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Introduction

The vast majority of the mass, more than 99%, of the visible universe is formed by atoms. The
mass of the atom is itself almost entirely concentrated in its nucleus. The current model of the atom, a
heavy nucleus surrounded by a cloud of electrons, was developed after the �rst alpha-particle scattering
experiment performed by Rutherford at the beginning of the 20th century. His work led to the discovery
of the composite nature of the atom. The later discoveries of the nucleons, �rst the proton (Rutherford,
1919) and then the neutron (Chadwick, 1932), opened the way to the exploration of the structure of
the nucleus as a complex system composed of nucleons. The evidence that the nucleons themselves are
complex composite objects was provided in 1969 by the Deep Inelastic Scattering results published by
the SLAC collaboration. After this discovery, the Parton Model was developed and later con�rmed by
the discovery of the J/Ψ in 1973. These discoveries form the foundation of the �eld of hadronic physics,
which aims at describing the interactions of the fundamental constituents of matter, the quarks and
gluons, inside the hadrons and, in particular, the nucleons.

Quantum chromodynamics (QCD) is the theory describing the interaction of colored objects, the
partons, which interact via the strong force, mediated by gluons. The theory of QCD, although
perturbatively calculable at high energy, reveals its complexity at low energy (of the order of the nucleon
mass). Its coupling constant increases with decreasing energy, at the extent that the perturbative
approach cannot be applied at low energy. This behavior, called asymptotic freedom, is the core of
hadronic physics. Indeed, understanding the structure of the nucleon ultimately enables us to fully
understand non-perturbative QCD.

As explicit calculations of low-energy QCD are not achievable, the main tools to understand hadrons
are ad-hoc structure functions, encoding the complex behavior of the partons inside the hadrons. The
�rst set of structure functions describing the nucleon structure was introduced in the 1950s. The Form
Factors (FF) and the Parton Distribution Functions (PDF) allow to explore, respectively, the spatial
and the momentum-related structure of the nucleons. FFs are of great importance to determine the
radius of the nucleon, while PDFs are used to parameterize the partonic content of the nucleons in
terms of momentum, which is essential in high-energy proton collision experiments. Furthermore, their
generalization in terms of Generalized Parton Distributions (GPD) provides even more information on
the fundamental properties of the nucleon, such as its spin or its mechanical properties. The GPDs
were introduced in the late 1990s. Their rich phenomenology, including strong links to FFs and PDFs,
but also completely new interpretations, such as their direct link to the nucleon spin, have driven a
large international e�ort, both experimental and theoretical, aiming to measure them.

The experimental program of the CLAS12 detector is largely dedicated to hadronic physics measure-
ments, and in particular the extraction of GPD observables. This large acceptance detector is housed
in the experimental Hall B at Je�erson Lab, in Virginia, USA. Its large coverage makes it ideal to
measure the Deeply Virtual Compton Scattering process (DVCS, ep→ e′p′γ), the experimental reac-
tion the most sensitive to GPDs. The 11-GeV beam provided to CLAS12 by the upgraded Continuous
Electron Beam (CEBAF) also allows to measure the DVCS time-reversal process, Timelike Compton
Scattering (TCS, γp → e+e−p′), in the resonance-free region. This process plays a crucial role in our
understanding of GPDs. First, it is the simplest reaction, besides DVCS, that can be parameterized by
GPDs. Its measurement and the comparison with DVCS results can provide evidence for the univer-
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sality of the GPD theoretical framework. In addition, TCS has a singular sensitivity to the real parts
of the Compton Form Factors (CFFs), which are GPD-based quantities accessible in DVCS and TCS
measurements. The real parts of the CFFs, that contain integrals of GPDs over the internal quark
momentum fraction, have not yet been constrained by existing DVCS data. The measurement of TCS
is expected to provide a deeper insight into it.

The work reported in this manuscript focuses on the experimental approach to GPDs, using the
CLAS12 detector. Two independent tasks were carried out, and they are described in two separate
parts of this manuscript. The �rst task involves the installation, development of the calibration and
reconstruction software, and commissioning of the Central Neutron Detector of CLAS12. This detector,
designed and built at Institut de Physique Nucléaire d'Orsay and dedicated to the detection of the
recoil neutron in the nDVCS reaction (ed → e′n′(p′)γ), is a key element in the measurement of
DVCS observables on the neutron. These observables are an essential step in the determination of the
contribution of the valence-quarks angular momentum to the total spin of the nucleon. The second
task consisted in the analysis of the CLAS12 data in order to extract TCS observables.

These two projects are presented within six chapters:

• Chapter 1 introduces the concepts and the theoretical tools needed for this work. It is composed
of three sections. In the �rst section, the FFs, the PDFs, and the polarized structure functions
are presented. Then the GPDs and their links to FFs and PDFs, as well as their multiple
interpretations are discussed. The �nal section is dedicated to the experimental path to GPDs, via
DVCS and TCS. The interest for TCS is emphasized and the relevant observables are presented.

• Chapter 2 describes the experimental setup used during this thesis, focusing �rst on the CEBAF
accelerator, then describing in details the CLAS12 detector, its subsystems and the associated
software.

• Chapter 3 focuses on the Central Neutron Detector (CND). The motivations for the measurement
of nDVCS are discussed. Then the work realized on the CND, from the development of the
reconstruction and calibration algorithms and software to the assessment of its performances, is
presented.

The second part of this manuscript deals with the CLAS12 data analysis, aiming to extract TCS
observables. It is decomposed in 3 Chapters:

• Chapter 4 summarizes the particle identi�cation algorithms applied on data. It also provides a
complete explanation of the positron identi�cation techniques developed for the TCS analysis,
taking advantage of multivariate analysis tools such as neural networks. The development of
momentum corrections and �ducial cuts applied to the data is also reported.

• Chapter 5 focuses on the work realized in order to extract the TCS observables. The simulation
framework is presented, followed by the description of the exclusivity cuts applied on data. A
phenomenological study of the Forward-Backward asymmetry, an observable not studied for TCS
before this thesis, is also exposed in this chapter.

• Chapter 6 summarizes all the results obtained in this analysis. The results are compared with
theoretical predictions. Finally physical interpretations and conclusions are drawn.
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Chapter 1

Physics motivations

1.1 Nucleon structure studies with electromagnetic probes

Nucleons are composed of three valence quarks (uud for protons, udd for neutrons). The valence
quarks are surrounded by a cloud of quark-antiquarks pairs and gluons called the sea. The interaction
between the partons (quarks and gluons) is described by the theory of Quantum Chromodynamics
(QCD). At energies comparable to the mass of the nucleon, QCD cannot be computed pertubatively.
In this regime, structure functions have to be introduced to described the structure of the nucleon.
QCD is introduced in Subsection 1.1.1. In the two following subsections, structure functions accessible
in elastic (Subsection 1.1.2) and inelastic (Subsection 1.1.3) scattering experiments are presented.

1.1.1 Quantum Chromodynamics

The strong force describes the interaction of particles carrying a color charge (red, blue or green).
Quarks, which carry color charge, interact by the exchange of massless bosons, the gluons. The gluons
also carry color charge and interact with each other and with themselves. The theory of QCD is
described by a Lagrangian which is gauge invariant under the SU(3) symmetry. This Lagrangian is
invariant under the transformation ψ(x)→ U(x)ψ(x), where U is a unitary 3x3 matrix of determinant
one, acting on the color state of ψ(x) = (ψR(x), ψG(x), ψB(x)). The Lagrangian of QCD is written:

L = −1

4
F aµνF

aµν +
∑

k

ψki
(
i /Dij −mk

)
ψkj , (1.1)

where
F aµν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν (1.2)

is the gluon �eld strength tensor,

(Dµ)ij = ∂µδij − igAaµT aij (1.3)

is the gauge derivative, ψk are the quark �elds where k runs over quark �avors and i, j run over color
charge, Aaµ are the gluon �elds where a runs from 1 to 8, T aij are the 8 SU(3) generator matrices,
fabc are the structure constants of SU(3) and g is the strong coupling constant. By analogy to the
�ne-structure constant in quantum electrodynamics, it is convenient to de�ne the strong �ne-structure
constant αS as:

αS = g2/4π. (1.4)

The SU(3) structure of the Lagrangian is at the origin of two main properties of QCD, asymptotic
freedom and con�nement. Con�nement refers to the fact that the only stable states allowed by QCD
are color singlet states, which have net color charge. Experimentally quarks and gluons are never
observed alone but in composite bound hadrons (baryons or mesons). Con�nement is directly related
to the QCD potential increasing with distance. If one tries to pull away two quarks, the energy stored
in the potential increases and can become high enough to produce a pair of quark-antiquark, restoring
the net zero color charge of the system.
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Chapter 1. Physics motivations

Figure 1.1: Summary of the measurement of αS as a function of Q. Extracted from [1]

The second property, asymptotic freedom, arises from the renormalisation of QCD. As for QED,
renormalization of QCD (ie. �xing an energy scale at which a process is observed) leads to a dependence
of the strong constant αS with respect to the renormalisation scale µ as:

αS(µ2) =
12π

(33− 2nf ) · ln
(
µ2

Λ2

) (1.5)

where µ is the renormalisation scale, Λ ≈ 250 MeV, and nf is the number of �avors. One can see
that the strong coupling constant decreases with the scale, as shown in Figure 1.1. At high energy, αS
is small and calculations can be done pertubatively. At low energy, comparable to the nucleon mass,
QCD cannot be calculated through a pertubative expansion in powers of the coupling constant αS . In
this regime, the interactions of partons inside the nucleons must be described by structure functions.
Experiments, along with phenomenology and Lattice QCD, are currently the main ways to study the
properties of these structure functions.

1.1.2 Elastic Scattering and Form Factors

Electron-proton elastic scattering experiments have historically played an important role in the
discovery of the composite structure of the proton and the subsequent study of its structure. In the
following, largely taken from [2] and [3], an historic approach of elastic scattering is presented.

The elastic scattering of a point-like particle on extended objects provides an e�cient way to explore
the structure of the latter. Rutherford was the �rst to use elastic scattering techniques to probe the
structure of the gold atom in 1911. Using a beam of alpha particles, that can be considered as point-like
compared to gold atoms, Rutherford showed that the mass of the atom is concentrated at its center.
The Rutherford cross section formula, that applies for non-relativistic probes scattering on in�nite
mass point-like targets via the electromagnetic interaction, is given by:

dσ

dΩ
=

α2
em

16E2sin4
(

Θ
2

) , (1.6)

where αem = e2

4π ' 1
137 is the electromagnetic �ne structure constant, E the energy of the probe, Θ is

the laboratory scattering angle and Ω is the solid angle where the probe is scattered.
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1.1. Nucleon structure studies with electromagnetic probes

Taking into account the relativistic e�ects and spins of the probe and the target, one can derive the
Mott cross section formula. This formula describes the scattering of a massless particle (an electron)
on a massive particle (a proton) via the exchange of a single photon as shown in Figure 1.2:

dσ

dΩ
=

α2
em

4E2sin4
(

Θ
2

)E
′

E

(
cos2 Θ

2
+

Q2

2m2
p

sin2 Θ

2

)
, (1.7)

where E is the energy of the incoming probe, E′ is the energy of the outgoing probe, mp is the mass
of the target, and Q2 = −q2 = −(k′ − k)2 is the virtuality of the exchanged photon.

k k'

p p'

q

Figure 1.2: Point-like particle scattering

The Mott formula only applies to low energy processes (
√
Q2 � mp). The distance (in GeV−1)

probed by a virtual photon with virtuality q is approximately 1/
√
Q2. In the regime where the Mott

cross section applies the distance probed by the electromagnetic interaction is bigger than the size of
the proton. In this case, the target and the probe are considered point-like particles. Therefore it is
not possible to investigate the structure of the target in this energy regime.

k k'

p p'

q

Figure 1.3: Feynman diagram for elastic scattering.

As the virtuality of the virtual photon increases, smaller distances can be probed. This was achieved
experimentally with the increase of the energy of the available electron beams. When

√
Q2 > mp the

proton size has to be accounted for. It is necessary to introduce structure functions, Form Factors
(FFs), to account for the proton �nite size. The Mott cross section can be re-written in terms of two
FFs. The electron-proton elastic scattering is described by the Feynman diagram in Figure 1.3. The
complete scattering formula was introduced by Rosenbluth in 1950 [4] and reads:

dσ

dΩ
=

α2
em

4E2sin4
(

Θ
2

)E
′

E

(
GE(Q2)2 + τGM (Q2)2

1 + τ
cos2 Θ

2
+ 2τGM (Q2)2sin2 Θ

2

)
, (1.8)

where τ is given by

τ =
Q2

4m2
p

, (1.9)
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Chapter 1. Physics motivations

and GE(Q2) and GM (Q2) are the Sachs electric and magnetic FFs. It is convenient to introduce the
Dirac and Pauli FFs, F1(Q2) and F2(Q2), respectively, as:

GE = F1 −
Q2

4m2
p

F2, (1.10)

GM = F1 + F2. (1.11)

The Form Factors can be directly related to the spatial distribution of the charge and the mag-
netic moment in the nucleon. This was shown by Hofstadter in 1956 [5] [6] and allowed for a �rst
determination of the charge radius of the proton. In the Breit frame, which is, in the case of elastic
scattering, the center-of-mass frame of the electron-nucleon system, the electric (resp. magnetic) FF
can be interpreted as the Fourier transform of the transverse charge (resp. magnetization) distribution.
In this frame, the exchanged photon carries no energy (Q2 = ~q2), and the charge density can be written
as:

ρ(~r) =

∫
GE(~q2)

M

E
e−i~q·~r

d3~q

(2π)3
. (1.12)

The same equation applies to GM and gives the magnetization density. From this interpretation, one
can derive the charge and magnetic mean squared radii of the nucleon given by:

〈r2
E〉 = −6

dGE(Q2)

dQ2
(1.13)

〈r2
M 〉 = − 6

GM (0)

dGM (Q2)

dQ2
. (1.14)

The current value of 〈r2
E〉 derived from both elastic scattering measurements and hydrogen spec-

troscopy is 0.879±0.008 fm. Proton radii extracted from muonic hydrogen spectroscopy have also been
published [7]. The current value obtained by this technique, 0.84184± 0.00064 fm, is almost 8 sigmas
away from the other value. Understanding this discrepancy has been a topic of great interest in the
last years on both the experimental and theoretical point of view. New results published recently were
obtained from an electron scattering experiment (PRAD) [8] and are in accordance with the muonic
hydrogen radius. This result was achieved using a window-less hydrogen target and high resolution
calorimeters for electron detection. This set-up was designed to achieve a more precise measurement
than any previous scattering experiments.

FFs for both protons and neutrons have been measured. They have very di�erent behaviors. For
protons F1 dominates for all values of Q2. On the contrary, F2 dominates in the low Q2 region for
neutrons, as shown in Figure 1.4.

Finally, one can also de�ne axial and pseudo-scalar FFs [10], where one replaces the virtual photon
by charged and neutral weak bosons. Axial and pseudo-scalar FFs GA and GP are measurable in
neutrino scattering experiments, muon capture and pion electro-production processes.

1.1.3 Inelastic Scattering

Deeply Inelastic Scattering

For transferred momentum Q2 >> m2
p, the virtuality of the exchanged photon is su�cient to probe

distances smaller than the size of the proton. If the photon energy is big enough, ν > mp, the proton is
also very likely to break down. This regime is called Deep Inelastic Scattering (DIS). The DIS reaction
is written ep → eX where X represents any possible hadronic �nal state produced by the breakup of
the proton. In the single-photon-exchange approximation, DIS is described by the Feynman diagram
in Figure 1.5a. The mass of the �nal state particles is given by W = (p + q)2 with the W � mp

condition. Contrary to elastic scattering, which is parameterized by only one variable (Q2), DIS is
described by two independent variables (Q2 and ν).
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1.1. Nucleon structure studies with electromagnetic probes

Figure 1.4: Proton and neutron FFs, taken from [9]

k k'

X

p

q

(a)

k k'

X

p

q

x

(b)

Figure 1.5: (a) Feynman diagram for DIS, (b) DIS diagram where the virtual photon interacts with a
single quark.

The cross section of DIS is given by:

dσ

dΩdE′
=

α2
em

4E2sin4
(

Θ
2

)
(
W2(ν,Q2)cos2 Θ

2
+ 2W1(ν,Q2)sin2 Θ

2

)
, (1.15)

where the incoming and outgoing electron momenta are de�ned as in the previous section and ν =
E −E′. This formula is very similar to the Rosenbluth (Formula (1.8)), the main di�erence being the
dependence of the structure functions W1 and W2 on two variables.

This formula is conventionally re-written as:

dσ

dΩdE′
=

α2
em

4E2sin4
(

Θ
2

)
(
FDIS2 (xB, Q

2)

ν
cos2 Θ

2
+ 2

FDIS1 (xB, Q
2)

mp
sin2 Θ

2

)
, (1.16)

where FDIS1 (xB, Q
2) and FDIS2 (xB, Q

2) are de�ned as:

FDIS1 (xB, Q
2) = mpW1(ν,Q2), (1.17)
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FDIS2 (xB, Q
2) = νW2(ν,Q2) =

p · q
mp

W2(ν,Q2), (1.18)

and where we de�ned the Bjorken variable as:

xB =
Q2

2p · q . (1.19)

In 1969, the SLAC group showed that FDIS1 (xB, Q
2) and FDIS2 (xB, Q

2) are independent of Q2

[11]. This property is now referred as scaling. The Q2-independence of the structure functions implies
that the exchanged photon interacts with an object with no internal structure (ie. no dependence
on the probed distance 1/

√
Q2). The scaling results published by the SLAC collaboration are shown

in Figure 1.6. This was the �rst evidence of the existence of quarks. Indeed in the DIS regime, the
virtuality of the photon is large enough to probe distances much smaller than the size of the proton
and observe its fundamental components.

Figure 1.6: Ratio between the DIS cross section and the Mott cross section as a function of the squared
of the momentum of the exchanged photon. These results were obtained by the SLAC collaboration
in [11].

The parton model and Parton Distribution Functions

In order to better understand the SLAC results, the DIS cross section can be interpreted within the
parton model [12]. In this model introduced by Feynman [13], the proton is composed of point-like
particles, the partons. The parton model has a clear interpretation in the frame where the nucleon
has an in�nite momentum in the z-direction (the light-cone frame). In this in�nite momentum frame,
partons can be considered as non-interacting particles due to time dilatation. Thus the virtual photon
interacts with a single quark as shown in Figure 1.5b. De�ning x as the fraction of the nucleon
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1.1. Nucleon structure studies with electromagnetic probes

momentum carried by the quark before the interaction, p̃ the momentum of the struck quark after the
interaction, and noting that the �nal state struck quark must be on-shell, one can write:

x · p+ q = p̃, (1.20)

and after squaring and neglecting the quark mass:

x =
Q2

2p · q = xB. (1.21)

The Bjorken variable xB can be interpreted as the fraction of the proton momentum carried by the
struck quark in the in�nite momentum frame. The cross section can then be written as a sum of cross
sections of electron scattering o� a single point-like parton, weighted by the probability of �nding such
a parton with momentum fraction x. FDIS1 (x,Q2) and FDIS2 (x,Q2) can be re-written as:

FDIS1 (x,Q2) =
1

2

∑

i

e2
i (qi(x) + qi(x)) , (1.22)

FDIS2 (x,Q2) = x
∑

i

e2
i (qi(x) + qi(x)) , (1.23)

where ei is the charge of a quark of �avor i and qi is the Parton Distribution Function (PDF) for the
quarks of �avor i, with the bar denoting antiquarks. The PDFs are thus interpreted as the probability
of interaction with a quark carrying a momentum fraction x. Furthermore, from Equations (1.22) and
(1.23), FDIS1 (x) and FDIS2 (x) verify the relation:

FDIS2 (x) = 2xFDIS1 (x), (1.24)

known as the Callan-Gross relation. This equality is a consequence of the fermionic nature of quarks.
Its experimental veri�cation was a further con�rmation of the quark model validity.

The current �tted PDFs qi are shown in Figure 1.7. The quark �avor separation of the PDFs is
achieved by considering proton and neutron PDFs. The separation between quarks and antiquarks
is done using neutrino scattering data. In Figure 1.7 one can also see that PDFs depend on Q2,
contradicting the simple parton model explained above. This behavior, called scaling violation, is
understood by taking into account gluons radiated by the struck quark and is described by the DGLAP
equations [14].

Polarized PDFs

One can also de�ne polarized PDFs by considering the spin of the partons inside a polarized nucleon.
There are two polarized structure functions g1 and g2 (see [16, 17]). The polarized structure function
g1 can be written as:

g1(x,Q2) =
∑

i

e2
i (∆qi(x)−∆qi(x)) , (1.25)

with

∆qi(x) = q↑i − q
↓
i , (1.26)

where q↑i (resp. q
↓
i ) represents the probability density of quarks with helicity parallel (resp. antiparallel)

to the one of the nucleon. The g1 structure function can be measured in longitudinally polarized target-
longitudinally polarized beam DIS experiments. The second structure function g2 is expected to vanish
at leading twist (see de�nition of twist in Section 1.2), but has non-zero twist 2 and 3 contributions
and is measurable in transversely polarized target experiments [18].
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Figure 1.7: Parton distribution functions as a function of x for Q2 = 10 GeV2 and Q2 = 104 GeV2

determined by a �t over a large range of data [15].

1.2 Generalized Parton Distributions

FFs and PDFs introduced in the previous section describe the nucleon structure respectively in terms
of spatial coordinates and momentum coordinates. However no correlations between the position and
the momentum of the struck quark can be extracted from these functions. The concept of Generalized
Parton Distributions (GPDs) was developed in the early 90's [19, 20, 21] and provided a framework to
interpret the partonic structure of the nucleon in terms of traverse position, longitudinal momentum
and their correlations.

The concept of GPDs is introduced in Subsection 1.2.1. Their link to the structure functions
described in the previous section is highlighted. Their close relation to the nucleon spin puzzle and
the pressure distribution inside nucleons is presented in Subsection 1.2.2. Finally, currently available
models of GPDs are highlighted in Subsection 1.2.3 and generalizations of GPDs are presented in
Subsection 1.2.4.

1.2.1 Phenomenology of Generalized Parton Distributions

Factorization

The concept of GPDs is based on QCD factorization. As shown in Figure 1.1 in the previous section,
the strong interaction coupling constant αS varies with the energy scale of the studied process. At
high-energy scale αS is small and one can apply power series expansion to calculate matrix elements.
However at low energies, αS becomes large and the power expansion is not possible. To calculate the
amplitude of a high energy process involving a complex QCD object like a nucleon, one has to separate
a point-like high-energy (i.e. hard) interaction, between an electron and a quark for example, from
the long-range low-energy (i.e. soft) structure of the nucleon. The hard part can be described using
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1.2. Generalized Parton Distributions

the Feynman diagram formalism while the soft part has to be parameterized using structure functions.
PDFs, FFs and GPDs are such sets of functions representing this soft part.

