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Abstract

Kernel methods are known to be effective to analyse complex objects by implicitly

embedding them into some feature space. To interpret and analyse the obtained

results, it is often required to restore in the input space the results obtained in

the feature space by using pre-image estimation methods. This work proposes a

pre-image estimation method for time series kernel analytics that consists of two

steps. In the first step, a time warp function, driven by distance constraints in

the feature space, is defined to embed time series in a metric space where analyt-

ics can be performed conveniently. In the second step, the time series pre-image

estimation is cast as learning a linear (or a nonlinear) transformation that ensures

a local isometry between the time series embedding space and the feature space.

The proposed method is compared to state of the art through three major tasks

that require pre-image estimation: 1) time series averaging, 2) time series recon-

struction and denoising, and 3) time series representation learning. The extensive

experiments conducted son 33 publicly-available datasets show the benefits of the

pre-image estimation for time series kernel analytics.

Keywords: Time series, temporal kernel, pre-image estimation, representation

learning, dimensionality reduction, dictionary learning.
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Résumé

Les méthodes à noyaux sont connues pour être efficaces pour l’analyse d’objets

complexes en les plongeant implicitement dans un espace de caractéristiques

(feature-space). Pour interpréter et analyser les résultats obtenus, il est souvent

nécessaire de restaurer dans l’espace d’entrée les résultats obtenus dans l’espace

des caractéristiques à l’aide de méthodes d’estimation de la pré-image. Ce tra-

vail propose une méthode d’estimation de la pré-image pour rendre interprétable

les méthodes d’analyse de séries temporelles à base de noyaux. Dans la première

étape, une fonction de déformation temporelle, supervisée par des contraintes de

distances, est définie pour plonger les séries dans un espace métrique où des anal-

yses pratiques peuvent être menées. Dans la deuxième étape, l’estimation de la

pré-image des séries temporelles est obtenue par l’apprentissage d’une transfor-

mation linéaire (ou non linéaire) assurant une isométrie locale entre le nouvel

espace métrique des séries et l’espace des caractéristiques. La méthode proposée

est comparée aux méthodes de l’état de l’art au travers de trois tâches principales

requérant l’estimation de la pré-image: 1) le centrage des séries temporelles, 2)

la reconstruction et le débruitage des séries temporelles et 3) l’apprentissage de

représentations pour des séries temporelles.

Mots-clés : Séries temporelles , noyau temporel , estimation de pré-images, ap-

prentissage de représentation, réduction de dimension, apprentissage de diction-

naire.

ii



Acknowledgements

First of all, I would like to express my gratitude to my supervisor, Prof. Ahlame
Douzal, for her support, patience. She has spent a lot of her time and her energy
to guide and teach me. It is great luck to be her Ph.D. student.
I am thankful to my co-supervisor, Prof. Paul Honeine, for following each stage of
my Ph.D. I also thank my co-supervisor, Dr. Saeed Varasteh Yazdi, to accompany
and help me during my Ph.D.
I would like to thank all members my jury for their interest in my work. I also
thank Prof. Mohamed Nadif and Prof. Christophe Marsala for reviewing my
thesis and providing helpful comments and suggestions. I thank Prof. Patrick
Gallinari and Dr. Sihem Amer-Yahia for participating in my Ph.D. defense
committee. I thank them all for their valuable time and useful feedback.
I thank the AMA team for giving me the professional and intimate environment to
work. I also thank my colleagues for encouraging me to overcome the difficulties
of my Ph.D.
Finally, I would like to thank my parents for always standing beside me. They
have been my inspiration and motivation for continuing my education.

iii





Contents

Abstract i

Résumé ii

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables ix

Abbreviations xi

1 Introduction 1

Notations 6

2 Importance of pre-image in kernel machinery 9
2.1 Kernel PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Kernel k-SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Kernel regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Related works for pre-image estimation 27
3.1 Exact pre-image solution . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Pre-image estimation by fixed-point iteration . . . . . . . . . . . . . 31
3.3 Pre-image estimation by distance constraints . . . . . . . . . . . . . 32
3.4 Pre-image estimation by isometry preserving . . . . . . . . . . . . . 35
3.5 Pre-image estimation by kernel regression . . . . . . . . . . . . . . 39
3.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Pre-image estimation for time series kernel analytics 43
4.1 Pre-image estimation by isometry preserving between X and Y . . 44
4.2 Pre-image estimation by isometry preserving between X and Φ(X) 45

4.2.1 Learning linear transformation for pre-image estimation . . . 45

v



vi

4.2.2 Learning nonlinear transformation for pre-image estimation . 46
4.3 Pre-image estimation for time series kernel analytics . . . . . . . . . 48

4.3.1 Time series alignment . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Proximity measure between time series . . . . . . . . . . . . 50
4.3.3 Pre-image estimation for time series analytics . . . . . . . . 53

5 Experimental results 57
5.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Validation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Time series averaging by pre-image estimation . . . . . . . . . . . . 62
5.4 Time series reconstruction and denoising by pre-image estimation . 64
5.5 Time series representation learning by pre-image estimation . . . . 69
5.6 Further comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.7 Overall analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Conclusion and future work 79

Bibliography 83



List of Figures

1.1 Illustration of kernel methods . . . . . . . . . . . . . . . . . . . . . 2

2.1 Illustration of kernel PCA . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Illustration of the pre-image problem . . . . . . . . . . . . . . . . . 28
3.2 The pre-image estimation by distance constraints . . . . . . . . . . 33
3.3 The pre-image estimation by isometry preserving . . . . . . . . . . 36

4.1 In the left, the temporal alignment between xi (ti = 5) and xj
(tj = 6), the optimal alignment π∗ is indicated in red. In the right,
the optimal alignment is illustrated as connections between two time
series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Illustration of the DTW constraints . . . . . . . . . . . . . . . . . . 51
4.3 In the left, the temporal alignment between xi (ti = 5) and xr

(t∗ = 6), the optimal alignment π∗ is indicated in red. In the
right, the adjacency binary matrix related to the optimal temporal
alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Time series of umd dataset with classes: up, middle, down . . . 60
5.2 Time series of bme dataset with classes: begin, middle, end. . . 60
5.3 Time series of spiral1 dataset. . . . . . . . . . . . . . . . . . . . . 60
5.4 Time series of spiral2 dataset. . . . . . . . . . . . . . . . . . . . . 61
5.5 6dmg Air-Handwriting dataset with classes: digits, upper, lower 61
5.6 Nemenyi test: comparison of pre-image methods under centroid

estimation task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.7 Time series centroids for some challenging classes of digits,

lower, upper and spiral1 datasets. . . . . . . . . . . . . . . . . 66
5.8 Nemenyi test: comparison of pre-image methods under kernel PCA

reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.9 The time series reconstruction under kernel PCA of some samples

of digits, lower and upper datasets . . . . . . . . . . . . . . . . 68
5.10 Time series denoising under kernel PCA of noisy samples of spiral2

and of the class “M" of upper dataset. . . . . . . . . . . . . . . . . 70
5.11 Nemenyi test: comparison of pre-image methods under kernel k-

SVD representation learning . . . . . . . . . . . . . . . . . . . . . . 72
5.12 The learned time series representations under kernel k-SVD of some

samples of digits, lower, upper datasets . . . . . . . . . . . . . 72

vii



List of Figures viii

5.13 The sparse representation of a time series of the class "k" of lower
dataset and the top 3 involved atoms for its reconstruction . . . . . 73

5.14 Nemenyi Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



List of Tables

5.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 The descriptions of parameters . . . . . . . . . . . . . . . . . . . . . 62
5.3 Average within-class inertia of the estimated time series centroids . 65
5.4 Quality of the time series reconstruction under kernel PCA . . . . . 67
5.5 Quality of the denoising for several noise levels . . . . . . . . . . . . 69
5.6 Quality of the time series representation learning under Kernel k-SVD 71
5.7 Further comparisons for pre-image estimation . . . . . . . . . . . . 74

ix





Abbreviations

DTAK Dynamic Time Alignment Kernel

DTW Dynamic Time Warping

KGA Kernel Global Alignment

KDTW Kernel Dynamic Time Warping

k-SVD k-Singular Value Decomposition

PCA Principal Component Analysis

OMP Orthogonal Matching Pursuit

SVMs Support Vector Machines

p.d positive definite

TsPrima Time series Pre-image

MDS Multidimensional Scaling

RKHS Reproducing Kernel Hilbert space

6DMG 6 Dimensional Motion Gesture

xi





1
Introduction

Over the past two decades, machine learning has become one of the fastest-growing

areas involved with computer science and statistics. Machine learning plays a vi-

tal role in the revolution of science and technology in multiple fields as biomedical

informatics, computer vision and natural language processing. Kernel methods

[53] are among the major machine learning approaches, known to be effective in

dealing with nonlinear problems and complex data as time series, sequences and

graphs. The main idea of kernel methods is to map the data in the input space X

to a feature space H via a nonlinear mapping Φ, where the data can be processed

conveniently by linear approaches, as illustrated in Figure 1.1. Kernel trick, defines

the main concept behind kernel machines, that consists to process all data com-

putations by implicitly using the inner products 〈Φ(x),Φ(x′)〉 = κ(x,x′), where κ

is a valid kernel. Since then, many nonlinear algorithms have been developed for

1
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Feature space

Φ
Feature mapping

Input space

Linear model Nonlinear model

Figure 1.1: Illustration of kernel methods

several machine learning tasks as for classification with kernel Fisher discriminant

analysis [43] and support vector machines [57], for dimensionality reduction with

kernel principal component analysis [46], for sparse coding with kernel k-SVD [5]

and for clustering with kernel k-means [32]. The price that one should pay for

the efficient kernel machinery is that the solutions are only obtained as expan-

sions in terms of the mapped input samples into the feature spaces. However, in

many situations, for analysis and interpretation purposes, there is a need of the

reverse mapping of the obtained results from the feature space back to the input

space, called pre-image estimation problem. For instance, given some noisy sam-

ples, kernel PCA first applies linear PCA on the mapped samples in the feature

space, then perform denoising by projecting them onto the subspace defined by

the leading eigenvectors. The projections have then to be mapped back to the

input space to recover the denoised samples. The pre-image estimation is of a

high interest in many other kernel tasks to obtain, for instance, the reverse map-

ping of the centroids of a kernel clustering or the pre-image of the atoms and the

sparse representations of a kernel dictionary learning, among others. In view of

the importance of the pre-image estimation issue and of its benefits in machine

learning, several major propositions have been developed.

The first study proposed by Schölkopf [40] gives the exact pre-image solution based
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on the inner product between the pre-image and a set of vectors of an orthonor-

mal basis into the input space. This method underlines two strict conditions: the

existence of the pre-image solution and the inversion of the function fκ, where

κ(x,y) = fκ(〈x,y〉), that are unsatisfied in general. Thus, several pre-image

estimation solutions have been proposed. First, in Mika [46], the problem is for-

malised as a nonlinear optimization problem, which for the particular case of the

Gaussian kernel allows to estimate the reverse mapping based on a fixed-point

iterative process. To avoid numerical instabilities of the latter approach, in Kwok

[55], the relationship between the distances in the feature and the input spaces is

established for isotropic kernels and then is used to approximate pre-images by

multidimensional scaling. In Bakir [51], the pre-image estimation problem is cast

as a regression problem between the input and the mapped data and the learned

regression model is used to predict pre-images. Honeine and Richard proposed in

[48] an approach in which the main idea is to estimate, from the mapped data, a

coordinate system that ensures an isometry with the input space. This approach

has the advantage to provide a closed-form solution, to be independent of the ker-

nel nature and to involve only linear algebra.

All the proposed methods for pre-image estimation are either based on optimiza-

tion schemas, such as gradient descent or fixed-point iterative solution or based on

ideas borrowed from dimension reduction methods. In particular, these methods

are developed for Euclidean input spaces, as derivations are straightforward owing

to linear algebra (see [48] for a survey on the resolution of the pre-image problems

in machine learning). A major challenge arises when dealing with non-Euclidean

input spaces, which are often used to represent structured data as sequences, time

series or graphs. In particular, for time series data, thanks to temporal kernels

([36],[28]), kernel machinery has been increasingly investigated with success for

time series kernel analytics ([63], [60], [17], [39, 11]), the pre-image problem for

temporal data remains unaddressed. In addition, time series data, that include

temporal dependency and time delays, are naturally lying in a non-Euclidean in-

put space, preventing the application of the traditional approaches for pre-image

estimation.
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This thesis aims to fill this gap by proposing a pre-image estimation approach for

time series kernel analytics. The main idea of the proposed method consists of

two steps. In the first step, a time warp function, driven by distance constraints

in the feature space, is defined to embed time series into a metric space where

analytics can be performed conveniently. In the second step, the time series pre-

image estimation is cast as learning a linear (or a nonlinear) transformation that

ensures a local isometry between the time series embedding space and the feature

space. The relevance of the proposed time series pre-image estimation is studied

through three major tasks :

- time series averaging,

- time series reconstruction and denoising under kernel PCA,

- time series sparse representation under kernel dictionary learning.

The benefits of the proposed method are assessed through extensive experiments

conducted on 33 publicly-available time series datasets, including univariate and

multivariate time series that may include varying delays and be of the different

lengths. The main contributions of this thesis are:

1. We propose a time warp function, driven by distance constraints in the

feature space, that embeds time series into an Euclidean space.

2. We cast the time series pre-image estimation approach as learning linear or

nonlinear transformations in the feature space.

3. We propose a tractable solution that ensures a local isometry between the

temporal embedded space and the feature space.

4. We conduct wide experiments to compare the proposed approach to the

major alternative pre-image estimation methods under three crucial tasks:

1) time series averaging, 2) time series reconstruction and denoising, and 3)

dictionary learning and sparse representations for time series.

In the thesis, the remainder is summarised as follows. Chapter 2 gives a brief

introduction to kernel PCA, kernel k-SVD and kernel regression, three important
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machine learning methods that crucially require pre-image estimation. Then we

present the major related works for pre-image estimation in Chapter 3. In Chapter

4, we formalise the pre-image estimation problem for time series and develop the

proposed method as well as the corresponding solution. In Chapter 5, we detail

the experiments conducted and discuss the obtained results. Finally, in Chapter

6, we conclude this thesis and point out some perspectives for this work.





