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Introduction

Many algorithmic problems in discrete mathematics and computer science require to find a best solution among all feasible ones. These problems, known as optimization problems, are widely encountered in practice. A notable example is the problem of finding a shortest path from a source to a destination in a given network. Another example concerns the computation of a best answer to a given query in a database. In everyday life, problems of that kind naturally arise when using GPS navigation, or when booking flights to a destination; see Figure A for visual examples. In addition to these practical aspects, optimization problems are well studied, and raise important fundamental questions. Research has been focusing on characterizing their computational complexity, either by exhibiting algorithms that run in polynomial time in the size of the input, or by showing that a problem is NP-complete, hence that it is most certainly intractable.

Rather than finding one solution, it is sometimes more desirable to generate all of them. This is for instance useful in certain applications to database search [START_REF] Yan | Substructure similarity search in graph databases[END_REF], network analysis [START_REF] Grochow | Network motif discovery using subgraph enumeration and symmetry-breaking[END_REF], and bioinformatics [START_REF] Damaschke | Parameterized enumeration, transversals, and imperfect phylogeny reconstruction[END_REF]. Problems of that kind are also encountered in everyday life, typically when several solutions may be of interest for a user, as in Figure A. In graph theory, enumeration problems seem to have been first mentioned in the early 70's with the pioneer works of Tiernen [START_REF] Tiernan | An efficient search algorithm to find the elementary circuits of a graph[END_REF] and Tarjan [START_REF] Tarjan | Enumeration of the elementary circuits of a directed graph[END_REF] on cycles in directed graphs, and of Akkoyunlu [START_REF] Abdurrahim | The enumeration of maximal cliques of large graphs[END_REF] on maximal cliques in undirected graphs. However, they already appeared in disguise in earlier works [START_REF] Paull | Minimizing the number of states in incompletely specified sequential switching functions[END_REF][START_REF] Marcus | Derivation of maximal compatibles using Boolean algebra[END_REF]. In hypergraph theory, the most notable enumeration problem is the one of listing minimal transversals, which plays a fundamental role in many areas [START_REF] Eiter | Identifying the minimal transversals of a hypergraph and related problems[END_REF][START_REF] Gunopulos | Data mining, hypergraph transversals, and machine learning[END_REF]. In lattice theory, enumeration problems naturally arise when building lattices [START_REF] Nourine | A fast algorithm for building lattices[END_REF][START_REF] Habib | Efficient algorithms on distributive lattices[END_REF], or when translating between their different representations [Wil94, Kha95, BMN17, HN18]. It is maybe with the newly discovered techniques for enumeration [RT75, TIAS77, AF96], and with the landmark paper of Johnson, Yannakakis and Papadimitriou [START_REF] Johnson | On generating all maximal independent sets[END_REF], that enumeration theory started to gain interest. This last decade, several PhD theses were devoted to enumeration theory, e.g. [START_REF] Bagan | Algorithms and complexity of enumeration problems for the evaluation of logical queries[END_REF]Str10,Mar13,Mar15], and the first edition of the Workshop on Enumeration Problems and their Applications (WEPA) was launched in Clermont-Ferrand, France. This, together with the surveys on enumeration complexity [CKP + 19, Str19], the two Dagstuhl Seminars 18421 and 19211 on algorithmic enumeration [START_REF] Fernau | Algorithmic Enumeration: Output-sensitive, Input-Sensitive, Parameterized, Approximative (Dagstuhl Seminar 18421)[END_REF]BKPS19], and the creation of a Wikipedia page on enumeration algorithms [WIK], illustrate the recent gain of interest for the field.

It has certainly come to the reader that the number of solutions to an enumeration problem may grow exponentially in the size of the input. For example in Figure A.(a), the biker is given two choices in order to reach Rue d'Apollon, and then two choices in order to reach the final destination. This leads to a total number of four possible distinct routes, which clearly, when generalized, is exponential in the number of roads in the network. Therefore when devising enumeration algorithms, and in stark contrast to decision or optimization problems, looking for a running time polynomially bounded by the size of the input is not a reasonable-let alone meaningful-efficiency criterion. Rather, we aim for so-called output-polynomial time algorithms whose running time is polynomially bounded by the sizes of both the input and output data. An important research direction is then to bound, in addition, the delay between two consecutive output solutions. Bounds may be expressed by a polynomial in the size of the input, or by a polynomial in the sizes of the input plus already output solutions. These different notions of complexity lead to a number of intriguing open questions in the field [JYP88, CKP + 19, Str19].

When dealing with the space used by an enumeration algorithm, only the working space is considered: it is assumed that the solutions are flashed, and then immediately discarded. However in order to avoid producing repetitions, some algorithms rely on storing the already generated solutions. This inexorably requires space that is linear in the number of solutions, thus potentially exponential in the size of the input. It is then another important question whether an enumeration algorithm requiring exponential space in order to avoid repetitions may be turned into one that uses only polynomial space, without increasing "too much" its complexity. Recent papers raising the question include [MS19, CU19, CMG + 19].

This thesis focuses on graphs, hypergraphs, and lattices. It is mainly concerned with the different shapes that takes a problem on these structures: the dualization of monotone Boolean functions. In its most simple terms, this problem asks, given a pos-itive1 CNF ϕ, and a positive DNF ψ, whether ϕ = ψ. In its generation versions, only one of the two formulas is provided, and the other (of minimum size) is to be computed. It is easily conceived that such a fundamental question may be encountered in practice. The problem plays in fact a crucial role in database theory, Boolean switching theory, logic, Artificial Intelligence (AI), machine learning, data mining, and many other concrete fields [START_REF] Eiter | Identifying the minimal transversals of a hypergraph and related problems[END_REF][START_REF] Gunopulos | Data mining, hypergraph transversals, and machine learning[END_REF][START_REF] Nourine | Extending set-based dualization: Application to pattern mining[END_REF]. Implementations are numerous [Uno], but are not the object of this manuscript.

In addition to the important role the dualization plays in practice, the problem appears to be of great fundamental interest. Firstly, it is ubiquitous in many areas of theoretical computer science, as we will see in a moment. It is for example equivalent to the aforementioned problem of enumerating the minimal transversals of a hypergraph, or to the problem of enumerating the minimal dominating sets of a graph [EMG08, KLMN14]. Secondly, its precise complexity status remains open after more than forty years of research, despite continuous attempts to solve it [START_REF] Eiter | Identifying the minimal transversals of a hypergraph and related problems[END_REF]EMG08]. To date, it is not known whether the problem can be solved in polynomial time (and its generation version in output-polynomial time): this arguably constitutes one of the most important open problems in enumeration theory. It has however been showed in a landmark paper by Fredman and Khachiyan [FK96] that the problem admits a quasi-polynomial N o(log N ) time algorithm, where N = |ϕ| + |ψ|. In consequence, the problem is probably not coNP-hard, and is believed to lie somewhere in the frontier between P and coNP.

In this thesis, both positive and negative results are exhibited for the dualization, under different restrictions, formulations, and generalizations. The manuscript is organized as follows. In Chapter 1 we give a brief introduction to enumeration problems, algorithms, and their complexity, and formally define the dualization of monotone Boolean functions through different formulations. Chapter 2 is devoted to the study of one equivalent formulation: the enumeration of minimal dominating sets in graphs. We obtain new output-polynomial time algorithms in graph classes related to K t -free graphs and to posets of bounded dimension. Chapter 3 is devoted to the dualization in lattices given by implicational bases, a first generalization of the dualization. Both tractability and intractability results are obtained under various restrictions concerning notions of width and premises' size in the implicational base. Chapter 4 is devoted to the problem of translating between the representations of a lattice, a second generalization of the dualization. Tractability and intractability results are obtained under some restrictions concerning acyclicity. Each chapter ends with a list of open issues that are summarized in the conclusion of this manuscript.

Chapter 1 Enumeration problems and algorithms

This chapter contains a brief introduction to enumeration problems, algorithms, and their complexity. Other sources of interest on this topic include the PhD thesis of Bagan [START_REF] Bagan | Algorithms and complexity of enumeration problems for the evaluation of logical queries[END_REF], the ones of Strozecki [Str10], Mary [Mar13], Marino [Mar15] and the recent survey [Str19].

We saw in the introduction how enumeration problems gained interest these last decades, with several questions on the topic remaining unsolved. We give here the necessary background for the definition of the open problem that is at the heart of this dissertation: the dualization of monotone Boolean functions.

The chapter is organized as follows. In Section 1.1 we give a rudimentary definition of what an enumeration problem is, and state general assumptions on the enumeration problems that are considered in this manuscript. Section 1.2 deals with the complexity of enumeration algorithms. Monotone dualization is presented through different formulations in Section 1.3.

Definitions and examples

Let Σ be a finite-say binary-alphabet and Σ * denote the set of words constructed on alphabet Σ. Let R ⊆ Σ * × Σ * be a binary predicate. We shall note R(x, y) if (x, y) ∈ R, and define R(x) = {y ∈ Σ * | R(x, y)}. In the following, we respectively call instance and solution the elements x and y such that R(x, y) holds; x will also be called the input, and each such y an output.

Problem definitions

Decision problems are maybe the most encountered problems in computer science. They can be defined as follows.

Definition 1.1.1. The decision problem δ R associated to a binary predicate R is the function which maps to every instance x ∈ Σ * the bit 0 if R(x) = ∅, the bit 1 otherwise.

Decision problems basically ask whether a given instance admits a solution, and are also referred to as "yes-no questions". An algorithm solving a decision problem δ R is one that computes its associated function, i.e., it outputs given any instance x, the bit 0 if R(x) = ∅, the bit 1 otherwise. We call algorithm for δ R such an algorithm.

For example in the SUBSET SUM problem, one is given a finite subset of negative and non-negative integers X, and must decide whether there exists a subset Y ⊆ X such that the sum of all the integers in Y is zero. This problem is easily seen to fall within the formalism of Definition 1.1.1 by considering any binary encoding x of X, any binary encoding y of Y , and defining the binary predicate R accordingly: R(x, y) holds if and only if x codes a set X and y a subset of Y ⊆ X such that the sum of all the integers in Y is zero. Observe more generally that a suitable binary encoding allows to consider complex objects as instances and solutions of a problem, e.g., words, graphs, hypergraphs, posets, or the concatenation of several such objects.

Many decision problems require to detect a structure with prescribed properties. On the other hand, rather that checking the existence of a solution, it is sometimes more desirable to generate all of them. For example, in a generation version of SUBSET SUM, one may be asked to output all subsets Y ⊆ X such that the sum of all integers in Y is zero. Problems of that kind are called enumeration problems and may be defined as follows.

Definition 1.1.2. The enumeration problem Π R associated to a binary predicate R is the function which maps to every instance x ∈ Σ * the set R(x) of its solutions.

Enumeration problems are also known as listing algorithms, or generation algorithms. An algorithm solving an enumeration problem Π R is one that computes its associated function, i.e., it outputs given any instance x, a sequence y 1 , . . . , y of solutions such that R(x) = {y 1 , . . . , y }, and for all i = j, y i = y j . This last condition says that no solution is repeated. We call enumeration algorithm for Π R (or simply algorithm for Π R ) such an algorithm.

Predicate assumptions

We state common assumptions on binary predicates that are shared by every enumeration problem considered in this manuscript. We chose not to elaborate on these assumptions and refer to [Str19] for further details on these points.

If x is a word on alphabet Σ, then |x| denote its length. We say that predicate R is polynomially balanced if |y| ≤ poly(|x|) for every two words x, y such that R(x, y), i.e., if every solution of R is of polynomial size in the size of the input. This is clearly the case of SUBSET SUM as defined previously. Note that this does not prevent R(x) to be of exponential size in the size of x, a key point that is developed in Section 1.2. We furthermore assume that checking whether R(x, y) holds, given any couple (x, y) ∈ Σ * × Σ * , can be done in polynomial time in the sizes of x and y. Again, note that this holds for SUBSET SUM as the sum of integers can be computed in polynomial time. Problems that satisfy these properties constitute a class analogous to NP for enumeration problems; see [Str19].

Computational model

The computational model we consider is this manuscript is the random access machine model (RAM) equipped with comparison, addition, subtraction and multiplication, together with an additional operation Output(i,j) which outputs the con-catenation of its registers R i , R i+1 , . . . , R j . This model has been considered in various previous works [START_REF] Bagan | Algorithms and complexity of enumeration problems for the evaluation of logical queries[END_REF]Str10,Str19] and is useful to access an exponential amount of memory only using polynomial time, as it is implicitely assumed in various works such as [START_REF] Golovach | An incremental polynomial time algorithm to enumerate all minimal edge dominating sets[END_REF][START_REF] Conte | New polynomial delay bounds for maximal subgraph enumeration by proximity search[END_REF] and used in Chapter 2.

Complexity of enumeration problems

We assume that the reader is familiar with classical complexity theory. We refer to the book [START_REF] Michael | Computers and intractability[END_REF] if not. If f is a function, we write f (n) = poly(n) when there is a constant c ∈ N such that f (n) ∈ O(n c ), and f (n) = polylog(n) when there is a constant c ∈ N such that f (n) ∈ O((log n) c ).

As pointed out earlier, while all predicates R considered in this manuscript are polynomially balanced, the set R(x) of solutions to output may be of exponential size in the size of x. Regarding this, two different approaches-input-sensitive and outputsensitive-have been considered in the literature in order to measure the complexity of an enumeration algorithm. While this thesis only deals with the second approach, we overview here the first approach for completeness.

Input-sensitive approach

In the input-sensitive approach, one measures the complexity of an enumeration algorithm in term of input size. For most problems Π R -in which the size of R(x) may be exponential in the size of x-, this approach aims to get the fastest exponential-time algorithm, typically lowering the base of the exponent as much as possible. This leads to results of the following kind.

Theorem 1.2.1 ([MM65]

). There is an O(1.4423 n ) time algorithm enumerating maximal cliques in n-vertex graphs.

In fact, Theorem 1.2.1 was not originally stated as an enumeration result. It was initially stated as an upper bound of 3 n/3 ≈ 1.4423 on the number of maximal independent sets an n-vertex graph admits, which proof yields a straightforward enumeration algorithm listing them within that time. Such an upper-bound is attained by considering the complementary graph of disjoint unions of triangles. Most of the time, input-sensitive algorithms consist of showing upper bounds on the number of objects to enumerate [START_REF] Fedor | Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications[END_REF]CHvHK13]. Obtaining tight bounds like the one of 3 n/3 for maximal cliques remains however open for other combinatorial objects, such as the minimal dominating sets [AKH16], the objects that are considered in Chapter 2.

Output-sensitive approach

In the output-sensitive approach, one measures the complexity of an enumeration algorithm in term of input plus output sizes. The goal, here, is to achieve polynomial time bounds. This leads to results of the following kind.

Theorem 1.2.2 ([TIAS77]

). There is an O(nm • d) time algorithm enumerating the maximal cliques in n-vertex m-edge graphs, with d the number of maximal cliques in the input graph.

Additional output-sensitive algorithms for maximal cliques enumeration in graphs may be found in [START_REF] Johnson | On generating all maximal independent sets[END_REF]MU04].

In fact, Theorem 1.2.2 is originally stated in a much more refined way, saying that in addition to the set of solutions being output in O(nm • d) time, the time spent by the algorithm between any two consecutive outputs is bounded by O(nm). These complexity refinements constitute a significant proportion of the research that is dedicated to enumeration problems and output-sensitive algorithms, and certainly contribute to the appeal of ouput-sensitive enumeration for practical uses.

Three main notions of (output-sensitive) complexity

Many notions of complexity exist for output-sensitive algorithms, and are for example surveyed in [CKP + 19, Str19]. We only review here the three historical ones that will be considered in this manuscript.

In the following if A is an enumeration algorithm for Π R , we denote by T A (x) its execution time on input x. Assume now that y 1 , . . . , y are the elements of R(x) enumerated in the order in which they are output by A. We denote by T A (x, i) the time A requires until it outputs y i , and put T A (x, 0) = 0 and T A (x, + 1) = T A (x). We simply note T (x) and T (x, i) when A is clear from the context.

The next three important notions of complexity were first made explicit by Johnson, Yannakakis and Papadimitriou in [START_REF] Johnson | On generating all maximal independent sets[END_REF].

Definition 1.2.3. An enumeration algorithm for Π R is running in output-polynomial time if, for any instance x, T (x) = poly(|x| + |R(x)|).

Following this definition, we will also say that an algorithm is running in output quasi-polynomial time if T (x) = 2 polylog (N ) , and that it runs in output sub-exponential time if T (x) = 2 o(N ) , where N = |x| + |R(x)|.

In the following, we call output-polynomial time algorithm for Π R any algorithm solving Π R in output-polynomial time, and say that an enumeration problem Π R is tractable if it admits one such algorithm. Observe here that the time T (x, i + 1) -T (x, i) spent by an output-polynomial time algorithm before outputting a first solution may not be bounded by a polynomial in the size of x, as long as |R(x)| is superpolynomial in |x|. Intuitively, it could be in fact that all solutions are "retained" by an output-polynomial time algorithm and output at the very last moment, just before halting. A more restricted notion of tractability is then defined as follows.

Definition 1.2.4. An enumeration algorithm for Π R is running in incremental-polynomial time if, for any instance x and every

1 ≤ i ≤ |R(x)| + 1, T (x, i) = poly(|x| + i).
In the following, we call incremental-polynomial time algorithm any algorithm which is running in incremental-polynomial time. Clearly by definition, any incrementalpolynomial time algorithm defines an output-polynomial time algorithm.

Observe that the time T (x, i) spent by an incremental-polynomial time algorithm between two consecutive outputs y i , y i+1 ∈ R(x) may not be bounded by a polynomial in the size of x, as long as i is superpolynomial in the size of x. This finally leads to the next most restricted notion of tractability, and last complexity notion that we consider in this manuscript. Definition 1.2.5. An enumeration algorithm for Π R is running with polynomial delay if, for any instance x and every

1 ≤ i ≤ |R(x)| + 1, T (x, i) -T (x, i -1) = poly(|x|).
This last complexity notion bounds the times spent by the algorithm before the first output, between any two consecutive outputs, and after the last output. Clearly, an algorithm running with polynomial delay is an incremental-polynomial time algorithm, hence an output-polynomial time algorithm. Algorithms of that kind constitute the more efficient algorithms one may seek in enumeration theory. The delay is sometimes lowered to linear time, or even constant time after polynomial preprocessing. Such extreme cases, however, will not be encountered in this manuscript.

Exponential output size

Recall that free to disregard several objects as coded by a single word x ∈ Σ * , enumeration problems can contain complex inputs. The enumeration problems we consider in this thesis are all combinatorial problems that require, given subsets X 1 , . . . , X p ⊆ X where X is called ground set, to enumerate subsets Y 1 , . . . , Y ⊆ X with desired properties. Recall also by the assumptions of Section 1.1.2 that checking whether a given set Y ⊆ X is one of Y 1 , . . . , Y can be done in polynomial time for these problems. This leads to a trivial output-polynomial time algorithm solving these problems on instances that are known to have exponentially many solutions. The algorithm proceeds as follows. For every subset Y ⊆ X, it tests in polynomial time whether Y is one of Y 1 , . . . , Y , and discard it otherwise, in a time bounded by 2 |X| . The difficulty then lies in showing that non-trivial instances have an exponential lower bound on their number of solutions, or in the fact that some instances may have sub-exponentially-yet not polynomially-many solutions.

Despite the fact that this basic observation will not be used in the upcoming chapters, we felt that mentioning this aspect could enlighten the reader.

Memory

When considering the space complexity of an enumeration algorithm, the space of solutions, or output space, is not counted. It is assumed that the solutions are only flashed and then immediately discarded. We point out that it is still an option, e.g. for practical reasons, to store or not to store the solutions when they are flashed.

Decision and enumeration

Observe that to any enumeration problem Π R for R ⊆ Σ * × Σ * corresponds a decision problem asking, given an instance x ∈ Σ and a set

Y ⊆ Σ * , whether R(x) = Y . Such a decision problem is obtained by defining R ⊆ Σ * × Σ * such that R (x ) = ∅ if and only if x codes {x}, Y ⊆ Σ * with R(x) = Y .
Informally, problems of that kind ask whether every solution to an enumeration problem is obtained. We call decision version of Π R , denoted π R , such a problem. Most of the enumeration problems considered in this manuscript come along with their decision version. The following is folklore and is proved by running an algorithm for Π R for a number of steps that is proportional in x and Y being the inputs of π R . Proposition 1.2.6. Let Π R be an enumeration problem and π R be its decision version. Then π R can be solved in polynomial time whenever Π R can be solved in output-polynomial time.

Conversely, observe that to any decision problem π R of the form "given word x ∈ Σ and set Y ⊆ Σ * , decide whether Y = R(x) holds" for some arbitrary binary relation R, corresponds an enumeration problem Π1 R asking, given x, to enumerate the set R(x), and one Π 2 R asking, given R(x), to compute x. Yet proven to hold for the dualization of monotone Boolean functions introduced in Section 1.3, it is however not clear in general whether the existence of a polynomial-time algorithm for π R yields an outputpolynomial time algorithm for Π 1 R , and Π 2 R . Additional conditions are usually added to π R in order to get an equivalence, such as exhibiting a counter example to Y = R(x) in case when Y = R(x). These variations will not be encountered in this manuscript.

Reductions and intractability

Several reductions between enumeration problems can be defined, depending on the different complexities that they may preserve. They will naturally appear in this manuscript, starting with the next section, and were formally defined in [Mar13] for the complexities considered in this chapter. We chose here to only give the commonly employed notions of hardness that will be used in the manuscript, and let the reader encounter the reductions over the chapters through particular cases.

Definition 1.2.7. Let A, B be two binary predicates and Π A , Π B be their associated enumeration problems. We say that Π A is polynomially harder 1 than Π B (or that Π A is Π B -hard) if there exists an output-polynomial time algorithm for Π B whenever there is one for Π A . Then, Π A and Π B are polynomially equivalent if Π A is polynomially harder than Π B , and vice versa.

Note that the same notions can be defined for incremental-polynomial (resp. polynomial-delay) time complexities. We will always mention explicitly the complexity that is preserved in that case.

In enumeration theory, hardness of a problem Π A is either shown by proving that Π A is harder than another tough (often open) problem Π B , or by showing that getting an output-polynomial time algorithm for Π A would yield a polynomial-time algorithm for some NP-hard problem. For example, the problems we consider in Chapters 2, 3, and 4 are all known to be harder than the dualization of monotone Boolean functions. As for some generalizations of this problem, considered in Chapter 3, it is known that they cannot be solved in output-polynomial time unless P=NP. In that second framework, we usually reduce the decision version π A of the enumeration problem Π A to a well-known NP-hard problem δ by means of classical reductions. By Proposition 1.2.6, this is sufficient to show that the original enumeration problem Π A cannot be solved in output-polynomial time, unless P=NP. The next corollary follows.

Corollary 1.2.8. Let Π R be an enumeration problem and π R be its decision version. Then Π R cannot be solved in output-polynomial time if π R is NP-hard, unless P=NP.

Dualization of monotone Boolean functions and hypergraph dualization

We end the preliminaries by defining the dualization of monotone Boolean functions, and several equivalent formulations in hypergraphs. These problems are ubiquitous in enumeration theory and are the starting point of this thesis. The original formulation is presented for historicity, while the different hypergraph formulations will be continuously referred to in the rest of this manuscript.

Dualization of monotone Boolean functions

A Boolean function is a mapping f : {0, 1} n {0, 1}. We call arity of f the integer n, call Boolean vector a tuple v in {0, 1} n , and note v i the value of vector v on coordinate i. We note u ≤ v if u i ≤ v i for all i, and call Boolean algebra of dimension n the set of all vectors v ∈ {0, 1} n ordered by ≤. An example of a Boolean algebra is given in Figure 1 x i such that f = ϕ,2 and where no literal x i is negated. Such a formula is called prime if in addition I 1 ⊆ I 2 for any two distinct clauses I 1 , I 2 ∈ F . To every monotone Boolean function corresponds a unique prime CNF. An example of a monotone Boolean function and its prime CNF is given in Figure 1.1. Another essential representation of a monotone Boolean function f consists of its prime disjunctive normal form (DNF)

.1. A Boolean function f is said to be monotone if u ≤ v implies f (u) ≤ f (v) for all u, v ∈ {0, 1} n .
ψ = J∈G j∈J
x j such that f = ψ, where no literal x j is negated, and where J 1 ⊆ J 2 for any two distinct terms J 1 , J 2 ∈ G; this representation is also unique.

The dual f d of a Boolean function f is defined by

f d (v) = f (v), where f , v respec- tively denote the complement of f and v, i.e., f (v) = 1-f (v) and v = (1-v 1 , . . . , 1-v n ).
It is monotone as well, and by definition, it satisfies the equality (f d ) d = f . The dual of a monotone Boolean function is given in Figure 1.1. It is well known that if ϕ is a prime CNF formula for f , then a prime DNF formula ψ for f d is obtained by exchanging ∨ and ∧, as well as the constants 0 and 1. For example, the dual prime DNF of ϕ = (1 ∨ 2) ∧ (1 ∨ 3) is ψ = 12 ∨ 13. Then, expanding ψ into a CNF using De Morgan's laws yields a prime CNF for the dual. Note that the size of the prime CNF of f d may be exponential in that of f . A canonical example is the formula ϕ = (1∨2)∧(3∨4)∧(5∨6), generalized to any arity. In that case, expanding the dual function is still reasonable, a point that was discussed in Section 1.2.4. This is however not always the case, and the expanding approach may result, unfortunately, into an exponential blowup in the sizes of the two functions at hand. A canonical example of this phenomenon is the formula ϕ = (1 ∨ 2) ∧ (2 ∨ 3) ∧ (3 ∨ 4) and its dual, generalized to any arity. 

(v) = 1 are in bold. It is easily verified that f (v) = f (v).
The next problem naturally arises. 3

Dualization of Monotone Conjunctive Normal Forms (DUALIZATION)

Input:

A pair f, g of monotone Boolean functions given by their prime CNF. Question: Are f and g dual?

Generation version of DUALIZATION

Input:

A monotone Boolean function f given by its prime CNF. Output: The prime CNF of the dual function f d .

Observe that the problem could have been equivalently stated as the dualization of monotone disjunctive normal forms, by exchanging ∧ and ∨. This is the representation considered in the landmark paper [FK96], while the one presented here can be found in the important work [START_REF] Eiter | New results on monotone dualization and generating hypergraph transversals[END_REF] and survey [EMG08]. Observe in fact that if f d has prime CNF ϕ = I∈F i∈I x i , then f has for prime DNF ψ = I∈F i∈I x i . Hence, computing the prime CNF of f d from the prime CNF of f amounts to computing the DNF of f from its prime CNF. As (f d ) d = f , computing the prime CNF of f from its prime DNF is equivalent to computing the prime DNF of f from its prime CNF. This yields the following alternative-and perhaps more easily defined-version of DUALIZATION, and its two (equivalent) generation versions that we shall retain in the following.

Dualization of Monotone Boolean Functions (MONOTONE DUAL)

Input:

A pair f, g of monotone Boolean functions-f given by its prime CNF, and g by its prime DNF. Question: Are f and g equal?

First generation version of MONOTONE DUAL

Input:

A monotone Boolean function f given by its prime CNF. Output: The prime DNF of f .

Second generation version of MONOTONE DUAL

Input:

A monotone Boolean function f given by its prime DNF. Output: The prime CNF of f . As stated in the introduction, testing the duality of two monotone Boolean functions is ubiquitous in many areas of computer science [EG95, GMKT97, DMP99]. The problem has become so central in enumeration theory that it is now common, in order to characterize the complexity of an enumeration problem, either to exhibit an outputpolynomial time algorithm, or to show that the problem is at least as hard as the dualization [MS19, CGK + 19, CKMU19], a line of research that emerged from [KLMN14]. For harder problems, it is often desirable to obtain an output quasi-polynomial time algorithm by reduction to the dualization [MR92, Wil00, NP14, AN17, BMN17, AN19]. Hence depending on the problem, the dualization of monotone Boolean functions either plays a tractable, or an intractable frontier, concerning the complexity of a problem. Its precise complexity status is thereby one of the most challenging open question in enumeration theory.

