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mais avec bien plus de charges administratives. Merci à tous les deux pour votre gentillesse,
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a ceux qui sont partis ailleurs pour de nouvelles aventures : Dominique, Julia, Marie-Anne,
Valentin, Imène. Il y a également ceux qui sont arrivés en cours de route pour une thèse :
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Résumé

Les ondes gravitationnelles ont été prédites par Albert Einstein en 1916 comme une consé-
quence de sa théorie de la relativité générale. Ce sont des oscillations de la courbure de
l’espace-temps, produites par des masses accélérées, se propageant à la vitesse de la lumière
dans le vide. Les sources les plus intenses d’ondes gravitationnelles sont les coalescences de
systèmes binaires d’objets compacts (tels les trous noirs et étoiles à neutrons), les explosions
de supernovae et d’autres mécanismes décrits au Chapitre 1.

La première détection directe d’une onde gravitationnelle a été faite le 14 septembre
2015 par les détecteurs interférométriques américains Advanced LIGO et a été suivie par de
nombreuses autres détections au cours de 3 phases d’observations, dont une partie en commun
avec le détecteur interférométrique européen Advanced Virgo.

Le principe de base de la détection interférométrique d’ondes gravitationnelles est celui de
l’interféromètre de Michelson avec des bras de longueurs kilométriques, détaillé au Chapitre 2.
Un changement relatif de la longueur des bras de l’interféromètre causé par le passage d’une
onde gravitationnelle entrâıne un changement de la condition d’interférence sur le détecteur
et donc un changement de la puissance lumineuse mesurée. La sensibilité des détecteurs est
augmentée par l’ajout d’une cavité Fabry-Perot dans chacun des bras du Michelson, ainsi que
des miroirs de recyclages créant des cavités couplées.

Les principaux bruits limitants la sensibilité des détecteurs interférométriques d’ondes
gravitationnelles sont également présentés au Chapitre 2. Le bruit de pression de radiation
et le bruit de grenaille sont deux facettes du bruit quantique limitant la sensibilité qui nous
intéresse dans le cadre de cette thèse.

Limite quantique standard

Le bruit de pression de radiation provient de l’impact des photons sur les miroirs de l’interfé-
romètre causant leur déplacement. Ce déplacement est proportionnel à la puissance optique
incidente sur le miroir et entraine un changement relatif de la longueur des bras de l’interfé-
romètre, de même qu’une onde gravitationnelle. Les miroirs des détecteurs étant suspendus,
le bruit de pression de radiation limite la sensibilité des détecteurs de façon inversement pro-
portionnelle au carré de la fréquence des fluctuations comme le montre la courbe verte de la
Figure 1.

Le bruit de grenaille provient des fluctuations de la puissance mesurée sur la photodiode
de détection dues à la nature discrète des photons. Sur un intervalle de mesure caractérisé
par une nombre moyen de photons N̄ , la probabilité de mesurer N photons est décrite par
une distribution de Poisson qui peut être approximée par une distribution gaussienne pour
N̄ � 1. Le bruit de grenaille est indépendant de la fréquence pour un Michelson simple1

comme représenté en bleu sur la Figure 1.

Pour un détecteur interférométrique d’ondes gravitationnelles avec une puissance Pin sto-
ckée dans ses bras, l’impact du bruit de pression de radiation sur la sensibilité des détecteurs
est proportionnel à

√
Pin tandis que celui du bruit de grenaille est inversement proportionnel

1Pour les détecteurs interférométriques d’ondes gravitationnelles, les cavités Fabry-Perot dans les bras du
Michelson agissent comme des filtres passe-bas sur la sensibilité du détecteur.

1



2 Résumé

Figure 1 – Simulation du bruit de grenaille (en bleu), du bruit de pression de radiation (en vert) et
de leur somme : le bruit quantique (en rouge) pour deux puissances optiques stockées dans les bras
des interféromètres. La limite quantique standard est tracée en noir.

à
√
Pin. Ainsi en faisant varier la puissance Pin, on peut diminuer l’un des deux bruits quan-

tiques, mais au prix d’augmenter l’autre. Ceci conduit à une limitation de la sensibilité des
détecteurs due aux bruits quantiques : la limite quantique standard représentée en noir sur
la Figure 1.

Le bruit quantique est l’un des bruits limitant pour les détecteurs interférométriques
d’ondes graviationnelles. L’objet de cette thèse est de tester expérimentalement une technique
d’optique quantique permettant de dépasser la limite quantique standard. Cette technique
utilise des états comprimés de la lumière que l’on nomme plus souvent squeezing.

Squeezing

La notion de squeezing est introduite et détaillée au Chapitre 3 dans un formalisme basé
sur les opérateurs création et annihilation en pysique quantique. Ce formalisme donne une
représentation graphique du squeezing en utilisant la relation d’incertitude de Heisenberg pour
visualiser l’incertitude sur la phase et sur l’amplitude d’un état lumineux dans un diagramme
de phase. Un état cohérent de la lumière, tel celui généré par un laser, y est représenté par
un disque dont la surface minimale est donnée par la relation d’incertitude de Heisenberg
comme on peut le voir sur la Figure 2a.

La relation d’incertitude de Heisenberg ne donne une limite minimale que sur la surface
qu’un état occupe dans un diagramme de phase. Il est donc possible qu’un état ait une
incertitude sur son amplitude plus faible qu’un état cohérent, au prix d’une plus grande
incertitude sur sa phase : il s’agit du squeezing en amplitude représenté sur la Figure 2b.
Inversement un état peut également avoir une incertitude sur sa phase plus faible qu’un état
cohérent, au prix d’une plus grande incertitude sur son amplitude : il s’agit du squeezing en
amplitude représenté sur la Figure 2c.

Pour un détecteur interférométrique d’ondes gravitationnelles, le bruit quantique provient
de fluctuations du vide entrant dans l’interféromètre par le port de détection. Ces fluctuations
sont amplifiées par la puissance laser présente dans l’interféromètre avant de revenir sur la
photodiode de détection.
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(a)

(b) (c)

Figure 2 – Représentations de trois états de la lumières : (a) cohérent, (b) squeezing en amplitude, (c)
squeezing en phase. Pour chaque état sont représentés : (à gauche) un diagramme de phase quantique
dans les quadratures d’amplitude et de phase, (à droite) la partie réelle du champ électrique montrant
le résultat typique d’une mesure.

Si on applique du squeezing en amplitude aux fluctuations du vide entrant dans l’inter-
féromètre, on peut améliorer la sensibilité des détecteurs à basse fréquence, au prix d’une
détérioration à haute fréquence et inversement si on leur applique du squeezing en phase, on
peut améliorer la sensibilité des détecteurs à haute fréquence au prix d’une détérioration à
basse fréquence comme le montre la Figure 3.

Figure 3 – Graphique présentant la limitation de la sensibilité des détecteurs interférométriques
d’ondes gravitationnelles due au bruit quantique sans squeezing (en rouge), avec du squeezing en
amplitude (en bleu) et avec du squeezing en phase (en vert).
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Squeezing dépendant de la fréquence

Une solution pour améliorer la sensibilité des détecteurs interférométriques d’ondes gravita-
tionnelles dans toute leur gamme de fréquence est d’utiliser du squeezing dépendant de la
fréquence.

La description du squeezing dépendant de la fréquence utilise un autre formalisme dit à
“deux-photons” qui est détaillé au Chapitre 3. Le point de départ est un état de squeezing
indépendant de la fréquence qui est envoyé dans une cavité Fabry-Perot dite de filtrage.

Dans le formalisme à “deux-photons”, la génération du squeezing se fait par la transfor-
mation, par interaction non linéaire dans un cristal, d’un photon 2ω en 2 photons ω ± Ω
intriqués avec Ω� ω. C’est l’intrication entre les 2 photons générés simultanément qui est à
l’origine des propriétés de squeezing.

La réflectivité de la cavité de filtrage dépend de la fréquence. Ainsi les 2 photons intriqués
sont réfléchis par la cavité avec une phase cumulée différente qui se traduit par un opérateur
de rotation dépendant de la fréquence. En revenant à la représentation du diagramme de
phase, cela correspond à une rotation d’un angle αp(f) de l’ellipse de squeezing par rapport
au squeezing indépendant de la fréquence injecté dans la cavité.

L’angle αp(f) est représenté en Figure 4 pour une cavité de longueur L = 50 m et de
finesse F = 3000 à la longueur d’onde du squeezing. C’est ce type de cavité qui sera utilisé
pour l’expérience Exsqueez, l’objet de cette thèse. Ces paramètres permettent d’obtenir un
passage de squeezing en amplitude à un squeezing en phase à une fréquence de ∼ 700 Hz.
Pour les détecteurs interférométriques d’ondes gravitationnelles, l’objectif sera d’obtenir un
changement de type de squeezing à 50 − 70 Hz, ce qui nécessite soit d’allonger la cavité de
filtrage, soit d’augmenter sa finesse.

Figure 4 – Angle αp(f) de l’ellipse de squeezing pour une cavité de filtrage de longueur L = 50 m et
de finesse F = 3000 à la longueur d’onde du squeezing permettant d’obtenir un changement de type
de squeezing à la fréquence ft = 707 Hz indiquée par la droite en rouge.

Les pertes représentent un facteur important à prendre en compte pour concevoir une
experience de squeezing car toutes les pertes vont dégrader le niveau de squeezing mesuré.
Les sources de pertes sont nombreuses et apparaissent à différents endroits le long de la
propagation du squeezing entre sa génération et sa détection. Elles sont décrites au Chapitre
3 ainsi que leur impact sur le squeezing mesuré.

On peut classifier les pertes en 2 catégories : celles indépendantes de la fréquence et celles
dépendantes de la fréquence. Il y a 4 sources de pertes indépendantes de la fréquence :

• pertes d’injection : pertes optiques sur la trajectoire du squeezing,

• pertes d’acquisition : pertes au niveau de la détection provenant principalement de
l’efficacité quantique des photodiodes avec lesquelles la mesure de squeezing est faite,
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• bruit de phase indépendant de la fréquence : fluctuations de l’orientation de l’ellipse de
squeezing injecté dans la cavité de filtrage,

• adaptation à l’oscillateur local : adaptation du faisceau de squeezing mesuré au faisceau
de l’oscillateur local utilisé pour la mesure détaillée au Chapitre 3.

Les pertes dépendantes de la fréquence sont liées à l’effet de la cavité de filtrage et se
décomposent en 3 sources :

• pertes de la cavité de filtrage : pertes optiques dues à de l’absorption ou de la diffusion
dans la cavité de filtrage,

• adaptation à la cavité de filtrage : pertes dues à la différence entre le mode du faisceau
de squeezing et le mode propre de la cavité de fitlrage,

• bruit de phase dépendant de la fréquence : fluctuations de la longueur de la cavité de
filtrage.

La simulation de ces sources de pertes et leur impact sur le niveau de squeezing corres-
pondant à la réduction du bruit quantique par rapport à un état cohérent sont représentés
en Figure 5 pour des niveaux de pertes attendus pour Exsqueez et détaillés au Chapitre 3.

(a) (b)

Figure 5 – Simulation du squeezing dépendant de la fréquence mesuré : (a) pour différentes quadra-
tures de mesure φ en tenant compte de toutes les pertes, (b) différentes sources de pertes en choisissant
à chaque fréquence la quadrature de mesure φ optimale. La simulation prend pour point de départ 10
dB de squeezing et des valeurs de pertes réalistes détaillées au Chapitre 3. La ligne noire en pointillés
en (a) correspond à celle en trait plein en (b).

Exsqueez

Le projet Exsqueez est une collaboration entre 4 laboratoires : LKB1, LAL/IJCLab2, LMA/IP2I3

et LAPP4. La partie basse fréquence de ce projet consiste à tester le squeezing dépendant
de la fréquence avec un changement de type de squeezing à une fréquence inférieure au kHz
et une source de squeezing sous vide. Elle utilise l’infrastructure existante au LAL/IJCLab
avec une cavité Fabry-Perot de 50 m sur la platforme CALVA dont une salle est visible sur la
Figure 6. La conception et le début de l’installation expérimentale de la partie basse fréquence
de ce projet est l’objet de cette thèse.

1Laboratoire Kastler Brossel (LKB) à Paris.
2Laboratoire de l’Accélérateur Linéaire (LAL) avant fusion le 1er janvier 2020 au sein du Laboratoire de

Physique des 2 Infinis Irène Joliot-Curie (IJCLab) à Orsay.
3Laboratoire des Matériaux Avancés (LMA), plateforme nationale de recherche au sein de l’Institut de

Physique des 2 Infinis (IP2I) à Lyon depuis le 1er janvier 2019.
4Laboratoire d’Annecy de Physique des Particules (LAPP) à Annecy.
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Figure 6 – Première salle blanche de CALVA montrant la cuve rouge, appelée Ferrarix, utilisée pour
le banc sous-vide d’Exsqueez, et la cuve grise dans laquelle se trouve le premier miroir de la cavité de
filtrage de 50 m.

La conception théorique d’Exsqueez est détaillée au Chapitre 4. Un schéma de principe
simplifié est présenté en Figure 7. Le principal système pour générer du squeezing est l’Os-
cillateur Paramétrique Optique (OPO) dont le cristal non linéaire convertit 1 photon vert en
une paire de photons corrélé infrarouge, portant le squeezing. La cavité entourant le milieu
non linéaire permet à la fois d’augmenter le nombre d’intéractions non linéaires et donc l’ef-
ficacité de la production de squeezing, mais également de filtrer les fréquences des photons
du squeezing autour de la fréquence infrarouge utilisée pour la détection.

Figure 7 – Schéma de principe simplifié d’Exsqueez montrant uniquement les systèmes principaux
de la production et mesure de squeezing dépendant de la fréquence. En rouge le laser principal, en
vert le doubleur, en rose l’Oscillateur Paramétrique Optique (OPO) source du squeezing, en bleu la
cavité de filtrage et en marron la détection homodyne permettant la mesure du squeezing.
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Le faisceau de squeezing est ensuite injecté dans la cavité de filtrage et sa réflection
est envoyée sur le dispositif de mesure utilisant un système de détection homodyne. Cette
mesure se fait en combinant le squeezing à un oscillateur local à la même longueur d’onde.
Pour s’assurer que le squeezing et l’oscillateur local ont la même longueur d’onde, le faisceau
vert permettant de générer le squeezing dans l’OPO est lui-même généré à partir d’un laser
infrarouge doublé en fréquence. C’est ce même laser infrarouge qui fournit l’oscillateur local.

L’installation et la caractérisation des sous-systèmes annexes au squeezing sont présentées
au Chapitre 5 tandis que la caractérisation de l’OPO générant le squeezing et la détection
homodyne permettant sa mesure sont présentées au Chapitre 6. En particulier, le gain para-
métrique1 de l’OPO a été mesuré en fonction de la puissance du faisceau pompe vert de l’OPO
en Figure 8 dans le régime d’amplification du signal ainsi que dans celui de désamplification.

Figure 8 – Mesure du seuil de puissance du pump sur l’OPO. p0 est la valeur extrapolée du seuil à
partir des mesures en régime d’amplification et de désamplification.





Introduction

Gravitational waves are ripples in the spacetime curvature that have been predicted by Al-
bert Einstein in 1916 as a consequence of his general theory of relativity. Their first direct
observation in 2015 by the interferometric detectors Advanced LIGO was followed by many
others in three observational runs that the Advanced Virgo detector joined in August 2017.

The basic properties of gravitational waves and their astronomical sources will be pre-
sented in Chapter 1, along with a summary of the detections made until now. Then, in
Chapter 2, I will give an overview of gravitational wave detectors before detailing the ground
based interferometric detectors principles and noise sources, in particular the quantum noise.

I will then focus on a solution to increase the detectors sensitivity by reducing the quan-
tum noise using squeezed states of light that will be described in Chapter 3. I will first
describe frequency independent squeezing and before moving on to the way to obtain fre-
quency dependent squeezing improving the detectors sensitivity in their whole bandwidth.

In Chapter 3 I will also present the squeezing degradation budget, detailing the losses
that can reduce the squeezing level and their impact on the quantum noise reduction. The
conclusion of this chapter will give a brief state of the art of squeezing production, frequency
independent squeezing already used in gravitational waves detectors and frequency dependent
squeezing test experiments.

Chapter 4 will focus on the design of the frequency dependent test experiment done
at LAL/IJCLab1 in the framework of the Exsqueez project in collaboration with LKB2,
LMA/IP2I3 and LAPP4. The integration of the Exsqueez experiment on the CALVA facility
at IJCLab will be presented in Chapter 5.

Finally, the characterization of the main optical system generating the squeezing will
be presented in Chapter 6 along with the characterization of the measurement system to
prepare the first frequency independent squeezing measurement that will be done on the
CALVA facility.

1Laboratoire de l’Accérérateur Linéaire (LAL) before merger on the 1st of January 2020 within the Labo-
ratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab) in Orsay.

2Laboratoire Kastler Brossel (LKB) in Paris.
3Laboratoire des Matériaux Avancés (LMA) national research platform within the Institut de Physique

des 2 Infinis (IP2I) in Lyon since the 1st of January 2019.
4Laboratoire d’Annecy the Physique des Particules (LAPP) in Annecy.
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Chapter 1

Gravitational waves

In the seventeenth century, Newton imagined space as a rigid and absolute frame where
time passes uniformly and where gravitation is an instantaneous force. In this context, the
gravitational field generated by a mass propagates instantaneously.

In the nineteenth century, the theory of electromagnetism based on Maxwell’s equations
spotlighted the speed of light as the speed of electromagnetic waves. The experiment done by
Michelson and Morley in 1887 [1] proved that the speed of light is constant in all directions
and independent of the velocity of the source. These experiments were then explained by
Einstein’s special theory of relativity with result that no information can travel faster than
the light in vacuum which speed is now recognized as a fundamental constant.

In this perspective, the instantaneous propagation of the gravitational field is an example
of the limitation of Newton’s theory. By the way, this was not the only one and for instance
there was a deviation in the observed perihelion precession of Mercury with respect to the
one predicted by Newton’s laws.

The Einstein’s general theory of relativity solved these problems considering space and
time as combined in a unique dynamical framework where the effect of matter is to deform
spacetime. John Archibald Wheeler summarized the basis of general relativity by [2]:

“Spacetime tells matter how to move; matter tells spacetime how to curve.”

Consequently, the gravitational field (or equivalently the curvature of space time) does not
change instantaneously when a mass is in movement but the information of the motion of
the mass propagates as a wave at the speed of light just like electromagnetic waves. In other
words, gravitational waves are ripples in the curvature of spacetime caused by accelerating
masses and propagating at the speed of light.

In this chapter I will briefly introduce how gravitational waves are described in general
relativity and what the effect of their passage is. Then, I will give some orders of magni-
tude related to gravitational waves generation and present their main sources and the first
detections. Finally I will explain part of the science obtained from the study of gravitational
waves.

1.1 Gravitational waves in general relativity

In general relativity, the relationship between the curvature of spacetime and the mass-energy
distribution is given by the Einstein equation [3–5]:

Gµν = 8πG
c4 Tµν , (1.1)

where Gµν is the Einstein curvature tensor describing the curvature of spacetime, Tµν is
the stress-energy tensor describing mass-energy distribution, c is the speed of light and G
is Newton’s gravitational constant. As the coupling coefficient 8πG/c4 is very small, on the
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order of 10−43, spacetime is extremely rigid and difficult to deform, leading to small amplitude
gravitational waves as we will see in Section 1.3.

In the special theory of relativity, one can describe the spacetime interval ds between two
points that are infinitesimally close to each other by the expression:

ds2 = ηµνdx
µdxν , (1.2)

where the Greek indices range from 0 to 3 and represent the t, x, y and z coordinates
respectively and where there is an implicit summation over the repeated indices. ηµν is
the Minkowski metric corresponding to a flat spacetime, that we can write in Cartesian
coordinates:

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.3)

In general relativity, spacetime is no longer necessarily flat and we can write a similar
expression to Equation (1.2) encoding the information about the curvature of spacetime in a
new metric gµν :

ds2 = gµνdx
µdxν . (1.4)

When we are far from a gravitational wave source, we can consider that the metric is close
to the flat spacetime with only small perturbations and we can use the weak field limit:

gµν = ηµν + hµν , (1.5)

where hµν represents a small metric perturbation away from Minkowski spacetime so that
|hµν | � 1.

In the weak field approximation, considering that there is no stress-energy source term
in the Einstein Equation (1.1), i.e. Tµν = 0, one can make a gauge choice to obtain an
explicit statement of the metric perturbations hµν . The Transverse-Traceless (TT) gauge is
an especially good choice in which coordinates are defined by the world lines of free falling
test masses. Under the above assumptions, the Einstein equation becomes a system of wave
equations [6]: (

∇2 − 1
c2
∂2

∂t2

)
hµν = 0. (1.6)

This equation indicates that gravitational waves are plane waves propagating at the speed
of light c. If we consider the case of a wave propagating along the z-axis, the statement that
the wave field hTTµν is transverse and traceless can be expressed by:

hTTµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 e−iω(t−z/c), (1.7)

where h+ and h× represent the dimensionless scalar amplitude of the two polarizations of
a gravitational wave propagating along the z-axis and ω is the angular frequency of the
gravitational wave.

1.2 Effect of gravitational waves

We can interpret the two polarizations by saying that the h+ polarization alternatively length-
ens distances along the x-axis and simultaneously shrinks them along the y-axis and then, half
a period later, shrinks distances along the x-axis and simultaneously lengthens them along
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Figure 1.1 – Effect of the h+ and h× polarizations of a gravitational wave propagating along the z-axis
on a ring of free test masses according to the evolution with time of the amplitude of the gravitational
wave h.

the y-axis. The effect is differential and depends on the amplitude of the gravitational wave.
According to Equation (1.7), the h× polarization has the same effect but with its principal
axes rotated by 45° as shown in Figure 1.1.

Now to determine the effect of the passage of a gravitational wave on matter, let’s con-
sider:

• two test masses on the x-axis

• a gravitational wave h+ polarized and propagating along z

• the amplitude of the gravitational wave h is constant during light propagation between
the two test masses

According to special relativity, light travels at a constant speed c in any inertial frame
of reference. This is still true in general relativity. A ray of light connects two points in
spacetime by an interval ds2 = 0. Consequently, according to Equation (1.4), we can write:

ds2 = 0 = −c2dt2 + (1 + h+) dx2, (1.8)

then leading to:

dt = 1
c

√
1 + h+dx, (1.9)

and we can approximate it using |h+| � 1 by:

dt ' 1
c

(
1 + h+

2

)
dx. (1.10)
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If we integrate over time, the light travel time t between the two test masses is:

t = L

c
+ h+L

2c = t0 + δt = L+ δL

c
, (1.11)

where L and t0 = L/c are the distance and the travel time between the two test masses in
absence of gravitational wave. According to Equation (1.11), the passage of a gravitational
wave of amplitude h+ induces a variation δt of the travel time t of the light between the two
test masses. This can be interpreted as a variation of length δL between the two test masses:

δL

L
= h+

2 . (1.12)

Note that it can equivalently be interpreted as a variation of the speed of light or of the
vacuum optical index between the two test masses.

It can be understood from Figure 1.1 that the detected amplitude of a gravitational wave
depends on the angle under which it is observed. Especially from a 45° angle of incidence
with respect to the polarization axis, it is impossible to detect the gravitational wave.

Einstein predicted the existence of gravitational waves in 1916 but never convinced himself
of their real existence. Until his death in 1955, he was never sure whether those waves were a
coordinate effect only with no physical reality. The controversy lasted until the Chapel Hill
Conference in 1957 where Felix Pirani showed that gravitational waves must have physical
reality because one could invent an experiment that could detect them using a spring for
instance [7]. This conference led Weber to propose a gravitational wave detector [8].

1.3 Gravitational waves generation

Now that we understand how gravitational waves affect spacetime, we may wonder how
gravitational waves can be generated and what is the order of magnitude of their amplitude.

First we can make an analogy between gravitational waves and electromagnetic waves.
Electromagnetic waves are generated by accelerating charges and especially by time-varying
dipole moments at least and not by monopole because of charge conservation.

For gravity, there is no monopole term either, because of energy conservation, but there is
no dipole term because of momentum conservation. This indicates that gravitational waves
are generated at least by time varying quadrupole moments.

The gravitational wave amplitude h at a distance r from the source is proportional to the
second time derivative of the Transverse-Traceless projection of the quadrupole moment ITTij
evaluated at the retarded time (t− r/c) [5]:

hTTij = 2G
c4r

ÏTTij

(
t− r

c

)
. (1.13)

Equation (1.13) is the Einstein quadrupole formula, where the Latin indices range from
1 to 3 and represent the x, y and z coordinates respectively.

One can also define the gravitational luminosity LGW of a source of quadrupole radiation
integrating the gravitational wave flux over all solid angles as [5]:

LGW = G

5c5

〈...
I
TT
ij

...
I
ij
TT

〉
, (1.14)

where the angle brackets represent a time average over several periods of the wave.

Orders of magnitude

If we consider a system of mass m, typical length l and of mass distribution asymmetry factor
ε, its moment of inertia I can be approximated by:

I ∼ εml2. (1.15)
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Consequently we have:

Ï ∼ εmv2
NS , (1.16)

...
I ∼

Ï

T
, (1.17)

where T = l/vNS and vNS = ωl are the characteristic time and velocity of the non-spherically
symmetric motion of the source, with ω the angular frequency of the source. Then, according
to Equations (1.13) and (1.14), the gravitational wave amplitude emitted by this system,
observed at a distance r from the source, is:

h ∼ εGml
2ω2

c4r
, (1.18)

and the luminosity of this sources is:

LGW ∼ ε2G

c5
m2v6

NS

l2
. (1.19)

It is easier to interpret this equation by enlightening the velocity of the source vNS with
respect to the speed of light c and introducing the Schwarzschild radius RS = 2Gm/c2, which
is the radius that should have a black hole of the source’s mass, given that black holes are
the most compact objects in the Universe:

LGW ∼
c5

G
ε2
(
RS
l

)2 (vNS
c

)6
. (1.20)

Equation (1.20) provides information about the main characteristics of a powerful gravi-
tational wave source:

• asymmetric, with a mass distribution asymmetry factor ε close to 1,

• compact, with a characteristic length l on the order of the Schwarzschild radius RS ,

• relativistic, with a velocity vNS close to the speed of light c.

Example 1: the spinning bar

It seems that generating gravitational waves on Earth would be very inefficient, but let’s check
that with some simple calculation. The easiest way to generate a gravitational quadrupole
moment is to use a spinning bar.

Let’s assume we can construct an ideal m = 2000 kg and l = 2 m long bar and spin it at
an angular frequency of ω = 2π × 1 kHz. We can consider this bar as strongly asymmetric,
i.e. ε ∼ 1.

According to Equation (1.20) this spinning bar has a gravitational wave luminosity of:

LGW ∼ 10−22 W, (1.21)

and according to Equation (1.18) the amplitude of the gravitational waves generated will be:

h ∼ 10−33 ×
(1 m

r

)
, (1.22)

where r is the distance of the observer from the source. This is really a weak signal, too weak
to be detected as we will see in Chapter 2.
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Example 2: binary black hole

Now, let’s examine what seems to be one of the most promising source of gravitational waves:
compact binary systems. Consider a realistic system composed of 2 black holes of masses
m = 30 M�, where M� is the mass of the Sun, separated by a distance l of 5 Schwarzschild
radii RS , spinning around each other at a speed vNS of 0.3 times the speed of light c and at a
distance r = 400 Mpc from the Earth. This system is also considered as strongly asymmetric,
ie ε ∼ 1.

According to Equation (1.20) this system has a gravitational wave luminosity of:

LGW ∼ 1048 W. (1.23)

This is really huge compared to that of the spinning bar of Equation (1.21). Moreover,
according to Equation (1.18) the amplitude of the gravitational waves detected on Earth will
be:

h ∼ 10−21, (1.24)

which, as we will see, is detectable with the current ground based gravitational wave detectors.
These 2 examples illustrate the fact that we cannot generate measurable gravitational

waves on Earth. Consequently we rely on astronomical sources which comes with other
drawbacks. The main one is that we do not control the sources. The second one is the rate
of observable astronomical events which can be small and difficult to evaluate.

1.4 Astronomical sources

Figure 1.2 – The gravitational wave spectrum [9]. It represents the gravitational waves sources ac-
cording to their frequency of emission in parallel with the frequency range of sensitivity of different
types of detectors.

There are many astronomical sources of gravitational waves, but not all of them are de-
tectable with ground based interferometric gravitational wave detectors described in Chapter
2. In fact, we can, at a first stage, classify the gravitational wave sources by the frequency
band in which they produce gravitational waves as can be seen in Figure 1.2.

I will only present the main astronomical gravitational waves sources we can detect using
terrestrial interferometers, radiating in the high frequency band: from 1 Hz to 10 kHz.
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We can divide such sources into two main classes. Transient sources are short duration
signals. The duration of the signal (at least in the frequency bandwidth of interest) is way
shorter than the observational time. On the contrary, continuous signals have a duration
much larger than the observational time.

1.4.1 Transient sources

Let’s start with the transient sources. Two good examples of transient sources are compact
binary coalescences and core collapse supernovae.

Compact binary coalescence

When two massive objects orbit around each other, they form a binary system which emits
gravitational waves leading to momentum and energy loss. The binary system progressively
tightens until the two objects merge. The frequency of the emitted gravitational waves is
twice the orbital frequency and the amplitude of the signal depends on the mass of the two
objects according to Equation (1.18). At first order, with terrestrial interferometers, we can
only detect the end of the inspiral phase and the coalescence of binaries composed of two
black holes (BBH) up to 400 M�, two neutron stars (BNS) or a neutron star and a black
hole (NSBH).

In fact the first indirect proof of the existence of gravitational waves came from the
observation of the Hulse-Taylor binary system composed of two neutron stars orbiting around
each other, one of them being a pulsar emitting a periodic radio pulse. The orbital decay
of this system is observed since 1974 using the pulsar periodicity and corresponds exactly to
the Einstein prediction of the energy loss from gravitational wave emission [10].

Binary inspirals have a well-known theoretical waveform called a chirp: the frequency
and the amplitude increase with time with a characteristic evolution depending on the ”chirp
mass”, a combination of the mass m1 and m2 of the two objects of the system:

M = (m1m2)3/5

(m1 +m2)1/5 . (1.25)

Moreover, we consider these sources as transient sources because they enter the bandwidth
of ground based interferometric detectors (from few Hz to few kHz) close to their merger,
leading, for current gravitational wave detectors, to the detection of the last milliseconds to
30 minutes of the coalescence.

Detections

The first direct detection of gravitational waves, GW150914, was observed on the 14th of
September 2015 by the Advanced LIGO Hanford and Livingston gravitational wave detectors
during their first observing run (O1).

The gravitational wave was emitted by the coalescence of two black holes of initial masses
about 36 M� and 29 M� which formed a black hole of about 62 M�. An energy of about
3.0 M�c2 was radiated in gravitational waves. This coalescence took place at a luminosity
distance of about 410 Mpc from the Earth [11].

One can see in Figure 1.3 that the reconstructed gravitational wave signal is well-modeled
by general relativity prediction and that the strain peak (corresponding to the maximum
amplitude of the gravitational wave), is on the order of 10−21, which is the order of magnitude
calculated using Equation (1.24). This is extremely weak and this is the reason why it is so
important to increase the detector’s sensitivity.

The source localization in the sky for this detection is shown on the left of Figure 1.4.
The localization is determined using the time delay between two detectors and the amplitude
of the signal. With only two detectors, the detection region is roughly an annulus in the sky
with a width given by time detection uncertainty. Using three detectors we can reduce this
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Figure 1.3 – Upper row: Band limited filtered Advanced LIGO data (Hanford on the left and Livingston
superposed with Hanford on the right) on the 14th of September 2015. Lower row: Reconstructed
signal waveforms compared to the general relativity prediction as given by numerical relativity simu-
lations [11].

Figure 1.4 – Left : Skymap location of GW150914 given in terms of right ascension α measured in
hours and the declination δ measured in degrees. The dark blue corresponds to the 50% credible
region and the light blue corresponds to the 90% credible region [12].Right : Triangulation principle
using three detectors : H LIGO Hanford, L LIGO Livingston and V Virgo.

region to two points as shown on the right of Figure 1.4 and in practice to only one because
of the beam pattern of the detectors which are antenna sensitive to almost the whole sky but
not all [13].

There were only two detectors for the first detected event and its localization corresponds
to a two-dimensional credible region with 50% probability of 150 deg2 and a two-dimensional
credible region with 90% probability of 610 deg2, representing about 2800 S# [12], where S#
is the apparent surface of the full moon, or 1.5 % of the full sky sphere. This is a really huge
zone to look for hypothetic electromagnetic counterpart.

Three other events were observed then before the second event I want to discuss, GW170814
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Figure 1.5 – Skymap location of GW170814 90% credible regions given in terms of right ascension α
measured in hours and the declination δ measured in degrees. The yellow zone corresponds to the
rapid localization using data from the two Advanced LIGO detectors, the green one is the same but
with the inclusion of data from Advanced Virgo. The purple region is the refined localization using
the 3 detectors [14].

that was obtained in coincidence with 3 detectors: the two Advanced LIGO detectors and
the Advanced Virgo detector. The gravitational waves were emitted by the coalescence of
two black holes of initial masses about 31 M� and 25 M�. This coalescence took place at a
luminosity distance of about 540 Mpc from the Earth [14].

In fact, without the third detector, the sky localization of the source of GW170814 with
only the two Advanced LIGO detectors would have had a two-dimensional credible region
with 90% probability of 1160 deg2, representing about 5300 S#.

Using Advanced Virgo data shrinks this credible region to a surface of 100 deg2 with a first
rapid localization and only 60 deg2 for the refined localization, representing about 275 S#
as shown in Figure 1.5 [14]. This surface is manageable to cover using large field of view
telescopes on Earth.

The last event I want to describe is the GW170817 detected on the 17th of August 2017.
The signal was detected in the two Advanced LIGO detectors. According to its amplitude and
to Advanced Virgo sensitivity, it should have been detected in the Advanced Virgo detector
if it had not been in a blind zone of the Virgo antenna pattern. Consequently, the fact that
it was not seen gave information on the position in the sky of the source.

What is exceptional with this event is that the gravitational waves were emitted by the
coalescence of two neutron stars with a total system mass of about 2.74 M�. This coalescence
took place at a luminosity distance of about 40 Mpc from the Earth [15].

Moreover, this event was coincident with a short Gamma Ray Burst detected 1.7 s after
by the Fermi and INTEGRAL telescopes, GRB170817A. The combined 90% credible region
localization from the two Advanced LIGO detectors and the Advanced Virgo one was of
28 deg2 representing only 130 S# and in complete agreement with the localization obtained
from GBM-Fermi and INTEGRAL as shown in Figure 1.6.

There were about few dozens of galaxies in the 90% credible volume [18] which allows a
rapid optical localization of the apparent host galaxy, NGC4993, an elliptical galaxy in the
constellation Hydra, about 11 hours after the coalescence, by the Swope telescope with the
detection of a kilonova and independently confirmed by 5 other telescopes [17].

