
HAL Id: tel-03037130
https://theses.hal.science/tel-03037130

Submitted on 3 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A posteriori log analysis and security rules violation
detection

Farah Dernaïka

To cite this version:
Farah Dernaïka. A posteriori log analysis and security rules violation detection. Cryptography
and Security [cs.CR]. Ecole nationale supérieure Mines-Télécom Atlantique, 2020. English. �NNT :
2020IMTA0210�. �tel-03037130�

https://theses.hal.science/tel-03037130
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE

BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : Informatique

 A posteriori log analysis and security rules violation detection

Thèse présentée et soutenue à Cesson-Sévigné, le 13 Octobre 2020
Unité de recherche : Lab-STICC
Thèse N° : 2020IMTA0210

Par

 Farah DERNAIKA

Rapporteurs avant soutenance :

Alban Gabillon Professeur, Université de la Polynésie Française
Joaquin Garcia-Alfaro Professeur, Télécom SudParis

Composition du Jury :

Président : Mohand-Said Hacid Professeur, Université Claude Bernard Lyon
Examinateurs : Alban Gabillon Professeur, Université de la Polynésie Française

Joaquin Garcia-Alfaro Professeur, Télécom SudParis
Romain Laborde Maître de conférence (HDR), Université Paul Sabatier

 Olivier Raynaud Consultant, Almerys
 Nora Cuppens-Boulahia Professeur, Polytechnique Montréal
 Frédéric Cuppens Professeur, Polytechnique Montréal
Dir. de thèse : Eric Totel Professeur, IMT Atlantique

To my parents Mounir and Jinane Dernaika

Abstract

Traditional access control models prevent violations of the security policy by blocking

any unauthorized action. However, in sensitive environments, such as the healthcare

domain, a lot of unanticipated situations may occur, imposing the need to have an

immediate access to information resources without risk of rejection. Therefore, the

deployment of a more flexible access control model is needed.

The a posteriori access control mode consists in monitoring users’ actions in

order to detect potential violations of the security policy and apply sanctions and/or

reparations. This monitoring process is usually based on log analysis, where all access

evidences persist. It must also be combined with a deterrent sanction policy so that

users are not tempted to violate the security policy. In the literature, this kind of

security check was divided into three stages that are: log processing, log analysis, and

accountability. The first step is meant to extract relevant information from logs, that

are analyzed later on in the second phase to detect violations. When abuse of privilege

is assumed, the process ends by assigning responsibilities by applying sanctions and

remedies if necessary.

In this thesis, we cover these three areas of the a posteriori access control

by providing novel solutions, and we introduce some new aspects that were not

addressed previously. We propose new means to extract relevant information from

logs by using a semantic mediator and treat the semantic enrichment of logs. Moreover,

we leverage the a posteriori access control to include temporal compliance, and we

consider the violations that can be caused by both regular users and administrators.

Finally, we propose an accountability mechanism for the a posteriori access control.

ii

Résumé

Les modèles de contrôle d’accès traditionnels empêchent les violations de la

politique de sécurité en bloquant toute action non autorisée. Cependant, dans

des environnements sensibles, comme dans le domaine de la santé, de nombreuses

situations imprévues peuvent se produire, imposant la nécessité d’avoir un accès

immédiat aux ressources d’information sans risque de rejet. Il est donc nécessaire de

déployer un modèle de contrôle d’accès plus flexible.

Le mode de contrôle d’accès a posteriori consiste à surveiller les actions des

utilisateurs afin de détecter d’éventuelles violations de la politique de sécurité et

d’appliquer des sanctions et/ou des réparations. Ce processus de surveillance est

généralement basé sur l’analyse des fichiers journaux, où toutes les preuves d’accès

persistent. Il doit également être associé à une politique de sanctions dissuasive afin

que les utilisateurs ne soient pas tentés de violer la politique de sécurité. Dans la

littérature, ce type de contrôle de sécurité a été divisé en trois étapes qui sont : le

traitement des logs, l’analyse des logs, et l’imputabilité. La première étape vise à

extraire des informations pertinentes des logs, qui sont analysées plus tard dans la

deuxième phase pour détecter les violations. Lorsqu’un abus de privilège est présumé,

le processus finit par l’attribution des responsabilités en appliquant des sanctions et

des réparations si nécessaire.

Dans cette thèse, nous couvrons ces trois domaines du contrôle d’accès a posteriori

en apportant de nouvelles solutions, et nous introduisons des nouveaux aspects qui

n’avaient pas été abordés auparavant. Nous proposons une nouvelle méthode pour

extraire les informations pertinentes des logs en utilisant un médiateur sémantique

et nous traitons l’enrichissement sémantique des logs. En outre, nous étendons le

contrôle d’accès a posteriori pour inclure la conformité temporelle, et nous prenons en

iii

considération les violations qui peuvent être causées par les utilisateurs réguliers ainsi

par les administrateurs. Enfin, nous proposons un mécanisme d’imputabilité pour le

contrôle d’accès a posteriori.

Acknowledgments

First, I would like to thank my PhD directors, Nora and Frédéric Cuppens for giving

me the opportunity of doing a PhD with such great people like them. They have

been more than just supervisors, they were like my parents, always supporting and

encouraging me. Moreover, I surely thank them for sharing their great knowledge and

research experience to always produce the best.

I would also like to thank my supervisor Olivier Raynaud for his guidance during

my thesis. I am so lucky to work with him as he does not only care about the quality

of the work, but also about the well-being of his students. Another special thanks to

professor Eric Totel for all his efforts to organize my thesis defense. I would also like

to thank all the jury members for being a part of my thesis especially the professors

Alban Gabillon and Joaquin Garcia-Alfaro for reporting my thesis and giving their

recommendations.

Next, I would like to thank all my colleagues and friends that became a part of my

family. I will never forget these most beautiful 3 years I spent with them. A special

thanks to my girl squad: Routa, Rahaf, Tania, and Nisrine.

Most importantly, I would like to thank my family, especially my parents Mounir

and Jinane Dernaika, to whom I dedicate this thesis. They are the reason for who I am

today, and I will always be grateful to them. I would also like to thank my brother

Abdel Aziz, my sister Ouhayla, and my brother in law Sami Ayoubi, for their love and

support.

Last but not least, I express all my gratitude to my life partner Taha Merhebi for his

unconditional support and endless patience. He has been always by my side, and I am

so excited for our upcoming life together.

v

Table of Contents

Abstract ii

Résumé iii

Acknowledgments v

List of Figures xii

List of Tables xiii

1 Introduction 1

1.1 Context . 1

1.2 Problem Statement . 3

1.3 Contributions . 5

1.4 Thesis Outline . 6

2 State of The Art 9

2.1 A Priori vs A Posteriori Access Control 9

2.1.1 A Priori Access Control . 10

2.1.2 A Posteriori Access Control . 16

2.2 A Posteriori Access Control Steps . 21

2.2.1 Log Processing . 23

2.2.2 Log Analysis . 26

2.2.3 Accountability . 29

vi

2.3 Policy Representations . 30

2.4 Semantic Web Technologies . 33

2.4.1 RDF(S) and OWL . 34

2.4.2 SPARQL . 35

2.4.3 SWRL and SQWRL . 37

2.5 Conclusion . 38

3 Extracting Log Information Using Semantic Mediation 40

3.1 Introduction . 40

3.2 What is a Semantic Mediator? . 41

3.3 Semantic Mediation For Access Control 42

3.4 Semantic Mediation in the a Posteriori Access Control 43

3.4.1 Semantic Mediator Setup . 44

3.4.2 Query Rewriting Process . 48

3.4.3 Policy Reconciliation . 51

3.5 Example Scenarios . 51

3.5.1 Scenarios . 52

3.5.2 Synthetic Logs Generation . 53

3.5.3 Mediator Implementation . 55

3.5.4 Query Rewriting Applied in the Scenarios 56

3.6 Discussion . 59

3.7 Conclusion . 60

4 A Posteriori Violation Detection with a Static Policy 64

4.1 Introduction . 64

4.2 Materials . 66

4.2.1 Multi-Agent System Definition . 66

4.2.2 Motivation of Using a Multi-Agent System 67

4.2.3 Criticality of Policy Temporal Compliance 68

4.2.4 Event Calculus . 68

4.3 Modelling the Security Policy with ABAC and OWL 73

4.4 Multi-Agent Based Policy Temporal Compliance Framework 76

4.4.1 Multi-Agent System Architecture 77

4.4.2 Multi-Agent System Functioning 78

4.5 Use Case . 86

4.6 Implementation And Evaluation . 89

4.6.1 Implementation . 89

4.6.2 Evaluation . 89

4.7 Related Work . 94

4.8 Conclusion . 95

5 A Posteriori Violation Detection with an Evolutive Policy 97

5.1 Introduction . 97

5.2 Motivation of Considering Policy Evolution 98

5.3 Administrative Models for ABAC . 100

5.3.1 GURA . 100

5.3.2 ADABAC . 101

5.3.3 AMABAC . 101

5.4 Evolutive Policy Compliance . 102

5.4.1 Getting Access Time Valid Rules 105

5.4.2 Monitoring Administrative Actions 108

5.4.3 Detecting violations . 111

5.5 Use Case . 112

5.6 Implementation . 115

5.7 Experimentation . 122

5.8 Conclusion . 124

6 Accountability in the A Posteriori Access Control 126

6.1 Introduction . 126

6.2 Accountability: a Requirement and a Mechanism 127

6.2.1 Accountability as requirement . 129

6.2.2 Accountability as a mechanism . 130

6.3 Conclusion and Future Work . 137

7 Conclusions and Perspectives 139

7.1 Perspectives . 141

7.1.1 Log Analysis with Incomplete Information 141

7.1.2 Policy Conflict Resolution . 141

7.1.3 Combining a Priori and a Posteriori Access Control 142

7.1.4 Contextualizing the Exception Policy 142

7.1.5 Considering Usage Control Requirements and Obligations 143

7.2 Raising Awareness Among Organizations 143

7.2.1 Context . 143

7.2.2 The Organization’s Business . 144

7.2.3 Use Cases . 144

7.2.4 Discussion and Perspectives . 150

A French Summary: Analyse a Posteriori des Logs et Détection des Violations

des Règles de Sécurité 154

A.1 Introduction . 154

A.2 Extraction d’Informations des Logs à l’aide de la Médiation Sémantique 156

A.3 Détection a Posteriori des Violations . 159

A.3.1 Architecture Multi-Agents . 160

A.3.2 Le Cas d’une Politique Statique . 161

A.3.3 Le Cas d’une Politique Evolutive 162

A.4 L’Imputabilité dans le Contrôle d’Accès a Posteriori 162

A.4.1 L’Imputabilité en tant qu’Exigence 163

A.4.2 L’Imputabilité en tant que Mécanisme 164

A.5 Conclusion . 165

List of Publications 168

Bibliography 169

Bibliography 188

List of Figures

2.1 RBAC Mechanism. 11

2.2 OrBAC Mechanism. 12

2.3 ABAC Mechanism. 14

2.4 SPARQL query example . 37

3.1 Global Log Ontology OG. 46

3.2 Query Rewriting Process. 51

3.3 Mappings between ontologies. 53

3.4 XML Log. 54

3.5 Database Log. 54

3.6 Example of mapping in EDOAL. 55

3.7 Semantic Mediator Architecture. 57

3.8 Mappings defined in Ontop. 58

4.1 MAS Architecture . 78

4.2 List of Attributes sent by Po to Med . 87

4.3 Agent message in ACL . 88

4.4 Time in function of number of rules . 93

4.5 Time in function of number of attributes 93

5.1 Recursive Aspect of administrative attributes verification. 108

5.2 Recursive Aspect ends when sad is detected. 109

xi

5.3 Timeline example of interactions between security rules and administra-

tive actions. 112

5.4 Excerpt of the administrative log. 112

5.5 Time in function of number of events . 124

6.1 A Posteriori Access Control with Accountability 132

6.2 Accountability Decision Module in case of a Static Policy 134

6.3 Accountability Decision Module in case of an Evolutive Policy 138

A.1 Processus de réecriture de requêtes. 158

A.2 Architecture du Système Multi-Agent . 161

A.3 Mécanisme d’imputabilité . 165

List of Tables

2.1 Comparison between previous works on the a posteriori access control . 22

2.2 RDF(S) and OWL Components and Syntax 36

3.1 SPARQL Rewriting Process in Scenario 1 62

3.2 SPARQL Rewriting Process in Scenario 2 63

4.1 Event Calculus Basic Predicates . 69

4.2 Capability Metrics . 90

5.1 The considered violation rate of each tested number of events 123

xiii

Chapter 1

Introduction

1.1 Context

For several years now, information and communication technologies have been

revolutionizing all sectors, whether they are industrial, commercial, administrative, or

medical. As these businesses become digital through this data-driven transformation,

the value of data increases to be one of the most important assets that an association

can have. Therefore, to ensure the security of data, access control came along to protect

the information system against any activity that could lead to a security breach or any

accidental and malicious threats by regulating access to data. That being said, access

control is an essential security requirement that needs to be ensured in organizations

to assure the confidentiality, integrity, and availability in their information systems.

Access control requires the enforcement of access control policies that consist in a

set of rules that define access control requirements (permissions, prohibitions) relating

to the actions performed by a user in an information system. Although the criticality

of access control is recognized by organizations, its enforcement may differ between

one and another. In fact, the way of maintaining access control requirements depends

on the environment in which it is being implemented.

Traditional access control models verify users’ privileges before granting them

access to information resources to avoid misuse of privileges. Through authentication

and authorization, access control policies check if the users are who they claim they

are and have appropriate access to the concerned resource. This a priori enforcement

1

CHAPTER 1. INTRODUCTION 2

of security policies is preventive since it restricts access to information resources if

the conditions defined in the policy are not fulfilled and thus, can be inadequate in

dynamic environments where access decisions may depend on contextual conditions.

For instance, in the healthcare domain, a lot of emergencies may occur imposing the

need of having an immediate access; hence, to avoid having serious consequences,

security controls in the corresponding information systems must not block certain

decisions and actions of users. In consequence, it is a prerequisite to take into account

the organization’s uses and practices, so that the deployed security solution is not

perceived as a constraint for users with a significant risk of rejection that can impose

undesirably high computational costs. In this regard, the use of a more flexible access

control appeared to be convenient, where it is possible to identify and trace these

decisions and actions, in order to detect possible breaches of the security policy put

in place and set responsibilities.

The problematic of the a posteriori access control is fairly recent, and its prime

concerns are auditability and accountability in order to detect potential violations

of the security policy to prevent future misuse of privileges. In this type of access

control, access to information is given based on a trust level offered to the user,

where this latter is deterred from committing policy violations by a mechanism that

assures the traceability of his actions, and that applies sanctions in case of an abuse

of privileges. Generally, this monitoring process starts by analyzing logs since they

trace and record all the executed actions in the information system. Recognizing the

importance of logs, the National Institute of Standards and Technology, USA issued

best practices and recommendations for computer security log management [115].

Thus, logs are among the first data sources that information security specialists consult

for forensics when they suspect that something went wrong. In contrast, the primary

reference of this a posteriori analysis is the security policy, as the goal is to detect

potential violations of this policy. Therefore, the a posteriori access control works on

the reconciliation between policy rules and logged actions in order to verify whether

access rules are being fully respected or not. As a result, previous a posteriori access

control approaches defined the compliance verification process as composed of three

main components that are logging, log analysis, and accountability [38, 48, 10]. While

logging provides evidence of users’ actions, log analysis identifies abnormal ones, and

CHAPTER 1. INTRODUCTION 3

then the accountability component applies penalties to the user in case no legitimate

reason for his misbehavior was found. These three main steps need to be carefully

addressed since any error in the process can lead to complex problems with legal,

ethical, and social dimensions.

In this thesis, we study an approach based on an a posteriori access control to detect

any violation of the security policy. We thus present the difficulties that reside in this

kind of security check, as well as our proposed solutions in the following sections.

1.2 Problem Statement

The first step of the a posteriori access control consists in extracting relevant

information from log files in order to be analyzed and then detect violations.

Nevertheless, the first difficult challenge we face when treating and analyzing logs, is

the multiple log file formats. This is generally due to the different types of log sources

such as Application server, Web server, Database, etc. To address this issue, several log

normalization methods have been proposed in the literature that intended to process

logs to put them in a unique format. Unfortunately, none of these efforts were able

to attract sufficient attention, namely for their shortcomings regarding their runtime

and memory consumption that make them unsuitable for environments with a large

log volume. Therefore, we need to deal with those format differences by providing

a module that extracts information in terms of the security policy from the different

source logs without imposing a particular format.

Another important issue that makes the a posteriori investigations doubtful is that

log analysis is based essentially on the expertise of the person who performs it. For

example, the system administrator can use a generic list of security checks that is

not necessarily adapted to the target system. Thus, several efforts have been made

to detect anomalies from logs such as process mining [203], and machine learning

techniques [60] that were also integrated into some log analysis tools, e.g., Splunk

[132]. Yet, these methods always require human intervention for further analysis

to decide what is really normal vs. abnormal. When it comes to access control,

the security policy is the judge. Consequently, it is necessary to define a reference

CHAPTER 1. INTRODUCTION 4

format for the security policy in order to facilitate the detection of potential violations.

Once the security policy is defined, we need to establish links between the extracted

logged events and the rules defined in the policy to be able to proceed with the

analysis and detect violations. However, the entities relating to the subject and object

involved in the logged access may differ from the ones that are defined in the security

policy, particularly, in case of an expressive policy [51]. Therefore, controlling the

respect of the policy a posteriori must be based on effective monitoring mechanisms

to make decisions about policy violations. These mechanisms must rely on means that

complement logs with additional information to allow the comparison between the

actions performed in the logs and the permissions defined in the policy, as well as

assessing their compliance.

Furthermore, in case of an expressive security policy, the permissions are assigned

indirectly to the user. For instance, in case of the Attribute-based Access Control

(ABAC) [94], permissions are defined according to subject, object, and environmental

attributes. These attributes may change over time to have different values entailing

changes in the condition that permits an event. In consequence, verifying the

compliance between a logged event and a security rule should not consist in checking

the validity of the condition at the time of the investigation but rather at the time of the

access.

Moreover, similarly to the condition, security rules might also change over time.

These changes are usually controlled by an administrative policy that is managed

by administrators. That being said, it is important to consider the variation of the

policy over time, as well as monitoring administrative actions since administrators

themselves can commit violations.

Last but not least, the a posteriori access control mechanism should be combined

with a dissuasive sanction and reparation policy to deter the user from violating the

security policy.

In this work, we provide novel means and solutions to solve these problems; hence,

improve the a posteriori access control.

CHAPTER 1. INTRODUCTION 5

1.3 Contributions

We cover the three steps of the a posteriori access control that are log processing, log

analysis, and accountability.

First of all, to ensure log processing, we propose a new method to extract useful

information from logs in terms of the security policy. The goal of our solution is to

resolve the heterogeneity between log formats in provenance of different log sources,

while avoiding treatments on log files for the inconvenience that they provide in terms

of memory consumption and processing time. Instead, we treat the queries that are

sent to the logs by rewriting them using a semantic mediator. We show that this

method is more efficient than traditional log processing methods as it guarantees

scalability, system autonomy, and transparency in accessing data location and formats.

Moving on to log analysis, we get into different new aspects that leverage the

a posteriori access control such as the semantic enrichment of logs, and the policy

temporal compliance in both cases of a static and evolutive policy.

To have an effective detection mechanism, we need to compare between logged events

and the security policy. Therefore, we treat the semantic enrichment of the extracted

log information that aims to complement the logged data with complementary

information relating to the conditions defined in security rules. This is useful in case

of an expressive security policy, where a good number of attributes, that cannot be

found in logs, are needed to define access permissions. Thus, we develop a multi-

agent system architecture to automate the information collection process with respect

to the security policy; hence, handle the semantic enrichment of logs.

Moreover, we improve the a posteriori access control by considering the temporal

aspect when checking policy compliance. As the investigations are done a posteriori,

we highlight that a correct policy conformance evaluation resides not only in

respecting the required security attributes but also at the right time. To formalize

this temporal verification, we use the Event Calculus (EC), a formal language for

representing and reasoning about dynamic systems, that we implement in SWRL, and

integrate in the multi-agent system.

Besides, we consider the policy temporal compliance in both cases of a static and an

CHAPTER 1. INTRODUCTION 6

evolutive security policy. By static policy, we mean that it is its expression that is static

in the sense that it is defined once and for all, while its application is not static and may

depend on contextual conditions. In the second case, we suppose that the rules defined

in the security policy are subject to change over time using an administrative model of

the policy. Therefore, the policy evaluation process starts by getting the rules that were

in place at the time when an access occurred. Once again, we use the Event Calculus

to express the relation between a logged event and the rules that held at the time of

the access to detect violations, as well as the inter-dependency between administrative

actions and the valid security rules. In addition, we consider the violations that can be

caused by both users and administrators, which make the evaluation process recursive.

Therefore, we define a termination condition.

Continuing, we define a framework for accountability in the a posteriori access

control, to decide whether or not the user should be sanctioned once a violation is

detected. We also consider the case where responsibility can be transferred to the

administrator. To the best of our knowledge, our work is the first one to consider the

temporal verification and the evolution of the security policy over time, as well as to

propose an accountability framework when performing an a posteriori access control .

Finally, for each of the above contributions, we provide use cases in the healthcare

domain where the a posteriori access control can be deployed. In addition, we present

use cases that were provided from a real organization, and we argue how the quality

of data can affect the a posteriori access control. We sum it up by exposing some issues

to raise awareness among organizations in order to have a better post-access control.

1.4 Thesis Outline

The rest of this document is organized as described below.

Chapter 2 - State of The Art - reviews some concepts and works that are related to our

field of research. We present different access control models, and we justify our choice

of using the Attribute-Based Access Control model (ABAC). We also distinguish the

difference between the a priori and the a posteriori access control, and provide a

CHAPTER 1. INTRODUCTION 7

literature review of the existing works relating to the a posteriori access control and

compare them. Moreover, since the a posteriori access control is primarily based on

logs and the security policy, we study some log processing and analysis methods,

as well as some works treating the accountability problem in addition to policy

representation models. Finally, we present the Semantic Web technologies and tools

based on which we built our approach.

Chapter 3 - Extracting Log Information Using Semantic Mediation - presents

the architecture of the semantic mediator that we used to rewrite log queries and

extract information from logs in terms of the security policy. The idea is not to treat

logs but rather to handle the queries that are sent to them. We decompose the query

rewriting process into two steps: Semantic rewriting and Syntactic rewriting, and we

show how this can be done by modeling the concepts present in logs using ontologies

and establishing mappings between them. We also provide three scenarios that serve

as use cases and present the used open source tools to implement the mediator.

Chapter 4 - A Posteriori Violation Detection with a Static Policy - handles the

semantic enrichment process and the policy temporal compliance problem in case of

a static policy. In this chapter, we consider that the expression of the security policy

does not change over time, and we highlight that the importance of the a posteriori

investigation resides not only in checking policy compliance but also in verifying the

respect of the security rules at the right time. Thus, to enrich logged data, we provide a

multi-agent system architecture to gather complementary information, and we model

the verification process according to the Event Calculus and SWRL to reason over

time, in addition to illustrating a use case.

Chapter 5 - A Posteriori Violation Detection with an Evolutive Policy - considers the

evolution of the security policy over time that is triggered by an administrative policy.

Therefore, monitoring administrative actions is also considered since each time we

want to verify the legitimacy of an event, we need to get the rules that held at the time

of its occurrence; hence, consult the administrative actions and check their validity.

That being said, the verification process becomes recursive, the reason why we define

CHAPTER 1. INTRODUCTION 8

a termination condition. We express this inter-dependency between administrative

actions and valid security rules using the Event Calculus and SWRL, and provide a

use case as well.

Chapter 6 - Accountability in the A Posteriori Access Control - proposes an

accountability framework for the a posteriori access control, and discusses how it can

be seen as a requirement and as a mechanism. We suggest to integrate a justification

obligation in the accountability process to increase the probability and the severity

of sanctions, as not respecting this obligation is a violation by itself. Moreover, we

treat accountability in both cases of a static and an administrative security policy and

propose a modality to apply sanctions.

Chapter 7 - Conclusions and Perspectives - concludes this work by summarizing the

contributions that were lead in this thesis, and suggests new perspectives to be treated

in future researches. Moreover, it illustrates three log analysis use cases that were

provided from a real organization. We show how the quality of the provided data can

influence and even block performing the a posteriori access control. As a result, we

open a discussion that provides certain recommendations about the information that

should be present in logs as well as the conception and implementation of the security

policy. These discussed issues need to be considered by organizations to be able to

perform an a posteriori access control.

Chapter 2

State of The Art

2.1 A Priori vs A Posteriori Access Control

The main difference between the a priori and the a posteriori access control is how

access permissions are decided. While in the a priori access control access permissions

are independent of the user’s experience, they are known a posteriori on the basis

of the experience. The distinction between a priori and a posteriori access thus

broadly corresponds to the distinction between empirical and non-empirical access.

The choice of deploying an a priori or a posteriori access control usually depends on

the environment. For instance, the a posteriori access control is more advantageous in

environments (e.g., healthcare) where users need to go ahead with their duties, without

worrying about access authorizations problems. Meanwhile, other environments

require robust security guarantees (e.g., military information systems), making the a

priori access control more suitable. Therefore, in many settings, the a posteriori access

control cannot replace the a priori access control because the costs of incidental misuse

are much higher than the costs of a preventive security mechanism. Although the

balance between the security requirements and the availability of services is assured

when deploying the a priori access control, it is important to consider the separation

of concerns. As a consequence, the a priori and a posteriori access control are being

unified, the case in which a "break-glass" mechanism (c.f. Section 2.1.1) is integrated

to provide flexibility in access authorizations. Thus, relying on the a posteriori access

control is motivated by the need of ensuring that users are not performing malicious

actions when the "break-glass" is activated.

9

CHAPTER 2. STATE OF THE ART 10

Still, this a priori/a posteriori nuance is always relevant to justification or warrant, that

is, the security policy.

Access control policies are high-level requirements that specify how access is

managed and who may access information under what circumstances. They are

enforced through a mechanism that translates a user’s access request, often in terms of

a structure that a system provides [177]. Moreover, access policies can be represented

according to several models that bridge the gap of abstraction between policy and

mechanism. These security models are formal representations of the security policy

that serve in describing the access security properties as well as providing theoretical

limitations of a system.

In fact, these models can be used in both a priori and a posteriori access modes.

While they are used for granting users access in the a priori mode, they are considered

as a referrer that is consulted to detect violations in the a posteriori mode.

As access control has a large body in research, we will present, in the following,

some expressive access control models which mechanisms are used to enforce the a

priori access control, and then talk about the a posteriori mode of this latter.

2.1.1 A Priori Access Control

The a priori access control is the traditional access control in which users are prevented

from gaining access to a resource outside their sphere of access. It is deployed to stop

unwanted or unauthorized activity from occurring by blocking it immediately if it is

not explicitly allowed in the security policy. Thus, access privileges are resolved before

granting access to users.

Ideally, access control models come into the picture to define the right level of

permission to be granted to an individual to perform his duties; hence, we present

three expressive access control models.

Role-Based Access Control

The Role-Based Access Control model (RBAC) [70], was introduced in 1992. It makes

it possible to establish access control over the applications and services within a

CHAPTER 2. STATE OF THE ART 11

company based on the definition of the roles to be assigned to users and resources.

Therefore, access to objects is based on the user’s role and rules indicating which access

is allowed for which given role.

We distinguish two types of relationships that lead to the relation user-permission,

that are, the user-role assignment and the role-permission assignment relationships.

The former present the roles that are associated to each user, and the latter assigns

permissions to each role.

Furthermore, the implementation of the basic functionality of RBAC is called Flat

RBAC where users obtain the permissions they need by acquiring the required roles. It

is worth mentioning that there may be as many roles and permissions as the company

needs. An abstract illustration of RBAC is shown is Figure 2.1.

In contrast, RBAC is not a linear monolithic model, since relationships may exist

Figure 2.1: RBAC Mechanism.

among the roles themselves. This is where the Hierarchical RBAC comes on board in

which higher-level roles subsume permissions owned by sub-roles.

Nevertheless, when the number of roles increases in a company, the number of roles

in RBAC increases subsequently to properly encapsulate the permissions, leading to

what is called role explosion that can become a complex affair. In addition, it is not

adapted to a dynamic and distributed context as it assigns roles statically to the user.

Organization-Based Access Control

The Organization-Based Access Control (OrBAC) [62] is an access control model that

appeared in 2003, in which the expression of an authorization policy focuses on the

concept of organization.

In contrast, access control models are usually based on three entities: subject, action,

CHAPTER 2. STATE OF THE ART 12

and object. Thus, to control access, one specifies whether a subject has permission to

perform an action on an object. Since the main purpose of OrBAC is to allow defining

a security policy independently of its implementation, it introduces new entities as an

abstraction level for each of the subject, object, and action, that are the role, the view,

and the activity, respectively. These latter are defined relatively to an organization as

shown is Figure 2.2. Therefore, in OrBAC, the security policy specification is completely

Figure 2.2: OrBAC Mechanism.

set by the organization. It is also possible to specify simultaneously several security

policies associated with different organizations.

It must be pointed out that OrBAC is not restricted to permissions, and also includes

the possibility to specify prohibitions and obligations. Moreover, from the three

abstract entities (roles, activities, views), abstract privileges can be defined, and one

can derive later on these abstract privileges in order to obtain concrete ones.

Furthermore, OrBAC has the notion of context, so its security policies can be

expressed dynamically in addition to its support of hierarchy (organization, role,

activity, view, context).

Attribute-Based Access Control

The Attribute-Based Access Control model [94] defines an access control paradigm

in which access rights are granted to users through the use of rules that combine

CHAPTER 2. STATE OF THE ART 13

attributes. Thus, access policies can use any type of attributes such as subject attributes,

object attributes, environment attributes, etc., as shown is Figure 2.3. These attributes

contain information given by a name-value pair. We present the main ABAC entities as

follows:

• Subject Attributes: Subjects are the entities that request to perform operations on

objects. Each subject can have one or more attributes, and is usually assimilated

to a user. Such attributes may include the subject’s name, role, affiliation, address,

etc. Interestingly, the use of subject attributes makes access control lists (ACLs)

and RBAC particular cases of ABAC where "identity" and "role" are respectively

considered as attributes.

• Object Attributes: Objects are the requested resources to be accessed by the

subjects. Similarly to the subjects, they have attributes that are important to

make access control decisions. Object attributes are useful to specify the type

of operations that can be done on the objects (e.g., read a document, excute a

program, etc.). Examples of object attributes can be the type, location, owner, etc.

• Environment Attributes: also known as Context Attributes. They are the

operational or situational context in which accesses are done, and are

independent of subject or object. Environment attributes may include the time,

location or dynamic aspects of the access control scenario, etc.

This aspect of using multiple attributes makes ABAC a flexible and multi-dimensional

access control system that is capable of supporting any access control model.

Therefore, its support of making fine-grained access decisions made it successful as

it represents a rich policy specification and any number of attributes can be added

within the same extensible framework. However, one drawback of ABAC is that it is

hard to configure due to the way policies must be specified and maintained.

Limitation of the A Priori Access Control

Once the access control model and policies are set up, the underlying access control

mechanisms will ensure that they are enforced in regular operation. However,

CHAPTER 2. STATE OF THE ART 14

Figure 2.3: ABAC Mechanism.

implementing the a priori access control is insufficient to assure the desired security

level since it is impossible to anticipate all usage scenarios when setting forth the

policies. This problem of the inability of traditional access control models to handle

exceptional situations has been known for more than twenty years [26]. Although

risk-based models [41, 146], that weight the risk of granting access against the

perceived benefit, were proposed to adapt to dynamic environments, it is still difficult

to distinguish between the malicious break-in and well-intentioned infringements

as access decisions are made in real-time. To address this problem, additional

mechanisms should be deployed on top of the underlying access control models to

increase flexibility while maintaining a certain security level at the same time.

One common strategy is the "break-glass" [71, 131, 173], which has been introduced

to handle emergency situations by breaking or overriding the standard access

permissions in a controlled manner. It is derived from the action of breaking the

glass and ringing the fire alarm [181], and refers to a quick means for a person

who does not have access privileges to certain information to gain access when

necessary. This principle was originally brought for disaster management [157], and

is usually implemented by issuing temporary accounts that comprise more powerful

access rights on one hand, and more detailed logging on the other hand. In this

respect, it allows a subject to act under certain conditions even though he/she was

CHAPTER 2. STATE OF THE ART 15

not previously authorized to do so. Moreover, it is usually implemented in an ad-

hoc manner during the administration phase. As it might complicates the a priori

analysis of the security policy, it is crucial to perform monitoring to assure the

control of the separation of the regular policy and the emergency mode. Therefore, a

variety of different approaches were published, offering different features for different

application domains. For instance, [166] proposed an optimistic access control scheme

as a paradigm for constraining access in unexpected situations. In their approach,

the authors assumed that most accesses would be legitimate, and the preservation

of the organization’s security is ensured by external controls. Moreover, traceability

was provided using monitoring and recording functions that are based on the Clark-

Wilson Integrity Model [43]. Furthermore, [7] presented an exception-based access

control solution to handle “break-glass” attempts in healthcare systems. In case of an

emergency, the solution permits policy override if no emergency policy exists, while

notifying the administrator of the respective override. Both of these approaches are

burdensome for administrators as the enforcement of security policies relies on the

capability of administrators to identify inappropriate accesses.

Besides, a break-glass extension for SecureUML was introduced in [30]. This

extension supports model-driven development techniques based on role-based access

control policies with break-glass, and the resulting SecureUML break-glass policies can

be transformed into XACML [81]. The approach also integrates means for monitoring

and logging the usage of emergency rights using obligations. [131] presented a

break-glass model, named Rumpole, that takes into account the notion of subjects’

competences and empowerments to gain more insight into the causes for the access

denial, rather than on a set of emergencies or explicit override permissions. Other

studies were interested in integrating the concept of break-glass policies into the

business process context [149, 172, 204].

In all cases, the "break-glass" mechanism should be invoked in conjunction with a

strict accountability function that offers both logging and auditing, of which the users

should be aware of in order to be discouraged from abusing the regular permissions

beyond emergencies. Such functionalities are the core components of the a posteriori

access control which we discuss next.

CHAPTER 2. STATE OF THE ART 16

2.1.2 A Posteriori Access Control

The a posteriori access control can be classified as a deterrent and detective access

control at the same time [195]. It is deterrent because it picks up where prevention

leaves off. It allows access without imposing prevention constraints, which may lead

to possible or successful attempts of violation. Moreover, the a posteriori access control

deploys a monitoring mechanism to detect illegitimate accesses; hence, it is detective

since the inspections are applied after-the-fact rather than in real-time.

In order to not block users in particular cases (e.g., emergency) [157], and to allow

them to access the resource they need, a "break-glass" mode is adopted which leaves

the access relatively "open". Thus, the user is allowed to override the access restriction

voluntarily, with or without the intervention of the administrator. Nevertheless, these

accesses are traced and audited afterward.

Although in legal terms the "harm is constituted", these accesses are made with

full knowledge of the user of the potential consequences. He has been warned

previously and yet, still performed these accesses without a delegation. Moreover,

if the user could not prove the legitimacy of his actions after being questioned, he is

held responsible and should be sanctioned by enforcing the fact that he was warned.

In contrast, decisions are taken by consulting the security policy that usually defines

the access requests that must be authorized. On the other hand, log files record "What

happened? When did it happen? And by whom" in the system. Therefore, it is

referenced for diagnostic, audit trail, and investigative purposes in case of malicious

activities, system attacks, or security breaches [152]. It can also be used for accounting

purposes as it is obviously a trusted source that offers accurate data when considering

that all accesses are logged. Therefore, logs constitute the basis on which the a

posteriori access control lies to proceed in the investigations and provide proofs, and

the security policy takes the role of the judge as it defines the rules that permit accesses.

We can thus designate the a posteriori access control as an alliance between the logs

and the security policy.

After what has been discussed, the a posteriori access control was defined in the

literature as composed of three stages: log processing, log analysis, and accountability [38,

CHAPTER 2. STATE OF THE ART 17

48, 10]. The first step is meant to extract relevant information from logs. This latter

is then analyzed in the second step to determine whether there has been a violation

or not. Thus, the investigator can obtain evidence demonstrating that the user did

not violate the security policy and that the problem was caused by external malice or

a system error, or that there was effectively a violation. When abuse of privilege is

assumed, the circumstances under which the user performed such action are studied

to see if the access was harmful. Finally, the last step is about assigning responsibility

by applying sanctions and remedies once the violation decision is made.

This coupling between logging and auditing attends to assimilate the a posteriori

access control to intrusion detection. Although these two resemble, they are still not

the same. So what is the difference?

Difference between the A Posteriori Access Control and Intrusion Detection

As the volume of logged activity increases quickly, automated tools are being

developed and used to reduce human tasks and help in carrying out auditing. One

class of these tools is known as Intrusion Detection systems [58], which can be classified

as passive or active.

Passive systems [124] analyze the audit data offline and bring possible intrusions

or violations to the attention of the auditor who then takes appropriate actions, while

active systems [96] analyze audit data in real-time. In addition to alerting the auditor

of the violations, these systems may take immediate protective response on the system.

However, when the detection is passive, the distinction between the a posteriori access

control and intrusion detection can be confusing as in both cases the goal is to detect

violations.

Intrusion detection systems can be based on different approaches such as

Threshold-Based approach [161], Anomaly-Based approach [112], Rule-Based

approach [97], etc. Each approach is used to detect a specific type of violation.

For instance, threshold-based systems define abnormal use concerning pre-specified

acceptable thresholds (e.g., number of login attempts), while anomaly-based systems

define abnormal use as a use that is significantly different from what normally

observed (e.g., statistical measures). As for the Rule-based approach, it describes what

CHAPTER 2. STATE OF THE ART 18

is suspicious based on known past intrusions. It is generally enforced by the encoded

knowledge of security experts of properties characterizing past intrusion events.

It is remarkable that whatever the used approach is, intrusion detection systems

depend on the expertise of the person who is developing them. Most of the time,

they can only detect violations that involve anomalous use defined following what the

general behavior should be. Therefore, as an attacker can always penetrate the system

by employing new techniques, machine learning approaches are being developed to

be able of autonomously learning new attacks [103, 34]. Nevertheless, they tend to

learn to detect certain patterns and are often dependent on the system’s response or

feedback.

In this regard, the a posteriori access control cannot be categorized as passive intrusion

detection since, as mentioned earlier, a trustworthy environment is considered where

the main concern is not to discover any violation, but to detect the potential ones of

the security policy. As access permissions may evolve depending on circumstances,

an intrusion detection system might consider a legitimate access as abnormal. Thus,

it is the security policy that manages the access control requirements fulfilling the

objective of not preventing attacks, like in the intrusion detection, but rather fixing

responsibilities and applying sanctions.

Previous works on the A Posteriori Access Control

The motivation of using an a posteriori access control model was brought with

the difficulty of managing access control in many environments and organizations.

However, in certain environments, it is important to assure the continuity of daily

activity services, where sensitive fields are involved. This might be the case for some

medical organizations, where several emergency situations may occur.

In an a posteriori access control model, a trust management system is used to ensure

that data resources are only provided to users who are subject to penalties in case

of violation. This auditing process is conducted using audit proofs such as logs. A

number of researches dealt with this type of access control, which we present in the

following.