To date, the best known algorithm is due to Fredman and Khachiyan [FK96] and runs in quasi-polynomial time N o(log N ) where N = |ϕ| + |ψ|, with ϕ and ψ being the prime CNF and DNF of two functions f and g, and where |ϕ| denotes the number of clauses in ϕ. In consequence, the problem is unlikely to be NP-hard. Furthermore, it is known from [BI95] that there is a polynomial time algorithm solving MONOTONE DUAL if and only if there is an incremental-polynomial time algorithm solving its generation version. Such an incremental quasi-polynomial time algorithm for the generation version of MONOTONE DUAL is made explicit in [FK96].

Since the algorithm of Fredman and Khachiyan, progress has been made on various subclasses of monotone functions. Most importantly, output-polynomial time algorithms were obtained in degenerate CNFs, read-k CNFs, acyclic CNFs and formulas of bounded treewidth [START_REF] Eiter | New results on monotone dualization and generating hypergraph transversals[END_REF].

Hypergraph dualization

A hypergraph H is a couple (V (H), E(H)) where V (H) is called vertex set (or ground set), and where

E(H) ⊆ 2 V (H) is a family of subsets called hyperedges. A hypergraph is called Sperner if E 1 ⊆ E 2 for any two distinct hyperedges E 1 , E 2 ∈ E(H). Examples of Sperner hypergraphs are given in Figure 1.2. A transversal of H is a subset T ⊆ V (H) of vertices that intersects every hyperedge E ∈ E(H). It is (inclusion-wise) minimal if T \ {x}
is no longer a transversal for any x ∈ T . The set of all minimal transversals of H is denoted by T r(H).

Note that if H is a hypergraph, then (V (H), T r(H)) also defines a hypergraph, which is Sperner. In this manuscript, and as is custom, we will sometimes refer to a hypergraph by its set of hyperedges only, when the ground set is clear from the context, or more generally when it is obtained by union of the hyperedges (i.e., no vertex is isolated). We shall for example refer to T r(H) as the hypergraph (V (H), T r(H)). Then, two hypergraphs H and G on same ground set V (H) = V (G) are called dual if G = T r(H). An example of two dual hypergraphs is given in Figure 1.2. It can be observed that if H is a Sperner hypergraph, then T r(T r(H)) = H. It was also observed in [START_REF] Berge | Hypergraphs: combinatorics of finite sets[END_REF] that any hypergraph H that is not Sperner may always be reduced in poly- 1.2: Two dual hypergraphs H and G, as well as the complementary hypergraph
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G of G defined by V (G) = V (G) and E(G) = {V (G) \ E | E ∈ G}. Then G = T r(H) and G = M IS(H).
nomial time into a Sperner hypergraph H , with no incidence on the set of its minimal transversals, i.e., such that T r(H) = T r(H ).

The next problem follow.

Hypergraph Dualization (HYPERGRAPH DUAL)

Input:

Two hypergraphs H and G. Question: Are H and G dual?

Generation version of HYPERGRAPH DUAL (TRANS-ENUM)

Input:

A hypergraph H. Output: The set T r(H) of all minimal transversals of H.

It is well known that the prime DNF ψ of a monotone Boolean function f corresponds to its minimal true vectors. Hence that each term of ψ minimally intersects each clause of the prime CNF ϕ of f . Free to disregard CNFs and DNFs as hypergraphs, this establishes the equivalence of HYPERGRAPH DUAL with MONOTONE DUAL, hence of HYPERGRAPH DUAL with DUALIZATION. This equivalence has brought many new results to the dualization problem. Most notably, the dualization was shown to be solvable in polynomial time on hypergraphs of bounded conformality by Boros, Elbassioni, Gurvich, and Khachiyan [BEGK04,KBEG07]. This class of hypergraph will be defined in Chapter 2 and contains hypergraphs of bounded edge intersection, and of bounded edge size. This algorithm will be used as a black box in three of the algorithms presented in this manuscript. Other tractable cases that will not be used in the following include degenerate hypergraphs [START_REF] Eiter | New results on monotone dualization and generating hypergraph transversals[END_REF], α and β acyclic hypergraphs [START_REF] Eiter | Identifying the minimal transversals of a hypergraph and related problems[END_REF][START_REF] Eiter | New results on monotone dualization and generating hypergraph transversals[END_REF], or hypergraphs without small holes [START_REF] Mamadou | Enumerating minimal transversals of hypergraphs without small holes[END_REF].

As for DUALIZATION, several forms of hypergraph dualization exist. We introduce another generation version that will be used in Chapter 4. An independent set of H is a subset I ⊆ V (H) of vertices such that E ⊆ I for any E ∈ E(H). It is called (inclusionwise) maximal if I ∪ {x} is no longer an independent set for any x ∈ V (H) \ T . The set of all maximal independent sets of H is denoted by M IS(H), and the corresponding enumeration problem defined as follows.

Hypergraph Maximal Independent Sets Enumeration (MIS-ENUM)

Input:

A hypergraph H. Output: The set M IS(H) of all maximal independent sets of H.

The maximal independent sets of a hypergraph are given in Figure 1.2. It is easily seen that a subset I of V (H) is a maximal independent set of H if and only if its com-plementary T = V (H) \ I is a minimal transversal of H. We immediately deduce that TRANS-ENUM and MIS-ENUM are equivalent. Other equivalent forms of hypergraph dualization may be found in the survey [EMG08] and include the enumeration of all minimal set coverings (minimal sets of hyperedges whose union is the ground set) of a hypergraph. These other forms will not be encoutered in this manuscript.

The next three chapters are devoted to the study of monotone dualization through the other shapes it takes on graphs and lattices: minimal dominating sets enumeration, lattice dualization, and meet-irreducible enumeration.

Chapter 2

Minimal dominating sets enumeration

In this chapter we present new algorithms for the problem of enumerating all minimal dominating sets in graphs. Parts of these results appeared in joint works with Marthe Bonamy, Marc Heinrich, Michał Pilipczuk, and Jean-Florent Raymond [BDHR19, BDH + 20]. Other parts were obtained with Marthe Bonamy, Piotr Micek, and Lhouari Nourine, and may be found in the preprint [START_REF] Bonamy | Enumerating minimal dominating sets in the (in)comparability graphs of bounded dimension posets[END_REF].

We saw in the previous chapter how the monotone dualization problem could be formulated in term of transversality in hypergraphs. It has recently been proved by Kanté, Limouzy, Nourine, and Mary [KLMN14] that the problem could also be formulated as the enumeration of all (inclusion-wise) minimal dominating sets in graphs. A dominating set in a graph G is a set D of vertices such that every vertex of G is either in D, or adjacent to a vertex of D. It is (inclusion-wise) minimal if no strict subset is a dominating set. Since [KLMN14], this problem has gained lots of interest, and characterizing its complexity in particular graph classes has become a fruitful line of research. We review here the main contributions of the last ten years. Incremental-polynomial time algorithms were found for chordal bipartite graphs [GHK + 16], {C 6 , C 8 }free bipartite graphs [START_REF] Mamadou | Enumerating minimal transversals of hypergraphs without small holes[END_REF], and unit square graphs [GHK + 18]. Polynomial-delay algorithms were obtained in chordal and line graphs [KLM + 15a, KLM + 15b]. Lineardelay algorithms were given for permutation and interval graphs [KLM + 13], graphs of bounded clique width [START_REF] Courcelle | Linear delay enumeration and monadic second-order logic[END_REF], LMIM-width [GHK + 18], split and P 6 -free chordal graphs [KLMN14].

In addition to these recent results, the problem inherited from previously known algorithms on hypergraphs and CNFs. Most notably, the problem is known to be solvable in output-polynomial time in log(n)-degenerate graphs [START_REF] Eiter | New results on monotone dualization and generating hypergraph transversals[END_REF], and with polynomial delay in planar and degenerate graphs [START_REF] Eiter | New results on monotone dualization and generating hypergraph transversals[END_REF], as well as in graphs of bounded conformality [BEGK04, [START_REF] Mamadou | On the neighbourhood helly of some graph classes and applications to the enumeration of minimal dominating sets[END_REF].

When starting this thesis, two important graph classes were notably open: bipartite graphs, and co-bipartite graphs [START_REF] Mamadou | Minimal dominating set enumeration[END_REF]. We show in this chapter that the first class admits an output-polynomial time algorithm, by proving the case of graphs without big cliques. Our result is based on a technique called ordered generation on reducing the enumeration to smaller pieces of the initial instance. This result puts the light on a super class of bipartite graphs that remains open: the class of comparability graphs. We show this later class to be tractable whenever the underlying partial order (or poset) is of bounded dimension. This result is based on a recent technique technique called flip-ping method on enumerating minimal dominating sets from (inclusion-wise) maximal independent sets. Concerning co-bipartite graphs, it is known that the problem in that class is as hard as the general case [KLMN14]. This therefore holds for super classes of co-bipartite graphs such as incomparability graphs. For this later class, we nevertheless show the problem to be tractable whenever the underlying poset is, again, of bounded dimension. This is based on flashlight search, a different technique, and relies on the geometrical representation of incomparability graphs of bounded dimension, which was given by Golumbic et al. in [START_REF] Charles Golumbic | Comparability graphs and intersection graphs[END_REF].

The chapter is organized as follows. In Section 2.1 we introduce necessary concepts and definitions, and recall a result from [KLMN14] on the equivalence of TRANS-ENUM and the enumeration of minimal dominating sets. Output-polynomial, incremental-polynomial, and polynomial-delay algorithms are respectively given for several graph classes related to K t -free graphs, and for the comparability and incomparability graphs of posets of bounded dimension, in Sections 2.2, 2.3, and 2.4. Future research directions are discussed in Section 2.5.

Preliminaries

We define here notions related to graphs, posets, and domination that will be used in this chapter.

Graphs

A graph G is a pair (V (G), E(G)) with V (G) its set of vertices (or ground set) and E(G) ⊆ {{u, v} | u, v ∈ V (G), u = v} its set of edges. An example of a graph is given in Figure 2.1. Edges are denoted by uv (or vu) instead of {u, v}. Two vertices u, v of G are called adjacent if uv ∈ E(G). In this chapter, and as is common, we will usually denote |V (G)| by n, and |E(G)| by m. A clique (respectively an independent set) in a graph G is a set of pairwise adjacent (respectively non-adjacent) vertices. A biclique is a set of vertices that can be partitioned into two independent sets A, B such that every vertex in A is adjacent to every vertex in B. We note K t the clique on t elements, and K t,t the biclique on 2t elements of partition A, B such that |A| = |B| = t. We note K t -e the clique on t elements minus an edge, and K t + K 2 the disjoint union of K t and an edge. The subgraph of G induced by X ⊆ V (G), denoted by G[X], is the graph

(X, E(G) ∩ {{u, v} | u, v ∈ X, u = v}); G -X is the graph G[V (G) \ X]. For every graph H, we say that G is H-free if no induced subgraph of G is isomorphic to H.
If the vertex set of a graph G can be partitioned into one part inducing a clique and one part inducing an independent set (respectively two independent sets, two cliques), we say that G is a split (respectively bipartite, co-bipartite) graph. A complete multipartite graph is a graph which vertex set can be partitionned into several independent sets such that there is an edge between every pair of vertices from different independent sets.

Some small graphs we consider in this manuscript are P 3 , which is the path on three vertices (i.e., G =

), its complementary P 3 (i.e., G = ), the paw, which is the graph obtained by adding a vertex of degree one to K 3 (i.e., G =

), and K 4 -e, also known as diamond graph (i.e., G =

). 

Neighborhood and domination

We define notions related to domination. Let G be a graph and u be a vertex of G. The neighborhood of u is the set

N (u) = {v ∈ V (G) | uv ∈ E(G)}. The closed neighborhood of u is the set N [u] = N (u) ∪ {u}. For example in Figure 2.1, the closed neighborhood of x 2 is the set N [x 2 ] = {x 1 , x 2 , x 3 }. For a subset X ⊆ V (G) we define N [X] = x∈X N [x] and N (X) = N [X] \ X. Let D, X ⊆ V (G) be two subsets of vertices of G. We say that D dominates X if X ⊆ N [D]. It is (inclusion-wise) minimal if X ⊆ N [D \ {x}] for any x ∈ D. A (minimal) dominating set of G is a (minimal) dominating set of V (G).
The set of all minimal dominating sets of G is denoted by D(G), and the problem of enumerating D(G) given G defined as follows.

Minimal Dominating Sets Enumeration (DOM-ENUM) Input:

A graph G. Output: The set D(G) of all minimal dominating sets of G.

Observe that a set D of vertices is a minimal dominating set of G if it minimally intersects all the closed neighborhoods of G. We immediately deduce that DOM-ENUM is a particular case of TRANS-ENUM by considering the so-called hypergraph of closed neighborhoods of G, usually denoted H = N (G), and defined by V (H) = V (G) and

E(H) = {N [x] | x ∈ V (G)}. Furthermore, this hypergraph can be considered Sperner by defining E(H) = Min ⊆ {N [x] | x ∈ V (G)},
where Min ⊆ denotes the inclusion-wise minimal sets of the family. An example of one such hypergraph is given in Figure 2.1.

In [KLMN14] the authors in fact show that there is a polynomial delay algorithm for DOM-ENUM if and only if there is one for TRANS-ENUM. Since DOM-ENUM is a particular case of TRANS-ENUM, we only need to show how TRANS-ENUM reduces to DOM-ENUM. We briefly review here the construction. For any hypergraph H we denote by I(H) the bipartite incidence graph of H with bipartition X = V (H) and Y = {y E | E ∈ E(H)}, and where there is an edge between x ∈ X and y E ∈ Y if x belongs to E in H. The construction of a bipartite incidence graph is given in Figure 2.2. Consider now the co-bipartite graph B(H) obtained from I(H) by adding a special vertex v to X, and by completing both X and Y into cliques. Then, it is easily seen that minimal dominating sets of B(H) are either of size two, or consist of minimal subsets of X being adjacent to every y E ∈ Y . Minimal dominating sets of the second type are exactly the minimal transversals of H. As they is a quadratic number in 
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Maximal independent sets

Recall that an independent set in a graph G is a set of pairwise non-adjacent vertices.

For a graph G, we denote by M IS(G) the set of all its (inclusion-wise) maximal independent sets, and by MIS-ENUM the problem of generating M IS(G) from G. It is easily observed that every maximal independent set is a minimal dominating set, hence that M IS(G) ⊆ D(G). However, MIS-ENUM appears to be much more tractable than DOM-ENUM, as witnessed by the many efficient algorithms that are known for the problem [TIAS77, JYP88, MU04]. These last two observations are the starting point of the flipping method introduced in [START_REF] Golovach | An incremental polynomial time algorithm to enumerate all minimal edge dominating sets[END_REF] and that is at the heart of Section 2.3.

Private neighbors

We define notions that are useful when dealing with domination. Let u ∈ D. We call private neighbor of u with respect to D a vertex v ∈ V (G) that is only dominated by u in D, i.e., that is such that N [v] ∩ D = {u}. Note that u can be its own private neighbor (we say that u is self-private). The set of private neighbors of u ∈ D is denoted by Priv(D, u).

A set I ⊆ V (G) is called irredundant if Priv(I, x) = ∅ for all x ∈ I.
The following observation is folklore.

Observation 2.1.2. A set D ⊆ V (G) is a minimal dominating set of G if and only if it is both a dominating set, and an irredundant set.

Red blue domination

We define a slightly different setting of domination that is of interest in Section 2. In the context of red-blue domination, dominating sets are always assumed to be red, and private neighbors assumed to be blue. It is easily seen in Figure 2.2 that the minimal transversals of H are the red dominating sets of G(R, B) where G = I(H), R = X and B = Y , no matter the edges in X and Y . In fact, as the edges induced by R and B may be ignored when considering red-blue domination, and by definition of bipartite incidence graphs, RED-BLUE-DOM-ENUM and TRANS-ENUM may be seen as two formulations of the same problem. We in particular deduce the following folklore theorem in the line of Theorem 2.1.1.

Theorem 2.1.3 (Folklore). RED-BLUE-DOM-ENUM restricted to bipartite and co-bipartite graphs is polynomially equivalent to TRANS-ENUM (hence to DOM-ENUM).

Posets and (in)comparability graphs

We conclude the section with notions from posets that will be used in Section 2.3.

A partially ordered set (or poset) P = (V, ≤) is a binary relation ≤ on a ground set V which is reflexive, anti-symmetric and transitive. Two elements u and v of P are said to be comparable if u ≤ v or v ≤ u, otherwise they are said to be incomparable, denoted u v. We note x < y if x ≤ y and x = y. Posets are represented by their Hasse diagram in which each element is a vertex in the plane, and where there is a line segment or curve that goes upward from x to y whenever x < y and there is no z such that x < z < y. A chain (respectively an antichain) in a poset P is a set of pairwise comparable (respectively incomparable) vertices; P is called a total order (or linear order) if V is a chain.

The comparability graph of a poset P = (V, ≤) is the graph G defined on same ground set V (G) = V and where two vertices u and v are made adjacent if they are comparable in P . An example of a poset and its comparability graph is given in Figure 2.1. The incomparability graph (or co-comparability graph) of P is the complementary: u and v are made adjacent if they are incomparable in P .

We now define notations from order theory that will be used in the context of a poset and its comparability graph only. Let G be the comparability graph of a poset P = (V, ≤). The ideal of u is the set u = {v ∈ V | v ≤ u}, and the filter of u is the dual u = {v ∈ V | u ≤ v}. Then N [u] = u ∪ u. These notions extend to subsets S ⊆ V as follows: S = u∈S u, S = u∈S u. Then a (minimal) dominating set of G is a (minimal) set D ⊆ V such that D ∪ D = V , and a (maximal) independent set of G is a (maximal) antichain of P . We note Min(S) and Max(S) the sets of minimal and maximal elements in S with respect to ≤. Clearly, Min(S) and Max(S) define antichains of P for every S ⊆ V .

We call poset induced by X ⊆ V , denoted P [X], the suborder restricted on the elements of X only. A poset P = (V, ≤) is bipartite if V can be partitioned into two sets A, B such that a < b implies a ∈ A and b ∈ B. We note S t the standard example with bipartition A = {a 1 , . . . , a t } and B = {b 1 , . . . , b t } such that a i < b j for all i, j ∈ {1, . . . , t}, i = j. See Figure 2.3 for an example of such a poset.

The dimension of a poset P = (V, ≤) is the least t such that P is the intersection of t linear orders < 1 , . . . , < t on V , i.e., x ≤ y if and only if x < 1 y, . . . , x < t y. It is well known that S t has dimension t [START_REF] Dushnik | Partially ordered sets[END_REF]. Note that dimension is monotone under taking induced suborders. Therefore, posets containing a large standard example as a suborder have large dimension. The converse is however not true, as there are posets of unbounded dimension with no S 2 as an induced suborder, see [Tro92] for a comprehensive study and references.

Ordered generation in K t -free graphs and variants

We are now ready to present the first contributions of this thesis, giving output-polynomial time algorithms for DOM-ENUM in graph classes related to K t -free graphs.

Ordered generation in bicolored graphs

We describe a general procedure that will be used throughout Section 2.2. This procedure will construct minimal dominating sets one neighborhood at a time, in a variant of what is known as the backtrack search technique in [RT75, FLM97, MS19], and referred to as ordered generation in [START_REF] Eiter | New results on monotone dualization and generating hypergraph transversals[END_REF].

In what follows, we find it more convenient to deal with the slightly more general setting of domination in bicolored graphs. A bicolored graph is a graph together with a subset of its vertex set. For a graph G and a subset A ⊆ V (G), we denote by G(A) the bicolored graph G with prescribed set A. We also say that G has bicoloring (A, V (G)\A). Then, a dominating set of G(A) is a set D ⊆ V (G) that dominates A, i.e., such that A ⊆ N [D]. It is (inclusion-wise) minimal if it does not contain any dominating set of G(A) as a proper subset. Intuitively, the vertices of G -A may be used in the dominating set, but do not need to be dominated. For every graph G and subset A ⊆ V (G), we denote by D(G, A) the set of minimal dominating sets of G(A). Then

D(G, A) = D(G) whenever A = V (G).
A peeling of a bicolored graph G(A) is a sequence of vertex sets (V 0 , . . . , V p ) such that V p = A, V 0 = ∅, and for every i ∈ {1, . . . , p}, there is a vertex v i ∈ V i such that

V i-1 = V i \ N [v i ].
We call (v 1 , . . . , v p ) the vertex sequence of the peeling. It is straightforward to see that given a bicolored graph G(A), any peeling of G(A) can be computed in O(n 2 ) time and space: start with the whole set A, and as long as A remains non-empty, pick a vertex v in it and remove N [v] from A. The representation of a peeling is given in Figure 2.4.
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.4: Representation of a peeling of a bicolored graph G(A) constructed by iteratively removing v i 's and their neighborhoods, for i from p to 1. Note that vertices that are effectively removed at step i are those of

N [v i ] ∩ V i , as vertices in N [v i ] \ V i have
already been removed at a previous step. A crucial property is that v i has no neighbor in V i-1 .

In the remaining of this section, we consider a bicolored graph G(A), together with a fixed peeling (V 0 , . . . , V p ) of G(A) with vertex sequence (v 1 , . . . , v p ). Observe that D(G, V p ) = D(G, A). We now define the relation that will be used by our algorithm to enumerate the minimal dominating sets of G(A) without repetition. Recall that the sets of D(G, V i ) may contain vertices of G -V i , which is a crucial point. Definition 2.2.1. Let i ∈ {0, . . . , p -1} and D ∈ D(G, V i+1 ). We define Parent(D, i + 1) as the pair (D * , i) where D * is obtained from D by exhaustively applying the following operation: as long as there exists a vertex x in D satisfying Priv(D, x) ∩ V i = ∅, remove from D the vertex of smallest index with this property.

Clearly, there is a unique way to build Parent(D, i + 1) given D and i. By construction, the obtained set D * is a minimal dominating set of G(V i ). Hence, every set in D(G, V i+1 ) can be obtained by completing some D * in D(G, V i ); we develop this point below.

Proposition 2.2.2. Let i ∈ {0, . . . , p -1} and D * ∈ D(G, V i ). Then: (i) if D * dominates V i+1 then D * ∈ D(G, V i+1 ) and Parent(D * , i + 1) = (D * , i); (ii) otherwise, D * ∪ {v i+1 } ∈ D(G, V i+1 ) and Parent(D * ∪ {v i+1 }, i + 1) = (D * , i). Proof. First note that since D * ∈ D(G, V i ), for all x ∈ D * we have Priv(D * , x) ∩ V i = ∅, implying also Priv(D * , x) ∩ V i+1 = ∅. Hence, if D * dominates V i+1 then in fact D * is a minimal dominating set of G(V i+1 ) and thus D * ∈ D(G, V i+1 ). Since Priv(D * , x) ∩ V i = ∅ for all x ∈ D * , we then have that Parent(D * , i + 1) = (D * , i) directly from the definition.
Suppose now that D * does not dominate V i+1 , and observe that then

D = D * ∪ {v i+1 } does. Moreover, Priv(D, v i+1 ) ∩ V i+1 = ∅. Since v i+1
, by the definition of the peeling, is not adjacent to any vertex in V i , it cannot steal any private neighbor from the elements of D * , i.e., Priv(D * , x)

∩ V i = ∅ implies Priv(D * ∪ {v i+1 }, x) ∩ V i = ∅ for any x ∈ D * . Hence Priv(D, x) ∩ V i+1 = ∅
for all x ∈ D. Now, note that since v i+1 does not steal private neighbors from the elements of D * , it is indeed the only node in D with no private neighbors in V i , and it is removed when constructing Parent(D, i + 1). Hence Parent(D, i + 1) = (D * , i), as claimed.

The Parent function as introduced in Definition 2.2.1 defines a tree on vertex set

{(D, i) | i ∈ {0, . . . , p} , D ∈ D(G, V i )}, with leaves {(D, p) | D ∈ D(G, A)}
and root (∅, 0) (the empty set being the only minimal dominating set of the empty vertex set V 0 ). Our algorithms will search this tree in order to enumerate the minimal dominating sets of G(A). Proposition 2.2.2 guarantees that for every i < p and every

D * ∈ D(G, V i ), the pair (D * , i) is the parent of some (D, i + 1) with D ∈ D(G, V i+1 ) (possibly D = D * ).
Consequently, every branch of the tree leads to a different minimal dominating set of G(A). In particular, for every i ∈ {0, . . . , p -1} we have

|D(G, V i )| ≤ |D(G, V i+1 )| ≤ |D(G, A)|.
(2.1)

Given a set D * ∈ D(G, V i ), we now focus on the enumeration of all D ∈ D(G, V i+1 ) such that Parent(D, i + 1) = (D * , i). Any (inclusion-wise) minimal set X ⊆ V (G) such that V i+1 ⊆ N [D * ∪ X]
will be called a candidate extension of (D * , i). In other words, X is a candidate extension of (D * , i) if and only if it is a minimal dominating set of the bicolored graph G with prescribed set V i+1 \ N [D * ]. Then, we denote by C(D * , i) the set of all candidate extensions of (D * , i), i.e.,

C(D * , i) def = D(G, V i+1 \ N [D * ]).
(2.2)

Observe that if (D, i + 1) has (D * , i) as its parent, then D \ D * is candidate extension of (D * , i). From Proposition 2.2.2, we also know that one of (D * , i+1) and (D * ∪{v i+1 }, i+ 1) has (D * , i) as its parent, hence that either ∅ or {v i+1 } is a candidate extension of (D * , i). Note that we have no guarantee that any other candidate extension forms a minimal dominating set of V i+1 , together with D * . We show that it is still reasonable to test each of the candidate extensions even though D * might have a unique child.

Lemma 2.2.3. Let H(B) be a bicolored graph and

D ⊆ V (H). Then |D(H, B \ N [D])| ≤ |D(H, B)|.
Proof. We argue that for every

X ∈ D(H, B \ N [D]) we can find a set D X ∈ D(H, B)
so that the sets D X are pairwise different for different X; this assertion immediately implies the desired inequality. For this, we define D X as any minimal dominating set of H(B) that is a subset of D ∪ X; such a set exists as D ∪ X dominates B. By definition, every vertex of X has a private neighbor in

B \ N [D] so we have X ⊆ D X . Moreover, since X is a minimal dominating set of B \ N [D], X is disjoint with D.
We conclude that X = D X \ D, and hence that the sets D X are pairwise different for different X.

As a consequence of Lemma 2.2.3 and Inequality (2.1), we have the following.

Corollary 2.2.4. Let i ∈ {0, . . . , p -1} and

D * ∈ D(G, V i ). Then |C(D * , i)| ≤ |D(G, A)|.
We conclude the ordered generation with the following statement, which reduces the existence of an output-polynomial time algorithm enumerating D(G, A) to the existence of one enumerating C(D * , i) for any i ∈ {0, . . . , p -1} and D * ∈ D(G, V i ).

Theorem 2.2.5. Let f : N 2 N and s : N N be two functions. Assume that there is an algorithm that, given a bicolored graph G(A) on n vertices, a peeling (V 0 , . . . , V p ) of G(A), i ∈ {0, . . . , p -1}, and

D * ∈ D(G, V i ), enumerates C(D * , i) in time at most f (n, |D(G, A)|)
and space at most s(n). Then there is an algorithm that, given a bicolored graph G(A) on n vertices, enumerates the set D(G, A) in time

O(n 4 d 2 + f (n, d) • nd) and space O(n • s(n)), where d = |D(G, A)|.
Proof. Let us assume that there exists an algorithm B that, given a bicolored graph

G(A) on n vertices, a peeling (V 0 , . . . , V p ) of G(A), i ∈ {0, . . . , p -1} and D * ∈ D(G, V i ), enumerates C(D * , i) in time at most f (n, |D(G, A)|
) and space at most s(n). Note that we may assume that s(n) ∈ Ω(n), as B needs to store its input. We describe an algorithm A that enumerates D(G, A) within the specified time and space complexities.