There were 3 observing runs during which many detections were made leading to the
publication of a gravitational wave transient catalog for the runs O1 and O2 [19] and two
other catalogs in preparation for the two parts O3a and O3b of the O3 run. A summary of
the observing runs is given in Table 1.1.
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Figure 1.6 – Left column: Top: Summed lightcurve from the GBM instrument of the Fermi telescope
between 50 and 300 keV around the GRB 170817 A event. Middle: Summed lightcurve from the
INTEGRAL telescope above 100 keV around the GRB 170817 A event. Bottom: The time-frequency
map of GW170817 obtained by coherently combining data from the two Advanced LIGO detectors [16].
Right column: Skymap location of GW170817 90% credible regions given in terms of right ascension
α measured in hours and the declination δ measured in degrees. The light green zone corresponds to
rapid localization using data from the two Advanced LIGO detectors, the dark green one is the same
but with the inclusion of informations from Advanced Virgo. The light blue region corresponds to
the localization using a triangulation from the time delay between Fermi and INTEGRAL and the
dark blue is the localization from the GBM instrument of the Fermi telescope. The inset shows the
location of the apparent host galaxy NGC4993 in the Swope optical discovery image at 10.9 hr after
the merger (top right) and the DLT40 pre-discovery image from 20.5 days prior to merger (bottom
right). The reticle marks the position of the transient in both images [17].

Run Date Active detectors Results

O1 2015/09/12 to 2016/01/19 H,L 3 BBH detections

O2 2016/11/30 to 2017/07/31 H,L 3 BBH detections

2017/08/01 to 2017/08/25 H,L,V 4 BBH and 1 BNS detections

21 BBH candidates

O3a 2019/04/01 to 2019/09/30 H,L,V 4 BNS candidates

4 NSBH candidates

4 other candidates

16 BBH candidates

O3b 2019/11/01 to 2020/03/27 H,L,V 2 BNS candidates

1 NSBH candidate

4 other candidates

Table 1.1 – Summary of the three observing runs made by the Advanced LIGO Hanford (H), Advanced
LIGO Livingston (L) and Advanced Virgo (V) detectors [19,20].
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Rates

Using the 11 detections of the 2 first observing runs, one can better evaluate the rate of
BBH and BNS merger in the Universe with respect to the first estimations [21].

The rate density of BBH and BNS mergers are respectively estimated to be 9.7-101 Gpc−3yr−1

and 110-3840 Gpc−3yr−1 [19]. Moreover, the maximum detection range at design of the Ad-
vanced detectors (LIGO, Virgo and KAGRA) for BBH merger is about 1500 Mpc and the one
for BNS merger is about 200 Mpc [22]. Consequently we can expect 100-1000 BBH mergers
and 2-100 BNS mergers per year at design sensitivities.

The last possible compact binary coalescence detectable by ground based interferometric
detectors is formed from one neutron star and one black hole (NSBH). It has not been detected
during the first two observing runs and the rate density of NSBH merger is estimated to be
below 610 Gpc−3yr−1 [19].

5 NSBH candidates were observed during the third observing run. The first one, GW190814
was further analyzed and the conclusion suggested that it unlikely came from an NSBH event
but more a BBH event. Nevertheless the uncertainty on the masses were to high and close to
the neutron star/black hole border to draw a definitive conclusion [23]. The 4 other candidates
of the third observing run still have to be further analyzed.

Core collapse supernovae

Supernovae are known and observed by astronomers from a very long time, but at a low
rate. The first observation of a supernovae took place in 1006, 48 years before the one in the
Crab constellation leading to the Crab Nebula and pulsar. Two other well-known historical
supernovae are the ones of Tycho Brahe and Johannes Kepler in 1572 and 1604. All these
supernovae happened in the Milky Way and Kepler’s one was the most recent one to be seen
in our galaxy.

Some other supernovae have been observed in the neighborhood of our galaxy. The
most recent was observed in 1987 in the Large Magellanic Cloud with optical telescopes and
neutrino detectors [24].

Astronomers divide supernovae into many categories. The type Ia Supernovae are pro-
duced by white dwarfs in binary systems accreting mass from their companion leading to a
collapse when the mass of the white dwarf goes beyond its stability limit. As this is not a
compact system, we do not expect substantial gravitational waves emission from this type of
supernovae.

The types Ib, Ic and II supernovae are produced from the core collapse of massive stars
(M & 8 M�) when nuclear burning fails to support them leading to a neutron star or black
hole remnant. In this case we expect asymmetries in the core collapse leading to gravitational
waves emission.

For long, core collapse supernovae have been considered as a primary source of gravi-
tational wave bursts [25]. The modelling of stellar core collapse is extremely challenging
because of the complexity of the physical processes to take into account: general relativistic
hydrodynamics, magnetic fields, rotation, neutrino transport and nuclear physics [26].

Consequently, the gravitational wave waveform produced by the stellar core collapse is
only known through numerical simulations. Many waveforms have been simulated [27] leading
to a few common features:

• the efficiency of the gravitational wave emission depends on the angular momentum of
the progenitor star,

• the frequency stands in the range between 100 Hz to few kHz,

• the duration of the event is short, but up to few seconds.
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Moreover the typical gravitational wave amplitude at 10 kpc is expected to be in the
10−23 to few 10−22 range [26] constraining our detection capabilities to the Milky Way and
Small and Large Magellanic Clouds where we only expect a few events per century [28].

Consequently core collapse supernovae will be hard to detect because of their low rate
and unknown waveform but this would be a great discovery for multimessenger astronomy
and to understand the supernovae explosion mechanism.

1.4.2 Continuous signals

Continuous signal are of two types. The first one corresponds to sources emitting gravita-
tional waves continuously with a nearly constant frequency over a period of time that is long
compared to the observational time. The best example of such sources are rapidly rotating
neutron stars. The second type of continuous signals is stochastic background.

Neutron stars

Rotating neutron stars are the principal sources of continuous gravitational waves in the
ground based detectors frequency band. They emit gravitational waves if they are non-
axisymmetric or if the axis of symmetry of the star is not the same as the rotational axis [29],
at a frequency f equal to twice the rotational frequency. Considering a typical pulsar, a
particular type of neutron stars emitting a periodic radio pulse the wave amplitude can be
approximated by [30]:

h ∼ 3× 10−31
(

f

1 kHz

)2 (10 kpc

r

)
. (1.26)

In the case of observed pulsars the rotational frequency can be precisely measured. Con-
sequently we can reconstruct the gravitational wave signal emitted by the known pulsars,
corresponding to a gravitational wave amplitude of the order of 10−26 [31].

This gravitational waves emission contributes to slow down the rotation of the neutron
star in addition to the electromagnetic energy loss. Using the LIGO and Virgo data it is
possible to put a constrain on the amount of gravitational waves emission contributing to the
spin-down of some pulsars. In particular, for the Crab and Vela pulsars, gravitational waves
emission contributes to respectively less than 1% and 10% of their respective spin-down [32].

Stochastic background

Part of the stochastic gravitational background can be defined as a superposition of random
sources arising from an extremely large number of unresolved, independent and uncorrelated
events that happened shortly after the Big Bang or more recently in the past several billion
years [33]. Consequently it appears as noise in a single gravitational wave detector and we
have to combine data from several detectors with uncorrelated noises to distinguish the signal
from the noise.

The sources of stochastic background are of different types from cosmological sources such
as cosmic strings [34] to the superposition of compact binary mergers [35] too weak to be
resolved. Other sources of stochastic background can be found in theories predicting some
phase transitions in the early Universe. Using the first Advanced LIGO observing run [36]
and the BNS merger detection GW170817 [37], upper limits have been put on the stochastic
gravitational background since it has not been detected yet.

1.5 Motivations

The detection of gravitational waves is not only important because it confirms the prediction
of their existence. It is a complete new way to study our Universe using a new messenger in
addition to the photon.
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1.5.1 Astrophysics

The first detection of gravitational waves, GW150914, had many astrophysical implications
[38]. In fact it was the first evidence of BBH systems and moreover the masses of the
progenitors (> 25 M�) were surprising because such massive stellar black hole had never
been observed in the known X-ray binaries which were until then the only evidence of the
existence of stellar black holes.

We can explain these high masses if the progenitors were formed in a low metallicity
environment, e.g. half the metallicity of the Sun, so that the massive stars which gave birth
to the black holes did not suffer high winds. Consequently this give information on the
medium where the progenitor stars formed.

Moreover, using the detections of gravitational waves from BBH and in particular the spin
information, we can constrain the astrophysical formation models of such BBH systems [39].

Otherwise, the detection of a BNS merger, GW170817, allows us to constrain the models
of neutron star equation of state [16]. Furthermore, the simultaneous detection of a short
GRB leads to the conclusion that BNS can be the progenitors of such short GRB.

Finally, we observed a kilonova, due to radioactive decay of rapid neutron capture process
(r-process), in coincidence with a BNS merger observed through gravitational waves, giving
the evidence that nucleosynthesis of heavy elements like gold takes place in such BNS mergers
[17].

1.5.2 Tests of general relativity

In addition to astrophysical implications, the detection of gravitational waves allows to test
the general theory of relativity in the strong field regime. It was for instance shown that the
predicted compact binary coalescence waveform was in complete agreement with the detected
ones. Moreover, waveform models with parameters beyond general relativity were used to
put bounds on several high order post-Newtonian coefficients [40].

Only with the first detection, GW150914, the Compton wavelength of the graviton was
constrained to a 90% confidence level to be higher than 1013 km corresponding to a hypothetic
mass of the graviton mg ≤ 1.2× 10−22 eV/c2. Then using the coincidence detection between
the BNS merger GW170817 and the GRB, we can constrain the difference between the speed
of gravity and the speed of light to be between −3 × 10−15 and 7 × 10−16 [16], which is
consistent with 0 invalidating many models beyond general relativity.

Moreover, using GW170817 and its electromagnetic counterpart, bounds have been put
on the violation of Lorentz invariance and a new test of the equivalence principle has been
performed [16].

Finally, the three detectors observation of the BBH merger GW170814 allowed the first
test of the gravitational waves polarizations from the antenna response of the LIGO-Virgo
network [14] testing polarizations predicted by theory beyond general relativity.

So far, there was no evidence of deviations from the Einstein theory of relativity, but
gravitational waves are the best probes to test this theory and put constrains on other grav-
itational theories.

1.5.3 Cosmology

Gravitational waves detections have also an impact on cosmology. In fact the study of the
stochastic background of cosmological origin is the best way to probe the early Universe,
before recombination and the Cosmological Microwave Background. For instance, we may
see amplification of vacuum fluctuations, phase transitions in the early Universe or cosmic
strings [41].

Furthermore, the detection of BNS in coincidence with an electromagnetic counterpart is
a new independent way to measure the Hubble constant H0 as the luminosity distance dL
of the gravitational wave source is well reconstructed and depends mostly on the inclination
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Figure 1.7 – GW170817 measurement of the Hubble constant H0 compared with two other measure-
ments: the CMB measurement from Planck in green and the type Ia supernova measurements from
SHoES in orange [42]

angle of the source [42] which could be better reconstructed with more detectors. As we can
see in Figure 1.7, there are tensions in the cosmological community about the value of H0 and
the value determined using GW170817 stands just in the middle of two other measurements,
but with far more larger uncertainty with only one event.

It is also possible to constrain the Hubble constant even without electromagnetic obser-
vation to an accuracy of few percents using an analysis based on wide-field galaxy surveys for
the location, and consequently redshift, of the source. It would need few tens of observations
from a network of advanced gravitational wave detectors [43].
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Gravitational wave detectors

Gravitational wave detectors based on an optical interferometer have first been proposed
soon after the Chapel Hill Conference in 1957 where Pirani convinced the community that
gravitational waves have a physical reality [7]. In fact the first proposals were published at
the beginning of the 1960’s [44] in parallel with Weber first proposal of a bar detector [8].

In this chapter I will give a short introduction about gravitational wave detectors. Then
I will focus on the operation of a ground based interferometric detector and its main noise
sources. Finally I will present the impact of several sensitivity improvements on the possibil-
ities of detection.

2.1 Overview of gravitational wave detectors

2.1.1 Weber bars

The first gravitational wave detectors were constructed in the 1960’s by Joseph Weber as
shown in Figure 2.1. They were large cylindrical test masses in which gravitational waves
could induce quadrupole vibrations exciting the longitudinal vibrational mode of the bar.
This receiver can be modeled as a pair of point masses linked by a mechanical spring. The
stiffer the spring the better the coupling to gravitational waves is. In such a mechanically
coupled detector, the effect of a wave is to create an acoustic signal which is then transduced
and amplified in order to convert it into an electromagnetic signal which can be analyzed [8].

By construction, Weber bars are able to detect gravitational wave at frequencies on the
order of the kHz, corresponding to the resonance frequency of the bar, with a tiny bandwidth,
on the order of 100 Hz. The main sources which can be seen at these frequencies are core
collapse supernovae.

In 1969, Weber claimed an evidence for discovery of gravitational radiation using this kind
of detector [45]. Nevertheless, the energy detected seemed too high to be true. Moreover,
many research groups built their own bar detectors but found no evidence of gravitational
radiation.

A new generation of resonant mass detectors has been developed, cooled to reduce ther-
mal noise and to enable the use of low noise superconducting transducers. From 1997 to 2000
a network of five cryogenically cooled resonant bar detectors, the International Gravitational
Event Collaboration (IGEC), searched for transient events but their observations were con-
sistent with no detection, setting upper limit on the rate of gravitational wave transients [46].

In 2006, new instruments were designed using a spherical antenna. This provides an
isotropic sky coverage and the determination of the source position and wave polarization.
Nevertheless there sensitivity would be at a first stage on the order of the sensitivity of initial
LIGO and Virgo but only in the bandwidth 900 Hz < f < 1100 Hz [47].

25
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Figure 2.1 – Joseph Weber with an aluminum bar instrumented with piezoelectric crystals to read out
the vibrations.

2.1.2 Pulsar timing

Pulsars have been discovered in 1967 in the data of a radio telescope as a regular strain of
pulse radiation. Many factors determine the intensity, shape and arrival times of the pulses.
Among them are the pulsar’s magnetosphere, the pulse propagation through the interstellar
medium and the radio telescope.

During its travel from the pulsar to the observatory, light can be delayed by gravitational
waves. As a result, information related to gravitational waves passing between the Earth and
the pulsar are encoded into the pulse arrival times.

The pulsar timing method is based on the comparison of the observed pulses times-of-
arrival of several pulsars with a prediction from a model of the pulsars and the propagation of
the pulses through the interstellar medium. Gravitational wave signals are not included in a
pulsar timing model and, hence, any such wave will induce deviations between the predicted
and observed times-of-arrival. The expected signal induced by gravitational waves is small
with typical deviations < 100 ns.

The International Pulsar Timing Array project (IPTA) [48] combines observations of
millisecond pulsars from several observatories aiming to detect gravitational waves in the
ultra-low frequency, i.e. of the order of few nHz. The possible sources at these frequencies
are binary supermassive black holes. No detection have been reported yet, but the arrival
of many new telescopes in the coming years will increase the number of known pulsars and
the precision of pulsar timing. The integration of few years of data will be necessary to get
detection with a significant signal to noise ratio.



2.1. Overview of gravitational wave detectors 27

2.1.3 Space interferometers

Binary supermassive black holes emit gravitational waves up to mHz frequencies. It is possible
to detect them using an interferometer with million of kilometers arms which requires to go in
space. The Laser Interferometer Space Antenna (LISA) mission is planned jointly by NASA
and ESA to be launched in 2030’s [49].

The LISA data analysis will have to manage with a background of lighter binary inspi-
rals in our galaxy. Moreover, LISA could detect BBH, BNS and NSBH in their inspiral
phase several years before their merger in the LIGO/Virgo frequency bandwidth [50]. This
would enable coordinated observations between ground based detectors and electromagnetic
telescopes.

As illustrated in Figure 2.2, LISA will consist of an equilateral triangle constellation of
three spacecrafts in heliocentric orbits at 1 astronomical unit from the Sun and 20° behind
the Earth. The distance between two spacecrafts will be 2.5 × 109 m and each spacecraft
will contain two test masses. Laser interferometry is used to monitor the distance changes
between the test masses and the optical bench inside each spacecraft. [51].

Figure 2.2 – Artist’s impression of the LISA mission composed of three spacecraft.

The LISA Pathfinder spacecraft successfully tested several technologies which will be
used on LISA. It demonstrates that two test masses can be put in free fall with a relative
accelerating noise performance close to the one requested for LISA [52].

2.1.4 Atom interferometers

A new technique has been proposed in the past decade to detect gravitational waves in the
bandwidth between space interferometers and ground based interferometers, i.e. from 0.3 Hz
to 3 Hz. This technique is based on a correlated array of atom interferometers [53].

Atom interferometers replace mirrors by ballistic atoms as inertial test masses [54]. Laser
light finely tuned is used as beamsplitter and mirror for atoms and interferences between two
paths of the quantum probability function of the atom are used to probe the gravitational
field.

For some conservative models, strain sensitivities below 1 × 10−19/
√

Hz could be reach
between 0.3 and 3 Hz with a peak sensitivity of 3× 10−23/

√
Hz at 2 Hz.

A summary picture of the different types of detectors is presented in Figure 2.3 with their
frequency range and real or foreseen sensitivities. We can see that they are complementary
from each others. The sensitivity of a detector will be defined in Section 2.3 and ground
based interferometric detectors will be described in the next sections.
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Figure 2.3 – Sensitivity curves of different types of gravitational wave detector projects and some
sources according to the frequency. Pulsar timing: EPTA, IPTA, SKA; space-based interferometers:
eLISA, LISA, ALIA, DECIGO, BBO; ground based interferometers: TAMA, GEO, LIGO, Virgo,
aLIGO, aVirgo, KAGRA, ET [55].

2.2 Ground based interferometric detectors

2.2.1 History

First studies were undertaken in the 1970’s on kilometer-scale interferometers and estimation
of their noise sources. In the mid-1980’s the first discussion about LIGO and Virgo detec-
tors started, leading to proposal submissions by the end of this decade and approval in the
beginning of 1990’s [56, 57]. They are respectively at the origin a US collaboration and a
France-Italy collaboration. Other European countries then joined the Virgo collaboration.

In the mid-1990’s, the construction of the three sites (LIGO in Hanford, LIGO in Liv-
ingston and Virgo in Cascina near Pisa) started, ending at the end of 1990’s/beginning of
2000’s. Data were taken independently by the two collaborations in the 2000’s and the first
joint observations with enhanced initial LIGO and Virgo detectors happened in 2007 before
installation and commissioning of advanced LIGO and advanced Virgo detectors leading to
the detections described in Chapter 1.

These detectors are sensitive in the audio frequency, from few Hz to few kHz. The
description of this kind of detectors will be the object of the rest of this chapter.

2.2.2 Simple Michelson interferometer

A simple Michelson interferometer is composed of a light source, often a laser, a beam splitter
and two mirrors as shown in Figure 2.4. At the beam splitter, light is separated in two beams:
one beam is reflected towards the mirror MY, the other beam is transmitted towards the
mirror MX. They constitute the two arms of the interferometer. Each light beam is then
reflected on a mirror back to the beam splitter where they are recombined: one beam towards
the laser source and the other beam towards a detection photodiode.

The amplitude of the light sent to the detection photodiode depends on the phase differ-
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Figure 2.4 – Scheme of a simple Michelson interferometer. rX , rY and tX , tY are the amplitude
reflectivities and transmissivities of the end mirrors MX and MY

ence between the two arms, in other words on the differential length of the two arms and,
as explained in Chapter 1, gravitational waves have a differential effect on lengths. That is
why such kind of interferometers can be used to detect gravitational waves. I will give more
details on the simple Michelson interferometer.

First let’s introduce some definitions and conventions. The laser beam at a position
−→r = xûx + yûy + zûz and a time t can be described by its electromagnetic field :

ψ(−→r , t) = ψ0e
−i
(−→
k0·,−→r −ω0t

)
(2.1)

where
−→
k0 is the wave vector with |

−→
k0| = ω0/c, ω0 is the angular frequency and ψ0 is the initial

field. According to Equation (2.1), when light propagates over a distance L, it undergoes a
phase shift k0L.

An optical system, such as a mirror or a lens, can be characterized by its amplitude
reflectivity r, its amplitude transmissivity t and losses L such that r2 + t2 + L = 1.

When light is reflected on a medium with a higher refractive index, it undergoes a local
phase shift of π. Consequently the electromagnetic field ψ is multiplied by e−iπ = −1. The



30 Chapter 2. Gravitational wave detectors

convention used for the reflection and transmission coefficient on a surface is then:(
t t
−r r

)
.

Using these rules and the scheme of Figure 2.4, we can write the electromagnetic field
at several points in the interferometer with respect to the incoming field ψin on the beam
splitter:

ψ1 = −rBSψin, (2.2)

ψ2 = rY rBSψine
−2ik0LY , (2.3)

ψ3 = tBSψin, (2.4)

ψ4 = −tBSrXψine−2ik0LX , (2.5)

ψref = −rBSψ2 + tBSψ4, (2.6)

ψout = tBSψ2 + rBSψ4. (2.7)

The two important beams are the one reflected towards the laser source defining the
symmetric port and the one transmitted towards the detection photodiode defining the anti-
symmetric port of the interferometer. We can write their fields ψref and ψout with respect to
the incoming field ψin:

ψref = −
(
t2BSrXe

−2ik0LX + r2
BSrY e

−2ik0LY
)
ψin, (2.8)

ψout = rBStBS
(
rY e

−2ik0LY − rXe−2ik0LX
)
ψin. (2.9)

Finally, considering a perfect beam splitter, with rBS = tBS = 1/
√

2, corresponding to
50% of the incoming power in each arm, we get:

ψref = −ψin2
(
rXe

−2ik0LX + rY e
−2ik0LY

)
, (2.10)

ψout = ψin
2
(
rY e

−2ik0LY − rXe−2ik0LX
)
. (2.11)

For simplicity, and to simplify calculations in the next sections, we can interpret the
Michelson interferometer as a mirror with complex amplitude reflectivity and transmissivity
rMI and tMI defined as:

rMI = ψref
ψin

, (2.12)

tMI = ψout
ψin

. (2.13)

With the detection photodiode, we measure the power in the anti-symmetric port:

Pout = |ψout|2 = Pin
4
(
r2
X + r2

Y

)
(1− C cos(∆φ0)) , (2.14)

with Pin = |ψin|2 the input power, ∆φ0 = 2k0∆L0 = 2k0(LY −LX) the phase difference in the
light paths in the two arms at their nominal lengths LX and LY and C = 2rXrY /(r2

X + r2
Y )

the contrast factor.

If we consider the end mirrors MX and MY as perfectly reflective, i.e. rX ∼ rY ∼ 1, we
can approximate Equation (2.14):

Pout = Pin
2 (1− cos(∆φ0)) . (2.15)
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We saw in Chapter 1 the effect of the passage of a gravitational wave on a circle of free
test masses represented in Figure 1.1 and its mathematical expression in Equation (1.11).
The variation δt of the travel time t along the two arms of length L due to a gravitational
wave of amplitude h leads to a variation of the phase difference ∆φ = ∆φ0 + δφGW with:

δφGW = 2k0hL� 1. (2.16)

We can use a Taylor expansion to express the power detected on the photodiode in the
presence of a gravitational wave:

Pout '
Pin
2 (1− cos(∆φ0) + δφGW sin(∆φ0)) . (2.17)

Consequently, the power variation induced on the photodiode by the passage of a gravi-
tational wave is:

δPGWout = Pin
2 δφGW sin(∆φ0). (2.18)

Until now we considered only stationary gravitational wave. Introducing a time depen-
dence, we can write h(t) = h0e

iωt. Consequently the phase difference due to a gravitational
wave can be written as:

δφGW = 2
∫ t

t− 2L
c

ω0h0e
iωt dt, (2.19)

where ω0 is the angular frequency of the laser light source of the interferometer. By integration
we find:

δφGW = 4Lω0
c

sin(Lωc )
Lω
c

h0e
−ikLeiωt. (2.20)

Figure 2.5 – Frequency response of a simple Michelson interferometer with arm length of 3 km (red
line), 10 km (blue line).

Equation (2.20) is plotted in Figure 2.5 for a laser wavelength λ0 = 1064 nm and arm
lengths L of 3 km and 10 km for comparison. The frequency f is the frequency of gravitational
waves such as ω = 2πf . We can note some features:
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• When f � c/2L the amplitude of the effect is constant for a fixed arm length and
increase with the arm length.

• When f is an integer multiple of c/2L the interferometer is not sensitive to the gravi-
tational wave signal.

• When f is above c/2L the envelope of the amplitude decays as 1/f .

• The longer are the arms, the more sensitive is the instrument.

2.3 Noise sources

Gravitational wave detectors are limited by many kinds of noise sources. It is important to
understand them in order to limit their impact on the detector and mitigate the signal from
the noise. To do so I will define the sensitivity of a detector and then the impact of the main
noise sources on the detector sensitivity.

2.3.1 Sensitivity

The sensitivity of a detector is defined by the minimal amplitude h of a gravitational wave
that the instrument is able to detect. The sensitivity is defined over a certain frequency range

as an amplitude spectral density
∼
h(f) expressed in 1/

√
Hz.

To define the amplitude spectral density we can start with a general deterministic function
of time s(t) and define its auto-correlation function:

s ? s(τ) = lim
T→+∞

1
2T

∫ T

−T
s(t)s(t+ τ) dt. (2.21)

The width of the function in Equation (2.21) conveyed the temporal coherence of the
function s(t), i.e. it is related to the speed at which the function changes over time. According
to the Wiener-Khintchine theorem, the power spectral density is the Fourier transform of the
auto-correlation function:

S(f) = 1√
2π

∫ +∞

−∞
s ? s(τ)e−i2πfτ dτ. (2.22)

Finally the amplitude spectral density is simply:

∼
S(f) =

√
S(f). (2.23)

The designed sensitivity of the Advanced Virgo detector is represented in black in Figure
2.6. Only the main noise sources have been reported in this plot. They will be described in
the next sections.

2.3.2 Seismic noise

The seismic noise is not a dominant noise in the bandwidth of interest of Advanced Virgo
but I want to first describe it because this defined an important feature of ground based
interferometric detectors. Seismic noise is due to ground motion. Below 1 Hz it has mainly
natural factors such as earthquakes, wind or ocean waves. Above 1 Hz, it is mainly produced
by human activity. The characteristic scale of the spectrum of the displacement noise due to
the seismic noise is:

∼
x(f) ∼ 10−9 m/

√
Hz

1 1 Hz < f ≤ 10 Hz(
10Hz
f

)2
f > 10 Hz

(2.24)
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Figure 2.6 – Simulation of the sensitivity curve of the Advanced Virgo detector at design.

The equivalent strain noise
∼
hseis(f) is obtained by taking into account the round trip

travel of the photon in the interferometer arms:

∼
hseis(f) ∼ 2

∼
x(f)
L

. (2.25)

Consequently, for a km-scale interferometer at f = 10 Hz we get:

∼
hseis(f) ∼ 10−12/

√
Hz. (2.26)

This noise is 9 orders of magnitude higher than what we want to detect. Consequently
it must be attenuated. To do so we use a pendulum chain with an inverted pendulum
represented in Figure 2.7.

The attenuation principle can be approximated by a simple damper with a transfer func-
tion:

∼
H(ω) = ω2

r

ω2
r − ω2 , (2.27)

where fr = ωr/2π is the damper fundamental frequency. For ω � ωr the module of the
transfer function can be approximated by:

∣∣∣ ∼H(ω)
∣∣∣ ' (ωr

ω

)2
. (2.28)

Consequently a chain of N dampers has a transfer function:

∣∣∣ ∼H(ω)
∣∣∣ ' (ωr

ω

)2N
. (2.29)

For Advanced Virgo 5 pendula are used with a fundamental frequency fr ∼ 0.6 Hz and
an inverted pendulum with a fundamental frequency fr ∼ 40−80 mHz. The strain noise due
to seismic noise at 10 Hz is now [59]:

∼
hseis(f) ∼ 10−29/

√
Hz. (2.30)
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Figure 2.7 – Scheme of an Advanced Virgo superattenuator [58]. Each cavity mirror and the beam
splitter are placed at the bottom of a superattenuator.

2.3.3 Quantum noise

Quantum noise plays an important role over the whole bandwidth. It is even a limiting noise
at high frequency. Quantum noise is the sum of two noises inherent to the quantum nature of
light: shot noise and radiation pressure fluctuation noise, that I will describe here. The aim
of this thesis is to reduce this quantum noise. The way we plan to reduce it will be described
in Chapter 3.

Shot noise

As I described in Section 2.2.2, the observable effect of the passage of a gravitational wave is a
variation of power detected on the photodiode of the antisymmetric port of the interferometer.
Thus the detection sensitivity is limited by the smallest power change we can detect.

Rewriting Equation (2.17) we find:

Pout ' Pin

sin2
(∆φ0

2

)
︸ ︷︷ ︸
Source of noise

+ δφGW sin
(∆φ0

2

)
cos

(∆φ0
2

)
︸ ︷︷ ︸

Signal

 , (2.31)

with ∆φ0 the phase difference between the two arms of the interferometer at their nominal
lengths. Consequently we can write the powers associated with the signal and the source of
noise Psignal and Pnoise:

Psignal = PinδφGW sin
(∆φ0

2

)
cos

(∆φ0
2

)
, (2.32)

Pnoise = Pin sin2
(∆φ0

2

)
. (2.33)

The detected signal power Pin of Equation (2.32) reaches its maximum when ∆φ0 = π/2
corresponding to a mid-fringe. But we will see that this is not optimal for the detection
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because the noise is also important at mid-fringe. What we want to maximize is not the
detected signal power but the signal to noise ratio defined as the ratio between signal power
and the detected power fluctuation of the noise δPnoise.

The detected power fluctuation is due to the fact that the arrival of photons on the
photodiode are discrete independent events described by a Poisson distribution. In a counting
interval characterized by a mean number N̄ , the probability to count N events is:

P (N) = N̄Ne−N̄

N ! . (2.34)

If N̄ � 1, the Poisson distribution can be approximated by a Gaussian distribution with
a standard deviation σN̄ =

√
N̄ .

Note n̄ the rate of arrival of photons on the photodiode in Hz. The average number of
photons incident on the photodiode during a time τ is then:

N̄ = n̄τ. (2.35)

Now we can evaluate evaluate the average power detected Pnoise by a photodiode impinged
by a laser light at frequency f0 = ω0/2π. Each photon carries a energy ~ω0. Consequently
we have:

Pnoise = n̄~ω0 = N̄
~ω0
τ
. (2.36)

Thus the detected power fluctuation due to Poisson statistics is:

δPnoise = σN̄
~ω0
τ
. (2.37)

Equalizing Equations (2.33) and (2.36) we find:

N̄
~ω0
τ

= Pin sin2
(∆φ0

2

)
. (2.38)

Consequently:

N̄ = Pinτ

~ω0
sin2

(∆φ0
2

)
. (2.39)

And then:

σN̄ =
√
N̄ =

√
Pinτ

~ω0
sin
(∆φ0

2

)
. (2.40)

Finally injecting Equation (2.40) in Equation (2.37) we get the expression of the detected
power fluctuation:

δPnoise =

√
Pin~ω0
τ

sin
(∆φ0

2

)
. (2.41)

Then the signal to noise ratio is:

SNR = Psignal
δPnoise

=
√
Pinτ

~ω0
cos

(∆φ0
2

)
δφGW . (2.42)

It is maximum when ∆φ0 = 0 corresponding to a dark fringe on the detection photodiode
of the antisymmetric port. On this dark fringe, the signal to noise ratio is now:

SNR =
√
Pinτ

~ω0
δφGW (2.43)
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Remembering that the sensitivity of the detector is the minimal amplitude h of a gravi-
tational wave that the instrument is able to detect, we can determine the amplitude spectral

density
∼
h(f) supposing that the minimal SNR detectable is SNR = 1. Thus:

δφGW,min =
√

~ω0
Pinτ

, (2.44)

leading to:
∼
δφGW (f) =

√
~ω0
Pin

. (2.45)

And according to Equation (2.16):

∼
δφGW (f) = 4π

∼
h(f)L
λ0

. (2.46)

Finally we get the shot noise limited sensitivity of the detector
∼
hSN (f) at dark fringe

with respect to the laser wavelength λ0, the length L of the arms of the interferometer and
the input power Pin:

∼
hSN (f) = λ0

4πL

√
~ω0
Pin

. (2.47)

According to Equation (2.47), the shot noise limit is independent on the frequency and
inversely proportional to

√
Pin.

Radiation pressure fluctuation noise

The impact of the photons on a mirror of the interferometer induces a mirror displacement
due to the radiation pressure force as shown in Figure 2.8.

Figure 2.8 – Scheme of the radiation pressure force on a mirror.

The radiation pressure force FRP is proportional to the input power Pin as:

FRP = 2Pin
c
. (2.48)

Using the same approach as for shot noise we can write the fluctuation of radiation
pressure force on the mirror:

δFRP = δPin
c

=

√
N̄~ω0

τc
= 1
c

√
Pin~ω0
τ

, (2.49)
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leading to an amplitude spectral density
∼
δFRP (f):

∼
δFRP (f) =

√
Pin~ω0
c

. (2.50)

From the pendulum equation, the mirror of mass m moves with a spectrum:

∼
x(f) = 1

mω2

∼
δFRP (f) = 1

mf2

√
Pin~

8π3λ0c
. (2.51)

Moreover, as the power fluctuations in the two arms are anti-correlated [60], the effect on
the output of the interferometer is doubled and as for Equation (2.25) we have:

∼
hRP (f) = 2

∼
x(f)
L

= 1
mf2L

√
Pin~

2π3λ0c
. (2.52)

According to Equation (2.52), the radiation pressure fluctuation noise limit depends on
the frequency as 1/f2 and is proportional to

√
Pin.

Standard quantum limit

Now we can define the total quantum noise represented in red (dashed and continuous lines)
in Figure 2.9 for two different input power. It is the sum of the shot noise and the radiation
pressure fluctuation noise:

∼
hQN (f) =

∼
hSN (f) +

∼
hRP (f). (2.53)

We can see from Equations (2.47) and (2.52) that if we increase the laser power, we reduce
the shot noise while increasing the radiation pressure fluctuation noise. In the same way, if
we reduce the laser power, we reduce the radiation pressure fluctuation noise while increasing
the shot noise as illustrated in Figure 2.9.

This leads to the standard quantum limit which can be approximated using the limiting

power Popt such that
∼
hSN (f) =

∼
hRP (f). We find:

Popt = λ0
2 πcmf

2, (2.54)

∼
hSQL(f) ∼

∼
hSN (f, Popt) =

∼
hRP (f, Popt). (2.55)

Thus:

∼
hSQL(f) ∼ 1

πLf

√
~

2m. (2.56)

The standard quantum limit is inversely proportional to the frequency. It is represented
in black in Figure 2.9. This is this standard quantum limit we are interested to beat in a way
I will describe in Chapter 3.

2.3.4 Other sources of noise

The two other dominant sources of noise represented in Figure 2.6 I want to describe are the
thermal noise and the gravity gradient noise, also called Newtonian noise. There are other
noise sources [61] but I won’t describe them because they don’t limit our design sensitivity.
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Figure 2.9 – Plot of the shot noise (blue), radiation pressure fluctuation noise (green) and their sum:
quantum noise (red) for two beam powers (10 kW and 5 MW). The standard quantum limit is plotted
in black.

Thermal noise

The dominant thermal noises are the one from the coating of the mirrors and the suspensions.
They are due to random excitation of vibration modes proportional to the temperature of
the system.

The thermal noise due to coating vibration modes limits the sensitivity between 50 and
200 Hz.

The pendulum thermal noise has a resonance frequency at 0.6 Hz due to the suspension
described in Section 2.3.2. It is a main noise below 10 Hz but it is minimized using silica
suspension wire fused on the mirrors with a high quality factor.

The violin modes are vibration modes of the suspension wires. They have some resonant
frequencies around 450 Hz and its multiple integers.

The spectrum of the mirror movements due to thermal noise can be written [31]:

∼
x(f) =

√√√√4kBTω2
r

Qmω

1
(ω2
r − ω2)2 + ω4

r
Q2

m/
√

Hz, (2.57)

where Q is the quality factor of the suspension, m the mirror mass, T the temperature, ωr is
linked to the resonance frequency of the suspension and ω to the frequency of the gravitational
wave. Under this form we can understand the possible improvement concerning thermal noise
that will be describe in Section 2.5.2.

