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Summary

Single-Particle Trajectories (SPTs) recorded through super-resolution microscopy reveal pro-
tein motion with a ten of nanometers precision in living cells. In neurons, SPTs have con-
tributed to a better understanding of the link between molecular dynamics and synaptic
transmission. However extracting precise quantitative information from SPTs requires a
stochastic model, which is often difficult to construct due to the heterogeneity of cellular
nanodomains.

In the first part of the thesis, I studied a model of potential well for characterizing certain
high-density nanodomains found in SPTs. This model allows computing quantities that are
not directly measurable from trajectories, such as the height of the energy barrier or the
residence time of a molecule inside the well. The main difficulty in recovering wells from
SPTs lies in the interplay between its boundary and its dynamics parameters (attraction
and diffusion coefficients). To resolve this, I developed a new hybrid method combining the
estimation of the local point density (recovering the boundary) and local drift vector-field
(recovering the dynamics) and compared its performance to classical maximum-likelihood
using Monte Carlo simulations.

In the second part, I used this new method to characterize potential wells observed in
SPTs of two splice variants of the CaV2.1 voltage-gated calcium channels (with/without
C-terminal tail), imaged on the membrane of hippocampal neurons. I found that these nan-
odomains have sizes ≈ 80nm, are localized at presynaptic terminal’s active zones, stabilizing
channels there for ≈ 100ms, much longer than by pure diffusion. In addition, the wells them-
selves are highly dynamic with a mean lifetime of ≈ 30s, compatible with the redistribution
of CaV following synaptic vesicle fusion events at active zones. These findings, in con-
junction with electrophysiological recordings and calcium/glutamate imaging under various
conditions, suggested that CaV redistribution contributes to shaping the release probability
as well as the short-term plasticity dynamics of individual synapses.

In the third part, I analyzed SPTs of calreticulin in the Endoplasmic Reticulum (ER)
lumen. There, I found that the high-density nanodomains from SPTs correlate with the
tubular junctions of the peripheral ER network while the high-velocity jumps are found in
tubules. To interpret the luminal dynamics, I first developed a method to reconstruct the
ER network from SPTs and then proposed a stochastic model of motion where particles can
switch between confined diffusion at junctions and transient high-velocity jumps in tubules.
This analysis revealed that the luminal material can possibly visit the entire network; the
network is at equilibrium and that tubules exhibit periods of alternating flow direction. Over-
all, the possible presence of an active flow in the ER lumen provides an efficient mechanism
for luminal content homogenization over long distances.

In the last part, I discussed possible extensions of the presented methods for analyzing 1.
lysosome trafficking and interactions with the ER network, 2. CaV dynamics at neuromus-
cular junctions of drosophila and 3. the different modes of motion exhibited by the NuRD
chromatin remodeling complex in the nucleus.

To conclude, this thesis introduces stochastic models to reconstruct the molecular dy-
namics deriving from fundamental cellular nanophysiology processes.
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Résumé
Les trajectoires de molécules individuelles obtenues par microscopie super-résolution révèlent
le mouvement des protéines avec une précision nanométrique dans des cellules vivantes,
améliorant, par exemple, notre compréhension du lien entre dynamiques moléculaires et
transmission synaptique entre neurones. Cependant, extraire des informations fines à partir
de trajectoires requiert un modèle stochastique qui est souvent difficile à construire à cause
de l’hétérogénéité des nanodomaines cellulaires.

Dans la première partie de cette thèse, j’ai travaillé sur un modèle de puits de potentiels
pour caractériser certains nanodomaines de haute densité observés dans des trajectoires. Ce
modèle permet de calculer des quantités qui ne sont pas mesurables directement à partir
des trajectories comme la hauteur de la barrière de potentiel ou le temps de résidence des
molécules dans un puit. La difficulté principale pour estimer des puits à partir de trajec-
toires vient des interactions entre leurs bords et leurs paramètres dynamiques (coefficients
d’attraction et de diffusion). Pour palier à cela, j’ai proposé une méthode hybride combi-
nant l’estimation de la densité locale de points (pour estimer le bord) et du champ de force
(pour la dynamique) dont j’ai comparé les performances vis-à-vis d’approches classiques par
maximum de vraissemblance via des simulations de Monté-Carlo.

Dans la seconde partie, j’ai utilisé cette méthode pour caractériser les puits de potentiels
dans les nanodomaines de haute densité apparaissant dans deux variantes d’épissage des
canaux calciques voltage dépendants CaV2.1 (avec/sans queue C-terminale) à la membrane
de neurones hippocampaux. Ces puits ont des tailles ≈ 80nm, sont localisés au niveau des
zones actives des terminaux présynaptiques où ils y stabilisent les canaux pour ≈ 100ms,
beaucoup plus longtemps que par diffusion. De plus, les puits sont dynamiques et durent
≈ 30s, compatibles avec la redistribution des CaV après la fusion vésiculaire aux zones
actives. Cette analyse associée avec des enregistrements electrophysiologiques et de l’imagerie
calcique / glutamique dans diverses conditions suggère que la redistribution des CaV module
la probabilité de relâche et la plasticité synaptique à court terme de chaque synapse.

Dans la troisième partie, j’ai analysé des trajectoires de calreticuline dans le lumen du
Réticulum Endoplasmique (RE). J’ai trouvé des régions de haute densité corrélées aux jonc-
tions du réseau du RE périphérique et des hautes vitesses corrélées aux tubules. Pour in-
terpréter cette dynamique luminale, j’ai développé une méthode pour re-construire le réseau
du RE à partir des trajectoires puis j’ai proposé un modèle stochastique du mouvement
où les molecules alternent entre diffusion confinée au niveau des jonctions et sauts à haute
vitesse dans les tubules. L’analyse du réseau a révélé que le contenu luminal peut visiter le
réseau entier, que le réseau est à l’équilibre et qu’il existe des périodes d’alternance dans la
direction du flot dans les tubules. La présence d’un flot actif dans le lumen du RE serait un
mécanisme efficace d’homogénéisation de son contenu sur de longues distances.

Dans la dernière partie, je discute de possibles extensions des méthodes présentées pour
analyser : 1. le trafic des lysosomes interagissant avec le réseau du RE, 2. la dynamique des
CaV au niveau des jonctions neuromusculaires chez la drosophile et 3. les différents modes
de mouvement du complexe remodeleur de chromatine NuRD dans le noyau.

En conclusion, cette thèse introduit des modèles stochastiques pour reconstruire la dy-
namique moléculaire générée par des processus fondamentaux de nanophysiologie cellulaire.
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Chapter 1

Introduction

Nowadays more than ever, progresses in technology continuously drive biological discoveries
by making once unreachable questions intelligible. During the XXth century, the field of
biology has shifted from being qualitative to quantitative, based on precise observations
interpreted through models built from physical laws. Indeed, the following quote from R.
Feynman, although dating from 1959 is still surprisingly relevant today:

It is very easy to answer many of these1 fundamental biological questions;
you just look at the thing! [..]. Unfortunately, the present microscope sees
at a scale which is just a bit too crude. Make the microscope one hundred
times more powerful, and many problems of biology would be made very much
easier. I exaggerate, of course, but the biologists would surely be very thankful
to you—and they would prefer that to the criticism that they should use more
mathematics.

(Richard Feynman’s December 29th 1959 speech at the Annual meeting of the American Physical
society).

”Looking” in the study of life also has a temporal component that becomes more and
more a subject of study in modern biology. Spatially speaking, life spans multiple ranges of
sizes, from large organisms and populations, down to their building blocks that are DNA,
proteins, and cells at the microscopic scale and below. Similarly, on the temporal scale,
some biological processes need minutes to months to complete (e.g. human reproduction
or bacterial fission) while others such as molecular interactions (e.g. enzymatic reactions)
or synaptic transmission take milliseconds or below. Thoroughly understanding a biological
process is thus not limited to a static picture, but also requires to capture its dynamic with
the correct spatio-temporal scale. For example, Electron Microscopy (EM) techniques allow

1The previous pragrapgraph of the quote reads: ”They are questions like: What is the sequence of bases
in the DNA? What happens when you have a mutation? How is the base order in the DNA connected to the
order of amino acids in the protein? What is the structure of the RNA; is it single-chain or double-chain,
and how is it related in its order of bases to the DNA? What is the organization of the microsomes? How
are proteins synthesized? Where does the RNA go? How does it sit? Where do the proteins sit? Where
do the amino acids go in? In photosynthesis, where is the chlorophyll; how is it arranged; where are the
carotenoids involved in this thing? What is the system of the conversion of light into chemical energy?”
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to visualize a sample with a few nanometer resolutions but require fixation of the sample
(either chemically or by freezing) thus totally discarding the temporal component. On the
other hand, microscopes implementing super-resolution methods are usually able to acquire
images every ≈ 5− 100ms (for example [1]) or even below (for example [2]) but with much
lower spatial resolutions of the order of the dozen to hundred nanometers.

Of prime interest in biology is the precise understanding of the location and dynam-
ics of proteins inside cells in normal and perturbed conditions, a subject that has received
an increased wave of interest since the 2000s. Supported by multiple (bio)-technological
breakthroughs: the characterization of the Green Fluorescent Protein and continuous im-
provements of subsequent fluorescent labels, the development of photoactivable / photo-
bleachable labels and improvements in microscopy technology, in particular, the advent
of super-resolution microscopy. Super-resolution microscopy defines an ensemble of tech-
niques allowing to observe individual molecules in live samples using confocal microscopes,
circumventing the diffraction limit of light. Among these techniques, the Single Molecule
Localization Microscopy (SMLM) family is especially concerned in detecting and following
individual molecules of interest through time. The advent of such advanced acquisition
methods also requires the development of new data analysis procedures and models in order
to quantitatively exploit these data.

SMLM techniques for imaging Photo-Activable Fluorescent Proteins (PAFP) combined
with particle detection and tracking algorithms are able to provide large ensembles of Single
Particle Trajectories (SPTs) of proteins of interest [3]. They are the continuation of previ-
ously existing Quantum Dot (QD) imaging techniques that were able to obtain longer tra-
jectories (thanks to QD’s greater photostability, although more prone to blinking) but QDs
are larger than FPs and thus more prone to get stuck in sub-structures and are harder to
work with, requiring functionalization before usage [4, 5]. Since the inception of PAFP-based
SMLM techniques in the late 2000s, technological improvements in microscopes, fluorescent
proteins [6], and processing softwares have allowed to target new proteins, reduce motion ar-
tifacts caused by the marker, reach better spatio-temporal resolutions and reconstruct more
faithful trajectories.

The biophysical study of SPTs relies on specifying a model of motion, the gold standard
being the Langevin equation that considers the dynamics as being driven by possible external
forces as well as thermal fluctuations (diffusion). Historically, the tool used to estimate the
parameters from this equation is the Mean Squared Displacement (MSD) that allows to
recover the diffusion coefficient and roughly characterizes the observed motion as transport,
purely diffusive or confined. MSD applies to long trajectories that do not change their mode
of motion (homogeneous motion), which is problematic as SMLM techniques produce many
short trajectories and cells are a thriving, crowded environment full of interactions, making
it more likely for a molecule to exhibit a heterogeneous motion. The new generation of tools
tailored for the study of large ensembles of short SPTs instead rely on the characterization
of the local dynamics.

In this thesis, I developed new computational and statistical procedures, improved ex-
isting ones and used Monte-Carlo simulations to compare their performance. Particularly,
I was interested in the characterization of local structures called potential wells, on the es-
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timation of parameters of motion when molecules are subject to spatiotemporally random
forces and on the reconstruction of higher-order structures from SPTs.

The manuscript is structured as follows: In the first chapter, I introduce the field of
super-resolution microscopy, its applications in neurosciences and cellular biology as well as
the main models of motion used for interpreting SPTs and their parameter estimators. In
the second chapter, I present a new method for estimating the boundary of potential wells,
discuss different ways of recovering the other well parameters and compare them on both
simulated and empirical SPTs from GPI-anchored GFP and CaV2.2 on the membrane of
hippocampal neurons. In the third chapter, I present another application where I analyzed
SPTs of voltage-gated calcium channels CaV2.1 at hippocampal synapses where I character-
ized the presence of potential wells at active zones providing a mechanism that stabilizes
channels there and has important implications in tuning synaptic release probability and
short-term plasticity. In the fourth chapter, I present the analysis of SPTs from multiple
Endoplasmic Reticulum (ER) resident proteins where I discovered the presence of a flow
dynamics in the peripheral ER lumen contrary to the previous thinking that the motion was
diffusive. I then study both static and transient ER network characteristics reconstructed
from SPTs. Finally, in the fifth chapter I present as a discussion three other applications of
the same type of analyses: the characterization of the interactions between the ER and lyso-
somes, the study of potential wells at the neuro-muscular junctions of drosophila and their
comparison with the hippocampal CaV2.1 wells and finally the characterization of multiple
modes of motion for the components of the NurD chromatin remodeling complex.

1.1 Nanodomains in neurosciences and cell biology

Except when tethered, molecules in living cells are constantly moving through thermal agita-
tion and are often maintained out of equilibrium by active process preventing some molecules
to stay in specific locations (e.g protein export in the endoplasmic reticulum) or enforcing
their presence in some place (e.g receptor channels at post-synaptic densities). These local
differences in concentrations create nanodomains with specific geometries where molecules
are organized to ensure a specific function (e.g. pre-synaptic active zones). The study of
molecular dynamics and nanodomains allows a better understanding of the functioning of
the biophysical processes present in cells.

1.1.1 Receptor dynamics at synapses

Synapses are key structures of brains that connect two neurons through the conversion of an
electrical signal arriving at the presynaptic terminal into a chemical signal diffusing through
the synaptic cleft and back to an electrical signal in the postsynaptic neuron. On the
presynaptic side, the arrival of an electrical current (action potential) triggers the opening
of voltage-dependent calcium channels (Fig. 1.1A), allowing entry of calcium ions into the
cell leading to the fusion of some synaptic vesicles to the plasma membrane and the release
of neurotransmitters into the synaptic cleft (Fig. 1.1B). On the post-synaptic side, ligand-
gated channels open upon binding to neurotransmitters allowing ion transfers through the
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membrane generating a post-synaptic electrical current (Fig. 1.1C). Synapses thus rely on
a large variety of molecular species and their interactions in a very small region to function
and is thus really prone to be studied by SPTs.

Figure 1.1: Schematic steps of synaptic transmission of electrical currents
(from [7]). A. voltage-gated calcium channels open upon the arrival of an action po-
tential allowing the entry of Ca2+ ions in the cell. B. Ca2+ ions eventually bind to synaptic
vesicles’ tethering machinery triggering their fusion with the plasma membrane. C. Released
neurotransmitter diffuse through the synaptic cleft eventually reaching a postsynpatic recep-
tor.

In the late 1990s technology allowed to study individual synapses constituents (channels,
receptors, scaffolds, vesicles, ...) revealing the importance of their dynamics in synaptic
plasticity (the modification of a synapse strength depending on its activity). Interestingly,
these studies were able to understand the importance of molecular dynamics without directly
looking at it but instead using only confocal images, genetic manipulations, application of
chemical treatments and electrophysiological recordings. In particular, the following studies
investigate the role of trafficking and retention at post-synaptic densities of AMPA recep-
tors and its sub-units in relation to plasticity [8, 9, 10, 11]. In a 2000 review article [12],
Scannevin and Huganir conclude that ”In contrast to initial impressions that considered the
postsynaptic complex to be a static structure, it is now clear that the [post-synaptic protein]
lattice is a very dynamic complex that is critical in the rapid modification of the efficacy of
synaptic transmission during synaptic plasticity.”.

1.1.2 Recovery after photobleaching experiments for characteriz-
ing molecular dynamics

Before SPTs was a common tools, or in contexts where it cannot be applied, the Fluores-
cence Recovery After Photobleaching (FRAP) technique gives access to the dynamics from
fluorescence labeling, allowing to estimate the diffusion coefficient and immobile molecule
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Figure 1.2: Single particle trajectories of post-synaptic receptors. A. First genera-
tion SPTs of post-synaptic receptors using latex-beads (from left [13], middle [14], right [15]).
B. High-density UPAINT trajectories of AMPA receptors overlaid on a Homer1C::GFP flu-
orescence signal to detect post-synaptic densities represented here as a circle (left), recon-
structed SPT image (middle) and map of local displacement lengths (right), from [16]. C.
Trajectories of AMPA receptors labeled with mEos2 fluorescent proteins (left) and confine-
ment regions revealed by the analysis of the local drift vector field (arrow color depends on
direction) showing areas (circle) with converging drift arrows, from [17].

fraction. This techniques consists in photobleaching a small portion of the experimental
plane and measuring the fluorescence recovery corresponding to the rate of replacement of
bleached fluorophores by intact ones [18]. Its first uses emerged in the 70s [19] and the theory
behind these experiments have been developed in the seminal paper of Axelrod [20]. FRAP
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has especially been used to characterize the luminal motion in the Endoplasmic Reticulum
(ER) [21]. The ER is an important organelle for neurosciences as it is a calcium store strongly
involved in calcium homeostasis, releasing calcium when required and absorbing it when the
local concentration is too high. This regulation of calcium by the ER is of particular interest
in presynaptic terminals of neurons where calcium plays a crucial role as described in the
previous paragraphs.

1.1.3 Trajectories of individual post-synaptic receptors

This first generation of SPTs studies, although suffering from multiple technical limitations
such as the huge bead size and few numbers of acquired trajectories (≈ 40 reported per
condition in these articles), lead to the definition of a model of a dynamic equilibrium at
post-synaptic densities with a constant receptor turnover [22]. Later on, another study [23]
using quantum dots and fluorescent proteins (much smaller than latex beads) revealed a role
for this equilibrium, in compensating for AMPA receptor desensitization by replacing them
with functional ones for the fast recovery of synaptic properties at the millisecond timescale.

A breakthrough in the way of conducting SPTs studies came from the development of
methods that allow to label a much larger fraction of the population of proteins of inter-
est, and visualizing multiple molecules at the same time [3]. Among these, the UPAINT
technique, based on the stochastic binding of extracellular fluorescent ligands to transmem-
brane molecules, allowed to visualize with high density an endogenous population of AMPA
receptors at the surface of hippocampal neurons [16]. This study found reduced diffusion
coefficients and increased density of receptors near synapses (Fig. 1.2B). Following articles
based on similar high-density methods, used new analysis techniques taking advantage of this
high-density, to reveal transient confinement, in the form of potential wells, of postsynaptic
receptors both at synapses and on dendrites’ necks [17, 24] (Fig. 1.2C).

1.2 Super-resolution microscopy of single particle tra-
jectories

I now present the ideas behind the most widely used super-resolution microscopy methods
as well as single-particle tracking techniques that allowed the high-density imaging break-
through presented in the previous paragraph.

1.2.1 Abbe’s law for diffraction limit

Our capacity to observe small objects is limited by the resolution of the microscopes given by
the physical law of diffraction for the minimum resolvable distance d between two fluorescent
molecules on the focal plane [25]:

d = λ

2NA (1.1)
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where λ in nm is the wavelength of the emitted beam and NA is the numerical aperture that
depends on the immersing medium of the objective and the characteristics of the microscope.
This law means that a single fluorescent emitter will generate a scattering pattern (see
Fig. 1.3A) with a size proportional to its emission wavelength and the characteristics of the
microscope. For optical microscopy (based on photon beams) this pattern size is much larger
than the size of the emitter by a factor ≈ 50. For example, a Green Fluorescent Protein [26],
is shaped like a 4.2×2.4nm barrel and has an emission peak at 509nm, when imaged on
a microscope with a numerical aperture of 1.2 will generate a spot ≈212nm radius on the
optical plane.

Abbe’s law, however, is not about how precisely the position of a molecule can be re-
constructed from its observed emission pattern. Indeed, an immobile emitter will generate
a certain amount of photon during one acquisition period. These photons will be scattered
around the real position of the emitter with a specific distribution called a point spread
function (PSF) (see Fig. 1.3B). The reconstruction of the molecule position thus depends
on the precision in determining the PSF center based on the photon distribution and will
greatly depend on the emitter motion and number of acquired photons, proportional to the
acquisition time and the emitter quantum yield (see Fig. 1.3C). On the other hand, Abbe’s
law says that two molecules closer than the diffraction limit d will generate overlapping pat-
terns on the optical plane, creating instabilities in their PSF estimation and below a certain
distance becoming indistinguishable (see Fig. 1.3D).

1.2.2 Super-resolution microscopy techniques

Super-resolution microscopy circumvents the resolution limitation from Abbe’s law by mak-
ing sure that only one molecule is fluorescent at a given time and position. It encompasses
three main techniques:

• Single Molecule Localization Microscopy (SMLM) such as Photo-Activated Local-
ization Microscopy (PALM) [28] and Stochastic Optical Reconstructed Microscopy
(STORM) [29]. These methods rely on the use of photo-activable fluorophores which
activation is tuned such that only a very sparse and spatially spread sub-population is
activated at the same time.

• STimulated Emission Depletion (STED) [30] that uses two laser beams: an excitation
laser to activate fluorophores in a circular region and a depletion beam to deplete the
fluorescence in a donut shape around the excited region, thus only conserving the signal
at the center.

• Structured Illumination Microscopy (SIM) [31] where the idea is to project a certain
number of very specific illumination patterns on the sample and reconstruct an image
using the interferences between the projected patterns and the recorded fluorescence.

By preventing interferences between multiple molecules patterns these techniques allow to
obtain an increase by a factor≈ 10 in spatial resolution, from≈ 200nm to≈ 20nm and, being
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Figure 1.3: Principles of single particle detection in optical microscopy. A. A single emitter
generates a scattering pattern (Airy disk) on the optical plane (left). B. Using a digital camera, the optical
plane is divide into pixels and the number of photons falling into each pixel during the acquisition period is
counted (middle). Finally, a point spread function (here a Gaussian of center µ and standard deviation ε) is
fitted to this discrete photon count distribution to recover the position of the emitter (Right). C. Example
of recorded photon distributions for three different categories of molecules: a fast-moving cytoplasmic (left
column), a slow-moving transmembrane (middle) and a fixed (right) molecule and using either a small (20Ms)
acquisition time (top) or a larger (200ms) one (bottom). These different scenarios lead to different acquired
photon count distribution where faster molecules and/or larger acquisition time lead to less accuracy in the
emitter position reconstruction. D. Example of two closeby emitters that have close but non-interfering
(left), interfering (middle) and totally overlapping (right) scattering patterns. Images are adapted from
ref. [27].
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based on confocal microscopy, they can directly be used on live samples (in culture [32, 33],
slice [34] or in vivo [35, 36]). SMLM techniques also allow to visualize the dynamics of
individual molecules opening the way for a quantitative analysis of molecular dynamics [3,
17, 24, 16, 37].

It is to note however that most of the articles relying on super-resolution microscopy are
based on static image analysis using techniques such as: the characterization of local density
distributions [38, 39], the co-localization of multiple fluorescence signals [40, 41, 42], molecule
density clustering [43] / density distribution characterization [44, 45], time correlation of
molecular detections [46] and others.

1.2.3 Constructing single particle trajectories from localization
microscopy experiments

The process of recovering an ensemble of Single Particle Trajectories (SPTs) from a stack of
single-molecule localization images is called Single Particle Tracking [47] and is composed of
two steps:

1. Fluorescent spots detection for each frame, groups of pixels with intensities above
the background noise, assumed to belong to a single molecule, are extracted. Then the
local intensity distribution of each group is fitted to a point spread function (usually
a Gaussian) to extract its center. This is made difficult when: fluorescent emitters
density becomes high, emitters have a low yield compared to the acquisition time,
there is a non-uniform background noise or due to dynamic noise caused by molecule
motion during the acquisition [48] (as presented in Fig. 1.3). Examples of methods
for detecting fluorescent spots are: intensity thresholding, probabilistic models [49],
generalized Laplacian of Gaussians [50], multiscale wavelet decomposition [51, 52] or
fast radial symmetry detection [53]. The spots detected this way are associated with
a frame, a position (2 or 3D) and possibly other data such as their max./min./AVG.
intensity, contrast or signal to noise ratio (Fig. 1.4A)

2. Detection Linking linking spots detected from successive frames to form trajectories.
The two main quantities used in the decision of linking two spots are their spatial
and temporal distances. Examples of tracking algorithms include: nearest neighbor
distance [54], multiple hypothesis testing [55] (considering a model of motion), Linear
Assignment Problem [56] or simulated annealing heuristic for the multi-frame objects
correspondence problem [57]. The resulting ensemble of trajectories can be visualized
by neglecting the time component and using one color per trajectory (Fig. 1.4B).

Classical single particle tracking softwares include TrackMate [58], u-track [56] or Icy’s
tracking plugin [55]. Obtaining good quality trajectories is about making tradeoffs: for the
detection, balancing the amount of false positive (misinterpreting a background variation for
a fluorescent spot) and of false negatives (not detecting a fluorescent spot). Being too lax
will corrupt the results with false background detection while being too conservative prevents
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Figure 1.4: Single particle tracking. A. Example of a single image of meos3.2::CaV2.1 channels
on the membrane of hippocampal neurons. Inset: successive frames of the selected region with the
detected molecule (filled circle, dashed: detection at the previous frame) and the nascent trajectory
(green). B. Results from the complete image stack: average image (left) and all recorded trajectories
(right). C. Classes of tracking problem depending on the expected trajectory length and label
density.
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forming extended trajectories. For the linking, the balance is now about not linking too many
different molecules in the same trajectory but also not to be too restrictive in the linking
and miss some parts of the dynamics. Up to my knowledge, it is still not clear how particle
tracking can bias the recovered motion but different analysis strategies can be used depending
on the density and stability of fluorophores.

Three classes important of SPTs experiments can be distinguished (Fig. 1.4C): low den-
sity/long trajectories (as generated by early methods relying on beads) suited for mean
squared displacement analysis (see sub-section 1.4.1); Low density/short trajectories (as ob-
tained by sptPALM) suited for local estimators (see sub-section 1.4.2); High density/long
trajectories that can be studied both locally and at long range as presented in this thesis (see
chapters 4 and 5). Finally, having both a small number of short trajectories is not suitable
for analysis.

1.2.4 Biophysical features contained in SPTs

SPTs analysis techniques can be decomposed in two categories: the ones based on physical
models of motion and those based on computing trajectory features:

Characteristics based on physical models of motion The most common piece of infor-
mation extracted in this category is the diffusion coefficient when approximating molecular
motion as diffusive (see section 1.4). To go further, more complicated modes of motion can
be considered, such as confined motion for extracting the confinement radius, trapping due
to parabolic potential wells for recovering the force acting on the molecule, or switching
modes of motion for recovering the different parameters of motion and switching rates (for
example alternating between multiple diffusion coefficients).

Characteristics based on trajectory features On the other hand, some observations can
be obtained without relying on a model of motion, but instead directly computing quanti-
ties based on detections and trajectories. These kinds of information include computing the
detection points density and measures based on the point spatial distribution, the temporal
repetition of a detection or confinement durations based on trajectories classification.

It is worth noting however that scientific reasoning based on SPTs has multiple shortcomings.
First, although SPTs have allowed circumventing the diffraction limit of light, reaching single
molecule precision is at the cost of losing all contextual information. This first shortcom-
ing can however be alleviated by combining SPTs with confocal images of other landmark
proteins and co-localizing both signals. Then, SPTs experiments rely on the stochastic acti-
vation of a small subset of a population with unknown spatio-temporal distribution making
the number of expected molecules in a given region for a given time impossible to predict,
limiting the capacity of SPTs to address any question based on the absence of event. SPTs
are thus mostly confined to answering questions that can be formulated by the analysis
of observed trajectories. Finally, trajectories lengths, limited by fluorophores characteris-
tics (photo-bleaching) and the increase in the false-linking probability with the trajectory
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length, makes it impossible to visualize long events (relative to the acquisition time of the
microscope) in individual trajectories.

1.3 Stochastic models of individual particles

The field of individual particle motion analysis started with the observation of the disordered
movement of individual pollen particles suspended in a liquid by the botanist Robert Brown
which coined the term Brownian motion. The theory underlying these observations and its
relation with the macroscopic diffusion phenomenon was laid out by Einstein in 1905 [59],
Smoluchowski in 1906 [60], Langevin in 1908 [61] and later on adapted for transmembrane
proteins by Saffman and Delbrück [62]. All these models are made in the limit of the
observation time ∆t being much greater than the collision time, such that the resulting
motion is generated by enough collisions to be uncorrelated and modeled statistically.

1.3.1 Stochastic theory of diffusion

The physical model behind purely diffusive motion is based on the study of molecules in a
gas, where the motion is driven only by the stochastic collisions between molecules. At a
microscopic level, one collision generates a ballistic motion, while many collisions, due to
their random directions, can only be modeled statistically. In this case, the equation of
motion for a molecule at position X(t) at time t is

Ẋ =
√

2kBT
m

ẇ, (1.2)

where T is the temperature of the gas, kB the Boltzmann constant providing the average
kinetic energy as a function of the temperature, m is the mass of the molecule and w is a
vector of identically independently distributed Gaussian variables with mean E[w(t)] = 0
and covariance E[w(t)w(s)] = δ(t−s) (δ is the Dirac function). Now, for molecules immersed
in a fluid, the diffusion coefficient can be defined in relation to the physical properties of the
molecule and medium through the Stokes-Einstein relation [59] D = kBT

ξ
with ξ = 6πrη the

drag coefficient, r the radius of the (considered spherical) molecule and η the viscosity of the
surrounding fluid. This model is correct only for observation times δt� γ−1 (with γ = ξ/m
the dynamical friction coefficient) the momentum relaxation time of the molecule [63].

1.3.2 Diffusion and active forces

In a more biologically realistic context, molecules in a cell are also subject to local forces that
affect their motion. This phenomenon can be modeled from Newton’s equations of motion
as:

mẌ =
∑
i

F i, (1.3)
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that gives a relation between the acceleration Ẍ and the sum of the forces F i acting on the
molecule. For a diffusive molecule immersed in a viscuous laminar flow, and subject to a
potential of energy U(X), this equation becomes the Langevin equation [61]:

mẌ + γẊ +∇U(X) =
√

2Dγ2ẇ, (1.4)

where γẊ is the frictional force due to the immersing fluid and ∇U(X) the force generated
by the potential U . In The limit where the magnitude of the frictional force is larger than
the inertia ||γẊ|| � ||mẌ||, then the acceleration term can be neglected leading to the the
overdamped Langevin equation or Smoluchowski limit of the Langevin equation [64]:

Ẋ = −∇U(X)
γ

+
√

2Dẇ. (1.5)

1.3.3 Nanodomains modeled as parabolic potential wells

The potential force U(X) from the Langevin equation can be approximated, close to the
potential center µ = (µx, µy), to the second order as

U(X) = A

(
(x− µx)2

a2 + (y − µy)2

b2

)
+O(x, y)2, (1.6)

where A is the attraction strength of the well and a, b define the shape of the well in the x-
and y-dimension respectively. This equation corresponds to a parabolic potential well that
can alternatively be rewritten in matrix form as

U(X) = (X − µ)Γ(X − µ)T , (1.7)

where .T is the matrix transpose, µ = [µx, µy] is the center and Γ is a matrix proportional
to the characteristics of the well A, a, b. The force generated by such potential is given by

∇U(X) = 2Γ(X − µ) (1.8)

and the equilibrium particles’ density for this potential follows the Boltzmann distribution

ρ(X) = C exp
(
−U(X)
kBT

)
, (1.9)

with C a normalization constant and the kBT term corresponds to the thermal energy at
the well and can be associated to the diffusion coefficient D. The motion in such potential
well is modeled by the Ornstein-Uhlenbeck stochastic process [65]:

Ẋ = −Λ(X − µ) +
√

2Dẇ (1.10)

with Λ = 2Γ the coefficient of the attraction strength of the well. Such potential well
model allows to compute a quantity that is not obtainable from the direct observation of
trajectories: the residence time τe of a molecule inside the well. Short trajectories will often
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not allow to see an entire trapping event (free motion followed by trapping followed by free
motion) and thus cannot be used to quantify trapping duration. On the other hand, this
value can be approximated for a two-dimensional circular potential well of radius r as [17]

τe = Dr2

4A2 e
A
D . (1.11)

This quantity can then be compared to the time τB needed for a particle to escape the same
region only through Brownian motion (A = 0), given by [17]

τb = r2

4D. (1.12)

The ratio τe
τB

is thus a measure of the strength of the interaction relative to the fluctuation
level. This formula cannot be directly extended for elliptic wells however. Instead, for
ellipses that are not too much elongated, we can use equation (1.11) with the approximation
r =
√
ab with a, b are the two semi-axes lengths.

1.3.4 Discrete equation of motion

When working with single particle trajectories, the minimal time between two observations
is limited by the image acquisition time ∆t of the microscope. Depending on the recording
technology, ∆t can vary but usually remains of the order of a few to a few hundred millisec-
onds. This acquisition time being much larger than molecular dynamics, the equation of
motion corresponding to the recorded trajectories is better modeled by a discretized version
of the Langevin equation

∆X(t) = b(X(t))∆t+
√

2De(X(t))∆tη, (1.13)

where ∆X(t) = X(t + ∆t) −X(t) is called the displacement, b is the local drift, De the
effective diffusion coefficient and η = [η1, . . . , ηd] is a d-dimensional vector of iid Gaussian
variables of mean zero and variance one. The effective diffusion coefficient De depends on the
crowding of the local environment [66], the size and shape of the imaged molecule and the
properties of the fluid/membrane it is embedded into [62, 67, 68]. The only fixed quantity
being a priori the shape of the molecule, it should be expected for the diffusion coefficient
to exhibit spatio-temporal fluctuations.

1.4 Parameter estimation from SPTs

Once the equation of motion that followed by a molecule is characterized, the next step is
to extract the corresponding parameters. For a purely diffusive motion, the only parameter
is the diffusion coefficient D while in more realistic situations, more parameters are present
such that the amplitudes and directions of external forces or membrane geometry.
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1.4.1 Mean squared displacement estimators

The classical parameter estimation method is based on the computation of the Mean Squared
Displacement (MSD) along an ensemble of trajectories and stems from Einstein’s 1905 ob-
servation that this quantity grows linearly with time [59]. For a trajectory X(t) (t ≥ 0), the
squared displacement for a given lag time τ is computed as ||∆τX(t)||2 = ||X(t+τ)−X(t)||2
(||.|| is the Euclidean norm) and its average should increase linearly with τ as:

〈||∆τX(t)||2〉 = 2Ddτ (1.14)

where 〈.〉 represents the empirical average over some ensemble and d is the number of di-
mensions. Formula (1.14) is called is called the Mean Squared Displacement (MSD) and
possesses multiple variants depending on the ensemble chosen for the average. We talk
about trajectories-averaged MSD when the average is taken over multiple trajectories [69]:

〈||∆τX(t)||2〉 = 1
N

N∑
i=1
||∆τX i(t)||2, (1.15)

where N is the number of available trajectories. On the other hand, we talk about time-
averaged MSD (taMSD) when the average is taken over multiple sub-parts of the same
trajectory [70, 71, 72]:

〈||∆τX(t)||2〉T = 1
K

T−τ∑
i=1
||∆τX(ti)||2 (1.16)

where the trajectory lasts for a time T and K is the number of possible sub-parts of size τ
that can be formed from the trajectory. In both cases, given the number of dimensions of
the data, the diffusion coefficient can be recovered from the trajectories by a standard linear
fit to the mean squared displacement as a function of the time-lag τ curve.

MSD and motion type

The MSD curve also contains information about the type of motion. Indeed equation 1.14
assumes that the motion is unconfined and purely diffusive. Any deviation from this motion,
affecting the displacement length, such as confinement or transport will thus be reflected in
the MSD curve and the MSD can be more generally approximated as

〈||∆τX(t)||2〉 = Aτα (1.17)

where α ∈ [0, 2] is called the anomalous exponent and A is a constant such that A = 2dD
when α = 1. The value of α reflects the underlying type of motion: α < 1, leading to
a plateaued curve corresponds to a confined motion while α > 1 leading to a super-linear
behavior implies some form of transport motion with ultimately α = 2 corresponds to a
purely ballistic motion. An alternative method used especially for estimating the anomalous
exponent α is the Mean Maximal Excursion (MME) method [73] based on the computation
of the largest distance from the starting point reached by a particle up to a given time.
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Limitation of MSD

The MSD is a very efficient estimator to the diffusion coefficient of Brownian motion but fails
when the motion is mixed or the parameters are not constant [74]. Indeed, the assumption
behind the taMSD is that the mode and parameters of motion along a trajectory do not
change. For trajectories-averaged MSD, the assumption is similarly that the type of motion
and its parameters are the same for different trajectories (separated in space and also pos-
sibly in time). These assumptions fail when the parameters of motion are not spatially or
temporally constant or any transient event such as trapping or transport occur. Actually,
early SPTs articles based on MSDs already used a two lines fit method to account for the
short and long-term behavior of the MSD curve [71, 13].

Finally, the MSD estimation relying on the presence of long trajectories, it is not well
suited when fluorophores density becomes higher making the particle tracking more difficult
and introducing errors in trajectories reconstruction.

1.4.2 Local estimators constructed from statistical moments

Another category of estimators called local estimators, allow to recover an estimate of both
the diffusion coefficient, and the local drift field, based on the average of the trajectory
displacements ∆X(t) = X(t+∆t)−X(t) falling into a specific region. Indeed the following
relations hold for any point x of the experimental plane [75, 76, 77, 78]

b(x) = lim
∆t→0

E [∆X(t)|X(t) = x]
∆t

D(x) = lim
∆t→0

E
[
∆X(t)T∆X(t)|X(t) = x

]
2∆t , (1.18)

where X(t) = [X(1)(t),X(2)(t)] is a trajectory point, ∆t the timestep, D(x) the diffusion
tensor and E[.] the expectation over all trajectory displacements passing at point x. These
relations are based on the Gaussian properties of the noise in the equations (1.5) and (1.13):

E[∆X(t)] = E[b(X(t))∆t+
√

2De∆tη] = b(X(t))∆t

Cov[∆X(t)] = Cov[b(X(t))∆t+
√

2De∆tη] = 2De∆tI, (1.19)

where we used the fact that E[ηk] = 1 (k = 1, 2) and Cov[η] = I with I the identity matrix.
One way to use the equations (1.18) for recovering the drift and diffusion coefficient from
SPTs consists in computing the first and second order moments of the displacements. Obvi-
ously, it is not possible to apply these equations for every possible point of the experimental
plane, instead one relies on spatial coarse-graining. The method proposed in [17] consists in
decomposing the experimental plane into a regular square grid S∆x with square bins S∆x(c)
centered at point c and of size ∆x. Applying this method, for an ensemble of N trajectories
each of size Mi: X i(tj) = [X(1)

i (tj),X(2)
i (tj)] (i = 1 . . . N , j = 1 . . .Mi, tj+1 − tj = ∆t) the
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equations (1.18) are rewritten as

b(u)(x) = 1
N(x)

N∑
i=1

∑
(0≤j<Mi−1,X i(tj)∈S∆x(x))

∆X(u)(tj)
∆t

D(u,v)(x) = 1
N(x)

N∑
i=1

∑
(0≤j<Mi−1,X i(tj)∈S∆x(x))

∆X(u)(tj)∆X(v)
i (tj)

2∆t , (1.20)

where N(x) is the number of points falling into the bin S∆x(x), ∆X(u)
i (tj) = X

(u)
i (tj+1) −

X
(u)
i (tj) is the displacement in dimension u = 1, 2 and in an isotropic environment D(x) ≈

1
2(D(u,u)(x)+D(v,v)(x)). The drift field obtained in this manner is the result of the correlated
motion of different particles and should not be used when only a portion of the molecules
falling into the bin are subject to this force.