De�nitions

γ∗ γ

x+ ξ x− ξ

p p′

GPD

(a)

x+ ξ x− ξ

p p′

GPD

(b)

Figure 1.8: The Feynman Diagram for DVCS at leading twist. An electron interacts with a quark
from the nucleon via the exchange of a virtual photon; this quark then emits a real photon. (a) The
full DVCS diagram, (b) the soft part of the diagram parameterized by GPDs.

Quark GPDs GPDs [22, 23, 24] were �rst introduced to describe the nucleon soft structure con-
tribution to the exclusive production of a photon or a meson o� a nucleon. Deeply Virtual Compton
Scattering (DVCS) is the exclusive electro-production of a photon induced by a high virtuality (Q2)
initial photon (see Figure 1.8a) and is one of the processes parameterized by GPDs. DVCS is a key
reaction for the GPD experimental program and will be further present in Section 1.3. The DVCS
amplitude can be expanded as a series of operators, were each term is sorted according to its power in
αS (referred as its order) and to its twist, which is de�ned as its dimension minus its spin. Terms with
high order are suppressed by increasing power of αS , while high-twist terms are suppressed by increas-
ing powers of 1/Q. At leading order and leading twist (twist-2, which is assumed in the following),
the amplitude of DVCS is given by the "handbag" diagram of Figure 1.8a. The top high-energy part
of the graph is described by the usual perturbative Feynman rules, while the bottom part describing
the soft structure of the nucleon (see Figure 1.8b) is parameterized by GPDs. The GPDs are universal
functions and their properties should not depend on the process studied. Thus GPDs can be studied
not only from DVCS but also from other processes, as presented in Section 1.3.

Formally, quark GPDs (gluon GPDs are de�ned in the next paragraph) are de�ned in the light-
cone frame (introduced in the previous section), where the incoming and outgoing momenta of the
nucleon (p and p′) are collinear to the z-axis. In this frame, one can conveniently de�ne plus/minus
components of a 4-vector a as a± = a0 + a3/

√
2. GPDs are related to the Fourier transform of

the non-local non-diagonal matrix element 〈p′|ψ̄q(0)Oψq(y)|p〉 represented by the diagram in Figure
1.8b. In this matrix element ψq is the �avor q quark �eld, |p′〉 and |p〉 are the quantum states of the
incoming and outgoing nucleon with respective momenta p and p′, and O is an operator appearing in
the convolution with the hard part of the diagram (usually products of gamma matrices). This matrix
element is non-local, as the quark �eld is taken at di�erent space-time coordinates, and non-diagonal,
as the nucleon states |p′〉 and |p〉 are di�erent. In the case of processes conserving the quark helicity
such as DVCS, the initial and �nal quark �elds have the same helicity state. In the light-cone frame,
the non-zero matrix elements appearing in the amplitude of these processes read 〈p′|ψ̄q(0)γ+ψq(y)|p〉
and 〈p′|ψ̄q(0)γ+γ5ψq(y)|p〉. They are written in terms of four GPDs, Hq, H̃q, Eq, and Ẽq, as:
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P+

2π

∫
dy−eixP

+y−〈p′|ψ̄q(0)γ+ψq(y)|p〉
∣∣∣∣∣
y+=~y⊥=0

= Hq(x, ξ, t) N̄(p′)γ+N(p) + Eq(x, ξ, t) N̄(p′)iσ+ν ∆ν

2m
N(p) ,

P+

2π

∫
dy−eixP

+y−〈p′|ψ̄q(0)γ+γ5ψq(y)|p〉
∣∣∣∣∣
y+=~y⊥=0

= H̃q(x, ξ, t) N̄(p′)γ+γ5N(p) + Ẽq(x, ξ, t) N̄(p′)γ5
∆+

2m
N(p) , (1.27)

where P = (p + p′)/2 is the average nucleon momentum, ∆ = (p′ − p) is the nucleon transferred
momentum, N and N̄ are the initial and �nal nucleon spinors, and σµν = i

2 [γµ, γν ] are the gamma
matrices commutators.

Each of the four helicity-conserving GPDs corresponds to a combination of the possible quark-nucleon
helicity-spin �ips (while conserving the quark helicity). The helicity-spin decomposition of the GPDs is
illustrated in Figure 1.9. Some exclusive processes such as Deeply Virtual Meson Production (DVMP)
(ep → e′p′m, where m is a meson), are described by GPDs for which the quark �ips its helicity and
which are called tranversity GPDs. There are four transversity GPDs (Hq

T , H̃
q
T , E

q
T , and Ẽ

q
T ) de�ned as

the Fourier transforms of the matrix elements 〈p′|ψ̄q(0)σ+νψq(y)|p〉 and 〈p′|ψ̄q(0)σ+νγ5ψq(y)|p〉. The
following parts of this manuscript focus on the properties of helicity-conserving quark GPDs. They
are simply referred to as GPDs.

E H̃ ẼH

+ −+ −

Figure 1.9: The four GPDs corresponding to the four di�erent helicity-spin combinations of the quark-
nucleon system.

Quark GPDs depend explicitly on three variables, x, the momentum imbalance ξ, and the Mandel-
stam variable t, where x+ ξ is the momentum fraction of the initial quark and x− ξ the momentum
fraction of the �nal quark. They read:

t = (p′ − p)2, (1.28)

ξ =
−∆+

2P+
. (1.29)
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GPDs also depend on the hard scale (usually the virtuality Q2 of the incoming virtual photon in DVCS
and DVMP). Their evolution with Q2 is well known and usually this dependence is omitted. The quark
momentum fraction x varies between -1 and 1, while ξ varies from 0 to 1. In the region | x |> ξ, GPDs
represent the probability amplitude of removing a quark with a momentum fraction x+ ξ and putting
it back in the nucleon with a momentum fraction x − ξ. This region is called the DGLAP region in
reference to the QCD evolution equation [14]. In the region −ξ < x < ξ, the GPDs can be interpreted
as the probability amplitude of extracting a quark-antiquark pair from the nucleon. This region is
referred as the ERBL region [25].

Gluon GPDs Gluon GPDs can also be de�ned. There are four gluon GPDs (Hg, H̃g, Eg, and
Ẽg). Gluon GPDs have a similar de�nition to quark GPDs (see [22]). They describe the probability
of picking a gluon with momentum fraction x+ ξ and putting it back with the x− ξ fraction as shown
in Figure 1.10. In the valence region (for energies of the order of 1 GeV) and at leading twist, gluon
GPDs only enter the DVCS amplitude at next-to-leading order in αS , and are believed to have a
small contribution to the DVCS cross section. However this might not be true in speci�c cases (see
Subsection 1.3.4 for details). We do not consider gluon GPDs in the following discussion of GPDs
properties and models.

x+ ξ x− ξ

p p′

GPD

Figure 1.10: Diagram representing the gluon GPDs.

Forward limit

GPDs are related to PDFs via the following model-independent relations:

Hq(x, 0, 0) =

{
q(x), x > 0
−q̄(−x), x < 0

(1.30)

H̃q(x, 0, 0) =

{
∆q(x), x > 0

∆q̄(−x), x < 0
(1.31)

where q, q̄, ∆q, and ∆q̄ are the PDFs and polarized PDFs (see Section 1.1) associated to the quark
�avor q. This property is derived from the optical theorem illustrated in Figure 1.11, which links the
DIS cross section to the imaginary component of the amplitude of the γ∗N → γ∗N process in the
forward limit (at t = 0). These forward-limit properties provide strong constraints to GPDs as PDFs
are relatively well known. There are no such relations for the E and Ẽ GPDs, which make them more
di�cult to constrain.

GDP x-moments

Similarly to the PDFs in the forward limit, FFs can also be related to GPDs through their �rst
x-moments as:

∫ 1

−1
dxHq(x, ξ, t) = F q1 (t), (1.32)
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Figure 1.11: Schematic description of the optical theorem that links DIS cross section to the imaginary
part of the γ∗N → γ∗N process. Figure from [22].

∫ 1

−1
dxEq(x, ξ, t) = F q2 (t), (1.33)

∫ 1

−1
dxH̃q(x, ξ, t) = GqA(t), (1.34)

∫ 1

−1
dxẼq(x, ξ, t) = GqP (t). (1.35)

where F q1 , F
q
2 ,G

q
A and GqP are, respectively, the Pauli FFs, axial, and pseudo-scalar FFs de�ned in

Section 1.1. Because of the restricted de�nition domain of ξ, these integrals only depend on t. Fur-
thermore higher x-moments of GPDs verify a polynomiality condition. The n-th x-moment of the
GPD H can be written as a polynomial in ξ, of order n for even n, and of order (n+ 1) for odd n, as:

if n even :

∫ 1

−1
dxxnH(x, ξ, t) = a0 + a2ξ

2 + a4ξ
4 + ...+ anξ

n,

if n odd :

∫ 1

−1
dxxnH(x, ξ, t) = a0 + a2ξ

2 + a4ξ
4 + ...+ an+1ξ

n+1, (1.36)

where the ai coe�cients only depend on t. For E the same conditions apply with the opposite sign
for the coe�cients ai. For H̃ and Ẽ, the odd case is of maximum order (n − 1). The polynomiality
condition is an important property as it provides strong constraints on GPDs models.

1.2.2 Physical interpretations

GPDs have a direct link to PDFs and FFs. Thus they encode both transverse spatial and longitudinal
momentum information but also their correlations (as shown in Figure 1.12). Their interpretation
provides a deeper insight on the structure of the nucleon than FFs and PDFs alone. In this subsection
the three main physical interpretations of GPDs are presented. The tomography interpretation, the
link between GPDs and the nucleon spin, and �nally the relation with the internal forces and the
pressure in the nucleon are introduced.

Tomography of the nucleon

It is possible to interpret GPDs as the probability distribution of �nding a parton at transverse
position b⊥ with respect to the "center of momentum" of the nucleon, with longitudinal momentum
fraction x, via a Fourier transform [26, 27, 28] :

Hq(x, b⊥) =

∫
d2∆⊥
(2π)2

e−ib⊥∆⊥Hq(x, 0,−∆2
⊥). (1.37)
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Figure 1.12: GPDs encode information from FFs and PDFs but also correlations not accessible with
the previous functions alone. A tomography of the nucleon can be performed using GPDs, providing a
picture of the internal structure of the nucleon in the transverse-spatial coordinates at di�erent values
of longitudinal momentum. Figure from [24].

Hence GPDs permit to perform a 2+1D (two transverse position dimensions and 1 momentum di-
mension) picture of the nucleon [29]. The interpretation of GPDs as a tomography of the nucleon is
illustrated in Figure 1.12.

GPDs and the spin puzzle

GPDs are related to momentum and position of quarks in the nucleon. This relation implies that
information about the angular momentum of quarks can be extracted from GPDs. This link was
investigated by X. Ji in a 1997 publication [21] where the Ji's sum rule was �rst introduced. According
to this sum rule, the spin of the nucleon can be decomposed as:

1

2
= JQ + JG, (1.38)

where JQ and JG are the total contributions of, respectively, quarks and gluons to the total spin of
the nucleon. The contribution of the quarks can be further decomposed as:

JQ =
1

2
∆Σ + LQ, (1.39)

where 1
2∆Σ and LQ are the contributions from, respectively, intrinsic spin and angular momentum. It

is not trivial that all of these contributions exactly add up to 1/2, and each contribution is a priori
unknown. Polarized DIS experiments give access to the intrinsic spin component 1

2∆Σ as:

∆Σ =
∑

i

∫ 1

0
dx∆qi(x) (1.40)

where the sum runs over quark �avors, and the ∆qi(x) are the polarized PDFs de�ned in Subsection
1.1.3. It was shown that this term contributes at most to 30% [30] of the total nucleon spin. The
remaining contributions must account for the remainder. The angular momentum contribution from
quarks can be accessed using GPDs. The Ji's sum rule relates the second moment of the sum over all
quark �avors of the Hq and Eq GPDs at t = 0 to the total angular momentum of the quarks:

JQ =
∑

q

1

2

∫ 1

−1
dx x(Hq(x, ξ, 0) + Eq(x, ξ, 0)). (1.41)
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A complete measurement of Hq and Eq opens a way to extract the contribution to the nucleon's spin
of the angular momentum of the quarks LQ = JQ− 1

2∆Σ. The Ji's rule also apply to gluons. However
the separation between the angular momentum contribution and the spin contribution as in Equation
(1.39), is not applicable to gluons [31].

Forces inside the nucleon: the D-term

The �rst x-moment of H and E can be expressed as:
∫ 1

−1
dx xHa(x, ξ, t) = Aa(t) + ξ2Da(t) (1.42)

∫ 1

−1
dx xEa(x, ξ, t) = Ba(t)− ξ2Da(t) (1.43)

where the quantities Aa, Ba, and Da are the Energy-Momentum Tensor (EMT) Form Factors and
a denotes gluon or quark �avors. The EMT FFs are form factors appearing when one describes the
interaction of the gravitational �eld with a nucleon [32, 33], as shown in Figure 1.13. From Equations

Figure 1.13: Diagram representing the interaction of a graviton on a nucleon, taken from [34]

(1.42) and (1.43), one can see that the EMT FFs Aa and Ba are related to the Ji's sum rule presented
in the previous section. The D-term [34, 32], de�ned as D(t) =

∑
aD

a(t), contains information about
the force and the pressure distribution inside the nucleon. It can be related to the pressure inside the
nucleon by the model independent formula [35]:

D(t) ∝
∫
d3r p(r)

j0(r
√−t)
t

, (1.44)

where j0 is the �rst Bessel function. The D-term can also be related to Compton Form Factors [36,
37, 38], which are quantities measurable in DVCS experiments and which are presented in Subsection
1.3.1.

1.2.3 GPD Models

There are several parametrizations of GPDs. The main models are the double-distribution models
(VGG [39], GK [40]), the dual parametrization [41] and the Mellin-Barnes model [42]. In the following
section, the double-distribution model and its implementation in the VGG model are described.

Double Distribution parameterization

At �xed hard scale, GPDs depend on three variables (x, ξ and t). The double distribution (DD)
model introduced in [43] and [44] is used to parameterize the x and ξ dependence of GPDs. The usual
momentum notation for GPDs is shown in Figure 1.14a, where the incoming proton has momentum
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P in the light-cone frame, and the initial and �nal quarks have momenta de�ned as fractions (x + ξ)
and (x− ξ) of P . The main idea of the DDs parameterization is to perform a change of variable and
de�ne the initial quark momentum as (βP − (1 + α)∆

2 ), as in Figure 1.14b. Since ξ is given by:

−2ξ =
∆

P
, (1.45)

one can relate x, ξ, α and β using the relation:

x = β + αξ. (1.46)

This relation authorizes to re-write each GPD as an integral of DDs as:

GPDq(x, ξ) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dαδ(x− β − ξα)DD(α, β). (1.47)

(x+ ξ)P (x− ξ)P

P P ′

GPD

(a)

βP − (1 + α)∆
2 βP + (1− α)∆

2

P − ∆
2 P + ∆

2

DD

(b)

Figure 1.14: (a) Usual momentum parametrization of the GPDs, (b) Momentum parametrization used
in the double distribution model.

This change of variables from GPDs to DDs has two main advantages. First, because of the δ
function in the integral of Equation (1.47), the polynomiality conditions described in Subsection 1.2.1
are always satis�ed, up to the n-th term. The second advantage of DDs is that their properties can
be inferred from two limiting cases. The �rst case, when ∆ = 0, corresponds to the case where the
incoming and the outgoing protons have equal momenta. In this case the DDs take the form of the
PDFs measured in DIS (see Figure 1.11, relating GPDs at t = 0 and PDFs). The second limiting case
is P = 0 and ∆ 6= 0. This corresponds to extracting a quark-antiquark pair with momenta (1 + α)∆

2
and (1− α)∆

2 for the quark and the antiquark, respectively. In this limit, one can expect the DDs to
have the form of Distribution Amplitudes (DAs) (see Figure 1.15). DAs describe the probability of
�nding a quark/antiquark pair with momentum fraction z and (1− z) in a meson (or equivalently to
form a meson from the quark-antiquark pair).

M
1− z

p

z

Figure 1.15: Feynman diagram of a DA. A quark with momentum fraction z interacts with an antiquark
with momentum fraction (1− z) to form a meson with momentum p and mass M .

Finally DDs are obtained by taking these two limiting cases and �nding the best way to interpolate
between the two limits. This was �rst done in [43]. In this paper the proposed DD takes the form of:
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DD(α, β) = h(β, α)q(β), (1.48)

h(α, β) =
Γ(2b+ 2)

22b+1Γ2(2b+ 1)

[
(1− | β |)2 − α2

]b

(1− | β |)2b+1
, (1.49)

where q is the PDF for the quark q, and where b is a parameter controlling the ξ dependence (note
that there are two such parameters, for valence and sea quarks, bval and bsea). The DD formalism is
the core of several GPDs parametrizations. In the following, the VGG model based on DD is presented
in more details.

D-term The DD description ensures that the n-th moment in x of the GPDs are ξ-polynomials of
order n. However the polynomiality constraints allow for an additional degree of freedom when n is
odd for H and E. To ensure that the DD model is complete, one has to add an additional quantity.
This quantity is closely connected to the quantity presented in Subsection 1.2.2. It was �rst introduced
in [45], and is given by:

D(t, z) = (1− z2)
∑

n odd

dn(t)C3/2
n (z), (1.50)

where z = x/ξ, and the C3/2
n is the n-th Gegenbauer polynomial of parameter 3/2. The coe�cients

dn(t) are free parameters.

The VGG model

In this subsection, the VGG model [46, 47, 39] for the GPD H is described. Other GPDs have
di�erent parametrizations but use the same concepts (see [22] for details). The (x, ξ) dependence is
described using the DDs introduced previously. The t-dependence is factorized and reads:

F q(β, α, t) = DD(α, β)β−α
′(1−β)t (1.51)

where DD(α, β) is given in Equation (1.48), and α′ is taken from Regge trajectories and describes the
t-dependence of the DD. Finally, the D-term is added, and the GPD H is given by:

Hq(x, ξ, t) =

∫
dαdβ δ(x− β − ξα)F q(β, α, t) + θ(ξ − |x|) 1

Nf
D

(
x

ξ
, t

)
, (1.52)

where the 1
Nf

factor accounts for the identical contribution of each quark �avor to the D-term. The

GPD E has a very similar parametrization with opposite sign D-term contribution. Note that D(t, z)
and the EMT FF introduced in Subsection 1.2.2 have the same name and are closely related. Indeed
when performing the x-integration of the GPD H in the DD formalism, the only contribution to the
second order term in ξ comes from the D-term and reads:

∫ 1

−1
dx x θ(ξ − |x|) 1

Nf
D(

x

ξ
, t) =

1

Nf
ξ2 4

5
d1(t), (1.53)

where the orthogonality properties of the Gegenbauer polynomials are used to get the last relation (see
Appendix A for more details on the calculation).

1.2.4 Beyond GPDs: GTMDs, TDAs

GPDs are part of a wide range of functions describing the nucleon, as shown in Figure 1.16. They
can be related to 1-dimensional quantities such as PDFs and FFs by the relations described previously.
In the same logic, GPDs can be extended. The Generalized Transverse Momentum Distributions
(GTMDs) [48] are a generalization of GPDs. They describe the nucleon structure in terms of its
constituent quarks transverse position, longitudinal and transverse momentum.

Another generalization of GPDs are the Transition Distribution Amplitudes (TDAs) [49, 50, 51].
These functions describe the transition from a baryon (the nucleon for example) to a meson. They are
de�ned by a three-quarks operator similar to Equation (1.27), and can be accessed through backward-
angle meson production [52].
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FF(∆)

GTMD(x,~k⊥,∆)

GPD(x,∆)TMD(x,~k⊥)

PDF(x)TMSD(~k⊥)

TMFF

Charge

∆ = 0∫
dx

∫
d2k⊥

(~k⊥,∆)

Figure 1.16: Structure functions scheme. GTMDs have an additional transverse momentum depen-
dence compared to GPDs. TMDs describe the nucleon in terms of transverse momentum. TMFF refer
to transverse-momentum form factors. TMSD are transverse-momentum spin densities. Figure taken
from [48]

1.3 The experimental path to GPDs

GPDs were �rst introduced to describe exclusive electro-production of photons and mesons. The
cross sections of these processes can be fully described by these functions and the experimental mea-
surement of these processes is therefore a direct way to study GPDs. In this section the experimental
path towards the extraction of GPDs is introduced. First, Deeply Virtual Compton Scattering (DVCS)
is presented in Subsection 1.3.1. Then one of its complementary process, Timelike Compton Scatter-
ing (TCS), is described in Subsection 1.3.2. Finally an overview of the current experimental status is
provided.

1.3.1 Deeply Virtual Compton Scattering

As mentioned in the previous section, the simplest process to access GPDs is proton DVCS [53]:
ep → e′γ∗p → e′p′γ. In the Bjorken regime (when the virtual photon γ∗ has large virtuality Q2 =
(k′−k)2 →∞ and large energy ν →∞, where notations from Figure 1.17b are adopted), factorization
can be applied. The virtual photon scatters o� a single quark. At leading twist, leading order and in
the Bjorken regime, the DVCS amplitude is a convolution of the hard scattering of a virtual photon
o� a single quark with the soft structure of the nucleon parameterized by GPDs. A diagram for the
DVCS amplitude is shown in Figure 1.17a.

The DVCS cross section depends on four variables: −t = (p′ − p)2, Q2, φ (the angle between the

hadronic and leptonic planes de�ned in Figure 1.17b) and xB = Q2

2mν . In the Bjorken regime, the
momentum skewness ξ is given by:

ξ =
xB

2− xB
. (1.54)
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e'

e

γ∗ γ

x+ ξ x− ξ

p p′

GPD

(a) (b)

Figure 1.17: (a) "Handbag" diagram for DVCS at leading twist and leading order. An electron interacts
with a quark of the nucleon via the exchange of a virtual photon; this quark then emits a real photon.
(b) The relevant kinematic variables for the ep→ e′p′γ reaction.

The proton DVCS amplitude reads:

M∝
∑

q

e2
q

{∫ 1

−1
dx x

[
1

x− ξ + iε
+

1

x+ ξ − iε

][
A ·Hq(x, ξ, t) +B · Eq(x, ξ, t)

]

+

∫ 1

−1
dx x

[
1

x− ξ + iε
− 1

x+ ξ − iε

][
C · H̃q(x, ξ, t) +D · Ẽq(x, ξ, t)

]}
,

(1.55)

where the factors A,B,C and D are given in full details in [22, 54]. This amplitude depends on the
proton GPDs de�ned as Hp =

∑
q e

2
qH

q, where the sum runs over the quark �avors, and that we simply
denote H in the following (the same de�nition applies for the other GPDs). One can also notice that
the closed quark loop in the "handbag" diagram introduces an integral over the momentum fraction x.
Therefore DVCS only accesses GPDs through such integrals, and the x-dependence of GPDs cannot
be unfolded from DVCS observables. These integrals, depending only on ξ and t, are called Compton
Form Factors (CFFs).

