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... In that Empire, the Art of Cartography attained such

Perfection that the map of a single Province occupied the

entirety of a City, and the map of the Empire, the entirety of

a Province. In time, those Unconscionable Maps no longer

satisfied, and the Cartographers Guilds struck a Map of the

Empire whose size was that of the Empire, and which coincided

point for point with it. The following Generations, who were

not so fond of the Study of Cartography as their Forebears had

been, saw that that vast Map was Useless, and not without

some Pitilessness was it, that they delivered it up to the

Inclemencies of Sun and Winters. In the Deserts of the West,

still today, there are Tattered Ruins of that Map, inhabited by

Animals and Beggars; in all the Land there is no other Relic of

the Disciplines of Geography.

— Suarez Miranda, Viajes devarones prudentes,

Libro IV,Cap. XLV, Lerida, 1658

Jorge Luis Borges

(On Exactitude in Science)
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Abstract

The world teems with complex sounds that animals have to interpret. To do so, their brain must

represent the richness of the sounds’ acoustic structure, from simple to high-order features. Under-

standing how it does so, however, remains filled with challenges. In this thesis, this question was

explored through a new technical prism, namely functional UltraSound imaging (fUSi).

First, fUSi was used to investigate with a high fidelity the topographical organization of the

auditory system. The tonotopic organization from the inferior colliculus to primary and secondary

areas of the auditory cortex was characterized, as well as the laminar organization of cortical fields.

This imaging technique unveiled the connectivity scheme between auditory cortex and another brain

area thought to affect auditory processing, namely frontal cortex. Thus, I propose that fUSi can be

used to investigate the organization of sensory systems in both their entirety and their details.

Second, fUSi was used to explore how the brain represents the richness of natural sounds, in

combination with computational tools designed to explore the explanatory power of acoustic models

of incremental complexity. It revealed robust response components within ferret auditory cortex,

that were amply explained by a canonical model of auditory cortex processing. These components

differed fundamentally from human components in their processing of speech and music sounds,

as they lacked sensitivity to high-order acoustic features. Even in the context of conspecific ferret

vocalizations, such sensitivity was poorly represented, despite the fact that the animals perceptually

relied on such features to process vocalizations. This suggests an evolutionary divergence in high-

order auditory processing between ferrets and humans.

Last, the complex code underlying spatial localization was investigated across cortical areas.

A two-dimensional encoding was revealed, and was consistent across primary and secondary areas

within both ventral and dorsal streams, thus challenging the view of a specific ’where’ pathway.

Moreover, the 3-dimensional cortical organization of azimuth-sensitive voxels was exposed, revealing

scattered yet clustered specialization.

Overall, this thesis aimed at developing a systematic approach to studying the functional

organization of the brain, through a large-scale yet high-resolution, new imaging technique. It

opened up interesting prospects for further studies, that should explore the formation and plasticity

of the brain’s topography. In particular, it could provide important advances to our understanding

of the evolutionary and developmental aspects of speech processing.
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Chapter 1

Introduction

In order to thrive in the face of evolutionary pressures, animals must acquire knowledge or perform

behaviors that are adapted to the external context, i.e., a world teeming with relevant or irrelevant,

known or unknown shapes, sounds, colors. They often have to be able to quickly apprehend this huge

diversity of incoming sensory signals, flexibly extract relevant information from them and sometimes

interpolate missing parts. As humans, a glimpse of introspection reveals the genuine ease with which

we can comprehend objects, recognize them, compare them and define their characteristics at both

low and high levels. This capacity and this ease must rely on the clarity with which the brain is able

to generate representations of the outside world that are both faithful and effortless to navigate.

These representations are thus a cornerstone of the algorithms that the brain uses for sensory

processing. Marr’s influential theory of computations describes three levels of analysis of complex

systems: computation, algorithm, and implementation (Marr, 1982). Because most of what we

access of a biological system is its behavior (from which we can derive the computation level) and

its physical organization (from which we can derive the implementation level), being able to describe

the latter becomes instrumental in allowing us to identify the algorithms used by the brain.

One can often think of many different implementations for a single computation. Starting

from the current working hypothesis that what is important for the brain to orchestrate behavior

are the bits of information that neurons exchange with a certain structure and dynamics, the brain

could have had no physical organization except a complex wiring. Nevertheless, scientists have been

unveiling over many years its complex spatial layout at multiple scales.

In this introduction, I will present the overall context of my thesis, which is the encoding of

sounds in the auditory cortex. I will raise several outstanding questions, among which some will be

directly linked to my thesis, and others will go well beyond its scope and results. However, all will
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CHAPTER 1. INTRODUCTION

give the global framework of the direction I tried to follow. In a first part, I will expose the general

organization of sensory systems, and what information we can get from this organization concerning

the underlying processing. In a second part, I will provide a general commentary on the origins of

this organization through three aspects: computational advantage, development, and plasticity. In

a third and last part, I will finally evoke the technical challenges one has to face when studying this

organization, and will present the recent technical development that enabled the research presented

in this manuscript.

1.1 A topographical brain

If phrenologists, led by Franz Joseph Gall, failed to improve the field of neuroscience with any robust

theory for reading one’s cognitive abilities in the shape of one’s skull, they largely contributed to

developing the concept of the modularity of mind. The idea that specific body parts house different

physical, cognitive or spiritual functions – and especially the senses seating in the brain – has a

long-standing history throughout the world, from Hippocrates to Galen and Ibn Sina (Rocca, 2003;

Mazengenya and Bhika, 2017). But unlike other organs, the brain contains in itself many different

parts that have long remained undescribed. In this section, I will provide a global overview of the

different levels of organization in the brain, to finally focus on several aspects that are specifically

relevant to this thesis.

1.1.1 From large-scale to small-scale organization

Brain areas

The ideas of modularity of mind and of functional specialization of brain regions were particularly

developed with the careful inspection of local brain lesions and their relationship with behavioral

disorders, such as the observation by Marc Dax in 1836 of the link between neurological damage

to the left frontal lobe and aphasia (Dax, 1863), later made widely known by Paul Broca and Carl

Wernicke’s complementary work (Broca, 1861; Wernicke, 1874). These studies, amongst others,

revealed that certain areas seem to be specifically dedicated to certain brain functions. Lesions in

Broca’s area provoked expressive aphasia; thus this region was linked to the production of language.

Wernicke’s area, of which loss or damage provoked receptive aphasia, was rather linked to the

understanding of language. Thus became predominent the idea that the brain contained physical

’maps’ of cognitive functions.
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These discoveries were based on a functional characterization of a brain region. Other

large-scale maps of the brain were provided based on other brain features such as cytoarchitecture,

the most famous and still in-used being Korbinian Brodmann’s for humans (Brodmann, 1909).

Brodmann investigated the heterogeneity in cell types and density, cell architecture, layer organization

in cortical slices, and noticed that these variables differed across discrete regions of the brain.

Some of these areas were actually already identified for their specific functional role. For example,

Broca’s and Wernicke’s functional areas turned out to be Brodmann’s physical areas 44/45 and 22.

Generally speaking, four different features can be exploited to explore brain modularity:

behavioral or cognitive deficits due to specific lesions; local brain activity in relationship

with certain behaviors or cognitive processes; incoming and outcoming connectivity; and

cytoarchitecture (Patel et al., 2014).

Remarkably, the game of finding specific, focal brain regions for specific functions has been,

since then, unexpectedly fruitful – up to the discovery of incredibly precise sensory maps at the

surface of the cerebral mantle.

Sensory systems

A striking characteristic of sensory systems is that the surface of sensory receptors is systematically

mapped onto associated brain structures. This topographic ordering of the senses is a common

property across animals. Understanding this widespread organization scheme could thus

reveal recurrent and primordial types of computations across the brain.

The first evidence for a topographical mapping in the brain came from Hughlings Jackson’s

observation of the ’march’ of epileptic seizures throughout the body in 1886, on which he built the

idea of somatotopic representation in the motor system (York and Steinberg, 2011). It was later

discovered, mainly through localized lesions studies, that somatosensory, visual and auditory systems

contained ordered representation of the surface of the skin (Cushing, 1909), the retina (Inouye,

1909; Head and Holmes, 1911), and the cochlea (Larionow, 1899). These maps are respectively

called ’somatotopy’, ’retinotopy’, and ’tonotopy’. One of the most beautiful demonstrations of

the retinotopic organization of primary visual cortex comes from Tootell et al. (1988), that used

appropriate stimuli and a C-2-deoxy-glucose infusion that marks activated brain regions (figure 1.1).

This experiment elegantly revealed a continuous mapping of the external 2-dimensional space onto

a precise, continuous pattern of activity at the surface of the cortex. Thus, brain patches that are

close together within this retinotopic organization in the cortex tend to respond to similar regions
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of the visual space. In the case of the auditory system, the cochlea naturally performs a frequency

decomposition of the incoming sound, that is then transmitted to auditory nuclei in the brainstem up

to the auditory cortex. Again, brain patches that are close together within the tonotopic organization

will thus respond to a similar frequency range. Compared to the other sensory systems, the main

topographic arrangement in the auditory system is single-dimensional.

Figure 1.1: Demonstration of the retinotopic organization of the primary visual cortex
of macaque monkey. Schematic of the retinotopic transformation from stimulus (left) to striate
cortex (right). I, 2, 3, Selected regions from fovea to the periphery. VS and VI, vertical superior and
vertical inferior rays, respectively. OS and OI, oblique superior and oblique inferior rays, respectively.
H, horizontal meridian. – adapted from Tootell et al. (1988)

Interestingly, these maps are distorted, depending on the density of receptors present at

the sensory surface (Patel et al., 2014). For example, the fovea is largely over-represented in the

cortical retinotopy, and sensitive somatic regions such as hands and lips take up more space at the

surface of the somatosensory cortex than an equivalent surface of the back skin. These distortions

suggest that the brain maps’ shapes are actually subordinated to behaviorally relevant

configurations.

The use of the functional mapping also revealed the existence of several ’fields’ within sensory

systems, which are juxtaposed at the surface of the cortex and are usually defined as containing the

full representation of the sensory surface (i.e., a full body map, a full visual space, or a full tonotopic

axis). These fields are often organized in a hierarchical manner, with primary fields receiving direct

inputs from the thalamus, and secondary fields receiving inputs from (and sending feedback inputs

to) primary fields. The sensory representation within a field often gets less clear when ascending

the hierarchy, as the receptive fields of the cells usually get wider (Guo et al., 2012; Elgueda et al.,

2019). The existence of several fields that are topographically mapped allows for serial as well

as parallel connectivity (Hackett et al., 1998), that underlies specialized processing. This is well

exemplified by the parallel processing of binocularity, depth and color in visual areas 2, 3 and 4
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respectively (Kaas, 1989), or for processing spectral and temporal information in primary areas of

auditory cortex (Bendor and Wang, 2008). Nevertheless, the specific computation or set of

computations performed by each cortical field is poorly understood. This is especially true

in the auditory system.

Within one single field, several relevant sensory features can be represented. As an example,

another fundamental acoustic dimension is the modulation of energy over time, which is determi-

nant in natural sounds processing, such as speech. Several studies investigated how this feature

was encoded in different brain regions, and revealed an overlapping, orthogonal map for temporal

periodicity in inferior colliculus (Baumann et al., 2011) and auditory cortex (Langner et al., 2009;

Baumann et al., 2015; Brewer and Barton, 2016). Brewer and Barton (2016) thus suggested to

define auditory field maps using these two fundamental parameters. However, the existence of such

a topographic arrangement for temporal periodicity in the auditory cortex is still a matter of debate

(Leaver and Rauschecker, 2016). Thus, the exact organization of the auditory structures’

responses to basic stimulus features still remains elusive.

The link between the functional and the cytoarchitectural organization is often tight. How-

ever, recent studies have demonstrated the existence of smooth anatomical gradients at sharp retino-

topic borders (Gămănuţ et al., 2018) or retinotopic maps that were not aligned with cytoarchitectural

markers (Zhuang et al., 2017). In figure 1.2, a clear discrepancy is visible between functional and

cytoarchitectural boundaries. Moreover, it is important to stress that there can be large differences

across individuals of the same species (Dear et al., 1993; Nelken et al., 2004; Bizley et al., 2005).

This makes the characterization of functional maps, and even more the characterization of their

relationship with other encoding features more difficult to perform, since averaging across individ-

uals can turn out to blur field maps boundaries and internal structure. From these considerations

emerges the idea that individual, large-scale mapping can be necessary to understand the

brain organization at the cortical field scale.

Cortical columns

The cortex is organized in three dimensions: two ’horizontal’ dimensions, along which topography

is usually visualized, and a third dimension, ’depth’. Mountcastle (1957) first demonstrated in

the somatosensory cortex that along this third direction, cells tended to show less variability in

their tuning properties, making cortical columns functionally quite homogeneous. In the visual
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Figure 1.2: Link between retinotopic organization and cytoarchitecture. Alignment of func-
tional retinotopic maps and chemoarchitectonic borders for three Emx1-Ai96 mice. Cytoarchitectural
borders (black lines) are obtained with cytochrome oxidase-based chemoarchitectonic and functional
maps from GCaMP6 fluorescence-based measure of neuronal activity. Functional retinotopic maps
(blue and red colored regions) represent positive field sign areas (red) and negative field sign areas
(blue). In short, each area contains one full retinotopic map. It clearly shows the mismatch in the
location of the lateral border of V1. – adapted from Zhuang et al. (2017)

cortex, seminal work has been pursued by Hubel and Wiesel who showed that spatial selectivity and

orientation sensitivity were mainly shared across neurons forming a single column (Hubel and Wiesel,

1962). This observation raises the question of whether specific computations are performed within

cortical columns. This second organization of the primary visual cortex sheds light on an important

property of sensory cortices: they allow for an overlap of different sensory maps of different

scales. Interestingly, this second type of mapping does not exist in all species. Particularly, rodent

models do not display any orientation preference map like carnivores, but rather a ’salt-and-pepper’

organization where neighbouring cells can display very different orientation preferences. A recent

study suggested that the orientation selectivity mapping was actually on a much larger scale (Fahey

et al., 2019). The origins and the computational significance of such a difference are still under

discussion (Kaschube, 2014). The specific processing occuring within each of these layers

is an intensive subject of research in both animal (Marshel et al., 2019) and human (De

Martino et al., 2015) studies.

Where topography ends

When scaling observations down to finer and finer features, the robustness of the topographic

organization starts to crumble. As such, the reliability of the tonotopic organization has long

been a subject of debate (Kanold et al., 2014). Indeed, if all researchers agree on the fact that

primary auditory cortex is globally tonotopically organized, there has been strong divergence on how

16 1.1. A TOPOGRAPHICAL BRAIN



CHAPTER 1. INTRODUCTION

robust tonotopy is at a smaller scale. Low-resolution recording techniques, such as intrinsic signal

imaging, have revealed a smooth tonotopic gradient (e.g., Kalatsky et al. (2005) in the mouse,

Nelken et al. (2004) in the ferret), while single-cell mappings provided much more nuanced maps

(e.g., Bandyopadhyay et al. (2010); Rothschild et al. (2010) in the mouse with 2-photon imaging,

Bizley et al. (2005) in the ferret with microelectrodes). These discrepancies could be explained by

the differences in resolution across techniques – low-resolution methods averaging over more cells,

smoother maps are obtained –, but also because of differences across cortical layers. Indeed, layer

4 in primary sensory cortices is known to receive strong inputs from sensory thalamus. As sensory

information is transferred from layer 4 to layer 2/3 and then layer 5, a complex processing occurs,

and cells usually get larger receptive fields (Guo et al., 2012). The topographic organization is more

robust at the level of layer 4, and then becomes more patchy (’salt-and-pepper’) when reaching

layer 2/3 or deeper layers (Guo et al., 2012; Hackett et al., 2011; Winkowski and Kanold, 2013).

At the single cell level, it is now well established that neurons receive highly heterogeneous signals

at the level of single spines in primary auditory cortex (Chen et al., 2011). This heterogeneity

of synaptic inputs may be the underlying mechanism for the diversity of single cortical neurons’

response properties. Interestingly, the computational advantages of such a heterogeneity remain

poorly known. Notably, the functional heterogeneity in layer 2/3 of auditory cortex seems to be

more pronounced than the retinotopic organization in V1. It has indeed been argued that this

difference could stem from the fact that auditory objects can contain several distant frequencies,

while usually visual objects occupy a limited space on the retinal surface (Kanold et al., 2014).

Topography gets lost as one looks for finer details within primary cortices. Another way

to lose track of the straightforward topographic encoding is to climp up the processing

hierarchy. Strikingly, many higher-order areas are still holding back the secret of their organization,

as simple topographic mapping fails to apply (Patel et al., 2014). In the auditory system, tertiary

areas already lack an apparent tonotopy (Elgueda et al., 2019). Frontal cortices, which have been

hypothesized to top this hierarchy (Fritz et al., 2010), have been mainly described as containing a

distributed type of encoding.

1.1.2 From sensory to categorical mapping

Sensory systems contain ordered representations of low-level features. Grounded on these foun-

dations, more complex representations can be deployed, extracting abstract features or combining

information from different senses. Instead of looking at obvious physical measures of the sensory
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world, one then has to look for more ’computational maps’ (Knudsen et al., 1987). The afore-

mentioned orientation preference map in the visual system is one of them, that is built upon a

straightforward map of space. In the auditory domain, the map of auditory space in the owl’s optic

tectum is a well-studied case and resembles the retinotopic mapping of the visual system (Knudsen,

1982). This mapping also appears quite clear in the mammal superior colliculus, but gets lost in

auditory cortex, where only a distributed code seems to exist (Stecker et al., 2005; Bizley et al.,

2009; Wood et al., 2019). Therefore the question of a putative ’computational map’ of space in

mammal auditory cortex has remained elusive.

Localizing an object is one computation that the brain performs. Another is recognizing an

object. In the visual domain, these two computations have been shown to be carried out along two

separate processing pathways, namely the ’what’ (ventral) and ’where’ (dorsal) streams (Mishkin

et al., 1983; Wilson et al., 1993). Similar pathways have been suggested to be present in the

auditory domain, at least in some species (Romanski et al., 1999; Rauschecker and Tian, 2000;

Tian et al., 2001; Lomber and Malhotra, 2008). Object recognition necessitates a complex series of

computations to ’untangle’ the representation of visual objects, that are thought to be performed in

high-order areas (DiCarlo and Cox, 2007). However, the networks that supports such computations

and their spatial organization in the brain are not fully described, especially in auditory cortices.

While high-order areas often show very heterogeneous selectivity at the single-cell level, domain-

like arrangements still seem to prevail over complete random distribution. For simplicity, I will

include these high-order domains into the definition of ’topographic organization’ for the rest of this

manuscript.

Face areas / Speech areas

An extreme form of computational maps can be seen in the existence of domains that are highly se-

lective to very specific features, while being largely invariant to other sensory properties. I mentioned

before that even in sensory topographic maps, representations of the stimuli that are of particular

behavioral relevance (such as the fovea in vision, or the hands in somatosensation), were over-

represented. Extrapolating from here, it would thus sound straightforward that high-order features

of interest, or stimuli categories that are determinant in an animal’s life, are also well represented

in the cortex. In the visual domain, the inferior temporal cortex (IT) has been shown to contain

an area selectively responding to faces, thereby called ’fusiform face area’ (FFA) (Sergent et al.,

1992; Kanwisher et al., 1997). In the auditory domain, much of our use of the auditory system
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as humans is for processing speech and music. Belin et al. (2000) discovered voice-specific areas

in human auditory cortex, located in the areas surrounding primary auditory cortex. Another set

of studies suggested that distinct pathways may exist for speech and music perception, based on

their rather low-order acoustic properties such as temporal and frequency richness (Zatorre et al.,

2002). It was suggested that these pathways could rely on interhemispheric differences in processing

(the left hemisphere being more temporal processing, and the right one more frequency processing).

However, most studies were limited by the low number of stimuli used, and univariate (voxel-wise)

analysis cannot decipher different, potentially overlapping pathways within secondary areas. In par-

ticular, the main quantification used to investigate the organization of these pathways relies on the

identification of ’best stimuli’. This technique does not allow one to uncover potential ’subthreshold’

components, which spread over potentially large areas while still being, in single voxels, not their

favorite. To overcome these limitations, a recent study used new analytical methods and a large

stimulus set to extract robust and interpretable responses component from fMRI responses to natural

sounds (Norman-Haignere et al., 2015) (figure 1.3-A). They revealed distinct cortical pathways for

speech and music, within both hemispheres (figure 1.3-B,C). These separate pathways were spatially

organized and located in non-primary areas of the auditory cortex. Interestingly, they relied upon

complex, high-order acoustic features, as their responses could not be fully explained from standard

parameters of acoustic processing such as frequency, spectral modulation, or temporal modulations

contents (Norman-Haignere and McDermott, 2018).

One fundamental question in human neuroscience is to understand whether these

specialized pathways are unique to humans, and whether their localization and properties

rely on preexisting modules which could be shared across species. As an example, the

existence of a speech area in humans is a strong clue for the existence of a specific pathway dedicated

to speech processing. However the very particular acoustic niche that speech occupies could well

produce per se such an artefactual pathway, unspecific of the behavioral relevance of speech in

itself, but rather of some of its acoustic properties. Cross-species comparisons can shed light upon

the evolutionary origins of these specialized sensory modules. In other words, investigating the

cortical organization of other species can illuminate the unique versus shared features of

auditory processing.

The presence of a face area is now well attested in macaques, in an equivalent of the human

FFA (Tsao et al., 2003; Livingstone et al., 2017; Arcaro et al., 2017). It has now been widely

studied, and provided interesting perspectives on the common mechanisms for face recognition and
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Figure 1.3: Distinct cortical pathways for speech and music processing. (A) The average
response of each voxel to each sound was represented as a matrix (165 sounds 3 11,065 voxels
across all ten subjects). Each column contains the response of a single voxel to all 165 sounds.
Each voxel’s response was modeled as the weighted sum of a set of canonical “response profiles.”
This decomposition can be expressed as a factorization of the data matrix into a response matrix and
a weight matrix. Response profiles and weights were inferred using statistical criteria alone, without
using any information about the sounds or anatomical positions of the voxels. (B) Response profiles
for the inferred components. Each figure plots the response magnitude (arbitrary units) of each
component to all 165 sounds tested. Sounds are ordered by response magnitude and colored based
on their membership in one of 11 different categories, assigned based on the judgments of human
listeners. Components 5 and 6 responded selectively to sounds categorized as speech and music,
respectively. (C) Voxel weights for the speech (5) and music (6) components. Outlines of high- and
low- frequency regions within primary auditory cortex are overlaid. Up: right hemisphere; bottom:
left hemisphere – adapted from Norman-Haignere et al. (2015)

brain plasticity in humans and monkeys.

The case of speech and/or vocalization processing in animals is not as clear. Studying how

human speech and conspecific vocalizations are processed by animals can provide complementary
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information. The former may reveal which part of the speech processing pipeline existing in humans

– altogether with its associated acoustic features – are shared across species. The second may

clarify, in comparison to human speech processing, whether behaviorally relevant vocalizations are

processed along similar pathways, and whether animals rely perceptually and neurally on equivalent

acoustic features.

The question of whether speech perception evolved from acoustic processing pathways shared

across animals, that were subsequently over-developed or ’hijacked’ in humans, or whether it relies

on totally different mechanisms (’speech is special’) is still under debate (Trout, 2003; Kriengwatana

et al., 2015). Notably, whether human speech-specific domains are specific to humans is

unclear.

Conspecific vocalization processing has been further explored. In the monkey, caudolateral

areas of the auditory cortex encode the highest level of spatial information and more anterolateral

areas show the highest degree of specificity for monkey calls (Romanski et al., 1999; Rauschecker

and Tian, 2000). Similarly to the human-voice specific area, a putative conspecific voice-specific

area has indeed been uncovered in macaque monkeys, on the upper bank of the superior-temporal

sulcus (Petkov et al., 2008). Vocalizations areas have also been detected in the frontal cortex of

the macaque monkey (Romanski and Goldman-Rakic, 2002). However, the role of earlier, upstream

areas (such as primary and secondary auditory cortices) in the processing of vocalizations is still

elusive (Recanzone, 2008), despite their functional role established by lesions studies of temporal

cortex, especially the left hemisphere (Heffner and Heffner, 1984). Interestingly, a fair amount

of processing seems to occur in the auditory cortex, since voice-identity sensitive cortex relies on

processes taking place in the adjacent temporal lobe, before gaining access to frontal cortex (Petkov

et al., 2015). This specific type of processing, however, remains poorly understood. In particular,

the exact acoustic features upon which animals rely to process (perceptually and neurally)

conspecific vocalizations are still largely unknown.

Overall, categorical representations seem to top the computational hierarchy of (auditory

or visual) object recognition. Understanding how they are implemented across brain areas, across

modalities and across species will be key for understanding perception.

Non-sensory maps

Sensory systems, both at the level of primary and secondary areas, also contain extensive information

about non-sensory variables, such as behavioral state, decision, or motor movements (Stringer et al.,
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2019c; Musall et al., 2018). The spatial organization of the encoding of such variables just starts

to be investigated. Minderer et al. (2019) recently found that neural activity encoding behaviorally

relevant variables formed smooth gradients across large parts of the posterior cortex in the context of

a visuo-spatial task (figure 1.4). Notably, the gradients of task encoding contrasted with the sharp

boundaries suggested by retinotopic mapping (figure 1.4-B). The exact origins of such mappings,

and how they unfold in relationship with existing sensory maps, is unknown.

Figure 1.4: Non-sensory maps across the mouse’s posterior cortex. Mice were trained on a
task engaging the visual and navigation-related networks in the dorsal posterior cortex. In short, the
task consisted in running approximately two meters straight forward, in virtual world coordinates,
from an invisible reference point to obtain a reward. To obtain rewards, mice therefore continuously
needed to adjust their running to compensate for an induced drift in ball’s velocity and run straight
in the virtual world. (A) Experimental setup and screenshot of the virtual reality environment. (B)
Schematic of the reward condition in the task (top-down view). Dashed lines, path taken by the
mouse. Solid gray triangle, invisible boundaries used to determine reward delivery. (C) Top: example
velocity traces. Bottom: corresponding top-down view of the path taken by the mouse. Green dots
indicate reward times. (D) Maps of encoding strength. Left: Anatomy of the mouse’s posterior
cortex Right: maps of unique contributions of different features to the full model fit. Intense yellow
thus represents a large contribution of this feature to the activity of a pixel. All maps are scaled
from zero to the value indicated in the top-left corner – adapted from Minderer et al. (2019)

A distributed processing

The existence of such a precise organization within brain areas, and the sometimes very precise and

local effect of brain lesions, have fed the idea that the brain is organized in highly specialized modules,
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each encoding one specific brain function. However, the reality of the existence of such modules at

different levels should not overshadow more nuanced theories, which argue for a more distributed

encoding. Complex cognitive processes, such as conscious perception for example, have been shown

to rely on a global ignition of multiple brain areas at once (Van Vugt et al., 2018). Moreover,

Poeppel et al. (2008) suggest that speech perception is actually much more distributed than the

sole Wernicke’s area. Thus, beyond brain modularity, understanding how brain areas interact

with one another for specific cognitive functions has become a fundamental challenge in

neuroscience.

