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ABSTRACT 

 

Pattern recognition is a fundamental task for living beings and is perform very efficiently by the brain.  

Artificial deep neural networks are making quick progress in reproducing these performance and have 

many applications such as image recognition or natural language processing.  However, they require 

extensive training on large datasets and heavy computations.  A promising alternative are spiking 

neural networks, which closely mimic what happens in the brain, with spiking neurons and spike-

timing-dependent plasticity (STDP).  They are able to perform unsupervised learning and have been 

used for visual or auditory pattern recognition.  However, for now applications using STDP networks 

lag far behind classical deep learning.  Developing new applications for this kind of networks is all the 

more at stake that they could be implemented in low power neuromorphic hardware that currently 

undergoes important developments, in particular with analog miniaturized memristive devices able to 

mimic synaptic plasticity.  In this work, we chose to develop an STDP neural network to perform a 

specific task: spike-sorting, which is a crucial problem in neuroscience.  Brain implants based on 

microelectrode arrays are able to record the activity of individual neurons, appearing in the recorded 

signal as peak potential variations called action potentials.  However, several neurons can be recorded 

by the same electrode.  The goal of spike-sorting is to extract and separate the activities of different 

neural cells from a common extracellular recording taking advantage of the fact that the shape of an 

action potential on an electrode depends on the neuron it stems from.  Thus spike-sorting can be seen 

as an unsupervised pattern recognition task where the goal is to detect and classify different 

waveforms.  Most classical spike-sorting approaches use three separated steps: detecting all action 

potentials in the signal, extracting features characterizing their shapes, and separating these features 

into clusters that should correspond to different neural cells.  Though online methods exists, most 

widespread spike-sorting methods are offline or require an offline preprocessing step, which is not 

compatible with online application such as Brain-computer interfaces (BCI).  Moreover, the 

development of ever larger microelectrode arrays creates a need for fully automatic and 

computationally efficient algorithms.  Using an STDP network brings a new approach to meet these 

requirements.  We designed a network taking the electrode signal as an input and giving out spikes 

that correspond to the spiking activity of the recorded neural cells.  It is organized into several layers, 

designed to achieve different processing steps, connected in a feedforward way.  The first layer, 

composed of neurons acting as sensory neurons, convert the input signal into spike train.  The 

following layers are able to learn patterns from the previous layer thanks to STDP rules.  Each layer 

implement different mechanisms that improve their performances, such as resource-dependent STDP, 

intrinsic plasticity, plasticity triggered by inhibition, or neuron models having rebound spiking 

properties.  An attention mechanism has been implemented to make the network sensitive only to 

parts of the signal containing action potentials.  This network was first designed to process data from 

a single electrode, and then adapted to process data from multiple electrodes.  It has been tested both 

on simulated data, which allowed to compare the network output to the known ground truth, and on 

real extracellular recordings associated with intracellular recordings that give an incomplete ground 

truth.  Different versions of the network were evaluated and compared to other spike-sorting 

algorithms, and found to give very satisfying results.  Following these software simulations, we initiated 

an FPGA implementation of the method, which constitutes a first step towards embedded 

neuromorphic implementation. 
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RESUME 

 

La reconnaissance de motifs est une tâche cruciale pour les êtres vivants, exécutée avec efficacité par 

le cerveau.  Les réseaux de neurones profonds artificiels reproduisent de mieux en mieux ces 

performances, avec des applications telles que la reconnaissance d’images ou le traitement du 

langage.  Ils nécessitent cependant un apprentissage intensif sur de grands jeux de données et couteux 

en calculs.  Les réseaux de neurones à impulsions, plus proches du fonctionnement du cerveau avec 

des neurones émettant des impulsions et des lois d’apprentissage dites STDP dépendant du temps 

entre deux impulsions, constituent une alternative intéressante.  Ils permettent un apprentissage non 

supervisé et ont déjà été utilisés pour la reconnaissance visuelle ou auditive, mais les applications 

restent limitées par rapport à l’apprentissage profond classique.  Il est d’autant plus intéressant de 

développer de nouvelles applications pour ces réseaux qu’ils peuvent être implémentés sur des circuits 

neuromorphiques connaissant aujourd’hui des développements importants, notamment avec les 

composants analogiques « memristifs » qui miment la plasticité synaptique.  Ici, nous avons choisi de 

développer un réseau STDP pour un problème crucial en neuroscience: le spike-sorting.  Les implants 

cérébraux composés de matrices de microélectrode permettent d’enregistrer l’activité individuelle de 

multiples neurones, prenant la forme de pics de potentiel dans le signal, appelés potentiels d’action.  

Une même électrode enregistre l’activité de plusieurs neurones.  Le spike-sorting a pour but de 

détecter et trier cette activité, en utilisant le fait que la forme d’un potentiel d’action dépend du 

neurone qui l’a émis.  Il s’agit donc d’un problème de reconnaissance de motifs non supervisée.  Les 

méthodes classiques de spike-sorting consistent en trois étapes : la détection des potentiels d’action, 

l’extraction de traits caractéristiques de leurs formes, et le tri de ces caractéristiques en groupes 

correspondant alors aux différentes cellules neurales.  Bien que les méthodes onlines existent, les 

méthodes les plus répandues nécessitent un traitement offline, qui n’est pas compatible avec les 

applications temps réelles telles que les interfaces cerveau-machine (BCI).  De plus, le développement 

de matrices de microélectrodes toujours plus denses nécessite des méthodes automatiques et 

efficaces.  Utiliser un réseau STDP apporte une nouvelle méthode pour répondre à ces besoins.  Le 

réseau que nous avons conçu prend en entrée le signal de l’électrode et produit en sortie un train 

d’impulsions qui correspond à l’activité des cellules enregistrées.  Il est organisé en différentes 

couches, connectées en série, chacune effectuant une étape du traitement.  La première couche, 

constituée de neurones senseurs, convertit le signal d’entrée en train d’impulsions.  Les couches 

suivantes apprennent les motifs générés par la couche précédente grâce aux lois STDP.  Chaque couche 

est améliorée par l’implémentation de différents mécanismes, tels que le STDP avec ressources, 

l’adaptation de seuil, la plasticité déclenchée par l’inhibition, ou un modèle de neurone déchargeant 

par rebond.  Un mécanisme d’attention permet au réseau de ne traiter que les parties du signal 

contenant des potentiels d’action.  Ce réseau a été conçu dans un premier temps pour traiter des 

données mono-électrode, puis adapté pour traiter des signaux provenant d’électrodes multiples.  Il a 

été testé d’abord sur des données simulées qui permettent de comparer la sortie du réseau à la vérité, 

puis sur des enregistrements réels de microélectrodes associés à des enregistrements intracellulaires 

donnant une vérité partielle.  Les différentes versions du réseau ont été ainsi évaluées et comparées à 

d’autres algorithmes, donnant des résultats très satisfaisants.  Suite à ces résultats simulés sur 

ordinateur, nous avons travaillé à une implémentation FPGA, constituant une première étape vers une 

implémentation embarquée neuromorphique. 
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I. INTRODUCTION: CONTEXT AND GOAL OF THE THESIS 

 

 Stakes of recording the brain 
 

Understanding the brain is maybe one of the most interesting challenges for scientists nowadays.  Will 

our intelligence, some day, be able to understand its own mechanics? The long path towards this goal 

begins by observing what is going on in our head.  The human brain is constituted of tens of billions of 

neurons, and thousands of times more synapses connecting them.  These two elements constitute the 

computational bricks of the brain, connected together in an incredibly complex network that 

neuroscientists are trying to unravel.  Anatomical observations allow us to understand how the 

neurons and their connections are organized in the brain.  This makes us progress towards 

understanding how it works, but needs to be completed by functional observations, in other words 

measuring the neuronal activity, to understand how the information is encoded, transmitted and 

processed in the brain.   

Neuronal activity is both electric and chemical. At its resting state, a neuron has its membrane potential 

at an equilibrium (around -70 mV).  This potential then varies depending on the activity received from 

other neurons through synapses.  When it increases up to a threshold value, the neuron fires.  Different 

voltage-gated ion channels become activated, which modifies the transmembrane currents and 

triggers an abrupt increase of the neuron’s potential followed by an abrupt decrease before returning 

to its resting state.  This phenomenon is called action potential or spike.  This action potential 

propagates along the neuron’s axon, through similar ion channels’ mechanisms.  The axon is 

terminated by synapses through which the action potential is chemically transmitted to other neurons 

triggering the opening of channels that in turn modify the receptor neurons’ potentials (Figure I-1).  

Action potentials are thus the nervous system’s information carrier.  Recording the spiking activity of 

different neurons is thus crucial to understand how the information is encoded and processed in the 

brain. 

 

Figure I-1: Emission and propagation of an action potential in neurons 

It is known that specific neural cells participate in the encoding of specific behaviors, stimuli or 

concepts.  For example, in the visual cortex, some neural cells are sensitive to visual stimuli oriented 

in a specific direction, and different cells have different preferred directions.  Similarly, it has been 

found that, in the motor cortex, some neurons code for different directions of the arm movement and 

that a complex movement can be decoded from the collective firing of a group of cells (Georgopoulos 

et al. 1986; Schwartz 1994).  Spatial representation and navigation is encoded by neural cells in the 
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hippocampus, called place cells, that code for specific locations in an environment (Moser et al. 2008).  

Another study also shows that single facial characteristics are encoded by single cells (Chang & Tsao 

2017).  Recording individual neural spiking activity is thus crucial to analyze how neural information is 

encoded.  Recording several neurons simultaneously also allows to understand how the spiking activity 

of different neurons interact to encode and to process more complex concepts (Buzsáki 2010). 

Besides improving our understanding of brain functions, decoding the information from neural 

recordings has practical applications such as neuro-prostheses and neuro-rehabilitation with Brain 

Computer Interfaces (BCIs).  BCIs consist in using the decoded activity from a neural recording to 

control an artificial actuator.  Hopes are to be able to replace defective functions with neuro-

prostheses, for example with a BCI controlling a robotic arm for tetraplegic patients (Hochberg et al. 

2012) or a BCI controlling a speech synthesizer for aphasic patients (Bocquelet et al. 2017).  Decoding 

brain activity can also be used for neuro-rehabilitation, which allows to restore motor function by 

stimulating muscles according to the decoded activity using either electrodes on the surface of the skin 

(Bouton et al. 2016) or implanted ones (Ajiboye et al. 2017).  In these systems, the processing of neural 

activity recording should be done in real-time.  Moreover, the recording’s quality need to be high 

enough to ensure the possibility to decode complex behaviors.  Ideally, this implies being able to record 

individual spiking activity from a large number of neurons.  Experimentally, it has been shown that the 

number of cells recorded actually improves the overall decoding quality (Wessberg et al. 2000; Ifft et 

al. 2013). 

Recording technologies have evolved to meet these requirements.  Nowadays, microelectrode arrays 

(MEA) are able to record the individual activity of hundreds of neurons and the technology is still 

improving.  To fully take advantage of these advances, new algorithms have to be developed for 

efficiently processing the corresponding data online and in real time.   

 

 Microelectrode arrays recordings and spike-sorting. 
 

Neural activity recording technologies are diverse, each with their own advantages and drawbacks.  

Among the most known non-invasive methods, we can cite EEG, MEG, fMRI or PET scan.  EEG measures 

the electrical fields generated on the scalp by the coordinated activity of neurons.  MEG measures the 

magnetic fields outside the head.  fMRI and PET scan measure metabolic changes such as the blood 

flow or oxygenation variations through the brain, correlated with neural activity.  These non-invasive 

methods are useful for diagnostics and functional experiments but do not allow the recording of 

individual cells.  In contrast, the patch clamp method consists in placing a micropipette in contact with 

a neural cell’s membrane to record its intracellular potential. This method allows to record individual 

cells, but only a few neurons can be recorded simultaneously and the method is not suitable for in vivo 

experiments.  Microelectrode arrays (MEA) offer a good solution to record the individual activity of 

numerous cells in vivo.  They consist in micrometer-scale electrodes, often placed on sharp needles, 

arranged in an array, and implanted a few millimeters under the surface of the brain in the extracellular 

medium.  When a neuron fires, the action potential induces transmembrane currents which modifies 

the potential of the extracellular medium.  Thus an action potential can be recorded by an extracellular 

electrode placed close enough to the neuron (under about 100µm).  Hence MEAs are able to record 

individual neural spikes. 
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An example of widely used MEA for in vivo experiments is the Utah array (Figure I-2.a), which contains 

one hundred microelectrodes.  MEAs are always improving, with arrays containing up to thousands of 

electrodes, spaced by tens of micrometers (Alivisatos et al., 2013; Angotzi, Malerba, Zucca, & 

Berdondini, 2015; Lopez et al., 2016; Pothof et al., 2016; Rios, Lubenov, Chi, Roukes, & Siapas, 2016; 

Seidl et al., 2012) (Figure I-2.b).  The increasing number electrodes on the same device allows on one 

hand to record more and more neurons simultaneously, opening opportunities for complex decoding.  

On the other hand, dense MEAs generate a huge flow of data, which require suitable processing 

algorithms, especially for real-time applications.  Ideally, most processing should be done at the level 

of the electrode, to reduce the flow of data to transmit to the rest of the experimental chain.   

 

Figure I-2: Examples of microelectrode arrays (MEA).  (a) Utah array, adapted from (Hochberg et al. 2006).  (b) Dense MEA, 

adapted from (Rios et al. 2016). 

In particular, one type of processing that is usually done on MEA recordings is spike-sorting.  As stated 

previously, an extracellular electrode is able to record the spiking activity of nearby neurons.  Thus, the 

activity of the few neural cells surrounding the electrode is recorded on the same electrode signal by 

superposition.  As the shape of the action potential recorded by the electrode depends on how the cell 

is positioned relatively to the electrode, it is possible to separate the spiking activity of the few 

recorded cells thanks to the different action potential shapes.  The process is called spike-sorting.  

Many algorithms exist for spike-sorting, reviewed in Section II.  Most of them are satisfying for offline 

processing and for a limited number of electrodes.  However close-loop experiments require an 

immediate feedback from the neural data decoding, which implies real-time spike-sorting.  This 

constraint is even more difficult to meet when using a high number of electrodes, as it increases the 

amount of data to process.  Beside online applications, a high number of electrodes also make human 

supervision on spike-sorting impossible, thus requiring fully automatic methods.  Therefore there is a 

need for new efficient online and automatic spike-sorting methods.   

 

 Pattern recognition and artificial neural networks 
 

The principle of spike-sorting is to detect action potentials in a signal, and to classify them according 

to their shapes.  Spike-sorting is thus a pattern recognition problem, a field that is widely explored in 

artificial intelligence.  The most known forms of pattern recognition are image processing or natural 
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language processing.  Many solutions exists to solve this kind of problem, sometimes inspired by the 

natural ability of our brain to solve these tasks. 

In particular, artificial neural networks are very popular in artificial intelligence and widely used for 

pattern recognition tasks.  They are usually constituted of formal neurons, modeled by a mathematical 

activation function transforming a real input value, which is the sum of other neurons’ outputs, into a 

real output value (Figure I-3.a).  The neurons are connected together through synapses characterized 

by a weight, which defines how much a presynaptic neuron influences the postsynaptic neuron.  The 

mathematical properties of these networks make the synapses’ weights optimization possible through 

a gradient descent method, called backpropagation (Rumelhart et al. 1986), so that the network 

‘learns’ to achieve a specific task.  This neural network model is very convenient but not biologically 

realistic.  In contrast, spiking neural networks (SNNs) use spikes to convey information.  The spikes are 

modeled as discrete binary events transmitted between neurons through synapses.  A spiking neuron 

receives spikes from inputs neurons, integrates them through a temporal dynamic and in turn emits 

other spikes (Figure I-3.b).  Though SNNs can also be trained using a backpropagation algorithm (Bohte 

et al. 2002), it is possible to use biologically realistic learning rules.  In particular, it has been shown 

experimentally, by stimulating pairs of real neurons, that the weight of a synapse changes depending 

on the time difference between a postsynaptic spike and a presynaptic spike (Bi & Poo 1998).  This 

phenomenon is called spike-timing-dependent plasticity (STDP) (Figure I-4) and can be implemented 

in SNNs, which are then called STDP networks.  STDP rules allows spiking networks to learn patterns 

by positively reinforcing synapses contributing to the postsynaptic activity.  A review of STDP network 

models is given in Section III. 

 

Figure I-3: Difference between formal neurons and spiking neurons.  (a) Formal neurons process real values through an 

activation function.  (b) Spiking neurons process spikes through a dynamic integration. 
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Figure I-4: Example of spike-timing-dependent plasticity, observed experimentally.  Adapted from (Bi & Poo 1998) 

STPD networks have been used for a few pattern recognition tasks, but applications to real world 

problems are still sparse.  Indeed, there is at the moment no standard way to train an STDP network 

to achieve a specific task.  However, STDP networks have other advantages compared to formal neural 

networks.  First, STDP networks naturally allow unsupervised learning, which is essential for spike-

sorting as the ground truth is unknown.  Second, formal neural networks usually require training on a 

huge amount of data, whereas STDP networks can learn on few examples. 

 

 The advent of neuromorphic hardware for low-power computing 
 

Though artificial neural networks are widely used for pattern recognition tasks, their main 

inconvenient is that they involve many neurons and many synapses working in parallel, which is 

computationally very demanding, especially when they are executed on traditional computers with 

sequential architectures.  This is why neuromorphic hardware, whose purpose is to natively implement 

neural networks in integrated chips, currently undergoes important developments.  In particular, 

memristive components are being developed, which are able to mimic a synapse with STDP at a 

miniaturized scale (Figure I-5) (Jo et al. 2010; Indiveri et al. 2013; Indiveri et al. 2015; Park et al. 2015; 

Saïghi et al. 2015; Rajendran & Alibart 2016; La Barbera et al. 2016; Sourikopoulos et al. 2017).  This 

kind of devices thus opens an opportunity for STPD networks to be implemented in low-power 

miniaturized devices.  Therefore both the unsupervised learning properties of STDP networks and their 

possibility to be implemented in such devices offer important perspectives for pattern recognition in 

the future. 
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Figure I-5: Example of neuromorphic device, including memristive synapses and Leaky-Integrate-and-Fire neurons.  

Adapted from (Park et al. 2015) 

 

 Goal of the thesis: online spike-sorting with an STDP network 
 

In this context, the goal of this thesis work was to design a new unsupervised and online method for 

spike-sorting, using an STDP network.  In contrast to (Zhang et al. 2015), where an STDP network was 

used as part of the spike-sorting method, here we aim at performing the entire spike-sorting process 

with an STDP network, without any pre-processing or post-processing.  We also want the network to 

process the electrode signal online.  This means that the electrode signal is directly streamed as an 

input to the network, and that the output spike train should correspond to the sorted spiking activity, 

each output spike corresponding to an action potential in the electrode signal. A preliminary study was 

done towards this goal (Werner et al. 2016).  This network was tested on data with very high signal-to-

noise ratio (SNR) but was not suitable at typical SNR found in cortical neural recordings.  Moreover, it 

required a bank of filters to decompose the input signal, which added computation cost to the method.  

Here, no further processing is applied beyond the initial band-pass filter eliminating the slowly evolving 

local field potentials (LFP).   

Designing such a network implied finding a suitable network structure, choosing neurons and synapses 

models for each functional parts of the network, and parameterizing correctly each element to achieve 

the desired goal. My work was mainly focused on processing single electrode signals, which constitutes 

the first step towards processing richer recordings.  However, a design adapted for multiple electrodes 

was also tested.  The problem was treated from an algorithmic point of view, leaving aside the 

hardware implementation but keeping in mind that the designed network should be adaptable to a 

neuromorphic implementation.  Nevertheless, a preliminary work was done to implement the network 
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on a field-programmable gate-array (FPGA), which is much more adapted than a computer for parallel 

processing.   
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II. SPIKE-SORTING STATE OF THE ART 

 

 Spike-sorting principle 
 

The signal recorded by an extracellular microelectrode contains a local field potential, action 

potentials, and noise.  The local field potential is believed to correspond to the average current 

generated by cellular elements in a local area, mostly reflecting synaptic activity (Buzsáki et al. 2012).  

It varies slowly and can be removed with a high-pass filter (above about 200-300 Hz).  After filtering, 

we obtain a noisy signal that contains action potentials emitted by different neurons close to the 

electrode.  The role of spike-sorting is to detect and sort these action potentials, to obtain the 

individual spiking activity of each neural cell.  The principle of spike-sorting mainly relies on the fact 

that the shape of an action potential recorded by an electrode depends on the geometries of both the 

neuron and the electrode, and their relative positions.  Thus, on an electrode signal, action potentials 

with the same shape most probably come from the same neuron whereas action potentials with 

different shapes come from different neurons (Figure II-1).  Spike-sorting methods thus use the action 

potential waveforms, or features extracted from these waveforms to sort the activities of different 

neurons.  Possibly, additional information such as timing information like inter-spike interval 

(Delescluse & Pouzat 2006) or spatial information (Rossant et al. 2016; Hilgen et al. 2017) can be used.   

 

Figure II-1: Spike-sorting principle.  An extracellular microelectrode records action potentials from several neural cells.  

These action potentials can be sorted as they have different shapes depending on which cell emits them. 

 

 Classical methods 
 

Once the signal has been correctly filtered, it is constituted of the superposition of noise and action 

potentials emitted by different neurons.  Most spike-sorting methods are decomposed into three 

distinct steps: a detection step to find the action potentials in the signal, a feature extraction step to 

extract features characterizing the detected action potential shapes, and a clustering step to group the 

feature vectors into different clusters corresponding to the different neural cells recorded in the signal 

(Figure II-2).  This section describes the most used algorithms for each of these steps, as well as some 

more global approaches to spike-sorting.  A good review can also be found in (Rey et al. 2015). 
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Figure II-2: Decomposition of spike-sorting into three main steps. 

 

1. Detection 
 

The simplest way to detect action potentials in a microelectrode signal is to use a simple threshold.  

Each time the recorded potential crosses this threshold, it is considered that an action potential is 

present.  This threshold can be positive or negative or both depending on the expected sign of the 

action potential peak.  The threshold is most of the time chosen between 3 and 4 times the standard 

deviation of the noise, which gives a good compromise between false negatives and false positives.  A 

first step is thus to estimate this standard deviation.  In case of a Gaussian noise, the standard deviation 

can be estimated based on the median, with 𝜎 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑠|) 0.6745⁄ , where s is the signal (Quiroga 

et al. 2004; Rossant et al. 2016).  This method using median is robust to the presence of action 

potentials in the signal.   

More sophisticated methods apply a preprocessing to the signal before thresholding.  The idea is to 

better take into account the characteristics of an action potential. Indeed even if their shape differ 

from one neuron to another, they share common properties such as a similar frequency content, or 

similar features in their shapes.  Some examples of such methods are the use of an energy operator 

(Rutishauser et al. 2006), or the use of wavelets (Nenadic & Burdick 2005; Escola et al. 2007).  In case 

of a template matching method (see Section II.B.4), it is also possible to use the templates for detection 

(Bankman et al. 1993).  Template matching methods are often used in combination with a preliminary 

simpler detection method to establish the templates.  (Delescluse & Pouzat 2006) used a detection 

method where a single template was computed for detection. 

In case of multiple electrodes, the detection has to take into account spatial information.  Indeed an 

action potential is recorded on several neighboring electrodes but not all electrodes.  Thus the signal 

shape is relevant only on the electrodes where the action potential appears.  The number of electrodes 

detecting an action potential from a neural cell can vary depending on the position and nature of the 

cell.  As an example, (Rossant et al. 2016) used a detection algorithm where a high threshold is applied 

first to detect the presence of action potential.  Then a lower threshold is applied and spatially 

connected components containing at least one high-threshold crossing potential are considered to 

correspond to one action potential. This dual-threshold method allows to limit false positives with the 

high threshold while merging correctly all electrodes involved in a same action potential thanks to the 

low threshold.   
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Once an action potential has been detected, its shape is stored for further processing.  To be coherent 

between two occurrences of a similar action potential, it is necessary to always store the same number 

of samples around a reference time point.  This reference point is often chosen as the maximum or 

minimum of the action potential, which is more robust than taking the point at which the waveform 

crosses the threshold as it can vary because of noise.  Additionally, the signal is often up-sampled 

before alignment to be robust to sampling jitter.    

 

2. Feature extraction 
 

Some spike-sorting algorithms such as in (Rutishauser et al. 2006) or (Pouzat et al. 2002) or more 

generally template matching algorithms use directly the whole action potential waveform for 

clustering.  However this require to manipulate high-dimensional vectors, especially in the case of 

multiple electrodes, which can impair the execution time and even the clustering quality, a 

phenomenon known as the “curse of dimensionality”.  For this reason most spike-sorting methods use 

a reduced number of features, extracted from the waveforms.  This can be very simple features such 

as the amplitude or the width of the waveform.  As an example, (Delescluse & Pouzat 2006) use the 

peak amplitudes on the four recording sites of a tetrode.  Other methods use more complex features 

such as wavelets (Quiroga et al. 2004; Hulata et al. 2002).  It is thus possible to use predefined features, 

however most methods use an automatic dimensionality reduction algorithm such as principal 

component analysis (PCA) (Shoham et al. 2003; Rossant et al. 2016; Hilgen et al. 2017), which projects 

the waveforms into a subspace that accounts for most of the variations between waveforms.  In case 

of multiple electrodes, spatial information can also be used for clustering.  In (Rossant et al. 2016), a 

vector indicating on which electrodes the action potential has been detected is used, in addition to 

PCA features.  In (Hilgen et al. 2017), the spatial position of each action potential is estimated through 

a method based on barycenters and used as a feature. 

 

3. Clustering 
 

After the detection and the features extraction steps, each detected action potential is represented by 

a vector in an N-dimensional space.  Two action potentials that are close to each other in this space 

are likely to have a similar waveform and thus to stem from the same neural cell.  The goal is thus to 

sort the feature vectors into clusters, corresponding to action potential waveforms stemming from 

different neural cells.  This last step is therefore a clustering problem, for which many solutions exist. 

One classical method often used in spike-sorting is the expectation-maximization algorithm.  The data 

to cluster is modelled as stemming from a mixture of a given stochastic distribution, most of the time 

a Gaussian distribution.  This is an iterative algorithm, where the parameters of the data distribution 

are updated at each iteration.  In the expectation step, each data point’s label is estimated given the 

current model parameters.  Then in the maximization step, the parameters are optimized to best fit 

the estimated labels.  These two steps are repeated until convergence (Figure II-3) has been achieved.  

An improved version of this algorithm has been used for example in (Rossant et al. 2016), where each 

data point is associated to a mask giving information about which dimensions are the most relevant 
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for clustering.  (Shoham et al. 2003) also use the expectation-maximization algorithm on a mixture of 

t-distributions. 

 

Figure II-3: Illustration of the expectation-maximization algorithm.  The expectation steps assign data points to a cluster.  

The maximization steps optimize the distribution’s parameters to fit the data points’ labels. 

Another widely used method is the K-mean algorithm.  K-mean is also an iterative algorithm where the 

centers of the clusters are updated at each iteration: the data points are labeled according to the 

nearest center, and then the centers are updated as the barycenter of the corresponding points.  This 

method has been used for example in (Chah et al. 2011).  (Oliynyk et al. 2012) use a fuzzy C-means 

algorithm, which is a variation of the K-means algorithm where the belonging of a point to a cluster is 

weighted.   

The expectation-maximization as well as the K-mean algorithms require the user to initially choose the 

number of clusters to find.  This is not satisfying for spike-sorting, as the number of clusters is a priori 

unknown and should ideally be determined automatically by the algorithm.  A way to overcome this 

problem is to automatically test different numbers of cluster and select the best one afterward.  

However other algorithms do not have this default.  This is the case for example of the mean-shift 

algorithm, used for example in (Marre et al. 2012) and  (Hilgen et al. 2017).  Its principle is that for each 

point of the space, we define a window around this point.  The barycenter of the data points within 

this window is computed and the window is shifted to be centered on this barycenter.  The process is 

repeated until the window stabilizes on a local maxima (Figure II-4.a).  This way, each point can be 

assigned to the nearest local maxima, which correspond to a cluster (Figure II-4.b).  This method is 

almost non-parametric as the only parameter to choose is the size of the window. 
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Figure II-4: Mean-shift algorithm illustration.  (a) Computation of local density maxima thanks to a window, shifted to its 

barycenter at each step.  (b) Each point a space is assigned to the nearest local density maxima, with the method presented 

in (a), to form clusters. 