Compton Form Factors

De�nition The CFFs are GPD integrals that appear naturally when integrating over the quark loop
of the DVCS diagram. The CFFs depend on the process considered (see Subsection 1.3.2 for details on
CFFs in the Timelike Compton Scattering channel). At leading order the DVCS CFFs are given by:

{H, E} (ξ, t) =

∫ 1

−1
dx {H,E} (x, ξ, t)

(
1

ξ − x− iε −
1

ξ + x− iε

)
, (1.56)

{
H̃, Ẽ

}
(ξ, t) =

∫ 1

−1
dx

{
H̃, Ẽ

}
(x, ξ, t)

(
1

ξ − x− iε +
1

ξ + x− iε

)
, (1.57)

with the convention used in [55] (this convention includes an additional overall minus sign compared
to the convention used in [22]).

CFFs are complex quantities. Consequently there are eight real functions to extract from DVCS
experiments, the real and imaginary parts of the four CFFs. Figure 1.18 shows the area constrained by
the real and imaginary part of CFFs for a given kinematic point. While the imaginary part is sensitive
to the GPDs on the diagonals x = ξ and x = −ξ, the real part provides information about the whole
x range at given ξ.
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Figure 1.18: GPD H from the VGG model. The red points show regions which are obtained via the
imaginary part of CFFs. The orange line displays the region constrained by the real part. Figure taken
from [22]

Dispersion relation and D-term The real part of the H CFFs can be written using a dispersion
relation (DR) involving the imaginary part and a subtraction term ∆(t) as:

ReH(ξ, t) =

∫ 1

−1

(
1

ξ − x −
1

ξ + x

)
ImH(ξ, t) dx+ ∆(t). (1.58)

The CFF E follows the same DR, with opposite sign subtraction term. H̃ and Ẽ also follow similar
DRs, with no subtraction term. Assuming a DD parametrization including the D-term of the GPD H,
one can show that the subtraction term reads:

∆(t) =
2

Nf

∫ 1

−1
dz
D(z, t)

(1− z) =
4

Nf

∑

n odd

dn(t). (1.59)

This relation allows to directly relate ∆(t) to the EMT FF D(t) introduced in Subsection 1.2.2,
assuming that only d1(t) contributes in the sum:

∆(t) ∝ d1(t) ∝ DQ(t), (1.60)

where DQ denotes the quark contribution to the EMT FF D(t). Measuring both the imaginary and
the real part of the CFFs allows to use the DR as a tool to extract the substraction term ∆(t) and
have access to the mechanical properties of the proton. The proton D-term has been extracted from
data in [56], and the result is shown alongside other models and calculations in Figure 1.19, extracted
from [34].

Bethe-Heitler process

The ep → e′p′γ reaction has not only contributions from DVCS but also from the Bethe-Heitler
(BH) process. BH corresponds to the reaction where the initial (or �nal) state electron radiates a real
photon that interacts with the proton as a whole. The two leading order diagrams of BH are shown
in Figure 1.20. As the virtual photon interacts with the proton itself, BH is fully described using the
usual FFs.

The DVCS and BH amplitudes add coherently when calculating the total cross section of the ep→
e′p′γ process. The total cross section has contributions from both BH and DVCS and also from their
interference and reads:

σep→e′p′γ = σDV CS + σBH + σINT . (1.61)
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Figure 1.19: EMT FF D(t) for the quarks as a function of the transferred momentum −t. The purple
points are JLab data points [56] and the green dashed line is obtained using the CFF DR [37]. Figure
taken from [34].

The relative importance of σDV CS , σBH and the interference term σINT depends strongly on the
considered phase-space region. However the interference term between BH and DVCS can be used to
extract CFFs conveniently, as they appear in σINT in a linear combination, whereas CFFs appear in
bilinear combinations in σDV CS .

DVCS helicity-spin observables

Alongside the DVCS cross section and BH-DVCS interference terms, helicity-spin observables are
an important way to extract CFFs. Experimentally one can change the helicity of the incoming
electron, as well as the polarization of the proton target. It is then possible to measure cross-section
asymmetries between di�erent beam helicity-target spin con�gurations. Such asymmetries present two
main advantages as they depend linearly on CFFs and are usually easier to extract than cross sections.
Some DVCS asymmetries and their dependencies on the CFFs are given by:

∆σLU ∝ sin(φ) Im

{
(F1H+ ξ(F1 + F2)H̃ − t

4m2
p

F2E + ...

}
, (1.62)

∆σUL ∝ sin(φ) Im

{
(F1H̃+ ξ(F1 + F2)(H+

xB
2
E)− ξ

(
xB
2
F1 +

t

4m2
p

F2

)
Ẽ + ...

}
, (1.63)

∆σLL ∝ (A+Bcos(φ)) Re

{
(F1H̃+ ξ(F1 + F2)(H+

xB
2
E)− ξ

(
xB
2
F1 +

t

4m2
p

F2

)
Ẽ ...
}
, (1.64)

∆σUx ∝ sin(φ) Im

{ −t
4m2

p

(F2H− F1E) + ...

}
, (1.65)

where ∆σ denotes the di�erence of polarized cross sections. The �rst index refers to the beam polar-
ization, the second one to the target spin. The index U stands for unpolarized, L for longitudinally
polarized, x for transversely polarized. The dots stand for higher-twist terms. These asymmetries are
mostly sensitive to the BH-DVCS interference cross section, thus they are sensitive to linear combi-
nations of CFFs convoluted with FFs. These asymmetries also depend on di�erent combinations of
CFFs. A complete experimental measurement of these observables can thus provide a way to extract
each contribution.
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Figure 1.20: Bethe-Heitler contribution to the ep → e′p′γ reaction. In DVCS, the real photon is
emitted by the proton. In BH, the real photon is emitted by either (a) the incoming or (b) the
outgoing electron.

1.3.2 Timelike Compton Scattering

GPDs have been experimentally studied mainly through DVCS polarization obervables. Such ob-
servables are mainly sensitive to the imaginary part of the CFFs. To access the real part of CFFs,
DVCS doubly polarized beam-target asymmetries (Equation (1.64)) or unpolarized cross sections are
needed. It is also possible to access the real part of CFFs through the time-reversal symmetric process
of the DVCS: the Timelike Compton Scattering (TCS)[57, 58, 59].

Measuring TCS observables also provides a test for the universality of GPDs. Indeed photon-
polarization dependent cross section of TCS is sensitive to the imaginary part of CFFs. Comparing the
results obtained in TCS and DVCS will help proving that GPDs are universal functions and are not
only related to DVCS. In this subsection, the TCS process is presented. The associated BH process is
described and the cross-section formulae are provided.

Phenomenology of TCS

TCS is the time-reversal symmetric process of DVCS. The reaction of interest is γp → γ∗p′, where
the incoming photon is real (Q2 = 0) and the outgoing photon is virtual. The virtual photon decays
in a lepton pair which can be detected. The full reaction is therefore γp → p′l+l−. Note that in the
following we refer to the γp→ p′l+l− reaction directly as the TCS reaction. Contrary to DVCS, where
the large spacelike virtuality of the incoming photon gives a hard scale which ensures factorization, the
TCS hard scale is given by the timelike virtuality Q′2 of the outgoing photon. For large Q′2 such that
t
Q′2 � 1, factorization can be applied. The real incoming photon scatters o� a single quark, which
emits a virtual photon. The leading order, leading twist diagram for TCS is given in Figure 1.21.

The relevant variables to study the TCS reaction are shown in Figure 1.22. They are the virtuality
of the outgoing photon Q′2 = (k+ k′)2, the transferred momentum to the nucleon t = (p′− p)2, the γp
Center-of-Mass (COM) energy s = (p+ q)2 (or equivalently the real photon energy Eγ), the azimuthal
angle φ between the leptonic plane and the hadronic plane, and the angle of the outgoing electron in
the lepton COM frame, θ. Finally, as for DVCS, the quark momentum imbalance can be de�ned as:

ξ =
τ

2− τ , (1.66)

where τ = Q′2/(s−m2
p), which plays the symmetric role of xB in DVCS (see Equation (1.54)).

As for DVCS, a Bethe-Heitler (BH) process also contributes to the γp → p′l+l− reaction and
interferes with TCS. Figure 1.23 displays the two timelike BH diagrams, where the real photon decays
in a lepton pair, from which one lepton then interacts with the proton.
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Figure 1.21: The Feynman diagram for TCS in the reaction γp→ p′l+l−
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Figure 1.22: Frame de�nition and relevant variables for TCS, taken from [57]. The yellow plane
containing the momenta of the target and recoil protons is called the hadronic plane. The blue plane
containing the momenta of the two leptons is the leptonic plane. The angle between these planes is
called φ. The angle θ is de�ned as the angle between the lepton with momentum k and the direction
of the recoil proton momentum in the lepton pair COM frame.
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Figure 1.23: Feynman diagrams for the Bethe-Heitler processes that contribute to the γp→ p′l+l−

reaction.

The CFFs of TCS

Similarly to DVCS, the quark loop in the TCS diagram forces GPDs to appear inside CFFs in the
amplitude. The TCS CFFs have similar forms to the DVCS CFFs de�ned in Equations (1.56) and
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(1.57) up to a sign and a complex conjugation. The two kinds of CFFs are related by the following
relations:

HTCS = H∗DV CS H̃TCS = −H̃∗DV CS
ETCS = E∗DV CS ẼTCS = −Ẽ∗DV CS

(1.67)

In this section we use TCS CFFs unless speci�ed otherwise.

TCS cross section

Unpolarized cross section The unpolarized cross section for γp→ p′l+l− can be expanded as:

d4σ(γp→ p′e+e−) = d4σBH + d4σTCS + d4σINT . (1.68)

Each term is written explicitly according to the formulas given in [57] in the following. The BH cross
section is parametrized by FFs only. It reads:

d4σBH
dQ′2dtd(cos θ)dφ

=
α3
em

4π(s−m2
p)

2

β

−tL

[
(F 2

1 −
t

4m2
p

F 2
2 )
A

−t + (F1 + F2)2 B

2

]
, (1.69)

where

A = (s−m2
p)

2∆2
T − t a(a+ b)−m2

pb
2 − t (4m2

p − t)Q′2

+
m2
l

L

[{
(Q′2 − t)(a+ b)− (s−m2

p) b
}2

+ t (4m2
p − t)(Q′2 − t)2

]

B = (Q′2 + t)2 + b2 + 8m2
lQ
′2 − 4m2

l (t+ 2m2
l )

L
(Q′2 − t)2,

β =
√

1− 4m2
l /Q

′2, (1.70)

with ml the lepton mass and

a = 2(k − k′) · p′, (1.71)

b = 2(k − k′) · (p− p′), (1.72)

L =
(Q′2 − t)2 − b2

4
. (1.73)

The BH cross section is plotted in Figure 1.24 for di�erent θ and φ. One can see that the cross
section is largely enhanced around φ = 0◦ for high values of θ, and around φ = 180◦ for low values of
θ.

The TCS contribution reads:

dσTCS
dQ′2dtd(cos θ)dφ

≈ α3
em

8πs2

1

Q′2
1 + cos2 θ

4

∑

λ,λ′

|Mλ′−,λ−|2, (1.74)

where

1

2

∑

λ,λ′

|Mλ′−,λ−|2 = (1− ξ2)
(
|H|2 + |H̃|2

)
− 2ξ2 Re

(
H∗ E + H̃∗ Ẽ

)

−
(
ξ2 +

t

4M2

)
|E|2 − ξ2 t

4M2
|Ẽ |2. (1.75)

Figures 1.25a and 1.25b show the comparison between the TCS cross section and the BH one. The
TCS contribution to the total cross section is two orders of magnitude less important than the BH
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Figure 1.24: BH cross section at the kinematic point Q′2 = 4 GeV2, ξ = 0.1 and −t = 0.2 GeV2, (a)
for di�erent values of θ as a function of φ, (b) as a function of both θ and φ.
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Figure 1.25: (a) BH (solid line) and TCS (dotted line) contributions to the total γp → p′e+e− cross
section for

√
s = 5 GeV and Q′2 = 5 GeV2, integrated over φ in [0, 2π] and θ over [π/4, 3π/4]. Figure

extracted from [57]. (b) BH and TCS cross sections for di�erent values of θ, as a function of φ. Figure
extracted from [58].

one. Therefore measuring the TCS cross section is very challenging. One way to avoid this issue is to
extract the BH-TCS interference term. This term reads:

d4σINT
dQ′2dtdΩ

= − α
3
em

4πs2

1

−t
mp

Q′
1

τ
√

1− τ
L0

L
[cos(φ)

1 + cos2(θ)

sin(θ)
ReM̃−−

− cos(2φ)
√

2cos(θ)ReM̃0− + cos(3φ) sin(θ)ReM̃+− +O(
1

Q′
)], (1.76)

where

L0 =
Q′2 sin2(θ)

4
, (1.77)

and the M̃ terms are CFFs combinations de�ned in [60]. At leading order and leading twist, the only
term contributing to the cross section is the one proportional to M̃−−. The CFF dependence of M̃−−
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is given by:

M̃−− =
2
√
t0 − t
mp

1− ξ
1 + ξ

[
F1H− ξ(F1 + F2)H̃ − t

4m2
p

F2E
]
, (1.78)

where

t0 =
4ξ2m2

p

(1− ξ2)
. (1.79)

Furthermore, the dominant term in Equation (1.78) at JLab kinematics is the one containing the CFF
H (H̃ is suppressed by a factor ξ ≈ 0.3, E is suppressed by a factor t

4m2
p
< 0.25). The cos(φ) modulation

of the interference cross section thus gives direct access to the real part of the CFF H.

Transversely polarized photon cross section As mentionned for DVCS, the helicity-spin observ-
ables are a powerful tool to extract the imaginary part of CFFs. The same reasoning can be applied
to TCS. In the case of transversely polarized photons, the interference cross section is expressed as:

dσINT
dQ′2dtd(cos θ)dφ

=
dσINT |unpol.

dQ′2dtd(cos θ)dφ
− ν α

3
em

4πs2

1

−t
M

Q′
1

τ
√

1− τ
L0

L

[
sin(φ)

1 + cos2(θ)

sin(θ)
ImM̃−−

− sin(2φ)
√

2cosθImM̃0− + sin(3φ)sin(θ)ImM̃+− +O
( 1

Q′

)]
,

(1.80)

where ν is the circular polarization of the incoming real photon. The additional polarization term
exhibits the same CFF content as the unpolarized cross section, except that it now depends on the
imaginary parts via sin(nφ) factors. Extracting the sin(φ) component of the polarized cross section
enables to access the imaginary part of H. This is an important test of the universality of GPDs once
compared with DVCS data.

1.3.3 TCS observables

In this subsection, three TCS observables, the R ratio and the Forward/Backward asymmetry sen-
sitive to the real parts of the CFFs, and the photon polarization asymmetry sensitive to the imaginary
parts of the CFFs, are presented.

R ratio

The R ratio, introduced in [57], is de�ned as:

R(
√
s,Q′2, t) =

∫ 2π
0 dφ cos(φ) dS

dQ′2dtdφ∫ 2π
0 dφ dS

dQ′2dtdφ

, (1.81)

where
dS

dQ′2dtdφ
=

∫ 3π/4

π/4
dθ

L

L0

dσ

dQ′2dtdφdθ
. (1.82)

It has to be noted that the de�nition used in this manuscript di�ers by a factor 2 from the original
de�nition. This was chosen to be consistent with the CLAS TCS analysis in [59].

TheR ratio is directly sensitive to the real part of M̃−−. The integration domain is set to [π/4, 3π/4]
to avoid kinematic regions where TCS is too small compared to BH. Furthermore the enhancing e�ect
of multiplying by L

L0
before the integration can be seen in Figure 1.26. Figure 1.27 shows a projection

for the R ratio as a function of −t. The importance of the D-term is highlighted by showing the
amplitude of the observable for di�erent D-term hypotheses.
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Figure 1.26: Contribution of BH (solid line) and BH+INT (dotted line) to the integrated cross section
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√
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without the L
L0

factor, (b) is including this factor. Figures extracted from [57].

Figure 1.27: Projection for the R ratio for
√

(s) = 5 GeV and Q′2 = 5 GeV2. The dotted line
represents the impact of adding the D-term in the GPD model used. The dotted-dashed line is
obtained by subtracting the D-term. This �gure shows the sensitivity of the R ratio to the D-term.
Figure extracted from [57].

Forward-Backward asymmetry

The idea of Forward-Backward Asymmetry (AFB) was initially proposed for J/Ψ threshold photo-
production studies in [61]. The AFB is de�ned as:

AFB(θ, φ) =
dσ(θ, φ)− dσ(180◦ − θ, 180◦ + φ)

dσ(θ, φ) + dσ(180◦ − θ, 180◦ + φ)
(1.83)

where only the θ-φ dependence of the cross section is explicitly written.
The transformation (θ → 180◦ − θ, φ → φ + 180◦) corresponds to inverting the vectors k and

k′ in the COM frame of the lepton pair. This transformation leaves both L (Equation (1.73)) and
L0 (Equation (1.77)) unchanged, as the term b appears squared in L. Moreover both d4σBH

dQ′2dtdΩ
and

d4σTCS
dQ′2dtdΩ

remain unchanged under this transformation. Assuming leading order and leading twist, only

the cos(φ)M̃−− term contributes in Equation (1.76) and the interference cross section is transformed
as:

d4σINT
dQ′2dtdΩ

FB−−→ − d4σINT
dQ′2dtdΩ

. (1.84)
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Finally the AFB can be explicitly written as:

AFB(θ0, φ0) =
− α3

em
4πs2

1
−t

mp
Q′

1
τ
√

1−τ
L0
L cosφ0

(1+cos2 θ0)
sin(θ0) ReM̃−−

dσBH
, (1.85)

where we neglect the TCS contribution in the denominator. This observable is sensitive to the same
quantity as the R ratio. However, it is not integrated over a large phase space. It is therefore less
sensitive to detector acceptance e�ects. First predictions for the TCS AFB, realized with the VGG
model, are presented in Section 5.9.

Photon polarization asymmetry

The photon polarization asymmetry A�U (also referred in the following as Beam Spin Asymmetry
(BSA) because of its similarity with the DVCS BSA) is de�ned as:

A�U =
σ+ − σ−
σ+ + σ−

, (1.86)

where indexes +(−) refer to the right(left)-handed circular polarization of the incoming real photon,
and U to the unpolarized target. It can be written explicitly as:

A�U =
− α3

em
4πs2

1
−t

mp
Q′

1
τ
√

1−τ
L0
L sinφ (1+cos2 θ)

sin(θ) ImM̃−−

dσBH
. (1.87)

Projections for this observable have been made in [58]. The results obtained in this paper are
shown in Figure 1.28. The asymmetry as a function of φ and as a function of −t (only the amplitude
at φ = 90◦ is then plotted) are shown in Figures 1.28a and 1.28b, respectively. Similar predictions,
made during this thesis with the VGG model, are shown in Figure 1.29. The −t and Eγ dependence
are studied for di�erent values of θ. Note that the sign change between the two predictions. This is
due to a sign mistake in [58] which is discussed in more details in Section 5.9.

(a) (b)

Figure 1.28: (a) A�U as a function of φ for BH and BH+Int for di�erent cases of integration over θ.
(b) Amplitude of the A�U as a function of −t. In this case only the amplitude of A�U at φ = 90◦ is
plotted. Figures from [58].

1.3.4 NLO corrections to the TCS amplitude

One last aspect to mention for the TCS process is its sensitivity to NLO corrections [62, 63, 64, 65].
NLO corrections in αS can be represented by the diagrams in Figure 1.30. These corrections appear
when one considers a hard gluon in the hard part of the diagram (Figure 1.30a) or including gluon
GPDs (Figure 1.30b).
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Figure 1.30: Examples of two diagrams contributing at NLO in the TCS amplitude: (a) involving
quark GPDs, (b) involving gluon GPDs.

To account for these corrections, the de�nition of the CFFs is generalized as:

H(ξ, t,Q2) =

∫ 1

−1
dx

∑

i=u,d,··· ,g
T i(x, ξ)H i(x, ξ, t, µ2), (1.88)

where similar equations can be written for other GPDs, µ2 is the factorization scale and Q denotes
the hard scale, Q2 for DVCS and Q′2 for the TCS case. The T i hard coe�cients are, at leading order,
de�ned in Equations (1.56) and (1.57). At NLO the hard coe�cients for TCS and DVCS are di�erent
[62]. This di�erence leads to the NLO correspondence between TCS and DVCS CFFs:

HTCS NLO
= H∗DV CS − iπQ2 ∂

∂Q2
H∗DV CS , (1.89)

H̃TCS NLO
= −H̃∗DV CS + iπQ2 ∂

∂Q2
H̃∗DV CS , (1.90)

where similar equations apply for E and Ẽ . Because of the iπ factor in Equation (1.89), the real part
of CFF HTCS has a contribution from the imaginary part of HDV CS , which can be sizable. This fact
is illustrated in Figure 1.31, where the LO and NLO real parts of H are plotted against ξ for the TCS
and DVCS cases. A very large e�ect of the NLO correction is reported at low ξ (below 10−2) where
the sign of the CFF H for TCS is expected to �ip.
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1.3.5 TCS experimental status

There are currently no published data on TCS. However a complete analysis [59] was performed
using the CLAS detector at Je�erson Lab. It used a 5.7 GeV electron beam impinging on a liquid-
hydrogen target. Quasi-real photoproduction events where selected using the missing-mass technique.
The results for the R ratio obtained in this analysis are shown in Figure 1.32. The ratio is calculated
within the CLAS acceptance and compared to theoretical predictions. The DD parametrization of
GPDs seems to underestimate the data, while the Dual parametrization seems to reproduce them well.
However these results should be interpreted with care as the invariant mass range accessible by CLAS
covered a region where vector meson production is not negligible.

Following the 12-GeV upgrade of the CEBAF accelerator, the newly built CLAS12 detector (see
Chapter 2) reaches a wider range of lepton-pair masses. The results obtained by CLAS12 are presented
in Chapter 6. Other experiments are planned in Hall A (with the SOLID detector) and Hall D at JLab.
Finally there is a growing interest to measure TCS at higher energies in Ultra-peripheral collisions and
possible measurements could be performed at CERN [66].
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Figure 1.32: R ratio measured in the CLAS acceptance. Data points are compared with DD and Dual
GPDs parametrizations.
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Chapter 2

The experimental setup

The experimental activities described in this manuscript are performed at the Thomas Je�erson
National Accelerator Facility. Its main asset is a nearly continuous polarized electron beam used
to probe the structure of matter at the femto-meter scale. In this chapter the experimental setup
is described. First an overview of the laboratory is given, followed by a detailed description of the
CLAS12 detector (Sections 2.3, 2.4, 2.5 and 2.6 ) and associated softwares (Section 2.7 ). Finally the
data set used in this manuscript is presented in Section 2.8.

2.1 Je�erson Lab

The Thomas Je�erson National Accelerator Facility (commonly referred as JLab) is a physics labo-
ratory run by the U.S. Department of Energy, in Virginia, USA. It is located in Newport News, 300
kilometres south of Washington DC. More than 600 people work at JLab and more than 2000 scientists
collaborate to run experiments in the laboratory. It is devoted to the study of the strong interaction
since its foundation in 1984.