Notations

X an input space

X a set of input samples/ a matrix

N number of input samples

p number of eigenvectors

n number of neighbors

x a vector/ a time series

‖ . ‖2 Euclidean distance

‖ . ‖F Frobenius distance

X ′ or XT transpose of matrix X

X−1 inverse of matrix X

H a Hilbert space/ a feature space

〈., .〉 an inner product

κ(., .) a kernel function

Φ(.) a feature mapping

K a Gram matrix

Kii′ element in ith row and jth column of matrix K

H a centering matrix

λ a regularity term

Λ a diagonal matrix

IN identity matrix of size N

1N column vector of size N with entries 1

1N square matrix of size N with entries 1/N

7
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diag(λ1, ..., λN) diagonal matrix of (λ1, . . . , λN)

αj an eigenvector of Gram matrix

λj an eigenvalues of Gram matrix

π an alignment between two time series

tx length of time series x

Φ(X) row vector of Φ(x1), . . . ,Φ(xN)

P (Φ(x)) projection of Φ(x) on subspace of the largest eigenvectors

ϕ a feature vector

γ = (γ1, . . . , γN)T coefficient vector of ϕ with respect to {Φ(xi)}Ni=1

kx = (κ(x1,x), . . . , κ(xN ,x)) row vector of similarities between xi and x

x pre-image of ϕ

x∗ an approximation of x/ an estimation of the pre-image of ϕ

D a dictionary

dj an atom of dictionary D

L number of atoms in dictionary D

A a matrix of sparse coding

ai a sparse coding

fr a temporal embedding function



2
Importance of pre-image in kernel

machinery

This chapter gives a brief introduction to kernel PCA [42], kernel k-SVD [5] and

kernel regression [62], three methods largely used in machine learning tasks where

the pre-image estimation is highly required. Let X be a compact set in Rd. The

positive definite (reproducing) kernel κ(., .) is a function on X 2 → R, which for

all sets of input samples {xi}Ni=1 ⊂ X gives positive matrices K with entries

Kii′ = κ(xi,xi′). By [44], there exists a unique reproducing kernel Hilbert space

H (RKHS) that is associated with kernel κ via feature mapping Φ : X → H. That

means kernel κ can be evaluated as inner product in H:

κ(xi,xi′) = 〈Φ(xi),Φ(xi′)〉

9
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Kernel methods [53] rely on embedding samples x ∈ X with Φ(x) into a feature

space H, of arbitrary large and possibly infinite dimension. The map function

Φ needs not to be explicitly defined, since computations conducted in H can be

carried out by a kernel function that measures the inner product in that space,

namely κ(xi,xi′) = 〈Φ(xi),Φ(xi′)〉 for all xi,xi′ .

Given a set of input samples {xi}Ni=1, xi ∈ Rd, let K be the Gram matrix related to

the kernel κ. With some abuse of notation, let Φ(X) be the row vector of entries

Φ(x1), ...,Φ(xN). Note that kernel κ is supposed to be positive definite, then K

is a positive matrix whose all of eigenvalues are positive.

In the following, the two first Sections describe kernel PCA and kernel k-SVD,

as nonlinear extensions of the well-known PCA and k-SVD. While both methods

estimate a linear combination for optimal reconstruction of the input samples, the

former forces the orthogonality of the atoms that leads to an orthonormal basis

basis, and the latter forces the sparsity while relaxing the orthogonality condition.

2.1 Kernel PCA

Principal Component Analysis (PCA) is a powerful technique for extracting struc-

ture from possibly high-dimensional datasets. PCA is an orthogonal transforma-

tion of the coordinate system in which we describe data. The new coordinate

system is obtained by projection onto the so-called principal components of the

data. A small number of principal components can be sufficient to account for

most of the structure in the data.

Given a set of samples {xi}Ni=1 ⊂ Rd which, for clarity reasons, are assumed cen-

tered, namely
∑N

i=1 xi = 0, PCA finds the principal components by diagonalizing

the covariance matrix:

C =
1

N

N∑
i=1

xix
T
i . (2.1)
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C is positive definite that can thus be diagonalized (Problem (2.1)) by solving the

eigendecomposition:

λjuj = Cuj. (2.2)

with eigenvalues λj ≥ 0 and nonzero eigenvectors uj ∈ Rd \ {0}. Substituting Eq.

(2.1) into the expression (2.2)

λjuj = Cuj =
1

N

N∑
i=1

〈xi,uj〉xi.

we see that all solutions uj with λj 6= 0 lie in the span of x1, . . . ,xN , hence for

the solutions Eq. (2.2) is equivalent to

λj〈xi,uj〉 = 〈xi, Cuj〉, ∀i = 1, . . . , N.

The ratio of eigenvalues λj is the ratio of explanatory importance of the prin-

cipal components with respect to the variables. If a principal component has a

low eigenvalue, then it is contributing little to the explanation of variances in the

variables and may be ignored as redundant with more important principal com-

ponents. Hence, for dimensionality reduction or compression data, one can choose

the number p of principal components such that

p = arg min
p∈N∗

∑p
j=1 λj∑N
j=1 λj

≥ 0.95, (2.3)

where 0.95 is the proportion of information extracted from the input data.

Standard PCA only allows linear dimensionality reduction. However, if the

data has more complicated structures which cannot be well represented in a

linear space, standard PCA will not be very helpful. Fortunately, based on kernel

trick, kernel PCA extends standard PCA to find principal components that are

nonlinearly related to the input variables (illustrated in Figure 2.1). For that, the

principal components are rather determined in the feature space. Similarly, for

the sake of clarity, we assume for now that we are dealing with centered mapped

data, namely
∑N

i=1 Φ(xi) = 0. The covariance matrix in the feature space takes
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Φ(x2)

Φ(x1)
Φ(xN )Φ( . )

xN

x1

u1

up

! ℋ

xi P(Φ(x1)) P(Φ(xi))
P(Φ(xN ))P(Φ(x))

Φ(x)

x

Figure 2.1: Illustration of kernel PCA

then the form of

C =
1

N

N∑
i=1

Φ(xi)Φ(xi)
T . (2.4)

Similarly to standard PCA, the objective comes to find the eigenvalues λj ≥ 0

and eigenvectors uj ∈ H \ {0} that satisfies

λjuj = Cuj. (2.5)

As each uj lie in the span of Φ(x1), ...,Φ(xN), there exist coefficients α1j, . . . , αNj

such that

uj =
N∑
i=1

αijΦ(xi), (2.6)

and for each Φ(xi′)

λj < uj,Φ(xi′) >=< Cuj,Φ(xi′) > . (2.7)

Combining Eq. (2.6) and Eq. (2.7), we get

λj〈
N∑
i=1

αijΦ(xi),Φ(xi′)〉 = 〈C
N∑
i=1

αijΦ(xi),Φ(xi′)〉,

λj

N∑
i=1

αij〈Φ(xi),Φ(xi′)〉 =
〈 1

N

N∑
i=1

Φ(xi)Φ(xi)
T

N∑
i=1

αijΦ(xi),Φ(xi′)
〉
, (2.8)
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λj

N∑
i=1

αij〈Φ(xj),Φ(xi′)〉 =
1

N

N∑
i=1

αij

〈 N∑
j=1

Φ(xj)Φ(xj)
TΦ(xi),Φ(xi′)

〉
.

In terms of the Gram matrix K = (Kii′)ii′ related to the kernel κ:

Kii′ = κ(xi,xi′) =< Φ(xi),Φ(xi′) >,

and αj = [α1j, . . . , αNj], we have:

λjKαj =
1

N
K2αj. (2.9)

The problem (2.6) remains to find the solution of the eigendecomposition problem:

λjαj =
1

N
Kαj. (2.10)

Let λ1 ≥ ... ≥ λp (Nλj in Eq. (2.10)) be the p non-zero eigenvalues of 1
N
K

and α1, ...,αp their corresponding eigenvectors. The principal components in the

feature space are then given by computing the projections Pj(Φ(x)) of the sample

x onto the eigenvector uj = Φ(X)αj:

Pj(Φ(x)) =< uj,Φ(x) >=
N∑
i=1

αij < Φ(xi),Φ(x) >= kxαj, (2.11)

with kx = [κ(x1,x), ..., κ(xN ,x)]. By denoting α = [α1, ...,αp], the description

P (Φ(x)) of Φ(x) into the sub-space of the p first principal components is then

P (Φ(x)) = (kxα)T . (2.12)

Two considerations should be taken in the above results. First, the eigenvectors

uj should be normalised by:

1 = 〈uj,uj〉 = 〈Φ(X)αj,Φ(X)αj〉

= αTj Φ(X)TΦ(X)αj = αTj Kαj

= αTj λjαj = λj〈αj,αj〉.

Secondly, as Φ(X) should be centered by considering Φ̃(X) = Φ(X)− 1
N

Φ(X)1N1
T
N

with 1N = (1, . . . , 1)T ∈ RN the unit vector. The Gram matrix K in Eq. (2.10)

and kx in Eq. (2.11) need to be substituted with their centered counterparts,
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namely K̃ and k̃x, as follows:

K̃ = Φ̃(X)T Φ̃(X)

=
(

Φ(X)− 1

N
Φ(X)1N1

T
N

)T(
Φ(X)− 1

N
Φ(X)1N1

T
N

)
= Φ(X)TΦ(X)− 1

N
Φ(X)TΦ(X)1N1

T
N −

1

N
1N1

T
NΦ(X)TΦ(X)+

+
1

N2
1N1

T
NΦ(X)TΦ(X)1N1

T
N

= K − 1

N
K1N1

T
N −

1

N
1N1

T
NK +

1

N
1N1

T
NK

1

N
1N1

T
N

= K −K1N − 1NK + 1NK1N , (2.13)

with (1N)ij = 1/N for all i, j, and IN the identity matrix.

Similarly, k̃x is defined by:

k̃x =
[
〈Φ̃(x1), Φ̃(x)〉, ..., 〈Φ̃(xN), Φ̃(x)〉

]
=
[
〈Φ(x1)− 1

N
Φ(X)1N ,Φ(x)− 1

N
Φ(X)1N〉,

..., 〈Φ(xN)− 1

N
Φ(X)1N ,Φ(x)− 1

N
Φ(X)1N〉

]
=
[
〈Φ(xi),Φ(x)〉 − 1

N
Φ(x)Φ(X)1N − Φ(xi)

1

N
Φ(X)1N+

+
1

N2
1TNΦ(X)TΦ(X)1N〉

]N
i=1

=
[
κ(xi,x)− 1

N
kx1N −

1

N
kxi1N +

1

N2
1TNK1N

]N
i=1

=
(
kx −

1

N
kx1N1

T
N

)
−
( 1

N
1TNK −

1

N2
1TNK1N1

T
N

)
= kx(IN −

1

N
1N1

T
N)− 1

N
1TNK(IN −

1

N
1N1

T
N)

= (kx −
1

N
1TN K) (IN − 1N).

For centered data, the p principal components u1, . . . ,up are then:

uj =
N∑
i=1

αijΦ̃(xi),

where Φ̃(xj) = Φ(xj)− Φ̄ and Φ̄ = 1
N

∑N
i=1 Φ(xi).

The projection P (Φ̃(x)) of Φ̃(x) onto the subspace of the p eigenvectors is defined
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by:

P (Φ̃(x)) =

p∑
i=1

〈Φ̃(x),ui〉ui =

p∑
i=1

〈Φ̃(x), Φ̃(X)αi〉Φ̃(X)αi

=

p∑
i=1

〈Φ̃(x), Φ̃(X)〉αiΦ̃(X)αi =

p∑
i=1

k̃xαiΦ̃(X)αi

=

p∑
i=1

Φ̃(X)αi(k̃xαi)
T =

p∑
i=1

Φ̃(X)αiα
T
i k̃

T
x

= Φ̃(X)ααT k̃Tx .

From that, we obtain the approximation of Φ(x) as

Φ(x) = Φ̃(x) + Φ̄

≈ P (Φ̃(x)) + Φ̄

= Φ̃(X)ααT k̃Tx + Φ̄

= Φ(X)(IN − 1N)ααT k̃Tx +
1

N
Φ(X)1N

= Φ(X)
[
(IN − 1N)ααT k̃Tx +

1

N
1N
]
. (2.14)

Note that Φ(x) is expressed as a linear combination of the mapped set Φ(X).

Kernel PCA first maps the data into the feature space via a nonlinear fea-

ture mapping Φ, then preforms linear PCA on the mapped data. This method is

convenient to detect nonlinear structure in a given data [27] and highly used for

data compression, reconstructions and denoising. However, the results obtained

by kernel PCA live in high dimensional feature space H. To make the compressed,

denoised results expressed into the input space, a pre-image problem should be

solved.

2.2 Kernel k-SVD

Sparse coding and dictionary learning become popular methods in machine

learning and pattern recognition for a variety of tasks as feature extraction
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([56],[35],[39]), reconstruction, denoising, compressed sensing ([14],[9]) and classifi-

cation ([33],[64]). The aim of sparse coding methods is to represent input samples

as a linear combination of few basis functions called atoms composing a given

dictionary. Sparse coding is generally formalised as an optimisation problem that

minimises the error of the reconstruction under l0 or l1 sparsity constraint. The

l0 constraint, that control the maximum number of involved atoms, leads to a

nonconvex and NP-hard problem. This problem can however be solved efficiently

by using the matching pursuit method ([18]) or its orthogonal variant ([66]). Re-

laxing the sparsity constraint from l0 to l1 norm yields a convex sparse coding

problem, also known a a LASSO problem ([54]). In sparse coding, the used dic-

tionary may be selected among pre-specified familly of basis functions as, among

Fourier, Wavelets ([34]), Curvelets ([10]), Contourlets ([61]) and Gabor functions

([37]). Although these dictionaries allow fast transforms, their reconstribution po-

tential is tightly related to the nature of the data. For instance, Wavelets show

efficient reconstruction for natural images and textures ([13]), Curvelets for edges

([37]) and Gabor for sounds ([26]). The alternative to the above basis functions is

to use a dictionary learning approach to learn, from the input data, a set of atoms

to sparse represent the input samples. To solve that dictionary learning problem

most approaches alternate between two steps: 1) keep the dictionary fixed and find

the sparse representation using a sparse approximation algorithm, e.g., orthogonal

matching pursuit (OMP), 2) keep the representation fixed and update the dictio-

nary, either all the atoms at once by using for instance MOD (method of optimal

directions) ([21]) or one atom at a time as in k-SVD([1]). In particular, k-SVD

uses a singular value decomposition to learn jointly the dictionary as well as the

sparse coefficient. k-SVD can be viewed as a generalisation of k-means algorithm

that relaxes the assignment constrain to represent each input sample by a linear

combination of few representative atoms (i.e., the centroids) instead by using only

one centroid. In the following,we formalise the standard sparse coding and dictio-

nary learning problem and present the standard efficient solution k-SVD.

Given an input sample x ∈ Rd and a dictionary D ∈ Rd×L: D = [d1, . . . ,dL] com-

posed of L atoms dj ∈ Rd, the objective of sparse coding problem is to represent
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sparsely x by a linear combination of a few atoms of D. This problem is formalised

as minimising the error of reconstruction of x under a sparsity constraint:

min
a
‖x−Da‖2

2 s.t. ‖a‖0 ≤ τ (2.15)

where a = (a1, . . . , aL)T ∈ RL is the sparse code of x and D is in general a

predefined (e.g., Fourier, Wavelet, Gabor basis functions) and overcomplete (i.e.,

d << L) dictionary. The l0 sparsity constraint in Eq. (2.15) ensures to limit

the maximum number of involved atoms to τ . Although the l0-norm renders the

problem formalised in Eq. (2.15) nonconvex and NP-hard, it can be efficiently

solved via matching pursuit ([18]) or its orthogonal variant OMP ([66]). The main

idea of OMP method is to select at each iteration the atoms dj that is highly

correlated to the input sample or to its residual part. The coefficient aj, obtained

by an orthogonal projection on the sub-space defined by the yet selected atoms,

defines the contribution of dj to reconstruct x. The process is reiterated until

the maximum number τ of atoms is reached. Algorithm 1 gives the main steps

of the OMP method. It is worth noting that although initialising the dictionary

with a given family of basis functions (e.g., Fourrier, Wavelet) hastens the process,

the sparse coding result remain in general more precise when the dictionary are

proposed in the literature, among them the k-SVD [14] method that we detail in

the following.