Summary. In this section, I discussed the topographical organization of sensory systems, at several

scales. I argued that this topography can be either based on very simple sensory features, or more

computational and categorical properties. Overall, the precise arrangement of features encod-

ing in cortical areas remains poorly understood. The specific computations performed by

each cortical field, despite being a major question in neuroscience, have been surprisingly

elusive. Notably, the existence of speech specific domains along the auditory pathway in

humans raises the question of whether such domains exist in other animals, and whether

they share a common socle.

1.2 The origins of topography

In this section, I will tentatively expose three main aspects of the origins of topography: the ad-

vantage they might confer under evolutionary pressures, their developmental unfolding, and their

refinement through life experience.

1.2.1 A topographical code?

Topographic maps are prevalent all over the brain, across sensory systems, and are quite faithfully

preserved across many nuclei and cortical areas along the processing hierarchy. This raises the

question of whether this organization conveys any computational advantages, and/or has been

selected per se through evolution. The question of whether they have a specific ’meaning’

for the brain, or are rather a byproduct of evolutionary pressures at the local level, remains

unsolved.
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An efficient wiring

Brain computations are thought to rely mainly on the connectivity scheme that exists between

neurons. A coarse estimation of the number of connections per computational unit gives about

30,000 synapses per neuron in the human neocortex (De Felipe et al., 2002). Theoretically, in a

physically non-limited world, the spatial position of the cells, as long as they verify this connectivity

scheme, could be totally random; the brain would still perfectly perform its job. However, the way

these connections are organized spatially has a huge influence on their physical cost to the brain, both

in terms of the time required for information to travel along axons (linked to some computational

cost), and energy (for the creation of axons, dendrites and synapses). Moreover, the space taken

up by the axons in an unorganized brain would considerably swell its size – a fully interconnected

brain would take the size of a bathtub (Cherniak, 1990).

It would consequently be a ’good design’ to spatially group together neurons that connect

together (Kaas, 1997; Chklovskii and Koulakov, 2004). In that direction, it is now well established

that a simple distance - connectivity probability rule emerges in the statistics of cortico-cortical

connectivity (Buzsáki et al., 2004). Since neurons that wire together often fire together, topographic

maps could well emerge from simple, cost-limiting rules.

Spatially-constrained computations

In terms of actual computational advantage, topographic maps could be one way to easily perform

common computations used by the brain across short, local connections (Kaas, 1997; Thivierge

and Marcus, 2007). For example, biological systems often have to compare stimuli that are close

together in space, so as to assess the context of an object (its color differences, its relative movement,

etc.). Thus, center-surround comparison, which is of most biological importance, is relatively easy to

perform with local rules of connectivity and a topographic organization (Kaas, 1997). More generally,

any comparison between adjacent stimuli along the represented space, as in local facilitation, lateral

inhibition, averaging, interpolating, motion direction detection, are encoded in a straightforward way

in topographic organization (Kaas, 1997; Knudsen et al., 1987). These types of computations are

prevalent in sensory processing (both visual, auditory, and somatosensory) for the characterization

of objects, edges, or surrounds.

Along this line, having multiple maps of different sizes could allow parallel processing at

different scales, using the same computational local rules (Kaas, 1997, 2015). For example, a small

map could allow for center-surround comparison across large distance, while large maps would allow
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for more details in the processing.

Finally, the role of certain topographic organizations seems to be rather faint, as are orien-

tation preference or ocular dominance columns. Indeed, if they are present in some species, they

remain absent in other species that do not show any visual deficiencies in comparison (Horton and

Adams, 2005; Thivierge and Marcus, 2007).

Is the brain actually reading the topography?

Thus, if some arguments are quite reasonable with regard to the evolutionary pressures that lead to

topographic organization, its overall role in brain function is still largely disputed. In particular, the

relationship between topographic maps and perception and behavior remains unclear.

Single neurons usually encode only little information, and it is thought that most of brain

processing occurs through the dynamics of the activity of large neuronal populations. However, it

is sometimes observed that the brain itself contains much more information than what seems to be

used for the production of behavior. For example, Stringer et al. (2019a) found that V1 was able to

discriminate orientation of gratings with much more accuracy than what the mice can behaviorally

do. If there are many reasons for the brain to lose information on the way from sensory stimuli

to decision, one can wonder whether the high degree of information contained in sensory cortices

is read with less precision than what could be optimally done. One hypothesis, which puts the

topographic organization of these cortices at the center of the stage, would be that higher-order

areas actually read topographic mappings at a coarser scale than the single neurons. This would

suggest that a relevant scale to look at in order to understand brain computations would

be a meso-scale, rather than a single-neuron scale. A few studies have set out to explore this

idea and go beyond simple correlations, with mixed results and interpretations.

Michel et al. (2013) used a model-based illusion to investigate whether the global extent

and shape of neuronal activity at the surface of the brain was determinant in the perception of

object shape. Interestingly, they found that stimuli that had objectively similar spatial extent but

were designed to evoke different global spatial patterns of activity in the retinotopic map of V1 in

macaque monkey (figure 1.5-A) were perceived by humans as having different shape (figure 1.5-B).

This first study thus suggests that the topographic pattern of neural population responses in visual

cortex contributes to visual perception. However, the lack of a perceptually robust definition of what

shape is for such stimuli can cast doubts on the overall conclusion.

In a second study, Benvenuti et al. (2018) revealed a large-scale component of population
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Figure 1.5: The implication of cortical topography in shape perception. (A) Physiological
stimuli and spatial distributions of V1 responses measured with VSDI in monkeys. Left: The visual
stimuli, with solid blue circles overlaid to indicate the 3σ contour of the stimulus envelopes for the
horizontal (top) and vertical (bottom) Gabor stimuli. Center: Amplitudes of cortical responses in a
10 x 10 mm2 patch of cortex to the horizontal (top) and vertical (bottom) Gabor stimuli, averaged
over an experimental session. Right: Normalized aspect ratios (ARresponse/ARretinotopic) of re-
sponses to 2-cpd horizontal and vertical Gabors measured in three different monkeys, demonstrating
both the robustness of the orientation-dependent elongation effect and the variability of its magni-
tude across different individuals (n = 5 experiments for monkey 1, 8 experiments for monkey 2, and
4 experiments for monkey 3). (B) Psychophysical results averaged across ten human subjects. Left:
Schematic of the visual stimulus. Human observers briefly (200 ms) viewed a display consisting of a
plaid standard and an oriented comparison stimulus whose vertical-to-horizontal aspect ratios were
selected randomly, and were asked to decide which stimulus had a more circular envelope. Right:
Psychophysically determined perceptual aspect ratios and 95% confidence intervals for 2-cpd and
4-cpd Gabor stimuli (n = 10 human subjects). – adapted from Michel et al. (2013)

responses to low-frequency spatial patterns, whereas in the hypothesis of A1 encoding local contrast,

the small aperture of V1 neurons’ receptive field should have yielded a globally flat activity pattern.

This distributed representation, visible at the retinotopic scale, seems to be linked to perception,

as humans readily infer the orientation of low spatial frequency gratings. The authors thus suggest

that two overlapping encodings exist in V1, for both local and global scales. Overall, they conclude
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that the topographic pattern of neural population responses at the retinotopic scale in visual cortex

contributes to visual perception.

To test the hypothesis that perception is based on topography at a coarse level, one would

need to generate artificial patterns of activity with different scales of details, and observe whether

realistic perception can be elicited. Electrical stimulations of the cortical surface can elicit phosphene

or sound perception (Borchers et al., 2012). However, the overall effect of electrical stimulation

remains poorly understood, and quite counter-intuitive effects can occur both at the physiological

and behavioral levels. Such an approach, enriched with more recent techniques like optogenetics

(Marshel et al., 2019), could be of interest in trying to decipher what is the appropriate spatial scale

at which brain computations occur. The use of mutants deprived of topographic maps (Lokmane

et al., 2013) could also be of special interest in studying the perceptual and behavioral importance

of maps.

Despite the large prevalence of topographic mappings across the brain, the evidence for their

computational advantage, if any, remains largely speculative, and their role in perception poorly

understood. The development of tools to access the representation and encoding of

sensory stimuli at multiple scales can thus be of foremost interest to understand the link

between topography and perception.

1.2.2 Developmental emergence of topography

Three main forces usually prevail to organize brain structures: genetic patterns, spontaneous pat-

terns, and experience-dependent patterns.

Intrinsic factors: genetic determinants and spontaneous activity

Brain development is largely governed by genetic and molecular rules; the set up of topographic

maps is no exception. A very simple experiment to prove this was performed by Sperry (1963), on

the development of the retinotopic map in the tectum. The optic tract was severed and the eyes

were rotated by 180◦. Axonal pathways regenerated, and a retinotopic map in the tectum is still

present, but also rotated by 180◦. This suggests that axons from the retina, despite being spatially

rotated, found their way back to their original connection place in the tectum. This experiment and

others led Sperry to formulate the ’chemoaffinity hypothesis’, which has been well explored in other

animal models, such as mammals (mouse), and relies on genetically encoded gradients of molecular
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tags (Thivierge and Marcus, 2007). The same principle applies to the formation of somatotopy and

tonotopy. This gradient-based principle usually leads to the formation of the smooth, large-scale

maps present in the brain.

However, other local factors are at play. Notably, local activity patterns (spontaneous or

triggered) might refine the local tuning connectivity schemes through Hebbian plasticity, and locally

rearrange cortical maps (Kaas, 1997). The development of ocular dominance columns well reflects

this principle, since eye-preferring columns are formed within primary visual cortex before birth,

possibly by both genetic factors and intrinsic, correlated activity coming from spontaneous retinal

waves in each eye (Katz and Crowley, 2002).

Extrinsic factors: the role of early experience

Following on this example, another factor seems to deeply influence mappings in the brain. Namely,

experience shapes ocular dominance patterns during a critical period, after birth, during which

patterns of activity triggered by the stimuli on the retina will rearrange the cortical mapping. Depri-

vation of an eye indeed makes ocular dominance columns associated to the corresponding eye shrink

dramatically (Katz and Crowley, 2002). Similarly, a visual environment in which vertical lines are

over-represented at an early critical period will substantially modify the orientation preference of vi-

sual neurons, and thus the global orientation preference map (Blakemore and Cooper, 1970). Thus,

the statistics of objects’ features in the external world seem to affect and shape sensory

cortices computational maps, in a way that more common features in the environment

will occupy a more prominent space in cortical representations.

Do natural statistics in the environment also influence the formation of larger-scale maps,

such as retinotopy or tonotopy? Tonotopy is known to be present very early in life. Zhang et al.

(2001) explored the role of the early acoustic environment in shaping the adult tonotopic organi-

zation of primary auditory cortex. By overexposing developing rats to specific tones, they revealed

an exaggerated representation of the exposed tone-frequency and its facilitated emergence in the

tonotopic organization of A1. These results suggest that early life experience can also shape

well-established topographic frameworks at large scales.

These results put forward the role of the input’s nature and statistics to shape cortical or-

ganization. Then, one can wonder whether different cortical areas contain fundamentally different

network and processing ’tools’, or whether their role can be switched and shaped according to

their inputs. Sur et al. (1988) revealed that functional visual projections can be routed into the
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auditory thalamus and cortex of infant ferrets, suggesting that the modality of a sensory cortical

area may be specified by its inputs during development. The portion of cortex reached by these

new inputs displayed a retinotopic organization. Notably, the representation of a two-dimensional

sensory epithelium, the retina, in cortex that normally represents a one-dimensional epithelium, the

cochlea, suggests that the same cortical area can support different types of maps (Roe et al., 1990).

These results go even further since Sharma et al. (2000) demonstrated the existence of orientation

preference columns in the rewired cortex. These rewiring experiments suggest overall that cortical

representations are highly dependent on the structure of their inputs, and might rear-

range during development according to those.

One can then wonder what the role of early-life experience in the development of more

complex, category-related brain patterns is. Would a feral child, raised with no exposure to language,

develop a ’speech’ or a ’voice’ area? Would he/she develop a human ’face’ area? And, if not, why

does the ’face’ area, or the ’speech’ area, always develop in a stereotyped location in normal children?

Overall, the contribution of evolutionary processes versus experience is still under debate for face-

and speech-selective domains (McKone et al., 2012).

Livingstone et al. (2017) explored the development of the face patch system in the high-order

inferior temporal cortex of macaque monkeys. Their study suggests the existence of a ’shape-biased

retinotopic proto-map that is refined by experience’, as an initial substrate for the formation of a face

area. The creation of this domain was mainly driven by a decrease of responses to non-face stimuli.

Interestingly, face-orienting behavior in young monkeys is present even before the appearance of a

fMRI-detectable face patch (Sugita, 2008), suggesting that the emergence of this specialized area

might be triggered by a looking behavior. In that direction, the same group further showed that

seeing faces is actually a necessary condition for the development of the face patch system (Arcaro

et al., 2017) (figure 1.6). Instead, face-deprived monkeys developed domains specific of body parts

such as hands, with which they had extensive, behaviorally relevant experience. These results also

hint at a model in which experience builds upon a proto-organization to create self-organized

domains, in which the representations of co-occurring features are reinforced until the

appearance of very specific – and behaviorally relevant – domains.

The development of voice/speech areas has been much less studied. Grossmann et al. (2010)

showed that 7-month old infants displayed a voice-sensitive area, whereas 4-month old infants do

not. This observation suggests that voice processing is built up in the brain during a critical period
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Figure 1.6: Seeing faces is necessary for face-domain formation. Faces>objects and
hands>objects activations in control and face-deprived monkeys. Representative maps for the con-
trast faces-minus-objects aligned onto the standard macaque F99 flattened cortical surface (light
gray, gyri; dark gray, sulci). These examples show percent signal change (beta coefficients) thresh-
olded at P < 0.01 (FDR corrected) for one session each for control (left) and face-deprived (right)
monkeys at 252 and 295 days old, as indicated. Dotted white ovals indicate the STS region shown
in the bottom half for all scan sessions for all seven monkeys. – adapted from Arcaro et al. (2017)

in childhood. How the different areas engaged in speech processing come together while a child is

learning language is still unknown. Furthermore, whether animals can develop voice or speech

sensitive regions (which would suggest that auditory mechanisms similar to humans could

be at stake) has not been explored.

Overall, a combination of genetic and spontaneous activity-related factors seems to provide

an initial scaffolding for the formation of sensory maps, on top of which early experience preserves or

rearranges topographic mappings, or initiates the formation of category-specific domains. Whether

these domains are formed as clusters because they build up on a proto-topographic mapping of some

sort, and whether such topographic arrangements are computationally advantageous, is still unclear.

1.2.3 Plastic changes in topography induced by learning

Development generates organized brain structures, shared across all individuals, which have been

selected under evolutionary pressures. However, each individual encounters different obstacles in

different ecological surroundings, and is able to learn from its own experience and adapt its behavior,

or even sharpen its senses. The question of whether – or rather how – this experience modifies brain

structure at the adult stage has now been largely investigated. I will first examine the role of

perceptual training in shaping primary sensory cortices, and then explore its role in the formation of

higher-order, categorical domains.
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Modifying the organization of sensory systems

It is often said that blind people get better hearing, as their auditory system has taken some space

from the now unused visual system. More generally, our senses can get sharper with training, in

a quantifiable way through psychophysics (Watanabe and Sasaki, 2015). The neural correlates of

such behavioral improvements have slowly been unveiled over the past decades.

The plasticity of cortical maps has now been widely studied in adults, mainly in auditory

and somatosensory systems (Weinberger, 1995; Buonomano and Merzenich, 1998). Early studies

primarily investigated the modifications of somatotopic maps following a deafferentation of a certain

part of the skin, and showed that the unresponsive associated area came to be excited by inputs from

neighboring skin surfaces within weeks after the intervention (Buonomano and Merzenich, 1998).

A less intrusive approach (and more relevant to behavior) was to train owl monkeys on a task that

produced cutaneous stimulation of a limited sector of their fingers (Jenkins et al., 1990). The study

revealed that after a few months of training, the cortical representation of the specific surfaces of

the digit tips that were stimulated during training displayed several-fold magnification compared to

control animals. On the same note but in the auditory domain, classical conditioning (a tone followed

by a shock) has been shown to trigger changes in the representation of the acoustic conditioned

stimulus in the auditory cortex (Weinberger, 1995). Of course, these maps reorganizations are

coupled with changes of the tuning of cells that can be finer and more diverse. Whether these

modifications were due to the statistics of the bottom-up sensory inputs to auditory cortex or to

a more top-down, task-dependant control, however, was not clear at the time. Using an elegant

protocol consisting of a constant set of stimuli but varying task demands, Polley et al. (2006) showed

that only the task-relevant stimulus feature displayed an enhanced representation in the

brain (figure 1.7).

Other studies investigated the neural basis of such reorganization, and found a way to bypass

the conditioning or learning part at the behavioral level. Indeed, a pairing of tone presentation

and Nucleus basalis stimulation has been shown to trigger similar map reorganizations (Kilgard

and Merzenich, 1998), associated with synaptic changes (Froemke et al., 2007). These long-term

modifications have been shown to enhance behavior (Froemke et al., 2013). Nucleus basalis activity is

associated to acetylcholine release in auditory cortex and could be controlled by top-down influences.

Another pathway, at least in the mouse, could be that (orbito-) frontal cortex influences auditory

cortex map through direct connections (Winkowski et al., 2013).

Interestingly, the behavioral relevance of these modifications remains a subject of debate,
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as map plasticity could participate to perceptual learning but not overall performance (Reed et al.,

2011). Map modifications have thus been shown to disappear after learning. More generally, the

stimuli and behavioral paradigms used in these studies might be far from ecological situations in which

animals have to learn. A more natural behavior which involves changes in perception is motherhood,

when e.g., mice learn to recognize and discriminate their pup’s ultrasonic calls (Liu et al., 2006;

Shepard et al., 2016). When recording the representation of pup calls frequency in the tonotopic

arrangement of primary auditory cortex of naive vs. mother mice, Shepard et al. (2016) revealed an

enhancement in the contrast between how neurons tuned to and away from ultrasonic frequencies

respond to those calls, rather than an increase in the domain occupied by these frequencies. Thus,

natural behaviors during which specific sounds become behaviorally prevalent may trigger

subtle changes in topographic maps.

Figure 1.7: Perceptual learning directs auditory cortical map reorganization through top-
down influences. Task-specific reorganization of cortical maps in the frequency domain. Rep-
resentative tonotopic maps from primary auditory cortex (AI) (A) and suprarhinal auditory field
(SRAF) (B) were delineated with fine-grain microelectrode mapping. The color of each polygon in
the tessellated map represents the CF associated with neurons located in the middle cortical layers
at that position in the map. Gray shaded polygons indicate recording sites with CF values within
the trained frequency range (5 kHz 0.375 octaves). Filled circles indicate unresponsive sites. Open
circles represent sites with sound-driven responses that did not meet the criteria for inclusion in AI
or SRAF. Scale bar, 1 mm. The arrows indicate dorsal (D) and anterior (A) orientations – adapted
from Polley et al. (2006)
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Creation of more complex patterns with training

The biological preeminence and importance of certain categories, such as face or speech, could

well suggest that evolutionary pressures have progressively shaped brains to naturally develop these

domains, or at least a proto-architecture on which they can unfold. In that direction, their location

and extent is very conserved across individuals. However, the fact that humans display cerebral

domains associated with cultural, recent (at the scale of evolution) categories, such as written

words (McCandliss et al., 2003; Dehaene and Cohen, 2011), suggests that some of these regions

recycle part of the cortex and develop strictly under the drive of experience. The question of how,

and where they develop is still open.

Notably, whether inferior temporal cortex (IT) is specialized in face perception, or whether

it encodes highly-familiar objects’ representations has long been unknown. Early work by Gauthier

et al. (1999) used novel objects (’greebles’) to test whether forming new perceptual, high-level

categories would trigger in IT the formation of a specialized domain. Their results indeed suggested

that perceptual training (to discriminate greebles identity) led to increased activation in the right

hemisphere FFA. However, it was not known how such domain formation was link to pre-existing

architecture. Subsequent studies nuanced the effects of category training, showing that changes

could occur in complex patterns and outside of FFA (Op de Beeck et al., 2006). Interestingly, the

strength of training effects in the object-selective cortex was correlated with behavioral improvements

on a task involving those new objects. This result suggests that those changes are relevant for

behavior. However, the spatial distribution of training effects could not be predicted from the spatial

distribution of either pretrained responses or face selectivity. This observation is not consistent

with the idea of a proto-architecture for domain creation in IT. The same team performed similar

experiments in monkeys and showed that in IT cortex, topography of selectivity for these novel object

classes was stable across time and training, task, and position of object (Op De Beeck et al., 2008).

These patterns of activation indeed mainly reflected shape. Whether new category representations

entrain changes in high-order sensory areas in animals was thus unsure.

Because the formation of abstract category-related domains could occur only during a critical

period in life, Srihasam et al. (2012) trained juvenile monkeys on an abstract symbol manipulation

task. Intensive training led to the formation of novel specialized cortical domain, in stereotyped

locations of IT, detected using fMRI. Adults took longer to learn the task, and displayed no symbol-

specific domain after training. The same team further demonstrated that the cerebral localization

of training-induced changes does not depend on function or expertise, but rather on some kind of
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proto-organization (Srihasam et al., 2014) (figure 1.8). Training on different symbol sets led to

different specialized domains, of which location did not depend on training order, nor the global per-

formance of the animal. This observation led the authors to formulate the hypothesis that plasticity

for abstract symbols is constrained by some native organization in cortex (here based on

curvature and eccentricity), similarly to the appearance of the face-patch system. We

note here that these studies relied on a rather conservative measure which is domain formation (i.e.,

maximal response) rather than finer grained analysis, as what was observed in humans (Op de Beeck

et al., 2006).

Such investigations in the auditory domain have been scarce, and the question of whether

there exists an auditory equivalent of IT, i.e., an area containing specific domains for behaviorally-

relevant auditory objects, is unclear. Moreover, most of these studies in the visual system focused

on high-order areas, with a domain selectivity that is strong enough to be uniquely quantified by

looking at the stimuli which evoke the maximum response on a single-voxel basis. What happens

in earlier areas has been poorly explored. In particular, the role of experience in the creation of

the specific pathways for speech and music that have been uncovered in parabelt auditory areas

(Norman-Haignere et al., 2015) is still unknown. Would the discoveries made in IT, which

contains face- and symbol- specific domains, extend to these speech- and music- specific

pathways? A recent study suggested that training humans to discriminate monkey calls actually

sharpens neural selectivity to auditory features in left auditory cortex and induces auditory category

selectivity in lateral prefrontal cortex (Jiang et al., 2018). Thus, both early and late areas of the

auditory cortex might be modified by a training on new auditory objects.

Finally, the lack of results of domain formation for higher-order stimuli in adults seems to be

dissonant with the easiness with which early areas, that one could have thought most stable since

they are the foundation of most sensory processing, can be extensively modified. One can then

wonder whether the scale at which it happens is smaller than the one actually tested

(fMRI), or if more generally those modifications could be more subtle than just domain

expansion.

Summary. The origins of high-order domains and processing pathways in the sensory cortices

are far from being well understood, especially in the auditory domain. In particular, speech and
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music processing domains might develop during childhood. How are these pathways shaped

by experience? Are there computational limitations, specific to each species, for the

development of such domains?

Figure 1.8: Overall organization of selective responsiveness to trained symbol sets and face
patches in seven monkeys. (A) Patches of significant activations for all three symbol sets and
monkey faces (each contrasted with its control) from each of the seven multiple-symbol-set trained
monkeys projected onto a standard macaque brain shown in a semi-inflated lateral view. (B) Same
data shown on a flattened standard map of macaque cortex with areal borders. (C) Centers of mass
for different selective patches. Dots indicate the center of mass of each of the three main monkey
faces > shapes patches and each of the trained- symbol-selective patches, indicated by color, in the
monkeys trained in this and their previous study. For monkeys who learned both Helvetica and Tetris,
the squares indicate centers of the first-learned symbol set region immediately after learning that
symbol set and circles indicate centers of the same, first-trained, symbol set but after learning the
second symbol set; the two patches for the first-learned symbol set for each monkey are linked by a
line of the same color. +’s indicate the centers of the Helvetica patches for the three monkeys from
their previous study who were trained as juveniles on Helvetica only. The indicated dorso-ventral
and antero-posterior axes for the flat maps are meaningful only for the lateral surface of the brain.
– adapted from Srihasam et al. (2014)
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1.3 Reading the topographical brain

These numerous scientific breakthroughs have been enabled by parallel developments of brain record-

ing techniques. The large diversity of possible spatial and temporal resolutions, portability, as well

as different types of recorded signals, have provided scientists with a variety of approaches, each

revealing shared or specific facets of brain organization. In this section, I will first highlight a few

technical aspects that are relevant when studying brain organization. I will then present a newly

developed technique that I used throughout my work, namely functional UltraSound, and expose its

key characteristics.

1.3.1 Technical aspects of brain imaging

The holy grail of experimental neuroscience could be to record at once all neurons of a brain. This

has been so far obviously impossible, and most single-cell techniques rely on sub-sampling neuronal

populations within small parts of the brain. If population analysis provides priceless information about

the representation and processing of sensory stimuli in the recorded area, it can sometimes be difficult

to replace them back in a more general – large-scale – context, or even to understand their spatial

arrangement in the brain tissue. I will not propose a catalogue of comparisons between available

techniques, but rather highlight several technical aspects of imaging that shape our understanding

of sensory processing.

On the one hand, low spatial resolution is in itself detrimental to precise mapping. This is

the case of fMRI, which usually uses voxels large of at least one to several millimeters-cube, thus

averaging neuronal activity over thousands of units. Such a technique is of unquestionable use

in primates, or more generally large-mammals, but has rarely been determinant in small animals’

research. As a comparison, only a few 2-millimeter-sided voxels would approximately fill up the whole

auditory cortex of a mouse, leaving only little room for topographic mapping. It is worth noting

that some very high-resolution techniques are being developed. Notably, they were used to map the

tonotopic organization of the inferior colliculus of the mouse with success (Cheung et al., 2012).