The Je�erson Lab physics program relies on the Continuous Electron Beam Accelerator Facility
(CEBAF), an electron accelerator that provides a continuous electron beam to four experimental halls
(Hall A to D). Each hall has a dedicated physics program and detectors. Hall A and C are equipped
with narrow acceptance spectrometers and can handle large luminosities (of the order of 1038cm−2s−1).
Hall D is dedicated to hadron spectroscopy and has a dedicated photon beamline. Finally, Hall B houses
the CLAS12 (CEBAF Large Acceptance Spectrometer 12) detector described in the following. In 2009
the laboratory started an upgrade program that has led to the construction of the fourth experimental
hall (Hall D), to the doubling of the beam energy from 6 GeV to 12 GeV and to the upgrade of the
Hall B detector CLAS to the current CLAS12 detector. The schematic description of the CEBAF and
JLab experimental halls is shown in Figure 2.1.

2.2 The Continuous Electron Beam Accelerator Facility

The core facility at Je�erson Lab is the CEBAF. This superconducting radio-frequency accelerator
delivers an electron beam with energy up to 12 GeV for Hall D and 11 GeV for all three other halls.
The beam electrons are produced at the injector where four circularly polarized lasers (one for each
hall) illuminate a gallium arsenide cathode. The polarization of the lasers allows to extract polarized
electrons from the cathode. The lasers operate at 250 MHz with an individual phase shift in order
to distinguish each beam bunch. The power of each laser can be controlled individually allowing each
hall to have its own beam current value. The beam is then injected to the accelerator. The accelerator
is composed of two linacs with 25 cryomodules each. Each cryomodule is divided in 8 radio-frequency
(RF) cavities which are synchronized at the total frequency of the accelerator (250×6=1500 MHz).
The two linacs are connected to each other by recirculation arcs on both ends. A di�erent recirculating
arc is used at each pass of the beam bunch in the accelerator. The maximum beam energy delivered
in Hall A, B and C (∼ 11 GeV) is obtained after a total of �ve passes in the whole accelerator. The
beam is then split by two separators, working respectively at 750 MHz and 500 MHz (see [67] for more

53



Chapter 2. The experimental setup

Figure 2.1: Schematic description of the CEBAF. The accelerator consists of two linacs connected to
each other by magnetic recirculating arcs. The accelerator delivers electron bunches alternatively to
each experimental hall. Hall D was built during the 12 GeV upgrade. Detectors in Hall A, B and C
were upgraded and each linac was extended with �ve new cryomodules in order to increase the beam
energy. The CLAS12 detector, described in Section 2.3, is located in Hall B.

details on the beam structure), providing each hall with a 250 MHz electron beam (one beam bunch
every 4 ns). In Hall B, the maximum beam energy obtained during the data taking was 10.6 GeV and
the nominal luminosity delivered by the CEBAF was 1035cm−2s−1.

2.3 CLAS12 general design

The CLAS12 detector is housed in Hall B [68]. It has a very large acceptance allowing to measure
inclusive and exclusive processes over a large phase space. CLAS12 is the successor of the �rst detector
of Hall B, the CLAS detector. Some detector systems of CLAS have been refurbished for CLAS12.
CLAS12 is composed of two main subsets of detectors: the Central Detector (CD) and the Forward
Detector (FD). The FD uses existing parts of the CLAS detector and newly built detectors. It detects
particles with polar angles between 5◦ and 35◦ with respect to the beam direction. The CD is made
of newly built sub-detectors and aims at measuring backward recoiling particles, with polar angles
between 35◦ and 135◦. In addition to the CD and the FD, the Forward Tagger (FT) covers very
low polar angles and is dedicated to tagged photo-production measurements. It is situated close to
the beam line downstream of the target. A solenoid magnet, with a central �eld of 5 T, and a torus
magnet, with

∫
Bdl = 0.5 − 2.7 Tm, allow for charged-particle momentum measurements respectively

in the CD and in the FD. The nominal luminosity of CLAS12 is 1035cm−2s−1, which is one order of
magnitude greater than the luminosity of the previous CLAS detector. A schematic view of CLAS12
is shown in Figure 2.2. Table 2.1 extracted from [68] summarizes the nominal CLAS12 performances.
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2.4. The CLAS12 Central Detector

Figure 2.2: The CLAS12 detector in the Hall B. The electron beam provided by the CEBAF accelerator
arrives from the right of the picture. It interacts with the target located at the center of the Central
Detector (CD). Particles emitted at high polar angles will be detected in the CD which surrounds
the target. The CD is composed of the Central Vertex Tracker (CVT), the Central Time Of Flight
(CTOF) and the Central Neutron Detector (CND). Because of the �xed-target kinematics, the majority
of particles are emitted at low polar angles. They are detected in the Forward Detector (FD) which
is located downstream of the target. The FD is composed of three regions of Drift Chambers (DC), a
time-of-�ight (FTOF), a calorimeter (EC) and two Cherenkov Counters (HTCC and LTCC). Figure
taken from [68].

2.4 The CLAS12 Central Detector

The Central Detector (CD) of CLAS12 is built between the target and the inner wall of the solenoid
magnet. It is a barrel detector with an almost 2π azimuthal coverage. It is composed of a tracking
system, the Central Vertex Tracker (CVT) (made of a silicon tracker (SVT) in the innermost region
and surrounded by a micromegas tracker (MVT)), and two time-of-�ight detectors, the Central Time
Of Flight (CTOF) and the Central Neutron Detector (CND), dedicated to the identi�cation of charged
and neutral particles, respectively. Figure 2.3 shows a view from the CLAS12 Event Display (CED) of
a reconstructed event in the CD, where all the detector layers are visible.

The CVT is used to measure the momenta of charged particles using the curvature of their helical
trajectories in the longitudinal magnetic �eld produced by the solenoid magnet. The momentum p
perpendicular to the direction of the magnetic �eld B is given by :

R =
p

qB
, (2.1)

where R is the radius of curvature, and q the charge of the particle. The above formula only gives
access to the transverse component of the momentum, the longitudinal component is deduced from
the pitch of the helical track. In practice only the ratio p

q is deduced from the radius of the track. The
charge is deduced from the orientation of the track, as the tracks of particles with opposite charge curl
in opposite directions in a magnetic �eld.
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Capability Quantity Status
Coverage Tracks (FD) 5◦ < θ < 35◦

& E�ciency Tracks (CD) 35◦ < θ < 125◦

Momentum (FD & CD) p > 0.2 GeV
Photon angle (FD) 5◦ < θ < 35◦

Photon angle (FT) 2.5◦ < θ < 4.5◦

Electron detection (HTCC) 5◦ < θ < 35◦, 0◦ < φ < 360◦

E�ciency η > 99%
Neutron detection (FD) 5◦ < θ < 35◦

E�ciency ≤ 75%
Neutron detection (CD) 35◦ < θ < 125◦

E�ciency 10%
Neutron Detection (BAND) 155◦ < θ < 175◦

E�ciency 35%
Resolution Momentum (FD) σp/p = 0.5− 1.5%

Momentum (CD) σp/p < 5%
Pol. angles (FD) σθ = 1− 2 mrad
Pol. angles (CD) σθ = 10− 20 mrad
Azim. angles (FD) σφ < 1 mrad/sinφ
Azim. angles (CD) σφ < 1 mrad

Timing (FD) σT = 60− 110 ps
Timing (CD) σT = 80− 100 ps

Energy (σE/E) (FD) 0.1/
√
E (GeV)

Energy (σE/E) (FT) 0.03/
√
E (GeV)

Operation Luminosity L = 1035 cm−2s−1

DAQ Data Rate 20 kHz, 800 MB/s., livetime. 95%
Magnetic Field Solenoid B0 = 5 T

Torus
∫
Bdl = 0.5− 2.7 Tm at 5◦ < θ < 25◦

Table 2.1: Summary of CLAS12 performances, published in [68].

2.4.1 The solenoid magnet

A solenoid magnet [69] encloses the CD sub-detectors. It is made of four superconducting cylindrical
coils. These coils produce a �eld primarily along the beam axis. A �fth coil is located outside of the four
main coils and produces an opposite direction �eld and acts as an active shielding. At full operating
current the solenoid magnet generates a 5 T magnetic �eld at its center. The solenoid magnetic �eld
is �rstly used for charge and momentum measurements of charged particles in the CD. It also provides
a powerful shielding to Möller electrons. Möller electrons (e− + e− → e− + e−) are produced when
electrons from the beam scatter on atomic electrons in the target material. The majority of Möller
electrons are curled along the longitudinal solenoid �eld and are collected in a tungsten shield placed
downstream of the target, the Möller cone. The solenoid magnet has a cylindrical bore coaxial with
the beam with a diameter of 78 cm where all sub-detectors of the CD are located.

2.4.2 Target

The CLAS12 experiments are regrouped in "run groups". The experiments of a given run group
(RG) share the same experimental setup and the same target. The two �rst run groups of CLAS12 used
the detector setup described below and unpolarized targets. The target system of CLAS12 (described
in [70]) is the same as the one used in the CLAS experiment (see Figure 2.4). The cryogenic target cell
consists in a 5 cm Kapton cone containing the target material. The �rst run group (RG-A) of CLAS12
uses liquid hydrogen (LH2), while liquid deuterium (LD2) was used during the second experiment
(RG-B). The beam enters and leaves the target through 30-µm-thick aluminum windows. The target
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Figure 2.3: CLAS12 Event Display view of an
event in the CD of CLAS12. The tracking sys-
tem consists of 6 layers of silicon tracker fol-
lowed by 3 micromegas layers. The Central
Time Of Flight encloses the tracking system.
Finally the Central Neutron Detector is the
outermost detector in the central region.

Figure 2.4: Target system of CLAS12. The
target cell contains the target material (LH2

or LD2). The foam scattering chamber aims
at reducing the material budget of particles
emitted in the FD.

is located inside a 45-cm-long scattering chamber made of low density Rohacell XT110 foam that aims
at reducing the material thickness crossed by particles emitted from the target. The beam position is
monitored at the target location using a Beam O�set Monitor (BOM). This is achieved by placing a
glass cylinder parallel to the beam. The Cherenkov light produced by the beam halo is read out with
optical �bers to a multi-anode PMT and provides information on the o�set of the beam at the target
position.

2.4.3 The Central Vertex Tracker

The Central Vertex Tracker (CVT) of CLAS12 is the tracking system in the CD. It is composed of
two subsystems using two distinct technologies: a three-layer Silicon Vertex Tracker (SVT) close to the
target followed by a six-layer Micromegas Vertex Tracker (MVT). A schematic view of the complete
CD tracking system is shown in Figure 2.5.

Silicon tracker

The SVT [71] is designed to provide a good momentum resolution in the CD. It is composed of
three layers of double-sided silicon micro-strip modules. Each module is composed of two layers of 256
silicon micro-strip foils separated by a resistive wafer. Silicon strips have a small constant angle pitch
(1/85◦) with their nearest neighbor, allowing a 3D localization of the interaction point. Each layer is
composed of respectively 10, 14 and 18 modules placed parallel to the beam line. This design is used
to maximize the momentum resolution while minimizing the material budget in the inner region of the
CD. A full description of the SVT is provided in [71].
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Micromegas

The six outer layers of the CD tracking use the micromegas technology, and are referred as Mi-
cromegas Vertex Tracker (MVT). Micromegas are gaseous tracking detectors. A micromegas layer is
composed of a drift region where free electrons are produced by the crossing of high-energy parti-
cles, which then drift toward a micro-mesh foil, delimiting the ampli�cation gap. In the ampli�cation
gap, a large electric �eld accelerates the electrons, creating important electromagnetic showers. The
signal is collected on parallel readout strips, located on the far side of the ampli�cation gap. For a
full description of the detector see [72]. Three layers of the MVT have their readout strips oriented
longitudinally and the three others perpendicularly to the beam direction. This design increases the
polar and azimuthal angular resolution of the tracking in the CD.

Figure 2.5: View of the CVT and the target
system of CLAS12. The SVT surrounds the
target, the MVT provides outer tracking.

Figure 2.6: 3D view of the CTOF. It consists
of 48 plastic scintillators arranged in a cylin-
der surrounding the CLAS12 central tracking
system. The light produced by the interacting
particles is guided outside the solenoid mag-
netic �eld via bent light guides.

2.4.4 Central Time Of Flight

The Central Time Of Flight of CLAS12 (CTOF) [73] consists of a barrel of plastic scintillators
surrounding the central tracking system (see Figure 2.6). The scintillating light is collected on both
sides of the scintillating paddles. It is then guided out of the magnetic �eld by light guides toward photo-
multipliers (PMTs). The downstream light guides have a bent design allowing readout on the upstream
side of the CD. This design was forced by the presence of the High Threshold Cherenkov Counter
(HTCC), close to the solenoid magnet volume. The CTOF provides a precise measurement of the time
of �ight of particles from the interaction point to their detection point. The particle identi�cation is
performed by comparing the momentum measured by the CVT to the expected one calculated from
the measured time-of-�ight, assuming various mass and charge hypotheses. The resolution of each
paddle is estimated to be around 80 ps (see [73]), allowing for a good charged particle identi�cation in
the CD.

2.4.5 Central Neutron Detector

The Central Neutron Detector (CND) [74] is the outermost sub-detector of the CLAS12 CD. It
consists of three radial layers of 48 plastic scintillator counters. It aims at increasing the neutron
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detection e�ciency in the central region. The CND is a single sided readout detector. Two adjacent
paddles are optically coupled by a light guide at their upstream ends. This design was enforced by the
bent-light-guide design of the CTOF preventing any readout from the downstream end of the CND. A
full description of this detector is provided in Chapter 3 of this manuscript.

2.5 The CLAS12 Forward Detector

The Forward Detector (FD) of CLAS12 is located downstream of the target. It aims at detecting
particles with polar angles comprised between 5◦ and 35◦. It is divided into six sectors, each sector
being equipped with the same set of sub-systems.

2.5.1 The torus magnet

The torus magnet of CLAS12 [69] produces a magnetic �eld perpendicular to the beam direction.
Particles are de�ected, depending on their charge, toward or outward of the beam direction. The
curvature of the tracks allows for momentum reconstruction. The torus magnet of CLAS12 consists of
six trapezoidal supra-conductor coils located between each drift chamber (see 2.7). The six coils are
connected in series thus providing the same magnetic �eld in all the six sectors.

2.5.2 Drift Chambers

The forward tracking is achieved by three consecutive regions of Drift Chambers (DC) [75], each
region being divided in a set of six sectors. The design of the DC is shown in Figure 2.7. The mechanical
structure of the DC is provided by the torus magnet support. Each sector is separated by one of the
six torus coils. Each region is composed of 12 layers of 112 sense wires. Six consecutive layers are
grouped into a superlayer. Two superlayers of a given region have a ±6◦ stereo angle with respect to
each other in order to increase the momentum resolution. The structure of a superlayer is shown in
Figure 2.9. The charged particles crossing the layer ionize the gas mixture and the electrons produced
then drift along the electric �eld created by �eld wires toward the sense wires. The recorded drift time
permits to reconstruct the track of the particle through the chamber.

2.5.3 Forward Time Of Flight

The Forward Time Of Flight (FTOF) [76] is situated after the DCs and is used to measure the time
of �ight of charged and neutral particles emitted in the FD. It is divided in six sectors, each sector being
composed of three panels of double-sided readout plastic scintillator paddles (panel-1b and panel-1a
situated consecutively in the low polar angle regions, and panel-2 covering high polar angles). Figure
2.8 shows a schematic view of the FTOF and its mechanical support. The time resolution achieved by
the FTOF ranges from 50 ps for the short paddles located close to the beam direction to 200 ps for
the longer ones.

2.5.4 Electromagnetic Calorimeter

The CLAS12 Electromagnetic Calorimeter (EC) [77] consists of six independent calorimeters, one for
each forward sector. Each sector is divided in two modules. The downstream module consists of two
layers, the inner calorimeter (ECIN) and the outer calorimeter (ECOUT) which have been refurbished
from the CLAS experiment. The Pre-shower Calorimeter (PCAL) is located in front of the former.
The modules consist of lead sheets sandwiched with scintillator bars with single sided readout. Both
modules use a triangular hodoscope geometry with stereo readout as described in Figure 2.10. The EC
is used for particle identi�cation through the measurement of the deposited energy and for kinematic
reconstruction of neutral particles using time and position of the measured showers. The EC (ECIN
and ECOUT) is composed of 39 layers of 10-mm-thick scintillator bars followed by 38 2.2-mm-thick
lead sheets.
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Figure 2.7: CLAS12 forward tracking system.
It consists of three consecutive drift chamber
regions, each of them covering one of the six
forward sectors of CLAS12.

Figure 2.8: Forward Time Of Flight of
CLAS12. It consists of three di�erent panels
with paddle timing resolutions ranging from
50 to 200 ps.

Figure 2.9: Wire layout for one superlayer of the CLAS12 drift chambers. One layer of sense wires
is surrounded by two layers of �eld wires on each side, forming a "honeycomb" pattern. The red line
represents the path of a charged particle being detected in the chamber. The drift distance (deduced
from the drift time) from the track to the closest signal wire (represented by yellow circles) allows to
retrieve the track characteristics.

Pre-shower Calorimeter

The Pre-shower Calorimeter (PCAL) has been designed and built for the CLAS12 upgrade. It is
located just downstream of the FTOF. It aims at increasing the radiation length of the EC, hence
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providing a better measurement of the total shower energy. It is also used in the identi�cation of
electrons as they tend to deposit most of their energy in a small shower volume while pions (that are
minimum ionizing particles at CLAS12 kinematics) deposit energy in all EC layers. It is composed of
15 layers of 1-cm-thick scintillators bars sandwiched with 14 layers of 2.2-mm-thick lead sheets. The
layers are composed of 84 strips in the U planes and 77 strips in the V and W planes. The PCAL
has narrower strips (4.5 cm) than the EC (10cm). This feature provides a better determination of the
position of the particle compared to the EC alone and allows to separate close clusters produced by
photons in high energy π0 decays. At large angles and for all layers, each pair of strips is combined
into a single readout channel to optimize the number of readout channels.

Figure 2.10: Layout of a CLAS12 EC module. Lead sheets are sandwiched with scintillator bars with
alternating orientation (denoted U, V and W planes).

2.5.5 Cherenkov Counters

There are two main Cherenkov counters systems in CLAS12: the High Threshold Cherenkov Counter
(HTCC) and the Low Threshold Cherenkov Counter (LTCC). These two sub-detectors are used for
particle identi�cation. Cherenkov counters are usually �lled with a large volume of gas (CO2 for HTCC
and C4F6 for LTCC). A particle crossing the gas volume at a speed higher than the speed of light
in the medium emits a cone of light. This phenomenon, known as the Cherenkov e�ect, allows to
distinguish particles as the emission of light is possible only if the momentum of the particle is higher
than a threshold momentum pth given by:

pth =
mc√
n2 − 1

, (2.2)

where n is the refraction index of the gas and m the mass of the particle. The Cherenkov light is then
collected by mirrors located around the gas volume and sent to PMTs where it is ampli�ed and read
out.

High Threshold Cherenkov Counter

The High Threshold Cherenkov Counter (HTCC) is the most upstream detector of the FD. It is
located just outside of the solenoid outer wall, covering all azimuthal angles (see Figure 2.11). All
particles emitted at low polar angles (between 5◦ and 35◦) in the FD will cross the HTCC. The light
emitted is collected by 12 ellipsoidal mirrors located on the downstream wall of the gas volume. PMTs
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are located in the outermost part of the detector. This design ensures that the quantity of matter
crossed by particles is as low as possible. The HTCC is designed to accomplish a 99% electron/pion
separation for momenta below 4.9 GeV.

Figure 2.11: Schematic lateral view of
the High Threshold Cherenkov Counter of
CLAS12. Particles with a polar angle between
5◦ and 35◦ pass through the chamber of the
HTCC, allowing for the separation between
electrons and pions.

Figure 2.12: The Forward Tagger of CLAS12
is situated downstream of the target at very
low polar angles (2◦ < θ < 5◦). It is used to
detect electrons and photons scattered close to
the beam pipe.

Low Threshold Cherenkov Counter

The Low Threshold Cherenkov Counter (LTCC) [78] is designed to separate pions and kaons in the
4 to 8 GeV region. It covers two sectors and it is made of the refurbished CLAS Cherenkov counters.

RICH detector

In addition to the two main Cherenkov systems, a Ring Imaging Cherenkov detector (RICH) [79] is
installed in one of the sectors of the FD. This detector has the capability of measuring the angle θ at
which the Cherenkov light is emitted, which is given by:

cos(θC) =
1

nβ
. (2.3)

This allows for kaon identi�cation in the 3-8 GeV momentum range, by matching their β measured
from the time of �ight with the Cherenkov cone angle θC .
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2.5.6 Forward Tagger

The Forward Tagger (FT) [80] is a composite detector made of a calorimeter, a scintillator hodoscope
and two double-layers of micromegas trackers. It is located at very low polar angles (2◦ to 5◦) and
it aims at identifying electrons and photons emitted close to the beamline (see Figure 2.12). This
detector is mainly used for tagged-photo reactions and DVCS measurements.

2.6 Other devices

2.6.1 Beamline

Before interacting with the target, the electron beam provided by the CEBAF is stirred and moni-
tored (see Figure 2.13 extracted from [70]). The beam position monitoring is achieved upstream of the
target by a series of Beam Position Monitoring (BPM) systems. The transverse pro�le of the beam is
recorded by wire harp systems composed of tungsten wires that can be moved into the beam (this is
an invasive measurement only performed before data taking). Finally halo counters (PMTs located at
various angles and positions close to the beamline) monitor undesired beam halos and backgrounds.

Beam dump shielding 
and the collimator box

2H00 Girder with 
quadrupoles and 
H/V correctors 2H01 nA BPM

Target cryostat

2H01 wire harp CLAS12 detector

Target cell

Tungsten shield

22 meters

Tagger magnet

Figure 2.13: Schematic description of the CLAS12 beamline.

2.6.2 Möller polarimeter

The electrons accelerated by the CEBAF are polarized. The polarization e�ciency is around 85%.
In order to correct for this incomplete polarization, it is measured regularly during data taking. This
measurement is performed using the Möller polarimeter located just before the beamline enters the
experimental hall. Polarization measurements make use of the Möller scattering of longitudinally
polarized electrons from the beam o� atomic electrons from the longitudinally polarized Möller target
(~e+~e→ e+ e). The measurement is performed by putting a polarized target (made of Permendur, an
iron-cobalt alloy) in the beam. Scattered electrons are detected in two scintillator detectors located at
symmetric angles with respect to the beam. The scattered electrons are extracted from the beam by
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quadrupole magnets. The di�erence of the coincidence rate for each beam helicity can be related to
the polarization of the beam. The layout of the Möller polarimeter is shown in Figure 2.14.

25 cm diameter beam pipe

TOP VIEW

Target

Chamber

9.48 m

Quadrupole Quadrupole

Effective field region

96.5 cm 96.5 cm62 cm 199 cm

29.7 cm

particle exit
flange

4.93 m

Detector

Figure 2.14: Möller polarimeter layout. It is composed of a polarized target, two quadrupole magnets
and a pair of detectors.

