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Résumé

Les microcavités en semiconducteurs, définis par une cavité Fabry-Pérot planaire
contenant un puits quantique, permettent de confiner fortement à la fois la lumière
et les excitations électroniques. Dans ces hétérostructures, la lumière et la matière
interagissent si fortement que les excitations fondamentales du système sont décrites
par des quasi-particules hybrides lumière-matière appelées polaritons excitoniques. Les
polaritons héritent les propriétés de leurs deux constituants élémentaires: la partie pho-
tonique peut être structurée spatialement en sculptant à l’échelle micrométrique l’indice
de réfraction du matériau par lithographie et gravure; la composante excitonique donne
au système une très forte non-linéarité Kerr. Dans cette thèse, nous avons utilisé ces
deux propriétés pour réaliser une ingénierie du mode photonique grâce à des micropiliers
couplés, et sonder plusieurs facettes de leurs propriétés non-linéaires.

Dans une première partie du travail, nous étudions des microcavités couplées dis-
posées en anneau. Tirant profit d’un couplage spin-orbite synthétique et de la possibilité
de polariser en spin le gain optique, nous avons démontré une émission laser dans des
modes présentant un moment orbital angulaire (OAM) fini, dont la chiralité peut être
contrôlée optiquement. De plus, nous mettons en évidence un comportement bistable
original du microlaser, qui implique des modes présentant des valeurs différentes du
OAM ainsi que des textures de polarisation différentes.

Dans la deuxième partie de la thèse, nous explorons la dynamique non-linéaire du
système sous pompage cohérent. Nous déclenchons une instabilité paramétrique dans
des résonateurs couplés, et analysons en détails le mécanisme physique sous-jacent.
Dans le régime instable, nous observons l’établissement d’oscillations paramétriques
qui donnent lieu à des bandes latérales très brillantes et contrastées dans le spectre
d’émission.

Enfin dans la dernière partie du travail, nous étudions un régime de métastabilité op-
tique dans un résonateur fortement non-linéaire. Ce régime se manifeste par l’apparition
de sauts aléatoires entre deux valeurs du nombre moyen de photons dans le résonateur.
Pour certaines conditions de pompage, nous observons un ralentissement critique de
la dynamique métastable, signature d’une transition de phase dissipative. Par des
expériences d’hystérésis dynamique, nous évaluons les exposants critiques de cette tran-
sition de phase. Finalement, nous proposons une correspondance (“mapping”) entre
la dynamique métastable d’un résonateur Kerr, et les renversements aléatoires dans le
temps d’un bit logique. Nous pouvons alors définir et mesurer la production d’entropie
lors d’une trajectoire unique d’une expérience d’hystérésis dynamique. Ces mesures
nous ont permis de valider, dans le cadre de cette correspondance, le théorème intégral
de fluctuations pour la production d’entropie hors équilibre.

Ce travail couvre une grande variété de sujets, d’aspects les plus fondamentaux de
la dynamique non linéaire dans un système photonique, à des idées innovantes pour
réaliser des dispositifs photoniques, qui pourraient dans le futur être optimisés pour un
fonctionnement à température ambiante.
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for sharing with me always a nice word and for your support during all these years.
Thank you, Isabelle, for the sparkling energy you bring in, it has motivated me at
several points. Despite the difficulties related to moving of the lab and an often overly-
packed agenda, you all have constantly managed to find some time to develop new
samples, so necessary to advance in my project; I am deeply grateful to you for this.

I would also like to acknowledge the many, enriching discussions I had with Fil-
ippo Vicentini, Carlos Antón Solanas, Niccolò Somaschi, Juan Carlos Loredo, Paul
Hilaire, Fabrice Lamberti, Martin Esmann, Ilse Maillette de Buy Wenniger and Math-
ias Marconi. I have learned a lot discussing with you, like the impressively complicated
phase-diagram of honey and or the technique of Pink Floyd-assisted mode-locking of a
laser. Thank you, Ilse, for the helpful comments on the introductory chapters of this
manuscript. As well, I am grateful to Daniel Kimura, Olivier Krebs, Löıc Lanco and
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CHAPTER 1

Introduction - Understanding and Harnessing Complexity

In the fifties, the capability of electronic computing machines to solve problems of
unprecedented complexity became clear to the whole scientific community. One of the
first numerical studies appeared in the 1955 milestone article by E. Fermi, J. Pasta,
S. M. Ulam and M. Tsingou [1]. The authors employed the Maniac-I computer in
Los Alamos labs to study the dynamics of a linear chain of 64 anharmonically coupled
oscillators. The simulation highlighted ”very little -if any- tendency of equipartition
of energy among the degrees of freedom”. In his memories, Ulam recalls the awe of
Fermi when the first results were plotted and reports his belief that future fundamental
theories may involve nonlinear operators. In absence of closed analytical solution,
the role of computing machines would have been to lead scientists where complexity
overwhelmed intuition.

Over the past sixty years the synergetic development of scientific computing and
microelectronics industry boosted the predictive capabilities in all research disciplines.
Computers allowed giant steps in the comprehension of nature’s complexity and im-
pacted society with its technological and behavioral byproducts. Despite the impres-
sive computational power of modern microprocessor clusters, some problems remain
impossible to solve due to the tremendous requirements in terms of storage memory
and computational overhead. This finding stimulated a discussion about the definition
of the computational complexity of a problem and of possible strategies to overcome
present limitations [2].

Narrowing the discussion to the mathematical description of a physical object, the
presence of nonlinearities or interactions between its elementary constituents is funda-
mental for the definition of the degree of complexity of the problem [3]. If not, one can
study the properties of an isolated constituent of the object, later invoking the linear
superposition principle to infer its global properties. In this sense, we could define a
complex system as an object whose properties cannot be understood only in relation
with the behaviour of its indivisible constituents. This statement may be reductive
when considering objects whose descriptions cannot leave aside the laws of quantum
mechanics. In this latter case, even if the physics is entirely encoded in linear opera-
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1. Introduction - Understanding and Harnessing Complexity

tors, the dimensionality of the state vector on which they act makes the computational
overhead of each algebraic operation unbearable. One example is the boson sampling
problem, the quantum version of Galton’s board experiment [4, 5]. Interacting quantum
many-body phases of matter gather both of these aspects of complexity, representing a
formidable problem to tackle. Yet, the understanding of collective phenomena arising
in these exotic phases of matter might help to solve some fundamental questions con-
cerning, for instance, the locality issue [6, 7] and the unconventional superconductivity
mechanism [8].

One possible approach to reduce the computational complexity deriving from the
Hilbert space dimensionality curse, would be to develop a (digital) quantum computer
where the information units can be in a state superposition (qubit) and the boolean
logic is substituted by some set of unitary transformations (gates) [9, 10]. This initial
idea, after more than a quarter century of collective effort, culminated this year with
the first, exciting demonstration of quantum supremacy using a 53-qubit device [11,
12]. A digital quantum computer can be programmed to simulate any local quantum
system [13, 14]. Still, not every problem can be efficiently encoded using the presently
available few-qubit gates, as the duration of the algorithm cycle would be pushed
beyond the coherence time of the qubit, eventually yielding a faulty result [15, 16].
The development of reliable quantum compilers optimizing the number of gates used
to obtain a target result seems of prominent importance [17].

A second approach, especially suited for condensed matter problems, relies on emu-
lating the properties of a system of interest with another system that is easier to control
and measure. One example is the implementation of prototypical lattice hamiltonians
such as the Bose- and Fermi-Hubbard models [18, 19, 20] or the Heisenberg-Ising mod-
els [21, 22, 23] using ultra-cold atoms in optical lattices [24], trapped ions [25] and
superconducting circuits [26], just to name a few platforms. The distinctive trait of an
analog emulator is the ability to experimentally control each parameter of the system,
to perform both global and local measurements of its properties and to prepare it in a
controlled initial state [27]. On the one hand, photonic systems, being inherently lossy,
offer several opportunities in terms of state-preparation and detection [28, 29]. On the
other hand, photon-photon interactions in vacuum are negligible at optical frequencies
[30], thus calling for the development of an interacting structured light platform. With
interacting structured light, we mean the possibility to engineer spectrally and spatially
the optical modes of the system, while some nonlinearity allows for energy exchange
among them.

In this direction, harnessing light-matter interactions to engineer matter-mediated
photon interactions demonstrated to be a promising avenue. To understand the link
between the two interaction mechanisms, one may consider a simple example: two laser
beams crossing at the interface of a dielectric nonlinear medium, that is, a medium
whose refractive index depends on the local density of the electromagnetic field. Since
the presence of each of the beams modifies the refractive index of the medium, according
to Snell’s law, the propagation direction of each transmitted pulse is affected by the
presence of the other, see Fig. 1.1. Depending on the sign of the nonlinear term in
the refractive index, this behavior mimics an either attractive or repulsive interaction
between the two light beams. Although these nonlinear effects are typically small,
a significant enhancement can be obtained by forcing photons to interact multiple
times with matter in optical cavities. Furthermore, cavities can be used to engineer the
photonic modes by modifying the boundary conditions for the confined electromagnetic

2



1. Introduction - Understanding and Harnessing Complexity

Figure 1.1: Light-matter interactions: towards an interacting structured light platform

field. Overall, the above considerations indicate a possible roadmap towards interacting
structured light, as we illustrate in Fig. 1.1.

There are several strategies to implement this roadmap; in this manuscript we will
focus on the integrated photonic platform developed in C2N laboratories, relying on
the strong light-matter coupling of quantum-well excitons with cavity photons in semi-
conductor heterostructures. Heterostructures are layered stacks of different materials
(here AlGaAs/InGaAs alloys) grown by molecular beam epitaxy. A careful choice of
the materials and layer thicknesses allows the fabrication of high finesse planar Fabry-
Perot cavities. These cavities embed a quantum-well (QW) hosting bound electron-hole
pairs called excitons. Excitons are optically active: by tuning the resonant frequency
of the cavity in vicinity of the exciton transition, repeated cycles of emission and re-
absorption may happen before a photon is able to escape the heterostructure. If the
energy exchange rate between the QW and the cavity exceeds any other loss mecha-
nism, the strong coupling regime is reached and the exciton-photon interaction becomes
non-perturbative.

A direct consequence of the strong light-matter coupling regime is that the fun-
damental excitations of the heterostructure are not anymore the bare QW excitons
and cavity photons, but exciton-polaritons, hybrid light-matter quasiparticles inherit-
ing properties from both their constituents [31, 32]. The excitonic component provides
effective interactions in the form of a strong Kerr type nonlinearity and a suscepti-
bility to both magnetic and electric fields, while the photonic component results in a
light effective mass and allows to probe the system trough its emission. Moreover, for
moderate excitation powers, polaritons obey bosonic statistics: they can condense and
macroscopically occupy a single quantum state [33, 34, 35, 36]. Furthermore, when
polaritons are coherently injected in microcavities they collectively behave as an in-
teracting two dimensional quantum fluid [37]. A spectacular variety of hydrodynamic
effects has been observed in this configuration ranging from superfluid flow [38, 39] and
vortex nucleation [40, 41], to the creation of bright or dark solitons [42, 43].

The hybrid light-matter nature of polariton excitations, provides us with several
strategies for implementing local potentials [44, 45, 46]. Controlling the potential land-
scape allows tailoring the dispersion relation or trapping polaritons, a necessary feature
for the analog implementation of lattice hamiltonians [47]. The strategy adopted in our
group is to engineer the refractive index landscape by etching to the substrate some
pattern on the microcavity. The large refractive index mismatch between vacuum and
the semiconductor, tightly confines polaritons within the unetched regions. By care-
fully designing the etching pattern, one can fabricate synthetic lattices emulating a wide
range of 1D and 2D Hamiltonians [48, 49, 50]. Although two-polariton interactions are
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still too small to accommodate strongly correlated quantum phases [51, 52, 53], recent
experiments demonstrating weak-blockade and the engineering of dipolar interactions
are encouraging [54, 55, 56]. The versatility and scalability of this semiconductor-
based platform not only makes it an interesting candidate for the emulation of complex
systems [47, 57], but also valid platform for the development of novel structured or
topological light sources [58, 59, 60].

In this dissertation we study systems composed of a single or few coupled micro-
cavities. Despite the apparent simplicity, these structures present a rich and complex
phenomenology. We concentrated our investigation around two main subjects. The
first is more related to the possibility of structuring the properties of light in coupled
microcavities: we want to engineer optical modes supporting chiral photonic currents.
The second, is the emergence of spontaneous dynamical phenomena due to the interplay
of nonlinearities and dissipation with a coherent pumping. The contents are organized
in five chapters and a concluding section.

The first chapter is a general survey on the physics of semiconductor heterostruc-
tures. Initially, we separately describe the properties of photons confined in Fabry-Perot
cavities defined by dielectric interferential mirrors and of quantum-well excitons. Then,
we show that such heterostructures operate in the strong light-matter coupling regime,
thus supporting hybrid polariton excitations and describe their linear and nonlinear
properties. We discuss the resonant and non-resonant polariton injection schemes:
in both cases, we summarize the diverse phenomenology characterizing the nonlinear
regime of the system. Finally, we detail the strategy developed in C2N to engineer
the transverse optical modes of the microcavities via a selective etching technique. We
show how this allows us to emulate a wide range of lattice hamiltonians.

The second chapter presents the samples design criteria and the fabrication protocol
as well as the details of the experimental setup. We present two representative mea-
surements: in the first, we use a non-resonant excitation scheme to image in direct and
reciprocal space the energy resolved emission of an array of coupled microcavities. In the
second, we perform resonant spectroscopy experiments on single micropillar structures.
We use this experiment to probe the polariton linewidth as a function of its energy
detuning from the exciton transition. The last section of the chapter describes the
theoretical framework and the numerical techniques used for modeling quasi-resonant
experiments.

In the third chapter we investigate arrays of coupled microcavities arranged in a
ring geometry. As these structures present a discrete rotational symmetry, they sup-
port modes whose phase winds an integer multiple of times 2π across the structure.
The emission from these modes presents a twisted wavefront, associated to a non-zero
orbital angular momentum (OAM) of light. Unfortunately, modes with opposite OAM
sign (chirality) come in energy-degenerate doublets due to the mirror symmetry of the
structure, globally cancelling the OAM of the emission. Harnessing an analog spin-
orbit coupling effect, combined with the possibility of spin-polarizing the optical gain
provided by the quantum well, we are able to optically break time-reversal symmetry.
As a result, we show that we can trigger lasing in modes carrying a net OAM and
to optically control the chirality of the emission. Furthermore, while investigating the
saturation regime of the microlasers, we demonstrate a bistable behavior involving two
modes with distinct OAM and polarization patterns.
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In the fourth chapter we report the observation of a parametric instability in the
out-of-equilibrium steady state of two coupled Kerr resonators coherently driven by a
laser. The resonators are implemented with two overlapping micropillar cavities hosting
polariton excitations. For suitable driving conditions, we steer the system into the
unstable regime, where we observe the appearance of intense and well resolved sidebands
in the emission spectrum. This feature is a characteristic signature of self-sustained
oscillations of the intracavity field. The mechanism responsible for the instability,
relates to the opening of a resonant scattering channel from the pump toward two
modes as their energy gets renormalized by the nonlinearity.

In the fifth chapter we probe the optical metastability of highly nonlinear single
micropillar cavities. We first discus how the interplay of dissipation and nonlinearities
originates the metastability, which manifests in jumps of the cavity occupation between
the two -otherwise stable- branches of the classical bistability. For specific driving
conditions one observes a critical slowing down of the dynamics, which can be associated
with the onset of a dissipative phase transition. Following a theoretical proposal, we use
dynamical hysteresis experiments to characterize the exponents of the phase transition.
In the second part of the chapter, we propose to map the metastable dynamics of
the microresonator with the one of a logical bit subject to random bit-flip events.
This allows us drawing a parallel with stochastic thermodynamics, which we leverage
to evaluate the entropy production in dynamical hysteresis experiments at a single
trajectory level. Finally, we benchmark the validity of the mapping against a general
result of stochastic thermodynamics, namely, the integral fluctuation theorem for the
entropy production. This work has been done in collaboration with the groups of C.
Ciuti (Université de Paris) and A. Auffeve (Institut Néel, Grenoble).

In the last chapter we summarize the main results and outline future research di-
rections.
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CHAPTER 2

Strong light-matter coupling in semiconductor heterostructures

In this introductory chapter we survey the key aspects of light-matter interactions in Al-
GaAs/InGaAs based semiconductor heterostructers. The first two sections separately
describe the confinement of photons in dielectric Fabry-Perot microcavities and of exci-
tons in shallow InGaAs quantum wells. In both systems, the scaling of the key figures
of merit is addressed theoretically. When the resonant frequency of the cavity is tuned
in vicinity of an optically active excitonic transition, the strong light-matter coupling
regime can be achieved. In this regime, the fundamental excitations of the system can
be described as hybrid light-matter quasiparticles, called Exciton-Polaritons.

In the third section we discuss a general criterion to discriminate between the differ-
ent light-matter interactions regimes and the theoretical framework for the description
of polaritons. We review the rich phenomenology characterizing this hybrid platform
which we organize according to the two possible excitation schemes (non-resonant and
quasi-resonant injection). In the last section, we introduce the strategy developed in
our group to engineer the transverse modes of the microcavity. Capitalizing on this
ability, we show that we can emulate some lattice hamiltonians using arrays of coupled
micropillar cavities. Finally, we introduce the general theoretical framework describ-
ing the dynamics of coupled polariton microcavities within an open quantum system
perspective.

2.1 Semiconductor microcavities

The simplest realization of an optical cavity consists of two parallel planar mirrors
with equal reflectivity R, facing each other and enclosing a medium of thickness Lc
and refractive index nc. For a monochromatic plane-wave at normal incidence and
wavelength λ, the partial reflections formed at each mirror interface constructively
interfere if the phase accumulated in a round-trip (4πncLc/λ) amounts to multiples
of 2π. Then, a standing wave pattern forms within the cavity and sharp resonances
can be observed in the transmission and reflection spectrum when λ = 2ncLc/q with
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2. Strong light-matter coupling in semiconductor heterostructures

q ∈ Z. The energy difference between two subsequent resonances defines the cavity free
spectral range (FSR). At resonance and normal incidence conditions, a simple relation
can be derived for the average escape time of a photon from the cavity [61]

τc =
Lcnc
c

1−R√
R

(2.1)

here c is the speed of light. The full-width at half maximum of the resonances is
therefore γc = τ−1

c . The ratio of the cavity FSR with the spectral width of the peaks
γc defines the cavity finesse.

F = π

√
R

1−R (2.2)

This number quantifies the average number of roundtrips the photon travels in the
cavity before escaping it and is related to the resonator quality factor by Q = qF .
A remarkable consequence of the confinement of the electromagnetic field is that the
optical power circulating in the resonator is significantly larger than the input power. At
resonance the enhancement factor is ηc = (1−R)−1 [61]. Finally, let’s consider the more
general case of a plane wave incident with a wavevector k at some angle with respect
to the mirror normal axis ẑ. The confinement along ẑ results in the quantization of the
corresponding component of the wavevector inside the cavity kz = qπ/Lc, still, the in-
plane component of k can take a continuum of values due to the in-plane translational
symmetry of the system. For a photon in a homogeneous dielectric medium with
refractive index nc, the photon dispersion relation is E(k) = ~c|k|/nc. Expanding the
modulus of the wavevector in a transverse and in-plane components, we can write the
dispersion relation for the cavity modes.

~ωq,k =
~c
nc

√(
qπnc
Lc

)2

+ |k‖|2 ≈ ~ωq,0 +
~2|k‖|2

2mc
(2.3)

Here k‖ is the in-plane component of the wavevector, we defined mc = n2
c~ωq,0/c2

and the right-most term is an expansion valid for |k‖| � |k|. Because of the analogy
with the parabolic dispersion relation of a massive particle in free space, the coefficient
mc can be regarded as the cavity-photon effective mass. For the fundamental mode of a
cavity filled with a dielectric medium having nc = 2 and operating at optical frequencies
mc/me ∼ 10−5, where me denotes the electron rest mass. Hereafter we will implicitly
consider only the q = 1 transverse cavity mode, and to ease the notation we drop the
subscript of the in-plane momentum vector. Given the energy dispersion relation, one
can write the Hamiltonian for the electromagnetic field as

Hc =

∫
d2k

(2π)2
~ωkâ

†
k,σâk,σ (2.4)

The operators â†k,σ and âk,σ respectively create or destroy a photon with in-plane
momentum k, polarization state σ and obey the canonical commutation rules for bosons
[37]. We consider for the moment a polarization-independent dispersion relation. This
is a fair assumption in the case of metallic mirrors, but is not always verified for
dielectric ones, as we will see in the last pages of this section.
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2. Strong light-matter coupling in semiconductor heterostructures

Figure 2.1: 1D Photonic Crystals (a) A transverse electromagnetic (TEM) wave
propagates in a material with a periodic dielectric constant along the z axis. The struc-
ture period is a and is composed by alternating layers of thickness d1,2 and refractive
index n1,2. (b) Photonic band structure for quarter wave stacks (d1n1 = d2n2 = λ0/4)
with n1 = 1.0, n2 = 1.5, and hc/λ0 = 1.5 eV. The insets show the electric field profile
at the two band edges.

2.1.1 Distributed Bragg Reflctors

We would now desirably implement a cavity combining a large finesse (F ∼ 105) and
a small cavity mode volume (Lc µm). For reasons which will become clear in the
next pages, these are both key figures of merit for our platform. One dimensional
photonic crystals, i.e. materials presenting a periodic dielectric constant along one
spatial direction, come forth as an excellent solution combining both requirements.
Indeed, by engineering the characteristic function of the dielectric constant, is possible
to open photonic band gaps where the material acts as a perfect mirror due to the
absence of propagating modes [62, 63]. These layered structures can be grown with a
variety of techniques allowing the fabrication of large area dielectric mirrors and Fabry-
Perot cavities presenting a few-micron cross section. A simple example of 1D photonic
crystal structure is presented in Fig. 2.1-(a). It is a multilayer structure composed of
alternating materials with refractive indices n1,2 and thicknesses d1,2. The length d1+d2

defines the lattice constant a, aligned along the z axis. A transverse electromagnetic
(TEM) wave is propagating at normal incidence, given its wavevector kz = 2π/λ, one
may wonder what is the group velocity of radiation in the material. Writing the electric
(Ex) and magnetic (Hy) field as a function of the forward and backward traveling waves,
one can relate their values at left and right of an interface via

(
Ex(d)
Hy(d)

)
=

(
cos(kzd) sin(kzd)/kz
−kz sin(kzd) cos(kzd)

)(
Ex(0)
Hy(0)

)
. (2.5)

If we denote M1,2 the value of the characteristic matrix in the two different layers,
the TEM wave propagation trough one unit cell will be given by M1 · M2 = MBZ ,
which is all we need to relate in the first Brillouin zone the energy E = ~ckz of the
incident wave to its wavevector in the material. Using the properties of the trace and
determinant of MBZ we can (implicitly) write the dispersion relation as

akz = arccos

[
cos(k1d1) cos(k2d2)− 1

2

(
k2

k1
+
k1

k2

)
sin(k1d1) sin(k2d2)

]
(2.6)
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Figure 2.2: Distributed Bragg reflectors. (a) Refractive index at 4K as a function
of the photon energy and Aluminum concentration x for AlxGa1−xAs alloys. (b) Cor-
responding absorption coefficients, the inset shows the Γ point energy gap as a function
of Aluminum concentration. (c) Refractive index and mode profile for monochromatic
light (1.46 eV) at normal incidence on a DBR with 20.5 Al0.1Ga0.9As/Al0.95Ga0.05As
pairs. (d) Reflectivity profile of the DBR.

where k1,2 = kz/n1,2. Fig. 2.1-(a) shows an example of photonic bandstructure of a
multilayer structure composed by quarter-wave optical thickness stacks (d1n1 = d2n2 =
λ0/4) with n1,2 = (1.0, 1.5) and ~ω0 = hc/λ0 = 1.5 eV. Interestingly, when approaching
the band gap opened around ~ω0, the real part of the wavevector reaches the edge of
the Brillouin zone, becoming a standing wave as shown in the insets of Fig. 2.1-(b).
Inside the gap, the wavevector acquires an imaginary component, corresponding to an
evanescent field in the multilayer film. Since the incident wave cannot propagate in this
gap, it is entirely reflected, and the multilayer structure behaves as a perfect mirror. It
is possible to demonstrate that the width of the gap δω is maximal for a quarter-wave
stack arrangement and increases as a function of the refractive index contrast between
the two layers [63], namely

δω

ω0
=

4

π
arcsin

( |n1 − n2|
n1 + n2

)
. (2.7)

At the mid-gap energy the partial waves created at each layer interface destructively
interfere since (n1d1 + n2d2)kz = πp with p ∈ Z (Bragg condition). Because of the
analogy with the diffraction from crystalline solids, these multilayer structures are
often referred as distributed Bragg reflectors (DBRs). In this manuscript, we focus on
AlxGa1−xAs based DBRs which are epitaxially grown in C2N laboratories and are the
core element of our semiconductor heterostructure design.

In Fig. 2.2-(a) we show the refractive index of AlxGa1−xAs alloys as a function
of the incident photon energy for different Al concentrations at 4K. The curves are
an adaptation of the room-temperature Sellmeier equations in references [64, 65] to
best fit the experimental data at cryogenic temperature, obtained for GaAs and AlAs
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2. Strong light-matter coupling in semiconductor heterostructures

in [66] and [67], respectively. The absorption coefficient, plotted in Fig. 2.2-(b), was
extrapolated from [68] and, for small Al concentrations, we assumed that the absorption
spectrum does not change profile, but shifts in energy together with the Γ-point gap
of the AlxGa1−xAs alloy. The vertical dashed line corresponds to the bulk GaAs gap
EΓ = 1.519 eV.

When considering a finite number of layers, optical absorption, finite angles of in-
cidence and the wavelength dependence of refractive index, it is common to rely on
generalized version of the characteristic (or ”transfer”) matrix (2.5) for the calculation
of the optical response of the multilayer structure [69]. In Fig. 2.2-(c) we show the re-
fractive index profile of a DBR reflector formed by 20.5 layer pairs, with x = (0.10, 0.95)
and a central wavelength λ0 = 850 nm. The black profile shows the (instantaneous)
electric field profile for a TEM wave at normal incidence and oscillating at the mid-gap
frequency. Fitting the peaks of the electric field we derive the characteristic penetration
depth in the mirror LDBR = 426 nm, well approximated by the analytical expression
LDBR ∼ λ0/4(n1 − n2) [70, 71]. This quantity is important for the definition of the
mode volume in dielectric microcavities. Fig. 2.2-(d) shows the normal incidence reflec-
tivity spectra of the DBR. Remarkably, even with 20.5 pairs (∼ 2.7 µm total thickness)
the reflectivity at λ0 reaches R0 ≈ 0.9994.

2.1.2 Dielectric Fabry-Perot Microcavities

If now we perturb the DBR periodic layer structure by inserting midway a defect
layer of optical thickness (d3n3) ≈ λ0 it is reasonable to expect, on the basis of the
band-structure description of the previous section, that it will support a confined mode
evanescently coupled to the mirror edges, that is, a cavity mode. In Fig. 2.3-(a) we show
the refractive index profile of a structure formed by two x = (0.10, 0.95) DBRs with
28 and 32 periods, respectively, and separated by a λ0 optical thickness GaAs spacer.
We also include a 2 µm GaAs layer representing the substrate wafer and a quarter-
wavelength antireflective coating (right-most greenish layer). The shaded black line
shows the intensity profile of the confined optical mode excited by a normal incidence
TEM wave.

Fig. 2.3-(b) shows the reflectivity of the microcavity as a function of the incident
light energy. The pronounced dip at Ec = ~cλ0 = 1.459 eV corresponds to the cavity
resonance; see Fig. 2.3-(c) for a zoom-in around Ec. The spectral profile of the dip is
Lorentian with a linewidth γc ∼ 0.01 meV corresponding to a cavity finesse exceeding
105. Importantly, we notice thatR+T 6= 1 at resonance since we included absorption in
the transfer matrix calculation. When designing the microcavity structure it is impor-
tant to recount for absorption as it ultimately limits the maximal achievable finesse and
affects the peak transmission. The main absorption channels in such heterostructures
are the residual absorption (Urbach) tails near the semiconductor bandgap, roughness-
induced scattering at the interfaces and residual doping [68, 72, 73].

The cavity dispersion relation (2.3) holds also for dielectric microcavities, with the
only difference being the replacement of the cavity length Lc and refractive index nc
with two effective values [70]. The first modification (Lc → Leff) recounts for the elec-
tromagnetic field penetration depth inside the DBRs which -unlike the case of metallic
mirrors- is sizable, as Fig. 2.3-(a) demonstrates. More specifically, the effective cavity
thickness is Leff = (2LDBR + Lc) ≈ 1.09 µm, where LDBR corresponds to the decay
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Figure 2.3: Fabry-Perot microcavity. (a) Refractive index profile for a λ Fabry-
Perot cavity enclosed within two Al0.1Ga0.9As/Al0.95Ga0.05As DBRs with 28 (top) and
32 (bottom) pairs. The spacer and substrate are crystalline GaAs, the right-most
greenish layer is a Silicon Oxynitride λ/4 anti-reflective coating. The cavity mode
profile at resonance is traced in black. (b) Reflectivity spectrum of the cavity showing
a pronounced dip at E0 = 1.459 eV. (c) Reflectivity and transmission spectrum of the
cavity mode.

length of the electric field in the DBRs and Lc = λ0/nGaAs ≈ 0.24µm. In our case, Leff

is largely determined by LDBR, which is inversely proportional to the refractive index
contrast between adjacent layers. The second modification (nc → neff) takes in account
the non homogeneity of the refractive index landscape: neff can be computed weighting
the local refractive index by the normalized mode profile. For the cavity described in
Fig. 2.3 one gets neff = 3.36, consistent with the analytical estimate in [72].

An intriguing feature of dielectric cavities unveils when the DBRs central wavelength
differs slightly with respect to the spacer optical thickness. In Fig. 2.4 we consider such
a cavity, similar to the one described in Fig. 2.4, except for the reduced number of mirror
pairs and where an extra optical thickness δz is added to the cavity spacer. Fig. 2.4-(a)
shows the normal incidence transmission spectrum of this cavity for several values of δz
ranging between 0 and 100 nm, color-coded from red to blue. As expected, an increase
in Leff corresponds to a redshift of the resonance by δλc ∼ δz/4; correspondingly
the linewidth γ broadens since the DBR reflectivity is maximal only at the mid-gap
wavelength. The scaling of δλc and γ as a function of δz is presented in Fig. 2.4-
(b). For each value of δz, we calculate the resonance peak obtained separately for the
transverse-electric (TE) and transverse-magnetic (TM) linear polarization components,
at different values of the angle of incidence, allowing to retrieve two cavity dispersion
relations. The results are shown Fig. 2.4-(c) for δz = (0, 100) nm. Interestingly, we
observe an energy splitting between the TE and TM dispersion as soon as δz 6= 0. This
energy splitting, hereafter ∆so, is due to the angle and polarization dependence of the
penetration depth in the DBRs. In the small in-plane wavevector limit, ∆so ∝ k2 [71],
and for a given k, it increases linearly with δz with a slope of 1.30(2) meVµm, as shown
in Fig. 2.4-(d). Notice that the slope ∆so/δz depends on the DBRs design parameters.
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2. Strong light-matter coupling in semiconductor heterostructures

Figure 2.4: Polarization effects in microcavities. (a) Transmission spectra for a
Fabry-Perot cavity formed by two x = (0.10, 0.95) DBRs with 20 (24) pairs on the
top (bottom) mirror. The cavity spacer optical thickness is increased by an amount
δz. (b) Scaling of the resonance redshift and cavity linewidth as a function of δz. (c)
Calculated cavity dispersion relations at δz = 0 nm (left panel) and δz = 100 nm (right
panel) for both linear polarizations (TE-TM). (d) Scaling of the polarization-dependent
energy splitting ∆so/k

2 with δz. (e) Schematic representation of an isoenergetic cut
in momentum space trough the dispersion relation for the TE and TM components
(relative to the xz plane) of incident light. Corresponding effective magnetic field
(Heff) pattern along the elastic circle Ek = const. [74].

For a plane-wave whose polarization axis is fixed along either the TE(xz) or TM(xz)

polarizations (i.e. relative to the xz plane) an isoenergetic cut of the dispersion rela-
tion describes an ellipse in the in-plane wavevector space. Indeed, as the wavevector
direction is rotated from kx to ky, the TE polarization state relative to the xz plane
becomes the TM one for yz, see Fig. 2.4-(e). We can write the dispersion relation for
light with an arbitrary polarization state by decomposing it in the (TE− TM)xz basis.
This corresponds to an additional term to Eq. (2.4), in the form of a coupling between
the polarization and in-plane wavevector [75, 74, 37].

Hso =

∫
d2k

(2π)2

∆so

|k|2
[
σx(k2

x − k2
y) + 2σykxky

]
â†k,σâk,σ′ (2.8)

here, σx,y are Pauli matrices and σ, σ′ are the polarization states of the photons. Notice
that in this pseudo-spin (polarization) basis, Hso has only off-diagonal terms, whereas
the cavity dispersion relation of Eq. (2.4) corresponds to diagonal terms. This also
means that except when ∆so = 0, the eigenstates of a dielectric cavity are never cir-
cularly polarized. Furthermore, inserting the decomposition k = (k cosφ, k sinφ) in
Eq. (2.8), it can be rewritten as a coupling term between an effective magnetic field
Heff = ∆so(cos(2φ), sin 2φ), schematically represented in Fig. 2.4-(e), and the photon
polarization (pseudo-spin) [75]. For this reason Eq. (2.8) is often referred as an effec-
tive spin-orbit Hamiltonian. Such parallel has been thoroughly explored in literature,
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allowing for instance the observation of optical analogues of the Spin-Hall effect [76,
77, 78] and spin-vortex textures [79]. Other mechanisms leading to synthetic spin-orbit
interactions for photons are reviewed in [80]. In Chapter 4 we will capitalize on this
analog spin-orbit coupling to engineer the polarization properties of the optical modes
in microstructures presenting a discrete rotational symmetry.

2.2 Quantum well excitons

This section will focus on the description of the optical properties of semiconductor
heterostructures with a reduced dimensionality. In particular, we will consider few-
nanometer layers of InpGa1−pAs alloys embedded in a GaAs matrix. For reasons which
will soon be clear, such layers acts as a quantum well (QW) for the electronic exci-
tations, hosting hydrogen-like bound states which are optically active. InpGa1−pAs
QWs inherits several of their properties from the bulk material they are made of. In
particular, since both GaAs and InAs are direct bandgap semiconductors, close to high
symmetry points of their electronic bandstructure and for the small In concentrations
relevant in this manuscript, a study of bulk GaAs is sufficient to infer the properties
of InpGa1−pAs. The groundstate properties of bulk GaAs can be calculated within the
Born-Oppenheimer approximation, relying on the huge separation between the char-
acteristic timescales of the nuclear and electronic dynamics. With this assumption the
total hamiltonian is the sum of three terms Hi+Hie+He. We will not enter the details
of their expression which can be found in many introductory textbooks for solid-state
physics (e.g. [81]), but we want to briefly recall their physical origin. The first term
takes in account the interaction between nuclei and core electrons which determines the
form of the effective ion-ion interaction potential. The groundstate of Hi determines
zinc-blende crystalline structure of bulk GaAs, corresponding to two face centered cu-
bic Bravais lattices for each of the two atomic species translated by one quarter of the
cell parameter (≈ 5.65 Å). The second term Hie, describes the interaction between
valence electrons, which occupy the outer incomplete shells of the electron cloud and
the ions when they are displaced from their equilibrium positions (i.e. electron-phonon
interactions), and is responsible for the electronic energy relaxation mechanisms. In
III-V semiconductors at cryogenic temperatures this term can be either neglected, or
included at a perturbative level. The last term, He describes both the interaction
between electrons and ions frozen on their equilibrium positions and electron-electron
Coulomb interactions.

The solution of this latter many-body hamiltonian, alone constitutes a formidable
task. A standard approach [81] is to use a mean-field approximation where each valence
electron is subject to an averaged effective potential coming from the ions and the rest
of the electrons. The material-dependent effective potential is usually simulated within
the framework of density functional theory [82, 83, 84]. In this way, He becomes a single
particle (Kohn-Luttinger) hamiltonianHKLe for the electronic wavefunctions [85], which
can be diagonalized using a number of approximate methods detailed in [81, 86]. For
instance in Fig. 2.5-(a) we show the electronic bandstructure of GaAs obtained with a
k · p method in [87]. As a reference, the Brillouin zone in reciprocal space for a zinc-
blende type lattice is shown in the top-right part of the panel. In vicinity of k = 0 (Γ
point), a 1.519 eV energy gap opens between the highest valence band and the lowest
conduction band. One conduction and three valence band approach closely the gap
at the Γ-point. Indeed in a zinc-blende crystal, the valence electrons form four bonds
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Figure 2.5: GaAs electronic properties (a) Bandstructure of bulk GaAs computed
with a 30-band k · p method, adapted from [87]. Inset: first Brillouin zone of a zinc-
blende crystal. (b) Schematic representation of the conduction (e), heavy-hole (hh),
light-hole (lh) and split-off (so) bands within a parabolic band approximation.

arranged in a tetrahedral covalent bonding structure. Since the incomplete outer shell is
4s24p1 for Gallium and 4s24p3 for Arsenide, valence electrons have p-type character in
their ground state forming sp3 hybridized covalent bonds, whereas the conduction band
originates from s-type orbitals [81]. If we restrict ourself to these four bands in vicinity
of this high-symmetry point in reciprocal space, the bands can be approximated using
a second order expansion in small wavevectors [86]. The parabolic dispersion relation
for the lowest conduction band reads

Ec(k) = EΓ +
~2k2

2m∗c
. (2.9)

Here EΓ is the bandgap energy and m∗c is the effective mass for an electron in the
conduction band. In a similar fashion, for the three other valence bands

Ev,i(k) = −Ei(0)− ~2k2

2m∗i
. (2.10)

Two of the bands, often referred as heavy-hole (hh) and light-hole (lh) bands for
k = 0 are degenerate at zero energy but have different effective masses m∗hh > m∗lh,
the third, or split-off (so) band, lies below the other by Eso(0) = 0.341 eV. This
parabolic four-band model is schematized in Fig. 2.5-(b). Both the energy separation
of the so-band, and the different values of the effective masses, find a physical origin
in spin-orbit interaction term of the single electron Kohn-Luttinger Hamiltonian [86].
This interaction indeed depends on the specific angular momentum of the orbitals
forming each band. Indeed, the conduction band has s-type Bloch orbitals with orbital
angular momentum ` = 0 and electron spin sz±1/2, therefore total angular momentum
|J, Jz〉 = |1/2,±1/2〉. Having the valence bands a p-type character |`| = 1 and from the
composition rules we get three doubly degenerate bands: hh with |3/2,±3/2〉, lh with
|3/2,±1/2〉 and so with |1/2,±1/2〉. A similar reasoning can be applied to bulk InAs.
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2. Strong light-matter coupling in semiconductor heterostructures

EΓ (eV) Eso (eV) m∗c/m0 m∗hh/m0 m∗lh/m0 m∗so/m0

GaAs 1.519 0.341 0.063 0.51 0.082 0.15
InAs 0.420 0.41∗ 0.023 0.41 0.026 0.16∗

Table 2.1: Bulk GaAs and InAs Γ-point parameters: effective masses are ex-
pressed in units of the rest electron mass m0. All values are stated for T < 10 K,
except the ones marked with a star symbol, which were measured at room tempera-
ture. Band gaps are taken from [88, 89], the other parameters summarize [84, 90, 91,
92].

The fundamental parameters of this four band model are summarized in Tab. 2.2 for
the two materials. Since the Fermi energy of a semiconductor lies within the bandgap,
its ground state has insulating character at zero temperature, having the valence bands
completely filled. The first excited state of a semiconductor, consists in the promotion
of one valence band electron to the conduction band, thus creating a vacancy (hole)
in the valence band which can be effectively seen as a positively charged particle [86,
81]. Hereafter we will neglect the split-off band excitations since they have significantly
larger energies than the hh and lh, and we are interested only in E ∼ EΓ excitations.

When an electron is promoted from the top of valence band to the bottom of the
conduction band, it feels a mutual attraction to the hole due to Coulomb interaction.
The Hamiltonian for the electron-hole system is

H = EΓ +
p2
e

2m∗c
+

p2
h

2m∗h
− e2

κ|re − rh|
(2.11)

where pe,h and re,h are the momentum and position operators of the electron and hole, e
is the electric charge quantum and κ/4π = εε0 the static dielectric permittivity of GaAs
(ε = 12.4), accounting for the screening of Coulomb interaction due to background
electrons. Eq. (2.11) can be separated in a free-particle term for the center of mass
dynamics and a hydrogen-like problem for the relative motion of the electron-hole pair
[86]. The solution of the associated Shrödinger problem is known: the eigenmodes
of the system are hydrogen like electron-hole bound states, called excitons. Denoting
M = m∗e + m∗h the total mass, µ = m∗em

∗
h/M the reduced mass of the electron hole

pair and aB = ~2κ2/µe2 ≈ 12 nm the fundamental exciton Bohr-radius, the dispersion
relation for a bulk exciton with principal quantum number n yields

Ex(K) = EΓ +
~2K2

2M
− R∗

n2
(2.12)

where K is the center of mass wavevector and R∗ = ~2/2µa2
B ≈ 4.8 meV is the Rydberg

constant for the exciton. Notice that kBT � R∗ in order to observe these bound
states, which are otherwise readily ionized by phonons. Using the angular momentum
composition rules for the electron-hole pairs one finds that excitons can have a total
angular momentum J = 0, 1, 2. Since the semiconductor groundstate has J = 0 and
photons have a total angular momentum J = 1, the only optically active transitions are
towards J = 1 ”bright” excitons, while the other exciton are dark-states. For instance
J = 2 heavy-holes and J = 0 light-holes excitons are dark. Notice that this picture is
only exact at the Γ point where HKLe commutes with the angular momentum operators
J2 and Jz.
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Figure 2.6: InGaAs Quantum Wells. (a) Graphic representation of a quantum well
for electron and holes, formed by a few nanometer thick layer of a material embedded
in a host semiconductor matrix characterized by a larger bandgap. (b) Dependence on
the molar Indium fraction (p) of the bandgap (EΓ, solid line, from [89, 93]) and of the
conduction band mismatch (∆Ec, dashed line, from [94, 95, 96]) for a GaAs/InGaAs
heterointerface. (c) Calculated energies (dotted lines) and envelope functions χe,h(z)
of electrons and heavy-holes (solid lines) along the growth axis z of a p = 0.05 het-
erostructure. Correspondingly, solid gray lines trace the conduction and valence band
profile.

2.2.1 Excitons in shallow QWs

We shall now consider a InpGa1−pAs layer of thickness L embedded in a GaAs matrix
and lying parallel to the xy plane, see the sketch in Fig. 2.6-(a). In this layer, the
bandgap energy EΓ is locally lowered with respect to GaAs, because of the presence of
InAs in the alloy. The scaling of EΓ depends on the relative In molar fraction p and is
traced as a solid line in Fig 2.6-(b) (adapted from [89, 93]). If we call ∆EΓ bandgap
offset along z, the offset in the valence and conduction band at the Γ point satisfies
∆EΓ = ∆Ev + ∆Ec, with relative weights determined by the matching of the Fermi
energies at the heterointerface [81]. In Fig 2.6-(b) we plot ∆Ec/∆EΓ as a function of p
(dashed green line), interpolating between the results of refs. [94, 95, 96]. An example
of the Γ-point conduction and valence band profile along z is shown in Fig 2.6-(c) for
a 15 nm thick In0.05Ga0.95As layer (solid black lines).

If we model the conduction and valence band offsets with two smoothed box-like
potentials Ve,h acting on the electron and hole ze,h position, label E′Γ the bandgap in
the QW and we keep for the rest the notations used for Eq. (2.11), the Hamiltonian of
the system has the following form

H = E′Γ +
p2
e

2m∗c
+

p2
h

2m∗h
− e2

κ|re − rh|
+ Ve(ze) + Vh(zh). (2.13)

Due to the in-plane translational invariance the center of mass momentum along the
QW plane is a good quantum number. Then, Hamiltonian can be separated in four
terms H = Hx

0 + Hez + Hhz + HxC . The first term Hx
0 = E′Γ + ~2K2/2M encodes the

in-plane center of mass motion (M = m∗e + m∗h) and is separable, unfortunately the
other three generally are not.
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2. Strong light-matter coupling in semiconductor heterostructures

Denoting µ the electron-hole system reduced mass and ρ the relative distance of
electron and hole in the QW plane, one can write them as

He,hz =
p2
z

2m∗
+ Ve,h(z) (2.14)

HxC =
p2
ρ

2µ
− e2

κ
√
ρ2 + (ze − zh)2

(2.15)

The first two terms are particle in a box problems, whereas the last term takes
into account the relative in-plane motion and Coulomb interaction of electron and
holes and is non-separable due to the (ze − zh) dependence. This term can be safely
neglected if two conditions are met. First, electron and hole have to be tightly confined
in the QW layer and second, the quantum well thickness LQW has to be smaller or
order of the bulk-exciton Bohr radius [86]. In this case one can solve separately the
three Shrödinger equations associated to each hamiltonian. Two of them are particle
in a box problems for the electron and hole with eigenmodes χe,h(z) and the third
is a radial hydrogen equation in two dimensions with solutions φ(ρ). Therefore the
exciton envelope wavefunction has the form ψx = N−1/2eiK·R χh(z)χe(z)φ(ρ) where N
is a normalization constant, K and R are the center of mass position and wavevector,
respectively. The QW exciton dispersion relation reads

Ex(K) = E′Γ + ∆Ee + ∆Eh +
~2K2

2M
− R∗2D

n2
(2.16)

Except for the offsets ∆Ee,h due to the electron and hole confinement along the
QW direction (∝ L−2

QW ), the main difference here is that the Bohr radius for the 2D
Hydrogen problem is two times smaller than the bulk one, correspondingly, the exciton
binding energy R∗2D is four times larger. Also, because ∆Eh is inversely proportional
to the effective mass of the particle, light- and heavy-holes split in energy even at
K = 0. Since we are interested only in the fundamental excitation of the system, we
will hereafter focus only on heavy-hole excitons.

More generally, if the thin QW hypothesis is dropped then ψx becomes non separable
in (ze − zh) and ρ. Assuming that the electrons and holes are still tightly confined in
the quantum well, i.e. Ee,h � ∆Ec,v, one can still write χh(z) = χe(z) ∼ cos(πze,h/L)
but φ now depends both on ze,h and ρ. Using a variational ansatz, one can still find
the QW exciton Bohr radius and binding energy, see for instance ref. [97]. On the
other hand, if both LQW ∼ aB and the electron and hole potential wells are shallow,
the envelope functions χe,h(z) present important evanescent tails and a rather lengthy
analytic expression, significantly complicating the calculation.

An alternative approach (except when LQW /aB � 1) relies on the definition of
an effective pseudo-potential for the relative in plane motion of electron and holes
[98]. First, one needs to solve the particle in a box problem for the electron and hole
in absence of the Coulomb term and get their approximate envelope wavefunctions
χe,h(ze,h), see Fig. 2.6-(c). Then we calculate the pseudo-potential as

Veff(ρ) = −e
2

κ

∫
dzedzh

|χe(ze)|2|χh(zh)|2√
ρ2 + (ze − zh)2

(2.17)
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Figure 2.7: Shallow InGaAs QW properties. (a) The pseudo potential defined by
Eq. (2.17) -in gray- is plotted together with the associated lowest energy radial eigen-
function φ(ρ) (light-blue profile). Inset: QW parameters. (b,c,d) Show the calculated
fundamental hh-exciton energy (b), Bohr radius (c) and binding energy (d) as a func-
tion of the QW thickness for four representative values of the In fraction, ranging from
0.04 to 0.09 and color-coded from blue to green. All the results correspond to the ten
self-consistent iteration of the pseudo-potential algorithm.

In this way we marginalize ze,h and the Hamiltonian HxC becomes again a ra-
dial problem. HxC lowest eigenvalue defines the exciton binding energy EB and the
corresponding radial eigenmode φρ can be used to deduce the in-plane Bohr radius
as aB ≈

∫
dρφ(ρ)/

∫
dρφ(ρ)/ρ. If necessary, the procedure can be iterated self-

consistently, by deepening Ve,h(z) by half EB, to simulate the effect of the binding
energy on the penetration depth of χe,h in the GaAs matrix.

In Figure 2.7 we summarize the result of a systematic numerical study on shallow
InGaAs quantum wells (i.e. small Indium content). Panel (a) presents the pseudo-
potential Veff(ρ) calculated for a 15nm In0.05Ga0.95As QW associated to the electron
and hole envelope wavefunctions shown in Fig. 2.6-(c). The fundamental eigenvalue
associated to the radial problem is traced with a dashed line and the corresponding
eigenmode profile has been shaded in light-blue colors. In Fig. 2.7-(b) we trace the
calculated K = 0 energy for the heavy-hole exciton (including the binding term) as
a function of the well thickness and for different values of the Indium molar fraction
(0.04 < p < 0.09). Finally, in Fig. 2.6-(c,d) we show, for the same parameters, the
Bohr radius and heavy-hole exciton binding energy. For large values of the quantum
well thickness they both tend to the bulk values aB ≈ 12 nm and EB ≈ 4.8 meV,
below LQW ∼ 6 nm instead there is a strong deviation with respect to the quasi-2D
exciton analytical predictions. This is due to the fact that in shallow QWs the electron
and hole confinement energies ∆Ee,h become of the same order of the band offsets
∆Ec,v. In this situation, long evanescent tails develop in the GaAs matrix, which tend
to delocalize the electron and holes, thus increasing the effective exciton Bohr radius
and consequently decreasing the binding energy [93, 98].
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2. Strong light-matter coupling in semiconductor heterostructures

Later on in this manuscript we will work with semiconductor microcavities em-
bedding a quantum well. Two types of quantum wells have been used: 17 nm thick
In0.04Ga0.96As and 15 nm thick In0.05Ga0.95As. From Fig. 2.7 we see that for both QWs
a representative value of the Bohr radius is 9 nm. The estimation of the exciton Bohr
radius is particularly interesting, as it both allows to estimate the exciton oscillator
strength and to get an order of magnitude of resonant exciton-exciton interactions.
The first is fundamental to quantify the coupling of exciton to electromagnetic radi-
ation [70, 99]. The latter is responsible for the large Kerr-type nonlinearity of cavity
polaritons [37, 100].

2.2.2 Optical selection rules

As previously anticipated, some exciton states are bright in the sense that angular
momentum selection rules allow them to be both optically excited and to sponta-
neously emit a photon during electron-hole recombination. These optical transitions
must respect an additional set of rules and have a magnitude depending on the exciton
microscopic details. This section summarizes the main results, whose derivation can
be found in [70, 81, 86, 101]. The description of light-matter interactions relies on the
substitution of a minimal coupling ansatz p→ (p + eA/c) in the exciton hamiltonian,
where p is the electron momentum, e its electric charge and A the electromagnetic
vector potential. This yields an additional light-matter interaction term

HI = −ep ·A
m

+
e2|A|2

2m
≈ −ep ·A

m
(2.18)

where m is the electron mass and in the last passage we dropped the quadratic term in
the vector potential, which is negligible for weak fields and as long as the wavelength of
incident light is much larger than the Bohr radius. Within this dipolar approximation
the optical selection rules are the following [81]:

1 - In-plane linear momentum must be conserved in the emission or absorption pro-
cess due to the in-plane translational symmetry of the problem. An exciton with
in-plane wavevector K can couple only with a photon with the same in-plane
momentum kγ . Equating the photon energy to the exciton dispersion relation
with K = kγ (i.e. neglecting the radiative linewidth), tells us that exciton states
with K & 30 µm−1 are non radiative.

2 - Angular momentum must be conserved, which is true only for ”bright” J = 1
excitons, at least in vicinity of the Γ point.

3 - Due to the parity of the confined wavefunctions in electron and hole sub-band
with principal quantum number ne and nh, the only allowed transition are those
satisfying (ne + nh)/2 ∈ N.

To quantify the strength of the exciton interaction with the electromagnetic field
we need to compute the probability per unit of time of having the photon absorbed
in the QW or reciprocally emitted in the exciton recombination. The calculation of
this scattering amplitude can be done using the Fermi golden rule [70, 86]. After the
calculation, one can associate this rate to an oscillator strength per unit area

fosc

S
=

2

mE
|〈uv|ε · p|uc〉|2 |φ(0)|2

∣∣∣∣
∫
dz χe(z)χh(z)

∣∣∣∣
2

(2.19)
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Figure 2.8: QW optical response (a) Oscillator strength per unit area of a shallow
InpGa1−pAs QW as a function of the well thickness. (b) Excitonic contribution to the
static dielectric function of a 15 nm QW with a 5% In fraction. Here, Ex and Γx are
the exciton energy and homogeneous linewidth, respectively.

where E is the transition energy, uc,v are the valence and conduction Bloch bands
corresponding to the transition, ε is the polarization vector associated to the vector
potential, p the electron momentum, φ is the eigenmode solution of the exciton radial
problem and χe,h are the envelope wavefunctions for the electron and hole along z. The
Kane matrix element |〈uv|ε ·p|uc〉| is the only difficult one to calculate and is related to
the specific electron-hole transition [86, 93]. Since radiative modes are limited in close
vicinity of the Γ point an approximate value for this scattering term can be calculated
and gives 2|〈uv|ε · p|uc〉|2/m ≈ 25.7 eV [99]. All the other overlap terms are easy to
calculate using the numeric pseudo-potential technique detailed in the previous section.
It is interesting to point out that since the exciton fundamental state presents a radial
probability distribution which is roughly exponential [see Fig. 2.7-(a)], it means that
|φ(0)| is inversely proportional to the exciton Bohr radius. Therefore, the oscillator
strength scales with a−2

B and is larger for heavy-hole than for light-hole excitons. In
Fig. 2.8-(a) we plot the oscillator strength calculated with the pseudo-potential method
for the same quantum well width and Indium fraction parameters of Fig. 2.7. A typical
value for our experiments is thus fosc/S ≈ 0.037 nm−2. The oscillator strength is also
related to the emission/absorption probability per unit of time, or radiative exciton
lifetime τx = 2~/Γx. Denoting α the fine-structure constant of the electromagnetic
field, and m0 the electron rest-mass, the homogeneous exciton linewidth reads [70]

Γx = 2α
(~c)2

(m0c2)

fosc

S
(2.20)

For the QW parameters relevant to our experiments we get Γx ≈ 0.04 meV (τx ≈ 20 ps).
Together with the oscillator strength, Γx allows to build a simple Lorentz-Drude linear
dispersion model describing the optical response of a semiconductor QW at the level of
its dielectric polarizability [70, 93]. This can be done by inserting an energy dependent
contribution to the static dielectric constant of the QW material ε∞ with the form

ε(E) = ε∞ +
fosc

SLQW

e2~2

m0ε0Ex

1

(Ex − E)− iΓx
(2.21)

notice that we are assuming Ex � Γx and |Ex−E| � (E+Ex). As an example we plot
the real and imaginary part of (ε− ε∞) in Fig. 2.8-(b). Inhomogeneous broadening of
the exciton transition, described by a probability density function P(E′x) can be taken
as well into account defining εinh(E) =

∫
dE′x ε(E − E′x)P(E′x).
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2.2.3 Exciton quantization and interactions

For small exciton densities, each fermionic electron-hole state is weakly occupied: it is
possible to use a bosonization procedure to show that excitons behave at the leading
order as composite bosons described by ladder operators (b̂k, b̂†k) whose commutator

satisfies 〈[b̂,b̂†]〉 ≈ 1 [102, 103, 101]. Since the number of available states in the QW
scales roughly as the in plane spatial extent of the electron and hole wavefunction, this
approximation is reasonable if n0a

2
B � 1 [101, 104], that is, when the exciton density

n0 is such that the average spacing between excitons is much larger than their Bohr
radius. Considering a typical Bohr radius of 9 nm for the QW parameters relevant
to this manuscript, one gets n0 � 1.2 · 1012 cm−2. At higher densities the fermionic
nature of the elementary constituents of the exciton starts to play a role: phase-space
filling and the screening of the electron-hole Coulomb interaction, gradually leads to
the dissociation of excitons into a electron-hole plasma [105, 106].