Another example of non-parametric method is the super-paramagnetic clustering used in (Quiroga et 

al. 2004).  The main idea of this algorithm is to randomly assign a cluster to a point, and this new cluster 

assignment is propagated to neighbor points with a probability depending on the distance between 

points.  Thus points that are close to one another will tend to change their labels together.  This process 

is repeated many times, to ensure a relevant classification.   

Finally, (Zhang et al. 2015) use an STDP network as part of their clustering algorithm.  This network is 

inspired from pattern recognition for static inputs.  It has one input layer and one output layer.  Each 

detected waveform is given as an input of the network after being converted in an input spike train 

through a binary encoding of the signal values.  Each time a waveform is presented, an output neuron, 

corresponding to a cluster, is activated.  During the training phase the synaptic weights are also 

updated for each presented waveform.  The number of clusters is monitored externally by activating 

or deactivating neurons of the output layer.  Clusters are added if too many points are not classified 

and clusters are removed if their corresponding neuron does not fire for a long time.   

 

4. Template matching and other global approaches 
 

Separating the spike-sorting problem into three steps provides a simple methodology.  However these 

steps are not independent and the performance of one step might depend on how the previous steps 

are solved.  A global approach to the spike sorting problem might lead to better performances.  As a 

simple example, it is much easier to detect an action potential in a noisy signal if we know its exact 

waveform.  Most methods that use such a global approach are based on the use of templates 

corresponding to each different action potential waveforms, and are thus called template matching 

methods.  These methods often rely on an initial clustering step to initialize the templates, usually 

using a classical three-step method as presented previously.  However, it is not necessary in this 

preprocessing step neither to find all the action potentials, nor to assign all the found action potentials 

to a cluster, but simply to find the centroids of the clusters that will constitute the templates.  (Yger et 

al. 2016) is an example of such a template matching method.  After establishing a set of templates, the 

scalar product of the signal with each time-shifted version of each template is computed.  The template 

and shift time with the highest scalar product is selected and considered as a found and classified 

action potential. This process is then iterated, as part of a greedy algorithm.  In (Franke et al. 2010), 
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the signal is considered as the sum of the convolution of the ground truth spike trains with waveforms.  

The templates estimated by the preprocessing step are used to establish filters that approximate the 

deconvolution of the signal. (Ekanadham et al. 2014) presents an even more global approach, in the 

sense that they optimize simultaneously both the template waveforms and the action potential times 

and amplitudes, to maximize the probability to have such amplitude and spike times given the 

waveforms and observed signal. More precisely, they alternate a step optimizing the spike times and 

amplitudes and a step optimizing the action potential waveforms. 

 

 Online vs.  offline methods 
 

Most spike-sorting methods require some offline processing.  Though offline spike-sorting can be used 

for post-experiment data analysis, it is necessary for closed-loop experiments to have an online real-

time spike-sorting method.  For a classical three step methods, if at least one of the steps requires an 

offline processing, then the spike-sorting method cannot be executed online without adaptation.  The 

detection step can usually be executed online, as the thresholding and the possible preprocessing 

operator are local operations that can be applied online.  Extracting predefined features from a 

waveform, such as its amplitude, can also be done online.  On the other hand, automatic 

dimensionality reduction algorithms such as PCA require a consequent number of data points, and 

thus cannot be applied online.  However, is it possible to compute the projection as an offline 

preprocessing step and then apply this projection online. Most clustering algorithms, such as 

expectation-maximization, K-means or mean-shift, also require an offline processing step for the same 

reason.  A noticeable exception is given by (Rutishauser et al. 2006) whose clustering algorithm can be 

applied online.  At each detection of an action potential, the corresponding waveform is assign to a 

cluster according to the distance with the cluster centroid, and the centroid of the assigned cluster is 

then updated.  Template matching algorithm are often suitable for online execution, though the 

initialization of the template might require an initial short offline preprocessing step.  This is the case 

of the method presented in (Franke et al. 2010) which can be applied online once the templates have 

been defined.   

Another factor that can jeopardize real-time spike sorting is the computation time.  In addition to 

intrinsically allow an online processing, a real-time spike-sorting method should also be able to detect 

and classify an action potential within a few milliseconds, which is the duration of an action potential. 

In particular, the clustering part can be very time-consuming if too many dimensions are used.  This 

time constraint becomes particularly critical when the number of recording electrodes is important as 

in currently-developed cortical implants, generating large amounts of data to process.   

 

 Using multiple electrodes 
 

Using large-scale multi-electrode implants allows to record more neural cells, and brings more 

information for spike-sorting but requires a suitable spike-sorting method.  In the case of an electrode 

array where electrodes are far enough from each other to record completely different neurons, such 

as Utah arrays, each electrode can be processed independently as a single electrode.  In contrast, a 
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few electrodes very close to one another, such as tetrodes, may record the same neural cells, and the 

set of electrodes can thus be processed together as a single electrode by simply concatenating the 

features.  In between, using dense microelectrode arrays brings an interesting spatial dimension to the 

spike-sorting problem.  Indeed, in that case, each electrode detects the activity of a few neural cells, 

as for a single electrode, but each neural cell is also recorded by several electrodes but not all the 

electrodes of the array (Figure II-5).  Hence action potentials are spatiotemporal events.  They are 

limited both in time, as they last about a millisecond, and in space, as there are visible on a few 

neighboring electrodes.  This spatial dimension is all the more important as, because of the high 

number of recorded neural cells, many action potentials will overlap in time.  However they can be 

easily discriminated if they do not overlap in space.  This spatial aspect thus affects all the steps of the 

spike-sorting algorithm.  (Lefebvre et al. 2017) gives good review about existing multi-electrode spike-

sorting algorithms.   

 

Figure II-5: Example of multiple electrodes recording, adapted from (Rossant et al. 2016).  (a) Geometry of the electrode 

array.  (b) Sample of recorded signal. Action potentials are highlighted with rectangles. 

Detection should not only give the timestamp of the action potential event but also information about 

its location.  A common way to perform a non-redundant detection is to search for local minima (or 

maxima) both in time and space, which is done for example in (Yger et al. 2016).  Each event thus 

correspond to one timestamp and one electrode.  (Rossant et al. 2016) has a different approach, where 

events are described as spatially connected components over a neighborhood graph.  The events are 

detected as crossing a high threshold and then extended to neighboring electrodes crossing a lower 

threshold.  This spatial information should then be used for clustering.  In (Rossant et al. 2016), the 

electrodes detected as belonging to the action potential event are represented in a mask vector, whose 

components are equal to one for these electrodes, and to zero for the others.  This mask is then used 

in a masked expectation-maximization algorithm to indicate where the relevant values are, the 

irrelevant ones being replaced by a random distribution corresponding to noise.  (Yger et al. 2016) used 

a very practical approach.  As each event is associated to one electrode, the clustering is done 

independently on each electrode.  Some clusters can be merged afterward if similar action potentials 

sometimes have their peaks on one electrode and some other times on another neighboring one.  An 

interesting approach is used in (Hilgen et al. 2017), as the location of an action potential is processed 
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like another feature.  Indeed for each action potential event, a barycenter is computed and the 

coordinates are used as features in a mean-shift algorithm.  Template matching methods are not much 

affected by the use of multiple electrodes.  Indeed, once the templates have been established, they 

implicitly contain the information about the action potential location, as the template is null on 

electrodes where the action potential is not visible.  The spatial aspect is thus mainly used in the 

initialization of the templates. 

Another particularity of spike-sorting on multiple electrodes is that the noise can be correlated across 

different electrodes.  Knowing the correlation matrix between the electrodes, it is possible to apply a 

linear transformation to the multiple-electrode signal to obtain a new signal with the same number of 

dimensions but where the dimensions are not correlated.  This process, known as noise whitening, is 

used in many spike-sorting methods (Delescluse & Pouzat 2006; Marre et al. 2012; Ekanadham et al. 

2014; Yger et al. 2016) and can also be used to remove temporal correlations. 

 

 Common difficulties 
 

In the previous section we presented the general principles of spike-sorting and some classical 

algorithms to solve it.  However, while designing a spike-sorting method, one can be confronted to 

several difficulties specific to neural recordings.  In particular the fact that the action potentials emitted 

by one neural cell have each time the same shape is not always true.  Here we present some classical 

known difficulties encountered in spike-sorting and methods to overcome them. 

 

1. Bursts of action potentials 
 

Neural cells sometimes fire in burst, which means they emit several spikes within a short period of 

time.  The problem is that the amplitude of the action potential tends to decrease at each occurrence 

within a burst (Figure II-6).  The assumption that the shape of the action potential does not vary is thus 

not true in this case.   

 

Figure II-6: Two examples of bursts, during which the amplitude of the action potential decreases.  Adapted from 

(Delescluse & Pouzat 2006) 

To tackle this problem, some spike-sorting algorithms use the weakest assumption that the action 

potential from a given neural cell always has the same base waveform, but modulated in amplitude.  

The method presented in (Yger et al. 2016) is a template matching algorithm that uses this assumption.  
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An action potential with a different amplitude can still be detected with the corresponding template, 

and its amplitude is computed after detection and classification.  (Franke et al. 2010) and (Ekanadham 

et al. 2014) also use templates modulated by an amplitude in their algorithm.  In both case the 

amplitude estimation is also used to estimate correctly the templates.  (Delescluse & Pouzat 2006) 

used a different strategy, as the only features used in their algorithm are the action potentials’ 

amplitudes and not their precise shapes.  Their algorithm relies on an explicit model of the action 

potential amplitude depending on the inter-spike interval, an information that is not used in the 

previously presented algorithms.   

 

2. Non stationary data 
 

Another situation where the assumption that waveforms do not change is violated is the case of long 

recordings, during which electrodes can slowly drift, causing slow changes in the action potential 

waveforms (Figure II-7).  A common way to solve the problem is to slice the recording into chunks that 

are short enough to assume that there are no significant waveform changes within one chunk.  This is 

done for example in (Franke et al. 2010).  Their method is an online template matching method, for 

which the templates are updated at the end of every chunks.  (Bar-hillel et al. 2006) also divides the 

recording into chunks.  The action potentials are modeled as a chain of Gaussian mixtures, and the 

method combines an expectation-maximization algorithm with a Bayesian method to link the mixtures 

of each chunk.  In (Calabrese & Paninski 2011), another variation of the expectation maximization is 

used, by combining it with a Kalman filter applied on the Gaussian mixture parameters. 

 

Figure II-7: Example of non-stationary data during a long recording, adapted from (Bar-hillel et al. 2006).  The projection of 

detected action potentials’ waveforms on two dimensions are shown at different times of the recording.  The waveforms 

slowly evolve with time.  When all action potentials are observed together (last picture), it is not possible to distinguish 

clusters. 

 

3. Temporal waveform overlap 
 

When action potentials from different neural cells occur in a short time interval, their waveforms may 

overlap in the signal. The resulting waveform is the sum of the different waveforms, which often makes 

it impossible to recognize for traditional algorithms (Figure II-8).   



33 
 

 

Figure II-8: Example of action potential overlap.  The first two action potentials are not overlapping are clearly recognizable.  

The last two action potentials are overlapping and sum up into a new waveform that ca not be classified easily. 

 

A first type of approach to solve this problem is to proceed by iterations, as this is done in (Yger et al. 

2016).  Their method is a greedy template matching algorithm.  At each iteration the template and 

time position obtaining the highest template matching score is selected and the corresponding 

waveform is then removed from the signal. Thus if at least one of two overlapping action potentials is 

detected, the second one can also be detected once the first one has been removed from the signal. 

The second type of approach is to use an algorithm based on a model that directly takes into account 

that action potential waveforms are summed.  This is the case of (Franke et al. 2010).  The first step of 

the algorithm is to filter the signal with filters based on templates, which is a linear operation.  The 

second step is an independent component analysis (ICA), which by nature take into account the fact 

that signals are summed.  Their study shows that the method is effectively robust to overlapping action 

potentials.  In (Ekanadham et al. 2014), the signal is modeled as the sum of templates multiplied by an 

amplitude coefficient, the amplitude being null when there is no action potential. The goal is thus to 

find the templates and their amplitudes for each sampling time.  The amplitudes and the templates 

are alternatively optimized, using respectively a gradient descent and a least-squares method.  The 

common point between these two methods, that make them robust to overlapping action potentials, 

is that they do not consider action potentials independently but all together.  Noticeably, methods 

able to disentangle overlapping waveforms are methods that have a global approach in contrast to 

methods decomposed in the three classical steps.  Indeed once a detection step has been applied, the 

detected waveform is considered to correspond to one action potential.  Therefore an action potential 

corrupted by another action potential cannot be classified correctly.   

 

 Spike-sorting software implementations 
 

Spike-sorting algorithms are numerous and diverse, and software implementations of spike-sorting 

methods are even more diverse.  A list of existing spike-sorting software can be found on the following 

web page, maintained by Simon Kornblith and reproduced in Table II-1: 

http://simonster.github.io/SpikeSortingSoftware/.  Some software applications implement a specific 

http://simonster.github.io/SpikeSortingSoftware/
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spike-sorting algorithm, some others offer several combinations of the different processing steps.  For 

similar algorithms, the choice of the language and implementation optimizations can have a strong 

impact on the execution time.  The user interface design also plays an important role in the software 

usage.  Despite the diversity of existing software applications, only a few allow a fully unsupervised 

online spike-sorting, and the execution time often becomes important for large MEA.    
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Table II-1: List of existing spike-sorting software.  Adapted from http://simonster.github.io/SpikeSortingSoftware/ 

Software Language Detection Feature Extraction Clustering Drift Overlap Large-

scale MEA 

Publications Comments 

BinaryPursuitSpik
eSorting 

MATLAB binary pursuit N/A binary pursuit No Yes No (Pillow et al. 2013)  

bpsort MATLAB binary pursuit, raw 
signal threshold 
with alignment 
(initialization) 

PCA (initialization) t-distribution MM 
(initialization) 

Yes Yes Yes 
  

CBPSpikesortDem
o 

MATLAB continuous basis 
pursuit 

continuous basis pursuit continuous basis 
pursuit 

No Yes Yes? (Ekanadham et al. 
2014) 

 

ClusterLizard C++ raw signal threshold wavelets + Lillifors test Euclidean distance Yes No No (Knieling et al. 2016)  

Combinato Python raw signal threshold 
with alignment 

Wavelets superparamagnetic 
clustering + template 
matching 

Yes No No (Niediek et al. 2016) GUI for inspecting 
clusters 

EToS C++ raw signal threshold multimodality-weighted 
PCA, multimodality pick-
up algorithm, Graph 
Laplacian features, PCA 

Variational Bayes and 
EM t-distribution and 
Gaussian mixture 
model 

No No No (Takekawa et al. 2010; 
Takekawa et al. 2012) 

 

FMMSpikeSorter MATLAB raw signal threshold focused mixture model focused mixture 
model 

Yes? No Yes? (Carlson et al. 2014)  

gpu_python Python N/A N/A Generalized Polya urn 
dependent Dirichlet 
process MM 

Yes No No (Gasthaus et al. 2009)  

KFMM MATLAB N/A N/A Kalman filter EM 
GMM 

Yes No No (Calabrese & Paninski 
2011) 

 

KiloSort MATLAB, 
CUDA C 

 Spatiotemporal SVD Template matching 
via stochastic batch 
optimization 

No Yes Yes (Pachitariu et al. 2016)  

MoDT MATLAB, 
CUDA C 

N/A PCA Mixture of drifting t-
distributions 

Yes No No (Shan et al. 2017)  

moksm MATLAB N/A N/A Mixture of drifting t-
distributions 

Yes No No (Shan 2014)  

opass MATLAB gamma process 
model 

PCA gamma process 
model 

Yes Yes Yes? (Carlson et al. 2013)  

OpenElectrophy Python raw signal 
threshold, MTEO 

PCA, ICA, wavelets EM GMM, K-means, 
mean-shift 

No No No 
 

GUI for manual 
clustering and 
inspecting results 

http://simonster.github.io/SpikeSortingSoftware/
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OSort MATLAB local energy 
threshold with 
alignment 

N/A template matching Yes No No (Rutishauser et al. 
2006) 

 

pebble C++, 
MATLAB 

? PCA ISO-SPLIT No No No (Magland & Barnett 
2016) 

 

phy (previously 
klustakwik) 

Python raw signal threshold 
with alignment 

PCA EM GMM, masked EM 
GMM 

No No Yes (Kadir et al. 2014; 
Rossant et al. 2016) 

GUI for inspecting 
sorting results.  Large, 
active community 

spikesort MATLAB raw signal threshold 
(height + width) 

PCA, factor analysis, 
sparse PCA, t-SNE 

1D GMM, 1D k-means No No No 
 

Claims "99.5% 
accuracy." Only 
supports clustering into 
two units. 

SpikeSorter.jl Julia hidden markov 
model 

spike width, trough to 
valley ratio 

hidden markov model No No No 
 

Algorithm described 
in Spike sorting with 
hidden Markov models 

SpikeSorting.jl Julia raw signal 
threshold, power, 
nonlinear energy, 
alignment 

PCA OSort-style template 
matching 

Yes? No No 
 

Many options planned; 
see documentation 

spyke Python raw signal threshold 
with alignment 

PCA, ICA gradient ascent 
(mean-shift variant) 

No No Yes (Spacek et al. 2009; 
Swindale & Spacek 
2014) 

GUI 

SpyKING Circus Python raw signal threshold 
+ iterative template 
matching 

PCA local density 
clustering (Rodriguez 
& Laio) + template 
matching 

No Yes Yes (Yger et al. 2016)  

trisdesclous Python raw signal threshold 
with alignment 

PCA EM GMM, k-means No No No 
  

Wave_clus MATLAB raw signal threshold 
with alignment 

wavelets + Lillifors test superparamagnetic No No No (Quiroga et al. 2004)  
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III. ARTIFICIAL STDP SPIKING NEURAL NETWORKS STATE OF THE ART 

 

The most known type of artificial neural networks are formal neural networks, which are very popular 

in artificial intelligence.  STDP networks differ from this type of neural networks on two main points.  

First, STDP networks are spiking neural networks (SNN).  They are constituted of neurons emitting 

spikes, which are discrete events characterized by their time of emission, whereas formal neurons 

output a real value with no temporal information.  In SNNs, information is thus conveyed through 

sequences of spikes, also called spike trains.  Second, formal neural networks are usually trained to 

perform a task through a global supervised or reinforcement algorithm, optimizing the weights of the 

synapses connecting the neurons.  STDP networks implement a spike-timing-dependent plasticity 

(STDP), which is a local learning rule, inspired from biological synapses (Bi & Poo 1998), which modifies 

a synapse weight depending on the time difference between spikes emitted by the presynaptic and 

the postsynaptic neurons.  From these two points of view, STDP networks are thus closer to biological 

reality than formal neural networks.  For this reason, they are often used to investigate how 

information is processed in the brain either in an effort to reproduce a specific neural function, or to 

study their computational properties.  They also have been used to solve concrete pattern recognition 

problems in different application fields.  In this section we will review different ways of encoding 

information in spiking neural network, neuron models and synaptic plasticity models and their 

properties, some important network properties and some existing applications of STDP networks to 

pattern recognition tasks. 

 

 Neural code: how to encode information in a neural network 
 

Understanding how the information in encoded in the brain is a fundamental question in neuroscience, 

for which there is, at the moment, no clear answer.  Through time, many possible coding schemes have 

been proposed.  When designing an artificial neural network, whether to test a model or for a 

computational application, the choice of how the information is encoded is crucial as it deeply impacts 

the network mechanics. 

1. Rate coding and its limitations 
 

Historically, the most widely used neural code is rate coding.  The idea of rate coding is that the 

information is contained in the firing rate of each neuron and not in the precise spike times.  When 

dealing with spiking neurons, their firing rates can be computed by averaging the number of spikes 

emitted within a short time period.  Other possibilities are to average the firing rate over a population 

of neurons, which requires an entire population to code for the same variable, or to average over 

several runs of an experiment.  The advantage of rate coding is that the firing rate takes continuous 

values, varying continuously in time and therefore is easy to manipulate.  An illustrative example is the 

population vector, which can be used to represent the direction of movement encoded by an ensemble 

of cortical motor neurons (Georgopoulos et al. 1986; Schwartz 1994).  This gave birth to the second 

generation of artificial neural networks.  In contrast with the first generation where the neurons’ 

outputs are binary, here the neurons’ outputs are real values, obtained through an activation function 
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of the weighted sum of their inputs.  This kind of neural network has the strong advantage that they 

can be trained for a specific task using a backpropagation algorithm (Rumelhart et al. 1986). 

The efficiency of the backpropagation algorithm explains its popularity in artificial intelligence 

applications, however it is not biologically realistic and cannot explain learning in the brain.  A strong 

argument supporting the fact that the firing rate cannot be the only way the information is encoded 

in the nervous system is that the speed at which some tasks are executed is incompatible with the time 

necessary to estimate a firing rate (Gerstner et al. 1993; Thorpe & Gautrais 1997; Johansson & Birznieks 

2004; VanRullen et al. 2005).  For example a visual task takes about 150ms to complete whereas, it 

would take about 100ms at each layer to integrate a reliable firing rate (Thorpe & Gautrais 1997).  

Another argument is the fact that rate coding constitutes a loss of information relatively to pulse 

coding, where individual spike times are taken into account.  As individual spike times carry more 

information than an average firing rate, spiking networks are thus theoretically more powerful 

computationally (Maass 1997a; Maass 1997b; Gerstner et al. 1993).  Although the rate-coding 

paradigm has shown its efficiency with formal neural networks, a pulse-coding paradigm is naturally 

more relevant for spiking neural networks, and probably closer to biological reality. 

 

2. Different forms of pulse coding 
 

Pulse coding can be declined into different forms, depending on how the information contained in the 

spike times is interpreted.  A first important aspect is how an analog stimulus can be encoded into a 

spike train.  The second aspect of pulse coding is how information carried in the spike train is used by 

the network.   

A first method to encode an analog stimulus into spikes is the latency code (Vanrullen & Thorpe 2002; 

Masquelier & Thorpe 2007; Thorpe & Gautrais 1997).  The principle of latency coding is an intensity-

latency conversion, which means that the latency of the first spike emitted by a neuron relatively to 

the onset of the stimulus depends on the intensity of the stimulus (see Figure III-1).  This is quite natural 

when using integrate-and-fire neurons as neurons integrating stronger stimulus fire first.  (Johansson 

& Birznieks 2004) show experimental evidence that this kind of code is actually found in sensory 

neurons.  Latency coding requires a reference time, from which the latency is computed.  It has been 

proposed that one possible reference signal could be the oscillatory brain activity, thus constituting a 

variation of latency coding called phase coding (Hopfield 1995; McLelland & Paulsen 2009; Masquelier 

2014).  It is indeed possible, by using a LIF neuron and an oscillatory signal to convert an analog stimulus 

or a rate code into a phase code.  Again, phase coding has also been observed experimentally 

(McLelland & Paulsen 2009). 
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Figure III-1: Latency coding principle.  Adapted from (Thorpe & Gautrais 1997) 

The second important point in neural code is how spike time information is used in the network.  In 

some case, the relevant information is carried by the strongest stimuli and thus by the early-arriving 

spikes.  This paradigm is used in (Masquelier & Thorpe 2007), where the information of the first spike 

time among sets of neurons is used for image processing.  More generally, network where the relevant 

information is carried by the spikes’ firing order are said to use a rank-order code (Vanrullen & Thorpe 

2002; Thorpe & Gautrais 1997) and are used when the earliest spikes are the most important ones.  

This is emphasized in (Vanrullen & Thorpe 2002) where an image processing algorithm is modeled 

using rank-order coding and where most of the original image can be reconstructed using only a small 

fraction of the spikes, i.e. those emitted early after the stimulus onset.  In some other cases, the exact 

spike times are crucial for the network mechanics.  For example, a network can use spike synchrony as 

a relevant pattern, which means that several neurons coding for different variables need to fire at the 

same time to trigger a spike in another neuron (Singer 1993).  This is natural for Leaky-Integrate-and-

Fire (LIF) neurons that need to receive enough spikes simultaneously to fire.  More generally, the 

relevant information can be contained in the spike time differences between several neurons, meaning 

that input neurons need to fire with precise spike time differences for the spike sequence to be 

recognized.  This property was termed as “polychrony” by (Izhikevich 2006).   To achieve this 

polychrony, a crucial element is the transmission delay between neurons, which makes it possible for 

spikes emitted by different neurons at different times to arrive simultaneously on the same readout 

neuron, as illustrated in Figure III-2 (Gerstner et al. 1993; Hopfield 1995; Izhikevich 2006). 

 

Figure III-2: Illustration of polychrony.  Adapted from (Izhikevich 2006).  (a) Synaptic connections with different 

transmission delays.  (b) Synchronous firing do not elicit postsynaptic spikes.  (c) Example of spike pattern triggering a 

postsynaptic spike in neuron a.  (d) Example of spike pattern triggering a postsynaptic spike in neuron. 
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Overall, whereas the rate code is simple to use due to its analog nature, pulse codes are more difficult 

to manipulate and require to make choices on how the time information is used but can lead to 

possibly more powerful computational properties.   

 

 Neuron models and their properties 
 

Neurons are one of the two key elements, with synapses, of an artificial neural network.  In spiking 

neural network, they obey to a temporal dynamic which can be inspired from what happens with real 

neural cells in the brain.   

Several types of neurons exist in the brain and they exhibit different behaviors.  (Hodgkin 1948) studied 

the response of axons to stimuli and established a behavioral classification: class 1 axons, which have 

a wide range of spiking frequency response depending on the stimulus strength, and class 2 axons, 

whose frequency response is relatively insensitive to the stimulus strength.  Since then, the behavioral 

classification of neurons hasbeen refined, the most known classes of neurons being the regular spiking 

neurons (RS), the intrinsically bursting neurons (IB), the fast spiking neurons (FS) and the low-threshold 

spiking neurons (LTS) (Connors & Gutnick 1990; Gibson et al. 1999; Izhikevich 2003; Pospischil et al. 

2008).  The behavior of a neuron is determined by its response to different kinds of stimuli.  (Izhikevich 

2004) gives a good review of the different possible responses to different stimuli.  In particular, the 

response can be:  

 tonic spiking or bursting when the neuron fires or bursts continuously when stimulated (Figure 

III-3.a and b);  

 phasic spiking or bursting when the neuron fires or bursts only once at the beginning of the 

stimulation (Figure III-3.c and d);  

 frequency adaptation when the neuron adapts to the stimulus by decreasing its firing 

frequency during a maintained stimulus (Figure III-3.e);  

 accommodation when the neuron is not sensitive to slowly increasing stimulus but only sharp 

ramps (Figure III-3.f);  

 rebound spike or burst when the neuron can fire or burst after an inhibitory stimulus (Figure 

III-3.g and h);  

 threshold variability when the neuron’s threshold can vary depending on its previous activity 

(Figure III-3.i).   
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Figure III-3: Different neuronal response to different stimuli.  Adapted from (Izhikevich 2004) 

 

When designing an artificial spiking neural network, one needs to find a neuron model able to 

reproduce the desired behavior.  A very biologically realistic model was established by (Hodgkin & 

Huxley 1952), which modeled precisely all the ionic currents within an axon during the generation of 

an action potential.  This model is highly configurable and can reproduce any kind of observed 

behavior.  However its complexity makes it difficult to use and computationally demanding.  

Depending on the goal to achieve, a neuron model does not necessarily need to be highly biologically 

meaningful, but to reproduce efficiently some neural behavior.  Neuron models can be divided into 

several main types.  First, models that, like the Hodgkin-Huxley model, reproduce precisely the 

neuron’s membrane potential dynamics, including the action potential dynamic.  Some of these 

models are biologically meaningful, such as (Morris & Lecar 1981), while others focus on reproducing 

efficiently the neuron dynamic (FitzHugh 1961; Rose & Hindmarsh 1989; Nanami & Kohno 2016).  