One of the first works to address this problem was [48], where the authors proposed

CHAPTER 2. STATE OF THE ART 19

a language that allows agents to distribute data with usage policies in a decentralized

architecture. They designed a logic that allows agents, who can be audited at any

time, to prove their actions and authorization to possess particular data. The proofs

of the users rely on a usage policy that is attached to the data and which contains a

logical specification of which actions are allowed to be done on the data and under

which condition it can be redistributed. Moreover, they showed how this logic allows

different kinds of accountability (agent accountability and data accountability), and

demonstrated the soundness of this logic. This work was then extended in [38],

to include the ability to specify conditions and obligations within the policies, by

allowing the agents to refine the policies before passing them to other agents. In

contrast, as in [48] the only allowed policies were those that are explicitly stated by

the data owner, [38] introduced three new functions that are: observability, conclusion

derivation, and proof obligation. Besides, the authors formalized their proof system in

the proof checker Twelf [163], that allowed them to model proofs provided by agents,

and the subsequent checking by the authority. Continuously, a proof finder that allows

agents to generate valid justification proofs was implemented in [36].

[67] also introduced the a posteriori access control, and provided a logical

framework for a posteriori policy enforcement that combines trust management and

elements of audit logic, called APPLE. In this framework, users are responsible of

logging and keeping traces of their actions, and each data item is governed by its own

policy label. Moreover, they considered that the log is secure in the sense that users

can log actions, but cannot modify an entry in the log, and used trusted components

to assure that all communications are logged. They also focused on monitoring the

transmission of documents, considering that the gravest policy violations can occur

through this latter. This approach is less specific with regard to the expressive power

of the policy rules, but it is more precise with regard to how the policies appear in the

system, namely as sticky policies attached to the data items.

The above works [48, 67] were the first of their kind; hence, it is evident that they

have some drawbacks. First of all, the responsibility of logging and monitoring actions

is imposed on the users who are performing them. This is however not realistic even

when considering that the users are trusted. There should be a policy that defines

the perimeter of the logging process to control the flow of this latter. Next, security

CHAPTER 2. STATE OF THE ART 20

policies are attached to the data without being defined according to a security model.

Moreover, they did not provide the log information collection or log querying process.

On the other hand, the a posteriori access control had a wide success in the

healthcare domain. For instance, [59] outlined the needed architecture to apply audit-

based access control in electronic health record systems, and discussed the advantages

and limitations of their proposal. Other efforts in the medical domain were [12] and

[11].

In [12], the authors proposed to restructure IHE-ATNA log records [10] according

to an OrBAC security policy model to find policy violations. The core idea was to

structure these logs to bring them close to the security policy by using a reformatting

procedure that maps the relevant structures and contents of logs to the concepts of

the used policy. Contrary to previous works that mainly focus on security languages,

the proposed security control process is based on a contextual security model having

an appropriate level of abstraction in addition to the ability to converge logging data

and policy structural concepts. Furthermore, in [11], they defined and enforced the

extraction of necessary data from logs, for policy violation detection, by building an

ontology model of these logs and querying it. While they adopted the ATNA standard

as a log format, it is possible to consider other log formats [84].

We can consider [12, 11] as best efforts for taking into account an expressive security

policy when performing the a posteriori access control. However, they did not treat the

accountability process as well as the modifications of the security policy.

Other applications of the a posteriori access control can be also related to business

processes such as [8] that provided an approach allowing modeling an auditable

process by using Business Process Management Notation (BPMN). They showed how

security policies of a business process can be expressed using BPMN models, and

provided an example from the banking context to illustrate an auditable process.

Moreover, the a posteriori access control was used for detecting violations of privacy

protection rules in social networks [14], as well as in usage control. Usage Control [158]

includes obligations that are mandatory requirements that a subject has to perform

after obtaining or exercising rights on an object. Although the objectives of the a

posteriori access and usage control are the same, there is no guarantee that after

CHAPTER 2. STATE OF THE ART 21

granting access to a resource, the user will fulfill the imposed obligation. Thus,

it is necessary to control its risk exposure. For instance, [15] proposed a trust-

and-obligation based framework that reduces the risk exposure of an organization

associated with a posteriori obligations. Their methodology is based on evaluating the

access requests that trigger a posteriori obligations and checking the requesting users’

trust values to decide if they can fulfill their obligations. Besides, their framework

detects and mitigates insider attacks, and unintentional damages that may result from

violating a posteriori obligations, in addition to determining misconfigurations of

obligation policies.

A summary of the above discussed works is presented in Table 2.1. As we can

see, the aforementioned works have their own limitations. Thus, we fill the gap by

improving certain aspects and addressing some new ones that were not treated before,

such as policy temporal compliance, policy changes, and accountability.

As stated earlier, the a posteriori access control cannot be done without two

fundamental concepts that are logs and the security policy. For accountability

purposes, useful events should be extracted from logs, and security rules should be

defined to quantify the violation level. Therefore, we present, in the following, a

literature review about each component of the a posteriori access control and access

policies representations.

2.2 A Posteriori Access Control Steps

None of the previous works on the a posteriori access control that we presented in

Section 2.1.2 provided a complete solution that covers all the areas of the a posteriori

access control that are log processing, log analysis, and accountability. [12, 11] are

the only ones to provide a log information extraction module, as well as means to

analyse logs in terms of the security policy. As for accountability, the only one that

treated the problem is [48]. However, their vision of accountability is different from

ours, as for them an agent passes the accountability test if he provides proofs that

rely on a usage policy that is attached to the data and that specifies which actions

can be done to this data. In our work, we consider that the user should justify his

CHAPTER 2. STATE OF THE ART 22

Table 2.1: Comparison between previous works on the a posteriori access control
Wo

rk
Ap

pli
cat

ion
Do

ma
in

Pro
ofs

&L
ogg

ing
Mo

nit
ori

ng
Pol

icy
Sp

eci
fica

tio
ns

Pen
alty

Me
cha

nis
m

JG
Ce

der
qu

ist
eta

l.[
48,

38,
36]

De
cen

tra
lize

ds
yst

em
s

&M
edi

cal
dom

ain
En

sur
ed

by
use

rs
Co

nd
uct

ed
by

aud
itin

ga
uth

ori
ties

-U
sag

ep
olic

ies
atta

che
d

toe
ach

dat
aa

nd
cre

ate
db

y
the

dat
ao

wn
er

-L
ogi

cre
pre

sen
tati

on
wit

hn
o

sec
uri

tym
ode

l

No
tap

pli
cab

le

S.E
tall

ee
tal

.[6
7]

Co
llab

ora
tiv

ee
nvi

ron
me

nts
En

sur
ed

by
use

rs
Co

nd
uct

ed
by

aud
itin

ga
uth

ori
ties

-St
ick

yp
olic

ies
pre

sen
ted

as
doc

um
ent

s’l
abe

ls
-L

ogi
cre

pre
sen

tati
on

wit
hn

o
sec

uri
tym

ode
l

No
tap

pli
cab

le

H.
Az

kia
eta

l.[
12,

11]
Me

dic
ald

om
ain

En
sur

ed
by

an
ont

ogy
-ba

sed
log

filt
erin

gm
odu

le
Co

nd
uct

ed
by

the
sys

tem
’sw

ork
flow

and
the

dep
loy

ed
sec

uri
typ

olic
y

-L
ogi

cre
pre

sen
tati

on
acc

ord
ing

tot
he

Or
BA

Cm
ode

l
No

tap
pli

cab
le

M.
Ka

rim
Aro

ua
eta

l.[
8]

Bu
sin

ess
pro

ces
ses

En
sur

ed
by

use
rs

Co
nd

uct
ed

by
aud

itin
ga

uth
ori

ties

-U
sag

ep
olic

ies
atta

che
d

toe
ach

dat
aa

nd
cre

ate
db

y
the

dat
ao

wn
er

-L
ogi

cre
pre

sen
tati

on
wit

hn
o

sec
uri

tym
ode

l

No
tap

pli
cab

le

L.B
ahr

iet
al.

[14
]

Soc
ial

Ne
two

rks
En

sur
ed

by
aB

itco
inc

hai
n

atta
che

dt
oth

eo
bje

ct
Co

nd
uct

ed
by

aud
itin

ga
uth

ori
ties

-P
riv

acy
rul

e-b
ase

dr
epr

ese
nta

tion
acc

ord
ing

tot
he

Dis
cre

tion
ary

Ac
ces

sC
ont

rol
Mo

del
(DA

C)
No

tap
pli

cab
le

CHAPTER 2. STATE OF THE ART 23

actions during the accountability process and could be subject to sanctions based on

his justification. Therefore, we present in the following some works relating to each

step of the a posteriori access control (log processing, log analysis, and accountability)

in general.

2.2.1 Log Processing

To have a correct log analysis, pertinent information should be extracted from log files.

One problem to be addressed when analyzing logs, is the multiple log file formats that

are due to the variety of log sources. These logs keep traces of all the established events

in the information system, and these events differ from one logging source to another.

Moreover, sometimes a log format may differ between the versions of the same source.

For instance, the format and content of an application log are usually determined by

the developer of the software program.

The key point in log analysis is that it needs to interpret messages within the context

of an application or system, and map varying terminologies from log sources [3]. It

turns them then into a uniform terminology to produce clear reports and statistics.

While it is acceptable to keep the log formats as "they are" in some cases, the

a posteriori access control requires having log information in terms of the security

policy to facilitate the violation detection, as mentioned earlier. Therefore, one might

think that to be able to converge log formats and the security policy, it is required to

transform these various formats into some common format. This process of unifying

the different logs is called "log normalization". Several efforts have been made to

standardize log formats and make normalization obsolete [193, 46, 98]. Unfortunately,

these efforts added variations to the format instead of reducing it, allowing event

normalization on very different levels of detail. Therefore, the necessity of dealing

with the differences of formats persisted, and further processing to obtain relevant

information is still needed. This was the core motivation behind log normalization. In

this respect, we review in the following some common log normalization methods that

can be observed on the market and the research community.

CHAPTER 2. STATE OF THE ART 24

Popular Log Normalization Methods

Regular Expressions The use of regular expressions (regex) is one of the classical

approaches of log normalization. It is based on extracting data from log sources,

by applying several regexes until a match is found, that is then transformed to the

normalized output data [74]. In practice, regexes’ runtime requirements make them

unsuitable for large classes of applications, especially in enterprise environments with

a large log volume. To solve this problem, two different approaches were proposed:

the traditional one is to hardcode parsers for each log format that is very important

or requested by a user, and the alternative is to use advanced data structures suitable

for fast parsing. However, their processing remains intensive and wasteful in terms of

memory.

Tokenization In this type of normalization, an actual log event is split up into

fragments that contain granular, yet useful data called tokens. The simpler case is

comprised of white space splitting. However in the case of logs, tokens may be

different. For instance, some tokens may be words, but other tokens could be symbols,

timestamps, numbers, or any particular notation that is present in the log [179]. A

famous implementation for tokenization is Apache Lucene [6] that groups log events

containing the same words. One drawback of this method is that it heavily relies on

static terms present in the logs.

Natural Language Processing (NLP) Natural Language Processing (NLP) is a branch

of Machine Learning that offers the ability to a program to understand human

language. The goal of this normalization method is to use NLP techniques to reveal

a structure of the system logs that is similar to natural language. In consequence, log

records become human-readable as subjects, objects, verbs, and more are identified.

Nevertheless, NLP cannot be defined in a general way since many different techniques

can be used throughout the process such as Conditional Random Fields (CRF) [120,

183] that is about segmenting or labeling sequential word data and that is usually used

for chunking speech texts, Word Embedding [82] which produces a mapping from the

set of words of a text corpus to an euclidean space, N-gram frequencies extraction [35]

CHAPTER 2. STATE OF THE ART 25

that extracts a contiguous sequence of n items (words) from a given sequence of text

or speech, and TF-IDF [109] that considers the frequency and the discriminative power

of a word in a document. We refer to [117, 23, 205, 188, 211] as concrete examples of

using this technique for log analysis.

Custom Normalization Custom normalization is the most effective yet the most

complex traditional normalization method. For each log format, a different filter

and parser are used. For instance, a CSV parser is used for CSV logs. This type of

normalization can be observed in some log analysis tools such as Logstash [127] in

which the GROK (Graphical Representation of Knowledge) filter is commonly used.

Logstash searches for the specified GROK patterns in the input logs and extracts the

matching lines from the logs. The output is a more structured data which makes it

easy to search and to perform queries.

The above normalization methods are usually used to get information from logs

to provide evidence of unusual behavior when performing log analysis. Although a

lot of common techniques, built upon these methods, are used to analyze logs such

as filtering and finding patterns [89], they are not as effective as they were before due

to the growth of the generated logs and the need to identify the correlation between

log events. Conversely, the use of the Semantic Web Technologies, notably, ontologies

(c.f. Section 2.4), showed itself in the context of security log analysis as a possibility of

improving the results of searching in log files. Therefore, many works used ontologies

as a guide for extracting rules or patterns, making it possible to discriminate data by

their semantic value and thus, extract more relevant knowledge. We present some of

these works in the following section.

Normalizing Logs with Ontologies

An effective log analysis impose the need of having structured information. Thus, a

number of approaches focused on a conceptual formalization of logs that is properly

built into the application context to provide a better security assessment. Ontologies

can be used as a vocabulary, a dictionary, or a roadmap of a particular domain.

CHAPTER 2. STATE OF THE ART 26

Furthermore, an ontology can be used to provide inferences about relationships

between entities. More details about ontologies are given in Section 2.4. That

being said, ontologies are being more employed to process and analyze logs for the

advantages that they offer. For instance, [190] showed how modelling logs with an

ontology can make it easier to find correlation between event logs. The authors focused

on the logs of web application firewalls, and modelled their domain by identifying

their major classes and relationships manually. Their scope was narrowed to ontology

engineering rather than their processing. In [147], a framework that can process

any log file and automatically generate a semantic interpretation using RDF linked

data triples is proposed. It begins by normalizing the log into columns and rows

using regular expression-based and dictionary-based classifiers. The obtained entities

are then mapped to concepts in general knowledge-bases (e.g., DBpedia), as well as

domain specific ones (e.g., Unified Cybersecurity Ontology). Therefore, cell values

are linked to known type instances (e.g., an IP address), and relationships between

columns are deduced. The authors also showed how converting log files into such

semantic representations reveals their meaning and supports search, integration, and

reasoning over the data. Other ontology-driven log representations are [174, 153].

After what has been discussed in this section, we can assimilate modelling logs

with ontologies to another normalization method for its intention to unify log formats.

Nevertheless, although it is more advantageous than the classical methods regarding

the addition of semantics and the power of reasoning, it remains very consuming

in terms of time and processing, since logs are in a constant growth. Therefore, we

attempt to overcome this problem while incorporating the advantages of ontologies.

For this concern, we use semantic mediation techniques to extract information from

logs and analyze them more efficiently. More details are presented in Chapter 3.

2.2.2 Log Analysis

Log analysis may be the most under-appreciated, unattractive aspect of information

security. However, it is one of the most critical security processes since it helps

in understanding and making sense of the generated log records in an application

domain. This process helps the organizations in maintaining their security on different

CHAPTER 2. STATE OF THE ART 27

levels, such as security policies’ compliance, audits and regulations, troubleshooting,

and understanding users’ behaviors. As SANS Institute puts it, “Logging can be a

security administrator’s best friend. It’s like an administrative partner that is always at work,

never complains, never gets tired, and is always on top of things. If properly instructed, this

partner can provide the time and place of every event that has occurred in your network or

system” [76].

In the case of the a posteriori access control, log analysis is meant to check the

conformity of the deployed access policy, by detecting suspicious activities that deviate

from security rules, and repairing anomalies if any. Therefore, organizations must

analyze and review their logs from one time to another to assure that the security policy

is being respected. In the following, we review some techniques that were previously

used for log analysis.

Machine learning techniques for log analysis

Log analysis is the core component of the a posteriori access control to assess policy

violations. As they become incredibly famous, machine learning techniques are being

widely used for automating the detection of abnormal logs. We can distinguish

different types of these techniques such as classification, clustering, and statistical

techniques [91]. Classification is a kind of supervised learning techniques which

means it needs labeled data to supervise the learning process. It has been previously

used for anomaly detection [16]. Despite the advantages that it provides in terms of

correct answers during the training, its inconvenience resides in the difficulty of getting

enough reliable labeled data. In fact, it is hard to provide absolutely problem-free data

especially when dealing with logs, and it is always possible to label some erroneous

data as normal which can lead to false positive errors. Moreover, supervised learning

will fail to detect a totally unknown problem. Moving on to clustering, it was also

used for log analysis in [148], where the authors presented a case study about using

Self-Organizing Feature Maps (SOFM) [118] on the server log data. However, they

only considered numerical data. Even if they showed the advantage of SOFM for being

independent of the data distribution and cluster structure, its major shortcoming is that

the resulting clusters depend on the metric over which the clustering algorithm will

CHAPTER 2. STATE OF THE ART 28

reason, which may leave certain anomalies undetected. As for statistical techniques,

[211] used the Principal component analysis (PCA) [162] to detect anomalous logs in

the area of log analysis. Although this method is effective when dealing with high-

dimensional data, the disadvantage of using statistical techniques for log analysis is

that they need a threshold to separate the normal data from the abnormal one, and

selecting a suitable threshold is hard and needs prior knowledge.

As it has been discussed, each machine learning method has its disadvantage when

addressing log analysis. Moreover, even if they are being improved for a more accurate

analysis [126], the result consists in detecting outliers of the general behavior rather

than violations of the security policy. Therefore, as we want to treat the semantic

enrichment of logs to converge them with the security policy, we study works that

are related to the semantic log analysis.

Semantic log analysis

The use of ontologies proved itself to be advantageous in the area of log analysis for

the semantic value that they provide and their capability of capturing the structure of

a domain and its possible restrictions. In this connection, many researches treated

the problem of log analysis by addressing the semantic enrichment of logs. For

instance, the authors in [61] proposed a platform for semantic security log analysis.

The platform aims to reduce the manual work of linking information from disparate

log sources, by contextualizing the different information in an ontology, providing

analysts a common vocabulary to query logs. Moreover, [116] enriches event logs

by integrating them with other organizational data sources and mapping both of

them to the TOVE Ontology (TOronto Virtual Enterprise). After this integration,

reasoning over the ontology is applied to answer questions. One drawback of this

approach is that in case of an update in a data source all the ontology axioms must

be recomputed. Another thing is that they consider the enrichment process before

extracting information from logs, in other words, while querying the logs. Another

work related to log semantic enrichment is [156]. It proposes an Emergency Response

(ER) log management application, where ER log files are processed and enriched with

semantic metadata by means of information extraction. The extraction process applies

CHAPTER 2. STATE OF THE ART 29

a knowledge-intensive approach. For example, gazetteers were deployed to match

place names and first names with the log text, and available web-services were used for

semantic annotations of text. However, this approach can only extract information that

is as exactly defined in the adopted thesaurus, and does not consider the possibility of

having different vocabularies. Moreover, it considers that all the needed information

is logged (e.g., location), which is not always the case.

Other works analyze logs by detecting patterns. For example, in [150], the authors

proposed a framework to semantically enrich web logs by structuring the contained

information (users actions) using ontologies and applying mining techniques to detect

patterns. In addition, the authors of [72] introduced an approach to automate the

discovery of Workflow Activity Patterns in business processes by means of reasoning

over an ontology modelling these patterns. To detect if a given pattern is present in

a process, ontology individuals are generated automatically from event logs, and the

semantics and sequence of events are being considered.

Since our goal in this thesis is to detect violations of the security policy, our semantic

enrichment process will be about contextualizing the extracted information from logs

with complementary information that is related to the security policy. In this way, the

comparison between the logged events and the rules defined in the security policy will

be possible, leading to decisive results about policy violation. This idea is presented in

details in Chapter 4.

2.2.3 Accountability

Accountability in the a posteriori access control is about fixing responsibilities and

applying sanctions and reparations if needed. As the accountability problem can be

treated in different fields, it can be viewed through different angles, as each one has its

own understanding of accountability.

For instance, the authors in [101] proposed an operational model for accountability-

based distributed systems. They described analyses which support both the design

of accountability systems and the validation of auditors for finitary accountability

systems. Moreover, they explored the tradeoffs underlying the design of accountability

systems including: the power of the auditor, the efficiency of the audit protocol, the

CHAPTER 2. STATE OF THE ART 30

requirements placed on the agents, and the requirements placed on the communication

infrastructure.

Furthermore, in [78], the authors discussed the issue of responsibilities related to

the fulfillment and the violation of obligations. They proposed formal definitions

of the different aspects of responsibility, namely causal responsibility, functional

responsibility, liability as well as sanctions, and examined how delegation influences

these concepts. Nevertheless, in our approach, we consider that a user is responsible

a posteriori for committing violations. This is different from the concepts provided in

[78], where responsibility implies the a priori obligation of accomplishing a task.

Besides, [69] built a responsibility model based on the concepts of Accountability,

Capability and Commitment, which they developed using an UML class diagram. The

model’s objectives were firstly to help organizations for verifying the organizational

structure and detecting policy problems and inconsistency. However, they did not

provide a formal representation of the model.

In contrast, [21] provided an abstract language for accountability clauses

representation (AAL) with temporal logic semantics. They considered that an

accountability clause is a triplet (uc, aa, rc), where uc represents the usage control, aa is

the audit that observed the violation of the usage control, and rc is the rectification to be

applied. Therefore, we take into account these three components so our accountability

mechanism could be easily expressed in AAL.

In Chapter 6, we discuss our vision of accountability, and we propose a mechanism

that could be appropriate to the a posteriori access control.

2.3 Policy Representations

As it has been shown in Section 2.1.1, the security policy can be formally represented

according to different access control models, as well as their extensions and variants

[25, 129, 139, 114, 1]. This formalization allows the proof of properties on the security

provided by the access control system being designed. However, given the complexity

and the scope in which the definition of the security policies is involved, it is essential

to have a framework to reason about these policies. It is fundamental to unify the

CHAPTER 2. STATE OF THE ART 31

interpretation of access policies throughout the organization to make the whole system

simpler and less error-prone. This is particularly important in the a posteriori access

control where users’ rights may need to change in order to cope with specific contexts

such as emergencies.

A lot of researchers have spent a few decades focusing on the representation

of policies and policy rules. For instance, the eXtensible Access Control Markup

Language (XACML) [81] and the Security Assertion Markup Language (SAML) [88]

are XML based frameworks that enforce access control based on attributes.

XACML was defined by OASIS, and it includes languages for expressing

authorization rules and for access decisions. It has been known as a key standard

that implements ABAC since its language specifies access control requirements using

rules, policies, and policy sets, expressed in terms of subject (user), resource, action

(operation), and environmental attributes and a set of algorithms for combining

policies and rules. Therefore, attributes are a very important part in XACML and are

evaluated by the rules in order to determine whether some restriction is applicable

or not. Moreover, XACML proposes an authorization system that consists of five

conceptual units: the Policy Enforcement Point (PEP), the Policy Decision Point (PDP),

the Policy Administration Point (PAP), the Policy Information Point (PIP), and the

Context Handler (CH). PEP performs access control by requesting an access decision

to PDP, which uses the policies made available to it by PAP and the additional

attributes sent by PIP to render its decision. The PEP communicates with the PDP

and PIP through the CH that is an adapter between the XACML components and the

protected application. As for the rules, they are integral to the functioning of XACML

and form the core element in the hierarchy to make access decisions. A rule has target

information, an effect, and a condition. The target is formed of a set of conditions

that must be fulfilled to apply a policy or a rule on a given request. The rule’s effect

is to deny or permit access. The condition is optional, and its role is to refine the

applicability of the target. Finally, rules must be part of a policy and can be evaluated

separately.

CHAPTER 2. STATE OF THE ART 32

SAML, also defined by OASIS, simplifies federated authentication and authoriza-

tion processes for users, Identity Providers and Service Providers. It offers a solution

that allows the Identity Provider and Service Providers to exist separately from each

other, thus centralizing user management and providing access to SaaS solutions. The

XML document that the Identity Provider sends to the Service Provider containing

the user authorization is called SAML assertion, and has three different types:

authentication assertion, attribution assertion, and authorization decision assertion.

The first one proves the identification of the user and indicates the time the user logged

on and the authentication method used, the second transmits the SAML attributes that

provide information about the user to the service provider, and the third indicates

whether the user is authorized to use the service.

Another flexible, extensible, and adaptable to a wide range of policy management

requirements language is Ponder [55]. It is an object oriented language for specifying

security and management policies presented as rules defining behavioral choices.

Moreover, it allows the definition of positive and negative authorization policies,

information filtering, and a simple delegation model. Key concepts of the language

include roles to group policies relating to a position in an organization, relationships to

define interactions between roles and management structures to define a configuration

of roles and relationships pertaining to an organisational unit such as a department.

However, one common drawback of the above policy languages is that they do not

consider the semantics of the policies. These latter are needed to fill out the policy’s

own framework, to make access control conditions predictable and interoperable, even

where there is no prior agreement on the semantics of the access control conditions.

As a consequence, the motivation became to have a policy representation that generally

relies on the expressivity of Description Logics (DL) [13], and particularly on OWL

[133], for capturing the various knowledge artefacts that underpin the definition of a

policy.

The use of OWL to define policies has several very important advantages. First, it is

adequately representational to capture distinct activities that are required (obligations),

restricted (prohibitions), and authorized but not necessarily expected (permissions),

by an entity (subject) on a resource (object) within the system, and the circumstances

CHAPTER 2. STATE OF THE ART 33

within which it applies. Next, the power of reasoning helps in determining access

decisions and supporting analysis in case of policy conflicts.

A number of relevant approaches have been proposed in the literature that use

OWL for representing access policies. For instance, in [196], KAoS, a multi-layer policy

framework which supports policies described in OWL, was proposed. Monitoring and

enforcing policy are done automatically based on OWL ontologies, and access rights

are associated with different credentials and properties of entities. As for the Rei [113]

policy language, it provides an ontological abstraction for the representation of a set of

desirable behaviors by using flexible constructs like policy objects, meta policies, and

speech acts to express different types of policies.

Furthermore, ROWLBAC [73] was also an effort to bring formalism into policy

languages by modeling RBAC in OWL. Using OWL hierarchies and properties,

different ontologies have been suggested, and modelling ABAC with OWL was

discussed briefly. In [186], the authors showed how the Attribute Based Access

Control can be represented in OWL, providing each one of the Discretionary Access

Control (DAC) [142], Mandatory Access Control (MAC) [19], and RBAC according to

the ABAC model. This latter work confirms that any model can be represented as an

attribute based access control model; the reason why we chose to model the security

policy according to ABAC in this thesis. Thus, we adapt the propositions of [73] and

[186] to construct an ABAC policy ontology. Details about this ontology are given in

Section 4.3.

Now that we have demonstrated the power of using ontologies in both modelling

logs and the security policy, we provide some background on the Semantic Web

technologies that we used to construct our solutions.

2.4 Semantic Web Technologies

The Semantic Web, also known as the Linked Data Web or the Web of Data,

represents the major evolution in connecting information. It permits to integrate and

combine data drawn from diverse sources; hence, to link the data from a source

CHAPTER 2. STATE OF THE ART 34

to an other source. As its name implies, the Semantic Web is concerned with the

meaning of the data more than its structure. In this respect, the data is machine-

understandable which allows the computers to complete sophisticated tasks on behalf

of the human. Moreover, Semantic Web technologies enable the creation of data

vocabularies, querying the data, and writing rules to reason over this latter.

In computing and information science, vocabularies that represent the concepts

of a knowledge domain are referred as "ontologies". In the literature, an ontology

was defined as an “explicit specification of a conceptualization of a domain” [85].

Furthermore, an ontology represents a set of hierarchically structured terms, and

provides multiple relations to bind objects together. This facilitates the extraction of

meaningful inferences from the information created in a knowledge base.

These aforementioned functionalities are empowered by technologies such as RDF,

OWL, SPARQL, etc., which we will next present in details.

2.4.1 RDF(S) and OWL

The Resource Description Framework (RDF) [53] is a World Wide Web Consortium

(W3C) “model for data interchange on the Web”. RDF represents real world objects

and relationships between them, by using URIs. The linking structure forms a graph,

where the edges represent the named link between two resources, represented by

the graph nodes. This graph-based representation is often called a “triple”, that is

the association of a subject, predicate (i.e. property representing the relationship)

and an object. RDF was extended later to be RDFS (S for Schema) that allows

more expressiveness. It is thus possible to express subsumptions between entities,

as well as setting restrictions on the relationships between them. However, there are

some limitations when using RDF/RDFS, such as the inability to conduct automated

reasoning on knowledge models. This is where OWL comes into the picture to fill this

gap.

The Web Ontology Language OWL [133] is a family of knowledge representation

languages based on Description Logic (DL) [13] with a representation in RDF. It forms

an ontology by defining real world concepts, and their relationships in vocabularies.

The concepts in an OWL ontology are named as classes, and relationships as

CHAPTER 2. STATE OF THE ART 35

properties. OWL integrates, the same functionalities as RDF/RDFS, in addition to

tools for comparing properties and classes: identity, equivalence, opposite, cardinality,

symmetry, transitivity, disjunction, etc. Thus, OWL offers machines a greater capacity

for interpreting web content than RDF/RDFS, due to its larger vocabulary and formal

semantics. Moreover, OWL ontologies include axioms that assert constraints over their

concepts and individuals. These axioms can be realized as simple assertions or as

simple rules. It is also worth to mention that OWL make the open-world assumption,

that is if a statement has not been defined explicitly, irrespective of whether it would

be true or not, we cannot infer that the statement is false. Table 2.2 summarizes the

components of RDF(S) and OWL.

Moreover, the need of manipulating ontologies in dynamic environments, pushed

computer scientists to implement the OWL API [92]. This latter is a Java interface and

implementation for OWL, and contains a set of feature-rich interfaces, allowing the

creation and management of ontologies. The API includes interfaces that define the

bare bones of an OWL ontology, namely OWLClass, OWLIndividual, OWLObjectProperty

and OWLDatatypeProperty.

2.4.2 SPARQL

As any knowledge representation, ontologies need to be queried to extract particular

information. Thus, W3C proposed a standard query language for RDF, called SPARQL

(Simple Protocol And RDF Query Language) [168].

SPARQL is "data oriented" in that it only queries information that are asserted in the

knowledge model, and there is no inference in the query language itself. SPARQL

does nothing more than take the description of what the application wants, in the form

of a query, and returns that information, in the form of a set of links or an RDF graph.

SPARQL also can be used to query an OWL model to filter out individuals with specific

characteristics. Furthermore, the syntax of a SPARQL query is similar to SQL, and

consists of triple patterns (RDF triples) where each of the subject, predicate and object

may be a variable, conjunctions, disjunctions, and optional patterns. There are different

types of a SPARQL query such as SELECT, ASK, CONSTRUCT, and DESCRIBE, that

identify the variables to be included in the query response, along with a WHERE clause

CHAPTER 2. STATE OF THE ART 36

Table 2.2: RDF(S) and OWL Components and Syntax

Semantic Web Standrad Entities/Properties Abstract Syntax

RDF
Instance rdf:Description
Instance relation rdf:type

RDFS

Subclass relation rdfs:subClassOf
Domain of a property rdfs:domain
Range of a property rdfs:range
Subproperty rdfs:subPropertyOf

OWL - Concepts

Top concept owl:Thing
Empty concept owl:Nothing
Ontology concept owl:Class
Class equivalence owl:equivalentClass
Class disjointness owl:disjointWith
Class intersection owl:intersectionOf
Class union owl:unionOf
Class negation owl:complementOf

OWL - Properties

Data property owl:DatatypeProperty
Object property owl:ObjectProperty
Property equivalence owl:equivalentProperty
Inverse property owl:inverseOf

OWL - Individuals
Instances equivalence owl:sameIndividualAs
Instances difference owl:differentFrom

OWL - Restrictions

Restriction owl:Restriction
Restriction property owl:onProperty
Existential quantifier owl:someValuesFrom
Universal quantifier owl:allValuesFrom
Specific value owl:hasValue
Minimum cardinality owl:minCardinality
Maximum cardinality owl:maxCardinality
Cardinality owl:cardinality

CHAPTER 2. STATE OF THE ART 37

that defines the conditions that must be respected. The evaluation of the query is based

on graph pattern (a set of triple patterns) matching. This graph pattern, located in the

WHERE clause of the query, is defined recursively and contains triple patterns and

SPARQL operators. Figure 2.4 shows an example of a SPARQL query.

Figure 2.4: SPARQL query example

2.4.3 SWRL and SQWRL

The Semantic Web standards discussed so far permit certain types of rules to be defined

but these are limited to classifications of objects. On their own, the Semantic Web

languages RDF(S) and OWL do not permit definitions of Horn clauses, which limits

the expressiveness of the rules they can define. Therefore, the Semantic Web Rule

Language (SWRL)[93] was proposed for the Semantic Web, and is used to express

rules as well as logic. Its syntax is of the form: antecedent → consequent, where both

antecedent and consequent are conjunctions of atoms written a1 ∧ ... ∧ an. The

intended meaning can be read as: whenever the conditions specified in the antecedent

hold, then the conditions specified in the consequent must also hold. Each atom can

be formed from unary predicates (classes), binary predicates (properties), equalities or

CHAPTER 2. STATE OF THE ART 38

inequalities, and variables are prefixed with a question mark (e.g., ?x). For example, the

following rule: hasParent(?x,?y) ∧ hasFather(?y,?z)→ hasGrandFather(?x,?z), asserts that

the combination of the hasParent and hasFather properties implies the hasGrandFather

property.

Moreover, SWRL was extended with some built-in libraries to facilitate some tasks,

such as, directly creating new individuals in a rule.

For instance, the built-in swrlx:makeOWLThing(?x,?y) will cause an individual to be

created and bound to ?x for every value of variable ?y matched in a rule.

We also distinguish a sub-language of SWRL, that is SQWRL (Semantic Query-

Enhanced Web Rule Language), which provides SQL-like operators for extracting

information from OWL ontologies (e.g., owl:Thing(?i) → sqwrl:select(?i)). SQWRL

querying helps in achieving axioms that could not be expressed directly in SWRL

because of the lack of existential quantification support in the language. SQWRL

queries operate on known individuals of an OWL ontology and does not accumulate

from within a rule, which means that query results cannot be written back to

the ontology to not invalidate OWL’s open world assumption and lead to non-

monotonicity.

An implementation of SWRL is the SWRL API [151], that is a Java API for working

with the OWL-based SWRL rule and SQWRL query languages. It includes graphical

tools for editing and executing rules and queries.

2.5 Conclusion

This chapter discusses various concepts that are related to our research. First, we

present the difference between the a priori and the a posteriori access control. Second,

we summarize the most three common and expressive security policy models. Next,

we discuss the a posteriori access control and its confusion with intrusion detection

systems, and we review its existing literature.

In contrast, as the a posteriori access control is constituted of two essential elements,

logs and the security policy, we study the classical log normalization methods and

policy representations. We also highlight the advantages provided when modelling

CHAPTER 2. STATE OF THE ART 39

both these elements with ontologies. Finally, we end this chapter by representing

particular Semantic Web technologies which we will use alongside in this thesis.

Chapter 3

Extracting Log Information Using Semantic

Mediation

3.1 Introduction

Log files are a huge asset in an organization as they contain vital information about the

users and their actions in the system. The first step of the a posteriori access control

is about assuring logging, namely, log processing. This step is fundamental as the

analysis will be based on the extracted information. Therefore, managing logs have a

lot to deliver to empower policy compliance evaluation with the true strength of log

information.

Nevertheless, this process becomes more challenging with the increasing volume

of logged data. Thus, digging in the vast amounts of information is not simple and

requires analysts to acquire log formats. As previously discussed in Section 2.2.1, the

multiplicity of log sources induces different log formats that may contain the same

or different type of information. Moreover, the common techniques that are used

to analyze logs such as normalizing logs into one format as well as filtering and

finding patterns [90], are not as effective as they were before due to the growth of

generated logs and the need to identify correlation between log events. Thus, these

techniques require a significant time in processing, which ultimately converts into cost.

In consequence, it is a matter to provide simple, efficient, and economical means to

access data logs. Ideally, the solution must guarantee different criteria such as system

autonomy, scalability, and transparency for accessing data location and format. In

40

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION41

contrast, in the context of the a posteriori access control, the extracted information

should be relevant to the security policy to ease the analysis.

In this chapter, we provide a novel solution to extract information from logs using

semantic mediation techniques. The goal is to resolve the heterogeneity between

log formats in provenance of different log sources as a semantic mediator makes

it possible to inter-operate various sources of information without modifying their

internal functioning. Therefore, the log formats will remain intact and the information

extraction will be done by querying logs; hence, we have a different view of "log

processing", to be "log query processing", and by "query processing" we mean "query

rewriting".

3.2 What is a Semantic Mediator?

The multiplication of data sources has made it impossible for a monolithic system to

assimilate all the information. In contrast, the semantic mediation problem has been

brought with the concept of a federated database, where several autonomous data

sources wanted to coordinate with each other without being fully integrated so that

distributed request plans are possible. Thus, to overcome this problem, [209] proposed

an architectural model, where a software module is responsible for accessing a set of

data sources while providing clients the illusion of using a single information system.

This software module is called mediator, which becomes semantical when the data

represents structured knowledge with formal semantics. As a result, a semantic mediator

is based on models of knowledge representation that are able to describe, to a certain

extent, the semantics conveyed by a piece of information and on tools to compare and

unify the information semantics independently of the underlying structures. It can

be responsible for locating data sources, to transmit queries to each source, or from

one source to another, to retrieve the queries responses and possibly send them back

to other sources [209]. Moreover, semantic mediators are essentially used for Query

Rewriting [29], where queries are mediated from a single query access point to various

data sources.

Yet, the notion of semantics of an entity cannot be represented in an absolute way.

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION42

It only makes sense when an entity is in relation to a particular context that can be

represented by a concept map that describes a particular field of application. A concept

is generally defined from the content of an ontology, that is a formal description of an

abstract and simplified view of the world that one wants to represent.

That being said, a semantic mediator constitutes an intermediary mechanism,

between different data sources, that uses ontologies to share a standardized vocabulary

or protocol to communicate. Therefore, the support of query rewriting is done

by exploiting the semantic relationships between the different sources schemas

(ontologies), as semantic correspondences, namely "mappings", are defined by an

administrator to express a query from one global source schema in terms of other target

schemas.

3.3 Semantic Mediation For Access Control

Several researches were interested in using semantic mediation solutions in access

control, namely for privacy-preserving enforcement. For instance, in [22], a Privacy-

Preserving Service-Oriented Data Integration System (PAIRSE) was proposed. PAIRSE

only allows access to information to which users are entitled to a given purpose. The

queries in this project are resolved by automatically selecting and composing data

services through the use of sophisticated query rewriting techniques to devise a novel

service composition algorithm. Furthermore, [57] provided a solution to the problem

of allowing interoperation while preserving the autonomy and security of the local

sources by using wrappers and a mediator. The authors used query folding, to resolve

the semantic heterogeneity of the information sources that was based on manually

expressed rules. The work in [155] proposed a Semantic Access Control model (SAC)

that extends RBAC, by considering the semantics of objects and associates permission

with concepts instead of objects. Based on this model, a mediator-based interoperation

system (SACE), was introduced to resolve semantic heterogeneity and enable access

control in one process. It was also shown that SACE incurs only minor performance

degradation in comparison to non-secure interoperation systems. Another effort for

enabling privacy-preserving secure semantic access control was PACT [140]. PACT

allows the sharing of data among heterogeneous databases while providing privacy

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION43

and confidentiality for metadata. It is a mediator-based solution, incorporating

encrypted ontologies, encrypted ontology-mapping tables and conversion functions,

encrypted role hierarchies, and encrypted queries. The encrypted query results are

sent directly from the answering system to the requester, bypassing the mediator to

further improve the security of the system. One of the distinctive features of PACT is

that very few changes to the underlying databases are required.

