
HAL Id: tel-03035855
https://theses.hal.science/tel-03035855

Submitted on 2 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development of an STDP neural network for
unsupervised online spike-sorting

Marie Bernert

To cite this version:
Marie Bernert. Development of an STDP neural network for unsupervised online spike-sorting. Neu-
roscience. Université Grenoble Alpes, 2019. English. �NNT : 2019GREAS001�. �tel-03035855�

https://theses.hal.science/tel-03035855
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTE UNIVERSITE
GRENOBLE ALPES

Spécialité : Modèles, méthodes et algorithmes en biologie

Arrêté ministériel : 25 mai 2016

Présentée par

Marie BERNERT

Thèse dirigée par Blaise YVERT, Directeur de recherche,
INSERM,

préparée au sein du Laboratoire BrainTech
dans l'École Doctorale Ingénierie pour la Santé, la Cognition et
l’Environnement

Développement d’un réseau de
neurones STDP pour le tri en
ligne et non-supervisé de
potentiels d’action.

Thèse soutenue publiquement le 24 janvier 2019,
devant le jury composé de :

M. Jean-François BECHE
Ingénieur de recherche (CEA), Membre

M. Luca BERDONDINI
Professeur (IIT Genova), Rapporteur

M. Christophe POUZAT
Chargé de recherche (CNRS), Membre

M. Simon THORPE
Directeur de recherche (CNRS), Rapporteur, Président du jury

Mme. Elisa VIANELLO
Ingénieur de recherche (CEA), Membre

M. Blaise YVERT
Directeur de recherche (INSERM), Membre, Directeur de thèse

DEVELOPMENT OF AN STDP

NEURAL NETWORK FOR

UNSUPERVISED ONLINE

SPIKE-SORTING
PHD THESIS BY MARIE BERNERT, SUPERVISED BY BLAISE YVERT,

DEFENDED ON JANUARY 24TH 2019

1

2

REMERCIEMENTS

Après plus de trois ans de travail, ma thèse s’achève sur ces quelques pages. Celle-ci n’aurait pas pu

avoir lieu sans la participation de différentes personnes que j’aimerai citer ici.

Tout d’abord, je voudrais remercier mon directeur de thèse, Blaise Yvert, qui a été à mes côtés tout au

long de ce travail laborieux mais riche d’enseignements. J’ai pu apprécier son optimisme et ses

encouragements. Je remercie également mes co-encadrants, Elisa Vianello et Jean-François Bêche,

avec qui j’ai pu avoir des discussions intéressantes à différents stades de ma thèse.

Je remercie Luca Berdondini et Simon Thorpe, qui ont accepté d’être rapporteurs pour cette thèse,

pour leur relecture attentive de ce manuscrit et leurs commentaires constructifs. Je remercie de même

les autres membres du jury, Elisa Vianello, Jean-François Bêche et Christophe Pouzat, pour avoir

accepté d’écouter et d’évaluer mon travail.

J’aimerais également remercier toutes les personnes avec qui j’ai pu collaborer durant mon travail. Je

remercie Thilo Werner, encadré par Elisa Vianello, avec qui j’ai pu avoir de quelques échanges au début

de ma thèse. Je remercie Takashi Kohno et Timothée Levi, qui ont eu la gentillesse de m’accueillir dans

leur laboratoire au Japon pendant deux semaines, pour travailler sur une implémentation FPGA. Je

remercie également Joël Fournier que j’ai eu le plaisir d’encadrer pour un stage sur ce même sujet.

Enfin je remercie les personnes de l’équipe avec qui j’ai eu l’occasion de partager des données et des

résultats, notamment Philémon Roussel et Florent Bocquelet.

Je voudrais aussi remercier notre gestionnaire de laboratoire Stéphanie Mollard, ainsi que l’assistante

de Clinatec, Bénédicte Guehl, pour leur travail efficace et indispensable pour assurer le bon

fonctionnement d’un laboratoire.

Je remercie aussi, pour leur sympathie et leur bonne humeur, tous les membres de l’équipe, Marc,

Philémon, Florent, Cyril, Marie, Anne, Gaëlle, Gaël, Éric, Paul, Jean-Marie, Fanny, Dodji, Mehrdad, et

tous mes collègues du laboratoire BrainTech que j’ai côtoyés pendant ces quelques années.

Enfin je voudrais remercier mes proches et ma famille qui ont toujours été là pour moi. Je remercie

particulièrement mon compagnon Guillaume Pagès, qui a su m’apporter son aide et son soutien tout

au long de cette thèse. Pour finir, j’ai une pensée toute particulière pour un petit bout de chou, qui

m’a accompagné bien malgré lui pendant ces derniers mois de thèse.

3

ABSTRACT

Pattern recognition is a fundamental task for living beings and is perform very efficiently by the brain.

Artificial deep neural networks are making quick progress in reproducing these performance and have

many applications such as image recognition or natural language processing. However, they require

extensive training on large datasets and heavy computations. A promising alternative are spiking

neural networks, which closely mimic what happens in the brain, with spiking neurons and spike-

timing-dependent plasticity (STDP). They are able to perform unsupervised learning and have been

used for visual or auditory pattern recognition. However, for now applications using STDP networks

lag far behind classical deep learning. Developing new applications for this kind of networks is all the

more at stake that they could be implemented in low power neuromorphic hardware that currently

undergoes important developments, in particular with analog miniaturized memristive devices able to

mimic synaptic plasticity. In this work, we chose to develop an STDP neural network to perform a

specific task: spike-sorting, which is a crucial problem in neuroscience. Brain implants based on

microelectrode arrays are able to record the activity of individual neurons, appearing in the recorded

signal as peak potential variations called action potentials. However, several neurons can be recorded

by the same electrode. The goal of spike-sorting is to extract and separate the activities of different

neural cells from a common extracellular recording taking advantage of the fact that the shape of an

action potential on an electrode depends on the neuron it stems from. Thus spike-sorting can be seen

as an unsupervised pattern recognition task where the goal is to detect and classify different

waveforms. Most classical spike-sorting approaches use three separated steps: detecting all action

potentials in the signal, extracting features characterizing their shapes, and separating these features

into clusters that should correspond to different neural cells. Though online methods exists, most

widespread spike-sorting methods are offline or require an offline preprocessing step, which is not

compatible with online application such as Brain-computer interfaces (BCI). Moreover, the

development of ever larger microelectrode arrays creates a need for fully automatic and

computationally efficient algorithms. Using an STDP network brings a new approach to meet these

requirements. We designed a network taking the electrode signal as an input and giving out spikes

that correspond to the spiking activity of the recorded neural cells. It is organized into several layers,

designed to achieve different processing steps, connected in a feedforward way. The first layer,

composed of neurons acting as sensory neurons, convert the input signal into spike train. The

following layers are able to learn patterns from the previous layer thanks to STDP rules. Each layer

implement different mechanisms that improve their performances, such as resource-dependent STDP,

intrinsic plasticity, plasticity triggered by inhibition, or neuron models having rebound spiking

properties. An attention mechanism has been implemented to make the network sensitive only to

parts of the signal containing action potentials. This network was first designed to process data from

a single electrode, and then adapted to process data from multiple electrodes. It has been tested both

on simulated data, which allowed to compare the network output to the known ground truth, and on

real extracellular recordings associated with intracellular recordings that give an incomplete ground

truth. Different versions of the network were evaluated and compared to other spike-sorting

algorithms, and found to give very satisfying results. Following these software simulations, we initiated

an FPGA implementation of the method, which constitutes a first step towards embedded

neuromorphic implementation.

4

RESUME

La reconnaissance de motifs est une tâche cruciale pour les êtres vivants, exécutée avec efficacité par

le cerveau. Les réseaux de neurones profonds artificiels reproduisent de mieux en mieux ces

performances, avec des applications telles que la reconnaissance d’images ou le traitement du

langage. Ils nécessitent cependant un apprentissage intensif sur de grands jeux de données et couteux

en calculs. Les réseaux de neurones à impulsions, plus proches du fonctionnement du cerveau avec

des neurones émettant des impulsions et des lois d’apprentissage dites STDP dépendant du temps

entre deux impulsions, constituent une alternative intéressante. Ils permettent un apprentissage non

supervisé et ont déjà été utilisés pour la reconnaissance visuelle ou auditive, mais les applications

restent limitées par rapport à l’apprentissage profond classique. Il est d’autant plus intéressant de

développer de nouvelles applications pour ces réseaux qu’ils peuvent être implémentés sur des circuits

neuromorphiques connaissant aujourd’hui des développements importants, notamment avec les

composants analogiques « memristifs » qui miment la plasticité synaptique. Ici, nous avons choisi de

développer un réseau STDP pour un problème crucial en neuroscience: le spike-sorting. Les implants

cérébraux composés de matrices de microélectrode permettent d’enregistrer l’activité individuelle de

multiples neurones, prenant la forme de pics de potentiel dans le signal, appelés potentiels d’action.

Une même électrode enregistre l’activité de plusieurs neurones. Le spike-sorting a pour but de

détecter et trier cette activité, en utilisant le fait que la forme d’un potentiel d’action dépend du

neurone qui l’a émis. Il s’agit donc d’un problème de reconnaissance de motifs non supervisée. Les

méthodes classiques de spike-sorting consistent en trois étapes : la détection des potentiels d’action,

l’extraction de traits caractéristiques de leurs formes, et le tri de ces caractéristiques en groupes

correspondant alors aux différentes cellules neurales. Bien que les méthodes onlines existent, les

méthodes les plus répandues nécessitent un traitement offline, qui n’est pas compatible avec les

applications temps réelles telles que les interfaces cerveau-machine (BCI). De plus, le développement

de matrices de microélectrodes toujours plus denses nécessite des méthodes automatiques et

efficaces. Utiliser un réseau STDP apporte une nouvelle méthode pour répondre à ces besoins. Le

réseau que nous avons conçu prend en entrée le signal de l’électrode et produit en sortie un train

d’impulsions qui correspond à l’activité des cellules enregistrées. Il est organisé en différentes

couches, connectées en série, chacune effectuant une étape du traitement. La première couche,

constituée de neurones senseurs, convertit le signal d’entrée en train d’impulsions. Les couches

suivantes apprennent les motifs générés par la couche précédente grâce aux lois STDP. Chaque couche

est améliorée par l’implémentation de différents mécanismes, tels que le STDP avec ressources,

l’adaptation de seuil, la plasticité déclenchée par l’inhibition, ou un modèle de neurone déchargeant

par rebond. Un mécanisme d’attention permet au réseau de ne traiter que les parties du signal

contenant des potentiels d’action. Ce réseau a été conçu dans un premier temps pour traiter des

données mono-électrode, puis adapté pour traiter des signaux provenant d’électrodes multiples. Il a

été testé d’abord sur des données simulées qui permettent de comparer la sortie du réseau à la vérité,

puis sur des enregistrements réels de microélectrodes associés à des enregistrements intracellulaires

donnant une vérité partielle. Les différentes versions du réseau ont été ainsi évaluées et comparées à

d’autres algorithmes, donnant des résultats très satisfaisants. Suite à ces résultats simulés sur

ordinateur, nous avons travaillé à une implémentation FPGA, constituant une première étape vers une

implémentation embarquée neuromorphique.

5

CONTENT

Remerciements ... 2

Abstract ... 3

Resumé .. 4

List of figures ... 8

List of tables .. 11

List of abbreviations .. 12

I. Introduction: context and goal of the thesis ... 14

 Stakes of recording the brain ... 14

 Microelectrode arrays recordings and spike-sorting. .. 15

 Pattern recognition and artificial neural networks .. 16

 The advent of neuromorphic hardware for low-power computing ... 18

 Goal of the thesis: online spike-sorting with an STDP network ... 19

II. Spike-sorting State of the art .. 24

 Spike-sorting principle .. 24

 Classical methods ... 24

1. Detection .. 25

2. Feature extraction .. 26

3. Clustering ... 26

4. Template matching and other global approaches ... 28

 Online vs. offline methods .. 29

 Using multiple electrodes ... 29

 Common difficulties ... 31

1. Bursts of action potentials ... 31

2. Non stationary data ... 32

3. Temporal waveform overlap.. 32

 Spike-sorting software implementations ... 33

III. Artificial STDP Spiking neural networks state of the art .. 40

 Neural code: how to encode information in a neural network ... 40

1. Rate coding and its limitations ... 40

2. Different forms of pulse coding ... 41

 Neuron models and their properties ... 43

 Synaptic plasticity ... 45

1. Long-term STDP ... 45

6

2. Short-term plasticity .. 47

3. Homeostasis and metaplasticity .. 48

 Network properties .. 49

 Applications to pattern recognition tasks .. 50

IV. Network model ... 58

 Encoding the input signal ... 58

 Attention mechanism ... 61

1. Short-term plasticity .. 61

2. Attention neuron ... 63

 Learning of waveform elements by the intermediate layer .. 65

1. LIF neuron .. 65

2. The STDP rule used .. 66

3. Receptive field size ... 68

4. Winner-Take-All property mechanism ... 70

 Output layer ... 72

1. Intrinsic plasticity ... 73

2. Lateral STDP ... 74

3. Delays and inhibition by the attention neuron .. 76

4. LTS neurons .. 77

 Adaptation to polytrodes ... 81

1. Test on attention neuron ... 82

2. Output layer structure ... 83

V. Performance assessment .. 88

 Testing datasets.. 88

1. Simulated data ... 88

2. Real recordings .. 92

 Performance indices ... 93

1. Spike-sorting performance .. 93

2. ROC curve for the attention neuron .. 95

3. Intermediate layer quality ... 95

 Comparison with other spike-sorting methods ... 96

1. Tests with Osort and Wave_clus .. 96

2. Statistical tests ... 97

VI. Implementations and results ... 100

7

 MiniNet ... 100

1. Implementation ... 100

2. Results .. 102

 ANNet ... 104

1. Implementation ... 104

2. Results .. 106

3. Preliminary tests on tetrode data .. 109

 LTSNet .. 110

1. Implementation ... 110

2. Results .. 113

 PolyNet ... 117

1. Implementation ... 117

2. Results .. 119

 Estimation of the resources used ... 122

 Preliminary FPGA Implementation ... 123

VII. Conclusion and perspectives .. 128

A. Main contributions ... 128

B. Discussion and future work .. 130

C. Impact and perspectives .. 131

VIII. Annexes .. 134

 Intermediate layer receptive field shape ... 134

 Article about ANNet ... 137

IX. Résumé en français .. 156

 Introduction .. 156

 Etat de l’art des méthodes de spike-sorting .. 156

 Etat de l’art des réseaux de neurones STDP .. 157

 Modèle de réseau développé dans la thèse .. 159

 Evaluation des performances ... 160

 Implémentations et résultats ... 161

 Conclusion et perspectives ... 162

8

LIST OF FIGURES

Figure I-1: Emission and propagation of an action potential in neurons .. 14

Figure I-2: Examples of microelectrode arrays (MEA).. ... 16

Figure I-3: Difference between formal neurons and spiking neurons. ... 17

Figure I-4: Example of spike-timing-dependent plasticity, observed experimentally. 18

Figure I-5: Example of neuromorphic device, including memristive synapses and Leaky-Integrate-and-

Fire neurons. ... 19

Figure II-1: Spike-sorting principle... 24

Figure II-2: Decomposition of spike-sorting into three main steps. .. 25

Figure II-3: Illustration of the expectation-maximization algorithm. .. 27

Figure II-4: Mean-shift algorithm illustration.. .. 28

Figure II-5: Example of multiple electrodes recording. ... 30

Figure II-6: Two examples of bursts, during which the amplitude of the action potential decreases. 31

Figure II-7: Example of non-stationary data during a long recording. .. 32

Figure II-8: Example of action potential overlap. .. 33

Figure III-1: Latency coding principle. ... 42

Figure III-2: Illustration of polychrony. .. 42

Figure III-3: Different neuronal response to different stimuli. .. 44

Figure III-4: Experimentally observed STDP.. .. 46

Figure III-5: Different forms of STDP rules. ... 46

Figure III-6: STP observed experimentally. .. 47

Figure III-7: Example of spike pattern recognition by (Masquelier et al. 2008). 51

Figure III-8 : Example of visual pattern recognition by (Srinivasa et al. 2014).. 51

Figure IV-1: Global structure of the STDP network. .. 58

Figure IV-2: Input layer implementation. .. 60

Figure IV-3: Modeled and simulated EPSP for each input value. .. 62

Figure IV-4: Effect of DVm and Wmin on the input value-EPSP relation, for a binary encoding. 63

Figure IV-5: Detection of an action potential by the attention neuron. ... 64

Figure IV-6: The attention neuron potential increases when an action potential is present in the input

signal. ... 65

Figure IV-7: STDP rule applied on the synapse connecting the input layer to the intermediate layer. 67

Figure IV-8: Receptive field shape. .. 69

Figure IV-9: Effect of the WTA mechanism. .. 71

Figure IV-10: Effect of the k-WTA mechanism on the receptive fields. .. 71

Figure IV-11: Comparison of the intermediate layer output quality for different k-WTA and different

DVm, on the simulated single electrode dataset. .. 72

Figure IV-12: Two different implementation of the intrinsic plasticity rule. .. 74

Figure IV-13: Lateral STDP principle. ... 75

Figure IV-14: Improvement of the performance with lateral STDP implemented on the output layer of

the LTSNet network. .. 76

Figure IV-15: Spike pattern received by the output layer when using a structure with transmission

delays on synapses from the intermediate layer and inhibition from the attention neuron 77

9

Figure IV-16: Example of potential rebound of the DSSN neuron model, generating a spike after the

end of the stimulus .. 78

Figure IV-17: Spiking properties of the LTS neuron after receiving a negative stimulus, with different

models. .. 80

Figure IV-18: Discrimination performance, assessed through an F-score, obtained with the LTS neuron

on different conditions. ... 81

Figure IV-19: General principle of our adaptation of the network to the case of multiple electrodes 82

Figure IV-20: Two different polytrode structures for the attention neuron. .. 83

Figure IV-21: Comparison of the ROC scores obtained with the two different structures for the

attention neuron. .. 83

Figure IV-22: Different polytrode structures tested for the output layer. .. 84

Figure IV-23: Recall of action potential from each different neural cell, on each output sublayer, on a

simulated polytrode recording with four different neural cell and an SNR of 6. 85

Figure V-1: The two waveforms used in the preliminary dataset ... 89

Figure V-2: The three waveforms used in the simulated single electrode dataset 89

Figure V-3: Model of the transmembrane current through the neuron.. ... 90

Figure V-4: Example of cells position relatively to the electrode line. The cells are placed along a line

20 µm away from the electrode line.. ... 91

Figure V-5: Example of action potential waveforms obtained for each simulated electrode and each

simulated neural cell ... 92

Figure V-6: Sample of the tetrode recording d533101, with the four channels of the tetrode after

filtering and the ground truth extracted from the intracellular recording. .. 93

Figure V-7: Principle of the ROC curve .. 95

Figure VI-1: MiniNet structure .. 100

Figure VI-2: Qualitative results of MiniNet on a recording from the preliminary dataset. 103

Figure VI-3: Example of performance of MiniNet on one recording from the preliminary dataset. .. 104

Figure VI-4: ANNet structure ... 105

Figure VI-5: Behavior of the intermediate layer of ANNet. ... 106

Figure VI-6: Examples of ANNet output and performance ... 107

Figure VI-7: ANNet performances compared to Osort and Wave_clus. ... 108

Figure VI-8: ANNet performance on simulated recordings with different firing rate scenarios. 109

Figure VI-9 : Two different structures adapted for tetrode recordings, for the ANNet implementation.

 ... 110

Figure VI-10 : F-scores obtained with the two tested structures, compared to the best single electrode

performance. ... 110

Figure VI-11: LTSNet structure .. 111

Figure VI-12: LTSNet intermediate layer behavior .. 114

Figure VI-13: Example of potential rebound of LTS neurons in the output layer. 115

Figure VI-14: Example of LTSNet output on a 5-s segment of simulated signal. 116

Figure VI-15: LTSNet results on the single electrode simulated dataset, compared to ANNet, Osort and

Wave_clus. .. 117

Figure VI-16: PolyNet structure for polytrode recordings (illustration for a line of 6 electrodes). 118

Figure VI-17: Example of output on a simulated polytrode recording with an SNR of 6. 120

Figure VI-18: Action potentials stemming from different cells are recognized by a different output

neurons.. 121

10

Figure VI-19: Mean scores on the polytrode simulated recordings with different SNR, for each type of

error. .. 121

Figure VI-20: Parts of the network implemented on FPGA. .. 124

Figure VI-21: Genesys 2 board used for FPGA implementation .. 124

Figure VI-22: Attention neuron simulation implemented on an FPGA. .. 125

11

LIST OF TABLES

Table II-1: List of existing spike-sorting software. ... 35

Table IV-1: Parameters used for the simplified LTS model ... 80

Table IV-2: Mean F-scores obtained with the different structures tested on the simulated polytrode

dataset ... 84

Table V-1: Parameters used to generate the three waveforms of the simulated single electrode dataset

 ... 89

Table V-2: Noise level used and corresponding SNR for the simulated single electrode dataset 90

Table V-3: Amplitude of the each neural cell’s action potential for the different SNR 91

Table VI-1: Main features of MiniNet .. 100

Table VI-2: Detailed parameters of MiniNet ... 101

Table VI-3: Main features of ANNet .. 105

Table VI-4: Main features of LTSNet ... 111

Table VI-5: Detailed parameters of LTSNet ... 111

Table VI-6: Resources used for MiniNet .. 122

Table VI-7: Resources used for ANNet .. 122

Table VI-8: Resources used for LTSNet .. 123

12

LIST OF ABBREVIATIONS

ANN Artificial Neural Network

BCI Brain Computer Interface

FPGA Field-Programmable Gate-Array

IP Intrinsic Plasticity

LIF Leaky-Integrate-and-Fire

LTS Low Threshold Spiking

MEA Micro-Electrode Array

ROC Receiver Operating Characteristic

SNN Spiking Neural Network

SNR Signal-to-Noise Ratio

STDP Spike-Timing-Dependent Plasticity

STP Short-Term Plasticity

13

14

I. INTRODUCTION: CONTEXT AND GOAL OF THE THESIS

 Stakes of recording the brain

Understanding the brain is maybe one of the most interesting challenges for scientists nowadays. Will

our intelligence, some day, be able to understand its own mechanics? The long path towards this goal

begins by observing what is going on in our head. The human brain is constituted of tens of billions of

neurons, and thousands of times more synapses connecting them. These two elements constitute the

computational bricks of the brain, connected together in an incredibly complex network that

neuroscientists are trying to unravel. Anatomical observations allow us to understand how the

neurons and their connections are organized in the brain. This makes us progress towards

understanding how it works, but needs to be completed by functional observations, in other words

measuring the neuronal activity, to understand how the information is encoded, transmitted and

processed in the brain.

Neuronal activity is both electric and chemical. At its resting state, a neuron has its membrane potential

at an equilibrium (around -70 mV). This potential then varies depending on the activity received from

other neurons through synapses. When it increases up to a threshold value, the neuron fires. Different

voltage-gated ion channels become activated, which modifies the transmembrane currents and

triggers an abrupt increase of the neuron’s potential followed by an abrupt decrease before returning

to its resting state. This phenomenon is called action potential or spike. This action potential

propagates along the neuron’s axon, through similar ion channels’ mechanisms. The axon is

terminated by synapses through which the action potential is chemically transmitted to other neurons

triggering the opening of channels that in turn modify the receptor neurons’ potentials (Figure I-1).

Action potentials are thus the nervous system’s information carrier. Recording the spiking activity of

different neurons is thus crucial to understand how the information is encoded and processed in the

brain.

Figure I-1: Emission and propagation of an action potential in neurons

It is known that specific neural cells participate in the encoding of specific behaviors, stimuli or

concepts. For example, in the visual cortex, some neural cells are sensitive to visual stimuli oriented

in a specific direction, and different cells have different preferred directions. Similarly, it has been

found that, in the motor cortex, some neurons code for different directions of the arm movement and

that a complex movement can be decoded from the collective firing of a group of cells (Georgopoulos

et al. 1986; Schwartz 1994). Spatial representation and navigation is encoded by neural cells in the

15

hippocampus, called place cells, that code for specific locations in an environment (Moser et al. 2008).

Another study also shows that single facial characteristics are encoded by single cells (Chang & Tsao

2017). Recording individual neural spiking activity is thus crucial to analyze how neural information is

encoded. Recording several neurons simultaneously also allows to understand how the spiking activity

of different neurons interact to encode and to process more complex concepts (Buzsáki 2010).

Besides improving our understanding of brain functions, decoding the information from neural

recordings has practical applications such as neuro-prostheses and neuro-rehabilitation with Brain

Computer Interfaces (BCIs). BCIs consist in using the decoded activity from a neural recording to

control an artificial actuator. Hopes are to be able to replace defective functions with neuro-

prostheses, for example with a BCI controlling a robotic arm for tetraplegic patients (Hochberg et al.

2012) or a BCI controlling a speech synthesizer for aphasic patients (Bocquelet et al. 2017). Decoding

brain activity can also be used for neuro-rehabilitation, which allows to restore motor function by

stimulating muscles according to the decoded activity using either electrodes on the surface of the skin

(Bouton et al. 2016) or implanted ones (Ajiboye et al. 2017). In these systems, the processing of neural

activity recording should be done in real-time. Moreover, the recording’s quality need to be high

enough to ensure the possibility to decode complex behaviors. Ideally, this implies being able to record

individual spiking activity from a large number of neurons. Experimentally, it has been shown that the

number of cells recorded actually improves the overall decoding quality (Wessberg et al. 2000; Ifft et

al. 2013).

Recording technologies have evolved to meet these requirements. Nowadays, microelectrode arrays

(MEA) are able to record the individual activity of hundreds of neurons and the technology is still

improving. To fully take advantage of these advances, new algorithms have to be developed for

efficiently processing the corresponding data online and in real time.

 Microelectrode arrays recordings and spike-sorting.

Neural activity recording technologies are diverse, each with their own advantages and drawbacks.

Among the most known non-invasive methods, we can cite EEG, MEG, fMRI or PET scan. EEG measures

the electrical fields generated on the scalp by the coordinated activity of neurons. MEG measures the

magnetic fields outside the head. fMRI and PET scan measure metabolic changes such as the blood

flow or oxygenation variations through the brain, correlated with neural activity. These non-invasive

methods are useful for diagnostics and functional experiments but do not allow the recording of

individual cells. In contrast, the patch clamp method consists in placing a micropipette in contact with

a neural cell’s membrane to record its intracellular potential. This method allows to record individual

cells, but only a few neurons can be recorded simultaneously and the method is not suitable for in vivo

experiments. Microelectrode arrays (MEA) offer a good solution to record the individual activity of

numerous cells in vivo. They consist in micrometer-scale electrodes, often placed on sharp needles,

arranged in an array, and implanted a few millimeters under the surface of the brain in the extracellular

medium. When a neuron fires, the action potential induces transmembrane currents which modifies

the potential of the extracellular medium. Thus an action potential can be recorded by an extracellular

electrode placed close enough to the neuron (under about 100µm). Hence MEAs are able to record

individual neural spikes.

16

An example of widely used MEA for in vivo experiments is the Utah array (Figure I-2.a), which contains

one hundred microelectrodes. MEAs are always improving, with arrays containing up to thousands of

electrodes, spaced by tens of micrometers (Alivisatos et al., 2013; Angotzi, Malerba, Zucca, &

Berdondini, 2015; Lopez et al., 2016; Pothof et al., 2016; Rios, Lubenov, Chi, Roukes, & Siapas, 2016;

Seidl et al., 2012) (Figure I-2.b). The increasing number electrodes on the same device allows on one

hand to record more and more neurons simultaneously, opening opportunities for complex decoding.

On the other hand, dense MEAs generate a huge flow of data, which require suitable processing

algorithms, especially for real-time applications. Ideally, most processing should be done at the level

of the electrode, to reduce the flow of data to transmit to the rest of the experimental chain.

Figure I-2: Examples of microelectrode arrays (MEA). (a) Utah array, adapted from (Hochberg et al. 2006). (b) Dense MEA,

adapted from (Rios et al. 2016).

In particular, one type of processing that is usually done on MEA recordings is spike-sorting. As stated

previously, an extracellular electrode is able to record the spiking activity of nearby neurons. Thus, the

activity of the few neural cells surrounding the electrode is recorded on the same electrode signal by

superposition. As the shape of the action potential recorded by the electrode depends on how the cell

is positioned relatively to the electrode, it is possible to separate the spiking activity of the few

recorded cells thanks to the different action potential shapes. The process is called spike-sorting.

Many algorithms exist for spike-sorting, reviewed in Section II. Most of them are satisfying for offline

processing and for a limited number of electrodes. However close-loop experiments require an

immediate feedback from the neural data decoding, which implies real-time spike-sorting. This

constraint is even more difficult to meet when using a high number of electrodes, as it increases the

amount of data to process. Beside online applications, a high number of electrodes also make human

supervision on spike-sorting impossible, thus requiring fully automatic methods. Therefore there is a

need for new efficient online and automatic spike-sorting methods.

 Pattern recognition and artificial neural networks

The principle of spike-sorting is to detect action potentials in a signal, and to classify them according

to their shapes. Spike-sorting is thus a pattern recognition problem, a field that is widely explored in

artificial intelligence. The most known forms of pattern recognition are image processing or natural

17

language processing. Many solutions exists to solve this kind of problem, sometimes inspired by the

natural ability of our brain to solve these tasks.

In particular, artificial neural networks are very popular in artificial intelligence and widely used for

pattern recognition tasks. They are usually constituted of formal neurons, modeled by a mathematical

activation function transforming a real input value, which is the sum of other neurons’ outputs, into a

real output value (Figure I-3.a). The neurons are connected together through synapses characterized

by a weight, which defines how much a presynaptic neuron influences the postsynaptic neuron. The

mathematical properties of these networks make the synapses’ weights optimization possible through

a gradient descent method, called backpropagation (Rumelhart et al. 1986), so that the network

‘learns’ to achieve a specific task. This neural network model is very convenient but not biologically

realistic. In contrast, spiking neural networks (SNNs) use spikes to convey information. The spikes are

modeled as discrete binary events transmitted between neurons through synapses. A spiking neuron

receives spikes from inputs neurons, integrates them through a temporal dynamic and in turn emits

other spikes (Figure I-3.b). Though SNNs can also be trained using a backpropagation algorithm (Bohte

et al. 2002), it is possible to use biologically realistic learning rules. In particular, it has been shown

experimentally, by stimulating pairs of real neurons, that the weight of a synapse changes depending

on the time difference between a postsynaptic spike and a presynaptic spike (Bi & Poo 1998). This

phenomenon is called spike-timing-dependent plasticity (STDP) (Figure I-4) and can be implemented

in SNNs, which are then called STDP networks. STDP rules allows spiking networks to learn patterns

by positively reinforcing synapses contributing to the postsynaptic activity. A review of STDP network

models is given in Section III.

Figure I-3: Difference between formal neurons and spiking neurons. (a) Formal neurons process real values through an

activation function. (b) Spiking neurons process spikes through a dynamic integration.

18

Figure I-4: Example of spike-timing-dependent plasticity, observed experimentally. Adapted from (Bi & Poo 1998)

STPD networks have been used for a few pattern recognition tasks, but applications to real world

problems are still sparse. Indeed, there is at the moment no standard way to train an STDP network

to achieve a specific task. However, STDP networks have other advantages compared to formal neural

networks. First, STDP networks naturally allow unsupervised learning, which is essential for spike-

sorting as the ground truth is unknown. Second, formal neural networks usually require training on a

huge amount of data, whereas STDP networks can learn on few examples.

 The advent of neuromorphic hardware for low-power computing

Though artificial neural networks are widely used for pattern recognition tasks, their main

inconvenient is that they involve many neurons and many synapses working in parallel, which is

computationally very demanding, especially when they are executed on traditional computers with

sequential architectures. This is why neuromorphic hardware, whose purpose is to natively implement

neural networks in integrated chips, currently undergoes important developments. In particular,

memristive components are being developed, which are able to mimic a synapse with STDP at a

miniaturized scale (Figure I-5) (Jo et al. 2010; Indiveri et al. 2013; Indiveri et al. 2015; Park et al. 2015;

Saïghi et al. 2015; Rajendran & Alibart 2016; La Barbera et al. 2016; Sourikopoulos et al. 2017). This

kind of devices thus opens an opportunity for STPD networks to be implemented in low-power

miniaturized devices. Therefore both the unsupervised learning properties of STDP networks and their

possibility to be implemented in such devices offer important perspectives for pattern recognition in

the future.

19

Figure I-5: Example of neuromorphic device, including memristive synapses and Leaky-Integrate-and-Fire neurons.