Effect of localization noise

Molecules in SPTs experiments are never detected perfectly, but instead with some standard
deviation called localization noise σ. The effect of the noise on the overdamped Langevin
equation 1.13 can be modeled through the use of an extra process [79]

∆Y (t) = ∆X(t) + ση′, (1.21)

where η′ is a Gaussian vector of center 0 and variance 1 (independent of the vector η used
for modeling the Brownian motion) and X follows eq. (1.13). Computing the estimators for
the local drift field and diffusion coefficients leads to [79]

bY (x) = E

[
∆Y (t)

∆t |Y (t) = x

]
= bX(x) + o(∆t) + o(σ2)

DY (x) = E

[
∆Y (t)T∆Y (t)

2∆t |Y (t) = x

]
= DX(x) + σ2

∆t + σ2

2 ∇ · bX(x) + o(∆t),

(1.22)

with bX/Y and (resp. DX/Y ) the drift field (resp. diffusion tensor) computed on process X
or Y and ∇ · bX(x) the divergence of the local drift field. Thus both the drift vector field
and diffusion coefficient are not affected by the localization noise to first order in ∆t. Note
that the corrections in σ2 in the estimation of D are hard to compute on real data as they
involve the divergence of the drift field.

1.4.3 Maximum likelihood estimators

Finally, the last category of routinely used estimation methods are the ones based on Maxi-
mum Likelihood (ML) relying on the capacity to formulate the probability transition function
p(X(t)|X ′(t′)) of the process: the probability of the molecule being at location X at time
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t knowing that it was at location X ′ at time t′ (t > t′). For a purely diffusive motion with
coefficient D, the probability is given in two dimensions by

p(X(t)|X ′(t′)) = 1
4πD(t− t′) exp

[
||X(t)−X ′(t′)||2

4D(t− t′)

]
, (1.23)

where ||.|| is the Euclidean norm. This transition probability corresponds to a Gaussian
distribution centered atX ′ and of variance 2D(t−t′). On the other hand, when the motion of
the molecule follows an Ornstein-Uhlenbeck (model of the motion inside a parabolic potential
well) process with attraction rate matrix Λ, center µ = [µ1, µ2] and diffusion coefficient D,
the transition function is obtained from the Fokker-Planck equation [80] as

p(X(t)|X ′(t′)) =
√
|Λ|

2πD
√
|(1−e−2Λ(t−t′))|

exp
[
−(X(t)− µ− r) Λ

2D(1−e−2Λ(t−t′))
(X(t)− µ− r)T

]
,

(1.24)

where X(t) = [X1(t), X2(t)], X ′(t′) = [X ′1(t′), X ′2(t′)], |.| is the matrix determinant and
r = [(X ′1(t′)− µ1)e−λ1(t−t′), (X ′2(t′)− µ2)e−λ2(t−t′)].

Given the probability transition function p, the maximum likelihood for the successive
displacements over a trajectory of size M composed of the points X(t1) . . .X(tM) following
an equation of motion with parameter vector θ = [θ1, . . . , θK ] is obtained as

L(θ|X) = p(X(t1))
M−1∏
i=1

p(X(tj+1)|X(tj)). (1.25)

This equation can be extended for an ensemble of N trajectories X1 . . .XN of sizes Mi

(i = 1 . . . N), by using the fact that trajectories are independent

L(θ|{X1 . . .XN}) =
N∏
i=1

p(X i(t1))
Mi−1∏
j=1

p(X i(tj+1)|X i(tj))
 . (1.26)

Then the maximum likelihood estimator θ̂k for the parameter θk (k = 1 . . . K) is the solution
of the following equation

∂

∂θk
L(θ|{X1 . . .XN}) = 0. (1.27)

For example, this procedure applied to the transition probability of the Brownian motion
from equation (1.23) leads to the following estimator of the diffusion coefficient D̂ [81]

D̂ = 1
4C(t− t′)

N∑
i=1

Mi−1∑
j=1
||X i(tj+1)−X i(tj)||2, (1.28)

where C =
N∑
i=1

(Mi − 1) is the total number of displacements. A close-form expression also
exists for the parameters of the Ornstein-Uhlenbeck process and is given in sub-section 2.5.1.
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1.5 Main results of the thesis

Early studies using SPTs considered only a coarse and global model of motion (often diffu-
sion) [16] or were applied only when a large number of trajectories were available [17, 24].
New challenges consist in obtaining more precise measurements by detecting, separating and
characterizing multiple modes of motion. Possibly in cases where proteins are present in low
copy numbers.

1.5.1 Statistical approach to recover parabolic potential wells from
SPTs

Main results: I developed methods for automatically detecting and estimating parabolic
potential wells parameters from trajectories, especially focusing on the detection of the well
boundary and on cases where only a few numbers of trajectories are available for which I
propose two methods:

• The first method is based on the study of a truncated Ornstein-Uhlenbeck process
representing the motion inside the well and consists in fitting the local point density
inside the well, using a density filter to remove outliers (see sub-section 2.3.1) and
recovering the boundary by looking at the point of discontinuity between the inside
and outside density distributions (see paragraph 2.3.1). Here I distinguished between
circular and elliptic boundaries, where the later requires to first compute the ratio of
semi-axes lengths to define a new distance measure (see Fig. 2.3) for computing the
density inside the well.

• The second method, is a hybrid iterative procedure (see paragraph 1.5.1) that uses
the densitys to recover the elliptic boundary and the local drift field for the estimation
of the other well parameters (see subsection 1.5.1). The method starts by detecting the
center of the well and restricts the analysis to the points in a square region around it,
iteratively increasing the size of this square and finally selecting the well with the best
score. This approach does not require a priori a size for the wells and improves the
stability of the estimation by using two mostly independent sources of information: the
density and the local drift.

Overall, these approaches allow to automatically detect wells in any type of SPTs, can be ap-
plied to recover small wells (≈ 80nm radius) and fewer trajectories than before as presented
in sub-section 2.3.4, chapter 3 and sub-section 5.0.3.

Presentation of the methods

Parabolic potential wells observed in SPTs have the specificity that they occupy a bounded
region (considered as elliptic) in space. Characterizing a potential well thus consists in
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estimating seven parameters, two ”dynamic” ones: the attraction strength of the well A, the
local diffusion coefficient D and five geometric parameters related to its elliptic boundary
ε = (µ(1), µ(2), a, b, ϕ) with µ = [µ(1), µ(2)] the well center, a ≥ b the semi-axes lengths and
ϕ its orientation. In addition, these parameters influence each other as determining the
boundary of the well determines which parts of trajectories are kept in the estimation of the
dynamic parameters A and D. The standard method for extracting parabolic wells from
SPTs was developed in [17]. It relies on the use of the magnitude of the local drift field to
estimate A but considered only circular wells and did not give a clear method to extract
the boundary. Another method was presented in [24] using a Bayesian framework for the
estimation of the wells but relies heavily on numerical optimization and does not discuss the
determination of the boundary. Lastly, maximum-likelihood estimation methods are also
discussed in [79] but never applied to data.

First, I proposed a new method to estimate the parameters of potential wells based only
on the local point density, I adapted the least square estimation (LSQE) method from [17] to
work for elliptic wells and provided another method, also based on the density, to extract the
well boundary. Then, I compared using Monte Carlo simulations, the estimated attraction
coefficients A obtained with these methods with the maximum likelihood estimators [79, 82].
Finally, I proposed an alternative hybrid method based on both the point density and the
local drift field.

Estimation of potential wells from the local point density

On one hand, statistical physics tells us that the observed density of points ρ for a potential
well is given by the Boltzman distribution

ρ(X) = a exp
(
−U(X)
kBT

)
, (1.29)

where a is a constant depending on the local number of points and U is the energy function.
On the other hand, the motion inside a potential well can be modeled as a two-dimensional
truncated Ornstein-Uhlebeck stochastic process

Ẋ = Λ(X − µ) +
√

2Dẇ, (1.30)

with Λ =
[
λx 0
0 λy

]
the attraction rate matrix. The steady-state distribution associated to

the process (1.30) is given by taking the limit (t− t′)→ +∞ in equation (1.24) (considering
the initial point X ′(t′) = µ)

f(X) =

√
λxλy

2πD exp
(
−(X − µ)Λ(X − µ)T

2D

)
, (1.31)

corresponding to a Gaussian distribution with mean µ and covariance D

Λ . Matching equa-
tions (1.29) and (1.31) and considering the well as spatially finite of elliptic shape, we obtain
that the observed density ρ must follow a Gaussian distribution of mean µ and covariance

C = D

2A

[
a2 0
0 b2

]
, (1.32)
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where A is the attraction rate coefficient and a, b are the coefficients defining the elliptic
shape of the well. Thus, given the parameters a, b and D are known, then A can be recovered
directly from the covariance matrix of the observed density distribution. The parameters
a and b can be obtained from the same distribution and are in any case often estimated
before A. The diffusion coefficient D can be either known a priori, estimated through
formula (1.20), or through another estimator on another trajectory ensemble. This method
has the advantage of not requiring any particle tracking at all to characterize potential wells
but is very dependent on the estimation of the size of the boundary region a, b.

Refinement to detect the well boundary

In practice, the local point density ρ can be estimated using a square grid of bins S∆x(x)
with bin size ∆x and center x. The density is then estimated inside each bin for an ensemble
of N trajectories composed of Mi points each X i(tj) (i = 1 . . . N, j = 1 . . .Mi), we have

ρ(x) =
N∑
i=1

Mi∑
j=1
1X i(tj)∈S∆x(x), (1.33)

with 1a∈b =
{

1 if a ∈ b
0 otherwise . In subsection 1.5.1 we know that if a potential well is present,

it should generate a local density maximum and ρ should locally follow a Gaussian distri-
bution. On the other hand, a Brownian motion, when sufficiently sampled, should generate
a uniform density distribution. The problem now lies in determining which bins should be
considered inside the well and included in the parameter estimation and which should be
left out. As ρ is Gaussian, by removing the bins with a density below a certain threshold α,
given as a percentage of the local maximum, we can expect to remove parts of trajectories
not falling inside the well. We thus define the sub-set of points falling into bins with density
greater than α as

Γα = {X i(tj) such that X i(tj) ∈ S∆x(x) and ρ(x) > α}, (1.34)

and the estimator for the well center and covariance matrix are computed only for the points
in Γα.

Estimation of the well boundary from the local density

A way to estimate the well boundary without enforcing a threshold on the density is to find
the point from which ρ deviates from a Gaussian distribution. Indeed, the well retaining
trajectories, and allowing only a few to escape, there should be a difference between the
internal and external density distributions. More specifically, I considered two types of sur-
rounding densities based on observations: 1. when the well is surrounded by other particles
(undergoing Brownian motion for simplicity) generating a uniform external distribution and
2. when most of the observed trajectories appear inside the well, generating a mostly null
external distribution except for a few escaped trajectories.
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At this stage of the estimation process, I consider the center to have already been esti-

mated, such that I can rely on a different method than the square grid estimation (equa-
tion 1.33) to estimate ρ in order to prevent any count or geometry artifacts. Instead I rely
on counting the number of points falling in concentric annulus of small radius r, width ∆r
and centered on µ

ρ(r) =
N∑
i=1

Mi∑
j=1
1||X i(tj)−µ||∈[r,r+∆r]. (1.35)

The first step is then to estimate the ratio of the ellipse semi-axes Cv = a
b

giving an indication
on the shape of the elliptic boundary. Using equation (1.32) we find that Cv(r) is given
exactly by the square root of the ratio of the diagonal terms of the estimated covariance
matrix C̃(r) in the annulus with small radius r

Cv(r) =

√√√√C̃11(r)
C̃22(r)

. (1.36)

For a circular well the curve Cv as a function of the distance to the center r is flat with
Cv(r) ≈ 1. For an ellipse however, Cv(r) should exhibit a maximum at a position r∗ which
value Cv(r∗) is used as the estimate for the semi-axes ratio. Using this ratio, we can define
a new distance measure for the points X = [X(1),X(2)] inside the well as

r′ =
√

(X(1))2 + Cv(r∗)(X(2))2. (1.37)

This new distance measure allows to reshapes the local point density from an ellipse to a
circle and has no effect if the base density is already circular as in this case Cv(r∗) ≈ 1. We
then recompute the annulus density based on this new distance measure ρ(r′) and use it to
extract the well circular boundary.

Finally, the two external density situations defined above lead to different estimation
procedures for the boundary: for a uniform external density (case 1. above), we can observe
a minimum at position r′∗, near the boundary of the well, where the two different distributions
overlap. For the case where the external density is null (case 2. above), there is no minimum
but a small discontinuity in the density that we use as our estimate that can be more easily
determined in log scale.

Comparing various estimators to recover the strength of the potential well

In order to obtain realistic simulations for comparing the different well estimation methods,
I use the following procedure. To simulate an individual trajectory, I first choose a boundary
ellipse ε, attraction coefficients matrix Λ and diffusion coefficientD and then use the following
equation based on the Euler scheme [76]:

X(t+ δt) = X(t)−Λ(X(t)− µ)δt1X(t)∈ε +
√

2Dδtη (1.38)

where 1X(t)∈ε is 1 when X(t) is inside the ellipse and 0 otherwise, δt is the simulation
timestep (≈ 10−5s) and η is a vector of i.i.d Gaussian variables of zero mean and unit
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variance. A trajectory is simulated up to a given time tmax in order to obtain a specific
amount of trajectory points (usually 20 points after sub-sampling). To recover an observed
trajectory with timestep ∆t = Kδt (usually ∆t ≈ 10−3s), I sub-sampled the trajectory
generated by equation (1.38) keeping one point every K. Finally, the initial point of each
trajectory X(0) is chosen following two different empirical scenarios (as discussed in the
previous paragraph): 1 ) X(0) is chosen uniformly distributed inside the well such that most
of the trajectory points are located in the well or 2 ) X(0) is chosen uniformly distributed
in a square of width larger than the well in order to simulate a uniform density distribution
outside the well. A simulation setup consists in an ensemble of trajectories where new
trajectories are generated until reaching a specific amount of displacements inside the well.

Based on these simulations, I compared three different methods for obtaining the attrac-
tion coefficient of the well as a function of the density threshold α (between 0 and 50%). The
first method is the density estimation presented in sub-section 1.5.1 and thus only relies on
the local point density estimate ρ. The second method uses a least square estimation (LSQE)
of the local drift vector field with the one expected from a well (equation (1.8)), is an exten-
sion of the formulas presented by [17] to work with ellipses and relies on the computation of
the drift vector field b. Finally, the third method uses maximum likelihood estimation and
only requires to know the well boundary. None of the methods, however, give an estimation
of the well boundary, so in each case, I rely on the procedure given in sub-section 1.5.1.
As presented in section 2.3, I found that all methods gave very accurate estimates for any
tested value of α both for circular and elliptic wells. The results for the estimation of the
attraction coefficients are presented in sub-section 2.5.2 and show that the density method
gave a correct value for a small α but diverged afterward while the LSQ estimator seemed
to always slightly underestimate (this underestimation increasing with increasing attraction
strength), finally the MLE estimator was able to recover accurate estimates for all tested α.

Hybrid density-drift method for detecting potential wells

Based on the previous considerations about the local point density, I developed an hybrid
method that uses the density to detect the boundary and the local drift field for obtaining
the A parameter and scoring the well. The resulting procedure is as follows:

1. Form a square grid S∆x with bins of size ∆x over the plane covered by SPTs;

2. Compute the density map ρ∆x(x) where we count the number of data points falling
into each bin of from Sδx.

3. Keep only the highest d% bins from S∆x as possible potential well regions.

4. For each of these select bin centered at x, do the following iterative procedure starting
with N = 1:

(a) Compute the square grid SN,∆x,c centered at c and composed of (2N+1)×(2N+1)
bins of width ∆x.



32
(b) Compute the boundary ellipse εN = [µ(1)

N , µ
(2)
N , aN , bN , ϕN ] with center µN =

[µ(1)
N , µ

(2)
N ], semi-axes lengths aN ≥ bN and orientation ϕN , of the well by comput-

ing the 95% confidence matrix from the (considered) Gaussian local point density
distribution in the square SN,∆x,c.

(c) Compute the re-centered grid SN,∆x,µN
with center corresponding to the center

of the estimated boundary ellipse.
(d) Compute the local drift map bN,∆x(x) = [b(1)

N,∆x(x), b(2)
N,∆x(x)] for each bin of the

grid SN,∆x,µ using formula (1.20).
(e) Estimate the attraction coefficient of AN the well using the formula

A∗N =

M∑
i=1

b
(1)
N,∆x(X i)x(1)

i

a2 + b
(2)
N,∆x(X i)x(2)

i

b2

2
M∑
i=1

(x(1)
i )2

a4 + (x(2)
i )2

b4

. (1.39)

where X i = [x(1)
i , x

(2)
i ] (i = 1 . . .M) are the centers of the M bins from SN,∆x,µ

that are contained inside the boundary εN of the well.
(f) Estimate the parabolic index of the current well based on the residual least square

error:

S(bN,∆x, A∗N) = Err(bN,∆x, A∗N)
M∑
i=1
||bN,∆x(X i)||2

= 1−

(
M∑
i=1

b
(1)
N,∆x(X i)x(1)

i

a2 + b
(2)
N,∆x(X i)x(2)

i

b2

)2

(
M∑
i=1

(x(1)
i )2

a4 + (x(2)
i )2

b4

)(
M∑
i=1
||bN,∆x(X i)||2

)
(1.40)

The index S ∈ [0, 1] is defined such that S → 0 for a drift field generated by a
parabolic potential well and S → 1 for a random drift vector field as observed for
diffusive motion.

(g) If N < Nmax, set the initial center c← µN , N ← N + 1, and return to step (a).
(h) The final set of parameters (εN∗ , A∗N∗) is given by the iteration N∗ with the

smallest parabolic index: N∗ = arg minN=1...Nmax S(bN,∆x, A∗N∗).
(i) The final parameter set (εN∗ , A∗N∗) is considered to be a potential well when the

index S(bN,∆x, A∗N∗) < 1
2 .

The maximal iteration number Nmax can be determined by a locality criterion where we
define the maximal allowed region in which to search a potential well dth and use the relation
Nmax = arg maxN∈N+(2N + 1)∆x < dth.

The interest of this method is that it relies both on the local density through the estima-
tion of the well boundary ε and on the local drift field for the estimation of the attraction
coefficient A.
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1.5.2 Main applications of the well detection method

Main results: Using the methods described in chapter 2 and paragraph 1.5.1, I was able
to recover hundreds of potential wells from different sets of CaV SPTs experiments (see sec-
tion 2.3.4 and chapter 3) and found that:

• In CaV2.1 wells had a size (
√
ab, a, b semi-axes) ≈ 80nm with potential energy bar-

riers ≈ 3kT that allow to stabilize the channels for ≈ 100ms. A duration about three
times larger than the time needed to escape the same region by pure diffusion (see
sub-section 3.2.3).

• Colocalization of CaV2.1 SPTs with syntag1::CypHer5E, a pre-synaptic marker, re-
vealed that the wells are mostly located at pre-synaptic active zones (see Fig. 3.3).

• Modifying channel dynamics by light-induced cross-linking of the channels modified
their spatial distribution, increasing channels density (from ≈ 15 to ≈ 20 wells/µm2)
and induced spatial clusters of wells (see sub-section 3.2.4).

• By dividing the SPTs into successive time-windows, I was able to recover the dynam-
ics of the wells themselves and found that they had a lifetime ≈ 30s (see Figs. 3.3H
and 3.11E-F), much longer than the residence time of the channels.

• The differential study of the dynamics of the long and short CaV2.1 splice variants
(Figs. 3.3D-H and 3.5) in conjunction with electrophysiological and calcium/glutamate
imaging (Figs 3.2, 3.4 and 3.6) suggested that short-tailed CaV2.1 channels have a
more variable interaction distance with the scaffold proteins of the active zones than
the long-tailed variant (see Fig. 3.6E).

Presynaptic nanodomains revealed in SPTs of CaV VGCCs

The transmission of an electrical current across a chemical synapse from pre to postsynap-
tic neurons relies on the release of neurotransmitters from the presynaptic terminal. These
neurotransmitters are contained inside Synaptic Vesicles (SV) docked at the presynaptic
membrane’s active zone and their fusion is triggered by the arrival of calcium ions near the
membrane-SV junction point. The ions penetrate inside the cell through Voltage-Gated Cal-
cium Channels (VGCC) that open upon sensing an action potential. The coupling between
VGCCs and SVs has been found to be of prime importance for the correct functioning of
synapses [83] and can also act as a way of implementing plasticity at the pre-synaptic level.
In this study, conducted in collaboration with the group of Martin Heine at TU Magde-
burg, I analyzed trajectories of two isoforms of the main VGCC at hippocampal synapses:
CaV2.1+47 possessing a long C-terminal tail and its shorter variant CaV2.1∆47. It is known
that CaV2.1 channels can interact with scaffold proteins at the active zone and we wanted
to characterize these interactions and how they differed between the two isoforms. We also
wanted to further understand how the channel dynamics influences the electrical properties
of the neurons (by modifying channel dynamics through cross-linking) and in turn how it is
modified by the electrical properties of the neurons (e.g. by silencing the network activity).
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Detection of potential wells in CaV2.2 and GPI-anchored GFP trajectories

First, I compared the results of the three different well estimation methods density, Least
Square Estimation (MLE) and Maximum Likelihood Estimation (MLE) presented in chap-
ter 2 (and discussed in the previous sub-section) to two empirical SPTs datasets. The first
dataset consisted in SPTs of the CaV2.2 voltage-gated channels at the surface of hippocam-
pal neurons that were acquired with a timestep ∆t = 33ms. There, I was able to detect 353
potential wells from ≈ 280000 total trajectories from 13 experiments with average semi-axes
lengths of 〈a〉 ≈ 90µm and 〈b〉 ≈ 70µm and average attraction coefficients 〈A〉 ≈ 0.13 for the
density estimation, ≈ 0.07 for LSQE and ≈ 0.18 for MLE. The second dataset consisted in
SPTs of GPI-anchored GFP also at the surface of hippocampal neurons and were obtained
with ∆t = 20ms. There I detected 181 wells from ≈ 310000 total trajectories from 10 ex-
periments with average semi-axes lengths of 〈a〉 ≈ 0.15µm and 〈b〉 ≈ 0.12µm and attraction
coefficients 〈A〉 ≈ 0.35 with the density method, ≈ 0.14 with the LSQE and ≈ 0.32 with the
MLE.

CaV2.1 channels are trapped in potential wells at synapses

Now looking at another dataset composed of SPTs from the two variants: CaV2.1∆47 (short-
tailed) and CaV2.1+47 (long-tailed) of the CaV2.1 channels and co-localizing these SPTs with
the syntag1::CypHer5E pre-synaptic marker, I could detect potential wells at these regions
with an average of 2 wells per synapse (see Fig. 1.5A). Three examples of wells appearing
at pre-synaptic terminal are presented in Fig. 1.5B. The size of the wells was r ≈ 80nm
with r =

√
ab (a, b the well semi-axes lengths) with a median of r = 76nm and r = 81nm

for CaV2.1∆47 and CaV2.1+47 respectively which is in agreement with other models of pre-
synaptic arrangement such as [84]. Computing the residence time of the channels inside
the wells I found average residence times of 99ms and 105ms for CaV2.1∆47 and CaV2.1+47
respectively. Although apparently low, these values are more than three times larger than
the average time required for a channel to escape a region of 80nm only by diffusion (≈ 30ms)
(see sub-section 1.3.3).

To see how the wells were affected by the network activity, SPTs were acquired after chem-
ically blocking either ionotropic glutamate receptors (using APV and CNQX chemicals) or
sodium channels (using TTX). Both treatments globally reduced the diffusion coefficients
both at the presynaptic terminals and outside and tended to slightly strengthen confine-
ment by decreasing the well sizes and increasing the residence times, this effect being more
pronounced for the CaV2.1+47 isoform.

Duration of the potential wells

The SPTs data revealed that the wells could move slightly during the experiments. This
motion does not correspond to ”technical” drift as the displacements between wells appearing
at the same time are not correlated. This motion blurs the characteristics of the wells such
as the center and local drift field and thus requires the use of a sliding time window over the
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Figure 1.5: Correlation of potential wells and functional synapses. A. Colocalization
between CaV2.1 channels and synaptic vesicles located through synaptophysin and presynap-
tic calcium transients as reported by changes in GCaMP5G fluorescence after an electrical
stimulation (left). Corresponding CaV2.1 fluorescence signal and reconstructed trajectories
(right). B. Three potential wells located in the functional regions from A.

SPTs. In this new setup, a 20s sliding time-window is passed over the ensemble of SPTs and
potential wells are detected independently for each time window. By having a 50% window
overlap and by linking together closeby wells in successive windows. In addition I computed
that the wells lifetime for both CaV2.1 isoforms was in average ≈ 30s with a few wells lasting
≈ 60s.

Cross-linking CaV2.1 channels leads to clustered wells

In order to understand the effect of the channels mobility on synaptic transmission, I looked
at SPTs of both CaV2.1 variants obtained for channels fused at their N-terminal domains
with a mutant of the Arabidopsis flavoprotein cryptochrome 2 (CRY2). These CRY2:CaV2.1
channels form transient cross-links with other CRY2:CaV2.1 channels upon being illumi-
nated with a blue light. The SPTs revealed that the diffusion coefficient outside presynaptic
terminals was greatly decreased compared to non-cross linked channels for both isoforms:
from D = 0.095 for CaV2.1∆47 to 0.063µm2/s for CRY2:CaV2.1∆47 and from D = 0.091 for
CaV2.1+47 to 0.070µm2/s for CRY2:CaV2.1+47. In turn the diffusion coefficients inside the
wells, sizes and residence times coefficients were only slightly modified on the different splice
variants. Finally, although the biophysical characteristics of the wells were not modified, I
observed many more potential wells, the well density increasing from 15 wells/µm2 in CaV2.1
to 20 wells/µm2 for CRY2:CaV2.1 channels with the wells spatially distributed in clusters
supporting the fact that more CaV2.1 channels be integrated in active zones (Fig 1.6A).
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Figure 1.6: Spatial effect of cross-linking and proposed model of channels organi-
zation. A. Sample experimental areas showing the increased well density and spatial clus-
tering of wells after light-induced cross-linking (left column) compared to wild type CaV2.1
channels. B. Proposed organization of the two CaV2.1 splice variants at the active zone.

Main conclusion of the SPT analysis on the function of the active zones

In this study, SPTs are only one of the multiple tools used to better characterize the dynamics
of the two CaV2.1 channels variants at presynaptic terminals. The other tools comprise cal-
cium (GCaMP5G::synaptophysin) and glutamate (iGluSnFr) imagining to monitor synapse
activity, immunocytochemical staining for co-visualizing multiple protein species, confocal
imaging colocalization and electrophysiological recordings. These different results suggest
that calcium channels mobility has the ability to tune the synaptic vesicle release probabil-
ity in response to previous activity. In addition, we proposed that the amount of integration
of the different splice variants of CaV2.1 channels contributes to the variability of the re-
lease probability and short-term plasticity of individual synapses from different neurons or
even along the axon of individual neurons. Indeed, we propose the model that CaV2.1∆47
variant lacking C-terminal scaffold interactions, form stochastic coupling with SVs primarily
caused by their surface mobility. However, CaV2.1+47 channels are localized in a transient
but defined proximity to SVs.(Fig. 1.6B).

Altogether, these data suggest that alternative splicing can serve as an endogenous
mechanism to shape release probability and short-term plasticity of individual synapses,
as shown for homeostatic plasticity [85]. We propose that stochastic mobility-driven and
use-dependent rearrangement of calcium channels constitute the initial processing of infor-
mation at the presynaptic site and depends on the flexible association between channels and
SVs.
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1.5.3 Application of SPTs analysis to reveal the flow in the endo-

plasmic reticulum lumen

Main results: Analyzing for the first time SPTs from Endoplasmic Reticulum (ER) luminal
proteins, I found that:

• They exhibited a very heterogeneous pattern of motion with high-density regions con-
nected by high-velocity jumps colocalizing respectively with the junctions and tubules of
the peripheral ER membrane (see Fig 4.2a,b,d).

• The apparent diffusion coefficient (obtained by considering the motion as purely dif-
fusive) was ≈ 1.1µm2/s in agreement with FRAP experiments (see paragraph 4.4.4).
Using the peculiar pattern formed by SPTs, I developed a procedure to recover the ER
network (see sub-section 4.4.3). Then, I decomposed the motion depending on the
position in the network into confined diffusion at junctions with D ≈ 0.2µm2/s (see
paragraph 4.4.4) and high-velocity jumps in tubules with normally distributed ampli-
tudes ≈ 23µm/s (see paragraph 4.4.4).

• This pattern of motion was not found in SPTs of ER membrane proteins (see Fig. 4.3)
but was present in the ER lumens from multiple cell types: HEK293, Cos-7, SH-SY5Y
(see Table 4.1 and Fig. 4.8) and could not be attributed to the network motion (see
sub-section 4.4.9 and Fig. 4.9) suggesting that this flow is a property of the lumen.

• After reconstructing the network in the form of a graph, I found that the molecules could
visit the entire network (see paragraph 4.4.5). Besides, there was a similar amount of
trajectories entering and exiting the junctions suggesting that the network flow is at
equilibrium (see sub-section 4.4.5). Finally, I found that trajectories exhibit transient
unidirectional periods in the crossing of tubules (see sub-section 4.4.6).

• Finally, we proposed a nano-peristalsis model where the flow is locally generated by the
transverse contractions of tubules (see sub-section 4.5.2 Fig. 4.5h) providing an efficient
mechanism for the homogenization of the ER luminal content across long distances.

In this study, conducted in collaboration with Edward Avezov and David Ron at the
University of Cambridge, we sought to understand the motion of molecules inside the En-
doplasmic Reticulum (ER). The ER is an organelle that extends from the nucleus up to the
plasma membrane. It is composed of different regions, more or less developed depending
on the type of cell, the rough ER close to the nucleus and the smooth peripheral ER near
the membrane. The latter has a peculiar shape composed of thin tubes interconnected into
three-way junctions or sheets. The main ER functions in cells consist of calcium storage,
protein maturation thanks to chaperone proteins and protein addressing. Thus the precise
spatio-temporal availability of the ER-resident proteins is crucial for the correct functioning
of the cell.

The dynamics of the lumen content have been studied in the 2000s through Fluorescence
Recovery After Photobleaching (FRAP) experiments [21] based on population measurements
of the recovery of fluorescence after photo-bleaching (see sub-section 1.1.2). In our study,
we could address this question for the first time at the single molecule level.
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Figure 1.7: SPTs from ER resident protein calreticulin tagged with TMR dye.
A. Individual calreticulin trajectories displaying the characteristic peripheral ER shape.
B. Instantaneous-velocity color-coded trajectories where each displacement is colored as a
function of the corresponding instantaneous velocity as presented in the inset histogram.

Recovering the ER network from SPTs

SPTs from the ER resident protein calreticulin tagged with HaloTag-TMR depicted the well
known peripheral ER shape of pipes and junctions (Fig. 1.7A). In addition, trajectories
also exhibited a specific velocity patterns, revealed by the distribution the instantaneous
velocities computed for each displacement ∆X(tj) = X(tj+1)−X(tj) as

v(∆X(tj)) = ||∆X(tj)||
tj+1 − tj

(1.41)

with ||.|| the Euclidean norm. Spatially mapping where the different velocity regimes appear
as in Fig. 1.7B revealed an accumulation of low-velocities at junctions while high-velocities
jumps form tubules.

From these observations, I developed a method to construct a graph of the ER network
from SPTs, such as the one presented in Fig. 1.8. In this graph, nodes correspond to junctions
or sheets and links to the tubules. For an ensemble of N two-dimensional trajectories of size
Mi, X i(tj) (i = 1 . . . N , j = 1 . . .Mi), the procedure is summarized as follows:

1. Extract the sub-set of l points participating in low-velocity displacements:

l = {X i(tj)|v(∆X i(tj)) < vth or j > 1 and v(∆X i(tj−1)) < vth} (1.42)

2. Apply the DBSCAN, density-based clustering algorithm (or alternatively another one)
to find the clusters present in l.

3. Approximate the boundary of each cluster by fitting an ellipse around its points and
merge any overlapping ellipses. The resulting ensemble of K ellipses E = {ε1 . . . εK}
forms the nodes of the graph.
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4. Finally, form the connectivity matrix C of size K × K that counts the number of

displacements between each pair of nodes

cu,v =
N∑
i=1

Mi−1∑
j=1

1u,v(Xi(tj), Xi(tj+1)) +
N∑
i=1

Mi−2∑
j=1

1′u,v(Xi(tj), Xi(tj+2)) (1.43)

with 1u,v(X(tj),X(tj+1)) =
{

1 if X(tj) ∈ εu and X(tj+1) ∈ εv
0 otherwise and

1′u,v(X(tj),X(tj+1)) =
{

1 if X(tj) ∈ εu and ∀ε ∈ E,X(tj+1) 6∈ ε and X(tj+2) ∈ εv
0 otherwise .

Where we count both direct jumps between the two nodes (left sum) but also allow
three-points jumps if the middle point does not belong to any other node (right sum).
This latter part was added to be more robust again artifacts and usually contributes
only marginally to the matrix.

The final result is the graph defined by the ensemble of (elliptic) nodes E and the con-
nectivity matrix C.

Using the reconstructed ER network to extract SPTs characteristics

With this particular dynamics, very few points fall in tubules rendering impossible their study
with the local estimators (see sub-section 1.4.2). Furthermore, looking at the displacements
along individual trajectories revealed that the duration and time interval between high-
velocity jumps are both stochastic, following exponential distributions (Fig. 4.4d). Thus
the motion is not homogeneous in time nor in space, preventing the use of MSD estimation
techniques (see sub-section 1.4.1).

Instead, I developed a method to characterize the dynamics based on the graph con-
structed in the previous sub-section. First, I characterized the dynamics inside the nodes
as a confined diffusion and estimated the diffusion coefficient Dnode using the local estima-
tors from sub-section 1.4.2. Then, I characterized the velocity in tubules by averaging the
instantaneous velocities of all the displacements between pairs of connected nodes

vflow(u, v) = E

[
||X(tj+1)−X tj ||

tj+1 − tj

∣∣∣∣∣ X(tj) ∈ εu and X(tj+1) ∈ εv or
X(tj) ∈ εv and X(tj+1) ∈ εu

]
, (1.44)

with εu, εv two nodes, ||.|| the Euclidean norm and E[.] the expectation. I found that the
distribution of the amplitudes vflow for each pair connected nodes is Gaussian. The overall
equation of motion is thus given by

Ẋ(t) =
{
J if the molecule goes through a tubule√

2Dnodeẇ in a node, (1.45)

where J is a vector of norm ||J || ∼ N(µtubule, σtubule) and random orientation. For the
cell presented in Fig. 1.7, I obtained Dnode = 0.19µm2/s, µtubule = 22.9µm/s and σtubule =
6.9µm/s and the parameters for the other cell types are given in Table 4.2.
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Figure 1.8: Reconstructed ER graph and nanoperistalsis mechanism. A. ER
graph reconstructed from SPTs where the tubule direction was determined with a 75%
co-directionality threshold. Inset box presents the local drift dynamics at junctions. B.
Schematic drawing of the proposed nano-peristalsis mechanism generating the luminal flow.

Derivation of a jump-diffusion model for ER luminal motion

In order to find whether the proposed jump-diffusion model better explained the observed
motion than a purely diffusive model, I looked at which model of motion best approximate
the distribution of instantaneous velocities. I recover the the diffusion coefficient associated
to an apparent purely diffusive motion by constructing a square grid over the experimental
plane, computing the diffusion coefficient in each square (forming a diffusion map, see sub-
section 1.4.2) and taking the average of the distribution of these diffusion coefficients named
Dapp. This coefficient mixes both confined and high-velocity displacements. The expected
distribution of instantaneous velocities for a purely diffusive model is obtained from the
transition probability of the Brownian motion(equation (1.23)) as

Pr

{
||∆X||

∆t = u

}
= u

σ2 exp
(
− u2

2σ2

)
, (1.46)

with σ2 = 2Dapp
∆t . The distribution of displacement for the ”jump-diffusion” process given

in equation (1.45) requires the introduction of a new parameter κ ∈ [0, 1] the proportion of
confined to jumping displacements

Pr

{
||∆X(t)||

∆t = u

}
= κPr

{
||∆X(t)||

∆t = u | tubule
}

+ (1− κ)Pr
{
||∆X(t)||

∆t = u | node
}
.

(1.47)

The distribution of jump displacements in tubule was computed in the previous paragraph
and approximated as a Gaussian N(µtubule, σtubule) while the distribution of displacements



41
in the nodes is given by equation 1.46 with σ2 = 2Dnode

∆t and the coefficient κ is a free
parameter. Finally, using a two-ways Kolmogorov-Smirnov statistical test, I found that the
jump-diffusion model better explains the observed instantaneous velocity distribution than
the purely diffusive model (see 4.2c).

To test that the observed ”jumps” are a property of the ER lumen, I applied the same
procedure from SPTs of calnexin (cnx), an ER transmembrane protein. There, the distri-
bution of instantaneous velocities revealed the absence of jumps, the density map did not
contain local high-density regions and the diffusion map was more widespread over the ex-
perimental plane, preventing the reconstruction of the network with the method presented
above and indicating an absence of confinement. Finally, the apparent diffusion coefficient
obtained from the diffusion map is in average Dapp, cnx = 0.42± 0.09µm2/s much lower than
the one obtained for the luminal calreticulin Dapp, crt = 1.13± 0.51µm2/s as expected from
trans-membrane proteins.

