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Introduction

The vast majority of the mass, more than 99%, of the visible universe is formed by atoms. The mass of the atom is itself almost entirely concentrated in its nucleus. The current model of the atom, a heavy nucleus surrounded by a cloud of electrons, was developed after the rst alpha-particle scattering experiment performed by Rutherford at the beginning of the 20th century. His work led to the discovery of the composite nature of the atom. The later discoveries of the nucleons, rst the proton (Rutherford, 1919) and then the neutron (Chadwick, 1932), opened the way to the exploration of the structure of the nucleus as a complex system composed of nucleons. The evidence that the nucleons themselves are complex composite objects was provided in 1969 by the Deep Inelastic Scattering results published by the SLAC collaboration. After this discovery, the Parton Model was developed and later conrmed by the discovery of the J/Ψ in 1973. These discoveries form the foundation of the eld of hadronic physics, which aims at describing the interactions of the fundamental constituents of matter, the quarks and gluons, inside the hadrons and, in particular, the nucleons.

Quantum chromodynamics (QCD) is the theory describing the interaction of colored objects, the partons, which interact via the strong force, mediated by gluons. The theory of QCD, although perturbatively calculable at high energy, reveals its complexity at low energy (of the order of the nucleon mass). Its coupling constant increases with decreasing energy, at the extent that the perturbative approach cannot be applied at low energy. This behavior, called asymptotic freedom, is the core of hadronic physics. Indeed, understanding the structure of the nucleon ultimately enables us to fully understand non-perturbative QCD.

As explicit calculations of low-energy QCD are not achievable, the main tools to understand hadrons are ad-hoc structure functions, encoding the complex behavior of the partons inside the hadrons. The rst set of structure functions describing the nucleon structure was introduced in the 1950s. The Form Factors (FF) and the Parton Distribution Functions (PDF) allow to explore, respectively, the spatial and the momentum-related structure of the nucleons. FFs are of great importance to determine the radius of the nucleon, while PDFs are used to parameterize the partonic content of the nucleons in terms of momentum, which is essential in high-energy proton collision experiments. Furthermore, their generalization in terms of Generalized Parton Distributions (GPD) provides even more information on the fundamental properties of the nucleon, such as its spin or its mechanical properties. The GPDs were introduced in the late 1990s. Their rich phenomenology, including strong links to FFs and PDFs, but also completely new interpretations, such as their direct link to the nucleon spin, have driven a large international eort, both experimental and theoretical, aiming to measure them.

The experimental program of the CLAS12 detector is largely dedicated to hadronic physics measurements, and in particular the extraction of GPD observables. This large acceptance detector is housed in the experimental Hall B at Jeerson Lab, in Virginia, USA. Its large coverage makes it ideal to measure the Deeply Virtual Compton Scattering process (DVCS, ep → e p γ), the experimental reaction the most sensitive to GPDs. The 11-GeV beam provided to CLAS12 by the upgraded Continuous Electron Beam (CEBAF) also allows to measure the DVCS time-reversal process, Timelike Compton Scattering (TCS, γp → e + e -p ), in the resonance-free region. This process plays a crucial role in our understanding of GPDs. First, it is the simplest reaction, besides DVCS, that can be parameterized by GPDs. Its measurement and the comparison with DVCS results can provide evidence for the univer-sality of the GPD theoretical framework. In addition, TCS has a singular sensitivity to the real parts of the Compton Form Factors (CFFs), which are GPD-based quantities accessible in DVCS and TCS measurements. The real parts of the CFFs, that contain integrals of GPDs over the internal quark momentum fraction, have not yet been constrained by existing DVCS data. The measurement of TCS is expected to provide a deeper insight into it.

The work reported in this manuscript focuses on the experimental approach to GPDs, using the CLAS12 detector. Two independent tasks were carried out, and they are described in two separate parts of this manuscript. The rst task involves the installation, development of the calibration and reconstruction software, and commissioning of the Central Neutron Detector of CLAS12. This detector, designed and built at Institut de Physique Nucléaire d'Orsay and dedicated to the detection of the recoil neutron in the nDVCS reaction (ed → e n (p )γ), is a key element in the measurement of DVCS observables on the neutron. These observables are an essential step in the determination of the contribution of the valence-quarks angular momentum to the total spin of the nucleon. The second task consisted in the analysis of the CLAS12 data in order to extract TCS observables.

These two projects are presented within six chapters:

• Chapter 1 introduces the concepts and the theoretical tools needed for this work. It is composed of three sections. In the rst section, the FFs, the PDFs, and the polarized structure functions are presented. Then the GPDs and their links to FFs and PDFs, as well as their multiple interpretations are discussed. The nal section is dedicated to the experimental path to GPDs, via DVCS and TCS. The interest for TCS is emphasized and the relevant observables are presented.

• Chapter 2 describes the experimental setup used during this thesis, focusing rst on the CEBAF accelerator, then describing in details the CLAS12 detector, its subsystems and the associated software.

• Chapter 3 focuses on the Central Neutron Detector (CND). The motivations for the measurement of nDVCS are discussed. Then the work realized on the CND, from the development of the reconstruction and calibration algorithms and software to the assessment of its performances, is presented.

The second part of this manuscript deals with the CLAS12 data analysis, aiming to extract TCS observables. It is decomposed in 3 Chapters:

• Chapter 4 summarizes the particle identication algorithms applied on data. It also provides a complete explanation of the positron identication techniques developed for the TCS analysis, taking advantage of multivariate analysis tools such as neural networks. The development of momentum corrections and ducial cuts applied to the data is also reported.

• Chapter 5 focuses on the work realized in order to extract the TCS observables. The simulation framework is presented, followed by the description of the exclusivity cuts applied on data. A phenomenological study of the Forward-Backward asymmetry, an observable not studied for TCS before this thesis, is also exposed in this chapter.

• Chapter 6 summarizes all the results obtained in this analysis. The results are compared with theoretical predictions. Finally physical interpretations and conclusions are drawn.

Chapter 1

Physics motivations 1.1 Nucleon structure studies with electromagnetic probes

Nucleons are composed of three valence quarks (uud for protons, udd for neutrons). The valence quarks are surrounded by a cloud of quark-antiquarks pairs and gluons called the sea. The interaction between the partons (quarks and gluons) is described by the theory of Quantum Chromodynamics (QCD). At energies comparable to the mass of the nucleon, QCD cannot be computed pertubatively.

In this regime, structure functions have to be introduced to described the structure of the nucleon.

QCD is introduced in Subsection 1.1.1. In the two following subsections, structure functions accessible in elastic (Subsection 1.1.2) and inelastic (Subsection 1.1.3) scattering experiments are presented.

Quantum Chromodynamics

The strong force describes the interaction of particles carrying a color charge (red, blue or green).

Quarks, which carry color charge, interact by the exchange of massless bosons, the gluons. The gluons also carry color charge and interact with each other and with themselves. The theory of QCD is described by a Lagrangian which is gauge invariant under the SU(3) symmetry. This Lagrangian is invariant under the transformation ψ(x) → U (x)ψ(x), where U is a unitary 3x3 matrix of determinant one, acting on the color state of ψ(x) = (ψ R (x), ψ G (x), ψ B (x)). The Lagrangian of QCD is written:

L = - 1 4 F a µν F aµν + k ψ ki i / D ij -m k ψ kj , (1.1) 
where

F a µν = ∂ µ A a ν -∂ ν A a µ + gf abc A b µ A c ν (1.2)
is the gluon eld strength tensor,

(D µ ) ij = ∂ µ δ ij -igA a µ T a ij (1.3)
is the gauge derivative, ψ k are the quark elds where k runs over quark avors and i, j run over color charge, A a µ are the gluon elds where a runs from 1 to 8, T a ij are the 8 SU(3) generator matrices, f abc are the structure constants of SU(3) and g is the strong coupling constant. By analogy to the ne-structure constant in quantum electrodynamics, it is convenient to dene the strong ne-structure constant α S as: α S = g 2 /4π.

(1.4)

The SU(3) structure of the Lagrangian is at the origin of two main properties of QCD, asymptotic freedom and connement. Connement refers to the fact that the only stable states allowed by QCD are color singlet states, which have net color charge. Experimentally quarks and gluons are never observed alone but in composite bound hadrons (baryons or mesons). Connement is directly related to the QCD potential increasing with distance. If one tries to pull away two quarks, the energy stored in the potential increases and can become high enough to produce a pair of quark-antiquark, restoring the net zero color charge of the system. The second property, asymptotic freedom, arises from the renormalisation of QCD. As for QED, renormalization of QCD (ie. xing an energy scale at which a process is observed) leads to a dependence of the strong constant α S with respect to the renormalisation scale µ as:

α S (µ 2 ) = 12π (33 -2n f ) • ln µ 2 Λ 2 (1.5) 
where µ is the renormalisation scale, Λ ≈ 250 MeV, and n f is the number of avors. One can see that the strong coupling constant decreases with the scale, as shown in Figure 1.1. At high energy, α S is small and calculations can be done pertubatively. At low energy, comparable to the nucleon mass, QCD cannot be calculated through a pertubative expansion in powers of the coupling constant α S . In this regime, the interactions of partons inside the nucleons must be described by structure functions.

Experiments, along with phenomenology and Lattice QCD, are currently the main ways to study the properties of these structure functions.

Elastic Scattering and Form Factors

Electron-proton elastic scattering experiments have historically played an important role in the discovery of the composite structure of the proton and the subsequent study of its structure. In the following, largely taken from [START_REF] Thomson | Modern Particle Physics, chapter 7 and 8[END_REF] and [START_REF] Thomas | The Structure of the Nucleon[END_REF], an historic approach of elastic scattering is presented.

The elastic scattering of a point-like particle on extended objects provides an ecient way to explore the structure of the latter. Rutherford was the rst to use elastic scattering techniques to probe the structure of the gold atom in 1911. Using a beam of alpha particles, that can be considered as point-like compared to gold atoms, Rutherford showed that the mass of the atom is concentrated at its center.

The Rutherford cross section formula, that applies for non-relativistic probes scattering on innite mass point-like targets via the electromagnetic interaction, is given by:

dσ dΩ = α 2 em 16E 2 sin 4 Θ 2 , (1.6) 
where α em = e 2 4π 1 137 is the electromagnetic ne structure constant, E the energy of the probe, Θ is the laboratory scattering angle and Ω is the solid angle where the probe is scattered.

Taking into account the relativistic eects and spins of the probe and the target, one can derive the Mott cross section formula. This formula describes the scattering of a massless particle (an electron) on a massive particle (a proton) via the exchange of a single photon as shown in Figure 1.2:

dσ dΩ = α 2 em 4E 2 sin 4 Θ 2 E E cos 2 Θ 2 + Q 2 2m 2 p sin 2 Θ 2 , (1.7) 
where E is the energy of the incoming probe, E is the energy of the outgoing probe, m p is the mass of the target, and Q 2 = -q 2 = -(kk) 2 is the virtuality of the exchanged photon. The Mott formula only applies to low energy processes (

Q 2 m p ). The distance (in GeV -1 )
probed by a virtual photon with virtuality q is approximately 1/ Q 2 . In the regime where the Mott cross section applies the distance probed by the electromagnetic interaction is bigger than the size of the proton. In this case, the target and the probe are considered point-like particles. Therefore it is not possible to investigate the structure of the target in this energy regime. As the virtuality of the virtual photon increases, smaller distances can be probed. This was achieved experimentally with the increase of the energy of the available electron beams. When Q 2 > m p the proton size has to be accounted for. It is necessary to introduce structure functions, Form Factors (FFs), to account for the proton nite size. The Mott cross section can be re-written in terms of two FFs. The electron-proton elastic scattering is described by the Feynman diagram in Figure 1.3. The complete scattering formula was introduced by Rosenbluth in 1950 [START_REF] Rosenbluth | High energy elastic scattering of electrons on protons[END_REF] and reads:

dσ dΩ = α 2 em 4E 2 sin 4 Θ 2 E E G E (Q 2 ) 2 + τ G M (Q 2 ) 2 1 + τ cos 2 Θ 2 + 2τ G M (Q 2 ) 2 sin 2 Θ 2 , (1.8) 
where τ is given by

τ = Q 2 4m 2 p , (1.9) 
and G E (Q 2 ) and G M (Q 2 ) are the Sachs electric and magnetic FFs. It is convenient to introduce the Dirac and Pauli FFs, F 1 (Q 2 ) and F 2 (Q 2 ), respectively, as:

G E = F 1 - Q 2 4m 2 p F 2 ,
(1.10)

G M = F 1 + F 2 .
(1.11)

The Form Factors can be directly related to the spatial distribution of the charge and the magnetic moment in the nucleon. This was shown by Hofstadter in 1956 [START_REF] Hofstadter | Electron scattering and nuclear structure[END_REF] [6] and allowed for a rst determination of the charge radius of the proton. In the Breit frame, which is, in the case of elastic scattering, the center-of-mass frame of the electron-nucleon system, the electric (resp. magnetic) FF can be interpreted as the Fourier transform of the transverse charge (resp. magnetization) distribution.

In this frame, the exchanged photon carries no energy (Q 2 = q 2 ), and the charge density can be written as:

ρ( r) = G E ( q 2 )
M E e -i q• r d 3 q (2π) 3 .

(1.12)

The same equation applies to G M and gives the magnetization density. From this interpretation, one can derive the charge and magnetic mean squared radii of the nucleon given by:

r 2 E = -6 dG E (Q 2 ) dQ 2 
(1.13)

r 2 M = - 6 G M (0) dG M (Q 2 ) dQ 2 .
(

The current value of r 2 E derived from both elastic scattering measurements and hydrogen spec- troscopy is 0.879±0.008 fm. Proton radii extracted from muonic hydrogen spectroscopy have also been published [START_REF] Pohl | The size of the proton[END_REF]. The current value obtained by this technique, 0.84184 ± 0.00064 fm, is almost 8 sigmas away from the other value. Understanding this discrepancy has been a topic of great interest in the last years on both the experimental and theoretical point of view. New results published recently were obtained from an electron scattering experiment (PRAD) [START_REF] Xiong | A small proton charge radius from an electronproton scattering experiment[END_REF] and are in accordance with the muonic hydrogen radius. This result was achieved using a window-less hydrogen target and high resolution calorimeters for electron detection. This set-up was designed to achieve a more precise measurement than any previous scattering experiments.

FFs for both protons and neutrons have been measured. They have very dierent behaviors. For protons F 1 dominates for all values of Q 2 . On the contrary, F 2 dominates in the low Q 2 region for neutrons, as shown in Figure 1.4.

Finally, one can also dene axial and pseudo-scalar FFs [START_REF] Bernard | Axial structure of the nucleon[END_REF], where one replaces the virtual photon by charged and neutral weak bosons. Axial and pseudo-scalar FFs G A and G P are measurable in neutrino scattering experiments, muon capture and pion electro-production processes.

Inelastic Scattering Deeply Inelastic Scattering

For transferred momentum Q 2 >> m 2 p , the virtuality of the exchanged photon is sucient to probe distances smaller than the size of the proton. If the photon energy is big enough, ν > m p , the proton is also very likely to break down. This regime is called Deep Inelastic Scattering (DIS). The DIS reaction is written ep → eX where X represents any possible hadronic nal state produced by the breakup of the proton. In the single-photon-exchange approximation, DIS is described by the Feynman diagram in Figure 1.5a. The mass of the nal state particles is given by W = (p + q) 2 with the W m p condition. Contrary to elastic scattering, which is parameterized by only one variable (Q 2 ), DIS is described by two independent variables (Q 2 and ν). The cross section of DIS is given by:

dσ dΩdE = α 2 em 4E 2 sin 4 Θ 2 W 2 (ν, Q 2 )cos 2 Θ 2 + 2W 1 (ν, Q 2 )sin 2 Θ 2 , (1.15) 
where the incoming and outgoing electron momenta are dened as in the previous section and ν = E -E . This formula is very similar to the Rosenbluth (Formula (1.8)), the main dierence being the dependence of the structure functions W 1 and W 2 on two variables.

This formula is conventionally re-written as:

dσ dΩdE = α 2 em 4E 2 sin 4 Θ 2 F DIS 2 (x B , Q 2 ) ν cos 2 Θ 2 + 2 F DIS 1 (x B , Q 2 ) m p sin 2 Θ 2 , (1.16) 
where F DIS 1 (x B , Q 2 ) and F DIS 2 (x B , Q 2 ) are dened as:

F DIS 1 (x B , Q 2 ) = m p W 1 (ν, Q 2 ),
(1.17)

F DIS 2 (x B , Q 2 ) = νW 2 (ν, Q 2 ) = p • q m p W 2 (ν, Q 2 ), (1.18) 
and where we dened the Bjorken variable as:

x B = Q 2 2p • q .

(1. [START_REF] Radyushkin | Nonforward parton distributions[END_REF] In 1969, the SLAC group showed that F DIS 1 (x B , Q 2 ) and F DIS 2 (x B , Q 2 ) are independent of Q 2 [11]. This property is now referred as scaling. The Q 2 -independence of the structure functions implies that the exchanged photon interacts with an object with no internal structure (ie. no dependence on the probed distance 1/ Q 2 ). The scaling results published by the SLAC collaboration are shown in Figure 1.6. This was the rst evidence of the existence of quarks. Indeed in the DIS regime, the virtuality of the photon is large enough to probe distances much smaller than the size of the proton and observe its fundamental components. Figure 1.6: Ratio between the DIS cross section and the Mott cross section as a function of the squared of the momentum of the exchanged photon. These results were obtained by the SLAC collaboration in [START_REF] Breidenbach | Observed behavior of highly inelastic electron-proton scattering[END_REF].

The parton model and Parton Distribution Functions

In order to better understand the SLAC results, the DIS cross section can be interpreted within the parton model [START_REF] Bjorken | Inelastic electron-proton and γ-proton scattering and the structure of the nucleon[END_REF]. In this model introduced by Feynman [START_REF] Feynman | Very high-energy collisions of hadrons[END_REF], the proton is composed of point-like particles, the partons. The parton model has a clear interpretation in the frame where the nucleon has an innite momentum in the z-direction (the light-cone frame). In this innite momentum frame, partons can be considered as non-interacting particles due to time dilatation. Thus the virtual photon interacts with a single quark as shown in Figure 1.5b. Dening x as the fraction of the nucleon 1.1. Nucleon structure studies with electromagnetic probes momentum carried by the quark before the interaction, p the momentum of the struck quark after the interaction, and noting that the nal state struck quark must be on-shell, one can write:

x • p + q = p, (1.20) and after squaring and neglecting the quark mass:

x = Q 2 2p • q = x B .
(1.21)

The Bjorken variable x B can be interpreted as the fraction of the proton momentum carried by the struck quark in the innite momentum frame. The cross section can then be written as a sum of cross sections of electron scattering o a single point-like parton, weighted by the probability of nding such a parton with momentum fraction x. F DIS 1 (x, Q 2 ) and F DIS 2 (x, Q 2 ) can be re-written as:

F DIS 1 (x, Q 2 ) = 1 2 i e 2 i (q i (x) + q i (x)) , (1.22) 
F DIS 2 (x, Q 2 ) = x i e 2 
i (q i (x) + q i (x)) , (1.23) where e i is the charge of a quark of avor i and q i is the Parton Distribution Function (PDF) for the quarks of avor i, with the bar denoting antiquarks. The PDFs are thus interpreted as the probability of interaction with a quark carrying a momentum fraction x. 

F DIS 2 (x) = 2xF DIS 1 (x), (1.24) 
known as the Callan-Gross relation. This equality is a consequence of the fermionic nature of quarks.

Its experimental verication was a further conrmation of the quark model validity.

The current tted PDFs q i are shown in Figure 1.7. The quark avor separation of the PDFs is achieved by considering proton and neutron PDFs. The separation between quarks and antiquarks is done using neutrino scattering data. In Figure 1.7 one can also see that PDFs depend on Q 2 , contradicting the simple parton model explained above. This behavior, called scaling violation, is understood by taking into account gluons radiated by the struck quark and is described by the DGLAP equations [START_REF] Dokshitzer | Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e-Annihilation by Perturbation Theory in Quantum Chromodynamics[END_REF].

Polarized PDFs

One can also dene polarized PDFs by considering the spin of the partons inside a polarized nucleon.

There are two polarized structure functions g 1 and g 2 (see [START_REF] Goto | Polarized parton distribution functions in the nucleon[END_REF][START_REF] Gehrmann | Polarized parton distributions in the nucleon[END_REF]). The polarized structure function g 1 can be written as:

g 1 (x, Q 2 ) = i e 2 i (∆q i (x) -∆q i (x)) , (1.25) 
with

∆q i (x) = q ↑ i -q ↓ i , (1.26) 
where q ↑ i (resp. q ↓ i ) represents the probability density of quarks with helicity parallel (resp. antiparallel) to the one of the nucleon. The g 1 structure function can be measured in longitudinally polarized targetlongitudinally polarized beam DIS experiments. The second structure function g 2 is expected to vanish at leading twist (see denition of twist in Section 1.2), but has non-zero twist 2 and 3 contributions and is measurable in transversely polarized target experiments [START_REF] Abe | Measurements of the proton and deuteron spin structure function g 2 and asymmetry a 2[END_REF]. determined by a t over a large range of data [START_REF] Martin | Parton distributions for the lhc[END_REF].

Generalized Parton Distributions

FFs and PDFs introduced in the previous section describe the nucleon structure respectively in terms of spatial coordinates and momentum coordinates. However no correlations between the position and the momentum of the struck quark can be extracted from these functions. The concept of Generalized Parton Distributions (GPDs) was developed in the early 90's [START_REF] Radyushkin | Nonforward parton distributions[END_REF][START_REF] Müller | Wave functions, evolution equations and evolution kernels from light-ray operators of qcd[END_REF][START_REF] Ji | Gauge-invariant decomposition of nucleon spin[END_REF] and provided a framework to interpret the partonic structure of the nucleon in terms of traverse position, longitudinal momentum and their correlations.

The concept of GPDs is introduced in Subsection 1. 

Phenomenology of Generalized Parton Distributions Factorization

The concept of GPDs is based on QCD factorization. As shown in Figure 1.1 in the previous section, the strong interaction coupling constant α S varies with the energy scale of the studied process. At high-energy scale α S is small and one can apply power series expansion to calculate matrix elements. However at low energies, α S becomes large and the power expansion is not possible. To calculate the amplitude of a high energy process involving a complex QCD object like a nucleon, one has to separate a point-like high-energy (i.e. hard) interaction, between an electron and a quark for example, from the long-range low-energy (i.e. soft) structure of the nucleon. The hard part can be described using Quark GPDs GPDs [START_REF] Guidal | Generalized parton distributions in the valence region from deeply virtual compton scattering[END_REF][START_REF] Diehl | Generalized parton distributions[END_REF][START_REF] Belitsky | Unraveling hadron structure with generalized parton distributions[END_REF] were rst introduced to describe the nucleon soft structure contribution to the exclusive production of a photon or a meson o a nucleon. Deeply Virtual Compton Scattering (DVCS) is the exclusive electro-production of a photon induced by a high virtuality (Q

2 )
initial photon (see Figure 1.8a) and is one of the processes parameterized by GPDs. DVCS is a key reaction for the GPD experimental program and will be further present in Section 1.3. The DVCS amplitude can be expanded as a series of operators, were each term is sorted according to its power in α S (referred as its order) and to its twist, which is dened as its dimension minus its spin. Terms with high order are suppressed by increasing power of α S , while high-twist terms are suppressed by increasing powers of 1/Q. At leading order and leading twist (twist-2, which is assumed in the following), the amplitude of DVCS is given by the "handbag" diagram of Figure 1.8a. The top high-energy part of the graph is described by the usual perturbative Feynman rules, while the bottom part describing the soft structure of the nucleon (see Figure 1.8b) is parameterized by GPDs. The GPDs are universal functions and their properties should not depend on the process studied. Thus GPDs can be studied not only from DVCS but also from other processes, as presented in Section 1.3.

Formally, quark GPDs (gluon GPDs are dened in the next paragraph) are dened in the lightcone frame (introduced in the previous section), where the incoming and outgoing momenta of the nucleon (p and p ) are collinear to the z-axis. In this frame, one can conveniently dene plus/minus components of a 4-vector a as a ± = a 0 + a 3 / √ 2. GPDs are related to the Fourier transform of the non-local non-diagonal matrix element p | ψq (0)Oψ q (y)|p represented by the diagram in Figure 1.8b. In this matrix element ψ q is the avor q quark eld, |p and |p are the quantum states of the incoming and outgoing nucleon with respective momenta p and p , and O is an operator appearing in the convolution with the hard part of the diagram (usually products of gamma matrices). This matrix element is non-local, as the quark eld is taken at dierent space-time coordinates, and non-diagonal, as the nucleon states |p and |p are dierent. In the case of processes conserving the quark helicity such as DVCS, the initial and nal quark elds have the same helicity state. In the light-cone frame, the non-zero matrix elements appearing in the amplitude of these processes read p | ψq (0)γ + ψ q (y)|p and p | ψq (0)γ + γ 5 ψ q (y)|p . They are written in terms of four GPDs, H q , Hq , E q , and Ẽq , as:

P + 2π
dy -e ixP + y -p | ψq (0)γ + ψ q (y)|p

y + = y ⊥ =0 = H q (x, ξ, t) N (p )γ + N (p) + E q (x, ξ, t) N (p )iσ +ν ∆ ν 2m N (p) , P + 2π
dy -e ixP + y -p | ψq (0)γ + γ 5 ψ q (y)|p

y + = y ⊥ =0 = Hq (x, ξ, t) N (p )γ + γ 5 N (p) + Ẽq (x, ξ, t) N (p )γ 5 ∆ + 2m N (p) , (1.27) 
where P = (p + p )/2 is the average nucleon momentum, ∆ = (pp) is the nucleon transferred momentum, N and N are the initial and nal nucleon spinors, and σ µν = i 2 [γ µ , γ ν ] are the gamma matrices commutators.

Each of the four helicity-conserving GPDs corresponds to a combination of the possible quark-nucleon helicity-spin ips (while conserving the quark helicity). The helicity-spin decomposition of the GPDs is illustrated in Figure 1.9. Some exclusive processes such as Deeply Virtual Meson Production (DVMP)

(ep → e p m, where m is a meson), are described by GPDs for which the quark ips its helicity and which are called tranversity GPDs. There are four transversity GPDs (H q T , Hq T , E q T , and Ẽq T ) dened as the Fourier transforms of the matrix elements p | ψq (0)σ +ν ψ q (y)|p and p | ψq (0)σ +ν γ 5 ψ q (y)|p . The following parts of this manuscript focus on the properties of helicity-conserving quark GPDs. They are simply referred to as GPDs. Quark GPDs depend explicitly on three variables, x, the momentum imbalance ξ, and the Mandelstam variable t, where x + ξ is the momentum fraction of the initial quark and xξ the momentum fraction of the nal quark. They read:

E H Ẽ H + - + -
t = (p -p) 2 , (1.28) ξ = -∆ + 2P + .
(1.29)

Generalized Parton Distributions

GPDs also depend on the hard scale (usually the virtuality Q 2 of the incoming virtual photon in DVCS and DVMP). Their evolution with Q 2 is well known and usually this dependence is omitted. The quark momentum fraction x varies between -1 and 1, while ξ varies from 0 to 1. In the region | x |> ξ, GPDs represent the probability amplitude of removing a quark with a momentum fraction x + ξ and putting it back in the nucleon with a momentum fraction xξ. This region is called the DGLAP region in reference to the QCD evolution equation [START_REF] Dokshitzer | Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e-Annihilation by Perturbation Theory in Quantum Chromodynamics[END_REF]. In the region -ξ < x < ξ, the GPDs can be interpreted as the probability amplitude of extracting a quark-antiquark pair from the nucleon. This region is referred as the ERBL region [START_REF] Lepage | Exclusive processes in perturbative quantum chromodynamics[END_REF].

Gluon GPDs Gluon GPDs can also be dened. There are four gluon GPDs (H g , Hg , E g , and

Ẽg

). Gluon GPDs have a similar denition to quark GPDs (see [START_REF] Guidal | Generalized parton distributions in the valence region from deeply virtual compton scattering[END_REF]). They describe the probability of picking a gluon with momentum fraction x + ξ and putting it back with the xξ fraction as shown in Figure 1.10. In the valence region (for energies of the order of 1 GeV) and at leading twist, gluon

GPDs only enter the DVCS amplitude at next-to-leading order in α S , and are believed to have a small contribution to the DVCS cross section. However this might not be true in specic cases (see Subsection 1.3.4 for details). We do not consider gluon GPDs in the following discussion of GPDs properties and models.

x + ξ xξ p p GP D 

Forward limit

GPDs are related to PDFs via the following model-independent relations:

H q (x, 0, 0) = q(x), x > 0 -q(-x), x < 0 (1.30) Hq (x, 0, 0) = ∆q(x), x > 0 ∆q(-x), x < 0 (1.31)
where q, q, ∆q, and ∆q are the PDFs and polarized PDFs (see Section 1.1) associated to the quark avor q. This property is derived from the optical theorem illustrated in Figure 1.11, which links the DIS cross section to the imaginary component of the amplitude of the γ * N → γ * N process in the forward limit (at t = 0). These forward-limit properties provide strong constraints to GPDs as PDFs are relatively well known. There are no such relations for the E and Ẽ GPDs, which make them more dicult to constrain.

GDP x-moments

Similarly to the PDFs in the forward limit, FFs can also be related to GPDs through their rst

x-moments as:

1 -1 dxH q (x, ξ, t) = F q 1 (t),
(1.32)

Figure 1.11: Schematic description of the optical theorem that links DIS cross section to the imaginary part of the γ * N → γ * N process. Figure from [START_REF] Guidal | Generalized parton distributions in the valence region from deeply virtual compton scattering[END_REF].

1 -1 dxE q (x, ξ, t) = F q 2 (t), (1.33) 1 -1 dx Hq (x, ξ, t) = G q A (t), (1.34) 1 -1 
dx Ẽq (x, ξ, t) = G q P (t).

(

where F q 1 , F q 2 ,G q A and G q P are, respectively, the Pauli FFs, axial, and pseudo-scalar FFs dened in Section 1.1. Because of the restricted denition domain of ξ, these integrals only depend on t. Furthermore higher x-moments of GPDs verify a polynomiality condition. The n-th x-moment of the GPD H can be written as a polynomial in ξ, of order n for even n, and of order (n + 1) for odd n, as:

if n even :

1 -1 dx x n H(x, ξ, t) = a 0 + a 2 ξ 2 + a 4 ξ 4 + ... + a n ξ n , if n odd : 1 -1 dx x n H(x, ξ, t) = a 0 + a 2 ξ 2 + a 4 ξ 4 + ... + a n+1 ξ n+1 , (1.36) 
where the a i coecients only depend on t. For E the same conditions apply with the opposite sign for the coecients a i . For H and Ẽ, the odd case is of maximum order (n -1). The polynomiality condition is an important property as it provides strong constraints on GPDs models.

Physical interpretations

GPDs have a direct link to PDFs and FFs. Thus they encode both transverse spatial and longitudinal momentum information but also their correlations (as shown in Figure 1.12). Their interpretation provides a deeper insight on the structure of the nucleon than FFs and PDFs alone. In this subsection the three main physical interpretations of GPDs are presented. The tomography interpretation, the link between GPDs and the nucleon spin, and nally the relation with the internal forces and the pressure in the nucleon are introduced.

Tomography of the nucleon

It is possible to interpret GPDs as the probability distribution of nding a parton at transverse position b ⊥ with respect to the "center of momentum" of the nucleon, with longitudinal momentum fraction x, via a Fourier transform [START_REF] Burkardt | Impact parameter space interpretation for generalized parton distributions[END_REF][START_REF] Belitsky | Nucleon hologram with exclusive leptoproduction[END_REF][START_REF] Dupre | Tomographic image of the proton[END_REF] :

H q (x, b ⊥ ) = d 2 ∆ ⊥ (2π) 2 e -ib ⊥ ∆ ⊥ H q (x, 0, -∆ 2 ⊥ ).
(1.37)

y x z ⊥ r ) ( ⊥ r ρ 0 ⊥ r p x y x z 0 ⊥ r p f x ( ) 1 xp Q z 1 ⊥ δ x y x z p xp Q z 1 ⊥ δ ⊥ r 0 ⊥ r ) , ( ⊥ r x f 1 Figure 1
.12: GPDs encode information from FFs and PDFs but also correlations not accessible with the previous functions alone. A tomography of the nucleon can be performed using GPDs, providing a picture of the internal structure of the nucleon in the transverse-spatial coordinates at dierent values of longitudinal momentum. Figure from [START_REF] Belitsky | Unraveling hadron structure with generalized parton distributions[END_REF].

Hence GPDs permit to perform a 2+1D (two transverse position dimensions and 1 momentum dimension) picture of the nucleon [START_REF] Dupré | Analysis of deeply virtual compton scattering data at jeerson lab and proton tomography[END_REF]. The interpretation of GPDs as a tomography of the nucleon is illustrated in Figure 1.12.