Gravity gradient noise

The gravity gradient noise or Newtonian noise is due to local change in the gravitational
field induced by a variation of the mass distribution. It is produced by seismic waves in the
ground and density fluctuations in the atmosphere.

This noise is very difficult to mitigate, because it is hardly measured and modeled. More-
over, as shown in Figure 2.6, it is a limiting noise from few Hz to 20 Hz. Nevertheless some
solution to reduce its impact will be presented in Section 2.5.2.
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2.4 First sensitivity improvements

To have a better sensitivity, gravitational wave detectors are not simple Michelson interferom-
eters. In Section 2.3, I derived the expressions of some main noise sources through Equations
(2.25), (2.47) and (2.52). They are all inversely proportional to the arm length. However
it would be difficult and too expansive to build on Earth a 100-km arm length detector. In
addition, as shown in Figure 2.9, the laser power in the arms needed to reach Advanced Virgo
sensitivity are much higher than what we can achieve with a simple laser source.

Fabry-Perot cavities are a way to solve these issues by increasing the optical path length
as well as the laser power in the arms. I will describe their effect in this section. Moreover, the
sensitivity can also be optimized using other solutions: power recycling and signal recycling.

2.4.1 Fabry-Perot arm cavity

Description of the Fabry-Perot cavity

A Fabry-Perot cavity is composed of two mirrors M1 and M2 with respectively an amplitude
reflectivity and transmissivity r1, t1 and r2, t2 separated by a distance L as represented in
Figure 2.10. Light of wave vector k0 is sent through the entrance mirror. A simplified view
is to say that a part of the light is reflected and a part of it is transmitted towards the cavity
making several round trips inside the cavity before being reflected back towards the entrance
mirror M1 or transmitted by the end mirror M2.

Figure 2.10 – Scheme of a Fabry-Perot cavity.

As for the Michelson interferometer, we can write the electromagnetic field at several
points in the Fabry-Perot cavity with respect to the input field ψin at the entrance mirror
M1:

ψ1 = t1ψin − r1ψ4, (2.58)

ψ2 = ψ1e
−ik0L, (2.59)

ψ3 = −r2ψ2, (2.60)

ψ4 = ψ3e
−ik0L, (2.61)

ψtr = t2ψ2, (2.62)

ψref = r1ψin + t1ψ4, (2.63)

ψcav = ψ1. (2.64)
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Using these equations we can write the complex amplitude transmissivity tFP , reflectivity
rFP and the gain gFP of the cavity:

tFP = ψtr
ψin

= t1t2e
−ik0L

1− r1r2e−2ik0L
, (2.65)

rFP = ψref
ψin

= r1 − r2
(
r2

1 + t21
)
e−2ik0L

1− r1r2e−2ik0L
, (2.66)

gFP =
∣∣∣∣ψcavψin

∣∣∣∣ =
∣∣∣∣ t1
1− r1r2e−2ik0L

∣∣∣∣ . (2.67)

To obtain the power Pi, which is the measurable quantity, from the electromagnetic field
ψi we have:

Pi = ψi · ψ∗i = |ψi|2. (2.68)

Consequently, from Equation (2.65), the transmitted power Ptr is:

Ptr = Pin
t21t

2
2

1 + r2
1r

2
2 − 2r1r2 cos(2k0L)

. (2.69)

According to Equation (2.69), the power transmitted by the Fabry-Perot cavity is maxi-
mum when the phase shift φ = 2k0L fulfill the resonance condition:

φ = 2πn, n ∈ N (2.70)

Using Equations (2.66) and (2.67), we can see that at resonance, the circulating power
is maximum and the reflected power is minimum. The separation between two consecutive
resonances is called a free spectral range. It can be expressed as a length with respect to
the laser wavelength λ0:

∆LFSR = λ0
2 , (2.71)

or as a frequency with respect to the cavity length L:

∆νFSR = c

2L. (2.72)

The full width at half maximum of the transmitted power is the linewidth δν of the cavity.
From Equation (2.69), we have:

δν = ∆νFSR
π

arccos
(
−1 + r2

1r
2
2 − 4r1r2

2r1r2

)
. (2.73)

For gravitational wave detectors, we use cavities with high reflectivities, i.e. r1r2 ∼ 1.
Consequently we can approximate the full width at half maximum by:

δν ' ∆νFSR
1− r1r2
π
√
r1r2

. (2.74)

The finesse of a cavity is defined by the ratio between the free spectral range and the
linewidth of the cavity:

F '
π
√
r1r2

1− r1r2
. (2.75)

We often characterize a cavity by its finesse. The finesse and the linewidth depend on the
reflectivities of the mirrors of the cavity. As r1 and r2 become higher, the finesse increases
and the linewidth decreases.

The storage time τ of the cavity is the mean time a photon stays trapped in the cavity
before it escapes through one of the mirrors. It is related to the linewidth of the cavity by:

τ = 1
πδν

. (2.76)
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Figure 2.11 – Transmitted, reflected and circulating (ψ1) fields amplitude and phase as a function of
the phase shift φ = 2k0L from resonance. The three types of cavities are represented, in all cases with
a finesse F = 100 (for representative purpose). No losses are considered. From top to bottom: over
coupled, critically coupled, under coupled cavity type.
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Then the travel length Leq of a photon inside a cavity is:

Leq = τc = 2LF
π

. (2.77)

Consequently when the finesse increases, the travel length of the photons increases by
the same amount. That is why we use high finesse cavities for gravitational wave detectors.
For instance, Advanced Virgo uses Fabry-Perot cavities in its arms with a finesse F ' 450
leading to equivalent arm length Leq ' 860 km instead of L = 3 km.

The same finesse can be obtained with several couples of reflectivities r1 and r2. From
Equation (2.66), we can distinguish three types of cavities, introducing L1 the losses of mirror
M1 such as r2

1 + t21 + L1 = 1. They are represented in Figure 2.11.

• Over coupled cavity : r1 − r2(1 − L1) < 0, the part of the reflected beam leaking out
of the cavity dominates the promptly reflected one. The phase of the reflected field
changes significantly across the resonance.

• Critically coupled cavity : r1 − r2(1−L1) = 0, the circulating field, i.e. the power gain,
is maximal at resonance but there is no reflected beam and the incident beam is fully
transmitted.

• Under coupled cavity : r1 − r2(1−L1) > 0, the promptly reflected beam dominates the
the reflected one leaking out of the cavity.

For gravitational wave detection we measure a phase shift. We can see in Figure 2.11
that the phase shift is enhanced around resonance for an over coupled cavity. Consequently
gravitational wave detectors use over coupled cavities.

Phase shift of the reflected field

According to Equation (2.66), the reflected field for a Fabry-Perot cavity of length L is:

ψref (L) = ψin
r1 − r2(t21 + r2

1)e−2ik0L

1− r1r2e−2ik0L
. (2.78)

At resonance we have L = Lres and e−2ik0L = 1 and the Taylor expansion of the reflected
field for a small variation of length δL around the resonance Lres is:

ψref (Lres + δL) ' ψref (Lres) + δLψ′ref (Lres). (2.79)

After some computation and introducing the finesse in the expression, we obtain:

ψref (Lres + δL) ' F
π

r1 − r2(t21 + r2
1)

√
r1r2

[
1− 2ik0δL

F
π

(1− r2
1)√r1r2

r2
1r2(r1 − r2(t21 + r2

1))

]
. (2.80)

The phase shift δφ of the reflected field can now be approximated by:

δφ ' 2k0δL
F
π

(1− r2
1)√r1r2

r2
1r2(r1 − r2(t21 + r2

1))
. (2.81)

If we neglect the losses, i.e. r2
1 + t21 = 1 and consider an over coupled cavity with r2 ∼ 1,

we get:

δφ ' 2k0δL
F
π

(1 + r1)√r1
r2

1
. (2.82)

And finally if we consider that r1 ∼ 1 which is consistent with high finesse cavities used
in gravitational wave detectors, we finally obtain a simple expression for the phase shift of
the reflected field:

δφ ' 2k0δL
2F
π
. (2.83)

Consequently a Fabry-Perot cavity around resonance amplifies the phase shift with respect
to a single mirror by a factor 2F/π.
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Frequency response

Until now we did not consider the time dependence of the gravitational wave amplitude. We
can model the effect of the passage of a gravitational wave as a sinusoidal motion of the end
mirror. If the change of length is faster than the storage time, its effect is attenuated by
the cavity. The cavity acts as a low-pass filter and consequently, taking into account this
frequency behavior we can rewrite the phase shift of the reflected field from the Fabry-Perot
cavity:

δφ ' 2k0δL
2F
π

1√
1 +

(
f
fc

)2
, (2.84)

where fc = c
4FL is the cut-off frequency of the cavity. This is the frequency over which the

frequency response of the cavity starts to be attenuated.

The frequency response of the Michelson interferometer with Fabry-Perot arm cavities is
shown in Figure 2.12 for an Advanced Virgo like detector with 3 km arm length and a finesse
F = 450 compared with 3km-arms and 850km-arms simple Michelson interferometers.

The sensitivity of the detector is multiplied by a factor:

π

2F

√
1 +

(
f

fc

)2
. (2.85)

Figure 2.12 – Frequency response of a simple Michelson interferometer with arm length of 3 km (red
line), 850 km (blue line) and a Michelson interferometer with Fabry-Perot arm cavities of length 3 km
with a finesse 450 (green line).

The general scheme of a gravitational wave detector with Fabry-Perot arm cavities is
shown in Figure 2.13.

Equivalent Michelson interferometer

We can model the Michelson interferometer with Fabry-Perot arm cavities as an equivalent
simple Michelson interferometer with mirror reflectivities and transmissivities given from the
the Fabry-Perot cavities reflectivities and transmissivities rFP,X , rFP,Y , tFP,X and tFP,Y
instead of the single mirrors one rX , rY , tX and tY .
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As in Section 2.2.2, we can define the amplitude reflectivity and transmissivity of the
Fabry-Perot arm cavity Michelson interferometer rFRMI and tFPMI from Equations (2.12)
and (2.13), using the amplitude reflectivities and transmissivities of the equivalent Michelson
interferometer end mirrors.

Figure 2.13 – Scheme of a Michelson interferometer with Fabry-Perot arm cavities and the equivalent
Michelson interferometer.

2.4.2 Power recycling

There are technical limitations to increase the power from the laser source. The simplest way
to improve the beam power inside the interferometer is to use another mirror to recycle the
power reflected by the Michelson interferometer.

Indeed, at dark fringe all the power is reflected by the Michelson towards the laser source.
Consequently we can add a mirror between the laser source and the beam splitter to recover
the power coming back as shown in Figure 2.14.

We can write the fields transmitted and reflected by the power recycling mirror ψMICH

and ψref,PR:

ψMICH = tPRψin − rPRψref , (2.86)

ψref,PR = rPRψin + tPRψref , (2.87)

with ψref = rFPMIψMICH for a Michelson interferometer with Fabry-Perot cavity arms.
Replacing ψref in Equation (2.86) we obtain the optical gain of the power recycling cavity:

GPR =
∣∣∣∣ψMICH

ψin

∣∣∣∣2 =
∣∣∣∣ tPR
1 + rPRrFPMI

∣∣∣∣2 . (2.88)

Then the sensitivity of the interferometer is multiplied by a factor:

1√
GPR

(2.89)



2.4. First sensitivity improvements 45

Figure 2.14 – Scheme of a power recycled Fabry-Perot arm cavities Michelson interferometer and
equivalent Fabry-Perot cavity.

2.4.3 Signal recycling

Finally another way to increase the sensitivity is to add an extra mirror in the antisymmetric
port between the photodiode and the beam splitter as shown in Figure 2.15, for recycling the
signal light.

With this configuration, it is possible to tune the shape of the detector sensitivity by
changing the length of the signal recycling cavity. The phase difference due to a gravitational
wave is plotted in Figure 2.16 for several tuning of the signal recycling cavity, formed by the
signal recycling mirror and the input mirrors of the Fabry-Perot cavities. Tuning the cavity
corresponds to changing the transmissivity of the input mirrors of the Fabry-Perot cavities.

At 0° tuning, the cavity is at resonance. The reflectivity of the equivalent input mirror of
the Fabry-Perot cavity is the lowest possible, reducing the finesse of the cavity. As a result the
bandwidth of the detector is increased. At high frequencies, the sensitivity is increased and
at low frequencies, even if it seems to decrease sensitivity, in fact, other noises presented in
Section 2.3 dominate. Consequently this is a possible choice for gravitational wave detectors.

At 180° tuning, the cavity is anti-resonant. The reflectivity of the equivalent input mirror
is the highest possible, increasing the finesse of the cavity. The bandwidth is reduced and the
sensitivity is improved at low frequency. This is not an interesting choice for gravitational
wave detectors.

Figure 2.15 – Scheme of a dual recycled Fabry-Perot arm cavities Michelson interferometer.
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Finally, for intermediate tuning, the cavity is detuned and there is a peak at a frequency
depending on the tuning. This is useful if we want to optimize the detection around a given
frequency. For instance, for BNS merger, we may want to increase the sensitivity around 100
Hz with a 60° tuning.

Figure 2.16 – Phase response of the detector for different tuning of the signal recycling cavity.

2.5 Further improvements

2.5.1 Motivations

Before improving the sensitivity of the instrument, we may wonder if it’s worth doing it. To
do so we have to understand what is the information that we can learn at each frequency to
focus on specific technical improvements on the frequency bandwidth of interest.

For instance, if we consider BNS, as shown in Figure 2.17, most of the information is below
100 Hz, around 10 Hz, except tidal parameters which are far above 100 Hz. Consequently we
won’t get the same information with respect to the frequencies we choose to improve.

The effect of the improvements at various frequencies can be summarized as [63]:

• At low frequency (below 10 Hz), improvements can increase the signal length in the
detector enabling earlier warning, useful for multi-messenger astronomy. We could
probe the early Universe with high redshifts black holes and detect more massive black
holes.

• In the middle band, between 10 Hz and 200 Hz, sensitivity improvements lead to higher
signal to noise ratio, increasing the number of detectable BBH, BNS and NSBH, and
more accurate parameter estimations.

• At higher frequency (above 200 Hz), there is information about binary mergers and
ringdowns, neutron star tidal deformation constraining the neutron star equation of
state. Finally supernovae core collapses are also expected at high frequency.
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Figure 2.17 – Illustration of the frequencies at which information about intrinsic binary neutron star
parameters are predominantly [62].

2.5.2 Noises reduction possibilities

Several solutions have been proposed to reduce some of the noise sources, and I won’t describe
them all. . I will only give a brief overview of some solutions to reduce the mirror thermal
noise, Newtonian noise and quantum noise. The technique we will use to reduce quantum
noise will be presented in more details in Chapter 3.

Mirror thermal noise

The dominant mirror thermal noise is due to coating Brownian noise. To reduce it, we can
use larger beam size on larger mirrors [64], or change coating materials [65]. Another solution
studied for the 3rd generation of gravitational wave detectors is to use cryogenic mirrors with
a temperature between 10 and 20 K [66]. This technique will be used on KAGRA detector
in Japan [67].

Newtonian noise

Newtonian noise is due to change in the gravitational force acting on the mirror because of
seismic noise. It is not possible to isolate the mirror from gravity. Consequently this noise
will be very hard to reduce. An idea is to use an array of seismometers to monitor ground
motion and infer from it the gravitational force change on the mirror [68].

Another idea is just trying to reduce gravitational field fluctuation selecting a quieter site
and eventually going underground to reduce seismic noise and Newtonian noise [69].

Quantum noise

A promising idea to reduce quantum noise is to use squeezed light [70] and especially frequency
dependent squeezing [71] that will be described in Chapter 3.

Other independent solutions are studied to reduce quantum noise. For instance theoretical
studies have been carried out to try to use Einstein-Podolsky-Rosen (EPR) entanglement [72].
One advantage of this solution, is that it does not require to change the interferometers
configurations, only the readout detection scheme using quantum correlations between two
beams injected through the antisymmetric port.

Another solution is to completely change the way of measuring the effect of the passage
of a gravitational wave using a speedmeter [73]. Several designs have been proposed but this
would need to build a new km-scale infrastructure.





Chapter 3

Squeezing

As explained in the previous chapter, quantum noise is one of the main limiting noises of
ground based interferometric gravitational wave detectors. The solution to reduce quantum
noise I will focus on the use of squeezed light. It was first proposed by Caves in 1981 [74] and
many proof-of-principle experiments were implemented to test its impact on gravitational
wave detectors.

In this chapter I will give the basis of quantum optics necessary to understand the quantum
nature of light and its application to reduce quantum noise in gravitational wave detectors.
Then I will explain squeezed states of light in two equivalent formalisms to apprehend how
it can be used in gravitational wave detectors and the challenge of frequency dependent
squeezing. I will also present how squeezed states of light can be generated and how the
losses impact the level of squeezing. Finally, I will give already existing experimental results
of frequency independent and dependent squeezing.

3.1 Basics of quantum optics

3.1.1 Quantization of the electromagnetic field

The first step to study quantum features of light is to quantized the electromagnetic field
starting from source-free Maxwell’s equations. At a position −→r and time t, the quantized
electric field is [75]:

−→
E (−→r , t) = i

∑
k

√
~ωk
2ε0

[
âk
−→uk(−→r )e−iωkt − â†k

−→uk∗(−→r )eiωkt
]
, (3.1)

where ωk is the angular frequency of the mode k, ε0 is the permittivity of free space, −→uk(−→r ) is

the vector mode function, and âk and â†k are respectively the dimensionless boson annihilation
and creation operators satisfying the boson commutation relations:

[âk, âk′ ] = 0, (3.2)[
â†k, â

†
k′

]
= 0, (3.3)[

âk, â
†
k′

]
= δkk′ , (3.4)

where the commutator of two quantum mechanical operators Â and B̂ is defined by [76]:[
Â, B̂

]
= ÂB̂ − B̂Â. (3.5)

Experimentally, we can only measure observable operators. Nevertheless, according to
Equation (3.4), âk 6= â†k. Thus the boson creation and annihilation operators are non-
hermitian and are consequently not observables. It is possible to construct hermitian, i.e.

49
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observable, operators from the creation and annihilation operators:

X̂1 = â+ â†, (3.6)

X̂2 = i
(
â† − â

)
. (3.7)

X̂1 and X̂2 are respectively known as the amplitude quadrature and phase quadrature
operators. It is possible to describe an arbitrary quadrature operator X̂θ from a linear com-
bination of X̂1 and X̂2:

X̂θ = X̂1 cos θ + X̂2 sin θ. (3.8)

It is interesting to note that the amplitude and phase quadrature operators X̂1 and X̂2
are respectively proportional to the position and momentum operators q̂ and p̂:

q̂ = â+ â†√
2
, (3.9)

p̂ = i
â† − â√

2
. (3.10)

3.1.2 Heisenberg uncertainty relation

Considering two observables Ôi and Ôj with standard deviation ∆Ô defined as the root mean
square of the variance:

∆Ô =
√
〈Ô2〉 − 〈Ô〉2, (3.11)

the Heisenberg uncertainty relation states that [76]:

∆Ôi∆Ôj ≥
1
2

∣∣∣[Ôi, Ôj ]∣∣∣ . (3.12)

If the commutator of two observables is non zero, they are said to be non-commuting
observables. The consequence of the Heisenberg uncertainty relation on two non-commuting
observables is that their properties interfere with each other and it is not possible to measure
their respective values simultaneously with complete accuracy. A measurement of one of the
observable can change the result obtained in a subsequent measurement of the other one.

Considering the amplitude and phase quadratures, from Equations (3.4), (3.6) and (3.7),
we can determined their commutator: [

X̂1, X̂2
]

= 2i, (3.13)

which is non zero, meaning they are non-commuting observables. The Heisenberg uncertainty
relation for the amplitude and phase quadrature is then:

∆X̂1∆X̂2 ≥ 1. (3.14)

The main consequence of Equation (3.14) is that amplitude and phase quadratures are
defined with some dispersion, and this property lies at the very heart of quantum noise.

3.2 States of light

The uncertainty relation of Equation (3.14) gives rise to the fact that several states of light
exist with different relations between phase and amplitude quadratures uncertainties. I will
describe here some minimum uncertainty states, such as ∆X̂1∆X̂2 = 1 : the coherent state,
the vacuum state and the squeezed state. I will give their main features and pictorial repre-
sentations using phasor diagrams, that I will introduce through their classical forms.
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3.2.1 Classical phasor diagram

Let’s consider the classical electric field at a specific point in space of Equation (2.1):

ψ = ψ0e
iφ, (3.15)

where ψ0 is the amplitude of the electric field and φ is a phase factor. It can be represented
in the complex plane as an arrow of length ψ0 and angle φ with respect to the real axis. It
is also possible to rewrite ψ with respect to X̂1 and X̂2 [76]:

ψ ∝ cos(φ)X̂1 + sin(φ)X̂2. (3.16)

Using Equation (3.16), we can represent the electric field in the amplitude and phase
quadratures plane as an arrow of length A proportional to ψ0 and at an angle φ with respect
to the amplitude quadrature axis X̂1, as shown in Figure 3.1. This is called a classical phasor
diagram.

Figure 3.1 – Classical phasor diagram with amplitude A proportional to ψ0 and phase φ represented
in the amplitude and phase quadratures X̂1 and X̂2 plane.

3.2.2 The vacuum state

The vacuum state, noted |0〉 in Dirac notation is a state that has no coherent amplitude,
containing no photons on average, α = 0. Nevertheless, this does not mean that the amplitude
and phase quadratures uncertainties are zero, violating the Heisenberg’s relation. According
to Equation (3.11), we have for the amplitude quadrature of the vacuum state:

∆X̂1 =
√
〈X̂2

1 〉 − 〈X̂1〉2

=
√
〈0|X̂2

1 |0〉 − 〈0|X̂1|0〉2. (3.17)

Then according to Equation (3.6):

∆X̂1 =
√
〈0| (â+ â†)2 |0〉 − 〈0|â+ â†|0〉2. (3.18)

Finally, using Equation (3.4), we get:

∆X̂1 = 1. (3.19)

Similarly for the phase quadrature of the vacuum state, we obtain:

∆X̂2 = 1. (3.20)
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3.2.3 Coherent states

Coherent state is an important state of light for quantum optics experiments because it is a
good approximation for the light generated by a frequency and intensity stabilized laser source
as it is the quantum-mechanical equivalent of a classical monochromatic electromagnetic wave.

According to Heisenberg’s relation, the amplitude and phase quadratures of the electro-
magnetic field are not known with an absolute precision. At best, for a coherent state we
have:

∆X̂1 = ∆X̂2 = 1. (3.21)

This field can be represented in the amplitude and phase quadrature plane, i.e. a quantum
phasor diagram, as a disc centered on the mean value of the field, of width the uncertainty on
phase and amplitude as shown on the left of Figure 3.2. The trace of a typical measurement
result of the electric field of a coherent state is represented on the right of Figure 3.2 showing
the associated uncertainty on the phase and amplitude of the wave field.

Figure 3.2 – Representation of a coherent state. Left: Quantum phasor diagram in the amplitude and
phase quadratures. Right: Real part of the electric field featuring a typical measurement result of a
coherent state.

In Dirac notation, coherent states are denoted by |α〉, where α is a dimensionless complex
number, sometimes called the coherent amplitude of the state. They are generated from the
vacuum state |0〉 using the unitary displacement operator D̂(α) [75]:

D̂(α) = exp
(
αâ† − α∗â

)
, (3.22)

|α〉 = D̂(α)|0〉, (3.23)

where α = Aeiφ is a complex number.

Let’s note some properties of the displacement operator D̂(α) which will further be useful:

D̂†(α)D̂(α) = D̂(α)D̂†(α) = 1⇒ D̂†(α) = D̂−1(α), (3.24)

D̂†(α)âD̂(α) = â+ α, (3.25)

D̂†(α)â†D̂(α) = â† + α∗. (3.26)
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Coherent states are left eigenstates of the annihilation operator and right eigenstates of
the creation operators [75]:

â|α〉 = α|α〉, (3.27)

〈α|â† = 〈α|α∗. (3.28)

Let’s introduce the number operator N̂ to describe the mean photon number N̄ within a
state. The mean optical power is then, as in Equation (2.36):

Popt = N̄
~ω0
τ
, (3.29)

where τ is the observation time of the N̄ photons.
The number operator is defined from the creation and annihilation operators [76]:

N̂ = â†â. (3.30)

Then, the mean photon number within a coherent state is:

N̄ = 〈N̂〉
= 〈α|â†â|α〉
= α∗α

= |α|2. (3.31)

3.2.4 Squeezed states

As the Heisenberg uncertainty relation of Equation (3.14) involves a multiplicative term,
coherent states are not the only type of minimum uncertainty state. It only requires that
there is a minimum area for the phasor dispersion.

It is possible, for instance, to have a minimum uncertainty state increasing the uncertainty
in one quadrature and decreasing it in the other. These kind of states are called quadrature
squeezed states.

Figure 3.3 – Representation of an amplitude squeezed state. Left: Quantum phasor diagram in the
amplitude and phase quadratures. Right: Real part of the electric field featuring a typical measurement
result of an amplitude squeezed state.
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Figure 3.4 – Representation of a phase squeezed state. Left: Quantum phasor diagram in the amplitude
and phase quadratures. Right: Real part of the electric field featuring a typical measurement result
of a phase squeezed state.

Two forms of squeezed states are illustrated in Figures 3.3 and 3.4: amplitude squeezed
states and phase squeezed states depending on the reduced quadrature. As a consequence,
using such kind of light states, it is possible to reduce the measurement uncertainty in one
quadrature at the cost of increasing the other one.

In Dirac notation, squeezed states are denoted |α, ε〉, where ε is the squeezing parameter.
They are generated by first squeezing the vacuum through the unitary squeeze operator Ŝ(ε)
and then displacing it through the unitary displacement operator D̂(α).

The squeezing operator is defined by [77]:

Ŝ(ε) = exp
(1

2
[
ε∗â2 − εâ†2

])
, (3.32)

where ε = σe2iθ with σ the squeeze factor giving the degree of squeezing and θ the quadrature
angle of the squeezing. The squeezing operator acts by creating or destroying photons in pairs.
These pairs of photons are the actual source of squeezing.

As for Equation (3.23), the squeezed state can be written:

|α, ε〉 = D̂(α)Ŝ(ε)|0〉. (3.33)

Some features of squeezed states can be noted. For any arbitrary quadrature X̂α and its
complementary quadrature X̂α+π

2
, their uncertainty can be described by:

∆X̂α = e−σ, (3.34)

∆X̂α+π
2

= eσ. (3.35)

satisfying the Heisenberg uncertainty relation.
Moreover, the mean photon number within a squeezed state can be determined using

some properties of the squeezing operator Ŝ(ε):

Ŝ†(ε)Ŝ(ε) = Ŝ(ε)Ŝ†(ε) = 1⇒ Ŝ†(ε) = Ŝ−1(ε) = Ŝ(−ε), (3.36)

Ŝ†(ε)âŜ(ε) = â cosh(σ)− â†e2iθ sinh(σ), (3.37)

Ŝ†(ε)â†Ŝ(ε) = â† cosh(σ)− âe−2iθ sinh(σ). (3.38)
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Then using Equations (3.24), (3.25), (3.26), (3.36), (3.37) and (3.38), we have:

N̄ = 〈α, ε|â†â|α, ε〉
= 〈0|Ŝ†D̂†â†D̂D̂†âD̂Ŝ|0〉

= 〈0|Ŝ†
(
â† + α∗

)
(â+ α) Ŝ|0〉

= |α|2 + 〈0|Ŝ†â†ŜŜ†âŜ|0〉
= |α|2 + sinh2(σ). (3.39)

Squeezed vacuum state

The vacuum state can also be squeezed to a squeezed vacuum state. According to Equation
(3.39), the mean photon number within a squeezed vacuum state is non zero and depends on
the squeeze factor σ. This non-zero mean photon number translates into optical power in the
squeezed vacuum beam that can be interpreted as the energy necessary to obtain a squeezed
vacuum state from a vacuum state.

3.3 Quantum noise in gravitational wave detectors

The quantum noise in gravitational wave detectors has been classically described in Section
2.3.3. I will here give a description of the shot noise and of the radiation pressure noise
with respect to the amplitude and phase quadrature uncertainties and how they affect the
detection of gravitational waves.

Quantum noise arises from vacuum fluctuations entering the interferometer through the
antisymmetric port [60]. The fluctuations are amplified by the laser power inside the inter-
ferometer and then reflected back to the photodiode as shown in Figure 3.5.

Figure 3.5 – Simple Michelson interferometer operated near dark fringe. The input laser is reflected
back to the laser and the input vacuum field is reflected back to the photodiode.

As mentioned in Section 2.2.2, gravitational waves are detected as a phase shift ∆φGW .
Consequently to detect them we have to compare the phase shift they induce to the noise in
the phase quadrature.

The shot noise arises from the uncertainty in the arrival time of photons on the photodiode
and from the uncertainty on the number of photon measured on the photodiode. Consequently
the shot noise shows up in both phase and amplitude quadrature. It has the same uncertainty
as the input vacuum field.
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The radiation pressure noise arises from the differential fluctuations in the amplitude of
the beam power on the mirrors that modifies the radiation pressure force exerted on the
mirrors. As the radiation pressure force causes a displacement of the mirrors, its fluctuations
causes variations in the position of the mirrors leading to a phase shift between the beams
coming back from the two arms and combining on the beam splitter. Thus, the radiation
pressure noise shows up in the phase quadrature but correlated to the amplitude quadrature
fluctuations of the field. Moreover, as explained in Chapter 2, the radiation pressure force
is inversely proportional to the square of the frequency, i.e. it is negligible compared to the
shot noise at high frequencies.

Figure 3.6 – Schematic view of the quantum noise decomposition at low (below 100Hz) and high
(above 100Hz) frequencies for input vacuum fields from the antisymmetric port as coherent state,
phase squeezed state and amplitude squeezed state. The blue arrows represent the amplitude A and
phase Φ noise due to shot noise (SN), the green arrows represent the phase noise due to radiation
pressure noise (RP) and the red arrows represent the phase change due to a gravitational wave (GW)
that is independent of the type of vacuum field entering the dark port. The evolution of the signal to
noise ratio from a coherent state to a phase or amplitude squeezed state is also represented. The aim
of squeezing is to increase the signal to noise ratio.
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These descriptions are summarized in the first column of Figure 3.6, corresponding to
the usual state of the interferometer vacuum fluctuations entering through the antisymmetric
port. The effect of the gravitational wave is shown with a red arrow in the phase quadrature.
The shot noise is independent on the frequency and is represented with a blue arrow. The
radiation pressure noise is inversely proportional to the frequency and correlated to the ampli-
tude fluctuations. It is represented in green for the low frequency case and is not represented
for high frequencies because it becomes negligible.

In this representation, what is important to detect gravitational waves is the relative
length of the red arrow due to gravitational waves with respect to the sum of the noises
green and blue arrow in the phase quadrature. One can see that as shown on the Advanced
Virgo design simulated sensitivity curve in Figure 2.6, we have a better sensitivity at high
frequencies than at low frequencies.

The two right columns represent the effect of the injection of phase or amplitude squeezed
field from through antisymmetric port. One can see that a phase squeezed state improves
the sensitivity at high frequencies but decreases it at low frequency and inversely for the
amplitude squeezed state. This effect can also be represented with the detector sensitivity as
shown in Figure 3.7.

These representations are done for a simple Michelson interferometer, but it can be ex-
tended to the full configuration of a dual recycled Fabry-Perot Michelson interferometer as
Advanced Virgo and LIGO [78]. The total quantum noise is represented in Figure 3.8 for this
full configuration without squeezing and with different types of squeezing.

The type of squeezing is defined by the squeezing angle θ of the ellipse with respect to
the amplitude uncertainty axis. Consequently, θ = 0 corresponds to an amplitude squeezed
state, θ = −π/2 corresponds to a phase squeezed state and θ = −π/4 corresponds to an
intermediate squeezed state improving the sensitivity around a narrow frequency band. An
optimal squeezing angle θopt(f) can be defined for each frequency leading to an improved
sensitivity in the whole bandwidth of the gravitational wave detector.

At high frequencies, gravitational waves detectors are shot noise limited, while radiation
pressure noise is not completely the dominant noise at low frequencies. Consequently, it is
possible to use phase squeezed states to improve the detector sensitivity. This has already
been done and I will give an overview of the experimental work done on that subject in
Section 3.7.

Nevertheless, as improvements are also done on reducing the other noises at low fre-
quencies, it is important to reduce quantum noise at both low and high frequencies, using
frequency dependent squeezing. This is the object of this thesis that will be introduced in
Section 3.4.

Figure 3.7 – Plot of the quantum noise limit sensitivity without squeezing and with phase and ampli-
tude squeezing.
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Figure 3.8 – Left: Total quantum noise and its contributions for a Dual Recycled Fabry-Perot Michel-
son interferometer. Right: Total quantum noise with injected squeezing at various squeezing angle [78].

3.4 Frequency dependent squeezing

Lasers emit photons one at a time, in the sense they are one-photon devices. Nevertheless it
exists two-photon devices generating light by the simultaneous emission of two photons into
two output modes. As we will see in Section 3.5.1, squeezed states are generated using a
two-photon device.

To explain frequency dependent squeezing, I will first introduce the two-photon formalism
presented by Caves and Schumaker in 1985 [79] and then explain how we can use a filter cavity
to rotate the ellipse angle of the squeezed state in a frequency dependent way.

3.4.1 Two-photon formalism

The easiest way to understand the two-photon formalism is to start with the example of an
optical parametric generator. As shown in Figure 3.9, this device converts a 2ω0 pump photon
onto signal and idler photons at frequencies ω0 ± Ω with a correlated complex amplitude.

Figure 3.9 – Scheme of an optical parametric generator.

The fact that the two photons are emitted simultaneously as a correlated pair means that
they cannot be described in terms of independently excited single modes as we usually do for
laser light. In the two-photon formalism, a laser beam can be described as a classical carrier
at frequency ω0 and small quantum fluctuations at frequencies ω0 ± Ω with Ω � ω0. In the
case of a vacuum state we only have the quantum fluctuations at frequencies ±Ω.

The electric field at the output of the optical parametric generator is given by [80]:

E(t) = E1(t) cos(ω0t) + E2(t) sin(ω0t) (3.40)

= (cos(ω0t) sin(ω0t))
(
E1(t)
E2(t)

)
, (3.41)
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where E1(t) and E2(t) are real quadrature phases describing modulation of waves cos(ω0t)
and sin(ω0t). We can write the quadrature phases in terms of their Fourier components [79]:

Em(t) =
∫
dΩ
2π

[ ∼
Em(Ω)e−iΩt +

∼
E∗m(Ω)eiΩt

]
, m = 1, 2, (3.42)

where the Fourier components can be written:

∼
E1(Ω) =

∼
E(ω0 + Ω) +

∼
E∗(ω0 − Ω), (3.43)

∼
E2(Ω) = −i

∼
E(ω0 + Ω) + i

∼
E∗(ω0 − Ω). (3.44)

In this description, the fluctuations in the quadrature phases are due to random emission
of pairs of photons, exciting the quadrature phases at various modulation frequencies Ω but
the fluctuations in the electric field are not distributed randomly in phase relatively to the
carrier frequency ω0.