Adapted from (Park et al. 2015)

 Goal of the thesis: online spike-sorting with an STDP network

In this context, the goal of this thesis work was to design a new unsupervised and online method for

spike-sorting, using an STDP network. In contrast to (Zhang et al. 2015), where an STDP network was

used as part of the spike-sorting method, here we aim at performing the entire spike-sorting process

with an STDP network, without any pre-processing or post-processing. We also want the network to

process the electrode signal online. This means that the electrode signal is directly streamed as an

input to the network, and that the output spike train should correspond to the sorted spiking activity,

each output spike corresponding to an action potential in the electrode signal. A preliminary study was

done towards this goal (Werner et al. 2016). This network was tested on data with very high signal-to-

noise ratio (SNR) but was not suitable at typical SNR found in cortical neural recordings. Moreover, it

required a bank of filters to decompose the input signal, which added computation cost to the method.

Here, no further processing is applied beyond the initial band-pass filter eliminating the slowly evolving

local field potentials (LFP).

Designing such a network implied finding a suitable network structure, choosing neurons and synapses

models for each functional parts of the network, and parameterizing correctly each element to achieve

the desired goal. My work was mainly focused on processing single electrode signals, which constitutes

the first step towards processing richer recordings. However, a design adapted for multiple electrodes

was also tested. The problem was treated from an algorithmic point of view, leaving aside the

hardware implementation but keeping in mind that the designed network should be adaptable to a

neuromorphic implementation. Nevertheless, a preliminary work was done to implement the network

20

on a field-programmable gate-array (FPGA), which is much more adapted than a computer for parallel

processing.

21

References

Ajiboye, A.B. et al., 2017. Restoration of reaching and grasping movements through brain-controlled
muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. The Lancet,
389(10081), pp.1821–1830. Available at:
https://linkinghub.elsevier.com/retrieve/pii/S0140673617306013.

La Barbera, S. et al., 2016. Interplay of multiple synaptic plasticity features in filamentary memristive
devices for neuromorphic computing. Scientific Reports, 6(1), p.39216.

Bi, G.Q. & Poo, M.M., 1998. Synaptic modifications in cultured hippocampal neurons: dependence on
spike timing, synaptic strength, and postsynaptic cell type. The Journal of neuroscience : the
official journal of the Society for Neuroscience, 18(24), pp.10464–10472.

Bocquelet, F. et al., 2017. Key considerations in designing a speech brain-computer interface. Journal
of Physiology - Paris, 110(4), pp.392–401. Available at:
http://dx.doi.org/10.1016/j.jphysparis.2017.07.002.

Bohte, S.M., Kok, J.N. & La Poutré, H., 2002. Error-backpropagation in temporally encoded networks
of spiking neurons. Neurocomputing, 48(1–4), pp.17–37.

Bouton, C.E. et al., 2016. Restoring cortical control of functional movement in a human with
quadriplegia. Nature, pp.1–13. Available at:
http://www.nature.com/doifinder/10.1038/nature17435.

Buzsáki, G., 2010. Neural Syntax: Cell Assemblies, Synapsembles, and Readers. Neuron, 68(3), pp.362–
385.

Chang, L. & Tsao, D.Y., 2017. The Code for Facial Identity in the Primate Brain. Cell, 169(6), p.1013–
1028.e14. Available at: http://dx.doi.org/10.1016/j.cell.2017.05.011.

Georgopoulos, a P., Schwartz, a B. & Kettner, R.E., 1986. Neuronal population coding of movement
direction. Science (New York, N.Y.), 233(4771), pp.1416–1419.

Hochberg, L.R. et al., 2006. Neuronal ensemble control of prosthetic devices by a human with
tetraplegia. Nature, 442(7099), pp.164–171.

Hochberg, L.R. et al., 2012. Reach and grasp by people with tetraplegia using a neurally controlled
robotic arm. Nature, 485(7398), pp.372–375. Available at:
http://dx.doi.org/10.1038/nature11076.

Ifft, P.J. et al., 2013. A Brain-Machine Interface Enables Bimanual Arm Movements in Monkeys.
Science Translational Medicine, 5(210), p.210ra154-210ra154. Available at:
http://stm.sciencemag.org/cgi/doi/10.1126/scitranslmed.3006159.

Indiveri, G. et al., 2013. Integration of nanoscale memristor synapses in neuromorphic computing
architectures. Nanotechnology, 24(38).

Indiveri, G., Corradi, F. & Qiao, N., 2015. Neuromorphic architectures for spiking deep neural
networks. In Technical Digest - International Electron Devices Meeting, IEDM. p. 4.2.1-4.2.4.

Jo, S.H. et al., 2010. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters,
10(4), pp.1297–1301.

Moser, E.I., Kropff, E. & Moser, M.-B., 2008. Place Cells, Grid Cells, and the Brain’s Spatial
Representation System. Annual Review of Neuroscience, 31(1), pp.69–89. Available at:
http://www.annualreviews.org/doi/10.1146/annurev.neuro.31.061307.090723.

22

Park, S. et al., 2015. Electronic system with memristive synapses for pattern recognition. Scientific
reports, 5, p.10123. Available at:
http://www.nature.com/srep/2015/150505/srep10123/full/srep10123.html.

Rajendran, B. & Alibart, F., 2016. Neuromorphic Computing Based on Emerging Memory
Technologies. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 6(2), pp.198–
211.

Rios, G. et al., 2016. Nanofabricated Neural Probes for Dense 3-D Recordings of Brain Activity. Nano
Letters, 16(11), pp.6857–6862.

Rumelhart, D.E., Hinton, G.E. & Williams, R.J., 1986. Learning internal representations by error
propagation. In D. E. Rumelhart & J. L. McClelland, eds. Parallel distributed processing. pp.
318–362. Available at:
https://web.stanford.edu/class/psych209a/ReadingsByDate/02_06/PDPVolIChapter8.pdf.

Saïghi, S. et al., 2015. Plasticity in memristive devices for spiking neural networks. Frontiers in
Neuroscience, 9(MAR), pp.1–16.

Schwartz, a B., 1994. Direct cortical representation of drawing. Science (New York, N.Y.), 265(5171),
pp.540–542.

Sourikopoulos, I. et al., 2017. A 4-fJ/spike artificial neuron in 65 nm CMOS technology. Frontiers in
Neuroscience, 11(MAR), pp.1–14.

Werner, T. et al., 2016. Spiking Neural Networks Based on OxRAM Synapses for Real-Time
Unsupervised Spike Sorting. Frontiers in neuroscience, 10(November), p.474. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/27857680.

Wessberg, J. et al., 2000. Real-time prediction of hand trajectory by ensembles of cortical neurons in
primates. Nature, 408(6810), pp.361–365.

Zhang, B. et al., 2015. A neuromorphic neural spike clustering processor for deep-brain sensing and
stimulation systems. In 2015 IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED). IEEE, pp. 91–97. Available at: http://ieeexplore.ieee.org/document/7273496/.

23

24

II. SPIKE-SORTING STATE OF THE ART

 Spike-sorting principle

The signal recorded by an extracellular microelectrode contains a local field potential, action

potentials, and noise. The local field potential is believed to correspond to the average current

generated by cellular elements in a local area, mostly reflecting synaptic activity (Buzsáki et al. 2012).

It varies slowly and can be removed with a high-pass filter (above about 200-300 Hz). After filtering,

we obtain a noisy signal that contains action potentials emitted by different neurons close to the

electrode. The role of spike-sorting is to detect and sort these action potentials, to obtain the

individual spiking activity of each neural cell. The principle of spike-sorting mainly relies on the fact

that the shape of an action potential recorded by an electrode depends on the geometries of both the

neuron and the electrode, and their relative positions. Thus, on an electrode signal, action potentials

with the same shape most probably come from the same neuron whereas action potentials with

different shapes come from different neurons (Figure II-1). Spike-sorting methods thus use the action

potential waveforms, or features extracted from these waveforms to sort the activities of different

neurons. Possibly, additional information such as timing information like inter-spike interval

(Delescluse & Pouzat 2006) or spatial information (Rossant et al. 2016; Hilgen et al. 2017) can be used.

Figure II-1: Spike-sorting principle. An extracellular microelectrode records action potentials from several neural cells.

These action potentials can be sorted as they have different shapes depending on which cell emits them.

 Classical methods

Once the signal has been correctly filtered, it is constituted of the superposition of noise and action

potentials emitted by different neurons. Most spike-sorting methods are decomposed into three

distinct steps: a detection step to find the action potentials in the signal, a feature extraction step to

extract features characterizing the detected action potential shapes, and a clustering step to group the

feature vectors into different clusters corresponding to the different neural cells recorded in the signal

(Figure II-2). This section describes the most used algorithms for each of these steps, as well as some

more global approaches to spike-sorting. A good review can also be found in (Rey et al. 2015).

25

Figure II-2: Decomposition of spike-sorting into three main steps.

1. Detection

The simplest way to detect action potentials in a microelectrode signal is to use a simple threshold.

Each time the recorded potential crosses this threshold, it is considered that an action potential is

present. This threshold can be positive or negative or both depending on the expected sign of the

action potential peak. The threshold is most of the time chosen between 3 and 4 times the standard

deviation of the noise, which gives a good compromise between false negatives and false positives. A

first step is thus to estimate this standard deviation. In case of a Gaussian noise, the standard deviation

can be estimated based on the median, with 𝜎 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑠|) 0.6745⁄ , where s is the signal (Quiroga

et al. 2004; Rossant et al. 2016). This method using median is robust to the presence of action

potentials in the signal.

More sophisticated methods apply a preprocessing to the signal before thresholding. The idea is to

better take into account the characteristics of an action potential. Indeed even if their shape differ

from one neuron to another, they share common properties such as a similar frequency content, or

similar features in their shapes. Some examples of such methods are the use of an energy operator

(Rutishauser et al. 2006), or the use of wavelets (Nenadic & Burdick 2005; Escola et al. 2007). In case

of a template matching method (see Section II.B.4), it is also possible to use the templates for detection

(Bankman et al. 1993). Template matching methods are often used in combination with a preliminary

simpler detection method to establish the templates. (Delescluse & Pouzat 2006) used a detection

method where a single template was computed for detection.

In case of multiple electrodes, the detection has to take into account spatial information. Indeed an

action potential is recorded on several neighboring electrodes but not all electrodes. Thus the signal

shape is relevant only on the electrodes where the action potential appears. The number of electrodes

detecting an action potential from a neural cell can vary depending on the position and nature of the

cell. As an example, (Rossant et al. 2016) used a detection algorithm where a high threshold is applied

first to detect the presence of action potential. Then a lower threshold is applied and spatially

connected components containing at least one high-threshold crossing potential are considered to

correspond to one action potential. This dual-threshold method allows to limit false positives with the

high threshold while merging correctly all electrodes involved in a same action potential thanks to the

low threshold.

26

Once an action potential has been detected, its shape is stored for further processing. To be coherent

between two occurrences of a similar action potential, it is necessary to always store the same number

of samples around a reference time point. This reference point is often chosen as the maximum or

minimum of the action potential, which is more robust than taking the point at which the waveform

crosses the threshold as it can vary because of noise. Additionally, the signal is often up-sampled

before alignment to be robust to sampling jitter.

2. Feature extraction

Some spike-sorting algorithms such as in (Rutishauser et al. 2006) or (Pouzat et al. 2002) or more

generally template matching algorithms use directly the whole action potential waveform for

clustering. However this require to manipulate high-dimensional vectors, especially in the case of

multiple electrodes, which can impair the execution time and even the clustering quality, a

phenomenon known as the “curse of dimensionality”. For this reason most spike-sorting methods use

a reduced number of features, extracted from the waveforms. This can be very simple features such

as the amplitude or the width of the waveform. As an example, (Delescluse & Pouzat 2006) use the

peak amplitudes on the four recording sites of a tetrode. Other methods use more complex features

such as wavelets (Quiroga et al. 2004; Hulata et al. 2002). It is thus possible to use predefined features,

however most methods use an automatic dimensionality reduction algorithm such as principal

component analysis (PCA) (Shoham et al. 2003; Rossant et al. 2016; Hilgen et al. 2017), which projects

the waveforms into a subspace that accounts for most of the variations between waveforms. In case

of multiple electrodes, spatial information can also be used for clustering. In (Rossant et al. 2016), a

vector indicating on which electrodes the action potential has been detected is used, in addition to

PCA features. In (Hilgen et al. 2017), the spatial position of each action potential is estimated through

a method based on barycenters and used as a feature.

3. Clustering

After the detection and the features extraction steps, each detected action potential is represented by

a vector in an N-dimensional space. Two action potentials that are close to each other in this space

are likely to have a similar waveform and thus to stem from the same neural cell. The goal is thus to

sort the feature vectors into clusters, corresponding to action potential waveforms stemming from

different neural cells. This last step is therefore a clustering problem, for which many solutions exist.

One classical method often used in spike-sorting is the expectation-maximization algorithm. The data

to cluster is modelled as stemming from a mixture of a given stochastic distribution, most of the time

a Gaussian distribution. This is an iterative algorithm, where the parameters of the data distribution

are updated at each iteration. In the expectation step, each data point’s label is estimated given the

current model parameters. Then in the maximization step, the parameters are optimized to best fit

the estimated labels. These two steps are repeated until convergence (Figure II-3) has been achieved.

An improved version of this algorithm has been used for example in (Rossant et al. 2016), where each

data point is associated to a mask giving information about which dimensions are the most relevant

27

for clustering. (Shoham et al. 2003) also use the expectation-maximization algorithm on a mixture of

t-distributions.

Figure II-3: Illustration of the expectation-maximization algorithm. The expectation steps assign data points to a cluster.

The maximization steps optimize the distribution’s parameters to fit the data points’ labels.

Another widely used method is the K-mean algorithm. K-mean is also an iterative algorithm where the

centers of the clusters are updated at each iteration: the data points are labeled according to the

nearest center, and then the centers are updated as the barycenter of the corresponding points. This

method has been used for example in (Chah et al. 2011). (Oliynyk et al. 2012) use a fuzzy C-means

algorithm, which is a variation of the K-means algorithm where the belonging of a point to a cluster is

weighted.

The expectation-maximization as well as the K-mean algorithms require the user to initially choose the

number of clusters to find. This is not satisfying for spike-sorting, as the number of clusters is a priori

unknown and should ideally be determined automatically by the algorithm. A way to overcome this

problem is to automatically test different numbers of cluster and select the best one afterward.

However other algorithms do not have this default. This is the case for example of the mean-shift

algorithm, used for example in (Marre et al. 2012) and (Hilgen et al. 2017). Its principle is that for each

point of the space, we define a window around this point. The barycenter of the data points within

this window is computed and the window is shifted to be centered on this barycenter. The process is

repeated until the window stabilizes on a local maxima (Figure II-4.a). This way, each point can be

assigned to the nearest local maxima, which correspond to a cluster (Figure II-4.b). This method is

almost non-parametric as the only parameter to choose is the size of the window.

28

Figure II-4: Mean-shift algorithm illustration. (a) Computation of local density maxima thanks to a window, shifted to its

barycenter at each step. (b) Each point a space is assigned to the nearest local density maxima, with the method presented

in (a), to form clusters.

Another example of non-parametric method is the super-paramagnetic clustering used in (Quiroga et

al. 2004). The main idea of this algorithm is to randomly assign a cluster to a point, and this new cluster

assignment is propagated to neighbor points with a probability depending on the distance between

points. Thus points that are close to one another will tend to change their labels together. This process

is repeated many times, to ensure a relevant classification.

Finally, (Zhang et al. 2015) use an STDP network as part of their clustering algorithm. This network is

inspired from pattern recognition for static inputs. It has one input layer and one output layer. Each

detected waveform is given as an input of the network after being converted in an input spike train

through a binary encoding of the signal values. Each time a waveform is presented, an output neuron,

corresponding to a cluster, is activated. During the training phase the synaptic weights are also

updated for each presented waveform. The number of clusters is monitored externally by activating

or deactivating neurons of the output layer. Clusters are added if too many points are not classified

and clusters are removed if their corresponding neuron does not fire for a long time.

4. Template matching and other global approaches

Separating the spike-sorting problem into three steps provides a simple methodology. However these

steps are not independent and the performance of one step might depend on how the previous steps

are solved. A global approach to the spike sorting problem might lead to better performances. As a

simple example, it is much easier to detect an action potential in a noisy signal if we know its exact

waveform. Most methods that use such a global approach are based on the use of templates

corresponding to each different action potential waveforms, and are thus called template matching

methods. These methods often rely on an initial clustering step to initialize the templates, usually

using a classical three-step method as presented previously. However, it is not necessary in this

preprocessing step neither to find all the action potentials, nor to assign all the found action potentials

to a cluster, but simply to find the centroids of the clusters that will constitute the templates. (Yger et

al. 2016) is an example of such a template matching method. After establishing a set of templates, the

scalar product of the signal with each time-shifted version of each template is computed. The template

and shift time with the highest scalar product is selected and considered as a found and classified

action potential. This process is then iterated, as part of a greedy algorithm. In (Franke et al. 2010),

29

the signal is considered as the sum of the convolution of the ground truth spike trains with waveforms.

The templates estimated by the preprocessing step are used to establish filters that approximate the

deconvolution of the signal. (Ekanadham et al. 2014) presents an even more global approach, in the

sense that they optimize simultaneously both the template waveforms and the action potential times

and amplitudes, to maximize the probability to have such amplitude and spike times given the

waveforms and observed signal. More precisely, they alternate a step optimizing the spike times and

amplitudes and a step optimizing the action potential waveforms.

 Online vs. offline methods

Most spike-sorting methods require some offline processing. Though offline spike-sorting can be used

for post-experiment data analysis, it is necessary for closed-loop experiments to have an online real-

time spike-sorting method. For a classical three step methods, if at least one of the steps requires an

offline processing, then the spike-sorting method cannot be executed online without adaptation. The

detection step can usually be executed online, as the thresholding and the possible preprocessing

operator are local operations that can be applied online. Extracting predefined features from a

waveform, such as its amplitude, can also be done online. On the other hand, automatic

dimensionality reduction algorithms such as PCA require a consequent number of data points, and

thus cannot be applied online. However, is it possible to compute the projection as an offline

preprocessing step and then apply this projection online. Most clustering algorithms, such as

expectation-maximization, K-means or mean-shift, also require an offline processing step for the same

reason. A noticeable exception is given by (Rutishauser et al. 2006) whose clustering algorithm can be

applied online. At each detection of an action potential, the corresponding waveform is assign to a

cluster according to the distance with the cluster centroid, and the centroid of the assigned cluster is

then updated. Template matching algorithm are often suitable for online execution, though the

initialization of the template might require an initial short offline preprocessing step. This is the case

of the method presented in (Franke et al. 2010) which can be applied online once the templates have

been defined.

Another factor that can jeopardize real-time spike sorting is the computation time. In addition to

intrinsically allow an online processing, a real-time spike-sorting method should also be able to detect

and classify an action potential within a few milliseconds, which is the duration of an action potential.

In particular, the clustering part can be very time-consuming if too many dimensions are used. This

time constraint becomes particularly critical when the number of recording electrodes is important as

in currently-developed cortical implants, generating large amounts of data to process.

 Using multiple electrodes

Using large-scale multi-electrode implants allows to record more neural cells, and brings more

information for spike-sorting but requires a suitable spike-sorting method. In the case of an electrode

array where electrodes are far enough from each other to record completely different neurons, such

as Utah arrays, each electrode can be processed independently as a single electrode. In contrast, a

30

few electrodes very close to one another, such as tetrodes, may record the same neural cells, and the

set of electrodes can thus be processed together as a single electrode by simply concatenating the

features. In between, using dense microelectrode arrays brings an interesting spatial dimension to the

spike-sorting problem. Indeed, in that case, each electrode detects the activity of a few neural cells,

as for a single electrode, but each neural cell is also recorded by several electrodes but not all the

electrodes of the array (Figure II-5). Hence action potentials are spatiotemporal events. They are

limited both in time, as they last about a millisecond, and in space, as there are visible on a few

neighboring electrodes. This spatial dimension is all the more important as, because of the high

number of recorded neural cells, many action potentials will overlap in time. However they can be

easily discriminated if they do not overlap in space. This spatial aspect thus affects all the steps of the

spike-sorting algorithm. (Lefebvre et al. 2017) gives good review about existing multi-electrode spike-

sorting algorithms.

Figure II-5: Example of multiple electrodes recording, adapted from (Rossant et al. 2016). (a) Geometry of the electrode

array. (b) Sample of recorded signal. Action potentials are highlighted with rectangles.

Detection should not only give the timestamp of the action potential event but also information about

its location. A common way to perform a non-redundant detection is to search for local minima (or

maxima) both in time and space, which is done for example in (Yger et al. 2016). Each event thus

correspond to one timestamp and one electrode. (Rossant et al. 2016) has a different approach, where

events are described as spatially connected components over a neighborhood graph. The events are

detected as crossing a high threshold and then extended to neighboring electrodes crossing a lower

threshold. This spatial information should then be used for clustering. In (Rossant et al. 2016), the

electrodes detected as belonging to the action potential event are represented in a mask vector, whose

components are equal to one for these electrodes, and to zero for the others. This mask is then used

in a masked expectation-maximization algorithm to indicate where the relevant values are, the

irrelevant ones being replaced by a random distribution corresponding to noise. (Yger et al. 2016) used

a very practical approach. As each event is associated to one electrode, the clustering is done

independently on each electrode. Some clusters can be merged afterward if similar action potentials

sometimes have their peaks on one electrode and some other times on another neighboring one. An

interesting approach is used in (Hilgen et al. 2017), as the location of an action potential is processed

31

like another feature. Indeed for each action potential event, a barycenter is computed and the

coordinates are used as features in a mean-shift algorithm. Template matching methods are not much

affected by the use of multiple electrodes. Indeed, once the templates have been established, they

implicitly contain the information about the action potential location, as the template is null on

electrodes where the action potential is not visible. The spatial aspect is thus mainly used in the

initialization of the templates.

Another particularity of spike-sorting on multiple electrodes is that the noise can be correlated across

different electrodes. Knowing the correlation matrix between the electrodes, it is possible to apply a

linear transformation to the multiple-electrode signal to obtain a new signal with the same number of

dimensions but where the dimensions are not correlated. This process, known as noise whitening, is

used in many spike-sorting methods (Delescluse & Pouzat 2006; Marre et al. 2012; Ekanadham et al.

2014; Yger et al. 2016) and can also be used to remove temporal correlations.

 Common difficulties

In the previous section we presented the general principles of spike-sorting and some classical

algorithms to solve it. However, while designing a spike-sorting method, one can be confronted to

several difficulties specific to neural recordings. In particular the fact that the action potentials emitted

by one neural cell have each time the same shape is not always true. Here we present some classical

known difficulties encountered in spike-sorting and methods to overcome them.

1. Bursts of action potentials

Neural cells sometimes fire in burst, which means they emit several spikes within a short period of

time. The problem is that the amplitude of the action potential tends to decrease at each occurrence

within a burst (Figure II-6). The assumption that the shape of the action potential does not vary is thus

not true in this case.

Figure II-6: Two examples of bursts, during which the amplitude of the action potential decreases. Adapted from

(Delescluse & Pouzat 2006)

To tackle this problem, some spike-sorting algorithms use the weakest assumption that the action

potential from a given neural cell always has the same base waveform, but modulated in amplitude.

The method presented in (Yger et al. 2016) is a template matching algorithm that uses this assumption.

32

An action potential with a different amplitude can still be detected with the corresponding template,

and its amplitude is computed after detection and classification. (Franke et al. 2010) and (Ekanadham

et al. 2014) also use templates modulated by an amplitude in their algorithm. In both case the

amplitude estimation is also used to estimate correctly the templates. (Delescluse & Pouzat 2006)

used a different strategy, as the only features used in their algorithm are the action potentials’

amplitudes and not their precise shapes. Their algorithm relies on an explicit model of the action

potential amplitude depending on the inter-spike interval, an information that is not used in the

previously presented algorithms.

2. Non stationary data

Another situation where the assumption that waveforms do not change is violated is the case of long

recordings, during which electrodes can slowly drift, causing slow changes in the action potential

waveforms (Figure II-7). A common way to solve the problem is to slice the recording into chunks that

are short enough to assume that there are no significant waveform changes within one chunk. This is

done for example in (Franke et al. 2010). Their method is an online template matching method, for

which the templates are updated at the end of every chunks. (Bar-hillel et al. 2006) also divides the

recording into chunks. The action potentials are modeled as a chain of Gaussian mixtures, and the

method combines an expectation-maximization algorithm with a Bayesian method to link the mixtures

of each chunk. In (Calabrese & Paninski 2011), another variation of the expectation maximization is

used, by combining it with a Kalman filter applied on the Gaussian mixture parameters.

Figure II-7: Example of non-stationary data during a long recording, adapted from (Bar-hillel et al. 2006). The projection of

detected action potentials’ waveforms on two dimensions are shown at different times of the recording. The waveforms

slowly evolve with time. When all action potentials are observed together (last picture), it is not possible to distinguish

clusters.

3. Temporal waveform overlap

When action potentials from different neural cells occur in a short time interval, their waveforms may

overlap in the signal. The resulting waveform is the sum of the different waveforms, which often makes

it impossible to recognize for traditional algorithms (Figure II-8).

33

Figure II-8: Example of action potential overlap. The first two action potentials are not overlapping are clearly recognizable.

The last two action potentials are overlapping and sum up into a new waveform that ca not be classified easily.

A first type of approach to solve this problem is to proceed by iterations, as this is done in (Yger et al.

2016). Their method is a greedy template matching algorithm. At each iteration the template and

time position obtaining the highest template matching score is selected and the corresponding

waveform is then removed from the signal. Thus if at least one of two overlapping action potentials is

detected, the second one can also be detected once the first one has been removed from the signal.

The second type of approach is to use an algorithm based on a model that directly takes into account

that action potential waveforms are summed. This is the case of (Franke et al. 2010). The first step of

the algorithm is to filter the signal with filters based on templates, which is a linear operation. The

second step is an independent component analysis (ICA), which by nature take into account the fact

that signals are summed. Their study shows that the method is effectively robust to overlapping action

potentials. In (Ekanadham et al. 2014), the signal is modeled as the sum of templates multiplied by an

amplitude coefficient, the amplitude being null when there is no action potential. The goal is thus to

find the templates and their amplitudes for each sampling time. The amplitudes and the templates

are alternatively optimized, using respectively a gradient descent and a least-squares method. The

common point between these two methods, that make them robust to overlapping action potentials,

is that they do not consider action potentials independently but all together. Noticeably, methods

able to disentangle overlapping waveforms are methods that have a global approach in contrast to

methods decomposed in the three classical steps. Indeed once a detection step has been applied, the

detected waveform is considered to correspond to one action potential. Therefore an action potential

corrupted by another action potential cannot be classified correctly.

 Spike-sorting software implementations

Spike-sorting algorithms are numerous and diverse, and software implementations of spike-sorting

methods are even more diverse. A list of existing spike-sorting software can be found on the following

web page, maintained by Simon Kornblith and reproduced in Table II-1:

http://simonster.github.io/SpikeSortingSoftware/. Some software applications implement a specific

http://simonster.github.io/SpikeSortingSoftware/

34

spike-sorting algorithm, some others offer several combinations of the different processing steps. For

similar algorithms, the choice of the language and implementation optimizations can have a strong

impact on the execution time. The user interface design also plays an important role in the software

usage. Despite the diversity of existing software applications, only a few allow a fully unsupervised

online spike-sorting, and the execution time often becomes important for large MEA.

35

Table II-1: List of existing spike-sorting software. Adapted from http://simonster.github.io/SpikeSortingSoftware/

Software Language Detection Feature Extraction Clustering Drift Overlap Large-

scale MEA

Publications Comments

BinaryPursuitSpik
eSorting

MATLAB binary pursuit N/A binary pursuit No Yes No (Pillow et al. 2013)

bpsort MATLAB binary pursuit, raw
signal threshold
with alignment
(initialization)

PCA (initialization) t-distribution MM
(initialization)

Yes Yes Yes

CBPSpikesortDem
o

MATLAB continuous basis
pursuit

continuous basis pursuit continuous basis
pursuit

No Yes Yes? (Ekanadham et al.
2014)

ClusterLizard C++ raw signal threshold wavelets + Lillifors test Euclidean distance Yes No No (Knieling et al. 2016)

Combinato Python raw signal threshold
with alignment

Wavelets superparamagnetic
clustering + template
matching

Yes No No (Niediek et al. 2016) GUI for inspecting
clusters

EToS C++ raw signal threshold multimodality-weighted
PCA, multimodality pick-
up algorithm, Graph
Laplacian features, PCA

Variational Bayes and
EM t-distribution and
Gaussian mixture
model

No No No (Takekawa et al. 2010;
Takekawa et al. 2012)

FMMSpikeSorter MATLAB raw signal threshold focused mixture model focused mixture
model

Yes? No Yes? (Carlson et al. 2014)

gpu_python Python N/A N/A Generalized Polya urn
dependent Dirichlet
process MM

Yes No No (Gasthaus et al. 2009)

KFMM MATLAB N/A N/A Kalman filter EM
GMM

Yes No No (Calabrese & Paninski
2011)

KiloSort MATLAB,
CUDA C

 Spatiotemporal SVD Template matching
via stochastic batch
optimization

No Yes Yes (Pachitariu et al. 2016)

MoDT MATLAB,
CUDA C

N/A PCA Mixture of drifting t-
distributions

Yes No No (Shan et al. 2017)

moksm MATLAB N/A N/A Mixture of drifting t-
distributions

Yes No No (Shan 2014)

opass MATLAB gamma process
model

PCA gamma process
model

Yes Yes Yes? (Carlson et al. 2013)

OpenElectrophy Python raw signal
threshold, MTEO

PCA, ICA, wavelets EM GMM, K-means,
mean-shift

No No No

GUI for manual
clustering and
inspecting results

http://simonster.github.io/SpikeSortingSoftware/

36

OSort MATLAB local energy
threshold with
alignment

N/A template matching Yes No No (Rutishauser et al.
2006)

pebble C++,
MATLAB

? PCA ISO-SPLIT No No No (Magland & Barnett
2016)

phy (previously
klustakwik)

Python raw signal threshold
with alignment

PCA EM GMM, masked EM
GMM

No No Yes (Kadir et al. 2014;
Rossant et al. 2016)

GUI for inspecting
sorting results. Large,
active community

spikesort MATLAB raw signal threshold
(height + width)

PCA, factor analysis,
sparse PCA, t-SNE

1D GMM, 1D k-means No No No

Claims "99.5%
accuracy." Only
supports clustering into
two units.

SpikeSorter.jl Julia hidden markov
model

spike width, trough to
valley ratio

hidden markov model No No No

Algorithm described
in Spike sorting with
hidden Markov models

SpikeSorting.jl Julia raw signal
threshold, power,
nonlinear energy,
alignment

PCA OSort-style template
matching

Yes? No No

Many options planned;
see documentation

spyke Python raw signal threshold
with alignment

PCA, ICA gradient ascent
(mean-shift variant)

No No Yes (Spacek et al. 2009;
Swindale & Spacek
2014)

GUI

SpyKING Circus Python raw signal threshold
+ iterative template
matching

PCA local density
clustering (Rodriguez
& Laio) + template
matching

No Yes Yes (Yger et al. 2016)

trisdesclous Python raw signal threshold
with alignment

PCA EM GMM, k-means No No No

Wave_clus MATLAB raw signal threshold
with alignment

wavelets + Lillifors test superparamagnetic No No No (Quiroga et al. 2004)

37

References

Bankman, I.N., Johnson, K.O. & Schneider, W., 1993. Optimal Detection, Classification, and
Superposition Resolution in Neural Waveform Recordings. IEEE Transactions on Biomedical
Engineering, 40(8), pp.836–841.

Bar-hillel, A., Spiro, A. & Stark, E., 2006. Spike sorting : Bayesian clustering of non-stationary data. ,
157, pp.303–316.

Buzsáki, G., Anastassiou, C. a & Koch, C., 2012. The origin of extracellular fields and currents--EEG,
ECoG, LFP and spikes. Nature reviews. Neuroscience, 13(6), pp.407–20. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/22595786.

Calabrese, A. & Paninski, L., 2011. Kalman filter mixture model for spike sorting of non-stationary
data. Journal of Neuroscience Methods, 196(1), pp.159–169. Available at:
http://dx.doi.org/10.1016/j.jneumeth.2010.12.002.

Carlson, D.E. et al., 2014. Multichannel electrophysiological spike sorting via joint dictionary learning
and mixture modeling. IEEE Transactions on Biomedical Engineering, 61(1), pp.41–54.

Carlson, D.E. et al., 2013. Real-Time Inference for a Gamma Process Model of Neural Spiking.
Advances in Neural Information Processing Systems 26, pp.1–9. Available at:
http://papers.nips.cc/paper/5061-real-time-inference-for-a-gamma-process-model-of-neural-
spiking.

Chah, E. et al., 2011. Automated spike sorting algorithm based on Laplacian eigenmaps and k-means
clustering. Journal of neural engineering, 8, p.016006.

Delescluse, M. & Pouzat, C., 2006. Efficient spike-sorting of multi-state neurons using inter-spike
intervals information. , 150, pp.16–29.

Ekanadham, C., Tranchina, D. & Simoncelli, E.P., 2014. A unified framework and method for automatic
neural spike identification. Journal of Neuroscience Methods, 222, pp.47–55. Available at:
http://dx.doi.org/10.1016/j.jneumeth.2013.10.001.