When the exciton density is significantly below the critical value n0, a bosonization
procedure allows to write also the many-body states in the excitonic basis [107, 34, 105,
103]. The many-body electron-hole wavefunction is used only to evaluate the scattering
amplitudes of each interaction channels. The microscopic description of the different
processes is rather complex, we refer to [107, 34, 105, 100, 108, 109] for the details. For
the purposes of this manuscript, what is important is that for n0a

2
B � 1 and relative

wavevectors q such that qaB � 1 (e.g. for radiative exciton states), the dominant
interaction channel is direct (Pauli) exchange [107]. The exciton hamiltonian can thus
be written as the sum of two terms. The first, corresponds to the free exciton part

Hx =

∫
d2k

(2π)2
Ex(k)b̂†k,σ b̂k,σ (2.22)

where Ex(k) is the parabolic in-plane dispersion of the exciton. The second, includes
resonant exchange interactions, and can be written in the form of a two-body contact
interaction [37, 34]

Hxx =
1

2

∫
d2q

(2π)2

∫
d2k d2k′

(2π)4
U qσ,σ′ b̂

†
k−q,σ b̂

†
k′+q,σ′ b̂k′,σ′ b̂k,σ

=
1

2

∫
d2rU0

σ,σ′ b̂
†
r,σ b̂
†
r,σ′ b̂r,σ′ b̂r,σ

(2.23)

The latter expression follows by approximating U q
σ,σ′ with U 0

σ,σ′ for qaB � 1 and

defining b̂r,σ as the Fourier conjugate of b̂k,σ [37, 107]. The rotational invariance of a
contact potential ensures that the scattering is spin-preserving. In particular the triplet
channel (parallel spins) has the largest magnitude and is repulsive, whereas the singlet
channel (opposite spins), is attractive [109]. The triplet channel interaction strength
per unit surface was estimated at the leading perturbative order in [107, 34] yielding
U = 6e2aB/ε or ∼ 6µeVµm−2 for the QW parameters relevant to the manuscript.
This estimate implicitly assumes a 2D exciton wavefunction, which may be inaccurate
to describe the wide QWs investigated in this manuscript where LQW ∼ 2aB. Repeating
the calculation in the limiting case of 3D exciton, E. Estrecho and collaborators found
the an approximate upper bound U3D ∼ 7U2D [110].
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2. Strong light-matter coupling in semiconductor heterostructures

Figure 2.9: Light-matter coupling in semiconductor microcavities (a) Schematic
representation of a semiconductor microcavity embedding a QW at the antinode of the
optical field. (b) Real and imaginary part of the eigenvalues of the coupled oscillator
model as a function of the coupling strength g0. The oscillator parameters are ω1/ω2 =
1, γ1/ω1 = 10−3 and γ2 = 0. Here ω̃ is the average complex frequency of the bare
resonator modes and ∆̃ is their complex detuning.

2.3 Exciton Polaritons

In the two previous sections we separately presented the properties of semiconductor
Fabry-Perot cavities and quantum wells. We explained that QW excitons are coupled
to the electromagnetic field, provided some optical selection rules are verified. In par-
ticular, the in-plane wavevector and spin angular momentum must be conserved for
radiative recombination processes. Since the two semiconductor heterostructures are
intrinsically compatible we can now imagine embedding a QW in vicinity of an antinode
of the microcavity field, see Fig. 2.9-(a). For an ideal cavity with no linear polarization
splitting (cf. Sec. 2.1.2), only two degenerate circularly polarized modes exist for a
given in-plane wavevector. Each radiative channel of an exciton couples to a single
optical mode âk,σ � b̂k,σ. This allows us, without loss of generality, to temporarily
consider just one these modes, for instance k = 0 and σ = +1. Once a photon is
emitted in the cavity mode there are only two possibilities. First, it can escape the
cavity at a rate γc proportional to the cavity linewidth. Second, it can be converted
back to a QW exciton at a rate g0 proportional to the exciton oscillator strength [111,
112].

The physical consequences of light-matter coupling between QW excitons and cavity
photons depends drastically on the ratio of the recombination rate g0 with respect to
all the other decay channels. To have an insight on the possible scenarios we can rely
on a simple semiclassical model describing exciton and photons as coupled Lorentz
oscillators, leaving the quantum description for the next pages [70, 71]. A semiclassical
description is indeed valid in the limit of low exciton densities as both the cavity and
exciton hamiltonian are harmonic and the (dipolar) coupling between the two is bilinear
in the fields. We denote ω1,2 the resonant frequency, and γ1,2 the damping rate of the
two coupled Lorentz oscillators. The linear response of the system at a frequency
ω � γ1,2 is governed by the solutions of a secular equation |H−ωI| = 0 [111, 113], the
determinant yields

(ω1 − iγ1 − ω)(ω2 − iγ2 − ω) = g2
0 (2.24)
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where g0 is the relative coupling strength. Notice that if resonator 1 (2) describes
the photon (exciton) field amplitude, γ1 is simply the cavity decay rate; γ2 instead,
is a phenomenological term corresponding to all non-radiative decay channels of the
exciton, since the radiative recombination rate is already included in the coupling term
g0 [111]. The solutions of Eq. (2.24) can be expressed in terms of the average complex
frequency 2ω̃ = (ω1 + ω2)− i(γ1 + γ2) and detuning ∆̃ = (ω1 − ω2)− i(γ1 − γ2) as

ω± = ω̃ ± 1

2

√
4g2

0 + ∆̃2 (2.25)

In Fig. 2.9-(b) we show the real and imaginary part of the solutions ω± as a function
of the coupling strength g0 for two resonant oscillators ω1 = ω2 characterized by the
loss rates γ1/ω1 = 10−3 and γ2 = 0. Interestingly, since the square root in Eq. (2.25)
is imaginary for g2

0 < (γ1 − γ2)2/4, the two bare oscillator resonances are not changed
by the coupling term. The progressive increase with g0 of the decay rate Im(ω−) of the
matter-like resonance can be seen as the classical analogue of the Purcell effect [112,
114, 115]. This scenario, characterized by a perturbative effect of the coupling to the
dynamics of each oscillator, is often called weak coupling regime.

Otherwise, if g2
0 > (γ1 − γ2)2/4, the decay rates of the normal modes of the system

coalesce Im(ω±) = (γ1 + γ2)/2 while their frequencies split-up. In other words the
energy exchange between resonators is so efficient that both mode experience the same
average loss even if γ1 6= γ2. At the same time, coherent energy exchange (Rabi
oscillations) between the two renormalizes the bare resonator frequencies, the normal
modes of the system now corresponding to collective in-phase and out-of-phase linear
superpositions of the bare resonator eigenmodes [111]. In this strong-coupling regime,
the new hybrid eigenstates of the system, often called polaritons, inherit properties
both from the cavity and the exciton field [31].

It is worth mentioning that for g2
0 = (γ1−γ2)2/4 the eigenvalues ω± are degenerate.

The non hermitian matrix associated to the secular equation (2.24) can no longer be
diagonalized since the ω± manifold parametrized by ∆̃ is non analytic [113]. Such
singularities in the complex detuning parameter space are called exceptional points
[EP in Fig. 2.9-(b)] and are gathering renewed interest for instance in the context
of PT symmetric photonic systems in photonics (i.e. when γ1 = −γ2), anomalous
dispersion engineering in metamaterials, or in the design of non-reciprocal devices, see
for an overview [116, 117]. Moreover, if g0 becomes of the order of ω1,2, one enters
the so-called utrastrong coupling regime, where the coupled-Lorentz oscillator picture
breaks down. In this regime, only recently demonstrated in experiments [118, 119],
a quantum treatment of light-matter coupling predicts spectacular effects such as the
breakdown of the electromagnetic gauge invariance [120], for a viewpoint we refer to
[121, 122].

In semiconductor microcavities embedding a single QW the light-matter coupling
rate g0 is governed by the exciton oscillator strength and cavity length. In the limit of
symmetric and large cavity DBR reflectivity a semiclassical calculation yields [111]

g0 ≈
√

2Γxc

~neffLeff
(2.26)

where Γx is the exciton radiative linewidth [Eq. (2.20)] and neffLeff is the effective op-
tical thickness of a dielectric Fabry-Perot cavity. The dependence in Γx is intuitive: a
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2. Strong light-matter coupling in semiconductor heterostructures

faster radiative decay rate means faster exciton-photon interconversion. The propor-
tionality to the cavity free spectral range, or inverse round-trip time τrt = 2c/nL, can
be as well understood in a semiclassical picture as the average time before an emitted
photon crosses the QW plane being possibly re-absorbed: the smaller τrt, the larger
g0. Recalling the values of Γx, neff and Leff derived in Sections 2.1-2.2 for a typical
microcavity embedding a single 15 nm thick InGaAs QW with a 5% In fraction we get
g0 ≈ 1.7 meV, roughly two orders of magnitude larger of the typical cavity linewidth
γc ∼ (20− 30) µeV. We can therefore expect these semiconductor heterostructures to
operate deep in the strong light-matter coupling. According to Eq. (2.25) the energy
splitting between the hybrid normal modes of the system is ~ΩR ≈ 2~g0. Such large
expected values of the light-matter interaction constant in semiconductor heterostruc-
tures motivated early experimental works, culminating in 1992 with the observation of
the exciton vacuum Rabi splitting in a semiconductor microcavity [32].

2.3.1 Hamiltonian description

In the low density regime the semiclassical and quantum descriptions are equivalent,
because of the bosonic nature of the system excitations and of the harmonicity of the
excitation ladder. Otherwise, when exciton-exciton interactions become sizable, this
picture may become inaccurate. In this section, we move to a second quantization de-
scription of the cavity and exciton fields which is the starting point to comprehensively
describe the dynamics of the system. Since the light matter coupling rate satisfies
g0 � γc,x, we can assume that losses have a perturbative effect on the eigenstates of
the system, thus their contribution is temporarily neglected, leaving the open quantum
system description for a later discussion. For simplicity we set to zero the polarization
splitting term in the cavity dispersion relation: the pseudo-spin degree of freedom be-
comes degenerate and is thus omitted in the notation. Then, the total hamiltonian is
given by the sum of the bare photon [Eq. (2.4)], bare exciton [Eq. (2.22)-(2.23)] and
light-matter coupling term Hcx.

Hcx =

∫
d2k

(2π)2

~ΩR

2

(
â†kb̂k + b̂†kâk

)
(2.27)

where the exciton (b̂k) and cavity photon (âk) ladder operators are evaluated at equal
in-plane momentum k due to the optical selection rules for QWs (cf. Sec. 2.2.2). Notice
that (âb̂+c.c.) terms are not included within a rotating-wave approximation, accurate if
ΩR/ωx,c � 1. The bosonic many-body state of the system is decomposed in a Fock state
basis |n̂c,k, n̂x,k′〉. The only term which couples the exciton and photon subspaces isHcx,
but only for equal k. The exciton-exciton interaction hamiltonian [Eq. (2.23)] instead
couples different wavevector components of the n̂x subspace. Dealing simultaneously
with this two features, without loss of generality, is difficult and greatly complicates
the notation.

We can proceed in two steps: first, we set interaction to zero and study the linear
eigenmodes of the system. Then, we introduce interactions in a specific scenario which
is relevant to the manuscript, that is, when we limit our study to a single polariton
branch. If Hxx = 0, a change of the basis is enough to put the total hamiltonian in a
diagonal form [31]. This new normal basis is associated to the operators (p̂, q̂), related
to the bare photon and exciton ones via the isomorphism
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Figure 2.10: Polariton dispersion relation (a,b,c) The upper and lower polariton
branches Eu,l are plotted against in-plane wavevector for three representative values
of exciton-cavity detuning: δcx = ΩR (a), δcx = 0 (b) and δcx = −ΩR (c). The
exciton fraction dependence on momentum is color-coded in each branch. Dashed lines
correspond to the bare cavity (Ec) and exciton (Ex) dispersion relations, in all the plots
~ΩR = 3.36 meV.

(
p̂k
q̂k

)
=

(
Ck Xk

−Xk Ck

)(
âk
b̂k

)
(2.28)

The Hopfield coefficients Ck, Xk, satisfy the condition |Ck|2 + |Xk|2 = 1, granting a
unitary character to the transformation and depend on the bare exciton-cavity detuning
δcx = (ωc − ωx) and Rabi frequency ΩR as

|Xk|2 =
1

2


1 +

δcx√
Ω2
R + δ2

cx


 = 1− |Ck|2 (2.29)

Under this transformation the total hamiltonian becomes

Htot =

∫
d2k

(2π)2
~ωl(k) p̂†kp̂k + ~ωu(k) q̂†kq̂k (2.30)

describing a system of free bosonic quasiparticles, obeying a dispersion relation identical
to Eq. (2.25) but where the oscillator frequencies ω1,2 are replaced with the exciton and
photon dispersion relations ωc,x(k), yielding

ωu,l(k) =
(ωc(k) + ωx(k))

2
± 1

2

√
(ΩR)2 + (ωx(k)− ωc(k))2 (2.31)

These branches satisfy ωu > ωl for all k, it is thus common to refer to them as the
upper and lower branches of the polariton dispersion. The term polariton indicates
the hybrid light-matter character of the quasi-particles excitation on these branches,
which are linear superpositions [Eq. (2.28)] of the cavity and exciton fields, weighted
by the Hopfield coefficients. In Fig. 2.10 we plot these polariton dispersion relations
for three values of exciton-cavity detuning δcx = (ΩR, 0,−ΩR), the exciton fraction
along each branch is color-coded. For negative detuning [Fig. 2.10-(c)] we can observe
the characteristic anti-crossing of the bands, which is one of the distinctive features of
strong coupling.
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2. Strong light-matter coupling in semiconductor heterostructures

From Fig. 2.10, we can get two useful informations. First, an expansion in small
wavevectors of the the lower branch allows to define within a parabolic band approxi-
mation the polariton effective mass. Some algebra yields

1

m∗l
=
|X0|2
M

+
|C0|2
mc

≈ |C0|2
mc

(2.32)

The last approximation is legitimate because the exciton mass M is much larger
than the photon effective mass mc. This tells us that, for δcx . 0, the lower polariton
effective mass is extremely light, being roughly four orders of magnitude smaller than
the electron rest mass. For instance at zero detuning m∗l ≈ 2mc ≈ 6.4 · 10−5me.
Correspondingly, the thermal de Broglie wavelength is expected to be significantly
larger for polaritons than standard bosonic atomic species, in principle allowing to
observe bosonic condensation at much favorable experimental conditions.

The second important observation supported by Fig. 2.10 is that, for the same in-
plane momentum, the upper and lower bands are never closer in energy than ~ΩR. For a
small exciton-cavity detuning, this statement is true even if one considers two different
wavevectors k and k′ = (k − q), such that (k, k′) � a−1

B . Provided that the total
exciton-exciton interaction energy for two given polariton modes is smaller than the
polariton band separation, which is the case in most experimental situations, one can
truncate the polariton basis to describe only interactions within polaritons belonging to
the lower band [37, 34]. The exciton-exciton interaction term becomes straightforward
to write since, after the truncation, b̂ = (Cq̂ −Xp̂) ≈ −Xp̂. Therefore, the polariton-
polariton interaction hamiltonian Hpp within the lower band has the same form of
resonant exciton interactions discussed in Sec. 2.2.3. The only difference is that the
interaction constant is now multiplied by the excitonic fraction of the lower polaritons
participating to the scattering event

Uqσ,σ′ = Xk−qXk′+qXk′Xk U
q
σ,σ′ (2.33)

Here the polarization indexes are necessary since the singlet channel couples polaritons
with different pseudo-spin components. Moreover, recalling that for qaB � 1 the
interaction constant is U qσ,σ′ ≈ U0

σ,σ′ , and working in vicinity of the lower polariton
band minimum, the interaction term can be approximated by the contact form [37,
107, 34]

Hpp =
1

2

∫
d2r U0

σ,σ′ |X0|4 p̂†r,σp̂†r,σ′ p̂r,σ′ p̂r,σ (2.34)

In summary, for small in-plane wavevectors, polaritons behave as free bosons with a
light mass of the order of few times the cavity photon effective mass (mc) and subject
to two-body contact-type interactions inherited via the excitonic component and thus
proportional to |X0|4.

We are now interested in deriving the mean-field equations governing the dynamics
of the system. Several ways are possible: one is to use an Hartree approximation of the
many-body state and minimize the free energy of the system imposing the wavefunction
normalization as Lagrange multiplier [123, 124]. Alternatively, one can write down the
action of the system

S =

∫
dt

∫
d2r

∑

σ,σ′

i~ p̂†r,σ∂t p̂r,σ − (Hp +Hpp + Vp) (2.35)
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Where Vp is a stationary potential, added for the moment by hand and accounting
for the possibility of modifying the energetic landscape of the microcavity. Then, we
can impose that the infinitesimal variation of the action

δS =

∫
dt

∫
d2r

∑

σ,σ′

(
δS
δp̂σ

δp̂σ′ + δp̂†σ′
δS
δp̂†σ

)
(2.36)

is vanishing for a test field ψr,σ (saddle-point approximation), which must satisfy the
Euler-Lagrange equation of motion for ψ. Since ψr,σ minimizes the action at any
time along the dynamics, we are neglecting all fluctuations. Indeed, according to the
Ehrenfest’s theorem, the evolution of the expectation value of quantum observables, up
to second order, follows the equations of motion of the associated classical hamiltonian.
Using Eq. (2.35), (2.36) and

∫
d2r p̂†∇2p̂ = −

∫
d2r∇p̂† ·∇p̂, within the parabolic band

approximation of the polariton hamiltonian yields

i~∂tψσ =

[
~ωl(0)− ~2∇2

2m∗l
+ V (r) + (U tψ∗σψσ + Usψ∗σ′ψσ′)

]
ψσ (2.37)

Here, we omitted the explicit dependence of ψ on the spatial coordinates. Further-
more, since the triplet channel U t typically dominates over the singlet channel Us [109],
the above equation can be reduced to a scalar equation for the evolution of ψ(r). In this
scalar form Eq. (2.37) is identical to the Gross-Pitaevskii equation (GPE) describing a
pure Bose-Einstein condensate of interacting particles within a Hartree approximation
and the hydrodynamic nucleation of vortices in liquid Helium [124]. Indeed, a change
of variables allows writing these equations in an alternative form, elucidating the par-
allel with hydrodynamic equations. We start by writing ψ =

√
ρeiφ, where ρ is the

local polariton density and φ the field phase. Multiplying the scalar version of Eq. 2.37
by ψ∗ and subtracting its complex conjugate, one gets the continuity equation for the
polariton density

∂tρ+∇ · (ρv) = 0 (2.38)

where v = ~∇φ/m∗l is the velocity of polaritons. This continuity equations tells us that
motion of polaritons corresponds to a flow, since the velocity is the gradient of a scalar
quantity. Similarly, inserting ψ =

√
ρeiφ in Eq. 2.37 and taking its real part, one can

derive an equation for ∂tφ, which can then related to v. Some algebra yields

m∗l ∂tv +
1

2
m∇2v =

~2

2m∗l
∇
(
ρ−1/2∇2√ρ

)
−∇V − U t∇ρ. (2.39)

For and an irrotational flow it is possible to reduce this expression to the Euler
equation for an inviscid fluid [123]. This parallel earned polaritons the evocative name
of quantum fluids of light [37]. Due to the presence of a nonlinear term, the Gross-
Pitaevskii equation describes a surprisingly vast phenomenology, from nonlinear waves
in optics to fluid mechanics [125, 126, 124]. Moreover, polaritons are not a conservative
system due to losses, which conversely means polariton can also be injected (or pumped)
in the microcavity.

At a semiclassical level, losses can be included in Eq. (2.37) introducing a non-
Hermitian term in the polariton hamiltonian producing a decay over time of the average
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polariton density [37, 70]

HLoss = −iγ
2
〈p̂†p̂〉 (2.40)

where γ is the polariton linewidth. This amounts to an additional imaginary term
−iγψ/2 in the GPE, damping the polariton density ρ over time. This is a purely
phenomenological inclusion, but shall be later justified within the Lindblad master
equation formalism in Sec. 2.4.4.

We now focus on the choice of the excitation scheme, as the behavior of the system
in the high density regime, critically depends on it. This contextually offers us a key to
organize the variety of phenomena which can be observed in exciton-polariton systems.

2.3.2 Quasi-resonant excitation

In quasi-resonant excitation schemes, a coherent laser beam illuminates the microcav-
ity in vicinity of some polariton mode, directly coupling to the photonic component.
Energy-momentum conservation in the structure ensures that a monochromatic pump
can couple only to the modes sharing its same frequency, intensity-phase profile and
polarization, i.e. when it is mode-matched. For the lower polariton branch, denoting
uc(r) and uL(r) the envelope functions of the cavity and laser field at a frequency ω0,
we can define the input-coupling efficiency a η =

∫
d2rCu∗c(r)uL(r). For a symmetric

cavity, with a homogeneous linewidth γc, and a incident laser field Ft = Feiω0tuL(r),
the coherent drive can be included as a time-dependent hamiltonian in the form [127]

HDrive = i~η
√
γc/2F(p̂†eiω0t − p̂e−iω0t) (2.41)

The inclusion of losses [Eq. (2.40)] and of the coherent driving field [Eq. (2.41)] in
the GPE (2.37) yields the folliwng generalized GPE (~ = 1 units)

i∂tψ =

[
ωl(0)− ∇

2

2m∗l
+ V (r) + U t|ψ|2 − iγ

2

]
ψ + iη

√
γc/2Feiω0t (2.42)

For a small, constant excitation power, the nonlinear term proportional to the po-
lariton density can be neglected. Moving to the frame rotating at the pump frequency
ψ(t) = ψ0e

iω0t allows writing Eq. 2.42 as a time-independent relation in the frequency
domain. This equation contains the information on the linear response of the system
at the frequency of the drive. For instance, if we consider a weak homogeneous illumi-
nation of a planar cavity (V (r) = 0) and we sweep the pump frequency, we can probe
the k = 0 polariton mode spectral properties. Indeed Eq. 2.42 reduces to

0 =
[
(ω0 − ωl(0))− iγ

2

]
ψ + iη

√
γc/2F (2.43)

Solving for ψ and inserting it in the definition of the cavity transmission coefficient
T = γc|ψ|2/2F2, one finds a Lorentian spectrum with a full-width at half maximum
equal to γ. Throughout this manuscript, we will systematically use low-power resonant
experiments to characterize the linear spectrum of the polariton modes.
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In the high density regime, the interplay of drive and dissipation with polariton-
polariton interactions results in a variety of phenomena. Some, related to the nonlin-
ear optics domain, such as polariton parametric amplification [128, 129] and oscillation
[130, 131, 132] as well as optical bistability [133], squeezing [134, 135] and four-wave
mixing [136]. Others, relate to the hydrodynamic behavior of polaritons. While in-
vestigating the (Bogolyubov) dispersion relation of small perturbations on top of the
coherently excited polariton flow, I. Carusotto and C. Ciuti observed that it becomes
linear for specific driving conditions [137]. According to the Landau criterion, this sug-
gested the existence of a superfluid phase, which was experimentally revealed by the
absence of backscattering in the flow around a defect [38]. In particular, the possibility
to control the fluid velocity and density profile using the angle of incidence and spa-
tial profile of the laser excitation, demonstrated to be an invaluable tool to probe its
hydrodynamic excitations [41, 40, 42, 43]. More recently, in a pulsed excitation experi-
ment, organic exciton-polariton superfluidity was reported at room temperature [138].
A nice historical overview on the nonlinear behaviour of polariton quantum fluids can
be found in [37]. Importantly, for a quasi-resonant excitation, the phase of the polariton
fluid under the excitation spot is imposed by the laser. This prevents the observation
of phenomena such as bosonic condensation and lasing where the U(1) symmetry is
spontaneously broken. This will not be the case under non-resonant excitation as we
will see in the following pages.

2.3.3 Non-resonant excitation

Let us consider a different setting where the laser beam excites the sample at far higher
energy than the cavity resonance, in vicinity of one of the DBR reflectivity minima (c.f.
Fig. 2.3). This optical pump, creates electron-hole pairs which relax via phonon assisted
processes toward the bottom (top) of the conduction (valence) bands and form bound
exciton states. As some radiative exciton states are populated, they possibly enter the
strong coupling regime with cavity photons. Notice that, due to the finite bandwidth
of the DBR stop-band (∆E ≈ 90 meV), most of the excitons which are injected, couple
to leaky modes, i.e. the reflectivity minima outside the DBR photonic bandgap. These
modes have extremely poor finesse thus do not enter the strong light-matter coupling
regime. Assuming that Ec(0) ≈ Ex(0), and denoting k0 the exciton wavevector which
couples to the first leaky mode, satisfying Ex(k0)−Ex(0) = ∆E, one finds k0 ≈ 7 µm−1.
Given that the exciton radiative cutoff wavevector is krad ≈ 30 µm−1 (cf. Sec. 2.2.2),
and assuming a uniform exciton density of stated (DOS) close to Ex(0), the typical ratio
of excitons entering the strong coupling regime is k2

0/(k
2
rad−k2

0) ≈ 0.09. The remaining
fraction of excitons forms a long-lived reservoir which can interact with polaritons via
their excitonic component. In general this implies that the polariton field needs to be
coupled to the exciton reservoir density via a system of dynamical rate equations see
[34, 139, 140, 141] for details.

In a low density regime, where exciton-exciton interaction are negligible, the reser-
voir populates all the available polariton modes with a rate determined by the exciton
relaxation and DOS at a given energy [139]. Once populated, each polariton mode
emits radiatively via its photonic component, producing the microcavity luminescence.
We schematize the off-resonant injection mechanism in Fig. 2.11-(a), where the y-axis
represents the photon (polariton) energy. On the left part of the panel we plot the
microcavity reflectivity profile, facing the polariton dispersion relations, traced in the
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Figure 2.11: Photoluminescence experiment (a) Schematic representation of the
off-resonant excitation scheme. The shaded gray profile is the microcavity reflectivity
R profile plotted against energy. The right part of the panel presents the polariton
dispersion, wavevectors are log-scaled. (b) Measured angle-resolved photoluminescence.
Dashed red lines represent a joint best fit of the polariton dispersion relations to the
data Eu,l, dashed gray lines trace the corresponding bare cavity (Ec) and exciton (Ex)
ones. For E > Ex intensities are multiplied by a factor five. (c) Light-matter contents
as a function of in-plane momentum for the lower polariton branch. Shaded areas
correspond to the 95% confidence intervals.

right part of the panel. The shaded areas, for increasing k, correspond to the strong
(sc), weak (wc) and non-radiative (nr) exciton-photon coupling regions. Dotted lines
represent phonon-assisted scattering events. This excitation scheme offers a useful tool
to characterize the eigenmodes of a planar microcavity structure with a simple photo-
luminescence (PL) experiment. Indeed, due to the in plane translational invariance of
the microcavity, in plane momentum is conserved in the emission process. We can thus
relate the in-plane momentum of polaritons k to the energy and angle of the photon
leaking outside the cavity as |k| = E sin(θ)/~c. A high numerical aperture objective
collects the cavity emission and images it with a Fourier-conjugate system of lenses
to the slit of a spectrometer coupled to a CCD camera. This configuration, originally
proposed in [142], allows to simultaneously resolve in angle and energy the emitted
photons, that is, imaging the dispersion relation with a single-shot of the CCD. For the
details on the setup and on the imaging scheme we refer to the next chapter, dedicated
to the experimental techniques.

As an example we present in Fig. 2.11-(b) the angle and energy resolved photolu-
minescence of a microcavity with 28(32) DBR pairs in the top (bottom) mirror and
embedding a 15 nm In0.05Ga0.95As QW. Two bright bands can be observed, correspond-
ing to the upper and lower polariton. Dashed red lines show the result of a joint fit

Ex (meV) δcx (meV) ~ΩR (meV) neff
Exp 1453.45(2) −3.57(3) 3.34(4) 3.42(4)
Th 1449(2) (∗) 3.36 3.37

Table 2.2: Fit of the polariton dispersion relation: Errors correspond to the
standard deviation. The detuning (*) changes spatially over the sample (cf. Sec. 3.1.1).
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of the dispersion relations (2.31) to each maxima of the spectrum for a given in-plane
momentum (angle). Correspondingly, the two gray dashed lines in the plot trace the
bare exciton Ex and cavity Ec dispersion relation. The parabolic dispersion relation
for a free exciton in the QW [Eq. (2.16)] looks flat because the exciton effective mass is
four orders of magnitude larger than the one of a cavity photon. The results of the fit
are summarized in Tab. 2.3.3. Importantly, if we compare the results of this fit to the
parameters extracted in Sec. 2.1-2.2, an excellent overall agreement is found. The ob-
served intensity profile as a function of energy depends on the different relaxation rates
of polaritons and on the excitation power: it is a rather complicated problem to model,
see [139, 143] for further details. In Fig. 2.11-(c) we calculate the Hopfield coefficients
C,X as a function of the in plane momentum from the dispersion fit parameters.

In this manuscript we will not investigate thoroughly the high polariton density
regime under non-resonant excitation. However, we want to qualitatively summarize
the rich phenomenology characterizing it.

The first possibility when increasing the pump power, is that phase-space filling
and the screening of Coulomb interaction leads to the dissociation of excitons in an
electron-hole plasma before anything else happens. As a result, the system transitions
from the strong to the weak-coupling regime around a critical density n0 ∼ a−2

B . Even
in the weak-coupling regime, for a density of carriers n > nthr, stimulated emission in
the electron-hole plasma may overcome cavity losses, resulting in a lasing action of the
microcavity. At this stage the structure can be regarded as an optically-pumped vertical
surface emitting laser (VCSEL). This will be the case for the experiments detailed in
Chapter 4.

Let us now consider a different case where the saturation density n0 is pushed to
higher values. This can be experimentally achieved by embedding multiple QWs at
each cavity antinode, thus lowering the average exciton density per QW. Then, since
polaritons are composite bosons, if a state has an occupation larger than unity, bosonic
stimulation sets in [33, 144]. Provided that the pump power required to have 〈p̂†kp̂k〉 > 1
is still significantly smaller than the saturation density (n0), the stimulation effect leads
to a macroscopically occupied state, i.e. a polariton laser [33, 141, 36]. Furthermore
if the carrier relaxation rate is significantly faster than any other loss mechanism in
the cavity, bosonic stimulation is stronger for the lowest-energy state of the polariton
branch. The macroscopically occupied state is therefore a (non-equilibrium) polariton
condensate, see [145, 144]. Bose-Einstein condensation of exciton-polaritons was first
reported by the group of B. Deveaud and L.S. Dang using CdTe microcavities [35].
Soon after, working with organic materials with tightly bound excitons, different groups
achieved condensation at room temperature, see for instance [146, 147].

The condensation of polaritons is intrinsically out of equilibrium due to the con-
stant injection of high energy carriers and optical losses in the cavity. For this reason,
especially in the early works, the use of the word ”Bose-Einstein condensate” has been
strongly criticized, since it implies that the two phenomena belong to the same (equi-
librium) universality class. Moreover the exciton reservoir can result in additional
dynamical effects (modulational instabilities) further steering away from equilibrium
the condensate [148, 149, 150, 151]. More recently, with the development of ultra-high
quality factor cavities, two groups claimed to achieve equilibrium condensation both
for a polariton system at 4K [152] and for microcavity photons at room temperature
[153]. They argue that in their system, the relaxation rate τR is much faster than the
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Figure 2.12: Microcavity stimulated emission phenomenology under non res-
onant pumping. Two order parameters rule the diagram: (1) the ratio between the
bosonic stimulation threshold nthr and exciton dissociation density n0 and (2) the ratio
between the relaxation time of excitations τR and their lifetime τC . Gray areas around
nthr/n0 ∼ 1 and τR/τC ∼ 1 display a non-universal, hybrid phenomenology.

cavity decay rate τC , thus allowing effectively an equilibrium description. In Fig. 2.12
we tentatively chart the expected stimulated emission phenomenology of a semicon-
ductor microcavity optically excited far from resonance. We organize the behavior
on the basis of the ratio between the stimulated emission threshold density nthr and
the exciton dissociation density n0 and relaxation time order parameters, dividing the
diagram in four zones: weak vs strong coupling and equilibrium condensation vs las-
ing regimes. This distinctions of course allow significant intermediate areas where the
behavior of the system is more complicated. Interestingly, in the gray area where the
equilibrium description of polariton condensation fails, an interesting mapping between
the Kardar-Parisi-Zhang (KPZ) equation modeling the growth of interfaces [154], and
a non-equilibrium polariton condensate has been recently proposed [155, 156]. The
location of a microcavity structure in this diagram depends both on the QW(s) design
(e.g. material and number) and on the cavity finesse. Notice that since the relaxation
rate depends on the pump power, a single microstructure may explore more than one
region of the diagram.

In summary, we can use low power non-resonant excitation experiments as a tool
to probe the polariton dispersion trough its spontaneous photoluminescence. The il-
lustrative experiment presented in Fig. 2.11, supports the theoretical results presented
in Sec. 2.1-2.2-2.3.1. For high excitation powers either condensation or lasing can be
observed both in the weak and strong coupling regime of excitons and cavity photons
depending on the specific sample design and choice of materials.

2.3.4 Polariton linewidth

In Sec. 2.3.1 we included losses at a semiclassical level in the polariton hamiltonian,
see Eq. (2.40). Correspondingly, we defined the polariton decay-rate γ, without further
commenting on its origin. In this section we theoretically address the dependence of the
polariton lifetime τp on the bare cavity photon and exciton properties. This analysis is
important to pinpoint the main limiting factors to the improvement of τp, a necessary

33



2. Strong light-matter coupling in semiconductor heterostructures

-3 -2 -1 0 1 2 3

-4

-2

0

2

4

Wavevector (µm)-1

E
-
E
x
(m
eV

)
0 1

Transmission

~⌦R

TM	Th.

0.5 1 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Δ xl (meV)

γ
/γ

c

P
ho
to
n
fra
ct
io
n

(a) (c)

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

E - E x (meV)

N
or
m
al
iz
ed
co
un
ts

0.5 1 5 10
0.0

0.5

1.0

1.5

2.0

Δ xl (meV)

γ
/γ

c

P
ho
to
n
fra
ct
io
n

(b) (d)

-0.2 -0.1 0.0 0.1 0.2
0.0

0.2

0.4

0.6

0.8

1.0

E - E lp (meV)

Tr
an
sm
is
si
on

(e) C2	=	0.95
C2	=	0.50
C2	=	0.05

-0.2 -0.1 0.0 0.1 0.2
10-3

10-2

10-1

100

E - E lp (meV)

Tr
an
sm
is
si
on

C2	=	0.90
C2	=	0.50
C2	=	0.08

(f)

�inh = 0

�inh = 0.15 meVIn0.04Ga0.96As
LQW	=	17	nm

Figure 2.13: Scaling of the polariton linewidth (a) Transfer-matrix simulation
of the microcavity transmission as a function of the incident in-plane wavevector and
energy. Dashed line: nominal polariton dispersion relation [Eq. (2.31)]. (b) Typical PL
spectrum of a shallow InGaAs QW, the dashed line is pseudo-Voigt profile fit. (c,d)
Scaling of the polariton linewidth as a function of the exciton-lower polariton detuning
∆xl = (Ex−El) for a radiatively limited exciton transition (c), or including a gaussian
inhomogeneous broadening (d). (e,f) Representative examples of transmission spectra
corresponding to panels (c,d), respectively.

step for the observation of strongly correlated quantum phases with polariton platforms
[51, 157, 158, 159, 52]. As anticipated in Sec. 2.3.2, a low-power resonant spectroscopy
experiment allows the precise determination of the resonant energy and the linewidth
of polariton modes. In the simplest implementation of the experiment, a collimated
laser beam illuminates the sample; the transmitted intensity is recorded as a function
of the angle of incidence and wavelength of the pump beam, allowing to reconstruct
the dispersion relation of the sample. Here we model such experiment using a transfer
matrix method, where the QW optical response is included as a thin layer with a
dielectric constant given by Eq. (2.21).

In figure 2.13-(a), we simulate the angle-resolved transmission spectrum of a sym-
metric microcavity formed by 20(24) DBRs pairs in the top(bottom) mirror and em-
bedding a 17 nm thick In0.04Ga0.96As QW for a bare exciton cavity detuning of ~δcx =
−3.6 meV. Converting the angle of incidence to in-plane wavevector, we obtain the mi-
crocavity dispersion relation. The dashed-red curve is the polariton dispersion relation
derived in Sec. 2.3.1, plotted for the nominal microcavity parameters (cf. Tab. 2.3.3).
The fair agreement of the two models in the linear regime is again not surprising [160],
but validates the use of the transfer matrix method, which naturally includes cavity
losses. As mentioned in Sec. 2.3.1, polaritons are linear superpositions of the bare exci-
ton and cavity eigenmodes thus, we can expect their linewidth to depend on the decay
mechanisms of both elementary components. For the lower polariton p̂k = Ckâk+Xkb̂k,
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superposition of an exciton (b̂) characterized by a non-radiative decay γnr, and a cavity
photon (â) with a linewidth determined both by losses and absorption. Quite intu-
itively, one finds [37, 160]

γ = |C|2γc + |X|2γnr (2.44)

The mechanism originating the non-radiative exciton decay channel is a complex
compound of microscopic processes (Auger, phonon or trap-mediated recombination,
just to name a few) and can be hardly estimated a priori. Concerning the cavity
linewidth, the main limitation does not come from radiative decay, which could be
made (in principle) arbitrarily small by adding more layer pairs to the DBRs, but
due to residual absorption in the cavity. Absorption has two main origins, the first
being the residual (Urbach) absorption tails of GaAs at the QW exciton resonance, the
second due to deep traps created by residual doping in the spacer material [73]. In the
samples fabricated at C2N, the linewidth of bare λ cavities is typically (20 − 30) µeV
for (860− 840) nm central wavelengths.

Residual absorption tails could be systematically avoided by red-shifting the QW
resonance as far as possible from the bulk GaAs band-edge by increasing the In con-
tent in the QW (cf. Fig. 2.6). However, a higher In content is usually associated to
larger alloy fluctuations in the material which, in the case of wide QWs, are mainly
responsible for the inhomogeneous broadening of the exciton transition. For instance,
Fig. 2.13-(b) shows a typical photoluminescence spectrum of 17 nm thick In0.04Ga0.96As
QW embedded in a GaAs matrix. A pseudo Voigt profile fit allowed to extract the
peak energy Ex = 1475.9 meV and the full-width at half maximum of the spectrum
0.49(1) meV. From sample to sample we observed fluctuations of this value in the
range (0.4 − 0.7) meV, much larger than the expected radiative exciton linewidth
Γx ≈ 0.04 meV. As first pointed out in [161], inhomogeneous broadening also con-
tributes to the polariton linewidth. Indeed, if one thinks of the QW as an ensemble of
emitters coupled to a cavity mode, the polariton states correspond to the bright linear
superpositions of the cavity mode with the fully-symmetrical matter state [162]. All
the other states, provided that all the emitters are identical, form orthogonal linear
combinations which remain decoupled, thus are dark. Instead, if the emitters transi-
tion energy forms a continuum, distributed according to a spectral density ρ(ω), the
dark states have slightly different energies, leading to progressive dephasing of Rabi
oscillations [163].

Inhomogeneous broadening can be included within the transfer-matrix formalism
by convoluting the QW dielectric constant ε(ω) [Eq. (2.21)] with ρ(ω). To quantify
the influence on the linewidth, we study two different situations. In the first one, a
radiatively limited exciton transition is considered ρ(ω) = δ(ω − ωx). Fig. 2.13-(c)
shows the linewidth of the k = 0 mode of the microcavity as a function of the bare
exciton to lower polariton detuning ∆xl = (Ex − El). Since non radiative mechanisms
are not included in the transfer-matrix method, the data points are fairly interpolated
by Eq. (2.45) with γnr = 0 (dashed green line). Then, we consider a gaussian ρ(ω),
with standard deviation σinh = 0.15 meV, corresponding to the normal part of the
Voigt profile of Fig. 2.13-(b). When this contribution is included, the scaling of the
polariton linewidth with ∆xl differs significantly, see Fig. 2.13-(d). For large values of
the exciton-lower polariton detuning, the linewidth decreases as γ/γc ≈ |C|2, but as
soon as ∆xl . 1 meV, an abrupt increase can be observed. The dependence of the
polariton linewidth on the inhomogeneous broadening of the matter transition, was
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first derived within a semiclassical description in [163]

γ = |C|2γc + |X|2(γnr + π∆2
xlρ(∆xl)) (2.45)

being proportional to the second cumulant of spectral density at the polariton resonant
frequency (assuming σinh � ~ΩR). A dashed curve traces this relation (no adjustable
parameters) in Fig. 2.13-(d), fairly interpolating the results of the transfer-matrix anal-
ysis. In Fig. 2.13-(e,f), we show transmission spectra for three representative values
of |C|2 both in the case of σinh = 0 and σinh = 0.15 meV. In absence of inhomo-
geneous broadening the spectra have a Lorentzian profile, whereas for σinh 6= 0 they
become skewed and the peak transmittance decreases much faster than in the σinh = 0
case. Interestingly, if γnr < γc we observe both for Fig. 2.13-(c) and (d) that γ < γc,
an effect sometimes referred as cavity protection [163, 164, 165]. It shall be empha-
sized that the radiative exciton decay Γx does not contribute to the polariton linewidth
since its coupled only via higher order contribution to outer free-space modes [70, 160].
For this reason, the recent demonstration of atomically thin MoSe2 mirrors, support-
ing excitonic modes which are radiatively limited [166], motivated proposals for novel
polariton-blockade schemes [167, 168].

In summary, our analysis suggests that for small detunings of the polariton mode
relative to the exciton, the main limiting factor for reducing the polariton linewidth
is the inhomogeneous broadening of the exciton transition, which is still roughly an
order of magnitude larger than the exciton radiative decay rate Γx ≈ 0.04 meV. With
the idea of contextually maximizing polariton interactions, scaling with the square of
the exciton fraction [cf. Eq. (2.34)], it will be of outmost importance in the future to
improve the fabrication technology, pushing it towards the limit of radiatively limited
exciton transitions.

2.4 Polariton mode engineering

After having analyzed the properties of planar microcavities in the strong coupling
regime, we want to discuss how to tailor the transverse modes of the system. One of
the notable advantages stemming from the hybrid light-matter nature of microcavity
excitations is the wide variety of mechanisms one can exploit to spatially engineer an
effective potential for polaritons. We briefly review the mechanisms already demon-
strated in literature, before focusing on the technique originally developed at C2N.

The general idea is to induce a position-dependent energy shift on either of the
excitonic or photonic constituents. One possible approach, since the bandgap of a
semiconductor is partly related to the lattice constants in the material, is the application
of mechanical stress, which locally changes the exciton energy. This strategy was used
for instance in [169] to realize a trap for a polariton condensate. Similarly, the excitonic
energetic landscape can be pattered using the strain field produced by surface acoustic
waves (SAW); one or two trains of surface acoustic have been used to implement 1D
and 2D lattices [170, 171].

Another widely used mechanism exploits the fact that the off-resonant injection of
excitons creates a reservoir which has essentially the same profile of the pump (cf.
Sec. 2.3.3). Under the pump spot, exciton-exciton interactions induce a local blueshift
of the exciton energy, acting as a repulsive potential for polaritons [44, 172, 41, 173].
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The main advantage of this all-optical technique is the possibility to engineer almost
any arbitrary pattern in a tunable and reversible fashion, using commercially available
spatial light modulators. Recently, the constant refinement of this technique allowed
to implement a classical XY -Hamiltonian in a lattice of polariton condensates [47], an
important opening towards the analog simulation of complex systems.

Alternatively, one can engineer the refractive index landscape of the microcavity,
thus spatially modifying its optical properties; this can be generally done in four dif-
ferent ways.

• Depositing on the top mirror a thin metallic film which induces a local blueshift
of the cavity resonance [174]. This technique is versatile but the energy-shift
produced is limited as the metal modifies only the evanescent tails of the cavity
field. A variant of this method consists in overlaying a sub-wavelength grating
on the top mirror[175].

• Another strategy to shift the cavity energy is to modify locally the cavity thick-
ness. This can be done during the fabrication process, by etching selectively the
spacer above the QW before growing the top DBR [176]. In the regions where the
cavity spacer is thicker the cavity modes are locally redshifted. Also this method
is versatile and allows the creation of nearly arbitrary patterns. However, the dis-
continuities at the spacer-top DBR interface tend to be the source for additional
unwanted losses in the cavity.

• Open microcavities, where bottom DBR and spacer, grown on a planar substrate
are separated from the top SiO2/Ta2O5 DBR mirror. The top DBR is sputtered
on a surface presenting a depression, e.g. a laser-ablated dimple on a fiber tip,
thus forming a concave mirror [177]. This approach recently allowed to reach
quality factors as high as Q ∼ 5 · 105 for a 1.4λ3 mode volume [178]. Moreover,
an accurate design of the depression profile allows to engineer coupled arrays of
microcavities [46]. The main limitation of this approach is that the radius of
curvature of the depression R is directly related to the energy of the confined
modes: fabrication imperfections δR/〈R〉 ∼ 10−3 lead to a fluctuation on the
order of (1 − 2) meV of the fundamental mode energy. This disorder tends to
prevent the formation of extended states over several microcavities. Nevertheless
open-access microcavities have the advantage of allowing the exploration of light-
matter coupling with any active material, such as transition metal dichalcogenides
(TMDs) [179, 180].

• Deep etching of the microcavity structure down to the substrate. In this approach
the large refractive index contrast between semiconductor and air allows tightly
confining the optical modes inside the structure by total internal refraction. This
method was originally developed in parallel in our group [181] and by M.Bayer
& collaborators [182].

Technical details can be found in the next chapter, here we focus on the result of this
fabrication procedure and discuss how it can be used to implement an analog photonic
emulator of lattice hamiltonians [183].
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Figure 2.14: Micropillars: (a) SEM image of circular microcavities obtained by deep-
etching a planar heterostructure. (b) Calculated intensity profile of the micropillar
eigenmodes labeled by their principal and angular quantum numbers (n, l). The dashed
line represents the microstructure edge. (c) Finite element calculation of the energy of
the lowest six eigenmodes as a function of the pillar radius (see App. 2.6 for details).
Dashed lines are the predictions of Eq. (2.46) including the evanescent tails of the
optical field (δR ≈ 0.05 µm).(d) Spatially resolved PL spectrum measured on a pillar
with nominal radius of R = 2.32 µm. Inset: position of the spectrometer slit; Dashed
line: predictions of Eq. (2.46).

2.4.1 Micropillar cavities

The fundamental building block of our system are single, µm-sized pillars shown in
Fig. 2.14-(a). The combination of the planar cavity DBRs with a lateral confinement
due to the large refractive index mismatch between air and the heterostructure mate-
rial, results in the discretization of the optical modes of the microcavity. For a pillar
radius significantly larger than the confined mode wavelength, the stationary optical
field in the microcavity can be factored in its longitudinal and transverse components.
If the planar cavity TE-TM effects can be neglected, the longitudinal field profile can
be found with a transfer-matrix method (cf. Sec. 2.1.2). This leaves out only the
transverse field components to be determined by solving the Maxwell equations for
an infinite dielectric waveguide, having a polarization-independent refractive index neff

and a section corresponding to the structure transverse profile. TE-TM effects are also
present for the transverse field components, however, in most experimental situations,
light polarization can be controlled in excitation and selected in detection. The eigen-
modes of the system can thus be found by solving a scalar Helmholtz equation for the
infinite waveguide, which can be equivalently mapped to an optical Shrödinger equation
within the paraxial approximation [184].

We plot in Fig. 2.14-(b) the spatial intensity profile of the four lowest eigenmodes of a
cylindrical waveguide with neff = 3.42 (cf. Tab. 2.3.3). The cylindrical symmetry of the
problem ensures that the angular momentum is a good quantum number, accordingly,
we label all the confined eigenmodes with a principal and angular quantum number
(n, l), determining the number of radial and azimuthal nodes in the intensity profile.
Notice that eigenvalues with the same absolute values of l 6= 0 are twice degenerate.
The evanescent tails of the EM field outside the cavity decay on a short distance
δR ≈ 0.05 µm which can be accounted for in the definition the radius of an equivalent
infinite circular potential well of radius R̃ = R+ δR. The solution of this problem is a
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known result of quantum mechanics [185]

En,l =
~2

2m∗l R̃
2
B2

0(n, l) (2.46)

here, B2
0(n, l) are the n-th zeroes of the l-th order Bessel function, m∗l ≈ mc/|C|2 the

effective cavity photon mass and |C|2 is the (energy dependent) polariton photonic
fraction. Fig. 2.14-(d) shows the dependence of the calculated energies of bare micro-
cavity photon |C|2 = 1 as a function of the pillar radius R, dashed lines correspond to
Eq. (2.46). Similar arguments can be applied to describe the eigenmodes of square and
rectangular pillars. Notice that whenever the pillar circular symmetry is broken (i.e.
due to a slight ellipticity) the degeneracy of eigenmodes with an equal |l| is lifted.

As an illustrative example, we perform a low-power off-resonant excitation experi-
ment on a circular micropillar with R = 2.3 µm radius. The spatially and spectrally
resolved emission of a pillar is shown in Fig. 2.14-(c). Energies are stated with respect
to the planar cavity k = 0 mode (here E0 ≈ 1445 meV). In this experiment the spatial
coordinate corresponds to the spectrometer slit position, aligned along the center of
the pillar as shown in the inset. The emission is filtered with a film-polarizer having
an axis parallel to the slit. The four discrete levels observed, have profiles (energies)
in fair agreement with the theoretical predictions, see Fig. 2.11-(b) and the (dashed
lines). This is both telling us that the paraxial approximation is accurate, and that the
fabrication technique is fairly reproducing the target structure.

In the perspective of implementing a lattice hamiltonian emulator, micropillars play
the role of lattice sites, whose energies can be controlled via their radius (more generally
their area), and where multiple orbital symmetries can be accessed. For instance (n, 0)
modes can be pictured as s-type hydrogen orbitals, (1,±1) as px ± ipy orbitals and so
on. Of course these modes do not share the exact same profile as hydrogen orbitals,
since they are solution of a different, two dimensional Schrödinger equation. However,
it can be useful to visualize them as atomic orbitals to use both Linear Combination
of Atomic Orbitals (LCAO) and symmetry arguments to intuitively guess the optical
modes of coupled pillar lattices [186, 187, 188, 50].

2.4.2 Coupling the micropillars

In order to understand the optical modes of microstructures composed by a large num-
ber of overlapping micropillars, we can start with the minimalistic case of two equal
cylindrical microcavities with radius R, separated by a center-to-center distance CC ′,
see Fig. 2.15-(a). For CC ′ < 2R the cylindrical symmetry of the bare pillar problem is
broken and the solution of the associated optical Schrödinger equation does not admit
exact analytic solutions. Even if the bare pillar eigenmodes |ψL,R〉 are not anymore a
good basis, provided that the overlap between the two pillars is small, we can expect
that it only introduces a perturbative effect with respect to the uncoupled problem.
At lowest order in the perturbation theory, we can therefore expand the coupled eigen-
modes as linear superpositions of |ψL,R〉 modes, in the spirit of a LCAO approach. If
now we consider just the lowest (s-type) mode of each identical micropillar, the par-
ity operator (|ψL〉 � |ψR〉) commutes with the total (uncoupled) hamiltonian. Since
this spatial symmetry is preserved in the coupled system, the linear possible LCAO
superposition must obey (|ψL〉 ± |ψR〉)/

√
2. The total hamiltonian in this basis is
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Figure 2.15: Dimeric photonic molecules (a) SEM image of overlapping microcavi-
ties forming a photonic dimer molecule. (b) Schematic representation of the hybridiza-
tion of the two lowest bare pillar modes into molecular bonding (B) and anti-bonding
(AB) photonic orbitals. (c) Finite elements calculation of the energy of lowest ten
eigenmodes of two R = 2 µm pillars as a function of their center-to-center distance
CC ′ (cf. App. 2.6 for details). (d) The intensity profiles of the lowest six eigenmodes
for CC ′ = 3.6 µm can be classified based on the bare pillar mode and hybridization
symmetry. (e) Spatially resolved PL spectrum measured on a dimer molecule with
R = 2.0 µm and CC ′ = 3.6 µm. Inset: position of the spectrometer slit. Dashed line:
finite element predictions for the nominal structure.

H = E0(|ψL〉〈ψL|+ |ψR〉〈ψR|)− J(|ψL〉〈ψR|+ |ψR〉〈ψL|) (2.47)

where H0 is the bare microcavity hamiltonian and -at first order- J = 〈ψL|H0|ψR〉 =
J∗, real due to the exchange symmetry. This coupled mode hamiltonian can be easily
diagonalized yielding the energies E = E0 ± J . In analogy with a LCAO theory
for molecular hydrogen the symmetric and anti-symmetric superposition of |ψL,R〉 are
often referred as bonding (B) and anti-bonding (AB) modes, respectively. The level
hybridization diagram is summarized in Fig. 2.15-(b) for J > 0. Since J is related
to the overlap integral of the bare pillar eigenmodes, we can expect it to increase as
CC ′ is made smaller. Indeed, in a second quantization picture, J/~ corresponds to
the rate at which single excitation are transferred from one mode to the other. Of
course this approximation is only valid when J/E0 � 1, otherwise the overlap term
cannot be decoupled by its effect on the on-site energy, i.e. |ψL,R〉 is not a normal basis
anymore. Practically speaking, since the area of the single pillars determines E0, the
approximation holds as long as the overlap produces a small change of the total area.
The determination of an appropriate Wannier basis for the LCAO ansatz, eventually
including inter-orbital couplings is beyond the scope of the manuscript, we thus refer to
[189]. In Fig. 2.15-(c) we used finite element simulations to calculate the energy of the
first ten modes of the coupled pillar structure as a function of CC ′/R for a pillar radius
of 2 µm. Inspecting the s-orbital modes we can see that the splitting of the B and AB
modes is non symmetric about E0 ∝ A, signaling the non-orthogonality of the |ψL,R〉
basis. For two modes, one can anyway call B and AB the solutions of the numerical
calculation and define an effective coupling strength J by dividing their energy splitting
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by two. When considering 1D and 2D lattices however the effect of non-orthogonality
must be generally taken in account in order to fit the dispersion relation [189].

Even if the energy levels indicate a deviation from the J/E0 � 1 case, the mode
profiles calculated for molecular orbitals are always in agreement with the LCAO predic-
tion. Indeed geometric arguments are extremely robust with respect to perturbations,
provided that the generator of the transformation (here controlled by CC ′) does not
break underlying symmetry considerations. In Fig. 2.15-(d) we show calculated inten-
sity profiles for the first six eigenmodes for R = 2.0 µm and CC ′ = 3.6 µm. We can
see that all of them can be intuitively classified on the basis of the symmetry of the
originating bare pillar eigenmodes and of their parity (nodes in the intensity signal a π
phase jump). Finally, the spatially and spectrally resolved emission of a dimer molecule
formed by pillars with 2.0 µm radius and 3.6 µm distance is shown in Fig. 2.11-(c).
The spatial coordinate corresponds to the spectrometer slit position, as indicated in the
inset and the emission polarization has been filtered along the slit axis. Notice that the
eigenmodes corresponding to the hybridization of py orbitals are not visible with the
present choice of the slit position. Dashed lines in the right-most panel of Fig. 2.11-(e)
correspond to the predictions of finite element calculations for the nominal structure
with no adjustable parameter.

2.4.3 Emulation of lattice hamiltonians

In the previous pages we discussed the discrete optical modes of micropillar structures
and how a spatial overlap between them can be effectively mapped into a hopping term
for the excitations of each microcavity. The extension to the case of multiple pillars
is intuitive since these two elements are the essence of any tight-binding lattice model
with nearest-neighbor couplings between the sites. We have shown that the energy of
each bare micropillar eigenmode can be controlled via its radius and that the coupling
can be controlled via their relative distance. The design of the spatial arrangement
and size of the pillar thus allow to fully engineer the polariton dispersion relation in a
lattice.

For instance, in the right panel of Fig. 2.16 a SEM image shows a honeycomb lat-
tice of micropillars, where Dirac cones were directly observed with photoluminescence
experiments [49, 190]. Moreover inter-orbital couplings can be also engineered by al-
ternating smaller and larger pillars, in order to match the s-type and p-type eigenmode
energies. It is worth mentioning that given a known tight-binding hamiltonian, the
inverse design problem of determining the pillar size and arrangement is not straight-
forward, especially in the case where multiple values of the coupling constants J are
needed within a unit cell (e.g. [48]). Indeed as we pointed out in the previous section
changing CC ′ also renormalizes the ”on-site” energy due to the non-orthogonality of
the bare pillar eigenmodes. The development of inverse design methods not relying on
brute force 2D finite elements is an important direction for future works.