GPDs and the spin puzzle

GPDs are related to momentum and position of quarks in the nucleon. This relation implies that information about the angular momentum of quarks can be extracted from GPDs. This link was investigated by X. Ji in a 1997 publication [START_REF] Ji | Gauge-invariant decomposition of nucleon spin[END_REF] where the Ji's sum rule was rst introduced. According to this sum rule, the spin of the nucleon can be decomposed as:

1 2 = J Q + J G , (1.38) 
where J Q and J G are the total contributions of, respectively, quarks and gluons to the total spin of the nucleon. The contribution of the quarks can be further decomposed as:

J Q = 1 2 ∆Σ + L Q , (1.39) 
where 1 2 ∆Σ and L Q are the contributions from, respectively, intrinsic spin and angular momentum. It is not trivial that all of these contributions exactly add up to 1/2, and each contribution is a priori unknown. Polarized DIS experiments give access to the intrinsic spin component 1 2 ∆Σ as:

∆Σ = i 1 0 dx∆q i (x) (1.40)
where the sum runs over quark avors, and the ∆q i (x) are the polarized PDFs dened in Subsection 1.1.3. It was shown that this term contributes at most to 30% [START_REF] Daniel De Florian | Extraction of spin-dependent parton densities and their uncertainties[END_REF] of the total nucleon spin. The remaining contributions must account for the remainder. The angular momentum contribution from quarks can be accessed using GPDs. The Ji's sum rule relates the second moment of the sum over all quark avors of the H q and E q GPDs at t = 0 to the total angular momentum of the quarks:

J Q = q 1 2 1 -1 dx x(H q (x, ξ, 0) + E q (x, ξ, 0)).
(1.41) A complete measurement of H q and E q opens a way to extract the contribution to the nucleon's spin of the angular momentum of the quarks L Q = J Q -1 2 ∆Σ. The Ji's rule also apply to gluons. However the separation between the angular momentum contribution and the spin contribution as in Equation

(1.39), is not applicable to gluons [START_REF] Deur | The spin structure of the nucleon[END_REF].

Forces inside the nucleon: the D-term

The rst x-moment of H and E can be expressed as:

1 -1 dx xH a (x, ξ, t) = A a (t) + ξ 2 D a (t) (1.42) 1 -1 dx xE a (x, ξ, t) = B a (t) -ξ 2 D a (t) (1.43)
where the quantities A a , B a , and D a are the Energy-Momentum Tensor (EMT) Form Factors and a denotes gluon or quark avors. The EMT FFs are form factors appearing when one describes the interaction of the gravitational eld with a nucleon [START_REF] Polyakov | Generalized parton distributions and strong forces inside nucleons and nuclei[END_REF][START_REF] Lorcé | Trawi«ski. Revisiting the mechanical properties of the nucleon[END_REF], as shown in Figure 1.13. From Equations Figure 1.13: Diagram representing the interaction of a graviton on a nucleon, taken from [START_REF] Polyakov | Forces inside hadrons: Pressure, surface tension, mechanical radius, and all that[END_REF] (1.42) and (1.43), one can see that the EMT FFs A a and B a are related to the Ji's sum rule presented in the previous section. The D-term [START_REF] Polyakov | Forces inside hadrons: Pressure, surface tension, mechanical radius, and all that[END_REF][START_REF] Polyakov | Generalized parton distributions and strong forces inside nucleons and nuclei[END_REF], dened as D(t) = a D a (t), contains information about the force and the pressure distribution inside the nucleon. It can be related to the pressure inside the nucleon by the model independent formula [START_REF] Kim | Energymomentum tensor form factors of the nucleon in nuclear matter[END_REF]:

D(t) ∝ d 3 r p(r) j 0 (r √ -t) t , (1.44) 
where j 0 is the rst Bessel function. The D-term can also be related to Compton Form Factors [START_REF] Anikin | Dispersion relations and subtractions in hard exclusive processes[END_REF][START_REF] Pasquini | Dispersive evaluation of the d-term form factor in deeply virtual compton scattering[END_REF][START_REF] Diehl | Dispersion representations for hard exclusive processes: Beyond the born approximation[END_REF], which are quantities measurable in DVCS experiments and which are presented in Subsection

1.3.1.

GPD Models

There are several parametrizations of GPDs. The main models are the double-distribution models (VGG [START_REF] Guidal | Nucleon form factors from generalized parton distributions[END_REF], GK [START_REF] Goloskokov | An attempt to understand exclusive π+ electroproduction[END_REF]), the dual parametrization [START_REF] Polyakov | On "dual" parametrizations of generalized parton distributions[END_REF] and the Mellin-Barnes model [START_REF] Muller | Deeply virtual compton scaterring at small xbj[END_REF]. In the following section, the double-distribution model and its implementation in the VGG model are described.

Double Distribution parameterization

At xed hard scale, GPDs depend on three variables (x, ξ and t). The double distribution (DD) model introduced in [START_REF] Radyushkin | Double distributions and evolution equations[END_REF] and [START_REF] Radyushkin | Symmetries and structure of skewed and double distributions[END_REF] is used to parameterize the x and ξ dependence of GPDs. The usual momentum notation for GPDs is shown in Figure 1.14a, where the incoming proton has momentum P in the light-cone frame, and the initial and nal quarks have momenta dened as fractions (x + ξ) and (xξ) of P . The main idea of the DDs parameterization is to perform a change of variable and dene the initial quark momentum as (βP -(1 + α) ∆ 2 ), as in Figure 1.14b. Since ξ is given by:

-2ξ = ∆ P , (1.45) one can relate x, ξ, α and β using the relation:

x = β + αξ.

( .46) This relation authorizes to re-write each GPD as an integral of DDs as:

GP D q (x, ξ) = 1 -1 dβ 1-|β| -1+|β|
dαδ(xβξα)DD(α, β).

(1.47) are always satised, up to the n-th term. The second advantage of DDs is that their properties can be inferred from two limiting cases. The rst case, when ∆ = 0, corresponds to the case where the incoming and the outgoing protons have equal momenta. In this case the DDs take the form of the PDFs measured in DIS (see Figure 1.11, relating GPDs at t = 0 and PDFs). The second limiting case is P = 0 and ∆ = 0. This corresponds to extracting a quark-antiquark pair with momenta (1 + α) ∆ 2 and (1α) ∆ 2 for the quark and the antiquark, respectively. In this limit, one can expect the DDs to have the form of Distribution Amplitudes (DAs) (see Figure 1 Finally DDs are obtained by taking these two limiting cases and nding the best way to interpolate between the two limits. This was rst done in [START_REF] Radyushkin | Double distributions and evolution equations[END_REF]. In this paper the proposed DD takes the form of:

(x + ξ)P (x -ξ)P P P GP D (a) βP -(1 + α) ∆ 2 βP + (1 -α) ∆ 2 P -∆ 2 P + ∆ 2 DD (b) 
DD(α, β) = h(β, α)q(β), (1.48) h(α, β) = Γ(2b + 2) 2 2b+1 Γ 2 (2b + 1) (1-| β |) 2 -α 2 b (1-| β |) 2b+1 , (1.49)
where q is the PDF for the quark q, and where b is a parameter controlling the ξ dependence (note that there are two such parameters, for valence and sea quarks, b val and b sea ). The DD formalism is the core of several GPDs parametrizations. In the following, the VGG model based on DD is presented in more details.

D-term

The DD description ensures that the n-th moment in x of the GPDs are ξ-polynomials of order n. However the polynomiality constraints allow for an additional degree of freedom when n is odd for H and E. To ensure that the DD model is complete, one has to add an additional quantity.

This quantity is closely connected to the quantity presented in Subsection 1.2.2. It was rst introduced in [START_REF] Polyakov | Skewed and double distributions in the pion and the nucleon[END_REF], and is given by:

D(t, z) = (1 -z 2 ) n odd d n (t)C 3/2 n (z), (1.50) 
where z = x/ξ, and the C 

The VGG model

In this subsection, the VGG model [START_REF] Vanderhaeghen | Hard electroproduction of photons and mesons on the nucleon[END_REF][START_REF] Vanderhaeghen | Deeply virtual electroproduction of photons and mesons on the nucleon: Leading order amplitudes and power corrections[END_REF][START_REF] Guidal | Nucleon form factors from generalized parton distributions[END_REF] for the GPD H is described. Other GPDs have dierent parametrizations but use the same concepts (see [START_REF] Guidal | Generalized parton distributions in the valence region from deeply virtual compton scattering[END_REF] for details). The (x, ξ) dependence is described using the DDs introduced previously. The t-dependence is factorized and reads:

F q (β, α, t) = DD(α, β) β -α (1-β)t (1.51)
where DD(α, β) is given in Equation (1.48), and α is taken from Regge trajectories and describes the t-dependence of the DD. Finally, the D-term is added, and the GPD H is given by:

H q (x, ξ, t) = dαdβ δ(x -β -ξα)F q (β, α, t) + θ(ξ -|x|) 1 N f D x ξ , t , (1.52) 
where the

1 N f
factor accounts for the identical contribution of each quark avor to the D-term. The GPD E has a very similar parametrization with opposite sign D-term contribution. Note that D(t, z)

and the EMT FF introduced in Subsection 1.2.2 have the same name and are closely related. Indeed when performing the x-integration of the GPD H in the DD formalism, the only contribution to the second order term in ξ comes from the D-term and reads:

1

-1 dx x θ(ξ -|x|) 1 N f D( x ξ , t) = 1 N f ξ 2 4 5 d 1 (t), (1.53) 
where the orthogonality properties of the Gegenbauer polynomials are used to get the last relation (see Appendix A for more details on the calculation).

Beyond GPDs: GTMDs, TDAs

GPDs are part of a wide range of functions describing the nucleon, as shown in Figure 1.16. They can be related to 1-dimensional quantities such as PDFs and FFs by the relations described previously.

In the same logic, GPDs can be extended. The Generalized Transverse Momentum Distributions (GTMDs) [START_REF] Lorcé | Unied framework for generalized and transversemomentum dependent parton distributions within a 3q light-cone picture of the nucleon[END_REF] are a generalization of GPDs. They describe the nucleon structure in terms of its constituent quarks transverse position, longitudinal and transverse momentum.

Another generalization of GPDs are the Transition Distribution Amplitudes (TDAs) [START_REF] Pire | Generalized parton distributions and generalized distribution amplitudes: New tools for hadronic physics[END_REF][START_REF] Lansberg | Transition Distribution Amplitudes[END_REF][START_REF] Szymanowski | Transition distribution amplitudes : from jlab to eic[END_REF].

These functions describe the transition from a baryon (the nucleon for example) to a meson. They are dened by a three-quarks operator similar to Equation (1.27), and can be accessed through backwardangle meson production [START_REF] Park | Hard exclusive pion electroproduction at backward angles with clas[END_REF]. 1.3 The experimental path to GPDs GPDs were rst introduced to describe exclusive electro-production of photons and mesons. The cross sections of these processes can be fully described by these functions and the experimental measurement of these processes is therefore a direct way to study GPDs. In this section the experimental path towards the extraction of GPDs is introduced. First, Deeply Virtual Compton Scattering (DVCS) is presented in Subsection 1.3.1. Then one of its complementary process, Timelike Compton Scattering (TCS), is described in Subsection 1.3.2. Finally an overview of the current experimental status is provided.

FF(∆) GTMD(x, k ⊥ , ∆) GPD(x, ∆) TMD(x, k ⊥ ) PDF(x) TMSD( k ⊥ ) TMFF Charge ∆ = 0 dx d 2 k ⊥ ( k ⊥ , ∆)

Deeply Virtual Compton Scattering

As mentioned in the previous section, the simplest process to access GPDs is proton DVCS [START_REF] Nicole D'hose | Experimental overview of deeply virtual compton scattering[END_REF]:

ep → e γ * p → e p γ. In the Bjorken regime (when the virtual photon γ * has large virtuality Q 2 = (kk) 2 → ∞ and large energy ν → ∞, where notations from Figure 1.17b are adopted), factorization can be applied. The virtual photon scatters o a single quark. At leading twist, leading order and in the Bjorken regime, the DVCS amplitude is a convolution of the hard scattering of a virtual photon o a single quark with the soft structure of the nucleon parameterized by GPDs. A diagram for the DVCS amplitude is shown in Figure 1.17a.

The DVCS cross section depends on four variables: -t = (pp) 2 , Q 2 , φ (the angle between the hadronic and leptonic planes dened in Figure 1.17b) and x B = Q 2 2mν . In the Bjorken regime, the momentum skewness ξ is given by:

ξ = x B 2 -x B
.

( The proton DVCS amplitude reads:

M ∝ q e 2 q 1 -1 dx x 1 x -ξ + i + 1 x + ξ -i A • H q (x, ξ, t) + B • E q (x, ξ, t) + 1 -1 dx x 1 x -ξ + i - 1 x + ξ -i C • Hq (x, ξ, t) + D • Ẽq (x, ξ, t) , (1.55) 
where the factors A,B,C and D are given in full details in [START_REF] Guidal | Generalized parton distributions in the valence region from deeply virtual compton scattering[END_REF][START_REF] Baptiste Guegan | Study of Generalized Parton Distributions and Deeply Virtual Compton Scattering on the nucleon with the CLAS and CLAS12 detectors at the Jeerson Laboratory[END_REF]. This amplitude depends on the proton GPDs dened as H p = q e 2 q H q , where the sum runs over the quark avors, and that we simply denote H in the following (the same denition applies for the other GPDs). One can also notice that the closed quark loop in the "handbag" diagram introduces an integral over the momentum fraction x. Therefore DVCS only accesses GPDs through such integrals, and the x-dependence of GPDs cannot be unfolded from DVCS observables. These integrals, depending only on ξ and t, are called Compton Form Factors (CFFs).

Compton Form Factors Denition

The CFFs are GPD integrals that appear naturally when integrating over the quark loop of the DVCS diagram. The CFFs depend on the process considered (see Subsection 1.3.2 for details on CFFs in the Timelike Compton Scattering channel). At leading order the DVCS CFFs are given by:

{H, E} (ξ, t) = 1 -1 dx {H, E} (x, ξ, t) 1 ξ -x -i - 1 ξ + x -i , (1.56) H, Ẽ (ξ, t) = 1 -1 dx H, Ẽ (x, ξ, t) 1 ξ -x -i + 1 ξ + x -i , (1.57) 
with the convention used in [START_REF] Belitsky | Leading twist asymmetries in deeply virtual compton scattering[END_REF] (this convention includes an additional overall minus sign compared to the convention used in [START_REF] Guidal | Generalized parton distributions in the valence region from deeply virtual compton scattering[END_REF]).

CFFs are complex quantities. Consequently there are eight real functions to extract from DVCS experiments, the real and imaginary parts of the four CFFs. Figure 1.18 shows the area constrained by the real and imaginary part of CFFs for a given kinematic point. While the imaginary part is sensitive to the GPDs on the diagonals x = ξ and x = -ξ, the real part provides information about the whole x range at given ξ. 

ReH(ξ, t) = 1 -1 1 ξ -x - 1 ξ + x ImH(ξ, t) dx + ∆(t).
(

The CFF E follows the same DR, with opposite sign subtraction term. H and Ẽ also follow similar DRs, with no subtraction term. Assuming a DD parametrization including the D-term of the GPD H, one can show that the subtraction term reads: 

∆(t) = 2 N f 1 -1 dz D(z, t) (1 -z) = 4 N f n odd d n (t
∆(t) ∝ d 1 (t) ∝ D Q (t), (1.60)
where D Q denotes the quark contribution to the EMT FF D(t). Measuring both the imaginary and the real part of the CFFs allows to use the DR as a tool to extract the substraction term ∆(t) and have access to the mechanical properties of the proton. The proton D-term has been extracted from data in [START_REF] Burkert | The pressure distribution inside the proton[END_REF], and the result is shown alongside other models and calculations in Figure 1.19, extracted from [START_REF] Polyakov | Forces inside hadrons: Pressure, surface tension, mechanical radius, and all that[END_REF].

Bethe-Heitler process

The ep → e p γ reaction has not only contributions from DVCS but also from the Bethe-Heitler (BH) process. BH corresponds to the reaction where the initial (or nal) state electron radiates a real photon that interacts with the proton as a whole. The two leading order diagrams of BH are shown in Figure 1.20. As the virtual photon interacts with the proton itself, BH is fully described using the usual FFs.

The DVCS and BH amplitudes add coherently when calculating the total cross section of the ep → e p γ process. The total cross section has contributions from both BH and DVCS and also from their interference and reads: [START_REF] Burkert | The pressure distribution inside the proton[END_REF] and the green dashed line is obtained using the CFF DR [START_REF] Pasquini | Dispersive evaluation of the d-term form factor in deeply virtual compton scattering[END_REF]. Figure taken from [START_REF] Polyakov | Forces inside hadrons: Pressure, surface tension, mechanical radius, and all that[END_REF].

σ ep→e p γ = σ DV CS + σ BH + σ IN T . (1.61)
The relative importance of σ DV CS , σ BH and the interference term σ IN T depends strongly on the considered phase-space region. However the interference term between BH and DVCS can be used to extract CFFs conveniently, as they appear in σ IN T in a linear combination, whereas CFFs appear in bilinear combinations in σ DV CS .

DVCS helicity-spin observables

Alongside the DVCS cross section and BH-DVCS interference terms, helicity-spin observables are an important way to extract CFFs. Experimentally one can change the helicity of the incoming electron, as well as the polarization of the proton target. It is then possible to measure cross-section asymmetries between dierent beam helicity-target spin congurations. Such asymmetries present two main advantages as they depend linearly on CFFs and are usually easier to extract than cross sections. Some DVCS asymmetries and their dependencies on the CFFs are given by:

∆σ LU ∝ sin(φ) Im (F 1 H + ξ(F 1 + F 2 ) H - t 4m 2 p F 2 E + ... , (1.62) ∆σ U L ∝ sin(φ) Im (F 1 H + ξ(F 1 + F 2 )(H + x B 2 E) -ξ x B 2 F 1 + t 4m 2 p F 2 Ẽ + ... , (1.63) ∆σ LL ∝ (A + Bcos(φ)) Re (F 1 H + ξ(F 1 + F 2 )(H + x B 2 E) -ξ x B 2 F 1 + t 4m 2 p F 2 Ẽ... , (1.64) ∆σ U x ∝ sin(φ) Im -t 4m 2 p (F 2 H -F 1 E) + ... , (1.65) 
where ∆σ denotes the dierence of polarized cross sections. The rst index refers to the beam polarization, the second one to the target spin. The index U stands for unpolarized, L for longitudinally polarized, x for transversely polarized. The dots stand for higher-twist terms. These asymmetries are mostly sensitive to the BH-DVCS interference cross section, thus they are sensitive to linear combinations of CFFs convoluted with FFs. These asymmetries also depend on dierent combinations of CFFs. A complete experimental measurement of these observables can thus provide a way to extract each contribution. 

Timelike Compton Scattering

GPDs have been experimentally studied mainly through DVCS polarization obervables. Such observables are mainly sensitive to the imaginary part of the CFFs. To access the real part of CFFs, DVCS doubly polarized beam-target asymmetries (Equation (1.64)) or unpolarized cross sections are needed. It is also possible to access the real part of CFFs through the time-reversal symmetric process of the DVCS: the Timelike Compton Scattering (TCS) [START_REF] Berger | Timelike compton scattering: exclusive photoproduction of lepton pairs[END_REF][START_REF] Boër | Timelike compton scattering o the proton and generalized parton distributions[END_REF][START_REF] Paremuzyan | Timelike Compton Scattering[END_REF].

Measuring TCS observables also provides a test for the universality of GPDs. Indeed photonpolarization dependent cross section of TCS is sensitive to the imaginary part of CFFs. Comparing the results obtained in TCS and DVCS will help proving that GPDs are universal functions and are not only related to DVCS. In this subsection, the TCS process is presented. The associated BH process is described and the cross-section formulae are provided.

Phenomenology of TCS

TCS is the time-reversal symmetric process of DVCS. The reaction of interest is γp → γ * p , where the incoming photon is real (Q 2 = 0) and the outgoing photon is virtual. The virtual photon decays in a lepton pair which can be detected. The full reaction is therefore γp → p l + l -. Note that in the following we refer to the γp → p l + l -reaction directly as the TCS reaction. Contrary to DVCS, where the large spacelike virtuality of the incoming photon gives a hard scale which ensures factorization, the TCS hard scale is given by the timelike virtuality Q 2 of the outgoing photon. For large Q 2 such that t Q 2 1, factorization can be applied. The real incoming photon scatters o a single quark, which emits a virtual photon. The leading order, leading twist diagram for TCS is given in Figure 1.21.

The relevant variables to study the TCS reaction are shown in Figure 1.22. They are the virtuality of the outgoing photon Q 2 = (k + k ) 2 , the transferred momentum to the nucleon t = (pp) 2 , the γp Center-of-Mass (COM) energy s = (p + q) 2 (or equivalently the real photon energy E γ ), the azimuthal angle φ between the leptonic plane and the hadronic plane, and the angle of the outgoing electron in the lepton COM frame, θ. Finally, as for DVCS, the quark momentum imbalance can be dened as:

ξ = τ 2 -τ , (1.66) 
where τ = Q 2 /(sm 2 p ), which plays the symmetric role of x B in DVCS (see Equation (1.54)).

As for DVCS, a Bethe-Heitler (BH) process also contributes to the γp → p l + l -reaction and interferes with TCS. ∆ T e (2) e (3) e (1) boost ϕ ϕ

e'

e' e' (2) (1)

(3) p' + c.m. - l l k' k γ p c.m. k q q' p p' k' θ Figure 1
.22: Frame denition and relevant variables for TCS, taken from [START_REF] Berger | Timelike compton scattering: exclusive photoproduction of lepton pairs[END_REF]. The yellow plane containing the momenta of the target and recoil protons is called the hadronic plane. The blue plane containing the momenta of the two leptons is the leptonic plane. The angle between these planes is called φ. The angle θ is dened as the angle between the lepton with momentum k and the direction of the recoil proton momentum in the lepton pair COM frame. (1.57) up to a sign and a complex conjugation. The two kinds of CFFs are related by the following relations:

H T CS = H * DV CS HT CS = -H * DV CS E T CS = E * DV CS ẼT CS = -Ẽ * DV CS (1.67)
In this section we use TCS CFFs unless specied otherwise.

TCS cross section

Unpolarized cross section The unpolarized cross section for γp → p l + l -can be expanded as:

d 4 σ(γp → p e + e -) = d 4 σ BH + d 4 σ T CS + d 4 σ IN T . (1.68)
Each term is written explicitly according to the formulas given in [START_REF] Berger | Timelike compton scattering: exclusive photoproduction of lepton pairs[END_REF] in the following. The BH cross section is parametrized by FFs only. It reads:

d 4 σ BH dQ 2 dtd(cos θ)dφ = α 3 em 4π(s -m 2 p ) 2 β -tL (F 2 1 - t 4m 2 p F 2 
2 )

A -t + (F 1 + F 2 ) 2 B 2 , (1.69) 
where

A = (s -m 2 p ) 2 ∆ 2 T -t a(a + b) -m 2 p b 2 -t (4m 2 p -t)Q 2 + m 2 l L (Q 2 -t)(a + b) -(s -m 2 p ) b 2 + t (4m 2 p -t)(Q 2 -t) 2 B = (Q 2 + t) 2 + b 2 + 8m 2 l Q 2 - 4m 2 l (t + 2m 2 l ) L (Q 2 -t) 2 , β = 1 -4m 2 l /Q 2 , (1.70) 
with m l the lepton mass and

a = 2(k -k ) • p , (1.71) b = 2(k -k ) • (p -p ), (1.72) 
L = (Q 2 -t) 2 -b 2 4 .
(1.73)

The BH cross section is plotted in Figure 1.24 for dierent θ and φ. One can see that the cross section is largely enhanced around φ = 0 • for high values of θ, and around φ = 180 • for low values of θ.

The TCS contribution reads:

dσ T CS dQ 2 dtd(cos θ)dφ ≈ α 3 em 8πs 2 1 Q 2 1 + cos 2 θ 4 λ,λ |M λ -,λ-| 2 , (1.74) 
where

1 2 λ,λ |M λ -,λ-| 2 = (1 -ξ 2 ) |H| 2 + | H| 2 -2ξ 2 Re H * E + H * Ẽ -ξ 2 + t 4M 2 |E| 2 -ξ 2 t 4M 2 | Ẽ| 2 .
(1.75) one. Therefore measuring the TCS cross section is very challenging. One way to avoid this issue is to extract the BH-TCS interference term. This term reads:

d 4 σ IN T dQ 2 dtdΩ = - α 3 em 4πs 2 1 -t m p Q 1 τ √ 1 -τ L 0 L [cos(φ) 1 + cos 2 (θ) sin(θ) Re M -- -cos(2φ) √ 2cos(θ)Re M 0-+ cos(3φ) sin(θ)Re M +-+ O( 1 Q )], (1.76) 
where

L 0 = Q 2 sin 2 (θ) 4 , (1.77) 
and the M terms are CFFs combinations dened in [START_REF] Diehl | Testing the handbag contribution to exclusive virtual compton scattering[END_REF]. At leading order and leading twist, the only term contributing to the cross section is the one proportional to M --. The CFF dependence of M --

1.
3. The experimental path to GPDs is given by: Transversely polarized photon cross section As mentionned for DVCS, the helicity-spin observables are a powerful tool to extract the imaginary part of CFFs. The same reasoning can be applied to TCS. In the case of transversely polarized photons, the interference cross section is expressed as:

M --= 2 √ t 0 -t m p 1 -ξ 1 + ξ F 1 H -ξ(F 1 + F 2 ) H - t 4m 2 p F 2 E
dσ IN T dQ 2 dtd(cos θ)dφ = dσ IN T | unpol. dQ 2 dtd(cos θ)dφ -ν α 3 em 4πs 2 1 -t M Q 1 τ √ 1 -τ L 0 L sin(φ) 1 + cos 2 (θ) sin(θ) Im M -- -sin(2φ) √ 2cosθIm M 0-+ sin(3φ)sin(θ)Im M +-+ O 1 Q , (1.80)
where ν is the circular polarization of the incoming real photon. The additional polarization term exhibits the same CFF content as the unpolarized cross section, except that it now depends on the imaginary parts via sin(nφ) factors. Extracting the sin(φ) component of the polarized cross section enables to access the imaginary part of H. This is an important test of the universality of GPDs once compared with DVCS data.

TCS observables

In this subsection, three TCS observables, the R ratio and the Forward/Backward asymmetry sensitive to the real parts of the CFFs, and the photon polarization asymmetry sensitive to the imaginary parts of the CFFs, are presented.

R ratio

The R ratio, introduced in [START_REF] Berger | Timelike compton scattering: exclusive photoproduction of lepton pairs[END_REF], is dened as: (1.82)

R( √ s, Q 2 , t) =
It has to be noted that the denition used in this manuscript diers by a factor 2 from the original denition. This was chosen to be consistent with the CLAS TCS analysis in [START_REF] Paremuzyan | Timelike Compton Scattering[END_REF].

The R ratio is directly sensitive to the real part of M --. The integration domain is set to [π/4, 3π /4] to avoid kinematic regions where TCS is too small compared to BH. Furthermore the enhancing eect of multiplying by L L 0 before the integration can be seen in Figure 1.26. 

Forward-Backward asymmetry

The idea of Forward-Backward Asymmetry (A F B ) was initially proposed for J/Ψ threshold photoproduction studies in [START_REF] Gryniuk | Accessing the real part of the forward j/ψp scattering amplitude from j/ψ photoproduction on protons around threshold[END_REF]. The A F B is dened as:

A F B (θ, φ) = dσ(θ, φ) -dσ(180 • -θ, 180 • + φ) dσ(θ, φ) + dσ(180 • -θ, 180 • + φ) (1.83)
where only the θ-φ dependence of the cross section is explicitly written. 

d 4 σ IN T dQ 2 dtdΩ F B --→ - d 4 σ IN T dQ 2 dtdΩ .
(1.84)

A F B (θ 0 , φ 0 ) = -α 3 em 4πs 2 1 -t mp Q 1 τ √ 1-τ L 0 L cos φ 0 (1+cos 2 θ 0 ) sin(θ 0 ) Re M -- dσ BH , (1.85) 
where we neglect the TCS contribution in the denominator. This observable is sensitive to the same quantity as the R ratio. However, it is not integrated over a large phase space. It is therefore less sensitive to detector acceptance eects. First predictions for the TCS A F B , realized with the VGG model, are presented in Section 5.9.

Photon polarization asymmetry

The photon polarization asymmetry A U (also referred in the following as Beam Spin Asymmetry (BSA) because of its similarity with the DVCS BSA) is dened as:

A U = σ + -σ - σ + + σ -, (1.86) 
where indexes +(-) refer to the right(left)-handed circular polarization of the incoming real photon, and U to the unpolarized target. It can be written explicitly as:

A U = -α 3 em 4πs 2 1 -t mp Q 1 τ √ 1-τ L 0 L sin φ (1+cos 2 θ) sin(θ) Im M -- dσ BH
.

(1.87)

Projections for this observable have been made in [START_REF] Boër | Timelike compton scattering o the proton and generalized parton distributions[END_REF]. The results obtained in this paper are shown in Figure 1.28. The asymmetry as a function of φ and as a function of -t (only the amplitude at φ = 90 • is then plotted) are shown in Figures 1.28a and 1.28b, respectively. Similar predictions, made during this thesis with the VGG model, are shown in Figure 1.29. The -t and E γ dependence are studied for dierent values of θ. Note that the sign change between the two predictions. This is due to a sign mistake in [START_REF] Boër | Timelike compton scattering o the proton and generalized parton distributions[END_REF] which is discussed in more details in Section 5.9.

(a) (b) 

NLO corrections to the TCS amplitude

One last aspect to mention for the TCS process is its sensitivity to NLO corrections [START_REF] Mueller | Timelike and spacelike hard exclusive reactions[END_REF][START_REF] Belitsky | Deeply virtual compton scattering in next-to-leading order[END_REF][START_REF] Moutarde | Timelike and spacelike deeply virtual compton scattering at next-to-leading order[END_REF][START_REF] Pire | Next-to-leading order corrections to timelike, spacelike, and double deeply virtual compton scattering[END_REF].

NLO corrections in α S can be represented by the diagrams in To account for these corrections, the denition of the CFFs is generalized as:

H(ξ, t, Q 2 ) = 1 -1 dx i=u,d,••• ,g T i (x, ξ)H i (x, ξ, t, µ 2 ), (1.88) 
where similar equations can be written for other GPDs, µ 2 is the factorization scale and Q denotes the hard scale, Q 2 for DVCS and Q 2 for the TCS case. The T i hard coecients are, at leading order, dened in Equations (1.56) and (1.57). At NLO the hard coecients for TCS and DVCS are dierent [START_REF] Mueller | Timelike and spacelike hard exclusive reactions[END_REF]. This dierence leads to the NLO correspondence between TCS and DVCS CFFs:

H T CS NLO = H * DV CS -iπ Q 2 ∂ ∂Q 2 H * DV CS , (1.89) 
H T CS NLO = -H * DV CS + iπ Q 2 ∂ ∂Q 2 H * DV CS , (1.90) 
where similar equations apply for E and Ẽ. 

TCS experimental status

There are currently no published data on TCS. However a complete analysis [START_REF] Paremuzyan | Timelike Compton Scattering[END_REF] was performed using the CLAS detector at Jeerson Lab. It used a 5.7 GeV electron beam impinging on a liquidhydrogen target. Quasi-real photoproduction events where selected using the missing-mass technique.

The results for the R ratio obtained in this analysis are shown in Figure 1.32. The ratio is calculated within the CLAS acceptance and compared to theoretical predictions. The DD parametrization of GPDs seems to underestimate the data, while the Dual parametrization seems to reproduce them well.

However these results should be interpreted with care as the invariant mass range accessible by CLAS covered a region where vector meson production is not negligible.

Following the 12-GeV upgrade of the CEBAF accelerator, the newly built CLAS12 detector (see Finally there is a growing interest to measure TCS at higher energies in Ultra-peripheral collisions and possible measurements could be performed at CERN [START_REF] Pire | Can one measure timelike compton scattering at lhc?[END_REF]. The experimental setup 

The Continuous Electron Beam Accelerator Facility

The core facility at Jeerson Lab is the CEBAF. This superconducting radio-frequency accelerator delivers an electron beam with energy up to 12 GeV for Hall D and 11 GeV for all three other halls.

The beam electrons are produced at the injector where four circularly polarized lasers (one for each hall) illuminate a gallium arsenide cathode. The polarization of the lasers allows to extract polarized electrons from the cathode. The lasers operate at 250 MHz with an individual phase shift in order to distinguish each beam bunch. The power of each laser can be controlled individually allowing each hall to have its own beam current value. The beam is then injected to the accelerator. The accelerator is composed of two linacs with 25 cryomodules each. Each cryomodule is divided in 8 radio-frequency (RF) cavities which are synchronized at the total frequency of the accelerator (250×6=1500 MHz).

The two linacs are connected to each other by recirculation arcs on both ends. A dierent recirculating arc is used at each pass of the beam bunch in the accelerator. The maximum beam energy delivered in Hall A, B and C (∼ 11 GeV) is obtained after a total of ve passes in the whole accelerator. The beam is then split by two separators, working respectively at 750 MHz and 500 MHz (see [START_REF] Kazimi | Simultaneous Four-hall Operation for 12 GeV CEBAF[END_REF] for more details on the beam structure), providing each hall with a 250 MHz electron beam (one beam bunch every 4 ns). In Hall B, the maximum beam energy obtained during the data taking was 10.6 GeV and the nominal luminosity delivered by the CEBAF was 10 35 cm -2 s -1 .