Second, models that describe the subthreshold potential dynamics but handle spikes as discrete events 

occurring when the neuron potential reaches its threshold.  These models, sometimes called integrate-

and-fire models, have the advantage to greatly reduce the computational cost, as the rapid dynamic 

of an action potential does not need to be computed (Izhikevich 2004).  The most widely used neuron 

model of this type is the Leaky-Integrate-and-Fire (LIF) model, whose potential evolution is simply 

described by the following equation:𝜏 𝑑𝑢 𝑑𝑡⁄ = −𝑢(𝑡) + 𝑅𝐼(𝑡).  The evolution of the potential u 

combines a leak with a time constant τ and an integration of the input current I.  When the potential 

u reaches a fixed threshold level, a spike is emitted and the potential is reset to a predefined value.  

Many variations of this model have been developed, with more variables to induce interesting firing 

properties (Smith et al. 2000; Izhikevich 2001; Brette & Gerstner 2005).  An noticeable model of this 

type was developed by Izhikevich (Izhikevich 2003), which, in spite of its simplicity, is able to mimic 

many different neuronal behaviors.  Another type of model that process spikes as discrete events is 

the Spike Response Model (SRM).  The SRM expresses the potential of the neuron as a function of time 

that depends on the previously received and emitted spikes.  The spike times are still defined as the 

times when the potential reaches a threshold. 

Many different neural behaviors and many different neuron models exist.  Choosing a model depends 

on which behavior needs to be reproduced with which degree of accuracy and with which efficiency. 
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 Synaptic plasticity 

 

The ability of neural networks to learn is due to their synaptic plasticity, in other word, the ability of 

synapses to change their weight.  Indeed, in a spiking neural network, synapses transmit spikes from a 

presynaptic neuron to a postsynaptic neuron, and the weight of a synapse affects its ability to influence 

its postsynaptic neuron.  At the network’s level, the synaptic plasticity can thus modify the network’s 

response to different stimuli.  According to Hebb’s postulate, the weight of a synapse evolves following 

local plasticity rules depending on the activities of the post and presynaptic neurons.  In most models, 

these weight changes are induced by presynaptic and postsynaptic spikes, and depend on the time 

difference between them.  This kind of plasticity is thus called spike-timing-dependent plasticity 

(STDP).  The most common STDP rules induce changes triggered by pairs of pre- and postsynaptic 

spikes, but changes can also happen on single spike or depending on more than two spikes.  The 

changes can be persistent, for long-term plasticity, or non-persistent for short term plasticity.  The 

following sections summarize the most common models of plasticity. 

 

1. Long-term STDP 
 

The most known spike-timing-dependent plasticity rule is the long-term plasticity induced by pairs of 

presynaptic and postsynaptic spikes.  This form of plasticity was first observed experimentally by (Bi & 

Poo 1998). When presynaptic and postsynaptic spikes separated by a given time interval are 

repeatedly induced, a persistent change in the strength of the synapse is observed.  The amount of 

change depends on the time interval separating the presynaptic spike and the postsynaptic spike, 

which constitutes the core principle of pair-based STDP rules.   

In the experiment from (Bi & Poo 1998), the weight change is positive when the presynaptic spike 

precedes the postsynaptic spike, corresponding to a long term potentiation (LTP), and negative in the 

other case, corresponding to a long term depression (LTD) (see Figure III-4).  The weight change is large 

when this time interval is short and tends to zero when the time interval is long.  This  is coherent with 

Hebb’s postulate (Hebb 1949) that the connection between a cell repeatedly participating is the 

activation of another cell is reinforced.  In STDP cases, presynaptic spikes shortly preceding 

postsynaptic spikes are likely participating in triggering the postsynaptic spike, and thus reinforce the 

synapse’s weight.  The dependence between the spike time interval and the weight’s change can be, 

in this case, modeled as a double exponential function.  Since then, other shapes for this time 

dependence have been observed and used in models such as symmetric dependences or anti-hebbian 

plasticity where the time dependence is reversed compared to the classical time dependence (Woodin 

et al. 2003; Luz & Shamir 2012; Vogels et al. 2013; D’amour & Froemke 2015; Abbott & Nelson 2000; 

Srinivasa et al. 2014) (see Figure III-5).   
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Figure III-4: Experimentally observed STDP.  Adapted from (Bi & Poo 1998).  The weight’s change is positive for a 

presynaptic spike preceding a postsynaptic spike and negative otherwise.   

 

 

Figure III-5: Different forms of STDP rules, observed experimentally (a,b,c), or used in models (d,e,f,g).  Adapted from 

(Vogels et al. 2013) 

The weight’s change applied on a synapse can either depend or not, on the current weight of the 

synapse.  A common way to model a weight dependence is to make the weight depression proportional 

to the current weight w, and the weight potentiation proportional to (1-w).  This kind of weight 

dependence is often called multiplicative STDP, in contrast to additive STDP for a synaptic plasticity 

rule that does not depend on the current weight.  When used in a spiking neural network, 

multiplicative and additive STDP do not have the same properties (Rubin et al. 2001; Gütig et al. 2003).  

Indeed, when using additive STDP, synapses converge towards either their maximum or their minimum 

weights, whereas multiplicative STDP leads to continuously distributed equilibrium weights.   

When dealing with realistic spike trains, more than one postsynaptic and presynaptic spikes contribute 

to the synapse plasticity.  A pair-based STDP model thus has to specify which spikes’ pairs have to be 

taken into account.  There are many possibilities such as the all-to-all pairing scheme, where all 

possible combinations are taken into account, or a nearest-neighbor scheme where only neighboring 

spikes are taken into account.  These different pairing schemes can be implemented using local 

variables (Morrison et al. 2008), which avoids having to store past spikes.   
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Experiments such as triplet and quadruplet experiments (Froemke & Dan 2002; Wang et al. 2005)  or 

frequency dependence experiments (Sjöström et al. 2001) show the limitation of the pair-based model 

to explain synaptic plasticity when multiple spikes are involved.  For example, in a triplet protocol, 

three spikes are presented to the synapse, either in a pre-post-pre scheme or a post-pre-post scheme.  

According to a pair-based model, the resulting weight change should be the same with both schemes, 

which is not what is observed.  New models have been developed to explain these experiments, such 

as the suppression model (Froemke & Dan 2002), or the triplet model (Pfister & Gerstner 2006).  Both 

take into account previous postsynaptic and presynaptic spikes to modulate the impact of a pre-post 

or post-pre pairs on the synapse weight. 

 

2. Short-term plasticity 
 

Long-term STDP induces persistent weight changes depending on the correlation between 

postsynaptic and presynaptic activities.  These change are persistent in the sense that in the absence 

of activity, the synapses’ weights remain unchanged.  On the contrary, short-term plasticity (STP) is a 

plasticity triggered by transmission of presynaptic spikes that induces non-persistent changes, as the 

synapse’s weight return to a baseline value in the absence of activity.  As for long-term plasticity, short-

term plasticity has been observed on real synapses through numerous experiments (Markram et al. 

1998; Zucker & Regehr 2002).  Short-term plasticity may result in either a depression, when each 

presynaptic spike decreases the synapse weight (Figure III-6.a), or a facilitation when each presynaptic 

spike temporarily increases the synapse’s weight (Figure III-6.b).  These phenomena can be explained 

by the fact that the transmission of spikes through a synapse depends on some resources, whose 

quantity is modified at each spike transmission.  This idea of resource dependence has been used to 

developed models of short-term plasticity, which are able to reproduce both facilitation and 

depression (Abbott et al. 1997; Tsodyks et al. 2000).  As changes induced by short-term plasticity only 

take effect during a short period and rapidly fade with time, it cannot be considered as directly 

participating in learning a task.  However it has interesting properties that contribute to the network’s 

efficiency.  Indeed, short-term plasticity is able to regulate the postsynaptic potential induced by input 

spikes, which leads to a better discrimination of changes in the input spike train (Abbott et al. 1997). 

 

Figure III-6: STP observed experimentally.  Adapted from (Markram et al. 1998).  (a) Example of short term depression.  (b) 

Example of short term facilitation.  Bottom traces show the presynaptic spikes, top traces show the postsynaptic potential. 
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3. Homeostasis and metaplasticity 
 

To be computationally relevant, the learning process in a neural network should both be stable, which 

means synapses’ weights and neurons’ activity should not diverge nor become totally null, and induce 

some selectivity, which means that depending on the input activity and the network structure, some 

synapses are potentiated whereas others are depreciated in order to have specific responses to 

different stimuli.  Most STDP rules constitute a positive reinforcement, as synapses that contribute to 

make a postsynaptic neuron fire are potentiated.  This process can thus be unstable if not correctly 

tuned.  A standard way to obtain a stable network is to choose an STDP rule that induce more LTD than 

LTP in the absence of correlation (Masquelier et al. 2008; Humble et al. 2012; Srinivasa et al. 2014).  

Some other STDP rules can inherently be stable yet lack the competitive property.  This is the case for 

example of multiplicative STDP for which the synapses’ weights naturally converge but in a unimodal 

distribution (Rubin et al. 2001; Gütig et al. 2003).  More generally, obtaining a compromise between 

the stability and the competition requires a fine tuning of the learning rules (Yger & Gilson 2015; Babadi 

& Abbott 2016; Gütig et al. 2003).   

Therefore, it can be interesting, both for obtaining realistic models or for computational properties, to 

introduce complementary plasticity rules regulating the STDP rule.  These kinds of rules are known as 

homeostatic mechanisms, as they allow to obtain homeostasis, i.e. stability of the network firing rates 

through learning.  Whereas STDP rules are homosynaptic, depending on the pre- and postsynaptic 

activities on a given synapse, homeostatic mechanisms can be heterosynaptic, as changes on one 

synapse can influence neighboring synapses.  They also act at a longer time scale than the STDP rule 

they regulate (Zenke et al. 2013; Yger & Gilson 2015).  There is some evidence that plasticity acting at 

different timescales and on more than single synapses actually takes place in the brain, though such 

plasticity can take many different forms, whether modifying directly the synapse weight, or modifying 

the neuron excitability or modulating STDP rules (Abbott & Nelson 2000).  They can also have different 

purposes such as stabilizing the neuronal activity, but also improving the selectivity or allowing 

reinforcement learning. 

Homeostatic mechanisms acting directly on the synapse weight are also known as synaptic scaling.  

The principle of synaptic scaling is to limit or to impose the total weight of synapses arriving on the 

same postsynaptic neuron, thus stabilizing learning by preventing the total weight to grow up 

indefinitely and encouraging selectivity by preventing all synapses from fading.  Models implementing 

a synaptic scaling often simply renormalize the synaptic weight at each weight change (Malsburg 1973; 

Lazar 2009; Aswolinskiy & Pipa 2015; Humble et al. 2012).  Homeostatic mechanisms can also modify 

the neuron’s excitability, a process sometimes called intrinsic plasticity.  (Zhang & Linden 2003) suggest 

that intrinsic plasticity plays an important role in the brain.  Its main function is to regulate the activity 

of individual neurons.  In models such as (Lazar 2009; Aswolinskiy & Pipa 2015), the intrinsic plasticity 

adjusts the neuron’s threshold depending on its activity so it reaches a mean firing rate target.  Finally, 

some regulation mechanism modulates the STPD rule itself.  This kind of plasticity is called 

metaplasticity.  One of the first model of metaplasticity was developed in (Bienenstock et al. 1982) to 

explain the development of neuronal selectivity.  It involves in this case a Hebbian plasticity that 

depends on the instantaneous pre- and postsynaptic activities.  This plasticity is further modulated by 

a moving average of the postsynaptic activity, which thus constitutes a form of metaplasticity.  (Zenke 

et al. 2013) used a similar mechanism on an STDP rule: the amount of depression induced by the STDP 
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rule depends on the average output activity.  Another example of metaplasticity is presented in 

(Hunzinger et al. 2012).  In this study the amount of synaptic change depends on a resource variable 

that is decreased at each synaptic change and then slowly recovers.  The resource variable being shared 

across synapses, this typically constitutes a heterosynaptic metaplasticity.  An interesting application 

of metaplasticity is to implement a reinforcement learning in an STDP network.  (Izhikevich 2007) and 

(Legenstein et al. 2008) both presented a model where the STDP weight change is not immediately 

applied but converted into a fading eligibility trace.  The model also includes a reward signal that is 

increased each time a reward is received and also fades with time.  The weight change is then 

computed as the product of this eligibility trace with the reward signal. Following the same idea, 

(Aswolinskiy & Pipa 2015) also modulate the STDP rule with a reward variable. 

 

 Network properties 
 

Neurons and synapses are the two elementary components of an artificial neural networks.  Each of 

these elements have their properties and their temporal dynamics.  When combined together to form 

a neural network, a new dynamic emerges, which can be complex to study.  When studying networks, 

two complementary approaches exist.  On one hand, some studies focus on studying the network’s 

neural activity with fixed synaptic connections, often chosen following a random distribution.  On the 

other hand, other studies focus on the evolution of synaptic weights given assumptions on the 

neurons’ activity. 

One type of neural networks that has been largely studied are sparsely connected recurrent networks, 

possibly taking an external stochastic input, as a model of what happens in the cortex (van Vreeswijk 

& Sompolinsky 1996; Amit & Brunel 1997; Brunel 2000; Ostojic 2014).  It has been shown that these 

networks can reach, under certain conditions, a stable state called the asynchronous state, where 

neurons can be described as independent Poisson neurons, firing at a constant and homogeneous 

firing rate.  The sparsity of the network allows to assume that the neurons activities are independent, 

as their inputs are independent from one another.  Assuming that the inputs of each neuron come 

from independent Poisson neurons, each emitting spikes according to a Poisson process, the total 

input current follow a white Gaussian distribution.  As a consequence, the neuron behaves as a Poisson 

neuron whose firing rate depends on the mean and the variance of its input (Amit & Brunel 1997).  This 

mean-field approach allows to deduce the firing rate of the asynchronous state.  An important 

condition from the asynchronous state to be stable is that the excitation and the inhibition should be 

correctly balanced in the network (van Vreeswijk & Sompolinsky 1996; Amit & Brunel 1997; Brunel 

2000; Ostojic 2014).  Indeed, at this condition, the average input of a neuron is subthreshold and its 

action potentials are mainly due to fluctuations, ensuring an irregular firing.  In other conditions, states 

where with oscillations and synchronization between neurons can emerge (Brunel 2000).  Other 

studies also showed that with a strong synaptic coupling the neural activity is chaotic, with high 

fluctuations of the firing rates both in time and across neurons, though the population firing rate is still 

constant on average (Ostojic 2014).  Overall, random networks exhibit various possible behaviors and 

constitute a good basis to understand the dynamic of neural networks. 

The second important aspect in neural network is synaptic learning.  Learning in neural networks 

modifies the structure of the network depending on sensory inputs.  The most widely used method to 
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study synaptic weights evolution is to make assumptions on the firing rates and the time correlations 

between and within groups of neurons.  This then allows to compute the average weight change of a 

particular synapse, or of groups of synapses, depending on the STDP rule used.  This method can be 

used to study various STDP rules’ properties, such as the weight distribution depending on the weight 

dependence of the STPD rule (Rubin et al. 2001; Gütig et al. 2003), the stability and the selectivity of 

different triplet rules (Babadi & Abbott 2016) or the weight evolution in a recurrent neural network 

(Burkitt et al. 2007).  As stated previously, balance between inhibition and excitation is important for 

the stability of a network, which seems to be confirmed by experiments (Kirkwood 2015).  Though this 

balance can be self-maintained in a random recurrent network (van Vreeswijk & Sompolinsky 1996), 

networks with a feedforward structure and a varying sensory input require a precise balance.  Studies 

on inhibitory STDP rules show that it is possible to obtain a precise excitatory-inhibitory balance 

through learning on inhibitory synapses (Vogels et al. 2012; Luz & Shamir 2012).  Beyond theoretical 

results, (Srinivasa et al. 2014) showed that the use of inhibitory STDP to balance inhibition and 

excitation leads to better results in a pattern recognition task.   

 

 Applications to pattern recognition tasks 
 

One difficulty with STDP networks is that there is no standard method to train a network to achieve a 

specific task through STDP.  Some studies have thus focused on learning random spike train patterns 

to demonstrate STDP network learning capabilities.  (Masquelier et al. 2008) demonstrated that a very 

simple monolayer STDP network is able to learn, in an unsupervised manner, to recognize the 

beginning of a pattern (Figure III-7).  This work was extended to demonstrate its ability to discriminate 

different patterns or different parts of a pattern (Masquelier et al. 2009).  Following the same idea, 

(Hunzinger et al. 2012) showed that a resource-dependent plasticity improves the performance of 

STDP learning on a pattern recognition task.  Application to more concrete pattern recognition tasks, 

such as visual recognition, are also emerging.  For example, (Masquelier & Thorpe 2007) used an STDP 

network to recognize faces and vehicles in pictures.  Their network is well structured, alternating 

learning layers with shared weights and pooling layers, and used a classical classifier as a readout 

function.  (Brader et al. 2007) used a one-layer STDP network with a teaching signal for a digit 

recognition task.  (Bichler et al. 2012) also trained a network to recognize patterns in a video stream, 

though the recognized patterns do not include time aspects such as movements.  In this case the 

network was designed to be implemented in neuromorphic devices mimicking STDP at a miniaturized 

scale.  Most of these applications use a feedforward structure, sometimes with only one layer.  

(Srinivasa et al. 2014) used an interesting network structure, based on the idea of reservoir computing 

(Figure III-8).  This network is constituted of pools of recurrently connected excitatory and inhibitory 

neurons, the different pools being themselves connected in a feedforward manner.  This STDP network 

was applied to a visual pattern recognition task, and shows that the introduction of plasticity on 

inhibitory synapse improves the discrimination performances.  Beyond visual recognition, (Suri et al. 

2013) also show an example of application to auditory pattern recognition.  At the moment, STDP 

applications to real-word pattern recognition tasks are still limited, but the existing applications show 

interesting learning properties such as unsupervised learning.  More work needs to be done to 

understand how to efficiently design an STDP network for a specific task. 
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Figure III-7: Example of spike pattern recognition by (Masquelier et al. 2008).  One LIF neuron is trained to learn an arbitrary 

spike pattern through STDP.  (a) Illustration of the pattern to learn (in red).  Between patterns (in blue), the input activity 

consist in random Poisson spike trains.  (b) Illustration of the neuron learning.  Top: before learning the neuron fire 

independently of the pattern occurrences.  Bottom: After learning, the neuron fire at the beginning of the pattern (pattern 

occurrence are shown in grey). 

 

Figure III-8 : Example of visual pattern recognition by (Srinivasa et al. 2014).  (a) Structure of the network.  (b) Patterns to 

learn.  (c) Weights learnt by the reservoir excitatory neurons (Layer 2).   
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IV. NETWORK MODEL 

 

We built an STDP network for spike sorting which takes a single electrode signal as input, and outputs 

a spike-train that corresponds to the sorted action potential recorded in the signal. It is organized into 

layers connected in a feed-forward manner, with all-to-all connections (Figure IV-1).  Each layer is 

designed to achieve a specific sub-processing task.  The neuron model and the synaptic plasticity are 

both adjusted for each layer to obtain the desired behavior.  The final version of the network consists 

in three main layers: an encoding layer that encodes the input signal into spikes, an intermediate layer 

that learns intermediate patterns, and an output layer that finalizes the process and fires once for each 

action potential in the signal. The network also features an attention mechanism.  Each part of the 

network can be implemented with different solutions, and some mechanisms can be added to improve 

its performance.  Through this PhD work three different versions of a complete network were 

implemented for processing single electrodes: MiniNet, ANNet and LTSNet, described in Section VI.  

The last version, LTSNet was also adapted to multi-electrode processing, in a version called PolyNet.  

Each of these versions uses different implementation solutions for each element of the network, some 

because they bring an obvious improvement, others because they combine well with other choices.  

Here we focus on the different possible solutions to implement each different functional elements of 

the network for a single electrode case, and how the network structure can be adapted to process 

multi-electrodes’ signals. 

 

Figure IV-1: Global structure of the STDP network.  The network is constituted of several layers, each having a different 

functional purpose, connected in a feedforward manner.  An attention mechanism is implemented through an attention 

neuron.  The network takes as input an electrode signal and outputs a spike train corresponding to the sorted action 

potentials.   

 

 Encoding the input signal 
 

The STDP network takes an analog signal representing a potential varying in time as an input.  It is thus 

necessary to encode this input signal into a spike train for further processing by the network.  This can 

be interpreted as a sensory functionality, by analogy with sensory neural cells that convert light 
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intensity (in the retina) or pressure (in the skin) into spike trains for further processing by the central 

nervous system.  Following this analogy, a first approach to encode the signal would be to use a neuron 

whose firing rate would increase with the value of the input signal, thus implementing a firing-rate 

code.  This would give information whether the amplitude of the input signal is high or low, however, 

it would be difficult to discriminate precisely different amplitudes, as two different amplitudes would 

be encoded by the same neuron, with only a quantitative difference in its firing rate.  Instead, our input 

layer is composed of a set of sensory neurons, each neuron being sensitive to a different range of signal 

amplitudes, defined by an individually selected central value c, , and a margin DVm, common to all input 

neurons.  When the input signal value is within a neuron’s sensitivity range, which is to say between c-

DVm and c+DVm, the neuron fires, otherwise it remains silent.  Those sensitivity ranges are regularly 

spaced, partially overlapping, and their union covers the entire possible range of signal values (Figure 

IV-2.a).  By analogy with the visual system, this works as if the signal amplitude was an object moving 

along one dimension and activating neurons depending on its position (Figure IV-2.b).  An important 

property of this way to encode the input signal is that the number of spikes emitted by the input layer 

does not depend on the exact signal value, thus all signal values generate the same excitation level on 

the next layer.   

In our case, the input signal is a sampled signal. Thus, a natural way to implement the sensory neurons 

is to compute their activation at regular time step, each time a new sample arrives (Figure IV-2.c).  At 

each sampling step, each sensory neuron either fires once if the signal sample is within its sensitivity 

range or remains silent (Figure IV-2.d, left).  Another possibility is that each neuron emits several spikes 

at each sampling step, depending on how close the signal value is from the sensitivity range center.  

For example, the number of spikes emitted can be maximum when the signal value equals the 

sensitivity range center, and then decreases linearly until the signal value reaches the limits of the 

sensitivity range, for which no spike is emitted (Figure IV-2.d, right).  These two ways of encoding the 

signal, which we call later binary encoding and triangular encoding, have different properties that are 

studied in Section IV.B.  In our different network implementations, only the binary encoding method 

has been tested, for its simplicity. 

The sampling frequency used for encoding is an important parameter for the spike-sorting 

performance of the network.  Indeed, to ensure that the next layers will properly learn the spike 

pattern generated by the input layer, it is necessary that for two different occurrences of the same 

waveform, some common sensory neurons get activated, regardless of the noise and sampling time 

jitter.  A good criterion is to choose the sampling step short enough so that, even for the fastest 

variations of the signal, two consecutive samples always activate some common neurons.  In practice 

and on the different recordings we testes, we found that an 80-kHz sampling frequency was a good 

compromise, between sufficient information and too much data generated.  This was thus the value 

used in all our implementations, expect for the first one (MiniNet) where it was only 20 kHz. 

To discriminate between different action potentials in the signal, we need to take into account not 

only the amplitudes of an action potential but its entire waveform, in other words the signal amplitude 

variations in time. Thus the input layer should give information about the value of the signal at different 

time points.  To do so, we introduce synapses with different transmission delays stemming from each 

sensory neuron, as previously done for example in (Gerstner et al. 1993), (Hopfield 1995) or (Ghosh-

Dastidar & Adeli 2007).  From the point of view of the layers that receive the input layer spike train 

through these synapses, this looks like the original set of sensory neurons is duplicated into several 
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sets of neurons acting alike yet with different delays.  Each of the delayed set of sensory neurons 

encodes the signal value with a given delay from current time (Figure IV-2.e).  The idea is that the 

plasticity rules will then potentiate some of these delayed synapses and depreciate others, as this is 

believed to happen during the development of the barn owl auditory system (Gerstner et al. 1996).  

The difference between two delayed synapses and the number of delays determine the time resolution 

of the encoded signal and the size of the encoded signal time window at each sampling step.  The 

number of delays is a compromise between the number of synapses and the discriminative power of 

the input spike patterns.  Noticeably, if the encoded time window becomes too large (typically larger 

than an action potential), it loses its discriminative power as the signal value outside the action 

potential is within the noise range and thus close to zero and non-discriminative.  In practice we found 

that a 0.05-ms time resolution was enough, and we chose a time window of 0.5 ms (thus 10 different 

delays), which is usually shorter than one action potential. 

 

Figure IV-2: Input layer implementation.  (a) Sensitivity range for each input neuron.  The sensitivity ranges overlap and 

cover all possible signal values.  (b) Activation of each encoding neuron for a given signal value.  Activated neurons are 

represented in red.  (c) Activation of one encoding neuron thorough time.  The neuron fires at regular time steps when the 

signal is within its sensitivity range.  (d) Different activation functions: binary (left) and triangular (right).  With the binary 

activation, encoding neurons fire one spike at each time step if the signal value is within their sensitivity range.  With the 

triangular activation, encoding neurons can fire several spikes depending on the position of the signal value within their 

sensitivity range.  (e) Several signal values, corresponding to different delays, are encoded at each time step. 
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 Attention mechanism 
 

The input signal the network has to process fluctuates around zero most of the time, as the action 

potentials occur sparsely.  At some point in the process it is thus necessary to discriminate the parts of 

the signal corresponding to an action potential from the rest of the signal.  Indeed, by the way the 

signal is encoded, there is no intrinsic difference between parts of the signal containing an action 

potential and parts containing only noise, and both can be recognized as patterns.  As this is well 

described in (Masquelier et al. 2008), when a neuron learns a pattern through an STDP rule, the neuron 

tends to fire earlier each time the pattern is presented.  In this study, this process naturally stops when 

the neuron reaches the beginning of the pattern, as the spike train before the pattern is random and 

cannot be learnt.  In our case, a neuron learning an action potential waveform would each time 

recognize earlier parts of the waveform and would end up recognizing the null pattern between action 

potentials.  Even though once some neurons have learned the null part of the signal, they could prevent 

other neuron from firing when the signal is null, we found better for a more stable learning that an 

attention mechanism detecting the action potentials intervene at an early stage of the process, just 

after the input layer, preventing the null parts of the signal to be learnt.  This attention mechanism 

was implemented using a short-term plasticity.  In the first versions of the network this short-term 

plasticity was applied directly on the synapses between the input and the intermediate layer, but we 

later introduced an attention neuron whose role was to specifically detect where action potentials 

occurred in the signal. 

 

1. Short-term plasticity 
 

We implemented an attention mechanism thanks to a short-term plasticity (STP) rule.  Indeed STP, and 

more precisely short-term depression, has the property to weaken the weights of the synapses for 

which a presynaptic spike occurs at high frequency (Abbott et al. 1997), as this is the case for sensory 

neuron coding for near-zero values.  As a result, the postsynaptic neuron will be less excited when the 

input signal is within the noise range.  In our implementation the short-term plasticity rule is governed 

by the following equation: 

𝑑𝑤

𝑑𝑡
=

1

𝜏𝑠𝑡𝑝
(1 − 𝑤) − ∑ 𝑤 ∗ 𝑓𝑑 ∗ 𝛿(𝑡 − 𝑡𝑠)𝑠 , 

where w is the synaptic weight, τstp the STP recovery time constant, fd the STP depression factor and ts 

the presynaptic spike times.  We chose τstp one order higher than the typical duration of an action 

potential so that the synaptic weight did not change significantly during an action potential.  Given this 

equation we can compute the equilibrium weight for a presynaptic neuron firing at regular pace, with 

a frequency f.  When such a synapse, with a weight weq, fires, its weight becomes (1-fd)weq.  After a 

time interval 1/f, its weight should return to weq through the exponential recovery before firing again.  