Moreover, [201] showed how the specification and enforcement of authorization

could be implemented in federated database systems. In addition, the authors in [170]

introduced a concept-level semantic access-control for the Semantic Web, that deals

with how access controlled resources names can be rewritten using other terms subject

to logical rules expressed with OWL. Besides, an ontology-based rights expression

language built on top of OWL to represent access rights of resources was presented in

[171]. Finally, [4] proposed a Mediator Authorization-Security model to provide secure

interoperation among heterogeneous semantic repositories. The authors addressed the

issue of interoperability and trust incorporation into semantic interoperability. Despite

the complexity of the mediator system, they showed how their model still provides

acceptable performance.

All the above efforts used semantic mediation techniques to enforce the a priori

access control. On the contrary, our goal is not to preserve access to data, but rather

to extract useful information for the a posteriori access control. We will thus take

advantage of the benefits that offers the semantic mediator to query different log

sources with multiple formats, and have results in terms of the security policy.

3.4 Semantic Mediation in the a Posteriori Access Control

In an a posteriori access control system, policies are checked after granting access to

users. Once authenticated, access to information will be governed by an access control

policy that is contextual to the application domain. A reconciliation between policy

rules and logged actions is then needed, in order to verify whether access rules are

fully respected or not. Therefore, we define a particular setting in which we deploy a

semantic mediator to extract information from logs in terms of the security policy, by

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION44

considering the following:

• There are multiple log sources denoted as S1, S2, ..., Sn and each log source has a

particular format denoted as f1, f2, ..., fn.

• The security policy is denoted as P and is represented in an ontological model

according to ABAC. Details about this policy are provided in Section 4.3.

• A semantic mediator exists between the policy and the logs for query processing.

• The provided logs are well structured to enable retrieving more meaningful

information from them [104].

Now that we defined our information extraction setting, we consider that the queries

are sent automatically from the defined security policy to the logs. The semantic

mediator will then proceed in rewriting the query expressed on one source schema

into another request expressed on a target schema. This rewriting process is done

using previously established semantic correspondences between the different schemas

(ontologies in our case). In addition, to have a unified final result we divide the

rewriting process into two stages: Semantic Query Rewriting and Syntactic Query

Rewriting. In the following, we present the needed setup of the mediator to perform

both query rewriting types, and discuss each stage.

3.4.1 Semantic Mediator Setup

The use of the mediation approach allows information to be retrieved dynamically

from original log sources at query time. We adopt a conceptual model rather than a

logical one to manage log querying easily. Thus, our semantic mediator is ontology-

based, where each log source is represented with an ontology. Moreover, a consensual

ontology is needed to represent the application domain, in addition to mappings

between this latter and the ontologies representing log sources. These mappings are

used to rewrite the global query into a union of queries that match local ontologies.

The major advantage of extracting information from logs using this approach is that

it allows different log sources to be integrated, while enriching their querying with

ontological knowledge.

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION45

Ontologies for a conceptual view of logs

Local Ontologies. Each log source contains a huge number of raws where each raw

represent a log event. In general, a log event appears in a specific format that is

proper to the log source, and that contains a limited number of fields, which values

vary from one log event to another. Moreover, the fields’ types are normally known

when configuring a log source; hence, can be represented as concepts in an ontology

and can have relationships with one another. Therefore, local ontologies are created to

provide a conceptual view of log sources. These ontologies can be designed by experts

to represent the field names managed by each source or can be semi-automatically

generated using suitable tools (e.g., RDBtoOnto[39], XS2OWL[194], etc.). In our case,

the ontologies are statically perceived.

That being said, in the mediator, each log source Si will be viewed through an

ontology Oi that contains the demonstrated fields in its format fi. It is worth to

mention that none of the Sis will be modified. Local ontologies serve as a conceptual

access point to the log source’s data that is used during the interactions between the

mediator and the log sources. Thus, logs will not be transformed into ontologies, and

local ontologies will only contain the main concepts provided by each log source,

rather than the values appearing in each event (individuals). For example, considering

a database log that contains the following columns: UserID, Action, and TimeLogged;

only these concepts will appear in the ontology and not their values e.g "100", "View",

and "2019-02-11 21:31:48", respectively. We should always remember that the logs will

remain intact, and that the ontologies are used for query rewriting purposes.

Global Ontology. The global ontology (also referred as domain ontology), constitutes

the entry point from which the queries sent to the logs are mediated. Thus, it should

provide a global consensual conceptual level of the application field and a structured

vocabulary for querying the relevant log sources. Until the day, there is no standard

format that can represent all log types including application logs, as these latter are

usually determined by the developer of the software program. Nevertheless, even if

log contents may vary a lot from one source to another, they all have a common thing:

all of them simply register the event that occurred, more precisely, "what happened?

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION46

when? by whom?". Therefore, the concepts that form the global ontology are every

log type essential elements, that are the Subject, Action, Object, and Timestamp, and

which are defined relatively to a log event.

It must also be noted that this design of the global ontology will permit querying the

logs in terms of the security policy since access control models are usually based on

the three entities Subject, Action, and Object, and when they are expressive enough they

consider the Time as a contextual condition. Moreover, the concepts Subject and Object

can refer to the representatives of subjects and objects that are defined in the logs such

as subject and object attributes. This functionality is assured using mappings, which

we discuss further on. This domain ontology is presented in Figure 3.1, and is denoted

as OG.

Figure 3.1: Global Log Ontology OG.

Mappings between Ontologies

The goal of ontology mappings is to allow the retrieval of information from log sources

through query rewriting. Using ontology mappings, a query expressed in terms of the

global ontology can be rewritten into a union of queries that are expressed over each

local ontology representing a log source.

Furthermore, since the adopted schemas in the mediator are ontologies, the initial

input queries are expressed in SPARQL, and over OG. It is evident that to have a

successful query rewriting process, mappings between OG and each Oi should be

established. We thus define a mapping as follows.

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION47

Definition 3.4.1. (Mapping)

A mapping is a set of correspondences between different entities of different

ontologies.

Definition 3.4.2. (Correspondence)

Let O1 and O2 be two ontologies. A correspondence µ is a triplet <e1, e2, r> where

- e1 and e2 are two alignable entities of O1 and O2 respectively.

- r ∈ R denotes an existing relation between e1 and e2.

An entity in an ontology can be a class, an object property, a datatype property,

or an individual. In our case, individuals do not exist in the ontologies, so there will

not be any relative entities. The relationship between entities can be an equivalence

(≡) or a subsumption (⊆). Additionally, complex expressions in the correspondences

between entities can be found as well, using union (∪) and intersection (∩) operations.

For example, µ: OG:Timestamp ≡ O1:Date ∪ O1:Time.

Moreover, different strategies can be adopted for defining semantic correspon-

dences between the global and local ontologies, from which we cite Global-As-View

(GAV) and Local-As-View (LAV). In the GAV approach, each entity in the global

ontology is defined as a view of the different log sources ontologies to be integrated.

A major advantage of this approach is that answering a query is quite trivial with

reference to the overall schema. This means that the received requests can be easily

rewritten with the terms used by each local source. In contrast to the GAV approach,

in the LAV approach the views on the sources define how local information is related

to the global schema by expressing a correspondence between each relationship in

the local schema and one or more relationship in the global schema. The main

advantage of the LAV approach compared to GAV is that there is no dependency on

the overall pattern. Therefore, the addition of new sources to the system only requires

the definition of the necessary mappings between the source schema and the overall

pattern. However, in this approach, responding to a query becomes more difficult

because rewriting a query is difficult to do.

In our case, the global ontology is not subject to change and the information to be

retrieved from the local log sources are in fact dependent of it. Moreover, in reality,

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION48

new log sources are not added frequently in an application domain. Therefore, we

follow the GAV approach do define the mappings or the semantic correspondences

between the global ontology and each of the local ontologies. It must also be pointed

out that since our choice of global ontology is static and is not incrementally built

as new sources join the mediator, adding a new source to the mediator will not be

complicated as in the usual GAV, and will only require the definition of new mappings

as in the LAV.

Besides, mappings can be done manually or semi-automatically to set

correspondences between each of the concepts Subject, Action, Object, Timestamp in

OG, and their relative concepts in each Oi. It is worth noting that although many

efforts have been made to automate the generation of mappings or alignments between

ontologies (e.g., Align API [56], COMA++ [9], etc.), we consider that the mappings are

at best formed semi-automatically as an expert is always needed to check the generated

results (that are normally score-based).

3.4.2 Query Rewriting Process

At this point, ontologies are defined and their corresponding mappings are

established. Thus, the setting allowing the query rewriting process is ready. In the

a posteriori access control, this process is governed by the security policy P. Its main

goal is to retrieve information, from different log sources, that is relevant to the security

policy to permit compliance checking. The first step consists in sending a SPARQL

query in terms of the global log ontology OG. Next, the mediator starts the rewriting

process to generate other queries that are understandable by the log sources and thus,

have a response to the initial query. Inside the mediator, the query is undergone two

transformations that are the Semantic Rewriting and the Syntactic Rewriting, and which

are performed subsequently. The resulting queries will be executed on the concerned

log sources to extract information. These log sources are identified by resolving the

mappings that a requested attribute in QG has. We thus detail each rewriting step in

the following.

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION49

Semantic Query Rewriting

The semantic query rewriting is about conserving the language of the query, while

expressing it over another source ontology. This can be done by resolving the

mappings that exist between two ontologies. For instance, a SPARQL query will

remain a SPARQL query and the only modification will consist in replacing its entities

with their semantic equivalents. Therefore, the semantic mediator takes a query QG

expressed over OG as input, decomposes it into multiple subqueries if needed, and

rewrites it (or its subqueries) to a semantically corresponding SPARQL query Qi. The

generated Qi is expressed in terms of the concerned Oi with respect to the mapping Mi

that exists between OG and Oi.

We define SP as the domain of SPARQL queries, M as the domain of mappings

between OG and Oi, and SemRW as the function responsible of the semantic rewriting

of a SPARQL query:

SemRW : SP×M→ SP

(QG, Mi)→ SemRW(QG, Mi) = Qi

(3.1)

The rewritten query is generated by replacing the graph pattern of the initial query

with the rewritten graph pattern. Variables appearing in the rewritten graph pattern

are the same as the variables that appeared in the initial graph pattern. In addition,

the rewriting process is independent of the query type (i.e., Select, Ask, etc.), the

SPARQL solution sequence modifiers (i.e., Order By, Distinct, etc.), and the SPARQL

algebra operators (i.e., Union, Optional, etc.). Since a lot of works treated the SPARQL

rewriting problem, we refer to [130] for more rewriting rules details.

Syntactic Query Rewriting

In this second step, a syntactic transformation of the rewritten SPARQL queries (each

Qi) will be achieved. The syntactic rewriting consists in changing the syntax of the

query (the language it is expressed in), while maintaining its semantics.

On the other hand, different concepts can be used to structure the information in

log files such as relationship in the relational model, XML tag, CSV, etc. Thus, the

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION50

SPARQL query can be converted to an SQL query, XQuery, or any other type of query

depending on the existing log formats. The use of structured logs is advantageous

because it favors automation. Extracting useful content from unstructured logs

requires accounting for their structure because data semantics highly depends on

relations between neighboring data elements. Thus, structured logs ensure that all

relevant data along with relationships between them are captured from the correct

regions in log files, and guarantee correct mappings, between the log source and

its conceptual ontology, if they exist. Besides, they provide both completeness and

contextual correctness.

Let QR be the domain of all query types excluding SPARQL. We define the function

SynRW for syntactically rewriting a SPARQL query as follows:

SynRW : SP× f → QR

(Qi, fi)→ SynRW(Qi, fi) = qi

(3.2)

knowing that qi is executable on fi.

For each log storage format, specific algorithms for syntactically rewriting

SPARQL should be defined. Moreover, mappings mi between log sources and their

corresponding local ontologies can also exist depending on the rewriting algorithm,

and the source’s type format. These mappings can also be specified manually or

automatically.

Finally, qi will be executed on Si, and all the obtained answers will be combined to

respond to the initial QG. The proposed solution is presented in Figure 3.2. The goal

of this chapter is not to develop new query rewriting algorithms, but rather to provide

a novel solution to extract information from multiple log sources, in the case of the

a posteriori access control. In consequence, and without loss of generality, we will

further treat the case of two log formats, that are commonly used in organizations,

that are logs in the relational model and in XML, since the corresponding syntactic

rewriting algorithms of SPARQL already exist in the literature [28, 64].

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION51

Figure 3.2: Query Rewriting Process.

3.4.3 Policy Reconciliation

From the obtained query results, corresponding axioms and assertions will be

generated. Given that on an abstract level, the expression of any policy includes a set

of quadruples <subject, action, object, time>, it is possible to establish links between the

query responses and the security attributes used to express the access control policy,

to check their compliance and detect if there was any violation. In contrast, when the

deployed security policy is expressive, the extracted information from logs might not

be enough to check policy conformity, as additional data is needed. This problem of

enriching log information semantically is treated in Chapter 4.

3.5 Example Scenarios

In this section, we develop some example scenarios, inspired from real use cases, to

demonstrate the practicality of our approach. The scenarios present situations that can

occur in the healthcare domain, particularly when using an Electronic Health Record

(EHR) system. An EHR system is a new way to store and process health information

that supports continuity care, education, and research, and covers the need of all

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION52

engaged parties including patients, doctors, healthcare providers, and policy makers.

Thus, EHR systems present a formidable "trustworthiness" challenge, which makes it

a suitable environment to deploy the a posteriori access control.

3.5.1 Scenarios

Two hospitals A and B use an Electronic Health Record (EHR) application to share

information between each other. However, the server in hospital B generates logs

in a database table, while hospital A’s server generates XML logs. The two servers

record almost the same information about the users’ actions in the application domain.

Evidently, the users appearing in the logs of each server correspond to the employees

of the corresponding hospital.

Scenario 1

In January 2019, a patient X entered the emergency room in hospital A. In order, to

access to his medical record, hospital A asks hospital B to send her the patient’s medical

history. The patient’s designated healthcare professional (HCP) from hospital B sends

the patient’s medical record to hospital A. Two weeks later, this same patient went

to consult his designated HCP in hospital B, when his HCP noticed that there was

something wrong in the prescription given from hospital A.

This fact triggered the investigation process to search for the principal cause of the

prescription mistake.

Scenario 2

A certain HCP in hospital B took a 4-day leave from work for illness. In consequence,

a substitute HCP was called to replace him during this period. On his return, the HCP

would like to know which medical records have been modified during his absence, for

patients follow-up reasons.

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION53

Scenario 3

Going deeper in scenario 1, the reason why the patient went to consult his HCP in

hospital B, was his affection with a very low blood pressure, in addition to a lot of

vomiting. The error in the prescription was that the medicine prescribed from hospital

A is not compatible with the patient’s previously prescribed medicine, when he had a

bacterial pneumonia, a less than one month before.

3.5.2 Synthetic Logs Generation

One open-source EHR aplication is iTrust [136]. Therefore, to generate transaction logs,

we deployed it on an Apache Tomcat server, and we simulated users’ actions using

JUnit test scripts. Moreover, we configured it in a way to produce Database (MySQL)

and XML logs for a particular group of users (to differentiate between the employees

of each hospital).

Figures 3.4 and 3.5 show excerpts of the generated logs on each hospital’s server,

supposedly configured by their respective security administrators. Besides, the

corresponding generated ontologies and mappings are shown in Figure 3.3.

Figure 3.3: Mappings between ontologies.

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION54

Figure 3.4: XML Log.

Figure 3.5: Database Log.

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION55

Figure 3.6: Example of mapping in EDOAL.

3.5.3 Mediator Implementation

The objective of using a semantic mediator is to enforce the information extraction

from logs, in the posteriroi access control. Therefore, we built our semantic mediator

by combining different existing open source tools.

To accomplish the semantic rewriting of a SPARQL Query (SPARQL - to - SPARQL),

we used a publicly available toolkit for ontological mediation over RDF [135]. This tool

rewrites the initial SPARQL query, taking into account the mapping representation,

between the global ontology and the different local ontologies, expressed with the

Expressive and Declarative Ontology Alignment Language (EDOAL) [180]. EDOAL

is a highly expressive and serializable language built upon the Alignment Format [56],

a well-known specification extensively used for representing alignments in ontology

matching tasks. Figure 3.6 shows how mappings are expressed in EDOAL.

However, this toolkit has some limitations since it supports only SELECT and

CONSTRUCT queries, and is not able to rewrite the SPARQL query when there is

a complex correspondence between the different ontologies’ entities using the union

operator. We can overcome this limitation by extending the tool with a function that

handles this case. For the sake of simplicity, our defined mappings are currently

limited to the exact equivalence of two different entities from two different ontologies.

As for the syntactic query rewriting (SPARQL - to - OtherTypeOfQuery), we were

interested in converting SPARQL to both SQL and XQuery for test purposes. Many

efforts have been made in the literature to perform this task, from which we cite [28,

64]. Nevertheless, we relied on open source tools.

For rewriting SPARQL into SQL we used Ontop [33]. Ontop is an open-source

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION56

Ontology-Based Data Access (OBDA) system that maps data sources to ontologies

representing the domain of interest, and through which querying these relational

data sources is possible. Advantages of Ontop are its compliance to all relevant

W3C recommendations (including SPARQL queries, R2RML mappings, and RDFS

ontologies), and its support for all major relational databases. Furthermore, each

mapping axiom defined in Ontop corresponds to a pair of source and target. The

source is an SQL query over the database, and the target is a graph pattern that contains

placeholders that refer to the column names mentioned in the source query. These

mapping axioms generate RDF triples, by replacing the placeholders in the target with

the values returned when evaluating the source SQL query.

As for converting SPARQL to XQuery we used the open-source SPARQLToXQuery

[191]. This tool handles only SPARQL SELECT queries in three different cases: (1)

the subject and object are variables, (2) the subject is a variable and the object is a

literal, and (3) the subject is a variable and the object is an URI. The fact that it only

allows the subject of a triple pattern to be a variable, makes the Object and Datatype

properties correspond to a subchild of an element in the XML file. Thus, the domain

of the property will refer to the parent element, and the range will correspond to its

subchild value. It is also worth to mention that the SPARQLToXQuery tool is made to

address RDF/XML data. We modified it so that it queries XML.

Figure 3.7 shows our open-source based semantic mediator architecture.

3.5.4 Query Rewriting Applied in the Scenarios

Starting with Scenario 1, and considering that the patient’s Medical ID (MID) is 314160,

the investigation consists of searching for the actions done, by which subjects, in

January 2019, on this patient’s medical record. The medical record of this patient is

identified by "MR314160".

The query rewriting for this investigation is shown in Table 3.1.

The initial SPARQL query is transformed into a conjunction of SPARQL queries

expressed in terms of the local ontologies. For instance, the object properties

action, subject, timestamp, and object from the global ontology are mapped to the

object properties Action, loggedInMID, timelogged, and Resource, and action, executedBy,

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION57

Figure 3.7: Semantic Mediator Architecture.

executedAt, and executedOn from the ontologies representing the XML log and the

Database log, respectively. Afterwards, each of the resulted SPARQL queries will be

syntactically transformed depending on the underlying log structure. From SPARQL

to XQuery, the transaction class of the XML ontology refers to the transaction element of

the XML log and the object property loggedInMID refers to the subchild loggedInMID of

the element transaction. Besides, the other SPARQL query is converted to an SQL query,

based on the mappings defined in Ontop. Excerpts of these mappings are shown in

Figure 3.8.

As for Scenario 2, we suppose that the Medical ID (MID) of the substituting HCP

is "9000000085". Thus, the query is about retrieving the resources that this HCP has

edited. Using the same mappings as Scenario 1, the SPARQL query is subsequently

rewritten semantically and syntactically. Since both HCPs executed their actions in

Hospital B, it is obvious to not get an answer from the source log of Hospital A. The

query rewriting process of this scenario is shown in Table 3.2.

We note that log, db, xml shown in the tables refer to the prefix URI of each ontology.

Moving on to Scenario 3, we consider that the logs have a finer granularity where

the medicines prescribed are logged too, and that more complex mappings are defined

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION58

Figure 3.8: Mappings defined in Ontop.

between the ontologies (e.g., the class Object in OG is mapped to more than one class in

Oi). The query consists then of searching for the doctors who prescribed the conflicting

medicines, medicine 1 (med1) and medicine 2 (med2), for this patient, on a 2 month

period. We also consider that a query decomposition layer is added to the mediator,

which will be used before performing any rewriting. Therefore, the corresponding

query of this investigation will be:

SELECT ?x ?y ?z WHERE {

?t log:action ?x.

?t log:object log:MR314160.

{?t log:object log:med1.}

UNION

{?t log:object log:med2.}

?t log:timestamp ?z.

FILTER regex(?z, “^(2018-12|2019-01)”)}

And will be decomposed into two queries, each one relating to one medicine:

SPARQL1 ∪ SPARQL2 where SPARQLk=

SELECT ?x ?y ?z WHERE {

?t log:action ?x.

?t log:object log:MR314160.

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION59

?t log:object log:medk.

?t log:timestamp ?z.

FILTER regex(?z, “^(2018-12|2019-01)”)}

These resulting subqueries will be rewritten according to the different defined

mappings and will be sent to each log source, that has the concept medicine. The

rewriting process of each subquery is similar to the one shown in Table 3.1.

The obtained answers can form quadruples <subject, action, object, time>, to compare

them with the rules defined in the security policy, and detect possible violations.

However, if the security policy is modelled with a higher level of expressivity, for

example, according to ABAC or OrBAC, we will need to enrich these results with more

attributes. For instance, in Scenario 1, the LDAP directory can be consulted to check the

roles associated with the extracted MIDs. Therefore, a possible violation can be that

the medical record of the patient was consulted and edited by a Lab Technician, who

is not supposed to be allowed to do that. As for Scenario 2, we can fetch in a database

to see if the modified medical records are not related to other than the patients who

had an appointment during that period of time. This problematic is treated in Chapter

4. Moreover, taking decisions about the accountability of the user when violations are

detected is discussed in Chapter 6.

3.6 Discussion

Every a posteriori access control is built on the base of log processing, more precisely,

extracting information from logged data. It is a very important step, since it is

the starting point from which the analysis begins, to lead to decisions and set

responsibilities. Thus, the use of semantic mediation techniques to accomplish this

mission offers many advantages that we detail below.

To start with, it is economical in terms of processing. Unlike the existing log

management tools, our approach neither parses nor filters provenance logs. The only

process it has is the Query Rewriting process, which is quite fast since only one query

is handled at a time. The duration of query rewriting and execution is in the range of

300 ms, which is evidently less than any parsing time that varies relatively to the log

file size.

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION60

Next, it provides scalability. Our model is scalable since each data source is

autonomous and independent from the other sources. New data sources can be added

to the model. As the use cases showed how the approach can work for both XML

and Database logs, other log formats could be considered. For instance, for a CSV

file, we will need to implement a SPARQL to R rewriting algorithm to fulfill the need.

However, this current architecture can support CSV files since they can be queried

with SQL using specific (Java) libraries. One limitation can be that this approach is

only suitable for structured or semi-structured log files, since ontologies and mappings

have to be defined in advance.

Moreover, the use of SPARQL as a query language enables us to reap the benefits of

federation, thereby it makes all the log sources look like one big database. Representing

the different log formats in RDF serves as a standard lingua franca (least common

denominator). As such, querying RDF with SPARQL hides the details of a source’s

particular data structure. This reduces costs and increases robustness of our model that

issues queries. Furthermore, SPARQL enables specific questions to be sent to the

logs to retrieve directly the precised information instead of sending queries with limited

number of operations to get an answer.

Besides, the use of the semantic mediation solves the problem of the disparity of

the multiple log sources, and makes them interoperable.

Last but not least, our proposal satisfies the requirements of the environment

in which the a posteriori access control is deployed, such as the end-to-end policy

enforcement. It is an end-to-end like question/answer system, from the security policy

to the logs. All the query treatments are done transparently in the semantic mediator.

3.7 Conclusion

In this chapter, we proposed a new solution for an a posteriori log analysis based

on a semantic mediator. We pictured how it can resolve the heterogeneity between

log sources and enforce the information extraction. Moreover, we showed how

all log events could be assimilated to a tuple <subject, action, object, timestamp>,

regardless of their configured format. This nomenclature is well adapted for policy

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION61

compliance evaluation as it contains the basic concepts of any security policy. Besides,

we decomposed the query rewriting process into two stages that are Semantic

Rewriting and Syntactic Rewriting, and discussed how they can be done using ontology

mappings. To prove our approach, we employed existing open source tools to build

our semantic mediator, and presented its functioning in different scenarios in the

healthcare domain. Despite the limitations that they imposed, we showed how our

idea can be efficient and economical by testing it on both Database and XML logs.

Now that we treated the first step of the a posteriori access control, the next step

is about analyzing the extracted information. However, when having an expressive

security policy such as ABAC or OrBAC, additional information should be fetched

to add more semantics and context to the extracted log event. Therefore, in the next

chapter, we will treat the problem of the semantic enrichment of logs as well as policy

temporal compliance.

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION62

Table 3.1: SPARQL Rewriting Process in Scenario 1

Original SPARQL Query
SELECT ?x ?y ?z WHERE

{?t log:action ?x;
log:subject ?y;

log:timestamp ?z.
Filter regex(?z, "^2019-01")

?t log:object log:MR314160. }
Rewritten SPARQL with XML Mappings Rewritten SPARQL with DB Mappings
SELECT ?x ?y ?z WHERE
{ ?t xml:Action ?x ;
xml:loggedInMID ?y ;
xml:timelogged ?z ;
xml:Resource xml:MR314160 .
FILTER regex(?z, "^2019-01")|
}

SELECT ?x ?y ?z WHERE
{ ?t db:action ?x;
db:executedBy ?y ;
db:executedAt ?z;
db:executedOn db:MR314160 .
FILTER regex(?z, "^2019-01")
}

Generated XQuery Generated SQL Query
import module namespace rdffunc;
let $ts := doc(’log.xml’)//*
for $t in $ts
let $xs:=$t/Action
for $x in $xs
let $ys:=$t/loggedInMID
for $y in $ys
let $zs:=$t/timelogged
for $z in $zs
where $t/Resource=‘MR314160’ and matches($z,"^2019-01")
return <result>
{rdffunc:objectResult($x,$xs)}
{rdffunc:objectResult($y,$ys)}
{rdffunc:objectResult($z,$zs)}
</result>

Select Action, FirstMID, Time
FROM table_log
WHERE Time REGEXP ‘^2019-01’
AND Resource= ‘MR314160’;

Query Response Query Response
<result>
<literal>VIEW</literal>
<literal>9000000003</literal>
<literal>2019-01-09 10:03:51</literal>
</result>
<result>
<literal>VIEW</literal>
<literal>5000000001</literal>
<literal>2019-01-10 12:24:38</literal>
</result>

db:VIEW,
db:9000000013,
db:2019-01-09 10:15:01,

db:SEND,
db:9000000013,
db:2019-01-09 10:15:13,

CHAPTER 3. EXTRACTING LOG INFORMATION USING SEMANTIC MEDIATION63

Table 3.2: SPARQL Rewriting Process in Scenario 2

Original SPARQL Query
SELECT ?x WHERE

{?t log:action log:EDIT;
log:subject log:9000000085;

log:object ?x. }
Rewritten SPARQL with XML Mappings Rewritten SPARQL with DB Mappings
SELECT ?x WHERE
{ ?t xml:Action xml:EDIT ;
xml:loggedInMID xml:9000000085;
xml:Resource ?x .
}

SELECT ?x WHERE
{ ?t db:action db:EDIT;
db:executedBy db:9000000085;
db:executedOn ?x .
}

Generated XQuery Generated SQL Query
import module namespace rdffunc;
let $ts := doc(’log.xml’)//*
for $t in $ts
let $xs:=$t/Resource
for $x in $xs
where $t/Action=‘EDIT’ and $t/loggedInMID=’9000000085’
return <result>
{rdffunc:objectResult($x,$xs)}
</result>

Select Resource
FROM table_log
WHERE Action=‘EDIT’
AND FirstMID=‘9000000085’;

Query Response Query Response
NO ANSWER db:MR322660,

Chapter 4

A Posteriori Violation Detection with a Static

Policy

4.1 Introduction

As stated in the previous chapters, logs are the central part of auditing in the

a posteriori access control, that is reviewed for action legitimacy checking and

accountability purposes. Therefore, it is important to have meaningful, yet relevant

logged information that permits to compare what happened with what is supposed to

happen (security rules).

After having extracted information from logs using a semantic mediator, as

presented in Chapter 3, the a posteriori access control moves to its second stage that

consists in analyzing this information to detect violations of the security policy. Thus,

to have an effective violation detection mechanism, log information should provide

meaningful evidence. [31] addressed the question of which information should be

included in logs for meaningful a posteriori compliance control. However this is

rarely respected, and useful information can be found somewhere else than logs. In

consequence, a valid explanation of policy conformity should exist, and the validity

of this explanation relies on the availability of the necessary information for assessing

policy compliance. On one side, expressive security policy models such as RBAC [70],

ABAC [94], OrBAC [62], etc., assign permissions indirectly to the users through their

attributes, and sometimes object attributes and contextual constraints as well. On the

other side, logs do not trace this kind of information in general. For instance, in a

64

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 65

security policy defined according to the RBAC model, access rights are assigned to

roles instead of individual users. Meanwhile, users’ roles cannot be found in logs,

where they are presented by their usernames or IP addresses instead. In consequence,

establishing links between the explicitly defined attributes in the security policy, and

the logged data is not that evident. This leads to the need to semantically enrich logged

data with complementary information, in such a way, log analysis is accurate enough

to make fair decisions when violations are committed.

Conversely, when performing an a priori access control, access attributes values are

checked at the time of the access request. As a consequence, the system guarantees

the respect of the security rules when granting access to the user. However, in

the a posteriori access control, a lot of changes in the security attributes can take

place between the time of access and the time of investigation (change of role, role

delegation, change of status, etc.), and contextual conditions evolve between accesses

(e.g., emergencies) [51]. Therefore, it is important to verify that the access attributes’

values and conditions were the same as those defined in the security policy at the time

when the information resource was accessed. This is similar to the case of forensics for

criminal investigations, where the importance does not reside in where the suspect is

now, but in where he/she was when the crime was committed.

This chapter has two goals that we accomplish as a bundle. The first one is to

semantically enrich the extracted information from logs with complementary data for

a more accurate comparison with the security policy. Thus, we propose a multi-agent

system to perform this laborious information gathering task. The second goal is to

ensure the temporal compliance of the collected attributes with the security policy, in

other words, check if the attributes of the event had the right values at access time.

This is achieved through the use of the Event Calculus (EC), a formal language for

representing and reasoning about dynamic systems, which we express in SWRL, and

that we integrate in the multi-agent system.

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 66

4.2 Materials

4.2.1 Multi-Agent System Definition

Complex and heterogeneous fields such as decision support in subtle situations,

pattern recognition, and industrial process control have revealed the limits of the

classical approach of Artificial Intelligence (AI) that is based on centralizing the

expertise within a single expert system. Therefore, research in the AI field led to the

birth of a new discipline that is the Distributed Artificial Intelligence (DAI), also called

Multi-Agent Systems (MAS). Such systems are composed of distributed computation

units, that engage in flexible, high-level interaction with one another and with their

environment as well [47], that are called agents.

Definition 4.2.1. (Agent)

An agent is a computer system, located in an environment, that acts autonomously to achieve

the objectives (goals) for which it was designed. [210]

One can speak of autonomy because the agent’s behaviour depends at least

partially on its experience. It may act without the direct intervention of a third party

(e.g., a human) and control its actions as well as its internal state. Moreover, an agent

can react in real-time and according to the environment. Nevertheless, when necessary,

due to the complexity of the objective to be achieved, intelligent agents are integrated

into distributed systems called Multi-Agent Systems, which are made up of a sum of

autonomous but linked and collaborating agents.

Definition 4.2.2. (Multi-Agent System)

A multi-agent system is a community of autonomous agents evolving in a common

environment, according to occasionally complex modes of cooperation, competition or even

conflict, in order to achieve an overall objective.

The key point of multi-agent systems lies in the formalization of coordination

between agents. Therefore, when developing a multi-agent system, some features

should be taken into consideration. The first thing to consider is the mechanism of

agent decision. It is about the perceptions, representations, and actions of agents as

well as the way they break down their goals and tasks. Next, the control of agents

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 67

should be defined. This consists in the relations and coordination between agents.

The coordination can be described as cooperation to accomplish a common task or

as negotiation between agents with different interests. Finally, it is important to

determine communication between agents that is the type, syntax, and protocol used

to exchange messages between agents.

4.2.2 Motivation of Using a Multi-Agent System

In order to facilitate the interpretation of logged events, and determine their

compliance with security rules, key concepts in logs are extracted. The extracted

concepts provide the information concerning what object was accessed by which

subject through which action and at what time (c.f. Chapter 3). However, when

using a significant security policy like in the case of ABAC, more attributes should

be injected in logs to add more semantics. Thus, rendering semantic logs will help the

experts in analyzing and explaining users’ actions as it allows causal interpretation.

In contrast, information sources are usually distributed throughout the organization’s

systems, and the collection and integration of this information is not trivial. Moreover,

the number and variety of data sources and services increases as new applications

are being developed, and the availability and reliability of information services are

constantly changing. Besides, the same piece of information can be accessible through

a variety of different sources, and this information is prone to updates.

For all the reasons discussed above, deploying a multi-agent system appeared to

be suitable to achieve the log semantic enrichment process for its ability to locate,

access, and gather information from various data sources. Nevertheless, since the

information to be collected to complement logs can be updated at any time, it is

necessary that the multi-agent system goes beyond information gathering, to include

temporal verification. The importance of temporal verification of attributes’ values is

discussed next.

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 68

4.2.3 Criticality of Policy Temporal Compliance

Until this point, we have established that logs need to be semantically enriched

to be able to perform an a posteriori access control and detect violations. Yet, in

an information system, data sources are usually not static. There is always an

administrative action that can change the attributes assigned to subjects or objects at

any time. Besides, contextual conditions evolve depending on the situation. Therefore,

the variation of attributes and attributes’ values assignments over time leads to

changes in the applicability of the defined rules that state the permissions assigned

according to a group of attributes.

This highlights the importance of the temporal aspect, when realizing

investigations, to ensure that the right attributes that permit the access were in place

at the time of the execution of the action. This can be the case of a doctor whose status

had changed from "visiting" to "permanent", and where he had fewer privileges when

he was "visiting". Therefore, it is important to check the status that he had when he

performed the access.

That being said, we broaden the a posteriori access control to have a finer

granularity that includes temporal verification. We define the problem of policy

temporal compliance as follows.

Definition 4.2.3. (A Posteriori Policy Temporal Compliance)

Verifying the a posteriori policy temporal compliance consists in checking if the required

condition for an access to be authorized held at the time of the access.

We thus formalize this temporal verification using the Event Calculus, which we

explained next.

4.2.4 Event Calculus

In this section, we provide some background on the Event Calculus, and show how it

can be modelled using Semantic Web technologies, based on which we built our policy

temporal compliance framework.

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 69

Background on the Event Calculus

The Event Calculus (EC) is a logical language for representing and reasoning about

events and their effects. The authors in [185], described it as "a logical mechanism that

infers what’s true when given what happens when and what actions do". It is defined

in many-sorted first order logic, which is an extension to first order logic that provides

the notion of types. Thus, the presence of typing makes it possible to specify semantics

through logic.

Moreover, the EC has undergone several variations [138] from its first occurrence [119].

In this work we use the form presented in [185], that consists of: (1) a set of event types

or actions (2) a set of fluents, that is a set of properties which values can change over

time (and can be true or false) (3) a set of time points. These three elements are essential

and are used through predicates that constitute the language. We represent the most

commonly used predicates in Table 4.1.

Table 4.1: Event Calculus Basic Predicates

Predicate Meaning

Initiates(e,f,t) if event e is executed at time t, fluent f is true after t

Terminates(e,f,t) if event e is executed at time t, fluent f is false after t

Happens(e, t) event e occurs at time t

HoldsAt(f,t) fluent f holds at time t

Clipped(t1,f,t2) fluent f is terminated between times t1 and t2

An EC domain description consists of an axiomatization, observations of world

properties, and a narrative of known world events; hence, given a domain description,

various types of commonsense reasoning can be performed such as the deductive,

inductive, and abductive reasoning. Deduction uses the description of the system

behaviour together with the history of events occurring in the system to derive the

fluents that will hold at a particular point in time. Induction aims to derive the initial

state given a set of events and fluents’ states at specific timepoints, while abduction

tend to determine the sequence of events that need to occur given the system’s

description and a set of fluents that will hold at a specific time. In this work, we use

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 70

the deductive reasoning supported by the EC, as the history of events occurring in the

system (logs) is used to derive the fluents that will hold (permissions). Therefore, EC

is able to represent cause and effect as it treats time-varying properties (fluents) and

events as objects so that, using axioms, statements can be made about the truth values

of properties and the occurrences of events at specific timepoints. These axioms can be

formed by relating the various predicates together to describe how events and fluents

interact.

We now require a suitable collection of axioms relating the various predicates together:

Happens(e, t1) ∧ Initiates(e, f , t1) ∧ (t1 < t) ∧ ¬Clipped(t1, f , t)

→ HoldsAt(f , t)
(4.1)

∃e, t[Happens(e, t) ∧ (t1 ≤ t < t2) ∧ Terminates(e, f , t)]

←→ Clipped(t1, f , t2)
(4.2)

Axiom (4.1) indicates that a fluent is true at time t if it has been made true in the past

and has not been made false in the meantime. The predicate Initiates introduces the

event, that activates the fluent, at the time of its execution. For instance, assigning

the role Doctor to a user, leads to the user having the role Doctor. This can be

expressed using Initiates as Initiates(setRole(user,Doctor), role(user,Doctor), t). Similarly,

Terminates(removeRole(user,Doctor), role(user, Doctor), t), indicates that removing the role

Doctor of a user terminates the fact of that user being a Doctor.

Moreover, the Clipped predicate presented in (4.2), states that an event’s occurrence

terminates a fluent during an interval of time.

With respect to the above axioms of the simple EC, we define handful expressions

on which the a posteriori temporal compliance will be based.

We introduce the predicate Always to indicate that a fluent’s value will remain the same

over time. Thus, a fluent f is always true if and only if it holds at any time t, as follows:

Always(f)←→ ∀ t, HoldsAt(f,t) (4.3)

That being said, if a fluent holds at time t, and at time t, the fact of being true always

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 71

causes another fluent to be true, then this latter is also true at time t:

∀ t, HoldsAt(f→ g,t) ∧ HoldsAt(f,t)→ HoldsAt(g,t) (4.4)

In addition, saying that the conjunction of two fluents is true, is equivalent to saying

that each fluent is true:

∀ t, HoldsAt(f ∧ g,t)←→ HoldsAt(f,t) ∧ HoldsAt(g,t) (4.5)

It is worth mentioning that the events in EC can be natural events like lightning or

accidental crash of a hard disk. Since we are dealing with access control, we shall

consider, in the following, events that are caused by the execution of an action by a

subject on an object.

Modelling the Event Calculus in SWRL

Event Calculus comes from a line of logic formalism for commonsense reasoning,

which started with the Situation Calculus [164]. A discussion about implementing

this latter using SWRL was put on the table in the Semantic Web research community

[134]. From this discussion, it was deduced that it is possible to model the EC in SWRL.

Therefore, the authors in [137] developed an ontology for a simplified version of the EC

that deals with discrete time points, that is the Discrete Event Calculus (DEC). In this

ontology, each of the Fluent, Event, as well as the Event Calculus’ predicates HoldsAt,

Happens, Initiates, Terminates, and Clipped, are represented as Classes, and are related

with the properties hasEvent, hasFluent, and hasTime. Moreover, they expressed some

DEC axioms, according to SWRL.