Interestingly, since polaritons interact via their excitonic component, our system can
also emulate (weakly) interacting bosons on arbitrary lattices, such as the celebrated
Bose-Hubbard model. For values of the coupling strength J and a total interaction
energy much smaller than the energy separation between the bare pillar eigenmodes
(E1,1 − E1,2), one can study only the modes deriving from the hybridization of |ψ1,0〉
[37]. In a second quantization picture, denoting J the effective inter pillar coupling
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Figure 2.16: A photonic platform for analog simulation: (Left) schematic rep-
resentation of a honeycomb lattice for interacting bosons subject to pump and losses.
(Right) SEM image of the corresponding analog implementation with coupled micro-
cavities, image adapted from [190].

strength and U = U/A the two-polariton interaction divided by the modal area A−1 =∫
d2r |ψ1,1|4, the polariton hamiltonian on a lattice is

HBH =
∑

i

~ωip̂†i p̂i +
U

2

∑

i

p̂†i p̂
†
i p̂ip̂i −

∑

〈i,j〉

J(i,j)(p̂
†
i p̂j + c.c.) (2.48)

where p̂†,p̂ are the creation-annihilation operators of a lower polariton in the discrete
mode |ψ1,1〉 with energy ~ωi. The brackets in the summation indices of the right-most
term, indicate that nearest-neighbor coupling only are taken in account. In absence
of dissipative processes (γ � ~ω,U, J), the groundstate of this hamiltonian undergoes
the superfluid to Mott insulator transition as the order parameter U/J becomes much
larger than the lattice coordination number [191, 192].

In our system the losses can be made significantly smaller than the coupling strength,
however even in state of the art samples U � γ, thus the dissipative processes cannot be
adiabatically eliminated from the dynamics of the system. The possibility to coherently
excite the system can be exploited to drive (prepare) it into any arbitrary steady-state
[28, 37]. A coherent drive with frequency ω can be included as a time dependent on-site
contribution to the total hamiltonian (cf. Sec. 2.3.2)

HD = iη
∑

i

Fi(p̂†ieiωt − p̂ie−iωt) (2.49)

where η is proportional to the input coupling rate and Fi is the complex ampli-
tude of the pump on every site. Finally, single particle (polariton) losses can be in-
cluded at the semiclassical level via an additional non-hermitian Hamiltonian HLoss =
−i∑j(γj/2) 〈p̂†j p̂j〉 where γj is the on-site polariton decay rate at the frequency ~ωj (cf.
Sec. 2.3.1-2.3.4). Additional terms associated to a full quantum treatment of dissipation
will be reviewed in the next section.

In summary, we have shown in the previous pages how to emulate lattice hamiltoni-
ans starting from micropillar cavities where polaritons are tightly confined in all spatial
directions, thus defining the lattice sites. A finite spatial overlap between neighboring
pillars can be mapped to a coherent coupling between the discrete polariton modes of
the uncoupled microcavities. By tailoring the arrangement of the overlapping micropil-
lars one can implement different 1D and 2D lattice models [49, 50, 188]. Furthermore,
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the presence of polariton-polariton interactions allows exploring the physics of (weakly)
interacting bosons on a lattice additionally featuring of one-body losses and a coherent
drive term [48]. The combination of these ingredients puts forward microcavity po-
laritons as as a versatile photonic platform for the emulation of the driven-dissipative
Bose-Hubbard (DDBH) model. The development of such an analog emulator would
allow the experimental investigation of dissipative phase-transitions in a scalable pho-
tonic platform [53, 193, 194, 195, 196, 197].

2.4.4 Master equation

In this section we want to write the equations ruling the dynamics of a quantum system
subject to dissipative processes within a second quantization picture. As we will see,
in most cases, polaritons can be accurately described with semiclassical models leaving
aside an operatorial description of the observables. However, it is worth discussing the
most general theoretical framework, both because it will be relevant for Chapter 6 and
to clarify the physical meaning of the approximations introduced from time to time.

The problem of describing energy exchanges between an object and its surrounding
environment, faced in the early 19th century by Thermodynamics, has been somehow
extended to the quantum formalism only 50 years ago [198, 199, 200]. To tackle the
problem, the idea is the following: consider an ”universe” system (U), sum of an object
(O) and of the surrounding environment (E), globally described as an isolated system
obeying some known dynamical equations. Then, assuming that the environment is
much larger than the object, allows neglecting the effect of the dynamics of the system
on the dynamic of the bath. A summation over all the possible micro-states of the bath,
supposed to be at equilibrium, allows marginalizing the bath and keep a description
dependent only on the microscopic properties of the system, where the presence of a
bath enters only via intensive quantities, such as its temperature. In the same spirit,
if we consider the Hilbert space of the universe system HU = HS ⊗HB, a pure state
vector |ψ〉 in HU will follow the Heisenberg equation of motion. Practically, preparing
the state of the system is possible, but it is impossible to prepare the environment in a
pure state. For this reason it is convenient to work with density matrices ρ = E[|ψ〉〈ψ|],
encoding in a statistical mixture of pure states our ignorance about the state of the
environment. The hamiltonian of the total system can be decomposed as

HU = HS ⊗ IB + IS ⊗HB + (HSB + c.c.) (2.50)

where HS,B are the terms acting only on the system or on the environment (bath) and
HSB couples the two. Assume the effect of HSB to be perturbative both on the system
and on the bath dynamics, i.e. a slow dissipation rate compared to the characteristic
time of the system and no influence on the ”infinitely” large bath (Born approximation).
Then, one can also reasonably assume that the system is too small to perturb the
environment, provided that the bath is at equilibrium, this implies a time independent
density matrix for the bath degrees of freedom. This absence of memory in the bath
(Markovianity) allows writing the universe density matrix as ρU (t) = ρS(t)⊗ρB. Using
the fact that ρB is time independent, the evolution of the object density matrix can be
formally written by tracing out the bath degrees of freedom (~ = 1)
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iρ̇S(t) = TrB[[HU , ρU (t)]] = [HS , ρS(t)] + TrB[[HSB, ρS(t)⊗ ρB]] (2.51)

thanks to the Born approximation, the hamiltonianHSB can also be expressed as a sum
over all the possible system-bath interaction channels (ch) for tensor products of opera-
tors belonging to either the system or bath subspacesHSB =

∑ch
k JS,k⊗JB,k. Using this

relation, completeness and neglecting within a secular approximation counter-rotating
terms in the system-bath coupling [201] one finally can write the dynamical equation
for the reduced matrix of the system:

ρ̇S = −i[HS , ρS ] +
1

2

ch∑

k

γk

(
2JS,kρSJ

†
S,k − {J

†
S,kJS,k, ρS}

)
(2.52)

here γk is the rate of the kth interaction channel with the environment {·, ·} indicates
an anticommutator and the operators JS,k are often called jump-operators and depend
on the nature of the dissipative process. An alternative derivation relying on dynamical
semigroups can be found in [199]. Hereafter we will drop the ”S” subscript implicitly
assuming that all the quantities refer only to the system, unless otherwise stated. For
a bosonic system subject only to single-particle losses and in contact with a bath at an
equilibrium temperature T , we have J = a where a is the annihilation operator of an
excitation in the system. Denoting D[ρ] = 2aρa† − {a†a, ρ}, Eq. (2.52) becomes

ρ̇ = −i[H, ρ] +
γ

2

(
(nth + 1)D[ρ] + nthD†[ρ]

)
(2.53)

the two terms in the right-most part correspond respectively to the emission and ab-
sorption of an excitation in the bath, with nth the average number of thermal excitations
at the energy of the system eigenmodes. At optical frequencies E ∼ 1.45 eV and liquid
helium temperatures, since kBT ∼ 0.4 meV, one can always take nth = 0 as a very
good approximation due to the exponential damping in the Boltzmann factor. Fur-
thermore, if H is allowed to be non-hermitian, the right most term in Eq. (2.52) can
be incorporated therein by defining

HNH = H− iγ
2
a†a (2.54)

resulting in a non-unitary evolution of the state vectors of the system. Notice that this
is exactly the phenomenological term included in Sec. 2.3.1 to the polariton hamiltonian
in order to take in account the finite lifetime of the system. On the contrary, the term
2aρa† cannot be reabsorbed in the hamiltonian, thus preventing the simplification of
Eq. (2.53) into an expression involving only pure states of the system. Interestingly, if
we use the definition of expectation value of an observable 〈O〉 = Tr[ρO], the linearity
and cyclic property of the trace and the fact that Tr[ρ̇] = 0, the time evolution of the
expectation of the polariton field annihilation operator α = 〈a〉 can be derived from
Eq. (2.53). For a single mode of the polariton field we get (~ = 1)

iα̇ =
(
−∆− iγ

2
+ U |α|2

)
α+ i

√
γ/2F (2.55)
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where ∆ = (ωl − ω0) is the laser detuning relative to polariton eigenmode frequency
ω0, and we moved to the frame rotating at the laser frequency. Remarkably, the above
equation corresponds to the driven-dissipative Gross-Pitaevskii equation derived for a
single mode of the polariton field in Sec. (2.3.2). As anticipated in Sec. 2.3.1, this
indicates that we can understand the DDGPE as a classical approximation ruling the
dynamics of the expectation values of the polariton field. Since quantum fluctuations
and non-commutativity of the operators are dropped, this approximation is exact only
for bilinear terms in the polariton operators. Instead, for the nonlinear term one has
〈a†aa〉 ⇀ |〈a〉|2〈a〉, i.e. correlations are dropped. This approximation thus fairly de-
scribes only the coherent states of the polariton field with large occupation numbers,
i.e. when 1/

√
n� 1 ensuring symmetrically distributed fluctuations about α. A more

refined semiclassical treatment including the effect of fluctuations at the leading order
will be discussed in Sec. 3.3.2.

Finally, we can conveniently rewrite Eq. (2.52) in the form ρ̇ = L[ρ] where L is
often called Liouvillian superoperator and is the infinitesimal generator of the quantum
map ρ(t + dt) = Φ(ρ(t)). The steady state density matrix of the system is therefore
determined by L[ρss] = 0. Using a truncated Fock basis for the excitation Hilbert space,
L can be conveniently expressed in a matrix form [201, 202]. However the Liouvillian
is not Hermitian, thus its eigenvectors are in general not orthogonal, or equivalently,
left and right eigenvalues do not coincide [201, 202]. Excluding the exceptional points
of the Hamiltonian parameter space or at the onset of a dissipative phase transition it
can however be proved that L can be diagonalized [203, 204]. Therefore L admits a
spectral decomposition

ρ(t) = ρss +
∑

k 6=0

ck(0)e−λktρk (2.56)

where λk (ρk) are the eigenvalues (eigenvectors) of the Liouvillian superoperator and
ck(0) = Tr[ρ(0)ρk] are the projections of the initial density matrix. Notice that within
a matrix representation of L, if N is the Fock-state basis cutoff in the Hilbert space, the
size of L is N2×N2, thus making the diagonalization a tremendously hard problem as
soon as N is large or when several modes of the polariton field need to be included in
the calculation. The matrix representation of L will be detailed among the numerical
methods in Sec. 3.3.3.

In short, under suitable assumptions, we can describe a dissipative system via a mas-
ter equation ruling the evolution of its density matrix. The action of the environment
can be generally separated in two terms. Considering only single particle losses, the
first one amounts to an additional non-hermitian term in the hamiltonian of the system,
exponentially damping the average number of excitations over time. The interplay of
this term with the coherent pumping determines the non-equilibrium steady-state of
the microcavity. The second term, tends to mix the pure eigenstates of the system,
and can be effectively seen as the back-action of the environment on the system [201].
Finally, we show that the driven-dissipative GPE is an approximate equation ruling
the dynamics of the expectation values of the polariton field.
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2.5 Summary

Sec. 2.1 discussed the properties of dielectric multilayer stacks and how they can be
engineered to present photonic band-gaps. This feature can be used to create extremely
high quality microcavities with a few-micron effective cavity length. Absorption is the
main limiting factor for the cavity finesse in our samples. Furthermore the non-trivial
polarization dependence of the photonic dispersion relation can be used in these cavities
to observe optical analogues of the Spin-Hall effect [74, 76, 77].

In Sec. 2.2 the properties of Bulk and QW excitons are summarized. An iterative
method for the determination of their properties in the delicate case of shallow QWs is
presented, allowing a precise determination of the exciton binding energy, Bohr radius
and oscillator strength. The latter allows estimating the optical response of the QW
within a Lorenz-Drude model. Optical selection rules and exciton-exciton interactions
were briefly discussed.

In Sec. 2.3 we have shown the different regimes of light matter coupling and their
consequences on the properties of the fundamental excitations of the system. The
hamiltonian description of exciton-polaritons is presented and benchmarked against a
measurement of the polariton dispersion. An excellent agreement is found between the
theoretical predictions based on the results of Sec. 2.1-2.2 and the experiment. Two op-
tical excitation schemes, namely the quasi- and non-resonant excitation of microcavities
are reviewed, along with the diverse phenomenologies arising in the high-polariton den-
sity regime. Finally, the dependence of the polariton lifetime on the parameters of the
system is theoretically addressed: inhomogeneous broadening of the exciton transition
appears as the main limiting factor for state of the art samples.

Sec. 2.4 surveys the most relevant strategies developed over the years to engineer
polariton transverse modes. Focusing on the technique developed in C2N, that is deep
etching of a preexisting planar heterostructure, we discuss how to implement an analog
platform for the emulation of lattice hamiltonians. The fundamental building block of
the lattice are micropillar cavities presenting discrete optical modes. A small spatial
overlap between the pillars can be used to mimic a coupling term. The measured scaling
of the couplings and of the on site energies is in excellent agreement with theory. The
limitations of a tight-binding (LCAO) description are presented as well as the inverse
design problem. Lastly, we presented a formal description of the microcavity polariton
dynamics within the framework of master equations for open quantum systems.
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2.6 Appendix A: Finite element simulations

In this section we briefly discuss how to use finite element methods to determine the
optical modes of arbitrarily shaped micropillar structures. As mentioned in the intro-
duction to Sec. 2.4.1, provided the characteristic lateral size of a microstructure is sig-
nificantly larger than the wavelength of its confined modes, one can work in the paraxial
approximation where the longitudinal and transverse electromagnetic field components
are decoupled [184]. The longitudinal field profile can be determined using a trans-
fer matrix method for the dielectric layer stacks forming the Fabry-Perot cavity. The
longitudinal field profile is then used to determine the effective refractive index of the
structure (neff ≈ 3.4, cf Sec. 2.1.2). After this step the microcavity can be thought as
an homogeneous infinite waveguide along the longitudinal direction sharing the same
cross-section. We discuss hereafter three decreasing degrees of approximation which
can be used to determine the transverse components of electromagnetic field within
the ”equivalent waveguide” picture. In absence of sources and charges, we can start
by considering the vector-wave equation for the electric field vector E in the waveguide
structure

∇×∇×E− (ω/c)2εrE = 0 (2.57)

where ω is the carrier wave frequency, c is the speed of light in vacuum and εr is
the (spatially dependent) relative permittivity. We consider the waveguide axis to be
oriented along z, and denote Ω its cross-section in the (xy) plane. Assuming a perfect
dielectric, εr(x, y) is a step function returning n2

eff for (x, y) ∈ Ω and 1 otherwise. Using

the relation ∇×∇×E = ∇(∇·E)−∇2E and the charge-free condition ∇· (ε0εrE) = 0
to rewrite ∇ ·E = −ε−1(∇ε ·E), Eq. 2.57 becomes

0 = ∇2E + (ω/c)2εrE−∇(E · ∇ log εr)

= ∇2E + (ω/c)2
[
εrE− (c2/ω2)∇(ε−1(∇ε ·E)

] (2.58)

whereas the first term within square brackets has order of magnitude O(n2
eff )E, the

second is O(n2
eff/kl)E with k = 2π/λ is the vacuum wavevector and l is the charac-

teristic length over which the electric field changes appreciably [205]. If we consider
as an example the fundamental guided mode of a micropillar (i.e. modeled as circu-
lar waveguide) with radius R ∼ 2µm and resonant wavelength λ0 ∼ 850 nm, we get
kl ∼ 2πR/λ0 ∼ 151. Therefore, within a first order approximation, we can neglect the
second term in the square brackets. This brings us to the first approximation:

Optical Shrödinger equation: in absence of the ∇(ε−1(∇ε · E) terms, each
component of Eq. (2.58) decouples. We can then write a transverse wave in the form
E = u(r)ep for each polarization vector ep. Eq. (2.58) becomes then a scalar wave
equation for the slowly varying envelope u(r). For guided modes we have u(r) =
u(x, y)eiβnz where βn is the propagation constant of the nth-mode. Eq. (2.58) yields

(∇2
xy + n2(x, y)k2)u(x, y) = β2

nu(x, y)

[(~c)2∇2
xy + E2

0n
2(x, y)]u(x, y) = n2

eff (E0 + δEn)2u(x, y)
(2.59)

1Notice that higher order modes present smaller spatial features, thus smaller l values.
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In the last passage we have multiplied both sides for (~c)2, used E0 = ~ck and intro-
duced δEn = ~cδkn, where δkn represents the wavevector shift along z for the guided
mode. For typical micropillar sizes λ0/neffR � 1 thus δE/E0 = O(~c/E0neffR)2 =
O(λ0/neffR)2 ≪ 12. Then we can safely drop the O(δE2) terms in in Eq. (2.59),
subtract to both sides n2

effE
2
0 and divide both sides by 2E0n

2
eff ; we end up with the

following eigenvalue problem

[
− ~2c2

2E0n2
eff

∇2
xy +

E0

2

n2
eff − n2(x, y)

n2
eff

]
u(x, y) = δE u(x, y). (2.60)

Noticing that E0n
2
eff/c

2 = m∗c is the effective mass of a photon in a planar micro-
cavity (cf. Sec. 2.1.2), we recognize in the above equation the familiar two-dimensional
Shrodinger problem for a single particle in the step potential V (x, y) ≈ E0Θ(Ω)/2
where Θ(Ω) = 0 if (x, y) ∈ Ω and 1 otherwise. For this reason Eq. (2.60) is often
referred as the optical Shrödinger equation3 [184]. Eq. (2.60) can be solved numerically
by finite element methods, imposing homogeneous Dirichlet boundary conditions on a
curve ∂Ω′ enclosing Ω, such that min||∂Ω′ − ∂Ω|| � d0 with d0 being the decay length
of evanescent tails outside the waveguide. Since a rough estimate of d0 is given by
λ0/2π(n2

eff − 1)1/2 ∼ 40 nm, it is safe to choose the outer discretization boundary ∂Ω′

just 1 µm apart from any edge of the waveguide. For Mathematica users, this can
be simply implemented via the built-in function NDEigensolve: specifying an Arnoldi
iterative method for the eigenvalue problem and a Delaunay mesh with a maximal cell
area of 10−2 µm2 yields in few seconds satisfactory results over a 100 µm2 region.

Solving the optical Shrödinger equation allows determining the the scalar mode
structure and radiation pattern for any coupled micropillar arrangement. This is rele-
vant both for experiments where the TE-TM splitting is much smaller than the cavity
linewidth but also for experiments where one excites (or post-selects) only a particular
polarization component of the microcavity emission. Some examples are the spatial
mode profiles presented in Sec. 2.4.1 and 2.4.2 for single and coupled micropillar struc-
tures. Of course, the far-field radiation patterns ũn(kx, ky) can be obtained as the FFT
of un(x, y).

Optical Pauli equation: dealing with dielectric Fabry-Perot entails that the
effective refractive index (related to photon effective mass) can be different TE and
TM modes. Such effect vanishes for a cavity spacer whose optical thickness perfectly
matches the central wavelength of the DBR, but in general is non-zero leading to an
effective coupling of the pseudo-spin components of the optical field, see Sec. 2.1.2 for
details. Additionally, when the transverse size of a microstructure is progressively re-
duced, due to the different interface continuity relations, the TE and TM waves may
couple at the boundary of the structure. For micron-sized structures, these polarization-
dependent effects are typically second order in the perturbations, as discussed in the
previous paragraph. However, in high-finesse microcavities, the linewidth may become
sufficiently narrow to reveal the fine structure of the optical modes. Introducing the
spinor wavefunction ψσ(x, y) = u(x, y)eσ with e+1 = (1, 0)T and e−1 = (0, 1)T repre-
senting the photon circular polarizations, the coupling of TE-TM modes can be included
by taking the position representation of the effective spin-orbit coupling hamiltonian

2The scaling analysis is based on Eq. (2.46).
3The same equation can be equivalently derived starting from the paraxial Helmholtz equation and

identifying the z coordinate with time by introducing the rescaled variable t = z/c.
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Eq. (2.8) [74, 79]. Introducing the average effective refractive index for the TE and TM
modes ñ = (nTEeff + nTMeff )/2 some calculation yields

(
−~2c2∇2

2E0ñ2 + V (x, y) ∆so(∂x − i∂y)2

∆so(∂x + i∂y)
2 −~2c2∇2

2E0ñ2 + V (x, y)

)
ψσ(x, y) = δEψσ(x, y) (2.61)

where ∆so is the polarization coupling streght and can be decomposed in the sum of
two terms. The first one relates to the different effective refractive indices for the TE
and TM modes; denoting δn = (nTEeff − nTMeff ) we have

∆′so =
~2

2

(
1

m∗TE
− 1

m∗TM

)
=

(~c)2

E0ñ2

δn

ñ
+O

(
δn

ñ

)3

. (2.62)

Notice that δn can be both positive or negative. The second term, ∆′′so, comes from
the boundary conditions, depends on the geometry of the microstructure and can be
generally deduced from experiments. Again, the solutions of Eq. (2.61) can be found
using finite element methods: one example is given in Chap. 4-Fig. 4.4 where we present
the intensity patterns of the first twelve eigenmodes of an hexagonal arrangement of
micropillars.

Vector wave equations: if the properties of coupled micropillar structures needs
to be finely engineered a priori, it is also possible to directly solve the vector-wave
equations. In absence of charges and for a perfect dielectric we have that the E field
components satisfy Eq. (2.58) and the H field obeys

0 = [∇2 + (ω/c)2εr]H− (∇×H)× (∇ log εr) (2.63)

when modeling the microstructures as an equivalent waveguide, we can use the
translational invariance along z to use the following ansatz: E =

∑
j Ej(x, y)eje

iβz

where ej denote the unit vectors of the cartesian coordinate basis (and similarly for
H). Solving for the TE(TM) waves one can additionally require Ez = 0 (Hz = 0)
and developing β for small deviations around neffk0, allows deriving from Eq. (2.58)
and (2.63) two eigenvalue problems for the transverse components of E and H [206].
Assuming a step discontinuity in the refractive index profile at the waveguide boundary
∂Ω, one needs to impose the interface continuity relations for E and H. Alternatively,
one can artificially smooth εr in a narrow region about δΩ, thus ensuring the continuity
of the fields [207]. Implementing a hyperbolic tangent smoothing over a characteristic
length of 50 nm, supported by a local refinement of the discretization mesh (cella area
∼ 20 nm2) around the boundary ∂Ω allows reaching fairly accurate results. If we
denote with εn the eigenvalues of the vector wave equations and denote E0 = ~ck0 the
resonance at normal incidence of the planar cavity, we can express the energy blueshift
of the microstructure eigenmodes with respect to E0 as δEn = ~cεn/(εn/2− 2k0n

2
eff ).

We also stress that, upon choosing correctly the phenomenological TE-TM coupling
∆′′so, the results Eq. (2.61) and Eqs. (2.58)-(2.63) yield, present excellent agreement.

Periodic micropillar arrangements: in Sec. 2.4 we have described how to
understand the collective modes of any pillar arrangement based on an intuitive tight-
binding picture. This approximation often yields qualitative predictions however, in
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Figure 2.17: Bandstructure of a 1D micropillar lattice: (a) Illustration of the
finite element boundary conditions (left) and envelopes of the first six Bloch modes
deduced via Eq. 2.64 at kxd = (0, π) (right). Other parameters are neff = 3.38,
d = 3.4 µm and R = 2 µm. (b) Photonic bandstructure of the 1D lattice of micropillars;
here the bare planar cavity exciton-photon detuning is δcx = −5 meV. (c) Lower and
upper polariton dispersion relation corresponding to panel (b).

some situations (e.g. large pillar overlap), it may become inaccurate as the bare eigen-
modes of each resonator are not anymore a good orthonormal basis (cf. Sec. 2.4.2). If
a more quantitive model is needed, finite elements offer a rather accurate and efficient
solution. One relevant question is to determine the polariton dispersion relation in a
given microresonator lattice. As an example, we consider a basic problem: determining
the scalar bandstructure of a periodic 1D arrangement of micropillars. We denote R the
pillar radius and d the center-to-center distance, as Fig. 2.17-(a) illustrates. Exploiting
the discrete translational symmetry of the lattice it is convenient to set up periodic
boundary conditions on the finite element cell. Then, the Bloch theorem suggest us
that the solution of Eq. (2.60) must be in the form u(x, y) = ũ(x, y)eikxx. Inserting
this relation in Eq. (2.60), we find the modified eigenvalue problem for the Bloch-wave
envelopes

[
− ~2

2m∗c
(∇2

xy + 2ikx∂x − k2
x) + Veff (x, y)

]
ũn(x, y) = δEn(kx) ũn(x, y). (2.64)

Sampling the first n eigenvalues δEn(kx) as a function of kx ∈ (−π/d, π/d) allows
reconstructing the first n bands of the photon dispersion relation in the microcavity
lattice. Finally, to convert the photonic bands into the polariton dispersion relation
suffices using Eq. (2.31). In Fig. 2.17 we summarize the results of this calculation.
These arguments can be straightforwardly generalized to 2D lattices by considering
appropriate periodic boundary condition, as well as to each component of Eq. (2.61)
to include polarization dependent effects.
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CHAPTER 3

Experimental and numerical techniques

These pages survey the experimental and theoretical tools which will be routinely used
in the remaining part of the manuscript; the informations are organized in three sec-
tions. In Sec. 3.1, we describe the sample design criteria and fabrication protocol, high-
lighting the rational behind the choice of each parameter and some important details
for the installation of the sample in the cryostat. Section 3.2, presents the experimental
setup and two prototypical experiments. In the first, we characterize the magnification
properties of the confocal microscope used for imaging the emission of the microstruc-
ture. In the second, we use a resonant excitation scheme to investigate the spectral
properties of a discrete mode in a single micropillar cavity. Finally, Sec. 3.3 illustrates
three possible approaches to calculate the steady-state properties and the dynamics of
a system of coupled microcavities. The three approaches correspond to different levels
of approximation: mean-field, truncated-Wigner and the quantum master equation.

3.1 Sample preparation

In this manuscript we focused mostly on two samples, both of them were originally
conceived to study the nonlinear phenomena arising in micropillar structures where
polaritons are tightly confined. In these experiments one is interested working with
a quasi-resonant excitation scheme (cf. Sec. 2.3.2), which is possible both in a reflec-
tion or transmission geometry. The latter configuration however, has the significant
advantage that one does not need to filter out the portion of light which is not coupled
to the microstructure, allowing cleaner and technically easier experiments. For this
reason, we decided to work with shallow InpGa1−pAs QWs (p = 0.04− 0.05) which are
characterized by excitonic optical transitions well below the gap of any AlGaAs alloy
forming the rest of the microstructure (cf. Sec. 2.2). Moreover, in order to maximize
the strength of polariton-polariton interactions we work with a single quantum well, as
excitons belonging to spatially separated quantum wells do not feel each other. Notice
that, if we were interested in high-power off-resonant excitation experiments, e.g. to
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investigate polariton condensation and lasing, it would be instead desirable to have a
large number of quantum wells to increase the power threshold for the exciton satura-
tion density n0. Indeed for N quantum wells equally coupled to the cavity field, the
resonant polariton interaction scales as ∼ N−1, the Rabi splitting as ∼

√
N and the

saturation density as ∼ N−3/2 [34, 108]. Having this general idea in mind, we illustrate
the sample design criteria.

3.1.1 Design

The quality of InGaAs QWs is higher when GaAs is chosen as embedding matrix, thus
being the natural choice for the cavity spacer material. GaAs has the highest refractive
index among the AlGaAs alloys forming the rest of the heterostructure, meaning we
have to work with a guiding-type cavity. In order to maximize the light-matter coupling
strength, we have to position the QW at an antinode of the cavity field, using the
smallest possible cavity length, in this case Lc = λc, where λc is the central wavelength
of the Bragg mirrors. In our samples, residual absorption in the cavity spacer is the
most important limiting factor of the cavity finesse F . As already pointed out in
section 2.1, some absorption mechanisms are due to the fabrication process (residual
doping, interface roughness) and some are inherent to the material properties (Urbach
tails). In order to minimize the latter, one needs to work with polariton modes as far
as possible from the GaAs bandgap edge.

To do so, one can increase the Indium content: for 15 nm wide InpGa1−pAs QWs the
exciton optical transition wavelength redshifts with a linear slope ∆λ = 7.6(6)·102 p nm
for p < 0.15. However, an increased Indium content typically leads to stronger alloy-
fluctuations in the QW, resulting in a inhomogeneous broadening of the exciton emission
spectrum. For the best QWs we observed a nearly constant inhomogeneous broadening
up to p = 0.05 then increasing with a slope (p− 0.05) · 11(2) meV. This effect is detri-
mental for the polariton linewidth as Sec. 2.3.4 demonstrated. Another contribution to
the inhomogeneous broadening of the exciton transition is due to thickness fluctuations
of the QW layer, which can be minimized by working with wide and shallow QWs.
In principle, one may want to work with extremely wide QWs to minimize this effect.
However, this might result in a reduction of the light-matter coupling constant and
in an enhanced strain within the QW layer beacuse the lattice constants of InAs is
roughly 7% larger than GaAs.

The best compromise we found between the reduction of the absorption in the cavity
while minimizing the inhomogeneous broadening and strain effects are (15 − 20) nm
wide p = (0.04− 0.05) InpGa1−pAs QWs. We concluded that any further improvement
of the planar heterostructure design should aim at reducing the GaAs layer thickness
and inhomogeneous broadening for a p = 0.05(1), for instance exploiting adiabatic
cavity designs [208, 209, 210] and strain-releasing superlattices [178]. Regarding the
AlxGa1−xAs alloys chosen for the two DBR layers, common practice is to pick AlAs and
GaAs in order to maximize the DBR stop-band [Eq. (2.7)]. However GaAs introduces
additional absorption in the DBR layers close to the cavity spacer and AlAs tends
to oxidize quickly in ambient pressure conditions, being potentially detrimental for
microstructures with a large surface to volume ratio. A good compromise is the pair
of Aluminum fractions x = (0.1, 0.95). With these considerations in mind, we designed
two planar heterostructures, that were used for all the experiment presented in this
manuscript. Specifications are detailed in Tab. 3.1.1.
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Design 1 δz (nm) n(λ0) NIt Design 2 δz (nm) n(λ0) NIt

Dbr1 Al0.10Ga0.90As 60.9 3.44 32 Al0.10Ga0.90As 62.0 3.43 28
Dbr2 Al0.95Ga0.05As 71.5 2.94 32 Al0.95Ga0.05As 72.6 2.93 28

Sp GaAs 110.8 3.52 1 GaAs 113.6 3.51 1
QW In0.04Ga0.96As 17.0 3.52 1 In0.05Ga0.95As 15.0 3.51 1
Sp GaAs 110.8 3.52 1 GaAs 113.6 3.51 1

Dbr2 Al0.95Ga0.05As 71.5 2.94 36 Al0.95Ga0.05As 72.6 2.93 32
Dbr1 Al0.10Ga0.90As 60.9 3.44 36 Al0.10Ga0.90As 62.0 3.43 32
Sub GaAs 3.5 · 105 3.52 1 GaAs 3.5 · 105 3.51 1
Arc SiO0.18N1.22 111.9 1.88 1 SiO0.18N1.22 113.5 1.88 1

Table 3.1: Sample design parameters: Nominal parameters used for the growth of
the two planar heterostructures. Design 1 and 2 target a central cavity wavelength
λ0 of 840 nm and 852 nm, respectively. Abbreviations: (Dbr1,2) quarter wave stacks
forming dielectric mirrors, Sp spacer layer, Qw quantum well, (Sub) substrate wafer,
(Arc) anti-reflective coating, δz is the layer thickness, n(λ0) is the refractive index
of the alloy evaluated at λ0 and NIt is the number of repetitions of each layer. The
stoichiometric indexes in the Silicon Oxynitride layer are referred with respect to the
Si abundance.

Notice that in all designs the bottom mirror has four more pairs than the top one.
This is because the reflectivity of the bottom DBR is reduced due to the high refractive
index of the substrate: the condition Nbot = Ntop + 4 allows to balance this effect and
work in a symmetric cavity configuration. Notice that in the conception of the first
design we underestimated the absorption in the cavity, as it fluctuates from sample to
sample and therefore we included too many mirror pairs. As a result, the transmission
at resonance was pretty poor (T0 ∼ 0.1). After a thorough characterization of different
samples, we concluded that on average the second design gives the best compromise
between the achievable linewidth (including absorption) γ ≈ 20 µeV and a transmission
at resonance of T0 ≈ 0.65 (see Fig. 2.3).

Indeed, if we consider for simplicity an empty cavity, we have two competing loss
mechanisms: the radiative losses and absorption, with associated rates γc and γa,
respectively. Using a classical oscillator model to describe the cavity field dynamics,
one easily finds that the cavity transmission spectrum is Lorentzian with a linewidth
Γ = γc + γa and peak transmission coefficient T0 = (γc/Γ)2 [70]. Whereas γc can be
in principle made arbitrarily small by increasing the number of pairs in the DBRs,
γa is constant, as it depends only on the residual absorption coefficient at a given
wavelength. Therefore, once γc ∼ γa, further increasing the DBR pairs is counter-
productive as the cavity linewidth quickly saturates to its absorption-limited value while
one loses all the transmitted power. Having in mind to probe dynamical phenomena
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in a few-polariton excitation regime, keeping a collection efficiency as large as possible
is extremely important.

3.1.2 Fabrication

Figure 3.1-(a) summarizes the main sample processing steps. (1) We use an undoped
double-polished two inch GaAs wafer with a nominal thickness of 350 µm. (2) The wafer
is introduced in a Molecular beam epitaxy (MBE) reactor [211], where the designed
heterostructure is grown atomic layer by atomic layer. Since the growth process elapses
up to 12h, a careful calibration of the Knudsen cell heaters flux is preliminarily done,
and corrected for drifts due to cell emptying. For the calibration a Reflection High-
Energy Electron Diffraction (RHEED) technique is used. Importantly, the molecular
beams are not perfectly collimated and arrive with an angle on the substrate wafer,
thus creating a deposition rate spatial gradient, which can be eventually minimized
by rotating the wafer. This effect can be advantageously used to obtain a spatial
gradient of the cavity central wavelength over the sample, allowing to change the relative
detuning with respect to the QW exciton transition. In absence of rotation the detuning
gradient is typically δ∆cx ∼ 6.5 meV/mm but can be otherwise progressively reduced
down to δ∆cx ∼ 0.1 meV/mm. According to an atomic force microscopy (AFM)
characterization, rotating the sample is beneficial for the surface reconstruction quality
(∼ 1 nm rms over 100 µm2) whereas, without rotation, dense point and line defects
have been observed possibly limiting the cavity finesse.

Once the growth of the planar heterostructure is complete, we proceed to charac-
terize the cavity mode gradient in order to select a useful portion of the sample for
the following steps of the fabrication process. Figure 3.1-(b) shows an example of a
reflectivity spectrum of the planar cavity measured by Fourier-transform infrared spec-
troscopy (FTIR) at room temperature and in proximity of the wafer center. From the
stop-band shoulders we deduce the cavity central wavelength, and by repeating the
measurement for ∼ 120 regularly spaced positions across the wafer we reconstruct a
spatial map of the cavity resonance. Since the exciton energy is known from previous
calibrations, we can build an exciton-photon detuning map ∆cx, as shown in Fig. 3.1-
(b). Notice that since the reflectivity measurements were taken at room temperature
the resonance wavelength needs to be corrected for the cavity effective refractive index
shift between 4 K and room temperature. The black rectangle in Fig. 3.1-(b) corre-
sponds to a (15×6) mm portion of the wafer selected as a sample. To isolate this piece
we inscribe with a diamond tip cleaving grooves on the substrate side and propagate
them applying a gentle pressure. The sample is then carefully cleaned from dust and
washed in a bath of acetone followed by optical grade purity isopropanol to remove any
residue on the surfaces, mild sonication can also be used, finally a nitrogen blower is
used to quickly dry the solvents on the surface.

(3) In order to suppress spurious Fabry-Perot effects between the bottom DBR and
the end facet of the substrate we also deposit a Silicon Oxynitride quarter-wavelength
anti reflective coating (ARC). The quarter-wavelength ARC refractive index must be
the square root of the one of Gallium Arsenide; given the refractive index around
850 nm for SiO2 (n = 1.45) and Si3N4 (n = 2.02) a stoichiometry relative to Silicon
of 0.18 for Oxygen and 1.22 for Nitrogen, allows us obtaining the desired dielectric
coating (n = 1.88). In Fig. 3.1-(c) we show a measurement of the substrate reflectivity
before (gray) and after (red) the deposition of the ARC layer. In a 25 nm wide region
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centered at 845 nm the reflectivity is suppressed by four orders of magnitude, dropping
below the noise floor of the apparatus, testifying the effectiveness of the ARC. Notice
that the central wavelength of the ARC in Fig. 3.1-(c) is intentionally blue-shifted with
respect to the ≈ 852 nm target to compensate for the temperature-dependent refractive
index shift. We also point out that Silicon Oxynitride is a ceramic type material with
very poor thermal conduction properties. This is an important point to remember
when designing the thermal anchorage of the sample to the cold finger of the cryostat.
Afterwards, plasma-enhanced chemical vapor deposition (PECVD) is used to deposit
a 2 µm Silicon Nitride layer on the epitaxial side.
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Figure 3.1: Sample fabrication: (a) Flow diagram of the sample fabrication (details
in the main text). (b) Reflectivity spectra obtained by Fourier-transform infrared
spectroscopy (FTIR) are used to map the cavity resonance across the two inch diameter
planar heterostructure. Provided the energy of the exciton transition is known, this
allows to derive an exciton-photon detuning map ∆cx. Accordingly, a small piece of
the wafer is selected for steps (3-8) of the fabrication (Black rectangle). (c) Reflectivity
spectrum of the GaAs substrate before and after the anti reflective coating (ARC)
deposition in step (3). The central wavelength of the ARC can be tuned with the layer
thickness. (d) Representative SEM images of the microstructures fabricated with the
process (1-8).

(4) Spin-coating is used to spread a drop of a Polymethyl methacrylate (PMMA)
in solution, the resulting ∼ 40 nm film is baked in an oven trough the glass transition
temperature. (5) Electron-beam lithography is used to imprint on the polymer the
microstructure pattern, causing localized de-cross-linking within the PMMA. After
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chemical development the PMMA layer is left only on the negative of the imprinted
mask. To avoid proximity effects we keep a ∼ 20 µm minimal distance between the
edge of neighboring structures. (6) A metallization reactor is used to deposit 60 nm
of Nickel. (7) A sonicated bath in acetone lifts off the negative PMMA mask with the
Ni layer. (8) Finally, a reactive ion etching (RIE) followed by a selective Inductively-
coupled plasma (ICP) etching step is used to retain the positive of the sample mask.
In Fig. 3.1 we show some SEM images of the different microstructures fabricated with
this process.

3.2 Experimental Setup

In Fig. 3.2 we show a schematic representation of the core elements of the setup which
has been used in all the experiments presented in this manuscript. From time to time,
small adaptation of the setup have been implemented and will be detailed later on.
The setup is organized in two main parts, the first one is devoted to the preparation an
control of the laser beam properties, the second allows to collect the sample emission
both in reflection and transmission geometries. Two laser sources are installed in
the setup to ensure the possibility of using both continuous-wave (CW) and pulsed
excitation schemes. The CW laser source is a tunable Ti:Sapphire oscillator (SolsTIS-
PSX-R pumped by a 10W Millennia Xs) with a measured sub-MHz linewidth. The
wavelength of the CW laser is constantly monitored via a high-finesse wave-meter and
can be locked in frequency using a feedback loop. In absence of feedback loop (passive
cavity) the wavelength drift is typically 0.4 pm over 10 minutes, mostly due to the
temperature/humidity variations in the laboratory. When the feedback is activated,
the wavelength is locked with a rms fluctuation of 0.02 pm. Above 100 Hz the laser
power spectral density is shot noise-limited. The MSquared bowtie cavity produces an
output beam with a 0.30(2) mm internal waist and a 1.4 mrad half-angle divergence.
The pulsed laser is a mode-locked tunable Ti:Sapphire laser (Tsunami pumped by a
10W Millennia Xs) producing 2.6 ps wave-packets at a 81.16 MHz repetition rate. The
(external) beam waist was 0.81(2) mm with a half angle divergence of 0.57 mrad.

The CW laser beam is collimated by a 500 mm focal length achromatic doublet (L1)
and is epurated from the small unconverted 532 nm pump beam residue using a low-pass
filter. The average power of each laser beam can be roughly adjusted independently
using a HWP facing the PBS where the two are combined. A telescope with a 2/3
magnification (T1) in the pulsed laser arm has been used to mode-match the two
beams having a common waist in the plane of the quarter-wave plate (QWP) preceding
the electro-optical modulator (EOM). The free-space amplitude EOM has a bandwidth
of 100 MHz and a full-wave modulation voltage of 270 V at 850 nm; a high-voltage
amplifier (Falco systems) allowed full modulation in a DC to 5 MHz bandwidth. A
beam expander (T2, 3/2 magnification) in combination with a 11 mm focal length
aspheric lens has been used to launch the two beams into a single-mode polarization
maintaining fiber. At the fiber output the beam is separated in two by a 50 : 50 beam-
splitter: one of the arms goes to the experiment, the second is used to monitor the
laser power via a photodiode (PD). The PD output is sent to a proportional-integral
(PI) servo circuit feeding a 1 kHz bandwidth variable optical attenuator (VOA) coupled
to the single mode fiber. When activated this feedback-loop allowed a stabilization of
the relative DC power level to better than 3 10−4. In combination with the EOM this
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Figure 3.2: Scheme of the setup. Abbreviations: mirror (M), low-pass filter
(LPF), half-wave plate (HWP), quarter-wave plate (QWP), beam-splitter (BS), polar-
izing beam-splitter (PBS), microscope objective lens (OBJ), photodiodes (PD), pinhole
(PH), fiber launch stage (FL), electro-optical modulator (EOM), variable optical atten-
uator (VOA), proportional-integral servo controller (PI), light-emitting diode (LED),
three-axis translation stage (XYZ), image plane (I.P.), Fourier-conjugate plane (F.P.),
Mach-Zehnder interferometer (MZI). The inset shows an image of the transmission
window of the cryostation and a detail of sample holder. See main text for details on
the setup.
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allows to have an extremely stable average power level while having the possibility of
designing arbitrary modulation signals in the 1 kHz− 5 MHz band.

Two crossed PBSs preceded by HWPs mounted on motorized rotation stages allow
to further attenuate up to a factor 106 the beam power. One of the PBS ports is
used to couple the collimated emission of a light-emitting diode with 780 nm central
wavelength serving sample illumination purposes. The beam is coupled with a 70 : 30
BS to a confocal microscope focussing it onto the sample with a long working-distance
plan-APO microscope objective (OBJ1). OBJ1 has a nominal 0.55 numerical aperture
(NA) and a 4 mm effective focal length. Precise positioning of OBJ1 is ensured by
a three stage piezo actuator. Moreover, the polarization state of the excitation beam
is controlled by a HWP and a QWP while its divergence is tuned with a 2 : 1 beam
expander (T3) allowing to control the excitation spot beam waist. The sample emission
is collected in reflection and imaged with a set of lenses L2,3,5 on the entrance slit of
a spectrometer coupled to a high-sensitivity (16-bit) CCD camera (Andor iKon-M 934
series). The lens L4, mounted on a flip-flop mount, allows to image the reciprocal space
emission (see Sec. 3.2.1). Two pinholes in the image plane (I.P.) and Fourier plane
(F.P) can be used for filtering purposes. The sample emission can be also collected in
transmission geometry by a second microscope objective (OBJ2) with a nominal 0.42
NA and a 10 mm effective focal length held by a three stage micro-positioner (20 nm
accuracy). A QWP-HWP pair allows to control the collected beam polarization state,
later analyzed with a PBS: the reflected component is injected to the imaging beam
path while the transmitted component is sent onto an avalanche-photodiode (PDOUT).
Together with the photodiode PDIN, this allows high-sensitivity input-output power
measurements (down to ∼ 1 nW) with a 50 MHz bandwidth. Finally, a mirror and
a film BS mounted on removable magnetic mounts eventually form a Mach-Zehnder
interferometer (MZI) in the transmission beam path which has been used for phase-
resolving measurements. The telescope T4 has a 1× to 5× variable magnification and
is used to create a reference phase in one of the interferometer arms.

In the inset of Fig. 3.2 we show a picture of the cryostat window where the sample
(grayish color) and its copper holder are visible. The patterns visible on the sample
surface are ∼ 120 repetitions of a microstructure motif, whose top portion is shown in
the rightmost panel of Fig. 3.2-(d). A detail of the holder is shown on the left portion
of the inset: it consists of a gold-plated support presenting a 10× 2.5 mm transmission
window and contacted with the cold finger of the cryostat and of a capping copper
plate. The two plates sandwich the sample and apply a homogeneous pressure over
the sample; a veil of specific vacuum grease (Apiezon-L) ensures good thermal contact
between the components. The thermal anchoring of the epitaxial side of the sample is
essential because the ceramic ARC deposited on the back of the substrate suppresses
substantially the thermal conductance of the back contact. The holder is mounted on
a two axis piezo stage allowing a precise relative positioning of the sample with respect
to the excitation spot. The alignment of the excitation spot is done by shining both
the laser beam and LED illumination onto the sample and imaging the reflected light
on the CCD. Fine tuning of the input coupling can be done by acting on the excitation
XYZ piezo actuators.
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Figure 3.3: Imaging techniques: (a) Real space imaging: a point source in the
sample plane (S) at a distance ∆x from the optical axis is mapped to a point at a
distance ∆x′ ≈ (f2f5)/(f1f3)∆x in the spectrometer entrance slit. (b) Momentum
space imaging: the sample emission at an angle θ with respect to the optical axis
is mapped to a point at a distance ∆x′ ≈ (f3f5/f2f4)f1 tan θ in the spectrometer
entrance slit. The intermediate image plane (I.P.) and Fourier plane (F.P.) can be
used for filtering purposes. (c,d) Examples of position (c) and momentum (d) resolved
emission spectra of a 1D lattice formed by circular micropillars with radius R = 2.0 µm
and center-to-center distance a = 3.4 µm; Ex ≈ 1453.5 meV is the exciton energy.

3.2.1 Real and momentum space imaging

The in plane momentum of polaritons is preserved in radiative processes as a conse-
quence of the translational invariance of the system. As a result, an imaging system
coupled to a dispersive optical element -for instance a spectrometer grating- allows to
retrieve a complete information on the modes of the system [142]. In Sec. 2.3.3 we
have used this idea to measure the polariton dispersion relation in a planar microcav-
ity. In this section we want to use a non-resonant excitation scheme to image both in
direct and reciprocal space the spectrally resolved emission of a one-dimensional lattice
of coupled micropillars. Knowing the nominal period of the lattice, will allow us to
precisely calibrate the magnification of the confocal microscope.

For real-space imaging we combined a 4f imaging system with a magnifying tele-
scope, schematized in Fig. 3.3-(a). With simple ray optics arguments one can show
that such arrangement of lenses sends rays emitted by a point source onto the sample
plane (S), at a distance ∆x from the optical axis, to a point at a distance ∆x′ =M∆x
in the image plane. A small portion of the emission cone is shaded in red in Fig 3.3-(a).
The magnification of the optical system, adopting the approximations of the lens-maker
equation, amounts to M = (f2f4)/(f1f3). Depending on the focal length of the last
lens adopted in the microscope f5 = 300(750) mm we haveM≈ 46.9 (117.2), given the
13× 13 µm size of the CCD pixels this corresponds to 3.6 (9.0) pix/µm conversion.
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OBJ1 L2 L3 L4 L5

4 mm 250 mm 400 mm 300 mm 300 mm− 750 mm

Table 3.2: Confocal microscope: nominal effective focal length of the lenses employed
for the imaging system. L2,5 are achromatic doublets to avoid large spectral shifts of
the focusing condition. Lens identification subscript refers to Fig. 3.2.

As pointed out earlier, there is a one-to-one relation between the in-plane wavevector
of a polariton and the angle of emission of the photon resulting from its radiative decay
in the free-space modes. An angle-resolved image of the emission of a microstructure is
therefore enough to access reciprocal space. This can be done by imaging the focal plane
of the lens L3 as shown in Fig. 3.3-(b). Indeed, rays emitted at different positions in the
sample plane, but with the same angle θ with respect to the optical axis, are focused
in the Fourier conjugate plane (F.P.). That is L2,3 form a 4f lens system targeting the
objective back-focal plane. The telescope formed by L4 and L5 then images the F.P.
to the spectrometer entrance slit. Using the lens-maker equation one can show that
the angle-displacement relation is ∆x′ ≈ (f3f5/f2f4)f1 tan θ. Considering a small-angle
approximation and f5 = 300 mm this yields a 0.5 pix/mrad conversion.

As an example, in Fig. 3.3-(c,d), we excite off-resonantly (cf. Sec. 2.3.3) a one
dimensional lattice of circular micropillars and resolve the luminescence of the struc-
ture along the spectrometer slit in real and momentum space, respectively. The first
diffraction order of the 1200 gr/mm grating lodged in the spectrometer is imaged onto
the CCD, granting a 59.76(2) pix/nm chromatic dispersion along the axis orthogonal
to the slit. In this way, Fig. 3.3-(c) gives the energy-position resolved emission where
spatially extended modes can be observed. The lowest energy band corresponds to the
hybridization of the s-type fundamental modes of each micropillar, the second lowest to
p orbitals. Remarkably, the in-phase oscillation of the low k eigenmodes of the s-band
can be directly inferred from the homogeneous intensity maxima spreading across sev-
eral pillars (see the inset as a reference). Instead, on top of the s-band, the alternating
phase of the intracavity field between neighboring pillars leads to zeroes in the intensity
profile at each interface between the lattice sites. In Fig.3.3-(d) we inserted on the path
the Fourier lens L4, thus imaging the reciprocal space: the bandstructure of the 1D
lattice is directly revealed on the CCD.

The 1D lattice presented in Fig. 3.3-(c,d) is formed by 2 µm radius circular pillars
with lattice parameter (inter-pillar distance) a = 3.4 µm. These values are rather
precise (≈ 50 nm systematic error) and can be used to independently calibrate both the
direct space and reciprocal space images. The former, using the distance between the
intensity maxima measured on the top of the s-band, the latter by fitting the dispersion
maxima at the end of the first Brillouin zone. These calibrations yield microscope
magnification values consistent with the ones obtained by ray optics calculations with
a relative error better than 5%. Notice that, in principle, the lens-maker equation does
not apply to thick high-NA lenses, however the infinity-corrected microscope objective
seem to be optimized to yield results in fair agreement with ray optics, due to the
correction of all the aberrations.

The calibration of the spectrometer chromatic dispersion (not shown) was obtained
by shining a small portion of the single-mode laser beam onto the spectrometer en-
trance slit. The maxima of the spectral peak was recorded for a set of equally-spaced
wavelengths and fitted with a linear regression curve. Systematic deviations from the
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linear regression due to aberrations are less than 1 pixel across the full CCD area.
By fitting with a pseudo-Voigt profile (convolution of a Lorentian and a Gaussian dis-
tribution) the spectra at a fixed wavelength we obtained 32(3)µeV FWHM for the
spectrometer point-spread function yielding the spectrometer resolution. Notice that
both the Gaussian and Lorentian profiles are stable distributions, meaning a convolu-
tion of two Gaussian (Lorentian) profiles yields a Gaussian (Lorentian) profile. This
fact combined with the associativity and commutativity of the convolution operation,
can be used to readily deconvolve the spectral width of any measured Pseudo-Voigt
spectral line from the spectrometer point-spread. This does not change the resolving
power of the spectrometer but allows to measure spectral line-widths below the resolu-
tion limit upon careful data analysis. Finally, we point out that this technique can be
intuitively extended to phase-sensitive schemes following an interferometric approach
[35], or employing a Shack–Hartmann wavefront sensor [212].

3.2.2 Scaling of the microcavity linewidth

In this section we perform an experiment on circular micropillars. These structures
present discrete modes whose linewidth can be precisely probed in resonant spec-
troscopy experiments. We can therefore use them to characterize the dependence of the
linewidth of the microcavity as a function of the detuning of the lower polariton rela-
tive to the exciton. This information will be crucial to obtain a consistent input-output
theory describing resonant experiments with microcavity polaritons.

In Sec. 2.3.4 we have shown that we can group the different polariton decay channel
according to three contributions: the bare cavity linewidth including the radiative losses
trough the mirrors and absorption (γc), the non-radiative exciton decay rate (γnr) and
the contribution due to the inhomogeneous broadening of the exciton. The first term
is related to the photonic component of the polariton, the latter two are associated
to the matter component, and are therefore weighted by the corresponding Hopfield
coefficients. These considerations resulted in Eq. (2.45), which we rewrite here for
simplicity

Γ = |C|2γc + |X|2(γnr + 2π∆2
xlρ(∆xl)) (3.1)

where |X|2 and |C|2 are the exciton and photon fractions, ∆xl = ~(ωx − ωl) is the
detuning of the polariton mode with respect to the exciton transition and ρ(∆xl) is
the spectral density describing the inhomogeneous broadening of the exciton. For the
derivation of the right most term in the above equation we refer to [163]. In order to
avoid introducing too many parameters in the model we assume a gaussian distribu-
tion for ρ(∆xl) with a standard deviation σinh. Notice that the Hopfield coefficients
[Eq. (2.29)] depend on the cavity to exciton detuning ∆cx = ~(ωc − ωx), related to the
lower polariton detuning trough

∆cx =
(~ΩR)2 − 4∆2

xl

4∆2
xl

(3.2)

where ~ΩR ≈ 3.4 meV is the Rabi splitting extracted from the fit of the polariton
dispersion relation (cf. Sec. 2.3.3). Inserting this relation in the definition of the
Hopfield coefficients yields an expression for Γ depending only on ∆lx. We will use
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Figure 3.4: Scaling of the polariton linewidth: (a) Typical transmission spectrum
of a circular micropillar with a 2.0 µm radius measured by resonant spectroscopy. Inset:
emission profile at resonance (ω0), here ~(ωx−ω0) = 2.60(5) meV, the fit is a lorentian
profile yielding the polariton linewidth Γ = 25.9(5) µeV. (b) Scaling of the measured
polariton linewidth as a function of the detuning of the resonance with respect to the
exciton transition (symbols). The dashed line is a fit with Eq. (3.1), the shaded areas
correspond to the 95% confidence level of the fit.

this model to estimate the different contributions to the polariton linewidth from the
scaling relation of the polariton linewidth with ∆lx.

To this aim, we characterized a dozen of single micropillar structures with an equal
nominal radius R = 2.0 µm but presenting different detuning values ∆lx of the lowest
energy mode. For each pillar we performed a resonant spectroscopy experiment. The
measurement protocol is the following; first, we approximatively determine the ener-
gies of the micropillar modes using a non-resonant excitation scheme while spectrally
resolving the emission of the micropillar. Then, we tune the laser onto the lowest en-
ergy mode and maximize the input coupling of the laser beam. Finally, we collect the
transmitted intensity as a function of the laser detuning. These measurement allowed
retrieving the linear transmission spectrum of each pillar; we show a representative
example in Fig. 3.4-(a). The inset presents an imaging of the transmitted light when
driving resonantly the lowest energy mode. The absence of stray light outside the pil-
lar edge (dashed line) suggests that the excitation spot has been efficiently coupled
to the pillar mode. The experimental data points are then fitted using a Lorentian
profile allowing to precisely retrieve the polariton linewidth; here Γ = 25.9(5) µeV in
Fig. 3.4-(a). From the mode profile at resonance we could also extract the modal area
A ≈ 6.1 µm2 (finite element calculations for the nominal structure yield A ≈ 6.0 µm2).
From the resonance energy and having previously calibrated the exciton energy as a
function of the position of each pillar of the sample we could associate a detuning value
∆xl to each pillar.

The results of this analysis are summarized in Fig 3.4-(b). Finally, we used Eq. 3.1
to fit the experimental data points: the result is traced as a dashed line in Fig 3.4-(b).
From the fit we could extract the following values

γc (µeV) γnr (µeV) σinh (meV)

35.1(7) 16(1) 0.53(1)
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Furthermore, from a measurement of the peak transmission (recall T0 = (γc/Γ)2)
for a large detuning (∼ 10 meV), we could estimate that the absorption contribution
to γc is roughly 10 − 15 µeV. We also notice that the FWHM of the inhomogeneous
distribution is roughly 2.35σinh = 1.2 meV, which is roughly two times the typical
one observed in simple QW structures embedded in a GaAs matrix (cf. Fig. 2.11).
This might be due to a degradation of the surface reconstruction quality after having
deposited the bottom DBR. To mitigate this effect the growth of a strain releasing
superlattice before the DBR seems a relevant option, see the supplementary material
of Ref. [213].