Escola, R. et al., 2007. Wavelet-based scale-dependent detection of neurological action potentials. In
2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society. IEEE, pp. 1888–1891. Available at: http://ieeexplore.ieee.org/document/4352684/.

Franke, F. et al., 2010. An online spike detection and spike classification algorithm capable of
instantaneous resolution of overlapping spikes. Journal of Computational Neuroscience, 29(1–2),
pp.127–148. Available at: http://link.springer.com/10.1007/s10827-009-0163-5.

Gasthaus, J. et al., 2009. Dependent Dirichlet Process Spike Sorting. Advances in Neural Information
Processing Systems (NIPS), pp.497–504.

Hilgen, G. et al., 2017. Unsupervised Spike Sorting for Large-Scale, High- Density Multielectrode
Arrays. Cell Reports, 18(10), pp.2521–2532. Available at:
http://dx.doi.org/10.1016/j.celrep.2017.02.038.

Hulata, E., Segev, R. & Ben-Jacob, E., 2002. A method for spike sorting and detection based on wavelet
packets and Shannon’s mutual information. Journal of Neuroscience Methods, 117(1), pp.1–12.

Kadir, S., Goodman, D. & Harris, K., 2014. High-dimensional cluster analysis with the masked EM
algorithm. Neural computation, 1872, pp.1840–1872.

Knieling, S. et al., 2016. An Unsupervised Online Spike-Sorting Framework. International Journal of
Neural Systems, 26(05), p.1550042. Available at:

38

http://www.worldscientific.com/doi/abs/10.1142/S0129065715500422.

Lefebvre, B., Yger, P. & Marre, O., 2017. Recent progress in multi-electrode spike sorting methods.
Journal of Physiology Paris. Available at: http://dx.doi.org/10.1016/j.jphysparis.2017.02.005.

Magland, J.F. & Barnett, A.H., 2016. Unimodal clustering using isotonic regression : IOS-SPLIT. Arxiv.

Marre, O. et al., 2012. Mapping a Complete Neural Population in the Retina. Journal of Neuroscience,
32(43), pp.14859–14873. Available at:
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0723-12.2012.

Nenadic, Z. & Burdick, J.W., 2005. Spike detection using the continuous wavelet transform. Bio-
Medical Engineering, 52(1), pp.74–87.

Niediek, J. et al., 2016. Reliable analysis of single-unit recordings from the human brain under noisy
conditions: Tracking neurons over hours. PLoS ONE, 11(12), pp.1–26.

Oliynyk, A. et al., 2012. Automatic online spike sorting with singular value decomposition and fuzzy
C-mean clustering. BMC Neuroscience, 13(1), p.96.

Pachitariu, M. et al., 2016. Kilosort: realtime spike-sorting for extracellular electrophysiology with
hundreds of channels. bioRxiv, p.061481. Available at:
http://biorxiv.org/lookup/doi/10.1101/061481.

Pillow, J.W. et al., 2013. A Model-Based Spike Sorting Algorithm for Removing Correlation Artifacts in
Multi-Neuron Recordings. PLoS ONE, 8(5), p.e62123. Available at:
http://dx.plos.org/10.1371/journal.pone.0062123.

Pouzat, C., Mazor, O. & Laurent, G., 2002. Using noise signature to optimize spike-sorting and to assess
neuronal classification quality. Journal of Neuroscience Methods, 122(1), pp.43–57.

Quiroga, R.Q., Nadasdy, Z. & Ben-Shaul, Y., 2004. Unsupervised spike detection and sorting with
wavelets and superparamagnetic clustering. Neural computation, 16(8), pp.1661–1687.

Rey, H.G., Pedreira, C. & Quiroga, R.Q., 2015. Past, present and future of spike sorting techniques.
Brain Research Bulletin, pp.1–12. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0361923015000684.

Rossant, C. et al., 2016. Spike sorting for large, dense electrode arrays. Nature neuroscience, 19(4),
pp.634–641. Available at:
http://biorxiv.org/content/early/2015/02/16/015198%5Cnhttp://biorxiv.org/content/early/201
5/02/16/015198.full.pdf.

Rutishauser, U., Schuman, E.M. & Mamelak, A.N., 2006. Online detection and sorting of extracellularly
recorded action potentials in human medial temporal lobe recordings, in vivo. Journal of
Neuroscience Methods, 154(1–2), pp.204–224.

Shan, K., 2014. EM for a mixture of drifting t-distributions. , pp.1–7.

Shan, K.Q., Lubenov, E. V. & Siapas, A.G., 2017. Model-based spike sorting with a mixture of drifting
t-distributions. Journal of Neuroscience Methods, 288, pp.82–98.

Shoham, S., Fellows, M.R. & Normann, R. a., 2003. Robust, automatic spike sorting using mixtures of
multivariate t-distributions. Journal of Neuroscience Methods, 127(2), pp.111–122.

Spacek, M., Blanche, T. & Swindale, N., 2009. Python for large-scale electrophysiology. , 2(January),
pp.1–10.

Swindale, N. V & Spacek, M.A., 2014. Spike sorting for polytrodes : a divide and conquer approach. ,

39

8(February), pp.1–21.

Takekawa, T., Isomura, Y. & Fukai, T., 2010. Accurate spike sorting for multi-unit recordings. European
Journal of Neuroscience, 31(2), pp.263–272.

Takekawa, T., Isomura, Y. & Fukai, T., 2012. Spike sorting of heterogeneous neuron types by
multimodality-weighted PCA and explicit robust variational Bayes. Frontiers in Neuroinformatics,
6(March), pp.1–13. Available at:
http://journal.frontiersin.org/article/10.3389/fninf.2012.00005/abstract.

Yger, P., Spampinato, G.L.B. & Esposito, E., 2016. Fast and accurate spike sorting in vitro and in vivo
for up to thousands of electrodes. bioRxiv, pp.1–21.

Zhang, B. et al., 2015. A neuromorphic neural spike clustering processor for deep-brain sensing and
stimulation systems. In 2015 IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED). IEEE, pp. 91–97. Available at: http://ieeexplore.ieee.org/document/7273496/.

40

III. ARTIFICIAL STDP SPIKING NEURAL NETWORKS STATE OF THE ART

The most known type of artificial neural networks are formal neural networks, which are very popular

in artificial intelligence. STDP networks differ from this type of neural networks on two main points.

First, STDP networks are spiking neural networks (SNN). They are constituted of neurons emitting

spikes, which are discrete events characterized by their time of emission, whereas formal neurons

output a real value with no temporal information. In SNNs, information is thus conveyed through

sequences of spikes, also called spike trains. Second, formal neural networks are usually trained to

perform a task through a global supervised or reinforcement algorithm, optimizing the weights of the

synapses connecting the neurons. STDP networks implement a spike-timing-dependent plasticity

(STDP), which is a local learning rule, inspired from biological synapses (Bi & Poo 1998), which modifies

a synapse weight depending on the time difference between spikes emitted by the presynaptic and

the postsynaptic neurons. From these two points of view, STDP networks are thus closer to biological

reality than formal neural networks. For this reason, they are often used to investigate how

information is processed in the brain either in an effort to reproduce a specific neural function, or to

study their computational properties. They also have been used to solve concrete pattern recognition

problems in different application fields. In this section we will review different ways of encoding

information in spiking neural network, neuron models and synaptic plasticity models and their

properties, some important network properties and some existing applications of STDP networks to

pattern recognition tasks.

 Neural code: how to encode information in a neural network

Understanding how the information in encoded in the brain is a fundamental question in neuroscience,

for which there is, at the moment, no clear answer. Through time, many possible coding schemes have

been proposed. When designing an artificial neural network, whether to test a model or for a

computational application, the choice of how the information is encoded is crucial as it deeply impacts

the network mechanics.

1. Rate coding and its limitations

Historically, the most widely used neural code is rate coding. The idea of rate coding is that the

information is contained in the firing rate of each neuron and not in the precise spike times. When

dealing with spiking neurons, their firing rates can be computed by averaging the number of spikes

emitted within a short time period. Other possibilities are to average the firing rate over a population

of neurons, which requires an entire population to code for the same variable, or to average over

several runs of an experiment. The advantage of rate coding is that the firing rate takes continuous

values, varying continuously in time and therefore is easy to manipulate. An illustrative example is the

population vector, which can be used to represent the direction of movement encoded by an ensemble

of cortical motor neurons (Georgopoulos et al. 1986; Schwartz 1994). This gave birth to the second

generation of artificial neural networks. In contrast with the first generation where the neurons’

outputs are binary, here the neurons’ outputs are real values, obtained through an activation function

41

of the weighted sum of their inputs. This kind of neural network has the strong advantage that they

can be trained for a specific task using a backpropagation algorithm (Rumelhart et al. 1986).

The efficiency of the backpropagation algorithm explains its popularity in artificial intelligence

applications, however it is not biologically realistic and cannot explain learning in the brain. A strong

argument supporting the fact that the firing rate cannot be the only way the information is encoded

in the nervous system is that the speed at which some tasks are executed is incompatible with the time

necessary to estimate a firing rate (Gerstner et al. 1993; Thorpe & Gautrais 1997; Johansson & Birznieks

2004; VanRullen et al. 2005). For example a visual task takes about 150ms to complete whereas, it

would take about 100ms at each layer to integrate a reliable firing rate (Thorpe & Gautrais 1997).

Another argument is the fact that rate coding constitutes a loss of information relatively to pulse

coding, where individual spike times are taken into account. As individual spike times carry more

information than an average firing rate, spiking networks are thus theoretically more powerful

computationally (Maass 1997a; Maass 1997b; Gerstner et al. 1993). Although the rate-coding

paradigm has shown its efficiency with formal neural networks, a pulse-coding paradigm is naturally

more relevant for spiking neural networks, and probably closer to biological reality.

2. Different forms of pulse coding

Pulse coding can be declined into different forms, depending on how the information contained in the

spike times is interpreted. A first important aspect is how an analog stimulus can be encoded into a

spike train. The second aspect of pulse coding is how information carried in the spike train is used by

the network.

A first method to encode an analog stimulus into spikes is the latency code (Vanrullen & Thorpe 2002;

Masquelier & Thorpe 2007; Thorpe & Gautrais 1997). The principle of latency coding is an intensity-

latency conversion, which means that the latency of the first spike emitted by a neuron relatively to

the onset of the stimulus depends on the intensity of the stimulus (see Figure III-1). This is quite natural

when using integrate-and-fire neurons as neurons integrating stronger stimulus fire first. (Johansson

& Birznieks 2004) show experimental evidence that this kind of code is actually found in sensory

neurons. Latency coding requires a reference time, from which the latency is computed. It has been

proposed that one possible reference signal could be the oscillatory brain activity, thus constituting a

variation of latency coding called phase coding (Hopfield 1995; McLelland & Paulsen 2009; Masquelier

2014). It is indeed possible, by using a LIF neuron and an oscillatory signal to convert an analog stimulus

or a rate code into a phase code. Again, phase coding has also been observed experimentally

(McLelland & Paulsen 2009).

42

Figure III-1: Latency coding principle. Adapted from (Thorpe & Gautrais 1997)

The second important point in neural code is how spike time information is used in the network. In

some case, the relevant information is carried by the strongest stimuli and thus by the early-arriving

spikes. This paradigm is used in (Masquelier & Thorpe 2007), where the information of the first spike

time among sets of neurons is used for image processing. More generally, network where the relevant

information is carried by the spikes’ firing order are said to use a rank-order code (Vanrullen & Thorpe

2002; Thorpe & Gautrais 1997) and are used when the earliest spikes are the most important ones.

This is emphasized in (Vanrullen & Thorpe 2002) where an image processing algorithm is modeled

using rank-order coding and where most of the original image can be reconstructed using only a small

fraction of the spikes, i.e. those emitted early after the stimulus onset. In some other cases, the exact

spike times are crucial for the network mechanics. For example, a network can use spike synchrony as

a relevant pattern, which means that several neurons coding for different variables need to fire at the

same time to trigger a spike in another neuron (Singer 1993). This is natural for Leaky-Integrate-and-

Fire (LIF) neurons that need to receive enough spikes simultaneously to fire. More generally, the

relevant information can be contained in the spike time differences between several neurons, meaning

that input neurons need to fire with precise spike time differences for the spike sequence to be

recognized. This property was termed as “polychrony” by (Izhikevich 2006). To achieve this

polychrony, a crucial element is the transmission delay between neurons, which makes it possible for

spikes emitted by different neurons at different times to arrive simultaneously on the same readout

neuron, as illustrated in Figure III-2 (Gerstner et al. 1993; Hopfield 1995; Izhikevich 2006).

Figure III-2: Illustration of polychrony. Adapted from (Izhikevich 2006). (a) Synaptic connections with different

transmission delays. (b) Synchronous firing do not elicit postsynaptic spikes. (c) Example of spike pattern triggering a

postsynaptic spike in neuron a. (d) Example of spike pattern triggering a postsynaptic spike in neuron.

43

Overall, whereas the rate code is simple to use due to its analog nature, pulse codes are more difficult

to manipulate and require to make choices on how the time information is used but can lead to

possibly more powerful computational properties.

 Neuron models and their properties

Neurons are one of the two key elements, with synapses, of an artificial neural network. In spiking

neural network, they obey to a temporal dynamic which can be inspired from what happens with real

neural cells in the brain.

Several types of neurons exist in the brain and they exhibit different behaviors. (Hodgkin 1948) studied

the response of axons to stimuli and established a behavioral classification: class 1 axons, which have

a wide range of spiking frequency response depending on the stimulus strength, and class 2 axons,

whose frequency response is relatively insensitive to the stimulus strength. Since then, the behavioral

classification of neurons hasbeen refined, the most known classes of neurons being the regular spiking

neurons (RS), the intrinsically bursting neurons (IB), the fast spiking neurons (FS) and the low-threshold

spiking neurons (LTS) (Connors & Gutnick 1990; Gibson et al. 1999; Izhikevich 2003; Pospischil et al.

2008). The behavior of a neuron is determined by its response to different kinds of stimuli. (Izhikevich

2004) gives a good review of the different possible responses to different stimuli. In particular, the

response can be:

 tonic spiking or bursting when the neuron fires or bursts continuously when stimulated (Figure

III-3.a and b);

 phasic spiking or bursting when the neuron fires or bursts only once at the beginning of the

stimulation (Figure III-3.c and d);

 frequency adaptation when the neuron adapts to the stimulus by decreasing its firing

frequency during a maintained stimulus (Figure III-3.e);

 accommodation when the neuron is not sensitive to slowly increasing stimulus but only sharp

ramps (Figure III-3.f);

 rebound spike or burst when the neuron can fire or burst after an inhibitory stimulus (Figure

III-3.g and h);

 threshold variability when the neuron’s threshold can vary depending on its previous activity

(Figure III-3.i).

44

Figure III-3: Different neuronal response to different stimuli. Adapted from (Izhikevich 2004)

When designing an artificial spiking neural network, one needs to find a neuron model able to

reproduce the desired behavior. A very biologically realistic model was established by (Hodgkin &

Huxley 1952), which modeled precisely all the ionic currents within an axon during the generation of

an action potential. This model is highly configurable and can reproduce any kind of observed

behavior. However its complexity makes it difficult to use and computationally demanding.

Depending on the goal to achieve, a neuron model does not necessarily need to be highly biologically

meaningful, but to reproduce efficiently some neural behavior. Neuron models can be divided into

several main types. First, models that, like the Hodgkin-Huxley model, reproduce precisely the

neuron’s membrane potential dynamics, including the action potential dynamic. Some of these

models are biologically meaningful, such as (Morris & Lecar 1981), while others focus on reproducing

efficiently the neuron dynamic (FitzHugh 1961; Rose & Hindmarsh 1989; Nanami & Kohno 2016).

Second, models that describe the subthreshold potential dynamics but handle spikes as discrete events

occurring when the neuron potential reaches its threshold. These models, sometimes called integrate-

and-fire models, have the advantage to greatly reduce the computational cost, as the rapid dynamic

of an action potential does not need to be computed (Izhikevich 2004). The most widely used neuron

model of this type is the Leaky-Integrate-and-Fire (LIF) model, whose potential evolution is simply

described by the following equation:𝜏 𝑑𝑢 𝑑𝑡⁄ = −𝑢(𝑡) + 𝑅𝐼(𝑡). The evolution of the potential u

combines a leak with a time constant τ and an integration of the input current I. When the potential

u reaches a fixed threshold level, a spike is emitted and the potential is reset to a predefined value.

Many variations of this model have been developed, with more variables to induce interesting firing

properties (Smith et al. 2000; Izhikevich 2001; Brette & Gerstner 2005). An noticeable model of this

type was developed by Izhikevich (Izhikevich 2003), which, in spite of its simplicity, is able to mimic

many different neuronal behaviors. Another type of model that process spikes as discrete events is

the Spike Response Model (SRM). The SRM expresses the potential of the neuron as a function of time

that depends on the previously received and emitted spikes. The spike times are still defined as the

times when the potential reaches a threshold.

Many different neural behaviors and many different neuron models exist. Choosing a model depends

on which behavior needs to be reproduced with which degree of accuracy and with which efficiency.

45

 Synaptic plasticity

The ability of neural networks to learn is due to their synaptic plasticity, in other word, the ability of

synapses to change their weight. Indeed, in a spiking neural network, synapses transmit spikes from a

presynaptic neuron to a postsynaptic neuron, and the weight of a synapse affects its ability to influence

its postsynaptic neuron. At the network’s level, the synaptic plasticity can thus modify the network’s

response to different stimuli. According to Hebb’s postulate, the weight of a synapse evolves following

local plasticity rules depending on the activities of the post and presynaptic neurons. In most models,

these weight changes are induced by presynaptic and postsynaptic spikes, and depend on the time

difference between them. This kind of plasticity is thus called spike-timing-dependent plasticity

(STDP). The most common STDP rules induce changes triggered by pairs of pre- and postsynaptic

spikes, but changes can also happen on single spike or depending on more than two spikes. The

changes can be persistent, for long-term plasticity, or non-persistent for short term plasticity. The

following sections summarize the most common models of plasticity.

1. Long-term STDP

The most known spike-timing-dependent plasticity rule is the long-term plasticity induced by pairs of

presynaptic and postsynaptic spikes. This form of plasticity was first observed experimentally by (Bi &

Poo 1998). When presynaptic and postsynaptic spikes separated by a given time interval are

repeatedly induced, a persistent change in the strength of the synapse is observed. The amount of

change depends on the time interval separating the presynaptic spike and the postsynaptic spike,

which constitutes the core principle of pair-based STDP rules.

In the experiment from (Bi & Poo 1998), the weight change is positive when the presynaptic spike

precedes the postsynaptic spike, corresponding to a long term potentiation (LTP), and negative in the

other case, corresponding to a long term depression (LTD) (see Figure III-4). The weight change is large

when this time interval is short and tends to zero when the time interval is long. This is coherent with

Hebb’s postulate (Hebb 1949) that the connection between a cell repeatedly participating is the

activation of another cell is reinforced. In STDP cases, presynaptic spikes shortly preceding

postsynaptic spikes are likely participating in triggering the postsynaptic spike, and thus reinforce the

synapse’s weight. The dependence between the spike time interval and the weight’s change can be,

in this case, modeled as a double exponential function. Since then, other shapes for this time

dependence have been observed and used in models such as symmetric dependences or anti-hebbian

plasticity where the time dependence is reversed compared to the classical time dependence (Woodin

et al. 2003; Luz & Shamir 2012; Vogels et al. 2013; D’amour & Froemke 2015; Abbott & Nelson 2000;

Srinivasa et al. 2014) (see Figure III-5).

46

Figure III-4: Experimentally observed STDP. Adapted from (Bi & Poo 1998). The weight’s change is positive for a

presynaptic spike preceding a postsynaptic spike and negative otherwise.

Figure III-5: Different forms of STDP rules, observed experimentally (a,b,c), or used in models (d,e,f,g). Adapted from

(Vogels et al. 2013)

The weight’s change applied on a synapse can either depend or not, on the current weight of the

synapse. A common way to model a weight dependence is to make the weight depression proportional

to the current weight w, and the weight potentiation proportional to (1-w). This kind of weight

dependence is often called multiplicative STDP, in contrast to additive STDP for a synaptic plasticity

rule that does not depend on the current weight. When used in a spiking neural network,

multiplicative and additive STDP do not have the same properties (Rubin et al. 2001; Gütig et al. 2003).

Indeed, when using additive STDP, synapses converge towards either their maximum or their minimum

weights, whereas multiplicative STDP leads to continuously distributed equilibrium weights.

When dealing with realistic spike trains, more than one postsynaptic and presynaptic spikes contribute

to the synapse plasticity. A pair-based STDP model thus has to specify which spikes’ pairs have to be

taken into account. There are many possibilities such as the all-to-all pairing scheme, where all

possible combinations are taken into account, or a nearest-neighbor scheme where only neighboring

spikes are taken into account. These different pairing schemes can be implemented using local

variables (Morrison et al. 2008), which avoids having to store past spikes.

47

Experiments such as triplet and quadruplet experiments (Froemke & Dan 2002; Wang et al. 2005) or

frequency dependence experiments (Sjöström et al. 2001) show the limitation of the pair-based model

to explain synaptic plasticity when multiple spikes are involved. For example, in a triplet protocol,

three spikes are presented to the synapse, either in a pre-post-pre scheme or a post-pre-post scheme.

According to a pair-based model, the resulting weight change should be the same with both schemes,

which is not what is observed. New models have been developed to explain these experiments, such

as the suppression model (Froemke & Dan 2002), or the triplet model (Pfister & Gerstner 2006). Both

take into account previous postsynaptic and presynaptic spikes to modulate the impact of a pre-post

or post-pre pairs on the synapse weight.

2. Short-term plasticity

Long-term STDP induces persistent weight changes depending on the correlation between

postsynaptic and presynaptic activities. These change are persistent in the sense that in the absence

of activity, the synapses’ weights remain unchanged. On the contrary, short-term plasticity (STP) is a

plasticity triggered by transmission of presynaptic spikes that induces non-persistent changes, as the

synapse’s weight return to a baseline value in the absence of activity. As for long-term plasticity, short-

term plasticity has been observed on real synapses through numerous experiments (Markram et al.

1998; Zucker & Regehr 2002). Short-term plasticity may result in either a depression, when each

presynaptic spike decreases the synapse weight (Figure III-6.a), or a facilitation when each presynaptic

spike temporarily increases the synapse’s weight (Figure III-6.b). These phenomena can be explained

by the fact that the transmission of spikes through a synapse depends on some resources, whose

quantity is modified at each spike transmission. This idea of resource dependence has been used to

developed models of short-term plasticity, which are able to reproduce both facilitation and

depression (Abbott et al. 1997; Tsodyks et al. 2000). As changes induced by short-term plasticity only

take effect during a short period and rapidly fade with time, it cannot be considered as directly

participating in learning a task. However it has interesting properties that contribute to the network’s

efficiency. Indeed, short-term plasticity is able to regulate the postsynaptic potential induced by input

spikes, which leads to a better discrimination of changes in the input spike train (Abbott et al. 1997).

Figure III-6: STP observed experimentally. Adapted from (Markram et al. 1998). (a) Example of short term depression. (b)

Example of short term facilitation. Bottom traces show the presynaptic spikes, top traces show the postsynaptic potential.

48

3. Homeostasis and metaplasticity

To be computationally relevant, the learning process in a neural network should both be stable, which

means synapses’ weights and neurons’ activity should not diverge nor become totally null, and induce

some selectivity, which means that depending on the input activity and the network structure, some

synapses are potentiated whereas others are depreciated in order to have specific responses to

different stimuli. Most STDP rules constitute a positive reinforcement, as synapses that contribute to

make a postsynaptic neuron fire are potentiated. This process can thus be unstable if not correctly

tuned. A standard way to obtain a stable network is to choose an STDP rule that induce more LTD than

LTP in the absence of correlation (Masquelier et al. 2008; Humble et al. 2012; Srinivasa et al. 2014).

Some other STDP rules can inherently be stable yet lack the competitive property. This is the case for

example of multiplicative STDP for which the synapses’ weights naturally converge but in a unimodal

distribution (Rubin et al. 2001; Gütig et al. 2003). More generally, obtaining a compromise between

the stability and the competition requires a fine tuning of the learning rules (Yger & Gilson 2015; Babadi

& Abbott 2016; Gütig et al. 2003).

Therefore, it can be interesting, both for obtaining realistic models or for computational properties, to

introduce complementary plasticity rules regulating the STDP rule. These kinds of rules are known as

homeostatic mechanisms, as they allow to obtain homeostasis, i.e. stability of the network firing rates

through learning. Whereas STDP rules are homosynaptic, depending on the pre- and postsynaptic

activities on a given synapse, homeostatic mechanisms can be heterosynaptic, as changes on one

synapse can influence neighboring synapses. They also act at a longer time scale than the STDP rule

they regulate (Zenke et al. 2013; Yger & Gilson 2015). There is some evidence that plasticity acting at

different timescales and on more than single synapses actually takes place in the brain, though such

plasticity can take many different forms, whether modifying directly the synapse weight, or modifying

the neuron excitability or modulating STDP rules (Abbott & Nelson 2000). They can also have different

purposes such as stabilizing the neuronal activity, but also improving the selectivity or allowing

reinforcement learning.

Homeostatic mechanisms acting directly on the synapse weight are also known as synaptic scaling.

The principle of synaptic scaling is to limit or to impose the total weight of synapses arriving on the

same postsynaptic neuron, thus stabilizing learning by preventing the total weight to grow up

indefinitely and encouraging selectivity by preventing all synapses from fading. Models implementing

a synaptic scaling often simply renormalize the synaptic weight at each weight change (Malsburg 1973;

Lazar 2009; Aswolinskiy & Pipa 2015; Humble et al. 2012). Homeostatic mechanisms can also modify

the neuron’s excitability, a process sometimes called intrinsic plasticity. (Zhang & Linden 2003) suggest

that intrinsic plasticity plays an important role in the brain. Its main function is to regulate the activity

of individual neurons. In models such as (Lazar 2009; Aswolinskiy & Pipa 2015), the intrinsic plasticity

adjusts the neuron’s threshold depending on its activity so it reaches a mean firing rate target. Finally,

some regulation mechanism modulates the STPD rule itself. This kind of plasticity is called

metaplasticity. One of the first model of metaplasticity was developed in (Bienenstock et al. 1982) to

explain the development of neuronal selectivity. It involves in this case a Hebbian plasticity that

depends on the instantaneous pre- and postsynaptic activities. This plasticity is further modulated by

a moving average of the postsynaptic activity, which thus constitutes a form of metaplasticity. (Zenke

et al. 2013) used a similar mechanism on an STDP rule: the amount of depression induced by the STDP

49

rule depends on the average output activity. Another example of metaplasticity is presented in

(Hunzinger et al. 2012). In this study the amount of synaptic change depends on a resource variable

that is decreased at each synaptic change and then slowly recovers. The resource variable being shared

across synapses, this typically constitutes a heterosynaptic metaplasticity. An interesting application

of metaplasticity is to implement a reinforcement learning in an STDP network. (Izhikevich 2007) and

(Legenstein et al. 2008) both presented a model where the STDP weight change is not immediately

applied but converted into a fading eligibility trace. The model also includes a reward signal that is

increased each time a reward is received and also fades with time. The weight change is then

computed as the product of this eligibility trace with the reward signal. Following the same idea,

(Aswolinskiy & Pipa 2015) also modulate the STDP rule with a reward variable.

 Network properties

Neurons and synapses are the two elementary components of an artificial neural networks. Each of

these elements have their properties and their temporal dynamics. When combined together to form

a neural network, a new dynamic emerges, which can be complex to study. When studying networks,

two complementary approaches exist. On one hand, some studies focus on studying the network’s

neural activity with fixed synaptic connections, often chosen following a random distribution. On the

other hand, other studies focus on the evolution of synaptic weights given assumptions on the

neurons’ activity.

One type of neural networks that has been largely studied are sparsely connected recurrent networks,

possibly taking an external stochastic input, as a model of what happens in the cortex (van Vreeswijk

& Sompolinsky 1996; Amit & Brunel 1997; Brunel 2000; Ostojic 2014). It has been shown that these

networks can reach, under certain conditions, a stable state called the asynchronous state, where

neurons can be described as independent Poisson neurons, firing at a constant and homogeneous

firing rate. The sparsity of the network allows to assume that the neurons activities are independent,

as their inputs are independent from one another. Assuming that the inputs of each neuron come

from independent Poisson neurons, each emitting spikes according to a Poisson process, the total

input current follow a white Gaussian distribution. As a consequence, the neuron behaves as a Poisson

neuron whose firing rate depends on the mean and the variance of its input (Amit & Brunel 1997). This

mean-field approach allows to deduce the firing rate of the asynchronous state. An important

condition from the asynchronous state to be stable is that the excitation and the inhibition should be

correctly balanced in the network (van Vreeswijk & Sompolinsky 1996; Amit & Brunel 1997; Brunel

2000; Ostojic 2014). Indeed, at this condition, the average input of a neuron is subthreshold and its

action potentials are mainly due to fluctuations, ensuring an irregular firing. In other conditions, states

where with oscillations and synchronization between neurons can emerge (Brunel 2000). Other

studies also showed that with a strong synaptic coupling the neural activity is chaotic, with high

fluctuations of the firing rates both in time and across neurons, though the population firing rate is still

constant on average (Ostojic 2014). Overall, random networks exhibit various possible behaviors and

constitute a good basis to understand the dynamic of neural networks.

The second important aspect in neural network is synaptic learning. Learning in neural networks

modifies the structure of the network depending on sensory inputs. The most widely used method to

50

study synaptic weights evolution is to make assumptions on the firing rates and the time correlations

between and within groups of neurons. This then allows to compute the average weight change of a

particular synapse, or of groups of synapses, depending on the STDP rule used. This method can be

used to study various STDP rules’ properties, such as the weight distribution depending on the weight

dependence of the STPD rule (Rubin et al. 2001; Gütig et al. 2003), the stability and the selectivity of

different triplet rules (Babadi & Abbott 2016) or the weight evolution in a recurrent neural network

(Burkitt et al. 2007). As stated previously, balance between inhibition and excitation is important for

the stability of a network, which seems to be confirmed by experiments (Kirkwood 2015). Though this

balance can be self-maintained in a random recurrent network (van Vreeswijk & Sompolinsky 1996),

networks with a feedforward structure and a varying sensory input require a precise balance. Studies

on inhibitory STDP rules show that it is possible to obtain a precise excitatory-inhibitory balance

through learning on inhibitory synapses (Vogels et al. 2012; Luz & Shamir 2012). Beyond theoretical

results, (Srinivasa et al. 2014) showed that the use of inhibitory STDP to balance inhibition and

excitation leads to better results in a pattern recognition task.

 Applications to pattern recognition tasks

One difficulty with STDP networks is that there is no standard method to train a network to achieve a

specific task through STDP. Some studies have thus focused on learning random spike train patterns

to demonstrate STDP network learning capabilities. (Masquelier et al. 2008) demonstrated that a very

simple monolayer STDP network is able to learn, in an unsupervised manner, to recognize the

beginning of a pattern (Figure III-7). This work was extended to demonstrate its ability to discriminate

different patterns or different parts of a pattern (Masquelier et al. 2009). Following the same idea,

(Hunzinger et al. 2012) showed that a resource-dependent plasticity improves the performance of

STDP learning on a pattern recognition task. Application to more concrete pattern recognition tasks,

such as visual recognition, are also emerging. For example, (Masquelier & Thorpe 2007) used an STDP

network to recognize faces and vehicles in pictures. Their network is well structured, alternating

learning layers with shared weights and pooling layers, and used a classical classifier as a readout

function. (Brader et al. 2007) used a one-layer STDP network with a teaching signal for a digit

recognition task. (Bichler et al. 2012) also trained a network to recognize patterns in a video stream,

though the recognized patterns do not include time aspects such as movements. In this case the

network was designed to be implemented in neuromorphic devices mimicking STDP at a miniaturized

scale. Most of these applications use a feedforward structure, sometimes with only one layer.

(Srinivasa et al. 2014) used an interesting network structure, based on the idea of reservoir computing

(Figure III-8). This network is constituted of pools of recurrently connected excitatory and inhibitory

neurons, the different pools being themselves connected in a feedforward manner. This STDP network

was applied to a visual pattern recognition task, and shows that the introduction of plasticity on

inhibitory synapse improves the discrimination performances. Beyond visual recognition, (Suri et al.

2013) also show an example of application to auditory pattern recognition. At the moment, STDP

applications to real-word pattern recognition tasks are still limited, but the existing applications show

interesting learning properties such as unsupervised learning. More work needs to be done to

understand how to efficiently design an STDP network for a specific task.

