expression

cNL ≈ c0
(
1 + β0p/ρ0c

2
0

)
, (II.20)

where β0 is the nonlinear parameter (β0 = 1.2 for air).

For our analysis, we will assume that the acoustic mass is linear, while the acous-

tic compliance defined as C = Sd/ρ0c
2
NL is nonlinear, depending on the pressure p.

Therefore, The pressure-dependent acoustic compliance Cω can be expressed as

Cω = Cω0 − C
′

ωpn, (II.21)

with

C
′

ω =
2β0

ρ0c20
Cω0. (II.22)

This choice, relies on the approximation that (to a first order) the density does not

depend on p, while the wave celerity cNL depends on p.

II.3 Modeling of resonant elements

All the systems we have discussed above have been purely acoustic, in the sense that

the only motion was due to acoustic waves in air. We can often separate off the acoustic

part of a system in this way, regarding any associated mechanical vibrator as simply a

source of acoustic flow or acoustic pressure.

In this section, we introduce the electro-acoustic analogue modeling for the resonant

elements used in this thesis, i.e., clamped plates and side holes.

II.3.1 Clamped plates

As mentioned in Chapter I, the clamped plates are used in the field of acoustic metama-

terials to describe systems with negative mass density. Such a resonant element can be

integrated fairly simply into the analysis if we can assign to it an acoustic impedance.

Suppose that the clamped plate has area S and thickness h, and that it is made from

material with density ρm. The restoring force associated with plate displacement may

be either a tension or a stiffness, or a combination of both, and we need not be definite
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II.3 Modeling of resonant elements

Fig. II.1. (a) One cell of acoustic waveguide loaded with clamped plates in linear regime,

without considering viscothermal losses. (b) Corresponding unit-cell circuit.

about this to a first approximation. The important thing is that the restoring force

establishes a resonance frequency ωm = 2πfm for the first mode of the clamped plate,

with frequency [106]

fm = 0.4694
h

r2

√
E

ρm(1− ν2)
, (II.23)

where E is the Young’s modulus and ν is the Poisson ratio [106, 110]. This approxi-

mation is valid by assuming uniform pressure on the plates and for frequencies below

the first resonance of the plates (more details are found in Ref. [106]). This first mode

is all that we are really concerned with.

To calculate the acoustic impedance of the plate we must simply describe its motion

using the acoustic quantities p and u. To an adequate approximation we can replace

the plate by a simple piston of the same mass and area, tethered by a spring of the

right stiffness and damping to give the defined resonance behavior. The velocity of

the piston is then u/S and the force exerted on it by a pressure difference between its

faces, pS. Its oscillatory behavior is then described if we suppose it to have an acoustic

mass

Lm =
ρmh

S
, (II.24)
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Fig. II.2. (a) One cell of acoustic waveguide loaded with side holes in linear regime, without

considering viscothermal/radiation losses. (b) Corresponding unit-cell circuit.

and an acoustic compliance

Cm =
1

ω2
mLm

. (II.25)

Therefore an plate clamped in a waveguide as shown in Fig. II.1 (a), can be modeled

by a LC circuit [106], as shown in in Fig. II.1 (a), made of the series combination of

an acoustic mass Lm and an acoustic compliance Cm.

II.3.2 Side holes

As mentioned in Chapter I, waveguides with side holes have been shown as acoustic

metamaterials with negative bulk modulus. The side hole, as shown in Fig. II.2 (a),

can be seen as an acoustic mass loaded to the main waveguide. Therefore the equivalent

electrical circuit consists of an acoustic mass in parallel, as shown in Fig. II.2 (b)

We consider holes of radius rH and length lH , where the distance between two

consecutive side holes is d. We study the regime where the wavelength λ of the sound

wave is much bigger than the geometric characteristic of the side holes, i.e., krH ≪ 1.
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II.4 Combining the fundamental acoustic elements

The corresponding acoustic mass could be given by

LH = ρ0(lH +∆lHi +∆lHo)/SH , (II.26)

where SH = πr2H is the area of the side holes, and

∆lHi = 0.82(1− 0.235ǫn − 1.32ǫ2n + 1.54ǫ3n − 0.86ǫ4n)rH , (II.27)

∆lHo = (0.82− 0.470.8ǫn)rH , (II.28)

with ǫn = rH/r, are length corrections due to the radiation inside the waveguide and

to the outer environment respectively [113, 114, 115].

Scatterer losses have to be taken into account in this element. They come from

viscothermal losses at the boundaries of the holes wall and radiation losses to the outer

environment. The former ones can be obtained from the real part of the impedance of

an open tube of radius rH ,

Zot = −i
ρ0c0
SH

tan(kH lH + kH∆lHi + kH∆lHo), (II.29)

where

kH = ω
(
1 + (1− j)(1 + (γ − 1)/

√
Pr)/ss

)
/c0, (II.30)

and where ss =
√

ωρ0r2H/η depends on the radius of the side holes. The radiation

losses can be obtained from the real part of the radiation impedance [116, 117, 113]

Zr = ρ0c0
(kHrH)

2

2SH

, (II.31)

valid for or kr << 1, which is the case in our studies. With these definitions, the

resistance of the holes can be obtained from

ZH = Re(Zr + Zot) (II.32)

where Re() means real part.

II.4 Combining the fundamental acoustic elements

Once the fundamental linear and nonlinear acoustic elements are introduced, we present

some examples to show how we can assemble them to create acoustic systems. Then,

by applying the Kirchoff’s laws to these fundamental systems, we can obtain their wave

equations.
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Fig. II.3. (a) One cell of 1D acoustic waveguide of radius r. The length of the cell is d. (b)

The unit-cell circuit of the equivalent TL model of the acoustic waveguide.

II.4.1 Acoustic wave equation in a uniform 1D waveguide

We firstly study the low-frequency linear lossless wave propagation in 1D acoustic

waveguide of radius r, see Fig. II.3 (a). The length of each cell is d. The unit-cell

circuit of the equivalent TL model of the acoustic waveguide is shown in Fig. II.3 (b).

The waveguide is modeled by Lω, playing the role of the acoustic mass of the fluid in

the waveguide, and shunt Cω, playing the role of the acoustic compliance of the cavity.

In the linear regime, the acoustic mass and acoustic compliance are given by [110]

Lω0 = ρ0d/S, (II.33)

Cω0 = Sd/(ρ0c
2
0), (II.34)

respectively, where ρ0, c0 and S = πr2 are respectively the density, the sound velocity

of the fluid and the cross-section area of the waveguide.

Next, we use Kirchhoff’s voltage and current laws to derive an evolution equation

for the pressure pn in the n-th cell of the lattice. In particular, Kirchhoff’s voltage law

for two successive cells yields,

pn−1 − pn = Lω
d

dt
un, (II.35)

pn − pn+1 = Lω
d

dt
un+1. (II.36)

Substracting the two equations above, we obtain the differential-difference equation

(DDE),
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II.4 Combining the fundamental acoustic elements

δ̂2pn = Lω
d

dt
(un − un+1) , (II.37)

with

δ̂2pn ≡ pn+1 − 2pn + pn−1. (II.38)

Then, Kirchhoff’s current law yields

un − un+1 = Cω
d

dt
pn. (II.39)

Substituting Eq. (II.39) into Eq. (II.37), we obtain the following evolution equation

for the pressure,

δ̂2pn − LωCω
d2pn
dt2

= 0. (II.40)

For our analytical considerations, we now focus on the continuum limit of Eq. (II.40),

corresponding to n → ∞ and d → 0 (but with nd being finite); in such a case, the

pressure becomes pn(t) → p(x, t), where x = nd is a continuous variable, and

pn±1 = p± d
∂p

∂x
+

d2

2

∂2p

∂x2
± d3

3!

∂3p

∂x3
+

d4

4!

∂4p

∂x4
+O(d5). (II.41)

Therefore, the difference operator δ̂2pn can be approximated by

δ̂2pn ≈ d2pxx, (II.42)

where subscripts denote partial derivatives. This way, we obtain the corresponding

partial differential equation (PDE),

∂2p

∂x2
− 1

c20

∂2p

∂t2
= 0, (II.43)

which is the acoustic wave equation.

II.4.2 Nonlinear acoustic wave equation in a uniform 1D waveg-

uide (Westervelt equation)

Recalling that the acoustic compliance Cω depends on the pressure, the well-know

Westervelt equation could be derived by using the Kirchoff’s voltage and current laws,

with the same process that in Section II.4.1. Substituting Eq. (II.21) and Eq. (II.22)

into Eq. (II.40), we obtain the following evolution equation for the pressure,

δ̂2pn − LωCω0
d2pn
dt2

+
LωC

′

ω

2

d2p2n
dt2

= 0. (II.44)
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Fig. II.4. Unit-cell circuit of weakly nonlinear wave propagation in acoustic waveguide,

without considering viscothermal losses.

For our analytical considerations, we now focus on the continuum limit of Eq.

(II.44), corresponding to n → ∞ and d → 0 (but with nd being finite). In such a case,

we obtain the corresponding PDE, the Westervelt equation,

∂2p

∂x2
− 1

c20

∂2p

∂t2
+

β

ρ0c40

∂2p2

∂t2
= 0, (II.45)

which is a common nonlinear model describing 1D acoustic wave propagation [64].

II.5 Conclusion

In this chapter, we have introduced the transmission line approach in detail for the

systems analyzed in this thesis. In what follows we will combine the different elements

in order to obtain the different nonlinear wave equations of metamaterials made of

periodic distributions of side holes or clamped plates. This chapter shows the basics

to construct the analytical approach developed in this thesis.
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Nonlinear acoustic wave equations

obtained by the transmission line approach

In this chapter, based on the electro-acoustic analogy and the transmission line ap-

proach, we derive the nonlinear, dynamical lattice model for one-dimensional (1D),

weakly lossy acoustic metamaterials with effective negative mass density (a waveguide

periodically loaded by clamped plates) and effective negative bulk modulus (a waveg-

uide periodically loaded by side-holes). Applying the continuum approximation to the

nonlinear dynamical lattice model, we obtain the corresponding nonlinear, dispersive

and dissipative acoustic wave equations. These equations will be further studied in the

following two chapters, where we will study second harmonic generation and dissipative

envelope solitons (chapter IV and V respectively). Here, to verify the trasmission line

approach in the linear limit, we obtain the linear dispersion relation of the system and

compare it to the one obtained by the transfer matrix method (TMM).
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III.1 Introduction

III.1 Introduction

In this chapter, based on the electro-acoustic analogy and the transmission line ap-

proach, one-dimensional (1D), weakly lossy acoustic metamaterials with effective neg-

ative mass density (a waveguide periodically loaded by clamped plates) and effective

negative bulk modulus (a waveguide periodically loaded by side-holes) are modeled

by nonlinear, lossy and dynamical lattice models. It is well known that the clamped

plates and the side holes are incorporated as resonant elements in series and in parallel

respectively in the electro-acoustic circuit (see chapter II) to build such kind of acoustic

metamaterials. In the continuum approximation, the nonlinear, lossy and dynamical

lattice model becomes a nonlinear, dispersive and dissipative acoustic wave equation.

In the linear limit, we study the linear dispersion relation of the system, and compare

it to the one obtained by the TMM, in order to verify our theory. The obtained models

will allow us to study the combined effects of dispersion, nonlinearity and dissipation

in an acoustic metamaterial in the following two chapters.

This chapter is structured as follow: By using the transmission line approach, we

derive the nonlinear wave equation in acoustic transmission line metamaterials with

series branches (in Section III.2) and with parallel branches (in Section III.3) separately.

In Section III.2.1 and III.3.1, based on the electro-acoustic analogy, we describe the

setup and introduce the 1D nonlinear, lossy lattice model. Then, in Section III.2.2

and III.3.2, we obtain the nonlinear, dispersive and dissipative acoustic wave equation,

stemming from the continuum limit of the lattice model. Section III.2.3 and III.3.3

describe the linear properties of the proposed metamaterials. Finally, in Section III.4,

we present our conclusions.

III.2 Nonlinear dynamical lattice model of a 1D

acoustic metamaterial made of a periodic dis-

tribution of clamped plates

III.2.1 Setup and model

A schematic view of the acoustic waveguide periodically loaded by clamped plates,

as well as the respective unit-cell structure of this setup are respectively shown in

Figs. III.1 (a) and III.1 (b). The distance between the plates is d and the plates
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Fig. III.1. (a) Waveguide loaded with an array of clamped plates; (b) the unit-cell of the

system; (c) corresponding unit-cell circuit.

have a thickness h, radius r, density ρm, Young’s modulus E and Poisson’s ratio ν.

We consider low-frequency wave propagation in this setting, i.e., the frequency range is

well below the first cut-off frequency of the higher propagating modes in the waveguide,

therefore the propagation is considered as one-dimensional (1D).

Table III.1: Physical parameters for the setup in Fig. III.1

geometric parameters:

d = 0.01 [m], r = 0.025 [m], h = 2.78 10−4 [m]

material parameters: rubber plates,

ρm = 1420 [kg/m3], E = 2.758 [GPa], ν = 0.34

air,18◦ C

β0 = 1.2, ρ0 = 1.29 [kg/m3], c0 = 343.26 [m/s],

γ = 1.4, Pr = 0.71, η = 1.84 10−5 [kg/m/s]

Following the TL approach, we start our consideration with the unit-cell circuit of

the equivalent TL model of this setting, which is shown in Fig. III.1 (c). It consists

of two parts, one corresponding to the propagation in the acoustic waveguide, and the
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other to the clamped plate (separated in Fig. III.1 (c) by a thin vertical dotted line).

As shown in section II.3.1, the resonant plate can be modeled by a LC circuit

[106], namely the series combination of an inductance Lm = ρmh/S and a capacitance

Cm = 1/(ω2
mLm), see chapter II. Losses originating from the dynamic response of the

clamped plates are not taken into account in this work. Here we have to mention that

the losses within the elastic plates could also be modeled. In this case, Young’s modulus

and acoustic compliance are complex. The real part of (iωCm)−1 is the resistance of

elastic plates, which will be the branch in series in the modelling, i.e., we could add

the resistance of elastic plates in Rω. The physics will be similar.

The part of the unit-cell circuit that corresponds to the waveguide solely (i.e.,

without the clamped plates and the associated periodic structure) is modeled by the

resistance Rω (taking into account the viscothermal losses), the inductance Lω and

shunt nonlinear capacitance Cω, as shown in chapter II.

At this point, we should mention that we consider the response of the clamped

plate to be linear, while the propagation in the waveguide is weakly nonlinear. This is

a reasonable approximation, since the pressure amplitudes used in this thesis are not

sufficiently strong to excite nonlinear vibrations of the clamped plates. For example,

in Ref. [118], to active the nonlinearity of the plates, 0.7 MPa is needed.

We now apply Kirchhoff’s voltage and current laws in order to derive the nonlinear,

dissipative, lattice equations for the pressure in the n-th cell of the lattice. Applying

Kirchoff’s pressure law for two successive cells [see Fig. III.1 (c)] yields,

pn−1 − pn = L
d

dt
un + Vn +Rωun, (III.1)

pn − pn+1 = L
d

dt
un+1 + Vn+1 +Rωun+1, (III.2)

where L = Lω +Lm and Vn is the pressure produced by the acoustic compliance of the

clamped plates Cm. Subtracting the two equations above, we obtain the differential-

difference equation (DDE)

δ̂2pn = L
d

dt
(un − un+1) +Rω (un − un+1) + (Vn − Vn+1) , (III.3)

where δ̂2pn ≡ pn+1 − 2pn + pn−1. Then, Kirchhoff’s volume velocity law yields

un − un+1 = Cω
d

dt
(pn) , (III.4)

with
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un = Cm
d

dt
(Vn) and un+1 = Cm

d

dt
(Vn+1) . (III.5)

Subtracting Eq. (III.5) and employing Eq. (III.4), we obtain

un − un+1 = Cm
d

dt
(Vn − Vn+1) = Cω

d

dt
(pn) . (III.6)

Then, recalling that the acoustic compliance Cω depends on the pressure [cf. Eq. (II.21)],

we express Vn − Vn+1 as

Vn − Vn+1 =
Cω

Cm

pn =
Cω0

Cm

pn −
C

′

ω

Cm

p2n. (III.7)

Next, substituting Eq. (III.6) and Eq. (III.7) into Eq. (III.3), we obtain the following

evolution equation for the pressure

δ̂2pn = L
d

dt

(
Cω

d

dt
(pn)

)
+Rω

(
Cω

d

dt
(pn)

)
+

Cω

Cm

pn. (III.8)

To this end, employing Eq. (II.21), we can rewrite the above equation and get the

evolution equation (considering lossy effect of the waveguide) for the pressure in the

n-th cell of the lattice, Eq. (III.9).

δ̂2pn = LCω0
d2pn
dt2

+RωCω0
dpn
dt

+
Cω0

Cm

pn −
LC

′

ω

2

d2p2n
dt2

− RωC
′

ω

2

dp2n
dt

− C
′

ω

Cm

p2n. (III.9)

III.2.2 Continuum limit

In order to analytically treat the problem, we focus on the continuum limit of Eq. (III.9),

corresponding to n → ∞ and d → 0 (with nd being finite). In such a case, the pressure

becomes pn(t) → p(x, t), where x = nd is a continuous variable. Then, pn±1 can be

approximated as:

pn±1 = p± d
∂p

∂x
+

d2

2

∂2p

∂x2
± d3

3!

∂3p

∂x3
+

d4

4!

∂4p

∂x4
+O(d5), (III.10)

and, accordingly, the operator δ̂2pn is approximated as: δ̂2pn ≈ d2pxx +
d4

12
pxxxx (sub-

scripts denote partial derivatives). Here, keeping terms up to order O(d4) results in

the incorporation of a fourth-order dispersion term in the relevant nonlinear partial

differential equation (PDE) –see below. Including such a weak dispersion term, which

originates from the periodicity of the clamped plate array (see also Ref. [70]), is nec-

essary in order to capture more accurately the dynamics of the system. To this end,
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neglecting terms of the order O(d5) and higher, Eq. (III.9) is reduced to the following

PDE:

d2pxx +
d4

12
pxxxx − LCω0ptt −RωCω0pt −

Cω0

Cm

p

+
1

2
LC

′

ω

(
p2
)
tt
+

1

2
RωC

′

ω

(
p2
)
t
+

C
′

ω

Cm

p2 = 0.