Modelling the EC predicates as Classes is justified by the fact that SWRL predicates

do not support having more than two attributes, while some of the formers require

more. Thus, we adapted their proposal so that it suits our case of the a posteriori

access control. The major difference between their work and ours, is the way in which

we apply the EC and compute the holding fluents. In their study, they reason over

events as they occur progressively, meanwhile we are checking the state of the fluents

a posteriori, which means that we will not wait for the occurrence of an event since the

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 72

events happened in the past.

Furthermore, to explain this modelization, we recall the "reification" or

"objectification" approach that asserts that it is always possible to go back to binary

association types from an n-ary association type (n>2), as follows: (1) replace the n-ary

association type by an entity type and assign an identifier to it, and (2) create binary

association types between the new entity type and all entity types of the collection

of the old n-ary association type. Thus, it permits to take advantage of the richer

semantics of the entity-relationship model to re-express the semantics of the n-ary

relation:

Theorem 4.2.1. (Reification)

Let R(a1, a2, ..., an) be a n-ary relation.

Reifying R consists in creating a unary relation RE(e), and n binary relations RA1(E,a1), ...,

RAn(E,an), which fulfill the following axiom:

∀ a1, ∀ a2, . . . , ∀ an, R(a1, a2, . . . , an) ←→ ∃ e, RE(e) ∧ RA1(e,a1) ∧ RA2(e,a2) ∧ . . . ∧

RAn(e,an).

In the case of the EC, e will be a created individual of the class representing an

EC predicate (e.g Happens, Initiates, Terminates, etc.), ai will be individuals of the classes

representing the components of the EC (Fluent, Event, and Time), and RAi the properties

relating e to ai. For example, the ternary relation Initiates(e,f,t) will be represented in

SWRL as Initiates(?initiates) ∧ hasEvent(?initiates,?event) ∧ hasFluent(?initiates,?fluent) ∧

hasTime(?initiates,?time).

It has been also proven that this translation preserves semantics in [54].

Another reason to choose this translation is the lack of support of negation as

failure in OWL and SWRL . The only way to express this latter in OWL/SWRL is to

use classical negation, by defining the complement of the predicate (e.g. HoldsAt) as

an OWL class (e.g. NotHoldsAt).

The interpretation of (4.1) in SWRL is as follows:

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 73

Happens(?happens) ∧ Event(?e) ∧ hasEvent(?happens,?e)

∧ hasTime(?happens,?t1) ∧ Initiates(?initiates) ∧

hasEvent(?initiates,?e) ∧ hasFluent(?initiates,?fluent)

∧ hasTime(?initiates,?t1) ∧ NotClipped(?notClipped) ∧

hasStartTime(?notClipped,?t1) ∧ hasEndTime(?notClipped,?t)

∧ hasFluent(?notClipped,?fluent) ∧ swrlb:lessThan(?t1,?t)

∧ swrlx:makeOWLThing(?holdsAt,?t) → HoldsAt(?holdsAt) ∧

hasFluent(?holdsAt,?fluent) ∧ hasTime(?holdsAt,?t)

In a similar way, the axiom (4.2) defining the Clipped predicate can be expressed in

SWRL as follows:

Happens(?happens) ∧ Event (?e) ∧ Terminates(?terminates)

∧ Clipped(?clipped) ∧ hasTime (?happens, ?t) ∧

hasStartTime(?clipped, ?t1) ∧ hasEndTime (?clipped, ?t2)

∧ hasTime(?terminates, ?t) ∧ hasEvent (?terminates, ?e) ∧

hasFluent (?terminates, ?f) ∧ swrlb:lessThan (?t1, ?t) ∧

swrlb:lessThan (?t, ?t2) → hasFluent(?clipped, ?f)

The rest of the expressions are given along with the following sections.

4.3 Modelling the Security Policy with ABAC and OWL

In the a posteriori access control, the security policy constitutes a reference that is

consulted to decide whether a logged event is a violation or not. Therefore, it is

essential to have a formal representation of the security policy.

We chose to represent the security policy according to ABAC since it allows more

flexibility than any other access control model. Its key benefit is that it grants access

based on the attributes of each system component. Thus, complex rules can be defined

(e.g., access is allowed at specific hours), and the multiplicity and variety of attributes

makes an ABAC system able to represent any other access control model (c.f. Section

2.1.1).

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 74

In addition, we have provided in Section 2.3, the advantages offered by modelling

the security policies in OWL, and presented some distinguished works in this area.

Therefore, we got inspired from [73] and [186] to formalize our ABAC policy in OWL.

To start with, each of the Subject, Object, Action, and Context are defined as Classes,

and the corresponding Attributes are defined as Properties.

Subject a owl:Class subjectAttribute a owl:ObjectProperty

Object a owl:Class objectAttribute a owl:ObjectProperty

Action a owl:Class actionAttribute a owl:ObjectProperty

Context a owl:Class contextAttribute a owl:ObjectProperty

subject a rdfs:Property, owl:FunctionalProperty;

rdfs:domain Action;

rdfs:range Subject.

object a rdfs:Property, owl:FunctionalProperty;

rdfs:domain Action;

rdfs:range Object.

context a rdfs:Property, owl:FunctionalProperty;

rdfs:domain Action;

rdfs:range Context.

The definition of the attributes is very application-specific. Therefore, we cannot

generalize their definition in the ABAC ontology. We can only say that they are

defined as separate classes and their relationship with their relative domain (Subject,

Object, Action, or Context) are defined as sub-properties of the above defined

attributes properties. For example, if we have Role as a Subject Attribute, Owner as an

Object Attribute, and Type as an Action Attribute they will be defined as follows:

role a owl:ObjectProperty;

rdfs:subPropertyOf subjectAttribute;

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 75

rdfs:domain Subject;

rdfs:range abac:Role.

owner a owl:ObjectProperty;

rdfs:subPropertyOf objectAttribute;

rdfs:domain Object;

rdfs:range abac:Owner.

type a owl:ObjectProperty;

rdfs:subPropertyOf actionAttribute;

rdfs:domain Action;

rdfs:range abac:Type.

Moreover, attribute values are created by defining individuals of their corresponding

classes, such as Role, Owner and Type, and their subclasses in case they exist.

Traditionally, an ABAC system requires a proper attribute assignment to ensure

the appropriate accesses. Nevertheless, to fulfill the essential high-level access control

requirements, certain constraints specification on attribute values may be needed. This

problem of constraint specification has been known in RBAC as Separation of Duty

(SOD) that is often characterized as Static Separation of Duty (SSOD) and Dynamic

Separation of Duty (DSOD) [80, 99]. SSOD constraints specify pairs of roles where any

subject can only have one of the pair as a possible role, while DSOD constraints hold

between two roles when no subject can have both simultaneously active. For instance,

an employee in a hospital cannot have the roles “Doctor” and “Nurse” at the same

time.

Constraint specification in ABAC is more complex than that in RBAC since there

are multiple attributes. These constraints can exist among different values of a

set-valued attribute and/or on values across different attributes [27]. For example, the

constraint can represent a mutual exclusion conflict between two values, a cardinality

constraint on mutual exclusion, a precondition constraint, etc. Without loss of

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 76

generality, these constraints can be expressed in OWL by defining the appropriate

object and datatype properties. For example, the properties representing SSOD and

DSOD (roles are defined as attributes in ABAC), can be defined as below:

ssod a owl:ObjectProperty;

owl:symmetricProperty; owl:TransitiveProperty;

rdfs:domain abac:Role;

rdfs:range abac:Role.

dsod a owl:ObjectProperty;

owl:symmetricProperty; owl:TransitiveProperty;

rdfs:domain abac:Role;

rdfs:range abac:Role.

In contrast, to enforce the security policy, we model its defined rules according to

SWRL (c.f. Section 2.4.3). For instance, the following SWRL rule defines the policy rule

"A patient can view his own medical record".

Action(?a) ∧ subject(?a,?s) ∧ object(?a,?o) ∧ type(?a,View)

∧ role(?s,Patient) ∧ oType(?o,MedicalRecord) ∧ owner(?o,?s)

→ isPermitted(?a)

4.4 Multi-Agent Based Policy Temporal Compliance Framework

The accuracy of the results generated by a policy violation detection mechanism

lies on the quality of linking log traces to security rules; hence, we distinguish two

inevitable components of the a posteriori access control that are: logs and the security

policy. Moreover, we have previously discussed the need to semantically enrich log

information as well as to verify the temporal validity of the resulted information (after

enrichment). Therefore, our policy compliance mechanism will answer the following:

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 77

(1) For a logged event, do the user and object have the right attributes and values, and

is the action executed in the right context?

(2) If they have ever had the right attributes, did they have them at the same time of

the access?

Therefore, we can distinguish two approaches. The first one consists in taking all the

logs and translating them into SWRL facts. This approach is not satisfactory, since it

requires a lot of time to translate, which is costing, in addition to the need of loading all

the facts into memory. The second approach, that we adopted, goes through a semantic

mediator and a multi-agent approach to get the necessary information as and when it

is needed.

As we presented how to extract information from multiple log sources in Chapter

3, we present, in the following, our multi-agent based policy temporal compliance

framework.

4.4.1 Multi-Agent System Architecture

The goal of the proposed multi-agent system is to gather the needed attributes

from different organizational data sources, and check if their temporal assignment is

conform with the security policy or not. The proposed multi-agent system architecture

is depicted in Figure 4.1.

We thus, distinguish four types of agents that we present in details in the following

subsections:

• Policy Agent handles the rules defined in the security policy. It is the one

responsible of providing the attributes to be fetched to the mediator agent.

• Mediator Agent is the maestro of the whole information gathering process. Once

it gets the attributes from the policy agent, it orchestrates all the exchanged

messages with the agents.

• Data Source Agent retrieves information from a specific data source.

• Event Calculus Agent verifies the temporal conditions defined in the security

policy using the Event Calculus.

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 78

Figure 4.1: MAS Architecture

Before getting into the functioning of the system, we define some terms that we use

along the explanation:

• Task: is the action to be performed by an agent.

• Service: is the kind of information that an agent provides.

• Request message: is a message sent from an agent to another asking to perform

an action. It is represented as Request(T,S,R,m), where T is the requested task, S is

the Sender Agent, R is the Receiver Agent, and m is the content of the message.

• Inform message: is a message sent from an agent providing an information or

responding to a request message. It is represented as Inform(S,R,m) where S,R,

and m are as defined above.

4.4.2 Multi-Agent System Functioning

In this section, we present the functioning of each agent of the proposed architecture.

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 79

The Policy Agent

The Policy Agent (Po) is located on the policy side. Its mission is to deliver the list of

the defined attributes in the security rules to the Mediator Agent.

As shown in Section 4.3, security rules are modelled in SWRL. Thus, each rule has

the form of Condition→ is-permitted(u,op,o). It is worth noting that is-permitted(u,op,o) is

expressed in SWRL as isPermitted(?action), where ?action has the type op and is related

to u and o with the predicates subject and object, respectively.

Moreover, the condition is composed of the subject, object, action, and their

respective attributes and attributes’ values (since rules are modelled according to

ABAC). Therefore, Po parses the defined SWRL rules to construct a list of Subject

Attributes, Object Attributes, and Environmental Attributes (context) to be verified.

For each predicate representing an attribute defined in the SWRL rule, the agent

gets the domain and range of the predicate and associates the defined values to the

corresponding classes. In consequence, the constructed list contains tuples of the form

<att, v, h>, where att is the attribute’s name, v is the attribute’s value, and h is the

attribute’s holder (e.g., subject, object, etc.).

In contrast, we consider in this chapter that the expression of the security policy

is static and do not go through changes over time. In other words, the rules in the

security policy are defined once and for all, meanwhile their application may depend

on contextual conditions. This hypothesis is relaxed in the next chapter. Therefore,

every security rule can be expressed as:

Always(Condition→ is-permitted(u,op,o)) (4.6)

With respect to the rule defining Always (axiom (4.3)), an action op done by a user u on

an object o at a specific time t is considered as permitted if the required condition held

at that same time t. We recall that in ABAC, the condition consists in the attributes and

attributes’ values acquired by the entities presented in the access.

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 80

The Mediator Agent

The Mediator Agent (Med) is settled in the semantic mediator that we presented in

Chapter 3. We recall that this mediator extracts information from logs in the form of

a tuple <Subject, Action, Object, Timestamp>. Therefore, we assimilate a logged event

to an event in the Event Calculus that follows Happens(e, t), and we denote it as e =

(u,op,o), where op is an action (operation) that was executed by a user u on an object o,

and that happened at a certain time t.

Moreover, the occurrence of an event can be represented in SWRL as follows:

Happens(?happens) ∧ Action(?e) ∧ type(?e,?op) ∧ subject(?e,?u)

∧ object(?e,?o) ∧ hasEvent(?happens,?e) ∧ hasTime(?happens,?t)

Note that Action is a subclass of Event.

Once the list of attributes is received, Med starts the semantic enrichment process.

Its main goal is to get these attributes’ values and timestamps, relatively to the

information extracted from logs, to verify their compliance with the policy.

It is worth mentioning that we consider that the logs contain at least one element,

from which we can get the security attributes defined in the security policy. Moreover,

to detect the type of the extracted values, for example, if the subject’s extracted value

corresponds to a UserID, HostName, IP, etc., we used regular expressions (regex) and

a dictionary-based classifier [169].

Therefore, to search for a specific attribute, Med searches in a service directory,

where several other agents registered the services that they provide, and identifies the

agent to which it should send a request message to get the corresponding attribute’s

value and timestamp. The content of the corresponding messages is a tuple <att, v,

ht, hv>, where att and v are, respectively, the attribute’s name and attribute’s value

to search for, that were received from Po, ht is the identified type of the holder using

regex as discussed above (e.g., MID), hv is the value of the holder extracted from logs

(e.g., 9000000085). Thus, the message sent from Med to the identified agent can be

formulated as follows: "At what time did the ht with hv have the value v for the attribute

att?".

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 81

Data Source Agents

In a real organization, not all the information is stored in one place. It can have many

databases that can have the same or different type of information. That is why we

consider having many data sources, each one represented by a Data Source Agent (DS)

that registers the service it provides in a service directory when it joins the multi-agent

system.

When a DS receives a request, it gets the corresponding information. For instance,

if the data source is an SQL database, the agent will execute SQL queries, and replies

to the mediator agent with an inform message containing the requested information.

Moreover, we consider that the DS has access to the history logs of the data source,

and that it knows the events responsible for assigning and removing an attribute’s

value. It will search then for these events, that are related to the extracted log elements,

and their timestamps, and send them back to Med. Thus, the content of the sent

message is a list of tuples <e,t> where e = (u,op,o) is the initiating/terminating event

that activates/deactivates the value of the requested attribute and t its timing.

It must also be pointed out that agents may have different vocabularies. To resolve this

heterogeneity, mappings can be established between the different concepts handled by

the different agents (e.g., equivalence between two different entities handled by two

different agents) [208].

The Event Calculus Agent

Once Med has collected all the attributes’ values and the times of their

assignment/removal, it sends them in an inform message to the Event Calculus Agent

(EC), so that it can assess policy temporal compliance.

The main goal is to deduce a violation when a non-permitted access is logged (is

done); hence, verifying the following:

Happens((u,op,o),t) ∧ ¬ HoldsAt(is-permitted(u,op,o),t)→ violation(u,op,o) (4.7)

Expression (4.7) can be expressed in SWRL as follows:

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 82

Happens(?happens) ∧ Action(?e) ∧ type(?e,?op) ∧ subject(?e,?u)

∧ object(?e,?o) ∧ hasEvent(?happens,?e)∧ hasTime(?happens,t)

∧ NotHoldsAt(?notholdsAt) ∧ isPermitted(?e) ∧

hasFluent(?holdsAt,?e) ∧ hasTime(?holdsAt,?t) → Violation(?e)

The event (u,op,o) is the one extracted from logs by the semantic mediator. However,

to check if it was permitted or not at the time of its occurrence we should check if the

required condition was holding at that same time as in expression (4.6).

In ABAC, the condition consists in having the right subject attributes, object

attributes, and environmental attributes (context), with the right values. Since these

attributes may evolve over time, we consider each one of them as a fluent. Therefore,

each property representing an attribute in the antecedent of a SWRL rule will be

mapped to a fluent.

Let m be a function that maps each pair of attribute-value to a fluent:

m: ATT * Dom(ATT) −→ Fluents

x.atti = vi −→ fi

where ATT is the set of all attributes, Dom(ATT) is the set of all possible values that an

attribute can take, x ∈ {Subject, Object, Environment}, atti is the attribute name, and vi

its value.

Hence, the conjunction of all the fluents fi constitutes the final condition to be verified,

that is also a fluent. We define the condition fluent as:

fcond =
∧n

i=1
fi

where n is the total number of the required access attributes.

Therefore, to verify if the condition holds at time t, we need to check

HoldsAt(fcond, t) ≡ HoldsAt(f1 ∧ f2 ∧ ... ∧ fn, t), by applying (4.5).

To express this conjunction of fluents in SWRL, we consider having two disjoint

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 83

subclasses, SuperFluent and SubFluent, of the class Fluent, that represent fcond and fi

respectively, and are related with the property hasSubFluent. Thus, for each condition

fluent, we generate an individual of the class SuperFluent that is related to its sub-

fluents with hasSubFluent(?f,? fi).

Next, once the sub-fluents are identified, we need to check if they hold at access time t

according to expression (4.1). It is worth mentioning that fluents that necessitate two

arguments, have the relations hasDomain and hasRange to refer to their arguments.

For instance, the subject attribute role(?u,Doctor) is considered as a fluent, and when

reasoning in EC, it is expressed in SWRL as: Role(?fluent) ∧ hasDomain(?fluent,?u) ∧

hasRange(?fluent,Doctor).

Continuing, the occurrence of events that control the state of the fluent will

initiate/terminate the corresponding fluent (e.g., setRole(?u,Doctor) will initiate

the fluent role(?u,Doctor)). Therefore, the intiation of an attribute fluent can be

expressed in SWRL as follows:

Happens(?happens) ∧ InitiatingEvent(?e) ∧ hasDomain(?e,?d) ∧

hasRange(?e,?r) ∧ hasEvent(?happens,?e) ∧ hasTime(?happens,?t)

∧ swrlx:makeOWLThing(?initiates,?e) ∧ SubFluent(?fluent)

∧ Attribute(?fluent) ∧ hasDomain(?fluent,?d) ∧

hasRange(?fluent,?r) → Initiates(?initiates) ∧

hasEvent(?initiates,?e) ∧ hasFluent(?initiates,?fluent) ∧

hasTime(?initiates,?t)

Similarly, the termination of an attribute fluent can be expressed in SWRL as

follows:

Happens(?happens) ∧ TerminatingEvent(?e) ∧ hasDomain(?e,?d) ∧

hasRange(?e,?r) ∧ hasEvent(?happens,?e) ∧ hasTime(?happens,?t)

∧ swrlx:makeOWLThing(?terminates,?e) ∧ SubFluent(?fluent)

∧ Attribute(?fluent) ∧ hasDomain(?fluent,?d) ∧

hasRange(?fluent,?r) → Terminates(?terminates) ∧

hasEvent(?terminates,?e) ∧ hasFluent(?terminates,?fluent) ∧

hasTime(?terminates,?t)

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 84

In contrast, the Clipped and NotClipped predicates were introduced in EC to deal with

causal constraints; hence, it is necessary to support existential quantification and

two way implication to translate these axioms into rules. Nevertheless, SWRL lacks

existential quantifiers which makes it impossible to express (4.1), for example, in SWRL

alone. Therefore, we couple SWRL with algorithms to have a correct implementation

of the EC axioms. For instance, when a fluent is not clipped between its initiating and

terminating event, the creation of a NotClipped instance is enforced by an algorithm.

The dedicated alogrithm uses SQWRL queries to retrieve the timestamps of the

initiating and terminating events of a fluent. For example, to get the initiates events

and timestamps of the fluents, more precisely sub-fluents, the below SQWRL query is

used:

Initiates(?initiates) ∧ hasEvent(?initiates,?e) ∧

hasFluent(?initiates,?f) ∧ SubFluent(?f) ∧ hasDomain(?f,?d)

∧ hasRange(?f,?r) ∧ hasTime(?initiates,?t) →

select(?initiates,?e,?f,?d,?r,?t)

The retrieval of the terminates events are done in a similar way. After the

above elements are retrieved, the function AssertNotClippedStatement is called

to create a NotClipped instance. The AssertNotClippedStatement is similar to the

AssertHoldsForStatement given in Section 5.6. Now that all the needed axioms are

asserted, the HoldsAt statements can be deduced as in (4.1).

After checking if each sub-fluent holds at t or not, we need to check if the final

fluent (the conjunction of all sub-fluents), holds at t. To do so, we used the following

SQWRL query:

HoldsAt(?holdsAt) ∧ hasFluent(?holdsAt,?f) ∧

SubFluent(?f) ∧ sqwrl:makeSet(?s, ?f) ∧ sqwrl:groupBy(?s,

?holdsAt) ∧ SuperFluent(?fl) ∧ hasSubFluent(?fl,?fs)

∧ sqwrl:makeSet(?s2,?fs) ∧ sqwrl:groupBy(?s2,?fl) ∧

sqwrl:contains(?s,?s2) → sqwrl:select(?holdsAt,?fs)

This latter, constructs two sets of sub-fluents, one for each generated holdsAt

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 85

individual, and one for each SuperFluent defined initially. After that, it compares the

two obtained sets. If the set of the initially defined fluents is contained in the generated

fluents set, then the query returns a result and a new HoldsAt individual is created

with the corresponding SuperFluent and access time associated. If the query result is

empty, it means that at least one of the sub-fluents does not hold at t, leading to the

creation of a NotHoldsAt individual associated with the SuperFluent and access time.

The utility of using SQWRL queries and complementing SWRL with algorithms

for the creation of the NotHoldsAt and NotClippedAt individuals is to assure negation.

It is known that OWL and SWRL are based on the open-world assumption, thus, the

truth of facts cannot be determined unless explicitly stated. Therefore, it has been

demonstrated in [145] that negation-as-failure can be implemented on top of purely

open-world systems using queries.

Finally, expression (4.6) can be expressed in SWRL as follows:

HoldsAt(?holdsAt) ∧ hasFluent(?holdsAt,?f) ∧

hasTime(?holdsAt,?t) ∧ SuperFluent(?f) ∧ isRelatedTo(?f,?e)

∧ type(?e,?op) ∧ subject(?e,?u) ∧ object(?e,?o) ∧

swrlx:makeOWLThing(?holdsAt2,?holdsAt) → HoldsAt(?holdsAt2)

∧ isPermitted(?e) ∧ hasFluent(?holdsAt2,?e) ∧

hasTime(?holdsAt2,?t)

The isRelatedTo property is added to the SuperFluent representing the condition

so that we can relate the collected attributes to the occurred event; hence, deduce if the

event is permitted or not.

Furthermore, verifying the respect of constraints, particularly separation of duty,

using the Event Calculus is very relevant since it reasons over time by nature.

Therefore, the Static Separation of Duty can be verified by checking if a single user did

not have two roles that are related with a ssod constraint at any time. This is done by

using two different time variables ?t and ?t2 as follows:

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 86

HoldsAt(?holdsAt) ∧ Role(?r) ∧ hasFluent(?holdsAt,?r) ∧

hasDomain(?r,?d) ∧ hasRange(?r,?x) ∧ hasTime(?holdsAt,?t)

∧ HoldsAt(?holdsAt2) ∧ Role(?r2) ∧ hasDomain(?r2,?d) ∧

hasRange(?r2,?y) ∧ ssod(?x,?y) ∧ hasTime(?holdsAt2,?t2) ∧

SuperFluent(?f) ∧ hasSubFluent(?f,?r) ∧ isRelatedTo(?f,?e)

∧ swrlx:makeOWLThing(?notHoldsAt) → NotHoldsAt(?notHoldsAt)

∧ isPermitted(?e) ∧ hasFluent(?notHoldsAt,?e) ∧

hasTime(?notHoldsAt,?t)

As for checking the Dynamic Separation of Duty, it is about verifying if a user

had two roles with a dsod constraint at the same time by using a single variable ?t:

HoldsAt(?holdsAt) ∧ Role(?r) ∧ hasFluent(?holdsAt,?r) ∧

hasDomain(?r,?d) ∧ hasRange(?r,?x) ∧ hasTime(?holdsAt,?t)

∧ HoldsAt(?holdsAt2) ∧ Role(?r2) ∧ hasDomain(?r2,?d) ∧

hasRange(?r2,?y) ∧ dsod(?x,?y) ∧ hasTime(?holdsAt2,?t) ∧

SuperFluent(?f) ∧ hasSubFluent(?f,?r) ∧ isRelatedTo(?f,?e)

∧ swrlx:makeOWLThing(?notHoldsAt) → NotHoldsAt(?notHoldsAt)

∧ isPermitted(?e) ∧ hasFluent(?notHoldsAt,?e) ∧

hasTime(?notHoldsAt,?t)

It is also worth to mention that since the policy compliance is checked a posteriori

and not in real time, the verification is done rule by rule, and the decision of whether

there is a violation or not is computed once all the attributes and timestamps are

gathered. Moreover, the violation of constraints such as Separation of Duty is also

detected when performing the a posteriori access control.

4.5 Use Case

Always in the medical field, we provide in this section a use case to show the utility of

our approach.

Consider the following medical rule that needs to be verified:

"A doctor may create a prescription during an office visit".

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 87

This rule can be expressed in SWRL as follows:

Action(?a) ∧ type(?a,create) ∧ subject(?a,?u) ∧ role(?u,Doctor) ∧ object(?a,?o) ∧

oType(?o,Prescription) ∧ context(?a,?w) ∧ cType(?w,OfficeVisit)→ isPermitted(?a).

Moreover, we consider that we extracted, using the semantic mediator, the following

event e1 from the logs:

Subject Action Object Timestamp

9000000003 CREATE PRE35876 2019-07-22 14:59:04

We also consider that there are two Data Source agents DS1 and DS2 that provide the

Role of a Medical ID (MID), and the Type of a Resource ID, respectively.

Illustrating the steps provided in Section 4.4.2, the list sent from Po to Med contains

the attributes role of the Subject, type of the Object, and the type of the Context in which

the action should be done at every time, in addition to their respective values. The

content of the message sent from Po to Med is shown in Figure 4.2.

Figure 4.2: List of Attributes sent by Po to Med

When Med receives the list of attributes, it sends request messages to DS1 and DS2

to get the timestamps of the events responsible for assigning and/or removing the

Role and Type of 9000000003 and PRE35876, respectively. DS1 and DS2 are identified

after searching in a service directory. These messages have the following forms:

Request(SearchAttributeTime, Med, DS1, (Role, Doctor, MedicalID, 9000000003))

and Request(SearchAttributeTime, Med, DS2, (oType, Prescription, ResourceID,

PRE35876)). We provide an example of the representation of these messages in the

Agent Communication Language (ACL) [165] in Figure 4.3.

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 88

Figure 4.3: Agent message in ACL

Continuing, DS1 will search for the timestamps of the events

setRole(9000000003, Doctor) and removeRole(9000000003, Doctor), if any, and replies to

Med with an inform message as follows: Inform(DS1, Med, (setRole(9000000003,Doctor),

2019-05-16 10:34:21)). Similarly, DS2 will reply to Med with the timestamps of

the events concerning the type of the Object: Inform(DS2, Med, (setType(PRE35876,

Prescription), 2019-07-22 14:59:04)).

Moving on to the contextual condition, it can be looked up in a similar way, as

our approach is generic. Normally, its activating and deactivating events appear in the

application logs; hence, the semantic mediator is used to look for them homogeneously.

However, Med does not have an a priori knowledge of them. Thus, it will solicit EC,

where they are defined.

Med sends a request message to EC asking it for the initiating and terminating events

of an office visit.

Considering that in an EHR application, the office visit holds from the time of its

creation, till the time it is saved, we consider that the activating and terminating events

of an office visit are create office visit and save office visit, respectively. After that, Med

queries the logs to get the timestamps of these events as in Chapter 3.

At this point, Med has collected all the attributes values and the time of their

assignment/removal. Now that all the condition inputs are ready, Med sends them

in an inform message to EC, so it can assess policy compliance according to expression

(4.7). In this respect, the mapped fluents (sub-fluents) are f1 = role(?u,Doctor), f2 =

oType(?o,Prescription), and f3 = cType(?w,OfficeVisit). Therefore, verifying (4.7) leads to

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 89

verifying (4.6) to see if the logged event is permitted or not at the time it was done.

Furthermore, (4.6) consists in validating if the value of the attribute Role of the subject,

the value of the attribute Type of the object, and the contextual condition office visit hold

at 2019-07-22 14:59:04 as in (4.1).

Supposedly that f1 and f2 were true at the time of the access, and 2019-07-22 15:32:45

and 2019-07-22 16:05:18 are the timestamps at which the user 9000000003 has created

and saved the office visit OFF91383, respectively, the contextual condition office visit

was not holding at 2019-07-22 14:59:04, since it was started after the creation of the

prescription, leading to the detection of a violation.

4.6 Implementation And Evaluation

4.6.1 Implementation

To develop our multi-agent system, we used JADE in Java [20]. The adopted language

for exchanging messages between agents is the Agent Communication Language

(ACL) [165], and the content of the messages are ontology objects. Moreover, we used

Protege 5.2.0 [167] as an environment for developing the policy ontology according to

ABAC, as well as the Event Calculus ontology. We also used the OWL API [92] to parse

SWRL rules and identify the classes and predicates that are used in, and SWRL API

[151] to infer the EC rules. It is also worth to mention that we converted the timestamps

into discrete time points in the system’s time zone, to resolve time zones heterogeneity,

using the Java APIs for Date and Time [102]. Moreover, a Windows machine was used

with Intel(R) Core i5-7200U CPU at 2.7 GHZ, and all the agents were functioning on

the same machine, while considering they are virtually on different ones.

4.6.2 Evaluation

The key concepts that we pertained to evaluate our violation detection mechanism are

capability and performance. Therefore, we discuss, in the following, the capability

metrics that are assured by our approach, as well as its performance.

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 90

Table 4.2: Capability Metrics

Metrics Definition

Safety
checks if the access control policy
leaks access permission to unauthorized
principals.

Separation of Duty (SoD)
prevents error and fraud by ensuring
that no conflict-of-interest assignments
are assigned to a single subject.

Completeness
assures that each access request
should be either accepted or denied
by the access control policy.

Liveness

guarantees that there is no deadlock
in which the system will wait forever for
system events, and there is no livelock
in which the access control model
repeatedly executes the same operation
forever.

Model-specific properties
are security properties that are specifically
supported by various access control
models.

Inconsistency detection
are conflicts between policy decisions
that might occur.

Detection of redundant rules
checks if removing a rule does not change
the behavior of the policy.

Capability

Normally, the capabilities of an access control policy verification model are described

by a set of reference metrics. Therefore, [125] proposed some metrics to evaluate access

control policy verification tools that we provide in Table 4.2.

The first metric that is usually considered is safety. It is about checking if the access

control policy leaks access permission to unauthorized or unintended principals.

Nevertheless, in the a posteriori access control, the environments are trustworthy

and exceptional accesses are authorized depending on the context. Therefore, when

detecting an access violation a posteriori, the system cannot be categorized as "unsafe"

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 91

as it might allow certain prohibited accesses on purpose. Therefore, evaluating safety

in the a posteriori access control can be confusing as it inherently provides flexibility.

Moving on to the second metric, we have shown that our a posteriori access control

framework includes the verification of Separation of Duty, that we expressed in OWL

and the Event Calculus. It is worth noting that in a similar way, we can express other

constraints relating to attributes’ values in ABAC.

Moreover, completeness is a metric that is frequently examined. This latter assures

that each access request should be either accepted or denied by the access control

policy. It is evident that the response in our approach is boolean, since it consists in

either a violation or not. When checking the compliance of a logged event with a

security rule, all the attributes defined in that rule should be respected. If at least one

required attribute did not hold at the time of the access, the corresponding rule in the

security policy is considered to be violated. In consequence, our proposal is complete.

Furthermore, it is very important to assure liveness. Our approach guarantees

it as we consider that all the attributes are logged somewhere (which is a security

requirement), thus our policy compliance mechanism will neither wait nor repeat the

same operation forever to find these attributes.

Besides, our approach is capable of supporting any access control model. For instance,

ABAC can be replaced with RBAC or any other model, and the policy agent will do the

job to inform of which elements should be searched for verification. Therefore, model-

specific properties are respected, such as availability. The use of the Event Calculus allows

us to check if a subject, for example, had the required attributes at a specific time.

However, we consider the case of a static security policy and we treat the problematic

of the evolution of this latter in Chapter 5.

Other interesting metrics are inconsistency and redundancy. In this work, we assume

that the policy is free of conflict and redundancy. Thus, it is enough to have the logged

event matching at least one rule in the security policy to decide that it is not a violation.

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 92

Performance

Implementing the multi-agent system to gather security attributes and check their

temporal compliance allowed us to look into the feasibility of our approach, and to

evaluate the execution time of the queries for performance issues. Even if some might

consider that the access control is done a posteriori; hence, time is not of essence, a

slow audit cycle is always undesired.

Moreover real organizations tend to minimize the number of attribute sources used

in authorization decisions to improve performance and simplify the overall security

management of the ABAC solution [144, 95]. Therefore, we consider the case of

a hospital where the administrators have defined 6 attributes: role, department, and

speciality for subjects, type and owner for objects, and working hours for the environment.

It must be pointed out that different combinations of these attributes and their values

are used to define access rules, and that a rule does not necessarily include all the

attributes. Moreover, we tested the run-time performance of our model with up to 50

synthetic rules.

The execution time in function of the number of rules is shown in Figure 4.4. It is

evident that the time will increase with the number of rules to be verified. However,

the time difference does not follow a specific function because the number of attributes

to be fetched is different from one rule to another. With 95% of confidence level we

obtain a confidence interval of [29.138773, 34.305027].

In contrast, we found it interesting to see if the way in which the searching process

is done, and the queries are executed, affects the performance. Therefore, we carried

out the tests in two cases. The first case consists in gathering the timestamps when the

attributes had the values defined in the security policy and then evaluating the rules

according to EC, as discussed earlier. The second case is about gathering the values

that the attributes had at the time of the access, and then evaluating the rules.

We present the evolution of the execution time in function of the number of attributes

to be validated in both cases in Figure 4.5.

The difference between the two cases are the queries that are executed by the

agents to get the attributes values. For instance, instead of answering the question "at

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 93

Figure 4.4: Time in function of number of rules

10 20 30 40 50

25

30

35

Number of Rules

Ex
ec

ut
io

n
Ti

m
e

(s
)

Figure 4.5: Time in function of number of attributes

1 2 3 4 5 6
180

200

220

240

260

280

300

Number of Attributes

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Case 1
Case 2

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 94

what time did the user x have the role doctor?", the agents will answer the question

"which role did the user have at access time?". Since we considered that the data

sources contain the events of assigning/removing an attribute, and their timestamps,

the search in the second case considers getting all the events that affect a certain

attribute that occurred before the logged timestamp (it is hardly realistic to have the

attribute values logged all the time). For instance, Med will ask DS1 which roles

were set/removed to the user 9000000003 (setRole(9000000003 ,?x)) before 2019-07-22

14:59:04. Therefore, the queries executed by DS1 are more complex than before, and

result in a greater number of events. For example, other attribute’s values can be

included in the answer, such as the roles Nurse or Lab Technician, and not only Doctor.

That being said, more individuals in the EC ontology are generated in this case; hence,

longer reasoning, which justifies the results obtained in Figure 4.5.

In consequence, it is important to specify in the searching process not only the type

of the attribute defined in the rule, but also its required value, to have a better

performance.

4.7 Related Work

A large body of research on usage control was grounded on the idea of changes that

can be done on subject and object attributes over time. For example, [160] defined

a taxonomy for attribute management to show how attributes can be controlled in

usage control. However, while they show how usage control can apply this mutability

property of attributes in various traditional access control policies, we perform an a

posteriori access control by verifying the attributes values, at the time of the logged

event, to take violations decisions. Thus, their problematic is different from ours as the

context in which attributes mutability is treated stands out.

Since a good log analysis leads to good decisions for accountability, it is

fundamental to enrich the logs with complementary information related to the security

policy, while incorporating a mechanism for temporal conditions verification. We thus

study topics that are related to temporal access control.

Extending traditional access control models was a main interest of many researches.

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 95

For instance, in [24], a temporal extension of the role based access control model

(TRBAC) was presented. The main features of this extension were the support for

periodic enabling/disabling of roles, individual exceptions, and the possibility of

specifying temporal dependencies among such actions, expressed by means of role

triggers. TRBAC was then improved in [110] to be more generalized, and capable of

expressing a wider range of temporal constraints such as duration constraints on roles,

user-role, and role-permission assignments.

On the other hand, the Event Calculus has been proved to be powerful when it

comes to access control security policies. In this respect, [17] showed how security

models concerning the Discretionary Access Control can be represented using the

Simplified Event Calculus (SEC). Yet, their work enforces the a priori access control,

and the use of DAC is not expressive enough. Besides, [175] described the use of

Event Calculus for developing a language that supports specification and analysis of

authorization policies for Web service composition. Moreover, in [66], the authors used

Event Calculus and abductive reasoning to develop an expressive language to analyze

policy-based systems. The language combines authorization, obligation and refrain

policies, and the abductive analysis is used to detect modality conflicts and a range

of application-specific conflicts. However, because we are working on the a posteriori

access control, our approach is based on the deductive Event Calculus, as the history

of the logged events is used to derive the attributes values (the fluents) that held at

the time of the event. In addition, [203] showed how a range of temporal RBAC

(TRBAC) security models can be represented as logic programs incorporating the

Simplified Event Calculus (SEC), that valorizes time-constrained permissions and roles

membership. It also showed how clausal form logic expressing integrity constraints

can enforce high-level security requirements.

4.8 Conclusion

In this chapter, we proposed a model to detect policy violations, in the a posteriori

access control, based on a multi-agent system and the Event Calculus. We showed how

the multi-agent system can be very helpful in collecting the necessary policy-related

information to complement logged data. It eliminates human tasks by automating the

CHAPTER 4. A POSTERIORI VIOLATION DETECTION WITH A STATIC POLICY 96

collection process.

Moreover, we integrated the problem of policy temporal compliance with the

semantic enrichment process to highlight its importance when performing an a

posteriori compliance check. This added value of temporal verification was achieved

using the Event Calculus, that we modelled in SWRL. We demonstrated that the Event

Calculus is expressive enough to model this kind of problem as it has direct support

for representing logged events as well as the security policy. In addition, its formalism

assures the correlation between these two essential components to detect violations.

We also used the deductive reasoning supported by the Event Calculus, as the history

of events occurring in the system is used to derive the fluents that will hold.

Nevertheless, in reality, like security attributes, security rules are also subject to

change over time. As we presented the case of a static security policy in this chapter,

we found it interesting to treat the case of the a posteriori access control, where logs

are governed by an evolutive security policy that changes using administrative actions.

We thus, present this case in the following chapter.

Chapter 5

A Posteriori Violation Detection with an

Evolutive Policy

5.1 Introduction

For security concerns, organizations need to analyze and review their logs from one

time to another to make sure that their deployed security policy is being respected.

As discussed earlier, this process is associated with the a posteriori access control. We

have presented, in the previous chapters, solutions to handle the first two steps of

this type of access control, that are logging and auditing. Nevertheless, to accomplish

the monitoring process, our violation detection mechanism relied on the semantic

enrichment of logs. In addition, we highlighted a vital aspect that is introduced by

the fact of having a posteriori investigations, that is time. It is thus, fundamental to take

into account the temporal compliance when analyzing logs as many changes can take

place between the time of the access and the time of the investigation. We focused

mainly, on the variation of the security attributes and their values over the time, and

we considered that the security policy is static.

However, changes can be applied on security rules too; hence, the policy itself can

evolve over time to include more or less rules. These types of modification can be done

using an administrative security policy.