CLAS12 general design

The CLAS12 detector is housed in Hall B [START_REF] Burkert | The clas12 spectrometer at jeerson laboratory[END_REF]. It has a very large acceptance allowing to measure inclusive and exclusive processes over a large phase space. CLAS12 is the successor of the rst detector of Hall B, the CLAS detector. Some detector systems of CLAS have been refurbished for CLAS12.

CLAS12 is composed of two main subsets of detectors: the Central Detector (CD) and the Forward Detector (FD). The FD uses existing parts of the CLAS detector and newly built detectors. It detects particles with polar angles between 5 • and 35 • with respect to the beam direction. The CD is made of newly built sub-detectors and aims at measuring backward recoiling particles, with polar angles between 35

• and 135 • . In addition to the CD and the FD, the Forward Tagger (FT) covers very low polar angles and is dedicated to tagged photo-production measurements. It is situated close to the beam line downstream of the target. A solenoid magnet, with a central eld of 5 T, and a torus magnet, with Bdl = 0.5 -2.7 Tm, allow for charged-particle momentum measurements respectively in the CD and in the FD. The nominal luminosity of CLAS12 is 10 35 cm -2 s -1 , which is one order of magnitude greater than the luminosity of the previous CLAS detector. A schematic view of CLAS12 is shown in Figure 2.2. Table 2.1 extracted from [START_REF] Burkert | The clas12 spectrometer at jeerson laboratory[END_REF] summarizes the nominal CLAS12 performances. 

The CLAS12 Central Detector

The Central Detector (CD) of CLAS12 is built between the target and the inner wall of the solenoid magnet. It is a barrel detector with an almost 2π azimuthal coverage. It is composed of a tracking system, the Central Vertex Tracker (CVT) (made of a silicon tracker (SVT) in the innermost region and surrounded by a micromegas tracker (MVT)), and two time-of-ight detectors, the Central Time Of Flight (CTOF) and the Central Neutron Detector (CND), dedicated to the identication of charged and neutral particles, respectively. Figure 2.3 shows a view from the CLAS12 Event Display (CED) of a reconstructed event in the CD, where all the detector layers are visible.

The CVT is used to measure the momenta of charged particles using the curvature of their helical trajectories in the longitudinal magnetic eld produced by the solenoid magnet. The momentum p perpendicular to the direction of the magnetic eld B is given by : R = p qB ,

(2.1)
where R is the radius of curvature, and q the charge of the particle. The above formula only gives access to the transverse component of the momentum, the longitudinal component is deduced from the pitch of the helical track. In practice only the ratio p q is deduced from the radius of the track. The charge is deduced from the orientation of the track, as the tracks of particles with opposite charge curl in opposite directions in a magnetic eld.

Capability Quantity Status

Coverage Tracks (FD)

5 • < θ < 35 • & Eciency Tracks (CD) 35 • < θ < 125 • Momentum (FD & CD) p > 0.2 GeV Photon angle (FD) 5 • < θ < 35 • Photon angle (FT) 2.5 • < θ < 4.5 •
Electron detection (HTCC)

5 • < θ < 35 • , 0 • < φ < 360 • Eciency η > 99%
Neutron detection (FD)

5 • < θ < 35 • Eciency ≤ 75%
Neutron detection (CD) 

The solenoid magnet

A solenoid magnet [START_REF] Fair | The clas12 superconducting magnets[END_REF] encloses the CD sub-detectors. It is made of four superconducting cylindrical coils. These coils produce a eld primarily along the beam axis. A fth coil is located outside of the four main coils and produces an opposite direction eld and acts as an active shielding. At full operating current the solenoid magnet generates a 5 T magnetic eld at its center. The solenoid magnetic eld is rstly used for charge and momentum measurements of charged particles in the CD. It also provides a powerful shielding to Möller electrons. Möller electrons (e -+ e -→ e -+ e -) are produced when electrons from the beam scatter on atomic electrons in the target material. The majority of Möller electrons are curled along the longitudinal solenoid eld and are collected in a tungsten shield placed downstream of the target, the Möller cone. The solenoid magnet has a cylindrical bore coaxial with the beam with a diameter of 78 cm where all sub-detectors of the CD are located.

Target

The CLAS12 experiments are regrouped in "run groups". The experiments of a given run group (RG) share the same experimental setup and the same target. The two rst run groups of CLAS12 used the detector setup described below and unpolarized targets. The target system of CLAS12 (described in [START_REF] Baltzell | The clas12 beamline and its performance[END_REF]) is the same as the one used in the CLAS experiment (see Figure 2.4). The cryogenic target cell consists in a 5 cm Kapton cone containing the target material. The rst run group (RG-A) of CLAS12 uses liquid hydrogen (LH 2 ), while liquid deuterium (LD 2 ) was used during the second experiment (RG-B). The beam enters and leaves the target through 30-µm-thick aluminum windows. The target is located inside a 45-cm-long scattering chamber made of low density Rohacell XT110 foam that aims at reducing the material thickness crossed by particles emitted from the target. The beam position is monitored at the target location using a Beam Oset Monitor (BOM). This is achieved by placing a glass cylinder parallel to the beam. The Cherenkov light produced by the beam halo is read out with optical bers to a multi-anode PMT and provides information on the oset of the beam at the target position.

The Central Vertex Tracker

The Central Vertex Tracker (CVT) of CLAS12 is the tracking system in the CD. It is composed of two subsystems using two distinct technologies: a three-layer Silicon Vertex Tracker (SVT) close to the target followed by a six-layer Micromegas Vertex Tracker (MVT). A schematic view of the complete CD tracking system is shown in Figure 2.5.

Silicon tracker

The SVT [START_REF] Antonioli | The clas12 silicon vertex tracker[END_REF] is designed to provide a good momentum resolution in the CD. It is composed of three layers of double-sided silicon micro-strip modules. Each module is composed of two layers of 256 silicon micro-strip foils separated by a resistive wafer. Silicon strips have a small constant angle pitch

(1/85

• ) with their nearest neighbor, allowing a 3D localization of the interaction point. Each layer is composed of respectively 10, 14 and 18 modules placed parallel to the beam line. This design is used to maximize the momentum resolution while minimizing the material budget in the inner region of the CD. A full description of the SVT is provided in [START_REF] Antonioli | The clas12 silicon vertex tracker[END_REF].

Micromegas

The six outer layers of the CD tracking use the micromegas technology, and are referred as Micromegas Vertex Tracker (MVT). Micromegas are gaseous tracking detectors. A micromegas layer is composed of a drift region where free electrons are produced by the crossing of high-energy particles, which then drift toward a micro-mesh foil, delimiting the amplication gap. In the amplication gap, a large electric eld accelerates the electrons, creating important electromagnetic showers. The signal is collected on parallel readout strips, located on the far side of the amplication gap. For a full description of the detector see [START_REF] Acker | The clas12 micromegas vertex tracker[END_REF]. Three layers of the MVT have their readout strips oriented longitudinally and the three others perpendicularly to the beam direction. This design increases the polar and azimuthal angular resolution of the tracking in the CD. paddle is estimated to be around 80 ps (see [START_REF] Carman | The clas12 central time-of-ight system[END_REF]), allowing for a good charged particle identication in the CD.

Central Neutron Detector

The Central Neutron Detector (CND) [START_REF] Chatagnon | The clas12 central neutron detector[END_REF] is the outermost sub-detector of the CLAS12 CD. It consists of three radial layers of 48 plastic scintillator counters. It aims at increasing the neutron detection eciency in the central region. The CND is a single sided readout detector. Two adjacent paddles are optically coupled by a light guide at their upstream ends. This design was enforced by the bent-light-guide design of the CTOF preventing any readout from the downstream end of the CND. A full description of this detector is provided in Chapter 3 of this manuscript.

The CLAS12 Forward Detector

The Forward Detector (FD) of CLAS12 is located downstream of the target. It aims at detecting particles with polar angles comprised between 5

• and 35 • . It is divided into six sectors, each sector being equipped with the same set of sub-systems.

The torus magnet

The torus magnet of CLAS12 [START_REF] Fair | The clas12 superconducting magnets[END_REF] produces a magnetic eld perpendicular to the beam direction.

Particles are deected, depending on their charge, toward or outward of the beam direction. The curvature of the tracks allows for momentum reconstruction. The torus magnet of CLAS12 consists of six trapezoidal supra-conductor coils located between each drift chamber (see 2.7). The six coils are connected in series thus providing the same magnetic eld in all the six sectors.

Drift Chambers

The forward tracking is achieved by three consecutive regions of Drift Chambers (DC) [START_REF] Mestayer | The clas12 drift chamber system[END_REF], each region being divided in a set of six sectors. The design of the DC is shown in 

Forward Time Of Flight

The Forward Time Of Flight (FTOF) [START_REF] Carman | The clas12 forward time-of-ight system[END_REF] is situated after the DCs and is used to measure the time of ight of charged and neutral particles emitted in the FD. It is divided in six sectors, each sector being composed of three panels of double-sided readout plastic scintillator paddles (panel-1b and panel-1a situated consecutively in the low polar angle regions, and panel-2 covering high polar angles). Figure 2.8 shows a schematic view of the FTOF and its mechanical support. The time resolution achieved by the FTOF ranges from 50 ps for the short paddles located close to the beam direction to 200 ps for the longer ones.

Electromagnetic Calorimeter

The CLAS12 Electromagnetic Calorimeter (EC) [START_REF] Asryan | The clas12 forward electromagnetic calorimeter[END_REF] 

Cherenkov Counters

There are two main Cherenkov counters systems in CLAS12: the High Threshold Cherenkov Counter (HTCC) and the Low Threshold Cherenkov Counter (LTCC). These two sub-detectors are used for particle identication. Cherenkov counters are usually lled with a large volume of gas (C O 2 for HTCC and C 4 F 6 for LTCC). A particle crossing the gas volume at a speed higher than the speed of light in the medium emits a cone of light. This phenomenon, known as the Cherenkov eect, allows to distinguish particles as the emission of light is possible only if the momentum of the particle is higher than a threshold momentum p th given by:

p th = mc √ n 2 -1 , (2.2)
where n is the refraction index of the gas and m the mass of the particle. The Cherenkov light is then collected by mirrors located around the gas volume and sent to PMTs where it is amplied and read out.

High Threshold Cherenkov Counter

The High Threshold Cherenkov Counter (HTCC) is the most upstream detector of the FD. It is located just outside of the solenoid outer wall, covering all azimuthal angles (see Figure 2.11). All particles emitted at low polar angles (between 5 • and 35 • ) in the FD will cross the HTCC. The light emitted is collected by 12 ellipsoidal mirrors located on the downstream wall of the gas volume. PMTs are located in the outermost part of the detector. This design ensures that the quantity of matter crossed by particles is as low as possible. The HTCC is designed to accomplish a 99% electron/pion separation for momenta below 4.9 GeV. 

Low Threshold Cherenkov Counter

The Low Threshold Cherenkov Counter (LTCC) [START_REF] Ungaro | The clas12 low threshold cherenkov detector[END_REF] is designed to separate pions and kaons in the 4 to 8 GeV region. It covers two sectors and it is made of the refurbished CLAS Cherenkov counters.

RICH detector

In addition to the two main Cherenkov systems, a Ring Imaging Cherenkov detector (RICH) [START_REF] Contalbrigo | The clas12 ring imaging cherenkov detector[END_REF] is installed in one of the sectors of the FD. This detector has the capability of measuring the angle θ at which the Cherenkov light is emitted, which is given by:

cos(θ C ) = 1 nβ . (2.3)
This allows for kaon identication in the 3-8 GeV momentum range, by matching their β measured from the time of ight with the Cherenkov cone angle θ C .

Forward Tagger

The Forward Tagger (FT) [START_REF] Acker | The clas12 forward tagger[END_REF] is a composite detector made of a calorimeter, a scintillator hodoscope and two double-layers of micromegas trackers. It is located at very low polar angles (2 • to 5 • ) and it aims at identifying electrons and photons emitted close to the beamline (see Figure 2.12). This detector is mainly used for tagged-photo reactions and DVCS measurements. 

Möller polarimeter

The electrons accelerated by the CEBAF are polarized. The polarization eciency is around 85%.

In order to correct for this incomplete polarization, it is measured regularly during data taking. This measurement is performed using the Möller polarimeter located just before the beamline enters the The trigger system [START_REF] Raydo | The clas12 trigger system[END_REF] is the rst step of data acquisition. It aims at providing the Data Acquisition system (DAQ) a trigger signal for data recording. The goal of the trigger is to keep only events where an electron eectively interacted with the target and reject non-interesting events such as cosmic rays for example. The trigger is composed of three stages that determine online if an event is worth recording for later oine analysis. The trigger system is represented on Figure 2.15. The rst stage of the trigger is composed of VXS Trigger Processor boards (VTP) that collect the responses of the detectors (ADCs and TDCs, see Chapter 3) which are included in the trigger procedure and identify possible signals coming from particles. Each VTP provides a series of bits corresponding to the state of its associated detector. The bit series is then fed to a Sub System Processor (SSP). There are seven SSPs, one for each forward sector and one for the CD. SSPs combine information from each detector at the sector level (and CD) and send their response to a nal VTP module that produces the nal trigger bits.

The total latency (time to process an event) of the trigger system is at most 8 µs. During RG-A data taking, the nal trigger rate was lower than 20 kHz and the live time (the fraction of the time during which data were recorded on tapes) was around 95%. Triggered events are then read out by the DAQ system of CLAS12. The data-to-tape rate is reported to be up to 500 MB/s.

Event reconstruction and processing

Data are stored on large data tapes in the EVIO (Event Input/Output) format. The rst step of the oine processing is referred as decoding. The decoding process takes EVIO les as input and produces output in the HIPO (High Performance Output) format. It involves the tting of the signal waveforms and the translation from the DAQ electronic notation (crate/slot/channel) to the detector notation (sector/layer/component). This step is performed once, as it requires a large computing power. The output HIPO les contain detector related banks for each event. Calibration and reconstruction are then performed using these decoded les. The reconstruction of CLAS12 data is based on the CLARA framework [START_REF] Ziegler | The clas12 software framework and event reconstruction[END_REF]. CLARA is a multi-threaded framework that allows to run services according to a userdened architecture (see the CLAS12 reconstruction architecture shown in Figure 2.16 for example).

Each service receives input (I), processes it and produces output (O). I/O are organized in banks, each bank being associated to one event and containing custom information. This architecture was chosen for its versatility and the possibility to add custom services at a later stage of the experiment. As shown in Figure 2.16, each sub-detector of CLAS12 has its own reconstruction service. The output of each subsystem service is fed to the Event Builder (EB) of CLAS12. The EB associates all the sub-system responses and produces the particle information (particle identication, momenta and vertex).

Simulation

A full simulation of CLAS12 [START_REF] Ungaro | The clas12 geant4 simulation[END_REF] is implemented in the Geant4 Monte Carlo (GEMC) package. Each sub-detector volume is implemented as a Geant4 volume, the response of the subsystems are given by specic "hit process" routines. Data taken with random trigger can be added to the simulated data to reproduce the background (see Section 5.5 for details).

Data set

The dataset used in the work of this manuscript was taken during the Fall 2018 run period, between October and December 2018. The run period is part of the CLAS12 run group A (RGA), which is dedicated to the study of the proton. The target used during RGA is LH2. The torus magnet was set to bend negative particle toward the beam pipe (i.e. inbending conguration). The accumulated charge taken during each shift and the total charge taken during this run period is shown in Figure 2.17 The Central Neutron Detector

The Central Neutron Detector (CND) [START_REF] Chatagnon | The clas12 central neutron detector[END_REF][START_REF] Niccolai | The central neutron detector for clas12[END_REF] is the outermost of the subsystems composing the Central Detector of CLAS12. This detector was designed and built at the Institut de Physique Nucléaire The PMTs are positionned in the fringe-eld region of the CLAS12 5-T superconducting solenoid.

The CND was installed in the CLAS12 solenoid, and subsequently started its data taking, in the Fall of 2017. It is dedicated to the detection of neutrons with polar angles between 40

• and 135 • . The main purpose of the CND is the measurement of DVCS observables on the neutron (nDVCS) [START_REF]Deeply virtual compton scattering on the neutronwith clas12 at 11 gev[END_REF].

Measuring DVCS observables on neutron (en → en γ) is one of the necessary steps toward a full understanding of the structure of the nucleon in terms of GPDs. Quark-avor separation of GPDs is possible by combining proton and neutron GPDs. Furthermore nDVCS plays a complementary role to the transversely polarized proton target DVCS experiments for its sensitivity to the GPD E. The GPD E plays an important role in understanding the spin structure of the nucleons as it enters directly the Ji's sum rule that describes the angular momentum contribution of the quarks to the spin of the nucleon. The CND will also be used in other nDVCS experiments [START_REF]Hall b clas12 run group b experiment summaries[END_REF] and whenever the detection of the recoil neutron may be required (N * program, for instance, or for all the deeply-virtual meson production reactions on the neutron). The rst beam data collected by CLAS12 on a proton target conrmed the design performance.

This chapter is divided in eleven sections. Section 3.1 presents the motivations for building the CND.

In Section 3.2 the nDVCS experiment requirements and their consequences on the design of the CND are presented. Then in Sections 3.3 to 3.9, each aspect of the CND software is discussed. Section 3.10 presents the detection performance of the CND. Preliminary results for the nDVCS experiments are shown in Section 3.11.

Motivations

In Section 1.3, the Deeply Virtual Compton Scattering (DVCS) process is presented as one of the main physical processes described by GPDs. As of today, most DVCS data have been taken on proton target (pDVCS). Yet neutron DVCS (nDVCS) data are also of great interest [START_REF] Niccolai | Deeply virtual compton scattering on the neutron with clas12 ar 11 gev for jlab pac[END_REF][START_REF] Benali | Deeply virtual compton scattering o the neutron[END_REF][START_REF] Hattawy | Neutron dvcs measurements with bonus12 in clas12[END_REF].

One of the main motivations for the neutron DVCS is the avor separation of GPDs. As mentioned in the PDFs case in Section 1.1, it is possible to decompose the valence-quark avor dependence of proton and neutron GPDs using isospin symmetry as:

H p = 4 9 H u + 1 9 H d , (3.1) 
H n = 4 9 H d + 1 9 H u , (3.2) 
where similar equations apply to the other GPDs. By measuring both proton and neutron observables, an experimental extraction of quark GPDs can be performed.

Another point advocating for neutron DVCS is its complementary sensitivity to CFFs with respect to proton DVCS. As shown in Section 1.3, DVCS asymmetries are sensitive to CFFs weighted by FFs, but the proton and neutron FFs have dierent behaviors (see Figure 1.4). For example the beam-spin asymmetry (BSA) is moslty sensitive to the imaginary part of the CFF H in proton DVCS, while it is sensitive to the imaginary part of E in neutron DVCS (the H contribution in neutron DVCS is expected to be small due to the cancellation between u and d quarks). Therefore measuring the BSA for nDVCS allows to constrain the E GPD, which is poorly constrained by current proton data (transversely polarized protons experiments are also sensitive to GPD E, but are also very challenging experimentally). The neutron DVCS will thus play a central role in the measurement of the Ji's sum rule.

However nDVCS is a much more challenging process to measure than pDVCS. As neutron targets are not stable, a deuterium target is needed. The use of a deuterium target implies that nal-stateinteraction corrections have to be applied to the extracted quantities, as neutrons in deuterium are bound. Furthermore neutrons are more dicult to detect than protons. They are electrically neutral and consequently cannot be detected in tracking detectors. In addition, as neutrons mostly interact with matter through elastic scattering, their detection in calorimeters and scintillator detectors has a lower eciency than for protons. This issue can be dealt with by increasing the active volume of detection, in order to obtain a larger eciency. This was the solution chosen for the CLAS12 nDVCS experiment. The dedicated neutron detector is presented in the next sections. Experimentally nDVCS is performed on a deuterium target and the spectator proton stays undetected (ed → e nγ(p)) because of its low recoil momentum. To ensure that the spectator particle is a proton, the missing mass of the nal state spectator e nγ(X) is calculated and cut around the mass of the proton. In the computation of this missing mass the kinematic variables of the electron and the photon are given by the FD or FT while the neutron ones are given by the CND. It was shown in the early stage of the R&D process of the CND that the momentum resolution of the CND should not exceed 10% in order for the neutron kinematics to have low eect on the proton missing mass. This is shown in Figure 3.1 extracted from [START_REF] Niccolai | The central neutron detector for clas12[END_REF]. The CND has to provide a good neutron-photon separation in the CD. The separation between neutrons and photons is achieved by measuring β for a given neutron candidate:

β = d path T OF × c (3.3)
where T OF is the time-of-ight of the particle, d path is the path traveled by the particle from the target to the interaction point with the CND, and c is the speed of light. Both T OF and d path are calculated using the CND (see Section 3.4 for more details). d path is obtained as:

d path = z 2 + r 2 (3.4)
where z is the longitudinal position of the hit and r its radial position. A radial segmentation is needed in order to achieve a good measurement of r. The longitudinal position z is given by:

z ∝ ∆t × v ef f (3.5)
where ∆t denotes the dierence of the time measured at both ends of the hit scintillator and v ef f is the eective velocity of the light in the paddle. The T OF is proportional to the sum of the measured times at both ends of the paddle. Thus the β neutron-photon separation is only dependent on the time resolution of the CND. Geant4-based simulations show that to ensure a 3-σ separation up to 0.9 GeV the time resolution of the CND should be about 150 ps.

Design description

The CND uses the space left between the CTOF and the solenoid magnet. The downstream lightguides of the CTOF do not allow for downstream readout of the CND as shown in Figure 3.2b. Thus the CND was designed with light readout at the upstream end only. The CND consists of three radial layers of 48 plastic scintillator paddles with trapezoidal shape that are collinear to the direction of the beam. The scintillating material is EJ-200 (Polyvinyl Toluene, PVT) from Eljen Technology. The radial thickness of all the paddles is 30 mm while the other dimensions vary depending on the layer, as shown in Table 3 

High voltage power supply, electronics and readout

The PMTs are energized by a high voltage (HV) of around 1500 V. The HV is supplied by CAEN SY527 power supplies on which CAEN A734N multi-channels boards (16 channels, 3kV max voltage and 3 mA max current) are set.

The signals from the PMTs are read by the electronic readout, situated a few meters away from the CND (see Figure 3.6). First the signal is sent to active splitters. The three splitter modules used for 

High voltage setting

Each PMT was initially energized with a high voltage corresponding to a nominal gain that was determined during individual PMT tests prior to the installation. The high voltages were then adjusted 

Decoding

During the data collection, the information recorded by the CND are the TDCs and the binned waveforms from the fADC modules. These data are associated to an electronic channel corresponding to the crate and to the board of the acquisition module. The raw data are then processed oine to reconstruct physics-related quantities.

The rst step of the oine data processing is decoding. Decoding consists in two steps. First the charge signal is integrated and ADCs are calculated. The value of the pedestal is subtracted from the charge signal waveform. The pedestal corresponds to the constant value of the charge signal when no particle is detected. The charge signal waveform is binned in 4-ns bins. A threshold for pulse detection is applied to the binned waveform: the rst bin with an amplitude higher than the threshold is recorded. The signals that fail the pulse detection are discarded. The integration of the charge signal is then performed in a window around the rst bin above the threshold. During the CND data taking the ADC integration window was set to 12 bins before the threshold and 60 bins after.

The procedure is shown in Figure 3.9, where in this case the integration window is set to a smaller width. The thresholds were set to 60 ADC units above the pedestal. Each electronics channel is then assigned a sector (1 to 24), a layer (1 to 3) and a component (left or right) according to a translation algorithm is presented below (Section 3.4) followed by the calibration algorithm (Section 3.5). The aim of the oine processing is to produce high-level quantities from ADCs and TDCs. In the following we call "hit" the interaction of a particle with the detector. Each hit is associated with a position, a time and an energy. 

Reconstruction

The reconstruction of the CND data is done in three steps. The rst step is the reconstruction of the time and the position of the hit in the paddle. The second step is the reconstruction of the deposited energy. The last step is the matching of CND hits with charged particle tracks. The reconstruction uses calibration constants that are determined during the calibration step. For the sake of clarity we suppose in this section that the calibration constants are already determined. During the CND oine data processing, the rst reconstruction performed before the calibration uses either constants from previously calibrated runs or constants determined during tests prior to the installation. The constants used in the reconstruction are summarized in Table 3 The eective velocity v ef f is the speed of light in the scintillating plastic of the paddle. The U-turn time loss term u t accounts for the time necessary for the scintillating light to cross the u-turn light guide and reach the neighboring paddle. The two time osets t LRad and t of f are respectively the oset between two coupled paddles and the oset of a pair of paddles with respect to the CLAS12 common time reference (referred to as start time in the following). Finally the attenuation length A and the energy constants M IP D and M IP I are used in the energy reconstruction steps. They correspond respectively to the characteristic attenuation length of light in a paddle and to the ADC values for a direct (resp. indirect) signal of a Minimum Ionizing Particle (MIP) detected in a given paddle.

Associating TDCs and ADCs

The rst step of the reconstruction consists in matching ADCs and TDCs associated with the same paddle. This is performed by looping through both the ADC and TDC lists and comparing sectors, layers and components (SLC). An ADC and a TDC with equal SLC are grouped together to form a half-hit. If more than one TDC or ADC are associated with one half-hit, the half-hit is discarded.

Half-hits are then grouped in hits. Two half-hits form a hit if they have equal layer and sector and complementary component (a half-hit in each of the coupled paddles). The position, the time and the energy of each hit is then calculated.

Raw time

The raw hit times t L/R are obtained from the measured TDC channel using a slope constant of 0.0234 ns/channel for all the channels.

t L/R = T DC L/R • 0.0234, (3.6)
where the subscript L/R is the component index and refers to the left and right paddle of a pair, respectively.

One can then write the raw times in terms of the calibration constants dened in Table 3.2. We now denote the raw times as t XY where X and Y can be R or L and refer respectively to the paddle from which the time is obtained and the paddle in which the hit occurred. For a hit in the left paddle the raw times read:

t LL = t off + t tof + z v eff L + t S + TDC j , (3.7) 
t RL = t off + t tof - z v eff L + L v eff L + L v eff R + u t + t S + t LRad + TDC j , (3.8)
where t tof is the time-of-ight of the detected particle from the vertex to the hit, z is the location of the hit along the beam direction from the upstream edge of the paddle, L is the length of the paddle, t S is the event start time, TDC j is the CLAS12 Radio Frequency clock jitter and the subindexes L/R refer to left or right paddles.

For a hit occurring in the right paddle the times read:

t LR = t off + t tof - z v eff R + L v eff L + L v eff R + u t + t S + TDC j , (3.9) 
t RR = t off + t tof + z v eff R + t S + +t LRad + TDC j .
(3.10)

Choice of the paddle where the hit occurs

The paddle in which the hit occurs is then determined prior to any further step. Dening ∆ and ∆ as:

∆ = L v eff L - L v eff R , (3.11) 
∆ = t LX -t RX + t LRad , (3.12) 
where the index X can be R or L, one can compute ∆ -∆ for both cases (hit in the left paddle or hit in the right paddle). If the hit is in the left paddle:

∆ -∆ = 2z v eff L - 2L v eff L -u t < 0. (3.13) 
If the hit is in the right paddle:

∆ -∆ = 2L v eff R - 2z v eff R + u t > 0. (3.14)
∆ and ∆ are calculated for each hit. If ∆ < ∆, the paddle in which the hit happened is the left one, otherwise it is the right one.

Hit position and time reconstrution

The derivation of the time and the position of a hit is done in the case of a hit in the left paddle.

In the case of a hit in the right paddle, the corresponding equations are obtained by switching L↔R indexes.

Subtracting the time oset known from calibration, the start time and the time jitter from Equations (3.7) and (3.8), we dene t Lprop and t Lprop as:

t Lprop = t tof + z v eff L , (3.15) 
t Rprop = t tof - z v eff L + L v eff L + L v eff R + u t . (3.16)
The position of the hit is obtained from the dierence of the above quantities as :

z = v eff L 2 t Lprop -t Rprop + L 1 v eff L + 1 v eff R + u t .
(3.17)

The sum of t Lprop and t Rprop provides the time-of-ight of the particle that produces the hit:

t tof = 1 2 t Lprop + t Rprop -L 1 v eff L + 1 v eff R -u t .
(3.18)

Energy reconstruction

For hits in the left paddle, the two associated ADCs can be written as:

ADC L = E L E 0 M IP D e -z A L , (3.19) ADC R = E R E 0 M IP I e -(L-z) A L , (3.20) 
where E L/R are energies propagated in the left (resp. right) paddle. E 0 is half of the energy deposited by a MIP particle over the thickness of the scintillators. E 0 is given by:

E 0 = dE/dX hρ 2 MeV, (3.21) 
where h is the thickness of each scintillator, ρ is the density of PVT equal to 1.023 g.cm -3 and dE/dX is the nominal energy deposited by MIPs in PVT and equal to 1.956 MeV.g -1 .cm 2 . The above equations are valid for hits in left paddles, while for hits in the right paddles the corresponding equations are obtained by switching L↔R indexes. The energies measured in both paddles are then given by:

E L = ADC L E 0 M IP D e z A L , (3.22) E R = ADC R E 0 M IP I e L-z A L . (3.23)
The total deposited energy is the sum of E L and E R :

E deposited = E L + E R . (3.24) 

Hit/Track matching

Tracks from charged particles crossing the CLAS12 Central Vertex Tracker (CVT) are associated to hits in the CND. This allows, for each CND hit matched with a CVT track, to calculate the position of the hit from the extrapolated track, the path-length between the track vertex and the CND hit, and the path traveled inside the hit paddle. This information is used in the calibration, as well as to veto charged particles when looking for neutrons in the CND. The CVT tracks are extrapolated to radii corresponding to the entry, middle and exit points of the track in the paddle as shown in Figure 3.10

These points are dened as the intersections between the helix of the track and the physical volume of the CND paddles. A CVT track and a CND hit are matched if the hit coordinates (x, y, and z) and the extrapolated coordinates at the middle of the counter (x m , y m , and z m ) verify the relations:

| x -x m |< σ x , (3.25) 
| yy m |< σ y ,

(3.26) z m ∈ [-σ z , L + σ z ], (3.27) 
where σ z = 1.5 cm, L is the length of a paddle, and σ x and σ y are given by:

σ x = x 2 σ 2 R R 2 + y 2 σ 2 φ , (3.28) 
σ y = y 2 σ 2 R R 2 + x 2 σ 2 φ , (3.29) 
where R is the radius of the hit, σ R is half the thickness of a paddle (1.5 cm) and σ φ is the azimuthal resolution of each paddle (3.75

• ). The path traveled by the particle in the paddle is approximated as the distance between the entry and exit points.

The path length between the vertex and the hit position is also calculated at this stage. 

Calibration

The calibration of the CND is performed after a rst reconstruction is performed on raw data 

Calibration constants for the CND

The calibration of the CND with beam data is done in two steps: the timing calibration, which allows us to obtain eective velocities and time osets, which are, in turn, necessary to deduce timing and position information of the hits; and the energy calibration, in which attenuation lengths and energy conversion factors are extracted. Table 3.3 summarizes the calibration constants necessary to reconstruct CND hits and the order in which they are calculated during the calibration.

Step 

Timing Calibration

There are ve calibration constants that must be determined as part of the CND timing calibration: the two left-right time osets (t LRoff and t LR ad ), the eective velocity (v eff ), the propagation time in the U-turn (u t ), and the global time oset with respect to the event start time (t off ). The calibrations of these constants must be done in the following order: t LRoff , v eff , u t , t LR ad , and nally t off . Each of these constants is determined using charged particles from beam interactions in the target.

At this stage TDCs have been converted to raw times and the hit paddle has been determined by the procedure described in Subsection 3.4.3.

Left-right timing oset

The left-right time oset refers to the time mis-alignement between two coupled paddles. The goal of this calibration step is to nd this oset. This oset is determined in two steps. The rst step relies on the u-turn structure of the CND to extract a rst estimate of this oset t LRoff . The second part of the algorithm adjusts this rst value to the real value t LR ad by taking into account the eective velocities of both coupled paddles. There is one value of t LRoff and t LR ad for each pair of paddles.

There are two dierent algorithms to nd t LRoff depending on whether the data were taken with or without magnetic eld of the solenoid.

• If the solenoid eld is o, the u-turn light guide coupling two adjacent CND paddles induces a gap in the time dierence t Rt L plots. The t LRoff constant is dened as the time dierence value at the center of the gap. This method was developed initially but requires special calibration runs as the eect of double hits described in the following was not anticipated at the early stage of software development.

• If the solenoid eld is on, double hits occur. When the trajectory of a charged particle bents in the solenoid eld crosses two adjacent coupled paddles, the two L and R signals have very similar TDC values (see Figure 3.12). Such hits induce a peak instead of a gap in the time dierence plots (see Figure 3.13). In this case, t LRoff is dened as the position of this peak.

Both cases are illustrated in Figure 3.13. Typical values of the osets are below 5 ns. t LRoff is not used in the reconstruction, but it is nonetheless necessary to remove double hits from the subsequent calibration steps. The constant t LR ad , dened below, is used in the reconstruction. Once the t LRoff constants have been determined, they are corrected to account for the dierent eective velocities of the two coupled paddles.