51

Figure III-7: Example of spike pattern recognition by (Masquelier et al. 2008). One LIF neuron is trained to learn an arbitrary

spike pattern through STDP. (a) Illustration of the pattern to learn (in red). Between patterns (in blue), the input activity

consist in random Poisson spike trains. (b) Illustration of the neuron learning. Top: before learning the neuron fire

independently of the pattern occurrences. Bottom: After learning, the neuron fire at the beginning of the pattern (pattern

occurrence are shown in grey).

Figure III-8 : Example of visual pattern recognition by (Srinivasa et al. 2014). (a) Structure of the network. (b) Patterns to

learn. (c) Weights learnt by the reservoir excitatory neurons (Layer 2).

52

References

Abbott, L.F. et al., 1997. Synaptic Depression and Cortical Gain Control. Science, 275, pp.220–223.

Abbott, L.F. & Nelson, S.B., 2000. Synaptic plasticity: taming the beast.

Amit, D. & Brunel, N., 1997. Model of global spontaneous activity and local structured activity during
delay periods in the cerebral cortex. Cerebral Cortex, 7(3), pp.237–252. Available at:
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/7.3.237.

Aswolinskiy, W. & Pipa, G., 2015. RM-SORN: a reward-modulated self-organizing recurrent neural
network. Frontiers in Computational Neuroscience, 9(March), pp.1–15. Available at:
http://journal.frontiersin.org/article/10.3389/fncom.2015.00036.

Babadi, B. & Abbott, L.F., 2016. Stability and Competition in Multi-spike Models of Spike-Timing
Dependent Plasticity. PLOS Computational Biology, 12(3), p.e1004750. Available at:
http://dx.plos.org/10.1371/journal.pcbi.1004750.

Bi, G.Q. & Poo, M.M., 1998. Synaptic modifications in cultured hippocampal neurons: dependence on
spike timing, synaptic strength, and postsynaptic cell type. The Journal of neuroscience : the
official journal of the Society for Neuroscience, 18(24), pp.10464–10472.

Bichler, O. et al., 2012. Extraction of temporally correlated features from dynamic vision sensors with
spike-timing-dependent plasticity. Neural Networks, 32, pp.339–348. Available at:
http://dx.doi.org/10.1016/j.neunet.2012.02.022.

Bienenstock, E.L., Cooper, L.N. & Munro, P.W., 1982. Theory for the development of neuron
selectivity: orientation specificity and binocular interaction in visual cortex. The Journal of
neuroscience : the official journal of the Society for Neuroscience, 2(1), pp.32–48.

Brader, J.M., Senn, W. & Fusi, S., 2007. Learning real-world stimuli in a neural network with spike-
driven synaptic dynamics. Neural computation, 19(11), pp.2881–2912.

Brette, R. & Gerstner, W., 2005. Adaptive Exponential Integrate-and-Fire Model as an Effective
Description of Neuronal Activity. Journal of Neurophysiology, 94, pp.3637–3642. Available at:
https://www.ncbi.nlm.nih.gov/pubmed/16014787.

Brunel, N., 2000. Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking
Neurons. Journal of Computational Neuroscience, 8, pp.183–208.

Burkitt, a. N., Gilson, M. & Van Hemmen, J.L., 2007. Spike-timing-dependent plasticity for neurons
with recurrent connections. Biological Cybernetics, 96(5), pp.533–546.

Connors, B.W. & Gutnick, M.J., 1990. Intrinsic firing patterns of diverse neocortical neurons. Trends
in Neurosciences, 13(3), pp.99–104.

D’amour, J.A. & Froemke, R.C., 2015. Inhibitory and excitatory spike-timing-dependent plasticity in
the auditory cortex. Neuron, 86(2), pp.514–528. Available at:
http://dx.doi.org/10.1016/j.neuron.2015.03.014.

FitzHugh, R., 1961. Impulses and Physiological States in Theoretical Models of Nerve Membrane.
Biophysical Journal, 1(6), pp.445–466.

Froemke, R.C. & Dan, Y., 2002. Spike-timing-dependent synaptic modification induced by natural spike
trains. Nature, 416(6879), pp.433–438.

Georgopoulos, a P., Schwartz, a B. & Kettner, R.E., 1986. Neuronal population coding of movement
direction. Science (New York, N.Y.), 233(4771), pp.1416–1419.

53

Gerstner, W., Ritz, R. & van Hemmen, J.L., 1993. Why spikes? Hebbian learning and retrieval of time-
resolved excitation patterns. Biological Cybernetics, 69(5–6), pp.503–515.

Gibson, J.R., Beierlein, M. & Connors, B.W., 1999. Two networks of electrically coupled inhibitory
neurons in neocortex. Nature, 402(6757), pp.75–79. Available at:
http://www.nature.com/articles/47035.

Gütig, R. et al., 2003. Learning input correlations through nonlinear temporally asymmetric Hebbian
plasticity. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 23(9),
pp.3697–3714. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12736341.

Hebb, D.O., 1949. The Organization of Behavior, New York: JohnWiley & Sons. Available at:
http://www.jstor.org/stable/1418888?origin=crossref.

Hodgkin, A.L., 1948. The local electric changes associated with repetitive action in a non-medullated
axon. Journal of Physiology, 107(2), pp.165–181.

Hodgkin, A.L. & Huxley, A.F., 1952. A Quantitative Description of Membrane Current and its
Application to Conduction and Excitation inNerve. Journal of Phsiology, 117, pp.500–544.

Hopfield, J.J., 1995. Pattern recognition computation using action potential timing for stimulus
representation. Nature, 376(6535), pp.33–36.

Humble, J., Denham, S. & Wennekers, T., 2012. Spatio-temporal pattern recognizers using spiking
neurons and spike-timing-dependent plasticity. Frontiers in Computational Neuroscience,
6(October), pp.1–12.

Hunzinger, J.F., Chan, V.H. & Froemke, R.C., 2012. Learning complex temporal patterns with resource-
dependent spike timing-dependent plasticity. Journal of Neurophysiology, 108(2), pp.551–566.

Izhikevich, E.M., 2006. Polychronization: computation with spikes. Neural computation, 18(2),
pp.245–82. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16378515.

Izhikevich, E.M., 2001. Resonate-and-fire neurons. Neural Networks, 14(6–7), pp.883–894.

Izhikevich, E.M., 2003. Simple model of spiking neurons. IEEE transactions on neural networks / a
publication of the IEEE Neural Networks Council, 14(6), pp.1569–72. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/18244602.

Izhikevich, E.M., 2007. Solving the distal reward problem through linkage of STDP and dopamine
signaling. Cerebral Cortex, 17(10), pp.2443–2452.

Izhikevich, E.M., 2004. Which Model to Use for Cortical Spiking Neurons. IEEE Transactions on Neural
Networks, 15(5), pp.1063–1070.

Johansson, R.S. & Birznieks, I., 2004. First spikes in ensembles of human tactile afferents code complex
spatial fingertip events. Nature Neuroscience, 7(2), pp.170–177.

Kirkwood, A., 2015. Balancing Excitation and Inhibition. Neuron, 86(2), pp.348–350. Available at:
http://dx.doi.org/10.1016/j.neuron.2015.04.009.

Lazar, A., 2009. SORN: a Self-organizing Recurrent Neural Network. Frontiers in Computational
Neuroscience, 3(October), pp.1–9. Available at:
http://journal.frontiersin.org/article/10.3389/neuro.10.023.2009/abstract.

Legenstein, R., Pecevski, D. & Maass, W., 2008. A learning theory for reward-modulated spike-timing-
dependent plasticity with application to biofeedback. PLoS Computational Biology, 4(10).

Luz, Y. & Shamir, M., 2012. Balancing feed-forward excitation and inhibition via hebbian inhibitory

54

synaptic plasticity. PLoS Computational Biology, 8(1), pp.1–12.

Maass, W., 1997a. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9), pp.1659–1671. Available at:
http://www.sciencedirect.com/science/article/pii/S0893608097000117.

Maass, W., 1997b. Noisy spiking neurons with temporal coding have more computational power than
sigmoidal neurons. Advances in Neural Information Processing Systems, 9, pp.211–217.

Malsburg, C., 1973. Self-organization of orientation sensitive cells in the striate cortex. Kybernetik,
14(2), pp.85–100. Available at: http://link.springer.com/10.1007/BF00288907.

Markram, H., Wang, Y. & Tsodyks, M., 1998. Differential signaling via the same axon of neocortical
pyramidal neurons. Proc Natl Acad Sci U S A, 95(9), p.5323–8.

Masquelier, T., 2014. Oscillations can reconcile slowly changing stimuli with short neuronal integration
and STDP timescales. Network (Bristol, England), 25(1–2), pp.85–96. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/24571100.

Masquelier, T., Guyonneau, R. & Thorpe, S.J., 2009. Competitive STDP-based spike pattern learning.
Neural computation, 21(5), pp.1259–1276.

Masquelier, T., Guyonneau, R. & Thorpe, S.J., 2008. Spike timing dependent plasticity finds the start
of repeating patterns in continuous spike trains. PLoS ONE, 3(1).

Masquelier, T. & Thorpe, S.J., 2007. Unsupervised learning of visual features through spike timing
dependent plasticity. PLoS Computational Biology, 3(2), pp.0247–0257.

McLelland, D. & Paulsen, O., 2009. Neuronal oscillations and the rate-to-phase transform: mechanism,
model and mutual information. The Journal of physiology, 587(Pt 4), pp.769–785.

Morris, C. & Lecar, H., 1981. Voltage Oscillations in the Barnacle Giant Muscle Fiber. Biophysical
Journal, 35(1), pp.193–213. Available at: http://dx.doi.org/10.1016/S0006-3495(81)84782-0.

Morrison, A., Diesmann, M. & Gerstner, W., 2008. Phenomenological models of synaptic plasticity
based on spike timing. Biological Cybernetics, 98(6), pp.459–478.

Nanami, T. & Kohno, T., 2016. An FPGA-based cortical and thalamic silicon neuronal network. , 2(4),
pp.238–242.

Ostojic, S., 2014. Two types of asynchronous activity in networks of excitatory and inhibitory spiking
neurons. Nat Neurosci, 17(4), pp.594–600. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/24561997.

Pfister, J.-P. & Gerstner, W., 2006. Triplets of Spikes in a Model of Spike Timing-Dependent Plasticity.
Journal of Neuroscience, 26(38), pp.9673–9682. Available at:
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1425-06.2006.

Pospischil, M. et al., 2008. Minimal Hodgkin-Huxley type models for different classes of cortical and
thalamic neurons. Biological Cybernetics, 99(4–5), pp.427–441.

Rose, R.M. & Hindmarsh, J.L., 1989. The assembly of ionic currents in a thalamic neurons: I. The three-
dimensional model. Proc. R. Soc. Lond. B, 237, pp.267–288.

Rubin, J., Lee, D.D. & Sompolinsky, H., 2001. Equilibrium properties of temporally asymmetric Hebbian
plasticity. Physical Review Letters, 86(2), pp.364–367.

Rumelhart, D.E., Hinton, G.E. & Williams, R.J., 1986. Learning internal representations by error
propagation. In D. E. Rumelhart & J. L. McClelland, eds. Parallel distributed processing. pp.

55

318–362. Available at:
https://web.stanford.edu/class/psych209a/ReadingsByDate/02_06/PDPVolIChapter8.pdf.

Schwartz, a B., 1994. Direct cortical representation of drawing. Science (New York, N.Y.), 265(5171),
pp.540–542.

Singer, W., 1993. Synchronization of cortical activity and its putative role in information processing
and learning. Annual Review of Physiology, 55, pp.349–374.

Sjöström, P.J., Turrigiano, G.G. & Nelson, S.B., 2001. Rate, timing, and cooperativity jointly determine
cortical synaptic plasticity. Neuron, 32(6), pp.1149–1164.

Smith, G.D. et al., 2000. Fourier analysis of sinusoidally driven thalamocortical relay neurons and a
minimal integrate-and-fire-or-burst model. Journal of neurophysiology, 83(1), pp.588–610.
Available at: http://www.ncbi.nlm.nih.gov/pubmed/10634897.

Srinivasa, N., Cho, Y. & Hennequin, G., 2014. Unsupervised discrimination of patterns in spiking neural
networks with excitatory and inhibitory synaptic plasticity. , 8(December), pp.1–23.

Suri, M. et al., 2013. Bio-inspired stochastic computing using binary CBRAM synapses. IEEE
Transactions on Electron Devices, 60(7), pp.2402–2409.

Thorpe, S.J. & Gautrais, J., 1997. Rapid Visual Processing using Spike Asynchrony. Neural Information
Processing Systems, pp.901–907.

Tsodyks, M., Uziel, A. & Markram, H., 2000. Synchrony generation in recurrent networks with
frequency-dependent synapses. The Journal of neuroscience, 20(1), p.RC50.

VanRullen, R., Guyonneau, R. & Thorpe, S.J., 2005. Spike times make sense. Trends in Neurosciences,
28(1), pp.1–4.

Vanrullen, R. & Thorpe, S.J., 2002. Surfing a spike wave down the ventral stream. , 42, p.15. Available
at: papers2://publication/uuid/7EF9F2D6-AC27-4B0E-9D87-80DC626F55E5.

Vogels, T.P. et al., 2012. Inhibitory Plasticity Balances Excitation and Inhibition in Sensory Pathways
and Memory Networks. , (December 2011).

Vogels, T.P. et al., 2013. Inhibitory synaptic plasticity: spike timing-dependence and putative network
function. Frontiers in neural circuits, 7(July), p.119. Available at:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3714539&tool=pmcentrez&render
type=abstract.

van Vreeswijk, C. & Sompolinsky, H., 1996. Chaos in neuronal networks with balanced excitatory and
inhibitory activity. Science (New York, N.Y.), 274(5293), pp.1724–6. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/8939866.

Wang, H.X. et al., 2005. Coactivation and timing-dependent integration of synaptic potentiation and
depression. Nature Neuroscience, 8(2), pp.187–193.

Woodin, M. a., Ganguly, K. & Poo, M.M., 2003. Coincident pre- and postsynaptic activity modifies
GABAergic synapses by postsynaptic changes in Cl- transporter activity. Neuron, 39(5), pp.807–
820.

Yger, P. & Gilson, M., 2015. Models of Metaplasticity: A Review of Concepts. Frontiers in
Computational Neuroscience, 9(November), pp.1–14. Available at:
http://journal.frontiersin.org/article/10.3389/fncom.2015.00138.

Zenke, F., Hennequin, G. & Gerstner, W., 2013. Synaptic Plasticity in Neural Networks Needs
Homeostasis with a Fast Rate Detector. PLoS Computational Biology, 9(11).

56

Zhang, W. & Linden, D.J., 2003. The other side of the engram: experience-driven changes in neuronal
intrinsic excitability. Nature reviews. Neuroscience, 4(11), pp.885–900.

Zucker, R.S. & Regehr, W.G., 2002. Short-term synaptic plasticity. Annual Review of Physiology, 64(1),
pp.355–405. Available at:
http://www.annualreviews.org/doi/abs/10.1146/annurev.physiol.64.092501.114547.

57

58

IV. NETWORK MODEL

We built an STDP network for spike sorting which takes a single electrode signal as input, and outputs

a spike-train that corresponds to the sorted action potential recorded in the signal. It is organized into

layers connected in a feed-forward manner, with all-to-all connections (Figure IV-1). Each layer is

designed to achieve a specific sub-processing task. The neuron model and the synaptic plasticity are

both adjusted for each layer to obtain the desired behavior. The final version of the network consists

in three main layers: an encoding layer that encodes the input signal into spikes, an intermediate layer

that learns intermediate patterns, and an output layer that finalizes the process and fires once for each

action potential in the signal. The network also features an attention mechanism. Each part of the

network can be implemented with different solutions, and some mechanisms can be added to improve

its performance. Through this PhD work three different versions of a complete network were

implemented for processing single electrodes: MiniNet, ANNet and LTSNet, described in Section VI.

The last version, LTSNet was also adapted to multi-electrode processing, in a version called PolyNet.

Each of these versions uses different implementation solutions for each element of the network, some

because they bring an obvious improvement, others because they combine well with other choices.

Here we focus on the different possible solutions to implement each different functional elements of

the network for a single electrode case, and how the network structure can be adapted to process

multi-electrodes’ signals.

Figure IV-1: Global structure of the STDP network. The network is constituted of several layers, each having a different

functional purpose, connected in a feedforward manner. An attention mechanism is implemented through an attention

neuron. The network takes as input an electrode signal and outputs a spike train corresponding to the sorted action

potentials.

 Encoding the input signal

The STDP network takes an analog signal representing a potential varying in time as an input. It is thus

necessary to encode this input signal into a spike train for further processing by the network. This can

be interpreted as a sensory functionality, by analogy with sensory neural cells that convert light

59

intensity (in the retina) or pressure (in the skin) into spike trains for further processing by the central

nervous system. Following this analogy, a first approach to encode the signal would be to use a neuron

whose firing rate would increase with the value of the input signal, thus implementing a firing-rate

code. This would give information whether the amplitude of the input signal is high or low, however,

it would be difficult to discriminate precisely different amplitudes, as two different amplitudes would

be encoded by the same neuron, with only a quantitative difference in its firing rate. Instead, our input

layer is composed of a set of sensory neurons, each neuron being sensitive to a different range of signal

amplitudes, defined by an individually selected central value c, , and a margin DVm, common to all input

neurons. When the input signal value is within a neuron’s sensitivity range, which is to say between c-

DVm and c+DVm, the neuron fires, otherwise it remains silent. Those sensitivity ranges are regularly

spaced, partially overlapping, and their union covers the entire possible range of signal values (Figure

IV-2.a). By analogy with the visual system, this works as if the signal amplitude was an object moving

along one dimension and activating neurons depending on its position (Figure IV-2.b). An important

property of this way to encode the input signal is that the number of spikes emitted by the input layer

does not depend on the exact signal value, thus all signal values generate the same excitation level on

the next layer.

In our case, the input signal is a sampled signal. Thus, a natural way to implement the sensory neurons

is to compute their activation at regular time step, each time a new sample arrives (Figure IV-2.c). At

each sampling step, each sensory neuron either fires once if the signal sample is within its sensitivity

range or remains silent (Figure IV-2.d, left). Another possibility is that each neuron emits several spikes

at each sampling step, depending on how close the signal value is from the sensitivity range center.

For example, the number of spikes emitted can be maximum when the signal value equals the

sensitivity range center, and then decreases linearly until the signal value reaches the limits of the

sensitivity range, for which no spike is emitted (Figure IV-2.d, right). These two ways of encoding the

signal, which we call later binary encoding and triangular encoding, have different properties that are

studied in Section IV.B. In our different network implementations, only the binary encoding method

has been tested, for its simplicity.

The sampling frequency used for encoding is an important parameter for the spike-sorting

performance of the network. Indeed, to ensure that the next layers will properly learn the spike

pattern generated by the input layer, it is necessary that for two different occurrences of the same

waveform, some common sensory neurons get activated, regardless of the noise and sampling time

jitter. A good criterion is to choose the sampling step short enough so that, even for the fastest

variations of the signal, two consecutive samples always activate some common neurons. In practice

and on the different recordings we testes, we found that an 80-kHz sampling frequency was a good

compromise, between sufficient information and too much data generated. This was thus the value

used in all our implementations, expect for the first one (MiniNet) where it was only 20 kHz.

To discriminate between different action potentials in the signal, we need to take into account not

only the amplitudes of an action potential but its entire waveform, in other words the signal amplitude

variations in time. Thus the input layer should give information about the value of the signal at different

time points. To do so, we introduce synapses with different transmission delays stemming from each

sensory neuron, as previously done for example in (Gerstner et al. 1993), (Hopfield 1995) or (Ghosh-

Dastidar & Adeli 2007). From the point of view of the layers that receive the input layer spike train

through these synapses, this looks like the original set of sensory neurons is duplicated into several

60

sets of neurons acting alike yet with different delays. Each of the delayed set of sensory neurons

encodes the signal value with a given delay from current time (Figure IV-2.e). The idea is that the

plasticity rules will then potentiate some of these delayed synapses and depreciate others, as this is

believed to happen during the development of the barn owl auditory system (Gerstner et al. 1996).

The difference between two delayed synapses and the number of delays determine the time resolution

of the encoded signal and the size of the encoded signal time window at each sampling step. The

number of delays is a compromise between the number of synapses and the discriminative power of

the input spike patterns. Noticeably, if the encoded time window becomes too large (typically larger

than an action potential), it loses its discriminative power as the signal value outside the action

potential is within the noise range and thus close to zero and non-discriminative. In practice we found

that a 0.05-ms time resolution was enough, and we chose a time window of 0.5 ms (thus 10 different

delays), which is usually shorter than one action potential.

Figure IV-2: Input layer implementation. (a) Sensitivity range for each input neuron. The sensitivity ranges overlap and

cover all possible signal values. (b) Activation of each encoding neuron for a given signal value. Activated neurons are

represented in red. (c) Activation of one encoding neuron thorough time. The neuron fires at regular time steps when the

signal is within its sensitivity range. (d) Different activation functions: binary (left) and triangular (right). With the binary

activation, encoding neurons fire one spike at each time step if the signal value is within their sensitivity range. With the

triangular activation, encoding neurons can fire several spikes depending on the position of the signal value within their

sensitivity range. (e) Several signal values, corresponding to different delays, are encoded at each time step.

61

 Attention mechanism

The input signal the network has to process fluctuates around zero most of the time, as the action

potentials occur sparsely. At some point in the process it is thus necessary to discriminate the parts of

the signal corresponding to an action potential from the rest of the signal. Indeed, by the way the

signal is encoded, there is no intrinsic difference between parts of the signal containing an action

potential and parts containing only noise, and both can be recognized as patterns. As this is well

described in (Masquelier et al. 2008), when a neuron learns a pattern through an STDP rule, the neuron

tends to fire earlier each time the pattern is presented. In this study, this process naturally stops when

the neuron reaches the beginning of the pattern, as the spike train before the pattern is random and

cannot be learnt. In our case, a neuron learning an action potential waveform would each time

recognize earlier parts of the waveform and would end up recognizing the null pattern between action

potentials. Even though once some neurons have learned the null part of the signal, they could prevent

other neuron from firing when the signal is null, we found better for a more stable learning that an

attention mechanism detecting the action potentials intervene at an early stage of the process, just

after the input layer, preventing the null parts of the signal to be learnt. This attention mechanism

was implemented using a short-term plasticity. In the first versions of the network this short-term

plasticity was applied directly on the synapses between the input and the intermediate layer, but we

later introduced an attention neuron whose role was to specifically detect where action potentials

occurred in the signal.

1. Short-term plasticity

We implemented an attention mechanism thanks to a short-term plasticity (STP) rule. Indeed STP, and

more precisely short-term depression, has the property to weaken the weights of the synapses for

which a presynaptic spike occurs at high frequency (Abbott et al. 1997), as this is the case for sensory

neuron coding for near-zero values. As a result, the postsynaptic neuron will be less excited when the

input signal is within the noise range. In our implementation the short-term plasticity rule is governed

by the following equation:

𝑑𝑤

𝑑𝑡
=

1

𝜏𝑠𝑡𝑝
(1 − 𝑤) − ∑ 𝑤 ∗ 𝑓𝑑 ∗ 𝛿(𝑡 − 𝑡𝑠)𝑠 ,

where w is the synaptic weight, τstp the STP recovery time constant, fd the STP depression factor and ts

the presynaptic spike times. We chose τstp one order higher than the typical duration of an action

potential so that the synaptic weight did not change significantly during an action potential. Given this

equation we can compute the equilibrium weight for a presynaptic neuron firing at regular pace, with

a frequency f. When such a synapse, with a weight weq, fires, its weight becomes (1-fd)weq. After a

time interval 1/f, its weight should return to weq through the exponential recovery before firing again.

This can be expressed as (1 − 𝑤𝑒𝑞) = 𝑒𝑥𝑝(−1 𝑓 ∗ 𝜏𝑠𝑡𝑝⁄)(1 − (1 − 𝑓𝑑)𝑤𝑒𝑞). Thus, the equilibrium

weight is given by:

62

𝑤𝑒𝑞 =

1 − exp(−
1

𝑓 ∗ 𝜏𝑠𝑡𝑝
)

1 − (1 − 𝑓𝑑)exp(−
1

𝑓 ∗ 𝜏𝑠𝑡𝑝
)

As expected, weq is close to 1 when f is close to zero, and decreases when f increases. With the

hypothesis that the input signal follows a Gaussian noise distribution, we can deduce the mean firing

rate of each sensory neuron and thus approximate its weight. Thanks to this relation, we can choose

a minimum weight Wmin, obtained for a neuron firing at each sampling step and adjust fd in

consequence. Knowing these equilibrium weights, we can then compute the excitatory postsynaptic

potential (EPSP) generated by each possible input signal value, which is the sum of the weighted spikes

received by the postsynaptic neuron. We computed this approximation numerically and compared it

to simulation results, as shown in Figure IV-3. We also observed the effects on the EPSP of the choices

of both DVm and Wmin values (Figure IV-4). Input values close to zero generate a weak excitation

whereas when the input value moves away from zero the postsynaptic excitation increases, which is

the desired effect.

Figure IV-3: Modeled and simulated EPSP for each input value. Model is shown in red, values obtained in simulation, with

a normal Gaussian noise as input signal, are shown in blue. This was obtained for DVm=1.75 and Wmin=0.13 and with a

binary encoding

63

Figure IV-4: Effect of DVm and Wmin on the input value-EPSP relation, for a binary encoding.

2. Attention neuron

In the first version of the network the short-term plasticity was applied on the synapses connecting

the input layer to the intermediate layer, in combination with the STDP rule. However, this method

has the default to make low-amplitude waveforms difficult to recognize, as their low STP weights tends

to shrink the receptive field size of the intermediate neurons learning it (see Section IV.C.3). A better

idea is to implement an attention neuron, connected to the input layer through STP synapses, whose

role is to specifically detect any action potential present in the input signal. When an action potential

is present in the signal, this neuron fires continuously from the beginning to the end of the action

potential. When no action potential occurs, it remains silent (Figure IV-5). Its spikes can then be used

by the rest of the network as a signal that an action potential is present in the signal.

The attention neuron was implemented as a LIF neuron model. Its potential evolves dynamically

according to the following equation:

𝑑𝑉

𝑑𝑡
= −

1

𝜏𝑚
∗ 𝑉(𝑡) + ∑ ∑ 𝑤𝑖(𝑡𝑖,𝑠)𝛿(𝑡 − 𝑡𝑖,𝑠)𝑠𝑖 ,

where V is the neuron potential, τm is the membrane time constant, i indexes the incoming synapses,

s indexes the spikes transmitted by the synapse, wi is the synapse’s weight and ti,s the spike’s time.

Additionally, the neuron fires when the potential V reaches its threshold. In this case, the potential is

not reset so that the potential value only depends on the input signal and not on the attention neuron’s

activity. As the EPSP received by the attention neuron increases when values outside the noise range

occur within the signal, the attention neuron’s potential also increases. By setting correctly its

threshold, the attention neuron can thus detect action potentials (Figure IV-6).

The important information for the attention mechanism is the amplitude of the signal and not its exact

shape. Thus, at first sight, it is not necessary to have different delays to connect the attention neuron

to the input layer, as introduced in Section IV.A. Though the exact shape of the signal is not important,

action potentials have the property of bringing the signal outside the noise range for a relatively long

time. To take advantage of this, for a better detection, one possibility is to set the membrane’s time

constant to a value similar to the duration of an action potential, so that the neuron’s potential

depends on the input values in a time window corresponding to an action potential duration. The

other possibility is to use the delayed synapses from the input layer. In this case, the potential is

64

already summed over such a time window, so a short membrane time constant insufficient. In practice,

the later method proved to give better results.

The choice of the attention neuron’s threshold is crucial, as it will determine the false positive and false

negative rates. Our first idea was to fix a false positive rate, and to set the threshold to reach this goal.

However it is difficult to precisely approximate the potential’s distribution of the attention neuron for

a noisy signal, especially for the tail of the distribution, which is key for having a low false positive rate.

Only long simulations could help choosing the threshold with this criterion. However our goal is to

have a network versatile for any situation, thus we would like to have a simpler criterion that allows

to set the threshold easily. As an alternative idea, we define a stereotypic waveform with a minimum

amplitude and duration, which would be the minimum waveform the attention neuron can detect. For

simplicity this waveform has a square shape, which makes it easy to compute an approximation of the

maximum potential reached by the attention neuron when encountering such a waveform, using the

numerical approximation of the EPSP generated by each different input signal value (see Section

IV.B.2).

In cases where a waveform has a peak followed by another peak of the opposite sign and thus crosses

zero, we were confronted to the problem that the attention neuron potential decreased under the

threshold in the middle of the action potential. Thus instead of firing continuously from the beginning

to the end of the action potential, the attention neuron stopped firing in the middle of the action

potential. To solve this problem, we implemented a hysteresis mechanism by increasing the attention

neuron’s threshold by a self-excitation value each time it fires. Thus the excitation due to the input

signal needs to go down under a value that is lower than the neuron’s threshold for it to stop firing.

Figure IV-5: Detection of an action potential by the attention neuron. Top: input signal. Bottom: attention neuron’s spike

train.

65

Figure IV-6: The attention neuron potential increases when an action potential is present in the input signal. Top: input

signal. Middle: EPSP generated by the synapses implementing an STP rule. Bottom: attention neuron’s potential. In red

are represented the attention neuron threshold, the self-excitation effect (red arrow), and the time intervals when the

neuron is firing

 Learning of waveform elements by the intermediate layer

The input layer generates a spike train representing the signal shape in a sliding time window. The

intermediate layer receives this spike train through synaptic connections. Its purpose is thus to learn

to recognize a pattern in this spike train, corresponding to parts of action potentials waveforms. To

do so, an STDP rule is used on the synapses projecting from the input layer to the intermediate layer.

Importantly, the intermediate layer is gated by an attention mechanism allowing it to fire and learn

only when an action potential is present in the signal. In the different versions of the network, this

attention mechanism was implemented either by using an STP rule on the synapses connecting the

input and the intermediate layers or using an attention neuron. When the attention mechanism is

implemented through the attention neuron, the latter projects excitatory synapses onto the

intermediate layer, thus inducing an additional excitation when the attention neuron fires, due to

presence of an action potential. In both cases, the intermediate neurons’ threshold is adjusted so that

the intermediate layer can fire only when an action potential is present in the signal.

1. LIF neuron

66

The neurons in this intermediate layer follow a LIF neuron model, which internal potential V varies

according to the following equation:

𝑑𝑉

𝑑𝑡
= −

1

𝜏𝑚
∗ 𝑉(𝑡) + ∑ ∑ 𝑤𝑖(𝑡𝑖,𝑠)𝛿(𝑡 − 𝑡𝑖,𝑠)𝑠𝑖 ,

where τm is the membrane time constant, i indexes the incoming synapses, s indexes the spikes

transmitted by the synapse, wi is the synapse weight and ti,s the spike times. Additionally when the

potential reaches the neuron’s threshold, it fires and its potential is reset to zero. Each time an

intermediate neuron receives a spike from the input layer, its potential is increased proportionally to

the corresponding synapse’s weight. When no spike is received, the potential returns back to zero,

with an exponential decay corresponding to the membrane time constant τm. Thus if the neuron

receives enough spikes in a short time compared to τm, its potential increases enough for the neuron

to fire. This type of neuron can thus detect spike coincidence, with a time precision that corresponds

to τm. We thus set τm to be the same order of magnitude as the chosen time resolution for encoding.

In our case, the number of spikes coming from the input layer is constant, thus the difference is made

by the synapses weights, learnt with the STDP rule described in the next section. For a neuron to fire,

enough spikes coming from potentiated synapses need to arrive simultaneously. Before the learning

phase, intermediate neurons need to fire to begin the learning process. To do so, at start, the synapses

weight are initialized randomly, with a mean weight that is high enough to be able to generate some

spike on the intermediate layer. After the learning phase, the potentiated synapses come from

different input neurons for each different intermediate neuron, thus each intermediate neuron can

recognize a different spike pattern.

2. The STDP rule used

The principle of an STDP rule is that presynaptic spikes contributing to make the postsynaptic neuron

fire trigger a potentiation of the synapses. This type of rule was observed in the brain by (Bi & Poo

1998) (see Section III.C.1). This well-known STDP rule induces a potentiation of the synapse when a

presynaptic spikes occurs shortly before a postsynaptic spike and a depression when a presynaptic

spike occurs shortly after a postsynaptic spike. Here, we chose to use a very simple STDP rule, where

the synapse is potentiated when a presynaptic spike occurs within a given coincidence time window

before a postsynaptic spike, and is depreciated if a postsynaptic spike occurs alone (Figure IV-7.a). The

coincidence time window was chosen to match the time resolution of the input spike train, which is

about 0.05ms (see previous section). Two versions of this STDP rule were tested: an additive version

and a multiplicative version, which both have simple properties (Figure IV-7.b).

