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Résumé

This thesis consists of two parts, namely rare event simulation and a homotopy trans-
port for stochastic volatility model estimation.

Particle methods, that generalize hidden Markov models, are widely used in different
fields such as signal processing, biology, rare events estimation, finance and etc. There
are a number of approaches that are based on Monte Carlo methods that allow to ap-
proximate a target density such as Markov Chain Monte Carlo (MCMC), sequential Monte
Carlo (SMC). We apply SMC algorithms to estimate default probabilities in a stable pro-
cess based intensity process to compute a credit value adjustment (CVA) with a wrong
way risk (WWR). We propose a novel approach to estimate rare events, which is based on
the generation of Markov Chains by simulating the Hamiltonian system. We demonstrate
the properties, that allows us to have ergodic Markov Chain and show the performance of
our approach on the example that we encounter in option pricing.

In the second part, we aim at numerically estimating a stochastic volatility model,
and consider it in the context of a transportation problem, when we would like to find
"an optimal transport map" that pushes forward the measure. In a filtering context, we
understand it as the transportation of particles from a prior to a posterior distribution in
pseudotime. We also proposed to reweight transported particles, so as we can direct to
the area, where particles with high weights are concentrated. We showed on the example
of Stein-Stein stochastic volatility model the application of our method and illustrated the
bias and variance.

Keywords : Hamiltonian flow Monte Carlo, Particle Monte Carlo, Sequential Monte
Carlo, Monte Carlo, rare events, option pricing, stochastic volatility, optimal transport
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Chapitre 1

Introduction

« " πάντες α̋ντροποι του̂ είδέναι
ο̇ρέιγονται ϕύσει. τὰ μετά τὰ
ϕισικά ’ »

Αριστοτέλη

« "All men by nature desire to

know" »

Aristotle
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CHAPITRE 1. INTRODUCTION

1.1 Motivation

Throughout last 20 years development of computation power allowed to use sophisti-
cated Monte Carlo methods in signal-processing, rare events estimation, computational
biology, queuing theory, computational statistics and etc. In finance we have to deal with
large dimensionality of problems, where other techniques due to some constraints, such
as curse dimensionality, computational burden makes us to look for alternative numeri-
cal techniques. Particle methods are a broad class of interacting type Monte Carlo algo-
rithms for simulating from a sequence of probability distributions satisfying a nonlinear
evolution equation. These flows of probability measures can always be interpreted as the
distributions of the random states of a Markov process whose transition probabilities de-
pends on the distributions of the current random states ([6], [5]).

Particle methods have a variety of applications in finance : rare events and stochastic
volatility estimation. For instance, portfolio managers need to estimate a large portfolio
loss for risk management. In banking industry, banks need to compute default probabi-
lities, so as to compute different value adjustments and to comply with financial regula-
tion. In insurance industry, companies are interested in estimating ruin probabilities in
a given time horizon. All the above mentioned cases are the examples, where rare event
simulation is applied.

Stochastic volatility models are widely used in the financial industry. In fact, while rea-
lized volatility could be hedged away by trading other options, stochastic volatility models
are needed to model the dynamics of implied volatilities, which will provide their user
with simple break-even accounting conditions for the Profit and Loss of a hedged posi-
tion [1].

The current thesis consists of two main parts, namely computing rare events via simu-
lation and general stochastic volatility estimation.

1.1.1 Credit Risk Estimation

Since the credit crisis 2007-2009, the importance of counterparty credit risk for regu-
lators increased dramatically. According to Basel III regulation [33], banks are required to
hold a regulatory capital based on CVA charges against each of their counterparties. The is
already a number of article on CVA valuation, the most common Credit Value Adjustment
(CVA) formula ([5], [22], [22], [39] and [40]) is given by :

CVA = (1−R)
∫T

0

DtE[V+
t |τ = t ]dPD(t ) (1.1)

where R is a recovery rate, Dt - risk-free discount rate, PD(t ) probability of default up to
time t and Vt - the value of an underlying asset.

Two problems related to CVA computation that usually arise : incorporation of wrong
way risk (WWR) into the value of CVA and a high computational burden. WWR is a sta-
tistical dependence between the exposure and a counterparty’s credit risk (CCR). Another
challenge related to CVA is the computation of default probability. There are two main ap-
proaches in default probability computation : structural models (first-passage approach)
[3] and reduced form credit models ([19], [26] and [28]).

2



CHAPITRE 1. INTRODUCTION

Structural models

The first passage approach is modelled like in a barrier option pricing, and formulated
in the following way. Assume that the default barrier b is constant valued. Then the default
time τ is a continuous random variable (r.v.) values in ]0,+∞[ and given by

τ = inf{t > 0 : Vt < b} (1.2)

then the first passage probability is given by :

P(T) = P(MT < b) = P(inf
s≤T

(
µs +σDWs

)
< log(b/V0)) (1.3)

where MT = infs≤T Vs .

Default intensity

The main difference between reduced form and structural models is in the fact that,
in the latest one does not need any economic model of firm’s default, i.e. defaults are
exogenous.

Dt = 1τ<t =

{
1 if τ≤ t

0 otherwise
(1.4)

Observe that default intensity is an increasing process, such that the conditional proba-
bility at time t that the firm defaults at time s ≥ t is at least as big as the process Dt .
A process with such property is called submartingale. The Doob-Meyer decomposition
theorem says that we can isolate upward trend from D. This very important result says
that there exist an increasing process Dτ starting at zero such that D−Aτ becomes a mar-
tingale. The unique process Aτ counteracts the upward trend in D, and it is called a com-
pensator. It describes the cumulative and conditional likelihood of default, which is para-
meterized by non-negative process λ.

Aτ
t =

∫tτ

0

λsd s =
∫t

0

λs1τ>sd s (1.5)

where λt describes conditional default rate for small interval ∆t and τ> t . λ∆t approxi-
mates the probability that default occurs in the interval ]t , t +∆t ].

Rare events

Rare events simulation is an important field of research in computational and nume-
rical probability. It has a wide range of applications starting from catastrophe theory to
finance, as an example one can consider pricing of a barrier option pricing or a credit risk
estimation.

Let us consider the problem of rare event estimation, where the probability z = P(A) is
very small. The crude Monte Carlo (CMC) estimates z through the proportion of times on
the simulated points attain rare event area A over M independent trials :

bzM =
1

M

M∑

m=1
1ξ(m)∈A (1.6)

with variance σ =
√
z(1− z). In "easy problems" we can use the central limit theorem

(CLT), which asserts that
1

p
M

(zM − z) −−−−→
M→∞

σZ (1.7)

3



CHAPITRE 1. INTRODUCTION

where Z ∼N (0,1) is a standard Gaussian distribution.
In a rare-events simulation we are not very concerned about the absolute error, but

instead we would like to measure via relative error(RE) the precision of our estimation
with respect to some "true" value of quantity we are computing. Relative error exposes
the problems one encounters by using CMC in rare event setting :

RE =
Z
√
z(1− z)

M1/2z
= Z

√
1− z

Mz
∝ Z√

Mz
−−−→
z→0

∞ (1.8)

The approximation (1.8) shows that CMC requires n ≫ 1/z. Lets show this on a simple
example, assume that we would like to estimate rare event probability z = 10

−7, RE is tar-
geted at 0.1 with a 95% confidence interval, then we have

1.96
p
10−7M

≤ 0.1 (1.9)

from the equation above we see that we need at least M ≥ 3.84×10
−9 samples to have a

10% RE.
Assume that we have a sequence of random variables {ξ(a)(m)}M

m=1. Define the rare
event set as :

Aa = {x ∈RM, f (x) > a} (1.10)

then we can define a probability of interest and its estimator as

z(a) = E[1ξ(a)∈Aa ] and bz(a) =
1

M

M∑

m=1
1ξ(m)(a)∈Aa (1.11)

We can show that if our estimator has a bounded RE, then the desired precision is
independent of that the rarity of the set Aa .

P

( |bz(a)− z(a)|
z(a)

> ϵ

)
≤ Var (ξ(a))

Mϵ2z(a)2
(1.12)

From the equation (1.12) we that the set will not depend on the "rarity" of the set Aa ,
if we impose the following condition :

limsup
a→∞

Var (ξ(a))

z(a)2
<∞ (1.13)

1.1.2 Pricing in Partial Observation Models

Stochastic volatility models are the one of examples of the use of partial observation
models (hidden Markov models) in finance, i.e. the situation, when one can observe the
prices but not the dynamics of the stochastic volatility. In the last chapter we will show
the application of different numerical approaches, such as particle filtering and homo-
topy transport on the example of a barrier option pricing in Stein-Stein stochastic volati-
lity models. For example, in [1] author showed that the price of a barrier option is mostly
dependent on the dynamics of the at-the-money skew conditional on price hitting the
barrier. A stochastic volatility model for barrier options would need to provide a direct
handle on this precise feature of the dynamics of the volatility surface so as to appropria-
tely reflect its Profit and Loss impact in the option price. On of the first applications in
option pricing could be found in [6]. Other applications and analysis of hidden Markov
models could be found in [8] and [32].
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CHAPITRE 1. INTRODUCTION

1.2 Sampling Methods

1.2.1 Monte Carlo

The application of CMC in a rare event setting was already demonstrated in previous
sections. These methods are generally used to compute integral that can not be calcula-
ted analytically or very difficult to compute. For example, we would like to calculte the
following expectation :

EP[h(X)] =
∫

X

h(x)P(d x) (1.14)

All we need is to generate M independent and identically distributed (i.i.d.) random va-
riables {ξ(m)}M

m=1 according to the law P. Using the law of large numbers (LLN) we have an
unbiased estimator

1

M

M∑

m=1
δξ(m) (x)h(x)

a.s.−−−−→
M→∞

EP[h(X)] (1.15)

As we saw in the previous section, often we can not efficiently sample from the measure
P. Those problems arises in rare events setting and sampling from fat-tailed distributions,
then we have to use advanced Monte Carlo techniques, such as an importance sampling
(IS), control variates, a stratified sampling and etc.

1.2.2 Importance Sampling

One of the ways to deal with rare events probabilities is IS Monte Carlo method. The
idea is to change a measure from P, where samples rarely reach rare event sets, to the
measure Q, so that we can sample at low cost in the new measure .

EP[h(X)] =
∫

X

h(x)P(d x) =
∫

X

h(x)ω(x)Q(d x) = EQ[h(X)ω(X)] (1.16)

M∑
m=1

δξ(m) (x)ω(x)h(x)
a.s.−−−−→

M→∞
EQ[h(X)ω(X)] (1.17)

The disadvatage of this method is in the fact, that we do not know the explicit form of
the Radon-Nykodim derivative dP

dQ
= ω. This method is unfeasible in many examples, if we

exclude some simple cases.

1.2.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) method allows to approximate a target measure
π, by constructing an ergodic Markov Chain, that admits the target measure as a statio-
nary law. We do not need to know the law explicitly as in the case of the IS, but instead
we construct a Markov kernel K , that leaves the target measure π invariant. There are
two very popular MCMC sampling techniques : Metropolis-Hastings(MH) and Gibbs al-
gorithms. One can show that the Gibbs algorithm is a special case of MH. The idea behind
Metropolis-Hastings algorithm is to propose new set of candidates, and accept them, so
that the transition kernel K is left invariant with respect to the target, where Markov tran-
sition kernel is given by :

K (x,d y) = α(x, y)Q(x,d y)+
(
1−

∫
α(x, z)Q(x,d z)

)
δx(d y) (1.18)

5



CHAPITRE 1. INTRODUCTION

and MH transition kernel K is reversible, i.e. πK = π. By recursion we can show that the
chain {Xn}n≥0 follows the law πn = π0K

n . Using reversibility property of the kernel K , we
can have convergence of the chain Xn to the target measure π, given that the kernel K

has contraction :
πn −π = (π0−π)K n ∀n > 0 (1.19)

If the chain Xl is irreducible, or in other words it admits a unique invariant measure, then
the paths of the chain satisfies ergordic theory :

lim
n→∞

1

n

nH+n∑

l=nH+1
h(Xl ) = Eπ[h(X)] (1.20)

where nH is the number of iterations needed for "burn-out period", so that the chain
leaves its initial law, and converges to the invariant measure π. Usually one needs to make
high number of iterations, so that MH algorithm will approach the target density.

The performance of MCMC algorithms, like in other Monte Carlo sampling algorithms
depends on the experience and ability to tune and optimize it. In general, the quality of
final samples depends on the kernel K and how fast it is able to explore the state space.
In chapter 3 we will show, that the transition kernel represented by a metropolized Hamil-
tonian dynamics allows to explore it fast.

Algorithm 1 : MH MCMC algorithm

1 Initialization : N - #(time steps), π0 - initial measure
2 X0 ∼π0 ;
3 for n = 1, ...,N do

4 Generate x∗ from Q(·,Xn−1) ;
5 Compute the weight :

a(Xn , x∗) = 1∧ π(x∗)q(x∗,Xn)

π(Xn)q(Xn , x∗)

assuming that a(x, y) = 0 if π(x)q(x, y) = 0 ;
6 Draw u∼U nif(0,1) ;
7 if u< a then

8 Set Xn+1 = x∗ ;
9 else

10 Reject, and set Xn+1 = Xn

11 end

12 end

13 end

1.3 Particle Methods and Sequential Monte Carlo

Interacting particle system(IPS) is very power method, that is applied in non-linear
filtering problems, rare event estimation and many other applications. IPS allows to over-
come the problem that we face in importance sampling Monte Carlo technique, where
we needed to know explicitly the importance sampling measure in order to sample from
it. On contrary, the importance measure is approximated by a collection of trajectories of
a Markov process {Xn}n≥0 weighted by a set of potential functions ωn . IPS is related to the
unnormalized Feynman-Kac models. In the next section we give a brief overview of these
stochastic models, for more details we refer to monographs [6] and [5].

6



CHAPITRE 1. INTRODUCTION

1.3.1 Feynman-Kac Approximations

We give some key notations that are used to describe Feynman-Kac models, that we
use in the next chapters. First, we define normalised and unnormalized Feynman-Kac
measures (ηn ,γn) for any bounded function f by the formulae :

γN( f ) = E[ f (XN)
N−1∏
n=0

ωn(Xn)] and ηN( f ) =
γN( f )

γN(1X)
(1.21)

Since non-negative measures (ηn)n≥0 satisfy for any bounded function f the recursive
linear equation : γn( f ) = γn−1(Qn( f )) we have

γN( f ) =
∫

...
∫

f (XN)η0(d x0)
∏

Qn(xn ,d xn+1) (1.22)

where {Qn}n≥0 are unnormalised transition kernels, for example, we can choose them of
the following form Qn(xn ,d xn+1) = ωn(xn)kn(xn ,d xn+1), where {kn}n≥0 is a sequence of
elementary transitions.

The following definition was given in [6], for a linear semigroup Qm,n , 0≤ m ≤ n asso-
ciated with a measure γn and defined by : Qm,n = Qm+1, ...,Qn . For any bounded function
f and (m,n) ∈N :

γn( f ) = γmQm ...Qn−1 f and ηn( f ) =
γmQm ...Qn−1( f )

γmQm ...Qn−1(1X)
=

ηmQm ...Qn−1( f )

ηmQm ...Qn−1(1X)
(1.23)

with a convention Qm , ...,Qn = Id , if m > n by definition of a normalised measure ηn and
a semigroup Qm,n we readily obtain

ηn+1( f ) =
ηnQn( f )

ηnQn(1X)
(1.24)

Let us consider the example of rare events estimation, assume that we have a sequence
of rare event sets {Ap }0≤p≤n , X is a random variable on the probability space (Ω,P,F ).
One of the application in barrier option pricing or credit risk estimation is computation
of conditional expectation

ηN( f ) = E[ f (XN)|Xp ∈ Ap ] (1.25)

Feynman-Kac interpretation for any bounded function f and potential function ωn(x) =
1An (x), using the fact that 1An1An+1 = 1An (x), since An+1 ⊂ An

ηN( f ) =
1

P(AN)

∫
1AN (x)h(x)P(d x) =

E[ f (XN)
∏N−1

l=1 ωl (Xl )]

E[
∏N−1

l =1 ωl (Xl )]
=
E[ f (XN)1AN (X)]

E[1AN (X)]
(1.26)

1.3.2 Hidden Markov Models

As we mentioned in the motivation section, hidden Markov Models (HMM) can be
formulated in the context of a filtering problem. Under the filtering problem one assumes
that we have a couple of processes in discrete time (Xn ,Yn)n≥0, where (Xn)n≥0 is a se-
quence of hidden variables and (Yn)n≥0 is partially observed data.

Xn+1|Xn = xn ∼ kn(xn ,d xn+1) (1.27)

Yn |Xn = xn ∼ ρn(xn ,d yn) (1.28)

7
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where kn is an elementary transition kernel, and ρn is a likelihood function. Using Bayes
formula for a bounded function f we can derive

E[ f (X0, ...,Xn)|Y0, ...,Yn−1] =

∫
...

∫
f (X0, ...,Xn)

∏
ρp (Xp ,Yp )ν(d x0)k0(X0,d x1)...kn−1(Xn−1,d xn)∫

...
∫∏

ρp (Xp ,Yp )ν(d x0)k0(X0,d x1)...kn−1(Xn−1,d xn)
(1.29)

Motivating example for studying and using HMM in finance is stochastic volatility model.
It is defined by the following system :

dYt = µ(Xt )d t +σY(Xt )dWt

dXt = β(Xt )d t +σX(Xt )dBt
(1.30)

Using Euler discretization scheme we have

Yn = Yn−1+µ(Xn)∆t +σY(Xn)
p
∆tZ(1)

n

Xn+1 = Xn +β(Xn)∆t +σX(Xn)
p
∆tZ(2)

n

(1.31)

where Z(1) and Z(2) are two independent standard Gaussian r.v.,∆t is a discretization step.
In this case, the unnormalised transition kernel has the following form Qn(xn ,d xn+1) =

ρn(xn ,d yn)kn(xn , xn+1). For the sake of illustration, assume that we have constant vola-
tilities σX(Xn) = σX, σY(Xn) = σY, and other parameters are given by ∆t = 1, β(Xn) = 0,
µ(Xn) = Xn and Yn−1 = 0, then the likelihood is given by

ρn(xn ,d yn) =
1

p
2πσY

exp

(
− (yn − xn)2

2σ2

Y

)
(1.32)

and an elementary Markov transition kernel

kn(xn ,d xn+1) =
1

p
2πσX

exp

(
− (xn+1−xn)2

2σ2

X

)
(1.33)

If we exclude toy examples, there does not exist the exact simulation method for such
type of models. Sequential Monte Carlo based particle algorithms allow to approximate
normalised measures ηn .

1.3.3 Sequential Monte Carlo

Assume that on the measurable space (X,X ), there exists an unnormalized transition
Qn : Xn ×Xn → R+, which is absolutely continuous with respect to a kernel Kn : Xn ×
Xn+1 → R+, i.e. Qn(xn , ·) ≪ Kn(xn , ·) for all xn ∈ Xn , then we can define an importance
weight function ωn :

ωn(xn , xn+1) =
dQn(xn , ·)
dKn(xn , ·)

(xn+1) (1.34)

Sequential Monte Carlo (SMC) produces a fixed number of weighted samples (particles).
At each time instant we generate a couple of particles and their corresponding weights
{ξm

n ,ω(m)
n }M

m=1, where M is a fixed number of particles. If at time n ∈ N, the set of weigh-

ted particles {ξ(m)
n ,ω(m)

n }M
m=1 approximates measure ηn , then using IS method, we can also

approximate ηn+1 by a couple of the set of particles and their corresponding weights.
{ξ(m)

n+1,ω(m)
n+1}M

m=1. This procedure is called a sequential importance sampling (SIS), which

8
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allows us recursively construct the measure ηN from the initial measure η0 ∈ P (X) and
the set of importance weights {ω(m)

n }M
m=1.

Algorithm 2 : Sequential Importance Sampling algorithm

1 Initialization : M - #(simulations), N - #(time steps), η0 - initial measure
2 for m = 1, ...,M do

3 ξ(m)
0

∼ η0 ;

4 ξ(m)
1

∼K0(ξ(m)
0

, ·) ;

5 ω(m)
1

= ω(m)
0

(ξ(m)
0

,ξ(m)
1

)
6 end

7 for n = 1, ...,N do

8 for m = 1, ...,M do

9 Generate ξ(m)
n from Kn(·,ξ(m)

n−1) and set bξ(m)
n = (bξ(m)

n ,ξ(m)
n−1) ;

10 Compute the weight : ω(m)
n (bξ(m)

n ) ;
11 end

12 end

In some cases, we can observe the weight degeneracy, when the variance of impor-
tance weights increase over time, as the fact that most of weights are negligible. To over-
come this problem, in [24] authors proposed to resample particles at each iteration, which
was called sequential importance resampling (SIRS) or bootstrap algorithm. There was
an extensive research to optimize the bootstrap using, for example, effective sample size
(ESS), we refer to [27], [16] and [14] for details.