Network properties of the luminal flow

The reconstructed graph of the ER can also be used to understand the properties of the
ER network. The static orientation of a tubule can be obtained by setting a threshold to
the ratio of displacements observed in a given direction (see Fig 1.8A). From this oriented
graph, I computed the strongly connected components and found only one main component,
indicating that the molecules have the potential to visit the entire network, in agreement
with previous findings that the ER does not form isolated sub-compartments (by successive
photo-bleaching, FLIP) [86]. Finally, by looking at the temporal distribution of the direction
of the displacements in each tubule, I also found that individual tubules exhibit transient
unidirectionality periods lasting in average ≈ 3.89s. This number however is surely an
overestimate of the true duration due to the scarcity of the observation of displacements
in the tubules, a rough correction model estimates these periods to last ≈ 38ms (see sub-
section 4.4.7)

Proposing a nanoperistalsis mechanism for generating the ER luminal flow

Finally, the mechanistic assumption that leads to the realization of this work is that local
tubule contraction would generate the observed flow, a sort of nano-peristalsis mechanism
(Fig 1.8B). Unfortunately, it is not possible at the moment to track both membrane and
luminal proteins at the same time. In addition, observing fast contractions in the nanometer-
thin tubules requires a microscope with a high resolution and fast acquisition time. To
observe these contractions, we used fast-SIM technology allowing a 90ms acquisition time and
a 32nm pixel-size (barely enough to visualize them) where multiple contractions on different
tubules could be observed and collected. I found that an average contraction duration ≈
213±169ms with a time interval for successive contractions on the same tubule≈ 980±995ms
and a contraction length ≈ 140 ± 50nm. Using these characteristics together with the
morphology of an ER junction, we constructed a small mechanistic model to quantify the
flow that could be created by these contractions and found that the order of magnitude of



42
the flow velocity predicted by the model (3−13 µm/s) was coherent with the ”jump” velocity
recovered from SPTs (≈ 23µm/s).

1.5.4 Applications of SPTs analysis to lysosome, drosophila neuro-
muscular junctions and NuRD complex

Main results: I present here three other applications of the SPT analysis in different cellular
contexts:

1. Studying SPTs of lysosomes I found that their motion formed a network where nodes
correspond to high-density regions and links to jumps between these regions. Inter-
estingly, this network followed the peripheral ER structure suggesting that lysosomes
interact with the ER network (see sub-section 5.0.1).

2. In the second application, I looked at SPTs of CaV2.1 channels at the neuromuscular
junctions (NMJ) of Drosophila and found wells with stronger potential energy barriers
≈ 5kT (compared to ≈ 3kT for hippocampal synapses) and longer lifetimes ≈ 127s
(compared to ≈ 30s). All in all these results suggest a more stable organization of
active zones at neuromuscular junctions compared to hippocampal synapses (see sub-
section 5.0.3).

3. The last application is about SPTs of the nuclear proteins composing the NuRD chro-
matin remodeling complex where I found that the motion of these proteins could be
best explained by a model of motion composed of two or three diffusion states. These
dynamics states are related to different physical states of the NuRD complex: confined
motion when it is fully assembled, slowly moving due to chromatin motion when it
is partially formed and moving fast when the molecule is not on the chromatin (see
sub-section 5.0.5).

This chapter shows applications of the present SPTs analysis methods to study trafficking
in cell biology. I present extra methods based on the ones developed in previous chapters
and apply them in different cellular contexts.

ER-lysosomes interactions participate in maintaining the peripheral ER shape

The endoplasmic reticulum is a very dynamics organelle that constantly undergoes remod-
eling of its structure in its peripheral region through the formation and disappearance of
tubules and sheets. In particular, the formation of new tubules is driven in part by their
attachment to the molecular motors sliding on microtubules. Another organelle that has
been shown to interact with both microtubules and the ER membrane are lysosomes that
are cytoplasmic vesicles involved in many cellular processes such as sensing and waste dis-
posal. Based on our previous study about ER luminal flow (see chapter 4), we searched in
lysosome SPTs for signs of their interactions with the ER.
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Figure 1.9: Colocalization of lysosome SPTs with ER network. A. Lysosome SPTs
color-coded for each displacement depending on its instantaneous velocity (only displaying
slower and faster displacements) as given by the inset distribution. B. Density map built
from lysosome SPTs overlaid on top of the ER network. C. Reconstructed lysosome motion
network overlaid on top of the ER network.

We found that lysosome motion followed three observable patterns (Fig. 1.9A): 1. in-
dividual trajectories can remain confined for ≈ 1min in small regions of size ≈ 200nm, 2.
Ensemble of trajectories aggregate in larger high-density regions of size ≈ 400nm (Fig. 1.9B)
and 3. trajectories can exhibit large jumps with an average instantaneous velocity ≈ 1µm/s
connecting high-density regions. Furthermore, applying a similar method than for luminal
ER proteins, I was able to reconstruct a lysosomal network graph where nodes correspond to
high-density regions and links to high-velocity jumps between these regions (Fig. 1.9C). It
is worth noting however that the luminal and lysosome modes of motion are quite different
as in the first case, the node-tubule topology is associated with a diffusion-drift dynamics,
while for lysosomes the motion is linked to transient interactions with the ER and motion
along tubules.

Together with other biological experiments, this study suggests that lysosomes, with
their sensing capabilities, could serve to reshape the ER helping the cell to adapt to its
environment.

Potential wells found in CaV2.1 nanodomains at Drophophila neuro-muscular
junction

Extending the study of the motion of CaV2.1 channels in hippocampal neurons (see chapter 3)
I studied SPTs of these channels at drosophila’s Neuro-Muscular Junction (NMJ). Contrary
to hippocampal neurons where CaV2.1 trajectories were found uniformly over the axons, most
of the trajectories at NMJ were located in high-density regions that follow the organization
of the junctions. Some of these regions exhibited patterns of locally converging drift vector
field with increasing amplitude with the distance to the center, coherent with the presence of
potential wells. These wells had similar sizes (≈ 80nm) but lower diffusion coefficients inside
(≈ 0.02 vs ≈ 0.04µm2/s) and higher energies (≈ 5 vs ≈ 3kT ) and residence times (≈ 500 vs
≈ 100ms) compared to hippocampal wells. Finally, I evaluated the duration of the detected
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well structures in time by splitting the SPTs into successive 20s time windows and found
that the average duration is ≈ 120s much larger than the ≈ 30s for the hippocampal wells.

These results suggest that potential wells at the NMJ are much more stable than the wells
found at hippocampal synapses and are only slightly affected by the amount of extracellular
calcium or the addition of philanthotoxin for increasing the number of calcium channels at
NMJs.

Multiple modes of motions detected in SPTs of proteins from the NuRD nuclear
complex

For this study, I was given multiple SPTs from the molecules composing the Nucleosome Re-
modeling Deacetylase (NuRD) complex residing in the nucleus and having an ATP-dependent
chromatin remodeling activity [87]. This complex is formed by the association of seven pro-
teins: HDAC1, HDAC2, RbAp46, RbAp48, MTA1/2/3, MBD2/3, CHD2/4 [88]. As the
NuRD complex is composed of many molecules, we wanted to understand the state of the
complex under normal conditions and when some of its constituents are missing. The diffi-
culty lies in the fact that we do not know in the SPTs whether the imaged molecule is alone
or in a complex. As the trajectories are sparse, I relied on the analysis of their distribution
of displacements and tried to distinguish multiple modes of motions in it. To this end, I
used a Markov-Chain model based on either 2 or three states, distinguished by different
diffusion coefficients and a null model of a single diffusion. After fitting the different models
to the instantaneous velocity distribution, I used the Bayesian Information Criterion (BIC)
to find the one that best explain the data (taking into account the number of parameters).
I found that a three states diffusion model explained best the motion of CHD4, MBD3,
CHD4-MDBD3 (deleted MBD3), MTA2 and MTA2-MBD3 molecules, while a two states
model was best to explain the motion of CHD4+ATPase and CHD4-HDAC conditions.

1.6 General conclusion on the statistical analysis of
SPTs

The statistical analysis methods for SPTs are very diverse and must be adapted to the
dynamics suggested by the dataset at hand. In any case, local analysis methods, as pre-
sented in the thesis (see chapter 2), where we start by selecting regions of interests and then
isolate and characterize each region, are easier to use than global or static methods. The
statistical analysis of empirical SPTs has proven very useful to the fields of cellular biology
and neurosciences as exemplified by the two applications of the thesis: characterizing the
presence of potential wells at active zones of hippocampal synapses used to retain CaV2.1
channels in these regions close to synaptic vesicles (chapter 3) and the discovery of a flow
in the peripheric endoplasmic reticulum lumen that has significant implications in calcium
homogeneization throughout the ER network (chapter 4). SPT experiments have revealed
the great heterogeneity of membrane structure and the way forward is now to understand
the functional implications of these heterogeneities.
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Chapter 2

Reconstructing potential wells of high
density regions from super-resolution
single particle trajectories

Published as:
Pierre Parutto, Jenifer Heck, Martin Heine, and David Holcman, ”Biophysics of high density
nanometer regions extracted from super-resolution single particle trajectories: application to
voltage-gated calcium channels and phospholipids”, Scientific Reports, 9(1), 1-14 (2019).

Abstract Large amount of super-resolution single particle trajectories has revealed that
the cellular environment is enriched in heterogenous regions of high density, which remain
unexplained. The biophysical properties of these regions are characterized by a drift and
their extension (a basin of attraction) that can be estimated from an ensemble of trajectories.
We develop here two statistical methods to recover the dynamics and local potential wells
(field of force and boundary) using as a model a truncated Ornstein-Uhlenbeck process. The
first method uses the empirical distribution of points, which differs inside and outside the
potential well, while the second focuses on recovering the drift field. Finally, we apply these
two methods to voltage-gated calcium channels and phospholipids moving on the surface of
neuronal cells and recover the energy and size of these high density regions with nanometer
precision.
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2.1 Introduction

Single Particle trajectories (SPTs) obtained from super-resolution techniques such as spt-
PALM or UPaint summarize the history of large amount of particles that can be cytoplasmic
molecules, membrane receptors or channels in live cells. Over the past decade, statistical
methods based on stochastic models have been developed to segment [89, 90], interpret and
extract relevant biophysical parameters such as flows and arrival time statistics between
various subregions [91, 92, 78, 93, 94, 95] from these large data sets. The most striking and
universal characteristic of these trajectories is that they are not homogeneously distributed
in cells, but rather are concentrated in sub-regions, a phenomenon that is not fully under-
stood: what are these high-densities regions? What are the underlying physical forces that
restrict and confine trajectories? For example, AMPA receptors that traffic on the surface of
neuronal cells accumulate specifically at the post-synaptic density (PSD) of synapses, where
they are needed for proper synaptic transmission [96, 97]. Similarly, at the pre-synaptic
terminal, voltage-gated calcium channels (CaV) can accumulate on membrane subregions,
with a size of hundreds of nanometers [98]. Retaining these channels guarantee that calcium
ions can remain near vesicles to trigger release.

A possible mechanism to retain trajectories is a field of force caused by the presence of
an extended potential well. These structures have been detected in a size of hundreds of
nanometers [91, 99, 98]. However, the physical origin of these wells remains unclear because
the length of classical electrostatic interactions is ten time shorter [100] than the observed
wells sizes. These high-density regions are characterized by several features: (1) a converging
field of force, whether or not it is the gradient of a potential energy, (2) an energy depth and
(3) a boundary. Finding and estimating these geometrical characteristics from trajectories
and their statistical distribution remain challenging especially at tens of nanometers below
the diffraction limit of light.

Here, we present two methods to detect and reconstruct potential wells from high-density
regions contained in SPTs. The first approach is based on estimating the density of points of a
truncated Ornstein-Ulhenbeck process (which accounts for a motion driven by a converging
force and diffusion). We recover the center of the well, the covariance matrix and the
boundary. While the second approach is based on estimating the local drift vector field. We
insist that the first approach will clearly reveal the peak of aggregation, while the strength of
the second method is its ability to extract a field of force. This field confirms the underlying
deterministic structure that maintains the random trajectories together. We will first validate
both approaches on stochastic simulations and then apply them to characterize nanodomains
appearing in voltage-gated calcium channels (CaV2.2) and lipid anchored GFP (GPI-GFP)
trajectories obtained from sptPALM or UPaint experiments.
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2.2 Methods

2.2.1 Coarse-grained description of stochastic trajectories

In the Smoluchowski’s limit of the Langevin equation [101, 102], the position X(t) of a
stochastic molecule at time t can be described by

Ẋ = F (X(t), t)
γ

+
√

2Dẇ (2.1)

where F is a field of force, w is a white noise and γ is the friction coefficient [101] and D
is the diffusion coefficient. The source of the noise is the thermal agitation of the ambient
lipids and membrane molecules. However, due to the timescale of acquisition of trajectories,
which is in general too low to follow the thermal fluctuations, rapid events are not resolved
in data, and at this spatiotemporal scale, the motion can be coarse-grained as a stochastic
process [91, 103]

Ẋ = b(X) + 2
√
B(X)ẇ (2.2)

where b is the drift field and B(X) the position-dependent diffusion matrix. The effective
diffusion tensor is given by D(X) = 1

2B(X)BT (X), (.T denotes the transposition) [104,
101]. The diffusion tensor accounts for impenetrable obstacles of various sizes. Note that
the interpretation at the physical level of the stochastic equation (2.42) is from the Ito’s
sense and not Stratanovich or any other sense, because a physical process has to be non-
anticipating [104] (the future cannot interfere with the past).

2.2.2 Potential wells characteristics

The drift field a(X) in equation (2.42) may represent a field force acting on the diffusing
particle, that could be due to a potential well [100]. When the diffusion tensor D(X) is
locally constant and the coarse-grained drift field b(X) is a gradient of a potential

b(X) = −∇U(X), (2.3)

then the density of particles is given locally by the Boltzmann distribution [105]

ρ(X) = N0e
−U(X)/D, (2.4)

where N0 is a normalization constant. An infinite paraboloid potential well with an elliptic
base has the analytical representation for X = (x, y)

U(x, y) = A

[(
x− µx
a

)2
+
(
y − µy
b

)2
]
, (2.5)

where the center is µ = (µx, µy), A is the field amplitude and a, b are the lengths of the large
and small semi-axes of the ellipse. To account for a finite well, we restricted the influence of
the well to the region

Γε = {(x, y)|U(x, y) ≤ ε}. (2.6)
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The truncated energy function U associated to such parabolic potential well is

U(X) =

 A
[(

x−µx
a

)2
+
(
y−µy
b

)2
]
, if X ∈ Γε

0 otherwise
,

from which the drift field is the gradient of the energy, is given by

∇U(X) = −2A


x− µx
a2

y − µy
b2

 . (2.7)

The goal of these section is to recover, from empirical single particle trajectories that consists
of few successive points acquired with a sampling time ∆t, the center µ = (µx, µy), the
amplitude A and the size of each semi-axis a, b for the boundary ε.

2.2.3 Simulations of stochastic trajectories

To validate our methods, we first generated synthetic single particle trajectories from the
stochastic process

Ẋ = −∇U(X) +
√

2Dẇ, (2.8)

where the potential U is defined in equation (2.5) (as presented in Fig. 2.1A), D is the diffu-
sion coefficient and w is a white noise. To reproduce observed trajectories, we keep a fixed
lapse time ∆t between successive points and generatedN trajectories (X1(0), . . . ,XN(K∆t))
containing K points (K = 20), using the classical Euler’s scheme (Fig. 2.1B).

We consider two types of numerical simulations depending whether the initial points
Xi(0) are uniformly distributed (1) inside the well or (2) inside a square box surrounding
the well. This uniform distribution represents the random activation of fluorophores by a
laser (Fig. 2.11B). To guarantee a constant number of points inside the wells across multiple
simulations, we did not fix the number N of trajectories but instead generate new trajectories
until a certain quantity of displacements has happened inside the well. This resetting pro-
cedure generates a distribution of points which depends on the initial uniform distribution.
However, in the limit of large N, the distribution of points converges toward the steady-state,
which is Gaussian inside the well and uniform outside, when trajectories are restricted to a
large square domain.

2.2.4 Estimators for the elliptic boundary geometry

To identify parts of trajectories inside the well, we use the level line ensemble of the density
distribution

Γα = {X such that ρe(X) > α} (2.9)
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Figure 2.1: Numerical simulation scheme. A. Model of a truncated potential well
with two axes a, b and energy U(X) with a boundary. B. Trajectories generated using
equation (2.67) where the initial points (black dots) can either be located inside or outside
the boundary of the well (dashed red). Parameters: D = 0.042µm2/s, λx = 10, λy = 17.78.

where ρe is the empirical point density, estimated over the bins of the square grid constructed
from the ensemble of trajectories (Fig. 2.2B). The ensemble Γα contains all trajectory points
falling into a bin, with a density greater than the density threshold α.

To recover the center of the distribution, we consider all points X i = (xi, yi) located in
Γα (Fig. 2.2C) and use the empirical estimators

µ(α)
x = 1

N

Np∑
k=1,Xk∈Γα

xk, µ(α)
y = 1

N

Np∑
k=1,Xk∈Γα

yk, (2.10)

where Np is the number of points in the ensemble Γα. To estimate the covariance two-by-two
matrix C(α), defined as

U(X) = (X − µ(α))TC(α)(X − µ(α)), (2.11)

we use the empirical estimators

C
(α)
ij = 1

Np − 1

Np∑
k=1,Xk∈Γα

Xi,kXj,k, (2.12)

where X i,k is the ith coordinates of Xk (Fig. 2.2C).

2.2.5 Improved drift estimation

We recall briefly here (see SI) that a correction term has to be added in order to recover an
Ornstein-Uhlenbeck process of parameter λ and centered at µ (equation (2.67)): we derived
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Figure 2.2: Recovering a truncated potential well from the density of points. A. Density
maps (in log(points)/µm2) for two different grid sizes ∆x = 10 (left) and 50 nm (right) when the
initial points are located inside the well A1 or uniformly distributed in a square of size 1 µm A2.
B. Normalized three-dimensional empirical density function ρ obtained from A. We plotted the
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in the well in the two cases (B1,B2) associated to (A1,A2) respectively. C. Influence of the grid
size ∆x and threshold α on the well characteristics estimations. (C1,C3) (resp. C2,C4) panels are
obtained by computing with the initial distribution described in A1 (resp. A2).
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in the SI that the drift term at position X and at resolution ∆t

b̃∆t(X) = 1− e−λ∆t

∆t (X − µ). (2.13)

Hence, the first order moment at resolution ∆t computed from the displacement X(t+∆t)−
X(t) from SPTs deviates from the expected drift. When λ∆t is small, a first order Taylor
expansion leads to the approximation

b̃∆t = (
¯
X)(1− 1

2λ∆t) + o(λ2∆t), (2.14)

and hence to recover the drift, we have to use the correction factor 1+ 1
2λ∆t on the estimated

drift.

2.2.6 Processing of CaV2.2 and GPI SPTs

For the experiments related to CaV2.2 data, we refer to [32], while the experimental procedure
of GPI-GFP data have been described for other molecules in [16]. We will first isolate
trajectories in non-overlapping time windows of 20 s and apply the following procedure to
each window. We will construct a square grid with bins size ∆x around trajectories and
collect the 5% highest density bins. For each of these selected bins, we will detect wells
as follows: we will first use 90% of the local point density (threshold α = 0.1) to detect
the center of the well from equations (2.10), then we will apply the procedure described
in paragraph 2.3.1 (elliptic case), restraining the computation of the semi-axes ratio to a
maximum distance from the center rcov = 150 nm and using a threshold Tρ = 35% on
the density of points for determining r̂e,0. Once the center and semi-axes of the well are
found, the diffusion coefficient will be determined using equations (??), estimated for all
displacements with an initial points falling inside the well.

2.3 Results

2.3.1 Recovering a bounded potential well from the point density
of trajectories

We first reconstruct the characteristics of the potential wells from the distribution of trajec-
tories. This approach ignores the temporal causality between successive points and relies on
a truncated paraboloid model. We will first recover the center and covariance matrix of the
steady-state density distribution using a square grid (Fig. 2.2A). We recall that inside a well
given by equation (2.5), this is a Boltzmann distribution

ρ(X) = N0 exp

−A
[(

x−µx
a

)2
+
(
y−µb
b

)2
]

D

 (2.15)
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where N0 is a normalization coefficient while the other parameters are defined in sub-
section 2.2.2. Based on this distribution, we estimated the center using equations (2.10)
and the covariance matrix from equation (2.12).

The accuracies of these estimators are analyzed by plotting the errors between the true
and the estimated centers ||µ(α) − µ||and between the covariance matrices ||C(α) − C||
(quadratic norm of the matrix) versus the parameter α, which represents the threshold of
level line (equation (2.17), Fig. 2.2B,C) and various grid sizes (from ∆x = 10 to 90 nm).
When α decreases from one to zero and the initial points are located inside the well, the
iterative sequences of positions of the estimated centers converge to the true value and the
fluctuations (SD computed over 100 realizations) decreases with α (Fig. 2.2C1). However,
when the initial points of the simulated trajectories were also chosen outside the well, we
found that there was an optimal threshold value α ≈ 0.3 for which the error in the estimated
and true centers is minimum (Fig. 2.2C2). Below this value, points of the trajectories falling
outside the well are also contained in the ensemble Γα, thus contaminating the error of the
estimation. When the initial points fall inside the well only (Fig. 2.2C3), the ensemble Γ0
contains external trajectories that perturb the estimation of the covariance matrix C(α).
However, as α increases, these external points disappear from Γα and the error becomes
minimal at the value αopt = 0.05. When α continues to increase, the estimators become
less accurate. However, when the initial points are chosen also outside the well, the error
starts by decreasing because trajectories that are not inside the well affects the estimation
(Fig. 2.2C4). As α increases, the estimator converges toward an optimal value αopt = 0.25
(75% of the points are used), which minimizes the matrix error. When α continues to
increase, the error increases slowly (Fig. 2.2C4-inset), similar to the case of Fig. 2.2C3.

To conclude, depending whether or not trajectories are falling inside the well or could
also escape the high-density regions, the statistical estimators give different results: using
as many points as possible increases the estimate of the center, but not necessarily of the
covariance matrix.

Estimating the boundary of the well

None of the estimators described above can be used to reconstruct the location of the well
boundary. We now present a method to recover first a circular and then an elliptic boundary
in two cases: when the initial points falls only inside the well and when they can also
fall outside. The first step consists in discriminating between a circular and an elliptical
boundary. To do so, we computed from the matrix (2.12), the covariance ratio

Cv(r) =

√√√√C1,1(r)
C2,2(r) (2.16)

estimated over the trajectories located inside the annulus (r, r+∆r) (Fig. 2.3A1). To compute
Cv(r) (Fig. 2.3A1,A2,B1,B2), we recall that the diagonal form of covariance matrix can be
found from equations (2.15) and (2.11)

C = D

A

[
a2 0
0 b2

]
.
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Figure 2.3: Estimating the potential well boundary. A. Initial trajectory points are
chosen inside the well while in B. initial points are chosen inside a surrounding square.
(A1,B1) Covariance ratio Cv estimated in the annulus [r, r+ ∆r]. (A2,B2) Cumulative from
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of the radius r0 using the inflection point for A4 (as presented in A3) or the minimum value
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Thus in that case, we expect that Cv(r) ≈

√
C1,1(r)
C2,2(r)

= a
b
, the ratio of the large to the

small elliptic semi-axes lengths does not depend on any other parameters. In the case of a
disk, Cv(r) = 1 as shown in the simulation cases (Fig. 2.3A1,A2,B1,B2).

Once the well boundary has been identified as circular, to estimate its radius r0, we
plotted the density of points ρ(r) versus r, the radial distance with respect to the center
µ̂ (see Method). Interestingly, this procedure reveals the location of the boundary between
the Boltzmann (inside the well) and the uniform (surrounding it) density distributions of
the trajectories (Fig. 2.3A3,A4. When the initial points falls inside the well, the density of
points decays with the radius r and the boundary can be identified by plotting − log ρ(r)
(Fig. 2.3A3). Indeed, for points inside the well, we have log ρ(r) ∼ C0 − (αx2 + βy2), where
r2 = x2 + y2, with α = 2A

a2 , β = 2A
b2

and exp(C0) is the maximum value of the distribution.
In practice, we find r0 as the first value for which the error

r∫
0
(C0−C1s

2 + log ρ(s))2ds starts
to increase. The distribution of r̂0 for 100 simulations is shown Fig. 2.3A4. When the initial
points are now also chosen outside the well, the trajectories are either attracted inside the
well or leave, thus the distribution of points is minimal at the boundary (Fig. 2.3B3), which
allows us to recover r0 as the minimum point of the density curve (Fig. 2.3B4).

In the case of an elliptic well, we modified the previous method as follows: first, the ratio
of the semi-axes lengths a/b is recovered as the maximal value of Cv(r) (Fig. 2.4A1,A2,B1,B2,
for a ratio a/b = 2). Second, using this ratio, we introduced the elliptic distance re(x, y) =√
x2 + Cv(r∗)y2, for a point at position (x, y) from which we generated the point density

distribution (Fig. 2.4A3,B3) and used on this curve the procedure described for the disk case
to recover the large semi-axis â = r̂e,0 (Fig. 2.4A4,B4). The small-semi axis is then given by
b̂ = â√

Cv(r∗)
.

To conclude, the present method based on the density of points allows to reconstruct the
geometrical parameters of a bounded parabolic potential well: center, boundary, small and
large semi-axes. In SI Figs. 2.9 and 2.10, we compare this density method with the MLE,
which is classically used to recover the center and covariance, but not the boundary.

2.3.2 Estimating the characteristics of the well using the velocity
distribution

In this section, we describe a second approach to reconstruct the potential well associated
to a nanodomain, using the statistics of displacements X(t + ∆t) −X(t). They allow to
recover the drift of the vector field and reconstruct the center µ and the two axes a, b of the
well boundary. This method is based on the least square quadratic error (LSQE),

Errb(µx, µy, λx, λy) =
N∑
i=1
|| − ∇U(X i)−

[
λxxi
λyyi

]
||2,

between the empirical drift and the parabolic well U , defined in equation (2.7), with λx =
−2A

a2 , λy = −2A
b2

.
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(A2,B2) Cumulative from A1,B1. (A3,B3) Point density (in log for A3) based on the modified
distance re to the center showing a clear inflection point at the boundary of the well. (A4,B4)
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minimum value of the density for B4 (as presented in B3).
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2.3.3 Estimating the center and the field coefficients of the poten-

tial well

The coefficient λ and the center µ of the potential well can be obtained explicitly from
equations (2.35) and (2.40), (2.41) respectively. We compare in Fig. 2.5A, the reconstructed
and the true drift value based on equation (1.20) for various grid sizes. At this stage, we
considered the boundary to be known and estimated the drift only for bins that are falling
inside the well. The error of the norm 〈||b̄−b||〉

〈||b||〉 is plotted in Fig. 2.5B for multiple time steps
∆t and for three grid sizes ∆x = 10, 50 and 90 nm. Having both a small grid size and
time step ∆t produces a large error that quickly decreases with increasing the time step ∆t.
Interestingly, for a large grid size, we found a slow increase of the error when increasing ∆t.
To better understand which parts of the field contributed the most to the error, we plotted
Err versus the distance to the center (Fig. 2.5C). This result shows that for small size
∆x = 10 nm, a major contribution came from the center, while for large step ∆x = 50, 90
nm, an error came also from the boundary. We refer to Fig. 2.11 for recovering a drift at a
different time resolution ∆t and also with some restrictions on the trajectories for which the
end point remained inside the well (Fig. 2.12).

Finally, to estimate the boundary of the well from the drift distribution (Fig. 2.6A), we
plotted the drift amplitude versus the distance to the well center (Fig. 2.6B, blue crosses
representing the drift amplitude in individual bins). From the distribution and the average
(Fig. 2.6B lower panel), we could recover the location of the boundary at the local maximum.
Indeed, after the boundary is passed, the contribution of the deterministic field disappears
and only fluctuations due to the Brownian motion remains in the statistics. We apply the
same procedure for the case of an ellipse (Fig. 2.6C,D) and recover the boundary after we
used the covariance ratio Cv (equation (2.16)) to plot the drift amplitude versus the elliptic
distance to the boundary.

To evaluate the influence of the bins located at the center or the ones near the boundary,
we estimated the center µ, and eigenvalues λx and λy in four cases: for all bins falling inside
the well, all bins except the ones at the center, all bins except the ones intersecting the
boundary and finally removing the center and the boundary bins (Fig. 2.6E). We found that
the latter case produces the best estimation.

2.3.4 Interpretation high-density regions for CaV2.2 and GPI-GFP
as potential wells

In this section, we will apply the methodology developed in the present article to characterize
high-density regions found in SPTs of voltage-gated calcium channels and phospholipids. We
recently reported that these regions could be associated with potential wells, as revealed from
the voltage-gated calcium channels CaV2.1 isoform [98]. We focus here on the isoform CaV2.2
(N-type channel) by using the density of points, the least-square estimation (SI Section 2)
and the maximum-likelihood method (SI section 1). For the analysis, we use only wells that
contain at least 50 points with a minimum of 5 different trajectories.
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We find that all three approaches produce reasonable values of the coefficient A and

the energy (we restricted to wells with energies < 7 kT). The values of the parameters are
summarized in Table. 2.1. We report in Fig. 2.7A–C that the high-density regions can be
characterized as potential wells with the following characteristics: the two main axes have
average lengths (±SD) of a = 104±36 nm, b = 77±20 nm associated with a mean energy of
3.3 kT estimated for the density method. These results differ from the CaV2.1 isoform [98].
Note that the distribution of energy varied with the statistical method (Fig. 2.7C), as we
reported E = 3.1 ± 0.5 kT for the MLE and E = 1.6 ± 0.7 kT for the LSQ. To conclude,
this statistical analysis suggests that to trap calcium channels, specific long-range molecular
mechanisms should be present in the active zone of the pre-synaptic terminal, probably
associated to vesicular release molecules such as synaptotagmin. These sites retain channels
for a long time, enough to trigger vesicular release.

Parameter GPI dataset CaV2.2 dataset
∆t (exp) 20 ms 33 ms

∆x 40 nm 30 nm
rmin 30 nm 20 nm
rmax 300 nm 400 nm
∆r 20 nm 10 nm

Table 2.1: Parameters used for CaV2.2 and GPI analysis.

We also apply our statistical methods to the case of GFP linked to the outer leaflet of
the membrane by a GPI-anchor (Fig. 2.8A–C), which are considered to be non-interacting
molecules. However, we found many hiqh-density regions (N = 181), which are characterized
as potential wells. The elliptic axes are a = 158 ± 57 nm and b = 118 ± 39 nm, associated
with an energy of E = 3.6 ± 1.0, 1.5 ± 1.0 and 3.5 ± 1.0 kT for the density, LSQ and
MLE methods respectively. To conclude, although it is surprising to detect high-density
regions in GPI-GFP SPTs, we found here that they can be characterized as potential wells.
Possibly they correspond to places where local signaling complexes or other transmembrane
proteins are present. The exact nature of these regions remain unclear and should be further
investigated.

2.4 Summary and Discussion

2.4.1 Two statistical methods to interpret high-density regions

We presented here two methods to extract the biophysical characteristics of high-density
regions explored by SPTs. Interestingly, these regions are associated with bounded potential
wells. The first method exploits the density of points of the trajectories, ignoring the causality
between the successive points. It assumes that the nanodomain is a parabolic potential well
with an elliptic base and a constant diffusion coefficient. In that case, the distribution of
points inside the well is given by a Boltzmann distribution and should be uniform outside.
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Figure 2.7: Reconstruction of wells associated to CaV2.2. A. Three examples of
potential wells (left) obtained from the density analysis on SPTs. The boundary of the well
are estimated from various level of density α (right). The estimated radius r̂0 is obtained
using a threshold T = 4% on the density. B. Box plots for the statistics computed over 353
detected wells for the two semi-axes a and b of the ellipse, the coefficient A and the energy
(in kT). Results are obtained for the Density, LSQ and MLE methods. C. Summary of mean
and SD for the coefficient A and the energy.
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Figure 2.8: Reconstructed wells associated to GPI-anchored GFP. A. Three exam-
ples of potential wells (left) obtained from the density analysis on SPTs. The boundary of
the well are estimated from various level of density α (right). The estimated radius r̂0 is
computed using a threshold T = 4% on the density. B. Box plots of the two semi-axes a
and b (of the ellipse), estimated over 181 detected wells, the coefficient A and the energy (in
kT), compared for the Density, LSQ and MLE methods. C. Table of mean and SD for the
coefficient A and the energy.
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We use this key observation to recover the main physical parameters and the location of the
boundary. We compared also our result to the classical MLE (see Figs. 2.9, 2.10). The second
method is based on estimating the vector field distribution at a given bin resolution ∆x. We
used an optimal estimator to recover the characteristic of the field and we found that the
boundary is located at the discontinuity between the converging field of the well (Ornstein-
Ulhenbeck) and the random field generated the surrounding Brownian motion. Finally, the
present methods are based on multiple averaging over many trajectories [64], which provide
robustness, reducing the effect of tracking errors or localization noise [106, 107].

The two methods are complementary and provide certain advantages compared to the
MLE and PCA. In all cases, the center of the well could be retrieved. The quality of the
estimators of the covariance parameters, however, were dependent on the method: changing
the time ∆t and spatial ∆x steps influenced the recovery process as shown in Figs. 2.3, 2.4
and 2.6. The advantage of the first method is that we do not need to introduce an artificial
grid of size ∆x which is a serious constraint in the second method as the bins size defines
the resolution to recover the well and its boundary.

2.4.2 High-density regions contained calcium-voltage channels and
GPI SPTs data

We recall that high-density regions revealed by SPTs are not necessarily to due physical
forces and potential wells [91]. However, for potential well, the geometry (center, curvature
and boundary) can be recovered from our two methods. We applied them to CaV channels
that mediate vesicular release at neuronal synapses and to phospholipid anchored GFP (GPI-
GFP) moving on the cellular membrane. We found that the high-density regions for CaV2.2
(Fig. 2.7A) are characterized by two main axes with a length a = 104±36 and b = 77±20 nm
(Fig. 2.7B), with a mean energy of 3.3± 0.8 kT (density method, Fig. 2.7C). We note that
hydrogen bonds between calcium channels and phospholipid molecules could participate in
the formation of the wells [108]. Surprisingly, we did not expect to find high-density regions
for GPI-GFP, but we found several (Fig. 2.8A) that were characterized by average semi-axes
lengths a = 158 ± 57 and b = 118 ± 39 nm (Fig. 2.8B), with a mean energy E = 3.6 ± 1.0
kT (density method, Fig. 2.8C). Possibly the higher energies of GPI-GFP wells can be due
to the large variance caused by the lower number of trajectories restricted inside the wells
as compared to CaV.

Although the interpretation of high-density regions as potential wells for AMPA recep-
tors was first anticipated in [109] and discovered in [91], the nature of these wells and others,
remains unclear [100]. Potential wells were found for membrane proteins such CaV [98],
GAG [99, 110] and recently for G-protein [111]. They could be generated by protein clus-
ters, membrane cusps at vesicle fusion points or membrane-membrane contact at location of
organelle interactions [112]. In general, potential wells are characterized by long-range forces
of the order of hundreds of nanometers.

The wells could have multiple roles: they could retain receptors for hundreds of mil-
liseconds to seconds at specific locations in order to increase the probability of a robust
signal transduction, such as during synaptic transmission. Transient wells allow to trap
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proteins to create aggregates as proposed for capsid assembly [99, 110]: once the energy of
the well decreases, molecules are not interacting with the well anymore. Other possible roles
for wells could be regulating the flow of receptors in micro-compartments such as dendritic
spines [103] or trapping proteins in the endoplasmic reticulum [113]. Finally, correlating un-
defined membrane geometry with an energy landscape remains difficult, because a physical
model is needed to interpret them. Thus, the dynamics of receptors outside potential wells
that deviates from trapped Brownian motion is still challenging to comprehend.

2.5 Supplementary Information

In the SI, we first present the MLE estimator that we adapted to study potential wells. In
the second part, we summarize some properties of the drift estimator that depends on the
time step ∆t and the bin size ∆x.

2.5.1 MLE estimator for a potential well

We modified the Maximum likelihood Estimator (MLE) procedure to reconstruct from SPTs,
the geometrical parameters (center and covariance matrix) of a well. Using a Ornstein-
Ulhenbeck process, we apply the MLE procedure to the points of the trajectories falling
inside the ensemble

Γα = {X i such that ρ(x) > α}, (2.17)

where ρ is the steady-state probability density function of the OU process. The advantage of
the Maximum-likelihood approach is that no spatial discretization is needed. We recall that
the transition probability density of an OU process centered at µ, with diffusion coefficient
D and spring constant λ

ẋ = −λ(x− µ) +
√

2Dẇ (2.18)

is

p(x, t|y, s) =
√

λ

2πD(1− e−2λ(t−s))e
− λ

2D
(x− µ− (y − µ)e−λ(t−s))2

(1− e−2λ(t−s)) . (2.19)

The transition probability is

p(yi+1|yi) =
√

λ

2πD(1− e−2λ∆t)e
− λ

2D
(yi+1 − yie−λ∆t)2

1− e−2λ∆t , (2.20)
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where a trajectory is discretized in y1, . . . , yM , with a fixed time step ∆t. The log likelihood
is

l(y1, . . . , yM |λ, µ,D) =
M−1∑
i=0

log p(yi+1|yi) (2.21)

= M

2 log λ

2πD(1− e−2λ∆t) −
λ

2D(1− e−2λ∆t)

M−1∑
i=0

(yi+1 − yie−λ∆t)2.

(2.22)

The maximum-likelihood approach consists in estimating λ that maximizes the log-likelihood
l(y1, . . . , yM). We change variables x = e−λ∆t and v = λ

2πD(1−e−2λ∆t) so that

l̃(y1, . . . , yM |x, µ, v) = M

2 log v
π
− v

M−1∑
i=1

(yi+1 − µ− (yi − µ)x)2. (2.23)

At the maximum,

∂l̃

∂x
= ∂l̃

∂v
= ∂l̃

∂µ
= 0, (2.24)

leads to the coupled equations

µ̂ =
∑M−1

0 yi+1 − x̂yi
M(1− x̂)

x̂ =
∑M−1

0 (yi+1 − µ̂)(yi − µ̂)∑M−1
0 (yi − µ̂)2 (2.25)

v̂ = M

2
1∑M−1

0 ((yi+1 − µ̂)− (yi − µ̂)x̂)2 .