The algorithm first checks whether A = ∅ and, if so, returns {∅}. Otherwise, it computes a peeling (V 0 , . . . , V p ) of G(A) in time O(n 2 ) and using O(n 2 ) space. Recall that the Parent relation defines a tree T on vertex set

{(D, i) | i ∈ {0, . . . , p} , D ∈ D(G, V i )},
with leaves {(D, p) | D ∈ D(G, A)} and root (∅, 0). Therefore, in order to enumerate D(G, A), it is enough for A to enumerate the leaves of T . To do so, the algorithm performs a depth-first search (DFS) of T outputting each visited leaf. For each node (D * , i), i ∈ {0, . . . , p -1} of T , the algorithm runs B on input (G(A), (V 0 , . . . , V p ), i, D * ) to generate C(D * , i) in time f (n, d) and space s(n). For every X ∈ C(D * , i) generated by B, the algorithm tests whether D * ∪ X is a minimal dominating set of V i+1 , and whether Parent(D * ∪ X, i + 1) = (D * , i). This requires O(n 3 ) steps per candidate extension, and a total working space of O(n), disregarding the space needed to store the (globally fixed) graph G. As by Corollary 2.2.4 we have

|C(D * , i)| ≤ |D(G, A)| = d, the total time spent by A at each node of T is bounded by O(n 3 d + f (n, d)). By In- equality (2.1) we have |V (T )| ≤ pd and clearly p ≤ n, so the total running time of A is bounded by O(n 4 d 2 + f (n, d) • nd).
Regarding the space, we observe that whenever we visit a node of T , we do not need to compute the whole set of its children. Instead, it is enough in order to continue the DFS to compute the next unvisited child only, which can be done using B and pausing it afterward. Therefore, when we visit some (D, i) ∈ V (T ), we only need to store the data of the i -1 (paused) executions of B enumerating the children of the ancestors of (D, i), plus the data of the algorithm enumerating the children of

D, i.e., i • (O(n) + s(n)) space. As s(n) ∈ Ω(n), the described algorithm uses O(n • s(n)) space, as claimed.

Candidate extensions in triangle-free graphs

We show that candidate extensions can be enumerated in output-polynomial time in triangle-free graphs, which by Theorem 2.2.5 leads to an output-polynomial time algorithm enumerating minimal dominating sets in this class of graphs. In fact, our result holds in the more general context where only the graph induced by the set that needs to be dominated is required to be triangle-free, and not necessarily the whole graph, a point that is discussed in Section 2.2.5.

In the following, we consider a bicolored graph G(A) on n vertices. Moreover, we have a fixed peeling (V 0 , . . . , V p ) of G(A) with vertex sequence (v 1 , . . . , v p ). Then, we consider

i ∈ {0, . . . , p -1} , D * ∈ D(G, V i ),
and define C(D * , i) as in Equality (2.2) in Section 2.2.1. We will show how to enumerate

C(D * , i) in output-polynomial time whenever G[A] is triangle-free.
Kanté, Limouzy, Mary, and Nourine gave the following characterization of minimal dominating sets in split graphs.

Proposition 2.2.6 ([KLMN14]

). Let H be a split graph with vertices partitioned into an independent set S and a clique C, where S is taken to be (inclusion-wise) maximal. Then, for every D ∈ D(H) the following holds:

(i) D ∩ S = S \ N (D ∩ C),
so in particular D is uniquely determined by its intersection with the clique; and

(ii) for every x ∈ D, Priv(D, x) ∩ S = ∅.

Furthermore, D(H) can be enumerated with delay O(n 2 ) and using O(n 2 ) space.

We can now use Proposition 2.2.6 to establish the following understanding of candidate extensions in terms of minimal dominating sets of an auxiliary split graph. The set S in the next lemma corresponds to the elements that, together with v i+1 , must be dominated by the candidate extensions of (D * , i). This situation is depicted in Fig-

ure 2.5. Lemma 2.2.7. Suppose that N (v i+1 ) is an independent set. Let S = V i+1 \ (N [D * ] ∪ {v i+1 }), C = N (S) \ {v i+1 }, and let H be the split graph obtained from G[S ∪ C] by completing C into a clique. Then, every set X in C(D * , i) either belongs to D(H), or belongs to D(H) after removing one vertex (i.e., X \ {u} ∈ D(H) for some u ∈ X), or is such that X = {v i+1 }. Moreover, |D(H)| ≤ n • |C(D * , i)| + 1. Proof. Consider any X ∈ C(D * , i), X = {v i+1 }. Then, by definition, X is a minimal dominating set of V i+1 \ N [D * ]. By assumption as V i+1 \ N [D * ] ⊆ N [v i+1 ], we have v i+1 / ∈ X. Observe then that X ⊆ C ∪ S.
We first consider the case when

v i+1 ∈ N [D * ]. Then V i+1 \ N [D * ] = S and, as H is a supergraph of G[S ∪ C]
and S remains an independent set in H, it follows that X minimally dominates S in H. Note that either X contains a vertex of C, and then this vertex dominates C in H, or X = S, and then X dominates C in H as well. We conclude that X is a minimal dominating set of H, i.e., that X ∈ D(H) in this case.

We now consider the remaining case when

v i+1 / ∈ N [D * ]; then V i+1 \ N [D * ] = S ∪ {v i+1 }. Observe that now either X is a minimal dominating set of S, or there exists u ∈ N (v i+1 ) ∩ X such that X \ {u} is a dominating set of S \ N [u], i.e., of S \ {u} as N (v i+1
) is an independent set. Denote D = X in the former case and D = X \ {u} in the latter case; we now apply a reasoning similar to that from the previous paragraph. Since v i+1 / ∈ D and D is a minimal dominating set of S or S \ {u}, it follows that

D ⊆ C ∪ S. If D ⊆ S, then either D = S \ {u} (if u is defined and u ∈ S) or D = S (otherwise), because N (v i+1 ) (hence in particular S) is an independent set. If D ⊆ S, then D ∩ C = ∅.
In both cases, D dominates C in H, and we conclude that X (if u is defined and u ∈ S) or D (otherwise) is a dominating set of H. Moreover, since Priv(D, x) ∩ S = ∅ for each x ∈ D it follows that X or D is a minimal dominating set of H. As X = D or X = D ∪ {u} for some vertex u, we conclude that either X belongs to D(H), or it belongs to D(H) after removing one vertex, a vertex that was here only to dominate v i+1 .

Having considered both cases, the claimed property of elements of C(D * , i) follows. We are left with proving the claimed upper bound on |D(H)|. We first show that From Inequality (2.3) we immediately obtain that

|{D ∈ D(H) | D ∩ S = ∅}| ≤ (n -1) • |{D ∈ D(H) | D ∩ S = ∅}| + 1. (2.3) Indeed, consider the map f that, given D ∈ {D ∈ D(H) | D ∩ S = ∅}, D = ∅,
|D(H)| ≤ n • |{D ∈ D(H) | D ∩ S = ∅}| + 1, so it suffices to prove that |{D ∈ D(H) | D ∩ S = ∅}| ≤ |C(D * , i)|.
To see this, we observe that in fact we have {D ∈ D(H) | D ∩ S = ∅} ⊆ C(D * , i). Indeed, by Proposition 2.2.6 we have that every D ∈ D(H) is a minimal dominating set of S in G, and it moreover dominates v i+1 provided D ∩ S = ∅.

We now show how to efficiently enumerate the candidate extensions.

Lemma 2.2.8. There is an algorithm enumerating

C(D * , i) in total time O(n 4 • |D(G, A)|) and O(n 2 ) space whenever N (v i+1 ) is an independent set.
Proof. First, observe that given any set B of vertices, we can test in O(n 2 ) time and space whether B ∈ C(D * , i). Hence, it suffices to enumerate in time

O(n 4 • |D(G, A)|) and O(n 2 ) space a superset F of C(D * , i) of size O(n 2 • |D(G, A)|)
, and for each element of F to test whether it belongs to C(D * , i). By Lemma 2.2.7 we can use

F = {v i+1 } ∪ D(H) ∪ {D ∪ {u} | D ∈ D(H), u ∈ V (G)}, V i V i+1 v i+1 N (v i+1 ) ∩ V i+1 C Figure 2.5: The situation of Lemma 2.2.7. The set N [D * ] ∩ V i+1 is depicted in gray (except v i+1
, in the first case of the proof), and the set

S = V i+1 \ (N [D * ] ∪ {v i+1 }) ⊆ N (v i+1 ) ∩ V i+1 is in white. Note that C = N (S) \ {v i+1 } may intersect V (G) \ V i+1 .
where H is the split graph defined in the statement of Lemma 2.2.7. Observe that 

|F| ≤ (n + 1) • |D(H)| +
|D(H)| ≤ n • |C(D * , i)| + 1 ≤ n • |D(G, A)| + 1,
so the claimed time complexity follows.

We conclude with the following theorem which is a consequence of Theorem 2.2.5, Lemma 2.2.8, and of the fact that when G[A] is triangle-free, the neighborhood of any vertex is an independent set. Theorem 2.2.9. There is an algorithm that, given a bicolored graph

G(A) on n vertices such that G[A] is triangle-free, enumerates the set D(G, A) in time O(poly(n) • |D(G, A)| 2 )
and O(n 3 ) space.

When A = V (G), we have D(G) = D(G, A).
Hence, Theorem 2.2.9 implies the existence of an algorithm enumerating the minimal dominating sets in triangle-free graphs in output-polynomial time and polynomial space.

Minimal dominating sets in K t -free graphs

In this section, we generalize the characterization of Lemma 2.2.7 and show how to use it to enumerate minimal dominating sets in K t -free graphs, at the cost of an increased complexity (see Theorem 2.2.13).

We start with a general lemma that, roughly, implies that any output-polynomial time algorithm that may repeat outputs can be turned into one without repetition, without increasing space. Lemma 2.2.10. Let Σ in , Σ out be two sets and R ⊆ Σ in × Σ out be a relation. Let f, s : Σ in N be two functions. Suppose that there is a deterministic algorithm enumerating, given any x ∈ Σ in , the set {y ∈ Σ out | xRy} in time at most f (x) and space at most s(x), possibly with repetition. Then there is an algorithm that, on the same input, returns the same output without repetition, in time O(f (x) 2 ) and space O(s(n)).

Proof. Let B' be the algorithm that on input x ∈ Σ in outputs {y ∈ Σ out | xRy}, possibly with repetition, in time at most f (x) and space at most s(x). Elements y ∈ Σ out satisfying xRy will be called solutions. We now give an algorithm B that, on the same input x, outputs all solutions without repetition. Algorithm B simulates B' while counting its number of output calls. Every time B' outputs a solution y, B runs a new simulation of B' to verify whether y was not output by B' before. This new simulation is terminated at the first attempt of outputting y, and for the verification, B simply checks the output solution counts in both simulations against each other. If y is indeed output by B' for the first time, then B also outputs y, and otherwise B' ignores this output and proceeds with the simulation. Thus, B outputs every solution exactly once: at the first moment when B' outputs it. The time complexity of B is O(f (x) 2 ), because for every step of B' we run a second simulation of B' that takes time at most f (x). The space complexity of B is at most 2 • s(x) + O(1) = O(s(x)), because we need to store the internal data of two simulations of B' at any time.

By combining Lemma 2.2.10 and Theorem 2.2.5, we get the following corollary.

Corollary 2.2.11. Let f : N 2 N and s : N N be two functions. Suppose that there is an algorithm that, given a bicolored graph G(A) on n vertices, a peeling

(V 0 , . . . , V p ) of G(A), i ∈ {0, . . . , p -1} and D * ∈ D(G, V i ), enumerates the set C(D * , i) in time at most f (n, |D(G, A)|
) and space at most s(n), possibly with repetition. Then there is an algorithm that, given a bicolored graph G(A) on n vertices, enumerates the set D(G, A) in time

O(n 4 d 2 + f (n, d) 2 • nd) and space O(n • s(n)), where d = |D(G, A)|.
The aforementioned generalization of Lemma 2.2.7 is the following. Lemma 2.2.12. Let G(A) be a bicolored graph and (V 0 , . . . , V p ) be a fixed peeling of G(A)

with vertex sequence (v 1 , . . . , v p ). Let i ∈ {0, . . . , p -1}, D * ∈ D(G, V i ) and S = V i+1 \ (N [D * ] ∪ {v i+1 }). Then: • if v i+1 ∈ N [D * ] then C(D * , i) = D(G, S); • otherwise, every element of C(D * , i) is of the form Q ∪ {w} for some w ∈ N [v i+1 ] and Q ∈ D(G, S \ N [w]). Furthermore, in this case |D(G, S \ N [w])| ≤ |C(D * , i)| for each w ∈ N [v i+1 ]. Proof. By definition, C(D * , i) = D(G, V i+1 \ N [D * ]). Note that if v i+1 ∈ N [D * ] then V i+1 \ N [D * ] = S, so we immediately get C(D * , i) = D(G, S). This resolves the first case. Suppose then that v i+1 / ∈ N [D * ] and consider any X ∈ C(D * , i). Since X minimally dominates V i+1 \ N [D * ] = S ∪ {v i+1 }, there exists some w ∈ N [v i+1 ] ∩ X. Then X \ {w} dominates S \ N [w]
and for every element of X \ {w}, its private neighbor in S ∪ {v i+1 } has to actually belong to S \ N [w]. We conclude that X \ {w} ∈ D(G, S \ N [w]), proving the characterization of the elements of C(D * , i) in this case.

We are left with proving the claimed upper bound on

|D(G, S \ N [w])|, for each w ∈ N [v i+1 ]. Take any Q ∈ D(G, S \ N [w]); clearly w / ∈ Q. If Q dominates S ∪ {v i+1 }, then Q is also a minimal dominating set of S ∪ {v i+1 }, because every vertex of Q has a private neighbor in S \ N [w] ⊆ S ∪ {v i+1 }. Otherwise, Q ∪ {w} is a minimal dominating set of S ∪ {v i+1 }: v i+1
is the private neighbor of w, and w could not steal any private neighbors in S \ N [w] from any vertices from Q. We conclude that either

Q or Q ∪ {w} belongs to C(D * , i), which proves that |D(G, S \ N [w])| ≤ |C(D * , i)|.
Let us point out the key difference between the statements of Lemma 2.2.12 and of Lemma 2.2.7. In Lemma 2.2.7, we reduced the enumeration of C(D * , i) to the enumeration of D(H) for a single split graph H. In Lemma 2.2.12, to obtain larger generality we need to separately consider sets

D(G, S \ N [w]) for each w ∈ N [v i+1 ].
When enumerating C(D * , i) via enumerating these sets, we will unavoidably obtain repetitions of elements of C(D * , i). These will be handled using Lemma 2.2.10 at the cost of an increased complexity.

Observe that by Lemma 2.2.12, to be able to enumerate the candidate extensions in general (and thus the minimal dominating sets, using Theorem 2.2.5) in outputpolynomial time, it suffices to be able to enumerate the minimal dominating sets of G(S) and of

G(S \ N [w]) for every w ∈ N [v i+1 ]. For bicolored graphs G(A) such that G[A] is K t -free,
this can be done by exploiting the fact that G[S] is K t-1 -free and running the same algorithm on G(S), as we shall describe now. We recall that ω(G) denotes the size of a largest clique in G.

Theorem 2.2.13. There is a function p : N N and an algorithm that, given a bicolored graph G(A) on n vertices, enumerates the set D(G, A) in time at most

p(t) • n 2 t+1 • |D(G, A)| 2 t
and space at most p(t) • n t+1 , where t = ω(G[A]) + 1.

When A = V (G), we have D(G) = D(G, A).
Hence, Theorem 2.2.13 implies the existence of an algorithm enumerating, for every integer t ≥ 1, the minimal dominating sets in K t -free graphs in output-polynomial time and polynomial space. We stress that we provide a single algorithm for all values of t-note that as stated, the algorithm does not require knowledge of t.

Proof of Theorem 2.2.13. In this proof we consider two algorithms A and B that recursively call each other in order to enumerate the minimal dominating sets of a bicolored graph. We first give their specifications, then describe them, and finally prove that they perform as specified. Let f :

N 3 N be defined by f (n, d, t) = n 2 t+1 -3 • d 2 t -1 , for every n, d, t ∈ N.
Specifications of A and B. We will show that the algorithms A and B have the following properties P and Q, for every t ≥ 1 in case of P (t) and every t ≥ 2 in case of Q(t).

P (t):

There is a constant p(t) ∈ N such that given an n-vertex graph G and a set

A ⊆ V (G) such that G[A] is K t -free, A outputs D(G, A) in time at most p(t) • f (n, |D(G, A)|, t
) and space at most p(t) • n t+1 .

Q(t):

There is a constant q(t) ∈ N such that given a n-vertex graph G,

a set A ⊆ V (G) such that G[A] is K t -free, a peeling (V 0 , . . . , V p ) of G(A) with vertex sequence (v 1 , . . . , v p ), i ∈ {0, . . . , p -1}, and D * ∈ D(G, V i ), B outputs C(D * , i) in time at most q(t) • n 2 • f (n, |D(G, A)|, t -1)
2 and space at most q(t) • n t .

The statement of Theorem 2.2.13 is implied by P (t) holding for all t ≥ 1. In order to prove it, we will also show that Q(t) holds for every t ≥ 2. Let us first describe A.

Description of A.

The algorithm A is the one given by Theorem 2.2.5 that takes as input a bicolored graph G(A), using B as a routine to enumerate candidate extensions. We will show below that B indeed does so.

Description of B.

Recall that B takes as input a bicolored graph G(A), a peeling (V 0 , . . . , V p ) of G(A) with vertex sequence (v 1 , . . . , v p ), an integer i ∈ {0, . . . , p -1}, and a set

D * ∈ D(G, V i ).
We first describe an auxiliary routine B'.

Let S = V i+1 \ (N [D * ] ∪ {v i+1 }).
Then, Lemma 2.2.12 above allows us to consider two cases depending on whether D * dominates v i+1 or not: We are now done with B'. As we will show later, B' enumerates C(D * , i), however each element may be repeated, up to n times. Then B is obtained from B' using Lemma 2.2.10. This concludes the description of B.

(i) if v i+1 ∈ N [D * ],
Correctness of A and B. Now that we described the algorithms A and B, we show that they conform to their specifications, i.e., we prove that P (t) holds for every t ≥ 1 and that Q(t) holds for every t ≥ 2. The proof by induction on t is split in lemmas.

Lemma 2.2.14. P (1) holds.

Proof. The statement P (1) deals with pairs 

(G, A) such that G[A] is K 1 -free, so A = ∅.
Proof. Let S = V i+1 \ ({v i+1 } ∪ N [D * ]). Note that as D * dominates V i , we have S ⊆ N (v i+1 ) ∩ V i+1
. Also, S can be computed in O(n 2 ) time and space. Since i < p, we have V i+1 ⊆ A, from the definition of a peeling. In particular, 

G[V i+1 ] is K t+1 -free. As S ⊆ N (v i+1 ) ∩ V i+1 , we get that G[S] is K t -free.
p(t) • f (n, |D(G, S)|, t) = p(t) • f (n, |C(D * , i)|, t) (by Lemma 2.2.12) ≤ p(t) • f (n, d, t)
(by Corollary 2.2.4) and space at most p(t)

• n t+1 . Now suppose that v i+1 / ∈ N [D * ].
Then, by Lemma 2.2.12, we enumerate all elements of the set C(D * , i), however each of them is enumerated once per every form Q ∪ {w} it can take, where w ∈ N [v i+1 ] and Q ∈ D(G, S \ N [w]). Every such occurrence is characterized by the choice of w, hence there are at most n of them and, consequently, every member of C(D * , i) is enumerated at most n times.

Regarding time and space complexity we perform at most n times (once for every choice of w ∈ N [v i+1 ]) the following operations: 

• constructing S \ N [w], in O(n) time and space; • calling A on (G, S \ N [w]), in time at most p(t) • f (n, |D(G, S \ N [w])|, t)
|D(G, S \ N [w])| ≤ |C(D * , i)| ≤ d.
Therefore, in total the time complexity of these steps adds up to:

n • O(n) + p(t) • f (n, d, t) + O n 2 • d = O (p(t) • n • f (n, d, t))
(as t ≥ 2 in this case).

(2.4)

Similarly, the space complexity can be upper-bounded by O(p(t) • n t+1 ). We conclude by setting k as p(t) times the maximum of the constants hidden in the O(•) notation above.

As proved in Lemma 2.2.10, the algorithm of Claim 1 can be turned into an algorithm B that does not repeat outputs. That is, there is a constant q(t + 1) (depending on k) such that given I, B runs in time at most q(t + 1) • n 2 • f (n, d, t) 2 and space at most q(t + 1) • n t+1 . Hence Q(t + 1) holds, as desired.

Lemma 2.2.17. For every integer t ≥ 2, Q(t) ⇒ P (t).

Proof. Let us assume that for some integer t ≥ 2, the statement Q(t) holds (and in particular q(t) is defined). Let G be a graph and

A ⊆ V (G) be such that G[A] is K t -free. We set n = |G| and d = |D(G, A)|. By Q(t)
, the enumeration of candidate extensions in G(A) can be carried out by B in total time at most

q(t) • n 2 • f (n, d, t -1) 2
and space at most q(t) • n t . According to Theorem 2.2.5, A then enumerates D(G, A) in time

O(n 4 • d 2 + q(t) • n 3 • f (n, d, t -1) 2 • d) = O(n 4 • d 2 + q(t) • f (n, d, t)) (by the definition of f ) = O(q(t) • f (n, d, t)) (as t ≥ 2)
and space O(q(t) • n t+1 ). Therefore, there is a constant p(t) (depending on q(t)) such that A runs on this input in time at most p(t) • f (n, d, t) and space at most p(t) • n t+1 . This proves P (t).

Concluding the proof. We proceed by induction on t. The base case P (1) follows from Lemma 2.2.14. The induction step that, for every integer t ≥ 1, P (t) implies P (t + 1), is obtained by combining Lemmas 2.2.15 and 2.2.17. We conclude that P (t) holds for every integer t ≥ 1. That is, the algorithm A has the properties claimed in the statement of the theorem.

We note that the complexity of the algorithm of Theorem 2.2.13 for K t -free graphs could be slightly improved when t ≥ 3, using Theorem 2.2.9 as a base case, however that would not remove the exponential contribution of t to the degree of the polynomial.

Variants of K t -free graphs

We give output-polynomial time algorithms for classes related to K t -free graphs relying on the algorithms and characterizations of candidate extensions given in Sections 2.2.1, 2.2.2, and 2.2.3.

Forbidding K t + K 2
In this section we show how the algorithm of Theorem 2.2.13 on K t -free graphs can be extended to the setting of (K t + K 2 )-free graphs.

Theorem 2.2.18.

There is an algorithm that, for every fixed t ∈ N, enumerates minimal dominating sets in (K t + K 2 )-free graphs in output-polynomial time and polynomial space.

Proof. Let t ∈ N and let G be a (K t + K 2 )-free graph. It is well-known that the minimal dominating sets of G that induce edgeless subgraphs are exactly the maximal independent sets of G. We can therefore enumerate these using the polynomial delay algorithms of Tsukiyama et al. [START_REF] Tsukiyama | A new algorithm for generating all the maximal independent sets[END_REF] for maximal independent sets. In the sequel we may thus focus on those minimal dominating sets of G that induce at least one edge.

We show how to enumerate, for every edge uv of G, the minimal dominating sets of G that contain both u and v.

Let A uv = V (G) \ N [{u, v}] and observe that G[A uv ] is K t -free.
First, we enumerate G(A uv ) using the algorithm of Theorem 2.2.13, which runs in output-polynomial time and polynomial space, as t is fixed. For every D ∈ D(G, A uv ) obtained from the aforementioned call, we output D ∪{u, v} if it is a minimal dominating set of G, and discard D otherwise. By Lemma 2.2.3 (applied for H = G and

B = V (G)) we have |D(G, A uv )| ≤ |D(G)|.
Hence, enumerating D(G, A uv ) produces all those minimal dominating sets of G that at least induce the edge uv in time poly(n • |D(G)|) and space poly(n), where the degrees of these polynomials depend on t (see Theorem 2.2.13).

Now that we know how to enumerate minimal dominating sets that induce at least one particular edge, we can run the above routine for every edge of G to enumerate all minimal dominating sets of G, possibly with repetitions. Observe that the same output can be repeated at most |E(G)| times. Then, repetitions are avoided using Lemma 2.2.10 with Σ in being the set of all graphs, Σ out the set of all vertex sets, and R the relation that associates every graph to its minimal dominating sets.

Forbidding K t -e
Another interesting case is the one of (K t -e)-free graphs. In this section we show how the characterization of Lemma 2.2.12 can be used to enumerate candidate extensions in diamond-free graphs (which are (K t -e)-free for t = 4), which by Theorem 2.2.5 gives an output-polynomial time algorithm enumerating minimal dominating sets in this class. We leave open the existence of such an algorithm in the case when t ≥ 5.

In what follows, we consider a bicolored graph G(A) on n vertices such that G is diamond-free, together with a fixed peeling (V 0 , . . . , V p ) of G(A) with vertex sequence (v 1 , . . . , v p ). Then, we consider

i ∈ {0, . . . , p -1} , D * ∈ D(G, V i ),
and define 

S = V i+1 \ (N [D * ] ∪ {v i+1 })
of G, G[N (u)] is P 3 -free. Then G[N (v i+1 )], hence also G[S]
, can be partitioned into a disjoint union of cliques (i.e., it is a cluster graph).

We will show how to minimally dominate one clique of S, then a disjoint union of cliques of S, and will conclude with the enumeration of C(D * , i).

Lemma 2.2.20. Let K be a clique of G[S] and u be a vertex in G -S, u = v i+1 , that is adjacent to some vertex of K. If u is adjacent to v i+1 , then it is complete to K. Otherwise u has exactly one neighbor in K.

Proof. If u ∈ N (v i+1 ) then, as G[N (v i+1 )] is P 3 -free and K ⊆ N (v i+1 ), u is complete to K. If u is not adjacent to v i+1 , then it has exactly one neighbor in K, as otherwise {a, b, u, v i+1 } would induce a diamond in G, for any two neighbors a, b ∈ K of u. Lemma 2.2.21. Let K be a clique in G[S]. Then D(G, K) can be enumerated in total time O(n 2 + n • |D(G, K)|) and O(n 2 ) space.
Proof. We describe an algorithm enumerating D(G, K) in the specified time and space bounds. We first output {v i+1 } as it is complete to K. We then output all vertices u ∈ N (v i+1 ) such that u ∈ K or u is adjacent to some vertex of K. By Lemma 2.2.20, these vertices are also complete to K. Then, for every x ∈ K, we compute the neighborhood of x outside of N (v i+1 ) in total time O(n 2 ). By Lemma 2.2.20, these neighborhoods are disjoint. At last, we enumerate the unordered Cartesian products of these neighborhoods. This can clearly be done in total time of O(n • |D(G, K)|) using O(n) space as they are disjoint. Clearly, every element in such an unordered Cartesian product is a minimal dominating set of K, and the described algorithm performs within the specified time and space bounds. The correctness of the algorithm follows from Lemma 2.2.20. Proof. We use the ordered generation described in Section 2.2.1. The algorithm first computes a peeling (U 1 , . . . , U q ) of G(W ) with vertex sequence (u 1 , . . . , u q ), in O(n 2 ) time and space. Note that N [u 1 ] ∩ W, . . . , N [u q ] ∩ W is exactly the disjoint clique partition of G[W ]; denote these sets by W 1 , . . . , W q . Given j ∈ {0, . . . , q -1} and D • ∈ D(G, U j ), we define C (D • , j) as the set of candidate extensions of (D • , j) with respect to the chosen peeling of G(W ) and we show how to enumerate

C (D • , j) in time O(n 6 • |D(G, A)| 2 ) and using O(n 2 ) space.
We rely on the same characterization of candidate extensions that we use in the proof of Theorem 2.2.13, i.e., Lemma 2.2.12. Recall that this lemma allows us to consider two cases depending on whether Proof. We apply the same argument as in the previous lemma, and in the proof of Theorem 2.2.13. Lemma 2.2.12 allows us to consider two cases depending on whether 

D • dominates u j+1 or not. Let Y = W j+1 \N [D • ]. If D • dominates u j+1 ,
D * dominates v i+1 or not. If D * dominates v i+1 ,

Theorem 2.2.24.

There is an algorithm that, given a bicolored graph G(A) on n vertices such that G is diamond-free, enumerates the set D(G, A) in time

O(poly(n) • |D(G, A)| 7 )
and O(n 4 ) space.

Note that when A = V (G), we have D(G) = D(G, A). Hence, Theorem 2.2.24 implies the existence of an algorithm enumerating the minimal dominating sets in diamond-free graphs in output-polynomial time and using polynomial space.

Paw-free graphs

We now consider the exclusion of a specific graph, the paw, and show that DOM-ENUM admits an output-polynomial time algorithm in paw-free graphs.