3.3 Modeling quasi-resonant experiments

In this section we want to review the two main approximations used for the description
of the dynamics of a system of coupled micropillars cavities under a coherent pumping.
We need them because the full description in terms of a Lindblad master equation for
the density matrix of the system (cf. Sec. 2.4.4) is often unnecessary and becomes
computationally unbearable already for a few coupled pillars and a few photons cutoff.
Indeed, using a truncated Fock basis with n ≤ nc for the Hilbert space of a micro-
cavity, the Liouvillian superoperator admits a matrix representation with size n2

c × n2
c ,

becoming n2N
c × n2N

c for N coupled microcavities. Thus, a ”brute force” solution of
the Liouvillian zero-eigenvalue problem determining the steady-state density matrix is
either time consuming or unfeasible. Moreover, considering the fact that we operate
in a regime where the two-polariton interactions are still significantly smaller than the
linewidth U/γ � 1, nonlinear effects sets in only when the cavity occupation is large,
making a semiclassical or mean-field description of the dynamics rather accurate. In
the following we discuss: (1) the Mean-field approximation; (2) a semiclassical method
for the unravelling of the master equation; (3) how to find the steady state of the system
within the master equation description in the case of a single resonator.

3.3.1 Mean-field equations

In a field theory, the mean-field or saddle-point approximation consists in finding the
trial field which minimizes the action of the system. A well-known result is that the
trial solutions must satisfy the classical Euler-Lagrange equation of motion. Indeed, in
a path-integral picture, finding the extremal of the action means to move along the most
probable trajectory at each point in phase-space, i.e. the trial function corresponds to
the expectation values of the field. This is just a formalization of one consequence of the
Ehrenfest theorem: to lowest order in the expansion around the expectation values of
system observables (i.e. dropping quantum fluctuation), position and momentum follow
the classical Hamilton equations. This kind of approximation is made for instance when
using the Hartree ansatz for the matter field describing the condensate fraction of a
diluted gas of neutral atoms [124], or in nonlinear optics whenever one expands the
polarization of a medium in powers of the electric field and nonlinear susceptibilities
[214]. In our case this boils down to study the dynamics of the cavity field expectation
value, whose evolution can be derived by substituting the creation and annihilation
operators p̂ (p̂†) with the complex valued fields α(∗) = 〈p̂(†)〉 in the master equation for
the reduced density matrix of the system (cf. Sec. 2.4.4) [37].
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The resulting equations of motion are exact for quadratic and bilinear hamiltonians
in (p̂, p̂†) since higher than second order variations of the action are vanishing. This is
not the case when including the contact interaction term in the polariton hamiltonian.
Indeed, we are factorizing third (and eventually higher) order correlation terms when
setting 〈p̂†p̂p̂〉 ≈ 〈p̂†〉〈p̂〉〈p̂〉 in the Heisenberg evolution of 〈p〉 [37, 214]. Considering a
single-mode of the polariton field (e.g. one of the s-type eigenmodes of a single pillar)
subject to a coherent monochromatic drive, the mean-field (MF) equation for the cavity
field amplitude α ∈ C yields (~ = 1)

iα̇ =
(
ω0 − i

γ

2
+ U |α|2

)
α+ i

√
γ/2Feiωt

=
(
−∆− iγ

2
+ U |α|2

)
α+ i

√
γ/2F

(3.3)

where ω0 is the frequency of the mode, γ is the polariton linewidth, U is the two-
body interaction strength and F the complex drive amplitude with frequency ω and
α̇ = dα/dt. In the second line, we moved to the frame rotating at the pump frequency
by inserting the ansatz α = α(t)eiωt and defining the detuning ∆ = ω − ω0. This
ansatz is valid as long as |∆| � ΩR. Within the Heisenberg picture, generalizing
Eq. (3.3) to a network of cavities coupled by resonant hopping terms with Hamiltonian

H = −∑i,j Ji,j(p̂
†
i p̂j + c.c.) is straightforward. For the k-th resonator, one finds

iα̇k =
(
−∆k − i

γk
2

+ Uk|αk|2
)
αk −

∑

j

Jk,jαj + i
√
γk/2Fk (3.4)

The time evolution of this system of coupled ordinary differential equations (ODEs)
can then be approached with standard numerical techniques. Notice that due to the
nonlinear term, Eq. (3.4) can display stiff behaviors producing large discretization errors
when using explicit (e.g. Runge-Kutta) numerical integration methods. Therefore semi-
implicit or adaptive methods, readily implemented in commercial numerical suites,
are necessary to avoid computational overheads; we refer to [215] for the theoretical
background.

A problem relevant to this manuscript, will be the determination of the steady-state
value α̃k = limt→∞ α(t) of the intracavity field once the parameter set (∆, γ, U, J,F)k
is known. One way of doing this is to compute the long term evolution of the equation
set (3.4), after adiabatically ramping from zero to its steady-state value each on-site
drive amplitude F̃k. This method scales well with the number of modes αk, but has
a serious drawback: it is well-known that nonlinear ODEs often display a multistable
behavior, that is, they admit a collection of inequivalent solutions {α̃k} for the same
parameter set, depending on the history of the drive terms. If one intends to simulate a
specific experimental protocol, this generally does not constitute a problem. However,
if one is interested a priori to know all the α̃k values, choosing the right speed and
overall history of each on-site drive ramp, calls for specific and often computationally
intensive solutions.

Just to have an idea, we can try to give an upper bound to the number of solutions
in the case of N resonators forming a linear chain with nearest-neighbor hopping and
only F1 6= 0. Since each steady state solution α̃ must satisfy the condition α̇|α̃k = 0 ∀k,
Eq. (3.4) becomes a set of algebraic complex polynomial equation for which we know
the number of (possibly degenerate) solutions equals its degree. Indeed for our specific

64



3. Experimental and numerical techniques

1 2 3 4

10-2
10-1
100
101
102
103
104

Number of sites

C
om
pu
at
at
io
na
lt
im
e
(s
)

⌧ 1
Ex

p
⇥ (N

� 1)
�
⇤

F

�

!0

U
J

Open	chain
PBC

Figure 3.5: Searching for the MF steady state - a heavy toll: Scaling of the
single-core computational time spent to find a complete set of steady-state solutions
for Eq. (3.4) as a function of the number N of resonators in the lattice. Nearest-
neighbor hopping only is considered both in the case of an open chain (blue markers)
and imposing periodic boundary conditions (red markers). If τ1 is the single resonator
time, the scaling with N has the empirical form shown in the inset. The exponent β is
2.1(1) and 2.4(1) for the open and periodic boundaries, respectively. For each value of N
we simulated 5 different values of F1 ∼

√
∆/γU , that is deep in the multistable portion

of parameter space. We consider identical resonators with (∆, J) = 3γ and U/γ = 10−2.
For the computation we used a customized homotopy method implemented using the
libraries of Mathematica running on 3.2 GHz processor.

cavity network, the N -th equation depends linearly on α̃N−1, we can express α̃N−1 as
a cubic polynomial in α̃N and substitute it in the k = (N − 1) remaining equations.
Iterating this procedure, one ends up with an equation in α̃N of degree 3N , equivalent
to the number of roots of the algebraic system of equations.

The numerical search for these roots can be done with commercial softwares (e.g.
Mathematica) implementing quasi-exact Homotopy methods. It is however striking to
plot the scaling of the computational cost against N . In Fig. 3.5 we present the compu-
tational time needed to find the complete set of solutions {α̃k} of the algebraic system
encoding the steady-state of Eq. (3.4) as a function of the number N of resonators. We
study a linear resonator chain both in the case of open and periodic boundary condi-
tions (PBC), while considering only nearest neighbor couplings (details in the caption).
Depending on the boundary conditions, between N = 1 and N = 4 there are four
to six orders of magnitude increase in the computational overhead, with a dramatic
super-exponential scaling. The higher toll observed in the case of PBC is due to the
failure of a symbolic simplification by chain-substitution operated when possible by the
software and aiming at reducing the dimensionality of the problem.

Using the symmetries of the system and drive schemes imposing a specific phase-
pattern over a larger number of resonators can significantly reduce the number of
inequivalent solutions. Even in this case the solution of this problem is quite challenging
for large values of N . For this reason, coupled optical Kerr resonators, where the
intensity and phase of each lattice site can be monitored with standard interferometric
techniques, represent an implementation of a classical analog simulator encoding a
remarkable degree of complexity.
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Figure 3.6: Phase-space portrait for one Kerr resonator: Streamlines showing
the local direction of the vector field X = α̇ describing the MF dynamics a single
Kerr resonator [Eq. (3.3)] for F2/γ = (4, 18, 27) in panels (a,b,c) respectively. Other
parameters are ∆/γ = 1.5, U/γ = 0.05. Fixed-points (X = 0) are indicated by circular
markers: both stable (s) and unstable (u) ones can be observed, as clearly indicated
by the absence (presence) of outward pointing streamlines. The colormap encodes the
scaled log-norm of the vector field indicating the local magnitude of the α̇. Panel (b)
evidences the optical bistability phenomenon [214, 216].

At this point, it is important to introduce a second concept: the linear stability
of the steady-state solutions. Indeed, not every steady-state solutions found with the
algebraic method is physically relevant: the unstable ones for t→∞ cannot be observed
since any technical or intrinsic fluctuation of the intracavity fields drive the system away
from them. The right-hand side of Eq. (3.4) defines a vector field X(αk) : CN → CN
prescribing at each point in phase-space α̇k. Provided some analyticity conditions
are met, one can imagine the field lines in CN as the gradient of a scalar potential
presenting several ”hills” and ”valleys” in the complex phase-space. At the summit
(bottom) of each of these loci α̇k simultaneously vanish, thus corresponding to steady-
state solutions of Eq. (3.4). However, only the ”valley” solutions are convex about α̃,
with any displacement δα̃k being counteracted by a vector field component pointing
towards α̃. These fixed-points are thus generally called stable solutions or attractors.
Conversely in ”hill” solutions any δα̃k is amplified over time by the outward-pointing
components of δα̃k; for this reason these fixed-points are called unstable solutions. As
an example, in Fig. 3.6 we show the streamlines generated in phase-space by the vector
field X(α) in the single resonator case (N = 1), for three representative values of the
coherent drive amplitude. This plot intuitively reveals the presence of stable (s) and
unstable (u) solutions just by inspection of the direction of the vector field lines in
vicinity of a fixed-point1 (markers). The scaled log norm log(||X|| + 1), plotted in
color, indicating locally the magnitude of the velocity α̇. Light regions in the map
indicate the vicinity to a fixed point, where ||X|| = 0. Remarkably, in Fig. 3.6-(b)
three distinct fixed points are visible: two of them are stable α̃1,3 (optical bistability),
presenting inward spiraling streamlines, the middle one, α̃2 shows instead an outward
pointing line along the min|α̇| curve connecting α̃2 to α̃1,3, thus is unstable (saddle).

1Since we highlighted that some of the roots of the algebraic set of equations are not physical
steady-states we prefer to refer to them as ”fixed-points”.
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More generally, for higher dimensions (N > 1) the analysis of these stream-plots
becomes extremely difficult to visualize and one has to resort to a spectral analysis
of the field generators in vicinity of the fixed-point. Indeed, the (linear) stability of
each α̃ can be addressed by studying the eigenvalues of the Jacobian of the vector
field, evaluated at each fixed-point J̃ = J (X(α))|α=α̃ [217, 218]. Notice that due
to the presence of the square modulus |αk|2 = α∗α, each component of the vector
field is analytic but not holomorphic, thus the Wirtinger derivative ∂α∗ 6= 0. For
this reason one also has to consider the conjugate evolution of α̇∗ and J (X)i,j =
(∂/∂αi, ∂/∂α

∗
i )
†(Xj(α, α

∗), X∗j (α, α∗)) has dimension 2N × 2N. If we call Eα̃,k with

k = 1, ..., 2N , the complex eigenvalues of J̃ , three scenarios are possible:

1. If Im(Eα̃,k) < 0 ∀k, then any small fluctuation around the fixed point is damped
over time: α̃ is stable.

2. If ∃k| Im(Eα̃,k) > 0, fluctuations around α̃ are amplified over time indicating an
instability. The real part of the unstable eigenvalue(s) determines the monotonous
(single-mode, Re(Eα̃,k) = 0) or oscillating (Re(Eα̃,k) 6= 0) character of the ampli-
fying perturbation.

3. If ∃k| Im(Eα̃,k) = 0, a center subspace is found. The slow-dynamics around
these solutions is generally complicated to predict and the forecasts of the above
linearized spectral theory fails2.

Notice that in the case of Re(Eα̃,k) 6= 0 instabilities, the long-term dynamics of
the system may deviate from the predictions of a linearized theory. For instance,
growing oscillations can stabilize the formation of limit cycles, which are stable attractor
manifolds even if α̇ 6= 0 for t → ∞. The study of such cases and of central-subspaces
forms a large body of literature still presenting several open questions [217]. As a
practical example we consider the N = 1 case (a single Kerr resonator) described by
Eq. (3.3) and compute the linear stability matrix J̃ .

J̃ =

(
∂αX ∂α∗X
∂αX

∗ ∂α∗X
∗

)

α̃

=

(
−∆− iγ2 + 2U |α̃|2 Uα̃2

−U(α̃∗)2 ∆− iγ2 − 2U |α̃|2
)

(3.5)

denoting n = |α|2, some simple algebra yields:

Eα̃ = −iγ/2±
√

(∆− 3Uñ)(∆− Uñ) (3.6)

Evaluating the above expressions for the fixed points shown in Fig. 3.6 one can
check that they convey the same information indicated by the streamlines of the vector
field. The corresponding eigenvectors indicate, in vicinity of α̃ the leading directions
for the growth (decay) of the perturbations. Notice that this formal treatment is
equivalent to consider a small perturbation ansatz αk(t) = α̃k + δαk(t), plug it into the
equations of motion (3.4) and linearize them by dropping any term O(δα2) or higher
in the perturbations. Assuming the time evolution δαk(t) = uke

iωt + v∗ke
iω∗t for the

excitation frequencies ω and amplitudes ψk = (u, v)k, one gets the secular equation
(J̃ψ − ωψ) = 0. This second description assumes more the language of a Bogolyubov
theory which, for instance, successfully describes the spectrum of small perturbation
on top of a condensate wavefunction [124].

2The Grobman-Hartman theorem is valid only for hyperbolic fixed points (i.e. Im(E) 6= 0).
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3.3.2 Truncated Wigner approximation

In this section we want to review a semiclassical approximation for a stochastic unrav-
eling of the dynamics of the system in phase-space. The heart of this class of methods is
the optical equivalence theorem, asserting that the expectation value of an operator in
the Hilbert space equals the expectation value of its associated function in phase-space
formulation, when computed with respect to a quasi-probability distribution describing
the quantum state [219, 220]. In general, given the density matrix ρ̂ of a system and
an observable Ô

Tr(ρ̂ Ô) = 〈Ô〉H = 〈O〉P =

∫
dαdα∗ Ps(α, α∗)Os(α, α∗) (3.7)

In the right-most term Os(α, α
∗) is the phase-space representation of the operator

Ô and Ps(α, α∗) is a quasi-probability distribution in phase-space, satisfying the nor-
malization condition

∫
Psdαdα∗ = 1. The subscript s = 0,±1 indicates the fact that

there are different phase-space representations: choosing s affects both the definition
of Ps and the ordering of the operators when evaluating the phase-space average (3.7).
Three celebrated representations are: s = 1 (Glauber-Sudarshan P) where observables
are normally ordered, s = −1 (Husimi Q) with anti-normal ordering and s = 0 (Wigner)
with symmetric ordering [219, 221, 222]. Here we focus on the Wigner representation
for a single bosonic mode with ladder operators (â†, â)

P0(α, α∗) =
1

π2

∫
dβdβ∗Tr(ρ̂ e(βâ†−β∗â)) e(αβ∗−α∗β) (3.8)

Notice that: (1) the states (α, α∗) are not orthogonal, (2) Ps ≥ 0 is not verified for
all the quantum states (e.g. a cat state). Recall that in this representation the observ-
ables must be symmetrically (Weyl) ordered, for instance starting from normal ordered
operators â†â→ (â†â+ ââ†−1)/2 and for the nonlinear term in the hamiltonian (2.48)
one can use the fact that (â†)2(â)2 = (â†â)(â†â − 1) and iterate the symmetrization
procedure. More generally

〈: (â†)n(â)m :S〉 =
∂n

∂βn
∂m

∂(β∗)m
Tr(ρ̂e(βâ†−β∗â))|β,β∗=0

=

∫
dαdα∗ P0(α, α∗) (α∗)nαm

(3.9)

where : · :S denotes the symmetrical ordering. The remarkable advantage in using this
formulation is that the master equation (2.53) ruling the dynamics of the system density
matrix, can be cast in the form of a generalized Fokker-Plank equation involving the
partial derivatives of the quasi-probability P0 [222]. Indeed, after lengthy calculations,
detailed in [223, 222], the operatorial terms in the master equation can be expressed
in terms of P0 and its Wirtinger derivatives. The substitution table is ρ̂ → P0(α, α∗)
whereas for the left and right action over ρ̂ of the bosonic ladder operators becomes

(âρ̂, ρ̂â)→
(
α± 1

2

∂

∂α∗

)
P0 − (â†ρ̂, ρ̂â†)→

(
α± 1

2

∂

∂α

)
P0 (3.10)
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When this correspondence table is inserted in the master equation (2.53), one obtains
the desired phase-space diffusion equation for P (hereafter we drop the subscript 0).
We focus on the case of a single resonator (single mode); the generalization to a lattice
(many modes) is rather simple since each mode commutes with the others, thus making
the extension of the relations (3.9)-(3.10) trivial [222]. Considering a zero temperature
bath (〈nth〉 = 0) in (2.53) one obtains

i∂tP =−
[
∂

∂α
D(α, α∗) +

∂

∂α∗
D∗(α, α∗)

]
P(α, α∗) +

[
γ

2

∂

∂α∂α∗

]
P(α, α∗)

−
[
U

∂

∂α∂α∗

(
∂

∂α
α− ∂

∂α∗
α∗
)]
P(α, α∗)

(3.11)

here D(α, α∗) denotes the drift term

D(α, α∗) = (∆ + iγ/2− U(α∗α− 1))α− i
√
γ/2F . (3.12)

The first line of Eq. (3.11) is in the form of a generalized Fokker-Plank equation for the
quasi-probability P. The quasi-probability current at each point in phase space (first
term) is proportional to the gradient of the drift term D, which closely resembles the
vector field generating the mean field dynamics (3.3). The constant positive diagonal
diffusion term is instead proportional to the mode linewidth, suggesting its dissipative
origin. The last right-hand term term in Eq. (3.11) is proportional to third order deriva-
tives of the Wigner quasi-probability, and prevents the canonical mapping of Eq. (3.11)
into a stochastic differential equation (SDE). This is desirable as it significantly reduces
the computational complexity of the problem. Fortunately, it has been demonstrated
that this term can be neglected in the case of small nonlinearities Uγ � 1 [224, 37].
Within this truncated Wigner approximation (TWA) the evolution of P described by
Eq. (3.11) can be obtained from the ensemble dynamics of the trajectories generated
using the associated SDE

idα(t) = −D(α, α∗)dt+ dχ(t) (3.13)

where dχ is a Wiener process with χ(t) being a complex-valued uncorrelated gaussian
noise of variance 〈χ∗(t′)χ(t)〉 = δ(t− t′)γ/2. If {αt}k with k = 1, ..., N is a collection of
independent trajectories, the expectation value of a symmetrized operator : Ô :S can
be computed at every time t from the trajectory ensemble as

〈: Ô(t) :S〉 =

∫
dαdα∗ P0(t)O(α, α∗) =

1

N

∑

k

O(αt, α
∗
t ) (3.14)

Notice that the computational cost of a stochastic unraveling in terms of C-fields
scales roughly linearly with the number of modes involved in the calculation. This
makes the TWA the only viable choice when dealing with large resonator lattices [195,
197]. As a practical example we consider a single Kerr resonator with parameters iden-
tical to the ones presented in Fig. 3.6. We compute the martingale αt by implementing
Eq. (3.13) with a Euler-Maruyama discretization scheme. After having adiabatically
ramped the drive power to F2/γ = 19.67, we let the stochastic evolution continue for
tf = 104γ−1. The discretization step, δtγ = 10−2 ensures four-digit (or better) preci-
sion on different benchmark estimates. The evolution is repeated for 103 trajectories
yielding the set {αt}k. For constant parameter values, provided the total length of the
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Figure 3.7: Truncated Wigner approximation: (a) Phase-portrait of P0(α, α∗) de-
scribing a single Kerr resonator for the same parameters of Fig. 3.6-(b). To reconstruct
P0 we simulated 103 trajectories using Eq. (3.13), each one elapsing 104γ−1, with a
10−2γ−1 discretization (Euler–Maruyama scheme). Recalling the Markovianity of the
trajectories for δtγ � 1, one can assume ergodicity and obtain 106 independent val-
ues of α, then binned as function of their real and imaginary part. (b) Examples of
the stochastic evolution of the number density operator in a phase-space representa-
tion (n = α∗α − 1/2). The frequency histogram of n shows bimodality underpinning
the existence of mean-field bistable fixed-points, which are actually metastable due to
quantum-activated switching between the two attractors in phase-space (see the abrupt
jumps in the trajectories) [225, 226, 227].

trajectory is such that the values of αt for t = 0 and tf are completely uncorrelated
and, using the Markovianity of the process, one can safely assume for δtγ � 1 inde-
pendent samplings of α. In this way we obtain from {αt}k roughly 106 statistically
independent samplings of the steady-state Wigner quasi-probability P (α), which we
reconstruct with a binning procedure in Fig. 3.7-(a). Since the drift term in Eq. (3.13)
is essentially equal to the MF vector field X = α̇ in Eq. (3.3), it is not surprising
to observe when comparing Fig. 3.7-(a) and Fig. 3.6-(b) that P (α) is maximum where
||X|| = 0 that is, when the drift term vanishes. In other words, the maxima of P(α) are
in close vicinity of the MF solutions -as expected for consistency- and the bimodality
of P(α) indicates the existence of two stable fixed points in the MF. The diffusion term
makes α explore the vicinity of the fixed points α̃ with an exponentially suppressed
probability in ||X||. Sometimes the diffusion triggers abrupt switching events between
the two lobes of P, resulting in a metastable behavior of the steady state of the sys-
tem [225, 226, 227, 203]. Fig. 3.7-(b) shows three samples of the trajectories described
by the phase-space representation of the number operator n̂ → n(α, α∗) = α∗α − 1/2
evidencing the jumps between the maxima of a bimodal distribution P(n). The study
of such switching (or activation) time statistics and its effect on hysteresis experiments
will be subject of the last chapter of the manuscript.

For intensive calculations we developed a fast-SDE solver implemented in C++
allowing to generate on a single core in a matter of few minutes 2.5 1010 iteration steps,
corresponding to 10 ms of real dynamics of a polariton microcavity with 40 ps lifetime.
The most important bottleneck consists in the generation of pseudo-random gaussian-
distributed numbers. Adaptive stochastic discretization schemes [228] would be an
effective strategy to reduce the pseudo-random number generation overhead. Further
numerical optimization schemes for lattices and disordered systems are summarized in
[229].
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3.3.3 Matrix representation of the Liouvillian

Although the semiclassical treatment presented in the previous section is capable of
describing our system (where U/γ = (0.05 − 0.001)) faithfully, there are some cases
where it is not the optimal solution in terms of computational time. Indeed, in vicinity
of phase-transitions, dissipative systems are known to display a critical slowing down
of the dynamics, with diverging temporal and spatial correlations [193, 230, 195, 231,
232]. In this case, the estimation of steady-state quantities becomes computationally
intensive for trajectory based methods, requiring increasingly long temporal evolutions.
However, for a single resonator, a representation of the Liouvillian superoperator L̂ (cf.
Sec. 2.4.4) in a truncated Fock-space with cutoff Nc ≈ η(U∆/γ), is still possible in
term of a matrix L of size N2

c × N2
c . Correspondingly, the density matrix becomes

a vector ρ̂ → ρi with N2
c entries, while the master equation (2.53) can be written as

ρ̇ = Lρ. The proportionality constant η sets the degree of approximation made in the
truncation: η = 2 is typically sufficient to reach machine precision. Upon diagonalizing
L one obtains the spectral decomposition of the master equation (cf. Sec. 2.4.4)

ρ̂(t) = ρ̂ss +
∑

k 6=0

ck(0)e−λktρ̂k (3.15)

where λk (ρ̂k) are the eigenvalues (eigenvectors) of the Liouvillian superoperator, ck(0) =
Tr[ρ̂(0)ρ̂k] are the projections of the initial density matrix and ρ̂ss is the steady-state
density matrix (λk = 0). Assuming an ordering λ1 < λ2 < ... of the L-eigenvalues, for
a slowly evolving system, only the first λk matter for the long term dynamics. This is
an important observation: since L is rather sparse, using an Arnoldi iterative method
to determine the few smallest eigenvalues drastically changes the computational cost
of the simulation. As a reference, for Nc = 300 (that is a 9000× 9000 matrix), finding
the first ten smallest eigenvalues requires 3.2 s on a 3.6 GHz single core. This offers a
quite powerful tool to investigate the steady state of the system, even in vicinity of a
dissipative phase transition.

In order to find the matrix representation of L̂, we need to start from the master
equation (2.53) (nth = 0), and use the expansion ρ̂ =

∑
nm ρ

n
m|n〉〈m| with ρnm =

〈n|ρ̂|m〉 in a truncated Fock basis with m,n = 1, ..., Nc. Notice that we will use an
Einstein summation convention and we distinguish covariant (lower) and contravariant
(higher) indexes for later use.

ρ̇nm = −i(H̃ ρ− ρ H̃)nm + γankρ
k
la
†l
m

= −i
(
H̃nkρkm − ρnkH̃km

)
+ γ

(
anka

∗ l
m

)
ρkl

= −i
(
H̃nkδ l

m − δnkH̃T l
m + iγanka

∗ l
m

)
ρkl

= −iLn l
m k ρ

k
l

(3.16)

where H̃ is the effective non-hermitian hamiltonian (2.54), we denoted a
(†)n

m = 〈n|â(†)|m〉,
used a†nm = a∗ n

m and δij denotes the Kronecker delta function. In Eq. (3.16), each

component of the rank-2 tensor ρ̇nm is a linear combination of ρkl elements with coef-
ficients given by the rank-4 tensor Ln l

m k. In order to represent L as a matrix, we need
to flatten ρ̂ in a superspace where it becomes a vector, that is |n〉〈m| → |n〉 ⊗ |m〉. For
a basis (en)m of a rank-2 vector space V and (ek)

l for its dual V ∗, en l
mk is a basis of
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Figure 3.8: Diagonalization of the Liouvillian: (a) Density of the sparse matrix L
representing the Liouvillian in the superspace |n〉 ⊗ |m〉 basis as a function of the Fock
basis cutoff Nc (dim(L) = N4

c ). (b) Comparison of the number density distribution
obtained with the TWA (gray bars) and from the diagonal elements of the steady state
density matrix ρss, that is the λ = 0 eigenvector of L (dashed line). Parameters are
the same as in Fig. 3.7. (c) Absolute value of the ρnss m entries.

V ∗ ⊗ V , it is simple to recognize in the elements of L that the decomposition in the
superspace can be written as

ρ̇ p = −i(H̃ ⊗ I− I⊗ H̃T + iγa⊗ a)pqρ
p (3.17)

where (p, q) = 1, ..., N2
c run on the superspace dimension dim(V ∗ ⊗ V ) = dim(V )2

and we used the fact that the projections of â in a Fock basis are real numbers. The
tensor products can be easily implemented on a program using the Kronecker delta
functions. As previously mentioned, this makes the representation of L in superspace
rather sparse. In Fig. 3.8-(a) we quantify the density of non-zero elements of L, given
by
∑

pq sgn(|Lpq|)/N4
c , as a function of the Fock basis cutoff Nc. For Nc ∼ 2 102, which

is a representative value of the cutoff for some of the experiments of the manuscript
(U∆/γ = 10−2), the Liouvillian has a density ∼ 10−4. Using a sparse matrix imple-
mentation paired with an Arnoldi iterative diagonalization method, allows a remarkable
hundred-fold reduction of the computational time with respect to a full singular value
decomposition, whose computational cost scales as O(N6

c ). Provided Nc ≈ 2(U∆/γ)
the diagonalization of L gives an exact information on the system steady state density
matrix ρss (satisfying Lρss = 0) and can thus be used to benchmark the results of
the truncated Wigner approximation (TWA). Figure 3.8-(b) compares the TWA pre-
dictions of the number density distribution (gray bars), with the exact values given
by p(n) = δnmρ

m
ss n (dashed line). A good overall agreement is found already for

U/γ = 0.05 (the other parameters being as in Fig. 3.7). Finally, Fig. 3.8-(c) presents
the absolute value of the steady-state density matrix entries (n,m < 60).

In summary we have surveyed three possible descriptions of the dynamical equa-
tions ruling the dynamics of coherently driven Kerr-resonators, modeling the physics of
discrete polariton modes in micropillar cavities. The more general approach is based on
the master equation for the system density matrix. The dimensionality of the matrix
representation (L) of the Liouvillian superoperator ruling the density matrix evolu-
tion limits the applicability of this exact approach. Alternatively, since the ratio of
the nonlinear constant to the cavity linewidth is small (U/γ � 1), we can rely on a
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semiclassical approximation. We map the master equation to a generalized Fokker-
Planck equation for the Wigner quasi-probability. Neglecting a term small in U/γ, we
can sample the quasi-probability distribution using an unraveling in terms stochastic
trajectories describing the cavity field dynamics in phase-space. This method greatly
reduces the computational cost, as one only needs to compute the (stochastic) evolu-
tion of a C number. We benchmarked the validity of this approximation against the
exact master equation, obtaining a fair agreement. The deterministic (drift) term in
the stochastic evolution, corresponds to the mean-field equations for the cavity field,
which can therefore be understood as the non-diffusive limit of the truncated Wigner
method. Concerning mean-field equations, we have illustrated how to get the steady-
state intracavity field as the solution of a set of algebraic equations. We also discussed
a general method to address the linear stability of the mean-field solutions.
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CHAPTER 4

Optically controlling the emission chirality of microlasers

Abstract: Structured light beams presenting a twisted wavefront carry photons with
a net orbital angular momentum (OAM). Contrary to the spin angular momentum
(SAM) of photons, associated to their circular polarizations σ = ±~, the OAM is
an unbounded degree of freedom ` ∈ Z~. Especially for this reason, harnessing the
OAM appears advantageous for increasing the information density of both classical
and quantum information channels. Furthermore, the angular momentum of light can
be used to address the rotational degrees of freedom of nanoscale optically levitated
objects and to enhance sensing techniques.

So far, integrated sources of coherent light carrying an OAM are based on resonators
whose design imposes a single, non-tailorable chirality of the wavefront (that is, clock-
wise or counter-clockwise vortices). Here we propose and demonstrate the realization
of an integrated microlaser where the chirality of the wavefront can be optically con-
trolled. The scheme relies on the interplay of two ingredients, namely, an analog spin-
orbit coupling for photons in our dielectric microstructures and the spin-polarization
of the gain medium. As a result, we are able to optically break time-reversal symmetry
in the microlaser, which is essential for generating an emission carrying a net OAM.
Furthermore, while investigating the saturation regime of such chiral microlasers, we
demonstrated a bistable behavior involving two modes with distinct OAM (` = 0 and
|`| = 2) and polarization patterns. Using a dynamical rate equations model, we under-
stand the mechanism underlying the bistability in terms of a polarization-dependent
saturation of the gain medium.

The proposed OAM control mechanism is rather general and can be readily extended
to different laser architectures and injection schemes, thus paving the way to the real-
ization of a new generation of OAM microlasers with tunable chirality. Moreover, the
observed bistability phenomenon could be potentially used for implementing ultrafast
OAM optical switches and for the exploration of dynamical processes involving phase
and polarization vortices. The core results presented in this chapter are published in
refs. [233, 234].
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4. Optically controlling the emission chirality of microlasers

4.1 Introduction

The advent of laser light sources sparked the quest for controlling and harnessing the
degrees of freedom of light [235]. Historically, a major flywheel for the development
of novel light sources has been the synergy between the microelectronics and telecom-
munication industry. The first benefitted from the improvement of the UV optical
lithography techniques, decreasing progressively the transistor footprint thus boosting
the efficiency and computational power of micro-processors. In turn, this allowed the
development of first-principle numerical tools helping researchers improving and con-
ceiving new laser designs. The second lead to the development and miniaturization
of fast optoelectronic modulators and receivers, allowing unprecedented control of the
temporal and polarization properties of the optical field.

A lot of the early works were devoted to the control of the temporal (spectral) enve-
lope of the laser emission. Continuous-wave lasers, characterized by a nearly monochro-
matic emission, are essential instruments for optical spectroscopy techniques or for the
coherent excitation of matter transitions. On the opposite end, sources of ultrafast
laser pulses, have reached few optical cycle envelopes. This control over the spectral
density of the laser emission, lead to impressive advances in optical metrology, ranging
from atomic-clocks [236], to frequency comb generation schemes [237, 238] and super-
continuum sources [239]. Conversely, in the temporal domain, ultrashort pulses allowed
the resolution of the electronic (or molecular) dynamics on attosecond timescales [240],
while the generation of high-intensity ultrashort optical pulses [241], has been essential
for medical applications and for the development of multi-photon microscopy in bio-
sciences [242, 243]. The temporal and spectral envelopes of the laser emission constitute
a Fourier conjugate pair of observables ultimately subject to uncertainty relations, as
schematically illustrated in Fig. 4.1-(a). In order to modify the spectral density of
the envelope, one can combine nonlinear effects (e.g. Kerr lensing and focusing) with
dispersive optical elements (gratings, prisms, etc.) [244, 238, 241].

In parallel, the possibility of tailoring the polarization, intensity and phase pattern
of the laser emission are, since the early days of laser sources, an important field of
research [58]. The ability to structure the light beam properties first relied on bulk
optical elements placed outside the optical cavity. For instance, the polarization of
a paraxial beam can be controlled by using half- and quarter-wave plates. In the
same way, a patterned neutral density filter or a glass substrate of varying thickness
can be used to introduce an amplitude or phase modulation, respectively. These first
approaches lacked of versatility, as each different pattern called for new custom optical
elements. In this sense, the invention of spatial light modulators (SLMs) based either
on liquid crystals or micro-mirror arrays represented a revolution. Indeed, these devices
allow to shape the incident wavefront with high spatial resolution in a reconfigurable
and fully controlled fashion [245, 246]. Having full access to the spatial properties of
light constitutes a major advantage for the multiplexing of telecommunication channels
[247]. Moreover it allows focusing light and imaging objects trough complex media
[248], which is of crucial importance for in-vivo studies of biological tissues. As well,
SLMs are the core technology for the storage of impressively dense 3D holographic
images [249]. Rather than shaping or filtering the source emission, another approach
is to insert amplitude or phase masks within the laser cavity, which thus emits directly
in the desired mode, see [58, 250] for an overview. For instance, by inserting a metal
wire crossing the axis of a confocal Fabry-Perot cavity, one increases the losses for the
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4. Optically controlling the emission chirality of microlasers

Figure 4.1: : (a) Spectral and the conjugated temporal envelope of a coherent beam, in
the limit of S(ω)→ δ(ω−ω0) one recovers monochromatic plane waves. (b) The pseudo-
spin, polarization or spin angular momentum (SAM) of a photon can be represented
on the Poincaré sphere. (c) Schematic representation of the wavefront of an optical
pulse carrying an OAM ` = ±1, that is a 2π clockwise or anti-clockwise phase vortex,
respectively. The inset shows the radial intensity pattern of such beam, belonging to
the LG01 (Laguerre-Gauss) class of solutions of the paraxial wave equation.

fundamental gaussian mode of the laser (TEM00) and, as a result, mode competition
is won by the Hermite-Gauss GH01 mode [251]. Alternatively, SLMs can be used to
dynamically shape the resonant cavity mode, obtaining on-demand laser modes [252].
One advantage of this approach is that it is robust to imperfections: profiting from the
stimulated nature of the laser operation, a slight imbalance on the gain/loss ratio for a
given mode Min of the resonator, results in an emitted beam Mout with extremely high
purity |〈Mout|Min〉|2 ≈ 1. Instead, in the filtering/ wavefront shaping approach, the
quality of the desired output beam is only determined by the precision and accuracy
of our optical manipulation technique. As a concrete example, if we take a laser with
an output gaussian mode and we shine it through a wire, the resulting beam profile
would only qualitatively resemble HG10, whereas putting the same wire inside the laser
cavity, as previously mentioned, results in a nearly perfect HG10 emission [251]. This
motivated us to pursue this second avenue in the development of the structured light
source presented in this chapter.

For a transverse electromagnetic wave the polarization, intensity and phase pat-
terns are related to the total angular momentum of light. This quantity, as we will
later demonstrate, can be conveniently separated in two components: the spin angu-
lar momentum (SAM) and the orbital angular momentum of light (OAM). A third
one, the external angular momentum, exists, but can always be gauged away with an
appropriate choice of the system of coordinates for the paraxial light beams we are
interested in [80]. The SAM is a manifestation of the fact that a photon is a massless
spin-1 boson [253]: for transverse photons, the spin operator admits only the ±1 Sz
projections, thus any polarization state can be represented on a Poincaré sphere with
poles corresponding to the circular polarization states σ±, see Fig. 4.1-(b). Notice that
in a paraxial beam the polarization spatial pattern is solely determined by the local
phase relation between the transverse electric and magnetic field components, and is
thus independent of the field spatial distribution. The OAM is instead related to the
field spatial distribution, but not to its polarization [254, 255]. In the simpler case
of a paraxial beam with an envelope presenting a cylindrical symmetry, the OAM de-
scribes the number of times (`) the phase of the wavefront winds around the direction
of propagation within an optical period, as Fig. 4.1-(c) illustrates [255, 256].
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4. Optically controlling the emission chirality of microlasers

The most notable asset of the OAM is that, contrary to SAM, which is restricted to
the values ±~, it is theoretically unbounded; for example, generation of light vortices
carrying more than 104 quanta of OAM has recently been demonstrated [257]. Over
the past decade, numerous proposals and demonstrations that take advantage of this
unbounded Hilbert space have emerged. For instance, it has been acknowledged that
these higher-dimensional quantum states could offer a drastically enhanced information
density, both in classical [258, 259, 260, 261] and quantum [262, 263, 264, 265] com-
munication channels, and they could also allow improvements to the resilience against
noise and eavesdropping of quantum communication protocols [266, 267, 268]. More-
over, since the early works of J.H. Poynting [269], R. Beth [270] and later L. Allen
and collaborators [255], it is known that light possessing a SAM or OAM can be used
to exert an optical torque on absorbers or scattering bodies. The former, induces a
rotation of the particle around its own center (spinning), the latter instead, will gen-
erate a revolution of the particle around the beam axis [271, 272]. Remarkably, this
mechanical equivalence can be exploited to address the rotational degrees of freedom
of optically levitated nanoscale objects [273, 256, 274, 275], or in the development of
novel tools for optomechanics [276, 277]. From a fundamental point of view, generat-
ing and entangling quantum states with such arbitrarily large quantum numbers has
been demonstrated to be a very promising avenue for investigating the foundations of
quantum mechanics [278, 279, 278].

The growing interest for the OAM degree of freedom of light calls for the development
of coherent sources carrying well-defined and tunable OAM. One possible strategy that
has been extensively explored is to shape the phase front of paraxial beams using bulk
optical elements such as spiral phase plates [280] or computer generated holograms
presenting a pitchfork dislocation via a SLM [259, 260]. Although these approaches
have the advantage of being extremely versatile, allowing the generation of high-order
vortices, they typically suffer from low operation frequencies and remain extremely
difficult to integrate on a chip. Another strategy relies on the fact that for a generic
vector beam the polarization and spatial degrees of freedom are non-separable [58]
thus, exploiting simultaneously anisotropic and inhomogeneous mediums, SAM to OAM
conversion can be achieved [80, 281]. The conversion of circular polarization to OAM
has been implemented both with nano-structured metasurfaces [282, 283, 284, 285],
Q- and J-plates [286, 287, 288]. Remarkably, in these schemes the handedness of
the polarization can be used to switch between two OAM values however, their full
integration is challenging, as they rely on complex architectures involving several optical
elements.

In the quest for the development of coherent laser sources, their miniaturization
and eventual integration on a chip has driven a consistent amount of research with the
long term goal of generating, routing, controlling and detecting light on the same chip.
Semiconductor laser diodes, omnipresently used for telecom applications, were one of
the first and most notable results of this effort [289, 290]. In this regard, direct gap
semiconductors are excellent gain mediums which can be both optically and electrically
pumped. Moreover, since the pioneering work of E. Yablonovitch [291], the idea that
the periodic juxtaposition of material with different dielectric constants could be used to
confine or tailor the dispersion relation of photons [63, 292], found a natural realization
in semiconductor heterostructures growth and etching technologies (cf. Sec. 2.1). These
elements, combined together suggest a viable path for the realization of integrated
sources of structured light.
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In this sense, recent demonstrations of integrated OAM lasers based on ring res-
onators [293, 294, 295] are very promising. However, it is very challenging in these
integrated devices to break the mirror symmetry between clockwise (CW) and counter-
clockwise (CCW) propagating modes, which is necessary to generate an emission car-
rying a net OAM. So far, this difficulty has been successfully overcome by engineering
chiral resonators, for example by tuning the gain and loss around the resonator, but the
scalability of this approach is strongly limited because the engineering of the devices
imposes a given, non-tailorable chirality to the lasing mode: each device can generate
only either a CW or a CCW vortex.

Here, we propose and demonstrate a novel scheme to achieve OAM lasing in a fully
integrated device where the chirality of the emission (that is CW or CCW vortices)
can be optically controlled. To do so we consider a hexagonal arrangement of micropil-
lar cavities supporting optical modes displaying a discrete rotational symmetry [187].
Rather than relying on the engineering of a chiral resonator, our scheme is based on
optically breaking time-reversal symmetry by spin-polarizing a gain medium with a
circularly polarized optical pump. By taking advantage of the spin–orbit coupling of
photons confined in planar microcavities with rotational symmetry [79, 80, 187], this
allows us to generate a lasing emission that carries OAM with a chirality that can
be controlled solely by tuning the polarization of the pump. Although the magnitude
of the OAM (|`|) is not tunable in a single device, we show that this parameter can
be accurately controlled during the fabrication process by tailoring appropriately the
geometry of each microlaser. Furthermore, we demonstrate that this scheme could be
extended to N -site ring arrays of cavities allowing the generation of large OAM values.
We also experimentally test the robustness of the scheme with temperature and discuss
possible avenues for achieving a room temperature operation. Finally, we investigate
the gain saturation regime of the microlaser unveiling a bistable behavior involving two
modes of the microlaser carrying distinct values of the OAM (|`| = 2 and ` = 0).

The chapter is organized as follows: first, we discuss the optical modes of coupled mi-
crocavities arrays arranged in a ring geometry and the lasing mode selection mechanism
in Sec. 4.2. Then, in Sec. 4.3, we experimentally characterize the emission intensity,
spectral and spatial properties of three microlaser structures under non-resonant pump-
ing and test the robustness of the scheme with temperature. Section 4.4 is dedicated to
the OAM bistability experiments and the elucidation of the mechanism via a coupled-
rate equation model. Lastly, in Sec. 4.3 we outline future research directions. For an
interested reader, we derive the general expression for the angular momentum of light
and apply it to the case of Bessel beams in the Appendix 4.6.
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4.2 Ring-type photonic molecules

Based on the discussion on the engineering of the transverse modes of coupled micro-
cavities of Sec. 2.4, we want to investigate the optical modes of N coupled microcavities
arranged on the vertices of a regular polygon. As it will be the experimentally relevant
case, we choose N = 6 and leave the general case for a later discussion. Also, in the
beginning, we consider the case of degenerate polarization states; in such a way, we can
work initially with scalar quantities.

The microstructures realized for the experiments presented in this chapter corre-
spond to the first sample design detailed in Sec. 3.1.1. As previously mentioned, since
a single QW is embedded in the cavity, under strong off-resonant pumping, the sys-
tem loses the strong exciton-photon strong coupling regime due to phase-space filling
effects (cf. Sec. 2.2.3-2.3.3). Simple calculations and experiments show that the lasing
threshold in the microstructures occurs in the weak coupling regime [144, 233], which
can therefore be considered as a vertical cavity surface emitting laser (VCSEL).

In figure 4.2-(a), we show an optical microscopy and scanning electron microscopy
(SEM) image of an arrangement of six coupled micropillars. As discussed in detail
in Sec. 2.4 this structure can be qualitatively pictured within a linear combination of
atomic orbitals (LCAO) description as a photonic equivalent of a benzene molecule
[187]. For this reason, we can start by considering a tight-binding model for each
fundamental mode (s-type) of the pillars described by an amplitude |ψj〉. We recall
that due to the s-type symmetry of the fundamental mode of each uncoupled pillar,
|ψj |2 closely resembles a gaussian profile. The hamiltonian reads

H = ~ω
∑

i

|ψj〉〈ψj | − ~t
∑

j

(|ψj+1〉〈ψj |+ c.c.) (4.1)

in terms of the energy ~ωj = ~ω (j = 1, ..., 6) and tunneling matrix element t. We
impose N + 1 = 1 as we consider periodic boundary conditions (PBC). To diagonalize
the hamiltonian (4.1), it is convenient to work in a reciprocal space basis where |ψ`〉 =
N−1/2

∑
j e

i`aj |ψj〉 where a = 2π/6 for the PBCs. For N = 6 the quantum number
` = (0,±1,±2, 3) labels the six eigenmodes of (4.1) and corresponds to the number of
times the phase of each mode winds after one round trip on the lattice sites, therefore
corresponding to the eigenmode OAM (cf. Appendix 4.6). Correspondingly, the normal
modes oscillate at a frequency ω` = ω−2t cos(a`). The ` = 0(3) eigenmode corresponds
to in-phase (out-of-phase) oscillations of the amplitudes |ψj〉, whereas the ` = ±1
and ` = ±2 present a ±2π and ±4π phase vortex, and are therefore the interesting
ones to generate an emission carrying a net OAM. Since the modes with equal |`| but
opposite sign (chirality) are degenerate in energy we refer to the couples ±|`| as an
OAM manifold. The situation is schematically represented in Fig. 4.2-(b). The four
modes presenting a phase circulation can be regarded as the aromatic orbitals stemming
from the hybridization of the out of plane pz orbitals of carbon atoms in the benzene
molecule C6H6 [187].

Figure 4.2-(c) shows the angle and energy resolved photoluminescence of a benzene
photonic molecule formed by pillars with center-to-center distance d = 2.3 µm and
radius R = 1.6 µm. The measurement is obtained by imaging the Fourier-conjugated
plane of the microstructure emission on the entrance slit of a spectrometer; a weak
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Figure 4.2: Benzene photonic molecules: (a) Top view optical microscopy and de-
tail of the side view (SEM) of a coupled array formed by six overlapping micropillars
with R = 1.6 µm radius and variable inter-pillar distance. (b) Schematic representa-
tion of the scalar eigenmodes |ψ` of the structure; the phase relation between pillars
is indicated. (c) Energy and angle-resolved photoluminescence of the microstructure
below the lasing threshold, presenting the four OAM manifolds ` = (0,±1,±2, 3),
E0 ≈ 1470 meV. For comparison, panel (d) shows finite elements calculation of the
|ψ`〉 profile both in direct (position) and reciprocal (momentum) space (cf. App. 2.6).
The dashed line corresponds to the position of the slit used for panel (c).

off-resonant pump (λexc ∼ 770 nm, Pexc ∼ 0.5 µW) is used. For further details on the
measurement technique we refer to Sec. 3.2.1. The energy axis of panel (c) is rescaled
for the ` = 0 mode energy E0 ≈ 1470 meV (or λ0 ∼ 843.5 nm), which means the pump
is roughly 130 meV above the emission, in correspondence with the first reflectivity
dip of the DBR, thus ensuring a good injection efficiency. As it is not intuitive to
guess the momentum (angle) resolved profile of the modes due to the non-trivial phase
relation between pillars, we calculated both the real and reciprocal space emission for
each |ψj〉 using finite elements method; the result is shown in Fig. 3.2.1-(d). For direct
comparison with panel (c), we indicate the spectrometer slit position in the reciprocal
space profiles |〈k|ψ`〉|2 with a dashed line.

Unsurprisingly, all the intensity patterns have a doughnut-shaped spatial profile and
the absence of zeroes in the |`| = 1, 2 modes is a fist suggestion of the fact that they sup-
port a phase circulation. The intensity nodes in |〈r|ψ3〉|2 correspond to the amplitude
nodes between neighboring pillars oscillating with a π phase difference. When looking
at reciprocal space, the ` = 0 mode is the only one presenting a maximum at k = 0,
whereas for ` 6= 0 there is a clear zero. This happens because for ` 6= 0, opposite pillars
have the same amplitude and phase in modulus but opposite sign, as a consequence
of the mirror symmetry of the hamiltonian (4.1), whose point group symmetry is C6,v.
As a result, close to the optical axis the emission from opposite pillars destructively
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interfere; this effect is sometimes referred as the hole-burning effect for vortices.

For the moment, even if we found some optical modes carrying OAM, it is not
possible to envisage a lasing scheme which would break the degeneracy between modes
presenting a counter-propagating phase winding. Remarkably the polarization degree of
freedom, which has not been taken in account up to now, can be exploited to overcome
this issue.

4.2.1 Fine structure of the optical modes

In Section 2.1.2 and 2.4 we discussed two distinct effects that can lead to a polarization
and in-plane momentum dependent energy splitting of the microstructure eigenmodes.
The first one, originates from the different penetration depth of a transverse EM wave
in the DBR mirrors depending on its angle of incidence and polarization [71, 74].
This effect is vanishing at normal incidence or if the cavity spacer optical thickness is
matched to a multiple of the DBR central wavelength (see Fig. 2.4). This is a likely
situation in this set of experiments, as we targeted the design of the planar structure to
satisfy this condition in order to maximize the cavity finesse (cf. Sec. 3.1.1). The other
polarization splitting effect arises in microstructures with a broken rotational symmetry
due to the influence of boundary effects for the transverse EM field modes. This latter
contribution becomes generally dominant when the lateral size of the microstructure
becomes commensurate with the wavelength of the confined mode. Notice that these
two different contributions to the polarization dependent energy splitting can both add
or cancel, eventually resulting in complex polarization dependent patterns.

We focus now on the second mechanism, which is comprehensively characterized in
the case of coupled micropillar structures in [296]. The result of the authors analysis
is that the structure supports four linearly polarized modes: two at lower energy show
a bonding (B) profile and orthogonal linear polarizations while the other two display
an anti-bonding (AB) profile, (see Sec. 2.4.2 for details on the coupled pillar modes).
Interestingly, the B and AB modes polarized along the axis linking the direction (x),
present the largest energy splitting. In a tight-binding picture, where we decompose
the bare pillar eigenmodes in the linear polarization basis (l, n)i with li the unit vector
aligned with the link axis on the ith site, this corresponds to take a tunneling matrix
element tl ∼ 〈l1|l2〉 > tn. This can be intuitively pictured as a larger penetration depth
for the field polarized along l due to the boundary conditions at the constriction between
the two pillars. The structures we will consider hereafter are composed of R = 1.6 µm
radius pillars with variable center-to-center distances d = (2.3 − 2.6) µm, for which
tl > tn and ∆t ∼ (20 − 50) µeV are expected [296]. We schematically represent this
situation in Fig. 4.3-(a).

The situation becomes even more interesting when moving to a ring arrangement of
an even number N of coupled micropillars, illustrated in the case of N = 6 in Fig. 4.3-
(a). Indeed, the axis linking the center of two consecutive pillars ~li changes orientation
while doing a round trip across the structure. As a result, a linearly polarized photon is
subject to an azimuthally varying birefringent axis while traveling across the structure.
This amounts to a coupling of the polarization to the in plane motion, which can thus
be regarded as an analog spin-orbit coupling term [187].

In order to clarify this point we need to study the system hamiltonian including
the polarization degree of freedom. We use a tight binding approach where we neglect
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Figure 4.3: Analog spin-orbit coupling: (a) The modes linearly polarized along x
(~l1,2 basis) have a larger coupling than the ones polarized along y (~n1,2 basis). In a tight-
binding picture this corresponds to a larger overlap integral tl ∼ 〈l1|l2〉 > tn, where
|ψi〉 are the bare pillar modes. This results in a splitting of the bonding (B) and anti-
bonding (AB) modes in the level hybridization diagram. In benzene photonic molecules,
as the link direction ~li changes from pillar to pillar this creates an azimuthally varying
birefringent axis for the linearly polarized photons (c), corresponding to an analog
spin (polarization) orbit coupling [187]. (d) The eigenmodes of a ring arrangement of
microcavities can be classified based on the total angular momentum J = ` + σ, and
follow the dispersion relation ωσ(`) (here N = 6, details in the main text). When
introducing a finite polarization splitting ∆t = (tl − tn) > 0, the modes written in a
circular polarization basis σ = ±1 (SAM) hybridize at j = 0, 3, lifting the degeneracy
of the |`| = 1, 2 multiplets.

the non-orthogonality of the bare pillar eigenmodes [189]. Although non-orthogonality
becomes significant for values d/R < 1.5, this approach has been proven to yield sat-
isfactory results in our experiments (for an alternative approach based on an analysis
of the point symmetry group of the hamiltonian see Appendix 4.8). The starting point
is to introduce the linearly polarized bare pillar eigenmodes in the (~n,~l)i basis, labeled
(|ni〉, |li〉). Also, a second linear polarization basis (~r,~a)i, is useful to allow a finite
energy splitting ∆E = (Er−Ea)/2 between radially and azimuthally polarized modes.
This splitting can be phenomenologically understood noticing that azimuthally polar-
ized photons on site i, experience a reduced transverse confinement due to a larger
penetration depth expected along the ~li−1,i+1 directions; we thus expect ∆E > 0. In
particular, for N sites, as ∆t is proportional to the difference between the penetration
depth of |l, t〉, we expect ∆E ∼ ∆t[cos(θN/2) − sin(θN/2)], where θN = 2π/N . We
can consider a single excitation in the tight-binding hamiltonian H of the system, de-
note −t(n,l) = 〈(n, l)j |H|(n, l)j+1〉 (~ = 1 units) and rescale all the on-site energies for
the offset ω0 = (ωr + ωa)/2. Since we consider only nearest-neighbor hopping, H has a
2×2 block structure, this suggest to group the on-site basis using the compact notation
|ψi〉 = |ri, ai〉. The block elements of the Hamiltonian in this basis are

A = H|ψi〉〈ψi| = ∆E

(
1 0
0 −1

)
(4.2)

For the tunneling matrix elements one can show with simple trigonometric relations
and recalling the rotation matrix definition and properties that
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B = H|ψi〉〈ψi+1| = R(θN )

(
−tn 0

0 −tl

)
RT (θN ) (4.3)

where R(θN ) is the counter-clockwise rotation matrix by an angle θN = 2π/N . In order
to explicitly write the hamiltonian in a spin (polarization) and angular momentum
(phase-winding) basis, we can transform it to the on-site circular polarization basis
|σj〉 = Cj |ψj〉, determined by the block elements

Cj =
1√
2

(
1 i
1 −i

)
[R(θN )]j (4.4)

with j = 0, .., N−1 and [R(θN )]j taking in account the extra phase due to the rotation of
the (r, a)j frame. In the circular polarization basis the hamiltonian has a tridiagonal 2×
2 block form: if we define the block elements in the circular polarization basis (Ã, B̃)j =

Cj(A,B)C†j , it can be easily diagonalized using the properties of circulant matrixes.
Indeed, the normalized eigenvectors u` and eigenvalues ε` of such a (tridiagonal) matrix
read

v` = (1, ω`, ω
2
` , ..., ω

(N−1)
` )/

√
N

ε` = Ã` + B̃`e−iθN + B̃T` eiθN
(4.5)

where ω` = eiθN ` and ` = 0, ..., N − 1 or equivalently |`| = 0, ..., N/2 because of the
modulo 2π freedom. The linear transformation that block-diagonalizes the hamiltonian,
is thus change of basis |`〉 =

∑N
j e

iθnj`|σj〉 with |`| = 0, ..., N/2. This is telling us that
each block element is labeled by the orbital angular momentum number, and for a given
` the entries of the block are the projections on the circular polarization basis |σ〉. If
we introduce the total angular momentum k = ` + σ, and define t̃ = (tl + tn)/2, the
block elements in the |`, σ〉 basis are

J`,σ = −2t̃ cos(θNk)δ(σ,σ) + [∆t cos(θNk)−∆E]e−2iθNσδ(σ,σ′) (4.6)

where δ indicates the Kronecker delta. Remarkably, the eigenvalues can be classified
using only the quantum numbers (k, σ). In absence of spin orbit coupling ∆t = 0
and assuming for simplicity ∆E = 0, the eigenvalues correspond to the scalar (σ = 0)
dispersion relation ω(`) = −2t cos(θN`) shifted by σ = ±1 on the discrete k axis, see
dashed lines in Fig. 4.3-(c) (N = 6). The off-diagonal elements, when increasing ∆t,
hybridize the circularly polarized bands in vicinity of their crossings for |k| = (0, N/2).
Figure 4.3-(c) shows the dispersion relations ωσ(`) plotted as a function of k for ∆t/t̃ =
0.25 displaying a clear level anti-crossing for |k| = (0, N/2). The degree of circular
polarization deduced from the eigenvectors of J`,σ is color-coded along ωσ(`). Each
vertical cut trough the dispersion relation ω±1(k) for an integer k value, defines the
fine structure eigenfrequencies of a N (even) ring arrangement of micropillars.