Let X ∈ Rd×N : X = [x1, . . . ,xN ] be the matrix giving the description of N input

samples, with xi ∈ Rd. The dictionary learning problem, that generalises the

sparse coding given in Eq. (2.15), can be formalised as learning both the sparse

coding and the dictionary D to minimise the error of reconstruction of a set input

samples:

min
A,D
‖X −DA‖2

F s.t. ∀i ‖ai‖0 ≤ τ, ∀j ‖dj‖2 = 1 (2.16)

where A = [a1, . . . ,aN ] ∈ RL×N gives the sparse coding ai ∈ RL of samples xi and

dj the jth atom of unit l2-norm. The above optimisation problem is not convex

in both A and D, that is resolved in general by using a block-coordinate-descent

method. This method consists of alternating two steps: 1) keep the dictionary

D fixed and learn the sparse codes A and 2) keep the sparse codes A fixed and
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Algorithm 1 OMP

Input: x ∈ Rd, D, τ .
Output: a.

1: Initialization: r = x, Ω = {∅}
2: while |Ω| ≤ τ do
3: Select the atom dj (j /∈ Ω):

dj = arg max
rTdj

‖r‖2‖dj‖2

4: Update the set of selected atoms:

Ω = Ω ∪ j

5: Update the coefficients:

aΩ = (DT
ΩDΩ)−1(DT

Ωx)

{where DΩ is the subs-dictionary of the selected atoms and aΩ the
related coefficients}

6: Estimate the residual:

r = x−DΩaΩ

7: end while
8: Return a.

learn the dictionary D. The algorithm k-SVD uses a singular value decomposition

(SVD) to learn jointly the dictionary as well as the sparse codes as follows.

Let us denote aj. = (aj1, . . . ,ajN) is the jth row of matrix A, it provides

the contribution of atom dj to reconstruct N input samples. To update dk, the

objective function in Eq. (2.16) can be formulated as:

min
A,D
‖X −DA‖2

F = min
A,D
‖X −

L∑
j=1

djaj.‖2
F

= min
A,D
‖(X −

∑
j 6=k

djaj.)− dkak.‖2
F

= min
A,D
‖Ek − dkak.‖2

F , (2.17)

where DA is expressed as the sum of L rank-1 matrices, each one giving the

sparse representation of X involving one atom. The matrix Ek ∈ Rd×N stands for

the error of reconstruction for the N samples excluding the kth atom. An SVD

rank-1 approximation on Ek can be used to find dk and ak.. However, the new ak.

may not be sparse anymore. To preserve the sparsity of ak., the residual matrix
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Algorithm 2 k-SVD

Input: X = {x1, . . . ,xN} ⊂ Rd×N , D,τ .
Output: D,A.

1: repeat
2: for i = 1, . . . , N do

ai = OMP (xi, D, τ)

3: end for
4: for k = 1, . . . , L do
5: Estimate Ek = X −

∑
j 6=k djaj.

Ωk = {i/aki 6= 0, i = 1, . . . , N}

6: Define ER
k as the restriction of Ek to Ωk

7: Apply an SVD on ER
k = UΣV T

8: Update dk = u1 and aRk. = σ1v1

9: end for
10: until convergence
11: Return D,A.

Ek is limited to only samples that involve atom dk. Denote ωk as the set of index

where ak. is not zero and Ωk as a matrix of size N × |ωk| with 1 on the (ωk(i), i)

entries and zeros elsewhere. aRk. and ER
k are discarded the zeros columns of ak.

and Ek by multiplying to Ωk. Subsequently, SVD is used to estimate the closest

rank-1 matrix that approximate ER
k annd the first column u1, singular value σ1

and right singular vector v1 are then used to update the atom dk and its related

coefficients ak..

k-SVD is an iterative algorithm (Algorithm 2) that alternates between sparse

coding of the input samples based on the current dictionary and a process of

updating the dictionary atoms to better fit the given data. The update of the

dictionary columns is combined with an update of the sparse representations,

thereby accelerating convergence. The k-SVD algorithm is flexible and can work

with any pursuit method (e.g., basis pursuit, Focuss, or matching pursuit).

When dealing with complex data, kernel k-SVD may be required to learn in the

feature space the dictionary and the sparse representations of the mapped samples

as a nonlinear combination of the dictionary atoms [5]. This method improves the

separating margin between dictionaries and allow better tolerance against different
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types of degradation. Moreover, kernel k-SVD can provide better discrimination

than the standard k-SVD and kernel PCA. Let us introduce a brief description of

kernel k-SVD.

Let D = [d1, ...,dL] ∈ Rd×L be the dictionary composed of L atoms dj ∈ Rd. The

embedded dictionary Φ(D) = Φ(X)B is defined as a linear representation of Φ(X),

since the atoms lie in the subspace spanned by the Φ(X). The kernel dictionary

learning problem takes the form

min
B,A
‖Φ(X)− Φ(X)BA‖2

F , (2.18)

s.t. ‖ai‖0 ≤ τ ∀i = 1, ..., N,

where the matrix B = [β1, ...,βL] ∈ RN×L gives the representation of the embedded

atoms into the base Φ(X) and A = [a1, ...,aN ] ∈ RL×N gives the sparse represen-

tations of Φ(X), with the sparsity level τ imposed by the above constraint.

The kernel k-SVD algorithm iteratively cycles between two stages. In the first

stage, the dictionary is assumed fixed with B known and a kernel orthogonal

matching pursuit (KOMP) technique [31] is deployed to estimate A as

min
ai
‖Φ(xi)− Φ(X)Bai‖2

2, (2.19)

s.t.‖ai‖0 ≤ τ, ∀i = 1, . . . , N.

As in standard OMP, given a sample x, we select the atoms that best reconstructs

Φ(x) by using the iterative proceduce. We denote that:

Φ(x) = Φ(X)x̂+ r,

where x̂ and r are respectively the current estimation of x and the current residual

based on the selected atoms. Let Ω be the set of indices of selected atoms. The

residual r is projected on the remaining dictionary atoms:

〈r,Φ(X)βi〉 = 〈Φ(x)− Φ(X)x̂,Φ(X)βi〉,

= (kx − x̂TK)βi, ∀i /∈ Ω. (2.20)

The method selects a new dictionary atom in the remaining set that gives largest

projection coefficient in Eq. (2.20). This selection guarantees the biggest reduction
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of approximation error:

Ω = Ω ∪ arg max
i
〈r,Φ(X)βi〉

The sparse representation of Φ(x) on the selected dictionary atoms are obtained

by using the least square solution:

ax = arg min
ax

‖Φ(x)− Φ(X)βΩax‖2
2,

ax =
(

(Φ(X)βΩ)T (Φ(X)βΩ)
)−1

(Φ(X)βΩ)TΦ(x),

= (βTΩKβΩ)−1(kxβΩ)T .

The estimation x̂ is updated by

x̂ = βΩax

The procedure is reiterate until the selection of τ atoms. Once the sparse codes A

of the N samples estimated, the second stage of the kernel k-SVD is performed to

update the dictionary B and sparse coding A. For that, the reconstruction error

is defined as

min
B,A
‖Φ(X)− Φ(X)BA‖2

F = min
B,A
‖Φ(X)− Φ(X)

L∑
j=1

βjaj.‖2
F ,

= min
B,A
‖Φ(X)(IN −

∑
j 6=k

βjaj.)− Φ(X)βkak.‖2
F ,

= min
B,A
‖Φ(X)Ek − Φ(X)βkak.‖2

F , ∀k = 1, . . . , L,

(2.21)

with aj. ∈ RN referencing the j-th row of A and Ek = IN −
∑

j 6=k βjaj. the error

of reconstruction matrix when removing the k-th atom. An eigendecomposition is

then preformed to get

(Φ(X)ER
k )T (Φ(X)ER

k ) = (ER
k )TKER

k = V ΣV T , (2.22)

where ER
k is the error of reconstruction restricted to the samples that have involved

the k-th atom. The dictionary βk and sparse coding aRk. are updated by using the
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first eigenvector v1 with

aRk. = σ1v
T
1 and βk = σ−1

1 ER
k v1. (2.23)

Similarly to kernel PCA, the obtained dictionary Φ(X)B of kernel k-SVD, that is

a linear combination of Φ(x1), . . . ,Φ(xN), lives in the high dimensional feature

space. To restitute the learned sparse representation as well as the learned

dictionary into the input space, a pre-image estimation problem should be solved.

2.3 Kernel regression

The linear regression problem has been widely used in statistics and machine learn-

ing. The non linear kernel regression was proposed later [58], it performs a linear

regression in the kernel feature space, which represents a nonlinear regression in

the input space. To avoid a large number of parameter estimations and compu-

tational difficulties, a dual version of ridge regression is proposed in [62], closely

related to Vapnik’s kernel method [59].

Given two sets X = [x1, . . . ,xN ] and Y = [y1, . . . ,yN ] with xi ∈ Rp and the

repesctive yi ∈ Rq. The linear regression problem aims to learn a linear transfor-

mation L ∈ Rq×p such that:

L = arg min
L
‖Y − LX‖2

F ,

then predict y with respect to a new sample x, based on the obtained transfor-

mation:

y = Lx.

The ridge regression adds a regularisation term to the linear regression problem

as:

‖Y − LX‖2
F + λ‖L‖2

F . (2.24)
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with the regularisation parameter λ ≥ 0. The constrained formulation of Eq.

(2.24) is then:

‖R‖2
F + λ‖L‖2

F s.t. R = Y − LX (2.25)

Using Lagrange multipliers A ∈ RN×q, we can replace the above constrained opti-

misation problem by

λ‖L‖2
F + ‖R‖2

F + trace
(
A(Y − LX −R)

)
(2.26)

In the Kuhn Tucker theorem, there exist values of Lagrange A for which, the

problem (2.25) is equivalent to the problem (2.26). First, to minimise (2.26), we

make the differential in L equal to 0:

2λL− ATXT = 0

L =
1

2λ
ATXT (2.27)

Substituting Eq. (2.27) into Eq. (2.26), we have

λ‖ 1

2λ
ATXT‖2

F + ‖R‖2
F + trace

(
A(Y − 1

2λ
ATXTX −R)

)
=

1

4λ
trace

(
ATXT (ATXT )T

)
+ ‖R‖2

F −
1

2λ
trace(AATXTX) + trace(AY )− trace(AR)

=
1

4λ
trace

(
ATXTXA

)
+ ‖R‖2

F −
1

2λ
trace(AATXTX) + trace(AY )− trace(AR)

= − 1

4λ
trace(AATXTX) + ‖R‖2

F + trace(AY )− trace(AR) (2.28)

Set the derivative of (2.28) with respect to R equal to 0, we obtain

2R− AT = 0

R =
1

2
AT (2.29)

Substituting Eq. (2.29) into (2.28), it leads:

− 1

4λ
trace(AATXTX) + ‖1

2
AT‖2

F + trace(AY )− trace(A1

2
AT )

= − 1

4λ
trace(AATXTX)− 1

4
AAT + trace(AY ) (2.30)
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Make the derivative of (2.30) with respect to A equal to 0, we have

− 1

2λ
XTXA− 1

2
A+ Y T = 0

A = 2λ(XTX + λIN)−1Y T (2.31)

Given a new sample x, from Eq. (2.27) the prediction y can be given by

y = Lx =
1

2λ
ATXTx

=
1

2λ
(2λ(XTX + λIN)−1Y T )TXTx

= λY (XTX + λIN)−1XTx. (2.32)

To make nonlinear regression between X and Y , [62] embed the input data

X into a high dimensional feature space H via the feature mapping Φ, then

construct a linear regression in the feature space between Φ(X) and Y . This

linear regression problem can then be formulated as learning a transformation L:

L = arg min
L
‖Y − LΦ(X)‖2

F

Similar to the dual linear regression in the input space, given a new sample x, the

prediction of y is then obtained by using Eq. (2.32) and substituting XTX and

XTx by respectively Φ(X)TΦ(X) and Φ(X)TΦ(x) as:

y = λY (Φ(X)TΦ(X) + λIN)−1Φ(X)TΦ(x). (2.33)

Using the property 〈Φ(x),Φ(x′)〉 = κ(x,x′) for all x,x′ ∈ Rp, we have:

Φ(X)TΦ(X) = [Φ(x1), . . . ,Φ(xN)]T [Φ(x1), . . . ,Φ(xN)]

= (〈Φ(xi),Φ(xj)〉)ij

= (κ(xi,xj))ij,
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and

Φ(X)TΦ(x) = [Φ(x1), . . . ,Φ(xN)]TΦ(x)

= (〈Φ(x1),Φ(x)〉, . . . , 〈Φ(x1),Φ(x)〉)T

= (κ(x1,x), . . . , κ(xN ,x))T .

Hence, Eq. (2.33) is rewritten as:

y = λY (K + λIN)−1kTx . (2.34)

with K = (κ(xi,xi′))i,i′ ∈ RN×N and kTx = (κ(x1,x), . . . , κ(xN ,x))T ∈ RN .

While kernel regression learns a nonlinear transformation between X and

Y by embedding X into the feature space, kernel dependency [23] learns a

nonlinear transformation between X and Y by embedding both sets into different

feature spaces. In the first step, Y is embeded into the feature space Hκ̂ associated

kernel κ̂, where a kernel PCA is performed to obtain the representation of Φκ̂(Y ).