In [6] and in [5] it was shown, that SMC estimators are unbiased, i.e. we can prove that

sup
|| f ||≤1

¯̄
¯̄
¯

¯̄
¯̄
¯E

[
1

M

M∑

m=1
f (ξm

N )−ηN( f )

]¯̄
¯̄
¯

¯̄
¯̄
¯≤

c(N)

M
(1.35)

where c(N) is some positive constant, whose values depend on time horizon N.

Algorithm 3 : Sequential Importance Resampling algorithm

1 Initialization : M - #(simulations), N - #(time steps), η0 - initial measure
2 for m = 1, ...,M do

3 ξ(m)
0

∼ η0 ;

4 ξ(m)
1

∼K0(ξ(m)
0

, ·) ;

5 ω(m)
1

= ω(m)
0

(ξ(m)
0

,ξ(m)
1

)
6 end

7 for n = 1, ...,N do

8 for m = 1, ...,M do

9 if n < N then

10 Resample using probability weight : Wn(bξ(m)
n ) = ωn (bξ(m)

n )
1

M

∑M
j =1ωn (bξ( j )

n )
;

11 end

12 Generate ξ(m)
n from Kn(·,ξ(m)

n−1) and set bξ(m)
n = (bξ(m)

n ,ξ(m)
n−1) ;

13 Compute the weight : ω(m)
n (bξ(m)

n ) ;
14 end

15 end

9
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1.4 Hamiltonian Flow Monte Carlo

Hamiltonian Flow Monte Carlo (HFMC) methods came from statistical physics, where
the computation of macroscopic properties requires sampling phase space configura-
tions distributed according to some probability measure. One of its first application in
sampling from high-dimensional distribution was proposed in [15], and its differenti ex-
tensions and converging properties in [2], [12] and [6]. Sampling on Riemann manifolds
using generalised HFMC was introduced in [14].

We consider the system of particles described by a position and momentum X and P
respectively, that are modelled by a Hamiltonian energy H (X,P). In statistical physics, the
macroscopic properties can be obtained by averaging of some function A with respect to
a probability measure P describing the state of the system of particles :

EP[A(X)] =
∫

X

A(x, p)P(d x,d p) (1.36)

In most cases we approximate the above expectation numerically, such that as number of
iteration increases, the microscopic sequences converge to the target distribution P :

lim
N→∞

1

N

N−1∑

i =0
A(Xn ,Pn) = EP[A(X)] P−a.s. (1.37)

One of the simplest examples are so called canonical measures that have the following
form :

P(d x,d p) =
1

Z
e−βH (x,p)d xd p, Z =

∫

X

e−βH (x,p)d xd p (1.38)

The measure P is called Gibbs measure. Since we can separate potential and kinetic ener-
gies in the Hamiltonian, we can consider positions sampling, by using projection opera-
tor.Define the projection operator as pr o j ◦P(d x,d p) = P(d x), and consider the canonical
measure, ν, which is a projection of P.

ν(d x) =
1

Z
e−βΨ(x)d x, Z =

∫

X

e−βΨ(x)d x (1.39)

If the Hamiltonian is separable, then the measure P takes tensorized form, and each
element of momenta follows independent Gaussian distributions. The main difficulty,
that one encounters in computational statistics, biology is sampling of potential energy.
The approaches to sample new configurations are as follows :

— "Brute force" sampling methods, such as rejection sampling
— MCMC techniques, when we accept or reject new proposals using MH algorithm
— Markovian stochastic dynamics, when we generate new samples using Langevin

or generalized Langevin equations
— Deterministic methods on the extended state space

1.4.1 Sampling with HFMC

In chapter 3 we apply HFMC algorithms to estimate rare events. There are number of
challenges to compute ensemble averages in eq. (1.37), for example the dynamics of Xn

is not ergodic with respect to the Gibbs measure, i.e. paths are not sampled from ν. The
system can contain high energy barriers that will prevent fast sampling.

10
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A large deviation theory defines rare event, when the dynamics has to overcome a
potential barrier ∆Ψ, such that the exit time scales like

τ∝ exp(−β∆Ψ) (1.40)

We can interpet τ in the sense that sampling from the Gibbs measure takes exponentially
long time. There is the following law of large numbers.

Theorem 1.4.1 [30] Given τ sufficiently small, let the numerical flow Ξτ be symmetric and

symplectic. Then

Xn+1 = (pr o j ◦Ξ)(Xn ,Pn), Pn ∝ e−βH (Xn ,·) (1.41)

P(Xn+1 = xn+1) = 1∧e−β∆Hn+1 (1.42)

defines an irreducible Markov process {X0,X1, ...} ⊂ X with unique invariant probability

measure π and the property

1

N

N∑
n=1

f (Xn) →
∫

E
f dπ a.s., ∀X0 ∈X (1.43)

One can simply understand the irreducibility property as the probability of reaching any
point on the configuration space is nonzero, i.e.

P(Xn+1 ∈ B(xτ)|Xn = x0) > 0 (1.44)

holds true ∀x0, xτ ∈X and any Borel set B = B(X).

In algorithm 3, we show how we can sample using Hamiltonian dynamics, which consist
of sampling new momenta proposals P according to the kinetic part of the canonical
measure ; performing L steps of numerical integration Ξn , which is the discretized ver-
sion of Hamiltonian system, to obtain a new configuration (x∗,P∗) ; and finally computing
pr ob = exp(−β(H (x∗,P∗)−Xn ,Pn) and accepting the new position Xn+1 with probability

11
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a = min(1, pr ob).

Algorithm 4 : Hamiltonian flow Monte Carlo algorithm

1 Initialization : nS - #(simulations), nt - #(time steps)
2 for n = 1, ...,nt do

3 for m = 1, ...nS do

4 Generate X(m)
n from prior ep(X(m)

0
, ·) ;

5 Simulate initial momentum P(m)
1

∼N (0, IM), set x(m)
H = X(m)

n and run
Hamiltonian flow ;

6 for l f = 1, ...L−1 do

7

P(m)
H ((l f + 1

2
)δ) = P(m)

H (l f )− δ
2

∂Ψ
∂xH

(x(m)
H (l f ))

x(m)
H ((l f +1)δ) = x(m)

H (l f )+δP(m)
H ((l f + 1

2
)δ)I−1M

P(m)
H ((l f +1)δ)) = P(m)

H ((l f + 1

2
)δ)− δ

2

∂Ψ
∂xH

(x(m)
H ((l f +1)δ))

8 end

9 Calculate acceptance probability and set x∗ = x(m)
H (L), P∗ = P(m)

H (L) :

a = 1∧e(−H (x∗,P∗)+H (x(m)
H ,P(m)

H ))∆t (1.45)

Draw u∼U nif(0,1) ;
10 if u< a then

11 Set X(m)
n+1 = x∗ ;

12 else

13 Reject, and set X(m)
n+1 = x(m)

H
14 end

15 end

16 end

17 end

As a simple example, consider sampling from a bivariate Gaussian distribution p(x) =
N (µ,Σ) with mean and covariance matrix

µ =

[
0

0

]
, Σ =

[
1 0.9
0.9 1

]
(1.46)

Then the potential energy function and partial derivatives are given by

Ψ(x) = − log(p(x)) =
xTΣx

2
,
∂Ψ

∂xi
= xi (1.47)

Figure 1.1 shows samples from bivariate Gaussian distribution. We see that HFMC
fastly explores the state space and samples from a target distribution.

12
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FIGURE 1.1 – HMC sampling from Bivariate Gaussian distribution

1.5 Filtering by Optimal Transport

In previous sections we showed how particle filters can be applied to approximate li-
kelihood function by a set of weighted particles. It was shown in [1], [14], [15] that if the
dimension of filtering problem increases, then the collapse of particles grows super - ex-
ponentially. In [29], authors introduced a new approach to update system’s measurement,
where the homotopy is formed, that gradually transforms an initial prior into a posterior
density as scale parameter λ increases from 0 to 1. The idea is to choose a parameterized
density and minimize the deviation between this density and homotopy, according to the
measure of deviation. The approach can be interpreted as the optimal transport problem,
which is defined as :

infT E[||T (X)−X||2]
s. th. Q = T#P

(1.48)

That means that we try to approximate some importance measure Q by an optimal trans-
port map T , that minimize the deviation between particles transported using the homo-
topy and posterior distribution. Instead of approximating the likelihood function by a set
of particles sampled through importance resampling algorithm, we find a transport map
that moves random variables using the following homotopy :

ψ(Xt ,λ|Yt ) =
1

Zλ
p(Xt ,λ|Yt−1)ρ(Yt |Xt ,λ)λ (1.49)

The homotopy continuously deforms a prior distribution p(Xt |Yt−1) into an unnormali-
zed posterior p(Xt |Yt−1)ρ(Yt |Xt ,) as λ approaches to 1 :

ψ(Xt ,λ|Yt )
λ(0→1)−−−−−→ψ(Xt |Yt ) (1.50)

The transportation of particles in nX dimensional state space is performed by a particle
flow. The idea is to find a flow of particles that correspond to the flow of probability den-
sity defined by a homotopy. We suppose that flow of particles for Bayes rule follows the
following dynamics in pseudo time λ :

dXt ,λ = g (Xt ,λ)dλ+η(Xt ,λ)dWλ (1.51)

13
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where g (Xt ,λ) =
dXt ,λ

dλ .
In chapter 4 we will show that the flow g (x,λ) can be found as a solution to Fokker-

Plank partial differential equations, given that its diffusion matrix sums to zero, the flow
is given by :

g (Xt ,λ) =

[
∂2Ψ(Xt ,λ)

∂X2

t ,λ

]−1[
∂L(Xt ,λ)

∂Xt ,λ

]T

(1.52)

Algorithm 5 : Homotopy Transport Algorithm

1 Initialization : i = 1, ...,nX - #(simulations), t = 1, ...,N - #(time steps)

2 Draw {X(i )
0

}nX
i =1 from the prior p0(x).

3 Set {ω(i )
0

}nX
i =1 = 1

nX

4 for t = 1, ...,N do

5 for i = 1, ...,nX do

6 Propagate particles using state equation X(i )
t = f (X(i )

t−1,Y(i )
t−1,ϵt ) ;

7 Measurement update : Yt = h(X(i )
t ,Y(i )

t−1,ηt ) ;
8 Initialize pseudo-time λ = 0 ;

9 Set X(i )
t ,λ = X(i )

t |n−1 ;

10 while λ< 1 do

11 Compute SCM bSM ;

12 Calculate an estimate : Xt ,λ = 1

nX

∑
i X(i )

t ,λ

13 Compute the matrix bH =
∂h(X(i )

t ,λ)

∂Xt ,λ
;

14 Update the time : λ = λ+∆λ ;

15 Calculate the flow
dX(i )

t ,λ
dλ = −

[
∂2Ψ(X(i )

t ,λ)

∂X2

t ,λ

]−1[
∂L(X(i )

t ,λ)

∂Xt ,λ

]T

;

16 Transport particles according to its flow : X(i )
t ,λ = X(i )

t ,λ+∆λ
dX(i )

t ,λ
dλ ;

17 end

18 Update state estimate :

19 X̆t = 1

nX

∑nX
i =1X(i )

t ,λ

20 end

21 end

1.6 Organinzation of the thesis and main contributions

Current thesis consists of three articles, uploaded to HAL and Arxiv that we plan to
submit. A brief description and main contributions are presented below.

Chapter 2. (Article) Particle Lévy tempered α-stable credit risk model simulation with

application to CVA with WWR computation in multi-factor BGM setting (R. Douady, Sh.
Miryusupov) This chapter presents a Levy driven α-stable stochastic intensity model to
estimate default probability in CVA computation. We use the fact that under certain regu-
lar conditions the Lévy process’s small jump part could be approximated by a Brownian
motion in order to correlate market and credit risks, hence to take into account the WWR.
Since default probabilities are rare events, we adapt IPS methods to simulate Lévy sto-
chastic intensity. We use three discretization schemes : Euler with constant time steps,
Euler and Milstein jump-adapted time steps.
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Chapter 3. (Article) Hamiltonian flow Simulation of Rare Events (R. Douady, Sh. Mi-
ryusupov) In this chapter we present an algorithm to estimate rare events using Hamilto-
nian dynamics. In this approach we generate Markov Chains that converges to an inva-
riant measure. This approach allows to have rare-event estimates that have small variabi-
lity. We compare our approach with IPS on the example of Barrier option.

Chapter 4. (Article) Optimal Transport Filtering with Particle Reweighing in Finance

(R. Douady, Sh. Miryusupov) For the last portion of this thesis, we will move to partially-
observed models in order to estimate stochastic volatility. We show the adaptation of par-
ticle filter to estimate the hidden parameter, which is not observed. The oprimal transport
allows the transportation of particles from prior distribution into posterior by using ho-
motopy that gradually transforms the likelihood function, when we move in pseudo time
from 0 to 1. In order to improve we propose reweighted particle transportation.
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Chapitre 2

Particle Levy tempered α-stable credit

risk model simulation with application to

CVA with WWR computation in

multi-factor BGM setting

« "Stabilité première condition du

bonheur publique. Comment

saccommode-t-elle avec la

perfectibilité indéfinie ?" »

A.S. Pouchkine

« "Stability - the first condition of

public happiness. How does it fit

with indefinite perfectibility ?" »

A.S.Puchkin
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Abstract

Since the beginning of crisis in 2007 banks observed anomaly in the behaviour of the
credit value adjustments (CVA) that was due to the Wrong Way Risk (WWR). The WWR is
known as a statistical dependence between exposure and a counterparty credit risk (CCR).
Most of approaches of dealing with the WWR are computationally intensive that makes it
hard to use in the banks.

In this article we model CVA with the WWR, where a stochastic intensity follows a Levy-
driven Ornstern-Uhlenbeck dynamics with jump marks that have α-stable distribution.
We use the fact that small jumps of a Lévy process under certain regulatory conditions
could be approximated by a Brownian motion with a drift. A Lévy process decomposition
into a Brownian motion and a compound Poisson process allows naturally embed the
WWR into the CVA values through the correlation of the Brownian motion in the dynamics
of exposure and the one in the Levy processs Gaussian approximation.

To reduce the samples’ variability, we used mean field interacting particle system (IPS),
that allowed to reduce the variability of our CVA estimates on the one hand, and reduce
the number of simulated paths on the other hand. This approach also allowed to reduce
errors of sample paths using Euler with constant time step, Euler and Milstein scheme
with jump-adapted time steps to several order of magnitudes compared to a crude Monte
Carlo.

Our results show that the WWR risk has a huge impact on the values of CVA. We hope
that our results will be a message for banks and regulators in CVA computation.
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2.1 Introduction

After the crisis banks observed anomaly in the behaviour of CVA that was due to
the WWR. The WWR is known as a statistical dependence between exposure and counter-
party credit risk (CCR). Most of approaches of dealing with the WWR are computationally
intensive that makes it hard to use in the banks. The WWR is a negative statistical depen-
dency between exposure and a counterparty’s credit quality. The CVA estimation with the
WWR poses a major challenge with respect to both computational burden and tractability,
consequently it is not clearly accounted in Basel III regulation.

There are different approaches that have been proposed to assess the WWR, for example
in [13] they add jump into the exposure process. In [5] authors proposed the change of
measure, that models the presence of the WWR. [15] proposed adjusted default proba-
bility in the dependent CVA formula and in [22] used copula method to model the de-
pendence between default time and exposures. We focus on the dependence between the
counterparty default and general market risk factors and in particular we use the pro-
perties of α-stable process to correlation the approximation of small jumps in the Lévy
intensity and exposure processes.

In the following sections we focus on two issues : CVA with WWR estimation and IPS
interpretation of α-stable process. One the one hand we propose α-stable intensity pro-
cess for default probability estimation, on the other hand we would like to see the impact
of WWR/RWR on the values of CVA.

Not surprisingly, we find that WWR depends on the correlation between counterparty
default risk and the credit spread of the underlying asset, in particular, the regulatory ratio
of 1.4 appears to be underestimated, when the correlation is negative.

This paper contributes as follows : first, we construct tempered-α stable stochastic in-
tensity model for probability of default estimation ; second, we apply interacting particle
system to estimate default probability in the rare events estimation context ; third, the IPS
framework that we develop for simulation of α - stable process demonstrated reduced va-
riability of its estimates compared to a crude Monte Carlo estimators ; forth, we apply IPS
to estimate CVA with right/wrong way risk. Our results show that the WWR has a big im-
pact on the values of CVA, taking into account that BCBSs regulatory CCR capital charges
assume that WWR risk increasing by a constant factor value of CVA, our results show that
this assumption has to be reviewed.

2.2 Problem Formulation and Definitions

The general formula for CVA computation is given by :

CVA := LGDE[B(0,τ)V+
τ 1τ≤T] (2.1)

where LGD = (1−R), and LGD=loss given default, R is a recovery rate, B(0, t ) is a dis-
count factor for maturity t . Vt is a market exposure at time t , x+ = max(x,0) and τ is coun-
terparty’s default time. The expectation is under the risk neutral measure Q.

Definition The counterparty positive exposure of a derivative security V+
t , is the non-

negative part of the difference between a security value St minus a collateral Ct :

V+
t = max(St −Ct ,0) (2.2)

The expected positive exposure at each time instant t :

EPEt = E[V+
t |F0] (2.3)
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We assume that Ct = 0.

Definition The default distribution function up to time t is given by :

P(τ≤ t ) := E[1τ≤t ] (2.4)

The density of the first default time is given by :

fτ(t ) :=
∂

∂t
P(τ≤ t ) (2.5)

Given that the default timeτ and discounted positive exposures Bt V+
t are independent,

CVA at time t can be computed as :

CVAi nd = LGD
∫T

0

E[Bt V+
t ] fτ(t )d t (2.6)

BCBS in [33] defined the following formula for a potential mark-to-market losses as-
sociated with a deterioration in the credit worthiness of a counterparty :

CVA ≈ LGDmkt

T∑

i =1
max(0;e

− si−1ti−1
LGDmkt −e

− si ti
LGDmkt )

| {z }
De f aul t pr obabi l i t y ter m

(
EEi−1Di−1+EEi Di

2
)

| {z }
Exposur e ter m

| {z }
Uni l ater al CVA

(2.7)

It is a good question, whether (2.7) makes any sense, since you have two different pro-
bability measures in one formula, on the one hand CDS spreads, that are calculated using
risk-neutral probability measure, on the other hand you have expected exposure, which
is computed using historical risk measure.

Next question, how the WWR is treated within banking regulation ? In [16] and [15] it
is indicated that Basel II defines α = 1.4, but gives banks to estimate their own α, subject
to a floor of 1.2. So CVA WWR is approximated using the following formula :

CVAWWR,BIII = a ×CVA (2.8)

In this article we model CVA with WWR, where stochastic intensity has Levy-driven
Ornstein-Uhlenbeck dynamics. Since for a different level ofα, the jump magnitude changes,
we can see its impact on the CVA and, in particular, how it impacts CVA with WWR. The
specific form of Levy process decomposition allows us to correlate two Brownian motions,
the first one in the stochastic intensity and another one in the exposure process.

To reduce the variance and the number of generated path of MC simulations, we will
use particle methods. To validate this approach we will verify the mean absolute devia-
tion(MAD) and || · ||L2 norm of simulated paths’ errors using Euler scheme with constant
time steps, Euler with jump-adapted and Milstein with jump-adapted time steps using
MC and PMC algorithms.

2.3 Market Risk and Exposure Profiles

2.3.1 BGM Model

We give some basic notions on BGM model, and remind the way one could compute
the exposure profiles for multifactor BGM model [26], [4] and on the example of two factor
model we will demonstrate expected exposure and expected positive exposure.
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Denote by P(t ,T) the discount factor at time t with maturity T. The Libor rate is defi-

ned as :

L(t ,Ti ) =
1

δ

(
1

P(t ,Ti )
−1

)
(2.9)

The forward rate form Ti−1 to Ti , set at time t , where t ≤ Ti−1 ≤ Ti is given by :

Li (t ) := L(t ,Ti ,Ti−1) =
1

δ

(
P(t ,Ti−1)

P(t ,Ti )
−1

)
(2.10)

From this we can derive a money market rate :

P(t ,Ti ) =
P(t ,Ti−1)

1+δLi (t )
=

i∏

j =1

1

1+δLi (t )
(2.11)

Since the forward rate is a martingale under the masure QTi , we have

EQ
Ti [L(t ,Ti )−Li (t )] = 0 (2.12)

and thus follows the dynamics

dLi (t ) = Li (t )ζi (t )dWi
t (2.13)

where Wi
t is a Brownian motion, σi is a bounded deterministic function. The forward

measure dynamics, under a forward-adjusted measure QTi is given by :

dLi (t ) =
i∑

j =g (t )

δ j L j (t )Li (t )ζi (t )ζ j (t )

1+δ j L j (t )
d t +Li (t )ζi (t )dWi

t ,q (2.14)

The interest rate swap value with the strike K is given by :

Sb(ti ) =
b−1∑

k=i

P(ti , tk+1)δk (Lk (ti )−K) (2.15)

A multifactor BGM ([4], [1]) is given by the following formula :

dLi (t ) =
i∑

j =g (t )

δ j L j (t )Li (t )
∑d

q=1 ζi ,q (t )ζ j ,q (t )

1+δ j L j (t )
d t +Li (t )

d∑

q=1
ζi ,q (t )dWi

t ,q (2.16)

where d is the number of factors.