It is useful to define a conversion between the one-photon and the two-photon pictures
by replacing E by:

E =
(
E1
E2

)
. (3.45)

For an arbitrary optical system, we then define transfer coefficients for positive and neg-
ative sidebands, τ+ = τ(Ω) and τ− = τ(−Ω) to construct the two-photon transfer matrix
by [81]:

T = A2

(
τ+ 0
0 τ∗−

)
A−1

2 , (3.46)

with:

A2 = 1√
2

(
1 1
−i i

)
and A−1

2 = 1√
2

(
1 i
1 −i

)
. (3.47)

An input field Ei on the optical system is transformed into an output field Eo such that:

Eo = TEi. (3.48)

Finally, the two photon formalism can be constructed in an similar way than the one-
photon formalism [82]. The annihilation and creation operators for the two modes ω0 ± Ω
are noted â± and â†±. They satisfy the boson commutation relations of Equations (3.2), (3.3)
and (3.4).

Similarly to Equation (3.32), we can define the two-mode squeeze operator by [82]:

Ŝ(ε) = exp
(
ε∗a+a− − εa†+a

†
−

)
= exp

[
σ
(
a+a−e

−2iθ − a†+a
†
−e

2iθ
)]

= Ŝ(σ, θ). (3.49)

3.4.2 Filter cavity

A filter cavity is a Fabry-Perot cavity for which the one-photon transfer coefficient is just the
amplitude reflectivity of the cavity which can be rewritten from Equation (2.66):

rfc(Ω) = r1 −
t21
r1

rrte
−iΦ(Ω)

1− rrte−iΦ(Ω) , (3.50)

with rrt = r1r2 the round-trip reflectivity and Φ(Ω) the round-trip phase:

Φ(Ω) = (Ω−∆ωfc)
2Lfc
c

. (3.51)

Lfc is the length of the filter cavity and ∆ωfc = ωfc − ω0 is the cavity detuning, i.e. the
difference between the laser frequency ω0 and the cavity resonance frequency ωfc.



60 Chapter 3. Squeezing

To understand the effect of a filter cavity on a squeezed field we need to convert its one-
photon response into the two-photon picture following Equation (3.46) with the coefficient
for the positive and negative sidebands r+ = rfc(Ω) and r− = rfc(−Ω) :

Tfc = A2

(
r+ 0
0 r∗−

)
A−1

2 . (3.52)

This expression can be rewritten using the complex phase α± and magnitude ρ± of the
coefficients r±:

α± = arg(r±) and ρ± = |r±|, (3.53)

and defining:

α p
m

= α+ ± α−
2 and ρ p

m
= ρ+ ± ρ−

2 . (3.54)

Finally, the transfer matrix of the filter cavity is [83]:

Tfc = eiαmRαp

(
ρpI− iρmRπ

2

)
, (3.55)

where we define:

Rθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
and I =

(
1 0
0 1

)
. (3.56)

Let’s now analyze Equation (3.55). The fist term eiαmRαp corresponds to the rotation
operation of angle αp and an overall phase αm for a lossless filter cavity. Consequently, the
effect of the filter cavity is to introduce a frequency dependent rotation between the
upper and lower sidebands leading to a rotation of the squeezing ellipse angle according to
the frequency: frequency dependent squeezing.

Thus the ellipse of the squeezing rotates with an angle αp(Ω) 6= 0 if α+ 6= −α− according
to Equation (3.54). If the cavity is not detuned, i.e. ∆ωfc = 0, we have:

Φ(Ω) = −Φ(−Ω)⇒ r+ = r∗i ⇒ α+ = α−. (3.57)

This is why we need to have a detuned cavity to get frequency dependent squeezing.

For a lossless filter cavity, the expression of the squeezed quadrature rotation αp(Ω) is [83]:

αp(Ω) = arctan
(

2γfc∆ωfc
γ2
fc −∆ω2

fc + Ω2

)
, (3.58)

with γfc the half-width-half-maximum-power linewidth such that, according to Equation
(2.74):

γfc = 2πδν2 = πc

2LF . (3.59)

From Equation (3.58), one can say that:

• to have a squeezed quadrature rotation of π/2 between Ω = 0 and Ω = +∞ we need to
have an optimally detuned filter cavity with:

∆ωfc = γfc (3.60)

• if ∆ωfc > γfc, we obtain a rotation of more than π/2,

• if ∆ωfc < γfc, we obtain a rotation of less than π/2.
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Moreover in the case of an optimally detuned filter cavity, the π/4 rotation of the squeezing
ellipse occurs at a frequency Ωt defined by:

Ωt =
√

2γfc. (3.61)

Consequently we can adjust the frequency at which the tilt occurs by changing the length
of the filter cavity and its finesse. To have a shift at low frequency, which is what matters for
gravitational wave detectors, we have to use long and high finesse filter cavities. In Figure
3.10, I represented the squeezed rotation quadrature αp(f) for a 50 m-long filter cavity with
a finesse F = 3000 and F = 30000. The second one leads to a tilt frequency ft = 70.7 Hz
corresponding to the need for gravitational wave detectors.

(a) L = 50 m and F = 3000
⇒ ∆ffc = 500 Hz and ft = 707 Hz

(b) L = 50 m and F = 30000
⇒ ∆ffc = 50 Hz and ft = 70.7 Hz

Figure 3.10 – Squeezed rotation quadrature αp(f) for two optimally detuned filter cavities. The red
line corresponds to the tilt frequency of the squeezing angle.

Finally, to analyze the parenthesis of Equation (3.55), I will first give an expression of
ρ±:

ρ± =
√

1− (2− ε)ε
1 + ξ2(±Ω) , (3.62)

with:

ε = 2Λ2
rt

t21 + Λ2
rt

and ξ(Ω) = 2Φ(Ω)
t21 + Λ2

rt

, (3.63)

where Λ2
rt accounts for the power lost during one round-trip in the cavity and Φ(Ω)� 1.

Consequently, for a lossless filter cavity we have ρp = 1 and ρm = 0 and the filter cavity
only rotates the squeezing ellipse without any other change. Nevertheless, any loss will
introduce mixing between the quadratures of the squeezed state leading to antisqueezing.
Thus, to maximize the benefit from squeezed states we need to minimize all sources
optical loss.

3.5 Experimental squeezed states of light

3.5.1 Generation of squeezed states

Squeezed states are produced through second order non-linear interaction in a crystal. First,
I will recall the effect on a medium of an electric field such as laser light. I will then introduce
non linear and anisotropic effects to explain possible second order non-linear interactions.
Finally, I will present second order non linear processes including squeezed state generation.

Dielectric response of a medium

An electric field interacting with a medium has the effect of exerting a force on the electrons
of the atoms composing the medium. The electrons oscillate around the nucleus as dipoles
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at the angular frequency of the incoming electric field ω0. In turn, these electrons radiate an
electric field at angular frequency ω0 leading to the propagation of the electric field in the
medium.

The electric displacement
−→
D is related to the electric field

−→
E and the electric polarization−→

P by:
−→
D = ε0

−→
E +−→P , (3.64)

where ε0 is the electric permittivity of free space. In an isotropic medium, under low power
electric field, the electric polarization can be written:

−→
P = ε0χe

−→
E , (3.65)

with χe the electric susceptibility of the medium. This expression conveys the fact that the
microscopic dipoles align along the direction of the incoming electric field.

In an anisotropic medium, there are privileged directions for the displacement of the
electrons. Consequently the electric polarization acquired by the medium depends on the

direction of
−→
E . This can be expressed by replacing the electric susceptibility χe by a tensor

χ:

χ =

χxx χxy χxz
χyx χyy χyz
χzx χzy χzz

 . (3.66)

Moreover, in nonlinear crystals the polarization depends on higher powers of the electric
field. Writing it in term of modulus P and E, we have:

P = ε0
[
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

]
. (3.67)

We can identify the first term to the linear one, thus χ(1) = χe. The other terms describe
the nonlinear response of the crystal. The third order term in E3 and higher orders are orders
of magnitude lower than the second order term in E2 we are interested in.

Second order interactions

Consider a high power electric field, composed of cosinusoidal waves at angular frequency
ω1 and ω2 with amplitude E1 and E2, impinging on a nonlinear crystal. The second order
nonlinear polarization term is then:

P (2)(t) = ε0χ
(2) [E1 cos(ω1t) + E2 cos(ω2t)]2

= ε0χ
(2)
{
E2

1 + E2
2 + 1

2
[
E2

1 cos(2ω1t) + E2
2 cos(2ω2t)

]}
[{1

2blbla + E1E2 cos ((ω1 + ω2)t) + E1E2 cos ((ω1 − ω2)t)
]}

. (3.68)

According to Equation (3.68), the response of the nonlinear crystal to a high power field
is to generate an oscillating polarization at the sum and difference frequencies of the input
fields, thus emitting light at angular frequencies (ω1 + ω2) and |ω1 − ω2|. These processes are
called sum and difference frequency generation (SFG and DFG). The photons effectively
emitted and transmitted through the crystal depend on the properties of the medium and
must respect the conservation of energy.

The sum frequency mixing is an up-conversion process, that means that photons at lower
frequency ω1 and ω2 combine to produce photons at higher frequency. In the special case
where ω1 = ω2 the sum frequency is at twice the input frequency leading to frequency
doubling often called second harmonic generation. This process is represented in Figure
3.11.
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Figure 3.11 – Scheme of a second harmonic generator converting 2 photons at angular frequency ω
into a photon at angular frequency 2ω [84].

Optical parametric oscillator

Squeezed states are produced using parametric down-conversion process in a non linear crys-
tal. This device is called Optical Parametric Oscillator (OPO) and is represented in
Figure 3.12. Taking the notation of Equation (3.68), ω1 = 2ω is the angular frequency of the
pump beam and ω2 = δ is the angular frequency of photons produced by vacuum fluctuations.

Here we are interested in the difference frequency mixing leading to the emission of a
photon of angular frequency ω1 − ω2 = 2ω− δ. For energy conservation, a photon of angular
frequency δ is also emitted. These two photons form a correlated sideband pair as the one
introduced in Section 3.4.1 to define the two-photon formalism.

The photon pairs reduce the quantum noise in the output field. They are the source of
squeezing. The alignment of the correlated sidebands pairs depends on the phase of the pump
field. Thus, a rotation of the pump phase leads to a rotation of the squeezing quadrature.

Vacuum fluctuations exist at all frequencies. Consequently the angular frequency δ is
fluctuating randomly and the generated 2ω − δ fluctuates with it. It can be rewritten with
respect to the carrier and sideband frequencies used in Section 3.4.1:

δ = ω0 + Ω (3.69)

2ω − δ = ω0 − Ω, (3.70)

where ω0 corresponds to the angular frequency ω in Figure 3.12. The names of upper and
lower sidebands come from these two equations.

Figure 3.12 – Scheme of an optical parametric oscillator [84].

Random fluctuations of δ lead to random fluctuations of Ω. As a consequence, an OPO
generates correlated photon pairs with random frequency separations from the carrier, chang-
ing over time and hence populating all frequencies.

Most of the time, the nonlinear medium generating optical parametric oscillation is placed
inside an optical cavity to enhance the squeezing signal by increasing the number of passages
inside the crystal. Only frequencies which are resonant inside the cavity will be enhanced.
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Phase matching

Until now, I only considered energy conservation. Nevertheless, another quantity has to

be conserved: momentum. If we note
−→
kp,
−→
ks and

−→
ki the wave-vectors of the pump, upper

sideband (signal) and lower sideband (idler) photons, they must obey the relation:

−→
kp =

−→
ks +

−→
ki . (3.71)

More generally, the sum of the input wave-vectors must be equal to the output ones. If we
consider that the input and output fields are propagating collinearly with each other, we can
drop the vector notation and obtain that all photons must propagates with the same phase
velocity through the non linear media. This means that all photons emitted must see the
same refractive index. For instance in second harmonic generator we must have n(ω) = n(2ω).

The refractive index of a crystal changes with the frequency. Consequently, most of the
time, photons at different frequencies travel at different speeds and are not phase matched.
However it is possible to achieve good phase matching in a dispersive medium using the
birefringence of the nonlinear crystal. The birefringence is a property of some anisotropic
medium leading to a dependence of the refractive index on the incoming field polarization.
In this case the phase matching depends on the angle of incidence of the incoming photons
on the crystal.

The phase mismatch ∆k is defined as the difference between input and output photons
wave-vectors magnitudes:

∆k =
∑
input

kinput −
∑

output

kouptut. (3.72)

To understand the impact of phase mismatch on the generated field power, we can take
the example of a second harmonic generator. The expression of the generated field power at
2ω, P(2ω), depends on the input field power at ω, P(ω) as [85]:

P(2ω) = 1
2

(µ0c)3

n(2ω)(n(ω))2
d2l2(2ω)2

S

(
P(ω)

)2 sin2
(

∆kl
2

)
(

∆kl
2

)2 , (3.73)

where µ0 is the permeability of free space, d a nonlinear coefficient, l the distance inside
the crystal and S the area of the beam inside the crystal. The variation of this power with
respect to phase mismatch is represented in Figure 3.13. On can see that moving away from
perfect matching, corresponding to ∆k = 0 leads to a large decrease of the generated second
harmonic power and consequently to the efficiency of the non linear process.

Quasi-phase matching

Another solution to achieve a quasi-phase matching is to periodically invert the non linear
coefficient of the crystal. This method is called periodic poling and allows for the input and
output fields to have the same polarization which is not the case when using birefringence.

Taking again the example of a second harmonic generator, the refractive index of the
fundamental and second harmonic beams are not the same inside the crystal. Note n1 the
refractive index of the fundamental beam at λ0 = 1064 nm and n2 the refractive index of the
second harmonic beam at λ2 = 532 nm. We can define the coherence length lc:

lc = λ0
4(n2 − n1) . (3.74)

The coherence length is the distance over which the second harmonic field accumulates a
phase shift of π with respect to the fundamental field. Consequently, for non poled material,
if n1 6= n2, after two coherence lengths, the newly generated photons interfere destructively
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Figure 3.13 – Generated power field by a second harmonic generator with respect to phase mismatch
∆k, at a distance l = 1 inside the crystal, normalized by the factor before the sinc function of Equation
(3.73).

Figure 3.14 – Plot of the second harmonic beam intensity as a function of the distance in a nonlinear
crystal. A: Perfect phase matching in a uniformly poled crystal. B: Quasi-phase matching by flipping
the sign of the spontaneous polarization of the crystal every coherence length. C: Non-phase matched
interaction [86].

with the previously generated photons, leading to no power on the second harmonic beam as
shown on case C of Figure 3.14.

Nevertheless, by flipping the orientation of the polarization of the crystal every coherence
length the newly generated photons interfere constructively with the previously generated
photons increasing the number of second harmonic photons generated by the nonlinear process
through the crystal.

3.5.2 Detection of squeezed states

As the squeezed field is generated through a second order nonlinear process, it has a low
optical power making difficult its direct detection. A solution to measure it is to use a
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balanced homodyne detection scheme amplifying the low-power squeezed signal with a high
power local oscillator.

A general balanced homodyne detection scheme is represented in Figure 3.15. A 50:50
beam splitter mixes two fields: the one we want to measure, squeezed field in our case, noted
A and a high power local oscillator, noted B. The relative phase between the two fields is
noted φ. Two photodetectors measure the resulting fields C and D and their measurements
are combined via electronic subtraction and addition to obtain a difference photocurrent i−
and a sum photocurrent i+ which give information about the properties of the input fields.

In the balanced homodyne detection scheme, the local oscillator is a bright coherent field
at the same wavelength as the signal we want to measure.

Figure 3.15 – Scheme of a balanced homodyne detection. A is the low power squeezed signal we want
to measure and B is the high power local oscillator field with a relative phase φ with respect to A.

According to Figure 3.15, and using the convention defined in Section 2.2.2, we can write
the two output fields C and D with respect to input fields A and B:

C = 1√
2

(
A+Beiφ

)
, (3.75)

D = 1√
2

(
A−Beiφ

)
, (3.76)

and the difference and sum photocurrents are given by:

i− = C†C −D†D, (3.77)

i+ = C†C +D†D. (3.78)

Then, the input fields A and B can be linearized separating them into two components,
a steady-state one and fluctuations:

A = Ā+ δA, (3.79)

B = B̄ + δB. (3.80)

Now, we can rewrite the photocurrents in terms of the linearized A and B:

i− =
(
Ā+ δA

)† (
B̄ + δB

)
eiφ +

(
B̄ + δB

)†
e−iφ

(
Ā+ δA

)
, (3.81)

i+ =
(
Ā+ δA

)† (
Ā+ δA

)
+
(
B̄ + δB

)† (
B̄ + δB

)
. (3.82)

As δA and δB are negligible compared to Ā and B̄, we neglect the cross fluctuation terms
such as δAδB. We also assume that the mean field amplitudes are real, i.e. Ā = Ā∗ and
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B̄ = B̄∗. Finally the local oscillator has a much higher amplitude than that of the signal
we want to measure. Thus we have Ā � B̄. Under these assumptions the photocurrents
become:

i− ' 2ĀB̄ cos(φ) + B̄
(
δA†eiφ + δAe−iφ

)
, (3.83)

i+ ' B̄2 + B̄
(
δB + δB†

)
. (3.84)

Finally we can use the definitions of the quadratures of Equations (3.6) and (3.7), with
the notations XA

1 and XA
2 for the A field and XB

1 and XB
2 for the B field and the fluctuations

associated. We obtain:

i− ' 2ĀB̄ cos(φ) + B̄
(
δXA

1 cos(φ) + δXA
2 sin(φ)

)
, (3.85)

i+ ' B̄2 + B̄δXB
1 . (3.86)

According to Equation (3.85), the difference of the photocurrents contains information
about the amplitude and phase quadratures of the signal we want to measure, amplified by
the local oscillator field. Moreover, the observed quadrature depends on the relative phase φ
of the local oscillator with respect to the signal. This phase can be tuned and this is how we
can completely characterized the squeezed state quadratures.

Concerning the sum of the photocurrents, according to Equation (3.86), its measure is
equivalent to a direct measurement of the local oscillator field.

3.6 Squeezing degradation budget

Losses are an important factor to take into account when designing a squeezing experiment
as any source of loss will degrade the squeezing level. There are several sources of squeezing
degradation arising at different points of the squeezing propagation that I will present now
using a model adapted from [83].

To compute the quantum noise, we propagate two different vacuum fields through the
optical system: v1 which passes through the squeezer and becomes the squeezed field and v2
which enters after the squeezer.

v1 = v2 =
√

2~ω0I, (3.87)

where I is the identity matrix. Optical systems can be defined by 2×2 transfer matrix T. The
interaction vout of the vacuum fields with an optical system is then obtained by multiplying
its transfer matrix T by the squeezed field vin:

vout = Tvin. (3.88)

The noise N on the homodyne detector can be written [83]:

N = |b̄φv|2, (3.89)

where v is the vacuum field that recombines on the homodyne detection with the local oscil-
lator and

b̄θ = ALO
(
cos(θ) sin(θ)

)
, (3.90)

is the local oscillator field with amplitude ALO and relative phase θ with the vacuum field
v determining the readout quadrature. If there are multiple vacuum fields beating with the
local oscillator on the homodyne detection, the total noise is then the sum of the contributions
due to each vacuum source:

N =
∑
n

|b̄θTnvn|2. (3.91)
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The shot noise level is obtained directly applying the local oscillator to the vacuum field
without interaction through optical system:

NSN = |b̄θv1|2 = 2~ω0A
2
LO. (3.92)

Finally, we define the normalized noise power N̂ used to characterize the squeezing degra-
dation by:

N̂ = N

NSN
. (3.93)

I will now present the different sources of losses and how they are taken into account in
the noise budget and I will conclude this section showing the squeezing degradation they give
rise and a noise budget for achievable losses values.

3.6.1 Injection and readout losses

The optics on the squeezing path are not perfect. These imperfections can cause scattering
and absorption leading to losses for the squeezed field. Moreover the residual transmission
of the steering mirrors is added to these losses. These losses can be seen as a loss of one
entangled photon of a pair.

Generally, the losses outside the filter cavity are frequency independent. In the absence of
non linear element between the squeezer and the readout, there is no mixing between upper
and lower sidebands and we can combine all input losses together.

We define the injection losses Λ2
inj which represent the total power loss between the

squeezer and the homodyne detection, and the readout losses Λ2
ro which represent the total

power loss at the homodyne readout, coming from the non perfect photodiodes quantum
efficiency.

3.6.2 Filter cavity losses

The effect of the filter cavity is described in Section 3.4.2 in the absence of losses. We define
the round trip losses of the cavity Λ2

rt by:

Λ2
rt = L1 + L2 + T2, (3.94)

where L1 and L2 account for the absorption and scattering power losses respectively at the
input and end mirrors of the filter cavity and T2 is the power transmissivity of the end
mirror. Taking into account the power round trip losses we can approximate the round-trip
reflectivity rrt of Equation (3.50) by:

rrt ' 1− T1 + Λ2
rt

2 , (3.95)

with T1 + Λ2
rt << 1. The reflectivity of the filter cavity at the frequency 2π ×Ω can then be

rewritten:

rfc(Ω) = ε− 1 + iξ(Ω)
1 + iξ(Ω) , (3.96)

with

ε = 2Λ2
rt

t21 + Λ2
rt

, (3.97)

ξ(Ω) = Ω−∆ωfc
γfc

. (3.98)

The half-width-half-maximum-power linewidth is then approximated by:

γfc = T1 + Λ2
rt

2
c

2Lfc
, (3.99)
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and the squeezed quadrature rotation αp produced by the filter cavity becomes:

αp = arctan
(

(2− ε)γfc∆ωfc
(1− ε)γ2

fc −∆ω2
fc + Ω2

)
. (3.100)

.

Finally, I recall the transfer matrix of the filter cavity defined in Equation (3.55):

Tfc = eiαmRαp

(
ρpI− iρmRπ

2

)
. (3.101)

3.6.3 Mode matching losses

An important source of losses is the mode matching of the squeezed beam both to the filter
cavity and to the local oscillator at the homodyne detection readout. In fact if the overlap
between the filter cavity mode and the incident beam is not perfect, only the fraction of the
incident beam that is matched to the cavity resonates inside the cavity and undergoes the
frequency dependent rotation. Consequently the mismatched fraction of the incident beam
is lost for frequency dependent squeezing.

Moreover as the filter cavity is locked near resonance of the fundamental mode, the mis-
matched fraction of the incident beam that is composed of higher order modes is completely
reflected by the cavity and goes through the path towards the readout.

Using the notations of [83], we define a2
0 the power mode coupling between the squeezed

field and the filter cavity and c2
0 the power mode coupling between the squeezed field and

the local oscillator. The overlap b0 between the local oscillator and the filter cavity modes is
then:

b0 = a0c0 +
√

(1− a2
0)(1− c2

0)eiφmm , (3.102)

where φmm is an arbitrary phase. The spatial overlap of the reflected field from the filter
cavity and the local oscillator is then:

Umm = t00rfc(Ω) + tmm, (3.103)

whith t00 = a0b
∗
0 and tmm = c0 − t00.

Finally, the transfer matrix Tmm of the field mismatched to the filter cavity and to the
local osciallator is then defined by:

Tmm = |tmm|Rarg(tmm). (3.104)

3.6.4 Phase noise

There are two sources of phase noise: the squeezing ellipse jitter and the filter cavity length
noise.

When the squeezed field is produced in an Optical Parametric Oscillator (OPO), the
squeezing angle produced depends on the relative phase of the pump field to the OPO.
Consequently, any fluctuation of the pump phase will lead to squeezing ellipse jitter. As this
noise arises directly in the squeezing generation, it is not frequency dependent.

Otherwise, when the filter cavity is locked to be kept at optimal detuning ∆ωfc defined in
Equation (3.60), any residual length fluctuation δLfc will add a detuning δ∆ωfc to the filter
cavity with:

δ∆ωfc = ω0
Lfc

δLfc, (3.105)

where ω0 is the angular frequency of the squeezed field and Lfc the nominal length of the filter
cavity. The phase noise arising from the filter cavity length noise is frequency dependent.
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3.6.5 Linear noise transfer and noise budget

From the above, we obtain the full expressions of the transfer matrices T1 and T2 of the
vacuum fields v1 and v2 towards the readout:

T1 = τinjτro(t00Tfc + Tmm)S, (3.106)

T2 = τroΛ2 + Λro, (3.107)

where the transfer coefficient τinj and τro are defined by τ =
√

1− Λ2,

S =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
eσ 0
0 e−σ

)(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
, (3.108)

is the two-photon transfer matrix for the squeezed state of squeeze factor σ and quadrature
angle θ, and

Λ2 =

√
1− |τ2(Ω)|2 + |τ2(−Ω)|2

2 , (3.109)

τ2(Ω) = (t00rfc(Ω) + tmm)τinj . (3.110)

I will now give the squeezing degradation of a frequency dependent squeezing experiment
starting from σdB = 10 dB of injected squeezing, corresponding to a 10 dB reduction of the
noise level with respect to the shot noise, with:

σdB = 20 log10(eσ), (3.111)

with a 50-meter long filter cavity of finesse F = 3000 at the squeezing wavelength, corre-
sponding to the aim of this thesis. I will first represent all types of losses independently and
then the total noise budget and the effect depending on the quadrature measurement that
corresponds to what we can experimentally measure.

Frequency independent losses

There are 4 sources of losses that do not depend on the frequency: injection and readout
losses, phase noise arising from the squeezing ellipse jitter at the squeezing production and
mode matching of the squeezed beam with the local oscillator. Their respective effect is
represented in Figure 3.16

Going through the details of the plots, we can see that the squeezing measurement is
quickly degraded by any losses on the squeezing path. With 9% of injection losses there is
already less than 7.5 dB of squeezing left out of 10 dB produced. This shows the importance
to have the best coatings available and the best quality optics on the squeezing path to reduce
injection losses. From simulation of the whole set-up of a squeezing experiment, it is hard to
go under 9% of injection losses.

The detection efficiency of the homodyne photodiodes is also important as 5% of losses
gives rise to more than 1.5 dB of squeezing degradation. However, high quantum efficiency
photodiodes with conversion efficiency of the order of 99% exist commercially.

The squeezing ellipse jitter noise is more difficult to evaluate. However, values of the order
of 30 mrad are achievable [87–89] and give rise to less than 0.5 dB of squeezing degradation.

Finally, the mode matching between the squeezed beam and the local oscillator has to
be carefully done as 10% of mismatch (meaning 90% of fringe visibility) leads to almost
4.5 dB of squeezing degradation. This is something we really have to take care in a squeezing
experiment.
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(a) (b)

(c) (d)

Figure 3.16 – Simulation of the effect of frequency independent losses on the squeezing level. (a)
Injection losses, (b) readout losses, (c) losses due to the squeezing ellipse jitter and (d) losses from
the mode mismatch of the local oscillator beam with the squeezed beam, measured at the homodyne
detection. The simulation starts from 10 dB injected squeezing.

Frequency dependent losses

There are 3 sources of losses that are frequency dependent because they occurs at the filter
cavity level: filter cavity round trip losses, mode matching of the squeezed beam to the filter
cavity and filter cavity length noise. Their respective effect is represented in Figure 3.17.

First of all, we can clearly see that frequency dependent losses have a significant impact on
the squeezing degradation around and below the tilt frequency ft ' 700 Hz in this simulation.

It is important to limit the filter cavity round trip losses to few tens of ppm in order not
to degrade too much the squeezing at low frequency. For instance Λ2

rt = 50 ppm leads to
around 1.5 dB of squeezing degradation at low frequency.

More important the mode matching of the squeezed beam to the filter cavity has to
be tuned as much as possible as 10% of mismatch gives rise to around 4 dB of squeezing
degradation at low frequency with a maximum of 5.5 dB squeezing degradation close to the
tilt frequency.

Finally, the lock of the filter cavity has to be robust and less noisy as possible. To stay
in reasonable loss values, lower that 4 dB of squeezing degradation, the filter cavity length
noise for a 50 m long cavity has to stay below 10 pm.

Noise budget

Finally, I plotted the squeezing degradation taking into account reasonably achievable values
for all noise sources summarized in Table 3.1.

In Figure 3.18a, one can see the squeezing measurement at the homodyne detection for dif-
ferent measurement quadrature angles φ and the resulting squeezing measurement in dashed
corresponding to the minimum envelope of the different measurement angles.

The noise content of the same measurement is shown in Figure 3.18b. One can clearly see
that the dominant noises are the filter cavity length noise, the squeezed field mode mismatch
to the filter cavity and the injection losses.
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(a) (b)

(c)

Figure 3.17 – Simulation of the effect of frequency dependent losses on the squeezing level. (a) Filter
cavity round trip losses, (b) losses from the mode mismatch of the squeezed beam to the filter cavity
and (c) losses due to filter cavity length noise, measured at the homodyne detection taking at each
frequency the measurement quadrature angle φ that gives the minimal noise value. The simulation
starts from 10 dB injected squeezing.

Noise source Value

Injection losses 11.5%

Readout losses 1%

Squeezing ellipse phase noise 30 mrad

Homodyne detection fringe visibility 97.5%

Filter cavity round trip losses 50 ppm

Mode matching of the squeezed field to the filter cavity 95%

Filter cavity length noise 10 pm

Table 3.1 – Losses parameter chosen for the simulation results presented in Section 3.6.5.

(a) (b)

Figure 3.18 – Simulation of the frequency dependent squeezing measured at the homodyne detection
(a) total losses for different measurement quadrature angle φ (b) all losses sources taking at each
frequency the measurement quadrature angle φ that gives the minimal noise value. The simulation
starts from 10 dB injected squeezing and takes the losses values given in Table 3.1. The black dashed
line of (a) is the black continuous line of (b).
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3.7 State of the art

3.7.1 Squeezing production

The use of squeezing to enhance gravitational wave detectors sensitivity was first proposed
in 1981 by Caves [74] while squeezing was not yet experimentally observed. The first mea-
surement of squeezing was published in 1985 by Slusher et al. [90]. A 7% noise reduction
was observed at about 4 · 108 Hz corresponding to about 20% of squeezing produced. Most
of the time, noise reduction and squeezing production are expressed in dB. In this unit, the
first measurement was of 0.3 dB noise reduction for about 1 dB of produced squeezing.

Since this first measurement, a huge progress has been made [91] until the first squeezing in
the audio-band, that is between 10 Hz and 10 kHz, corresponding to the detection frequency
band of gravitational wave detectors. This was done in 2004 by McKenzie et al. [92] achieving
a broadband squeezing from 280 Hz to above 100 kHz. They reached about 5.5 dB of produced
squeezing and 7 dB antisqueezing as the phase φ of the homodyne detection varies.

In 2007, Vahlbruch et al. [93] achieved the first squeezing production across the whole
audio gravitational wave band, down to 1 Hz reaching 6.5 dB of produced squeezing. This was
improved to 11.6 dB of squeezing produced by Stefszky et al. [94] in 2012 as shown in Figure
3.19a. The highest level of squeezing until now has been achieved in 2016 by Vahlbruch et
al. [95] with 15 dB of produced squeezing at 5 MHz as shown in Figure 3.19b.

(a) (b)

Figure 3.19 – (a) Measured squeezing by Stefszky et al. [94] in 2012 using a quantum noise limited
balanced homodyne detector. (i) is the antisqueezing, (ii) is the shot noise level, (iii) is the squeezing
with a line at -11.6 dB showing the average of the squeezing and (iv) is the dark noise. (b) Measured
squeezing by Vahlbruch et al. [95]

3.7.2 Squeezing in gravitational wave detectors

Frequency independent vacuum squeezing has been tested and used on different gravitational
wave interferometers.

Since 2010, squeezing has been routinely used to increase the sensitivity of the gravita-
tional wave detector GEO 600 [87], an interferometric gravitational wave detector like Virgo
and LIGO but with only 600 m long arms to test the new technologies. They measured the
best gain sensitivity for a gravitational wave detector with a reduction of quantum noise up
to 6 dB.

Squeezing was also tested on Enhanced LIGO Hanford gravitational wave detector at the
end of 2011 [96]. It was then used in the direct measurement of gravitational waves on both
Advanced LIGO Livingston and Hanford detectors [97] for the third Observing Run (O3)
with up to 3 dB quantum noise reduction measured.

Advanced Virgo also used squeezing during the O3 with a sensitivity enhancement up
to 3dB like in the Advanced LIGO detectors. A simplified layout of the implementation
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Figure 3.20 – Simplified scheme of the squeezed ligth enhanced gravitational wave detector Advanced
Virgo [98].

of squeezing in Advanced Virgo is represented in Figure 3.20, showing how the squeezed
vacuum enters the interferometer dark port. The Advanced LIGO and GEO 600 layouts are
very similar to the Advanced Virgo one.

The measured spectral strain sensitivity of Advanced Virgo, Advanced LIGO Livingston
and GEO 600 are represented for comparison in Figure 3.21 with and without frequency
independent vacuum squeezing.

3.7.3 Frequency dependent squeezing

To enhance gravitational wave detectors in their whole bandwidth we have to use frequency
dependent squeezing with a rotation of the squeezing ellipse occurring at about 50 Hz. This
is the object of the work done at CALVA in the framework of the ANR Exsqueez that will
be described in the rest of this thesis.

However other teams are working in parallel on similar approaches and published their
results at the beginning of 2020. I will give a brief overview of their work and compare them
with this thesis work.

The first demonstration of a frequency dependent squeezing with a rotation of the squeez-
ing ellipse below 100 Hz was done using the infrastructure of the former TAMA300 interferom-
eter with a squeezing source in-air and a 300-meter filter cavity [89] with 4 dB quantum noise
reduction at high frequencies and 2 dB at low frequencies. At MIT, another team demon-
strated a frequency dependent squeezing with a rotation of the squeezing ellipse at 30 Hz
using an in-vacuum squeezing source and a 16-meter filter cavity [88] with 4 dB quantum
noise reduction at high frequencies and no reduction at lo frequencies.

Both results are presented in Figure 3.22 and a summary of the main differences between
the experiments done at TAMA and MIT is given in Table 3.2 with the same parameters
given for the Exsqueez project that is closer to the MIT one but adapted to the Advanced
Virgo framework.
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Figure 3.21 – Measured spectral strain sensitivity: (upper) for Advanced Virgo during the O3 ob-
servation run with in black the reference without squeezing in red with squeezing and in blue with
antisqueezing [98], (lower left) for Advanced LIGO Livingston during the O3 observation run with in
black the reference without squeezing and in green with squeezing [97], (lower right) for GEOO 600
in 2020 with in blue without squeezing and in red with squeezing [87].

(a) (b)

Figure 3.22 – Frequency dependent squeezing measured at (a) TAMA [89] and (b) MIT [88] showing
the noise spectra measured for different homodyne angles.

Parameter TAMA MIT Exsqueez

Squeezer cavity geometry Linear hemilithic Bow-tie Bow-tie

Squeezer environment In-air In-vacuum In-vacuum

Filter cavity length 300 m 16 m 50 m

Squeezing ellipse rotation frequency 90 Hz 30 Hz 700 Hz and then 70 Hz

Table 3.2 – Summary of some main differences between the frequency dependent experiment done at
TAMA and MIT and the Exsqueez project.
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Design of a Frequency Dependent
Squeezing Experiment: Exsqueez

The Exsqueez project is conducted by 4 laboratories: LKB, LAL/IJCLab, LMA/IP2I and
LAPP [99]. It is two-sided and aims at demonstrating frequency dependent squeezing along
two bands of frequencies, i.e. at high frequencies (of the order of the MHz) and at low
frequencies (in the audio band from 10 Hz to 10 kHz). The high frequency side of this project
is conducted at LKB [100] while the object of this thesis is the demonstration of the low
frequency dependent squeezing with a squeezing source under vacuum.

As presented in Chapter 2, the sensitivity of the advanced generation of gravitational
wave detectors should soon reach the Standard Quantum Limit, defined in Section 2.3.3.
The implementation of low frequency dependent squeezing would allow to further improve
the detectors sensitivities. Moreover, the Standard Quantum Limit is also investigated in
optomechanical systems such as micropillar resonators [101] and the high frequency side of
the Exsqueez project takes place in this framework.