The p principal components are denoted u1, . . . ,up in Hκ̂. By kernel PCA, the

coefficient of any feature vector Φκ̂(ϕ) can be defined by

P (Φκ̂(ϕ)) = (〈Φκ̂(ϕ),u1〉, . . . , 〈Φκ̂(ϕ),up〉)T . (2.35)

Similarly, X is embedded in the feature space Hκ related to the Gram matrix

K ∈ RN×N with entries Kii′ = κ(xi,xi′). Subsequently, the problem is to learn a

transformation L between P (Φκ̂(Y )) and Φκ(X) as

L = arg min
L
‖P (Φκ̂(Y ))− LΦκ(X)‖2

F

In the second step, given a new sample x and by using Eq. (2.34), the prediction

of P (Φκ̂(y)) is obtained as:

P (Φκ̂(y)) = λP (Φκ̂(Y ))(K + λIN)−1(kx)T . (2.36)
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Let’s denote γ1 = λP (Φκ̂(Y ))(K + λIN)−1(kx)T , from Eq. (2.35) and the orthog-

onal PCA systems obtained in Eq. (2.6), we have

(〈Φκ̂(y),u1〉, . . . , 〈Φκ̂(y),up〉)T = γ1

Φκ̂(y) ≈ [u1, . . . ,up]γ1

Φκ̂(y) ≈ [Φκ̂(Y )α1, . . . ,Φκ̂(Y )αp]γ1

Φκ̂(y) ≈ Φκ̂(Y )αγ1 (2.37)

where α = [α1, . . . ,αp] are eigenvectors of Gram matrix K̂ with entries K̂ii′ =

κ̂(yi,yi′). For the prediction of y, the pre-image estimation of Φκ̂(y), that is a

combination of Φ(y1), . . . ,Φ(yN) in Eq. (2.37), should be solved:

y = arg min
y∗

‖Φκ̂(y
∗)− Φκ̂(y)‖2

F . (2.38)

In this chapter, we introduce three well-known kernel methods that are kernel

PCA, kernel SVD and kernel regression. These methods have been used commonly

for the analysis of complex and unstructured data by embedding the data into a

feature space via a kernel mapping. The main trick behind these methods is

to learn nonlinear structures in the input space by learning linear models in the

feature space. While such approaches are fruitful and have widely proven their

efficiency, the results obtained are lying in the kernel feature space, limiting further

interpretations and analysis. The pre-image problem in then crucial to complement

the kernel approaches and allows for any result obtained in the feature space to

be restored into the initial space.



3
Related works for pre-image estimation

In this chapter, we will report the state of the art of the pre-image estimation

problem. The pre-image estimation problem is formalised and the major related

works on pre-image estimation on static and unstructured data are presented.

From the representer theorem [50], any feature vector ϕ ∈ H obtained by some

kernel method may be expressed in the following form:

ϕ =
N∑
i=1

γi Φ(xi), (3.1)

that is as a linear combination of the mapped input samples {Φ(xi)}Ni=1, and

γ = (γ1, . . . , γN)T is called the coefficient vector of ϕ with respect to the set

{Φ(xi)}Ni=1. The pre-image problem aims to find out a sample x ∈ X such that

Φ(x) = ϕ. Since the feature space H has a much higher dimension than the

input space X , the pre-image x may not exist. The pre-image problem is an

27



Chapter 3. Related works for pre-image estimation 28

φ

Φ−1

! ℋ

x*

x1

xN

xi

Φ( . )

Φ(x*)
Φ(x1)

Φ(xN )

Φ(xi)

?

Figure 3.1: Illustration of the pre-image problem

ill-posed problem (illustrated in Figure 3.1), that is often addressed by providing

an approximate solution, namely by estimating x∗ such that Φ(x∗) ≈ ϕ. In this

section, we will discuss the major proposed approaches for pre-image estimation

problem. First, in [41] an exact solution for pre-image problem is proposed under

two assumptions: the existence of the pre-image and the inversion of the kernel

mapping. However, the exact pre-image of a feature vector may not exist and

the invertibility of Φ is only hold for some kernels. Second, [46] cast the pre-

image problem as a nonlinear optimisation problem, which for particular choices

of kernels, can be solved by the fixed-point iteration method. However, this method

suffers from local minimum and numerical instabilities. Latter, [55] determine a

relationship between the distances in the feature space and the distances in the

input space, then apply a multidimensional scaling technique (MDS) to obtain

the pre-image estimation. Unlike the method proposed in [46], the [55] method

is non-iterative, involves only linear algebra and does not suffer from numerical

instabilities or the local minimum problem. However, the obtained pre-image

estimation is reconstructed by using only local information. The method proposed

by [48] learns a new coordinate system in H making an isometry between the

feature space and the input space. By representing ϕ in this coordinate system, its
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pre-image estimation can be obtained thanks to the inner product between its pre-

image and the input samples. This method provides a natural pre-image technique,

requires only linear algebra, and is universal in the sense of being independent of

the type of adopted kernels. The role of the kernel in the pre-image solution may

vanish under some regularisation specifications. Recently, [51] propose a method

based on kernel PCA and kernel regression or kernel dependency [23] to reconstruct

pre-image estimation. In the following, we describe these five major methods to

estimate the pre-image x of a given feature vector ϕ =
∑N

i=1 γi Φ(xi) ∈ H.

3.1 Exact pre-image solution

In Schölkopf [41], according to the theorem 3.1, it is shown that if an exact pre-

image of ϕ exists, it would be easy to compute x such that Φ(x) = ϕ.

Theorem 3.1. Given a feature vector ϕ =
∑N

i=1 γi Φ(xi). If there exists a sample

x ∈ Rd such that

Φ(x) = ϕ,

and if κ is an invertible kernel e.i κ(x,y) = fκ(〈x,y〉) with invertible function fκ,

then we can compute x as

x =
d∑
i=1

f−1
κ

( N∑
j=1

γj κ(xj, ei)
)
ei,

with {e1, . . . , ed} is any orthonormal basis of input space.

Let {e1, . . . , ed} be any orthonormal basis of input space X = Rd. The pre-image

x is represented by:

x =
d∑
i=1

〈x, ei〉 ei.

As fκ is invertible, the inner products are rewritten by

〈x,y〉 = f−1
κ

(
κ(x,y)

)
= f−1

κ

(
〈Φ(x),Φ(y)〉

)
, ∀x,y ∈ X .
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Hence, x may be expandes as:

x =
d∑
i=1

f−1
κ 〈Φ(x),Φ(ei)〉 ei. (3.2)

As ϕ = Φ(x) =
∑N

i=1 γi Φ(xi), x is then obtained as

x =
d∑
i=1

f−1
κ 〈

N∑
j=1

γj Φ(xj),Φ(ei)〉 ei

=
d∑
i=1

f−1
κ

( N∑
j=1

γj κ(xj, ei)
)
ei. (3.3)

This method provides the exact solution of pre-image problem. However, the

assumption of the existence of the pre-image x is not satisfied in many situations.

For instance, we consider the feature mapping that is formulated by

Φ :X → RX (3.4)

x 7→ κ(.,x) (3.5)

Only feature vectors ϕ in H, that can be written as κ(.,x), have an exact pre-

image solution under the mapping Φ. In the case of Gaussian kernels, if a feature

vector ϕ has an exact pre-image solution x, that means that the Gaussian function

κ(.,x) is as a linear combination of the Gaussian functions κ(.,xi) as:

ϕ =
N∑
i=1

γiΦ(xi)

Φ(x) =
N∑
i=1

γiΦ(xi)

κ(.,x) =
N∑
i=1

γiκ(.,xi) (3.6)

However, in [38], it is shown that any Gaussian function can not be written as

a linear combination of Gaussian functions of the other samples, the exact pre-

image x of feature vector ϕ obtained by Eq. (3.6) may not exist. Furthermore, the

inversion of fκ is only satisfied for some kernels as polynomial and sigmoid kernels.

Without the existence of an exact solution, other methods focus on finding an

approximation for the pre-image solution, denoted by x∗ in the following.
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3.2 Pre-image estimation by fixed-point iteration

In [46], a new approach is investigated for the pre-image estimation under the

Gaussian kernel. This method proposes an iterative scheme to estimate the pre-

image x∗ of a given feature vector ϕ, where under particular Gaussian kernels, the

fixed-point iteration method can be used. The problem is formalised as a nonlinear

optimisation:

x∗ = arg min
z∈X

‖ Φ(z)−ϕ ‖2
H

= arg min
z∈X

(
〈Φ(z),Φ(z)〉 − 2 〈Φ(z),ϕ〉+ 〈ϕ,ϕ〉

)
. (3.7)

As ϕ =
∑N

i=1 γiΦ(xi), we have

〈ϕ,ϕ〉 = 〈
N∑
i=1

γiΦ(xi),
N∑
i=1

γiΦ(xi)〉 = γTKγ. (3.8)

Hence, 〈ϕ,ϕ〉 is independent of z. After the kernel κ normalisation and for all

z, 〈Φ(z),Φ(z)〉 = κ(z, z) is constant. Rather than minimising Eq. (3.7), we can

consider the maximisation problem:

x∗ = arg max
z∈X

〈Φ(z),ϕ〉. (3.9)

Substituting Eq. (3.1) into Eq. (3.9), we deduce

x∗ = arg max
z∈X

〈Φ(z),
N∑
i=1

γiΦ(xi)〉 = arg max
z∈X

N∑
i=1

γi〈Φ(z),Φ(xi)〉,

= arg max
z∈X

N∑
i=1

γiκ(z,xi) = arg max
z∈X

F (z) (3.10)

The optimisation problem in Eq. (3.10) can be solved by using gradient descent.

In particular, for a Gaussian kernel κ(x,y) = exp(− ||x−y||
2

2σ2 ), we can use fixed-

point iterative method. We take the derivative of F (z) with respect to z and set
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it to zero, then we have

∂F

∂z
=

∂

∂z

N∑
i=1

γi κ(z,xi) = 0,

⇒ z =

∑N
i=1 γi exp

(
− ||z − xi||2/(2σ2)

)
xi∑N

i=1 γi exp
(
− ||z − xi||2/(2σ2)

) .

By the fix point iteration theorem, x∗ is a convergent point of the sequences {zn}

⇒ zn+1 =

∑N
i=1 γi exp

(
− ||zn − xi||2/(2σ2)

)
xi∑N

i=1 γi exp
(
− ||zn − xi||2/(2σ2)

) . (3.11)

This method gives an approximate solution. But even this is nontrivial as the

dimensionality of the feature space can be infinite. [46] cast this as a nonlin-

ear optimisation problem, which, for particular choices of kernels ( such as the

Gaussian kernel), can be solved by a fixed-point iteration method. However, the

considered optimisation problem is highly non-convex, this method suffers from

numerical instabilities. Moreover, as in any nonlinear optimisation problem, one

can get trapped in a local minimum an the obtained pre-image estimation is thus

sensitive to the initial guess.

3.3 Pre-image estimation by distance constraints

Kwok et al. [55] address the problem of finding the pre-image of a given feature

vector in the feature space induced by a kernel. Unlike the method proposed in

[46] which relies on nonlinear optimisation, the Kwok et al. [55] method directly

finds the location of the pre-image based on the distance constraints in the feature

space. It is non-iterative, involves only linear algebra, and does not suffer from

numerical instability or local minimum problems. The distances between ϕ and

Φ(xi) and their relation to the distances between the pre-image x∗ and xi are

used to estimate x∗, as illustrated in Figure 3.2. The main steps of the proposed
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approach are detailed in the following.

Let d̃2(ϕ,Φ(xj)) be the distances squared into the feature space between ϕ and

Φ(xj) defined as

d̃2(ϕ,Φ(xj)) = ‖ϕ− Φ(xj)‖2
F

= 〈ϕ,ϕ〉 − 2〈ϕ,Φ(xj)〉+ 〈Φ(xj),Φ(xj)〉

= 〈
N∑
i=1

γiΦ(xi),
N∑
i=1

γiΦ(xi)〉 − 2〈
N∑
i=1

γiΦ(xi),Φ(xj)〉+ κ(xj,xj)

= γTKγ − 2γTKi. +Kij. (3.12)

where Ki. and Kij are respectively the ith row and the ij entry of Gram matrix

K.

Let Φ(ẋ1), . . . ,Φ(ẋn) denote the n-th closest elements to ϕ:

φ

! ℋ

x*

Φ

·x1

·xn

·xi

Φ( ·xi)

Φ( ·x1)
Φ( ·xn)

Figure 3.2: The pre-image estimation by distance constraints

{Φ(ẋ1), . . . ,Φ(ẋn)} = arg min
{Φ(z1),...,Φ(zn)}⊂Φ(X)

n∑
i=1

d̃2(ϕ,Φ(zi)). (3.13)

For an isotropic kernel, the relation d2(xi,xj) = g(d̃2(Φ(xi),Φ(xj))) between the

distances in the input and the feature spaces can be established. For instance,

with Gaussien kernel, given a parameter σ, we have

g(z) = −2σ2ln(1− 1

2
z) for z ∈ R. (3.14)



Chapter 3. Related works for pre-image estimation 34

A solution is then deployed to determine the pre-image x such that

[d2(x, ẋ1), . . . , d2(x, ẋn)] =
[
g(d̃2(Φ(x),Φ(ẋ1))), ..., g(d̃2(Φ(x),Φ(ẋn)))

]
,

[‖ x− ẋ1 ‖2, . . . , ‖ x− ẋn ‖2] = [d2(x, ẋ1), . . . , d2(x, ẋn)].

For that, an SVD is deployed on the centered version of the submatrix Xn =

[ẋ1, ..., ẋn], namely

Xn (In − 1n) = U ΛV T = U Z, (3.15)

where U = [u1, . . . ,uq] is the d × q matrix of the left-singular vectors. Let Z =

[z1, . . . ,zn] = ΛV T be the q × n matrix giving the projections of ẋi on the uj’s

orthonormal vectors. We see the distance between xi to the origin equal to d2
0 =‖

zi ‖2. Let z be the presentation of x in new system basic U , we have

d2(z, zi) = d2(x, ẋi). (3.16)

Following [24], Eq. (3.16) can be shown to satisfy:

−2ZT z = (d2 − d2
0)− 1

n
1n 1

T
n (d2 − d2

0), (3.17)

with d2
0 = [‖z1‖2, ..., ‖zn‖2]T , d2 = [d2

1, . . . , d
2
n]T and d2

i = g(d̃2(Φ(x),Φ(ẋi))). We

multiple Z to Eq. (3.17):

−2ZZT z = Z(d2 − d2
0)− 1

n
Z 1n 1

T
n (d2 − d2

0). (3.18)

As Z is centered e.i. Z 1n = 0, Eq. (3.18) is thus

−2ZZT z = Z(d2 − d2
0),

z∗ = −1

2
(Z ZT )−1 Z (d2 − d2

0). (3.19)

The pre-image x∗ estimation is then obtained as:

x∗ = U z∗ +
1

n
Xn1n. (3.20)

The proposed method that directly finds the location of the pre-image based on

distance constraints. Applying a multidimensional scaling technique (MDS) leads
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to an inverse map estimate and thus to the pre-image. This method opens the

door to a range of other techniques taking prior knowledge from input data in

both space, such as manifold learning ([29]) and out-of-sample methods ([45],[49]).

This method is non-iterative, involves only linear algebra and does not suffer from

numerical instability or the local minimum problem. Moreover, it can be applied

equally well to both isotropic kernel and dot product kernels. As the method uses

distance constraints involved on the neighbourhood of ϕ, there is only the local

information that may affect the pre-image estimation.

3.4 Pre-image estimation by isometry preserving

Solving the pre-image problem is pioneered by Mika’s fixed point iterative optimi-

sation technique. Recent approaches take advantage of prior knowledge provided

by the input data , whose coordinates are known in the input space and implicitly

in the feature space, a first step in this direction made by Kwork’s algorithm based

on multidimensional scaling. Using such prior knowledge, Paul Honeine [48] pro-

poses a new approach to learn the pre-image, with the elegance that only linear

algebre is involved. This method focus on learning a new coordinate system in

RKHS, that preserves an isometry with the input space. That means the inner

products between the input data are preserved in both representations. The rep-

resentation of a given feature vector ϕ in the new coordinate system can give us

some information to estimate its pre-image x. This proposed approach (illustrated

in Figure 3.3) proceeds in two steps. First, a coordinate system, spanned by the

feature vectors {Φ(xi)}Ni=1 is learned to ensure an isometry with the input space;

subsequently, the coordinate system is used to estimate the pre-image x of ϕ.