For the additive STDP, each time a postsynaptic spike occurs, the synapse’s weight is decreased by Δw-

. Additionally if this postsynaptic spike coincides with a presynaptic spike, the weight is increased by

Δw+, resulting in a total weight change of -Δw-+ Δw+. The synapse’s weight is then clipped between 0

and 1. Following this rule the mean weight variation is given by:

〈
Δ𝑤

Δ𝑡
〉 = 𝑓𝑝𝑜𝑠𝑡(𝑝𝑝𝑎𝑖𝑟∆𝑤+ − ∆𝑤−)

Where fpost is the postsynaptic neuron’s firing rate and ppair the probability that a presynaptic spike is

present in the coincidence time window before each postsynaptic spike. The synapse’s weight will

67

converge towards 1 if this mean variation is positive and towards zero otherwise. There is thus a

threshold probability plim= Δw- /Δw+, for which if ppair > plim, the synapse’s weight converges towards 1,

and if ppair < plim, the synapse’s weight converges towards 0 (Figure IV-7.b, left).

In the multiplicative case, the weight’s change depends on the synapse’s current weight. For a

postsynaptic spike alone, the synapse’s weight is increased by w*Δw-, where w is the current synapse’s

weight. For a postsynaptic spike coinciding with a presynaptic spike, the weight is increased by (1-

w)*Δw+. In this case, the mean weight variation is:

〈
Δ𝑤

Δ𝑡
〉 = 𝑓𝑝𝑜𝑠𝑡(𝑝𝑝𝑎𝑖𝑟(1 − 𝑤)∆𝑤+ − (1 − 𝑝𝑝𝑎𝑖𝑟)𝑤∆𝑤−)

The synapse’s weight is naturally bounded and the equilibrium weight, for which the mean weight

variation 〈
Δ𝑤

Δ𝑡
〉 is null, is given by:

𝑤𝑒𝑞 =
1

1 − 𝑝𝑝𝑎𝑖𝑟
𝑝𝑝𝑎𝑖𝑟

∆𝑤_
∆𝑤+

+ 1

In the case Δw-=Δw+, the equilibrium weight simply become weq=ppair (Figure IV-7.b, right).

Thus, given ppair, the equilibrium value of the synapse is known for these two STDP versions. We can

then assume that, when the equilibrium has been reached, if a neuron of the intermediate layer has

properly learnt a pattern from the input layer, it fires each time this pattern occurs and remains silent

otherwise. Thus, for a specific synapse, the value of ppair is close to the probability that the

corresponding presynaptic neuron fires when the learnt pattern occurs. The multiplicative STDP seems

to have nice properties with an equilibrium weight that is naturally bounded and can take continuous

values. However, it can happen that a postsynaptic neuron learns two different patterns

simultaneously, especially if they are partially overlapping. In this case, the weight of a synapse

activated exclusively by one of the two learnt patterns will converge towards a lower weight as the

synapse is depreciated when the other pattern occurs, and there is no simple way to force the neuron

to choose one of the two patterns. With the additive STDP, this problem can be avoided by setting plim

> 0.5. In this case, simultaneous learning cannot happen because for at least one of the two learnt

patterns the corresponding synapses’ weights would converge towards zero. For this reasons for the

rest of this work we focused on the additive STDP, whose simple properties make it easy to manipulate.

Figure IV-7: STDP rule applied on the synapse connecting the input layer to the intermediate layer. (a) STDP rule. ∆t is the

interval between the presynaptic spike and the postsynaptic spike, ∆w is the weight change. (b) Example of learnt weights

for an additive STDP rule (left) and a multiplicative STDP rule (right). The two pictures represent the weight of the synapses

connecting all input neurons to one particular intermediate neuron. Black is for a weight equal to zero and white for a

weight equal to one.

68

3. Receptive field size

At the beginning of the simulation, the synaptic weights connected to the input layer are initialized

randomly. The mean weight is just high enough for neurons from the intermediate layer to fire and

thus begin to learn patterns. A neuron has learnt a pattern once the weights of the synapses projecting

on this neuron have all converged towards either one or zero. Then, for some input values the neuron

reacts by firing whereas it remains silent for other values. The values for which the neuron fires

constitute its receptive field.

The properties of the intermediate neurons’ receptive fields are important for properly configuring

this layer. They are studied in details in Annex A. Here, the input values are N-dimensional vectors

corresponding to the signal values at the N encoded delays. The receptive field of each neuron tends

to be centered on local density maxima of the possible input values, which typically corresponds to the

mean shapes of action potentials emitted by different neural cells. Indeed the possible input values

correspond to the different action potential waveforms, to which a Gaussian noise is added. We

studied the receptive field’s shape for both types of encoding methods, binary and triangular,

described in Section IV.A. In both cases the receptive field has interesting properties when choosing

Δ𝑤+ = 2Δ𝑤− for the STDP rule. In both cases, it is bounded if 𝑇ℎ > 𝐸𝑚𝑎𝑥 ∗ (𝑁 − 1), where Th is the

neuron’s threshold, N the number of different synaptic delays and Emax is the maximum possible

excitation generated by a single delay given the type of encoding. For the binary encoding method,

when this bounded condition is met, the receptive field is an L1-norm ball of diameter 2DVmN-Th,

where DVm is half the sensitivity range size. For the triangular encoding, when Th>KDVm(N-0.5) the

receptive field is an L2-norm ball of diameter √2𝐷𝑉𝑚√𝑁 −
𝑇ℎ

𝐾∗𝐷𝑉𝑚
. Figure IV-8.a illustrates the

different possible shapes taken by the receptive field.

These properties of the intermediate neuron receptive field have been confirmed by simulations

(Figure IV-8.b). These simulation results, obtained for a simple case where the input values are low-

dimensional and follows a Gaussian distribution, validate our theoretical results. They thus constitutes

a first approximation of the real receptive field shape and allows us to choose the size of the receptive

field to cover most of the occurrences of a learnt pattern, by adjusting either the size of the input

neuron’s sensitivity range or the intermediate neuron’s threshold.

69

Figure IV-8: Receptive field shape. (a) Theoretical receptive fields obtained in a 3-dimentional case. The two at the top

are obtained using the binary encoding, the two at the bottom for the triangular encoding. The two on the left are obtained

on a bounded condition, and the two on the right for an unbounded condition. (b) Receptive fields obtained on simulation

with Gaussian noise as input, in a 2-dimentional case. The two at the top are obtained using the binary encoding, the two

at the bottom for the triangular encoding. The two on the left are obtained on a bounded condition, and the two on the

right for an unbounded condition. The blues lines shows theoretical size of the receptive field, not taking into account the

unbounded parts.

A receptive field with an L2-ball shape, obtained with the triangular encoding method, suits well the

hypothesis of a white Gaussian noise. However this property is reached on conditions where the

intermediate neuron’s threshold is close to its maximum possible potential. In this condition, small

relative variations on the neuron’s potential greatly impact its behavior, which constitute a lack of

robustness, especially since the results on the receptive field size were obtained using several

approximations. Similarly, having a bounded receptive field is a nice property, but also requires a high

threshold. We thus decided to use the binary encoding method, which is simpler to implement, and

to allow an unbounded receptive field for more robustness in its size. The fact that the receptive field

is unbounded should not impact the network behavior much, assuming that an input signal value

falling in the “unbounded parts” of the receptive field has a low probability to occur. We chose to

allow 3 out of the 10 used dimensions to be unbounded thus setting the threshold to 2*7*DVm, or

more generally 2*0.7*N*DVm for N dimensions, DVm is half the sensitivity range for encoding. The

receptive field size was then adjusted using DVm to cover most of the pattern variations due to the

noise. However the receptive field should not be too big, as we do not want a receptive field to cover

two distinguishable patterns. In our different network implementations, different values of DVm where

tested, going from 1.5σnoise to 2σnoise, where σnoise is the noise standard deviation.

Our receptive field study does not take into account the time integration of the consecutive sampling

steps. To correct this, we assumed that the values received during an interval corresponding to the

membrane time constant do not change significantly and we simply multiplied the threshold as if the

same value was received at each sampling step.

70

4. Winner-Take-All property mechanism

To ensure that only one neuron in the same layer fires at a time, and consequently that each neuron

learns a different pattern, we implemented a classical winner-take-all (WTA) mechanism. Its principle

is that when a neuron fires, the other neurons from the same layer are inhibited, preventing them

from firing at the same time. Our implementation is a hard winner-take-all, in other words, at each

simulation step, if at least one neuron has a potential higher that the firing threshold, the neuron with

the maximum potential is selected, fires and inhibits the other neurons by resetting their potentials.

As a result, instead of firing at the same time, the neurons fire one after the other, separated by a time

interval that depends on their membrane time constant and the inhibition’s strength. In our

implementation, this time interval is about 0.05ms (Figure IV-9.a). The WTA mechanism ensures that

the different neuron’s receptive fields cover the possible values taken by the input without overlapping

(Figure IV-9.b).

Each time the intermediate layer emits a spike, it means that the input value is in the receptive field of

the neuron that fires. However, we have no information whether the input value is centered in the

receptive field or close to its boundary. Two input values can be very close but recognized by two

different neurons because they are from either side of a receptive field boundary. The information

given by the intermediate layer would be improved if we allowed several neurons to fire at the same

time, with partially overlapping receptive field. Then, the number of common spiking neurons for two

different input values would give information about how close to each other these two values are.

To test this idea, we implemented a 2-WTA mechanism, where we allowed 2 neurons to fire before

inhibiting all neurons in the layer. Even if the two neurons fire at the same time, they should not learn

the same thing so that their receptive fields do not completely overlap. We assume that in fact the

most excited neuron fires just before the other, and implemented a resource-based STDP inspired from

(Hunzinger et al. 2012), where synaptic changes are proportional to a global resource variable. Each

time a synaptic weight change occurs, the resource variable is decreased. The resource then

progressively comes back to its initial value following a time constant. The evolution of the resource

variable r is described by the following equation:

𝑑𝑟

𝑑𝑡
=

1

𝜏𝑟𝑒𝑠
(1 − 𝑟) −∑𝑟 ∗ 𝑓𝑟𝑒𝑠 ∗ 𝛿(𝑡 − 𝑡𝑠)

𝑠

where τres the resource recovery time constant, fres the resource consumption factor and ts the

postsynaptic spike times of the intermediate layer. In our implementation, the time constant is set

short enough so that between two firing steps of the intermediate layer, the resource completely

recovers. Then the first spike triggers a synaptic weight change that takes almost all the resources.

Thus, for an input value, two neurons fire but only the most excited learns. We showed by simulations

with a random input signal that this indeed creates overlapping receptive fields (Figure IV-10). To test

if this method actually improves the spike-sorting performance, we tested this intermediate layer

implementation on our single electrode simulated data sets (see Section V.A.1). For this purpose we

used as attention neuron’s activity the attention neuron spike trains obtained with the one of our

network implementation, ANNet. We then evaluated the intermediate layer output using the entropy

criterion and the distance criterion described in Section V.B.3. These tests showed that the 2-WTA

strategy gives better information for classification than the 1-WTA. We also tested different values for

71

DVm for the 2-WTA and 1-WTA. Indeed as receptive fields can overlap, they can be larger for the same

distance separating their center. Though the entropy criterion did not show important differences,

the distance indices show that the 2-WTA might lead to better results (Figure IV-11). Following these

tests, in the last version of the network, we also decided to choose a sensitivity range with DVm=2,

which seems to give better results (Figure IV-11).

Figure IV-9: Effect of the WTA mechanism. (a) Intermediate neurons fire one after the other and not simultaneously. Top:

input signal. Bottom: intermediate layer spike train, where the different colors stands for different neurons. (b) Receptive

field of the intermediate neuron on data containing action potentials. The encoded input values have been represented

in two dimension through a PCA. Each point represents an intermediate neuron firing. Different colors stands for different

neurons (c) Learnt weights. Each square represent the weight of synapses projecting from all input neurons to one

intermediate neuron. Black stands for 0 and white for 1.

Figure IV-10: Effect of the k-WTA mechanism on the receptive fields. (a) Receptive field obtained on simulation for a two-

dimensional case. Different colors are for different neurons (b) Outline of the receptive fields shown in (a). (c) Measure

of the common surface between two different receptive fields. Top: results for 1-WTA. Bottom: results for 2-WTA. The

2-WTA implementation shows an overlap between receptive fields.

72

Figure IV-11: Comparison of the intermediate layer output quality for different k-WTA and different DVm, on the simulated

single electrode dataset. On each graph a comparison is made between two methods. Each point represents the two

different results for one recording. A point below the diagonal means the method plotted vertical is better the one plotted

in horizontal. (a) Comparison of the entropy index between the 1-WTA and 2-WTA implementations, for different values

of DVm. (b) Comparison of the entropy index between different values of DVm, for the same k-WTA implementation. (c)

Comparison of the distance index between the 1-WTA and 2-WTA implementations, for different values of DVm. (d)

Comparison of the distance index between different values of DVm, for the same k-WTA implementation.

 Output layer

As for the intermediate layer, the goal of the output layer is to recognize pattern in the spike train

emitted by the previous layer, here the intermediate layer. It is also connected to the previous layer

through an all-to-all synaptic connection, implementing an additive STDP rule, and is composed of LIF

neurons in its first versions. For each occurrence of an action potential in the input signal, the

intermediate layer outputs a spike sequence, which characterizes the action potential waveform. As

action potentials with similar waveform recurrently occur in the signal, similar spike sequences are

emitted by the intermediate layer, constituting a pattern the output layer should learn to recognize.

The length of these spike sequences can vary depending on the amplitude and duration and the action

73

potential. In spite of these possible length variations, the output layer, which processes these spike

sequences, should emit one spike for each spike sequence received. Moreover, the output layer

should be robustly able to differentiate partially overlapping spike patterns, for example two

sequences that have the same beginning but end differently. In an extreme case a spike pattern can

contain a subsequence corresponding to another spike pattern to recognize. To achieve this goal,

several mechanisms can be used, which will be described in the next sections.

1. Intrinsic plasticity

Intrinsic plasticity (IP) is a form of plasticity at the neuron level (Zhang & Linden 2003; Lazar 2009;

Aswolinskiy & Pipa 2015). In our case, its purpose is to adapt the neurons’ threshold to the size of the

learnt pattern (e.g., length of the intermediate layer spike sequence). Indeed if the neuron‘s threshold

is too low compared to the size of the pattern it has learnt, it will not only spike for this incoming

patterns but also for shorter ones corresponding to other signal waveforms. In other words, it will be

too tolerant to pattern differences and not be able to become specific to a single pattern. Also if the

threshold is too low, the neuron might fire before the end of the intermediate spike sequence and be

unable to discriminate patterns with the same beginning but different endings. By contrast, if the

threshold is too high compared to the pattern size, it will not be able to detect the pattern. Thus, it is

crucial to adapt the threshold of each output neuron to the size of the pattern it is tuned to, especially

when this size is not the same across patterns.

To implement an IP, we considered two different mechanisms. In a first version, for each input spike

received within a given time window before the neuron’s spike, the threshold is decreased by a

constant ΔTh-, and for each input spike received within a given time window after the neuron’s spike,

the threshold is increased by a constant ΔTh+ (Figure IV-12.a). With this method, the neuron’s

threshold adjusts to fire after receiving a proportion 𝛼 = Δ𝑇ℎ+ (Δ𝑇ℎ+ + Δ𝑇ℎ−)⁄ of the learnt pattern.

This method has the strong inconvenient that it can only be used with architectures that allow the

output neurons to fire before the end of the intermediate layer spike pattern. It was thus only used in

our first network implementation MiniNet and soon replaced by the following IP mechanism. In our

second method, each time the neuron fires, its threshold Th is decreased proportionally to its value,

reaching a new value (1-FIP)Th. Moreover, for each spike received within a given time window around

the neuron’s spike, the threshold is increased by a constant ΔTh+ (Figure IV-12.b). The equilibrium is

reached when the increase and the decrease compensate each other, giving an equilibrium threshold

𝑇ℎ𝑒𝑞 = 𝑁 ∗∆𝑇ℎ
+ (1 − 𝐹𝐼𝑃)⁄ for a pattern containing on average N spikes. As a result, if the neuron

has learnt to recognize a pattern, the equilibrium threshold will be proportional to the average size of

this pattern. During our tests, we also implemented a variation of this mechanism, where the total

threshold is the sum of a fixed threshold and a variable one subject to IP. However this variation was

not used for any complete network implementation.

74

Figure IV-12: Two different implementation of the intrinsic plasticity rule. (a) Input spikes arriving before an output spike

decrease the threshold whereas input spikes arriving after an output spike increase the threshold. (b) Each output spike

decreases the threshold whereas input spikes coinciding with an output spike increase the threshold.

Is it thus possible to adapt each neuron’s threshold individually to be proportional to the learnt pattern

size. For commodity, and to be coherent with the WTA mechanism that is also applied on this output

layer and selects the neuron with the highest potential, we can consider equivalently that the neuron’s

potential is divided by its threshold and that the neuron fires when its potential reaches 1. This

threshold adaptation allows the neuron to be sensitive to the relative difference between the learnt

pattern and the presented pattern rather than the absolute difference, as its potential is normalized

by the learnt pattern size. Combining IP with synapses that can have negative as well as positive values

would in theory allow to distinguish two patterns one included into the other. Indeed, a neuron that

has learnt the large pattern will not fire for the small pattern as its threshold is high, and the neuron

that has learnt the small pattern will not spike for the large pattern as synapses with negative weight,

not present in the small learnt pattern, are activated and decrease the neuron potential.

The difficulty with this IP is how to deal with the neurons that have not yet learnt a pattern. Indeed

these neurons should be able to learn new patterns, even the shortest ones, but should not fire before

other neurons that have already learnt a pattern and might have a higher threshold. It is not possible

to reach these conditions by just setting the initial threshold appropriately, and we thus need another

mechanism to take full advantage of the IP.

2. Lateral STDP

The idea of the lateral STDP is to implement a synaptic plasticity that prevents a neuron from

recognizing a pattern when another neuron is learning this pattern. To achieve this, we took advantage

of the fact that when a neuron fires, other neurons from the same layer receive an inhibition signal.

Thus, when a neuron receives a lateral inhibition, it triggers synaptic weight changes on its incoming

synapses (Figure IV-13).

75

Figure IV-13: Lateral STDP principle. (a) Elements involved in the lateral STDP: presynaptic spikes, postsynaptic spikes and

inhibitions received by the postsynaptic neuron. (b) Weight changes induced by the lateral STDP. Left: classical STDP,

postsynaptic spikes alone depress the synapse, pre and postsynaptic spike coincidences potentiate the synapse. Right:

lateral STDP rule, presynaptic spikes alone potentiate the synapse, presynaptic spike and inhibition coincidences depress

the synapse.

For the classical STDP implemented on the same synapse, the weight convergence depends on the

probability to have a presynaptic spike when a postsynaptic spike occurs. For the lateral STDP we want

the weight convergence to depend on the probability to have an inhibition each time a presynaptic

spike occurs. Thus, each time a presynaptic spike occurs alone, the synapse weight is increased by a

constant and when the presynaptic spike is paired with an inhibition the weight is decreased by a

constant. As a result, similarly to the classical STDP, the synapse weight will converge towards 0 if the

probability to have an inhibition each time a presynaptic spike occurs is above a threshold probability

and towards 1 otherwise. This makes a neuron more likely to fire when a pattern has not been learnt

by any neuron, as no lateral inhibition occurs in this case, and less likely to fire when a pattern is learnt

by another neuron. However, when the neuron is learning a pattern, we want the synaptic weights to

converge according to the classical STDP. A simple way to ensure this when the two types of STDP are

implemented on the same synapses, is to set synaptic weight changes for the lateral STDP to be much

lower than the weight change for the classical STDP, so that the classical STDP takes over the lateral

STDP.

This lateral STDP, combined with the classical STDP, can also be combined with IP. Indeed, the neuron’s

threshold can be initialized low, so that neurons can learn new short patterns. Then, once a neuron

begins to learn a pattern, even if its threshold increases, other neurons will be less likely to fire when

the pattern is presented thanks to the lateral STDP. This solution was tested in our first

implementation of the network (MiniNet), improving the F-score from 0.81 to 0.89 on our simulated

preliminary dataset (see Section V.A.1). We also tested it on our last network implementation

(LTSNet), where it shows a systematically better result on our simulated single electrode dataset

(Figure IV-14).

76

Figure IV-14: Improvement of the performance with lateral STDP implemented on the output layer of the LTSNet network.

Each point represents the performance with and without lateral STDP for one recording from the simulated single

electrode dataset.

3. Delays and inhibition by the attention neuron

One possibility to make the output neurons wait till the end of spike sequence before firing is to inhibit

them when the attention neuron is firing. For the neurons to be able to fire after the end of the spike

sequence, they need to receive an excitation after the inhibition by the attention neuron. To do so,

we introduced delayed synapses between the intermediate layer and the output layer, the same way

there are delays between the input layer and the intermediate layer. This also has the advantage to

bring information about the spike timing inside the spike sequence. The interval between two

consecutive synaptic delays determines the time resolution for this timing information. The

membrane time constant of the output neuron is chosen of the same order as this time resolution, as

we want to detect a coincidence between spikes arriving at the same time but with different delays.

With this structure, illustrated in Figure IV-15, the output layer receives spikes during a few

milliseconds after the end of the detected action potential. Randomly initialized neurons are thus

excited during a few milliseconds. By contrast neurons that have learnt to recognize a spike

coincidence pattern are excited only when the learnt pattern occurs, that is during about 0.02ms,

which is the time resolution used in the intermediate layer. As described in (Masquelier et al. 2008),

during learning the neuron fires always earlier in the received spike sequence, until it recognizes the

beginning of the sequence. To prevent the neuron from learning what comes before the end of the

action potential, the inhibition we used from the attention neuron is a presynaptic inhibition that

prevents the spikes from arriving to the neuron (see Figure IV-15). These spikes are thus not taken

into account for the STDP rule.

77

Figure IV-15: Spike pattern received by the output layer when using a structure with transmission delays on synapses from

the intermediate layer and inhibition from the attention neuron

The neurons that have learnt a pattern are excited during a short coincidence time when this pattern

is presented whereas neurons that have not learnt anything are excited during a few milliseconds. The

neuron’s threshold can thus be initialized high, so that before learning the neuron fires late. As a

neuron begins to learn a pattern, it fires earlier in the sequence while its threshold decreases to

become proportional to the pattern size.

This structure was used in our second version of the network (ANNet), but is not totally satisfying as it

is very complex, rely on a precise timing from the attention neuron and require many synapses. The

LTS neuron model presented in the next section allowed us to replace this complex structure with a

much simpler solution.

4. LTS neurons

The structure of the output layer and its plasticity rules make it complex to implement. We thus sought

a more elegant and less power-consuming way to achieve the work performed by the output layer.

The output layer described so far was designed based on the fact that the main properties of the LIF

neuron model is to fire when it receives an excitation. However, other interesting behaviors have been

observed in the brain. For example, LTS neurons have the property to generate a potential rebound,

and even spikes if the rebound is high enough, after being inhibited (Nanami & Kohno 2016) (see Figure

IV-16). This is particularly interesting in our case, as we want neurons from the output layer to wait

the end of the pattern before firing.

78

Figure IV-16: Example of potential rebound of the DSSN neuron model, generating a spike after the end of the stimulus

Our idea to use a neuron model that has a rebound property was initiated during a collaboration with

Timothée Lévi and Takashi Kohno from the University of Tokyo. Following a 2-week stay at their

facility, focused on FPGA implementation (see Section VI.F), we tested if the properties of their neuron

model, called DSSN (Nanami & Kohno 2016), fit our problem. After adjusting the membrane time

constant to our needs, we found that, after an inhibitory stimulus, the latency of the first spike emitted

by the neuron is a decreasing function of the stimulus integral and that the number of spikes emitted

is roughly proportional to the stimulus integral (Figure IV-17.a). Assuming that the total stimulus

reflects how well the presented pattern matches the learnt pattern, this latency property is very

interesting for our problem. After adjusting the model’s parameters, we managed to obtain only one

spike for a large range of stimulus, which was the desired effect (Figure IV-17.b).

Though this model has interesting properties, simulating its equation requires a very short time step

as it models the potential spiking dynamic, which is computationally demanding. We designed a

simpler model, falling in the Integrate and Fire category, which means that even though the potential

evolution is described by a differential equation, the spikes are modeled as discrete events that occur

79

when the potential reaches a threshold. This way to model spikes also has the advantage that the

spikes can be used to reset the neuron after firing or for the WTA mechanism. Indeed, a lateral

inhibition cannot be used as WTA for this type a neuron, as inhibition can trigger spikes through a

rebound.

 In our simplified model, the neuron’s potential is governed by the following equation:

{
𝜏𝑚
𝑑𝑉

𝑑𝑡
= −𝑉 + 𝑞 + 𝑔𝐼𝑠𝑡𝑖𝑚

𝜏𝑚
휀

𝑑𝑞

𝑑𝑡
= −𝑞 + 𝑓(𝑉)

𝑤𝑖𝑡ℎ𝑓(𝑉) = {
𝛼𝑛𝑉𝑖𝑓𝑉 < 0
𝛼𝑝𝑉𝑖𝑓𝑉 ≥ 0

where V is the neuron potential, q is an adaptation variable that triggers the rebound after inhibition,

τm is the membrane time constant, ε is a constant that makes q vary slower than V, Istim is the stimulus

current that corresponds to the received spikes and g is a constant. When the potential V reaches the

neuron’s threshold, both V and q are reset. After adjusting the parameters to the values shown in

Table IV-1, we obtained similar properties as the DSSN model (Figure IV-17.c). These parameters were

used in all our tests, except for g, which plays the same role as the threshold for the LIF neuron model.

Indeed, when g=1, the parameters are adjusted so that our LTS neuron fires for a total stimulus of 1.

For the LTS neuron to fire for a threshold stimulus Qth, g is set to g=1/Qth.

80

Figure IV-17: Spiking properties of the LTS neuron after receiving a negative stimulus, with different models. (a) Original

model from (Nanami & Kohno 2016). (b) Same model with modified parameters. (c) Simplified LTS model used in our

network. Left: number of spikes emitted depending on the stimulus amplitude and duration. Middle: number of spikes

emitted depending on the total stimulus (amplitude*duration). Different colors represent different stimulus amplitudes.

Right: time of the first spike after the end of the stimulus, depending on the total stimulus (amplitude*duration). Different

colors represent different stimulus amplitudes.

Table IV-1: Parameters used for the simplified LTS model

Parameter Value

ε 0.03

αn -200

αp -10

Th 480

g 100

81

To test this neuron model independently from the rest of the network, we tested it on arbitrary

patterns. We generated different datasets each containing two different spike patterns for the output

layer to discriminate. These datasets are generated with the following process. 5000 pattern

occurrences are generated, separated by a time interval of 20ms, each pattern occurrence lasting

between 0.5 and 1ms. For each pattern occurrence, one of the two patterns is chosen randomly and

variations are randomly introduced respecting a maximum difference with the reference pattern. In

each dataset, one pattern is composed of ten spikes, mimicking 10 different afferents. The second

pattern’s size varies between 10 and 20. The two patterns share some common spikes (stemming

from the same afferents), the number of which varies from 0 to 10. Additionally, at each occurrence

of a pattern in the simulation, the presented pattern is randomly modified by adding and deleting

some spikes. These initial tests show that an output layer constituted of simplified LTS neurons can

distinguish patterns robustly (Figure IV-18.a). We also performed tests where the threshold was the

sum of a fixed threshold of 5 and a variable threshold subject to IP. The parameters are set so that the

variable threshold stabilizes to one quarter of the size of the learnt stimulus. With the IP, the output

layer is even capable of distinguishing two patterns completely included one into the other (Figure

IV-18.b). In our final single-electrode network implementation (LTSNet), we chose not to use a

threshold adaptation, as it brings no obvious performance improvement for spike-sorting.

Figure IV-18: Discrimination performance, assessed through an F-score, obtained with the LTS neuron on different

conditions. The testing dataset contains two different patterns. Between each testing dataset, the size of one of the two

patterns varies, the size of the common parts between the two patterns varies, and the maximum variation between

occurrences of the same pattern varies. (a) Results obtained without IP, (b) Results obtained with IP.

 Adaptation to polytrodes

After testing our STDP network on single electrode data, we worked on adapting the network

architecture to multiple electrodes. The principle is to take advantage of the fact that an action

potential might be recorded by several electrodes, which give additional information. First preliminary

tests where done with the real tetrode data (see Section V.A.2), which are recordings from 4 electrodes

82

close enough from each other to record the same cell. These preliminary tests, done with the ANNet

version of the network (see Section VI.B), show that adapting the structure can actually improve the

performance. We then performed extended tests on a set of simulated polytrode recordings. The

general idea to adapt the single network structure to multiple electrodes is the following. The basic

network structure is constructed by duplicating the single network structure to process each electrode

in parallel. With this basic structure, the shared information between electrodes is not used. Then, to

take advantage of the redundancy between neighboring electrodes, lateral connections between the

parallel single-electrode networks are introduced (Figure IV-19). We worked on the benefits of

adapting the architecture for two specific parts of the network: the attention neuron and the output

layer.

Figure IV-19: General principle of our adaptation of the network to the case of multiple electrodes

1. Test on attention neuron

Each electrode signal is encoded into a spike train by an independent input layers. These input layers

are projecting to several attention neurons, whose role is to detect action potentials at different

positions in the electrode array. With a purely parallel structure, each input layer projects to one

attention neuron whose role is then to detect action potentials on the corresponding electrode. We

wanted to test if connecting each attention neuron to several input layers, encoding neighboring

electrodes could improve the detection performance. To do so, we designed a network where there

is as many attention neurons as input layers, and each attention neuron is connected to three input

layers (see Figure IV-20). This network was tested on our simulated polytrode dataset (see Section

V.A.1), and run with different thresholds for the attention neuron, in order to compute a ROC score

(see Section V.B.2). The results show that the structure with lateral connections did not give better

results than the purely parallel structure (see Figure IV-21), and was thus not used in our final

implementation. However other structures could be tested, including for example inhibitory

connections.

83

Figure IV-20: Two different polytrode structures for the attention neuron. (a) Baseline purely parallel structure. (b)

Structure with lateral connections.

Figure IV-21: Comparison of the ROC scores obtained with the two different structures for the attention neuron. Each

point correspond to a recording from the simulated polytrode dataset.

2. Output layer structure

Our base structure for processing several electrodes is constituted of several parallel subnetworks,

each of them processing the signal of one electrode. As for the attention neuron, at each layer of the

network the different sublayers can be connected to several of the preceding sublayers to process

more information. We decided to adopt such a structure for the output layer rather than the

intermediate layer, as it requires fewer synapses. Ideally, the output layer should output one spike for

each recorded action potential, regardless of the electrodes on which it is recorded. Each output

sublayer implements a WTA mechanism which prevent several neurons from the same sublayer to fire

at the same time. As an action potential can be recorded on several neighboring electrode, several

output sublayers could fire for the same action potential. It is thus necessary to extend the WTA

mechanism to neighboring output sublayers. Overall, we tested different structures for the output

84

layer, combining these two aspects. First, each output sublayer is connected to either one, three or

five intermediate sublayers (see Figure IV-22.a), with a synaptic weight higher for connections

corresponding to electrodes closer to each other. Second, the WTA mechanism is either unchanged

or included lateral inhibition between three or five output layers. (see Figure IV-22.b).

Figure IV-22: Different polytrode structures tested for the output layer. (a) Different possible structures for the connection

between the intermediate and the output layer. (b) Different possible structures for the WTA mechanism. The two

structural aspects were tested with all possible combinations.

These structures were tested for the last version of our network (PolyNet), on our simulated polytrode

dataset, which simulated a recording with ten electrodes arranged in a line. Table IV-2 shows the mean

F-scores obtained. When there are less WTA connections between output sublayers than connections

between intermediate and output sublayers, the performance is degraded. This can be explained by

the fact that lateral connections between intermediate and output sublayers increase the number of

output sublayers likely to fire for one action potential. Therefore the number of connections for the

WTA mechanism needs to be adjusted to take this effect into account. Our hope was that introducing

lateral connections for both the intermediate to output layer connection and the WTA mechanism

would increase the performance. Though this is not the case, we can see on some simulated recordings

that, when no lateral connections are used an action potential can be detected by several output

sublayers (Figure IV-23.a), which lowers the final score. When using lateral connections, this effect is

reduced as each different action potential is detected mainly by one output sublayer, but the recall is

overall lower (Figure IV-23.b). In our final version, we chose to use the three to one intermediate to

output connections in combination with a five sublayer WTA mechanism, which is the structure that

give the best results apart from the one with no lateral connections. Future work should focus on

improving the structure to get a better recall.

Table IV-2: Mean F-scores obtained with the different structures tested on the simulated polytrode dataset

WTA connections 1 3 5

Intermediate to output connections

1 0.476 0.448 0.448

3 0.332 0.421 0.456

5 0.177 0.24 0.448

85

Figure IV-23: Recall of action potential from each different neural cell, on each output sublayer, on a simulated polytrode

recording with four different neural cell and an SNR of 6. (a) Results obtained with the purely parallel structure. (b) Results

obtained with a structure with a WTA connecting 5 output sublayers, and each output sublayer connected to three

intermediate sublayers.

86

References

Abbott, L.F. et al., 1997. Synaptic Depression and Cortical Gain Control. Science, 275, pp.220–223.