For hits in the left paddle, the two associated TDCs can be expressed with Equations (3.9) and

(3.10).

The oset t LR ad is dened as:

t LR ad = t off R -t off L , (3.30) 
where t off R and t off L are time osets associated with the left and right coupled paddles, respectively.

From Equations (3.9) and (3.10), one can write:

t LL -t RL 2 = z v eff L -C L , (3.31) 
where C L is the opposite in sign of the intercept of t L -t R 2 vs z, and is given by:

C L = L 2 v eff L + L 2 v eff R + u t 2 + t LR ad 2 . (3.32)
For hits in the right paddle, the corresponding intercept C R is given by:

C R = L 2 v eff R + L 2 v eff L + u t 2 - t LR ad 2 .
(3.33)

Combining Equations (3.32) and (3.33), t LR ad is obtained as:

t LR ad = C L -C R .
(3.34)

Eective velocity

The eective velocity v eff is the speed of the light in the scintillators. There is one v eff value for each coupled paddle. For a hit in the left paddle, the v eff is obtained from the following equation:

z = (t LL -t RL ) v eff L 2 + c, (3.35) 
where z is the longitudinal position of the hit in the CND with respect to the upstream end of the CND paddles and c is a constant detailed in the previous section. For hits in the right paddles, the indexes of the time dierence must be changed. The longitudinal position z is obtained independently from the CND, using the extrapolation of the particle track measured by the CVT. The v eff is extracted by tting the

t L -t R 2 
vs z distribution as shown in Figure 3.14. For each slice in z, the position of the maximum from a Gaussian t is plotted against z. The slope of the obtained distribution gives v eff . The expected values for v eff are around 14-16 cm/ns. 

U-turn time loss

The u-turn propagation time u t is the time spent by the light to travel through the u-turn lightguide.

It is used as a time oset on the indirect signal in the time and position reconstructions. There is one u t value for each pair of paddles. The algorithm to extract u t is very similar to the one used in the v eff procedure: the intercept of the

t L -t R 2 
vs z distribution (see Figure 3.14) is extracted for both coupled paddles to determine u t .

From the sum of the intercepts C L in Equation (3.32) and C R in Equation (3.33), u t is obtained as :

u t = C R + C L -L 1 v eff R + 1 v eff L . (3.36)
The values for u t are typically in the range from 0.5 ns to 1.5 ns, with values for the layer 1 around 0.6 ns, the layer 2 around 1 ns, and the layer 3 around 1.4 ns.

Global time oset

The global time oset t off refers to the time dierence between the start time value and the vertex time computed from the CND hit time and the CVT path length information. There is one t off value for each pair of coupled paddles. It is given by:

t off = t L + t R 2 -t S -t tof - L 2 • 1 v eff R + 1 v eff L - u t 2 - t LR ad 2 -TDC j , (3.37) 
where t tof is calculated using CVT information assuming the particles are pions. For this, only hits with negative charge tracks are used, as most of the negative particles in the CD are pions. The time-of-ight is then fully determined by the tracking information as:

t tof = d path • p 2 + m 2 p • c (3.38)
where d path is the distance traveled by the pion from the vertex to the hit calculated at the hit-track matching stage of the reconstruction algorithm, p is the momentum of the track obtained from its curvature in the magnetic eld, m is the mass of the pion and c the speed of light. The start time t S is provided event by event and is calculated from the FTOF measured time and the RF bucket matching (see Chapter 4 for more details). The start time also accounts for the position of the vertex. The position of the peak in the distribution shown in Figure 3.15 gives t off . This constant mainly depends on the start time t S , which is calculated using the CLAS12 Forward Time-of-Flight System (FTOF).

The CND global time oset can only be calibrated after the calibration of the FTOF. The variations of t off between dierent pairs of paddles are typically below 10 ns. 

Energy calibration algorithms

There are three calibration constants for the energy determination in each paddle of the CND: the attenuation length (A), the ADC-to-energy constants for direct minimum-ionizing particles (MIPs) (M IP D ), and the ADC-to-energy constants for indirect MIPs (M IP I ). These three calibration steps can be performed almost independently from the timing calibration. However t LR ad is needed to determine if an ADC signal is direct or indirect (i.e. the hit happened in the considered paddle or in its coupled partner).

Attenuation length

The attenuation length A accounts for the light attenuation along the length of the scintillators and light guides. There is an A value for each paddle. For hits in the left paddle, the two associated ADCs can be written as:

ADC L = E E 0 M IP D e -z A L , (3.39 
)

ADC R = E E 0 M IP I e -(L-z) A L , (3.40) 
where M IP D and M IP I are constants dened in Subsection 3.6.2 below (M IP I includes the eect of the light attenuation in the R paddle), E is half the energy deposited by the particle in the scintillator, and E 0 is half the energy deposited by a MIP in the scintillators. We have assumed here that the deposited energy is shared equally in the direct and indirect signals. E 0 is given by:

E 0 = 2.001 h 2 MeV, (3.41) 
where h is the thickness of each scintillator. All the above equations are valid for hits in the left paddles, while for hits in the right paddles the corresponding equations are obtained by switching the L↔R indexes. From Equations (3.39) and (3.40) the following relation is derived: . The product M IP D × M IP I is obtained using Equation (3.44) after ltering MIPs and correcting for the path traveled by the MIP in the scintillators. Indeed for MIPs, E can be written as:

ln(ADC L /ADC R ) = c - 2z A L , ( 3 
ln ADC L ADC R = ln M IP D M IP I + L A L - 2z A L (3.43) ADC L ADC R = E E 0 M IP D M IP I e -L 2A 
E = path h • E 0 , (3.45) 
where path is the path length traveled by the MIP in the scintillator, which is obtained using the CVT tracking information by extrapolating the particle trajectory at the radius of the CND hit. Selecting

MIPs and correcting for the path length removes the energy dependence from Equation (3.44), which becomes:

ADC L ADC R = path h M IP D M IP I e -L 2A L . (3.46) 
The distribution of √ ADC L ADC R h path is t with a Landau function and the position of the peak p is extracted as shown in Figure 3.17 

Calibration suite

The CND calibration algorithm is embedded in a calibration suite developed in Java. The framework of the suite is common to all the CLAS12 subsystems. Each calibration step is performed within a dedicated tab. The required previous constants for a given step can be uploaded using directly the output text les of the suits. Calibrators can check the goodness of each t visually as well as numerically using the error on the extracted constants. Each plot used in a particular calibration step is shown for each paddle and can be exported for a later review. A screenshot of the suite is shown in Figure 3.18. Once the calibration is satisfactory, the output text les can be uploaded on the CLAS12 database (CCDB) for later use.

Clustering

Particles can deposit energy in several paddles of the CND. All the hits produced by a given single particle are grouped in a cluster. The clustering of CND hits is based on the geometrical space-time distance between them. The determination of the maximal distance for clustering two hits together takes into account the measured resolutions for the position and the timing of the CND counters. The algorithm uses standard hierarchical clustering [START_REF] William | Ecient algorithms for agglomerative hierarchical clustering methods[END_REF]. A scan of all the hits in an event is performed and only the hits with a deposited energy greater than 1 MeV are considered for clustering.

The two closest hits are combined into a single hit with an associated energy dened as the sum of the energies of both hits. The position and the timing of the cluster hit are dened as those of the hit with the highest energy, i.e. the seed hit. The same algorithm is recursively run on the remaining hits.

Finally, the leftover hits that are relatively far from each other are called clusters. The sector, layer, and component of each cluster are those of the seed hit.

Simulation geometry and hit process

The CND geometry is implemented in Geant4 based CLAS12 simulation framework (GEMC) using its geometry API. The paddles are Geant4 generic trapezoids (see Figure 3.19). The u-turn light guides are Geant4 polycones (volumes with cylindrical symmetry with varying radius along one axis). The paddles are assigned the scintillator material and are associated with the CND hit process routine described below. The corrected energy is converted into the theoretical number of photons N th using the constant 1210 γ/MeV, which accounts for light propagation in the 1.4-m-long light guides, for losses at the junctions and for the quantum eciency of the PMT. A Poissonian distribution is used to calculate the actual number of photons N actual and the resulting smeared energy is then converted to ADC.

The absolute hit time is corrected using the calibration constants estimated from data (eective velocity and time oset). The Birks attenuation eect is also taken into account. The Birks factor, modifying the deposited energy depending on the particle type, enters in the timing calculation as follows: the direct and indirect times are smeared with a Gaussian function having a width directly proportional to an empirically determined Birks constant, and inversely proportional to the square root of the measured number of photons (which is, in turn, proportional to the attenuated energy).

The time window of the CND is set to 400 ns: all of the Geant4 steps within the same paddle and time window are collected into one hit. The time is then digitized using the TCD module sampling time.

Performances

The performances of the CND are estimated in three distinct ways. First we estimate the time, position and energy resolutions using π -, which are minimum ionizing particle in CLAS12 kinematics. Also we estimate the particle identication capabilities of the CND. Finally we measure the neutron eciency of the CND using the exclusive reaction ep → enπ -.

Time, position and energy resolutions

The timing performance for each of the three layers of the CND is illustrated in Figure 3.20b, showing the vertex time dierence t v for selected negative tracks, assumed to be all pions, integrated over all the sectors. It is dened as

t v = t CND -(t S -vz corr ) - d path c β , (3.49) 
where t CND is the mean time reconstructed from the L and R paddles, t S is the event start time determined by the RF bucket matched with the FTOF vertex time, vz corr accounts for the actual z position of the interaction vertex, d path is the path length from the event vertex to the CND, and

β = p p 2 + m 2 , (3.50)
with p the momentum measured by the CVT, and m the pion mass. The distribution of t v is centered at 0. From the width of the t v distribution, the timing resolution of each CND paddle convoluted with the CVT resolution can be determined as:

σ t = σ 2 vt -σ 2 t S = 185 ps, (3.51) 
assuming that the resolution of the start time is σ t S =20 ps. This value is a higher limit of the start time resolution and thus the CND resolution is slightly overestimated. However using the lower estimate value of the start time resolution σ t S =2 ps, the CND resolution estimate varies by less than 1%. The the CND time, against the momentum p measured from tracking, with β CN D dened as:

β CN D = d path (t CN D -t S ) c . (3.52)
Here d path is the path traveled by the particle from the vertex to the detection point and t S is the event start time. 

Neutron-photon separation

The timing resolution of the CND is designed to be around 150 ps in order to be able to separate neutrons from photons in the 0.2 to 1 GeV momentum region. The eective timing resolution of the CND in CLAS12 is estimated to be around 160 ps for real data after optimized calibration. To estimate the separation power achievable with such a resolution multiple methods are compared.

First, a simple error propagation calculation is performed. We assume that the timing resolution δt (set at 160 ps) and the position resolution δz are constant along a CND paddle, and that the position resolution is given by the timing resolution multiplied by the typical value of the light eective velocity (14 cm/ns). We also assume that the timing resolution for neutrals is similar to the one measured for MIPs. The neutrons and the photons are separated using a cut on the value of β calculated as:

β = d t c , (3.54) 
where d is the distance between the vertex and the interaction point and t is the time of ight measured by the CND. The uncertainty of β is given by:

δβ = β d (δd) 2 + (δt) 2 β 2 c 2 .
(3.55)

The uncertainty on the path length is determined by:

δd = 1 2 R 2 + z 2 + 2zδz + δz 2 -R 2 + z 2 -2zδz + δz 2 ≈ 1 2 zδz d , (3.56) 
where all the variables are dened in Figure 3.26. We do the calculation in the case of a hit in the rst layer (R=30 cm, where δd is bigger). The values of z and d are given by the polar angle for which the calculation is made.

Figure 3.26: Schematic denition of the variables used in the determination of the neutral particle separation. The radius R is taken to be the radius at the center of the rst layer. The vertex is located at the center of the target which is also taken as the origin of the z axis.

A second method to estimate the β resolution consists in calculating β from randomly picked values of t and d within the resolution specied before. A random path length value d R is generated from a gaussian with mean d and standard deviation δd. The value of t R is generated from a gaussian with mean d/(tβ) and standard deviation δt. The corresponding random value β R is dened as d R /(t R c). This process is iterated 10000 times and the resulting distribution of β R is tted with a gaussian. The standard deviation of the tted function give the resolution. This method is referred as t method in the following.

One can also estimate the β resolution using directly the CLAS12 data. In this case, the exclusive reaction ep → e nπ + (see Subsection 3.10.3 for more details) is used. The distribution of the dierence between the expected β from missing neutron events and the one measured by the CND is tted with a gaussian for dierent slices in momentum. The tted standard deviations give the resolution in each momentum bin. In the case of photons, there is no exclusive reaction that can be used to reliably extract the resolution. Thus only the β resolution for neutron is extracted from data.

Finally, the resolution is also extracted from simulations. This is done by simulating neutrons and photons in the CND using GEMC. The reconstructed β is then compared to the generated one. The resolution is obtained as for the real data case, using gaussian ts in each momentum bins. Figure 3.27 visualizes the neutron/photon separation power of the CND, showing β as a function of momentum for photons (squares) and neutrons (dots). The error bars correspond to 2 σ, where σ is the β resolution for the two kinds of particles, evaluated with the dierent methods described above.

The results obtained with the error propagation, t, simulations and real data are in good agreement in the high-momentum region, which is the crucial one for photon/neutron separation. For the photons, we relied only on simulations (black), error propagation (green) and t (red). We can conclude that neutrons and photons can be separated at a 2-sigma level for momenta up to 0.8 GeV. It must be noted that in [START_REF] Niccolai | The central neutron detector for clas12[END_REF] simulations showed a separating power up at a 3-sigma level for neutrons up to 0.9 GeV.

The reason for the worsened performances is under investigation. The main change since [START_REF] Niccolai | The central neutron detector for clas12[END_REF] was in the clustering algorithm of the data reconstruction, passing from a energy-weighed average time for the cluster to a method based on the attribution of the time seed-hit (the most energetic one) to the whole cluster. The latter method was chosen to match the scheme adopted for the CTOF. However, this method may not be optimal for neutrals, and further studies are needed. The events with an electron and a π + in the CLAS12 FD are selected. The missing mass of the e π + X system is plotted versus β X in Figure 3.29, and one can clearly identify a peak at the neutron mass. The missing particle is required to be in the CLAS12 Central Detector (θ > 40 • ). The eect of this selection is shown in Figure 3.29, where the high-mass component of the spectrum is removed after the cut. We apply an additional cut on β of the missing neutron (0.2 < β X < 0.8) and on the missing mass (0.7 GeV < M X < 1 GeV) to ensure the exclusivity of the nal state. From this set of ep → e (n)π + events, those with a neutron identied by the CND (i.e. with a CND cluster with E dep > 2.5 MeV, no associated CVT tracks and β < 0.8) are selected. If multiple neutron candidates are detected by the CND, the neutron with the smallest azimuthal separation from the missing neutron is kept. A cut on β > 0.1 is applied to remove out-of-time hits that can be mistaken as neutrons. Finally, the detected neutron and the missing neutron azimuthal angle dierence is constrained to be less than 20 • . The eciency is measured in bins of the missing neutron polar angle and as a function of its missing momentum. For each bin in polar angle and momentum, the eciency is dened as the ratio of events with a detected neutron to the number of missing neutron events. The result is shown as a function of the missing neutron momentum in Figure 3.30 for bins in polar angle and integrated over all azymuthal angles. The measured eciency (∼ 10%) is in agreement with the one expected during the R&D development of the CND. From this study, an estimate of the momentum resolution of the detected neutron is calculated. We nd a resolution of ∆P P M is. = 16%, where ∆P = P det. -P M is. is the dierence between the detected and the missing neutron momenta, as shown in Figure 3.31. This value is higher than the 10% value from the R&D specications. However it includes eects coming from the detection of the electron and pion, especially FD-CD mis-alignments.

All events

The same study is performed using Monte Carlo simulations. nDVCS events were processed in the full simulation and reconstruction chain of CLAS12. In this case, the eciency is calculated as the number of reconstructed neutrons divided by the number of generated neutrons. The obtained eciencies are compared in Figure 3.32 for dierent bins in polar angle and in Figure 3.33 integrated over all polar angles. The results for the eciency from simulations and from data have consistent values. The discrepancies, observed at high momenta (above 0.8 GeV) and low momenta (below 0.3

GeV), are due to the two dierent nal states used and the fact that the expected neutron kinematics are perfectly known in the case of the simulations.

Premilinary results for nDVCS based on neutron detection in the CND

To conclude this chapter, very preliminary results for the nDVCS reaction, obtained by M. Hoballah and S. Niccolai are presented. The data shown in the following were taken with an electron beam impinging on a deuterium target. Events with a photon in the FT and a neutron in the CD are selected.

Considering that the neutron is quasi-free inside the deuterimum nucleus, the reaction selected from this topology is:

en → e n γX.

(3.57)

The missing mass M X is shown in Figure 3.34. Exclusivity cuts are then applied to ensure that no other particle is produced in the reaction. The missing mass spectrum after exclusivity cuts is superimposed in Figure 3.34.

Once the reaction is identied, the raw beam spin asymmetry is calculated. The integrated BSA over the whole phase space available is shown as a function of Φ (see Section 1.3 for the denition).

The BSA is tted with the function f (Φ; a, b):

f (Φ; a, b) = a sin(Φ) 1 + b cos(Φ) , (3.58) 
where the parameters a and b can then be related to CFFs. Figure 3.35 shows the raw beam spin asymmetry and the results of the t. Note that the result shown here is not corrected for the main known background, coming from π 0 electro-production, where one photon stays undetected:

en → e n π 0 → e n γ(γ). Mx² (GeV²) The rst step of this measurement is to retrieve events recorded by CLAS12 where the γp → p e + e - reaction occurs. In order to select these events, the nal-state particles must be identied. This step is presented in Chapter 4. The event builder algorithm of CLAS12 is presented. This algorithm associates the various responses of the CLAS12 sub-detectors for each event, to recover the momenta and the vertices of all the recorded particles. An enhanced positron identication algorithm, crucial in the TCS measurement, is also presented in this chapter.

The second step of the analysis consists in correcting the data. These corrections aim at matching the measured momenta of the detected particles with their actual momenta at the vertex. This step is also presented in Chapter 4.

Once the nal state particles are well identied and their momenta are corrected, exclusivity cuts are applied in order to make sure that each event is a TCS event (i.e. from the γp → p e + e -reaction).

The observables are then computed with the kinematic variables of these good events. This step is performed in Chapter 5.

Finally in Chapter 6 the results of the full analysis of the CLAS12 data are displayed and discussed against theoretical predictions.

101 Chapter 4

Particle identication and momentum corrections

Particle Identication (PID) is the last step of the data reconstruction. It aims at producing a list of particles, their associated momentum and vertex coordinates, as well as the associated list of responses in CLAS12 detectors. This step is performed by the Event Builder (EB) described in [START_REF] Ziegler | The clas12 software framework and event reconstruction[END_REF]. Tracks are associated to detector responses to form particles. Each particle is then identied according to this list of detector response. In this chapter, the identication procedures for protons (Section 4.1) and leptons (Section 4.2) are presented rst. In Section 4.3 an enhanced positron identication algorithm developed for the TCS analysis is discussed.

This chapter also describes momentum corrections developed to correct CLAS12 data and simulations. These corrections have been developed in the perspective of the TCS analysis but can be used in any CLAS12 analysis. A full set of momentum corrections for protons was put in place. Subsection 

Proton identication

Protons, and more generally heavy hadrons, are identied with their time of ight (tof ) from the vertex to their interaction point with Time Of Flight (TOF) detectors. There are two TOF detectors in CLAS12, the CTOF in the CD and the FTOF in the FD. In both cases the proton identication procedure is similar. A precise time reference, the start time, is determined using a fast moving particle detected in the FD. Then the tof is calculated and matched to the expected one obtained from tracking.

Start time

The start time is determined using the FTOF response of the trigger particle of the event. The trigger particle is dened as the most energetic lepton in the EC or, if no lepton is detected, the pion with the higher momentum. The uncorrected vertex time t v of the trigger particle is calculated as:

t v = t - P L c , (4.1) 
where t is the measured time in the FTOF of the trigger particle and P L is the path length from the vertex to the detection point in the FTOF. The vertex time is then corrected by the position of the vertex z v (to account for the time that the beam bunch is taking to propagate to the vertex from the origin of CLAS12, dened as the center of the target z 0 ), and the RF time provided by the accelerator t RF , as:

∆t RF = t v + (z 0 -z v ) c -t RF -N + 1 2 1 f RF , (4.2)
where f RF is the frequency of the accelerator and N is a large integer (typically 800). This allows to nd from which beam bunch the event originated and to precisely match the vertex time in the time window between two bunches, using:

∆t RF = mod(∆t RF , 1 f RF ) - 1 2f RF . (4.3)
Finally the start time is dened as:

t S = t v -∆t RF . (4.4)
Momentum/tof matching

The tof t tof of a hadron is given by:

t tof = t T OF -t S , (4.5) 
where t T OF is the time associated with the detector in which the hadron was detected. The expected tof from tracking t track is given by:

t track = P L p 2 + m 2 pc , (4.6)
where m is the mass of the particle and p its momentum from tracking. The mass hypothesis which minimizes the dierence t toft track is assigned to the particle. 

Lepton identication

Electrons and positrons have very low mass and will likely be detected in the FD of CLAS12. The timing resolution of the FTOF doesn't allow to separate leptons and pions at the CLAS12 kinematics.

As a consequence, the pid of leptons is solely based on the Sampling Fraction (SF) of the EC and the number of photo-electrons in the HTCC. The SF is dened as:

SF = E dep P , (4.7) 
where E dep is the total energy deposited in the EC, and P the momentum measured by the DCs. The EB of CLAS12 assigns the particle ID, in the Lund convention, ±11 (i.e. electron or positron) for particles that fulll all the following requirements:

• A track in the DCs and an associated EC shower (the curvature of the track in the torus magnetic eld gives the charge of the particle)

• A minimum deposited energy in the PCAL: E P CAL > 60 MeV

Edep (GeV) 

SF P (E dep ) = a b + c E dep + d E 2 dep . (4.8) 
The parameters are calibrated for each sector and depend on the run range.

• If P < 4.9 GeV, a minimum number of HTCC photo-electrons: N P HE (HT CC) > 2. The distribution of the number of photo-electrons in the HTCC for detected electrons is shown in There are two distinct regions for lepton identication: below 4.9 GeV leptons are identied using the HTCC and the EC. Above this threshold, the HTCC produces a signal for pions and leptons and thus cannot help in separating them. In the high-momenta region, the lepton pid is then only based on the EC. An additional pid procedure to enhance the positron purity in this high momentum region is presented in Section 4.3.

Positron identication

Measurements of TCS observables require the detection of a pair of leptons from the decay of a virtual photon. For momenta lower than 4.9 GeV, the HTCC of CLAS12 provides good pion/lepton separation [START_REF] Sharabian | The clas12 high threshold cherenkov counter[END_REF]. The HTCC electron detection eciency is estimated to be higher than 99%. For momenta higher than the HTCC threshold (4.9 GeV) data and simulation show a large contamination of π + in positron samples. In this section, evidence for pion contamination is shown and a multivariate analysis is proposed to reduce this contamination. The results of this approach are shown and assessed.

An estimate of the remaining pion contamination is given.

In the following we consider particles that have been assigned ID -11 and identied as positrons by the EB. The electron case is treated at the end of this section.

Evidence of π + contamination

In order to measure TCS observables, we aim at achieving a clean identication of leptons. The positron ID is crucial to reach this goal. However the pid cuts described in Section 4.2 are not sucient to remove potential mis-identied π + from the positron sample. This contamination can be seen in both the data and simulations.

We use the expression "true-positron" for Generated positron-reconstructed positron and "mis-id.

pion" for Generated pion-reconstructed positron in the simulation samples. For the data samples, analogous designations are used, replacing "Generated" by "Produced". Finally, we also refer to these categories as respectively "Signal" and "Background" when methods to distinguish both sets are described.

π + contamination from data Positron momenta spectrum A rst evidence of pion contamination is seen by investigating events with an electron, a proton, a positron and any other particles in CLAS12. One can see that there is an excess of positrons above the HTCC threshold. This is visible in Figure 4.4 where the polar angle of the positrons are plotted against their momenta.

Exclusive reaction A second evidence of pion contamination is seen when investigating the exclusive reaction ep → eπ + n. Events with at least a particle with ID -11 and momentum bigger than 4.4 GeV and an electron with momentum lower than 4.4 GeV were ltered from the CLAS12 dataset. Both particles are required to be detected in the FD. Cuts on the electron momentum ensure that it is a true electron. The particles with ID -11 are assigned the π mass. The missing mass of the system ep → ee + mπ X is then calculated. The notation e + mπ is used to refer to the particle with ID -11 and mass equal to the π mass. The missing mass spectrum obtained is shown in Figure 4.5.

A clear peak at the neutron mass is visible. This peak is produced by the reaction ep → eπ + n were the π + has been identied as a positron. These exclusive mis-identied pion events are a good way to quantify the pion contamination. Furthermore the momenta of the mis-id. π + cover most of the momentum range of interest, from 4.9 GeV to 10.6 GeV as shown in Figure 4.6. We will use these events later in Subsection 4.3.5 as a scale to quantify the pion background. π + contamination from simulations

The π + contamination is also visible in simulations. Two test samples were generated, one sample of positrons and one of positively charged pions. They were passed to the GEMC CLAS12 simulation and reconstructed using the standard CLAS12 software. Particles were simulated within the CLAS12 acceptance and within the range of momenta of interest (4 GeV < P < 10.6 GeV and transverse momentum within 0.5 GeV < P t < 2 GeV). The output of both samples were then skimmed identically:

only particles with ID -11 were kept. The kinematics distributions for both true-positrons and mis-id.

pions are shown in Figure 4.7.

The behavior observed in the data (excess of positrons due to contamination from π + ) is reproduced in the simulations.

1D and 2D cuts from the simulations

The results of the simulations described above were used to explore simple cuts to try to remove the pion contamination. In this section, various pid cuts based on these simulations are dened.

χ 2 cut
The CLAS12 EB gives the deviation of the total sampling fraction from a parametrized model. This quantity is referred as χ 2 in the CLAS12 software (although the name commonly used in literature is P (Gev) pull value) and it is dened as:

χ 2 = SF M (E dep ) -SF P (E dep ) σ P . (4.9) 
The EB requires that -5 < χ 2 < 5 to identify a particle as a lepton. The χ 2 of true-positrons and mis-id. pions is shown in Figure 4.8. One can see that mis-id. pions mostly populate the low χ 2 region. Their sampling fraction is just big enough for them to be identied as positrons. From these distributions, two simple strategies can be tested: cutting on the absolute value of χ 2 (| χ 2 |< c) or cutting on low values of χ 2 (c < χ 2 ). These strategies are referred as Symmetric and Asymmetric χ 2 cuts in the following.

2D Sampling Fraction cuts

Another way to distinguish positrons from π + is to look at their partial SFs. The total sampling fraction can be decomposed according to the three layer of the EC (PCAL, ECIN and ECOUT):

SF P CAL = E dep (P CAL) P .

(4.10)

Analogous equations can be written for ECIN and ECOUT. The longitudinal segmentation of the EC proves useful to distinguish positrons. Positrons are more likely to deposit all their energy in the rst layers of the EC (PCAL and ECIN). On the contrary π + are Minimum Ionizing Particles (MIPs) and are more likely to deposit energy in all the layers of the EC. Figure 4.9 shows the SF in the ECIN versus the SF in the PCAL for simulated true-positrons and mis-id. pions. One can see that a 2D cut along the anti-diagonal of the distribution can be applied to separate them. In the following this cut is referred as "SF cut".

Multivariate analysis approaches

In the previous section, simple approaches involving cuts on 1 or 2 quantities were shown. However these approaches do not allow to use the full amount of information provided by the EC. Additionally to the SFs of all three EC layers, one can access the shape of the electromagnetic shower in each layer.

The square of the width of the shower is dened for each coordinate (U,V,W) and for each layer as: 

M 2 = strip (x -D) 2 ln(E) strip ln(E) , (4.11) χ 5 - 4 - 3 - 2 - 1 - 0 1 2 3 

6D analysis

A 6D multivariate analysis was also studied. In this approach Fisher, BDT and MLP methods were applied to the three SFs and to the average width of the shower in each layer. The average of the square of the width in the PCAL is dened as: One can also look at indicators specic to each technique in order to assess the quality of the classiers.

An example is shown in Figure 4.13 where the convergence of the MLP with three input variables is shown.

One can then compare the strength of dierent classiers using Receiver Operating Characteristic (ROC) curves. ROC curves display the signal eciency (fraction of signal kept) of a classier versus its background rejection (fraction of background removed). The method which achieves higher signal eciency and higher background rejection is preferred. The ROC curves for four 3D and three 6D classiers are shown in Figure 4.14.

One can clearly see that 6D classiers are more powerful than 3D ones. This behavior is expected as more information is taken into account by the classiers. Indeed as shown in Appendix F, shower widths are not fully correlated with the deposited energy. All the three tested techniques seem to have similarly high eciencies.

Test and comparison of MVA classiers on data

Once the classiers were trained and tested on simulations, they were used on CLAS12 real data and their performances were compared. In this section, the method used to assess the performance of the classiers on CLAS12 data is presented. A benchmark to assess the π + /e + separation on data Clean signal and background samples are needed to evaluate the performance of classiers. In simulation samples, this is easily achievable as the nature of each simulated particle is known. In data, a prior knowledge is necessary. The background sample (mis-id. pion) is described in Subsection 4.3.1.

The neutron peak events presented in a Likelihood classier was also tested, but not kept for later analysis due to its poor performance. The ROC curves of the 6D classiers are consistently above 3D ones.

spectrum is tted with a Gaussian for the peak and with a second order polynomial for the underlying background. The integral of the Gaussian gives a scale of the number of mis-id. pions in the sample.

In the following this sample is denoted "neutron sample".

On the contrary, dening a clean signal sample (true-positron) from data is more dicult. TCS events (at least one electron, one positron and one proton; missing transverse momentum fraction < 5%, and missing mass squared < 0.4 GeV 2 , ensuring photo-production) with a positron with momentum bigger than 4 GeV were used and are referred as the "TCS sample" (see Chapter 5). This sample is not completely clean, it should a priori be a mixture of true-positrons and mis-id. pions. However the requirement of the e -e + p nal state as well as the exclusivity cuts should enhance the true-positron fraction. This hypothesis is tested in the following section. To evaluate the "Signal+Background" in the TCS sample, the number of events is counted.

Once the two data test samples are dened, the dierent cuts presented in the previous sections are applied. For χ 2 and MVA approaches, one can vary the cut applied on the output variable and compare the number of remaining events in the neutron sample and in the TCS sample. This is realized by varying the cuts on the output variable in the specic output range and evaluating the integral of the neutron peak and the number of remaining TCS events. An example of the results of this procedure is shown in Figure 4.15, where the neutron peak integral and the number of TCS events are plotted against the value of the applied cut for the 3D BDT.

One can dene a pseudo-ROC curve by associating these two curves. For each value of the cut, the number of TCS events is plotted against the corresponding number of neutrons. The curve obtained is not a ROC curve as the number of TCS events is a mixture of the signal and the background. However this pseudo-ROC curve still allows to compare the proposed π + /e + separation strategies and evaluate their performances.

Strategy comparison and choice

The procedure presented in the previous section allows to draw for each identication technique a pseudo-ROC curve. All the pseudo-ROC curves are plotted in At high background strength and large number of TCS events, the curves show a linear trend. This means that for a given number of mis-id. pions removed in the neutron sample, a proportional number of them is also removed from the TCS sample. On the contrary, when the background strength approaches zero, the number of TCS events decays dramatically. This happens because the cut applied on the output of the classier is too hard and starts to remove true-positrons and mis-id. pions indistinctly. One should apply a cut on the classier output that maximizes the background rejection while keeping most signal (at the limit between the two regimes). Figure 4.16 also permits to select the best approach to separate positrons from pions in CLAS12 data. One should use the method with the best pion rejection power while conserving most of the signal events. This is achieved by picking the method for which the pseudo-ROC curve gets closer to the (0,1) point. The MLP 6D classier was chosen according to this criterion.

Adding skewness to the classier

It is clear from Figure 4.16 that adding the width of the shower to the analysis increases the positron/pion separation eciency. In order to test if adding more variables to the classier training further increases its power, the 3rd moment of showers in the EC, the skewness µ, was added to train a MLP and a BDT. The skewness of a shower is dened as:

µ = strip (x -D) 3 ln(E) M 3/2 2 strip ln(E) . (4.14)
The pseudo-ROC curves for these two classiers are compared to the 6D MLP and BDT in Figure 4.17. One can see that all curves superimpose. Adding the skewness to the inputs of the classiers does not improve their separation power.

Remaining background estimation

The pseudo-ROC curves in Figure 4.16 show a linear behavior at high background strength. This behavior can be explained by considering that mis-id. pions in the TCS sample are removed at the same rate as mis-id. pions in the neutron sample when the cut is varied. True positrons might also be removed in the process and we can suppose this removal is small in the region where the background is important. If the classier behave well, few signal events will be removed while most of the background will be cut away.