Indeed, to have a complete access control model, an administration model should

be provided. For instance, the RBAC model was associated with ARBAC97 [178], the

97

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 98

OrBAC model was affiliated with AdOrBAC [52], and the ABAC model was recently

paired with AMABAC [106]. These models control who is permitted to assign/revoke

attributes and/or permissions; hence, modifying rules in the security policy.

Another thing to be pointed out is that administrators themselves should have the

right privileges in order to modify the security policy. In consequence, administrative

actions should also be monitored to check that the applied modifications were also

allowed.

All previous works related to the a posteriori access control considered a static

security policy and did not take into account its time dependent evolution. In this

chapter, we re-solicit the Event Calculus to include the temporal evolution of the

security policy in our violation detection mechanism. We thus, consider changes

that can affect the security rules using an administrative policy model, as well as the

violations that can be caused by both the users and the administrators. Moreover, we

formalize the violation detections as a recursive process and show its termination.

5.2 Motivation of Considering Policy Evolution

Many attempts have been made to adapt to changes in traditional access control

[79, 50, 214]. For instance, [214] presented the Dynamic Role Based Access Control

(DRBAC) model that provides context-aware access control for pervasive applications.

DRBAC extends RBAC and dynamically adjusts role assignments and permission

assignments based on context information. However, it has been shown that it must

be combined with authentication mechanisms to secure pervasive applications in real

life. Moreover, the authors in [122], introduced the notion of consistency of access rules

in a collaborative environment, and addressed the problem of maintaining consistency

through occasional changes. As they treated the a priori access control, and policy

changes may occur while queries are actively being processed, these changes were

accommodated online to synchronize and modify query planning.

In the area of the a posteriori access control, previous works that we presented

in Section 2.1.2 such as [67, 37, 77] assumed that the policy is correct and static

when evaluating its compliance. Besides, some works found that policy reconciliation

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 99

can be done by reconstructing the policy from logs. For example, in [40] , the

authors proposed an approach to verify the enforcement of security policies and the

usage of permissions. Their method was based on analytics, and attempts to ensure

the consistency of the used permissions with the configured policy, in addition to

guaranteeing that the policy maintains least privilege using unambiguous constructs

to reduce administrative errors. The consistency was provided by mining roles

from usage logs and checking their correspondence with the actual policy. [123]

identified anomalies in RBAC models that may indicate insider threats by comparing

a prescriptive RBAC model to a generative RBAC model that can be derived from

event logs. Furthermore, they provided metrics for structural and semantic differences

between RBAC models, and used visualization techniques for evaluation.

In both of these works usage mining was used to compare logs to the security policy.

However, roles, for example, are mined as general behaviour, making it impossible to

distinguish which role was used by a user at a specific time point.

As discussed above, related works on reconciling policy considered a static security

policies. In order to take right decisions for accountability purposes, security auditors

need to have a correct reference. Therefore, it is important to check which rules were in

place when an access was done, and to monitor administrators’ actions as they can also

be accountable. Our literature review has showed that this problem was not treated

before.

In contrast, to confirm the importance of considering the evolution of the policy

when performing an a posteriori access control, we provide below a motivating

example:

The "Stay Alive" hospital has deployed a "break-glass" mechanism, where access

authorizations outside the standard case can be given explicitly, on a case-by-case

basis, by the administrator. Mary and Jeanne are two nurses who work, respectively,

in the cardiology and the neurology departments of the hospital.

At the beginning of spring, Mary took a vacation for two weeks. Since nurses are only

allowed to access medical records that belong to the same department in which they

work, Jeanne, who replaced Mary during that period of time, asked the administrator to

grant her the necessary accesses to complete the job. During that same period, Jeanne

has viewed the medical record of a patient in the oncology department. Did Jeanne

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 100

have the right to do so? Was the created rule correct? Did the administrator abuse his

privileges? Etc.

The goal of this chapter is to answer these questions.

5.3 Administrative Models for ABAC

In Chapter 4, we modelled the security policy according to ABAC for its support of

making fine-grained access decisions, and capability of supporting any access control

model. We thus, recall that in ABAC, access is granted according to user attributes,

resource attributes, action attributes, and context attributes.

As any access control model, ABAC needs to have an administrative representation.

In the following, we briefly present the administrative models for ABAC that were

proposed in the literature, and we justify our choice of using AMABAC, which we

present in details.

5.3.1 GURA

The first effort for developing an administrative model for ABAC was [107], where a

Generalised User-Role Assignment (GURA) was proposed, and which consists of a set

of administrative requests and a set of administrative rules. In GURA, user attributes

are collectively administered by different administrative roles to enable distributed

administration. Therefore, in this administrative model, the administrative policy

specifies the conditions under which administrative roles can modify user attributes

through administrative requests. These requests take effect only if they are authorized

by administrative rules. However, GURA relies on the set of relations defined in

ARBAC97 [178]. Moreover, it is likely best suited to user attributes which makes him

inappropriate for administrating other attributes such as objects and environmental

attributes.

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 101

5.3.2 ADABAC

Another proposed administrative model for ABAC was the Administrative ABAC

(ADABAC) [105]. ADABAC supports decentralized administration of ABAC systems,

and consists of a number of operations to administer the set of subjects and the set

of subject attribute assignments in an ABAC system. Moreover, an administrative

rule in ADABAC essentially associates a set of administrative users having certain

attribute name-value pairs to a set of administrative operations. Each operation in

ADABAC has one or more preconditions that need to be satisfied prior to the execution

of the operation, and certain postconditions should also hold after the execution of the

operation. Therefore, ADABAC is similar to GURA by the fact that it can only be

used to manage subject-related components and does not include any components for

managing object and environmental related components or policies. Therefore, we

chose the ABAC administrative model AMABAC [106] since it provides solutions for

these problematics.

5.3.3 AMABAC

AMABAC is an Administrative Model for ABAC, where a set of authorized

administrative users U, who have a set of administrative attributes A, that can acquire

possible values Ra, and a set of administrative relations AP, are defined. The set of

attribute name–value pairs associated with an administrative user a is given by the

expression attr(a).

Each administrative relation Rei ∈ AP is of the form <ac,Par>, where ac is an

administrative attribute condition, that is a set of administrative attribute name-value

pairs, and Par is an optional set of parameters passed to the relation Rei. The role of

these relations is to define the set of attributes that an administrative user must have

to be able to modify a specific component in an ABAC system.

Furthermore, there are 20 administrative relations and commands in AMABAC,

that are meant to modify subject, object, and environmental attribute-related

components, as well as authorization rules-related components. In this chapter, we

are interested in the rules’ modifications as a whole.

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 102

Two administrative relations were defined for authorization rules modification in

AMABAC. The first relation is to add a rule, and the second one is to remove a rule

from the policy.

Moreover, each relation is associated with an administrative command that is

required to be executed to perform the actual modification. In this connection, some

preconditions need to be satisfied prior to the execution of a command for this latter

to take effect on the policy. For instance, a new rule r can be added (removed) to the

policy P if there is an administrative user a who has the administrative attribute ac (ac

⊆ attr(a)) that allows the insertion (removal) of a new rule (can_add_rule(ac)), and if the

same rule r is not already in (is already in) the policy P (r ∈ P).

Yet, the fact of verifying if the rule belongs to the security policy or not before

adding it is not enough. The verification should go further than that to include

redundancy checking [86], as well as conflict resolution [143, 187]; hence, the lack of

these types of verification represent a limitation in AMABAC.

Therefore, to simplify the problem, we will not take into account this requirement as a

necessary precondition, and will not consider the verification of the preconditions r /∈

P and r ∈ P, when respectively adding and removing a rule.

It is worth to mention that we model the AMABAC policy in OWL.

As AMABAC is also attribute-based, the ontology representing it is similar to the

ABAC’s ontology presented in Section 4.3, where administrative users, administrative

actions, rules, permissions, and the policy are represented as Classes, and their predicates

subject, object, etc., are represented as properties.

5.4 Evolutive Policy Compliance

Once again, we consider that a logged event is retrieved using the semantic mediator

presented in Chapter 3. This event is of the form e = (u, op, o), where op is an action done

by a user u on an object o.

Conversely, an ABAC rule presumes that an action is permitted if the subject, object,

and environment that are involved in it fulfill certain values. In consequence, we

denote a security rule as r = <SA, OA, EA, op>, where SA, OA, EA are the required

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 103

attributes’ values of the subject, object, and environment, respectively, and op is a

permitted action. Moreover, ABAC rules contain an if-then statement, in which the

satisfiability of a condition (the required attributes’ values) leads to a permitted action;

hence, a security rule can be expressed as Condition −→ is-permitted(u,op,o) (c.f. Section

4.4.2).

In the previous chapter, we developed a framework for policy violation detection

in case of static security rules, that remain the same over time. We have shown how the

expression defining Always can be applied to each rule as in expression (4.3). Therefore,

since the rules are always true, we only had to check if SA, OA, and EA were satisfied

at the time the action was executed.

Nevertheless, we consider now the case of an administrative security policy, where

an administrator can change the deployed security rules over time. The analysis

consists then not only in checking if the condition held at the time of the access, but

also in verifying which rule that relates the condition to the permitted action was valid

at that time. Therefore, Always cannot be applied anymore.

We suppose that at the time of the investigation tinvest (now), the policy is in its last

updated state, and that the logged event to be analyzed happened at t < tinvest. Thus,

we distinguish two types of verification: (1) check if the logged action at the past time

t was permitted or not, by fetching the rules that were in the policy at that same time

t, and collect the user, object, and context attributes defined in the holding rules for

verification, and (2) check if the rules corresponding to the deployed policy at time t

were created by administrators who had the right to create them.

That being said, we consider having two log databases: one that registers all the

actions executed in the application domain by regular users, and one that records

administrative actions. It must be pointed out that the separation between the two

databases is purely conceptual. We could consider that there is only one database, but

we made that choice to distinguish between regular and administrative actions.

Moreover, the deployed multi-agent system architecture remains the same.

However, in this chapter, the Policy Agent (Po) will have access to the administrative

log in which the modifications of security rules that are done by administrators are

traced. The rest of the agents have the same functionality and the message exchange

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 104

process is identical. In the following, we mainly focus on the formalization of the

problem in the Event Calculus rather than the functioning of the multi-agent system.

Nevertheless, it is easy to sketch the messages exchanged between the different agents

by referring to Chapter 4.

Before explaining how the violation detection can be done in case of an evolutive

security policy, we introduce two new axioms in the Event Calculus. Since security

rules are not changed frequently in reality, we provide interval manipulation to express

succinctly the duration or period of time for which a security rule holds. Therefore, a

fluent f holds for an open-closed interval I =]t1,t2] as follows:

Happens(e1, t1) ∧ Initiates(e1, f , t1) ∧ Happens(e2, t2)∧

Terminates(e2, f , t2) ∧ ¬Clipped(t1, f , t2)

→ HoldsFor(f , t1, t2)

(5.1)

Always with respect to the reification problem, axiom (5.1) can be expressed in SWRL

as follows:

Happens(?happens1) ∧ hasEvent(?happens1,?e1) ∧

hasTime(?happens1,?t1) ∧ Initiates(?initiates) ∧

hasEvent(?initiates,?e1) ∧ hasFluent(?initiates,?f)

∧ hasTime(?initiates,?t1) ∧ Happens(?happens2) ∧

hasEvent(?happens2,?e2) ∧ hasTime(?happens2,?t2) ∧

Terminates(?terminates) ∧ hasEvent(?terminates,?e2) ∧

hasFluent(?terminates,?f) ∧ hasTime(?terminates,?t2) ∧

NotClipped(?notClipped) ∧ hasFluent(?notClippend,?f) ∧

hasStartTime(?notClipped,?t1) ∧ hasEndTime(?notClipped,?t2)

∧ swrlx:makeOWLThing(?holdsFor,?f) → HoldsFor(?holdsFor)

∧ hasFluent(?holdsFor,?f) ∧ hasStartTime(?holdsFor,?t1) ∧

hasEndTime(?holdsFor,?t2)

It must be noted that the interval is open-closed since an event has an effect on

a fluent right after its occurrence. For instance, when an initiating event happens at

t, the corresponding fluent will start holding right after t (at t+1). Similarly for the

terminating event.

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 105

In particular, a fluent can be started by an event and not terminated yet. In this

case, the fluent will hold until now:

Happens(e, t1) ∧ Initiates(e, f , t1) ∧ ¬∃t2[t1 < t2∧

Clipped(t1, f , t2)]→ HoldsFor(f , t1, now)
(5.2)

Now that we have introduced these axioms, we start the policy evaluation process.

5.4.1 Getting Access Time Valid Rules

Considering the administrative security policy according to the AMABAC model, a

permitted action will hold at the time of its execution t, if the postconditions triggered

by an administrative command hold at that time t. In consequence, an action done by

a user on an object is permitted if there is a rule that assures its permission at the time

of its execution as follows:.

Happens(e, t) ∧ e = (u, op, o) ∧ ∃r[HoldsFor(r ∈ P, t1, t2)

∧ t1 < t <= t2 ∧ HoldsAt(matches(A(e), A(r)), t)]

−→ HoldsAt(is-permitted(u, op, o), t)

(5.3)

We recall that r = <SA, OA, EA, op>, and t1 and t2 are the times when the rule r

was added and removed from P, respectively. We also define accordingly A(e) and

A(r) as the set of attributes concerned in the event and defined in the rule, including

operations. The matches predicate returns true if the attributes’ values and operation

in A(e) are the same as the ones defined in A(r), and false otherwise. The expression of

the matches predicate in SWRL is given as follows:

SuperFluent(?f) ∧ isRelatedTo(?f,?e) ∧ isDefinedIn(?f,?r) ∧

swrlx:makeOWLThing(?m,?e) → matches(?m) ∧ hasDomain(?m,?e) ∧

hasRange(?m,?r)

As discussed in Section 4.4.2, the SuperFluent constitutes the condition fluent that

includes all the attributes defined in a rule and that is related to the investigated event.

It is also worth mentioning that if a rule was added and never removed before tinvest

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 106

(now), then the fluent r ∈ P will hold from t1 to tinvest like in (5.2).

In consequence, expressing (5.3) in SWRL leads to the following:

Happens(?happens) ∧ hasEvent(?happens,?e) ∧

hasTime(?happens,?t) ∧ type(?e,?op) ∧ subject(?e,?u) ∧

object(?e,?o) ∧ context(?e,?c) ∧ HoldsFor(?holdsFor) ∧

ruleisInpolicy(?i) ∧ hasRule(?i,?r) ∧ hasPolicy(?i,?p)

∧ HoldsFor(?holdsFor) ∧ hasFluent(?holdsFor,?i) ∧

hasStartTime(?holdsFor,?t1) ∧ hasEndtine(?holdsFor,?t2)

∧ swrlb:lessThan(?t1,?t) ∧ swrlb:lessThanOrEqual(?t,?t2)

∧ HoldsAt(?holdsAt) ∧ matches(?m) ∧ hasDomain(?m,?e)

∧ hasRange(?m,?r) ∧ hasFluent(?holdsAt,?m) ∧

hasTime(?holdsAt,?t) ∧ swrlx:makeOWLThing(?holdsAt,?happens)

→ HoldsAt(?holdsAt) ∧ isPermitted(?e) ∧ hasFluent(?holdsAt,?e)

∧ hasTime(?holdsAt,?t)

According to axiom (5.1), "a rule r is in the security policy" holds for an interval

]t1,t2], if it was added at t1, removed at t2, and not removed in the meantime. Thus,

from the administrative log, we should search for the activating and deactivating

events of the fluent r ∈ P, that are add_rule and remove_rule, respectively, if any.

However, as mentioned earlier, in AMABAC, a set of preconditions should be satisfied

for a successful execution of an administrative command. Therefore, we consider that

when an administrator a has an administrative attribute which allows him to perform

a certain action (e.g., can_add_rule(ac) & ac ⊆ attr(a)), the action provided by that

attribute becomes permitted (e.g., is-permitted(a,add_rule,r)). Thus, a rule is successfully

added to the policy as follows:

HoldsFor(is-permitted(a, add_rule, r), t1, t2)∧

Happens((a, add_rule, r), t) ∧ t1 < t <= t2

−→ Initiates((a, add_rule, r), r ∈ P, t)

(5.4)

The expression of (5.4) in SWRL is given below:

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 107

HoldsFor(?holdsFor) ∧ isPermitted(?e) ∧ subject(?e,?a) ∧

type(?e,add_rule) ∧ object(?e,?r) ∧ hasFluent(?holdsFor,?e)

∧ hasStartTime(?holdsFor,?t1) ∧ hasEndTime(?holdsFor,?t2)

∧ Happens(?happens) ∧ hasEvent(?happens,?e) ∧

hasTime(?happens,?t) ∧ swrlb:lessThan(?t1,?t) ∧

swrlb:lessThanOrEqual(?t,?t2) ∧ swrlx:makeOWLThing(?initiates,

?happens) ∧ swrlx:makeOWLThing(?i,?happens) →

Initiates(?initiates) ∧ hasEvent(?initiates,?e) ∧

hasFluent(?initiates,?i) ∧ ruleisInpolicy(?i) ∧ hasRule(?i,?r)

∧ hasPolicy(?i,p) ∧ hasTime(?initiates,?t)

Similarly, we can express the case of removing a rule from the policy:

HoldsFor(is-permitted(a, remove_rule, r), t1, t2)∧

Happens((a, remove_rule, r), t) ∧ t1 < t <= t2

−→ Terminates((a, remove_rule, r), r ∈ P, t)

(5.5)

The expression of (5.5) in SWRL is:

HoldsFor(?holdsFor) ∧ isPermitted(?e) ∧ subject(?e,?a) ∧

type(?e,remove_rule) ∧ object(?e,?r) ∧ hasFluent(?holdsFor,?e)

∧ hasStartTime(?holdsFor,?t1) ∧ hasEndTime(?holdsFor,?t2)

∧ Happens(?happens) ∧ hasEvent(?happens,?e) ∧

hasTime(?happens,?t) ∧ swrlb:lessThan(?t1,?t) ∧

swrlb:lessThanOrEqual(?t,?t2) ∧ swrlx:makeOWLThing(?terminates,

?happens) ∧ swrlx:makeOWLThing(?i,?happens) →

Terminates(?terminates) ∧ hasEvent(?terminates,?e)

∧ hasFluent(?terminates,?i) ∧ ruleisInpolicy(?i) ∧

hasRule(?i,?r) ∧ hasPolicy(?i,p) ∧ hasTime(?terminates,?t)

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 108

5.4.2 Monitoring Administrative Actions

As stated in (5.4) and (5.5), the effect of an administrative action on the security policy

depends on the administrative attributes and rights that the administrator who is

performing the action has. Thus, we still need to check if that administrator has

the right to perform a modification action (e.g., HoldsAt(is-permitted(a,add_rule,r), t)).

In consequence, we need to apply (5.1) again for the fluents is-permitted(a,add_rule,r)

and is-permitted(a,remove_rule,r), by getting the appropriate initiating and terminating

events from the administrative log. In the same way, we need to verify if the

administrative user who is modifying the administrators’ attributes also has the right

attributes to do so. Therefore, a recursive process is introduced as shown in Figure 5.1.

Figure 5.1: Recursive Aspect of administrative attributes verification.

To put an end to this verification loop, we consider that there is only one

administrator, whom we call super administrator sad, who can assign/remove

administrative rights to the rest of the administrators. This proposition will define

the initial states, since at the time of the conception of the application only one

administrator will delegate permissions to other administrators; hence, this will

guarantee the end of the recursion. Consequently, we extend AMABAC to include

two new administrative commands, assign_admin_perm, and remove_admin_perm, that

can be executed by sad without any precondition. Therefore, we obtain the following:

Always(is-permitted(sad, assign_admin_perm, perm)). (5.6)

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 109

Similarly, all the other administrative actions such as remove_admin_perm, add_rule,

remove_rule, etc., are always permitted for sad.

Moreover, we define a permission perm as a tuple <owner, action, condition>, where

owner is the owner (administrator) to whom the permission is assigned, action is the

operation that is allowed by the permission, and condition is the condition that should

be satisfied by the object on which the permission is applicable. For instance, perm=<a1,

add_rule, rule.SA=(role=doctor)> is a permission where the administrator a1 can add

rules in which the subject has the role doctor. It is worth mentioning that as in

AMABAC the administrative actions are general (e.g., add_rule permits creating any

rule), we added the condition element to have more expressivity and preciseness in the

actions that an administrator can do.

As a result, the loop stops once it gets to the super administrator who has, for sure,

the right to perform any action. This idea is depicted in Figure 5.2.

Figure 5.2: Recursive Aspect ends when sad is detected.

Now that sad is assigning/removing the administrative permissions of other

administrative users, the corresponding actions will be permitted for the defined user

without any dependency of other actions, as follows:

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 110

Happens((sad, assign_admin_perm, perm), t)∧

∃o[satis f ies(o, perm.condition)] −→ Initiates((sad,

assign_admin_perm, perm), is-permitted(perm.owner,

perm.action, o), t)

(5.7)

The expression of (5.7) in SWRL is:

Happens(?happens) ∧ type(?e,assign_admin_perm) ∧

subject(?e,sad) ∧ object(?e,?perm) ∧ hasEvent(?happens,?e)

∧ hasTime(?happens,?t) ∧ condition(?perm,?cond) ∧

owner(?perm,?ow) ∧ action(?perm,?act) ∧ Object(?o) ∧

satisfies(?o,?cond) ∧ swrlx:makeOWLThing(?initiates,?happens)

∧ swrlx:makeOWLThing(?e2,?happens) → Initiates(?initiates) ∧

hasEvent(?initiates,?e) ∧ type(?e2,?act) ∧ subject(?e2,?ow) ∧

object(?e2,?o) ∧ isPermitted(?e2) ∧ hasFluent(?initiates,?e2)

∧ hasTime(?initiates,?t)

Happens((sad, remove_admin_perm, perm), t)∧

∃o[satis f ies(o, perm.condition)] −→ Terminates((sad,

remove_admin_perm, perm), is-permitted(perm.owner,

perm.action, o), t)

(5.8)

The expression of (5.8) in SWRL is:

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 111

Happens(?happens) ∧ type(?e,remove_admin_perm) ∧

subject(?e,sad) ∧ object(?e,?perm) ∧ hasEvent(?happens,?e)

∧ hasTime(?happens,?t) ∧ condition(?perm,?cond) ∧

owner(?perm,?ow) ∧ action(?perm,?act) ∧ Object(?o) ∧

satisfies(?o,?cond) ∧ swrlx:makeOWLThing(?terminates,?happens)

∧ swrlx:makeOWLThing(?e2,?happens) → Terminates(?terminates) ∧

hasEvent(?terminates,?e) ∧ type(?e2,?act) ∧ subject(?e2,?ow) ∧

object(?e2,?o) ∧ isPermitted(?e2) ∧ hasFluent(?terminates,?e2)

∧ hasTime(?initiates,?t)

5.4.3 Detecting violations

Once all the necessary administrative events are obtained and after resolving

expressions (5.4) - (5.8), we can get the rules that were in the policy at the time when the

log event, to be checked, was executed. In this respect, we obtain from these rules all

the required attributes that should be satisfied by the user and object at that same time;

hence, we can start searching for these attributes in different databases to contextualize

the extracted event and verify if they are compliant with the ones defined in the policy

rules (HoldsAt(matches(A(e),A(r)),t)) as in (5.3). This step goes back to Chapter 4, where

the Data Source (DS) agents search for the user, object, and environmental attributes,

by consulting the administrative log (the history log) of each data source to see when

an administrator assigned/removed an attribute to a regular user. Thus, the other

administrative relations, and commands of AMABAC, that permits modifying subject,

object, and environmental attribute-related components, are solicited. Additionally,

the verification of administrative privileges is also required in this step. An example

of the interaction between the validity of security rules and administrative actions is

illustrated in Figure 5.3.

Finally, if the executed action was not permitted at the time of the access, we can

deduce a violation like in expression (4.7).

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 112

Figure 5.3: Timeline example of interactions between security rules and administrative
actions.

5.5 Use Case

We illustrate the violation detection taking into account the evolution of security rules

with a practical example.

Using the same EHR application, we consider two administrators a1 and a2, and

one super administrator sad. At the time of the creation of the application (t=0), sad

assigned the privileges of adding and removing rules in which the subject is a doctor

to a1, and adding and removing rules concerning all the users except doctors to a2.

Figure 5.4 shows an excerpt of the corresponding administrative log.

Figure 5.4: Excerpt of the administrative log.

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 113

We consider three ABAC rules, that were added and/or removed by a1 and a2 at

different times as follows:

r1:"A lab technician can create a lab procedure".

r2:"A doctor can create a prescription during an office visit".

r3:"A nurse can view a medical record that is in the same department in which he/she works

in".

Furthermore, we suppose that we extracted from the application log the following

event, which we want to check if it is a violation or not:

e = (9000000003, CREATE, PRE35876, 35), and we consider having one policy named

p1.

Besides, the investigation is done at t = 45 (now). We also define the conditions ci and

permissions permi as follows:

c1=<r.SA=(role=doctor)>

c2=<r.SA=(role!=doctor)>

perm1=<a1,add_rule,c1>

perm2=<a2,add_rule,c2>

perm3=<a1,remove_rule,c1>

perm4=<a2,remove_rule,c2>

By expressing the administrative log events in the Event Calculus, we obtain the

following:

Happens((sad, assign_admin_perm, perm1), 0)

Happens((sad, assign_admin_perm, perm2), 0)

Happens((sad, assign_admin_perm, perm3), 0)

Happens((sad, assign_admin_perm, perm4), 0)

Happens((a2, add_rule, r1), 16)

Happens((a1, add_rule, r2), 18)

Happens((a1, add_rule, r3), 24)

Happens((a2, remove_rule, r1), 33)

Happens((a2, remove_rule, r3), 40)

Next, by applying (5.7) and (5.8), we get:

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 114

Initiates((sad,assign_admin_perm,perm1),is-permitted(a1, add_rule, r2), 0)

Initiates((sad,assign_admin_perm,perm3),is-permitted(a1,remove_rule,r2),0)

Initiates((sad,assign_admin_perm,perm2),is-permitted(a2,add_rule,r1),0)

Initiates((sad,assign_admin_perm,perm2),is-permitted(a2,add_rule,r3),0)

Initiates((sad,assign_admin_perm,perm4),is-permitted(a2,remove_rule,r1),0)

Initiates((sad,assign_admin_perm,perm4),is-permitted(a2,remove_rule,r3),0)

Since the fluents is-permitted(ai,add_rule,rj) and is-permitted(ai,remove_rule,rj) were

never terminated, they hold until now:

HoldsFor(is-permitted(ai, add_rule, rj), 0, now)

HoldsFor(is-permitted(ai, remove_rule, rj), 0, now).

In addition, (5.4), and (5.5) lead to having the following:

HoldsFor(r1 ∈ p1, 16, 33)

HoldsFor(r2 ∈ p1, 18, now)

In consequence, the only rule that held at t = 35 was r2.

Now that we know which rule was valid at the time of the access, we can start

searching for the defined attributes (e.g., the subject’s role, the subject’s department,

the type of object, the object’s department, the context, etc.) to see if they verify

expression (5.3), and whether there was a violation or not according to (4.7).

Supposedly that 9000000003 is the identifier of a doctor, and the object PRE35876 has

the type prescription, but the condition does not respect an office visit, then a violation

of r2 is induced (c.f. (5.3) and (4.7)). Therefore, the user 9000000003 should be held

accountable for not respecting the security rule that was in place when he created the

prescription.

Now, we assume that we want to investigate the event

e=(7000000005,VIEW,MR8853,37). The administrative log as well as the investigation

time remain the same. Besides, we consider that all the requirements of r3 are fulfilled

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 115

by the occurring event (7000000005 is a nurse who viewed the medical record MR8853

that is in the same department she works in). In this respect, when searching for

the rules that were holding at t = 37, the answer will include only rule r2, and two

violations will be deduced. This can be explained with the following: according to the

administration log, a1 was assigned the permission to add rules concerning doctors

only; hence, following (5.7), the fluent is-permitted(a1, add_rule, r3) was never initiated.

Thus, a violation is produced according to (4.7). Continuing with (5.4), a rule is added

successfully to the policy if the administrator who is performing the action has the

right to do so. Since it is not the case, the fluent r3 ∈ p1 is not initiated. As a result, (5.1)

leads to r3 not being in the policy, which justifies why we will only get r2 as holding

rule at t = 37. Moreover, despite the fact that all the attributes are conform with the

ones defined in r3, and that the user technically did not violate the rule as it was added

by a1, a second violation will be provoked by resolving (5.3) and (4.7), since only r2

was legally in place at the time of the access and the attributes defined in it are not

respected.

At this point where violations are detected, responsibilities should be fixed to

account the users and administrators. When only regular users violate the rules that

were in place, the process is simpler because only them should justify their actions.

Nevertheless, the accountability becomes more complex when the administrators

themselves violate the administrative policy, the case in which not only administrators

should prove the legitimacy of their operations, but also regular users. As the

administrators should be sanctioned for sure, the decision concerning the users should

be looked into. This is where collateral damage comes around, to fix the responsibility

of users when their accesses were authorized by rules that were created by someone

who had not the permission to do so. Therefore, the decisions can be made depending

on the impacts and side effects of the actions on the system. We hereby treat this

problem in the following chapter.

5.6 Implementation

The tools used to implement the approach proposed in this chapter are the same

as the ones presented in Section 4.6.1. Moreover, it was mentioned that certain EC

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 116

predicates deal with causal constraints which makes it necessary to support existential

quantification that is not supported in SWRL. Therefore, when dealing with EC, we

always need to couple SWRL with an algorithm along with some SQWRL queries to

have a correct implementation of the axioms. We recall that SQWRL queries can only

work on known individuals (instances) in an ontology but they do not permit any

alterations to the information that they might extract from the ontology.

In the following we present the SQWRL queries that we use in our algorithm.

StartRuleQuery: gets all the rules that were added to the policy by an add_rule

event at a timepoint.

Initiates(?initiates) ∧ ruleisInpolicy(?i) ∧ hasRule(?i,?r)

∧ hasPolicy(?i,p1) ∧ hasFluent(?initiates,?f) ∧

hasEvent(?initiates,?e) ∧ type(?e,add_rule) ∧

hasTime(?initiates,?t) → sqwrl:select(?initiates,?i,?e,?r,?t)

The query returns the Initiates statements, together with their associated Event,

Fluent and timepoint references.

EndRuleQuery: gets all the rules that were removed from the policy by a remove_rule

event at a timepoint.

Terminates(?terminates) ∧ ruleisInpolicy(?i) ∧ hasRule(?i,?r)

∧ hasPolicy(?i,p1) ∧ hasFluent(?terminates,?f) ∧

hasEvent(?terminates,?e) ∧ type(?e,remove_rule) ∧

hasTime(?terminates,?t) → sqwrl:select(?terminates,?i,?e,?r,?t)

StartPermittedAdminActionQuery: gets the permitted administrative actions

that were initiated by an assign_admin_perm event at a timepoint.

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 117

Initiates(?initiates) ∧ isPermitted(?e2) ∧

subject(?e2,?ow) ∧ object(?e2,?o) ∧ type(?e2,?act) ∧

hasFluent(?initiates,?e2) ∧ hasEvent(?initiates,?e) ∧

type(?e,assign_admin_perm) ∧ hasTime(?initiates,?t) →

sqwrl:select(?initiates,?e,?e2,?ow,?act,?o,?t)

EndPermittedAdminActionQuery: gets the permitted administrative actions that

were terminated by a remove_admin_perm event at a timepoint.

Terminates(?terminates) ∧ isPermitted(?e2) ∧

subject(?e2,?ow) ∧ object(?e2,?o) ∧ type(?e2,?act) ∧

hasFluent(?initiates,?e2) ∧ hasEvent(?initiates,?e) ∧

type(?e,remove_admin_perm) ∧ hasTime(?terminates,?t) →

sqwrl:select(?terminates,?e,?e2,?ow,?act,?o,?t)

HoldsForQuery: gets the rules that were holding during an interval of time.

HoldsFor(?holdsFor) ∧ ruleisInpolicy(?i) ∧ hasRule(?i,?r)

∧ hasPolicy(?i,p1) ∧ hasFluent(?holdsFor,?i) ∧

hasStartTime(?holdsFor,?t1) ∧ hasEndTime(?holdsFor,?t2) →

sqwrl:select(?holdsFor,?i,?r,?t1,?t2)

HoldsAtPermittedUserEventQuery: gets the permitted user events that hold at a

timepoint.

HoldsAt(?holdsAt) ∧ isPermitted(?e) ∧ subject(?e,?u) ∧

User(?u) ∧ hasFluent(?holdsAt,?e) ∧ hasTime(?holdsAt,?t) →

sqwrl:select(?holdsAt,?e,?u,?t)

ViolationQuery: gets the violations.

Violation(?e) → sqwrl:select(?e)

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 118

The pseudo-code of the algorithm that we put in place to get the rules that were

holding at the time an event was logged tevent is shown in Algorithm 1. The inputs

of the algorithm are the administrative log, the time when the investigated event

happened (was logged), and the time of the investigation (now), and the output is the

rules that were holding at the time of the event.

The first step consists of creating instances from the administrative log events

that follow Happens(e,t) (line 2). Next, the StartPermittedAdminActionQuery and

EndPermittedAdminActionQuery are SQWRL queries that allow extracting the

Initiates and Terminates statements of the fluents is-permitted(a,add_rule,r) and is-

permitted(a,remove_ rule,r), and their times (lines 4-5).

As mentioned earlier, the SQWRL queries can only work on known individuals. Since

the inferred axioms and SQWRL results are not written back to the ontology, and

the successful addition of a rule depends on administrative rights (c.f (5.4) and (5.5)),

we force the assertions of the HoldsFor axioms by calling the AssertHoldsForStatement

method (line 6). This is useful to have correct results in the next query.

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 119

Algorithm 1 Find Holding Rules
Input: AdministrativeLog, tevent, tinvest

Output: Rules that hold at tevent

1: HoldsAt← ∅

2: CreateIndividuals(AdministrativeLog)

3: runSWRLRules()

4: runSQWRLQuery(StartPermittedAdminActionQuery)

runSQWRLQuery(EndPermittedAdminActionQuery)
5: StartPermittedAdminActionResult← getSQWRLResult(StartPermittedAdminActionQuery)

EndPermittedAdminActionResult← getSQWRLResult(EndPermittedAdminActionQuery)

6: AssertHoldsForStatement(StartPermittedAdminActionResult, EndPermittedAdminAc-

tionResult, tinvest)

7: runSQWRLQuery(StartRuleQuery)

runSQWRLQuery(EndRuleQuery)
8: StartRuleResult← getSQWRLResult(StartRuleQuery)

EndRuleResult← getSQWRLResult(EndRuleQuery)

9: AssertHoldsForStatement(StartRuleResult,EndRuleResult,tinvest)

10: runSQWRLQuery(HoldsForQuery)

11: HoldsForResult← getSQWRLResult(HoldsForQuery)

12: while HoldsForResult.next() do

13: Fluent← HoldsForResult.getValue("f")

14: Rule← HoldsForResult.getValue("r")

15: Policy← HoldsForResult.getValue("p")

16: t1← HoldsForResult.getValue("t1")

17: t2← HoldsForResult.getValue("t2")

18: if t1 < tevent <= t2 then

19: HoldsAt.add(new HoldsAt(Fluent,Rule,Policy,tevent))

20: end if

21: end while

22: return HoldsAt

The AssertHoldsForStatement function is shown in Algorithm 2.

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 120

Algorithm 2 AssertHoldsForStatement
Input: SQWRLResult result1, SQWRLResult result2, tinvest

1: while result1.next() do

2: StartTimeValues← ∅

EndTimeValues← ∅

3: Fluent1← result1.getValue("f")

4: t1← result1.getValue("t")

5: ontology.addAxiom(hasFluent, HoldsFor, Fluent1)

6: StartTimeValues.add(t1)

7: while result2.next() do

8: Fluent2← result2.getValue("f")

9: t2← result2.getValue("t")

10: if Fluent1 == Fluent2 && t2 > t1 then

11: EndTimeValues.add(t2)

12: end if

13: end while

14: if EndTimeValues.size() > 0 then

15: t’← min(EndTimeValues)

16: ontology.addAxiom(hasStartTime, HoldsFor, t1)

ontology.addAxiom(hasEndTime, HoldsFor, t’)
17: else

18: t’← max(StartTimeValues)

19: ontology.addAxiom(hasStartTime, HoldsFor, t’)

ontology.addAxiom(hasEndTime, HoldsFor, tinvest)
20: end if

21: end while

Algorithm 2 creates the corresponding individuals of the respective classes, e.g.,

HoldsFor, Fluent, etc., and assigns the correct values to the data property assertions

hasStartTime (t1) and hasEndTime (t2). For each fluent, it applies the minimum value of

t2 that is greater than t1, and if no value of t2 was found, it assigns tinvest (now).

Continuing in Algorithm 1, the same steps are done for the fluents ri ∈ p1 (lines 7-9).

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 121

Once all the HoldsFor axioms are asserted, another query is executed

(HoldsForQuery) to get the rules that held at tevent (lines 10-22). Finally, this process

can be done for each log event in the regular log as shown in Algorithm 3.

For each access time, the holding rules are fetched. After that, the values of the

subject, object, and environmental attributes that were in place at the time of the logged

event are collected using the GetHoldingAttributesValue(event) function. This is where

the Mediator Agent starts searching for other agents that have the required attributes as

explained in Chapter 4. Next, line 10 executes a query to see if the event was permitted

or not at the time of its execution according to expression (5.3). Lines 11-27 allow

us to run through all the valid rules at the time of the access. If at least one rule is

matched, then no violation is returned. If all the rules result in a violation, that means

that in none of the cases, the event has appeared to be permitted; hence; a violation

is returned according to (4.7). It is worth mentioning that administrative violations

are also obtained by executing ViolationQuery as they are also deduced through axiom

(4.7).

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 122

Algorithm 3 Violation Detection
Input: RegularLog, AdministratieLog, tinvest

Output: Violations

1: for each event in RegularLog do

2: violation← ∅

3: tevent ← event.getTime()

4: HoldingRules← FindHoldingRules(AdministrativeLog, tevent, tinvest)

5: NumberOfViolatedRules = 0

6: for each rule in HoldingRules do

7: for each attribute in rule do

8: GetHoldingAttributesValues(event)

9: end for

10: HoldsAtPermittedUserEvent← getSQWRLResult(HoldsAtPermittedUserEventQuery)

11: if HoldsAtPermittedUserEvent.isEmpty() then

12: NumberOfViolatedRules++

13: Continue

14: else

15: break

16: end if

17: end for

18: if NumberOfViolatedRules == HoldingRules.size() then

19: AssertNotHoldsAtStatement(event,tevent)

20: end if

21: violation← getSQWRLResult(ViolationQuery)

22: return violation

23: end for

5.7 Experimentation

To evaluate the performance of our approach, we consider the extraction of different

numbers of events that occurred during a specific period. Moreover, taking into

account the administrative policy, we vary the number of rules that held during the

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 123

Table 5.1: The considered violation rate of each tested number of events

Number of Events Considered Violation Rate
500 2%
1200 5%
2300 10%
4500 15%
5100 15%
7000 20%
8400 20%
9200 20%

10700 25%

interval of time of each batch of events. We also suppose that a certain percentage of

these events does not respect the security policy; hence, it constitutes a violation. Table

5.7 shows the considered violation rate for each number of events. It is also worth

mentioning that we use the same tools as the ones presented in Section 4.6.1.