2.3.2 Expected Exposure

We show the exposure profiles computation on the example of a two factor BGM mo-
del for LIBOR rates, by simulating exposure profiles of LIBOR swaps with 5 year maturity,
which coincides with the last exercise date and lockout after 3 months and tenor spacing
of three months.

Using Euler’s discretization scheme [29], we have :

Li (tn+1) = Li (tn)+µi (L(tn), tn)Li (tn)∆t +Li (tn)
p
∆t

2∑

q=1
ζi ,q (tn)ϵn+1,q (2.17)
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where ∆t = tn+1− tn with the drift term

µi (L(tn), tn) =
i∑

j =g (tn )

δ j L j (tn)
∑

2

q=1 ζi ,q (tn)ζ j ,q (tn)

1+δ j L j (tn)
(2.18)

Then for m = 1, ...,M, at time tl the positive (PE) and negative (NE) exposures are given
by

V(m),+
i

(tl ) = max(S(m)
l

(tl ),0) V(m),−
i

(tl ) = min(S(m)
l

(tl ),0) (2.19)

The expected positive exposure(EPE) at each time instant tl :

EPEtl
=
1

M

M∑
m=1

V(m),+
l

(tl ) (2.20)

In figure 2.1. you can see the exposure profiles of 1000 different scenarios.

FIGURE 2.1 – Left : Positive exposure profiles. Right : EPE(Blue), ENE(Red)

2.3.3 Multi-curve Interest Rate Modelling

Before the crisis of 2007-2009 Euribor and Eonia overnight index swap (OIS) rates
(a fixed swap rate that is paid/received in exchange for a floating rate tied to the Euro
overnight rate Eonia), when both rates were assumed to be risk-free and followed each
other closely. But during the crisis the situation radically changed and the spread between
Euribor and Eonia OIS rates increased for all tenures. Since Euribor/Libor is not risk-three,
many financial institutions moved away from the traditional discounting, instead Eonia
is considered now as risk-free rate.

The previous assumption that one curve could be used for discounting and funding is
not true anymore :

Li (t ) ̸= EQTi [L(t ,Ti )] (2.21)

2.4 Credit Risk

In this section we develop a Lévy driven α-stable stochastic intensity model. For
the sake of completeness, we give some notions on Lévy processes, for more detailed
treatment, we refer to [3],[17] and [14]. In the next sections, we provide some well-known
properties and definitions on α-stable processes, then we show sufficient conditions for
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a Lévy process to be decomposed into the sum of a drift, a Brownian motion and a com-
pound Poisson process, that will be very important in imposing correlation structure of
CVA with WWR.

In credit risk modelling there are two main approaches to model default probabilities.
First one is the first passage approach, which is very similar to the first cross of a given
barrier, the technique is widely used in a barrier option pricing and structural models
developed by Merton. Second approach is a stochastic intensity model, which will be used
for default probabilities computation in the next sections.

The first jump of the process can be simulated, conditional on the filtration F as
Λ(τ) =: ξ = E xpo(1), and by inversion we define the default time as : τ =Λ(ξ)−1.

The survival probability is given by :

P(τ> t ) = E[e−∫t
0
λu du] (2.22)

The density of the first default time is given by :

fτ(t ) = E[λt e−∫t
0
λu du] (2.23)

As a simple example consider CIR process that describes the dynamics of the stochas-
tic intensity λt

dλt = k(ϕ−λt )d t +σλ

√
λt dWt (2.24)

The figure 1.7, shows the path of a CIR stochastic intensity and a survival function.

FIGURE 2.2 – The paths of CIR process (left) and survival function (right)

2.4.1 Lévy driven OU Process

Given that X is a Lévy process X = {Xt : t ≥ 0} in Rd , then it is uniquely determined
by its characteristic function in the Lévy-Khintchine form :

E[e i 〈u,Xt 〉] = exp

(
t

[
i 〈µ,u〉+

∫
(e i 〈u,x〉−1− i 〈u, x〉1||x||≤1)ν(d x)

])
(2.25)

Let us consider the following Lévy driven OU process :

dλt = k(ϕ−λt )d t +
∫

ht (λt−, x)ϱ(d x,d t ) (2.26)

where : ϱ(d x,d t ) is a Poisson random measure that generates a sequence of pairs of ran-
dom variables {τi ,ξi , i = 1,2, ...,ρ(T)}. The set of jump times is given by {τi : Ω → R+, i =
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1, ...,ϱ(T)} with intensity l l and jump sizes or marks are represented by the following set :
{ξi :Ω→ E, i = 1, ...,ϱ(T)}.

If we assume that ht (λt−, x) = x, then using Ito’s formula, we can find the solution of
(2.26) :

λt = λ0e−kt +ϕ(1−e−kt )+
∫t

0

∫
ek(s−t )hs(λs−, x)ϱ(d x,d s) (2.27)

Equivalently we can rewrite it as :

λt = λ0e−kt +ϕ(1−e−kt )+
ϱ(t )∑

i =1
h(λτ−,ξi ) (2.28)

α-Stable Processes

Definition X is α-stable if, ∀n ∈ N, i.i.d. r.v. of X,
∑n

i =1Xi = bX + c for some constants b =

b(n) > 0 and c = c(n) ∈Rd .

Definition A stable X is called α-stable, α ∈]0,2], whenever

X∗r d
= r 1/αX+c and some constant c = c(r ) ∈Rd (2.29)

Theorem 2.4.1 Let X be a non-trivial Lévy process in R with generating triplet (µ,σ,ν).

Then X is α-stable for some α> 0 iff exactly one of these conditions holds :

1. α = 2 and ν = 0.

2. α ∈]0,2[,µ = 0, and

ν(d x) = (c1|x|−1−α1x<0+ c2x−1−α1x>0)d x on R for some c1,c2 > 0. (2.30)

Definition A Lévy process X with Lévy triplet (µ,σ,ν) is said to be tempered α-stable if
the Lévy measure ν is given by

ν(d x) = ||x||−1−αυ(x)d x (2.31)

Gaussian Approximation of Lévy Driven Process

One of the main challenges to simulate Lévy processes roots in the fact that there
is no general way to simulate its innovations. In this subsection we present the approach
developed in [27] and [28], where necessary and sufficient conditions were established
under which the small jumps of a one-dimensional and multidimensional Lévi process
could be approximated by a Brownian motion. As we mentioned in the first section, this
allow us to decompose a Lévy process into a Brownian motion and a compound Pois-
son process. Indeed, we will show that simulated paths of the Levy process resemble a
Brownian motion for large values of stability index α and a compound Poisson process
for smaller values.

Suppose that for ϵ ∈]0,1] we can decompose the Lévy measure ν as :

ν = νϵ+νϵ (2.32)

where ∫
||x||2νϵ(d x) <∞ and νϵ(Rd ) <∞ (2.33)
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Assume that corresponding Lévy X process could be decomposed as :

X = X1,ϵ+Pϵ+µϵ (2.34)

where X1,ϵ is a Lévy process determined by :

E[e i 〈u,X1,ϵ
t 〉] = exp

(
t

[
i 〈µ,u〉+

∫
(e i 〈u,x〉−1− i 〈u, x〉1||x||≤1)νϵ(d x)

])
(2.35)

Pϵ = {Pϵ
t : t ≥ 0} is a compound Poisson process with jump measure νϵ and µϵ = {tµϵ :

t ≥ 0} is a drift, i.e.

µϵ = µ+
∫

||x||≥1
xνϵ(d x)−

∫

||x||≤1
xνϵ(d x) (2.36)

X1,ϵ is a "small-jump" part of the process X. Next theorem says that, the small-jump
part X1,ϵ can be approximated by

p
σϵW, where W ∈Rd is a Brownian motion, independent

of Pϵ. So, we have :

X
D
= µϵ+

p
σϵW +Pϵ := Xϵ (2.37)

Next results from [2](Theorem 2.1) gives necessary and sufficient conditions that gua-
rantees Gaussian approximation of small jumps.

Theorem 2.4.2 σ(ϵ)−1X1,ϵ D−→ W as ϵ→ 0, if and only if for each κ> 0,

σ(κσ(ϵ)∧ϵ) ∼σ(ϵ), as ϵ→ 0 (2.38)

If we do not consider toy examples, condition (2.38) is difficult to verify. The next propo-
sition from [2] gives a sufficient condition for eq.(2.38).

Proposition 2.4.3 Condition (2.38) is implied by

lim
ϵ→0

σ(ϵ)

ϵ
= ∞ (2.39)

Example Consider a symmetric α-stable process X that satisfies conditions in theorem
4.1 with Lévy measure given by :

ν(d x) =

(
c1

|x|1+α
1x<0+

c2

x1+α 1x>0

)
d x (2.40)

where c1+c2 > 0, then

σ(ϵ)2 = σ2

ϵ =
∫

|x|≤ϵ
x2ν(d x) =

c1+ c2

2−α
ϵ2−α (2.41)

Now we can check the condition (2.39) :

σ(ϵ)

ϵ
=

√
c1+c2

2−α
ϵ−α/2 −−−→

ϵ→0
∞ (2.42)

So, this condition is satisfied.
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Example Another example, that we apply in the next sections, is exponentially tempered
α-stable process with Lévy triplet (0,0,ν), where Lévy measure ν is given by :

ν(d x) =

(
e |−x|

|x|1+α
1]−∞,0] +

e−x

x1+α 1[0,∞[

)
d x (2.43)

µϵ = 0−
∫

ϵ<|x|<1
xν(d x) (2.44)

The variance of small jumps σ(ϵ)2 = σ2
ϵ .

σ(ϵ)2 = σ2

ϵ =
∫

|x|<ϵ
x2ν(d x) =

∫
0

−ϵ
x2

ex

(−x)1+α
d x +

∫ϵ

0

x2
e−x

x1+α d x = 2

∫ϵ

0

x1−αe−xd x (2.45)

Next, using Karamata’s integral theorem, which says that the integrals of regularly varying
functions are again regularly varying[31]. For α>−1,

∫ϵ

0

x1−αe−xd x ∼ ϵ2−α

2−α
for ϵ→∞ (2.46)

So, we have

σ(ϵ) ∼
√

2

2−α
ϵ1−α/2 (2.47)

and
σ(ϵ)

ϵ
=

√
2

2−α
ϵ−1/2−α/2 −−−→

ϵ→0
∞ (2.48)

Consequently, condition (2.39) is satisfied.

Jump-Diffusion Approximation of OU Lévy Process

A Lévy process decomposition allows us to approximate Lévy driven SDE by a
jump-diffusion SDE. In this section we get "almost exact" solution that allows to com-
pare errors of different numerical schemes under Monte Carlo and IPS approximations.
Consider the following OU SDE :

dλt = µ(λt )d t +h(λt−)dXt (2.49)

where X is a Lévy process with a triplet (0,0,ν). Let µ(λt ) = k(ϕ−λt ), σ(λs) = 0 and h(λs−) =
1, then the solution of (2.49) is

λt = λ0e−kt +ϕ(1−e−kt )d t +
∫t

0

ek(s−t )dXs (2.50)

Xt =
∫t

0

∫

||x||≤1
xeϱ(d x,d s)+

∫t

0

∫

||x||≥1
xϱ(d x,d s) (2.51)

The approximation of a Lévy process Xt is given by

Xϵ
t =

∫t

0

∫

||x||≤ϵ
σϵeϱϵ(d x,d s)+

∫t

0

∫

||x||≥ϵ
xϱϵ(d x,d s) (2.52)

and the approximated solution of eq. (2.49) is

λϵ
t = λ0e−kt +ϕ(1−e−kt )d t +

∫t

0

ek(s−t )dXϵ
s (2.53)
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Then the approximated version of the Lévy-driven SDE have the following form

λϵ
t = λ0e−kt+

(
ϕ(1−e−kt )+µϵ

)
d t+

∫t

0

ek(s−t )pσϵdWs+
∫t

0

∫

||x||≥ϵ
ek(s−t )xϱϵ(d x,d s) (2.54)

The drift of the Lévy approximation µϵ = 0, i.e.

µϵ = 0−
∫

ϵ<|x|≤1
xν(d x) = −

∫−ϵ

−1
x

ex

(−x)1+α
d x +

∫
1

ϵ
x

e−x

x1+α d x = 0 (2.55)

2.4.2 Simulation of α-Stable Processes and Numerical Schemes

In previous sections we saw that any Lévy process Xt with a generating triplet
(µ,0,ν) can be decomposed into the sum of two independent Levy processes :

Xt = X1,ϵ
t +Pϵ

t (2.56)

The Gaussian approximation of "small-jump" part X1,ϵ
t allows us to get the following ap-

proximation of Lévy process in equation (2.56) :

Xt
D
= Pϵ

t +σϵWt (2.57)

To get the best approximation of X, we need to choose ϵ experimentally and find an ef-
ficient way for generating a compound Poisson process Pϵ as ϵ → 0. That can be done
using a series representation. Rosińsky showed that Lévy process Xt with generating tri-
plet (µ,0,ν) can be represented almost surely as a uniform in t convergent series of the
following form :

Xt =
∞∑

j =1

[
H(Γ j ,ξ j )1u j≤t − tµ j

]
, 0≤ t ≤ T (2.58)

where {Γ j } are arrival times in a Poisson process with rate one, {ξ j } are i.i.d. jump marks
taking values in some Euclidean space, {u j } are uniform i.i.d. r.v. on the interval [0,T] and
the sequences {Γ j }, {ξ j } and {u j } are independent from each other. The function H is a
jointly measurable real-valued function, such that the map r 7→ |H(r, v)| is nonincreasing
and µ j ∈R. According to [27], the choice of H and ξ is not unique, but they have to satisfy
to condition : ∫

R

f (x)ν(d x) = T−1
∫∞

0

E[ f (H(r,ξ))]dr (2.59)

for any nonnegative Borel function f with f (0) = 0. For the case of Pϵ we have the following
series representation :

Pϵ,τ
t =

∑

j =Γ j≤τ

[
H(Γ j ,ξ j )1u j≤t − t µ̆(τ)

]
, 0≤ t ≤ T (2.60)

where

µ̆ =
∫s

0

∫

||x||≤1
xϑ(r,d x)dr, s ≥ 0 (2.61)

for B ∈B(R), the measure ϑ is defined by :

ϑ(r,B) = P(H(r,ξi ) ∈ B), r > 0, and ν(B) =
∫∞

0

ϑ(r,B)dr (2.62)
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α - Stable Process Simulation

Series representation of a Lévy processes provides a uniform approximation of
a Lévy process along the sample paths. Next step is the simulation of the Lévy process
based on this representation. A detailed treatment of stable processes can be found in
[28], we use a series representation in the case of tempered-α stable processes. Let Γ j , U j ,
Υ j , Ξ j and ξ j be sequences of i.i.d. random variables, such that P(ξ j = ±1) = 0.5, Υ j are
exponentially distributed with rate one, Ξ j are uniformly distributed on ]0,1[, then we
have

Pϵ
t =

∞∑

j =1
ξ j

([
αΓ j

2κT

]− 1

α

∧Υ jΞ
1

α

j

)
1U j≤t , 0≤ t ≤ T (2.63)

For the compound Poisson process Pϵ,τ, we simulate it using the following series :

Pϵ,τ
t =

∑

j =Γ j≤τ
ξ j

([
αΓ j

2κT

]−1

α

∧Υ jΞ
1

α

j

)
1U j≤t , 0≤ t ≤ T (2.64)

Details are given in the Algorithm 6.

Algorithm 6 : α-stable process generation using series representation

1 Initialization : M - #(simulations), N - #(time steps), j = 0, Tn = {T1, ...,Tn}
2 s = − log(r and) ;
3 while s < τ do

4 j = j +1 ;
5 τ( j ) = − log(r and) ;
6 s = s +τ( j ) ;
7 Poisson arrival times ι( j ) = s ; Simulate jump times t j ( j ) = r and ;
8 Simulate random signs for symmetricity :
9 rs = r and ;

10 if rs < 0.5 then

11 dr ( j ) = 1 ;
12 else

13 dr ( j ) = −1 ;
14 end

15 end

16 Simulate interarrival times : Υ( j ) = − 1

λ log(r and) ;
17 Ξ( j ) = r and ;
18 end

19 for j = 1 : Tn do

20 while t j ( j ) < T j do

21 Compute
∑ j

n=1 ξn

([
αι(n)
2κT

]−1

α ∧ΥnΞ
1

α
n

)
;

22 end

23 end

Numerical Schemes

In this section we show the way SDE in eq.(2.49) could be solved numerically using
three discretization schemes : Euler with a constant time step, Euler and Milstein with
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jump-adapted time steps. Now consider the following Lévy-driven SDE :

dλt = k(ϕ−λt )d t +σϵdWt +
∫

||x||≥ϵ
xϱϵ(d x,d s) (2.65)

The simplest way to discretize it is the Euler scheme.

λtn+1 = λtn +k(ϕ−λtn )∆t +σϵ∆Wn +
∫tn+1

tn

∫

|x|>ϵ
xϱ(d x,d s) =

= λtn +k(ϕ−λtn )∆t +σϵ∆Wn +
ϱ(tn+1)∑

k=ϱ(tn )+1
ξk (2.66)

where∆t = tn+1−tn and∆Wn = Wtn+1−Wtn ∼N (0,∆t ) is n-th increment of the Brownian
motion process.

A jump-adapted Euler scheme was introduced in [21]. Define λtn+1− = lims↑tn+1 λs

as the left limit of the process λ at time tn+1.
Consider the following equidistant discretization of the interval [0,T] : 0 = t0, ...,< tn =

T and let the jump times to be denoted as τ1, ...,τϱ(T), then the jump-adapted discretiza-
tion be {t0, t1, ..., tϱ(T)} = {t0, t1, ..., tN}∪ {τ0,τ1, ...,τϱ(T))}.

The process before jump is given by

λtn+1− = λtn +µ∆tn +σ∆Wtn (2.67)

and the process after the jump

λtn+1 = λtn+1−+
∫

h(λtn+1−, x)ϱ(d x, {tn+1}) (2.68)

Note that the diffusion approximation is given by (2.67), and the impact of jump is simu-
lated in the eq. (2.68). We can represent the two equations in a simple form :

{
λtn+1 = λtn+1−+h(λtn+1−,ξϱ(tn+1)) if jumps at tn+1

λtn+1 = λtn+1− otherwise
(2.69)

where
∫

h(λtn+1−, x)ϱ(d x, {tn+1}) = 0, if tn+1 is not a jump time.
We can achieve a strong order - 1 convergence, if we use a Milstein scheme. The

process after the jump has the same form as in (2.68).

λtn+1− = λtn +µ∆tn +σ∆Wtn +
σ2

2

(
(∆Wtn )2−∆tn

)
(2.70)

In the figures 3 and 4 we see the sample paths of α-stable process with values of α =
0.8 and α = 1.5 and survival probabilities. We simulated so-called almost exact solution
given in eq. (2.54) and compared with three discretization schemes : Euler with constant
discretization steps ∆t , Euler and Milstein jump-adapted versions. You can observe that
for larger values of α, the process resembles Brownian motion and compound Poisson
process for low values, that gives the intuition behind the decomposition in eq. (2.56).

34



CHAPITRE 2. PARTICLE LEVY TEMPERED α-STABLE CREDIT RISK MODEL
SIMULATION WITH APPLICATION TO CVA WITH WWR COMPUTATION IN
MULTI-FACTOR BGM SETTING

FIGURE 2.3 – OU Jump-diffusion process with exponentially tempered α-stable jumps (left), Sur-
vival probability (right) with α = 0.8
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FIGURE 2.4 – OU Jump-diffusion process with exponentially tempered α-stable jumps (left), Sur-
vival probability (right) with α = 1.5
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2.5 WWR Modelling

One of the most interesting cases of CVA valuation is a dependence between the
EPE and the default probability of a counterparty. When the dependence is negative, i.e.
exposure tends to increase, when the probability of default of our counterparty increases
or the credit quality worsens, we have the WWR. When the dependence is positive, we
have Right Way Risk. There are a number of different approaches to correlate the expo-
sure and default probability. One can use copulas, or correlate two Brownian motions, i.e.
〈dWt ,dWλ

t 〉 = ρd t , where ρ is a correlation parameter.
Another approach proposed in ([10], [23],[24] and [25]), models WWR by adding jumps

in the exposure process (jump-at-default) modelling to reflect the effect of drastic drops
in credit ratings to the underlying risk factors.