Further, a few studies investigated the nature of fMRI signals at the cortical layer level, in rats (Silva

and Koretsky, 2002), cats (Harel et al., 2006), monkeys (Chen et al., 2013) and humans (De Martino

et al., 2015). However, fMRI is in no way a portable tool (and magnets for high-resolution imaging

are rare and even less portable), and behavioral experiments in animals are harder to perform, due

to the restricted size of the head, body movements, and scanning noise.
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On the other hand, the use of medium-resolution but high-sampling, large-scale techniques

can provide crucial information on many aspects. First, very high-spatial resolution but low-sampling

techniques (such as with electrodes) might provide very different results from low-spatial resolution

but exhaustive sampling techniques (such as with fMRI). If the presence of face-selective units in IT

of macaques has been reported in early studies, the existence of a larger scale ’face-area’ has only

been discovered through the use of fMRI, as solely a lower-resolution, averaging technique could

reveal a more global architecture (Tsao et al., 2003). In the same spirit, IT has long been seen

as a high-order area with no or little overall spatial topographic organization related to low-level

(i.e., non-categorical) features. The use of fMRI in monkeys has recently started to unveil more

subtle topographies, such as a ’large-scale spatial organization for some dimensions of shape’ (Op

De Beeck et al., 2008), or a ’correlation between curvature and eccentricity’ in both IT and earlier

areas (Srihasam et al., 2014). Finally, the lack of organization of the orientation selectivity in V1

in rodents, compared to the orientation preference columns, has led to the idea that the encoding

was ’salt-and-pepper’. A recent study, using large-scale two photon imaging, challenged this view

and actually observed a very large-scale orientation selectivity map in the mouse V1 (Fahey et al.,

2019). These findings deeply modified our vision of the processing occurring in those regions. Thus,

the use of ’coarser’ techniques can reveal global organizations better than single-cell

resolution, because they average (and thus sample) the activity of virtually all neurons

in each voxel.

Second, brain shape and topographic organizations vary considerably across individuals. The

overall shape, the position of the sulci, the extent of each area, but also the whole functional

mapping, such as the map structure and its borders, contain a significant amount of variance.

Averaging across individuals can hide specific organization, especially for loosely topographic and

highly variable mappings such as in frontal cortex (Michalka et al., 2015). In order to avoid such

averaging effects, and increase overall the reproducibility of our experiments, having a larger

framework can a be a necessary step for an individualized approach. This framework could

be based on anatomical and functional landmarks. In this direction, it seems reasonable that such

landmarks are especially necessary in hardly accessible regions, such as the depth of sulci.

Third, a large field of neuroscience now tends to show that many brain processes are actually

distributed over large portions of the brain, such as for speech processing (Poeppel et al., 2008),

or conscious perception and report (Van Vugt et al., 2018). Understanding how different brain

regions interact during the course of these phenomena requires large-scale (potentially
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whole-brain) imaging.

Fourth, whole brain techniques allow for an easier and more exhaustive exploration

of brain activity, to dig out regions or patterns that could be linked to certain cognitive processes.

On the opposite, low-sampling high-resolution techniques such as electrodes tend to reinforce the

well-known and well-feared ’looking for one’s keys under the lamp-post’ issue.

Some techniques, such as intrinsic imaging (Nelken et al., 2008), voltage-sensitive dyes

(Michel et al., 2013; Benvenuti et al., 2018), or large-scale calcium imaging (Zhuang et al., 2017)

allow for a rather high spatial resolution mapping while still providing pretty large-scale images.

However, their use remains undermined by the fact that they can not penetrate deeply in the brain.

2- and 3- photon imaging, using color-shifted dyes, can provide images down to layer 4, but have had

so far a limitated use and field of view. As many mammals have convoluted brains, those surface

techniques rapidly show their limitations for cortex studies, not speaking about subcortical structures.

In short, whole-brain, medium-resolution and high sampling imaging in small animals

has remained, so far, particularly difficult.

1.3.2 functional UltraSound

Current state-of-the-art

Functional UltraSound (fUS) has just started to be used to tackle fundamental questions in neuro-

science (Deffieux et al., 2018). In short, fUS technology uses plane wave transmissions and measures

the ultrasonic energy backscattered from red blood cells or the Doppler shift they induce in each

pixel of the image, to obtain a proxy for blood volume and speed in brain tissue. After funda-

mental changes in paradigm that allowed to overcome previous difficulties for functional imaging

with ultrasound, such as frame rate (Tanter and Fink, 2014), Macé et al. (2011) provided a first

proof of concept of ultrafast fUS in anesthetized rats. Activity of large portions of the brain (full

coronal slices) were dynamically imaged with an unprecedented high-spatial resolution for ultrasound

(100µm). Strikingly, the high sensitivity of the technique allowed the experimenters to obtain dy-

namical imaging of epileptic seizures. The technique was further tested with stimulations of the

whisker pad, which triggered neural responses in somatosensory thalamus and cortex. This study

thus set the ground for a new way of imaging brain activity in small animals. Since then, fUS

range of application has been widened, as illustrated in figure 1.9. Indeed, it has been applied to
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a diverse range of species, such as rats (Macé et al., 2011), mice (Macé et al., 2018), monkeys

(Dizeux et al., 2019), or human neonates (Demene et al., 2017) and adults (Imbault et al., 2017); a

diverse range of situations, such as in anesthetized animals (Macé et al., 2011; Urban et al., 2014;

Gesnik et al., 2017), head-restrained behaving animals (Dizeux et al., 2019; Macé et al., 2018), or

freely-moving animals (Urban et al., 2015; Sieu et al., 2015); and a diverse range of brain systems,

such as somatosensory system (Macé et al., 2011; Urban et al., 2014), olfactory system (Osmanski

et al., 2014a) or visual system (Dizeux et al., 2019; Macé et al., 2018). Its use for studying brain

activity at the level of whole structures, such as cortical areas or subcortical nuclei, has now been

well established (Macé et al., 2011; Urban et al., 2014; Gesnik et al., 2017). Only a few, very recent

studies are starting to address the question of the organization within such areas (Dizeux et al.,

2019; Macé et al., 2018), while this opportunity seems very promising.

Figure 1.9: The main applications and features of functional ultrasound (fUS) imaging.
fUS imaging provides (i) a compatibility with a wide range of animal models for preclinical studies,
(ii) the ability to image awake and freely moving animals, (iii) the possibility to combine with super-
resolution ultrasound localization microscopy, (iv) a possible extension to 3D imaging, (v) functional
connectivity mapping for brain connectomics, (vi) translation to clinical neuroimaging in human
neonates or (vii) peroperative neuroimaging during brain surgery and (viii) EEG compatibility for
EEG-fUS recordings. – adapted from Deffieux et al. (2018)

To position fUS in the large field of neuroimaging, we can look at several criteria, that
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are determinant for tackling fundamental questions of neuroscience (figure 1.10). In particular, its

spatial resolution is much higher than what is usually possible with fMRI, while its portability is closer

to optical imaging or electrodes. Furthermore, several techniques have been used to increase the

spatial resolution of fUS (Deffieux et al., 2018), such as injected microbubbles (Errico et al., 2015).

Nevertheless, its temporal resolution still relies on the speed of neurovascular coupling. Dizeux et al.

(2019), for example, used this aspect to explore the propagation of information across layers in the

cortex. This aspect of fUS, despite its special relevance in the encoding/decoding of dynamical

stimuli (such as sounds), will not be discussed in this thesis.

Figure 1.10: Main brain functional imaging techniques on a three-axis chart (temporal
resolution, spatial resolution, portability). Techniques were separated between local and whole-
brain imaging. Functional ultrasound fills a gap between whole brain imaging and microscopy, as
well as between fMRI and Optics. – adapted from Deffieux et al. (2018)

Thereby, functional UltraSound is a promising tool to tackle some of the funda-

mental questions raised throughout this introduction. The study by Macé et al. (2018), which

consists in an exhaustive look-out for a definite link between neural activity and specific cognitive

processes with fUS, before digging into the details of single-neuron responses with electrodes, per-

fectly exemplifies some of the opportunities fUS might provide. A question that now remains

open is whether fUS could be used to assess fine topographic mappings within subcortical

and cortical areas.

The nature of the fUS signal

fUS is based on neurovascular coupling. Despite its fundamental importance for fMRI and other

blood-based techniques, the link between vascular modifications and neural activity remains poorly

understood and modeled, especially at small scales. Understanding this link is an essential step to
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capture the fundamental limits of such a technique.

Boido et al. (2019) tried to bridge the gap between fMRI, fUS and electrical activity. They

showed that vascular signals in glomeruli of the olfactory bulb, irrespective of the recording technique

(local microscopy, fUS, fMRI), were linearly correlated with the local changes in local synaptic

changes, across a large range of odor concentrations. This study thus suggests that fUS signal is a

very good proxy for local brain activity, and one that is much more sensitive that fMRI signals for

single trials as well as low odorconcentration trials.

It is not yet really known what the smallest scale at which blood vessels respond to surrounding

neuronal activity is, nor how the spatial organization of blood vessels and capillaries shapes the overall

hemodynamic response we eventually record. By coupling functional intrinsic imaging of acoustic

stimulation-evoked activity in auditory cortex and corrosion casts of the blood vessels in the same

brain, Harrison et al. (2002) showed that the observed spatial pattern of intrinsic signals directly

correlates with the physical position and density of capillary beds, as well as with the myogenic valves

that actually control blood flow within these capillary beds. Importantly, this study points to the

fact that brain areas can have very different capillary density, and the less vascularized ones could

provide a lesser signal. Notably, the authors mention the high level of vascularization in primary

sensory areas, and suggest that the functional resolution (i.e., the lowest spatial scale at which one

can functionally separate two signals) might be of the order of 100-150µm based on the structure of

the capillary beds. This resolution, of course, can vary considerably across brain regions and animals.

While fMRI spatial resolution is most of the time much lower than this, the high resolution for

fUS can be particularly useful to explore the minimal scale at which brain signals can be

extracted from hemodynamic-based studies.

More recently, O’Herron et al. (2016) investigated the tuning of individual arterioles in the

visual cortex of cats, and suggested that blood flow in parenchymal vessels is driven by local neural

activity as well as by an additional global component arising from adjacent functional columns.

Single vessels’ tuning to the orientation of visual gratings was thus much less precise than a global

average of synaptic or spiking activity within up to 600µm radius. This study also shows a clear

difference between pial and parenchymal arterioles, and suggests that the orientation selectivity of

parenchymal vessels is actually an order of magnitude higher than what is obtained using intrinsic

signal optical imaging. Thus, the in depth view enabled by fUS could provide much higher

sensitivity to the functional organization of cortex, by avoiding pial vessels’ contamination

of the signal.
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As of today, the extent to which hemodynamic-based techniques can teach us about

brain organization remains uncertain. All these considerations are to be kept in mind throughout

the current thesis.

Summary. Functional UltraSound is emerging as a very good alternative to fMRI, es-

pecially for small animals, offering a large field of view and a high resolution while still

being portable and easy-to-use. Its use is under rapid expansion, and both technical and ana-

lytical advancements should provide a new light to understand the brain’s organization.

1.4 Outstanding questions and project summary

In this introduction, I first exposed the global, modular organization of the brain, and highlighted the

interesting attributes of topography in its diversity and complexity. Topography seems ubiquitous

in the brain, in both low- and higher-order areas, and many aspects of its organization are still

poorly understood. In particular, overlapping processing streams seem to be at play in primary and

non-primary regions, but their organization in animals remains unclear. This is especially true in

the auditory system when it comes to complex natural sounds. I then unwrapped several aspects

of the origins of such an organization, to provide global insights on the computational advantages

it might carry, on its developmental scheme and on the plasticity dynamics which might shape it.

Both the basic topographic organization and the more categorical domains in sensory cortices seem

to be highly shaped by behavioral experience. However, the mechanisms underlying the emergence

and plasticity of these domains is not yet fully understood. Finally, I exposed more technical aspects

of brain imaging, in an attempt to link it conceptually to the fundamental questions hinted at in the

previous sections, and discuss how the imaging techniques that one uses also shape one’s perception

of brain organization and computations. I argued that the emergent imaging technique functional

UltraSound provides an opportunity to explore brain organization across multiple scales.

A few outstanding questions arise from these considerations. From a technical point of view, one

could ask:

• Can we use functional UltraSound to explore the topographic organization of sensory systems

at large- and meso-scales?

• Can we access encoding patterns that are not obviously topographically organized?
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Based on the responses to these questions and turning to a more fundamental point of view, several

interrogations can then be raised:

• How are the different layers of complexity of sound processing organized in the auditory cortex?

• Are the domains selective for speech processing, that exist in humans, specific to humans?

• How do these domains emerge in the cortex?

In the present manuscript, I investigated several of these questions, while the others propose

a longer-term direction to this research. The project is presented in three quasi-independent parts,

that all revolve around different aspects of sound encoding. I will finally integrate these results and

prospects in a general discussion.

chapter 2: Mapping the auditory hierarchy. We first set out to explore the possibilities of fUS

imaging in the awake ferret. We used the well-known tonotopic organization of the auditory system

as a benchmark to prove that fUS could be used to inspect the fine organization of sensory systems

– from small and deep nuclei to non-primary cortical areas – as well as connectivity patterns between

areas. This project has been published in eLife (Bimbard et al., 2018).

chapter 3: Natural sounds processing. We then explored how natural and complex sounds are

encoded in the ferret brain. We investigated the predictive power of models of auditory cortical re-

sponses of various complexities, and showed that a canonical model could explain auditory responses

across both primary and non-primary areas. Our results reveal fundamental differences in the pro-

cessing of sounds between ferrets and humans, especially for high-order acoustic features such as

those found in speech and music. Finally, we explored the encoding of conspecific vocalization in

auditory cortex, at both the perceptual and neural levels. Our results suggest that ferret do rely on

high-order features for vocalization processing, despite lacking a specific pathway within auditory

cortex to process them.

chapter 4: Space encoding in auditory cortex. Finally, we explored the organization of azimuth

encoding in the auditory cortex, of which nature is debated. We investigated whether the meso-scale

accessible with fUS could reveal broader properties of encoding, that are spatially fragmented and

non-continuous. Our study paves a way for future research on this subject.
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Chapter 2

Mapping the auditory hierarchy

Contributors: Charlie Demené, Constantin Girard, Suzanne

Radtke-Schuller, Shihab Shamma, Mickaël Tanter & Yves

Boubenec.

2.1 Abstract

A major challenge in neuroscience is to longitudinally monitor whole brain activity across multiple

spatial scales in the same animal. Functional UltraSound (fUS) is an emerging technology that

offers images of cerebral blood volume over large brain portions. Here we show for the first time

its capability to resolve the functional organization of sensory systems at multiple scales in awake

animals, both within small structures by precisely mapping and differentiating sensory responses, and

between structures by elucidating the connectivity scheme of top-down projections. We demonstrate

that fUS provides stable (over days), yet rapid, highly-resolved 3D tonotopic maps in the auditory

pathway of awake ferrets, thus revealing its unprecedented functional resolution (100/300µm). This

was performed in four different brain regions, including very small (1–2 mm−3size), deeply situated

subcortical (8 mm deep) and previously undescribed structures in the ferret. Furthermore, we

used fUS to map long-distance projections from frontal cortex, a key source of sensory response

modulation, to auditory cortex.
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2.2 Introduction

Functional ultrasound imaging (fUS) based on Ultrafast Doppler (UfD) was first introduced in neu-

roimaging in 2011 (Macé et al., 2011). Using ultrasonic plane wave emissions, this system exhibits a

50-fold enhanced sensitivity to blood volume changes compared to conventional ultrasound Doppler

techniques (Macé et al., 2013), with a very high acquisition rate (ms) enabling unambiguous discrim-

ination between blood flow and motion artifacts (breathing motion, tissue pulsatility,...) (Demené

et al., 2015). Relative to fMRI, it also presents substantially higher spatial resolution for cerebral

blood flow imaging at the expense of non-invasiveness, greater portability and lower cost, and versa-

tility for awake animal imaging. However, most fUS studies thus far have investigated its sensitivity

in capturing coarse-grained sensory responses (Tiran et al., 2017; Osmanski et al., 2014b; Gesnik

et al., 2017; Urban et al., 2014, 2015), or used it to explore indirect in-plane brain connectivity

(Osmanski et al., 2014a; Rideau Batista Novais et al., 2016). Also, while the theoretical spatial

resolution of Ultrafast Doppler for high sensitivity mapping of microvascularisation has been shown

to be 100 µm for whole brain imaging in rats (Macé et al., 2013; Demené et al., 2016), the ability of

the fUS technique to measure independent information on functional brain activity from the cerebral

blood volume (CBV) variation maps at such a small scale, that is the truly informative fUS imaging

resolution, has remained to date unproven.

Here, we demonstrate fUS imaging capability in capturing a fine-grained 3D functional char-

acterization of sensory systems and direct, long-distance connectivity scheme between brain struc-

tures. Our first goal was to provide such 3D high-resolution functional mapping in the auditory

system. However the limited richness of stimuli previously applied in state-of-the-art fUS imaging

together with their long duration (typically 10 to 30 s) constituted an obstacle as they would require

several days of acquisitions incompatible with in vivo investigations. Moreover, most studies used

physiological stimuli (Macé et al., 2011; Gesnik et al., 2017; Urban et al., 2015) or direct electri-

cal stimulations (Urban et al., 2015) specifically designed to activate at most the entire sensory

structures. We therefore drastically reduced the durations and repetitions of presented stimuli while

increasing their diversity to push the sensitivity limits of fUS imaging. Consequently we show that

this technique can rapidly produce highly-resolved 3D in vivo maps of responses reflecting precise

tonotopic organizations of the vascular system in the almost complete auditory pathway of awake

ferrets. We further demonstrate that fUS imaging can provide voxel to voxel independent informa-

tion (with a functional resolution of 100 µm for voxel responsiveness, 300 µm for voxel frequency
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tuning), indicative of its high sensitivity. These measurements are repeated over several days in

small (1–2 mm−3size) and deep nuclei (8 mm below the cortical surface), as well as across various

fields of the auditory cortex. On a broader scale, we describe how fUS can be used to assess long

distance (out-of-plane) connectivity, with a study of top-down projections from frontal cortex to the

auditory cortex.

Therefore, fUS can provide a multi-scale functional mapping of a sensory system, from the

functional properties of highly-resolved single voxels, to inter-area functional connectivity patterns.

2.3 Material and methods

2.3.1 Animal preparation

Experiments were approved by the French Ministry of Agriculture (protocol authorization: 01236.02)

and strictly comply with the European directives on the protection of animals used for scientific

purposes (2010/63/EU). To secure stability during imaging, a stainless steel headpost was surgically

implanted on the skull and stereotaxis locations of the dorsolateral frontal cortex (FC) and the

auditory cortex (AC) were marked (Atiani et al., 2014). Under anaesthesia (isoflurane 1%), four

craniotomies above the auditory cortex were performed on three ferrets (Vright and Vleft, right, and

Sright), using a surgical micro drill, yielding a ~15×10 mm window over the brain. After clean-up and

antibiotic application, the hole was sealed with an ultrasound-transparent TPX cover, embedded in

an implant of dental cement (Sieu et al., 2015). Animals could then recover for one week, with

unrestricted access to food, water and environmental enrichment.

For fUS imaging, animals were habituated to stay in a head-fixed contention tube. The

ultrasonic probe was then inserted in the implant and acoustic coupling was assured via degassed

ultrasound gel. Experiments were conducted in a double-walled sound attenuation chamber. All

sounds were synthesized using a 100 kHz sampling rate, and presented through Sennheiser IE800

earphones (HDVA 600 amplifier) that was equalized to achieve a flat gain. Stimulus presentation

were controlled by custom software written in Matlab (MathWorks) and available on a bitbucket

repository at this link: https://bitbucket.org/abcng/baphy/branch/abcng; copy archived at

https://github.com/elifesciences-publications/baphy-branch-abcng/.
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2.3.2 Ultrafast doppler imaging

We used a custom miniaturized probe (15 MHz central frequency, 70% bandwidth, 0.110 mm pitch,

128 elements) inserted in a four degree-of-freedom motorized setup. The probe was driven using

a custom fully-programmable ultrasonic research platform (PI electronics) and dedicated Matlab

software. Ultrasound codes are all are available within the framework of research collaboration

agreements between academic institutions.

2.3.3 3D vascular imaging

Vascular anatomy of the brain portion accessible from the craniotomy was imaged in 3D using the

Ultrafast Doppler Tomography (UFD-T) strategy described in (Demené et al., 2016). Briefly, this

method acquires 2D Ultrafast Power Doppler (UfD) images at a frame rate of 500 Hz. Each frame

is a compound frame built with 11 tilted plane wave emissions (-10◦ to 10◦ with 2◦ steps) fired at

a PRF of 5500 Hz, combined with mechanical translation and rotation, and then post-processed

via a Wiener deconvolution to correct for the intrinsic out-of-plane loss of resolution, so that we

ultimately recover an isotropic 100 µm 3D resolution. In the end, a 3D (14 × 14 × 20 mm) blood

volume reconstruction of the vasculature is obtained (voxel size: 50 µm, isotropic resolution 100

µm). This 3D vascular imaging was performed on each craniotomy, and was used as a local reference

framework, specific to the craniotomy, where recording planes could be repositioned over days using

correlation methods.

2.3.4 fUS imaging

fUS imaging relies on rapid acquisition (every 1 s) of ultrasensitive 2D Power UfD images of the

ferret brain. For each Power image, 300 frames are acquired at a 500 Hz frame rate (covering 600ms,

that is one to two ferret cardiac cycles), each frame being a compound frame acquired via 11 tilted

plane wave emissions (-10◦ to 10◦ with 2◦ steps) fired at a PRF of 5500 Hz. Image reconstruction

is performed using an in-house GPU-parallelized delay-and-sum beamforming. Those 300 frames at

500 Hz are filtered to discard global tissue motion from the signal using a dedicated spatio-temporal

clutter filter (Demené et al., 2015) based on a singular value decomposition of the spatio-temporal

raw data. Although the ultrafast 2ms temporal resolution is available for the CBV image generation,

they are in fact averaged into one CBV image every second to capture the dynamics of the cerebral

blood physiological response. Nevertheless, it should be noted that this rapid sampling rate is a key
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asset to unambiguously cancel any respiratory or tissue pulsatility artifacts Demené et al. (2015)

in the final averaged images. Blood signal energy (called Power UfD) is then computed for each

voxel (100 × 100 × ~400 µm, the latter dimension, called elevation, being slightly dependent of

depth) by taking the integral 1
T

∫ T
0 s(t)2dt over the 300 time points (Macé et al., 2013). This power

Doppler is known to be proportional to blood volume (Rubin et al., 1994). A certain band of Doppler

frequencies can be chosen before computation of the power using a bandpass filter (in our case a

fifth order low-pass Butterworth filter), enabling the selection of a particular range of axial blood

flow speeds, that is roughly discriminating between capillaries and arterioles (slow blood flow) and

big vessels (fast blood flow). In our study, we set the filtering to better focus on small vessels with

axial velocity lower than 3.1 mm/ sec when indicated in the text. Power UfD signal was normalized

towards the baseline to monitor changes in Cerebral Blood Volume (%CBV).

2.3.5 Protocol for sensory response acquisition

Auditory responses were studied by playing different sounds through animal earphones during record-

ing of the brain activity via fUS imaging. The protocol for sound presentation is as follows: 10 s

of silence (baseline), then 3 s of sound followed by 8 s of silence (return to baseline). Trials were

following each other with only a little random jitter in time of about 1 to 3 s, and fUS acquisitions

were synchronized with the beginning of each trial.

Visual responses were obtained by playing a flickering red-light stimulus instead of sound,

with the same durations of different epochs.

2.3.6 Localization of the auditory structures

In order to find the boundaries of the auditory structures in the imaged portion of the brain, white

noise sound was played (70 dB).

2.3.7 Mapping of the tonotopic organization of the auditory structures

Auditory structures are known to exhibit tonotopic organization based on extensive physiological

and structural studies (in the ferret, see (Bizley et al., 2005; Moore et al., 1983; Pallas et al., 1990;

Versnel et al., 2017; Nelken et al., 2004). To image these tonotopic maps, we played unmodulated

pure tones while recording fUS images at five equally spaced frequencies on a logarithmic scale (602

Hz, 1430 Hz, 3400 Hz, 8087 Hz, 19234 Hz, covering the auditory hearing spectrum of the ferret,
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at 65 dBSPL). The tones were played in random order, 10 trials/frequency (20 in the animal S.).

To obtain the whole tonotopic organization in a 3D volume, this process was repeated in different

slices in order to build a 3D stack from successive 2D slices (spaced by 300 µm). Each slice was

acquired in ~15 min, thus allowing us to map in 3D the whole auditory cortex within a few hours.

We note that these tone stimuli elicited large and reliable responses in the whole auditory tract

despite being unmodulated. This suggests that a variety of other auditory stimuli (such as natural

sounds) can be used to elicit stronger responses and hence reveal more organizational properties.

2.3.8 Frontal cortex stimulation

Frontal cortex (FC) electric stimulations were adapted from previously described protocols (Lo-

gothetis et al., 2010; Tolias et al., 2005). Platinium-iridium stimulation electrodes (impedance

200-400kOhms, FHC) were positioned in the region in between the anterior part of the anterior

sigmoid gyrus and the posterior part of the proreal gyrus using stereotaxic coordinates, obtained

from functional recordings in behaving animals (AP: 25.5–28.5 mm (0 to 3 mm on Figure 2.2d)

from caudal crest, caudal crest antero-posterior position being defined at 5 mm lateral from the

medial crest/ML: 2 mm (Radtke-Schuller, 2018)). Each trial consisted of 10 s of baseline, then 6

s of monophasic stimulation at 100 Hz and 200 µA (2 ms pulses, 200ms-long train, repeated at 2

Hz), after a return to baseline of 10 s. The %CBV was computed as the mean response between 3

and 6 s after stimulation onset. 30 trials were performed for each A-P position of the electrodes. In

these connectivity experiments, the animal was slightly sedated using a small dose of medetomidine

(Domitor 0.02 mL at 0.08 mg/kg) to reduce movement artifacts. Stimulation experiments were

performed in one ferret, and each of the four experiments presented (Figure 2.3 and its figures

supplements) was done once, on different days.

2.3.9 Anatomical tracers

A one year old female ferret weighing 620 g received a 2 µl injection of pAAV2.5-CaMKIIa-

hChR2(H134R)-EYFP (PennCore) as anterograde tracer into left FC. Six months later the animal

was perfused and the brain was cryoprotected, shock frozen and cut on a cryostat into 50 µm thick

frontal sections into parallel series of which one was counterstained with neutral red. For overview

images, combined Brightfield and fluorescence images were taken with a Hamamatsu slide scanner

2.0HT (Institut de la Vision) (Figure 2.2e, left). For details, fluorescence images were taken with a

virtual slide microscope (VS120 S1, Olympus BX61VST) at 10× magnification (Figure 2.2e, right).
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Anatomical structures were reconstructed in accord with the ferret brain atlas (Radtke-Schuller,

2018).