In contrast, we keep the same rule order when changing the number of holding

rules. We recall that when an event matches at least one rule of the security policy, it

is considered as a no violation. Thus, the order in which the rules are being verified

influences the time at which the verification process of an event will stop. For instance,

even if 50 rules were holding at a specific time, the verification will stop at the 35th

defined rule if the concerned event matches it. That being said, looking that when

increasing the number of events, the number of violations is also increased (c.f. Table

5.7), the execution time will increase as well since all the rules are checked in case of a

violation. Similarly, when the number of holding rules increases for the same number

of events, the execution time follows the same trend. Given that the order of rules is

kept unchanged, the resulting time variation is caused by the violating events as they

impose verifying all the rules. The obtained results are shown in Figure 5.5.

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 124

Figure 5.5: Time in function of number of events

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

Number of Events

Ex
ec

ut
io

n
Ti

m
e

(s
)

50 Rules
100 Rules
150 Rules

5.8 Conclusion

In this chapter, we treated the a posteriori access control in case of an administrative

policy. To the best of our knowledge, it is the first contribution of this kind since

none of the previous works took into account the evolution of security rules over time

when checking policy compliance. The proposed violation detection mechanism was

based on the deductive Event Calculus and SWRL. Besides, we modelled the ABAC

administrative policy according to AMABAC, and we enhanced its expressiveness by

allowing the specification of conditions when assigning permissions to administrators.

Moreover, we gave expressions that show the relation between a logged event and

the rules that held at the time of the access to detect violations, as well as the inter-

dependency between administrative actions and the valid security rules. Thus, the

proposed approach also permits the assurance of the conformity of administrative

actions as these latter can constitute violations too.

After detecting violations, responsibilities should be fixed and decisions should

CHAPTER 5. A POSTERIORI VIOLATION DETECTION WITH AN EVOLUTIVE
POLICY 125

be made about whether sanctions should be applied or not. This process of setting

responsibilities falls under the third component of the a posteriori access control that

is very important since it is the one that deters users from committing violations.

However, setting responsibilities is a difficult problem, especially when considering

the policy administration rules. Therefore, we treat accountability in the a posteriori

access control in the next chapter.

Chapter 6

Accountability in the A Posteriori Access

Control

6.1 Introduction

It has been shown that the preventive access control can be inadequate in environments

where exceptions may occur, making the a posteriori access control more suitable.

Moreover, we recall that the a posteriori access control is composed of three critical

components that are logging, auditing, and accountability. In the previous chapters,

we treated the first two components and we showed how logging serves as evidence

in case of a suspicious violation as it traces users’ actions that are done in the system.

Furthermore, we proposed a framework to analyze logs in the auditing process to

check their consistency and compliance with the defined security policy. As for

accountability, several definitions were given to it since it is used broadly in a variety

of fields. For instance, [83] defined accountability as the “right of some actors to

hold other actors to a set of standards, to judge whether they have fulfilled their

responsibilities in light of these standards, and to impose sanctions if they determine

that these responsibilities have not been met.” [121] gave a more technical definition for

accountability that is “Accountability is the ability to hold an entity, such as a person

or organization, responsible for its actions.” [68] called an entity “accountable with

respect to a policy” that is if, whenever the entity violates the policy, then with some

positive probability it is, or could be, punished.

126

CHAPTER 6. ACCOUNTABILITY IN THE A POSTERIORI ACCESS CONTROL 127

Thus, regardless if sanctions will be actually applied or not, we can all agree that

“accountability is a way to deter the user from committing violations" as it constitutes a threat

of punishment that pressures the user psychologically.

A good number of researches treated the a posteriori access control by focusing

mainly on its first two components that are concerned in detecting violations, but

unfortunately they underestimated the importance of developing an accountability

mechanism. Nevertheless, the a posteriori access control must be combined with a

dissuasive sanction and reparation policy so that users are not tempted to violate the

security policy. In this chapter, we define a framework for accountability to decide

whether the user should be sanctioned or not, once a violation is detected. In particular,

we show how accountability can be deployed as a requirement and as a mechanism in

the a posteriori access control. We also treat both cases of a static security policy and an

administrative security policy in which the blame can be passed to the administrator.

6.2 Accountability: a Requirement and a Mechanism

As mentioned earlier, in the a posteriori access control, users’ actions are monitored to

assure their compliance with the security policy. We recall that the security policy of an

information system corresponds to a set of rules defining access control requirements

(permissions, prohibitions) as well as usage control requirements (obligations) relating

to the actions that a user carries out in this information system. This policy can be

modeled according to different access control models such as RBAC[70], ABAC[94],

OrBAC[62], etc. Thus, when a user performs an action that is not conform with the

rules defined in the security policy, the action is considered a violation. However, the

flexibility that offers the a posteriori access control allows having certain exceptions for

which the actions of users become permitted, or the user becomes blameless. We thus,

define a violation as follows:

Definition 6.2.1. (Violation)

A violation is an event, that is an action op done by a subject u on an object o at a specific

time, that abuses the security policy without taking in consideration the exceptions.

It is also worth to mention that we consider, in this chapter, that the accountability

CHAPTER 6. ACCOUNTABILITY IN THE A POSTERIORI ACCESS CONTROL 128

process starts after a violation is detected.

In this connection, security analysts can derive different conclusions when

analyzing access logs:

1. The concerned subject did not violate the security policy, in this case the problem

would arise either from errors in system functions or from external malice.

2. The subject has violated the security policy but there are legitimate reasons which

justify this behaviour and which invalidates this violation but does not exclude

the responsibility of the subject without sanctioning him.

3. The subject has violated the security policy but no mitigating circumstances

could be determined, he is then responsible and punishable for his unauthorized

action.

Even if in an a posteriori environment the user is trusted, there is always a

motivating reason that convinces him to breach the law to serve his self-interest and

access data. Therefore, it is evident that leaving the access open to users exposes

the system to different security threats that can be internal/external, malicious/non

malicious, intentional/accidental [111], and that can cause severe consequences such

as fraud, disclosure of sensitive information, destruction of information, etc. Since

the a posteriori access control is based on a trustworthy environment in which

users are knowledgeable of their rights (in reality, users are usually notified of their

responsibilities and validate them by signing a confidentiality charter), we consider

that the detected access policy violations are internal and intentional. Thus, the first

possibility of the violation being caused externally is eliminated. Now that access

policy violations are presumed, decisions should be made to determine whether the

violator should be punished or not.

In contrast, the accountability framework can be seen in two different angles:

1. It can be considered as a set of requirements (a theory) that should be employed

in the system to enforce the deterrence of policy violations.

2. It can be thought of as a mechanism to define and apply sanctions when

violations are committed.

CHAPTER 6. ACCOUNTABILITY IN THE A POSTERIORI ACCESS CONTROL 129

Moreover, it has been argued about whether increasing the probability of punishment

is more effectively deterrent than an increase in the severity of punishment [75]. It all

depends on whether the person who is tempted to violate the policy is a risk lover

or not. In the following we discuss the requirements that should be adopted to deter

policy violations and we propose an accountability mechanism in case of the a posteriori

access control.

6.2.1 Accountability as requirement

Deploying measures that increase the users’ perception of accountability in the

information system will likely make the users experience systematic processing

and awareness which will increase conformance with the policy. In [200], the

authors presented an accountability theory to reduce access policy violations through

system artifacts and showed how this theory could increase accountability perception.

We thus recall the three discussed system dimensions that heighten accountability

perception that are identifiability, evaluation, and social presence. Identifiability ensures that

user’s actions can be linked to him/her while evaluation assesses his actions according

to some normative ground rules and with some implied consequences. As for social

presence, it assumes that user’s performances can be seen by others.

Indeed, these three criteria are assured in the a posteriori access control. First,

logging makes sure that all accesses can be traced; hence, their subjects can be

identified. In addition, the monitoring and auditing that is done by analyzing logs

evaluate the conformity of these accesses with the security policy. Finally, although it

is not always the case where one can see an other’s actions especially in environments

in which sensitive data is involved, the administrator or the auditor can always have a

peek regardless if he is performing monitoring or not.

Having these three requirements in the information system will decrease the user’s

intent to commit access policy violations. However, unexpected circumstances could

happen which will force the user to perform an unauthorized action or have an

exceptional access. To take into consideration these latter, we consider a fourth

requirement that is the justification obligation.

Definition 6.2.2. (Justification Obligation)

CHAPTER 6. ACCOUNTABILITY IN THE A POSTERIORI ACCESS CONTROL 130

A justification obligation is an obligation that states that in case of exception (e.g.,

emergency) that pushes the user to perform an action that is outside his sphere of

access, the user must declare his access with a justification.

Definition 6.2.3. (Justification)

A justification is the reason (purpose) for which the user has performed an

unauthorized access. It is denoted as j=(u,op,o,r,t), where r is the reason for which

the user u performed an unauthorized action a on the object o, and which is logged at

time t.

Moreover, each access event can only have one justification.

In contrast, most of the times, in case of a sudden emergency, the user does not have

the time to justify his action before doing it. Therefore, we consider that the justification

obligation should be done a posteriori during a certain period of time after the access.

This time period is usually defined by the organization. Besides, we consider that once

the justification is logged, it cannot be modified later on.

At this point some might be wondering how this requirement will enforce the

deterrence of policy violations. In fact, not respecting this obligation is a violation

by itself; hence, the probability of applying punishments will increase and risk-taking

will decrease. Now that we enforced the deterrence of the a posteriori policy violation,

we should integrate this requirement in the a posteriori access control.

6.2.2 Accountability as a mechanism

After what has been discussed in the previous sections, a user is held accountable in

the a posteriori access control once he/she violates the security policy. To be more

specific, in the accountability process, the user is questioned to justify his actions.

Interestingly, it is common to distinguish the implication of responsibility when defining

accountability. However, the concept of responsibility can have different meanings [42].

Therefore, we define responsibility in the a posteriori access control as follows:

Definition 6.2.4. (Responsibility in the a Posteriori Access Control)

A user is responsible for his/her actions and their consequences, if he/she violates the

security policy.

CHAPTER 6. ACCOUNTABILITY IN THE A POSTERIORI ACCESS CONTROL 131

This definition of responsibility is logical with regard to the possibilities of conclusion

presented in Section 6.2. Thus, being responsible is independent of the punishments.

On the other hand, accountability not only regards the responsibility, but also the

liability of accesses performed by a user in an information system.

Definition 6.2.5. (Liability)

A user is liable if he/she is responsible, and should be blamed and sanctioned for

his/her undesirable actions.

Since we assumed that the accountability process starts once violations are

detected, the user is always responsible. Nevertheless, we distinguish, in the

following, the cases in which the user is liable; hence, should be punished.

The case of a Static Policy

In this section, we treat the case of a static security policy that is not subject to

modifications as in Chapter 4.

To start with, we impose a justification obligation to be logged by the user when

he performs an unauthorized access. Thus, the non-existence of this justification is

a violation of the obligation, and appoints no reason to invalidate the committed

violation. Therefore, a user is considered liable if he violated the security policy and

did not justify his violation as follows:

violation(u, op, o) ∧ ¬∃j[justi f ication((u, op, o), j)]→ is-liable(u, op, o) (6.1)

While it is certain that the user is liable in the above circumstance (violation of the

justification obligation), it is not the case when a justification exists. As a matter of fact,

other factors should be taken into account:

• The reason of access provided in the justification should be categorized as an

“allowed exception".

• The justification should be “honest".

CHAPTER 6. ACCOUNTABILITY IN THE A POSTERIORI ACCESS CONTROL 132

In contrast, in traditional RBAC or ABAC access control models that are not leveraged

to dynamically adapt to fringe cases [5, 65], exceptions are not encoded. Therefore, we

consider a particular setting, where an exception policy, that specifies how the rights

of users to access resources are affected in various exceptional situations, complements

the security policy. The exception policy is generally a less constraining version of the

security policy. For example, in a hospital, an access control policy specifies that each

doctor has access to the medical records of his/her own patients. However, if a patient

has a heart attack, then any doctor in the ward can have access to that patient’s medical

record during this emergency. Figure 6.1 shows our a posteriori access control setting.

We also consider that the exception policy is static and not subject to changes.

Figure 6.1: A Posteriori Access Control with Accountability

In this respect, a justification is considered to be valid if the reason provided in it,

is relevant to the permissions defined in the exception policy. We refer to [32, 5] for

inferring the relevance between an access permission and a purpose. Therefore, a user

CHAPTER 6. ACCOUNTABILITY IN THE A POSTERIORI ACCESS CONTROL 133

is also liable if he/she provided an invalid justification:

violation(u, op, o)∧is-invalid(justi f ication((u, op, o), j))

→ is-liable(u, op, o)
(6.2)

Moving on to deciding if the justification is honest or not, the problem becomes

more difficult. It must be pointed out that the honesty of a justification is investigated

only if this latter is valid. As previously mentioned, the user will have a limited time

period after his/her exceptional access to justify it. Moreover, it has been shown in

[184] that users tend to lie when they are pressured in time and are more likely to be

honest when they have enough time to answer when they are being interrogated. In

consequence, the time period chosen by the organization should have a reasonable

length but should not either be so long so that the user will not have the time to plan

a lie. Nevertheless, the user might sometimes justify his exceptional access after the

defined time period because he/she had successive emergencies or simply because

he/she forgot to do so. Therefore, we distinguish between an onTimeJustification, and a

lateJustification that we define as follows:

Definition 6.2.6. (onTimeJustification)

An onTimeJustification is a justification that is logged during the required time period.

Definition 6.2.7. (lateJustification)

A lateJustification is a justification that is logged after the required time period.

That being said, we consider that when a user logs an onTimeJustification, he/she is

being honest. This assumption was made since the user provided a valid justification

in the right time; hence, he/she is respecting the security rules. On the other hand,

qualifying a lateJustification can be confusing as it can be the object of a malicious

(dishonest) user and a non-malicious (honest) one. To solve this problem, we examine

the impact or the damage (e.g., data destruction) that results following an exceptional

access in the information system. Thus, a lateJustification is considered to be dishonest

if there is an impact on the system. Besides, when a lateJustification is provided with no

impact, the concerned user will be given a warning while always being responsible for

CHAPTER 6. ACCOUNTABILITY IN THE A POSTERIORI ACCESS CONTROL 134

his action:

violation(u, op, o) ∧ ∃j[is-valid(lateJusti f ication((u, op, o), j))]∧

¬∃i[impact((u, op, o), i)]→ is-responsible(u, op, o) ∧ warning(u, w)
(6.3)

Furthermore, if a user receives more than n warnings, then he is classified as

malicious; in other words, his (n+1)th late justification is dishonest (even if it is honest,

he did not respect the justification obligation several times). n is also defined by the

organization. This condition was put to not oppress the user in case he is being honest

even though he violated in a way the justification obligation. The warning will give him

the chance to adapt his behavior in the future; hence, will serve as a reminder to respect

the obligation. Nevertheless, n should not take a great value so that the probability of

being sanctioned remains high (ideally should be equal to 1 or 2). The steps over which

the accountability decision model reasons is depicted in Figure 6.2.

Figure 6.2: Accountability Decision Module in case of a Static Policy

As a consequence, we define the profile of a sanctionable user as a user who did

not provide a justification, or provided an invalid justification, or provided a valid

lateJustification and his unauthorized access had an impact on the system, or got n+1

CHAPTER 6. ACCOUNTABILITY IN THE A POSTERIORI ACCESS CONTROL 135

warnings:

is-sanctionable(u) ≡

¬∃[justi f ication((u, op, o), j)]∨

is-invalid(justi f ication((u, op, o), j))∨

∃j[is-valid(lateJusti f ication((u, op, o), j))] ∧ ∃i[impact((u, op, o), i)]∨

totalWarnings(u, n + 1)

(6.4)

As a result, the user will be liable, if he provoked a violation and he is sanctionable:

violation(u, op, o) ∧ is-sanctionable(u)→ is-liable(u, op, o) (6.5)

We can notice that (6.1) and (6.2) can be derived from (6.5).

Once the decision has been made about the user’s accountability, sanctions and

remedies should be applied. When thinking of sanctions, we first imagine an amount

of money. Therefore, we consider a sanction S as a penalty that is calculated based

on whether the user is sanctionable or not. The value of the penalty is chosen by

the auditing authority (for example, it can be equal to the salary of the employee).

However, it must be noted that different types of sanctions can be considered such as

getting fired, prison, etc. We define γ as a boolean variable that indicates if the user is

sanctionable or not. Thus, γ = 1 (γ̄ = 0) if the user is sanctionable and 0 otherwise. In

consequence, the sanction value can be calculated as follows:

S = penalty×(1+γ-γ̄) (6.6)

In addition, other remedies can be put in place such as taking away the right of

“breaking the glass", that is the ability to perform prohibited actions when necessary.

This remedy will be adopted when the organization looses the confidence she had

in the user, after this latter had caused several violations and been given multiple

sanctions.

CHAPTER 6. ACCOUNTABILITY IN THE A POSTERIORI ACCESS CONTROL 136

The case of an Administrative Policy

As presented in Chapter 5, administrators can also be held accountable following

their actions. Normally, they are responsible of creating the security rules that

permit or prohibit regular users from performing an access. Moreover, in order to

do a "break-glass" action, the user might ask the administrator to create him/her a

specific rule to perform the action. The administrator can also create/remove rules on

his/her own without prior demand from the user. Whatever the reason for the rule’s

creation/removal is, the rules should be appropriate, and the administrator should

not abuse his/her rights. We thus, consider the same setting represented in Figure

6.1, but this time the security policy can be changed over time by administrators.

Nevertheless, the exception policy remains static. That being said, a security auditor s

can blame the administrator, with respect to a justification, without exempting the user

of his/her responsibilities. It is worth noting that the security auditor must be different

than the concerned administrator so that the accountability decision will not be biased.

That being said, the user remains responsible since even if it was the administrator’s

fault, he is the one who performed the unauthorized action; hence, participated in the

violation. In this case, the user will be given a warning , and the administrator is held

responsible too:

violation(u, op, o) ∧ ∃j[justi f ication((u, op, o), j)] ∧ blame(s, (a, op, r))

→ is-responsible(u, op, o) ∧ warning(u, w) ∧ is-responsible(a, op, r)
(6.7)

In contrast, a new regulation came into force in May 2018, that is the General Data

Protection Regulation (GDPR) [202]. GDPR requires the collected data to be used only

for specific purposes. Therefore, [18] proposed a framework to design access control

policies in reference to the legal environment of the GDPR. In consequence, we suppose

that when an administrator has the right to create/remove/modify a specific rule,

his/her action leads to a GDPR compliant Access Control Policy (ACP), enforcing

the principle of data protection by design and by default. In consequence, when an

administrator is blamed for his/her actions or when he simply commits a violation,

the first thing to check if the resulted ACP from performing the action is GDPR

compliant. If it is not the case, the administrator is liable and should be sanctioned.

CHAPTER 6. ACCOUNTABILITY IN THE A POSTERIORI ACCESS CONTROL 137

On the other hand, if the resulting ACP is GDPR compliant, the process returns to the

normal liability check. In this connection, the justification obligation is also imposed

on the administrators. Thus, the same conditions are applied to have a sanctionable

administrator (c.f. (6.5)). As a result, an administrator is liable for performing an

operation on a security rule, if the resulting ACP is not GDPR Compliant or if he is

sanctionable as follows:

violation(a, op, r) ∧ [¬GDPRCompliant(a, op, r) ∨ is-sanctionable(a)]

→ is-liable(a, op, r)
(6.8)

The functioning of this new version of the accountability decision module is shown is

Figure 6.3.

Moving on to calculating the sanction’s value, it is the same as in equation

(6.6). Nevertheless, when the ACP is not GDPR compliant, the sanctions will be set

according to the GDPR, that is 4% of the total global annual turnover or 20 million

euros, whichever is the higher. The GDPR’s fine is normally imposed by authorities

on the company. However, the organization can also charge the administrator, as he

is the one representing it, and the value of the sanction is normally made precise in a

previously established agreement.

6.3 Conclusion and Future Work

In this chapter, we proposed a framework for accountability in the a posteriori

access control. We showed how accountability can be seen as a requirement and a

mechanism, and how integrating the justification obligation in the process can increase

the probability and the severity of sanctions. Besides, we formalized our approach

using the descriptive logic. However, all the given expressions can be easily expressed

in SWRL.

Moreover, we addressed the accountability problem in two cases. A static policy

is used in the first case, in which only regular users are held responsible. In the

second case, an administrative policy is deployed, opening the possibility of blaming

the administrator for his/her actions. Thus, both the user and the administrator are

CHAPTER 6. ACCOUNTABILITY IN THE A POSTERIORI ACCESS CONTROL 138

Figure 6.3: Accountability Decision Module in case of an Evolutive Policy

held responsible. Furthermore, we integrated GDPR compliance in the second case,

as administrators usually represent organizations; hence, sanctions can be applied by

both the organization and GDPR authorities.

Chapter 7

Conclusions and Perspectives

The main objective of this work was to propose a framework to perform the a posteriori

access control that detects potential violations of the security policy. The concerned

mechanism is a monitoring process that is based on logs as they provide evidence

of users’ actions. Moreover, users are deterred from committing policy violations by

enforcing the principle of applying sanctions and remedies. It has been also discussed

that this type of access control is divided into three components that are log processing,

log analysis, and accountability. We have covered these three areas of the a posteriori

access control, introduced some new aspects that were not treated previously in the

literature, and provided novel solutions.

To start with, the first component involves extracting useful information from logs.

Nevertheless, these latter can be found in multiple places, and can be generated from

different log sources, which leads to having a variety of log formats and contents. Thus,

to dissolve this heterogeney of log formats, we proposed to use a semantic mediator

that is based on query rewriting to extract information. We proved that this approach

has a lot of advantages especially that it is economical in terms of processing, as log

formats remain intact and transformations are only done on the queries. Besides, we

showed how it allows us to extract information in terms of the security policy by

defining one global ontology with the concepts subject, action, object, and timestamp.

These concepts also constitute the standard information that can be found in any log.

Focusing on log analysis, we addressed this step by taking into consideration some

vital factors. First of all, we supposed that in case of an expressive security policy

139

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES 140

(e.g., ABAC), the extracted log information is not sufficient to evaluate its conformance

with the security policy. Thus, this information needs to be semantically enrich with

other attributes for a correct analysis. As data can be distributed in the information

system, we automated this information collection task by proposing a multi-agent

system architecture, and detailed the function of each agent.

In contrast, we leveraged the a posteriori access control to include policy temporal

compliance that takes into account the possible changes that attributes might undergo

over time. Thus, we formalized the violation detection mechanism using the Event

Calculus, and implemented it in SWRL. The Event Calculus was chosen as an

appropriate basis to formalize our problem since both logs and policy modifications are

event-driven. Besides, we integrated this temporal verification in the proposed multi-

agent system to have a uniform framework. As a result, the investigation consisted not

only in checking if the users and objects have the right attributes to perform an action,

but if they had them at the right time.

On the other hand, we treated log analysis and the policy temporal compliance

in both cases of static and evolutive security policy. We recall that by static we refer

to the expression of the security policy and not its application. In the first case, the

temporal verification only concerned the attributes of the logged events, while in the

second case it went beyond attributes to include security rules. That being said, we

considered having an administrative security policy in which an administrator can

change the rules defined in the security policy, as well as the violations that can be

caused by administrators. Always using the Event Calculus, we showed how the

policy verification in this case can be recursive; hence, we defined a stopping condition

to define the initial state of the process and guarantee its termination.

Moving on to the accountability component, we have argued how accountability

can be seen as a requirement and as a mechanism in the a posteriori access control. We

presented the justification obligation requirement and showed how it can be used in a

mechanism to decide the liability of users based on an exception policy. We also treated

the accountability problem in case of static and administrative policy. Moreover, we

included a module that verifies the GDPR compliance of the resulting policy following

an administrative action to increase the severity of punishment.

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES 141

Although our research lead to several contributions in the field of access control,

particularly, in the a posteriori access control, several open issues and perspectives can

be treated in the future since as we all say: "there is always room for improvement".

Therefore, we present these perspectives in the following.

7.1 Perspectives

Given the multidisciplinary nature of the theories and techniques used in this thesis,

we did not have the opportunity to explore some aspects of our proposal in greater

depth. In the following, we discuss some limitations of our proposal and discuss how

the contributions presented in this thesis can be extended.

7.1.1 Log Analysis with Incomplete Information

In our approach, we have considered that all the needed attributes and information

can be found in the information system as taking decisions about the legitimacy of the

executed actions requires having all the information. In consequence, one limitation of

our approach is the unavailability of the needed information. One missing attribute,

that can be due to a source breakdown, not functioning agent, or simply not logged

information, etc., can disrupt the violation detection mechanism.

[176] proposed an approach for access control under uncertainty, where users can

afford the cost of the permission. However, the cost is calculated based on probabilities,

which cannot be applicable in case of an a posteriori access control, where decision is

binary and applying sanctions is involved. Consequently, the use of the abductive

reasoning could prove itself as a good solution to solve this problem, as it permits to

determine the assumptions that are missing to reach the conclusion. Moreover, we

plan to provide an accountability solution when the violation is indecisive.

7.1.2 Policy Conflict Resolution

It was shown that our model considers that there is no violation if the logged event

matches at least one rule in the policy. Thus, our approach does not take into

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES 142

consideration policy conflicts [206], particularly, the case where the same logged event

and attributes lead to two different decisions. Thus, we would like to take into account

in the future, the resolution of the conflicts and redundancies that may exist between

the rules for a better violation detection. This problem can be delicate in the case of

the a posteriori access control since removing redundancy from access control policies

requires minimizing the number of authorizations in the policy itself, which would not

provide the needed flexibility and would lead to a higher number of violations [86].

Moreover, it is important to consider the context when resolving policy conflicts [143,

187] to decide which rule is more powerful and should be applicable when performing

the a posteriori analysis.

7.1.3 Combining a Priori and a Posteriori Access Control

Another future objective is to be able to have the a priori and the a posteriori controls

cohabit in the same system, and to be able to switch certain controls from an a priori

mode to an a posteriori mode (or vice versa) according to the evolution of the trust

granted to the user. To do this, a model of the evolution of the trust granted to a

user should be defined according to the actions he performs in the system and the

possible violations of the security policy perpetrated by this user. Thus, when a user

has the required trust level, he will have the option to "break the glass" that activates

the a posteriori access control. It is also important to integrate this trust model in the

expression of the security policy to specify the deployment of certain security rules

based on the trust granted to the user.

7.1.4 Contextualizing the Exception Policy

In our accountability framework, we considered both cases in which the expression of

the security policy can be static or subject to changes using an administrative model.

Nevertheless, we did not take into consideration the evolution of the exception policy

that can also change depending on the context. For instance, in case of a crisis, access

permissions are updated assuring the validity of a higher number of justifications

[189]. In fact, finding valid justifications when treating the violations a posteriori

would allow us to enrich and contextualize the exception policy. Therefore, we would

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES 143

like to treat the changes of this policy along this contextualization process that will

influence the applicability of sanctions.

7.1.5 Considering Usage Control Requirements and Obligations

To have a framework that unifies the required elements of both traditional access

control models and trust management, Usage Control (UCON) has been proposed

[159]. It considers particular missing components of traditional access control, such

as the concepts of obligations and conditions. While these obligations can be set

a priori, they should be performed a posteriori by users after accessing a resource.

Nevertheless, there is no guarantee that these obligations will be fulfilled even if they

are attached to an emergency policy. Therefore, it is important to extend the current

work to include a posteriori usage control enforcement [154].

7.2 Raising Awareness Among Organizations

7.2.1 Context

It is evident that access control is vital for organizations to protect their most valuable

asset, that is data. Therefore, a company must choose the most convenient access

control model and mechanism for its business. We have provided, in the previous

chapters, solutions for the different components of the a posteriori access control. All

these propositions were inspired from facts that are present in a real organization.

In this section, we provide some use cases that were offered by a real organization

and show how the nature of data can influence and block the a posteriori access control.

Therefore, we expose uncovered problems regarding logs and security policies that

confirm the validity of the hypothesis that we took in this work and to raise awareness

among organizations.

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES 144

7.2.2 The Organization’s Business

The organization that provided us the use cases is a trusted third party that ensures

the validity, compliance, and balance between different parties and the exchanges and

commitments. Its main clients are healthcare professionals and companies. Moreover,

it acts as a digital agent on behalf of its clients by guaranteeing them control of their

data in a regulatory and risk-free technical context in which they cannot operate alone.

Therefore, the organizations possess important data centers with a large volume of

sensitive data.

7.2.3 Use Cases

In this section, we present three log analysis use cases that had an intention to perform

an a posteriori access control. Nevertheless, different problems arose among these

cases that made the policy compliance evaluation incomplete. We thus, present the

results to raise awareness among companies. We recall that in order to perform an a

posteriori access control, both logs and the security policy should be present, and must

be relevant to each other. It must also be noted that we do not show the provided data

for confidentiality issues.

Use Case 1

In the first instance, we received two sysmon log files [192] from the Security

Operations Center (SOC) of the organization. The first one shows the authenticated

users, while the second represents the processes that were executed by users.

Moreover, each file contained almost 1700 events. We thus, focused on the file

showing the processes as it represents users’ actions in the organization. The users

are the company’s employees and the logs reflect the processes that they have

executed to complete their jobs. The information included in the sysmon processes

files is: timestamp, event_id, action, host_name, user_name, user_domain, process_name,

process_guid, process_id, process_integrity_level, process_parent_name, process_parent_guid,

and process_parent_id. It is also worth to mention, that these sysmon logs were

transmitted to an ELK platform [63]. Therefore, we received them structured in a table.

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES 145

These logs were easily modelled in an ontology, and mapped to our proposed

global ontology as the user_name is the subject, the action is the action, process_name

is the object, and the timestamp is the timestamp. Nevertheless, we could not have

the security policy of the organization as it was not stated in a proper document.

We only could have some complementary information, but not the policy itself. For

instance, we received a file that contains the list of authorized softwares. Each software

was added to this list following an employee’s request that is logged via a ticketing

tool. After verification, all the softwares that were used in the logs were authorized

in the list. However, the users who executed these processes were not the same as

the ones who created the tickets. On the other hand, when a request is critical, the

employee is invited to fill an exemption form to have a temporary administrative

account. Unfortunately, we could neither access the roles of the employees, nor the

reason why they need a specific tool.

Clearly, the information provided in these files was not easy to analyze as the

access/security policy was missing. Some inputs, such as the list of authorized

users, are needed to understand the log and discover deviations. This lead to many

unanswered questions, from which we mention: Once a software is authorized for a

user and added to the list, will it be authorized to all other users? Who are the people

concerned in validating tickets and exemptions? Which rules/criteria do they follow

to take a decision of validating (or not) a ticket? Etc.

In consequence, since policy conformance checking requires an existing a priori

process model (security policy) that we do not have, our analysis was restrained on

discovering the process model itself. Thus, we applied process mining techniques

[198] on these logs to see if we can deduce a general model of what is going on in

the enterprise.

Process mining is a field of data mining, which consists of building and analyzing

business processes based on event logs. One big advantage of process mining

techniques is that the information is compiled objectively. This means that process

mining techniques capture what is actually happening in an organization, and not

what one might think it is happening. In process mining, each event log refers to a

case, an activity, and a point in time. An event log can be seen as a collection of cases,

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES 146

and a case can be seen as a trace/sequence of events. Besides, the tests were done using

ProM [199], the most well-known and popular process mining tool.

In contrast, we applied several process mining algorithms such as Heuristics

Miner [207], and Fuzzy Miner [87]. Both Heuristics and Fuzzy Miners’ results were

“spaghetti-like", showing all the details without distinguishing what is important and

what is not. This is due to the nature of the log file that we have, as every action

done by every employee on his PC is being registered in the logs. For example, if an

employee clicks five times on firefox.exe, each click will be considered as an event log

and the action would be “processcreate”. There was no defined cycle or process model

that can be deduced from these log files, since the users were not doing a specific

“process”. They were just executing the applications needed for their work to be done.

That is why, the discovered process models were not abstract at all.

In consequence, to perform an a posteriori access control, we were interested in

having log files that are generated from a specific application, rather than the logs

produced by the employees’ actions in the whole organization. Moreover, it is more

likely to find a well defined security policy in an application domain.

Use Case 2

Since many flaws appeared in the first case (no security policy, no process in logs),

we attempted to analyze logs that are generated from a specific application. The first

application that we considered was related to the medical domain. It is used by internal

employees as well as external clients to handle medical charges and refunds.

In this case, we succeeded in getting the security policy even if it was not up to

date. It was modeled according to RBAC, where each user is assigned to a group

in which several roles are defined and associated with different permissions. These

implemented roles and permissions were deduced from the needs of each job position.

Neither static nor dynamic separation of duty was specified, and the principle of least

privilege was not applied. Besides, this policy contained some imperfections. For

instance, some accesses were defined but did not have any role assignment. Moreover,

constraints were implemented by restricting access to a group of users without being

explicitly defined in the policy, and prohibitions were managed by making the profiles

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES 147

inactive (access by suspending rights).

Moving on to the logs, we have noticed a significant issue. The logs of the

concerned application are neither structured nor have a specific format. It seems that

whichever flow that passes through the application is logged in the same log file.

For instance, the file contains both XML and text logs simultaneously. However, the

actions executed in the application were not entirely logged. We could not identify

the user who is performing the action, as well as when he logged in/logged out from

the application; hence, we could not distinguish when the user changes, making it

impossible to reconstitute the session of the user. This was very problematic since

even if the logs contained useful (sensitive) data, it was hard to understand what was

going on. There were also logins that appeared in the logs that were not defined in the

policy. This might be because the provided policy lacked of updates.

For all the reasons discussed above, we could not perform the a posteriori

access control in this application domain, especially because logs did not have a

specific format (regardless if they were structured or not), and the user’s session was

impossible to reconstruct. Therefore, we headed over another application.

Use Case 3

The second application that we dealt with was about handling alerts that are triggered

from a fraud detection application. This latter was an IBM proprietary so we could not

access the rules based on which an alert is raised.

The alerts application generated Apache HTTP logs that reflected the actions

executed by the security team of the organization. These logs were also saved and

visualized under ELK; hence, they were clean and structured. Moreover, they contain

the usual http fields that are: time, authenticatedUserId, method, url, status, and userAgent.

The authenticatedUserId presents the subject, the method presents the action, the url

presents the object, and the time presents the timestamp.

On the other hand, the security policy of this application is modelled according to

RBAC. It defines 3 roles, and the permissions assigned to these roles were composed of

an action and a url path. We also received another file that contained complementary

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES 148

information of the policy such as the users to roles assignments.

In contrast, the url paths contain some variable fields which values varied from one

logged event to another. These variable fields, represent certain attributes (domain,

alert type, alert status, etc.), which values are restricted depending on the group of

users. Nevertheless, these restrictions are not explicitly defined in the security policy

but directly implemented in the application. We believe that adding these attributes to

the security policy can contextualize it and enrich it to transform the policy from RBAC

to ABAC. Moreover, the relation between each action and url path is bijective. Thus,

even if the logs show http methods (GET, POST, PUSH, etc.), we could deduce the real

action that was done. Nevertheless, the users (authenticatedUserId) are represented with

a Universally Unique Identifier (uuid), imposing the need to have a decryption key to

get the real user/username. Unfortunately, we could not have this key. Therefore, we

could not identify the users who are performing the actions to perform an a posteriori

access control. In consequence, we decided to do Policy Engineering, also called Role

Engineering in case of RBAC, to see if we can improve the existing policy.

Role Engineering helps in implementing an RBAC model by ensuring that all users

possess relevant permissions to execute their designated tasks. It must be error-free to

prevent unauthorized accesses. Therefore, the role creation process attempts to ensure

that only required permissions are made available to the concerned users. In addition

to creating a set of roles, role engineering can also take into account several constraints

and determine a hierarchy among the roles.

Two approaches can be adopted when performing role engineering: (1) Top-Down,

and (2) Bottom-Up. The difference between the two approaches resides in the basis

from which the role creation process starts. For instance, in the Top-Down approach,

the process begins by analyzing the structure of the organization to identify the

business processes that constitute its workflow, while the Bottom-Up approach starts

at the permission level by considering the existing permission assignments of the users

of the organization. It is evident that the Bottom-Up approach is best suited in our case

since we are starting from the existing permissions. Therefore, we used a very well-

know Bottom-Up technique that is Role Mining [128, 197], and which goal is to deduce

the user-role assignment (UA) and role-permission assignment (PA) relations from the

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES 149

existing user-permission assignment (UPA) relation. These relations are presented as

boolean matrices. Nevertheless, our mining will be based on the generated logs and

not on the existing policy. Thus, if every logged event is considered as a permission

that was executed by a user, the size of the UPA matrix will be huge considering the

log file size. In this respect, we reproduced the approach presented in [100].

The idea of [100] is that co-occurring permissions are likely to belong to the same

role. Therefore, the authors assumed that roles are sets of permissions that appear

together frequently in the logs. Moreover, their algorithm is considered as a special

case of frequent itemset mining (FIM) [2]. However, a major difference between

this approach and FIM is that there is no known value for minimum support since

there is no a priori knowledge of how frequent a pattern should be to be considered

frequent. Thus, [100] proposed a score-based mechanism in which a sorted list of all

top-scored itemsets is kept, enabling the elimination of the lowest scored itemsets if

memory concerns arise. Summarizing the proposed algorithm, it begins with breaking

up the log entries of each user denoted as AHLU. It then goes through each AHLU

and gathers neighboring permissions in form of candidate roles and assigns each role

a degree of cohesion. Candidate roles are generated by enumerating possible sets

of permissions, and the degree of cohesion is calculated based on the frequency of

coincidence of the permissions of a candidate role. The degree of cohesion is used to

determine how good a role is, and which roles are better. For reasons of practicality

and memory usage, the algorithm maintains a large but fixed-size list of candidate

roles and remove low scored roles when the list grows beyond this fixed size. Finally,

members of each role are found and then a sufficient number of top-scored roles are

selected to cover all permissions and users.

To test the above algorithm, we extracted 30 minutes of activity that is around

1000 events (we could not extract more at the time because of accessibility issues). In

addition, there were 9 active users in the extracted log files. The algorithm took around

4 minutes to execute, and returned 30 roles. We recall that a role in role mining is a set

of users that are associated to a set of permissions. We concluded that the obtained

roles are sub-roles of the 3 initially defined roles, as these latter are very generic.

Nevertheless, we could not validate conformance of the mined users’ permissions with

the ones defined in the security policy since, as mentioned earlier, we could not decrypt

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES 150

the uuids representing the users in the logs.

7.2.4 Discussion and Perspectives

The three use cases that were provided, were problematic in different ways that

prevented us from accomplishing the a posteriori access control. We thus, discuss some

vital aspects that organizations should have to perform this kind of security check.

It was shown that controlling the correct application of the security rules defined in

the policy is not always ensured in an organization, which can expose it to several

frauds and attacks. When it is found, the security policy of an organization is

defined in terms of the access requests that must be authorized. In order to set

the security rules up and running, administrators implement them so that they can

be interpreted by the machine. However, during the implementation phase, the

organization may undergo several changes, and human errors may occur. For instance,

some of the staff who is involved in implementing the policy may not be responsible

or knowledgeable enough. Moreover, these errors can be classified into two types:

incorrect authorizations, that represent access requests that are authorized by the

implemented policy but should be prohibited, and incorrect denials represented by

access requests that are not authorized by the implemented policy but should be

allowed. This was demonstrated in Use Case 2, where some of the active users in the

logs were not found in the security policy. Intuitively, incorrect authorizations are more

difficult to detect and more problematic because they can be used to read confidential

data and attack systems. On the other hand, incorrect denials are generally less

complicated as when the user discovers that a valid access request is not authorized,

he/she reports it to the administrator to modify what is implemented. Nevertheless,

one should be aware that these modifications, which may take time to put in place, can

result in a convoluted policy.