2.7 Data acquisition and processing

2.7.1 Trigger system and Data Acquisition system
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Figure 2.15: Diagram of the trigger system of CLAS12.
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2.8. Data set

The trigger system [81] is the �rst step of data acquisition. It aims at providing the Data Acquisition
system (DAQ) a trigger signal for data recording. The goal of the trigger is to keep only events where an
electron e�ectively interacted with the target and reject non-interesting events such as cosmic rays for
example. The trigger is composed of three stages that determine online if an event is worth recording
for later o�ine analysis. The trigger system is represented on Figure 2.15. The �rst stage of the trigger
is composed of VXS Trigger Processor boards (VTP) that collect the responses of the detectors (ADCs
and TDCs, see Chapter 3) which are included in the trigger procedure and identify possible signals
coming from particles. Each VTP provides a series of bits corresponding to the state of its associated
detector. The bit series is then fed to a Sub System Processor (SSP). There are seven SSPs, one for
each forward sector and one for the CD. SSPs combine information from each detector at the sector
level (and CD) and send their response to a �nal VTP module that produces the �nal trigger bits.
The total latency (time to process an event) of the trigger system is at most 8 µs. During RG-A data
taking, the �nal trigger rate was lower than 20 kHz and the live time (the fraction of the time during
which data were recorded on tapes) was around 95%. Triggered events are then read out by the DAQ
system of CLAS12. The data-to-tape rate is reported to be up to 500 MB/s.

2.7.2 Event reconstruction and processing

Data are stored on large data tapes in the EVIO (Event Input/Output) format. The �rst step of the
o�ine processing is referred as decoding. The decoding process takes EVIO �les as input and produces
output in the HIPO (High Performance Output) format. It involves the �tting of the signal waveforms
and the translation from the DAQ electronic notation (crate/slot/channel) to the detector notation
(sector/layer/component). This step is performed once, as it requires a large computing power. The
output HIPO �les contain detector related banks for each event. Calibration and reconstruction are
then performed using these decoded �les. The reconstruction of CLAS12 data is based on the CLARA
framework [82]. CLARA is a multi-threaded framework that allows to run services according to a user-
de�ned architecture (see the CLAS12 reconstruction architecture shown in Figure 2.16 for example).
Each service receives input (I), processes it and produces output (O). I/O are organized in banks, each
bank being associated to one event and containing custom information. This architecture was chosen
for its versatility and the possibility to add custom services at a later stage of the experiment. As shown
in Figure 2.16, each sub-detector of CLAS12 has its own reconstruction service. The output of each
subsystem service is fed to the Event Builder (EB) of CLAS12. The EB associates all the sub-system
responses and produces the particle information (particle identi�cation, momenta and vertex).

2.7.3 Simulation

A full simulation of CLAS12 [83] is implemented in the Geant4 Monte Carlo (GEMC) package. Each
sub-detector volume is implemented as a Geant4 volume, the response of the subsystems are given by
speci�c "hit process" routines. Data taken with random trigger can be added to the simulated data to
reproduce the background (see Section 5.5 for details).

2.8 Data set

The dataset used in the work of this manuscript was taken during the Fall 2018 run period, between
October and December 2018. The run period is part of the CLAS12 run group A (RGA), which is
dedicated to the study of the proton. The target used during RGA is LH2. The torus magnet was
set to bend negative particle toward the beam pipe (i.e. inbending con�guration). The accumulated
charge taken during each shift and the total charge taken during this run period is shown in Figure
2.17. The total accumulated charge during this run period corresponds to approximately 200fb−1.
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Figure 2.16: Reconstruction framework of CLAS12, implemented in a CLARA architecture.
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Figure 2.17: Accumulated charge per shifts and total accumulated charge. The gated charge corre-
sponds to the ungated charge weighted by the live time of the CLAS12 DAQ. It corresponds to the
actual amount of data recorded during this run period. Plot extracted from the CLAS12 monitoring
system.
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Chapter 3

The Central Neutron Detector

The Central Neutron Detector (CND) [74, 84] is the outermost of the subsystems composing the
Central Detector of CLAS12. This detector was designed and built at the Institut de Physique Nucléaire
d'Orsay (IPN, now part of IJCLab). It consists of a barrel of three layers of scintillators coupled at
their downstream ends with U-turn light guides. The readout is performed at the upstream ends of
the scintillators by photomultiplier tubes (PMTs) connected to the bars via 1-m-long bent light guides.
The PMTs are positionned in the fringe-�eld region of the CLAS12 5-T superconducting solenoid.
The CND was installed in the CLAS12 solenoid, and subsequently started its data taking, in the Fall
of 2017. It is dedicated to the detection of neutrons with polar angles between 40◦ and 135◦. The
main purpose of the CND is the measurement of DVCS observables on the neutron (nDVCS) [85].
Measuring DVCS observables on neutron (en → en′γ) is one of the necessary steps toward a full
understanding of the structure of the nucleon in terms of GPDs. Quark-�avor separation of GPDs is
possible by combining proton and neutron GPDs. Furthermore nDVCS plays a complementary role
to the transversely polarized proton target DVCS experiments for its sensitivity to the GPD E. The
GPD E plays an important role in understanding the spin structure of the nucleons as it enters directly
the Ji's sum rule that describes the angular momentum contribution of the quarks to the spin of the
nucleon. The CND will also be used in other nDVCS experiments [86] and whenever the detection
of the recoil neutron may be required (N∗ program, for instance, or for all the deeply-virtual meson
production reactions on the neutron). The �rst beam data collected by CLAS12 on a proton target
con�rmed the design performance.

This chapter is divided in eleven sections. Section 3.1 presents the motivations for building the CND.
In Section 3.2 the nDVCS experiment requirements and their consequences on the design of the CND
are presented. Then in Sections 3.3 to 3.9, each aspect of the CND software is discussed. Section 3.10
presents the detection performance of the CND. Preliminary results for the nDVCS experiments are
shown in Section 3.11.

3.1 Motivations

In Section 1.3, the Deeply Virtual Compton Scattering (DVCS) process is presented as one of the
main physical processes described by GPDs. As of today, most DVCS data have been taken on proton
target (pDVCS). Yet neutron DVCS (nDVCS) data are also of great interest [87, 88, 89].

One of the main motivations for the neutron DVCS is the �avor separation of GPDs. As mentioned
in the PDFs case in Section 1.1, it is possible to decompose the valence-quark �avor dependence of
proton and neutron GPDs using isospin symmetry as:

Hp =
4

9
Hu +

1

9
Hd, (3.1)

Hn =
4

9
Hd +

1

9
Hu, (3.2)
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where similar equations apply to the other GPDs. By measuring both proton and neutron observables,
an experimental extraction of quark GPDs can be performed.

Another point advocating for neutron DVCS is its complementary sensitivity to CFFs with respect
to proton DVCS. As shown in Section 1.3, DVCS asymmetries are sensitive to CFFs weighted by FFs,
but the proton and neutron FFs have di�erent behaviors (see Figure 1.4). For example the beam-spin
asymmetry (BSA) is moslty sensitive to the imaginary part of the CFF H in proton DVCS, while
it is sensitive to the imaginary part of E in neutron DVCS (the H̃ contribution in neutron DVCS
is expected to be small due to the cancellation between u and d quarks). Therefore measuring the
BSA for nDVCS allows to constrain the E GPD, which is poorly constrained by current proton data
(transversely polarized protons experiments are also sensitive to GPD E, but are also very challenging
experimentally). The neutron DVCS will thus play a central role in the measurement of the Ji's sum
rule.

However nDVCS is a much more challenging process to measure than pDVCS. As neutron targets
are not stable, a deuterium target is needed. The use of a deuterium target implies that �nal-state-
interaction corrections have to be applied to the extracted quantities, as neutrons in deuterium are
bound. Furthermore neutrons are more di�cult to detect than protons. They are electrically neutral
and consequently cannot be detected in tracking detectors. In addition, as neutrons mostly interact
with matter through elastic scattering, their detection in calorimeters and scintillator detectors has
a lower e�ciency than for protons. This issue can be dealt with by increasing the active volume of
detection, in order to obtain a larger e�ciency. This was the solution chosen for the CLAS12 nDVCS
experiment. The dedicated neutron detector is presented in the next sections.

3.2 Design and hardware

3.2.1 Requirements

At CLAS12 kinematics, in the nDVCS channel, electrons and photons are mostly detected in the
Forward Detector (FD) and in the Forward Tagger (FT), while neutrons are mainly emitted at large
polar angles in the Central Detector (CD) (θ > 40◦). Thus high neutron detection e�ciency, good
momentum and angle resolution as well as high neutron-photon separation power are required in the
CD in order to measure nDVCS observables. As described in Chapter 2, the CND is situated between
the CTOF and the solenoid magnet as shown in Figure 3.2. The CND is providing most of the neutron
detection e�ciency in the CD.

Without the CND the neutron detection capability of the CD is given by the Central Time-Of-Flight
(CTOF) of CLAS12. The CTOF is a barrel detector which consists of a single layer of 3-cm-thick plastic
scintillators. It provides a relatively low neutron detection e�ciency of around 3%. The CND has a
radial thickness of 9 cm corresponding to the full available space between CTOF and the magnet. It
is designed to have a neutron detection e�ciency of around 10%.

Experimentally nDVCS is performed on a deuterium target and the spectator proton stays unde-
tected (ed→ e′nγ(p)) because of its low recoil momentum. To ensure that the spectator particle is a
proton, the missing mass of the �nal state spectator e′nγ(X) is calculated and cut around the mass of
the proton. In the computation of this missing mass the kinematic variables of the electron and the
photon are given by the FD or FT while the neutron ones are given by the CND. It was shown in the
early stage of the R&D process of the CND that the momentum resolution of the CND should not
exceed 10% in order for the neutron kinematics to have low e�ect on the proton missing mass. This is
shown in Figure 3.1 extracted from [84].
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Figure 3.1: Missing mass squared of the e′nγ(X) system, for the nDVCS channel. The di�erent colors
correspond to di�erent combinations of particles detected with or without resolution e�ects. One can
see that the width of the missing mass is driven by the resolution on the kinematics of the photon. The
neutron contribution to the total width of the missing mass is small for a resolution on its momentum
of 5%. Figure taken from [84].

The CND has to provide a good neutron-photon separation in the CD. The separation between
neutrons and photons is achieved by measuring β for a given neutron candidate:

β =
dpath

TOF × c (3.3)

where TOF is the time-of-�ight of the particle, dpath is the path traveled by the particle from the
target to the interaction point with the CND, and c is the speed of light. Both TOF and dpath are
calculated using the CND (see Section 3.4 for more details). dpath is obtained as:

dpath =
√
z2 + r2 (3.4)

where z is the longitudinal position of the hit and r its radial position. A radial segmentation is needed
in order to achieve a good measurement of r. The longitudinal position z is given by:

z ∝ ∆t× veff (3.5)

where ∆t denotes the di�erence of the time measured at both ends of the hit scintillator and veff is
the e�ective velocity of the light in the paddle. The TOF is proportional to the sum of the measured
times at both ends of the paddle. Thus the β neutron-photon separation is only dependent on the time
resolution of the CND. Geant4-based simulations show that to ensure a 3-σ separation up to 0.9 GeV
the time resolution of the CND should be about 150 ps.

3.2.2 Design description

The CND uses the space left between the CTOF and the solenoid magnet. The downstream light-
guides of the CTOF do not allow for downstream readout of the CND as shown in Figure 3.2b. Thus
the CND was designed with light readout at the upstream end only. The CND consists of three radial
layers of 48 plastic scintillator paddles with trapezoidal shape that are collinear to the direction of
the beam. The scintillating material is EJ-200 (Polyvinyl Toluene, PVT) from Eljen Technology. The
radial thickness of all the paddles is 30 mm while the other dimensions vary depending on the layer,
as shown in Table 3.1.
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(a) (b)

Figure 3.2: (a) Drawing of the CND inserted in the solenoid magnet. (b) Drawing of the CND (in
black) inserted between the CLAS12 Central Time-Of-Flight (in blue) and the solenoid (in grey). The
target system is also shown inside the CTOF.

Layer Inner face Outer face Length
width (mm) width (mm) (mm)

1 35.92 39.87 665.72
2 40.0 43.95 700.0
3 44.08 48.03 734.28

Table 3.1: Dimensions (mm) of the trapezoidal scintillator bars of the CND. The layer numbers go
from the innermost (1) to the outermost (3). The thickness of all the bars is 30 mm.

Adjacent paddles are coupled two-by-two at their downstream ends with a u-turn lightguide. This
allows for single-sided readout as one of the two paddles plays the role of lightguide for its neighbor,
as shown in Figure 3.3. The signal extracted from the paddle where the hit occurred is called direct
while the indirect signal is retrieved from the coupled paddle. Each bar is wrapped in an aluminum foil
acting as re�ector. Three pairs of coupled paddles are stacked up, one over the other, forming a sector
or block. Overall there are 24 sectors of 6 paddles, for a total of 144 scintillators, numbered according
to the scheme de�ned in Figure 3.4. The scintillation light produced by the interaction of particles is
guided from the upstream ends of the scintillators to the PMTs through 1.5 m-long lightguides. The
PMTs are located outside of the solenoid magnetic �eld surrounding the central detector of CLAS12
and are individually shielded by a 1-mm-thick mu-metal cylinder and a 5-mm-thick mild steel outer
cylinder. The ampli�cation of the light signal and the readout is done by Hamamatsu R10533 PMTs
located at the end of the lightguides. This designed was tested before the installation. The timing
resolution of each block was measured using cosmic rays as described in [74]. The results of these
tests are shown in Figure 3.5: the timing resolution is compatible with the R&D speci�cations. The
installation of the CND took place in Fall 2017. The support structure, designed alongside the detector,
was �xed to the solenoid magnet. All the sectors were then installed one by one. The PMTs were
coupled to the lightguides using optical grease. A picture of the detector after the installation is shown
in Figure 3.4.

3.2.3 High voltage power supply, electronics and readout

The PMTs are energized by a high voltage (HV) of around 1500 V. The HV is supplied by CAEN
SY527 power supplies on which CAEN A734N multi-channels boards (16 channels, 3kV max voltage
and 3 mA max current) are set.

The signals from the PMTs are read by the electronic readout, situated a few meters away from the
CND (see Figure 3.6). First the signal is sent to active splitters. The three splitter modules used for
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Figure 3.3: Concept of particle detection in the CND.

Figure 3.4: The channel numbering scheme of the CND. The CND is composed of 144 paddles, divided
into 24 sectors of 3 layers of coupled paddles.

the CND were developed at IPN Orsay for the G0 experiment in Hall C at Je�erson Lab [90]. There
are 64 input SMA channels on each module. For each input channel, two output signals are provided
at the front end of the splitter modules: a signal for the charge measurement and a signal for the time
measurement referred as time and charge signal respectively in the following. The gain is set to unity
to ensure no loss of amplitude.

The charge signals are sent via LEMO cables to Flash Analogue to Digital Converter (fADC) modules
(see Figure 3.6) that provide the total integrated charge of the signal (referred as ADC in the following).
The time signals are sent to Constant Fraction Discriminators (CFD) GAN'ELEC FCC8 that have
been designed for the TAPS collaboration [91]. The use of CFDs ensures that no time-walk correction
is needed at the calibration stage. The time signal is then sent to Time to Digital Converters (TDC)
which have a resolution of 25 ps per channel. The output digitized raw time is referred to as TDC in
the following. From these two sets of numbers (ADCs and TDCs) the time and the deposited energy
of the particle that produced the signal are extracted.
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Figure 3.5: CND timing resolution measured using cosmic rays during the validation tests prior to the
shipping to JLab. The average timing resolution is found to be 150 ps.

(a) (b)

Figure 3.6: (a) Schematic description of the readout electronics chain for the CND. The signals from the
PMTs are splitted and transmitted to CFDs and TDCs, and fADC modules. (b) The CND electronics
in Hall B.

3.2.4 High voltage setting

Each PMT was initially energized with a high voltage corresponding to a nominal gain that was
determined during individual PMT tests prior to the installation. The high voltages were then adjusted
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according to real data output. The value of the HV provided to each PMT determines its gain. It is
necessary to have similar gains in each PMT/lightguide/scintillator system to have a constant detection
e�ciency for all the kinematics. The HV setting is performed with cosmic data taken with opposite
sector trigger and for di�erent value of HV. The opposite sector trigger ensures that cosmic rays cross
paddles in straight tracks and deposit a constant energy. The position of the indirect ADC peak is
used to equalize the gains of the PMTs. The indirect ADC is de�ned as the ADC associated with the
indirect signal of a hit. For the HV setting, the indirect signals were de�ned as the signals with higher
TDC (this provides a good approximation before the calibration is performed). The indirect ADC
spectra was �tted with a Lorentzian and the maximum was extracted for di�erent values of HV (see
Figure 3.7). The ADC indirect peak versus HV distributions are then �tted with an exponential (see
Figure 3.8) for each PMT. The HVs are then adjusted to yield the same ADC indirect peak position
for every paddle. During the data taking, the gains of the PMTs were adjusted manually after long
shutdowns using cosmic data, in order to have a similar indirect ADC peak for all the paddles.

Figure 3.7: Indirect ADC spectra for cosmic rays �tted with a Lorentzian function. The position of
the maximum of the �t de�nes the ADC indirect peak.

3.3 Decoding

During the data collection, the information recorded by the CND are the TDCs and the binned
waveforms from the fADC modules. These data are associated to an electronic channel corresponding
to the crate and to the board of the acquisition module. The raw data are then processed o�ine to
reconstruct physics-related quantities.

The �rst step of the o�ine data processing is decoding. Decoding consists in two steps. First the
charge signal is integrated and ADCs are calculated. The value of the pedestal is subtracted from the
charge signal waveform. The pedestal corresponds to the constant value of the charge signal when
no particle is detected. The charge signal waveform is binned in 4-ns bins. A threshold for pulse
detection is applied to the binned waveform: the �rst bin with an amplitude higher than the threshold
is recorded. The signals that fail the pulse detection are discarded. The integration of the charge
signal is then performed in a window around the �rst bin above the threshold. During the CND
data taking the ADC integration window was set to 12 bins before the threshold and 60 bins after.
The procedure is shown in Figure 3.9, where in this case the integration window is set to a smaller
width. The thresholds were set to 60 ADC units above the pedestal. Each electronics channel is then
assigned a sector (1 to 24), a layer (1 to 3) and a component (left or right) according to a translation
table stored in the CLAS12 database. The decoded �les are written in the HIPO format and are used
for the reconstruction and the calibration (see Chapter 2 for more details). The reconstruction and
calibration steps are closely related and are performed alternatively at the early stage of the CND
data processing. A �rst reconstruction is performed to match ADCs and TDCs. The �le obtained is
then used for the calibration before the �nal reconstruction happens. For clarity, the reconstruction
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Figure 3.8: Indirect ADC peak versus HV for some paddles of the CND. The points are �tted with
an exponential. The values of the HV are then chosen to yield the same indirect ADC peak in every
paddle.

algorithm is presented below (Section 3.4) followed by the calibration algorithm (Section 3.5). The
aim of the o�ine processing is to produce high-level quantities from ADCs and TDCs. In the following
we call "hit" the interaction of a particle with the detector. Each hit is associated with a position, a
time and an energy.

Figure 3.9: Raw signal obtained from a fADC module. The red area corresponds to the part of the
signal used for the calculation of the charge integral.

3.4 Reconstruction

The reconstruction of the CND data is done in three steps. The �rst step is the reconstruction of the
time and the position of the hit in the paddle. The second step is the reconstruction of the deposited
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energy. The last step is the matching of CND hits with charged particle tracks. The reconstruction
uses calibration constants that are determined during the calibration step. For the sake of clarity we
suppose in this section that the calibration constants are already determined. During the CND o�ine
data processing, the �rst reconstruction performed before the calibration uses either constants from
previously calibrated runs or constants determined during tests prior to the installation. The constants
used in the reconstruction are summarized in Table 3.2.

Constants Name Number of constants Units

E�ective velocity veff 144 cm/ns
U-turn time loss ut 72 ns

Left-Right timing o�set (adjusted) tLRad 72 ns
Global time o�set toff 72 ns
Attenuation length A 144 cm
Energy constants MIPD, MIPI 144 each no units

Table 3.2: Constants used in the CND reconstruction.

The e�ective velocity veff is the speed of light in the scintillating plastic of the paddle. The U-turn
time loss term ut accounts for the time necessary for the scintillating light to cross the u-turn light
guide and reach the neighboring paddle. The two time o�sets tLRad and toff are respectively the o�set
between two coupled paddles and the o�set of a pair of paddles with respect to the CLAS12 common
time reference (referred to as start time in the following). Finally the attenuation length A and the
energy constants MIPD and MIPI are used in the energy reconstruction steps. They correspond
respectively to the characteristic attenuation length of light in a paddle and to the ADC values for a
direct (resp. indirect) signal of a Minimum Ionizing Particle (MIP) detected in a given paddle.

3.4.1 Associating TDCs and ADCs

The �rst step of the reconstruction consists in matching ADCs and TDCs associated with the same
paddle. This is performed by looping through both the ADC and TDC lists and comparing sectors,
layers and components (SLC). An ADC and a TDC with equal SLC are grouped together to form a
half-hit. If more than one TDC or ADC are associated with one half-hit, the half-hit is discarded.
Half-hits are then grouped in hits. Two half-hits form a hit if they have equal layer and sector and
complementary component (a half-hit in each of the coupled paddles). The position, the time and the
energy of each hit is then calculated.

3.4.2 Raw time

The raw hit times tL/R are obtained from the measured TDC channel using a slope constant of
0.0234 ns/channel for all the channels.

tL/R = TDCL/R · 0.0234, (3.6)

where the subscript L/R is the component index and refers to the left and right paddle of a pair,
respectively.

One can then write the raw times in terms of the calibration constants de�ned in Table 3.2. We
now denote the raw times as tXY where X and Y can be R or L and refer respectively to the paddle
from which the time is obtained and the paddle in which the hit occurred. For a hit in the left paddle
the raw times read:

tLL = toff + ttof +
z

veffL

+ tS + TDCj, (3.7)

tRL = toff + ttof −
z

veffL

+
L

veffL

+
L

veffR

+ ut + tS + tLRad + TDCj, (3.8)
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where ttof is the time-of-�ight of the detected particle from the vertex to the hit, z is the location of
the hit along the beam direction from the upstream edge of the paddle, L is the length of the paddle,
tS is the event start time, TDCj is the CLAS12 Radio Frequency clock jitter and the subindexes L/R
refer to left or right paddles.

For a hit occurring in the right paddle the times read:

tLR = toff + ttof −
z

veffR

+
L

veffL

+
L

veffR

+ ut + tS + TDCj, (3.9)

tRR = toff + ttof +
z

veffR

+ tS + +tLRad + TDCj. (3.10)

3.4.3 Choice of the paddle where the hit occurs

The paddle in which the hit occurs is then determined prior to any further step. De�ning ∆ and ∆′

as:

∆ =
L

veffL

− L

veffR

, (3.11)

∆′ = tLX − tRX + tLRad, (3.12)

where the index X can be R or L, one can compute ∆′−∆ for both cases (hit in the left paddle or hit
in the right paddle). If the hit is in the left paddle:

∆′ −∆ =
2z

veffL

− 2L

veffL

− ut < 0. (3.13)

If the hit is in the right paddle:

∆′ −∆ =
2L

veffR

− 2z

veffR

+ ut > 0. (3.14)

∆′ and ∆ are calculated for each hit. If ∆′ < ∆, the paddle in which the hit happened is the left
one, otherwise it is the right one.