The following proposition, inspired by [30], allows to incorporate WWR into CVA.

Proposition 2.5.1 Given the expected positive exposure V+
τ , the default time τ, the CVA

with wrong-way risk is given by

CVAWWR = LGDE[BτV+
τ 1τ<T] = LGD

∫T

0

E[Bt V+
t fτ(t )]d t (2.71)

Proof By using the tower property of the conditional expectation and Fubini theorem, we
have the following :

LGDE[BτV+
τ 1τ<T] = LGDE[E[BτV+

τ 1τ<T|Gt ]] = LGDE

[∫T

0

E[BτV+
τ |Gt ,τ = t ] fτ(t )d t

]
= (2.72)

= LGDE

[∫T

0

Bt V+
t fτ(t )d t

]
= LGD

∫T

0

E[Bt V+
t fτ(t )]d t (2.73)

As we mentioned in previous sections, α stable process Xt allows Gaussian approxi-
mation of small jumps, so that we can express it as :

Xt
D
= σϵWt +Pϵ

t (2.74)

and correlate the Brownian motion Wt in eq.(2.74) with another Brownian motion We
t in

the exposure process, i.e.
Zt = ρWt +

√
1−ρWe

t (2.75)

2.6 Particle Interpretations

2.6.1 Interacting Particle System for Rare Events Estimation

Interacting particle system is efficient method to calculate rare-event probabilities.
For example, usually we formulate the problem in the following way. Given a sequence of
rare event sets An ⊂ ... ⊂ A1, we would like to compute the following expectation after
some Radon-Nikodym transformation, that turns a rare event into a regular one :

EP[g (λN)
N∏

n=1
1λn∈An

] = EQ[g (λN)
dP

dQ

N∏
n=1

1λn∈An
] (2.76)

In practice we do not have an explicit form of the likelihood ratio dP
dQ

, so it becomes
unfeasible unless one considers some simple examples. One of the solutions was interac-
ting particle system(IPS), which was proposed by Del Moral and Garnier [8], where they
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proposed to generate particles(samples) in two steps, i.e. particle mutation and selection.
The idea is to approximate the ratio of P with respect to some importance measure Q by
choosing a weight function ω that approximates the Radon-Nikodym derivative dP

dQ
. If we

assume that P and Q have density function p and q respectively, for M particles {λ(m)
n }M

m=1
we can define the weight function iteratively by :

N∏
n=1

ωn(λ(m)
n ) ∝ dP

dQ
(λ(m)

N ) =
N∏

n=1

pn(λ(m)
n ,λ(m)

n−1)

qn(λ(m)
n ,λ(m)

n−1)
(2.77)

Since two measures P and Q form a Markov chain, the Radon-Nykodim derivative can
be decomposed into the product of ratio of the transition density pn(·,λ(m)

n−1) to the transi-

tion density qn(·,λ(m)
n−1)with respect to the measure Q.

The normalized importance weight function is given by :

Wn(λ(m)
n ) =

ωn(λ(m)
n )

1

M

∑M
j =1ωn(λ( j )

n )
(2.78)

The IPS estimate of an expectation (2.76) has the following form :

CIPS =
E
[

f (λN)
∏N−1

n=1 ωn(λn)1λn∈An

]

E
[∏N−1

n=1 ωn(λn)1λn∈An

] (2.79)

In our experiments we choose a potential function (an unnormalized importance weight)
of the form :

ωn(λ(m)
N ) =

N∏
n=1

eδ(λ(m)
n −λ(m)

n−1) (2.80)

where δ is an exponential tilting parameter.

2.6.2 Mean Field IPS Approximations

In this subsection we give a brief overview of interacting particle methods, that is
very important to understand the mechanism behind the sequential importance resam-
pling scheme that we will use in the next sections. For a thorough survey we refer to [5],[6].

We can express eq.(2.76) through the linear semigroups associated to the sequence of
non-negative measures γn for any test function g that have the following form :

CIPS = γN(g ) = ηN(g )γN(1) (2.81)

ηn represent normalized measures. The flow of Feynman-Kac measures (γN,ηN) for any
measurable and bounded function g is given by

γN(g ) = E[g (λN)
N−1∏
n=0

ωn(λn)] and ηn(g ) =
γn(g )

γn(1)
(2.82)

where the sequence of measures γn satisfy a linear recursion

γn(g ) = γn−1(Qn(g )) (2.83)

with integral operator Qn :

Qn(g )(x) = E[g (λn)|λn−1 = x] =
∫

Qn(x,d y)g (y) (2.84)
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where the importance measure Qn(·,d y)

Qn(x,d y) = ωn−1(x)Mn(x,d y) (2.85)

The sequence of measures ηn satisfy the nonlinear equation :

ηn =Φn(ηn) =Ψn−1(ηn−1)Mn (2.86)

where Φn : En → En+1 and the operator Ψn : En → En is

Ψn(ηn)(x) =
ωn(x)

ηn(ωn)
ηn(x) (2.87)

Observe, that eq.(2.86) represents very important class of McKean models. The main
problem of Monte Carlo simulation of this type of models stems in the fact that it can
not be computed exactly, since its Markov transitions M depends on transitions that are
unknown([7], [5]). The IPS allows to approximate the solution by a discrete-time process.

Assume that the Markov transition kernels Mn have a sequence of densities Mn , and
there exist some reference probability measures κn , such that Mn ≪ κn , i.e. Mn are ab-
solutely continuous with respect to κn :

Mn(x,d y) =Mn(x, y)κn(d y) (2.88)

Radon-Nikodym derivative given that Qn(x, ·) ≪κn :

dQn(x, ·)
dκn

(y) = ωn−1(x)Mn(x, y) (2.89)

The following result shows the approximation of importance measure Qn by a flow of
non-negative measures ηn . The lemma is using techniques, that were adapted from [5]
and [6].

Lemma 2.6.1 Assume that

sup
x,y∈En

Mn(x, z)

Mn(y, z)
:= hn(z) s.th. ||hn || <∞ and sup

x,y∈En

ωn(x)

ωn(y)
<∞, ∀n ≥ 0 (2.90)

then the integral operator (2.84) is given by

Qn(g )(x) = ηn−1(ωn−1)
∫

ωn−1(x)Mn(x, y)

ηn−1(ωn−1Mn(·, y))
g (y)ηn(d y) (2.91)

Proof Using eq.(2.86) we have :

ηn(d y) =Ψn−1(ηn−1)Mn(d y) =
ηn−1(ωn−1Mn(·, y))κn(d y)

ηn−1(ωn−1)
(2.92)

So the importance density takes the following form :

Qn(x,d y) = ηn−1(ωn−1)
ωn−1(x)Mn(x, y)

ηn−1(ωn−1Mn(·, y))
ηn(d y) (2.93)

The statement is obtained by applying eq.(2.84).
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IPS could be understood as a stochastic linearization of the nonlinear recursive equa-

tion(2.86). The algorithm involves construction of EM
n valued M-tuple Markov Chain Xn =

{X(i )
n }M

i =1 ∈ EM
n with transitions given by

P(Xn ∈ d(x(1), ..., x(M))|Xn−1) =
M∏

i =1
Φn(ηM

n )(d x(i )) (2.94)

to approximate measure ηn :

lim
n→∞ηM

n (g ) = ηn(g ) where ηM
n =

1

M

M∑

i =1
δX(i ) (2.95)

The above could be proven using the law of large numbers under certain regularity condi-
tions.

Now we can obtain the approximation bQn of the importance measure Qn by replacing
the measures ηn by their M-tuple approximation ηM

n , which is the definition of mean field
IPS approximation scheme :

bQn(g )(x) = ηM
n−1(ωn−1)

∫
ωn−1(x)Mn(x, y)∫

ηM
n−1(d z)(ωn−1(z)Mn(z, y)

g (y)ηM
n (d y) =

= ηM
n−1(ωn−1)

M∑

i =1

ωn−1(x)Mn(x,X(i ))
∑M

j =1η
M
n−1(d z)(ωn−1(z)Mn(z,X( j ))

g (X(i )) (2.96)

Particle Monte Carlo Convergence Properties

There is a lot of research on the convergence of particle methods. Now, given M
particles {X(i )}M

i =1, we cite from [8] the following result :

1

M

M∑

i =1
g (x)δ

X(i )
N

(x) −−−−→
M→∞

E[g (λN)] a.s. (2.97)

where δ is a Dirac function. The following proposition shows that the random sequence
{γN

n (1)}k
n=1 converges in probability to a deterministic sequence {γn(1)}k

n=1as its number M
goes to infinity.

Proposition 2.6.2 The Particle estimator is unbiased estimator, so that for any p ≥ 1 and

for all bounded and measurable functions g on some measurable space (Ek ,Ek ) with ||g ||≤
1, we have

E
[
γN

k (g )
]

= γk (g ) (2.98)

and moreover

sup
M≥1

°°γN
k (g )−γk (g )

°°
Lp ≤ cp (k)

p
M

(2.99)

where cp (k) is constant, whose values depends on the time final time horizon 1≤ n ≤ k.

Proof We refer to [8].
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Algorithm

The algorithm can be described by the following scheme, ∀m = 1, ...,M :

X(i )
n ∈ En

Sel ect i on−−−−−−−→ bX(i )
n ∈ En

Sampl i ng−−−−−−−→X(i )
n+1 ∈ En+1 (2.100)

At each time step n = 1, ...,N we draw M independent random variables from the den-
sity qn(·,X(i )

n−1) to construct M particles bX(m)
n = (bX(1)

n , ..., bX(M)
n ). Given generated particles,

we select independently M particles bXn = (bX(1)
n , ..., bX(M)

n ) with replacement of rejected par-
ticles according to their probability weights :

Wn(X(i )
n ) =

ωn(X(i )
n )

1

M

∑M
j =1ωn(X( j )

n )
(2.101)

Algorithm 7 : IPS algorithm

1 Initialization : M - #(simulations), N - #(time steps), λ0 - initial value
2 for n = 1, ...,N do

3 for m = 1, ...M do

4 Generate X(m)
n from p(·,X(m)

n−1) and set bX(m)
n = (bX(m)

n ,X(m)
n−1) ;

5 if bX(m)
n ∈ A then

6 bX(m)
n = 0

7 else

8 Compute the weight : ωn(bX(m)
n ).

9 end

10 end

11 end

12 if n < N then

13 Resample using probability weight : Wn(bX(m)
n ) = ωn (bX(m)

n )
1

M

∑M
j =1ωn (bX( j )

n )
to sample

X(m)
n .

14 end

15 end

2.6.3 IPS Simulation of the Stochastic Intensity

In this section we formulate the problem of a rare event estimation and show on
the example of a stochastic intensity the application of IPS to estimate survival probabili-
ties.

When we deal with credit risks most of the problems are formulated as occurrences of
rare events, in the sense that P(τ > t ) is very small, when t is large. If one can transform
from a measure P to the measure Q , using Radon-Nikodym derivative transformation,
so that in the new measure Q, t is not too large, then one can use central limit theorem
approximation.

fτ(t ) = EQ[λt e−∫t
0
λu du] = EQ[λt e−∫t

0
λu du dP

dQ
] (2.102)

Interacting particle system, described in previous sections allows us to approximate a
rare event probability by sequentially regenerating particles according to their probability
weights.
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Define the cumulated intensity asΛ(t ) =

∫t
0
λudu and its discrete versionΛ(tN) =

∫tN
0

λudu

for the time interval 0 = t0 < ...tN = t . From large deviation analysis, we know that P(ξ >
Λ(tN)) → 0, as Λ(tN) →∞, i.e.

P(τ> tN) = P(ξ>Λ(tN)) = EP[1ξ>Λ(tN)] = EP[1ξ>Λ(t )e
αξ−αξ] ≤ e−(αΛ(tN)−Γ(α))

with Γ(α) = log(EP[eαξ]) (2.103)

Unnormalized particle approximations are given by :

EP[1ξ>Λ(tN)] = EQ[1ξ>Λ(tN)e
−(αΛ(tN))] = EQ[1ξ>Λ(tN)

N∏

l=1

eα(Λ(tl )−Λ(tl−1))] (2.104)

Now we can give particle interpretation of the default probability. Assuming that initial
values are equal, i.e. p0 = µ0 and for any bounded measurable function g : E → R, under
new measure Q we have the following representation of the original expectation under
measure P :

fτ(tN) =
EQ[λtN e−∫tN

0
λu du ∏N−1

l =1 ω̄l (λl )]

EQ[
∏N−1

l=1 ωl (λl )]
(2.105)

In figure 5, we can see the simulated paths of three discretization schemes with constant
and jump-adapted time steps to compare with almost-exact solution.
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FIGURE 2.5 – PMC simulation of OU Jump-diffusion process with exponentially tempered α-stable
jumps (left), Survival probability (right) with α = 0.8
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2.7 Numerical Analysis and Discussion

2.7.1 Numerical Schemes Error Estimates

We split errors into two categories : ||·||L2 and ||·||L1 errors. Strong errors are given in
terms of || · ||L2 norm. Given the estimates bXl l

t , where l l = {MCEu ,MCEu− j ad p ,MCMl s− j ad p }
set of numerical schemes, of the process Xt , we define a strong error estimates as :

er rs =
(
E
[
|bXt −Xt |2

])1/2 ≈

vuut 1

M

M∑

i =1
|bX(i )

t −X(i )
t |2 (2.106)

|| · ||L1 errors are defined as :

er rw = E
[
|bXt −Xt |

]≈ 1

M

M∑

i =1
|bX(i )

t −X(i )
t | (2.107)

Table 1 and 2 shows ||·||L2 and ||·||L1 errors respectively of 5000 simulated Monte Carlo
paths and 1000 particles. Level of stability is chosen to be α = 0.8, when most of jumps are
large. We observe that errors are sufficiently minimized when we use IPS. The same de-
monstrates figure 7. Figure 6 shows that the particles variability and errors are converging
between −7 and −8 for three numerical schemes as we increase the number of time steps.

TABLEAU 2.1 – ||·||L2 error estimates of numerical schemes using MC and PMC density approxima-
tions, α = 0.8

∆t MCeu t MCeu j ad p
t MCml s j ad p

t PMCeu t PMCeu j ad p
t PMCml s j ad p

t

2
−6 2.54e-01 0.22 2.62e-01 0.15 2.62e-01 0.14 7.10e-02 0.03 2.16e-01 0.02 2.15e-01 0.02
2
−7 1.55e-01 0.27 1.67e-01 0.16 1.67e-01 0.17 6.05e-02 0.27 8.23e-02 0.16 8.10e-02 0.17
2
−8 1.85e-01 0.32 3.43e-02 0.22 1.85e-01 0.25 7.88e-02 0.06 1.08e-01 0.05 1.09e-01 0.05
2
−9 2.74e-01 0.28 2.91e-01 0.19 2.92e-01 0.20 6.63e-02 0.12 1.30e-01 0.10 1.30e-01 0.10

2
−10 3.19e-01 0.29 3.30e-01 0.20 3.29e-01 0.20 7.14e-02 0.23 7.90e-02 0.21 7.89e-02 0.21

TABLEAU 2.2 – ||·||L1 error estimates of numerical schemes using MC and PMC density approxima-
tions . α = 0.8

∆t MCeu t MCeu j ad p
t MCml s j ad p

t PMCeu t PMCeu j ad p
t PMCml s j ad p

t

2
−6 2.04e-01 0.22 2.09e-01 0.15 2.09e-01 0.14 5.48e-02 0.03 1.656e-01 0.02 1.652e-01 0.02
2
−7 1.03e-01 0.27 1.12e-01 0.16 1.12e-01 0.17 5.25e-02 0.04 6.28e-02 0.03 6.23e-02 0.03
2
−8 1.3e-01 0.32 1.36e-01 0.22 1.36e-01 0.25 6.88e-02 0.06 8.32e-02 0.05 8.34e-02 0.05
2
−9 2.03e-01 0.28 2.1e-01 0.19 2.1e-01 0.20 5.91e-02 0.12 7.95e-02 0.1 7.95e-02 0.1

2
−10 1.95e-01 0.29 2.1e-01 0.20 2.1e-01 0.20 5.86e-02 0.23 6.32e-02 0.21 6.36e-02 0.21

TABLEAU 2.3 – ||·||L2 error estimates of numerical schemes using MC and PMC density approxima-
tions, α = 1.5

∆t MCeu t MCeu j ad p
t MCml s j ad p

t PMCeu t PMCeu j ad p
t PMCml s j ad p

t

2
−6 3.15e-01 0.28 9.89e-01 0.44 9.85e-01 0.49 2.3e-01 0.4 5.23e-01 1.42 5.24e-01 1.36
2
−7 3.626e-01 0.13 6.964e-01 0.33 6.922e-01 0.33 1.823e-01 0.54 3.861e-01 3.21 3.840e-01 1.27
2
−8 3.230e-01 0.1 4.575e-01 0.25 4.563e-01 0.29 2.036e-01 1.5 2.837e-01 7.6 2.673e-01 1.9
2
−9 3.264e-01 1.05 6.083e-01 2.55 6.011e-01 0.75 2.066e-01 4.01 3.212e-01 10.24 3.232e-01 2.29

2
−10 3.34e-01 0.29 3.78e-01 0.44 4.11e-01 0.42 2.10e-01 15.9 3.17e-01 21.9 3.04e-01 4.47
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FIGURE 2.6 – PMC Euler, Euler jump-adapted, Milstein jump-adapted strong errors, α = 0.8,
#(particles)= 1000.

TABLEAU 2.4 – ||·||L1 error estimates of numerical schemes using MC and PMC density approxima-
tions . α = 1.5

∆t MCeu t MCeu j ad p
t MCml s j ad p

t PMCeu t PMCeu j ad p
t PMCml s j ad p

t

2
−6 2.51e-01 0.28 8.1e-01 0.44 8.01e-01 0.49 1.82e-01 0.4 4.34e-01 1.42 4.33e-01 1.36
2
−7 3.548e-01 0.13 6.962e-01 0.33 6.922e-01 0.33 1.694e-01 0.54 3.857e-01 3.21 3.840e-01 1.27
2
−8 3.203e-01 0.1 4.572e-01 0.25 4.563e-01 0.29 1.966e-01 1.59 2.831e-01 7.6 2.673e-01 1.9
2
−9 3.243e-01 1.05 6.082e-01 2.55 6.011e-01 0.75 2.037e-01 4.01 3.206e-01 10.24 3.232e-01 2.29

2
−10 3.33e-01 0.29 3.77e-01 0.44 4.11e-01 0.42 2.08e-01 15.9 3.16e-01 21.9 3.04e-01 4.47

45



CHAPITRE 2. PARTICLE LEVY TEMPERED α-STABLE CREDIT RISK MODEL
SIMULATION WITH APPLICATION TO CVA WITH WWR COMPUTATION IN

MULTI-FACTOR BGM SETTING

FIGURE 2.7 – MC vs PMC Euler (left) and jump-adapted (right) strong errors. α = 0.8, #(particles)=
1000, #(simulated paths)= 5000
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FIGURE 2.8 – MC vs PMC Euler/Milstein (left) and jump-adapted (right) paths.α = 1.5, #(particles)=
1000, #(simulated paths)= 5000
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2.7.2 CVA Computation

In this subsection we present the computation methodology for CVA estimation.
We consider two cases of CVA modelling :

— CVAi nd , when there is no correlation between default probability and the exposure
process.

— CVAw wr , when we assume a negative correlation between market risk and credit
risk.

First we outline two factor BGM model that will be used for expected exposure Vt simula-
tion. Second, depending on the case of presence or absence of the WWR, we simulate the
Levy driven OU stochastic intensity process.