In what follows, we consider a bicolored graph G(A) on n vertices such that G is paw-free, together with a fixed peeling (V 0 , . . . , V p ) of G(A) with vertex sequence (v 1 , . . . , v p ). Then, we consider

i ∈ {0, . . . , p -1} , D * ∈ D(G, V i ),
and define S = V i+1 \ (N [D * ] ∪ {v i+1 }) and C(D * , i) as in Sections 2.2.1, 2.2.2 and 2.2.3. As in the previous section we stress that we require the whole graph G to be paw-free, and not only G[A]. We start with an easy observation.

Observation 2.2.25. For every vertex u of G, G[N (u)] is P 3 -free. Hence G[S] is a complete multipartite graph (also called a co-cluster graph).

Note that when enumerating C(D * , i) (i.e., the minimal dominating sets of G(S)), we may safely ignore the edges between two vertices of G -S. Therefore, if S is an independent set, we can delete all edges of G -S (in O(n 2 ) time) to obtain that N (v i+1 ) is an independent set and then apply the algorithm enumerating C(D * , i) in this setting given by Lemma 2.2.8. In the next lemma, we consider the case where S contains at least one edge.

Lemma 2.2.26. Assume that G[S] contains at least one edge, and let u be a vertex of G, u = v i+1 , that has a neighbor in S. If u is not adjacent to v i+1 , then it is complete to S. Otherwise, u is complete to S \ I j , for some j ∈ {1, . . . , q} where I 1 , . . . , I q is the complete multipartition of G[S] (every I j induces an independent set in G, while vertices from different I j 's are adjacent).

Proof. As by assumption G[S] contains an edge, we have q ≥ 2. Assume first that u is not adjacent to v i+1 , but has a neighbor in S; in particular u / ∈ S. Suppose for contradiction that u is not complete to S. Hence there are vertices x ∈ S ∩ N (u) and y ∈ S \ N (u). Note that xy ∈ E(G) as otherwise {u, v i+1 , x, y} induces a paw in G. Then x, y ∈ I j for some j ∈ {1, . . . , q}. Let z ∈ S \ I j ; such a vertex exists as q ≥ 2 and it is complete to {v i+1 , x, y} by definition of the I k 's. Then, either uz ∈ E(G) and {u, x, y, z} induces a paw, or uz / ∈ E(G) and {u, v i+1 , y, z} does, a contradiction. Assume now that u is adjacent to v i+1 . If u belongs to S, then it belongs to some I j , j ∈ {1, . . . , q} and is complete to S \ I j , by definition of the I k 's. We now assume u ∈ N (v i+1 ) \ S. If there is no j ∈ {1, . . . , q} such that u is complete to S \ I j , then, as q ≥ 2, u has at least two non-neighbors x ∈ I j and y ∈ I j for two different j , j ∈ {1, . . . , q}. Then {u, v i+1 , x, y} induces a paw in G, a contradiction. Proof. In the case where S induces an independent set, we use the algorithm of Lemma 2.2.8 to enumerate C(D * , i) in time

O(n 4 • |D(G, A)|)
and O(n 2 ) space. Otherwise, we deduce from Lemma 2.2.26 that minimal dominating sets of S are either of size at most two, or of the form I j for some j ∈ {1, . . . , q}. If

v i+1 ∈ N [D * ], that is if S = V i+1 \ N [D * ],
we try each of these sets and output those that minimally dominate S; this can be done in total time O(n 4 ). This enumerates

C(D * , i) by definition. If v i+1 ∈ N [D * ],
we first output I j for every j ∈ {1, . . . , q}. Then, we iterate over all vertex subsets of size at most three and output those that minimally dominate S; this can be done in total time O(n 5 ). This will enumerate C(D * , i), for the following reason implied by Lemma 2.2.26. If X ∈ C(D * , i), then either X = I j for some j ∈ {1, . . . , j}, or X contains at most three vertices: one with v i+1 as a private neighbor and at most 2 with private neighbors in S.

As a consequence of Theorem 2.2.5 and Lemma 2.2.27, we get the following.

Theorem 2.2.28. There is an algorithm that, given a bicolored graph G(A) on n vertices such that G is paw-free, enumerates the set D(G, A) in time

O(poly(n) • |D(G, A)| 2 )
and O(n 3 ) space.

Note that when A = V (G), we have D(G) = D(G, A). Hence, Theorem 2.2.28 implies the existence of an algorithm enumerating the minimal dominating sets in pawfree graphs in output-polynomial time and using polynomial space.

Technique limitations

In this section, we discuss various obstacles that we detected in our attempts to improve our results or proofs.

A standard technique fails for bipartite graphs

A natural technique (referred to as flashlight search, investigated in Section 2.4) to enumerate valid solutions to a given problem such as, for instance, sets of vertices satisfying a given property, is to build them element by element. If during the construction one detects that the current partial solution cannot be extended into a valid one, then it can be discarded along with all the other partial solutions that contain it. Note that in order to apply this technique, one should be able to decide whether a given partial solution can be completed into a valid one. It turns out that for minimal dominating sets, this problem (called the extension problem problem) is NP-complete [KLMN11], even when restricted to split graphs [KLM + 15a]. We show that it remains NP-complete in bipartite graphs, so in particular on (K t + K 2 )-free graphs for every t ≥ 3. This stands in contrast with Theorem 2.2.13 and suggests that, indeed, a more involved technique was needed to obtain our results.

The extension problem, denoted DCS, is formally defined as follows. Given a graph G and a set A ⊆ V (G) of vertices, is there a minimal dominating set D ∈ D(G) such that A ⊆ D.

Theorem 2.2.29. DCS restricted to bipartite graphs is NP-complete.

Proof. Since DCS is NP-complete in the general case, it is clear that DCS is in NP even when restricted to bipartite graphs. Let us now present a hardness reduction from SAT.

Given an instance ϕ of SAT with variables x 1 , . . . , x n and clauses C 1 , . . . , C m , we construct a bipartite graph G and a set A ⊆ V (G) such that there exists a minimal dominating set containing A if and only if there exists a truth assignment to the variables of ϕ that satisfies all the clauses. The graph G has vertex bipartition (X, Y ), defined as follows.

The first part X contains two special vertices u and w, and for every variable x i , one vertex for each of the literals x i and ¬x i . The second part Y contains one vertex y C j per clause C j , one vertex neg x i per variable x i , and two special vertices v and z. For every i ∈ {1, . . . , n} we make neg x i adjacent to the two literals x i and ¬x i and for every j ∈ {1, . . . , m} we make y C j adjacent to u and to every literal C j contains. Finally, we add edges to form the path uvwz and set A = {neg x 1 , . . . , neg xn , v, w}. Clearly this graph can be constructed in polynomial time from ϕ. The construction is illustrated in Figure 2.6.

neg x 1 neg x 2 neg xn x 1 x 2 x n ¬x 1 ¬x 2 ¬x n y C 1 y C 2 . . . y Cm u v w z . . .
Let us show that A can be extended into a minimal dominating set of G if and only if ϕ has a truth assignment that satisfies all the clauses. The proof is split into two claims. A partial assignment of ϕ is a truth assignment of a subset of the variables x 1 , . . . , x n . Observe that a partial assignment may satisfy all the clauses (i.e., the values of the non-assigned variables do not matter). A partial assignment that satisfies all the clauses is called a minimal assignment if none of its proper subsets satisfies all the clauses.

Claim 2. Let S ⊆ {x 1 , ¬x 1 , . . . , x n , ¬x n } be a set containing at most one literal for each variable. Then S minimally dominates {y C 1 , . . . , y Cm } if and only if its elements form a minimal assignment of ϕ.

Proof. Suppose S is as above and S minimally dominates {y C 1 , . . . , y Cm }. Consider any j ∈ {1, . . . , m}. Since y C j / ∈ S, the set S contains a neighbor x of y C j . By construction, x is a literal appearing in C j . Hence, the literals present in S form a partial assignment of the variables of ϕ satisfying all its clauses. Moreover, this partial assignment is minimal by the minimality of S. The proof in the other direction is analogous.

Claim 3. If D is a minimal dominating set of G containing A, then D \ A ⊆ {x 1 , ¬x 1 , . . . ,
x n , ¬x n } and D contains at most one literal of each variable.

Proof. Notice that Priv(A, v) = {u}. If y C j belongs to D for some j ∈ {1, . . . , m}, then Priv(D, v) = ∅, a contradiction to the minimality of D. For similar reasons u, z / ∈ D. Hence D ∩ {u, z, y C 1 , . . . , y Cm } = ∅. Besides, for every i ∈ {1, . . . , m}, D contains at most one of x i and ¬x i , as otherwise Priv(D, neg x i ) would be empty, again contradicting the minimality of D. This proves the claim.

If A can be extended into a minimal dominating set D of G, then by combining the two claims above, we deduce that ϕ has a truth assignment that satisfies all clauses. Conversely, if ϕ has a truth assignment satisfying all the clauses, then it also has a minimal truth assignment satisfying all the clauses, so there is a set S as in the statement of Claim 2. In S ∪ A, every element of S has a private neighbor, as a consequence of the minimality of S and the fact that no element of A has a neighbor among the clause vertices. Besides, each of neg x 1 , . . . , neg xn has a private neighbor (because S contains at most one of the two literals for each variable) and it is easy to see that the same holds for v and w. Hence S ∪ A is a minimal dominating set of G.

Given an instance ϕ of SAT, we constructed in polynomial time an instance (G, A) of DCS that is equivalent to satisfiability of ϕ. This proves that DCS is NP-hard.

Limitations of the bicolored argument

Let us present a brief argument of why enumerating the minimal dominating sets in a bicolored graph G(A) is DOM-ENUM-hard if A can contain an arbitrarily large clique and no restriction is put on the structure of G -A nor its interactions with A. In other words, we argue that DOM-ENUM can be reduced to the problem of enumerating the minimal dominating sets in a bicolored graph G(A) where A is a clique.

Because of Theorem 2.1.1, we know that enumerating minimal dominating sets of a co-bipartite graph G is DOM-ENUM-hard. However, note that free to disregard the minimal dominating sets consisting of exactly one vertex in each clique of the partition, every minimal dominating set is included in one of the two cliques. Let A 1 and A 2 be the two sides of this partition. Observe that as both A 1 and A 2 induce cliques, they satisfy any property that does not limit the size of the largest clique. Combined with the fact that minimal dominating sets consisting of exactly one vertex in each side of the partition are easy to enumerate, we obtain the desired conclusion.

Note however that this obstacle was circumvented in Theorems 2.2.24 and 2.2.28 by keeping track of what the forbidden structures in G imply for the interactions between G -A and A. Unfortunately, the arguments were quite ad hoc in nature and it is unclear how far they can be generalized.

This obstacle was bypassed in a different way in Theorem 2.2.18, simply by first enumerating all the minimal dominating sets without a given structure, then using the fact that the structure appears in any remaining dominating set to guess where it does, and finally arguing that the vertices that remain to be dominated cannot induce an arbitrarily large clique. We now show that this technique is in fact very limited.

Limitations of enumerating all minimal dominating sets with a certain structure

We present now a brief argument on why enumerating all H-free minimal dominating sets in a graph is DOM-ENUM-hard unless H is a clique of size at most 2. Here, a minimal dominating set D is H-free if G[D] does not contain H as an induced subgraph.

The case when H is not a clique is directly implied by the argument in Section 2.2.5. We now focus on the case when H is a clique on at least 3 vertices; it suffices to handle the case when H is a triangle. In other words, we argue that DOM-ENUM can be reduced to the question of enumerating all triangle-free minimal dominating sets.

Consider a graph G. We build an auxiliary graph G by creating two copies A and B of V (G), creating a vertex u, and setting V (G ) = A ∪ B ∪ {u}. We set A to be an independent set, B to be a clique, and the vertex u to be adjacent to all of A and none of B. We set the edges between A and B as follows: a vertex in A and a vertex in B are adjacent if and only if the vertices of G they originate from are the same or are adjacent.

Let us consider what the structure of a minimal dominating set D of G can be, and how easy it is to generate all minimal dominating sets of a given type. We consider three cases. 3. u ∈ D and D ∩ B = ∅. All these minimal dominating sets are triangle-free. We observe that there is a bijection between the minimal dominating sets of this type and the minimal dominating sets of G.

Summarizing, the first two types of minimal dominating sets are easy to generate in output-polynomial time. We note that, free again to disregard minimal dominating sets that are easy to generate, enumerating all triangle-free minimal dominating sets of G boils down to enumerating all minimal dominating sets of G that are included in A ∪ {u} and contain u. This is equivalent to enumerating all minimal dominating sets of G, hence the conclusion.

Note, however, that there is still hope for this technique when we assume some structure on the whole graph.

Flipping method in comparability graphs

Golovach, Heggernes, Kratsch and Villanger introduced in [GHKV15] the so-called flipping method to efficiently enumerate minimal dominating sets in line graphs. This method was later used with much success [GHK + 16, GHK + 18, KKP18]. We recall it below and in the process, we show that the flipping method can be improved to run with polynomial space (in contrast to exponential space from the original version). We then show how it yields an incremental-polynomial time algorithm for DOM-ENUM in the comparability graphs of posets of bounded dimension. 

Polynomial-space flipping method

A key step of the flipping method is the flipping operation, that we describe now.

The flipping operation Let G be an n-vertex graph and v 1 , . . . , v n be any ordering of vertices in G. We note that this order induces a lexicographical order on the family 2 V (G) . Let D be a minimal dominating set of G such that G[D] contains at least one edge incident to some vertex u. The following procedure is illustrated in Figure 2.7. Since D is a minimal dominating set, the set Priv(D, u) is not empty. Let v ∈ Priv(D, u). Since u is adjacent with another vertex from D, we have u ∈ Priv(D, u), so v = u. We want to replace u with v (flip u, v) and obtain another minimal dominating set. Let X uv ⊆ Priv(D, u) \ N [v] be the lexicographically smallest maximal independent set in G[Priv(D, u) \ N [v]]. In other words, X uv is obtained from the empty set by iteratively adding a vertex of smallest index in Priv(D, u) \ N [{v} ∪ X uv ], until no such vertex exists. Consider the set D = (D \ {u}) ∪ X uv ∪ {v}. Note that D is a (not necessarily minimal) dominating set of G. Some vertices of D may have no private neighbors, however every vertex of X uv ∪ {v} is self-private. Let Z uv be the lexicographically smallest set which has to be removed from D in order to make it minimal. In other words, Z uv is obtained from the empty set by iteratively adding a vertex z of smallest index in D \ Z uv such that z has no private neighbor with respect to D \ Z uv , until no such vertex exists. Since the elements of X uv ∪ {v} are self-private in D , the sets X uv ∪ {v} and Z uv are disjoint, and non-adjacent. Let us finally set

D * = ((D \ {u}) ∪ X uv ∪ {v}) \ Z uv . Then D * is a minimal dominating set of G.
Observe that since X uv and Z uv are selected greedily with respect to v 1 , . . . , v n , this procedure is deterministic. Therefore, the procedure assigns to every minimal dominating set D of G, and to every two vertices u, v such that u is in D and is not isolated The flipping operation is then defined to be the reverse of how D * = Parent uv (D) was generated from D. This means, given D * with an isolated element v ∈ D * and u a neighbor of v, the operation removes X uv and adds back Z uv , to obtain a child D of D * with respect to flipping u and v. Obviously, the difficulty is to guess appropriate sets for X uv and Z uv when we are given only D * , u, and v.

The flipping method

We now describe the flipping method as originally introduced in [START_REF] Golovach | An incremental polynomial time algorithm to enumerate all minimal edge dominating sets[END_REF]. Assume that there exists an algorithm A that, given D * ∈ D(G), enumerates a family D of minimal dominating sets of G such that Children(D * ) ⊆ D ⊆ D(G). We stress the fact that D may contain minimal dominating sets that are not actual children of D * . The flipping method, then, consists of a depth-first search (DFS) on a directed supergraph1 G whose nodes are minimal dominating sets of G, with one additional special node r, called the root, which has no in-neighbors. The out-neighbors of the root are the maximal independent sets of G (which are minimal dominating sets), and there is an arc from a minimal dominating set D * ∈ V (G) to another one D ∈ V (G) if A generates D from D * . At first, the DFS is initiated at the root. Its outneighbors are generated with polynomial delay using the algorithm of Tsukiyama et al. [START_REF] Tsukiyama | A new algorithm for generating all the maximal independent sets[END_REF]. The out-neighbors of the other nodes are generated using A. Since A outputs (in particular) every child of a given node, we can argue using Proposition 2.3.1 that every minimal dominating set is reachable from r. More solutions may however be output by A, and all the difficulty lies in handling the inherent repetitions.

In [START_REF] Golovach | An incremental polynomial time algorithm to enumerate all minimal edge dominating sets[END_REF] and later papers [GHK + 16, GHK + 18], a list of already visited nodes of G is maintained in order to handle repetitions, inexorably requiring space that is linear in D(G), thus potentially exponential in n. The stack of an arbitrary DFS from the root r to the current visited node D may also require exponential space. The achieved time complexity, on the other hand, is incremental-polynomial.

Lemma 2.3.2 ([GHKV15]

). Let G be a graph. Suppose that there is an algorithm A that, given D * ∈ D(G), enumerates with polynomial delay a family D of minimal dominating sets of G such that Children(D * ) ⊆ D ⊆ D(G). Then there is an algorithm that enumerates with incremental delay the set D(G) of all minimal dominating sets of G.

We would like to mention that a similar proof allows for "incremental delay" instead of "polynomial delay" in the hypothesis of this statement. We further strengthen the statement in the following.

A polynomial-space flipping method

We show here that guiding the DFS toward the children, together with the trick of Lemma 2.2.10 on running the algorithm again at each output, allows us to handle repetitions with polynomial space at the cost of an increased-but still incremental-polynomial-complexity.

The next lemma is central to the next section and may be regarded as a space improvement of Lemma 2.3.2. It is also of general interest as far as the flipping method is concerned. Lemma 2.3.3. Let G be an n-vertex graph, let p : N N and s ∈ N. Suppose that there is an algorithm A that, given D * ∈ D(G), enumerates a family D with delay p(t) and space s, where Children(D * ) ⊆ D ⊆ D(G), p is a non-decreasing function, and t is the number of elements of D already generated. Then there is an algorithm that enumerates the set D(G) of all minimal dominating sets of G with delay

O(n 9 ) • i 3 • p(i) 2
and space O(n2 ) • s, where i is the number of already generated minimal dominating sets.

Proof. In the following, let G be the directed graph 2 on vertex set

V (G ) = D(G) ∪ {r} and edge set E(G ) = {(r, D) | D ∈ MIS(G)} ∪ {(D * , D) | D ∈ Children(D * )},
where r is a special vertex referred to as the root.

Let us first argue that every minimal dominating set D is reachable from r in G , by induction on the number of edges in it. If D contains no edge, it is a maximal independent set, thus an out-neighbor of r. If D contains an edge uw, we can flip u and one of its private neighbors v. Let D * = Parent uv (D). By Proposition 2.3.1, D * has fewer edges than D and is thus reachable from r. There is an arc from D * to D in G , hence the conclusion. Therefore, a DFS of G initiated at r visits all minimal dominating sets of G.

Furthermore, for every minimal dominating set D and every directed path from r to D the length of the path is at most

|E(G[D])| ≤ n 2 .
We now describe an algorithm B that enumerates, possibly with repetitions, the set D(G) of all minimal dominating sets of G. When B outputs a set that was not output before we call this output a first occurrence. The algorithm B will output first occurrences with a delay

O(n 7 ) • i • p(i)
and space O(n 2 ) • s, where i is the number of first occurrences output so far. Algorithm B proceeds as follows. First, it outputs every out-neighbor of r without duplication using the algorithm of Tsukiyama et al. in [START_REF] Tsukiyama | A new algorithm for generating all the maximal independent sets[END_REF]. Before, we discuss the delays between consecutive first occurrences output by B, we take a pause to determine the following: given D and D * in G , how fast can we determine if D is a child of D * ? The brute force approach we choose goes as follows:

(1) guess the vertex u in D (such that there is an edge incident to u in G[D]); (2) guess the vertex v in Priv(D, u); (3) perform the flipping operation along the uv edge; (4) check if the resulting set is D * . Note that the number of possible guesses in (1) and ( 2) is at most n 2 . In order to make a flip when u and v are fixed, we need to compute the sets X uv and Z uv . The straightforward approach does it in O(n 3 ) time. Therefore, we can determine if D is a child of D * in O(n 5 ) time and O(n 2 ) space (as for convenience, we work with the adjacency matrix).

We now examine the delay of B between two consecutive first occurrences. The outputs generated by the algorithm of Tsukiyama et al., so the maximal independent sets of G, are produced within O(n 3 ) time and O(n 2 ) space, see [START_REF] Tsukiyama | A new algorithm for generating all the maximal independent sets[END_REF].

Let D be a first occurrence output by B that is produced by a call of A on a node D * in G . Say that D is the i-th first occurrence in order output by B. Thus D is a child of D * . To obtain the next first occurrence output by B, we consider the path from r to D in G . The algorithm B continues launching A on D and for each node of the path, except r and D, B has on the stack a paused execution of A called on the node. In the worst case scenario, all the executions will be resumed and each of them will output at most i sets, all of them being already output by B before. Since the length of the path from r to D * is bounded by n 2 and since p is a non-decreasing function, there are at most n 2 • i • p(i) sets output by the executions of A. Each set is checked by B to see if it is a child of the respective node of G . A single check takes O(n 5 ) time, so in total in O(n 7 ) • i • p(i) time the algorithm B outputs the next first occurrence.

We note that since the time spent between the i-th and (i + 1)-th first occurrence produced by B is O(n 7 ) • i • p(i), and since the total number of first occurrences is |D(G)| ≤ 2 n , there is a small constant c such that B runs for at most poly(n + 2 n ) ≤ 2 cn time.

The space consumed by B is dominated by the space taken by at most n 2 paused executions of A and the adjacency matrix of G. Thus B runs in O(n 2 ) • s space.

We are now ready to describe an algorithm C that enumerates D(G) without repetitions and within the desired time and space constraints. Algorithm C proceeds as follows. First, it launches a master instance of B. It also maintains a counter keeping track of the number of steps (i.e., elementary steps counted by the time complexity) of the master instance of B. Since B runs for at most 2 cn steps, a cn-bits long counter suffices. Whenever the master instance outputs a new set D, and the counter of steps indicates i, the algorithm C launches a new instance of B, runs it for i -1 steps, and compares each of its output with D. The new instance of B is killed after exactly i -1 steps. If D did not appear as the output of the new instance, then we conclude that it is a first occurrence of the master instance, and the algorithm C outputs D. If D has appeared as one of the outputs of the new instance, then C ignores it and continues the simulation of the master instance. In that way, every set of D(G) is output by C without repetitions.

We now examine the delay of C between the output of the i-th and (i + 1)-th minimal dominating sets. Consider the simulation of the master instance of B from the i-th to the (i + 1)-th first appearance. During that time, recall that at most n 2 • i • p(i) sets are output by the executions of A. Thus, the number of new instances of B launched by C between the two outputs is bounded by n 2 • i • p(i). Every such instance runs for at most i • O(n 7 ) • i • p(i) time (as p is non-decreasing). In total, C runs for at most The algorithms given in [GHKV15, GHK + 16, GHK + 18] for line graphs, graphs of girth at least 7, chordal bipartite graphs, and unit-square graphs rely on the flipping method and run in incremental-polynomial time and exponential space. By directly plugging in Lemma 2.3.3 instead of Lemma 2.3.2 in the procedure, we obtain the following.

n 2 • i • p(i) • i • O(n 7 ) • i • p(i) = O(n 9 ) • i 3 • p(i) 2 u w v X uv Z uv u w v R 1 R 2 B

Corollary 2.3.4.

There is an incremental-polynomial time and polynomial-space algorithm enumerating minimal dominating sets in line graphs, graphs of girth at least 7, chordal bipartite graphs, and unit-square graphs.

Flipping method in comparability graphs

We now show how the flipping method, and more particularly the existence of an algorithm as required in Lemma 2.3.3, can be reduced to red-blue domination in comparability graphs.

We point that Lemma 2.3.3 is stated for general graphs and that the family D to be constructed can contain arbitrarily many solutions that are not actual children. In [START_REF] Golovach | An incremental polynomial time algorithm to enumerate all minimal edge dominating sets[END_REF], [GHK + 16] and [GHK + 18], the authors were able to provide such an algorithm A in line graphs, graphs of girth seven, chordal bipartite graphs and unit square graphs. In these last two cases, they proved that to obtain an efficient A, it suffices to design an efficient algorithm that enumerates all the minimal red dominating sets of an appropriate subgraph within the same class. We conduct a similar analysis to show that, in comparability graphs, it suffices to design an efficient algorithm that enumerates all the minimal red dominating sets of a subgraph in which blue vertices are minimal with respect to the associated poset.

Lemma 2.3.5. Let G be the comparability graph of a poset P = (V, ≤). Suppose that there is an algorithm B that, given an antichain B of P and a set R ⊆ B \ B, enumerates with polynomial delay and polynomial space the set D(R, B) of minimal red dominating sets of G(R, B). Then there is an algorithm A that, given D * ∈ D(G) and u, v ∈ V (G), enumerates with polynomial delay a family D ⊆ D(G) of minimal dominating sets of G with the property that D contains all minimal dominating sets D such that D * = Parent uv (D).

Proof. The proof is conducted in the fashion of [GHK + 16]. We are given a minimal dominating set D * of G, an isolated vertex v of G[D * ], and a neighbor u of v. Let us assume in the following that u ≤ v in P . The dual situation is handled by flipping upside-down the poset. This situation is depicted in Figure 2.8 (right). We aim to compute using B a family of sets

D such that {D ∈ D(G) | D * = Parent uv (D)} ⊆ D ⊆ D(G).
Let R 1 ⊆ u∩D * be the set of upper-neighbors x of u in D * such that x ∈ Priv(D * , x), i.e., these vertices are self-private in D * . Note that in particular, R 1 is an antichain of P , and it contains v. Let B = V (G) \ N [(D * \ R 1 ) ∪ {u}] be the set of all vertices that are not dominated anymore when replacing R 1 with u in D * . Note that

B ⊆ R 1 \ R 1 . Finally, let R 2 = B \ N [R 1 ].
In particular, there are no edges between R 1 and R 2 . Let us finally set R = (R 1 \ {v}) ∪ R 2 . Informally, R forms the set of vertices we can use to dominate B. We exclude v from that set, since the whole point of the operation is to delete v. We obtain R ⊆ B \ B, and in fact B ⊆ R \ R. Note that B is not necessarily an antichain, so we restrict our attention to the maximal elements of B.

The notation D(R ∩ Max(B), Max(B)) is blatantly cumbersome. To simplify the upcoming arguments, we first prove that D(R ∩ Max(B), Max (B)) is in fact equal to the conceptually simpler D(R, B). We first note that every dominating set of Max(B) in Max(B) is a dominating set of B. Indeed, for any x ∈ B, y ∈ Max(B), and z ∈ Max(B), if xy and yz are both edges, then x ≤ y and y ≤ z, so that xz is an edge. This guarantees D(R, Max(B)) ⊆ D(R, B).

The converse is straightforward in the sense that every dominating set of B is in particular a dominating set of Max(B). As we argued above, any subset that dominates Max(B) dominates B. Therefore, by minimality, no proper subset of a set in D(R, B) dominates Max(B). Every minimal dominating set of B in R is a minimal dominating of Max(B), hence D(R, B) ⊆ D(R, Max(B)) and the conclusion.

Let us now describe A . We enumerate all minimal red dominating sets in D(R, B) using B with Claim 4. For each minimal red dominating set X ∈ D(R, B), we consider the set D = (D * \ R 1 ) ∪ {u} ∪ X of vertices of G. Note that X may be empty, in which case B = ∅ and D(R, B) = {∅}; that is not an issue. We greedily reduce D into an irredundant set D of G, and output D.

This may seem counter-intuitive in an enumeration context, as a greedy reduction typically does not explore all options. However, we will argue later (see Claim 8) that D is already irredundant in all relevant cases, so D = D and the greedy reduction does not affect the pool of children.