3.4.4 Hit position and time reconstrution

The derivation of the time and the position of a hit is done in the case of a hit in the left paddle.
In the case of a hit in the right paddle, the corresponding equations are obtained by switching L↔R
indexes.

Subtracting the time o�set known from calibration, the start time and the time jitter from Equations
(3.7) and (3.8), we de�ne tLprop and tLprop as:

tLprop = ttof +
z

veffL

, (3.15)

tRprop = ttof −
z

veffL

+
L

veffL

+
L

veffR

+ ut. (3.16)

The position of the hit is obtained from the di�erence of the above quantities as :

z =
veffL

2

(
tLprop − tRprop + L

(
1

veffL

+
1

veffR

)
+ ut

)
. (3.17)

The sum of tLprop and tRprop provides the time-of-�ight of the particle that produces the hit:

ttof =
1

2

(
tLprop + tRprop − L

(
1

veffL

+
1

veffR

)
− ut

)
. (3.18)
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3.4.5 Energy reconstruction

For hits in the left paddle, the two associated ADCs can be written as:

ADCL =
EL

E0
MIPD e

−z
AL , (3.19)

ADCR =
ER

E0
MIPI e

−(L−z)
AL , (3.20)

where EL/R are energies propagated in the left (resp. right) paddle. E0 is half of the energy deposited
by a MIP particle over the thickness of the scintillators. E0 is given by:

E0 =
dE/dX hρ

2
MeV, (3.21)

where h is the thickness of each scintillator, ρ is the density of PVT equal to 1.023 g.cm−3 and dE/dX is
the nominal energy deposited by MIPs in PVT and equal to 1.956 MeV.g−1.cm2. The above equations
are valid for hits in left paddles, while for hits in the right paddles the corresponding equations are
obtained by switching L↔R indexes. The energies measured in both paddles are then given by:

EL =
ADCL E0

MIPD
e
z
AL , (3.22)

ER =
ADCR E0

MIPI
e
L−z
AL . (3.23)

The total deposited energy is the sum of EL and ER:

Edeposited = EL + ER. (3.24)

3.4.6 Hit/Track matching

Tracks from charged particles crossing the CLAS12 Central Vertex Tracker (CVT) are associated to
hits in the CND. This allows, for each CND hit matched with a CVT track, to calculate the position
of the hit from the extrapolated track, the path-length between the track vertex and the CND hit, and
the path traveled inside the hit paddle. This information is used in the calibration, as well as to veto
charged particles when looking for neutrons in the CND. The CVT tracks are extrapolated to radii
corresponding to the entry, middle and exit points of the track in the paddle as shown in Figure 3.10
These points are de�ned as the intersections between the helix of the track and the physical volume of
the CND paddles. A CVT track and a CND hit are matched if the hit coordinates (x, y, and z) and
the extrapolated coordinates at the middle of the counter (xm, ym, and zm) verify the relations:

| x− xm |< σx, (3.25)

| y − ym |< σy, (3.26)

zm ∈ [−σz, L+ σz], (3.27)

where σz = 1.5 cm, L is the length of a paddle, and σx and σy are given by:

σx =

√
x2
σ2

R

R2
+ y2σ2

φ, (3.28)

σy =

√
y2
σ2

R

R2
+ x2σ2

φ, (3.29)

where R is the radius of the hit, σR is half the thickness of a paddle (1.5 cm) and σφ is the azimuthal
resolution of each paddle (3.75◦). The path traveled by the particle in the paddle is approximated as
the distance between the entry and exit points.

The path length between the vertex and the hit position is also calculated at this stage.

79



Chapter 3. The Central Neutron Detector

Figure 3.10: The path traveled by a particle in a CND paddle is de�ned as the distance between the
entry and exit points of the track helix.

3.5 Calibration

The calibration of the CND is performed after a �rst reconstruction is performed on raw data
to provide baseline data to work with. The calibration constants are obtained from these �rst pass
reconstructed data using information from other detectors of CLAS12. Once the calibration is �nished,
the calibration constants are uploaded on the CLAS12 database and a second pass of reconstruction is
performed with the correct constants. A schematic view of the calibration process is shown in Figure
3.11.

Figure 3.11: Flow chart of the CND calibration. A �rst pass of the reconstruction is done before the
calibration in order to reconstruct hits and associate them to CVT tracks. The calibration constants can
be uploaded in the calibration suite as some calibration steps require previously calculated constants.
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3.5. Calibration

3.5.1 Calibration constants for the CND

The calibration of the CND with beam data is done in two steps: the timing calibration, which
allows us to obtain e�ective velocities and time o�sets, which are, in turn, necessary to deduce timing
and position information of the hits; and the energy calibration, in which attenuation lengths and
energy conversion factors are extracted. Table 3.3 summarizes the calibration constants necessary to
reconstruct CND hits and the order in which they are calculated during the calibration.

Step # Constant name Output Number of constants Units
1 Left-right timing o�set tLRoff 72 ns
2 E�ective velocity veff 144 cm/ns
3 U-turn time loss ut 72 ns
4 Left-right timing o�set (adjusted) tLRad

72 ns
5 Global time o�set toff 72 ns
6 Attenuation length A 144 cm
7 Energy constants MIPD, MIPI 144 each no units

Table 3.3: The steps and the corresponding constants of the CND calibration.

3.5.2 Timing Calibration

There are �ve calibration constants that must be determined as part of the CND timing calibration:
the two left-right time o�sets (tLRoff and tLRad

), the e�ective velocity (veff), the propagation time in
the U-turn (ut), and the global time o�set with respect to the event start time (toff). The calibrations
of these constants must be done in the following order: tLRoff , veff , ut, tLRad

, and �nally toff . Each of
these constants is determined using charged particles from beam interactions in the target.

At this stage TDCs have been converted to raw times and the hit paddle has been determined by
the procedure described in Subsection 3.4.3.

3.5.3 Left-right timing o�set

The left-right time o�set refers to the time mis-alignement between two coupled paddles. The goal
of this calibration step is to �nd this o�set. This o�set is determined in two steps. The �rst step relies
on the u-turn structure of the CND to extract a �rst estimate of this o�set tLRoff . The second part
of the algorithm adjusts this �rst value to the real value tLRad

by taking into account the e�ective
velocities of both coupled paddles. There is one value of tLRoff and tLRad

for each pair of paddles.
There are two di�erent algorithms to �nd tLRoff depending on whether the data were taken with

or without magnetic �eld of the solenoid.

• If the solenoid �eld is o�, the u-turn light guide coupling two adjacent CND paddles induces a
gap in the time di�erence tR− tL plots. The tLRoff constant is de�ned as the time di�erence value
at the center of the gap. This method was developed initially but requires special calibration
runs as the e�ect of �double hits� described in the following was not anticipated at the early stage
of software development.

• If the solenoid �eld is on, �double hits� occur. When the trajectory of a charged particle bents in
the solenoid �eld crosses two adjacent coupled paddles, the two L and R signals have very similar
TDC values (see Figure 3.12). Such hits induce a peak instead of a gap in the time di�erence
plots (see Figure 3.13). In this case, tLRoff is de�ned as the position of this peak.

Both cases are illustrated in Figure 3.13. Typical values of the o�sets are below 5 ns. tLRoff is not
used in the reconstruction, but it is nonetheless necessary to remove double hits from the subsequent
calibration steps. The constant tLRad

, de�ned below, is used in the reconstruction.
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Figure 3.12: Double hits in the CND produced by the trajectory of a charged particle curved in a
magnetic �eld. Both hits have similar TDCs resulting in a peak in the time di�erence distribution.

Figure 3.13: Time di�erence plots. The left plot corresponds to the case with no solenoid �eld. In this
case the u-turn light guide induces a gap in the distribution. The right plot is for data with magnetic
�eld. In this case double hits are possible (see Figure 3.12). These double hits have very similar values
of both TDCs resulting in a peak instead of a gap.

Once the tLRoff constants have been determined, they are corrected to account for the di�erent
e�ective velocities of the two coupled paddles.

For hits in the left paddle, the two associated TDCs can be expressed with Equations (3.9) and
(3.10).

The o�set tLRad
is de�ned as:

tLRad
= toffR

− toffL
, (3.30)

where toffR
and toffL

are time o�sets associated with the left and right coupled paddles, respectively.
From Equations (3.9) and (3.10), one can write:

tLL − tRL

2
=

z

veffL

− CL, (3.31)

where CL is the opposite in sign of the intercept of tL−tR2 vs z, and is given by:

CL =
L

2 veffL

+
L

2 veffR

+
ut

2
+
tLRad

2
. (3.32)

For hits in the right paddle, the corresponding intercept CR is given by:

CR =
L

2 veffR

+
L

2 veffL

+
ut

2
− tLRad

2
. (3.33)
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Combining Equations (3.32) and (3.33), tLRad
is obtained as:

tLRad
= CL − CR. (3.34)

3.5.4 E�ective velocity

The e�ective velocity veff is the speed of the light in the scintillators. There is one veff value for each
coupled paddle. For a hit in the left paddle, the veff is obtained from the following equation:

z = (tLL − tRL)
veffL

2
+ c, (3.35)

where z is the longitudinal position of the hit in the CND with respect to the upstream end of the CND
paddles and c is a constant detailed in the previous section. For hits in the right paddles, the indexes
of the time di�erence must be changed. The longitudinal position z is obtained independently from
the CND, using the extrapolation of the particle track measured by the CVT. The veff is extracted
by �tting the tL−tR

2 vs z distribution as shown in Figure 3.14. For each slice in z, the position of the
maximum from a Gaussian �t is plotted against z. The slope of the obtained distribution gives veff .
The expected values for veff are around 14-16 cm/ns.

Figure 3.14: Plots used to determine the e�ective velocity for a right CND paddle. The top plot shows
the raw tR−tL

2 vs z and the bottom plot is the distribution showing the linear �t.

3.5.5 U-turn time loss

The u-turn propagation time ut is the time spent by the light to travel through the u-turn lightguide.
It is used as a time o�set on the indirect signal in the time and position reconstructions. There is one
ut value for each pair of paddles. The algorithm to extract ut is very similar to the one used in the veff

procedure: the intercept of the tL−tR
2 vs z distribution (see Figure 3.14) is extracted for both coupled

paddles to determine ut.
From the sum of the intercepts CL in Equation (3.32) and CR in Equation (3.33), ut is obtained

as :

ut = CR + CL − L
(

1

veffR

+
1

veffL

)
. (3.36)

The values for ut are typically in the range from 0.5 ns to 1.5 ns, with values for the layer 1 around
0.6 ns, the layer 2 around 1 ns, and the layer 3 around 1.4 ns.
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3.5.6 Global time o�set

The global time o�set toff refers to the time di�erence between the start time value and the vertex
time computed from the CND hit time and the CVT path length information. There is one toff value
for each pair of coupled paddles. It is given by:

toff =
tL + tR

2
− tS − ttof −

L

2
·
(

1

veffR

+
1

veffL

)
− ut

2
− tLRad

2
− TDCj, (3.37)

where ttof is calculated using CVT information assuming the particles are pions. For this, only hits
with negative charge tracks are used, as most of the negative particles in the CD are pions. The
time-of-�ight is then fully determined by the tracking information as:

ttof =
dpath ·

√
p2 +m2

p · c (3.38)

where dpath is the distance traveled by the pion from the vertex to the hit calculated at the hit-track
matching stage of the reconstruction algorithm, p is the momentum of the track obtained from its
curvature in the magnetic �eld, m is the mass of the pion and c the speed of light. The start time tS is
provided event by event and is calculated from the FTOF measured time and the RF bucket matching
(see Chapter 4 for more details). The start time also accounts for the position of the vertex. The
position of the peak in the distribution shown in Figure 3.15 gives toff . This constant mainly depends
on the start time tS, which is calculated using the CLAS12 Forward Time-of-Flight System (FTOF).
The CND global time o�set can only be calibrated after the calibration of the FTOF. The variations
of toff between di�erent pairs of paddles are typically below 10 ns.

Figure 3.15: Plot used to determine the global time o�set. The distribution is �t with a Gaussian and
the position of the peak corresponds to toff .

3.6 Energy calibration algorithms

There are three calibration constants for the energy determination in each paddle of the CND: the
attenuation length (A), the ADC-to-energy constants for direct minimum-ionizing particles (MIPs)
(MIPD), and the ADC-to-energy constants for indirect MIPs (MIPI). These three calibration steps
can be performed almost independently from the timing calibration. However tLRad

is needed to
determine if an ADC signal is direct or indirect (i.e. the hit happened in the considered paddle or in
its coupled partner).
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3.6.1 Attenuation length

The attenuation length A accounts for the light attenuation along the length of the scintillators and
light guides. There is an A value for each paddle. For hits in the left paddle, the two associated ADCs
can be written as:

ADCL =
E

E0
MIPD e

−z
AL , (3.39)

ADCR =
E

E0
MIPI e

−(L−z)
AL , (3.40)

where MIPD and MIPI are constants de�ned in Subsection 3.6.2 below (MIPI includes the e�ect of
the light attenuation in the R paddle), E is half the energy deposited by the particle in the scintillator,
and E0 is half the energy deposited by a MIP in the scintillators. We have assumed here that the
deposited energy is shared equally in the direct and indirect signals. E0 is given by:

E0 =
2.001 h

2
MeV, (3.41)

where h is the thickness of each scintillator. All the above equations are valid for hits in the left
paddles, while for hits in the right paddles the corresponding equations are obtained by switching the
L↔R indexes. From Equations (3.39) and (3.40) the following relation is derived:

ln(ADCL/ADCR) = c− 2z

AL
, (3.42)

where c is a constant depending on MIPD, MIPI and L. AL is given by the slope of the distribution
in Equation (3.42) as shown in Figure 3.16. Values for A are typically around 150 cm.

Figure 3.16: Plots used to determine A. The top plot shows the raw ln(ADCL/ADCR) vs z distribution
for one pair of paddles. Slices in z are �t with a Gaussian and the mean is plotted against z. The
resulting distribution and its associated linear �t are shown in the bottom plot.
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3.6.2 Energy calibration

The �nal step of the calibration of the CND is the determination of the energy conversion parameters
MIPD and MIPI. There are two energy parameters for each paddle, thus there are four energy
parameters for each pair of coupled paddles, denoted as MIPDL, MIPIL, MIPDR, MIPIR.

In the following, we only consider a hit in the left paddle. Equations for hits in right paddles are
obtained by switching the L↔R indexes. For hits in the left paddle, only MIPDL and MIPIL can be
obtained. In the following they are referred to asMIPD andMIPI. From Equations (3.39) and (3.40),
one gets:

ln

(
ADCL

ADCR

)
= ln

(
MIPD

MIPI

)
+

L

AL
− 2z

AL
(3.43)

√
ADCL ADCR =

E

E0

√
MIPD MIPI e

− L
2AL . (3.44)

From Equation (3.43) the intercept of the ln
(
ADCL
ADCR

)
vs z distribution (in Figure 3.16) gives the

ratio MIPD
MIPI

. The product MIPD ×MIPI is obtained using Equation (3.44) after �ltering MIPs and
correcting for the path traveled by the MIP in the scintillators. Indeed for MIPs, E can be written as:

E =
path

h
· E0, (3.45)

where path is the path length traveled by the MIP in the scintillator, which is obtained using the CVT
tracking information by extrapolating the particle trajectory at the radius of the CND hit. Selecting
MIPs and correcting for the path length removes the energy dependence from Equation (3.44), which
becomes: √

ADCL ADCR =
path

h

√
MIPD MIPI e

− L
2AL . (3.46)

The distribution of
√
ADCL ADCR

h
path is �t with a Landau function and the position of the peak

p is extracted as shown in Figure 3.17. Finally MIPD and MIPI are given by:

MIPD = p× e i2 , (3.47)

MIPI = p× e−i2 +L
A , (3.48)

where i and p are the intercept and the peak position de�ned above. The values of MIPD and MIPI

are typically around 2000 and 500, respectively.

3.7 Calibration suite

The CND calibration algorithm is embedded in a calibration suite developed in Java. The framework
of the suite is common to all the CLAS12 subsystems. Each calibration step is performed within
a dedicated tab. The required previous constants for a given step can be uploaded using directly
the output text �les of the suits. Calibrators can check the goodness of each �t visually as well as
numerically using the error on the extracted constants. Each plot used in a particular calibration step
is shown for each paddle and can be exported for a later review. A screenshot of the suite is shown in
Figure 3.18. Once the calibration is satisfactory, the output text �les can be uploaded on the CLAS12
database (CCDB) for later use.

3.8 Clustering

Particles can deposit energy in several paddles of the CND. All the hits produced by a given single
particle are grouped in a cluster. The clustering of CND hits is based on the geometrical space-time
distance between them. The determination of the maximal distance for clustering two hits together
takes into account the measured resolutions for the position and the timing of the CND counters.

86



3.9. Simulation geometry and hit process

Figure 3.17:
√
ADCL ADCR

h
path distribution �t with a Landau function. The events in this plot are

identi�ed as MIPs by requiring a pion. The particle identi�cation is performed requiring a negative
charge, as most of the negatively charged particles in the Central Detector are pions.

(a) (b)

Figure 3.18: (a) General framework for the CLAS12 calibration suites. (b) CND calibration suite
screen display. The plots used at each steps are displayed as well as the extracted constants for each
component of the detector. The various calibration steps are performed within individual tabs.

The algorithm uses standard hierarchical clustering [92]. A scan of all the hits in an event is
performed and only the hits with a deposited energy greater than 1 MeV are considered for clustering.
The two closest hits are combined into a single hit with an associated energy de�ned as the sum of
the energies of both hits. The position and the timing of the cluster hit are de�ned as those of the hit
with the highest energy, i.e. the seed hit. The same algorithm is recursively run on the remaining hits.
Finally, the leftover hits that are relatively far from each other are called clusters. The sector, layer,
and component of each cluster are those of the seed hit.

3.9 Simulation geometry and hit process

The CND geometry is implemented in Geant4 based CLAS12 simulation framework (GEMC) using
its geometry API. The paddles are Geant4 generic trapezoids (see Figure 3.19). The u-turn light guides
are Geant4 �polycones� (volumes with cylindrical symmetry with varying radius along one axis). The
paddles are assigned the scintillator material and are associated with the CND hit process routine
described below.
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Figure 3.19: Overall view of the CND detector in GEMC. Pairs of scintillators are connected through
a scintillator u-turn junction.

The energy deposited is scaled based on the position in the paddle using the calibrated light atten-
uation length. Two signals are then propagated, one to the PMT attached to the scintillator (�direct
hit�), and one traveling through the u-turn lightguide into the coupled paddle and its PMT (�indirect
hit�). Layer-dependent factors, applied to the two signals, account for the light loss in the u-turn and
in the neighboring paddle. These factors were determined during R&D tests.

The corrected energy is converted into the theoretical number of photons Nth using the constant
1210 γ/MeV, which accounts for light propagation in the 1.4-m-long light guides, for losses at the
junctions and for the quantum e�ciency of the PMT. A Poissonian distribution is used to calculate
the actual number of photons Nactual and the resulting �smeared� energy is then converted to ADC.

The absolute hit time is corrected using the calibration constants estimated from data (e�ective
velocity and time o�set). The Birks attenuation e�ect is also taken into account. The Birks factor,
modifying the deposited energy depending on the particle type, enters in the timing calculation as
follows: the direct and indirect times are smeared with a Gaussian function having a width directly
proportional to an empirically determined Birks constant, and inversely proportional to the square
root of the measured number of photons (which is, in turn, proportional to the attenuated energy).
The time window of the CND is set to 400 ns: all of the Geant4 steps within the same paddle and time
window are collected into one hit. The time is then digitized using the TCD module sampling time.

3.10 Performances

The performances of the CND are estimated in three distinct ways. First we estimate the time,
position and energy resolutions using π−, which are minimum ionizing particle in CLAS12 kinematics.
Also we estimate the particle identi�cation capabilities of the CND. Finally we measure the neutron
e�ciency of the CND using the exclusive reaction ep→ enπ−.

3.10.1 Time, position and energy resolutions

The timing performance for each of the three layers of the CND is illustrated in Figure 3.20b, showing
the vertex time di�erence tv for selected negative tracks, assumed to be all pions, integrated over all
the sectors. It is de�ned as

tv = tCND − (tS − vzcorr)−
dpath

c β
, (3.49)

where tCND is the mean time reconstructed from the L and R paddles, tS is the event start time
determined by the RF bucket matched with the FTOF vertex time, vzcorr accounts for the actual z
position of the interaction vertex, dpath is the path length from the event vertex to the CND, and

β =
p√

p2 +m2
, (3.50)
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with p the momentum measured by the CVT, and m the pion mass. The distribution of tv is centered
at 0. From the width of the tv distribution, the timing resolution of each CND paddle convoluted with
the CVT resolution can be determined as:

σt =
√
σ2
vt − σ2

tS
= 185 ps, (3.51)

assuming that the resolution of the start time is σtS=20 ps. This value is a higher limit of the start time
resolution and thus the CND resolution is slightly overestimated. However using the lower estimate
value of the start time resolution σtS=2 ps, the CND resolution estimate varies by less than 1%. The
timing resolution for the 144 individual CND counters is shown in Figure 3.21. Its average (indicated by
the horizontal line) is around 185 ps, which is more than the average 148 ps intrinsic timing resolution
measured with cosmic rays (see Section 3.5). This discrepancy is due to multiple factors, such as the
current, not fully optimized, quality of the calibration and reconstruction of CLAS12, as well as the
uncertainty of the path length and other non-CND contributions to Equation (3.49). The resolution
integrated over all the paddles of the CND is shown in Figure 3.20a. The overall resolution (195 ps) is
slightly higher than the average single paddle resolution due to remaining small mis-alignments.
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Figure 3.20: Di�erence between the vertex time of particles with an associated negative track, computed
with CND and CVT information, and the start time computed by the FTOF: (a) integrated over all
the CND paddles and (b) in each of the three layers of the CND and integrated over all paddles in
each layer.

The position reconstruction performance of the CND is shown in Figure 3.22, which displays the
di�erence between the z coordinate (along the beamline) computed by the CND and by the CVT for
negative tracks in each of the three layers of the CND integrated over all the paddles. Its Gaussian
width is ∼3 cm, which is consistent with the timing resolution shown in Figure 3.21 multiplied by
typical e�ective light velocity values of 14 cm/ns. The individual position resolutions are shown for
all the paddles in Figure 3.22b. Finally the extrapolated position of the hits measured by the CVT
versus their position calculated by the CND for all the detected charged particles is shown in Figure
3.23. Hits are located on the diagonal, showing a good position calibration. The band at high zCND
corresponds to double-hits (see Figure 3.12) where the direct and indirect signals have similar timings
mimicking hits close to the u-turn lightguide.