Exposure Profiles Specification

We consider a two-factor BGM to model LIBOR interest rates :

dLi (t ) =
i∑

j =g (t )

δ j L j (t )Li (t )
∑

2

q=1 ζi ,q (t )ζ j ,q (t )

1+δ j L j (t )
d t +Ln(t )

2∑

q=1
ζi ,q (t )dWt (2.108)

Euler discretization scheme gives us :

Li (tn+1) = Li (tn)+µn(Li (tn), tn)Li (tn)∆t +Li (tn)
p
∆tσi (tn)ϵn+1 (2.109)

where ∆t = tn+1− tm and drift µn is given by

µi (Li (tn), tn) =
i∑

j =g (t )

δ j L j (t )Li (t )
∑

2

q=1 ζi ,q (t )ζ j ,q (t )

1+δ j L j (t )
(2.110)

CVA

Using the process (2.109) simulate independent interest rate path realizations L(m)
1

, ...,L(m)
N

to get exposure profiles from eq.(2.19). Simulate stochastic intensityλt using on of the dis-
cretization schemes (Euler, Euler jump-adapted and Milstein jump-adapted). Then, the
unbiased estimator of CVA value in eq.(2.6) is

�CVA
i nd

= LGD
∫T

0

E[Bt V+
t ] f (t )d t = LGD

N∑

l =1

∫Tl+1

Tl

E[Bt V+
t ] f (t )d t = (2.111)

= LGD
N∑

l =1

Bl

M∑
m=1

V(m),+
tl

∫Tl+1

Tl

fτ(t )d t = (2.112)

= LGD
N∑

i =1
Bl

M∑
m=1

V(m),+
tl

M j∑

j =1
λ

( j )
l

e−∑l
k=1λ

( j )
k
∆k∆t (2.113)

where ∆t = Tl+1−Tl , Bl = B(0,Tl+1) and ∆k = tk − tk−1.
In the case of CVA with WWR we specify different levels of correlation ρ between two

Brownian motions in (2.75). Monte Carlo estimator of CVA with WWR is

�CVA
WWR

= LGD
∫T

0

BtE[V+
t fτ(t )]d t = LGD

N∑

l=1

∫Tl+1

Tl

BtE[Bt V+
t fτ(t )]d t = (2.114)

= LGD
N∑

l=1

∫Tl+1

Tl

Bt

M∑

m=1
V(m),+

tl
f (m)
τ (t )d t (2.115)
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FIGURE 2.9 – EPE profile of the LIBOR swap (left), CVA process (right)
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2.7.3 CVA. Particle Monte Carlo

Another unbiased estimator CVAP of the expectation in eq.(2.6) can be obtained
by means of IPS.

The exposure profiles are simulated similarly as in the previous section. The simula-
tion of a survival probability, as it is described in algorithm 2, consists of two steps : sam-
pling (mutation) and survival (selection). Define M initial particles {X(m)}M

m=1. The selec-
tion step consists of randomly choosing a set of M particles from the selection transition,
which, for example, could be chosen as :

Sn = ωn(X(m)
n )1

X(m)
n

(x)+ (1−ωn(X(m)
n ))

∑

i

ωn(X(m)
n )

∑
j ωn(X( j )

n )
1
X(m)

n
(x) (2.116)

Define selected particles asλn . The mutation step fromλn toλn+1 : every survived particle
λ(i )

n propagates randomly to a new particle λ(i )
n+1 = y randomly chosen from the transition

kernel M (λ(i )
n ,d y).

At the final time N, the CVA estimate is

�CVA
P,i nd

= LGD
N∑

l=1

1

M

M∑

i =1
Bl V(m),+

l
×

[(
N−1∏

l=1

1

M

M∑
m=1

ωl (λ(m)
l

)

)
×

M∑
m=1

fτ(λ(m)
N )

]
(2.117)

CVA with WWR estimate is given by

�CVA
P,WWR

= LGD
N∑

l=1

1

M

M∑

i =1
Bl V(m),+

l
fτ(λ(m)

l
)×

(
N−1∏

l =1

1

M

M∑
m=1

ωl (λ(m)
l

)

)
(2.118)

We assume that parameters of the underlying stochastic processes are already calibra-
ted. We simulate 20 times CVA values :

¯CVA =
Ms∑

l=1

�CVAl (2.119)

where Ms is the number of repeated simulations.

2.7.4 Numerical Results

We simulate CVA values using two numerical methods : first, EPE using standard
MC approach, second, EPE using particle methods ; We compare CVA without WWR and
CVA with WWR on the one hand, and compare with Basel III recommendations on the
other.

Table 5. shows that Basel III’s approximation is overvalued we use the formula (2.118)
for 104 and 10

5 scenarios.
Next, we are interested in CVA values with WWR, when we correlate two Brownian mo-

tions, the one is the exposure and another one in Gaussian small jump approximation of
Levy process. Table 6. shows CVA with RWR values for different levels initial intensity and
correlation. Table 7. gives CVA with WWR values, we can see that Basel III approximation
is overvalued for initial intensity values lower than 0.03 and for 0.04.
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TABLEAU 2.5 – CVA WWR/free for LIBOR SWAP. PMC approach. α = 0.8, #(scenar i os) := #(sc)

λ0 CVA CVA WWR CVA WWR(BIII) CVA CVA WWR CVA WWR(BIII)
(st.dev) (st.dev) (st.dev) ΘBIII

si m (st.dev) (st.dev) (st.dev) ΘBIII
si m

#(sc) 10
4

10
4

10
4

10
4

10
5

10
5

10
5

10
5

0 1.02e-04 1.29e-04 1.43e-04 1.11 8.32e-05 1.19e-04 1.16e-04 0.84
(7.71e-05) (9.93e-05) - (7.7e-05) (1e-04) -

0.01 1.03e-04 1.36e-04 1.45e-04 1.07 1.25e-04 1.2e-04 1.75e-04 1.46
(8.03e-05) (1.02e-04) - (6.5e-05) (1.1e-04) -

0.02 9.95e-04 1.06e-04 1.39e-04 1.31 1.24e-04 1.63e-04 1.74e-04 1.07
(7.55e-05) (1.02e-04) - (7.78e-05) (9.12e-05) -

0.03 8.62e-05 9.82e-05 1.2e-04 1.22 1.07e-04 1.2e-04 1.5e-04 1.25
(8.16e-05) (1.07e-04) - (8.46e-05) (1.1e-04) -

0.04 8.85e-05 1.44e-04 1.24e-04 1.37 1.15e-04 1.46e-04 1.61e-04 1.1
(7.63e-05) (9.63e-05) - (7.79e-05) (9.29e-05) -

TABLEAU 2.6 – LIBOR SWAP CVA WWR/free for different values of ρ and λ0, α = 0.8. PMC approach.

ρ
λ0 0 0.01 0.02 0.03 0.04

0.1 8.6e-05 9.1e-05 1.22e-04 7.52e-05 8.54e-05
0.2 6.9e-05 8e-05 1.3e-04 8.93e-05 1.14e-04
0.3 6.8e-05 9.4e-05 7.69e-05 1.13e-04 1.04e-04
0.4 1e-04 6.2e-05 9.07e-05 9.36e-05 1.01e-04
0.5 8.2e-05 7.0e-05 9.81e-05 1.15e-04 9.98e-05

CVA WWR(B III) 1.43e-04 1.45e-04 1.39e-04 1.12e-04 1.97e-04
CVA 1.02e-04 1.03e-04 9.95e-05 8.62e-05 1.4e-04

TABLEAU 2.7 – LIBOR SWAP CVA WWR/free for different values of ρ and λ0, α = 0.8. PMC approach.

ρ
λ0 0 0.01 0.02 0.03 0.04

-0.5 1.25e-04 1.11e-04 9.91e-05 1.21e-04 1.27e-04
-0.6 8.67e-05 8.76e-05 1.07e-04 1.21e-04 1.18e-04
-0.7 1.02e-04 1.06e-04 1.16e-04 1.16e-04 1.64e-04
-0.8 8.12e-05 9.58e-04 1.49e-04 1.56e-04 1.29e-04
-0.9 1.37e-05 1.25e-04 1.29e-04 1.59e-04 1.79e-04

CVA WWR(B III) 1.43e-04 1.45e-04 1.39e-04 1.12e-04 1.44e-04
CVA 1.02e-04 1.03e-04 9.95e-05 8.62e-05 8.85e-04
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2.8 Conclusion

In this paper we adapted IPS approach to the simulation of α-stable process. Using
mean field algorithms we reduced ||·||L2 and ||·||L1 errors for three discretization scheme :
Euler with constant time step, Euler and Milstein with jump-adapted time steps com-
pared to a vanilla Monte Carlo algorithm. IPS allowed reduce the number of simulation
paths and reduce the variability of estimates.

We also developed α-stable intensity process to estimate probability of default. We
showed how WWR could be naturally embedded into the CVA values. Importantly, our
results demonstrated that the Basel III approximation of CVA with WWR far from being
adequate. As an extension, in the next article we will use OIS spreads in the exposure
valuation in the case of other products, such as Bermudan swaptions.
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[3] Bertoin, J. (1996). Lévy Processes, Cambridge University Press.

[4] Brigo, D. & Mercurio, F. (2001), Interest Rate Models : Theory and Practice with Smile,
Inflation and Credit, Heidelberg : Springer Verlag

[5] D. Brigo, F. Vrins. Disentangling wrong-way risk : pricing CVA via change of measures
and drift adjustment. Available on arxiv.

[6] Marco Bianchetti ; Interest Rates After The Credit Crunch : Multiple-Curve Vanilla
Deriva- tives and SABR, 2012

[7] M. BOSSY and D. TALAY. A stochastic particle method for some one-dimensional non-
linear PDE. Mathematics and Computer in Simulation, 38 :43-50, 1995.

[8] Carmona, Rene, Jean-Pierre Fouque & Douglas Vestal (2009), Interacting particle sys-
tems for the computation of rare credit portfolio losses, Finance and Stochastics 13(4),
613633.

[9] Carmona, Rene, Stephane Crepey (2010), Particle methods for the estimation of Mar-
kovian credit portfolio loss distributions, International Journal of Theoretical and Ap-
plied Finance 13(4), 577602.
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Chapitre 3

Hamiltonian flow Simulation of Rare

Events

« "Die Welt ist alles, was der Fall

ist" »

Ludwig Wittgenstein

« "The world is all that is the case" »

Ludwig Wittgenstein
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Abstract

In this article we present a sampling method, Hamiltonian flow Monte Carlo, which is ba-
sed on the simulation of Hamiltonian system to estimate rare events. The classical way to
deal with this problem is the change of measure, so that our samples can reach rare events
area, however, in practise it is hard to find an optimal importance density and the Monte
Carlo simulation performs terribly, when the rare-event probability goes deep into the
tail. The application of Hamiltonian dynamics allows to estimate rare events and sample
from target distributions defined as the change of measures. Our approach uses a physical
simulation of moving particles with momentum under the impact of the energy function
to propose Markov chain transitions, that allows rapidly explore a state space. Its fast ex-
ploration can be explained by the fact that it extends the state space by an auxilliary mo-
mentum variables, P, and then runs a physical simulation to move long distances along
probability contours in the extended state space.

The estimates demonstrated a variance reduction of the presented algorithm and its
efficiency with respect to a standard Monte Carlo and interacting particle based system(IPS).
We tested the algorithm on the case of the barrier option pricing.
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3.1 Introduction

Hamiltonian flow based Monte Carlo simulations originates from physics have
been used in many applications in statistics, engineering for a number of years. However
these methods are not widely used in the estimation of rare events and in the financial
option pricing practise.

This paper proposes Hamiltonian flow Monte Carlo technique for an efficient esti-
mation of the rare event probability. Similarly to an importance sampling technique this
method involves a change of probability measure. The random variables are sampled ac-
cording to a modified probability measure that differs from a reference measure.

A rare event is the probability P( f (xt ) > at ) for large values of x. One way to deal with
this problem is to change an original measure, so that ak is not too large in the new mea-
sure. Define the following set :

At = {x ∈RM, f (xt ) > at } (3.1)

EP[1At ] = EQ[1At Lt ] (3.2)

where L = dP
dQ

is a Radon-Nykodim derivative.
Hamiltonian approach in the Monte Carlo context was developed by Duane et al. [11],

R. Neal [15] where they proposed an algorithm for sampling probability distributions with
continuous state spaces. The advantage of Hamiltonian based Monte Carlo is in the fact
that we can extend the state space by including a momentum variable that will force in
our context to move long distances in the state space in a single update step. We use this
property of Hamiltonian dynamics to explore rarely-visited areas of the state space and
efficiently estimate rare-event probability. Algorithm consists of two parts : simulation of
Hamiltonian dynamics and Metropolis-Hastings test, that removes the bias and allows
large jumps in the state space. We will show the performance of the algorithm on the
Down-Out Barrier option technique with low level of a barrier.

HFMC can be considered within the optimal transportation problem, which was po-
sed back in the 18-th century. Like HFMC, other simulation based approaches such as
particle methods [5],[8] or the transportation using a homotopy [10] allow to move a set
of particles from the measure P to the measure Q, by minimizing the transportation cost.
We will show how the rare events estimation can be computed using interacting particle
systems [6].

The paper is organized as follows. Section 2 introduces state of the art approach to esti-
mate rare events : MC and PMC and formulates the problem within the context of Barrier
option pricing. Section 3. describes Hamiltonian flow Monte Carlo algorithm. Section 4
presents the law of large numbers and convergence for HFMC. An adaptation of Hamil-
tonian flow Algorithm in the case of a Barrier option, numerical results and discussion is
presented in Section 5. Section 6 concludes.

3.2 Monte Carlo and Interacting Particle System

3.2.1 Problem Formulation

Barrier option pricing is one of the cases when we encounter to the case of rare
events. Consider a sequence of random variables {Xn}n≥0, which in the financial context
can be interpreted as asset prices, which forms Markov Chain on the space RnS . Given
some stochastic process {Xt }t≥0, for any test function f , we would like to compute the
following expectation :
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C = EP[ f (XT)1Xt∈[0,T]∈At ] (3.3)

One of the most popular ways to deal with this problem is importance sampling, when
we replace the original statistical measure P by an importance measure Pδ. Then for Xn =
(X1, ...,Xn). :

C =
∫

f (Xnt )
dP

dPδ
(Xnt )dPδ(Xnt )

nt∏
n=1

1Xn∈An = EP
δ

[
f (Xnt )

dP

dPδ

nt∏
n=1

1Xn∈An

]
(3.4)

where the rare event set An is given by :

An = {Xn ∈RnS , f (Xn) > an} (3.5)

In practise we don’t have an explicit form of the likelihood ratio dP

dPδ , so it becomes unfea-
sable unless one considers very simple toy examples. One of the solutions was interacting
particle system(IPS), which was proposed by Del Moral and Garnier [8], where they pro-
posed to generate particles(samples) in two steps, i.e. particle mutation and selection.
The idea is to approximate the ratio of P with respect to some importance measure Pδ

by choosing a weight function ωn that approximates the Radon-Nikodym derivative dP

dPδ .

If we assume that P and Pδ have density function p and ep respectively, for nS particles
{X(m)

n }nS
m=1 we can define the weight function iteratively by :

nt∏

n=1
ωn(X(m)

n ) ∝ dP

dPδ
(X(m)

nt
) =

nt∏

n=1

pn(X(m)
n ,X(m)

n−1)

pδ
n(X(m)

n ,X(m)
n−1)

(3.6)

Since two measures P and Pδ form Markov chain, the Radon-Nykodim derivative can
be decomposed into the product of ratio of the transition density pn(·,X(m)

n−1) to the tran-

sition density with respect to the measure Pδ.
The normalized importance weight function is given by :

Wn(X(m)
n ) =

ωn(X(m)
n )

1

nS

∑nS
j =1ωn(X

( j )
n )

(3.7)

The IPS estimate of an expectation (3.3) will have the following form :

bCIPS =
E

[
f (Xnt )

∏nt−1
n=1 ωn(Xn)1Xn∈An

]

E

[∏nt−1
n=1 ωn(Xn)1Xn∈An

] (3.8)

In our experiments we choose a potential function(an unnormalized importance weight)
of the form :

ωn(X(m)
nt

) =
nt∏

n=1
eδ(X(m)

n −X(m)
n−1) (3.9)

where δ is an exponential tilting parameter. One issue with this approach is in the
fact that an optimal choice of tilting parameter δ has to be judiciously chosen by running
simulations and, in fact, it is fixed across all time steps n = 1, ...,nt .
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3.2.2 Algorithm

The algorithm can be described by the following scheme, ∀m = 1, ...,nS :

X(m)
n

Sampli ng−−−−−−−→ bX(m)
n+1

Sel ect i on−−−−−−−→Φ(bX(m)
n+1) = X(m)

n+1 (3.10)

At each time step n = 1, ...,nt we draw nS independent random variables from the den-

sity pδ
n(·,X(m)

n−1) to construct nS particles, bX(m)
n = (bX(m)

n , bX(m)
n−1). Given generated particles, we

select, or draw independently nS particles X(m)
n = (X(m)

0
, ...,X(m)

n ) with replacement of rejec-
ted particles according to their probability weights :

Wn(bX(m)
n ) =

ωn(bX(m)
n )

1

nS

∑nS
j =1ωn(bX( j )

n )
(3.11)

And at time step nt , we get the following IPS estimator :

E[ f (Xnt )
nt∏

n=1
1Xn∈An ] ≈ 1

nS

nS∑

m=1

(
f (bX(m)

nt
)

nt∏

n=1
ωn−1(X(m)

n−1)1bX(m)
n ∈An

)

Algorithm 8 : IPS algorithm

1 Initialization : nS - #(simulations), nt - #(time steps), X0 - initial value
2 for n = 1, ...,nt do

3 for m = 1, ...nS do

4 Generate X(m)
n from p(·,X(m)

n−1) and set bX(m)
n = (bX(m)

n ,X(m)
n−1) ;

5 if bX(m)
n ∈ A then

6 bX(m)
n = 0

7 else

8 Compute the weight : ωn(bX(m)
n ).

9 end

10 end

11 end

12 if n < N then

13 Resample using probability weight : Wn(bX(m)
n ) =

ωn (bX(m)
n )

1

nS

∑nS
j =1ωn (bX( j )

n )
to sample X(m)

n .

14 end

15 end

3.3 Hamiltonian flow Monte Carlo

3.3.1 Markov Chains on a Phase Space

From section 2 we know that one of the ways to deal with rare event probabilities
is to change a measure :

EP[ f (Xnt )
nt∏

n=1
1Xn∈An ] = EQ[ f (Xnt )

dP

dQ

nt∏
n=1

1Xn∈An ] (3.12)
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To approximate Radon-Nikodym derivative dP
dQ

we will generate Markov Chain that
will converge to an ergodic distribtion. Let us introduce a random process Xu in a pseudo-
time u and consider the following SDE, which is a gradient flow distrubed by a noise :

dXu = −∇Ψ(Xu)du +2

√
β−1dWu (3.13)

where Ψ(X) := − log(p(X)) is a potential. Under the assumption of ergodicity, the auto-
correlated path Xu asymptotically, i.e. u →∞ draws samples from a stationary distribu-
tion :

π(X) =
1

Z
exp(Ψ(X)) (3.14)

where a normalizing constant Z :

Z =
∫

Rn
e−βΨ(x)d x (3.15)

This can be seen as a unique solution of the following Fokker-Plank equation, given
that Ψ satisfies to some growth condition :

∂p(t , x)

∂t
= di v(∇(Ψ(x)ρ))+β−1∆p (3.16)

When we mentioned ergodicity, we meant, that for a class of regular functionsϕ : RX →
R and x0 a.s., the Markov Chain satisfies :

1

L

L∑

l=1

ϕ(xl ) →
∫

RX
ϕ(x)π(d x) = Eπ[ϕ(X)] (3.17)

Observe that eq. (3.13) is a reversible process, which is interesting from theoretical
point of view, but in practise the speed of convergence is not optimal. One of the ways
to improve the convergence is to add a divergence-free drift b and consider the following
modified SDE :

dXu = (−∇Ψ(Xu)+b(Xt ))du +2

√
β−1dWu (3.18)

in order to satisfy detailed balance condition, we assume that ∇(be−Φ) = 0.
Another way to improve the convergence is to consider a generalized Langevin SDE :

Ẍγ
u = −∇Ψ(Xγ

u)− Ẋγ
u +

√
2β−1Ẇu (3.19)

We can rewrite it as :
{

dXu = Pudu

dPu = −∇Ψ(Xu)du −Pudu +
√

2

βdWu
(3.20)

where the pair (X,P) is a kinetic process with X is the position and P = dX
du

is the velocity,
that acts as an instantaneous memory.

The invariant function of the Markov process {x,P}, if it exists, is given by :

π0(x,P) =
1

Z
e−βH (x,P), Z =

∫

R2

e−βH (x,P)dPd x (3.21)

where

H (x,P) =
1

2
PM−1P+Ψ(x) (3.22)
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is a Hamiltonian function on R2.
We will use Hamiltonian system to generate Markov Chain and approximate a Radon-

Nikodym derivative dP
dQ

. Hamiltonian flow Monte Carlo uses a physical simulation of mo-
ving particles with momentum under the impact of the energy function to propose Mar-
kov chain transitions, that allows rapidly explore state space. Its fast exploration can be
explained by the fact that it extends the state space by an auxilliary momentum variables,
P, and then runs a physical simulation to move long distances along probability contours
in the extended state space.