Both parts of the project share common features, in particular the design of a robust
squeezed light source and the use of a filtering cavity for the rotation of the squeezing ellipse.
In addition, there are also control loops required for both systems that will be described later
in this chapter.

The main differences between the two sides of the project are summarized in Table 4.1.
In the rest of the thesis I will refer to the low frequency dependent squeezing experiment
as Exsqueez. This experimentation is done at LAL/IJCLab on the CALVA facility shown in
Figure 4.1, using the existing 50-meter suspended cavity as a filtering cavity.

High Frequency Low Frequency

Environment In-air Under vacuum

Type of seeding Bright Vacuum

Corner frequency 165 kHz 1 kHz

Target system Optomechanical resonator Gravitational wave interferometer

Table 4.1 – Main differences between the low frequency and the high frequency pats of the Exsqueez
project

In this chapter I will first present an overview of Exsqueez using a simplified scheme
and introduce the needed beams and systems to fully control the experiment. I will then
go through the details of the different subsystems to construct the full conceptual design
and present the chosen parameters. Finally I will summarized the different beam paths and
parameters of interest for Exsqueez.

77
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Figure 4.1 – First clean room of CALVA with the red tank, named Ferrarix, used for the in-vacuum
preparation bench of the Exsqueez experiment and the grey tank where the first mirror of the filter
cavity stands.

4.1 Exsqueez experiment overview

4.1.1 Simplified conceptual design

The squeezed state generator used for Exsqueez aims at generating frequency dependent vac-
uum squeezed state such as the one that could be applicable to gravitational wave detectors.
A simplified scheme of the experiment is shown in Figure 4.2. It presents the main parts of
the experiments as a first sketch.

Figure 4.2 – Simplified conceptual scheme of Exsqueez including only the main parts of the frequency
dependent squeezing production and measurement in dashed boxes. In red: the main laser at 1064 nm,
in green: the Second Harmonic Generator (SHG) producing light at 532 nm, in pink: the Optical
Parametric Oscillator (OPO), in blue: the filter cavity and in brown: the homodyne detection.

The main important device to generate squeezing is the Optical Parametric Oscillator
(OPO). As explained in Section 3.5.1, the non-linear medium of the OPO downconverts
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photons of the pump field at 532 nm (after frequency doubling) into correlated sideband
pairs, generating a squeezed state of light. From Figure 3.12, one can see that vacuum
squeezing is produced in the crystal at all frequencies up to the pump frequency, centered at
half the pump frequency.

The characteristics of the non-linear medium will be presented in Section 4.3.1. Moreover,
it is placed inside an optical cavity that will be described in Section 4.3.2 to filter the squeezed
photons frequency.

To obtain frequency dependent squeezing, the squeezed beam is then injected into a filter
cavity that will rotate the squeezing ellipse in a frequency dependent manner, as explained in
Section 3.4.2. The parameters chosen for the Exsqueez filter cavity will be given in Section
4.5.

Finally, the squeezing measurement is done using the balanced homodyne detection
scheme presented in Section 3.5.2. It needs to combine the squeezed beam with a local
oscillator beam at the same wavelength. To ensure this condition, the pump beam, that is
used to produce the squeezed field, is obtained by frequency doubling a main laser with a
Second Harmonic Generator (SHG) that will be described in Section 4.2. A tap off of this
main laser is then used as local oscillator for the squeezing measurement.

4.1.2 Introduction of the full conceptual design

To fully control the squeezing production at the maximum possible level, we have to introduce
more beams and systems. In this section I will only give a short overview of all the beams
that are used and I will go through the details in the next sections of this chapter.

The full conceptual design, represented in Figure 4.3, comprises 8 different beams, named
when they enter the Ferrarix in-vacuum tank (red tank in Figure 4.1), while the in-air part
corresponds to the beam preparation stage. Due to the complexity of this scheme, I will do
some round trips between the generation of the beams and the explanation of their use. I
will list here a summary in alphabetic order of the different beams with their usefulness:

• Filter Cavity Control (FCC): green beam used to lock the filter cavity.

• Filter Cavity Verification (FCV): infrared beam used to verify the lock of the filter
cavity in the infrared for the squeezed beam.

• Local Oscillator (LO): infrared beam used to measure the squeezing level.

• Modified Coherent Locking (MCL): infrared beam, frequency shifted from the
squeezed beam, used to control the squeezing ellipse angle.

• Phase Locking (PL): green beam used to phase lock the MCL and squeezed beams.

• Pump1: green beam used to generate the squeezed beam.

• Seed: infrared beam used to characterize the OPO and the homodyne detection.

• Squeezed: infrared beam generated in the in-vacuum tank from the pump beam.

All these beams are summarized in table 4.2 with their wavelength and simplified sideband
diagrams and reviewed in Section 4.6. To generate all these beams we use two infrared laser
sources at 1064 nm: a main laser that delivers 2 W and an auxiliary laser that delivers
200 mW. The auxiliary laser is frequency shifted from the main laser and both lasers are
phase locked with each other, as it will be explained in Section 4.4.2.

On both infrared paths, we placed a Second Harmonic Generator (SHG) that produces a
green beam. The specific features and use of these SHG stages will be presented later in this
chapter, but we can already notice that both of them are placed inside an optical cavity.

1All over this thesis the term of pump beam will refer to this 532 nm beam used to generate the squeezing.
In particular I won’t use it for the infrared beam that generates green beam via frequency doubling.
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Figure 4.3 – Full conception design of Exsqueez. Left: In-air part.
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Right: In-vacuum part.
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Beam name and laser source Wavelength Sideband diagram

Filter Cavity Control (FCC)
from the auxiliary laser

532 nm

Filter Cavity Verification (FCV)
from the main laser

1064 nm

Local Oscillator (LO)
from the main laser

1064 nm

Modified Coherent Locking (MCL)
from the auxiliary laser

before the OPO
1064 nm

Modified Coherent Locking (MCL)
from the auxiliary laser

after the OPO
1064 nm

Phase Locking (PL)
from the auxiliary laser

532 nm

Pump
from the main laser

532 nm

Seed
from the main laser

1064 nm

Squeezed
from the main laser

1064 nm

Table 4.2 – Summary of the beams used for Exsqueez presenting there wavelength and simplified
sideband diagrams. The IR laser source at 1064nm is precised and the beams at 532nm are obtained
after interacting through a Second Harmonic Generator (SHG) which is SHG1 on the path of the main
laser and SHG2 on the path of the auxiliary laser.
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4.1.3 Pound-Drever-Hall Locking technique

In the full conceptual design there are 4 optical cavities : for the Optical Parametric Oscillator
(OPO), for the main and the auxiliary Second Harmonic Generator (SHG1 and SHG2) and
for the filter cavity. All these cavities need to be length controlled and locked on resonance for
a given wavelength. These locks will be done using the Pound-Drever-Hall (PDH) technique.

The principle of the Pound-Drever-Hall technique [102] is to modulate the incoming ω field
in phase at a frequency ΩEOM and a modulation depth m creating sidebands at ω ±ΩEOM .
This is done by adding an Electro-Optic Modulator (EOM) in the path of the incoming beam.

Considering again the classical field at a given position in space of Equation (2.1), the
field of the beam before the EOM is written:

ψ = ψ0e
iωt. (4.1)

And after the EOM, the field entering the Fabry-Perot cavity is:

ψin = ψeim sin(ΩEOM t) = ψ
n=+∞∑
n=−∞

Jn(m)einΩEOM t, (4.2)

where Jn(m) are the Bessel functions.
Consequently, at first order we have:

ψin = ψ
[
J0(m) + J1(m)eiΩEOM t + J−1(m)︸ ︷︷ ︸

=−J1(m)

e−iΩEOM t
]
. (4.3)

From Equation (4.3), we see that we have now 3 separated frequencies entering the Fabry-
Perot cavity: the carrier at ω and 2 sidebands at ω ± ΩEOM .

According to Equations (2.65) and (2.66), the complex amplitude reflectivity and trans-
missivity of the cavity depend on the frequency. Consequently the field of the beam containing
a carrier and sidebands that is filtered by the cavity is just the sum of the field associated
to each frequency multiplied by the complex amplitude effect F (ω) of the cavity, at this
frequency:

ψF = ψ
[
J0(m)F (ω) + J1(m)F (ω + ΩEOM )eiΩEOM t − J1(m)F (ω − ΩEOM )e−iΩEOM t

]
.

(4.4)
For instance in reflection of the cavity, F (ω) is the complex amplitude reflectivity and in

transmission of the cavity, F (ω) is the complex amplitude transmissivity. Finally, a photodi-
ode measures the power of the field that is:

PF = |ψF |2 = PDC + PACΩEOM
+ PAC2ΩEOM

, (4.5)

with:

PDC = |ψ0|2
[
J0(m)2|F (ω)|2 + J1(m)2

(
|F (ω + ΩEOM )|2 + |F (ω − ΩEOM )|2

)]
, (4.6)

PACΩEOM
= 2PACq cos(ΩEOM t) + 2PACp sin(ΩEOM t), (4.7)

PAC2ΩEOM
= |ψ0|2J2

1 (m)
(
F (ω + ΩEOM )F ∗(ω − ΩEOM )e2iΩEOM t + c.c.

)
, (4.8)

where:

PACq = |ψ0|2J0(m)J1(m) Re [F (ω)F ∗(ω + ΩEOM )− F ∗(ω)F (ω − ΩEOM )] , (4.9)

PACp = |ψ0|2J0(m)J1(m) Im [F (ω)F ∗(ω + ΩEOM )− F ∗(ω)F (ω − ΩEOM )] . (4.10)

PDC is the DC power measured by a photodiode. To obtain the demodulated signal,
the power measured by the photodiode is mixed with a phase-delayed version of the original
modulation to obtain PmF :

PmF = PF cos(ΩEOM t+ ϕ), (4.11)
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where ϕ is the phase delay introduced. By developing Equation (4.11), we get:

PmF =aa|PDC cos(ΩEOM t+ ϕ) (4.12)

+ PACq cos(2ΩEOM t+ ϕ) + PACp sin(2ΩEOM t+ ϕ)
+ PACq cos(ϕ) + PACp sin(ϕ)
+ PAC2ΩEOM

cos(ΩEOM t+ ϕ).

And after low-pass filtering we only have the demodulated AC signal PΩEOM
F :

PΩEOM
F = PACq cos(ϕ) + PACp sin(ϕ). (4.13)

By tuning the phase delay ϕ we can observe either the signal demodulated in quadrature
PACq , or the signal demodulated in phase PACp or a combination of both.

(a) (b)

Figure 4.4 – Signals measured in transmission of a cavity showing the carrier and the sidebands (a)
DC signal. (b) AC in-phase and in-quadrature signals.

The signal demodulated in phase is linear and centered on zero around the resonance of
the cavity. That is a good error signal for a locking loop to keep the cavity on resonance.

4.2 Second Harmonic Generators

There are primarily 4 beams generated on the in-air preparation bench of Figure 4.3 that
give rise to the 8 beams entering the Ferrarix in-vacuum tank, defined in Section 4.1.2 and
Table 4.2: 2 infrared beams at 1064 nm and 2 green beams at 532 nm.

We use 2 laser heads and 2 Second Harmonic Generators (SHG) [103] to generate these
beams. The reason why we use SHGs on beams at 1064 nm to obtain beams at 532 nm and
not directly laser head at 532 nm will become clearer in the rest of the chapter. For now,
I will only say that SHG1 ensures that on the homodyne detection the local oscillator from
the main laser and the squeezed beam generated from the pump beam are exactly at the
same frequency. SHG2, on its side, is used to phase lock the main and auxiliary laser. The
necessity of the phase lock and the method to phase lock the lasers will be detailed in Section
4.4.3.

Both SHGs share the same properties that I will describe now.

4.2.1 Non linear medium

The non linear medium used for the second harmonic generators is a magnesium oxide doped
periodically-poled lithium niobate (MgO:PPLN) crystal. This is a quasi-phase matched ma-
terial in which the spontaneous polarization of the lithium niobate crystal is periodically
inverted (poled).

The refractive index of light in the crystal depends on the temperature. Consequently,
according to Section 3.5.1, the coherence length lc of the medium depends on the temperature.
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Recalling Equation (3.74), we can express the coherence length according to the fundamental
wavelength λ0 = 1064 nm and the refractive index n1 and n2, respectively at the fundamental
wavelength and at the second harmonic wavelength λ2 = 532 nm:

lc = λ0
4(n2 − n1) . (4.14)

The best quasi-phase matching is obtained when flipping the orientation of the polariza-
tion of the medium every coherence length. From Equation (4.14), the period of the poling
at a given fundamental wavelength λ0 depends on the refractive index at both fundamental
and second harmonic wavelengths.

To increase the available tuning of the phase matching we use crystals that have several
gratings of periodically poled medium with different poling periods separated by non poled
medium of the same material as shown in Figures 4.5a and 4.5b.

(a)

(b)

Figure 4.5 – (a) Scheme of the PPLN crystal showing the 5 gratings that can be used as Second
Harmonic Generators (SHG). The periodic poling is represented by the blue and orange boxes and the
non poled material is represented in white. (b) Picture of a PPLN crystal showing the gratings [104].

The crystal we are using is 1 mm thick, 10 mm wide and 10 mm long. It is composed of
non poled material surrounding 5 lines of periodically poled material with 5 different periods
that are exaggerated in Figure 4.5a. Each grating is 1 mm wide and the fundamental beam
is then sent through one grating that have a given optimal temperature for phase matching
as shown in Figure 4.6.

4.2.2 Temperature control

The control of the crystal temperature is done using a Thermistor to measure the temperature
and obtain an error signal and a Peltier unit to increase or lower the temperature and maintain
it to the best phase matching value.

We decided to use the second grating with the highest period of poling, that is 6.93 µm
on both SHG because it allows a phase matching temperature at 1064 nm of 50◦C that is not
too high with respect to the room temperature. We decided not to use the first one at 33◦C
because it was to too close to the beginning of the operating temperature range.

The first difference between SHG1 and SHG2 stands in the temperature controller unit.
For SHG1 we use a commercial oven, that contain the thermistor and the Peltier, with its
associated temperature controller unit. It has been chosen for its easy handling.

However, for the Optical Parametric Oscillator (OPO), that I will describe in Section 4.3,
we won’t be able to use a commercial oven and temperature controller unit to control the
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Figure 4.6 – Quasi-phase matching curves of the PPLN crystal used [105]. The pump wavelength is
the wavelength of the fundamental beam (1064 nm) and the curves correspond to the different poling
periods of the gratings.

OPO crystal temperature as it will be placed under vacuum and classical commercial systems
are not vacuum compatible.

To limit the costs, for the OPO, we will use a home made system with a thermistor and
a Peltier unit connected to the acquisition system provided by LAPP for Exsqueez1.

To test this type of home made system before the OPO, and to reduce the costs, we
decided to use the same home made system for SHG2.

4.2.3 Cavity

As the second harmonic generation is a second order process its efficiency is quite low, even
using a periodically poled crystal. A single passage inside the crystal produces few tens of
µW of second harmonic beam from few hundreds of mW of fundamental beam.

To increase the produced power of the second harmonic beam, we place the crystal inside
a resonant Fabry-Perot cavity that is resonant for the fundamental frequency but not for the
second harmonic one that escapes the cavity through the input mirror.

Both SHG share the same cavity properties. The SHG cavities are 45 mm long with the
coating specifications given in Table 4.3 resulting in a finesse at 1064 nm of F = 57 and a
linewidth of 58 MHz.

Wavelength λ = 1064 nm λ = 532 nm

Input mirror R = 0.9 R < 0.01
End mirror R = 0.995 R > 0.999

Table 4.3 – Coating specifications for the Exsqueez Second Harmonic Generators SHG1 and SHG2.

The end mirror of the cavity is placed on a piezoelectric actuator controlled remotely
to be able to adjust the length of the cavity and keep it on resonance for the fundamental
1064nm beam using the Pound-Drever-Hall technique described in Section 4.1.3.

The second difference between SHG1 and SHG2 stands in the modulation frequency cho-
sen to lock the cavities. The SHG1 cavity uses a modulation frequency of 12.4 MHz, while
the SHG2 cavity uses a modulation frequency of 50 MHz. To fully understand the choice of
modulation frequencies, we have to keep in mind the whole conceptual design. Consequently
I will come back to the modulation frequency choice in Section 4.6.

1Note that the acquisition system provided by LAPP for Exsqueez is the same one as what they provide
for Advanced Virgo, meaning that it would be easier to transfer to Advanced Virgo what have been done in
CALVA.
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To summarize this part on the main and auxiliary SHG, I represented in Figures 4.7a and
4.7b the conceptual design of SHG1 and SHG2 with their locking schemes and the origin of
the 8 beams defined in Section 4.1.2 and Table 4.2.

(a)

(b)

Figure 4.7 – Scheme of the (a) main Second Harmonic Generator (SHG1) and (b) auxiliary Second
Harmonic Generator (SHG2) including the locking schemes and the name of the beams generated
according to Table 4.2. Note that the squeezed beam is not produced at this stage but will be
generated from the pump beam.

4.3 Optical Parametric Oscillator

4.3.1 Non linear medium

For Exsqueez we use a periodically-poled potassium titanyl phosphate (PPKTP) crystal as
Optical Parametric Oscillator (OPO). The periodic poling, represented by the blue and orange
portions in the crystal scheme of Figure 4.8, allows a quasi-phase matching as explained in
Section 3.5.1.

Figure 4.8 – Schematic of the OPO non linear wedged crystal [78]. The periodically poled material is
represented by the blue and orange boxes while the non poled material is represented in white.

The PPKTP crystal that we use is 1 mm thick, 5 mm wide and 11.2 mm long before
polishing. It is composed of 10.2 mm of periodically poled KTP with a period of 9 µm and
1 mm of non poled KTP with a 1.43◦ wedge. The reason of the use of non poled material
and wedge will be detailed on Section 4.3.2.

The refractive index of light in the crystal depends on the temperature, consequently, for
a given crystal there is an optimum of temperature to obtain the best phase matching of the
input beam to the crystal. For the crystal we are using, the optimum temperature is between
28◦ C and 37◦ C, which is quite low and easy to reach and maintain. The PPKTP crystal
used as an OPO has a high non linear gain coefficient and has been found to achieve the
highest efficiency [106].



88 Chapter 4. Design of a Frequency Dependent Squeezing Experiment: Exsqueez

4.3.2 The doubly resonant bow-tie cavity

Doubly resonant cavity

The PPTKP crystal is placed inside an optical cavity of total length 255 mm, that is resonant
at the pump field frequency to increase the number of passages of the beam inside the crystal
and as a result to increase the squeezing production.

Moreover, the resonance of the pump field inside the cavity allows to use the pump field
to lock the cavity using the Pound-Drever Hall technique described in Section 4.1.3, using a
photodiode in reflection of the cavity. The finesse of the cavity at the pump frequency is 28
and the modulation frequency to lock the OPO is 12.4 MHz.

The cavity is also resonant at the fundamental frequency of the squeezed field with a
finesse of 35 allowing the selection of the squeezed photons frequency inside the linewidth of
17 MHz of the cavity, as represented in Figure 4.9.

Figure 4.9 – In blue: Power filtered by the cavity according to the frequency separation from the
fundamental frequency ω0. In red: example of ω0 ±Ω squeezed photons frequencies resonating inside
the cavity.

This doubly resonant system also ensures a good overlap between the pump field and the
fundamental field. Nevertheless, the intra-cavity dispersion of the fundamental and harmonic
fields due to the PPKTP crystal leads to a slight offset between the resonance frequency of the
two fields. This can be compensated by leaving a wedged non periodically poled section at the
end of the crystal [106] as represented in Figure 4.8. One can then change the effective path
length and consequently the phase relationship between the two beams by lateral translation
of the crystal position perpendicular to the beam propagation direction.

Bow-tie travelling wave cavity

The cavity used is a bow-tie travelling cavity as represented in Figure 4.10 with two flat
mirrors M1 and M2 to scan and lock the cavity and two curved mirrors M3 and M4 with a
radius of curvature of 38 mm to focus the beam inside the crystal. The first advantage of
this configuration is the number of potential ports available for input and output of optical
fields used for OPO operation and characterization.

Nevertheless this increased number of mirrors is also a drawback as it increases optical
losses, thus reducing the squeezing escape efficiency. It also reduces the total mechanical
stability with respect to a linear cavity.

Moreover, the beam is not in normal incidence on the mirrors but has a small angle
of θ = 12◦ that introduces beam astigmatism. To reduce this effect, the smallest possible
angles of incidence are used without clipping the beam. The astigmatism causes problems to
matched the squeezed beam first to the filter cavity and then to the homodyne detection (or
in the case of gravitational wave detector, to the interferometer itself).
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However, another advantage of the bow-tie configuration is the isolation to backscattered
light [84]. For instance scattered light coming from the homodyne detection will not be
reflected back from the OPO to the homodyne detection. In addition, backscattered light
propagates in the reverse direction inside the OPO with respect to the pump one and con-
sequently it does not seed the OPO. The seeding of the OPO will be explained in Section
4.4.4.

Figure 4.10 – Scheme of the OPO cavity.

Cavity mirrors positioning

To explain and define the choices made in dimensioning the OPO cavity, I first have to give
some features of Gaussian optics. A Gaussian beam is fully described by its complex radius
of curvature q(z) at the z position:

1
q(z) = 1

R(z) − i
λ

πnw(z)2 , (4.15)

where R(z) is the beam radius of curvature and w(z) the beam radius at the z position, λ
the beam wavelength and n the refractive index of the medium. The beam radius w(z) can
be determined from its minimal radius w0, called waist:

w(z) = w0

√
1 +

(
z

zR

)2
, (4.16)

with zR the Rayleigh length, corresponding to the longitudinal distance, since the waist, after
which the radius of the beam has increased by a factor

√
2:

zR = πw2
0

λ
. (4.17)

The ABCD matrix method [107] allows to determine the relationship between an input an
output complex radius of curvature qi and qo after going through an optical system defined
by a matrix M : (

qi
1

)
= kM

(
qo
1

)
, (4.18)
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with k a normalization factor and the M matrix can be written in its general form:

M =
(
A B
C D

)
. (4.19)

From Equation (4.18) and the ABCD coefficients of the M matrix, we can then write the
direct relation between the input and the output complex radius of curvature:

qo = Aqi +B

Cqi +D
. (4.20)

The beam radius is not necessary the same in the x and y direction because some optical
systems, especially curved mirrors not in normal incidence, do not act in the same way in
both directions. We have to define the tangential direction, corresponding to the x axis and
the sagittal direction, corresponding to the y axis and we will add the subscripts t and s to
the beams parameters.

To write the matrix corresponding to the OPO system, we first have to decompose it into
a succession of simpler systems of known ABCD matrices. The 4 matrices Mf (d), Mi(n1, n2),
Mrt(R, θ) and Mrs(R, θ) that are used to describe the OPO are given in Table 4.4. Note that
for the reflection on a flat mirror, the corresponding matrix is the unity matrix both for the
tangential and sagittal reflection at every angle of incidence.

Propagation Interface Tangential reflection Sagittal reflection

Mf (d) = Mi(n1, n2) = Mrt(R, θ) = Mrs(r, θ) =(
1 d
0 1

) (
1 0
0 n1

n2

) (
1 0

− 2
R cos(θ) 1

) (
1 0

−2 cos(θ)
R 1

)

Table 4.4 – ABCD matrices used for the description of the OPO. The matrix of propagation over
a distance d, the matrix of the refraction on an interface from a medium of refractive index n1 to a
medium of refractive index n2 and the matrix of the tangential and sagittal reflection on a mirror of
radius of curvature R with a angle of incidence θ with respect to the normal of the mirror.

From Figure 4.10 and Table 4.4, we can write the full round-trip matrix MOPO of the
OPO cavity as a multiplication of the elementary matrices. To do so, we note d1 the flat
mirror separation, i.e. the distance between M1 and M2 and d3 the curved mirror separation,
i.e. the distance between M3 and M4. The crystal length is noted dc, the refractive index of
the crystal is n and the distance between M2 and M3, which is by design the same as the one
between M1 and M4, is noted d and fixed by d1, d3, and the angle θ:

d = d1 + d3
2 cos(θ) . (4.21)

Starting from the first mirror of the OPO, M1, the matrix of the OPO MOPOp where p
stands for the tangential (t) or sagittal (s) plane, is written:

MOPOp =Mf (d)Mrp

(
R,

θ

2

)
Mf

(
d3 − dc

2

)
Mi(n, 1)Mf (dc) (4.22)

×Mi(1, n)Mf

(
d3 − dc

2

)
Mrp

(
R,

θ

2

)
Mf (d1 + d)

MOPOp =
(
AOPOp BOPOp
COPOp DOPOp

)
. (4.23)

The OPO cavity is stable and resonates if the complex radius of curvature of the beam
at a specific position inside the cavity remains the same after one round trip. From Equation
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(4.20), the complex radius of curvature q1p on the input mirror of the OPO, M1 is the solution
of:

BOPOp
q2

1p
+

(AOPOp −DOPOp)
q1p

− COPOp = 0. (4.24)

Equation (4.24) gives a complex radius of curvature if its discriminant is negative. This
condition can be written using a stability factor mp defined as:

mp =
Tr(MOPOp)

2 =
AOPOp +DOPOp

2 . (4.25)

The stability condition is then:

− 1 ≤ mp ≤ 1, (4.26)

for both the tangential and sagittal plane and for both wavelength of the pump beam and
the squeezed beam. Under this condition the complex radius of curvature q1p on the input
mirror of the OPO, M1 is defined by:

1
q1p

=
DOPOp −AOPOp + i

√
4− Tr(MOPOp)2

2BOPOp
. (4.27)

Then from Equation (4.27), we can obtain the beam radius all along its path inside the
OPO cavity for a given set of d1, d3, dc, R and θ values. When the cavity is stable there
are two waists: one in the middle of the curved mirrors, and one in the middle of the flat
mirrors. To improve the squeezing production, there is an optimal waist size of 30 µm inside
the crystal for the infrared squeezed beam [108].

Figure 4.11 – Simulation of the sagittal beam waist radius of the infrared beam inside the crystal when
scanning the flat and curved mirrors separations. The solid lines corresponds to the waist radius, the
dashed line represent the stability factor. The dashed region is not accessible with our experimental
set up that fixed the minimal flat mirror separation and the black star is the value we chose to use for
our OPO: d1 = 78 mm and d3 = 48 mm leading to an infrared sagittal waist radius inside the crystal
of 27 µm.
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We already fixed the value of θ = 12◦ to minimized the beam astigmatism. The length
dc of the crystal and the radius of curvature R of the curved mirrors were fixed in previous
works [84]. Consequently, the parameter space is given by d1 and d3. In Figure 4.11, I
simulated the sagittal beam waist radius of the infrared beam inside the crystal.

From this simulation we can see that an infrared waist size of 30 µm inside the crystal is
not achievable on our experimental set-up due to physical constraints as we are limited to a
flat mirror separation above 75 mm. To not be too close to our limitation, but as close as
possible to the 30 µm waist radius, we decided to chose an infrared sagittal waist radius inside
the crystal of 27 µm with d1 = 78 mm and d3 = 48 mm (a larger curved mirror separation
was better in our physical system to keep the θ = 12◦ angle for the OPO).

For these values I simulated the beam radius all along its trajectory inside the OPO in
Figure 4.12 for the infrared and green beams in the tangential and sagittal planes. This
enabled us to check that the beam width stayed below 1/2-inch mirrors radius to avoid beam
clipping. With this simulation we obtained the second cavity waist radius that is out of the
crystal and that is experimentally measurable: 115.5 µm for the green beam and 159.9 µm
for the infrared beam in the sagittal plane.

Figure 4.12 – Simulation of the beam radius all along its trajectory inside the OPO for the infrared
and green beams in the tangential and sagittal planes.

4.4 Control of the squeezing production

4.4.1 Power fluctuation reduction using a Mach-Zehnder

The squeezing produced from the 532 nm pump beam depends on the power of this beam.
Power fluctuations can affect the degree of measured squeezing and anti-squeezing [109] and
therefore lead to squeezing ellipse jitter causing losses as described in Section 3.6.4.

Nevertheless, the infrared beam power from the main laser is not stabilized in power.
Moreover, the conversion efficiency of the second harmonic generator described in Section 4.2
also depends on the infrared power as fluctuations of input power change the temperature
and consequently the phase matching condition. This two factors lead to power fluctuations
of the pump beam generating the squeezing. We have to reduce these power fluctuations.

A solution to stabilize the beam power is to use a Mach-Zehnder interferometer schema-
tized in Figure 4.13.
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Figure 4.13 – Scheme of a Mach-Zehnder interferometer.

Using the same rules as in Section 2.2.2 and the scheme of Figure 4.13, we can write the
electromagnetic field, for a beam of wave vector k, at several points in the interferometer
with respect to the incoming field ψin on the first beam splitter:

ψ1 = t1ψin, (4.28)

ψ2 = −rAt1ψine−ikLA , (4.29)

ψ3 = −r1ψin, (4.30)

ψ4 = rBr1ψine
−ikLB , (4.31)

ψ5 = t2ψ2 + r2ψ4, (4.32)

ψ6 = −r2ψ2 + t2ψ4. (4.33)

The two important beams are the ones going out of the second beam splitter. We can
write their fields ψ5 and ψ6 with respect to the incoming field ψin:

ψ5 =
(
−rAt1t2e−ikLA + rBr1r2e

−ikLB
)
ψin, (4.34)

ψ6 =
(
rAr2t1e

−ikLA + rBr1t2e
−ikLB

)
ψin. (4.35)

Consequently the power in the two beams going out of the Mach-Zehnder interferometer
are:

P5 = Pin
[
r2
At

2
1t

2
2 + r2

Br
2
1r

2
2 − 2rArBr1r2t1t2 cos(kδL)

]
, (4.36)

P6 = Pin
[
r2
Ar

2
2t

2
1 + r2

Br
2
1t

2
2 + 2rArBr1r2t1t2 cos(kδL)

]
, (4.37)

where δL = LA − LB is the difference between the two arms lengths.



94 Chapter 4. Design of a Frequency Dependent Squeezing Experiment: Exsqueez

Figure 4.14 – Power exiting the two arms of an asymmetric Mach-Zehnder interferometer with 70:30
beam splitters according to Equations (4.36) and (4.37) and corresponding to Figure 4.13, when
varying the relative length between both arms of the interferometer.

From Equations (4.36) and (4.37), the power going out of each arm of the Mach-Zehnder
interferometer depends on δL, the difference between the two arm lengths. They are rep-
resented in Figure 4.14 for an asymmetric Mach-Zehnder interferometer with 70:30 beam
splitters.

We chose an asymmetric Mach-Zehnder with two beam splitters that reflect 70% of green
power to ease the alignment by blocking the A arm of the Mach-Zehnder. Indeed, in that
case, there is most of the power in the output P5 of the Mach-Zehnder that is send to the
squeezer. Moreover some measurements will be described in Chapter 6 to characterize the
OPO nonlinear gain using the Mach-Zehnder with one arm blocked.

To lock the Mach-Zehnder and stabilize the pump beam power, we place on the pump
path a beam sampler that reflects 8% of green power towards a photodiode. The mirror MB

is placed on a piezoelectric to slightly change the difference between the two arm lengths δL.
The Mach-Zehnder is then locked so that the beam power on the photodiode is fixed, via a
DC subtraction locking loop. The power fluctuation of the pump beam entering the squeezer
are then reduced.

Note that the second output P6 of the interferometer cannot be used to stabilize the power
on the first output P5 as long as the input power Pin is not constant.

A second stage of stabilization can be achieved if needed using as error signal the pump
power measured either in transmission or reflexion of the Optical Parametric Oscillator
(OPO).

4.4.2 Modified Coherent Locking scheme

Now that we produce a stable green beam to pump the Optical Parametric Oscillator (OPO)
and generate a squeezed beam, the next step is to control the squeezing ellipse phase with
respect to the measurement quadrature. The quadrature angle of the produced squeezing
depends on the phase of the pump beam at the interaction point inside the crystal of the
OPO.

Several techniques have been developed to control the ellipse phase like quantum noise
locking [110] or the coherent sideband locking [111]. For Exsqueez, we use a modified coherent
sideband locking technique [112] that I will describe hereafter.
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Modified Coherent Locking beam

The modified coherent locking scheme uses a new control field, the Modified Coherent Locking
beam (MCL), that is coherent with the squeezed field but frequency shifted in order not to
interfere with it. This ensures that noise from the control field does not deteriorate the non
classical performance of the squeezed field. Nevertheless, the frequency shift of the MCL
beam should stay in the linewidth of the OPO cavity so that it escapes from the cavity after
sensing the crystal nonlinearity.

The simplified conceptual scheme presenting the modified coherent locking technique is
shown in Figure 4.15. I will now go through its details.

Figure 4.15 – Simplified conceptual scheme of the Modified Coherent Locking technique.

Before entering the OPO, one can consider the MCL beam as a single sideband field with
respect to the fundamental frequency of the squeezed beam ω0. Its frequency is ω0 + ΩPLL

and its amplitude is noted αΩPLL .

After going through the OPO, the electric field of the MCL beam EMCL is [111]:

EMCL(t) ∝ 1 + g√
2g αΩPLL cos(ω0t+ ΩPLLt)−

1− g√
2g αΩPLL cos(ω0t− ΩPLLt− 2θ), (4.38)

where θ is the quadrature angle of the squeezing and exp(σ) = √g with σ the squeeze factor
as defined in Equation (3.32).

From Equation (4.38), one can see that after interacting through the OPO, the MCL beam
is composed of two sidebands at ω0 ± ΩPLL. Note that if there is no non linear interaction,
i.e. no squeezing, we have r = 0 and thus g = 1, in this case, the cos(ω0t−ΩPLLt− 2θ) term
disappear and there is only the initial sideband at ω0 + ΩPLL left.

The MCL beam has to resonate inside the OPO cavity, consequently its frequency must
not be too far from the OPO linewidth in infrared given in Section 4.3, which is 17 MHz. We
chose to use ΩPLL = 20 MHz.

Then the MCL beam is sent to the homodyne detection where it is recombined with the
Local Oscillator beam (LO), that is a tap off from the main laser at the squeezing frequency
ω0 with amplitude αLO. The difference photocurrent i− of the homodyne photodiodes is
given by [111]:

i− ∝
2
√

2αLOαΩPLL(g − 1)
√
g

cos(ΩPLLt+ 2θ + φ), (4.39)

where φ is the phase between the MCL and LO beams. After demodulating i− at ΩPLL,
applying a low-pass filter and tuning the demodulation phase delay, as done for the PDH
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technique in Section 4.1.3, we obtain the error signal:

SMCL−LO
err ∝

√
2αLOαΩPLL(g − 1)

√
g

sin(2θ + φ). (4.40)

From equation (4.40), the error signal depends on the squeezing angle θ and on the relative
phase φ between the MCL and LO beams.

Then if we fix the phase relationship between the MCL beam and the pump beam, meaning
we fix the squeezing angle θ, we are able to fix the measurement quadrature φ of the squeezing
using a mirror on a piezoelectric mount on the MCL path as shown in Figure 4.15. Note that
the piezo could also have been placed on the LO path.

To fix the phase relationship between the MCL beam and the pump beam, we chose to
use an auxiliary infrared laser frequency shifted from the main laser and phase locked with
the main laser. The details of the phase locking of the main and auxiliary lasers will be given
in Section 4.4.3.

The important thing to note is that we use a Second Harmonic Generator (SHG), de-
scribed in Section 4.2 to obtain a green beam frequency shifted from the pump beam, the
Phase Locking beam (PL). The MCL and the PL beams co-propagate from the SHG and
then they are recombined with the pump beam on a dichroic plate.