As we are interested in the OAM of the modes, we conveniently label each eigenstate
using an |`, σ〉 basis. Interestingly, we observe that the eigenmodes |`| 6= (1, N/2 − 1)
are eigenstates of the circular polarization operator (σz). On the contrary, for |`| =
(1, N/2 − 1) two modes (labeled ψ2,3) are degenerate in energy and have well defined
but opposite circular polarizations. The other two (labeled ψ1,4) are split in energy by
≈ 2∆t sin(2θN ) and present some linearly polarized pattern [inset in Fig. 4.3-(c)]. More
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Figure 4.4: Fine structure modes: (a) Schematic illustration of the energy ladder
for N = 6 both for the scalar model and when including a finite spin-orbit coupling
∆t. Each level eigenmode is classified according to a SAM-OAM basis decomposition.
(b) Normalized spatial intensity patterns obtained by finite element methods upon
projecting the electric field along the x axis (H), see App. 2.6 for details. In the V
polarization basis all the patterns remain unchanged, except for ψ1,4(`) satisfying the
relation |〈H|ψ(1,4)〉| = |〈V |ψ(4,1)〉|.

specifically, Fig. 4.4-(a) illustrates the fine-structure modes decomposed in a |`, σ〉 basis
for the N = 6 case. From this decomposition we see that the ψ1,4 modes correspond
to the symmetric or anti-symmetric superpositions of the rotated states e±iθN |`,±1〉
thus yielding, respectively, an azimuthally or radially polarized emission pattern. In
particular, the (linear) polarization axis of ψ1,4(`) modes winds |`| times upon encircling
the structure. This latter observation will turn out to be useful in experiments, as we
will be able to discriminate the ψ1,4 from the ψ2,3 based on their emission pattern.
Although a linear polarizer does not affect the circularly polarized pattern of ψ2,3,
it creates intensity nodes for radial (or azimuthal) patterns in correspondence of the
regions where the polarization of the emission and of the analyzer are crossed. As an
example, in 4.4-(b), we show calculations of the spatial emission patterns of each mode
in the fine structure when analyzed in the horizontal (H) linear polarization basis.

The fact that the modes ψ2,3(`) are degenerate in energy but present opposite SAM
and OAM is the first key ingredient we will capitalize on for the implementation of our
laser scheme.

4.2.2 A spin polarized gain medium

The starting point of this experimental project was actually an unexpected result we ob-
tained while looking at the data obtained in a polarization tomography of the emission
of a single micropillar cavity under a weak non-resonant excitation. In this experiment
we excited both with a linearly and a circularly polarized optical pump at 770 nm a
single pillar. When analyzing the spectrally resolved photoluminescence (PL) of the
microstructure in the circular polarization basis the two excitations gave different re-
sults. Under a linearly polarized pump the σ± components of the PL spectra have
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Figure 4.5: Optical polarization of the gain: (a,b) Energy resolved emission of a
1.8 µm radius pillar under a linearly and σ+ circularly polarized off-resonant pump,
respectively. The emission is analyzed in the circular polarization components, a small
fraction of the pump circular polarization is preserved (η ≈ 0.06) in panel (b). Illustra-
tion of the GaAs Γ-point polarization and relative intensity of the optical dipole matrix
elements, adapted from [86]. Notice that the pump energy (Ep = 1.61 eV) is well below
the split-off band transition (Eso = 1.86 eV, cf. Sec. 2.2).

precisely the same magnitude, see Fig. 4.5-(a). On the contrary, under a σ± polarized
pump the emission keeps a finite degree of circular polarization, see Fig. 4.5-(b). In
particular the emission is preferentially circularly co-polarized with the pump, with a
measured degree of circular polarization of η = (I± − I∓)/(I± + I∓) ≈ 0.06.

To understand this observation we need to recall the Γ-point optical selection rules
for bulk GaAs. In Fig. 4.5-(c) we summarize the polarization and relative magnitude
of the non-zero dipole matrix elements between the heavy-hole (hh), light-hole (lh) and
split-off (so) band towards the conduction band [86]. It is quite clear that any linearly
polarized excitation, will promote a globally neutral population of carriers which, upon
relaxation, will produce PL emission with η = 0. Similarly, using circularly polarized
light with an excitation energy greater than the so-band (Eso = 1.86 eV) all the tran-
sitions balance out, yielding again an unpolarized carrier population. On the contrary,
if the excitation energy is below the so-band transition, like in our experiments, the
carriers should have η = −2/3 degree of circular polarization with respect to the pump,
which means an η = 2/3 co-circularly polarized emission upon recombination.

The reason why this result was quite surprising for us is that in between the creation
of carriers at 1.61 eV and the microcavity emission at 1.47 eV, one needs phonon-
mediated relaxation processes to bring the carriers to the bottom of the conduction
band. Although phonons are spinless excitations of the lattice, there are a number of
coupling mechanisms ultimately leading to random spin-flips over short timescales; we
refer to [75, 297, 298, 299] for an overview. Our measurements suggest that for high
quality samples at low temperatures (4K), the relaxation rate is fast enough when com-
pared with the spin relaxation mechanisms, thus allowing to partially keep a fraction
of the spin polarization imprinted to the carriers.

If now we consider partially spin-polarized photo-generated carriers, the imbalance
is transferred to the optical gain. In the limiting case of a fully polarized medium
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Figure 4.6: First hints: Imaging of the microlaser emission above the lasing threshold
for a d = 2.6 µm (a) and d = 2.4 µm (b,c) microstructure. The pump polarization is
circularly (σ+) polarized in (a,b) and vertically polarized in (c); all the three emission
patters were analyzed with a polarizer in the H basis (see arrow). These patterns can
be directly compared with the calculations presented in Fig. 4.4-(b).

the gain is twice as large for ψ2 or ψ3 (depending on the polarization) than for the
radially or azimuthally polarized modes ψ1 or ψ4, because these latter modes exhibit
a reduced overlap with the polarized reservoir stemming from the 1/

√
2 coefficients in

their wavefunction, see Fig. 4.4-(a). Therefore, we expect such an imbalance of the
gain within each manifold to result in a single-mode lasing in either of the chiral modes
ψ2,3 by injecting spin-polarized carriers in the device. This optical breaking of time-
reversal symmetry would allow ultrafast switching times limited only by the relaxation
of carriers (∼ ps) [300, 301].

In a series of preliminary experiments, we used a circularly (σ+) polarized pump
to trigger lasing in benzene photonic molecules with 1.6 µm radius and different inter-
pillar distance d = (3.1−2.3) µm. For d > 2.5 µm we have observed the six lobes of the
` = 3 mode in all the emission patterns, see Fig. 4.6-(a) corresponding to the emission
of a microlaser with d = 2.6 µm (no spectral filtering). Interestingly, for d = 2.4 µm,
the pattern changed to a homogenous doughnut-shaped profile [Fig. 4.6-(b)], since we
analyzed the emission in the H basis this suggested we were lasing as expected in
the circularly polarized ψ2 mode. Indeed, as we changed the pump polarization to
linear (V), the linearly polarized ψ1,4 modes are favored by the gain, resulting in the
appearance of a four-leaf clover pattern shown in Fig. 4.6-(c). This patterns can be
directly compared with the finite element calculation of the polarization resolved mode
profile presented in Fig. 4.4-(b), suggesting that lasing occurred with the |`| = 2 OAM
manifold in either ψ2,3 and ψ1 under a σ+ and V polarized pump, respectively.
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4.3 Demonstration of the OAM control scheme

To demonstrate the optical control the microlaser emission chirality, we investigated two
different devices. We consider two photonic molecules formed by six 3.2 µm-diameter
micropillars with an inter-pillar distance of 2.3 µm (molecule M1) or 2.4 µm (molecule
M2). The variation of the inter-pillar distance modifies the relative gain/loss ratio of
the photonic modes (details in the next section), allowing to select a precise |`| manifold
in which lasing occurs: for the molecule M1 (M2), lasing occurs in the |`| = 1 (|`| = 2).

In order to minimize the lasing power threshold, we operate with molecules whose
optical modes are slightly red-detuned (5− 3) meV from the exciton transition (Ex =
1475.10(5) meV). The measured finesse of the cavity is F ≈ 4 · 104 mainly limited by
residual absorption. The relative detuning can be adjusted by moving on the sample
thanks to the cavity thickness spatial gradient implemented during the growth (cf.
Sec 3.1.1). Here the microstructures were held at 4K and optically pumped by a laser
tuned in vicinity of one reflectivity minima of the DBRs (1.61 eV). For details on
the setup we refer to Sec. 3.2, with a slight modification being that the excitation
objective had been substituted with a 100 mm focal lens producing a 20 µm (FWHM)
spot providing an homogeneous illumination of the microstructure. The emission of the
microstructure has been collected in transmission geometry, in this way the residual
of the pump beam is absorbed in the GaAs substrate, allowing to avoid any further
spectral filtering.

Figure 4.7 presents the results for molecule M1 when exciting the device with a
circularly polarized (σ+) off-resonant pump. A nonlinear increase of the integrated
emission intensity (red markers) can be observed in Fig. 4.7-(b) above a threshold
power density of Pthr = 0.4 kW/cm2; correspondingly, the linewidth of the |`| = 1
manifold peak (black markers) narrows below the spectrometer resolution (dot dashed
line). Examples of the emission spectra for excitation powers above, around and below
this threshold are respectively presented in Fig. 4.7-(b,c,d). Above threshold, we
observe a single mode emission from the |`| = 1 manifold.

At low excitation power -see Fig. 4.7-(d)- the emission presents a small but non-
negligible degree of circular polarization (η ∼ 5 %), demonstrating that the spin po-
larization of photo-generated carriers is significantly preserved during their relaxation
in the gain medium. In the lasing regime, η is greatly enhanced reaching almost unity
(η > 90 %), thanks to the stimulated nature of the emission, see Fig. 4.7-(b). Real
space images of the device emission (without any spectral filtering) under co- and cross-
polarized detection evidence that the entire emission presents this strong degree of po-
larization, as Fig. 4.7-(e,f) respectively show. This indicates that the spin-polarized
pump indeed triggers lasing in a circularly polarized mode, that is either ψ2 or ψ3.

When considering the second device (M2), we now observe that a σ+ polarized
pump triggers lasing in the |`| = 2 manifold, see Fig. 4.8-(a-d). As in M1, the degree of
circular polarization of the emission in the lasing regime is very strong (P > 95%) and
is dictated by the polarization of the pump, as the spectra [Fig. 4.8-(b)] and emission
pattern [Fig. 4.8-(e,f)] demonstrate.

In order to evidence the phase vortex associated to the lasing modes of M1 and M2,
we interfere the beam with a magnified image of the emission from one of the molecule
pillars, which acts as a phase reference, as schematized in Fig. 4.9-(a). The resulting
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Figure 4.7: M1 microlaser. (a) Integrated output intensity and linewidth of the
|`| = 1 emission measured as a function of incident pump power; the lasing threshold
is at Pthr ∼ 0.4 kW/cm2. Dashed lines: I-P curve power law fits; Dot-dashed line:
spectrometer resolution. (b-d) Polarization and energy resolved emission spectra under
σ+ polarized pump above (b), at (c) and below (d) the lasing threshold. Red and
blue curves correspond to (σ+) co- and (σ−) cross-polarized emission with respect to
the polarization of the pump. (e,f) Co- and cross-polarized real space images of the
emission under a σ+ polarized pump without any spectral filtering.
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Figure 4.8: M2 microlaser. (a) Integrated output intensity and linewidth of the
|`| = 2 emission measured as a function of incident pump power; the lasing threshold
is at Pthr ∼ 0.3 kW/cm2. Dashed lines: I-P curve power law fits; Dot-dashed line:
spectrometer resolution. (b-d) Polarization and energy resolved emission spectra under
σ+ polarized pump above (b), at (c) and below (d) the lasing threshold. Red and
blue curves correspond to (σ+) co- and (σ−) cross-polarized emission with respect to
the polarization of the pump. (e,f) Co- and cross-polarized real space images of the
emission under a σ+ polarized pump without any spectral filtering.
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Figure 4.9: Measuring the wavefront twist. (a) Illustration of the modified
Mach-Zehnder arrangement used for the OAM measurement, the relative intensity,
magnification and polarization of the two arms can be adjusted. (b1,c1) Measured
interference patterns for the device M1 at P = 0.6 kW/cm2, corresponding to Fig. 4.7-
(d), for a σ+ and σ− polarized pump, respectively. (d1,e1) Corresponding phase maps
showing 2π CW (CCW) vortex under σ+ (σ−) pump. (b2-e2) Same for the M2 device,
here P = 0.8 kW/cm2 and the presence of a double pitchfork dislocation indicates a
4π CCW (CW) vortex under σ+ (σ−) pump. Bottom: fine structure of the |`| = 1, 2
manifolds.

interferogram for M1 under a σ+ excitation, taken without spectral nor circular po-
larization filtering, is shown in Fig. 4.9-(b1). The corresponding phase map, obtained
with a standard off-diagonal Fourier filtering technique (details in Appendix 4.7), is
presented in Fig. 4.9-(d1). The pitchfork in the interferogram (marked by a white
arrow) and the vortex in the phase map evidence a 2π winding of the phase around
the molecule, showing that the laser mode presents an OAM of ` = +1. This OAM
value corresponds to the ψ2 mode of the |`| = 1 fine structure (see bottom of 4.9). Re-
markably, when changing the excitation polarization to σ−, the polarization of the gain
medium is inverted, and the lasing mode, fully σ− polarized, now evidences opposite
chirality, corresponding to ` = −1 (ψ3). This is evidenced by the interferogram and
corresponding phase map presented in 4.9-(c1) and (e1) showing respectively an inver-
sion of the pitchfork dislocation and of the circulation of the phase. This demonstrates
the ability to optically break time-reversal symmetry and control the chirality of the
lasing mode.

When considering the second device (M2) under a σ+ polarized illumination, we
obtain the interferogram presented in Fig. 4.9-(b2). Now, two pitchforks dislocations
appear in the interferogram (white arrows), thus corresponding to a 4π CCW vortex
as indicated by the associated phase map shown in 4.9-(d2). This clearly shows that
the emission presents an OAM of ` = −2. Then, by changing the polarization of the
pump to σ−, the chirality of the emission is inverted to ` = +2 (4π CW vortex), as the
interferogram and phase map presented in 4.9-(c2) and (e2) demonstrate, respectively.
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The phase circulation inversion observed between the ψ2,3 modes of the |`| = 1 and
|`| = 2 OAM microlaser matches the predictions of the minimal tight-binding model
presented in Sec. 4.2.1, see the bottom insets of Fig. 4.9.

Importantly, the high degree of circular polarization of the emission above thresh-
old (∼ 95%), associated to a rather clean single-mode operation, largely exceeds the
degree of polarization of the gain medium below the lasing threshold (∼ 5%). This
indicates that our lasing scheme provides a strongly enhanced resilience against de-
polarization of the excitation, in comparison to optical devices that convert directly
circular polarization to OAM (e.g. q-plates or metasurfaces). As we pointed out in the
introduction of this chapter, this is one of the main motivations for the development of
active components directly emitting structured light.

4.3.1 Selection of the OAM lasing manifold

In experiments we noticed that, for a given negative detuning δ = ω` − ωx of the
optical modes with respect to the exciton energy, the larger the inter-pillar distance
d, the larger the OAM of the lasing mode. In particular, for δ ∼ −10 meV only the
` = 3 modes were lasing, regardless of d. For more moderate detuning values, as in the
previous section, we observed that for R = 1.6 µm and d = (2.6, 2.4, 2.3) µm the lasing
OAM manifold was |`| = (3, 2, 1), respectively. We will refer to these structures as M31,
M2 and M1. In this section we provide an explanation of this observation based on a
simple model which uses a minimal number of parameters to describe how it is possible
to tune the relative gain/loss ratio of each OAM manifold.

The fact that for very negative detuning the lasing mode is independent of d, can
be simply understood in terms of the spectral dependence of the gain. Indeed, for
QW lasers, the position of the maximum of the differential gain is in vicinity of the
exciton transition (Ex = 1475.10(5) meV) and has a typical spectral bandwidth of
∼ (20 − 50) meV depending on the details of the heterostructure [302, 303]. If the
optical modes are significantly red-shifted from the maximum, the slope of the spectral
gain curve is significant even over the (1.5− 2)meV spanned by the OAM modes, thus
favoring the highest energy one (` = 3). On the contrary, in vicinity of Ex, the spectral
dependence of the gain can be essentially neglected, see the sketch in Fig. 4.10-(a).
Moreover, as the structure was evenly illuminated, we can as well consider that the
spatial overlap between the gain medium and every mode is nearly identical. This
suggest that, as a first approximation, we can consider equal gain for of each of the
scalar modes, as any spectral or spatial dependence of the gain can be disregarded.

Thus, for moderate detunings, we expect the selection of the lasing manifold to be
solely determined by the relative losses associated to each manifold. In our micro-
cavities, losses associated to photons leaking through the mirrors (i.e. the radiative
lifetime) are identical for each mode. However, the dry etching process creates near the
pillar edges a high density of scattering or non-radiative recombination centers (RCs):
these RCs represent the main contribution to the variation of losses from one mode to
the other, as each mode overlaps differently with the edge of the structure.

An estimate of the relative contribution of these non-radiative losses can be obtained
by computing the overlap integral of each eigenmode with the RCs density profile. For

1The emission of the d = 2.6 µm microlaser is shown in Fig. 4.6-(a)
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Figure 4.10: Mode selection mechanisms. (a) Comparison between the normalized
differential gain spectrum and the low power PL spectrum of a d = 2.3 µm microstruc-
ture. (b) Mapping of the manifold with the lowest non-radiative loss as a function of the
inter-pillar distance d and pillar radius R. Black circles correspond to the experimental
results obtained for the devices M1, M2 and M3. (c) Relative non-radiative losses as-
sociated to each scalar eigenmode (Γmin = min`Γ`). Blue circles, red squares and grey
diamonds nominally correspond to M1,M2 and M3. Inset: schematic illustration of the
recombination region (RC) along the device perimeter (in red).

simplicity, we assume the latter to be uniform over a thickness δR along the edges of
the structure, as sketched in the inset of Fig. 4.10-(c). For the calculation of the overlap
integral, we calculated the scalar eigenmodes profile with finite element methods using
the infinite waveguide approximation described in Sec. 2.4. The refractive index of the
waveguide, whose transverse profile matches the cross-section of the microstructure,
was chosen to match the effective refractive index of the vertical cavity (neff ≈ 3.42 cf.
Sec. 2.3.3).

The result of these calculations is summarized in Fig. 4.10-(b), identifying the mode
with lowest non-radiative contribution as a function of the micropillar radius R and
inter-pillar distance d. In the plot, red, blue and gray areas correspond to |`| = (1, 2, 3)
respectively. We see that for sufficiently small inter-pillar distance the smallest overlap
with the RC region is always for |`| = 1 whereas large d/R values favour ` = 3; in-
between these two regions, when d/R ∼ 3/2 , the |`| = 2 modes present the lowest
non-radiative loss. This behaviour stems from the competition between two different
mechanisms. On the one hand, modes with increasing |`| have a profile that peaks at
larger values of the radial coordinate (cf. Fig. 4.2), thus having a greater overlap with
the outer edge of the microstructure. On the other hand, modes with a smaller |`|
present a larger overlap with inter-pillar regions where the density of RC is the largest;
this second effect is more pronounced as d increases.

The exact range of inter-pillar distances d/R, where the |`| = 2 mode is favored,
depends on the thickness of the non-radiative recombination region considered. In order
to match the experimental observations (black circles), we had to set δR ≈ 80 nm,
which is a reasonable value. Finally, in Fig. 4.10-(c), we plot the relative non-radiative
linewidth as a function of |`| for three structures nominally identical to M1, M2 and
M3. Although the relative change of the RC-induced losses changes only by a few
percents between modes with different OAM, we always observed2 an increasing OAM

2over dozens characterizations of different structures
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of the lasing manifold when increasing d for a fixed detuning. This is the same general
behavior illustrated by the calculation in Fig. 4.10-(b,c).

More complex nonlinear contributions to the balance of population dynamics such
as gain saturation, spectral and spatial hole burning or band gap renormalization are
neglected. Indeed, although the proposed model is minimalist, it has been sufficient to
properly reproduce, for all excitation powers, the dependence of the lasing manifold on
the device shape without more complex contributions. Notice that in this section we
refer only to the OAM manifold, rather than the specific fine structure, where mode
competition is essentially dictated by the degree of polarization of the gain medium, as
anticipated in Sec. 4.2.2. Interestingly, in Sec. 4.4, we will see that nonlinear effects,
such as saturation, do not change |`| but lead to a bistable behavior of the microlaser
involving distinct OAM fine structure modes.

4.3.2 Temperature robustness

Intuitively, the possibility to control the chirality of the emission only requires that the
spin-dependence of the gain within one OAM manifold dominates all other possible
contributions, e.g. spectral dependence of the gain, asymmetry of the structure, etc.
This condition can be undermined by the onset of thermally activated spin-relaxation
processes. In order to evaluate the robustness of our devices against these processes,
we measured the degree of circular polarization of the photoluminescence from a single
quantum well (without the cavity) as a function of temperature.

Figure 4.11-(a) illustrates the measurement setup. We used a few µW excitation
laser at 1.61 eV (as in the OAM microlaser experiments) to excite the microstructure;
its initial linear polarization (V) could be changed to circular by using an achromatic
quarter wave-plate (QWP). When the fast axis of the QWP is aligned along the V
polarization axis, a couple of PBS in the collection path allows spatially separating
along the H and V components of the QW emission. Similarly, when the QWP is
rotated to produce a σ+ excitation, the σ± components of the counter-propagating
QW emission are mapped into the H,V linear basis and separated by the PBS. We use
a λ/2 and linear film polarizer (P) to compensate for the slightly different losses in the
two collection paths. This is done by balancing the signals under a linear excitation
used as a reference for zeroing the apparatus. For each temperature, we acquired two
images corresponding to the (V, σ+) excitations; each of them includes two spots, whose
integrated intensities yield the relative weight of the two polarization components along
the axis of the Poincaré sphere parallel to the excitation. As an example, Fig. 4.11-
(b) shows the CCD frame acquired at T = 10.0(1) K under a σ+ pump, the visible
asymmetry between the left and right parts of the panel testifies a finite degree of
circular polarization of the emission (η ≈ 0.17). To ease the comparison, we integrate
the image along the vertical direction and compare the resulting normalized profile
(red) with the one obtained under a linear excitation (dashed).

In Fig. 4.11-(c) we present the result of these measurements as a function of temper-
ature. Interestingly, the degree of polarization remains non-negligible (∼ 10 %) up to
T = 80 K, while above 100 K, it slowly vanishes below 5 %. Thanks to this tempera-
ture resilience of the degree of spin-polarization of the QW, we were able to implement
our scheme above liquid nitrogen temperatures. Figure 4.11-(d-k) presents a full char-
acterization of the lasing properties of the device M2 at 80K. In panel (d) we show the
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Figure 4.11: Probing the temperature robustness of the scheme. (a) Schematic
of the degree of polarization measurement apparatus (details in the main text). (b)
Example of the detected signal under a circular (σ+) excitation at 10K; left and right
sides of the panel correspond to the co- and cross-circularly polarized components of
the QW emission, respectively. Top: normalized vertical binning of the image, the
dashed line shows the corresponding profile acquired under a linear excitation (V).
(c) Measured degree of circular polarizations as a function of temperature; error bars
correspond to two standard deviations. (d-k) Characterization of the M2 device at
80K. (d) Intensity and linewidth dependence with pump power under a σ+ excitation.
(e-g) Polarization resolved emission above, at and below the lasing threshold (Pthr ≈
1.1 kWcm−2), respectively. (h-i) Co- and cross-circularly polarized emission pattern in
the lasing regime corresponding to (e). (j,i) Interferograms under a σ+ and σ− polarized
excitation, respectively. The inversion in the pitchfork dislocations between panel (j)
and (k) signals that the 4π vortex helicity is switched.

I-P curve and linewidth of the emission as a function of the power of a σ+ polarized
pump. Again, a clear threshold is signaled by the abrupt increase in the output power
with the simultaneous narrowing of the emission linewidth below the spectrometer res-
olution. The lasing threshold is roughly 4 times higher than at 4K due to the increased
absorption across the whole microstructure. From panels (e,h,i) we can see that above
threshold the emission is still single mode and strongly co-circularly polarized with the
pump. Finally, panels (j,k) show that exciting device M2 at 80K with opposite circular
polarizations, still allows optically controlling the chirality of the (|`| = 2) emission.
Above this temperature, the lasing mode approaches the GaAs band gap [68], thus
drastically enhancing light absorption and increasing significantly the threshold power.
This technical limitation prevents us from exploring the lasing regime of our structure
at higher temperatures. Nevertheless, by using a pulsed excitation instead of a CW
and an appropriate heterostructure design, we expect to extend the range of operation
of the microlaser up to room temperature [300].
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4.4 OAM bistability

In semiconductor lasers, when the pump power is much larger than threshold, one
enters the gain saturation regime. In this regime a variety of nonlinear effects -such
as spectral and spatial hole burning and bandgap renormalization- sets in, eventually
resulting in mode hopping or in bistable behavior [304]. In this section, we show that
the interplay of a nonlinear gain dependence with the fine structure of the optical modes
leads to bistable regime. Here, the bistability involves modes presenting distinct values
of the OAM (` = 0 and |`| = +2) and different polarization textures, due to spin-orbit
coupling in the microstructure.

We will focus on the device M2, whose emission in the lasing regime (before gain
saturation) has been presented in Fig 4.8. As we already demonstrated the ability to
control the emission chirality with the circular polarization of the pump (see Fig 4.9), we
will restrict to the case of a σ+ excitation. All the measurements in this section have
been acquired with linear (H) polarization filtering, as it provides a complementary
tool to identify the lasing mode (cf. Sec. 4.2.2). In Fig 4.12-(a) we recall the fine
structure of the |`| = 2 manifold, and the calculated emission pattern of each mode
upon projecting along H the electric field (|〈H|ψi〉|2). The evolution of the emission
intensity as a function of pumping power [Fig. 4.12-(b)] shows a lasing threshold around
Pthr ≈ 0.33 kW cm−2 while the saturation regime starts around Psat ≈ 0.75 kW cm−2.

In the following we investigate the power region (1 − 3)Psat to test the nonlinear
response of the microlaser. In a first experiment we imaged the emission pattern and
measured the spectrum as a function of power both for an increasing and decreasing
ramp. The results are summarized in Fig. 4.12-(c): the black (red) dots track the
maximum of emission energy when the power is ramped up (down), error bars corre-
spond to one standard deviation. When ramping up the excitation power, the emission
energy exhibits an abrupt jump (∆E ≈ 20 µeV) around 5.6 Pthr (1.85 kW cm−2). Cor-
respondingly, the spatial profile of the beam changes from a homogeneous doughnut
shape (lower-right inset) to a four-lobe profile (upper-left inset), persisting for higher
incident powers. Upon decreasing the excitation intensity [red dots, Fig. 4.12-(c)], we
observe an abrupt lowering of the peak energy at 4.0 Pthr (1.30 kW cm−2) back to its
initial value, thus defining a hysteretic cycle. Notice that the mode profile throughout
the two branches of the cycle is constant and corresponds to the patterns shown in
the insets. Moreover, throughout the bistability region, the emission of each branch
remains single mode with a typical sideband suppression of 25 dB, see Fig. 4.12-(d,e).

Comparing the emission pattern and the spectral shift of the emission with the
fine structure calculations presented in Fig. 4.12-(a), we conclude that the bistability
involves the ψ2 and ψ4 modes, presenting distinct OAM values (` = −2 and 〈`〉 =
0) and distinct polarization patterns, i.e. circular (σ+) and linear (azimuthal). To
further enforce these observations, we show a self-interferometry of the beam for a
pump power 4.8 Pthr (1.65 kW cm−2), both in the lower and upper branch of the
bistability and presented in Fig. 4.12-(h,f), respectively. In the lower branch, a double
pitchfork dislocation indicates a 4π CCW vortex beam (i.e. ` = −2) as confirmed by
the associated phase-map [Fig. 4.12-(i)]. When measured in the upper branch, the
phase map presents four abrupt jumps between π/2 and −π/2, see Fig. 4.12-(g)]. Such
a phase profile describes well the standing wave that characterizes ψ4 as a result of
the linear combination of counter-propagating components ` = ±2: the phase jumps
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Figure 4.12: OAM bistability - data. (a) Illustration of the modes in the M2
lasing manifold (|`| = 2) fine structure. The calculated the emission patterns for each
mode is filtered in the H polarization basis. (b) Measured I-P curve, no hysteretic
behaviour can be appreciated in the intensity. (c) Energy of the emission peak as a
function of excitation power, when the power is ramped up (black dots) and down (red
dots). The insets show real space images of the beam below and above the bistability.
(d,e) Normalized emission spectra for P = (1.0, 2.2) kWcm−2, respectively. (f,h) self-
interferometry patterns and (g,i) corresponding phase maps measured in the (f,g) lower
and (h,i) upper branches of the bistability, for the same pump power. All images are
taken with a horizontal polarization filtering.

correspond to the nodes of this standing wave.

Importantly, we want to point out that this bistable regime occurs at relatively low
pump power and therefore, is not due to heating effects in the microstructure which,
for increasing powers, tend to redshift rather than blueshift the microlaser emission.
Anyway, to rule out this possibility, we repeated the scan using a pulsed excitation
with a duty cycle of 0.1% and a frequency of 1 kHz in order to drastically mitigate
thermal effects: the upward abrupt jump could still be observed for the same peak
power. Notice that even if the lasing mode presents an hysteretic behavior, the total
emitted intensity does not present discontinuities [see Fig. 4.12-(b)], thus suggesting
that the overall gain/loss in the device evolves smoothly with power and that the
bistability must be related to a competition mechanism between the spin-polarized
and unpolarized population reservoirs in the gain medium. This confluence of optical
bistability and spin-orbit coupling of light is particularly interesting for the exploration
of dynamical processes involving distinct phase and polarization vortices [305].

4.4.1 Dynamical rate equations

In order to address the phenomenological origin of this bistable regime, we used a
dynamical system of rate equations. Since the measured emission spectrum in the
lasing regime always presented a single, strongly dominant spectral component, either
ψ2 or ψ4, we considered only these two optical modes in the model. Since each carrier in
the gain has spin, with a possibly non zero average, while the modes ψ2,4 have different
overlaps with the σ± polarized optical transitions, we need to split the reservoir in two
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separate equations for each spin component. We can describe the system using the
following set of rate equations for the modes and gain populations:

İ1 = (g1N+ − Γc)I1 +N+Γr

İ2 = (g2Ntot/2− Γc)I2 +NtotΓr/2

Ṅ+ = P (1 + η)− (g1I1 + g2I2/2 + βΓr)N+

Ṅ− = P (1− η)− (g2I2/2 + βΓr)N−

(4.7)

Here, I1,2 are the occupation of the modes ψ2,4 of the fine structure; N± is the
number of σ± polarized excitations in the gain; g1,2 are the gain coefficients of each
mode; Γc is the radiative decay rate; Γr is the recombination rate in each mode3; β is
the spontaneous emission factor; P is the injection rate of carriers and η is the degree of
polarization of the carriers after relaxation (cf. Sec. 4.3.2). Since both modes involved
in the bistability belong to the same OAM manifold, we consider the non-radiative loss
contribution to be identical for I1,2 and is thus included in Γc.

Since we are interested on the behavior on timescales much longer than Γc ∼ 25 ps−1

or Γr ∼ 100 ps−1, we find the steady-state solution of the system by setting the time
derivatives of I1,2 and N± to zero. With some calculations one can show that the
resulting system of algebraic equation admits a unique solution (i.e. no bistability) for
any value of P 4. Indeed, many studies on bimodal lasers attribute the existence of a
bistable regime to nonlinear gain contributions [306, 307, 308]. To account for such
effects, we express the gain coefficients as

g1,2 = g0(1− εs1,2I1,2 − εc1,2I2,1) (4.8)

where g0 is the unsaturated gain coefficient -identical for the two modes- and εs1,2 and
εc1,2 are the self- and cross-saturation coefficients of I1,2. For two-mode lasers coupled
to a single reservoir, the general requirement for bistability is that εs1ε

s
2 < εc1ε

c
2 [306].

Here, the situation is more complex as the two modes couple to two distinct reser-
voirs, namely, σ+ and σ− polarized carriers. Moreover, due to their different polariza-
tion, they couple differently to each reservoir: I2 (linearly polarized) couples identically
to N+ and N−, whereas I1(circularly polarized) couples only to N+. With the inclu-
sion of the nonlinear gain terms, we could not find an explicit closed solution for (4.7).
To study the problem, we solved numerically the steady-state equations associated to
(4.7) yielding a set of N solutions {Ĩ1,2, Ñ1,2}j=1,...,N for each set of parameters. As
discussed in detail in Sec. 3.3.1, for a set of first order nonlinear ODEs not all the
stationary solutions are physical, that is, asymptotically stable. Therefore, for each
steady state solution we computed the eigenvalues λi of the linear stability matrix (the
Jacobian of 3.3.1 evaluated at {̃·}j) and kept only the solutions with λi < 0 ∀i (cf.
Sec. 3.3.1, assuming real valued variables). In the rate equation model, the specific
value of the saturation coefficients is rather difficult to estimate, as it depends on a
variety of microscopic phenomena. Although we could not prove it rigorously, a sys-
tematic exploration of the εs,c parameter space suggest that to observe bistability we

3We consider Γr,1 = Γr,2 in virtue of the fact that the two modes: 1) present an energy separation
(∼ 20 µeV) which is orders of magnitude smaller than the gain spectral dependence (∼ 20 meV); 2)
present nearly identical spatial profiles, i.e. overlap with the gain medium.

4The system is bilinear in the variables, thus the equation set admits a Smith normal form, where
the solutions are given in terms of a system of quadratic equations. Uniqueness follows from the fact
that all variables are positive real numbers.
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Figure 4.13: OAM bistability - model. (a) Calculated intensity of the photonic
modes ψ2 and ψ4 under a (a) circularly and (b) linearly polarized excitation. Under
a circular excitation, a bistability region can be observed, the arrows indicating the
scanning history. Simulation parameters: g0 = 0.55 µs−1, εs1,2 = εs = 5.0 · 10−5,

εc1/ε
s = 1.09, εc1/ε

s = 1.20, βΓr = 1.05 ps−1, Γc = 4Γr = 25 ps−1. (c) Number of stable
steady-state solutions for P = 5Pthr in the cross saturation parameter space; panel (a)
corresponds to the red dot. The elliptic shaded area encompasses the region where
modal hysteresis can be observed for an adiabatic power ramp. Outside of it, two
solutions exist but one of them can be followed continuously explored for any pump
power. The other one can thus be reached only with an appropriate non-adiabatic
pump protocol [218], see the inset for an example.

need to impose εc1 > εc2; this is possibly related to the asymmetric coupling of the modes
to the nonlinear dynamics of the gain.

Figure 4.13-(a) shows the (stable) steady-state occupation for the modes I1 (ψ2, in
red) and I2 (ψ4, in gray) as a function of power for a gain spin-polarized fraction of η =
0.15. While estimates for the cavity lifetime, carrier relaxation time and unsaturated
gain can be deduced from the characterizations of the sample and from literature [309,
310], the beta factor and saturation coefficients were defined in order to obtain a lasing
threshold and bistability region at similar powers as those observed experimentally (see
caption). For the same parameters, but setting η = 0 i.e. a linearly polarized pump,
we do not observe any bistability [Fig. 4.13-(b)] and the emission is now dominated by
ψ4 for the whole power range explored (inset: measured emission pattern at 5.4 Pthr).
The calculated relative intensities do not match the measured ones, as the minimalistic
model we developed aims at providing a phenomenological understanding of the origin
of the bistability, rather than a quantitative description of the relative populations.

Finally, we present in Fig. 4.13-(c) a mapping of the number of stable steady-state
solutions of (4.7) for P = 5 Pthr (within in the hysteresis cycle) when changing the
cross saturation coefficients εs1,2. Interestingly, a wide bistability region (N = 2) can
be observed (purple area); However, by further requiring a single mode behavior above
P = 6.5 Pthr (as in the experiment), the relevant parameter space collapses to the
small blue ellipse [the red dot corresponds to Fig. 4.13-(a)]. Outside of this ellipse,
two stable solutions always exist for P ≥ 5 Pthr, but one of them can be adiabatically
followed for all the P values, see the inset of Fig. 4.13-(c). Therefore, under a slow power
ramp protocol (when compared to Γc and Γr), the second solution above P ≥ 5 Pthr is
never explored. Nevertheless, these solutions may become relevant when implementing
non-adiabatic ramps or quenches of the pump power.
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4.5 Summary and Perspectives

Profiting from the versatility of our semiconductor-based platform in determining ex-
otic coupled microcavity geometries, we investigated the possibility of designing novel
integrated sources of structured light. Among them, vortex beam emitters deliver
photons carrying a non zero OAM, an unbounded degree of freedom which control is
desirable for fundamental studies while being a technologically relevant candidate for
the multiplexing of telecom channels.

To this aim we considered coupled microlaser arrangements presenting a discrete
rotational symmetry. Thanks to an analog photonic spin-orbit interaction the optical
modes of these structures present a fine structure where some modes, while degenerate
in energy, present opposite sign OAM charge and opposite circular polarizations. In
combination with the possibility to spin-polarize the gain medium (here a QW) via the
pump polarization, we propose a fully-optical scheme to break time reversal symmetry
in such microstructures, deterministically lasing in an optical mode carrying a net
orbital angular momentum.

We demonstrate the scheme in a benzene-like photonic molecule (N = 6), showing
the ability to control the sign of the OAM-pure emission with the helicity of the off res-
onant pump. To our knowledge this was the first demonstration of an OAM microlaser
with a tunable chirality. We expect this mechanism to be compatible with ultrashort
control timescales, limited only by the relaxation times of carriers. It is important
to point out that the scheme we demonstrate here is not restricted to benzene-like
molecules, but can be implemented in any N-pillar ring molecules with an even N ≥ 4.
When considering N pillars, the |`| = 1 and |`| = N/2 − 1 manifolds present the ade-
quate fine structure allowing in principle the implementation of microlasers generating
arbitrarily large values of OAM.

Investigating the robustness of the lasing scheme with temperature, as the spin re-
laxation of carriers is expected to be faster for higher temperatures, we demonstrate the
ability of controlling the laser emission chirality up to 80 K under CW excitation. We
expect a significative improvement of this result with a new heterostructure design and
using a pulsed excitation scheme. We believe that our design could be readily trans-
posed to other laser architectures, because the underlying concepts (that is spin–orbit
coupling of photons and spin-polarization of the gain medium) are ubiquitous. Also,
combining the present design with ferromagnetic electrodes [311] could open the pos-
sibility to fabricate OAM microlasers with electrical injection.

Furthermore, following an unexpected experimental observation, we elucidate how
nonlinear effects in OAM microlasers lead to an optical bistability involving two modes
with distinct OAM values |`| = (2, 0) and polarization textures. We qualitatively
explained the phenomenon using dynamical rate equations, indicating the origin of the
bistability in the confluence of co- and cross-saturation contributions to the gain. As
the switching mechanism is expected to be limited by the relaxation of photo-generated
carriers, it appears very interesting for implementing optical switches based on the OAM
of light, as well as for exploring dynamical processes between phase and polarization
vortices exhibiting distinct topological charges.

Finally, from a more fundamental point of view, our results could be extended be-
yond the field of OAM lasers, for example in optomechanics by coherently transferring
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photonic angular momentum to chiral torsional modes of the microstructures [312, 313].
Furthermore, by embedding a quantum emitter (for example, a quantum dot or semi-
conductor defects) in the resonator instead of a quantum well, it would be possible to
generate single photons with a controllable OAM [314]. Also, by lifting the degeneracy
of the σ± transitions of an ensemble of emitters via a transverse magnetic field, one
could imagine to study how does a chiral coupling to the optical modes of a cavity
affects the collective super (sub) radiant modes [315].
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4.6 Appendix A: The angular momentum of light

In this appendix we want to derive the expression of the total angular momentum
carried by electromagnetic waves. To do so, an elegant way is to use the Noether
theorem to study the conserved currents associated to the continuous Poincarè sym-
metry group of the electromagnetic field action [254, 316]. We will use extensively
the Einstein summation convention (x1y

1 + x2y
2 + ... ≡ xiy

i) and a tensor notation
for the fields as it ensures automatically the covariance of the expressions. We recall
that upper case indexes denote contravariant (vector) objects while lower case indexes
denote covariant (dual) objects with respect to a change of basis. For instance, a vector
with components vi transforms under the change of basis described by the matrix M as
v
′i = M i

j v
j , whereas the covector vi transforms as v

′
i = M̃ j

i vj , where M̃ j
i = gikM

k
l g
lj

and gij is the metric tensor. In the case of special relativity, g is the Minkowski metric
diag(1,−1,−1,−1), which can be used to raise and lower the indexes of mixed ten-
sors M i

j = M ikgkj . Greek letter indexes will correspond to the four entries of the

space-time coordinates xµ = (x0, x1, x2, x3) where c is the speed of light and will be
hereafter set to unity, x0 = ct corresponds to time and µ = 1, 2, 3 refers to the spatial
coordinates, which will be labeled in a compact form with regular characters. We start
by considering the Lagrangian of the electromagnetic (EM) field in vacuum

L = −1

4
FµνFµν =

1

2
(E2 −B2) (4.9)

where E and B are, respectively, the electric and magnetic field and

Fµν = ∂µAν − ∂νAµ (4.10)

is the covariant expression for the EM field associated to the gauge field Aµ = (φ, ~A)
expressed in terms of the electric (φ) and vector potential ( ~A) of the electromagnetic
field. We recall for later use that Ei = −∂iA0 − ∂0A

i and Bi = ∇ × ~A = εijk∂jAk.
Notice that L is a scalar, thus is invariant under transformations belonging to the
Poincaré group: the spacetime isometries including translations, rotations and boosts.
The action functional for the EM field is

S[Aµ] =

∫
d4xL(Aµ(x), ∂µAν(x)) (4.11)

and its variations δS[Aµ] are minimized for a field Aµ satisfying the Euler-Lagrange
(EL) equations

∂µ
∂L

∂(∂µAν)
− ∂L
∂Aν

= 0 (4.12)

for the free electromagnetic field Lagrangian (4.9), these Euler-Lagrange equation yields
∂µF

µν = 0; which simplifies in the Lorentz gauge (∂µA
µ = 0) to �Aν = 0, whose com-

ponents can be easily related to the Maxwell equations, since � = ∂2
t − ∇2. Electro-

magnetic waves thus satisfy the EL equations for (4.9), thus we can apply the Noether
theorem to characterize the conserved quantities associated to the Poincarè symmetry
group. To do so, we first need the general form of the infinitesimal generators of the
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group, which we divide in the generators of rotations and boosts (Lorentz group) and
in affine spacetime translations. The former will be described by the elements of a
rank-two tensor (matrix) Λµν , the latter by a translation vector aµ. It can be shown
that Λ has Lie generator given by an antisymmetric matrix ω such that Λ = eω. If
β = v/c is the generic speed of a boost and (~n, ϕ) are the axis and angle of rotation,
ω00 = 0, ωi0 = −ω0i = βi and ωij = ϕεijku

k [316]. Since we are interested in infinites-
imal transformation, we can expand Λ as eω = δµν + ωµν + ... where δ indicates the
Kronecker delta. An infinitesimal change of coordinates under the Poincaré symmetry
group has therefore the form

δxµ = x′µ − xµ = (δµν + ωµν )xν + aµ − xµ = aµ + ωµνx
ν (4.13)

In a similar way we have that the field Aµ transforms as A′µ(x′) = ΛµνAν(x);
notice that we can define for this rank-one tensor two types of variation, the first
is total δ̄Aµ = A′µ(x′) − Aµ(x), whereas the second one depends only on the field
δAµ = A′µ(x) − Aµ(x), thus referred as ”form” variation. We can explicitly write the
former as δ̄Aµ = ωµνAν , while for the form variation

δAµ = A′µ(x)−Aµ(x) = A′µ(x)−A′µ(x′) +A′µ(x′)−Aµ(x)

= A′µ(x)−A′µ(x+ δx) + δ̄Aµ = −δxν∂νA′µ(x) + δ̄Aµ

= −δxν∂νAµ(x) + δ̄Aµ
(4.14)

and we used in the last step the fact that the difference between A′µ and Aµ depends
to first order in the symmetry generators aµ and ωµν . Now, since the Lagrangian of
the EM field is invariant under the Poincarè symmetry group, its infinitesimal variation
must vanish

0 = δL(A(x), ∂A(x), x) =
δL
δxµ

δxµ +
δL
δAµ

δAµ

= δxµ∂µL+ δAµ
∂L
∂Aµ

+ (∂µδAν)
∂L

∂(∂µAν)

= ∂µ(δxµL) + δAν

(
∂L
∂Aν

− ∂µ
∂L

∂(∂µAν)

)
+ ∂µ

(
δAν

∂L
∂(∂µAν)

)

= ∂µ (δxµL+ δAνΠµν)

(4.15)

Notice that in the third line we used the fact that δµδx
µ = gµνω

µν = 0, in virtue of
the fact that ω is antisymmetric and g is diagonal and we used the chain rule on the
right most term. Moreover, in the last line, we used the fact that Aµ satisfies the EL
equation (4.12) and defined the conjugated moments

Πµν =
∂L

∂(∂µAν)
= −Fµν (4.16)

The last line of Eq. (4.15) defines the conserved quantities under the Poincarè sym-
metry group via the continuity equation ∂µj

µ = 0, that is ∂tj
0 = ∇ · ~j associated to

the four-vector jµ = (δxµL + δAνΠµν). Substituting in jµ the explicit forms of δAν ,
δxµ, of the free EM field Lagrangian (4.9) and working down some algebra, one finds
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jµ = −aνTµν +
1

2
ωαβJ

µαβ (4.17)

where the two quantities Tµν and Jµαβ are a compact notation for

Tµν = ∂µAαF να −
1

4
gµνFαβFαβ

Jµαβ = (xαTµβ − xβTµα) + (FαµAβ − F βµAα) = Lµαβ + Sµαβ
(4.18)

which are separately conserved quantities since ∂µj
µ = 0 holds for any aµ and ωµν . Re-

markably, if we inspect jµ we can see that the tensor Tµν is associated to the generator of
spacetime translations, with four associated conserved charges given by pµ =

∫
d3xT 0µ.

Since T 00 = (E2 + B2)/2 and T 0i = εijkEjBk, this corresponds to the conservation of
the energy and linear momentum density for the EM field in absence of sources. In-
stead, Jµαβ is associated to the generator of infinitesimal spacetime rotations ω, and
thus corresponds to the canonic angular momentum tensor, generating six conserved
quantities, due to the asymmetry of the contracted indexes (α, β). Importantly we
can see that two terms Jµαβ do not depend explicitly on the choice of coordinates
thus we group them in a term Sµαβ, associated to the helicity of the vector field Aµ

while the other two terms are proportional to xµ and are grouped in a tensor Lµαβ

associated to the angular momentum of the EM field [316]. Let us see which are the
conserved charges associated to the continuity equation ∂µJ

µαβ = 0, recalling that the
charges are associated to the spatial integral of the µ = 0 component and that (α, β)
are antisymmetric indexes we can associate to the spatial components of the charges
Qαβ =

∫
d3xJ0αβ a vector

J i =
1

2
εijk

∫
d3xJ0jk =

1

2

∫
d3x εijk

(
L0jk + S0jk

)
= Li + Si (4.19)

We now want to evaluate separately the components of Si and Li; working in the
Coulomb gauge (A0 = 0, ∂iA

i = 0) in this case is convenient. Notice however that Jµαβ

is not gauge invariant, thus the values of J i may change: a discussion of this apparent
paradox can be found in [316]. Since the metric tensor g is diagonal

Li =

∫
d3x εijkxj∂kAµF 0

µ =

∫
d3x εijkxj∂kAlEl (4.20)

using for the second passage the Coulomb gauge and that F 0
i = Ei. Similarly, the spin

angular momentum yields

Si =

∫
d3x εijkF j0Ak =

∫
d3x εijkEjAk (4.21)

Or equivalently, in vector notation

J = L + S =

3∑

i=1

∫
d3xEi(r×∇)Ai +

∫
d3x (E×A) (4.22)
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and it is again possible to demonstrate that these are separately conserved quantities.
Let’s now consider a light beam within the paraxial approximation and consider a
monochromatic wave propagating along z with a transverse electric field E(r, t) =
Re(E(r)e−i(ωt−kz)). Since we are working in the Coulomb gauge, Ei = F i0 = ∂iA0 −
∂0Ai = −∂0Ai therefore we have E(r, t) = iωA(r, t). We can now represent in Fourier
space the spatial coordinates

E(r, t) =

∫
d3k

(
√

2π)3

[
E(k)e−i(ωt−kz) + E(k)∗ei(ωt−kz)

]
(4.23)

upon inserting this relation, and using E(r, t) = iωA(r, t) in the expression for the spin
part of the angular momentum one finds

S =

∫
d3x (E×A) =

2

iω

∫
d3k (E∗(k)×E(k)) (4.24)

using a Jones vector representation of the complex electric field, where the spatial
components are encoded in a form ~E(k) = ~ε Eu(k) where ε = [1(0), 0(1), 0]T denotes the
vector for of the horizontal (H) and vertical (V) linear polarizations, respectively and
E is the modulus of the of the electric field and u(k) is a normalized envelope function
in momentum space. Inserting this expression in the above relation, one finally gets

S = ẑ

(E2

ω
Ω

)
η (4.25)

where Ω is the volume of integration, ẑ is unit vector along z and |η|2 is the degree
of circular polarization of the wave, given by the difference between the projections
η = |~ε · ~εR|2 − |~ε · ~εL|2 with ~εL,R = (1,±i, 0)/

√
2. The term in the parenthesis yields ~

for a single excitation of the electromagnetic field, that is circularly polarized photons
carry a spin angular momentum with z projection ±~. This relation is valid within
the paraxial approximation and for each spectral components of a wave, thus for an
arbitrary linear combination of monochromatic waves, e.g. a light pulse.

Finally we can focus on the orbital part of the angular momentum, we consider
again the case of paraxial waves and we assume that the spatial envelope of the wave
presents a cylindrical symmetry about the propagation axis z. It is in this situation
convenient to exploit this assumption to express

(r×∇) = (−(z/ρ)∂φ, (z/ρ)∂ρρ− ρ∂z, ∂φ)T (4.26)

(ρ, φ, z) parametrize the cylindrical degrees of freedom. Now, using the coulomb Gauge
for a paraxial wave, it is clear that the electric field and vector potential do not have
components along the propagation direction (we neglect them). The summation in the
expression of L can be thus rewritten using a complex notation for the fields in the
cylindrical coordinate system
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∑

i

Ei(r×∇)A ≈ 1

2
(E∗i (r×∇)zA

i + c.c.)

=
1

2iω
(E∗ρ∂φEρ + E∗φ∂φEφ + c.c.)

(4.27)

If we further require that Eρ does not change with the angle, that is the envelope
of E is constant in modulus with φ (e.g. for a Bessel-beam) and that Eφ ∝ e−i`φ with
` ∈ Z, some simple algebra yields

L = ẑ

(E2

ω
Ω

)
` (4.28)

again we find that for a single photon with a wavefront characterized by a phase winding
` times in an optical period, the orbital angular momentum is `~. A more general
calculation of L and S in the case of Bessel- and Hermite-type solutions of the paraxial
wave-equation can be found in [255]. Interestingly the term E∗∂φE ≡ 〈E|∂φ|E〉 recalls
the definition of the Pancharatnam-Berry phase: this analogy has been investigated in
[317]. An important consequence of this fact is that a smooth transformation of the
wavefront cannot modify the quanta of OAM carried by the beam, which essentially
counts the number and order of phase vortices present in the beam. For this reason
OAM is believed to be an eavesdropping-resilient degree of freedom useful for free-space
telecommunication.

Notice that for an arbitrary vector fields, where the dependence of the vertical
and horizontal components of the transverse wave is not constant over the spatial
coordinates, the decomposition of the total angular momentum is not always separable
in its spin and angular components [58]. A discussion of this specific case, can be found
in [318], where the authors describe the angular momentum of strongly focussed beams
using a multipole expansion of the EM field.
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Figure 4.14: Retrieving the wavefront phase: (a)-Typical interference pattern for
the | − 2, σ+〉 mode, produced by interfering the emission and reference arm with an
in-plane wavevector difference ∆k. (b) Log-scale absolute value of the CCD image fast
Fourier transform (FFT). (c) After a rigid translation of the FFT by −∆k we apply a
radial low-pass filter. (d) Real space image of the emission phase φ(r), obtained as the
argument of the inverse FFT.

4.7 Appendix B: Retrieving the phase maps

Along the chapter we presented several interferograms and associated to each of them
a phase map. In order to extract these maps we have used a spatial Fourier filtering
technique, which we schematically illustrate in Fig. 4.14. The idea is that if the signal
and reference beams are described by the complex field amplitudes:

As = As(r)e−i(ωt−ks·r+φ)

Ar = Ar(r)e−i(ωt−kr·r),
(4.29)

thus the fringe pattern produced at the spectrometer entrance plane (z = 0) is:

I(r) = |As +Ar|2

= |As|2 + |Ar|2 +
(
AsA

∗
re
−i(∆k·r+φ) + c.c.

) (4.30)

where ∆k is the in-plane wavevector difference between the signal and reference beams.
One example of these fringe patterns is provided in Fig. 4.14-(a). If we Fourier-
transform the fringe pattern Ĩ(k) = F̃ [I], the first two terms in equation (4.30) produce
a peak centered at the reciprocal space origin, whereas the third and fourth term corre-
spond to two satellite peaks translated by ±∆k with respect to the origin. In Fig. 4.14-
(b) we color code the log-scaled modulus of the fringe pattern in reciprocal space. The
satellite peaks carry the information on the wavefront phase, which can be retrieved by
operating a rigid translation of the reciprocal space by ±∆k and filtering-out all the
other peaks [Fig. 4.14-(c)]. The remaining signal corresponds to F̃ [AsA

∗
re
−iφ]. Then,

by taking the argument of inverse Fourier transform of this complex amplitude, we can
extract the phase pattern [Fig. 4.14-(d)] associated to the initial interference pattern
[Fig. 4.14-(a)]. Remarkably, the phase singularity present in the fringe pattern, is
manifest also in reciprocal space, where it shows as a dark spot in the middle of the
side-peaks.
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4.8 Appendix C: Eigenmodes via a group theory approach

The discrete rotational symmetry of a ring arrangement of n coupled micropillars allows
defining a quantum number ` associated to the OAM of eigenmodes, i.e. to the phase-
relation between the field in neighboring pillars. In Sec. 4.2.1 we have shown by studying
an effective tight-binding hamiltonian associated to the system, that the presence of
an analog spin-orbit coupling in these structures produces a fine structure necessary to
implement our lasing scheme in the |`| = (1, n/2− 1) manifolds.

In this section we want to show an alternative way to understand and characterize
the eigenmodes in such photonic structures. To this aim we will study the irreducible
representations of the symmetry group associated to the Hamiltonian. Although this
approach is not able to predict the specific energy of each mode but only their spectral
ordering, it has the advantage to work irrespectively of the microscopic details of the
Hamiltonian, i.e. it could be straightforwardly extended to different resonators sharing
the same symmetry of our microstructures.