Let y be the variable describing the normalized number of TCS events and x describing the normalized background strength in Figure 4.16. In the region 0.1 < x < 1 the pseudo-ROC curves in Figure The blue dot represents that case were no additional cuts besides EB ones are applied. A zoomed version of this plot is displayed in Appendix G.

4.16 are linear. Let B(x) and S(x) respectively be the number of background (mis-id. pions) and signal events (true-positrons) in the TCS sample for the corresponding x background strength.

As stated before, the number of background events in the TCS sample is linear with the background strength x: B(x) = βx,

(4.15)
where β is the number of background events in the TCS sample when no cut is applied. The function S(x) is unknown but we assume it is increasing with x (when background is removed, signal events might also be removed by mistake), and does not vary much with x (signal events should not be removed by the classier, the loss is estimated on simulations and is expected to be less than 1%, as

shown in Figure 4.20).

The normalized number of TCS events can then be written in the linear region as:

y(x) = S(x) + B(x) S(1) + B(1) = S(x) + xβ S(1) + β . (4.16)
Although this formula is only applicable in the linear region, we can extrapolate it to x = 0:

y(0) = S(0) S(1) + β . (4.17)
At a given value x 0 of the normalized background strength achieved with the chosen cut, the corresponding normalized number of TCS events is: The full derivation is given in Appendix H. In order to get a simple reading of the background/signal ratio as a function of x, the pseudo-ROC curves of the 6D BDT and MLP are tted with a linear function in the range 0.1 < x < 1. The pseudo-ROC curves y(x) are then transformed as:

y(x 0 ) = S(x 0 ) + x 0 β S(1) + β . ( 4 
B S (x) = y(x) y(0) -1, (4.20) 
where y(0) is the intercept of the t. The obtained curves are shown in Figure 4.18, from which one can get an estimation of the background/signal ratio as a function of the normalized background strength in the region where the function is linear.

The B/S ratio is estimated to be close to 0.05 for a cut at 0.5 on the MLP output corresponding to a Background strength of 0.15 (see Figure 4.19 for values of the background as a function of the cut applied on the output of the 6D MLP classier). Finally the pion contamination C π + above 4 GeV is estimated as: that this classier can be applied to events in the kinematics region of TCS events without losing signal events. One can see in Figure 4.22 that most true positrons that are identied as mis-id. pions are located on the outside edge of sector 3 (φ between 100

C π + = B S + B = 1 1 + S B ≈ 5%.
• and 150 • ) and 5 (between -150 • and -100

• ) of the FD of CLAS12. These two sectors have LTCC modules located between the DCs and the FTOF/EC carriage. The showers that initiate in LTCC module walls could be a reason for these mis-identications.

Finally a similar check is performed on pion simulations. A sample of π + with at kinematics is simulated and the kinematic distribution of mis-id. pions before and after the 6D MLP 0.5 cut are compared. 

What about electron PID?

So far only the case of positron identication was treated. Figure 4.27 shows the distribution of the momentum of electrons versus the momentum of positrons for TCS events without any other cuts that the ones from EB and the ones described in Subsection 4.3.5. The π + contamination, mostly coming from photo-production events ep → e p π + (π -), is visible in the positron high-momentum region. On the contrary no clear sign of π -contamination in the electron high-momentum region is visible. This can be explained by the fact that high-momentum electrons P e -> 4.9 GeV are produced along with low momentum positrons P e + < 4.9 GeV. In this kinematics the positron is identied with a 99% eciency by the HTCC. Lepton number conservation imposes that an electron is produced with the positron. Thus the simplest events that would contribute to the π -contamination in the TCS data are the ones with nal state pe + π -(e -e - scat π + ), where the electrons and π + would be undetected. Such events are suppressed by, at least, a factor of α 4 S < 1%.

In addition to these considerations, the 6D MLP positron classier was tested on electrons with momentum higher than 4.9 GeV from the TCS sample. This classier is assumed to provide good results on electrons as the shower mechanism does not depend on the charge of the initiating particle at high energies. The signal eciency as a function of the cut applied to the classier output for simulation and data electrons is shown in Figure 4.28. One can see that simulated electrons are suppressed at most up to 3% for a 0.8 cut. The same behavior is seen for data electrons, showing that the background is less prominent than in the positron case. No further pid cuts for electrons than the EB ones are added in the analysis.

Finally the double pion contamination (where both leptons are mistaken for pions) is absent in the high-momentum region. The kinematic region were both leptons have momenta higher than 4.9 GeV is not accessible in CLAS12 kinematics.

Proton momentum corrections

The proton momentum corrections are split in two main contributions. The rst corrections, pre- The red histogram corresponds to events that passed a 6D MLP output cut of 0.5.

Monte-Carlo corrections

The Monte-Carlo (MC) momentum corrections for the proton are derived using BH simulations (see Section 5.1 for details). The goal of these corrections is to match the momenta of the generated protons with the momenta of the reconstructed protons. These corrections account for the energy lost by the proton while crossing the various detector parts of CLAS12.

P (e+) (GeV) P (e+) (GeV) 

Data-driven momentum corrections

Data-driven momentum corrections for the proton are motivated by the fact that the simulations depict an "ideal" detector, and therefore do not perfectly reproduce the data. Due to the detection ineciencies of the CVT, the reconstructed momentum in the CD can be shifted from its actual value. To investigate this issue a method using exclusive two-pion production events was developed.

This method relies on the exclusive measurement of the ep → e p π + π -reaction, where the scattered electron and the pions are detected in the FD. The kinematics of the scattered proton can then be studied in two dierent ways. In one case the proton can be detected by CLAS12, in the other case its kinematics can be inferred by calculating the missing 4-momentum of X in the ep → e π + π -X reaction.

The missing mass spectrum obtained from the latter analysis is shown in These corrections are performed after the MC corrections presented in the previous subsection.

Lepton momentum corrections

In this section we present the corrections applied to leptons. First, in Subsection 4.5.1, the shift between the Monte-Carlo generated and the reconstructed kinematics is analyzed. Second, in Subsection 4.5.2, a specic detected-photon correction is presented. As for proton, BH-simulation events are used to investigate the impact of the energy lost by the lepton in the material of CLAS12 before being detected. This energy loss ultimately aects the reconstruction of the kinematic variables, especially the momentum. Figure 4.34 shows, for the electrons and the positrons, the momentum resolution:

Monte-Carlo corrections

∆P P = P Gen. -P Rec. P Rec. , (4.24) 
where P Gen. is the generated momentum and P Rec. the reconstructed one, as a function of their polar and azimuthal angles in the lab reference frame, θ and φ, and their momentum. These plots show that the shift in momentum due to the energy loss of leptons is always smaller than 1%. For this reason, we decided not to add MC-driven corrections to the momentum of leptons in the subsequent analysis. One way to recover the initial momentum of the lepton, before any radiative energy loss, is to use the detected photon in the CLAS12 EC. 

Fiducial cuts

Fiducial cuts consist in excluding regions where the detection eciency is not well reproduced by the simulations. This mismatch between the data and the simulations mainly occurs on the edge of the detectors, where the detection eciency varies fast. For calorimeters, this occurs in regions where the energy deposition is incomplete. In this analysis we develop a ducial cut for the PCAL. This cut removes parts of the detector where electromagnetic showers are reconstructed too close to the edge of the active region. This ensures that most of the energy of an electromagnetic shower reconstructed in the PCAL is measured.

The PCAL ducial cut developed in this section is based on the width of the measured electromagnetic shower. The denition of the square of the shower width in the PCAL is given in Formula (4.11).

The mean shower size √ M 2 is calculated for each of the three calorimeter coordinates (U, V and W). sector Other approaches have been used to dene ducial cuts on the EC of CLAS12 [START_REF]Fiducial studies[END_REF]. The values of the cuts derived with these methods are similar to the ones presented here. For this reason, the TCS analysis presented in the next chapter adopts the values of the cuts dened in this section. The binning used for data is displayed in Section 5.12. Finally the systematic errors are estimated in Section 5.13. Results from this analysis will be presented in the next chapter.
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TCS event generator and simulations

Simulations of the γp → e -e + p reaction are necessary for the analysis of TCS. They are used especially to determine relevant exclusivity cuts as well as estimating the acceptance of CLAS12 for this reaction. Two independent generators are used in this analysis. The rst one, TCSGen, was developed during the exploratory TCS analysis of CLAS data [START_REF] Paremuzyan | Timelike Compton Scattering[END_REF]. A second generator developed for HERA, called GRAPE is also used to cross-check TCSGen, as well as to explore pair production background and interference between nal-state electrons (see Subsection 5.7.1).

GRAPE

The GRAPE Generator [START_REF] Abe | Grape-dilepton (version 1.1): A generator for dilepton production in ep collisions[END_REF] was developed for experiments running at HERA, at the DESY laboratory in Hamburg. It is a di-lepton generator to study the electromagnetic background mainly in J/Ψ and Υ measurements. It is a full generator including the kinematics of the beam electron producing the real photon. It also includes pair production from the incident electron as well as interferences between leptons in the nal state. The diagrams which can be included in the generator are shown in Figure 5.10. It is a non-weighted event generator.

TCSGen

TCSGen is a generator developed by R.Paremuzyan for the rst CLAS analysis of TCS, and completed and corrected for the purpose of this analysis. It generates weighted events, with the possibility to use BH-only weights or to include the TCS-BH interference cross section. Contrary to GRAPE, the initial electron from the beam is not included and no possible interferences are taken into account.

Each event is assigned a weight w equal to:

w = psf • σ • f lux γ , (5.1) 
where psf is the phase space factor, σ is the cross section of the considered processes, and f lux γ is the equivalent photon ux given in [START_REF] Kessler | Photon uxes and the EPA[END_REF]. The phase space factor is the product of the ranges allowed for each kinematic variable. First the energy of the incoming real photon is randomly picked between a minimum energy E γ M in , dened by the user of the generator, and the maximum possible energy, equal to the electron beam energy E b . The photon energy phase-space factor is psf Eγ = E b -E γ M in . Second, the range allowed for the square of the transferred momentum to the proton -t is fully dened by the value of E γ previously picked. The limit t min and t max of the possible range for -t are given by Equation (5.10) in page 121 of [START_REF] Byckling | Particle Kinematics[END_REF]. The associated phase space factor is psf t = t maxt min . After randomly picking a value for -t, the kinematically accessible invariant mass is fully dened. The associated phase space is psf M = M M ax -M M in . The limits M M in/M ax are also given in [START_REF] Byckling | Particle Kinematics[END_REF]. Finally the center-of-mass angles θ and φ are randomly chosen, in the range [0π] and [0 -2π], respectively.

The nal-state particles are then boosted to the lab frame and a nal azymuthal rotation is performed.

The formula for the phase-space factor is:

psf = psf Eγ • psf t • psf M • psf θ CoM • psf φ CoM • psf φ Lab .
(

The cross section σ can be either the BH one or include the TCS interference term. The formulae used are those from [START_REF] Berger | Timelike compton scattering: exclusive photoproduction of lepton pairs[END_REF].

The kinematic distributions of events generated with TCSGen and with GRAPE in the same kinematic region and with BH cross section only are compared in Appendix K. The two generators agree, up to a normalization constant. For the TCS analysis, the acceptance calculations were performed using TCSGen as it allows to cover the whole phase space with less iterations than GRAPE, as it is a weighted generator and no generated events are discarded.

Event selection

Final state selection

The initial step of the extraction of TCS observables from the complete RGA dataset is the event selection. First the nal state of interest is selected. The complete dataset is skimmed to select events with exactly one proton, one electron and one positron. We allow any other particle in the event to avoid removing good events where accidental TOF/EC hits or false tracks are recorded. The particles are selected according to the pid given by the CLAS12 reconstruction software (see Chapter 4), and using the dedicated positron identication neural network described in Chapter 4. The cut applied on the output of the neural network is set at 0.5. The momenta of the detected particles are corrected and ducial cuts are applied. Finally a cut on the lepton momentum is also applied (leptons with momenta greater than 1 GeV are kept). This cut is motivated by the poor momentum reconstruction for tracks with large curvature (low momentum) in the FD.

Exclusivity cuts

Once the events with the relevant nal state are retrieved, exclusivity cuts are applied. The reaction of interest is :

γp → e -e + p .

(

However the RGA dataset was not taken with a beam of photons but with electrons impinging directly on the target. Therefore quasi-real photo-production events are used in this analysis. A quasi-real photon is emitted by an electron from the beam and it interacts with the proton, producing a e + e - pair in the nal state, as:

ep → (e )γp → (e )e -e + p .

(5.4)

The corresponding conservation of momentum equation is:

p beam + p beam = p scat. + p γ + p target = p scat. + p e + + p e -+ p p .

(

The 4-momenta of the scattered electron and initial real photon are fully dened by the measurement of the 4-momenta of the nal state particles: (

p γ = p e + + p e -+ p p -p target , (5.6) 5.2 
Two exclusivity cuts are applied on the missing particle (X ) of the pe + e -X system. The mass and the transverse momentum fraction of the missing particle X are constrained to be close to zero. The mass cut ensures that the missing particle is an electron. The transverse momentum cut ensures the low virtuality of the photon. Indeed, the virtuality of the incoming photon can be written:

Q 2 = 2E b E X (1 -cos(θ X )), (5.8) 
where E b is the energy of the electron beam, E X is the energy of the undetected scattered electron, θ X is its scattering angle in the lab frame given by: tan(θ X ) = P t X P X ,

(5.9)

and P X and P t X are, respectively, the momentum and transverse momentum of the missing particle.

The values of these cuts are motivated by simulations. (5.11)

The resulting distribution of incoming photon virtuality, calculated using Equation (5.8), is shown in Figure 5.2. Finally, the variation of the extracted quantities with dierent exclusivity cuts is investigated and accounted for in the systematic uncertainties (see Section 5.13).

) Virtuality incoming photon (Q2)

Figure 5.2: Virtuality of the incoming photon for all the events passing the exclusivity cuts (blue) and the events included in the analysis (red).

Phase space of interest and Simulations/Data comparison

After applying the exclusivity cuts detailed above, the invariant mass of the lepton pair is extracted. The mass region between 1.5 GeV and the J/Ψ mass (3096 MeV) is selected for the measurement of TCS. The rst reason for this choice is theoretical: the hard scale of TCS is given by the invariant mass of the lepton pair and has to verify Q 2 m p and Q 2 -t in order to meet the conditions for the GPD factorization. As shown in the later analysis, a typical value of proton momentum transfer in this analysis is 0.3 GeV 2 , which satisfy the previous condition. The second reason is that the mass range above 2 GeV is free from vector-meson resonances decaying into a di-lepton pair. The range between 1.5 GeV and 2 GeV has contributions from the wide vector mesons ρ (1450) and ρ (1700). In order to check the impact of these resonances, the mass spectrum obtained from the data is compared with BH-weighted simulations, between the Φ and the J/Ψ mass, in Figure 5.4. In this gure the simulated spectrum is normalized in order to have equal integral as the data spectrum, between 1.1 and 3 GeV.

According to this plot there is no obvious meson contamination in the mass range of interest. The eect of this contamination on the observables is studied by extracting them in the two mass ranges ([1.5 GeV -2 GeV] and [2 GeV -3 GeV]).

Eventually, the phase space selected for the analysis is:

• 1.5 GeV < M = Q 2 < 3 GeV • 0.15 GeV 2 < -t < 0.8 GeV 2 • 4 GeV < E γ < 10.6 GeV.
Note that, unless specied otherwise, the observables are integrated over these kinematic ranges.

The distributions of the three variables -t, E γ and M for data and simulations in the selected phase space are compared in Figure 5. 

Proton eciency correction

In order to take into account the dierences in the proton detection eciency between real data and simulations, a proton eciency correction to the GEMC simulation is implemented. This correction is derived using the same data sample as for the proton momentum corrections discussed in Subsection 4.4.2. The ep → e(p )ρ → e(p )π + π -reaction is selected by applying a cut on the invariant mass of the two pions, 0.6 GeV < M π + π -< 1 GeV. The same reaction is generated using the genev event generator [START_REF]Genev webpage[END_REF] and passed through the GEMC and the CLAS12 reconstruction softwares. The kinematics of the missing proton are assumed to be well reconstructed and are used to derive the correction. The proton eciency is measured for data and simulations as:

Ef f Data/Simu. (Ω M is. ) = N Data/Simu. Rec.
(Ω M is. )

N Data/Simu. M is.
(Ω M is. )

, ( 5.12) 
where N Data/Simu. M is.

(Ω M is. ) is the number of events with a missing proton in the kinematic bin Ω M is. =

P M is. ; θ M is. ; φ M is. ), N Data/Simu. Rec.
(Ω M is. ) is the corresponding number of events with a detected proton. 136

Proton eciency correction

The proton eciency correction is then encoded in the ratio:

Ef f Corr = Ef f Data Ef f Simu. . (5.13)
The correction is computed in the CD and in the FD independently, using similar procedures described in the next two subsections.

Eciency correction in the central detector

As shown in Figure 4.31b, there is very little background under the missing-proton mass peak in the high-polar-angle region. The number of events with a missing proton or a detected proton is then given by the number of events in each bin. The integrated eciencies as a function of the momentum, the polar and the azimuthal angles of the missing proton are shown in Figure 5.6. The eciency calculated in the simulations case is higher than for the data. The eciency correction is calculated as a function of the three variables, with 2 bins in θ (from 37 

Eciency correction in the forward detector

The proton eciency is also derived for FD protons. Unlike in the case of the CD, where there is no background under the proton peak, there is a large high-mass background in the missing mass spectrum for protons at polar angles below 37 • . In this region the number of events with a missing or reconstructed proton is calculated by tting the missing proton peak with a gaussian plus a linear background as shown in Figure 5.7. The integral of the gaussian denes the number of events. The t on the missing mass peak is done in both the missing-proton case and the reconstructed-proton case.

In the case of the reconstructed proton, only the events with a reconstructed proton are kept in the missing mass spectrum. of the missing proton. As the ratios between simulations and data eciencies are fairly constant in θ and φ, a single dierential correction in momentum is applied according to the eciencies shown in Figure 5.8a. The correction ranges from 80% at high momentum, around 1 GeV, and drops to 40% for low-momentum protons (around 0.4 GeV).

Background merging

The background merging [START_REF] Stepanya | Clas12 fd charge particle reconstruction eciency and the beam background merging[END_REF] consists in mixing data events recorded with random trigger with simulation events. The random trigger events are recorded regularly (with a frequency of few hundreds hertz) during the data taking. For each simulation event, the ADCs and TDCs of the CTOF, FTOF, DCs, SVT, MVT, EC and HTCC from a random trigger event are added to the list of ADCs and TDCs obtained from the GEMC simulation. The merged events are then reconstructed with the standard reconstruction software. This background merging procedure aims at better reproducing the detection eciencies in the simulation by mimicking the backgrounds present during the actual data taking.

In the TCS analysis, the background merging procedure is used as an alternative to the previously presented proton eciency correction. The acceptance (see Section 5.6) is calculated twice, rst using the eciency correction and without background merging and then using the background merging only.

The dierence between the results obtained with both methods is assigned as a systematic uncertainty, as explained in Section 5.13.

Acceptance estimation

The large angular coverage of CLAS12 permits to detect most of the particles produced when an electron interacts with the target. However, due to holes between detector subsystems, some particles may escape without being detected. Furthermore, because of detection ineciencies, the reconstructed particle kinematics may dier from their initial values at the vertex. In order to correct for these eects, the acceptance of CLAS12 for the γp → e -e + p reaction is estimated using simulations. The acceptance is calculated in 5-dimensional bins. In a given bin B, the acceptance is dened as the number of events reconstructed in this bin devided by the number of events generated in this bin: identied as a "pair" electron, while the low transverse momentum electron is likely to stay undetected.

Acc B = N REC B N GEN B . ( 5 
Following this observation, two congurations for the measurement are possible (a positron and a low or high transverse momentum electron). Depending on which electron is detected, the reconstructed invariant mass of the lepton pair, as well as the calculated photon kinematics, are dierent. Figure 5.11a shows the distribution of generated events in the plane dened by the two possible invariant masses, Q 2 calculated from the high transverse momentum electron and Q 2 2 from the low transverse momentum electron. All the mass congurations that could lead to a reconstructed invariant mass in the range 2 GeV 2 -9 GeV 2 are generated. Finally, Figure 5.11b shows the distribution of the photon energy calculated assuming that the high transverse momentum electron is the one from the lepton pair. The blue histogram corresponds to the BH-only case, the red one to the full simulation. Both simulations are normalized to have equal integrals between 2 GeV and 7 GeV. 
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Pion contamination

Pions can be mistakenly identied as leptons, especially at high momenta (above ∼ 4.5 GeV) where the HTCC produces signals for leptons and pions. The pion background is addressed in Chapter 4.

The neural network PID is implemented in the TCS analysis with a cut at 0.5. We show in Chapter the remaining background and to estimate its impact on the measured observables, the background rejection cut is varied. This latter point is addressed in the Section 5.13.

Experimental cross-section ratio

The theoretical R ratio is calculated over the full angular phase space of TCS. However CLAS12 acceptance is limited and only covers a fraction of the angular phase space. The theoretical R ratio is thus inaccessible, but it can be calculated over the CLAS12 acceptance. Following the notations in [START_REF] Paremuzyan | Timelike Compton Scattering[END_REF], we call R the ratio integrated over the CLAS12 acceptance. It is calculated as:

R = φ Y φ cos(φ) φ Y φ , (5.18) 
where the sum over φ is done in 10 • bins and the cos(φ) factor is calculated at the center of each bin. The Y φ quantity is calculated for each φ bin as:

Y φ = events in φ bin L L 0 1 Acc , (5.19) 
where the ratio

L L 0
is calculated event-by-event (the factors L and L 0 are given in Equations (1.73) and (1.77), respectively), and Acc is the acceptance in the kinematic bin of each event (given in Equation (5.14)). The statistical error of Y φ is calculated as:

E 2 (Y φ ) = events in φ bin L L 0 2 1 Acc 2 , (5.20) 

Statistical uncertainty using Monte Carlo method

As the numerator and the denominator used in the computation of R are correlated, a Monte Carlo approach is used to compute the statistical uncertainty. It works as follows:

• Y φ and E(Y φ ) are computed as described above,

• for each φ bin, a value Y R φ is randomly generated following a gaussian probability distribution of mean Y φ and sigma E(Y φ ),

• the ratio is calculated using the randomly generated values: R R

= φ Y R φ cos(φ) φ Y R φ .
• The previous two steps are repeated 10000 times and the resulting distribution of R R is tted with a gaussian,

• the σ of the tted gaussian is dened as the statistical uncertainty of the measurement. An example of the tted distribution is shown in Figure 5.13.

Phenomenological study of the TCS Forward-Backward asymmetry

As mentioned in Section 1.3 where the concept of Forward-Backward asymmetry (A F B ) is introduced, no predictions have yet been published for this observable in TCS. In this section the phenomenological work performed on the TCS A F B is presented. The main goal of this analysis is to estimate the size of the asymmetry as well as to gain an insight on its kinematic dependencies in order to determine if CLAS12 can measure it.

This section is divided in three parts. In Subsection 5.9.1, the limitations of CLAS12 acceptance and the consequences on the measurement of the A F B are presented. Initial results are compared to other predictions provided by independent groups and models. The results obtained according to the conclusion of the rst section are then displayed in subsequent Subsections 5.9.2 and 5.9.3. 

Early considerations and comparison with other models

To study the TCS A F B , the TCS and BH processes and their interference cross sections have been calculated using the VGG code [START_REF] Guidal | Nucleon form factors from generalized parton distributions[END_REF] provided by Michel Guidal. The formulas used in this code are described in [START_REF] Boër | Timelike compton scattering o the proton and generalized parton distributions[END_REF]. The cross section is estimated in the forward and backward directions and the obtained results are then combined to produce the asymmetry curves shown in the following. The GPD model used is the VGG model described in [START_REF] Guidal | Generalized parton distributions in the valence region from deeply virtual compton scattering[END_REF] and in Section 1.2 of this manuscript. The D-term contribution to the GPD H is included (unless mentioned otherwise). The α coecient xing the t-dependence of the GPDs is set to 1.098, the b val and b sea parameters xing the ξ dependence are set to 1 (unless specied otherwise). A prediction for the asymmetry is shown in Figure 5.15a, where the t-dependence of the asymmetry is plotted for various values of θ 0 . These results were cross checked independently by M.Vanderhaeghen also using the VGG code. Figure 5.15b shows the results of this independent analysis. Both results are pointing toward an asymmetry with a positive value. Note that these results were obtained after correcting a missing minus sign in Equation ( 17) of [START_REF] Boër | Timelike compton scattering o the proton and generalized parton distributions[END_REF]. The consequence of adding this minus sign is to ip the sign of the asymmetry. 

= 0 • , θ 0 = 60 • , E γ = 7 GeV and Q 2 = 1.8
GeV 2 (a) using the GK model at LO (dashed) and NLO (plain), (b) using the VGG model at LO. Furthermore, the analytical formulae for TCS derived in [START_REF] Berger | Timelike compton scattering: exclusive photoproduction of lepton pairs[END_REF] were used to cross-check the asymmetry in VGG. This was done after making sure the CFF conventions are consistent. The results obtained for the analytical formulae are shown in Figure 5.17. The sign of the asymmetry obtained is consistent with the PARTONS results and with the corrected VGG asymmetries.
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A nal consistency check was performed by calculating the asymmetry from the TCS only and BH only cross sections. The absence of asymmetry in both cases is well veried. 

TCS A F B kinematic dependencies

A main feature of the FB asymmetry is that it can be measured over a small portion of the TCS angular phase space. This prevents any large detector-induced false asymmetry caused by holes in the acceptance, which instead occurs in the case of the R ratio (see Section 5.8). On the contrary, the statistics dramatically falls if the angular phase space of the measurement is too narrow. The main goal of this analysis is to determine the angular range that can be used for the measurement in CLAS12, in order to maximize statistics. One has to make sure that the FB asymmetry conserves its sign over the angular integration domain to maximize the size of the measured asymmetry. Therefore, the angular dependence of the FB asymmetry is studied. From the explicit expression of the A F B derived in Section 1.3 following [START_REF] Berger | Timelike compton scattering: exclusive photoproduction of lepton pairs[END_REF]:

A F B (θ 0 , φ 0 ) = -α 3 em 4πs 2 1 -t mp Q 1 τ √ 1-τ L 0 L cos φ 0 (1+cos 2 θ 0 ) sin(θ 0 ) Re M -- dσ BH , (5.21) 
one can see that the φ 0 dependence is driven by the cos(φ 0 ) factor. The φ 0 behavior is shown in Figure 5.18 for xed θ = 80 • . The asymmetry changes sign at φ 0 ≈ ±90 • . This behavior is reproduced by both the VGG model and the analytical model. The dierences are attributed to the terms that are neglected in the analytical model (see [START_REF] Berger | Timelike compton scattering: exclusive photoproduction of lepton pairs[END_REF] for full details). Following this investigation, one can see that the FB asymmetry in the region around φ 0 = 0 • is maximal and that the sign is constant in its vicinity. In Figure 5.15a, showing the asymmetry as a function of -t at φ 0 = 0 • and for dierent values of θ 0 , the asymmetry has constant sign over the θ 0 range accessible in the CLAS12 acceptance (from ∼ 40 • to ∼ 100 • ).

Finally, the asymmetry was studied as a function of the incoming photon energy E γ and the square of the invariant mass of the lepton pair Q 2 , aiming at increasing the statistics available for the measurement. Figure 5. [START_REF] Radyushkin | Nonforward parton distributions[END_REF] shows the Q 2 and E γ dependencies of the FB asymmetry at φ 0 = 0 • and for various values of θ 0 . These plots indicate that the sign of the asymmetry is constant over the kinematic range accessible by CLAS12. This implies that it is possible to integrate the measurement over a large portion of the phase space and still measure an asymmetry. 

TCS A F B model dependencies

After exploring the kinematic dependencies of the FB asymmetry, its dependencies on GPD model parameters are tested.

D-term dependence

The rst model dependence investigated is the D-term. The FB asymmetry is sensitive to the real part of the CFFs and thus to the D-term. This makes this observable a good candidate to investigate its strength. The FB asymmetry is calculated with and without the D-term contribution. The D-term used is the one presented in [START_REF] Goeke | Hard exclusive reactions and the structure of hadrons[END_REF]. The eect of adding the D-term to the GPDs parametrization is shown in Figure 5.20. One can see a sizable eect on the asymmetry induced by the D-term. It is also important to notice that the amplitude of the asymmetry increases with the addition of the D-term, and that the sign of the asymmetry does not change when adding it.

b sea -dependence

The dependence of the asymmetry to the skewness parameter b sea is also explored. Indeed in [START_REF] Dupre | Tomographic image of the proton[END_REF] it is suggested that DVCS data, sensitive to the imaginary part of the H, are better described with skewness parameters b val = 1 and b sea = 5. Following this observation, the value of the sea parameter is varied in the asymmetry calculation, from 1 (strong skewness dependence) to 8 (low skewness dependence), to verify if the FB asymmetry can help in the determination of this parameter. The results are shown 

Experimental Forward-Backward asymmetry

According to the conclusions of the phenomenological study in Section 5.9, the FB asymmetry is calculated at φ 0 = 0 • . Furthermore, by looking at the angular coverage of CLAS12, it is decided to integrate over the following angular bin in the forward direction:

• -40 • < φ 0 < 40 • • 50 • < θ 0 < 80 • .
The corresponding backward bin limits are:

• 140 • < 180 • + φ 0 < 220 • • 100 • < 180 • -θ 0 < 130 • .

Bin volume correction

Figure 5.22 shows the acceptance of CLAS12 in the θφ plane for a given -t, E γ and Q 2 bin. The limits of the forward and backward bins are shown in green and red, respectively. Although the limits of the angular bins have been chosen to be covered by the CLAS12 acceptance, some {E γ , -t, Q 2 } acceptance bins do not fully cover the forward or backward angular bins. The dierence in coverage between the forward and the backward direction can be the source of fake asymmetries. To correct for this, a bin volume correction is applied during the calculation of the FB asymmetry. For each acceptance bin {E γ , -t, Q 2 }, the fraction of the angular bins covered by the acceptance, CorrV ol F/B , is calculated. Each event detected in the forward (resp. backward) bin is then assigned a correction weight equal to the inverse of the fraction of the volume covered by the acceptance in this bin. This correction assumes that the cross section of the TCS reaction is relatively constant within the volume of the forward (resp. backward) bin and that it can be estimated only by measuring it in the volume covered by the acceptance of CLAS12. This hypothesis is veried by extracting the FB asymmetry with BH-weighted simulation events and the dierence between the expected value for BH (null asymmetry) and the extracted value is assigned as a systematic uncertainty (see Section 5.13). Two sets of volume correction coecients are obtained, one for the forward and one for the backward angular bins. For a given bin, the value of the FB asymmetry is calculated as the ratio:

A F B = N F -N B N F + N B (5.22)
where N F/B is the number of events in the forward (resp. backward) angular bin, corrected by the acceptance and the bin volume, as:

N F/B = 1 Acc × CorrV ol F/B .
(5.23)

The reported statistical error bars are calculated by propagating the weighted error on N F/B :

E 2 (N F/B ) = 1 Acc × CorrV ol F/B 2 .
(5.24)

Experimental beam-spin asymmetry

As mentioned previously, this analysis is done on quasi-real photoproduction events, where a real photon is radiated by the initial electron beam. In this conguration, the circular polarization of the photon can be inferred from the initial longitudinal polarization of the electron beam. An electron polarized in the direction (resp. opposite) of the beam emits a right-(resp. left-) handed circularly polarized photon, with a polarization transfer P ol transf. fully calculable analytically in QED (see [START_REF] Olsen | Photon and electron polarization in high-energy bremsstrahlung and pair production with screening[END_REF][START_REF] Dumas | Feasibility studies of a polarized positron source based on the bremsstrahlung of polarized electrons[END_REF] for details and Appendix N for the detailed formulas used to calculate the polarization transfer).

Figure 5.23: Distributions of the photon helicity asymmetry as a function of φ for four bins in -t (as described in Section 5.12). The t used to extract the asymmetry is overlaid. The t amplitudes are displayed in Figure 6.11.

Binning of the data

The photon polarization asymmetry is calculated as a function of the azymuthal angle φ as:

BSA(-t, Eγ, M ; φ) = 1 P ol ef f N + -N - N + + N -, (5.25) 
where the number of events with reported positive N + (resp. negative N -) electron helicity in each bin is corrected for the acceptance and the polarization transfer as:

N ± = 1 Acc P ol transf. . (5.26) 
P ol ef f is the eective polarization of the CEBAF electron beam, which is estimated to be 85% on average. The φ-distribution is then tted with a sinus function:

BSA(-t, Eγ, M ; φ) = BSA(-t, Eγ, M ) sin(φ), (5.27) as shown in Figure 5.23. Following the denition of [START_REF] Boër | Timelike compton scattering o the proton and generalized parton distributions[END_REF], the amplitude of the sinus function given by the t (BSA at φ = π/2) is extracted. The reported statistical error bars are given by the t error on the amplitude of the function.