From this point, the MCL and the pump beam are superposed and co-propagate towards
the OPO. From this same point, in another direction, the PL and a pick off of the pump
beams co-propagate towards the phase locking loop photodiode which allows to phase lock
both main and auxiliary lasers as shown in Figure 4.16. This lock fixes the phase relationship
on the dichroic plate and later on their propagation of the MCL beam, coming from the
auxiliary laser, and the pump beam, coming from the main laser.

4.4.3 Phase Locking Loop

Figure 4.16 – Optical scheme of the Phase Locking Technique.

To phase lock the main laser and the auxiliary laser we use the green beams produced by
the Second Harmonic Generators (SHG), described in Section 4.2, on both main and auxiliary
paths. They are the pump and the Phase Locking (PL) beams.

As described before and represented in Figure 4.16, the Modified Coherent Locking beam
(MCL) and the frequency doubled PL beam co-propagate towards a dichroic plate that reflects
12% of the infrared MCL beam towards the OPO and transmits 96% of the green PL beam
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towards a photodiode. On the same dichroic plate, the pump beam is transmitted towards
the OPO and superposed with the MCL but 2% of the pump power, representing few mW
in operation, are reflected towards the photodiode.

Before the beam splitter, the two green incoming fields ψpump and ψPL can be written:

ψpump = ψ0
pumpe

2iω0t, (4.41)

ψPL = ψ0
PLe

2iω0t+2iΩPLLt. (4.42)

Then, using the same rules as in Section 2.2.2 and the scheme in Figure 4.16, noting, rDC ,
and tDC the amplitude reflectivity and transmissivity of the dichroic beam splitter for the
green beam, we can write the electromagnetic field that goes to the photodiode ψdet:

ψdet = rDCψpump + tDCψPL. (4.43)

Consequently, the power measured Pdet is:

Pdet = r2
DC |ψ0

PL|2 + t2DC |ψ0
pump|2 + 2 Re

(
rDCtDCψ

0
PLψ

0
pump

)
cos(2ΩPLLt). (4.44)

After demodulation at ωref applying a low-pass filtering and choosing the appropriate
demodulation phase delay, as explained for the PDH technique in Section 4.1.3, the error
signal measured is:

P errdet ∝ sin (2(ΩPLL − ωref )t) . (4.45)

The error signal of Equation (4.45) is represented in Figure 4.17. One can see that around
ΩPLL = ωref the error signal is linear and centered on zero, making it a good error signal.

Figure 4.17 – Error signal for the Phase Locking Loop.

4.4.4 Seed beam

To characterize the non linear interaction in the Optical Parametric Oscillator (OPO), a seed
beam is send to the OPO as represented in Figure 4.18. This seed beam won’t be used
during the production of squeezing but only for characterization of the OPO and homodyne
detection efficiencies that will be done in Chapter 6.

The seed field is a tap off beam from the main laser and is consequently at the squeezing
fundamental frequency like the local oscillator (LO) beam. Thus, it undergoes non linear
interaction when going through the crystal of the OPO. It acts as a bright seed field leading
to degenerate optical parametric amplification as represented in Figure 4.19.

The bright seed field acts as a catalyst for the reaction of the pump photon down conver-
sion. Only a small portion of the pump field undergoes this down conversion process leading
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Figure 4.18 – Simplified conceptual scheme of the OPO with the seed field and the homodyne detection
with the local oscillator (LO) field.

Figure 4.19 – Scheme of a degenerate optical parametric amplifier [84].

to a small amplification of the seed field. By changing the pump power and measuring the
amplification and de-amplification of the seed field on one of the homodyne photodiodes, this
allow us to determine the pump threshold power of the OPO.

Moreover, the waist size and position of the LO and squeezed beams should be exactly
the same on the beam splitter before the two homodyne detection photodiodes to achieve
complete destructive or constructive interference. The visibility V quantifies the spatial mode
mismatch between the signal (squeezed or seed) and local oscillator beams. It is defined by:

V = Pmax − Pmin
Pmax + Pmin

, (4.46)

where Pmax and Pmin are respectively the maximum and minimum power measured as the
relative phase between the two beams is varied.

The seed beam goes through the OPO cavity and has the same frequency as the squeezed
beam, thus the seed field has the same mode shape than the squeezed field. Consequently,
we can characterize the homodyne detection efficiency by measuring the visibility of the
homodyne detection system with the seed beam.
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4.5 Filter cavity

The filter cavity of Exsqueez is composed of two suspended spherical mirrors separated by
50 m. It takes advantage of the existing 50 m cavity of the CALVA facility.

The main parameters of the mirrors are their sizes, radius of curvature and coating spec-
ifications. The size of the mirrors is fixed by the CALVA facility on which the mirror mounts
for the suspended mirrors are designed for 2-inch optics. I will present now the choices of
radius of curvature and coating specifications of the mirrors.

4.5.1 Mirrors radius of curvature

There are several criteria to take into account to choose the mirrors radius of curvature: the
stability of the cavity, the clipping loss on the mirrors and round trip losses of the cavity. I
will detail them now.

Stability of the cavity

First of all the resulting cavity should be stable in order to keep the beam refocusing inside
the cavity. To characterize this stability, we can define a stability parameter gi for each mirror
of the cavity:

gi = 1− L

Ri
, (4.47)

with L the length of the cavity and Ri the radius of curvature of the mirrors. Then the
stability criterion is:

0 ≤ g1g2 ≤ 1. (4.48)

In practice we avoid to have Ri = L because this is marginally stable and any imperfection
on the mirror radius of curvature leads to an unstable cavity.

Clipping losses

To reduce the clipping losses we use the same radius of curvature R on both input and end
mirrors of the cavity. This leads to a waist in the middle of the cavity and the same beam
diameter on both mirrors. The waist of a resonating beam of wavelength λ inside the cavity
of length L is then:

w0 =

√√√√λL

2π

√
2R
L
− 1, (4.49)

leading to beam radius wm on the mirrors of the cavity:

wm = w0

√
1 +

(
λL

2πw2
0

)2
. (4.50)

Moreover, the CALVA facility has in-vacuum suspension mounts for 2-inch mirrors that
will be used for Exsqueez. The beam waist size on the cavity mirrors is represented according
to the radius of curvature R of the cavity mirrors in Figure 4.20 for a beam of wavelength
λ = 1064 nm and a cavity of length L = 50 m. One can see that radius of curvature from
29 m to 189 m lead to beams radius of less than one fifth of the 2-inch mirror radius on it.

Round trip losses

An estimation of the round trip losses of the cavity according to the mirrors radius of curvature
has been done using the technique described in [113]. It is represented in Figure 4.21. It seems
to be no special place to avoid the resonances of higher order modes. Nevertheless, the peak
density seems to reduce with the increase of the radius of curvature. In addition, it is easier
to polish flatter mirrors. Consequently radius of curvature of R = 150 m have been chosen
for the filter cavity mirrors.
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Figure 4.20 – In blue: plot of the beam radius on the mirrors of a 50 m length cavity for λ = 1064 nm.
In red: upper limit on the beam radius to limits the clipping losses by having 5wm on the 2-inch
mirror.

Figure 4.21 – Simulation of the round trip losses with respect to the cavity mirrors radius of curvature.

4.5.2 Mirrors coating specifications

The coating specifications will depend on the beams that have to resonate inside the cavity.
The first beam is the squeezed beam with a wavelength λ = 1064 nm. According to Section
3.4.2, the finesse of the filter cavity depends on the corner frequency we want to achieve as
defined by Equations (3.61) and (3.59).

The first goal of Exsqueez is to demonstrate frequency dependent squeezing with a corner
frequency below 1 kHz. We chose a finesse of the filter cavity FIR ' 3000 leading to a corner
frequency Ωt ' 700 Hz1.

However the finesse of the cavity will be too high at λ = 1064 nm to acquire the lock of
the suspended cavity in an easy and reproducible way. The solution will be to lock the cavity
using a green auxiliary laser at λ = 532 nm as it will be explained on Section 4.5.3.

1Note that here and all over the rest of the thesis we use the usual convention to write the frequencies
with the angular frequency ω letter while they are not angular frequencies and should not be multiplied by 2π
to recover the frequency.
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The finesse of the cavity for this beam will be Fgreen ' 150 with a linewidth of 20 kHz
and a separation of 800 kHz between two high order modes. Consequently, this finesse is
high enough to degenerate higher order modes and lock on the fundamental mode but low
enough to easier acquire the lock. Moreover, the coating formula for the finesse Fgreen ' 150
is already known by LMA/IP2I, as it is the one used on Virgo, and can be done in a robust
way.

According to Equation (2.75), the finesse of a cavity depends on the reflectivity of both
mirrors. Moreover, as explained on Section 2.4.1, the phase shift in reflection induced by the
cavity is enhanced around the resonance for an over coupled cavity. Thus we use an over
coupled filter cavity with an end mirror almost perfectly reflective.

However, the mirrors are not theoretical one surface but a medium with two surfaces and
an anti-reflective coating has to be done on the second surface outside of the cavity to limit
losses. The coating specifications for both wavelengths are summarized in Table 4.5.

Wavelength λ = 1064 nm λ = 532 nm

AR of the input mirror R < 100 ppm R < 1 %

HR of the input mirror T = 2000± 200 ppm T = 4± 1 %

HR of the end mirror T = 5± 2 ppm T < 1 %

AR of the end mirror R < 500 ppm R < 1 %

Resulting finesse FIR = 3131+350
−287 Fgreen = 140± 38

Table 4.5 – Coating specifications for the Exsqueez filter cavity mirrors. AR: Anti-reflective coating
outside of the cavity. HR: High-reflective coating inside the cavity.

4.5.3 Control of the filter cavity

The mirrors of the filter cavity are suspended and their position is controlled using magnets
at each corner of the mirror mount that are placed in 4 coils on the suspension as it will be
shown in Section 5.3.3. By changing the current in the coils, we can steer the mirror position.

The filter cavity should be locked for the squeezed beam. However the squeezed beam
has really low power due to the second order non linear interaction efficiency and the finesse
of the cavity at the squeezing fundamental frequency is too high to lock the cavity directly
on the squeezed beam.

Consequently we use a green beam to lock the cavity with a lower finesse. Moreover, as
explained on Section 3.4.2, to have a squeezed quadrature rotation of π/2 in reflection of the
filter cavity we need to optimally detuned the filter cavity by:

∆ωfc = Ωt√
2
, (4.51)

where Ωt ' 700 Hz is the corner frequency. That leads to a cavity detuning at the wavelength
λ = 1064 nm of ∆ωIRfc ' 500 Hz and thus we should have ∆ωgreen

fc ' 1 kHz at the control
wavelength λ = 532 nm.

We use the frequency doubled beam from the auxiliary laser to obtain a Filter Cavity
Control beam (FCC). As shown in Figure 4.22, the beam reflected from the auxiliary Second
Harmonic Generator is composed of the infrared Modified Coherent Locking beam (MCL)
and the green Phase Locking beam (PL).

There is no need of high power on the PL beam for the phase lock of the lasers. Con-
sequently, we place a dichroic beam splitter on the path of the MCL and PL beams that
transmits only green. We now have a green beam that is 2ΩPLL = 40 MHz down-shifted
from the pump beam. Consequently we add an AOM that up-shifts the green beam frequency
of 40 MHz+∆ωgreen

fc and form the Filter Cavity Control (FCC) beam that is recombined in
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vacuum on a dichroic beam splitter with the squeezed and MCL beams coming from the
Optical Parametric Oscillator (OPO).

Figure 4.22 – Control scheme of the filter cavity.

Modulation frequency

The lock of the filter cavity is done using the Pound-Drever-Hall technique described in
Section 4.1.3. The photodiode is placed in reflection of the cavity using a beam splitter.

The modulation frequency fmod has to be chosen such as the sidebands don’t resonate at
the same time as the carrier inside the filter cavity. The separation between two consecutive
fundamental resonances inside the cavity is the free spectral range:

∆νFSR = c

2L. (4.52)

The free spectral range of our 50 m filter cavity is ∆νFSR = 3 MHz. The separation fsep
between two consecutive high order TEMnm resonances is:

fsep = Ψrtc

4πL , (4.53)

where Ψrt = 2× 841× 10−3 rad is the round trip Gouy phase in the filter determined using
Finesse [114]. Thus we obtain fsep = 0.8 MHz.

Finally we chose fmod = 12.4 MHz which exactly in-between two high order modes reso-
nances and which can be achieved using a commercial free space EOM at 12 MHz. Note that
this is the same modulation frequency as the one for the main Second Harmonic Generator
described in Section 4.2 allowing to use the same high frequency generator.

Filter Cavity Verification beam

In order to verify the lock of the cavity for the infrared squeezed beam, we add another
infrared beam that is a tap off from the main laser such as the local oscillator beam used
for the measurement of the squeezed beam on the homodyne detection. As shown in Figure
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4.22, this tap off is down-shifted by 80 MHz using a free space AOM and up-shifted again by
80 MHz using a tunable fibered AOM.

This new beam is the Filter Cavity Verification (FCV) beam. By varying the frequency
of the second AOM from ±4 MHz, we can scan the cavity in frequency when locked with the
green beam. This allows us to verify the resonance condition of the squeezed beam and check
the stability of the lock in infrared as its resonance is thiner than the one of the green.

4.6 Summary

I will now come back to the full conceptual design through each of the 8 beams defined in Table
4.2 that enter the in-vacuum Ferrarix tank and give a full description of their characteristics
and interactions with the optical systems of Exsqueez, following the full conceptual design
scheme in Figure 4.3. Finally I will summarized the parameters used for Exsqueez, for instance
the frequencies or the cavity parameters.

4.6.1 Filter Cavity Control beam

The Filter Cavity Control beam (FCC) starts from the auxiliary laser as an infrared beam
of frequency ω0 + ΩPLL. An EOM is placed on this beam with a modulation frequency
ΩEOM2 = 50 MHz used to lock the auxiliary Second Harmonic Generator (SHG2) described
in Section 4.2.

Then SHG2 generates a green beam of frequency 2ω0 + 2ΩPLL with sidebands at modu-
lation frequency ΩEOM2 (coming from the sum-frequency generation of a carrier photon and
a sideband photon) and 2ΩEOM2 (coming fron the sum-frequency generation of two sideband
photons). This green beam is reflected by a dichroic plate and goes through a free space
AOM of central frequency 2ΩPLL = 40 MHz that is supplied by a frequency generator at
2ΩPLL + 2∆ωfc to obtain a green beam at the frequency 2ω0 + 2∆ωfc where ∆ωfc is the
detuning of the filter cavity for the squeezed beam as defined in Section 3.4.2.

After the AOM, an EOM is placed with a modulation frequency ΩEOM3 = 12.4 MHz
used to lock the filter cavity. The choice of this modulation frequency has been motivated
in Section 4.5.3. The modulation is added both for the carrier at 2ω0 + 2∆ωfc and for the
already existing sidebands from the previous EOM as represented on the full sideband scheme
of Figure 4.23.

However, the sidebands from EOM2 have already a power proportional to J2
1 (mEOM2),

according to Section 4.1.3. Consequently the modulation from EOM3 adds to them sidebands
with a power proportional to J2

1 (mEOM2)J2
1 (mEOM3) which is negligible in front of the other

sidebands.

Figure 4.23 – Full sideband scheme of the Filter Cavity Control beam (FCC).
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The FCC beam is then injected through a fiber to the in-vacuum Ferrarix tank where
it is superposed to the squeezed beam on a dichroic plate and sent to the filter cavity. A
50:50 beam splitter placed on the FCC path only allows to send the FCC beam reflected from
the filter cavity to a photodiode where the measured signal is demodulated as explained in
Section 4.1.3 to obtain an error signal. We then act on the coils currents of one of the filter
cavity mirror to keep it on resonance.

4.6.2 Filter Cavity Verification beam

The Filter Cavity Verification beam (FCV) starts from the main laser as an infrared beam of
frequency ω0. A pick off takes ∼ 100 mW that are sent towards 2 successive AOM of central
frequency 80 MHz. The first AOM is free space while the second one is fibered to be able
to tune the shift frequency on the AOM bandwidth ∆ΩAOM2 = 8 MHz without shifting the
beam positioning. The full sideband scheme of the FCV beam is represented in Figure 4.24.

Figure 4.24 – Full sideband scheme of the Filter Cavity Verification beam (FCV).

Then, at the output of the fibered AOM, ∼ 30 mW of the FCV beam enters the in-
vacuum Ferrarix tank and are recombined with the squeezed beam on a beam splitter plate
that reflects 99% and transmits 1% of the infrared light. This choice was done to limit the
losses on the squeezing path added by the beam splitter to only 1% as it as been shown in
Section 3.6.5 that any source of injection losses degrades the squeezing. However, for the
FCV, we loose 99% of the incoming 30 mW before entering the filter cavity. Indeed, as
both FCV and squeezed beams have the same wavelength, we cannot use a dichroic plate to
recombine them as done for the Filter Cavity Control beam (FCC).

Then the DC signal of the FCV beam is measured in transmission of the filter cavity on a
photodiode. While locking in green the cavity with the FCC beam, we scan the infrared cavity
mode of the filter cavity by changing the frequency of the fibered AOM on the FCV path.
As the free spectral range of the filter cavity is ∆νFSR = 3 MHz and the AOM bandwidth
is ∆ΩAOM2 = 8 MHz, we are able to scan a whole free spectral range of the filter cavity to
verify its detuning in infrared at the frequency of the squeezed beam.

Note that there is no commercial AOM that can shift the frequency below few MHz. Thus,
to scan the cavity on few MHz we have to use 2 AOMs, one that up-shifts the frequency and
the other that down-shifts it from the same amount plus the few MHz of difference needed.
We chose a frequency shift of 80 MHz because it was the lower frequency commercially and
easily available for the fibered AOM.

4.6.3 Local Oscillator beam

The Local Oscillator beam (LO) starts from the main laser as an infrared beam of frequency
ω0. A small amount of the main laser is picked off and injected through a fiber to the in-
vacuum Ferrarix tank so that ∼ 5 mW of LO beam goes out of the fiber and are directly sent
to the homodyne detection photodiodes for the squeezing measurement. The fiber acts as a
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mode cleaner so that the LO beam is mostly a fundamental gaussian beam. The sideband
scheme of the local oscillator is simple, as it is not modulated, and is represented in Figure
4.25.

Figure 4.25 – Full sideband scheme of the Local Oscillator beam (LO).

4.6.4 Modified Coherent Locking beam

The Modified Coherent Locking beam (MCL) has the same start as the Filter Cavity Control
beam (FCC). It starts from the auxiliary laser as an infrared beam of frequency ω0 + ΩPLL.
An EOM is placed on this beam with a modulation frequency ΩEOM2 = 50 MHz used to lock
the auxiliary Second Harmonic Generator (SHG2) described in Section 4.2.

In reflection of SHG2, the MCL beam is co-propagating with the FCC beam until the
dichroic plate which transmits the MCL beam towards the in-vacuum Ferrarix tank. The
beam enter the tank through a window and is then superposed to the pump beam on a
dichroic plate. The full sideband scheme of the MCL beam before entering the Optical
Parametric Oscillator (OPO) is represented in Figure 4.26a.

As the linewidth at ω0 of the OPO cavity is 17 MHz, as defined in Section 4.3.2, the
MCL carrier at ω0 + ΩPLL should enter the OPO cavity while its sidebands should almost be
reflected. Nevertheless, I will still take them into account in the full sideband scheme of the
MCL beam after interacting inside inside the crystal of the OPO. As explained in Section
4.4.2, the non-linearity of the crystal generates MCL sidebands symmetrical to the squeezed
frequency ω0 as shown in Figure 4.26b.

(a) (b)

Figure 4.26 – Full sideband scheme of the Modified Coherent Locking beam (MCL): (a) before the
Optical Parametric Oscillator (OPO) and (b) after the OPO.

After interacting inside the OPO, the MCL beam co-propagates with the squeezed beam
to the filter cavity. The parameters of the filter cavity are given in Section 4.5. At ω0, the
free spectral range of the cavity is 3 MHz, its linewidth is 1 kHz with a detuning of 500 Hz.
Consequently, the MCL beam does not resonate inside the filter cavity but is directly reflected
when the cavity is locked.
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Finally, the MCL beam reflected from the filter cavity is sent to the homodyne detection
photodiode using a Faraday Isolator.

4.6.5 Phase Locking beam

The Phase Locking beam (PL) has the same start as the Filter Cavity Control beam (FCC)
and the Modified Coherent Locking beam (MCL). It starts from the auxiliary laser as an
infrared beam of frequency ω0 + ΩPLL. An EOM is placed on this beam with a modulation
frequency ΩEOM2 = 50 MHz used to lock the auxiliary Second Harmonic Generator (SHG2)
described in Section 4.2.

Then SHG2 generates a green beam of frequency 2ω0 +2ΩPLL with sidebands at modula-
tion frequency ΩEOM2 (coming from the sum-frequency generation of a carrier photon and a
sideband photon) and 2ΩEOM2 (coming from the sum-frequency generation of two sideband
photons). 1% of this green beam is transmitted through the dichroic plate that separates the
FCC and MCL beams.

The PL beam then co-propagates with the MCL beam until the dichroic plate where the
MCL and pump beams are recombined. It is transmitted by this dichroic plate and sent to
a photodiode with 2% of the pump beam to generate the error signal to phase lock the main
and auxiliary lasers as explained in Section 4.4.3. The full sideband scheme of the PL beam
is represented in Figure 4.27.

Figure 4.27 – Full sideband scheme of the Phase Locking beam (PL).

4.6.6 Pump beam

The pump beam starts from the main laser as an infrared beam of frequency ω0. An EOM is
placed on this beam with a modulation frequency ΩEOM1 = 12.4 MHz used to lock the main
Second Harmonic Generator (SHG1) described in Section 4.2.

Then SHG1 generates a green beam of frequency 2ω0 with sidebands at modulation
frequencies ΩEOM1 (coming from the sum-frequency generation of a carrier photon and a
sideband photon) and 2ΩEOM1 (coming from the sum-frequency generation of two sideband
photons). Indeed, the linewidth of the SHG1 cavity in infrared is 58 MHz, allowing the
sidebands to resonate inside the locked SHG1 cavity and convert infrared photons onto green
photons.

The pump beam goes then through the Mach-Zehnder interferometer described in Section
4.4.1 to be locked in power, via a photodiode on a pick-off, before entering the in-vacuum
Ferrarix tank through a window.
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Figure 4.28 – Full sideband scheme of the pump beam.

Before entering the Optical Parametric Oscillator (OPO), the pump beam is superposed
with the Modified Coherent Locking beam (MCL) on a dichroic where it loses 2% of power
that superposed to the Phase Locking beam (PL) to phase lock the main and auxiliary laser
as detailed in Section 4.4.3, and another 2% reflected on the second surface of the dichroic
and blocked with a dump.

The OPO is locked using the pump beam on a photodiode in reflection. The error signal
is obtained using the same modulation sidebands as for the lock of SHG1 as shown on the
full sideband scheme of the pump beam in Figure 4.28. Consequently, the demodulation
of the error signal for the PDH lock of the OPO, as explained in Section 4.1.3, is done at
ΩEOM1 = 12.4 MHz. The DC pump power in reflection or transmission of the OPO cavity
can also be used to stronger lock the Mach-Zehnder interferometer.

4.6.7 Seed beam

The seed beam starts from the main laser as an infrared beam of frequency ω0. A pick off
takes ∼ 100 mW that are injected through a fiber to the in-vacuum Ferrarix tank. The seed
beam enters the Optical Parametric Oscillator (OPO) via a high reflective mirror and follow
in OPO the same path as the squeezed beam and in the same direction.

The seed beam escaping the OPO through its input/output coupler is then sent to the
homodyne detection photodiodes for characterization of the OPO non linear gain and the
matching of the seed beam with the Local Oscillator (LO) beam.

The sideband scheme of the seed beam is simple, as it is not modulated and has the same
frequency as the squeezed beam. It is represented in Figure 4.29. The seed beam is only used
for characterization, it will be blocked before its injection into the fiber during squeezing
operation.

Figure 4.29 – Full sideband scheme of the seed beam.
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4.6.8 Squeezed beam

The squeezed beam is generated inside the Optical Parametric Oscillator (OPO) crystal
by non linear down-conversion of the pump beam. It escapes the OPO cavity through an
input/output coupler and is sent into the filter cavity where it senses frequency dependent
rotation. After reflection of the filter cavity the squeezed beam is sent to the homodyne
detection photodiode, via a Faraday Isolator, for homodyne measurement with the Local
Oscillator beam.

The sideband scheme of the squeezed beam is represented in Figure 4.30 with its carrier
and the two sidebands at ΩEOM1 coming from the modulation of the pump field and the initial
infrared field to lock the SHG1 and OPO cavities. Nevertheless, as the squeezing generation
is low efficiency non-linear process, the power in the sidebands will be negligible.

Figure 4.30 – Full sideband scheme of the squeezed beam.

4.6.9 Parameters summary

I summarized in Table 4.6 the 7 frequencies that need to be generated for Exsqueez with
their use.

Frequency Use

12.4 MHz Lock of the SHG1, OPO and filter cavities

20 MHz Lock of the squeezing ellipse measurement φ

40 MHz Phase lock of the main and auxiliary lasers

tunable 40 MHz Fix the detuning of the filter cavity

50 MHz Lock of the SHG2 cavity

80 MHz Down-shift frequency for the FCV beam

tunable 80 MHz Up-shift frequency to scan the filter cavity with the FCV beam

Table 4.6 – Summary of the frequencies generated for Exsqueez with their use.

Finally, I give in Table 4.7 the main parameters of the cavities used for Exsqueez.

Cavity Length Finesse Free Spectral Range Linewidth

SHG1 at 1064 nm 45 mm 57 3.3 GHz 58 MHz

SHG2 at 1064 nm 45 mm 57 3.3 GHz 58 MHz

OPO at 532 nm 255 mm 28 59 MHz 21 MHz

OPO at 1064 nm 255 mm 35 59 MHz 17 MHz

Filter cavity at 532 nm 50 m 140 3 MHz 21 kHz

Filter cavity at 1064 nm 50 m 3100 3 MHz 1 kHz

Table 4.7 – Summary of the cavities parameters of Exsqueez.



Chapter 5

Integration of the Exsqueez
experiment on the CALVA facility

The CALVA facility is composed of two clean rooms and of a control room. Most of the
integration is done in the first clean room where the in-air beams preparation bench, the
in-vacuum Ferrarix tank and the filter cavity input mirror are located. The filter cavity end
mirror is in the second clean room, 50 m away and the electronics is spread between the two
clean rooms and the control room.

The integration of the Exsqueez experiment on the CALVA facility was separated into
three main parts: the upgrade of the existing electronics with the new LAPP electronics,
the in-air preparation bench and the Optical Parametric Oscillator (OPO) that generates the
squeezing designed at LKB and installed jointly by LKB and LAL/IJCLab teams and finally
the in-vacuum bench designed and installed by the LAL/IJCLab team.

In this chapter, I will first present the electronics that is used for the data acquisition and
control. Then, I will go through the installation of the in-air bench with the characterization
of its subsystems leading to the 7 beams, presented in Table 4.2, that are send towards the
in-vacuum bench. And finally I will detail the simulations done to prepare and design the
in-vacuum bench, followed by the installations done. The installation and characterization
of the OPO and homodyne detection will be presented in Chapter 6.

5.1 Acquisition electronics

The acquisition electronics used for Exsqueez on CALVA has been developed by LAPP and
is the same one as for Advanced Virgo. A simplified scheme of the electronics used for the
data acquisition and the driving of the actuators is represented in Figure 5.1.

There are two types of data acquisition depending on the type of photodiodes used : in-air
commercial photodiodes or in-vacuum LAPP photodiodes. The commercial photodiodes are
composed of an active detector surface followed by a preamplifier that amplifies the current
measured and converts it into voltage. The bandwidth of the data acquired by the photodiode
goes from DC to 150 MHz. Then, a commercial splitter separate the DC and RF signal with
a cutoff frequency of 100 kHz.

The DC signal of the in-air photodiodes is sent to an Analog to Digital Converter (ADC)
channel on an ADC7674 board from LAPP [115] where it is down sampled at 10 kHz before
being sent to the real time PC.

The RF signal of the in-air photodiodes is sent to a demodulation channel on a LAPP
DaqBox [116]. The demodulation frequency is sent by a generator to another demodulation
channel on the same demodulation mezzanine of the DaqBox and both of them are sampled at
400 MHz before being demodulated at a given reference frequency. The comparison between
the demodulated RF signal and generator results in the demodulated signals in-phase and
in-quadrature ACp and ACq that are down sampled at 10 kHz and sent to the real time PC.

109
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Figure 5.1 – Simplified scheme of the electronics building blocs of the Exsqueez experiment showing
(top) the acquisition scheme of in-air commercial photodiodes, (middle) the acquisition scheme of
in-vacuum LAPP photodiodes and (bottom) the driving scheme. Note that the low-pass filter cutoff
frequency defining the DC signal is not the same for the in-air photodiodes (100 kHz) and the in-
vacuum photodiodes (∼ 2 Hz). The in-vacuum photodiodes have an additional Audio channel that is
band-pass filter between ∼ 2 Hz and ∼ 16 kHz and amplified by a factor 100. The sampling of the
RF channels is done at 400 MHz while the data sent to the real time PC (DC, Audio and AC) are
down sampled at 10 kHz. The real time PC sends data to the DAC for actuation at 100 kHz.

The used demodulation frequency is the same as the frequency at which the measured
photodiode signal is modulated either from an EOM on the beam path before the photodiode
or a beat note between two beams superposed on the photodiode. In the case of a modulation
frequency from an EOM, the used frequency generator channel is the same for both the
modulation on the EOM and the demodulation on the demodulation mezzanine.

The in-vacuum LAPP photodiodes have a similar behavior as the in-air photodiodes
except that before the preamplifier, the signal from the active detector is split into 3 parts
that undergo different filters. The bandwidth of the data acquired by the photodiode ranges
from DC to 80 MHz. A low-pass filter with a cut-off frequency ∼ 2 Hz generates a DC signal,
a high-pass filter with a cut-off frequency ∼ 16 kHz generates a RF signal and a band-pass
filter between ∼ 2 Hz and ∼ 16 kHz generates an audio signal. Note that the bandwidth of
the DC and RF signals are not the same depending on the type of photodiode used (in-air
or in-vacuum).

The DC and audio signals of the in-vacuum LAPP photodiodes are sent via a micro-
subd15 connector to a service channel of a LAPP DaqBox [116] while the RF signal is sent
via SMA to a demodulation channel. The method for the demodulation is then exactly the
same as for the in-air photodiode describe above. Finally the DC, audio and demodulated
signals in-phase and in-quadrature ACp and ACq are down sampled at 10 kHz and sent to
the real time PC.

From the real time PC, the data can be visualized using a Data Display [117] or filtered
by the control loops to drive actuators with the calculated corrections via DAC channels at
100 kHz on a LAPP DaqBox [116]. The control loops are defined using the Algorithms for
Control and Locking (Acl) server [118] developed at LAPP, usually at 10 kHz.
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5.2 In-air beams preparation bench

The aim of the in-air bench is to prepare the 7 beams that need to be used in the in-vacuum
Ferrarix tank to produce, lock and measure frequency dependent squeezing as detailed in
Chapter 4.

The full real life scheme of the in-air bench is represented in Figure 5.2. We can roughly
divide the table into 4 quadrants. The top quadrants correspond to the green beams pro-
duction while the bottom quadrants are used for the beam injections into the fibers that go
towards the in-vacuum tank. The left quadrants produce beams from the main laser and the
right quadrants produce beams from the auxiliary laser.

I will now present the installation of the 4 quadrants of the in-air table and the charac-
terization of the optical systems done.

Figure 5.2 – Scheme of the in-air bench full real life optical set-up with red boxes for the laser heads
and green boxes for the green beam production subsystems : main and auxiliary Second Harmonic
Generators (SHG) and Mach-Zehnder (MZ). The boundaries of the 4 quadrants defined for the in-air
table are shown in grey.

5.2.1 Main laser green beam production

The main laser green beam production quadrant scheme is represented along with its picture
on the CALVA facility at LAL/IJCLab in Figure 5.3. Its installation starts from the main
laser Coherent Mephisto that have been measured to deliver 2.3 W of infrared light at 1064 nm
with a waist radius of 120 µm ± 5 µm at a distance of 95 mm ± 2 mm before the front end
of the laser head, inside the laser box.
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(a)

(b)

Figure 5.3 – Main laser green production quadrant scheme (a) and picture on the CALVA facility at
LAL/IJCLab (b).

A system composed of a quarter-wave plate and a half-wave plate is then placed on the
beam to obtain a laser field s-polarized that is send to a Faraday isolator to protect the laser
head from back reflection. The Faraday isolator transmits 95.5% of the incoming field.

A half-wave plate and a polarizing cube beam splitter are placed after the Faraday isolator
to pick off part of the infrared beam towards the main laser fibers injections quadrant and the
other part is used to produce the green pump beam. The amount of power sent in both paths
can be chosen by rotating the half-wave plate. 1070 mW s-polarized of the main laser are
reflected by the cube beam splitter towards the main laser fibers injections quadrant which
installation will be described in Section 5.2.2.

Main Second Harmonic Generator

The field transmitted by the cube beam splitter is p-polarized. A quarter and a half-wave
plates are placed to obtain a s-polarized field that is sent through the EOM generating the
sidebands at 12.4 MHz for the lock of the Main Second Harmonic Generator (SHG1) as
described in Section 4.2. The EOM transmits 85% of the incoming field, leading to 780 mW
of 1064 nm beam arising on SHG1.

The SHG1 cavity length is locked using the Algorithms for Control and Locking (Acl)
server [118] used on Advanced Virgo and developed by LAPP. The error signal is obtained
from the in-air photodiode in transmission as described in Section 5.1. The demodulation
frequency is the same one used to drive the EOM, i.e. 12.4 MHz.

The scanning of the cavity length is done using a piezo ring on the end mirror of the SHG1
cavity. The piezo is driven by a DAC channel amplified by a High Voltage (HV) amplifier by
a factor ∼ 30. For the piezo safety, the HV amplifier channel cannot deliver more than 100
V to the piezo.
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Feedback system

The feedback loop can be schematized using a block diagram as shown in Figure 5.4. This
is a general feedback loop that is used for all the plants that need to be locked as SHG1 for
which the actuator is a piezo ring. In our scheme we gather together the DAC channel, the
HV amplifier and the piezo inside the actuator transfer function. The corrector is digitally
applied to the error signal using Acl.

Figure 5.4 – General feedback loop scheme used for the Exsqueez experiment. The plant is usually
one of the optical cavity, the Mach-Zehnder interferometer, or the laser heads, the corrector is the
transfer function applied to the error signal before sending it to the actuator, generally a piezo except
for the 50 m filter cavity where the actuators are coils. There are two possible digital noise input n1
and n2 used to characterize the system.

By injecting noise at different places of the feedback loop, we measured a flat transfer
function for the system composed of the DAC and the HV amplifier. The electrical transfer
function of the piezo was measured to be an order 1 low-pass filter with a cutoff frequency
of ∼ 320 Hz. Finally, the optical transfer function of the cavity is flat on the actuation
bandwidth.

The control loop filter of the corrector was then chosen to obtain a stable lock starting
from a simple integrator to first acquire the lock and improved after some trials into a “best”
filter that is more robust:

C(s) =
1 + s

2πf0
+ s2

(2πf2
1

s4 , (5.1)

with f0 = 0.1 Hz and f1 = 1 Hz. The Bode diagram of this filter is shown in Figure 5.5.
With respect to the simple integrator filter, it has more gain at DC and a larger bandwidth.

These are the same filters, only adjusting a gain factor, that are used for all the control
loops except for the temperature controller and the 50 m filter cavity control.

Lock of the Main Second Harmonic Generator

An example of scan and lock of the SHG1 cavity is given in Figure 5.6 showing the instruction
scanning ramp and correction along with the DC and demodulated in-phase error signals
defined in Section 4.1.3.