(III.11)

It is also convenient to express our model in dimensionless form; this can be done

upon introducing the normalized variables τ and χ and the normalized pressure P ,

which are defined as: τ = ωBt (where ωB = πc0/d is the Bragg frequency), χ =

(ωB/c)x, where the velocity c is given by

c =
c0√
1 + α

, α =
hρm
dρ0

, (III.12)

and p/P0 = ǫP , where P0 = ρ0c
2
0 and 0 < ǫ ≪ 1 is a formal dimensionless small

parameter. Then, Eq. (III.11) is reduced to the following dimensionless form,

Pττ − Pχχ − ζPχχχχ + ΓPτ +m2P = ǫβ0

[
2m2P 2 + Γ

(
P 2
)
τ
+
(
P 2
)
ττ

]
, (III.13)

where parameters m2, ζ and Γ are given by

m2 =
α

1 + α

(
ωm

ωB

)2

, ζ =
1

12
π2(1 + α), Γ =

RωS

ρ0dωB(1 + α)
. (III.14)

It is interesting to identify various limiting cases of Eq. (III.13). First, in the lossless,

linear limit (Rω = 0, Γ = 0 and ǫ → 0), in the long-wavelength approximation (without

considering higher-order spatial derivatives, ζ → 0), Eq. (III.13) takes the form of the

linear Klein–Gordon (KG) equation [78, 119],

Pττ − Pχχ +m2P = 0,

with the parameter m playing the role of mass. If the plates are absent (m2 → 0)

the Klein–Gordon equation is reduced to the 2nd-order linear wave equation. Another

interesting limit of Eq. (III.13) corresponds to m2 → 0, Γ = 0 and ζ → 0, which leads

to the well-known Westervelt equation,

Pττ − Pχχ − ǫβ0

(
P 2
)
ττ

= 0,

which is a common model describing 1D, nonlinear acoustic wave propagation [64].

41



Chapter III: Nonlinear acoustic wave equations obtained by the transmission line
approach

Fig. III.2. ((a) and (b) respectively show the real and imaginary parts of the complex

dispersion relation in the low frequency regime. Black circles (Red crosses) in Figs. III.2

(a) and (b) show the results considering the losses from the TL (TMM) approach from

Eq. (III.17) (Eq. (III.28)). Red lines present the lossless case obtained by TMM [lossless

limit of (Eq. (III.28)]. Blue dashed lines show the lossless dispersion relation obtained by

TL approach, Eq. (III.18). Black dash-dotted lines predict the lossless dispersion relation

obtained by TL approach, without considering the dispersion effect introduced by the peri-

odicity of the lattice (ζ = 0).; (c) The influence of the periodicity d of the lattice on the first

cut-off frequency m (m is not the resonance frequency of the clamped plates fm, but close

to it) (blue line) and the influence of d on the asymptote of the quasi linear part a (green

dotted line); (d) The influence of the thickness of the clamped plates h on the first cut-off

frequency m (blue line) and the influence of h on the asymptote of the quasi linear part a

(green dotted line).

III.2.3 Linear limit

We now consider the linear limit (ǫ → 0) of Eq. (III.13), and assume propagation of

plane waves of the form P ∝ exp[i(kχ−ωτ)], to obtain the following dispersion relation

D(ω, k) = (−ω2 + k2 − ζk4 +m2)− iΓω = 0. (III.15)

In the absence of losses (Γ = 0), Eq. (III.15) is reduced to,

D(ω, k) = −ω2 + k2 − ζk4 +m2 = 0, (III.16)
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which is the familiar dispersion relation of the linear Klein-Gordon model [78, 119].

Equation (III.15) and Eq. (III.16) suggest the existence of a gap at low frequencies,

i.e., for 0 ≤ ω < m, with the cut-off frequency defined by the parameter m. For

m < ω < ωB, there exists a propagating band, with the dispersion curve ω(k) having

the form of hyperbola, which asymptotes [according to Eq. (III.15) and Eq. (III.16)]

to unity, representing the normalized velocity associated with the linear wave equation

Pττ − Pχχ = 0 mentioned above. The term ζk4 accounts for the influence of the

periodicity of the lattice (originating from the term δ̂2pn) to the dispersion relation.

Although this term appears to lead to instabilities for large values of k, both Eq. (III.13)

and Eq. (III.15) are used in our analysis only in the long wavelength limit where k is

sufficiently small. The term iΓω accounts for the viscothermal losses in the waveguide.

Since all quantities in the above dispersion relation are dimensionless, it is also

relevant to express Eq. (III.15) in physical units. In particular, taking into account

that the frequency ωph and wavenumber kph in physical units are connected with their

dimensionless counterparts through ω = ωph/ωB and k = kphc/ωB, we can express

Eq. (III.15) and Eq. (III.16) respectively in the following form:

− ω2
ph + k2

phc
2 − ζ

k4
phc

4

ω2
B

+m2ω2
B − iΓωphωB = 0, (III.17)

− ω2
ph + k2

phc
2 − ζ

k4
phc

4

ω2
B

+m2ω2
B = 0. (III.18)

Solving Eq. (III.17) and Eq. (III.18) analytically with respect to kph, we can then

determine the frequency f = ωph/2π as a function of the wavenumber kph, and plot the

resulting dispersion relation. We use the parameters shown in Table III.1. The real and

imaginary parts of the dispersion relation are respectively plotted in Fig. III.2 (a) and

(b). We observe that there is almost no difference between the lossy dispersion relation

[Eq. (III.17)] (circles) and the lossless one [Eq. (III.18)] (blue dashed line), since the

losses are sufficiently small. The dispersion relation features the band gap from 0 Hz to
(
mωB

2π

)
Hz due to the combined effect of the resonance of the plate and of the geometry

of the system. The upper limit of this band gap is found to be sufficiently smaller than

the Bragg band frequency (fB = c0/2d = 17163 Hz, with c0 = 343.26 m/s).

The propagating band has three parts: a strongly dispersive part due to the res-

onators (about 300 − 500 Hz), a weakly dispersive one (about 500 − 1500 Hz) and

another strongly dispersive one due to the periodicity of lattice (about 1500 Hz to

the lower edge of the Bragg band). In the weakly dispersive region there is a “quasi-
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linear” dispersion with the slope a = c0/
√
1 + α [which is identical to the velocity c in

Eq. (III.12)]. Both the periodicity of the system d and the thickness of the clamped

plates could influence the first cut-off frequency m and the slope a of the “quasi-linear”

dispersion, as shown in the Fig. III.2 (c) and (d). The first cut-off frequency m is

inversely proportional to the periodicity of the lattice d and proportional to the thick-

ness of the clamped plates h, while the slope a of the “quasi-linear” dispersion increases

with the increase of d and the decrease of h. Due to periodicity, the band structure of

our system exhibits a Bragg band gap with an upper edge kd = π located at 17.163

kHz. The lower edge of this gap however, also depends on α (describing the impedance

mismatch and the filling fraction) and it is located much lower at 1.988 kHz. Due

to the dispersion around this lower band gap edge, the 4th order spatial derivative

term is needed to describe the system with better accuracy. To further illustrate the

importance of the higher order dispersive term, in Fig. III.2 (a) we additionally show

a curve corresponding to the case without it (ζ = 0) (black dash-dotted line).

On the other hand, in order to verify our theory, we compare this linear dispersion

relation with the one obtained by using the TMM [66]. For one cell, the transmission

matrix can be expressed as follows,

[
p

u

]

x

= [mω] [mH ] [mω]

[
p

u

]

x+d

= [T ]

[
p

u

]

x+d

, (III.19)

where

[mω] =

[
cos(kd/2) jZc sin(kd/2)
j
Zc

sin(kd/2) cos(kd/2)

]
, (III.20)

is the transfer matrix of a waveguide of length d/2 and

[mH ] =

[
1 Zm

0 1

]
, (III.21)

is the one corresponding to the clamped plates and

[T ] =

[
T11 T12

T21 T22

]
, (III.22)

is the transfer matrix for one cell. px(ux) and px+d(ux+d) are the pressure (volume

velocity) at the input and output of unit cell. The wavenumber k and the acoustic

characteristic impedance Zc of the waveguide are given by Eq. (II.18) and Eq. (II.19)

respectively. In the lossless limit, the wavenumber and the acoustic characteristic
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impedance of the waveguide are k = ωph/c0 and Zc = ρ0c0/S respectively. Zm =

i (ωphLm − 1/ωphCm) is the impedance of the clamped plates.

The acoustic pressure p and velocity u could be written in the form p = p0e
−i(ωt−kx)

and u = u0e
−i(ωt−kx). Based on the Bloch theory, Eq. (III.19) could be written

[
p

u

]

x

= [T ]

[
p

u

]

x

eikd, (III.23)

i.e., [Id] e
−ikd = [T ], i.e.,

[
T11 − e−ikd T12

T21 T22 − e−ikd

]
= 0. (III.24)

The determinant (T11 − λ)(T22 − λ)− T12T21 is zero, i.e.,

λ2 − (T11 + T22)λ+ T11T22 − T21T12 = 0, (III.25)

with λ = e−ikd. Reciprocity requires that the determinant of the transfer matrix is

equal to one [120, 121],

T11T22 − T12T21 = 1.

Equation (III.25) turns to

λ2 − (T11 + T22)λ+ 1 = 0, (III.26)

i.e.,

T11 + T22 = λ+
1

λ
= 2 cos(kd). (III.27)

Thus, we obtain the dispersion relation given by the TMM method,

cos(kphd) = (T11 + T22)/2 = cos(kd) + i
Zm

2Zc

sin(kd). (III.28)

Comparing the dispersion relation obtained by using TMM, with the one resulting from

the continuum approximation (TL), shown in Fig. III.2 (a) and (b), we find an excellent

agreement between these two in the regime of low frequencies, namely sufficiently lower

than the Bragg frequency.
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Fig. III.3. (a) Acoustic metamaterials composed of a waveguide loaded with an array of

side holes. (b) Corresponding unit-cell circuit.

III.3 Nonlinear dynamical lattice model of a 1D

acoustic metamaterial made of a periodic dis-

tribution of side-holes

III.3.1 Setup and model

We now consider low-frequency nonlinear wave propagation in the acoustic metama-

terial shown in Fig. III.3 (a). The structure is composed of a waveguide of radius r

periodically loaded with side-holes of radius rH and length lH . The distance between

two consecutive side holes is d. The frequency range considered is well below the first

cut-off frequency of the main waveguide, therefore the propagation is considered as

one-dimensional.

In order to theoretically analyze the problem, we employ the electro-acoustic ana-

logue modeling based on the TL approach (see chapter II). Our aim is to derive a

nonlinear, dispersive and dissipative lattice wave equation, describing the wave prop-

agation in an equivalent electrical transmission line, which -in the continuum limit-

will give a nonlinear, dispersive and dissipative acoustic wave equation. To do this,

46



III.3 Nonlinear dynamical lattice model of a 1D acoustic metamaterial made of a
periodic distribution of side-holes

Table III.2: Physical parameters for the setup in Fig. III.3

geometric parameters,

d = 0.05 [m], r = 0.025 [m], rH = 0.0025 [m], lH = 0.005 [m]

18◦ C in air,

β0 = 1.2, ρ0 = 1.29 [kg/m3], c0 = 343.26 [m/s],

γ = 1.4, Pr = 0.71, η = 1.84 10−5 [kg/m/s]

we consider the unit-cell circuit of the equivalent TL model of our setting, shown in

Fig. III.3(b).

The unit-cell circuit is composed by two parts. The first one, corresponding to

the waveguide, is modeled by the resistance Rω, the linear inductance Lω and shunt

nonlinear capacitance Cω, as shown in chapter II. The second part of the unit-cell

circuit, corresponding to the side hole, is modeled by a shunt LR circuit composed by

the series combination of an inductance LH and a resistance RH .

Here, we should mention that we consider the response of side holes to be linear

while the propagation in the waveguide weakly nonlinear. At high acoustic level, gener-

ally the response of the side holes is nonlinear due to nonlinear losses as a consequence

of a jet formation at the locations of the side holes and the formation of annular vor-

tices dissipating part of the acoustic energy [122, 123]. However, these effects can be

minimized considering holes with smoothed walls [116, 117]. Therefore the assumption

of the linear behavior of the holes is a first order approximation as far as the boundaries

of the holes are smoothed, an aspect that has to be taken into account in the design of

the experimental setup. As we will see at the end of the chapter IV, the holes present

also nonlinear effects and we will discuss there this point in details.

Next, we use Kirchhoff’s pressure and volume velocity laws to derive an evolution

equation for the pressure pn in the n-th cell of the lattice. In particular, Kirchhoff’s

pressure law for two successive cells yields,

pn−1 − pn = Lω
d

dt
un +Rωun, (III.29)

pn − pn+1 = Lω
d

dt
un+1 +Rωun+1. (III.30)

Subtracting the two equations above, we obtain the differential-difference equation,

δ̂2pn =

(
Lω

d

dt
+Rω

)
(un − un+1) , (III.31)
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with

δ̂2pn ≡ pn+1 − 2pn + pn−1. (III.32)

Then, Kirchhoff’s volume velocity law yields

un − un+1 = Cω
d

dt
pn + uH , (III.33)

where uH is the volume velocity through MHRH branch. The auxiliary Kirchoff’s

pressure law in the output loop of the unit-cell circuit reads,

uH = Q̂−1pn, Q̂ = LH
d

dt
+RH . (III.34)

Then, substituting Eq. (III.32) and Eq. (III.33) into Eq. (III.31), and recalling that the

compliance Cω depends on the pressure, we obtain the following evolution equation for

the pressure,
(
LH

d

dt
+RH

)(
δ̂2pn − LωCω0

d2pn
dt2

−RωCω0
dpn
dt

+
1

2
LωC

′

ω

d2p2n
dt2

+
1

2
RωC

′

ω

dp2n
dt

)
−
(
Lω

d

dt
+Rω

)
pn = 0.

(III.35)

III.3.2 Continuum limit

For our analytical considerations, we now focus on the continuum limit of Eq. (III.35),

corresponding to n → ∞ and d → 0 (but with nd being finite); in such a case, the

pressure becomes pn(t) → p(x, t), where x = nd is a continuous variable, and

pn±1 = p± d
∂p

∂x
+

d2

2

∂2p

∂x2
± d3

3!

∂3p

∂x3
+

d4

4!

∂4p

∂x4
+O(d5), (III.36)

Thus, the difference operator δ̂2pn is approximated by

δ̂2pn ≈ d2pxx + d4pxxxx/12, (III.37)

where subscripts denote partial derivatives. In order to understand more accurately the

dynamics of the system, we keep terms up to order O(d4), coming from the periodicity

of the side holes [80]. This way, we obtain the corresponding PDE,
(
LH

∂

∂t
+RH

)(
d2

∂2p

∂x2
+

d4

12

∂4p

∂x4
− LωCω0

∂2p

∂t2

−RωCω0
∂p

∂t
+

1

2
LωC

′

ω

∂2p2

∂t2
+

1

2
RωC

′

ω

∂p2

∂t

)

−
(
Lω

∂

∂t
+Rω

)
p = 0.

(III.38)
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It is convenient to express our model in dimensionless form by introducing the

normalized variables τ and χ and normalized pressure P , which are defined as follows:

τ is time in units of ω−1
B , where ωB = πc0/d is the Bragg frequency; χ is space in units

of c0/ωB and p = ǫP0P , where P0 = ρ0c
2
0 and 0 < ǫ ≪ 1 is a formal dimensionless

small parameter. Then, Eq. (III.38) is reduced to the following dimensionless form,

(∂τ + γH)
[
Pττ − Pχχ − ζPχχχχ + γωPτ − ǫβ0(P

2)ττ

−ǫβ0γω(P
2)τ
]
+m2Pτ +m2γωP = 0,

(III.39)

where,

m2 =
SHd

π2lHS
, γH =

RH

ωBLH

,

γω =
RωS

πρ0c0
, ζ =

π2

12
.

(III.40)

It is interesting to identify various limiting cases of Eq. (III.39). First, in the linear

limit (β0 = 0, or p2 ≪ 1), in the absence of side holes (m2 → 0, γH → 0) and

without considering viscothermal losses (γω → 0) and higher order spatial derivatives,

Eq. (III.39) is reduced to the linear wave equation, Pττ − Pχχ = 0. In the linear

limit, in the presence of side holes, in the long wavelength approximation and without

considering viscothermal losses (γω → 0), radiation losses (γH → 0), and higher order

spatial derivatives (ζ → 0), Eq. (III.39) takes the form of the linear Klein-Gordon

equation [78, 119],

Pττ − Pχχ +m2P = 0. (III.41)

Finally, in the nonlinear lossless regime, and in the absence of sides holes, without

considering higher order spatial derivatives, Eq. (III.39) is reduced to the well-known

Westervelt equation,

Pττ − Pχχ − ǫβ0

(
P 2
)
ττ

= 0, (III.42)

which is a common model describing 1D, nonlinear acoustic wave propagation [64].

III.3.3 Linear limit

We first study the linear limit of Eq. (III.39) in order to obtain the respective dispersion

relation of the system. Assuming the propagation of plane waves, of the form P ∝
exp[i(kχ − ωτ)], we obtain the following complex dispersion relation connecting the

wavenumber k and frequency ω,
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D(ω, k) = −iω(−ω2 + k2 − ζk4 +m2)− iωγHγω

+ γH(−ω2 + k2 − ζk4) + γω(−ω2 +m2) = 0,
(III.43)

where the terms including γω and γH account for the viscothermal losses in the waveg-

uide and the losses (radiation losses and viscothermal losses) due to the side holes,

respectively. Without considering the losses, Eq. (III.43) is reduced to:

D(ω, kr) = −ω2 + k2
r − ζk4

r +m2 = 0, (III.44)

which is the familiar dispersion relation of the linear Klein-Gordon model [78, 119], with

a higher-order spatial derivative term ζk4 accounting for the influence of the periodicity

of the system (originating from the term δ̂2pn) to the dispersion relation. Although

this term appears to lead to instabilities for large values of k, both Eq. (III.39) and

Eq. (III.43) are used in our analysis only in the long-wavelength limit, where k is

sufficiently small. For low frequencies, i.e., for 0 ≤ ω < m, there is a band gap, and

for m < ω < ωB, there is a pass band, with the dispersion curve ω(k) having the form

of hyperbola (see Fig. III.4).

Since all quantities in the above dispersion relation [Eq. (III.43) and Eq. (III.44)]

are dimensionless, it is also relevant to express them in physical units. In particular,

taking into regard that the frequency ωph and wavenumber kph in physical units are

connected with their dimensionless counterparts through ω = ωph/ωB and k = kphc/ωB,

Eq. (III.43) is written as,

(
−i

ωph

ωB

+ γH

)(
−
ω2
ph

ω2
B

+
k2
phc

2
0

ω2
B

− ζ
k4
phc

4
0

ω4
B

− i
ωph

ωB

γω

)
− i

ωph

ωB

m2 +m2γω = 0. (III.45)

The real and imaginary parts of the dispersion relation (including losses), Eq. (III.45),

are shown in Fig. III.4 (thin blue solid lines), which are almost the same as the lossless

dispersion relation [Eq. (III.45) with γω → 0 and γH → 0] shown as thick blue solid

lines in Fig. III.4, since we consider a weakly lossy medium. In particular, below (in

Sec. V.3) we neglect viscothermal losses in the waveguide (γH = 0) which are small

compared to radiation losses. Furthermore, we assume that the remaining losses are

sufficiently small, such that γH = ǫ2γ′

H .