2.3.10 Signal processing, analysis and statistics

Tonotopic maps

Power UfD signal normalized towards the baseline was used to monitor changes in Cerebral Blood

Volume (%CBV). The %CBV varied after stimulus presentation (Figure 2.1c) and we quantified

voxel responses with the mean of %CBV in a time-window 3 to 5 s after sound onset. Tonotopy of

the imaged structures was mapped as follows: for each voxel this mean vascular response across the

five tested frequencies was used to determine its best frequency (BF). Statistical differences of the

responses to different frequencies in an individual voxel (Figure 2.1c, tuning curve) were assessed

using a Wilcoxon rank sum test (post-hoc test after significant ANOVA p<1e-3). For visualization

purpose, maps were thresholded by showing only voxels that had (i) a minimal 15% response and

(ii) a mean response at their BF highly correlated (p<1e-3) with the mean hemodynamic response.

This thresholding method was used to highlight sound-responsive voxels (disregarding of frequency

tuning), and thus allows for the display of zones that were poorly tonotopic (such as AEG). Note here

that this thresholding was used only for visualization purposes. Maps constructed with a threshold

based on frequency tuning gave similar qualitative results. The mean hemodynamic response was

used to approximate the typical vascular response to stimulus (as the Hemodynamic Response

Function does for fMRI) and was computed in each structure as the average response over all

the voxels showing a response to sound with z-score >3. Note that thresholds could be adjusted

depending on the overall responsiveness of different structures and different animals, for illustration

purpose. Intriguingly, two additional ferrets did not show any reliable response to sound (responses

below 10 %CBV), for unknown reasons. They were not used in the experiments.

Last, maps were spatially smoothed with a 3 × 3 × 1 voxel gaussian filter (std = 0.5), and

a 3D median filter (3 × 3 × 3) was applied to the significance map to remove isolated voxels.

The view of the brain surface (Figure 2.1c) was computed as the mean BF averaged from 5 to 10

voxels from the auditory cortex surface delimited manually. For 3D reconstructions of the cortex

only, manually adjusted masks were used in order to show only tonotopic regions, and avoid crowdy

representations caused by voxel transparency in the 3D visualization. Cortical depths were obtained

by manually tracing the surface (just below the pia’s blood vessels) and depth limits of the cortex.

The 10 different depths were then automatically extracted by a custom-made algorithm (Figure
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2.2a and Figure 2.2—figure supplements 1 and 2). The number of voxels at each depth was then

equalized for the decoding analysis.

For the single slice analysis presented in Figure S2.5, the protocol was designed to speed

up tone-responses acquisition (2 s tone, and random interval of 4 to 6 s - uniformly distributed -

between two tone presentations). We then used a General Linear Model (GLM) to compute impulse

responses of individual voxels to each tone frequency, without any predefined hemodynamic response

function. This allowed us to present more stimuli (75 per frequency) in a relatively shorter time

(~45 min).

Decoding

Frequency selectivity of the auditory cortex was assessed using a 5-class linear classifier and a leave-

one out strategy: for each frequency pair, vascular responses of the two frequencies (%CBV averaged

over 4 to 5 s after sound onset) were separated in a voxel-based space via a linear boundary optimized

on 9 of the 10 trials in a learning set. No thresholding procedure was used in this analysis. Overall,

pseudo-populations were built by grouping, across all slices recorded within the same structure, trials

with identical frequency labels. The decoder was run over 100 shuffles of these pseudo-populations,

where train and test sets were randomly chosen. In single slice analysis (Figure S2.5), we used a

Fisher decoder (normalized by covariance) in order to take into account the noise correlation between

voxels in decoding analysis. This was doable thanks to the higher number of tone presentations that

allowed us to have a stable estimation of the covariance matrix.

In order to prove the significance of the obtained accuracy, we used a permutation procedure

in which we shuffled the labels (i.e., which frequency was played during each trial) across trials, and

performed the same decoding analysis, thus obtaining the chance distribution for decoding accura-

cies. We used 100 permutations, and considered that the real decoding accuracy was significantly

out of the chance distribution (trial frequency labels shuffled) when above the 95th percentile. All

the actual decoding accuracies were above the chance decoding accuracies. Our p-value resolution

is limited by the number of permutations (100) and therefore our obtained p-values are all below

0.01.

To evaluate whether cortical depth had an effect on decoding accuracy (Figure 2.2a), we

performed a one-way repeated-measure ANOVA over the four different craniotomies, with depth as

the factor.
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Resolution quantification

In order to quantify the minimal spatial scale at which fUS can provide independent information from

two neighbouring voxels, we focused on sharp edges of functional transition and performed 2-way

(voxel and frequency as factors) ANOVA on the tuning curves (%CBV averaged over 4 to 5 s after

sound onset) of each pair of voxels within a certain contour (example transect and contour shown

in Figure 2.2b, left panel). The voxel factor quantified the dissimilarity in the average responses

for two voxels, being thus representative of an overall responsiveness dissimilarity when significant.

The interaction term (frequency x voxel) quantified how dissimilar the tuning curves were for two

different voxels, independently of their overall responsiveness. This term therefore represented our

ability to discriminate between different functional voxel tuning. Pairs of voxels were considered to

be ‘dissimilar’ (in responsiveness or tuning) when the associated p-value was <5.10−2. Importantly,

these values depend on the smoothness of the underlying functional neuronal map (the sharper the

better) and on the number of trials used in each experiments (the higher the better). Here, we show

that using only 10 trials per frequency, we could go down to a functional resolution comparable to

the voxel size (100 µm) for the overall responsiveness, and of 300 µm for the tuning.

We randomized 50 times the responses over all voxels and all frequencies and performed the

same analysis to find the average distribution expected by chance for both responsiveness and tuning

dissimilarity percentages. We determined the spatial resolution as the shortest distance between two

voxels at which the actual number of dissimilar pairs was above the 95th percentile of the randomized

distribution. Distance between voxels defined by coordinates (x1,y1) and (x2,y2) was computed as

the rounding of
√

(x1 − x2)2 + (y1 − y2)2.

Finally, we performed this analysis in different regions (AC and IC) and different animals

(Bright, Vleft, Vright, Sright) in order to generalize this result (Figure S2.6).

2.4 Results

2.4.1 Mapping the tonotopic organization of auditory structures

Physiological experiments were conducted in three awake ferrets (Mustela putorius furo, thereafter

called V, B and S). After performing craniotomies over the temporal lobe, chronic imaging chambers
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were installed (both hemispheres in one animal, and right hemispheres in the other two) to access a

large portion of both the auditory (middle and posterior ectosylvian gyri - resp. MEG and PEG) and

visual cortex (in caudal suprasylvian and lateral gyri) (Figure 2.1a). The 3D scan of the craniotomy

via Ultrafast Doppler Tomography Demené et al. (2016) revealed the in-depth vasculature of the

Auditory Cortex (AC) surrounded by the supra-sylvian sulcus (Figure 2.1a and b). In addition, we

were able to detect and image deep auditory-responsive structures such as the Medial Geniculate

Body (MGB), the Inferior Colliculus (IC) and the dorsal nucleus of the Lateral Lemniscus (DNLL),

as well as visually-responsive nuclei such as the Lateral Geniculate (LGN) (Figure S2.1).

In order to reveal the tonotopic organization of the auditory structures, we recorded in each

voxel the evoked hemodynamic responses to pure tones of 5 different frequencies by computing

the %CBV, defined as the percentage of variation in CBV. We then computed the resultant 3-

dimensional tonotopic map (Figure 2.1c–e, Figure S2.2). Within a relatively short time (10 to 15

min per slice), we could accurately reproduce the known tonotopic organization of the primary (A1

and AAF in the middle ectosylvian gyrus) and secondary auditory cortex (PPF and PSF in the

posterior ectosylvian gyrus) (Bizley et al., 2005; Mrsic-Flogel et al., 2006; Nelken et al., 2008), with

a high- to low-frequency gradient in A1, reversing to a low- to high-frequency gradient in the dorsal

PEG (Figure 2.1c). We note that the fUS enabled us to map within the challenging deep folds of

the ferret auditory cortex, such as the supra-sylvian sulcus (sss) and pseudo-sylvian sulcus (pss).

Recordings could be performed in the same slice across days, with a high repositioning precision

(error <1 slice, 200 µm in that case), which was within the range of the out-of-plane point-spread

function for fUS (Figure S2.3). Interestingly we were able to capture inter-individual variability along

the transect going from the pss to the sss, consistent with previous work in the ferret (Bizley et al.,

2005).

Large-scale, 3D functional maps were also recorded in the deep and smaller structures of

the auditory thalamus (MGB, Figure 2.1d), the inferior colliculus (IC, Figure 2.1e) and the DNLL

(Figure 2.1e). The 3D views obtained in fUS allowed us to describe for the first time the tonotopical

organizations of the ferret ventral division of the MGB and DNLL. This is particularly remarkable in

the latter structure in which we characterize a precise tonotopic map despite its small size (~1 mm-

long) and subcortical position (8 mm deep below brain surface). Moreover, such a large field of view

allows one to measure simultaneously the functional organization of any coplanar structure (such
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as A1 and the MGB here), thus opening the door to precise, frequency specific (thalamo-cortical)

connectivity studies. In this respect, future development of high frequency fUS matrix-probes for

3D UfD imaging (Provost et al., 2015) will extend this capability to any brain structure.

Figure 2.1: fUS imaging reveals the tonotopic organization of cortical, sub-cortical, and
intracortical auditory structures in the awake ferret. (a) Left: UFD-T of the left and right
craniotomies, superimposed on an MRI scan of a ferret brain. Right: magnification of the blue
bounding box (left). Auditory structures: auditory cortices (AC), medial geniculate body (MGB),
inferior colliculus (IC). Other structures: hippocampus (Hip), visual cortex (VC). (b) Structural view
of a tilted parasagittal slice (~30◦ from D-V axis) of the visual and auditory cortices (represented as
a blue plane on the 3D brain). Lining delineates the cortex. (legend continued on next page)
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Figure 2.1: (c) Upper left: Tonotopic organization of the slice described in (b). Lower left: tuning
curve (mean ± sem) and average responses in %CBV (see Materials and methods) for the voxel lo-
cated in the upper panel (black cross). Upper right: combination of 16 similar slices over the surface
of the AC, arrow depicts slice of (b). AEG/MEG/PEG: anterior/middle/posterior ectosylvian gyrus.
Lower right: 3D reconstruction of the whole AC’s functional organization. (d) 3D reconstruction
of both the auditory cortex and auditory thalamus (non-tonotopic areas were masked on this recon-
struction for clarity of the representation). Inset: single slice centered on the MGB. Its tonotopic
axis runs along the PL-AM axis. Note that (b–d) were extracted from the left side of the brain,
but flipped for visual clarity and coherence. (e) 3D reconstruction of the inferior colliculus and the
dorsal nucleus of the lateral lemniscus (DNLL). Inset: single slice centered on the IC. Both (d) and
(e) are tilted coronal slices (~30◦ from D-V axis). Their tonotopic axis runs along a ~20◦-tilted D-V
axis. All individual and converging scale bars: 1 mm. D: dorsal, V: ventral, M: medial, L: lateral,
A: anterior, P: posterior.

2.4.2 Decoding

Single-trial analysis is essential for understanding brain dynamics and behavioral variability. How-

ever, it remains a challenge as it necessitates to record high-quality signal from a large number of

neurons/voxels at the same time. In order to estimate the reliability and selectivity of fUS single-trial

responses, we used MultiVoxel Pattern Analysis (MVPA) to decode the stimulus frequency from the

hemodynamic signal. Using a simple linear decoder, we attained high decoding accuracy in the au-

ditory cortex (from 0.46 to 0.63 probability, with chance at 0.2) which was even more striking in the

IC and DNLL (from 0.72 to 0.98), despite their smaller size and subcortical location (Figure 2.2a).

These results suggest that single trials show reliable and significant activity across all structures.

On a different scale, we sought to demonstrate whether fUS could also reveal encoding

differences across cortical layers. We focused on imaging the small vessels in the cortex (keeping

only data corresponding to an axial projection of blood flow lower than 3.1 mm/s) and defined

cortical layers using an unfolding algorithm providing a flattened version of the AC (Figure S2.4).

A linear decoder yielded a significantly higher decoding accuracy when using only measurements at

intermediate cortical depths (p<1e-3), peaking around 400–500 µm below the surface (up to 0.83,

mean 0.67), consistent with it being granular. As a control, we note that baseline blood volume

and response magnitude did not show a similar depth-dependent profile (Figure S2.4), suggesting

that the observed decoding accuracy may be due to variations in capillaries structure within cortical

layers (Adams et al., 2015). An alternative explanation would be that the improved accuracy at

the intermediate depths reflects the underlying neuronal activity, and more specifically the sharper

frequency tuning observed in granular layers (Guo et al., 2012). Importantly, all these results

could be confirmed in single slice recordings, and over several days (Figure S2.5), showing that the
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hemodynamic signal imaged in fUS is reliable enough to decode brain activity on a single-trial basis

within a single experiment.

Figure 2.2: Key features of fUS in awake animals: decoding accuracy, layer effect, and
effective spatial resolution. (a) Left panel: Decoding accuracy over the five frequencies, in
different structures and different craniotomies (see legend). Grey histogram shows the upper limit for
chance (p<10−2, mean ± 2 sem computed over 100 randomized decoding sessions). All structures
showed significant decoding (p<10−2). Right panel: decoding accuracy over depths, computed
from the activity in the AC of 3 different animals (grey plots). All showed a similar profile, with
the accuracy peaking between 400 and 500 µm. The green plot shows the average trend (repeated-
measure ANOVA over depth, p<10−3). (b) Left panel: example of a sharp tonotopic transition
from low to high frequency, in the auditory cortex of Vright (map not smoothed). Scale bar: 1
mm. Middle panel: heatmap of the z-scored tuning curves of the consecutive voxels (shown by
circles in left panel), with the best frequency indicated by a black dot, showing a shift from low
to high frequency preference. Right panel: quantification of the lower spatial limit at which one
can significantly find differences in the responsiveness (upper) or tuning (lower) of two voxels, with
respect to their distance. Grey histogram shows the upper limit for chance (p<5.10−2, 5% percentile
over 50 randomizations). In that specific case, it was respectively 100 µm and 300 µm. The voxels
used in this analysis are the ones within the black contour in left panel, centered on the sharp
transition.

2.4.3 Functional resolution

Next, we took a closer look at the tonotopic organization in different structures to examine how

tuning curves in neighboring voxels change abruptly. This finding exemplifies the ability of fUS

imaging to measure independent information at a very small spatial scale. To quantify the minimal

functional spatial resolution of the technique, we defined a discriminability index between voxels,
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and focused on sharp transition areas (Figure 2.2b left panels). We found that fUS can discriminate

responsiveness of neighboring voxels, with a functional resolution as fine as 100 µm (Figure 2.2b).

Furthermore, we were able to discriminate voxels based on their tuning curves within a distance of

300 µm in as little as 10 repetitions per frequency (Figure 2.2b and Figure S2.6). Importantly, this

is a conservative measure of functional resolution, since it largely depends on the smoothness of

the underlying functional organization itself (tonotopy) and of the number of trials. The functional

resolution described here is thus a lower limit, and could be improved by increasing, for example,

the trial number. These results suggest that fUS can be useful to assess the fine organization of

vascular domains within brain structures and to better understand the functional coupling between

local neuronal activity and the dynamics of surrounding blood vessels, two important questions for

hemodynamic-based techniques (O’Herron et al., 2016; Harrison et al., 2002).

2.4.4 Assessing connectivity between structures

Another fundamental view of brain function and functional organization is revealed by mapping

brain connectivity among various structures. Localizing and quantifying such connections in awake

animals, however, remains technically challenging since tracer injections are not an option, and

fMRI gives only access to indirect, spatially diffuse measures of connectivity strength. Here, we

demonstrate that fUS can be used to probe the functional connectivity between two brain structures

that are far apart: the frontal and the auditory cortices. The frontal cortex (FC) is a region that

has been shown to be involved in top-down modulation of early sensory areas, and in particular of

the auditory cortex (Fritz et al., 2010; Winkowski et al., 2013). To reveal its potential links to the

auditory areas, we electrically stimulated at different points within the FC while recording evoked

hemodynamic responses in the auditory cortex of an awake (slightly sedated) animal (Figure 2.3a).

Importantly, this technique does not require any precise priors on the location and nature of the

terminal projections. By imaging widely in the auditory cortex, we observed evoked activity in the

insular cortex of the pseudosylvian sulcus (PSSC/insula), which was maximal for a certain depth and

position of the stimulating electrode (Figure 2.3b, Figure S2.7). By contrast, there was no evoked

activity recorded in secondary auditory areas such as the PEG (Figure S2.8). We also observed a

decrease in blood volume in the MEG, possibly originating from polysynaptic connections between

FC and A1 (Logothetis et al., 2010; Klink et al., 2017).

From these recordings, we cannot disentangle orthodromic versus antidromic activation.

We therefore anatomically confirmed the existence of such descending projections from FC to
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Figure 2.3: Exploring long-distance connectivity: the example of top-down projections from
dlFC to the auditory system. (a) Ferret brain with localization of electric stimulation (lightning)
and site of fUS imaging shown in (b) (blue plane). A schematic of the electrical stimulation
protocol (details in Materials and methods) is also shown in right panel. (b) FC-AC direct projection
patterns revealed in fUS. Left: fUS imaging plane along the PSSC/insula, showing modulations of
hemodynamic activity in MEG (orange delimitation) and PSSC/Insula (green delimitation) evoked
by FC stimulation (map thresholded at +4 sem). The numbers 1 and 2 are here to help orientation.
Right: %CBV in the 2 regions of interest after FC electric stimulation (highlighted in the left panel)
with respect to the postero-anterior position of the stimulation electrode (0 represents 25.5 mm from
caudal crest, 3 represents 28.5 mm), revealing a hot-spot of connectivity at about 1 mm (i.e 26.5 mm
from caudal crest) (mean ±2 sem). ***: p-value<10−3, **: p-value<10−2, *: p-value<5.10−2..
Scale bar: 1 mm. (c) Ferret brain with localization of virus (tracer) injection site (green circle) with
symbolized projections, and coronal slice represented in (d) (red plane). (d) Anatomical confirmation
of connectivity. Left: bright field combined with fluorescence imaging, showing green fluorescent
FC projections concentrated in the depth of the PSSC/insula and delineated anatomical structures
(scale bar: 200 µm). Right: close-up of the labelled FC projection terminals in the PSSC/insula.

PSSC/insula with independent anterograde virus injections in FC. These injections revealed monosy-

naptic projections that targeted the PSSC/insula (Figure 2.3c–d), consistent with a contribution of

direct projections from FC to A1 to the functional connectivity pattern revealed by the fUS approach.

We also observed FC projections in the Claustrum (Cl in Figure 2.3c), ventro-medial with respect

to the PSSC/insula. Because the neighboring regions have been reported to be multimodal (Bizley

et al., 2006; Bizley and King, 2008), we subsequently explored the responsiveness of the FC-targeted

PSSC/insula to acoustic and visual stimuli. We found this region to be less responsive to broadband
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noise than A1 (~5% instead of 15%), and not driven by visual stimuli (Figure S2.9). Altogether,

this experiment offers a proof-of-concept of how fUS can serve as a tool to characterize large-scale

functional connectivity without sacrificing any resolution. We can point out two key applications

building up on such experiments. First, one may explore connectivity changes in animals, for exam-

ple during different brain states (e.g., sleep vs. awake), or during the course of learning. Second,

and maybe even more importantly, the use of optogenetics can allow a precise mapping between

brain structures, targeting for example specific neuronal subpopulations, or projection patterns. The

development of such tools has just started, but has been so far limited to fMRI (Lee et al., 2010).

2.5 Discussion and conclusion

In this chapter, we have shown that fUS imaging can serve as a technique to record in awake animals a

very stable (over days), high-resolution and simultaneous tonotopic mapping of various brain regions,

be they large, small, superficial, or deep. This was done over multiple scales, from functional tuning

of individual voxels to large-scale connectivity between brain regions. The amplitude of the fUS

responses (~20% in the ferret, and close to 50% in neonates (Demene et al., 2017)) is quite

large compared to typical auditory cortex BOLD responses in fMRI (~5%). This makes mapping

both rapid, compared to the electrophysiological approach with multiple penetrations (Bizley et al.,

2005; Mrsic-Flogel et al., 2006), and precise, as illustrated by the ease with which single-trial

information can be decoded from its high-sensitivity signal, a key feature when it comes to recording

in behaving animals. Furthermore, fUS can be a valuable tool in acquiring broad, yet accurate views

of the functional organization of unmapped brain regions and their connectivity with the rest of the

brain. Finally, fUS imaging can be readily adapted to mobile and highly stable configurations (Sieu

et al., 2015), which will make it ideally suited for behavioral cognitive neuroscience studies requiring

extended observations, as in the characterization of the neural correlates of learning.
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2.6 Supplementary figures

Figure S2.1: Responses to visual and auditory stimuli in the cortex and thalamus. Tilted
coronal slice (30◦ from D-V axis) over the AC and thalamus, showing hemodynamic responses evoked
by a flickering light (green) or a broadband auditory noise (red) (map thresholded at +4 sem). Note
that sound evoked activity in the most anterior part of the LGN can be visible (yellow color). Scale
bar: 1 mm.
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Figure S2.2: Tonotopies in AC, IC and MGB for other animals. (a) 3D reconstructions and
views from above for two other craniotomies, the right side of the one (named V) presented in Figure
1c, and another animal (B). Note the clear double reversal from MEG to PEG to VP in Bright. (b)
Tonotopy for the IC in Vright (left), in which both IC and DNLL are visible, and the MGB in
Vright (right). All tonotopic axis are consistent across craniotomies, even if substantial anatomical
differences can be seen across animals, especially illustrated in the AC. Presented structures are
oriented as tilted coronal sections (30◦ from D-V axis). All individual and converging scale bars: 1
mm.
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Figure S2.3: fUS allows for high recording stability and repositioning over days. (a) Struc-
tural slices (tilted coronal slice, 30◦ from D-V axis, right hemisphere) over days, by repositioning
the probe with a stereotaxic apparatus. Scale bar: 1 mm. (b) Recordings from the same slice were
performed everyday for a long period of time. Each daily slice was repositioned in a vascular atlas
previously obtained in the same animal, same craniotomy. The position is obtained by maximizing
the correlation (R) between the new slice and the previous vascular atlas. Here the heatmap of R
for different days (y-axis) correlated to different A-P regions of the atlas (x-axis) is shown. The star
shows the maximum correlation for each day, and so the repositioning of the new slice (~1200 µm
in that case). The upper panel shows R averaged over days.
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Figure S2.4: Controls for the decoding across depths. (a) Example slice where the different
depths are superimposed on the structural image. The upper part of the cortex was identifiable
by the high density of vessels, while the lower part was approximated based on the end of vertical
blood vessel, and distance to the surface (~1 mm). Note that with this definition, the first upper
layer could accidentally contain some voxels within the pia. Scale bar: 1 mm. (b) Decoding across
depths without focusing on the capillaries (whole spectrum). The same trend (p<10−2) than in
Figure 2.2a is visible, but less peaked and with lower accuracies. (c) Control measures of the %CBV
(average maximum response over all frequencies) and baseline Power Doppler (PD, arbitrary unit) as
a function of depth, indicating respectively the average responsiveness of each depth and its average
baseline CBV. Upper panel: whole spectrum (no filtering). Lower panel: blood speeds above 3.1
mm/ sec were filtered out, as in the main Figure 2.1f.
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Figure S2.5: Single-slice recordings show high decoding possibility on an actual single-trial
basis. (a) Tonotopic organization of a tilted (30◦ from D-V axis) coronal slice of A1, over four
consecutive days. A mask has been applied to focus on the tonotopic area. Scale bar: 1 mm. (b)
PCA analysis over the averaged response for each frequency and all the voxels highlighted in (a), for
the single slice designed by an arrowhead. Plotted here as plain lines are the mean hemodynamic
response (starting from the center at sound onset, and increasing in all five directions), superimposed
on the density of the peak responses at the single trial levels (N = 75 trials per frequency). Each
frequency is designed by its color, and the intensity of the colored shading shows the density of trials
displaying a response at this location. We can clearly see a separation of the different frequencies
on a single-trial basis (reflected in the decoding analysis). (legend continued on next page)
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Figure S2.5: (c) Decoding accuracy as a function of depth (slow speed vessels only). Left: different
depth for the specific slice. Right: decoding accuracy peaks again around -400 µm, thus confirming
that this effect could be observable on a single-slice basis. (d) Similar analysis as in (b), but this
time the PCA is computed over the mean responses averaged over trials and daily sessions. The
density map shows here the density of the peak responses at a single session level, averaged over all
trials. The fact that densities are quite centered around the mean response suggests that all sessions
have similar patterns of activity, and that tonotopic organization is relatively stable. (e) Decoding
analysis as a function of depth, over days. Upper panel: mean decoding accuracy for all sessions
(all blood vessel speeds). Heatmap shows the dependence of decoding accuracy on cortical depth.
Stars show the peak of accuracy for each day, which is summed up in the right histogram showing
the distribution of peak accuracy position. It clearly peaks around -300/400 µm, thus confirming
our results over multiple recordings in the same slice. The blue arrowhead indicates the position of
the slice shown in (c). Far right: mean decoding accuracy as a function of depth, averaged over
days. The heterogeneity in decoding accuracy can be due to many parameters, such as small sample
size and real biological variations.
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Figure S2.6: Resolution quantification in other regions of the brain, and other animals. We
performed the same analysis as shown in Figure 2b, in other regions and different animals. Overall,
the obtained resolution are similar, that is, 100µm for responsiveness and 200-300 µm for tuning,
within only 10 trials. (a) Quantification in the IC of (Bright (10 trials). (b) Quantification in the AC
of (Vleft (10 trials). One can note here the heterogeneity of tunings within a small distance range.
(c) Quantification in the AC of (Sright (20 trials, coronal slice). All scale bars: 1 mm.
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Figure S2.7: Frontal Cortex - Auditory cortex connectivity explored further: cortical depth.
Evoked responses in MEG/A1 and PSSC/Insula as a function of the vertical depth of the stimulation
electrode (mean ± 2 sem, map thresholded at +4 sem). Again, a hot spot of activation is found,
suggesting that the bolus of activation triggered by our electrode does not exceed ~500 µm of a
radius. Here, the 0 is set at the surface of the tissue covering the brain, that can be up to 1 mm
thick. ***: p-value<10−3, **: p-value<10−2, *: p-value<5.10−2. Scale bar: 1 mm.