These two main steps are summarised in the followings:

First, let Ψ = {ψ1, ...,ψp} (p ≤ N) be a coordinate system in the feature space

with

ψk =
N∑
i=1

αikΦ(xi) = Φ(X)αk, ∀k = 1, . . . , p,
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e.i., each ψk is defined as a linear combination of the mapped input samples

Φ(xi). This coordinate system can be written in a matrix form: Ψ = Φ(X)A,

where A = [α1, . . . ,αp] ∈ RN×p and Φ(X) = [Φ(x1), . . . ,Φ(xN)]. The projection

of Φ(x) onto the coordinate system Ψ is defined by

ℋ!

Φ(x1)

Φ(xN )

Φ(xi)

xi

x1

xN

ψ1

ψp

ψk

x*
φ

Φ( . )

Figure 3.3: The pre-image estimation by isometry preserving

P (Φ(x)) = [P1(Φ(x)), . . . , Pp(Φ(x))]T

= [〈ψ1,Φ(x)〉, . . . , 〈ψp,Φ(x)〉]T

= [〈Φ(X)α1,Φ(x)〉, . . . , 〈Φ(X)αp,Φ(x)〉]T

= [kxα1, . . . ,kxαp]
T

= (kx[α1, . . . ,αp])
T

= (kxA)T .

with kx =
(
κ(x,x1), . . . , κ(x,xN)

)
. Similarly, the projection of the mapped input

set Φ(X) can be determined by

P (Φ(X)) = [P (Φ(x1)), . . . , P (Φ(xN))]

= [(kx1A)T , . . . , (kxNA)T ]

= (KA)T .
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Hence, to estimate the coordinate system Ψ that is isometric with the input space,

the problem is determined by

〈P (Φ(xi)), P (Φ(xj))〉 = 〈xi,xj〉 ∀i, j ∈ {1, . . . , N},

〈P (Φ(X)), P (Φ(X))〉 = 〈X,X〉,

〈(KA)T , (KA)T 〉 = 〈X,X〉,

KAATK = XTX. (3.21)

This leads to the following optimisation problem:

arg min
A

‖XTX −KAATK‖F + λ

p∑
k=1

‖ψi‖2, (3.22)

where λ is a the regularisation parameter of the term ‖ Ψ ‖2
F developed as follows:

p∑
k=1

‖ψi‖2 =

p∑
k=1

〈ψi,ψi〉,

=

p∑
k=1

〈Φ(X)αi,Φ(X)αi〉,

=

p∑
k=1

Φ(X)αiα
T
i Φ(X)T ,

= Φ(X)AATΦ(X)T = tr(KAAT ).

Hence, Eq. (3.22) is rewritten by using matrix formulation as

arg min
A

1

2
‖ XT X −K AAT K ‖2

F +λ tr(KAAT ) (3.23)

We write briefly AAT by Z, and call f(Z) = 1
2
‖ XT X −K Z K ‖2

F +λ tr(KZ),

the derivation of f respected to Z computed by

∂f

∂Z
=
∂[1

2
tr(XT X −K Z K)(XT X −K Z K)T + λtr(KZ)]

∂Z
= 0, (3.24)
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∂f

∂Z
=
∂[1

2
(tr((XT X)2)− tr((XT X)K ZT K)− tr(K Z K (XT X))+

∂Z
+tr(K Z KK ZT K)) + λ tr(KZ)]

∂Z
= 0,

∂f

∂Z
=

1

2
(0−KXT XK −KXT XK +KK Z KK +KK Z KK) + λK = 0,

K K Z KK = K P K − λK = K (P − λK−1)K,

Z = K−1 (XT X − λK−1)K−1,

AAT = K−1 (XT X − λK−1)K−1. (3.25)

We use AAT to solve the pre-image problem rather that using A. Based on the

isometric property, the pre-image x∗ is estimated as

〈P (Φ(xi)), P (ϕ)〉 = 〈xi,x∗〉, ∀i = 1, . . . , N,

〈P (Φ(X)), P (ϕ)〉 = 〈X,x∗〉,

〈(KA)T , (Kγ)T 〉 = 〈X,x∗〉,

KAATγ = XTx∗. (3.26)

Substituting Eq. (3.25) into Eq. (3.26), we have:

XT x∗ = KK−1 (XT X − λK−1)K−1Kγ,

XT x∗ = (XT X − λK−1)γ,

x∗ = arg min
z

‖ XT z − (XT X − λK−1)γ ‖2 . (3.27)

The problem (3.27) defines a standard overdetermined equation system (N � d)

that can be resolved as a least-square minimisation problem (i.e., any technique

such as the pseudo-inverse or the eigendecomposition). The pre-image estimation

is then:

x∗ = (X XT )−1X (XT X − λK−1)γ. (3.28)

As opposed to previous method, the proposed method neither suffers from the

numerical instability, not requires computing the distances in the input space and

the feature space. Using the inner product information in both spaces, this method

provides a coordinate system in H space to learn the inverse mapping. The major
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advantage of this method resides on its simplicity in dealing with the optimisation

issus, thanks to conventional linear algebra. Moreover, it is universal in the sense

that it is independent of the type of kernels and the feature under investigation.

Note that, for lower values of λ ≈ 0, the obtained solution is no longer dependent

of the kernel κ:

x∗ = (X XT )−1X XT X γ,

x∗ = Xγ

3.5 Pre-image estimation by kernel regression

Bakir [51] the pre-image estimation consists in learning a kernel regression function

that maps all the Φ(xi) in the feature space H related to the kernel K to xi in

the input space Rd. For that, first kernel PCA is deployed to embed Φ(X) into

the subspace spanned by the eigenvectors u1, ...,up defined in Eq. (2.6), with

uj = Φ(X)αj. This embedding can be defined by:

P : H → Rp

Φ(x) 7→ P (Φ(x)) = (kxα)T ,

where P (Φ(x)) is the coefficient of Φ(x) with respect to PCA system {u1, . . . ,up}

in Eq. (2.12). Then, a kernel regression is learned between the set of the projec-

tions in the kernel PCA subspace and X by the pre-image mapping Γ as

Γ : Rp → Rd

P (Φ(x)) 7→ Γ(P (Φ(x))) = (Γ1(P (Φ(x))), . . . ,Γd(P (Φ(x))))T ,

with

Γi = arg min
Γi

N∑
j=1

||xj(i)− Γi(P (Φ(xj))||2 + λΩ(Γi) ∀i = 1, . . . , d, (3.29)

with Γi(P (Φ(x)) =
∑N

j=1 δ
j
i κ̂(P (Φ(x)), P (Φ(xi))). Here, κ̂(., .) is a new kernel on

Rp and δji are unknown parameters to estimate .
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Denote that B ∈ Rd×N is the regression coefficient matrix and K̂ is the Gram ma-

trix with entries K̂ii′ = κ̂(P (Φ(xi)), P (Φ(xi′))). The problem is typically rewritten

as

arg min
B∈Rd×N

‖X −BK̂‖2
F + λ ‖B‖2

F . (3.30)

Note f(B) =‖ X − BK̂ ‖2
F +λ ‖ B ‖2

F . To minimise the function f , we put its

derivation with respect to B equal to zero:

∂f

∂B
=
∂ ‖ X −BK̂ ‖2

F +λ ‖ B ‖2
F

∂B
= 0,

∂
(
tr((X −BK̂)(X −BK̂)T ) + λ tr(BBT )

)
∂B

= 0,

∂
(
tr(X XT )− tr(X K̂TBT )− tr(BK̂ XT ) + tr(BK̂ K̂TBT ) + λ tr(BBT )

)
∂B

= 0.

As K is symmetric, then we have:

0−X K̂ −X K̂ + 2BK̂2 + λ 2 BIN = 0,

B(K̂2 + λ IN) = X K̂,

B = X K̂(K̂2 + λ IN)−1. (3.31)

For a feature vector ϕ = Φ(X)γ ∈ H, its pre-image x∗ is then estimated as:

x∗ = B(k̂P (ϕ))
T , (3.32)

with

k̂P (ϕ) = [κ̂(P (ϕ), P (Φ(x1))), ..., κ̂(P (ϕ), P (Φ(xN)))], (3.33)
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where

P (ϕ) = (kϕα)T ,

=
(
(〈ϕ,Φ(x1)〉, . . . , 〈ϕ,Φ(xN)〉)α

)T
,

=
(
(〈Φ(X)γ,Φ(x1)〉, . . . , 〈Φ(X)γ,Φ(xN)〉)α

)T
,

=
(
(kx1γ, . . . ,kxNγ)α

)T
,

=
(
γTKα

)T
,

= αTKγ,

and

P (Φ(xi)) = (kxiα)T = αTkTxi ,

with α = [α1, . . . ,αp].

The method introduces a technique based on kernel principal component

analysis and regression to reconstruct corresponding pre-image in the input space.

This method avoids difficult and unstable numerical optimisation, is easy to

implement, and permits the computation of pre-images in discrete input space.

By using the pre-image mapping, each pre-image can be computed very efficiently,

and there are no longer issues with complex optimisation code. Moreover, the

method proposed a nonlinear model to adapt to the flexible data as well as

keep the important role of the kernel. However, as substituting feature vector

to its projection by kernel PCA, it requires that the used input samples be

representative. Besides, the choice of kernel κ̂ for kernel regression is trick to

select.

3.6 Overview

To sum up, the three major methods (Section 3.3, 3.4, 3.5) presented above

define three different approaches for pre-image estimation problem. First of all,

all the methods involve only linear algebra and propose solutions that don’t
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suffer from numerical instabilities. In Kwok et al. [55], the solution is mainly

requiring the definition of a relation between the distances into the input and the

kernel feature spaces. That requirement limite the Kwok et al. [55] approach to

linear or isotropic kernels. Honeine et al. [48] alleviate that point by proposing

a closed-form solution that is applicable to any type of kernels. Furthermore,

while in Honeine et al. [48] the pre-image estimation is obtained by learning a

linear transformation into the feature space that preserves the isometry between

the input and the feature space, in Bakir et al. [51], the pre-image estimation is

obtained by using a nonlinear kernel regression that predicts the input samples

from their images into the feature space. Finally, while both [48] and [51]

proposals involve the whole training samples for pre-image estimation, Kwok et

al. [55] uses only the samples on the neighborhood of ϕ, which offers a significant

speed-up; highly valuable in the case of large scale data.



4
Pre-image estimation for time series

kernel analytics

While kernel machinery has been increasingly investigated with success for time

series analytics [60, 17, 39, 11], the pre-image problem for temporal data remains

in its infancy. In addition, time series data, that may involve varying delays and

be of different lengths, are naturally lying in a non-Euclidean input space, that

makes the pre-image methods presented in Chapter 3 inapplicable. This Chapter

proposes a pre-image estimation approach for time series kernel analytics, that

consists of two steps. In the first step, a time warp function, driven by distance

constraints in the feature space, is defined to embed time series in a metric space.

Subsequently, the time series pre-image estimation is cast as learning a linear or

43
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a nonlinear transformation that ensures a local isometry between the time series

embedding space and the feature space.

4.1 Pre-image estimation by isometry preserving

between X and Y

Let X = [x1, . . . ,xN ] be a d × N matrix giving the description of N samples

xi ∈ Rd, and Y = [y1, ...,yN ] be a q×N matrix giving the description of the same

N samples. We formalise the pre-image problem as the estimation of a linear

transformation R that ensures an isometry between X and Y :

R∗ = arg minR ‖XT X − Y TRY ‖2
F with R ∈ Rq×q. (4.1)

Assume that Y Y T is invertible ( q << N). The closed-form solution can be

obtained as:

R∗ = (Y Y T )−1 Y XT X Y T (Y Y T )−1. (4.2)

Based on the inner product preservation, the pre-image estimation x∗ of a given

y ∈ [Y ] is then:

x∗ = (X XT )−1X Y T R∗ y. (4.3)

If XXT is not invertible, we can add the regularity term as

x∗ = (X XT + λ Id)
−1X Y T R∗ y.

Substituting Eq. (4.2) into Eq. (4.3), we have

x∗ = (XXT )−1XY T (Y Y T )−1Y XTXY T (Y Y T )−1y. (4.4)

If Y are invertible, then (Y Y T )−1 = (Y T )−1 Y −1 and the Eq. (4.4) is then simpli-

fied as:

x∗ = XY −1y. (4.5)
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4.2 Pre-image estimation by isometry preserving

between X and Φ(X)

Let X = [x1 . . . ,xN ] ∈ Rd×N be a matrix giving the description of N samples xi.

In the context of kernel machinery, Φ(X) is the embedding of X into the RKHS

under the kernel κ. The proposed pre-image method relies on learning a linear

transformation R in the feature space that ensures an isometry between X and

Φ(X). This result, is then extended to learn a nonlinear transformation R.

4.2.1 Learning linear transformation for pre-image estima-

tion

The main idea to solve the pre-image problem is the isometry preserving in the

same spirit as the method described in Section 4.1. For this purpose, we formalise

the pre-image problem as the estimation of the square matrix R that establishes

an isometry between X and Φ(X), by solving the optimization problem

R∗ = arg min
R

‖XT X − Φ(X)T RΦ(X)‖2
F . (4.6)

By using a kernel PCA where a relevant subspace is considered, an explicit de-

scription P (Φ(X)) ∈ Rp×N of Φ(X) is given and Eq. (4.6) can thus be rewritten

as:

R∗ = arg min
R∈Rp×p

‖XT X − P (Φ(X))T RP (Φ(X))‖2
F . (4.7)

As P (Φ(X))P (Φ(X))T is invertible, similarly to Eq. (4.2), a closed-form solution

is given by:

R∗ =
(
P (Φ(X))P (Φ(X))T

)−1
P (Φ(X))XTX

P (Φ(X))T
(
P (Φ(X))P (Φ(X))T

)−1
. (4.8)

The pre-image estimation x∗ of ϕ =
∑N

i=1 γiΦ(xi), is then given by:

x∗ = (XXT )−1X P (Φ(X))TR∗P (ϕ). (4.9)
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From Eq. (2.12) in kernel PCA 2.1, the projection P (Φ(X)) is defined by

P (Φ(X)) = (P (Φ(x1)), . . . , P (Φ(xN)))

= ((kx1α)T , . . . , kxNα)T )

= αTK. (4.10)

and P (ϕ) is determined by

P (ϕ) = (〈ϕ,u1〉, . . . , 〈ϕ,up〉)T

= (〈ϕ,Φ(X)α1〉, . . . , 〈ϕ,Φ(X)αp〉)T

= (〈Φ(X)γ,Φ(X)α1〉, . . . , 〈Φ(X)γ,Φ(X)αp〉)T

= (γKα)T

= αTKγ. (4.11)

with α defined in Eq. (2.12). Substituting Eq. (4.11) into Eq. (4.9), we have:

x∗ = (XXT )−1X P (Φ(X))TR∗αTKγ. (4.12)

One can easily include some regularisation terms in the optimisation problems

(4.7) and (4.8), which can be easily propagated to the pre-image expression. For

example, in the case of non-invertible XXT , a regularisation term is introduced

in Eq. (4.12) as:

x∗ = (XXT + λId)
−1X P (Φ(X))TR∗αTKγ, (4.13)

for some positive regularisation parameter λ.