Let D be the set of all generated sets; we prove in the following four claims that D has the desired properties. Namely, the correctness of A follows from Claims 5 and 8. We conclude the proof with the complexity analysis of A . Proof. There is a natural bijection between minimal red dominating sets D(R, B) and outputs D (taken with multiplicity). We only need to argue two things: that every output is a minimal dominating set, and that there is no repetitions.

There is nothing to argue in the case where D(R, B) = ∅, and we assume from now on that D(R, B) is non-empty. Let X ∈ D(R, B). To argue that its corresponding output is a minimal dominating set, it suffices to argue that (D * \ R 1 ) ∪ {u} ∪ X is a dominating set. Let w be a vertex not dominated by (D * \ R 1 ) ∪ {u}. By definition, it belongs to B, so w ∈ N [X]. Therefore, (D * \ R 1 ) ∪ {u} ∪ X is a dominating set. Since we output an irredundant subset of (D * \ R 1 ) ∪ {u} ∪ X, it follows that the output is a minimal dominating set.

Finally, observe that when greedily reducing (D * \ R 1 ) ∪ {u} ∪ X into a minimal dominating set D, we maintain X ⊆ D as each element of X has a private neighbor in B. In fact, we have D ∩ R = X, which guarantees that a different choice of X would yield a different output D. Claim 6. For any set D ∈ D(G) such that D * = Parent uv (D), let X uv and Z uv be the disjoint sets defined in the Parent relation, so that D = (D * ∪ {u} ∪ Z uv ) \ (X uv ∪ {v}). We have

X uv ⊆ R 1 \ {v} and Z uv ⊆ R 2 . Additionally, for Y uv = z∈Zuv Priv(D, z), we have Y uv ⊆ B.
Proof. Recall that Z uv is defined as a set of vertices that lose their private neighbors with respect to D when adding X uv ∪ {v} to D \ {u}. These private neighbors are the elements of the set Y uv .

By definition of the Parent relation, G[D] contains an edge uw, and v is selected in the set Priv(D, u). Since uw is an edge, one of u ≤ w and w ≤ u holds. As v ∈ Priv(D, u) and w ∈ D, the vertices v and w are incomparable. Since u ≤ v, the case w ≤ u would lead to a contradiction, and we derive u ≤ w.

Let us first argue that X uv ⊆ R 1 \ {v}. We have v ∈ X uv , so we focus on proving

X uv ⊆ R 1 . Recall that X uv ⊆ Priv(D, u) \ N [v] by definition. Since u ≤ v, we derive X uv ⊆ u ∩ D * .
It remains to argue that x ∈ Priv(D * , x) for every x ∈ X uv . Since X uv is an independent set by construction, we have x ∈ Priv(X uv , x). Since

X uv ∩ N [v] = ∅, we have x ∈ Priv(X uv ∪ {v}, x). Since X uv ⊆ Priv(D, u), we derive x ∈ Priv(X uv ∪ {v} ∪ (D \ {u}), x), hence x ∈ R 1 . It follows that X uv ⊆ R 1 .
Let us now argue that Z uv ⊆ R 2 and Y uv ⊆ B. Consider z ∈ Z uv , and a private neighbor y of z with respect to D. Note that y ∈ Y uv and that y is considered without loss of generality since every element of Y uv is the private neighbor of some element in Z uv with respect to D. Therefore, it suffices to argue that z ∈ R 2 and y ∈ B. Recall that z has no private neighbor with respect to (D \ {u}) ∪ X uv ∪ {v}, though y is a private neighbor of z with respect to D, which contains u. It follows that y is in the neighborhood of X uv ∪ {v}, but not in that of u. Since X uv ∪ {v} ⊆ u and y ∈ u, we have y ∈ (X uv ∪ {v}). We derive that y ∈ (X uv ∪ {v}) \ N [u]. If y ≥ z, then z ∈ (X uv ∪ {v}), which contradicts the fact that the vertices in X uv ∪ {v} are private neighbors of u with respect to D. Consequently,

y ≤ z. Note that z ∈ N [R 1 ]. Since R 2 = B \ N [R 1 ]
, the fact that z ∈ R 2 follows from y ∈ B, which we argue below.

We have N (y)∩D * ⊆ X uv ∪{v}, as the only neighbor of y in D is z. As shown earlier,

X uv ⊆ R 1 , hence N (y) ∩ D * ⊆ R 1 . Since u ∈ N (y) and B = V (G) \ N [(D * \ R 1 ) ∪ {u}],
we derive y ∈ B, as desired. It follows that Y uv ⊆ B and Z uv ⊆ R 2 .

Claim 7. For any set D ∈ D(G) such that D * = Parent uv (D), let X uv and Z uv be the disjoint sets defined in the Parent relation, so that D = (D * ∪ {u} ∪ Z uv ) \ (X uv ∪ {v}). Then the set R 1 ∪ Z uv \ (X uv ∪ {v}) is a minimal red dominating set of G(R, B).

Proof. Let X = R 1 ∪Z uv \(X uv ∪{v}). By Claim 6, we obtain that X ⊆ (R 1 \{v})∪R 2 = R. Therefore, it only remains to argue two things: that X dominates B, and that X is minimal, i.e., that every vertex in X has a private neighbor in B with respect to X.

Let y ∈ B. By definition of B, we have

N (y) ∩ D * ⊆ R 1 ∪ {v} and y ∈ N [u].
Since D is a dominating set and given how D and D * relate, the vertex y has a neighbor either in R 1 \ (X uv ∪ {v}) or in Z uv . In either case, the vertex y has a neighbor in X. We conclude that X dominates B.

Let us now argue that every vertex x in X has a private neighbor in B with respect to X. Note that x ∈ D and Priv(D, x) = ∅.

Let us first consider the case

x ∈ R 1 \ (X uv ∪ {v}). Since u ∈ D, we have Priv(D, x) ⊆ N [x] \ N [u]. Since moreover x ∈ u we have that Priv(D, x) ⊆ x \ N [u]. In particular x ∈ Priv(D, x). Let y ∈ Priv(D, x). Then N (y) ∩ D = {x} and so N (y) ∩ D * ⊆ {x} ∪ X uv ∪ {v} ⊆ R 1 ∪ {v}. Hence y ∈ B. Therefore, every vertex in X ∩ (R 1 \ (X uv ∪ {v}))
has a private neighbor in B with respect to X.

We now consider the case x ∈ Z uv . Let y ∈ Priv(D, x). Recall that X uv ∪ {v} and Z uv are non-adjacent. Also y is dominated by D * but not by D * \ (X uv ∪ {v}), and so y = x. Hence y ∈ N (X uv ∪ {v}) and so y ∈ N (R 1 ∪ {v}). From Claim 7, we obtain that

R 1 ∪ Z uv \ (X uv ∪ {v}) is a minimal dominating set of G(R, B). Consequently, B outputs R 1 ∪ Z uv \ (X uv ∪ {v}), which prompts A to consider the set (D * \ R 1 ) ∪ {u} ∪ (R 1 ∪ Z uv \ (X uv ∪ {v})) = (D * ∪ {u} ∪ Z uv ) \ (X uv ∪ {v}) = D
as a candidate to be output after being greedily reduced into an irredundant set. Note that the set is already irredundant, so D is generated. In other words, we have D ∈ D as desired.

Each of the sets R 1 , R 2 , R and B can be constructed in polynomial time in n. The same goes for computing and reducing D into a minimal dominating set given X ∈ D(R, B). In addition, R ∩ Max (B) and Max(B) can be computed in polynomial time in n, and by Claim 4 the set D(R, B) can be generated with polynomial delay using B.

This concludes the proof.

We conclude this section with the following corollary of Lemmas 2.3.3 and 2.3.5, observing that the antichain B of a poset P is minimal in P [ B]. Note that while the algorithm A only computes the children for a fixed pair u, v, there are at most n 2 such pairs. By running A for every pair consecutively, we output all children, with each child being repeated possibly n 2 times. We repeat the trick of Section 2.3.1 and get rid of repetitions, to the cost of squaring the time complexity. The obtained algorithm now performs in incremental-polynomial time and polynomial space, as desired.

Theorem 2.3.6. Let G be a graph class where every graph is comparability. If there is an incremental-polynomial time and polynomial-space algorithm enumerating minimal red dominating sets in red-blue graphs of G whose blue vertices are minimal with respect to the associated poset, then there is one enumerating minimal dominating sets in graphs of G.

Red-blue domination in comparability graphs

We mentioned in the preliminaries of this chapter that RED-BLUE-DOM-ENUM is already as hard as TRANS-ENUM even restricted to bipartite graphs, hence to comparability graphs. We show nevertheless that the problem can be solved in incrementalpolynomial time under various restrictions on the red and blue sets (satisfying those of Lemma 2.3.5), as well as on the underlying poset. More precisely, we show that, for any fixed integer t, RED-BLUE-DOM-ENUM is tractable in the comparability graph of S t -free posets, whenever the blue elements are minimal in the poset. Since posets of bounded dimension do not contain any S p for some large enough p, we can derive the same for bounded dimension posets.

The key observation is that instances of red-blue domination in that case are of bounded conformality. As a corollary, we can use the algorithm of Khachiyan et al. in [KBEG07] to solve them in incremental-polynomial time. This yields by Theorem 2.3.6 an incremental-polynomial time algorithm enumerating minimal dominating sets in the comparability graphs of these posets.

Let us recall the notion of conformality introduced by Berge in [START_REF] Berge | Hypergraphs: combinatorics of finite sets[END_REF]. Informally, a hypergraph has small conformality when the property of not being contained in a hyperedge is witnessed by small subsets, in the sense that if a set is not contained in any hyperedge, then some small subset of it is not either. More formally, let c be an integer and H be a hypergraph. We say that H is of conformality c if the following property holds for every subset X ⊆ V (H): X is contained in a hyperedge of H whenever each subset of X of cardinality at most c is contained in a hyperedge of H. Remember from Section 2.1 that a hypergraph H is Sperner if

E 1 ⊆ E 2 for any two distinct hyperedges E 1 , E 2 in H.
Khachiyan, Boros, Elbassioni, and Gurvich proved the following.

Theorem 2.3.7 ([KBEG07]

). The minimal transversals can be enumerated in incrementalpolynomial time but using exponential space in Sperner hypergraphs of bounded conformality.

Our result is a corollary of the following, which basically says that in our setting, hypergraphs with large conformality induce large S t in the underlying poset.

Lemma 2.3.8. Let P = (V, ≤) be a poset and B = Min(P ). Let H be the Sperner hypergraph defined by V (H) = P -B and E(H) = Min ⊆ { x \ {x} | x ∈ B}. If H is not of conformality t -1 for some integer t, then P contains S t as a suborder.

Proof. Assume that H is not of conformality t -1, i.e., there is a red subset X ⊆ V (H) that is not contained in a hyperedge of H, and such that every subset Y ⊆ X of size at most t -1 is contained in a hyperedge of H. We consider X = {x 1 , . . . , x p } of minimum cardinality. Then p ≥ t and to every x i ∈ X corresponds a hyperedge E i of H such that E i ∩ X = {X \ {x i }}. Indeed, if no such E i exists for some x i ∈ X, then X = X \ {x i } is not contained in a hyperedge of H, and still every subset Y ⊆ X of size at most t -1 is, contradicting the minimality of X.

Let us show that X is an antichain of P . Suppose toward a contradiction that X is not an antichain and contains two elements x i , x j such that x i < x j . As R ⊆ B \ B, every hyperedge of H that contains x i contains x j . We conclude that X ⊆ E i , a contradiction. Hence X is an antichain.

Consider now the antichain {e 1 , . . . , e p } ⊆ B corresponding to E 1 , . . . , E p in the poset P , i.e., such that E i = e i \ {e i } for i ∈ {1, . . . , p}. Then the set {e 1 , x 1 , . . . , e p , x p } induces S p as suborder, p ≥ t.

Lemmas 2.3.3, 2.3.5, and 2.3.8 together yield the following corollary.

Corollary 2.3.9. There is an algorithm enumerating, for every fixed integer t, the minimal dominating sets in comparability graphs of S t -free posets.

The next theorem follows from Corollary 2.3.9 and the observation that a poset containing S t has dimension at least t.

Theorem 2.3.10. For any fixed integer d, there is an output-polynomial time algorithm enumerating minimal dominating sets in the comparability graphs of posets with dimension at most d.

Unfortunately, as the algorithm in [KBEG07] requires exponential space, Corollary 2.3.9 does not yield a polynomial-space algorithm.

Finally, we note that while it is not clear whether the comparability graphs of bounded dimension posets are of bounded LMIM-width (and hence covered by the algorithm in [GHK + 18] using similar methods), comparability graphs of S t -free posets are not.

Flashlight search in incomparability graphs

We give a polynomial-delay algorithm enumerating minimal dominating sets in the incomparability graphs of bounded dimension posets, given with linear extensions witnessing the dimension.

Geometrical representation

Let P = (V, ≤) be a poset on n elements and of dimension at most d. Let ≤ 1 , . . . , ≤ d be a sequence of linear orders witnessing it. Thus, we have x ≤ y in P if and only if x ≤ i y a tuple (w 1 , . . . , w 3d ) ∈ Priv(I,

t 1 ) × • • • × Priv(I, t 3d ) such that U(I) \ N [w 1 , . . . , w 3d ] is a dominating set of G -N [I].
Proof. First, we prove the forward implication. Suppose that I can be extended upwards into a minimal dominating set of G and let X be an upward extension of

I such that D = I ∪ X is a minimal dominating set of G. Then X dominates G -N [I]
and Priv(D, u) = ∅ for every u ∈ D. Since D is a minimal dominating set there exists (w 1 , . . . , w 3d ) in Priv(D, t 1 ) × • • • × Priv(D, t 3d ). Note that Priv(D, t i ) ⊆ Priv(I, t i ) for each i ∈ {1, . . . , 3d}. This completes the proof of the forward implication. We turn to argue the backward implication. Suppose that there exists (w 1 , . . . , w 3d ) in Priv(I, t 1 )ו • •×Priv(I, t 3d ) such that X := U(I)\N [w 1 , . . . , w 3d ] dominates G-N [I]. Thus D = I ∪ X dominates G. In order to conclude that I extends upwards into a minimal dominating set of G, all we need to see is that each element u in I has a private neighbor with respect to D, i.e., Priv(D, u) = ∅. Since X avoids N [w 1 , . . . , w 3d ], we have that w i ∈ Priv(D, t i ) for each i ∈ {1, . . . , 3d}. Consider any element u in I \ T(I). Since I is irredundant, we can fix v ∈ Priv(I, u). We shall show that v ∈ Priv(D, u).

For convenience, we split the sequence (t 1 , . . . , t 3d ) into (a 1 , . . . , a d ), (b 1 , . . . , b d ), and (c 1 , . . . , c d ), so it relates to the initial layers A(I), B(I), and C(I), respectively.

In order to get a contradiction, suppose that there is x ∈ X such that x and v are adjacent in G, i.e., x and v intersect. In particular, there is some q ∈ {1, . . . , d} such that x < q v.

We claim that v < b k in P for every k ∈ {1, . . . , d}. c ∈ I, we have that c p and v stay disjoint. We deduce that v < c p in P . This contradicts our assumption as b k < v < c p in P but no element of the second layer can be below an element of the third layer. This completes the proof of the claim.

In particular, we have x < q v < q b k for every k ∈ {1, . . . , d}.

Consider the tuple (s 1 , . . . , s d ) = (w d+1 , . . . , w 2d ) of private neighbors of the elements of (b 1 , . . . , b d ). We claim that there exist indices α, β ∈ {1, . . . , d} such that b α < q s β .

Towards the contradiction, assume that s i < q b j for all i, j ∈ {1, . . . , d}. Since s i stays disjoint from b j for i = j, we conclude that s i < b j in P for every i = j. Since s i intersects b i , there is an index t(i) so that b i < t(i) s i , for each i ∈ {1, . . . , d}. Clearly, the values t(i) must be all distinct for i ∈ {1, . . . , d}. This way, we need to take d distinct values for t i 's and because of our assumption all of them are in {1, . . . , d} \ {q}, a contradiction. This proves the claim.

We concluded so far that x < q v < q b α < q s β .

Now recall that x ∈ X ⊆ U(I). Thus, there must be some p ∈ {1, . . . , d} with

L p (I) < p x.
Recall also that s β intersects b β , so we can fix t ∈ {1, . . . , d} such that s β < t b β . By the definition of the first two layers, we have that b β < t a t . Thus, s β < t a t . Since s β ∈ Priv(I, b β ) and a t ∈ I, we get that s β and a t are disjoint. Therefore, s β < a t in P .

In particular, we get s β < p a t and

s β < p a t ≤ p L p (I) < p x.
The two inequalities s β > q x and s β < p x imply that x intersects s β . Thus x and s β are adjacent in G. This contradicts the assumption that X ⊆ U(I)\N [s β ] and completes the proof of the backward implication.

We deduce the next corollary, by guessing a good tuple (w 1 , . . . , w 3d ) as in Theorem 2.4.1 in case when |I| ≥ 3d, and checking for such a tuple whether the set

U(I) \ N [w 1 , . . . , w 3d ] is a dominating set of G -N [I].
Space is polynomial as we only iterate through neighborhoods.

Corollary 2.4.2.

There is an algorithm that, given an irredundant set I of G, decides in O(n 3d+2 ) time and polynomial space whether I can be extended upwards into a minimal dominating set.

Flashlight search

We are now ready to describe an algorithm based on flashlight search enumerating minimal dominating sets in the incomparability graphs of bounded dimension posets. We refer the reader to [CS18, MS19] for more details on this classical technique. The following Parent relation will be used by the algorithm to construct the minimal dominating sets one vertex at a time, starting from the emptyset. space when H is a clique, or more generally when H = K t + K 2 , and when H is the paw or the diamond. For simplicity, let us here denote by DOM-ENUM(H) the problem DOM-ENUM restricted to H-free graphs.

The most natural continuation of our work is to seek output-polynomial time algorithms for DOM-ENUM(H) for other choices of the graph H. We discuss a possible classification of the graphs H depending on whether DOM-ENUM(H) admits an output-polynomial time algorithm, is DOM-ENUM-hard, or is not known to belong to one of these two cases. We stress that the first two cases may not be disjoint as it is currently open whether DOM-ENUM admits an output-polynomial time algorithm in general. However, in the current state of the art, such a classification will highlight specific graph classes where the problem could be attacked more easily than in the general case.

Because of Theorem 2.1.1, if H is such that co-bipartite graphs form a subclass of H-free graphs then DOM-ENUM(H) is DOM-ENUM-hard. This includes the cases H = C t or H = P t with t ≥ 5. This is also true for any graph H that has an independent set of size at least three, in particular all graphs H that have at least three connected components and graphs with two connected components where one component has one non-edge. Therefore, all the graphs H with more than one connected component for which DOM-ENUM(H) is not known to be DOM-ENUM-hard are of the form H = K p + K q (where by + we denote the disjoint union), for integers p, q ≥ 1. We gave an output-polynomial time algorithm for the case where p ≤ 2 or q ≤ 2 in Theorem 2.2.18 and leave open the existence of such algorithms for p, q ≥ 3.

Let us now focus on connected choices of H. Besides the case where H is a clique, which we addressed with Theorem 2.2.13, we settled the case where H = K t -e for t = 4 (Theorem 2.2.24). For t ∈ {2, 3}, DOM-ENUM(H) is output-polynomial time solvable since (K t -e)-free graphs then are, respectively, cliques and disjoint unions of cliques. To the best of our knowledge, it is currently unknown whether DOM-ENUM(K t -e) for t ≥ 5 is DOM-ENUM-hard and whether it is output-polynomial time solvable. We also considered graphs H of the form (K t -{uv, vw}) for t ≥ 3, i.e., graphs obtained from a clique on t vertices by removing two incident edges. When t = 3, (K t -{uv, vw})-free graphs are exactly the complete multipartite graphs, for which an output-polynomial time algorithm can be obtained as in the proof of Lemma 2.2.27. We dealt with the case t = 4 in Theorem 2.2.28 and leave open the cases of larger t.

Regarding the exclusion of specific graphs, note that the status of DOM-ENUM(P t ) is completely explored: either t ≤ 4 and an output-polynomial time algorithm is known, or t ≥ 5 and the problem is DOM-ENUM-hard, as noted above. Among graph classes defined by forbidding an induced cycle, we proved that DOM-ENUM(C 3 ) is output-polynomial time solvable by Theorem 2.2.9 and noted that DOM-ENUM(C t ) is DOM-ENUM-hard for t ≥ 5, so only DOM-ENUM(C 4 ) remains to be classified. The graph C 4 is also the only graph on at most 4 vertices for which DOM-ENUM(H) has not been classified yet. Other graph classes that are closed by taking induced subgraphs and where no output-polynomial time algorithm for DOM-ENUM nor DOM-ENUMhardness proof are known to include unit-disk graphs [KN14, GHK + 16].

Another natural research direction is to optimize the running times of our algorithms or to prove that this is not possible. Theorem 2.2.29 suggests that no improvement of our results can be obtained using flashlight search. We leave as an open prob-lem whether there are polynomial delay algorithms for DOM-ENUM in the cases that we considered.

Finally, we note that the algorithm of Theorem 2.2.13 has been implemented in python/SageMath [START_REF] Raymond | minimal_dominating_sets, an implementation of Bonamy et al.'s algorithm for enumerating minimal dominating sets in K t -free graphs[END_REF].

Comparability and incomparability graphs

We provided an incremental-polynomial (resp. polynomial-delay) algorithm enumerating the minimal dominating sets in the comparability (resp. incomparability) graphs of bounded dimension posets. As incomparability graphs include co-bipartite graphs, dropping the dimension in Theorem 2.4.4 is one of the most important algorithmic challenges in enumeration. On the other hand, dropping the dimension in Theorem 2.3.10 seems a more tractable, though fascinating challenge.

Other natural parameters for the classes considered in this paper concern the height and width of the poset. The height (resp. width) of a poset is the size of its maximum chain (resp. antichain). Since those are related to the largest size of a clique, the algorithm in Section 2.2 covers the comparability graphs of posets of bounded height and the incomparability graphs of posets of bounded width. We can show easily that DOM-ENUM is tractable in the comparability graphs of posets of bounded width.

Proposition 2.5.1. Let G be the comparability graph of a poset P = (V, ≤) of width α, and D be a minimal dominating set of G. Then |D| ≤ 2α.

Proof. Consider for a contradiction a minimal dominating set D of G with |D| > 2α. Then D contains three elements x, y, z such that x < y < z. As a consequence,

N [y] ⊆ N [x] ∪ N [z], which contradicts Priv(D, y) = ∅.
Proposition 2.5.1 guarantees that a brute-force test of all small subsets yields a polynomial-time algorithm enumerating minimal dominating sets in the comparability graph of posets of bounded width.

As for incomparability graphs of posets of height 2, we consider the incompatibilities of a bipartite order and observe that all co-bipartite graphs can be represented as incomparability graphs of a poset of height at most 2. Therefore, bounded height is not a helpful parameter for incomparability graphs. A more interesting question is perhaps whether restricting posets to lattices yields efficient algorithms, both for comparability and incomparability graphs.

Our algorithm for incomparability graphs of bounded dimension relies heavily on their geometric representation. Geometric graphs seem to be understudied in this context, and the smallest open case is presumably that of unit disk graphs.

Chapter 3

Dualization in lattices given by implicational bases

In this chapter we present new tractability and intractability results for the dualization in lattices given by implicational bases. These results appeared in a joint work with Lhouari Nourine [DN19a] and were extended in [START_REF] Defrain | Dualization in lattices given by implicational bases[END_REF].

We saw in Chapter 2 how the monotone dualization problem could be formulated in graphs in term of domination. We show here that the problem can also be formulated in Boolean lattices-a special kind of poset-as deciding whether two antichains B + and B -of the lattice partition the elements into two parts: elements that are below B + , and those that are above B -. The same problem formulated in arbitrary lattices then appears as a natural generalization we consider in this chapter. Not only the lattice dualization problem is of fundamental interest, it is also of practical interest in lattice-oriented machine learning through hypothesis generation [START_REF] Kuznetsov | Complexity of learning in concept lattices from positive and negative examples[END_REF][START_REF] Babin | Dualization in lattices given by ordered sets of irreducibles[END_REF], and in pattern mining [START_REF] Nourine | Extending set-based dualization: Application to pattern mining[END_REF].

The rest of the chapter is organized as follows. In Section 3.1 we introduce necessary concepts and definitions. The intractability of the general problem is proved in Section 3.2, and a quasi-polynomial time algorithm is given for a restricted case in Section 3.3. Future research directions are pointed in Section 3.4.

Preliminaries

Recall that a partial order on a set X (or poset) is a binary relation ≤ on X which is reflexive, anti-symmetric and transitive, denoted by P = (X, ≤); see Section 2.1.6. If x is an element of X then x = {y ∈ X | y ≤ x} denotes the ideal of x, and x = {y ∈ X | x ≤ y} denotes its filter. For a subset S ⊆ X, we put S = x∈S x and S = x∈S x as the ideal and filter of S. An antichain of P is a subset of elements of X in which no two distinct elements are comparable.

The following notion is central in this chapter.

Definition 3.1.1. Let P = (X, ≤) be a poset and B + , B -be two antichains of P . We say that the antichains B + and B -are dual in In other words, B + and B -are dual in P if one of

P if B + ∪ B -= X and B + ∩ B -= ∅.
B + = Max ≤ {x ∈ X | x ∈ B -} or B -= Min ≤ {x ∈ X | x ∈ B + } holds.
Hence the problem of deciding whether two antichains B + and B -of P are dual can be solved in polynomial time in the size of P . One has to compute P -B + , and to check whether the remaining poset has B -for minimal elements. The task becomes difficult when the poset is not fully given, but only an implicit coding-of possibly logarithmic size in the size of P -is given: this is usually the case when considering dualization problems in lattices.

Dualization in (implicitly given) Boolean lattices

Somehow conveniently, Boolean lattices can be defined without defining what is a lattice, as follows. A Boolean lattice (or hypercube) is a poset isomorphic to L X = (2 X , ⊆) for some arbitrary set X. An example of a Boolean lattice is given in Figure 3.1, and should remind Figure 1.1. Note that only X is needed in order to reconstruct the Boolean lattice, and, clearly, the size of L X is exponential in that of X. We call X an implicit coding of L X .

Observe that elements of L X are subsets of X, and that antichains of L X are therefore sets of (inclusion-wise) incomparable subsets of X, i.e., Sperner hypergraphs. Two antichains B + and B -of L X are dual in L X if

B + ∩ B -= ∅ and B + ∪ B -= 2 X .
The next problem naturally follows.

Dualization in (Implicitly Given) Boolean Lattices (BOOLEAN DUAL) Input:

A set X and two antichains B + , B -of L X . Question: Are B + and B -dual in L X ? Note that L X is not given as an input of BOOLEAN DUAL, only X is, which is a crucial point. The following equivalence is now folklore and may be found in [START_REF] Nourine | Beyond Hypergraph Dualization[END_REF]. The intuition here is that if a set T intersects every hyperedge of a hypergraph H, then it is not a subset of the complementary of any hyperedge of H. Boolean lattices in fact constitute a very low class of lattices. It is then a natural question to consider generalizations of BOOLEAN DUAL to arbitrary lattices. This is the object of this chapter, starting with the next section.

Lattices

What follows is maybe the most iconic definition of a lattice. While these notions will not be used in this chapter-only equivalent characterizations will-, they will be at the core of Chapter 4.

Let P = (X, ≤) be a poset and x, y be two elements of P . If an element u is such that both x ≤ u and y ≤ u then it is called upper bound of x and y; it is called least upper bound of x and y if moreover u ≤ v for every upper bound v of x and y. Note that two elements x and y of a poset may or may not have a least upper bound. As an example, the elements x 1 and x 3 do not have a least upper bound in Figure 2.1, while x 3 and x 6 do have one. The least upper bound (also known as supremum or join) of x and y, if it exists, is denoted by x ∨ y. The greatest lower bound (also known as infimum or meet) of x and y, if it exists, is denoted by x ∧ y and is defined dually.