This can be expressed as (1 − 𝑤𝑒𝑞) = 𝑒𝑥𝑝(−1 𝑓 ∗ 𝜏𝑠𝑡𝑝⁄ )(1 − (1 − 𝑓𝑑)𝑤𝑒𝑞).  Thus, the equilibrium 

weight is given by: 
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𝑤𝑒𝑞 =

1 − exp(−
1

𝑓 ∗ 𝜏𝑠𝑡𝑝
)

1 − (1 − 𝑓𝑑)exp(−
1

𝑓 ∗ 𝜏𝑠𝑡𝑝
)
 

As expected, weq is close to 1 when f is close to zero, and decreases when f increases.  With the 

hypothesis that the input signal follows a Gaussian noise distribution, we can deduce the mean firing 

rate of each sensory neuron and thus approximate its weight.  Thanks to this relation, we can choose 

a minimum weight Wmin, obtained for a neuron firing at each sampling step and adjust fd in 

consequence.  Knowing these equilibrium weights, we can then compute the excitatory postsynaptic 

potential (EPSP) generated by each possible input signal value, which is the sum of the weighted spikes 

received by the postsynaptic neuron.  We computed this approximation numerically and compared it 

to simulation results, as shown in Figure IV-3.  We also observed the effects on the EPSP of the choices 

of both DVm and Wmin values (Figure IV-4).  Input values close to zero generate a weak excitation 

whereas when the input value moves away from zero the postsynaptic excitation increases, which is 

the desired effect.   

 

Figure IV-3: Modeled and simulated EPSP for each input value.  Model is shown in red, values obtained in simulation, with 

a normal Gaussian noise as input signal, are shown in blue.  This was obtained for DVm=1.75 and Wmin=0.13 and with a 

binary encoding 
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Figure IV-4: Effect of DVm and Wmin on the input value-EPSP relation, for a binary encoding. 

 

 

2. Attention neuron 
 

In the first version of the network the short-term plasticity was applied on the synapses connecting 

the input layer to the intermediate layer, in combination with the STDP rule.  However, this method 

has the default to make low-amplitude waveforms difficult to recognize, as their low STP weights tends 

to shrink the receptive field size of the intermediate neurons learning it (see Section IV.C.3).  A better 

idea is to implement an attention neuron, connected to the input layer through STP synapses, whose 

role is to specifically detect any action potential present in the input signal. When an action potential 

is present in the signal, this neuron fires continuously from the beginning to the end of the action 

potential. When no action potential occurs, it remains silent (Figure IV-5).  Its spikes can then be used 

by the rest of the network as a signal that an action potential is present in the signal. 

The attention neuron was implemented as a LIF neuron model.  Its potential evolves dynamically 

according to the following equation: 

𝑑𝑉

𝑑𝑡
= −

1

𝜏𝑚
∗ 𝑉(𝑡) + ∑ ∑ 𝑤𝑖(𝑡𝑖,𝑠)𝛿(𝑡 − 𝑡𝑖,𝑠)𝑠𝑖 , 

where V is the neuron potential, τm is the membrane time constant, i indexes the incoming synapses, 

s indexes the spikes transmitted by the synapse, wi is the synapse’s weight and ti,s the spike’s time.  

Additionally, the neuron fires when the potential V reaches its threshold.  In this case, the potential is 

not reset so that the potential value only depends on the input signal and not on the attention neuron’s 

activity.  As the EPSP received by the attention neuron increases when values outside the noise range 

occur within the signal, the attention neuron’s potential also increases.  By setting correctly its 

threshold, the attention neuron can thus detect action potentials (Figure IV-6). 

The important information for the attention mechanism is the amplitude of the signal and not its exact 

shape.  Thus, at first sight, it is not necessary to have different delays to connect the attention neuron 

to the input layer, as introduced in Section IV.A.  Though the exact shape of the signal is not important, 

action potentials have the property of bringing the signal outside the noise range for a relatively long 

time.  To take advantage of this, for a better detection, one possibility is to set the membrane’s time 

constant to a value similar to the duration of an action potential, so that the neuron’s potential 

depends on the input values in a time window corresponding to an action potential duration.  The 

other possibility is to use the delayed synapses from the input layer.  In this case, the potential is 
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already summed over such a time window, so a short membrane time constant insufficient. In practice, 

the later method proved to give better results. 

The choice of the attention neuron’s threshold is crucial, as it will determine the false positive and false 

negative rates.  Our first idea was to fix a false positive rate, and to set the threshold to reach this goal. 

However it is difficult to precisely approximate the potential’s distribution of the attention neuron for 

a noisy signal, especially for the tail of the distribution, which is key for having a low false positive rate.  

Only long simulations could help choosing the threshold with this criterion.  However our goal is to 

have a network versatile for any situation, thus we would like to have a simpler criterion that allows 

to set the threshold easily.  As an alternative idea, we define a stereotypic waveform with a minimum 

amplitude and duration, which would be the minimum waveform the attention neuron can detect.  For 

simplicity this waveform has a square shape, which makes it easy to compute an approximation of the 

maximum potential reached by the attention neuron when encountering such a waveform, using the 

numerical approximation of the EPSP generated by each different input signal value (see Section 

IV.B.2). 

In cases where a waveform has a peak followed by another peak of the opposite sign and thus crosses 

zero, we were confronted to the problem that the attention neuron potential decreased under the 

threshold in the middle of the action potential. Thus instead of firing continuously from the beginning 

to the end of the action potential, the attention neuron stopped firing in the middle of the action 

potential. To solve this problem, we implemented a hysteresis mechanism by increasing the attention 

neuron’s threshold by a self-excitation value each time it fires.  Thus the excitation due to the input 

signal needs to go down under a value that is lower than the neuron’s threshold for it to stop firing. 

 

Figure IV-5: Detection of an action potential by the attention neuron.  Top: input signal. Bottom: attention neuron’s spike 

train. 
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Figure IV-6: The attention neuron potential increases when an action potential is present in the input signal. Top: input 

signal. Middle: EPSP generated by the synapses implementing an STP rule.  Bottom: attention neuron’s potential. In red 

are represented the attention neuron threshold, the self-excitation effect (red arrow), and the time intervals when the 

neuron is firing 

 

 Learning of waveform elements by the intermediate layer 
 

The input layer generates a spike train representing the signal shape in a sliding time window.  The 

intermediate layer receives this spike train through synaptic connections.  Its purpose is thus to learn 

to recognize a pattern in this spike train, corresponding to parts of action potentials waveforms.  To 

do so, an STDP rule is used on the synapses projecting from the input layer to the intermediate layer.  

Importantly, the intermediate layer is gated by an attention mechanism allowing it to fire and learn 

only when an action potential is present in the signal. In the different versions of the network, this 

attention mechanism was implemented either by using an STP rule on the synapses connecting the 

input and the intermediate layers or using an attention neuron.  When the attention mechanism is 

implemented through the attention neuron, the latter projects excitatory synapses onto the 

intermediate layer, thus inducing an additional excitation when the attention neuron fires, due to 

presence of an action potential.  In both cases, the intermediate neurons’ threshold is adjusted so that 

the intermediate layer can fire only when an action potential is present in the signal. 

 

1. LIF neuron 
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The neurons in this intermediate layer follow a LIF neuron model, which internal potential V varies 

according to the following equation: 

𝑑𝑉

𝑑𝑡
= −

1

𝜏𝑚
∗ 𝑉(𝑡) + ∑ ∑ 𝑤𝑖(𝑡𝑖,𝑠)𝛿(𝑡 − 𝑡𝑖,𝑠)𝑠𝑖 , 

where τm is the membrane time constant, i indexes the incoming synapses, s indexes the spikes 

transmitted by the synapse, wi is the synapse weight and ti,s the spike times.  Additionally when the 

potential reaches the neuron’s threshold, it fires and its potential is reset to zero.  Each time an 

intermediate neuron receives a spike from the input layer, its potential is increased proportionally to 

the corresponding synapse’s weight.  When no spike is received, the potential returns back to zero, 

with an exponential decay corresponding to the membrane time constant τm.  Thus if the neuron 

receives enough spikes in a short time compared to τm, its potential increases enough for the neuron 

to fire.  This type of neuron can thus detect spike coincidence, with a time precision that corresponds 

to τm.  We thus set τm to be the same order of magnitude as the chosen time resolution for encoding.  

In our case, the number of spikes coming from the input layer is constant, thus the difference is made 

by the synapses weights, learnt with the STDP rule described in the next section.  For a neuron to fire, 

enough spikes coming from potentiated synapses need to arrive simultaneously.  Before the learning 

phase, intermediate neurons need to fire to begin the learning process.  To do so, at start, the synapses 

weight are initialized randomly, with a mean weight that is high enough to be able to generate some 

spike on the intermediate layer.  After the learning phase, the potentiated synapses come from 

different input neurons for each different intermediate neuron, thus each intermediate neuron can 

recognize a different spike pattern.   

 

2. The STDP rule used 
 

The principle of an STDP rule is that presynaptic spikes contributing to make the postsynaptic neuron 

fire trigger a potentiation of the synapses.  This type of rule was observed in the brain by (Bi & Poo 

1998) (see Section III.C.1).  This well-known STDP rule induces a potentiation of the synapse when a 

presynaptic spikes occurs shortly before a postsynaptic spike and a depression when a presynaptic 

spike occurs shortly after a postsynaptic spike.  Here, we chose to use a very simple STDP rule, where 

the synapse is potentiated when a presynaptic spike occurs within a given coincidence time window 

before a postsynaptic spike, and is depreciated if a postsynaptic spike occurs alone (Figure IV-7.a).  The 

coincidence time window was chosen to match the time resolution of the input spike train, which is 

about 0.05ms (see previous section).  Two versions of this STDP rule were tested: an additive version 

and a multiplicative version, which both have simple properties (Figure IV-7.b). 

For the additive STDP, each time a postsynaptic spike occurs, the synapse’s weight is decreased by Δw-

. Additionally if this postsynaptic spike coincides with a presynaptic spike, the weight is increased by 

Δw+, resulting in a total weight change of -Δw-+ Δw+.  The synapse’s weight is then clipped between 0 

and 1.  Following this rule the mean weight variation is given by: 

〈
Δ𝑤

Δ𝑡
〉 = 𝑓𝑝𝑜𝑠𝑡(𝑝𝑝𝑎𝑖𝑟∆𝑤+ − ∆𝑤−) 

Where fpost is the postsynaptic neuron’s firing rate and ppair the probability that a presynaptic spike is 

present in the coincidence time window before each postsynaptic spike.  The synapse’s weight will 
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converge towards 1 if this mean variation is positive and towards zero otherwise.  There is thus a 

threshold probability plim= Δw- /Δw+, for which if ppair > plim, the synapse’s weight converges towards 1, 

and if ppair < plim, the synapse’s weight converges towards 0 (Figure IV-7.b, left). 

In the multiplicative case, the weight’s change depends on the synapse’s current weight.  For a 

postsynaptic spike alone, the synapse’s weight is increased by w*Δw-, where w is the current synapse’s 

weight.  For a postsynaptic spike coinciding with a presynaptic spike, the weight is increased by (1-

w)*Δw+.  In this case, the mean weight variation is: 

〈
Δ𝑤

Δ𝑡
〉 = 𝑓𝑝𝑜𝑠𝑡(𝑝𝑝𝑎𝑖𝑟(1 − 𝑤)∆𝑤+ − (1 − 𝑝𝑝𝑎𝑖𝑟)𝑤∆𝑤−) 

The synapse’s weight is naturally bounded and the equilibrium weight, for which the mean weight 

variation 〈
Δ𝑤

Δ𝑡
〉 is null, is given by: 

𝑤𝑒𝑞 =
1

1 − 𝑝𝑝𝑎𝑖𝑟
𝑝𝑝𝑎𝑖𝑟

∆𝑤_
∆𝑤+

+ 1

 

In the case Δw-=Δw+, the equilibrium weight simply become weq=ppair (Figure IV-7.b, right). 

Thus, given ppair, the equilibrium value of the synapse is known for these two STDP versions.  We can 

then assume that, when the equilibrium has been reached, if a neuron of the intermediate layer has 

properly learnt a pattern from the input layer, it fires each time this pattern occurs and remains silent 

otherwise.  Thus, for a specific synapse, the value of ppair is close to the probability that the 

corresponding presynaptic neuron fires when the learnt pattern occurs.  The multiplicative STDP seems 

to have nice properties with an equilibrium weight that is naturally bounded and can take continuous 

values.  However, it can happen that a postsynaptic neuron learns two different patterns 

simultaneously, especially if they are partially overlapping.  In this case, the weight of a synapse 

activated exclusively by one of the two learnt patterns will converge towards a lower weight as the 

synapse is depreciated when the other pattern occurs, and there is no simple way to force the neuron 

to choose one of the two patterns.  With the additive STDP, this problem can be avoided by setting plim 

> 0.5.  In this case, simultaneous learning cannot happen because for at least one of the two learnt 

patterns the corresponding synapses’ weights would converge towards zero.  For this reasons for the 

rest of this work we focused on the additive STDP, whose simple properties make it easy to manipulate. 

 

Figure IV-7: STDP rule applied on the synapse connecting the input layer to the intermediate layer.  (a) STDP rule.  ∆t is the 

interval between the presynaptic spike and the postsynaptic spike, ∆w is the weight change.  (b) Example of learnt weights 

for an additive STDP rule (left) and a multiplicative STDP rule (right).  The two pictures represent the weight of the synapses 

connecting all input neurons to one particular intermediate neuron.  Black is for a weight equal to zero and white for a 

weight equal to one. 
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3. Receptive field size 
 

At the beginning of the simulation, the synaptic weights connected to the input layer are initialized 

randomly.  The mean weight is just high enough for neurons from the intermediate layer to fire and 

thus begin to learn patterns.  A neuron has learnt a pattern once the weights of the synapses projecting 

on this neuron have all converged towards either one or zero.  Then, for some input values the neuron 

reacts by firing whereas it remains silent for other values.  The values for which the neuron fires 

constitute its receptive field. 

The properties of the intermediate neurons’ receptive fields are important for properly configuring 

this layer.  They are studied in details in Annex A.  Here, the input values are N-dimensional vectors 

corresponding to the signal values at the N encoded delays.  The receptive field of each neuron tends 

to be centered on local density maxima of the possible input values, which typically corresponds to the 

mean shapes of action potentials emitted by different neural cells.  Indeed the possible input values 

correspond to the different action potential waveforms, to which a Gaussian noise is added.  We 

studied the receptive field’s shape for both types of encoding methods, binary and triangular, 

described in Section IV.A.  In both cases the receptive field has interesting properties when choosing 

Δ𝑤+ = 2Δ𝑤− for the STDP rule.  In both cases, it is bounded if 𝑇ℎ > 𝐸𝑚𝑎𝑥 ∗ (𝑁 − 1), where Th is the 

neuron’s threshold, N the number of different synaptic delays and Emax is the maximum possible 

excitation generated by a single delay given the type of encoding.  For the binary encoding method, 

when this bounded condition is met, the receptive field is an L1-norm ball of diameter 2DVmN-Th, 

where DVm is half the sensitivity range size.  For the triangular encoding, when Th>KDVm(N-0.5) the 

receptive field is an L2-norm ball of diameter √2𝐷𝑉𝑚√𝑁 −
𝑇ℎ

𝐾∗𝐷𝑉𝑚
.  Figure IV-8.a illustrates the 

different possible shapes taken by the receptive field.   

These properties of the intermediate neuron receptive field have been confirmed by simulations 

(Figure IV-8.b).  These simulation results, obtained for a simple case where the input values are low-

dimensional and follows a Gaussian distribution, validate our theoretical results.  They thus constitutes 

a first approximation of the real receptive field shape and allows us to choose the size of the receptive 

field to cover most of the occurrences of a learnt pattern, by adjusting either the size of the input 

neuron’s sensitivity range or the intermediate neuron’s threshold. 
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Figure IV-8: Receptive field shape.  (a) Theoretical receptive fields obtained in a 3-dimentional case.  The two at the top 

are obtained using the binary encoding, the two at the bottom for the triangular encoding.  The two on the left are obtained 

on a bounded condition, and the two on the right for an unbounded condition.  (b) Receptive fields obtained on simulation 

with Gaussian noise as input, in a 2-dimentional case.  The two at the top are obtained using the binary encoding, the two 

at the bottom for the triangular encoding.  The two on the left are obtained on a bounded condition, and the two on the 

right for an unbounded condition.  The blues lines shows theoretical size of the receptive field, not taking into account the 

unbounded parts. 

A receptive field with an L2-ball shape, obtained with the triangular encoding method, suits well the 

hypothesis of a white Gaussian noise. However this property is reached on conditions where the 

intermediate neuron’s threshold is close to its maximum possible potential. In this condition, small 

relative variations on the neuron’s potential greatly impact its behavior, which constitute a lack of 

robustness, especially since the results on the receptive field size were obtained using several 

approximations.  Similarly, having a bounded receptive field is a nice property, but also requires a high 

threshold.  We thus decided to use the binary encoding method, which is simpler to implement, and 

to allow an unbounded receptive field for more robustness in its size.  The fact that the receptive field 

is unbounded should not impact the network behavior much, assuming that an input signal value 

falling in the “unbounded parts” of the receptive field has a low probability to occur.  We chose to 

allow 3 out of the 10 used dimensions to be unbounded thus setting the threshold to 2*7*DVm, or 

more generally 2*0.7*N*DVm for N dimensions, DVm is half the sensitivity range for encoding.  The 

receptive field size was then adjusted using DVm to cover most of the pattern variations due to the 

noise.  However the receptive field should not be too big, as we do not want a receptive field to cover 

two distinguishable patterns.  In our different network implementations, different values of DVm where 

tested, going from 1.5σnoise to 2σnoise, where σnoise is the noise standard deviation. 

Our receptive field study does not take into account the time integration of the consecutive sampling 

steps.  To correct this, we assumed that the values received during an interval corresponding to the 

membrane time constant do not change significantly and we simply multiplied the threshold as if the 

same value was received at each sampling step.    
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4. Winner-Take-All property mechanism 
 

To ensure that only one neuron in the same layer fires at a time, and consequently that each neuron 

learns a different pattern, we implemented a classical winner-take-all (WTA) mechanism.  Its principle 

is that when a neuron fires, the other neurons from the same layer are inhibited, preventing them 

from firing at the same time.  Our implementation is a hard winner-take-all, in other words, at each 

simulation step, if at least one neuron has a potential higher that the firing threshold, the neuron with 

the maximum potential is selected, fires and inhibits the other neurons by resetting their potentials.  

As a result, instead of firing at the same time, the neurons fire one after the other, separated by a time 

interval that depends on their membrane time constant and the inhibition’s strength.  In our 

implementation, this time interval is about 0.05ms (Figure IV-9.a).  The WTA mechanism ensures that 

the different neuron’s receptive fields cover the possible values taken by the input without overlapping 

(Figure IV-9.b).   

Each time the intermediate layer emits a spike, it means that the input value is in the receptive field of 

the neuron that fires.  However, we have no information whether the input value is centered in the 

receptive field or close to its boundary.  Two input values can be very close but recognized by two 

different neurons because they are from either side of a receptive field boundary.  The information 

given by the intermediate layer would be improved if we allowed several neurons to fire at the same 

time, with partially overlapping receptive field.  Then, the number of common spiking neurons for two 

different input values would give information about how close to each other these two values are.   

To test this idea, we implemented a 2-WTA mechanism, where we allowed 2 neurons to fire before 

inhibiting all neurons in the layer.  Even if the two neurons fire at the same time, they should not learn 

the same thing so that their receptive fields do not completely overlap.  We assume that in fact the 

most excited neuron fires just before the other, and implemented a resource-based STDP inspired from 

(Hunzinger et al. 2012), where synaptic changes are proportional to a global resource variable.  Each 

time a synaptic weight change occurs, the resource variable is decreased.  The resource then 

progressively comes back to its initial value following a time constant.  The evolution of the resource 

variable r is described by the following equation: 

𝑑𝑟

𝑑𝑡
=

1

𝜏𝑟𝑒𝑠
(1 − 𝑟) −∑𝑟 ∗ 𝑓𝑟𝑒𝑠 ∗ 𝛿(𝑡 − 𝑡𝑠)

𝑠

 

where τres the resource recovery time constant, fres the resource consumption factor and ts the 

postsynaptic spike times of the intermediate layer.  In our implementation, the time constant is set 

short enough so that between two firing steps of the intermediate layer, the resource completely 

recovers.  Then the first spike triggers a synaptic weight change that takes almost all the resources.  

Thus, for an input value, two neurons fire but only the most excited learns.  We showed by simulations 

with a random input signal that this indeed creates overlapping receptive fields (Figure IV-10).  To test 

if this method actually improves the spike-sorting performance, we tested this intermediate layer 

implementation on our single electrode simulated data sets (see Section V.A.1).  For this purpose we 

used as attention neuron’s activity the attention neuron spike trains obtained with the one of our 

network implementation, ANNet.  We then evaluated the intermediate layer output using the entropy 

criterion and the distance criterion described in Section V.B.3.  These tests showed that the 2-WTA 

strategy gives better information for classification than the 1-WTA.  We also tested different values for 
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DVm for the 2-WTA and 1-WTA.  Indeed as receptive fields can overlap, they can be larger for the same 

distance separating their center.  Though the entropy criterion did not show important differences, 

the distance indices show that the 2-WTA might lead to better results (Figure IV-11).  Following these 

tests, in the last version of the network, we also decided to choose a sensitivity range with DVm=2, 

which seems to give better results (Figure IV-11).   

 

Figure IV-9: Effect of the WTA mechanism.  (a) Intermediate neurons fire one after the other and not simultaneously.  Top: 

input signal. Bottom: intermediate layer spike train, where the different colors stands for different neurons.  (b) Receptive 

field of the intermediate neuron on data containing action potentials.  The encoded input values have been represented 

in two dimension through a PCA.  Each point represents an intermediate neuron firing.  Different colors stands for different 

neurons (c) Learnt weights.  Each square represent the weight of synapses projecting from all input neurons to one 

intermediate neuron.  Black stands for 0 and white for 1. 

 

 

Figure IV-10: Effect of the k-WTA mechanism on the receptive fields.  (a) Receptive field obtained on simulation for a two-

dimensional case.  Different colors are for different neurons (b) Outline of the receptive fields shown in (a).  (c) Measure 

of the common surface between two different receptive fields.  Top: results for 1-WTA.  Bottom: results for 2-WTA.  The 

2-WTA implementation shows an overlap between receptive fields. 



72 
 

 

 

Figure IV-11: Comparison of the intermediate layer output quality for different k-WTA and different DVm, on the simulated 

single electrode dataset.  On each graph a comparison is made between two methods.  Each point represents the two 

different results for one recording.  A point below the diagonal means the method plotted vertical is better the one plotted 

in horizontal.  (a) Comparison of the entropy index between the 1-WTA and 2-WTA implementations, for different values 

of DVm.  (b) Comparison of the entropy index between different values of DVm, for the same k-WTA implementation.  (c) 

Comparison of the distance index between the 1-WTA and 2-WTA implementations, for different values of DVm.  (d) 

Comparison of the distance index between different values of DVm, for the same k-WTA implementation. 

 

 Output layer 
 

As for the intermediate layer, the goal of the output layer is to recognize pattern in the spike train 

emitted by the previous layer, here the intermediate layer.  It is also connected to the previous layer 

through an all-to-all synaptic connection, implementing an additive STDP rule, and is composed of LIF 

neurons in its first versions.  For each occurrence of an action potential in the input signal, the 

intermediate layer outputs a spike sequence, which characterizes the action potential waveform.  As 

action potentials with similar waveform recurrently occur in the signal, similar spike sequences are 

emitted by the intermediate layer, constituting a pattern the output layer should learn to recognize.  

The length of these spike sequences can vary depending on the amplitude and duration and the action 
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potential. In spite of these possible length variations, the output layer, which processes these spike 

sequences, should emit one spike for each spike sequence received.  Moreover, the output layer 

should be robustly able to differentiate partially overlapping spike patterns, for example two 

sequences that have the same beginning but end differently.  In an extreme case a spike pattern can 

contain a subsequence corresponding to another spike pattern to recognize.  To achieve this goal, 

several mechanisms can be used, which will be described in the next sections. 

 

1. Intrinsic plasticity 
 

Intrinsic plasticity (IP) is a form of plasticity at the neuron level (Zhang & Linden 2003; Lazar 2009; 

Aswolinskiy & Pipa 2015).  In our case, its purpose is to adapt the neurons’ threshold to the size of the 

learnt pattern (e.g., length of the intermediate layer spike sequence).  Indeed if the neuron‘s threshold 

is too low compared to the size of the pattern it has learnt, it will not only spike for this incoming 

patterns but also for shorter ones corresponding to other signal waveforms.  In other words, it will be 

too tolerant to pattern differences and not be able to become specific to a single pattern.  Also if the 

threshold is too low, the neuron might fire before the end of the intermediate spike sequence and be 

unable to discriminate patterns with the same beginning but different endings.  By contrast, if the 

threshold is too high compared to the pattern size, it will not be able to detect the pattern.  Thus, it is 

crucial to adapt the threshold of each output neuron to the size of the pattern it is tuned to, especially 

when this size is not the same across patterns.   

To implement an IP, we considered two different mechanisms.  In a first version, for each input spike 

received within a given time window before the neuron’s spike, the threshold is decreased by a 

constant ΔTh-, and for each input spike received within a given time window after the neuron’s spike, 

the threshold is increased by a constant ΔTh+ (Figure IV-12.a).  With this method, the neuron’s 

threshold adjusts to fire after receiving a proportion 𝛼 = Δ𝑇ℎ+ (Δ𝑇ℎ+ + Δ𝑇ℎ−)⁄  of the learnt pattern.  

This method has the strong inconvenient that it can only be used with architectures that allow the 

output neurons to fire before the end of the intermediate layer spike pattern.  It was thus only used in 

our first network implementation MiniNet and soon replaced by the following IP mechanism.  In our 

second method, each time the neuron fires, its threshold Th is decreased proportionally to its value, 

reaching a new value (1-FIP)Th. Moreover, for each spike received within a given time window around 

the neuron’s spike, the threshold is increased by a constant ΔTh+ (Figure IV-12.b).  The equilibrium is 

reached when the increase and the decrease compensate each other, giving an equilibrium threshold 

𝑇ℎ𝑒𝑞 = 𝑁 ∗∆𝑇ℎ
+ (1 − 𝐹𝐼𝑃)⁄  for a pattern containing on average N spikes.  As a result, if the neuron 

has learnt to recognize a pattern, the equilibrium threshold will be proportional to the average size of 

this pattern.  During our tests, we also implemented a variation of this mechanism, where the total 

threshold is the sum of a fixed threshold and a variable one subject to IP.  However this variation was 

not used for any complete network implementation. 
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Figure IV-12: Two different implementation of the intrinsic plasticity rule.  (a) Input spikes arriving before an output spike 

decrease the threshold whereas input spikes arriving after an output spike increase the threshold.  (b) Each output spike 

decreases the threshold whereas input spikes coinciding with an output spike increase the threshold. 

 

Is it thus possible to adapt each neuron’s threshold individually to be proportional to the learnt pattern 

size.  For commodity, and to be coherent with the WTA mechanism that is also applied on this output 

layer and selects the neuron with the highest potential, we can consider equivalently that the neuron’s 

potential is divided by its threshold and that the neuron fires when its potential reaches 1. This 

threshold adaptation allows the neuron to be sensitive to the relative difference between the learnt 

pattern and the presented pattern rather than the absolute difference, as its potential is normalized 

by the learnt pattern size.  Combining IP with synapses that can have negative as well as positive values 

would in theory allow to distinguish two patterns one included into the other.  Indeed, a neuron that 

has learnt the large pattern will not fire for the small pattern as its threshold is high, and the neuron 

that has learnt the small pattern will not spike for the large pattern as synapses with negative weight, 

not present in the small learnt pattern, are activated and decrease the neuron potential. 

The difficulty with this IP is how to deal with the neurons that have not yet learnt a pattern.  Indeed 

these neurons should be able to learn new patterns, even the shortest ones, but should not fire before 

other neurons that have already learnt a pattern and might have a higher threshold.  It is not possible 

to reach these conditions by just setting the initial threshold appropriately, and we thus need another 

mechanism to take full advantage of the IP.   

 

2. Lateral STDP 
 

The idea of the lateral STDP is to implement a synaptic plasticity that prevents a neuron from 

recognizing a pattern when another neuron is learning this pattern.  To achieve this, we took advantage 

of the fact that when a neuron fires, other neurons from the same layer receive an inhibition signal. 