Binning of the data

The phase space used for the analysis is binned to have similar number of events in each bin for the t, E γ and ξ variables. This aims at achieving similar error bars in each bins. There are four bins in -t, three in E γ and ξ. For the lepton invariant mass, the ranges from 1.5 GeV to 2 GeV and from 2 GeV to 3 GeV are divided in two bins each, in order to study the possible eect of vector-meson contamination in the low-mass bin. Besides, the binning in -t is dierent in the two mass ranges. The bin limits are summarized in Table 5. Table 5.2: The binning grid used for the data in this analysis. Two dierent binnings for -t are used, one for each invariant mass range.

Systematic errors estimation

In this section the methods used to estimate the systematic errors are described. Five dierent sources of systematic uncertainties have been studied. For each source of uncertainty, a value of systematic shift is calculated for every observable and for each bin. The errors are then added in quadrature.

Method

The method used to calculate the observable involves binned acceptance corrections and bin volume corrections for the FB asymmetry. To estimate the impact of these corrections on the extracted values, the method systematic error is computed using simulations. First the observables are calculated using a sample of generated BH-weighted events, without passing them through GEMC and with no corrections applied. This corresponds to the green point in Figure 5.25a. In the case of the R ratio, only events within a non-zero acceptance bin are kept. In the case of the FB asymmetry, the observable is calculated within the full angular bin dened in Section 5.10. Finally, in the case of the BSA, a random beam helicity is associated to each event. Then the observables are calculated a second time with the fullchain simulation events, applying all the corrections, except that the acceptance is not corrected for eciency and data-driven momentum corrections are not applied. Two samples of simulation events are used, one using weighted events from TCSGen and one generated with GRAPE (blue points and red points on Figure 5.25a). The systematic uncertainty associated with the extraction method is the dierence between the ideal case (no corrections) and the value extracted after the full analysis procedure. The systematic error is set between 0 and the dierence between the ideal case and the extracted case for the two simulation samples. This procedure can thus result in an asymmetric error in order to reect the shift induced by the measurement method. This systematics mostly aects observables binned in ξ (for example the R ratio in Figure 6.2), as the acceptance is not binned in this variable. The maximum error induced on the extracted observables is at most 0.1 for the A F B binned in ξ in Figure 6.7.

Eciency / Background merging

A method to estimate the proton eciency is described in Section 5.4. A second method, the background merging, used to reproduce the detection eciencies is presented in Section 5.5. The systematic error associated with these corrections is estimated by the dierence of the values of the observables obtained with both methods, ∆ Ef f . The systematic error bar is then dened as ±∆ Ef f /2. 

Positron identication

In this analysis the positron identication algorithm plays an important role. To estimate the impact of the remaining pion contamination, the cut applied on the output of the neural network is varied around the chosen value, 0.5 ± 0.1. The acceptance is also recalculated accordingly. The dierence between the observables extracted with the standard and the shifted cuts is assigned as the positron identication systematics. This systematics can be asymmetric as the variation of the extracted observables with the shifted positron cuts can be dierent in each case. As illustrated in Figure 5.25c, the variation is small for most of the observables. The induced shift is at most 0.1 for the A F B as a function of -t in the high-mass region in Figure 6.9, but usually limited to 0.03 for most of the observables.

Acceptance model

The dependence of the extracted results on the model used in the acceptance is also studied. The acceptance is calculated with BH-weigthed events and events without weights (i.e. phase-space generator). The dierence between the two methods ∆ Acc is dened as the acceptance model systematics, and the associated error bar is set to ±∆ Acc /2. The method is illustrated in Figure 5.25d. This source of systematics becomes large for observables with low statistics, such as the A F B , for which the induced absolute shift can reach values up to 0.05 (as in Figure 6.4).

Exclusivity cuts

Finally, the last source of systematic uncertainty studied is the values chosen for the exclusivity cuts. To estimate this uncertainty, the analysis is performed with tighter cuts than those presented in Section 5.2:

P t X P X < 0.04 (5.29)

The dierence between the two extractions ∆ Exclu is assigned as the exclusivity-cuts systematic error and the associated error bars are symmetric around zero ±∆ Exclu /2, as shown in Figure 5.25e. This systematics dominates in bins where the statistics is limited, especially for the A F B and the BSA at high mass in Figure 6.10. This shows that the exclusivity cut error is largely correlated with the statistical error in these bins. However, the observed systematic shift always remains within the statistical error bars. as a function of -t for the two additional mass bins, in the low-mass bin [1.5 GeV -2 GeV] (Figure 6.8) and in the high-mass bin [2 GeV -3 GeV] (Figure 6.9).

As in the case of the R ratio discussed above, the extracted values of the A F B shown in Figures 6.4, 6.5 and 6.6 are not compatible with zero, conrming that the BH process does not contributes alone to the γp → p e + e -cross section. A none-zero asymmetry is seen in both the low-mass and high-mass bins. The signal seen in the high-mass bin, in Figure 6.9, can be attributed to the BH-TCS interference cross section, as there is no known vector-meson resonance in this mass range.

BSA

The BSA is extracted in CLAS12 acceptance, as a function of M (Figure 6.10), -t (Figure 6.11) and ξ (Figure 6.12), with all the other variables integrated.

In each of these gures a clear photon polarization asymmetry is reported. This is a further conrmation that we observe the BH-TCS interference in the CLAS12 dataset, as the expected asymmetry for the BH process only is zero. 

Comparison with CLAS results

In the exploratory study performed on CLAS data, a rst extraction of the cross-section ratio R was performed. Because of the low energy of the electron beam delivered to CLAS (5.48 GeV), the lepton invariant mass range was limited between 0 and 2 GeV. The analysis was thus performed in the mass region above the φ(1020), and the ratio was extracted as a function of the squared proton transferred momentum [START_REF] Paremuzyan | Timelike Compton Scattering[END_REF].

For the comparison presented in this section, the same kinematic region as for the CLAS analysis is selected from the CLAS12 dataset: using the VGG model for M = 1.8 GeV (red lines) and for dierent values of θ 0 (at the lower edge of the angular bin θ 0 = 50 • (dashed), at its center θ 0 = 65 • (solid), and at its upper edge θ 0 = 80 (dash-double-dotted)). The eect of changing the average mass is also illustrated with the green curve calculated for M = 1.5 GeV. The cyan curve is calculated without the contribution of the D-term to the GPD H (the D-term contribution used for this calculation is the one described in [START_REF] Pasquini | Dispersive evaluation of the d-term form factor in deeply virtual compton scattering[END_REF]). Finally the GK prediction (orange) shown here is obtained by integrating the BH-TCS cross section in the forward and backward angular bin dened in Section 5.10. Also it has to be noticed that the GK prediction does not include the contribution of the D-term.

• 2 GeV < E γ < 5 GeV • 0.15 GeV 2 < -t < 0.8 GeV 2 • 1.1 GeV < M < 1.7 GeV
As already mentionned in Section 5. Figure 6.17 shows the data points extracted in the [1.5 GeV -2 GeV] low-mass region. They are compared with the same VGG predictions as in the full mass range case, as the average mass and the average photon energy do not change dramatically. The GK prediction is however recalculated at the mean kinematic point of this plot. The data points do not change substantially when the mass range is restricted to the [1.5 GeV -2 GeV] range as the events included in this analysis mostly have a low invariant mass, as seen in the mass distribution in Figure 5.5c. Therefore the conclusions drawn for Figure 6.16 also apply to Figure 6.17. Again the data points are better described when the D-term contribution is taken into account. The A F B measured in the high-mass region [2 GeV -3 GeV] is shown in Figure 6.18. The data points are compared with predictions for the FB asymmetry calculated with the VGG model at the center of the angular bin (θ 0 = 65 • ) and for two mass and photon-energy hypotheses. The prediction obtained when neglecting the D-term is displayed (cyan). The GK model prediction (orange) is also shown. While the eect of changing the kinematic point has little eect on the predicted asymmetry, the D-term plays again a very important role in the value of the asymmetry. As in the case of the full invariant mass integration, the data points tend to indicate that the D-term contribution to the asymmetry is necessary to explain its value. Indeed, both the VGG curve without the D-term and the GK curve underestimate the value of the asymmetry. The error bars shown in this plot do not allow for further conclusions. However, by increasing the available statistics, one could t directly the D-term contribution and extract the pressure distribution inside the proton from this observable.

The mass and the photon-energy dependences of the extracted A F B data points are also compared to GK model predictions. In both cases the GK model is evaluated at the mean kinematic point of the plots and integrated over the experimental forward and backward bins. Figure 6.19 shows the CLAS12 A F B as a function of M . The GK prediction is only plotted in the [1.5 GeV -2.3 GeV], as higher mass are kinematically forbidden at the mean kinematic point used to calculate the curve. A prediction for the GK model with a slightly dierent mean -t (-t = 0.33 GeV 2 ) is also shown. The data points are not well reproduced by the GK model in the [1.5 GeV -2.3 GeV] mass range. This discrepancy could originate from a possible vector-meson contamination, although the conclusions drawn from Figure 
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Conclusion

The description of the inner structure of the nucleon is a complex problem due to the nature of the interaction between its constituents, quarks and gluons. The theory of quantum chromodynamics describing their dynamics cannot be computed perturbatively at low energy. This phenomenon, called asymptotic freedom, imposes the use of ad hoc structure functions to encode the distribution of partons inside the nucleons. This manuscript is dedicated to the study of one set of structure functions, the Generalized Parton Distributions, particularly investigating two main topics: the commissioning of the Central Neutron Detector of CLAS12 and the measurement of the Timelike Compton Scattering process.

The rst part of this manuscript is dedicated to the installation, calibration, reconstruction and performance validation of the Central Neutron Detector (CND). The CND allows to measure DVCS observables on the neutron by detecting the struck neutron in the ed → en (p )γ reaction. This measurement plays a crucial role in the determination of the contribution from the angular momentum carried by valence quarks to the total spin of the nucleon. It also allows to extract GPDs in terms of quark avors. The CND, located on the outer layer of the Central Detector of CLAS12, was installed at the beginning of this thesis. The cabling and part of the electronics were also installed during that time. The work described in this manuscript was performed after the installation.

The reconstruction and calibration softwares presented in this work were developed in parallel.

The algorithms used in these sofwares are similar to the ones used in the other TOF detectors of CLAS12. However, due to the unconventional single-sided readout design of the CND, they were adapted to take into account features induced by this architecture. The CND calibration suite, a visual interface designed to provide an easy calibration procedure to the CND calibrators, was also partly developed during this thesis. Finally the performances of the CND were estimated from real data. The extracted timing resolution (∼ 185ps) and position resolution (∼ 3 cm) are slightly above the design values. However we showed in this manuscript that despite these resolutions, the CND still achieves to separate neutrons from photons for momenta up to 0.8 GeV. The neutron detection eciency was also estimated from data using the ep → e π + (n) reaction. The eciency value obtained (∼ 10%) is in agreement with the design value. A comparison with the eciency calculated from simulations was also done and it shows a good agreement over the whole range of momenta and polar angles accessible by the CND. Finally, very preliminary results obtained with real data taken by the CND were shown to illustrate its impact on the neutron DVCS measurement.

The second part of the manuscript focuses on the measurement of TCS observables using the RGA dataset recently taken by the CLAS12 detector. After presenting the experimental setup, the data analysis framework was explained in details. One of the main issue encountered during the analysis was the positron identication. Indeed two-pions electroproduction events where the negative pion stays undetected (ep → e p π + (π -)) may mimic TCS events (γp → p e + e -). In particular, when the momentum of the π + is higher than the HTCC threshold, the pion can be mistakenly identied as a positron. An algorithm based on neural networks was developed to solve this issue. The approach presented in this manuscript allows to reduce the π + contamination at high momenta by a factor ten, from 50% to 5%. The neural network was validated both on simulation events and on real data. Other tools were also developed for this analysis, such as proton eciency corrections. These corrections were put in place in order to correct the momenta shifts observed in the data and which were not well reproduced in the simulations.

A phenomenological study on the Forward-Backward asymmetry (A F B ) for TCS was also performed during this thesis. Indeed, it was the rst time that this observable was investigated for TCS, both theoretically and with real data. We proved that this observable is strongly sensitive to the real part of the CFFs. In particular it is shown in this thesis that the contribution of the D-term, a quantity which is linked to the pressure distribution inside the nulceon, has an important eect on the A F B .

Finally the last part of this work summarizes our results on TCS. All the extracted quantities were compared to the values that are expected for them if only the BH process contributes. We observed that the data points always dier from the ones obtained with the BH-only contribution. This behavior was also reported in the resonance-free mass region, proving that we indeed extracted the BH-TCS interference contribution of the γp → p e + e -reaction. These results were also compared with the predictions of two models, VGG and GK. The photon polarization asymmetry data points suggest that the GPD formalism describes well the CLAS12 TCS data. This observation advocates for the description of TCS in terms of GPDs, and thus for their universal nature. We also noted the fact that the FB asymmetry data points are better reproduced by the VGG model, which includes the D-term. This indicates the important role played by the D-term in the modeling of GPDs. However, because of the size of our error bars, no direct extraction of the D-term could be performed. Nevertheless, these results point out that a direct extraction of the D-term should be possible with the higher statistics provided by the complete CLAS12 dataset. The boost weight of tree k is dened as:

α k = β ln 1 -err k err k , (C.4)
where β is called the learning rate and is xed before training. After the training of tree k, all weights are changed as:

W i → W i e α k I i , (C.5)
and normalized:

W i → W i N i=1 W i . (C.6)
The new weights are then used to build the tree k + 1. The previous steps increase the weight of mis-classied events by the tree k. The next tree k + 1 will thus look for better cuts to distinguish these specic high-weight events. In practice the rst trees to be built will have a classication error lower than later trees. The output of the complete classier for event i is dened as:

T (x i ) = Ntree k=1 α k T k (x i ), (C.7)
where the sum runs over all the trees included in the classier. The adaptative boosting method is powerful on small individual decision trees (with depth lower or equal to 3). Although small individual decision trees have a low separation power, boosting allows the classier to reach good performances [START_REF] Hoecker | Tmva -toolkit for multivariate data analysis[END_REF]. Furthermore small decision trees are less subject to overtraining (i.e. classication based on features specic to the training sample). In the analysis presented in Chapter 4 we use trees with depth smaller or equal to 3. The learning rate β is set to 0.5 as it is reported to give good results [START_REF] Hoecker | Tmva -toolkit for multivariate data analysis[END_REF][START_REF] Roe | Boosted decision trees as an alternative to articial neural networks for particle identication[END_REF]. The number of decision trees trained in our analysis is 850. Finally we require that a leaf has to have at least 2.5% of the total number of training events.

The activation function transforms the output of the synapse function to give the output of the neuron in the desired way:

x

→                  x Linear, 1 1+e -kx
Sigmoid, e x -e -x e x +e -x Tanh, e -x 2 /2 Radial.

(D.2)

In this analysis we used the Sum synapse function and the Tanh activation function as recommended in the TMVA documentation [START_REF] Hoecker | Tmva -toolkit for multivariate data analysis[END_REF].

Training of the neural network with Back-propagation

For a MLP with the previously described architecture (one hidden layer, Sum synapse function and the Tanh activation function), one can write the output of the network as: The aim of the training process is to adjust the set of weights w l ij of the network such that the output for all the training events obeys the following rule: if an event is background the output of the MLP is 0, otherwise it is 1. In the training sample the nature of the events (signal or background) is known a priori so one can compare the expected response with the actual response of the network and adjust the weights accordingly. The initial weights are randomly picked. Then the following algorithm is repeated until the weights converge. For an event with input variable vector x one can calculate the response of the network y M LP and compare it to the expected output ŷ (0 or 1). The comparison is performed using the error function E such that:

y M LP = n h j=1 y (2) j w (2) j1 = n h j=1 tanh N var i=1 x i w (1) ij • w (2)
E(x|w) = 1 2 (y M LP -ŷ) 2 , (D.4)
where w is the set of weights.

The weights are updated according to the gradient descent method, that is to say in the direction in the w-space where the error decreases the most. After a number of iterations ρ of this process, the weights w (ρ+1) read:

w (ρ+1) = w (ρ) -η∇ w E , (D.5)
where η is the called the learning rate and it is set to 0.02 in this analysis. Working out Equation (D.5) one can write the variation of weights for each layer. The weights connected with the output layer are updated by ∆w

j1 = -η ∂E ∂w (2) j1 = -η (y M LP -ŷ) y (2) j , (D.6) (2) 
and the weights connected with the hidden layers are updated by ∆w

(1) ij = -η ∂E ∂w (1) ij = -η (y M LP -ŷ) y (2) j (1 -y (2) j )w (2) j1 x i , (D.7)
The weight iteration is done for each event. Thus this method requires to randomize the input events. The training sample is then used repeatedly on the network, each time with a new randomized events sequence.

195 Les FFs sont accessibles dans les expériences de diusion élastique de leptons sur des protons par exemple. Un second ensemble de fonctions de structure sont les fonctions de distribution des partons (PDF). Ces fonctions décrivent la probabilité de trouver, à l'intérieur d'un nucléon, un quark ou un gluon possédant une certaine fraction x de l'impulsion du nucléon.

x + ξ xξ p p GP D • d'accéder à la partie imaginaire du CFFs H, et ainsi de pouvoir tester le caractère universel des GPDs,

• de mesurer la partie réelle de H, une quantité encore mal connue, et qui peut être reliée aux propriétés mécaniques des nucléons.

Sélection de la réaction d'intérêt

Pour sélectionner la réaction d'intérêt (ep → (e )γp → (e )p e + e -), la stratégie suivante est adoptée:

• les particules de l'état nal sont sélectionnées. Le proton est identié par le technique du tempsde-vol. Les leptons (électrons et positrons) sont identiés à l'aide du calorimètre et du compteur Cherenkov à haut seuil (HTCC). Un réseau de neurones est utilisé pour identier les positrons à grandes impulsions (P > 4.9 GeV). L'architecture du réseau de neurones est montrée dans la • des coupures duciaires sont appliquées et les impulsions des particules sont corrigées pour prendre en compte les pertes d'énergies ainsi que les eets intrinsèques aux systèmes de détection de traces,

• des coupures exclusives sont appliquées pour s'assurer de l'exclusivité de la réaction mesurée.

Résultats

Trois observables du TCS sont mesurées dans cette thèse. La première observable est l'asymétrie de polarisation circulaire du photon réel (BSA), sensible à la partie imaginaire de H. Elle est calculée comme dans l'équation suivante: Néanmoins cette observable est sensible à l'acceptance angulaire de CLAS12, ce qui induit de fausses asymétries. Ce phénomène rend dicile la comparaison de ce ratio avec des prédictions théoriques.

BSA = σ + -σ - σ + + σ -, (a 
Une troisième observable, l'asymétrie avant/arrière, est donc introduite et discutée dans cette thèse. L'asymétrie avant/arrière (A F B ), dont aucune prédiction n'a été faite pour la réaction du TCS avant ce travail, permet de s'aranchir des problèmes d'acceptance rencontrés pour le ratio de section ecace. L'asymétrie A F B est dénie comme:

A F B (θ 0 , φ 0 ) = dσ(θ 0 , φ 0 )dσ(180 •θ 0 , 180 • + φ 0 ) dσ(θ 0 , φ 0 ) + dσ(180 •θ 0 , 180 • + φ 0 ) , où dσ(θ 0 , φ 0 ) (resp. dσ(180 •θ 0 , 180 • + φ 0 )) correspond à la section ecace de la réaction lorsque l'électron nal est émis à l'avant (resp à l'arrière), la direction de l'électron étant dénie par un angle polaire θ 0 et un angle azimutal φ 0 dans le centre de masse de la paire de leptons. L'asymétrie A F B permet d'accéder à la partie réelle de H. Résumé: Les protons et les neutrons sont les constituants principaux de la matière visible de l'univers. Leur structure, constituée de trois quarks de valence baignés dans un nuage de quarks de la mer et de gluons, est régis par la théorie de la chomodynamique quantique (QCD). Cependant, aux énergies comparables à la masse du nucléon, les propriétés de QCD ne peuvent pas être calculées par des méthodes perturbatives. Des fonctions de structure doivent être utilisées pour pouvoir décrire les nucléons. Les distributions de parton généralisées (GPD) sont un ensemble de fonctions de structure, introduites dans le courant des années 90. Elles modélisent la position transverse et le moment longitudinal des quarks et des gluons, les constituants élémentaires des nucléons. La phénoménologie de ces fonctions est très singulière. Elles sont en particulier étroitement liées à la structure de spin et aux propriétés mécaniques des nucléons. La mesure des GPDs est donc un élément déterminant dans la compréhension de la structure élémentaire de la matière. Le but de cette thèse est de fournir de nouvelle donnée pour l'étude des GPDs, en particulier avec la mesure inédite de la diusion Compton de genre temps avec le détecteur CLAS12 à Jeerson Lab. Cette thèse est divisée en trois parties. Dans la première partie, la théorie des GPDs et leur modélisation est présentée. Le lien entre ces fonctions et des réactions mesurables est aussi établi, le concept de facteurs de forme Compton (CFF) est notamment introduit. De plus, les relations entre les GPDs et les diérentes contributions des quarks au spin du nucléon, la correspondance entre la partie réelle des CFFs et les propriétés mécaniques du nucléons et enn la possibilité de réaliser une image 3D du nucléon sont mises en lumière. La seconde partie du manuscrit est consacrée au travail que j'ai réalisé sur le détecteur central de neutrons de CLAS12 (CND). Le CND est un détecteur cylindrique formé par des scintillateurs en plastique. Il a été conçu pour augmenter les capacités de détection des neutrons dans la partie centrale de CLAS12. Après avoir présenté les motivations physiques de la construction du CND, le design, la procédure de calibration, de reconstruction et de simulation sont expliqués. Enn, les performances du CND, mesurées à partir de données réelles sont comparées aux spécications du design initial. Enn, dans la dernière partie, la mesure expérimentale de la réaction de photo-production d'une pair de lepton sur le proton, ou diusion Compton de genre temps (TCS) est exposée. Cette réaction permet d'accéder à des propriétés des GPDs encore mal connues, comme la partie réelle des CFFs. Le dispositif expérimental utilisé pour cette expérience est d'abord présenté. L'analyse de données est ensuite détaillée et les résultats obtenus sont présentés et discutés. Abstract: The nucleons, protons and neutrons, are the main constituents of visible matter in the universe. Their structure, three valence quarks surrounded by a cloud of sea quarks and gluons, is described by the theory of quantum chromodynamics (QCD). However, the properties of QCD cannot be computed perturbatively at energies comparable to the nucleon mass. Hence, structure functions were adopted to model the inner structure of nucleons. The Generalized Partons Distributions (GPD), were introduced in the 90's to provide a description of the nucleon in terms of both the transverse position and the longitudinal momentum of its quarks and gluons. These functions contain a large amount of information and are closely related to the nucleon spin and mechanical architecture. Their experimental measurement is a key element for the understanding of fundamental properties of matter. The main focus of this thesis is to provide new data for GPD studies, with a rst-time measurement of Timelike Compton Scattering at Jeerson Lab with the CLAS12 detector. This thesis is divided in three parts. The rst part presents the theory of GPDs, current models and their link with physical processes that can be experimentally measured. The relation between GPDs and experimental observables is discussed, and the concept of Compton Form Factors (CFF) is introduced. In addition, the link between the spin and the mechanical properties of the nucleon, as well as the possibility of performing a 3D imaging of the nucleon with GPDs is highlighted. The second part of the manuscript is dedicated to the work I performed on the Central Neutron Detector (CND). The CND is a plastic scintillator barrel built to increase the neutron detection capabilities of CLAS12 in its central region. After presenting the physical motivations for the building of this detector, its hardware implementation, calibration, reconstructions and simulation aspects are detailed. At the end of this part, the CND performances using real data are measured and compared to its design specications. Finally, the third part covers the experimental measurement of the photo-production of a lepton pair o the proton, the Timelike Compton Scattering process (TCS). This reaction oers an insight on some properties of GPDs which are not well constrained by the reactions measured so far, in particular the real part of CFFs. The experimental setup used for data taking is described. The subsequent data processing and analysis is explained, and results for three dierent observables are shown.
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 11 Figure 1.1: Summary of the measurement of α S as a function of Q. Extracted from [1]

Figure 1 . 2 :

 12 Figure 1.2: Point-like particle scattering

Figure 1 . 3 :

 13 Figure 1.3: Feynman diagram for elastic scattering.
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 1415 Figure 1.4: Proton and neutron FFs, taken from [9]

1 (x) and F DIS 2 (

 12 Furthermore, from Equations (1.22) and (1.23), F DIS x) verify the relation:

Figure 1 . 7 :

 17 Figure 1.7: Parton distribution functions as a function of x for Q 2 = 10 GeV 2 and Q 2 = 10 4 GeV 2

1. 2 .Figure 1 . 8 :

 218 Figure 1.8: The Feynman Diagram for DVCS at leading twist. An electron interacts with a quark from the nucleon via the exchange of a virtual photon; this quark then emits a real photon. (a) The full DVCS diagram, (b) the soft part of the diagram parameterized by GPDs.

Figure 1 . 9 :

 19 Figure 1.9: The four GPDs corresponding to the four dierent helicity-spin combinations of the quarknucleon system.

Figure 1 . 10 :

 110 Figure 1.10: Diagram representing the gluon GPDs.

Figure 1 .

 1 Figure 1.14: (a) Usual momentum parametrization of the GPDs, (b) Momentum parametrization used in the double distribution model. This change of variables from GPDs to DDs has two main advantages. First, because of the δ function in the integral of Equation (1.47), the polynomiality conditions described in Subsection 1.2.1

Figure 1 . 15 :

 115 Figure 1.15: Feynman diagram of a DA. A quark with momentum fraction z interacts with an antiquark with momentum fraction (1z) to form a meson with momentum p and mass M .

Figure 1 . 16 :

 116 Figure 1.16: Structure functions scheme. GTMDs have an additional transverse momentum dependence compared to GPDs. TMDs describe the nucleon in terms of transverse momentum. TMFF refer to transverse-momentum form factors. TMSD are transverse-momentum spin densities. Figure takenfrom[START_REF] Lorcé | Unied framework for generalized and transversemomentum dependent parton distributions within a 3q light-cone picture of the nucleon[END_REF] 

Figure 1 .

 1 Figure 1.17: (a) "Handbag" diagram for DVCS at leading twist and leading order. An electron interacts with a quark of the nucleon via the exchange of a virtual photon; this quark then emits a real photon. (b) The relevant kinematic variables for the ep → e p γ reaction.

Figure 1 .

 1 Figure 1.18: GPD H from the VGG model. The red points show regions which are obtained via the imaginary part of CFFs. The orange line displays the region constrained by the real part. Figure takenfrom[START_REF] Guidal | Generalized parton distributions in the valence region from deeply virtual compton scattering[END_REF] 

Figure 1 .

 1 Figure 1.19: EMT FF D(t) for the quarks as a function of the transferred momentum -t. The purple points are JLab data points[START_REF] Burkert | The pressure distribution inside the proton[END_REF] and the green dashed line is obtained using the CFF DR[START_REF] Pasquini | Dispersive evaluation of the d-term form factor in deeply virtual compton scattering[END_REF]. Figure

Figure 1 . 20 :

 120 Figure 1.20: Bethe-Heitler contribution to the ep → e p γ reaction. In DVCS, the real photon is emitted by the proton. In BH, the real photon is emitted by either (a) the incoming or (b) the outgoing electron.

Figure 1 .

 1 [START_REF] Diehl | Generalized parton distributions[END_REF] displays the two timelike BH diagrams, where the real photon decays in a lepton pair, from which one lepton then interacts with the proton.

Figure 1 . 21 :

 121 Figure 1.21: The Feynman diagram for TCS in the reaction γp → p l + l -

Figure 1 . 23 :

 123 Figure 1.23: Feynman diagrams for the Bethe-Heitler processes that contribute to the γp → p l + l - reaction.
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 11241 Figures 1.25a and 1.25b show the comparison between the TCS cross section and the BH one. The TCS contribution to the total cross section is two orders of magnitude less important than the BH

  Figureextracted from[START_REF] Boër | Timelike compton scattering o the proton and generalized parton distributions[END_REF].

Figure 1 .

 1 [START_REF] Belitsky | Nucleon hologram with exclusive leptoproduction[END_REF] shows a projection for the R ratio as a function of -t. The importance of the D-term is highlighted by showing the amplitude of the observable for dierent D-term hypotheses.

Figure 1 . 26 :

 126 Figure 1.26: Contribution of BH (solid line) and BH+INT (dotted line) to the integrated cross section over θ in [π/4, 3π/4] as a function of φ and for √ s = 5 GeV, Q 2 = 5 GeV 2 and | t |= 0.2 GeV 2 . (a) is without the L L 0 factor, (b) is including this factor. Figures extracted from [57].

Figure 1 . 27 :

 127 Figure 1.27: Projection for the R ratio for (s) = 5 GeV and Q 2 = 5 GeV 2 . The dotted line represents the impact of adding the D-term in the GPD model used. The dotted-dashed line is obtained by subtracting the D-term. This gure shows the sensitivity of the R ratio to the D-term.

Figure

  Figure extracted from [57].

  The transformation (θ → 180 •θ, φ → φ + 180 • ) corresponds to inverting the vectors k and k in the COM frame of the lepton pair. This transformation leaves both L (Equation (1.73)) and L 0 (Equation (1.77)) unchanged, as the term b appears squared in L. Moreover both d 4 σ BH dQ 2 dtdΩ and d 4 σ T CS dQ 2 dtdΩ remain unchanged under this transformation. Assuming leading order and leading twist, only the cos(φ) M -term contributes in Equation (1.76) and the interference cross section is transformed as:

Figure 1 .

 1 Figure 1.28: (a) A U as a function of φ for BH and BH+Int for dierent cases of integration over θ. (b) Amplitude of the A U as a function of -t. In this case only the amplitude of A U at φ = 90 • is plotted. Figures from [58].

Figure 1 . 30 .

 130 These corrections appear when one considers a hard gluon in the hard part of the diagram (Figure 1.30a) or including gluon GPDs (Figure 1.30b).
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 1130 Figure 1.29: (a) Amplitude of the A U at φ = 90 • as a function of E γ . (b) Amplitude of the A U as a function of -t, for dierent values of θ.

Chapter 2 )

 2 reaches a wider range of lepton-pair masses. The results obtained by CLAS12 are presented in Chapter 6. Other experiments are planned in Hall A (with the SOLID detector) and Hall D at JLab.

Figure 1 . 32 :

 132 Figure 1.32: R ratio measured in the CLAS acceptance. Data points are compared with DD and Dual GPDs parametrizations.

(

  CEBAF), an electron accelerator that provides a continuous electron beam to four experimental halls (Hall A to D). Each hall has a dedicated physics program and detectors. Hall A and C are equipped with narrow acceptance spectrometers and can handle large luminosities (of the order of 10 38 cm -2 s -1 ). Hall D is dedicated to hadron spectroscopy and has a dedicated photon beamline. Finally, Hall B houses the CLAS12 (CEBAF Large Acceptance Spectrometer 12) detector described in the following. In 2009 the laboratory started an upgrade program that has led to the construction of the fourth experimental hall (Hall D), to the doubling of the beam energy from 6 GeV to 12 GeV and to the upgrade of the Hall B detector CLAS to the current CLAS12 detector. The schematic description of the CEBAF and JLab experimental halls is shown in Figure 2.1.

Figure 2 . 1 :

 21 Figure 2.1: Schematic description of the CEBAF. The accelerator consists of two linacs connected to each other by magnetic recirculating arcs. The accelerator delivers electron bunches alternatively to each experimental hall. Hall D was built during the 12 GeV upgrade. Detectors in Hall A, B and C were upgraded and each linac was extended with ve new cryomodules in order to increase the beam energy. The CLAS12 detector, described in Section 2.3, is located in Hall B.

Figure 2 . 2 :

 22 Figure 2.2: The CLAS12 detector in the Hall B. The electron beam provided by the CEBAF accelerator arrives from the right of the picture. It interacts with the target located at the center of the Central Detector (CD). Particles emitted at high polar angles will be detected in the CD which surrounds the target. The CD is composed of the Central Vertex Tracker (CVT), the Central Time Of Flight (CTOF) and the Central Neutron Detector (CND). Because of the xed-target kinematics, the majority of particles are emitted at low polar angles. They are detected in the Forward Detector (FD) which is located downstream of the target. The FD is composed of three regions of Drift Chambers (DC), a time-of-ight (FTOF), a calorimeter (EC) and two Cherenkov Counters (HTCC and LTCC).Figure taken from [68].

Figure 2 . 3 :

 23 Figure 2.3: CLAS12 Event Display view of an event in the CD of CLAS12. The tracking system consists of 6 layers of silicon tracker followed by 3 micromegas layers. The Central Time Of Flight encloses the tracking system. Finally the Central Neutron Detector is the outermost detector in the central region.

Figure 2 . 4 :

 24 Figure 2.4: Target system of CLAS12. The target cell contains the target material (LH 2 or LD 2 ). The foam scattering chamber aims at reducing the material budget of particles emitted in the FD.

Figure 2 . 5 :

 25 Figure 2.5: View of the CVT and the target system of CLAS12. The SVT surrounds the target, the MVT provides outer tracking.