This system of equation can be solved leading to the following estimators [82]

x̂ =
1
M

M−1∑
i=0

yi+1yi − 1
M2

M−1∑
i=0

yi+1
M−1∑
i=0

yi

1
M

M−1∑
i=1

y2
i − 1

M2

(
M−1∑
i=1

yi

)2 + 4
M

µ̂ =
1
M

M−1∑
i=1

(yi+1 − x̂yi)

1− x̂ . (2.26)

The diffusion coefficient can be found from the third equation of eq. (2.25):

v̂ = 1
M

M−1∑
0

(yi+1 − x̂yi − µ̂(1− x̂))2 . (2.27)
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This procedure can be generalized in two dimensions and in addition, we apply the estimator
of eq. (2.25) to the ensemble Γα, defined by (2.17). We thus obtain the following estimators

x̂α =
1
Mα

∑
yi∈Γα

yi+1yi − 1
M2
α

∑
yi∈Γα

yi+1
∑

yi∈Γα
yi

1
Mα

∑
yi∈Γα

y2
i − 1

M2

( ∑
yi∈Γα

yi

)2 + 4
Mα

µ̂α =
1
Mα

∑
yi∈Γα

(yi+1 − x̂yi)

1− x̂ , (2.28)

where Mα is the number of points yi ∈ Γα. We apply this estimator to numerical simulations
in Figs. 2.9 and 2.10 and to CaV2.2 and GPI-GFP SPTs in Figs. 2.7 and 2.8 respectively.

2.5.2 Least Square Quadratic Estimator (LSQE)

Estimating the center and the curvature of the well

To recover the potential well from the drift distribution, we use a least square estimator

Errb(µx, µy, λx, λy) =
N∑
i=1
‖ − ∇U(X i)− b(X i)‖2 (2.29)

=
N∑
i=1

(
bix + λx(xi − µx)

)2
+
(
biy + λy(yi − µy)

)2
,

where N is the number of points X i = (xi, yi) and the potential well is

U(X) = λx(x− µx)2 + λy(y − µy)2, (2.30)

so that

b(X) = −∇U(X) = 2
 λx(x− µx)
λy(y − µy)

 . (2.31)

The minimizers are given by

∂

∂λx
Errb = ∂

∂λy
Errb = 0 (2.32)

and
∂

∂µx
Errb = ∂

∂µy
Errb = 0 (2.33)

from which, we obtain the center

µ̃x =

N∑
i=1
bix + λxxi

Nλx
, µ̃y =

N∑
i=1
biy + λyyi

Nλy
. (2.34)
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and the eigenvalues of the covariance matrix:

λ̃x =

N∑
i=1
bix(xi − µx)

N∑
i=1

(xi − µx)2
, λ̃y =

N∑
i=1
biy(yi − µy)

N∑
i=1

(yi − µy)2
. (2.35)

In practice, we computed the center µx, µy and the eigenvalues λx, λy over the points X i

falling inside the well.

Center location and semi-axes from optimal fit

We derive here a close formula for the eigenvalues and the center associated to the optimal
estimators of the drift. For an OU process, we recall that the eigenvalues are given by

λy =

N∑
i=1
biy(yi − µy)

N∑
i=1

(yi − µy)2
=

N∑
i=1
biyyi − µy

N∑
i=1
biy

N∑
i=1

y2
i − 2µy

N∑
i=1

yi +Nµ2
y

= Ay −Byµy
Cy − 2µyDy +Nµ2

y

, (2.36)

where Ay =
N∑
i=1
biyyi, By =

N∑
i=1
biy, Cy =

N∑
i=1

y2
i and Dy =

N∑
i=1

yi. Using

µy =

N∑
i=1
biy + λy

N∑
i=1

yi

Nλy
= By + λyDy

Nλy
, (2.37)

and eq. (2.36) in eq. (2.37), we obtained

µy =
By + Ay −Byµy

Cy − 2µyDy +Nµ2
y

Dy

N
Ay −Byµy

Cy − 2µyDy +Nµ2
y

(2.38)

where µy is solution of the quadratic equation

2NByµ
2
y − (NAy + 3ByDy)µy +ByCy + AyDy = 0. (2.39)

With ∆y = N2A2
y − 2NAyByDy + 9B2

yD
2
y − 8NB2

yCy, we retain the positive solution

µy =
(NAy + 3ByDy) +

√
∆y

4NBy

. (2.40)

Similarly, we get

µx = (NAx + 3BxDx) +
√

∆x

4NBx

(2.41)

Relations (2.40) and (2.41) lead to a close expression of the eigenvalues (eq. (2.35)).
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Comparing ML, LSQ and density estimators

To recover the center and eigenvalues of an Ornstein-Uhlenbeck process with the potential
well given in eq. (2.30), we apply the MLE procedure (subsection 2.5.1) for various values
of the parameter α. We compare the results with the density (section 3 main text) and
the LSQ (section 2.5.2) methods. We find that the MLE and density approaches are quite
robust and give similar results, as shown in Fig. 2.9: Interestingly, all three estimators allow
to recover the center (µx, µy) with high accuracy for the disk and the ellipse, when 100% to
50% of the points are taken into account α ∈ [0; 0.5] (Fig. 2.9). However, the estimation of
the eigenvalues is acceptable for the MLE only, in the range α ∈ [0; 0.5], because it diverges
in the two other cases, except when α 0.1 (90% of the distribution is used).

When the time step δt of the numerical simulations of eq. (2.18) and the sampling time
∆t are equal, the three methods lead to a good recovery of the center µ̂x, µ̂y (Fig. 2.10), but
differ for recovering the eigenvalues (λ̂x, λ̂y). The least square approach is less dependent on
the parameter α than the two others. Probably because the distribution was generated with
a large time step so that the statistics are calculated on trajectories far from the equilibrium.
This result shows that the least square approach does not require to sample over a steady
state distribution and thus recovering the parameters from the drift is possible for a large
range of the parameter α. In section 2.5.4, we will estimate the effect of changing the time
steps.

2.5.3 Influence of the time and spatial discretizations on the Least
Square Estimation

In this section, we shall estimate the impact of the initial points distribution of the trajec-
tories on the estimation of the drift. For the stochastic equation [103]

Ẋ = b(X) +
√

2B(X)ẇ, (2.42)

the optimal estimator for the drift b at a time resolution ∆t is obtained by the formula
[114, 64],

b∆t(x) = E
[
Xn+1 −Xn

∆t |Xn = x

]
= 1

∆t

∫
R

(y − x)p(Xn+1 = y|Xn = x)dy

= a(x) + o(1), (2.43)

where Xn = X(n∆t) and E [.] in eq. (2.43) is the expectation. When a grid of size ∆x is
used to estimate the drift map, all points in bin k leads to the same drift b∆t(xk), where
xk is the center of the bin. For long trajectories, the stochastic process samples the steady-
state distribution p(x). Such distribution might influence the computation of the drift inside
bin k. To estimate this contribution, we normalize the steady-state distribution q(x) of the
stationary process by

q∆x(x) = Pr{X ∈ ∆(x)|X has a steady state p(x)}

= p(x)∫
∆(x) p(x)dx, (2.44)
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Figure 2.9: Comparing MLE and covariance estimators. A.-B. estimation of λx, λy
for the case of a disk for the MLE and covariance estimator respectively. The true value of
λx = λy = 10 corresponds to the purple line. C.-D. same as in A-B for the case of an ellipse
with λx = 10 and λy = 40. Data were obtained from stochastic simulations with a time step
δt = 10−4s whereas the sampling time was ∆t = 0.02s.
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where ∆(x) = [x−∆x/2, x+∆x/2]. Note that q∆x(x)→ δ(x), when ∆x→ 0. The estimated
drift a∆t(x) depends on the distribution of points falling into the bin ∆(x) as follows

b∆t(x)∆t+ o(∆t) = lim
N→∞

N∑
k=1

E
[
Y k
n+1 − Y k

n |Y k
n ∈ ∆(x)

]
(2.45)

=
∫

∆k

∫
R

(y − x)p∆t(y|x)q∆x(x)dydx, (2.46)

where p∆t(y|x) is the pdf to find X(t) at the point y at time t+ ∆t when it started at point
x at time t. In the small time limit,

b∆x(x) = lim
∆t→0

E
[
Yn+1 − Yn

∆t |Yn ∈ ∆k

]
=

∫
∆k

b(x)q(x)dx =
∫

∆k

b(x) p(x)∫ x+∆x/2
x−∆x/2 p(x)dx

=
∫

∆(x) p(y)b(y)dy∫
∆(x) p(y)dy .

We shall now obtain a further approximation by using a Taylor’s expansion of the function
F (x) =

∫ x
0 p(s)a(s)ds. We obtain that∫

∆k

p(x)b(x)dx = F (x−∆x/2)− F (x+ ∆x/2) = F ′(x)(∆x) + 2
6F

(3)(x)(∆x/2)3 + o((∆x)),

which leads to the approximation:

b∆x(x) =
p(x)b(x)∆x+ 1

3(p(x)b(x))′′(x)(∆x/2)3

p(x)∆x+ 1
3p
′′(x)(∆x/2)3 (2.47)

= b(x)
(

1 +
(
b′′(x)
b(x) + 2b

′(x)b′(x)
b(x)p(x)

)
(∆x)2

24 + o((∆x)2)
)
. (2.48)

The formula in higher dimension is given by

b∆x(x) = b(x)
(

1 +
(

∆b(x)
b(x) + 2∇∂(x).∇b(x)

b(x)∂(x)

)
(∆x)2

24 + o((∆x)2)
)
. (2.49)

We conclude that a discretization in bins of size ∆x perturbs the drift recovery by a term
(∆x)2.

Influence of the time discretization ∆t on the drift estimation

To study the consequences of a discrete sampling time on the reconstruction of the drift from
SPTs, we focus on the one-dimensional OU-process

dx = −λ(x− µ)dt+
√

2Ddw. (2.50)

where λ, µ are fixed. A direct integration of equation (2.50) for s ≤ t leads to

x(t) = x(s)e−λ(t−s) + µ(1− e−λ(t−s)) + e−λ(t−s)
∫ t

s

√
2DeλudWu. (2.51)
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and for two consecutive points x(t) and x(t+ ∆t), we have

x(t+ ∆t)− x(t) = −(x(t)− µ)(1− e−λ∆t) + e−λ∆t
∫ t+∆t

t

√
2DeλudWu. (2.52)

Thus, when ∆t is small, the drift at position x and resolution ∆t is

b∆t(x)∆t+ o(∆t) = E

(
x(t+ ∆t)− x(t)|x(t) = x

)

=
∫
R

(y − x)p(x(t+ ∆t) = y|x(t) = x)dy

= −(1− e−λ∆t)(x− µ). (2.53)

We conclude that at resolution ∆t, the approximation error is

F (t) = 1− e−λ∆t

λ∆t = 1− λ

2 ∆t+ o(∆t) (2.54)

suggesting that the drift of an OU process is always under-estimated using the displacement
estimator.

Time and space discretization for Ornstein-Ulhenbeck process

We shall now evaluate the cumulative effect of a temporal ∆t and spatial ∆x discretization
on the recovery of an OU-process. The spatial grid of size ∆x and the drift at position x are
estimated empirically using the points falling in the bin ∆(x) = [x−∆x/2, x + ∆x/2]. We
start with the conditional steady-state distribution q∆(x) of points falling in ∆(x), which is
linked to the pdf p(x) of the OU-stationary process by

q∆(x) = p(x)∫
∆(x) p(y)dy . (2.55)

The drift term from eq. (2.53) can be approximated as

b∆t,∆x(x) = E
(
x(t+ ∆t)− x(t)

∆t |x(t) ∈ ∆(x)
)

=
∫

∆

∫
R

y − x
∆t p(x(t+ ∆t) = y|x(t) = x)dydx

= −1− e−λ∆t

∆t

∫
∆(x)

(x− µ)q∆(x)dx, (2.56)

where µ is the center of the OU-process and the stationary pdf is given by

p(x) =
√

λ

2πDe
−
λ

2D (x− µ)2

. (2.57)
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To estimate eq. (2.56), we use eq. (2.47). For this computation, we set µ = 0. In that case,
we have ∫

∆(x)
yq∆(x)(y)dy =

∫
∆(x) ye

− λ
2D y

2
dx∫

∆(x) e
− λ

2D y
2
dy

. (2.58)

In the small ∆x approximation, we have
∫

∆
yq∆(y)dy = x+

∫∆x/2
−∆x/2 he

− λ
2D (x+h)2

dh∫∆x/2
−∆x/2 e

− λ
2D (x+h)2

dh

= x+
∫∆x/2
−∆x/2 he

− λ
2Dh

2
e−

λ
D
xhdh∫∆x/2

−∆x/2 e
− λ

2Dh
2
e−

λ
D
xhdh

= x+
− λ

4Dx(∆x)3 + o((∆x)3)
∆x+ (λ2x2

D2 − λ
D

)(∆x)3 + o(∆x3)

= x+
− λ

6Dx∆x2 + o((∆x)2)
1 + (λ2x2

D2 − λ
D

)(∆x)2 + o((∆x)2)

= x(1− λ

12D (∆x)2) + o((∆x)2). (2.59)

Using eqs. (2.56) and (2.59), we obtain an approximation for the drift at finite time step ∆t
and grid size ∆x

b∆t,∆x(x) = −1− e−λ∆t

∆t (x− µ− λ

12D (∆x)2 + o((∆x)2)). (2.60)

To conclude, relation (2.60) reveals that the empirical displacements x(t+∆t)−x(t) collected
over trajectories for an OU, can be used to recover the drift, with an additional exponential
order correction in ∆t and a second order in ∆x.

Empirical estimations of the drift

The empirical estimator b̃ of the drift at position x for finite time ∆t and spatial steps ∆x,
is defined

b̃∆t,∆x(x) = 1
N

N∑
i=1

∑
xi(tj)∈∆(x)

xi(tj+1)− xi(tj)
∆t , (2.61)

where N is the number of points xi(tj) located in the segment [x − Deltax/2, x + ∆x/2].
Using eq. (2.60), the approximation at second order in ∆x gives that

b̃(x) = −1− e−λ∆t

∆t (xk − µ−
λ

12D∆x2) + o(∆x2). (2.62)

To recover the parameter λ at various order of ∆x, we can express λ̃ using a regular series
expansion

λ̃(∆t) = λ0 + λ2(∆x)2 + λ4(∆x)4 + ... (2.63)
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The first term is obtained by setting ∆x = 0 in eq. (2.62), leading for any bin centered
around xk for k = ..Nb to

b̃(xk) = −1− e−λ0∆t

∆t (xk − µ). (2.64)

In that case, a linear regression method can be used using the two coordinates xk − µ and
b̃ and to fit the distribution with a line and invert eq. (2.64). If necessary, the next in the
expansion can be found. Note that a formal inversion of eq. (2.64) shows that for each k,
we can obtain an estimation for λ0:

λk0(∆t) = − 1
∆t log(1− b̃(xk)∆t

xk − µ
). (2.65)

so that

λ̂0(∆t) = −
Nb∑
k=1

1
∆t log(1− b̃(xk)∆t

xk − µ
), (2.66)

showing that numerical fluctuations in b̃(xk) for |xk − µ| small can drastically affect the
estimation. We use this result to study the recovery of the parameters in Fig. 2.5C and
Fig. 2.11C, where we indeed observe larger errors near the center of the well than inside. We
refer to Fig. 2.6 for the estimation of the eigenvalue with and without the center bin.

Effect of the grids intersecting the boundary in the estimation of the drift

The recovery of a truncated OU involves estimating several parameters that depend on the
accurate detection of the boundary. We focus here on the drift estimation for the part of
the square grid that intersects the boundary (green bins in Fig. 2.6). In that case, for the
interior part that intersects the elliptic domain, the empirical estimation recovers the local
vector, while outside, it fluctuates around zero, due to the nature of the Brownian motion
(no drift). Thus the error of the drift estimation at the boundary increases with the area
fraction of the bin falling outside the domain. To estimate this error, we recall that the
truncated OU-process is defined by

Ẋ = −∇U(X)dt+
√

2B(X)ẇ, (2.67)

where

U(X) =


A
[
(x−µx

a
)2 + (y−µx

b
)2
]
, if X ∈ ΓE

E otherwise
. (2.68)

Since the drift is zero for a diffusion process, located outside ΓE , we have

b∆x(x) = lim
∆t→0

E
[
Yn+1 − Yn

∆t |Yn ∈ ∆(x) ∩ ΓE
]

=
∫

∆1
k
(x)
b(y)q(y)dy, (2.69)
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where ∆1(x) = ∆(x) ∩ ΓE is the part of the grid interior to the ellipse. Indeed, the drift a
diffusion process is zero. In addition, we suppose that the sample is made according to a
normalized distribution

q∆x(x) = p(x)∫
∆(x) p(y)dy , (2.70)

where p(x) is any distribution that could be the steady-state distribution of a truncated OU
inside the well and is uniform outside. From eq. (2.69), we get

b∆x(x) = b(x)
∫

∆1(x) p(x)dx∫
∆(x) p(x)dx . (2.71)

In first approximation,

b∆x(x) = b(x) ∆1(x)
∆1(x) + ∆2(x) , (2.72)

where ∆2(x) = ∆(x) ∩ ΓE∆(x). We shall now estimate ∆1(x). We first note that the
conservation of surfaces: ∆1(x) + ∆2(x) = (∆x)2. For a square centered at a boundary of
the ellipse (x, y)

x2

a2 + y2

b2 = 1, (2.73)

we consider the square grid with integer coordinates k = [ x
∆x ] and q = [ y

∆x ]. To compute
∆2(x), we subtract the total area of the rectangle

S(2) = [∆x][(q + 1)∆x] (2.74)

to the surface underneath the ellipse between the point k∆x and ∆x+ k∆x:

S(1) =
∫ (k+1)∆x

k∆x
b

√
1− (u

a
)2du (2.75)

≈ b

√
1− k2(∆x)2

a2

(
1− 1

2
k∆x2

a2

)
. (2.76)

Thus the computations lead to

S(2) − S(1) = 1
2
k∆x2

a2 + o(∆x2) (2.77)

and for x > ∆x, we get

∆2(x) = S2 − S1 = xy
2a2 (∆x)2 + o(∆x2). (2.78)

A similar computation leads for 0 < x ≤ ∆x to

∆2(x) = S1 − S2 = (∆x− x)y + o(∆x2). (2.79)

To conclude, except for the bin at the four extreme positions of the ellipse, the error is of
order O((∆x)2) for each grid bin, leading to a cumulative error along the total length of
O((∆x)). The error contribution is shown in Fig. 2.6E.
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2.5.4 Influence of the time steps in stochastic simulations

In the Smoluchowski’s limit of the Langevin equation, the first order stochastic equation from
which trajectories are generated is obtained by choosing a time step δt. This time step should
not be smaller than the reciprocal of the friction coefficient γ so that the successive points
x(δt), x(2δt), . . . x(nδt), ... should approximate the physical trajectory. When the sampling
rate is such that ∆t � δt, we can compare the drift estimation in that case and also study
the extreme case when the sampling and simulation time steps are identical, leading to a
jump process. When ∆t � δt, the drift is computed after n steps. Using the empirical
estimator, in the limit of a large number of trajectories N , we get

best∆t(x)∆t+ o(∆t) = lim
N→∞

1
N

N∑
m=1

(xm(t+ pδt)− xm(t+ (p− 1)δt)) + ...(xm(t+ δt)− xm(x))

≈
∫ nδt

0
E[b(x(s))|x(0) = x]ds

=
∫ ∆t

0

∫
y
b(y)ps(y|x)dsdy, (2.80)

where ps(y|x) is the pdf of the process x(t) starting at x at time t = 0 and ending at y at
time s. This result is quite different from the classical estimator of equation (2.45) and is
very different from the estimation from a single observation time step ∆t. Using the pdf an
Onrstein-Uhlenbeck process

ps(y|x) =
√

λ

2πD(1− e−2λs) exp{− λ

2D
(y − xe−λs)2

1− e−2λs }, (2.81)

and the change of variable u = (y−xe−λs)2√
2D
λ

(1−e−2λs)
we get

∫ ∆t

0

∫
y
b(y)ps(y|x)dsdy =

∫ ∆t

0

∫
u
b(xe−λs +

√
2D
λ

(1− e−2λs)u) 1√
π

exp{−u2}duds. (2.82)

Using a Taylor’s expansion in the drift term:

b(xe−λs +
√

2D
λ

(1− e−2λs)u) =

b(xe−λs) +
√

2D
λ

(1− e−2λs)ub′(xe−λs) + 1
2

2D
λ

(1− e−2λs)u2b′′(xe−λs) + o((1− e−2λs))2.

Thus the estimator of the drift with many time steps is at first order in ∆t given by∫ ∆t

0

∫
y
b(y)ps(y|x)dsdy =

∫ ∆t

0

(
b(xe−λs) + 1

2
D

λ
(1− e−2λs)b′′(xe−λs)

)
ds

≈ b(x)∆t+ (−λxb′(x) +Db′′(x))(∆t)2

2 + o((∆t)2)

≈ −λx∆t+ λ2x
(∆t)2

2 + o((∆t)2).
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We now evaluate the consequences of simulating a process with many time steps δt = 10−4s
whereas the sampling time was ∆t = 0.02s in Fig. 2.5. We show in Fig. 2.11 how the drift
field can be recovered. This situation corresponds to large jumps of the underlying physical
process. To conclude, we find that the center and peripheral grid bins are generating most
of the error, especially for large grid sizes (∆x = 50 and 90 nm).
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Figure 2.11: Recovering the vector field with an equal simulated and sampled time step
δt = ∆t. A. Recovering the local drift field inside a circular well for different grid sizes (10 nm, 50
nm, 90 nm) using numerical simulations with a sampling ∆t = 20 ms, with the constraints that at
least 10 points falls inside a bin. B. Error between the true and observed fields averaged over all
the square bins inside the well versus the time step ∆t. C. Error between the true and observed
fields averaged over the radial angle versus the distance r to the center for various timestep (see
color code).
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2.5.5 Conditional drift estimation

In this last section, we discuss the effect of estimating the drift by conditioning the end
points of a displacement to stay inside the potential well. Computing the displacement ∆X
by selecting only trajectories that stay inside the well gives a bias estimator of the drift.
This situation appears when the trajectories never reach the boundary. The drift estimator
is computed from the conditional pdf p∗ of the process that stays inside the potential well.
To find such a drift, we introduce the probability that a stochastic particle hits a ball of
radius ε centered on the well before escaping from the well [115], then

p∗(x, y, t) = p(x, y, t)q(x)
q(y) , (2.83)

where p is the pdf in the entire space. q is solution of

L∗(q) = 0 (2.84)
q = 0 on ∂W (2.85)
q = 1 on ∂Bε, (2.86)

L∗ is the backward Fokker-Planck equation associated the process X(t) (p.77 [115]), defined
by

dx = b(x)dt+
√

2Ddw. (2.87)

In that case,

lim
∆t→0

E

[
x(t+ ∆t)− x(t)

∆t |x(t) = x

]
= b(x) +

√
2D∇q(x)

q(x) . (2.88)

To conclude, by restricting the computation of the displacements to empirical trajectories
that only remain in the well, an additional term has to be accounted for, which diverges as
the distance from the point x to the boundary tends to zero (Fig. 2.12).
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Figure 2.12: Conditional reconstructed drift versus distance to the center. We estimated
the drift for displacements that do not exit the well (assuming the boundary is known).
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Chapter 3

Transient Confinement of CaV2.1
Ca2+-Channel Splice Variants Shapes
Synaptic Short-Term Plasticity

Published as:
Jennifer Heck∗, Pierre Parutto∗, Anna Ciuraszkiewicz∗, Arthur Bikbaev, Romy Freund, Jes-
sica Mitlöhner, Maria Alonso, Anna Fejtova, David Holcman and Martin Heine, ”Transient
Confinement of CaV2.1 Ca2+-Channel Splice Variants Shapes Synaptic Short-Term Plastic-
ity”, Neuron volume 103, pages 66-79 (2019).
(∗: equally)

Abstract The precision and reliability of synaptic information transfer depend on the
molecular organization of voltage-gated calcium channels (VGCCs) within the presynaptic
membrane. Alternative splicing of exon 47 affects the C-terminal structure of VGCCs and
their affinity to intracellular partners and synaptic vesicles (SVs). We show that hippocampal
synapses expressing VGCCs either with exon 47 (CaV2.1+47) or without (CaV2.1∆47) differ
in release probability and short term plasticity. Tracking single channels revealed transient
visits (≈100 ms) of presynaptic VGCCs in nanodomains (≈80 nm) that were controlled by
neuronal network activity. Surprisingly, despite harboring prominent binding sites to scaf-
fold proteins, CaV2.1+47 persistently displayed higher mobility within nanodomains. Synap-
tic accumulation of CaV2.1 was accomplished by optogenetic clustering, but only CaV2.1+47
increased transmitter release andenhanced synaptic short-term depression. We propose that
exon 47-related alternative splicing of CaV2.1 channels controls synapse-specific release prop-
erties at the level of channel mobility-dependent coupling between VGCCs and SVs.
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3.1 Introduction

Neurons communicate via chemical synapses that can change their transmission properties
on a short timescale, thereby directly affecting the computational performance of neuronal
networks [116, 117]. Following the release of synaptic vesicles (SVs), the number of activated
postsynaptic receptors is the effective readout. Thus, the weight of a given synapse within a
neuronal network strongly depends on two parameters: the number of release sites for SVs
within the active zone and the release probability of individual SVs. The number of release
sites harboring readily releasable SVs within the active zone mainly depends on the molecu-
lar composition and interactions within the presynaptic bouton [118, 119, 120]. The release
probability in response to an action potential (AP) is determined by the coupling distance
between voltage-gated calcium channels (VGCCs) and vesicular calcium sensors [121, 122].
Upon AP-mediated transient opening of VGCCs, the local influx of calcium ions triggers the
fusion of SVs and neurotransmitter release. With extremely tight coupling, the action of a
single VGCC may be sufficient to initiate this event [123, 124, 125]. Several parameters such
as conductance of VGCCs, average width of the AP, calcium affinity of vesicular calcium
sensors, abundance, affinity of endogenous buffering proteins, and calcium extrusion mech-
anisms constrain the spatial signaling capacity of VGCCs [122]. Hence, the local density of
VGCCs and their distance to releasable SVs define the probability of transmitter release.
Synapses characterized by loose coupling (20-100 nm) between VGCCs and SVs have been
described to exhibit a low release probability [126, 121, 127, 128, 129], whereas synapses
with tight coupling (< 20 nm) were found to have high release probabilities [123, 83, 130].
Direct measurements and modeling of calcium channel densities within the presynaptic mem-
brane, in combination with functional analysis, have identified a heterogeneous distribution
of VGCCs, suggesting the existence of local channel clusters assigned to specific release
sites [131, 132, 133, 134, 135, 136, 124]. However, despite the need for nanometer-precise
coupling between VGCCs and SVs, the stability of molecular complexes changes over time,
considering ongoing fusion and retrieval of SVs. This permanent reconstruction of the presy-
naptic plasma membrane suggests a flexible arrangement of SVs and associated proteins
embedded in a more stable core scaffold [137]. Direct indicators for presynaptic glutamate
release revealed that several release sites exist within the active zone of small cortical and
hippocampal synapses, providing the physical basis for multiple vesicular release [138, 119].
Altogether, the small number of synaptic VGCCs, their kinetic properties, and the fluid-
ity of the membrane argue against a stable nanometer-tight connection between VGCCs
and SVs over time. In previous experiments, we have shown that CaV2.1 and CaV2.2, the
predominant presynaptic VGCCs in the mammalian brain [139], are dynamically organized
within the synapse, suggesting a flexible contribution of individual VGCCs to SV release
and short-term synaptic plasticity [32]. It has been proposed that the attachment of VGCCs
to individual release sites is, besides interactions of the synprint region [140, 141], mainly
achieved via C-terminal binding of VGCCs to the Rab3-interacting molecule (RIM) and
the RIM binding protein (RBP) [142, 143, 144]. However, alternative splicing of VGCCs
can significantly change C-terminal structure and thereby alter their connectivity to scaffold
proteins [145, 146]. Calcium channels can either express (+47) or lack (∆47) exon 47, which
encodes about 150-250 amino acid residues, depending on the species and channel isoform.
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Here, we found that these differences between the C termini of CaV2.1 splice variants are
not critical for the incorporation of channel complexes into the presynaptic membrane as
proposed for CaV2.2 channels [147] but rather influence their dynamic organization within
the presynaptic membrane and the release probability of SVs. Acute changes in the dynamics
of individual CaV2.1 channels affect release probability and short-term plasticity exclusively
for the long C-terminal variant, suggesting a transient character of splice variant-specific
coupling of CaV2.1 channels to SVs.

3.2 Results

3.2.1 Expression and Synaptic Localization of CaV2.1 C-Terminal
Splice Variants

Previous investigations [148, 149] have indicated that both, the short and the long C-terminal
splice variant of CaV2.1 (CaV2.1∆47 and CaV2.1+47, respectively), are expressed in the mam-
malian brain. Western blot analysis performed on the plasma membrane fraction of rat
hippocampus and cortex confirmed these results (Figure 3.1A-C). The molecular weight of
heterologously expressed CaV2.1+47 and CaV2.1∆47 splice variants corresponds to the pre-
dicted molecular weight of ≈243 kDa for rat CaV2.1∆47 and ≈260 kDa for rat CaV2.1+47
(according to the amino acid sequences NCBI: NP 037050.2). Comparing the ratios between
CaV2.1∆47 and CaV2.1+47 during development revealed that the long C-terminal CaV2.1
splice variant is dominant in older animals.

To explore the synaptic distribution of the long and short CaV2.1 splice variant, we cre-
ated N-terminally GFP-tagged constructs to observe the localization of calcium channels
within the synapse. The species specificity of CaV2.1 antibodies allowed us to distinguish
between the tagged channel population (derived from human CaV2.1) and the endogenous
CaV2.1 channels in rat hippocampal neurons (Figures 3.7A-F). Testing N-terminally tagged
CaV2.1 channels in HEK293T cells confirmed that the CaV2.1 C-terminal splice variants did
not differ in their voltage-dependent kinetic properties; in addition, channel surface expres-
sion was unaffected by N-terminal tagging (Figure S2) [32]. In general, the expression of
CaV2.1+47 or CaV2.1∆47 in rat hippocampal neurons increased the total population of CaV2.1
channels within the synapse (Figure 3.1F). Using a specific antibody detecting the endoge-
nous rat CaV2.1 channel revealed that 50% of transfected synapses were populated exclusively
by the overexpressed CaV2.1 channel. The other 50% of synapses expressed a mixed popula-
tion of endogenous and tagged CaV2.1 channels (Figures 3.7F-H). Presynaptic compartments
were identified by co-staining of Bassoon or RIM. Both CaV2.1 C-terminal splice variants
were found to co-localize with the presynaptic marker Bassoon, similar to non-transfected
synapses, whereby the CaV2.1+47 splice variant showed slightly better synaptic localization
(Figure 3.1D-F; Figure 3.7G), confirming previous studies [150, 149, 151, 32, 85]. Normaliza-
tion of the fluorescence intensity of pre- and postsynaptic marker proteins to non-transfected
synapses revealed a general accumulation of these proteins when expressing the CaV2.1∆47
or CaV2.1+47 splice variant. This enlargement of presynaptic boutons supports previous ob-
servations showing that the calcium channel number in the presynapse scales with scaffold
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proteins, and most likely vice versa [132, 32]. However, the expression of the short CaV2.1∆47
splice variant resulted in stronger up-scaling of synapses compared to CaV2.1+47-expressing
synapses (Figure 3.1F). This stronger accumulation of presynaptic proteins and even the
postsynaptic scaffold PSD95 in CaV2.1∆47 dominated synapses was surprising, because this
splice variant does not express canonical C-terminal scaffold interaction sites (Figure 3.1A).



83
Figure 3.1: (previous page) Expression of C-Terminal CaV2.1 Splice Variants and
Synaptic Targeting of Overexpressed CaV2.1∆47 and CaV2.1+47. A. Depiction of
C-terminal CaV2.1 splice variants ∆47 (red) and +47 (blue), illustrating the loss of dis-
tal C-terminal interaction sites for the D47 splice variant. B. Western blot showing the
endogenous expression of CaV2.1∆47 and CaV2.1+47 in the plasma membrane fraction of ju-
venile and adult rat cortex (postnatal day [P] 14 and P77, respectively) and hippocampus
(P14 and P77, respectively). Antibody specificity was tested on lysates from a tsa201 cell
line, expressing CaV2.2/β3/α2δ1 as negative control, which was transfected with CaV2.1∆47
or CaV2.1+47 to probe the differences in the molecular weight. C. Quantification of the
CaV2.1∆47 to CaV2.1+47 ratios in male P14, P21, and P77 rat cortex and hippocampus.
For data and statistics, see Table S1 in original article. D. Images of hippocampal neurons
16 days in vitro (DIV) transfected with either CaV2.1∆47::GFP (left) or CaV2.1+47::GFP
(right). Presynaptic boutons are identified by the intensity of anti-Bassoon immunoreactiv-
ity (magenta). Arrows indicate co-localization of calcium channels (green) and presynaptic
structures. Scale bars correspond to 10 mm (overview) or 2 mm (selection). E. Quantifi-
cation of the co-localization of CaV2.1 channels (CaV2.1∆47, red; CaV2.1+47, blue; CaV2.1,
gray) with Bassoon in hippocampal neurons 16 DIV. For data and statistics, see Table S1 in
original article. F. Effects of the expression of CaV2.1∆47 (red) or CaV2.1+47 (blue) on the
total expression of CaV2.1, Bassoon, RIM, Munc13, Synapsin, and PSD95. The fluorescence
intensities are normalized to non-transfected synapses within the same field of view. For
data and statistics, see Table S1 in original article.

3.2.2 Functional Differences of Synapses Dominated by CaV2.1+47
or CaV2.1∆47 Channels

We measured presynaptic calcium responses, glutamate release, and transmission proper-
ties of monosynaptically coupled neurons to probe the effect of C-terminal CaV2.1 splice
variants (Figure 3.2). Co-expression of RFP-tagged CaV2.1 channels with the presynaptic-
targeted calcium sensor GCaMP5G::synaptophysin (Figures 3.9A-D) enhanced the evoked
presynaptic calcium responses as expected from the increase of immunofluorescence label-
ing of synaptically localized CaV2.1 channels (Figures 3.1F and 3.2A-C). Here, synapses
expressing CaV2.1+47 channels showed the strongest increase of calcium in response to a pat-
tern of AP-like electrical field stimuli (Figure 3.2C). Next, we co-expressed iGluSnFR [152],
a fluorescent glutamate sensor, with RFP-tagged CaV2.1 splice variants to directly probe
presynaptic glutamate release. Despite recoding the strongest calcium signal in CaV2.1+47-
dominated synapses, the fluorescence response of the glutamate sensor to a single stimulus
was similar to that of non-transfected synapses (Figures 3.2D-F). More surprisingly, the
amplitude of the iGluSnFR fluorescence signal of synapses expressing CaV2.1∆47 channels
was significantly enhanced, indicating increased glutamate release in comparison to non-
transfected or CaV2.1+47-dominated synapses (Figure 3.2F). These results were confirmed
by measuring excitatory postsynaptic currents (EPSCs) between monosynaptically coupled
transfected and non-transfected neurons in paired whole-cell patch-clamp recordings (Fig-
ures 3.2H,I). We isolated glutamatergic responses by bath application of 5 mM bicuculline
to examine whether the overexpression of either CaV2.1∆47 or CaV2.1+47 alters the ampli-
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tude or variability of EPSCs. The EPSC amplitude was larger for CaV2.1∆47-expressing
synapses, supporting an enhancement of neurotransmitter release as demonstrated by glu-
tamate imaging. EPSC amplitudes of synapses dominated by CaV2.1+47 were comparable
with non-transfected neurons. Application of the Ca2+ chelator EGTA (10 mM in the pipette
solution) resulted in a reduction of the CaV2.1∆47-mediated rise of the EPSC amplitude to
control level, suggesting more distant localization of CaV2.1∆47 channels to SVs. In contrast,
no buffering effect was observed for CaV2.1+47-dominated synapses or the control condi-
tion (Figures 3.2G-I). The kinetic properties of EPSCs and their variability within trains of
stimuli were not affected (Figures 3.9E-F).

Furthermore, we tested whether channel overexpression affects the size of the available
vesicular pool and vesicle recycling. We used the activity-driven uptake of CypHer5Elabeled
antibodies against the luminal domain of synaptotagmin1 (syntag1-CypHer5E) [153] and
monitored the fluorescence intensity, the quenching of the fluorescence during evoked SV re-
lease, and the fluorescence recovery as a readout for SV endocytosis [153]. The SV release was
induced by 200 AP-like stimuli (pulse duration of 1 ms at 20 Hz; 2 mM Ca2+) (Figure 3.10)
in the presence of 1 µM ω-conotoxin-GVIA to isolate CaV2.1-mediated SV release. Analysis
of the amplitude and kinetics of the fluorescence signal revealed that time to peak, as well
as maximal quenching of the fluorescence, differed between transfected and control synapses
but was similar between the two C-terminal splice variants. The fluorescence recovery was
not altered (Figure 3.10G), indicating no change in the endocytosis of SVs.

Altogether, the overexpression of CaV2.1 C-terminal splice variants generally increased
the presynaptic calcium influx. However, only CaV2.1∆47 was potent to induce larger glu-
tamate release and EPSCs. These data suggest a different initial release probability for
synapses depending on the expression of CaV2.1 splice variants. We hypothesize that the
difference in the C-terminal structure of CaV2.1 influences their coupling to scaffold proteins
and thus to SVs and is eventually accompanied by changes in their local surface mobility.