Aswolinskiy, W. & Pipa, G., 2015. RM-SORN: a reward-modulated self-organizing recurrent neural
network. Frontiers in Computational Neuroscience, 9(March), pp.1–15. Available at:
http://journal.frontiersin.org/article/10.3389/fncom.2015.00036.

Bi, G.Q. & Poo, M.M., 1998. Synaptic modifications in cultured hippocampal neurons: dependence on
spike timing, synaptic strength, and postsynaptic cell type. The Journal of neuroscience : the
official journal of the Society for Neuroscience, 18(24), pp.10464–10472.

Gerstner, W. et al., 1996. A neuronal learning rule for sub-millisecond temporal coding. Nature,
383(6595), pp.76–81.

Gerstner, W., Ritz, R. & van Hemmen, J.L., 1993. Why spikes? Hebbian learning and retrieval of time-
resolved excitation patterns. Biological Cybernetics, 69(5–6), pp.503–515.

Ghosh-Dastidar, S. & Adeli, H., 2007. Improved Spiking Neural Networks for EEG Classification and
Epilepsy and Seizure Detection. Integrated Computer-Aided Engineering, 14, pp.187–212.
Available at: http://iospress.metapress.com/content/LW681773V3036222.

Hopfield, J.J., 1995. Pattern recognition computation using action potential timing for stimulus
representation. Nature, 376(6535), pp.33–36.

Hunzinger, J.F., Chan, V.H. & Froemke, R.C., 2012. Learning complex temporal patterns with resource-
dependent spike timing-dependent plasticity. Journal of Neurophysiology, 108(2), pp.551–566.

Lazar, A., 2009. SORN: a Self-organizing Recurrent Neural Network. Frontiers in Computational
Neuroscience, 3(October), pp.1–9. Available at:
http://journal.frontiersin.org/article/10.3389/neuro.10.023.2009/abstract.

Masquelier, T., Guyonneau, R. & Thorpe, S.J., 2008. Spike timing dependent plasticity finds the start
of repeating patterns in continuous spike trains. PLoS ONE, 3(1).

Nanami, T. & Kohno, T., 2016. Simple cortical and thalamic neuron models for digital arithmetic circuit
implementation. Frontiers in Neuroscience, 10(MAY), pp.1–12.

Zhang, W. & Linden, D.J., 2003. The other side of the engram: experience-driven changes in neuronal
intrinsic excitability. Nature reviews. Neuroscience, 4(11), pp.885–900.

87

88

V. PERFORMANCE ASSESSMENT

 Testing datasets

1. Simulated data

To assess the spike-sorting performance of the network, we need to test it on data with known ground

truth and controlled parameters. To do so we generated simulated data, both in the case of a single

electrode and of multiple electrodes.

a) Single electrode datasets

In case of a single electrode, our method was strongly inspired from (Adamos et al. 2008). For each

simulated cell, the ground truth is generated according to a Poisson process. The action potential

shape corresponding to each simulated cell is modeled according to the following equation:

𝑉(𝑡) = 𝐴 ∗ cos (2𝜋
𝑡 − 𝑡𝑝ℎ

𝜏1
) ∗ exp(− (

2.3548𝑡

𝜏2
)
2

)

Where A, tph, τ1 and τ2 are parameters that determine the shape of the action potential for one

simulated cell. For commodity, we introduce an intermediate parameter Amax, which corresponds to

the maximum amplitude of the waveform, from which A is computed. Each time a simulated neural

cell fires, the corresponding waveform is added to the signal. A correlated Gaussian noise is also added

to the signal, generated through a dynamical Ornstein-Ulhenbeck process, following the equation

𝑑𝑋𝑡 = −𝑋𝑡𝑑𝑡 𝜏𝑛𝑜𝑖𝑠𝑒 + 𝑑𝑊𝑡⁄ , where τnoise is the time constant of the process, and Wt is a Wiener

process, which means the dWt are independent and identically distributed, following a Gaussian

distribution. For our simulations, the time constant is set to τnoise = 0.1 ms. We chose to generate all

our recordings with a sampling frequency of 20 Hz. For each simulated recording the signal-to-noise

ratio (SNR) is computed as 𝑆𝑁𝑅 = 〈|𝐴𝑚𝑎𝑥|〉/𝜎𝑛𝑜𝑖𝑠𝑒, where 〈|𝐴𝑚𝑎𝑥|〉 is the average action potential

amplitude and σnoise is the noise level.

The very first tests on our STDP network were conducted on a preliminary dataset, generated through

this method. Twenty simulated recordings were generated, lasting 200 s, each containing two

different waveforms (see Figure V-1) occurring at 10Hz and 12Hz respectively, with a noise level σnoise

of 2, leading to an SNR of 3.5. This preliminary dataset has two main drawbacks. First the noise level

does not vary between recordings, and second the chosen waveforms have a width of about 2ms,

which is quite large for an action potential and makes them easier to detect.

89

Figure V-1: The two waveforms used in the preliminary dataset

We thus generated a more extensive dataset, which then constituted our main simulated single

electrode dataset. The recordings of this dataset also lasts 200 s. They contain three different

waveforms defined by the parameters shown in Table V-1 (see also Figure V-2), occurring at 3.3Hz

each. Seven different noise levels were used, corresponding to seven different SNR (see Table V-2).

For each noise level, ten recordings were simulated, leading to a total of 70 simulated recordings, each

of 200 s duration.

Figure V-2: The three waveforms used in the simulated single electrode dataset

Table V-1: Parameters used to generate the three waveforms of the simulated single electrode dataset

 Amax τ1(ms) τ2(ms) tph

Waveform 1 5 1 0.5 0.25

Waveform 2 5 1 0.5 -0.25

Waveform 3 10 1 0.5 0.19

90

Table V-2: Noise level used and corresponding SNR for the simulated single electrode dataset

σnoise 0.5 0.75 1 1.25 1.5 1.75 2

SNR 13.33 8.89 6.67 5.33 4.44 3.81 3.33

b) Polytrode dataset

For tests with multiple electrodes, we needed to model the fact that an action potential generated by

a neural cell is recorded by nearby electrodes with an amplitude and a shape that differ depending on

the distance and the geometry of the neuron relatively to the electrode.

We thus implemented a simple model of extracellular action potentials, able to reproduce different

variations of their temporal shape depending on the electrode position. An intracellular action

potential is a positive peak of the membrane potential. This signal results from voltage-sensitive

sodium and potassium channel ion fluxes flowing through the neuron’s membrane at the initial

segment, characterized by a positive transmembrane current that first flows inward and then outward.

These active currents are compensated by capacitive and leak currents in the rest of the arborization.

Detailed models of action potentials show that this transmembrane current peak, which is strongest

in the soma, is also found in remote neuron parts, with a decreased amplitude, a larger width and a

delayed peak (Gold et al. 2006). Considering that the extracellular space is homogeneous and

conductive, the potential at one point of the extracellular space is proportional to the sum of the local

transmembrane currents divided by the distance. The difference in shape of the same action potential

recorded at different points of the extracellular space can thus be explained by the shape differences

and the delays between the transmembrane current waveform in the different parts of the neuron. In

our model the transmembrane currents follow a template waveform (Figure V-3.a) that propagates

along one segment line, representing the neuron arborization. The waveform’s amplitude decreases

linearly along this line until being null. We also ensure that at any time the sum of the currents is null

(Kirschoff’s law), by subtracting the total current sum to the local currents. The final current

waveforms obtained along the propagation segment are shown in Figure V-3.b. The potential recorded

by an electrode is modeled as the potential at one point of the extracellular space, which is the sum of

the local currents for all simulated neurons divided by the distances, to which we add some noise.

Figure V-3: Model of the transmembrane current through the neuron. (a) Template waveform used to model the

transmembrane current. (b) Transmembrane currents obtained at different points of the line representing the neuron,

after applying a propagation, an amplitude decrease, and adjusting the currents to have a null sum.

The noise we used is a Gaussian noise with spatial and temporal correlations. The spatial correlation

between two points decreases exponentially with the distance. The exponential decrease is

characterized by a constant dnoise. Thus, we computed the correlation matrix between all electrodes

and generated a spatially correlated Gaussian noise at each time step. The temporal correlation was

91

then obtained using an Ornstein-Ulhenbeck process with a time constant τnoise, as for the single

electrode simulations.

For our simulated polytrode dataset, we generated recordings lasting 100 s, sampled at 20 kHz, with a

noise level σnoise = 1. For this dataset, we chose a short spatial correlation for the noise (dnoise = 1 μm),

so that the correlation between two electrodes was negligible. The temporal noise correlation was

the same as for the single electrode simulations (τnoise = 0.1 ms). For each recording we simulated 10

electrodes, arranged along a line, and spaced by 30 μm. In the different recordings, we simulated 2, 3

or 4 neural cells, randomly positioned along a line distant of 20 μm from the electrodes’ line (Figure

V-4). For each neural cell, the segment along which the intracellular action potential propagates is

100-μm long and its direction is chosen randomly in the half-space directed towards the electrodes

(Figure V-4).

Figure V-4: Example of cells position relatively to the electrode line. The cells are placed along a line 20 µm away from the

electrode line. (a) x-z view. (b) x-y view. Units are in meters. Red circles represents the electrodes, black circle represents

the cells soma and black lines the propagation line.

The transmembrane current waveform, shown in Figure V-3, is the same for all simulated cells and

propagates at the speed of 50mm.s-1, which is quite slow but allows to see significant variations in

shape for the action potential waveforms. Given the characteristics of the simulated neural cells and

the simulated electrodes, we can compute the action potential waveform generated on each electrode

by each cell. Then for each neural cell, the waveforms’ amplitude is adjusted so that the maximum

amplitude for each cell matches the chosen SNR. We generated recordings with an SNR of 3, 4, 5 or 6.

The maximum amplitude chosen for each neural cell to obtain the different SNR are detailed in Table

V-3.

Table V-3: Amplitude of the each neural cell’s action potential for the different SNR

SNR 3 4 5 6

Number of cells 2 3 4 2 3 4 2 3 4 2 3 4

Action potential amplitude

for each neural cell

2.4 2.4 2.1 3.2 3.2 2.8 4 4 3.5 4.8 4.8 4.2

3.6 3 2.7 4.8 4 3.6 6 5 4.5 7.2 6 5.4

 3.6 3.3 4.8 4.4 6 5.5 7.2 6.6

 3.9 5.2 6.5 7.8

92

Figure V-5 shows an example of action potentials’ waveforms generated with this method. Once the

waveforms are computed, they are included in the recording following a Poisson process, with a firing

rate of 10 Hz for each simulated cell. For each different number of cells and each different SNR, we

generated 5 different recordings, each time with randomly placed neural cells, leading to a total of 60

simulated recordings, each of 100 s duration.

Figure V-5: Example of action potential waveforms obtained for each simulated electrode and each simulated neural cell

2. Real recordings

Our network was also evaluated withreal recordings from hippocampus region CA1 of anesthetized

rats, available from the Buszaki Laboratory (Henze et al. 2000; Henze et al. 2009) (datasets d533101

and d11221.002). These two recordings are tetrode recordings, associated with an intracellular

recording giving the ground truth for one neural cell (Figure V-6). The d11221.002 recording has a

sampling frequency of 20 kHz. The d533101 recording, having an original 10-kHz sampling frequency,

was up-sampled, for convenience, at 20 kHz using a Wittaker-Shannon interpolation. Before being

fed to the network, the signals were band-pass-filtered using a first-order Butterworth filter (300Hz –

3000Hz).

93

Figure V-6: Sample of the tetrode recording d533101, with the four channels of the tetrode after filtering and the ground

truth extracted from the intracellular recording.

 Performance indices

1. Spike-sorting performance

When assessing the performance of a spike-sorting algorithm, one can be confronted to three types

of errors: 1) false positive errors, when the algorithm detects an action potential where there is none,

2) false negative errors, when an action potential is not detected, and 3) clustering errors, when an

action potential is detected but classified in a wrong cluster. False positives and false negatives are

both detection errors. We thus defined several performance indices that quantify each type of error

as well as the global performance.

The ground truth and the algorithm output are respectively constituted of N and K clusters.. We

denote Hij the number of elements of true cluster i detected and classified in output cluster j, FNi the

number of elements of true cluster i not detected by the algorithm and FPj the number of elements in

output cluster j not corresponding to any true action potential. The number of elements in true cluster

i is denoted Ti, and the total number of true action potentials is denoted T. The number of elements

in output cluster j is denoted Oj, and the total number of detected action potentials (including false

positives) is denoted O.

To evaluate the detection performance of the algorithm, we take into account the total number of

false positives 𝐹𝑃 = ∑ 𝐹𝑃𝑗
𝐾
𝑗=1 , the total number of false negatives 𝐹𝑁 = ∑ 𝐹𝑁𝑖

𝑁
𝑖=1 , and the total

number of action potentials correctly detected without taking into account their classification, 𝐷 =

94

∑ ∑ 𝐻𝑖𝑗
𝐾
𝑗=1

𝑁
𝑖=1 . We can then define the precision PD, recall RD and F-score FD as performance indices

for detection:

{

 𝑃𝐷 =

𝐷

𝐷 + 𝐹𝑁
=
𝐷

𝑂

𝑅𝐷 =
𝐷

𝐷 + 𝐹𝑃
=
𝐷

𝑇

𝐹𝐷 =
2𝐷

2𝐷 + 𝐹𝑃 + 𝐹𝑁
=

2𝐷

𝑇 + 𝑂
=

2

1
𝑃𝐷
+
1
𝑅𝐷

To evaluate the clustering performance, we first need to find a correspondence between the true

clusters and the output clusters, as we do not know a priori which output cluster corresponds to which

true cluster. We define a correspondence M as a set of (i,j) pairs, where i is a truth cluster index and j

an output cluster index. To be valid, M should contain neither the same true cluster twice nor the

same output cluster twice. Given a correspondence M, the number of correctly classified elements is

𝐻𝑀 = ∑ 𝐻𝑖𝑗(𝑖,𝑗)∈𝑀 . The optimal correspondence is the one maximizing HM, computed through an

exhaustive search, and we denote 𝐻∗ = 𝑚𝑎𝑥𝑀(𝐻𝑀) the optimal number of hits. H* thus corresponds

to the number of correctly detected and correctly classified action potentials. We can then define a

clustering performance index:

𝐶 =
𝐻∗

𝐷

To evaluate the global performance of the algorithm, we combine C and FD to obtain an F-score that

takes into account all types of errors:

𝐹 =
2𝐻∗

𝑇 + 𝑂
= 𝐹𝐷 ∗ 𝐶

Given a true cluster i and an output cluster j, we can also defined the precision Pij, recall Rij and F-score

Fij for this specific pair, as follows:

{

 𝑃𝑖𝑗 =

𝐻𝑖𝑗

𝑂𝑗

𝑅𝑖𝑗 =
𝐻𝑖𝑗

𝑇𝑖

𝐹𝑖𝑗 =
2𝐻𝑖𝑗

𝑇𝑖 + 𝑂𝑗

These paired scores are used to analyze in detail how well each action potential waveform is detected

and classified. They are also used to assess the performance withthe real dataset, for which the truth

is only known for one neural cell. The scores used in this case is the paired scores obtained for this

true known cell and the best matching output neuron.

95

2. ROC curve for the attention neuron

The role of the attention neuron is to detect action potentials within the input signal. Depending on

how its threshold is chosen, the attention neuron generates more or less false positive and false

negative errors. To assess the efficiency of the attention neuron independently from the choice of its

threshold, we decided to use a variation of the Receiver Operating Characteristic (ROC) curve. Usually,

a ROC curve shows the evolutions of both the false positive rate and the true positive rate (or recall)

when the threshold evolves. In our case, we cannot compute a false positive rate since we have no

negative labels (all noisy part of the signal can be qualified as negative). Instead we used the recall

(true positives over positives) and the precision (true positives over predicted positives). The idea of

the ROC curve is the following. When the threshold is very low, the recall is 1 whereas the precision is

0. As the threshold increases, the recall decreases while the precision increases, until they reach

respectively 0 and 1. This can be represented in a curve showing the trajectory of the precision and

recall values (see Figure V-7). For perfectly separable data, there is a point for which both recall and

precision are equal to 1. In this case, the area under the ROC curve is 1. Otherwise, the recall begins

to decrease before the precision reaches 1, leading to an area under the curve lower than 1. Applied

to the attention neuron, this area under the ROC curve thus constitutes an index of the performance

on a particular recording, independently of the threshold choice. This index was used for example in

Section IV.E.2 to compare different structures for the attention neuron.

Figure V-7: Principle of the ROC curve

3. Intermediate layer quality

The output of the intermediate layer is an important intermediate result. To evaluate the quality of

the intermediate layer, we defined several indices to evaluate its output knowing the ground truth.

Each time an action potential occurs in the input signal, the intermediate layer generates a sequence

of spikes stemming from different intermediate neurons. Though the exact timing of these spikes

could be exploited to classify the spike sequence, not all versions of our output layer use this

information. Thus for the sake of simplicity, to describe the spike sequence generated for each action

96

potential occurrence, we simply count how many times each intermediate neuron fires. For each

action potential occurrence we know its label L from ground truth and the corresponding intermediate

layer output is described by a vector X of N natural integers where N is the number of intermediate

neurons and Xi is the number of spikes emitted by the ith intermediate neuron.

Our first quality index IH is based on entropy. We want to compute the entropy of the action potential

label given the intermediate layer output, which tells us how much information is missing in the

intermediate layer output to find the correct label. To do so, we computed an approximation of the

probability to have X=x, a priori or given a label, using the density of points around x. We can then

compute the conditional entropy with the following formula:

𝐻(𝐿|𝑋) =∑𝑝(𝑥)𝑝(𝑥|𝑙)log(
𝑝(𝑥)𝑝(𝑥|𝑙)

𝑝(𝑙)
)

𝑥,𝑙

We then normalize our index with respect to the entropy of the label:

𝐼𝐻 =
𝐻(𝐿|𝑋)

𝐻(𝐿)

This entropy index gives us an objective index on the intermediate layer quality in case of an ideal

classification, however it does not reflect how the output layer works. Thus we constructed a more

concrete index based on the distances between intermediate layer spike sequences. We grouped the

intermediate layer outputs, described by the same N-dimensional natural integer vector, into K

clusters Ci according to their ground truth label. We first computed the centroid of each cluster 𝑐𝑖 =

𝑚𝑒𝑎𝑛({𝑋/𝑋 ∈ 𝐶𝑖}). To estimate the size Si of each cluster i we took the 0.9 quantile of the distance

of each point of the cluster to its centroid:

𝑆𝑖 = 𝑞0.9({|𝑋 − 𝑐𝑖|/𝑋 ∈ 𝐶𝑖})

For each cluster i we also computed an inter-cluster distance Di as the minimum distance to other

clusters based on the centroids’ distance:

𝐷𝑖 = min({|𝑐𝑖 − 𝑐𝑗|/𝑗 ∈ ⟦1, 𝐾⟧, 𝑗 ≠ 𝑖})

 We then took the ratio of the median cluster size and the median inter-cluster distance as our distance

index ID.

𝐼𝐷 =
𝑚𝑒𝑑𝑖𝑎𝑛({𝑆𝑖}𝑖∈⟦1,𝐾⟧)

𝑚𝑒𝑑𝑖𝑎𝑛({𝐷𝑖}𝑖∈⟦1,𝐾⟧)

 Comparison with other spike-sorting methods

1. Tests with Osort and Wave_clus

To assess our method, we chose to test two other spike-sorting methods: Osort (Rutishauser et al.

2006) and Wave_clus (Quiroga et al. 2004). Both of these methods give the possibility to sort the data

97

automatically, without supervision. These two methods were tested on our single electrode simulated

dataset (see Section V.A.1) and the real tetrode data (see Section V.A.2).

Concerning Osort, the detection was done using the positive amplitude thresholding for the simulated

data and the negative amplitude thresholding for the real data. The extraction threshold was set to 4.

The alignment was done, using the findPeak method, on the maximum for the simulated data and on

the minimum for the real data. The sampling frequency was set to 20 000, to match the input data

sampling frequency. Other parameters were set to their default values.

Concerning Wave_clus, all the parameters were set to their default value, except for the threshold’s

type, which is set to positive for simulated data and negative for real data, and for the number of

samples stored before and after the event that are both set to 30. Wave_clus gives the option to adjust

the temperature parameter after the first clustering pass. We did not use this option and used the

automatically chosen value, as our goal is to compare fully automatic methods. Wave_clus proposes

an option to assign unsorted action potentials to found clusters. For each recording we used this

option once, after the first clustering pass.

2. Statistical tests

The single electrode simulated data and the real tetrode dataset were both used to compare different

methods, in particular to compare the STDP network to Osort and Wave_clus. For the simulated data,

several recordings with similar characteristics were generated (see Section V.A.1). Each of the

compared methods are run once on each simulated recordings. The different methods’ results on a

set of recordings with similar characteristics are then compared. For the real tetrode data (see Section

V.A.2), the STDP method was run 8 times on each channel, Wave_clus was run 8 times on each channel,

and Osort was run once on each channel as its result was deterministic. The different methods’ results

on the same recording are then compared. As the variances were significantly different for the

different groups (as assessed by a Bartlett test), a Welch test was used for 2-by-2 comparisons, except

for the comparison with Osort on the tetrode data where a one-sample t-test was used. A Bonferroni

correction was used for each set of multiple comparisons.

98

References

Adamos, D.A., Kosmidis, E.K. & Theophilidis, G., 2008. Performance evaluation of PCA-based spike
sorting algorithms. computer methods and programs in biomedicine, 91, pp.232–244.

Gold, C. et al., 2006. On the Origin of the Extracellular Action Potential Waveform: A Modeling Study.
Journal of Neurophysiology, 95(5), pp.3113–3128. Available at:
http://jn.physiology.org/cgi/doi/10.1152/jn.00979.2005.

Henze, D. et al., 2009. Simultaneous intracellular and extracellular recordings from hippocampus
region CA1 of anesthetized rats. Available at: CRCNS.org.

Henze, D.A. et al., 2000. Intracellular features predicted by extracellular recordings in the
hippocampus in vivo. Journal of neurophysiology, 84(1), pp.390–400.

Quiroga, R.Q., Nadasdy, Z. & Ben-Shaul, Y., 2004. Unsupervised spike detection and sorting with
wavelets and superparamagnetic clustering. Neural computation, 16(8), pp.1661–1687.

Rutishauser, U., Schuman, E.M. & Mamelak, A.N., 2006. Online detection and sorting of extracellularly
recorded action potentials in human medial temporal lobe recordings, in vivo. Journal of
Neuroscience Methods, 154(1–2), pp.204–224.

99

100

VI. IMPLEMENTATIONS AND RESULTS

 MiniNet

1. Implementation

The first version of our network, consisted in one input layer, one intermediate layer implementing

both an STDP rule and an STP rule, and one output layer implementing an STDP rule (Figure VI-1). In

this version of the network, the encoding frequency was 20 kHz, corresponding to our recordings’

sampling frequency, without up-sampling. The number of encoding delays used in the input layer was

large, corresponding to a signal window of 1.2 ms. As improvements we also implemented a lateral

STDP and an intrinsic plasticity on the output layer. The main characteristics of this network are

summarized in Table VI-1 and Figure VI-1. The detailed parameters are shown in Table VI-2. This

method was subject to a patent (n° EN1654485).

Figure VI-1: MiniNet structure

Table VI-1: Main features of MiniNet

Input layer Encoding frequency of 20Hz.

At each encoding step, 24 signal values are encoded, each separated

by 0.05 ms (1.2ms time window).

The sensitivity margin DVm is 1.5σnoise, overlap is 8.

Attention mechanism STP plasticity rule implemented on the synapses connecting the input

layer to the intermediate layer.

Intermediate layer 30 LIF neurons. Synapses stemming from the input layer implement

an STDP rule and an STP rule.

Output layer 10 LIF neurons. Synapses stemming from the intermediate layer

implement an STDP rule. Performance can be improved with a lateral

STDP rule and an IP rule.

101

Table VI-2: Detailed parameters of MiniNet

Input layer parameters

Parameter Description Value

ΔVm
Sensitivity margin (half-size of the sensitivity

range)
1.5σnoise

Noverlap
Number of neuron active at the same time

within one column
8

Δts Input layer sampling period 0.05 ms

Δtc Time interval between two encoding delays 0.05 ms

Nc Number of encoding delays 24

Intermediate layer parameters

Parameter Description Value

Nneur Number of neurons 30

τm Membrane time constant 3*Δts = 0.15 ms

Th Neurons threshold Noverlap*Nc*0.75 = 144

τrefrac Refractory period 0.025 ms

Vreset Reset potential -20*Th = -2880

winhib Lateral inhibition weight for WTA -0.2*Th = -28.8

w0
Average weight of the feedforward synapses at

initialization.
0.5

τstdp+ Positive STDP rule time window Δtc*1.1 = 0.055 ms

τstdp- Negative STDP rule time window 0

Δwpair
Weight change for a presynaptic spike coinciding

with a postsynaptic spike
0.01

Δwpost Weight change for each postsynaptic spike -0.65* Δwpair

τstp Short term plasticity time constant 1.5 ms

fd Short term plasticity depression factor 0.2

Output layer parameters

Parameter Description Value

102

Nneur Number of neurons 10

τm Membrane time constant 2.5 ms

Th Neurons’ threshold 3

τrefrac Refractory period 2.5 ms

Vreset Reset potential -10*Th = -30

winhib Lateral inhibition weight for WTA -10*Th = -30

w0
Average weight of the feedforward synapses at

initialization.
0.5

τstdp+ Positive STDP rule time window 1.5 ms

τstdp- Negative STDP rule time window 1.5 ms

Δwpair
Weight change for a presynaptic spike coinciding

with a postsynaptic spike
0.01

Δwpost Weight change for each postsynaptic spike -0.5*Δwpair

Δwlat
Weight change for a presynaptic spike coinciding

with an inhibition
-0.02* Δwpair

Δwpre Weight change for each presynaptic spike -0.9* Δwlat

2. Results

The network was first tested on our preliminary simulated dataset (see Section V.A.1), which consists

in signals containing two action potentials. These action potentials have an SNR of 3.5 and a quite

large duration of about 2 ms. Figure VI-2 shows the behavior of the network for one recording

example. Figure VI-2.a shows the behavior of the intermediate layer. Thanks to the STP, intermediate

neurons fire only when an action potential is present in the signal. During an action potential, different

intermediate neurons fire in sequences, as they each recognize a different part of the action potential.

Indeed, as shown in Figure VI-2.b, for each active intermediate neuron, the synapses stemming from

the input layer have evolved to match a specific waveform, which the neuron is then able to recognize.

Figure VI-2.c shows an example of the network’s output. It can be seen that the output neuron 3 has

learnt to recognize one action potential waveform, whereas the output neuron 1 has learnt to

recognize the other one.

103

Figure VI-2: Qualitative results of MiniNet on a recording from the preliminary dataset. (a) Example of intermediate layer

spike train during an action potential. (b) Weights learnt by the intermediate layer. Each square represents the weights of

the synapses from all input neurons, organized into a grid, to one specific intermediate neuron. The weights go from 0

(black) to 1 (white). (c) Example of output layer spike train. Output spikes match the different action potential

occurrences.

This first network, with neither lateral STDP nor IP, gave satisfactory results on the preliminary dataset,

with a mean F-score of 0.81. Figure VI-3 shows an example of results on one recording from this

dataset. It can be seen that the learning converge after about 100 s, and that the waveform 1 is

recognized by the output neuron 3 with an F-score of 0.83, and the waveform 2 is recognized by the

output neuron 1 with an F-score of 0.88.

104

Adding a lateral STDP to the output layer improved the performance of the network. Indeed, with

lateral STDP, the mean score was brought from 0.81 to 0.88. As preliminary tests, an intrinsic plasticity

was implemented on the output layer in combination with the lateral STDP. It was tested qualitatively,

on signals containing action potentials with slightly different amplitudes and durations. These tests

showed that the neuron’s threshold is actually able to adapt to the size of the learnt pattern.

Figure VI-3: Example of performance of MiniNet on one recording from the preliminary dataset. (a) Evolution of the F-

scores during the 200-s simulation. The two graphs are for the two ground truth cells and the different colors correspond

to two different output neurons. (b) Mean F-scores on the last 100s of the same recording, for each pair of ground truth

cell and output neuron.

Although this first version worked well on the preliminary dataset, the performances were not as good

with more realistic data, especially when action potentials were shorter. One reason was that the

input layer was adapted for slow action potentials, because of the slow sampling frequency used for

encoding. This was corrected in the next versions. Another problem was the interaction between the

STP and the STDP on the intermediate layer, which made it difficult to robustly recognize low-

amplitude action potentials. Indeed, without STP, an intermediate neuron’s potential depends on how

close the input signal is to the shape it has learnt. When the STP is added, its potential also depends

on the signal’s amplitude. The reduced potential for low amplitudes requires low-amplitude

waveforms to be very close to the learnt waveform to be recognized. This led us to introduce an

attention neuron (which was added in the patent) in the next versions of the network.

 ANNet

1. Implementation

We first improved the MiniNet network with the introduction of an attention neuron, which gave its

name to this new version. The attention neuron allows to isolate the network’s detection function, so

that the STP does not impair the intermediate layer’s recognition function. The attention neuron then

projects to the intermediate layer through fixed-weight synapses (see Figure VI-4), bringing an

additional excitation to the intermediate layer, necessary for it to fire. Another important

improvement was to set a shorter encoding step on the input layer, while keeping the same interval

between two encoded signal values. This brings robustness against sampling time jitter without adding

105

unnecessary synapses. The number of delays in the input layer was also reduced to 10, corresponding

to a time window of 0.5 ms. This is more suitable for realistic action potentials, as the encoding time

window should be slightly shorter than an action potential’s duration. The structure of the output

layer was also more complex. It is constituted of LIF neurons with IP, and it receives spikes from the

intermediate layer trough synapses with different synaptic delays, presynaptically inhibited by the

attention neuron, as described in Section IV.D.3. The synaptic weights can take positive as well as

negative values. This structure forces the output layer to wait for the end of the spike sequence

emitted by the intermediate layer before firing. This prevents the output layer from missing any

important information for pattern separation. The delays also bring some information about the

sequence timing. The characteristics of ANNet are summarized in Table VI-3 and Figure VI-4. The

detailed implementation of ANNet and the results obtained can be found in an article (annex B),

currently in review for publication.

Figure VI-4: ANNet structure

Table VI-3: Main features of ANNet

Input layer Encoding frequency of 80Hz.

At each encoding step, 10 signal values, separated by 0.05ms each are

encoded (0.5ms time window).

The sensitivity margin DVm is 1.75σnoise, overlap is 10.

Attention mechanism Attention neuron. Input layer projects to the attention neuron

through synapses implementing an STP rule.

Intermediate layer 60 LIF neurons. Synapses stemming from the input layer implement

and STDP rule.

The intermediate layer receives the attention neuron spike-train

through fixed weight synapses. The threshold is set so that this layer

cannot fire if the attention neuron does not fire.

106

Output layer 10 LIF neurons, implementing an IP rule.

The output layer is connected to the intermediate layer through both

excitatory and inhibitory synapses, duplicated with different

transmission delays. All these synapses implement an STDP rule. The

spike transmission is inhibited by the attention neuron, which thus

also prevent STDP.

2. Results

ANNet was tested both on our single-electrode simulated dataset (see Section V.A.1) and on real

recordings (see Section V.A.2). The behavior of the intermediate layer is similar to the one obtained

with the first implementation. Thanks to the attention neuron, intermediate neurons fire only when

an action potential is present in the signal. The spike sequence generated by the intermediate layer

matches for similar action potentials and does not for different action potentials (Figure VI-5.a).

Indeed, each active intermediate neuron learns to recognize a specific shape in the signal (Figure VI-5.b

and c). The intermediate layer spike sequence can thus be seen as a signature of the action potential

occurring in the input signal.

Figure VI-5: Behavior of the intermediate layer of ANNet. (a) Spike sequences emitted by the intermediate layer for each

action potential occurrence. Top: signal shapes for all action potential occurrences on the last 100 s of simulation. Middle

row: spike trains of the intermediate layer synchronized with 50 different action potential occurrences. Bottom row:

distribution of intermediate spike latency relative to each action potential occurrence (the histograms are cumulated). The

different colors stand for different intermediate neurons. (b) Weight evolution of the synapses projecting on one specific

intermediate neuron. Each square represents the weights of the synapses from all input neurons at a specific time. The

weights go from 0 (black) to 1 (white). (c) Weights learnt by each intermediate neuron after a 200-s simulation. Each

square represents the weights of the synapses from all input neurons, organized into a grid, to one specific intermediate

neuron. The weights go from 0 (black) to 1 (white).

Figure VI-6 shows an example of the network’s output for a simulated recording and for a real

recording, as well as the F-score evolution along the whole recording. It can be seen that, for the

simulated recording, three output neurons are active and accurately reproduce the true activity.