The locking strategy is in two steps. First when the DC signal exceed 5 V the frequency of
the ramp sent to the piezo is decreased by a factor 10 to approach the resonance more slowly.
Then we start trying to lock when the in-phase error signal is in the linear part between
-0.3 V and 0.3 V.
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Figure 5.5 – Bode diagram of the best filter used to control the optical cavities and Mach-Zehnder
interferometer on the Exsqueez experiment. Only a gain factor is adjusted for each plant.

Figure 5.6 – Example of scan and lock of the SHG1 cavity separated by the red line: (upper) error signal
from the in-phase demodulation at 12.4 MHz of the signal from the in-air photodiode in transmission
of the SHG1 cavity, (middle) DC signal from the in-air photodiode in transmission of the SHG1 cavity,
(lower) actuation order sent by the DAC to the piezo on the end mirror of the SHG1 cavity.

The FFT of the error signal when the SHG1 cavity is locked is represented in Figure 5.7.
It shows the residual noise spectrum with in particular spectral lines at 50 Hz and harmonics
and unknown noises at ∼ 250 Hz, ∼ 750 Hz and ∼ 2kHz. The cut-off at high frequency is
due to the acquisition frequency of 10 kHz with a butterworth filter of order 8 leading to an
attenuation of 20 dB at 5 kHz.

The green beam at 532 nm produced by SHG1 is separated from the infrared beam
at 1064 nm reflected by the SHG1 cavity using a dichroic plate that reflects the infrared
beam and transmits the green beam. A power meter has been placed on this green beam to
characterize the green beam production from SHG1.
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Figure 5.7 – FFT of the error signal when the main Second Harmonic Generator (SHG1) cavity is
locked.

The temperature of the SHG1 crystal is controlled using a commercial oven shown in
Figure 5.8a. The temperature was then varied with the SHG1 cavity locked and the generated
green power at 532 nm was measured with the power-meter. The resulting phase-matching
temperature plot is shown in Figure 5.8b. As expected from Equation 3.73, it follows a sinc2

function with a maximum power generated at 50.6◦ C at the moment of this measurement.
The optimal temperature depends on the room temperature and should be adjusted of about
1◦ C.

Finally after some alignment and matching improvement we measured ∼ 200 mW of
generated green beam from 780 mW of infrared beam injected to the SHG1 cavity leading to
a green beam production efficiency of ∼ 25%.

(a) (b)

Figure 5.8 – (a) Picture of the main Second Harmonic Generator (SHG1) showing, the lens before
the cavity to mode match the beam to the cavity, the two mirrors of the cavity with the piezo on
the end mirror and the oven of the MgO:PPLN crystal. (b) Plot of the phase-matching temperature
measurement superposed with a sinc2 fit.
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Mach-Zehnder interferometer

The green beam produced by the Main Second Harmonic Generator (SHG1) is then sent to
the Mach-Zehnder interferometer shown in Figure 5.9a. The beam splitters of the Mach-
Zehnder reflect 70% of the green beam to allow some measurements, that will be described
in Section 6.2.3, without the Mach-Zehnder interferometer by adding a beam dump on the
lower arm but keeping most of the green power. Note that the mirror mounted on a piezo is
placed on the Mach-Zehnder arm with the highest power that is always used.

(a) (b)

Figure 5.9 – (a) Picture of the Mach-Zehnder interferometer on the Exsqueez experiment showing
the mirror on which the piezo actuation is done, the dumped arm and the position of the temporary
beam dump used fore some measurements. (b) Example of scan of the Mach-Zehnder interferometer
with (top) the DC signal measured in transmission of the Mach-Zenhder and (bottom) the actuation
scanning oder sent by the DAC to the Mach-Zenhder piezo.

As shown in Section 4.4.1, one of the two output beams of the Mach-Zehnder interferom-
eter is not used and a beam dump is placed on it to avoid spurious reflections. The other
output beam is sent to a half-wave plate and a polarizing cube beam splitter to allow a
beam power control by hand. The beam reflected by the polarizing cube beam splitter is not
used and blocked by a beam dump while the beam transmitted will become the pump beam
defined in Chapter 4.

A pick off that reflects less than 1% of the green beam is added on the pump beam with
a photodiode on the reflected beam. This photodiode is used to lock the Mach-Zehnder
interferometer length via the Acl server. Without locking or scanning the interferometer,
and blocking one arm to ensure no interference pattern, one can observe in Figure 5.10 power
fluctuations in the pump beam correlated with the voltage fluctuations of a free ADC channel
that has been checked to be correlated to the room temperature fluctuations.

We calibrated the pump beam power sent to the in-vacuum bench, and more specifically at
the entrance of the Optical Parametric Oscillator (OPO), with respect to the Mach-Zehnder
photodiode measured voltage. The calibration plot is shown in Figure 5.11.

The error signal for the Mach-Zehnder interferometer is defined by the difference between
the measured power on the photodiode and the requested power. The actuation is done on
the piezo of the Mach-Zehnder driven by a DAC channel amplified by a HV ampifier by a
factor ∼ 130. This piezo can support up to 1000 V actuation.

In the same way as for SHG1, we measured a flat transfer function for the system composed
of the DAC and the HV amplifier. The electrical transfer function of the piezo was measured
to be an order 1 low-pass filter with a cutoff frequency of ∼ 1.1 kHz. Finally, the optical
transfer function of the cavity is flat on the actuation bandwidth. The control loop filter was
then optimized to obtain a stable lock using the best filter defined in Figure 5.5.
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Figure 5.10 – Power fluctuations over a night of the pump beam measured using the Mach-Zehnder
photodiode (bottom), blocking one arm of the interferometer. The power fluctuations are clearly
correlated with room temperature fluctuations measured on a free ADC channel (top).

Figure 5.11 – Calibration of the pump beam power sent to the in-vacuum bench with respect to the
Mach-Zehnder photodiode measured voltage.

An example of scan of the Mach-Zehnder is given in Figure 5.9b and the FFT of the
error signal when the Mach-Zehnder interferometer is locked is represented in Figure 5.12. It
shows the residual noise spectrum with in particular spectral lines at 50 Hz and harmonics,
unknown noises between ∼ 300 Hz and ∼ 700 kHz and some residual noise at low frequencies.
It is quite difficult to reduce the noise above few hundreds of Hz because of the actuation
loop limited at 10 kHz.

When the Mach-Zehnder was locked, we checked on its photodiode over few hours that
the effect of the room temperature fluctuations on the pump power is corrected ensuring a
constant pump power as shown in Figure 5.13, even if we still see noise RMS changes linked
to the room temperature.
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Figure 5.12 – FFT of the error signal when the Mach-Zehnder interferometer is locked.

Figure 5.13 – Power fluctuations over a night of the pump beam measured using the Mach-Zehnder
photodiode (bottom), locking interferometer. The effect of the room temperature fluctuations mea-
sured on a free ADC channel (top) is reduced compared to Figure 5.10. The grey lines corresponds
to loss of data on the acquisition system.

5.2.2 Main laser fibers injections

The main laser fibers injections quadrant scheme is represented along with its picture on
the CALVA facility at LAL/IJCLab in Figure 5.14. The infrared s-polarized beam coming
from the main laser green beam production quadrant goes through a half-wave plate and a
polarizing cube beam splitter to adjust the total beam power sent to the fiber injections.
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The beam transmitted by the cube beam splitter is not yet used and sent to a beam
dump. We could use it to add a reference cavity to stabilize the main laser frequency in a
next step of the experiment. The beam reflected by the cube beam splitter will be divided
into three parts via two systems of half-wave plates and polarizing cube beam splitters. The
beam power on each path is adjusted by rotating the half-wave plates.

(a)

(b)

Figure 5.14 – Main laser fibers injections quadrant scheme (a) and picture on the CALVA facility at
LAL/IJCLab (b).

Filter Cavity Verification beam injection

The first reflected s-polarized beam is injected through a free space AOM aligned on the
+1 order to have a positive frequency shift at the applied RF modulation of 80 MHz. The
transmission efficiency of the beam to the +1 order of the AOM output was measured to be
69%.

This beam is then injected through a fibered AOM designed to transmit the order -1 to
have a negative frequency shift at the applied RF modulation of 80 MHz+δFCV . The δFCV
frequency shift is a small variable shift used to scan the 50-m filter cavity spectrum at the
squeezing frequency as defined in Section 4.5.3 with:

− 4 MHz = −∆ΩAOM2

2 ≤ δFCV ≤
∆ΩAOM2

2 = 4 MHz. (5.2)

A lens is placed on a translation stage before the fiber injection to adjust the mode
matching of the beam to the optical fiber. Finally we measured that 45% of the power
arising on the fibered AOM injection is coupled inside of it and exists the fiber output.

At first we aligned the free space and fibered AOM and measured the total propagation
efficiency between the cube beam splitter and the output of the fibered AOM. Then this
beam will be recombined with the squeezed beam on a plate reflecting 99% of the infrared
light (to limit losses on the squeezing). Consequently, we needed to have as much as possible
power on the FCV beam entering the in-vacuum Ferrarix tank without damaging the AOMs.
For safety we chose to have 30 mW going out of the fiber for this beam, leading to 98 mW
reflected by the second cube beam splitter.
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Note that even if there is a fibered AOM on this beam, it is not injected to the cavity
through a fiber to allow some matching and position adjustment in operation without adding
any in-vacuum motorized translation stage.

Local Oscillator beam injection

The second reflected s-polarized beam is injected to a fiber to be sent to the in-vacuum tank
as the Local Oscillator (LO) beam. It will be used on the homodyne detection photodiodes
that can support at maximum 5 mW of infrared light on each detector. We decided, for
safety to send 6 mW of LO beam out of the fiber, leading to 3 mW on each photodiode.

We optimized the injection of the infrared beam to the LO fiber using the steering mirror
and the translation on the fiber mount and obtained a coupling efficiency of 42%. Conse-
quently, we adjusted the half-wave plates to have 15 mW reflected by the third cube beam
splitter.

Seed beam injection

Finally the transmitted p-polarized beam from the third polarizing cube beam splitter goes
through the system of quarter-wave plate and half-wave plate to rotate its polarization into
a s-polarization. This beam is then injected to a fiber to become the seed beam on the
in-vacuum bench.

The seed beam will have to enter the Optical Parametric Oscillator (OPO) cavity through
one of its high reflective mirror. Thus the beam should be powerful enough to be detected
on a photodiode after transmission through the input/output coupler of the OPO cavity. We
send 92 mW of infrared light onto the fiber injection.

After alignment of the injection of the infrared beam to the seed fiber as for the LO
injection fiber, we obtained a coupling efficiency of 25% leading to 23 mW of seed beam at
the output of the fiber inside the in-vacuum Ferrarix tank. As we were limited to maximum
30 mW going out of the fiber for the fiber safety, and had enough input power, we did not
have to further optimize this fiber injection to better coupling efficiency.

The final adjustment of the three half wave-plates before the polarizing cube beam splitter
is done when all injection efficiencies are measured.

5.2.3 Auxiliary laser green beam production

The auxiliary laser green beam production quadrant is represented along with its picture in
the CALVA facility at LAL/IJCLab in Figure 5.15. Its installation starts from the auxiliary
laser Coherent Mephisto S that have been measured to deliver 194 mW of infrared light at
1064 nm with a waist radius of 130.5 µm ± 0.5 µm at a distance of 75 mm ± 2 mm before
the front end of the laser head, inside the laser box.

As for the main laser, a system composed of a quarter-wave plate and a half-wave plate
is placed on the beam to obtain a laser field s-polarized that is sent to a Faraday isolator to
protect the laser head. The Faraday isolator transmits 88.7% ± 0.1% of the incoming field.

The beam transmitted by the Faraday isolator is linearly polarized at 45◦ angle and we
use a half-wave plate to s-polarize it before entering an EOM. The EOM generates sidebands
at 50 MHz for the lock of the Auxiliary Second Harmonic Generator (SHG2) as described in
Section 4.2. It transmits 97.1% of the incoming field.



5.2. In-air beams preparation bench 121

(a)

(b)

Figure 5.15 – Auxiliary laser green production quadrant scheme (a) and picture on the CALVA facility
at LAL/IJCLab (b).

Auxiliary Second Harmonic Generator cavity

Before entering the auxiliary Second Harmonic Genrator (SHG2) cavity, the infrared beam
is reflected by a dichroic plate that transmits 96% of green beam while reflecting 79% of
infrared beam. This dichroic plate is used to propagate towards the in-vacuum bench both
infrared and green beams. The unused transmitted infrared beam before the SHG2 cavity is
blocked by a beam dump, but can be used to monitor the power fluctuations of the auxiliary
laser or test the laser phase lock in infrared.

The scanning of the cavity length is done using a piezo ring on the end mirror of the
SHG2 cavity. The piezo is driven by a DAC channel amplified by a HV amplifier by a factor
∼ 30. For the piezo safety, the HV amplifier channel cannot deliver more than 100 V to the
piezo.

We measured a flat transfer function for the system composed of the DAC and the HV
amplifier. The electrical transfer function of the piezo was measured to be an order 1 low-pass
filter with a cutoff frequency of ∼ 220 Hz. Finally, the optical transfer function of the cavity
is flat on the actuation bandwidth. The control loop filter was then optimized to obtain a
stable lock.

The SHG2 cavity length is locked exactly as the SHG1 cavity length, except that the RF
signal from the photodiode in transmission is demodulated at 50 MHz which is the frequency
that drives the EOM. An example of scan and lock of the SHG2 cavity is given in Figure 5.16
showing the instruction scanning ramp and correction along with the DC and demodulated
in-phase error signals defined in Section 4.1.3.

The locking strategy is in two steps. First when the DC signal exceed 3 V the frequency
of the ramp sent to the piezo is decreased by a factor 10 to approach the resonance more
slowly. Then we start trying to lock when the in-phase error signal is in the linear region
between 1.5 V and -1.5 V.

The FFT of the error signal when the SHG2 cavity is locked is represented in Figure 5.17.
It shows the residual noise spectrum with in particular spectral lines at 50 Hz and harmonics
and unknown noises between ∼ 200 Hz and ∼ 700 Hz.

We observed that this noise presents some similarities with the noise of the Mach-Zehnder
interferometer shown in Figure 5.12, while being different from the noise of SHG1 shown in
Figure 5.7. To test this we measured the coherence between the error signals of the 3 optical
systems of the in-air table. The coherence plots are shown in Figure 5.18.
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Figure 5.16 – Example of scan and lock of the SHG2 cavity separated by the red line: (upper)
error signal from the in-phase demodulation at 50 MHz of the signal from the in-air photodiode in
transmission of the SHG2 cavity, (middle) DC signal from the in-air photodiode in transmission of the
SHG2 cavity, (lower) actuation order sent by the DAC to the piezo on the end mirror of the SHG2
cavity.

Figure 5.17 – FFT of the error signal when the auxiliary Second Harmonic Generator (SHG2) cavity
is locked.

The coherence between SHG1 and SHG2 is very low except for the 50 Hz and harmonics
lines while there is some coherence between SHG1 and the Mach-Zehnder which seems reason-
able as the residual noise on the pump beam coming from SHG1 go through the Mach-Zehnder
interferometer. The coherence between the Mach-Zehnder and SHG2 is quite important, es-



5.2. In-air beams preparation bench 123

pecially between 200 Hz and 1 kHz even though they are not on the same beam. This seems
to indicate that this noise may be due to a noise in the room (such as air movements or table
defect) that has not been investigated yet, but that impact less SHG1.

The green beam at 532 nm produced by SHG2 is then transmitted by the SHG2 dichroic
plate through another dichroic plate that that transmits green and reflects infrared. The
powermeter or a photodiode are placed after this second dichroic plate to measure the green
power produced by SHG2.

(a) (b) (c)

Figure 5.18 – Coherence plots of the FFT of the error signal between the 3 optical systems of the in-air
bench: (a) coherence between SHG1 and SHG2, (b) coherence between SHG1 and the Mach-Zehnder,
(c) coherence between SHG2 and the Mach-Zehnder.

Auxiliary Second Harmonic Generator temperature controller

The temperature of the SHG2 crystal is controlled using a homemade oven with a Peltier cell
and a thermistor as shown in Figure 5.19a. The thermistor used is a TCS650 Thermistor [119],
the same one with the same electronics will be used in-vacuum to control the temperature
of the crystal of the Optical Parametric Oscillator (OPO). When the temperature on the
thermistor Tth changes, it changes the resistor value Rth of the thermistor according to the
Steinhart-Hart equation:

1
Tth

= A+B × ln(Rth) + C × (ln(Rth))3 , (5.3)

where A, B and C are coefficients given by the thermistor datasheet [119], Rth is expressed
in Ohm and Tth is expressed in Kelvin. Then the LAPP Temperature Control Box transform
the measured resistor Rth onto a measured voltage Umes sent to an ADC for data acquisition.
Umes is electronically comprised between -4 V and +4 V and is obtained via:

Umes =
(

0.25− 0.5×Rth
Rbox +Rth

)
×
(

1 + 50000
511

)
, (5.4)

where the numerical values come from fixed electronics components and Rbox is a resistor
that can be changed inside the temperature controller box to adjust the range of measurable
temperatures around the optimal designed temperature range. For the SHG2 crystal the
optimal temperature should be around 50◦ C ±5◦ C according to Figure 4.6. So we decided
to use Rbox = 15 kΩ to have an available temperature range measurement of from 45◦ C to
61◦ C.
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(a) (b)

Figure 5.19 – (a) Picture of the auxiliary Second Harmonic Generator (SHG2) showing, the
MgO:PPLN crystal and its homemade oven. (b) Plot of the phase-matching temperature measure-
ment.

Then, to reconstruct the temperature Tth measured by the thermistor, we approximate
it by a quadratic polynomial in Umes adjusted depending on the Rbox resistor value. For the
SHG2 temperature control, the measured temperature Tth is obtained from the measured
voltage Umes via:

Tth ' 52.84 + 2.029× Umes + 0.0109× U2
mes. (5.5)

The Peltier cell is driven using the Acl server to send instruction voltage via a DAC to lock
the crystal temperature to the desired value. To find the optimal value, we locked the SHG2
cavity and scan the SHG2 crystal temperature. The green power produced was measured
with a photodiode connected to an ADC. The resulting phase-matching temperature plot is
shown in Figure 5.19b. It almost follows a sinc2 function with a maximum power generated
at 50.3◦ C. However one can see that for an unknown reason it is not as symmetrical as for
SHG1 in Figure 5.8b.

The stability of the temperature lock was tested over a day in Figure 5.20. For the test,
the temperature actuation order was 52.5◦ C and it was stable with a RMS of 0.02◦ C.
Moreover, we were able to check that the lock corrects the crystal temperature variations due
to the room temperature fluctuations. In fact the correction actuation follows the voltage
fluctuations of a free ADC channel that has been checked to be correlated to the room
temperature fluctuations.

Finally after some alignment and matching improvement we measured 33 mW of generated
green beam from 141 mW of infrared beam injected to the SHG1 cavity leading to a green
beam production efficiency of 23%.

Beams injections towards the in-vacuum tank via the window

On this quadrant of the in-air bench, there are 4 beams that are propagated towards the
Ferrarix in-vacuum tank through its window. The in-air and in-vacuum benches are not at
the same height in the room. Consequently we have to use periscopes to change the beam
height and send the beams to the in-vacuum tank.

99.8% of the green beam is sent to the auxiliary laser fiber injection quadrant while 0.2%
is used for the Phase Locking (PL) beam, superposed with the Modified Coherent Locking
(MCL) beam.

The pump beam that comes from the main laser green beam production quadrant goes
through a quarter-wave plate and a half-wave plate to ensure a good s-polarization of the
beam before the Optical Parametric Oscillator (OPO).

Finally the Filter Cavity Verification (FCV) beam is sent to the in-vacuum tank after
in-air propagation through the main and auxiliary lasers fibers injections quadrants.
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Figure 5.20 – Test of the stability of the temperature lock of the SHG2 crystal over a day showing for
the time channel minimal (green), maximal (blue) and mean (red) value of the channel each second.
Upper left: Temperature of the SHG2 crystal. Lower left: Correction actuation sent to the Peltier
of the SHG2 crystal Upper right: FFT of the correction actuation. Lower right: Free ADC channel
sensitive to room temperature variations.

The power of the 4 beams send from the in-air bench to the in-vacuum bench through
the window are summarized in table 5.1.

Beam Wavelength Power

Modified Coherent Locking (MCL) 1064 nm 18 mW

Phase Locking (PL) 532 nm ∼ 160 µW

Pump 532 nm from 1 mW to 120 mW

Filter Cavity Verification (FCV) 1064 nm 30 mW

Table 5.1 – Summary of the beam power going through the Ferrarix in-vacuum tank window.

5.2.4 Auxiliary laser fiber injection

The auxiliary laser fiber injection quadrant is represented along with its picture in the CALVA
facility at LAL/IJCLab in Figure 5.21. It is composed of two beams: the Filter Cavity
Verification (FCV) beam coming from the main laser fibers injections quadrant and sent to
the auxiliary laser green beam production quadrant and the Filter Cavity Control (FCC)
beam coming from the auxiliary laser green beam production quadrant and injected to a
fiber.

The FCV beam passes through one lens on this quadrant that is used to have an almost
collimated beam on the ∼ 3 m propagation before entering the in-vacuum tank with the need
waist.
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(a)

(b)

Figure 5.21 – Auxialiary laser fiber injection quadrant scheme (a) and picture on the CALVA facility
at LAL/IJCLab (b).

The FCC beam passes through an EOM that generates sidebands at 12.4 MHz used for
the lock of the 50 m filter cavity. It transmits 94% of the incoming field that is then injected
through a free space AOM aligned on the +1 order to have a positive frequency shift at the
RF modulation applied 40 MHz+δFCC . The δFCC frequency shift is a small shift adjusted
to lock the 50 m filter cavity with a detuning in infrared as define in Section 4.5.3:

∆ωfc = δFCC
2 . (5.6)

In the first step of Exsqueez, we will have δFCC ∼ 1 kHz. The transmission efficiency
of the beam to the +1 order of the AOM output was measured to be 65%. This beam is
then injected through a fiber with a transmission efficiency of 13% leading to a Filter Cavity
Control beam inside the in-vacuum tank of 2 mW to lock the 50-m filter cavity. Further
optimization should be done on this fiber injection to improve the beam power used to lock
the filter cavity.

The power of the 3 beams send from the in-air bench to the in-vacuum bench using fibers
are summarized in table 5.2.

Beam Wavelength Power

Local Oscillator (LO) 1064 nm 6.4 mW

Seed 1064 nm 23 mW

Filter Cavity Control (FCC) 532 nm 2 mW

Table 5.2 – Summary of the beam power going through the Ferrarix in-vacuum tank using fibers.
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5.3 In-vacuum bench

The design of the in-vacuum bench was done at LAL/IJCLab using the OptoCad simulation
tool [120], based on the conceptual design made by LKB. It is represented in Figure 5.22,
showing all beams and optics on the Ferrarix in-vacuum tank, the in-air detection bench and
the 50-meter filter cavity.

Figure 5.22 – OptoCad scheme showing the Ferrarix in-vacuum tank, the filter cavity and the in-air
detection bench with all the optics and beams simulated. 4 areas are highlighted on the in-vacuum
bench: in light blue for the laser phase locking, in orange of the Optical Parametric Oscillator (OPO),
in pink for the homodyne detection and in brown for the filter cavity injection and control.

There are 4 mains areas that have been highlighted on the in-vacuum bench simulated
scheme: in light blue for the laser phase locking, in orange for the Optical Parametric Oscil-
lator (OPO), in pink for the homodyne detection and in brown for the filter cavity injection
and control.

I will first present simulations and experimental work preparing the integration and char-
acterization of the main areas. Then I will go through the laser phase locking integration and
characterization and finally I will present the preparation of the filter cavity integration. The
integration and characterization of the squeezing related area OPO and homodyne detection
will be described in Chapter 6.

5.3.1 Preparation of the in-vacuum bench integration

The first thing we had to take care when designing the in-vacuum tank real optical scheme
was the over-crowding of the in-vacuum bench. To do so, we added in the OptoCad simulation
the imprints of the optics mounts, especially for the fibers outputs, mirrors, photodiodes and
translation stages.

Moreover, on the scheme of Figure 5.22, I also represented the screw holes, separated
by 5 cm, to prepare the binding of the optical mounts and the circular removable parts of
the bench with in grey the ones that we removed for the passage of electric cables. This
simulation was used to define the installation procedure of the in-vacuum bench.
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We decided to motorized 4 mirrors to adjust the beams alignments to the filter cavity and
placed 5 lenses on translation stages to tune the matching of the beams to the filter cavity
and to the homodyne detection.

Then when we received the first optical elements, we measured their properties that I will
now summarized.

Faraday isolator

On the in-vacuum bench we use a Faraday isolator, shown in Figure 5.23 to recover the
squeezed beam reflected by the 50-meter filter cavity. Its losses will be important for the
squeezing measurement.

Figure 5.23 – In-vacuum Faraday isolator.

To obtain an isolated beam from the filter cavity reflected by the Faraday isolator in
the bench plane, we have to send a p-polarized beam at the input of the Faraday isolator.
However at the output of the Optical Parametric Oscillator (OPO), the squeezed beam is
s-polarized. Consequently we add a half-wave plate before the Faraday isolator to rotate the
polarization of the squeezed beam into a p-polarization.

Then the coating of the filter cavity are designed for s-polarized beams. Consequently we
add another half-wave plate in transmission of the Faraday isolator to obtain a s-polarized
beam. We did not used a quarter-wave plate before the half-wave plate as for the in-air bench
because it is more restrictive to find vacuum compatible wave-plates.

The transmissivity of the Faraday isolator has been measured to be 98.2% from the OPO
to the 50-meter filter cavity and 97.1% from the filter cavity to the isolated beam leading to
a total loss of 4.6% of the squeezed light.

Fiber output collimators

We measured the beam size generated by the fibers output collimators and compared them
to the values given by the manufacturer in Table 5.3. We observed huge differences between
the values given by the manufacturer and the measured ones. Consequently we had to adjust
the OptoCad simulation with the measured waist sizes generated by the fiber collimator.

Moreover, after few months in box, the Filter Cavity Verification (FCV) and Local Os-
cillator (LO) collimators were remeasured for installation and we observed respectively 6 %
and 15% of waist radius changes while the Filter Cavity Control (FCC) collimator that was
already mounted and installed showed no waist change. All the measurements were done
with the same apparatus.
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Beam Measured waist (radius and position) Manufacturer

Filter Cavity Control (FCC) 103.8± 0.2 µm at 231.2± 0.3 mm 400 µm

Filter Cavity Verification (FCV) 372± 4 µm at 242± 0.5 mm 500 µm

Local Oscillator (LO) 297.9± 0.5 µm at 274± 1 mm 500 µm

Table 5.3 – Beam collimator waist radius measured after the collimator and manufacturer given beam
radius with a waist at infinity.

Lenses focal lengths

We also measured the focal length of the in-vacuum lenses and observed a correct agreement
with less than 1% of error with respect to the manufacturer values for the lenses with focal
lengths above and equal to 250 mm. Then lenses with focal lengths between 50 mm and
175 mm presented up to 5% difference with respect to the manufacturer values. These
differences were taken into account into the simulated OptoCad scheme, even though they
did not generate important changes in the design.

Finally we have a lens with more than 10% discrepancy between the manufacturer value
of 200 mm and the measured value of 174.7 ± 1.1 mm. This lens is placed after the fiber
output of the Filter Cavity Control (FCC) beam to mode match it to the 50 m filter cavity.
Consequently we had to modify the simulation to take into account the real focal length value
to define the design of the in-vacuum bench.

In-vacuum beam dumps

To block the ghost beams and the unused beams inside the in-vacuum tank we use dumps
shown in Figure 5.24 that are basically made of black glass. We have two kind of dump: with
and without anti-reflective coating in infrared. There properties are summarized in Table
5.4.

Figure 5.24 – In-vacuum beam dumps.

Dump Reflectivity at 532 nm Reflectivity at 1064 nm

With coating 0.15± 0.01% 0.016± 0.005%

Without coating 0.043± 0.001% 0.083± 0.007%

Table 5.4 – Beam dump reflectivity measurement with and without anti-reflective coating in infrared.
The transmissivity couldn’t be measure, only an upper limit of T < 1ppm could be given.

We uses uncoated dump on green beams and coated dumps on infrared beams. When we
need to dump few dozens of mW of a beam we place two beam dumps in parallel to have
multiple reflections between them and better attenuate the beam.
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5.3.2 Laser phase locking

The two green beams used to phase lock the main and auxiliary lasers, in the light blue area
of Figure 5.22, are the Phase Locking (PL) and pump beams described in Chapter 4. They
enter the in-vacuum Ferrarix tank through a window after their preparation on the in-air
bench. Entering the tank, the PL beam is superposed to the infrared Modified Coherent
Locking (MCL) beam.

The PL and pump beams are combined on a beam splitter that reflects on each side 2% at
532 nm and 12% at 1064 nm. This plate was chosen to have enough pump power combined to
the PL beam to observe a beatnote and a reduction by a factor 10 of the MCL power sent to
the homodyne detection photodiodes, after going through the Optical Parametric Oscillator
(OPO), not to blow up the homodyne photodiodes.

Consequently, going towards the Phase Locking Loop (PLL) photodiode, there is 96% of
the PL beam (corresponding to 150 µW), 2% of the pump beam (corresponding to 10 µW to
1 mW depending on the pump power) and 76% of the MCL beam (corresponding to 13 mW).
Then as the two mirrors between the beam splitter and the PLL photodiode are designed to
reflect green beam, there is no measurable MCL beam on the PLL photodiode. The PLL
photodiode is an in-vacuum photodiode that supports up to 2.5 mW of green beam.

The laser phase locking is done using the open source software PyRPL [121] on a Red
Pitaya [122] that as 2 inputs and 2 outputs. On the first input we connected the RF signal of
the PLL photodiode. The second input is used for tests and connected to an in-air photodiode
to check the beatnote between the main and auxiliary lasers in infrared.

The first output is connected to the PZT of the auxiliary laser allowing a 65 MHz tuning
range and the second output is connected to the auxiliary laser crystal temperature controller
allowing a ∼ 6 GHz tuning. The pre-tuning of the auxiliary laser crystal temperature was
done on a tuning screw so that the 20 MHz beatnote foreseen between both laser heads is
in the 6 GHz range accessible with the Red Pitaya. Then the offset on the laser crystal
temperature was tuned on the RedPitaya to observe the 20 MHz beatnote on the 65 MHz
range of the laser PZT.

The sidebands pictures of the beam on the green and infrared photodiodes are shown in
Figure 5.25. In infrared, the main laser is taken from a pick-off before the EOM used to
control the main Second Harmonic Generator cavity and thus it has no sidebands while the
auxiliary laser is taken from a pick-off after the EOM used to control the auxiliary Second
Harmonic Generator cavity and thus is represented with its 50 MHz sidebands.

As a result when we look at the spectrum on the infrared photodiode using the spec-
trumanalyzer toolbox of PyRPL, if the laser are correctly phase locked, we can observe the
beatnote between the carriers of the main and auxiliary lasers at 20 MHz and the beatnote
between the carrier of the main laser and the lower sideband of the auxiliary laser at 30 MHz

(a)
(b)

Figure 5.25 – Sidebands pictures (a) on the photodiode used to phase lock both main and auxiliary
lasers in green (b) on an in-air test photodiode used to check the infrared spectrum.
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Figure 5.26 – Spectrum of the in-vacuum green photodiode (in blue) and in-air infrared photodiode
(in pink) measured using the spectrumanalyzer toolbox of PyRPL and showing the visible beatnote
between the carriers and sidebands of the main and auxiliary lasers.

with a lower amplitude as shown in Figure 5.26. The beatnote between the main carrier and
the higher sideband of the auxiliary laser at 70 MHz is not in the range of measurement of
the Red Pitaya.

The spectrum in green is more complex as both PL and pump beams have sidebands.
The summary of the beatnote frequency observed when locked is given in Table 5.5. They are
not all observables on the spectra shown in Figure 5.26 due to two reasons. First of all the
bandwidth of the Red Pitaya spectrumanalyzer is comprised between 0 and 60 MHz. Then
the beatnote signal to noise ratio is more important for carriers than sidebands as there is
more power on the sideband. Finally, the PLL photodiode has a cutoff frequency of 20 MHz,
thus the 22.4 MHz beatnote between two sidebands is not observable while the 2.4 MHz
beatnote between two sidebands is close to noise but observable.

Frequency [MHz] Main laser Auxiliary laser Observable

2.4 Lower sideband Lower sideband Close to noise

10 Carrier Lower sideband Yes

22.4 Higher sideband Lower sideband No

27.6 Higher sideband Carrier Yes

40 Carrier Carrier Yes

52.4 Lower sideband Carrier Close to noise

77.6 Higher sideband Higher sideband No

90 Carrier Higher sideband No

102.4 Lower sideband Lower sideband No

Table 5.5 – Beatnote frequencies on the PLL photodiode.

The presence of the sidebands beatnotes has an impact for the phase lock of the laser due
to the way the error signal is derived using PyRPL. PyRPL doesn’t demodulate the signal at
the chosen frequency ΩPLL, it uses a frequency comparison between the internal frequency
reference at ΩPLL and the input signal. Every time the measurement signal crosses 0, a timer
on a 214 basis is incremented and every time the internal signal crosses 0, the same timer
is decremented. Thus if the two signals are at the same frequency, the error signal is at 0.
Otherwise the voltage of the error signal is between -1 and +1 V.

However, when sweeping the auxiliary laser frequency on 65 MHz using the PZT, not
only the carriers beatnote crosses the 40 MHz frequency leading to an error signal at 0, but
sidebands beatnote too. The error signal gives no information on the beatnote amplitude
and only the ones that have enough signal to noise ratio lead to a 0 crossing. Consequently
we have to carefully chose the starting offset of the PZT when trying to phase lock the laser
heads.
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Figure 5.27 – Spectrum of the in-vacuum green photodiode without filtering (in blue) and with filter
(in pink) measured using the RedPitaya spectrumanalyzer. The filtering improves the signal to noise
ratio at 40 MHz.

To improve the signal to noise ratio of the 40 MHz beatnote and thus obtain a cleanest
error signal, we filtered the PLL RF signal with a bandpass digital filter of 40 kHz around
40 MHz. The filtered signal is shown in Figure 5.27 along with the non filtered signal for the
PLL photodiode.

Finally a example of input RF signal from the PLL photodiode and derived error signal
is shown in Figure 5.28 showing the phase lock acquisition of the main and auxiliary laser
heads at ΩPLL = 20 MHz.

Figure 5.28 – Temporal plots of the RF signal from the in-vacuum green photodiode (in green) and
phase lock error signal (in red) when scanning and locking.

5.3.3 Filter cavity

During the time of my thesis, the filter cavity was not used and the beams were not sent
through it. However we prepared the beams injections and the control of the suspended
mirrors that I will present now.

Beams injection

There are 3 independent beams that need to be injected through the 50-meter filter cavity:
the squeezed beam – superposed to the Modified Coherent Locking (MCL) beam –, the Filter
Cavity Control (FCC) beam and the Filter Cavity Verification (FCV) beam.

The beams are sent towards the filter cavity via a mode matching lens telescope composed
of two lenses on motorized translation stages and 2 motorized mirror to be able to adjust the
matching of the beams to the filter cavity and their alignment even under vacuum.

However, the beams should be superposed before the mode matching lens telescope on
dichroic plates and beam splitters. To ensure this superposition, we will send the fourth port
of the splitters, where the beams should also be superposed, into an in-air detection table
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through a window of the in-vacuum tank. 2 quadrants photodiodes with 90◦ Gouy phase
shift will then be used to check the superposition of the beams.