3.2.3 Dynamics of CaV2.1 Channels Differ between C-Terminal
Splice Variants

Using single-particle tracking photo-activation localization microscopy (sptPALM), we ana-
lyzed the dynamics of individual CaV2.1 variants in living neurons to test the idea that their
different affinities to scaffold proteins affect their local dynamics. Expression of mEOS-tagged
CaV2.1 variants, together with GCaMP5G::synaptophysin or activity-driven uptake of anti-
syntag1 antibodies (Figures 3.3A-C) allowed us to identify presynaptic structures, localize
tagged channels, and evaluate their function within the presynaptic membrane. Although,
the N-terminal tagging of CaV2.1 channels does not allow to distinguish between intracel-
lular and surface-expressed channels, several aspects indicate that most tagged channels
are located in the presynaptic membrane. As reported earlier, in 50% of synapses express-
ing tagged channels, we found full replacement of the endogenous channel population (Fig-
ure 3.7H). Second, an increase in the number of synaptic CaV2.1 channels induced up-scaling
of presynaptic scaffold proteins (Figure 3.1F), which is in line with previous data showing
a positive correlation between VGCC number and scaffold proteins [132]. Third, elevated
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Figure 3.2: Effects of Alternative Splicing of the CaV2.1 C Terminus on Synaptic Transmis-
sion. A. Images of axonal expression of CaV2.1∆47::RFP (left) or CaV2.1+47::RFP (right), together with
GCaMP5G::synaptophysin in 15 DIV hippocampal neurons. GCaMP5G::synaptophysin (magenta) indicates
presynaptic compartments. Scale bar corresponds to 5µm. B. Fluorescence changes of synapses expressing
GCaMP5G::synaptophysin in response to 4 APlike field stimuli, transfected with GCaMP5G::synaptophysin
only (gray) or with CaV2.1∆47 (red) or CaV2.1+47 (blue). C. Medians of presynaptic calcium signals
(∆F/F0) from synapses expressing GCaMP5G::synaptophysin only or with CaV2.1 splice variants (color
code as indicated in B). Synaptic calcium influx was evoked with 2, 4, and 6 AP-like stimuli, which are in
the linear range of the used calcium sensor GCaMP5G (Figures 3.9A-D). For values and statistics, see Table
S2 in original article. D. Axonal expression of the glutamate sensor iGluSnFR and presynaptic labeling
using syntag1::CypHer5E antibody (AB) uptake in hippocampal cultures 15 DIV. Labeled regions show
iGluSnFR-expressing presynaptic compartments with corresponding changes in fluorescence intensity in re-
sponse to 1 AP-like field stimulation. Scale bar corresponds to 10µm. E. Frequency distribution of evoked
(1 AP) glutamate responses from synapses expressing iGluSnFR only (gray) or with CaV2.1∆47::RFP (red)
or CaV2.1+47::RFP (blue). F. Median and IQR for amplitude (∆F/F0) and decay time constant (τdecay).
For values and statistics, see Table S2 in original article. G. Illustration of EPSCs of synaptic coupled
neurons. H. Example traces of EPSCs from neurons (15-16 DIV) in control conditions or presynaptic ex-
pression of CaV2.1∆47::GFP or CaV2.1+47::GFP. Average responses of repetitive stimuli (0.1 Hz) are given
in black; individual responses in gray. I. Mean first EPSC amplitude and kinetic parameters of the EPSC
(Figures 3.9E-F). For values and statistics, see Table S2 in original article.
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presynaptic calcium transients (Figure 3.2C) likely reflect a larger population of functional
channels in the presynaptic membrane. In addition, we examined whether translocation of
channels in transport vesicles might bias our mobility analysis. Based on individual mean
square displacement (MSD) curves, we identified a minor fraction of axonal CaV2.1 chan-
nels (14%- 17%) showing directed movement, which could indicate an association of VGCCs
with transport vesicles (Figures 3.10D- 3.11A). Within synapses, the fraction was reduced to
only 3%-8%. Although the contribution of a confined intracellular fraction cannot be ruled
out, the functional and structural data demonstrate that most tagged CaV2.1 channels are
expressed within the presynaptic membrane.

The diffusion coefficient differed between channels in the extrasynaptic and synaptic
membrane but was comparable for both splice variants (Figure 3.3D). To explore CaV2.1
dynamics within synapses in more detail, we applied a step analysis algorithm [17] and
quantified the local confinement and dwell time of VGCCs. Within presynaptic membranes,
we identified regions that fulfill the requirements of parabolic potential wells: regions that
exhibit a drift vector fields converging toward a center point [154] given by equation (1.8)
(Figures 3.3B,C). Potential wells, which we call nanodomains, are characterized as ellip-
tic regions, defined by the following parameters: size, diffusion coefficient inside the well,
confinement energy, and residence time of the channels within this region (estimation meth-
ods describes in paragraph 3.4.2). Surprisingly, the diffusion coefficient inside nanodomains
was significantly larger for CaV2.1+47 channels compared to CaV2.1∆47 channels, while the
energies within the well were similar (Figure 3.3G) (Figures 3.11I-J). In general, the for-
mation of nanodomains was observed with a higher incidence inside synaptic compartments
but also occurred in the extrasynaptic membrane. The density of nanodomains along the
axon was independent of the expressed splice variant (Figure 3.11J). On average, 2 nan-
odomains were detected within synapses (CaV2.1∆47 = 2.1 ± 1.8 SD; CaV2.1+47 = 2.0 ±
1.7 SD). The size of confinement (characterized by the harmonic mean R of the two ellip-
tic axes a > b: R =

√
ab) was around R ≈ 80 nm and slightly varied between CaV2.1+47

and CaV2.1∆47 (CaV2.1∆47 median = 76, interquartile range [IQR] = 67/89 nm; CaV2.1+47
median = 81, IQR = 70/97 nm). Notably, the characteristic length scale of the detected
synaptic wells agrees with the proposed trans-synaptic arrangement of pre- and postsynaptic
scaffold proteins [84]. From the energy and the size of a nanodomain, the residence time of
a calcium channel inside the well was calculated from equation (1.11). Individual CaV2.1
channels transiently dwell for around 100 ms within these nanodomains, with no difference
between the splice variants (Figure 3.3G). We compared these residence times of calcium
channels inside nanodomains with the theoretical mean time τB of a freely diffusing (non-
interacting) channel to escape a region that was 80 nm in diameter. Given the MSD relation
〈||X(t)||2〉 = 4Dt, it resulted in a shorter mean diffusion residence time of τB ≈ 30ms. This
result demonstrates that nanodomains stabilize individual channels in small regions about
three times longer than pure diffusion. Furthermore, we applied the step analysis algorithm
in a temporal sliding window (with a width of 20 s and an overlap of 10 s) to access the sta-
bility of nanodomains as calcium channel-confining structures. We found that nanodomains
were transiently formed with a mean lifetime of about 30 s (Figure 3.3H; Figures 3.11E-F).
In addition, the nanodomains could deform and slightly move within the presynaptic mem-
brane (Figure 3.3H). One could speculate that these temporary nanodomains correspond to
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local presynaptic calcium channel densities, as seen in freeze fracture electron microscopy
pictures of the presynaptic membrane [132, 133]. Finally, we attempted to estimate the num-
ber of channels inside a potential well. For this purpose, the single-particle tracking (SPT)
trajectories cannot be used directly. We estimated that the density of CaV2.1 channels at
active zones was ≈400 channels/mm2 [132]. Using the estimation of the potential well size
(Figure 3.3G), we obtained ≈ 9 calcium channels inside one nanodomain (paragraph 3.4.2).
If there are, on average, ≈3-5 docking sites per active zone of hippocampal synapses [132],
we conclude that on average, 2-5 channels will be associated with surrounding vesicles.
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Figure 3.3: (previous page) Dynamic Organization of CaV2.1∆47 and CaV2.1+47 in
Nanodomains and Effects of Network Silencing. A. Image of axonal branches trans-
fected with CaV2.1+47::mEOS3.2 at 15 DIV. Presynapses are labeled via syntag1::CypHer5E
antibody (AB) uptake. Scale bar corresponds to 2µm. B. Zoomed image shows recorded
trajectories and identified nanodomains (yellow ellipses). Scale bar corresponds to 0.5µm.
C. Zoomed images show detected nanodomains presenting the individual trajectories (left
panel), reconstructed drift vector field (middle panel), and a 3D representation of the poten-
tial well (right panel). Scale bar corresponds to 0.1µm. D. Distribution and median of the
diffusion coefficient outside (extra) and inside (syn) synapses. E. Distribution and median of
the diffusion coefficient outside (extra) and inside (syn) synapses after adding CNQX/APV
(10µM) to the extracellular solution. F. Similar to (E) after adding TTX (1µM) to the
extracellular solution. G. Changes of nanodomain characteristics (diffusion coefficient, well
size, and residence time) comparing the two CaV2.1 splice variants and activity conditions
as indicated in the figure. For values and statistics, see Table S3 in original article. H.
Example of two potential wells over time. Scale bar corresponds to 0.2µm.

To test whether the surprisingly low dwell time of individual calcium channels within
the nanodomains and their diffusion properties outside nanodomains are influenced by on-
going activity, we altered the neuronal network activity. We repeated sptPALM experiments
and acutely reduced synaptic activity by blocking either ionotropic glutamate receptors (10
mM APV/ 10 mM CNQX) or sodium channels (1 mM TTX) for 10-15 min. These treat-
ments significantly reduced the dynamics of both CaV2.1 splice variants, particularly inside
synapses (Figures 3.3E-G). Similarly, the TTX treatment showed the most prominent de-
crease of CaV2.1 dynamics within nanodomains (Figure 3.3G). These results demonstrate
that the mobility of CaV2.1 channels, regardless of their C-terminal structure, is driven by
AP-evoked synaptic activity. Stronger confinement of CaV2.1 in silenced synapses, particu-
larly in the presence of TTX, suggests that additional scaffold interaction sites, which are
present in the CaV2.1+47 splice variant, do not directly support tighter coupling of channels
and SVs. To test the impact of local diffusion on synaptic transmitter release and the as-
sociation between channels and SVs, we next used optogenetic oligomerization of the two
CaV2.1 splice variants to directly interfere with the calcium channel nanoscale organization.

3.2.4 Light-Triggered Re-organization of Calcium Channels

We adopted the optogenetic approach reported earlier to effectively cluster transmembrane
proteins in a fast and reversible manner [155]. Fusing a mutant of the Arabidopsis flavopro-
tein cryptochrome 2 (CRY2olig, hereafter referred to as CRY2) [155] to the N-terminal do-
main of the CaV2.1 splice variants allowed transient clustering of CaV2.1 channels in response
to brief illumination with blue light (Figures 3.4A-D). The light-induced cross-linking of
CaV2.1 channels was evident within the first minutes after light stimulus and decayed within
the following 30 min (Figures 3.4C,D). CRY2- mCherry-tagged CaV2.1 splice variants were
co-expressed with either iGluSnFR or GCaMP5G::synaptophysin to monitor synaptic glu-
tamate release or calcium influx, respectively, while triggering channel clustering. The first
image sequence in combination with an electrical stimulus was considered as control for fol-
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lowing stimuli. One minute after triggering the channel cross-link (x-link), CaV2.1∆47::CRY2-
mCherry-expressing synapses showed no change in the glutamate response compared to the
initial control condition, even though the presynaptic calcium influx was elevated 1 min af-
ter x-link induction (Figures 3.4E,F). In contrast, in CaV2.1+47::CRY2-mCherry-expressing
synapses, the iGluSnFR fluorescence response was significantly enhanced within the first
minute and reversibly decayed within longer time intervals in the dark. The synaptic cal-
cium response was not enhanced within the first minute after cross-linking (x-linking) of
CaV2.1+47::CRY2-mCherry. Instead, it decreased in comparison with the initial control con-
dition (Figure 3.4G). Performing immunocytochemical staining, we found that the CRY2-
mediated cross-linking of both CaV2.1 splice variants increased the accumulation of CaV2.1
channels in the synapse when compared to synapses expressing GFP-tagged channels (Fig-
ures 3.6A-C). The fluorescence intensities of presynaptic markers, such as Bassoon, did not
scale up. This supports our interpretation that CaV2.1 channels are mobile within the axonal
membrane and are only transiently coupled to presynaptic interaction partners. Given the
increase in density of nanodomains for both cross-linked (x-linked) CaV2.1 splice variants
(Figure 3.11J), we assumed transient recruitment of axonal CaV2.1 channels into presynap-
tic boutons upon cross-linking. However, the additional recruitment of CaV2.1 channels via
cross-linking is not the only driving factor to enhance synaptic release. The C-terminal
binding affinities to scaffold proteins in CaV2.1+47 channels are likely needed to optimize the
positioning of CaV2.1 with respect to SVs and thus effectively enhance SV release.

To examine whether massive recruitment of calcium channels could outcompete the C-
terminal structural differences between CaV2.1 splice variants, we evaluated both parameters,
presynaptic calcium response and glutamate release, after prolonged illumination of trans-
fected synapses (>500 ms and 488 nm) and a longer incubation time (2 min) (Figure 3.4H).
Repetitive stimulation of hippocampal cultures with AP-like stimuli in the presence of 10
µmMCNQX and 10 µmMAPV induced a strong rise in the presynaptic calcium response for
synapses expressing x-linked CaV2.1::CRY2 splice variants (Figure 3.4K), confirming a sig-
nificant increase of the functional, presynaptic CaV2.1 channel population on the membrane
surface. Recordings of the glutamate response after prolonged induction of cross-linking
showed a similar increase in the amplitude of the glutamate-induced fluorescence signal in
synapses expressing the CRY2-tagged CaV2.1+47 splice variant, as seen after fast CRY2-
mediated cross-linking. In the case of the CRY2-tagged CaV2.1∆47 splice variant, the am-
plitude was not affected but the decay of the fluorescence signal was significantly prolonged
(Figures 3.4H-J), which could reflect asynchronous release.

Paired recordings from synaptically coupled neurons were used to verify the functional
imaging data and further explore the impact of cross-linking on synaptic transmission.
CRY2-induced clustering of CaV2.1 splice variants increased the EPSC amplitude in synapses
dominated by CaV2.1+47::CRY2 but showed no effect on the EPSC amplitude in synapses ex-
pressing CRY2-tagged CaV2.1∆47 channels (Figures 3.3I and 3.4L,M). The kinetic properties
of EPSCs were not altered (Figures 3.3E,F). The change in EPSC amplitude for synapses
expressing CaV2.1+47::CRY2 was suppressed to control level in the presence of the calcium
chelator EGTA (10 mM). In contrast, the EPSC amplitude recorded in CaV2.1∆47::CRY2-
expressing neurons was EGTA insensitive (Figure 3.4M). The variability in the postsynaptic
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response was not affected by cross-linking (Figure 3.4N).
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Figure 3.4: (previous page) Light-Induced Cross-Linking of Calcium Channels within
Axons and Consequences for Synaptic Transmission Properties. A. Illustration
of CaV2.1 clustering using light-induced (λ = 488 nm) oligomerization via a N-terminally
tagged cryptochrome 2 mutant (CRY2olig, hereafter referred to as CRY2). B. Example
images show axonal CaV2.1∆47::CRY2 expression (green) before and after (5 min) initia-
tion of a cross-link. Synaptic compartments are identified by GCaMP5G::synaptophysin
coexpression (magenta). Scale bar corresponds to 2µm. Sections show CaV2.1∆47::CRY2
distribution in synapses before and after light-induced crosslinking. Scale bar corresponds
to 500 nm. C. Time course of CaV2.1+47::CRY2 clustering along axons of hippocampal
neurons (15 DIV) after 100 ms illumination with blue light (l = 488 nm). Arrows indi-
cate positions of transient calcium channel aggregates. Scale bar corresponds to 5µm. D.
Channel cluster density along axons over time after oligomerization (see Table S4 in origi-
nal article). E. Exemplary traces for the fluorescence signal of iGluSnFR in response to 1
AP-like field stimulation of single synapses co-transfected with CaV2.1∆47::CRY2-mCherry
(top) or CaV2.1+47::CRY2-mCherry (bottom). The fluorescence signal changes over time
for CaV2.1+47::CRY2-mCherry-expressing synapses but is not altered for CaV2.1∆47::CRY2-
mCherry-expressing synapses. F., G. Quantification of fluorescence signals (∆F/F0) for the
first and second light pulse (interval 1 min) of individual synapses co-expressing GCaMP5G
or iGluSnFR and splice variant CaV2.1∆47::CRY2-mCherry (F, red) or CaV2.1+47::CRY2-
mCherry (G, blue). For, data, see Table S4 in original article. (H-K) Synaptic calcium and
glutamate signals in response to 1 AP-like electrical stimulus after prolonged cross-linking
of CaV2.1 splice variants compared to RFP-tagged channels. H. Average traces of the gluta-
mate response to 1 AP-like stimulation for synapses expressing CaV2.1∆47::CRY2-mCherry
(red) or CaV2.1+47::CRY2-mCherry (blue). I., J. Median and IQR for maximal ampli-
tude (∆F/F0; I) and time constant of the glutamate signal decay (τdecay; J) as indicated.
K. Medians and IQR for synaptic calcium signals (∆F/F0) of synapses transfected with
GCaMP5G::synaptophysin alone and together with clustered CaV2.1::CRY2 splice variants
as indicated. For values and statistics, see Table S4 in original article. L. Example traces
of EPSCs from neurons expressing cross-linked CaV2.1∆47::CRY2 or CaV2.1+47::CRY2 in
comparison to control EPSCs. M. Average EPSC amplitude from paired recordings that are
presynaptic transfected with the CRY2-tagged channel variants as indicated with 1 or 10mM
EGTA in the pipette solution. N. Coefficient of variation determined for EPSC amplitudes
(10 pulses at 0.1 Hz). For values and statistics, see Table S4 in original article.

Whether the functional consequences of cross-linking are reflected in the local organi-
zation of CaV2.1 channels was tested by sptPALM experiments (Figure 3.5A). First, we
measured the diffusion coefficient of CaV2.1::CRY2 splice variants outside nanodomains
and found a significant decrease of channel mobility after light-triggered cross-linking (Fig-
ure 3.5B). The most striking difference between mEOStagged and CRY2-mEOS-tagged chan-
nels was the increased density of detected nanodomains along the axonal membrane and their
packed distribution within synapses (Figure 3.5C; Figure 3.11J). Channel dynamics and dwell
time within nanodomains, as well as nanodomain size, were not changed after cross-linking
(Figure 3.5D). This indicates maximal packing of channels within nanodomains and sug-
gests that drift of individual channels in and out of nanodomains is an important parameter
affecting SV release probability. To explore the consequences of nanodomain aggregation,
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we developed a stochastic model (paragraph 3.4.2 and Figure 3.12D) in which channels can
enter and subsequently escape a nanodomain. In the case of two neighboring nanodomains,
W1 and W2, we can define the effective well as a collection of the two wells: W12 = W1 ∪W2
(Figures 3.12D and 3.12E). Channels that recurrently fall into neighboring nanodomains can
significantly increase the time they are trapped. The total residence time of a channel de-
pends on the escape probability pe. When two wells are located closely, mobile channels will
fall immediately into the neighboring nanodomain after escaping the previous one. To give
an example, if the residence time in each well is t1 = t2 = 100 ms and the escape probability
is pe = 0.5, we find a total trapping time of τ̄12 = 50 ms. With proximity of the nanodomains
so that the escape probability reduces to pe = 0.1, the time of confinement inside the two
nanodomains increases to t̄12 = 1.5 s. These estimations show that the residence time strives
toward a very high value in the case of very low escape probability pe (Figure 3.12E).

Altogether, the overall increase in nanodomains along the axonal membrane confirms
our assumption that CaV2.1 channels are only transiently stabilized inside the synapse and
probably can fluctuate between neighboring synapses along the axonal membrane. This
could potentially serve as a mechanism to tune synaptic calcium channel density or the ratio
of short and long C-terminal splice variants in an activity-dependent manner.

3.2.5 C-Terminal Splicing Contributes to Short-Term Plasticity

The described differences in glutamate release and EPSC amplitudes between the two C-
terminal CaV2.1 splice variants could indicate variations in the initial vesicular release prob-
ability between synapses populated by CaV2.1+47 or CaV2.1∆47 splice variants. In turn, this
can directly affect the reliability and temporal coding in the synapse [156].

Because channels are mobile and trapped in nanodomains only for short intervals (≈80
ms) (Figure 3.3G), we used a repetitive stimulation protocol (5 pulses at 20 Hz) (Figure 3.6A)
in which the exocytosis of vesicles outcompetes compensation by SV endocytosis [157]. As-
suming that CaV2.1 splice variants are differently coupled to SVs, we expected to find varying
paired-pulse ratios (PPRs) between the first and consecutive EPSCs. Repetitive stimulation
led to less pronounced depression for GFP-tagged CaV2.1+47 than measured for GFP-tagged
CaV2.1∆47 (Figures 3.6B,C). Using cross-linking, we directly tested whether channel dynam-
ics are sufficient to alter PPR. For CRY2-tagged CaV2.1+47 channels, we observed strong
paired-pulse depression (PPD) of consecutive responses, whereas synapses expressing the
CRY2-tagged CaV2.1∆47 splice variant showed no difference with respect to the GFP-tagged
CaV2.1∆47 channel (Figures 3.6A-C). The pronounced PPD of EPSCs in synapses populated
by CRY2- tagged CaV2.1+47 channels was diminished by adding EGTA (10 mM) to the
intracellular solution. In contrast, no effect of EGTA was evident in synapses expressing
CRY2-tagged CaV2.1∆47 upon cross-linking (Figure 3.6C). These data suggest that the in-
trinsic dynamics of CaV2.1+47 channels control SV release probability. Immobilization of
CaV2.1+47 channels by CRY2-induced cross-linking probably results in a more stable inter-
action between CaV2.1 channels and SVs. In contrast, cross-linking of CaV2.1∆47 channels
is not effective to change the coupling between channels and SVs.

The initial release probability of a given synapse has direct consequences for tempo-
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Figure 3.5: Nanoscale Organization of Light-Induced Cross-Linking of CaV2.1 Chan-
nels. A. Individual trajectories of CaV2.1∆47 channels (upper row) and CaV2.1+47 channels (lower
row) within synapses before and after cross-linking. B. Distribution of the diffusion coefficients of
both splice variants along the axon, excluding nanodomains, of mEOS2-tagged and mEOS2::CRY2-
tagged channels after light-induced cross-linking. For values and statistics, see Table S5 in original
article. C. Distribution of calcium channel nanodomains without and with cross-linking along the
axon. Insert illustrates the method of quantification. For data, see Table S5 in original article. D.
Nanodomain characteristics of diffusion coefficient, well size, and residence time without and with
CRY2-mediated cross-linking. Color-coding and labeling are indicated. For values and statistics,
see Table S5 in original article.
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Figure 3.6: Impact of Dynamic Calcium Channel Organization on Synaptic Short-Term
Plasticity. A. Example traces of EPSCs (five stimuli at 20 Hz) recorded from monosynaptically
coupled neurons (15-16 DIV) under control conditions or presynaptic expression of CaV2.1+47::GFP
or CaV2.1+47::CRY2 after blue light stimulation. B. Ratio of the nth EPSC amplitude to the 1st
EPSC amplitude as indicated in the plot. C. Mean ratios between the 5th and the 1st EPSC are
plotted. For values and statistics, see Table S6 in original article. D. Interevent interval-dependent
modulation of the paired-pulse ratio for paired recordings from neurons expressing presynaptic
CaV2.1∆47::GFP (red) or CaV2.1+47::GFP (blue) in comparison to control neurons (gray). For
values and statistics, see Table S6 in original article. E. Schematic illustration for the organization
of calcium channels in the presynaptic membrane. CaV2.1∆47 channels can closely approach SV
(left sketch, CaV2.1∆47 in red) but can also be located away from SV. CaV2.1+47 are either tethered
to scaffold proteins or free diffusive. The specific but transient interactions keep CaV2.1+47 channels
(blue) in a defined distance to the SV and hence contribute to the control of the release probability,
in addition to their kinetic properties and other molecular interactions. The transient nature of
channel-SV interactions allows the steady exchange of channels around the SV.
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ral information transfer. To test whether the time resolution of synaptic activation affects
synapses dominated by the one or the other C-terminal CaV2.1 splice variant differently, we
analyzed PPRs recorded from for time intervals between 10 and 200 ms. Control synapses
showed paired-pulse facilitation (PPF) at pulse intervals <50 ms and equal amplitudes for
intervals >50 ms. Synapses expressing CaV2.1+47 channels followed the trend of control
synapses, being facilitated at high frequency and running into slight depression at longer in-
terpulse intervals (Figure 3.6D). In contrast, synapses expressing CaV2.1∆47 channels showed
the opposite short-term behavior. Here, fast stimulation with short time intervals resulted
in PPD, whereas longer activation intervals (>100 ms) did not affect the second EPSC
amplitude (Figure 3.6D).

These functional results indicate that structural differences induced by C-terminal splic-
ing of the CaV2.1 channel are relevant for temporal encoding of information within neuronal
networks dominated by the local nanoscale dynamics of the channels. We propose that the
difference in the structure of the calcium channel’s C terminus sets the minimal distance
between channel and SV. This distance might be variable for CaV2.1∆47 channels, whereas
CaV2.1+47 channels associated with scaffold proteins have a defined distance to the SV to
ensure fast and precise single-vesicular release (Figure 3.6E).

3.3 Discussion

Here, we tested the hypothesis that differences in the structure and affinity of the CaV2.1
C terminus to scaffold proteins affect local synaptic channel organization and mobility, as
well as synaptic transmission. Our outcomes of sptPALM in living neurons show that most
calcium channels at the presynapse are mobile and undergo transient confinement within
nanodomains (Figure 3.3). The statistical power of thousands of trajectories generated from
sptPALM experiments allowed us to uncover that individual CaV2.1 channels are transiently
confined in 1-2 nanodomains per synapse. Within these nanodomains, channels remain for
≈80 ms (Figure 3.3G), long enough to sustain AP-evoked transmitter release but still flexible
enough to influence the release properties of the synapse during short-termplasticity. Stud-
ies using freeze fracture replica-labeling electron microscopy have demonstrated clustered
organization of VGCCs within the active zone [132, 133, 135], leading to the prediction
of a perimeter release model [135]. In theory, the nanodomains described here match the
requirements of a central cluster of VGCCs. However, electron microscopy performed on
fixed samples provides only a snapshot of the dynamic presynaptic organization. Our results
confirm that calcium channels are confined in nano-sized zones. However, this stabilization
is transient considering the diffusive character of a single channel, which allows channels
to enter and escape nanodomains and most likely enables an exchange between synapses.
The fluctuation and small numbers of presynaptic CaV2.1 channels suggest that mobility of
VGCCs contributes to the effective coupling distance between VGCC and SV.

Modeling and super-resolution microscopy data from pre- and postsynaptic scaffold pro-
teins propose the existence of trans-synaptic nanocolumns [158, 84] that ensure the alignment
of pre- and postsynaptic membranes [159]. Our data suggest that these structures influence
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the position of calcium channels within nanodomains and support current models of chan-
nel arrangement in synapses [127, 135]. The dynamics of postsynaptic a-amino-3-hydroxy-
5-methyl- 4-isoxazolepropionic acid receptors (AMPARs), analyzed with similar analytical
tools, revealed that their nanodomain organization is more stable compared with VGCCs
in the presynaptic membrane [17, 160, 161, 32]. The difference in nanodomain stability of
presynaptic VGCCs and postsynaptic AMPARs probably reflects their molecular environ-
ment. Ongoing turnover of vesicles at the presynaptic membrane may destabilize VGCCs,
whereas postsynaptic receptor populations are less disturbed by exo- and endocytotic events
that mainly occur outside the postsynaptic density [162, 163]. The question of how presy-
naptic calcium channel nanodomains are defined at a molecular level remains open. One
possibility is the transient association of VGCCs to individual release sites within the ac-
tive zone [119]. Observed stabilization of CaV2.1 channels after acute silencing of network
activity (Figure 3.3) suggests that ongoing transmitter release prevents stable connections
between individual calcium channels and release sites and hence promotes fast turnover of
channels inside the nanodomain. Specific transsynaptic adhesion complexes that are known
to influence presynaptic release properties and to promote the accumulation of channels in
the presynaptic membrane could contribute to the formation of nanodomains as confining
elements [164, 165]. Channels outside nanodomains may be kept inside the presynaptic
compartments by repulsive interactions with the endocytotic machinery on the edge of the
active zone [166]. Individual release sites occur at distinct places within the active zone [138]
and are initialized by Munc13 [119], which suggests that these molecular complexes may
determine the fluctuations of individual nanodomains of VGCCs inside synapses. In addi-
tion, molecular crowding of the presynaptic membrane will contribute to keeping a sufficient
population of channels within the presynaptic membrane.

The distal C-terminal binding sites in relation to scaffold proteins do not influence the
general synaptic targeting of CaV2.1 channels [150, 149, 167] (Figures 3.1D,E). However,
depending on the splicing of the C terminus, CaV2.1 channels influence synaptic transmis-
sion properties and short-term plasticity differently (Figures 3.2 and 3.6D). Using functional
imaging and electrophysiology, we show that surprisingly, the loss of the distal C termi-
nus (CaV2.1∆47) increases the release probability of SV, although these channels seem to
be loosely coupled, as indicated by the sensitivity of the EPSC amplitude to EGTA (Fig-
ures 3.2D-I). In contrast, synapses dominated by CaV2.1+47 channels were proposed to be
tightly associated to SVs via the C-terminal scaffold interaction [143] and were insensitive to
EGTA. Opposite to our initial expectations, CaV2.1 channels expressing the full C terminus
(CaV2.1+47) are significantly more dynamic within presynaptic nanodomains and less potent
to scale the presynaptic molecular composition compared with CaV2.1∆47 channels (Fig-
ures 3.1F and 3.3G). Stronger up-scaling of presynaptic proteins and the total presynaptic
CaV2.1 population upon expression of CaV2.1∆47 channels can involve several mechanisms.
First, the loss of the distal C terminus could allow the CaV2.1∆47 variant to get closer to
the SV due to reduced scaffold interaction. Second, the absence of the distal part of the C
terminus could uncover additional binding sites, which are otherwise sterically blocked or
simply impeded by other interaction partners of the distal C terminus. Such a mechanism
has been described for a CaV2.1 exon 47 knockout mouse model expressing exclusively the
short C-terminal splice variant [148] found impaired binding of CaV2.1∆47 channels to RIM
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and the CaVβ4 subunit, but more interestingly, they uncovered an enhanced GABAB2 in-
teraction. Considering the observed deficits in motor coordination and the occurrence of
absence seizures in this mouse model, these findings support the importance of the distal
C-terminal domain for multiple protein interactions not only by providing binding sites but
also by masking other ones. Other studies focusing on the C terminus of CaV1.3 channels
and its interaction to calmodulin also showed the expression of the CaV1.3 exon 47 in con-
nection with impeded interaction [168, 169]. Here, only the ∆47 variant has been reported
to bind calmodulin via a C-terminal pre-IQ domain [168, 169]. In the context of calmodulin
interaction, the authors proposed a regulatory mechanism that allows activity-dependent
cooperative gating of calcium channels by the formation of channel clusters using calmod-
ulin as a linker. Our functional and electrophysiological data, demonstrating that the short
CaV2.1 splice variant is more potent in synaptic release and at the same time only loosely
coupled (Figures 3.2E,F,H,I), could be interpreted as cooperative gating of clustered chan-
nels, leading to add-on of local Ca2+ transients. Consequently, we hypothesize that the distal
part of CaV2.1 not only sets a specific VGCC-to- SV distance but also prevents binding to
other potential interaction partners and probably to calcium channels so that the expression
of exon 47 helps to maintain single-channel properties.

Using light-induced cross-linking, we directly explored the impact of calcium channel
surface dynamics on synaptic transmission properties. Here, we observed effective recruit-
ment of CaV2.1 channels to the synaptic compartment and reduction of their overall mobility
(Figures 3.5A-C; Figure 3.11J). Keeping these effects in mind, the dramatic effect of exclu-
sively CaV2.1+47 cross-linking on the PPR and its sensitivity to EGTA supports our idea
of a defined connection between SVs and CaV2.1+47 channels. We propose that C-terminal
scaffold interactions define a certain distance between CaV2.1+47 channels and SVs. Thus,
cross-linking of CaV2.1+47 might recruit channels close to readily releasable SVs reflected
in an enhanced EPSC amplitude. The cross-linking of CaV2.1+47 channels reduced their
dynamics and could increase the possibility of CaV2.1+47 channels being tethered to SVs.
Due to the N-terminal x-link and the likely limited number of interaction sites to SVs, ad-
ditional x-linked CaV2.1+47 channels might be not perfectly localized but rather interlinked
to channels already associated with the SV.

We conclude that the emergent effect of mobile channels within the synapse is the ability
to tune SV release in response to previous activity, which will influence the association
between channels and SVs depending on their C-terminal configuration and the effective
affinities to interaction partners. Hence, quick rearrangements within the active zone can
affect the reliability of synaptic transmission, as seen in synapses overpopulated with one of
the C-terminal splice variants or after cross-linking (Figures 3.6D,F,G).

We propose that alternative splicing of exon 47 of CaV2.1 channels contributes to re-
lease probability and short-term plasticity of individual synapses from different neurons or
even along the axon of individual neurons [85, 170]. When the CaV2.1∆47 variant lacks
C-terminal scaffold interactions, we assume stochastic coupling of calcium channels to SVs
primarily caused by their surface mobility. However, CaV2.1+47 channels are likely localized
in defined proximity to SVs, which is transient in nature. The impact of alternative splicing
on the developmental profile of short-term plasticity remains to be explored. The clinical
manifestation of SCA6, a developmental late-onset spinocerebellar ataxia, was reported to
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be caused by abnormal expansion of a CAG nucleotide triplet repeat in the CACNA1A gene
expressed only in the +47 splice variant [171].

Altogether, our data suggest that alternative splicing can serve as an endogenous mech-
anism to shape release probability and short-term plasticity of individual synapses, as shown
for homeostatic plasticity [85]. We propose that stochastic mobility-driven and use-dependent
rearrangement of calcium channels constitutes initial processing of information at the presy-
naptic site and depends on flexible association between channels and SVs.

3.4 Supplementary Information

[Irrelevant parts of the SI with respect to the thesis were left out. Please see the original
article for the complete SI].

3.4.1 Single-particle tracking PALM

Experimental setup

Hippocampal neurons were transfected at DIV4 either with the synaptic calcium sensor
synaptophysin::GCaMP5G and the N-terminally tagged CaV2.1 splice variants (mEOS2 or
mEOS3.2) in a ratio of 1:1, or CaV2.1 splice variants alone. When CaV2.1 splice variants
were transfected alone, cells were incubated in culture medium with 2 mg/ml synaptotagmin1
antibody labeled with CypHer5E (Synaptic Systems; Cat #: 105311CpH) for 1 h prior to the
experiment to indicate synaptic compartments. All sptPALM experiments were performed
at DIV15-19 within a whole microscope incubator at 37◦c using an inverted TIRF setup. The
eclipse Ti microscope (Nikon GmbH) was equipped with a 100 x Apo TIRF oil objective
(1.49 NA; Nikon). Fluorescence was excited by oblique illumination of the probe with a
combined laser system (Coherent; MPB communications Inc.) and image sequences (up
to 9999 frames) were captured by an EMCCD camera (iXon+ 897, Andor Technology)
controlled by NIS-Elements Advanced Research acquisition soft- ware (Nikon) at a frame
rate of 50 Hz. If not mentioned otherwise, cells were perfused with extracellular solution
containing (in mM): 145 NaCl, 2.5 KCl, 10 HEPES, and 10 D-glucose 2 MgCl 2 , 2 CaCl
2 (pH 7.4). Prior to acquisition, the red channel was bleached to reduce background and
unspecific signals. The mEOS was photo-activated using a continuous illumination of the
sample with a 405 nm laser set to 4%-5% of maximal laser power (100 mW). Simultaneously,
the photo-converted mEOS single-molecule fluores- cence signal was excited with a 561 nm
laser using 20% of maximal laser power (300 mW). To further improve the separation of
the mEOS signal from auto fluorescence and background signals, an emission bandpass filter
(ET620/60 nm; AHF analysentechnik) was used. In oligomerization experiments, CRY2olig-
mCherry-positive cells were exposed to a 488 nm light pulse (> 500 ms) and recorded 2 min
later. To dissect the impact of neuronal activity on Ca V 2.1 surface mobility, the network
activity was acutely suppressed by 1) blockade of postsynaptic glutamate receptors (through
application of 10 mM APV and 10 mM CNQX to the extracellular solution) and 2) blockade
of sodium channels (through application 1 mM tetrodotoxin to the extracellular solution).



99
Localization and trajectory reconnection of mEOS signals was carried out using wavelet-

based algorithm [52]. Trajectories of mEOS-tagged molecules were reconstructed by a simu-
lated annealing algorithm [57], which takes into account molecule localization and total inten-
sity. It has been reported that mEOS2 molecules can show blinking-like behavior [172, 32].
To avoid false reconnections between trajectories, all sub-trajectories were analyzed as in-
dividual trajectories. The experimental limit to resolve the dynamic behavior of single
molecules was computed from the mean square displacement (MSD) of immobile mEOS3.2
molecules in fixed samples. Diffusion coefficients (D) were calculated by linear fitting of
the first four points of the MSD plots. MSD plots of immobilized molecules (on fixed sam-
ples) revealed that, under our imaging conditions, molecules with D ≥ 0.002µm2/s can be
considered as mobile.

3.4.2 Data analysis and modeling

Estimation of potential wells characteristics

The characteristics of the parabolic well are estimated from SPTs using the drift map com-
puted from equation (1.20) with a square grid of resolution r = 30 nm considering only bins
containing at least 3 points. The center of the wells corresponds to local maxima of the
density map. The boundary of each well corresponds to the error ellipse of the covariance
matrix of the points located around the center of the well and obtained by principal compo-
nent analysis. We then estimate the depth of the each well (equation (1.8)) by computing
the optimal gradient field corresponding to the observed drift field inside the ellipse. We use
a least-squares approach for optimizing the following error function

ErrN(b, A) =
N∑
i=1
|| − ∇U(X i)− b(X i)||2 =

N∑
i=1

(
bx(X i) + 2Axi

a2

)2
+
(
by(X i) + 2Ayi

b2

)2
,(3.1)

where N is the number of bins contained in the ellipse, X i = (xi, yi) is the center of each
bin (considering the center of the ellipse as the origin and rotating the coordinate system
such that the large semi-axis aligns with the x axis), b(X i) = (bx(X i), by(X i)) drift field
estimated for bin X i , a > b are the semi-axes of the ellipse and A is the depth of the well.
The only free parameter of equation (1.8) is the depth A that we obtain as:

A∗N = argminA∈RErrN(b, A) (3.2)

Leading to the unbiased estimator

A∗N =

N∑
i=1

bx(X i)xi
a2 + by(X i)yi

b2

2
N∑
i=1

x2
i

a4 + y2
i

b4

. (3.3)
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Finally, we defined a similarity index between the observed drift field and the corresponding
optimal parabolic field, based on the residual error as

SN(b, A∗N) = ErrN(b, A∗N)
N∑
i=1
||b(X i)||2

= 1−

(
N∑
i=1

bx(X i)xi
a2 + by(X i)yi

b2

)2

(
N∑
i=1

x2
i

a4 + y2
i

b4

)(
N∑
i=1
||b(X i)||2

) (3.4)

The index S has the following characteristics: S ∈ [0, 1] such that S → 0 for an observed
drift field corresponding to equation (1.8) and S → 1 for a random vector field as observed
for diffusive motion. We consider as parabolic potential wells the regions for which S < 1

2 .

Temporal segmentation of trajectories

In order to capture the temporal dynamics of the wells and to prevent possible motion of well
centers to contaminate the estimations, we performed a temporal segmentation of the tra-
jectories. For each dataset, we segmented the raw trajectories into successive time windows
of 20 s duration with either 0% or 50% overlap between successive windows. Trajectories
appearing across two time windows were cut into two separate trajectories. Then, for each
time window, we run the potential well detection algorithm and collected the detected wells.
Finally, we regroup into families the wells from successive time windows which centers are less
than 100 nm apart. Families allow to track the temporal evolution of the same nanodomain
through multiple time-windows. In Figures 3.3C,E, and 3.5B-D, the reported potential wells
were detected using 0% overlap between time windows. In Figures 3.3A,B, and 3.5A, we
used a 50% overlap between time windows and the reported ellipses are averages for the
different detected families.