In addition, it has been proven that it is not overwhelming to not find a

documentation of the security policy like in Use Case 1. This is because application

designers and developers are usually more focused on the implementation. They do

not necessarily document all the tasks performed relating to the security policy as

they underestimate it. Therefore, it is crucial to have a well defined document that

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES 151

describes the security policy. Moreover, a gap between the implemented security

policy and the documented one (if it exists) can be carried out, making it essential

to update the documentation every time a change in the implementation occurs, and

to check their conformance from time to time. This was also highlighted in Use Case

2. Furthermore, as updating the security policy manually can be cumbersome, we

recommended to use Role Engineering techniques to automate this task, by producing

policies based on the implemented permissions and/or the organization’s structure

(Hybrid Role Engineering). In contrast, post-implementation control will be more

relevant if expressive security policies such as ABAC or OrBAC are used. These models

can be more complex than a simple RBAC model, where permissions are assigned

to user roles, but better in expressing the context of the performed actions given

the constraints that can be added regarding multiple attributes and environmental

conditions. Thus, a lot of works were devoted to solve the problem of mining ABAC

policies from logs [49, 212, 141]. However, the majority considered that the logs

already contain all the attributes, which is not so realistic, or are augmented with

complementary information which is more likely possible. For instance, we could

complete the logs in Use Case 3 with the restrictions values that were provided in a

separate file. Yet, we noticed that it is more probable to find object attributes in the logs

than subject attributes. Thus, we had this idea of mining ABAC policies after mining

RBAC from logs [213]. The goal is to use only the logged data since complementary

information may not be always found. That being said, a future perspective can be

mining a Role-centric Attribute-based Access Control model (RABAC) from logs [108].

Another best practice is to ensure the Cloud Security Posture Management (CSPM)

[44], that is "a continuous process of cloud security improvement and adaptation to reduce the

likelihood of a successful attack". The role of CSPM solutions is to check misconfigurations

in the cloud platform accounts and notify users of them as well as of the way to

fix them. This makes CSPM very important since misconfigurations may lead to

unwanted data breaches and leakage. Moreover, CSPM includes several security

checks such as: "Identity, Security, and Compliance", "Monitoring and Analytics",

"Inventory and Classification", and "Cost Management and Resource Organization".

As more and more organizations move their data to the cloud, CSPM can be very

helpful when performing the a posteriori access control since its inter-operate between

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES 152

monitoring by offering detection, logging, and reports, and automation by addressing

issues ranging from cloud service configurations to security settings that relate to

governance, compliance, and security for cloud resources.

Moving on to the logs, the value of log analysis may differ depending on the

context in which the investigation is being conducted. In the case of an a posteriori

control, the aim will be to detect any potential violation of the security policy, in order

to apply sanctions and/or reparation if necessary. Often forgotten, the analysis of

logs is the first step of a good referencing, which content should be "deciphered".

It is obviously a source of trust, offering honest data, considering that all accesses

are logged. Unfortunately, the provided use cases showed that organizations might

depreciate the importance of logs when designing a product, and generating logs is

done only to log "something". Therefore, the critical aspect of lack of evidence (logs)

must be addressed, especially in the case of fraudulent activities that perpetrated

because of a fault in access rights and the inability to penalize the violator. To this end,

it should be noted that in order to manage accesses properly, there must be a sufficient

level of traceability for the analysis to be conducted correctly, as corrupted logs impact

decision-making. It is also important to consider the quality of the information to be

logged so that log files are understandable by auditors. Above all, it is not preferable

to group all types of logs together in a single file, and the logged information should be

more or less complete allowing at least the reconstruction of a user’s session. This has

been confirmed by the CNIL [45]: "the logging must concern, at the very least, the accesses

of the users, including their identifier, the date and time of their connection, the date and time

of their disconnection". In addition, it is for the best to log whether or not the requested

action has been authorized by the system. Not logging everything is also required.

Logs should be simple and useful, especially in terms of access control. As a good

practice, the ANSSI has published security recommendations for the implementation

of a logging system [182]. Besides, [31] proposed a log design for accountability.

Even if all the above requirements are assured, log analysis remains a difficult task

because of the large volume of log files; hence, the need to process them. Furthermore,

it stays challenging because logs are usually weakly structured, use a variety of

formats and terminologies, and are spread over different files and systems. Thus,

our proposition of using a semantic mediator to extract information from multiple

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES 153

logs is justified. Moreover, the use of a multi-agent system to gather information and

semantically enrich the extracted log information is appropriate since it is true that

in reality, other useful information can be present somewhere else than logs (i.e., Use

Cases 1 and 3).

To sum up, the main reason of the problems that we faced can be explained by the

fact that we tried to perform an a posteriori analysis on a system that was enforced

a priori. Consequently, the main components of the a posteriori access control, that

are logs and the security policy, were not given the importance that they should have

and presented clear weaknesses. Besides, the accessibility to data is being more and

more difficult since the GDPR came on board. In fact, organizations are more aware

of the importance of privacy when treating the data, resulting in anonymizing them

when saved as in Use Case 3. In consequence, it is a matter to consider in the future the

case of anonymous logs when performing the a posteriori access control, as they will

certainly affect violations decisions.

Appendix A

French Summary: Analyse a Posteriori des Logs

et Détection des Violations des Règles de

Sécurité

A.1 Introduction

Adopter un mode de contrôle d’accès adéquat est essentiel pour que les organisations

puissent garantir la confidentialité, l’intégrité et la disponibilité de leurs systèmes

d’information. Les modèles de contrôle d’accès traditionnels vérifient les privilèges

des utilisateurs avant de leur accorder l’accès aux ressources d’information.

Cependant, il est indispensable de prendre en compte les usages et les pratiques de

l’organisation, afin que la solution de sécurité déployée ne soit pas perçue comme une

contrainte pour les utilisateurs avec un risque de rejet important. Par conséquent, dans

certains environnements sensibles, tels que le domaine de la santé, où les utilisateurs

sont généralement de confiance et où des évènements particuliers peuvent se produire,

comme les situations d’urgence, les contrôles de sécurité mis en place dans les systèmes

d’information correspondants ne doivent pas bloquer certaines décisions et actions des

utilisateurs. Cela pourrait avoir des conséquences graves. À cet égard, il est important

de pouvoir identifier et tracer ces décisions et ces actions afin de détecter d’éventuelles

violations de la politique de sécurité mise en place et fixer les responsabilités. Nous

considérons qu’une politique de sécurité d’un système d’information est un ensemble

de règles définissant des exigences de contrôle d’accès (permissions, interdictions)

154

APPENDIX A. APPENDIXA 155

relatives aux actions effectuées par un utilisateur sur ce système d’information.

La problématique du contrôle d’accès a posteriori est assez récente, et consiste à

surveiller les actions réalisées par les utilisateurs de manière à détecter les éventuelles

violations de la politique de sécurité et appliquer des sanctions ou réparations. En

général, ce processus de contrôle repose sur une analyse qui ne concernera que les

logs relatifs à un sujet, une action ou un objet particulier en relation avec l’évènement

déclencheur de l’investigation. En revanche, la principale référence de cette analyse a

posteriori est la politique de sécurité, puisque l’objectif est de détecter les éventuelles

violations de cette dernière. Néanmoins, le processus de contrôle des violations

présente plusieurs difficultés qui doivent être surmontées.

Tout d’abord, la vérification des contenus des logs se fonde essentiellement sur

l’expertise de la personne qui l’effectue et de ce qui lui semble utile d’investiguer.

Elle peut aussi faire appel à une liste générique de contrôles de sécurité à effectuer

qui n’est pas forcément adaptée au système cible. Il est donc nécessaire de définir

un format de référence pour la politique de sécurité qui facilite la détection des

violations potentielles. Par ailleurs, l’archivage et la journalisation ne sont pas toujours

normalisés. Cela est généralement dû aux différents types de sources de logs, comme

les serveurs d’application, les serveurs Web, les bases de données, etc. Ainsi, il est

important de disposer d’un module qui permet d’extraire des informations pertinentes

des fichiers journaux sans imposer un format particulier. En outre, le contrôle du

respect de la politique a posteriori doit reposer sur des mécanismes de surveillance

efficaces permettant de détecter les éventuelles violations. Il faut aussi qu’il soit associé

à une politique de sanction et de réparation dissuasive pour que les utilisateurs ne

soient pas tenter de violer la politique de sécurité.

Dans cette thèse, nous fournissons des moyens et de nouvelles solutions pour

résoudre ces problèmes et améliorer le contrôle d’accès a posteriori. Premièrement,

nous proposons une nouvelle méthode pour extraire des informations utiles des

logs en termes de politique de sécurité. L’approche consiste à utiliser un médiateur

sémantique qui réécrit les requêtes qui sont envoyées aux logs. Ensuite, nous traitons

l’enrichissement sémantique des informations extraites des fichiers journaux, ce qui

est utile dans le cas d’une politique de sécurité expressive, pouvant dépendre de

APPENDIX A. APPENDIXA 156

conditions contextuelles, où un bon nombre d’attributs, qui se trouvent dans des

sources de données différentes, sont nécessaires pour définir les permissions d’accès.

En plus, nous améliorons le contrôle d’accès a posteriori en ajoutant l’aspect temporel

au processus de vérification de la politique. Comme les enquêtes sont menées a

posteriori, nous soulignons qu’une évaluation correcte du respect de la politique ne

doit pas se limiter au respect des attributs de sécurité requis, mais doit aller au delà

pour vérifier que les attributs des entités concernées étaient valides au moment de

l’accès. Dans un deuxième temps, nous traitons le cas où les règles définies dans

la politique de sécurité peuvent changer au cours du temps, en utilisant un modèle

administratif de la politique. De plus, nous considérons les violations qui peuvent être

causées par les utilisateurs et les administrateurs, ce qui rend le processus d’évaluation

récursif. Par suite, nous définissons une condition qui assure sa terminaison. Enfin,

nous proposons un mécanisme d’imputabilité pour le contrôle d’accès a posteriori.

A.2 Extraction d’Informations des Logs à l’aide de la Médiation

Sémantique

La première étape du contrôle d’accès a posteriori consiste à assurer la journalisation,

c’est-à-dire le traitement des fichiers journaux. Cette étape est fondamentale car

l’analyse sera basée sur les informations extraites. Toutefois, ce processus devient

plus difficile avec la croissance du volume des données enregistrées. Pour cela,

on propose une solution pour extraire des informations des logs en utilisant des

techniques de médiation sémantique. L’objectif est de résoudre l’hétérogénéité entre

les formats de log en provenance de différentes sources de log, vu que la médiation

sémantique permet d’inter-opérer différentes sources d’information sans modifier leur

fonctionnement interne. ‘

On définit un cadre particulier dans lequel nous déployons notre médiateur

sémantique pour extraire des informations des logs en termes de politique de sécurité.

On considère les éléments suivants :

• Il y a plusieurs sources de logs présentées par S1, S2, ..., Sn et chaque source a un

format particulier désigné par f1, f2, ..., fn.

APPENDIX A. APPENDIXA 157

• La politique de sécurité est désignée par P et est représentée dans un modèle

ontologique selon le modèle ABAC [94].

• Un médiateur sémantique existe entre la politique et les sources de logs pour le

traitement des requêtes.

• Les logs fournis sont bien structurés pour permettre l’extraction des informations

plus utiles [104].

Maintenant que nous avons défini notre paramètre d’extraction d’informations, nous

considérons que les requêtes sont envoyées automatiquement de la politique de

sécurité définie vers les logs. Le médiateur sémantique réécrira ensuite la requête

exprimée sur un schéma source en une autre requête exprimée sur un schéma cible.

Ce processus de réécriture est effectué en utilisant les correspondances sémantiques

préalablement établies entre les différents schémas (ontologies dans notre cas).

Dans le médiateur, chaque source de logs est représentée par une ontologie. Il

convient de mentionner qu’aucune source de logs ne sera modifiée. Ces ontologies

locales servent en tant qu’un point d’accès conceptuel aux données lors des interactions

entre le médiateur et les sources de logs. Ainsi, les logs ne seront pas transformés

en ontologies, et les ontologies locales ne contiendront que les principaux concepts

fournis par chaque source de logs, plutôt que les valeurs apparaissant dans chaque

événement. De plus, une ontologie consensuelle est nécessaire pour représenter le

domaine d’application. L’ontologie globale (également appelée ontologie de domaine),

constitue le point d’entrée à partir duquel les requêtes envoyées aux sources de logs

sont décomposées. Jusqu’à présent, il n’existe pas de format standard qui puisse

représenter tous les types de logs, y compris les journaux d’application, car ces derniers

sont généralement déterminés par le développeur du logiciel. Néanmoins, même

si le contenu des logs peut varier considérablement d’une source à une autre, tous

enregistrent simplement l’événement qui s’est produit, plus précisément, "qu’est-ce

qui s’est passé ? quand ? et par qui ?". Par conséquent, les concepts qui forment

l’ontologie globale sont les éléments essentiels de chaque log, qui sont le Sujet, l’Action,

l’Objet et l’Horodatage. En plus, des correspondances sémantiques entre l’ontologie

globale et les ontologies locales sont nécessaires pour réécrire la requête initiale en une

union de requêtes correspondant à chaque source de log.

APPENDIX A. APPENDIXA 158

Figure A.1: Processus de réecriture de requêtes.

En outre, pour obtenir un résultat final unifié, on a divisé le processus de réécriture

en deux étapes : la réécriture sémantique de la requête et la réécriture syntaxique de la

requête.

La réécriture de la requête sémantique consiste à conserver le langage de la requête,

tout en l’exprimant sur une autre ontologie source. Cela peut être fait en résolvant

les correspondances qui existent entre deux ontologies. Pour l’instant, une requête

SPARQL (langage de requêtes ontologiques) restera une requête SPARQL et la seule

modification consistera à remplacer ses entités par leurs équivalents sémantiques.

Dans la deuxième étape, une transformation syntaxique des requêtes SPARQL réécrites

sera réalisée. La réécriture syntaxique consiste à modifier la syntaxe de la requête

(le langage dans lequel elle est exprimée), tout en conservant sa sémantique. D’autre

part, différents concepts peuvent être utilisés pour structurer les informations dans les

fichiers journaux, tels que la relation dans le modèle relationnel, la balise XML, le CSV,

etc. Ainsi, la requête SPARQL peut être convertie en une requête SQL, XQuery ou tout

autre type de requête en fonction des formats de logs existants.

Le processus de réecriture de requêtes est montré dans la Figure A.1.

À partir des résultats obtenus après l’execution des requêtes, des axiomes et des

assertions seront générés. Ainsi, pour contrôler l’accès, on précise si un sujet a

APPENDIX A. APPENDIXA 159

l’autorisation effectuer une action sur un objet. Etant donné qu’au niveau abstrait,

l’expression de toute politique comprend un ensemble de quadruplets <sujet, action,

objet, temps>, il est possible d’établir des liens entre les réponses des requêtes et

les attributs de sécurité utilisés pour exprimer la politique de contrôle d’accès. On

rappelle que l’expression d’une politique de sécurité présente les règles qui devraient

être respectées, tandis que son application pourra dépendre notamment de la situation

dans laquelle se trouvent les entités concernées.

En revanche, lorsque la politique de sécurité déployée est expressive, les

informations extraites des logs nécessitent d’être enrichis sémantiquement. On traite

ainsi ce problème dans la section suivante.

A.3 Détection a Posteriori des Violations

Après avoir extrait des informations des logs à l’aide du médiateur sémantique, le

contrôle d’accès a posteriori passe à sa deuxième étape qui consiste à analyser ces

informations pour détecter les violations de la politique de sécurité. En conséquence,

une explication valable de la conformité des politiques doit exister, et la validité de

cette explication repose sur la disponibilité des informations nécessaires à l’évaluation

de la conformité des politiques.

Les modèles de politique de sécurité expressifs tels que RBAC [70], ABAC [94],

OrBAC [62], etc., attribuent indirectement des autorisations aux utilisateurs par le biais

de leurs attributs, et parfois aussi des attributs d’objet et des conditions contextuelles.

En revanche, les logs ne permettent pas de retracer ce type d’informations en général.

Il est donc nécessaire d’enrichir sémantiquement les données journalisées avec des

informations complémentaires, de telle sorte que l’analyse des logs soit suffisamment

précise pour prendre des décisions lorsque des violations sont commises.

Par contre, dans le contrôle d’accès a posteriori, de nombreux changements dans

les attributs de sécurité peuvent avoir lieu entre le moment de l’accès et le moment de

l’investigation, et les conditions contextuelles évoluent entre les accès également. Il est

donc important de vérifier que les valeurs des attributs et les conditions d’accès étaient

les mêmes que celles définies dans la politique de sécurité au moment où la ressource

APPENDIX A. APPENDIXA 160

d’information a été accédée. Ainsi, nous avons formalisé le mécanisme de détection

des violations en utilisant l’Event Calculus (EC) [185] qui est un langage logique pour

représenter et raisonner sur les événements et leurs effets, et on l’a mis en oeuvre en

utilisant SWRL [93]. Le langage de l’EC contient: (1) un ensemble d’événements ou

d’actions (2) un ensemble de fluents, c’est-à-dire un ensemble de propriétés dont les

valeurs peuvent changer au cours du temps (et peut être vrai ou faux) (3) un ensemble

de points de temps. Ces trois éléments sont essentiels et sont utilisés à travers des

prédicats qui constituent le langage. Par conséquent, des axiomes peuvent être formées

en reliant les différents prédicats pour décrire comment les événements et les fluents

interagissent.

En outre, des changements peuvent également être apportés aux règles de sécurité,

ainsi, la politique elle-même peut évoluer au fil du temps pour inclure des règles

différentes. Ce type de modification peut être effectué à l’aide d’une politique de

sécurité administrative. Il convient également de souligner que les administrateurs

doivent avoir les bons privilèges pour pouvoir modifier la politique de sécurité.

En conséquence, les actions administratives doivent également être contrôlées pour

vérifier que les modifications appliquées sont aussi autorisées.

Pour résoudre ce problème, on propose une architecture de système multi-agents

pour enrichir les logs sémantiquement, et on intègre la vérification temporelle dans ce

système. On étudie aussi cettre vérification temporelle dans les deux cas où la politique

de sécurité est statique et où elle peut évoluer conformément au modèle administratif.

A.3.1 Architecture Multi-Agents

L’objectif du système multi-agents proposé est de rassembler les attributs nécessaires

à partir de différentes sources de données organisationnelles, et de vérifier si leur

affectation temporelle est conforme ou non à la politique de sécurité. L’architecture de

ce système est décrite dans la Figure A.2. Nous distinguons donc quatre types d’agents:

• L’agent de la politique s’occupe des règles définies dans la politique de sécurité.

Il a la responsabilité de fournir les attributs nécessaires à l’agent médiateur.

• L’agent médiateur orchestre tous les messages échangés avec les autres agents

APPENDIX A. APPENDIXA 161

Figure A.2: Architecture du Système Multi-Agent

une fois qu’il a reçu la liste des attributs de l’agent de politique.

• Les agents de sources de données récupèrent les informations d’une source de

données spécifique suite à une requête de l’agent médiateur.

• L’agent de l’Event Calculus vérifie les conditions temporelles définies dans la

politique de sécurité en utilisant l’Event Calculus pour la représentation et le

raisonnement sur les systèmes dynamiques.

A.3.2 Le Cas d’une Politique Statique

Lorsque les règles de sécurité sont statiques et ne changent pas avec le temps, cela

signifie qu’à chaque fois qu’on consulte la politique de sécurité, les règles qui y sont

définies restent les mêmes. Dans ce cas, l’analyse consiste à vérifer si la condition

requise est maintenue au moment où un accès est effectué. Dans le modèle ABAC, la

condition est constituée des attributs du sujet, des attributs de l’objet et des attributs de

l’environnement (contexte). Ainsi, le processus d’évaluation consiste à trouver quels

attributs et valeurs d’attributs étaient valides au moment de l’accès. Cette tâche est

accomplie en collectant les valeurs des attributs en question, ainsi que les dates de leurs

affectations à travers les différents agents, puis vérifier leur conformité temporelle avec

APPENDIX A. APPENDIXA 162

la politique de sécurité en utilisant l’Event Calculus et détecter les violations.

A.3.3 Le Cas d’une Politique Evolutive

Pour disposer d’un modèle de contrôle d’accès complet, il faut prévoir un modèle

d’administration. Pour cela, le modèle ABAC a été récemment associé au modèle

d’administration AMABAC [106]. Ce modèle contrôle qui a la permission d’attribuer/

révoquer des attributs et/ou des autorisations, et donc à modifier les règles de la

politique de sécurité. Dans ce cas, on distingue deux types de vérification : (1) vérifier

si l’action enregistrée au moment passé était autorisée ou non, en récupérant les règles

qui étaient en place au moment où l’accès a eu lieu, et collecter les attributs définis dans

ces règles, et (2) vérifier si les règles qui étaient déployées dans la politique au moment

de l’accès ont été créées par les administrateurs qui avaient le droit de les créer. Vu qu’à

chaque fois qu’on doit chercher les règles qui étaient valides au moment de l’accès, on

doit vérifier si les administrateurs qui l’ont créées avaient l’autorisation de le faire, et à

chaque vérification d’une règle, on doit vérifier que les administrateurs avaient le droit

d’assigner les valeurs des attributs nécessaires, on entre dans un processus récursif.

Pour arrêter cette récursivité, on définit une condition initiale qui impose d’avoir un

seul administrateur qui a le droit de créer des règles et affecter les permissions aux

autres administrateurs au moment de création de l’application. Une fois ces deux

vérifications faites, les violations peuvent être déduites.

A.4 L’Imputabilité dans le Contrôle d’Accès a Posteriori

Une fois une violation détectée, le processus d’imputabilité commence. A cet égard,

les analystes de sécurité peuvent avoir différentes conclusions: (1) le sujet concerné n’a

pas violé la politique de sécurité, dans ce cas le problème proviendrait soit d’erreurs

dans le fonctionnement du système, soit d’une malveillance externe, (2) le sujet a

violé la politique de sécurité mais il existe des raisons légitimes qui justifient ce

comportement et qui invalident cette violation, mais n’excluent pas la responsabilité

du sujet sans le sanctionner, ou alors (3) le sujet a violé la politique de sécurité mais

aucune circonstance atténuante n’a pu être déterminée, il est alors responsable et

APPENDIX A. APPENDIXA 163

sanctionnable pour son action non autorisée.

Etant donné que le contrôle d’accès a posteriori est basé sur un environnement de

confiance dans lequel les utilisateurs connaissent leurs droits, nous considérons que

les violations de la politique d’accès détectées sont internes et intentionnelles. Ainsi, la

possibilité que la violation ait été causée de l’extérieur (e.g., usurpation d’idendité) est

éliminée vu qu’on estime qu’il y aura suffisament de preuves qui disculpe l’utilisateur.

Maintenant que les violations de la politique d’accès sont présumées, des décisions

doivent être prises pour déterminer si le contrevenant doit être puni ou non.

En revanche, le cadre de responsabilité peut être vu sous deux angles différents :

1. Il peut être considéré comme un ensemble d’exigences (une théorie) qui devrait

être utilisé dans le système pour appliquer la dissuasion des violations de la

politique.

2. Il peut être considéré comme un mécanisme permettant de définir et d’appliquer

des sanctions lorsque des violations sont commises.

A.4.1 L’Imputabilité en tant qu’Exigence

Le déploiement des mesures qui renforcent la perception de responsabilité des

utilisateurs dans le système d’information permettra aux utilisateurs de faire

l’expérience d’un traitement systématique et d’une prise de conscience qui augmentera

la conformité avec la politique. Dans [200], les auteurs ont présenté une théorie de

responsabilité pour réduire les violations de la politique d’accès par le biais d’artefacts

du système et ont montré comment cette théorie pouvait augmenter la perception

de responsabilité. Trois dimensions ont été identifiées pour assurer cette perception

qui sont: l’identifiabilité, l’évaluation et la présence sociale. En effet, ces trois

critères sont assurés dans le contrôle d’accès a posteriori, ce qui diminuera l’intention

de l’utilisateur de commettre des violations de la politique d’accès. Cependant,

des circonstances inattendues peuvent survenir qui forceront l’utilisateur à effectuer

une action non justifiée ou à avoir un accès exceptionnel. Pour tenir compte

de ces dernières, nous considérons une quatrième exigence qui est l’obligation de

justification. L’obligation de justification est une obligation qui stipule qu’en cas

APPENDIX A. APPENDIXA 164

d’exception (par exemple, une urgence) qui pousse l’utilisateur à effectuer une action

non autorisée, l’utilisateur doit déclarer son accès avec une justification qui contient la

raison pour laquelle il a effectué cette action. Cette exigence permettra de renforcer

la dissuasion des violations de la politique par le fait que le non-respect de cette

obligation est une violation en soi.

A.4.2 L’Imputabilité en tant que Mécanisme

Les modèles traditionnels de contrôle d’accès, comme RBAC ou ABAC, ne sont pas

exploités pour s’adapter dynamiquement aux cas marginaux car les exceptions ne sont

pas codées. Par conséquent, nous considérons un cadre particulier, où une politique

d’exception, qui spécifie comment les droits d’accès aux ressources des utilisateurs

sont affectés dans diverses situations exceptionnelles, complète la politique de sécurité.

La politique d’exception est généralement une version moins contraignante de la

politique de sécurité. À cet égard, une justification est considérée comme valable si

la raison qui la justifie est en rapport avec les autorisations définies dans la politique

d’exception. La pertinence entre une autorisation d’accès et une justification peut être

déduite d’après [32, 5]. La Figure A.3 montre notre mécanisme d’imputabilité.

APPENDIX A. APPENDIXA 165

Figure A.3: Mécanisme d’imputabilité

On définit le profil d’un utilisateur sanctionnable comme un utilisateur qui n’a

pas fourni de justification, ou a fourni une justification non valable, ou a fourni

une justification valable et son accès non autorisé a eu un impact sur le système

d’information.

Par ailleurs, en cas d’une politique évolutive, l’utilisateur pourra transférer

sa responsabilité à l’administrateur. Ainsi, l’administrateur a besoin de justifier

également ses actions.

A.5 Conclusion

L’objectif principal de ce travail était de proposer un cadre pour effectuer un contrôle

d’accès a posteriori qui détecte les violations potentielles de la politique de sécurité. Le

mécanisme concerné est un processus de surveillance qui repose sur l’analyse des logs

pour fournir des preuves des actions des utilisateurs. En outre, les utilisateurs sont

dissuadés de commettre des violations de la politique par le principe d’application

APPENDIX A. APPENDIXA 166

des sanctions. Ce type de contrôle d’accès est divisé en trois étapes: la journalisation,

l’analyse des logs, et l’imputabilité. Nous avons donc couvert ces trois domaines du

contrôle d’accès a posteriori, introduit de nouveaux aspects qui n’avaient pas été traités

auparavant dans la littérature, et proposé de nouvelles solutions.

Tout d’abord, pour dissoudre l’hétérogénéité qui existe entre les différents formats

des fichiers journaux, nous avons proposé d’utiliser un médiateur sémantique qui

repose sur la réécriture de requêtes pour extraire des informations. Nous avons

prouvé que cette approche présente de nombreux avantages, notamment qu’elle est

économique en termes de traitement, étant donné que les formats de log restent intacts

et les transformations ne sont effectuées que sur les requêtes.

Par ailleurs, en nous concentrant sur l’analyse des journaux, nous avons abordé

cette étape en prenant en considération certains facteurs tel que le besoin de

l’enrichissement sémantique des logs ainsi que la vérification temporelle. En effet,

dans le cas d’une politique de sécurité expressive comme ABAC, les informations

extraites des logs ne sont pas suffisantes pour évaluer leur conformité avec la politique

de sécurité. Ainsi, ces informations doivent être enrichies sémantiquement avec

d’autres attributs pour avoir une analyse correcte. Comme les données peuvent

être distribuées dans le système d’information, nous avons automatisé cette tâche de

collecte d’informations en proposant une architecture multi-agents et en détaillant la

fonction de chaque agent. En revanche, nous avons exploité le contrôle d’accès a

posteriori pour inclure la conformité temporelle de la politique qui prend en compte

les changements possibles des attributs au fil du temps. Ainsi, nous avons formalisé le

mécanisme de détection des violations à l’aide de l’Event Calculus qu’on a implémenté

avec SWRL. Par conséquent, l’enquête ne consistait pas seulement à vérifier si les

utilisateurs et les objets avaient les bons attributs pour effectuer une action, mais s’ils

les avaient aussi au bon moment. D’autre part, nous avons traité l’analyse des logs et

la conformité temporelle de la politique dans les cas où l’expression de la politique

de sécurité est statique ou peut être modifiée au cours du temps en utilisant un

modèle administratif. Ainsi, les violations peuvent être causées par les administrateurs

également.

Concernant le processus d’imputabilité, nous avons expliqué comment la

APPENDIX A. APPENDIXA 167

responsabilité peut être considérée dans le contrôle d’accès a posteriori comme une

exigence et comme un mécanisme. Nous avons présenté l’obligation de justification

et montré comment elle peut être utilisée pour fixer la responsabilité des utilisateurs

sur la base d’une politique d’exception. Nous avons également abordé ce problème en

considérant l’expression statique et administrative de la politique.

Enfin, nous avons fourni trois cas d’usage qui ont été proposés par une

organisation, et nous avons montré comment la nature des données peut influencer

et bloquer le contrôle d’accès a posteriori. Par conséquent, nous avons exposé les

problèmes découverts concernant les fichiers journaux et les politiques de sécurité afin

de sensibiliser les organisations.

List of Publications

International Conferences

Farah Dernaika, Nora Cuppens-Boulahia, Frédéric Cuppens, and Olivier Raynaud. 2019.

Semantic Mediation for A Posteriori Log Analysis. In Proceedings of the 14th International

Conference on Availability, Reliability and Security (ARES ’19), August 26-29, 2019,

Canterbury, United Kingdom.

Farah Dernaika, Nora Cuppens-Boulahia, Frédéric Cuppens, and Olivier Raynaud. 2020.

A Posteriori Access Control with an Administrative Policy. In Proceedings of the 2020

International Conference on Security and Management (SAM’20), July 27-30, 2020, Las

Vegas, United States.

Farah Dernaika, Nora Cuppens-Boulahia, Frédéric Cuppens, and Olivier Raynaud. 2020.

Accountability in the A Posteriori Access Control: a Requirement and a Mechanism.

In Proceedings of the 13th International Conference on the Quality of Information and

Communications Technology (QUATIC 2020), September 9-11, 2020, Online Conference.

Farah Dernaika, Nora Cuppens-Boulahia, Frédéric Cuppens, and Olivier Raynaud. 2020.

A Posteriori Analysis of Policy Temporal Compliance. The 15th International Conference

on Risks and Security of Internet and Systems (CRISIS 2020), November 4-6, 2020, Paris,

France.

168

Bibliography

[1] Anas Abou El Kalam and Yves Deswarte. “Multi-OrBAC: A new access control

model for distributed, heterogeneous and collaborative systems”. In: IEEE

Symp. on Systems and Information Security (SSI 2006), Sao Paulo, Brazil. 2006.

[2] Rakesh Agrawal, Ramakrishnan Srikant, et al. “Fast algorithms for mining

association rules”. In: Proc. 20th int. conf. very large data bases, VLDB. Vol. 1215.

1994, pp. 487–499.

[3] Kiyoharu Aizawa et al. “Efficient retrieval of life log based on context and

content”. In: Proceedings of the the 1st ACM workshop on Continuous archival and

retrieval of personal experiences. 2004, pp. 22–31.

[4] Abdullah Alamri et al. “The mediator authorization-security model for

heterogeneous semantic knowledge bases”. In: Future Generation Computer

Systems 55 (2016), pp. 227–237.

[5] Sandra Alves and Maribel Fernández. “A framework for the analysis of access

control policies with emergency management”. In: Electronic Notes in Theoretical

Computer Science 312 (2015), pp. 89–105.

[6] Apache Lucene. http://lucene.apache.org/.

[7] Claudio A Ardagna et al. “Access control for smarter healthcare using policy

spaces”. In: Computers & Security 29.8 (2010), pp. 848–858.

[8] Mohamed Karim Aroua and Belhassen Zouari. “Modeling of A-Posteriori

Access Control in Business Processes”. In: 2012 IEEE 36th Annual Computer

Software and Applications Conference Workshops. IEEE. 2012, pp. 403–408.

169

http://lucene.apache.org/

BIBLIOGRAPHY 170

[9] David Aumueller et al. “Schema and ontology matching with COMA++”. In:

Proceedings of the 2005 ACM SIGMOD international conference on Management of

data. 2005, pp. 906–908.

[10] Hanieh Azkia et al. “A posteriori access and usage control policy in healthcare

environment”. In: Journal of information assurance and security (JIAS) 6.192 (2011),

pp. 389–397.

[11] Hanieh Azkia et al. “Ontology based log content extraction engine for a

posteriori security control.” In: Studies in health technology and informatics 180

(2012), pp. 746–750.

[12] Hanieh Azkia et al. “Reconciling IHE-ATNA profile with a posteriori contextual

access and usage control policy in healthcare environment”. In: 2010 Sixth

International Conference on Information Assurance and Security. IEEE. 2010,

pp. 197–203.

[13] Franz Baader et al. The description logic handbook: Theory, implementation and

applications. Cambridge university press, 2003.

[14] Leila Bahri, Barbara Carminati, and Elena Ferrari. “CARDS-collaborative audit

and report data sharing for a-posteriori access control in DOSNs”. In: 2015 IEEE

Conference on Collaboration and Internet Computing (CIC). IEEE. 2015, pp. 36–45.

[15] Nathalie Baracaldo and James Joshi. “Beyond accountability: using obligations

to reduce risk exposure and deter insider attacks”. In: Proceedings of the 18th

ACM symposium on Access control models and technologies. 2013, pp. 213–224.

[16] Daniel Barbara, Ningning Wu, and Sushil Jajodia. “Detecting novel network

intrusions using bayes estimators”. In: Proceedings of the 2001 SIAM International

Conference on Data Mining. SIAM. 2001, pp. 1–17.

[17] Steve Barker. “Temporal Authorization in the Simplified Event Calculus”. In:

Research Advances in Database and Information Systems Security. Springer, 2000,

pp. 271–284.

[18] Cesare Bartolini et al. “Towards a lawful authorized access: a preliminary

GDPR-based authorized access”. In: 14th International Conference on Software

Technologies (ICSOFT 2019), Prague, Czech Republic. 2019, pp. 26–28.

BIBLIOGRAPHY 171

[19] D Elliott Bell and Leonard J LaPadula. Secure computer systems: Mathematical

foundations. Tech. rep. MITRE CORP BEDFORD MA, 1973.

[20] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing

multi-agent systems with JADE. Vol. 7. John Wiley & Sons, 2007.

[21] Walid Benghabrit et al. “Abstract accountability language”. In: IFIP International

Conference on Trust Management. Springer. 2014, pp. 229–236.

[22] Djamal Benslimane et al. “PAIRSE: a privacy-preserving service-oriented data

integration system”. In: ACM SIGMOD Record 42.3 (2013), pp. 42–47.

[23] C. Bertero et al. “Experience Report: Log Mining Using Natural Language

Processing and Application to Anomaly Detection”. In: 2017 IEEE 28th

International Symposium on Software Reliability Engineering (ISSRE). 2017,

pp. 351–360.

[24] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. “TRBAC: A temporal

role-based access control model”. In: ACM Transactions on Information and System

Security (TISSEC) 4.3 (2001), pp. 191–233.

[25] Elisa Bertino et al. “GEO-RBAC: a spatially aware RBAC”. In: Proceedings of the

tenth ACM symposium on Access control models and technologies. 2005, pp. 29–37.

[26] Konstantin Beznosov. “Requirements for access control: US healthcare

domain”. In: Proceedings of the third ACM workshop on Role-based access control.

1998, p. 43.

[27] Khalid Zaman Bijon, Ram Krishman, and Ravi Sandhu. “Constraints

specification in attribute based access control”. In: Science 2.3 (2013), p. 131.

[28] Nikos Bikakis et al. “The SPARQL2XQuery interoperability framework”. In:

World Wide Web 18.2 (2015), pp. 403–490.

[29] Béatrice Bouchou and Cheikh Niang. “Semantic mediator querying”. In:

Proceedings of the 18th International Database Engineering & Applications

Symposium. ACM. 2014, pp. 29–38.

[30] Achim D Brucker and Helmut Petritsch. “Extending access control models with

break-glass”. In: Proceedings of the 14th ACM symposium on Access control models

and technologies. 2009, pp. 197–206.

BIBLIOGRAPHY 172

[31] Denis Butin, Marcos Chicote, and Daniel Le Métayer. “Log design for

accountability”. In: 2013 IEEE Security and Privacy Workshops. IEEE. 2013,

pp. 1–7.

[32] Ji-Won Byun and Ninghui Li. “Purpose based access control for privacy

protection in relational database systems”. In: The VLDB Journal 17.4 (2008),

pp. 603–619.

[33] Diego Calvanese et al. “Ontop: Answering SPARQL queries over relational

databases”. In: Semantic Web 8.3 (2017), pp. 471–487.

[34] James Cannady. “Next generation intrusion detection: Autonomous reinforce-

ment learning of network attacks”. In: Proceedings of the 23rd national information

systems security conference. 2000, pp. 1–12.

[35] William B Cavnar, John M Trenkle, et al. “N-gram-based text categorization”.

In: Proceedings of SDAIR-94, 3rd annual symposium on document analysis and

information retrieval. Vol. 161175. Citeseer. 1994.

[36] Jan Cederquist et al. “The Audit Logic: Policy Compliance in Distributed

Systems”. In: Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik (Jan.

2006).

[37] Jan G Cederquist et al. “Audit-based compliance control”. In: International

Journal of Information Security 6.2-3 (2007), pp. 133–151.

[38] JG Cederquist et al. “An audit logic for accountability”. In: Sixth IEEE

International Workshop on Policies for Distributed Systems and Networks

(POLICY’05). IEEE. 2005, pp. 34–43.

[39] Farid Cerbah. “Learning highly structured semantic repositories from relational

databases”. In: European Semantic Web Conference. Springer. 2008, pp. 777–781.

[40] Suresh Chari et al. “Ensuring Continuous Compliance through Reconciling

Policy with Usage”. In: Proceedings of the 18th ACM Symposium on Access

Control Models and Technologies. SACMAT ’13. Amsterdam, The Netherlands:

Association for Computing Machinery, 2013, 49–60. ISBN: 9781450319508. DOI:

10 . 1145 / 2462410 . 2462417. URL: https : / / doi . org / 10 . 1145 /

2462410.2462417.

https://doi.org/10.1145/2462410.2462417
https://doi.org/10.1145/2462410.2462417
https://doi.org/10.1145/2462410.2462417

BIBLIOGRAPHY 173

[41] Pau-Chen Cheng et al. “Fuzzy multi-level security: An experiment on

quantified risk-adaptive access control”. In: 2007 IEEE Symposium on Security

and Privacy (SP’07). IEEE. 2007, pp. 222–230.

[42] Laurence Cholvy, Frédéric Cuppens, and Claire Saurel. “Towards a logical

formalization of responsibility”. In: Proceedings of the 6th international conference

on Artificial intelligence and law. 1997, pp. 233–242.

[43] D Clark and D Wilson. “A Comparison of Commercial andMilitary Security

Policies”. In: IEEESymposium on Security and Privacy (1987).

[44] Cloud Security Posture Management - Gartner. https : / / www . gartner .

com/en/documents/3899373/innovation- insight- for- cloud-

security-posture-management.

[45] CNIL Logging Recommendations. https://www.cnil.fr/fr/securite-

tracer-les-acces-et-gerer-les-incidents.

[46] Common Event Expression. White Paper. https://cee.mitre.org/docs/

Common_Event_Expression_White_Paper_June_2008.pdf.