Thus, when a neuron receives a lateral inhibition, it triggers synaptic weight changes on its incoming 

synapses (Figure IV-13).   
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Figure IV-13: Lateral STDP principle.  (a) Elements involved in the lateral STDP: presynaptic spikes, postsynaptic spikes and 

inhibitions received by the postsynaptic neuron.  (b) Weight changes induced by the lateral STDP.  Left: classical STDP, 

postsynaptic spikes alone depress the synapse, pre and postsynaptic spike coincidences potentiate the synapse.  Right: 

lateral STDP rule, presynaptic spikes alone potentiate the synapse, presynaptic spike and inhibition coincidences depress 

the synapse. 

For the classical STDP implemented on the same synapse, the weight convergence depends on the 

probability to have a presynaptic spike when a postsynaptic spike occurs.  For the lateral STDP we want 

the weight convergence to depend on the probability to have an inhibition each time a presynaptic 

spike occurs.  Thus, each time a presynaptic spike occurs alone, the synapse weight is increased by a 

constant and when the presynaptic spike is paired with an inhibition the weight is decreased by a 

constant.  As a result, similarly to the classical STDP, the synapse weight will converge towards 0 if the 

probability to have an inhibition each time a presynaptic spike occurs is above a threshold probability 

and towards 1 otherwise.  This makes a neuron more likely to fire when a pattern has not been learnt 

by any neuron, as no lateral inhibition occurs in this case, and less likely to fire when a pattern is learnt 

by another neuron.  However, when the neuron is learning a pattern, we want the synaptic weights to 

converge according to the classical STDP.  A simple way to ensure this when the two types of STDP are 

implemented on the same synapses, is to set synaptic weight changes for the lateral STDP to be much 

lower than the weight change for the classical STDP, so that the classical STDP takes over the lateral 

STDP.   

This lateral STDP, combined with the classical STDP, can also be combined with IP.  Indeed, the neuron’s 

threshold can be initialized low, so that neurons can learn new short patterns.  Then, once a neuron 

begins to learn a pattern, even if its threshold increases, other neurons will be less likely to fire when 

the pattern is presented thanks to the lateral STDP.  This solution was tested in our first 

implementation of the network (MiniNet), improving the F-score from 0.81 to 0.89 on our simulated 

preliminary dataset (see Section V.A.1).  We also tested it on our last network implementation 

(LTSNet), where it shows a systematically better result on our simulated single electrode dataset 

(Figure IV-14).   
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Figure IV-14: Improvement of the performance with lateral STDP implemented on the output layer of the LTSNet network.  

Each point represents the performance with and without lateral STDP for one recording from the simulated single 

electrode dataset. 

 

3. Delays and inhibition by the attention neuron 
 

One possibility to make the output neurons wait till the end of spike sequence before firing is to inhibit 

them when the attention neuron is firing.  For the neurons to be able to fire after the end of the spike 

sequence, they need to receive an excitation after the inhibition by the attention neuron.  To do so, 

we introduced delayed synapses between the intermediate layer and the output layer, the same way 

there are delays between the input layer and the intermediate layer.  This also has the advantage to 

bring information about the spike timing inside the spike sequence.  The interval between two 

consecutive synaptic delays determines the time resolution for this timing information.  The 

membrane time constant of the output neuron is chosen of the same order as this time resolution, as 

we want to detect a coincidence between spikes arriving at the same time but with different delays. 

With this structure, illustrated in Figure IV-15, the output layer receives spikes during a few 

milliseconds after the end of the detected action potential. Randomly initialized neurons are thus 

excited during a few milliseconds.  By contrast neurons that have learnt to recognize a spike 

coincidence pattern are excited only when the learnt pattern occurs, that is during about 0.02ms, 

which is the time resolution used in the intermediate layer.  As described in (Masquelier et al. 2008), 

during learning the neuron fires always earlier in the received spike sequence, until it recognizes the 

beginning of the sequence.  To prevent the neuron from learning what comes before the end of the 

action potential, the inhibition we used from the attention neuron is a presynaptic inhibition that 

prevents the spikes from arriving to the neuron (see Figure IV-15).  These spikes are thus not taken 

into account for the STDP rule.   
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Figure IV-15: Spike pattern received by the output layer when using a structure with transmission delays on synapses from 

the intermediate layer and inhibition from the attention neuron 

The neurons that have learnt a pattern are excited during a short coincidence time when this pattern 

is presented whereas neurons that have not learnt anything are excited during a few milliseconds.  The 

neuron’s threshold can thus be initialized high, so that before learning the neuron fires late.  As a 

neuron begins to learn a pattern, it fires earlier in the sequence while its threshold decreases to 

become proportional to the pattern size. 

This structure was used in our second version of the network (ANNet), but is not totally satisfying as it 

is very complex, rely on a precise timing from the attention neuron and require many synapses.  The 

LTS neuron model presented in the next section allowed us to replace this complex structure with a 

much simpler solution. 

 

4. LTS neurons 
 

The structure of the output layer and its plasticity rules make it complex to implement.  We thus sought 

a more elegant and less power-consuming way to achieve the work performed by the output layer.  

The output layer described so far was designed based on the fact that the main properties of the LIF 

neuron model is to fire when it receives an excitation.  However, other interesting behaviors have been 

observed in the brain.  For example, LTS neurons have the property to generate a potential rebound, 

and even spikes if the rebound is high enough, after being inhibited (Nanami & Kohno 2016) (see Figure 

IV-16).  This is particularly interesting in our case, as we want neurons from the output layer to wait 

the end of the pattern before firing. 
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Figure IV-16: Example of potential rebound of the DSSN neuron model, generating a spike after the end of the stimulus 

Our idea to use a neuron model that has a rebound property was initiated during a collaboration with 

Timothée Lévi and Takashi Kohno from the University of Tokyo.  Following a 2-week stay at their 

facility, focused on FPGA implementation (see Section VI.F), we tested if the properties of their neuron 

model, called DSSN (Nanami & Kohno 2016), fit our problem.  After adjusting the membrane time 

constant to our needs, we found that, after an inhibitory stimulus, the latency of the first spike emitted 

by the neuron is a decreasing function of the stimulus integral and that the number of spikes emitted 

is roughly proportional to the stimulus integral (Figure IV-17.a).  Assuming that the total stimulus 

reflects how well the presented pattern matches the learnt pattern, this latency property is very 

interesting for our problem.  After adjusting the model’s parameters, we managed to obtain only one 

spike for a large range of stimulus, which was the desired effect (Figure IV-17.b).      

Though this model has interesting properties, simulating its equation requires a very short time step 

as it models the potential spiking dynamic, which is computationally demanding.  We designed a 

simpler model, falling in the Integrate and Fire category, which means that even though the potential 

evolution is described by a differential equation, the spikes are modeled as discrete events that occur 
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when the potential reaches a threshold.  This way to model spikes also has the advantage that the 

spikes can be used to reset the neuron after firing or for the WTA mechanism.  Indeed, a lateral 

inhibition cannot be used as WTA for this type a neuron, as inhibition can trigger spikes through a 

rebound. 

 In our simplified model, the neuron’s potential is governed by the following equation: 

{
𝜏𝑚
𝑑𝑉

𝑑𝑡
= −𝑉 + 𝑞 + 𝑔𝐼𝑠𝑡𝑖𝑚

𝜏𝑚
휀

𝑑𝑞

𝑑𝑡
= −𝑞 + 𝑓(𝑉)

 

𝑤𝑖𝑡ℎ𝑓(𝑉) = {
𝛼𝑛𝑉𝑖𝑓𝑉 < 0
𝛼𝑝𝑉𝑖𝑓𝑉 ≥ 0

 

where V is the neuron potential, q is an adaptation variable that triggers the rebound after inhibition, 

τm is the membrane time constant, ε is a constant that makes q vary slower than V, Istim is the stimulus 

current that corresponds to the received spikes and g is a constant.  When the potential V reaches the 

neuron’s threshold, both V and q are reset.  After adjusting the parameters to the values shown in 

Table IV-1, we obtained similar properties as the DSSN model (Figure IV-17.c).  These parameters were 

used in all our tests, except for g, which plays the same role as the threshold for the LIF neuron model.  

Indeed, when g=1, the parameters are adjusted so that our LTS neuron fires for a total stimulus of 1.  

For the LTS neuron to fire for a threshold stimulus Qth, g is set to g=1/Qth. 
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Figure IV-17: Spiking properties of the LTS neuron after receiving a negative stimulus, with different models.  (a) Original 

model from (Nanami & Kohno 2016).  (b) Same model with modified parameters.  (c) Simplified LTS model used in our 

network.  Left: number of spikes emitted depending on the stimulus amplitude and duration.  Middle: number of spikes 

emitted depending on the total stimulus (amplitude*duration).  Different colors represent different stimulus amplitudes.  

Right: time of the first spike after the end of the stimulus, depending on the total stimulus (amplitude*duration).  Different 

colors represent different stimulus amplitudes. 

Table IV-1: Parameters used for the simplified LTS model 

Parameter Value 

ε 0.03 

αn -200 

αp -10 

Th 480 

g 100 
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To test this neuron model independently from the rest of the network, we tested it on arbitrary 

patterns.  We generated different datasets each containing two different spike patterns for the output 

layer to discriminate.  These datasets are generated with the following process.  5000 pattern 

occurrences are generated, separated by a time interval of 20ms, each pattern occurrence lasting 

between 0.5 and 1ms.  For each pattern occurrence, one of the two patterns is chosen randomly and 

variations are randomly introduced respecting a maximum difference with the reference pattern.  In 

each dataset, one pattern is composed of ten spikes, mimicking 10 different afferents.  The second 

pattern’s size varies between 10 and 20.  The two patterns share some common spikes (stemming 

from the same afferents), the number of which varies from 0 to 10.  Additionally, at each occurrence 

of a pattern in the simulation, the presented pattern is randomly modified by adding and deleting 

some spikes.  These initial tests show that an output layer constituted of simplified LTS neurons can 

distinguish patterns robustly (Figure IV-18.a).  We also performed tests where the threshold was the 

sum of a fixed threshold of 5 and a variable threshold subject to IP.  The parameters are set so that the 

variable threshold stabilizes to one quarter of the size of the learnt stimulus.  With the IP, the output 

layer is even capable of distinguishing two patterns completely included one into the other (Figure 

IV-18.b).  In our final single-electrode network implementation (LTSNet), we chose not to use a 

threshold adaptation, as it brings no obvious performance improvement for spike-sorting. 

 

Figure IV-18: Discrimination performance, assessed through an F-score, obtained with the LTS neuron on different 

conditions.  The testing dataset contains two different patterns.  Between each testing dataset, the size of one of the two 

patterns varies, the size of the common parts between the two patterns varies, and the maximum variation between 

occurrences of the same pattern varies.  (a) Results obtained without IP, (b) Results obtained with IP.   

 

 Adaptation to polytrodes 
 

After testing our STDP network on single electrode data, we worked on adapting the network 

architecture to multiple electrodes.  The principle is to take advantage of the fact that an action 

potential might be recorded by several electrodes, which give additional information.  First preliminary 

tests where done with the real tetrode data (see Section V.A.2), which are recordings from 4 electrodes 
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close enough from each other to record the same cell.  These preliminary tests, done with the ANNet 

version of the network (see Section VI.B), show that adapting the structure can actually improve the 

performance.  We then performed extended tests on a set of simulated polytrode recordings.  The 

general idea to adapt the single network structure to multiple electrodes is the following.  The basic 

network structure is constructed by duplicating the single network structure to process each electrode 

in parallel.  With this basic structure, the shared information between electrodes is not used.  Then, to 

take advantage of the redundancy between neighboring electrodes, lateral connections between the 

parallel single-electrode networks are introduced (Figure IV-19).  We worked on the benefits of 

adapting the architecture for two specific parts of the network: the attention neuron and the output 

layer.   

 

Figure IV-19: General principle of our adaptation of the network to the case of multiple electrodes 

1. Test on attention neuron 
 

Each electrode signal is encoded into a spike train by an independent input layers.  These input layers 

are projecting to several attention neurons, whose role is to detect action potentials at different 

positions in the electrode array.  With a purely parallel structure, each input layer projects to one 

attention neuron whose role is then to detect action potentials on the corresponding electrode.  We 

wanted to test if connecting each attention neuron to several input layers, encoding neighboring 

electrodes could improve the detection performance.  To do so, we designed a network where there 

is as many attention neurons as input layers, and each attention neuron is connected to three input 

layers (see Figure IV-20).  This network was tested on our simulated polytrode dataset (see Section 

V.A.1), and run with different thresholds for the attention neuron, in order to compute a ROC score 

(see Section V.B.2).  The results show that the structure with lateral connections did not give better 

results than the purely parallel structure (see Figure IV-21), and was thus not used in our final 

implementation.  However other structures could be tested, including for example inhibitory 

connections.   
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Figure IV-20: Two different polytrode structures for the attention neuron.  (a) Baseline purely parallel structure.  (b) 

Structure with lateral connections. 

 

 

Figure IV-21: Comparison of the ROC scores obtained with the two different structures for the attention neuron.  Each 

point correspond to a recording from the simulated polytrode dataset. 

2. Output layer structure 
 

Our base structure for processing several electrodes is constituted of several parallel subnetworks, 

each of them processing the signal of one electrode.  As for the attention neuron, at each layer of the 

network the different sublayers can be connected to several of the preceding sublayers to process 

more information.  We decided to adopt such a structure for the output layer rather than the 

intermediate layer, as it requires fewer synapses.  Ideally, the output layer should output one spike for 

each recorded action potential, regardless of the electrodes on which it is recorded.  Each output 

sublayer implements a WTA mechanism which prevent several neurons from the same sublayer to fire 

at the same time.  As an action potential can be recorded on several neighboring electrode, several 

output sublayers could fire for the same action potential. It is thus necessary to extend the WTA 

mechanism to neighboring output sublayers.  Overall, we tested different structures for the output 
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layer, combining these two aspects.  First, each output sublayer is connected to either one, three or 

five intermediate sublayers (see Figure IV-22.a), with a synaptic weight higher for connections 

corresponding to electrodes closer to each other.  Second, the WTA mechanism is either unchanged 

or included lateral inhibition between three or five output layers.  (see Figure IV-22.b).   

 

Figure IV-22: Different polytrode structures tested for the output layer.  (a) Different possible structures for the connection 

between the intermediate and the output layer.  (b) Different possible structures for the WTA mechanism.  The two 

structural aspects were tested with all possible combinations. 

These structures were tested for the last version of our network (PolyNet), on our simulated polytrode 

dataset, which simulated a recording with ten electrodes arranged in a line.  Table IV-2 shows the mean 

F-scores obtained.  When there are less WTA connections between output sublayers than connections 

between intermediate and output sublayers, the performance is degraded.  This can be explained by 

the fact that lateral connections between intermediate and output sublayers increase the number of 

output sublayers likely to fire for one action potential. Therefore the number of connections for the 

WTA mechanism needs to be adjusted to take this effect into account.  Our hope was that introducing 

lateral connections for both the intermediate to output layer connection and the WTA mechanism 

would increase the performance.  Though this is not the case, we can see on some simulated recordings 

that, when no lateral connections are used an action potential can be detected by several output 

sublayers (Figure IV-23.a), which lowers the final score.  When using lateral connections, this effect is 

reduced as each different action potential is detected mainly by one output sublayer, but the recall is 

overall lower (Figure IV-23.b).  In our final version, we chose to use the three to one intermediate to 

output connections in combination with a five sublayer WTA mechanism, which is the structure that 

give the best results apart from the one with no lateral connections.  Future work should focus on 

improving the structure to get a better recall. 

Table IV-2: Mean F-scores obtained with the different structures tested on the simulated polytrode dataset 

WTA connections 1 3 5 

Intermediate to output connections    

1 0.476 0.448 0.448 

3 0.332 0.421 0.456 

5 0.177 0.24 0.448 
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Figure IV-23: Recall of action potential from each different neural cell, on each output sublayer, on a simulated polytrode 

recording with four different neural cell and an SNR of 6.  (a) Results obtained with the purely parallel structure.  (b) Results 

obtained with a structure with a WTA connecting 5 output sublayers, and each output sublayer connected to three 

intermediate sublayers.    
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V. PERFORMANCE ASSESSMENT 

 

 Testing datasets 
 

1. Simulated data 
 

To assess the spike-sorting performance of the network, we need to test it on data with known ground 

truth and controlled parameters.  To do so we generated simulated data, both in the case of a single 

electrode and of multiple electrodes. 

 

a) Single electrode datasets 
 

In case of a single electrode, our method was strongly inspired from (Adamos et al. 2008).  For each 

simulated cell, the ground truth is generated according to a Poisson process.  The action potential 

shape corresponding to each simulated cell is modeled according to the following equation:  

𝑉(𝑡) = 𝐴 ∗ cos (2𝜋
𝑡 − 𝑡𝑝ℎ

𝜏1
) ∗ exp(− (

2.3548𝑡

𝜏2
)
2

) 

Where A, tph, τ1 and τ2 are parameters that determine the shape of the action potential for one 

simulated cell.  For commodity, we introduce an intermediate parameter Amax, which corresponds to 

the maximum amplitude of the waveform, from which A is computed.  Each time a simulated neural 

cell fires, the corresponding waveform is added to the signal. A correlated Gaussian noise is also added 

to the signal, generated through a dynamical Ornstein-Ulhenbeck process, following the equation 

𝑑𝑋𝑡 = −𝑋𝑡𝑑𝑡 𝜏𝑛𝑜𝑖𝑠𝑒 + 𝑑𝑊𝑡⁄ , where τnoise is the time constant of the process, and Wt is a Wiener 

process, which means the dWt are independent and identically distributed, following a Gaussian 

distribution.  For our simulations, the time constant is set to τnoise = 0.1 ms.  We chose to generate all 

our recordings with a sampling frequency of 20 Hz.  For each simulated recording the signal-to-noise 

ratio (SNR) is computed as 𝑆𝑁𝑅 = 〈|𝐴𝑚𝑎𝑥|〉/𝜎𝑛𝑜𝑖𝑠𝑒, where 〈|𝐴𝑚𝑎𝑥|〉 is the average action potential 

amplitude and σnoise is the noise level. 

The very first tests on our STDP network were conducted on a preliminary dataset, generated through 

this method.  Twenty simulated recordings were generated, lasting 200 s, each containing two 

different waveforms (see Figure V-1) occurring at 10Hz and 12Hz respectively, with a noise level σnoise 

of 2, leading to an SNR of 3.5.  This preliminary dataset has two main drawbacks.  First the noise level 

does not vary between recordings, and second the chosen waveforms have a width of about 2ms, 

which is quite large for an action potential and makes them easier to detect.   
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Figure V-1: The two waveforms used in the preliminary dataset 

We thus generated a more extensive dataset, which then constituted our main simulated single 

electrode dataset.  The recordings of this dataset also lasts 200 s.  They contain three different 

waveforms defined by the parameters shown in Table V-1 (see also Figure V-2), occurring at 3.3Hz 

each.  Seven different noise levels were used, corresponding to seven different SNR (see Table V-2).  

For each noise level, ten recordings were simulated, leading to a total of 70 simulated recordings, each 

of 200 s duration. 

 

Figure V-2: The three waveforms used in the simulated single electrode dataset 

   

Table V-1: Parameters used to generate the three waveforms of the simulated single electrode dataset 

 Amax τ1(ms) τ2(ms) tph 

Waveform 1 5 1 0.5 0.25 

Waveform 2 5 1 0.5 -0.25 

Waveform 3 10 1 0.5 0.19 
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Table V-2: Noise level used and corresponding SNR for the simulated single electrode dataset 

σnoise 0.5 0.75 1 1.25 1.5 1.75 2 

SNR 13.33 8.89 6.67 5.33 4.44 3.81 3.33 

 

b) Polytrode dataset 
 

For tests with multiple electrodes, we needed to model the fact that an action potential generated by 

a neural cell is recorded by nearby electrodes with an amplitude and a shape that differ depending on 

the distance and the geometry of the neuron relatively to the electrode. 

We thus implemented a simple model of extracellular action potentials, able to reproduce different 

variations of their temporal shape depending on the electrode position.  An intracellular action 

potential is a positive peak of the membrane potential. This signal results from voltage-sensitive 

sodium and potassium channel ion fluxes flowing through the neuron’s membrane at the initial 

segment, characterized by a positive transmembrane current that first flows inward and then outward.  

These active currents are compensated by capacitive and leak currents in the rest of the arborization.  

Detailed models of action potentials show that this transmembrane current peak, which is strongest 

in the soma, is also found in remote neuron parts, with a decreased amplitude, a larger width and a 

delayed peak (Gold et al. 2006).  Considering that the extracellular space is homogeneous and 

conductive, the potential at one point of the extracellular space is proportional to the sum of the local 

transmembrane currents divided by the distance.  The difference in shape of the same action potential 

recorded at different points of the extracellular space can thus be explained by the shape differences 

and the delays between the transmembrane current waveform in the different parts of the neuron.  In 

our model the transmembrane currents follow a template waveform (Figure V-3.a) that propagates 

along one segment line, representing the neuron arborization.  The waveform’s amplitude decreases 

linearly along this line until being null.  We also ensure that at any time the sum of the currents is null 

(Kirschoff’s law), by subtracting the total current sum to the local currents.  The final current 

waveforms obtained along the propagation segment are shown in Figure V-3.b.  The potential recorded 

by an electrode is modeled as the potential at one point of the extracellular space, which is the sum of 

the local currents for all simulated neurons divided by the distances, to which we add some noise. 

 

Figure V-3: Model of the transmembrane current through the neuron.  (a) Template waveform used to model the 

transmembrane current.  (b) Transmembrane currents obtained at different points of the line representing the neuron, 

after applying a propagation, an amplitude decrease, and adjusting the currents to have a null sum. 

The noise we used is a Gaussian noise with spatial and temporal correlations.  The spatial correlation 

between two points decreases exponentially with the distance.  The exponential decrease is 

characterized by a constant dnoise.  Thus, we computed the correlation matrix between all electrodes 

and generated a spatially correlated Gaussian noise at each time step.  The temporal correlation was 
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then obtained using an Ornstein-Ulhenbeck process with a time constant τnoise, as for the single 

electrode simulations.   

For our simulated polytrode dataset, we generated recordings lasting 100 s, sampled at 20 kHz, with a 

noise level σnoise = 1.  For this dataset, we chose a short spatial correlation for the noise (dnoise = 1 μm), 

so that the correlation between two electrodes was negligible.  The temporal noise correlation was 

the same as for the single electrode simulations (τnoise = 0.1 ms).  For each recording we simulated 10 

electrodes, arranged along a line, and spaced by 30 μm.  In the different recordings, we simulated 2, 3 

or 4 neural cells, randomly positioned along a line distant of 20 μm from the electrodes’ line (Figure 

V-4).  For each neural cell, the segment along which the intracellular action potential propagates is 

100-μm long and its direction is chosen randomly in the half-space directed towards the electrodes 

(Figure V-4).   

 

Figure V-4: Example of cells position relatively to the electrode line.  The cells are placed along a line 20 µm away from the 

electrode line.  (a) x-z view.  (b) x-y view.  Units are in meters.  Red circles represents the electrodes, black circle represents 

the cells soma and black lines the propagation line. 

 

The transmembrane current waveform, shown in Figure V-3, is the same for all simulated cells and 

propagates at the speed of 50mm.s-1, which is quite slow but allows to see significant variations in 

shape for the action potential waveforms.  Given the characteristics of the simulated neural cells and 

the simulated electrodes, we can compute the action potential waveform generated on each electrode 

by each cell.  Then for each neural cell, the waveforms’ amplitude is adjusted so that the maximum 

amplitude for each cell matches the chosen SNR.  We generated recordings with an SNR of 3, 4, 5 or 6.  

The maximum amplitude chosen for each neural cell to obtain the different SNR are detailed in Table 

V-3.   

Table V-3: Amplitude of the each neural cell’s action potential for the different SNR 

SNR 3 4 5 6 

Number of cells 2 3 4 2 3 4 2 3 4 2 3 4 

Action potential amplitude 

for each neural cell 

2.4 2.4 2.1 3.2 3.2 2.8 4 4 3.5 4.8 4.8 4.2 

3.6 3 2.7 4.8 4 3.6 6 5 4.5 7.2 6 5.4 

 3.6 3.3  4.8 4.4  6 5.5  7.2 6.6 

  3.9   5.2   6.5   7.8 
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Figure V-5 shows an example of action potentials’ waveforms generated with this method.  Once the 

waveforms are computed, they are included in the recording following a Poisson process, with a firing 

rate of 10 Hz for each simulated cell.  For each different number of cells and each different SNR, we 

generated 5 different recordings, each time with randomly placed neural cells, leading to a total of 60 

simulated recordings, each of 100 s duration. 

 

 

Figure V-5: Example of action potential waveforms obtained for each simulated electrode and each simulated neural cell 

2. Real recordings 
 

Our network was also evaluated withreal recordings  from  hippocampus  region  CA1  of anesthetized  

rats,  available  from  the  Buszaki Laboratory (Henze et al. 2000; Henze et al. 2009) (datasets  d533101  

and  d11221.002).  These two recordings are tetrode recordings, associated with an intracellular 

recording giving the ground truth for one neural cell (Figure V-6).  The d11221.002 recording has a 

sampling frequency of 20 kHz.  The d533101 recording, having an original 10-kHz  sampling frequency, 

was up-sampled, for convenience,  at 20 kHz using  a  Wittaker-Shannon  interpolation.  Before being 

fed to the network, the signals were band-pass-filtered using a first-order Butterworth filter (300Hz  –  

3000Hz).   
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Figure V-6: Sample of the tetrode recording d533101, with the four channels of the tetrode after filtering and the ground 

truth extracted from the intracellular recording. 

 

 Performance indices 
 

1. Spike-sorting performance 
 

When assessing the performance of a spike-sorting algorithm, one can be confronted to three types 

of errors: 1) false positive errors, when the algorithm detects an action potential where there is none, 

2) false negative errors, when an action potential is not detected, and 3) clustering errors, when an 

action potential is detected but classified in a wrong cluster.  False positives and false negatives are 

both detection errors.  We thus defined several performance indices that quantify each type of error 

as well as the global performance. 

The ground truth and the algorithm output are respectively constituted of N and K clusters..  We 

denote Hij the number of elements of true cluster i detected and classified in output cluster j, FNi the 

number of elements of true cluster i not detected by the algorithm and FPj the number of elements in 

output cluster j not corresponding to any true action potential. The number of elements in true cluster 

i is denoted Ti, and the total number of true action potentials is denoted T.  The number of elements 

in output cluster j is denoted Oj, and the total number of detected action potentials (including false 

positives) is denoted O.   