The group of all symmetry operations for of a ring arrangement of n coupled mi-
cropillars is Cnv. The character table of Cnv with n even (odd) is presented in Table 4.1
(Table 4.2). There, Ai and Bi are unidimensional irreducible representations (irreps)
of the group. Ei are two-dimensional irreps; E (identity), Cn (2π/n rotations) and σv
(σd) (reflections across vertical planes that cross two opposite pillars) are the symmetry
operations of the group [319]. One possible basis for the scalar wave-functions of the
coupled cavities (i.e. without considering the spin) is given by the fundamental mode
of each pillar (ψi); the eigenmodes of the systems can thus be expressed in the form of
a vector Ψ = (ψ1, ..., ψn)T . One can then identify a set of matrices that describe how
this vector transforms under each symmetry operation of the group.

Since the Hamiltonian of the system commutes with every symmetry operator, this
set of matrices forms a reducible representation of the group (Γs

n). The trace (character)
of each of these matrices is given in the bottom line of Table 4.1 (4.2) for n even (odd).
The decomposition in irreps can be found by looking for the minimal set of elements
of the group whose summed characters equal the ones of Γs

n. For even n > 4 one finds

Γs
even = A1 ⊕B1 ⊕ E1 ⊕ E2 ⊕ E3 ⊕ ...⊕ En/2−1. (4.31)

Similarly, for a molecule presenting an odd number of pillars, the representation
associated to scalar modes is decomposed in irreps as:

Γs
odd = A1 ⊕ E1 ⊕ E2 ⊕ E3 ⊕ ...⊕ E(n−1)/2 (4.32)

The Γs
even decomposition indicates that the spectrum of the scalar system is formed

of n − 2 energy levels: 2 non-degenerate states transforming according to A1 and B1

and n/2− 1 degenerate doublets transforming as Ei with i = 1, ..., n/2− 1. Inspecting
the characters associated to the eigenmodes transforming as A1 and B1 shows that they
are respectively, symmetric under all symmetry operations of the group (i.e. ` = 0) and
anti-symmetric under 2π/n rotations (i.e. ` = n/2− 1). The doublets transforming as
Ei correspond instead |`| = i manifolds: the OAM is extracted directly from the wave-
function of each mode, determined by expanding the generators of each irrep [319]. It is
possible to spectrally order all the modes as their energy scales with the phase gradient
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|`| Cnv E 2Cn 2C2n ... Cn/2n 3σv 3σd

0 A1 1 1 1 ... 1 1 1
A2 1 1 1 ... 1 -1 -1

n/2 B1 1 -1 1 ... -1 1 -1
B2 1 -1 1 ... -1 -1 1

1 E1 2 2cos(θ) 2cos(2θ) ... 2cos(n
2 θ) 0 0

2 E2 2 2cos(2θ) 2cos(4θ) ... 2cos(nθ) 0 0
... ... ... ... ... ... ... ... ...

n
2 − 1 En/2−1 2 2cos((n

2 − 1)θ) 2cos((n− 2)θ) ... 2cos(n
2 (n

2 − 1)θ) 0 0

Γs
even n 0 0 ... 0 2 0

Table 4.1: Character table for Cnv (even n): the bottom line corresponds to the
characters of the reducible representation associated to the scalar modes (θ = 2π/n).

|`| Cnv E 2Cn 2C2n ... C(n−1)/2
n 3σv 3σd

0 A1 1 1 1 ... 1 1 1
A2 1 1 1 ... 1 -1 -1

1 E1 2 2cos(θ) 2cos(2θ) ... 2cos(n−1
2 θ) 0 0

2 E2 2 2cos(2θ) 2cos(4θ) ... 2cos((n− 1)θ) 0 0
... ... ... ... ... ... ... ... ...
n−1
2 E(n−1)/2 2 2cos(n−1

2 θ) 2cos((n− 1)θ) ... 2cos((n−1
2 )2θ) 0 0

Γs
odd n 0 0 ... 0 2 0

Table 4.2: Character table for Cnv (odd n): the bottom line corresponds to the
characters of the reducible representation associated to the scalar modes (θ = 2π/n).

associated to the angular momentum (A1 − E1 − ... − En/2−1 − B1). For Γs
odd, we

have instead only one non-degenerate state transforming according to A1 and (n−1)/2
degenerate doublets transforming as Ei with i = 1, ..., (n − 1)/2. The main difference
with the case of even n is the absence of B1 states, as the two possible antisymmetric
states presenting a π phase shift between neighboring pillars are inequivalent and the
spectral ordering reads (A1 − E1 − ...− E(n−1)/2).

In order to take into account the spin of photons, one needs to identify the irreps
that transform identically as this spin moment: for the Cnv symmetry groups, ` = ±1
angular momenta transform as E1. Then, to retrieve the energy levels of our benzene
molecule in the presence of spin-orbit coupling, we need to consider the tensor product
between E1 and Γsn:

E1 ⊗ Γs
even =E1 ⊗ (A1 ⊕B1 ⊕ E1 ⊕ E2 ⊕ E3 ⊕ ...⊕ En/2−1)

= E1︸︷︷︸
`=0

⊕En/2−1︸ ︷︷ ︸
`=n/2

⊕A1 ⊕A2 ⊕ E2︸ ︷︷ ︸
|`|=1

⊕E1 ⊕ E3︸ ︷︷ ︸
|`|=2

⊕E2 ⊕ E4︸ ︷︷ ︸
|`|=3

⊕

⊕ ...⊕ En/2−3 ⊕ En/2−1︸ ︷︷ ︸
|`|=n/2−2

⊕B1 ⊕B2 ⊕ En/2−2︸ ︷︷ ︸
|`|=n/2−1

.

(4.33)

Similarly, the odd scalar modes composition with polarization yields
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E1 ⊗ Γs
odd =E1 ⊗ (A1 ⊕ E1 ⊕ E2 ⊕ E3 ⊕ ...⊕ E(n−1)/2)

= E1︸︷︷︸
`=0

⊕A1 ⊕A2 ⊕ E2︸ ︷︷ ︸
|`|=1

⊕E1 ⊕ E3︸ ︷︷ ︸
|`|=2

⊕E2 ⊕ E4︸ ︷︷ ︸
|`|=3

⊕...

...⊕ E(n−3)/2 ⊕ E(n−1)/2︸ ︷︷ ︸
|`|=(n−1)/2

.

(4.34)

Focusing first one the even n case, we see that in the spin-coupled basis, the ` =
0 and ` = n/2 states become two-fold degenerate (spin degeneracy), and transform
respectively as the E1 and En/2−1 irreps. More importantly, the |`| = 1 (|`| = n/2− 1)
manifolds split to form a three-level fine structure formed by two non-degenerate states
transforming as A1,2 for |`| = 1 (B1,2 for |`| = n/2 − 1), doublets transforming as E2

(En/2−2). By inspection of the symmetry of every eigenstate of the fine structure, it
is possible to retrieve explicitly the wave-functions of each of these states. For the
` = 1 manifold, states that transform as A1,2 are symmetric under 2π/n rotations,
indicating that they carry a total angular momentum j = (`+σ) = 0; furthermore, A1

(A2) is symmetric (anti-symmetric) under reflections σv,d. Therefore, the associated
wave-functions (in the |j, σ〉 basis) are:

ψ(A1,2) =
1√
2

(eiθ |0, σ+〉 ± e−iθ |0, σ−〉) (4.35)

Here, the phase θ = 2π/n accounts for the n-fold rotational symmetry of the wave-
function. Eigenmodes associated to the E2 doublet form conjugated partners with a
total angular momentum |j| = 2, but opposite chirality (Ej is associated to modes
presenting j AM quanta)

ψ±(E2) = |±2, σ±〉 (4.36)

In the |`| = n/2−1 manifold, states that transform according to B1,2 are anti-symmetric
under 2π/n rotations, indicating modes with total angular momentum J = n/2; fur-
thermore, B1 is symmetric (anti-symmetric) under σv (σd) reflections (vice-versa for
B2). Therefore, the associated wave-functions are

ψ(B1,2) =
1√
2

(eiθ |−n/2, σ+〉 ± e−iθ |n/2, σ−〉) (4.37)

Wave-functions associated to the En/2−2 doublet form conjugated partners with a total
angular momentum |j| = n/2− 2, thus

ψ±(En/2−2) = |±n/2− 2, σ∓〉 (4.38)

Importantly, each three-level fine structure presents the followings necessary assets for
our lasing scheme: (1) only one state is entirely polarized σ+ and only one is entirely
polarized σ−, so that these states present the highest gain when spin-polarizing the
gain medium, and (2) these σ±-polarized states present opposite OAM (i.e. ±`). This
is indeed the case for the states forming the E1 and E2 doublets.

The other manifolds of the spectrum (2 ≤ |`| ≤ n/2 − 2) split in pairs of doublets
transforming as E|`|−1 and E|`|+1. The associated wave-functions (with corresponding
OAM) can be written as:

ψ±(E|`|−1) = |j = ±(|`|+ 1), σ∓〉 → OAM = ±|`|
ψ±(E|`|+1) = |j = ±(|`| − 1), σ±〉 → OAM = ±|`|. (4.39)
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Consequently, none of these manifolds offer an appropriate fine structure to implement
our lasing scheme. Indeed, although all the states are circularly polarized, the polariza-
tion (σ±) is not linked to a single chirality, thus preventing triggering lasing in a mode
carrying a net OAM when spin-polarizing the gain medium.

A similar analysis can be done for the case of an odd number of coupled cavities,
with the main difference being the absence of the second interesting fine structure
(B1 ⊗B2 ⊗En/2−2) which, in principle, is the one allowing to implement of our lasing
scheme for arbitrarily large values of the OAM.

General guidelines related to the symmetry of the device

Following the above group theory arguments, the general guideline for designing a
structure is that it must exhibit both circular symmetry (in order for angular momen-
tum to be a conserved quantity of the system) and mirror symmetry (in order for the
system to lase as well in CW and CCW propagating modes); the confluence of these
two symmetries corresponds to Cnv symmetry groups.

Furthermore, a structure presenting a Cnv (with n > 4) symmetry will present
the appropriate fine structure for the |`| = 1 manifold and, for n even, for the |`| =
n/2 − 1 manifold. The physical reason why only these two manifolds can present the
appropriate fine structure is related to the fact that photon polarization can only take
values of ±~; therefore, due to the combined requirement of angular momentum and
energy conservation, spin-orbit coupling can only mix together states ` = ±1 (and
` = ±n/2 − 1, considering the periodic nature of a structure with an even number of
pillars).
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CHAPTER 5

Parametric instabilities in coupled nonlinear microcavities

Abstract: Nonlinear photonic systems, being inherently lossy, have been proposed as
a natural playground for the exploration of out-of-equilibrium lattice models [157, 51].
One example is the driven dissipative Bose-Hubbard (DDBH) model, describing inter-
acting bosons hopping on a lattice in presence of pump and loss. A minimal realization
of this model is represented by two coupled nonlinear Kerr-type resonators. Despite its
apparent simplicity, this paradigmatic system presents a rich phenomenology including
spontaneous symmetry breaking [320], self-trapping and Josephson oscillations [321],
periodic squeezing [322] and a nonlinear hopping phase [323].

Moreover, fluctuations and nonlinearities are known to conspire in strongly driven
oscillators, eventually resulting in the self-modulation of an internal parameter of the
system, feeding self-pulsing instabilities [218, 324, 325], which can be exploited to realize
efficient integrated optical parametric oscillators [326, 238, 327, 328, 329]. Although the
presence of such parametric instabilities had been predicted for a DDBH-dimer [330],
it has not been observed yet. In this chapter we report its observation with coupled
microcavities hosting polariton excitations.

The mechanism responsible for the instability relates to the opening of a resonant
scattering channel from the pump toward two modes as their energy gets renormalized
by the nonlinearity. Imaging the emission pattern of signal and idler modes in the
instability regime, we evidence opposite spatial symmetries. This feature is reminiscent
of the bonding and anti-bonding linear modes from which they originate, supporting
the description of the instability mechanism proposed in [330]. We comprehensively
model our findings combining a linear stability analysis with semiclassical calculations
of the cavity field dynamics via Langevin equations.

The inherent scalability of our semiconductor platform, enriched with a strong Kerr
nonlinearity, is promising for the realization of integrated optical parametric oscillator
networks operating in a few-photon regime. The core results presented in this chapter
can be found in this preprint [331].

111



5. Parametric instabilities in coupled nonlinear microcavities

5.1 Introduction

Understanding strongly correlated phases of matter is a formidable task as the excita-
tions of the system display long-range collective behaviors which are often intractable
both analytically and with numerical techniques. One possible solution is to condense
the essential elements of the problem in a minimal many-body hamiltonian model de-
pending on few parameters. Upon implementing the model in a controlled experimental
setting, direct measurements allow to gather information on the original problem.

Among others, the Bose-Hubbard model is particularly relevant for solid-state physics.
It consists of interacting bosons in a lattice with nearest neighbor hopping (cf. Sec. 2.4.3).
Because it considers only contact-type interactions, that is ∼ â†â†ââ on site terms, it
is naturally implemented in a variety of systems, ranging from Rydberg atoms to Kerr
resonators [332]. Remarkably, this model describes the superfluid to Mott insulator
transition as the order parameter given by the ratio of the hopping to interaction
strength U/J becomes larger than the coordination number of the lattice [191, 192].

If one allows the Bose-Hubbard hamiltonian to include interaction with the envi-
ronment with a coupling rate comparable with interactions or to the kinetic energy,
the system enters a non-equilibrium regime where energy can flow from and towards
the system. With the inclusion of particle loss, pumping and eventually decoherence,
the many-body hamiltonian is usually referred to as a driven-dissipative Bose-Hubbard
(DDBH) model. Not only its phase diagram is still largely unexplored except for the
case of very strong or weak interactions [52, 195, 196], but the possibility to coherently
drive the system offers a useful tool for preparing and stabilizing exotic states of matter,
which are not necessarily in the hamiltonian ground state [333, 334, 335].

As photonic systems are inherently lossy, engineered arrays of coupled cavities en-
dowed with a strong Kerr nonlinearity have been proposed as a natural implementation
of the DDBH model [157, 51, 158, 159]. In this sense, semiconductor microcavities
hosting polariton excitations are a promising platform (cf. Sec. 2.4.3). Although the
magnitude of two-polariton interaction (U) is still small when compared to the dissipa-
tion rate (U/γ . 0.1), limiting the exploration of strongly quantum-correlated phases
[336, 53], recent works implementing dipolar interaction for indirect exciton-polaritons
[56] and polaron-polaritons in the fractional-quantum hall regime [337] are promising
avenues. A minimal yet phenomenologically rich realization of the DDBH hamiltonian
consists on two coupled Kerr resonators (CKRs) where all the ingredients of the model,
namely nonlinearities, coherent exchange of population, losses and site-selective driving
are present.

Even in the weak interaction regime CKRs have shown to display a variety of be-
haviors including spontaneous symmetry breaking [320], self-trapping and Josephson
oscillations [321, 338, 339], periodic squeezing [322] a nonlinear hopping phase [323]
and the emission of quantum correlated photons [340]. Interestingly, the production
of entanglement in a spatial-symmetry-breaking phase transition [341] and the pres-
ence of a parametric instability [330] have been predicted but, so far, have not been
experimentally addressed. In this chapter we report the observation of a parametric
instability characterizing the non-equilibrium steady state of coherently driven coupled
micropillar cavities.

Parametric instabilities are ubiquitous both in linear systems as a result of the
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periodic modulation of an internal degree of freedom (e.g. the resonance frequency
of an oscillator [342]) and in nonlinear systems driven out-of equilibrium [218]. In
dissipative systems, provided the instability growth rate is larger than any competing
damping mechanism, any perturbation of the system about its steady-state is amplified
often resulting in a self-pulsing behavior (parametric oscillation) or in spatial pattern
formation [343]. One interesting feature already pointed out in early works on vibrating
bodies [344, 342, 345] is that these resonances do not necessarily occur at one of the
natural frequencies of the system. One everyday example is the fact that a kid standing
on a swing need to duck two times per period in order to increase the amplitude of the
oscillations [346]. In the context of optical parametric oscillators (OPO), this has been
exploited since the 60s for coherent frequency conversion purposes [347]. Indeed, for a
second (third) order nonlinearity, photons at the pump frequency ωp are converted via
the parametric process into signal and idler photons at frequencies ωs and ωi satisfying
energy ωp = ωs + ωi (2ωp = ωs + ωi) and momentum kp = ks + ki (2kp = ks + ki)
conservation.

One of the main drives of the research on parametric processes is their technological
relevance: for instance, close to oscillation threshold, that is when the instability growth
rate and losses are comparable, parametric oscillators can be used to build narrowband
utralow-noise amplifiers [348, 349, 350]. In ring resonators presenting hundreds of
equally spaced modes, parametric processes generate octave-spanning frequency combs
[351, 352], a key resource for metrological studies [353]. As well, squeezing [354, 355,
356] and non-classical correlations characterize the fields generated by parametric pro-
cesses [357, 358, 359], which are key resources for the implementation of quantum in-
formation protocols in the continuous variable domain. Combining these features with
the impressive refinement of nano-fabrication techniques, on-chip structured quantum
light sources have been recently demonstrated [360]. In this sense, the versatility of our
semiconductor platform is extremely promising.

If now we consider a lattice of coupled microresonators endowed with a third order
(Kerr) nonlinearity, as the one present in polariton microcavities (cf. Sec. 2.3), the
process associated to the parametric generation of signal and idler can be modeled
with the on-site four-wave mixing (SFWM) hamiltonian [214, 360]

HSFWM = η
∑

m

(â†m,iâ
†
m,sâm,pâm,p − â†m,pâ†m,pâm,iâm,s) (5.1)

where âp,s,i are the ladder operators acting respectively on the pump, signal and idler
modes and the index m runs over the lattice sites (micropillars cavities). The coef-
ficient η is proportional to the polariton-polariton scattering rate times the overlap
integral of the spectral and spatial distribution of the modes involved in the four wave
mixing processes (p, p) � (s, i). The second term in Eq. (5.1) is typically small when
compared to the first one as the population of the sideband (signal and idler) modes
is typically much smaller than the one at the drive frequency. Within this approxima-
tion, the SFWM hamiltonian corresponds up to a multiplicative factor to the resonant
polariton-polariton interaction term (cf. Sec. 2.4). Parametric oscillation has indeed
been extensively studied in planar polariton microcavities [131, 128, 132, 136], and mi-
cropillars [361]. All these realizations operated in a triply resonant condition, that is,
both the pump and the sidebands are resonant with a polariton mode; this will not be
the case for the experiments presented in this chapter. The difference and advantages
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5. Parametric instabilities in coupled nonlinear microcavities

of the two schemes will be discussed at a later stage.

Let us now focus on how to identify the presence of a parametric instability in
the non-equilibrium steady state of a driven-dissipative system. Importantly, for weak
nonlinearities, the presence of dynamical instabilities can be addressed already at the
semiclassical level inspecting the spectrum of small fluctuations around the fixed points
of the dynamics. As discussed in Sec. 3.3.1, this is equivalent to studying the eigenvalues
λi of the linear stability matrix.

Parametric instabilities are associated to steady-state solutions whose stability ma-
trix has at least one eigenvalue with a positive imaginary part (gain) and a non
zero real part (i.e. an oscillating character). For instance, if we consider only the
lowest energy mode (with resonance frequency ω0) of a single pillar, driven by a
monochromatic pump oscillating at ωp, the eigenvalues of the stability matrix read
λα̃ = −iγ/2 ±

√
(∆− 3Uñ)(∆− Uñ) (~ = 1), see Sec. 3.3.1. Here ∆ = (ωp − ω0) is

the laser detuning, U is the interaction constant, γ is the linewidth and ñ = |α̃|2 is the
cavity steady-state occupation. Clearly, the square root can yield either a purely real
or imaginary contribution, thus the parametric instability conditions are never met.
This does not mean that the four-wave mixing processes do not occur but just that
they are not amplified. This is not the case for two (or more) coupled cavities, as we
show in the following.

5.1.1 Semiclassical coupled mode model

The dynamics of the lowest-energy mode of two coupled micropillars (CKRs) is captured
at the level of a truncated Wigner approximation by a set of two stochastic differential
equations for the complex amplitudes α1,2 of the polariton fields in each micropillar1.
In the frame rotating at the pump frequency and setting ~ = 1, one has

idα1,2 = − (D(αi, α
∗
i ) + Jα2,1) dt+ dχ1,2(t)

D(αj , α
∗
j ) =

(
∆ + iΓ/2− U(α∗jαj − 1)

)
αj − i

√
Γ/2F .

(5.2)

Here ∆ is the laser detuning relative to the bare cavity resonance (we take ω1 = ω2),
Fj the on-site drive amplitude, Γ is the polariton linewidth, U the Kerr nonlinear-
ity, J the coupling constant and χj(t) is a complex-valued gaussian noise of variance
〈χ∗j (t)χj′(t′)〉 = δj,j′δ(t − t′)Γ/2. In the following we pump only the site j = 1, to
avoid imposing the phase relation between the two coupled modes [330, 113, 341], thus
F ≡ (F1, 0) can be taken real, without loss of generality. These equations yield cor-
rectly normalized input-output relations only in the case of an equal reflectivity of the
top and bottom microcavity mirrors and in absence of absorption and non-radiative
processes. A description of the linear eigenvalues of this model (U = 0) can be found
in Section 2.4.2.

In order to find eventual parametric instabilities in the CKRs parameter space, we
can follow a two step procedure. First, we determine the mean-field steady-state values
α̃j for each given parameter set. To do so, we solve numerically the set of algebraic
equations associated to the right hand side of (5.2) neglecting phase-space diffusion

1see Section 3.3.2 and refs [37, 362, 222] for the details
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Figure 5.1: Phase diagram of the CKRs: (a) Total number of steady state solutions
as a function of the drive detuning ∆ and power F 2/Γ. (b) Number of stable solutions;
bistability occurs for ∆ > −J +

√
3/2Γ, multistability for ∆/J > 1.56. (c) Number of

parametrically unstable solutions, N ≥ 1 if ∆ > Γ. Single mode unstable solutions can
be deduced subtracting panel (b,c) to panel (a). Other parameters: U/Γ = 0.01 and
J/γ = 5.

(i.e. the stochastic terms dχj). Then, we address the linear stability of the solutions
encoded in the eigenvalues of the Jacobian matrix (cf. Sec. 3.3.2)

J̃ =




−∆̃1 Uα̃2
1 −J 0

−U(α̃∗1)2 ∆̃∗1 0 J

−J 0 −∆̃2 Uα̃2
2

0 J −U(α̃∗2)2 ∆̃∗2


 (5.3)

where the effective complex detuning reads ∆̃j = ∆ + iΓ/2− 2U(α∗jαj − 1). If a given
solution is found to be parametrically unstable, any fluctuation around the steady-state
solution due to the fluctuation term dχj(t) is exponentially amplified eventually leading
to the onset of a self-pulsing behavior [325]. Such genuinely non-equilibrium steady-
state has been reported with coherently excited two-level atoms [324] and molecules
[363] in optical cavities. Importantly, the stability matrix gives a sufficient condition
for the parametric process to be amplified, however it does not predict whether the
oscillation will stabilize or grow uncontrollably leading the system to the closest stable
solution. Indeed as the perturbation grows in amplitude the linearization hypothesis
used for the derivation of the stability matrix is no longer valid; a full calculation of
the dynamics is typically necessary.

As an example, in Fig. 5.1, we considered a strongly-coupled regime (J/Γ = 5) of the
CKRs with U/Γ = 0.01 and explored the detuning and pump power (∆, F 2) parameter
space. Figure 5.1-(a) shows the total number of steady-state solutions α̃ as a function
of the driving conditions. For a given pump power and detuning up to nine roots
of the algebraic equation system can be found. Indeed, as anticipated in Sec. 3.3.1,
when driving only the first out of N CKRs, a chain substitution allows to express the
equation set as a polynomial of degree 3N in some α̃N , which admits up to 3N complex
valued solutions (i.e. 9 for the dimer). In Fig. 5.1-(b,c) we address the stability of
each solution and count the number of stable and parametrically unstable solutions,
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Figure 5.2: Parametric instability - underlying mechanism: (a) The opening of
a resonant scattering channel from the pump toward two modes as their energy gets
renormalized by interactions is at the origin of the parametric instability; adapted from
[330]. In the simplest scenario, the sidebands corresponds to the nonlinear bonding (B)
and anti-bonding modes (AB), corresponding to the symmetric and anti-symmetric
superposition of the bare pillar eigenmodes (cf. Sec. 2.4.2). Calculated transmission
spectra in the linear (b) and parametric instability regime (c). In panel (c) blue, cyan
and gray dots correspond respectively to stable (S), parametrically unstable (PU) and
(single-mode) unstable (U) solutions. A possible resonant parametric scattering process
for a ∆ = J detuned pump is shown in panel (c). Simulation parameters: U/Γ = 0.01
and J/γ = 5 (same as figure 5.1).

respectively. From panel (b) we can see that bistability occurs for ∆ > −J +
√

3/2Γ
while multistability sets in for ∆/J > 1.56. Interestingly for ∆ > Γ a tongue of
parametrically unstable solutions can be observed, see Fig. 5.1-(c).

In ref. [330], D. Sarchi and collaborators suggested an intuitive picture to understand
the origin of the parametric instability region. In order to illustrate the idea, let us
consider a specific situation where a coherent drive excites at ∆ = J the coupled
microcavities, see Fig. 5.2-(a). In the linear regime, this corresponds to drive resonantly
the anti-bonding (AB) mode of the system2. If one increases the pump power, the net
effect of a Kerr nonlinearity (U > 0) is to blueshift the resonances associated to the
nonlinear eigenmodes by an amount proportional to Untot where ntot = n1 + n2 is the
total number of polariton excitations in the two microcavities. If ∆ > 0, there will
always exist a drive power for which the average energy of the nonlinear B and AB
modes corresponds to the energy of the pump. In the specific case under consideration,
since ∆ = J , this will happen for Untot ≈ J , as Fig. 5.2-(a) illustrates. Then, a
resonant scattering channel from the pump towards the two nonlinear modes is opened,
eventually allowing four wave mixing processes to set in. Additionally, if the scattering
is stimulated, the system possibly enters a self-pulsing regime, which can be seen as
the result of the coherent beating of the pump with the sideband modes [330].

To support this qualitative picture, we plot the transmission spectrum of the coupled
microcavities in the linear regime (UF 2/Γ � 1) and for a representative value of the
drive power within the parametric instability region (F 2/Γ = 5.9 · 103), see Fig. 5.2-
(b) and (c), respectively. Stable, parametrically-unstable and (single-mode) unstable
solutions are colored in blue, cyan and gray, respectively. The transmission coefficient

2The bonding (B) and anti-bonding (AB) modes corresponds to the in- and out-of-phase superposi-
tions of the bare pillar eigenmodes |ψ1,2〉, that is |B,AB〉 = (|ψ1〉±|ψ2〉)/

√
2 at frequencies ∆B,AB = ∓J

see Sec. 2.4.2 for details.
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of the coupled microcavities is calculated as T = Γntot/2F
2, depends on the stationary

values of the intracavity fields (α̃j) and is possibly multivalued in the nonlinear regime.
Unsurprisingly, in Fig. 5.2-(b), two sharp resonances corresponding to the linear B and
AB modes appear for ∆ = ±J . In Fig. 5.2-(c) we can see that the transmission spectra
bend towards larger energies due to the Kerr nonlinearity. For this drive power the
system is parametrically unstable at ∆ = J , simultaneously, at the the frequency of
the nonlinear B and AB modes (∆ ≈ 0, 2J) solutions are stable and the transmission is
large. Now, the parametric gain is roughly equal to the initial state occupation times
the two-polariton interaction constant η ∼ Untot [330]; since η/Γ ∼ 2UT F2/Γ2 > 1,
the resonant scattering process is stimulated, resulting in an instability. This validates
the intuitive picture presented in Fig. 5.2-(a). This mechanism applies in general for
∆ > Γ. Indeed, in order to have amplification η/Γ > 1, while Untot ∼ ∆ in order
to have the opening of some resonant scattering channel from the pump toward the
nonlinear modes, that is η ∼ ∆ > Γ, in agreement with the predictions of Fig. 5.1-(c).

5.2 Experiments with coupled micropillar cavities

Inspired by the results of the calculations outlined in the previous section, we want
to experimentally address the presence of a parametric instability in the nonlinear
response of two coupled micropillar cavities. We will consider a sample derived from
the heterostructure design number two (see Sec. 3.1.1), embedding a single 15 nm thick
In0.05Ga0.95As QW, with a heavy-hole exciton transition at Ex = 1454(1) meV. In the
sample the measured planar cavity finesse (prior to etching) is F ≈ 7 · 104. Hereafter
we consider two overlapping microresonators with radius R = 2.0 µm and a center-to-
center distance d = 3.6 µm.

In resonant excitation experiments, before entering the nonlinear regime, it is nec-
essary to precisely characterize the linear properties of the coupled micropillar cavities.
For this reason, we organize this section as follows: First, we extract the exciton and
photon fraction of the microstructure discrete modes; Then, we use a quasi-resonant
excitation experiment to characterize the linear transmission spectrum of structure;
Finally, we investigate the nonlinear response of the microstructure.

5.2.1 Retrieving the eigenstate fractions

Estimating the bare cavity and exciton energy in microstructures presenting discrete
optical modes is difficult. Indeed, even knowing ΩR from a characterization of the
planar cavity prior to etching, one needs to measure both the energy of the lower (LP)
and upper polariton (UP) resonance to extract the exciton-cavity detuning. However,
the UP modes are hardly visible in experiments as they are spectrally close to the
exciton, thus experiencing an enhanced absorption (cf. Sec. 2.3.4).

To circumvent the problem, in each repetition of the microstructure pattern we
leave large unetched areas (120 × 120 µm). In these large portions of planar cavity,
the confined modes effectively form a continuum which we use to measure the polari-
ton dispersion relation (cf. Sec. 2.3.3). In Fig. 5.3-(a) we show a polariton dispersion
relation measured in close vicinity of the coupled microcavity structures we will focus
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Figure 5.3: Eigenstate fraction and mode volume: (a) Energy and angle resolved
photoluminescence of a square 120× 120 µm unetched portion of the sample (left) and
corresponding fit with the polariton dispersion relation (right). (b) Eigenstate fraction
as a function of the lower polariton energy, deduced from the fit of panel (a). (c)
Measured emission pattern |u(r)|2 of the lowest energy (E0 = 1450.61(1) meV) discrete
mode of a a 2 µm radius micropillar. (d) Cuts trough the x and y axes of the measured
mode profile (c) are compared with the predictions of a finite element model of the
micropillar (cf. Sec. 2.4.1), allow extracting the modal area A ≈ 6.0 µm2.

our resonant experiments in the following. As already mentioned in Sec. 2.3.3, a peak-
finding algorithm is used to extract the energy and momentum doublets (right panel
side) from the CCD image (left panel side). The resulting data points are simultane-
ously fitted using the polariton dispersion relations [eq. (2.31)]. From the fit we extract
the bare exciton transition Ex = 1454.78(3) meV, the k = 0 cavity mode resonance
Ec = 1450.08(2) meV and the Rabi splitting 2~ΩR = 3.39(4) meV. The same proce-
dure, repeated over all the large unetched areas allows to obtain an estimate of for Ec
and Ex at any point in the sample.

Furthermore, using the relations between the exciton (|X|2) and photon fraction
(|C|2) [eq. (2.29)] and (Ec,x,ΩR), we deduce their dependence as a function of the
lower polariton energy, as Fig. 5.3-(b) shows. Using this information we can relate the
energy of any discrete lower polariton mode of a microstructure to the corresponding
eigenstate fractions3.

As an example, we consider a single 2 µm radius micropillar cavity, the fundamental
building block forming the couple microcavities investigated in the following. With an
off-resonant spectroscopy experiment we measure the lowest energy resonance E0 =
1450.61(1) meV, deriving |X|2 = 0.14(1). In Fig. 5.3-(c) we show the measured spatial
profile u(r) of the mode and in Fig. 5.3-(d) we compare two orthogonal cuts trough
the profile maxima (markers) with the profile obtained with finite element calculations.
We can use this profile to deduce the modal area A = (

∫
d2r |u(r)|4)−1 ≈ 6 µm2.

3This estimate may suffer from unpredictable systematic errors in small asymmetric (∼ 2µm) mi-
crostructures as strain-release effects can modify the exciton transition energy [364].
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5.2.2 Resonant spectroscopy

To complete the characterization of the coupled microcavities we perform a resonant
spectroscopy experiment allowing to precisely measure the linear response of the struc-
ture. In Fig. 5.4-(a) we show a representative SEM image of three dimer molecules. In
these experiments we will probe the transmission of the dimer structures by shining a
single-mode CW laser on one of the two micropillars, in order to equally couple to the
B and AB modes (for details on the setup cf. Sec. 3.2). As resonant experiments are
extremely sensitive to the excitation conditions, we summarize the protocol we have
developed.

• As a first step, we roughly align the excitation spot on top of the structure while
the sample is illuminated by a broadband LED light. Then we turn off the LED
and tune the laser wavelength to ≈ 780 nm in order to off-resonantly excite the
structure. The PL is collected in transmission geometry and dispersed in energy
with the spectrometer. Once we identify a relevant resonance, say the bonding
mode, we mark on the CCD the pixel of the resonance peak, then we tune the
laser wavelength until the transmitted signal matches it. To ensure an operation
in the linear regime we typically use (50− 100) nW incident power.

• Once the laser is locked to one resonance we can directly image the transmitted
pattern (without spectral selection): if the collection focus is correct, it usually
resembles the mode profile encompassed by some stray light around it, as the
input coupling is not optimal at this stage. To optimize the input coupling one
can first act on the in-plane piezo positioning stage while trying to maximize the
transmitted intensity, then act on the focus and repeat until convergence. One
can further enhance the input coupling by matching the input beam waist to the
effective waist of the pillar mode, to do so one needs to play simultaneously with
the beam divergence and focus of the excitation objective lens.

• The final step is to match the polarization state of the excitation beam to one of
the cavity modes. In the case of a dimer molecule, we have a doublet of orthog-
onal linearly polarized states both for the B and AB modes (see Sec. 4.2.1 and
[365]). To excite only one of the two (B-AB) doublets, we first roughly align the
linear polarization of the excitation to one of the dimer symmetry axes, and then
cross-polarize the detection. Walking the excitation and detection polarization
to maximize extinction, allows a precise determination of the polarization axes of
the eigenmodes. Residual birefringence in the cryostat windows and DBRs can
be finely corrected using quarter-wave plates.

Once these steps are completed, we record the transmitted emission pattern as a
function of the weak excitation laser frequency. From each frame we compute the
integrated intensity, yielding a signal proportional to the microcavity transmission
spectrum; the result is shown in Fig. 5.4-(c). We can observe two sharp resonances
corresponding to the bonding and anti-bonding modes of the structure, the transmis-
sion pattern measured at each resonance is shown in the insets. These patterns display
an even (odd) spatial symmetry, confirming the bonding (anti-bonding) character of
the modes. Notice that these are raw images, there is no post-processing to remove
stray light thus indicating the effectiveness of the input coupling optimization protocol.

When driving a single site, the coupled mode theory presented in Sec. 5.1.1 predicts
an equal relative height of the B and AB resonances (Untot � 1). However, in the
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Figure 5.4: Resonant spectroscopy: (a) SEM image of the coupled micropillar cav-
ities the DBRs, cavity spacer and quantum well (QW), are highlighted in false blue,
green and purple false-colors, respectively. (b) Schematic representation of the hy-
bridization of the two bare pillar modes into molecular bonding (B) and anti-bonding
(AB) photonic modes. (c) Measured transmission (circles) as a function of the laser
detuning relative to the uncoupled cavity resonance (∆); the dashed line is a fit with
Eq. (5.5). The left and right insets show the transmission pattern measured at each res-
onance. The dashed lines indicate the edge of the microstructure and the half maximum
contour of the incident laser spot.

experiment, the B and AB modes have similar but unequal spatial profiles in the
driven pillar, see the insets in Fig. 5.4-(c). Consequently, the excitation spot (dashed
white line) may couple differently to the B and AB mode. Of course, by translating the
spot position towards the center of the structure one could balance the input coupling.
Unfortunately, this means the tails of the excitation spot overlap more with the second
pillar; simulations indicate this would be detrimental for the onset of a parametric
instability. For this reason, we prefer to optimally couple to the AB mode and make
sure that twice the waist of the excitation spot is smaller than the pillar diameter
(slightly degrading the input coupling efficiency).

In order to fit the transmission spectrum, as we used an extremely weak laser drive,
we can take the limit U |αj |2 → 0 in the set of Langevin equations (5.2). If now we
solve for the steady-state expectation value, that is we set dαssj /dt = 0 and average
over the stochastic variables α̃j = 〈αssj 〉, using the linearity of the equations, we obtain

0 = (−∆− iΓ/2)α̃1 − Jα̃2 + i
√

Γ/2F cos(η)

0 = (−∆− iΓ/2)α̃2 − Jα̃1 + i
√

Γ/2F sin(η)
(5.4)

where the coefficient η allows to model the different spatial overlap of the excitation
spot to the B and AB modes (for η = 0 the pumps drives the two equally). We recall
that (Γ,∆, J) are, respectively, the polariton linewidth, the laser detuning relative to
the bare micropillar resonance and the coupling strength. Solving for the α̃j and using
the definition of the transmission coefficient we get

T (∆) =
Γ4 + 4Γ2

(
∆2 + J2 − 2∆J sin(2η)

)

(Γ2 + 4∆2)2 + 16J4 + 8J2 (Γ2 − 4∆2)
(5.5)
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In Fig. 5.4-(c) we used the above relation to fit the experimental data, the result
is traced with a dashed line showing an excellent overall agreement. From the fit we
obtain the polariton linewidth Γ = 27.4(8) µeV, the coupling strength J = 154.1(6) µeV
and the fundamental mode energy ~ω0 = 1450.64(1) meV. Using the calibration of the
exciton fraction as a function of the lower polariton energy discussed in the previous
section, we can convert this latter fit parameter to |X2| = 0.14(1). Recalling that
the modal area of each pillar is A ≈ 6 µm2, and that gexp0 ∼ 5 − 40 µeV µm2 ,
we get a rough estimate of the expected interaction constant U ∼ 0.02 − 0.13 µeV.
Having characterized all the parameters of the coupled microcavities and shown that
observations can be fairly reproduced using a coupled mode equations model, we move
to the exploration of the high polariton density regime, where the onset of parametric
instabilities is expected.

5.2.3 Nonlinear regime

To probe the nonlinear response of the coupled microcavities, we tune the frequency
of the laser to the anti-bonding resonance (∆ = J). At this value of the detuning,
we expect to cross the instability region as we increase the pump power above some
threshold power (see Fig. 5.1). We are interested in measuring the polariton population
as a function of the input drive amplitude. To this aim we acquired a series of CCD
images while synchronously changing the input laser power, which we monitored using a
power meter. From each CCD frame the site-resolved polariton population was deduced
by integrating the counts over a region of interest corresponding to each micropillar, see
the inset of Fig. 5.5-(a). The count rates (Φ1,2) are corrected for detection efficiency
and converted to a population using the relation ni = 2τ |cp|2Φi where τ ≈ 24 ps
is the polariton lifetime and |cp|2 = 0.86(1) is the polariton photonic fraction at the
frequency ω0. In the collection efficiency one needs to include the substrate transmission
Tsub ≈ 0.62, the losses induced by the collection optics Topt ≈ 0.69 the spectrometer
transmission Ts ≈ 0.87 and the quantum efficiency of the (front-illuminated) CCD
Q ≈ 0.34. Notice that, in order to avoid dealing with the polarization dependent
transmission coefficient of the spectrometer grating at the 0th order, we moved the
turret to the metallic mirror stage instead.

To calibrate the input power we need to evaluate the radiative part of the cavity
linewidth. According to the characterization presented in Sec. 3.2.2, in this experiment
we can neglect the contribution to the polariton linewidth accounting for the inho-
mogeneous broadening of the exciton. Indeed, here, the polariton detuning relative
to the exciton ~(ω0 − ωx) ≈ −4.14(3) meV is much larger than the inhomogeneous
broadening σinh ∼ 0.5 meV. This means we can write the polariton linewidth (Γ)
in Eq. (5.2) as Γ ≈

[
(γc + γa)|C|2 + γnr|X|2

]
, where γc, γa and γnr denote the bare

cavity radiative decay rate, the absorption and exciton non-radiative decay rate, re-
spectively. Moreover, since the exciton fraction is small (|X|2 ∼ 0.14) and γnr ∼ γc/2
according to the calibration in Sec. 3.2.2, we can neglect the |X|2γnr term at first order,
thus Γ = (γc + γa)|C|2. Using the input-output relations4 to define the reflection (R)
and transmission (T ) coefficients at resonance one easily finds that T0 ≈ (γc/Γ)2 and
R0 ≈ (1 − γc/Γ)2. Then, by performing a simultaneous measurement of the reflected
and transmitted light at resonance, we derived γc = Γ

√T0 ≈ 19 µeV and γa ≈ 13 µeV.

4See for instance ref. [163].
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From the difference between the expected reflection coefficient (Rth
0 ≈ 0.09) and the

measured one Rexp
0 ≈ 0.21 one gets the input coupling efficiency Ceff ≈ 0.86.

With these two calibrations we converted each CCD frames and power meter reading
to polariton population and input power values; the result is presented in Fig. 5.5-(a,b).
Hereafter, subscript 1 (2) refers to the driven (undriven) cavity. We observe that the
coupled cavity population exhibits a hysteretic behavior as the pump power is cycled
between 40 µW and 400 µW. This is a consequence of the dispersive bistability induced
by the Kerr nonlinearity of our microresonators, a well known phenomenon in the
context of nonlinear optics [366, 216, 133]. The dashed lines in Fig. 5.5-(a,b) correspond
to the steady-state mean-field predictions (i.e. neglecting noise terms and setting α̇i =
0) derived from Eq. (5.2) with U being the only adjustable parameter. We find the
best agreement between experiments and theory for U ≈ 0.1 µeV, corresponding to an
exciton-exciton interaction constant5 gexp0 ∼ 30 µeVµm2. Importantly, for P > 200 µW,
along the lower branch of the hysteresis, the predictions of a steady-state model are
inaccurate. This is a hint of what we are looking for: the failure of steady-state
predictions is a potential signature of the onset of dynamical features.

The left column of Fig. 5.5-(c) shows measured transmission patterns for five rep-
resentative values of the pump power across the hysteresis cycle. At low power (1),
since ∆ = J , the emission closely resembles the linear AB mode. Darkening of the
driven cavity is observed in (2), due to an interference effect induced by the nonlinear-
ity [323]. A small power increase (above Pthr ≈ 240 µW) produces an abrupt jump in
the driven cavity population, as shown in (3). By further increasing the pump power,
we observe in (4) another jump in the transmitted intensity and a change to a bonding-
type spatial profile, that persists throughout the upper branch of the hysteresis (5).
The right column of figure 5.5-(c), presents the corresponding theoretical predictions
obtained by time-averaging the long term dynamics of Eq. (5.2) after having adiabati-
cally ramped the power to a specified value. Notice that in this simulations the effect
of fluctuations of the intracavity field is included. The amplitudes 〈αi〉t are multiplied
by a gaussian spatial profile approximating the uncoupled pillar modes. The resulting
intensity maps are in excellent agreement with the experimental observations showing
that, when including fluctuations, we can fully reproduce the data in Fig. 5.5-(a).

In Fig. 5.5-(d), we compute the total interaction energy U(n1 + n2) as a function
of pump power along the lower branch of the hysteresis. This quantity represents the
eigenmode energy shift induced by the nonlinearity. Interestingly, when approaching
the instability region around Pthr, the blue-shift becomes comparable with J within
the mode linewidth. Thus, a resonant two-polariton scattering channel opens from the
pump into the nonlinear bonding and anti-bonding modes, now symmetrically spaced in
energy with respect to the pump. This suggests, within the intuitive picture proposed
by D. Sarchi and collaborators [330], that a parametric instability is triggered above

5We stress that this value critically depends on the assumptions we used in the determination of
the coupling efficiency and absorption coefficients which, apart from the standard errors, accounts a
truncation of the term |X|2γx which we estimate to be order of 3 − 5 µeV. Taking in account all the
contributions we expect a relative error on the measured g0 of the order of 25 %. Some authors also
pointed out that in CW experiments Auger and phonon scattering might lead to the formation of a
long-lived exciton reservoir, which artificially increases the measured interaction constant [367]. These
effects, for large exciton-photon detunings (i.e. small |X|2), and in the absence of a significant exciton
density of states at the lower-polariton energy, should be strongly suppressed. To some extent, this is
backed by the fact that the interaction constant we found is consistent with the one derived in recent
weak polariton blockade experiments, which employed a pulsed excitation scheme [55, 54].
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5. Parametric instabilities in coupled nonlinear microcavities

Figure 5.5: Nonlinear response: (a,b) Symbols: measured polariton occupation
number of the (a) driven and (b) undriven cavity, as a function of pump power. Dashed
line: steady-state prediction deduced from Eq. (5.2) with U being the only adjustable
parameter. The best agreement is found for U ≈ 0.1 µeV. (c) Left panels: intensity
patterns measured at the five different pump powers indicated in panel (a). Right
panels: calculated intensity patterns obtained as time-averaged solutions of Eq. (5.2),
multiplied with a gaussian spatial profile, approximating the fundamental mode of each
micropillar. (d) Total interaction energy U(n1 + n2) deduced from the experiment as
a function of the incident pump power along the lower bistability branch. Horizontal
dashed lines correspond to (J − Γ, J, J + Γ). Inset: schematics of the parametric
instability mechanism occurring as |Untot −∆| ≈ 0.

Pthr, eventually resulting in sustained oscillations of the intracavity field.

Figure 5.5-(e) and (f) presents, respectively, the imaginary and real parts of the
eigenvalues of the stability matrix when evaluated along the lower branch of the bista-
bility. Interestingly, for a moderate pump power of ∼ 200 µW, the imaginary part of
the eigenvalues bifurcates with two of them becoming positive for P > Pthr, i.e. when
Untot ≈ J , signaling the onset of an instability. Correspondingly, the real part of the
eigenvalues collapses around ±J indicating an oscillating behavior of the perturbations:
these are all characteristic features of a parametric instability (cf. Sec. 5.1.1). The re-
gion where the imaginary part of the eigenvalues bifurcates as a function of pump power
thus corresponds to a vertical (constant detuning) cut trough the parametric instabil-
ity region in Fig. 5.1-(c). Experimental data points fulfilling this condition in figure
5.5-(a,b) are marked with a lighter dot.

5.2.4 Parametric Instability

Since all the criteria for the observation of the parametric instability are met and
Untot ≈ ∆ > Γ, we expect the instability to drive the system in a self-sustained
oscillatory regime. If this is the case, the parametric excitation of signal and idler fields
should be detected as clearly resolved sidebands in the coupled microcavity emission
spectrum.
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5. Parametric instabilities in coupled nonlinear microcavities

Figure 5.6: Self-pulsing of the intracavity field (a,b) Spectrally resolved emission
of the microstructure measured while increasing (b), or decreasing (c) the pump power
PFw (PBw), expressed in units of Pthr. (c,d,r) Position and energy resolved emission
patterns (d) below, (e) within and (f) well above the instability region. As illustrated
in the inset of panel (a), the spatial profile corresponds to a cut through the long
symmetry axis of the structure. (f) Measured (purple) and simulated (gray) emission
spectrum of the coupled cavities at 1.1Pthr. (g) Calculated trajectories of the cavity
field amplitudes α1,2 showing a limit cycle behavior in the instability region (4 ns evo-
lution). (h) Left: temporal dynamics of the cavity occupations α1 (red) and α2 (blue).
Right: zoom in spanning the 4.0 − 4.2 ns region. (i,j) Reconstruction of the cavity
field dynamics obtained by band-pass filtering (∆E = Γ/2) the spectrum associated
of the temporal dynamics shown in panel (h) around the signal and idler sidebands
showing, respectively, an in-phase or out-of-phase oscillation of α1,2 as expected for a
mode presenting a B or AB like spatial symmetry.

To this aim, we imaged the transmission of the structure on the entrance slit of
the monochromator coupled to our CCD camera. The slit was aligned with the dimer
axis as shown in the inset of Fig. 5.6-(a). Then, we recorded the resulting energy
and position resolved patterns while scanning forward and backward the input power
across the bistability. Figure 5.6-(a) and (b), present the normalized integrated spectra
as a function of power along the increasing and decreasing power ramp, respectively.
We present, in Fig. 5.6-(c-e), the spatially and spectrally resolved emission patterns
(corresponding to a single click of the CCD), for three representative power values.

For a pump power below the instability region P < Pthr, the spectrum in Fig. 5.6-(a)
is single toned. Since the pump is closer in energy to the anti-bonding resonance, it
couples preferentially to this mode through its finite linewidth. Therefore, the corre-
sponding spatial profile has an anti-bonding symmetry, clearly indicated by the intensity
node at the center, see Fig. 5.6-(c). As soon as the pump power reaches Pthr, two well-
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5. Parametric instabilities in coupled nonlinear microcavities

resolved sidebands displaced by ±0.14(1) meV about the pump energy (Ep) appear.
This is a clear signature of the sustained parametric oscillations triggered by the in-
stability, with the pump coherently exciting signal and idler fields. The corresponding
spatially resolved pattern in Fig. 5.6-(d) demonstrates that the lower (higher) energy
sideband has a bonding (anti-bonding) symmetry, thus supporting the intuitive picture
presented in Fig. 5.2-(a). When the input power exceeds 1.7 Pthr, the microcavity
mode switches to the upper branch of the bistability. Along this branch the emission
is monochromatic, as evidenced by the measured spectra in the backward power scan
[Fig. 5.6-(b)] and confirmed by a stability analysis of the upper branch solutions. The
emission pattern is characterized by a bonding-type symmetry, shown in Fig. 5.6-(f).

Figure 5.6-(f) presents in log-scale the spatially integrated spectrum measured at
1.1Pthr. In addition to the bright signal and idler peaks, additional sidebands are
clearly resolved arising from higher order four-wave mixing processes. The simulated
spectrum (gray line), is the power spectral density of the cavity field dynamics and
faithfully reproduces the sideband magnitudes. However, in order to match the spectral
position of the peaks, we have to rescale the energy axis of the simulation by a factor
0.86. This discrepancy can be ascribed to the fact that the coupling strength J gets
renormalized when increasing the pump power, since interactions modify the spatial
profile of the modes, determining the coupling strength in a coupled mode picture [330].
Importantly, the energy fraction stored in the main sidebands is found to be as large
as Isb/Itot = 0.38. Such efficient parametric process is possible despite the absence of
a triply resonant condition in our experimental scheme, because the parametric gain
(∼ Untot) at threshold, is more than five times larger than the losses, see Fig. 5.5-(d).

In the frame rotating at the pump frequency, the presence of sidebands implies that
the cavity fields (α1,2) display a limit-cycle dynamics in phase space, as shown by sim-
ulations in Fig. 5.6-(g). The associated temporal evolution of the cavity population,
shown in Fig. 5.6-(h), displays periodic oscillations modulated by a random envelope.
The formation of such limit cycles in the dynamics of nonlinear coupled cavities was
recently compared with the phenomenology of dissipative time crystals [368, 369], that
is a dissipative quantum system whose observables display a discrete temporal trans-
lational invariance. However, we can see in Fig. 5.6-(g) that the limit cycle wanders
in phase space as a consequence of the random fluctuations of the intracavity field.
When increasing the interaction strength U , since the average number of polaritons
at the oscillation threshold decreases, the relative amplitude of fluctuations increases.
This effect may ultimately wash out the coherence of the oscillations resulting in the
disappearance of the limit cycle [369]. In this sense, the possibility of realizing a time
crystal in these dissipative systems seems to be limited to the classical limit U → 0.
Interestingly, the scaling of the coherence time of the sideband fields as a function of
U could be easily accessed in our system using an interferometric scheme. We envisage
this measurement as a short term follow up of this work.

Finally, in simulations, we extract the cavity field dynamics corresponding to the
signal and idler fields using a spectral band-pass filter around the sidebands; the result
is shown in Fig. 5.6-(i) and (j), respectively. The in-phase (out-of-phase) oscillation of
α1 and α2 in the signal (idler) field is in agreement both with the experiment [5.6-(d)]
and with the intuitive picture of the parametric oscillation discussed by [330].
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5.3 Summary and Perspetives

In summary, we have demonstrated the onset of a multimode parametric instability
within the hysteresis cycle of two coupled microresonators operating in the exciton-
photon strong coupling regime. The spontaneous fluctuations of the intracavity field
feeds the instability triggering sustained parametric oscillations. The coherent excita-
tion of signal and idler fields is confirmed by the presence of well-resolved sidebands in
the emission spectrum. All the observations have been comprehensively modeled com-
bining the results of the dynamical coupled-mode equations for the intracavity fields
(including vacuum fluctuations) with a linear stability analysis.

Unlike previously demonstrated triply resonant schemes involving microcavity po-
laritons [131, 128, 132, 136, 361], here the parametric process involves just two polariton
modes, the pump not being in resonance with any of them. This configuration not only
prevents dephasing of the pump mode in the cavity via parametric luminescence [370],
but also ensures excellent spatial overlap of the modes participating to the process.
As a result we observe remarkably contrasted sidebands, where roughly 38% of the
total radiated energy is stored. Moreover, thanks to the hybrid light-matter nature
of polariton excitations, the system is endowed with a strong Kerr nonlinearity allow-
ing to observe the instability already at 240 µW threshold power. In this direction,
recent works [55, 54, 56] seem encouraging for the investigation of optical parametric
oscillators operating in the few photon regime [371].

The mechanism at the heart of the instability, namely the opening of a resonant
scattering channel from the pump towards the bonding-like signal and the anti bonding-
like idler modes, is experimentally confirmed by individually resolving their spatial
profile while tracking the total interaction energy in the system. This interpretation,
originally proposed in ref. [330], does not only apply to the dimer and, when generalized
to lattices of microcavities, offers an intuitive way to predict and eventually engineer
the presence of parametric instabilities. For instance, by changing the center to center
distance between the microcavities, we could tune the energy separation between the
sidebands. Profiting from the inherent scalability of a semiconductor platform, we
envisage the observation of similar parametric instabilities in lattices of microcavities
presenting modes with a macroscopic degeneracy [50, 48], or with nontrivial topological
features [372, 60, 360].

A possible follow-up of this work could be to investigate in coupled microcavities
the interplay between the parametric instability, the excitation polarization degree of
freedom and the singlet exciton interaction channel. Indeed, when the number of modes
participating to the process is increased, the instability may trigger a chaotic behavior
of the intracavity field [373, 374]. Alternatively, chaotic oscillations were predicted for
a single resonator subject to a two color drive scheme [375]. In the long run, when
approaching the strong interaction limit U/Γ > 1, this would allow investigating the
relation between chaos and ergodicity in open quantum systems [376].
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CHAPTER 6

Metastability in a driven Kerr resonator

Abstract: Optical bistability is a characteristic phenomenon in driven nonlinear
systems. Experimentally reported in a variety of experimental platforms, it is well
described using a mean-field (MF) approximation of the electric polarizability [216].
However, a quantum treatment of the same problem predicts that the steady state of
a nonlinear cavity is always unique [225]. This apparent contradiction is solved upon
noticing that the two solutions predicted in the MF treatment, become metastable due
to quantum fluctuations, triggering switching events between the two [377]. The aver-
age time between two switching events drastically diverges as the number of excitation
in the system increases [226]. This slow dynamics is related to the emergence of a
soft-mode and associated to the onset of a first-order phase transition [378, 379].

In this chapter we investigate the metastability regime using a single mode of a
micropillar cavity. Following a recent theoretical proposal [380], we cycle the power of
a coherent drive to perform dynamical hysteresis experiments. Using a scaling analysis
of the hysteresis area as a function of the drive parameters, we characterize the critical
exponents and infer the onset of a dissipative phase transition, occurring in the limit
of an infinite intracavity population [230]. This work has been done in collaboration
with the group of C. Ciuti (Université de Paris) and is condensed in [232].

Furthermore, we propose a mapping of the driven Kerr resonator onto a Logical Bit
subject to stochastic bit-flip events. As we have access to the microcavity dynamics at
a single trajectory level, we can describe the system within the framework stochastic-
thermodynamics. Measuring the entropy production along the single trajectories, we
test a non-equilibrium integral fluctuation theorem [381]. This preliminary measure-
ments opens interesting perspectives for the exploration of non-equilibrium thermody-
namics using nonlinear photonic platforms. This work is done in collaboration with
the group of A. Auffeves from Institut Néel in Grenoble.
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6. Metastability in a driven Kerr resonator

6.1 Introduction

In this chapter we consider one of the simplest, textbook models of a nonlinear driven-
dissipative system: a single-mode Kerr-type resonator coherently excited by a laser.
Firstly, we will investigate the steady-state properties of the model, comparing the
predictions of a mean-field (MF) treatment with the exact quantum solution. The two
approaches yield quantitatively different results. Whereas a MF treatment can support
a bistable behavior, that is the existence of two stable states with different photon
numbers for the same driving conditions, the exact solution is always unique.