Figure 3.24 shows the energy deposited divided by the path length for selected MIPs. It peaks
around the expected value of 2.001 MeV/cm for MIP particles.
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Figure 3.21: Timing resolution for each CND counter convoluted with the CVT resolution. The
horizontal line indicates the average value.
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Figure 3.22: (a) Di�erence between the z coordinate (along the beamline) computed by the CND
and the CVT for negative tracks in all the CND layers integrated over all the paddles. (b) Position
resolution for each paddle of the CND. Points with large position resolution are located above CVT
holes where the track reconstruction performance is reduced.

3.10.2 Particle identi�cation performances

Charged particle identi�cation

The CND was designed to detect neutrons. However it is also possible to use it to identify charged
particles. We can assess the quality of charge particle identi�cation by plotting βCND, calculated from

90



3.10. Performances

z CND (cm)
0 5 10 15 20 25 30

z 
C

V
T

 (
cm

)

0

5

10

15

20

25

Figure 3.23: Position of the hits in the CND extrapolated from central tracks versus the measured
position calculated by the CND. The vertical band at high zCND is due to double-hits.
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Figure 3.24: dE/dx for MIPs in the three layers of the CND integrated over all the sectors. The blue
line indicates the nominal value for the expected energy deposit of a MIP in a centimeter of plastic
scintillator.

the CND time, against the momentum p measured from tracking, with βCND de�ned as:

βCND =
dpath

(tCND − tS) c
. (3.52)

Here dpath is the path traveled by the particle from the vertex to the detection point and tS is the event
start time. Figures 3.25a and 3.25b show βCND versus momentum plots for both positive and negative
central tracks. Protons and pions are clearly separated and follow the expected dependencies. The
time-of-�ight squared masses in both cases are also shown in Figures 3.25c and 3.25d. The time-of-�ight
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squared masses are given by:

m2
tof = p2

(
1

β2
CND

− 1

)
. (3.53)
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Figure 3.25: Charged particles identi�cation plots using the CND and the CVT. βCND vs p is shown
for (a) positive tracks and (b) negative tracks. The time-of-�ight mass m2

TOF is shown also for (c)
positive and (d) negative tracks.

Neutron-photon separation

The timing resolution of the CND is designed to be around 150 ps in order to be able to separate
neutrons from photons in the 0.2 to 1 GeV momentum region. The e�ective timing resolution of the
CND in CLAS12 is estimated to be around 160 ps for real data after optimized calibration. To estimate
the separation power achievable with such a resolution multiple methods are compared.

First, a simple error propagation calculation is performed. We assume that the timing resolution δt
(set at 160 ps) and the position resolution δz are constant along a CND paddle, and that the position
resolution is given by the timing resolution multiplied by the typical value of the light e�ective velocity
(14 cm/ns). We also assume that the timing resolution for neutrals is similar to the one measured for
MIPs. The neutrons and the photons are separated using a cut on the value of β calculated as:

β =
d

t c
, (3.54)

where d is the distance between the vertex and the interaction point and t is the time of �ight measured
by the CND. The uncertainty of β is given by:

δβ =
β

d

√
(δd)2 + (δt)2β2c2. (3.55)
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The uncertainty on the path length is determined by:

δd =
1

2

(√
R2 + z2 + 2zδz + δz2 −

√
R2 + z2 − 2zδz + δz2

)
≈ 1

2

zδz

d
, (3.56)

where all the variables are de�ned in Figure 3.26. We do the calculation in the case of a hit in the �rst
layer (R=30 cm, where δd is bigger). The values of z and d are given by the polar angle for which the
calculation is made.

Figure 3.26: Schematic de�nition of the variables used in the determination of the neutral particle
separation. The radius R is taken to be the radius at the center of the �rst layer. The vertex is located
at the center of the target which is also taken as the origin of the z axis.

A second method to estimate the β resolution consists in calculating β from randomly picked values
of t and d within the resolution speci�ed before. A random path length value dR is generated from a
gaussian with mean d and standard deviation δd. The value of tR is generated from a gaussian with
mean d/(tβ) and standard deviation δt. The corresponding random value βR is de�ned as dR/(tRc).
This process is iterated 10000 times and the resulting distribution of βR is �tted with a gaussian. The
standard deviation of the �tted function give the resolution. This method is referred as �t method in
the following.

One can also estimate the β resolution using directly the CLAS12 data. In this case, the exclusive
reaction ep→ e′nπ+ (see Subsection 3.10.3 for more details) is used. The distribution of the di�erence
between the expected β from missing neutron events and the one measured by the CND is �tted with
a gaussian for di�erent slices in momentum. The �tted standard deviations give the resolution in each
momentum bin. In the case of photons, there is no exclusive reaction that can be used to reliably
extract the resolution. Thus only the β resolution for neutron is extracted from data.

Finally, the resolution is also extracted from simulations. This is done by simulating neutrons and
photons in the CND using GEMC. The reconstructed β is then compared to the generated one. The
resolution is obtained as for the real data case, using gaussian �ts in each momentum bins.

Figure 3.27 visualizes the neutron/photon separation power of the CND, showing β as a function
of momentum for photons (squares) and neutrons (dots). The error bars correspond to 2 σ, where σ is
the β resolution for the two kinds of particles, evaluated with the di�erent methods described above.
The results obtained with the error propagation, �t, simulations and real data are in good agreement in
the high-momentum region, which is the crucial one for photon/neutron separation. For the photons,
we relied only on simulations (black), error propagation (green) and �t (red). We can conclude that
neutrons and photons can be separated at a 2-sigma level for momenta up to 0.8 GeV. It must be noted
that in [84] simulations showed a separating power up at a 3-sigma level for neutrons up to 0.9 GeV.
The reason for the worsened performances is under investigation. The main change since [84] was in
the clustering algorithm of the data reconstruction, passing from a energy-weighed average time for
the cluster to a method based on the attribution of the time seed-hit (the most energetic one) to the
whole cluster. The latter method was chosen to match the scheme adopted for the CTOF. However,
this method may not be optimal for neutrals, and further studies are needed.
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Figure 3.27: β versus momentum for the neutral particles emitted at polar angle 60◦ and detected
in the CND. The error bars correspond to 2 σ. The photons are represented by the squares and
the neutrons by the dots. The di�erent colors correspond to the di�erent methods presented in the
text. The green error bars are obtained using the error propagation method, the red ones from the �t
method, the blue ones from real data and the black ones from simulations.

3.10.3 Neutron detection e�ciency

Plastic scintillators have a neutron detection e�ciency of around 1% per cm of matter. The CND
has a radial width of 9 cm. From these simple considerations we expect a detection e�ciency of around
10% for neutrons. Early simulations studies showed that, for all detection angles, one can expect such
an e�ciency (see Figure 3.28).

Figure 3.28: Estimation of the CND neutron e�ciency performed on simulated events with a single
neutron. The neutron e�ciency is expected to be approximately 10%. Figure taken from [74].

The exclusive reaction ep → e′nπ+ is analyzed to evaluate the neutron detection e�ciency of the
CND. The dataset used was taken with a 7.5-GeV electron beam incident on a liquid-hydrogen target.
The events with an electron and a π+ in the CLAS12 FD are selected. The missing mass of the e′π+X
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system is plotted versus βX in Figure 3.29, and one can clearly identify a peak at the neutron mass.
The missing particle is required to be in the CLAS12 Central Detector (θ > 40◦). The e�ect of this
selection is shown in Figure 3.29, where the high-mass component of the spectrum is removed after the
cut. We apply an additional cut on β of the missing neutron (0.2 < βX < 0.8) and on the missing mass
(0.7 GeV < MX < 1 GeV) to ensure the exclusivity of the �nal state. From this set of ep→ e′(n)π+

events, those with a neutron identi�ed by the CND (i.e. with a CND cluster with Edep > 2.5 MeV, no
associated CVT tracks and β < 0.8) are selected. If multiple neutron candidates are detected by the
CND, the neutron with the smallest azimuthal separation from the missing neutron is kept. A cut on
β > 0.1 is applied to remove out-of-time hits that can be mistaken as neutrons. Finally, the detected
neutron and the missing neutron azimuthal angle di�erence is constrained to be less than 20◦.
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Figure 3.29: Selection of the exclusive neutron peak for the ep→ e(n)π− reaction. The top two plots
show the missing mass versus β of the missing neutron for all the events (left) and for the events where
the missing neutron is in the central detector (θ > 40◦) (right). The bottom two plots show the e�ect
of the cut on the mass spectrum of the missing particle by comparing the spectrum before (left) and
after (right) the cut. After applying the CD cut only the neutron peak remains.

The e�ciency is measured in bins of the missing neutron polar angle and as a function of its
missing momentum. For each bin in polar angle and momentum, the e�ciency is de�ned as the ratio
of events with a detected neutron to the number of missing neutron events. The result is shown as a
function of the missing neutron momentum in Figure 3.30 for bins in polar angle and integrated over
all azymuthal angles. The measured e�ciency (∼ 10%) is in agreement with the one expected during
the R&D development of the CND. From this study, an estimate of the momentum resolution of the
detected neutron is calculated. We �nd a resolution of ∆P

PMis.
= 16%, where ∆P = Pdet. − PMis. is

the di�erence between the detected and the missing neutron momenta, as shown in Figure 3.31. This
value is higher than the 10% value from the R&D speci�cations. However it includes e�ects coming
from the detection of the electron and pion, especially FD-CD mis-alignments.

The same study is performed using Monte Carlo simulations. nDVCS events were processed in
the full simulation and reconstruction chain of CLAS12. In this case, the e�ciency is calculated as
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Figure 3.30: (a) Integrated neutron detection e�ciency and (b) e�ciency for three polar angle θ bins
measured from data.

the number of reconstructed neutrons divided by the number of generated neutrons. The obtained
e�ciencies are compared in Figure 3.32 for di�erent bins in polar angle and in Figure 3.33 integrated
over all polar angles. The results for the e�ciency from simulations and from data have consistent
values. The discrepancies, observed at high momenta (above 0.8 GeV) and low momenta (below 0.3
GeV), are due to the two di�erent �nal states used and the fact that the expected neutron kinematics
are perfectly known in the case of the simulations.

3.11 Premilinary results for nDVCS based on neutron detection in
the CND

To conclude this chapter, very preliminary results for the nDVCS reaction, obtained by M. Hoballah
and S. Niccolai are presented. The data shown in the following were taken with an electron beam
impinging on a deuterium target. Events with a photon in the FT and a neutron in the CD are selected.
Considering that the neutron is quasi-free inside the deuterimum nucleus, the reaction selected from
this topology is:

en→ e′n′γX. (3.57)

The missing massMX is shown in Figure 3.34. Exclusivity cuts are then applied to ensure that no other
particle is produced in the reaction. The missing mass spectrum after exclusivity cuts is superimposed
in Figure 3.34.

Once the reaction is identi�ed, the raw beam spin asymmetry is calculated. The integrated BSA
over the whole phase space available is shown as a function of Φ (see Section 1.3 for the de�nition).
The BSA is �tted with the function f(Φ; a, b):

f(Φ; a, b) =
a sin(Φ)

1 + b cos(Φ)
, (3.58)

where the parameters a and b can then be related to CFFs. Figure 3.35 shows the raw beam spin
asymmetry and the results of the �t. Note that the result shown here is not corrected for the main
known background, coming from π0 electro-production, where one photon stays undetected:

en→ e′n′π0 → e′n′γ(γ). (3.59)
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Figure 3.31: Neutron momentum resolution measured from data. The obtained value is higher than
the design value. Discrepancies are explained by FD/CD misalignements inducing shifts in the missing
neutron momentum.
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Figure 3.32: Comparison of the neutron detection e�ciency for three polar angle θ bins measured from
data and simulations.
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Figure 3.33: Comparison of the integrated neutron detection e�ciency measured from data and simu-
lations.

Mx² (GeV²)

Figure 3.34: Missing mass of the e′n′γX before (blue) and after (red) exclusivity cuts are applied. Plot
provided by M. Hoballah and S. Niccolai.
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Figure 3.35: Fitted nDVCS BSA as a function of Φ. Plot provided by M. Hoballah and S. Niccolai.
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Timelike Compton Scattering data
analysis

This part of the manuscript groups three chapters. The work presented in the following is dedicated
to the measurement of Timelike Compton Scattering observables from the CLAS12 RGA dataset.

The �rst step of this measurement is to retrieve events recorded by CLAS12 where the γp→ p′e+e−

reaction occurs. In order to select these events, the �nal-state particles must be identi�ed. This step is
presented in Chapter 4. The event builder algorithm of CLAS12 is presented. This algorithm associates
the various responses of the CLAS12 sub-detectors for each event, to recover the momenta and the
vertices of all the recorded particles. An enhanced positron identi�cation algorithm, crucial in the TCS
measurement, is also presented in this chapter.

The second step of the analysis consists in correcting the data. These corrections aim at matching
the measured momenta of the detected particles with their actual momenta at the vertex. This step
is also presented in Chapter 4.

Once the �nal state particles are well identi�ed and their momenta are corrected, exclusivity cuts
are applied in order to make sure that each event is a TCS event (i.e. from the γp→ p′e+e− reaction).
The observables are then computed with the kinematic variables of these good events. This step is
performed in Chapter 5.

Finally in Chapter 6 the results of the full analysis of the CLAS12 data are displayed and discussed
against theoretical predictions.
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Chapter 4

Particle identi�cation and momentum
corrections

Particle Identi�cation (PID) is the last step of the data reconstruction. It aims at producing a list of
particles, their associated momentum and vertex coordinates, as well as the associated list of responses
in CLAS12 detectors. This step is performed by the Event Builder (EB) described in [82]. Tracks are
associated to detector responses to form particles. Each particle is then identi�ed according to this
list of detector response. In this chapter, the identi�cation procedures for protons (Section 4.1) and
leptons (Section 4.2) are presented �rst. In Section 4.3 an enhanced positron identi�cation algorithm
developed for the TCS analysis is discussed.

This chapter also describes momentum corrections developed to correct CLAS12 data and simula-
tions. These corrections have been developed in the perspective of the TCS analysis but can be used
in any CLAS12 analysis. A full set of momentum corrections for protons was put in place. Subsection
4.4.1 presents the Monte-Carlo based corrections, and Subsection 4.4.2 the data-driven corrections in
the CD. Momentum corrections for leptons are also presented in Section 4.5. Finally, �ducial cuts for
leptons are presented in Section 4.6.

4.1 Proton identi�cation

Protons, and more generally heavy hadrons, are identi�ed with their time of �ight (tof) from the
vertex to their interaction point with Time Of Flight (TOF) detectors. There are two TOF detectors
in CLAS12, the CTOF in the CD and the FTOF in the FD. In both cases the proton identi�cation
procedure is similar. A precise time reference, the start time, is determined using a fast moving particle
detected in the FD. Then the tof is calculated and matched to the expected one obtained from tracking.

Start time

The start time is determined using the FTOF response of the trigger particle of the event. The
trigger particle is de�ned as the most energetic lepton in the EC or, if no lepton is detected, the pion
with the higher momentum. The uncorrected vertex time tv of the trigger particle is calculated as:

tv = t− PL
c
, (4.1)

where t is the measured time in the FTOF of the trigger particle and PL is the path length from the
vertex to the detection point in the FTOF. The vertex time is then corrected by the position of the
vertex zv (to account for the time that the beam bunch is taking to propagate to the vertex from the
origin of CLAS12, de�ned as the center of the target z0), and the RF time provided by the accelerator
tRF , as:

∆tRF = tv +
(z0 − zv)

c
− tRF −

(
N +

1

2

)
1

fRF
, (4.2)
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where fRF is the frequency of the accelerator and N is a large integer (typically 800). This allows to
�nd from which beam bunch the event originated and to precisely match the vertex time in the time
window between two bunches, using:

∆t′RF = mod(∆tRF ,
1

fRF
)− 1

2fRF
. (4.3)

Finally the start time is de�ned as:
tS = tv −∆t′RF . (4.4)

Momentum/tof matching

The tof ttof of a hadron is given by:

ttof = tTOF − tS , (4.5)

where tTOF is the time associated with the detector in which the hadron was detected. The expected
tof from tracking ttrack is given by:

ttrack =
PL
√
p2 +m2

pc
, (4.6)

where m is the mass of the particle and p its momentum from tracking. The mass hypothesis which
minimizes the di�erence ttof − ttrack is assigned to the particle. Figure 4.1 shows the velocity β versus
momentum distributions in the FD and the CD.

(a) (b)

Figure 4.1: β versus momentum distribution for positively charged particles in the FD (a) (resp. in
the CD (b)). The black lines correspond to three mass hypotheses (top: pion, middle: kaon, bottom:
proton).

4.2 Lepton identi�cation

Electrons and positrons have very low mass and will likely be detected in the FD of CLAS12. The
timing resolution of the FTOF doesn't allow to separate leptons and pions at the CLAS12 kinematics.
As a consequence, the pid of leptons is solely based on the Sampling Fraction (SF) of the EC and the
number of photo-electrons in the HTCC. The SF is de�ned as:

SF =
Edep
P

, (4.7)

where Edep is the total energy deposited in the EC, and P the momentum measured by the DCs. The
EB of CLAS12 assigns the particle ID, in the Lund convention, ±11 (i.e. electron or positron) for
particles that ful�ll all the following requirements:
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4.2. Lepton identi�cation

• A track in the DCs and an associated EC shower (the curvature of the track in the torus magnetic
�eld gives the charge of the particle)

• A minimum deposited energy in the PCAL: EPCAL > 60 MeV

Edep (GeV)

Figure 4.2: SF versus Edep for electrons in the EC, from data. The three red curves represent the
parametrized SFM extracted from simulations, and its 5-σ limits. In the �nal data analysis, these
three functions are calibrated for each sector.

• A total measured SF, SFM (Edep), within 5 σ of the parametrized SF, SFP (Edep): | SFM (Edep)−
SFP (Edep) |< 5σP , as shown in Figure 4.2. The parametrized SF is de�ned by:

SFP (Edep) = a

(
b+

c

Edep
+

d

E2
dep

)
. (4.8)

The parameters are calibrated for each sector and depend on the run range.

• If P < 4.9 GeV, a minimum number of HTCC photo-electrons: NPHE(HTCC) > 2. The
distribution of the number of photo-electrons in the HTCC for detected electrons is shown in
Figure 4.3.
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Figure 4.3: Number of photo-electrons for electrons, from RG-A data.
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There are two distinct regions for lepton identi�cation: below 4.9 GeV leptons are identi�ed using
the HTCC and the EC. Above this threshold, the HTCC produces a signal for pions and leptons and
thus cannot help in separating them. In the high-momenta region, the lepton pid is then only based
on the EC. An additional pid procedure to enhance the positron purity in this high momentum region
is presented in Section 4.3.

4.3 Positron identi�cation

Measurements of TCS observables require the detection of a pair of leptons from the decay of a
virtual photon. For momenta lower than 4.9 GeV, the HTCC of CLAS12 provides good pion/lepton
separation [93]. The HTCC electron detection e�ciency is estimated to be higher than 99%. For
momenta higher than the HTCC threshold (4.9 GeV) data and simulation show a large contamination
of π+ in positron samples. In this section, evidence for pion contamination is shown and a multivariate
analysis is proposed to reduce this contamination. The results of this approach are shown and assessed.
An estimate of the remaining pion contamination is given.

In the following we consider particles that have been assigned ID -11 and identi�ed as positrons by
the EB. The electron case is treated at the end of this section.

4.3.1 Evidence of π+ contamination

In order to measure TCS observables, we aim at achieving a clean identi�cation of leptons. The
positron ID is crucial to reach this goal. However the pid cuts described in Section 4.2 are not su�cient
to remove potential mis-identi�ed π+ from the positron sample. This contamination can be seen in
both the data and simulations.

We use the expression "true-positron" for Generated positron-reconstructed positron and "mis-id.
pion" for Generated pion-reconstructed positron in the simulation samples. For the data samples,
analogous designations are used, replacing "Generated" by "Produced". Finally, we also refer to
these categories as respectively "Signal" and "Background" when methods to distinguish both sets are
described.

π+ contamination from data

Positron momenta spectrum A �rst evidence of pion contamination is seen by investigating events
with an electron, a proton, a positron and any other particles in CLAS12. One can see that there is
an excess of positrons above the HTCC threshold. This is visible in Figure 4.4 where the polar angle
of the positrons are plotted against their momenta.

Exclusive reaction A second evidence of pion contamination is seen when investigating the exclusive
reaction ep→ eπ+n. Events with at least a particle with ID -11 and momentum bigger than 4.4 GeV
and an electron with momentum lower than 4.4 GeV were �ltered from the CLAS12 dataset. Both
particles are required to be detected in the FD. Cuts on the electron momentum ensure that it is a
true electron. The particles with ID -11 are assigned the π mass. The missing mass of the system
ep→ ee+

mπX is then calculated. The notation e+
mπ is used to refer to the particle with ID -11 and mass

equal to the π mass. The missing mass spectrum obtained is shown in Figure 4.5.

A clear peak at the neutron mass is visible. This peak is produced by the reaction ep→ eπ+n were
the π+ has been identi�ed as a positron. These exclusive mis-identi�ed pion events are a good way
to quantify the pion contamination. Furthermore the momenta of the mis-id. π+ cover most of the
momentum range of interest, from 4.9 GeV to 10.6 GeV as shown in Figure 4.6. We will use these
events later in Subsection 4.3.5 as a scale to quantify the pion background.
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4.3. Positron identi�cation

Figure 4.4: Polar angle θ versus momentum of positrons for events with one electron, one proton and
one positron in CLAS12.
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Figure 4.5: Missing mass spectrum of the reaction ep→ ee+
mπX in the neutron mass region.

π+ contamination from simulations

The π+ contamination is also visible in simulations. Two test samples were generated, one sample
of positrons and one of positively charged pions. They were passed to the GEMC CLAS12 simulation
and reconstructed using the standard CLAS12 software. Particles were simulated within the CLAS12
acceptance and within the range of momenta of interest (4 GeV < P < 10.6 GeV and transverse
momentum within 0.5 GeV < Pt < 2 GeV). The output of both samples were then skimmed identically:
only particles with ID -11 were kept. The kinematics distributions for both true-positrons and mis-id.
pions are shown in Figure 4.7.

The behavior observed in the data (excess of positrons due to contamination from π+) is reproduced
in the simulations.

4.3.2 1D and 2D cuts from the simulations

The results of the simulations described above were used to explore simple cuts to try to remove the
pion contamination. In this section, various pid cuts based on these simulations are de�ned.

χ2 cut

The CLAS12 EB gives the deviation of the total sampling fraction from a parametrized model. This
quantity is referred as χ2 in the CLAS12 software (although the name commonly used in literature is
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P (Gev)

Figure 4.6: Mass of the missing particle versus momentum of the particle with ID -11 .

pull value) and it is de�ned as:

χ2 =
SFM (Edep)− SFP (Edep)

σP
. (4.9)

The EB requires that −5 < χ2 < 5 to identify a particle as a lepton. The χ2 of true-positrons and
mis-id. pions is shown in Figure 4.8. One can see that mis-id. pions mostly populate the low χ2

region. Their sampling fraction is just big enough for them to be identi�ed as positrons. From these
distributions, two simple strategies can be tested: cutting on the absolute value of χ2 (| χ2 |< c) or
cutting on low values of χ2 (c < χ2). These strategies are referred as Symmetric and Asymmetric χ2

cuts in the following.