On the other hand, in order to verify our theory, we compare this linear dispersion

relation with the one obtained by using the TMM [66]. For one cell, the transfer matrix
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Fig. III.4. (a) and (b) respectively show the real and imaginary parts of the complex

dispersion relation. Blue solid lines (Red dashed lines) show the results obtained by using

TL approach, Eq. (III.45) (TMM, Eq. (III.49)). The thin (thick) solid and dashed lines

correspond to the lossy (lossless) cases. The black points in Fig. III.4 show the frequencies

used in the simulations, 400 Hz, 300 Hz and 100 Hz in chapter IV.

can be expressed as follows,

[
p

u

]

x

= [mω] [mH ] [mω]

[
p

u

]

x+d

=

[
T11 T12

T21 T22

][
p

u

]

x+d

, (III.46)

where [mω] and [mH ] are

[mω] =

[
cos(kd/2) jZc sin(kd/2)
j
Zc

sin(kd/2) cos(kd/2)

]
, (III.47)

[mH ] =

[
1 0

Z−1
H 1

]
, (III.48)

respectively. px(ux) and px+d(ux+d) are the pressure (volume velocity) at the input

and output of the settings, k and Zc are given by Eqs. (II.18) and (II.19) respectively,

and ZH = iωphLH + RH is the input acoustic impedance of the side holes. Thus we

obtain the corresponding expression for the lossy dispersion relation given by the TMM

method,

cos(kphd) = (T11 + T22)/2 = cos(kd) + i
Zc

2ZH

sin(kd), (III.49)

shown as the thin red dashed lines in Fig. III.4. For the lossless case, k, Zc and

ZH are respectively reduced to k = ω/c0, Zc = ρ0c0/S and ZH = iωphLH , and the
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Fig. III.5. The frequency dependent transmission T (black dashed line), reflection R (blue

dot-dashed line) and absorption α (red continuum line) coefficients for a lattice of 1.7 m

(∼ 34 cells).

corresponding results are shown as thick red dashed lines in Fig. III.4. The dispersion

relation resulting from the continuum approximation (TL) has a very good agreement

with the one obtained by using the TMM, as shown in Fig. III.4, especially in the

low-frequency regime. We note here that while in the TL dispersion relation the losses

are approximated by using constant parameters, in the TMM method the losses are

frequency dependent. Therefore, the agreement between the two dispersion relations

validates our approximation of frequency independent losses.

To further validate this assumption, especially for the case of high frequencies (hav-

ing in mind the generation of the second harmonic), it is relevant to obtain the fre-

quency dependence of the transmission, reflection and absorption coefficients, for a

finite lattice of 1.7 m (about N = 34 cells), where the total transmission matrix can

be expressed as follows,
[

p

u

]

x

= [mωmHmω]
N

[
p

u

]

x+Nd

=

[
M11 M12

M21 M22

][
p

u

]

x+Nd

, (III.50)

The transmission T , reflection R and absorption α coefficients for finite lattice made

of 34 cells (1.7 m), could be expressed as [121],

T =
2

M11 +M12/Zc +M21Zc +M22

, (III.51)

R =
M11 +M12/Zc −M21Zc −M22

M11 +M12/Zc +M21Zc +M22

, (III.52)

α = 1− T 2 −R2, (III.53)

shown as black dashed, blue dash-dotted and red solid lines respectively in Fig. III.5.

First, we observe that the cut-off frequency due to the resonators is in agreement with
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that shown in the dispersion relation figure, Fig. III.4. Moreover, we find that the

absorption coefficient (red continuum line in Fig. III.5), can be approximated by a

constant value in the range of frequencies from 400 Hz to 1000 Hz. We will introduce

dispersion management second harmonic generation in this range of frequencies in

section IV.4. Therefore, our constant loss assumption –for the frequencies of interest–

is well affirmed.

III.4 Conclusion

In conclusion, based on the TL approach, we derived the nonlinear dynamical lattice

model for 1D weakly lossy, acoustic metamaterials made of a waveguide periodically

loaded by clamped plates and made of a waveguide periodically loaded by side-holes.

In the two systems, considering the continuum limit of the nonlinear dynamical lattice

model, we have derived the corresponding nonlinear dispersive wave equation, in the

form of a nonlinear Klein-Gordon model, which reduces – at certain limits – to other

well-known acoustic wave models (such as the Westervelt equation). In the linear limit,

we have derived from this model the dispersion relation which, in the low frequency

regime, was found to be in excellent agreement with the one obtained by the transfer

matrix method. No essential difference between the lossy dispersion relation and the

lossless one was found, because losses are sufficiently small, i.e., the lossy term can be

treated as a small perturbation. The results in this chapter pave the way for the study of

second harmonic generation and dissipative envelope solitons in acoustic metamaterials

described in the next chapters.
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Chapter III: Nonlinear acoustic wave equations obtained by the transmission line
approach
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Chapter IV

Second harmonic generation in 1D acoustic

metamaterials

In this chapter, we study analytically, numerically and experimentally the second har-

monic generation in an acoustic waveguide periodically loaded with clamped plates or

side holes. We first approach the problem analytically by solving the corresponding

nonlinear equations presented in Chapter III using perturbation theory. We derive

analytical expressions for the first and second harmonic which we confirm by numeri-

cal simulations. Our analysis also incorporates the effect of viscothermal losses in the

waveguide as well as radiation losses for the case of side holes. Moreover at the end

of the Chapter, we present experimental results on the second harmonic generation

for the case of a 1D acoustic metamaterial made of a acoustic waveguide periodically

loaded with side holes, verifying our theoretical predictions.
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IV.1 Introduction

IV.1 Introduction

The majority of the works in the field of acoustic metamaterials is restricted in the

linear regime and they do not consider the nonlinear response of the medium. Some

relevant works can be found in the literature analyzing the nonlinear propagation

of acoustic waves in 1D acoustic metamaterials [79, 124, 125]. As the amplitude of

the wave excitation is increased, the response of the metamaterial becomes nonlinear.

Due to the intrinsically nonlinear nature of the problem and the strong dispersion

introduced by the locally resonant building blocks, acoustic metamaterials are good

candidates to analyze the combined effects of nonlinearity and dispersion that can

give rise to interesting nonlinear effects. For example, dispersion effect introduced by

the resonators and the periodicity of the acoustic metamaterials could tailor both the

source and the generated harmonics. In some situations we could observe the beating

of the higher generated harmonics [68, 69, 70] because of mismatched phases or we

can remove some higher harmonics if they are place in some of the band gaps of the

system.

In this chapter, we analytically, numerically and experimentally study the second-

harmonic generation in acoustic transmission line metamaterials with lumped elements

as side holes (parallel branch) or clamped plates (series branch). The nonlinearity is

activated here by using high-amplitude incident waves. In order to understand the

several features that play an important role in the wave propagation in the proposed

systems, we follow a bottom up approach. First, we consider only the nonlinearity,

without considering dispersion effects due to for example the periodicity of the lattice

and the resonances of the clamped plates or side holes. Then, we move to a dispersive,

nonlinear system in which we show the control of the second harmonic generation by the

dispersion of the system in the absence of losses (acoustic metamaterial made of plates,

the series branch). Finally we introduce losses in the system and study the harmonic

generation in a dispersive, nonlinear, lossy system (acoustic metamaterial made of side-

holes, the parallel branch). By using a perturbative scheme we derive the analytical

expressions for the first and second harmonic. Finally, we show the experimental

validation, which have a very good agreement with the analytical predictions where

the effect of dissipation is taken into regard. The model used in this chapter could

pave the way to study the second harmonic generation in more complicated systems

as double negative metamaterials.

This chapter is structured as follows. In Section IV.2, we present the second har-
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monic generation in dispersionless media, which paves the way to study the control

of the generated second-harmonic by the dispersion of the system. By applying the

perturbation method, the nonlinear, dispersive acoustic wave equations in Chapter III

could be solved and then we derive the analytical models for the generated second

harmonic. In Section IV.3, we introduce the make use of dispersion of the system to

manage the second harmonic generation in acoustic metamaterials with series branch

without considering the losses. In Section IV.4, we study the combined effect of disper-

sion, nonlinearity and dissipation, i.e., second harmonic generation in a waveguide pe-

riodically loaded by side-holes (acoustic metamaterials with parallel branch). Then we

do the corresponding experiments to verify our analytical predictions in Section IV.5.

Finally, in Section IV.6, we present our conclusions.

IV.2 Second harmonic generation in the absence of

dispersion

We start this chapter by considering propagation in a uniform acoustic waveguide (not

loaded with any scatterer) taking into account the effect of weak nonlinearity. Such

a setting is described by the Westervelt equation, see Eq. (II.45), with the Fubini

solution [64] used for displaying the growth of harmonics during the propagation of

periodic waves with a mono-frequency source. The source condition considered here is

p(0, t) = p0 sinωt, where p0 is a characteristic pressure amplitude, and ω is the angular

frequency. The Fubini solution is,

p(σ, τ) = p0

∞∑

n=1

2

nσ
Jn(nσ) sin(nωτ) = p0

∞∑

n=1

Bn sin(nωτ) =
∞∑

n=1

pn sin(nωτ), (IV.1)

where τ = t − x/c0, pn = p0Bn, Jn is the Bessel function of order n, σ = x/xsh is a

dimensionless shock formation distance and

xsh =
ρc3

2πfβp0
, (IV.2)

is the shock distance, which is proportional to the velocity and inversely proportional to

the pressure amplitude and source frequency for a fixed medium. The Fubini solution

is valid in the pre-shock region, σ < 1. The leading terms in expansions of the Bessel

functions in Eq. (IV.1), yield [64]

B1 = |p1|/|p0| = 1− 1

8
σ2 +O(σ4),

B2 = |p2|/|p0| =
1

2
σ +O(σ3).

(IV.3)

58



IV.2 Second harmonic generation in the absence of dispersion

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

x (m)

Ip
I/
Ip

0
I

 

 

numerical Ip
1
I/Ip

0
I

numerical Ip
2
I/Ip

0
I

analytical Ip
1
I/Ip

0
I

analytical Ip
2
I/Ip

0
I

Fig. IV.1. Fubini solution, for the wave propagation in a uniform waveguide without

clamped plates or side-holes, with f = 400 Hz. Solid and dashed lines depict analytical

results, while circles and squares depict numerical ones. Black solid line and blue circles

represent the fundamental component, while dashed green line and green squares correspond

to the second harmonic component. The numerical results have a good agreement with the

Fubini solution at the beginning of the lattice.

Equation (IV.3) shows that the amplitude of the fundamental component |p1| will
decrease continuously as the energy is transferred to the nonlinearly generated higher-

harmonic components (|p2|, etc.).

Here we consider a sinusoidal signal at one end of the waveguide with an amplitude

p0 = 4000 Pa at a frequency f = 400 Hz, the corresponding shock distance is around

4 m. For illustration, in Fig. IV.1 we show the above approximate analytical solutions

(black solid line and green dashed line) as compared with direct numerical integration

of Eq. (II.45) showing good agreement, especially at the beginning of the lattice. Small

deviation of approximate analytical solutions from the numerical simulations starts to

appear around the shock distance.We next proceed with the study of second harmonic

generation in the presence of dispersion.
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Chapter IV: Second harmonic generation in 1D acoustic metamaterials

IV.3 Second harmonic generation for a metamate-

rial with negative effective mass density

When the acoustic waveguide is periodically loaded with resonant scatterers (in our case

clamped plates or side holes) it acquires strong dispersion from the local resonances as

well as the periodicity, and thus the Fubini solution is no longer a good approximation.

In order to study the second harmonic generation in these cases, we will apply the

perturbation method, we will seek solutions of the pressure field as an asymptotic

series of the form

P (χ, τ ; ǫ) = p1(χ, τ) + ǫp2(χ, τ) + ǫ2p3(χ, τ) + . . . , (IV.4)

where ǫ ≪ 1 is a formal small parameter. Physically the parameter ǫ is defined as

ǫ = p0/(ρc
2), where p0 is the amplitude of the incident wave. The basic idea of the

perturbation analysis is that the expansion should be valid for any sufficiently small

value of ǫ.

In this section we study the case of an acoustic waveguide periodically loaded with

clamped plates (see Fig. III.1), which features a negative effective mass density. The

nonlinear propagation in such structures is described by Eq. (III.13). The quadratic

nonlinearity of this equation lead to the appearance of a wave with frequency ω +

ω = 2ω, namely a second harmonic, and a wave with frequency ω − ω = 0, i.e., the

appearance of a constant component. Substituting Eq. (IV.4) into Eq. (III.13) with

Γ = 0 (lossless case), we obtain a hierarchy of equations at various orders in ǫ. At the

leading order, O(ǫ0), the resulting equation is the following:

∂2p1
∂τ 2

− ∂2p1
∂χ2

− ζ
∂4p1
∂χ4

+m2p1 = 0, (IV.5)

which possesses a plane wave solution of the form

p1 =
1

2
exp(iθ) + c.c. ≡ cos(θ). (IV.6)

In Eq. (IV.6) c.c. denotes complex conjugate, θ = ωτ − k(ω)χ, while wavenumber

k and frequency ω satisfy the dispersion relation Eq. (III.16). We then consider the

equation at order O(ǫ1) which reads:

∂2p2
∂τ 2

− ∂2p2
∂χ2

− ζ
∂4p2
∂χ4

+m2p2 = 2β0m
2p21 + β0

∂2p21
∂τ 2

. (IV.7)
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density

Note that the solution p1 of Eq. (IV.5) becomes source terms which drive the sec-

ond order Eq. (IV.7). Substituting Eq. (IV.6) into Eq. (IV.7), and using the identity

cos2(θ) =
(
cos(2θ) + 1

)
/2, we rewrite Eq. (IV.7) as follows

∂2p2
∂τ 2

− ∂2p2
∂χ2

− ζ
∂4p2
∂χ4

+m2p2 =
(
m2 − 2ω2

)
β0 cos (2θ) . (IV.8)

Note that the constant term m2β0 has been ignored in Eq. (IV.8). This term leads

to a constant component that we are not considering here. The solution of Eq. (IV.8)

can be sought as a sum of the solution of homogeneous equation ph2 and the particular

solution pp2 of the inhomogeneous equation, namely p2 = ph2 + pp2. The corresponding

waves for these two solutions are called the free and forced waves respectively and are

given by the following expressions:

ph2 = ph2(x = 0) cos(2ωτ − k2χ), (IV.9)

where k2 is the wavenumber at the second harmonic frequency taken from the dispersion

relation, i.e.; k2 = k(2ω) and

pp2 =
m2 − 2ω2

D(2ω, 2k)
β0 cos (2ωτ − 2k1χ) , (IV.10)

where k1 is the wavenumber at the fundamental harmonic frequency, i.e.; k1 = k(ω) .

In a dispersive medium, as the ones considered in this thesis, the forced and free waves

have different phase velocities (phase-mismatched) i.e. 2k(ω) 6= k(2ω).

We consider a cosinusoidal boundary excitation, namely the acoustic waveguide is

excited from one edge, at x = 0, by the following source of harmonic waves P (0, τ) =

cos(ωτ). In order to satisfy the boundary condition, the second harmonic at the origin

of the coordinates, χ = 0, is not present. Thus, p2(x = 0) = 0 and one obtains

ph2(x = 0) = −m2 − 2ω2

D(2ω, 2k)
β0. (IV.11)

The evolution of the second harmonic p2 is then given by Eqs. (IV.9)-(IV.11) leading

to

p2 = −2
m2 − 2ω2

D(2ω, 2k)
β0 sin

(
∆k

2
χ

)
sin(2ωτ − keffχ), (IV.12)

where keff is the effective wave number,

keff = (2k(ω) + k(2ω)) /2, (IV.13)

while ∆k is the detuning parameter

∆k = k(2ω)− 2k(ω) = k2 − 2k1. (IV.14)
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Fig. IV.2. Harmonic generation in the presence of dispersion in the case of a cosinusoidal

driver with frequency in the propagating band. The amplitude of the second harmonic oscil-

lates in space due to the phase mismatch. Circles and squares depict numerical results, while

solid and dashed lines correspond to the analytical (perturbative) findings. Both |p1| / |p0|
(upper) and |p2| / |p0| (lower) are in the pass band. (a) f = 350 Hz; (b) f = 400 Hz.

For consistency we remark that, at the linear limit when β0 = 0, according to

Eq. (IV.12) the second harmonic vanishes as expected.

An interesting feature of the solution of Eq. (IV.12) is that it describes a field

that its amplitude is oscillating in space. This effect, called second harmonic beating

[68, 69, 126] is in fact a consequence of the aforementioned phase mismatch and is

described by the term sin
(
∆k
2
χ
)
. The position of the maximum of the beating can be

related to the second harmonic phase mismatch

xc(n) =
π

∆kn
=

π

|k(nω)− nk(ω)| . (IV.15)

Therefore, as ∆k increases, the second harmonic beating spatial period decreases.

Below we make use of the dispersion of the system to manage the second harmonic

generation. We present numerical results regarding second harmonic generation for two

different scenarios: a) choosing the driving frequency to lie in the propagating band of

the medium and b) choosing a driving frequency inside the gap.
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Fig. IV.3. Small deviation of approximate analytical solutions from the numerical simula-

tions by using a cosinusoidal driver with p0 = 4 kPa, f1 = 650 Hz. Circles and squares depict

numerical results, while solid and dashed lines correspond to the analytical (perturbative)

findings.

IV.3.1 Driving frequency in the propagating band

We start by studying the case where both the driving (fundamental) and the corre-

sponding second harmonic frequency lie in the propagating band. In particular we

study the same structure as the one corresponding to the dispersion relation shown in

Fig. III.2. We numerically integrate the corresponding discrete equations (III.9) with

Rω = 0 (lossless case). The system is excited using a cosinusoidal time-dependent

boundary condition (a driver) at x = 0, with an amplitude of p0 = 0.026P0, i.e., 4

kPa. The length of the lattice is chosen to be long enough in order to avoid reflections

from the right end during the evolution. The results are shown in Fig. IV.2 where blue

circles and red squares depict the evolution of the amplitude of the fundamental and

second-harmonic components, respectively, as these are obtained from simulations, ap-

plying a Fast Fourier Transform (FFT) to the time signal of each point of the lattice.

The solid and dashed lines correspond to the analytical results of the perturbation

theory, namely Eq. (IV.6) and (IV.12).Panels (a) and (b) correspond to two different

driving frequencies of f = 350 Hz and f = 400 Hz respectively. When we increase

the frequency from 350 Hz to 400 Hz, ∆k decreases, xc increases, the second-harmonic

beatings spatial period increases, see Eq. (IV.15). This results in different beating peri-

ods between the two driving frequencies in panels (a) and (b). As shown in Fig. IV.1, at

the beginning of the lattice (0− 0.5 m), |p1| /|p0| almost equals to 1. For the nonlinear

wave propagation in clamped plates type acoustic metamaterials, see Fig. IV.2 (a) and
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Fig. IV.4. Small deviation of approximate analytical solutions from the numerical simula-

tions by using a cosinusoidal driver with p0 = 10 kPa, f1 = 350 Hz. Circles and squares depict

numerical results, while solid and dashed lines correspond to the analytical (perturbative)

findings.