Colocalization of the potential wells with presynaptic markers

We use the following criteria to determine whether or not a potential well colocalize with
either synaptotagmin1::CypHer5E or GCaMP5G::synaptophysin when the threshold of the
pixel intensity was above 50 (in absolute value in the scale from 0 to 255) for at least 30%
of the surface area of the well. Except specified otherwise, all the potential wells reported
colocalize with either synaptic marker.

Estimation of the residence time for two close-by potential wells

Cross-linking channels result in aggregation of potential wells. To assess how this clustering
affects the residence time of a channel in a cluster, we consider the case of two close-by wells
W1 and W2 with residence times τ1 and τ2 respectively. We consider that when channels
escape from W1 they can either escape from the cluster with probability pe or enter the
second well with probability 1− pe. The probability pe depends on the distance between the



101
two wells. To compute the total residence time τT of a channel inside the cluster W1 ∪W2,
we use Bayes law by conditioning on the number of jumps k between the wells

τ̄T =
+∞∑
k=0

E{τT |k}Pr{k}, (3.5)

where Pr{k} is the probability of k transitions between wells before exit and E{τT |k} is the
conditional exit time for k transition. By definition,

Pr{k} = pe(1− pe)k, (3.6)

and

E{τT |2p} = (p+ 1)τ1 + pτ2, E{τT |2p− 1} = p(τ1 + τ2). (3.7)

The sum is thus

τ̄T = 1
2(2− pe)2

(
(1− pe)(τ1 + τ2) + τ2(1− pe)2 + τ1

)
. (3.8)

The value of τ̄T as a function of pe is presented in Figure 3.12E for different values of τ1 and
τ2. In Figures 3.12F-G, we present a numerical scheme to estimate the probability pe using
Brownian simulations. In this scheme, we consider two wells in the active zone separated by
a distance d, that we vary. To estimate the escape probability pe, we ran simulations and
computed the first time that a Brownian trajectory starting at a point uniformly distributed
outside the well (modeled as disk of radius rin) hits the active zone boundary, which is
defined as outer circle of radius rout (Figure 3.12F, red circle), before any other one of the
well. The result is presented in Figure 3.12G.

To conclude, this stochastic simulation shows how the splitting probability can be com-
puted from a model of potential wells located inside a round Active Zone. For Active Zones
with different geometrical features (elliptic shape), with potential wells located at a shorter
distance from the boundary could largely modulate the present result.
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Figure 3.7: (previous page) Species specific immune reactivity of commercially anti-CaV2.1
antibodies and replacement of endogenous CaV2.1 channel population by overexpressed
CaV2.1 Antibodies against CaV2.1 channel epitopes were tested in transfected HEK293T cells
to determine their specificity for CaV2.1 and species specific differences in the C-terminus.
Different subunits and C-terminal splice variants from rat and human were used to deter-
mine the specificity of used antibodies. A. Schematic representation of CaV2.1 α1 subunit
indicating the binding sites of the four tested CaV2.1 antibodies against intracellular epi-
topes. B. Guinea pig anti-VDCC α1A (Frontier Institute, VDCCa1A-GP-Af810). C. Rabbit
anti-CaV2.1 (Alomone Labs, Cat #: ACC-001). D. Rabbit anti-voltage-gated Ca2+ channel
antibody 1 (Synaptic Systems, Cat #: 152103). E. rabbit anti-voltage-gated Ca2+ chan-
nel antibody 2 (Synaptic Systems, Cat #: 152203). The experiments were repeated for
3 independent transfections. Scale bar 10 µm. F. Representative fluorescence images of
over-expressed chimeric CaV2.1+47::GFP clusters (green) in cultured hippocampal neurons
(DIV16). Endogenous CaV2.1 channels (red) were labeled with the anti-CaV2.1 antibody
(Synaptic Systems, Cat #152203). Anti-Bassoon labeling (blue) was used as presynap-
tic marker. Scale bar 5 µm. I) Line scan of a mixed synapse (characterized by positive
staining for Bassoon, the chimeric CaV2.1+47 and endogenous CaV2.1 channels. II) Line
scan of a replaced synapse lacking the endogenous CaV2.1 population. III) Line scan of an
endogenous synapse showing staining for Bassoon and endogenous CaV2.1 only. G. Synap-
tic co-localization analyzed for overexpressed CaV2.1 splice variants (CaV2.1∆47 (red) and
CaV2.1+47 (blue)) transfected at DIV 4 and stained at DIV9, 16 and 23. Data represent 3 hip-
pocampal cultures per condition. H. Power of CaV2.1 splice variants for synaptic replacement
of endogenous CaV2.1 with overexpressed CaV2.1::GFP, as indicated in G). Significance for
synaptic co-localization was determined for the splice variants: DIV9, p-value=0.887778 (not
significant); DIV16, p-value=0.000001 (****), DIV23, p-value=0.000207 (***). H) Synaptic
replacement has been analyzed for overexpressed CaV2.1 splice variants transfected at DIV
4 at stained at DIV9, 16 and 23. Significance for strength of synaptic replacement was
determined for the splice variants: DIV9, p-value=0.023746 (*); DIV16, p-value=0.738954
(ns), DIV23, p-value=0.015258 (*). All data shown in g and h are means calculated from
35 (n=35) 512 × 512 px images. The mean number of analyzed GFP-positive synapses per
image was 80 for DIV9; 150 for DIV16 and 180 for DIV23. The experiment performed on
three individual hippocampal cultures in case of the DIV9 and DIV16 condition and on two
hippocampal cultures in case of DIV23 condition. Error bars indicate SEM.

Estimation of the number of channels in a well

SPTs are obtained by random activation and it is not possible to obtain this data to estimate
the number of channels located in a single potential well at the active zone. Indeed, the
method is based on a sparse excitation of the fluorophores at a random time. To estimate
the number of receptors inside potential wells, it is necessary to use the density of CaV2.1
channels at the active zone ≈ 403 channels/µm2 [132, 133]. Using the estimation of potential
well size, S = πab = 0.022µm2 (a, b are the main axes of the ellipses), we obtain around 9
calcium channels in an average well. If there are ≈ 3 docking sites (in average) per active
zone [133], we conclude that there are ≈ 3 channels per vesicle, although the key parameter is
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Figure 3.8: Electrophysiological characterization of tagged CaV2.1 splice variants
in HEK293T cells. A., B. Schematic representation of CaV2.1 C-terminal splice variants:
CaV2.1+47::GFP (blue) and CaV2.1∆47::GFP (red) with corresponding whole-cell currents using
barium as charge carrier and induced by a step protocol from holding potential at -90 mV to test
potentials between -10 - 5 mV. C.-J. Current/voltage relationship, activation and steady inacti-
vation properties of tagged CaV2.1 splice variants (as indicated) using barium (black) or calcium
(gray) as charge carrier. K.-N. Fast AP-like voltage ramps from -90 mV to 0 mV and back to -90
mV were used to probe the cumulative inactivation of tagged channel subunits. Trains of 10-100
Hz for 10 repetitive stimuli were used. Currents were recorded either with barium (filled symbols)
or calcium (bordered symbols) as charge carrier. O. Averaged values and cell number for whole-cell
patch clamp analysis of tagged CaV2.1 splice variants.
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the distance of the channel to the center of the vesicle or the place where synaptotagmin are
located. We note that the present estimations are very different from the ones obtained from
a packing density calculation where we find that there are 47 round channels (in projection)
of radius r = 10 nm that fill an ellipse (region of a potential well) of size a = 88 nm and b
= 70 nm.
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Figure 3.9: (previous page) Characterization of the synaptic localization and function
of the genetically encoded calcium sensor GCaMP5G::synaptophysin; Kinetic of
EPSCs from paired recordings of monosynaptic coupled neurons. A. Representa-
tive image of live rat hippocampal neurons (DIV 19) expressing GCaMP5G::synaptophysin
(green). Active synapses were labeled by uptake of anti-synaptotagmin1::CypHer5E
(magenta). Expanded regions show co-localization of both presynaptic markers as in-
dicated (arrows). Scale bars correspond to 20 µm (overview) and 5 µm (expanded
view). B. Representative image of fixed rat hippocampal neurons (DIV17) expressing
GCaMP5G::synaptophysin (green). Presynaptic compartments are labelled by anti-Bassoon
immunreactivity (blue) postsynaptic compartments are labelled by anti-Homer-1 immunre-
activity (red). Expanded regions show co-localization of both labels and enrichment of
expressed GCaMP5G::synaptophysin. Scale bars correspond to 20 µm (overview) and 5 µm
(expanded view). C. Fluorescence changes over time for repetitive electrical field stimuli (at
20 Hz) as indicated in the color code. Data are from 3 independent cultures transfected at
3-4 DIV and recorded 15-17 DIV at 37 ◦C in extracellular solution containing 2 mM MgCl 2
and 2 mM CaCl 2. D. Averaged peak amplitude ± SEM of the GCaMP5G::synaptophysin
as a function of the number of stimuli. E. Mean rise time of EPSCs recorded from post-
synaptic neurons that where connected to presynaptic neurons expressing tagged CaV2.1
channels as indicated. F. Mean decay time-constant for EPSCs for conditions as indicated.
Data correspond to Fig. 3.2I, 3.4M and 3.4N.
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Figure 3.10: Synaptic activity and vesicle exo- and endocytosis in synapses expressing dif-
ferent tagged CaV2.1 splice variants. A. Schematic representation of anti-Synaptotagmin1 antibody
uptake essay as well as experimental conditions. B. Overlay of synaptotagmin1-antibody::CypHer5E labeled
synapses (magenta) and CaV2.1+47::GFP expressing axonal structures (green). Next pictures show anti-
synaptotagmin1 labelling, before, during and after stimulation with 200 action potential (AP)-like electrical
field stimulation at 20 Hz and 37 ◦C. The scale bar corresponds to 5 µm. c) Bleach corrected mean quench-
ing curves of the CypHer5E signal in response to 200 AP-like stimuli. C. Normalized fluorescent intensity
of synaptotagmin1::CypHer5E labelled synapses expressing either CaV2.1∆47::GFP (red), CaV2.1+47::GFP
(blue), CaV2.1∆47::CRY2::GFP (red-crossed) and CaV2.1+47::CRY2::GFP (blue-crossed) to not transfected
neighbor synapses. D. The quenching of the CypHer5E fluorescence correlates with the neutralization of
the fluorophore environment through ongoing fusion of SV. The re-uptake is seen as a steady increase in the
fluorescence after the indicated stimulus train. Bleach corrected quenching of synaptotagmin1::CypHer5E
labelled synapses is shown for GFP and CRY2 tagged CaV2.1 channels and non-transfected synapses as indi-
cated in the graphs. E. Maximal CypHer5E quenching response of transfected and non-ransfected synapses
as indicated. F. Time constant τ of synaptic vesicle exocytosis are calculated by one-phase exponential fit-
ting of the fluorescent quenching during ongoing stimulation. Synapses transfected either with GFP or CRY2
tagged CaV2.1 splice variants did show faster exocytosis time constant in comparison to control synapses.
G. Time constant τ of synaptic vesicle endocytosis as recovery of fluorescent signal in quenched synapses.
The kinetic of fluorescent recovery was not different between transfected and non-transfected synapses.
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Figure 3.11: (previous page) Proportions of the different mobility modes for CaV2.1 splice
variants; Potential well stability and number per synapse; Heterogeneous distribution of SPTs
and high-density regions of Calcium channels MSD curves of individual CaV2.1 channels
were classified according to their modes of motion using a log-log representation of the
proportionality between MSD and tα, where the α parameter was then extracted as the
curve’s slope. The value of α corresponds to direct motion α > 1 (blue), pure diffusion
α = 1 (black) or confined diffusion α < 1 (red) [173]. Shown are the mean MSD curves
determined for the modes of motion and their calculated proportion (considering all MSD
curves determined as mobile (D > 0.002µm2/s)). A. Extra synaptic CaV2.1∆47. B. Synaptic
CaV2.1∆47. C. Extra synaptic CaV2.1+47. D. Synaptic CaV2.1+47. E. Energy (solid) and size
(dashed) of the two potential well presented in Fig. 3.3H (same color-code) as a function of the
time. F. Well longevity vs time for CaV2.1∆47 red and CaV2.1+47 (blue) splice variants and
different treatments: control (void), CNQX+APV (dashed), TTX (plain). G., H. Selected
regions presenting trajectory maps of CaV2.1∆47 (G) and CaV2.1+47 (H) channels overlaid
on top of a synaptotagmin fluorescence images (left panels); the corresponding density map
(middle panels) presenting the local point density (in log units); and the corresponding
diffusion coefficients map presenting the local diffusion coefficients (right panels). I. Energy
distribution in potential wells corresponding to the expressed Ca V 2.1 splice variant (red =
CaV2.1∆47, blue = CaV2.1+47) network activity (CNQX/APV, TTX) and cross-link (CRY2).
The differences between treatments were tested by a Wilcoxon rank test, data are from 2-7
independent cultures) Density of potential wells along the axonal membranes. Differences
between treatments were tested by a unpaired t-test, data are from 2-9 independent cultures.
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Figure 3.12: (previous page) Effect of CRY2olig-mediated CaV2.1 channels cross-link
on synaptic expression of channels and bassoon; Effective potential wells formed
by multiple close by potential wells. A. Example image of hippocampal cultured neu-
rons 16 DIV transfected with CaV2.1∆47::CRY2::mCherry (green). Cells were exposed to
blue light for 1 min prior fixation to induce CaV2.1 cross-linking. Total CaV2.1 popula-
tion was labeled via anti-CaV2.1 antibody (red). Presynaptic terminals were labelled with
anti-Bassoon (blue). Co-localization of calcium channel clusters and presynaptic structures
are indicated by arrows. Scale bars correspond to 10µm (overview) or 5µm (picture sec-
tion). B. Quantification of the co-localization of cross- linked CaV2.2::CRY2 (red, crossed)
or CaV2.1+47::CRY2 (blue, crossed) with Bassoon in hippocampal neurons 16 DIV in com-
parisons with the synaptic co-localization of endogenously expressed CaV2.1 (gray). C.
Effects of the cross-linking of CaV2.1 splice variants (as indicated in B) on the total amount
of presynaptic CaV2.1 and expression of Bassoon. The individual fluorescence intensities are
normalized to non-transfected synapses from the same field of view and compared to GFP-
tagged CaV2.1 splice variants used as non-clustered control. Data are from 3 independent
cultures, significance were tested by ANOVA followed by a Holm-Sidak test. D. Illustration
of the effective wells that can be theoretically formed when cross-linked calcium channels
repetitively fall into close-by potential wells, effectively increasing its residence time in the
region. E. Simulation of the residence time as a function of the escape probability of the
effective well presented in D) for different values of the residence times in each well. F.
Simulation scheme for evaluating the splitting probability p e between the boundary of the
Active Zone, modeled as a circle of radius r out and two potential wells of radius r in and
separated by a distance d. Brownian trajectories are generated outside the wells but inside
the Active Zone (AZ). G. Estimation of the Escape (splitting) probability p e (red curve)
and 1-p e (black curve) for a Brownian channel to hit the boundary of the AZ (red) before
one of the wells vs the distance d. Two cases are presented: when the initial distribution
is uniformly distributed (Left) and at the center P(Right) of the AZ. The Results are given
as mean and standard deviation over 100 realizations with 100 trajectories (∆t = 10−4s,
number of trajectories ntraj = 100, inner radius rin = 1µm, outer radius rout = 3µm and
diffusion coefficient D = 0.041µm2/s).
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Single particle trajectories reveal
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flow
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(∗: equally)

Abstract The endoplasmic reticulum (ER), a network of membranous sheets and pipes,
supports functions encompassing biogenesis of secretory proteins and delivery of functional
solutes throughout the cell [174, 175]. Molecular mobility through the ER network enables
these functionalities, but diffusion alone is not sufficient to explain luminal transport across
supramicrometre distances. Understanding the ER structure-function relationship is critical
in light of mutations in ER morphology-regulating proteins that give rise to neurodegener-
ative disorders [176, 177]. Here, super-resolution microscopy and analysis of single particle
trajectories of ER luminal proteins revealed that the topological organization of the ER
correlates with distinct trafficking modes of its luminal content: with a dominant diffusive
component in tubular junctions and a fast flow component in tubules. Particle trajectory
orientations resolved over time revealed an alternating current of the ER contents, while
fast ER super-resolution identified energy-dependent tubule contraction events at specific
points as a plausible mechanism for generating active ER luminal flow. The discovery of ac-
tive flow in the ER has implications for timely ER content distribution throughout the cell,
particularly important for cells with extensive ER-containing projections such as neurons.
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4.1 Introducion

The endoplasmic reticulum (ER) is a contiguous network of membranous sheet-like reser-
voirs and tubes extending throughout the cell. Maintained by membrane-shaping pro-
teins [174, 175], this morphology supports the distribution of ER luminal content to distant
sites. The ER-content distribution rate affects the efficiency of ER-mediated intracellular
connectivity. Perturbation of this fundamental process may contribute to diseases caused
by mutations in ER-shaping proteins [176, 177]. Measurements of ER-luminal protein mo-
bility using fluorescence recovery after photobleaching (FRAP) have previously uncovered
an energy dependence that is difficult to reconcile with passive diffusion [178, 21]. An in-
crease in luminal crowding due to the incapacitation of ATP-dependent ER chaperones has
been suggested as a plausible explanation for this effect (direct crowding measurements here
do not detect such an effect). Addressing this paradox remained challenging since FRAP
measurements report on bulk mobility, and do not inform as to the nature of forces driv-
ing mobility at a molecular level. A passive diffusion model for luminal transport is also
challenged by the notion that traversal time of random walking molecules increases sharply
with distance. This poses kinetic limits for material exchange in an expanded ER network.
Recent advances in super-resolution microscopy afford a basis for development of a single
particle tracking (SPT) approach to provide a detailed description of molecular motion in
the ER lumen, with potential to generate a wealth of information regarding directionality
and velocity from a large number of simultaneous single-molecule displacement events. Using
live-cell super-resolution microscopy, we visualized and analyzed single molecule trajectories
traversing tubular ER, and the organelle’s real-time morphological dynamics.

4.2 Results

First we examined, in our experimental system, the energy dependence of luminal protein
mobility, previously demonstrated for green fluorescent protein (GFP) using FRAP [21]. The
escape rate of photoconvertible fluorescent protein (Dendra2-ER) from a region of activation
was attenuated by ATP depletion (Fig. 4.1a). This may reflect either an increase in resistance
to motion or a decrease in active transport of proteins on energy starvation. The former is
contradicted by measurements of ER crowdedness, using a sensitive fluorescence resonance
energy transfer (FRET)-based probe [179], that, over a broad range of expression levels,
remained unaltered by ATP depletion (Fig. 4.1b-d and Fig. 4.6a). Furthermore, displacement
of Dendra2 proteins (initially localized as a ’packet’ in a small volume of the tubular ER
that had been subjected to a colour-photoswitching laser pulse) occurred with variable speed
and had a conspicuous unidirectional component (Fig. 4.1e). These features are inconsistent
with Brownian motion and suggest, instead, active transport.
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Figure 4.1: (previous page) A. A trace of time-dependent decay in the intensity of the fluo-
rescence signal from an ER-localized photoconvertible protein, Dendra2-ER, after a pulse of
photoconverting illumination delivered to a small patch of untreated or ATP-depleted COS7
cells. The inset denotes mean ± s.e.m. (n = 5 traces per condition) of fluorescence decay
half-time, reflecting the probe’s escape from the photoconversion area. B.. Fluorescence
intensity (left) and colour-coded fluorescence lifetime (FLT) images (right) of COS7 cells
transfected with an ER-localized molecular crowding probe7. The FLT distribution within
imaged cells is displayed in colour-coded histograms with mean FLT noted (in picoseconds,
right). Cells were left untreated (UNT), ATP depleted or treated with hyper-osmotic (Hy-
per os.) or hypo-osmotic buffers that induce cell shrinking or swelling to obtain maximal
and minimal crowding values, respectively. Shown are characteristic images observed in
three independent repeats. C. A bar diagram of FRET-donor FLT values (in nano seconds,
ns) measured as in b (mean values ± s.d., n = 22 independently sampled cells). D. A
bar diagram of relative intracellular ATP concentration measured with a FRET-based ATP
probe (ATeam) [180] in cells untreated or ATP-depleted as in a and B. The minimum and
maximum values represent the probe readings in ATP-depleted or saturating conditions,
respectively, imposed in semi-permeabilized cells. Shown are mean values ± s.d., n = 10
independently sampled cells. E. Images of a COS7 cell expressing Dendra2-ER. A brief pulse
of illumination-photoconverted Dendra2 from green to red in a restricted region of the ER.
The progression of the photoconverted packet of proteins is revealed by the time series and
summated in the magnified image in the bottom panel with its velocity colour-coded.

To characterize motion in the ER lumen, we performed real-time SPT in live cells, acquir-
ing trajectories at optical super-resolution. Imaging at 56 Hz, we recorded single molecule
fluorescent signals from functional (Halo-tagged ER luminal chaperone, calreticulin, Crt)
and inert (ER-targeted HaloTag) proteins, both sparsely labelled with a fluorescent lig-
and (chloroalkane-tetramethylrhodamine, TMR). The brightness and photostability of the
TMR ligand enabled the tracking of single particles over longer trajectories than genetically
encoded fluorophores (Fig. 4.6b), thus establishing spatio-temporal correlations in motion
patterns over extended periods of time. This approach offered information on directionality
and instantaneous velocity at a single molecule level, not available in bulk methods such as
FRAP. By implementing a single molecule localization algorithm, images reconstructed from
the SPT series revealed a pattern typical of the ER network, confirming ER-localization of
the HaloTag-Crt and washout of the unbound dye (Fig. 4.2a,b).

Trajectories were generated from single-molecule time series by sequentially implement-
ing spot detection and tracking algorithms [181, 107]. ER geometry constrains particle
movement to a narrow tubular network, which limits overlapping trajectories, contribut-
ing to the tracking algorithm’s ability to faithfully trace many molecules simultaneously.
Resulting trajectories reconstruct a map recognizable as a pattern of ER tubes and their
connecting reservoirs (Fig. 4.2c), reflecting tracking fidelity. Notably, spatio-temporal par-
ticle distributions were non-uniform, with higher time-integrated abundance in the tube-
connecting reservoirs (Fig. 4.2d). This heterogeneity correlated with spatial distribution of
instantaneous velocities, revealing distinct subgroups: relatively slow-moving particles pre-
dominantly detectable in segments of trajectories mapped to the nodes; and particles with
relatively high and variable velocities mapped to node-connecting tubes (Fig. 4.2c). These
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characteristics could be observed for two different markers (Crt and HaloTagER) and three
different cell types (HEK-293T, COS-7 and SH-SY5Y, Table 4.1). The long, single-tailed
velocity distribution observed (histogram, Fig. 4.2c) is incompatible with Brownian motion
(Fig. 4.2c, modelled by a solid line). Furthermore, ATP depletion led to selective loss of
the fast-moving population (Fig. 4.2e). These observations suggest that diffusive motion is
manifested by the slow-moving particles in the tube-connecting reservoirs (nodes), while the
rapidly moving particles in the tubes are subjected to an ATP-dependent propulsive force,
resulting in an ER luminal flow. The displacement profile observed fits significantly better
(Fig. 4.2c inset) a bi-modal diffusion and flow model (Fig. 4.2c, dashed line) than a purely
diffusive one (Fig. 4.2c, solid line).
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Figure 4.2: (previous page) A. An image reconstructed from single molecule localizations of
TMR-labelled Halo-tagged Crt, in HEK-293 cells, rendered with a molecular density colour
code. B. A skeletonization view of the image in A. Shown are representatives of n = 3
independent experiments. C. Single molecule trajectories generated using a particle-tracking
algorithm from the time series of image A, colour-coded according to the instantaneous
velocity distribution shown in the histogram. Overlaid traces: the velocity distribution
simulated assuming exclusively diffusion-driven motion (solid line, using apparent D from
F), or a combination of diffusion and flow (using D and flow rate from F and G). Inset:
cumulative distribution, Kolmogorov-Smirnov test of observed versus expected distributions.
D. A density map computed for a grid of square bins (sides of 0.2µm) imposed on the particle
displacement map. The ellipses mark boundaries of higher-density regions (correspond to
tube-connecting reservoirs/junctions). E., Histograms of instantaneous velocity frequency
distributions of SPT from a cell before/after ATP depletion (as in 4.1a-c). Inset: a violin
plot presenting the medians (red bars) and density (grey) of the distributions. A two-
sided Mann-Whitney U-test was used to compare the median of each pair of distributions
(∗ ∗ ∗P < 1 × 10−3), P (0 − 20min) = 1 × 10−80, P (20 − 40min) = 9.889 × 10−64, P (0 −
40min) = 1 × 10−80; n = 20, 526, n = 14, 591 and n = 10, 108 trajectory displacements
respectively. F., A diffusion map extracted from the empirical estimator of the Langevin
equation (equations (1.13) and (1.20)) and computed from a square grid as in d. Inset:
distributions of the diffusion coefficients inside nodes (avg ± s.d. = 0.19 ± 0.13, n = 226
nodes). G., Flow map computed by averaging non-Brownian velocity jumps of particles
moving between pairs of neighbouring nodes identified in D and colour-coded according to
the inset histogram. Inset: the distribution of the average instantaneous velocity between
pairs of neighbouring nodes (n = 705 node-pairs; avg ± s.d. = 22.90± 6.92).

Next we quantified temporal coordinate changes of HaloTag-Crt by analysing SPT data
using the overdamped limit of the Langevin model (where velocity is described as the sum
of diffusional and drift forces, and motion parameters are estimated from local statistics of
the displacement, see Methods) [76, 79, 17, 61]. Motion is described by the stochastic model
(a sum of directed and diffusional motion terms):

Ẋ = b(X) +
√

2D(X)ẇ (4.1)

where w is a white noise which source is the ambient thermal agitation, while the term
b is the local drift vector field and D is the effective local diffusion coefficient. The local
estimators (sub-section 1.4.2) allow to recover D and b from large numbers (∼ 104 per cell
acquisition) of single particle trajectories.

The global nature of this statistical approach considers not only particle displacement
speed but also direction patterns, extracted from a large number of trajectories repeatedly
traversing the same regions, thereby unmixing the contribution of Brownian and determinis-
tic forces. This computation identifies a slow diffusional (D = 0.19± 0.13µm2/s) component
that maps predominantly onto the nodes (Fig. 4.2f). The relatively fast movement of in-
ternode particles required an additional component to account for their directionality and
persistence, consistent with a propulsive force with normal distribution of velocity amplitudes
(22.9 ± 6.92µm/s, Fig. 4.2g). The super-diffusive nature of particle motion in ER tubules
was further confirmed by analysis of time-averaged mean squared displacement (MSD) of
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SPT. The time-averaged MSD can be described by ∼ tα, where the anomalous exponent
α defines motion as sub-diffusive if α < 1, Brownian/diffusive if α = 1 and super-diffusive
if α > 1. Conducted on the entire ensemble of trajectories, the MSD analysis revealed a
broad range of particle behaviours (0 < α < 1.5, Fig. 4.7b), whereas the same analysis
restricted to trajectory fragments located in nodes revealed clearly confined diffusion dy-
namics (α < 0.8, Fig. 4.7c). Trajectories of particles moving outside the nodes exhibited
super-diffusive dynamics (α > 1, Fig. 4.7d). These results are consistent with the active
motion mode identified in the analysis of Fig. 4.2.

Similar observations were made in green monkey kidney (COS-7) and human neuroblas-
toma (SH-SY5Y) cell lines, attesting to their broad validity in describing ER flow dynamics
and its spatial organization (Fig. 4.8, Table 4.1). Measurements of the motion parameters
of a lower-mass ER-localized protein, HaloTag-KDEL, showed similar values to those ob-
served with the tagged Crt (Fig. 4.8 and Table 4.1). Flow velocity was slightly higher in
COS cells than in HEK-293T and SH-SY5Y cells. The behaviour of the luminal ER markers,
HaloTag-KDEL and Crt, contrasted with that of a membrane-associated analogue of the lat-
ter, mEOS2-calnexin: its velocities were distributed relatively homogeneously through the
ER network (Fig. 4.3a,b), lacked the thick tail of high values in distribution of instantaneous
velocities and fitted well to a purely diffusional model (Fig. 4.3a-d).

To establish whether recently reported ER macrostructure motion characteristics [1] are
reflected in the SPT analysis, we focused on their numerical parameters. Motion of ER
tubules characterized by their relatively slow transverse oscillation (4 Hz, with an amplitude
< 50 nm, which translates to velocity < 0.2µm/s [1]), does not significantly contribute to
the relatively fast velocities of flow-assisted marker particles moving along the tubules (27−
42µm/s, Table 4.1). Junction fluctuations contribute a similarly insignificant component
to the diffusional motion inside the junction since the diffusion coefficient calculated from
tracking of whole junctions was 69 times slower than the mean diffusion coefficient computed
for single molecules [1] (Fig. 4.9). Furthermore, contribution of tubule growth to single
particle trajectories was found to be negligible, with a mean percentage of tubules growing
at any given time of 0.14± 0.04%.

Consistently, considering trajectory motion as a purely diffusive process yielded an ap-
parent diffusion coefficient of 1.13µm2/s (Fig. 4.7a) similar to that previously estimated by
FRAP [178, 182, 183].

Although most individual trajectories visited only a limited number of nodes (Fig. 4.4a),
an oriented network graph analysis, which identifies directly or proxy interconnected junc-
tions through trajectory directions [184], revealed that, regardless of their starting point,
particles have the potential to visit almost the entire ER network (Fig. 4.4b; the discon-
nected periphery is probably contributed by signals from neighbouring cell(s)). This analysis
is consistent with the notion that the ER network maintains a luminal continuum. The ER
appeared to be in a state of equilibrium, with nodes, on average, connected by an equal
number of inward and outward trajectories (Fig. 4.4c,d). These findings are consistent with
an interconnected system of flows that preserves the content across the ER.

Closer scrutiny of the directionality of individual tube-traversing particles suggested a
pattern whereby the direction of visible flow alternates with variable frequency (switching on
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Figure 4.3: A. Single molecule trajectories of mEOS2-calnexin expressed in HEK-293 cells
generated as in Fig. 4.2, colour-coded according to instantaneous velocity distribution. Inset:
instantaneous velocity distribution histograms computed from the displacements extracted
from the trajectories and overlaid by the expected distribution for a purely diffusive motion
with the diffusion coefficient extracted from D. B., Density map computed for a grid of
square bins (sides of 0.4µm) imposed on the particle displacement map. C., A diffusion map
extracted from the empirical estimator of the Langevin equation (equation (1)) and computed
from the same square grid as in B. D., Histograms of diffusion coefficients computed from
individual square bins, pooled from two cells, for the entire domain as presented in C. The red
curve on top of the diffusion histogram corresponds to a fit (trust region reflective algorithm)
to a Gaussian distribution with µD = 0.42µm2/s, σD = 0.12µm2/s and a determination
coefficient R2 = 0.986. Descriptive statistics are given as avg ± s.d.
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Figure 4.4: A. Number of nodes visited by individual particles. Trajectories map, as in
Fig. 4.2, colour-coded according to the number of nodes visited by a particle; and the distri-
bution of the number of nodes visited by each individual trajectory (excluding trajectories
visiting zero nodes). B. Vectorial representation of the ER network from Fig. 4.2 anal-
ysed using oriented network graph analysis, to assess the direct or proxy, uni/bi-lateral
trajectory-connectivity of the nodes, assigning a single colour for each interconnected area.
Note a strong connected component resulting in a monochromatic appearance of almost the
entire network. The arrows denote prevalent displacement directionality (detected in 18%
of tubes), defined as such if the steady-state ratio of flow in one direction versus the total
flow exceeds 0.75. The dashed links represent flows whose directionality could not be de-
termined due to an insufficient number of displacement events. C. Distribution histogram
of the number of outward-directed (efferent) and inward-directed (afferent) branching for
individual nodes. Efferent branches were defined as the number of nodes, reached by the
outward trajectories originating in the examined node, in the time-integrated map; accord-
ingly, afferent branches reflect the number of nodes-of-origin for the trajectories arriving at
the examined node. D. Distribution of the fraction of exiting trajectories for each node. All
values are given as avg ± s.d.
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average every 4s, maintained for up to 14s, Fig. 4.5a,b); and particles accelerated periodically
following their exit from a node, reaching brief velocity peaks that lasted up to 120 ms
(Fig. 4.5c,d). Intervals between velocity peaks and flow-directionality alternations were
distributed stochastically (Fig. 4.5b,d), suggesting that flow-inducing events (for example,
transient tubule contractions, discussed below) are not produced by synchronized oscillators
and are therefore not centrally coordinated. However, we cannot exclude the contribution of
synchronization processes whose phase is lost, as trajectories are recorded asynchronously.
Note that temporal profiles of directionality are not available using low spatio-temporal
resolution approaches (for example, FRAP or photoconversion pulse-chase, Fig. 4.1e).

4.3 Discussion

The oscillatory luminal motion suggested the possibility of nanoperistalsis-like [185] propul-
sion, attainable by tubule contractions. To test this, we obtained high-resolution time-series
images of the ER tube structure of live cells by fast structured illumination microscopy
(SIM) [1, 186, 187]. These revealed transient, asynchronous constriction of the tubes at
specific locations (Fig. 4.5e, Fig. 4.10a,b), consistent with a role for tube constriction in
generating flow. Constriction-driven propulsion is also consistent with the observed veloc-
ity values and variation of packets of photoconverted Dendra2 during their deterministic
traversal of the tubular ER (Vmax = 19.9µm/s, Fig. 4.1e). Furthermore, the frequency of
contraction events decreased fourfold on ATP depletion (Fig. 4.5f). It is expected that fol-
lowing an individual contraction event (with a frequency of hundreds of milliseconds), both
deterministic and acceleratory displacement of multiple particles would be detected, as SPT
acquisition operates at approximately ten times the contraction frequency. Assuming unco-
ordinated contractions throughout the tubular network, consecutive contractions have the
same probability to preserve or invert the direction of the next set of detectable SPT events
(consistent with observed distribution of directionality preservation time, Fig. 4.5b).

The notion that tubule contractions generate high-velocity peaks in luminal particles is
supported by the fact that their temporal distributions are both Poissonian (Fig. 4.5d,g),
indicating compatible physical processes. The larger time constant of contractions (∼ 900
ms) compared to that of high-velocity peaks (∼ 80 ms) is expected since several contraction
points may contribute to the particles’ acceleration incidence.

Furthermore, a physical model simulating forces resulting from tubule contraction, and
based on their empirical characteristics (Fig. 4.5h and sub-section 4.5.2), predicts flow veloc-
ities of 10− 40µm/s, in agreement with the high velocities observed in SPT (Fig. 4.5c). No-
tably, the contraction frequency is low enough to avoid coinciding proximal contractions that
may cancel the local flows (probability of simultaneous contractions of two points = 0.022,
sub-section 4.5.3). While the existence of a mechanism for spatio-temporal coordination of
the contraction events cannot be ruled out, our findings indicate that an uncoordinated sys-
tem, inducing fast local currents with alternating directionality inside the tubular network,
is sufficient to ensure a rapid luminal content homogenization/distribution and thereby over-
come a critical kinetic limitation of passive diffusion as a mechanism for ER content mixing
in large cells.
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Figure 4.5: (previous page) A. Analysis of particle trajectories’ directionality. Tubular junc-
tions/nodes are denoted by orange ellipses; grey lines denote all particle trajectories. Tra-
jectories connecting two nodes indicated as A and B are colour-coded according to their
direction either in red (B to A), or blue (A to B). The lower graph represents the temporal
pattern of traversal-directionality. The results shown are representative of n = 108 node-
pairs. B. Distribution of time periods of unidirectional inter-node displacement. C. Plots
of instantaneous particle velocities fluctuations. Velocities of particles following departure
from nodes and travelling along tubules (between nodes, red), and those of particles residing
within nodes (black). The solid lines represent mean values for all trajectories, and shaded
regions represent s.d. of total sample size: n = 111 internode and n = 140 intranode trajec-
tory displacements. D. Analysis of time duration TH of high-velocity (v > 20µm/s) peaks
(left) and time interval TL (right) between high-velocity peaks. Insets denote TH and TL of
a trajectory. The red line represents an exponential fit (R2 = 0.998). E. High-speed SIM
super-resolved images of the tubular ER in live COS7 cells stained with an ER membrane
dye (ER tracker green). Images were acquired in 54 ms intervals and processed as described
in Methods. The resulting SIM reconstructions were colour-coded according to intensity.
The magnified area shows the contours of ER tubules at higher magnification. The arrows
denote positions where transient contraction events occur repeatedly. Tubule contractions
are better visualized in COS7 cells, but detectable in HEK-293 cells too (Fig. 4.10). The
results shown are representative of n = 5 independent experiments. F. Box plot of tubule
contraction frequencies extracted from high-speed SIM time series as shown in E before
and after ATP depletion. Red line, median; boxes’ bottom/top edges, the 25th and 75th
percentiles, respectively; whiskers, extreme data points. Two-sided Mann-Whitney U-test
P = 1.7019× 10−7, n = 20 ER tubules. G. Distributions of contraction duration, intervals
and lengths from SIM videos as in e and Fig. 4.10. Red curves: exponential (left and middle)
and Gaussian (right) fits (R2 = 0.988, R2 = 0.969, R2 = 0.937, respectively). H., Schematic
representation of the model for estimating tubule contraction-induced particle velocity. All
values are given as avg ± s.d. for the noted n.

Localized contraction of ER tubules, leading to ER deformation, was observed during cal-
cium manipulation [188] (Fig. 4.10c), or phototoxicity (Fig. 4.10e), both reversible processes
affecting ER morphology (Fig. 4.10e). These super-resolved images of the ER’s structural
dynamics under severe experimental perturbation highlight a potential for ER tubes to con-
tract, revealing that fragments of the perturbed ER that had lost their tubular structure
displayed characteristically slow-velocity diffusional motion (Fig. 4.10d). Other physiologi-
cal membrane dynamic processes involving molecular motors, vesicular fusion and budding,
network oscillation [1] and even tube elongation/withdrawal may also contribute to flow and
warrant further investigation.