Counterintuitively, experimental reports of optical bistability cannot be reproduced
by the exact solution. In Sec. 6.1.1 we address the origin of this apparent contra-
diction investigating the role of quantum fluctuations, leading to a slow, metastable
dynamics of the intracavity field. Then, in Sec. 6.1.2, we discuss the relation between
the slowing down of the metastable dynamics in a suitably defined thermodynamic
limit and the onset of a dissipative phase transition. In Sec. 6.2 we experimentally
investigate the metastable dynamics of a micropillar cavity using dynamical hysteresis
experiments, which we use to characterize the onset of a dissipative phase transition.
Finally, in Sec. 6.3, we propose and experimentally test the possibility of interpreting
the metastable dynamics of a driven Kerr resonator from the standpoint of stochastic
thermodynamics.

6.1.1 An apparent contradiction

Let us consider the MF equation for a single Kerr resonator (cf. Sec. 3.3.1), in the
frame rotating at the pump frequency (~ = 1), we have

iα̇ = (−∆ + U |α|2 − iΓ/2)α+ i
√

Γ/2F (6.1)

where ∆ = (ω − ω0) is the detuning of the pump (ω) with respect to the cavity
resonance (ω0), Γ is the cavity linewidth, U is the interaction constant and F is the
drive amplitude. We want to find the stationary solutions to this equation: imposing
α̇ = 0 for some α̃ and multiplying the resulting algebraic equation for its complex
conjugate yields

F2 =
2

Γ

[
(∆− Uñ)2 + Γ2/4

]
ñ (6.2)

where ñ = |α̃|2 is the stationary occupation of the cavity. The above equation is telling
us that we can express the input power (∼ F2) as a third order polynomial in ñ. For a
given drive power, the stationary occupation ñ is multivalued if ∂F2(ñ)/∂ñ = 0 admits
two distinct real and positive roots (ñ ∈ R+). The roots are parametrized by

ñ± =
2∆

3U
± 1

6U

√
4∆2 − 3Γ2 (6.3)

thus Eq. (6.2) is multivalued when ∆ >
√

3Γ/2 and F+ ≤ F ≤ F−; F± are obtained by
inserting Eq. (6.3) in Eq. (6.2). In Fig. 6.1-(a) we trace the region supporting multiple
solutions for the cavity occupation in the detuning and input-power parameter space
(U/Γ = 0.05). Although Eq. (6.2) admits three positive real solutions in the shaded
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Figure 6.1: Optical metastability: (a) Region of the detuning versus input power
parameter space supporting an optical bistability according to a mean field (MF) anal-
ysis. (b) Steady-state cavity occupation as a function of the input power for a detuning
∆/Γ = 1.5. The predictions of both a MF and exact (quantum) treatment of the
system dynamics are traced with solid (red) and dashed (blue) lines, respectively; the
dashed gray line is an unstable MF solution branch. According to MF prediction, as
the input power is swept forward and backward across the bistability region (shaded),
an hysteretic behavior of the cavity occupation should be observed (arrows). On the
contrary, the exact solution is single valued across at any value of the input power. (c)
Calculation of the intracavity field dynamics including vacuum fluctuations for a fixed
input power in the bistability region (cf. Sec. 3.3.2). The cavity field displays a slow
metastable behavior about the two MF solutions. As t→∞, an averaged measurement
the population tends to the exact solution. In all the calculations: U/Γ = 0.05; in panel
(c) we set F 2/Γ = 19.7.

region, we speak of bistability as one of them, satisfying ñ− < ñ < ñ+ is found to
be (single-mode) unstable according to a linear stability analysis (cf. Sec. 3.3.1). In
Fig. 6.1-(b), we plot the steady-state cavity occupation (ñ) obtained from Eq. (6.2)
as a function of the input photon rate F2/Γ for a constant value of the detuning
∆/Γ = 1.5 and for U/Γ = 0.05. Stable solutions are traced with solid red lines,
whereas the unstable one is dashed in gray. According to this MF analysis, for an input
photon rate between 14Γ and 25Γ, we can observe the presence of a bistable behavior
of the intracavity field. If we adiabatically increase the input power, the system can be
continuously steered along the lower branch of the bistability, until the turning point
ñ = ñ−, where we cavity occupation abruptly jumps to the upper branch. Similarly,
reversing the protocol, the system follows the upper branch until ñ = ñ+ where it
switches back to the lower branch. For the same drive power, the system can be either
in the lower or upper branch, depending on the history of the drive protocol. Thus,
upon cycling the input power across the bistability region, one observes an hysteretic
behavior of the cavity field, see the arrows in Fig. 6.1-(b).

We want now to compare the MF results with the exact quantum solution of the
problem. We start by considering the driven Kerr resonator hamiltonian. In the frame
rotating at the pump frequency (∆ = ω − ω0)

H = ∆a†a+
U

2
a†a†aa+ i

√
Γ/2F(a† − a) (6.4)

here, a† and a are the ladder operators creating or destroying an excitation in a mode
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of the resonator and obey bosonic commutation rules. Losses couple the resonator to
the environment, thus we need to describe the dissipative dynamics of the system via
a Lindblad master equation. Since we will be interested in optical resonators operated
at cryogenic temperatures (kBT ∼ 0.4 meV), we can neglect the number of thermal
excitations at the resonance frequency ω0. We can therefore treat the environment as an
(effectively) zero temperature bath, i.e. there is no flux of energy from the environment
to the system, see Sec. 2.4.4 for details. Taking into account only single particle losses
and denoting ρ the system density matrix, the Lindblad master equation reads

∂tρ = Lρ = −i[H, ρ] +
Γ

2

(
2aρa† − a†aρ− ρa†a

)
(6.5)

where L is the Liouvillian superoperator. The steady-state density matrix ρ̃ satisfies
∂tρ|ρ̃ = 0: we can write in a truncated Fock basis the right hand side of Eq. (6.5) in a
matrix form (cf. Sec. 3.3.3), solve the eigenvalue problem Lρ = λρ and find the density
matrix ρ̃ associated to the λ = 0 eigenvalue. Once ρ̃ is determined, the steady-state
expectation values of an observable O can be calculated as 〈Õ〉 = Tr(ρ̃O). In Fig. 6.1-
(b), we use this method to trace the expectation value of the cavity occupation as a
function of the input power (dashed blue line): we can observe that this time 〈ñ〉 is
unique at any value of F2. Importantly, with a refined calculation Drummond and
Walls obtained in 1980 an exact expression for the dissipative Kerr resonator model
and demonstrated that the steady state is unique at any point in the parameter space
[225], in stark contrast with the MF prediction.

A priori, one could assume that the (exact) quantum treatment yields the most
accurate result when compared to experiments, since MF relies on some approximations.
However, optical bistability has been reported in a variety of systems and configurations
both in the dispersive and absorptive regime [382, 383, 384, 385, 386, 135].

In 1978 Bonifacio and Lugiato already speculated on this apparent contradiction,
noticing that fluctuations of the intracavity field (quantum or classical), can render
the mean-field steady states metastable [377, 387, 388], so that the unique steady-state
corresponds to their average. In their analysis, the authors point out that the average
time spent by the system in vicinity of one of the two metastable solutions may become
astronomically long. Indeed, pioneering experiments in the 1980s with two-mode lasers,
evidenced extremely long times between two consecutive switching events [226]. The
timescale associated to the metastable dynamics was predicted to rapidly diverge for
weak fluctuations and/or large photon numbers [378].

To illustrate the metastable behavior of the system, we plot in Fig. 6.1-(c) one
realization of the intracavity field dynamics for a fixed value of the input power within
the MF bistability region. In this calculation, we evolved the cavity field according to
the Langevin equation associated to a truncated Wigner approximation (cf. Sec. 3.3.2).
We can observe that the cavity occupation fluctuates over short timescales around one
of the two MF steady state values; from time to time, over a much slower timescale
we call τR, a switching event is triggered. Notice that here τR is of the order of 103

times the cavity lifetime, even if the average occupation number is comparable with
the fluctuation amplitude (∆/Γ = 1.5, U/Γ = 0.05).

The observation of bistability and of a finite hysteresis area when sweeping the input
power is therefore a matter of competing timescales. On the one hand, an averaged
measurement of the cavity occupation over a timescale much longer than τsw yields a
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Figure 6.2: Spectral properties of the Liouvillian: (a) Real part of the first thirty
eigenvalues of the liouvillian superoperator L as a function of the drive amplitude F .
(b) Diagonal elements of the steady-state density matrix ρ̃ and of ρ1, associated to
the smallest non zero eigenvalue λ1 of L. Inset: illustration of the interpretation of the
bimodality of ρ̃ as a statistical admixture of ρD and ρB related to the projections of ρ1 on
the subspaces n < nc and n > nc), respectively. (c) Evolution of the stationary cavity
occupation probability (ρ̃nn) with the input power across the metastability region.
Inset: illustration of the transition from the ”dark” state (ρD) to the ”bright” (ρB),
trough a coexistence at the critical point F = Fc. Simulation parameters: U/Γ = 0.05,
∆/Γ = 1.5, Fock-space cutoff ncut = 100.

single value 〈n〉, irrespectively of the initial state, as predicted by the quantum solution.
On the other hand, if τsw substantially exceeds the timescale over which we perform
the experiment, the cavity population has not enough time to switch between the
two metastable branches. In the latter case, the system effective behavior is bistable,
displaying an hysteretic response when cycling the input power.

Risken, Vogel and collaborators first investigated this metastable dynamics for a
dispersive Kerr nonlinearity in the late 1980s [227, 389, 390]. Their analysis relies on
the spectral properties of the Liouvillian superoperator L. Indeed, as we anticipated
in Sec. 2.4.4, L can be decomposed in terms of its eigenvalues 0 = λ0 < λ1 < .... < λk
and eigenvectors ρk as follows [227]

ρ(t) = ρ̃+
∑

k 6=0

ck(0)e−λktρk (6.6)

where the coefficients ck(0) = Tr[ρ(0)ρk] are the projections of the initial density ma-
trix. In their analysis, the authors noticed that in the region where the MF equation
predicts a bistable behavior, the second smallest eigenvalue becomes real (λ1 = λ∗1) and
extremely small, approaching zero for a specific (”critical”) value of the drive ampli-
tude, denoted Fc. Correspondingly, the relaxation dynamics towards the steady state
is extremely slow. Moreover, as λ1 � λ2 < .... < λk and λk ∼ Γ for k 6= 0, 1, after a
few cavity lifetimes the relaxation is governed only by λ1, thus defining the asymptotic
decay rate of the system. As an example, in Fig. 6.2-(a) we trace the real part of the
smallest 30 eigenvalues of the Liouvillian as a function of input power (λ0 = 0 is not
shown) for the same parameters of Fig. 6.1-(b). When F2 → F2

c ≈ 20Γ we can observe
that Re(λ1)/Γ → 7 · 10−4, meaning the inverse of the asymptotic decay rate exceeds
by three orders of magnitude the cavity lifetime (τ = ~/Γ). Interestingly, this value is
comparable with the typical timescale of metastable dynamics presented in Fig. 6.1-(c).
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This is not a coincidence, indeed in vicinity of Fc, the separation of timescales allows
to approximate Eq. (6.8) for Γt & 1 with

ρ(t) ≈ ρ̃+ c1(0)e−λ1tρ1 (6.7)

furthermore, λ1 is real implying that ρ1 is hermitian [204]. Since the master equation
(6.5) by construction preserves the trace of ρ(t) at any time [199] and Tr(ρ̃) = 1, it
follows Tr(ρ1) = 0 which means that for some n < nc (respectively n > nc) the diagonal
elements of ρ1 will assume positive (respectively negative) values, see Fig. 6.2-(b). This
allows writing ρ1 ∝ (ρD − ρB) as a superposition of density matrices representing
the high density or ”bright” (ρB) and low density or ”dark” (ρD) branches of the
metastability. We can rewrite Eq. (6.8) as [227, 204]

ρ(t) ≈ ρ̃+ e−λ1t [ p ρD − (1− p)ρB] (6.8)

where p corresponds to the inner product of ρD with the steady state density matrix.
Expanding Eq. (6.8) for small time increments, one can equivalently cast it in terms of
a two state rate equation for the probabilities of being in the ”bright” (pB) or ”dark”
(pD) metastable branch [227, 391]

(
ṗD
ṗB

)
=

(
−ΓD→B ΓB→D
ΓD→B −ΓB→D

)(
pD
pB

)
(6.9)

with Γi→j = 2λ̃1p̃j , p̃j = Tr(ρj ρ̃) and λ̃1 = λ1|Fc. In Fig. 6.2-(c) we map the diagonal
values of ρ̃ as a function of the input power across the MF bistability region. We
observe that if F < Fc one finds p̃D ≈ 1 (i.e. ρ̃ ≈ ρD) while p̃B ≈ 1 for F > Fc. At the
critical drive amplitude (F = Fc) we have p̃D = p̃U = 1/2, Γi→j = Γj→i = λ̃1 and we
can interpret the bimodal ρ̃ as a statistical admixture of ρD and ρB.

6.1.2 The relation with dissipative phase transitions

The coexistence of two metastable states or ”phases”, in concurrence with a critical
slowing down of the dynamics, has been related to the onset of a first-order phase
transition since the early works on two-mode lasers [392, 378, 379]. One everyday
example of a first order phase transition is the boiling of water: heating the liquid (phase
1) brings it to its critical temperature Tc, where it starts simmering and producing steam
bubbles (phase 2) which coexist with the liquid. The liquid evaporates completely only
after the system has received all the latent heat necessary for the phase transition and,
during the coexistence of the phases, temperature is constant (T ≈ Tc). As the two
phases share the same symmetry (roto-translational invariance), the transition is first-
order and the latent heat corresponds to the discontinuity in the derivative of the free
entropy as a function of temperature, see Fig.6.3-(a) and [393, 394].

There are two significant differences in our system. First, the number of thermal
excitations for a cavity operating at optical frequencies is negligible (cf. Sec. 2.4.4). In
absence of thermal fluctuations, phase transitions are driven by quantum fluctuations.
In this regime, the thermodynamics and dynamics of the system are inextricably mixed
and phase transitions can be understood in terms of competing ground state phases
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Figure 6.3: Phase transitions classification: (a) For a thermal system the equilib-
rium state is a Gibbs state minimizing the free energy. A non analytic behavior in one
or all the moments of the generating function log(Z) (Z is the canonic partition func-
tion) indicates the onset of a thermal phase transition (here, first order). (b) At zero
temperature, quantum (dissipative) phase transitions are associated to the vanishing
spectral gap between the groundstate (steady-state) and first excitation of the opera-
tor generating the dynamics of the observables. Here, η parametrizes some externally
controlled parameter in H or L.

[395, 396, 397]. Second, the system dissipates energy/particles in the environment
while, at the same time, it can be driven by some external source. The combination
of these two competing mechanisms generally drives the system to a non-equilibrium
steady-state. If such non-equilibrium steady-state suddenly changes after one parame-
ter is smoothly modified, one speaks of a dissipative phase transition (DPT) [193, 196,
230, 398, 399].

Quantum phase transitions are revealed by clear spectral signatures either in the
hamiltonian or liouvillian operator ruling the system dynamics. More specifically, for
isolated systems, phase transitions are characterized by a vanishing of the energy gap
(∆) between the groundstate and some excited state as one parameter (η) of the system
is adiabatically changed. Indeed, as long as the Hamiltonian (H) of the system is
gapped, any smooth change of η will leave the system in the groundstate, i.e. in the
same phase. On the contrary, if ∆ vanishes for some value of η, any perturbation or
fluctuation in the system may drastically change its properties as two ground state
phases compete [396]. For an open system the dynamics is governed by the Liouvillian
superoperator L. One can apply the same reasoning upon replacing H with L and
the energy gap with the asymptotic decay rate (ADR). When the smallest non-zero
eigenvalue of L vanishes the ADR diverges and the dynamics is critically slowed down.
The connivence of this ”soft” excited mode with the steady-state gives then rise to a
DPT [193, 230, 392]. We schematically illustrate this general picture in Fig. 6.3-(b).
Notice that finite size effects, a reduced dimensionality and/or disorder can prevent the
full closure of the gap [197, 229].

DPTs are much less explored than quantum phase transitions in isolated systems.
Moreover the dissipative coupling to the environment offers the possibility of observing
and stabilizing critical effects non-destructively [335, 400]. From the theoretical point
of view, the development of a general framework for DPTs is an ongoing work. Analog
photonic platforms, being inherently lossy, are especially suited for the exploration of
DPTs: first reports for cavity systems endowed with a dispersive nonlinearity recently
appeared [231, 401, 402].

133



6. Metastability in a driven Kerr resonator

In summary, through the last pages, we have seen that the two stable branches of
solutions characterizing the optical bistability of a Kerr resonator, become metastable
due to intrinsic fluctuations of the intracavity field. For specific driving conditions,
the metastable dynamics becomes extremely slow; correspondingly, the density matrix
of the system displays bimodality, describing the statistical admixture of two states.
Then, we related these two features to the physics of dissipative phase transitions.
More specifically, it has been shown that the driven Kerr resonator displays a first order
dissipative phase transition when the cavity occupation at the critical driving condition
(nc) tends to infinity [230]. Although the nc →∞ limit cannot be practically accessed,
W. Casteels and coworkers proposed a protocol to retrieve the critical exponents of
the DPT using dynamical hysteresis experiments [380]. In a nutshell, we concluded
Sec. 6.1.1 observing that the measurement of a finite hysteresis area is conditioned
by the competition between two timescales: the one of the metastable dynamics and
the period of the power modulation protocol. The scaling of the hysteresis area as a
function of the driving conditions can thus be used as a probe of the critical slowing
down of the resonator dynamics. We pursue this proposal in the following.

6.2 Probing a dissipative phase transition

In this section, we present dynamical hysteresis experiments inspired by the theoretical
proposal of W. Casteels and coworkers [380]. In these experiments we need to work
with a single mode of the electromagnetic field. To this aim we consider a rectangular
micropillar with 4.4 µm and 2.2 µm sides. In this structure the two lowest eigenmodes
are s-type, well separated in energy and present orthogonal linear polarizations. The
lowest energy one, called hereafter TE, is linearly polarized with an axis parallel the
long side of the rectangular section, see inset in Fig. 6.4-(a). The other mode (TM) is
higher in energy and its separation increases as the pillar size decreases.

6.2.1 Characterization of the microcavity

As a first step, we characterized the linear response of the microstructure with a res-
onant spectroscopy experiment. For the optimization of the excitation coupling and
polarization we followed the protocol described in Sec. 5.2.2. In the experiment we
scan the wavelength of a weak excitation laser (P ∼ 100 nW) while recording CCD
images where the transmitted and reflected patterns are simultaneously imaged. Upon
knowing the difference between the collection efficiency along the transmitted and re-
flected beam path, the measurement is self-calibrated. From the images, we retrieve
the transmission T and reflection R coefficients as a function of the laser frequency; the
result is shown in Fig. 6.4-(a). A joint fit with two Lorentian profiles allows retrieving
the polariton linewidth Γ = 32.3(4) µeV, the resonance energy E0 = 1451.728(1) meV
and the peak transmission and reflection coefficients T0 = 0.45(1) and R0 = 0.21(1),
respectively. With a similar measurement for the TM mode (not shown) we determined
its energy separation relative to the TE mode ∆E ≈ 0.11 meV, significantly larger than
the linewidth of both resonances.

In Fig. 6.4-(b) we show the transmitted intensity pattern at resonance. The absence
of stray light outside the pillar edge (dashed line) suggests that the excitation spot
was efficiently coupled to the TE mode. From this pattern we can also extract the
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Figure 6.4: Characterization: (a) Reflection and transmission spectra of the lowest
energy eigenmode of a (4.4×2.2) µm rectangular micropillar measured with a resonant
spectroscopy experiment (symbols). Dashed lines: best fit with a Lorentian profile,
we obtain the linewidth Γ = 32.3(4) µeV, reflection R0 = 0.21(1) and transmission
T0 = 0.45(1) coefficients at resonance. Inset: sketch of the microstructure, the arrow
indicates the linear polarization of the excitation. (b) Transmitted intensity pattern at
resonance; dashed line: edge of the microstructure. (c) Refinement of the transmission
spectrum close to resonance, we get λ0 = 853.0651(2) nm. (d) Eigenstate fraction
as a function of the detuning of the lower polariton relative to the exciton (Ex =
1455.02(2) meV) determined from a fit of the polariton dispersion relation (cf. Sec. 5.2).
From this calibration we obtain |X|2 = 0.21(1); confidence intervals (2σ) are shaded
with lighter colors.

modal area A ≈ 4.5µm2 (finite element simulations for the nominal structure yield
Ath = 4.4µm2). A precise determination of the detuning of the driving field with respect
to the TE resonance is important for nonlinear experiments. To this aim we refined the
sampling of the resonant spectroscopy experiment in vicinity of E0, as shown in Fig. 6.4-
(c) and determined the peak wavelength within better than 0.2 pm. In order to extract
the exciton and photon fraction of the polariton mode, we measured the polariton
dispersion in a neighboring unetched region following the protocol detailed in Sec. 5.2.
From the fit of the polariton dispersion (not shown) we get the bare exciton energy
Ex = 1455.02(2) meV, the bare cavity energy Ec = 1450.04(1) meV, and the normal
mode splitting ~ΩR = 3.40(4) meV. Using this information, in Fig. 6.4-(d) we plot the
eigenstate fractions |X|2 and |C|2 as a function of the detuning of the lower polariton
mode relative to the exciton ∆lx = ~(ω0−ωx). For the TE mode ∆lx = −3.29(2) meV,
which we use to infer the exciton and photon fractions |X|2 = 0.21(1) and |C|2 =
0.79(1), respectively. Using an exciton interaction constant gxx ∼ 30 µeV µm−2 (cf.
Sec. 5.2.3 and refs [55, 54]) we can roughy estimate the polariton-polariton interaction
constant to be U/Γ ∼ 0.01.

Finally, we can derive from the polariton linewidth Γ and T0 the relative weight of the
radiative and non-radiative loss mechanisms. We can start from the characterization of
Γ as a function of ∆lx presented in Sec. 3.2.2. Using the best fit of Eq. (3.1) obtained
with those experiments, we conclude that the contribution due to the inhomogeneous
broadening of the exciton is negligible at the TE resonance. Therefore we can write
Γ = |C|2(γa+γc)+|X|2γnr, where γc (γa) is the cavity radiative decay rate (absorption)
and γnr ≈ 16 µeV represents the exciton non-radiative decay (see Sec. 3.2.2). Using
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the relation T0 = (γc/Γ)2 we can deduce γc ≈ 22 µeV and γa ≈ 15 µeV. Using this
information, one similarly has R0 = (1− γc/Γ)2 ≈ 0.11, comparing this estimate with
the measured value we get the input-coupling efficiency Ceff ≈ 0.89.

6.2.2 Dynamical hysteresis experiments

To reveal any hysteretic behavior of the microcavity, we need to perform an input-
output power measurement while the power of the excitation laser is cycled across the
metastability region. Indeed, the transmitted optical power is proportional to the in-
stantaneous cavity occupation n(t), possibly assuming different values in the increasing
and decreasing power ramps. If we denote nF and nB the average cavity occupation
measured for the same power in the increasing and decreasing part of the power mod-
ulation cycle, a finite hysteresis is observed whenever nF 6= nB. Furthermore, we want
to explore how the hysteresis area changes as a function of the speed of the input power
modulation cycle.

The experimental arrangement is rather simple: we use a single mode CW laser to
excite the micropillar cavity near resonance. The laser power can be modulated using
an amplitude electro-optical modulator (EOM) driven by an arbitrary function gener-
ator. Part of the incident power and the transmitted intensity are monitored by two
fast Silicon photodiodes, see Fig. 6.5-(a). The photodiodes have a 60 MHz bandwidth
and a measured quantum efficiency Q ≈ 0.76. Given the estimated nonlinear con-
stant is U/Γ ∼ 0.01, we expect nonlinear effects to occur already with sub-µW output
powers. For this reason the output detector operates in the avalanche regime with a
multiplication factor M = 43.6(8). By characterizing the losses along the excitation
and collection beam paths, calibrating the photodiode preamplifier I-V characteristics,
and using the input-output relations described in the previous section, we deduce the
input photon rate F2 and the cavity occupation n as a function of time from the two
PD readouts. The photodiodes and function generator signals were all readout using a
Lecroy WavePro-7Zi oscilloscope. The three voltage traces were synced to better than
0.5 ns using a Lissajous method.

Fig. 6.5-(b) shows representative single-shot trajectories of the cavity occupation (n)
acquired while ramping the pump power upward (FW) or downward (BW) following
a triangular ramp with period τSw = 0.5 ms1. In this experiment, the power sweep
is much slower than the asymptotic decay rate of the system, therefore we can clearly
observe stochastic jump events between the ”dark” and ”bright” metastable states. As
a result, when we average over many trajectories the hysteresis cycle is barely visible
(dashed line).

Let us now consider an averaged measurement of the cavity occupation as a function
of the input power for different values of the sweeping time τSw and detuning ∆.
In Figure 6.5-(c) we show a measurement of the hysteresis cycle experienced by the
average cavity population when the triangle wave modulation period ranges between
0.03 ms and 0.86 ms, for a constant laser detuning ∆/Γ = 1.13. For the faster sweeps
(blue line) a finite hysteresis area can be observed, meaning that the switching rate
between the metastability branches is comparable or slower than τSw. Upon increasing

1Notice that the input photon rate (F2/Γ) has been corrected for the coupling efficiency and ab-
sorption. This means that from the plots one can deduce the transmission coefficient of a corresponding
absorption-less cavity by dividing the y-axis by twice the x-axis of the plots (T = Γn/2F2).
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Figure 6.5: Dynamical Hysteresis: (a) Sketch of the experimental setup. (b) Ex-
ample of single-shot (solid lines) and averaged (dashed line) trajectories of the cavity
occupation (n) as a function of the input power (F 2/Γ). Here, the power is modulated
with the EOM following a triangle-wave with period τSw = 0.5 ms. FW (BW) refers
to the trajectory associated to an increasing (decreasing) side of the power ramp. (c,d)
Hysteresis cycles obtained averaging averaging over 103 trajectories as a function of the
modulation period τSw for two detuning values (see the inset). (e) Measured average
hysteresis area as a function of the modulation period. Different colors correspond to
different detuning values (see the inset). Dashed lines are power law fits whose expo-
nents are reported along with 2σ confidence intervals. (f) Calculation of the relaxation
(τR, solid lines) and modulation (τP , dashed lines) timescales: the intersection of τR
with τP determines the non-adiabatic power region δP proportional to the hysteresis
area (see main text). (g) Scaling of the calculated δP with τSw for the same parameters
of the experiments. Dashed lines are power-law fits.

τSw the hysteresis cycle progressively vanishes. For the slowest sweep, the averaged
cavity occupation trajectory closely resembles the steady-state prediction obtained via
the quantum master equation (see Fig. 6.1-(b), dashed blue line). If we now repeat
the experiment keeping the same power ramps, but we increase the laser detuning to
∆/Γ = 1.28, the hysteresis area again decreases when increasing τSw, but not as fast,
see Fig. 6.5-(d). In particular, even for the slowest modulation time (τSw = 0.86 ms)
the hysteresis area is non vanishing. Since the hysteresis area closes only in the limit
where the modulation period τSw is much slower that the metastability characteristic
time τR, these measurements suggest that τR increases with detuning. From Fig. 6.5-
(c,d) we can see that the hysteresis cycle shifts to larger input powers as ∆ increases, so
does average cavity occupation. The increase of τR with ∆ is thus consistent with the
fact that the stochastic jumps are triggered by fluctuations, whose relative amplitude
is suppressed as the number of excitations in the system increases [227, 230]. We will
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address the scaling of τR with ∆ in the next section. Here we focus on a systematic
characterization of the scaling properties of the average hysteresis area as a function
of the modulation period. To this aim, we fed to the EOM a customized succession of
triangle waves with constant amplitude and log-spaced periods ranging between 0.03 ms
and 2.3 ms. The input and output power traces were averaged over 2 · 103 realizations.
From each trace we can compute the hysteresis area using

Ahyst =

∫ τSw

0
n(t)Ṗ (t)dt (6.10)

where P (t) ≡ F2(t) and used a Simpson rule to compute the integral over the digitized
values of the trajectory. Figure 6.5-(e) presents the result of the analysis for four
different detuning values (see the inset). For the smallest detuning (∆/Γ = 1.13) the
hysteresis area scales with the modulation period τSw following two distinct power laws,
as predicted in refs. [380, 403]. A fit allows us to extract the exponents α = −0.64(1)
for τSw . 0.2 ms and β = −1.03(5) for τSw & 0.2 ms. The latter exponent is in
agreement with the −1 value predicted for the long-time decay of the hysteresis area,
results from quantum fluctuations and is expected to be universal [230]. The first
exponent (α) in general is not universal and depends on the specific driving conditions
and cavity parameters. In particular, it is also present in the absence of fluctuations
as it originates from the drag exerted by a rapid power sweep on the upward and
downward edges of the MF bistability [404]. As we increase the detuning, we observe
the onset the power-law with −1 exponent for larger and larger values of τSw. For
∆/Γ = 1.28, the −1 power law sets in beyond our observation window. In order to
further elucidate the relation between the double power law-scaling of the hysteresis
area and the characteristic timescale of the metastable dynamics, we want to model
these results.

One possible approach could be to numerically integrate the stochastic evolution
of the cavity occupation using the truncated Wigner equation described in Sec. 3.3.2.
However, this is both computationally intensive2 and does not give a very deep insight
on the physics. We can alternatively use the scaling analysis proposed by W. Casteels
and collaborators in ref. [380]. It relies on the determination of the region where
the system response is non-adiabatic in the spirit of the Kibble-Zurek mechanism for
dynamical phase transitions [405]. In this analysis, we compare the response time of the
system (τR) with the timescale associated to the power modulation (τP ). The former
(τR), corresponds to the inverse of the lowest non-zero eigenvalue (λ1) of the Liouvillian
superoperator (L), i.e. τR = Re(λ1)−1. The latter (τP ), is given by the inverse of the
normalized sweep rate: τP = τSw|P − Pc|/2∆P , where Pc is the critical drive power
and ∆P is the modulation amplitude. The region of input powers where τR > τP
determines the region where the system responds non-adiabatically to the modulation.

In Fig. 6.5-(f) we trace the relaxation timescale τR as a function of the input power
for the four detuning values corresponding to the experiments in Fig. 6.5-(e). To calcu-
late τR we diagonalize the Liouvillian in a truncated Fock basis (cf. Sec. 3.3.3) to get
the second smallest eigenvalue λ1, whose inverse defines τR. The model parameters are
fixed by the characterization presented in the previous section (Sec. 6.2.1). We observe

2Each trajectory is 50 ms long, or 109 polariton lifetimes. Then one needs ∼ 103 realizations and,
for numerical convergence, the integration time-step should be such that Γδt ∼ 10−2. Putting these
numbers together, one needs to generate 1014 integration steps: roughly a dozen hour computational
overhead over a 32-node cluster with a high performance C++ routine.
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that τR,c grows with ∆, consistent with the scaling properties of the hysteresis area.
The dashed lines in Fig. 6.5-(f) correspond to the modulation timescale τP , evaluated
for τSw = (0.01, 1) ms: we denote δP the input power range where the diabatic con-
dition (τR > τP ) is met. Within this region, the system does not have time to relax,
the metastable dynamics can be neglected, thus one effectively observes a bistable be-
havior of the cavity occupation. Then, one can show3 that δP ∝ Ahyst. Figure 6.5-(g)
shows calculations of δP for the same detuning and sweep times considered in the ex-
periments. The calculated values of δP fairly reproduces the scaling of experimental
results. The small discrepancy between the calculated and experimental α exponents
can be ascribed to the relatively large uncertainty we have in the estimate of U . Indeed,
as α appears to be non-universal, it may depend on specific values of the microcavity
parameters.

Overall, Fig. 6.5 demonstrates that for a given detuning and nonlinear constant
relative to the mode linewidth, one can define a response time for the system at each
driving power. When performing a dynamical hysteresis experiment two limiting situa-
tions can be defined: 1) when the response time is much faster than the duration of the
experiment, the system responds quasi-adiabatically. The hysteresis area becomes van-
ishingly small as it diminishes in proportion to the number of switching events between
the metastable branches, occurring at a τ−1

R � τ−1
P rate. 2) When the response time is

much slower than the duration of the experiment, switching events are inhibited, the
averaged hysteresis area is finite. The scaling of the hysteresis area with the period of
the power modulation cycle (τSw) follows double power law, whose critical exponents
capture the dynamical properties of the systems in the above two limiting cases. In
particular, when the response of the system is quasi-adiabatic one finds a universal
exponent β = −1, whereas for diabatic modulation protocols one finds a non-universal
exponent α > −1.

We have also deduced from the scaling of the hysteresis area that τR grows rapidly
with ∆. Indeed, already for a detuning as small as 1.28 cavity linewidths (∼ 23 pm),
we could not observe anymore the onset of the −1 power law exponent within our
observation window: this entails τR ∼ τSw ∼ ms, exceeding by orders of magnitude
the polariton lifetime (~/Γ ∼ 20 ps). Eventually, if one keeps increasing ∆, i.e. the
average photon number within the hysteresis cycle, the relaxation time τR exceeds any
experimentally accessible timescale. Then, the hysteresis area evolves towards a sin-
gle power law decay irrespectively of fluctuations. In such ”thermodynamic” limit of
large photon numbers the metastable dynamics is completely frozen at the critical drive
power, signaling the onset of a dissipative phase transition [193, 230]. Such dramatic
slowing down of the dynamics has been recently reported in a variety of systems, in-
cluding driven-dissipative Rydberg gases [406], polariton microcavities [407, 231] and
with superconducting microwave resonators [401, 231]. In these first experimental re-
ports the excitations of the system were either fully confined or their kinetic energy was
negligible. By studying coupled microcavity arrays it could be interesting to investigate
the interplay of an engineered dispersion relation with the metastable dynamics of each
resonator.

3In absence of switching events between the metastable branches, the mean field predictions correctly
yield the expectation value of the cavity occupation in the forward and backward drive ramp (nF,B). If
we define δn = |nB − nF |, since δn = 0 outside a δP -wide window centered around the critical power,

the hysteresis area reads Ahyst =
∫∞
0
δn(P )dP = δP

∫ Pc+δP/2
Pc−δP/2 (δn(P )/δP )dP = δP 〈δn〉P .
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6.2.3 Scaling of the tunneling time

In the previous section we have shown that for the same modulation protocol, if we
increase the laser detuning, the hysteresis area increases. We qualitatively understood
this observation in terms of a slowing down of the metastable dynamics associated to
the relaxation timescale τR. In this section we want to directly measure the scaling
of τR with the pump detuning ∆. The idea motivating this analysis is the following:
the Kibble-Zurek analysis we used to model the observations in the previous section
suggests that the dynamical response of the microcavity is ruled only by a competition
of timescales. Therefore, if we characterize the scaling of τR as a function of the other
parameters η = (U,∆), the decay of the hysteresis area with the rescaled modulation
period τSw/τR(η) should collapse onto the same curve, regardless of the specific choice
of η. If demonstrated, this kind of scaling analysis would be a useful tool to understand
the coarse-grained behavior of DPTs in more elaborate systems, e.g. resonator lattices.

In order to measure the characteristic timescales of the metastable dynamics there
are two main possibilities. The first is to directly look at the cavity occupation dynam-
ics at a constant drive power, build a statistics of the time delay within consecutive
switching events and then use Eq. (6.9) to deduce τR [226, 231]. This intuitive approach,
relies on the possibility of having direct access to the cavity occupation dynamics at
a single-shot trajectory level. This can be a limiting factor as it imposes a tradeoff
between the number of excitations in the cavity and the detection readout bandwidth.
A second approach, developed in the group of A. Imamoglu, is based on photon corre-
lation (g(2)) measurements [402]. In a nutshell, the detection of a photon correspond
to the action of the collapse operator â on the cavity, thus projecting the system out of
its steady-state, described by the density matrix ρ̂ss, into some other state, described
by the density matrix ρ̂′. If the expectation values Tr(â†âρ̂′) and Tr(â†âρ̂ss) differ, the
conditional detection of a second photon can be used to probe the relaxational dynam-
ics of ρ̂′ towards ρ̂ss. The main advantage of this approach is that it can operate with
extremely low photon count rates with a bandwidth limited only by the single photon
detector response (typically ∼ 50 ps).

In the following we adopt the first strategy as we dealt with manageable average
power signals (∼ 0.2 µW)4. The basic idea of the measurement is that at the crit-
ical drive power Pc the stationary probability of finding the system in the dark and
bright state are equal p̃D = p̃B = 1/2. Inserting this condition in the two mode model
Eq. (6.9), we see that the transition rates between ρD and ρB are also equal, thus
yielding the inverse of the tunneling time [227]. The requirement p̃D = p̃B is extremely
sensitive to power or input coupling fluctuations, therefore we had to elaborate a ro-
bust procedure to ensure this condition is met. The idea is simple: we continuously
readout the photodiode signal on the oscilloscope and we condition the trigger for the
acquisition of a trajectory with the requirement that the median and the average of
the voltage signal are equal within a 10−2 relative error. A posteriori we could check
that this protocol grants on average p̃D/p̃B = 1.00(0.03) for our system parameters.
We acquired (0.1− 1) ms long trajectories in order to ensure an operation in the shot-
noise limited region of the laser intensity power spectrum. Figure 6.6-(a) shows the
stochastic dynamics of the microresonator over a 100 µs interval for 102 trajectories

4We use a the photodiode whose preamplifier bandwidth (BW) is 60 MHz. Since one needs at least
three samplings of the signal to define the residential time, our estimate of τ−1

R will be biased below
one third of BW. See the gray dashed line in Fig. 6.6.
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Figure 6.6: A scaling analysis of the tunneling time: (a) Stochastic evolution of
the cavity occupation (n) as a function of time for a fixed input power P = Pc and
detuning ∆/Γ = 1.19. The residence times in the dark (bright) metastable state is
denoted τD (τB), the discrimination threshold is dashed in red. (b,c) Histograms of
the residence times computed from the 102 trajectories elapsing 100 µs shown in panel
(a). The dashed lines are exponential fits allowing us to retrieve τR (see main text and
Eq. (6.9)). (d) scaling of the tunneling (or relaxation) time τR as a function of the
laser detuning. Each data point has been obtained as the weighted average between
five measurements as the one shown in panels (a-c). Dot-dashed line: best fit with an
exponential, 2σ confidence interval are shaded. Dashed red line: inverse liouvillian gap
for U/Γ = 0.01. (e) Measurement of the average hysteresis area for ten values of the
detuning ranging between 0.83Γ and 1.34Γ. For each detuning we use a sine sweep of the
input power P (t) ≈ Pc(1 + 0.4 sin(2πt/τSw)) for nine frequencies τ−1

Sw = (10−500) kHz.
All data points collapse onto the same double power law dependence upon rescaling
τSw for the corresponding tunneling time τR. Dashed lines are power law fits; for
τSw/τR & 10 we consistently find the −1 universal exponent.

acquired with this procedure at a detuning ∆/Γ = 1.19, the cavity occupation (n) is
color coded. Overall, in this set of data, p̃D/p̃B = 1.000(4). In the inset we show a
representative trajectory from the ensemble displaying the characteristic telegraphic
signal resulting from the metastability of the non-equilibrium steady state. We use the
median between the expectation value of n in the two branches as a threshold to digitize
the trajectory (dashed line). This allows defining the residential times τD,B for each
of the metastable states. From each trajectory we extract τD,B and we collect them
in two separate histograms, see Fig. 6.6-(b,c). From these histogram we can test two
hypotheses. First, assuming a white noise spectrum of fluctuations for the intracavity
field and the validity of a two-mode model, the residential time histograms must follow
an exponential distribution [408, 409]. In Fig. 6.6-(b,c) the exponential best fits to the
histogram (dashed lines) are in good agreement with the data, validating our assump-
tions. Second, if p̃D = p̃B it follows from Eq. (6.9) that τD = τB, i.e. detailed balance
holds at the critical point. From the exponential fits we get 〈τD〉 = 3.9(2) µs and
〈τB〉 = 3.87(6) µs, thus supporting our hypothesis and the data acquisition protocol.

For each detuning we repeated the analysis presented in Fig. 6.6-(a-c) for five in-
dependent datasets. From each dataset we extracted the residential times and the
associated statistical errors. We finally estimated a representative 〈τR〉 as the weighted
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average of these values5. Figure 6.6-(d) presents the results of this analysis repeated
for different values of the laser detuning; error bars represent the weighted standard
deviation between the five datasets. We can observe that the tunneling time increases
by roughly three orders of magnitude within 0.4 linewidths (∼ 8 pm). In Fig. 6.6-(d)
we fit the dependence of τR as a function of ∆̃ = ∆/Γ using the empirical formula
τR(∆̃) = exp((∆̃ − ∆̃0)/β). The best fit (dot-dashed line) is found for ∆̃0 = 0.49(2)
and β = 17.4(5). From this scaling we can extrapolate that for ∆/Γ = 2 the tunnel-
ing time becomes of the order of seconds while for ∆/Γ = 3 becomes of the order of
years. Considering the energy scales we are dealing with, yet for a the small number
of excitations in the the microcavity (〈nc〉 ∼ 80), it not surprising that early works of
optical bistability, often operating at ∆/Γ � 1 and with 〈nc〉 � 102, never reported
such metastable dynamics.

Although an exponential growth of τR with ∆/Γ fairly interpolates all the data
points, it does not agree with the expected scaling of the smallest non-zero eigenvalue λ1

of the Liouvillian superoperator (dashed red line). Some authors questioned the validity
of the identification of λ1 with the switching rate in the regime of small cavity damping
(U,∆ � Γ) [389, 390]. Unfortunately this not seem applicable to our case. Then, we
allowed the Liouvillian dissipator to include a small number of thermal excitations (cf.
Sec. 2.4.4): it did not improve the agreement with the experimental data. We can get
some further physical insight noticing that λ−1

1 scales roughly as exp((∆̃ − ∆̃′0)2/β′)
for some ∆̃′0 and β′. The difference in the exponent (2 or 1) in the argument of
the exponential is significative. Indeed, if we adopt the spirit of a Kramer’s analysis
of a brownian particle hopping between the minima of a double well potential (cf.
ref [408, 409]), the hopping rate is exponentially suppressed when the ratio of the height
of the potential barrier to the variance of thermal fluctuations is linearly increased.
Inspecting the unraveling of the Lindblad master equation in terms of a Langevin
equation (Eq. (3.13) in Sec. 3.3.2) we see that the noise terms on the field quadratures
are additive with a constant variance Γ/2. Since this noise term produces the∼ exp(∆̃2)
dependence of λ−1, we can wonder which kind of term would produce a∼ exp(∆̃) scaling
in the measured τR. If one assumes the validity within a semiclassical picture of the
Kramer’s analysis, we see that the noise we are looking for needs be multiplicative,
with a variance scaling linearly with ∆. Such kind of noise could be for instance
produced by excess fluctuations in the phase of the laser field, which can be modeled as
a frequency (i.e. detuning) jitter. The inclusion of these terms in the master equation
is not straightforward and is an ongoing work, which will hopefully help us solve this
issue.

Nevertheless, as we hypothesized that the scaling of the hysteresis area does not
depend on the microscopic details of the model, but only on τR, which we experimentally
characterized, the specific dependence of τR with ∆ should not matter.

In Fig. 6.6-(e) we present a set of dynamical hysteresis experiment where we mod-
ulated the input power according to a sine sweep P (t) ≈ Pc(1 + 0.4 sin(2πt/τSw)).
We repeated the experiment using the same nine values of the modulation frequency
τ−1
Sw = (10− 500) kHz for ten different values of the laser detuning ∆ = (0.83− 1.34)Γ.

For each modulation and detuning, we calculated the hysteresis area (AHyst) from the
averaged input-output power traces using Eq. (6.10). Rather than plotting AHyst as a

5 If p̃D is only approximatively equal to p̃B , the best estimate of the tunneling time is τR =
1
4

(
τD
p̃D

+ τB
p̃B

)
, see [227]. This linearization holds only in close vicinity to Pc.
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function of τSw for each detuning value (see the inset), we divided τSw by the measured
tunneling time τR at the corresponding detuning. Upon performing this scaling, all
the data points collapse onto the same double-power law dependence on τ ′ = τSw/τR.
A fit allows retrieving the exponents α ≈ −1/3 for τ ′ . 10 and β ≈ −1 for τ ′ & 10,
the latter is again consistent within the uncertainty with the −1 universal exponent
predicted in [230]. This experiment enforces the understanding of the scaling properties
of the hysteresis area in terms of a competition of timescales. Quite surprisingly, we
observe that also in the non-adiabatic power sweep region (τ ′ . 10) the data points
collapse quite well onto the same power law dependence. Indeed, the exponent α, is in
principle non-universal, see Fig. 6.5-(e,g): this scaling analysis suggests that it might be
the contrary. Some check whether α depends on the spectral components or amplitude
of the modulation is anyway necessary, warranting some further research.

A detailed study of the critical exponents of this dissipative phase transition might
help elucidating the relation between metastable phenomena in out-of equilibrium non-
linear system and Ising-type systems at equilibrium [195, 410]. As numerical techniques
based on the truncated Wigner approximation have been successfully employed to study
dissipative phase transition in large ensembles (∼ 200) of coupled microcavities [195,
197], it would be interesting to benchmark the scaling analysis proposed in this pages
against their predictions. One question I personally find interesting is the following: If
we measure locally (on a single resonator) the scaling properties of the tunneling time,
what can we say about the scaling of other global properties of the system in vicinity
of a dissipative phase transition ?
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6.3 A parallel with stochastic thermodynamics

Nonlinear photonic systems experiencing sizable nonlinear effects for few dozens excita-
tions operate in a phenomenologically rich semiclassical regime. Although the sponta-
neous fluctuations of the intracavity field generally do not produce nonclassical features,
they can strongly modify the system dynamics. More specifically, system observables
as the cavity occupation, are characterized by probability distributions whose variances
and expectation values are roughly of the same order. Moreover, as the system can both
dissipate in and receive excitations from the surrounding environment, its dynamics is
intrinsically out-of-equilibrium.

This situation is common in several mesoscopic systems and stimulated early works
in the 90s to extend the concepts of equilibrium macroscopic thermodynamics to small,
out-of-equilibrium systems. For instance, the laws derived for macroscopic systems in
the thermodynamic limit, were found to be verified only on average by mesoscopic ob-
jects [411]. In a series of seminal works, Gallavotti and Cohen [412], Jarzynski [413] and
Crooks [414] derived generalized fluctuation-dissipation relations, transcending conven-
tional linear response theory. Remarkably, these general relations can be formulated in
terms of the trajectories the system describes in phase-space and find their roots in the
microscopic time-reversal of the dynamics [415, 416, 417]. Stochastic thermodynamics
considers an object coupled to a thermal bath, being solely interested in the description
of a subset of the degrees of freedom which involves only the object. These degrees of
freedom are collective (macroscopic) variables changing only slowly in comparison to
some other (microscopic) ones. These fast variables are responsible for the stochastic
evolution of the slow variables. The ability to readout the state of the macroscopic vari-
ables as a function of time is the only requirement to build a stochastic thermodynamic
experiment, even if the microscopic details of the system are unknown.

Pioneering experiments using RNA filaments manipulated with optical tweezers
[418], levitated colloidal particles [419, 420], driven two-level systems [421, 422], single-
electron boxes [423, 424], optomechanical resonators [425] and superconducting qubits
[426] supported these theoretical results (see [427] for a nice review). Quite strikingly,
to the best of our knowledge, the experimental implementations and proposals based
on photonic systems remain scarce [428], or consider geometries where dissipation plays
a marginal role [429]. This seems even more surprising if we think that the noisy signal
we record with a photodiode receiving the transmitted light from a cavity is a natural
example of stochastic evolution of the collective variables of the system (here, the cavity
occupation).

A possible reason behind this scarceness, is the difficulty in the univocal identifi-
cation of thermodynamic observables describing both the dissipative nonlinear optical
system and its bath. Indeed, in most of the above experimental realizations, the stochas-
tic degrees of freedoms are the ones of a physical object. For instance, in such systems
the definition of the environment temperature is natural. This is not the case for
systems at optical frequencies where the number of thermal excitations can be usually
neglected: the environment acts effectively as a zero temperature bath [201]. This limit
prevents most of the intuitive parallels with mesoscopic systems connected with a ther-
mal bath, as the classical thermodynamic quantities become singular for T = 0. When
recovering a full quantum treatment of the optical system, the zero-point fluctuations
cure all these divergences [430, 431, 432]. In this picture, fluctuations play the role of
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a diffusion term, i.e. of an effective temperature of the bath, whose interplay with the
nonlinear dynamics of the resonator may result in exotic features. Descriptions based
on the density matrix of the system offer a consistent theoretical framework [430, 433].
However, from the experimental point of view, a full tomographic reconstruction of the
density matrix of the systems is challenging. Alternative descriptions in terms of a
stochastic unraveling of the master equation recently appeared, but have been applied
only to the case of a two-level system [434, 435].

Rather than following a top-down approach relying on the quantum master equa-
tion, our initial idea was to start form the semiclassical Langevin equations describing
the resonator dynamics in phase-space and to derive an operative definition of the
thermodynamic quantities [417]. However, the results we obtained present still some
inconsistencies at a theoretical level. We decided to take a step back and map the Kerr
resonator to an even simpler and well-known example: a (classical) Logical Bit. In
the next pages we will first describe such minimalistic model consisting of a two-state
bit subject to random bit-flip events. Then, we will focus on the non-equilibrium en-
tropy production when a periodic modulation of the input power is applied and verify
whether an integral fluctuation theorem is verified for our system.

Drawing this parallel between stochastic thermodynamics and highly nonlinear pho-
tonic microcavities might pave the way to the exploration of out-of-equilibrium thermo-
dynamics in a scalable and highly tunable platform. Furthermore, photonic platforms
allow engineering dissipative couplings with other kind of baths, e.g. parametric or
squeezed [335, 430, 436]. This almost unexplored playground for thermodynamics,
may prove interesting for testing the ultimate bounds on the efficiency of nanoscale
engines [437, 438].

6.3.1 The Logical Bit

In this section, we briefly introduce the idea of mapping the metastable Kerr resonator
state to a Logical bit and define the relevant thermodynamic quantities at the single
trajectory level. The mapping we propose consists in identifying the two metastable
states of the Kerr resonator onto the two states σ ∈ {0, 1} of a classical two-level
system. To do so, we consider the median of the population at the critical drive
strength, denoted nc, to digitize the the trajectory. If the cavity occupation at a given
instant of time (nt) is larger (smaller) than nc we associate to it the state σt = 1 (σt = 0)
of the logical bit. These states have energies E1,0, which are eventually time-dependent
and can be controlled via an external parameter. In this new picture, the metastable
dynamics of the Kerr resonator can be seen as the result of random bit-flip events due
to the stochastic interaction of the system with the environment. In the case of the
logical bit we can always model the environment as a thermal bath with an effective
inverse temperature β = 1/kBTeff , where kB is the Boltzmann constant. These bit-flip
events happen with an average rate Γ01 or Γ10 for the 0 → 1 and 1 → 0 transitions,
respectively and can be time-dependent via some control parameter. We schematically
illustrate the mapping in Fig. 6.7. For this toy model, at each time t, the canonical
partition function reads

Z(t) = e−β(t)E0(t) + e−β(t)E1(t) (6.11)
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Figure 6.7: Mapping proposal: A threshold value of the cavity occupation (nc) is used
to digitize the photodiode signal as a function of time. The dark (bright) metastable
states are identified with the σ = 0 (σ = 1) states of the bit with energy E0 (E1). The
contact with a bath results in random bit flip events 0 → 1 (1 → 0) with a rate Γ01

(Γ10).

for some effective inverse temperature β. Since we are considering a two-level system,
we can always define the effective inverse temperature via the transition rates between
the states. Denoting ∆E(t) = E1(t)− E0(t), we have

β(t) =
1

∆E(t)
log

(
Γ10(t)

Γ01(t)

)
. (6.12)

Using this relation, the transition rates Γ can be expressed in the form of thermal
transition rates Γ01 = γ〈n〉 and Γ10 = γ(〈n〉 + 1) for the average number of thermal
excitations at the transition energy 〈n〉 = (eβ∆E − 1)−1 and spontaneous decay rate
γ = Γ10/〈n〉. Notice that the effective temperature defined within this mapping can also
take unphysical values, for instance if Γ01 > Γ10 follows Teff < 0 and when Γ01 = Γ10

the effective temperature of the bath is infinite. For this reason, in the following we
consider kB = 1 units, thus β becomes a parameter governing the partition function of
the logical bit, but does not have the physical dimension of energy.

Let us now consider an experiment where the stochastic evolution of the system is
monitored at a constant rate δt (i.e. the photodiode signal in the oscilloscope). At
each sampling of the trajectory we can measure the state of the system, encoded in the
vector σ = (σ0, ..., σN ), where σ0 (σN ) is the state at tin = 0 (tfin = Nδt). Within
typical framework of stochastic thermodynamics, heat Q is defined as energy changes
of the system induced by the bath, while work W corresponds to energy changes due
to the external controlled parameters (acting both on Ei and β). For the logical bit,
when considering an infinitesimal temporal increment δt, this means

δQk =
[
βk+1E

σ
k+1(σk+1)− βk+1E

σ
k+1(σk)

]

δWk =
[
βk+1(Eσk+1(σk)− βkEσk (σk)

] (6.13)

where βk is the effective inverse temperature at the time t = kδt and Eσk (σk′) is the
energy of each σ state at the time t = kδt evaluated for the state σk′ . Notice that we
generally have to include βk in the above formulas to account for protocols where the
effective temperature of the bath is not constant. The total heat and work received by
the system along the trajectory can be computed as the sum over these infinitesimal

146



6. Metastability in a driven Kerr resonator

increments. One can check for consistency that W [σ] + Q[σ] = βNE
σ
N − β0E

σ
0 = ∆U ,

which is the first law of thermodynamics [434].

In the context of our experiments this might not be the best set of thermodynamic
variables to work with. Indeed, the most straightforward control parameter would be
the power incident on the resonator. As we have seen in the previous sections this can
be directly linked to a change of the tunneling rates Γi�j (cf. Sec. 6.1.1). However,
in our mapping it is not clear if this also corresponds to an effective modification
of ∆E, making the identification of the increments δQk and δWk unclear. In this
sense, the definition of entropy for a system presenting discrete states seems more
advantageous, as it only relies on the knowledge of the stationary transition rates:
a directly measurable quantity which is unambiguously defined. The probability of
measuring a given trajectory σ = (σ0, ..., σN ) for a Markovian process is

P [σ] = P0(σ0)

N∏

k=1

Pk[σ
′
k|σk−1] (6.14)

Here P0(σ0) is the probability that the system at time t = 0 is in the state σ0

and Pk[σk|σ′k−1] is the conditional probability of finding the system in the state σ′k
at time t = δtk knowing that it was found in state σk−1 at the previous sampling
of the dynamics. Assuming δt is small compared to the characteristic time where
Γi�j is changed, one has P [σ′|σ] = Γσσ′δt if σ 6= σ′ and P [σ′|σ] = (1 − Γσσ′)δt if
σ = σ′. If we call Pr[σr] the probability that the system follows the reversed trajectory
σr = (σN , ..., σ0) during the time-reversed transformation of the control parameter, we
can define the entropy production as ∆s = log(P [σ]/Pr[σr]) [381]. Using then Eq. (6.9),
one finds that the steady-state probabilities P̃σ obey

P̃ (σ) =
Γσσ′

Γσσ′ + Γσ′σ
. (6.15)

Inserting these relations in the definition of the entropy production finally yields

∆s[σ] = log

(
P0(σ0)

PN (σN )

)
+

N∑

k=1

log

(
P̃k(σk)

P̃k(σk−1)

)
. (6.16)

We stress that if the system is not in equilibrium at t/δt = 0 and t/δt = N the
probabilities in the first (boundary) term are not stationary ones. Nevertheless, by
choosing a periodic drive protocol with deterministic and equal initial and final condi-
tions, this boundary term vanishes. This means that we can calculate ∆s using only
the knowledge of the stationary probabilities P̃ and of the state σ at each instant of
time.