(b), the fundamental frequency propagates with a quasi-constant amplitude, which has

a good agreement with our approximated analytical solution. Here we only consider

the orders O(ǫ0) and O(ǫ1). If we consider the next order, O(ǫ2), the oscillation of the

fundamental component could be observed [68].When we focus on the second harmonic

component, the wavenumber of the forced wave is 2k1, while the additional free wave

described by Eq. (IV.9) is propagating with a wavenumber k2. The difference between

2k1 and k2 (due to dispersion) introduces a phase mismatch leading to the observed

beatings illustrated by the curve |p2| /|p0|.

From Fig. IV.2, one can observe a perfect agreement between theory and numerics.

Such a perfect agreement is not expected for driving frequencies with a second har-

monic higher than 1 kHz. As shown in Fig. III.2, we can see that the dispersion relation

obtained by using TL approach has a good agreement with the one obtained by using

the TMM in the low frequency regime. This agreement starts to break down after 1

kHz, so do the agreement between the numerics and the approximation. When the

frequency of the generated second harmonic is bigger than 1 kHz, i.e., the fundamental

frequency is bigger than 500 Hz, the agreement between numerics and approximation

start to break down. For example, we do the simulation for p0 = 4000 Pa, f1 = 650

Hz and f2 = 1300 Hz and put both the numerical results and analytical results in

Fig. IV.3. We can find that the disagreement between numerics and analytics because

the periodicity is not well accounted in the analytical model. Furthermore, we have
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found that since Eq. (IV.12) relies on the assumption of weak nonlinearity, the agree-

ment with numerical results begins to break for driving amplitudes larger than 10 kPa.

For example, we do the simulation for 10 kPa (instead of 4 kPa), f1 = 350 Hz and

f2 = 700 Hz and put both the numerical results and analytical results in the Fig. IV.4,

where we can find the disagreement between numerics and analytics.

IV.3.2 Driving frequency in the band gap

When the driving frequency is in the band gap, see Fig. III.2 to locate the band gap,

its second harmonic may be located either in the band gap (evanescent) or in the pass

band (propagating). In the former case, the second harmonic is damped, and its decay

rate is given by the imaginary part of wavenumber. In the latter case, the second

harmonic is propagating through the structure. These cases are studied below.

We start by studying the case where both the fundamental component and its

second harmonic are in the band gap. For these frequencies the system supports

only evanescent waves characterized by imaginary wavenumbers. The analytical forms

of the fundamental and second harmonic components are given by Eq. (IV.6) and

Eq. (IV.12), using the imaginary wavenumber k(ω) = ik
′′

1 . The results, for the case of

a driving frequency of f = 90 Hz are depicted in Fig. IV.5 (a) and (b) with red lines.

The numerical results, obtained using the procedure described above, are depicted in

Fig. IV.5 (a) and (b) with the blue circles. A small amplitude of the second harmonic

component is generated at the beginning of the structure as shown in Fig. IV.5 (b), but

since it corresponds to a frequency of 2f = 180 Hz it is also evanescent and vanishes

exponentially.

When the driving frequency is close to the first cut-off frequency, the frequency of

the generated second-harmonic can lie in the propagating band (see Fig. III.2). An

example of such a case is shown in Fig. IV.5 (c) and (d) corresponding to a driving

frequency of f = 300 Hz. The fundamental frequency in this case is still evanescent

but with a small decay rate allowing it to penetrate the system at least up to x = 0.5m

cf. Fig. IV.5 (c). On the other hand the second harmonic is propagating at 2f = 600

Hz. The corresponding profile is shown in Fig. IV.5 (d) featuring also the beating

effect due to the phase mismatch. Comparing to the case shown in Fig. IV.2, here the

beating spatial period is smaller because ∆k is bigger. Note that since the fundamental

component is very small after 0.4 m, only the k2 propagates beyond that point and

thus we can hardly observe the beatings for |p2| /|p0| beyond that point, as shown in
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Fig. IV.5. Harmonic generation in the presence of dispersion in the case of a cosinusoidal

driver with frequency in the band gap. Blue circles and red lines depict, respectively numerical

and analytical results. (a) f = 90 Hz, |p1| /|p0| in the band gap; (b) f = 90 Hz, |p2| /|p0| in
the band gap; (c) f = 300 Hz, |p1| /|p0| in the band gap; (d) f = 300 Hz, |p2| /|p0| in the

pass band.

Fig. IV.5 (d).

IV.4 Second harmonic generation for an acoustic

metamaterial with negative effective bulk mod-

ulus

We now study second harmonic generation in the setting described in Sec. III.3.1

consisting of a waveguide periodically loaded by side-holes. The main difference with

the previous case is that now the medium is described by a negative effective bulk

modulus. Moreover, due to the physics of this particular case, the effect of acoustic

energy loss due to the radiation out of the side holes cannot be excluded and is taken

into account.
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IV.4 Second harmonic generation for an acoustic metamaterial with negative effective
bulk modulus

IV.4.1 Analytical Results

For our analytical calculations we rely again on perturbation theory, and thus we

express the pressure P as an asymptotic series in ǫ, namely,

P (χ, τ ; ǫ) = p1(χ, τ) + ǫp2(χ, τ) + ǫ2p3(χ, τ) + . . . , (IV.16)

Then, substituting Eq. (IV.16) into Eq. (III.39), we obtain a hierarchy of equations

at various orders in ǫ. The leading order equation, at O(ǫ0) has the following form:

(
∂

∂τ
+ γH

)(
∂2p1
∂τ 2

− ∂2p1
∂χ2

− ζ
∂4p1
∂χ4

+ γω
∂p1
∂τ

)
+m2∂p1

∂τ
+m2γωp1 = 0, (IV.17)

and possesses plane wave solutions

p1 = A cos(θ), (IV.18)

where A is the wave amplitude, θ = ωτ − k(ω)χ, while k and ω satisfy the dispersion

relation D(ω, k) [cf. Eq. (III.43)]. The equation at the next order, O(ǫ1), is

(
∂

∂τ
+ γH

)(
∂2p2
∂τ 2

− ∂2p2
∂χ2

− ζ
∂4p2
∂χ4

+ γω
∂p2
∂τ

)

+m2∂p2
∂τ

+m2γωp2

= −β0(−2iω + γH)A
2(2ω2 + iγωω) cos(2ωτ − 2k1χ).

(IV.19)

The solution of Eq. (IV.19) is the sum of the particular solution pp2 of the inhomogeneous

equation (forced wave, steady state) and the general solution ph2 of the homogeneous

equation (free wave), namely p2 = pp2 + ph2 , with

pp2 =
−β0(−2iω + γH)A

2(2ω2 + iγωω)

D(2ω, 2k)
cos(2ωτ − 2k1χ), (IV.20)

ph2 = ph2(χ = 0) cos(2ωτ − k2χ), (IV.21)

where k2 is the wavenumber at the second harmonic frequency taken from the disper-

sion relation. As in the case of clamped plates, we consider a cosinusoidal boundary

excitation at x = 0, P (0, τ) = cos(ωτ). This means that the second harmonic should

be vanishing at x = 0 and thus p2(τ, χ = 0) = 0, we find

ph2(χ = 0) =
β0(−2iω + γH)A

2(2ω2 + iγωω)

D(2ω, 2k)
. (IV.22)
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The solution for p2 in this case reads

p2 = ph2 + pp2 =
2β0(−2iω + γH)A

2(2ω2 + iγωω)

D(2ω, 2k)

× sin

(
∆k

2
χ

)
sin(2ωτ − keffχ),

(IV.23)

where

∆k = k(2ω)− 2k(ω) = k2 − 2k1, (IV.24)

is the detuning parameter that describes the asynchronous second harmonic generation,

and

keff = (1/2)[k(2ω) + 2k(ω)], (IV.25)

is the effective wave number. As it was the case in Sec. IV.3, since the forced and

free waves have different phase velocities, i.e., 2k(ω) 6= k(2ω), the phase mismatch

introduces a beating in space for the amplitude of the second harmonic –cf. the term

sin
(
∆k
2
χ
)
in Eq. (IV.25). The position of the maximum of the beating xc(n) is given

by Eq. (IV.15). In all the above considerations the effect of radiation losses is included

in the dispersion relation Eq. (III.43).

IV.4.2 Numerical simulations

We now present results of direct numerical simulations in the framework of the non-

linear, discrete model [see Eq. (III.35)], both in the absence and the presence of losses.

The system is excited using a sinusoidal time-dependent boundary condition (a driver)

at x = 0, with an amplitude of 1000 Pa. The length of the lattice is chosen to be long

enough in order to avoid reflections from the right end during the evolution. Similar to

the previous Section, we show results regarding the propagation of three different driv-

ing frequencies. The first case corresponds to a fundamental and a second harmonic,

both belonging to the propagating band [Fig. IV.6 (a) and (b)]. For the second case,

we choose a smaller fundamental frequency lying in the band gap, while the second

harmonic lies in the pass band [Fig. IV.6 (c) and (d)]. Third, we consider a case where

both the fundamental and the second harmonic are in the band gap [Fig. IV.6 (e) and

(f)].

We start with the first case where the driver operates at f = 400 Hz, and thus both

the fundamental component (p1) and the generated second-harmonic component (p2)

are in the pass band. During the weakly nonlinear wave propagation, in the absence

of losses (RH = 0, Rω = 0, γH = 0, γω = 0), the zeroth-order solution p1 travels with a
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Fig. IV.6. Harmonic generation in the presence of dispersion and (viscothermal and radia-

tion) losses. For the lossy (lossless) case, thin red lines and red circles (thick blue lines and

blue stars) stand respectively for the numerical and analytical results. (a) f = 400 Hz, p1 in

the pass band; (b) f = 400 Hz, p2 in the pass band; (c) f = 300 Hz, p1 in the band gap; (d)

f = 300 Hz, p2 in the pass band; (e) f = 100 Hz, p1 in the band gap; (f) f = 100 Hz, p2 in

the band gap. Numerical results are in a good agreement with the analytical ones.

constant amplitude and a wave vector k(ω), as shown in Fig. IV.6 (a) [see solid (blue)

line]. The second harmonic solution p2 is composed by a forced wave with k = 2k(ω)

and a free wave propagating with k(2ω) and the corresponding beating of its amplitude

is shown with the thick blue line in Fig. IV.6 (b).

We also performed simulations including both the weak viscothermal and radiation

losses. The results plotted with the thin (red) lines in Fig. IV.6 (a) and (b) show

that the amplitude of both the fundamental and the second harmonics are weakly

attenuated. Note that in all cases (with and without losses), the analytical prediction,

shown by the blue stars and red circles, is in good agreement with the numerical

findings.

When the driving frequency is in the band gap, but close to the cut-off frequency,

the generated second harmonic will be located in the pass band. To study such a case,

we choose a driver at f = 300 Hz. In the lossless case, the fundamental component

p1 decreases exponentially [thick (blue) line in Fig. IV.6 (c)], because the correspond-

ing wavenumber k(ω) is imaginary [black point in Fig. III.4 (b)], leading to a strong

attenuation of p1. Since the viscothermal and radiation losses are sufficiently small,
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Chapter IV: Second harmonic generation in 1D acoustic metamaterials

we observe almost no difference between the lossless case (thick blue line) and the

lossy one (thin red line) in Fig. IV.6 (c). During propagation, the second harmonic is

generated, with a frequency located in the pass band as shown in Fig. IV.6 (d). Note

that the beatings are absent since only the free wave with single wavenumber k(2ω) is

propagating. In this case, we observe a small decrease of the amplitude of p2 due to the

weak viscothermal and radiation losses [thin (red) line in Fig. IV.6 (d)], in comparison

to the lossless case [thick (blue) line in Fig. IV.6 (d)].

Finally, in Fig. IV.6 (e) and (f) we show results corresponding to the third case, i.e.,

when both the fundamental component p1 and the second harmonic component p2 are

in the band gap. Here we choose a frequency f = 100 Hz for the driver. In this case,

the amplitude of p1 decreases exponentially and faster, as compared to Fig. IV.6 (c),

since the imaginary part of k(ω) is larger [black point in Fig. III.4 (b)]. The second

harmonic is generated at the beginning of the waveguide, but its amplitude eventually

decreases to zero, because its frequency is still in the band gap. Since both p1 and p2 are

in the band gap with relatively large imaginary wavenumbers, the weak viscothermal

and radiation losses do not have an important contribution in the evolution, and there

is no visible different between the lossless [thick (blue) lines] and lossy [thin (red) lines]

propagation, as shown in Fig. IV.6 (e) and (f).

At this point, we should mention that during the nonlinear wave propagation, third

harmonic is also produced in cascade. However we only consider the second harmonic

in this chapter, because the third harmonic is too small compared to the generated

second harmonic. For example, in the lossless case, when our driver is a sinusoidal

wave with an amplitude of 1000 Pa and a frequency of 400 Hz, the maximum amplitude

of the generated second harmonic is about 14.03 Pa, while the amplitude of the third

harmonic is about 0.0307 Pa.

IV.5 Experiments

In order to verify our theory, we perform experiments on linear and nonlinear wave

propagation in an air-filled acoustic waveguide periodically loaded by side holes. We

study experimentally and analytically the amplitude-dependent reflection, transmission

and absorption coefficients and the second harmonic generation.
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Fig. IV.7. (a) Pictures of the experimental setup for amplitude-dependent reflection, trans-

mission and absorption coefficients. (b) Picture of the experimental setup for dispersion

managed, second-harmonic generation.

IV.5.1 Amplitude-dependent reflection, transmission and ab-

sorption coefficients

IV.5.1.1 Experimental set-up

We start performing experiments to determine the reflection, transmission and absorp-

tion coefficients. Our experimental set-up is shown in Fig. IV.7 (a). It consists of a

3 m air-filled acoustic cylindrical waveguide with internal radius r = 0.025 m, peri-

odically loaded by 40 side-holes with a periodicity d = 0.05 m. In one of the ends of

the waveguide, there is a source, radiating white noise. The other end is closed with a

properly designed anechoic termination to avoid boundary reflections, in the frequency

range of 0 − 2000 Hz. Details on the design and operation principles of this anechoic

termination can be found in Ref. [127] and in the appendix of Ref. [59]. As it is defined

in the Fig. IV.7 (a), the side-holes have a radius rH = 0.0035 m. The length of the side

holes is lH = 0.005 m, which equals to the wall thickness of the waveguide.We use a

microphone to measure the acoustic pressure at four different positions along the tube,

x1, x2, x3 and x4, depicted as p1, p2, p3, p4 in Fig. IV.7 (a). The distances between the

first side hole to x1, x2, x3 and x4 are x1 = −0.2 m, x2 = −0.1 m, x3 = 2.1 m and

x4 = 2.2 m, respectively. Because our structure is open to the environment, through

the holes, we perform the experiments in an anechoic room. The source is radiating a
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Fig. IV.8. (a) Reflection coefficients. (b) Transmission coefficients. (c) Absorption coeffi-

cients. Black circles (lines), green stars (lines), blue squares (lines) and red triangles (lines)

present the experimental (analytical) results with the noise source around 100 dB (experiment

1), 120 dB (experiment 2), 130 dB (experiment 3) and 140 dB (experiment 4) respectively.

white noise signal with frequencies from 100 Hz to 1000 Hz. We perform 4 experiments

with different amplitude of the source. The reference amplitude is evaluated at f = 600

Hz in the closest position to the source. We start by using a small amplitude signal

around 100 dB (experiment 1) which can be considered as a very good approximation

of the linear regime for the wave propagation. Then, we increase the amplitude for

the noise in three different experiments: 120 dB (experiment 2), 130 dB (experiment

3) and 140 dB (experiment 4). As shown in Ref. [121], the experimental reflection,

transmission and absorption coefficients could be derived from the acoustic pressures

measured at x1, x2, x3 and x4.

IV.5.1.2 Experimental determination of the reflection and transmission

coefficients

We use a linear technique to determine reflection, transmission coefficients, and assume

that the superposition principle is valid. It is possible since we consider only the

fundamental frequency of the wave, which means that we neglect the small harmonic

generation. To do this we use a data processing looking only on the amplitude response

of the system with the same frequency than the source.

Through the experimental data processing (see Annexes), we plot the experimental
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Fig. IV.9. Schematic of n-th side hole.

amplitude-dependent reflection, transmission and absorption coefficients in Fig. IV.8

(a), (b) and (c) respectively. Black circles, green stars, blue squares and red triangles

present the experimental results with the noise source for 100 dB (experiment 1), 120

dB (experiment 2), 130 dB (experiment 3) and 140 dB (experiment 4) respectively.

Experiment 1 (black circles in Fig. IV.8) with noise sound around 100 dB is in the

linear regime. When we increase the amplitude of the source, both the reflection and

transmission coefficients decrease while the absorption coefficient (maximum value and

the bandwidth of effective absorption) increases because of the present of nonlinear

losses of the side holes which are proportional to the amplitude. These experimental

phenomenon could be well explained by our theory shown in the next section. Since we

observe the amplitude-dependent reflection, transmission and absorption coefficients,

maybe the dispersion relation of the system also depends on the amplitude, which

could be an open question.

IV.5.1.3 Analytical predictions

We proceed with analytical predictions using the transfer matrix method to compare

with the experimental results. The transfer matrix T used to related the sound pres-

sures and velocities on the two faces of the acoustic waveguide with the 40 side holes,

can be written,

T =
40∏

n=1

Tn, (IV.26)
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where

Tn =

[
cos(kd

2
) jZc sin(

kd
2
)

j
Zc

sin(kd
2
) cos(kd

2
)

][
1 0
1

ZH(n)
1

][
cos(kd

2
) jZc sin(

kd
2
)

j
Zc

sin(kd
2
) cos(kd

2
)

]
, (IV.27)

with ZH(n) being the impedance of n-th side hole, as mentioned in chapter II. However,

due to the experimental observation, i.e., the absorption coefficient depends on the

amplitude as is shown in Fig. IV.8 (c), we will take into account also the nonlinear

losses of the side holes that appear at high level sound pressures due to jet and vortices

formation at the locations of the holes i.e., [116, 117]

ZH(n) = iωLH +RH + ZNL(n). (IV.28)

We note that this kind of nonlinear losses, ZNL(n), has been ignored in the theoretical

analysis of Sec. III.3.1 by considering for example holes with smoothed walls. Here,

the holes have sharp edges and thus the nonlinear losses can not be ignored.

Another experimental phenomenon is the creation of flow through the holes and

an additional correction length to the side-holes is needed, namely in ∆lHi + ∆lHo of

Eq. (II.27) and (II.28). We should add additional 0.001 m, which has been calculated

by direct comparison with experiments. This value is independent of the amplitude.

Compared to the existing theories lH = 0.005 m, ∆lHi = 0.0027 m and ∆lHo = 0.0026

m, i.e., lH + ∆lHi + ∆lHo = 0.0103 m, this value (0.001 m) is small but can not be

ignored.