A lattice is a poset in which every two elements have a least upper bound, and a greatest lower bound. Reference books on the field of lattice theory include the ones of Birkhoff [START_REF] Birkhoff | Lattice theory[END_REF], Davey and Priestley [START_REF] Davey | Introduction to lattices and order[END_REF], and Grätzer [START_REF] Grätzer | Lattice theory: foundation[END_REF]. A lattice is given in Figure 3.2. It can be verified on this example that every two elements indeed have a least upper bound and a greatest lower bound. In particular, every lattice has a unique minimal element, referred to as the bot, and a unique maximal element, the top. We say that a lattice is distributive if the operations of join and meet distribute over each other, i.e., if for any three elements x, y, z of the lattice,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
Lattices, however, can be defined alternatively through their different implicit representations-just as Boolean lattices can be defined as ordered power sets of an arbitrary set. Several such representations exist. One of interest in this chapter is, as the title suggests, the implicational base.

Implicational bases

An implicational base (X, Σ) is a set Σ of implications of the form A B where A ⊆ X and B ⊆ X; A is called the premise of the implication, and B the conclusion. Implicational bases have been widely studied in the literature: recent surveys on their role in lattice theory include [START_REF] Wild | The joy of implications, aka pure Horn formulas: mainly a survey[END_REF][START_REF] Bertet | Lattices, closures systems and implication bases: a survey of structural aspects and algorithms[END_REF]. In this chapter we only consider implicational bases in their equivalent1 unit form where |B| = 1 for every implication, and denote by Let (X, Σ) be an implicational base. We say that a set

C ⊆ X is closed in Σ if for every implication A b of Σ, at least one of b ∈ C or A ⊆ C holds.
In other words, a closed set of Σ is a set satisfying all the implications in Σ. Then to Σ we associate the closure operator φ which maps every C ⊆ X to the smallest closed set of Σ containing C, and that we denote by φ(C). A closed set φ(C) for C is obtained by iteratively adding element b to C while there exists A b ∈ Σ such that A ⊆ C and b ∈ C. Efficient closure algorithms may be found in [BO14]. We note C Σ the set of all closed sets of Σ. The following fact is folklore. Fact 3.1.4 (Fact π). Every lattice can be represented as the set of all closed sets of some implicational base, ordered by inclusion.

To an implicational base (X, Σ) we associate L Σ = (C Σ , ⊆) the lattice of closed sets of Σ. Observe that elements of L Σ are subsets of X. Then, antichains of L Σ are families B ⊆ C Σ such that B 1 ⊆ B 2 for any two B 1 , B 2 ∈ B. An example of a lattice of closed sets of an implicational base is given in Figure 3.2. If Σ is empty, then L Σ = (2 X , ⊆) is Boolean; see Figure 3.1. If Σ only has premises of size one, then the lattice is distributive, and this is in fact a characterization [Bir37, DP02]. Furthermore in that case, the implicational base can be seen as a poset P = (X, ≤) where x ≤ y if and only if y x, and φ(S) = P S for all S ⊆ X, where φ(S) = P S denotes the ideal of S in P (and not in the lattice). We call underlying poset of Σ this poset. Note that in general L Σ may be of exponential size in the size of (X, Σ): this is in particular the case when the implicational base is empty.

Dualization in lattices given by implicational bases

In the remaining of the chapter, we are concerned with the following decision problem and one of its two generation versions.

Dualization in Lattices Given by Implicational Bases (DUAL) Input:

An implicational base (X, Σ) and two antichains B + , B -of L Σ . Question: Are B + and B -dual in L Σ ?

Generation version of DUAL (DUAL-ENUM) Input:

An implicational base (X, Σ) and an antichain B + of L Σ . Output: The dual antichain

B -of B + in L Σ .
A positive instance of DUAL is given in Figure 3.2. As for BOOLEAN DUAL, the lattice L Σ is not given in any of the two problems defined above. Only (X, Σ) is given, which is a crucial point. Recently in [START_REF] Babin | Dualization in lattices given by ordered sets of irreducibles[END_REF] it was shown that DUAL is coNP-complete, hence that DUAL-ENUM cannot be solved in output-polynomial time unless P=NP. The constructed implicational base, however, has an implication with a premise of unbounded size, leaving open the tractability status of the dualization in the case of implicational bases of bounded dimension. We already saw that when the implicational base is empty-when the lattice is Boolean-the two problems BOOLEAN DUAL and HYPERGRAPH DUAL are equivalent. Then they admit an algorithm running in N o(log N ) time where N = |B + | + |B -| using the algorithm of Fredman and Khachiyan in [FK96]. In the case of premises of size one-when the lattice is distributive-the best known algorithm is due to Babin and Kuznetsov [START_REF] Babin | Dualization in lattices given by ordered sets of irreducibles[END_REF] and runs in sub-exponential time 2 O(n 0,67 log 3 N ) where N = |B + | + |B -| and n = |X|. Quasi-polynomial time algorithms were given by Elbassioni for subclasses of distributive lattices, including products of chains [Elb09].

It is to be noted that other generalizations of BOOLEAN DUAL exist. One concerns the dualization in lattices given by their meet-irreducible elements2 . The problem, in this context, was also shown intractable by Babin and Kuznetsov in [START_REF] Babin | Dualization in lattices given by ordered sets of irreducibles[END_REF]. It is not clear, however, whether this formulation is equivalent to the case where the lattice is given by an implicational base, i.e., DUAL. This kind of issue is raised in Chapter 4.

A few more parameters on implicational bases

We conclude the preliminaries with notions of closure and width that we later consider in this chapter. Let (X, Σ) be an implicational base and φ be its associated closure operator. A set T ⊆ X is independent w.r.t. φ if x ∈ φ(T \ {x}) for any x ∈ T . Given two sets T, I ⊆ X we say that T is a covering set of I if I ⊆ φ(T ), and that it is a generating set of I if in addition T ⊆ I. It is called minimal if I ⊆ φ(T \ {x}) for any x ∈ T . Clearly, every minimal covering set of I is independent, and a generating set of I is minimal if and only if it is independent. We point out that these notions only rely on φ and not on the implications in Σ. To every I ⊆ X we associate the set mingen(I) ⊆ 2 I of minimal generating sets of I. Note that several such subsets exist in general. We distinguish a particular one that we denote by ex(I) and that is obtained from T = I by the following procedure: while there exists x ∈ T such that I ⊆ φ(T \ {x}) do T T \ {x} return T as ex(I)

In order for such a procedure to be deterministic we chose x of smallest index in T at each step. The next notion now strongly relies on the choice of the implications in Σ. A subset I of implications in Σ is called independent if every of its implications has a conclusion that cannot be obtained using the other implications in I, by closure of the premises in I. More formally, a set of

k implications I = {A 1 b 1 , . . . , A k b k } ⊆ Σ with A = A 1 ∪ • • • ∪ A k is independent if b i ∈ φ I\A i b i (A)
for any i ∈ {1, . . . , k}, where φ I\A i b i denote the closure operator of the implicational base (X, I \ A i b i ) obtained from I after removing A i b i . In the following, we call independent-width of (X, Σ) the size of a maximum independent set of implications in Σ.

Intractability for implicational bases of dimension two

We show that it is coNP-complete to decide whether two antichains of a lattice given by an implicational base of dimension two are dual. The reduction is based on the one of Kavvadias et al. in [START_REF] Kavvadias | Generating all maximal models of a Boolean expression[END_REF], pointed in [START_REF] Babin | Dualization in lattices given by ordered sets of irreducibles[END_REF], except that we manage to hide the Horn clause of unbounded size in one of the two antichains.

Theorem 3.2.1. DUAL is coNP-complete for implicational bases of dimension two.

Proof. Membership in coNP follows from the fact that checking if B + ∩ B -= ∅, or whether a given set F ⊆ X, closed in Σ, is such that both F ∈ B + and F ∈ B -can be done in polynomial time in the sizes of (X, Σ), B + and B -; such a set F constitutes a certificate for a 'no' answer. We show completeness by reducing ONE-IN-THREE 3SAT, restricted to positive literals, to the complement of DUAL. This restricted case of ONE-IN-THREE 3SAT remains NP-complete [START_REF] Kavvadias | Generating all maximal models of a Boolean expression[END_REF][START_REF] Michael | Computers and intractability[END_REF]. In this problem, one is given a n-variable, m-clause positive Boolean formula

φ(x 1 , . . . , x n ) = m j=1 C j = m j=1 (c j,1 ∨ c j,2 ∨ c j,3 )
where x 1 , . . . , x n and C 1 , . . . , C m respectively denote the variables and the clauses of φ, and where every variable appears in at least one clause (c j,i denotes the variable that appears in clause j at position i). Then the task is of deciding whether there exists an assignment of the variables such that every clause contains exactly one variable to one. We call one-in-three truth assignment such an assignment. We construct an instance of DUAL as follows. Let X = {x 1 , . . . , x n , y 1 , . . . , y m , z} be the ground set made of one element x per variable of φ, one element y per clause of φ, and an additional special element z. Let Σ be the implicational base defined by

Σ =                    c j,1 c j,2
z (1) c j,1 c j,3 z (2) c j,2 c j,3 z (3) zc j,1 y j (4) zc j,2 y j (5) zc j,3 y j (6) y j z (7) j ∈ {1, . . . , m}

                  
.

Then we put B + = {B j = X \ {y j , c j,1 , c j,2 , c j,3 } | j ∈ {1, . . . , m}}, B -= {F = {y 1 , . . . , y m , z}}.

Clearly, (X, Σ), B + and B -are constructed in polynomial time in the size of φ. Moreover, every B j ∈ B + is closed in Σ (observe that no literal in {c j,1 , c j,2 , c j,3 } is the conclusion of an implication of Σ, and that y j cannot be implied without any literal in {c j,1 , c j,2 , c j,3 }). As B j is the only set of B + containing y j for every j ∈ {1, . . . , m}, no two sets in B + are inclusion-wise comparable. Hence B + is an antichain of L Σ . Also, B -is an antichain of L Σ as it is a singleton and its unique element F is closed in Σ. At last, Σ is of dimension two. Are B + and B -dual in L Σ ? We show that the answer is 'no' if and only if there is a one-in-three truth assignment of φ.

We prove the first implication. Let us assume that B + and B -are not dual in L Σ . Since B + ∩ B -= ∅, there must be some closed set F ⊆ X such that both F ∈ B + and F ∈ B -. We consider an inclusion-wise minimal such set F . Since F \ {z} is not closed in Σ, and F \ {y j } ⊆ B j for every j ∈ {1, . . . , m}, we conclude that F ⊆ F . Then F ∩ {x 1 , . . . , x n } = ∅. Let x ∈ F ∩ {x 1 , . . . , x n }. We show that z ∈ F by contradiction. Suppose that z ∈ F . Then by Implications (4) to (6), y j ∈ F for all j ∈ {1, . . . , m} such that x ∈ C j . Hence for every clause C j containing x, we have that |F ∩ {y j , c j,1 , c j,2 , c j,3 }| ≥ 2. Hence F \ {x} ⊆ B j for any j ∈ {1, . . . , m}. Since F \ {x} is closed, this contradicts the fact that F is chosen minimal such that F ∈ B + . Hence F does not contain z. Clearly F ∩ {y 1 , . . . , y m } = ∅ as otherwise by Implication (7), F would contain z. As F ⊆ B j for any j ∈ {1, . . . , m}, |F ∩ C j | ≥ 1 for every such j. Furthermore |F ∩ C j | ≤ 1 for every j ∈ {1, . . . , m} as otherwise by Implications (1) to (3), F would contain z. Consequently F is a one-in-three truth assignment of φ, concluding the first implication.

We prove the other implication. Let T be a one-in-three truth assignment of φ. As T ⊆ {x 1 , . . . , x n } and |T ∩ C j | = 1 for all j ∈ {1, . . . , m}, T is closed in Σ. Furthermore it is not a subset of any B j ∈ B + . Since at last T ⊇ F , we obtain that both T ∈ B + and T ∈ B -. Consequently B + and B -are not dual in L Σ , concluding the proof.

Consequently by Corollary 1.2.8, there is no algorithm solving DUAL-ENUM in output-polynomial time unless P=NP, even in the case of implicational bases of dimension two.

Boolean embedding for implicational bases of bounded independent-width

We show that the dualization in lattices given by implicational bases can be achieved in output quasi-polynomial time whenever the implicational base has bounded independent-width. The approach is similar to the one in [START_REF] Nourine | Dualization on partially ordered sets: Preliminary results[END_REF] as we show that the problem can be reduced to hypergraph dualization in that case (the antichains embedded into a Boolean lattice), which allows us to use the quasi-polynomial time algorithm of Fredman and Khachiyan [FK96].

In what follows, let (X, Σ, B + ) be an instance of DUAL-ENUM. Let B -be the dual antichain of B + that we wish to compute, and H be the complementary hypergraph of B + on ground set X defined by

H = {X \ B | B ∈ B + }.
Recall that T r(H) = B -whenever L Σ is Boolean, that is when the implicational base Σ is empty. We will show how B -can be computed from T r(H) in the general case. Lemma 3.3.1. To every transversal T of H corresponds some I ∈ B -such that I ⊆ φ(T ). This is in particular the case for every minimal transversal of H.

Proof. Let T be a transversal of H. As T ∩ E = ∅ for all E ∈ H, T satisfies T ⊆ B for any B ∈ B + . As T ⊆ φ(T ) this is also the case of φ(T ). Hence φ(T ) ∈ B + . Now if there is no I ∈ B -such that I ⊆ φ(T ) then φ(T ) ∈ B -, contradicting the duality of B + and B -in L Σ . We conclude that one such I must exist. The last remark follows by inclusion. Lemma 3.3.2. If T is a transversal of H, then every set T * in mingen(T ) is. In particular, every minimal transversal of H is independent w.r.t. φ.

Proof. We proceed by contradiction. Let T be a transversal of H and T * ∈ mingen(T ). Suppose that T * is not a transversal. Then T * ⊆ B for some B ∈ B + . As B is closed, φ(T * ) ⊆ φ(B) = B. Since T * is a generating set of T , T ⊆ φ(T * ). Hence T ⊆ B and thus T is not a transversal of H, a contradiction. Consequently every T * ∈ mingen(T ) is a transversal of H. In particular, every minimal transversal T of H is independent w.r.t. φ, as otherwise it can be reduced into an arbitrary independent generating set of T which is smaller, contradicting the minimality of T . Repetitions are avoided by discarding T whenever T = ex(I). This procedure is given in Algorithm 3.1. Its correctness follows from Lemmas 3.3.1 and 3.3.3. The limitation of such a procedure is that the size of T r(H) may be exponentially larger than that of X, Σ, B + and B -, hence that the described algorithm may run in output-exponential time. An example of one such instance is given in Figure 3.3. However, we will show that it is not the case whenever the implicational base has bounded independent-width.

Our argument relies on the following observation.

Lemma 3.3.4. Let I ∈ B -and T be a minimal transversal of H such that I ⊆ φ(T ). Then T is a minimal covering set of I.

Proof. First recall that by Lemma 3.3.2, T is independent. It may intersect I. Let x ∈ T . By minimality of T , T \ {x} is not a transversal. By Lemma 3.3.2, neither is φ(T \ {x}) as otherwise since T is independent then T \ {x} ∈ mingen(φ(T \ {x})) is a transversal, which contradicts the hypothesis that T is minimal. Since I is a transversal of H we have that I ⊆ φ(T \ {x}) for any x ∈ T and the lemma follows.

In the following given two subsets T, I ⊆ X such that T is an independent covering set of I, we note min(Σ, T, I) an arbitrary minimal subset of implications of Σ having their premise included in T as a subset and that are needed in Σ in order to derive I from T . In other words, min(Σ, T, I) is obtained from the implications of Σ having their premise in T by greedily removing an implication of Σ having its premise in T while the inclusion I ⊆ φ(T ) holds. Observe that in consequence no implication in min(Σ, T, I) has a conclusion that is obtained from T by closure of the other implications in min(Σ, T, I), i.e., min(Σ, T, I) is an independent set of implications of Σ.

We now express a bound on the number of minimal covering sets a set admits depending on the number of implications in Σ, and its independent-width. This yields, by Lemma 3.3.4, a bound on the number of minimal transversals of H depending on the sizes of B -, Σ, and the independent-width of Σ. As a consequence, the size of T r(H) is bounded by a polynomial in |X| + |Σ| + |B + | + |B -| whenever the implicational base is of bounded independent-width. Hence under such a condition, it is still reasonable to test each of the minimal transversals generated by Algorithm 3.1 even though many may not lead to a solution of B -. We conclude with the following theorem.

Theorem 3.3.7.

There is an algorithm that, for every integer k, given an implicational base (X, Σ) such that Σ is of independent-width k, and an antichain B + of L Σ , enumerates the dual antichain 

B -of B + in L Σ in output quasi-polynomial time N o(log N ) where N = |X| + |Σ| + |B + | + |B -|.

Translating between the representations of a lattice

In this chapter we present new tractability and intractability results on the problem of translating between the representations of a lattice. These results were obtained in a joint work with Lhouari Nourine and Simon Vilmin and may be found in the preprint [START_REF] Defrain | Translating between the representations of a ranked convex geometry[END_REF].

We saw in Chapter 3 that any lattice could be considered as the family of closed sets of an implicational base, ordered by inclusion. In fact, finite closure systems arise in various other fields of discrete mathematics and computer science including Horn logic [START_REF] Kautz | Reasoning with characteristic models[END_REF][START_REF] Crama | Boolean functions: Theory, algorithms, and applications[END_REF], and relational databases [Mai83, MR92]. They appear in various fields related to lattice theory such as Formal Concept Analysis (FCA) [GW12] and knowledge spaces [START_REF] Doignon | Knowledge spaces[END_REF]. The study of their representations and how to translate from one to another has gathered increasing attention these last decades, as witnessed by [Wil94, Kha95, BMN17, HN18], the surveys [START_REF] Wild | The joy of implications, aka pure Horn formulas: mainly a survey[END_REF][START_REF] Bertet | Lattices, closures systems and implication bases: a survey of structural aspects and algorithms[END_REF], and the Dagstuhl Seminar 14201 [START_REF] Adaricheva | Horn formulas, directed hypergraphs, lattices and closure systems: related formalisms and applications (Dagstuhl Seminar 14201)[END_REF].

Among the different ways of representing a closure system, the implicational bases play a central role. We saw that they consist of rules A B describing a causality relation within the closure system: a set containing A must contain B. Yet a fundamental aspect that was not raised in the previous chapter is the following observation: several implicational bases can lead to a same closure system (or lattice). Some may be very concise, some huge and redundant. In fact, implicational bases were only considered as an input of the dualization problem in Chapter 3; in that case, being given a very bad implicational base is not a problem as it just increases the size of the input. Moreover, it can always be reduced into a more concise one in polynomial time, if useful, using the algorithms in [START_REF] Shock | Computing the minimum cover of functional dependencies[END_REF]Wil95]. In consequence to the fact that several implicational bases can code a same closure system, numerous bases were defined and studied in the literature. To cite a few, one can find the Duquenne-Guigues basis having a minimum number of implications [START_REF] Guigues | Familles minimales d'implications informatives résultant d'un tableau de données binaires[END_REF], the unit-minimum having a minimum number of implications among unit implicational bases, or the canonical direct basis having all minimal generators [START_REF] Ganter | Implikationen und Abhängigkeiten zwischen Merkmalen. Die Klassifikation und ihr Umfeld[END_REF]BM10]. Refinements of the canonical direct basis include the E-basis and D-basis [START_REF] Freese | Nation. Free lattices[END_REF][START_REF] Adaricheva | Discovery of the D-basis in binary tables based on hypergraph dualization[END_REF]. In this chapter, and as in Chapter 3, only unit implicational bases-with conclusions of size one-will be considered, a point that is discussed in the next section.

Another possible representation for a closure system results from a minimum subset of elements from which it can be reconstructed. In Horn logic, these elements are known as the characteristic models [Kha95, HK95]. In lattice theory and closure systems, they are known as the meet-irreducible elements [START_REF] Davey | Introduction to lattices and order[END_REF]. Graphically on the Hasse diagram of a lattice, they correspond to the elements having a unique successor: they cannot be obtained by meet (or intersection) of other elements. We add that these elements are also found in the poset of irreducibles [START_REF] Barbut | Ordre et classification, Algèbre et combinatoire[END_REF][START_REF] Markowsky | The factorization and representation of lattices[END_REF][START_REF] Habib | Representation of lattices via setcolored posets[END_REF], or in the reduced context representing the concept lattice in FCA [GW12]. These objects, however, will not be studied in this chapter.

As pointed out by Khardon in [Kha95], the utility of these two representations is not comparable. More notably, there are cases of (unit) minimum implicational bases of exponential size in the number of meet-irreducible elements, and vice versa. Furthermore, different complexities can arise for a same problem when considering one representation, and the other. This is most notably the case for reasoning and abduction [START_REF] Selman | Abductive and default reasoning: A computational core[END_REF][START_REF] Kautz | Reasoning with characteristic models[END_REF], but also when considering dualization in lattices [START_REF] Babin | Dualization in lattices given by ordered sets of irreducibles[END_REF]. Indeed, we saw in Chapter 3 that the dualization was intractable in lattices given by implicational bases, and pointed that the same result holds when the lattice is given by its meet-irreducible elements [START_REF] Babin | Dualization in lattices given by ordered sets of irreducibles[END_REF]. The corresponding classes of lattice, however, are not comparable.

Consequently, the problem of translating between implicational bases and meetirreducible elements is critical in order to reap the benefits of both representations. In Horn logic, the problem of computing the meet-irreducible elements from an implicational base is known as CCM (for Computing Characteristic Models). The problem of computing an implicational base from the meet-irreducible elements is denoted by SID (for Structure Identification). We now give, for completeness, an overview of the progress that has been made on these problems. Their formal definition is postponed to the next section. For the canonical direct and D-basis, output quasi-polynomial time algorithms based on hypergraph dualization were given for both translations in [MR92, AN17]. For the minimum implicational base, output-polynomial time algorithms were obtained in k-meet-semidistributive lattices in [BMN17], as well as in modular lattices in [Wil00]. In [START_REF] Babin | Computing premises of a minimal cover of functional dependencies is intractable[END_REF], it is shown that it is coNP-complete in general to decide whether an implication belongs to a minimum implicational base. The existence of an output-polynomial time algorithm constructing a minimum implicational base, however, remains open [START_REF] Babin | Computing premises of a minimal cover of functional dependencies is intractable[END_REF]BMN17,[START_REF] Wild | The joy of implications, aka pure Horn formulas: mainly a survey[END_REF]. In [Kha95], the author is most interested in unit implicational bases as they represent Horn expressions. Indeed, every Horn clause, say (¬a 1 ∨ • • • ∨ ¬a k ∨ b), can be seen as an implication {a 1 , . . . , a k } b. In that context, the translation problems SID and CCM are shown to be equivalent, and to be at least as hard as hypergraph dualization. This, on its own, justifies the importance of the problem and its place in this manuscript.

The results that are presented in this chapter focus on a particular class of closure systems called acyclic convex geometries, defined as closure systems satisfying the antiexchange property [START_REF] Paul | The theory of convex geometries[END_REF], and having an acyclic implication-graph [Wil94], notions that are defined in Section 4.1. We show in Section 4.2 that even when restricted to this class, the problem of translating between one representation and the other is at least as hard as the dualization in distributive lattices, a problem that we already encountered in the previous chapter. Not only this generalizes the observation of Khardon in [Kha95], but it surprisingly holds in a very low class of closure spaces. In light of this result, we then consider in Section 4.3 a proper subclass of acyclic convex geometries, namely ranked convex geometries, as those that admit a ranked implicational base analogous to that of ranked posets. For this class, we provide in Sections 4.4 and 4.5 output quasi-polynomial time algorithms based on hypergraph dualization for translating between the two representations. The first algorithm is based on ordered generation, while the second relies on structural properties of acyclic convex geometries. Future research directions are discussed in Section 4.6.

Preliminaries

We define general notions related to closure systems. These notions were already encountered in Chapter 3 through implicational bases.

Let X be any set, denoted ground set in the following. A map φ : 2 X 2 X is a closure operator on X if for all A, B ⊆ X:

1. A ⊆ φ(A); 2. A ⊆ B implies φ(A) ⊆ φ(B); and 3. φ(A) = φ(φ(A)). A closed set of X w.r.t. φ is a set C ⊆ X such that φ(C) = C.
The set of all closed sets of X w.r.t. φ is denoted by C φ . A pair (X, φ) where φ is a closure operator on X is called closure space. It is called standard if moreover 1. φ(∅) = ∅; and 2. φ(x) \ {x} is closed for all x ∈ X.

In the following, all closure spaces are considered standard, a common assumption [START_REF] Adaricheva | Nation. Bases of Closure Systems[END_REF]. A closure system is a pair (X, C) where C ⊆ 2 X , X ∈ C and C 1 ∩ C 2 ∈ C for all C 1 , C 2 ∈ C. In other words, a closure system is a family of sets, closed under intersection, and containing the ground set as an element. It is well known that to every closure space (X, φ) corresponds a closure system (X, C φ ), and that to every closure system (X, C) corresponds a closure space (X, φ) where C = C φ . We refer to Section 3.1.2 for the definition of a lattice. The following observation is folklore. We furthermore have the following equivalences between the meet, join, union, and intersection operators:

C 1 ∧ C 2 = C 1 ∩ C 2 and C 1 ∨ C 2 = φ(C 1 ∪ C 2 ) for every two elements C 1 , C 2 in L.
An example of a lattice of a closure space is given in Figure 4.1.

Meet-irreducible elements

We define meet-irreducible elements. Let (X, C = C φ ) be a closure system with closure operator 

φ. A set M ⊆ X is a meet-irreducible element of C if M ∈ C, M = X, and for all C 1 , C 2 ∈ C such that M = C 1 ∩ C 2 it follows that C 1 = M or C 2 = M . Similarly,
a set J ⊆ X is a join-irreducible element of C if J ∈ C, J = ∅ and for all C 1 , C 2 ∈ C such that J = φ(C 1 ∪ C 2 ) it follows that J = C 1 or J = C 2 .
We denote by J (C) and M(C) the sets of join-irreducible and meet-irreducible elements of C. Put simplier, meet-irreducible (resp. join-irreducible) elements are those that cannot be obtained by intersection (resp. union and closure) of other elements. In the lattice L = (C, ⊆), these elements respectively correspond to those that have a unique predecessor, and a unique successor; see Figure 4.1 for an example. In particular, every atom (i.e., successor of the bottom element) of a lattice is join-irreducible, and every co-atom (i.e., predecessor of the top element) is meet-irreducible. In the following, we will interchangeably note M(L) and M(C) whenever L = (C, ⊆).

Let J, M ∈ C. We define useful notations from [GW12] for closure systems using underlying lattice structure. We note J ↗ M whenever M is maximal in L-J, and J ↙ M whenever J is minimal in L-M . If J ↗ M and J ↙ M then we note J ↙ ↗ M . We point out here that M and J are element of L, and subsets of X. On the example of Figure 4.1, observe that J ↗ M for J = {2} and M = {1, 4}. Also, J ↙ M for M = {1, 4} and J = {2}. Hence, J ↙ ↗ M in that case. In the following, we extend the ↗ notation to any subset B ⊆ X by defining B ↗ = Max ⊆ {M ∈ C | B ⊆ M }. Then M ∈ J ↗ whenever J ↗ M for any two M, J ∈ C. We put j ↗ = {j} ↗ for any j ∈ X. The following fact is folklore; see for instance [MR92, Wil95, Wil17]. Since C is considered standard, another well-known property is that to every set J ∈ J (C) corresponds a unique element j ∈ X such that J = φ(j). Accordingly, J (C) coincides with {φ(j) | j ∈ X}, and J ↗ with j ↗ for j such that φ(j) = J.

Links with the implicational bases

Recall that an implicational base (X, Σ) is a set Σ of implications of the form A B where A, B ⊆ X, and it is called unit if |B| = 1 for every such implication. A set S is closed in Σ if for every implication A B of Σ, at least one of B ⊆ S and A ⊆ S holds. You might remember as well from Chapter 3 that to every implicational base (X, Σ) corresponds a closure operator φ which maps every subset S ⊆ X to the smallest closed set φ(S) of Σ containing S. We say that S implies (or generates) x ∈ X if x ∈ φ(S). A set S ⊆ X is a minimal generator of b if b ∈ φ(S) and b ∈ φ(S \ {x}) for any x ∈ S. In the following, we will interchangeably denote by C Σ and C φ the set of all closed sets of Σ. Observe then that (X, Σ) defines a closure space, hence that (X, C Σ ) defines a closure system and L Σ = (C Σ , ⊆) defines a lattice.