Moreover, as the telescope is common to both beams with two different wavelength, there
should be another motorized mode matching lens on at least 2 beams to adjust separately the
mode matching of each beam to the 50-meter filter cavity. Note also that due to the variation
of refractive index, the focal length of the lenses is not the same for the green and infrared
beams. We took that into account in the simulation of the mode matching lens telescope.

Control of the suspended mirrors

The 50-meter filter cavity is composed of two suspended mirrors that are controlled using
magnet and coils shown with the mirror suspension in Figure 5.29.

Figure 5.29 – Filter cavity mirror showing the suspension wires and the coils used to control the mirror
position.

The first step to control the mirror of the filter cavity is to use local control with red lasers
that are sent with 45◦ of incidence on both mirror as shown in Figure 5.30. The reflected
beams are then sent to two quadrant photodiodes with 90◦ Gouy phase shift to control the
pitch and yaw of the mirrors.

Then the length of the cavity is controlled using the Filter Cavity Control (FCC) beam
with a photodiode in reflection of the cavity, in the Ferrarix in-vacuum tank. The detuning
of the filter cavity for the squeezing frequency is verified using the Filter Cavity Verification
(FCV) beam which frequency can be scan in a range of 8 MHz greater than the Free Spectral
Range of 3 MHz of the cavity. The photodiode to measure the FCV beam is placed in
transmission of the filter cavity to have enough power and contrast on the Airy peak as
shown on the simulated plots of Figure 5.31.

Figure 5.30 – Scheme of the CALVA in-vacuum system showing the Ferrarix tank in red, and the two
tanks where the mirror of the 50-m filter cavity are. The local control lasers and photodiodes of both
mirrors are also represented.
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Figure 5.31 – Simulation of the signal measured for the Filter Cavity Verification (FCV) beam: (left)
in reflection, (right) in transmission. The noise floor and RMS of the photodiode is at least 10 nW.

5.4 Conclusion

During the time of my thesis we installed and characterized the whole final in-air bench set-
up. However we observed some slow, long time scale drifts of the alignment for unknown
reasons (part of the drifts are due to thermal effect), in particular of the Second Harmonic
Generator cavities that needed to be readjusted at week scale.

The injection of the Filter Cavity Control beam, even though installed, was not fully
optimized due to these drifts, knowing that we would not use it for months.

The installation of the in-vacuum bench was dependent on the in-air beams generation
and characterization. It was thus delayed and only a part of it was installed, starting from
the beams entering the tank via fibers as we did not need the final in-air completion but
could use temporary infrared and green beams injected on fibers.

However the phase lock of the laser heads in its final configuration was installed and
characterized and the mode matching of the beam towards the 50-meter filter cavity and
the filter cavity control were prepared and all optics mounts have been installed inside the
in-vacuum tank to check the over-crowding of the bench.

The installation and characterization of the squeezing generation and measurement related
area of the in-vacuum tank (the Optical Parametric Oscillator and the homodyne detection)
will be described in Chapter 6.
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Preparation of the squeezing
measurement

The first squeezing measurements on the CALVA facility are done without the 50 m filter
cavity with a modified scheme shown in Figure 6.1. The aim of these measurements is
to characterize the in-air frequency independent squeezing source. The next steps are to
measure frequency independent squeezing under vacuum and then inject it into the 50-meter
filter cavity to measure frequency dependent squeezing.

Figure 6.1 – OptoCad scheme of the experimental set-up used for the first squeezing measurement on
the CALVA facility.

On this scheme, the squeezed beam generated by the Optical Parametric Oscillator (OPO)
is directly sent to the homodyne detection photodiodes for measurement with the Local
Oscillator (LO) beam. I will now present the alignment of the OPO cavity with the pump
beam and the superposition of the Modified Coherent Locking (MCL) beam and the seed
beam to the pump beam. Then I will explain the OPO characterization using the seed beam
before detailing the homodyne detection efficiency.

6.1 Alignment of the Optical Parametric Oscillator cavity

The first alignment of the Optical Parametric Oscillator (OPO) cavity was done using 1 mW
of green pump beam and a camera in transmission of the cavity.

The matching of the pump and MCL beams to the OPO cavity is obtained using a lens
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in-vacuum (common to both pump and MCL beams) and two lenses in-air on each beam
path with for each beam a lens on a manual translation stage to tune the matching.

Then, for the first alignment the procedure was the following:

• First we used the two pump steering mirrors to roughly ensure that, on the path towards
the OPO, the pump beam stays at the design height of 10 cm above the in-air bench.

• We removed the OPO cavity input coupler (flat mirror) and placed the OPO mechanical
board shown in Figure 6.2, so that the waist of the pump beam is in the middle of the
two flat mirrors expected positions.

• We placed the thin flat mirror and the two curved mirrors on the mechanical board at
there theoretical position.

• We placed a camera on the beam transmitted by the thin flat mirror.

• We oriented the thin flat mirror to reflect the pump beam on the first curved mirror
and then oriented the first curved mirror to reflect the beam through the crystal up to
the second curved mirror.

• We placed the input coupler at its theoretical position and oriented it so that the first
round trip beam is visible on the camera and then we oriented the second curved mirror
so that the direct beam and the first round trip beam are superposed on the camera
leading to fringes.

• We started scanning the cavity with the piezo rings on the flat mirrors and used the
two pump steering mirrors to widen the fringes until observing modes on the camera.

• We placed an in-vacuum photodiode in reflection of the cavity to see the spectrum
while scanning and we fine tuned the pump steering mirrors alignment by increasing
the fundamental mode and decreasing the first high order mode on the spectrum.

Figure 6.2 – Photo of the Optical Parametric Oscillator (OPO) mechanical board (before alignment at
the definitive mirror positions) showing the input/output coupler and the position of the photodiode
and camera used for the alignment.
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(a)

(b)

(c)

Figure 6.3 – Measurement of (a) the pump beam reflected by the OPO cavity, (b) the MCL beam
reflected by the OPO cavity and (c) the seed beam transmitted by the OPO cavity while scanning it,
at 3 different times, after optimization of their respective alignments on the cavity.

Once this first alignment was done, we never removed the OPO cavity mirrors again,
only using the steering mirrors on the beam to make it resonates onto the cavity. The cavity
became our reference and the criteria to define the superposition of the seed, pump and
Modified Coherent Locking (MCL) beams was their resonance on the OPO cavity shown in
Figure 6.3.

The locking strategy of the OPO cavity is in three steps. First we adjusted the OPO
crystal position so that the green and infrared beams are co-resonant. Then, as shown in
Figure 6.3, due to the frequency doubling, two green resonances are crossed meanwhile only
one in infrared. Thus we adjusted the actuation range of the scanning ramp so that it crosses
only one green resonance, co-resonant with an infrared resonance. Finally the threshold on
the pump reflected DC signal is chosen such as we start the lock acquisition in the linear
region of the error signal. This value is adjusted each time we change the pump power. An
example of scan and lock of the OPO cavity is given in Figure 6.4 at low pump power (below
1 mW), in the absence of highly non linear interactions. The effect of non linear interactions
will be given later on.
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Figure 6.4 – Example of a scan and lock of the OPO cavity separated by the red line with 660 µW
of pump power: (upper left) DC signal from the in-vacuum photodiode on the pump beam reflected
by the cavity, (upper right) error signal from the in-phase demodulation at 12.4 MHz of this same
photodiode, (lower left) actuation order sent by the DAC to the piezos on the flat mirrors of the OPO
cavity, (lower right) DC signal from the temporary Thorlabs photodiode on the seed beam transmitted
by the cavity.

Finally, the in-vacuum photodiode on the pump beam reflected by the cavity can support
up to 10 mW of green beam. However, the OPO will be run with much more power, up to
100 mW for some characterization measurements. Thus we added a beam splitter reflecting
90% of the green power before the photodiode to keep the photodiode safe with only 10% of
the power. Dumps were placed on the path of the 90% reflected power to trap it.

6.2 Characterization of the Optical Parametric Oscillator

The characterization of the Optical Parametric Oscillator (OPO) was done using the seed
and pump beams as shown in Figure 6.5. We used the in-vacuum photodiode on the pump
reflected by the OPO cavity and added two temporary Thorlabs switchable gain photodiodes
non-vacuum compatible: on the pump beam transmitted by the cavity and on the seed beam
transmitted by the cavity. Filters have been added in front of the photodiodes to select the
measurement wavelength.

The characterization can be decomposed into 3 main steps:

• measurement of the intra-cavity losses,

• observation of the nonlinear effects,

• measurement of the parametric gain.
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Figure 6.5 – Simplified scheme of the optical set-up used to characterize the Optical Parametric
Oscillator (OPO). The crystal movement is shown by the black arrow.

6.2.1 Intra-cavity losses

Following the developments of the Fabry-Perot cavity equations in Section 2.4.1, we can
derive the theoretical reflection depth D and transmission amplitude A of the pump beam
on the OPO cavity defined in Figure 6.6:
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where r1 is the amplitude reflectivity of the input coupler, r2 is the amplitude reflectivity
of each of the 3 high reflective mirrors and Lc are the intra-cavity power losses. For these
expressions, we make the assumption that the beam is optimally coupled to the optical cavity,
which is not completely the case in real life. For the pump beam we observed a matching of
80% to the OPO cavity, making the optimally coupled assumption reasonable with respect
to other uncertainty sources to characterize intra-cavity losses. Moreover, in the rest of this
part we won’t do the difference between crystal losses and other intra-cavity losses such as
scattering or absorption, and we will use the term of crystal losses for intra-cavity losses as
we will be interested on mapping the crystal losses.

Figure 6.6 – Definition of the reflection depth and transmission amplitude of a bow-tie cavity. Note
that the transmission is taken at only 1 of the 3 outputs.



140 Chapter 6. Preparation of the squeezing measurement

From Equations (6.1) and (6.2), we should be able to measure both the intra-cavity losses
and the input coupler reflectivity, assuming a perfect matching of the pump beam to the
OPO cavity and the reflectivity of the high reflective mirror in green R2 = 0.999. However,
at high power the pump beam undergoes non-linear effects that will be described in Section
6.2.2 and that modifies its spectrum when scanning the cavity.

Consequently, the measurements had to be done at low pump power even though the
power on the pump transmitted by the OPO is too low for the pump transmission amplitude
measurement. Plotting Equation 6.1 for a fixed reflectivity r1 and crystal losses between 0
and 100% in Figure 6.7 we found 2 possible crystal power losses for a given reflection depth.
Nevertheless, for unharmed crystal, we expect not too high losses and we can consider only
the left part of the plot.

Figure 6.7 – Pump reflection depth of a bow-tie cavity with R1 = 0.81 and R2 = 0.999 with respect
to the crystal losses.

The input/output coupler has a theoretical power transmissivity of 19% at 532 nm. How-
ever its reflectivity and absorption could only be measured at 1064 nm at LMA. We tried to
measured it at LAL/IJCLab while it was already mounted onto the OPO and were limited
by the measurement precision of our powermeter. In particular, we found that the mea-
sured power is dependent on the powermeter angle with respect to the measured beam. We
measured a power reflectivity between 72% and 81%.

We don’t expect high losses inside the crystal and according to Figure 6.7, below 15% of
crystal losses, a given pump reflection depth corresponds to a unique value of crystal losses.
Thus we plotted in Figure 6.8, the crystal losses with respect to the pump reflection depth
for the two extremal input/output coupler reflectivities. This shows that the uncertainty on
the crystal losses is higher for higher pump reflection depths.

Figure 6.8 – Crystal losses with respect to the pump reflection depth for R1 = 72% in red and
R1 = 81% in blue, the extremal values of our uncertainty on R1.

We finally measured the pump reflection depth shown in Figure 6.9a for different crystal
positions using a vacuum compatible motorized translation stage. Then we took into account
the uncertainty on the input/output coupler power reflectivity R1 to map the crystal losses,
as shown in Figure 6.9b.



6.2. Characterization of the Optical Parametric Oscillator 141

(a) (b)

Figure 6.9 – (a) Measurement of the pump beam reflection depth on the Optical Parametric Oscillator.
The error bars are present but too small to be visible as the precision measurement was of the order
of promille. (b) Inferred crystal losses. The error bars are mostly due to the uncertainty on the
input/output coupler reflectivity. The red vertical lines correspond to the crystal positions where the
infrared and green beams are co-resonants.

The measurements were done with the crystal at 31.3◦ C, which was first measured to be
an optimum temperature. The crystal translation stage does not allow access to its absolute
positioning. Thus, the crystal was moved between the first observable infrared and green
beams co-resonance inside the OPO cavity, arbitrarily chosen as step 0, and the last visible
co-resonance at step 5750. Each translation step corresponds to a ∼ 1.75 µm displacement
and we did a measurement every 50 steps.

We observed that the crystal losses are most of the time below 3% except on a 500 steps
area almost in the middle of the crystal where losses are around 5%. Thus we will chose a
co-resonance that is farther from this area. We observed 7 co-resonances inside the crystal.
Their relative position with respect to the higher loss area depends on the crystal temperature
and we took care to avoid this area for our next measurements.

6.2.2 Nonlinear effects

The first thing that had to be checked to be able to observe nonlinear effects inside the OPO
cavity was the polarization of the pump beam that has to be s-polarized. Indeed, the OPO
crystal is made to nonlinearly interact with s-polarized beam.

Then we observed a nonlinear effect on the pump spectrum when scanning the OPO
cavity with high pump power (above 10mW ). The shape of the pump reflection dip shown
in Figures 6.10 and 6.11 becomes asymmetrical1. That have been understood to come from
third-order non linear effects that I will describe now.

Optical Kerr effect

When a laser field goes through a nonlinear medium, the refractive index of the medium
depends on the beam power going through it via a third order nonlinear effect called optical
Kerr effect [123]. The refractive index n can be rewritten:

n = n0 + 2n̄2|E(ω)|2, (6.3)

where n0 is the classical refractive index in weak field, E(ω) the electric field of the laser
beam interacting through the medium and n̄2 the second-order index of refraction :

n̄2 = 3πχ(3)

n0
. (6.4)

1Note that the same kind of asymmetry was also observed on the Second Harmonic Generators cavity
scans as shown in Figures 5.6 and 5.16.
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Figure 6.10 – Zoom on the spectrum of the pump beam in reflection of the OPO for low power on the
pump beam. Top: DC signal, middle: error signal, bottom: scanning ramp.

Figure 6.11 – Zoom on the spectrum of the pump beam in reflection of the OPO for high power on
the pump beam. Top: DC signal, middle: error signal, bottom: scanning ramp.
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Optical bistability

When the nonlinear medium is placed inside an optical resonator, the optical Kerr effects
leads to optical bistability. To understand this we can go back to the Fabry-Perot cavity
equations of Chapter 2, for instance Equation (2.69) in transmission of the cavity:
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2
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, (6.5)

where Ptr is the power transmitted by the cavity, Pin the power at the input of the cavity,
r1, r2, t1 and t2 are the respective amplitude reflectivity and transmissivity of the input and
output mirror of the cavity, L is the length of the cavity and k0 the wavenumber of the laser
field, with:

k0 = 2πn
λ0

. (6.6)

The refractive index n of Equation (6.3) can then be rewritten in terms of the cavity
power parameters:

n = n0 + 2n̄2Pcav = n0 + 2n̄2
t2
Ptr. (6.7)

Consequently, in the case of optical Kerr effect, it is not possible to invert Equation (6.5)
to write the power transmitted by the cavity Ptr as a function of the input power of the cavity
Pin [124]. However, it is possible to plot Pin as a function of Ptr and then swap the axis as
shown in Figure 6.12.

Figure 6.12 – Plot of the power transmitted by a Fabry-Perot cavity, at resonance with a nonlinear
medium subject to Kerr effect, with respect to the input power. The system shows optical bistability:
for a given input power, there are two possible transmitted power depending on the past history of
the system. Starting from point a, when the input power increases, the transmitted power increases
continuously up to point b where it rises to point c and then continuously increases up to point d.
Starting from point d, when the input power decreases, the transmitted power decreases continuously
down to point e where it drops to point f and then continuously decreases down to point a.

The optical bistability is characterized by the fact that for a given input power, there are
two possible transmitted power depending on the past history of the system. For instance in
Figure 6.12, the power transmitted by a Fabry-Perot cavity can be different for a same input
power depending on the previous input power. In Figure 6.11, the pump power reflected by
the OPO cavity at a given cavity length depends on the previous cavity length, leading to
the asymmetry observed between the rising and the decreasing slope.
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The optical bistability was not a problem to lock the main and auxiliary Second Harmonic
Generator (SHG) cavities as the error signal was clean enough to have a good linear region on
the Pound-Drever-Hall signal. However, the sidebands used to demodulate the error signal
of the OPO are the same ones as the ones that are mainly transmitted to lock the main
SHG. Consequently they are weaker on the pump beam that is reflected by the main SHG
cavity and used to lock the OPO cavity. Moreover, the sidebands of the pump are also mainly
transmitted by the OPO cavity, while the error signal for the lock is measured in its reflection.

All these losses on the sidebands added to the optical bistability complicate the lock of
the OPO cavity. To obtain a stable lock we chose to lock not exactly at resonance but just
nearby by adding an offset on the error signal.

6.2.3 Parametric gain

The measurement of the parametric gain was done using the set-up shown in Figure 6.5. The
seed beam is a 23 mW beam that enters the OPO via a high reflective mirror and turns inside
the OPO in the same direction as the pump beam. The seed beam is s-polarized as the pump
to undergoe nonlinear interaction inside the crystal. In the presence of the seed beam, the
OPO crystal acts as an Optical Parametric Amplifier (OPA) as described in Section 4.4.4. We
then measured the seed power transmitted by the input/output coupler using a temporary
Thorlabs photodiode.

Figure 6.13 – Example of a scan and lock of the OPO cavity separated by the red line with 51.6 mW
of pump power: (upper left) DC signal from the in-vacuum photodiode on the pump beam reflected
by the cavity, (upper right) error signal from the in-phase demodulation at 12.4 MHz of this same
photodiode, (lower left) actuation order sent by the DAC to the piezos on the flat mirrors of the OPO
cavity, (lower right) DC signal from the temporary Thorlabs photodiode on the seed beam transmitted
by the cavity, showing parametric gain.
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For this measurement the pump beam was measured both in reflection of the OPO cavity
with the in-vacuum LAPP photodiode and in transmission with a temporary Thorlabs pho-
todiode to have a measurement of the pump beam with the same timing as the seed beam (we
saw a 200 µs time shift between the Thorlabs and LAPP photodiodes due to the acquisition
system) and with peaks instead of dips to ease the measurement of the co-resonance.

The nonlinear interaction of both the pump and seed beams inside the OPO crystal has for
effect to amplify or deamplify the seed power. The regime of amplification or deamplification
depends on the relative phase of the pump and seed beams inside the OPO crystal. Thus
to more easily observe the nonlinear effect on the seed beam power, we scanned the pump
phase using the piezo on the Mach-Zehnder interferometer, blocking the lower arm of the
interferometer as mentioned in Section 5.2.1.

An example of scan and lock of the OPO cavity at high pump power and co-resonance is
given in Figure 6.13. Comparing to Figure 6.4, the error signal is noisier and we clearly see
parametric gain on the seed photodiode while locking the OPO cavity.

OPO crystal temperature optimization

The first thing to do to measure the OPO parametric gain was to optimized the OPO crystal
temperature to achieve the best phase matching and thus the maximum parametric gain.
This optimization is done by sending 50 mW of pump beam into the OPO cavity, which we
know to be enough power to have clear amplification of the seed beam but not too high to
avoid above threshold effects that will be described later on.

Then we translated the crystal using its motorized translation stage so that the pump
and seed beams are both resonant inside the OPO cavity. When we reached the co-resonance
we observed amplification of the seed beam shown in Figure 6.14, while scanning the OPO
cavity.

The amplification depends on the phase of the pump beam on the OPO crystal. Thus if
we don’t change the pump phase we could be in a state were the seed beam is not maximally
amplified with respect to its amplitude in absence of pump beam. To avoid this situation
we scan the pump beam phase acting on the Mach-Zehnder piezo at a frequency different
from all harmonics of the OPO scanning frequency. In Figure 6.14, two consecutive seed
resonances are visible with different amplification factor.

Figure 6.14 – Seed power transmitted by the OPO cavity measured without sending pump beam
into the OPO in pink and with ∼ 50 mW of pump beam entering the OPO in blue showing the
amplification of the seed beam. The time shifts between both measurements is due to drift on the
OPO PZT. The seed power in blue is not the same for both peaks because of the change in pump
phase in-between when scanning the OPO at 1 Hz and the Mach-Zehnder piezo at 7 Hz.

Then we locked the OPO cavity with the in-vacuum pump beam photodiode in reflection
of the cavity. The seed signal then oscillated between amplification and deamplification with
respect to the seed power in the absence of parametric gain as shown in Figure 6.15. Then we
fine tuned the crystal position to the co-resonance by optimizing the seed power oscillation
amplitude.



146 Chapter 6. Preparation of the squeezing measurement

Figure 6.15 – Seed power transmitted by the OPO cavity, with 51.6mW of pump beam, when lock-
ing the OPO cavity at co-resonance. The red full line indicates the voltage measured on the seed
photodiode while scanning the OPO cavity in absence of pump beam.

The parametric gain g is defined as the ratio between the seed measured power Ps in
transmission of the OPO cavity at resonance while the pump beam interacts with the crystal
and the seed measured power in the absence of pump beam P 0

s . We can define its extremal
values g± using the seed power at maximal amplification P+

s and maximal deamplification
P−s :

g± = P±s
P 0
s

. (6.8)

We measured the parametric gain for different temperature between 20.5◦ C and 39.5◦ C.
For each measurement, we adjusted the crystal position to keep the co-resonance as the
refractive index of the crystal of the infrared and green beams depends differently on the
temperature. Moreover, we ensured to stay in the left non damaged area of the crystal as
parametric gain measurement is impacted by the crystal losses.

The measurement done at pump power 51±1 mW is shown in Figure 6.16. The optimum
amplification of the seed beam is measured for an OPO crystal temperature of 29.5± 0.5◦ C.
The main uncertainty sources are due to the pump power variation and the crystal losses
that are not homogeneous along the measurement. Moreover, we observed that the optimal
temperature changes in a 2◦ C range on a long time scale (few months when the experi-
ment is in operation and few weeks when the experiment is turned off). Thus before main
measurements, we optimize the OPO crystal temperature.

Figure 6.16 – Measurement of the parametric gain of the OPO crystal for temperatures between
20.5◦ C and 39.5◦ C showing an optimal phase matching for temperature between 29◦ C and 30◦ C.



6.2. Characterization of the Optical Parametric Oscillator 147

OPO threshold measurement

To determined the threshold of the OPO where it enters a new mode of operation [84], we
measured the parametric gain of the OPO for different pump powers as presented in Figure
6.17. It can be shown that the parametric gain in amplification and deamplification regimes
at a given pump power Pp is related to the OPO pump threshold P thp as [78]:

g± =

(
1±

√
Pp/P thp

)2

(
1− Pp/P thp

)2 , for Pp < P thp . (6.9)

Figure 6.17 – Measurement of the OPO threshold in amplification and deamplification. p0 is the pump
power threshold fitted value in amplification and deamplification regime.

For each measurement we adjusted the gain of the Thorlabs photodiode measuring the
seed beam so that the amplification does not saturate the photodiode but having the larger
possible range for the deamplification measurement. However, at power above 55 mW the
amplification became so important, reducing the gain of the photodiode too low to have an
accurate measurement of the deamplification regime. This is why the error bars at high power
in the deamplification regime become larger.

In the amplification regime we measured a pump OPO threshold of 78.1± 0.2 mW while
in the deamplification regime we measured a pump OPO threshold of 69.0 ± 0.9 mW. The
measured threshold in deamplification regime is lower that the one in amplification because
intra-cavity losses affects more the deamplification than the amplification [84]. Moreover
for deamplification, the signal to noise ratio is smaller than for amplification. Thus we can
conclude that the OPO has a threshold of 78.1± 0.2 mW.

At a power higher than the threshold, as 90 mW, we observed in Figure 6.18 that infrared
is produced inside the OPO even without the seed beam meaning the parametric gain is very
high.
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Figure 6.18 – Scan of the OPO at 1 Hz with 90 mW of pump beam and the Mach-Zehnder piezo
scanning at 7 Hz. Upper : pump beam dips in reflection of the OPO. Lower : Infrared signal measured
on the Thorlabs photodiode in the absence of seed beam.

6.3 Homodyne detection efficiency

The homodyne detection photodiodes have a quantum efficiency of 99% in infrared, a detector
diameter of 500 µm and can measure up to 3 mW of infrared. They were first aligned using
the Local Oscillator (LO) beam with lenses of focal length 50 mm in front of each photodiode
to make the beam converging with a waist radius of 50 µm on the detector surface.

The recombination of the Local Oscillator (LO) beam and the Modified Coherent Locking
(MCL) and squeezed beams is done using a 50:50 beam splitter as shown in Figure 6.19.

Figure 6.19 – Photo of the Homodyne Detection photodiodes showing the 50:50 beam splitter re-
combining the Local Oscillator (LO) beam and the Modified Coherent Locking (MCL) and squeezed
beams.

To characterize the photodiodes we first measured their voltage without laser beam on
them to numerically put the electronic offset to 0 on the Acl configuration. Then we aligned
the LO beam on them. To be sure of the alignment we tested that we observed a plateau at
the maximum value adjusting the beam position with the steering mirrors. We also ensure
that the power on both photodiode was the same on the fluctuations uncertainties.
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6.3.1 Beam splitter characterization

We observed that the beam splitter reflectivity was dependent on the beam polarization as
shown on measurements made at LMA/IP2I in Figure 6.20. At the LO wavelength of 1064nm
for 45◦ of incidence, it reflects 50.37± 0.08% of the s-polarized field and 35.34± 0.08% of the
p-polarized field.

Figure 6.20 – Reflectivity of the 50:50 recombining homodyne detection beam splitter measured at
LMA/IP2I for p and s polarization.

To propagate the LO beam from the in-air table to the in-vacuum Ferrarix tank we
use a polarization maintaining fiber with the slow axis aligned for the s-polarization and a
polarization maintaining feedthrough to enter the in-vacuum tank.

With the homodyne detection photodiodes, we observed 3% fluctuations on the beam
splitter reflectivity with a periodicity compatible with the room temperature fluctuations.

To understand where the reflectivity fluctuations came, from we measured the beam
polarization before the fiber input and at the output of the in-air fiber (before the feedthrough
to the in-vacuum tank). We used polarizing cube beam splitters and placed photodiodes on
the reflected s-polarized beam from the cubes. The measurements were done over half a day
and are presented in Figure 6.21.

We can see that over the measurement time, there were known room temperature fluctu-
ations with fast change when the cold block of the air conditioner activates and cools down
the temperature on 2◦ C in few minutes followed by a slow drift when the room warms up
on 2◦ C up to the next cold block activation, with a delay between two cold block activation
depending on the outside temperature.

On the photodiode measuring the beam polarization before the fiber injection, we observed
fluctuations of the s-polarized power of the order of 0.25%. However, on the photodiode mea-
suring the beam polarization at the output of the in-air fiber, we observed 1.5% fluctuations
on the s-polarized power with the same periodicity as the temperature fluctuations.

Consequently, from the measurements shown in Figures 6.20 and 6.21, there are polar-
ization fluctuations in the fiber that leads to changes in the beam splitter reflectivity. To
have a beam splitter reflectivity as close as possible to 50% we replaced one of the in-vacuum
LO steering mirror by a polarizing plate transmitting the p-polarization that is dumped and
reflecting the s-polarization towards the homodyne detection photodiodes.

The measurement of the homodyne beam splitter reflectivity is then more stable with less
than 0.2% fluctuations mainly linked to polarization change at the output of the fiber due to
room temperature change as shown in Figure 6.22.
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Figure 6.21 – Local Oscillator (LO) beam power in the s-polarization at the output of the in-air fiber
(bottom), at the input of the in-air fiber (middle) and free ADC channel sensitive to room temperature
variations (upper).

Figure 6.22 – Reflectivity of the 50:50 recombining homodyne detection beam splitter measured on
the Local Oscillator (LO) beam (bottom), LO beam power in the s-polarization at the input of the
in-air fiber (middle) and free ADC channel sensitive to room temperature variations (upper).
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Characterization of the noise on the photodiodes

Before doing any squeezing measurement we had to characterize the dark noise and shot noise
of homodyne detection photodiodes subtraction channel, that is the signal that will be used
to measure squeezing as explained in Section 3.5.2.

Their measurement is shown in Figure 6.23 on the DC and Audio channels without beam
and with 2.5 mW of LO beam. We observed on the DC channel that the dark noise is noisy
at frequencies above 500 Hz where we want to measure the squeezing. Moreover, at these
frequencies the dark noise is at the level of the shot noise or even higher. On the contrary, the
Audio channel spectra is cleaner with only 50 Hz and harmonics lines on the dark noise and a
shot noise one order of magnitude higher than the dark noise at 1 kHz due to an amplification
factor of 100 on the Audio channel with respect to the DC channel.

On the shot noise limited Audio spectra with the LO beam we observed low frequency
noise below 30 Hz that could be due to air turbulences but won’t limit the squeezing mea-
surement that will be done at higher frequencies. At frequencies between 100 Hz and 900 Hz
there are some structures in the spectrum that could be due to mechanical resonances of
optical elements.

Figure 6.23 – FFT of homodyne detection subtraction channel on the Audio (upper) and DC (lower)
signal without laser showing the electronic dark noise in pink and with 2.5 of the Local Oscillator
(LO) on the photodiodes showing the shot noise in blue

Fringe visibility

When the LO beam was fully aligned on the homodyne detection photodiodes and the Optical
Parametric Oscillator (OPO) fully characterized, we propagated the seed beam towards the
homodyne detection photodiodes as shown on the OptoCad scheme of Figure 6.5.

The aim was to measure the fringe visibility on the homodyne detection photodiode be-
tween the LO beam and the squeezed beam that will have the same beam size and divergence
as the seed beam. This fringe visibility measurement will be a measurement of the matching
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between the LO and the squeezed beam allowing us to know the losses on the squeezing
measurement due to the non perfect matching.

Considering two beams at the same frequency that have the same power on the pho-
todiode, they lead to constructive and destructive interferences if they are well overlapped
on the homodyne photodiodes, meaning that they have the same size, divergence and are
superposed.

The visibility V quantifies the spatial mode mismatch between the two beams. It is
measured by scanning the relative phase of the two beams, in our case using a piezo on a
mirror on the squeezed/seed path, leading to a sinusoidal signal with minimal power Pmin
and maximal power Pmax. The visibility is then defined by Equation (4.46):

V = Pmax − Pmin
Pmax + Pmin

. (6.10)

The first fringe visibility measurement that we done is shown in Figure 6.24. For this
measurement we heated the OPO crystal to 35◦ C to be far from nonlinear interaction and
locked the OPO cavity with the pump beam in co-resonance with the seed beam to maximized
the seed power to ∼ 6 mV on the homodyne detection photodiode, corresponding to ∼ 7 µW.
Then we turned down the LO power to ∼ 6 mV by adding a neutral density in-air before its
injection into the fiber.

The measurement was done on one of the homodyne photodiodes, with both LO and seed
beams on it. We scanned the seed phase at 1 Hz and determined that it corresponds to 14
periods of the seed phase, meaning that we expect to observe a 14 Hz signal. Afterwards, we
optimized the superposition of the LO and seed beams and their mode matching to measure
a fringe visibility of less about 70%.

Figure 6.24 – First fringe visibility measurement done on between the LO and seed beams while
scanning the seed phase at 14 Hz. Upper : DC signal on one of the homodyne photodiode. Lower :
FFT of the same photodiode showing the measured signal at 14 Hz.
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6.4 Conclusion

During the time of my thesis we aligned the Optical Parametric Oscillator (OPO) cavity first
using the pump beam and then aligned the infrared beams on the cavity to superpose them
to the pump beam.

Then we characterized the OPO, starting with the intra-cavity losses and more particu-
larly their dependence on the OPO crystal position with respect to the cavity axis, showing
an area that presents more losses in the middle of the crystal. We were then able to observe
nonlinear effects and measure an OPO pump power threshold of 78.1± 0.2 mW.

Finally we aligned the homodyne detection and characterized the beamsplitter reflectivity
and the noise of the photodiodes. We then started to propagate the beams from the OPO
towards the homodyne detection and superposed them to the Local oscillator (LO) beam to
be able to characterize the mode matching between the squeezed and LO beams.

We achieved a first visibility measurement of ∼70% on the homodyne detection that we
will then have to improve, mostly by moving lenses placed on the squeezed/seed beams path
to adjust their mode matching to the LO beam. The next on-going step is to do a frequency
independent squeezing measurement that first need to implement the Modified Coherent
Locking control loop defined in Section 4.4.2.





Conclusion and outlooks

Frequency independent squeezing was already used on the O3 run of the Advanced LIGO
and Advanced Virgo detectors. However to improve the detectors sensitivity in their whole
bandwidth we will have to move on to frequency dependent squeezing with a corner frequency
∼ 50− 70 Hz.

Up to the end of 2019, frequency dependent squeezing had been achieved with a minimal
corner frequency at 1.2 kHz [125] and much work has been done to reach corner frequencies
below 100 Hz in 2020 [88,89].

The Exsqueez experiment aims at demonstrating under vacuum frequency dependent
squeezing, first at a corner frequency of 700 Hz and in a second time at a corner frequency
of 70 Hz, in the prospect of the Advanced Virgo detector O5 run.

During the time of my thesis I participated to the design of the full set-up of the Exsqueez
experiment to produce, control and measure frequency dependent squeezing. Then we started
the installation and characterization of the optical devices. In particular, I characterized the
Optical Parametric Oscillator (OPO) source of squeezing, determining a map of crystal losses
and a pump threshold of 78.1 ± 0.2 mW. I also aligned and characterized the homodyne
detection that will be used to measure the squeezing.

Nevertheless, many things still remain to be done before producing and measuring fre-
quency dependent squeezing at a corner frequency of 70 Hz. First of all, we have to improve
the mode matching between the Local Oscillator (LO) and squeezed beams on the homodyne
detection to be able to do a first in-air frequency independent squeezing measurement and
characterize the losses.

The Ferrarix in-vacuum tank, containing the OPO and homodyne detection, should then
be placed under vacuum to check the movements due to pumping and the change of pres-
sure. In fact, the passage under vacuum could slightly misalign the optics and we have to
characterize and correct the alignments.

Then, the next important step will be to mode match and inject the Filter Cavity Control
(FCC) and Filter Cavity Verification (FCV) beams to the 50-m filter cavity in order to lock
the filter cavity at 532 nm and ensure its optimal detuning at 1064 nm.

The frequency independent squeezing produced in the OPO and previously measured will
then be mode matched and injected into the filter cavity. Its reflection will be sent to the
homodyne detection using a Faraday isolator. The mode matching of the squeezed beam to
the LO beam on the homodyne detection will have to be tuned for this in-vacuum squeezed
path and then the measurement of frequency dependent squeezing at corner frequency of
700 Hz will be done and the losses will be characterized.

Beyond Exsqueez, the QFilter ANR aims at adding a short coupled cavity before the
entrance mirror of the filter cavity. By adjusting the position of this new mirror and thus
the detuning of the short cavity, we will be able to fine tune the finesse of the 50 m filter
cavity and go to lower frequency. Having two cavities of lower finesse could ease the lock of
the equivalent high finesse filter cavity.

To conclude, the use of frequency dependent squeezing with a 285 m filter cavity is foreseen
for Advanced Virgo, with first an in-air squeezing source during the O4 run and then with
an in-vacuum squeezing source during the O5 run [126].
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ant, P.-F. Cohadon, A. Heidmann, C. Michel, L. Pinard, V. Dolique, R. Flaminio,
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