In Ref. [116, 117], a nonlinear impedance of holes, submitted to high amplitude

waves was derived. This nonlinear impedance of the n-th side hole is given by

ZNL(n) = βHZcHM(n)St
1/3
(n) . (IV.29)

where βH is a “fitting” parameter. In Ref. [122, 123], βH is determined by means of

numerical simulation. Disselhorst and Wijngaarden [122] found values of βH between

0.6 and 1.0. Peters and Hirschberg [123] found a value of 0.2. By directly compari-

son with experiments, we found that the βH in our case depends on the amplitude,

βH(140dB) = 1, βH(130dB) = 0.65, βH(120dB) = 0.45 and βH(100dB) = 0 (linear case), i.e.,

there is no nonlinear losses for the side holes when the amplitude of the source is small

(around or below 100 dB). ZcH is the characteristic impedance of a hole [111],

ZcH =
ρ0c0
SH

(
1 +

1− j

s
(1− (γ − 1)/

√
Pr)

)
. (IV.30)
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M(n) is the acoustic Mach number for n-th side hole

M(n) =
vn
c0

=
un/SH

c0
, (IV.31)

with un = vnSH being the volume velocity in the n-th side hole. St(n) is the acoustic

Strouhal number [116, 117, 128]

St(n) =
ωrH
vn

=
ωrH

un/SH

. (IV.32)

Since the nonlinear impedance of the n-th side hole depends explicitly on the local

acoustic velocity of each hole, we can solve the entire problem (for the whole lattice)

and find the reflection and transmission coefficients depending on the amplitude of the

wave, by applying an iteration method based on the transfer matrix method for each

cell of the structure.

As shown in Fig. IV.9, the transfer matrix used to relate the pressure and velocity

in the left- and right-side of the n-th hole is

[
pl(n)

ul(n)

]
=

[
1 0

1/ZH(n) 1

][
pr(n)

ur(n)

]
, (IV.33)

i.e.,

pl(n) = pr(n) = p(n),

ul(n) =
pr(n)
ZH(n)

+ ur(n),
(IV.34)

namely, applying the continuity of pressure and conservation of mass.As shown in

Fig. IV.9,

ul(n) = un + ur(n), (IV.35)

i.e.,

un =
p(n)
ZH(n)

. (IV.36)

Applying an iterative calculation, we approximate ZH(n) = ZH(n−1), i.e., ZH(n) =

iωLH + RH + ZNL(n−1), and for the first side hole, we choose ZH(n=1) = iωLH + RH .

Based on the following relation, the pressure at the entry position of the n-th side hole

could be derived from the pressure at the entry position of the n− 1-th side hole,

[
p(n−1)

u(n−1)

]
=

[
cos(kd) jZc sin(kd)
j
Zc

sin(kd) cos(kd)

][
p(n)

u(n)

]
. (IV.37)

The acoustic pressures p1, p2 measured at x1, x2 by the microphone are the initial

values for our analytical calculation. Then we can analytically calculate the amplitude
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of positive-going plane wave at the beginning of the lattice, the acoustic pressure,

velocity and the nonlinear impedance at n-th side holes, as well as the transfer matrix

for the total system. Based on the Eq. (VII.7), Eq. (VII.8) and Eq. (VII.9), we get the

analytical reflection, transmission and absorption coefficients, shown as solid lines in

Fig. IV.8 (a), (b) and (c) respectively. The experimental results have a good agreement

with our analytical predictions.

IV.5.2 Second harmonic generation in dispersive and lossy

acoustic metamaterials

IV.5.2.1 Experimental set-up

Now, we proceed with experiments about the second harmonic generation in dispersive

and lossy acoustic metamaterials. The set-up is shown in Fig. IV.7 (b), a 3 meters

air-filled acoustic waveguide periodically loaded by 60 side-holes with the anechoic

termination, in an anechoic room. The distance between two side holes, the radius of

the waveguide, the radius and the length of side holes are the same as in the previous

experiments, (see Sec. IV.5.1, d = 0.05 m, r = 0.025 m, rH = 0.0035 m and lH = 0.005

m, respectively). The source now is a sinus signal A sin(ωt) with frequency f = 600

Hz. We perform 3 experiments with different amplitudes of the source, A = 120 dB

[Fig. IV.10 (a)], A = 130 dB [Fig. IV.10 (b)] and A = 140 dB [Fig. IV.10 (c)]. We put

the microphone inside the waveguide, and measure the temporal signal as a function

of position every 0.05 m. Then we can get the spectrum at the different positions

by applying Fourier transform to the signals collected by the microphone. From this

Fourier analysis, we can find the amplitude of the fundamental component pω (circles)

and the generated second harmonic p2ω (squares), as shown in Fig. IV.10.

IV.5.2.2 Second harmonic generation

As mention in Sec. IV.4.1, the analytical expressions for pω and p2ω considering a single

harmonic source boundary [namely with p2ω(x = 0) equal to zero] are given by

pω = A cos(ωt− k1x),

p2ω =
2β0(−2iω + γH)A

2(2ω2 + iγωω)

D(2ω, 2k)
sin

(
∆k

2
x

)
sin(2ωt− keffx),

(IV.38)

However, in experimental set-up, our source level is so high that either the source

or the amplifier could also generated second harmonic. Therefore we have to modify
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Fig. IV.10. Experimental and analytical results about dispersion managed, second harmonic

generation. The sources are A sin(ωt) with different amplitude, (a) A = 120 dB, (b) A = 130

dB and (c) A = 140 dB. The symbols (lines) are experimental (analytical) results. Circles

(squares) stand for the experimental results of pω (p2ω). Dashed (solid) lines stand for the

analytical results of pω (p2ω).

our theory of Eq. IV.38. For the analytical expression for p2ω, we have to consider

the second harmonic generated by the source or amplifier [Aa cos(2ωt) when x = 0],

where Aa could be obtained from the experimental results. It is worth noting that the

amplitude of second harmonic at the beginning of the system (x = 0) is much smaller

than A. This “additional” source could introduce the term, Aa cos(2ωt − k2x). We

have to add it into the analytical expression for p2ω,

p2ω =
2β0(−2iω + γH)A

2(2ω2 + iγωω)

D(2ω, 2k)
sin

(
∆k

2
x

)
sin(2ωt− keffx)

+ Aa cos(2ωt− k2x)

. (IV.39)

Here we have to mention that, as shown in Sec. IV.5.1, the nonlinear losses of the

side holes should be considered in the analytical calculation. We have the analytical

expression for the frequency-dependent nonlinear losses of the side holes, see Eq. IV.29,

which also depend on its position in 1D side-holes-type acoustic metamaterials: the

farther the side hole is from the source, the smaller the nonlinear losses, see Fig. IV.11.

However, by using TL approach, in Sec. III.3, we assumed that frequency-dependent

losses can be approximated by a resistance with a constant value at the frequency of the
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Fig. IV.11. Real part of acoustic impedance of each side hole calculated at 600 Hz (frequency

of the source). Amplitude-dependent impedance of the side holes are shown in red (140 dB),

blue (130 dB) and green (120 dB) lines. The linear part (back dashed line), Re(iωLH +RH),

is independent of the position of the side holes. Acoustic impedance of 17-th side hole for

the case of 140 dB is noted by red cross.

wave excitation (600 Hz), and are independent of the position of the side holes, see black

dashed line in Fig. IV.11. In our theory based on TL approach, we need a constant

value to model the nonlinear losses of the side holes. In order to make the theory

closer to the experimental results of second harmonic generation shown in Fig. IV.10,

calculated by direct comparison with experiments, we use nonlinear impedance of 17-th

side hole (red cross in Fig. IV.11) as the constant nonlinear resistance in TL approach

for the case of 140 dB. For the experiments with 120 dB and 130 dB, compared to

the linear part of the impedance ( iωLH +RH shown by black dashed line) of the side

holes, the nonlinear part could be neglected in TL approach, see green (120 dB ) and

blue (120 dB ) lines in Fig. IV.11.

Our analytical predictions about pω (dashed lines) and p2ω (solid lines) are shown

in Fig. IV.10, which are in close agreement with our experimental results. Compared

to our previous analytical prediction shown in Sec. IV.4, here we consider additional

the nonlinear losses, the amplitude-independent suitable correction length of the side

holes and the small second harmonic generated by the amplifier. Nonlinear losses will

not change the second-harmonic beatings spatial period. Additional correction length

of the side holes reduces the range of first band gap of the system, i.e., changing the

dispersion relation of the acoustic metamaterials as well as the beatings spatial period.
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In our case, the small second harmonic generated by the amplifier not only increased

the amplitude of the second harmonic but also changed the beatings spatial period.

Here we have to mention that experiments about second harmonic generation in

an acoustic waveguide loaded with an array of elastic plates would be very difficult,

because the clamped boundary conditions for elastic plates are very complicated.

IV.6 Conclusion

In conclusion, we have analytically, numerically and experimentally studied the sec-

ond harmonic generation in 1D acoustic metamaterials. Firstly, we have shown that,

during the nonlinear propagation, cumulative nonlinear effects generate harmonics of

the fundamental frequency. Then the nonlinear lattice models obtained in Chapter III

were analyzed by both numerical and analytical techniques. We used a perturbative

approach to study analytically the effect of dispersion on the harmonic generation.

We have thus derived approximate analytical expressions for the first and second har-

monic traveling in the metamaterial. Numerical results were also presented, using a

driver, i.e., a sinusoidal source, on one end of the waveguide with sufficiently high

amplitude. For the lossless cases, we have shown that during the nonlinear propa-

gation in the metamaterial, the generated higher harmonics could be controlled by

tuning the dispersion relation –for instance, the beatings of second harmonic due to

the phase mismatch introduced by the dispersion effect. We also studied the effects of

viscothermal and radiation losses on the second harmonic generation in this acoustic

metamaterial with negative bulk mudulus. In order to verify our theory, we have done

the experiments about linear and nonlinear wave propagation in an acoustic waveguide

periodically loaded by side-holes. Our analytical, numerical and experimental results

were found to be in very good agreement.
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Chapter V

Envelope solitons in acoustic

metamaterials

In this chapter, we study the formation and propagation of envelope solitons in 1D

acoustic metamaterials. Two families of soliton solutions are studied: (i) bright and

gap solitons for the case of a waveguide loaded with clamped plates and (ii) dark soli-

tons for the case of a waveguide loaded with side holes. A systematic study of the

unavoidable effect of dissipation due to viscothermal and/or radiation losses is per-

formed for both types of solitons.
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V.1 Introduction

V.1 Introduction

We have studied in the chapter IV the amplitude dependence of the wave propagation

in typical acoustic metamaterials. It has been shown that this sort of material features

both dispersion due to the periodicity of the scatterers and nonlinear phenomena due

to high amplitude wave propagation in the waveguide and jet and vortices formation

in the holes.

Since it is known that solitons are nonlinear waves that owe their existence to the

synergy of dispersion and nonlinearity [78, 79, 44] it is then natural to ask: do the

acoustic metamaterials studied here support soliton solutions? Below, we answer this

question by showing that nonlinear envelope waves, for both acoustic metamaterials

studied in this thesis, can be described by the nonlinear Schrödinger (NLS) equation.

The latter integrable nonlinear equation supports (among other solutions) two distinct

families of localized solutions the so called bright and dark solitons. Bright solitons

are localized waves with vanishing tails towards infinity, while dark solitons are den-

sity dips, with a phase jump across the density minimum, on top of a non-vanishing

continuous wave background.

Below, we thoroughly study the formation and the dynamics of these solitary waves

in the acoustic waveguides. In particular, to tackle this problem analytically we employ

a multiple scales analysis, and show that envelope solutions of the PDEs Eqs. (III.13)

and III.39 can be both described by the NLS equation. Depending on the properties

of the two metamaterials and especially on the dispersion relation, the corresponding

NLS equation can be either of the focusing or the defocussing type. For the case

of the focusing NLS, the system supports both propagating bright solitons and gap

solitons. On the other hand for the defocussing NLS equation we study dark soliton

solutions and their properties. In all our calculations we incorporate the losses in

the acoustic medium and we study their effect on the solitary waves in detail. Our

analytical results are confirmed by direct numerical simulations, in the framework of the

corresponding nonlinear lattice models. The range of the validity of our approximations

is also discussed.

This Chapter is structured as follows. In Section V.2, using a multiple scales analy-

sis we obtain the NLS equation and the corresponding bright and gap solitons solutions

for the case of an acoustic waveguide loaded with clamped plates. Using a similar ap-

proach in Section V.3, we study black and gray solitons for a waveguide loaded with

side holes. The dissipative dynamics of these structures are analytically studied via
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the soliton perturbation theory. In both Sections V.2 and V.3 the evolution of the soli-

tary waves is extensively studied using numerical simulations by giving great emphasis

on the effects of dissipation. Finally, in Section V.4, we present our conclusions and

discuss some future research directions.

V.2 Bright and gap solitons

Here we first rewrite the wave equation corresponding to the acoustic waveguide loaded

with clamped plates, see Eq. III.13 shown in Sec. III.2,

Pττ − Pχχ − ζPχχχχ + ΓPτ +m2P = ǫβ0

[
2m2P 2 + Γ

(
P 2
)
τ
+
(
P 2
)
ττ

]
. (V.1)

with m2 = α
1+α

(
ωm

ωB

)2
, ζ = 1

12
π2(1 + α), Γ = RωS

ρ0dωB(1+α)
. In order to derive an

effective NLS equation describing envelope solutions of Eq. (V.1), we apply the so

called multiple scales perturbation method [119, 129]. The multiple scales method is

based on the approximation of weakly nonlinear (small amplitude) envelope waves.

V.2.1 Bright solitons: propagating solitary waves

We start our analysis by introducing the slow variables,

χn = ǫnχ, τn = ǫnτ, n = 0, 1, 2, . . . , (V.2)

and express the pressure P as an asymptotic series in ǫ, namely,

P = p0 + ǫp1 + ǫ2p2 + . . . . (V.3)

Substituting the above into Eq. (V.1), and assuming that the losses are sufficiently

small, namely Γ → ǫ2Γ, we obtain a hierarchy of equations at various orders in ǫ,

O(ǫ0) : L̂0p0 = 0, (V.4)

O(ǫ1) : L̂0p1 + L̂1p0 = N̂0

[
p20
]
, (V.5)

O(ǫ2) : L̂0p2 + L̂1p1 + L̂2p0 = N̂0 [2p0p1] + N̂1

[
p20
]
. (V.6)

The operators L̂0, L̂1, L̂2, N̂0 and N̂1 are given by

L̂0 = − ∂2

∂χ2
0

+
∂2

∂τ 20
− ζ

∂4

∂χ4
0

+m2, (V.7)
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L̂1 = −2
∂2

∂χ0∂χ1

+ 2
∂2

∂τ0∂τ1
− 4ζ

∂4

∂χ3
0∂χ1

, (V.8)

L̂2 = − ∂2

∂χ2
1

− 2
∂2

∂χ0∂χ2

+
∂2

∂τ 21
+ 2

∂2

∂τ0∂τ2
− ζ

(
6

∂4

∂χ2
0∂χ

2
1

+ 4
∂4

∂χ3
0∂χ2

)
+ Γ

∂

∂τ0
, (V.9)

N̂0 = β0
∂2

∂τ 20
+ 2β0m

2, (V.10)

N̂1 = 2β0
∂2

∂τ0∂τ1
. (V.11)

At the leading order of the expansion, i.e. at O(ǫ0), we find that p0 satisfies a linear

wave equation, and thus is of the form

p0 = A(χ1, χ2, · · · , τ1, τ2, · · · ) exp(iθ) + c.c., (V.12)

where A is an unknown envelope that depends on the slow variables. The phase is

given by θ = kχ0−ωτ0, while the wavenumber k and frequency ω satisfy the dispersion

relation (III.15) (c.c. denotes complex conjugate).

At the next order, O(ǫ1), we obtain an equation whose solvability condition requires

that the secular part (i.e., the term ∝ exp(iθ)) vanishes. This yields the following

equation, (
k′

∂

∂τ1
+

∂

∂χ1

)
A(χ1, χ2, · · · , τ1, τ2, · · · ) = 0, (V.13)

where the inverse group velocity k′ ≡ ∂k/∂ω = 1/vg is given by

k′ =
ω

k − 2ζk3
. (V.14)

Equation (V.13) is satisfied as long as A depends on the variables χ1 and τ1 through

the traveling-wave coordinate τ̃1 = τ1 − k′χ1 (i.e., A travels with the group velocity),

namely A(χ1, τ1, χ2, τ2, · · · ) = A(τ̃1, χ2, τ2, · · · ). Additionally, at the same order, we

obtain the form of the field p1, namely,

p1 = 2β0
m2 − 2ω2

D(2ω, 2k)
A2e2iθ +Beiθ + 4β0 |A|2 + c.c., (V.15)

where B is an unknown function that can be found at a higher-order.

Finally, employing the non-secularity condition at O(ǫ2) [Eq. (V.6)], we obtain the

following PDE for the envelope function A,
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Chapter V: Envelope solitons in acoustic metamaterials

Fig. V.1. The frequency dependence of qk”, the product of the dispersion and nonlinearity

coefficients of the NLS equation. The light (dark) green region corresponds to the focusing

(defocussing) case, with qk” > 0 (qk” < 0).

i
∂A

∂χ2

− 1

2
k′′

∂2A

∂τ̃ 21
− q |A|2 A = −iΛA. (V.16)

Eq. (V.16) is the NLS equation with an additional term on the right hand side

which takes into account linear losses. The dispersion, nonlinearity and dissipation

coefficients of the NLS equation are respectively given by

k′′ ≡ ∂2k

∂ω2
=

1− k′2 + 6ζk2k′2

k − 2ζk3
, (V.17)

q(ω, k) = β2
0

2(2m2 − ω2)(m2 − 2ω2)

3(m2 + 4ζk4)(k − 2ζk3)
− β2

0

4(2m2 − ω2)

(k − 2ζk3)
, (V.18)

Λ =
ωΓ

2(kr − 2ζk3
r)
. (V.19)

As expected all of the above parameters of the NLS equation depend on the geo-

metrical characteristics of the acoustic medium. The sign of the product σ ≡ sgn(qk′′)

determines the nature of the NLS equation and accordingly its pertinent solutions

[78, 119]. In particular, in the case of σ = +1 (σ = −1) the NLS is called focus-

ing (defocussing) and supports bright (dark) soliton solutions. Figure V.1 shows the

frequency dependence of the product qk
′′

for the system. We observe three different

regimes: (i) a focusing regime (σ = +1) at low frequencies (light green region), (ii)

a defocussing regime (σ = −1) at intermediate frequencies (dark green region), and

(iii) a subsequent focusing regime (σ = +1) at high frequencies (light green region).

We remind the reader that in order to derive the NLS equation (V.16), we started

by the solutions of the PDE (V.1) where the latter equation is a long wavelength, low

frequency approximation of a lattice model. As such the approximate analytical results
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V.2 Bright and gap solitons

are expected to be more accurate in the first focusing regime which we study in detail

below.