To evaluate the detection performance of the algorithm, we take into account the total number of 

false positives 𝐹𝑃 = ∑ 𝐹𝑃𝑗
𝐾
𝑗=1 , the total number of false negatives 𝐹𝑁 = ∑ 𝐹𝑁𝑖

𝑁
𝑖=1 , and the total 

number of action potentials correctly detected without taking into account their classification, 𝐷 =
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∑ ∑ 𝐻𝑖𝑗
𝐾
𝑗=1

𝑁
𝑖=1 .  We can then define the precision PD, recall RD and F-score FD as performance indices 

for detection: 

{
  
 

  
 𝑃𝐷 =

𝐷

𝐷 + 𝐹𝑁
=
𝐷

𝑂

𝑅𝐷 =
𝐷

𝐷 + 𝐹𝑃
=
𝐷

𝑇

𝐹𝐷 =
2𝐷

2𝐷 + 𝐹𝑃 + 𝐹𝑁
=

2𝐷

𝑇 + 𝑂
=

2

1
𝑃𝐷
+
1
𝑅𝐷

 

To evaluate the clustering performance, we first need to find a correspondence between the true 

clusters and the output clusters, as we do not know a priori which output cluster corresponds to which 

true cluster.  We define a correspondence M as a set of (i,j) pairs, where i is a truth cluster index and j 

an output cluster index.  To be valid, M should contain neither the same true cluster twice nor the 

same output cluster twice.  Given a correspondence M, the number of correctly classified elements is 

𝐻𝑀 = ∑ 𝐻𝑖𝑗(𝑖,𝑗)∈𝑀 .  The optimal correspondence is the one maximizing HM, computed through an 

exhaustive search, and we denote 𝐻∗ = 𝑚𝑎𝑥𝑀(𝐻𝑀) the optimal number of hits.  H* thus corresponds 

to the number of correctly detected and correctly classified action potentials.  We can then define a 

clustering performance index: 

𝐶 =
𝐻∗

𝐷
 

To evaluate the global performance of the algorithm, we combine C and FD to obtain an F-score that 

takes into account all types of errors: 

𝐹 =
2𝐻∗

𝑇 + 𝑂
= 𝐹𝐷 ∗ 𝐶 

 

Given a true cluster i and an output cluster j, we can also defined the precision Pij, recall Rij and F-score 

Fij for this specific pair, as follows: 

{
  
 

  
 𝑃𝑖𝑗 =

𝐻𝑖𝑗

𝑂𝑗

𝑅𝑖𝑗 =
𝐻𝑖𝑗

𝑇𝑖

𝐹𝑖𝑗 =
2𝐻𝑖𝑗

𝑇𝑖 + 𝑂𝑗

 

These paired scores are used to analyze in detail how well each action potential waveform is detected 

and classified.  They are also used to assess the performance withthe real dataset, for which the truth 

is only known for one neural cell.  The scores used in this case is the paired scores obtained for this 

true known cell and the best matching output neuron. 
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2. ROC curve for the attention neuron 
 

The role of the attention neuron is to detect action potentials within the input signal. Depending on 

how its threshold is chosen, the attention neuron generates more or less false positive and false 

negative errors.  To assess the efficiency of the attention neuron independently from the choice of its 

threshold, we decided to use a variation of the Receiver Operating Characteristic (ROC) curve.  Usually, 

a ROC curve shows the evolutions of both the false positive rate and the true positive rate (or recall) 

when the threshold evolves.  In our case, we cannot compute a false positive rate since we have no 

negative labels (all noisy part of the signal can be qualified as negative).  Instead we used the recall 

(true positives over positives) and the precision (true positives over predicted positives).  The idea of 

the ROC curve is the following.  When the threshold is very low, the recall is 1 whereas the precision is 

0.  As the threshold increases, the recall decreases while the precision increases, until they reach 

respectively 0 and 1.  This can be represented in a curve showing the trajectory of the precision and 

recall values (see Figure V-7).  For perfectly separable data, there is a point for which both recall and 

precision are equal to 1.  In this case, the area under the ROC curve is 1.  Otherwise, the recall begins 

to decrease before the precision reaches 1, leading to an area under the curve lower than 1.  Applied 

to the attention neuron, this area under the ROC curve thus constitutes an index of the performance 

on a particular recording, independently of the threshold choice.  This index was used for example in 

Section IV.E.2 to compare different structures for the attention neuron.   

 

 

Figure V-7: Principle of the ROC curve 

 

3. Intermediate layer quality 
 

The output of the intermediate layer is an important intermediate result.  To evaluate the quality of 

the intermediate layer, we defined several indices to evaluate its output knowing the ground truth.   

Each time an action potential occurs in the input signal, the intermediate layer generates a sequence 

of spikes stemming from different intermediate neurons.  Though the exact timing of these spikes 

could be exploited to classify the spike sequence, not all versions of our output layer use this 

information.  Thus for the sake of simplicity, to describe the spike sequence generated for each action 
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potential occurrence, we simply count how many times each intermediate neuron fires.  For each 

action potential occurrence we know its label L from ground truth and the corresponding intermediate 

layer output is described by a vector X of N natural integers where N is the number of intermediate 

neurons and Xi is the number of spikes emitted by the ith intermediate neuron.   

Our first quality index IH is based on entropy.  We want to compute the entropy of the action potential 

label given the intermediate layer output, which tells us how much information is missing in the 

intermediate layer output to find the correct label.  To do so, we computed an approximation of the 

probability to have X=x, a priori or given a label, using the density of points around x.  We can then 

compute the conditional entropy with the following formula: 

𝐻(𝐿|𝑋) =∑𝑝(𝑥)𝑝(𝑥|𝑙)log(
𝑝(𝑥)𝑝(𝑥|𝑙)

𝑝(𝑙)
)

𝑥,𝑙

 

We then normalize our index with respect to the entropy of the label: 

𝐼𝐻 =
𝐻(𝐿|𝑋)

𝐻(𝐿)
 

This entropy index gives us an objective index on the intermediate layer quality in case of an ideal 

classification, however it does not reflect how the output layer works.  Thus we constructed a more 

concrete index based on the distances between intermediate layer spike sequences.  We grouped the 

intermediate layer outputs, described by the same N-dimensional natural integer vector, into K 

clusters Ci according to their ground truth label.  We first computed the centroid of each cluster 𝑐𝑖 =

𝑚𝑒𝑎𝑛({𝑋/𝑋 ∈ 𝐶𝑖}).  To estimate the size Si of each cluster i we took the 0.9 quantile of the distance 

of each point of the cluster to its centroid:  

𝑆𝑖 = 𝑞0.9({|𝑋 − 𝑐𝑖|/𝑋 ∈ 𝐶𝑖}) 

For each cluster i we also computed an inter-cluster distance Di as the minimum distance to other 

clusters based on the centroids’ distance: 

𝐷𝑖 = min({|𝑐𝑖 − 𝑐𝑗|/𝑗 ∈ ⟦1, 𝐾⟧, 𝑗 ≠ 𝑖}) 

 We then took the ratio of the median cluster size and the median inter-cluster distance as our distance 

index ID. 

𝐼𝐷 =
𝑚𝑒𝑑𝑖𝑎𝑛({𝑆𝑖}𝑖∈⟦1,𝐾⟧)

𝑚𝑒𝑑𝑖𝑎𝑛({𝐷𝑖}𝑖∈⟦1,𝐾⟧)
 

 

 Comparison with other spike-sorting methods 
 

1. Tests with Osort and Wave_clus 
 

To assess our method, we chose to test two other spike-sorting methods: Osort (Rutishauser et al. 

2006) and Wave_clus (Quiroga et al. 2004).  Both of these methods give the possibility to sort the data 
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automatically, without supervision.  These two methods were tested on our single electrode simulated 

dataset (see Section V.A.1) and the real tetrode data (see Section V.A.2).   

Concerning Osort, the detection was done using the positive amplitude thresholding for the simulated 

data and the negative amplitude thresholding for the real data.  The extraction threshold was set to 4.  

The alignment was done, using the findPeak method, on the maximum for the simulated data and on 

the minimum for the real data.  The sampling frequency was set to 20 000, to match the input data 

sampling frequency.  Other parameters were set to their default values.   

Concerning Wave_clus, all the parameters were set to their default value, except for the threshold’s 

type, which is set to positive for simulated data and negative for real data, and for the number of 

samples stored before and after the event that are both set to 30.  Wave_clus gives the option to adjust 

the temperature parameter after the first clustering pass.  We did not use this option and used the 

automatically chosen value, as our goal is to compare fully automatic methods.  Wave_clus proposes 

an option to assign unsorted action potentials to found clusters.  For each recording we used this 

option once, after the first clustering pass. 

 

2. Statistical tests 
 

The single electrode simulated data and the real tetrode dataset were both used to compare different 

methods, in particular to compare the STDP network to Osort and Wave_clus.  For the simulated data, 

several recordings with similar characteristics were generated (see Section V.A.1).  Each of the 

compared methods are run once on each simulated recordings.  The different methods’ results on a 

set of recordings with similar characteristics are then compared.  For the real tetrode data (see Section 

V.A.2), the STDP method was run 8 times on each channel, Wave_clus was run 8 times on each channel, 

and Osort was run once on each channel as its result was deterministic.  The different methods’ results 

on the same recording  are then compared.  As the variances were significantly different for the 

different groups (as assessed by a Bartlett test), a Welch test was used for 2-by-2 comparisons, except 

for the comparison with Osort on the tetrode data where a one-sample t-test was used.  A Bonferroni 

correction was used for each set of multiple comparisons.   
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VI. IMPLEMENTATIONS AND RESULTS 

 

 MiniNet 
 

1. Implementation 
 

The first version of our network, consisted in one input layer, one intermediate layer implementing 

both an STDP rule and an STP rule, and one output layer implementing an STDP rule (Figure VI-1).  In 

this version of the network, the encoding frequency was 20 kHz, corresponding to our recordings’ 

sampling frequency, without up-sampling.  The number of encoding delays used in the input layer was 

large, corresponding to a signal window of 1.2 ms.  As improvements we also implemented a lateral 

STDP and an intrinsic plasticity on the output layer.  The main characteristics of this network are 

summarized in Table VI-1 and Figure VI-1.  The detailed parameters are shown in Table VI-2.  This 

method was subject to a patent (n° EN1654485). 

 

Figure VI-1: MiniNet structure 

 

Table VI-1: Main features of MiniNet 

Input layer Encoding frequency of 20Hz. 

At each encoding step, 24 signal values are encoded, each separated 

by 0.05 ms (1.2ms time window). 

The sensitivity margin DVm is 1.5σnoise, overlap is 8. 

Attention mechanism STP plasticity rule implemented on the synapses connecting the input 

layer to the intermediate layer. 

Intermediate layer 30 LIF neurons.  Synapses stemming from the input layer implement 

an STDP rule and an STP rule. 

Output layer 10 LIF neurons.  Synapses stemming from the intermediate layer 

implement an STDP rule.  Performance can be improved with a lateral 

STDP rule and an IP rule. 
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Table VI-2: Detailed parameters of MiniNet 

Input layer parameters 

Parameter Description Value 

ΔVm 
Sensitivity margin (half-size of the sensitivity 

range) 
1.5σnoise 

Noverlap 
Number of neuron active at the same time 

within one column 
8 

Δts Input layer sampling period 0.05 ms 

Δtc Time interval between two encoding delays 0.05 ms 

Nc Number of encoding delays 24 

Intermediate layer parameters 

Parameter Description Value 

Nneur Number of neurons 30 

τm Membrane time constant 3*Δts = 0.15 ms 

Th Neurons threshold Noverlap*Nc*0.75 = 144 

τrefrac Refractory period 0.025 ms 

Vreset Reset potential -20*Th = -2880 

winhib Lateral inhibition weight for WTA -0.2*Th = -28.8 

w0 
Average weight of the feedforward synapses at 

initialization. 
0.5 

τstdp+ Positive STDP rule time window Δtc*1.1 = 0.055 ms 

τstdp- Negative STDP rule time window 0 

Δwpair 
Weight change for a presynaptic spike coinciding 

with a postsynaptic spike 
0.01 

Δwpost Weight change for each postsynaptic spike -0.65* Δwpair 

τstp Short term plasticity time constant  1.5 ms 

fd Short term plasticity depression factor 0.2 

Output layer parameters 

Parameter Description Value 
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Nneur Number of neurons 10 

τm Membrane time constant 2.5 ms 

Th Neurons’ threshold 3 

τrefrac Refractory period 2.5 ms 

Vreset Reset potential  -10*Th = -30 

winhib Lateral inhibition weight for WTA -10*Th = -30 

w0 
Average weight of the feedforward synapses at 

initialization. 
0.5 

τstdp+ Positive STDP rule time window 1.5 ms 

τstdp- Negative STDP rule time window 1.5 ms 

Δwpair 
Weight change for a presynaptic spike coinciding 

with a postsynaptic spike 
0.01 

Δwpost Weight change for each postsynaptic spike -0.5*Δwpair 

Δwlat 
Weight change for a presynaptic spike coinciding 

with an inhibition 
-0.02* Δwpair 

Δwpre Weight change for each presynaptic spike -0.9* Δwlat 

 

 

2. Results 
 

The network was first tested on our preliminary simulated dataset (see Section V.A.1), which consists 

in signals containing two action potentials.  These action potentials have an SNR of 3.5 and a quite 

large duration of about 2 ms.  Figure VI-2 shows the behavior of the network for one recording 

example.  Figure VI-2.a shows the behavior of the intermediate layer.  Thanks to the STP, intermediate 

neurons fire only when an action potential is present in the signal. During an action potential, different 

intermediate neurons fire in sequences, as they each recognize a different part of the action potential. 

Indeed, as shown in Figure VI-2.b, for each active intermediate neuron, the synapses stemming from 

the input layer have evolved to match a specific waveform, which the neuron is then able to recognize.  

Figure VI-2.c shows an example of the network’s output.  It can be seen that the output neuron 3 has 

learnt to recognize one action potential waveform, whereas the output neuron 1 has learnt to 

recognize the other one.   
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Figure VI-2: Qualitative results of MiniNet on a recording from the preliminary dataset.  (a) Example of intermediate layer 

spike train during an action potential. (b) Weights learnt by the intermediate layer.  Each square represents the weights of 

the synapses from all input neurons, organized into a grid, to one specific intermediate neuron.  The weights go from 0 

(black) to 1 (white).  (c) Example of output layer spike train.  Output spikes match the different action potential 

occurrences.   

 

This first network, with neither lateral STDP nor IP, gave satisfactory results on the preliminary dataset, 

with a mean F-score of 0.81.  Figure VI-3 shows an example of results on one recording from this 

dataset.  It can be seen that the learning converge after about 100 s, and that the waveform 1 is 

recognized by the output neuron 3 with an F-score of 0.83, and the waveform 2 is recognized by the 

output neuron 1 with an F-score of 0.88.   
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Adding a lateral STDP to the output layer improved the performance of the network.  Indeed, with 

lateral STDP, the mean score was brought from 0.81 to 0.88.  As preliminary tests, an intrinsic plasticity 

was implemented on the output layer in combination with the lateral STDP.  It was tested qualitatively, 

on signals containing action potentials with slightly different amplitudes and durations.  These tests 

showed that the neuron’s threshold is actually able to adapt to the size of the learnt pattern. 

 

Figure VI-3: Example of performance of MiniNet on one recording from the preliminary dataset.  (a) Evolution of the F-

scores during the 200-s simulation.  The two graphs are for the two ground truth cells and the different colors correspond 

to two different output neurons.  (b) Mean F-scores on the last 100s of the same recording, for each pair of ground truth 

cell and output neuron.   

Although this first version worked well on the preliminary dataset, the performances were not as good 

with more realistic data, especially when action potentials were shorter.  One reason was that the 

input layer was adapted for slow action potentials, because of the slow sampling frequency used for 

encoding.  This was corrected in the next versions.  Another problem was the interaction between the 

STP and the STDP on the intermediate layer, which made it difficult to robustly recognize low-

amplitude action potentials.  Indeed, without STP, an intermediate neuron’s potential depends on how 

close the input signal is to the shape it has learnt.  When the STP is added, its potential also depends 

on the signal’s amplitude. The reduced potential for low amplitudes requires low-amplitude 

waveforms to be very close to the learnt waveform to be recognized.  This led us to introduce an 

attention neuron (which was added in the patent) in the next versions of the network.   

 

 ANNet 
 

1. Implementation 
 

We first improved the MiniNet network with the introduction of an attention neuron, which gave its 

name to this new version.  The attention neuron allows to isolate the network’s detection function, so 

that the STP does not impair the intermediate layer’s recognition function.  The attention neuron then 

projects to the intermediate layer through fixed-weight synapses (see Figure VI-4), bringing an 

additional excitation to the intermediate layer, necessary for it to fire.  Another important 

improvement was to set a shorter encoding step on the input layer, while keeping the same interval 

between two encoded signal values.  This brings robustness against sampling time jitter without adding 
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unnecessary synapses.  The number of delays in the input layer was also reduced to 10, corresponding 

to a time window of 0.5 ms.  This is more suitable for realistic action potentials, as the encoding time 

window should be slightly shorter than an action potential’s duration.  The structure of the output 

layer was also more complex.  It is constituted of LIF neurons with IP, and it receives spikes from the 

intermediate layer trough synapses with different synaptic delays, presynaptically inhibited by the 

attention neuron, as described in Section IV.D.3.  The synaptic weights can take positive as well as 

negative values.  This structure forces the output layer to wait for the end of the spike sequence 

emitted by the intermediate layer before firing.  This prevents the output layer from missing any 

important information for pattern separation.  The delays also bring some information about the 

sequence timing.  The characteristics of ANNet are summarized in Table VI-3 and Figure VI-4.  The 

detailed implementation of ANNet and the results obtained can be found in an article (annex B), 

currently in review for publication. 

 

 

Figure VI-4: ANNet structure 

 

Table VI-3: Main features of ANNet 

Input layer Encoding frequency of 80Hz. 

At each encoding step, 10 signal values, separated by 0.05ms each are 

encoded (0.5ms time window). 

The sensitivity margin DVm is 1.75σnoise, overlap is 10. 

Attention mechanism Attention neuron.  Input layer projects to the attention neuron 

through synapses implementing an STP rule.   

Intermediate layer 60 LIF neurons.  Synapses stemming from the input layer implement 

and STDP rule.   

The intermediate layer receives the attention neuron spike-train 

through fixed weight synapses.  The threshold is set so that this layer 

cannot fire if the attention neuron does not fire. 
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Output layer 10 LIF neurons, implementing an IP rule. 

The output layer is connected to the intermediate layer through both 

excitatory and inhibitory synapses, duplicated with different 

transmission delays.  All these synapses implement an STDP rule.  The 

spike transmission is inhibited by the attention neuron, which thus 

also prevent STDP. 

 

 

 

2. Results 
 

ANNet was tested both on our single-electrode simulated dataset (see Section V.A.1) and on real 

recordings (see Section V.A.2).  The behavior of the intermediate layer is similar to the one obtained 

with the first implementation.  Thanks to the attention neuron, intermediate neurons fire only when 

an action potential is present in the signal. The spike sequence generated by the intermediate layer 

matches for similar action potentials and does not for different action potentials (Figure VI-5.a).  

Indeed, each active intermediate neuron learns to recognize a specific shape in the signal (Figure VI-5.b 

and c).  The intermediate layer spike sequence can thus be seen as a signature of the action potential 

occurring in the input signal. 

 

Figure VI-5: Behavior of the intermediate layer of ANNet.  (a)  Spike sequences emitted by the intermediate layer for each 

action potential occurrence.  Top: signal shapes for all action potential occurrences on the last 100 s of simulation.  Middle 

row: spike trains of the intermediate layer synchronized with 50 different action potential occurrences.  Bottom row: 

distribution of intermediate spike latency relative to each action potential occurrence (the histograms are cumulated).  The 

different colors stand for different intermediate neurons.  (b) Weight evolution of the synapses projecting on one specific 

intermediate neuron.  Each square represents the weights of the synapses from all input neurons at a specific time.  The 

weights go from 0 (black) to 1 (white).  (c) Weights learnt by each intermediate neuron after a 200-s simulation.  Each 

square represents the weights of the synapses from all input neurons, organized into a grid, to one specific intermediate 

neuron.  The weights go from 0 (black) to 1 (white). 

Figure VI-6 shows an example of the network’s output for a simulated recording and for a real 

recording, as well as the F-score evolution along the whole recording.  It can be seen that, for the 

simulated recording, three output neurons are active and accurately reproduce the true activity.  
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Concerning the real recording, for which the ground truth is only known for one neural cell, one of the 

output neuron reproduces the known ground truth.  Though it cannot be objectively evaluated, two 

other action potentials seem to be detected by two other output neurons.   

 

Figure VI-6: Examples of ANNet output and performance (a) Output and scored on a simulated recording.  Left: comparison 

of the output spike train, composed of ten neurons, with the truth spike train, composed of three neurons, on a 10-s 

segment of input signal. Matching spike trains have been highlighted in red.  Right: evolution of the performance of the 

network over the 200-s simulation.  (b) Same as (a) for a real recording (dataset d553101).  Here the truth is only known 

for one cell thus only the performance relative to this cell can be computed. 

 

The performance of ANNet was compared to two other spike-sorting algorithms, Osort (Rutishauser 

et al. 2006) and Wave_clus (Quiroga et al. 2004) (see Section V.C).  On simulated data with a high SNR, 

the ANNet’s scores were lower than the two other algorithms, though the difference remained 

relatively small.  In contrast, for SNR lower than 6, ANNet performed significantly better than Osort 

and Wave_clus (Figure VI-7.a).  The performances on real recordings confirmed these results, except 

that Wave_clus obtained quite low scores on data with high SNR (Figure VI-7.b).  An insight on the 

detailed scores for the simulated recordings with an SNR of 4.5, where ANNet perform significantly 

better than the two other methods, shows that the STDP network has a better recall and a better 

clustering score (Figure VI-7.c). 
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Figure VI-7: ANNet performances compared to Osort and Wave_clus.  (a) Performance on the single electrode simulated 

dataset.  (b) Performance on real recordings.  Error bars show the standard deviation.  ANNet performance was compared 

to Wave_clus and Osort through statistical tests (see Section V.C).  ns stands for non-significant, * for p<0.05, ** for p<0.01, 

*** for p<0.001.  (c) Detailed mean scores on the 10 simulated recordings with an SNR of 4.5. 

 

Finally, the robustness of this network was also tested on two additional simulated recordings.  In the 

first one, the firing rates were different between the three simulated cells (Figure VI-8.a).  In the 

second, each cell became silent one after the other during a 50 s time interval (Figure VI-8.b).  The 

results show qualitatively that the network is robust to such variations.   
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Figure VI-8: ANNet performance on simulated recordings with different firing rate scenarios. 

 

3. Preliminary tests on tetrode data 

 

Our ANNet implementation of the network, designed initially for single electrode, was tested on real 

tetrode recordings.  We tested two different methods to adapt the feedforward network structure to 

process the tetrode data (see Section V.A.2).  In a first adapted architecture, the input layer was 

duplicated four times for each electrode, and these four inputs layers project to a common attention 

neuron and a common intermediate layer (Figure VI-9.a).  In a second architecture, the input layer, the 

attention neuron and the intermediate layer were all duplicated and connected to a common output 

layer (Figure VI-9.b).  We compared the performances of these two methods to the performance 

obtained on the best single channel for each tetrode, with the single-electrode version of the network 

(Figure VI-10).  On the d533101 recording, with the highest SNR, the tests show a clear improvement 

of the results when taking into account all four channels, with even better results when using the 

second structure.  On the d11221.002 recording, there was no significant improvement, and the 

performance dropped with the second structure, with a high variation between different runs.  This is 

thus difficult to conclude on these two datasets.  The next version of our network, adapted to multiple 

electrode, was thus tested on more data generated through simulation, with more electrode and a 

controlled SNR and controlled number of cells, to check the effect of different network structures (see 

Section VI.D).   
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Figure VI-9 : Two different structures adapted for tetrode recordings, for the ANNet implementation. 

 

 

Figure VI-10 : F-scores obtained with the two tested structures, compared to the best single electrode performance. 

 

 LTSNet 
 

1. Implementation 
 

The most advanced single-electrode version of our network, which we called LTSNet because of the 

introduction of LTS neurons, includes improvements on both the intermediate and the output layers 

(Figure VI-11).  The intermediate layer implements a 2-WTA mechanism, allowing two neurons to fire 

almost simultaneously instead of one.  This 2-WTA was combined with the implementation of a 

resource-dependent STDP on the synapses stemming from the input layer, which modulates the 

weight update depending on the number of spikes recently emitted.  As described in Section IV.C.4, 

this mechanism allows the intermediate layer receptive fields to overlap.  The neuron model used in 

the output layer mimics an LTS neuron, with the simplified model described in Section IV.D.4.  This 

neuron model has a potential rebound after receiving a negative stimulus.  The synapses coming from 
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the intermediate layer are thus inhibitory, and the output neurons fire after the stimulus (see Section 

IV.D.4), removing the need for an inhibition from the attention neuron used in ANNet.  The attention 

neuron is thus only used to gate the intermediate layer though fixed excitatory synapses.  The output 

layer structure is thus greatly simplified compared to ANNet.  No intrinsic plasticity was used in this 

implementation.  A lateral STPD was implemented on the output layer to improve the performance.  

The main characteristic of LTSNet are shown in Table VI-4 and Figure VI-11, and its detailed parameters 

in Table VI-5. 

 

Figure VI-11: LTSNet structure 

 

Table VI-4: Main features of LTSNet 

Input layer Encoding frequency of 80Hz. 

At each encoding step, 10 signal values, separated by 0.05ms each are 

encoded (0.5ms time window). 

The sensitivity margin DVm is 2σnoise, overlap is 10. 

Attention mechanism Attention neuron.  Input layer projects to the attention neuron 

through synapses implementing an STP rule.   

Intermediate layer 100 LIF neurons.  Synapses stemming from the input layer implement 

and STDP rule.   

A 2-WTA mechanism is used. 

The intermediate layer receives the attention neuron spike train 

through fixed weight synapses.  The threshold is set so that this layer 

cannot fire if the attention neuron does not fire. 

Output layer 15 simplified LTS neuron. 

Synapses stemming from the intermediate layer are inhibitory and 

implement a lateral STDP rule. 

 

Table VI-5: Detailed parameters of LTSNet 

Input layer parameters 

Parameter Description Value 
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ΔVm 
Sensitivity margin (half-size of the sensitivity 

range) 
2σnoise 

Noverlap 
Number of neuron active at the same time 

within one column 
10 

Δts Input layer sampling period 0.0125 ms 

Δtc Time interval between two encoding delays 0.05 ms 

Nc Number of encoding delays 10 

Attention neuron parameters 

Parameter Description Value 

τm Membrane time constant 2* Δts = 0.025 ms 

τrefrac Refractory period 0 

Th Neurons threshold 0.947*Noverlap*Nc = 94.7 

wself Weight of the self-excitatory synapse 0.077*Noverlap*Nc = 7.7 

τstp Short term plasticity time constant 20 ms 

Wmin 
Equilibrium weight for the input neuron coding 

for 0 
0.13 

Intermediate layer parameters 

Parameter Description Value 

Nneur Number of neurons 100 

τm Membrane time constant 2* Δts = 0.025 ms 

τrefrac Refractory period Δtc = 0.05 ms 

Vreset Reset potential 0 

Vinhib Post-inhibition potential 0 

wAN 
Weight of the synapses coming from the 

attention neuron 
0.45 * Nc *Noverlap = 45 

w0 
Average weight of the feedforward synapses at 

initialization. 
0.7 

Th Neurons threshold 

(wAN + w0 *Nc*Noverlap) *                  

(1-exp(-Δtc/τm))/(1-exp(-Δts/ τm)) 

= 252.7 

kWTA 
Maximum number of neuron that can fire 

simultaneously 
2 
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τstdp+ Positive STDP rule time window Δtc*1.01 = 0.0505 ms 

τstdp- Negative STDP rule time window 0 

Δwpair 
Weight change for a presynaptic spike coinciding 

with a postsynaptic spike 
0.005 

Δwpost Weight change for each postsynaptic spike -0.55* Δwpair 

τres STDP resource time constant 3.125 µs 

fres STDP resource consumption factor 0.5 

Output layer parameters 

Parameter Description Value 

Nneur Number of neurons 15 

τm Membrane time constant 2 ms 

τrefrac Refractory period 0 

Vreset Reset potential  0 

Vinhib Post-inhibition potential 0 

qreset Reset value of q after firing 0 

qinhib Reset value of q after an inhibition 0 

wlayer 
Weight factor applied to all feedforward 

synapses. 
-0.25 

w0 
Average weight of the feedforward synapses at 

initialization. 
0.5 

τstdp+ Positive STDP rule time window 10 ms 

τstdp- Negative STDP rule time window 0 

Δwpair 
Weight change for a presynaptic spike coinciding 

with a postsynaptic spike 
0.01 

Δwpost Weight change for each postsynaptic spike -0.6*Δwpair 

Δwlat 
Weight change for a presynaptic spike coinciding 

with an inhibition 
-0.1* Δwpair 

Δwpre Weight change for each presynaptic spike -0.2* Δwlat 

 

2. Results 
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LTSNet was tested on our single electrode simulated dataset (see Section V.A.1).  The behavior of the 

intermediate layer is qualitatively similar to the previous version, except that two intermediate 

neurons fire each time simultaneously, due to the 2-WTA mechanism (Figure VI-12).  Concerning the 

output layer, thanks to their rebound properties, LTS neurons fire after the inhibitory stimulus received 

from the intermediate layer.  The neuron receiving the strongest stimulus fires first (Figure VI-13).   