Using these definitions we want now to benchmark the mapping of the driven Kerr
resonator onto a Logical bit against a general result of non-equilibrium stochastic ther-
modynamics: the Integral Fluctuation Theorem (IFT) for entropy. The theorem states
that if one considers a general transformation over time of some control parameter (here
the transition rates) and records a large number of trajectories, 〈exp(−∆s[σ])〉σ = 1
[381, 416].
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6.3.2 Measuring the entropy production

In order to estimate the dependence of the stationary probabilities as a function of
the input power, we consider an adiabatic sweep of the pump power for a detuning
∆/Γ = 1.06. The adiabaticity condition is ensured by taking a sine modulation of
the input power P (t) ≈ Pc(1 + 0.2 sin(2πt/τSw)) with τSw/τR ≈ 103 (cf. Sec. 6.2.3).
In Fig. 6.8-(a) we show the average cavity occupation as a function of input power
for this quasi-adiabatic sweep. The data points corresponding to the increasing (FW)
or decreasing (BW) power ramp completely overlap: the measured hysteresis area is
zero within the experimental uncertainty. After validating the quasi-adiabaticity of
this modulation protocol, we use the value of the average cavity occupation 〈n〉 at
the critical input power Pc to digitize the single-shot trajectories: If n(t) ≥ nc the
system is in the state σt = 1 at time t otherwise, σt = 0. In order to estimate
the stationary probability P̃ (σ) we acquired 102 single-shot trajectories using a quasi-
adiabatic modulation of the input power. Each couple of values (P, n) has been collected
in a histogram. Upon integrating the counts for each row (constant P ) below and
above nc, we could estimate the stationary probabilities P̃ (0) and P̃ (1), respectively.
Figure 6.8-(b) presents the result of this analysis, blue (green) markers corresponding
to P̃ (0) (P̃ (1)). It is convenient for later use to have an analytical expression for these
stationary probabilities as a function of the input power. Provided that the two-mode
approximation (6.9) of the density matrix is faithful, which we verified in Sec. 6.2.3,
and ΓτR � 1, the transition rates between the metastable states Γσ�σ′ scale as [227]

Γ−1
σ�σ′ = τR e

±η (Pc−P )
Pc (6.17)

with η some constant depending on the resonator parameters, τR the average switching
time at the critical drive power Pc (here ΓτR ≈ 1.7 104) and the sign in the exponent is
positive for Γ10 and negative for Γ01. Inserting these relations in the definition of the
stationary probability Eq. (6.15) we can rewrite P̃ (σ)− P̃ (σ′) = 2P̃ (σ)− 1 as

P̃P (σ) =
1

2

[
tanh

(
±ηP − Pc

Pc

)
+ 1

]
(6.18)

We use this relation to fit the measured stationary probabilities; the result is shown
in Fig. 6.8-(b). We can now use this relation in combination with the the input (Pt) -
output (nt) trajectories to estimate the stochastic entropy production when the input
power is modulated according to some modulation protocol using Eq. (6.16).

As previously mentioned, it is convenient to work in a situation where the boundary
term in the entropy production is vanishing. This can be achieved by considering a
cyclic modulation of the input power P0 = PN where the initial (σ0) and final (σN )
states are equal. This request is fulfilled when modulating the input power using a
cosine wave with an amplitude significantly larger than the metastability region. In
Fig. 6.8-(c) we show a small portion of single-shot trajectories for the input power
(gray line) and cavity occupation (color); here ∆ = 1.06 and the modulation period is
τSw = 50 µs. We acquired long single-shot trajectories containing ∼ 103 periods of the
modulation protocol for several values of τSw ranging between 50 µs and 2 µs. For each
dataset (constant τSw) we used the averaged power and cavity occupation trajectories
to extract the hysteresis area (cf. Sec. 6.2.2); the result is shown in Fig. 6.8-(d). We
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Figure 6.8: Entropy production measurements: (a) Average cavity occupation as
a function of the input pump power. Data points in the increasing (FW) and decreasing
(BW) part of the power ramp overlap demonstrating the power sweep is quasi-adiabatic
(τSw/τR ≈ 103). The value 〈n〉|Pc defines the critical cavity occupation nc used for the
digitization of the trajectory. (b) Stationary probability P̃ (σ) as a function of the
pump power. Dashed lines are fits with Eq. (6.18). (c) Example of three modulation
periods of the input power P (gray) and corresponding single-shot trajectory of the
cavity occupation n (color) are shown; dig(n) is the digitization of the latter. (d)
Average hysteresis area measured as a function of the power modulation period (τSw)
rescaled for the relaxation time (τR = 0.36(2) µs). The dashed line is a power law fit
with exponent −1. (e) Histogram of the entropy production per modulation period
for seven values of τSw corresponding to panel (d). (f) Verification of the integral
fluctuation theorem for the entropy.

observe that the average hysteresis area as a function of the rescaled sweep speed
τSw/τR spans roughly two decades and presents a scaling fairly interpolated by a power
law fit with the −1 universal exponent (dashed line). For the slower modulation the
average hysteresis area is very small and we can regard this power sweep protocol as
quasi-adiabatic. The faster modulation instead corresponds to a non-adiabatic protocol
of the control parameter (P ), whose relative speed τSw/τR ≈ 5.6, corners the onset of
the ”classical” region for the scaling of the hysteresis area, see Fig. 6.6-(e).

Then, we used nc = 74 as discrimination threshold for digitizing the cavity occu-
pation trajectory (σt = dig(nt)) as shown in Fig. 6.8-(c). For each modulation period,
consisting of N + 1 values of the pump power Pk and logical bit state σk, we computed
the infinitesimal entropy production using

δsk = log

(
(1− σk)P̃k(0) + σkP̃k(1)

(1− σk−1)P̃k(0) + σk−1P̃k(1)

)
(6.19)

where P̃k(σ) is the compact notation for the stationary probability of finding the system
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in the state σ if the input power is Pk. Finally, the total entropy production ∆s
over a cycle of the control parameter is obtained by summing over k = 1, ..., N the
increment δsk. Then, we repeat this procedure for each modulation cycle in the single-
shot trajectory and bin the results in a histogram. The entropy production histograms
obtained separately for each modulation speed are presented in Fig. 6.8-(e). Notice
that we set a constant 0.05 vertical shift between each histogram to ease the visual
comparison.

Interestingly we can see that in every histograms there is a significant portion of
events where ∆s < 0 within a cyclic transformation of the control parameter. This
seem to conflict with the macroscopic formulation of the second law of thermodynam-
ics, stating that ∆s ≥ 0 for a cyclic transformation, with the equality holding only
for adiabatic processes [439]. As anticipated in the introduction to this chapter, this
is just an apparent contradiction. Indeed, fluctuations are a lost feature in classical
thermodynamics as a consequence of the thermodynamic limit. On the contrary, the
thermodynamics variables of mesoscopic systems are characterized by a probability
density whose variance is of the same order of its average. Some events may violate the
laws holding for macroscopic systems, which however hold on average. Indeed, the ex-
pectation value of the entropy production histograms in Fig. 6.8-(e) is always positive.
We can also observe that the average entropy production grows for faster sweeps, which
is consistent with the macroscopic prediction. We also notice that the ∆s distributions
are distinctly non-Gaussian, asymmetric and heavy-tailed, this is a common situation
in strongly-driven nonlinear systems [421, 423].

Finally, we test an integral fluctuation theorem (IFT) for the entropy production.
The theorem states, under extremely general conditions, that the nonlinear expectation
value 〈exp(−∆s)〉σ equals 1, and is related to the symmetry under time-reversal of
the microscopic dynamics generating the stochastic evolution of the system [381, 416,
440]. In Fig. 6.8-(f) we show the result of this nonlinear expectation value for each
entropy production dataset, error-bars correspond to one standard deviation. Overall,
we observe a fair agreement of the data points with the IFT prediction (dashed line)
within the statistical uncertainty. Notice that the due to exponential the weight of
some trajectories in the average becomes extremely large. As a result, the convergence
to the expected value of 〈exp(−∆s)〉σ is slower than for linear estimates and is affected
by large statistical uncertainties, warranting the acquisition of a larger dataset.

In summary, these preliminary results validate the mapping of the Kerr resonator
onto the physics of the logical bit for the range of modulation speeds explored in
this dataset τSw/τR ∼ (5− 102). The next natural step would be to check for different
detuning values the IFT. However, we think this is not necessary since we demonstrated
in Sec. 6.2.3 that the scaling of the metastable dynamics as a function of ∆ collapses
when the modulation timescale τSw is rescaled for the relaxation time τR. It could be
more interesting to investigate cyclic but asymmetric drive ramps, checking whether
there is an optimal cycle which minimizes the entropy production, or to verify the
Landauer entropic bound for the erasure of a bit of information [424, 422, 441].
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6.4 Summary and Perspectives

In this chapter we have investigated the metastable dynamics characterizing a single,
confined mode of the electromagnetic field in a micropillar cavity hosting polariton
excitations. We have first discussed how the interplay of dissipation and nonlinearities
originates the metastability, which manifests in jumps of the cavity occupation be-
tween the two -otherwise stable- branches of the classical bistability. The average time
between two consecutive switching events depends dramatically on the system param-
eters: for instance, we have shown in Sec. 6.2.3 that this time becomes exponentially
large when increasing the laser detuning. More generally this switching dynamics is
rapidly suppressed as the number of excitations in the systems tends towards infinity:
this critical slowing of the dynamics relates to the onset of a dissipative phase-transition
(DPT), see Sec. 6.1.2.

In order to probe the onset of this DPT, we performed dynamical hysteresis ex-
periments where we studied the scaling of the average hysteresis area as a function
of the speed of the input power modulation protocol (cf.Sec. 6.2.2). The experimen-
tal data shows that the hysteresis area closes for slower protocols as a consequence
of fluctuations, following a double power-law dependence as a function of the sweep
period (τSw). The power law characterizing large scanning times exhibit a −1 expo-
nent, independently of the laser detuning: this universal exponent is in agreement with
theoretical predictions [230]. Analyzing the scaling of the input power region where the
system responds non-adiabatically to the modulation, in the spirit of a Kibble-Zurek
mechanism for dynamical phase transitions, we could reproduce the experimental re-
sults. In the thermodynamic limit, where the number of excitation in the cavity tends
to infinity, the metastable relaxation timescale diverges and the onset of the −1 power
can be observed only for infinitely slow modulations. The scaling of the hysteresis area
thus follows a single power law: such algebraic behavior signals the onset of a DPT.

Interestingly, we could demonstrate that the hysteresis area measured for different
power sweeps periods τSw and laser detunings ∆, collapses on the same double power
law dependence upon rescaling τSw for the critical value of the metastability relaxational
timescale τR. This seems to suggest that also the first power-law exponent is universal;
in particular we find α ≈ −1/3 (cf. Sec. 6.2.3). It could be interesting to numerically
and experimentally validate this observation in 2D lattices of microresonators, where
an intriguing mapping to the equilibrium Ising model was recently highlighted [195].

In the second part of the chapter, we profit from the possibility of accessing at a
single trajectory level the system dynamics to build a parallel between the metastable
dynamics of the Kerr resonator and the one of a (classical) Logical Bit subject to random
bit-flip events. This mapping allows us to circumvent some technical difficulties in the
definition of thermodynamic variables for a photonic system. Indeed, for a two-level
system, it is possible to build a simple and robust estimate for the entropy production,
which relies only on the measurement of the stationary cavity occupation probabilities
as a function of input power (cf. Sec. 6.3.1). We realize an experiment to test this idea,
retrieving the entropy production distributions both for quasi-adiabatic and diabatic
cyclic power modulation protocols. Although these experiments are still preliminary,
we could demonstrate that stochastic entropy production verifies a general integral
fluctuation theorem (cf. Sec. 6.3.2). This encouraging result supports the validity of
the Kerr resonator - Logical Bit mapping.
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We envisage the possibility of studying cyclic but asymmetric power ramps and check
whether there is an optimal cycle which minimizes the average entropy production per
cycle. These considerations might be important on the longer run to question whether
passive nonlinear optical elements could be used to build integrated optical circuits
with a computational or energetic advantage when compared with electronic solid state
architectures [442, 443, 444]. More generally, this opens interesting perspectives for the
exploration of the non-equilibrium thermodynamics of a mesoscopic system, profiting
from the exquisite control of an integrated photonic platform. Furthermore, photonic
systems naturally offer the possibility to engineer the dissipative coupling with other
kind of baths, e.g. parametric or squeezed [335, 430, 436]. This is an almost unexplored
playground for thermodynamics: engineering the system-environment interaction, may
provide an insight on the ultimate efficiency bounds for nanoscale engines [437, 438].
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CHAPTER 7

Conclusion and Outlook

In this PhD dissertation we have investigated micron-sized semiconductor structures
vertically defined by a Fabry-Perot cavity embedding a single quantum well and later-
ally patterned to emulate the physics of one or few coupled zero dimensional (photon)
polariton boxes. Despite their apparent simplicity such elementary structures present
an extremely rich phenomenology. Depending on the sample design and excitation
scheme, the quantum well provides the microcavities optical gain or a resonant Kerr-
type nonlinearity, which become sizable already for few excitations. The work con-
centrates on two main lines of research. 1) How to create and control chiral photonic
currents in arrays of coupled microcavities. 2) Study intrinsic dynamical phenomena
originating from the interplay of nonlinearities and dissipation in coherently driven
microstructures.

Along the first line of research, we investigated arrays of coupled micropillar cavities
arranged in a ring geometry presenting a discrete rotational symmetry (cf. Chap. 4).
Harnessing an analogue spin-orbit coupling between the cavity-photon polarization
(pseudo-spin) and its in-plane motion, we show that some of the optical modes present
a wavefront with a net phase circulation. In other words, these modes possess a net or-
bital angular momentum (OAM), an in principle unbounded degree of freedom, which
is both desirable for fundamental studies and technologically relevant [80, 268]. How-
ever, the modes presenting opposite OAM chirality always appear in energy-degenerate
doublets, due to the mirror-symmetry of the cavity eigenmodes (by definition a chiral
object can be distinguished from its mirror image). Profiting from the small degree of
spin-polarization, surviving the relaxation processes of photo-generated carriers up to
∼ 100 K, we can slightly bias the degree of circular polarization of the gain medium.
In combination with the polarization properties of the optical modes, this allows im-
plementing an OAM lasing scheme where the chirality can be optically controlled. The
proposed lasing scheme is general as it relies only on two ingredients which are present
in several micro and nanoscale photonic platforms, namely, a finite TE-TM polarization
splitting in cavities presenting a Cnv symmetry and a mean to spin-polarize the gain
medium. Furthermore, when investigating the gain saturation regime, we discovered a
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bistability between modes presenting distinct OAM and polarization patterns. These
findings could not only be interesting from the point of view of developing new struc-
tured light sources [58, 445] but more generally in the context of topological photonics
[59]. Indeed, our structures presently embed a single QW, thus the lasing action oc-
curred in the weak coupling regime. By altering the design of the heterostructure (e.g.
embedding 12 QWs) we could repeat these experiments for the strong-coupling regime.
In this case, the two spin-polarized exciton populations not only bias the overall gain
of the circularly polarized eigenmodes of the system, but also affect their energy via
the spin-dependent polariton-polariton and polariton-reservoir interactions, resulting
in an analog Zeeman shift. The combination of these two ingredients may allow to
trigger lasing in topologically protected edge states with both a tunable chirality and
in absence of any magnetic field [60, 446, 447].

In Chap. 5 and 6, we have focused on the second line of research, characterizing two
general dynamical out-of-equilibrium effects in coherently driven microcavities. One is
the emergence of intrinsic parametric instabilities when two (or more) coupled micro-
cavities are coherently driven (cf. Chap. 5). The second is the metastable dynamics of
the intracavity field, activated by the interplay of stochastic dissipation processes and
nonlinearities (cf. Chap. 6). In both cases, we investigate the simplest experimental
setting where the phenomenon can be observed. We probed two coupled micropillar
cavities or a single tightly confined polariton mode in a rectangular micropillar.

The mechanism responsible for the parametric instability relates to the opening of
a resonant scattering channel from the pump toward two (or more) modes as their en-
ergy gets renormalized by the nonlinearity [330]. This mechanism is a general feature
of strongly driven nonlinear resonators arrays, which can be theoretically addressed at
the level of a linear stability analysis (cf. 3.3.1). Provided the polariton-polariton scat-
tering rate is faster than losses, the instability seeds sustained parametric oscillations:
the signal and idler fields are at the frequency of the nonlinear modes, thus inherit-
ing their spatial profile. By imaging the emission pattern of signal and idler modes
in the instability regime, we demonstrate the validity of this overall picture. In our
experiments, unlike previously demonstrated triply resonant schemes involving micro-
cavity polaritons [131, 128, 132, 361], the parametric process involves just two polariton
modes, the pump not being in resonance with any of them. This configuration allows
observing remarkably contrasted sidebands, where roughly 38% of the total radiated
energy is stored, for a threshold power as low as few hundred microwatts. Given the
broad range of applicability of these results and the inherent scalability of our inte-
grated photonic platform, this work opens interesting possibilities for engineering the
spatial modes of parametric oscillators [360]. For instance, if we consider a honeycomb
arrangement of microcavities, a photonic analogue of graphene [49], the bandstructure
is entirely symmetric with respect to the Dirac point energy. Pumping few linewidths
above the Dirac-cone energy should trigger simultaneously parametric oscillations for
all wavevectors. As opposing Dirac-cones in reciprocal space present opposite winding
of the phase, we expect the generation of correlated photon pairs with a structured
wavefront.

In Chap. 6, we have been interested in the metastable dynamics characterizing one
mode of a highly nonlinear rectangular micropillar cavity. The metastability manifests
in abrupt jumps of the cavity occupation between the two -otherwise stable- branches of
the classical bistability. For specific driving conditions, the switching dynamics is much
slower than any other characteristic time of the system. Moreover, the metastable dy-
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namics is strongly suppressed as the number of excitations in the systems tends towards
infinity: such critical slowing down of the dynamics relates to the onset of a dissipa-
tive phase-transition [193, 230]. Following a theoretical proposal, we use dynamical
hysteresis experiments as a probe of the metastable dynamics of the system. Using a
scaling analysis we are able to retrieve the exponents of the dissipative phase transition.
Our results suggest that the hysteresis area follows a universal double power law de-
pendence as a function of the ratio between the power modulation period τSw and the
metastability escape rate τR. The measured exponents are α ≈ −1/3 for τSw/τR � 1
and β ≈ −1 for τSw/τR � 1. Interestingly, not only we could experimentally verify
the universality of the exponent β ≈ −1, consistently with the theoretical predictions
[230], but our scaling analysis suggests that also α ≈ −1/3 might be universal. Even
if our results are too preliminary for a claim, they warrant further investigations. In-
deed, testing the universality of α could help elucidating an intriguing mapping existing
between equilibrium Ising models and the metastable dynamics of 2D lattices of micro-
cavities [195]. Finally, profiting from the possibility of accessing the system dynamics
at a single trajectory level, we verified the possibility of mapping the metastable dy-
namics of the Kerr resonator onto a (classical) Logical Bit subject to random bit-flip
events. Providing a proof-of-principle verification of an integral fluctuation theorem
for the non-equilibrium entropy production [381], our preliminary results suggest an
interesting parallel between the stochastic thermodynamics of mesoscopic objects and
nonlinear photonic systems. The possibility of designing nearly arbitrary input drive
protocols, combined with a single-shot readout of the system observables, could be
used to test the ultimate efficiency bounds for nanoscale engines. On the longer term,
a consistent formulation of a microscopic thermodynamic (and information) theory for
passive nonlinear optical systems, might be important to address whether integrated
optical circuits could enable a computational or energetic advantage when compared
with present electronic microprocessor architectures [444].

On the short term it would be interesting to combine the two main lines of research
presented in this dissertation by coherently exciting the chiral eigenmodes in ring-type
photonic molecules. Indeed, we expect the interplay between the opposite circular
polarization of the two chiral modes with the two spin-dependent polariton interac-
tion channels to drive a metastable dynamics characterized by spontaneous symmetry
breaking effects.

In order to fully exploit the versatility of a polariton platform for the emulation of
strongly-correlated many-body phases, the achievement of two-body polariton interac-
tions (U) comparable both with the cavity linewidth (Γ) and the intracavity coupling
strength (J) is a major challenge. To this aim, one can either improve significantly
the cavity linewidth Γ or find alternative solutions to enhance U . In this thesis we
discussed the main factors presently limiting Γ in our platform: residual absorption in
the cavity and the inhomogeneous broadening of the exciton transition. The former
contribution can be minimized by employing an adiabatic cavity design [209], which
allows reducing the thickness of GaAs present in the cavity, where we believe most
of the optical absorption takes place. The latter is a technical problem which can be
minimized working with thicker quantum wells while improving the interface quality
and level of residual doping in the epitaxial growth machine.

In order to improve the interaction strength we see two possible avenues. In the first
approach, pioneered in the group of A. Imamoglu, one keeps working with excitons in
GaAs/InGaAs based quantum wells, but aims at modifying the interaction mechanisms.
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For instance, indirect excitons can be formed by spatially separating electron and holes
in adjacent quantum wells with resonantly coupled electronic levels [448]. This spa-
tial separation, allows the build-up of a strong exciton dipole moment, endowing the
system with enhanced long-range interactions [56]. Alternatively, polariton–polariton
interactions can be strongly enhanced when the electrons of an additional 2D electron
gas are initially in the fractional quantum Hall regime [337].

The second, would be to explore new materials, such as copper oxides, supporting
giant Rydberg excitons [449]. In this systems the exciton Bohr radius, hence contact
interactions, can be enhanced by almost two orders of magnitude (aB ∼ µm). Cor-
respondingly, the radiative exciton decay rate decreases, hence the Rabi coupling to
the photon, this eventually prevents to enter the strong coupling regime. This prob-
lem could be solved by employing an electromagnetically induced transparency (EIT)
excitation scheme, as recently demonstrated by N. Jia and collaborators [450]. These
materials are however not compatible with epitaxial techniques; therefore, the recent
development of open cavities where the active material can be directly transferred on
one of the cavity mirrors seems a viable option [46].
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[61] N. Ismail et al. “Fabry-Pérot resonator: spectral line shapes, generic and related
Airy distributions, linewidths, finesses, and performance at low or frequency-
dependent reflectivity”. In: Optics Express 24.15 (2016), p. 16366. doi: 10.

1364/oe.24.016366 (cit. on p. 8).
[62] L. Rayleigh. “On the Reflection of Light from a Regularly Stratified Medium”.

In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences 93.655 (Oct. 1917), pp. 565–577. issn: 1364-5021. doi: 10.1098/rspa.
1917.0040 (cit. on p. 9).

[63] J. D. Joannopoulos et al. Photonic Crystals. Vol. 6. 2. Princeton University
Press, Oct. 2011, p. 305. isbn: 9781400828241. doi: 10.2307/j.ctvcm4gz9 (cit.
on pp. 9, 10, 78).

[64] M. A. Afromowitz. “Refractive index of Ga1-xAlxAs”. In: Solid State Commu-
nications 15.1 (1974), pp. 59–63. issn: 00381098. doi: 10.1016/0038-1098(74)
90014-3 (cit. on p. 10).

[65] S. Gehrsitz et al. “The refractive index of AlxGa1-xAs below the band gap:
Accurate determination and empirical modeling”. In: Journal of Applied Physics
87.11 (2000), pp. 7825–7837. issn: 00218979. doi: 10.1063/1.373462 (cit. on
p. 10).

[66] D. C. Reynolds et al. “Refractive index, n , and dispersion, -d n / d λ, of GaAs
at 2 K determined from Fabry–Perot cavity oscillations”. In: Journal of Applied
Physics 61.1 (Jan. 1987), pp. 342–345. issn: 0021-8979. doi: 10.1063/1.338828
(cit. on p. 11).

[67] H. G. Grimmeiss and B. Monemar. “Temperature dependence of the refractive
index of AIAs and AIP”. In: Physica Status Solidi (a) 5.1 (Apr. 1971), pp. 109–
114. issn: 00318965. doi: 10.1002/pssa.2210050111 (cit. on p. 11).

[68] M. D. Sturge. “Optical absorption of gallium arsenide between 0.6 and 2.75 eV”.
In: Physical Review 127.3 (1962), pp. 768–773. issn: 0031899X. doi: 10.1103/
PhysRev.127.768 (cit. on pp. 11, 94).

[69] C. C. Katsidis and D. I. Siapkas. “General transfer-matrix method for opti-
cal multilayer systems with coherent, partially coherent, and incoherent inter-
ference”. In: Applied Optics 41.19 (July 2002), p. 3978. issn: 0003-6935. doi:
10.1364/AO.41.003978 (cit. on p. 11).

[70] V. Savona. Confined Photon Systems. Ed. by H. Benisty et al. Vol. 531. Lecture
Notes in Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 173–

163

http://dx.doi.org/10.1103/PhysRevLett.121.227402
http://dx.doi.org/10.1103/PhysRevLett.121.227402
http://arxiv.org/abs/1911.02923
http://dx.doi.org/10.1002/lpor.201900140
http://dx.doi.org/10.1103/RevModPhys.91.015006
http://dx.doi.org/10.1038/s41586-018-0601-5
http://dx.doi.org/10.1364/oe.24.016366
http://dx.doi.org/10.1364/oe.24.016366
http://dx.doi.org/10.1098/rspa.1917.0040
http://dx.doi.org/10.1098/rspa.1917.0040
http://dx.doi.org/10.2307/j.ctvcm4gz9
http://dx.doi.org/10.1016/0038-1098(74)90014-3
http://dx.doi.org/10.1016/0038-1098(74)90014-3
http://dx.doi.org/10.1063/1.373462
http://dx.doi.org/10.1063/1.338828
http://dx.doi.org/10.1002/pssa.2210050111
http://dx.doi.org/10.1103/PhysRev.127.768
http://dx.doi.org/10.1103/PhysRev.127.768
http://dx.doi.org/10.1364/AO.41.003978


BIBLIOGRAPHY

242. isbn: 978-3-540-66435-2. doi: 10.1007/BFb0104378 (cit. on pp. 11, 20, 21,
23, 29, 36, 53).

[71] G. Panzarini et al. “Exciton-light coupling in single and coupled semiconductor
microcavities: Polariton dispersion and polarization splitting”. In: Phys. Rev. B
59.7 (1999), pp. 5082–5089 (cit. on pp. 11, 12, 23, 82).

[72] R. P. Stanley et al. “Ultrahigh finesse microcavity with distributed Bragg re-
flectors”. In: Applied Physics Letters 65.15 (Oct. 1994), pp. 1883–1885. issn:
0003-6951. doi: 10.1063/1.112877 (cit. on pp. 11, 12).

[73] J. Pohl et al. “Reduction of absorption losses in MOVPE-grown AlGaAs Bragg
mirrors”. In: Optics Letters 43.15 (Aug. 2018), p. 3522. issn: 0146-9592. doi:
10.1364/OL.43.003522 (cit. on pp. 11, 35).

[74] A. Kavokin, G. Malpuech, and M. Glazov. “Optical Spin Hall Effect”. In: Physi-
cal Review Letters 95.13 (Sept. 2005), p. 136601. issn: 0031-9007. doi: 10.1103/
PhysRevLett.95.136601 (cit. on pp. 13, 46, 49, 82).

[75] K. V. Kavokin et al. “Quantum Theory of Spin Dynamics of Exciton-Polaritons
in Microcavities”. In: Physical Review Letters 92.1 (Jan. 2004), p. 017401. issn:
0031-9007. doi: 10.1103/PhysRevLett.92.017401 (cit. on pp. 13, 86).

[76] C. Leyder et al. “Observation of the optical spin Hall effect”. In: Nature Physics
3.9 (Sept. 2007), pp. 628–631. issn: 1745-2473. doi: 10.1038/nphys676 (cit. on
pp. 14, 46).

[77] M. Maragkou et al. “Optical analogue of the spin Hall effect in a photonic
cavity”. In: Optics Letters 36.7 (Apr. 2011), p. 1095. issn: 0146-9592. doi: 10.
1364/OL.36.001095 (cit. on pp. 14, 46).

[78] K. Lekenta et al. “Tunable optical spin Hall effect in a liquid crystal microcav-
ity”. In: Light: Science & Applications 7.1 (Dec. 2018), p. 74. issn: 2047-7538.
doi: 10.1038/s41377-018-0076-z (cit. on p. 14).

[79] S. Dufferwiel et al. “Spin Textures of Exciton-Polaritons in a Tunable Micro-
cavity with Large TE-TM Splitting”. In: Physical Review Letters 115.24 (Dec.
2015), p. 246401. issn: 0031-9007. doi: 10.1103/PhysRevLett.115.246401
(cit. on pp. 14, 49, 79).

[80] K. Y. Bliokh et al. “Spin–orbit interactions of light”. In: Nature Photonics 9.12
(Dec. 2015), pp. 796–808. issn: 1749-4885. doi: 10.1038/nphoton.2015.201
(cit. on pp. 14, 77–79, 153).

[81] P. Y. Yu and M. Cardona. Fundamentals of Semiconductors. Vol. 59. Graduate
Texts in Physics 6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 442–
443. isbn: 978-3-642-00709-5. doi: 10.1007/978- 3- 642- 00710- 1 (cit. on
pp. 14–17, 20).

[82] F. M. Bickelhaupt and E. J. Baerends. “Kohn-Sham Density Functional The-
ory: Predicting and Understanding Chemistry”. In: Reviews in Computational
Chemistry. John Wiley & Sons, Ltd, 2007, pp. 1–86. isbn: 9780470125922. doi:
10.1002/9780470125922.ch1 (cit. on p. 14).

[83] R. Car and M. Parrinello. “Unified Approach for Molecular Dynamics and
Density-Functional Theory”. In: Physical Review Letters 55.22 (Nov. 1985),
pp. 2471–2474. issn: 0031-9007. doi: 10.1103/PhysRevLett.55.2471 (cit.
on p. 14).

[84] C. S. Wang and B. M. Klein. “First-principles electronic structure of Si, Ge,
GaP, GaAs, ZnS, and ZnSe. II. Optical properties”. In: Phys. Rev. B 24.6 (Sept.
1981), pp. 3417–3429. doi: 10.1103/PhysRevB.24.3417 (cit. on pp. 14, 16).

164

http://dx.doi.org/10.1007/BFb0104378
http://dx.doi.org/10.1063/1.112877
http://dx.doi.org/10.1364/OL.43.003522
http://dx.doi.org/10.1103/PhysRevLett.95.136601
http://dx.doi.org/10.1103/PhysRevLett.95.136601
http://dx.doi.org/10.1103/PhysRevLett.92.017401
http://dx.doi.org/10.1038/nphys676
http://dx.doi.org/10.1364/OL.36.001095
http://dx.doi.org/10.1364/OL.36.001095
http://dx.doi.org/10.1038/s41377-018-0076-z
http://dx.doi.org/10.1103/PhysRevLett.115.246401
http://dx.doi.org/10.1038/nphoton.2015.201
http://dx.doi.org/10.1007/978-3-642-00710-1
http://dx.doi.org/10.1002/9780470125922.ch1
http://dx.doi.org/10.1103/PhysRevLett.55.2471
http://dx.doi.org/10.1103/PhysRevB.24.3417


BIBLIOGRAPHY

[85] J. M. Luttinger and W. Kohn. “Motion of Electrons and Holes in Perturbed
Periodic Fields”. In: Physical Review 97.4 (Feb. 1955), pp. 869–883. issn: 0031-
899X. doi: 10.1103/PhysRev.97.869 (cit. on p. 14).

[86] G. Bastard. Wave mechanics applied to semiconductor heterostructures. United
States: John Wiley and Sons Inc, 1990. isbn: 0-471-21708-1 (cit. on pp. 14–16,
18, 20, 21, 86).

[87] S. Richard, F. Aniel, and G. Fishman. “Energy-band structure of Ge, Si, and
GaAs: A thirty-band k·p method”. In: Physical Review B 70.23 (2004), pp. 1–6.
issn: 10980121. doi: 10.1103/PhysRevB.70.235204 (cit. on pp. 14, 15).

[88] Z. M. Fang et al. “Photoluminescence of InSb, InAs, and InAsSb grown by
organometallic vapor phase epitaxy”. In: Journal of Applied Physics 67.11 (June
1990), pp. 7034–7039. issn: 0021-8979. doi: 10.1063/1.345050 (cit. on p. 16).

[89] S. Paul, J. B. Roy, and P. K. Basu. “Empirical expressions for the alloy compo-
sition and temperature dependence of the band gap and intrinsic carrier density
in GaxIn 1-xAs”. In: Journal of Applied Physics 69.2 (1991), pp. 827–829. issn:
00218979. doi: 10.1063/1.348919 (cit. on pp. 16, 17).

[90] M. Cardona. “Electron Effective Masses of InAs and GaAs as a Function of
Temperature and Doping”. In: Physical Review 121.3 (Feb. 1961), pp. 752–758.
issn: 0031-899X. doi: 10.1103/PhysRev.121.752 (cit. on p. 16).

[91] S. Adachi. “Material parameters of In 1- x Ga x As y P 1- y and related binaries”.
In: Journal of Applied Physics 53.12 (Dec. 1982), pp. 8775–8792. issn: 0021-
8979. doi: 10.1063/1.330480 (cit. on p. 16).

[92] M. Levinshtein, S. Rumyantsev, and M. Shur. Handbook Series on Semiconduc-
tor Parameters. Vol. 1. WORLD SCIENTIFIC, Nov. 1996. isbn: 978-981-02-
2934-4. doi: 10.1142/2046-vol1 (cit. on p. 16).

[93] R. Atanasov et al. “Exciton properties and optical response in InGaAs/GaAs
strained quantum wells”. In: Physical Review B 50.19 (Nov. 1994), pp. 14381–
14388. doi: 10.1103/PhysRevB.50.14381 (cit. on pp. 17, 19, 21).

[94] J. Reithmaier et al. “Band offset in elastically strained InGaAs/GaAs multiple
quantum wells determined by optical absorption and electronic Raman scatter-
ing”. In: Applied Physics Letters 56.6 (Feb. 1990), pp. 536–538. issn: 0003-6951.
doi: 10.1063/1.102737 (cit. on p. 17).

[95] J. Barnes et al. “Characterization of GaAs/InGaAs quantum wells using pho-
tocurrent spectroscopy”. In: Journal of Applied Physics 79.10 (May 1996), pp. 7775–
7779. issn: 0021-8979. doi: 10.1063/1.362383 (cit. on p. 17).

[96] V. I. Zubkov et al. “Determination of band offsets in strained InGaAs/GaAs
quantum wells by capacitance-voltage profiling and Schrödinger-Poisson self-
consistent simulation”. In: Physical Review B 70.7 (Aug. 2004), p. 075312. issn:
1098-0121. doi: 10.1103/PhysRevB.70.075312 (cit. on p. 17).

[97] G. Bastard et al. “Exciton binding energy in quantum wells”. In: Physical Review
B 26.4 (Aug. 1982), pp. 1974–1979. doi: 10.1103/PhysRevB.26.1974 (cit. on
p. 18).

[98] K. J. Moore et al. “Observations and calculations of the exciton binding energy in
(In,Ga)As/GaAs strained-quantum-well heterostructures”. In: Physical Review
B 41.2 (1990), pp. 1090–1094. issn: 01631829. doi: 10.1103/PhysRevB.41.1090
(cit. on pp. 18, 19).

[99] L. C. Andreani and A. Pasquarello. “Accurate theory of excitons in GaAs-
GaAlAs quantum wells”. In: Physical Review B 42.14 (Nov. 1990), pp. 8928–
8938. issn: 0163-1829. doi: 10.1103/PhysRevB.42.8928 (cit. on pp. 20, 21).

165

http://dx.doi.org/10.1103/PhysRev.97.869
http://dx.doi.org/10.1103/PhysRevB.70.235204
http://dx.doi.org/10.1063/1.345050
http://dx.doi.org/10.1063/1.348919
http://dx.doi.org/10.1103/PhysRev.121.752
http://dx.doi.org/10.1063/1.330480
http://dx.doi.org/10.1142/2046-vol1
http://dx.doi.org/10.1103/PhysRevB.50.14381
http://dx.doi.org/10.1063/1.102737
http://dx.doi.org/10.1063/1.362383
http://dx.doi.org/10.1103/PhysRevB.70.075312
http://dx.doi.org/10.1103/PhysRevB.26.1974
http://dx.doi.org/10.1103/PhysRevB.41.1090
http://dx.doi.org/10.1103/PhysRevB.42.8928


BIBLIOGRAPHY

[100] M. Wouters. “Resonant polariton-polariton scattering in semiconductor micro-
cavities”. In: Physical Review B 76.4 (July 2007), p. 045319. issn: 1098-0121.
doi: 10.1103/PhysRevB.76.045319 (cit. on pp. 20, 22).

[101] H. Haug and S. W. Koch. Quantum Theory of the Optical and Electronic Prop-
erties of Semiconductors. WORLD SCIENTIFIC, Jan. 2009. isbn: 978-981-283-
883-4. doi: 10.1142/7184 (cit. on pp. 20, 22).

[102] A. Klein and E. R. Marshalek. “Boson realizations of Lie algebras with ap-
plications to nuclear physics”. In: Reviews of Modern Physics 63.2 (Apr. 1991),
pp. 375–558. issn: 0034-6861. doi: 10.1103/RevModPhys.63.375 (cit. on p. 22).

[103] M. COMBESCOT, O. BETBEDERMATIBET, and F. DUBIN. “The many-
body physics of composite bosons”. In: Physics Reports 463.5-6 (July 2008),
pp. 215–320. issn: 03701573. doi: 10.1016/j.physrep.2007.11.003 (cit. on
p. 22).

[104] S. Schmitt-Rink, D. Chemla, and D. Miller. “Linear and nonlinear optical prop-
erties of semiconductor quantum wells”. In: Advances in Physics 38.2 (Jan.
1989), pp. 89–188. issn: 0001-8732. doi: 10.1080/00018738900101102 (cit. on
p. 22).

[105] G. Rochat et al. “Excitonic Bloch equations for a two-dimensional system of
interacting excitons”. In: Physical Review B 61.20 (May 2000), pp. 13856–13862.
issn: 0163-1829. doi: 10.1103/PhysRevB.61.13856 (cit. on p. 22).

[106] L. Kappei et al. “Direct Observation of the Mott Transition in an Optically
Excited Semiconductor Quantum Well”. In: Physical Review Letters 94.14 (Apr.
2005), p. 147403. issn: 0031-9007. doi: 10.1103/PhysRevLett.94.147403 (cit.
on p. 22).

[107] C. Ciuti et al. “Role of the exchange of carriers in elastic exciton-exciton scatter-
ing in quantum wells”. In: Physical Review B 58.12 (Sept. 1998), pp. 7926–7933.
issn: 0163-1829. doi: 10.1103/PhysRevB.58.7926 (cit. on pp. 22, 27).

[108] M. M. Glazov et al. “Polariton-polariton scattering in microcavities: A micro-
scopic theory”. In: Physical Review B 80.15 (Oct. 2009), p. 155306. issn: 1098-
0121. doi: 10.1103/PhysRevB.80.155306 (cit. on pp. 22, 52).

[109] M. Vladimirova et al. “Polariton-polariton interaction constants in microcavi-
ties”. In: Physical Review B 82.7 (Aug. 2010), p. 075301. issn: 1098-0121. doi:
10.1103/PhysRevB.82.075301 (cit. on pp. 22, 28).

[110] E. Estrecho et al. “Direct measurement of polariton-polariton interaction strength
in the Thomas-Fermi regime of exciton-polariton condensation”. In: Physical Re-
view B 100.3 (July 2019), p. 035306. issn: 2469-9950. doi: 10.1103/PhysRevB.
100.035306 (cit. on p. 22).

[111] V. Savona et al. “Quantum well excitons in semiconductor microcavities: Unified
treatment of weak and strong coupling regimes”. In: Solid State Communications
93.9 (Mar. 1995), pp. 733–739. issn: 00381098. doi: 10.1016/0038-1098(94)
00865-5 (cit. on pp. 23, 24).

[112] Y. Xu, R. K. Lee, and A. Yariv. “Quantum analysis and the classical analysis of
spontaneous emission in a microcavity”. In: Physical Review A 61.3 (Feb. 2000),
p. 033807. issn: 1050-2947. doi: 10.1103/PhysRevA.61.033807 (cit. on pp. 23,
24).

[113] S. R.-K. Rodriguez. “Classical and quantum distinctions between weak and
strong coupling”. In: European Journal of Physics 37.2 (Mar. 2016), p. 025802.
issn: 0143-0807. doi: 10.1088/0143-0807/37/2/025802 (cit. on pp. 23, 24,
114).

166

http://dx.doi.org/10.1103/PhysRevB.76.045319
http://dx.doi.org/10.1142/7184
http://dx.doi.org/10.1103/RevModPhys.63.375
http://dx.doi.org/10.1016/j.physrep.2007.11.003
http://dx.doi.org/10.1080/00018738900101102
http://dx.doi.org/10.1103/PhysRevB.61.13856
http://dx.doi.org/10.1103/PhysRevLett.94.147403
http://dx.doi.org/10.1103/PhysRevB.58.7926
http://dx.doi.org/10.1103/PhysRevB.80.155306
http://dx.doi.org/10.1103/PhysRevB.82.075301
http://dx.doi.org/10.1103/PhysRevB.100.035306
http://dx.doi.org/10.1103/PhysRevB.100.035306
http://dx.doi.org/10.1016/0038-1098(94)00865-5
http://dx.doi.org/10.1016/0038-1098(94)00865-5
http://dx.doi.org/10.1103/PhysRevA.61.033807
http://dx.doi.org/10.1088/0143-0807/37/2/025802


BIBLIOGRAPHY

[114] L. Novotny. “Strong coupling, energy splitting, and level crossings: A classical
perspective”. In: American Journal of Physics 78.11 (2010), pp. 1199–1202. issn:
0002-9505. doi: 10.1119/1.3471177 (cit. on p. 24).

[115] E. M. Purcell. “Spontaneous Emission Probabilities at Radio Frequencies”. In:
Confined Electrons and Photons: New Physics and Applications. Ed. by E. Burstein
and C. Weisbuch. Boston, MA: Springer US, 1946, p. 839. isbn: 978-1-4615-1963-
8. doi: 10.1007/978-1-4615-1963-8_40 (cit. on p. 24).
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[376] M. Žnidarič et al. “Thermalization and ergodicity in one-dimensional many-body
open quantum systems”. In: Physical Review E 81.5 (May 2010), p. 051135. issn:
1539-3755. doi: 10.1103/PhysRevE.81.051135 (cit. on p. 126).

[377] R. Bonifacio and L. A. Lugiato. “Photon Statistics and Spectrum of Transmitted
Light in Optical Bistability”. In: Physical Review Letters 40.15 (Apr. 1978),
pp. 1023–1027. issn: 0031-9007. doi: 10.1103/PhysRevLett.40.1023 (cit. on
pp. 127, 130).

[378] F. T. Hioe and S. Singh. “Correlations, transients, bistability, and phase-transition
analogy in two-mode lasers”. In: Physical Review A 24.4 (Oct. 1981), pp. 2050–
2074. issn: 0556-2791. doi: 10.1103/PhysRevA.24.2050 (cit. on pp. 127, 130,
132).

184

http://arxiv.org/abs/1610.04856
http://dx.doi.org/10.1063/1.3632111
http://dx.doi.org/10.1063/1.91157
http://dx.doi.org/10.1103/PhysRevLett.119.097403
http://dx.doi.org/10.1103/PhysRevB.100.054303
http://dx.doi.org/10.1103/PhysRevB.100.054303
http://arxiv.org/abs/1910.03499
http://dx.doi.org/10.1103/PhysRevB.63.041303
http://dx.doi.org/10.1103/PhysRevX.9.021049
http://dx.doi.org/10.1103/PhysRevX.9.021049
http://dx.doi.org/10.1103/PhysRevX.5.031001
http://dx.doi.org/10.1016/0030-4018(79)90090-7
http://dx.doi.org/10.1103/PhysRevB.80.235303
http://dx.doi.org/10.1103/PhysRevE.64.046219
http://dx.doi.org/10.1103/PhysRevE.81.051135
http://dx.doi.org/10.1103/PhysRevLett.40.1023
http://dx.doi.org/10.1103/PhysRevA.24.2050


BIBLIOGRAPHY

[379] P. Lett et al. “Macroscopic Quantum Fluctuations and First-Order Phase Tran-
sition in a Laser”. In: Physical Review Letters 47.26 (Dec. 1981), pp. 1892–1895.
issn: 0031-9007. doi: 10.1103/PhysRevLett.47.1892 (cit. on pp. 127, 132).

[380] W. Casteels et al. “Power laws in the dynamic hysteresis of quantum nonlinear
photonic resonators”. In: Physical Review A 93.3 (Mar. 2016), p. 033824. issn:
2469-9926. doi: 10.1103/PhysRevA.93.033824. arXiv: 1509.02118 (cit. on
pp. 127, 134, 138).

[381] U. Seifert. “Entropy Production along a Stochastic Trajectory and an Integral
Fluctuation Theorem”. In: Physical Review Letters 95.4 (July 2005), p. 040602.
issn: 0031-9007. doi: 10.1103/PhysRevLett.95.040602 (cit. on pp. 127, 147,
150, 155).

[382] H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan. “Differential Gain and
Bistability Using a Sodium-Filled Fabry-Perot Interferometer”. In: Physical Re-
view Letters 36.19 (May 1976), pp. 1135–1138. issn: 0031-9007. doi: 10.1103/
PhysRevLett.36.1135 (cit. on p. 130).

[383] J. A. Goldstone and E. Garmire. “Intrinsic Optical Bistability in Nonlinear
Media”. In: Physical Review Letters 53.9 (Aug. 1984), pp. 910–913. issn: 0031-
9007. doi: 10.1103/PhysRevLett.53.910 (cit. on p. 130).

[384] G. Rempe et al. “Optical bistability and photon statistics in cavity quantum
electrodynamics”. In: Physical Review Letters 67.13 (Sept. 1991), pp. 1727–1730.
issn: 0031-9007. doi: 10.1103/PhysRevLett.67.1727 (cit. on p. 130).

[385] V. R. Almeida and M. Lipson. “Optical bistability on a silicon chip”. In: Optics
Letters 29.20 (Oct. 2004), p. 2387. issn: 0146-9592. doi: 10.1364/OL.29.002387
(cit. on p. 130).

[386] G. A. Wurtz, R. Pollard, and A. V. Zayats. “Optical bistability in nonlinear
surface-plasmon polaritonic crystals”. In: Physical Review Letters 97.5 (2006),
pp. 1–4. issn: 00319007. doi: 10.1103/PhysRevLett.97.057402 (cit. on p. 130).

[387] J. Kerckhoff, M. A. Armen, and H. Mabuchi. “Remnants of semiclassical bista-
bility in the few-photon regime of cavity QED”. In: Optics Express 19.24 (Nov.
2011), p. 24468. issn: 1094-4087. doi: 10.1364/OE.19.024468 (cit. on p. 130).

[388] H. Abbaspour et al. “Effect of a noisy driving field on a bistable polariton
system”. In: Physical Review B 92.16 (Oct. 2015), p. 165303. issn: 1098-0121.
doi: 10.1103/PhysRevB.92.165303 (cit. on p. 130).

[389] K. Vogel and H. Risken. “Quantum-tunneling rates and stationary solutions in
dispersive optical bistability”. In: Physical Review A 38.5 (Sept. 1988), pp. 2409–
2422. issn: 0556-2791. doi: 10.1103/PhysRevA.38.2409 (cit. on pp. 131, 142).

[390] H. Risken and K. Vogel. “Quantum tunneling rates in dispersive optical bistabil-
ity for low cavity damping”. In: Physical Review A 38.3 (Aug. 1988), pp. 1349–
1357. issn: 0556-2791. doi: 10.1103/PhysRevA.38.1349 (cit. on pp. 131, 142).

[391] R. M. Wilson et al. “Collective phases of strongly interacting cavity photons”. In:
Phys. Rev. A 94.3 (Sept. 2016), p. 33801. doi: 10.1103/PhysRevA.94.033801
(cit. on p. 132).

[392] T. Schneider, G. Srinivasan, and C. P. Enz. “Phase Transitions and Soft Modes”.
In: Physical Review A 5.3 (Mar. 1972), pp. 1528–1536. issn: 0556-2791. doi:
10.1103/PhysRevA.5.1528 (cit. on pp. 132, 133).

[393] K. Binder. “Theory of first-order phase transitions”. In: Reports on Progress in
Physics 50.7 (July 1987), pp. 783–859. issn: 0034-4885. doi: 10.1088/0034-
4885/50/7/001 (cit. on p. 132).

185

http://dx.doi.org/10.1103/PhysRevLett.47.1892
http://dx.doi.org/10.1103/PhysRevA.93.033824
http://arxiv.org/abs/1509.02118
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1103/PhysRevLett.36.1135
http://dx.doi.org/10.1103/PhysRevLett.36.1135
http://dx.doi.org/10.1103/PhysRevLett.53.910
http://dx.doi.org/10.1103/PhysRevLett.67.1727
http://dx.doi.org/10.1364/OL.29.002387
http://dx.doi.org/10.1103/PhysRevLett.97.057402
http://dx.doi.org/10.1364/OE.19.024468
http://dx.doi.org/10.1103/PhysRevB.92.165303
http://dx.doi.org/10.1103/PhysRevA.38.2409
http://dx.doi.org/10.1103/PhysRevA.38.1349
http://dx.doi.org/10.1103/PhysRevA.94.033801
http://dx.doi.org/10.1103/PhysRevA.5.1528
http://dx.doi.org/10.1088/0034-4885/50/7/001
http://dx.doi.org/10.1088/0034-4885/50/7/001


BIBLIOGRAPHY

[394] M. Fabrizio. “Ice-water and liquid-vapor phase transitions by a Ginzburg–Landau
model”. In: Journal of Mathematical Physics 49.10 (Oct. 2008), p. 102902. issn:
0022-2488. doi: 10.1063/1.2992478 (cit. on p. 132).

[395] S. L. Sondhi et al. “Continuous quantum phase transitions”. In: Reviews of
Modern Physics 69.1 (Jan. 1997), pp. 315–333. issn: 0034-6861. doi: 10.1103/
RevModPhys.69.315 (cit. on p. 133).

[396] S. Sachdev. “Quantum Criticality: Competing Ground States in Low Dimen-
sions”. In: Science 288.5465 (Apr. 2000), pp. 475–480. issn: 00368075. doi:
10.1126/science.288.5465.475 (cit. on p. 133).

[397] M. Vojta. “Quantum phase transitions”. In: Reports on Progress in Physics
66.12 (Dec. 2003), pp. 2069–2110. issn: 0034-4885. doi: 10.1088/0034-4885/
66/12/R01 (cit. on p. 133).

[398] H. J. Carmichael. “Analytical and numerical results for the steady state in coop-
erative resonance fluorescence”. In: Journal of Physics B: Atomic and Molecular
Physics 13.18 (Sept. 1980), pp. 3551–3575. issn: 0022-3700. doi: 10.1088/0022-
3700/13/18/009 (cit. on p. 133).

[399] M. J. Bhaseen et al. “Dynamics of nonequilibrium Dicke models”. In: Physical
Review A 85.1 (Jan. 2012), p. 013817. issn: 1050-2947. doi: 10.1103/PhysRevA.
85.013817 (cit. on p. 133).
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Résumé : Les microcavités en semiconducteurs, définis par une cavité Fabry Pérot planaire contenant un puits quantique, permettent 
de confiner fortement à la fois la lumière et les excitations électroniques. Dans ces hétérostructures, la lumière et la matière interagissent 
si fortement que les excitations fondamentales du système sont décrites par des quasi-particules hybrides lumière-matière appelées 
polaritons excitoniques. Les polaritons héritent les propriétés de leurs deux constituants élémentaires : la partie photonique peut être 
structurée spatialement en sculptant à l’échelle micrométrique l’indice de réfraction du matériau par lithographie et gravure ; la 
composante excitonique donne au système une très forte non-linéarité Kerr. Dans cette thèse, nous avons utilisé ces deux propriétés 
pour réaliser une ingénierie du mode photonique grâce à des micropiliers couplés, et sonder plusieurs facettes de leurs propriétés non-
linéaires. Dans une première partie du travail, nous étudions des microcavités couplées disposées en anneau. Tirant profit d’un couplage 
spin-orbite synthétique et de la possibilité de polariser en spin le gain optique, nous avons démontré une émission laser dans des modes 
présentant un moment orbital angulaire (OAM) fini, dont la chiralité peut être contrôlée optiquement.  De plus, nous mettons en évidence 
un comportement bistable original du microlaser, qui implique des modes présentant des valeurs différentes du OAM ainsi que des 
textures de polarisation différentes. Dans la deuxième partie de la thèse, nous explorons la dynamique non-linéaire du système sous 
pompage cohérent. Nous déclenchons une instabilité paramétrique dans des résonateurs couplés, et analysons en détails le mécanisme 
physique sous-jacent. Dans le régime instable, nous observons l’établissement d’oscillations paramétriques qui donnent lieu à des bandes 
latérales très brillantes et contrastées dans le spectre d’émission. Enfin dans la dernière partie du travail, nous étudions un régime de 
métastabilité optique dans un résonateur fortement non-linéaire. Ce régime se manifeste par l’apparition de sauts aléatoires entre deux 
valeurs du nombre moyen de photons dans le résonateur. Pour certaines conditions de pompage, nous observons un ralentissement 
critique de la dynamique métastable, signature d’une transition de phase dissipative. Par des expériences d’hystérésis dynamique, nous 
évaluons les exposants critiques de cette transition de phase. Finalement, nous proposons une correspondance (“mapping”) entre la 
dynamique métastable d’un résonateur Kerr, et les renversements aléatoires dans le temps d’un bit logique. Nous pouvons alors définir 
et mesurer la production d’entropie lors d’une trajectoire unique d’une expérience d’hystérésis dynamique. Ces mesures nous ont permis 
de valider, dans le cadre de cette correspondance, le théorème intégral de fluctuations pour la production d’entropie hors équilibre. Ce 
travail couvre une grande variété de sujets, d’aspects les plus fondamentaux de la dynamique non linéaire dans un système photonique, 
à des idées innovantes pour réaliser des dispositifs photoniques, qui pourraient dans le futur être optimisés pour un fonctionnement à 
température ambiante. 

 

Title : Chirality and nonlinear dynamics in polariton microresonators 

Keywords : Cavity polaritons, Quantum fluids, Nonlinearity, Microstructures, Optical spectroscopy 

Abstract : Semiconductor microresonators, defined by a planar Fabry-Perot cavity embedding a quantum well, allow tightly confining 
both optical and electronic excitations. In these heterostructures, light and matter interact so rapidly that the fundamental excitations of 
the system can be effectively described as hybrid light-matter quasiparticles, called exciton-polaritons. Polaritons inherit properties 
from both their elementary constituents: the photonic modes can be tailored by molding the refractive index landscape via dry etching 
processing, while the excitonic component endows the system with a large Kerr nonlinearity. In this thesis, we take advantage of these 
two key features to engineer the photon modes using coupled micropillar resonators, and probe diverse non-linear phenomena.  In the 
first part of this work, we consider coupled microcavities arranged in a ring geometry. Harnessing an analogue spin-orbit coupling and 
the ability to spin-polarize the optical gain, we demonstrate lasing in modes carrying a net orbital angular momentum (OAM), with a 
chirality which can be optically controlled. In addition, we evidence a bistable behaviour of the microlaser, involving modes presenting 
distinct OAM values and polarization patterns. In the second part of the thesis, we concentrate on the nonlinear dynamics of the system 
under coherent pumping. We trigger a parametric instability in coupled nonlinear resonator, and investigate the underlying mechanism. 
In the unstable regime, we observe the onset of sustained parametric oscillations, which presence is revealed by the appearance of bright 
and contrasted sidebands in the emission spectrum. In the last part of the thesis, we investigate the optical metastability a highly 
nonlinear single micropillar cavity, which manifests in stochastic jumps of the cavity occupation between the two -otherwise stable- 
branches of the classical bistability. For specific driving conditions, we observe a critical slowing down of the metastable dynamics, 
which is associated to the onset of a dissipative phase transition. Using a scaling analysis involving dynamical hysteresis experiments, 
we retrieve the critical exponents of the phase transition. Finally, we propose a mapping of the metastable dynamics of a Kerr resonator 
onto a logical bit subject to random bit-flip events. We can define and measure the entropy production at a single trajectory level during 
dynamical hysteresis experiments. These measurements allow us validating an integral fluctuation theorem for the non-equilibrium 
entropy production. This work covers a variety of topics, from fundamental non-linear dynamics in a photonic system, to novel ideas 
for realizing optical devices, which could eventually operate at room temperature. 
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