As pointed in the introduction of this chapter, to a single closure system can correspond several implicational bases. We say that two implicational bases Σ and Σ are equivalent, denoted by

Σ ≡ Σ , if C Σ = C Σ . An implicational base Σ is called irredun- dant if Σ \ {A B} ≡ Σ for all A B ∈ Σ.
We say that an implicational base is minimum if it is of minimum size among all equivalent implicational bases. It is called unit-minimum if it is of minimum size among all equivalent unit implicational bases.

Implication-graph

The implication-graph of (X, Σ) is the directed graph G(Σ) defined on vertex set X and where there is an arc between x and y if there exists A B ∈ Σ such that x ∈ A and y ∈ B. An implicational base is called acyclic if its implication-graph has no directed cycle. A closure space is called acyclic if it admits an acyclic implicational base. We recall from Chapter 3 that if moreover the premises in Σ are of size one, then the closure lattice L Σ = (C Σ , ⊆) is distributive. For a vertex j of G(Σ) we shall note j - the set of all predecessors of j in G(Σ), and j + all its successors.

Translating between the representations

As mentioned earlier, a closure system (X, C φ ) can always be represented and reconstructed from a well-chosen implicational base, or from its meet-irreducible elements. For the latter case, one has to close M(C φ ) under intersection to recover the whole family C φ . For the former one, we have to consider Σ such that C Σ = C φ . Such a Σ always exists: Σ = {A φ(A) | A ⊆ X} is an expensive but sufficient representation of φ. It can furthermore be turned into a unit implicational base. An example of a closure system represented by its corresponding lattice, a unit-minimum implicational base, and the set of its meet-irreducible elements is given in Figure 4.1.

We are now ready to include the definitions of the problems we consider in this chapter. The names CMI, CCM and SID below originally come from the problems of translating between Horn representations and their characteristic models [Kha95]. Their equivalence with the problems of translating between implicational bases and meet-irreducible elements is well established; see for instance [START_REF] Wild | The joy of implications, aka pure Horn formulas: mainly a survey[END_REF]. We point out that the last problem, as put by Khardon, calls for constructing a unit-minimum implicational base. This problem is at least as hard as the one of computing a minimum implicational base, as one can compute a minimum implicational base in polynomial time from a unit-minimum one using the algorithms in [START_REF] Shock | Computing the minimum cover of functional dependencies[END_REF]Wil95], and that the size of these two implicational bases only differ by a factor |X| being part of the input. It is not clear whether the opposite direction holds, as it was shown in [START_REF] Peter | Optimal compression of propositional Horn knowledge bases: complexity and approximation[END_REF] that deciding whether a unit implicational base can be reduced is NP-hard. The problem we consider in this chapter is the hardest one, as in [Kha95].

Meet-irreducible Elements Identification (CMI) Input:

An implicational base (X, Σ) and a family of sets M ⊆ 2 X . Question: Is M = M(C Σ )?

Meet-irreducible Elements Enumeration (CCM) Input:

An implicational base (X, Σ). Output: The set M(C Σ ).

Implicational Base Identification (SID) Input:

Two sets X and M ⊆ 2 X . Output: A unit-minimum implicational base (X, Σ) such that M = M(C Σ ).

In [Kha95], the author shows that CCM and SID are equivalent, and that they are at least as hard as TRANS-ENUM. The same result will be observed from a lattice point of view in Section 4.2.

Recall by Fact 4.1.2 that {j ↗ | j ∈ X} is a set covering of M(C). It follows that the existence of an output-polynomial time algorithm for CCM amounts to the existence of one enumerating j ↗ for all j ∈ X; see [Wil95, Wil17]. Repetitions are either avoided using exponential memory, or by running the algorithm again on each output to check whether the solution has already been outputted before, as in Lemma 2.2.10, and at the cost of an increasing complexity. In the general case, it can be seen using a result of Babin and Kuznetsov, and of Kavvadias et al. in [START_REF] Kavvadias | Generating all maximal models of a Boolean expression[END_REF][START_REF] Babin | Dualization in lattices given by ordered sets of irreducibles[END_REF] on the intractability of generating the co-atoms of a lattice that the computation of j ↗ is impossible in outputpolynomial time unless P=NP. It is however a long-standing open problem whether such a result can be inferred for CCM [Kha95, BMN17, Wil17].

Convex geometries

Let us end the preliminaries by presenting the particular closure system that we consider in the following. A closure space (X, φ) satisfies the anti-exchange property if for all x = y and all closed sets A ⊆ X, x ∈ φ(A ∪ {y}) and x ∈ A imply y ∈ φ(A ∪ {x}).

A standard closure space that satisfies the anti-exchange property is called a convex geometry. Convex geometries are known to include acyclic closure spaces [Wil94, Wil17]. Sometimes during the paper, we will refer to acyclic closure spaces as acyclic convex geometries. It is known from [START_REF] Adaricheva | Joinsemidistributive lattices and convex geometries[END_REF] that lattices of convex geometries are both join-semidistributive and lower-semimodular. Whatever that means, it has for consequence that if (X, φ) is a convex geometry and (X, C φ ) is its associated closure system, then J ↗ M implies J ↙ ↗ M for all J ∈ J (C φ ) and M ∈ M(C φ ) [Ste99, Corollary 4.6.3]. More importantly-and that is the only property that will be used in the followingthis has for consequence that the set {j ↗ | j ∈ X} defines a partition (and not only a set covering) of M(C φ ). Consequently, meet-irreducible elements can be enumerated from join-irreducible elements with no need of handling repetitions in that case. This yields the next proposition (the factor two comes from the delay between the output As a consequence, there is no output quasi-polynomial time algorithm for CCM, nor SID, unless there is one solving the dualization in distributive lattices in quasipolynomial time, a long-standing open problem [START_REF] Babin | Dualization in lattices given by ordered sets of irreducibles[END_REF]. This generalizes the observation of Khardon in [Kha95] (which is obtained replacing "distributive lattice" by "Boolean lattice" in Theorem 4.2.1).

z ↗ = Max ⊆ {F ∈ C Σ | A ⊆ F for any A ∈ B -}, ( 4 
As for the computation of j ↗ given an acyclic implicational base (X, Σ) and some element j ∈ X, a corollary of Equality (4.4) in the proof of Theorem 4.2.1 is that the task is even harder than the dualization in lattices given by acyclic implicational bases (a proper superclass of distributive lattices), whenever Σ is acyclic. To the best of our knowledge, no better algorithms than exponential naive ones are known on such class. This suggests that the technique employed in [BMN17] and pointed by Proposition 4.1.3 for the enumeration of meet-irreducible elements from join-irreducible elements may not be efficient in acyclic convex geometries. However, we will show in Section 4.4 that it can work in a subclass of acyclic convex geometries.

Ranked convex geometries

Let (X, Σ) be an implicational base. A rank function on (X, Σ) is a function ρ : X N such that if A b ∈ Σ and a ∈ A, then ρ(a) = ρ(b) + 1. We say that (X, Σ) is ranked if it admits a rank function. See Figure 4.3 for an illustration. It is not hard to see that ranked implicational bases are acyclic, hence that they define a subclass of acyclic convex geometries. We say that a convex geometry is ranked if it admits a ranked implicational base. Observe that the construction of Theorem 4.2.1 is not ranked, as not all distributive lattices admit a ranked implicational base, and in addition the premises of the constructed implications may not contain elements of a same rank.

In this section, we prove structural properties on acyclic and ranked convex geometries. Let us first recall a result from [HK95] (see also [START_REF] Wild | The joy of implications, aka pure Horn formulas: mainly a survey[END_REF]) which plays a central role in the remaining of the section. Remind that a set A ⊆ X is a minimal generator of b if it is minimal satisfying b ∈ φ(A).

Proposition 4.3.1 ([HK95]

). Let (X, φ) be an acyclic convex geometry. Then (X, φ) admits a unique irredundant implicational base of minimal generators which is unit-minimum. Furthermore, it can be computed in quadratic time from any unit implicational base.

In the following, we call critical base the irredundant implicational base of minimal generators of an acyclic convex geometry given by Proposition 4.3.1. Accordingly, we call critical1 a minimal generator that belongs to this base, and redundant one that does not. The next two propositions can be inferred from other results in matroid and antimatroid theory [Die87, [START_REF] Korte | Greedoids[END_REF][START_REF] Nakamura | The prime stems of rooted circuits of closure spaces and minimum implicational bases[END_REF]. We nevertheless reprove them here for self-containment. Proposition 4.3.2. Let (X, φ) be an acyclic convex geometry and A ⊆ X be a minimal generator of b ∈ X. Then A is redundant if and only if its closure φ(A) contains another minimal generator of b.

Proof. Let A be a redundant minimal generator of b and Σ be the critical base of (X, φ) given by Proposition 4. We are now ready to state the main result of this section, which is of interest as far as the computation of a unit-minimum ranked implicational base is concerned (SID). Theorem 4.3.6. Let (X, φ) be an acyclic convex geometry. Then (X, φ) is ranked if and only if its critical base is ranked.

Proof. The if part follows from the definition. We prove the other direction. Let us assume that (X, φ) is ranked and consider its critical base Σ * given by Proposition 4.3.1. Consider now any other implicational base Σ of (X, φ). Then by Proposition 4.3.5 for every implication A b ∈ Σ * there exists A b ∈ Σ such that A ⊆ A . Hence if Σ * is not ranked it must be that the elements in such A's together with their conclusion b do not admit a rank function in Σ * . As all such elements appear as is in Σ, they cannot admit a rank function in Σ neither. Consequently Σ * must be ranked.

Let C Σ be a closure system given by a ranked implicational base (X, Σ) with rank function ρ and closure operator φ. Note that by Proposition 4.3.1 and Theorem 4.3.6 we can assume Σ to be the critical base of (X, φ). In the following and for every B ⊆ X we put

B ⇒ = Max ⊆ {C ∈ C Σ | C ∩ B = ∅}.
Observe that this definition generalizes the ↗ relation for singletons, as the following remark states. A trivial bound of f (|H| + |T r(H)|) on the delay of an output-polynomial time algorithm enumerating T r(H) within the same time yields an output quasi-polynomial time algorithm constructing the ranked implicational base of a ranked convex geometry given by the set of its meet-irreducible elements, using the algorithm of Fredman and Khachiyan [FK96] as a subroutine for the enumeration of T r(H). If furthermore every meet-irreducible element M ∈ M(C φ ) is such that |M | ≥ |X| -k for some fixed integer k ∈ N, then the described algorithm performs in output-polynomial time using the algorithm of Eiter and Gottlob in [START_REF] Eiter | Identifying the minimal transversals of a hypergraph and related problems[END_REF].

Further work and open problems

Several questions arise for future research. First, we would like to point that the partition given by Theorem 4.4.3 holds for more general closure spaces than ranked convex geometries. One such convex geometry is given in Example 4.6.1 and leads to the question that follows.

Example 4.6.1. We consider the implicational base Σ = {1 2, 1 3, 2 4, 34 5}. Despite the fact that Σ is not ranked, Theorem 4.4.3 holds. Hence, an algorithm in the fashion of Algorithm 4.1 correctly outputs the meet-irreducible elements in that case. Question 4.6.2. For which closure spaces does Theorem 4.4.3 hold?

We recall however that by Theorem 4.2.1 and Equality (4.1) the enumeration of j ↗ for some j ∈ X in acyclic convex geometries is harder than the dualization in lat-tices given by acyclic implicational bases. Hence the existence of an output quasipolynomial time algorithm for acyclic convex geometries using the techniques presented in this chapter is a challenging question.

The same question holds concerning the characterization of Lemma 4.5.1. Indeed, it is easily seen that the algorithm of Theorem 4.5.4 will correctly output the critical base of the convex geometry given in Example 4.6.1. This yields the next question. As shown in Proposition 4.3.8, this problem lies in coNP. We believe that the answer to this question is positive for acyclic convex geometries, using an elimination scheme in the colored poset introduced by Habib and Nourine in [Nou00, HN18] as a variant of the poset of irreducibles. Identifying the ranks in such a poset, however, seems to be more intricate.

Conclusion

In this thesis, we investigated the complexity of the dualization of monotone Boolean functions, and its generalizations, through the many shapes the problem takes on graphs, hypergraphs, and lattice: minimal dominating sets enumeration, minimal transversals enumeration, lattice dualization, and meet-irreducible enumeration. Several techniques-among them the flipping method, flashlight search, and ordered generation-were confronted to the problem, and new output polynomial-time algorithms were obtained under various restrictions (among them, most notably, Theorems 2.2.13, 2.3.10, 2.4.4, Theorem 3.3.7, and Theorems 4.5.4 and 4.4.8). In addition to these positive results, we exhibited some intractability results when the problem is generalized to the dualization of any lattice (Theorem 3.2.1), or to the translation between the representations of an acyclic convex geometry (Theorem 4.2.1).

Several open problems were stated in the conclusions of Chapters 2, 3 and 4. We reformulate here one question that seems to be of greatest importance, for each of these three chapters. Question 4.6.5. Can DOM-ENUM be solved in output polynomial-time in C 4 -free, comparability, and unit-disk graphs? Question 4.6.6. Can DUAL-ENUM be solved in output quasi-polynomial time in distributive lattices2 , and more generally, in acyclic convex geometries? Question 4.6.7. Can CCM and SID be solved in output quasi-polynomial time in acyclic convex geometries, and more generally, in any convex geometry?

In addition, we recall that Question 4.6.5 is part of a more general, and much harder question, which is now open for more that forty years [EG95, EMG08]. Question 4.6.8. Can HYPERGRAPH DUAL (or equivalently, DUALIZATION) be solved in polynomial time?

As for Question 4.6.7, we point that while proved for DUAL-ENUM, it is not known whether the general case of CCM (or SID) is intractable, i.e., cannot be solved in output-polynomial time unless P=NP. This, also, constitutes a long-standing open question in the field [Kha95, Wil17].

Publications

The results presented in this thesis led to several submissions, and to publications in international journals and conferences. The algorithms for K t -free graphs and other related graph classes, given in the first part of Chapter 2, were presented at the STACS 2019 conference [START_REF] Bonamy | Enumerating minimal dominating sets in triangle-free graphs[END_REF], and appeared in the journal ACM Transactions on Algorithms [BDH + 20]. The algorithms for comparability and incomparability graphs presented in the second part of Chapter 2 were recently submitted, and are available-as every result presented in this manuscript-on arXiv [START_REF] Bonamy | Enumerating minimal dominating sets in the (in)comparability graphs of bounded dimension posets[END_REF]. The results of Chapter 3 on the dualization in lattices given by implicational bases were presented at the ICFCA 2019 conference [DN19a], and appeared in the journal Theoretical Computer Science [START_REF] Defrain | Dualization in lattices given by implicational bases[END_REF]. Finally, the results presented in Chapter 3 on translating between the representations of a ranked convex geometry were recently submitted, and may be accessed in [START_REF] Defrain | Translating between the representations of a ranked convex geometry[END_REF].

In addition to these publications, two contributions related to the dualization are to be indexed:

• In a first contribution, we investigated how known techniques based on neighborhood inclusions for DOM-ENUM (such as used in [KLMN14] for split graphs) could be pushed for more general graphs. We in particular obtained linear and polynomial-delay algorithms in P 7 -free and P 8 -free chordal graphs, and showed the technique to be inefficient in P k -free graphs, k ≥ 9. These results were presented at the ISAAC 2019 conference [START_REF] Defrain | Neighborhood inclusions for minimal dominating sets enumeration: Linear and polynomial delay algorithms in P 7 -free and P 8 -free chordal graphs[END_REF].

• In a second contribution, we considered the dualization problem in distributive lattices, and gave equivalent formulations of the problem in term of graphs, hypergraphs, and posets. In the new framework, a poset on vertices is given together with the input (hyper)graph, and minimal "ideal solutions" are to be generated. These formulations allowed us to study the complexity of the problem under various combined restrictions on graph classes and poset types, including bipartite, split, and co-bipartite graphs, and variants of neighborhood inclusion posets. We for example show that while the enumeration of minimal dominating sets is possible with linear delay in split graphs, the problem, within the same class, gets as hard as for general graphs when generalized to this framework. Same behaviors are observed for bipartite and co-bipartite graphs, even under high restrictions-related to neighborhood inclusions-on the poset. These results may be found in [START_REF] Defrain | On the dualization in distributive lattices and related problems[END_REF] and are to appear in the journal Discrete Applied Mathematics.

At last, two other results were obtained, thanks to different collaborations. These results fall in combinatorics and do not concern enumeration.

• In a first contribution, we revisited a theorem by Folkman on graph coloring, stating that the chromatic number of any graph is at most 2 plus the maximum over all subgraphs of the difference between the number of vertices, and twice the independence number. This appeared in the Electronic Journal of Combinatorics [BCD + 20].

• In a second contribution, we considered generalizations of simplicial vertices in graphs, known as avoidable vertices and paths. We answered a question of Beisegel et al. on the existence of an avoidable path of size k in every graph containing a path on k elements, implying a result of Chvátal et al. from 2002. This may be accessed in [START_REF] Bonamy | Avoidable paths in graphs[END_REF] and is to appear in the Electronic Journal of Combinatorics.

  (a) Bike itineraries. (b) Flights from CDG to WAW.
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 A Figure A: Everyday expressions of optimization and enumeration problems. A shortest bike itinerary is given in blue (a), and a cheapest flight in green (b). Alternative solutions are proposed in both situations.
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 1 Figure 1.1: The Boolean algebra of dimension four, the monotone Boolean function f of prime CNF ϕ = (1 ∨ 2) ∧ (3 ∨ 4), and its dual. Vectors v such that f (v) = 1 are in the gray area, vectors such that f d (v) = 1 are in bold. It is easily verified that f (v) = f (v).
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 2 Figure 2.1: A graph G (left), its Sperner hypergraph N (G) of closed neighborhoods (middle), and a poset P such that G is the comparability graph of P (right). On this example, the set D = {x 2 , x 4 , x 6 } is both a minimal dominating set of G, and a minimal transversal of N (G). In the poset, it satisfies D ∪ D = V (G).
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 4423 Figure 2.3: The standard example of order four.

  removes one arbitrary vertex from D, and completes the dominating set by adding all the vertices in the independent set which are no longer dominated. Then, f maps non-empty elements of {D ∈ D(H) | D ∩ S = ∅} to the set {D ∈ D(H) | D ∩ S = ∅}. Moreover, every element in this second set is the image of at most |C| ≤ n -1 elements by f . This implies the desired bound.

  we call algorithm A on G(S) to enumerate D(G, S) and we give the same output; (ii) otherwise, we iterate over all w ∈ N [v i+1 ] and Q ∈ D(G, S \ N [w]) (where the latter is obtained via a call to A) and output Q ∪ {w} if and only if it is a candidate extension of D * .

  Lemma 2.2.22. Let W be a subset of S. Then D(G, W ) can be enumerated in total time O(n 7 • |D(G, A)| 3 ) and O(n 3 ) space.

  then we can enumerate C (D • , j) by just enumerating D(G, Y ) as these sets coincide. As Y is a clique in G[S], by Lemma 2.2.21 we can enumerate D(G, Y ) in time O(n 2 + n • |D(G, Y )|) and space O(n 2 ). By Lemma 2.2.3 we have |D(G, Y )| ≤ |D(G, A)|, hence the procedure runs within the required time and space complexity. In the remaining case when D • does not dominate u j+1 , we iterate over all w ∈ N [u j+1 ] and Q ∈ D(G, Y \ N [w]) (obtained via a call to the algorithm of Lemma 2.2.21) and output Q ∪ {w} if and only if this set belongs to C (D • , j), which can be checked in O(n 2 ) time and space. Again, by Lemma 2.2.3 we have |D(G, Y \ N [w])| ≤ |D(G, A)| for all w as above. Hence, in total, the described algorithm enumerates C (D • , i), possibly with repetitions, in time O(n 3 • |D(G, A)|) and using O(n 2 ) space. Using Corollary 2.2.11, we obtain an algorithm enumerating D(G, W ) in time O(n 7 • |D(G, A)| 3 ), and using O(n 3 ) space. Lemma 2.2.23. There is an algorithm enumerating C(D * , i), possibly with repetitions, in total time O(n 8 • |D(G, A)| 3 ) and using O(n 3 ) space.

  Lemma 2.2.27. There is an algorithm enumerating C(D * , i) in total time O(n 5 • |D(G, A)|) and O(n 2 ) space.

Figure 2

 2 Figure 2.6: A bipartite graph G and a set A ⊆ V (G) constructed from an instance of SAT with variables x 1 , . . . , x n and clauses C 1 , . . . , C m . Black vertices constitute the set A. Then A can be extended into a minimal dominating set D of G if and only if there is a truth assignment of the variable satisfying all the clauses.

2

  . u ∈ D and D ∩ B = ∅. Then |D ∩ B| = 1, and for any v ∈ B, the set {u, v} is a minimal dominating set of G .

Figure 2

 2 Figure 2.7: An illustration of the flipping operation on a dominating set D such that G[D] contains at least one edge incident to some vertex u, here depicted by uw. Black vertices are elements of D, white vertices are some elements of Priv(D, u). Dashed discs represent closed neighborhoods, and plain disks represent private neighborhoods.

  in G[D], and v ∈ Priv(D, u), a unique set D * . We call D * the parent of D with respect to flipping u and v, and denote it by Parent uv (D). Conversely, we denote by Children(D * ) the set of all minimal dominating sets D such that D * = Parent uv (D) for some edge uv, and call child of D * any element of Children(D * ). Note that, in the procedure, every edge in G[D * ] is also an edge in G[D], while there is at least one edge incident with u that appears in G[D] and not in G[D * ]. This simple but important observation was formalized as follows. Proposition 2.3.1 ([GHKV15]). Let D, D * ∈ D(G) be such that D * = Parent uv (D) for some edge uv. Then E(G[D * ]) E(G[D]) and v is an isolated vertex of G[D * ].

  Then, it proceeds with what boils down to a DFS of G initiated at r, as follows. When visiting a node D * ∈ V (G ), B seeks the children of D * by running A. Each set D returned by A is then output by B. Then B checks if D is a child of D * . If so, B "pauses" the execution of A on D * , and launches A on D. When the execution of A on D is complete, B "resumes" the execution of A on the node D * .

Figure 2 .

 2 Figure 2.8: A minimal dominating set D (on the left) and its parent D * = Parent uv (D) (on the right) represented by black vertices in the underlying poset of a comparability graph. The edge induced by D and incident to u is depicted by uw.

Claim 4 .

 4 The sets D(R, B) and D(R ∩ Max(B), Max(B)) are equal. Proof. We recall that B ⊆ R \ R. As a consequence, R ⊆ Max(B), and it suffices to argue that D(R, B) = D(R, Max(B)).

Claim 5 .

 5 All elements of D are minimal dominating sets of G. Furthermore, there is no repetitions in D, and |D| = |D(R, B)|.

  As N (y) ∩ D = {x} and x ∈ D * , we have N (y) ∩ D * ⊆ X uv ∪ {v} ⊆ R 1 ∪ {v}. Hence y ∈ B. Consequently every x ∈ X has a private neighbor in B, and so X ∈ D(R, B). The core statement now follows easily. Claim 8. The set D contains every D ∈ D(G) such that D * = Parent uv (D). Proof. Let D ∈ D(G) be such that D * = Parent uv (D). Then D * = ((D \{u})∪X uv ∪{v})\ Z uv , where X uv and Z uv are the disjoint sets defined in the Parent relation. Consider the set Y uv = z∈Zuv Priv(D, z).

Figure 2

 2 Figure 2.9: A poset P and its incomparability graph G as an intersection graph of curves induced by four linear extensions witnessing the dimension.

Since v ∈

 ∈ Priv(I, u) and b k ∈ I, v and b k do not intersect. Therefore, either v < b k in P or v > b k in P . Assume toward a contradiction that b k < v in P . Since u and v intersect, we can fix p ∈ {1, . . . , d} such that v < p u. Recall that u ∈ I \ T(I). Thus, by the definition of the third layer C(I) we have u < p c p . Hence v < p u < p c p . Since v ∈ Priv(I, u) and

Figure 3 . 1 :

 31 Figure 3.1: The Boolean lattice L X of power set of X = {1, 2, 3}, and the border (curved line) formed by the two dual antichains B + = {{1}, {2, 3}} and B -= {{1, 2}, {1, 3}} of L X . It can be easily verified that the two hypergraphs H = {X \ I | I ∈ B + } = {{2, 3}, {1}} and G = B -on ground set X are dual. For better readability, closed sets and premises are denoted without braces, i.e., 123 stands for {1, 2, 3}.

  Proposition 3.1.2. Let H and G be two Sperner hypergraphs on same ground set X. Then H and G are dual if and only if B + = {X \ E | E ∈ H} and B -= G are dual in the Boolean lattice L X = (2 X , ⊆). Corollary 3.1.3. The two problems HYPERGRAPH DUAL and BOOLEAN DUAL are polynomially equivalent.

Figure 3 . 2 :

 32 Figure 3.2: The lattice L Σ of closed sets of the implicational base Σ = {13 2, 4 3} on ground set X = {1, 2, 3, 4}, and the border (curved line) formed by the two dual antichains B + = {{1}, {2, 3}} and B -= {{1, 2}, {3, 4}} of L Σ . For better readability, closed sets and premises are denoted without braces, i.e., 123 stands for {1, 2, 3}.

Lemma 3.3. 3 .Figure 3 . 3 :

 333 Figure 3.3: An implicational base (X, Σ) on ground setX = {u 1 , v 1 , . . . , u n , v n } where Σ = {u i v i | i ∈ {1, . . . , n}}. By taking B + = {X \ {u i , v i } | i ∈ {1, . . . , n}}, we get H = {{u i , v i } | i ∈ {1, . . . , n}}, B -= {{v 1 , . . . , v n }} and T r(H) = {{z 1 , . . . , z n } | (z 1 , . . . , z n ) ∈ {u 1 , v 1 } × • • • × {u n , v n }}.

  Theorem 3.3.5. Let I be a subset of X. Then the number of minimal covering sets of I is bounded by |Σ| k where k is the independent-width of Σ.Proof. Let I ⊆ X and T ⊆ X be a minimal covering set of I. Consider the implications in min(Σ, T, I). As min(Σ, T, I) is an independent set of implications, we have | min(Σ, T, I)| ≤ k. Observe in addition that every x ∈ T \ I belongs to at least one premise of an implication in min(Σ, T, I), as otherwise T is not a minimal covering set of I. Furthermore by definition, every x that belongs to the premise of an implication in min(Σ, T, I) is in T . Hence, every such x is either in I or in T \ I. We conclude that T \ I = {A | A b ∈ min(Σ, T, I)} \ I. Now, observe that T is uniquely characterized by T \ I as T is independent: the elements of T ∩ I are exactly those of I \ φ(T \ I). Since T \ I is obtained by union of at most k implications in Σ, the number of minimal covering sets of I is bounded by k i=1 |Σ| i hence by |Σ| k , as desired. A corollary of Lemma 3.3.4 and Theorem 3.3.5 is the following, observing that every solution I ∈ B -admits at most |Σ| k minimal covering sets, hence that at most |Σ| k minimal transversals of H have their closure containing I. Corollary 3.3.6. If Σ is of independent-width k then |T r(H)| ≤ |Σ| k • |B -|.

Proof.

  Let k be an integer and (X, Σ) be an implicational base of independent-width k. Let B + be an antichain of L Σ , and H = {X \ B | B ∈ B + } be the complementary hypergraph of B + . Let B -be the dual antichain of B + in L Σ that we wish to compute. By Corollary 3.3.6, the size of T r(H) is bounded by |X| k • |B -|. Let M = |H| + |T r(H)| and N = |X| + |Σ| + |B + | + |B -|. Since |H| ≤ |B + |, there exists a constant c ∈ N Chapter 4

Fact 4.1. 1 .

 1 To any closure space (X, φ) corresponds a lattice L φ = (C φ , ⊆).

Figure 4 . 1 :

 41 Figure 4.1: The closure lattice L Σ = (C Σ , ⊆) of the implicational base Σ = {4 1, 5 2, 3 1, 3 2, 45 3} on ground set X = {1, 2, 3, 4, 5}. Meet-irreducible elements are represented by black vertices. For better readability, closed sets are denoted without braces in the lattice, i.e., 123 stands for {1, 2, 3}.

Fact 4.1. 2 .