4.2.2 Learning nonlinear transformation for pre-image esti-

mation

In the following, we propose to extend the above result to learn nonlinear transfor-

mations for pre-image estimation. Let κ̂ be a kernel defined on the feature space

H, and Φ̂ the corresponding embedding function that maps any element of H into
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the Hilbert space defined by κ̂. With some abuse of notation, we denote Φ̂(Φ(X))

the matrix of all mapped elements Φ̂(Φ(xi)), for i = 1, ..., N . Let K̂ be the Gram

matrix of general term κ̂(Φ(xi),Φ(xj)).

The pre-image estimation problem can be then defined as learning a nonlinear

transformation that defines an isometry between X and Φ̂(Φ(X)) as:

R∗ = arg min
R

‖XTX − Φ̂(Φ(X))T R Φ̂(Φ(X))‖2
F . (4.14)

By using kernel PCA, Eq. (4.15) can be rewritten by:

R∗ = arg min
R

‖XTX − P (Φ̂(Φ(X)))T R P (Φ̂(Φ(X)))‖2
F . (4.15)

Similarly, a closed-form solution for R∗ can be obtained as:

R∗ = (P (Φ̂(Φ(X)))P (Φ̂(Φ(X)))T )−1P (Φ̂(Φ(X))) (4.16)

XTXP (Φ̂(Φ(X)))T (P (Φ̂(Φ(X)))P (Φ̂(Φ(X)))T )−1,

and

P (Φ̂(Φ(X))) = α̂T K̂. (4.17)

where α̂ is a matrix of the eigenvectors of K̂. To estimate K̂, an indirect manner

is to use a kernel PCA, with κ̂(Φ(xi),Φ(xj)) ≈ κ̂(P (Φ(xi)), P (Φ(xj))). A simpler

way is possible when dealing with kernels that are radial basis functions. For

example, for the well-known Gaussian kernel κ̂, K̂ is estimated directly from K

as:

κ̂(Φ(xi),Φ(xj)) = exp

(
−‖ Φ(xi)− Φ(xj) ‖2

2σ2

)
,

= exp

(
−〈Φ(xi),Φ(xi)〉 − 2〈Φ(xi),Φ(xj)〉+ 〈Φ(xj),Φ(xj)〉

2σ2

)
,

= exp

(
−κ(xi,xi)− 2κ(xi,xj) + κ(xj,xj)

2σ2

)
. (4.18)

The estimation of the pre-image of ϕ =
∑N

i=1 γi Φ(xi) is then given by the time

series x∗:

x∗ = (XXT )−1X P (Φ̂(Φ(X)))TR∗P (Φ̂(ϕ)), (4.19)
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with P (Φ̂(ϕ)) = (k̂ϕα̂)T , where k̂ϕ is the vector whose i-th entry is

κ̂(ϕ,Φ(xi)) = exp

(
−‖ ϕ− Φ(xi) ‖2

2σ2

)
,

= exp

(
−〈ϕ,ϕ〉 − 2〈ϕ,Φ(xi)〉+ 〈Φ(xi),Φ(xi)〉

2σ2

)
,

= exp

(
−〈Φ(X)γ,Φ(X)γ〉 − 2〈Φ(X)γ,Φ(xi)〉+ 〈Φ(xi),Φ(xi)〉

2σ2

)
,

= exp

(
−
γTKγ − 2γTkTxi +Kii

2σ2

)
. (4.20)

The above proposed formulations and results for pre-image estimation (Section

4.2.1) present some similarities and differences with the method proposed in [48]

and presented in Section 3.4. First of all, both approaches propose formulations

and solutions that only require linear algebra and are independent of the type of

kernel. To establish the isometry, in [48] a linear transformation restricted to the

form R = Φ(X)AATΦ(X)T is estimated, whereas in our proposal the estimated R

may be linear Eq.(4.6) or non linear Eq.(4.15) and is importantly unconstrained,

namely of general form which enlarges its potential to deal with complex struc-

tures. Finally, while in [48] the solution Eq.(3.28) involves the kernel information

through the regularisation term, which may be canceled for lower values of λ, in

the proposed solutions Eq.(4.13) and Eq.(4.19) the kernel information is entirely

considered regardless of the regularisation specifications.

4.3 Pre-image estimation for time series kernel an-

alytics

In the previous Section 4.2.1, data are assumed static or be a set of time series

of the same length and thus lying in a metric space. In this Section we consider

X = {xi}Ni=1 as instead composed of time series xi of different lengths ti that

are located in a non-metric space, rendering the previous results as well as the
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pre-image estimation related works not applicable.

To address the pre-image estimation for such challenging time series, we define

an embedding function that allows to represent the time series in a metric space,

where the previous linear and nonlinear transformations method for pre-image

estimation can be performed conveniently. Before that, we introduce the concept

of time series alignment and give the definition of some temporal kernels.

4.3.1 Time series alignment

Let xi and xj be two time series. To resorb the delays arising in time series, a

temporal alignment between each xi and xj is performed by dynamic program-

ming. An alignment π of length |π| = m between xi and xj is defined as the set

of m increasing couples

π = ((π1(1), π2(1)), (π1(2), π2(2)), ..., (π1(m), π2(m))),

where the applications π1 and π2 defined from {1, ...,m} to {1, ..., ti} and {1, ..., tj}

respectively obey to the following boundary and monotonicity conditions:

1 = π1(1) ≤ π1(2) ≤ ... ≤ π1(m) = ti,

1 = π2(1) ≤ π2(2) ≤ ... ≤ π2(m) = tj ,

and ∀ l ∈ {1, ...,m}, π1(l+1) ≤ π1(l)+1 and π2(l+1) ≤ π2(l)+1, (π1(l+1)−π1(l)) +

(π2(l + 1)− π2(l)) ≥ 1.

Intuitively, an alignment π between xi and xj describes a way to associate each

element of xi to one or more elements of xj and vice-versa. Such an alignment

can be conveniently represented by a path in the ti × tj grid, as shown in Figure

4.1 (left), where the above monotonicity conditions ensure that the path is neither

going back nor jumping. The optimal alignment π∗ between xi and xj is then
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obtained as:

π∗ = arg min
π

‖xπ1
i − xπ2

r ‖2. (4.21)

where xπ1
i = (xi π1(1), ...,xi π1(m)) and xπ2

j = (xj π2(1), ...,xj π2(m)) are xi and xj

aligned through π.
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Figure 4.1: In the left, the temporal alignment between xi (ti = 5) and
xj (tj = 6), the optimal alignment π∗ is indicated in red. In the right, the
optimal alignment is illustrated as connections between two time series.

4.3.2 Proximity measure between time series

Dynamic time warping [7] is a well-known dissimilarity measure on time series that

capture temporal distortions. Based on the optimal alignment π∗, the Dynamic

time warping (dtw) between two time series xi and xj is defined by

dtw(xi,xj) = ‖xπ
∗
1

i − x
π∗2
j ‖2,

where π∗ is determined in Eq. (4.21).

However, dtw is not a metric as not satisfy the triangle inequality:

dtw(xi,xj) + dtw(xi,xk) � dtw(xk,xj).

The dynamic programming approach [7] is used to find the optimal alignment as

well as the minimum distance dtw between two time series. The complexity of
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the dynamic time warping is O(|xi|×|xj|), where |xi|, |xi| are respectively lengths

of xi and xj. Constraints are widely used to speed up dynamic time warping

programming. Two well-known global constraint region are the Sakoe-Chiba band

[4] and Itakura parallelogram [6], shown in Figure 4.2. The region of optimal

alignment is selected only from respective shaded region.

The Sakoe-Chiba band runs symmetrically along the diagonal and has a width

Figure 4.2: Illustration of the DTW constraints

of T ∈ N. This constraint implies that an element at time t of |xi| can be aligned

only to one element at time t′ of xj such that

t′ ∈
[ |xi| − T
|xj| − T

(t− T ),
|xi| − T
|xj| − T

(t+ T )
]
∩
[
1, . . . , |xi|

]
.

The Itakura parallelogram describes a region that constrains the slope of a

warping path. Given any slope S ∈ {R > 1}, the domain of Itakura parallelogram

lies between two warping paths with the slopes of the values 1/S and S. These

constraints significantly speed up the computation of dtw as well as any measure

based on the optimal time warping alignment. For instance, in case of a Sakoe-

Chiba of a band T , the complexity of computation is only O(T ×max(|xi|), |xj|)

instead of O(|xi| × |xj|) required in standard dtw.
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For temporal data, several kernels under time warping that are proposed in

the last years allow to apply kernel methods for time series. First of all is the

Gaussian dynamic time warping kernel (kdtw) [3] defined by

kdtw(xi,xj) = exp
(
− 1

σ
dtw(xi,xj)

)
,

where σ is a normalisation parameter. In general, kdtw is not positive definite

kernel that allows to embed data into Hilbert feature space. However, this kernel

can procedure good results in some cases [30], [52].

The Dynamic time alignment kernel (dtak) proposed in [28] adjust another simi-

larity or kernel between two time series by finding the optimal alignment to max-

imise the accumulated similarity between two time series:

dtak(xi,xj) = max
π

1

|π|
∑

(t,t′)∈π

s(xit,xjt′)

where in particular s(xit,xjt′) = exp
(
− 1

σ2‖xit − xjt′‖2
)
, and in general

s(., .) is any similarity measure on Rd. dtak is a symmetric kernel function,

however, it may be not a positive definite kernel. Note that, in practice, several

ad-hoc methods that perturb the whole diagonal by the absolute of the small-

est eigenvalue are used to ensure the positive definiteness of Gram matrix of dtak .

Global alignment kernel (kga) [36] is not based on the optimal alignment, but

takes advantage of all accumulated similarity by all possible alignment, defined

by:

kga(xi,xj) =
∑
π

∏
(t,t′)∈π

κ(xit,xjt′)

where

κ(xit,xjt′) = exp
(
− λ(

1

2σ2
‖xit − xjt′‖2 + log(2− e−

1
2σ2 ‖xit − xjt′‖2))

)
.

kga that is positive definite kernel under mild condition, do a better job of quanti-

fying all similarities coherently, because it consider all possible alignments. Global



Chapter 4. Pre-image estimation for time series kernel analytics 53

alignment kernel have been obtain success in different application fields [47], [67]

and shown to be competitive to other kernels. However, similar to kdtw and

dtak, kga has quadratic complexity of computation O(|xi| × |xj|).

4.3.3 Pre-image estimation for time series analytics

Let us consider now that X = {xi}Ni=1 is a set of N time series, where each

xi ∈ Rd×ti is a multivariate time series that may have different length ti and

involve varying delays. Let Φ(xi) be the Φ-mapping of the time series xi into the

Hilbert space H related to a temporal kernel κ(., .) that involves dynamic time

alignments such as Dtak [28], Kdtw [2], Kga [36]. Given ϕ =
∑N

i=1 γi Φ(xi)

a result generated in H, the objective is to estimate the time series x∗ ∈ Rd×t
∗

that is the pre-image of ϕ. This problem is particularly challenging since, under

varying delays, the time series are not longer lying into a metric space, which

makes inapplicable the related work pre-image estimation approaches. Note that,

if the time series are assumed of the same length and lying in a metric space, then

the proposed method in Section 4.2 can be applied.

To address the pre-image estimation for such challenging time series, we propose

an embedding function that allows to represent time series into a metric space,

where the previous linear and nonlinear pre-image estimation can be performed

conveniently.

For this purpose, first we define Nϕ in H and N−1
ϕ as the set of the n-closest

neighbours of ϕ and its pre-image, given as:

Nϕ =
{

Φ(xi)
∣∣∣〈Φ(xi),ϕ〉 =

N∑
j=1

γjκ(xi,xj) is among the n highest values
}

(4.22)

N−1
ϕ =

{
xi
∣∣ Φ(xi) ∈ Nϕ

}
. (4.23)
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Let Φ(xr) be the representative of Nϕ with xr ∈ Rd×t
∗ defined as:

Φ(xr) = arg max
Φ(xi)∈Nϕ

∑
Φ(xj)∈Nϕ

〈Φ(xi),Φ(xj)〉

= arg max
Φ(xi)∈Nϕ

∑
Φ(xj)∈Nϕ

κ(xi,xj). (4.24)

We define fr, the temporal embedding function, that allows to embed time series
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Figure 4.3: In the left, the temporal alignment between xi (ti = 5) and
xr (t∗ = 6), the optimal alignment π∗ is indicated in red. In the right, the
adjacency binary matrix related to the optimal temporal alignment.

xi ∈ Rd×ti into a new temporal metric space as:

fr : X −→ X̃ ⊂ Ĩ = Rd×t
∗

xi −→ fr(xi) = xiWirNir (4.25)

where Wir ∈ {0, 1}ti×t
∗ is the binary matrix related to the optimal temporal

alignement between xi and xr, as shown in Figure 4.3 (right). The matrix

Nir = diag(W T
ir 1ti)

−1 is the weight diagonal matrix of order t∗, of general term
1
|Nt| , that gives the weight of the element t of xr, where |Nt| is the number of

time stamps of xi aligned to t. In particular, note that xr remains unchanged

by fr, as Wrr = Nrr = diag([1, 1, . . . , 1]). The set of embedded time series

X̃ = {fr(x1), ..., fr(xN)} is for now lying in a metric space Ĩ, where the de-

lays are resorbed w.r.t. the representative time series xr. The pre-image solution
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provided in the method described in Section 4.1 can be developed to establish a

linear or nonlinear isometry between X̃ and Φ(X).





5
Experimental results

In this section, we evaluate the efficiency of the proposed pre-image estimation

method under three major time series analysis tasks: 1) time series averaging, 2)

time series reconstruction and denoising and 3) time series representation learn-

ing. The proposed pre-image estimation method TsPrima is compared to three

major alternative approaches introduced in Chapter 3 as Honeine in Section 3.4,

[48], Kwok in Section 3.3, [55], and Bakir in Section 3.5, [51] methods. The ex-

periments are conducted on 33 public datasets (Table 5.1) including univariate

and multivariate time series data, that may involve varying delays and be of the

same or different lengths. The 25 first datasets in Table 5.1 are selected from the

archive given in [12, 20] by using three selection criteria: a) have a reasonable

number of classes (Nb. of Classes < 50), b) have a sufficient size for train and

test samples (Train size <= 500 and Test size < 3000), c) avoid time series of

57
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extra large lengths (Time series length < 700). To obtain a manageable number

of datasets, the 3 above selection criteria are applied on the top 40 datasets, in the

order set out in [65]. The 25 obtained datasets are composed of univariate time

series and half of the datasets include significant delays. We consider a dataset as

including significant delays if the difference between the 1-NN Euclidean distance

error and the 1-NN Dynamic time warping [19] error is greater than 5%. The 5

next datasets include univariate and multivari- ate time series covering local and

noisy salient events as described in [11, 17, 15] and the three last datasets are

related to handwritten digits and characters, they are described as multivariate

time series of variable lengths [25]. In the following, Section 5.1 gives the data

description and Section 5.2 details the validation and evaluation process. Finally,

we discuss the obtained results in Section 5.7.