Figure 2 . 6 :

 26 Figure 2.6: 3D view of the CTOF. It consists of 48 plastic scintillators arranged in a cylinder surrounding the CLAS12 central tracking system. The light produced by the interacting particles is guided outside the solenoid magnetic eld via bent light guides.
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 2729 Figure 2.9. The charged particles crossing the layer ionize the gas mixture and the electrons produced then drift along the electric eld created by eld wires toward the sense wires. The recorded drift time permits to reconstruct the track of the particle through the chamber.

  consists of six independent calorimeters, one for each forward sector. Each sector is divided in two modules. The downstream module consists of two layers, the inner calorimeter (ECIN) and the outer calorimeter (ECOUT) which have been refurbished from the CLAS experiment. The Pre-shower Calorimeter (PCAL) is located in front of the former.The modules consist of lead sheets sandwiched with scintillator bars with single sided readout. Both modules use a triangular hodoscope geometry with stereo readout as described in Figure2.10. The EC is used for particle identication through the measurement of the deposited energy and for kinematic reconstruction of neutral particles using time and position of the measured showers. The EC (ECIN and ECOUT) is composed of 39 layers of 10-mm-thick scintillator bars followed by 38 2.2-mm-thick lead sheets.

Figure 2 . 7 :

 27 Figure 2.7: CLAS12 forward tracking system. It consists of three consecutive drift chamber regions, each of them covering one of the six forward sectors of CLAS12.

Figure 2 . 8 :

 28 Figure 2.8: Forward Time Of Flight of CLAS12. It consists of three dierent panels with paddle timing resolutions ranging from 50 to 200 ps.

Figure 2 . 9 :

 29 Figure 2.9: Wire layout for one superlayer of the CLAS12 drift chambers. One layer of sense wires is surrounded by two layers of eld wires on each side, forming a "honeycomb" pattern. The red line represents the path of a charged particle being detected in the chamber. The drift distance (deduced from the drift time) from the track to the closest signal wire (represented by yellow circles) allows to retrieve the track characteristics.

Figure 2 . 10 :

 210 Figure 2.10: Layout of a CLAS12 EC module. Lead sheets are sandwiched with scintillator bars with alternating orientation (denoted U, V and W planes).

Figure 2 . 11 : 5 •

 2115 Figure 2.11: Schematic lateral view of the High Threshold Cherenkov Counter of CLAS12. Particles with a polar angle between 5 • and 35 • pass through the chamber of the HTCC, allowing for the separation between electrons and pions.

Figure 2 . 12 :

 212 Figure 2.12: The Forward Tagger of CLAS12 is situated downstream of the target at very low polar angles (2 • < θ < 5 • ). It is used to detect electrons and photons scattered close to the beam pipe.
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 6 Other devices 2.6.1 Beamline Before interacting with the target, the electron beam provided by the CEBAF is stirred and monitored (see Figure2.13 extracted from[START_REF] Baltzell | The clas12 beamline and its performance[END_REF]). The beam position monitoring is achieved upstream of the target by a series of Beam Position Monitoring (BPM) systems. The transverse prole of the beam is recorded by wire harp systems composed of tungsten wires that can be moved into the beam (this is an invasive measurement only performed before data taking). Finally halo counters (PMTs located at various angles and positions close to the beamline) monitor undesired beam halos and backgrounds.

Figure 2 . 13 :

 213 Figure 2.13: Schematic description of the CLAS12 beamline.
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 214215 Figure 2.14: Möller polarimeter layout. It is composed of a polarized target, two quadrupole magnets and a pair of detectors.

Figure 2 . 16 :

 216 Figure 2.16: Reconstruction framework of CLAS12, implemented in a CLARA architecture.

Figure 2 . 17 :

 217 Figure 2.17: Accumulated charge per shifts and total accumulated charge. The gated charge corresponds to the ungated charge weighted by the live time of the CLAS12 DAQ. It corresponds to the actual amount of data recorded during this run period. Plot extracted from the CLAS12 monitoring system.

  d'Orsay (IPN, now part of IJCLab). It consists of a barrel of three layers of scintillators coupled at their downstream ends with U-turn light guides. The readout is performed at the upstream ends of the scintillators by photomultiplier tubes (PMTs) connected to the bars via 1-m-long bent light guides.

3. 2

 2 Design and hardware3.2.1 RequirementsAt CLAS12 kinematics, in the nDVCS channel, electrons and photons are mostly detected in the Forward Detector (FD) and in the Forward Tagger (FT), while neutrons are mainly emitted at large polar angles in the Central Detector (CD) (θ > 40 • ). Thus high neutron detection eciency, good momentum and angle resolution as well as high neutron-photon separation power are required in the CD in order to measure nDVCS observables. As described in Chapter 2, the CND is situated between the CTOF and the solenoid magnet as shown in Figure3.2. The CND is providing most of the neutron detection eciency in the CD.Without the CND the neutron detection capability of the CD is given by the Central Time-Of-Flight (CTOF) of CLAS12. The CTOF is a barrel detector which consists of a single layer of 3-cm-thick plastic scintillators. It provides a relatively low neutron detection eciency of around 3%. The CND has a radial thickness of 9 cm corresponding to the full available space between CTOF and the magnet. It is designed to have a neutron detection eciency of around 10%.

Figure 3 . 1 :

 31 Figure 3.1: Missing mass squared of the e nγ(X) system, for the nDVCS channel. The dierent colors correspond to dierent combinations of particles detected with or without resolution eects. One can see that the width of the missing mass is driven by the resolution on the kinematics of the photon. The neutron contribution to the total width of the missing mass is small for a resolution on its momentum of 5%. Figure taken from [84].

Figure 3 . 2 :Table 3 . 1 :

 3231 Figure 3.2: (a) Drawing of the CND inserted in the solenoid magnet. (b) Drawing of the CND (in black) inserted between the CLAS12 Central Time-Of-Flight (in blue) and the solenoid (in grey). The target system is also shown inside the CTOF.

Figure 3 . 3 :

 33 Figure 3.3: Concept of particle detection in the CND.

Figure 3 . 4 :

 34 Figure 3.4: The channel numbering scheme of the CND. The CND is composed of 144 paddles, divided into 24 sectors of 3 layers of coupled paddles.
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 3536 Figure 3.5: CND timing resolution measured using cosmic rays during the validation tests prior to the shipping to JLab. The average timing resolution is found to be 150 ps.

3. 3 .

 3 Figure 3.7). The ADC indirect peak versus HV distributions are then tted with an exponential (see Figure 3.8) for each PMT. The HVs are then adjusted to yield the same ADC indirect peak position for every paddle. During the data taking, the gains of the PMTs were adjusted manually after long shutdowns using cosmic data, in order to have a similar indirect ADC peak for all the paddles.

Figure 3 . 7 :

 37 Figure 3.7: Indirect ADC spectra for cosmic rays tted with a Lorentzian function. The position of the maximum of the t denes the ADC indirect peak.

Figure 3 . 8 :

 38 Figure 3.8: Indirect ADC peak versus HV for some paddles of the CND. The points are tted with an exponential. The values of the HV are then chosen to yield the same indirect ADC peak in every paddle.

Figure 3 . 9 :

 39 Figure 3.9: Raw signal obtained from a fADC module. The red area corresponds to the part of the signal used for the calculation of the charge integral.

Figure 3 . 10 :

 310 Figure 3.10: The path traveled by a particle in a CND paddle is dened as the distance between the entry and exit points of the track helix.

  to provide baseline data to work with. The calibration constants are obtained from these rst pass reconstructed data using information from other detectors of CLAS12. Once the calibration is nished, the calibration constants are uploaded on the CLAS12 database and a second pass of reconstruction is performed with the correct constants. A schematic view of the calibration process is shown in Figure3.11.

Figure 3 . 11 :

 311 Figure 3.11: Flow chart of the CND calibration. A rst pass of the reconstruction is done before the calibration in order to reconstruct hits and associate them to CVT tracks. The calibration constants can be uploaded in the calibration suite as some calibration steps require previously calculated constants.

Figure 3 . 12 :

 312 Figure 3.12: Double hits in the CND produced by the trajectory of a charged particle curved in a magnetic eld. Both hits have similar TDCs resulting in a peak in the time dierence distribution.

Figure 3 . 13 :

 313 Figure 3.13: Time dierence plots. The left plot corresponds to the case with no solenoid eld. In this case the u-turn light guide induces a gap in the distribution. The right plot is for data with magnetic eld. In this case double hits are possible (see Figure 3.12). These double hits have very similar values of both TDCs resulting in a peak instead of a gap.

Figure 3 . 14 :

 314 Figure 3.14: Plots used to determine the eective velocity for a right CND paddle. The top plot shows the raw t R -t L 2 vs z and the bottom plot is the distribution showing the linear t.

Figure 3 . 15 :

 315 Figure 3.15: Plot used to determine the global time oset. The distribution is t with a Gaussian and the position of the peak corresponds to t off .

  .42) where c is a constant depending on M IP D , M IP I and L. A L is given by the slope of the distribution in Equation (3.42) as shown in Figure 3.16. Values for A are typically around 150 cm.

Figure 3 . 16 :

 316 Figure 3.16: Plots used to determine A. The top plot shows the raw ln(ADC L /ADC R ) vs z distribution for one pair of paddles. Slices in z are t with a Gaussian and the mean is plotted against z. The resulting distribution and its associated linear t are shown in the bottom plot.
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 62 Energy calibrationThe nal step of the calibration of the CND is the determination of the energy conversion parameters M IP D and M IP I . There are two energy parameters for each paddle, thus there are four energy parameters for each pair of coupled paddles, denoted as M IP DL , M IP IL , M IP DR , M IP IR .In the following, we only consider a hit in the left paddle. Equations for hits in right paddles are obtained by switching the L↔R indexes. For hits in the left paddle, only M IP DL and M IP IL can be obtained. In the following they are referred to as M IP D and M IP I . From Equations (3.39) and (3.40), one gets:

L . ( 3 . 44 )

 344 From Equation (3.43) the intercept of the ln ADC L ADC R vs z distribution (in Figure 3.16) gives the ratio M IP D M IP I

2 ,

 2 . Finally M IP D and M IP I are given by: M IP D = p × e i i and p are the intercept and the peak position dened above. The values of M IP D and M IP I are typically around 2000 and 500, respectively.

Figure 3 .Figure 3 .

 33 Figure 3.17:√ ADC L ADC R h path distribution t with a Landau function. The events in this plot are identied as MIPs by requiring a pion. The particle identication is performed requiring a negative charge, as most of the negatively charged particles in the Central Detector are pions.

Figure 3 . 19 :

 319 Figure 3.19: Overall view of the CND detector in GEMC. Pairs of scintillators are connected through a scintillator u-turn junction.

Figure 3 . 20 :

 320 Figure 3.20: Dierence between the vertex time of particles with an associated negative track, computed with CND and CVT information, and the start time computed by the FTOF: (a) integrated over all the CND paddles and (b) in each of the three layers of the CND and integrated over all paddles in each layer.
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 33213323324 Figure 3.24 shows the energy deposited divided by the path length for selected MIPs. It peaks around the expected value of 2.001 MeV/cm for MIP particles.

Figures 3 .

 3 25a and 3.25b show β CN D versus momentum plots for both positive and negative central tracks. Protons and pions are clearly separated and follow the expected dependencies. The time-of-ight squared masses in both cases are also shown in Figures 3.25c and 3.25d. The time-of-ight squared masses are given by:

Figure 3 . 25 : 2 T

 3252 Figure 3.25: Charged particles identication plots using the CND and the CVT. β CN D vs p is shown for (a) positive tracks and (b) negative tracks. The time-of-ight mass m 2 T OF is shown also for (c)

Figure 3 .

 3 Figure 3.27: β versus momentum for the neutral particles emitted at polar angle 60 • and detected in the CND. The error bars correspond to 2 σ. The photons are represented by the squares and the neutrons by the dots. The dierent colors correspond to the dierent methods presented in the text.The green error bars are obtained using the error propagation method, the red ones from the t method, the blue ones from real data and the black ones from simulations.
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 103 Neutron detection eciencyPlastic scintillators have a neutron detection eciency of around 1% per cm of matter. The CND has a radial width of 9 cm. From these simple considerations we expect a detection eciency of around 10% for neutrons. Early simulations studies showed that, for all detection angles, one can expect such an eciency (see Figure3.28).

Figure 3 . 28 :

 328 Figure 3.28: Estimation of the CND neutron eciency performed on simulated events with a single neutron. The neutron eciency is expected to be approximately 10%. Figure taken from [74].

Figure 3 . 29 :

 329 Figure 3.29: Selection of the exclusive neutron peak for the ep → e(n)π -reaction. The top two plots show the missing mass versus β of the missing neutron for all the events (left) and for the events where the missing neutron is in the central detector (θ > 40 • ) (right). The bottom two plots show the eect of the cut on the mass spectrum of the missing particle by comparing the spectrum before (left) and after (right) the cut. After applying the CD cut only the neutron peak remains.
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 330 Figure 3.30: (a) Integrated neutron detection eciency and (b) eciency for three polar angle θ bins measured from data.
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 331332 Figure 3.31: Neutron momentum resolution measured from data. The obtained value is higher than the design value. Discrepancies are explained by FD/CD misalignements inducing shifts in the missing neutron momentum.

Figure 3 . 33 :

 333 Figure 3.33: Comparison of the integrated neutron detection eciency measured from data and simulations.

Figure 3 . 34 : 98 3. 11 .Figure 3 . 35 :

 3349811335 Figure 3.34: Missing mass of the e n γX before (blue) and after (red) exclusivity cuts are applied. Plot provided by M. Hoballah and S. Niccolai.

4. 4 .

 4 1 presents the Monte-Carlo based corrections, and Subsection 4.4.2 the data-driven corrections in the CD. Momentum corrections for leptons are also presented in Section 4.5. Finally, ducial cuts for leptons are presented in Section 4.6.

Figure 4 .

 4 1 shows the velocity β versus momentum distributions in the FD and the CD.

Figure 4 . 1 :

 41 Figure 4.1: β versus momentum distribution for positively charged particles in the FD (a) (resp. in the CD (b)). The black lines correspond to three mass hypotheses (top: pion, middle: kaon, bottom: proton).

Figure 4 . 2 :

 42 Figure 4.2: SF versus E dep for electrons in the EC, from data. The three red curves represent the parametrized SF M extracted from simulations, and its 5-σ limits. In the nal data analysis, these three functions are calibrated for each sector.
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 443 Figure 4.3.

Figure 4 . 4 :

 44 Figure 4.4: Polar angle θ versus momentum of positrons for events with one electron, one proton and one positron in CLAS12.

Figure 4 . 5 :

 45 Figure 4.5: Missing mass spectrum of the reaction ep → ee + mπ X in the neutron mass region.

Figure 4 . 6 :

 46 Figure 4.6: Mass of the missing particle versus momentum of the particle with ID -11 .

Figure 4 . 8 :

 48 Figure 4.8: Sampling fraction χ 2 of (a) true-positrons and (b) mis-id. pions.

Figure 4 . 9 :

 49 Figure 4.9: SF in the ECIN versus SF in the PCAL for simulated (a) true-positrons and (b) misid. pions. A possible cut to remove mis-id. pions is to keep only particles above the anti-diagonal represented by the red lines. Most mis-id. pions are removed while most positrons are kept.

M 2 / 3 ( 4 . 13 )

 23413 P CAL = M 2/U/P CAL + M 2/V /P CAL + M 2/W/P CAL where M 2/U/P CAL is the square of the width of the shower along the U direction as dened in Equation (4.11). Similar equations apply for the V and W directions. The distribution of the input squared shower widths are shown in Figure 4.11. Figure D.4 in Appendix D shows the architecture of the neural network used for the 6D analysis.4.3.4 Training, testing and comparison of MVA classiers on simulationsFisher discriminant, BDT and MLP are trained on the sets of variables presented in the previous two subsections using the TMVA package. A rst series of tests is also performed on simulations. The SFPCAL SFECOUT SFECIN

Figure 4 . 10 :

 410 Figure 4.10: Input variables provided for the training of the multivariate classiers. The leftmost plot shows the SF P CAL distributions for the signal and the background. The middle plot SF ECIN , the rightmost SF ECOU T .

Figure 4 . 11 :

 411 Figure 4.11: Average squared shower width for the PCAL (left), ECIN (middle), and ECOUT (right).

Figure 4 . 12 :

 412 Figure 4.12: Training and testing outputs of the 3D Fisher classier. Both distributions match very well for both the background and the signal.

Figure 4 .

 4 Figure 4.13: MLP 3D convergence test for the training and testing samples. The MLP error function dened in Appendix D and summed over all the events in the training (red) and testing (blue) sets, respectively, is shown as a function of the training iterations. One should check that the convergence is reached after a certain number of training cycles.
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 4414 Figure 4.14: ROC curves for four classiers (a) in the 3D case and (b) in the 6D case. In the 3D case,

Figure 4 . 16 .

 416 Both axes have been normalized to one. The blue circle denotes the case where no cuts are applied. The pink triangle represents the PCAL/ECIN SF anti-diagonal cut described in Subsection 4.3.2.

Figure 4 . 15 :

 415 Figure 4.15: Number of neutrons as a function of the cut applied on the output of the 3D BDT (left). Number of TCS events as a function of the cut applied on the output of the 3D BDT (right).

Figure 4 . 16 :

 416 Figure 4.16: Pseudo-ROC curves obtained from data for dierent classiers (3D classiers are referred by their name only) and for the symmetric and asymmetric χ 2 cuts. The number of events in the TCS sample is plotted against the integral of the neutron peak in the neutron sample. Both axes are normalized to 1 when no cut is applied. The anti-diagonal SF cut is represented by the pink triangle.

Figure 4 .

 4 Figure 4.17: Pseudo-ROC curve obtained from data for 6D (SFs, shower widths) and 9D (SFs, shower widths and shower skewness) classiers. The plot is zoomed in the region where the background is minimal while the signal is maximal. Adding the skewness information in the input of the classiers does not improve their performances.
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 37 Systematic checks on simulationsA second systematic check of the eciency of the 6D MLP classier was performed on simulations.A sample of BH-weighted events (see Chapter 5 for details on the TCS simulations) was used to test the classier. This sample is completely uncorrelated from the training sample. It also assumes no hypothesis on momentum, polar angle and transverse momentum, apart from the ones arising from

Figure 4 . 18 :

 418 Figure 4.18: Background/Signal ratio in the TCS sample as a function of the background strength evaluated with the neutron sample. The red line corresponds to the linear t of the BDT curve between 0.1 and 1.

Figure 4 . 19 :

 419 Figure 4.19: Normalized remaining background as a function of the cut applied to the output of the 6D MLP classier.

  , 4.21b and 4.22 show the distributions of momentum, polar angle and azimuthal angle of simulated positrons before and after the 0.5 cut was applied. No large systematic variation is seen, although some events do not fall in the kinematic limits of the training sample described in Subsection 4.3.1. This conrms

Figure 4 .Figure 4 . 20 :

 4420 Figure 4.20: Signal eciency for simulated TCS events (inbending electron) using the 6D MLP classier as a function of the cut applied on the classier output. At cut=0.5, the fraction of signal which is lost is less than a 1%.

and 4 .

 4 [START_REF] Lepage | Exclusive processes in perturbative quantum chromodynamics[END_REF], respectively. One can clearly see the mis-id. pions (around 0) and the true positrons (around 1) in the classier output distribution. The eect of the classier on the momentum distribution is assessed in Figure4.26. One can clearly see an excess of positrons above the HTCC threshold in raw data. After applying the cut, the excess is removed.

Figure 4 .

 4 Figure 4.21: (a) Momentum spectrum of positrons for simulated TCS events. (b) θ spectrum of positrons for simulated TCS events. In both cases the histogram before and after MVA pid cut, of value 0.5, superimpose. Ratios of both histograms are also shown. The number of cut events per bin is always lower than 3%.

sented in Subsection 4 . 4 . 1 ,

 441 are determined by comparing Monte-Carlo generated and reconstructed proton kinematics. The shifts observed in this case is attributed to the energy lost by the proton while propagating in the various detector materials. The determination of the parameters of this correction solely relies on simulations. The second contribution is a data-only based correction, which aims at correcting mis-alignments and ineciencies of the actual detectors, not accounted for by the simulation. In particular, data-driven corrections are developed for the momenta of the protons in the CD in Subsection 4.4.2.
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 4224424425426 Figure 4.22: φ spectrum of positrons for simulated TCS events. The loss of positrons happens at very specic φ angles corresponding to the edges of sectors which accommodate an LTCC module.
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 427428 Figure 4.27: Momentum of the positron versus momentum of the electron in e -e + p events for allinvariant masses (left) and only invariant masses higher than 1.5 GeV (right). No additional PID cuts than the EB ones are used in these two plots. The π + contamination is clearly visible in the P (e + ) > 4.9 GeV region in the left gure. On the contrary no π -contamination is visible in the P (e -) > 4.9 GeV.

Figure 4 . 29 :

 429 Figure 4.29: Dierence between the generated and reconstructed momenta for protons detected in the FD of CLAS12. One can see two distinct regions, below and above θ = 27 • .

Figure 4 . 31 .

 431 One can see that the missing mass shows a clear peak at the proton mass. Furthermore, looking at the dependence of the missing mass as a function of the missing polar angle in Figure4.31b, one can see that at high polar angles (above 35 • ) the high-mass component is suppressed and the missing mass spectrum has a contribution only from the scattered proton. This allows to compare directly the kinematics of the missing proton to the kinematics of the detected proton.

Figure 4 . 30 :

 430 Figure 4.30: Top left: momenta dierence (dened in Equation (4.22)) as a function of the reconstructed momentum for polar angles above 27 • in the FD. The distribution of the mean of each momentum slice (obtained by a gaussian t) is tted with a 2nd order polynomial. The result of this t is superimposed to the original distribution (red line). Top right: Corresponding gure for protons with polar angles below 27 • in the FD. Bottom: Corresponding gure for protons in the CD.

Figure 4 .

 4 Figure 4.31: (a) Squared missing mass of the ep → e π + π -X reaction. One can see a clear peak at the proton mass and a higher-mass continuum. (b) Missing polar angle as a function of the squared missing mass for the same reaction. Once can see that the high-polar-angle region, corresponding to topologies where the missing proton goes in the CD, is free of high-mass background.

Figure 4 .Figure 4 .

 44 Figure 4.32 shows the momentum resolution: ∆P P = P M issing -P Rec. P Rec.

Figure 4 . 33 :

 433 Figure 4.33: Momentum resolution as a function of the local azymuthal angle for protons in the CD, for the three regions of the CVT. The superimposed black line is the correction function for each region.

Figure 4 . 34 :

 434 Figure 4.34: Reconstructed momentum resolution for electrons (top) and positrons (bottom), as a function of the lab angles θ, φ and the momentum.
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 52 photons are emitted at low angles around the direction of the lepton. The process is represented by the diagram of Figure 4.35.

Figure 4 .γFigure 4 . 35 :Figure 4 .

 44354 Figure 4.35: Diagram representing the radiation of a photon from an electron.

Figure 4 .

 4 Figure 4.37: (a) Electron momentum as a function of the dierence of polar angle between the electron and the photons detected in each event, (b) Cone angle between the electron and same event photons. These plots show simulated electrons.

  The eect of the PCAL ducial cuts on the electron distribution is shown in Figure J.3 in Appendix J. The left plot shows the removed electrons in black. The plot on the right shows the regions kept for the analysis. The fraction of electrons lost by these ducial cuts was estimated on inclusive events (at least one electron detected in CLAS12) from the inbending data set described in Section 2.8. It ranges from 5% at 1 GeV to up to 30% at 10 GeV.

  of the TCS observables In this chapter, the various steps towards the experimental measurement of the TCS observables are presented. The simulation software is presented in Section 5.1. Exclusivity cuts based on simulations and used for event selection are justied in Section 5.2. The comparison of the kinematic distributions of data and simulation is reported in Section 5.3. Acceptance and proton eciency studies are displayed, respectively, in Sections 5.4 and 5.6. The background reactions for the TCS events are discussed in Section 5.7. The formulae used to calculate the TCS observables from data are detailed in Sections from 5.8 to 5.11.

  . Event selection p scat. = p beam + p target -(p e + + p e -+ p p ).

Figure 5 .Figure 5 . 1 : 2 X

 5512 Figure 5.1: Distributions of the exclusivity variables for (a) simulations and (b) the data.

Figure 5 .

 5 Figure 5.3 shows the invariant mass spectrum obtained for the full RGA Fall 2018 dataset. Meson resonances decaying into an electron-positron pair are visible.

5 .Figure 5 . 3 :Figure 5 . 4 :

 55354 Figure 5.3: Lepton pair invariant mass spectrum after exclusivity cuts, extracted from data. Meson resonances (ω/ρ (770/782 MeV); Φ (1020 MeV) and J/Ψ (3096 MeV)) are visible. The peak at zero mass is due to photon conversion in the target material (γ → e + e -) and π 0 Dalitz decay (π 0 → γe + e -). The peak at 0.1 GeV is an artifact induced by noise in the PMTs of the HTCC associated with two DC tracks in the same sector of CLAS12.

Figure 5 . 5 :

 55 Figure 5.5: Simulations-data comparison for the distributions in (a) -t, (b) E γ and (c) M . The simulation distributions are normalized to have equal integral as the data. Both the simulations and the data are in agreement, and no large discrepancies are seen.

Figure 5 . 6 :

 56 Figure 5.6: Proton eciency in the CD, as a function of (a) the momentum, (b) the azimuthal angle and (c) the polar angle of the missing proton; for simulations in red and data in blue.

Figure 5 . 7 :

 57 Figure 5.7: Examples of ts performed for the proton eciency analysis in the FD. The missing mass peak is tted with a gaussian and a linear background.

Figure 5 .

 5 Figure 5.8 shows the eciency as a function of the momentum, the azymuthal and the polar angles

Figure 5 . 8 :

 58 Figure 5.8: Proton eciency in the FD, as a function of (a) the momentum, (b) the azimuthal angle and (c) the polar angle of the missing proton; for simulations in red and data in blue.

Figure 5 . 9 :

 59 Figure5.9: Relative error on the acceptance calculation, after bins with acceptance below 5% are removed. A cut is applied to remove bins with relative error higher than 50%.

Figure 5 . 10 :

 510 Figure 5.10: Diagrams of the processes included in the GRAPE event generator. The top two plots (a) correspond to the BH processes associated with TCS where the incoming photon is radiated from an electron. The bottom two plots (b) represent the processes where a radiated photon emits a photon that then decays in a lepton pair.

Figure 5 .

 5 Figure 5.11: (a) Generated invariant mass phase space in the case where all possible processes leading to the nal state pe + (e -)e scattered are considered. (b) Generated photon energy distributions for BH-only events (blue) and including all the possible processes (red).

Figure 5 . 12 :

 512 Figure 5.12: Measured invariant mass Q 2 (left), proton transferred momentum -t (middle) and photon energy E γ (right) distributions, for the generated BH-only events (blue) and with all the processes included (red).

Figure 5 . 13 :

 513 Figure 5.13: Distribution of R R for the determination of the statistical error for rst bin in ξ. The full results are shown in Figure 6.2. The gaussian t is overlaid.

Figure 5 . 14 :

 514 Figure 5.14: Acceptance of CLAS12 in the θ/φ plane. The region around φ = 0 • and low polar angle, as well as φ = ±180 • and high polar angle are well covered by CLAS12.
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 5516 Figure 5.15: (a) FB asymmetry as a function of -t at xed φ 0 = 0 • for dierent values of θ 0 . (b) Asymmetry as a function of -t at xed φ 0 = 0 • for dierent values of θ 0 and dierent models: the impact of the D-term on the asymmetry is shown. Figure courtesy of M. Vanderhaeghen.

  Figures courtesy of PawelSznajder.

Figure 5 .

 5 Figure5.17: FB asymmetry as a function of -t at xed φ 0 = 0 • for dierent values of θ 0 using formulas derived in[START_REF] Berger | Timelike compton scattering: exclusive photoproduction of lepton pairs[END_REF].

Figure 5 . 18 :

 518 Figure 5.18: FB asymmetry as a function of -t at xed θ 0 = 80 • for dierent values of φ 0 computed (a) with the VGG code, (b) using the formulas derived in [57].

Figure 5 . 19 :

 519 Figure 5.19: FB asymmetry calculated using the VGG code (a) as a function of Q 2 and (b) as a function of E γ at xed φ 0 = 0 • and for dierent values of θ 0 .

Figure 5 .

 5 Figure 5.20: FB asymmetry as a function of -t at φ 0 = 0 • for dierent values of θ; and with (solid lines) or without (dashed lines) the D-term contributions to the GPD H.

Figure 5 .

 5 Figure 5.21: (a) -t dependence of A F B for dierent values of the b sea parameter. (b) Q 2 dependence of A F B for dierent values of the b sea parameter.

Figure 5 . 22 :

 522 Figure 5.22: Volume correction for the A F B calculation. The forward bin is represented by the green square. The red square delimits the backward bin. One can see that CLAS12 does not fully cover the angular bins for some {E γ , -t, Q 2 } bins.

  2 and superimposed on the kinematic distributions of the data in Figure5.24.VariableBin limits -t (1.5 GeV < M < 2 GeV) 0.15 -0.25 -0.34 -0.48 -0.8 -t (2 GeV < M < 3 GeV)

Figure 5 . 24 :

 524 Figure 5.24: Binning grid for the TCS observables in (a) the E γ -(-t) plane (the binning in -t used in this gure is the one used for the [1.5 GeV -2 GeV] mass range), (b) the M -(-t) plane and (c) the M -E γ plane.

Figure 5 .

 5 Figure 5.25b illustrates the determination of the eciency systematic error. As shown in Section 6.1,

2 X

 2 | < 0.3 GeV 2 .

Figure 5 . 25 :

 525 Figure 5.25: Systematic errors for the FB asymmetry in the 1.5 GeV < M < 2 GeV mass range, as blue bands with respect to a reference value of 0. The vertical error bars correspond to the statistical errors and horizontal error bars expand along the bin size. The same study is done for all the observables extracted in this analysis. (a) Systematic error from the extraction method. The green points are calculated from generated events, the blue and the red points are obtained after the full chain simulation and analysis. The data points are also displayed in yellow in order to compare this systematics with the statistical error bars. (b) Eciency systematic error obtained from the values of the observables with the proton eciency correction (blue) and the background merging (yellow). (c) Positron ID systematic error. The cut on the output of the neural network is varied from 0.5 (blue) by ±0.1 (red and yellow) to obtain the value of this error. (d) Acceptance model systematics obtained by calculating the observable with a at acceptance (red). (e) The error associated to the exclusivity cuts is estimated by tightening the transverse momentum and the missing mass cuts (red) with respect to the standard cut (blue).
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  and the R ratio was extracted and compared to the CLAS results. The CLAS12 dataset allows to have a thinner binning and to keep statistical error bars well below the CLAS ones. The ratio R is calculated for eight -t bins and the size of each bin is indicated by the horizontal error bars in the plot bellow. Note that the CLAS12 points are obtained without performing a complete acceptance calculation; the lowest-mass and lowest-energy bin of the acceptance presented in Section 5.6 is used.

Figure 6 . 13 :

 613 Figure 6.13: CLAS12 results for the R ratio as a function of -t in the kinematic region accessible by CLAS, together with the CLAS results obtained in [59] and BH-only simulations for comparison. The error bars correspond to the statistical error only.

Figure 6 .

 6 Figure 6.13 shows the data point from CLAS (blue), CLAS12 (red) as well as the R ratio calculated from BH-only simulation events with kinematics inside the CLAS12 acceptance (green). Both CLAS and CLAS12 datasets give roughly compatible results, given the error bars, indicating an asymmetry well above the one obtained from BH simulations. The dierence between the CLAS and CLAS12 results can be explained by the fact that the ratio is calculated within the respective detector acceptance. Although in this mass region the energy scale might be too low to ensure factorization and vector-meson resonances might be too important to extract any information on TCS, both analyses have coherent results, indicating that the extraction method is under control.

  [START_REF] Punjabi | The structure of the nucleon: Elastic electromagnetic form factors[END_REF], the VGG curves produced with and without the D-term clearly indicate that the D-term contribution to the GPD H has a large eect on the value of FB asymmetry. The data points are better described by the VGG model when the D-term is included, although error bars are still too large to completely rule out the case without the D-term. The GK model prediction seems to largely underestimate the asymmetry. This could be explained by the absence of D-term in this prediction. In order to ensure that this interpretation is valid for the whole mass range studied, the same comparison is done in the low-mass region [1.5 GeV -2 GeV] and in the high-mass region [2 GeV -3 GeV]. Indeed low mass events dominate when the asymmetry is integrated over the full mass range [1.5 GeV -3 GeV], therefore low-mass vector-meson resonances (e.g. ρ(1450)) could be the origin of the observed FB asymmetry.

)

  

Figure 6 .

 6 Figure 6.16: CLAS12 A F B as a function of -t, integrated over all other variables. The data points are compared with theory predictions realized using the VGG and GK models. The cyan line is calculated with VGG and without the D-term contribution to H. The red lines correspond to three dierent θ 0 values for the forward direction, using the VGG model. The green line is the prediction of the VGG model for a lower invariant mass value (1.5 GeV). All the VGG curves are calculated at E γ = 7.0 GeV, and at the invariant masses indicated in the legend. The orange line is the GK model prediction obtained with PARTONS, at the mean kinematic point of the plot, and integrated in the same angular range as the experimental A F B . The red points are the expected values for BH only (from simulations).
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Figure 6 .