Figure S2.8: Frontal Cortex - Auditory cortex connectivity explored further: secondary
areas. Scanning over the whole auditory MEG and PEG, showing that responses were evoked only
in the fundus of the sulcus (map thresholded at +4 sem). Scale bar: 1 mm.
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Figure S2.9: Frontal Cortex - Auditory cortex connectivity explored further: sound and
vision. Exploration of the multimodal responsiveness of the area. We played broadband noise (red)
or flickering light (green) while recording the evoked %CBV in the same imaging plane. Scale bar:
1 mm. Left: overall responses for both visual and auditory stimulations (map thresholded at +2
sem). Anatomical regions of interest used for quantification are outlined. Right: mean evoked
responses in these different regions. Note that the PSSC/insula was only weakly activated by sound,
compared to MEG/A1. The part of the visual cortex shown here also presented bimodal responses,
suggesting that this could be part of higher association areas such as area 21a of visual cortex or
posterior parietal cortex. These experiments were performed on the same animal, but different days.
Errorbars show mean ±2 sem. ***: p-value<10−3, **: p-value<10−2, *: p-value<5.10−2.
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Chapter 3

Natural sounds processing

Contributors: Agnès Landemard, Sam Norman-Haigneré & Yves

Boubenec.

3.1 Abstract

How have speech and music shaped the human brain? Many signatures of speech and music

processing have been observed in non-human animals, raising the question of whether there exist

uniquely human mechanisms for processing these two categories of sounds. Humans have non-

primary neural populations that respond selectively to speech and music compared both with other

natural sounds and with synthetic sounds that have matched spectrotemporal modulation statistics

(‘model-matched’ sounds), suggesting selectivity for higher-order structure. Using functional ultra-

sound (fUS) imaging, a cutting-edge high-resolution neuroimaging technique, we tested if similar

regions are present in ferrets.

We measured responses from the auditory cortex of passively listening head-fixed ferrets to

natural and model-matched sounds tested previously in humans. Ferret cortical responses recapitu-

lated many of the response patterns observed in humans. Interestingly, we observed speech selective

regions in the ferret auditory cortex. However, and contrary to the speech- and music-selective

response components observed in human non-primary regions, ferret auditory cortex did not show

selective responses to natural vs. model-matched sounds. These findings suggest that human cor-

tical organization differs from ferrets’ in non-primary auditory cortex due to the need to represent

higher-order structure in speech and music.

Because speech and music are not ecologically relevant sounds for ferrets, we tested whether

71



CHAPTER 3. NATURAL SOUNDS PROCESSING

ferret auditory cortex could discriminate between ferret vocalizations and their corresponding model-

matched versions. We observed differences in animal motor activity for original compared to model-

matched vocalizations, indicating that the animal is able to perceptually discriminate these two

classes of sounds. Our data provided only weak evidence for the existence of brain areas specifically

contrasting model-matched and original vocalizations. This suggests that ferret brains do not rep-

resent high-order acoustic features as strongly as humans do, even for ecologically relevant stimuli.

Further studies should inspect the neural pathways which underlie such processing in ferret brains.

3.2 Introduction

Sensory systems are adapted to extract and represent precise and subtle information from natural

stimuli despite their complexity. However, how auditory cortex encodes this richness of acoustic

features into spatially organized patterns of activity remains poorly understood.

The most frequent and ethologically relevant natural sounds for humans are speech and

music, of which our extensive use is commonly referred to as an illustration of the uniqueness of the

human species. Yet, there are surprisingly few perceptual and neural signatures of speech or music

processing that are known to be specific to humans (Kriengwatana et al., 2015). Perceptually, it was

shown that phoneme category discrimination, a supposedly classic signature of speech processing,

could be performed by trained chinchillas (Kuhl; and Miller, 1975). Moreover, a trained chimpanzee

was shown to be able to discriminate human speech to a certain extent, and its capabilities seem

to rely on acoustic cues similar to the ones humans use (Heimbauer et al., 2011; Fitch, 2011).

Neurally, ferret primary auditory cortex responses are sufficiently rich to encode and discriminate

phoneme classes (Mesgarani et al., 2008). Thus, human speech processing could rely upon general

auditory mechanisms that predated the evolution of spoken language and could be shared across a

large group of mammals.

The neural mechanisms for speech and music perception in humans have begun to be unrav-

eled. Distinct regions in secondary areas of the auditory cortex have been shown to be selective to

speech and music over other natural sounds (Norman-Haignere et al., 2015). Furthermore, Norman-

Haignere and McDermott (2018) showed that this specialization might rely on high-order acoustic

features, beyond simple frequency or spectro-temporal modulation tuning (for example, the presence

of phonemic or melodic structure). The question of whether either property is unique to humans
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remains unknown (questions (1) and (2)).

Beyond the focus of speech or music perception and more generally, natural sounds process-

ing is based on a hierarchy of acoustic features (Theunissen and Elie, 2014). Overall, the different

stages or pathways in auditory cortex that subserve such different levels of processing have proved

difficult to decipher in both human and non-human animals. Indeed, if the large-scale tonotopic

organization of primary areas is well established, how spectral and temporal modulations are encoded

within cortex is not well understood, despite their crucial behavioral importance. Several studies

have suggested that an orthogonal map for temporal modulation encoding in the auditory cortex of

cats (Langner et al., 2009), macaques (Baumann et al., 2015), and humans (Brewer and Barton,

2016). However, this view, in spite of its elegance, is undermined by a high inter-study and inter-

individual variance and is still a matter of debate (Leaver and Rauschecker, 2016). On the other

hand, the encoding of spectral modulations has remained elusive (see Read et al. (2001) however).

Overall, whether spectrotemporal modulations are topographically encoded across auditory cortex

is yet to be characterized (question (3)).

Furthermore, the question of how higher-order features are represented in the auditory cortex

has received little attention, especially in animal research. It is now well established that sensory

cortices have been shaped by the statistics of natural stimuli (Theunissen and Elie, 2014). For

example, the spectrotemporal receptive field of single neurons differs depending on whether it has

been computed on artificial vs. natural sounds (Theunissen et al., 2000). Investigating the processing

pathways within auditory cortex using natural sounds might thus be crucial. However, acoustic

features in natural sounds can be highly correlated, which limits our possibility to use them to test

models of responses. Indeed, a model feature might explain neural responses while not actually

driving them if it is correlated with a second, hidden variable that is itself causally linked to neural

activity. For this reason, most studies have used artificial sounds, where correlations between acoustic

features can be controlled. To tackle this problem with natural sounds, a new computational method

has recently been developed (Norman-Haignere and McDermott, 2018). This approach consists

in designing, for each natural sound, an associated ’model-matched’ stimulus that has the same

average distribution of spectrotemporal modulation statistics, and thus should yield the same time-

averaged response if spectrotemporal tuning underlies the response. Doing so, Norman-Haignere and

McDermott (2018) revealed that human primary auditory cortex responses could be well explained
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by a simple spectrotemporal model (Chi et al., 2005), in sharp contrast with secondary areas that

were only poorly predicted (and thus sensitive to high-order acoustic features). How much of a

simple spectrotemporal model can explain responses across the auditory cortex of animals remains

unclear (question (4)). Furthermore, whether high-order features are processed topographically in

auditory cortex is not known.

Finally, the sensitivity of brain responses to high-order features in humans was particularly

strong for speech and music sounds. It remains unclear whether animals rely on such high-order

features to perceptually discriminate ethologically relevant sounds, such as conspecific vocalizations;

and if so, where in the brain those are represented (question (5)).

These questions have been, so far, hard to address. In particular, accessing human auditory

cortex has essentially been possible with fMRI, while non-human animal studies have focused either

on electrophysiological recordings in small animals (e.g., Read et al. (2001)), or fMRI in macaques

(e.g., Petkov et al. (2008)). Electrophysiology brings fundamental information to the question of

sounds processing; however, it lacks a global view of the encoding throughout the cortex, and

comparison with fMRI studies can be more difficult. If fMRI studies in macaques have provided im-

portant advances for our understanding of vocalization encoding (Petkov et al., 2008; Rauschecker

and Scott, 2009), the exact acoustic features on which these processing streams are based is still

to be characterized, and the field would greatly benefit from a larger variety of species to draw

comparisons with. However, in smaller animals, the use of fMRI has been limited by its low spatial

resolution. No study, to our knowledge, has managed to examine the large-scale encoding of natural

sounds in small animals, and perform cross-species comparisons.

The main goal of this study was to provide new clues for the aforementioned questions, which

are reformulated below:

(1) Is selectivity for speech and music compared with other natural sounds specific to humans?

(2) Is the selective response for natural speech compared with the synthetic controls specific to

humans?

(3) How are spectrotemporal modulations represented at the surface of the ferret auditory cortex?

(4) How much can a spectrotemporal model explain neural responses across cortical areas in non-

human animals?

(5) Do non-human animals also rely on high-order features for vocalization processing?
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We used functional UltraSound, a newly developed technique based on blood flow imaging

(Macé et al., 2011; Bimbard et al., 2018), to investigate the encoding of speech, music and en-

vironmental sounds, as well as conspecific vocalizations in the ferret auditory cortex. In order to

decipher the specific contribution of different acoustic features to the encoding of natural sounds,

we used the computational approach developed by Norman-Haignere and McDermott (2018), that

contrasts the brain responses to original and model-matched stimuli that match part or all of a set

of acoustic features. We then used voxel decomposition in order to identify a low number of reliable

and interpretable ’components’, shared across animals, whose weighted combination explained voxel

responses. In a first study, we presented the same set of sounds as in Norman-Haignere and McDer-

mott (2018) to awake, passively listening ferrets, and recorded the activity over their auditory cortex

using fUS imaging. Doing so, we were able to show that ferret brain actually showed a complex set

of components, among which we could surprisingly find one selective for speech. Overall, human

brain responses were largely predictable by and similar to ferret brain responses. However, our study

revealed that only in humans were the responses to speech and music dependent on high-order fea-

tures. In a second study, we explored the organization of the encoding of ferret vocalizations. We

showed that ferrets were able to perceptually discriminate most model-matched and natural stimuli,

and especially ferret vocalizations. Interestingly, however, the activity of auditory cortex showed lit-

tle, if any, difference of response between artificial and natural vocalizations. The magnitude of the

differences we observed, in addition to the fact that strong movement-related activity was observed,

were far from the magnitudes observed in humans for speech and music.

Thus our study suggests that the auditory cortex of humans but not ferrets strongly relies

upon high-order features for speech and music processing. Furthermore, ferret brains were showing

little specificity for high-order acoustic features even for ferret vocalizations, despite a perceptual

discrimination capacity.

3.3 Material and methods

3.3.1 fUS imaging

This section was developed in chapter Mapping the auditory hierarchy. Brains were scanned in the

coronal plane, with a spacing of ∼400 µm between slices. Craniotomies could be performed several

times on the same side and animal, when tissue and bone regrowth were shadowing brain areas of
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interest. Experiments were performed in two ferrets (A. and T.), across three hemispheres in both

studies (Aleft, Aright and Tright in Study 1, Aleft, Tleft and Tright in Study 2).

3.3.2 Evaluating the tonotopic organization using pure tones

Prior to all experiments, the tonotopic organization of the auditory cortex was assessed as in chapter

Mapping the auditory hierarchy (Bimbard et al., 2018). In short, the responses to 2-s long pure

tones of 5 different frequencies were recorded in coronal slices, spaced by 400µm, that spanned the

whole craniotomy. We then used these landmarks to establish the delimitations between primary

and secondary areas in all hemispheres, as well as to compare them to those obtained with natural

sounds.

3.3.3 Protocol for sensory response acquisition

Auditory responses were evoked by playing sounds through calibrated earphones (BRAND, 65 dB)

while recording hemodynamic responses via fUS imaging. Sounds were presented in random order,

and each sound was presented 4 times. The protocol for sound presentation was as follows: 7 s

of silence (baseline), then 10 s of sound followed by 3 s of silence (return to baseline). Trials were

following each other with only a little random jitter in time of about 1 to 3 s, and fUS acquisitions

were synchronized with the beginning of each trial.

Study 1: Full natural sounds experiment

In this first study, the full sound list comprised 36 sounds ranging from speech and music, to envi-

ronmental sounds (the same as in Norman-Haignere and McDermott (2018)), with the addition of 4

ferret-related sounds: fights calls, infants calls, fear vocalization (shocks), and play calls (dooking).

Thus, we used 40 different original sounds, and their 4 model-matched counterparts (200 sounds in

total). Contrary to Norman-Haignere and McDermott (2018), sounds were presented for 10s and

were not chopped. This was made possible by the fact that fUS imaging produces no noise while

recording, contrary to fMRI. Each slice was acquired on a single day.

Study 2: Ferret vocalizations experiment

In this second study, we presented 60 sounds mixing speech extracts (14), music extracts (16),

ferret fight calls (5), single-pup calls (17) or multiple (overlapping) pup calls (8). Because what
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we were interested in was mainly the encoding of high-order features, we presented only the full

spectro-temporally matched models and the original sounds, thus making 120 sounds in total. Ferret

vocalizations were obtained by gathering datasets from different labs (our own, Stephen David’s and

Jennifer Bizley(s laboratories). Due to the lower duration of the total experiment, two sessions could

be performed on a single day (thus recording activity from two brain slices).

It is important to note that ferret A. had pups before, while ferret T. has not known moth-

erhood.

3.3.4 Video analysis

In Study 2 as well as part of Study 1, videos of the head of the animal were recorded. Global

movement was obtained by taking the average over the full image (across voxels) of the absolute

value of the derivative of the intensity value in each voxel. The movement amplitude for each sound

was computed as the mean movement during the response period (3 to 11s after sound onset), from

which we subtracted the baseline movement and which we renormalized by this baseline.

A higher-dimensional encoding of movement was obtained by performing PCA on the raw

image and examining the 30 first PCs.

3.3.5 Signal processing, and main analysis

The procedures used to analyse the data in this chapter differs substantially from chapter Mapping

the auditory hierarchy. Here, the richness of the stimulus set (200 stimuli in Study 1, 120 in Study

2) allowed us to perform more complex analysis, as well as more advanced denoising procedures to

ensure that activity patterns are optimally accessible.

Interpreting the activity patterns in a large number of voxels, sometimes across individual

subjects or animals, can be a difficult exercise. Different approaches have been proposed to reduce

the dimensionality of such datasets, and aim at providing a low number of interpretable and robust

components, defined by their response profiles as well as their anatomical organization in the brain.

Our procedure combines different approaches in order to obtain such components. First, we deploy

a denoising procedure, that aims at focusing on the smallest number of dimensions possible, these

being selected as being the most reliable, and the most shared across animals (subsection Denoising

procedure). Then, we orient the data in this reduced space so as to obtain the most interpretable

components (subsection Independent Component Analysis).

All analysis were performed on a hand-designed region delimitating the auditory cortex.
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Denoising procedure

Our denoising procedure combines two approaches: focusing on the components, within each

recorded hemisphere, that are the most reliable across repetitions of the same stimulus set, and

focusing on the components that are mostly shared across recorded hemispheres.

To focus on the most reliable components of the data, we used a method inspired from

Denoising Source Separation (DSS) to clean up the data (de Cheveigne and Simon, 2008). In short,

this method provides a way to decompose the brain signal in a set of components ordered in terms

of decreasing susceptibility to a certain bias, which will be in our case the reproducibility of the

responses. A threshold then allows us to remove the components that are the least reproducible.

In order to extract the components that were shared across animals, we coupled the DSS

method with Multiway Canonical Correlation Analysis (MCCA) (de Cheveigné et al., 2019). In short,

this method has been developed initially to the analysis of brain responses to stimuli presented only

once, but on many subjects. In that case, the heterogeneity of the spatial arrangements of responses

across electrodes or voxels between different subjects reduces a lot the quality of the signal when

averaging coarsely across subjects. MCCA provides a way to focus on the components that are

common to all subjects.

We performed these analysis using the full timecourse of the responses, since fUS allows us

to record during the full duration of the sounds. The idea behind this choice was to possibly extract

and differentiate components also based on their temporal structure.

In a first step, we centered the data the following way. For each sound presentation, we

subtracted the baseline for each voxel, before dividing by the value over the full experiment (we

thus obtain a normalized value for each voxel, that can be expressed in % of change in cerebral

blood volume: %CBV). In order to account for global variations of blood perfusion across time in

single slices, we then subtracted the mean %CBV over all voxels in each slice at each timepoint,

and re-subtracted the baseline for each voxel. This also allowed to control for possible differences

of overall brain response across days and across hemispheres.

In a second step, we excluded part of the data (~25% of the sounds). The left out sounds

were equally shared across categories. Testing set was then left untouched.

In a third step, we performed the DSS per se on the training set. We whitened the data

using SVD on a single slice basis (keeping all components) before averaging across sound repetitions

(bias filter for DSS). We then performed SVD on the window of response to the stimulus in order

to extract preferentially the components that showed maximally reliable responses.
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In a fourth and last step, we concatenated the reliable components from each animals, and

performed SVD on this concatenated matrix to obtain the components that were mostly shared

across animals. Finally, we selected only the top K components in the full dataset to obtain a DSS

denoised dataset. K is then the number of components implemented in the ICA.

Independent Component Analysis

After denoising the data, we performed Independent Component Analysis (ICA) decomposition

across all stimuli, using the same method as in (Norman-Haignere et al., 2015). The timecourse of

the response was also included in the ICA. Thus, we could obtain Independent Components (ICs)

that were defined by the overall timecourse of their response to each sound, as well as their spatial

patterns across voxels.

The optimal number of ICs (K∗) to implement was obtained using a crossvalidation method

(figure S3.2-). For different values of K, an ICA model was trained on the training set, and the

testing set was used to obtain the goodness of the model. Explicitely, half of the testing set (defined

as the odd repetitions on all test sounds) were averaged and denoised using only the components

obtained with the ICA. Then, we computed a measure of the goodness of the model prediction (R2)

across all sounds, timepoints and voxels by comparing this prediction to the other half of the testing

set (defined as the even repetitions on all test sounds). This analysis was performed 4 times in order

to use all the sound in training and testing sets. The average R2 was then examined to obtain the

K yielding the optimal reconstruction (then called K∗).

To evaluate with a single value the magnitude of the response of each component to each

sound, we projected, for each component, the response timecourse of each sound on the mean

response timecourse over all sounds to this component. This approach relies on the hypothesis that,

on each component, each sound evokes a response with a timecourse that is a scaled version of a

mean timecourse. This looked, by eye, true for most of the components.

In order to identify the components that were linked to movement, we simply correlated this

single-value response and the averaged movement of the animals for each component.

Normalized Squared Error and NSE maps

The Normalized Squared Error (NSE) and the noise corrected NSE were computed as in Norman-

Haignere and McDermott (2018). In short, the NSE take a value of 0 if the response to natural and

model-matched sounds is identical, and 1 if there is no correspondence between responses to natural
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and model-matched sounds. The noise-corrected version takes into account the possible difference

in overall response reliability across voxels (or components).

To obtain the NSE maps in the ferret (fig. 3.1), we first denoised the data using the full

DSS/MCCA procedure (see subsection Denoising procedure). By looping over all the different folds

and by keeping only the first K∗ components (see subsection Independent Component Analysis

- the movement-related component was also projected out), we obtained a denoised pattern of

response for each and every sound presentation. Finally, we computed the time averaged response

of each voxel to each sound over the response window (3s to 11s after sound onset). We used these

time-averaged responses to evaluate the noise-corrected NSE over different models.

Estimating the tuning of single voxels

In order to explore the topographical organization of spectrotemporal modulation encoding in the

cortex, we estimated the prefered frequency, rate (temporal modulation) and scale (spectral modu-

lation) of each voxel. To do so, we first computed the correlation coefficient of the voxel’s response

and the frequency content across all sounds for each frequency bin. The best frequency was selected

as the one yielding the maximal correlation coefficient. Then, after regressing out the contribution of

frequency to the voxel’s response, we computed a similar correlation coefficient between the voxel’s

response and the rate and scale content across all sounds. The best rate and scale were chosen as

the coordinates in the rate/scale space yielding the maximal correlation coefficient.

Predicting human components from ferret responses

In order to investigate how much of the human responses were comparable to ferret responses, we

performed a linear prediction from ferret components to human components.

To do so, we selected the optimal K∗ components obtained with the DSS/MCCA/ICA

analysis across all ferrets. The component in the ferret that was mainly due to movement (figure

S3.6) was discarded from the analysis. The human components used as prediction targets were the

same as in Norman-Haignere and McDermott (2018).

The prediction from ferret components of human components was performed using a 9-fold,

3-way cross-validated regression. The data is first split into 9 folds, one being left out for testing and

the rest used for training. The weights of the regression analysis were estimated from the training

set, and then applied to the features of the test data. The weights were themselves chosen using

9-fold, 2-way cross-validation applied to the training data. Regression weights were obtained by
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minimizing least-square error. All the sounds were used as test sounds. The final predictions used to

be contrasted with the original responses regroup the sounds from the testing set of different runs,

in a cross validated approach.

Finally, we defined the shared variance as the part of human responses that were explained

by the ferret components (i.e., the prediction itself), and the unique variance as the residuals (i.e.,

the original from which we subtracted the prediction).

Estimating the encoding pattern

We wanted to estimate the timecourses with which the representation of the sounds evolved (figure

S3.3). To do so, we computed the cross correlation of the activity pattern evoked by each sounds.

We thus obtain a representational dissimilarity matrix (RDM) (Kriegeskorte et al., 2008). To evaluate

the stability of the representation across time, we then computed a second-order RDM based on the

correlation of the activity-pattern based RDMs across time.

Decoding sound identity

We wanted to explore how much information did brain responses contain about stimulus identity,

and how the representation of these stimuli evolved over time.

To estimate the discriminability between sounds, we used a basic correlative decoder. To

maximize decoding accuracy, we used the optimal ICA components as the decoding space, and

estimated how well we could identify left out sounds amongst all the different sounds. In order to

cross-validate the decoding procedure, we split each tested sound into an equal number of repetitions

(2 and 2). We used the average over the 2 first repetitions to compute an activity pattern in the

ICA space associated with each sound in the testing set. Combined with the activity patterns of the

sounds that were part of the training set, this provided us with a bank of possible activity patterns in

response to all sounds. Then, we used the average for the 2 last repetitions as a ’unknown’ pattern

that we wished to identify. By computing the correlation of the ’unknown’ activity pattern with

all the other activity patterns (for each other sound, both in the training set, and the testing set),

we were able to identify the activity pattern with which it correlated the most. We thus obtained

a decoding accuracy defined as the number of true identification over the total number of choice

(i.e., of sounds). By looping over all the possible combinations of train and test, all the sounds

were going through this decoding procedure. Further studies should use a bootstrap procedure in

order to evaluate the overall significance of the decoding, and the significance of differences between
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conditions. We provide this figure to illustrate the overall trend in the data.

An attempt at movement cancellation (Study 2)

In order to cancel out the artefactual contribution of movement to the fUS signal, we used a MCCA

approach to uncover the components common to both the fUS signal and the movement of the

animal. This step was performed before any denoising. In short, the goal of MCCA was to find a

subset of components that were shared between the global movement of the animal, and the signal

in the brain.

To do so, we whitened the data by performing SVD on both the raw video and the full

brain Power Doppler throughout the whole session on a single slice basis. Then, we selected the

first 30 PCs of each and performed SVD on the concatenation of the two sets of components

(Dmcca = [Uvideo, Ubrain], Uvideo (resp. Ubrain) containing the timecourses of the first principal

components in the video (resp. the brain signal)), to retrieve the components that were shared

between brain signal and the video data. The timecourses of these shared components are Umcca

(from the decomposition Dmcca = UmccaSmccaV
′

mcca). In order to examine the quality of the common

subspace, we projected independently both Uvideo and Ubrain on their respective weights in Vmcca

(Vmcca can be split in two, one set of weights corresponding to the video, the other to the brain

signal). We then computed the NSE between the two projections and selected only the components

that had a NSE below 0.8, which we interpreted as the transition from reliably shared to unreliable

components. Finally, we projected out all these shared dimensions from the data.

3.3.6 Display

Views from above were obtained by computing the average of the variable of interest in each vertical

column of voxels from the upper part of the manually defined cortical mask.

3.4 Results

3.4.1 Study 1: Natural sounds processing in ferrets vs. humans

The main goal of our first study was two-fold. First, we wanted to explore how much of the brain

responses of awake ferrets, as assessed by functional UltraSound (fUS), could be explained by a

standard bio-inspired model of acoustic processing (Chi et al., 2005) (question (4)). Doing so,
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we wanted to uncover the different pathways that underlie the hierarchical processing of acoustic

features within ferret auditory cortex (question (3)). Second, we wanted to draw a comparison

between this organization and the human auditory cortex’s, in order to reveal the features that were

either shared across species, or unique to humans (questions (1) and (2)).

We measured fUS responses in the ferret brain to 40 different stimuli and their model-

matched counterparts, across primary and secondary areas of the auditory cortex. Stimuli were

drawn from different categories, such as human speech, music, or environmental sounds (Norman-

Haignere and McDermott, 2018), with the addition of ferret calls. In order to decipher the contribu-

tion of each acoustic features, we hierarchically matched different aspects of the model: frequency

content (cochlear), frequency and spectral modulation content (specmod), frequency and tem-

poral modulation content (tempmod), or full frequency and spectro-temporal modulation context

(spectempmod).

Full spectro-temporal model explains most of the fUS responses across ferret auditory

cortex

In a first approach, we studied the global similarities of the responses between original and model

matched sounds. To do so, we used a single-voxel approach and contrasted the responses to the

original sounds and their associated model-matched in each voxel. Because single voxel responses

showed a low reliability at first, we used a denoising approach to extract reliable components from

the data and reduce its dimensionality (see section Normalized Squared Error and NSE maps in

Material and methods, and de Cheveigne and Simon (2008)).