5.1 Data description

The experiments are conducted on three groups of datasets. The first group

is composed of the 25 datasets from ucr [12] that is the most commonly

used data for time series analytics. Each dataset is a collection of univariate

time series of the same length and pre-divided into training and test sets. In

the second group, we consider bme, umd, powercons and spiral datasets,

where time series share local temporal features within the classes while being of

distinctive global behaviour, and include huge noise (Figure 5.4). For example,

bme (Figure 5.2) includes two challenging classes begin and end characterised

by a small bell arising at the initial and final periods respectively. The overall

behaviour may be different depending on whether the large bell is pointing

upward or downward. umd (Figure 5.1) introduces more complexity with the

classes up and down characterised by a small bell that may occur at different

time stamps. spiral1 (Figure 5.3) and spiral2 (Figure 5.4) share a latent

3-D time series that may appear randomly at different time stamps, in particu-

lar of spiral2 time series involve high level of noise at the initial and final periods.
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Table 5.1: Data Description

Dataset Nb. class Train Test Time series Univariate
size size length

cc 6 300 300 60 X
gunpoint 2 50 150 150 X
cbf 3 30 900 128 X
osuleaf 6 200 242 427 X
swedishleaf 15 500 625 128 X
trace 4 100 100 275 X
facefour 4 24 88 350 X
lighting2 2 60 61 637 X
lighting7 7 70 73 319 X
ecg200 2 100 100 96 X
adiac 37 390 391 176 X
fish 7 175 175 463 X
beef 5 30 30 470 X
coffee 2 28 28 286 X
oliveoil 4 30 30 570 X
diatomsizer 4 16 306 345 X
ecg5days 2 23 861 136 X
facesucr 14 200 2050 131 X
italypowerd 2 67 1029 24 X
medicalimages 10 381 760 99 X
motestrain 2 20 1252 84 X
sonyaiboii 2 27 953 65 X
sonyaibo 2 20 601 70 X
symbols 6 25 995 398 X
twoleadecg 2 23 1139 82 X
spiral1 1 50 50 101 7

spiral2 1 50 50 300 7

powercons 2 73 292 144 X
bme 3 30 150 128 X
umd 3 36 144 150 X
digits 10 100 100 29∼218 7

lower 26 130 260 27∼163 7

upper 26 130 260 27∼412 7
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Figure 5.1: Time series of umd dataset with classes: up, middle, down
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Figure 5.2: Time series of bme dataset with classes: begin, middle,
end.
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Figure 5.3: Time series of spiral1 dataset.

The third group composed of datasets digits, upper and lower consists of 6-D

motion gesture database (6dmg) where time series are multivariate and involved

varying delays. These datasets (Figure 5.5) give the description of the 2-D Air-

handwriting motion gesture of digits, upper and lower case letter performed on a

Nintendo device by different writers [25].

In summary, Table 5.1 indicates for each dataset: the number of classes (Nb.

Class), the size of training set (Train size), the size of test set (Test set), the time
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Figure 5.4: Time series of spiral2 dataset.

Figure 5.5: 6dmg Air-Handwriting dataset with classes: digits, upper,
lower
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series length (Time series length), and the type of time series (Univariate).

5.2 Validation process

In this section, we evaluate the proposed method in the context of averaging, recon-

struction and denoising, and representation learning. We conduct the four meth-

ods: Honeine, Kwok, Bakir and the proposed method TsPrima on the datasets

(shown in Section 5.1). For the comparison, we rely on the standard dtak which

measures the similarity between the obtained time series and the truth ones in

denoising and reconstruction, representation, or the inertia of the obtained cen-

troid in averaging, to evaluate each method. The higher the index, the better the

agreement is. For each method, the related parameters indicated in Table 5.2 are

learned by a grid search on validation set, the best parameters are then used to

perform these tasks on the evaluation set. The process is iterated over 10 runs

and the averaged performances are reported in Table 5.5, 5.4, and 5.6.

Table 5.2: The descriptions of parameters

Methods Parameters Range of values Description
All σt {0.2, 0.5, 1, 2, 5, 10} ∗med(DTW (x,y)) width of dtak
All T [0, 100] lag of 10 Sakoe-Chiba band
TsPrima, Bakir σ {0.2, 0.5, 1, 2, 5, 10} width of Gaussian kernel
Honeine λ 10−9 regulary term
TsPrima, Kwok n [2, round(

√
N)] lag of 2 number of neighbors

5.3 Time series averaging by pre-image estimation

Estimating the centroid of a set of time series is a major topic for many time

series analytics as summarisation, prototype extraction or clustering. Time series

averaging has been an active area in the last decade, where the propositions mainly

focus on tackling the tricky problem of multiple temporal alignments [15, 16, 17].

A suitable way to circumvent the problem of multiple temporal alignments is to
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use a temporal kernel method to evaluate the time series centroid in the feature

space. The pre-image of the centroid is then estimated to obtain the time series

averaging in the input space.

In that context, let X = {xi}Ni=1 and Φ(X) = {Φ(xi)}Ni=1 be, respectively, a set

of time series and their mapped images into the Hilbert space H related to the

temporal kernel dtak [22]. The centroid of X with respect to dtak is defined by

x∗ = arg max
y∈X

N∑
i=1

dtak(y,xi).

As 〈Φ(z),Φ(z)〉 = dtak(z, z) = 1 for any time series z, we have

x∗ = arg max
y

N∑
i=1

dtak(y,xi)

= arg max
y

N∑
i=1

〈Φ(y),Φ(xi)〉

= arg min
y

N∑
i=1

1− 2〈Φ(y),Φ(xi)〉+ 1

= arg min
y

N∑
i=1

〈Φ(y),Φ(y)〉 − 2〈Φ(y),Φ(xi)〉+ 〈Φ(xi),Φ(xi)〉

= arg min
y

N∑
i=1

‖ Φ(y)− Φ(xi) ‖2

⇒ Φ(x∗) =
1

N

N∑
i=1

Φ(xi)

Hence, let ϕ = 1
N

∑N
i=1 Φ(xi) be the centroid of the mapped time series in the

feature space and x∗ its pre-image in the input space. The quality of the obtained

centroids is given by the within inertia
∑

i dtak(x∗,xi); the higher the within

inertia, the better is the estimated centroid.

To evaluate the efficiency of each pre-image estimation method, the time series cen-

troid is estimated for each class of the studied datasets and the induced within-class

inertia is evaluated. The average within-class inertia is then reported in Table 5.3

for each dataset and each pre-image estimation method; the best values are indi-

cated in bold (t-test at 5% risk). In addition, a Nemenyi test [8] is performed to
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compare the significance of the obtained results, with the related critical differ-

ence diagram given in Figure 5.6. The estimated time series centroids for some

challenging classes are shown in Figure 5.7, where we retain particularly spiral1

and the handwritten digits and characters datasets (digits, lower and upper)

as they are more intuitive to visually evaluate the quality of the estimated time

series centroids.

CD

4 3 2 1

1.5 TsPrima

2.5758 Bakir2.6818Honeine

3.2424Kwok

Figure 5.6: Nemenyi test: comparison of pre-image methods under cen-
troid estimation task

5.4 Time series reconstruction and denoising by

pre-image estimation

The reconstruction and denoising tasks represent a standard application context

for pre-image estimation. For time series reconstruction task, a kernel PCA is

performed on the training set, the reconstruction of a given test sample x is then

defined as the pre-image x∗ of its kernel PCA projection P (Φ(x)). The latter

takes the form ϕ = Φ(X)γ, with γ defined as:

γ = (IN − 1N)ααT k̃Tx +
1

N
1N (5.1)

The quality of the reconstruction is then measured as the similarity dtak(x∗,x)

between each test sample x and its reconstruction x∗; the higher the criterion,

the better is the reconstruction. Table 5.4 gives the average quality of recon-

struction obtained for each dataset and each method. Figure 5.8 gives the critical

difference diagram related to the Nemenyi test for the average ranking comparison

of the studied methods. Figure 5.9 shows the reconstructions obtained for some

challenging time series of digits, lower and upper datasets.
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Table 5.3: Average within-class inertia of the estimated time series cen-
troids

Dataset TsPrima Honeine Kwok Bakir
cc 0.744 0.709 0.721 0.709
gunpoint 0.902 0.910 0.882 0.886
cbf 0.798 0.737 0.755 0.737
osuleaf 0.985 0.987 0.986 0.987
swedishleaf 0.910 0.920 0.920 0.92
trace 0.998 0.992 0.991 0.992
facefour 0.981 0.980 0.981 0.98
lighting2 0.918 0.876 0.859 0.875
lighting7 0.964 0.930 0.930 0.931
ecg200 0.593 0.565 0.567 0.566
adiac 0.997 0.997 0.996 0.997
fish 0.996 0.995 0.994 0.995
beef 0.900 0.892 0.898 0.89
coffee 0.998 0.998 0.998 0.998
oliveoil 0.999 0.999 0.998 0.999
diatomsizer 0.997 0.997 0.997 0.997
ecg5days 0.777 0.746 0.417 0.746
facesucr 0.721 0.699 0.648 0.700
italypowerd 0.610 0.552 0.420 0.542
medicalimages 0.671 0.644 0.637 0.646
motestrain 0.776 0.777 0.701 0.777
sonyaiboii 0.749 0.740 0.716 0.740
sonyaibo 0.960 0.962 0.955 0.962
symbols 0.959 0.949 0.904 0.951
twoleadecg 0.980 0.977 0.911 0.977
spiral1 0.831 0.823 0.799 0.824
spiral2 0.947 0.940 0.934 0.940
powercons 0.458 0.328 0.436 0.33
bme 0.701 0.572 0.638 0.555
umd 0.800 0.765 0.724 0.755
digits 0.746 0.575 0.657 0.581
lower 0.713 0.544 0.645 0.545
upper 0.764 0.572 0.57 0.573
Nb. Best 28 9 4 8
Avg. Rank 1.50 2.68 3.24 2.58
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Inputs Honeine Kwok BakirTsPrima

Figure 5.7: Time series centroids for some challenging classes of digits,
lower, upper and spiral1 datasets.
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Table 5.4: Quality of the time series reconstruction under kernel PCA

Dataset TsPrima Honeine Kwok Bakir
cc 0.798 0.747 0.758 0.747
gunpoint 0.994 0.996 0.992 0.99
cbf 0.916 0.854 0.896 0.875
osuleaf 0.997 0.998 0.995 0.998
swedishleaf 0.798 0.701 0.69 0.65
trace 0.689 0.519 0.597 0.519
facefour 0.981 0.951 0.967 0.964
lighting2 0.993 0.967 0.984 0.975
lighting7 0.954 0.92 0.938 0.922
ecg200 0.965 0.979 0.959 0.962
adiac 0.194 0.127 0.139 0.125
fish 0.779 0.58 0.586 0.579
beef 0.528 0.703 0.643 0.704
coffee 0.584 0.595 0.57 0.559
oliveoil 0.150 0.125 0.141 0.121
diatomsizer 0.330 0.174 0.186 0.173
ecg5days 0.996 0.996 0.995 0.995
facesucr 0.939 0.825 0.878 0.847
italypowerd 0.831 0.892 0.023 0.851
medicalimages 0.946 0.906 0.935 0.928
motestrain 0.971 0.987 0.97 0.979
sonyaiboii 0.978 0.989 0.969 0.985
sonyaibo 0.939 0.98 0.924 0.967
symbols 0.885 0.822 0.724 0.761
twoleadecg 0.825 0.63 0.444 0.669
spiral1 0.961 0.939 0.933 0.911
spiral2 0.966 0.939 0.946 0.94
powercons 0.971 0.966 0.955 0.977
bme 0.896 0.800 0.858 0.666
umd 0.885 0.855 0.904 0.797
digits 0.84 0.721 0.798 0.726
lower 0.787 0.696 0.747 0.685
upper 0.856 0.678 0.787 0.687
Nb. Best 22 9 1 3
Avg. Rank 1.56 2.67 2.71 3.06
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Figure 5.8: Nemenyi test: comparison of pre-image methods under kernel
PCA reconstruction

Input Honeine Kwok BakirTsPrima

Figure 5.9: The time series reconstruction under kernel PCA of some
samples of digits, lower and upper datasets
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For the time series denoising task, first a kernel PCA is performed on the training

set, then a (0, σ2) Gaussian noise is added to the test samples x to generate noisy

samples x̃ with different variances σ2. The denoised sample is obtained as the pre-

image x∗ of its kernel PCA projection P (Φ(x̃)), with γ defined as in Eq. (5.1).

Similarly, the quality of the denoising is measured as the similarity dtak(x∗,x)

between x∗ and the initial x. Table 5.5 gives, for different values of σ2, the average

quality of the denoising for some datasets. Figure 5.10 illustrates the denoising

results for some challenging times series of the noisy spiral2 data and of the class

“M" of upper dataset.