Regardless of their origin(s), the alternating luminal currents described here are well
suited to serve as a mixing device, enhancing distribution of ER content throughout the
cell. Given that diffusion-driven connectivity (matter exchange rate) decreases sharply with
distance, it is expected that the active process described here would be especially important
in cells with extensive ER projections, such as motor neurons. It is therefore tempting to
speculate that perturbed luminal flow might contribute to diseases such as hereditary spastic
paraplegia, associated with defective ER membrane-shaping proteins [176, 177, 189].



125
F

lu
o

re
sc

e
n

ce
 li

fe
tim

e
 (n

s)

3.8

3.6

3.4

3.2

3.0

2.8

2.6

2.4
0 5000 10000 15000

Fluorescence intensity (photon count)

T
ra

ck
 le

ng
th

 (
m

m
)

mEOS2-ER TMR-HaloTag-Crt

0

2

4

6

8

10

12

0

10

20

30

40

50a b n=344 n=685
n=48

Figure 4.6: Exogenous expression levels of a fluorescent protein do not affect macromolecular
crowding in the ER lumen; TMR photostability affords longer SPT trajectories. A. Plot of fluo-
rescence intensity versus fluorescence lifetime of individual cells expressing an ER-localised FRET-
based macromolecular crowding probe as in Fig. 4.1b. Fluorescence intensity serves as a measure of
exogenous protein expression levels. Fluorescence lifetime correlates inverselywith macromolecular
crowding as described in Fig. 4.1b. Note, no correlation (Pearson correlation coefficient ρ=-0.2109)
was observed between the broad range of exogenous protein expression levels and macromolecu-
lar crowding, n=48 independently sampled cells. B. Distribution of trajectory lengths(central bar
indicate the median, bottom and top edges of the box indicate the 25th and 75th percentiles re-
spectively and whiskers extend to the most extreme data points), generated as in Figure 4.2, the
correlation between fluorophore photostability and trajectory length attest to the fidelity of the
tracking procedure.

4.4 Supplementary information

When not stated otherwise, the following analysis was performed using MATLAB version
9.0 (MathWorks).

4.4.1 Mean Squared Displacement and first moment analysis

The Mean Squared Displacement (MSD) approach has been used to detect deviations from
classical free diffusive motion of SPTs. Indeed, the MSD at time lag τ is defined by

MSD(τ) = 〈|X(t+ τ)−X(t)|2〉, (4.2)

where the average is computed either over realizations or time. This quantity is expected to
grow like MSD(τ) ≈ Aτα for τ small where A > 0 and α is called the anomalous exponent.
An exponent α > 1 is a signature of a super-diffusive regime while α < 1 indicates a
sub-diffusive regime [190]. This analysis however does not provide any explanation for the
mechanisms causing a specific regime because it is usually computed by averaging over time
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(time-averaged MSD) or space (trajectory-averaged MSD) thus disregarding the possible
heterogeneous geometrical organization of STPs.

The motion exhibited by the recorded trajectories analyzed in Fig. 4.2 is neither time nor
space homogeneous. Indeed, the motions in nodes and tubules are different and trajectories
exhibit high-velocity peaks of random duration (Fig. 4.5d left), separated by random time
intervals (Fig. 4.5d right), making the MSD analysis hard to perform on these data. For
that reason, we have chosen to conduct here an analysis based on the Langevin equation of
motion (equation (1.13)) through which local parameters of motion b and D are extracted
from trajectories.

It is also possible to draw the similar conclusions about the observed dynamics by con-
ducting an MSD analysis on trajectories in the nodes and tubules. For this analysis we
relied on the time averaged MSD (taMSD) at time lag τ = 1 . . . (Mi − 1) defined, for a
two-dimensional trajectory X i composed of Mi points

taMSDi(τ) = 1
Mi − τ

Mi−τ∑
k=1
||X i(tk+τ )−X i(tk)||2 (4.3)

To recover the anomalous exponent from a taMSD curve, we fitted to the first 8 points of
this curve in the log-log space the function:

log(A) + α log(τ) (4.4)

using the fit function from MATLAB version 9.0 (MathWorks). Fig. 4.7b presents the
taMSD curves in log-log space (left) and the corresponding anomalous exponents α (right)
obtained by computing the taMSD on each trajectory, longer than 20 points (360ms) and
visiting at least two reconstructed network nodes, from the experiment presented in Fig. 4.2
and found a broad distribution of anomalous exponents (0 ≤ α ≤ 1.5) in agreement the
proposed two-states dynamics. To investigate the type of dynamics inside the nodes, we
determined for each node the ensemble of N sub-trajectories X1 . . .XN located inside the
node and obtained the node MSD by averaging:

taMSD(τ) = 1
N

N∑
i=1

taMSDi(τ) (4.5)

In Fig. 4.7c we report for each node of the experiment presented in Fig. 4.2 its taMSD curve
in log-log space (left) and the corresponding distribution of anomalous exponents (right)
observing exponents α < 0.8, indicating a sub-diffusive behavior. Finally, to investigate the
type of dynamics outside nodes, we synchronized for each nodes, the trajectories on their
exit from the node (as presented in sub-section 4.4.7 and Fig. 4.7e) and computed an average
MSD using equation (4.5). In Fig. 4.7d we present three examples of nodes for which this
synchronization result in an averaged taMSD characterized by an anomalous exponent α > 1
indicating in these cases a super-diffusive behavior.
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Figure 4.7: (previous page) Analysis of SPTs Diffusive dynamics and schematic illustration of
internode and intranode motion. A. Distributions of diffusion coefficients computed on the
individual square bins presented in Fig. 4.2f for the entire domain, including internode high-
velocity displacements and intranode displacements. Numbers correspond to AVG ± SD. B.
Mean Squared Displacement analysis applied on the SPTs from the experiment presented in
Fig. 4.2. Left panel: individual MSD curves color-coded by their anomalous exponent α and
right panel: distribution of the corresponding anomalous exponents (central bar indicates
the median, the bottom and top edges of the box indicate the 25th and 75th percentiles
respectively and whiskers extend to the most extreme data points). C. Average MSD com-
puted on trajectory fragments contained in nodes. Left panel: average MSD curve for each
node, color-coded according to its anomalous exponent and right panel: distribution of the
corresponding anomalous exponents (central bar indicates the median, the bottom and top
edges of the box indicate the 25th and 75th percentiles, respectively and whiskers extend to
the most extreme data points). D. Averaged MSD curves computed from trajectories exiting
three different nodes with anomalous exponents α > 1 indicative of a super-diffusive regime
(sub-section 4.4.1). E. Synchronization procedure: Left: Trajectories are synchronized on
their last point spent in the indicated node (red arrow). Trajectories can then either jump
from node to node or move inside a node. Right: For each time τ after escaping the node,
internode (red segments) and intranode (black segments) displacements (as identified from
left panel) are grouped into separate ensembles and an average instantaneous velocity com-
puted from equations (4.31) and (4.32); analysis performed on n trajectories as denoted in
individual panels.

4.4.2 Models for the instantaneous velocity distribution

Pure Diffusion model

To analyze the velocity histograms presented in Fig. 4.2c, 4.3a and 4.8, we use a two-
dimensional random walk model:

X(t+ ∆t) = X(t) +
√

2D∆tη, (4.6)

where η = [η1, η2] with η1, η2 ∼ N (0, 1) is a white noise. The distribution of the displacement
lengths is given for l > 0 by [69]:

Prdiff

{
||∆X(t)||

∆t = l

}
= l

σ2
d

exp
(
−l2

2σ2
d

)
, (4.7)

where ||.|| is the Euclidean norm and

σd =
√

2D
∆t . (4.8)

We use equation (4.6) with the parameters presented in Table 4.2, using the apparent diffu-
sion coefficient D = Dapp defined in paragraph 4.4.4 to generate the distributions shown in
Fig. 4.2c, Fig. 4.3a and 4.8 (solid lines).
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Figure 4.8: (previous page) Characteristics of ER luminal SPT displacements for several
cell types and markers. Statistics of SPTs motion obtained as in Fig. 4.2, but for a HEK-
293t cell A. and a COS-7cell B. expressing an inert tracer-ER-targeted HaloTag with a
C-terminal ER-retention signal, KDEL. Each column is organized similarly to Fig. 4.2. Top:
SPTs are presented color-coded according to the instantaneous velocity distributions pre-
sented below. The overlaid curves on the instantaneous velocity distributions correspond to
the distributions expected for an exclusively diffusion-driven motion (solid lines,using the
apparent D), or a combination of diffusion and flow (dashed lines, using D in nodes and
the average instantaneous velocity between node). Inset are the corresponding cumulative
distributions(color-coded as in the histogram). Middle: density and diffusion maps computed
for a grid of square bins (sides of 0.2 µm) imposed on the particle displacements and flow
map computed by averaging the non-Brownian velocity jumps of particles moving between
pairs of neighbour nodes and color-coded according to their velocity. Bottom: distribu-
tions of apparent diffusion coefficients(left), node diffusion coefficients(middle)and average
instantaneous velocity between neighbouring nodes(right). C. SPTs recorded for a COS-7
cell expressing an ER-localised TMR labeled Halo-tagged Calreticulin(left) color-coded ac-
cording to the instantaneous velocity distribution (right). Overlaid curves on the histogram
are as for (a-b).Shown are characteristic images observed in three independent repeats. All
values are given as AVG ± SD, for n trajectories as denoted in individual panels.

Flow-diffusion switching model

To account for the fast (faster than the acquisition time ∆t = 18ms) internode dynamics
observed in Fig. 4.2c, we use a jump-diffusion model [76] defined by the following rule

X(t+ ∆t) = X(t) +


J∆t w. p. λ∆t
√

2D∆tη w. p. 1− λ∆t
, (4.9)

where the statistics of the jumps J is approximated from the observed flow velocity distribu-
tion, presented in the inset histogram of Fig. 4.2g and in Fig. 4.8 as ||J || ∼ N (µjump, σjump)
(these distributions are always positive in practice). Although the jump angle should follow
the ER architecture, for the present model, we draw the angles from a uniform distribution
in [0, 2π]. This simplification holds true as long as we are considering only the norm of the
jumps. To estimate the distribution of displacement lengths of process (4.9), we use Bayes’
law and condition the displacement on each state of the process:

Prswitch

{
||∆X(t)||

∆t = l

}
= Pr

{
||∆X(t)||

∆t = l|Jump
}
Pr{Jump, t}

+Pr
{
||∆X(t)||

∆t = l|Diff
}
Pr{Diff, t}. (4.10)

By definition the steady-state probability of being in a jump or diffusion state are:

Pr{Jump} = lim
t→∞

Pr{Jump, t} = λ∆t
1− λ∆t+ λ∆t = κ.

Pr{Diff} = 1− Pr{Jump} = 1− κ, (4.11)
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where κ = λ∆t ∈ [0, 1]. Approximating equation (4.10) by (4.11) and replacing the displace-
ment length distributions by a normal distribution for the jumps and a Rayleigh distribution
(equation (4.7)) for diffusive displacements, we obtain

Prswitch
{ ||∆X(t)||

∆t = l

}
= κPr

{ ||∆X(t)||
∆t = l|Jump

}
+ (1− κ)Pr

{ ||∆X(t)||
∆t = l|Diff

}
= κ

1
σj
√

2π
exp

(
(l − µjump)2

2σ2
jump

)
+ (1− κ) l

σ2
d

exp
(
−l2

2σ2
d

)
, (4.12)

where σd is given by equation (4.8). To estimate the switching probability κ in equa-
tion (4.12), we use a Maximum-Likelihood Estimation (MLE) approach based on the prob-
ability

p(l|κ) = Prswitch

{
||∆X(t)||

∆t = l

}
, (4.13)

of observing l given κ. The MLE κ̂ for N observed displacements l1, . . . , lN is [191]

κ̂ = arg max
κ∈[0,1]

N∑
i=1

ln(p(li|κ)). (4.14)

We compute κ̂ using the mle function of MATLAB version 9.0 (MathWorks) applied to the
trajectory displacements extracted from the SPTs described in methods.
To generate the distributions shown in Fig. 4.2c and 4.8 (dashed lines), we use equa-
tion (4.12), with the parameters presented in Table 4.2, using the diffusion coefficient in
the nodes D = Dnode defined in section 4.4.4.

4.4.3 Reconstruction of the ER Network from SPTs

Detecting nodes (tubule junctions) boundary and inter-junction stretches (tubules) is based
on the heterogeneity of the time-integrated particle spatial density presented in Fig. 4.2d
and 4.8. The algorithmic procedure uses the large amount of recorded SPTs described in
methods and proceeds as follows. We first construct clusters of points (nodes) defined as
regions of aggregation of short displacements (aggregation regions appear to co-localize with
short displacements as presented in Fig. 4.2c and 4.8:

1. Define a threshold VL (in µm/s), and discard from the analysis any point Xi(t) such
that ||∆Xi(t)||∆t ≥ vL (∆Xi(t) is the displacement as defined in methods).

2. Apply the dbscan [192] clustering algorithm to cluster the remaining points (imple-
mentation from scikit-learn [193] through Python3 provided by the Anaconda Dis-
tribution version 4.3.8 (Anaconda Inc.)).

3. Approximate the boundary of each cluster as an ellipse with semi-axes a > b using
a principal component analysis. Remove ellipses with an area πab > 4µm2 or an
eccentricity a

b
> 4. Merge overlapping ellipses by fitting a new ellipse to the union of

their points.
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4. Assign each points discarded in step 1 to the cluster corresponding to the ellipse in

which they fall, if any.

The dbscan algorithm used in step 2 allows to generate clusters based on the local point
density and requires two parameters:

1. The maximum distance R (in µm) below which two points are considered to be neigh-
bors.

2. The minimum number of points N at a distance ≤ R of a point to start a cluster.

These two parameters define a minimal density N
R

of points/µm2 inside each cluster. The
values of R and N depend on the morphology of the imaged ER and the local number of
recorded trajectories. For each dataset, these values were determined empirically such that
the computed clusters overlap with the ER structure formed by the trajectories.
Once nodes are found, we defined tubules by constructing a connectivity matrix C of size
K × K (K number of detected nodes) where ci,j (1 ≤ i, j ≤ K) contains the number of
trajectory displacements starting in node i and arriving in node j. Specifically, we increment
the coefficient ci,j by one for each data point Xk(tl) (1 ≤ k ≤ Nt, 0 ≤ l < Mk − 1) in either
of the following cases:

1. Xk(tl) is located in node i and Xk(tl+1) in node j

2. Xk(tl) is located in node i, Xk(tl+1) does not belong to any node and Xk(tl+2) is located
in node j (in this case 0 ≤ l < Mk − 2).

Finally, we removed from the graph any disconnected node. The different parameters used
for reconstructing the graphs presented in the main text and supplementary data are given in
Table 4.3. Graphs from Table 4.1 (Main Text) were constructed using the parameter ranges:
VL = [9, 19]µm/s (following the histogram of instantaneous velocities), R = [0.08, 0.26]µm,
N = [10, 45] points and πab ≤ [4, 8]µm2. Ellipses representing the nodes of the graphs are
shown in Fig. 4.2dfg and 4.8.

4.4.4 Recovery of the local dynamics in the ER lumen from SPTs

Estimation of the apparent diffusion coefficient

We define the apparent diffusion coefficient Dapp as the diffusion coefficient estimated using
the entire distribution of displacements. Note that this distribution also contains large values,
that cannot be attributed to diffusion. We estimated Dapp by averaging the values obtained
from equation (1.20) on each bin over the entire map (only for bins containing at least 20
points). The distribution of diffusion coefficients from individual bins of the diffusion map
from Fig. 4.2f is presented in Fig. 4.7a, in Fig. 4.3d for the map of Fig. 4.3c and in Fig. 4.8a,b
for the other datasets.
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Estimation of the diffusion coefficients in the nodes

The diffusion coefficient Dnode inside each node is computed from equation (1.20), but in
addition we constrained both ends of the displacement be located inside the node. For a
node delimited by an ellipse E, we get:

Dnode(X(t)) = lim
∆t→0

E[∆X(t)T∆X(t)|X(t) = X ∈ E and X(t+ ∆t) ∈ E]
2∆t . (4.15)

We use equation (4.15) to estimate the diffusion coefficient Dnode in each node and report
their distributions in Fig. 4.2f (inset) for the main text dataset and Fig. 4.8a,b.

Estimation of the internodes displacements

We define the instantaneous velocity (in µm/s) between two successive points of the same
trajectory X(t1) and X(t2) (t2 > t1) as the ratio of the distance to elapsed time

v(X(t1),X(t2)) = ||X(t2)−X(t1)||
t2 − t1

, (4.16)

where ||.|| is the Euclidean distance. We define the flow velocity vflow between two nodes A
and B, as the average of the instantaneous velocities for the displacements connecting the
two nodes:

vflow(A,B) = E
[
v(X(t1),X(t2))

∣∣∣∣∣ (X(t1) ∈ A,X(t2) ∈ B) or
(X(t1) ∈ B,X(t2) ∈ A)

]
, (4.17)

where by construction t2− t1 ∈ {∆t, 2∆t} (see tubule reconstruction from sub-section 4.4.3).
We discretize equation (4.17) and obtain the estimator:

vflow(A,B) ≈ 1
N

N∑
i=1

v(X i(t1),X i(t2)), (4.18)

where N is the number of trajectory displacements connecting the nodes A,B and X i is
the ith such displacements. The velocity vflow characterizes the jump flow between nodes.
As shown in Fig. 4.2c, this internode flow is associated with the thick tail of the velocity
distribution. The distributions of jump velocities between each pair of neighbor nodes for
the different datasets are presented in Fig. 4.2g and Fig. 4.8a,b.

4.4.5 Static ER network analysis

Flow directionality and strongly connected components

To determine whether the ensemble of observed displacements between two neighbor nodes
i and j form a uni- or bi-directional flow, we define a uni-directionality score r as the ratio of
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the number of observed displacements between the two nodes with direction i → j divided
by the total number of displacements in both directions:

ri,j = ci,j
ci,j + cj,i

, (4.19)

where C is the connectivity matrix of the graph as defined in sub-section 4.4.3. Using ri,j,
we build a binary version C ′ of C defined as

c′i,j =
{

1 when ri,j ≥ 0.25
0 otherwise . (4.20)

C ′ has the property that c′i,j = c′j,i = 1 when 0.25 ≤ ri,j ≤ 0.75 (bi-directional flow) and c′i,j =
1, c′j,i = 0 when ri,j > 0.75 (uni-directional flow). The ratio ri,j (and thus c′i,j) is computed
only for pairs of nodes connected by at least three displacements (ci,j + cj,i ≥ 3). To find the
connected components of the reconstructed network, we use the classical Tarjan Strongly
Connected Components (SCCs) detection algorithm [184] on the binary connectivity matrix
C ′ (graphconncomp function from MATLAB version 9.0 (MathWorks)). SCCs are a partition
of the ensemble of nodes such that there exists a path (taking into account the directionality)
from each node of a subset to any other node of the same subset. The presence in Fig. 4.4b
of a SCC ecompassing almost the entire graph shows that the observed flows have the
potential to move particles through almost the entire network. In addition Fig. 4.4b also
displays the flows directionality on the links as: arrows for uni-directional, solid (no arrow)
for bi-directional and dashed for undecided.

Count of Afferent and Efferent branches

We further characterize the structure of the reconstructed ER graph by computing for each
node k the number of afferent and efferent branches connected to it. An afferent (resp.
efferent) branch is a link l → k (i.e. cl,k > 0) (resp. k → l, ck,l > 0) where l is any other
node of the graph. Based on the count of afferent and efferent nodes, we define the out and
in-degree of node k using the connectivity matrix C as:

outdeg(k) =
N∑
i=1
1ck,i>0 and indeg(k) =

N∑
i=1
1ci,k>0, (4.21)

where 1a>b =
{

1 if a > b
0 otherwise , and N is the number of nodes in the graph. In- and out-

degrees are computed only for nodes k such that
N∑
i=1

ci,k > 2 and
N∑
i=1

ck,i > 2 respectively.
The distribution of in- and out-degrees are presented in Fig. 4.4c.

Fraction of entering and exiting displacements in nodes

To study the passing dynamics of trajectories through nodes we define a retention score for
the nodes defined as the ratio of the number of exiting displacements to the total number of
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entering and exiting displacements for a node k:

φk =
∑N
i=1 ck,i∑N

i=1 ci,k +∑N
i=1 ck,i

, (4.22)

where C is the connectivity matrix of the graph and N the number of nodes. We have
ϕ ∈ [0, 1] such that ϕk → 0 indicates that the node retains trajectories, ϕk → 1 indicates
that trajectories originate from this node and ϕk ≈ 0.5 indicates that trajectories pass
through the node. ϕk was computed only for nodes k such that

N∑
i=1

ck,i + ci,k > 2. The
distribution of φ for the reconstructed ER network is shown in Fig. 4.4d.

4.4.6 Transient ER network analysis

At steady-state, we identified the uni- and bi-directional flows inside tubules (Fig. 4.4b), we
now investigate how the direction of these flows evolve with time. To this end, we determine
the distribution of durations of uni-directionality periods of the flow between two nodes as
presented in Fig. 4.5a. The analysis is performed on each pair or neighbouring (directly
linked by trajectories) nodes, linked by at least 20 displacements registering one of the two
possible directionalities (either node A → B or B → A). The following algorithm groups
the successive displacement events as a function of their directionality and determine the
duration of these groups:

1. Collect the next displacement event observed at time tfirst, identify its direction say
A→ B and form a new group containing this event.

2. Accumulate in the group created in step.1 the following jump events with direction
A→ B and stop when there are no more event or after encountering two events with
direction B → A (in this case the event or the two successive B → A events when it
occurs, are not collected). The last event considered in the group occurs at time tend
and always has the same direction as the group (see Fig. 4.5a).

3. Compute the duration of the group as τ = tend − tfirst.

4. Return to step 1.

We discarded groups formed by less than 3 displacements with the same direction. The
distribution of the uni-directional flow durations τ is presented in Fig. 4.5b.
To interpret the mean of this distribution, we recall that this statistics is partly contaminated
by the fraction of activated particles located in nodes and the track lengths. Indeed, only
photo-activated particles appear in the statistics. To recover the uni-directional duration
of the fluxes from the empirical distribution, we use a model taking into account these
two characteristics. The probability that the flux between nodes A and B lasts a duration
τUni = t is computed by conditioning on having k events (k particles flowing in the same
direction) during that time

Pr{τUni = t} =
∞∑
k=1

Pr{τ1 + . . .+ τk = t|k}PrUni{k}, (4.23)
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where the probability that k event occurs in the same direction is by symmetry,

PrUni{k} = 1
2k (4.24)

and τk is the arrival time of the kth event after the first one. We consider that the distributions
of arrival times are Poissonian with same rate λ, independent of the initial node A or B. We
conclude that

Pr{τ1 + . . .+ τk = t|k} = λ
(λt)k−1

(k − 1)! exp(−λt). (4.25)

Computing the sum from equation (4.23), we obtain for at least 2 events

Pr{τUni = t} = λ

2 (exp
(
−λt2

)
− exp(−λt)). (4.26)

Equation (4.26) is the probability density function when all particles are labeled and its
average is 3

2λ . When a particle is activated with probability p, which represents the steady-
state fraction of labeled particles, the statistics of unidirectional flow is still given by equa-
tion (4.26) but with a rate λ̃. Using Bayes’ law, the probability of observing a displacement
event is

Pr{τUni = t} = Pr{τUni = t, activated}Pr{activated}
+Pr{τUni = t, notactivated}Pr{notactivated}, (4.27)

where Pr{activated} = p is the fraction of activated molecules. The second term is zero
because we cannot see displacement events from non-activated molecules. Thus the mean
unidirectional flow duration becomes

〈τ〉 = pτ̄ , (4.28)

where the rates are related by λ = pλ̃. Considering a fraction p = 1% of activated molecules,
we predict that the mean undirectional time should be around 〈τ〉 = 38ms instead of the
observed τ̄ = 3.89s.

4.4.7 Instantaneous velocities along individual trajectories

To obtain statistics of the velocity fluctuations of trajectories (recorded at different times
over a period of seconds) and possibly located either in tubules or nodes, we introduced a
’synchronization’ procedure: the velocity fluctuations of individual trajectories were moni-
tored starting from the last time point where the particle was in a given node prior to its
exit. The velocity fluctuations following the node exit was plotted as a function of time
elapsed since the synchronization event (a universal time scale for all trajectories regardless
when they were detected). In details, the synchronisation event is defined for a trajectory
Xi, its last recorded point inside some node A,

t∗i = max
0≤j<Mi−1

{X i(tj) ∈ A and X i(tj+1) /∈ A}. (4.29)
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Considering the nA trajectories going through node A, the ensemble of last points inside A
is

XA = {X i(t∗i )|i = 1..nA}. (4.30)
We now divide displacements along individual trajectories into two subsets based on the
starting node A and appearing at a time τ > 0 after exit: XA,node(τ) containing displace-
ments inside nodes and XA,tubule(τ) containing displacements connecting two nodes:
XA,node(τ) = {X i(t∗i + τ) |X i(t∗i ) ∈XA and X i(t∗i + τ −∆t) ∈ N and X i(t∗i + τ) ∈ N}
XA,tubule(τ) = {X i(t∗i + τ) |X i(t∗i ) ∈XA and X i(t∗i + τ −∆t) ∈ N1 and X i(t∗i + τ) ∈ N2},

where N,N1, N2 ∈ N the ensemble of nodes and N1 6= N2 (N1 or N2 can be not a node). We
computed the average velocities vInter(τ) (resp. vIntra(τ)) at time τ ≥ ∆t for each subset:

vIntra(τ) = 1
nA,intra(τ)

∑
X i(t∗i+τ)∈XA,node(τ)

v(X i(t∗i + τ −∆t),X i(t∗i + τ)) (4.31)

and

vInter(τ) = 1
nA,inter(τ)

∑
X i(t∗i+τ)∈XA,tubule(τ)

v(X i(t∗i + τ −∆t),X i(t∗i + τ)), (4.32)

where nA,intra(τ) (resp. nA,inter(τ)) is the number of displacements from synchronized tra-
jectories that fall inside (resp. between two nodes) at time τ and v(., .) is the instantaneous
velocity (equation (4.16)). The synchronization process and the intra and inter node veloc-
ities along synchronized trajectories are presented schematically in Fig. 4.7e. In this figure,
schematic trajectories synchronized on their exit of a node A are presented on the left panel
and their associated instantaneous velocity as a function of the time since exit τ from A are
presented on the right panel. Fig. 4.5c presents the average (line) and standard deviation
(shade) of the instantaneous velocity for vintra (black) and vinter (red) for a selected node A
of the main-text network for τ ≤ 0.2s.

4.4.8 Instantaneous velocity peaks duration and inter-peaks pe-
riod

To further analyze the fluctuations of the instantaneous velocities along individual trajec-
tories we proceed as in sub-section 4.4.7 and synchronize the trajectories leaving a given
node A. We then estimated the time spent by individual trajectories in a high velocity
regime (above a threshold vhigh = 19µm/s) as the number of successive time steps τ = j∆t
(j = 0 . . .) for which

v(X i(t∗i + τ + j∆t),X i(t∗i + τ + (j + 1)∆t) > vhigh, (4.33)

whereX i is a synchronized trajectory and v(., .) is the instantaneous velocity (equation (4.16)).
The distribution of the high velocity regime durations is shown in Fig. 4.5d and the distri-
bution of periods between two high velocity regimes in Fig. 4.5e, computed for trajectories
synchronized for each node of the ER-network. Note that we considered only trajectories
that visited at least three different network nodes.
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4.4.9 Dynamics of tubular junctions

Extraction of junctions from SIM images

We extracted the features of tubular junctions from a SIM images stack (50 images) through
a procedure similar to [1]: first, the contrast of the entire image stack was manually modified
to make the ER network more apparent. Then each image was skeletonized, junctions were
extracted from the skeleton [194] (AnalyzeSkeleton plugin, ImageJ) and only junctions cov-
ering more than 3 pixels were kept. For each image of the stack, a new grayscale image was
generated where only the pixels belonging to selected junctions appear white and afterward
a Gaussian blur with σ = 1px was applied to produce a single-particle like image. On this
stack of grayscale images, we applied a particle detection and tracking algorithm [55] to follow
junctions through successive images (Spot Detection and Tracking plugins, Icy). This proce-
dure produces an ensemble of N trajectories X1 . . .XN such that X i = X i(t0) . . .X i(tMi

)
and ∆t = ti− ti−1 = 90ms. From this ensemble, we keep only trajectories possessing at least
40 points. These trajectories are displayed in Fig. 4.9ab overlaid on top of the average stack
image.

Mean Squared Displacement (MSD) analysis

We first characterize the type of diffusive motion exhibited by trajectories using a Mean
Squared Displacement (MSD) analysis. For an ensemble of T trajectories the MSD at time
tk is defined as:

MSD(tk) = 1
T

T∑
i=1
||X i(tk)−X i(t0))||2 ≈ A(tk − t0)α (4.34)

where ||.|| is the Euclidean distance, A is a coefficient and α > 0 is the anomalous exponent
characterizing the type of diffusive motion. To estimate α, we fit the first 20 points of the
MSD curve to the line y(tk) = log(A) + αlog(tk − t0) in the log-log space using a MATLAB
version 9.0 (MathWorks) script. Fig. 4.9c shows the distribution of α obtained applying this
procedure to 100 independent samples of T = 20 randomly selected trajectories from the
ensemble of trajectories possessing at least 40 points and keeping only the fits for which
the coefficient of determination R2 > 0.75. We found that α = 0.60 ± 0.24 suggesting a
sub-diffusive behavior or diffusion in the presence of confinement forces [195].
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Figure 4.9: (previous page) Characteristics of ER structural components mobility. A. 3D
kymograph presenting the motion of tubules and junctions across time (z-axis). B. SPTs
extracted from a stack of 50 images. Inset: magnification of an ER region showing junc-
tion trajectories. C. Distribution of anomalous exponents obtained from SPTs (central bar
indicates the median, the bottom and top edges of the box indicate the 25th and 75th per-
centiles,respectively and whiskers extend to the most extreme data). D. Distribution of
instantaneous velocities of the SPTs. (e-f) Estimation of the characteristics of the stochastic
dynamics associated to the trajectories: distribution of spring constants E. and diffusion co-
efficients F.. G. Observed and simulated junctions confinement areas. Inset: corresponding
box plots(central bar indicates the median, the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively and whiskers extend to the most extreme data
points).A Man-Whitney U-test was used to compare the two distributions, returning a non-
significant p-value (p=0.1927), see also video S5. (a,b) images are representative of three
independent repeats. Analyses performed on n tubular junctions as denoted in individual
panels.

Confined motion of tubular junctions

The distribution of instantaneous velocities (Fig. 4.9d) suggests to model junction’s dynamics
as a diffusion process confined by active forces generated by a parabolic potential well. The
corresponding equation of motion is expressed as an Ornstein-Ulhenbeck stochastic process

Ẋ = −κ(X − µ) +
√

2Dẇ, (4.35)

where µ is the center of the potential well, κ (1/s) the spring coefficient, D (µm2/s) the
diffusion coefficient and w is a white noise. We estimate for each recorded trajectory X i the
three parameters: µ̂i, κ̂i and D̂i. The center of the well µi is approximated by the center of
mass of the trajectory:

µ̂i = 1
Mi

Mi−1∑
j=0

X i(tj). (4.36)

The parameters κ̂i and D̂i are estimated using the maximum-likelihood estimators [82]. For
a trajectory X i(t0) . . .X i(tn) we compute for each dimension X i(t) = (x1

i (t), x2
i (t)), d = 1, 2

β̂d1 =
n−1

n∑
k=1

xdi (tk)xdi (tk−1)− n−2
n∑
k=1

xdi (tk)
n∑
k=1

xdi (tk−1)

n−1
n∑
i=1

xdi (tk−1)2 − n−2(
n∑
i=1

xdi (tk−1))2
+ 4
n
, (4.37)

β̂d2 =
n−1

n∑
k=1

(xdi (tk)− β̂d1xdi (tk−1))

1− β̂d1
, (4.38)

β̂d3 = n−1
n∑
k=1

(xdi (tk)− β̂d1xdi (tk−1)− β̂d2(1− β̂d1))2, (4.39)
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from which we obtain the estimators:

κ̂di = log(β̂d1)
∆t and D̂d

i = κ̂β̂d3

1− (β̂d1)2
(4.40)

where ∆t = tk − tk−1 is the time-step and the term 4
n

in β̂d1 is a correction for the low
number of points. In practice, we obtain a symmetric tensor and force field computed as the
averages:

κ̂i = κ̂1
i + κ̂2

i

2 and D̂i = D̂1
i + D̂2

i

2 . (4.41)

We apply this estimation only on trajectories possessing at least 40 points. Fig. 4.9e shows
the distribution of the estimated spring constants κ̂ and Fig. 4.9f the distribution of the
estimated diffusion coefficients D̂.

Estimating the area of confinement of tubular junctions

In this section, we define and compute the area of confinement of each junction based on the
statistics of the trajectories. For each trajectory X i we compute the 95% confidence ellipse
ei = (ci, ai, bi, ϕi) of center ci, largest (resp. smallest) semi-axis ai (resp. bi) and angle (with
x-axis) ϕi, of the spatial spreading of its points, considering this distribution as normal. We
obtained the ellipse as follows [196]: first, we collected all points X i(t) of the trajectory into
a 2×n matrix Oi, then applied a Singular Value Decomposition algorithm to the covariance
matrix of Oi: U iΣi(V i)∗ = cov(Oi) and finally recovered the ellipse as:

ci = 1
Mi

Mi−1∑
j=0

X i(tj), ai =
√

5.991σi1,1, bi =
√

5.991σi2,2, ϕi = arctan
(
ui2,1
ui1,1

)
, (4.42)

where σi1,1 and σi2,2 are the two eigenvalue of the matrix cov(Oi). We define the confinement
area Ai for a trajectory X i as the area of the estimated ellipse: Ai = πaibi. The distribution
of observed confinement areas is presented in Fig. 4.9g.
We now compare this distribution, with the expected distribution for a particle moving in
a potential well. To this end for each trajectory X i, we simulated equation (4.35) with the
estimated parameters µ̂i, κ̂i, D̂i using Euler’s scheme to obtain a trajectory Yi:

Y i(tk) = Y i(tk−1) + κ̂i(Y i(tk−1)− µi)δt+
√

2D̂iδtη, (4.43)

where δt = 0.0001s is the simulation time-step, η = [η1, η2] with η1, η2 ∼ N (0, 1) is a
white noise and Y i(t0) = µi. To prevent the choice of the first point to influence the
statistics, we run the simulation for 45000 time steps before recording the trajectory. We
then sub-sampled Yi by keeping one every 900 points to match the experimental acquisition
time ∆t = 0.09s and computed the confinement area of Yi using the same procedure as for
X i. This procedure was only applied to junctions for which κ̂i > 0. The distribution of
confinement areas obtained from simulated trajectories is shown in Fig. 4.9g.
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4.5 Characterization of ER tubule contractions

4.5.1 Extraction of tubule contraction statistics

Fast SIM images of ER in live cells, acquired and reconstructed as described in methods,
were rendered using the Edges look-up-table of the Fiji software, with contrast settings to
visualise one-pixel wide boundaries of the tubules. Contraction sites were identified as such
if the tubule edges bended to merge more than once at the same position. In Fig. 4.5g we
report the distributions of three observable characteristics of contraction events extracted
from SIM images. The duration of a contraction event (Fig. 4.5g left) is computed as the
difference between the last and first frames for which the event is detected; The time interval
between successive contractions (Fig. 4.5g middle) is computed for each individual tubule and
pair of successive contraction events as the difference between the first frame of the second
contraction and the last frame of the first contraction; Finally the length of a contraction
(Fig. 4.5g right) is computed by counting the number of pixels along the tubule axis involved
in the contraction.

4.5.2 Elementary model of tubule contraction

To increase the evidences of a correlation between ER constrictions inside the tubules and
the observed flow, we propose an elementary computation to link the contractions and flow.
Considering an incompressible ER luminal fluid, the conservation of the mass is

∂ρ

∂t
= div(vρ), (4.44)

where ρ is the fluid density and v the velocity at position x. When a constriction occurs,
we suppose that it leads to a decreased volume Vc, that generates a local flow. This flow can
be obtained by integrating equation (4.44) inside the tubule and we get:

dV

dt
= S2v2 − S1v1, (4.45)

where S2, S1 are the cross-sections at the right and left of the constriction associated with
a constant velocity v1 (resp. v2) on the surface (note that we assume that there is no flow
through the lateral surface of the tubule). When S2 = S1, we obtain since v2 = −v1 (by
symmetry), so that the initial flow is given during the constriction phase by

v = 1
2S1

dV

dt
. (4.46)

Thus a constriction occurring in a cylinder of constant section πr2 along a segment of size
L = 300 nm during 15ms, leads to a velocity V = 0.3/0.03 = 10µm/s. To recover the velocity
at the junction, we need now to model how this change in the tubule shape contributes to
the velocity of ejection vexpelled.
A possible model is that the flow enters the node through a smaller section than the radius
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of the tubule. Suppose that the size is r = 0.5rtub, then using the mass conservation with
this ratio of surfaces, we obtain a velocity at the entrance of a junction of

ventrance = S1

Sentrance
v, (4.47)

leading to a factor 4. Thus we obtain a velocity that could reach ventrance = 40µm/s,
compatible with the maximum velocity we find for the ejection of trajectories (Fig. 4.2).
If the cross-section in the node at the two opposite tubules from the one where the flow is
generated are identical to the one receiving the flow, we finally get the relation

vexpelled = ventrance
2 ≈ 20µm/s. (4.48)

Fig. 4.5h illustrates the consequence of a constriction: a local constriction generates a flow
v in both directions. The flow leads to an acceleration at the entrance of a tubule, if the
entrance has a small surface. Due to the flow conservation, the velocity of the expelled
trajectory is of the order 20µm/s. Considering a pinch length of L = 100nm we obtain
v ≈ 3µm/s, ventrance = 13µm/s, vexpelled = 7µm/s while for L = 400nm we obtain
v ≈ 13µm/s, ventrance ≈ 53µm/s and vexpelled = 27µm/s.

4.5.3 Simultaneous contractions statistics

Under the assumption that contractions are spatio-temporally independent events, the prob-
ability of a contraction follows a Poissonian distribution of rate λ such that

P{one contraction in [t, t+ ∆t]} = λ∆t (4.49)

Thus the probability of n contractions during that time interval is a rare event which prob-
ability is given by

P{n contractions in [t, t+ ∆t]} =(P{one contraction in [t, t+ ∆t]})n

=(λ∆t)n.

Considering λ = 1/fcontraction where fcontraction = 1.5Hz as given in Fig. 4.5f during a time step
of ∆t = 100ms (the acquisition time of SIM images), then P{one contraction in [t, t+∆t]} =
0.15 and P{two contractions in [t, t+ ∆t]} = 0.0225 and thus can be neglected compared to
one contraction.