Figure 3.1-a shows the denoised response to original sounds of two single voxels, taken ei-

ther in the high-frequency primary auditory cortex or in the low-frequency area between primary

and secondary areas of one ferret (coordinates shown in 3.1-b). FUS imaging allowed us to record

brain activity during the presentation of the sounds – an information that is not available with

fMRI. Alongside, we show the average response of these same voxels to the original vs. the syn-

thetic sounds matching different levels of complexity. Adding levels of complexity to the model

yielded better and better comparison, up to fully well predicted responses in the case of the full

spectro-temporal model, for both voxels. In order to quantify the extent with which each models

could explain the responses to natural sounds across the whole auditory cortex, we compute in each

voxel the noise-corrected Normalized Squared Error (ncNSE) between original and model-matched

sounds on the denoised dataset. In short, the NSE takes a value of 0 when the two variables to
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Figure 3.1: Original and model-matched natural sounds evoked similar responses across
the ferret auditory cortex (Study 1). (a) Responses for two example denoised voxels (their
position is shown in (b)). Left: Timecourse of the denoised responses (mean response over all
sounds (thick black line) and to each individual original sound (thin colored line). Black bar shows
sound presentation. (legend continued on next page)
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Figure 3.1: The actual shape of the timecourse may be modified by the denoising procedure and
might not represent exactly the actual response timecourse of the voxels. The relationship between
the different sound-evoked responses, however, is preserved. Right: Responses to original vs. model-
matched sounds. The response to each sound was obtained as the average response in the window 3
to 11s after sound onset. Noise corrected Normalized Squared Error (ncNSE) is shown. (b) ncNSE
for each model (cocheal, temporal, spectral, spectrotemporal) for 2 animals. It represents a view
from above of the sylvian gyri which contains auditory cortex. Dashed thick lines represented the
supra-sylvian sulcus (sss) and the pseudo-sylvian sulcus (pss) that delimit auditory cortex. Boundaries
for the different functional areas (dashed thin lines) are based on the tonotopic organizations. A1
and AAF are primary areas, while AEG, and PEG (PPF and PSF) are secondary areas. (c) ncNSE
maps for a human (taken from Norman-Haignere and McDermott (2018)). LH: left hemisphere;
RH: right hemisphere. White line delimits primary auditory cortex.

compare (here model-matched vs. original sounds evoked responses) are identical, and 1 if they

are uncorrelated. The ncNSE takes into account the experimental noise (i.e., test-retest reliability)

for correcting NSE values. In the two example voxels, the ncNSE well quantified this increase in

predictability by the model (thus shown by a decrease in ncNSE). We computed ncNSE values for

all voxels throughout the auditory cortex (figure 3.1-b). As in humans (figure 3.1-c), adding more

features progressively decreased the NSE values across the map (thus showing better predictions

of the models). Nevertheless, and contrary to humans, ferret responses could strikingly be largely

predicted by the full spectrotemporal model in both primary and secondary areas (question (4)).

This suggests that ferret brain responses might rely on simpler acoustic features than humans.

The topographic organization of spectrotemporal modulation tuning is poorly known (ques-

tion (3)). By taking advantage of the large number of sounds in our study, we computed the

tuning of each voxels for frequency, spectral modulation and temporal modulation (see Material and

methods) (figure S3.1). The maps obtained for frequency tuning were largely coherent with those

obtained with pure tones (data not shown). Strikingly, the encoding of both spectral and temporal

modulations was highly topographic. Notably, we observed that high frequency regions were also

tuned to high rates, as in Santoro et al. (2014). The relationship with the scale maps was harder to

interpret. Moreover, the temporal modulation tuning map did not appear to be orthogonal to the

frequency tuning map.

Ferret auditory cortex is highly organized and contains speech-selective components

This difference in model predictability between humans and ferrets could stem from the fact that

ferret auditory cortex responds very differently to the set of sounds we used compared to humans.
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Indeed, Norman-Haignere and McDermott (2018) have shown that most of the responses that

were unexplained by the cortical model were actually responses to speech and music. These two

categories are behaviorally fundamental to humans, and appear as fundamental processing streams

in the human auditory cortex (Norman-Haignere et al., 2015). We thus wondered whether such

streams were unique to humans, or could be observed in non-humans animals.

To uncover such pathways, one has to make sense of the overly complex, high-dimensional

structure of the brain response patterns. Moreover, because fUS is a low-resolution high-sampling

method, spatially overlapping yet functionally different neural populations can be hard to retrieve

using standard, univariate methods.

Here, we used a computational method to infer the latent structure of the data, and reduce

it to only a few reliable and meaningful components that can be linearly combined to explain the

voxels’ responses (figure 3.2). We obtained these components with a two-step method. First, we

used a Denoising Source Separation (DSS)- and Multiway Canonical Correlation Analysis (MCCA)-

based approach to denoise the data (see section Denoising procedure in Material and methods). In

short, DSS allowed us to extract the components that showed most reliable responses to each sound.

MCCA allowed us to extract the components that were mostly shared across ferrets. Second, we

performed Independent Component Analysis to obtain a minimal set of meaningful components, as

in (Norman-Haignere et al., 2015). Each component was thus defined as a certain set of responses

to every sound, and a certain set of weights that represented the contribution of each component

to explaining the response of each voxel. The optimal number of components (K=13) was found

using cross-validation (figure S3.2). Importantly, this method is hypothesis-free: it does not rely

on any assumption, e.g., on the difference between model-matched and original sounds, or on the

categories of sounds. It should thus reflect natural structure in the data.

Unlike Norman-Haignere et al. (2015), we included response timecourse in this method, in

order to possibly disentangle components that could show different temporal dynamics, and possibly

exclude artefactual components (ICA is also often used as a denoising procedure in fMRI).

Figure 3.2 shows a selected set of components that were obtained through this method.

The components obtained were highly reliable, as estimated by the low NSE values for test-retest

comparisons on the left-out set of sounds (figure 3.2-a, inset). Interestingly, their timecourses was

highly similar, showing an onset- and an offset peak, flanking a plateau (figure 3.2-b).

In order to determine what drove these components, we measured the correlation between the
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Figure 3.2: Ferret brain exhibits organized responses based on acoustic features. Four
selected ICs are represented. (a) Timecourse-projected response profiles for each component, or-
dered by response magnitudes (arbitrary unit). Only the 40 original sounds are represented. Colors
correspond to the different categories of the sounds, similarly to Norman-Haignere and McDermott
(2018) (fuschia corresponds to the added ferrets sounds). Inset: test-retest response amplitude
taken from the testing set of sounds, and quantified with NSE (all models and original). (legend
continued on next page)
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Figure 3.2: (b) Timecourse of the responses. Thick black line: average over all the responses (both
original and model-matched). Thin colored lines: response for each individual sound (only the original
sounds are represented). Black bars corresponds to the sound presentation. (c) Correlation of the
response with basic acoustic properties of the sounds. Left: Correlation of component response
profiles with energy in different frequency bands. right: Correlation of component response profiles
with spectrotemporal modulation energy in the cochleograms for each sound.

response and several low-level acoustic features, such as frequency and spectro-temporal modulations

(figure 3.2-c). Several components (mostly the most reliable ones) showed responses profiles highly

driven by these acoustic features. Component f1 (f for ferret), for example, was highly driven by low

frequency sounds, while Component f2 was mainly driven by high-frequency sounds. Their spatial

weights were moreover concentrated in low- and high frequency regions, as assessed by pure tone

responses (figure 3.3-a, b). Their response profile bore lots of resemblance to human Component h1

(low frequency) and h2 (high frequency) from Norman-Haignere et al. (2015). Strikingly, Component

f3 showed a high selectivity for speech sounds, in a similar way as human speech Component h5

(question (1)). It was mainly tuned to the specific properties of speech, for a temporal modulation of

approximately 3Hz and spectral modulation of 0.5 cycle/octave (Singh and Theunissen, 2003). This

component was found in both primary and secondary areas (figure 3.3-b). Note here that we use

loosely the term ’selectivity’, in the sense of maximally responding to a certain category of sounds

among all sounds that were presented. Finally, Component f4 was highly tuned to spectro-temporal

modulations, being suppressed by high (>8Hz) rates. It was mainly located in PEG’s PPF in two

out of the three hemispheres.

We did not display here all the components, because not all of them made sense at first

sight – and detailing them all will not serve the purpose of this study. In short, among the rest of

them, some were finely tuned to other ranges of acoustic features (such as medium frequency) while

others participated to explaining the overall timecourse of the responses or its differences across

regions. One component was showing high responses to ferret calls, and was mainly explained by

the animal’s stereotyped movement (see section Ferrets behaviorally discriminate model match vs.

original sounds in Results, and figure S3.6).

We then set out to explore the responses to original vs. model-matched sounds along each

of these functional components (figure 3.4). Again, increasing the level of complexity of the model

improved the prediction for all components. Among components, the high frequency component f2

was already well predicted by the cochlear model (NSE = 0.17), but the full model still significantly
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improved the prediction (to NSE = 0.06, p-value<10−3, paired Wilcoxon test) (figure 3.4-b). On

the contrary, Component f4 was well predicted only by the full spectro-temporal model, with a large

gap of accuracy between the partial and full models (from NSE >0.5 to NSE = 0.03, p-value<10−3,

paired Wilcoxon test) (figure 3.4-d). In humans, the responses to speech along the speech-selective

component could not be well predicted by model-matched stimuli, suggesting that processing along

this stream relies on high-order acoustic features (Norman-Haignere and McDermott, 2018). In

the ferret, we observed that speech Component f3 was fully explained by the full spectro-temporal

model (NSE = 0.08, similar to the test-retest NSE = 0.04) (figure 3.4-c). It thus suggests that this

component relies on the specific basic acoustic features of speech.

These observations suggest that our method allowed us to uncover components of the ferret

Figure 3.3: Components are spatially coherent and clustered, and distributed throughout
cortex. (a) 3D view of the tonotopic organization of one hemisphere, as assessed with pure tones
(left), as well as the spatial organization of two components, the high-frequency component (middle)
and speech-selective component (right). Scale bar: 1 mm. (b). View from above for the 4 selected
components and the three different hemispheres.
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Figure 3.4: The full model can explain a large part of the ferret brain responses. In each
plot is represented the relationship between the timecourse-projected responses to original stimuli
versus each of the different model-matched stimuli. If a model perfectly predicts the brain responses,
then all sounds should be aligned on the diagonal (red dashed line). Far right: quantification of the
Squared Error between the responses to original and each of the model-matched sounds. We did not
use NSE here so as to statistically compare the prediction error across models. Errorbars show mean
±2 sem. Paired Wilcoxon test, ***: p-value<10−3, **: p-value<10−2, *: p-value<5.10−2. (a)
Component 1, low frequency specific. (b) Component 2, high frequency specific. (c) Component
3, speech selective. (d) Component 4, spectro-temporal modulation selective.

data that were highly structured, and that bore lots of similarity with human components. Indeed,

ICA decomposition naturally revealed components tuned to frequency as well as specific spectrotem-
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poral modulation contents (question (3)). This suggests that approaches using only natural sounds

could well reveal speech or music ’specific’ streams in animal auditory cortex (question (1)). How-

ever, we could not find components for which responses to speech and music sounds could not

be predicted by the full spectrotemporal model. Thus, only a stimulus controlling for several low-

order acoustic features (full model-matched stimuli) allowed us to clearly establish the differences in

processing between ferrets and humans.

Inter-species comparison of acoustic space representation

The component analysis observed in the previous section suggests that ferret brain, as seen through

our methods, does not display processing streams for high-order features such as those exhibited by

speech and music sounds (question (2)). In order to further test this hypothesis, we directly tried

to predict humans components from ferret data. Contrary to the previous analysis that relied on

analogies in the intrinsic structure of the human and ferret brain responses, this new analysis tested

more directly for a possibility to find the patterns of response of human components in the ferret

data.

We thus linearly predicted each human component from the optimal set of ferret components,

using cross-validation (figure 3.5). The part of the human responses that was predictable by ferret

data was considered as being shared across species, while the residuals were considered as being the

unique part of the response specific to humans.

Overall, ferret cortical responses recapitulated most of the human component’s response

profiles. Cross-validated predictions yielded high accuracy, as exemplified in figure 3.5-a, suggesting

that a large part of the auditory responses in humans were, in a way, similar to ferret auditory

responses. In order to identify the specificity of human responses, we computed the reconstruction

error for each subgroup of sounds, either original or model-matched. Several aspects can be high-

lighted from this analysis. The most striking error in prediction came from human Components h5

and h6, of which specific responses to original speech and music respectively could not be predicted

from ferret data, whereas predictions were accurate for model-matched speech and music sounds

(p-value<10−2, paired Wilcoxon test). This suggests that real speech and music specific high-order

features could thus not be found in any linear combination of the ferret components to the same

extent as in humans (question (2)).

Another way to look at this is to investigate what part of the variance is shared across species

(i.e., what is actually predicted of the human responses by ferret data) vs. what part is unique to
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Figure 3.5: Ferret brain responses recapitulate most of the human brain responses, ex-
cept high-order specialization for speech and music. (a) Predictions obtained through cross-
validation on all the sounds. Six panels represent the six human components. (legend continued on
next page)
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Figure 3.5: Within each panel: Left: Relationship between the original magnitude of response
and the ferret data-based predicted responses for each human component. Right: Quantification
of the error in prediction for each category of sounds, for original (top) and full model-matched
(bottom) sounds. The significance for pooled speech (all languages) and pooled music (vocal and
non-vocal) sounds are shown with a colored bar above the concerned bars. The significance of the
difference in prediction error between model-matched and original sounds across categories is shown
by transverse lines linking the categories across the two subplots. Errorbars show mean ±2 sem.
Paired Wilcoxon test, ***: p-value<10−3, **: p-value<10−2, *: p-value<5.10−2. (b) Magnitude
of response for original vs. model-matched sounds for both the part shared across humans and
ferrets (white background, defined as the prediction itself), and the part unique to human (light red
background, defined as the residuals of the predictions).

humans (i.e., the residuals of the prediction) (figure 3.5-b). When separating those two aspects, we

observed that within the part of the variance that was shared, original and model-matched sounds

showed similar responses, even on human Components h5 and h6 (left panels for each component

in figure 3.5-b). Furthermore the part of the variance unique to humans, quantified by the residuals

of the predictions (right panels for each component in figure 3.5-b), contains both the error of

predictions due to noise in the cross-validation procedure and true human-specific responses. Speech

and music stimuli exhibited a distinct pattern of residuals on human Components 5 and 6, with large

differences of response amplitudes between original and model-matched versions. This indicates that

the large selective response to the high-order features of speech and music was mostly specific to

humans and not shared with ferrets. We note here a small contribution of the ferret prediction to

the difference between original and model-matched sounds for Component h6. This could stem from

either true responses or artefactual signals, and is further discussed in the Discussion.

Several more marginal observations can also be drawn. First, an error in prediction was also

visible for original music sounds along Component h1, which mainly loads in human primary audi-

tory cortex (and not for model-matched sounds, the difference in error prediction being significant

p-value<10−2, paired Wilcoxon test). This suggests that high-order processing is actually already

happening in human primary auditory cortex (this is also already visible in figure 6 of Norman-

Haignere and McDermott (2018)), while being mostly absent from ferret auditory cortex. Along

these same components, speech sounds were inaccurately reconstructed for both their original and

model-matched. This observation was also true for Component h4, which is distributed near the

borders of the primary auditory cortex. Second, errors in prediction could also be observed for

model-matched and original speech sounds along Component h1, as well as along Component h1,

h4, h5 and h6 for model-matched speech or music when predicting only model-matched sounds.

These could reflect the differences in global tuning of the cortex of humans vs. ferrets to the spe-
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cific low-level acoustic properties of speech and music, or stem from hidden speech- or music-like

high-order structure of full model-matched sounds.

3.4.2 Study 2: Encoding of ferret vocalizations in ferret auditory cortex

Because speech and music are sounds that are relevant to humans, but not to ferrets, we wondered

whether the lack of evidence for higher-order processing observed with our analysis reflected the

actual behavioral relevance of the sound set (question (5)). We thus probed auditory cortex responses

with a more diverse set of ferret vocalizations and their associated full-model-matched sounds.

Ferrets behaviorally discriminate model match vs. original sounds.

Model-matched and original stimuli sound really different to humans ears. We first explored whether

ferrets behaviorally discriminate the two.

To investigate the natural responses of the animal to different sound categories, we filmed

the behavior of the animal while listening to the sound sets that comprised both speech, music, and

ferret vocalizations (figure 3.6). We then quantified the behavioral response of the animal simply

as the normalized quantity of movement during the presentation window of the sound. Strikingly,

ferrets displayed much larger movement in response to ferret vocalizations (and especially fight calls)

than to speech or music (p-value < 10−3, Wilcoxon test). Stereotyped movement was still present

on those two categories.

When contrasting the behavioral response to original vs. model-matched vocalizations, we

observed a much stronger movement on the original versions (for both fight and kit calls). This

observation suggests that animals can behaviorally discriminate original and synthetic sounds, even

when fully matched (question (5), perceptual aspect). Their natural reaction thus gives us a lower

bound on their discrimination threshold. Interestingly, this was also true for music sounds, were

ferrets responded more to natural than synthetic versions of the sounds. This is in contrast with

the fact that only a small difference, if any, could actually be observed in the functional responses

of the brain. We thus wondered whether this was also the case for ferret vocalizations.
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Figure 3.6: Ferrets naturally discriminate between sound categories and original vs. model-
matched sounds. (a) Profile for the amplitude of movement (arbitrary units) across original sounds,
ordered by response size. The profile for the two ferrets, averaged across all sessions, is shown. (b)
Timecourse of movement (arbitrary units) averaged over sounds for each category and type (original:
solid lines, full spectro-temporal model-matched: dashed lines), and averaged over animals. The
movement during each sound presentation was baseline-normalized. Errorbars show mean ± sem.
(c) Average movement amplitude for each sound category, for both original (filled bar) and full
model-matched (empty bar). Significance between original and model-matched was assessed with
a paired Wilcoxon test. Significance across categories is not shown here (but was strong for ferret
sounds vs. speech and music: p-value<10−3, Wilcoxon test.). Errorbars show mean ±2 sem. ***:
p-value<10−3.

Auditory cortex hemodynamic responses showed little differences to model-matched and

original conspecific vocalizations.

Animal’s movement generated artefactual signals, which were stereotyped and reliable across trials.

We indeed observed that one of the components observed in Study 1 displayed a response profile

highly correlated with the movement profile of the animal (figure S3.6). The actual weight pattern

of this component, instead of reflecting local brain regions, was mainly highlighting differences

between small and large vessels, or anatomical edges (data not shown). Moreover, its timecourse

was substantially different from the acoustically driven ones, and resembled the actual movement

temporal profile. In Study 1, only one component picked-up the movement-related changes in Power

Doppler.
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Figure 3.7: Original and model-matched natural sounds evoked similar responses across the
ferret auditory cortex (Study 2). (a) Responses for two example denoised voxels (their position
is shown in (b)). Left: Timecourse of the denoised responses (mean response over all sounds
(thick black line) and to each individual original sound (thin colored line). Black bar shows sound
presentation. The actual shape of the timecourse may be modified by the denoising procedure and
might not represent exactly the actual response timecourse of the voxels. The relationship between
the different sound-evoked responses, however, is preserved. Right: Responses to original vs. full
model-matched sounds. The response to each sound was obtained as the average response in the
window 3 to 11s after sound onset. (b) Noise corrected Normalized Squared Error (ncNSE) for the
full model-matched for all three hemispheres. It represents a view from above of the sylvian gyri
which contains auditory cortex. Dashed thick lines represented the supra-sylvian sulcus (sss) and
the pseudo-sylvian sulcus (pss) that delimit auditory cortex. Boundaries for the different functional
areas (dashed thin lines) are based on the tonotopic organizations. A1 and AAF are primary areas,
while AEG, and PEG (PPF and PSF) are secondary areas.

In order to limit these effects in Study 2 (where ferret sounds were much more numerous), we

used a MCCA approach to evaluate the components in the fUS data that were maximally explained

by movement (see section An attempt at movement cancellation (Study 2) in Material and methods).

Having identified those components, we then projected them out of the data. This method allowed

us to remove substantial part of movement participation to brain responses (figure S3.8). We then

used the same method as in Study 1 to denoise the data, and focus on components that were both

reliable and shared across hemispheres. In that case, 10 components were needed to model the data

(figure S3.7).

Single-voxel analysis revealed that model-matched and original stimuli evoked similar re-

sponses across the auditory cortex (figure 3.7). NSE values were overall very low, and no difference
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could be detected between primary and secondary areas. This is in sharp contrast with what one

could have expected under the hypothesis that ferret vocalization were processed in the ferret brain

the same way that speech is processed in the human brain, i.e., in a specific subregion of auditory

cortex which would be sensitive to high-order features found in vocalizations.

In order to uncover the latent structure in the data and possibly reveal latent vocalization-

selective components, we then used the same component approach as in Study 1. Figure 3.8 shows

the different components that could be obtained from this new dataset, amongst the 10 that were

retained through cross-validation. Again, some components were clearly driven by basic acoustic

properties (3.8-c). For example, Component fv1 and fv2 (fv as ferret vocalization experiment) were

mainly driven by low- and high-frequency sounds, and their weights resembled the ones obtained

on the low- and high-frequency components in Study 1 (figure 3.9). We note here that the weight

patterns across animals was even clearer and more consistent in Study 2 compared to Study 1,

despite the fact that less (and less diverse) sounds were presented.

When investigating the difference of response magnitude between model-matched and original

sounds along these components, we could not identify any component revealing a difference for

vocalizations as large as the one observed in humans for speech or music. Overall, the difference,

if any, was small, and uncertain because of the persistance of movement artefacts on two of the

components (e.g., Component fv4 in 3.8 - correlation quantified in figure S3.8). Thus, it seems

that ferret vocalizations may not be processed selectively within a pathway as seen in the speech

pathway in humans. Further investigations are needed to explore this question.

3.5 Discussion

In this study, we showed that fUS imaging could be used to investigate the large-scale organization

of ferret auditory cortex responses to natural sounds. By extracting meaningful and reliable patterns

across three hemispheres, we were able to identify several strong components that were driven by

basic features, such as frequency gradient, or spectrotemporal modulations (question (3)). Strikingly,

a simple spectrotemporal model could explain most if not all of the ferret responses, across both

primary and secondary auditory cortices, and within both ventral (PEG) and dorsal (AEG) pathways

(question (4)). This was in contrast to human auditory cortex organization, where this same model

failed to explain auditory responses in non-primary areas. In particular, responses to speech and

music relied on high-order features in humans, and such processing pathways could not be found in
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Figure 3.8: Ferret vocalization and speech and music sounds revealed latent organization
based on acoustic properties. (a) Timecourse-projected response profiles for each component,
ordered by response magnitudes (arbitrary unit). Only the 60 original sounds are represented. Colors
correspond to the different categories of the sounds. Inset: test-retest response amplitude taken from
the testing set of sounds, and quantified with NSE (all models and original). (b) Timecourse of the
responses. Thick black line: average over all the responses (both original and model-matched). Thin
colored lines: response for each individual sound (only the original sounds are represented). Black
bars corresponds to the sound presentation. (c) Correlation of component response profiles with
energy in different frequency bands. (d) Relationship between the timecourse-projected responses
to original stimuli versus each of the different model-matched stimuli. If a model perfectly predicts
the brain responses, then all sounds should be aligned on the diagonal (red dashed line).

ferret data (question (2)), despite a strong speech-selective component (question (1)). Furthermore,
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Figure 3.9: Components are spatially coherent and clustered, and distributed throughout
cortex. View from above for the four selected components and the three different hemispheres.

we used ferret vocalizations to explore whether such dependence of the brain response on high-order

features could be found with ethologically relevant sounds (question (5)). Again, evidence for such a

vocalization specific pathways were scarce, despite ferrets being behaviorally capable to discriminate

original and model-matched sounds. Our study suggests that ferrets do not display processing

streams for high-order acoustic features as strongly as humans do. It opens up several interesting

perspectives.

Methodological advancement

Functional UltraSound imaging is increasingly being used for tackling fundamental neuroscience

questions, and recent papers are starting to investigate brain responses to finer behaviors or more
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diverse stimuli (Macé et al., 2018; Dizeux et al., 2019). Along this line, our study was the first to show

that fUS can give access to the complex encoding of natural stimuli throughout primary and non-

primary sensory cortices. To do so, we adapted recent computational tools, such as DSS/MCCA,

and ICA to uncover patterns of activity that can be hard to observe using single-voxel analysis

(Norman-Haignere et al., 2015).

From the point of view of modelling, Norman-Haignere and McDermott (2018) showed that

the cortical model from Chi et al. (2005) was actually a good predictor of fMRI responses in the

human primary auditory cortex. However fMRI voxels contain a far larger number of neurons than

fUS voxels, and average hemodynamic responses across larger portions of blood vasculature. With

fUS, single vessels are actually observable, and the functional resolution of the technique reaches

really low spatial scales within few presentations (see chapter Mapping the auditory hierarchy, or

Bimbard et al. (2018)). Thus, this first observation confirms that the model-matching approach

can provide valuable information on neural encoding, even at finer scales than fMRI. Importantly,

the use of Independent Component Analysis was crucial to reveal the underlying organization of the

responses, making use of the large number of sounds used in our study.

Interestingly, fUS can also provide access to changes in blood flow throughout the presenta-

tion of the sound. Despite its slow timecourse, a change in blood flow can contain information about

fast modulations of incoming stimuli, as we and Norman-Haignere and McDermott (2018), amongst

others, have demonstrated. Thus, the evolution of blood flow throughout the sound presentation

could provide useful information about the changes in statistics of the sound. Recent studies have

tried to reconstruct the spectro-temporal modulation content of natural sounds using fMRI (Santoro

et al., 2017). This study was based on short sound durations, in order to separate sound presen-

tation from the fMRI acquisition noise. It thus provided no access to the timecourse of the fMRI

responses across time. Moreover, it was suggested that early hemodynamic response contains less

information than late responses (Berwick et al., 2008). In our data, a stable pattern of activity was

obtained 2 to 3s after sound onset (figure S3.3). Thus, the first two seconds during which CBV

starts to increase were not yet representing sound identity in a stable manner. However, during

the full sound presentation, %CBV then contained rich information about sound identity. Further

investigations along this line could provide important advances in potential blood-based decoding

and sound reconstruction.
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Behavioral discrimination and animal’s movement

The observation of the animal’s movement in response to different sounds raises two important

remarks. First, it brings strong evidence to the fact that vocalization processing in non-human

animals can rely on high-order features. Second, a simple quantification of movement allowed us

to estimate a lower bound on the capacity of the animals to behaviorally discriminate sounds, and

especially original vs. synthetic versions. We insist here on the fact that the animals were head-fixed

and not trained in any manner. Notably, such important behavioral responses to high-pitched sounds

have already been reported in domestic ferrets (Boyce et al., 2001). This resonates with a recent

study that showed that observing the behavior of ’passively listening’ animals can actually reveal

their latent knowledge about the task (Kuchibhotla et al., 2019); and in their case even higher-

performance than during active behavior. While this sounds obvious once said, the natural behavior

of the animals is rarely recorded during passive sessions. Such information could be hard to obtain

under training, which is often more about limiting the animal’s impulsiveness. Third, recent studies

have demonstrated that large-scale activity linked to the animals’ subtle (or large!) movement

could be present all over the cortex (Stringer et al., 2019c; Musall et al., 2018). Especially, oro-

facial movement elicits substantial responses in sensory cortices. Thus, a careful monitoring of any

movement during natural sound presentation might be crucial to actually understand the encoding

of behaviorally relevant sounds.

The global artefacts (i.e., changes in Power Doppler) that we observed in relation with

movement could come from several sources. First, since the probe was not attached to the animal’s

head, any small movement of the latter could generate Doppler shifts and be interpreted as signals.