We remind that, given Markov Chain {Xl }l≥0, Birkhoff theorem says that

1

nS

nS∑

l=1

f (Xl ) −→
nS→∞

∫
f (x)dπ(d x) = ϱ a.s. (3.23)

where ϱ is the expectation of f (X) with respect to the unique invariant distribution π of
Markov Chain.

3.3.2 Hamiltonian Flow’s Integrator and Properties

We will use a configuration space M with periodic boundary conditions. Each point
on M will be a set of nS particles : X(1), ...,X(nS ) and a generic momentum space RnS , in this
case the cotangent space is given by T∗

M = RnS ×RnS .

Ξu : T∗
M → T∗

M

(X,P) →Ξu(X,P)

Ξu(X0,P0) is the solution to the Hamilton’s equation :

{
dXu =M−1Pudu

dPu = −∇Ψ(Xu)du
(3.24)

Hamiltonian system has three main properties : reversibility, conservation of energy
and volume preservation.

Sympletic Integration of Hamiltonian Equations

In most cases we can not compute Hamiltonian flow in closed form and that is why
we need to discretize the system (3.24). To make sure that we can preserve symplectic-
ness and reversibility, we will discretize using leap-frog integrator, which is a symplectic
integrator of Hamiltonian system.

Split Hamiltonian (3.22) into 3 parts :

H1 =
1

2
Ψ(X), H2 =

1

2
〈P,M−1P〉, H3 =

1

2
Ψ(X) (3.25)

Taking each of these terms separately to be Hamiltonian function of Hamiltonian system
gives rise to equations of motion with trivial dynamics.





Pn(u +∆u
2

) = Pn(u)−∆u
2

∂Ψ
∂xn

(Xn(u))

Xn(u +∆u) = Xn(u)+∆uPn(u +∆u
2

)M−1

Pn(u +∆u
2

) = Pn(u +∆u
2

)−∆u
2

∂Ψ
∂xn

(Xn(u +∆u))

(3.26)
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where ∆u is the discretization size of Hamiltonian.
Consider a concatenation of three maps :

Ξn =Ξ∆u,H3
◦Ξ∆u,H2

◦Ξ∆u,H1
(3.27)

where Ξ∆u,H1
: (X(0),P(0)) → (X(∆u),P(∆u)). Similarily, Ξ∆u,H1

=Ξ∆u,H3
, and Ξ∆u,H2

is calculated to be position update. Since the energy is preserved by the flow, the trajecto-
ries evolve on the submanifold of constant energy :

T∗
M(E0) = {(X,P) ∈ T∗

M; (H (X,P) = E0)} (3.28)

where E0 = H (X0,P0) is the energy of the initilized data.

3.3.3 Hamiltonian Flow Monte Carlo on Rare Events Sets

Let H (X,P) be a Hamiltonian function on R2nS , where X is a potential, and P is a mo-
mentum variable of Hamiltonian system. The algorithm consists of two steps, first sam-
pling from prior distribution values for potential and momentum and then a physical
simulation of Hamiltonian dynamics. To make sure that at the end of each physical simu-
lation of time step n +1 we will have a probability measure, i.e. values will not exceed 1,
we will use a Metropolis-Hastings test αn+1, by choosing the minimum between 1 and the
ratio of generated values of potential at time steps n + 1 and n, which is an acceptance
probability of potential simulated by Hamiltonian dynamics. If we extend the state space
X = {X1, ...,Xn} and denote the extended space as eX = {X1, ...,Xn ,P1, ...,Pn}, we can denote
the acceptance probability as :

αn+1(eXn , eXn+1) = 1∧e(−H (Xn+1,Pn+1)+H (Xn ,Pn ))∆t (3.29)

If we assume that the importance measure Q admits the following importance distri-
bution with a kernel K :

q(d eXn+1) =
∫

R2M
p(eXn)K (eXn ,d eXn+1)d eXn (3.30)

Then, the associated Radon-Nikodym derivative will have the following form :

dP

dQ
(eXn+1) =

dP(eXn+1)∫
R2M p(eXn)K (eXn ,d eXn+1)d eXn

(3.31)

Assume that at each times step n we have nS sample of r.v. {X(m)
n }nS

m=1. Now we can
define a transition kernel K as follows.

Definition Consider a mapping Ξn : eX(m)
n → eX(m)

n+1, which is a transformation in R2nS , u∼
Uni f [0,1]. Then a transition kernel K (·,d eX(m)

n+1) is given by :

K (eX(m)
n ,d eX(m)

n+1) = 1u≤αn+1Ξn(eX(m)
n )d eX(m)

n+1+ 1u>αn+1
eX(m)

n δeX(m)
n

(d eX(m)
n+1) (3.32)

This kernel can be interpreted as the probability to move from the point eX(m)
n to a new

proposed point eX(m)
n+1, which is simulated through a discretized Hamiltonian flow Ξn(·) .

If the proposed step is not accepted, then next step is the same as the current step, i.e.
eX(m)

n+1 = eX(m)
n . This procedure allows as to leave the joint distribution of X(m)

n and P(m)
n inva-

riant. Volume preservation means that the determinant of the Jacobian matrix of a trans-
formation Ξn is equal to one.

We will need basic property of symplectic integrators, i.e. reversibility.
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Lemma 3.3.1 The integrator Ξn is reversible.

We refer to [13] for the proof of this result.

Assumption 3.3.2 — The potential Ψ ∈C
1 is bounded from above ;

— The gradient ∇Ψ is a globally Lipschitz function.

Lemma 3.3.3 If the potential Ψ satisfies to the assumption 3.3.2, then the kernel K is irre-

ducible and Markov Chain satisfies

∀x ∈ M,∀B ∈B(M),µLeb(B) > 0,K (x,B) > 0 (3.33)

Proof We refer to [2].

Proposition 3.3.4 Given that the assumption 3.3.2 holds, then for n = 1, ...,nS , the irredu-

cible Markov Chain defined by a transformation Ξn is reversable under the distribution

π :

π(d eX(m)
n )K (eX(m)

n ,d eX(m)
n+1) = π(d eX(m)

n+1)K (eX(m)
n+1,d eX(m)

n ) (3.34)

Thus π(x) is the invariant distribution of Markov Chain {eXn}nS
n=1.

Proof Rewrite the kernel K as :

K (x,d y) = α(x, y)Ξn(x)d y +℘(x)δx(d y) (3.35)

where

℘(x) = 1−
∫

α(x, z)Ξn(x)d z (3.36)

∫
K (x,B)π(x)d x =

∫[∫

B
α(x, y)Ξn(x)d y

]
π(x)d x +

∫
℘(x)δx(B)π(x)d x =

=
∫

B

[∫
π(x)α(x, y)Ξn(x)d x

]
d y +

∫

B
℘(x)π(x)d x =

=
∫

B

[∫
π(y)α(y, x)Ξn(y)d x

]
d y +

∫

B
℘(x)π(x)d x

=
∫

B
π(y)(1−℘(y))d y +

∫

B
℘(x)π(x)d x =

∫

B
π(y)d y (3.37)

Corollary 3.3.5 The kernel K satisfies reversibility condition with an indicator function

of the rare event set :

π(x)K (x, y)1x∈A = π(y)K (y, x)1y∈A (3.38)

Now we can define rare event transitions through the kernel M .

Definition Assume that the assumption 3.3.2 holds and consider Markov Chain (X(m)
n )n≥1

with an initial prior p1(X1) and define the following transition kernel p(eX(m)
n+1 ∈ d eX(m)

n+1|eX
(m)
n ) =

M (eX(m)
n ,d eX(m)

n+1).

M (eX(m)
n ,d eX(m)

n+1) = K (eX(m)
n ,d eX(m)

n+1)1
K (eX(m)

n ,d eX(m)
n+1)∈An

+ eX(m)
n 1

K (eX(m)
n ,d eX(m)

n+1 )̸∈An
(3.39)

It means that the point eX(m)
n moves to a new point eX(m)

n+1 only if it is inside a rare event

set An , otherwise we stay at point eX(m)
n .
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Proposition 3.3.6 Let n = 1, ...,nt . Markov chain Xn is invariant under the kernel M (·,dXn+1).

Proof

∫
π(d x)M (x,d y)1x∈A =

∫
π(d x)

[
K(x, y)1x∈A +K(x, Ac )δx(d y)

]
1x∈A =

=
∫∫

π(d x)K(x,d z)
[
1z∈Aδz(d y)+ 1Ac (z)δx(d y)

]
1x∈A =

=
∫

π(d x)K(x,d y)1y∈A1x∈A +
∫

π(d y)K(y,d z)1Ac (y)1x∈A = π(d y)1y∈A (3.40)

Invariance of eX(m)
n says that for any bounded and measurable function f , the distribu-

tion of f (M (eX(m)
n ,d eX(m)

n+1)) and f (eX(m)
n ) is the same.

E[ f (M (eX(m)
n ,d eX(m)

n+1))] = E[ f (eX(m)
n )] (3.41)

Under the kernel M of eXn , the final HFMC estimate is given by :

bCHFMC =
1

nS

nS∑
m=1

f (X(m)
nt

)1{X(m)
n+1,X(m)

n ∈An } (3.42)

3.3.4 Algorithm

Hamiltonian function is defined by H (X,P) = Ψ(X)+ 1

2
PTM−1P, where Ψ(X) - is a

potential energy function, and the second term is a kinetic energy function with a mo-
mentum variable P and mass matrix M. Usually one sets a mass matrix M to be an iden-
tity matrix I. The proposed samples are obtained by a physical simulation of Hamiltonian
dynamics :

{
dXu =M−1Pudu

dPu = −∇Ψ(Xu)du
(3.43)

We start by simulating M random variables from a prior X1 = p0(·,X(m)
0

), which is the
density of the underlying SDE and generating M random variables from gaussian distri-
bution for momentum {P(m)

0
}M

m=1.

For each step n = 1, ...,N we set x(m)
H = X(m)

n , P(m)
H = P(m)

n . The proposed new candidates
are obtained after L-leapfrog steps of the simulation of Hamiltonian dynamics and they
are defined by x∗ = x(m)

H (L) and P∗ = P(m)
H (L). These new set of proposed candidates are

then accepted according to the following Metropolis-Hastings test. First generate uni-
formly distributed random variable u∼U ni f (0,1), then compute α :

α = 1∧e(−H (x∗,P∗)+H (x(m)
H ,P(m)

H ))∆t ; (3.44)

If proposed candidates (x∗,P∗) are accepted, i.e. α> u we set X(m)
n+1 = x∗, and if they are

rejected, i.e. α≤ u, we set X(m)
n+1 = x(m)

H . At the end, calculate estimator in (3.42). The main
steps of the algorithm are summarized in Algorithm 2.

The Metropolis-Hastings test insures a volume preservation. That explains the fact
that we don’t need to compute a normalizing constant in our algorithm. Volume preser-
vation means that the absolute value of the Jacobian matrix of the leapfrog integrator is
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equal to one, this is because candidates are proposed though simulation of Hamiltonian
flow.

Algorithm 9 : Hamiltonian flow Monte Carlo in Rare event setting

1 Initialization : nS - #(simulations), nt - #(time steps)
2 for n = 1, ...,nt do

3 for m = 1, ...nS do

4 Generate X(m)
n from prior ep(X(m)

0
, ·) ;

5 Simulate initial momentum P(m)
1

∼N (0, IM), set x(m)
H = X(m)

n and run
Hamiltonian flow :

6 for l f = 1, ...L−1 do

7

P(m)
H ((l f + 1

2
)δ) = P(m)

H (l f )− δ
2

∂Ψ
∂xH

(x(m)
H (l f ))

x(m)
H ((l f +1)δ) = x(m)

H (l f )+δP(m)
H ((l f + 1

2
)δ)I−1M

P(m)
H ((l f +1)δ)) = P(m)

H ((l f + 1

2
)δ)− δ

2

∂Ψ
∂xH

(x(m)
H ((l f +1)δ))

8 end

9 Calculate acceptance probability and set x∗ = x(m)
H (L), P∗ = P(m)

H (L) :

a = 1∧e(−H (x∗,P∗)+H (x(m)
H ,P(m)

H ))∆t ; (3.45)

Draw u∼U nif(0,1) ;
10 if u< a then

11 Set X(m)
n+1 = x∗ ;

12 else

13 Reject, and set X(m)
n+1 = x(m)

H
14 end

15 end

16 if Xm
n ,Xm

n+1 ∈ A then

17 Set Xm
n = 0,Xm

n+1 = 0

18 end

19 end

20 end

21 Compute :

bCHFMC =
1

nS

nS∑
m=1

(
f (X(m)

nt
)

nt∏
n=1

e(−H (X(m)
n+1,P(m)

n+1)+H (X(m)
n ,P(m)

n )∆t1X(m)
n ,X(m)

n+1∈An

)

3.4 Convergence Analysis

3.4.1 IPS convergence

IPS convergence, and in particular the asymptotic behaviour as number of particles
nS →∞ was thoroughly studied in [6].

The following result given in [5] allows a non asymptotic control of variance of the rare
event probability.

Assumption 3.4.1

eδn := sup
x,y

ωn(x)

ωn(y)
<+∞ (3.46)
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Theorem 3.4.2 When the assumption (3.4.1) is met for some eδn , we have the nonasympto-

tic estimates :

E

[¯̄
¯̄CIPC

C
−1

¯̄
¯̄
2
]
≤ 4

nS

nt∑
s=1

bδ(nt )
s

pk
(3.47)

where bδ(nt )
s =

∏
s≤k<s+nt

eδk

3.4.2 HFMC Convergence

LLN and Convergence Rate

Birkhoff ergodic theorem allows us have law of large numbers(LLN) like conver-
gence. So, we are interested in a sigma-algebra G of invariant events, in particular when
G is trivial.

From lemma 3.3 we know that Markov chain generated by HFMC is irreducible, and
we can see that Markov Chain that we get from the rare event kernel M satisfies irreduci-
bility conditions due to the fact that the transition density is always positive. Applying the
results by [17], we have :

Proposition 3.4.3 [17] Suppose that M is a π-irreducible Metropolis kernel. Then M is a

Harris reccurent.

Proposition 3.4.4 [17] If M is positive Harris and aperiodic then for every initial distribu-

tion λ :

||
∫

λ(d x)(M )l (x, ·)−π||TV → 0, l →∞ (3.48)

for π almost all x.

where || · ||TV is a total variation distance.

Geometric Ergodicity

To establish central limit theorem (CLT), we need a geometric ergodicity of the chain.

Definition A subset C of that state space (RnS ,B(RnS )) is petite if there exists a non-zero
positive measure ν on the state space and subsampling distribution q such that

Kq (x, A) ≥ ν(A), ∀A ∈B(RnS ) and x ∈ C (3.49)

Definition A subset C of that state space (RnS ,B(RnS )) is small if there exists a non-zero
positive measure ν on the state space and real-valued number l ∈R such that

K
l (x, A) ≥ ν(A), ∀A ∈B(RnS ) and x ∈ C (3.50)

Observe, that every small set is petite.

Theorem 3.4.5 Suppose for an irreducible, aperiodic Markov chain having transition pro-

bability kernel K and a state space RnS , there exists a petite set C areal valued function V,

satisfying v ≥ 1, and constants b <∞ and λ< 1 such that

K V(x) ≤ λV(x)+b1C(x),∀x ∈RnS (3.51)

holds. Then the chain is geometrically ergodic.
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The function V is called a geometric drift. Take the expectation of the both sides of (3.51)
and using the invariance of measure π with respect to the kernel K :

Eπ[V(X)] ≤ bπ(C)

(1−λ)
(3.52)

In other words, for λ ∈ (0,1] a function satisfying (3.51) is always π-integrable.

Proposition 3.4.6 Assume that there exist λ ∈ [0,1) and b ∈R+ such that

K V ≤ λV +b (3.53)

and

limsupK (x,R(x)∩B(x)) = 0 (3.54)

It was shown in [12] that under certain conditions, HFMC kernel is geometrically er-
godic.

3.5 Applications and Numerical Results

We will test our algorithm on down-out(DOC) Barrier option pricing, and compare
its estimate with a standard Monte Carlo and particle Monte Carlo methods. Lets consider
a toy example and assume that our asset follows the following SDE :

dXt = µXt d t +σXt dWt (3.55)

where µ is a drift, σ is a constant volatility parameter. European DOC call Barrier option is
a usual call option contract that pays a payoff max(ST−K,0), provided that the asset price
S has not fallen below a barrier B during the lifetime of the option. If the pricing process
ever reaches the barrier B, then the option becomes worthless.

We use Euler-Muruyama disretization scheme and we use the following notation Xtn :=
Xn , so for a time discretization : 0 = t0, t1, ..., tnt = T, the solution of the SDE in (3.55) :

Xn = Xn−1e(µ−0.5σ2)∆t+σ∆tϵn (3.56)

The DOC barrier call option price of a discretely monitored barrier at maturity T is :

C = e−(r−q)TE[g (XnS )
nt∏

n=1
1Xt∈[tn−1,tn ]∈An ] (3.57)

where r, q are respectively an interest and a dividend rates, g (x) = (x −K)+ is a payoff
function and the set An in the case of a DOC barrier call option :

An = inf
tn−1≤t≤tn

{t : Xt > B}

We use continuity correction that was proposed in [1] : B = Bexp−0.5826σ∆t .
HFMC estimator to compute DOC call option is given by :

bCHFMC = e−(r−q)T 1

nS

nS∑
m=1

(
g (X(m)

nt
)

nt∏
n=1

e(−H (X(m)
n+1,P(m)

n+1)+H (X(m)
n ,P(m)

n )∆t1X(m)
n ,X(m)

n+1∈An

)
(3.58)
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Monte Carlo estimate is given by :

bCMC = e−(r−q)T 1

nS

nS∑

m=1

(
g (X(m)

nt
)

nt∏

n=1
1X(m)

n ∈An

)
(3.59)

The IPS estimator is given by :

bCIPS = e−(r−q)T 1

nS

nS∑
m=1

(
g (bX(m)

nt
)

nt∏
t=1

Wn−1(Xm
n−1)1bXn∈An

)

In the context of a rare event, we chose the barrier level at 65, with an initial price
X0 = 100, Strike K = 100, interest rate r = 0.1, volatility σ = 0.3, T = 0.5 and zero dividends
q = 0. In the table 1 and 2, Hamiltonian flow MC, MC and IPS are presented. We used
50000 and 75000 particles with 750 equally spaced time steps in Table 1 and Table 2.

It is very important to choose the number and the size of leapfrog steps. We chose
them such that the acceptance probability α is bigger than 0.8.

We compare each approach by estimating the standard deviations, root mean squared
error (RMSE), bias, relative mean squared error(RRMSE), time required to compute each
estimate and the figure of merit (FOM). We run 20 MC experiments. The RMSE estimator
is given by :

RMSE =

vuut 1

Ms

Ms∑

l=1

||C− bCl ||2 (3.60)

where C is price computed analytically, bCl are Monte Carlo estimates and Ms is the num-
ber of Monte Carlo experiments.

The RRMSE is computed using the following formula :

RRMSE =
RMSE

bC
(3.61)

To measure the efficiency of each method presented in the article, we will use the fi-
gure of merit(FOM) :

FOM =
1

R2×CPUt
(3.62)

where CPUt is CPU time need to compute the estimator and R is a relative error, which
is the measure of a statistical precision :

R =
St .dev

C̄
∝ 1

p
nS

(3.63)

where C̄ =
∑Ms

l =1
bCl .

We run 20 independent Monte Carlo experiments for each estimate. Since IPS and the
simulation of Hamiltonian dynamics requires more time to compute an estimate, we use
the figure of merit to compare three approaches. From the table 1 and 2 we can observe
that HFMC demonstrates standard deviations, bias and relative RMSE.
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[H]

TABLEAU 3.1 – DOC Barrier option estimates statistics. B = 65,X0 = 100, K = 100, r = 0.1,σ = 0.3, T =
1/2, and di v = 0 ; δ = 0.0001, #(Leap frog step) : 35. True price : 10.9064, nS = 50000, nt = 750

Stat MC PMC HFMC
St. dev. 0.088518965 0.08562686 0.065318495
RMSE 0.007011127 0.008004332 0.0143

RRMSE 0.001298078 0.000292621 1.87148E-05
CPU time 3.7251 4.8432 5.90675

FOM 4097.9 3387.2 4737.6

[H]

TABLEAU 3.2 – DOC Barrier option estimates statistics. B = 65,X0 = 100, K = 100, r = 0.1,σ = 0.3, T =
1/2, and di v = 0 ; δ = 0.0009, #(Leap frog step) : 40. True price : 10.9064, nS = 75000, nt = 750

Stat MC PMC HFMC
St. dev. 0.062385996 0.044259477 0.038039517
RMSE 0.037561882 0.051285344 0.037561882

RRMSE 0.000355199 0.000240548 0.000129293
CPU time 2.2626 6.0322 7.6832

FOM 13475.2 10117.7 10711.0

3.6 Conclusion and Further Research

We proposed an importance sampling algorithm based on the simulation of Ha-
miltonian system, that generates Markov Chain that follows along the gradient of the tar-
get distributions over large distances of the state space, while producing low-variance
samples.