144

Figure 4.10: Contraction points in ER tubules and ER fragmentation. High-speed Structured Illumination
Microscopy (SIM) super-resolved images of the tubular ER for a COS7 cellA. and a HEK293 cell B., inten-
sity color-coded. The observed contraction is unlikely to reflect Z-dimension tubule bending at a stiff angle,
as sharp bending events have not been seen along the tubules in X-Y, and given the tubule dimensions the
observed phenomenon is inconsistent with Z-bending at an angle sufficient to take a small tubule-fragment
out of the focal plane. Tubule contractions are visible also in 3D-SIM (Video S9). C. Confocal image of
the ER, following 20 minutes exposure to 5 µM Thapsigargin (an ER calcium uptake inhibitor), Note ER
fragmentation accompanied by apparent tube-contraction, through elevation in cytoplasmic calcium [188].
D. velocity analysis, performed as in Fig. 4.2, of cell treated to induce ER fragmentation as in c, values given
as AVG ± SD, n=47 nodes. Ovals exemplify the nearly spherical structures of fragmented ER. E. Frag-
mentation, with notable contracted tubule intermediates, was induced by intense 561 nm laser illumination
of cells expressing ER-targeted HaloTag and loaded with excess TRM. (a) characteristic images observed in
five independent repeats, (b-e) characteristic images observed in three independent repeats.
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4.6 Tables

Dapp (µm2/s) Dnode (µm2/s) vflow (µm/s) ntrajs nexps

Cell type Marker AVG ± SD AVG ± SD AVG ± SD AVG n
HEK 293T Calreticulin 1.64 ± 0.66 0.32 ± 0.14 27.10 ± 5.69 14177 7

Halotag ER 1.70 ± 0.94 0.39 ± 0.08 26.97 ± 6.36 11094 5
COS-7 Calreticulin 1.96 ± 1.09 0.38 ± 0.20 30.93 ± 7.44 13485 6

Halotag ER 3.94 ± 1.03 0.57 ± 0.29 42.72 ± 2.32 13068 6
SH-SY5Y Calreticulin 2.01 ± 0.43 0.40 ± 0.10 30.01 ± 3.00 18789 4

Halotag ER 2.59 ± 0.65 0.42 ± 0.19 31.70 ± 3.42 12925 5

Table 4.1: Single particle motion parameters across cell types, ER tracers. Dnode - diffusion
coefficient in tubule junctions; vflow - flow velocity in tubules, Dapp - apparent diffusion co-
efficient computed from without diffusion/flow-deconvolution of single particle displacement
profiles.

Pure Diffusion Model Flow-Diffusion Model

Dataset 1
(Main text)

Dapp = 1.13 µm2/s

Dnode = 0.19 µm2/s
µj = 22.9 µm/s
σj = 6.92 µm/s
κ = 0.33

Dataset 2
(Fig. 4.8a)

Dapp = 1.02 µm2/s

Dnode = 0.35 µm2/s
µj = 23.19 µm/s
σj = 3.85 µm/s
κ = 0.31

Dataset 3
(Fig. 4.8b)

Dapp = 4.10 µm2/s

Dnode = 0.57 µm2/s
µj = 45.01 µm/s
σj = 12.75 µm/s
κ = 0.41

Table 4.2: Estimated motion parameters of the pure diffusion and flow-diffusion models for
the datasets presented in the main text and supplementary figures.

Datasets
Symbol Description Main text Fig. 4.8a Fig. 4.8b
VL Max. inst. vel. (µm/s) 9.5 10 19
R Max. neighbor distance (µm) 0.1 0.12 0.18
N Min. num. points in cluster 25 35 30

Table 4.3: Parameters used for the network reconstructions.
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Chapter 5

Discussion: three case studies in
cellular trafficking

This chapter shows applications of the SPT analysis methods to study trafficking in cell
biology. I also present some extra methods not discussed in the previous chapters and
apply them in different cellular contexts: 1. to investigate ER-lysosome interactions; 2. to
characterize the motion of CaV2.1 channels at the neuromuscular junction of Drosophila and
3. to determine the different modes of motion exhibited by the nuclear proteins composing
the NuRD complex.

5.0.1 ER-lysosomes interactions participate in maintaining the
peripheral ER shape

In this study, in collaboration with Meng Lu and Clemens Kaminski at the University of
Cambridge, we looked at the relations between lysosomes and the Endoplasmic Reticulum
(ER) network organelles. Lysosomes have many different functions in the cell, the principal
one being waste disposal, but they also participate in sensing intracellular elements [197],
are involved in cell metabolism [198], protein homeostasis [199] and orchestrate multiple
cellular pathways [200]. To ensure these functions, lysosomes are among the most dynamic
organelles in the cell [201] and make contact with the ER network [202] but can also be carried
by molecular motors along microtubules [203, 204]. On the other hand, the ER itself is a
very dynamic organelle with constant tubule and junctions reorganization in its peripheral
part [205]. These reorganizations are known to occur in part through microtubules either by
sliding of the network along them or pulling out of new microtubules through the attachment
of the network to molecular motors [206]. It is also known that the latter mechanism can be
mediated by attachment of the ER network first to a lysosome that is itself attached to a
molecular motor [207]. In this context, I studied SPTs of lysosomes to understand how their
motion is correlated with the ER network.
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Quantifying lysosomes motion

To analyze how lysosomes could interact with the ER, I overlaid images of the ER with the
lysosome trajectories (Fig. 1.9) observing a high degree of colocalization between the two
signals, suggesting that lysosome motion follows paths along the ER network. Then, I looked
at the instantaneous velocity distribution of lysosomes trajectories that is characterized by
a spectrum of velocities in the range [0 − 3.5]µm/s. To investigate the possible relation
between the velocity and the topology of the ER, as is the case in luminal ER motion (see
chapter 4), I overlaid on the ER network, the fast (red and purple) and slow (blue) velocity
displacements (Fig. 5.1A-B) and found in some cases that the fast velocities occur between
low-velocity regions. Interestingly, the distribution f(v) of velocities (Fig. 5.1B,J), can be
fitted by a sum of two exponentials

f(v) = A exp
(
− v

v0

)
+B exp

(
− v

v1

)
, (5.1)

where a fit gives velocities of v0 = 0.06µm/s (95% confidence interval [0.057, 0.072]) and
v1 = 0.6µm/s (95% confidence interval [0.383, 1.322]), with the constants A = 0.20s/µm,
B = 0.013s/µm and a coefficient of determination R2 = 0.95. This fit shows that lyso-
somes velocity distribution is mostly driven by the low velocities with rare high-velocity
components, suggesting a possible switch between slow and fast motions.

To further study how lysosomes explore the cytoplasm in correlation with the ER, I com-
puted the diffusion map (Fig. 5.1D) and obtained an average apparent diffusion coefficient
Dapp = 0.062±0.040µm2/s (Fig. 5.1E). Interestingly regions of low diffusion coefficient colo-
calize with the region of high density in the density map [103, 105] (Fig. 5.1C). I then isolated
the regions of high density (see method), revealing an ensemble of n = 95 sub-domains, ap-
proximated by ellipses (magenta in Fig. 5.1F) of semi-axes sizes a = 516 ± 196 nm (large
semi-axis) and b = 278 ± 143 nm (Fig. 5.1G). Then, by considering the displacements con-
necting two high-density regions, I reconstructed (see method 5.0.4) a network explored by
the lysosomes (Fig 5.1H). Interestingly, the histogram of average velocities between these
regions (Fig. 5.1I) has a mean velocity v = 1.03 ± 0.32µm/s, which is not symmetric and
deviated from the Rayleigh distribution (distribution of displacements in dimension two for
a random walk). This deviation suggests that the velocities between these regions could be
driven by an active motion.

To conclude, lysosomes travel along a network that strongly colocalizes with the ER
network with high velocity often occurring in similar regions, suggesting highways when
multiple displacement overlap.
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Figure 5.1: (previous page) Lysosome trajectories analysis. A. Lysosome trajectories
color-coded according to individual displacement amplitudes (see panel B). B. Instantaneous
velocities, color-coded with respect to the value and fitted by a double exponential distribu-
tion. C. Density map of points. D. Diffusion map presenting the local diffusion coefficients.
E. Histogram of the diffusion coefficients obtained from the individual bins of the diffusion
map from panel D. F. Magnification of the density map of two regions of interest, show-
ing high-density regions, approximated by ellipses. G. Length of semi-axes of high-density
regions approximated as ellipses. H. Reconstruction of a lysosome graph, where nodes corre-
spond to high-density regions. A link (in yellow) is added when at least one trajectory starts
in one and enter to the other (in one or two frames). I. Average instantaneous velocities
between pairs of connected nodes found in panel F. J. Percentage of displacements with a
specific instantaneous velocity. Inset, percentage of displacements for the velocity regimes
defined in panels A-B.

ER-lysosomes interaction

To study the possible interactions between lysosomes and the ER network, I focused on
confinement regions found along individual trajectories (see method 5.0.2, and Fig. 5.2A).
To recover the size of these confinements, I fitted ellipses over these regions and obtained
average semi-axes lengths (Fig. 5.2B) a = 232 ± 77 nm (large semi-axis) and b = 94 ±
47 nm (small semi-axis). Furthermore, this approach allows estimating the confinement
strength λ by considering that the confined motion could be generated by spring force, as
classically described by an Ornstein-Uhlenbeck process [101]. I found an attraction constant
of λ = 0.123± 0.025s−1 (Fig. 5.2C), associated with an average local diffusion coefficient of
D = 0.032± 0.002µm2/s (Fig. 5.2D) for a total of n = 818 confinement regions. Finally, the
distribution of times in confined regions could be well approximated by a single exponential
with a time constant τ = 5.35s (Fig. 5.2E). The average residence time of lysosomes in these
regions is τ̄ = 30 ± 12s that could correspond to a time where lysosomes interact with the
ER.

Discussion

The present analysis of lysosome trajectories reveals that their motion is organized as a
network that follows the ER network. This analysis further reveals clear segregation of this
lysosome network into regions of low and high velocities, separated by paths that are used
multiple times (parallel pinks lines in Fig. 5.1), that could be seen as a highway along the
ER.

I found that this network is characterized by various types of motion, although a double
exponential was enough to account for the entire instantaneous velocity distribution (Fig.
5.1B). This fit revealed two main velocities at 0.6 and 0.06 µm/s. However, a more detailed
analysis revealed that these velocities can be further subdivided into 1) confined motion
(Fig. 5.2) characterized by residence time ≈ 1min. and 2) ballistic motion between regions
of high density (Fig.5.1 F-G), characterized by a distribution of velocity with an average of
1.03µm/s.
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Figure 5.2: Lysosome confinement time A. Regions of confinement for individual lysosome
trajectories: three examples (insets). B. Semi-axes (small and large) of the ellipse fitted to the
confinement regions. C. Spring constants of an Ornstein-Ulenbeck to confine diffusion. D. Diffusion
coefficients estimated inside a confinement region. E. Residence times inside a confinement region.
F. Fraction of time each trajectory spend confined (relative to the trajectory length). G. Number
of confinement events along individual trajectories.
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Interestingly regions of deterministic velocities and those where diffusion can be found

are often not well separated, suggesting that lysosomes can use various modes of transport,
independently of the subregions where there are located. I found, however, some regions
characterized by a high density of trajectories and low instantaneous velocity, suggesting
that there are possible trapping mechanisms to retain lysosome in specific subregions of the
ER. This mode of motion is quite different from the motion inside the ER lumen or on its
membrane: in the first case, the node-tubule topology is associated with a diffusion-drift
dynamics, while in the second case, the motion is mostly diffusing [113].

To conclude, one striking point of the present analysis is the observed confinement time
around 1min of lysosomes, suggesting that lysosomes could be trapped to interact with the
ER. Future works should reveal more specifically the interaction time between lysosomes
and the ER.

5.0.2 Transient confinement detection

Now, when the trajectories are sufficiently long and exhibit extended low instantaneous
velocity periods, a confinement detection method based on the distance between succes-
sive points of the same trajectories can be used. For each point X i(tj) (j < Nnh) of a
trajectory Xi, I compute the center of mass µti,Nnh based on the ensemble eX i(tj),Nnh =
{X i(tj), . . .X i(tj+Nnh)} where Nnh is the number of points kept in the ensemble. I then
check the condition CXi(tj),Nnh : ∀X ∈ eti,Nnh , ||X − µX i(tj),Nnh|| < Rnh, where ||.|| is the
Euclidean norm and Rnh is a distance threshold. I iterate this procedure, increasing each
time the size of the ensemble Nnh ← Nnh + 1 until either reaching the end of the trajectory
or the condition CX i(tj),Nnh is violated. The confinement duration is computed by taking
the time difference between the two endpoints the final ensembles ti+Nnh − ti. The spring
constant λ and diffusion coefficient D of the confinement are obtained by MLE estimation
as presented in chapter 4.

5.0.3 Analysis of CaV2.1 nanodomains at Drosophila neuro-muscular
junctions

In this study, in collaboration with the groups of Martin Heine at U. Mainz, Stephan Sigrist at
FU Berlin and Ulrich Thomas at TU Magebeburg, I analyzed SPTs of CaV2.1 channels at the
neuromuscular junction of Drosophila. The drosophila has been for decades a model organism
in neurosciences due to its easy handling and the large toolbox of genetic manipulations
available [208]. Neuro-muscular junctions are synapses that develop between motor neurons
and muscle fibers that are essential to control muscle contractions [209]. This synapse is
particularly well studied, especially for the relation between presynaptic calcium channels
and synaptic vesicles locations in the active zone [210]. I report here several structures that
could be extracted in the SPTs of CaV2.1 at the drosophila Neuro-Muscular Junction (NMJ).



153
Structures revealed by CaV SPTs

Most of the trajectories are located in regions of high density that are forming structures
that recall the EM organization of the NMJ (Fig. 5.3A-B). I extracted the diffusion and
density maps (Fig. 5.3A-B (insets)) as well as the drift map at the high-density regions,
showing converging arrows, confirming that these regions can be characterized as potential
wells. Interestingly, I found that 60% of trajectories are located in the 20% denser regions
(Fig. 5.3C), suggesting that CaV channels are quite confined at NMJ.

Statistical properties of CaV HDRs

I found that potential wells are formed in regions of high density under different experimental
conditions (Fig. 5.4A): control, using different extracellular calcium concentrations (0.2, 1.2
and 1.9mM) or under blocked neuronal activity (addition of PhTX). The characteristics of
the wells are presented in Table 5.1. Overall, wells have elliptic boundaries with average semi-
axes lengths a ≈ 80nm (large semi-axis) and b ≈ 75nm (small semi-axis) (Fig. 5.4B) while
the average diffusion coefficient in the wells (see Table 5.1) varies between 0.05 to 0.18µm2/s
depending on the condition (Fig. 5.4C). Interestingly their average potential energy barrier
is ≈ 5kT and mostly independent of the experimental conditions (Fig. 5.4D), associated to
a residence time of the channels inside the wells between 600 and 700ms (Fig. 5.4E).

Condition large semi-
axis (nm)

small semi-
axis (nm)

Diff. coeff. in
well (µm2/s)

Energy (kT) Residence
time (ms)

Num.
wells

0.2mM Ca 88.9± 22.3 67.3± 12.2 0.016± 0.006 5.1± 1.0 629± 377 57
1.2mM Ca 75.7± 20.0 59.0± 14.4 0.013± 0.007 5.1± 1.0 674± 426 119
1.9mM Ca 78.5± 26.5 58.2± 16.7 0.013± 0.007 4.7± 1.0 578± 338 52
1.2mM Ca +PhTX 70.7± 20.4 47.3± 8.7 0.009± 0.005 4.8± 1.1 635± 403 283
1.9mM Ca +PhTX 76.3± 23.5 51.4± 11.7 0.011± 0.005 4.8± 1.2 540± 403 84

Table 5.1: Potential well characteristics under different experimental conditions.

HDRs are organized in structures

A closer investigation revealed that the HDRs at the NMJ could appear in clusters where
trajectories are exchanged (Fig. 5.5A). In that case, I found that the energies of the wells
in these structures are ≈ 3kT (Fig. 5.5B), lower than the average energy (≈ 5kT ) found in
other regions. These lower energy could explain that trajectories can escape these potential
to travel to the neighboring ones. Another observed feature is that the size of the axes is
also reduced compared to isolated wells.
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Figure 5.3: (previous page) Organization of HDRs at the drosophila NMJ.A.-B.
Trajectories, density and diffusion maps of two sample regions where HDRs are organized
along the NMJ and for each, a zoom on three regions of interest I, II and III where we show
the local density and drift maps. C. Fraction of trajectory points falling inside high-density
bins as a function of the density threshold, colored by experiments. Bin size ∆x = 30nm.

D
i

u
s
io

n
 c

o
e

c
ie

n
t

in
 w

e
ll
 (

µ
m

2
/s

)

A

C E

9
1
k
T

3
k
T

W
e
ll
 1

W
e
ll
 2

D

B

100nm

0

0.01

0.02

0.03

0.04

0.05

1.9m
M
C
a+

PhTX

1.9m
M
C
a

1.2m
M
C
a+

PhTX

1.2m
M
C
a

0.2m
M
C
a

1

3

5

7

9

11

E
n
e
rg

y
 (

k
T
)

R
e
s
id

e
n
c
e
 t

im
e
 (

m
s
)

0

400

800

1200

1600

2000

1.9m
M
C
a+

PhTX

1.9m
M
C
a

1.2m
M
C
a+

PhTX

1.2m
M
C
a

0.2m
M
C
a

1.9m
M
C
a+

PhTX

1.9m
M
C
a

1.2m
M
C
a+

PhTX

1.2m
M
C
a

0.2m
M
C
a

Figure 5.4: Statistics of potential wells. A. Three examples of HDRs showing trajecto-
ries, converging drift and a reconstructed potential well. B.-E. Distributions of the semi-axes
(b small and a large) lengths of the elliptic well boundaries (B), diffusion coefficients the wells
(C), Energies (in kT) of the wells (D) and residence times of the channels in the wells (E)
for the five experimental conditions.

Stability of potential wells over time

To evaluate the stability of potential wells over time, I performed a time-lapse analysis with a
sliding time window of 20s duration (no overlap between successive windows). For example,
the trajectories obtained during a 250s experiment are split into 13, 20s windows (0 − 20s,
20−40s, . . ., 240−260s) depending on the time of appearance of the detections. For each time
windows, I searched for the presence of potential wells (examples are presented in Fig 5.6A)
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energy using the algorithm developed in chapter 3.
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and then connected through time windows the wells at distances below 250nm of each other,
forming chains (allowing multiple frames gap between successive wells). I found that 55% of
the wells were present for more than 20s (one time window) and that their average duration
is 127 ± 84s (Fig. 5.6B). This time is much longer than the one of ≈ 30s found for CaV2.1
channels in hippocampal neurons [211].

Discussion

I found for CaV2.1 SPTs at the NMJ junction of Drosophila that most of the trajectories are
located in HDRs, this is in contrast with other neuronal cells, such as hippocampal neurons,
where CaV trajectories are found uniformly over the axons (Fig 5.3C). Besides, these HDRs
are following the general organization of the NMJ (Fig. 5.3A-B) and are associated to high
energy (≈ 5kT) potential wells (Fig. 5.4), showing that the residence time of CaV in these
regions is ≈ 600ms, which is much longer than CaV inside the active zones, where the
equivalent residence time was about 100ms (see chapter 3). Altogether, these results suggest
that HDRs forming potential wells at the NMJ are much more stable than the similar ones in
other neurons (Fig. 5.6). Interestingly, the geometry of these regions and energy are mostly
independent of the experimental conditions, confirming again their stability (Fig. 5.4).

5.0.4 Local high-density region analysis

Here is an alternative method to the one presented in chapter 2 to extract the extent of
high-density regions, latter applied to lysosome SPTs. I started by constructing the density
map ρ(x) based on a square grid S∆x with bin size ∆x = 480 nm covering the whole
experimental plane. From this map, I extract the seed grid cells, corresponding to the
5% highest density bins. When multiple seeds appeared within a distance of two bins of
each other I kept only the bin with the highest density. For each seed with density ρ∗,
I computed a new density map ρ′(x) based on a square grid S ′∆x′ of size 5 × 5, centered
on the center of the seed bin and with bin size ∆x′ = 200 nm. From this local map, I
collected the ensemble of points falling into bins with at least a value at 80% of the center
bin: X ′ = {Xi(tj) ∈ S ′∆x′(x) and ρ′(x) > 0.8ρ∗}. I then constructed the elliptic boundary of
X ′ by computing the corresponding 95% confidence ellipse based on the covariance matrix
Cov(X ′). Finally, I applied an iterative procedure that merges two overlapping ellipses by
fusing the two ensembles of points and computing the elliptic boundary of this new ensemble,
until no ellipse overlap anymore.
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Figure 5.6: Timelapse analysis. A. Reconstruction of wells from trajectory segmented in
non-overlapping time windows of 20s and chaining. The starting point of the chain is the
red well in the red square, and it is extended forward and backward in time (left and right).
The black dashed well represents the starting well (red) in other windows and the blue wells
correspond to other potential wells. B. Distribution of well chain duration with average and
standard deviation.
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5.0.5 Analysis of the dynamics of the NuRD nuclear remodeler

complex

In this study, in collaboration with the groups of S. Basu and E. Laue at the University of
Cambridge, I studied the multiple types of dynamics exhibited by the nuclear proteins com-
posing the NuRD nuclear chromatin remodeling complex. The NuRD complex is formed
by the association of seven proteins: HDAC1, HDAC2, RbAp46, RbAp48, MTA1/2/3,
MBD2/3, CHD2/4 and I investigated the motion of some of its constituents either in normal
conditions or in cells lacking NuRD component molecules. To this end, I used the multi-
ple states model presented in equation (5.9) (method sub-section 5.0.6) where each state is
characterized by a diffusion coefficient. Then, one, two and three states models were fit-
ted to each displacement histogram, and the model that best explained the data (using the
Bayesian information criterion (see sub-section 5.0.6)) was kept (bold numbers in Table 5.2).

I applied this procedure to the following SPTs datasets: CHD4, CHD4+ATPase (with
added ATPase), CHD4-MBD3 (deleted MBD3), CHD4-HDAC (deleted HDAC), MBD3,
MTA2, MTA2-MBD3 (deleted MBD3) and MBD3coverslip (MBD3 imaged on a coverslip as
a control). The histogram of displacements for these datasets are presented in Figure 5.7A.
I found that the number of states in the model of motion that best explain the observed
distribution of displacements varies between two states for CHD4+ATPase, CHD4-HDAC,
MBD3coverslip and three states for CHD4, MBD3, CHD4-MDBD3 (deleted MBD3), MTA2
and MTA2-MBD3 molecules. The parameters of motion are summarized in Table. 5.2 and
presented in Fig. 5.7B.

Single Diff. Double Diff. Triple Diff.
Experiments D BIC κc D1 D2 BIC κc κu1 D1 D2 D3 BIC Nd Ne

CHD4 0.005 -1868 0.55 0.003 0.010 -3134 0.18 0.65 0.002 0.005 0.017 -3244 118169 9
CHD4+ATPase 0.004 -1674 0.63 0.002 0.013 -2778 0.20 0.55 0.001 0.004 0.017 -2640 3227 3
CHD4-MBD3 0.004 -1852 0.52 0.002 0.008 -3141 0.21 0.63 0.002 0.004 0.015 -3219 63164 4
CHD4-hdac 0.004 -1877 0.55 0.003 0.008 -3018 0.20 0.67 0.002 0.004 0.017 -2952 17377 3
MBD3 0.003 -1679 0.48 0.001 0.006 -2933 0.19 0.58 0.001 0.003 0.011 -3111 105984 8
MTA2 0.004 -1792 0.49 0.002 0.007 -3006 0.14 0.66 0.001 0.004 0.013 -3192 27551 3
MTA2-MBD3 0.004 -1757 0.47 0.002 0.008 -2918 0.14 0.65 0.001 0.004 0.015 -2962 24790 3
MBD3 cslp 0.002 -1784 0.51 0.001 0.003 -2900 0.01 0.55 0.000 0.001 0.003 -2790 5786 1

Table 5.2: Parameters of the different models of motion. Diffusion coefficients
(D,D1, D2, D3) are given in µm2/s, Nd number of displacements in the histogram, Ne number
of experiments. In bold are the smallest BIC for each dataset.

5.0.6 Model of switching modes of motion

I consider here the case where a trajectory can undergo a Brownian motion with multiple
states characterized by different diffusion coefficients. To estimate these coefficients and
the switching ratios between the states, I use the distribution of displacements ∆X i(tj) =
X i(tj+1)−X i(tj). For a Brownian motion with a single diffusion coefficient D, the proba-
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bility of observing a displacement of length u is given by

Pr {||∆X|| = u} = u

2D∆t exp
(
− u2

4D∆t

)
, (5.2)

where ||.|| is the Euclidean norm [212].
A switching model consists of a Markov chain with several states k, characterized by

transition rates between pairs of states u and v. For a single molecule and two possible
states given at time t by S(t) ∈ {1, 2} and characterized by the diffusion coefficients D1 and
D2, the associated discrete diffusion process is

X(t+ ∆t) = X(t) +


√

2D1∆tη if S(t) = 1
√

2D2∆tη if S(t) = 2,
(5.3)

where the Markov chain is given by

S(.) = 1 λ
⇀↽
µ
S(.) = 2. (5.4)

For this model, the pdf pd for the displacement lengths depends on the state of the process
and can be computed by conditioning on the state using Bayes’ law:

pd(u) = Pr {||∆X|| = u} = Pr {||∆X|| = u|S(t) = 1}Pr{S(t) = 1}

+ Pr {||∆X|| = u|S(t) = 2}Pr{S(t) = 2)},
(5.5)

where the probabilities pi(t) = Pr{S(t) = i} (i = 1, 2) are the solutions of the following
master equation:

d

dt
p1 = −λp1 + µp2

d

dt
p2 = λp1 − µp2, (5.6)

which are given by

p1(t) = κ+ Ce−(λ+µ)t

p2(t) = 1− κ− Ce−(λ+µ)t, (5.7)

with κ = µ
λ+µ . Thus in two-dimension, for a long time t and short-time ∆t, using equa-

tions (5.7) and (5.2) the pdf (5.5) can be written as

pd(u) = κ
u

σ2
1

exp
(
− u2

2σ2
1

)
+ (1− κ) u

σ2
2

exp
(
− u2

2σ2
2

)
, (5.8)

where σ2
k = 2Dk∆t with k = 1, 2. More generally, for K states, the pdf for the displacement

is given by

Prswitch {||∆X|| = u} =
K∑
k=1

[
κk

u

σ2
k

exp
(
− u2

2σ2
k

)]
, (5.9)

with 0 ≤ κk ≤ 1 and
K∑
k=1

κk = 1.
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Estimation of the model parameters In order to obtain the ensemble of parameters
for a K state model: {D1, . . . DK , κ1, . . . κK−1)}, I fit equation (5.9) to the histogram of
displacements computed from the trajectories. To account for the variability in the opti-
mization procedures, I repeated the fits 50 times with random starting parameter values and
kept the parameters set with the highest adjusted coefficient of determination R2.

Model selection To determine the number of states K from eq. 5.9 that best explains
the data taking into account the quality of the fit and the number of model parameters, I
use of the Bayesian Information Criterion (BIC) defined as [213]:

BIC = (p+ 1)n(lnn)
[
ln
(

2πRSS
n

)
+ 1

]
, (5.10)

with p the number of parameters of the model, n the number of data points, and RSS the
residual sum of squares between after fitting the model to the data. For each dataset, the
model with the smallest BIC value is chosen as the best fit.



162

 

Confined Dc κc κu1 κu2

0

0.2

0.4

0.6

0.8

1

S
ta

te
p
ro

p
o
rt

io
n

C
H

D
4

C
H

D
4

-A
T
Pa

se

C
H

D
4

-h
d

a
c

M
TA

2

M
TA

2
-M

B
D

3

M
B

D
3

C
H

D
4

-M
B

D
3

C
H

D
4

C
H

D
4

-A
T
Pa

se

C
H

D
4

-M
B

D
3

C
H

D
4

-h
d

a
c

M
B

D
3

M
TA

2

M
TA

2
-M

B
D

3

0

0.010

C
o
v
e
rs

lip
-fi

xe
d

C
o
v
e
rs

lip
-fi

xe
d

Du1Unconfined
Du20.020

0.015

0.005

D
iff

u
si

o
n
 c

o
e
ffi

ci
e
n
t 

(µ
m

2
/s

)

CHD4 CFD4_ATPase

Double
Triple

Fit: Single

0

0.04

0.12

0.08

Fr
e
q
u
e
n
cy

0.04

0.12

0.08

Fr
e
q
u
e
n
cy

0

MBD3

CHD4_hdacCHD4_MBD3

MTA2 MTA2_MBD3

0.16

0.16

0 0.1 0.2 0.3 0.4 0.5
Displacement (µm)

MBD3-Coverslip-fixed

0 0.1 0.2 0.3 0.4 0.5
Displacement (µm)

0 0.1 0.2 0.3 0.4 0.5
Displacement (µm)

0 0.1 0.2 0.3 0.4 0.5
Displacement (µm)

A

B

Figure 5.7: Motion analysis for the proteins composing the NuRD complex. A. Dis-
placement histograms for the considered molecules and conditions together with the corresponding
1,2,3 diffusion states models optimal fits. B. Parameters of the selected motion model for each
displacement histogram from A, left diffusion coefficients and right proportion of states. Only the
parameters for the model with the smallest BIC value are reported (see Table 5.2).
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5.1 Conclusion and perspectives

Understanding the type of motions of individual molecules and their underlying physical
mechanisms is critical in biology. Indeed many fundamental biological processes (eg. sig-
naling, cell cycle) in cells are mediated by the biding and release of molecules with precise
spatio-temporal regulation. But molecules, even macromolecules such as proteins, are so
small that observing them, especially in live cells, has remained a challenge for years, before
the advent of super-resolution microscopy in the late 2000s.

Nowadays, Single Particle Trajectories (SPTs) obtained from Single Molecule Localization
Microscopy (a kind of super-resolution technique) methods allow the direct observation of
molecular trajectories. But the analysis of SPTs is challenging as trajectories are usually
short (≈ 5 − 20 points), strongly affected by thermal fluctuation (modeled as diffusion)
and often exhibit multiple modes of motion. The characterization of the latter is of prime
interest as they contain information about the underlying physical mechanisms acting on the
molecule, such as transient interactions with other proteins, changes in the local environment
(crowding or viscosity) or the overlying structure in which the molecules are embedded (e.g.
cytoskeleton, organelle, plasma membrane, etc).

In this thesis, I studied two of these modes of motion: potential wells that trap molecules
at specific positions at neuronal synapses and active flows that pushes molecules along the
tubules of the peripheral endoplasmic reticulum network. Both types of motion are easily
observed by eyes from trajectories but the extraction of quantitative measures from them is
challenging. The work pursued here followed two axes: 1. the development of new analysis
methods for SPTs and 2. applying these method to make contribution in different areas of
cellular biology. When dealing with multiple type of motion, classical estimation procedures
(either local or MSD) cannot be applied directly anymore and an extra classification step
is required to separate trajectory fragment undergoing different types of motion. As I have
found, this step is crucial in the correct estimation of the parameters of motion and can be
done in different manner: determined from trajectory density (as for the potential wells),
determined from the dynamics (as for the junction in the ER network reconstruction) or
through other methods such as machine-learning when no clear classification criterion can
be extracted directly. This kind of refined models of motion are, in my opinion, what separate
the work presented here from the first wave of papers analyzing SPTs and I can foresee that
these models will become more and more refined with time. The limiting factor for the
diffusion of such analysis method lies, in my opinion, in their complexity and the lack of
tools available to easily perform them. A problem that I will address in the near future for
the methods presented in this thesis through the development of an ImageJ plugin.

More generally, the future of the single-particle microscopy field is bright with constant
improvements in the chemistry of fluorophores and linkers allowing to track new proteins
with better signal to noise ratio and over longer periods of time. Associated to this, new
microscopes will make 3D recordings more widespread (with reduced difference between lat-
eral and axial resolutions) as well as ”multicolor” imaging for concurrently tracking multiple
protein species. These new developments will have to be accompanied by new analysis
techniques tailored for these type of data.
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[210] M. A. Böhme, C. Beis, S. Reddy-Alla, E. Reynolds, M. M. Mampell, A. T. Grasskamp,
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RÉSUMÉ

Les trajectoires de molécules individuelles obtenues par microscopie super-résolution permettent de suivre des protéines
avec une précision nanométrique dans des cellules vivantes. Dans cette thèse, j’ai étudié les régions de hautes densités
présentes dans ces trajectoires, dont un modèle possible est celui des puits de potentiel. Pour les caractériser à partir de
trajectoires, j’ai développé une nouvelle méthode hybride basée sur la densité de points et le champ de force local puis je l’ai
comparé aux méthodes d’état de l’art. Ensuite, j’ai utilisé celle-ci pour caractériser les puits maintenant les canaux calciques
Cav au niveau des zones actives des terminaux présynaptiques ce qui a permis de mieux comprendre le rôle des variantes
d’épissage de ces canaux dans la transmission synaptique. Dans une autre étude, j’ai analysé des trajectoires de protéines
résidant dans le lumen du Réticulum Endoplasmique (RE). J’ai créé une méthode pour reconstruire le réseau du RE à partir
des trajectoires que j’ai utilisé pour caractériser le mouvement de ces molécules par un modèle de saut-diffusion qui a pour
conséquence une meilleure redistribution du contenu luminal par rapport à un mouvement diffusif. Enfin, je discute d’autres
analyses de trajectoires pour les intéractions lysosome-ER, les canaux Cav à la jonction neuro-musculaire de la drosophile
et les protéines composant le complexe NuRD.

MOTS CLÉS

neurosciences, analyse de données, modélisation, trajectoires de molécules uniques, microscopie super-
résolution.

ABSTRACT

Single-Particle Trajectories (SPTs) obtained from super-resolution microscopy allow to track proteins with nanometer pre-
cision in living cells and are used in neuroscience and cellular biology. In this thesis, I was interested in the high-density
nanodomains found in these trajectories that can be modeled as potential wells. To characterize them, I developed a new
hybrid method based on the point density and local drift field and compared it to the other state-of-the-art methods. Then,
I used it to identify transient potential wells in SPTs of voltage-gated calcium channels (CaV) contributing to a better under-
standing of the role of the different CaV splice variants in synaptic transmission. In another study, I looked at SPTs from
Endoplasmic Reticulum (ER) luminal resident proteins where I developed a method to reconstruct the network from trajecto-
ries and used it to characterize the luminal motion as a jump-diffusion process, which allows for a better redistribution of the
luminal content than the previously assumed diffusive model. Finally, I discuss other analyses of motions for lysosome-ER
interactions, CaV2.1 channels at drosophila’s neuromuscular junctions and the description of the motion of the constituent
proteins of the NuRD chromatin remodeling complex.

KEYWORDS

neurosciences, data analysis, modelling, single particle trajectories, super-resolution microscopy.


	Summary
	Résumé
	Remerciements
	Publications
	Introduction
	Nanodomains in neurosciences and cell biology
	Receptor dynamics at synapses
	Recovery after photobleaching experiments for characterizing molecular dynamics
	Trajectories of individual post-synaptic receptors

	Super-resolution microscopy of single particle trajectories
	Abbe's law for diffraction limit
	Super-resolution microscopy techniques
	Constructing single particle trajectories from localization microscopy experiments
	Biophysical features contained in SPTs

	Stochastic models of individual particles
	Stochastic theory of diffusion
	Diffusion and active forces
	Nanodomains modeled as parabolic potential wells
	Discrete equation of motion

	Parameter estimation from SPTs
	Mean squared displacement estimators
	Local estimators constructed from statistical moments
	Maximum likelihood estimators

	Main results of the thesis
	Statistical approach to recover parabolic potential wells from SPTs
	Main applications of the well detection method
	Application of SPTs analysis to reveal the flow in the endoplasmic reticulum lumen
	Applications of SPTs analysis to lysosome, drosophila neuro-muscular junctions and NuRD complex

	General conclusion on the statistical analysis of SPTs

	Reconstructing potential wells of high density regions from super-resolution single particle trajectories
	Introduction
	Methods
	Coarse-grained description of stochastic trajectories
	Potential wells characteristics
	Simulations of stochastic trajectories
	Estimators for the elliptic boundary geometry
	Improved drift estimation
	Processing of CaV2.2 and GPI SPTs

	Results
	Recovering a bounded potential well from the point density of trajectories
	Estimating the characteristics of the well using the velocity distribution
	Estimating the center and the field coefficients of the potential well
	Interpretation high-density regions for CaV2.2 and GPI-GFP as potential wells

	Summary and Discussion
	Two statistical methods to interpret high-density regions
	High-density regions contained calcium-voltage channels and GPI SPTs data

	Supplementary Information
	MLE estimator for a potential well
	Least Square Quadratic Estimator (LSQE)
	Influence of the time and spatial discretizations on the Least Square Estimation
	Influence of the time steps in stochastic simulations
	Conditional drift estimation


	Transient Confinement of CaV2.1 Ca2+-Channel Splice Variants Shapes Synaptic Short-Term Plasticity
	Introduction
	Results
	Expression and Synaptic Localization of CaV2.1 C-Terminal Splice Variants
	Functional Differences of Synapses Dominated by CaV2.1+47 or CaV2.147 Channels
	Dynamics of CaV2.1 Channels Differ between C-Terminal Splice Variants
	Light-Triggered Re-organization of Calcium Channels
	C-Terminal Splicing Contributes to Short-Term Plasticity

	Discussion
	Supplementary Information
	Single-particle tracking PALM
	Data analysis and modeling


	Single particle trajectories reveal active endoplasmic reticulum luminal flow
	Introducion
	Results
	Discussion
	Supplementary information
	Mean Squared Displacement and first moment analysis
	Models for the instantaneous velocity distribution
	Reconstruction of the ER Network from SPTs
	Recovery of the local dynamics in the ER lumen from SPTs
	Static ER network analysis
	Transient ER network analysis
	Instantaneous velocities along individual trajectories
	Instantaneous velocity peaks duration and inter-peaks period
	Dynamics of tubular junctions

	Characterization of ER tubule contractions
	Extraction of tubule contraction statistics
	Elementary model of tubule contraction
	Simultaneous contractions statistics

	Tables

	Discussion: three case studies in cellular trafficking
	ER-lysosomes interactions participate in maintaining the peripheral ER shape
	Transient confinement detection
	Analysis of CaV2.1 nanodomains at Drosophila neuro-muscular junctions
	Local high-density region analysis
	Analysis of the dynamics of the NuRD nuclear remodeler complex
	Model of switching modes of motion

	Conclusion and perspectives

	Bibliography