Such artefacts were often observed in our data, and movement-related Power Doppler changes could

be observed in regions of the image that were outside of the brain. Other fUS studies have shown

that recording fUS signals in freely moving animals was possible (Sieu et al., 2015; Urban et al.,

2015). However, the level of precision of the encoding patterns of interest were much scarcer,

and were thus less sensitive to noise. Also, the fact that the probe was coherently moving with

the animal’s head could have limited the differential motion and thus possible artefacts. Finally,

the use of optimized insonification sequences could help reduce such effects (Tiran et al., 2017).

Second, a global excitation in response to sounds could provoke a global blood rush in the brain. As

mentioned above, animal’s movement could also globally modify neuronal activity and thus generate

local changes in blood volume. Third, top-down signals could specifically modulate auditory cortex

activity, as behavioral engagement has been shown to provoke substantial changes in neural activity
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across the auditory cortex (Fritz et al., 2003; Atiani et al., 2014; Elgueda et al., 2019). These two

last effects are much harder to disentangle, but offer interesting prospects for further studies. For

example, the topographical organization of top-down signals is poorly known, despite its crucial

function in adaptive behavior and perceptual decision-making.

Finally, we note here that the movement related component (figure 3.8) displays some struc-

ture, especially a negative weight region in the very lateral part of the craniotomy. While this could

represent a real pattern in brain activity, we note that bone destruction and tissue regrowth on the

most lateral side of the craniotomy sometimes created physical links with the jaw muscles. Thus,

the most lateral part of the craniotomy was the most sensitive to physical movements of the animal.

Through both the analysis of Study 1 and Study 2, one could detect some components or

regions of which responses were discriminating model-matched and original stimuli (e.g., in figure

3.8). Furthermore, some parts of the shared variance showed a difference for music sounds (figure

3.5-b), which we further showed to be perceptually disciminable by our ferrets (figure 3.6). First,

these differences were really small compared to the ones observed in humans. Second, the problem

of movement was not fully addressed in Study 1 (the movement-related component might not have

fully caught movement-related signals) nor in Study 2 (where even after denoising we could still

observe clear movement-related components). This casts a doubt on the true functional reality

of such discriminative signals in the brain. We thus interpreted our results as showing only little

proof for the existence of high-order acoustics selectivity in the ferret responses, and even less so

for a specific pathway. Further analysis and studies should focus on movement cancellation and on

determining to what extent these signals still hold, before confirming of disconfirming our suggestion.

Where in the brain is high-order acoustics processing happening?

In the ferret, the responses to complex sounds have been rarely explored (Nelken et al., 2008), and

the response to ferret vocalizations only approached using sparse, single-cell recordings in primary

auditory cortex (Schnupp et al., 2006). Thus, only few points of comparison can be drawn with the

literature. In our hands, ferrets seemed to rely on high-order acoustic features to interpret ferret

vocalization, yet their auditory cortex did not show strong signatures of such processing. The small

differences that we observed between model-matched and original vocalizations were distributed

across the whole portion of cortex that we imaged, and were not strongly identifiable along any of

our components. Our conclusions are fully dependent on several technical aspects of our experi-

ments: the nature of the signal, the field of view over auditory cortex as well as the species used here.
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First, high-order acoustics processing streams could well be hidden (or made less visible) by

the way we monitor brain activity. Indeed, each voxel might contain a very heterogeneous set of

neurons, with some of them showing differences in their responses to model-matched vs original

stimuli. However, in humans, the differences observed were really large for speech and music. Even

if single neurons could discriminate the two, our conclusion on cross-species comparisons would still

be unchanged since similar approaches yielded very different effect sizes in the two different species.

Moreover, after large-scale recordings with fUS imaging, a more careful inspection of single neurons

could be an interesting path to follow.

Second, our imaging window focused on primary and secondary areas of the auditory cortex.

One could thus reasonably argue that the reason why we are not seeing strong evidence for high-order

acoustics processing is because we did not look in the right place. In humans, the regions specific

to speech and music observed in Norman-Haignere et al. (2015) were present in non-primary areas

of the auditory cortex (suprerior temporal gyrus, planum temporale and planum polare) that were

adjacent to primary auditory cortex. The field of view that we managed to obtain was beyond what

was done in our previous study (Bimbard et al., 2018), to reach areas that have been only recently

functionally described in the ferret auditory cortex, like ventral posterior auditory field (Elgueda

et al., 2019). We identified these areas using the pure-tone and/or natural-sound proofed tonotopic

organization, and by direclty observing the brain folding ventro-medially on fUS images. These areas

delimit the most lateral and ventral part of the ferret auditory cortex.

Some vocalization areas have been described in more frontal areas in macaques (Romanski

and Goldman-Rakic, 2002). Investigating the existence of such areas would be directly in the line of

our study. Importantly, the use of model-matched stimuli allows for very efficient controls, with only

a limited set of sounds, to understand the acoustic properties to which brain areas or components

are actually specific.

Third, the lack of a specialized pathway for vocalizations’ high-order acoustic features could

be due to a lack of exposure to their own conspecific vocalizations. However, our animals were

housed in pairs or more, were allowed to play throughout the week, and vocalized when playing.

It could also be argued that ferrets are actually not a vocal species. On the contrary, we argue

that they display a large range of vocalizations (fight calls, pup calls, play calls, ...) (Boyce et al.,
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2001), and that these vocalizations are after all sufficiently relevant to trigger significant and reliable

movement upon hearing it (figure 3.6). Finally, most of our stimuli were kit calls. It has been shown

in the mouse that motherhood actually provoked large changes in pup vocalization encoding even

within primary auditory cortex (Shepard et al., 2016), and one could argue that high-order acoustic

sensitivity to these sounds would be present only in mothers. In our case, one of the animal had

experiences motherhood while the other had not. However, we could not observe clear differences

between the two animals.

Another hypothesis would be that vocalization processing in ferrets mostly relies on much

simpler acoustic features. Most processing could thus come from a global tuning of the auditory

cortex to the specific low-level acoustic niche of vocalizations, as what was observed with the rates

to which macaque monkeys vs humans are most sensitive (Erb et al., 2018). Specific pathways to

process higher-order features would thus be less needed than human speech. As a matter of fact,

model-matched vocalizations (as well as other natural sounds that resembled pup calls in terms of

basic acoustics, such as baby crying), also evoked very large behavioral responses (higher than to any

other sounds, excluding natural vocalizations), despite their lack of vocalization-specific high-order

structure. Performing the same experiments (i.e., presenting ferret vocalizations) in humans could

provide insight on the specificity of ferret auditory cortex to process their conspecific vocalizations.

Prospects: effect of exposure and training

Our results raise the question of how such high-order acoustics specific domains appear in humans.

Are they already built-in? Is it based on early experience? The robustness of their location in

the brain across subjects raises the question of the original substrate upon which it is built. Is

it based on a proto-architecture already present in the processing streams, upon which music and

speech selectivity develop? Could we generate such domains in animals’ brains, which this proto-

architecture is actually shared (even if differently exploited) across mammals? Where would they

appear?

One could draw comparisons from visual research, that focused on the origins of category-

specific domains within inferior temporal cortex (IT) of macaques (Op De Beeck et al., 2008;

Srihasam et al., 2012; Livingstone et al., 2017; Arcaro et al., 2017). In particular, it was suggested

that plasticity for abstract symbols is constrained by some native organization in cortex (Srihasam

et al., 2012). This turned out to be also true with the development of face-sensitivity, that neces-

sitates the animals to actually see faces during development (Arcaro et al., 2017), and that might
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rely on the existence of a native shape-based retinotopic proto-map (Livingstone et al., 2017). Such

questions are yet to be addressed for the development of speech and music specificity in the human

brain. Our experimental framework could be particularly interesting to examine such questions in

animals. Indeed, the use of the model-matched approach allows us to identify rapidly possible regions

that could be specific for high-order acoustic features, like the ones observed in humans. Exposing

animals to original vs. model-matched speech or music during their early development, or intensively

training them to actively discriminate the two with a reward system, could be a way to examine the

development of category-specific areas in different species. Earlier studies have shown that training

can lead to large reorganization of basic features such as tonotopic organization (Polley et al., 2006),

up to more complex patterns in response to more complex sounds such as cross-specific vocalizations

(Jiang et al., 2018) already in primary auditory cortices. The effect of such training in secondary

areas would be expected to be even more drastic and more category-specific, especially during behav-

ioral performance (Atiani et al., 2014; Elgueda et al., 2019). It would thus be interesting to explore

such reorganization with our new methods, that allow for a large-scale yet high-resolution mapping

of the whole sensory cortex with a high sensitivity. This could be used to test the hypothesis that

speech processing relies on a native organization that is specific to humans, or shared across species.

In our study, we identified a specific component in the ferret auditory cortex that was selective for

speech’s acoustic properties, amongst other natural sounds. An appealing hypothesis would be that

real speech selectivity (i.e, sensitivity to high-order features of speech) would emerge along such a

component; another hypothesis being in another area dedicated to plastic learning.

Identifying a region (or a ’component’, that can be spatially distributed) that displays differ-

ences in model-matched vs. original vocalizations could be a necessary first step to explore these

questions, as it would provide one neural substrate for encoding high-order acoustic properties that

are clearly extracted at the behavioral level. However, pathways for vocalizations processing could

be highly specific and rely on already built-in wiring.

3.6 Summary

In this chapter, we explored the different levels of encoding of natural sounds in the ferret auditory

cortex. We adapted and developed new computational methods, for both denoising and analysing

fUS signals, that allowed us to uncover structured components of responses in the ferret brain. By

contrasting the response properties between ferrets and humans, we were able to make progress
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on deciphering the unique contribution of human auditory cortex to the processing of speech and

music, which is its dependence on high-order features of speech and music. Finally, we applied these

methods to study the encoding of conspecific vocalizations in the ferret brain. After showing that

ferrets perceptually rely on such high-order features to interpret their conspecific calls, we explored

the underlying neural mechanisms of this capacity and failed to identify brain regions or components

strongly supporting such processing. Overall, this study provides perspectives on the evolution of

auditory processing between humans and ferrets, and paves the way for future studies of vocalization

processing.
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3.7 Supplementary figures

Figure S3.1: Spectrotemporal modulations are topographically encoded at the surface of
the auditory cortex. Tuning maps for frequency, spectral modulations and temporal modulations
tuning for three different hemispheres.
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Figure S3.2: Brain responses to model-matched and natural sounds can be summed up with
13 components (Study 1). (a) R2 landscape across two parameters, the number of Independent
Components (ICs) implemented in the model, and the number of ICs actually kept for reconstruction.
Maximal response is shown by a star (13 ICs implemented, 13 ICs kept). (b) R2 values for different
values of ICs implemented in the model (corresponds to the diagonal in (a). Large line corresponds
to the average over all 4 difference testing sets, while smaller lines correspond to each of the 4
different test-sets.

Figure S3.3: The encoding patterns is stable throughout sound presentation. (a) Correlation
across time bins between the encoding patterns (obtained by computing the representational distance
matrix over all sounds). Sound presentation is indicated by the thick black lines. (b) Decoding
accuracy across time, when decoding sound identity, depending on sound complexity. Sounds were
taken from the testing set (and thus did not participate to the ICA model), and had to be identified
out of the 40 sounds of their model type. This procedure was repeated across all models, and
original categories.
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Figure S3.4: Predicting human components from ferret data (prediction on all sounds,
display all). Predictions obtained through cross-validation on all sounds. Relationship between
the original magnitude of response and the ferret data-based predicted responses for each human
component.
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Figure S3.5: Predicting human components from ferret data (prediction on MM sounds
only, display all MM). Predictions obtained through cross-validation on model-matched sounds
only. (a) Relationship between the original magnitude of response and the ferret data-based predicted
responses for each human component. (b) Quantification of the error in prediction for each category
of sounds, for full model-matched sounds. Errorbars show mean ±2 sem. Paired Wilcoxon test,
***: p-value<10−3, **: p-value<10−2, *: p-value<5.10−2.
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Figure S3.6: Components linked to the animal’s movement (Study 1). (a) Timecourse-
projected response profiles for the movement-related component in Study 1, ordered by response
magnitudes (arbitrary unit). Only the 40 original sounds are represented. Colors correspond to the
different categories of the sounds. Inset: test-retest response amplitude taken from the testing set
of sounds, and quantified with NSE (all models and original). (b) Timecourse of the responses.
Thick black line: average over all the responses (both original and model-matched). Thin colored
lines: response for each individual sound (only the original sounds are represented). Black bars
corresponds to the sound presentation. (c) Correlation of component response profiles with the
average evoked movement profile. (d) Relationship between the timecourse-projected responses to
original stimuli versus each of the different model-matched stimuli. If a model perfectly predcits the
brain responses, then all sounds should be aligned on the diagonal (red dashed line).
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Figure S3.7: Brain responses to model-matched and natural sounds can be summed up with
10 components (Study 2). (a) R2 landscape across two parameters, the number of Independent
Components (ICs) implemented in the model, and the number of ICs actually kept for reconstruction.
Maximal response is shown by a star (10 ICs implemented, 10 ICs kept). (b) R2 values for different
values of ICs implemented in the model (corresponds to the diagonal in (a). Large line corresponds
to the average over all 4 difference testing sets, while smaller lines correspond to each of the 4
different test-sets.

112 3.7. SUPPLEMENTARY FIGURES



CHAPTER 3. NATURAL SOUNDS PROCESSING

Figure S3.8: Denoising helps reducing the contribution of movement. (a) Correlation be-
tween movement amplitude of the animal and magnitude of responses on each component, for both
denoised and non-denoised (raw) data. The difference between the two distributions was not signif-
icant. However, it was easier to identify movement-contaminated components in the denoised data
(2 of them were clearly identified by their correlation coefficient and their peculiar timecourses - one
is showed in figure 3.8), as opposed to non-denoised data (where 4 components showed high corre-
lation with movement). (b) Correlation between movement amplitude of the animal and magnitude
of responses for each component. Filled dots: original sounds, empty dots: full model-matched
sounds.
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Chapter 4

Space encoding in auditory cortex

Contributors: Jonatan Nordmark, Agnès Landemard, Yves

Boubenec.

4.1 Abstract

Auditory cortex is necessary for accurate sound localization. Nevertheless, the neural mechanisms

for space processing as well as its cortical functional specialization remain debated. Previous studies

have suggested carnivore auditory cortex is divided into two distinct functional pathways; a dorsal

stream devoted to space encoding and a ventral stream dedicated to object recognition. This view

has been challenged by the idea that azimuth position is indiscriminately encoded across auditory

fields at the single-neuron level. Here, we performed large-scale comparisons of azimuth encoding

in primary and secondary auditory fields of awake ferrets using functional ultrasound imaging (fUS).

We imaged high-resolution hemodynamic brain responses to noise bursts coming from spa-

tially separated azimuthal locations. We report hemispherical spatial tuning to both hemifields in

distinct regions across auditory cortex, both in primary and secondary regions. Further investiga-

tions will help understand the dimensionality of encoding across brain regions, and challenge existing

models of spatial processing.
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4.2 Introduction

Sound source localization is one of the best examples to illustrate the elegance of brain computa-

tions, and how to (elegantly as well) study and understand them (Krakauer et al., 2017; Knudsen

et al., 1987). It indeed relies on a simple computational problem that can be based on simple

algorithms which provide strong physiological predictions, some of them having encountered quite

a success (Jeffress, 1948), at least in some species (Grothe et al., 2010). The representation of

space is straightforward in the visual system, where the surface of the retina is directly mapped onto

subsequent brain structures, up to visual cortex (e.g., Tootell et al. (1988)). In the auditory domain,

such maps have been found in early areas, such as the optic tectum of the owl (Knudsen, 1982), or

in the superior (Palmer and King, 1982; King and Hutchings, 1987) and inferior (Binns et al., 1992)

colliculi of mammals. In these structures, azimuth and elevation were encoded in continuous maps,

reminiscent of the retinotopic organization in the visual system. However, despite the importance

of auditory cortex in sound localization (Wood et al., 2017), the underlying neural representation of

space within cortical streams has remained a subject of debate.

Most studies investigating single neurons encoding have failed to find a topographic ordering

of space representation within auditory cortical fields, thus suggesting that neurons exhibit a highly

inhomogeneous encoding (Stecker and Middlebrooks, 2003; Stecker et al., 2005). Results suggested

that auditory space is represented within the cortex by a population of broadly tuned neurons, each

of which being mainly tuned to one hemifield. This heterogeneity led to the formulation of the ’two-

channel’ hypothesis (Stecker et al., 2005), according to which auditory cortex would represent space

through the relative sum of two main subpopulations, each representing one hemifield. However,

recent studies have challenged this view in primary auditory cortex, showing that each hemisphere

contained multiple channels tuned to locations in contralateral space, rather than only two channels

representing left or right space (Wood et al., 2019).

How spatial information is encoded across cortical fields has remained elusive. In the visual

domain, two processing pathways have been identified: a ventral stream dedicated to object recog-

nition and a dorsal stream involved in spatial vision (Mishkin et al., 1983; Wilson et al., 1993).

Inspired by these observations, anatomical (Romanski et al., 1999), physiological (Rauschecker and

Tian, 2000; Tian et al., 2001) and behavioral (Lomber and Malhotra, 2008) studies suggested that

auditory object vs. space processing was organized in a similar manner. As an illustration, deac-

tivation of the posterior auditory field in cats resulted in behavioral deficits in sound localization

task, while deactivation of the anterior auditory field resulted in deficits in a pattern-discrimination
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(Lomber and Malhotra, 2008). Moreover, despite a non-topographic code, spatial information was

found to be more robust in cat’s posterior than anterior auditory fields (Stecker and Middlebrooks,

2003; Harrington et al., 2008). In contrast, single-unit recordings in ferret auditory cortex have re-

vealed that information about the azimuthal position of a stimulus was distributed across all cortical

fields (Bizley et al., 2009). Thus, the organization of processing pathways in auditory cortex is yet

to be uncovered.

In this study, we tried to tackle these questions using functional UltraSound (fUS) imaging,

a newly developed technique that allows high-resolution, large-scale mapping of vascular responses

in the brain. Does ferret brain contain specific pathways for space processing? Do primary and

non-primary areas encode space through a multi-channel algorithm? We saw in chapter Natural

sounds processing that fUS provided a detailed view of the topographic encoding of natural sounds

throughout the auditory cortex. Here, previous studies seem to indicate that acoustic space is

encoded in a non-topographic way. How much of this complex and debated spatial code could be

grasped with a large-scale, high-resolution and high-sampling technique?

In a first approach, we exposed head-fixed, awake ferrets to noise-burst that differed in their

azimuthal positions, and recorded hemodynamic responses over the auditory cortex. We observed

that single hemispheres were encoding the full auditory space mainly along two dimensions of activity.

4.3 Material and methods

4.3.1 fUS imaging

This section was developed in chapter Mapping the auditory hierarchy. Brains were scanned in the

coronal plane, with a spacing of ∼600 µmbetween slices. Experiments were performed in two ferrets

(A. and T.), across three hemispheres (Aleft, Aright and Tright).

4.3.2 Protocol for sensory response acquisition

Head-fixed awake ferrets were presented 3s-long broadband noise bursts (65dB) sequentially pre-

sented from a 12-loudspeaker array positioned 60 cm from the head of the animal. Loudspeaker

azimuthal spatial resolution was 10◦with a 5◦offset from midline. Each sound was presented 20

times. Sound presentations were randomized. The protocol for sound presentation was as follows:

10 s of silence (baseline), then 3 s of sound followed by 6 s of silence (return to baseline). Trials were
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following each other with only a little random jitter in time of about 1 to 3 s, and fUS acquisitions

were synchronized with the beginning of each trial.

4.3.3 Signal processing, and main analysis

Single-voxel analysis

Single voxel tuning curves were obtained by averaging the response of the voxel on a window 2 to

7s after sound onset. Tuning curve significance was estimated using a one-way anova.

Denoising procedure

Responses across a large number of voxels, and across animals, are often hard to interpret. To

do so, one can look for a low-dimensional representation of brain activity, that would reveal in an

interpretable manner the underlying encoding of the presented stimulus.

We used a similar method as the one presented in chapter Natural sounds processing (see

section Denoising procedure in Material and methods). In short, we used a combination of Denoising

Source Separation (DSS) and Multiway Canonical Correlation Analysis (MCCA) to extract the

components which were both reliable across trials and shared across animals. We did not include

the timecourse in the procedure, but focused on the average response to the sounds on the response

window (2 to 7s after sound onset). In order to evaluate the encoding in single hemispheres, the

data from Aleft was flipped so that the loudspeaker order could be defined as ipsi- to contralateral

systematically in all hemispheres. At the end of the procedure, we obtained 12 components (limited

by the number of sound locations), ordered by their reliability across trials and animals.

In order to evaluate the goodness of the obtained components, we trained the component

model on half of the trials (10), and left out the other half (10) as a test set. By measuring

the correlation of the projection between train and test set trials, we could measure the reliability

of the components. We repeated this procedure many times over different combinations of trials

across slices (which were arbitrarily paired, since they were recorded over different sessions), which

we call pseudo-populations. In order to estimate the significance level of these correlations, we

used a conservative method by randomizing the labels 5 times across 50 pseudo-populations (thus

yielding 250 control curves). This randomization method is conservative because we do not average

across pseudo-populations. Two components showed significant correlation between train and test

set projections, and were thus selected as the reliable encoding subspace.
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Decoding sound azimuth

In order to estimate the accuracy of sound azimuth encoding, we used a decoding approach. We

projected even and odd trials on the reliable encoding subspace (estimated as in section Denoising

procedure) and computed, for each pair of sounds, the euclidean distance between evoked brain

patterns. Doing so, we were able to get an estimate of the relationship between distance between

speakers and distance between brain patterns. We looped this procedures over 50 pseudo-populations

so as to have more robust estimation of the distances between brain pattern.

4.4 Results

We recorded fUS responses over large portions of the brain (mainly medio-, posterior and anterior

ectosylvian gyri) in three hemispheres, while playing broadband noises coming from 12 different

locations, spanning a radial range of 110◦(figure 4.1-a). In a first approach, we explored the responses

of single voxels and their tuning to sound azimuth (figure 4.1-b). Single-voxels showed strong

responses and tuning to the contralateral hemisphere, with mainly monotonic tuning curves. Among

the pixels having a very significant tuning curve (one-way anova, p-value<10−4, n=196), 95% had

their peak response on the contralateral side. Furthermore, 45% of the voxels were tuned to the

most contralateral speaker (speaker number 1, -55◦). The significantly tuned voxels were organized

in small clusters distributed throughout the brain (figure S4.1). Interestingly, these clusters could

not be explained by the overall responsiveness of the voxels, since the global response maps were

mostly uncorrelated with the spatially tuned clusters (figure S4.2).

Single-voxel analysis can sometimes hide underlying large-scale structure and are biased by

low statistical power. We used a denoising approach similar to the one developed in chapter Natural

sounds processing (see section Denoising procedure in Material and methods). In short, we extracted

the components that were the most reliable, and shared across hemispheres. Because we recorded

both left and right hemispheres, the speaker order was defined so as to align contra- vs. ipsilateral

sides between hemispheres. Doing so, we were able to extract two significant components (figure

4.1-c). The first component (PC1) encoded in a monotonic fashion the contra- to ipsilateral position

of the speaker, while the second component represented the distance of the speaker to the midline

(figure 4.1-d). The weights of these components were distributed in small clusters (figure 4.1-e),

and PC1 weights resembled the ones obtained with the single-voxel tuning analysis (figure S4.1).

Finally, we quantified the smallest angular distance that could be discriminated between speakers
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Figure 4.1: Single hemispheres provide a complete representation of azimuth. (a) Experi-
mental set-up. 12 speakers were positioned 60cm from the head of head-fixed awake ferrets, with a
resolution of 10◦, while recording the activity over the auditory cortex using fUS imaging. (b) Single
voxels responses. Left: Timecourse of the response for an example single voxel. Dashed line shows
the response window used. Center: Azimuth tuning curve for the same voxel. Errorbars show mean
±2 sem. Right: Tuning curves of all significantly tuned voxels (one-way anova, p-value < 10−4),
ordered by the peak of their tuning curves. (c) Dimensionality of the underlying brain subspace for
azimuth representation accessible in our experiments. It relies on the measure of the correlation be-
tween the projection of the train and the test sets on each component. Conservative randomization
procedures (shuffling sound positions across trials) were used to estimate the significance threshold.
Two dimensions were significantly encoding spatial position. *: p-value<5.10−2, **: p-value<10−2.
(legend continued on next page)
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Figure 4.1: (d) Low-dimensional brain representation of azimuth. Left: Position of the sound-
evoked brain responses within the space spanned by PC1 and PC2. Right: Azimuth tuning curves
of PC1 (up) and PC2 (bottom). (e) Spatial maps of the weights of each of the two components,
for each animal. Scale bar: 1mm. (f) Decoding approach. Top left: distance matrix representing
the euclidean distance between evoked brain patterns between each pair of sounds. Top right:
quantification of the relationship between speaker distance and distances between evoked brain
patterns. Errorbars show mean ±2 sem. *: p-value<5.10−2, **: p-value<10−2, ***: p-value<10−3.
Bottom: quantification of the relationship between speaker distance and distances between evoked
brain patterns for both contra- and ipsilateral hemifields. Errobars are not represented for clarity.

(figure 4.1-f). We found that within the reliable encoding subspace, speakers could be discriminated

even at the smallest angular distance (10◦, p-value<5.10−2; top panels in figure 4.1-f). Within

both contra- and ipsilateral fields, brain responses could significantly discriminate different speakers

(p-value<5.10−2; bottom panel in figure 4.1-f). Our data tends to show that the encoding was

sharper within the contralateral field. However, our low statistical power did not allow us to show

this trend as significant.

In analogy with visual processing, previous studies have suggested that auditory processing

could be divided in two parallel streams, one for object recognition and one for sound localization

(Rauschecker and Tian, 2000). In the ferret auditory cortex, an analog of the dorsal stream goes

along the anterior ectosylvian gyrus (AEG), while the ventral stream would fit along the poste-

rior ectosylvian gyrus (PEG). Primary auditory cortex is located in the middle ectosylvian gyrus

(MEG). To explore the specialization in spatial processing of these different regions, we looked at

the distributions of the weights of the two encoding components that we identified, PC1 and PC2,

across those different areas (figure 4.2-a). Within hemispheres, we observed significant differences

in the distribution of the weights between auditory fields (two-sample Kolmogorov-Smirnov test,

p-value<10−2). However, these differences were not consistent across animals. Thus, we interpret

this result as the auditory cortex being organized in rather clustered azimuth-sensitive regions, that

are not strictly bound to a specific region of the auditory cortex.