From the simulated results we saw that HFMC allows efficiently estimate rare event
probabilities, which we tested on the case of DOC Barrier options. Its estimates show lo-
wer variance and bias than that of MC and IPS.

It will interesting to adapt a stochastic gradient Hamiltonian Monte Carlo algorithm
[6], when one can avoid computing the gradient at each simulations. Taking into account
the big data problem and the necessity of online estimations, we can get sufficient im-
provements. Another extension is the adaptation to the Riemann Manifold Hamiltonian
Monte Carlo [14], when we can create a statistical manifold and tune HFMC by computing
explicitely the mass matrix M in the kinetic energy of the algorithm.

In the next article we will show the performance of mixed IPS and Hamiltonian flow
Monte Carlo. It will allow faster explore the state space on the one hand, and push trajec-
tories into rare event area on the other hand. By resampling we can reduce the correlation
between generated from Hamiltonian system Markov chains.
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Chapitre 4

Optimal Transport Filtering with Particle

Reweighing in Finance

« "Comme est pauvre la langue de

la joie ! Tout ce qui fut sera encore

et seul est doux linstant de la

reconnaissance" »

Ossip Mandelstam

« "How poor is the language of

happiness ! Everything’s happened

before and will happen again, but

still the moment of each meeting is

sweet" »

Ossip Mandelstam
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CHAPITRE 4. OPTIMAL TRANSPORT FILTERING WITH PARTICLE
REWEIGHING IN FINANCE

Abstract

In this paper we show the application of an optimal transportation problem to estimate
stochastic volatility process by using a flow that optimally transports the set of particles
from the prior to a posterior distribution. Importantly, it is well-known that a naive par-
ticle filter has curse of dimensionality, when the quality of weights deteriorates as the
number of iteration increases. Homotopy transportation approach allows efficiently esti-
mate stochastic volatility in high-dimensional problems. We also show how to direct the
flow to a rarely visited areas of the state space by using a particle method (a mutation and
a reweighing mechanism). The efficiency of our approach is demonstrated on the simple
example of the European option price under the Stein-Stein stochastic volatility model
for which a closed form formula is available. Both homotopy and reweighted homotopy
methods show a lower variance, root-mean squared errors and a bias compared to other
filtering schemes recently developed in the signal-processing literature, including particle
filter techniques.
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4.1 Introduction

Optimal transport problem that was formulated by Monge in the XVIII century,
then reformulated fifty years ago by Kantorovich and it has recently been rediscovered by
C. Villani [12]. This problem then was applied in different contexts, for example in option
pricing [11].

Particle methods which were extensively researched by P. Del Moral in [6], [5] and [7]
allow to find so-called "optimal transport". For this purpose a set of discrete weighted
samples, i.e. particles, is used to approximate an importance measure, and then to predict
a posterior distribution by propagating the set of particles until we get an estimate.

Another approach has been proposed by Daum’s et al. [2], [3] that allows the reduction
of the number of particles we need in order to get a tolerable level of errors in the filtering
problem. The main idea behind this method is the evolution in homotopy parameter λ (a
"pseudotime") from prior to the target density. They introduced a particle flow, in which
particles are gradually transported without the necessity to randomly sample from any
distribution. This approach as an optimal transport problem allows optimally move the
set of particles according to Bayes’ rule. In other words, the particles are progressively
transported according to their flow. One can in this way reduce the number of needed
samples, since the variance and bias of the estimator is lower and as a result reduce the
computational burden in both the estimation and the prediction steps.

In this paper we adapt homotopy transport in Stein-Stein stochastic volatility model
[9] to price a European option and extend Daum’s et al. method by reweighing the gene-
rated particles’ trajectories that allows to efficiently transport the particles from a prior
transition density to a posterior one under the measurement impact. The idea of trans-
portation and reweighing mechanism is to transport particles through the sequence of
densities that move the least during the synthetic time until they reach the posterior dis-
tribution. By regenerating particles according to their weight at each time step we are able
to direct the flow and further minimize the variance of the estimates. The transportation
of particles can be understood as a geodesic flow in a convex subset of a Euclidean space.

We show that homotopy transport allows to significantly reduce the variance com-
pared to a particle filtering technique. Path reweighing allows further reduce both the
variance and the bias of estimators.

The rest of the article is organized as follows. Section 2 formulates the problem of com-
puting the expectation when we have partially observed variables and shows the solu-
tion using particle filter method. Section 3 formulates the problem defined in section 2 in
the context of optimal transport and presents the homotopy transport approach to solve
the problem. Section 4 shows the mixture of homotopy tranport and path reweighing ap-
proach and, actually, extends the method proposed in section 3. Section 5 provides nu-
merical results. Section 6 concludes.

4.2 Particle Filtering

4.2.1 Problem formulation

Many problems arises in financial applications when one has to compute expec-
tations with partially observed information. A simple example is an option pricing with
hidden volatility dynamics. Assume that we denote by {Yt }t≥0 ∈ RnY asset returns, which
are observed from the dynamics of prices, while the hidden factor {Xt }t≥0 ∈ RnX is unob-
servable. Let (Ω,F ,P) be a probability space and the set of observed data at time t be (Ft )
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is a filtration generated by a process (Yt )t≥0.
The classical problem, where particle filtering is applied, is to extract a sequence of

hidden variables Xt . It is formalized in the following way, given an initial RnX -dimensional
random variables x0 with distribution Px0 , then for t ∈N :

{
Xt = f (Xt−1,ϵt )

Yt = h(Xt ,Yt−1,ηt )
(4.1)

where the first equation is the hidden process, with ϵt :Ω→RnX are i.i.d random variables,
the map f : RnX → RnX is B(RnX ) - measurable. The second equation is called a measure-
ment model with ηt :Ω→RnY are i.i.d. random variables and the map h : RnX ×RnY →RnY

is B(RnX )⊗B(RnY ) - measurable.
Given above stochastic dynamical system, we would like to compute the following

conditional expectation :

E[z(Xt )|Ft ] =
1

Z

∫
ν(d x0:t )ρt (x0:t ,Y1:t )z(xt ) (4.2)

with a distribution of X0:t :

ν(d x0:t ) = p0(d x0)
t∏

l=0

kl (Xl−1,Xl )µ(d xl ) (4.3)

and normalizing constant Z :

Z =
∫

ν(d x0:t )ρt (x0:t ,Y1:t ) (4.4)

where (Xt )t≥0 forms a Markov Chain in (RnX ,B(RnX )) with transition density kt : RnX ×
RnX →R

nX
+ with respect to the measureµ(d x). The random variables (Yt )t≥0 in (RnY ,B(RnY ))

are conditionally independent given (Xt )t≥0 with transition density (likelihood) ρt : RnX ×
RnY →R

nY
+ with reference measure γ.

Intuitively, one can think that we can use naive Monte Carlo technique to approximate
(4.2) :

E[z(Xt )|Ft ] ≈
∫

(MnXP)(d(x0:t )z(xt ) =
1

nX

nX∑

i =1
f (X(i )

t ) (4.5)

where the sampling operator MnXν = 1

nX

∑nX
i =1δX(i ) , X ∈ RnX and ∀i = 1, ...,nX, X(i ) are i.i.d.

draws from ν.
The problem with naive Monte Carlo Sampling lies in the fact that we don’t know how

to sample from conditional distribution P(d(x0:t )) = P(X0:t ∈ d x0:t |Y1:t ). Moreover, com-
putation of normalization constant Z is a big challenge.

There is a lot of research made to tackle this problem, for example [6], where the pro-
blem is transformed from a partially observed to a fully observed, by introducing a so cal-
led filtering distribution, that links observed and latent variables and recursively updates
it.

Definition Conditional probability (filtering distribution)Ξt = P(Xt ∈ ·|Y1, ...,Yt ) with prior
X0 ∼ p0 can be computed sequentially :

Ξt z =

∫
Ξt−1(d xt−1)kt (Xt−1, x)µ(d x)ρt (x,Yt )z(x)
∫
Ξ

µ

t−1(d xt−1)kt (Xt−1, x)µ(d x)ρt (x,Yt )
(4.6)

with Ξ0 = p0 and Ξt z =
∫

P(x0:t ∈ d x0:t |Y1, ...,Yt )z(x0:t )
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Denote the corresponding values of the hidden process as (X0, ...,Xt ) and the values of
the measurement process as (Y0, ...,Yt ). If there exists an absolutely continuous probabi-
lity measure P≪Q, than for t = 0, ...,N we have :

EP[z(Xt )|Ft ] = EQ[z(Xt )
dP

dQ
(X0:t )|Ft ] (4.7)

An importance measure Q can be chosen arbitrarily as soon as the continuity of the
measure is preserved. But usually in a sequential importance sampling literature it is com-
mon to see the approximation of Q, given that there exists an absolutely continuous im-
portance kernel eKt , such that for K ≪ eKt as :

Q(B) =
M∑

i =1
ω(i )

t
eKt (X(i )

t−1, Ai ), B ∈B(RnX ) (4.8)

where Ai = {Xt ∈ RnX |1B(X(i )
t−1,Xt ) = 1}, (ω(i )

t−1)M
i =1 is the weight function, and for i =

1, ...,nX, (X(i )
0

, ...,X(i )
t ) are independent trajectory realizations. Now assume that the prior

and sampling kernels Kt and eKt have densities kt and ekt with respect to the measure µ,
∀t = 1, ...,T.

For 0< ... < t , the Radon-Nikodym derivative in (4.7) is :

dP

dQ
(X0:t ) =

1

Z
ρ1(X1,Y1)

k1(X0,X1)
ek1(X0,X1)

...ρt (Xt ,Yt )
kt (Xt−1,Xt )
ekt (Xt−1,Xt )

(4.9)

where the importance measure is given by :

Q(d x0:t ) = p0(d x0)ek1(x0, x1)µ(d x1)...ekt (xt−1, xt )µ(d xt ) (4.10)

Observe, that we still can not compute a normalization constant Z, otherwise to com-
pute the filtering distribution Ξt will not be a problem, so we will need to apply normali-
zed operator MNx to approximate filtering distribution :

EP[z(X0:t )|Ft ] ≈
∫

MnXP(d x0:t )z(xt ) =
nX∑

i =1
eω(i )

t z(X(i )
t )δX(i )

t
(d xt ) (4.11)

where the normalized importance weight function :

bω(i )
t (X(i )

t ) =
ω(i )

t (X(i )
t )

∑M
i =1ω

( j )
t (X( j )

t )
(4.12)

and an unnormalized weight is given by :

ω(i )
t (X(i )

t ) =
t∏

l=1

ρl (X(i )
l

,Yl )
kl (X(i )

t−1,X(i )
l

)

ekl (X(i )
l−1,X(i )

l
)

(4.13)

Observe that importance weights {bω(i )
t }nX

i =1 are positive and
∑nX

i =1 bω(i )
t = 1.

Since Particle filters showed weight degeneracey as number of time steps increased,
Gordon et al. (1993) proposed a resampling step to the algorithm, which can be described
by the following nonlinear equation :

Ξt =ΦtΞ
µ

t−1 with Ξ0 = p0 (4.14)
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where the nonlinear operator Φt is given by :

(Φtν)z =

∫
ν(d xt−1)kt (Xt−1, x)µ(d x)ρt (x,Yt )z(x)∫
ν(d xt−1)kt (Xt−1, x)µ(d x)ρt (x,Yt )

(4.15)

The action of the operator Φ can be schematically described as :

Ξt−1
Mut ati on−−−−−−−→MΞt−1

Rewei g hi ng−−−−−−−−−→ΩtMΞt−1 (4.16)

where the mutation operator M is given by

(Mν)(z) =
∫

ν(d xt−1)p(xt−1, x)µ(d x)z(x) (4.17)

and the reweighing operator Ωt has the form

Ωt (ν)z =

∫
ν(d x)ρt (x,Yt ) f (x)∫

ν(d x)g (x,Yt )
(4.18)

After the reweighing step we get the following approximation of the filtering distribu-
tion Ξt−1 :

bΞt−1 =
nX∑

i =1
eω(i )

t−1δX(i )
t−1

(4.19)

where {X(i )
t−1}nX

i =1 ∼ M bΞt−2. We see from above equations that nX particles are sampled

from an empirical distribution bΞt , i.e. it is itself defined through nX particles.
Let us give the intuition behind the reweighing step. The idea behind it is in the fact,

that at this step particles with low weights have lower probability to be sampled compa-
red with particles with high importance weights. Consequently, in this step particles with
low weights will be neglected, while particles with high weights will be sampled more fre-
quently.

4.2.2 Particle Filtering Algorithm

The algorithm allows to approximateΞµ

t−1 by the empirical distribution bΞµ

t−1 com-
pute by the following reccurence equations :

bΞt = bΦt
bΞt−1 with bΞ0 = p0 (4.20)

where bΦt :=ΩtM
nXM . It consists of three steps :

bΞt−1
Mut ati on−−−−−−−→M bΞt−1

Sampli ng−−−−−−−→MnXM bΞt−1
Rewei g hi ng−−−−−−−−−→ΩtM

nXM bΞt−1 (4.21)

At time t = 0, we generate M i.i.d. random variables from the prior distribution. For
t = 1, ...,N− 1 we propagate Xt ∈ RnX according to the dynamics of the hidden process,
update the measurement, to get a couple of random vectors (Xt+1,Yt+1) in the first step.
Resample particles according to their probability weights bωt+1(Xt+1) and set resampled
particles bXt . At the final time step t compute the estimate of (4.6) :

bCPF =
1

nX

nX∑

i =1
z(bX(i )

t )bω(i )
t−1(X(i )

t−1)δX(i )
t−1

(4.22)
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where {X(i )
t−1}nX

i =1 ∼M bΞt−2.

Algorithm 10 : PF Algorithm

1 Initialization : i = 1, ...,nX - #(simulations), t = 1, ...,T - #(time steps)

2 Draw {X(i )
0

}nX
i =1 from the prior p0(x). Set {ω(i )

0
}nX

i =1 = 1

nX
;

3 for t = 1, ...,N do

4 for i = 1, ...,nX do

5 Propagate particles using state equation X(i )
t = f (X(i )

t−1,Y(i )
t−1,ϵt ) ;

6 Measurement update : Yt = h(X(i )
t ,Y(i )

t−1,ηt ) ;

7 Compute effective sample size Me f f : 1∑M
i =1(ω(i )

t )2
;

8 if Me f f < M or k < N then

9 Resample using weight bω(i )
t (X(i )

t )
ω(i )

t (X(i )
t )

1

nX

∑M
j =1ω

( j )
t X

( j )
t )

10 end

11 end

12 Set resampled particles as bX(i )
t

13 end

Despite the advantage of sampling from highly non-linear and non-gaussian filtering
distributions, we need to mention its limitations. In fact, today we have to deal with high-
dimensional data, as it was shown in [1], [14], [15], the collapse of weights occurs unless
the sample size grows super-exponentially. Homotopy transport allows us to sample effi-
ciently in high-dimensional framework, while avoiding the explosion of the sample size.

4.3 Homotopy Transport

The classical optimal transport problem is to find over all maps T : RnX → RnX ,
such that for X ∼P, T (X) ∼Q and T ∈C

1 ; which optimizes the following criterion :

infT E[||T (X)−X||2]
s.t. Q = T♯P

(4.23)

In other words, we would like to find a continuous transformation that minimizes the
distance between measure P and measure Q among all these that pusheforward a prior
measure P towards a measure Q. In the context of filtering problem we would like to find
a transformation T , that transport particles from a sampling measure P to Q :

EQ[z(Xt )
dP

dQ
(X0:t )|Ft ] = EP [z(T (Xt ))|Ft ] (4.24)

One can solve this problem using variational methods [8].
For the sake of exposition we represent posterior distribution, presented in the form

of a normalized importance weight in the following way :

ψ(Xt |Yt ) =
1

Zt
p(Xt |Yt−1)ρ(Yt |Xt ) (4.25)

where Yt = (Y0, ...,Yt ), the prior is p(Xt |Yt−1), the likelihood is ρ(Yt |Xt ) and Zt is a norma-
lization factor : Zt =

∫
p(Xt |Yt−1)ρ(Yt |Xt )dXt . Actually, the equation (4.25) is equivalent
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to the normalized importance weight in the eq. (4.12). Now, if we consider a continuous
map T : RnX →RnX , then :

ψ(T (Xt )|Yt ) =
1

Zt
p(T (Xt )|Yt−1)ρ(Yt |T (Xt )) (4.26)

Homotopy gradually modifies the prior density into the posterior density, as a scaling
parameter λ ∈ [0,1] increases from 0 to 1. In other words, by iterating we will transport
homotopy ψ(Xt ,λ|Yt ) to a true posterior ψ(Xt |Yt ), while minimizing the cost of trans-
port. There are several conditions that homotopy has to satisfy. First, at λ0 we should
have our prior, i.e. ψ(xt ,λ0 |Yt ) = p(Xt ) and at some point λ0→1, we will get approxima-
tion of our posterior density. Define a new set of density functions : ψ(Xt ,λ|Yt ) := ψ(Xt |Yt ),
p(Xt ,λ|Yt−1) := p(Xt |Yt−1), ρ(Yt |Xt ,λ)λ := ρ(Yt |Xt ,λ) and Zλ :=

∫
p(Xt ,λ|Yt−1)ρ(Yt |Xt ,λ)λd xλ,

so that homotopy is defined as :

ψ(Xt ,λ|Yt ) =
1

Zλ
p(Xt ,λ|Yt−1)
| {z }

pr i or

ρ(Yt |Xt ,λ)λ
| {z }

l i kel i hood

(4.27)

In order to simplify the calculation we take the logarithm of homotopy :

Ψ(Xt ,λ|Yt ) = G(Xt ,λ)+λL(Xt ,λ)− logZλ (4.28)

where Ψ(Xt ,λ) = logψ(Xt ,λ|Yt ), G(Xt ,λ) = log p(Xt ,λ|Yt−1), L(Xt ,λ) = logρ(Yt |Xt ,λ). The dy-
namics of homotopy transport in the artificial time λ is known as log -homotopy [2]. In
some sense, the dynamics of transport will be given by the flow movement in the aritfi-
cial time λ, so we will look for a flow d x

dλ that rules the movement of particles following
log-homotopy.

If we assume that in pseudo-time λ, the flow d x
dλ follows the following SDE :

dXt ,λ = g (Xt ,λ)dλ+η(Xt ,λ)dWλ (4.29)

where Wλ is a vector field that pushes forward particles from prior to posterior distri-
bution.

We impose the following assumptions :

I/ The densities p(Xt ,λ|Yt−1) and ρ(Yt |Xt ,λ) are twice differentialble with respect to Xt ,λ ;

II/ The function that governs the particle transport g (Xt ,λ) is differentiable with respect
to Xt ,λ ;

III/ The Hessian matrix of the density Ψ is non-singular ;

Now given the conditional probability density function (4.28), we can compute the

function g (Xt ,λ) =
dXt ,λ

dλ using the forward Kolmogorov equation :

∂ψ(Xt ,λ)

∂λ
= −tr

[
∂

∂Xt ,λ
(g (Xt ,λ)ψ(Xt ,λ))

]
+
1

2
tr

[
∂

∂Xt ,λ
Q(Xt ,λ)

∂ψ(Xt ,λ)

∂Xt ,λ

]
(4.30)

where Q(Xt ,λ) = η(Xt ,λ)ηT(Xt ,λ) is the diffusion tensor of the process, and tr (·) is a trace

operator. The forward Kolmogorov equation is used to relate the flow of particles
dXt ,λ

dλ
with the evolution of log-homotopy as λ0→1, under the diffusion process.