 

Figure VI-12: LTSNet intermediate layer behavior.  (a) Spikes emitted by the intermediate layer in response to action 

potential in the signal. The signal is shown in black.  Spikes are shows by the colored vertical bars, different colors standing 

for different intermediate neurons.  (b) Weights learnt by each intermediate neuron.  Each square represents the weights 

of the synapses from all input neurons, organized into a grid, to one specific intermediate neuron.  The weights go from 0 

(black) to 1 (white). 
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Figure VI-13: Example of potential rebound of LTS neurons in the output layer.  Top: Spike train generated by the 

intermediate layer.  Different colors stands for different intermediate neurons.  Middle: Potential evolution of the different 

output neurons in different colors.  Bottom: output neurons spikes.  Colors match the middle panel.   

 

Figure VI-14 shows an example of LTSNet output on a 5-s sample of a simulated recording.  Over the 

15 output neurons, three neurons are active, and reproduce the true activity.  LTSNet performance 

was assessed on the single electrode simulated dataset and compare to ANNet, as well as Osort 

(Rutishauser et al. 2006) and Wave_clus (Rutishauser et al. 2006).  LTSNet has similar scores as ANNet 

and Wave_clus, and perform significantly better than Osort on recordings with a low SNR (Figure 

VI-15.a).  Looking at the detailed score on recordings with an SNR of 4.5, it can be seen that LTSNet has 

a better recall than ANNet, but the clustering performance is degraded (Figure VI-15.b).   
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Figure VI-14: Example of LTSNet output on a 5-s segment of simulated signal. Top: input signal Middle: spike train 

corresponding to true action potentials in the signal. Bottom: output spike train, composed of 15 neurons.  Spike trains 

matching the truth have been highlighted in red. 
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Figure VI-15: LTSNet results on the single electrode simulated dataset, compared to ANNet, Osort and Wave_clus.  (a) 

Mean F-scores on recordings with different SNR.  Error bars show the standard deviation.  A Welch test with a Bonferroni 

correction was used to compare LTSNet to each of the three other methods shown.  ns stands for non-significant, * for 

p<0.05, ** for p<0.01, *** for p<0.001.  (b) Detailed mean scores on the 10 simulated recordings with an SNR of 4.5 

 

 

 PolyNet 
 

1. Implementation 
 

We adapted the last version of our network, LTSNet, to process signal stemming from multiple 

electrodes.  We named PolyNet this adapted version of the network illustrated in Figure VI-16.  Except 

for structural adaptations, the parameters are the same as for LTSNet.  The structure adaptation of the 

network depends on the geometry of the electrode array.  Here we tested the network on our 

polytrode simulated dataset (see Section V.A.1).  The recordings simulated the signals generated by 
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ten electrodes arranged in a line.  With the chosen electrode geometry, an action potential can 

typically be seen on about three neighboring electrodes.  To adapt the network to polytrode 

recordings, the initial network structure is duplicated ten times, to match the number of electrodes.  

We obtain a structure with ten parallel subnetworks (see Figure VI-16).  This parallel structure is 

unchanged from the input layer to the intermediate layer.  Lateral synapses are introduced for the 

connection between the intermediate layer and the output layer.  Each intermediate sublayer projects 

to three output sublayers and each output sublayer receives synapses from three intermediate 

sublayers, with each time one straightforward connection corresponding to the parallel structure and 

two lateral connections (except at the edges of the array).  Each all-to-all connection from one 

intermediate sublayer to one output sublayer is pondered by a layer weight wL.  This means that for 

each synapse, the learnt weight w, varying between 0 and 1, is multiplied by wL, leading to a resulting 

weight w*wL.  The layer weight wL is 1/2 for the straightforward connection and 1/4 for the each of 

the two lateral connections (see synapse symbols of different size in the Figure VI-14 diagram).  The 

WTA mechanism is also extended between the different output layers, in order to avoid several 

sublayers to fire for the same action potential. To do so, each output sublayer is inhibited by itself and 

by the 4 closest output sublayers.   

 

 

 

Figure VI-16: PolyNet structure for polytrode recordings (illustration for a line of 6 electrodes). 
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2. Results 
 

This implementation was tested on our polytrode simulated dataset (see Section V.A.1).  Figure VI-17 

shows an example of output on a sample of 250 ms of a simulated polytrode signal with four simulated 

neural cells and an SNR of 6.  Each action potential in the signal triggers a spike from a unique neuron 

in the entire output layer, most of the time in the sublayer corresponding to the channel where the 

action potential amplitude is the highest.  Figure VI-18 shows the scores obtained on the same signal 

for each pair of true cells and output neurons.  Most action potentials emitted by one specific cell are 

detected by one specific output neuron, though cell 1 is detected by the same neuron as cell 3 at the 

beginning of the simulation, and a few false positives and classification mismatches can be observed.  

This is consistent with the mean clustering, precision and recall scores observed with different SNR 

(Figure VI-19).  Although the recall is quite good, the precision and the clustering score are low, due to 

the high number of false positives and classification mismatches.  Indeed when taking each output 

neuron separately, the number of corresponding mismatches and false positives is low, as shown for 

example in Figure VI-18.b, but due to the high number of output neurons (150), the total number of 

mismatches and false positives become important.  The misclassifications could be explained by the 

concurrence between neighboring output sublayers, as they do not receive exactly the same stimulus.  

The first output sublayer to fire is not systematically the one corresponding to the highest action 

potential amplitude, as we would ideally expect.  This can be seen for example in channel 4 of Figure 

VI-17 on which the action potential detected for the true red waveform has a lower amplitude lower 

than the one occurring on channel 5. 
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Figure VI-17: Example of output on a simulated polytrode recording with an SNR of 6.  Truth is shown at the top.  Each 

panel shows the recorded signal for each electrode (black line), and the spikes from the corresponding output sublayer 

(colored bars).  Different colors correspond to different neurons within the same sublayer.   
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Figure VI-18: Action potentials stemming from different cells are recognized by a different output neurons.  (a) Evolution 

of the paired F-scores during the simulation.  Different colors stand for different output neurons within the same output 

sublayer.  (b) Number of action potentials detected by each output neurons and number of false positives and false 

negatives, within the last 50 seconds of the simulation.   

 

 

Figure VI-19: Mean scores on the polytrode simulated recordings with different SNR, for each type of error. 
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 Estimation of the resources used 
 

For each of our different implementations, we made a rough estimation of the resources used for a 

neuromorphic implementation, in terms of number of neurons, synapses and transmitted spikes.  For 

the input layer, the estimation was done for encoding a signal range of 20σnoise.  The number of spikes 

generated and transmitted is expressed in spikes per second on the input layer, and then in spikes per 

action potential present in the signal. The results obtained are gathered in Table VI-6, Table VI-7 and 

Table VI-8, for the three single-electrode networks, respectively.  Depending on how the neuromorphic 

implementation is done, some of these implantation bricks can be more limiting than others.  However, 

with our network structure, the limiting factor is likely to be the synaptic connection between the input 

and the intermediate layers, as the numbers of synapses and of spikes transmitted are very high.  

Another aspect that can be relevant for power consumption in a neuromorphic implementation is the 

number of synaptic weights’ changes.  For the connection between the input layer and the 

intermediate layer, the number of weights’ changes can be estimated at respectively 12720, 5700 and 

10000 changes per action potential for respectively MiniNet, ANNet and LTSNet.  An estimation of 1pJ 

per weight change (Xiong et al. 2011; Chin et al. 2013) and an electrode signal containing about 100 

action potentials per second lead to an approximation power consumption of 1µW.  For the polytrode 

implementation the quantity of resources used is multiplied by the number of electrodes, except for 

the intermediate to output layer connection, for which the number of synapses is also multiplied by 

the number of lateral connections between sublayers (3 in our case).  However, this connection should 

not be the limiting element in this structure.   

 

Table VI-6: Resources used for MiniNet 

NEURONS SYNAPSES 

Layer Number of 

neurons 

Number of 

spike 

generated 

Connection Number of 

synapses 

Number of 

spike 

transmitted 

Input layer 53 160e3 /s Input to 

intermediate 

38 160 115e6 /s 

Intermediate 

layer 

30 10 /AP Intermediate to 

output 

300 100 /AP 

Output layer 10 1 /AP    

 

Table VI-7: Resources used for ANNet 

NEURONS SYNAPSES 
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Layer Number of 

neurons 
Number of 

spike 

generated 

Connection Number of 

synapses 
Number of 

spike 

transmitted 

Input layer 57 800e3 /s Input to 

intermediate 
34 200 480e6 /s 

Attention 

neuron 

1 40 /AP Input to 

attention 

neuron 

570 8e6 /s 

Intermediate 

layer 
60 10 /AP Intermediate 

to output 
60 000 100 000 /AP 

Output layer 10 1 /AP    

 

Table VI-8: Resources used for LTSNet 

NEURONS SYNAPSES 

Layer Number of 

neurons 
Number of 

spike 

generated 

Connection Number of 

synapses 
Number of 

spike 

transmitted 

Input layer 50 800e3 /s Input to 

intermediate 
50 000 800e6 /s 

Attention 

neuron 

1 40 /AP Input to 

attention 

neuron 

500 8e6 /s 

Intermediate 

layer 
100 20 /AP Intermediate 

to output 
1500 300 /AP 

Output layer 15 1 /AP    

 

 

 Preliminary FPGA Implementation 
 

The different versions of the network were tested by simulations on a workstation.  This allows to test 

the spike-sorting performance of the network but not the efficiency of the implementation, as it is 

designed to be executed on parallel hardware.  Neuromorphic technologies not being mature enough 

to implement our network, we chose as an intermediate step towards an embedded implementation, 

to begin an implementation on FPGA devices.  This technology has both advantages to be flexible and 

to offer parallelism architecture opportunities.  To this end we started a collaboration with Takashi 

Kohno and Timothée Levi at the University of Tokyo, whose team has already been working on 
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implementing neural network on FPGA (Li et al. 2012).  I stayed for 2 weeks in Tokyo for this purpose 

and the work started there was continued by Joel Fournier during a 4-month internship under my 

supervision.  This collaboration and this internship resulted in the implementation of an input layer, a 

short term-plasticity and an attention neuron, which were tested all together (Figure VI-20).  The 

implementation was done on a Kintex-7 device, on a Genesys 2 development board from Digilent 

(Figure VI-21).  The results were qualitatively good, as this attention neuron was able to detect, in real 

time, action potentials in a testing signal generated on the fly (Figure VI-22).  The parameters still need 

to be adjusted to optimize the detection and to match the characteristics of a realistic signal. This work 

should be continued with Takashi Kohno and Timothée Levi to add an STDP rule and LTS neurons to 

obtain a complete network.  During his internship, Joel Fournier also implemented a protocol for 

receiving data from a computer via a USB-interface included in the development card we used.  This 

interface will be very useful in the future to send electrode recordings in real-time to the FPGA for a 

real time spike-sorting.   

 

 

Figure VI-20: Parts of the network implemented on FPGA.  The parts that were not implemented are grayed. 

 

Figure VI-21: Genesys 2 board used for FPGA implementation 
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Figure VI-22: Attention neuron simulation implemented on an FPGA.  Up: testing signal. Middle: attention neuron 

potential. Bottom: Attention neuron spikes. 
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VII. CONCLUSION AND PERSPECTIVES 

 

A. Main contributions 
 

The goal of this thesis was to design a fully automatic online spike-sorting algorithm using an STDP 

network, in the perspective of an implementation on neuromorphic hardware.  The network 

developed during this work meets in large these requirements.  First, the algorithm is entirely 

neuromorphic.  Apart from a simple band-pass filtering, that can be achieved by simple passive analog 

circuitry, no preprocessing is done before feeding the input signal to the network.  The conversion of 

the analog signal into spike trains is done by a set of simple units that can be assimilated to sensory 

neurons.  No post-processing is needed either, as the network is designed to output spike trains that 

correspond to the sorted cells’ spiking activity.  Second, the method is fully automatic.  The network 

has been designed and parameterized taking into account the main characteristics common to all 

extracellular recordings, in particular the duration of an action potential. The parameters of the 

network depend only on two characteristics of the input signal that may change between recordings: 

the noise level and the amplitude range, which can both be easily estimated.  Third the algorithm can 

theoretically be executed online.  Indeed the network is designed to process the input signal on the 

fly.  The theoretical latency of the response depends on the dynamic of the neuron models and the 

synaptic transmission delays used in the network and does not exceed a few milliseconds.  In practice, 

the execution time depends on the physical implementation of the network, in particular on what type 

of hardware it is executed.  Though the algorithm was designed for a neuromorphic implementation, 

the practical implementation on neuromorphic hardware is beyond the scope of this work.  Though, 

preliminary implementation on FPGA gave good results (see Section VI.F). 

An important point when designing an algorithm to solve a problem is to check if the problem is solved 

correctly.  This is not trivial for spike-sorting, as the ground truth is most of the time unknown.  A 

common way to assess the performance of a spike-sorting algorithm is to test it on simulated data, 

mimicking real recordings, but for which the ground truth is thus known.  In this work we generated 

our own simulated data, using two different methods (see Section V.A.1).  The first method, used for 

single electrode recordings, uses predefined action potential waveforms for each true cell.  The second 

method, used for multiple electrode recordings, uses an extracellular action potential model based on 

a simplified neural geometry.  The simplicity of this model allows to quickly generate multiple electrode 

data without advanced knowledge in electrophysiology, in contrast with more realistic models that 

require to simulate complex neural structures (Hines & Carnevale 2001; Hagen et al. 2015).  The 

performance assessment on simulated data was supplemented with tests on real recordings, with a 

partially known ground truth.  These tests showed that our algorithm reaches the state-of-the-art 

performance on single electrode recordings, using a radically new method (see Sections VI.B and VI.C).  

It also has a correct qualitative behavior on multiple-electrode recordings (see Section VI.D).  In 

particular we were able to ensure that each action potential in the signal generates only one output 

spike, in spite of being processed through several parallel channels.  Moreover, as expected for an 

STDP network, our network needs only a few occurrences of a pattern (about a hundred) to learn to 

recognize it, in contrast to deep neural networks that require to be trained on large datasets. 
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Beyond the spike-sorting application, many mechanisms were developed for this network, to deal with 

the specificities of the spike-sorting problem.  These mechanisms could be used for other applications.  

First the patterns to recognize in the signal had a strong temporal aspect as the relative times of the 

values taken by the signal are crucial to discriminate the patterns (i.e.  the action potential waveforms).  

This is not common in STDP applications.  Indeed LIF neurons are naturally able to detect coincidences, 

but need additional mechanisms to process this temporal aspect.  This problem can be simply solved 

by using delays in the synaptic transmissions (Natschläger & Ruf 1998; Ghosh-Dastidar & Adeli 2007; 

Ghosh-Dastidar & Adeli 2009), which we did in our network (see Section IV.A and IV.D.3).  The network 

was successfully able to distinguish two waveforms that were symmetric along time (one positive and 

then negative and the other negative and then positive), showing that the temporal aspect is correctly 

taken into account.  Such network structure using transmission delays has already been used for EEG 

pattern recognition (Ghosh-Dastidar & Adeli 2007), though in this study, learning is not done through 

STDP.  On the other hand, some studies applied STDP networks to auditory or visual pattern learning, 

but without using transmission delays (Suri et al. 2013), which limit the network to recognizing short 

timescale patterns and not complex sequences.  The ability to recognize temporal patterns using 

transmission delays could thus be useful for applications such as video processing or sound and 

language processing.  It would allow for example discriminating similar objects moving in different 

directions in a video stream, or recognizing whole words or sentences in an audio recording. 

Another important aspect of the network is the attention mechanism (see Section IV.B).  Artificial 

neural networks are often presented isolated patterns, removing the need to select the relevant parts 

of the input stimuli.  Recognizing patterns in a composed input stimulus, possibly containing several 

patterns among irrelevant inputs, is a much more complex problem.  Convolutional neural networks 

solve this problem by scanning all the input stimulus to find local patterns.  However, it would be more 

interesting to process only the relevant parts of the input stimulus through an attention mechanism.  

In this work, we implemented an attention mechanism thanks to a short-term plasticity rule, able to 

detect changes in the input stimulus.  This mechanism could possibly be extended to visual processing, 

for example to detect moving objects in a video stream.     

Finally, when designing our spike-sorting network, we were confronted to the problem of input 

patterns with different sizes due to action potentials of different durations.  A neuron learning a 

pattern should thus adapt its error tolerance to the size of the learnt pattern.  This was done using an 

intrinsic plasticity rule that adapts the value of the neuron’s threshold to the size of the learnt pattern 

(see Section IV.D.1).  As our patterns are temporal, we also needed a mechanism to ensure that 

neurons would not fire before the end of the pattern and thus miss information to recognize it.  Our 

most satisfying solution to solve this problem was to use an LTS neuron model that generates a 

potential rebound after an inhibitory stimulus.  During tests on our output layer structure, we showed 

that combining these two mechanisms (see Section IV.D.4) makes the network model able to 

discriminate patterns with very different sizes, and even two patterns strictly included one into 

another.  A possible alternative application of this approach could be the processing of complex visual 

scenes, where relevant objects can have different sizes in the input picture. 
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B. Discussion and future work 
 

Our STDP network works well to process single electrode signals.  However, the long-term goal is to 

develop an STDP network able to process signals from dense MEAs.  Our implementation of a network 

processing a multiple-electrode signal is preliminary.  We were able to design a network architecture 

that fires one spike for each action potential, on a channel where this action potential is visible, which 

is the intended behavior.  However, this network still generated too many misclassification errors, in 

part due to the fact that action potentials stemming from the same neural cell are not robustly 

classified in the same channel.  Future efforts should thus focus on adjusting the architecture to solve 

this problem.  Possibilities are to simply adjust parameters such as the connection weights between 

layers, to introduce new plasticity mechanisms, or to add a layer dedicated to this problem.  For 

example, the lateral STDP already implemented on the output layer could be adjusted depending on 

which layer the WTA inhibition comes from.  Another aspect that could be investigated is the influence 

of the number of neurons in each layer on the network performance.  Our guess is that, provided that 

there is already enough neurons to learn all presented patterns, adding additional neurons should not 

impact the spike-sorting performance.  Indeed, all inactive neurons that have not learnt any pattern 

behave the same way, and their number should not impact the behavior of neurons responding to a 

pattern.  However this hypothesis has not been investigated experimentally.   

In this work, we mostly investigated the simplest cases of spike-sorting situations.  However, as it has 

been highlighted in Section II, some specific difficulties emerge when performing spike-sorting on 

realistic extracellular signals.  One of them is the problem of non-stationary data, when the action 

potentials’ shapes slowly change during the recording.  As our network is continuously learning, we 

could expect that it would be robust to slow changes in waveforms.  However this still needs to be 

confirmed by running the network on long non-stationary recordings.  Another problem in spike-

sorting is to robustly classify action potentials occurring in bursts, in which case they display decreasing 

amplitudes.  Without modification, our network would classify as different action potentials occurring 

in a burst, although they would stem from the same cell.  A possibility to solve the problem would be 

to add a layer that would classify them as stemming from the same neural cell, by taking advantage of 

the temporal correlation between them.  Finally, a major difficulty is to be able to recognize action 

potentials overlapping in time.  Methods able to do so explicitly model the fact that action potentials 

sum up.  Our way to encode the signal into a spike train does not take into account this property, 

making it difficult to separate action potentials occurring at the same time on the same electrode.  

Solving this problem would require changing the encoding paradigm, or adding a mechanism to the 

input layer to take into account additivity.    

All our simulations were done on a computer workstation whose sequential architecture is not adapted 

to the execution of artificial neural networks.  As a first step towards a neuromorphic implementation, 

part of the network was implemented on an FPGA.  Even though this work needs to be completed, it 

showed the feasibility of an FPGA implementation.  Future work should implement first a complete 

single electrode network, then a multiple electrode network, and study how much electrodes can be 

simultaneously processed given the FPGA resources.  On a long-term perspective, this network could 

be implemented on neuromorphic hardware using memristive devices.  Synapses implemented 

through memristors or RRAMs are able to mimic STDP and short-term plasticity (Ohno et al. 2011; 

Saïghi et al. 2015; Werner et al. 2016), which are both used in our network.  Neurons, often 
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implemented using CMOS technologies, can implement integrate-and-fire models as well as more 

complex models (Indiveri et al. 2013; Sourikopoulos et al. 2017).  However mechanisms such as 

intrinsic plasticity have not yet been tested on neuromorphic device, and thus require further 

developments. 

The limiting element in a neuromorphic implementation is the number of synapses.  Though efforts 

were done to not use an excessive number of synapses, the use of several transmission delays between 

two layers increases their number.  A first idea to reduce the number of synapses could be to reduce 

the number of delays between two layers, possibly compensating this loss by implementing more 

layers, each acting at a different time scale.  Indeed, it is known in the field of deep-learning, using 

formal neural networks, that deep structures are more optimal than large structures.  It would be 

interesting to investigate if the same effect is observed with STDP networks.  Another possibility would 

be to implement a plasticity rule on the synaptic transmission delays, such as for example delay 

plasticity based on spike timing (Eurich et al. 1999; Lücken et al. 2017), removing the need to use 

several synapses with different delays. 

 

C. Impact and perspectives 
 

Artificial neural networks, applied to pattern recognition problems, have undergone significant 

development in the last decades, thanks to the availability of huge datasets and powerful computers.  

The advent of neuromorphic chips could open a new era in pattern recognition, by allowing to 

implement such applications into embedded low power devices.  However many developments remain 

to be done in this field, both from the hardware and software points of view, as the available 

techniques are in their early stages.  In particular, STDP networks constitute a new field of artificial 

intelligence, with few concrete applications.  Many different mechanisms are being explored to better 

regulate the learning dynamic of these networks.  Some of them have been used in our network, such 

as short-term plasticity, intrinsic plasticity, transmission delays, or winner-take-all mechanism.  Others 

were not explored in this work, such as metaplasticity, plasticity on inhibitory synapses, plasticity on 

delays, but could however be useful for the application to spike-sorting.  Managing to implement a 

spike-sorting method into an embedded neuromorphic chip would strongly benefit to BCI applications, 

for which real-time processing is crucial. Indeed, no available spike-sorting methods completely meet 

the need of automatic real-time processing for the ever growing number of electrodes in recording 

devices.  Thus human BCI experiments currently do not use spike-sorting in practice for sake of 

simplicity, although it has been shown to improve decoding performances (Todorova et al. 2014).  

Ideally, spike-sorting would be done at the electrode level thanks to such device, thus avoiding to 

transmit a massive flow of data to an external processing unit.  Beyond spike-sorting, the STDP network 

paradigm could be extended to downstream processing of MEA recordings, such as behavior decoding 

for fundamental neurosciences or BCI, or to process other types of neural data recordings.  Improving 

neural data processing through neuromorphic implementation would allow analyzing data from many 

neurons simultaneously and thus improving our understanding of brain functioning.  More generally, 

spike-sorting is a pattern recognition problem and the mechanisms developed in this work to process 

MEA recordings could be used for completely different applications, as for instance visual pattern 

recognition or language processing.   
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VIII. ANNEXES 

 

 Intermediate layer receptive field shape 
 

The input signal is encoded into a spike train by the input layer, which is then transmitted to the 

intermediate layer through synapses implementing an STDP rule.  At the level of the synapse, we know 

that the synapse weight will converge towards one or zero depending on the probability to have a 

presynaptic spike in the STDP coincidence window each time a postsynaptic spike occurs.  Here we 

study the learning process steady state at the level of a neuron from the intermediate layer, in other 

word, the neuron receptive field and the weight of its incoming synapses after learning.  At each 

sampling step, the spikes received by the intermediate, transmitted from the input layer through 

delayed synapses, represent the signal value at N different delays from current time.  A pattern to 

learn can thus be seen as an N dimensional vector, encoded into spikes by the input layer.  We assume 

in this section that the only variation between action potential waveforms from the same cell is due to 

a white Gaussian noise added to the signal. Thus at each occurrence of a pattern, a Gaussian noise is 

added to the N dimensional vector representing this pattern, which will induce variations in the set of 

spikes encoding it.  Here we will also neglect the effect of time integration and assume that the 

potential of the neuron is mostly due to the last set of spikes received from the input layer. 

Let’s focus first on the one-dimensional case.  We denote x the input value received by the network.  

Each sensory neuron n can be associated with a center value cn, that corresponds to the center of its 

sensitivity range.  For an input value x, the number of spikes emitted by a sensory input neuron is given 

by an activation function acn(x) that is the same for each sensory neuron but shifted according to their 

center value: 

𝑎𝑐𝑛(𝑥) = 𝑎0(𝑥 − 𝑐𝑛) 

Let Wn be the weight of the synapse connecting the nth sensory neuron to the studied intermediate 

neuron.  Given the way the sensory neurons are organized, we can define a weight density:  

𝑤(𝑐𝑛) = 𝑊𝑛 𝐷𝑉𝑖⁄  

Where DVi is the difference between two consecutive sensory neuron center values.  In this one-

dimensional case, assuming that the sensory neurons cover a value range large enough not to have 

border effects, the excitation of the intermediate neuron for an input value x can be written: 

𝐸1(𝑥) = ∑𝑊𝑛𝑎𝑐𝑛(𝑥)

𝑛

= ∑ 𝑤(𝑛 ∗ 𝐷𝑉𝑖)𝑎0(𝑥 − 𝑛 ∗ 𝐷𝑉𝑖)𝐷𝑉𝑖

+∞

𝑛=−∞

 

For simplicity and assuming that DVi is small, we can rewrite this expression in a continuous form: 

𝐸1(𝑥) = ∫ 𝑤(𝑐)𝑎0(𝑥 − 𝑐)𝑑𝑐
+∞

−∞

 

Whereas a0 is known by definition, we need to do hypotheses on the form of w.  We assume for the 

moment that only one pattern x0 is presented to the network (or that the different patterns presented 

are far enough from each other not to interact).  Without losing generality we can assume that x0=0.  
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Thus the input value x of the network follows a normal distribution.  Given the symmetry of the 

problem and the STDP rule properties, we assume that w(x) equals 1 for 𝑥 ∈ [−𝑉𝑝𝑜𝑡; 𝑉𝑝𝑜𝑡] and 0 

otherwise for a value Vpot to be determined.  Using the binary encoding presented in paragraph IV.A, 

we have a0(x)=1 for 𝑥 ∈ [−𝐷𝑉𝑚; 𝐷𝑉𝑚]  and a0(x)=0 otherwise, where DVm is half the size of the 

sensitivity range.  We can then compute the value of the neuron’s potential. Both a0 and w are equal 

to one on a segment and to 0 otherwise.  When |𝑥| < |𝐷𝑉𝑚 − 𝑉𝑝𝑜𝑡|, the segments [−𝑉𝑝𝑜𝑡; 𝑉𝑝𝑜𝑡] and 

[−𝐷𝑉𝑚 − 𝑥;𝐷𝑉𝑚 − 𝑥] are included one into the other and 𝐸1(𝑥) = 2min(𝐷𝑉𝑚, 𝑉𝑝𝑜𝑡).  When |𝑥| >

|𝐷𝑉𝑚 + 𝑉𝑝𝑜𝑡| the segments are disjoints and 𝐸1(𝑥) = 0.  In between E1(x) follow a linear evolution.  

E1(x) can thus be written as follow: 

𝐸1(𝑥) = {
2min(𝐷𝑉𝑚, 𝑉𝑝𝑜𝑡)𝑖𝑓|𝑥| < |𝐷𝑉𝑚 − 𝑉𝑝𝑜𝑡|

max(𝐷𝑉𝑚 + 𝑉𝑝𝑜𝑡 − |𝑥|, 0) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Visually, E1(x) has a trapezoidal shape.  Noticeably for DVm=Vpot, E1(x) become triangular with 

E1(x)=max(2DVm-|x|,0).   