The dispersion length, LD, and the nonlinearity length, LNL, provide the length

scales over which dispersive and nonlinear effects become important. Furthermore,

since we are interested in soliton solutions where the effects of nonlinearity and dis-

persion are expected to be balanced, LD ≃ LNL, these two length scales should be

well identified in our physical system. In order to do so, we rewrite Eq. (V.16) in its

dimensional form as

i
∂φ

∂x
− 1

2
k

′′

ph

∂2φ

∂T 2
− qph |φ|2 φ = 0, (V.20)

where

k
′′

ph =
k′′

ωBc
, qph = q(ω, k)

ωB

c

1

P 2
0

, (V.21)

and φ/P0 = ǫA, T = t− x/vg, vg = ∂ωph/∂kph.

To obtain the dispersion and nonlinearity lengths, we introduce t0 and A0 as the

characteristic width of the initial condition, and the maximum pressure amplitude of

the initial condition respectively. Then we use the new time variable T̃ = T/t0 and

substitute φ = A0Φ to obtain

i
∂Φ

∂x
− 1

2LD

∂2Φ

∂T̃ 2
− 1

LNL

|Φ|2 Φ = 0. (V.22)

Now the characteristic lengths are identified as

LD =
t20∣∣k′′

ph

∣∣ and LNL =
1

|qph|A2
0

. (V.23)

As a reference, we use the temporal width t0 and the pressure amplitude A0 corre-

sponding to a bright soliton solution of the NLS equation which are given by [see also

below at Eq. (V.25)],

t0 =

(
ǫη

√∣∣∣ q
k′′

∣∣∣ωB

)−1

and A0 = ǫηP0. (V.24)

Thus we recover that LNL/LD ∼ 1.

We find that for frequencies larger than 435 Hz, the dispersion is very weak. For

example assuming ǫ = 0.018 and f = 435 Hz we obtain a dispersion length of LD =

450 m. For that reason we rather focus our studies only on the low frequency region,

corresponding to the light green region from 305.7 Hz to 432.3 HZ in Figure V.1.
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Fig. V.2. (a) 3D plot depicting the evolution of a bright soliton of the form of Eq. (V.27),

obtained by numerically integrating the lossless version of Eq. (III.9) (Rω = 0) with ǫ = 0.018

(2ǫηP0 = 5471 Pa), f = 369 Hz. (b) Numerical spatial profiles of the bright soliton measured

at t1 = 2 s (light blue line), t2 = 2.5 s (light pink line), t3 = 3 s (light green line), t4 = 4

s (light yellow line), and t5 = 5.7 s (red line). Blue dashed line, pink dashed line, green

dashed line, yellow dashed line, and dark red dashed line stand for the analytical envelope

results of Eq. (V.27) at t1, t2, t3, t4 and t5 respectively. Black dash-dotted line stand for the

nonlinear length LNL and the dispersion length LD, where LNL = LD = 16 m. (c) Turn

off the nonlinearity effect, 3D plot depicting the dispersive effect numerically obtained. (d)

Numerical spatial profile of dispersive effect measured at t1 (light blue line), t2 (light pink

line), t3 (light green line), t4 (light yellow line), and t5 (red line).

V.2.1.1 Bright solitons in the absence of losses

In the absence of losses (Γ = 0), the analytical bright soliton solution for the envelope

function A satisfying Eq. (V.16) has the following form,

A = ηsech

(
η

√∣∣∣ q
k′′

∣∣∣τ̃1
)
exp

(
−i

qη2

2
χ2

)
, (V.25)

where η is a free parameter setting the soliton amplitude. The corresponding approxi-

mate solution of Eq. (V.1) is expressed, as a function of parameters χ and τ , as follows,

P (χ, τ) ≈ 2ηsech

[
ǫη

√∣∣∣ q
k′′

∣∣∣ (τ − k′χ)

]
cos

(
ωτ − kχ− qǫ2η2

2
χ

)
. (V.26)

Futhermore, in the original space and time coordinates, x and t, the approximate

soliton solution for the pressure p reads,

88



V.2 Bright and gap solitons

2 4 6 8
0

1000

2000

3000

4000

5000

6000

7000

8000

t (s)

p
(P

a
)

 

 

(c )

2 4 6 8 10
0

20

40

60

80

100

120

140

160

t (s)

x
(m

)

(b )
 

 

0 0.5 1

300

320

340

360

380

400

420

440

 

 

F
re

q
u
e
n
c
y

(H
z
)

(a)

n orm . amp .

5.5 5.6

152

154

156

158

t (s)

x
(m

)

 

 

ǫ = 0 .008,369 Hz

ǫ = 0 .018,369 Hz

ǫ = 0 .018,307 .3 Hz

Fig. V.3. (a) Spectra of the different drivers, of the form of Eq. (V.27), introduced at x = 0:

ǫ = 0.008 (2ǫηP0 = 2431 Pa) at 369 Hz (red dashed line); ǫ = 0.018 (2ǫηP0 = 5471 Pa) at 369

Hz (thick light blue continuous line) and ǫ = 0.018 at 307.3 Hz (thin black continuous line).

(b) Space-time diagrams of the different wave packet generated from the different drivers in

(a). Symbols stand for the analytical space-time diagrams at 369 Hz and 307.3 Hz. The

slopes of the lines depict the corresponding group velocities. (c) Numerical time evolutions

of the maximum pressure value of the solitons for the different drivers.

p(x, t)

P0

≈2ǫηsech

[
ǫη

√∣∣∣ q
k′′

∣∣∣ωB

(
t− k′

√
1 + α

c0
x

)]

× cos

(
ωωBt− kωB

√
1 + α

c0
x− qǫ2η2

2
ωB

√
1 + α

c0
x

)
.

(V.27)

This bright soliton is characterized by an amplitude 2ǫηP0 and a width (ǫη
√
| q
k′′
|)−1.

In addition, its velocity is given by the group velocity c0/(k
′
√
1 + α) at the carrier

frequency. Note that in contrast to soliton solutions of other nonlinear dispersive wave

equations [e.g. the Korteweg-de Vries (KdV) equation [119])] the group velocity of the

bright soliton is independent of its amplitude.

To verify our analytical findings we numerically study the evolution of the ap-

proximate soliton solution Eq. (V.27), in the framework of the fully discrete model of

Eq. (III.9). We start our analysis with the lossless case assuming that Rω = 0, i.e.,

Γ = 0. The system is excited using a driver of the form of Eq. (V.27) at x = 0. We use

the parameter values ǫ = 0.018 (corresponding to 2ǫηP0 = 5471 Pa) and f = 369 Hz.

The results of the simulations are shown in Figs. V.2 (a) and V.2 (b). We observe that
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the input envelope wave propagates with a constant amplitude and width as shown

in the spatio-temporal evolution in Fig. V.2 (a). The direct comparison of analyt-

ics and simulations is shown in Fig. V.2 (b). Here, the analytical soliton solution of

Eq. (V.27), is compared at five different instants with the numerical results for the

discrete wave equation showing a very good agreement. This result confirms the fact

that the 1D acoustic waveguide studied here, supports envelope solitons satisfying the

focusing NLS equation. To emphasize the effect of the counterbalance between disper-

sion and nonlinearity, we also show the evolution of the same envelope function when

the nonlinearity is switched off [β0 = 0 in Eq. V.1]. As shown in Figs. V.2 (c) and V.2

(d), in the absence of nonlinearity the initial wave-packet spreads as it propagates due

to dispersion.

Next, we study the limits of the validity of the multiple-scales perturbation theory

and the properties of the corresponding bright solitons. To do so, we consider three

different solutions: two at the same carrier frequency f = 369 Hz with different am-

plitudes, ǫ = 0.008 (2ǫηP0 = 2431 Pa), and ǫ = 0.018 (2ǫηP0 = 5471 Pa) and with

a larger amplitude ǫ = 0.018 (2ǫηP0 = 5471 Pa) at a carrier frequency f = 307.3

Hz. The respective spectra of these solitons [Fourier transform in time of the solutions

given in Eq. (V.27)] are depicted in Fig. V.3 (a). Note that, for the last case, part of

the spectrum of the soliton lies inside the gap. Starting with the two soliton solutions

at the same carrier frequency but with different amplitudes, we expect them to prop-

agate with the same velocity, i.e., the group velocity. In Fig. V.3 (b), the dashed red

and solid cyan lines show the position of the maximum of the numerical solution as a

function of time, for ǫ = 0.008 and ǫ = 0.018, respectively. Green crosses depict the

analytical group velocity. Both solutions appear to follow with a very good agreement

the analytical prediction. In addition, as shown in Fig. V.3 (c), these solutions prop-

agate with constant amplitude. However, as seen in the inset of Fig. V.3 (b), there is

a small discrepancy in the velocity of the envelope solutions of larger amplitude. This

indicates a deviation from the effective NLS description for large amplitudes, which is

naturally expected due to the perturbative nature of our analytical approach. Note,

that this small deviation is also depicted in Fig. V.2 (b) for the last time instant.

The third case shown in Fig. V.3 (c) corresponds to the solution whose part of

its spectrum lies in the gap, for ǫ = 0.018 and f = 307.3 Hz. Here, we observe the

propagation of a breathing solitary solution. The respective long-lived, weakly damped

periodic oscillations of the soliton amplitude are depicted in Fig. V.3 (c). As it has

been already discussed in the literature [130, 131], this behavior may be associated
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Fig. V.4. Effect of viscothermal losses on traveling bright solitons. Evolution of the maxi-

mum pressure in time for the lossy bright soliton (continuous red line for numerical results and

blue crosses for the analytical ones) and for linear lossy dispersive wave (dashed yellow line

for numerical results). The driver corresponds to ǫ = 0.018 (2ǫηP0 = 5471 Pa) and f = 369

Hz. (a) Propagation in a weakly lossy medium where Rω = 6.8 Ohm; (b) Propagation in a

real lossy medium where Rω = 68.04 Ohm.

to the birth of an internal mode of the soliton. We also observe a small deviation

between the numerical group velocity and the corresponding analytical one, as shown

in Fig. V.3 (b).

V.2.1.2 Bright solitary waves in the presence of losses

Having established the validity of the NLS solitons in the lossless version of the discrete

model, Eq. (III.9), we proceed by studying the evolution of the envelope solitons in

the presence of the viscothermal losses. By considering weak losses in the multiple-

scale perturbation method, we ended up with a dissipative effective NLS equation,

Eq. (V.16). As long as the parameter Λ is small enough, it is possible to analytically

study the role of dissipation on the soliton dynamics. Indeed, according to soliton

perturbation theory, the linear loss does not affect the velocity of the soliton but

rather its amplitude η becomes a decaying function of time. The evolution of η, can

be determined by the perturbation method, and it is straightforward to find that it is
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described by the following equation,

η(χ2) = η(0) exp(−2Λχ2). (V.28)

In terms of the original coordinates, the amplitude of the bright soliton decreases

exponentially as

η(x) = η(0) exp

(
−2Λǫ2ωB

√
1 + α

c0
x

)
. (V.29)

To both check the aforementioned approximation and to study the solitons behavior

under losses we employ numerical simulations. We integrate the nonlinear lattice model

Eq. (III.9) using a driver corresponding to the soliton shown in Fig. V.3 with parameters

ǫ = 0.018, and f = 369 Hz using two different values for the dissipation: (i) Rω = 6.8

Ohm and (ii) Rω = 68.04 Ohm. The latter value corresponds to the viscothermal

losses of an air-filled waveguide at f = 369 at 18◦, while case (i) is an example of weak

attenuation.

As shown in Fig. V.4 (a), for a weak resistance of Rω = 6.8 Ohm, the amplitude of

the soliton is found to be weakly attenuated. This is in contrast to the linear dispersive

case (see dashed orange line) where the combined effect of dispersion and losses strongly

attenuates the wave packet. The corresponding analytical result for the decay of the

soliton amplitude is denoted in Fig. V.4 by the crosses and it accurately captures the

decay. Furthermore for the more realistic case of Rω = 68.4 Ohm, as shown in Fig. V.4

(b) the effect of losses on the soliton amplitude is (naturally) more pronounced. In this

case the analytical result describes fairly well the amplitude attenuation observed in

simulations.

We stress here that the solitary wave, even for large losses, is clearly discriminated

from a linear wavepacket since it is more robust to attenuation. This is shown in

Fig. V.4 (b) since the soliton always decays at larger distances compared with a linear

wavepacket. What is important to keep in mind here is that dispersion, nonlinearity

and dissipation set the pertinent scales, and their scale competition defines the nature

of the dynamics of wave-packets. We note here that for both cases, we numerically

confirm that the envelope solutions propagate with a constant velocity equal to vg.

To conclude this subsection, our findings show that for a realistic scenario taking into

account viscothermal losses, the acoustic system under consideration supports envelope

solitary waves described the effective NLS equation, Eq. (V.16).
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V.2.2 Gap solitons: stationary solitary waves

While in Sec. V.2.1 we introduced traveling bright solitons propagating with group

velocity vg, we now study stationary (i.e., non-traveling) localized waves oscillating at

a frequency in the band gap of the system; these structures are called gap solitons.

In order to identify these solitons, which evolve in time rather than space, we need

to derive a variant of the NLS model with the evolution variable being time. To do so,

returning back to our perturbation scheme, in the solvability condition of the equation

at the order O(ǫ1), we use the variable

ξ1 = χ1 − vgτ1.

This way, we obtain
(

∂

∂τ1
+ vg

∂

∂χ1

)
A(χ1, χ2, · · · , τ1, τ2, · · · ) = 0, (V.30)

which is satisfied as long as A depends on the variables χ1 and τ1 through the traveling-

wave coordinate ξ̃1, namely A(χ1, τ1, χ2, τ2, · · · ) = A(ξ1, χ2, τ2, · · · ) [in this case, p1 is

again given by Eq. (V.15)]. Then, the non-secularity condition at O(ǫ2) leads to the

following NLS equation,

i
∂A

∂τ2
− 1

2
v3gk

′′ ∂2A

∂ξ̃21
− vgq |A|2 A = −ivgΛA, (V.31)

which is directly connected to Eq. (V.16) by a change of the coordinate system.

V.2.2.1 Gap solitons in the absence of losses

In the absence of losses (Λ = 0), the soliton solution of Eq. (V.31) is given by

A = ηsech

[
ǫη

√∣∣∣ q
k”

∣∣∣ 1
vg
(χ− vgτ)

]
exp(−iǫ2η2

qvg
2

τ), (V.32)

where, as before, η is the amplitude of the soliton.

Considering the case with ω = m and k = 0, gap soliton solutions of Eq. (V.1) can

then be written in terms of coordinates χ and τ as

P (χ, τ) ≈ 2ηsech

(
ǫη

√
14

3
mβ0χ

)
cos (Ωmτ) , (V.33)

where

Ωm = m− 7

3
ǫ2η2mβ2

0 . (V.34)
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Fig. V.5. (a) 3D plot depicting the evolution of a gap soliton of the form of Eq. (V.35),

obtained by numerically integrating the lossless version of Eq. (III.9) (Rω = 0) with ǫ = 0.04

(2ǫηP0 = 12158 Pa), in a lattice with a length of 150 m. (b) Numerical spatial profiles of

gap soliton measured from t0 (at which gap soliton has a maximal amplitude) to t0+T/2 (at

which gap soliton has a minimal amplitude).

In terms of the original space and time coordinates, the approximate envelope gap

soliton solution for the pressure p centered at x0 is the following,

p(x, t) = 2ǫηP0sech

[
ǫη

√
14

3
mβ0ωB

√
1 + α

c0
(x− x0)

]
cos (ΩmωBt) . (V.35)

The gap soliton, is characterized by an amplitude 2ǫηP0. Its width also depends on

amplitude and it oscillates in time with a period T = 2π/ΩmωB.

To confirm the formation of gap solitons, we numerically integrate the nonlinear

lattice model, Eq. (III.9) with Rω = 0, using an initial condition given by Eq. (V.35)

for t = 0 and x0 = 75 m. An example corresponding to ǫ = 0.04 (2ǫηP0 = 12158 Pa) is

shown in Fig. V.5. Figure V.5 (a) shows the spatio-temporal evolution of the gap soliton

during a time interval of three periods. Figure V.5 (b) depicts the numerical spatial

profiles of the gap soliton measured from t0 (at which the gap soliton has a maximal

amplitude) to t0 + T/2. Note that, the absolute value of the maximal amplitude is

bigger than that of the minimal amplitude of the gap soliton. This asymmetry is

caused by the term ∝ |A|2 in Eq. (V.15).

We have calculated both numerically and analytically the frequency of the gap

soliton for different amplitudes, as shown in Fig. V.6 (a). As expected by Eq. (V.34),
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Fig. V.6. (a) Amplitude dependence of the frequency of the gap soliton. Blue line stands

for the analytical results, Eq. (V.34). Red crosses stand for the numerical results, where the

numerical values of the amplitudes and the frequencies are getting from the main peak of the

spectrum of the different gap solitons obtained by numerically integrating the lossless version

of Eq. (III.9) (Rω = 0) with different initial amplitudes. Black dashed line stands for the

cut-off frequency of the system. (b) Time evolution of the middle point of the gap soliton in

Fig. V.5.

the frequency of the gap soliton lies in the band gap (blue continuous line); red crosses

depict the numerical results. Each point, represents the frequency of the larger peak of

the spectrum after numerical integration of the lossless version of Eq. (III.9) (Rω = 0).

It is clearly observed that the analytical results are in a good agreement with the

numerical ones.

The long time evolution of the center of the gap soliton solution is shown in Fig. V.6

(b). First we note that the amplitude exhibits a long-lived oscillation. This can be

associated, as in the previous case of the bright solitons, to the birth of an internal mode

[130, 131]. These beatings are diminished with time as the initial approximate solution

radiates and approaches the numerically exact gap soliton solution of the nonlinear

lattice equation.
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Fig. V.7. Numerical study of the effect of viscothermal losses on gap solitons. The Eq. (V.35)

with ǫ = 0.04 (2ǫηP0 = 12158 Pa) is the initial condition for the gap soliton. (a) and (c)

represents the time evolution of the middle point of the gap soliton propagating in a weakly

lossy medium where Rω = 6.18 Ohm and Rω = 61.8 Ohm respectively (Blue lines for numer-

ical results and red crosses stand for the analytical time evolution of the maximum pressure

for the lossy gap solitons). (b) and (d) show the spectra of the gap soliton propagating in

a lossy medium. Continuous line is the fast Fourier transform (FFT) of the first part of the

signal in Fig. V.7 (a) and Fig. V.7 (c) and dashed line is the FFT of the last part of the

signal in Fig. V.7 (a) and Fig. V.7 (c) respectively.