These different areas could rely on different underlying codes. To explore this idea, we applied

the same pipeline of analysis to each area separately (yet combining different hemispheres) (figure

4.2-b). Through this prism, we observed that the strong monotonic component (PC1) was present

in all areas. However, the evidence for the presence of a second component was scarce in MEG and

AEG, but unexpectedly stronger in PEG. This difference could stem from the fact that more voxels

were present in PEG (n=13453) vs. MEG (n=8056) and AEG (n=7218). All areas encoded space
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Figure 4.2: Azimuth does not seem to be specifically encoded within a single stream. (a)
Weight distributions for PC1 and PC2 across areas for individual hemispheres. (b) Same quantifi-
cation as in figure 4.1 for each area independently (top: MEG, center: AEG and bottom: PEG).
Far left: Dimensionality of the underlying brain subspace for azimuth representation accessible in
our experiments. Left: Azimuth tuning curves of PC1 (up) and PC2 (bottom) Right: Confusion
matrix representing the euclidean distance in distances between evoked brain pattern between each
pairs of sounds. Far right: Quantification of the relationship between speaker distance and distances
between evoked brain pattern.
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with a high accuracy, with an angular resolution of at least 20◦in all areas (10◦in PEG).

4.5 Discussion

In this chapter, we explored how auditory cortex encodes the spatial location of sounds. Within the

prism of fUS imaging, auditory cortex displayed azimuth-sensitive patches distributed throughout

cortex. Single hemispheres contained information about the full 120-degree auditory space, with an

encoding seemingly sharper for the contralateral hemifield. The encoding subspace could reliably

be summed up by two main components, one linearly encoding azimuth from the most contra- to

most ipsilateral speaker, and the second representing the distance to midline. Finally, our preliminary

results suggest that there is no specialization between ventral and dorsal streams in azimuth encoding

in the ferret.

Thus, fUS can also give access to cortical codes that are more distributed than the more

well-known topographic organization of acoustic features such as frequency tuning. Our recordings

recapitulate a large part of what has been observed with single unit recordings. In addition, it

allowed us to rapidly map, in 3 dimensions, the localization of azimuth sensitive clusters, opening

up interesting experimental and theoretical perspectives. For example, fUS could be used, in single

animals, to identify the regions that seem to be mostly sensitive to space, before deciphering more

precisely the underlying mechanisms with electrodes in the target areas. Moreover, it can potentially

provide interesting clues to the ongoing debate on the representation of space throughout auditory

cortex.

Azimuth tuning

Using single-pixel analysis, we could observe that an outstanding majority of the voxels were tuned

to the contralateral side, and especially to the most contralateral speakers (figure 4.1-b). This is in

accordance with what has been observed in single units in the auditory cortex of cats (e.g., Stecker

et al. (2005)), rats (e.g., Yao et al. (2013)) or monkeys (e.g., Woods et al. (2006)). Moreover, it

has previously been suggested that one hemisphere encoded sound location only in its contralateral

hemifield (Stecker et al., 2005; Wood et al., 2019). Our results tend to show that both hemifield

seem to be represented, with a discrimination that is weaker but still significant for the ipsilateral

hemifield.

Behavioral studies have shown the highest behavioral sensitivity in azimuth discrimination was
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found around the midline, where auditory cortex neurons’ tuning displays its sharpest slope (Stecker

et al., 2005). Our recordings are consistent with this observation, since the distances between

activity patterns were indeed increasing the most sharply between sounds around the midline (figure

4.1-f). This is also visible in the higher slope of the encoding along PC1 for a 0◦azimuth (figure

4.1-d). Further quantification and experiments could be performed to explore this direction.

Spatial organization of azimuth-sensitive responses

Previous studies have also investigated the spatial organization of azimuth sensitive units. In some

species, azimuth sensitive units were distributed throughout the cortex, and organized in small

clusters that were scattered throughout auditory cortex (Bizley et al., 2009; Panniello et al., 2018).

On the contrary, primary auditory cortex of the pallid bats is organized in two clusters of ’peaked’

vs. ’binaurally inhibited’ cells (i.e., encoding one hemifield) sensitive to interaural level differences,

within which azimuth was topographically encoded (Razak, 2011). Our results are consistent with

the observation of scattered clusters. Interestingly, we could investigate this organization in 3

dimensions. In the ferret, azimuth-sensitive clusters have been shown to be scattered throughout

A1, or located at the tip of pseudo-sylvian sulcus (Bizley et al., 2009). Consistently, we show

that most of the loadings for our main component (PC1) were located mostly throughout primary

auditory cortex, PEG, or around the pseudo-sylvian sulcus (figure 4.1-e). Azimuth-sensitive voxels’

location was animal dependent, and the ones located around the tip of the pseudo-sylvian sulcus

were either on the dorsal lip, or at the fundus of the sulcus. We also observed azimuth-sensitive

clusters within the folding of the superior-sylvian sulcus in the most medial part of primary auditory

cortex. Single-voxels analysis were consistent with this topographic organization (figure S4.1). We

could not reveal any topographical organization for response type nor preferred azimuth (figure 4.1-

e), which is coherent with previous reports (Bizley et al., 2009; Panniello et al., 2018). As mentioned

in Bizley et al. (2009), we could not observe noticeable differences between brain regions, especially

PEG and AEG, despite the reports of spatial sensitivity for visual, auditory and bisensory stimulation

being highest in AEG (Bizley and King, 2008).

Overall, the origins of this organization remain poorly understood. Our approach, combining

both precise and large scale mapping could help investigate this question. Notably, the connectivity

of such areas with other azimuth sensitive brain structures could be assessed in order to determine

whether this organization is actually inherited from upstream structures, or a specific property of

auditory cortex. Moreover, early studies have suggested that sound localization processing in the
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cortex was frequency-channel dependent (Jenkins and Merzenich, 1984). It is not clear if this fits

with the type of clustering that we see, since some of the frequency channels might be out of the

azimuth-sensitive areas we observe. Thus, understanding how these two representations combine at

the surface of the cortex might require experiments in which more sophisticated sounds are played.

This would clarify the interaction that might exist between ’what’ and ’where’ within auditory cortex.

Dimensionality of the representation and current models of space representation

It is still unclear whether auditory cortex relies on a very simple encoding mechanism for space, i.e.,

a two-channel model (Stecker et al., 2005), or a more complex, distributed encoding (Wood et al.,

2019). The granularity (sampling and spatial resolution) of the recording technique can influence

the observed type of encoding – coarser techniques favoring low-dimensional representations. For

example, Higgins et al. (2017) mainly showed unidimensional coding in single hemispheres using

fMRI in humans, with hints (yet not demonstrated) in favor of the opponent two-channel model.

Thanks to the combination of a higher-resolution method and advanced analytical tools, we could

observe at least two significant encoding dimensions in single hemispheres, with a full representation

of space. This observation is consistent with two out of the three encoding models explored in

Wood et al. (2019), namely the distributed code model (where neurons exhibits heterogeneous

spatial tuning) and the opponent two channel model (where two populations encode left and right

hemifields). The third model, where each hemisphere responds maximally to its contralateral field,

would be unidimensional when recording in a single hemisphere. More precisely, our data favor a

model where both contra- vs. ipsilateral hemifields are contrasted, in parallel to the distance to the

midline. Our results are in line with the two-channel model demonstrated with positive and negative

BOLD responses across the auditory cortex of macaques (Ortiz-Rios et al., 2017). However, we

did not observe positive and negative %CBV, but rather a bidimensional encoding through positive

responses (data not shown).

The method used here to estimate the underlying dimensionality might not be the most

appropriate to resolve these issues, nor the most sensitive. Other methods have been developed that

rely on a much larger number of stimuli presented (Stringer et al., 2019b). Ongoing work will help

improve this estimation and extract the underlying subspace in a more robust way.
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Effects of attention

Processing pathways can be highly modified by the state of the animal, or its engagement in the

task it is performing (Fritz et al., 2003; Atiani et al., 2014; Elgueda et al., 2019). In that direction,

Ahveninen et al. (2006) have suggested that attention can actually play an important role in the

specific modulation of the ’what’ and ’where’ pathways in humans. Moreover, task engagement

has been shown to sharpen spatial tuning in primary auditory cortex of cats (Lee and Middlebrooks,

2011). Thus, a behavioral task could be crucial in actually revealing the specificity of the different

processing streams at stake.

4.6 Summary

Our study demonstrates how mesoscale techniques can provide advantageous information on com-

plex, spatially non-continuous encoding. We believe further work in that direction will clarify the

algorithm underlying space processing in auditory cortex, and how it unfolds within the different

cortical regions. Our approach can also provide a global yet rapidly accessible view of azimuth

sensitive patches, to target more specific, single-neuron recordings.
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4.7 Supplementary figures

Figure S4.1: Maps of azimuthal tuning for each hemisphere. Location of the speaker that
elicited highest responses was computed for each loosely significant voxel (one-way anova, p-value
< 10−2), and plotted in a view from above for each hemisphere.

Figure S4.2: Average response (%CBV) for each hemisphere. Average response over all
sounds for each hemisphere, viewed from above. A consistent, sharp transition is visible when
reaching more anterior secondary areas.
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Figure S4.3: Low-dimensional space representation for each hemisphere. Same plots as in
figure 4.1, for each animal individually.
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Chapter 5

General discussion

5.1 Results summary

Throughout this thesis, we explored the encoding of sounds within the auditory system using a newly

developed technique: functional UltraSound imaging. This thesis aimed at answering both technical

and fundamental questions.

chapter 2: Mapping the auditory hierarchy. In this chapter, fUS imaging was used to

characterize the global organization of a sensory system, in our case the auditory system. Sensory

systems are often defined by their internal organization, along multiple brain structures, as well as

by their connectivity with other areas. Our study examined those two aspects. Taking advantage

of the well-known tonotopic arrangement across auditory structures, we showed that fUS could be

used to inspect with a high resolution the functional organization of both small and deep nuclei,

and across primary and secondary areas of the auditory cortex. Moreover, we explored the top-down

connectivity between frontal and auditory cortices, previously undescribed in the ferret. With other

groups, we thus argued that fUS imaging could provide a new prism to look at sensory systems

organization, which would confer specific advantages: full brain recording, high sampling, portable,

silent acquisition.

chapter 3: Natural sounds processing. Building up on the technical demonstration devel-

oped in chapter 2, we set out to tackle a more fundamental question in auditory neuroscience, which

is how natural sounds are encoded in the brain. We showed that ferret auditory cortex responses

to natural sounds were highly organized, and a computational approach allowed us to extract struc-
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tured components sensitive to specific acoustic features, among which some were specific to human

speech. Strikingly, these responses could well be explained by a simple auditory processing model

in both primary and secondary areas of the cortex. This was in contrast with similar experiments

performed in humans, where responses to speech and music in non-primary areas were based on

high-order features that were not contained in the model. These results suggest that human and

ferret auditory cortex might contain different levels of processing, thus demonstrating rigorously a

functional specialization of human brain to speech and music compared to ferrets. Because speech

and music are not ecologically relevant sounds for a ferret, we also investigated the responses of

the ferret brain to ferret vocalizations. Ferrets were behaviorally able to discriminate the different

categories of sounds (vocalization vs. speech or music) as well as whether they were original or

model-matched versions. However, we could not observe large, specific fUS responses in their brain

to original vocalizations. This suggested that even in the context of ecologically relevant sounds,

ferret auditory cortex displays only little, if any, signature for high-order acoustics processing.

Our study raises several technical remarks. First, the existence of speech-’selective’ areas

can be found in other species than humans. Second, only the use of model-matched stimuli allowed

us to characterize thoroughly their differences. Thus, cross-species comparisons is a necessary step

in understanding brain processes. Third, the use of fUS imaging enabled the exploration of the

organization of the brain of small species in unprecedented details, and well beyond its well-known

frequency tuning.

chapter 4: Space encoding in auditory cortex. The two precedent chapters established

that fUS imaging could be used to assess spatially organized activity patterns. In this final set of

results, I exposed how more complex, distributed codes can also be accessed. I provided some novel

clues about the encoding of spatial azimuth in the auditory cortex, across primary and secondary

areas. FUS imaging revealed that single hemispheres could contain a full representation of space,

that was lying along an at least two-dimensional space. These results recapitulated many of the

results observed with single electrodes, and contributed to identifying the local structure of azimuth

sensitive clusters throughout auditory cortex. These clusters were present in both primary and non-

primary areas, and in both dorsal and ventral streams, questioning further the existence of a ’where’

pathway in ferrets. Future studies should build upon this paved way in order to better quantify the

dimensionality of the encoding and explore the validity of current models.
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5.2 Discussion

The specific aspects for each subject were treated and discussed separately within each chapter. In

this general discussion, I will provide a more general view of the points shared across subjects and

chapters, and expose the future directions of this whole project.

Filling the gap of mesoscale imaging techniques

In the Introduction, I have argued that coarse resolution yet high-sampling techniques can provide

valuable perspectives on brain organization and computation, such as with the example of the

characterization of a face area in the macaque using fMRI (Tsao et al., 2003). Throughout this

manuscript, we have attempted to demonstrate that fUS imaging can be used as a new prism to

look at brain activity, and reveal mesoscale, 3-dimensional organization that would be hard to access

otherwise. Thus, fUS imaging fills up the so far quasi empty technical window of 3D, mesoscale

techniques that can be used in small mammals. In all of the studies that we performed and that

I presented throughout this thesis, we revealed previously uncharacterized mesoscale organization,

among which: the top-down projections from frontal cortex to the fundus of the pseudo-sylvian sulcus

in chapter 2; the spatially organized components of responses to natural sounds in chapter 3; the

azimuth-sensitive clusters in chapter 4. Moreover, because we could map the cortical organization

in each individual ferret, further studies could aim at designing an individual approach combining

large-scale fUS mapping and targeted single electrode investigations, as in Macé et al. (2018).

An opportunity for more diversity in neuroscience

Cross-species comparisons have proven very fruitful in probing neural mechanisms and processing

pathways underlying fundamental cognitive capacities (Rauschecker and Scott, 2009; Grothe et al.,

2010; Walker et al., 2019). As an example, we demonstrated in this thesis that ferret brains could

actually present speech selectivity to an unexpected level (the speech-’selective’ component being

one of the most robust, across animals, and experiments), and only a cross-species comparison with

model-matched stimuli as controls enabled us to identify the true specificities of the human brain

(i.e., high-order feature selectivity). Another example is the absence of columnar organization for

orientation selectivity in the visual cortex of rodents, in contrast to what is systematically observed

in cats or macaques, which questioned the actual computational significance of orientation-selective

columns (Kaschube, 2014).
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Neuroscience is abundant in remarkable studies using remarkable animal models, some being

well known (such as the aplysia (Castellucci et al., 1970)), others much less (such as the cuttlefish

(Reiter et al., 2018)). Amongst mammals, the complexity of their nervous system and of its organi-

zation can be an obstacle to its exploration. We have argued that fUS imaging could provide rapid

yet precise mapping of sensory systems across brain structures, depth, and stimulus type. Just like

the studies developed in this thesis with ferrets, we are hopeful that fUS imaging could help increase

the diversity of species (especially small mammals) used, and thus provide a broader view of the

brain’s organization and evolutionary trajectory.

Cortical fields kept their mysteries

The large size of the performed craniotomies enabled us to explore the relative organization over

different cortical fields, such as primary auditory cortex (A1 and AAF), secondary auditory cortex

(PEG and AEG), as well as tertiary regions in at least one animal (VP). Fundamental differences

exist at the single-cell level between these (Guo et al., 2012; Elgueda et al., 2019), but their global

organization has remained poorly understood beyond frequency tuning. Despite the large number

of stimuli types used in our studies, spanning a fair number of acoustic dimensions (frequency,

spectro-temporal modulation, high-order features, azimuth), we did not observe systematic, robust

differences across cortical fields. Several reasons could explain such an absence. First, the resolution

of the technique, which averages over many cells, limits the detection of small differences in receptive

field properties across cortical regions (Guo et al., 2012; Elgueda et al., 2019). Second, these

differences could become striking only during behavior (Fritz et al., 2003; Atiani et al., 2014; Elgueda

et al., 2019; Ahveninen et al., 2006). Third, the specificity of some of these fields could actually

come from the way they combine all those properties. Only few studies investigated the encoding

across numerous dimensions in ferret auditory cortex (Bizley et al., 2009), and how the encoding

of these acoustic properties actually interact thus remains poorly known. One hypothesis, which

has been explored further in the visual cortex (DiCarlo and Cox, 2007), states that the cortical

hierarchy performs object recognition (’what’ pathway). Higher cortical areas, such as IT, thus

possess ’untangled’ object category representations (though non-categorical properties are still being

encoded (Hong et al., 2016)). In our experiments, most sound categories were largely defined

already by their low level acoustic properties, on which animals actually seemed to rely for their

behaviorally relevant categories. Indeed, ferrets’ movement was larger on both model-matched and

original vocalizations than on any other sound, suggesting that sounds with the low-level acoustics
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of vocalizations may be perceptually grouped in a category that has a global behavioral meaning.

Introducing additional, category-orthogonal dimensions to the sounds could be a necessary step to

unveil the specific representation of sound categories (as such) within auditory cortical fields. In

the visual domain, object position or orientation are often used as category-orthogonal dimensions.

Further studies could for example use sounds of varying nature and spatial locations. Other types of

feature interactions, such as audiovisual combinations (Bizley and King, 2008), could also be further

explored and help characterize the specific role, if any, of each field.

A single voxel characterization?

In that direction, one of the underlying questions raised in the Introduction was the following:

how are all layers of complexity combined one with another within auditory cortex? Our ability

to explore this question will directly depend on how precise the patterns of vascular responses

to these different dimensions can be. Throughout the three chapters, I provided a global vision

of the spatial organization of vascular responses to several sound dimensions. The clusters of

functionally homogeneous voxels were often spanning quite large areas (>600 µm), with sometimes

sharp functional boundaries between domains (see Mapping the auditory hierarchy, figure 2.2, or

Natural sounds processing, figures 3.3 and 3.9). This observation was consistent with the existence of

broadly tuned vascular domains (Harrison et al., 2002; O’Herron et al., 2016). However, in O’Herron

et al. (2016), even close by vessels could display significantly different (yet broad) tunings, raising the

question of the experimental and theoretical limits on the discriminability between adjacent voxels

in the auditory cortex. In chapter 2, we proposed a minimal value by focusing on sharp functional

transition, that depended on the sounds and the number of trials used (300 µm). Yet, the variation

in the voxels’ functional tuning within vascular domain remains poorly explored. Our approach,

using a large variety of sounds, could help explore this fundamental limitation of blood flow based

imaging techniques.

Understanding connectivity patterns and top-down modulation

The organization of a brain area generally makes sense if the inputs and even more the outputs of

this region are known, as well as the global computational goal of the circuit. The latter, behavior,

will be discussed in the next section. The former resides in the connectivity scheme that exists

between brain regions. As an example, we demonstrated in chapter 2 that frontal cortex connects

only a subpart of the auditory cortex, namely the fundus of the pseudo-sylvian sulcus (PSS). The
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part of the frontal cortex investigated here (dorso-lateral frontal cortex, dlPFC) has been shown to

extract task-relevant stimuli (Fritz et al., 2010). Thus, this top-down pathway is a good candidate

for the adaptive modulation of auditory processing in auditory cortex during behavior (Fritz et al.,

2003; Atiani et al., 2014; Elgueda et al., 2019). Three main questions remain open.

First, are there any other parts of frontal cortex that connect auditory cortex ? Our investi-

gation has been limited to a proof of concept, but further studies should explore this question more

thoroughly. The combination of fUS and electrodes allows one to explore within FC which area

connects auditory cortex, as well as the functional properties of the source FC area itself. Thus, one

can explore at a global scale the type of information sent to auditory cortex.

Another question is ’to which circuit is it sent?’. Understanding the computations taking

place in the region that receives these top-down inputs, i.e., PSS cortex, as well as its connectivity

scheme with the rest of the auditory cortex, might provide fundamental clues to understand the top-

down control of auditory processing. However, we overall failed to find functional responses unique

to PSS cortex (having explored responses to artificial and natural sounds, vocalizations, as well as

visual stimuli). Further studies should thus explore more systematically its functional characteristics,

as well as its connections with secondary and primary auditory regions.

Finally, the feedforward connectivity between auditory cortex and more frontal areas is still

to be elucidated – yet it is fundamental so as to understand to what end are local computations

performed. Recent studies in the monkey have shown a complex pattern of connectivity: while early

auditory fields show connectivity with frontal areas, high-order, vocalization-sensitive areas were

engaging local networks of processing (Petkov et al., 2015). Further experiments, based on the

work presented here, could aim at testing this hypothesis in the ferret.

Technically, the advances of targeted optogenetics will help deciphering more precisely (e.g.,

in a cell type-specific manner) these connectivity patterns (Lee et al., 2010). Important controls

must be set up to take into account the effect of light on vascular dilatation (Rungta et al., 2017).

Towards behavioral paradigms

Any brain computation is to be interpreted through the prism of behavior (Krakauer et al., 2017).

Furthermore, behavior itself modifies brain activity to a large and yet mostly unknown extent (Fritz

et al., 2003; Atiani et al., 2014; Elgueda et al., 2019; Ahveninen et al., 2006; Stringer et al., 2019c;

Musall et al., 2018). Thus, incorporating behavorial paradigms in our experiments could particularly

enrich our understanding of auditory processing. Several studies have now used fUS during behavior
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in rats (Sieu et al., 2015; Urban et al., 2015), mice (Macé et al., 2018), and monkeys (Dizeux et al.,

2019). Yet, in our hands, any movement of the animal provoked substantial artefacts, or variations in

global blood perfusion that seemed unrelated to the underlying neural activity. The possible origins

for such differences have been discussed in chapter 3. In order to tackle this issue, we designed a

head-fixed fUS probe holder, which was tested on frontal areas recordings. The overall quantity of

observed movement-related artefacts in the signal was not significantly reduced, suggesting that the

design should still benefit from improvements. Designing better head-fixed fUS probes for ferrets

would be an interesting path to follow.

Overcoming this technical limitation would then open up a certain number of promising

research perspectives. Some have already been hinted at in specific chapters (e.g., exploring the

modulation of ’what’ vs. ’where’ pathways in chapter 4, or the representation of high-order features

within auditory cortex in animals trained to discriminate real speech in chapter 3). From another

perspective, the role of frontal cortex in sensory processing has remained elusive. Dorso-lateral

frontal cortex has been shown to present target-specific responses when animals are engaged in a

task, and has thus been hypothesized to top the auditory hierarchy before motor command (Fritz

et al., 2010). However, other parts of the frontal cortex, such as orbito-frontal or medial frontal

cortex seem to display such properties (personal recordings at University of Maryland). This has not

been systematically explored, due to the difficulty to extensively record in and characterize such a

large area. FUS imaging could thus provide an interesting window on that question.

5.3 Future directions, in brief

Finally, I propose here a condensed overview of the potential prospects hinted at in this thesis.

Related to chapter 2, Mapping the auditory hierarchy:

• Exploring the global connectivity patterns between frontal and auditory areas to understand

top-down control

• Characterizing the functional organization of both sending and receiving areas

• Characterizing the connectivity between PSS cortex and the rest of the auditory cortex to

understand how top-down effects spread across cortical fields
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Related to chapter 3, Natural sounds processing:

• Exploring the underlying mechanism for original vs. model-matched vocalization perceptual

discrimination by:

– Refining the movement cancellation procedure in order to extract purely functional do-

mains

– Exploring other brain areas (the most rostral part of ventral posterior auditory field, or

frontal areas)

• Characterizing the formation of high-order auditory feature selective domains by:

– Training adult ferrets to discriminate original vs. model-matched speech, and record

potential changes across auditory cortex (in the line of e.g., Polley et al. (2006) that

used a simple acoustic feature)

– Creating specific representation of speech in juvenile ferrets by, e.g., associating real

speech with rewards (in the line of the FFA formation in monkeys), and observing whether

speech-specific domains or patterns appear in auditory cortex

Related to chapter 4, Space encoding in auditory cortex:

• Further testing the multi-channel hypothesis by improving statistical power and analysis

• Deciphering the effects of behavioral engagement in the representation of space

Related to all:

• Exploring the delimitations of vascular domains and their local functional heterogeneity

• Characterizing the representation of each acoustic dimension throughout auditory cortex, and

the possible interactions among them
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Chapter 6

General conclusion

This thesis aimed at exploring how sounds are topographically encoded within the brain. Brain

computations are in part apparent through the way functional responses are organized within brain

structures. The thesis combined new computational and experimental tools to expose the various

spatially organized modules of processing that overlap within single brain areas. This new approach

will hopefully help us understand how the auditory system combines acoustic features at different

levels to create navigable representations of the world. Specifically, our results provide new clues

on the evolution of speech processing, and on how the brain of different species might apprehend

various levels of complexity in the natural world.
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RÉSUMÉ

Le monde extérieur regorge de sons complexes, que chaque animal doit interpréter afin de survivre. Pour ce faire, leur cerveau

se doit de représenter toute la richesse de la structure acoustique de ces sons, jusque dans leurs propriétés les plus complexes.

Dans cette thèse, cette question est explorée à travers un nouveau prisme, l’imagerie fonctionnelle ultrasonore (fUS). Dans

un premier temps, l’imagerie fUS est utilisée pour étudier avec une haute fidélité l’organisation topographique du système

auditif, ainsi que ses connexions avec d’autres aires cérébrales. Dans un deuxième temps, elle permet d’explorer des aspects

fondamentaux de la façon dont le cortex auditif encode les sons naturels, ainsi que les spécificités humaines pour le traitement

du langage. Enfin, elle révèle des formes topographiques mais non continues d’encodage, avec l’exemple de la localisation

spatiale des sons. À travers ces trois aspects sont révélés les différents modules de traitement de l’information auditive,

spatialement organisés, qui se superposent au sein d’une aire cérébrale unique.

MOTS CLÉS

Imagerie fonctionnelle UltraSonore; Traitement de l’information auditive; Topographie; Sons naturels; Furet

ABSTRACT

The world teems with complex sounds that animals have to interpret in order to survive. To do so, their brain must represent the

richness of the sounds’ acoustic structure, from simple to high-order features. Understanding how it does it, however, remains

filled with challenges. In this thesis, these questions were explored through a new technical prism, namely functional UltraSound

imaging (fUSi). First, fUSi was used to investigate with a high fidelity the topographical organization of the auditory system, as

well as its connectivity with other brain areas. Second, it provided fundamental clues for our understanding of how natural

sounds are encoded in the auditory cortex, and hints at the human particularities for speech processing. Last, it gave us access

to non-continuous topographical encoding, with the example of spatial localization. Through these three aspects, we exposed

the different spatially organized modules of processing that overlap within a single brain area.

KEYWORDS

Functional UltraSound imaging; Auditory processing; Topography; Natural sounds; Ferret
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