Knowing the neuron excitation in the one-dimensional case, it is easy to deduce the excitation for an 

N-dimensional input.  For an input 𝑥 = (𝑥𝑖)𝑖∈⟦1;𝑁⟧ ∈ ℝ
𝑁 we have: 

𝐸𝑁(𝑥) =∑𝐸1(𝑥𝑖)

𝑁

𝑖=1

 

The neuron fires when its potential reaches its threshold Th.  Thus the receptive field DS of the neuron 

is defined by: 

𝐷𝑆 = {𝑥 ∈ ℝ
𝑁/𝐸𝑁(𝑥) ≥ 𝑇ℎ} 

When DVm=Vpot, which is a condition that is easily reached as we will show later, DS has some nice 

properties.  Indeed DS is bounded for Th>2DVm(N-1), and is then an L1-norm ball of diameter 2DVmN-

Th.  Indeed when Th>2DVm(N-1) for x in DS we have |xi|≤2DVm for all i, because otherwise En(x)<Th.  

Thus DS is bounded and E(x) can be rewritten 𝐸(𝑥) = 2 ∗ 𝐷𝑉𝑚 ∗ 𝑁 − ‖𝑥‖1 and thus 𝑥 ∈ 𝐷𝑆 ⇔𝑥1 ≤

2 ∗ 𝐷𝑉𝑚 ∗ 𝑁 − 𝑇ℎ.  For lower values of Th, DS is not bounded, as all x such as 𝑥1 = ⋯ = 𝑥𝑁−1 =

0𝑎𝑛𝑑𝑥𝑁 ∈ ℝ belong to DS, but we can show that for any 𝑘 ∈ ⟦1, 𝑁⟧, if Th>2(k-1)DVm, then for all 𝑥 ∈

𝐷𝑆 at least k components of x are inferior to 2DVm.   

For the triangular encoding proposed in Section IV.A, the activation function has a triangular shape 

and can be written: 

𝑎0(𝑥) = 𝐾 ∗ 𝑚𝑎𝑥(1 −
|𝑥|

𝐷𝑉𝑚
, 0) 

Where K is the maximum number of spikes emitted.  In this case, and with the condition DVm=Vpot, it 

can be shown, with a similar reasoning as previously, that Ds is bounded for Th>KDVm(N-1), and that 

for Th>KDVm(N-0.5),  Ds is and L2-norm ball of diameter √2𝐷𝑉𝑚√𝑁 −
𝑇ℎ

𝐾∗𝐷𝑉𝑚
. 

Noticeably in both cases, if we denote Emax the maximum possible excitation for one dimension, the 

bounded condition is given by: 

𝑇ℎ > 𝐸𝑚𝑎𝑥 ∗ (𝑁 − 1) 
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Knowing the receptive field of the neuron and the distribution of the input values, we can then deduce 

the synapse weight value according to the STDP rule, and thus the value of Vpot.  The STDP rule state 

that for each input value 𝑥 ∈ ℝ𝑁, the weight change for the synapse corresponding to the ith delay and 

a sensory neuron with a center value c is: 

Δ𝑤𝑖(𝑐) = {

0𝑖𝑓𝑥 ∈ 𝐷𝑆
Δ𝑤+ − Δ𝑤−𝑖𝑓𝑥 ∈ 𝐷𝑆𝑎𝑛𝑑𝑥𝑖 ∈ 𝑆𝑐
−Δ𝑤−𝑖𝑓𝑥 ∉ 𝐷𝑆𝑎𝑛𝑑𝑥𝑖 ∈ 𝑆𝑐

𝑤𝑖𝑡ℎ𝑆𝑐 = [𝑐 − 𝐷𝑉𝑚, 𝑐 + 𝐷𝑉𝑚] 

We note p(x) the probability of x to be an input of the network.  The mean variation of the synapse 

weight when the network receive an input is: 

〈Δ𝑤𝑖(𝑐)〉 = Δ𝑤+∫ 𝑝(𝑥)𝑑𝑥
𝐷𝑆⋂{𝑥/𝑥𝑖∈𝑆𝑐}

− Δ𝑤−∫ 𝑝(𝑥)𝑑𝑥
𝐷𝑆

 

For x following a Gaussian distribution, 〈Δ𝑤𝑖(𝑐)〉 is maximum for c=0 and decrease when |c| increase.  

This works more generally if p(x) is symmetric relatively to each of the dimensions and p(x) decreases 

when |xi| increases, as DS is also symmetric and its cross-section with the hyperplane define by xi=c 

decreases when |c| increase.  We suppose that for all 𝑥 ∈ 𝐷𝑠  such that‖𝑥‖∞ > 2𝐷𝑉𝑚, p(x)=0, which 

is in particular true if for all 𝑥 ∈ 𝐷𝑠  ‖𝑥‖∞ ≤ 2𝐷𝑉𝑚.  Then 〈Δ𝑤𝑖(𝑐)〉 is positive for c=0 and negative 

when |c| is high enough.  Thus there exist a unique value Vpot for which 〈Δ𝑤𝑖(𝑐)〉 is positive if |c|<Vpot, 

and negative if |c|>Vpot, which correspond to the initial definition of Vpot.  Additionally, if Δ𝑤+ =

2Δ𝑤−, we can verify that Vpot=DVm, thanks to the symmetry properties of DS and p. 
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 Article about ANNet 
 

The following pages are an article, recently accepted for publication in the International Journal of 

Neural Systems.  This article sums up the implementation and results obtained with ANNet (see Section 

VI.B). 

  



138 
 

 

 

 

 



139 
 

 

 

 

 



140 
 

 

 

 

 



141 
 

 

 

 

 



142 
 

 

 

 

 



143 
 

 

 

 

 



144 
 

 

 

 

 



145 
 

 

 

 

 



146 
 

 

 

 

 



147 
 

 

 

 

 



148 
 

 

 

 

 



149 
 

 

 

 

 



150 
 

 

 

 

 



151 
 

 

 

 

 



152 
 

 

 

 

 



153 
 

 

 

 

 



154 
 

 

 

 

 



155 
 

  



156 
 

IX. RÉSUMÉ EN FRANÇAIS 

 

 Introduction 
 

Enregistrer le cerveau est important à la fois pour en étudier le fonctionnement, mais également pour 

des applications telles que les interfaces cerveau-machine.  Les microélectrodes extracellulaires 

permettent l’enregistrement de l’activité individuelle des cellules neurales.  Avec les évolutions 

techniques, les matrices d’électrodes comportent de plus en plus de sites, permettant d’enregistrer de 

nombreux neurones simultanément.  Cela ouvre beaucoup d’opportunités mais nécessite des 

algorithmes adaptés, notamment pour les interfaces cerveau machine qui nécessitent un traitement 

en temps réel des données.  En particulier, pour les enregistrements extracellulaires, il est préférable 

de trier les potentiels d’action émis par différents neurones et enregistrés sur une même électrode, 

une opération appelée spike-sorting.  De nombreuses méthodes existent, mais peu permettent un 

traitement en temps réel des données.  Ce travail de thèse est focalisé sur le développement d’une 

méthode radicalement nouvelle, utilisant un réseau de neurones artificiel « spike-timing-dependent 

plasticity » (STDP).  Ce type de réseau, encore peu utilisé pour des tâches de reconnaissance, a des 

propriétés d’apprentissage non-supervisé intéressantes pour le spike-sorting.  Un tel algorithme 

pourrait être implémenté dans des puces neuromorphiques très basse consommation, qui connaissent 

aujourd’hui d’importants développements. 

 

 Etat de l’art des méthodes de spike-sorting 
 

Une microélectrode extracellulaire enregistre les potentiels d’action émis par des neurones proches.  

La forme de ces potentiels d’action diffère selon la position du neurone qui l’émet, ce qui permet de 

les trier par une méthode de spike-sorting. 

La plupart des méthodes se décomposent en trois étapes principales : la détection des potentiels 

d’action, l’extraction de traits caractéristiques de leur forme, puis leur classification en groupes qui 

correspondent alors aux différents neurones enregistrés.  La détection se fait par un seuillage, soit 

directement sur le signal, soit après un prétraitement basé par exemple sur un calcul d’énergie, 

l’application d’ondelettes ou l’utilisation d’un gabarit de potentiel d’action.  La forme du potentiel 

d’action détecté peut alors être directement utilisée pour la classification, mais la plupart des 

méthodes en extraient quelques caractéristiques, afin de réduire le nombre de dimensions à traiter.  

Ces caractéristiques peuvent être prédéfinies, telles que l’amplitude ou la largeur du potentiel d’action 

ou des coefficients d’ondelette, ou bien déterminées automatiquement par un algorithme de réduction 

de dimension tel que l’analyse en composantes principales (ACP).  La dernière étape consiste à classer 

les vecteurs de caractéristiques obtenus dans différents groupes.  Parmi les algorithmes de 

regroupement utilisés on peut citer l’ « expectation-maximization », le « K-mean », le « mean-shift », 

le « superparamagnetic clustering ».  Une étude a notamment utilisé un réseau STDP monocouche 

pour cette étape de classification. 

D’autres méthodes utilisent une approche plus globale, en modélisant le signal enregistré comme la 

somme de potentiel d’actions.  C’est le cas des méthodes dites de « template matching ».  Différents 

gabarits de potentiels d’action sont déterminés lors d’une étape de prétraitement semblable aux 
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méthodes décrites précédemment.  Ces gabarits sont ensuite utilisés pour détecter et classer les 

potentiels d’action présents dans le signal. 

La plupart des méthodes en trois étapes nécessitent un traitement offline, notamment à cause de 

l’étape de classification, qui requiert souvent de connaître au préalable tous les points à classer.  Les 

méthodes par « template matching » sont plus adaptées à une exécution online.  En effet, bien que 

l’étape de détermination des gabarits se fasse souvent offline, une fois les gabarits connus ces 

méthodes traitent le signal localement, permettant donc un traitement online.  Un autre aspect 

important pour une exécution temps-réel est le temps de calcul, qui peut s’avérer limitant, en 

particulier pour l’étape de classification. 

Lors de l’utilisation de matrices d’électrodes denses, les potentiels d’action d’une même cellule peuvent 

être enregistrés sur plusieurs électrodes.  Cela apporte plus d’information pour le tri, à condition 

d’exploiter correctement l’aspect spatial des potentiels d’action.  L’étape de détection doit déterminer 

non seulement à quel moment a lieu un potentiel d’action mais également sur quelles électrodes.  

L’étape de classification doit tenir compte de cette position, soit par un algorithme adapté, soit en 

prenant cette position comme caractéristique.  Les méthodes par « template matching » ne nécessitent 

pas forcement d’adaptation, les gabarits étant nuls sur les électrodes où le potentiel d’action n’est pas 

visible.   

Quelques difficultés connues peuvent surgir lorsque que l’on cherche à trier des potentiels d’action.  

Premièrement une cellule peut décharger en « burst », et les potentiels d’action générés diminuent 

alors en amplitude.  Il faut donc modéliser cette diminution ou utiliser des caractéristiques 

indépendantes de l’amplitude.  Deuxièmement, lors d’enregistrements longs, la forme des potentiels 

d’action peut changer au fil du temps.  Une façon de pallier ce problème est de traiter le signal par 

morceaux suffisamment courts, dont il faudra ensuite lier les résultats.  Enfin, un des problèmes les 

plus difficiles à résoudre est la superposition temporelle de potentiels d’action.  Seules les méthodes 

modélisant la sommation de potentiels d’action sont robustes à ce problème. 

De nombreuses implémentations de méthodes de spike-sorting existent, mais très peu permettent 

pour le moment le traitement en temps réel de données de matrices électrodes dense. 

 

 Etat de l’art des réseaux de neurones STDP 
 

Contrairement aux réseaux de neurones formels où les neurones sont statiques et donnent en sortie 

une valeur numérique, les réseaux STDP, inspirés de la réalité biologique, sont constitués de neurones 

ayant une dynamique temporelle et générant des trains de spikes.  Une autre différence importante 

est que les réseaux STDP utilisent des lois d’apprentissage locales. 

Dans ces réseaux STDP, l’information est donc véhiculée par des trains de spikes et peut être 

interprétée de différentes manières.  L’encodage par taux de décharge considère que l’information est 

portée par le taux de décharge moyen des neurones.  Cet encodage permet une formalisation plus 

simple mais induit une perte d’information et ne permet pas d’expliquer la rapidité d’exécution de 

certaines tâches par le cerveau.  À l’inverse, avec l’encodage par impulsions, l’information est portée 

par les temps d’émission de chaque spike.  Cette information temporelle peut être utilisée de 

différentes façons selon que l’information importante se trouve dans l’identité des neurones 

déchargeant en premier ou dans la synchronisation de différents neurones. 
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Les neurones utilisés dans les réseaux STDP peuvent avoir différents types de comportements tel que 

décharger de manière persistante pendant un stimulus ou seulement au début du stimulus, décharger 

par rebond après un stimulus inhibiteur, ou être sensibles seulement aux changements brusques dans 

un stimulus.  On distingue deux grands types de modèles : les modèles où toute la dynamique du 

potentiel interne au neurone est mise en équation, ce qui peut être couteux en temps de calcul, et les 

modèles où les spikes sont modélisés comme des évènements discrets déclenchés par un dépassement 

de seuil et seule la dynamique en dessous de ce seuil est mise en équation.  Le choix d’un modèle 

dépend du comportement que l’on souhaite reproduire, avec quel degré de réalisme et quel coût 

calculatoire. 

Si les modèles de neurones sont variés, les lois de plasticité synaptique le sont aussi.  La loi STDP la plus 

connue consiste en un changement persistent du poids de la synapse déclenché par l’occurrence d’un 

spike postsynaptique et d’un spike présynaptique.  L’amplitude du changement dépend alors de 

l’intervalle de temps entre ces deux spikes.  Les observations expérimentales montrent que le poids 

augmente pour un spike présynaptique précédant un spike postsynaptique et diminue pour un spike 

postsynaptique précédant un spike présynaptique.  De plus l’amplitude du changement diminue avec 

la longueur de l’intervalle de temps.  Cependant, d’autres types de dépendances ont été observés et 

utilisés dans des modèles.  Les lois STDP basées sur des paires de spikes ne parviennent pas à expliquer 

toutes les observations.  Aussi, d’autres modèles de plasticité ont été développés, prenant en compte 

plus de deux spikes.  Il existe aussi des plasticités à court terme, pour lesquels les changements de 

poids ne sont pas persistants.  Elles sont souvent induites par les spikes présynaptiques seulement, et 

se traduisent par une augmentation (facilitation) ou une diminution (dépression) des poids après 

plusieurs spikes présynaptiques consécutifs rapprochés.  La plasticité à court terme permet une 

régulation du potentiel postsynaptique.  Les lois STDP induisant un renforcement positif, il peut être 

difficile de les paramétrer pour être à la fois stables et discriminatives.  Les mécanismes d’homéostasie, 

intervenant à des échelles de temps différentes et sur plusieurs synapses, permettent une meilleure 

stabilité.  Ces mécanismes interviennent soit directement sur le poids des synapses, par exemple en 

assurant une normalisation de la somme des poids, soit sur l’excitabilité du neurone postsynaptique 

(on parle alors de plasticité intrinsèque), soit en modulant les paramètres de plasticité synaptique (on 

parle alors de méta-plasticité). 

Dans un réseau, les neurones et les synapses obéissent à des règles simples mais leurs interactions sont 

complexes.  Les études de réseaux aléatoires à poids synaptiques fixes montrent plusieurs dynamiques 

possibles, dont le régime asynchrone où chaque neurone décharge indépendamment selon une loi de 

Poisson.  Ce régime ne peut être obtenu qu’avec un équilibre entre l’excitation et l’inhibition.  D’autres 

études se focalisent sur l’évolution du poids des synapses selon différentes hypothèses de corrélation 

entre l’activité des neurones postsynaptiques et présynaptiques.  Il a par exemple été montré que l’on 

peut obtenir un équilibre entre l’excitation et l’inhibition par une loi STDP symétrique, ce qui améliore 

les performances lors de tâches de reconnaissance de motifs. 

Bien qu’il n’existe pas de méthode universelle pour entrainer un réseau STDP à effectuer une tâche de 

reconnaissance, il a été montré que ceux-ci ont des propriétés d’apprentissage non-supervisé.  On 

trouve des exemples d’application à la reconnaissance de motifs visuels ou auditifs. 

 

 

 



159 
 

 Modèle de réseau développé dans la thèse 
 

Le réseau STDP qui a été développé est un réseau « feedforward », constitué de trois couches de 

neurones, ayant chacune un rôle spécifique, ainsi que d’un mécanisme d’attention.  Cette structure, 

construite pour traiter un signal mono-électrode, a ensuite été adaptée pour traiter un signal 

provenant d’électrodes multiples. 

La première couche, dite couche d’entrée, a pour but de transformer le signal d’entrée en train de 

spikes.  Chaque neurone de cette couche agit comme un neurone sensoriel sensible à une certaine 

plage de valeur.  Il décharge à intervalles réguliers lorsque le signal est dans sa plage de sensibilité.  Les 

neurones d’entrée ont différentes plages de sensibilité et prennent en compte la valeur du signal avec 

différents délais, ce qui permet d’encoder à chaque instant la forme du signal dans une fenêtre de 

temps de 0,5 ms. 

Les potentiels d’action ne sont présents que de manière ponctuelle dans le signal. Un mécanisme 

d’attention a été implémenté afin que le réseau ne traite que les parties du signal comportant un 

potentiel d’action.  Ce mécanisme d’attention est implémenté grâce à une plasticité à court terme, qui 

permet de diminuer le poids des neurones d’entrée déchargeant fréquemment, c’est-à-dire ceux 

codant pour des valeurs proches de zéros.  Dans la première version du réseau (MiniNet) cette plasticité 

a été implémentée sur les synapses reliant la couche d’entrée à la couche intermédiaire.  Par la suite, 

un neurone d’attention a été implémenté pour isoler cette fonction de détection.  Celui-ci reçoit les 

spikes émis par la couche d’entrée via des synapses implémentant une plasticité à court terme et émets 

une série de spikes pendant la durée d’un potentiel d’action présent dans le signal. 

La deuxième couche du réseau, appelée couche intermédiaire, a pour but de reconnaitre des motifs 

dans le train de spikes de la couche d’entrée, qui correspondent à différentes formes de signal. Les 

neurones intermédiaires implémentent un modèle « Leaky integrate and fire » (LIF), dont le potentiel 

augmente à chaque réception de spike et revient sinon à zéro selon une décroissance exponentielle.  

Un neurone LIF émet un spike (décharge) lorsque son potentiel atteint un seuil.  Les poids des synapses 

provenant de la couche d’entrée sont initialisés aléatoirement.  Avant apprentissage, chaque neurone 

reçoit donc une excitation similaire, insuffisante pour décharger.  Les neurones reçoivent en plus les 

spikes du neurone d’attention, ce qui leur permet de décharger lorsque ce dernier décharge.  Les 

synapses provenant de la couche d’entrée suivent une loi STDP.  Leurs poids diminuent à chaque spike 

postsynaptique, mais augmentent si le spike postsynaptique coïncide avec un spike présynaptique.  

Grâce à cette loi les neurones intermédiaires deviennent sensibles à une forme spécifique du signal. La 

taille du champ récepteur de ces neurones, c’est-à-dire leur tolérance à la différence entre le signal en 

entrée et la forme apprise, peut être ajustée soit en modifiant leur seuil de décharge, soit en modifiant 

la largeur de la plage de sensibilité des neurones d’entrée.  Afin d’éviter que plusieurs neurones 

déchargent simultanément et apprennent un même motif, un mécanisme dit « Winner-take-all » (WTA) 

est implémenté : lorsqu’un neurone décharge, les autres neurones de cette couche sont inhibés.  Dans 

les dernières versions du réseau  (LTSNet et PolyNet), une variante du WTA et de la loi STDP est 

implémentée, permettant à deux neurones de décharger simultanément, sans pour autant apprendre 

le même motif.  Cela permet d’avoir des champs récepteurs se chevauchant partiellement, ce qui 

améliore la reconnaissance par la dernière couche du réseau.  Lorsqu’un potentiel d’action est présent 

dans le signal, les neurones de la couche intermédiaire déchargent donc les uns à la suite des autres 

selon la forme du signal à différents moment du potentiel d’action. 

La dernière couche est la couche de sortie.  Celle-ci doit émettre un spike pour chaque potentiel 

d’action dans le signal, reflétant ainsi l’activité neuronale enregistrée.  Elle doit notamment être robuste 
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aux différences dans la longueur des séquences émises par la couche intermédiaire.  Pour parvenir à 

cet objectif, plusieurs mécanismes ont été testés.  Premièrement une plasticité intrinsèque a été 

implémentée pour permettre au seuil des neurones de s’adapter à la taille des séquences apprises.  

Celle-ci a été testée sur les premières versions du réseau (MiniNet et ANNet).  La loi STDP utilisée est 

similaire à celle utilisée sur la couche intermédiaire.  Une variante a été testée, appelée STDP latérale, 

selon laquelle les poids sont modifiés lorsque le neurone postsynaptique reçoit une inhibition par WTA.  

Les neurones inhibés apprennent à ne pas reconnaitre un motif reconnu par d’autres neurones, ce qui 

améliore les performances.  Dans une des versions du réseau (ANNet), afin de forcer les neurones de 

sortie à décharger après la fin de la séquence de spikes intermédiaires, ceux-ci sont inhibés par le 

neurone d’attention.  En plus de cela les synapses provenant de la couche intermédiaire sont 

dupliquées avec différents délais, ce qui permet à la fois de garder une excitation après la fin de la 

séquence et d’avoir une information sur les temps d’émission des spikes.  Cette structure est cependant 

complexe.  Dans les dernières versions du réseau (LTSNet et PolyNet), le modèle de neurone LIF a été 

remplacé par un modèle dit « LTS » (low threshold spiking) ayant la propriété de décharger par rebond 

après une inhibition.  Les synapses provenant de la couche intermédiaire sont alors inhibitrices, ce qui 

permet aux neurones de sortie de décharger naturellement après la fin de la séquence. 

Enfin, ce modèle de réseau, conçu pour traiter le signal d’une électrode, a été adapté au cas de 

plusieurs électrodes suffisamment proches pour qu’un potentiel d’action soit détectable sur plusieurs 

d’entre elles.  La structure de base est dupliquée pour chaque électrode à traiter, formant ainsi 

plusieurs sous-réseaux parallèles.  Des connections synaptiques entre les différents sous-réseaux sont 

ensuite introduites, pour prendre en compte la redondance d’information entre les électrodes voisines.  

Plusieurs structures ont été testées, au niveau de chaque couche du réseau.  La solution retenue est 

de connecter la couche de sortie de chaque sous-réseau aux couches intermédiaires de plusieurs sous-

réseaux correspondants à des électrodes voisines.  Le mécanisme WTA de la couche de sortie est 

également étendu sur plusieurs sous-réseaux voisins. 

 

 Evaluation des performances 
 

Afin de tester ses performances, le réseau développé a été testé sur plusieurs jeux de données.  

Premièrement des jeux de données simulées pour lesquelles la vérité est connue.  Pour générer des 

signaux mono-électrode, des gabarits de potentiel d’action sont placés dans le signal puis du bruit est 

ajouté.  Pour générer des signaux multi-électrodes, un modèle de potentiel d’action extracellulaire basé 

sur une structure de cellule neuronale simplifiée a été développé.  Deuxièmement, des jeux de données 

réelles, pour lesquels des enregistrements de tétrodes ont été utilisés, associés à un enregistrement 

intracellulaire donnant la vérité pour une cellule. 

Pour évaluer la qualité du spike-sorting, nous avons choisi d’utiliser un F-score, qui prend en compte à 

la fois les faux positifs, les faux négatifs et les erreurs de détection.  Ce score peut être subdivisé en un 

score de classification, un score de détection, un score de précision et un score de rappel.  Nous avons 

également utilisé différents indices pour évaluer chaque sous partie du réseau.  La détection par le 

neurone  d’attention a été évaluée par une variante de l’aire sous la courbe ROC.  La qualité de la couche 

intermédiaire a été évaluée selon deux indices différents : l’un basé sur l’entropie conditionnelle de la 

vérité connaissant la sortie de la couche intermédiaire, l’autre basé sur les distances entre les motifs 

intermédiaires. 
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Notre réseau a été comparé à deux autres logiciels de spike-sorting : Osort et Wave_clus, tous deux 

pouvant, comme le réseau STDP, s’utiliser de manière automatique.  Chacune des méthodes testées a 

été exécutée sur différents jeux de données avec différentes caractéristiques, et la significativité des 

différences de performance a été évaluée sur chaque jeu à l’aide de tests statistiques (test de Welch). 

 

 Implémentations et résultats 
 

Différentes versions du réseau STDP ont été implémentées suivant les modèles décrits au paragraphe 

D, chacune présentant des améliorations.  La première version implémentée, MiniNet, est aussi la plus 

simple.  Il n’y a pas de neurone d’attention, la plasticité à court terme étant implémentée sur les 

synapses reliant les couches d’entrée et intermédiaire.  Ce réseau donne déjà de bons résultats sur des 

données simulées simples.  Des tests additionnels sur la couche de sortie montrent que la STDP latérale 

améliore les résultats et que la plasticité intrinsèque permet de mieux discriminer des potentiels 

d’action de durées différentes. 

Le réseau a ensuite été amélioré par l’augmentation de la fréquence d’encodage par la couche d’entrée 

et l’introduction d’un neurone d’attention.  Cette version, nommée ANNet, comprend également une 

couche de sortie inhibée par le neurone d’attention, recevant les spikes de la couche intermédiaire par 

plusieurs délais synaptiques et implémentant une plasticité intrinsèque.  Ce réseau a été comparé à 

Osort et Wave_clus sur des jeux de données réelles et simulées et donne de meilleurs résultats sur les 

signaux avec un rapport signal-sur-bruit inférieur à 4, typique des enregistrements réels.  Des tests 

préliminaires ont également été menés sur les données tétrodes, avec une structure de réseau en 

entonnoir, montrant l’intérêt de croiser les informations provenant de plusieurs électrodes voisines. 

Enfin la dernière version mono-électrode du réseau, LTSNet, a pour principale amélioration 

l’introduction d’un modèle de neurone LTS sur la couche de sortie, qui permet de s’affranchir de la 

structure complexe d’ANNet sur cette couche (délais synaptiques, inhibition par le neurone d’attention, 

et plasticité intrinsèque).  Ce réseau implémente également un 2-WTA sur la couche intermédiaire et 

une STDP latérale sur la couche de sortie.  Les performances obtenues sont similaires avec celles 

d’ANNet, avec une structure plus simple. 

Cette dernière version a été adaptée pour traiter des signaux multi-électrodes, en dupliquant la 

structure initiale pour chaque électrode et en introduisant des connexions synaptiques 

supplémentaires au niveau de la couche de sortie.  Cette structure, appelée PolyNet, permet de 

détecter chaque potentiel d’action au niveau de l’électrode présentant la plus forte amplitude, mais 

des améliorations restent à apporter pour plus de robustesse dans la classification. 

Le réseau STDP développé a été testé sur ordinateur.  Un travail préliminaire d’implémentation sur 

FPGA a été effectué à l’occasion d’un encadrement de stage.  L’implémentation FPGA comprend pour 

le moment une couche d’entrée et un neurone d’attention fonctionnels.  Ce travail pourra être 

poursuivi pour parvenir à une implémentation embarquée complète du réseau.  Une implémentation 

sur une puce neuromorphique nécessitera plus de développements, mais on peut déjà estimer la 

consommation du réseau à moins d’un microwatt par électrode. 
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 Conclusion et perspectives 
 

Le travail effectué a permis de montrer la faisabilité d’appliquer un réseau STDP au problème de spike-

sorting.  Les performances obtenues sont en effet comparables, voire supérieures, à celle de l’état de 

l’art pour des signaux mono-électrodes.  Les mécanismes développés pour répondre aux différents 

aspects du problème, à savoir reconnaitre des motifs temporels de tailles variables parmi des stimuli 

non pertinents, pourraient être appliqués à des problèmes similaires.  Des améliorations peuvent 

encore être apportées à ce réseau, notamment pour le traitement de signaux multi-électrodes, par des 

modifications de structure ou l’ajout de nouveaux mécanismes.  Si l’implémentation sur FPGA marque 

un premier pas vers une application embarquée, l’utilisation de puces neuromorphiques pour un tel 

algorithme marquerait une grande avancée pour le spike-sorting et pour le traitement de signaux 

neuronaux en général. Il y a en effet, pour ce type de traitement, un besoin important 

d’implémentations embarquées et peu consommatrices, étant données les contraintes sur les implants 

d’enregistrement.   

 