107

Concerning the real recording, for which the ground truth is only known for one neural cell, one of the

output neuron reproduces the known ground truth. Though it cannot be objectively evaluated, two

other action potentials seem to be detected by two other output neurons.

Figure VI-6: Examples of ANNet output and performance (a) Output and scored on a simulated recording. Left: comparison

of the output spike train, composed of ten neurons, with the truth spike train, composed of three neurons, on a 10-s

segment of input signal. Matching spike trains have been highlighted in red. Right: evolution of the performance of the

network over the 200-s simulation. (b) Same as (a) for a real recording (dataset d553101). Here the truth is only known

for one cell thus only the performance relative to this cell can be computed.

The performance of ANNet was compared to two other spike-sorting algorithms, Osort (Rutishauser

et al. 2006) and Wave_clus (Quiroga et al. 2004) (see Section V.C). On simulated data with a high SNR,

the ANNet’s scores were lower than the two other algorithms, though the difference remained

relatively small. In contrast, for SNR lower than 6, ANNet performed significantly better than Osort

and Wave_clus (Figure VI-7.a). The performances on real recordings confirmed these results, except

that Wave_clus obtained quite low scores on data with high SNR (Figure VI-7.b). An insight on the

detailed scores for the simulated recordings with an SNR of 4.5, where ANNet perform significantly

better than the two other methods, shows that the STDP network has a better recall and a better

clustering score (Figure VI-7.c).

108

Figure VI-7: ANNet performances compared to Osort and Wave_clus. (a) Performance on the single electrode simulated

dataset. (b) Performance on real recordings. Error bars show the standard deviation. ANNet performance was compared

to Wave_clus and Osort through statistical tests (see Section V.C). ns stands for non-significant, * for p<0.05, ** for p<0.01,

*** for p<0.001. (c) Detailed mean scores on the 10 simulated recordings with an SNR of 4.5.

Finally, the robustness of this network was also tested on two additional simulated recordings. In the

first one, the firing rates were different between the three simulated cells (Figure VI-8.a). In the

second, each cell became silent one after the other during a 50 s time interval (Figure VI-8.b). The

results show qualitatively that the network is robust to such variations.

109

Figure VI-8: ANNet performance on simulated recordings with different firing rate scenarios.

3. Preliminary tests on tetrode data

Our ANNet implementation of the network, designed initially for single electrode, was tested on real

tetrode recordings. We tested two different methods to adapt the feedforward network structure to

process the tetrode data (see Section V.A.2). In a first adapted architecture, the input layer was

duplicated four times for each electrode, and these four inputs layers project to a common attention

neuron and a common intermediate layer (Figure VI-9.a). In a second architecture, the input layer, the

attention neuron and the intermediate layer were all duplicated and connected to a common output

layer (Figure VI-9.b). We compared the performances of these two methods to the performance

obtained on the best single channel for each tetrode, with the single-electrode version of the network

(Figure VI-10). On the d533101 recording, with the highest SNR, the tests show a clear improvement

of the results when taking into account all four channels, with even better results when using the

second structure. On the d11221.002 recording, there was no significant improvement, and the

performance dropped with the second structure, with a high variation between different runs. This is

thus difficult to conclude on these two datasets. The next version of our network, adapted to multiple

electrode, was thus tested on more data generated through simulation, with more electrode and a

controlled SNR and controlled number of cells, to check the effect of different network structures (see

Section VI.D).

110

Figure VI-9 : Two different structures adapted for tetrode recordings, for the ANNet implementation.

Figure VI-10 : F-scores obtained with the two tested structures, compared to the best single electrode performance.

 LTSNet

1. Implementation

The most advanced single-electrode version of our network, which we called LTSNet because of the

introduction of LTS neurons, includes improvements on both the intermediate and the output layers

(Figure VI-11). The intermediate layer implements a 2-WTA mechanism, allowing two neurons to fire

almost simultaneously instead of one. This 2-WTA was combined with the implementation of a

resource-dependent STDP on the synapses stemming from the input layer, which modulates the

weight update depending on the number of spikes recently emitted. As described in Section IV.C.4,

this mechanism allows the intermediate layer receptive fields to overlap. The neuron model used in

the output layer mimics an LTS neuron, with the simplified model described in Section IV.D.4. This

neuron model has a potential rebound after receiving a negative stimulus. The synapses coming from

111

the intermediate layer are thus inhibitory, and the output neurons fire after the stimulus (see Section

IV.D.4), removing the need for an inhibition from the attention neuron used in ANNet. The attention

neuron is thus only used to gate the intermediate layer though fixed excitatory synapses. The output

layer structure is thus greatly simplified compared to ANNet. No intrinsic plasticity was used in this

implementation. A lateral STPD was implemented on the output layer to improve the performance.

The main characteristic of LTSNet are shown in Table VI-4 and Figure VI-11, and its detailed parameters

in Table VI-5.

Figure VI-11: LTSNet structure

Table VI-4: Main features of LTSNet

Input layer Encoding frequency of 80Hz.

At each encoding step, 10 signal values, separated by 0.05ms each are

encoded (0.5ms time window).

The sensitivity margin DVm is 2σnoise, overlap is 10.

Attention mechanism Attention neuron. Input layer projects to the attention neuron

through synapses implementing an STP rule.

Intermediate layer 100 LIF neurons. Synapses stemming from the input layer implement

and STDP rule.

A 2-WTA mechanism is used.

The intermediate layer receives the attention neuron spike train

through fixed weight synapses. The threshold is set so that this layer

cannot fire if the attention neuron does not fire.

Output layer 15 simplified LTS neuron.

Synapses stemming from the intermediate layer are inhibitory and

implement a lateral STDP rule.

Table VI-5: Detailed parameters of LTSNet

Input layer parameters

Parameter Description Value

112

ΔVm
Sensitivity margin (half-size of the sensitivity

range)
2σnoise

Noverlap
Number of neuron active at the same time

within one column
10

Δts Input layer sampling period 0.0125 ms

Δtc Time interval between two encoding delays 0.05 ms

Nc Number of encoding delays 10

Attention neuron parameters

Parameter Description Value

τm Membrane time constant 2* Δts = 0.025 ms

τrefrac Refractory period 0

Th Neurons threshold 0.947*Noverlap*Nc = 94.7

wself Weight of the self-excitatory synapse 0.077*Noverlap*Nc = 7.7

τstp Short term plasticity time constant 20 ms

Wmin
Equilibrium weight for the input neuron coding

for 0
0.13

Intermediate layer parameters

Parameter Description Value

Nneur Number of neurons 100

τm Membrane time constant 2* Δts = 0.025 ms

τrefrac Refractory period Δtc = 0.05 ms

Vreset Reset potential 0

Vinhib Post-inhibition potential 0

wAN
Weight of the synapses coming from the

attention neuron
0.45 * Nc *Noverlap = 45

w0
Average weight of the feedforward synapses at

initialization.
0.7

Th Neurons threshold

(wAN + w0 *Nc*Noverlap) *

(1-exp(-Δtc/τm))/(1-exp(-Δts/ τm))

= 252.7

kWTA
Maximum number of neuron that can fire

simultaneously
2

113

τstdp+ Positive STDP rule time window Δtc*1.01 = 0.0505 ms

τstdp- Negative STDP rule time window 0

Δwpair
Weight change for a presynaptic spike coinciding

with a postsynaptic spike
0.005

Δwpost Weight change for each postsynaptic spike -0.55* Δwpair

τres STDP resource time constant 3.125 µs

fres STDP resource consumption factor 0.5

Output layer parameters

Parameter Description Value

Nneur Number of neurons 15

τm Membrane time constant 2 ms

τrefrac Refractory period 0

Vreset Reset potential 0

Vinhib Post-inhibition potential 0

qreset Reset value of q after firing 0

qinhib Reset value of q after an inhibition 0

wlayer
Weight factor applied to all feedforward

synapses.
-0.25

w0
Average weight of the feedforward synapses at

initialization.
0.5

τstdp+ Positive STDP rule time window 10 ms

τstdp- Negative STDP rule time window 0

Δwpair
Weight change for a presynaptic spike coinciding

with a postsynaptic spike
0.01

Δwpost Weight change for each postsynaptic spike -0.6*Δwpair

Δwlat
Weight change for a presynaptic spike coinciding

with an inhibition
-0.1* Δwpair

Δwpre Weight change for each presynaptic spike -0.2* Δwlat

2. Results

114

LTSNet was tested on our single electrode simulated dataset (see Section V.A.1). The behavior of the

intermediate layer is qualitatively similar to the previous version, except that two intermediate

neurons fire each time simultaneously, due to the 2-WTA mechanism (Figure VI-12). Concerning the

output layer, thanks to their rebound properties, LTS neurons fire after the inhibitory stimulus received

from the intermediate layer. The neuron receiving the strongest stimulus fires first (Figure VI-13).

Figure VI-12: LTSNet intermediate layer behavior. (a) Spikes emitted by the intermediate layer in response to action

potential in the signal. The signal is shown in black. Spikes are shows by the colored vertical bars, different colors standing

for different intermediate neurons. (b) Weights learnt by each intermediate neuron. Each square represents the weights

of the synapses from all input neurons, organized into a grid, to one specific intermediate neuron. The weights go from 0

(black) to 1 (white).

115

Figure VI-13: Example of potential rebound of LTS neurons in the output layer. Top: Spike train generated by the

intermediate layer. Different colors stands for different intermediate neurons. Middle: Potential evolution of the different

output neurons in different colors. Bottom: output neurons spikes. Colors match the middle panel.

Figure VI-14 shows an example of LTSNet output on a 5-s sample of a simulated recording. Over the

15 output neurons, three neurons are active, and reproduce the true activity. LTSNet performance

was assessed on the single electrode simulated dataset and compare to ANNet, as well as Osort

(Rutishauser et al. 2006) and Wave_clus (Rutishauser et al. 2006). LTSNet has similar scores as ANNet

and Wave_clus, and perform significantly better than Osort on recordings with a low SNR (Figure

VI-15.a). Looking at the detailed score on recordings with an SNR of 4.5, it can be seen that LTSNet has

a better recall than ANNet, but the clustering performance is degraded (Figure VI-15.b).

116

Figure VI-14: Example of LTSNet output on a 5-s segment of simulated signal. Top: input signal Middle: spike train

corresponding to true action potentials in the signal. Bottom: output spike train, composed of 15 neurons. Spike trains

matching the truth have been highlighted in red.

117

Figure VI-15: LTSNet results on the single electrode simulated dataset, compared to ANNet, Osort and Wave_clus. (a)

Mean F-scores on recordings with different SNR. Error bars show the standard deviation. A Welch test with a Bonferroni

correction was used to compare LTSNet to each of the three other methods shown. ns stands for non-significant, * for

p<0.05, ** for p<0.01, *** for p<0.001. (b) Detailed mean scores on the 10 simulated recordings with an SNR of 4.5

 PolyNet

1. Implementation

We adapted the last version of our network, LTSNet, to process signal stemming from multiple

electrodes. We named PolyNet this adapted version of the network illustrated in Figure VI-16. Except

for structural adaptations, the parameters are the same as for LTSNet. The structure adaptation of the

network depends on the geometry of the electrode array. Here we tested the network on our

polytrode simulated dataset (see Section V.A.1). The recordings simulated the signals generated by

118

ten electrodes arranged in a line. With the chosen electrode geometry, an action potential can

typically be seen on about three neighboring electrodes. To adapt the network to polytrode

recordings, the initial network structure is duplicated ten times, to match the number of electrodes.

We obtain a structure with ten parallel subnetworks (see Figure VI-16). This parallel structure is

unchanged from the input layer to the intermediate layer. Lateral synapses are introduced for the

connection between the intermediate layer and the output layer. Each intermediate sublayer projects

to three output sublayers and each output sublayer receives synapses from three intermediate

sublayers, with each time one straightforward connection corresponding to the parallel structure and

two lateral connections (except at the edges of the array). Each all-to-all connection from one

intermediate sublayer to one output sublayer is pondered by a layer weight wL. This means that for

each synapse, the learnt weight w, varying between 0 and 1, is multiplied by wL, leading to a resulting

weight w*wL. The layer weight wL is 1/2 for the straightforward connection and 1/4 for the each of

the two lateral connections (see synapse symbols of different size in the Figure VI-14 diagram). The

WTA mechanism is also extended between the different output layers, in order to avoid several

sublayers to fire for the same action potential. To do so, each output sublayer is inhibited by itself and

by the 4 closest output sublayers.

Figure VI-16: PolyNet structure for polytrode recordings (illustration for a line of 6 electrodes).

119

2. Results

This implementation was tested on our polytrode simulated dataset (see Section V.A.1). Figure VI-17

shows an example of output on a sample of 250 ms of a simulated polytrode signal with four simulated

neural cells and an SNR of 6. Each action potential in the signal triggers a spike from a unique neuron

in the entire output layer, most of the time in the sublayer corresponding to the channel where the

action potential amplitude is the highest. Figure VI-18 shows the scores obtained on the same signal

for each pair of true cells and output neurons. Most action potentials emitted by one specific cell are

detected by one specific output neuron, though cell 1 is detected by the same neuron as cell 3 at the

beginning of the simulation, and a few false positives and classification mismatches can be observed.

This is consistent with the mean clustering, precision and recall scores observed with different SNR

(Figure VI-19). Although the recall is quite good, the precision and the clustering score are low, due to

the high number of false positives and classification mismatches. Indeed when taking each output

neuron separately, the number of corresponding mismatches and false positives is low, as shown for

example in Figure VI-18.b, but due to the high number of output neurons (150), the total number of

mismatches and false positives become important. The misclassifications could be explained by the

concurrence between neighboring output sublayers, as they do not receive exactly the same stimulus.

The first output sublayer to fire is not systematically the one corresponding to the highest action

potential amplitude, as we would ideally expect. This can be seen for example in channel 4 of Figure

VI-17 on which the action potential detected for the true red waveform has a lower amplitude lower

than the one occurring on channel 5.

120

Figure VI-17: Example of output on a simulated polytrode recording with an SNR of 6. Truth is shown at the top. Each

panel shows the recorded signal for each electrode (black line), and the spikes from the corresponding output sublayer

(colored bars). Different colors correspond to different neurons within the same sublayer.

121

Figure VI-18: Action potentials stemming from different cells are recognized by a different output neurons. (a) Evolution

of the paired F-scores during the simulation. Different colors stand for different output neurons within the same output

sublayer. (b) Number of action potentials detected by each output neurons and number of false positives and false

negatives, within the last 50 seconds of the simulation.

Figure VI-19: Mean scores on the polytrode simulated recordings with different SNR, for each type of error.

122

 Estimation of the resources used

For each of our different implementations, we made a rough estimation of the resources used for a

neuromorphic implementation, in terms of number of neurons, synapses and transmitted spikes. For

the input layer, the estimation was done for encoding a signal range of 20σnoise. The number of spikes

generated and transmitted is expressed in spikes per second on the input layer, and then in spikes per

action potential present in the signal. The results obtained are gathered in Table VI-6, Table VI-7 and

Table VI-8, for the three single-electrode networks, respectively. Depending on how the neuromorphic

implementation is done, some of these implantation bricks can be more limiting than others. However,

with our network structure, the limiting factor is likely to be the synaptic connection between the input

and the intermediate layers, as the numbers of synapses and of spikes transmitted are very high.

Another aspect that can be relevant for power consumption in a neuromorphic implementation is the

number of synaptic weights’ changes. For the connection between the input layer and the

intermediate layer, the number of weights’ changes can be estimated at respectively 12720, 5700 and

10000 changes per action potential for respectively MiniNet, ANNet and LTSNet. An estimation of 1pJ

per weight change (Xiong et al. 2011; Chin et al. 2013) and an electrode signal containing about 100

action potentials per second lead to an approximation power consumption of 1µW. For the polytrode

implementation the quantity of resources used is multiplied by the number of electrodes, except for

the intermediate to output layer connection, for which the number of synapses is also multiplied by

the number of lateral connections between sublayers (3 in our case). However, this connection should

not be the limiting element in this structure.

Table VI-6: Resources used for MiniNet

NEURONS SYNAPSES

Layer Number of

neurons

Number of

spike

generated

Connection Number of

synapses

Number of

spike

transmitted

Input layer 53 160e3 /s Input to

intermediate

38 160 115e6 /s

Intermediate

layer

30 10 /AP Intermediate to

output

300 100 /AP

Output layer 10 1 /AP

Table VI-7: Resources used for ANNet

NEURONS SYNAPSES

123

Layer Number of

neurons
Number of

spike

generated

Connection Number of

synapses
Number of

spike

transmitted

Input layer 57 800e3 /s Input to

intermediate
34 200 480e6 /s

Attention

neuron

1 40 /AP Input to

attention

neuron

570 8e6 /s

Intermediate

layer
60 10 /AP Intermediate

to output
60 000 100 000 /AP

Output layer 10 1 /AP

Table VI-8: Resources used for LTSNet

NEURONS SYNAPSES

Layer Number of

neurons
Number of

spike

generated

Connection Number of

synapses
Number of

spike

transmitted

Input layer 50 800e3 /s Input to

intermediate
50 000 800e6 /s

Attention

neuron

1 40 /AP Input to

attention

neuron

500 8e6 /s

Intermediate

layer
100 20 /AP Intermediate

to output
1500 300 /AP

Output layer 15 1 /AP

 Preliminary FPGA Implementation

The different versions of the network were tested by simulations on a workstation. This allows to test

the spike-sorting performance of the network but not the efficiency of the implementation, as it is

designed to be executed on parallel hardware. Neuromorphic technologies not being mature enough

to implement our network, we chose as an intermediate step towards an embedded implementation,

to begin an implementation on FPGA devices. This technology has both advantages to be flexible and

to offer parallelism architecture opportunities. To this end we started a collaboration with Takashi

Kohno and Timothée Levi at the University of Tokyo, whose team has already been working on

124

implementing neural network on FPGA (Li et al. 2012). I stayed for 2 weeks in Tokyo for this purpose

and the work started there was continued by Joel Fournier during a 4-month internship under my

supervision. This collaboration and this internship resulted in the implementation of an input layer, a

short term-plasticity and an attention neuron, which were tested all together (Figure VI-20). The

implementation was done on a Kintex-7 device, on a Genesys 2 development board from Digilent

(Figure VI-21). The results were qualitatively good, as this attention neuron was able to detect, in real

time, action potentials in a testing signal generated on the fly (Figure VI-22). The parameters still need

to be adjusted to optimize the detection and to match the characteristics of a realistic signal. This work

should be continued with Takashi Kohno and Timothée Levi to add an STDP rule and LTS neurons to

obtain a complete network. During his internship, Joel Fournier also implemented a protocol for

receiving data from a computer via a USB-interface included in the development card we used. This

interface will be very useful in the future to send electrode recordings in real-time to the FPGA for a

real time spike-sorting.

Figure VI-20: Parts of the network implemented on FPGA. The parts that were not implemented are grayed.

Figure VI-21: Genesys 2 board used for FPGA implementation

125

Figure VI-22: Attention neuron simulation implemented on an FPGA. Up: testing signal. Middle: attention neuron

potential. Bottom: Attention neuron spikes.

126

References

Chin, A. et al., 2013. Ultra-Low Switching Power RRAM Using Hopping Conduction Mechanism. ECS
Transactions, 50(4), pp.3–8. Available at: http://ecst.ecsdl.org/cgi/doi/10.1149/05004.0003ecst.

Li, J., Katori, Y. & Kohno, T., 2012. An FPGA-Based Silicon Neuronal Network with Selectable Excitability
Silicon Neurons. Frontiers in Neuroscience, 6(December), p.183. Available at:
http://journal.frontiersin.org/article/10.3389/fnins.2012.00183/abstract.

Quiroga, R.Q., Nadasdy, Z. & Ben-Shaul, Y., 2004. Unsupervised spike detection and sorting with
wavelets and superparamagnetic clustering. Neural computation, 16(8), pp.1661–1687.

Rutishauser, U., Schuman, E.M. & Mamelak, A.N., 2006. Online detection and sorting of extracellularly
recorded action potentials in human medial temporal lobe recordings, in vivo. Journal of
Neuroscience Methods, 154(1–2), pp.204–224.

Xiong, F. et al., 2011. Low-power switching of phase-change materials with carbon nanotube
electrodes. Science, 332(6029), pp.568–570. Available at:
http://www.nanotechnology.org.in/goto/http://poplab.ece.illinois.edu/pdfs/Xiong-
LowPowerPCMCNT-sciexp11.pdf%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/21393510.

127

128

VII. CONCLUSION AND PERSPECTIVES

A. Main contributions

The goal of this thesis was to design a fully automatic online spike-sorting algorithm using an STDP

network, in the perspective of an implementation on neuromorphic hardware. The network

developed during this work meets in large these requirements. First, the algorithm is entirely

neuromorphic. Apart from a simple band-pass filtering, that can be achieved by simple passive analog

circuitry, no preprocessing is done before feeding the input signal to the network. The conversion of

the analog signal into spike trains is done by a set of simple units that can be assimilated to sensory

neurons. No post-processing is needed either, as the network is designed to output spike trains that

correspond to the sorted cells’ spiking activity. Second, the method is fully automatic. The network

has been designed and parameterized taking into account the main characteristics common to all

extracellular recordings, in particular the duration of an action potential. The parameters of the

network depend only on two characteristics of the input signal that may change between recordings:

the noise level and the amplitude range, which can both be easily estimated. Third the algorithm can

theoretically be executed online. Indeed the network is designed to process the input signal on the

fly. The theoretical latency of the response depends on the dynamic of the neuron models and the

synaptic transmission delays used in the network and does not exceed a few milliseconds. In practice,

the execution time depends on the physical implementation of the network, in particular on what type

of hardware it is executed. Though the algorithm was designed for a neuromorphic implementation,

the practical implementation on neuromorphic hardware is beyond the scope of this work. Though,

preliminary implementation on FPGA gave good results (see Section VI.F).

An important point when designing an algorithm to solve a problem is to check if the problem is solved

correctly. This is not trivial for spike-sorting, as the ground truth is most of the time unknown. A

common way to assess the performance of a spike-sorting algorithm is to test it on simulated data,

mimicking real recordings, but for which the ground truth is thus known. In this work we generated

our own simulated data, using two different methods (see Section V.A.1). The first method, used for

single electrode recordings, uses predefined action potential waveforms for each true cell. The second

method, used for multiple electrode recordings, uses an extracellular action potential model based on

a simplified neural geometry. The simplicity of this model allows to quickly generate multiple electrode

data without advanced knowledge in electrophysiology, in contrast with more realistic models that

require to simulate complex neural structures (Hines & Carnevale 2001; Hagen et al. 2015). The

performance assessment on simulated data was supplemented with tests on real recordings, with a

partially known ground truth. These tests showed that our algorithm reaches the state-of-the-art

performance on single electrode recordings, using a radically new method (see Sections VI.B and VI.C).

It also has a correct qualitative behavior on multiple-electrode recordings (see Section VI.D). In

particular we were able to ensure that each action potential in the signal generates only one output

spike, in spite of being processed through several parallel channels. Moreover, as expected for an

STDP network, our network needs only a few occurrences of a pattern (about a hundred) to learn to

recognize it, in contrast to deep neural networks that require to be trained on large datasets.

129

Beyond the spike-sorting application, many mechanisms were developed for this network, to deal with

the specificities of the spike-sorting problem. These mechanisms could be used for other applications.

First the patterns to recognize in the signal had a strong temporal aspect as the relative times of the

values taken by the signal are crucial to discriminate the patterns (i.e. the action potential waveforms).

This is not common in STDP applications. Indeed LIF neurons are naturally able to detect coincidences,

but need additional mechanisms to process this temporal aspect. This problem can be simply solved

by using delays in the synaptic transmissions (Natschläger & Ruf 1998; Ghosh-Dastidar & Adeli 2007;

Ghosh-Dastidar & Adeli 2009), which we did in our network (see Section IV.A and IV.D.3). The network

was successfully able to distinguish two waveforms that were symmetric along time (one positive and

then negative and the other negative and then positive), showing that the temporal aspect is correctly

taken into account. Such network structure using transmission delays has already been used for EEG

pattern recognition (Ghosh-Dastidar & Adeli 2007), though in this study, learning is not done through

STDP. On the other hand, some studies applied STDP networks to auditory or visual pattern learning,

but without using transmission delays (Suri et al. 2013), which limit the network to recognizing short

timescale patterns and not complex sequences. The ability to recognize temporal patterns using

transmission delays could thus be useful for applications such as video processing or sound and

language processing. It would allow for example discriminating similar objects moving in different

directions in a video stream, or recognizing whole words or sentences in an audio recording.

Another important aspect of the network is the attention mechanism (see Section IV.B). Artificial

neural networks are often presented isolated patterns, removing the need to select the relevant parts

of the input stimuli. Recognizing patterns in a composed input stimulus, possibly containing several

patterns among irrelevant inputs, is a much more complex problem. Convolutional neural networks

solve this problem by scanning all the input stimulus to find local patterns. However, it would be more

interesting to process only the relevant parts of the input stimulus through an attention mechanism.

In this work, we implemented an attention mechanism thanks to a short-term plasticity rule, able to

detect changes in the input stimulus. This mechanism could possibly be extended to visual processing,

for example to detect moving objects in a video stream.

Finally, when designing our spike-sorting network, we were confronted to the problem of input

patterns with different sizes due to action potentials of different durations. A neuron learning a

pattern should thus adapt its error tolerance to the size of the learnt pattern. This was done using an

intrinsic plasticity rule that adapts the value of the neuron’s threshold to the size of the learnt pattern

(see Section IV.D.1). As our patterns are temporal, we also needed a mechanism to ensure that

neurons would not fire before the end of the pattern and thus miss information to recognize it. Our

most satisfying solution to solve this problem was to use an LTS neuron model that generates a

potential rebound after an inhibitory stimulus. During tests on our output layer structure, we showed

that combining these two mechanisms (see Section IV.D.4) makes the network model able to

discriminate patterns with very different sizes, and even two patterns strictly included one into

another. A possible alternative application of this approach could be the processing of complex visual

scenes, where relevant objects can have different sizes in the input picture.

130

B. Discussion and future work

Our STDP network works well to process single electrode signals. However, the long-term goal is to

develop an STDP network able to process signals from dense MEAs. Our implementation of a network

processing a multiple-electrode signal is preliminary. We were able to design a network architecture

that fires one spike for each action potential, on a channel where this action potential is visible, which

is the intended behavior. However, this network still generated too many misclassification errors, in

part due to the fact that action potentials stemming from the same neural cell are not robustly

classified in the same channel. Future efforts should thus focus on adjusting the architecture to solve

this problem. Possibilities are to simply adjust parameters such as the connection weights between

layers, to introduce new plasticity mechanisms, or to add a layer dedicated to this problem. For

example, the lateral STDP already implemented on the output layer could be adjusted depending on

which layer the WTA inhibition comes from. Another aspect that could be investigated is the influence

of the number of neurons in each layer on the network performance. Our guess is that, provided that

there is already enough neurons to learn all presented patterns, adding additional neurons should not

impact the spike-sorting performance. Indeed, all inactive neurons that have not learnt any pattern

behave the same way, and their number should not impact the behavior of neurons responding to a

pattern. However this hypothesis has not been investigated experimentally.

In this work, we mostly investigated the simplest cases of spike-sorting situations. However, as it has

been highlighted in Section II, some specific difficulties emerge when performing spike-sorting on

realistic extracellular signals. One of them is the problem of non-stationary data, when the action

potentials’ shapes slowly change during the recording. As our network is continuously learning, we

could expect that it would be robust to slow changes in waveforms. However this still needs to be

confirmed by running the network on long non-stationary recordings. Another problem in spike-

sorting is to robustly classify action potentials occurring in bursts, in which case they display decreasing

amplitudes. Without modification, our network would classify as different action potentials occurring

in a burst, although they would stem from the same cell. A possibility to solve the problem would be

to add a layer that would classify them as stemming from the same neural cell, by taking advantage of

the temporal correlation between them. Finally, a major difficulty is to be able to recognize action

potentials overlapping in time. Methods able to do so explicitly model the fact that action potentials

sum up. Our way to encode the signal into a spike train does not take into account this property,

making it difficult to separate action potentials occurring at the same time on the same electrode.

Solving this problem would require changing the encoding paradigm, or adding a mechanism to the

input layer to take into account additivity.

All our simulations were done on a computer workstation whose sequential architecture is not adapted

to the execution of artificial neural networks. As a first step towards a neuromorphic implementation,

part of the network was implemented on an FPGA. Even though this work needs to be completed, it

showed the feasibility of an FPGA implementation. Future work should implement first a complete

single electrode network, then a multiple electrode network, and study how much electrodes can be

simultaneously processed given the FPGA resources. On a long-term perspective, this network could

be implemented on neuromorphic hardware using memristive devices. Synapses implemented

through memristors or RRAMs are able to mimic STDP and short-term plasticity (Ohno et al. 2011;

Saïghi et al. 2015; Werner et al. 2016), which are both used in our network. Neurons, often

131

implemented using CMOS technologies, can implement integrate-and-fire models as well as more

complex models (Indiveri et al. 2013; Sourikopoulos et al. 2017). However mechanisms such as

intrinsic plasticity have not yet been tested on neuromorphic device, and thus require further

developments.

The limiting element in a neuromorphic implementation is the number of synapses. Though efforts

were done to not use an excessive number of synapses, the use of several transmission delays between

two layers increases their number. A first idea to reduce the number of synapses could be to reduce

the number of delays between two layers, possibly compensating this loss by implementing more

layers, each acting at a different time scale. Indeed, it is known in the field of deep-learning, using

formal neural networks, that deep structures are more optimal than large structures. It would be

interesting to investigate if the same effect is observed with STDP networks. Another possibility would

be to implement a plasticity rule on the synaptic transmission delays, such as for example delay

plasticity based on spike timing (Eurich et al. 1999; Lücken et al. 2017), removing the need to use

several synapses with different delays.

C. Impact and perspectives

Artificial neural networks, applied to pattern recognition problems, have undergone significant

development in the last decades, thanks to the availability of huge datasets and powerful computers.

The advent of neuromorphic chips could open a new era in pattern recognition, by allowing to

implement such applications into embedded low power devices. However many developments remain

to be done in this field, both from the hardware and software points of view, as the available

techniques are in their early stages. In particular, STDP networks constitute a new field of artificial

intelligence, with few concrete applications. Many different mechanisms are being explored to better

regulate the learning dynamic of these networks. Some of them have been used in our network, such

as short-term plasticity, intrinsic plasticity, transmission delays, or winner-take-all mechanism. Others

were not explored in this work, such as metaplasticity, plasticity on inhibitory synapses, plasticity on

delays, but could however be useful for the application to spike-sorting. Managing to implement a

spike-sorting method into an embedded neuromorphic chip would strongly benefit to BCI applications,

for which real-time processing is crucial. Indeed, no available spike-sorting methods completely meet

the need of automatic real-time processing for the ever growing number of electrodes in recording

devices. Thus human BCI experiments currently do not use spike-sorting in practice for sake of

simplicity, although it has been shown to improve decoding performances (Todorova et al. 2014).

Ideally, spike-sorting would be done at the electrode level thanks to such device, thus avoiding to

transmit a massive flow of data to an external processing unit. Beyond spike-sorting, the STDP network

paradigm could be extended to downstream processing of MEA recordings, such as behavior decoding

for fundamental neurosciences or BCI, or to process other types of neural data recordings. Improving

neural data processing through neuromorphic implementation would allow analyzing data from many

neurons simultaneously and thus improving our understanding of brain functioning. More generally,

spike-sorting is a pattern recognition problem and the mechanisms developed in this work to process

MEA recordings could be used for completely different applications, as for instance visual pattern

recognition or language processing.

132

References

Eurich, C.W. et al., 1999. Dynamics of self-organized delay adaptation. Physical Review Letters, 82(7),
pp.1594–1597.

Ghosh-Dastidar, S. & Adeli, H., 2009. A new supervised learning algorithm for multiple spiking neural
networks with application in epilepsy and seizure detection. Neural Networks, 22(10), pp.1419–
1431.

Ghosh-Dastidar, S. & Adeli, H., 2007. Improved Spiking Neural Networks for EEG Classification and
Epilepsy and Seizure Detection. Integrated Computer-Aided Engineering, 14, pp.187–212.
Available at: http://iospress.metapress.com/content/LW681773V3036222.

Hagen, E. et al., 2015. ViSAPy: A Python tool for biophysics-based generation of virtual spiking activity
for evaluation of spike-sorting algorithms. Journal of Neuroscience Methods, 245, pp.182–204.
Available at: http://dx.doi.org/10.1016/j.jneumeth.2015.01.029.

Hines, M.L. & Carnevale, N.T., 2001. NEURON : A Tool for Neuroscientists. Neuroscientist, 7(2),
pp.123–135.

Indiveri, G. et al., 2013. Integration of nanoscale memristor synapses in neuromorphic computing
architectures. Nanotechnology, 24(38).

Lücken, L. et al., 2017. Pattern reverberation in networks of excitable systems with connection delays.
Chaos, 27(1), pp.1–21.