 2 The family {J ↗ | J ∈ J (C)} is a (possibly overlapping) set covering of M(C).

Figure 4 . 2 :

 42 Figure 4.2: The construction of Theorem 4.2.1.

j

  Figure 4.3: A ranked implicational base (left) and an acyclic implicational base that does not admit a rank function (right). Ranks are depicted by dashed lines.

  3.1. Since A b does not belong to Σ and b ∈ φ(A), there exists an implication C b ∈ Σ, A = C such that C ⊆ φ(A). Let A be a minimal generator of b and suppose that there exists another minimal generator C of b such that C ⊆ φ(A). Consider the critical base Σ of (X, φ) given by Proposition 4.3.1. Since A and C are minimal generators, C \ A is not empty. Since C ⊆ φ(A) for each c ∈ C \ A there are implications in Σ leading to c from A. Since C is a minimal generator of b, there are implications in Σ leading to b from C. Consequently, there exists a sequence of implications in Σ that does not contain A b and that nevertheless produces b from A. We conclude that A b, if in Σ, is redundant. Hence A is redundant. Remark 4.3.3. By the choice of Σ in the proof of Proposition 4.3.2, the minimal generator of b can be required to be critical. A corollary of this proposition is the next characterization. Corollary 4.3.4. Let (X, φ) be an acyclic convex geometry and A ⊆ X be a minimal generator of b ∈ X. Then A is redundant if and only if there exists an element a ∈ A such that the set φ(A) \ {a, b} implies b. Proposition 4.3.5. Let (X, φ) be an acyclic convex geometry, A ⊆ X be a critical minimal generator of b ∈ X, and Σ be any ranked implicational base of (X, φ). Then there exists C b ∈ Σ such that A ⊆ C. Proof. Let A be a critical minimal generator of b and assume for contradiction that there is no implication C b ∈ Σ such that A ⊆ C. In particular since b ∈ A and b ∈ φ(A) there exists at least one implication D b in Σ such that D ⊆ φ(A). By hypothesis A ⊆ D. Hence by acyclicity of (X, φ) we deduce D ⊂ φ(A). Then there exists D ⊆ D ⊂ φ(A) such that D is a minimal generator of b. By Proposition 4.3.2, it contradicts A being critical.

⇒.Figure 4 . 4 :

 44 Figure 4.4: The situation of Theorem 4.4.3. On the left a ranked implicational base (X, Σ) and its rank function (dashed). On the right the set of closed sets of Σ not containing j, ordered by inclusion. Maximal independent sets of E(H j ) = {{4, 5}} are {4} and {5}. They partition j ⇒ = j ↗ = {{1, 2, 4}} {{1, 3, 5}, {2, 3, 5}}.

Question 4.6. 3 .

 3 For which closure spaces does Theorem 4.5.2 hold? At last, another intriguing question, raised by Section 4.3, is the following. Question 4.6.4. Can ranked convex geometries be identified in polynomial time from their meet-irreducible elements?

  It is well known that a Boolean function f is monotone if and only if it admits a conjunctive normal form (CNF)

	ϕ =
	I∈F i∈I

  .2: The incidence graph I(H) (left) of the hypergraph H given in Figure2.1 and defined by V (H) = {x 1 , . . . , x 6 } and E(H) = {E 1 , . . . , E 4 }, where E 1 = {x 1 , x 2 , x 5 }, E 2 = {x 1 , x 2 , x 3 }, E 3 = {x 3 , x 4 , x 5 }, and E 4 = {x 5 , x 6 }.

	A co-bipartite construction is
	obtained from I(H) by completing the partitions into cliques and adding a new vertex
	v adjacent to every x i (right).
	minimal dominating sets of the first type, the next theorem follows.
	Theorem 2.1.1 ([KLMN14]). DOM-ENUM restricted to co-bipartite graphs is polynomially
	equivalent to TRANS-ENUM and DOM-ENUM.

  Proof. Let t ≥ 1 and let us assume that the statement P (t) holds (in particular, p(t) is defined). Let I = (G, A, V 0 , . . . , V p , v 1 , . . . , v p , i, D * ) be an input of B such that G[A] is K t+1 -free. Let us define n = |G| and d = |D(G, A)|. We review the description of B to show that Q(t + 1) holds. We first consider the auxiliary routine B'.

In these cases we clearly have D(G, A) = {∅}. Notice that such inputs are correctly handled by algorithm A. Checking whether A is empty and returning {∅} takes O(n) time and O(n 2 ) space. We define p(1) as an integer such that these steps take at most p(1) • n time and at most p(1) • n 2 space on an input graph of order n. As f (n, |D(G, A)|, t) = n in this case, P (1) holds.

Lemma 2.2.15. For every integer t ≥ 1, P (t) ⇒ Q(t + 1). Claim 1. Given I, the algorithm B' enumerates C(D * , i) with each output repeated up to n times, in time at most k • n • f (n, d, t) and space at most k • n t+1 , for some constant k.

  Hence, when applying the algorithm recursively to enumerate D(G, S ) for any S ⊆ S, we may use the already established property P (t), yielding the following: Remark 2.2.16. For any S ⊆ S, a call to A on (G, S ) returns D(G, S ) in time at most p(t) • f (n, |D(G, S )|, t) and space at most p(t) • n t+1 . If v i+1 ∈ N [D

* ], then, by Lemma 2.2.12, we enumerate C(D * , i) without repetitions simply by enumerating D(G, S). By Remark 2.2.16, this takes time

  and C(D * , i) as in Sections 2.2.1, 2.2.2, and 2.2.3. Note that contrarily to the triangle-free case and the K

t -free case, we here require the whole graph G to be diamond-free and not only G[A]. We start with an easy observation.

Observation 2.2.19. For every vertex u

  we call the algorithm of Lemma 2.2.22 to enumerate D(G, S) without repetitions in total time O(n 7 • |D(G, A)| 3 ) and O(n 3 ) space. If D * does not dominate v i+1 , we iterate over all w ∈ N [v i+1 ] and Q ∈ D(G, S \ N [w]) (obtained via a call to the algorithm of Lemma 2.2.22 as S \N [w] ⊆ S) and output Q ∪ {w} if and only if this set belongs to C(D * , i). An analogous complexity analysis shows that this algorithm runs in time O(n 8 • |D(G, A)| 3 ) and uses O(n 3 ) space, and it enumerates C(D * , i) possibly with repetitions. As a consequence of Corollary 2.2.11 and Lemma 2.2.23, we get the following.

  1. u ∈ D. We generate all minimal dominating sets of the split graph G [A ∪ B]: this can be done in output-polynomial time according to Proposition 2.2.6. For each such minimal dominating set, either the intersection with A is non-empty and it is a minimal dominating set of G , or it is empty and we can generate in polynomial-time all additions of a vertex of A that would result in a minimal dominating set of G , if any. Since the number of minimal dominating sets of G [A ∪ B] with empty intersection with A is polynomially bounded by the number of those with non-empty intersection (see Lemma 2.2.8, Inequality (2.3)), we can generate all minimal dominating sets of G not containing u in outputpolynomial time.

  .4) we conclude that B + = z ↗ if and only if B + and B -are dual in L Σ . Hence that I 1 is a positive instance of DUAL if and only if I 2 is one of CMI. Concerning the observation that I 1 can be decided in polynomial time in |I 1 | using a polynomial-time algorithm for CMI, it is a consequence of the fact that L Σ being distributive, the size of M(L Σ ) is bounded by |X|, hence that |X ∪ {z}| + |Ω| + |M| is bounded by a polynomial in |I 1 |. This concludes the proof.

Only containing non-negated literals, e.g. ϕ = 1 ∧ (2 ∨ 3) and ψ = 12 ∨

The reader may be more confortable with the formulation "polynomially (at least) as hard as".

We shall note f = ϕ if f (x 1 , . . . , x n ) = 1 if and only if the assignment x 1 , . . . , x n satisfies ϕ.

In the remaining of the document, decision problems will be defined in "input-question" environments, while enumeration problems will be defined in "input-output" environments. Here in the enumeration version, the prime CNF of the dual function f d is seen as a family of clauses to be output.

While this is the standard term in this context, one may be more comfortable thinking of it as an "auxiliary graph".

This forms a subgraph of G as defined in Section 2.3.1: Informally, the directed graph G is what G would be if A was reliable, i.e., only generated children of D * .

In term of their ability to define lattices.

These elements cannot be obtained as the greatest lower bound (or meet) of other elements.

if I ∈ B -and T = ex(I) then

output I;

end

end

The terminology coincides with the notion of critical from [Die87] (the second part of Proposition 4.3.2) and essential from [HK95] (minimal generators that belong to every implicational bases of minimal generators) in acyclic convex geometries. See also[START_REF] Wild | The joy of implications, aka pure Horn formulas: mainly a survey[END_REF].

We would like to mention that the special case of distributive lattices has lately been positively answered by Elbassioni during the rewiewing process of this manuscript [Elb20].
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for each i ∈ {1, . . . , d}. Consider d distinct vertical lines L 1 , . . . , L d in the plane, sorted from left to right in that order. For each i ∈ {1, . . . , d}, we distinguish n points on L i and label them bottom-up with elements of P sorted by ≤ i . Now for each element v in P , we define a piecewise linear curve v consisting of d -1 segments and connecting points labelled v on consecutive lines. It is a folklore observation, see e.g. [START_REF] Charles Golumbic | Comparability graphs and intersection graphs[END_REF], that the incomparability graph of P is the intersection graph of this family of curves. An example for d = 4 is given in Figure 2.9.

In the remaining of this section, we assume that a poset P = (V, ≤) of dimension d is given and we are also given the total orders ≤ 1 , . . . , ≤ d witnessing the dimension of P . As described above we fix the lines L 1 , . . . , L d , and the piecewise linear curves representing each element of P . Let G be the incomparability graph of P .

For a non-empty subset S of elements of P and i ∈ {1, . . . , d}, we define L i (S) to be the maximum element of S in ≤ i . We call vertices upwards from S the elements of the set U(S) = {v ∈ V \ S | L i (S) < i v for some i ∈ {1, . . . , d}}.

A set D is an upward extension of S if S ⊆ D and D \ S ⊆ U(S).

Let S be a subset of elements of P of size at least 3d. We call the first layer of S the tuple A(S) = (a 1 , . . . , a d ) so that a 1 = L 1 (S), and for every i ∈ {2, . . . , d}, a i = L i (S \ {a 1 , . . . , a i-1 }) .

Note that by this definition it might happen that a i = L i (S). This is in particular the case if L i (S) = L j (S) for some i, j ∈ {1, . . . , d} with j < i. The second layer of S is the set B(S) = A(S \ A(S)). The third layer of S is the set C(S) = A(S \ (A(S) ∪ B(S)). Note that since |S| ≥ 3d, the three layers are well-defined. We call the border of S the concatenation T(I) = (a 1 , . . . , a d , b 1 , . . . , b d , c 1 , . . . , c d ) of these three layers. We say that I can be extended upwards into a minimal dominating set whenever there is an upward extension of I that is a minimal dominating set of G. In the following, we aim to decide in polynomial time whether a given irredundant set I in G can be extended upwards into a minimal dominating set. When the given set I is of size at most 3d, say I = {x 1 , . . . , x p } and p ≤ 3d, then this can be done efficiently by checking for all the tuples (y 1 , . . . , y p ) ∈ Priv(I,

Since the number of tuples is no more than n p , the total time is O(n 3d+2 ). If there is such a tuple (y 1 , . . . , y p ), then U(I) \ N [y 1 , . . . , y p ] can be greedily reduced into a minimal set X so that I ∪ X is a minimal dominating set of G. Otherwise, we know that I cannot be extended as we explored all the possibilities for I to keep its private neighbors in an upward extension. We show that the same technique can be applied for irredundant sets of arbitrary size. The key insight is that it is enough to check whether we can extend I into a dominating set so that all elements in the border T(I) keep a private neighbor.

Theorem 2.4.1. Let I be an irredundant set of G of size at least 3d and let T(I) = (t 1 , . . . , t 3d ). Then I can be extended upwards into a minimal dominating set of G if and only if there exists Definition 2.4.3. Let I be a non-empty irredundant set of G that can be extended upwards into a minimal dominating set. We call parent of I the unique irredundant set I * = Parent(I) obtained by removing vertex L 1 (I) from I, i.e., the greatest vertex v in I with respect to < 1 .

Observe that every minimal dominating set D of G is an irredundant set of G that can be extended upwards into a minimal dominating set (the extension being D itself), with no children. Conversely, an irredundant set that can be extended upwards into a minimal dominating set, with no children, is necessarily a minimal dominating set.

Consequently, the Parent relation as introduced in Definition 2.4.3 defines a tree T whose nodes are irredundant sets of G that can be extended upwards into minimal dominating sets, root is the empty set, leaves are minimal dominating sets of G, and where there is an edge between two irredundant sets I * and I if I * = Parent(I). As in Section 2.3, the enumeration proceeds with what boils down to a DFS of T initiated at the empty set. When visiting a node I * ∈ V (T ), the algorithm seeks the children of I as follows. It checks for every candidate vertex v ∈ U(I * ) whether I * ∪ {v} can be extended upwards into a minimal dominating set, using Corollary 2.4.2, and whether the obtained set is a child of I * , using Definition 2.4.3. Whenever it is the case, the algorithm "pauses" the generation of children of I * , and generates children of I * ∪ {v}. When the generation on I * ∪ {v} is complete, the algorithm "resumes" the generation on I * . During this procedure, only the leaves of T , hence the minimal dominating sets of G, are output by the algorithm. Duplications are implicitly avoided by the tree structure of T .

The delay time complexity is bounded by twice the depth of the tree (the maximal distance between two leaves in T ), times the time complexity of solving the extension problem and checking the Parent relation for every candidate vertex v. This sums up to 2n

Space complexity is polynomial as we only need to store for each node W ∈ T from the root to the current node I * ∈ T the data of the (paused) execution of the children generation on node W . We conclude to the following.

Theorem 2.4.4.

There is an algorithm that, given the incomparability graph G of an n-element poset P of dimension d, together with d linear orders witnessing the dimension of P , enumerates all minimal dominating sets of G with delay O(n 3d+4 ) and using polynomial space.

Further work and open problems

We conclude the chapter by stating open problems and reviewing some perspectives for further research on DOM-ENUM.

Graphs with a forbidden induced subgraph

We recall that a graph is H-free if it does not contain H as an induced subgraph. In Section 2.2 we investigated DOM-ENUM in graph classes forbidding an induced subgraph H. We gave algorithms that run in output-polynomial time and polynomial depending in k such that M ≤ N c . As a consequence, using the algorithm of Fredman and Khachiyan, the running time of Algorithm 3.1 on instance (X, Σ,

hence by

As a corollary, there is a quasi-polynomial time algorithm solving DUAL in lattices given by implicational bases of bounded independent-width. If the dimension and the independent-width of Σ equal one, Theorem 3.3.7 yields an output quasi-polynomial time algorithm solving DUAL-ENUM in distributive lattices coded by the ideals of an interval order. A poset is an interval order if it corresponds to an ordered collection of intervals on the real line such that

Σ is of dimension and independent-width one, then it has no implications a b and c d such that d ∈ φ(a) and b ∈ φ(c). The underlying poset in that case is 2+2-free, i.e., it does not contain the union of two disjoint 2-elements chains, which is known to characterize interval orders [START_REF] Peter | Intransitive indifference with unequal indifference intervals[END_REF].

Further work and open problems

We state open problems for future research. To an implicational base (X, Σ) we associate its implication-graph G(Σ) as the directed graph on vertex set X and where there is an arc from x to y if there exists A b ∈ Σ such that x ∈ A and y = b. An implicational base (X, Σ) is called acyclic if G(Σ) has no directed cycle. Acyclic implicational bases have been widely studied in the literature [HK95, B ČKK09, Wil17], and are the object of the next chapter. Observe that the negative result of Section 3.2 involves an implicational base which is (highly) cyclic. The next question naturally follows.

Question 3.4.1. Can DUAL-ENUM be solved in output quasi-polynomial time in lattices given by acyclic implicational bases?

Subclasses of interest include distributive lattices as we recall that the best known algorithm for the dualization in that case is output sub-exponential [START_REF] Babin | Dualization in lattices given by ordered sets of irreducibles[END_REF]. Superclasses of interest that are not covered by Theorem 3.2.1 include convex geometries that are defined in the next chapter.

of the last element in j ↗ , j ∈ X and the first element in j ↗ for a consecutive element j ∈ X, j = j).

Proposition 4.1.3. Let f : N N be a function and (X, C Σ ) be the closure system of a given acyclic implicational base (X, Σ). Then there is an algorithm enumerating the set M(C Σ ) of meet-irreducible elements of C Σ with delay at most 2 • f (|X| + |Σ|) whenever there is one enumerating j ↗ with delay f (|X| + |Σ|) given any j ∈ X.

With all these notions from closure systems we are now armed to show new results on the tractability and intractability of CMI.

Intractability in acyclic convex geometries

We show that translating between acyclic implicational bases and meet-irreducible elements is at least as hard as the dualization in distributive lattices. For this problem, we recall that the existence of a quasi-polynomial time algorithm is open [START_REF] Babin | Dualization in lattices given by ordered sets of irreducibles[END_REF].

We briefly recall the dualization problem in lattices given by implicational bases, and refer to Chapter 3 for a more details. Let L Σ = (C Σ , ⊆) be the lattice of closed sets of an implicational base (X, Σ), and B + and B -be two antichains of L Σ . Then B + and

Then, the dualization problem in lattices given by implicational bases is defined as follows.

Dualization in Lattices given by Implicational Bases (DUAL) Input:

An implicational base (X, Σ) and two antichains B + , B -of L Σ . Question: Are B + and B -dual in L Σ ?

The next theorem suggests that translating between implicational bases and meetirreducible elements is a tough problem, even when restricted to acyclic convex geometries.

Theorem 4.2.1. There is a polynomial-time algorithm solving DUAL in distributive lattices if there is one solving CMI in acyclic convex geometries.

Proof. Let I 1 = (X, Σ, B + , B -) be an instance of DUAL where the lattice L Σ = (C Σ , ⊆) is assumed to be distributive. Without loss of generality, Σ can be considered acyclic in that case; see [START_REF] Babin | Dualization in lattices given by ordered sets of irreducibles[END_REF]. We construct an instance I 2 = (X ∪ {z}, Ω, M) of CMI as follows: Ω is the implicational base on ground set X ∪ {z} constructed from Σ by adding an implication A z for every A ∈ B -. Clearly the obtained implicational base is acyclic. Then, we put

Observe that the left and right sides of the union in Equality (4.2) are disjoint. A representation of the lattice L Ω = (C Ω , ⊆) is given in Figure 4.2. We shall show that I 1 is a positive instance of DUAL if and only if I 2 is one of CMI, and that it can be decided in polynomial time in the size of I 1 given a polynomial-time algorithm for CMI.

We now consider the problem of deciding whether an acyclic convex geometry is ranked, from an implicational base and from its meet-irreducible elements. We show that the first problem lies in P while the second is in coNP. Whether the second problem is in P or is coNP-complete is left as an open problem. As a preliminary remark, observe that the implicational base obtained by disjoint union of ranked implicational bases is ranked. A corollary is that every closure system obtained by product of chains is ranked, a class of interest in [Elb09].

Proposition 4.3.7. Checking whether an implicational base (X, Σ) admits a rank function ρ, and computing ρ if it does, can be done in polynomial time in the size of (X, Σ).

Proof. Let G(Σ) be the implication-graph of Σ that can be computed in polynomial time in the size of (X, Σ). Observe that we can restrict ourselves to the case where G(Σ) is connected, as otherwise we handle each connected component independently. The algorithm proceeds as follows. At first it picks a vertex x of G(Σ) and set ρ(x) = n (n is chosen to ensure that we cannot attribute a negative rank to a vertex in the next steps, hence that ρ : X N). Then, for every unmarked vertex x with a rank, the algorithm marks x and extend ρ to every y ∈ x -∪ x + , until no such vertex exists. Note that extending ρ is deterministic by definition. Hence if a conflict is detected during the procedure, then we can certificate that Σ is not ranked. Otherwise, a rank function is computed. Proposition 4.3.8. Deciding whether an acyclic convex geometry is ranked from its meetirreducible elements belongs in coNP.

Proof. We describe a polynomial-size certificate that can be checked in polynomial time in order to answer negatively. Such a certificate is a set {A 1 b 1 , . . . , A k b k } of critical implications that do not admit a rank function. Recall that by Theorem 4.3.6 the convex geometry is not ranked if and only if these implications exist. Furthermore, they must induce an undirected cycle in G(Σ), and only one such cycle is needed to answer negatively. Hence k is bounded by |X|. One has to check first that each of these implications is indeed a critical minimal generator, following the next three steps. To decide whether A i b i is valid, we compute the closure of A i using meet-irreducible elements, as described in the preliminaries. To check that A i is a minimal generator of b i , we test whether b i ∈ φ(A i \ {a}) for all a ∈ A i . As for the critical property, we check according to Corollary 4.3.4 whether there exists a ∈ A i such that φ(A i ) \ {a, b i } implies b i . Then we launch the polynomial-time procedure given in Proposition 4.3.7 to check whether these implications admit a rank function.

Ordered generation in ranked convex geometries

We give an output quasi-polynomial time algorithm, based on ordered generation and hypergraph dualization, for the enumeration of meet-irreducible elements (CMI) in closure systems given by a ranked implicational base. If in addition the implicational base is of bounded dimension, then the algorithm is shown to perform in outputpolynomial time. Corollary 4.4.7. Let B ⊆ X be a ranked set of rank i < k, and H B be its associated hypergraph. Let S ∈ M IS(H B ). Then

We now describe an algorithm which enumerates the meet-irreducible elements of C Σ given (X, Σ) whenever it is ranked. The algorithm proceeds as follows. For every j ∈ X, it computes j 

A trivial bound of f (|H| + |M IS(H)|) on the delay of an output-polynomial time algorithm enumerating M IS(H) within the same time yields an output quasi-polynomial time algorithm enumerating the meet-irreducible elements in closure systems given by ranked implicational bases, using the algorithm of Fredman and Khachiyan [FK96] as a subroutine for the enumeration of M IS(H). If moreover Σ is of bounded dimension then the described algorithm runs in output-polynomial time using the algorithm of Eiter and Gottlob [START_REF] Eiter | Identifying the minimal transversals of a hypergraph and related problems[END_REF]. It performs with polynomial delay whenever Σ is of dimension two using the algorithm of Tsukiyama [START_REF] Tsukiyama | A new algorithm for generating all the maximal independent sets[END_REF] on the enumeration of maximal independent sets in graphs.

Constructing a ranked implicational base

In this section, we give an output quasi-polynomial time algorithm constructing the critical base of a ranked convex geometry given by the set of its meet-irreducible elements (SID). Recall by Theorem 4.3.6 that such an implicational base is unit-minimum, hence that it corresponds to the output expected by SID.

In what follows, let (X, φ) be a ranked convex geometry, (X, C φ ) be its closure system and M = M(C φ ) be the set of its meet-irreducible elements. Let (X, Σ) denote the critical base we are willing to compute. Then for every j ∈ X we put

In other words, pred(j) is the set of elements of X belonging to some critical minimal generator of j. Recall that since Σ is ranked, there is no minimal generator A of b such that a ∈ A and a, b ∈ pred(j). Then, to j ∈ X we associate the hypergraph H j defined on vertex set V (H j ) = X \ M j ∈j ↗ M j and edge set

It is well known that the minimal transversals of this hypergraph are exactly the minimal generators of j. See for instance [MR92, Wil94, BDVG18, HN18]. In the following we show that we can restrict this hypergraph so that its minimal transversals are exactly the critical minimal generators of j. The next lemma provides a characterization of pred(j) that depends on M.

Lemma 4.5.1. Let j ∈ X, M j ∈ j ↗ and a / ∈ M j . Then a ∈ pred(j) if and only if the set M j ∪ {a, j} is closed.

Proof. We prove the first implication. Consider j ∈ X, M j ∈ j ↗ and a / ∈ M j . Note that one such M j exists as by previous remarks a belongs to at least one minimal transversal of H j . Let us assume that a ∈ pred(j). Since Σ is ranked, for any x such that ρ(x) ≤ ρ(j), x = j we have x ∈ M j . This holds in particular for every element y ∈ X, y = j such that there is a minimal generator A of y with a ∈ A as ρ(y) < ρ(a) and ρ(a) = ρ(j) + 1 in that case. Consequently, M j ∪ {a, j} is closed.

We prove the other implication. Let j ∈ X, M j ∈ j ↗ and a / ∈ M j such that M j ∪{a, j} is closed. By definition M j is closed, it does not contain j, and it is maximal with this property. In particular M j ∪ {a} implies j, that is, j ∈ φ(M j ∪ {a}). By Proposition 4.3.2 and Remark 4.3.3, there exists a critical minimal generator E of j such that E M j and E ⊆ φ(M j ∪ {a}) = M j ∪ {a, j} as M j ∪ {a, j} is closed by assumption. Then a ∈ E and consequently a ∈ pred(j).

Observe that the second part of the proof holds in the more general context of acyclic convex geometries. We are now ready to characterize the critical base of a ranked convex geometry. Given a hypergraph H and S ⊆ V (H) we note H[S] the hypergraph induced by S defined by V (H[S]) = S and E(H[S]) = {E ∩ S | E ∈ H}.

Theorem 4.5.2. Let (X, Σ) be the critical base of a ranked convex geometry. Let j ∈ X. Then A is a critical minimal generator of j if and only if A ∈ T r(H j [pred(j)]).

Proof. We prove the first implication. Since A is a critical minimal generator of j, it is a minimal transversal of H j , hence of H j [pred(j)] as A ⊆ pred(j) by definition.

We prove the other implication. Let A be a minimal transversal of H j [pred(j)]. Note that E ∩ pred(j) = ∅ for all E ∈ E(H j ), as pred(j) is a transversal of H j . Hence A is a minimal transversal of H j . Assume for contradiction that A is a redundant minimal generator of j. Then by Corollary 4.3.4 there exists a ∈ A such that φ(A)\{a, j} implies j. That is, there is at least one critical minimal generator E of j, a / ∈ E and E ⊆ φ(A) \ {a} ⊆ φ(A). In particular ρ(E) = ρ(j) + 1. Furthermore since A is minimal generator of j, E φ(A \ {a}). Consequently, there is an element e ∈ E which is implied by some A ⊂ A such that a ∈ A . Hence a and e must have two different ranks. However since a belongs to pred(j), it belongs to a critical minimal generator of j and has rank ρ(j) + 1. This contradicts ρ(a) = ρ(e), and the theorem follows.

We are now ready to describe an algorithm which enumerates the critical base of a ranked convex geometry given by the set of its meet-irreducible elements. For every j ∈ X, it computes the set pred(j) of elements belonging to some critical minimal generator of j, and the complementary hypergraph H j of meet-irreducible elements in ↗ relation with j. Then according to Theorem 4.5.2 it enumerates every minimal transversal of H j [pred(j)]. A trace of this algorithm is given in Example 4.5.3. Its complexity analysis is given in Theorem 4.5.4.

Example 4.5.3. Consider the implicational base Σ of Figure 4.4. Then j ↗ = {{1, 2, 4}, {1, 3, 5}, {2, 3, 5}}. We aim to compute the critical minimal generators of j. Here, E(H j ) = {{3, 5}, {2, 4}, {1, 4}}. Minimal generators of j are {1, 2, 3}, {1, 2, 5}, {3, 4} and {3, 5}. Observe that for 1, {2, 3, 5} ∪ {1, j} is not closed. The same goes for 2 with {1, 3, 5}, and 3 with {1, 2, 4}. On the other hand, {1, 2, 4} ∪ {5, j} is closed and {2, 3, 5} ∪ {4, j} too. Hence by Lemma 4.5.1, one has pred(j) = {4, 5}, and E(H j [pred(j)]) = {{4}, {5}}. It has a unique minimal transversal which is {4, 5}. By Theorem 4.5.2, {4, 5} is a critical minimal generator of j. Hence 45 j belongs to Σ. This indeed coincides with Σ. Theorem 4.5.4. Let f, g : N N be two functions and (X, φ) be a ranked convex geometry of closure system C φ given by the set M = M(C φ ) of its meet-irreducible elements. Then there is an algorithm enumerating the ranked implicational base (X, Σ) of critical minimal generators of (X, φ) with delay O(f (|X| + |M|)),
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