 6 Figure 6.17: CLAS12 A F B as a function of -t, integrated over all the other variables, with the invariant mass of the lepton pair integrated in the range [1.5 GeV -2 GeV]. The VGG curves are the same as in Figure 6.16. The GK prediction is calculated at the mean kinematic point. The red points are the expected values for BH only (from simulations).

6 .

 6 [START_REF] Goto | Polarized parton distribution functions in the nucleon[END_REF] seem to indicate that the absence of the D-term in the model is the reason why the data and the GK model do not agree.

Figure 6 .

 6 Figure 6.20 displays the A F B data points as a function of the photon energy, E γ . The GK prediction for this observable is also shown. As already observed in Figures 6.16 and 6.19, the GK predictions largely underestimate the measured FB asymmetry.
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Figure 6 .

 6 Figure 6.18: CLAS12 A F B as a function of -t, integrated over all the other variables and with the invariant mass integrated in the range [2 GeV -3 GeV]. The VGG model cyan curve does not take into account the D-term contribution. The plain red curve is calculated using VGG with the invariant mass set to 2.2 GeV and E γ = 7.88 GeV while for the dot-dashed curve M is set to 2 GeV and E γ = 7.0 GeV. The orange line is the GK model prediction at the mean kinematic point. The red points are the expected value for BH only (from simulations).

Figure 6 .

 6 Figure 6.19: CLAS12 A F B as a function of M , integrated over all the other variables. The vertical blue error bars are statistical errors and the grey bands are systematic uncertainties. The orange and brown curves are two predictions obtained with the GK model, for -t = 0.37 GeV 2 and -t = 0.33 GeV 2 , respectively. The red points are the expected values for BH only (from simulations).

Figure C. 1 :

 1 Figure C.1: Schematic structure of a decision tree. The event set at each node is split according to the best available cut to distinguish signal and background. Figure extracted from [106].

  the notations are the same as in Figure D.2 and N var and n h are the number of neurons in the input layer and in the hidden layer, respectively.

Figure E. 5 :

 5 Figure E.5: 3D MLP training histograms.

Figure K. 2 :

 2 Figure K.2: Comparison of the generated invariant mass of the lepton pair M distributions obtained with T CSGen (in red) and GRAP E (in blue), as well as their ratio.

Figure K. 3 :Figure L. 1 :

 31 Figure K.3: Comparison of the generated photon energy E γ distributions obtained with T CSGen (in red) and GRAP E (in blue), as well as their ratio.

Figure M. 1 :Figure M. 2 :

 12 Figure M.1: CLAS12 acceptance for TCS in the φ/θ plane for the rst bin in E γ .

Figure

  Figure Résumé-Fr-1: (a) Représentation diagrammatique des GPDs. Les GPDs dépendent des variables x, ξ et t = (pp) 2 présentées dans ce diagramme. (b) Représentation diagrammatique de la réaction DVCS. Un photon virtuel interagit avec un unique quark, possédant une fraction x + ξ de l'impulsion p du proton initial. Un photon réel est émis et le proton reste intact durant la réaction.

FigureFr- 4 .Figure Résumé-Fr- 4 :

 44 Figure Résumé-Fr-3: (a) Photographie prise après l'installation du CND à Jeerson Lab en Octobre 2017. (b) Ecacité de détection des neutrons mesurée à l'aide de la réaction exclusive ep → eπ + n.Les performances de détection du CND sont proches des valeurs nominales.

Figure

  Figure Résumé-Fr-5a. La courbe ROC caractérisant les performances de cette approche se trouve en Figure Résumé-Fr-5b,

)Figure

  Figure Résumé-Fr-5: (a) Réseau de neurones utilisé pour l'identication des positrons de grandes impulsions. (b) Courbes ROC de l'identication des positrons pour plusieurs méthodes testées durant cette thèse, en particulier pour le réseau de neurones présenté précédemment. Ces courbes sont calculées à l'aide de données réelles prises par CLAS12.

  Figure Résumé-Fr-7 représente l'asymétrie mesurée. Les points expérimentaux sont comparés aux prédictions théoriques. Comme pour le BSA, l'A F B mesurée est non-nulle, ce qui traduit la mesure du processus TCS en plus du processus BH. De plus, la comparaison avec les modèles théoriques nous renseigne sur les propriétés du terme D, qui est un

Figure

  Figure Résumé-Fr-6: BSA en fonction de t. Les points expérimentaux sont en bleu. Les rectangles grisés représentes les incertitudes systématiques pour chaque intervalle. Les courbes théoriques sont calculées pour les cinématiques moyennes citées au dessus du graphique. Les points rouges représentent les valeurs attendues si seulement le processus BH contribuait.

Figure

  Figure Résumé-Fr-7: A F B en fonction de t.
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				(1.78)
	where			
	t 0 =	4ξ 2 m 2 p (1 -ξ 2 )	.	(1.79)
	Furthermore, the dominant term in Equation (1.78) at JLab kinematics is the one containing the CFF
	4m 2 p H ( H is suppressed by a factor ξ ≈ 0.3, E is suppressed by a factor t of the interference cross section thus gives direct access to the real part of the CFF H. < 0.25). The cos(φ) modulation
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  Because of the iπ factor in Equation(1.89), the real part of CFF H T CS has a contribution from the imaginary part of H DV CS , which can be sizable. This fact is illustrated in Figure1.31, where the LO and NLO real parts of H are plotted against ξ for the TCS and DVCS cases. A very large eect of the NLO correction is reported at low ξ (below 10 -2 ) where the sign of the CFF H for TCS is expected to ip. Figure 1.31: Real part of the H CFFs at LO and NLO in the DVCS and TCS cases. In the TCS case, the opposite sign value is plotted. Figure from [62].
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										800
										600
										400
										200
										1100 1200 1300 1400 1500 1600 1700 1800

Channel 44 1100 1200 1300 1400 1500 1600 1700 1800 500 1000 1500 2000 2500 3000 3500 Channel 45

  

	χ χ	2 2	/ ndf / ndf		11.45 / 2 11.45 / 2
	Constant Constant	0.114 0.114	± ±	1.195 1.195
	Slope Slope	0.004575 0.004575	± ±	0.0008091 0.0008091

Channel 45 1100 1200 1300 1400 1500 1600 1700 1800 500 1000 1500 2000 2500 3000 3500 4000 4500 Channel 46

  

	χ χ	2 2	/ ndf / ndf			8.992 / 2 8.992 / 2
	Constant Constant	--	0.1661 0.1661	± ±	1.533 1.533
	Slope Slope	0.004912 0.004912	± ±	0.001014 0.001014

Channel 46 1100 1200 1300 1400 1500 1600 1700 1800 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 Channel 47

  

	χ χ	2 2	/ ndf / ndf		1.861 / 2 1.861 / 2
	Constant Constant	0.002431 0.002431	± ±	1.187 1.187
	Slope Slope	0.004408 0.004408	± ±	0.0007891 0.0007891

Channel 47 1100 1200 1300 1400 1500 1600 1700 1800 400 600 800 1000 1200 1400 1600 Channel 48

  

	Channel 48	χ χ	2 2	/ ndf / ndf		0.1843 / 2 0.1843 / 2
		Constant Constant	0.7133 0.7133	± ±	2.232 2.232
		Slope Slope	0.003817 0.003817	± ±	0.00141 0.00141

Table 3 .

 3 .2. 2: Constants used in the CND reconstruction.

	Constants	Name	Number of constants Units
	Eective velocity	v eff	144	cm/ns
	U-turn time loss	u t	72	ns
	Left-Right timing oset (adjusted)	t LRad	72	ns
	Global time oset	t off	72	ns
	Attenuation length	A	144	cm
	Energy constants	M IP D , M IP I	144 each	no units

Table 3 .

 3 

	#	Constant name	Output	Number of constants	Units
	1	Left-right timing oset	t LRoff	72	ns
	2	Eective velocity	v eff	144	cm/ns
	3	U-turn time loss	u t	72	ns
	4	Left-right timing oset (adjusted)	t LR ad	72	ns
	5	Global time oset	t off	72	ns
	6	Attenuation length	A	144	cm
	7	Energy constants	M IP D , M IP I	144 each	no units

3: The steps and the corresponding constants of the CND calibration.

  .[START_REF] Abe | Measurements of the proton and deuteron spin structure function g 2 and asymmetry a 2[END_REF] 

	0.65 0.7 0.75 Normalized number of events 0.8								
	0.6							BDT (9D)	
								MLP (9D)	
	0.55							BDT (6D)	
	0 0.5	0.02	0.04	0.06	0.08	0.1	0.12	0.14 MLP (6D) 0.16 0.18	0.2
							Normalized BackGround Strength

Table 4 .

 4 1: Values of the ducial cuts used. The minimum and maximum values for the U and V coordinates in the PCAL are given for each sector.

		9.78924	402.06	9.47359	393.895
	2	8.62768	402.389	8.57818	402.064
	3	9.23112	403.875	8.23956	403.622
	4	19.2814	403.021	8.26354	392.355
	5	8.73336	402.915	9.28017	403.634
	6	9.12088	403.681	8.13996	403.886

  • to 45 • and from 45 • to 65 • ), 4 bins in momentum (spanning the 0.4 to 1.5 GeV range evenly) and 30 bins in φ (from -180 • to 180 • ). The limits of the binning are driven by the variation of the correction as a function of each variable. The maximum value of the correction in the CD is 60%.

	Efficiency	0.6 0.7								
		0.5								
		0.4								
		0.3								
		0.2	Simu.						
		0.1	Data							
	ratio	0 0 1.2 1.4	0.2	0.4	0.6	0.8	1	1.2	1.4	P (GeV) 1.6 1.8
		1								
		0.8								
		0.6								
		0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8
										P (GeV)

  R ratio as a function of -t, integrated over all the other variables. The horizontal error bars denote the bin size, the vertical error bars are statistical errors and the grey bands display the total systematic uncertainty. The red points are expected values for BH-only events, obtained with simulations. Tabulated values in Table O.1 in Appendix O. R ratio as a function of ξ, integrated over all the other variables, using the same plotting conventions as in Figure 6.1. Tabulated values in Table O.2 in Appendix O. R ratio as a function of -t, for the mass range [2 GeV -3 GeV], integrated over all the other variables, using the same plotting conventions as in Figure 6.1. Tabulated values in Table O.3 in Appendix O. A F B as a function of E γ , integrated over all the other variables, using the same plotting conventions as in Figure 6.1. Tabulated values in Table O.4 in Appendix O. A F B as a function of M , integrated over all the other variables, using the same plotting conventions as in Figure 6.1. Tabulated values in Table O.5 in Appendix O. A F B as a function of -t, integrated over all the other variables, using the same plotting conventions as in Figure 6.1. Tabulated values in Table O.6 in Appendix O. A F B as a function of ξ, integrated over all the other variables, using the same plotting conventions as in Figure 6.1. Tabulated values in Table O.7 in Appendix O. A F B as a function of -t, in the [1.5 GeV -2 GeV] mass range, integrated over all the other variables, using the same plotting conventions as in Figure 6.1. Tabulated values in Table O.8 A F B as a function of -t, in the [2 GeV -3 GeV] mass range, integrated over all the other variables, using the same plotting conventions as in Figure 6.1. Tabulated values in Table O.9 Figure 6.10: BSA as a function of M , integrated over all the other variables, using the same plotting conventions as in Figure 6.1. Tabulated values in Table O.10 in Appendix O.
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Figure 6.11: BSA as a function of -t, integrated over all the other variables, using the same plotting conventions as in Figure 6.1. Tabulated values in Table O.11 in Appendix O.

Figure 6.12: BSA as a function of ξ, integrated over all the other variables, using the same plotting conventions as in Figure 6.1. Tabulated values in Table O.12 in Appendix O.

Table O .

 O Figure M.3: CLAS12 acceptance for TCS in the φ/θ plane for the third bin in E γ .Eγ(GeV ) A F B Stat. error Low Syst. Error High Syst. Error 4: A F B as a function of E γ (see 6.4).
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Table O .

 O 5: A F B as a function of M (see 6.5).-t(GeV 2 ) A F B Stat. error Low Syst. Error High Syst. Error

	0.216	0.394	0.142	0.0482	0.0548
	0.298	0.155	0.098	0.0399	0.0394
	0.407	0.233	0.0912	0.0367	0.0433
	0.61	0.294	0.0992	0.0246	0.0352

Table O .

 O 6: A F B as a function of -t (see 6.6).

	ξ	A F B Stat. error Low Syst. Error High Syst. Error
	0.102	0.282	0.0957	0.034	0.102
	0.135	0.305	0.131	0.0559	0.0812
	0.198	0.27	0.0924	0.0774	0.0534

Table O .

 O 7: A F B as a function of ξ (see Figure 6.7).-t(GeV 2 ) A F B Stat. error Low Syst. Error High Syst. Error

	0.215	0.426	0.146	0.0482	0.061
	0.299	0.138	0.112	0.0609	0.06
	0.407	0.251	0.106	0.0639	0.0717
	0.603	0.265	0.127	0.028	0.0647

Table O .

 O 8: A F B as a function of -t in the mass range [1.5 GeV -2 GeV] (see 6.8).-t(GeV 2 ) A F B Stat. error Low Syst. Error High Syst. Error

	0.272	0.125	0.235	0.187	0.181
	0.395	0.217	0.223	0.0378	0.00355
	0.49	0.426	0.239	0.143	0.0539
	0.658	0.335	0.178	0.0685	0.0519

Table O .

 O 9: A F B as a function of -t in the mass range [2 GeV -3 GeV] (see 6.9).

	M (GeV ) BSA Stat. error Low Syst. Error High Syst. Error
	1.59	0.202	0.0589	0.016	0.016
	1.84	0.307	0.064	0.0211	0.0234
	2.18	0.166	0.0939	0.0346	0.0361
	2.63	0.19	0.262	0.126	0.14

Table O .

 O 10: BSA as a function of M (see Figure 6.10).-t(GeV 2 ) BSA Stat. error Low Syst. Error High Syst. Error

	0.209	0.151	0.0848	0.0209	0.0165
	0.294	0.307	0.0775	0.0245	0.0236
	0.403	0.334	0.0699	0.0236	0.0244
	0.607	0.18	0.0681	0.00951	0.0132

Table O .

 O [START_REF] Breidenbach | Observed behavior of highly inelastic electron-proton scattering[END_REF]: BSA as a function of -t (see Figure6.11).

	ξ	BSA Stat. error Low Syst. Error High Syst. Error
	0.101	0.25	0.0642	0.0299	0.0329
	0.134	0.237	0.0767	0.0117	0.00396
	0.196	0.219	0.0627	0.00569	0.0176

Table O .

 O [START_REF] Bjorken | Inelastic electron-proton and γ-proton scattering and the structure of the nucleon[END_REF]: BSA as a function of ξ (see Figure6.12).IntroductionLa majorité de la matière visible de l'univers est formée d'atomes. Le noyau atomique est lui même composé de nucléons, les protons et les neutrons. Les découvertes successives du proton en 1919 par Rutherford, du neutron en 1932 par Chadwick, et plus tard la mise en évidence de la structure composite des nucléons par les expériences de diusion profondément inélastique (DIS) en 1969 à SLAC, forment les bases de la physique hadronique. Ce domaine de la physique a pour but la compréhension des interactions entre quarks et gluons, les constituants fondamentales des nucléons.La théorie qui décrit l'interaction forte entre les quarks et les gluons (aussi appelés partons) est la Chromodynamique quantique (QCD). Cette théorie possède un caractère diérent suivant les énergies considérées. À hautes énergies, la QCD est calculable par l'approche perturbative car la constante de couplage de l'interaction forte est petite: c'est le phénomène de la liberté asymptotique. Cependant cette approche n'est plus possible à faibles énergies, par exemple pour des énergies similaires à la masse des nucléons. Dans ce cas, il est nécessaire d'introduire des fonctions de structure pour décrire les interactions entre partons. Historiquement, les premières fonctions de structure introduites sont les facteurs de forme (FF). Ces fonctions décrivent la distribution spatiale des partons dans le nucléon.
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where D is the log-weighted mean position of the shower dened as:

and where x is the position of the EC hit along the considered coordinate and E is the deposited energy associated to the hit. There are potentially at least 12 variables (3 sampling fractions and 9

shower widths) to investigate to help separating π + and e + . A simple approach relying only on assessing correlations between each couple of variables one by one is not applicable here. A multivariate approach is needed. In this section some multivariate techniques are introduced. Their application to the π + /e + separation problem is presented.

The TMVA Root package [START_REF] Hoecker | Tmva: Toolkit for multivariate data analysis[END_REF] was used for this analysis. This package has been developed to train, test and compare a large range of multivariate tools. Multivariate Analysis (MVA) classiers take several quantities as inputs and produce a single output on which one can then apply a cut. The value of the cut that maximizes the background rejection and the signal eciency is then found and applied to the output distribution. In the following we only focus on three of them: Fisher discriminant (see Appendix B for more details), Boosted Decision Tree (BDT) (in Appendix C) and Multilayer Perceptron (MLP) (in Appendix D).

The MVA classiers presented in the following were trained on the simulation samples described in Subsection 4.3.1.

3D analysis

As a rst step, the SFs of the three layers of the EC were considered as inputs. The distributions of these three input variables for true-positron (blue) and mis-id. pion (red) are shown in Figure 4.10. Three methods (Fisher, BDT, and MLP) were trained and tested on these three variables. This analysis is referred as 3D in the following. The structure of the MLP neuron network for this analysis is shown in Figure D.3 in the appendices.

The number of reconstructed events in B is:

Ef f corr w, (5.15) where the eciency correction dened in Section 5.4 is applied, w is the weight of the event given by TCSGen (Equation (5.1)) and the sum is performed over all events with reconstructed kinematics inside the considered bin B. The number of generated events in B is:

w, (5.16) with the same denition as before, except that the sum is now done over events with generated kinematics inside the bin B. This denition encodes both acceptance and bin migration eects, provided that resolutions are well reproduced in simulations. Each event in the analysis is corrected by the acceptance factor corresponding to its reconstructed kinematics.

The binning used in the analysis is given in For the results shown in Section 6.1, 20 million events were generated using TCSGen, passed through GEMC and reconstructed using the CLAS12 reconstruction software. In order to remove bins where there are too few events to perform the acceptance estimation, two additional cuts are used.

The bins with acceptance bellow 5% are removed from the analysis. A cut on the relative error of the acceptance shown in Figure 5.9 is also applied: δAcc Acc < 50%.

(5.17)

The resulting acceptance distributions are shown in Appendix M, as a function of θ and φ for each {E γ , -t, Q 2 } bin.

5.7 Background estimations 5.7.1 Electro-production of a lepton pair ep → pe + (e -)e scattered In Section 5.2, where the exclusivity cuts are presented, the scattered electron is assumed to stay undetected at low angles. However it could be deected at high angle and the electron from the pair could stay undetected at low angles, mimicking the TCS reaction. Also, because the nal state of the reaction has eectively two electrons, interferences between them have to be investigated. These eects are included in the Grape generator which allows to investigate the eects of using quasi-real photons for the TCS measurement. Two samples of events were generated. The rst sample contains events in which two electrons, the scattered one and the one from the pair, are generated. All possible pairproduction channels are added: the BH channel (top plots in Figure 5.10), the pair production from radiated photons (bottom plots in Figure 5.10), as well as the interference between the two electrons involved in the reaction. In the second sample the primary electron is generated at very low angles and only the BH process is considered.

In the rst sample including all possible eects, the two electrons can be distinguished by their transverse momentum. The electron with a high transverse momentum is likely to be detected and 155

Chapter 6

Results and comparison with model predictions

This chapter presents the results obtained with the Fall 2018 CLAS12 dataset in the inbending conguration (see Section 2.8 for more details). The three TCS observables (R ratio, A F B and BSA) are extracted for dierent kinematic bins as a function of dierent variables. First, all the extracted values of the TCS observables and their systematic errors are shown in Section 6.1. A comparison with the CLAS data is shown in Section 6.2. Finally some results are compared with model predictions and discussed in Section 6.3.

Complete CLAS12 results for the TCS observables

In this section all the data points obtained in the analysis are displayed. For each observable and for each bin, the statistical error bar is shown as a vertical error bar. The horizontal error bar corresponds to the size of the bin. The horizontal position of the data points is the average value of the variable in the bin, corrected by the acceptance (and in the case of the A F B , also by the bin volume correction).

The grey bands show the total systematic uncertainty dened as the quadratic sum of all of the systematic contributions described in Section 5.13. The decomposition of the systematic uncertainty is shown under each plot. The red points reported on each plots correspond to the expected values of the observables in each bin for BH-only events. These points are calculated using BH-weighted simulation events and, within the acceptance of CLAS12 for the R ratio and the BSA, and within the experimental forward and backward bin for the FB asymmetry. Finally, the mean values of the integrated kinematic variables, calculated using the same simulations, are given above each plot.

R ratio

The R ratio is extracted as a function of -t (Figure 6.1) and ξ (Figure 6.2), with all the other variables integrated. The dependence on -t is further explored by plotting the ratio as a function of -t in the invariant mass bin [2 GeV -3 GeV] (Figure 6.3).

The measured values of the R ratio are always bigger than the values expected if only the BH process was contributing to the γp → p e + e -cross section (red points in the following gures). This behavior is also seen in the high-mass region [2 GeV -3 GeV] in Figure 6.3, where no vector-meson contamination is expected. This observation validates the fact that the CLAS12 data are sensitive to the BH-TCS interference cross section.

A F B

The FB asymmetry is extracted as a function of E γ (Figure 6.4), M (Figure 6.5), -t (Figure 6.6) and ξ (Figure 6.7), with all the other variables integrated. In order to explore the invariant mass dependence further, and especially to investigate the eect of low-mass vector-meson resonances, it is also measured

Comparison Data/Models and physical interpretations

The TCS reaction is of great interest as it allows to measure the D-term via the the R ratio and the A F B asymmetry, both sensitive to the real part of the H CFF, as well to verify the universality of GPDs by extracting the photon polarization asymmetry (or BSA), which is sensitive to the imaginary part of H. In this section, the data points obtained for the A F B and the BSA are compared to model predictions provided by M.Vanderhaeghen using the VGG model [START_REF] Vanderhaeghen | Hard electroproduction of photons and mesons on the nucleon[END_REF][START_REF] Vanderhaeghen | Deeply virtual electroproduction of photons and mesons on the nucleon: Leading order amplitudes and power corrections[END_REF][START_REF] Guidal | Nucleon form factors from generalized parton distributions[END_REF] and by P.Sznajder using the GK model [START_REF] Goloskokov | An attempt to understand exclusive π+ electroproduction[END_REF] in the PARTONS software [START_REF] Berthou | Partons: Partonic tomography of nucleon software[END_REF].

BSA interpretation

Most of the data used to constrain GPDs have been measured in DVCS and Deeply Virtual Meson Production (DVMP). However, DVMP and DVCS data are dicult to compare directly as the former reaction involves Meson Distribution Amplitudes that must be measured using other reactions before being able to interpret DVMP in terms of GPDs. Contrary to DVMP, TCS does not involve distribution amplitudes and is only parameterized by GPDs, making it directly comparable to DVCS. The comparison between these two processes is an important test of the universality of the GPDs. This can be done using the TCS BSA, as it is directly sensitive to the imaginary part of the CFF H which is itself well constrained by DVCS data. Figure 6.14 shows the TCS BSA extracted from the CLAS12 data as a function of -t, compared to three theoretical predictions. The two VGG curves (cyan and magenta) display the -t dependence of the BSA evaluated at φ = 90 • and for θ integrated from π/4 to 3π/4. The other variables, E γ and M , are set to 7 GeV and 1.8 GeV respectively. The BSA is calculated for two dierent values of the sea skewness parameter (see Subsection 1.2.3 for the denition). The hypothesis b sea = 1 (cyan) is the default value of the VGG model, while the b sea = 5 hypothesis (magenta) seems to be favored by the analysis of DVCS data in [START_REF] Dupré | Analysis of deeply virtual compton scattering data at jeerson lab and proton tomography[END_REF]. The GK prediction (orange) is evaluated at the mean kinematic point of the plot, and the angular kinematics and integration are identical to those of VGG.

The values of the BSA extracted from the CLAS12 data are in agreement, within error bars, with the three theoretical predictions. This observation tends to validate the use of the GPD formalism to describe TCS data and is a hint for the universality of the GPDs, as the VGG model also describes well the DVCS data [START_REF] Dupré | Analysis of deeply virtual compton scattering data at jeerson lab and proton tomography[END_REF]. However, our data points do not strongly favor any of the VGG hypothesis.

Further studies on the dependence of the TCS BSA with the b sea parameter should be made in order to identify the kinematic regions where one could discern between both values. Figure 6.15 shows the measured BSA as a function of the invariant mass of the lepton pair, M . The prediction obtained with the GK model, for the mean kinematic point specied above the plot and for angular dependencies identical to the ones in Figure 6.14, is superimposed (orange line). The GK curve is only displayed in the mass range between 1.5 GeV to 2.3 GeV, as values of the mass higher than 2.3

GeV are not kinematically allowed at the mean kinematic point of this plot. Nevertheless, the data points are in agreement, within error bars, with the theoretical prediction in the [1.5 GeV -2.3 GeV] mass range. This is an indication that the GPD factorization seems to apply to TCS in a large part of the mass range accessible by CLAS12. 

M (GeV

A F B interpretation

The A F B asymmetry has the advantage that it can be easily compared to theory, as it does not involve acceptance limits. Also, as shown in Section 5.9, it has a large sensitivity to the D-term, making it a valuable observable to extract this quantity.

The t-dependence of the A F B extracted from data is compared to theoretical predictions in three cases. In all three cases the GK predictions are calculated for the average E γ and the invariant mass of the lepton pair given above each plot. For the VGG predictions the mean kinematics are given in the corresponding gure captions.

In Figure 6.16 the A F B asymmetry data points are plotted against -t, and all the other variables are integrated over the phase space detailed in Section 5.12. They are compared to predictions obtained 1

where D( x ξ , t) is expended as a sum of Gegenbauer polynomials as:

and z is given by z = x/ξ, with the property:

|z| ≤ 1.

The integral of Equation (A.1) can be written as:

where in the rst equality we have taken advantage of the step function and the fact that ξ < 1, and in the second equality the change of variable x → zξ has been done.

Using the Gegenbauer polynomial orthogonality properties:

and noting that C α 1 (z) = 2αz, one can re-write the right-hand side of Equation (A.4) as:

(A.6)

The ξ 2 contribution thus reads:

Fisher discriminant

The Fisher discriminant method (also referred as linear discriminant analysis) consists in nding an axis in the hyperspace of the input variables such that, when projecting the signal and the background on this axis, the signal subset is as far as possible from the background subset, while all the signal (resp. background) events stay in the same neighborhood.

Let x S(B),k (i) be the value of the variable k ∈ [1, N var ] for an event i which is in the signal subset (S) (resp. in the background subset (B)), let x U,k be the mean of the variable k for events in the subset U = {S, B}.

The within-class matrix is dened as:

where C S(B) is the covariance matrix of the signal (background) sample.

The Fisher coecients, F k , are given by

where N S(B) is the number of signal (background) events in the training sample. The Fisher discriminant y F i (i) of an event i is given by:

where the oset F 0 centers the sample mean y F i (i) of all the events at zero.

Appendix C

Boosted decision tree Decision tree

Decision trees classify signal and background events by applying successive cuts on the input variables. Let x i be the set of input variables for the event i. A decision tree rst nds a cut c 1 and a variable

x 1 that results in the best separation of signal and background. Then the total signal+background sample is divided into two subsets according to the cut. These two subsets are called nodes. The nal nodes with no sons are called leafs. For each node the purity of the subset is dened as:

where the subscript S (B) denotes signal (background), and W S(B) is the weight of the event. So far all the weights are equal and set to 1/N where N is the total number of events. The Gini score G of a node is dened as:

where the index i runs over the n events in the given node. The value of the cut c is optimized to minimize the total score of the two son nodes. The process is repeated until the algorithm reaches some predened stop criterion (e.g. the maximum depth of the tree is reached or the number of events in a leaf is too small). The depth of a tree is dened by the number of nodes to cross to reach a leaf 

Boosting

A large number of decision trees are created sequentially for a single classier. Boosting consists in changing the weights W i of events i that have been mis-classied by the tree k for the training of the subsequent tree k + 1. In the following the notation of [START_REF] Roe | Boosted decision trees as an alternative to articial neural networks for particle identication[END_REF] is used. Let:

In the following, the adaptative boosting algorithm is presented as it is used in Chapter 4. Other boosting algorithms are possible and are described in [START_REF] Hoecker | Tmva -toolkit for multivariate data analysis[END_REF].

The classication error of the tree k is dened as:

Bagging

In addition to the boosting algorithm, one can apply the bagging procedure during the training of the classier. Bagging refers to the process of picking with replacement a subset of events from the whole training set, and perform the training on this subset. In practice, at each iteration of the boosting procedure (ie: for each tree k), a subset of the training sample is randomly picked and the tree k is built using this subset. In the analysis of Chapter 4 half of the whole training set was used at each iteration.

Architecture

The architecture of the rst 6D tree used in the analysis presented in Chapter 4 is shown in Figure 

Neuron response function

In the following we use the notation of [START_REF] Hoecker | Tmva -toolkit for multivariate data analysis[END_REF], illustrated in Figure D.1. Each neuron of a given layer is connected to all the neurons from the previous layer. A neuron j in a layer l transforms its input variables y l-1 i provided by the neurons from the layer l -1 via n connections with weights w l-1 ij into its output y l j . The function (y l-1 1 , ..., y l-1 n ) → y l j is called the neuron response function. It can be decomposed into the synapse function and the activation function. The synapse function combines the input variables and the connections weights in one of the following ways:

(y Appendix F

Correlations of the input variables

In this appendix we display the linear correlations between the variables used in the MVA analysis.

The linear correlation of two random variables is dened as:

where E stands for expected value. This means that if the sampling fraction is high in the PCAL, it will be low in the ECIN/ECOUT;

or the opposite situation. This behavior is explained by the fact that positrons tend to deposit most of their energy in a single calorimeter layer. We also observe a large correlation between the sampling fraction in the PCAL and the shower m2 in this layer, depicting the relation between a high energy deposition and a large shower radial size.

Appendix G

Pseudo-ROC curves from data Derivation of the background/signal ratio Let B(x) and S(x) respectively be the number of background (mis-id. pions) and signal (true positron) events in the TCS sample for a background strength x (x ∈ [0, 1]).

The number of background events in the TCS sample is linear with the background strength x:

where β is the number of background events in the TCS sample when no cut is applied. The function S(x) is unknown but we assume it is increasing with x (when background is removed, signal events might also be removed by mistake), and does not vary much with x (signal events should not be removed by the classier).

The normalized number of TCS events can then be described in the linear region with the following expression:

Although this formula is only applicable in the linear region, we can extrapolate it to x = 0:

Assume the chosen cut yields to a normalized background strength x 0 in the linear region. The corresponding normalized number of TCS events is:

(H.4)

We want to estimate the background/signal ratio for a given normalized background strength x 0 , B(x 0 ) S(x 0 ) . Solving B(x 0 ) from Equations (H.1) and (H.4) one can write for the B/S ratio at x 0 :

We can estimate the ratio S(x 0 ) S(0) using simulations. It is most of the time very slightly bigger than 1 as seen in Figure 4.20 of Chapter 4. Therefore one nds: The red line corresponds to the mean shower size calculated away from the edge of the distribution.

The black line corresponds to the ducial cut. x (cm) x (cm) 

GRAPE and TCSGen

Bethe-Heitler events have been generated using TCSGen and GRAPE within the following phase space:

• Lepton momenta bigger than 1 GeV

• Lepton polar angle in the lab in CLAS12 acceptance 5 • < θ Lab e +/-< 45

and the results of both generators have been compared.

The following plots in Figures K.1 to K.5 show the distributions of all ve relevant TCS variables, obtained for both generators as well as their ratio. Each distribution is normalized by the integral of the E γ distribution obtained for each generator.

θ (°) 

Photon polarization transfer

The circular polarization P of the incoming quasi-real photon in the ep → (e )γp → (e )e -e + p reaction can be fully calculated in QED. It is given by the helicity S of the electron from the beam that emitted the photon multiplied by a polarization transfer coecient L. If the electron has positive helicity the photon has right-handed polarization, while a negative helicity electron will emit a left-handed polarized photon. The following formulas are developed in [START_REF] Olsen | Photon and electron polarization in high-energy bremsstrahlung and pair production with screening[END_REF], and the notation of [START_REF] Dumas | Feasibility studies of a polarized positron source based on the bremsstrahlung of polarized electrons[END_REF] is used.

The photon circular polarization P is given as a function of the incoming electron beam helicity S as:

where L is the polarization transfer factor, E 1 and E 2 are respectively the energy of the incident and the scattered electrons and k = (E 1 -E 2 ) is the energy of the photon. The Coulomb screening factor Γ is given by: Γ = F δ ξ ln(δ) -2f (Z), Appendix O

Tabulated results

The results for the three TCS observables obtained from Fall 2018 CLAS12 dataset (see Chapter 6) are tabulated in this appendix, with the corresponding statistical and systematic uncertainties. Tables O