Table 5.5: Quality of the denoising for several noise levels

Dataset σ2 TsPrima Honeine Kwok Bakir
digits 0.01 0.832 0.669 0.782 0.666

0.05 0.808 0.619 0.742 0.627
0.1 0.791 0.605 0.723 0.612
0.15 0.783 0.598 0.719 0.606

lower 0.01 0.766 0.651 0.721 0.637
0.05 0.746 0.614 0.689 0.606
0.1 0.736 0.601 0.675 0.596
0.15 0.729 0.594 0.67 0.591

upper 0.01 0.837 0.627 0.765 0.638
0.05 0.806 0.579 0.712 0.6
0.1 0.789 0.561 0.688 0.59
0.15 0.782 0.554 0.679 0.586

Nb. Best 12 0 0 0
Avg. Rank 1.00 3.58 2.00 3.42

5.5 Time series representation learning by pre-

image estimation

For time series representation learning, the kernel k-SVD (τ = 5) is used to learn,

for each class of the considered datasets, the dictionary Φ(X)B and the sparse

representationsA = [a1, ...,aN ] of its membership time series, as defined in Section

2.2. The pre-images D∗ and X∗ of the dictionary Φ(X)B and of the sparse codes A

are then obtained by considering γ = B and γ = BA, respectively. The quality of
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Input + noise Honeine Kwok Bakir

Input + noise TsPrima Honeine Kwok Bakir

TsPrimaInput

Figure 5.10: Time series denoising under kernel PCA of noisy samples
of spiral2 and of the class “M" of upper dataset.

the learned sparse representations is then measured as the similarity dtak(xi,x
∗
i )

between each time series xi and the pre-image x∗i of the sparse representation

Φ(X)B ai. Table 5.6 gives the average quality of the learned representations for

each dataset and each pre-image estimation method. Figure 5.11 gives the critical

difference diagram related to the Nemenyi test for the average ranking comparison

of the studied methods. Figure 5.12 shows the learned representations for some

time series of digits, lower and upper datasets and Figure 5.13 illustrates, for a

challenging sample of the class “k" of lower dataset, the learned representations

as well as the top 3 atoms involved in its reconstruction.
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Table 5.6: Quality of the time series representation learning under Kernel
k-SVD

Dataset TsPrima Honeine Kwok Bakir
cc 0.788 0.73 0.751 0.732
gunpoint 0.993 0.994 0.992 0.985
cbf 0.917 0.862 0.9 0.872
osuleaf 0.996 0.996 0.995 0.996
swedishleaf 0.789 0.659 0.691 0.623
trace 0.687 0.514 0.602 0.514
facefour 0.971 0.94 0.959 0.947
lighting2 0.991 0.961 0.982 0.968
lighting7 0.961 0.934 0.947 0.934
ecg200 0.953 0.957 0.95 0.941
adiac 0.184 0.122 0.131 0.117
fish 0.757 0.553 0.579 0.56
beef 0.411 0.555 0.605 0.621
coffee 0.596 0.607 0.586 0.56
oliveoil 0.145 0.133 0.152 0.12
diatomsizer 0.287 0.177 0.198 0.178
ecg5days 0.996 0.996 0.995 0.994
facesurc 0.917 0.834 0.878 0.842
italypowerd 0.8 0.781 0.034 0.728
medicalimages 0.937 0.86 0.93 0.878
motestrain 0.969 0.97 0.971 0.97
sonyaiboii 0.974 0.975 0.973 0.975
sonyaibo 0.932 0.938 0.93 0.936
symbols 0.811 0.785 0.794 0.755
twoleadecg 0.81 0.617 0.411 0.629
spiral1 0.944 0.913 0.92 0.914
spiral2 0.964 0.936 0.949 0.937
powercons 0.968 0.946 0.957 0.951
bme 0.872 0.734 0.843 0.622
umd 0.888 0.842 0.905 0.788
digits 0.822 0.699 0.793 0.706
lower 0.773 0.678 0.738 0.671
upper 0.840 0.664 0.797 0.675
Nb.Best 24 7 3 3
Avg.Rank 1.50 3.02 2.33 3.15
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Figure 5.11: Nemenyi test: comparison of pre-image methods under
kernel k-SVD representation learning

Input Honeine Kwok BakirTsPrima

Figure 5.12: The learned time series representations under kernel k-SVD
of some samples of digits, lower, upper datasets
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Input Honeine Kwok BakirTsPrima

Atom 1

Atom 2

Atom 3

Figure 5.13: The sparse representation of a time series of the class "k"
of lower dataset and the top 3 involved atoms for its reconstruction

5.6 Further comparison

In the previous experiments (Sections 5.3 to 5.5), we have evaluated the perfor-

mances of TsPrima that are mainly due to two major ingredients : 1) the defined

temporal embedding function fr (Section 4.3.3) and 2) the proposed transforma-

tion R to preserve an isometry between the time series embedding space and the

feature space (Section 4.2). In this last part, the aim is to evaluate the efficiency of

the proposed transformation R, regardless of the effect of fr. For that, TsPrima

is compared to the alternative methods Honeine, Kwok and Bakir once all the time

series embedded into the same metric space; namely, all the pre-image estimation

methods are performed between the time series embedding space and the feature

space. Similar experiments are performed on the 33 public datasets (Table 5.1),
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the results obtained for the three tasks are summarised into Table 5.7 and the

related Nemenyi tests are given in Figure 5.14.

Table 5.7: Further comparisons for pre-image estimation

TsPrima Honeine Kwok Bakir
Averaging Nb. Best 19 20 4 19

Avg. Rank 2.23 2.21 3.35 2.21
Reconstruction Nb. Best 24 10 0 1
(kernel PCA) Avg. Rank 1.56 2.35 3.05 3.05
Denoising Nb. Best 12 0 0 0
(kernel PCA) Avg. Rank 1.50 3.25 2.62 3.12
Rep. Learning Nb. Best 25 8 1 2
(kernel kSVD) Avg. Rank 1.44 2.67 2.58 3.32
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3.0455Bakir

(b) Reconstruction (kernel PCA)
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3.25Honeine

(c) Denoising (kernel PCA)
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2.5758 Kwok2.6667Honeine

3.3182Bakir

(d) Reconstruction (kernel k-SVD)

Figure 5.14: Nemenyi Tests.

5.7 Overall analysis

The experiments conducted show that the proposed method TsPrima leads on

almost all the datasets and through the three studied tasks to the best results.

On the other hand, the performances obtained by the alternative methods seem

slightly equivalent and lower than those obtained by TsPrima.

In particular, for time series averaging task, we can see in Table 5.3 that the

centroids estimated by TsPrima lead to the highest within-class similarity on

almost all the datasets, namely, each centroid obtained by TsPrima is in general
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the closest to the set of time series it represents. The analysis of the critical

difference diagram given in Figure 5.6 indicates that the next best results are

obtained respectively by Bakir, Honeine, and Kwok methods. In addition, as the

state of the art methods are connected by a solid bold line, their performances

remain equivalent. From Figure 5.7, we can see that while all the methods succeed

to restitute the centroids of some input classes (shown on the left column) as

the class "6" of digits and "S" of upper datasets, only TsPrima succeeds to

estimate the centroids of the most challenging classes, as the "k" class of lower

dataset and spiral1.

For time series reconstruction, Table 5.4, shows that TsPrima leads to the

highest reconstruction accuracy through almost all the datasets, followed by

Honeine, Bakir and Kwok methods. Figure 5.8 indicates that there is no signif-

icant difference between the performances of the three state of the art methods

(connected by a solid bold line). These results are assessed in Figure 5.9 that

shows, for some input time series, the quality of the reconstructions obtained by

TsPrima and the state of the art methods.

For the time series denoising task, we observe from Table 5.5 and for all the

methods that the quality of the denoising decreases when the intensity of noise

increases. This result is illustrated in Figure 5.10, that shows the denoising results

of the time series "M" of upper dataset and of the highly noisy time series of

spiral2 dataset. In particular, note that Kwok and TsPrima methods lead to

the best results on spiral2 dataset and seem less sensitive to noise than Honeine

and Bakir.

Lastly, for time series representation learning task, Table 5.6 indicates that each

studied method leads to the best sparse representation for at least some datasets

and that TsPrima perform better on almost all the datasets. Figure 5.12 shows

the goodness of the sparse representation obtained. While all the methods succeed

to sparse represent some input time series, the time series "k" and "B" classes

appear challenging for Honeine and Bakir methods. In Figure 5.13, we get a look

on the quality of the learned atoms, that are involved into the reconstruction of

the input samples. The first row gives for some input samples "k" (on the left),
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the sparse representation learned by each method. The three next rows, provide

the three first atoms involved into the reconstructions. We can see that while

the first atom learned by TsPrima is nearly sufficient to sparse present the "k"

input sample, the state of the art methods need obviously more that one atom to

sparse represent the input sample. Finally, the analysis of Figure 5.13 indicates

that Honeine method performs equivalently that Kwok and Bakir, whereas the

Kwok performances are significantly better than those of Bakir method.

Further comparisons (Table 5.7) are conducted in Section 5.6 to evaluate the

efficiency of TsPrima related to the learned transformation R, regardless of

the temporal embedding fr. For averaging task, TsPrima, Honeine and Bakir

lead equivalently to the best performances, followed by Kwok method (Figure

5.14 (a)). From these results we can conjecture that, linear transformations

seem sufficient to achieve good pre-image estimations for averaging task on

these datasets, as both linear and nonlinear approaches (TsPrima, Honeine,

Bakir) perform equivalently. Furthermore, while Honeine and Bakir involve

the whole datasets for the centroid pre-image estimations, Kwok uses a subset

of samples into the neighbourhood of ϕ, which may explain the slightly lower

performances of Kwok method. Note that, although TsPrima involves, similarly

to Kwok method, fewer samples into the neighbourhood of ϕ, it succeeds to

reach the best performances thanks to the efficiency of the learned transforma-

tion R. For the remaining tasks reconstruction, denoising and representation

learning, TsPrima achieves the highest performances, followed by far by

Honeine, Kwok and Bakir (Figure 5.14 (b), (c) and (d)), which assesses the

crucial contribution of the learned transformations R of TsPrima. Lastly, of

particular note is that Honeine and Bakir that involve the whole training samples

induce much computations, specifically for the time series embedding process,

than Kwok and TsPrima that require fewer samples into the neighbourhood of ϕ.

Finally, as all the studied methods propose closed-form solutions, they lead to

comparable complexities. However, for large data, TsPrima and Kwok methods
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are expected to perform faster as requiring fewer samples on the neighbourhood

of ϕ than Honeine and Bakir that involve the whole samples for pre-image

estimation. Note that the complexity of the proposed solutions is mainly related

to the matrix inversion operator. In Kwok method, the inversion of ZZT required

in Eq. 3.19, where Z is of dimension (q × n) and n is the neighbourhood size,

induces a complexity of O(q2n) + O(q3); as q is in general small and fixed

beforehand, the overall complexity is about O(n). For Honeine method, Eq. 3.28

requires two inversions of XXT and K, which induces, respectively, a complexity

of O(d2N) + O(d3) and O(N3), that leads to an overall complexity of O(N3).

For Bakir method, Eq. 3.31, requires the inversion of the Gram matrix, which

leads to a complexity of O(N3). For TsPrima, Eq. 4.12 involves the inversion

of XXT , where X is of dimension (d × n), d is the time series length and n

is the neighbourhood size. The induced complexity is of O(d2n) + O(d3). For

the time series embedding part, the complexity is mainly related to the time

warping function which is of order O(d2n). As d is in general higher than the

neighbourhood size n, the overall complexity for TsPrima is about O(d3). To

sum up, as the neighbourhood size n << N and d << N (for not extra large

time series), the complexity induced by both Kwok and TsPrima remains

lower than the one of Honeine and Bakir. Note that, the Honeine method

can be developed to consider only the neighbourhoods instead of all samples.

Finally, as all the studied methods propose closed-form solutions, they lead to

comparable complexities. However, for large data, TsPrima and Kwok methods

are expected to perform faster as requiring fewer samples on the neighborhood of

ϕ than Honeine and Bakir that involve the whole samples for pre-image estimation.

5.8 Conclusion

This work proposes TsPrima, a new closed-form pre-image estimation method for

time series analytics under kernel machinery. The method consists of two stages.

In the first step, we define a time warp embedding function, driven by distance
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constraints in the feature space, that allows to embed the time series in a metric

space. In the second step, the time series pre-image estimation is cast as learning

a linear (or a nonlinear) transformation to ensure a local isometry between the

time series embedding space and the feature space. Extensive experiments show

the efficiency and the benefits of TsPrima through three major tasks that require

pre-image estimation: 1) time series averaging, 2) time series reconstruction and

denoising and 3) time series representation and dictionary learning.



6
Conclusion and future work

In Chapter 2, we introduce three well-known kernel methods that are kernel PCA,

kernel SVD and kernel regression. These methods have been used commonly

for the analysis of complex and unstructured data by embedding the data into

a feature space via a kernel mapping. The main trick behind these methods

is to learn nonlinear structures in the input space by learning linear models in

the feature space. While such approaches are fruitful and have widely proven

their efficiency, the results obtained are lying in the kernel feature space, limiting

further interpretations and analysis. The pre-image problem in then crucial to

complement the kernel approaches and allows for any result obtained in the

feature space to be restored into the initial space.

79
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In Chapter 3, the three major methods (Section 3.3, 3.4,3.5) presented above

define three different approaches for pre-image estimation problem. First of all,

all the methods involve only linear algebra and propose solutions that don’t

suffer from numerical instabilities. In Kwok et al. [55], the solution is mainly

requiring the definition of a relation between the distances into the input and the

kernel feature spaces. That requirement limits the Kwok et al. [55] approach to

linear or isotropic kernels. Honeine et al. [48] alleviate that point by proposing

a closed-form solution that is applicable to any type of kernels. Furthermore,

while in Honeine et al. [48] the pre-image estimation is obtained by learning a

linear transformation into the feature space that preserves the isometry between

the input and the feature space, in Bakir et al. [51], the pre-image estimation is

obtained by using a non linear kernel regression that predicts the input samples

from their images into the feature space. Finally, while both [48] and [51]

proposals involve the whole training samples for pre-image estimation, Kwok et

al. [55] uses only the samples on the neighborhood of ϕ, which offers a significant

speed-up; highly valuable in the case of large scale data.

Chapter 4 proposed formulations and results for pre-image estimation (Section

4.2.1) presented some similarities and differences with the method proposed in [48]

and presented in Section 3.4. First of all, both approaches propose formulations

and solutions that only require linear algebra and are independent of the type

of kernel. To establish the isometry, in [48] a linear transformation restricted

to the form R = Φ(X)AATΦ(X)T is estimated, whereas in our proposal the

estimated R may be linear Eq. (4.6) or non linear Eq. (4.15) and is importantly

unconstrained, namely of general form which enlarges its potential to deal with

complex structures. Finally, while in [48] the solution Eq. (3.28) involves the

kernel information through the regularisation term, which may be canceled for

lower values of λ, in the proposed solutions Eq. (4.13) and Eq. (4.19) the kernel

information is entirely considered regardless of the regularisation specifications.

To address the pre-image estimation for such challenging time series, we proposed

an embedding function that allows to represent the time series in a metric space,
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where the previous linear and nonlinear transformations method for pre-image

estimation can be performed conveniently.

Chapter 5 evaluated the efficiency of the proposed pre-image estimation method

under three major time series analysis tasks: 1) time series averaging, 2) time

series reconstruction and denoising and 3) time series representation learning.

The proposed pre-image estimation method TsPrima is compared to three major

alternative approaches introduced in Chapter 3 as Honeine in Section 3.4, [48],

Kwok in Section 3.3, [55], and Bakir in Section 3.5, [51] methods.

To sum up, this thesis proposes TsPrima, a new closed-form pre-image esti-

mation method for time series analytics under kernel machinery. The method

consists of two stages. In the first step, we define a time warp embedding

function, driven by distance constraints in the feature space, that allows to embed

the time series in a metric space. In the second step, the time series pre-image

estimation is cast as learning a linear (or a nonlinear) transformation to ensure a

local isometry between the time series embedding space and the feature space.

Extensive experiments show the efficiency and the benefits of TsPrima through

three major tasks that require pre-image estimation: 1) time series averaging, 2)

time series reconstruction and denoising and 3) time series representation and

dictionary learning.

Future work will explore the benefits of pre-image estimation methods in several

deep learning contexts. Indeed, although deep learning approaches remain among

the powerful machine learning methods today, the results obtained and the

performance achieved remain generally inexplicable and uninterpretable, which is

a major drawback in the context of diagnostic analysis. Therefore, future studies

will focus on exploring new approaches based on prior image estimation to make

deep learning results interpretable and explainable.
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