V.2.2.2 Gap solitons in the presence of losses

As it was the case for bright solitons, we also study the effect of viscothermal losses

on the gap soliton solutions. We numerically integrate Eq. (III.9) considering the

same values of the resistance Rω as for the bright soliton. We now consider an initial

condition of the form of Eq. (V.35) with t = 0 and x0 = 75 m. We use an amplitude

of ǫ = 0.04 (2ǫηP0 = 12158 Pa) and carrier frequency f = 304 Hz. Figures V.7 (a) and

V.7 (b) correspond to the temporal evolution and evolution of the frequency spectrum

of the amplitude of the gap soliton at x0 for weak losses, respectively. We observe that

the amplitude of the gap soliton decreases slowly with time. As a result, the frequency

increases, moving towards the cut-off frequency, see Fig. V.7 (b). This is predicted

from Eq. (V.34) and illustrated in Fig. V.6 (a).

Analogously, in Figs. V.7 (c) and V.7 (d) we plot the temporal evolution and fre-

quency spectrum of the amplitude of the gap soliton at x0, respectively, in the strongly
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attenuated case. Here we observe that the amplitude of the gap soliton decays faster

than in the weakly lossy medium, –see Fig. V.7 (c)– and finally its frequency approaches

to the cut off frequency.

As it was the case for the bright solitons, here we can also analytically describe the

effect of dissipation on the dynamics of the gap solitons. In particular, following the

same perturbation theory as before, the evolution of the amplitude of the gap soliton

η is found to be

η(T2) = η(0) exp(−2vgΛτ2). (V.36)

In terms of the original time coordinate, the amplitude of the gap soliton decreases

exponentially as

η(t) = η(0) exp(−2vgΛǫ
2ωBt). (V.37)

The analytical results are shown in Figs. V.7 (a) and V.7 (c), and exhibit good agree-

ment with the numerical findings.

V.3 Dark solitons

In this Section we study the case of an acoustic waveguide periodically loaded with

side holes. We once more remind the pertinent PDE, Eq. (III.39) shown in Sec. III.3,

describing the system at low frequencies,

(∂τ + γH)
[
Pττ − Pχχ − ζPχχχχ + γωPτ − ǫβ0(P

2)ττ

−ǫβ0γω(P
2)τ
]
+m2Pτ +m2γωP = 0.

(V.38)

As in Section V.2, we apply the multiple scales method to the above equation by

first introducing the slow variables,

χn = ǫnχ, τn = ǫnτ, n = 0, 1, 2, . . . , (V.39)

and express P as an asymptotic series in ǫ,

P = p0 + ǫp1 + ǫ2p2 + . . . . (V.40)

Then, substituting Eq. (V.39) and Eq. (V.40) into Eq. (V.38), we obtain a hierarchy

of equations at various orders in ǫ,

O(ǫ0) : L̂0p0 = 0, (V.41)

O(ǫ1) : L̂0p1 + L̂1p0 = N̂0

[
p20
]
, (V.42)
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O(ǫ2) : L̂0p2 + L̂1p1 + L̂2p0 = N̂0 [2p0p1] + N̂1

[
p20
]
, (V.43)

where operators L̂0, L̂1, L̂2, N̂0 and N̂1 are given by

L̂0 =
∂

∂τ0

(
− ∂2

∂χ2
0

+
∂2

∂τ 20
− ζ

∂4

∂χ4
0

+m2

)
, (V.44)

L̂1 =
∂

∂τ1

(
− ∂2

∂χ2
0

+
∂2

∂τ 20
− ζ

∂4

∂χ4
0

+m2

)

+
∂

∂τ0

(
−2

∂2

∂χ0∂χ1

+ 2
∂2

∂τ0∂τ1
− 4ζ

∂4

∂χ3
0∂χ1

)
,

(V.45)

L̂2 =

(
∂

∂τ2
+ γ

′

H

)(
− ∂2

∂χ2
0

+
∂2

∂τ 20
− ζ

∂4

∂χ4
0

)
+m2 ∂

∂τ2

+
∂

∂τ1

(
−2

∂2

∂χ0∂χ1

+ 2
∂2

∂τ0∂τ1
− 4ζ

∂4

∂χ3
0∂χ1

)

+
∂

∂τ0

(
∂2

∂τ 21
+ 2

∂2

∂τ0∂τ2
− ∂2

∂χ2
1

− 2
∂2

∂χ0∂χ2

− 6ζ
∂4

∂χ2
0∂χ

2
1

− 4ζ
∂4

∂χ3
0∂χ2

)
,

(V.46)

N̂0 = β0
∂3

∂τ 30
, (V.47)

N̂1 = 3β0
∂3

∂τ 20∂τ1
. (V.48)

The leading order O(ǫ0), Eq. (V.41), possesses a linear plane wave solution of the

form,

p0 = A(χ1, χ2, · · · , τ1, τ2, · · · ) exp(iθ) + c.c., (V.49)

where A is an unknown envelop function, θ = krχ0 − ωτ0 with the wave number kr

and the frequency ω satisfying the lossless dispersion relation, Eq. (III.44), and c.c.

denotes complex conjugate.

Next, at the order O(ǫ1), the solvability condition dictates that the secular part

[i.e., the term ∝ exp(iθ)] vanishes, yielding

(
k′

∂

∂τ1
+

∂

∂χ1

)
A(χ1, χ2, · · · , τ1, τ2, · · · ) = 0, (V.50)

where

k′ =
∂k

∂ω
=

1

vg
=

ω

kr − 2ζk3
r

, (V.51)
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Fig. V.8. The frequency dependent qk′′, the product of the nonlinearity and the dispersion

coefficients of NLS equations.

is the inverse group velocity. Equation (V.50) is satisfied as long as A depends on

the variables χ1 and τ1 through the traveling-wave coordinate τ̃1 = τ1 − k′χ1, namely

A(χ1, τ1, χ2, τ2, · · · ) = A(τ̃1, χ2, τ2, · · · ). At the same order, we could obtain the form

of the field p1,

p1 = 8β0
iω3

D(2ω, 2kr)
A2e2iθ +Beiθ + c.c., (V.52)

where B is an unknown function that can be found at a higher-order approximation.

Finally, following the same process as above, the nonsecularity condition at O(ǫ2)

yields the NLS equation for the envelop function A,

i
∂A

∂χ2

− 1

2
k′′

r

∂2A

∂τ̃ 21
− q |A|2 A = −iΛA, (V.53)

where the dispersion, nonlinearity and dissipation coefficients are respectively given by

k′′

r ≡ ∂2kr
∂ω2

=
1− k

′2
r + 6ζk2

rk
′2
r

kr − 2ζk3
r

, (V.54)

q(ω, kr) = β2
0

4ω4

3(m2 + 4ζk4
r)(kr − 2ζk3

r)
, (V.55)

Λ =
m2γ′

H

2ω(kr − 2ζk3
r)
. (V.56)

Note that the NLS equation (V.53) is identical to Eq. (V.16) and the difference lies

in the coefficients, and thus on the properties of the different acoustic metamaterial.

As it was mentioned before, the sign of the product qk′′

r determines the form of the

NLS equation which can be either focusing or defocussing. Figure V.8 shows that

in contrast to the case of the waveguides loaded with clamped plates studied in the

previous section, for this case the product qk′′

r is always negative, i.e., σ = −1. Thus for

the waveguide loaded with side holes we look for solutions in the form of dark solitons.
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In the absence of losses (Λ = 0), the dark soliton solution of Eq. (V.53) reads

A = η0

{
b0tanh

[
η0b0

(√∣∣∣∣
q

k′′

r

∣∣∣∣τ̃1 − a0qη0χ2

)]
+ ia0

}
e−iqη20χ2 , (V.57)

where η0 is a free parameter setting the amplitude of the dark soliton background,

and parameters a0 = sinφ, b0 = cosφ are connected by the relation, a20 + b20 = 1.

The angle 2φ corresponds to the phase shift across the dark soliton. The parameter

b0 = cosφ characterizes the soliton intensity at the center. A special case of a dark

soliton corresponds to a π phase shift and zero intensity at the center and is called a

black soliton. When φ 6= 0, the minimum intensity of a dark soliton does not equal to

zero, and it is called a gray soliton.

V.3.1 Black solitons

We first study the case of black solitons, with φ = 0, which have the following form,

A = η0tanh

(
η0

√∣∣∣∣
q

k′′

r

∣∣∣∣τ̃1
)
exp

(
−iqη20χ2

)
. (V.58)

The corresponding approximate black soliton solution of Eq. (V.38) is as follows,

P (χ, τ) ≈ 2η0tanh

[
ǫη0

√∣∣∣∣
q

k′′

r

∣∣∣∣ (τ − k′

rχ)

]
cos
(
ωτ − krχ− ǫ2qη20χ

)
, (V.59)

which is a function of parameters χ and τ . In the original coordinates, space x and

time t, the approximate black soliton solution for the pressure p reads

p(x, t) ≈ 2ǫη0P0tanh

[
ǫη0

√∣∣∣∣
q

k′′

r

∣∣∣∣ωB

(
t− k′

r

c0
x

)]

× cos

(
ωωBt−

krωB

c0
x− qǫ2η20

ωB

c0
x

)
,

(V.60)

where k′

r/c0 is the inverse group velocity at the carrier frequency which is independent

of the amplitude of the background 2ǫη0P0.

It is again important to establish the dispersion length LD and the nonlinearity

length LNL of our system, providing the length scales over which dispersive and non-

linear effects become important. These lengths are expressed as follows [80],

LD =
t20ωBc0
|k′′

r |
, (V.61)
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Fig. V.9. (a) A contour plot of black soliton of the form of Eq. (V.60), obtained by nu-

merically integrating the lossless version of Eq. (III.35) (Rω = 0, RH = 0) with ǫ = 0.029

(2ǫηP0 = 8816 Pa) (170 dB) and carrier frequency f = 600 Hz.; (b) Numerical spatial profile

of black soliton calculated at t = 1.41 s (blue line). Green dashed lines are the corresponding

analytical envelope result of Eq. (V.60). The light green thick line denotes the nonlinear

length LNL and dispersion length LD, with LNL = LD = 21.55 m.; (c) A numerical con-

tour plot for dispersive effect, obtained by numerically integrating the lossless version of

Eq. (III.35) (Rω = 0, RH = 0). Keeping the same width, we only decrease the amplitude of

the driver to ǫ = 0.0095 (2ǫηP0 = 2888 Pa) (160 dB) such as the nonlinearity can not balance

the dispersion.; (d) Numerical spatial profile of dispersive wave calculated at t = 1.41 s.

and

LNL =
P 2
0 c0

|q|ωBA2
0

, (V.62)

where t0 and A0 are the characteristic width and the amplitude of the propagating

envelope respectively. From the black soliton solution, Eq. (V.60), we find t0 =(
ǫη0
√

|q/k′′

r |ωB

)−1

and A0 = ǫη0P0. Substituting them in Eq. (V.61) and Eq. (V.62),

we obtain LNL/LD ∼ 1.

To confirm our analytical results, we rely on numerical simulations of the original

system of Eq. (III.35). All results in this Section (if not stated otherwise), are obtained

for an air-filled waveguide at 18◦ and using the following parameter values: d = 0.05

m, r = 0.025 m, rH = 0.005 m, lH = 0.002 m, β0 = 1.2, c0 = 343.26 m/s, ρ0 = 1.29

kg/m3, γ = Cp/Cv = 1.4, Cp = 1.005 KJ/kg.K, Cv = 0.718 KJ/kg.K, Pr = 0.71 and

η = 1.84 10−5 kg/m/s.

We first integrate Eq. (III.35), with with a driver of the form given by Eq. (V.60)
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at x = 0 with ǫ = 0.029 (2ǫηP0 = 8816 Pa) (170 dB) and carrier frequency f = 600 Hz.

The numerical results are shown in Fig. V.9 (a) and (b). We observe that the black

soliton with zero intensity at the center propagates with a constant velocity, amplitude

and width as shown in the contour plot, see Fig. V.9 (a). Good agreement between

the simulations (blue line) calculated at t = 1.41 s and the corresponding analytical

solution of Eq. (V.60) (green dashed line) is shown in Fig. V.9 (b). In order to confirm

that the black solitons exist due to the balance between dispersion and nonlinearity, we

also compare Fig. V.9 (a), (b) to the unbalanced case where the boundary condition

has the same width but a smaller amplitude, ǫ = 0.0095 (2ǫηP0 = 2888 Pa) (160 dB),

shown in Fig. V.9 (c) and (d). In Fig. V.9 (d), it is observed that the soliton is not

formed and the initial wavepacket spreads.

V.3.2 Black solitons under dissipation

We next study the dynamics of black solitons under the presence of both radiation and

viscothermal losses. The effective NLS Eq. (V.53), which includes a linear loss term,

can be studied via the direct perturbation theory for dark solitons [132]. The loss term

does not vanish for τ̃1 → ∞ and, thus, in this limit (where ∂2A/∂τ̃ 21 → 0), the evolution

of the black soliton’s background A ≡ η(χ2) is determined by the equation,

i
∂η

∂χ2

− q |η|2 η = −iΛη. (V.63)

Solutions of Eq. (V.63) can be sought in the form η(χ2) = η0(χ2) exp[iφ(χ2)], where

η0(χ2) describes the loss-induced change of the background amplitude, and φ(χ2) is

the spatially varying phase of the background. Substituting the above ansatz into

Eq. (V.63), and separating real and imaginary parts, we derive the equation for the

amplitude of the background as following,

∂η0
∂χ2

= −Λη0. (V.64)

Integrating Eq. (V.64), we find that the background amplitude decays according to the

following exponential law,

η0(χ2) = η0(0) exp(−Λχ2). (V.65)

In terms of the original space coordinate, the amplitude of the background of the black

soliton decreases exponentially as
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Fig. V.10. Effects of radiation and viscothermal losses on black soliton propagation in

an air-filled acoustic metamaterial with d = 0.05 m, r = 0.025 m, rH = 0.005 m, lH =

0.002, calculated at t = 1.41 s. Numerical dissipative black soliton (blue line) is obtained

by integrating our lattice model Eq. (III.35) with the driver corresponding to ǫ = 0.029

(2ǫηP0 = 8816 Pa) (170 dB) and f = 600 Hz, Eq. (V.60) or Eq. (V.68). Green dashed line is

the corresponding analytical envelope result, Eq. (V.68). The light green thick line denotes

the nonlinear length LNL and dispersion length LD, with LNL = LD = 21.55 m.;

η0(x) = η0(0) exp

(
− x

Ll

)
, (V.66)

where

Ll =
c0

Λǫ2ωB

, (V.67)

is the dissipation length. Thus, the envelope of the approximate black soliton solution

reads

pe(x, t) ≈ 2ǫP0η0(0)e
−Λǫ

2
ωB

c0
x
tanh

[
ǫη0e

−Λǫ
2
ωB

c0
x

√∣∣∣∣
q

k′′

r

∣∣∣∣ωB

(
t− k′

r

c0
x

)]
. (V.68)

During propagation, the amplitude of background η decreases (due to the presence

of loss), while the minimum intensity is always zero. The black soliton does not move

against the background, and the velocity of the background only depends on the carrier

frequency. Thus, the linear loss only affects the black soliton’s background amplitude

and the soliton width.

To further investigate the competition of the different scales between dissipation,

nonlinearity and dispersion, below we study two different cases. In the first case we

consider a system where Ll ≪ LNL, LD. To do so we numerically integrate the lattice

model, Eq. (III.35), using a driver at x = 0 corresponding to the black soliton shown

in Fig. V.9 with ǫ = 0.029 (2ǫηP0 = 8816 Pa) (170 dB) and f = 600 Hz. The

numerical result (blue line) shown in Fig. V.10 is in good agreement with the analytical
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Fig. V.11. Effects of radiation and viscothermal losses on black soliton propagation in an

water-filled acoustic metamaterial with d = 0.05 m, r = 0.025 m, rH = 0.002 m, lH = 0.002

m, calculated at t = 0.58 s. Numerical dissipative black soliton (blue line) is obtained by

integrating the lattice model Eq. (III.35) with the driver corresponds to ǫ = 0.01 (2ǫηP0 =

4.39 107 Pa) and f = 1300 Hz. Green dashed line is the corresponding analytical envelope

result, Eq. (V.68). The light green thick line denotes the nonlinear length LNL and dispersion

length LD, with LNL = LD = 36.54 m.;

result (green dashed line), Eq. (V.66). The radiation and viscothermal losses strongly

attenuate the background amplitude of the black soliton, according to the value of

the dissipation length Ll = 9.12 m, which is much smaller than the nonlinearity and

dispersion lengths, given by LNL = LD = 21.5 m, illustrated by the light green thick

line in Fig. V.10.

Next, we choose the parameters of our setup so that Ll ≥ LNL, LD. This is achieved

by replacing air to water, and by decreasing the radius of the side holes. We now use

the following parameters for the lattice: d = 0.05 m, r = 0.025 m, rH = 0.002 m,

lH = 0.002 m, at 25◦ C, with nonlinear parameter β0 = 3.6, velocity c0 = 1483

m/s, density ρ0 = 998.3 kg/m3, specific heat ration γ = Cp/Cv = 1.01, specific heat

(constant pressure) Cp = 75.327 KJ/mol/K, specific heat (constant volume) Cv = 74.53

KJ/mol/K, Prandtl number Pr = 7.01 and dynamic viscosity η = 1.002 10−3 kg/m/s.

We use an envelope given by Eq. (V.60) with ǫ = 0.01 (2ǫηP0 = 4.39 107 Pa) and

f = 1300 Hz. In this case, the background amplitude of the dark soliton is weakly

attenuated, and the numerical result in Fig. V.11 (blue line) is in good agreement with

the corresponding analytical one (green dashed line), Eq. (V.66).

Below, we adopt the parameters corresponding to the water-filled acoustic meta-

material.
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V.3.3 Gray solitons

Apart from the stationary black soliton (characterized by a zero density minimum),

traveling gray soliton solutions of Eq. (V.38) with φ 6= 0 also exist, and have the form

P (χ, τ) ≈2η0b0tanh

[
ǫη0b0

√∣∣∣∣
q

k′′

r

∣∣∣∣ (τ − k′

rχ)− ǫ2a0b0qη
2
0χ

]

× cos
(
ωτ − krχ− ǫ2qη20χ

)
− 2η0a0 sin

(
ωτ − krχ− ǫ2qη20χ

)
.

(V.69)

In terms of the original coordinates x and t, the approximate gray soliton solution for

the acoustic pressure p(x, t) is given by

p(x, t) ≈ 2ǫη0P0b0tanh

[
ǫη0b0

√∣∣∣∣
q

k′′

r

∣∣∣∣ωB

(
t− k′

r

c0
x

)
− ǫ2a0b0qη

2
0

ωB

c0
x

]

× cos

(
ωωBt−

krωB

c0
x− qǫ2η20

ωB

c0
x

)

− 2ǫη0P0a0 sin

(
ωωBt−

krωB

c0
x− qǫ2η20

ωB

c0
x

)
.

(V.70)

Here, the velocity vg is given by

vg =

(
k′

r

c0
+

ǫa0η0
√
|qk′′

r |
c0

)−1

(V.71)

and it is the sum of the background velocity, vb = c0/k
′

r, controlled by the carrier

frequency, and the gray soliton’s velocity, vs = c0/
(
ǫa0η0

√
|qk′′

r |
)
, which depends on

a0 = sinφ and η0.