∂ψ(Xt ,λ)

∂λ
= −tr

[
ψ(Xt ,λ)

∂g (Xt ,λ)

∂Xt ,λ
+ g (Xt ,λ)T ∂ψ(Xt ,λ)

∂Xt ,λ

]
+
1

2
di v

[
∂

∂Xt ,λ
Q(Xt ,λ)

∂ψ(Xt ,λ)

λ

]
=

= −ψ(Xt ,λ)tr

[
∂g (Xt ,λ)

∂Xt ,λ

]
− g (Xt ,λ)T ∂ψ(Xt ,λ)

∂Xt ,λ
+
1

2
di v

[
∂

∂Xt ,λ
Q(Xt ,λ)

∂ψ(Xt ,λ)

∂Xt ,λ

]
(4.31)
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where di v(·) is a divergence operator. On the other hand if we take the derivative of equa-
tion (4.28) with respect to λ, we have :

∂Ψ(Xt ,λ)

∂λ
= L(Xt ,λ)− ∂

∂λ
logZλ (4.32)

Since Ψ(Xt ,λ) is a composition of two functions, we will need to use the chain rule :

∂Ψ(Xt ,λ)

∂λ
=

1

ψ(Xt ,λ)

∂ψ(Xt ,λ)

∂λ
(4.33)

By substituting eq. (4.33) into (4.32) and rearranging the terms :

∂ψ(Xt ,λ)

∂λ
= ψ(Xt ,λ)

[
L(Xt ,λ)− ∂

∂λ
logZλ

]
(4.34)

Observe that (4.31) and (4.34) are identical, so by equating and dividing on ψ(Xt ,λ) we
get :

L(Xt ,λ)− ∂

∂λ
logZλ = −g (Xt ,λ)T 1

ψ(Xt ,λ)

∂ψ(Xt ,λ)

∂Xt ,λ
−

− tr

[
∂g (Xt ,λ)

∂Xt ,λ

]
+

1

2ψ(Xt ,λ)
di v

[
∂

∂Xt ,λ
Q(Xt ,λ)

∂ψ(Xt ,λ)

∂Xt ,λ

]
(4.35)

In [4], authors propose to take the derivative of (4.35) with respect to Xt ,λ in order to
find explicitely the equation of flow on the one hand, and to get rid of the normalization
constant Zλ that lead to instabilities on the other hand.

∂L(Xt ,λ)

∂Xt ,λ
= −g (Xt ,λ)T ∂

2Ψ(Xt ,λ)

∂X2

t ,λ

− ∂Ψ(Xt ,λ)

∂Xt ,λ

∂g (Xt ,λ)

∂Xt ,λ
− ∂

∂Xt ,λ
tr

[
∂g (Xt ,λ)

∂Xt ,λ

]
+

+
∂

∂Xt ,λ

(
1

2ψ(Xt ,λ)
di v

[
Q(Xt ,λ)

∂ψ(Xt ,λ)

∂Xt ,λ

])
(4.36)

Observe that we get a highly nonlinear PDE. We use the solution found in [2] and [3],
which states that if we can find a vector field g (Xt ,λ) and diffusion tensor Q(Xt ,λ), such
that sum of the last three terms in (4.36) are equal to zero. The PDE, then simplifies to :

∂L(Xt ,λ)

∂Xt ,λ
= −g (Xt ,λ)T ∂

2Ψ(Xt ,λ)

∂X2

t ,λ

(4.37)

Using the assumption III, i.e. the Hessian matrix
∂2Ψ(Xt ,λ)

∂X2

t ,λ

is non-singular, we get ex-

plicitely the flow g (Xt ,λ) :

g (Xt ,λ) = −
[
∂2Ψ(Xt ,λ)

∂X2

t ,λ

]−1[
∂L(Xt ,λ)

∂Xt ,λ

]T

(4.38)
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4.3.1 Homotopy Transport Algorithm

Sampling from the prior. First we generate M i.i.d random variables X(i )
t from the

prior density p0(x), initialize pseudo-time λ and set the state variables that will be trans-
ported as : X(i )

t ,λ = X(i )
t |t−1.

Transportation Stage. For t = 2, ...,N−1, compute the derivative with respect to Xt ,λ

of the measurement function. If h is non-linear, a second order Taylor expansion at Xt ,λ

allows speeding up the calculation by linearizing the first derivative. After that, update the
pseudo time by setting : λ = λ+∆λ.

Compute the flow g (X(i )
t ,λ). Note, that the first Hessian can be derived by twice differen-

tiating a log-homotopy equation (4.28) :

∂2Ψ(X(i )
t ,λ)

∂X2

t ,λ

=
∂2G(X(i )

t ,λ)

∂X2

t ,λ

+λ
∂2L(X(i )

t ,λ)

∂X2

t ,λ

(4.39)

The first term in (4.39)
∂2

G(X(i )
t ,λ)

∂X2

t ,λ

is estimated by using a sample covariance matrix of t

patricles generated form the prior distribution :

∂2G(Xt ,λ)

∂X2

t ,λ

≈−bS−1
Mx

(4.40)

Compute the transportation of particles from the measure P to the measure Q :

X(i )
t ,λ = X(i )

t ,λ+∆λg (X(i )
t ,λ) (4.41)

And finally update the state parameter :

X̆t =
1

nX

nX∑

i =1
X(i )

t ,λ (4.42)

Maturity.

At the final time interval ]N−1,N] compute the estimator of (4.24) :

bCHT =
1

nX

nX∑

i =1
z(X̆(i )

t ) (4.43)
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Algorithm 11 : Homotopy Transport Algorithm

1 Initialization : i = 1, ...,nX - #(simulations), t = 1, ...,N - #(time steps)

2 Draw {X(i )
0

}nX
i =1 from the prior p0(x).

3 Set {ω(i )
0

}nX
i =1 = 1

nX

4 for t = 1, ...,N do

5 for i = 1, ...,nX do

6 Propagate particles using state equation X(i )
t = f (X(i )

t−1,Y(i )
t−1,ϵt ) ;

7 Measurement update : Yt = h(X(i )
t ,Y(i )

t−1,ηt ) ;
8 Initialize pseudo-time λ = 0 ;

9 Set X(i )
t ,λ = X(i )

t |n−1 ;

10 while λ< 1 do

11 Compute SCM bSM ;

12 Calculate an estimate : Xt ,λ = 1

nX

∑
i X(i )

t ,λ

13 Compute the matrix bH =
∂h(X(i )

t ,λ)

∂Xt ,λ
;

14 Update the time : λ = λ+∆λ ;

15 Calculate the flow
dX(i )

t ,λ
dλ = −

[
∂2Ψ(X(i )

t ,λ)

∂X2

t ,λ

]−1[
∂L(X(i )

t ,λ)

∂Xt ,λ

]T

;

16 Transport particles according to its flow : X(i )
t ,λ = X(i )

t ,λ+∆λ
dX(i )

t ,λ
dλ ;

17 end

18 Update state estimate :

19 X̆t = 1

nX

∑nX
i =1X(i )

t ,λ

20 end

21 end

4.4 Homotopy Transport with Particle Reweighing

Taking into account the difficulties one faces in non-Gaussian and high-dimensional
problems, the idea of a particle transport without any use of sampling techniques is very
elucidating. The next question that arises is whether we can direct the transportation by
choosing those particles that have higher probability of reaching rarely visited areas of
the state space ? We propose a mixture of homotopy particle transport with a particle re-
weighing at each time step. The numerical test that we performed on the toy example of
a Stein-Stein stochastic volatility model showes that we significantly reduce the variance
and bias of our estimator.

The algorithm consists of two steps : first we transport particles according to its flow,
and second, we choose those particles that have higher probability of faster exploring the
state space.

E
eQ[z(Xt )

dP

d eQ
(X0:t )|Ft ] = EP [z(T (Xt ))|Ft ] = EQ

[
z(T (Xt ))

dP

dQ
(X0:t )|Ft

]
(4.44)

where T is a flow of particles under the pseudotime λ decribed in the section 4.3.1.
By setting Xt = (X0, ...,Xt ), we can express our Radon-Nikodym derivative in a product

form :
dP

dQ
(X0:t ) =

dP

d eQ
×

d eQ
dQ

(X0:t ) (4.45)
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where the first Radon-Nikodym derivative denotes the transport of particles from a
mesure P to a measure eQ, then we choose the particles that have high probability of rea-

ching rare corners of the state space, using d eQ
dQ

that allows us to reassess the weights of the
particles.

As in the section 2, an importance measure Q that will play a resampling to choose the
trajectories with higher weight, given that there exists an importance kernel eKt , such that
Kt ≪ eKt , can be defined as :

Q(B) =
nX∑

i =1
ω(i )

t
eKt (X(i )

t , Ai ), B ∈B(RnX ) (4.46)

where the set Ai = {T (Xt+1) ∈ RnX |1B(X(i )
t ,T (Xt+1)) = 1}. Assuming, that the prior and

sampling kernels Kt and eKt have densities kt and ekt respectively, then the Radon-Nikodym
derivative is

d eQ
dQ

(X0:t ) =
t∏

l =0

ρl (T (Xl ),Yl )
ωl−1(Xl−1)kl (Xl−1,T (Xl ))

ωl−1(Xl−1)ekl (Xl−1,T (Xl ))
(4.47)

such that ωt (Xt ) = ω(i )
t (X(i )

t ) if Xt = X(i )
t , and ωt (Xt ) = 1 otherwise.

The an unnormalized weight is given by :

ω(i )
t (T (X(i )

t )) =
t∏

l=1

ρl (T (X(i )
l

),Yl )
kl (Xl−1,T (X(i )

l
))

ekl (Xl−1,T (X(i )
l

))
(4.48)

So, now we have homotopy transport with particle reweighing estimator :

bCTRW =
1

nX

nX∑

i =1
z(T (X(i )

t ))bω(i )
t−1(T (X(i )

t−1)) (4.49)

4.4.1 PF-Enhanced Homotopy Transport Algorithm

The algorithm can be described by the following scheme, ∀i = 1, ...,nX :

X(i )
t

Sampl i ng−−−−−−−→ X(i )
t+1

Tr anspor t ati on−−−−−−−−−−−−→T (X(i )
t+1) = X̆(i )

t+1
Rewei g hi ng−−−−−−−−−→Φ(X̆(i )

t+1) = bX(i )
t+1 (4.50)

where Φ is an operator that denotes the resampling mechanism of particles. If we as-
sume that there is a continuous kernel eKt , such that Kt ≪ eKt with densities kt and ekt

respectively, then we can define a weight function ω(i )
t :

ω(i )
t (X̆(i )

t ) =
t∏

l=1

ρl (X̆(i )
l

,Yl )
kl (bX(i )

l−1, X̆(i )
l

)

ekl (bX(i )
l−1, X̆(i )

l
)

(4.51)

Detailed Algorithm

Sampling from the prior. As in the section 4.3.1, we start with M particles sampled
from the prior distribution p0, initialize pseudo-time λ and set the state variables that will
be transported as : X(i )

t ,λ = X(i )
t |n−1.

Transportation Stage. Follow steps 6-8 of the Algorithm 2 in the section 4.3.1.
Path Reweighing Stage. Compute the normalized importance weight :

bω(i )
t (X̆(i )

t ) =
ω(i )

t (X̆(i )
t )

∑nX
i =1ω

( j )
t (X̆( j )

t )
(4.52)
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Maturity At the time interval ]N − 1,N] compute the final Homotopy transport re-
weighted estimator :

bCTRW =
1

nX

nX∑

i =1
z(bX(i )

t )bω(i )
t−1(X̆(i )

t−1) (4.53)

Algorithm 12 : Homotopy Transport with Particle Reweighing Algorithm

1 Initialization : i = 1, ...,nX - #(simulations), t = 1, ...,T - #(time steps)

2 Draw {X(i )
0

}nX
i =1 from the prior p0(x).

3 Set {ω(i )
0

}nX
i =1 = 1

nX

4 for t = 1, ...,N do

5 for i = 1, ...,nX do

6 Follow steps 6-8 of the Algorithm 2 in the section 4.3.1.
7 Follow steos 7-12 of the Algorithm 1 in the section 4.2.2
8 end

9 end

4.5 Numerical Applications and Results

As a toy example, we decided to test the algorithms on a Stein-Stein stochastic
volatility model. We set log-returns as Yt = log(St ), then the model takes the following
form : {

dYt = (µ− X2
t

2
)d t +Xt dBt

dXt = κ(θ−Xt )d t +σdWt

(4.54)

where Xt is a volatility process, Yt the dynamics of log-returns, µ is a drift, θ is a long-
term variance, κ - the rate of reversion, σ is the volatility of volatility, and Bt and Wt are
two independent Brownian motions, in the sense that 〈dBt ,dWt 〉 = 0.

Using the above presented stochastic volatility model, we would like to compute esti-
mates for a European option. For a given interest rate r , maturity T, strike price K, and for
a function z(·, x) = max(x −K,0), the call price of the option is given by :

C(Xt ,Yt ) = Bt ,TE
P [z(XT,YT)|Ft ] (4.55)

where Ft = σ{(Y0, ...,Yt )}.
We chose Euler-Muruyama discretization scheme, which gives :

{
Yt −Yt−1 = (µ− X2

t−1
2

)∆t +Xt−1
p
∆tϵt

Xt −Xt−1 = κ(θ−Xt−1)∆t +σ
p
∆tηt

(4.56)

where ∆t is a discretization size, ϵt and ηt are independent Gaussian variates, N (0,1).
We compare each approach by estimating the standard deviations, the root mean

squared error (RMSE), the bias, the relative mean squared error(RRMSE), the time re-
quired to compute each estimate and the figure of merit (FOM). We run 20 Monte Carlo
experiments. For l = 1, ...,Ms the RMSE estimator is given by :

RMSE =

vuut 1

Ms

Ms∑

l=1

||C− bCl ||2 (4.57)

where C is the price computed analytically, bCl are Monte Carlo estimates and Ms = 20 is
the number of Monte Carlo experiments. As a reference price, we used the article by EM
Stein [9].
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Bi as =
√

RMSE2−St .dev2 (4.58)

where St .dev are standard deviations of MC estimates. The RRMSE is computed using
the following formula :

RRMSE =
RMSE

bC
(4.59)

To measure the efficiency of each method presented in the article, we will use the fi-
gure of merit(FOM)[10] :

FOM =
1

R2×CPUt
(4.60)

where CPUt is the CPU time need to compute the estimator and R is a relative error,
which is the measure of statistical precision :

R =
St .dev

C̄
∝ 1

p
M

(4.61)

where C̄ =
∑Ms

l =1
bCl

We used 20 000 and 40 000 simulations over 64 time intervals for our MC experiments.
Table 1. shows that homotopy and reweighted(RW)-homotopy algorithms shows less sta-
tistical errors then traditional PF. If we compare homotopy and RW-homotopy, we can see
that FOM says that the first is more efficient the latest, due to the fact that we need more
time to reweight the paths. Meanwhile RW-homotopy shows less erros and st. deviations.

[H]

TABLEAU 4.1 – Stein-Stein Stochastic volatility option price estimates statistics. S0 = 100, K = 90, r =
0.0953,σ = 0.2, κ = 4, θ = 0.25, V0 = 0.25, T = 1/2, and dividends d = 0 True price : 16.05, t = 20000,
M = 64

Stat MC PF Homotopy RW-Homotopy
St. dev. 0.127495344 0.106264197 0.102775848 0.08360908
RMSE 0.148073563 0.115032508 0.105302932 0.084510606
Bias 0.075304165 0.044049955 0.022931037 0.012311146

RRMSE 0.00137298 0.000827032 0.000827032 0.000444367
CPU time 0.1327525 0.31177 0.179 0.38819

FOM 118181.69 72715.84 135692.61 95193.97

[H]

FIGURE 4.1 – Volatily dynamics, PF (Blue), Homotopy (Red), RW-homotopy(Yellow)

Despite the fact that Monte Carlo estimate showed higher FOM, than PF, due to the
fact that it takes less time to compute Monte Carlo estimator. Whereas PF has lower RMSE
and the bias.
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[H]

FIGURE 4.2 – Zoomed volatilty dynamics. Homotopy (left), RW-homotopy (right)

[H]

TABLEAU 4.2 – Stein-Stein Stochastic volatility option price estimates statistics. S0 = 100, K = 90, r =
0.0953,σ = 0.2, κ = 4, θ = 0.25, V0 = 0.25, T = 1/2, and dividends d = 0 True price : 16.05, t = 40000,
M = 64

Stat MC PF Homotopy RW-Homotopy
St. dev. 0.070351719 0.060799052 0.048943672 0.045246118
RMSE 0.130446299 0.079273246 0.04921257 0.045762201
Bias 0.109849318 0.050869665 0.005137504 0.006853309

RRMSE 0.001067583 0.000392831 0.00015101 0.000130578
CPU time 0.278895 0.54737 0.26618 0.581495

FOM 184049.069 126479.8136 403391.758 216062.7397
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4.6 Conclusions and Further Research

The estimation of latent variables has a lot of applications in engineering and fi-
nance. We provide homotopy based algorithm and its extension with reweighted trajec-
tories that permits to solve the optimal transportation problem.

Numerical results that we applied in European option pricing with stochastic volati-
lity demonstrated the efficiency of the proposed algorithms with respect to error, bias and
other stastics. Both algorithms ourperformed particle filtering. The path-reweighing allo-
wed to reduce standard deviations, and in some cases the bias and the RMSE compared
to the homotopy transport algorithm.

From our experiments we can observe the following :
— Homotopy transport is fast algorithm, which is spectacularily demonstrated in the

figure of merit statistics.
— Efficiency of homotopy transport algorithm increases as the number of particles

increases.
— Implementation of homotopy transport requires less effort than a vanilla Monte

Carlo algorithm.
— Homotopy transport proved to be unbiased estimator.
— Homotopy with path reweighing proved to reduce the bias when the number of

particles is small compared to homotopy transport without reweighing.
While reweighted homotopy transport approach showed the reduced RMSE and Bias

in low-dimensions, the mixture of homotopy transport and bootstrap resampling, the im-
portance weight can converge to unity in high-dimensional problems([15]) and poten-
tially worsen. In the next article we plan to use the combination of MCMC and homotopy
transport methods on real data. It will be also interesting to investigate the homotopy
transport on non-gaussian examples.
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Appendix

Flow related computations

In the classical particle filtering approach the desired estimate is approximate by M
pratciles :

p(Xt |Y1:n−1) =
1

nX

nX∑

i =1
p(Xt |Xt−1 = X(i )

t−1) (4.62)

So that posterior at time t :

p(Xt |Y1:n) =
1

Zt
ρ(Yt |Xt )p(Xt |Y1:n−1) (4.63)

The transition density is given by :

p(Xt |Xt−1) = N (Xt ;µX,σX) (4.64)

where µX = Xt−1+κ(µX −Xt−1)∆t and σX = σ2

X∆t .
The likelihood, p(Yt |Yt−1,Xt−1) :

mt ,N(Xt−1) = Yt−1+ (µ−
X2

t−1
2

)∆t (4.65)

σ
p

t ,N(Xt−1) = X2

t−1∆t (4.66)

So,

ρ(Yt |Yt−1,Xt−1) =
N∏

t=1
N (Yt ;mt ,N(Xt−1),σp

t ,N(Xt−1)) (4.67)

The unnormalized posterior is given by :

P t = ρ(Yt |Yt−1,Xt−1) (4.68)

Xt = ψ(Xt ;P t ) (4.69)

Next,
ψ(X) = − log(P (X)) (4.70)

by removing some constants that have no impact on posterior distribution, we have

ψ(X) =
N∑

t=1

(Yt −mt ,N(Xt−1))2

2σ
p

t ,N(Xt−1)
+
1

2
log(σp

t ,N(Xt−1)) (4.71)

∂ψ

∂x
(X) =

1

2

N∑

t=1

(∇Xσ
p

t ,N(Xt−1)

Xt−1
−

−
(Yt −mt ,N)(2σp

t ,N(Xt−1)∇Xmt ,N(Xt−1)+ (Yt −mt ,N)∇Xσ
p

t ,N(Xt−1))

σ
p

t ,N(Xt−1)2

)
(4.72)

∇Xmt ,N(Xt−1) = −Xt−1∆t (4.73)

∇Xσ
p

t ,N(Xt−1)) = 2Xt−1∆t (4.74)
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∂ψ

∂x
(X) =

1

2

N∑
t=1

(2∆t−

−
(Yt −mt ,N)(2σp

t ,N(Xt−1)∇Xmt ,N(Xt−1)+ (Yt −mt ,N)∇Xσ
p

t ,N(Xt−1))

σ
p

t ,N(Xt−1)2

)
(4.75)

u = (Yt −mt ,N)(−2X3

t−1∆t2+2(Yt −mt ,N)Xt−1∆t ) (4.76)

u′ = 2X2

t−1∆t2
(
X2

t−1∆t − (Yt −mt ,N)
)
+ (Yt −mt ,N)

(−6X2

t−1∆t2+2∆t ((Yt −mt ,N))
)

(4.77)

v = X4

t−1∆t2, v ′ = 4X3

t−1∆t2 (4.78)

∂2ψ

∂x2
=

u′v − v ′u
v2

(4.79)
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