[47] Rosaria Conte, Nigel Gilbert, and Jaime Simão Sichman. “MAS and social

simulation: A suitable commitment”. In: International Workshop on Multi-Agent

Systems and Agent-Based Simulation. Springer. 1998, pp. 1–9.

[48] Ricardo Corin et al. “A logic for auditing accountability in decentralized

systems”. In: IFIP World Computer Congress, TC 1. Springer. 2004, pp. 187–201.

[49] Carlos Cotrini, Thilo Weghorn, and David Basin. “Mining ABAC rules from

sparse logs”. In: 2018 IEEE European Symposium on Security and Privacy

(EuroS&P). IEEE. 2018, pp. 31–46.

[50] Michael J Covington et al. “Securing context-aware applications using

environment roles”. In: Proceedings of the sixth ACM symposium on Access control

models and technologies. 2001, pp. 10–20.

[51] Frédéric Cuppens and Nora Cuppens-Boulahia. “Modeling contextual security

policies”. In: International Journal of Information Security 7.4 (2008), pp. 285–305.

https://www.gartner.com/en/documents/3899373/innovation-insight-for-cloud-security-posture-management
https://www.gartner.com/en/documents/3899373/innovation-insight-for-cloud-security-posture-management
https://www.gartner.com/en/documents/3899373/innovation-insight-for-cloud-security-posture-management
https://www.cnil.fr/fr/securite-tracer-les-acces-et-gerer-les-incidents
https://www.cnil.fr/fr/securite-tracer-les-acces-et-gerer-les-incidents
https://cee.mitre.org/docs/Common_Event_Expression_White_Paper_June_2008.pdf
https://cee.mitre.org/docs/Common_Event_Expression_White_Paper_June_2008.pdf

BIBLIOGRAPHY 174

[52] Frédéric Cuppens and Alexandre Miège. “Administration model for or-bac”. In:

OTM Confederated International Conferences" On the Move to Meaningful Internet

Systems". Springer. 2003, pp. 754–768.

[53] Richard Cyganiak, David Hyland-Wood, and Markus Lanthaler. “RDF 1.1

Concepts and Abstract Syntax”. In: W3C Proposed Recommendation (Jan. 2014).

[54] Mohamed Dahchour and Alain Pirotte. “The Semantics of Reifying n-ary

Relationships as Classes.” In: ICEIS. Vol. 2. 2002, pp. 580–586.

[55] Nicodemos Damianou et al. “The ponder policy specification language”. In:

Policies for Distributed Systems and Networks. Springer, 2001, pp. 18–38.

[56] Jérôme David et al. “The alignment API 4.0”. In: Semantic web 2.1 (2011), pp. 3–

10.

[57] Steven Dawson, Shelly Qian, and Pierangela Samarati. “Providing security and

interoperation of heterogeneous systems”. In: Security of Data and Transaction

Processing. Springer, 2000, pp. 119–145.

[58] Hervé Debar, Marc Dacier, and Andreas Wespi. “Towards a taxonomy of

intrusion-detection systems”. In: Computer networks 31.8 (1999), pp. 805–822.

[59] Mari Antonius Cornelis Dekker and Sandro Etalle. “Audit-based access control

for electronic health records”. In: Electronic Notes in Theoretical Computer Science

168 (2007), pp. 221–236.

[60] Min Du et al. “Deeplog: Anomaly detection and diagnosis from system logs

through deep learning”. In: Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security. 2017, pp. 1285–1298.

[61] Andreas Ekelhart, Elmar Kiesling, and Kabul Kurniawan. “Taming the logs-

Vocabularies for semantic security analysis”. In: Procedia Computer Science 137

(2018), pp. 109–119.

[62] Anas Abou El Kalam et al. “Or-BAC: un modèle de contrôle d’accès basé sur les

organisations”. In: Cahiers francophones de la recherche en sécurité de l’information

1 (2003), pp. 30–43.

[63] Elastic Search. https://www.elastic.co/fr/what-is/elk-stack.

 https://www.elastic.co/fr/what-is/elk-stack

BIBLIOGRAPHY 175

[64] Brendan Elliott et al. “A complete translation from SPARQL into efficient

SQL”. In: Proceedings of the 2009 International Database Engineering & Applications

Symposium. ACM. 2009, pp. 31–42.

[65] Nada Essaouini et al. “Specifying and enforcing constraints in dynamic access

control policies”. In: 2014 Twelfth Annual International Conference on Privacy,

Security and Trust. IEEE. 2014, pp. 290–297.

[66] Sandro Etalle, Fabio Massacci, and Artsiom Yautsiukhin. “The meaning of

logs”. In: International Conference on Trust, Privacy and Security in Digital Business.

Springer. 2007, pp. 145–154.

[67] Sandro Etalle and William H Winsborough. “A posteriori compliance control”.

In: Proceedings of the 12th ACM symposium on Access control models and

technologies. 2007, pp. 11–20.

[68] Joan Feigenbaum. “Accountability as a driver of innovative privacy solutions”.

In: Privacy and Innovation Symposium. 2010.

[69] Christophe Feltus and Michaël Petit. “Building a responsibility model including

accountability, capability and commitment”. In: 2009 International Conference on

Availability, Reliability and Security. IEEE. 2009, pp. 412–419.

[70] David Ferraiolo, Janet Cugini, and D Richard Kuhn. “Role-based access control

(RBAC): Features and motivations”. In: Proceedings of 11th annual computer

security application conference. 1995, pp. 241–48.

[71] Anna Ferreira et al. “How to break access control in a controlled manner”. In:

19th IEEE Symposium on Computer-Based Medical Systems (CBMS’06). IEEE. 2006,

pp. 847–854.

[72] Diogo R Ferreira and Lucinéia H Thom. “A semantic approach to the discovery

of workflow activity patterns in event logs”. In: International Journal of Business

Process Integration and Management 6.1 (2012), pp. 4–17.

[73] Tim Finin et al. “R OWL BAC: representing role based access control in

OWL”. In: Proceedings of the 13th ACM symposium on Access control models and

technologies. ACM. 2008, pp. 73–82.

[74] Jeffrey EF Friedl. Mastering regular expressions. " O’Reilly Media, Inc.", 2006.

BIBLIOGRAPHY 176

[75] Lana Friesen. “Certainty of punishment versus severity of punishment:

An experimental investigation”. In: Southern Economic Journal 79.2 (2012),

pp. 399–421.

[76] Seham Mohamed GadAllah. “The importance of logging and traffic monitoring

for information security”. In: SANS reading room (2003).

[77] Deepak Garg, Limin Jia, and Anupam Datta. “A Logical Method for Policy

Enforcement over Evolving Audit Logs”. In: Computing Research Repository -

CORR (Feb. 2011).

[78] Meriam Ben Ghorbel-Talbi et al. “Delegation of obligations and responsibility”.

In: IFIP International Information Security Conference. Springer. 2011, pp. 197–209.

[79] Luigi Giuri and Pietro Iglio. “Role templates for content-based access control”.

In: Proceedings of the second ACM workshop on Role-based access control. 1997,

pp. 153–159.

[80] Virgil D Gligor, Serban I Gavrila, and David Ferraiolo. “On the formal definition

of separation-of-duty policies and their composition”. In: Proceedings. 1998 IEEE

Symposium on Security and Privacy (Cat. No. 98CB36186). IEEE. 1998, pp. 172–183.

[81] Simon Godik and Tim Moses. “Oasis extensible access control markup language

(xacml)”. In: OASIS Committee Secification cs-xacml-specification-1.0 (2002).

[82] Yoav Goldberg and Omer Levy. “word2vec Explained: deriving Mikolov

et al.’s negative-sampling word-embedding method”. In: arXiv preprint

arXiv:1402.3722 (2014).

[83] Ruth W Grant and Robert O Keohane. “Accountability and abuses of power in

world politics”. In: American political science review 99.1 (2005), pp. 29–43.

[84] Bill Gregg, Horacio D’Agostino, and Eduardo Gonzalez Toledo. “Creating an

IHE ATNA-based audit repository”. In: Journal of digital imaging 19.4 (2006),

pp. 307–315.

[85] Thomas R Gruber et al. “A translation approach to portable ontology

specifications”. In: Knowledge acquisition 5.2 (1993), pp. 199–221.

BIBLIOGRAPHY 177

[86] Marco Guarnieri et al. “On the notion of redundancy in access control

policies”. In: Proceedings of the 18th ACM symposium on Access control models and

technologies. 2013, pp. 161–172.

[87] Christian W Günther and Wil MP Van Der Aalst. “Fuzzy mining–adaptive

process simplification based on multi-perspective metrics”. In: International

conference on business process management. Springer. 2007, pp. 328–343.

[88] Phillip Hallam-Baker, Eve Maler, et al. “Assertions and protocol for the oasis

security assertion markup language (saml)”. In: OASIS XML-Based Security

Services Technical Committee (2002).

[89] Hossein Hamooni et al. “LogMine: Fast Pattern Recognition for Log Analytics”.

In: Proceedings of the 25th ACM International on Conference on Information and

Knowledge Management. CIKM ’16. Indianapolis, Indiana, USA: Association for

Computing Machinery, 2016, 1573–1582. ISBN: 9781450340731. DOI: 10.1145/

2983323 . 2983358. URL: https : / / doi . org / 10 . 1145 / 2983323 .

2983358.

[90] Hossein Hamooni et al. “Logmine: Fast pattern recognition for log analytics”.

In: Proceedings of the 25th ACM International on Conference on Information and

Knowledge Management. ACM. 2016, pp. 1573–1582.

[91] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques.

Elsevier, 2011.

[92] Matthew Horridge and Sean Bechhofer. “The owl api: A java api for owl

ontologies”. In: Semantic web 2.1 (2011), pp. 11–21.

[93] Ian Horrocks et al. “SWRL: A semantic web rule language combining OWL and

RuleML”. In: W3C Member submission 21.79 (2004).

[94] Vincent C Hu et al. “Guide to attribute based access control (abac) definition

and considerations (draft)”. In: NIST special publication 800.162 (2013).

[95] Vincent C Hu et al. “Guide to attribute based access control (abac) definition

and considerations (draft)”. In: NIST special publication 800.162 (2013).

https://doi.org/10.1145/2983323.2983358
https://doi.org/10.1145/2983323.2983358
https://doi.org/10.1145/2983323.2983358
https://doi.org/10.1145/2983323.2983358

BIBLIOGRAPHY 178

[96] Neminath Hubballi et al. “An active intrusion detection system for LAN specific

attacks”. In: Advances in Computer Science and Information Technology. Springer,

2010, pp. 129–142.

[97] Koral Ilgun, Richard A Kemmerer, and Phillip A Porras. “State transition

analysis: A rule-based intrusion detection approach”. In: IEEE transactions on

software engineering 21.3 (1995), pp. 181–199.

[98] Implementing ArcSight CEF. https : / / www . secef . net / wp - content /

uploads/sites/10/2017/04/CommonEventFormatv23.pdf.

[99] Trent Jaeger. “On the increasing importance of constraints”. In: Proceedings of

the fourth ACM workshop on Role-based access control. 1999, pp. 33–42.

[100] Mohammad Jafari et al. “Role mining in access history logs”. In: Journal of

Information Assurance and Security 38 (2009).

[101] Radha Jagadeesan et al. “Towards a theory of accountability and audit”. In:

European Symposium on Research in Computer Security. Springer. 2009, pp. 152–

167.

[102] JAVA APIs for Date and Time. https://docs.oracle.com/javase/8/

docs/api/java/time/package-summary.html.

[103] Ahmad Javaid et al. “A deep learning approach for network intrusion

detection system”. In: Proceedings of the 9th EAI International Conference on

Bio-inspired Information and Communications Technologies (formerly BIONETICS).

2016, pp. 21–26.

[104] Dileepa Jayathilake. “Towards structured log analysis”. In: 2012 Ninth

International Conference on Computer Science and Software Engineering (JCSSE).

IEEE. 2012, pp. 259–264.

[105] Sadhana Jha et al. “An administrative model for collaborative management

of ABAC systems and its security analysis”. In: 2016 IEEE 2nd International

Conference on Collaboration and Internet Computing (CIC). IEEE. 2016, pp. 64–73.

[106] Sadhana Jha et al. “Security analysis of ABAC under an administrative model”.

In: IET information security 13.2 (2018), pp. 96–103.

https://www.secef.net/wp-content/uploads/sites/10/2017/04/CommonEventFormatv23.pdf
https://www.secef.net/wp-content/uploads/sites/10/2017/04/CommonEventFormatv23.pdf
https://docs.oracle.com/javase/8/docs/api/java/time/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/time/package-summary.html

BIBLIOGRAPHY 179

[107] Xin Jin, Ram Krishnan, and Ravi Sandhu. “Reachability analysis for role-based

administration of attributes”. In: Proceedings of the 2013 ACM workshop on Digital

identity management. 2013, pp. 73–84.

[108] Xin Jin, Ravi Sandhu, and Ram Krishnan. “RABAC: role-centric attribute-based

access control”. In: International Conference on Mathematical Methods, Models, and

Architectures for Computer Network Security. Springer. 2012, pp. 84–96.

[109] Karen Sparck Jones. “A statistical interpretation of term specificity and its

application in retrieval”. In: Journal of documentation (1972).

[110] James BD Joshi et al. “A generalized temporal role-based access control model”.

In: IEEE Transactions on Knowledge and Data Engineering 17.1 (2005), pp. 4–23.

[111] Mouna Jouini, Latifa Ben Arfa Rabai, and Anis Ben Aissa. “Classification of

Security Threats in Information Systems.” In: ANT/SEIT 32 (2014), pp. 489–496.

[112] VVRPV Jyothsna, VV Rama Prasad, and K Munivara Prasad. “A review

of anomaly based intrusion detection systems”. In: International Journal of

Computer Applications 28.7 (2011), pp. 26–35.

[113] Lalana Kagal. Rei : A Policy Language for the Me-Centric Project. Tech. rep. HP

Labs, 2002. URL: http://www.hpl.hp.com/techreports/2002/HPL-

2002-270.html.

[114] Alan H Karp, Harry Haury, and Michael H Davis. “From ABAC to ZBAC: the

evolution of access control models”. In: Journal of Information Warfare 9.2 (2010),

pp. 38–46.

[115] Karen Kent and Murugiah Souppaya. “Guide to computer security log

management”. In: NIST special publication 92 (2006).

[116] Thanh Tran Thi Kim and Hannes Werthner. “An Ontology-based Framework

for Enriching Event-log Data”. In: The Fifth International Conference on Advances

in Semantic Processing. 2011, pp. 110–115.

[117] Satoru Kobayashi, Kensuke Fukuda, and Hiroshi Esaki. “Towards an NLP-

based log template generation algorithm for system log analysis”. In:

Proceedings of The Ninth International Conference on Future Internet Technologies.

2014, pp. 1–4.

http://www.hpl.hp.com/techreports/2002/HPL-2002-270.html
http://www.hpl.hp.com/techreports/2002/HPL-2002-270.html

BIBLIOGRAPHY 180

[118] Teuvo Kohonen. “Self-organized formation of topologically correct feature

maps”. In: Biological cybernetics 43.1 (1982), pp. 59–69.

[119] Robert Kowalski and Marek Sergot. “A logic-based calculus of events”. In:

Foundations of knowledge base management. Springer, 1989, pp. 23–55.

[120] John Lafferty, Andrew McCallum, and Fernando CN Pereira. “Conditional

random fields: Probabilistic models for segmenting and labeling sequence

data”. In: (2001).

[121] Butler Lampson. “Accountability and freedom”. In: Cambridge Computer

Seminar, Cambridge, UK. 2005, pp. 1–26.

[122] Meixing Le, Krishna Kant, and Sushil Jajodia. “Access rule consistency in

cooperative data access environment”. In: 8th International Conference on Col-

laborative Computing: Networking, Applications and Worksharing (CollaborateCom).

IEEE. 2012, pp. 11–20.

[123] Maria Leitner and Stefanie Rinderle-Ma. “Anomaly detection and visualization

in generative RBAC models”. In: Proceedings of the 19th ACM symposium on

Access control models and technologies. 2014, pp. 41–52.

[124] Mrs J Lekha, G Padmavathi, and David C Wyld. “A Comprehensive Study

On Classification Of Passive Intrusion And Extrusion Detection System”. In:

ICCSEA, SPPR, CSIA, WimoA-2013. Citeseer, 2013, pp. 281–292.

[125] Ang Li et al. “Evaluating the capability and performance of access control

policy verification tools”. In: MILCOM 2015-2015 IEEE Military Communications

Conference. IEEE. 2015, pp. 366–371.

[126] Weixi Li. Automatic log analysis using machine learning: awesome automatic log

analysis version 2.0. 2013.

[127] Logstash. https://www.elastic.co/logstash.

[128] Haibing Lu, Jaideep Vaidya, and Vijayalakshmi Atluri. “Optimal boolean

matrix decomposition: Application to role engineering”. In: 2008 IEEE 24th

International Conference on Data Engineering. IEEE. 2008, pp. 297–306.

[129] Haibing Lu et al. “Towards user-oriented RBAC model”. In: Journal of Computer

Security 23.1 (2015), pp. 107–129.

https://www.elastic.co/logstash

BIBLIOGRAPHY 181

[130] Konstantinos Makris et al. “Sparql rewriting for query mediation over mapped

ontologies”. In: Technical University of Crete (2010).

[131] Srdjan Marinovic et al. “Rumpole: a flexible break-glass access control model”.

In: Proceedings of the 16th ACM symposium on Access control models and

technologies. 2011, pp. 73–82.

[132] Michael Mayhew et al. “Use of Machine Learning in Big Data Analytics for

Insider Threat Detection”. In: ().

[133] Deborah L McGuinness, Frank Van Harmelen, et al. “OWL web ontology

language overview”. In: W3C recommendation 10.10 (2004), p. 2004.

[134] Sheila McIlraith and Ian Horrocks. Expressiveness question. 2004. URL: https:

//markmail.org/message/ravsqpal3p2z4hcq#query:situation\

%20calculus \ %20swrl + page : 2 + mid : ccq7ps5uwljixozb + state :

results..

[135] Mediation toolkit. https://github.com/correndo/mediation.

[136] Andrew Meneely, Ben Smith, and Laurie Williams. “Appendix B: iTrust

electronic health care system case study”. In: Software and Systems Traceability

(2012), p. 425.

[137] Will Mepham and Steve Gardner. “Implementing discrete event calculus with

semantic web technologies”. In: 2009 Fifth International Conference on Next

Generation Web Services Practices. IEEE. 2009, pp. 90–93.

[138] Rob Miller and Murray Shanahan. “Some alternative formulations of the event

calculus”. In: Computational logic: logic programming and beyond. Springer, 2002,

pp. 452–490.

[139] Barsha Mitra et al. “Migrating from RBAC to temporal RBAC”. In: IET

Information Security 11.5 (2017), pp. 294–300.

[140] Prasenjit Mitra et al. “Privacy-preserving semantic interoperation and access

control of heterogeneous databases”. In: Proceedings of the 2006 ACM Symposium

on Information, computer and communications security. ACM. 2006, pp. 66–77.

https://markmail.org/message/ravsqpal3p2z4hcq#query:situation\%20calculus\%20swrl+page:2+mid:ccq7ps5uwljixozb+state:results.
https://markmail.org/message/ravsqpal3p2z4hcq#query:situation\%20calculus\%20swrl+page:2+mid:ccq7ps5uwljixozb+state:results.
https://markmail.org/message/ravsqpal3p2z4hcq#query:situation\%20calculus\%20swrl+page:2+mid:ccq7ps5uwljixozb+state:results.
https://markmail.org/message/ravsqpal3p2z4hcq#query:situation\%20calculus\%20swrl+page:2+mid:ccq7ps5uwljixozb+state:results.
https://github.com/correndo/mediation

BIBLIOGRAPHY 182

[141] Decebal Mocanu, Fatih Turkmen, Antonio Liotta, et al. “Towards ABAC policy

mining from logs with deep learning”. In: Proceedings of the 18th International

Multiconference, ser. Intelligent Systems. 2015.

[142] Jonathan D Moffett, Morris Sloman, and Kevin P Twidle. “Specifying

discretionary access control policy for distributed systems.” In: Computer

Communications 13.9 (1990), pp. 571–580.

[143] Apurva Mohan and Douglas M Blough. “An attribute-based authorization

policy framework with dynamic conflict resolution”. In: Proceedings of the 9th

Symposium on Identity and Trust on the Internet. 2010, pp. 37–50.

[144] Ian Molloy, Jorge Lobo, and Suresh Chari. “Adversaries’ Holy Grail: access

control analytics”. In: Proceedings of the First Workshop on Building Analysis

Datasets and Gathering Experience Returns for Security. 2011, pp. 54–61.

[145] Gary Ng. “Open vs Closed world, Rules vs Queries: Use Cases from Industry.”

In: OWLED. 2005.

[146] Qun Ni, Elisa Bertino, and Jorge Lobo. “Risk-based access control systems built

on fuzzy inferences”. In: Proceedings of the 5th ACM Symposium on Information,

Computer and Communications Security. 2010, pp. 250–260.

[147] P. Nimbalkar et al. “Semantic Interpretation of Structured Log Files”. In: 2016

IEEE 17th International Conference on Information Reuse and Integration (IRI). 2016,

pp. 549–555.

[148] Sami Nousiainen et al. “Anomaly detection from server log data”. In: A case

study (2009).

[149] Selmin Nurcan. “A survey on the flexibility requirements related to business

processes and modeling artifacts”. In: Proceedings of the 41st Annual Hawaii

International Conference on System Sciences (HICSS 2008). IEEE. 2008, pp. 378–378.

[150] Daniel Oberle et al. “Conceptual user tracking”. In: International Atlantic Web

Intelligence Conference. Springer. 2003, pp. 155–164.

[151] Martin J O’Connor et al. “The SWRLAPI: A Development Environment for

Working with SWRL Rules.” In: OWLED. 2008.

BIBLIOGRAPHY 183

[152] Adam Oliner, Archana Ganapathi, and Wei Xu. “Advances and challenges in

log analysis”. In: Communications of the ACM 55.2 (2012), pp. 55–61.

[153] OpenLink Logging Ontology. http://www.openlinksw.com/ontology/

logging.

[154] Keshnee Padayachee and Jan HP Eloff. “Adapting usage control as a deterrent

to address the inadequacies of access controls”. In: computers & security 28.7

(2009), pp. 536–544.

[155] Chi-Chun Pan, Prasenjit Mitra, and Peng Liu. “Semantic access control for

information interoperation”. In: Proceedings of the eleventh ACM symposium on

Access control models and technologies. ACM. 2006, pp. 237–246.

[156] Symeon Papadopoulos et al. “Using event representation and semantic

enrichment for managing and reviewing emergency incident logs”. In:

Proceedings of the 2nd ACM international workshop on Events in multimedia. ACM.

2010, pp. 41–46.

[157] This Paper et al. “Break-Glass – An Approach to Granting Emergency Access to

Healthcare Systems”. In: December (2004).

[158] Jaehong Park and Ravi Sandhu. “Towards usage control models: beyond

traditional access control”. In: Proceedings of the seventh ACM symposium on

Access control models and technologies. 2002, pp. 57–64.

[159] Jaehong Park and Ravi Sandhu. “Towards Usage Control Models: Beyond

Traditional Access Control”. In: Proceedings of the Seventh ACM Symposium on

Access Control Models and Technologies. SACMAT ’02. Monterey, California, USA:

Association for Computing Machinery, 2002, 57–64. ISBN: 1581134967. DOI: 10.

1145/507711.507722. URL: https://doi.org/10.1145/507711.

507722.

[160] Jaehong Park, Xinwen Zhang, and Ravi Sandhu. “Attribute mutability in usage

control”. In: Research Directions in Data and Applications Security XVIII. Springer,

2004, pp. 15–29.

[161] Anand Patwardhan et al. “Threshold-based intrusion detection in ad hoc

networks and secure AODV”. In: Ad Hoc Networks 6.4 (2008), pp. 578–599.

http://www.openlinksw.com/ontology/logging
http://www.openlinksw.com/ontology/logging
https://doi.org/10.1145/507711.507722
https://doi.org/10.1145/507711.507722
https://doi.org/10.1145/507711.507722
https://doi.org/10.1145/507711.507722

BIBLIOGRAPHY 184

[162] Karl Pearson. “LIII. On lines and planes of closest fit to systems of points in

space”. In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal

of Science 2.11 (1901), pp. 559–572.

[163] Frank Pfenning and Carsten Schürmann. “System description: Twelf—a meta-

logical framework for deductive systems”. In: International Conference on

Automated Deduction. Springer. 1999, pp. 202–206.

[164] Javier Andres Pinto and Raymond Reiter. Temporal reasoning in the situation

calculus. University of Toronto, 1994.

[165] Jeremy Pitt and Abe Mamdani. “A protocol-based semantics for an agent

communication language”. In: IJCAI. Vol. 99. 1999, pp. 486–491.

[166] Dean Povey. “Optimistic security: a new access control paradigm”. In:

Proceedings of the 1999 workshop on New security paradigms. 1999, pp. 40–45.

[167] Protégé. https://protege.stanford.edu/products.php.

[168] Eric Prud’hommeaux and A Seaborne. SPARQL query language for RDF, W3C

Recommendation. Jan. 2008.

[169] Nikhil Puranik. A specialist approach for the classification of column data. University

of Maryland, Baltimore County, 2012.

[170] Li Qin and Vijayalakshmi Atluri. “Concept-level access control for the semantic

web”. In: Proceedings of the 2003 ACM workshop on XML security. ACM. 2003,

pp. 94–103.

[171] Yuzhong Qu, Xiang Zhang, and Huiying Li. “OREL: an ontology-based rights

expression language”. In: Proceedings of the 13th international World Wide Web

conference on Alternate track papers & posters. ACM. 2004, pp. 324–325.

[172] Manfred Reichert and Peter Dadam. “ADEPT flex—supporting dynamic

changes of workflows without losing control”. In: Journal of Intelligent

Information Systems 10.2 (1998), pp. 93–129.

[173] Erik Rissanen, Babak Sadighi Firozabadi, and Marek Sergot. “Towards a

mechanism for discretionary overriding of access control”. In: International

Workshop on Security Protocols. Springer. 2004, pp. 312–319.

https://protege.stanford.edu/products.php

BIBLIOGRAPHY 185

[174] RLOG - an RDF Logging Ontology. https://persistence.uni-leipzig.

org/nlp2rdf/ontologies/rlog/rlog.html.

[175] Mohsen Rouached and Claude Godart. “Securing web service compositions:

Formalizing authorization policies using event calculus”. In: International

Conference on Service-Oriented Computing. Springer. 2006, pp. 440–446.

[176] Farzad Salim et al. “An approach to access control under uncertainty”. In: 2011

Sixth International Conference on Availability, Reliability and Security. IEEE. 2011,

pp. 1–8.

[177] Pierangela Samarati and Sabrina Capitani de Vimercati. “Access control:

Policies, models, and mechanisms”. In: International School on Foundations of

Security Analysis and Design. Springer. 2000, pp. 137–196.

[178] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. “The ARBAC97

model for role-based administration of roles”. In: ACM Transactions on

Information and System Security (TISSEC) 2.1 (1999), pp. 105–135.

[179] Hassan Saneifar et al. “Terminology extraction from log files”. In: International

Conference on Database and Expert Systems Applications. Springer. 2009, pp. 769–

776.

[180] F Scharffe. EDOAL: expressive and declarative ontology alignment language. 2011.

[181] Sigrid Schefer-Wenzl and Mark Strembeck. “Generic support for RBAC break-

glass policies in process-aware information systems”. In: Proceedings of the 28th

annual ACM symposium on applied computing. 2013, pp. 1441–1446.

[182] Security recommendations for implementation a logging system. https://www.

ssi.gouv.fr/uploads/IMG/pdf/NP_Journalisation_NoteTech.

pdf.

[183] Fei Sha and Fernando Pereira. “Shallow parsing with conditional random

fields”. In: Proceedings of the 2003 Human Language Technology Conference of the

North American Chapter of the Association for Computational Linguistics. 2003,

pp. 213–220.

[184] Shaul Shalvi, Ori Eldar, and Yoella Bereby-Meyer. “Honesty requires time (and

lack of justifications)”. In: Psychological science 23.10 (2012), pp. 1264–1270.

https://persistence.uni-leipzig.org/nlp2rdf/ontologies/rlog/rlog.html
https://persistence.uni-leipzig.org/nlp2rdf/ontologies/rlog/rlog.html
https://www.ssi.gouv.fr/uploads/IMG/pdf/NP_Journalisation_NoteTech.pdf
https://www.ssi.gouv.fr/uploads/IMG/pdf/NP_Journalisation_NoteTech.pdf
https://www.ssi.gouv.fr/uploads/IMG/pdf/NP_Journalisation_NoteTech.pdf

BIBLIOGRAPHY 186

[185] Murray Shanahan. “The event calculus explained”. In: Artificial intelligence

today. Springer, 1999, pp. 409–430.

[186] Nitin Kumar Sharma and Anupam Joshi. “Representing attribute based access

control policies in owl”. In: 2016 IEEE Tenth International Conference on Semantic

Computing (ICSC). IEEE. 2016, pp. 333–336.

[187] Cheng-chun Shu, Erica Y Yang, and Alvaro E Arenas. “Detecting conflicts in

ABAC policies with rule-reduction and binary-search techniques”. In: 2009

IEEE International Symposium on Policies for Distributed Systems and Networks.

IEEE. 2009, pp. 182–185.

[188] Tuomo Sipola, Antti Juvonen, and Joel Lehtonen. “Anomaly detection from

network logs using diffusion maps”. In: Engineering Applications of Neural

Networks. Springer, 2011, pp. 172–181.

[189] Waleed W Smari, Patrice Clemente, and Jean-Francois Lalande. “An extended

attribute based access control model with trust and privacy: Application to

a collaborative crisis management system”. In: Future Generation Computer

Systems 31 (2014), pp. 147–168.

[190] Clóvis Eduardo de Souza Nascimento et al. “OntoLog: Using Web Semantic and

Ontology for Security Log Analysis”. In: ICSEA 2011. 2011.

[191] SparqlToXQuery. https : / / sourceforge . net / projects /

sparqltoxquery/.

[192] Sysmon logs. https://docs.microsoft.com/en-us/sysinternals/

downloads/sysmon.

[193] The Syslog Protocol. https://www.ietf.org/rfc/rfc5424.txt.

[194] Chrisa Tsinaraki and Stavros Christodoulakis. “Interoperability of XML schema

applications with OWL domain knowledge and semantic web tools”. In:

OTM Confederated International Conferences" On the Move to Meaningful Internet

Systems". Springer. 2007, pp. 850–869.

[195] Types of Access Control. http://cisspstudy.blogspot.com/2007/05/

types-of-access-control.html.

https://sourceforge.net/projects/sparqltoxquery/
https://sourceforge.net/projects/sparqltoxquery/
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://www.ietf.org/rfc/rfc5424.txt
http://cisspstudy.blogspot.com/2007/05/types-of-access-control.html
http://cisspstudy.blogspot.com/2007/05/types-of-access-control.html

BIBLIOGRAPHY 187

[196] Andrzej Uszok, Jeffrey M Bradshaw, and Renia Jeffers. “Kaos: A policy and

domain services framework for grid computing and semantic web services”.

In: International Conference on Trust Management. Springer. 2004, pp. 16–26.

[197] Jaideep Vaidya, Vijayalakshmi Atluri, and Qi Guo. “The role mining problem:

finding a minimal descriptive set of roles”. In: Proceedings of the 12th ACM

symposium on Access control models and technologies. 2007, pp. 175–184.

[198] Wil Van Der Aalst. “Process mining”. In: Communications of the ACM 55.8 (2012),

pp. 76–83.

[199] Boudewijn F Van Dongen et al. “The ProM framework: A new era in process

mining tool support”. In: International conference on application and theory of petri

nets. Springer. 2005, pp. 444–454.

[200] Anthony Vance, Paul Benjamin Lowry, and Dennis Eggett. “Using account-

ability to reduce access policy violations in information systems”. In: Journal

of Management Information Systems 29.4 (2013), pp. 263–290.

[201] Sabrina De Capitani di Vimercati and Pierangela Samarati. “Authorization

specification and enforcement in federated database systems”. In: Journal of

Computer Security 5.2 (1997), pp. 155–188.

[202] Paul Voigt and Axel Von dem Bussche. “The eu general data protection

regulation (gdpr)”. In: A Practical Guide, 1st Ed., Cham: Springer International

Publishing (2017).

[203] Jacques Wainer. “Anomaly Detection using Process Mining”. In: (), pp. 1–13.

[204] Jacques Wainer, Paulo Barthelmess, and Akhil Kumar. “W-RBAC—A workflow

security model incorporating controlled overriding of constraints”. In:

International Journal of Cooperative Information Systems 12.04 (2003), pp. 455–485.

[205] M. Wang, L. Xu, and L. Guo. “Anomaly Detection of System Logs Based on

Natural Language Processing and Deep Learning”. In: 2018 4th International

Conference on Frontiers of Signal Processing (ICFSP). 2018, pp. 140–144.

[206] Yigong Wang et al. “Conflicts analysis and resolution for access control

policies”. In: 2010 IEEE International Conference on Information Theory and

Information Security. IEEE. 2010, pp. 264–267.

BIBLIOGRAPHY 188

[207] AJMM Weijters, Wil MP van Der Aalst, and AK Alves De Medeiros.

“Process mining with the heuristics miner-algorithm”. In: Technische Universiteit

Eindhoven, Tech. Rep. WP 166 (2006), pp. 1–34.

[208] Peter C Weinstein and William P Birmingham. Agent communication with

differentiated ontologies: eight new measures of description compatibility. Tech. rep.

Michigan Univ Ann Arbor Dept Of Electrical Engineering And Computer

Science, 1999.

[209] Gio Wiederhold. “Mediators in the architecture of future information systems”.

In: Computer 25.3 (1992), pp. 38–49.

[210] Michael Wooldridge and Nicholas R Jennings. “Intelligent agents: Theory and

practice”. In: The knowledge engineering review 10.2 (1995), pp. 115–152.

[211] Wei Xu et al. “Detecting large-scale system problems by mining console

logs”. In: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems

principles. 2009, pp. 117–132.

[212] Zhongyuan Xu and Scott D Stoller. “Mining attribute-based access control

policies from logs”. In: IFIP Annual Conference on Data and Applications Security

and Privacy. Springer. 2014, pp. 276–291.

[213] Zhongyuan Xu and Scott D Stoller. “Mining attribute-based access control

policies from RBAC policies”. In: 2013 10th International Conference and Expo on

Emerging Technologies for a Smarter World (CEWIT). IEEE. 2013, pp. 1–6.

[214] Guangsen Zhang and Manish Parashar. “Context-aware dynamic access control

for pervasive applications”. In: Proceedings of the Communication Networks and

Distributed Systems Modeling and Simulation Conference. 2004, pp. 21–30.

Titre : Analyse a posteriori des logs et détection de violation des règles de sécurité

Mot clés : Contrôle d’accès, Analyse des logs, Vérification temporelle, Violations, Sanctions.

Résumé : Dans certains environnements sen-
sibles, tels que le domaine de la santé, où les
utilisateurs sont généralement de confiance
et où des évènements particuliers peuvent
se produire, comme les situations d’urgence,
les contrôles de sécurité mis en place dans
les systèmes d’information correspondants ne
doivent pa bloquer certaines décisions et ac-
tions des utilisateurs. Cela pourrait avoir des
conséquences graves. En revanche, il est im-
portant de pouvoir identifier et tracer ces ac-
tions et ces décisions afin de détecter d’éven-
tuelles violations de la politique de sécurité

mise en place et fixer les responsibilités. Ces
fonctionnalités sont assurées par le contrôle
d’accès a posteriori qui se base un méca-
nisme de monitoring à partir des logs.
Dans la littérature, ce type de contrôle de sé-
curité a été divisé en trois étapes qui sont : le
traitement des logs, l’analyse des logs, et l’im-
putabilité.
Dans cette thèse, nous couvrons ces trois do-
maines du contrôle d’accès a posteriori en ap-
portant de nouvelles solutions, et nous intro-
duisons des nouveaux aspects qui n’avaient
pas été abordés auparavant.

Title: A posteriori log analysis and security rules violation detection

Keywords: Access Control, Log Analysis, Temporal verification, violations, sanctions.

Abstract: In certain sensitive environments,
such as the healthcare domain, where users
are generally trusted and where particular
events may occur, such as emergencies,
the implemented security controls in the cor-
responding information systems should not
block certain decisions and actions of users.
This could have serious consequences. In-
deed, it is important to be able to identify and
trace these actions and decisions in order to
detect possible violations of the security pol-

icy put in place and fix responsibilities. These
functions are ensured by the a posteriori ac-
cess control that lies on a monitoring mecha-
nism based on logs.
In the literature, this type of access control has
been divided into three stages: log processing,
log analysis, and accountability.
In this thesis, we cover these three areas of the
a posteriori access control by providing new
solutions, and we introduce new aspects that
have not been addressed before.

	Abstract
	Résumé
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Context
	Problem Statement
	Contributions
	Thesis Outline

	State of The Art
	A Priori vs A Posteriori Access Control
	A Priori Access Control
	A Posteriori Access Control

	A Posteriori Access Control Steps
	Log Processing
	Log Analysis
	Accountability

	Policy Representations
	Semantic Web Technologies
	RDF(S) and OWL
	SPARQL
	SWRL and SQWRL

	Conclusion

	Extracting Log Information Using Semantic Mediation
	Introduction
	What is a Semantic Mediator?
	Semantic Mediation For Access Control
	Semantic Mediation in the a Posteriori Access Control
	Semantic Mediator Setup
	Query Rewriting Process
	Policy Reconciliation

	Example Scenarios
	Scenarios
	Synthetic Logs Generation
	Mediator Implementation
	Query Rewriting Applied in the Scenarios

	Discussion
	Conclusion

	A Posteriori Violation Detection with a Static Policy
	Introduction
	Materials
	Multi-Agent System Definition
	Motivation of Using a Multi-Agent System
	Criticality of Policy Temporal Compliance
	Event Calculus

	Modelling the Security Policy with ABAC and OWL
	Multi-Agent Based Policy Temporal Compliance Framework
	Multi-Agent System Architecture
	Multi-Agent System Functioning

	Use Case
	Implementation And Evaluation
	Implementation
	Evaluation

	Related Work
	Conclusion

	A Posteriori Violation Detection with an Evolutive Policy
	Introduction
	Motivation of Considering Policy Evolution
	Administrative Models for ABAC
	GURA
	ADABAC
	AMABAC

	Evolutive Policy Compliance
	Getting Access Time Valid Rules
	Monitoring Administrative Actions
	Detecting violations

	Use Case
	Implementation
	Experimentation
	Conclusion

	Accountability in the A Posteriori Access Control
	Introduction
	Accountability: a Requirement and a Mechanism
	Accountability as requirement
	Accountability as a mechanism

	Conclusion and Future Work

	Conclusions and Perspectives
	Perspectives
	Log Analysis with Incomplete Information
	Policy Conflict Resolution
	Combining a Priori and a Posteriori Access Control
	Contextualizing the Exception Policy
	Considering Usage Control Requirements and Obligations

	Raising Awareness Among Organizations
	Context
	The Organization's Business
	Use Cases
	Discussion and Perspectives

	French Summary: Analyse a Posteriori des Logs et Détection des Violations des Règles de Sécurité
	Introduction
	Extraction d'Informations des Logs à l'aide de la Médiation Sémantique
	Détection a Posteriori des Violations
	Architecture Multi-Agents
	Le Cas d'une Politique Statique
	Le Cas d'une Politique Evolutive

	L'Imputabilité dans le Contrôle d'Accès a Posteriori
	L'Imputabilité en tant qu'Exigence
	L'Imputabilité en tant que Mécanisme

	Conclusion

	List of Publications
	Bibliography
	Bibliography