To study gray solitons in an acoustic waveguide loaded with side holes we perform

numerical simulatios of the lattice Eq. (III.35). We choose to excite the system using

a driver of the form of Eq. (V.70) at x = 0 with ǫ = 0.01 (2ǫηP0 = 4.39 107 Pa)

and f = 1300 Hz. We perform simulations for different values of the phase angle

i.e. φ = π/4, φ = π/8 and φ = −π/8 and the results are shown in Fig. V.12 (a),

(b), Fig. V.12 (c), (d) and Fig. V.12 (e), (f) respectively. In the absence of losses the

numerical results validate our theoretical predictions since the gray solitons propagate

in the system at a constant velocity with a constant amplitude, width and minimum

intensity, as shown in the contour plot in Fig. V.12 (a), (c) and (e). Furthermore, the

numerical spatial profiles calculated at t = 0.35 s (blue lines) are in good agreement

with the corresponding analytical ones, Eq. (V.70) (green dashed lines), as shown in

Fig. V.12 (b), (d) and (f).
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Fig. V.12. (a) A contour plot of gray soliton of the form of Eq. (V.70), obtained by

numerically integrating the lossless lattice model of Eq. (III.35) (Rω = 0, RH = 0), with

φ = π/4, ǫ = 0.01 (2ǫηP0 = 4.39 107 Pa) and f = 1300 Hz.; (b) Numerical spatial profile

of gray soliton calculated at t = 0.58 s with φ = π/4 (blue line).; (c) Contour plot of gray

soliton with φ = π/8; (d) Numerical spatial profile of gray soliton calculated at t = 0.58 s

with φ = π/8 (blue line).; (e) Contour plot of gray soliton with φ = −π/8; (f) Numerical

spatial profile of gray soliton calculated at t = 0.58 s with φ = −π/8 (blue line). Black

dashed lines in Fig. V.12 (a), (c) and (e), presenting the information about the velocity of

the gray solitons, are the corresponding analytical results, Eq. (V.71). Green dashed lines in

Fig. V.12 (b), (d) and (f) stand for the corresponding analytical envelopes of gray solitons.

106



V.3 Dark solitons

To signify the importance of the the phase angle φ we note that it determines the

minimum intensity and the velocity of the gray soliton −→v gray, as well as the group

velocity, vg = vb + vs. Upon changing φ (from φ = π/4 to φ = π/8 ), we observe that

the group velocity and the minimum intensity decrease, see Fig. V.12 (b) and (d). The

change of sign of φ (from φ = π/8 to φ = −π/8), does not affect the minimum intensity

of the gray soliton, as shown in Fig. V.12 (d) and (f). However, for φ = −π/8, the

gray soliton moves in a direction opposite to that of the background, see Eq. (V.71).

Our analytical prediction of Eq. (V.71), illustrated by black dashed lines in Fig. V.12

(a), (c) and (e), is in full agreement with the numerical results.

V.3.4 Gray solitons under dissipation

We now study the effect of dissipation on the propagation of gray solitons in the acoustic

metamaterial. As it was discussed in section V.3.2, for weak losses we may employ the

perturbation theory of Ref. [132], which shows that gray soliton solutions of Eq. (V.53)

evolve as

A = η0

{
btanh

[
η0b

(√∣∣∣∣
q

k′′

r

∣∣∣∣τ̃1 − aqη0χ2 −
√∣∣∣∣

q

k′′

r

∣∣∣∣t0

)]
+ ia

}
e−iqη20χ2−iσ0 , (V.72)

where

a = a0 exp(−Λχ2), (V.73)

b = b0 exp(−Λχ2). (V.74)

According to the above solution, the background amplitude

A = η0
√
a2 + b2 = η0 exp(−Λχ2)

decays exponentially with the same rate as in the black soliton case, Eq. (V.65). The

first-order correction term is given by

t0 =
a0

4b0η0
exp(−Λχ2) +

3a0
4b0η0

exp(Λχ2)−
a0
b0η0

, (V.75)

and σ0 is an extra phase induced by the perturbation. In the original coordinates, x

and t, the approximate form of the gray soliton reads
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Fig. V.13. (a) Numerical spatial profile of dissipative gray soliton calculated at t = 0.58

s with φ = π/8 (blue line). Green dashed lines are the corresponding analytical envelope,

Eq. (V.75).; (b) The corresponding space-time diagram of dissipative gray soliton (blue cir-

cles). The slop of the black line shows the analytical velocity of dissipative gray solitons,

Eq. (V.76).
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(V.76)

with the velocity

vg =

(
k′

r

c0
+ ǫa0e

−Λǫ2
ωB

c0
x
η0

√
|qk′′

r |
c0

)−1

. (V.77)

During the propagation of the gray soliton, both the background amplitude and

the minimum intensity decrease exponentially due to the presence of losses, while the

soliton’s width increases, see Eq. (V.76).
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V.4 Conclusion

To illustrate our analytical results, we numerically integrate the lattice model,

Eq. (III.35), by driving the system at x = 0 using a time dependent boundary condi-

tion of the form of Eq. (V.70) or Eq. (V.76), with ǫ = 0.01 (2ǫηP0 = 4.39 107 Pa) and

f = 1300 Hz. The numerical profile found at t = 0.58 s, with φ = π/8, is shown in

Fig. V.13 (a) (blue line), is in a good agreement with the analytical prediction (green

dashed line), Eq. (V.76). The numerically obtained gray soliton trajectory [blue cir-

cles in Fig. V.13 (b)], is in good agreement with the analytical expression given in

Eq. (V.77).

V.4 Conclusion

In this Chapter we have shown the two different acoustic metamaterials studied in this

thesis can support solitary wave solutions. In particular, for the case of a waveguide

loaded with clamped plates we have confirmed the propagation of envelope bright soli-

tary waves satisfying the NLS equation, with a carrier frequency inside the propagating

band of the system. Additionally we have identified localized nonlinear waves which

oscillate with a frequency lying in the band-gap of the 1D metamaterial. The dynamics

of both types of solitons where studied under the effect of the unavoidable viscothermal

losses. Furthermore, regarding the acoustic waveguide loaded with side holes we have

shown that it supports envelope dark soliton solutions of the NLS equation. Using

systematic numerical simulations we studied the propagation of both black and gray

solitary waves in the acoustic metamaterial. Additionally, we have shown how vis-

cothermal and radiation losses affect the properties (amplitude, width and velocity) of

dark solitons when traveling in the acoustic waveguide.
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Chapter VI

Concluding remarks

In conclusion, we have studied the propagation of nonlinear waves in 1D acoustic

metamaterials, i.e., the interplay between nonlinearity, loss and dispersion. Our stud-

ies combined analytical calculations, numerical simulations and experimental results.

We have studied two main phenomena: (i) the second harmonic generation and (ii)

the formation of solitary waves in two different acoustic metamaterials: (i) a waveguide

loaded with a periodic distribution of side holes (featuring negative effective bulk mod-

ulus) and (ii) a waveguide periodically loaded with clamped plates (featuring negative

effective mass density). Relying on the electroacoustic analogy and the transmission

line approach, we have derived the discrete lattice model for each system, which in

continuum approximation, leads to a nonlinear, dispersive and dissipative wave equa-

tion. From the latter, by utilizing a perturbation method, we have obtained analytical

results regarding the second harmonic generation. Furthermore with the use of a mul-

tiple scale analysis we have found various envelope (bright, gap, black and gray) soliton

solutions supported by the 1D acoustic metamaterial. The analytical predictions have

been well verified by the simulations. The experiments on nonlinear wave propagation

in an acoustic waveguide loaded with a periodic distribution of side holes, were found

to be in good agreement with our theoretical predictions.
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VI.1 Conclusions

VI.1 Conclusions

This thesis is divided in 6 chapters. In Chapter I, we have reviewed some works about

artificial materials, acoustic metamaterials, non-linear acoustic metamaterials and soli-

tons, which allows to introduce the objectives of this PhD thesis. In Chapter II, we

have introduced TL approach in detail, which is the basics to construct the analytical

approach developed in this thesis. In Chapter III, relying on the TL approach, we have

derived the nonlinear, dynamical lattice model for two different acoustic metamaterials,

as well as the corresponding nonlinear, dispersive and dissipative wave equation. In

Chapter IV, we have analytically, numerically and experimentally studied the second-

harmonic generation in 1D acoustic metamaterials. In Chapter V, we proposed an

analytical and numerical study of the envelope (bright, gap, black and gray) solitons in

1D acoustic metamaterials, even in the presence of realistic losses. In this Chapter VI,

we present our conclusions and discuss some future research directions and potential

technological application.

Transmission Line Approach

As the basics to construct the analytical approach developed in this thesis, we have

firstly introduced TL approach in detail in Chapter II.

In Section II.1, we have introduced the advantages of the TL approach. In the

field of acoustic, waveguide loaded with an array of resonators is usually described

by acoustic wave equation coupled with a set of differential equations describing the

dynamics of each resonators. For each resonator, two coupled PDEs for the pressure

and velocity field is needed. This modeling is very difficult to treat analytically and has

only to rely on numerical simulations. Moreover, the nonlinearity makes the modeling

more complicated. Using the TL approach and the electro-acoustical analogy, we can

derive a nonlinear discrete wave equation, describing wave propagation in an equivalent

electrical transmission line, which can be solved by means of perturbation methods,

multiple scales methods or coupled mode theory in the continuum limit.

Then we started studying TL approach by the simplest part, i.e., different elements

in electro-acoustic analogue modeling: (i) fundamental linear/nonlinear acoustical ele-

ments in Section II.2 and (ii) the resonant elements (clamped plates and side holes) in

Section II.3. Combining the different elements, nonlinear wave equations of 1D acous-

tic metamaterials could be derived. We gave the simplest examples in Section II.4:

linear acoustic wave equation and Westervelt equation in a uniform 1D waveguide.
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Nonlinear acoustic wave equations obtained by transmission line ap-

proach

In Chapter III, relying on the TL approach, we have derived the nonlinear, dynam-

ical lattice model for 1D acoustic metamaterials. Two different 1D acoustic metama-

terials are studied in this Chapter: (i) an acoustic waveguide periodically loaded with

clamped plates (featuring negative effective mass density) modeled by acoustic trans-

mission line metamaterials with series branches in Section III.2 and (ii) an acoustic

waveguide loaded with a periodic distribution of side holes (featuring negative effec-

tive bulk modulus) modeled by acoustic transmission line metamaterials with parallel

branches in Section III.3. In these two systems, considering the continuum limit of the

lattice model, we have derived the corresponding nonlinear, dispersive and dissipative

wave equation, which could be solved analytically. At the end of the chapter, we veri-

fied the TL approach in the linear limit, by comparing the dispersion relation derived

from our model and the one obtained by TMM. We have studied the linear properties

of the system and no essential difference between the lossy dispersion relation and the

lossless one was found, meaning that the losses are sufficiently small to be treated as

a small perturbation. The results in this chapter paved the way to study the second

harmonic generation and the envelope solitons in these two 1D acoustic metamaterials.

Second harmonic generation in 1D acoustic metamaterials

In Chapter IV, we have theoretically, numerically and experimentally studied the

second harmonic generation.

We followed a bottom up approach in order to understand the several features that

play an important role in the wave propagation in the proposed systems. Firstly, we

considered only the nonlinearity, without considering dispersion effects (due to the pe-

riodicity of the lattice and the resonances of the clamped plates or side holes). We have

shown that, during the nonlinear propagation, cumulative nonlinear effects generate

harmonics of the fundamental frequency. Then, we studied a dispersive, nonlinear sys-

tem in which we show the control of the second harmonic generation by the dispersion

of the system in the absence of losses (with acoustic metamaterial made of plates, the

series branch). The corresponding nonlinear lattice models and nonlinear equations

obtained in Chapter III are analyzed by numerical and analytical techniques respec-

tively and using a perturbative scheme we derived analytical expressions for the first

and second harmonics. We have shown that during the nonlinear wave propagation
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in the acoustic metamaterial, the generated higher harmonics could be controlled by

tuning the dispersion relation –for instance, the beatings of second harmonic due to

the phase mismatch introduced by the dispersion effect. Finally we introduced vis-

cothermal and radiation losses in the system and studied the harmonic generation in

a dispersive, nonlinear, lossy system (acoustic metamaterial made of side holes, the

parallel branch). The analytical predictions were corroborated by direct numerical

simulations. Moreover at the end of the Chapter, we have done the experiments about

linear and nonlinear wave propagation in an acoustic waveguide periodically loaded by

side holes, verifying our theoretical predictions.

Envelope solitons in acoustic metamaterials

The chapter V is dedicated to the analytical and numerical study of two families

of soliton solutions in 1D metamaterials: (i) bright and gap solitons for the case of an

acoustic waveguide loaded with clamped plates and (ii) dark (black and gray) solitons

for the case of an acoustic waveguide loaded with side holes. Employing the multiple

scales method, the nonlinear, dispersive and dissipative wave equation of the system

obtained in Chapter III is reduced to the effective NLS equation which leads to the

envelope soliton solutions. The dynamics of these structures were studied in the absence

and in the presence of viscothermal and/or radiation losses via soliton perturbation

theory. We have investigated the role—and interplay between—nonlinearity, dispersion

and dissipation on the soliton formation and dynamics. The numerical results were

found to be in good agreement with the analytical predictions. It is thus concluded

that 1D acoustic clamped plates type and side holes type metamaterial can support

envelope solitary waves even in the presence of realistic losses.

VI.2 Further work

Our results about second harmonic generation pave the way for the studies on the con-

trol of generated second harmonic in effective double-negative acoustic metamaterials

[133, 106], e.g., waveguides periodically loaded with an array of side holes and clamped

plates. Backwards-traveling second harmonic generation could be obtained in double

negative metamaterials, which could be used for controlling the direction of the energy

flow in the industry. It is also interesting to design a nonlinear acoustic mirror that can

convert the incoming waves into a total reflected waves with double frequency (second

harmonic), which is inspired by the works of Shalaev et al. [134] in the field of optics.
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The existence of envelope solitons in 1D acoustic metamaterials with effective nega-

tive mass density or bulk modulus, has been demonstrated analytically and numerically,

which motivates further experimental investigation. The studies on envelope solitons

in effective double negative acoustic metamaterials could be another direction. Our

works can also be employed for the design of new nonlinear acoustic metamaterials

supporting various types of solitons.

2D spatio-temporary solitons is another research direction. It would also be in-

teresting to study other nonlinear coherent structures in higher dimensional acoustic

metamaterials, where we could observe more complex acoustic waveforms. For exam-

ples, in additional to 1D solitary wave acoustic metamaterials, vortices may be realized

in higher dimensional system. Nonlinear metasurface is another huge topic in the field

of acoustics because of the tunability and switching ability used for controlling the

waves.
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Chapter VII

Annexes

Here are the details about the experimental data processing. p1, p2, p3 and p4 are

the sound pressures at x1, x2, x3 and x4, see Fig. VII.1, which can be written as a

superposition of positive- and negative-going waves in the waveguide,

p1 = (Ae−jkx1 +Bejkx1)ejωt,

p2 = (Ae−jkx2 +Bejkx2)ejωt,

p3 = (Ce−jkx3 +Dejkx3)ejωt,

p4 = (Ce−jkx4 +Dejkx4)ejωt,

(VII.1)

where A,C and B,D, see Fig. VII.1, are the amplitudes of the positive- and negative

going plane wave respectively which could be derived from Eq. (VII.1),

A =
j(p1e

jkx2 − p2e
jkx1)

2 sin k(x1 − x2)
,

B =
j(p2e

−jkx1 − p1e
−jkx2)

2 sin k(x1 − x2)
,

C =
j(p3e

jkx4 − p4e
jkx3)

2 sin k(x3 − x4)
,

D =
j(p4e

−jkx3 − p3e
−jkx4)

2 sin k(x3 − x4)
,

(VII.2)

We will use these expressions in the subsequent transfer matrix calculations.

To relate the sound pressures and velocities on the two faces of the lattice, the

transfer matrix is used, extending from x = 0 to x = 40×d, as illustrated in Fig. VII.1,

i.e., [
p

v

]

x=0

=

[
T11 T12

T21 T22

][
p

v

]

x=40d

, (VII.3)
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Fig. VII.1. Schematic diagram of the standing wave tube, adapted from Ref. [121].

where p|x=0, v|x=0, p|x=40d and v|x=40d may easily be expressed in terms of the positive-

and negative-going plane wave component amplitude, i.e.,

p|x=0 = A+B,

v|x=0 =
A− B

ρ0c
,

p|x=40d = Ce−jk40d +Dejk40d,

v|x=40d =
Ce−jk40d −Dejk40d

ρ0c
.

(VII.4)

Equation (VII.3) presents two equations with four unknowns, T11, T12, T21 and T22.

Thus, in order to find the transfer matrix elements, we need two additional equations.

These are obtained by the reciprocity and inversion symmetry of the material. As

Pierce noted, reciprocity leads to the determinant of the transfer matrix to be equal

to one [120, 121],

T11T22 − T12T21 = 1,

while inversion symmetry to:

T11 = T22.
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Then, the transfer matrix elements get the following expressions,

T11 =
p|x=40dv|x=40d + p|x=0v|x=0

p|x=0v|x=40d + p|x=40dv|x=0

,

T12 =
p|2x=0 − p|2x=40d

p|x=0v|x=40d + p|x=40dv|x=0

,

T21 =
v|2x=0 − v|2x=40d

p|x=0v|x=40d + p|x=40dv|x=0

,

T22 =
p|x=40dv|x=40d + p|x=0v|x=0

p|x=0v|x=40d + p|x=40dv|x=0

.

(VII.5)

In order to calculate the reflection and transmission coefficients, we assume that

the incident plane wave has unit amplitude, and the termination is anechoic, so that

we could consider the parameter D is negligible compared to parameter C. Thus we

could write,

p|x=0 = 1 +R,

v|x=0 =
1−R

ρ0c
,

p|x=40d = Te−jk40d,

v|x=40d =
Te−jk40d

ρ0c
,

(VII.6)

where R = B/A and T = C/A are the reflection and transmission coefficients respec-

tively. Substituting Eq. (VII.6) into Eq. (VII.3), the transmission T and reflection

coefficient R for the case of an anechoic termination, can be respectively expressed as,

T =
2ejkd

T11 + (T12/ρ0c) + ρ0cT21 + T22

, (VII.7)

R =
T11 + (T12/ρ0c)− ρ0cT21 − T22

T11 + (T12/ρ0c) + ρ0cT21 + T22

, (VII.8)

and the absorption coefficient is

α = 1− T 2 −R2. (VII.9)
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• J. Zhang*, V. Romero-Garćıa, G. Theocharis, O. Richoux, V. Achilleos, and D. J.
Frantzeskakis. Envelope solitons in 1D acoustic matamaterials. 12th International
Congress on Artificial Materials for Novel Wave Phenemena - Metamaterials, 27-31
August, 2018, Espoo, Finland
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