Natschläger, T. & Ruf, B., 1998. Spatial and temporal pattern analysis via spiking neurons. Network:
Computation in Neural Systems, 9(3), pp.319–332. Available at:
http://www.informaworld.com/openurl?genre=article&doi=10.1088/0954-
898X/9/3/003&magic=crossref%7C%7CD404A21C5BB053405B1A640AFFD44AE3.

Ohno, T. et al., 2011. Short-term plasticity and long-term potentiation mimicked in single inorganic
synapses. Nature Materials, 10(8), pp.591–595.

Saïghi, S. et al., 2015. Plasticity in memristive devices for spiking neural networks. Frontiers in
Neuroscience, 9(MAR), pp.1–16.

Sourikopoulos, I. et al., 2017. A 4-fJ/spike artificial neuron in 65 nm CMOS technology. Frontiers in
Neuroscience, 11(MAR), pp.1–14.

Suri, M. et al., 2013. Bio-inspired stochastic computing using binary CBRAM synapses. IEEE
Transactions on Electron Devices, 60(7), pp.2402–2409.

Todorova, S. et al., 2014. To sort or not to sort : the impact of spike- sorting on neural decoding
performance. Journal of Neural Engineering, 11.

Werner, T. et al., 2016. Experimental demonstration of short and long term synaptic plasticity using
OxRAM multi k-bit arrays for reliable detection in highly noisy input data. In 2016 IEEE
International Electron Devices Meeting (IEDM). IEEE, p. 16.6.1-16.6.4. Available at:
http://ieeexplore.ieee.org/document/7838433/.

133

134

VIII. ANNEXES

 Intermediate layer receptive field shape

The input signal is encoded into a spike train by the input layer, which is then transmitted to the

intermediate layer through synapses implementing an STDP rule. At the level of the synapse, we know

that the synapse weight will converge towards one or zero depending on the probability to have a

presynaptic spike in the STDP coincidence window each time a postsynaptic spike occurs. Here we

study the learning process steady state at the level of a neuron from the intermediate layer, in other

word, the neuron receptive field and the weight of its incoming synapses after learning. At each

sampling step, the spikes received by the intermediate, transmitted from the input layer through

delayed synapses, represent the signal value at N different delays from current time. A pattern to

learn can thus be seen as an N dimensional vector, encoded into spikes by the input layer. We assume

in this section that the only variation between action potential waveforms from the same cell is due to

a white Gaussian noise added to the signal. Thus at each occurrence of a pattern, a Gaussian noise is

added to the N dimensional vector representing this pattern, which will induce variations in the set of

spikes encoding it. Here we will also neglect the effect of time integration and assume that the

potential of the neuron is mostly due to the last set of spikes received from the input layer.

Let’s focus first on the one-dimensional case. We denote x the input value received by the network.

Each sensory neuron n can be associated with a center value cn, that corresponds to the center of its

sensitivity range. For an input value x, the number of spikes emitted by a sensory input neuron is given

by an activation function acn(x) that is the same for each sensory neuron but shifted according to their

center value:

𝑎𝑐𝑛(𝑥) = 𝑎0(𝑥 − 𝑐𝑛)

Let Wn be the weight of the synapse connecting the nth sensory neuron to the studied intermediate

neuron. Given the way the sensory neurons are organized, we can define a weight density:

𝑤(𝑐𝑛) = 𝑊𝑛 𝐷𝑉𝑖⁄

Where DVi is the difference between two consecutive sensory neuron center values. In this one-

dimensional case, assuming that the sensory neurons cover a value range large enough not to have

border effects, the excitation of the intermediate neuron for an input value x can be written:

𝐸1(𝑥) = ∑𝑊𝑛𝑎𝑐𝑛(𝑥)

𝑛

= ∑ 𝑤(𝑛 ∗ 𝐷𝑉𝑖)𝑎0(𝑥 − 𝑛 ∗ 𝐷𝑉𝑖)𝐷𝑉𝑖

+∞

𝑛=−∞

For simplicity and assuming that DVi is small, we can rewrite this expression in a continuous form:

𝐸1(𝑥) = ∫ 𝑤(𝑐)𝑎0(𝑥 − 𝑐)𝑑𝑐
+∞

−∞

Whereas a0 is known by definition, we need to do hypotheses on the form of w. We assume for the

moment that only one pattern x0 is presented to the network (or that the different patterns presented

are far enough from each other not to interact). Without losing generality we can assume that x0=0.

135

Thus the input value x of the network follows a normal distribution. Given the symmetry of the

problem and the STDP rule properties, we assume that w(x) equals 1 for 𝑥 ∈ [−𝑉𝑝𝑜𝑡; 𝑉𝑝𝑜𝑡] and 0

otherwise for a value Vpot to be determined. Using the binary encoding presented in paragraph IV.A,

we have a0(x)=1 for 𝑥 ∈ [−𝐷𝑉𝑚; 𝐷𝑉𝑚] and a0(x)=0 otherwise, where DVm is half the size of the

sensitivity range. We can then compute the value of the neuron’s potential. Both a0 and w are equal

to one on a segment and to 0 otherwise. When |𝑥| < |𝐷𝑉𝑚 − 𝑉𝑝𝑜𝑡|, the segments [−𝑉𝑝𝑜𝑡; 𝑉𝑝𝑜𝑡] and

[−𝐷𝑉𝑚 − 𝑥;𝐷𝑉𝑚 − 𝑥] are included one into the other and 𝐸1(𝑥) = 2min(𝐷𝑉𝑚, 𝑉𝑝𝑜𝑡). When |𝑥| >

|𝐷𝑉𝑚 + 𝑉𝑝𝑜𝑡| the segments are disjoints and 𝐸1(𝑥) = 0. In between E1(x) follow a linear evolution.

E1(x) can thus be written as follow:

𝐸1(𝑥) = {
2min(𝐷𝑉𝑚, 𝑉𝑝𝑜𝑡)𝑖𝑓|𝑥| < |𝐷𝑉𝑚 − 𝑉𝑝𝑜𝑡|

max(𝐷𝑉𝑚 + 𝑉𝑝𝑜𝑡 − |𝑥|, 0) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Visually, E1(x) has a trapezoidal shape. Noticeably for DVm=Vpot, E1(x) become triangular with

E1(x)=max(2DVm-|x|,0).

Knowing the neuron excitation in the one-dimensional case, it is easy to deduce the excitation for an

N-dimensional input. For an input 𝑥 = (𝑥𝑖)𝑖∈⟦1;𝑁⟧ ∈ ℝ
𝑁 we have:

𝐸𝑁(𝑥) =∑𝐸1(𝑥𝑖)

𝑁

𝑖=1

The neuron fires when its potential reaches its threshold Th. Thus the receptive field DS of the neuron

is defined by:

𝐷𝑆 = {𝑥 ∈ ℝ
𝑁/𝐸𝑁(𝑥) ≥ 𝑇ℎ}

When DVm=Vpot, which is a condition that is easily reached as we will show later, DS has some nice

properties. Indeed DS is bounded for Th>2DVm(N-1), and is then an L1-norm ball of diameter 2DVmN-

Th. Indeed when Th>2DVm(N-1) for x in DS we have |xi|≤2DVm for all i, because otherwise En(x)<Th.

Thus DS is bounded and E(x) can be rewritten 𝐸(𝑥) = 2 ∗ 𝐷𝑉𝑚 ∗ 𝑁 − ‖𝑥‖1 and thus 𝑥 ∈ 𝐷𝑆 ⇔𝑥1 ≤

2 ∗ 𝐷𝑉𝑚 ∗ 𝑁 − 𝑇ℎ. For lower values of Th, DS is not bounded, as all x such as 𝑥1 = ⋯ = 𝑥𝑁−1 =

0𝑎𝑛𝑑𝑥𝑁 ∈ ℝ belong to DS, but we can show that for any 𝑘 ∈ ⟦1, 𝑁⟧, if Th>2(k-1)DVm, then for all 𝑥 ∈

𝐷𝑆 at least k components of x are inferior to 2DVm.

For the triangular encoding proposed in Section IV.A, the activation function has a triangular shape

and can be written:

𝑎0(𝑥) = 𝐾 ∗ 𝑚𝑎𝑥(1 −
|𝑥|

𝐷𝑉𝑚
, 0)

Where K is the maximum number of spikes emitted. In this case, and with the condition DVm=Vpot, it

can be shown, with a similar reasoning as previously, that Ds is bounded for Th>KDVm(N-1), and that

for Th>KDVm(N-0.5), Ds is and L2-norm ball of diameter √2𝐷𝑉𝑚√𝑁 −
𝑇ℎ

𝐾∗𝐷𝑉𝑚
.

Noticeably in both cases, if we denote Emax the maximum possible excitation for one dimension, the

bounded condition is given by:

𝑇ℎ > 𝐸𝑚𝑎𝑥 ∗ (𝑁 − 1)

136

Knowing the receptive field of the neuron and the distribution of the input values, we can then deduce

the synapse weight value according to the STDP rule, and thus the value of Vpot. The STDP rule state

that for each input value 𝑥 ∈ ℝ𝑁, the weight change for the synapse corresponding to the ith delay and

a sensory neuron with a center value c is:

Δ𝑤𝑖(𝑐) = {

0𝑖𝑓𝑥 ∈ 𝐷𝑆
Δ𝑤+ − Δ𝑤−𝑖𝑓𝑥 ∈ 𝐷𝑆𝑎𝑛𝑑𝑥𝑖 ∈ 𝑆𝑐
−Δ𝑤−𝑖𝑓𝑥 ∉ 𝐷𝑆𝑎𝑛𝑑𝑥𝑖 ∈ 𝑆𝑐

𝑤𝑖𝑡ℎ𝑆𝑐 = [𝑐 − 𝐷𝑉𝑚, 𝑐 + 𝐷𝑉𝑚]

We note p(x) the probability of x to be an input of the network. The mean variation of the synapse

weight when the network receive an input is:

〈Δ𝑤𝑖(𝑐)〉 = Δ𝑤+∫ 𝑝(𝑥)𝑑𝑥
𝐷𝑆⋂{𝑥/𝑥𝑖∈𝑆𝑐}

− Δ𝑤−∫ 𝑝(𝑥)𝑑𝑥
𝐷𝑆

For x following a Gaussian distribution, 〈Δ𝑤𝑖(𝑐)〉 is maximum for c=0 and decrease when |c| increase.

This works more generally if p(x) is symmetric relatively to each of the dimensions and p(x) decreases

when |xi| increases, as DS is also symmetric and its cross-section with the hyperplane define by xi=c

decreases when |c| increase. We suppose that for all 𝑥 ∈ 𝐷𝑠 such that‖𝑥‖∞ > 2𝐷𝑉𝑚, p(x)=0, which

is in particular true if for all 𝑥 ∈ 𝐷𝑠 ‖𝑥‖∞ ≤ 2𝐷𝑉𝑚. Then 〈Δ𝑤𝑖(𝑐)〉 is positive for c=0 and negative

when |c| is high enough. Thus there exist a unique value Vpot for which 〈Δ𝑤𝑖(𝑐)〉 is positive if |c|<Vpot,

and negative if |c|>Vpot, which correspond to the initial definition of Vpot. Additionally, if Δ𝑤+ =

2Δ𝑤−, we can verify that Vpot=DVm, thanks to the symmetry properties of DS and p.

137

 Article about ANNet

The following pages are an article, recently accepted for publication in the International Journal of

Neural Systems. This article sums up the implementation and results obtained with ANNet (see Section

VI.B).

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

IX. RÉSUMÉ EN FRANÇAIS

 Introduction

Enregistrer le cerveau est important à la fois pour en étudier le fonctionnement, mais également pour

des applications telles que les interfaces cerveau-machine. Les microélectrodes extracellulaires

permettent l’enregistrement de l’activité individuelle des cellules neurales. Avec les évolutions

techniques, les matrices d’électrodes comportent de plus en plus de sites, permettant d’enregistrer de

nombreux neurones simultanément. Cela ouvre beaucoup d’opportunités mais nécessite des

algorithmes adaptés, notamment pour les interfaces cerveau machine qui nécessitent un traitement

en temps réel des données. En particulier, pour les enregistrements extracellulaires, il est préférable

de trier les potentiels d’action émis par différents neurones et enregistrés sur une même électrode,

une opération appelée spike-sorting. De nombreuses méthodes existent, mais peu permettent un

traitement en temps réel des données. Ce travail de thèse est focalisé sur le développement d’une

méthode radicalement nouvelle, utilisant un réseau de neurones artificiel « spike-timing-dependent

plasticity » (STDP). Ce type de réseau, encore peu utilisé pour des tâches de reconnaissance, a des

propriétés d’apprentissage non-supervisé intéressantes pour le spike-sorting. Un tel algorithme

pourrait être implémenté dans des puces neuromorphiques très basse consommation, qui connaissent

aujourd’hui d’importants développements.

 Etat de l’art des méthodes de spike-sorting

Une microélectrode extracellulaire enregistre les potentiels d’action émis par des neurones proches.

La forme de ces potentiels d’action diffère selon la position du neurone qui l’émet, ce qui permet de

les trier par une méthode de spike-sorting.

La plupart des méthodes se décomposent en trois étapes principales : la détection des potentiels

d’action, l’extraction de traits caractéristiques de leur forme, puis leur classification en groupes qui

correspondent alors aux différents neurones enregistrés. La détection se fait par un seuillage, soit

directement sur le signal, soit après un prétraitement basé par exemple sur un calcul d’énergie,

l’application d’ondelettes ou l’utilisation d’un gabarit de potentiel d’action. La forme du potentiel

d’action détecté peut alors être directement utilisée pour la classification, mais la plupart des

méthodes en extraient quelques caractéristiques, afin de réduire le nombre de dimensions à traiter.

Ces caractéristiques peuvent être prédéfinies, telles que l’amplitude ou la largeur du potentiel d’action

ou des coefficients d’ondelette, ou bien déterminées automatiquement par un algorithme de réduction

de dimension tel que l’analyse en composantes principales (ACP). La dernière étape consiste à classer

les vecteurs de caractéristiques obtenus dans différents groupes. Parmi les algorithmes de

regroupement utilisés on peut citer l’ « expectation-maximization », le « K-mean », le « mean-shift »,

le « superparamagnetic clustering ». Une étude a notamment utilisé un réseau STDP monocouche

pour cette étape de classification.

D’autres méthodes utilisent une approche plus globale, en modélisant le signal enregistré comme la

somme de potentiel d’actions. C’est le cas des méthodes dites de « template matching ». Différents

gabarits de potentiels d’action sont déterminés lors d’une étape de prétraitement semblable aux

157

méthodes décrites précédemment. Ces gabarits sont ensuite utilisés pour détecter et classer les

potentiels d’action présents dans le signal.

La plupart des méthodes en trois étapes nécessitent un traitement offline, notamment à cause de

l’étape de classification, qui requiert souvent de connaître au préalable tous les points à classer. Les

méthodes par « template matching » sont plus adaptées à une exécution online. En effet, bien que

l’étape de détermination des gabarits se fasse souvent offline, une fois les gabarits connus ces

méthodes traitent le signal localement, permettant donc un traitement online. Un autre aspect

important pour une exécution temps-réel est le temps de calcul, qui peut s’avérer limitant, en

particulier pour l’étape de classification.

Lors de l’utilisation de matrices d’électrodes denses, les potentiels d’action d’une même cellule peuvent

être enregistrés sur plusieurs électrodes. Cela apporte plus d’information pour le tri, à condition

d’exploiter correctement l’aspect spatial des potentiels d’action. L’étape de détection doit déterminer

non seulement à quel moment a lieu un potentiel d’action mais également sur quelles électrodes.

L’étape de classification doit tenir compte de cette position, soit par un algorithme adapté, soit en

prenant cette position comme caractéristique. Les méthodes par « template matching » ne nécessitent

pas forcement d’adaptation, les gabarits étant nuls sur les électrodes où le potentiel d’action n’est pas

visible.

Quelques difficultés connues peuvent surgir lorsque que l’on cherche à trier des potentiels d’action.

Premièrement une cellule peut décharger en « burst », et les potentiels d’action générés diminuent

alors en amplitude. Il faut donc modéliser cette diminution ou utiliser des caractéristiques

indépendantes de l’amplitude. Deuxièmement, lors d’enregistrements longs, la forme des potentiels

d’action peut changer au fil du temps. Une façon de pallier ce problème est de traiter le signal par

morceaux suffisamment courts, dont il faudra ensuite lier les résultats. Enfin, un des problèmes les

plus difficiles à résoudre est la superposition temporelle de potentiels d’action. Seules les méthodes

modélisant la sommation de potentiels d’action sont robustes à ce problème.

De nombreuses implémentations de méthodes de spike-sorting existent, mais très peu permettent

pour le moment le traitement en temps réel de données de matrices électrodes dense.

 Etat de l’art des réseaux de neurones STDP

Contrairement aux réseaux de neurones formels où les neurones sont statiques et donnent en sortie

une valeur numérique, les réseaux STDP, inspirés de la réalité biologique, sont constitués de neurones

ayant une dynamique temporelle et générant des trains de spikes. Une autre différence importante

est que les réseaux STDP utilisent des lois d’apprentissage locales.

Dans ces réseaux STDP, l’information est donc véhiculée par des trains de spikes et peut être

interprétée de différentes manières. L’encodage par taux de décharge considère que l’information est

portée par le taux de décharge moyen des neurones. Cet encodage permet une formalisation plus

simple mais induit une perte d’information et ne permet pas d’expliquer la rapidité d’exécution de

certaines tâches par le cerveau. À l’inverse, avec l’encodage par impulsions, l’information est portée

par les temps d’émission de chaque spike. Cette information temporelle peut être utilisée de

différentes façons selon que l’information importante se trouve dans l’identité des neurones

déchargeant en premier ou dans la synchronisation de différents neurones.

158

Les neurones utilisés dans les réseaux STDP peuvent avoir différents types de comportements tel que

décharger de manière persistante pendant un stimulus ou seulement au début du stimulus, décharger

par rebond après un stimulus inhibiteur, ou être sensibles seulement aux changements brusques dans

un stimulus. On distingue deux grands types de modèles : les modèles où toute la dynamique du

potentiel interne au neurone est mise en équation, ce qui peut être couteux en temps de calcul, et les

modèles où les spikes sont modélisés comme des évènements discrets déclenchés par un dépassement

de seuil et seule la dynamique en dessous de ce seuil est mise en équation. Le choix d’un modèle

dépend du comportement que l’on souhaite reproduire, avec quel degré de réalisme et quel coût

calculatoire.

Si les modèles de neurones sont variés, les lois de plasticité synaptique le sont aussi. La loi STDP la plus

connue consiste en un changement persistent du poids de la synapse déclenché par l’occurrence d’un

spike postsynaptique et d’un spike présynaptique. L’amplitude du changement dépend alors de

l’intervalle de temps entre ces deux spikes. Les observations expérimentales montrent que le poids

augmente pour un spike présynaptique précédant un spike postsynaptique et diminue pour un spike

postsynaptique précédant un spike présynaptique. De plus l’amplitude du changement diminue avec

la longueur de l’intervalle de temps. Cependant, d’autres types de dépendances ont été observés et

utilisés dans des modèles. Les lois STDP basées sur des paires de spikes ne parviennent pas à expliquer

toutes les observations. Aussi, d’autres modèles de plasticité ont été développés, prenant en compte

plus de deux spikes. Il existe aussi des plasticités à court terme, pour lesquels les changements de

poids ne sont pas persistants. Elles sont souvent induites par les spikes présynaptiques seulement, et

se traduisent par une augmentation (facilitation) ou une diminution (dépression) des poids après

plusieurs spikes présynaptiques consécutifs rapprochés. La plasticité à court terme permet une

régulation du potentiel postsynaptique. Les lois STDP induisant un renforcement positif, il peut être

difficile de les paramétrer pour être à la fois stables et discriminatives. Les mécanismes d’homéostasie,

intervenant à des échelles de temps différentes et sur plusieurs synapses, permettent une meilleure

stabilité. Ces mécanismes interviennent soit directement sur le poids des synapses, par exemple en

assurant une normalisation de la somme des poids, soit sur l’excitabilité du neurone postsynaptique

(on parle alors de plasticité intrinsèque), soit en modulant les paramètres de plasticité synaptique (on

parle alors de méta-plasticité).

Dans un réseau, les neurones et les synapses obéissent à des règles simples mais leurs interactions sont

complexes. Les études de réseaux aléatoires à poids synaptiques fixes montrent plusieurs dynamiques

possibles, dont le régime asynchrone où chaque neurone décharge indépendamment selon une loi de

Poisson. Ce régime ne peut être obtenu qu’avec un équilibre entre l’excitation et l’inhibition. D’autres

études se focalisent sur l’évolution du poids des synapses selon différentes hypothèses de corrélation

entre l’activité des neurones postsynaptiques et présynaptiques. Il a par exemple été montré que l’on

peut obtenir un équilibre entre l’excitation et l’inhibition par une loi STDP symétrique, ce qui améliore

les performances lors de tâches de reconnaissance de motifs.

Bien qu’il n’existe pas de méthode universelle pour entrainer un réseau STDP à effectuer une tâche de

reconnaissance, il a été montré que ceux-ci ont des propriétés d’apprentissage non-supervisé. On

trouve des exemples d’application à la reconnaissance de motifs visuels ou auditifs.

159

 Modèle de réseau développé dans la thèse

Le réseau STDP qui a été développé est un réseau « feedforward », constitué de trois couches de

neurones, ayant chacune un rôle spécifique, ainsi que d’un mécanisme d’attention. Cette structure,

construite pour traiter un signal mono-électrode, a ensuite été adaptée pour traiter un signal

provenant d’électrodes multiples.

La première couche, dite couche d’entrée, a pour but de transformer le signal d’entrée en train de

spikes. Chaque neurone de cette couche agit comme un neurone sensoriel sensible à une certaine

plage de valeur. Il décharge à intervalles réguliers lorsque le signal est dans sa plage de sensibilité. Les

neurones d’entrée ont différentes plages de sensibilité et prennent en compte la valeur du signal avec

différents délais, ce qui permet d’encoder à chaque instant la forme du signal dans une fenêtre de

temps de 0,5 ms.

Les potentiels d’action ne sont présents que de manière ponctuelle dans le signal. Un mécanisme

d’attention a été implémenté afin que le réseau ne traite que les parties du signal comportant un

potentiel d’action. Ce mécanisme d’attention est implémenté grâce à une plasticité à court terme, qui

permet de diminuer le poids des neurones d’entrée déchargeant fréquemment, c’est-à-dire ceux

codant pour des valeurs proches de zéros. Dans la première version du réseau (MiniNet) cette plasticité

a été implémentée sur les synapses reliant la couche d’entrée à la couche intermédiaire. Par la suite,

un neurone d’attention a été implémenté pour isoler cette fonction de détection. Celui-ci reçoit les

spikes émis par la couche d’entrée via des synapses implémentant une plasticité à court terme et émets

une série de spikes pendant la durée d’un potentiel d’action présent dans le signal.

La deuxième couche du réseau, appelée couche intermédiaire, a pour but de reconnaitre des motifs

dans le train de spikes de la couche d’entrée, qui correspondent à différentes formes de signal. Les

neurones intermédiaires implémentent un modèle « Leaky integrate and fire » (LIF), dont le potentiel

augmente à chaque réception de spike et revient sinon à zéro selon une décroissance exponentielle.

Un neurone LIF émet un spike (décharge) lorsque son potentiel atteint un seuil. Les poids des synapses

provenant de la couche d’entrée sont initialisés aléatoirement. Avant apprentissage, chaque neurone

reçoit donc une excitation similaire, insuffisante pour décharger. Les neurones reçoivent en plus les

spikes du neurone d’attention, ce qui leur permet de décharger lorsque ce dernier décharge. Les

synapses provenant de la couche d’entrée suivent une loi STDP. Leurs poids diminuent à chaque spike

postsynaptique, mais augmentent si le spike postsynaptique coïncide avec un spike présynaptique.

Grâce à cette loi les neurones intermédiaires deviennent sensibles à une forme spécifique du signal. La

taille du champ récepteur de ces neurones, c’est-à-dire leur tolérance à la différence entre le signal en

entrée et la forme apprise, peut être ajustée soit en modifiant leur seuil de décharge, soit en modifiant

la largeur de la plage de sensibilité des neurones d’entrée. Afin d’éviter que plusieurs neurones

déchargent simultanément et apprennent un même motif, un mécanisme dit « Winner-take-all » (WTA)

est implémenté : lorsqu’un neurone décharge, les autres neurones de cette couche sont inhibés. Dans

les dernières versions du réseau (LTSNet et PolyNet), une variante du WTA et de la loi STDP est

implémentée, permettant à deux neurones de décharger simultanément, sans pour autant apprendre

le même motif. Cela permet d’avoir des champs récepteurs se chevauchant partiellement, ce qui

améliore la reconnaissance par la dernière couche du réseau. Lorsqu’un potentiel d’action est présent

dans le signal, les neurones de la couche intermédiaire déchargent donc les uns à la suite des autres

selon la forme du signal à différents moment du potentiel d’action.

La dernière couche est la couche de sortie. Celle-ci doit émettre un spike pour chaque potentiel

d’action dans le signal, reflétant ainsi l’activité neuronale enregistrée. Elle doit notamment être robuste

160

aux différences dans la longueur des séquences émises par la couche intermédiaire. Pour parvenir à

cet objectif, plusieurs mécanismes ont été testés. Premièrement une plasticité intrinsèque a été

implémentée pour permettre au seuil des neurones de s’adapter à la taille des séquences apprises.

Celle-ci a été testée sur les premières versions du réseau (MiniNet et ANNet). La loi STDP utilisée est

similaire à celle utilisée sur la couche intermédiaire. Une variante a été testée, appelée STDP latérale,

selon laquelle les poids sont modifiés lorsque le neurone postsynaptique reçoit une inhibition par WTA.

Les neurones inhibés apprennent à ne pas reconnaitre un motif reconnu par d’autres neurones, ce qui

améliore les performances. Dans une des versions du réseau (ANNet), afin de forcer les neurones de

sortie à décharger après la fin de la séquence de spikes intermédiaires, ceux-ci sont inhibés par le

neurone d’attention. En plus de cela les synapses provenant de la couche intermédiaire sont

dupliquées avec différents délais, ce qui permet à la fois de garder une excitation après la fin de la

séquence et d’avoir une information sur les temps d’émission des spikes. Cette structure est cependant

complexe. Dans les dernières versions du réseau (LTSNet et PolyNet), le modèle de neurone LIF a été

remplacé par un modèle dit « LTS » (low threshold spiking) ayant la propriété de décharger par rebond

après une inhibition. Les synapses provenant de la couche intermédiaire sont alors inhibitrices, ce qui

permet aux neurones de sortie de décharger naturellement après la fin de la séquence.

Enfin, ce modèle de réseau, conçu pour traiter le signal d’une électrode, a été adapté au cas de

plusieurs électrodes suffisamment proches pour qu’un potentiel d’action soit détectable sur plusieurs

d’entre elles. La structure de base est dupliquée pour chaque électrode à traiter, formant ainsi

plusieurs sous-réseaux parallèles. Des connections synaptiques entre les différents sous-réseaux sont

ensuite introduites, pour prendre en compte la redondance d’information entre les électrodes voisines.

Plusieurs structures ont été testées, au niveau de chaque couche du réseau. La solution retenue est

de connecter la couche de sortie de chaque sous-réseau aux couches intermédiaires de plusieurs sous-

réseaux correspondants à des électrodes voisines. Le mécanisme WTA de la couche de sortie est

également étendu sur plusieurs sous-réseaux voisins.

 Evaluation des performances

Afin de tester ses performances, le réseau développé a été testé sur plusieurs jeux de données.

Premièrement des jeux de données simulées pour lesquelles la vérité est connue. Pour générer des

signaux mono-électrode, des gabarits de potentiel d’action sont placés dans le signal puis du bruit est

ajouté. Pour générer des signaux multi-électrodes, un modèle de potentiel d’action extracellulaire basé

sur une structure de cellule neuronale simplifiée a été développé. Deuxièmement, des jeux de données

réelles, pour lesquels des enregistrements de tétrodes ont été utilisés, associés à un enregistrement

intracellulaire donnant la vérité pour une cellule.

Pour évaluer la qualité du spike-sorting, nous avons choisi d’utiliser un F-score, qui prend en compte à

la fois les faux positifs, les faux négatifs et les erreurs de détection. Ce score peut être subdivisé en un

score de classification, un score de détection, un score de précision et un score de rappel. Nous avons

également utilisé différents indices pour évaluer chaque sous partie du réseau. La détection par le

neurone d’attention a été évaluée par une variante de l’aire sous la courbe ROC. La qualité de la couche

intermédiaire a été évaluée selon deux indices différents : l’un basé sur l’entropie conditionnelle de la

vérité connaissant la sortie de la couche intermédiaire, l’autre basé sur les distances entre les motifs

intermédiaires.

161

Notre réseau a été comparé à deux autres logiciels de spike-sorting : Osort et Wave_clus, tous deux

pouvant, comme le réseau STDP, s’utiliser de manière automatique. Chacune des méthodes testées a

été exécutée sur différents jeux de données avec différentes caractéristiques, et la significativité des

différences de performance a été évaluée sur chaque jeu à l’aide de tests statistiques (test de Welch).

 Implémentations et résultats

Différentes versions du réseau STDP ont été implémentées suivant les modèles décrits au paragraphe

D, chacune présentant des améliorations. La première version implémentée, MiniNet, est aussi la plus

simple. Il n’y a pas de neurone d’attention, la plasticité à court terme étant implémentée sur les

synapses reliant les couches d’entrée et intermédiaire. Ce réseau donne déjà de bons résultats sur des

données simulées simples. Des tests additionnels sur la couche de sortie montrent que la STDP latérale

améliore les résultats et que la plasticité intrinsèque permet de mieux discriminer des potentiels

d’action de durées différentes.

Le réseau a ensuite été amélioré par l’augmentation de la fréquence d’encodage par la couche d’entrée

et l’introduction d’un neurone d’attention. Cette version, nommée ANNet, comprend également une

couche de sortie inhibée par le neurone d’attention, recevant les spikes de la couche intermédiaire par

plusieurs délais synaptiques et implémentant une plasticité intrinsèque. Ce réseau a été comparé à

Osort et Wave_clus sur des jeux de données réelles et simulées et donne de meilleurs résultats sur les

signaux avec un rapport signal-sur-bruit inférieur à 4, typique des enregistrements réels. Des tests

préliminaires ont également été menés sur les données tétrodes, avec une structure de réseau en

entonnoir, montrant l’intérêt de croiser les informations provenant de plusieurs électrodes voisines.

Enfin la dernière version mono-électrode du réseau, LTSNet, a pour principale amélioration

l’introduction d’un modèle de neurone LTS sur la couche de sortie, qui permet de s’affranchir de la

structure complexe d’ANNet sur cette couche (délais synaptiques, inhibition par le neurone d’attention,

et plasticité intrinsèque). Ce réseau implémente également un 2-WTA sur la couche intermédiaire et

une STDP latérale sur la couche de sortie. Les performances obtenues sont similaires avec celles

d’ANNet, avec une structure plus simple.

Cette dernière version a été adaptée pour traiter des signaux multi-électrodes, en dupliquant la

structure initiale pour chaque électrode et en introduisant des connexions synaptiques

supplémentaires au niveau de la couche de sortie. Cette structure, appelée PolyNet, permet de

détecter chaque potentiel d’action au niveau de l’électrode présentant la plus forte amplitude, mais

des améliorations restent à apporter pour plus de robustesse dans la classification.

Le réseau STDP développé a été testé sur ordinateur. Un travail préliminaire d’implémentation sur

FPGA a été effectué à l’occasion d’un encadrement de stage. L’implémentation FPGA comprend pour

le moment une couche d’entrée et un neurone d’attention fonctionnels. Ce travail pourra être

poursuivi pour parvenir à une implémentation embarquée complète du réseau. Une implémentation

sur une puce neuromorphique nécessitera plus de développements, mais on peut déjà estimer la

consommation du réseau à moins d’un microwatt par électrode.

162

 Conclusion et perspectives

Le travail effectué a permis de montrer la faisabilité d’appliquer un réseau STDP au problème de spike-

sorting. Les performances obtenues sont en effet comparables, voire supérieures, à celle de l’état de

l’art pour des signaux mono-électrodes. Les mécanismes développés pour répondre aux différents

aspects du problème, à savoir reconnaitre des motifs temporels de tailles variables parmi des stimuli

non pertinents, pourraient être appliqués à des problèmes similaires. Des améliorations peuvent

encore être apportées à ce réseau, notamment pour le traitement de signaux multi-électrodes, par des

modifications de structure ou l’ajout de nouveaux mécanismes. Si l’implémentation sur FPGA marque

un premier pas vers une application embarquée, l’utilisation de puces neuromorphiques pour un tel

algorithme marquerait une grande avancée pour le spike-sorting et pour le traitement de signaux

neuronaux en général. Il y a en effet, pour ce type de traitement, un besoin important

d’implémentations embarquées et peu consommatrices, étant données les contraintes sur les implants

d’enregistrement.