2D Sampling Fraction cuts

Another way to distinguish positrons from π+ is to look at their partial SFs. The total sampling
fraction can be decomposed according to the three layer of the EC (PCAL, ECIN and ECOUT):

SFPCAL =
Edep(PCAL)

P
. (4.10)

Analogous equations can be written for ECIN and ECOUT. The longitudinal segmentation of the EC
proves useful to distinguish positrons. Positrons are more likely to deposit all their energy in the �rst
layers of the EC (PCAL and ECIN). On the contrary π+ are Minimum Ionizing Particles (MIPs) and
are more likely to deposit energy in all the layers of the EC. Figure 4.9 shows the SF in the ECIN
versus the SF in the PCAL for simulated true-positrons and mis-id. pions. One can see that a 2D cut
along the anti-diagonal of the distribution can be applied to separate them. In the following this cut
is referred as "SF cut".

4.3.3 Multivariate analysis approaches

In the previous section, simple approaches involving cuts on 1 or 2 quantities were shown. However
these approaches do not allow to use the full amount of information provided by the EC. Additionally
to the SFs of all three EC layers, one can access the shape of the electromagnetic shower in each layer.
The square of the width of the shower is de�ned for each coordinate (U,V,W) and for each layer as:

M2 =

∑
strip(x−D)2 ln(E)∑

strip ln(E)
, (4.11)
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P (GeV)

(a)

P (GeV)

(b)

Figure 4.7: (a) Polar angle θ versus momentum of the simulated true-positrons (b) Polar angle θ versus
momentum of the simulated mis-id. pions. The red lines represent the transverse momentum limits
(0.5 GeV < Pt < 2 GeV) applied on the generated particles. The positrons detected at low momenta
in Figure (a) are positrons which radiated a photon in the target material. The momenta of these
positrons are corrected when the radiated photons are detected (see Section 4.5.2 ).

where D is the log-weighted mean position of the shower de�ned as:

D =

∑
strip x ln(E)∑
strip ln(E)

, (4.12)

and where x is the position of the EC hit along the considered coordinate and E is the deposited
energy associated to the hit. There are potentially at least 12 variables (3 sampling fractions and 9
shower widths) to investigate to help separating π+ and e+. A simple approach relying only on assessing
correlations between each couple of variables one by one is not applicable here. A multivariate approach
is needed. In this section some multivariate techniques are introduced. Their application to the π+/e+

separation problem is presented.

The TMVA Root package [94] was used for this analysis. This package has been developed to train,
test and compare a large range of multivariate tools. Multivariate Analysis (MVA) classi�ers take
several quantities as inputs and produce a single output on which one can then apply a cut. The value
of the cut that maximizes the background rejection and the signal e�ciency is then found and applied
to the output distribution. In the following we only focus on three of them: Fisher discriminant
(see Appendix B for more details), Boosted Decision Tree (BDT) (in Appendix C) and Multilayer
Perceptron (MLP) (in Appendix D).

The MVA classi�ers presented in the following were trained on the simulation samples described in
Subsection 4.3.1.

3D analysis

As a �rst step, the SFs of the three layers of the EC were considered as inputs. The distributions
of these three input variables for true-positron (blue) and mis-id. pion (red) are shown in Figure
4.10. Three methods (Fisher, BDT, and MLP) were trained and tested on these three variables. This
analysis is referred as 3D in the following. The structure of the MLP neuron network for this analysis
is shown in Figure D.3 in the appendices.
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Figure 4.8: Sampling fraction χ2 of (a) true-positrons and (b) mis-id. pions.

SFPCAL
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Figure 4.9: SF in the ECIN versus SF in the PCAL for simulated (a) true-positrons and (b) mis-
id. pions. A possible cut to remove mis-id. pions is to keep only particles above the anti-diagonal
represented by the red lines. Most mis-id. pions are removed while most positrons are kept.

6D analysis

A 6D multivariate analysis was also studied. In this approach Fisher, BDT and MLP methods were
applied to the three SFs and to the average width of the shower in each layer. The average of the
square of the width in the PCAL is de�ned as:

M2/PCAL =
M2/U/PCAL +M2/V/PCAL +M2/W/PCAL

3
(4.13)

whereM2/U/PCAL is the square of the width of the shower along the U direction as de�ned in Equation
(4.11). Similar equations apply for the V and W directions. The distribution of the input squared
shower widths are shown in Figure 4.11. Figure D.4 in Appendix D shows the architecture of the
neural network used for the 6D analysis.

4.3.4 Training, testing and comparison of MVA classi�ers on simulations

Fisher discriminant, BDT and MLP are trained on the sets of variables presented in the previous
two subsections using the TMVA package. A �rst series of tests is also performed on simulations. The
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SFPCAL SFECOUTSFECIN

Figure 4.10: Input variables provided for the training of the multivariate classi�ers. The leftmost plot
shows the SFPCAL distributions for the signal and the background. The middle plot SFECIN , the
rightmost SFECOUT .

Figure 4.11: Average squared shower width for the PCAL (left), ECIN (middle), and ECOUT (right).

complete input sample is divided in two randomly selected subsets: a training and a testing sample.
For each classi�er, the training is performed on the training sample. The classi�ers are then tested
on the test sample. The distributions of classi�ers outputs for the testing set are superimposed on
the training distributions and presented in Appendix E. An example is shown in Figure 4.12. These
checks indicate that it is possible to apply reliably these trained classi�ers on simulations. Training
and testing outputs show good agreement for both 3D and 6D approaches and for all the classi�ers.
One can also look at indicators speci�c to each technique in order to assess the quality of the classi�ers.
An example is shown in Figure 4.13 where the convergence of the MLP with three input variables is
shown.

One can then compare the strength of di�erent classi�ers using Receiver Operating Characteristic
(ROC) curves. ROC curves display the signal e�ciency (fraction of signal kept) of a classi�er versus
its background rejection (fraction of background removed). The method which achieves higher signal
e�ciency and higher background rejection is preferred. The ROC curves for four 3D and three 6D
classi�ers are shown in Figure 4.14.

One can clearly see that 6D classi�ers are more powerful than 3D ones. This behavior is expected
as more information is taken into account by the classi�ers. Indeed as shown in Appendix F, shower
widths are not fully correlated with the deposited energy. All the three tested techniques seem to have
similarly high e�ciencies.

4.3.5 Test and comparison of MVA classi�ers on data

Once the classi�ers were trained and tested on simulations, they were used on CLAS12 real data and
their performances were compared. In this section, the method used to assess the performance of the
classi�ers on CLAS12 data is presented.
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Figure 4.12: Training and testing outputs of the 3D Fisher classi�er. Both distributions match very
well for both the background and the signal.

Figure 4.13: MLP 3D convergence test for the training and testing samples. The MLP error function
de�ned in Appendix D and summed over all the events in the training (red) and testing (blue) sets,
respectively, is shown as a function of the training iterations. One should check that the convergence
is reached after a certain number of training cycles.

A benchmark to assess the π+/e+ separation on data

Clean signal and background samples are needed to evaluate the performance of classi�ers. In
simulation samples, this is easily achievable as the nature of each simulated particle is known. In data,
a prior knowledge is necessary. The background sample (mis-id. pion) is described in Subsection 4.3.1.
The neutron peak events presented in Figure 4.5 were used. As shown in this �gure, the missing mass
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Figure 4.14: ROC curves for four classi�ers (a) in the 3D case and (b) in the 6D case. In the 3D case,
a Likelihood classi�er was also tested, but not kept for later analysis due to its poor performance. The
ROC curves of the 6D classi�ers are consistently above 3D ones.

spectrum is �tted with a Gaussian for the peak and with a second order polynomial for the underlying
background. The integral of the Gaussian gives a scale of the number of mis-id. pions in the sample.
In the following this sample is denoted "neutron sample".

On the contrary, de�ning a clean signal sample (true-positron) from data is more di�cult. TCS events
(at least one electron, one positron and one proton; missing transverse momentum fraction < 5%, and
missing mass squared < 0.4 GeV2, ensuring photo-production) with a positron with momentum bigger
than 4 GeV were used and are referred as the "TCS sample" (see Chapter 5). This sample is not
completely clean, it should a priori be a mixture of true-positrons and mis-id. pions. However the
requirement of the e−e+p �nal state as well as the exclusivity cuts should enhance the true-positron
fraction. This hypothesis is tested in the following section. To evaluate the "Signal+Background" in
the TCS sample, the number of events is counted.

Once the two data test samples are de�ned, the di�erent cuts presented in the previous sections are
applied. For χ2 and MVA approaches, one can vary the cut applied on the output variable and compare
the number of remaining events in the neutron sample and in the TCS sample. This is realized by
varying the cuts on the output variable in the speci�c output range and evaluating the integral of the
neutron peak and the number of remaining TCS events. An example of the results of this procedure
is shown in Figure 4.15, where the neutron peak integral and the number of TCS events are plotted
against the value of the applied cut for the 3D BDT.

One can de�ne a pseudo-ROC curve by associating these two curves. For each value of the cut, the
number of TCS events is plotted against the corresponding number of neutrons. The curve obtained is
not a ROC curve as the number of TCS events is a mixture of the signal and the background. However
this pseudo-ROC curve still allows to compare the proposed π+/e+ separation strategies and evaluate
their performances.

Strategy comparison and choice

The procedure presented in the previous section allows to draw for each identi�cation technique
a pseudo-ROC curve. All the pseudo-ROC curves are plotted in Figure 4.16. Both axes have been
normalized to one. The blue circle denotes the case where no cuts are applied. The pink triangle
represents the PCAL/ECIN SF anti-diagonal cut described in Subsection 4.3.2.
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Figure 4.15: Number of neutrons as a function of the cut applied on the output of the 3D BDT (left).
Number of TCS events as a function of the cut applied on the output of the 3D BDT (right).

The pseudo-ROC curves shown in Figure 4.16 (zoomed version in Appendix G ) exhibit two regimes.
At high background strength and large number of TCS events, the curves show a linear trend. This
means that for a given number of mis-id. pions removed in the neutron sample, a proportional number
of them is also removed from the TCS sample. On the contrary, when the background strength
approaches zero, the number of TCS events decays dramatically. This happens because the cut applied
on the output of the classi�er is too hard and starts to remove true-positrons and mis-id. pions
indistinctly. One should apply a cut on the classi�er output that maximizes the background rejection
while keeping most signal (at the limit between the two regimes). Figure 4.16 also permits to select
the best approach to separate positrons from pions in CLAS12 data. One should use the method with
the best pion rejection power while conserving most of the signal events. This is achieved by picking
the method for which the pseudo-ROC curve gets closer to the (0,1) point. The MLP 6D classi�er was
chosen according to this criterion.

Adding skewness to the classi�er

It is clear from Figure 4.16 that adding the width of the shower to the analysis increases the
positron/pion separation e�ciency. In order to test if adding more variables to the classi�er train-
ing further increases its power, the 3rd moment of showers in the EC, the skewness µ, was added to
train a MLP and a BDT. The skewness of a shower is de�ned as:

µ =

∑
strip(x−D)3 ln(E)

M
3/2
2

∑
strip ln(E)

. (4.14)

The pseudo-ROC curves for these two classi�ers are compared to the 6D MLP and BDT in Figure
4.17. One can see that all curves superimpose. Adding the skewness to the inputs of the classi�ers
does not improve their separation power.

4.3.6 Remaining background estimation

The pseudo-ROC curves in Figure 4.16 show a linear behavior at high background strength. This
behavior can be explained by considering that mis-id. pions in the TCS sample are removed at the
same rate as mis-id. pions in the neutron sample when the cut is varied. True positrons might also be
removed in the process and we can suppose this removal is small in the region where the background is
important. If the classi�er behave well, few signal events will be removed while most of the background
will be cut away.

Let y be the variable describing the normalized number of TCS events and x describing the normal-
ized background strength in Figure 4.16. In the region 0.1 < x < 1 the pseudo-ROC curves in Figure
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Figure 4.16: Pseudo-ROC curves obtained from data for di�erent classi�ers (3D classi�ers are referred
by their name only) and for the symmetric and asymmetric χ2 cuts. The number of events in the
TCS sample is plotted against the integral of the neutron peak in the neutron sample. Both axes are
normalized to 1 when no cut is applied. The anti-diagonal SF cut is represented by the pink triangle.
The blue dot represents that case were no additional cuts besides EB ones are applied. A zoomed
version of this plot is displayed in Appendix G.

4.16 are linear. Let B(x) and S(x) respectively be the number of background (mis-id. pions) and
signal events (true-positrons) in the TCS sample for the corresponding x background strength.

As stated before, the number of background events in the TCS sample is linear with the background
strength x:

B(x) = βx, (4.15)

where β is the number of background events in the TCS sample when no cut is applied. The function
S(x) is unknown but we assume it is increasing with x (when background is removed, signal events
might also be removed by mistake), and does not vary much with x (signal events should not be
removed by the classi�er, the loss is estimated on simulations and is expected to be less than 1%, as
shown in Figure 4.20).

The normalized number of TCS events can then be written in the linear region as:

y(x) =
S(x) +B(x)

S(1) +B(1)
=
S(x) + xβ

S(1) + β
. (4.16)

Although this formula is only applicable in the linear region, we can extrapolate it to x = 0:

y(0) =
S(0)

S(1) + β
. (4.17)

At a given value x0 of the normalized background strength achieved with the chosen cut, the corre-
sponding normalized number of TCS events is:

y(x0) =
S(x0) + x0β

S(1) + β
. (4.18)
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Figure 4.17: Pseudo-ROC curve obtained from data for 6D (SFs, shower widths) and 9D (SFs, shower
widths and shower skewness) classi�ers. The plot is zoomed in the region where the background is
minimal while the signal is maximal. Adding the skewness information in the input of the classi�ers
does not improve their performances.

Solving Equation (4.18) for B(x0) and assuming that the signal is almost constant S(x0) = S(0), one
can then obtain an estimate of the background/signal ratio at x0:

B

S
(x0) ≈ y(x0)

y(0)
− 1. (4.19)

The full derivation is given in Appendix H. In order to get a simple reading of the background/signal
ratio as a function of x, the pseudo-ROC curves of the 6D BDT and MLP are �tted with a linear
function in the range 0.1 < x < 1. The pseudo-ROC curves y(x) are then transformed as:

B

S
(x) =

y(x)

y(0)
− 1, (4.20)

where y(0) is the intercept of the �t. The obtained curves are shown in Figure 4.18, from which one can
get an estimation of the background/signal ratio as a function of the normalized background strength
in the region where the function is linear.

The B/S ratio is estimated to be close to 0.05 for a cut at 0.5 on the MLP output corresponding
to a Background strength of 0.15 (see Figure 4.19 for values of the background as a function of the cut
applied on the output of the 6D MLP classi�er). Finally the pion contamination Cπ+ above 4 GeV is
estimated as:

Cπ+ =
B

S +B
=

1

1 + S
B

≈ 5%. (4.21)

4.3.7 Systematic checks on simulations

A second systematic check of the e�ciency of the 6D MLP classi�er was performed on simulations.
A sample of BH-weighted events (see Chapter 5 for details on the TCS simulations) was used to test
the classi�er. This sample is completely uncorrelated from the training sample. It also assumes no
hypothesis on momentum, polar angle and transverse momentum, apart from the ones arising from
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Figure 4.18: Background/Signal ratio in the TCS sample as a function of the background strength
evaluated with the neutron sample. The red line corresponds to the linear �t of the BDT curve
between 0.1 and 1.
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Figure 4.19: Normalized remaining background as a function of the cut applied to the output of the
6D MLP classi�er.

the event generation. The positron signal e�ciency is shown in Figure 4.20. This �gure shows that
the loss of true positrons in simulations when a cut is applied at 0.5 on the 6D MLP classi�er output
is less than 1%. Further tests on the kinematic distribution were also performed. Figures 4.21a, 4.21b
and 4.22 show the distributions of momentum, polar angle and azimuthal angle of simulated positrons
before and after the 0.5 cut was applied. No large systematic variation is seen, although some events
do not fall in the kinematic limits of the training sample described in Subsection 4.3.1. This con�rms
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that this classi�er can be applied to events in the kinematics region of TCS events without losing
signal events. One can see in Figure 4.22 that most true positrons that are identi�ed as mis-id. pions
are located on the outside edge of sector 3 (φ between 100◦ and 150◦) and 5 (between -150◦ and
-100◦) of the FD of CLAS12. These two sectors have LTCC modules located between the DCs and
the FTOF/EC carriage. The showers that initiate in LTCC module walls could be a reason for these
mis-identi�cations.

Finally a similar check is performed on pion simulations. A sample of π+ with �at kinematics is
simulated and the kinematic distribution of mis-id. pions before and after the 6D MLP 0.5 cut are
compared. Figure 4.23 shows the momentum and θ distributions of π+ before and after the cut. No
large systematic e�ciency shift is seen.
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Figure 4.20: Signal e�ciency for simulated TCS events (inbending electron) using the 6D MLP classi�er
as a function of the cut applied on the classi�er output. At cut=0.5, the fraction of signal which is
lost is less than a 1%.

4.3.8 E�ect on data

The 6D MLP classi�er was �nally applied to the full available TCS data set. The output of the
classi�er and the signal e�ciency on high-momentum positron candidates are shown in Figures 4.24
and 4.25, respectively. One can clearly see the mis-id. pions (around 0) and the true positrons (around
1) in the classi�er output distribution. The e�ect of the classi�er on the momentum distribution is
assessed in Figure 4.26. One can clearly see an excess of positrons above the HTCC threshold in raw
data. After applying the cut, the excess is removed.

4.3.9 What about electron PID?

So far only the case of positron identi�cation was treated. Figure 4.27 shows the distribution of the
momentum of electrons versus the momentum of positrons for TCS events without any other cuts that
the ones from EB and the ones described in Subsection 4.3.5. The π+ contamination, mostly coming
from photo-production events ep→ e′p′π+(π−), is visible in the positron high-momentum region. On
the contrary no clear sign of π− contamination in the electron high-momentum region is visible. This
can be explained by the fact that high-momentum electrons Pe− > 4.9 GeV are produced along with
low momentum positrons Pe+ < 4.9 GeV. In this kinematics the positron is identi�ed with a 99%
e�ciency by the HTCC. Lepton number conservation imposes that an electron is produced with the
positron. Thus the simplest events that would contribute to the π− contamination in the TCS data are
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Figure 4.21: (a) Momentum spectrum of positrons for simulated TCS events. (b) θ spectrum of
positrons for simulated TCS events. In both cases the histogram before and after MVA pid cut, of
value 0.5, superimpose. Ratios of both histograms are also shown. The number of cut events per bin
is always lower than 3%.

the ones with �nal state pe+π−(e−e−scatπ
+), where the electrons and π+ would be undetected. Such

events are suppressed by, at least, a factor of α4
S < 1%.

In addition to these considerations, the 6D MLP positron classi�er was tested on electrons with
momentum higher than 4.9 GeV from the TCS sample. This classi�er is assumed to provide good
results on electrons as the shower mechanism does not depend on the charge of the initiating particle
at high energies. The signal e�ciency as a function of the cut applied to the classi�er output for
simulation and data electrons is shown in Figure 4.28. One can see that simulated electrons are
suppressed at most up to 3% for a 0.8 cut. The same behavior is seen for data electrons, showing that
the background is less prominent than in the positron case. No further pid cuts for electrons than the
EB ones are added in the analysis.

Finally the double pion contamination (where both leptons are mistaken for pions) is absent in the
high-momentum region. The kinematic region were both leptons have momenta higher than 4.9 GeV
is not accessible in CLAS12 kinematics.

4.4 Proton momentum corrections

The proton momentum corrections are split in two main contributions. The �rst corrections, pre-
sented in Subsection 4.4.1, are determined by comparing Monte-Carlo generated and reconstructed
proton kinematics. The shifts observed in this case is attributed to the energy lost by the proton while
propagating in the various detector materials. The determination of the parameters of this correction
solely relies on simulations. The second contribution is a data-only based correction, which aims at
correcting mis-alignments and ine�ciencies of the actual detectors, not accounted for by the simula-
tion. In particular, data-driven corrections are developed for the momenta of the protons in the CD
in Subsection 4.4.2.
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Figure 4.22: φ spectrum of positrons for simulated TCS events. The loss of positrons happens at very
speci�c φ angles corresponding to the edges of sectors which accommodate an LTCC module.
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Figure 4.23: (a) Momentum spectrum of mis-id. pions. (b) θ spectrum of mis-id. pions. The histograms
before and after the MLP cut at 0.5 are shown.
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Figure 4.24: Output of the 6D MLP neural
network on the TCS events used in the analy-
sis.
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Figure 4.25: Signal e�ciency of the cut applied
on the MLP output. This corresponds to the
proportion of remaining events for a given cut.
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Figure 4.26: Momentum of positrons for TCS events. The blue histogram corresponds to all events.
The red histogram corresponds to events that passed a 6D MLP output cut of 0.5.

4.4.1 Monte-Carlo corrections

The Monte-Carlo (MC) momentum corrections for the proton are derived using BH simulations (see
Section 5.1 for details). The goal of these corrections is to match the momenta of the generated protons
with the momenta of the reconstructed protons. These corrections account for the energy lost by the
proton while crossing the various detector parts of CLAS12.
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P (e+) (GeV) P (e+) (GeV)

Figure 4.27: Momentum of the positron versus momentum of the electron in e−e+p events for all
invariant masses (left) and only invariant masses higher than 1.5 GeV (right). No additional PID
cuts than the EB ones are used in these two plots. The π+ contamination is clearly visible in the
P (e+) > 4.9 GeV region in the left �gure. On the contrary no π− contamination is visible in the
P (e−) > 4.9 GeV.
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Figure 4.28: Signal e�ciency of the MLP classi�er for electrons with momentum bigger than 4 GeV,
for simulated TCS events (red) and data (blue).

The di�erence between the generated and reconstructed momenta,

∆P = PGen. − PRec., (4.22)
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is studied as a function of the polar angle of the proton, θ. The plot in Figure 4.29 shows the di�erence
between the generated and reconstructed proton momenta as a function of θ for protons detected in the
FD. The momenta di�erence shows di�erent behaviors in two distinct regions. Below 27◦ protons cross
little material before being detected and the momentum di�erence is small (below 20 MeV). Above 27◦

the material budget between the target and the DCs is larger, especially due to the HTCC and the
forward CTOF light-guides. In this region the momentum resolution is degraded and the momentum
di�erence can reach up to 80 MeV.

Figure 4.29: Di�erence between the generated and reconstructed momenta for protons detected in the
FD of CLAS12. One can see two distinct regions, below and above θ = 27◦.

The MC corrections are derived in three di�erent CLAS12 regions: the two regions in the FD
described above and one region in the CD. In each region the momenta di�erence is parametrized as
a function of the reconstructed momentum as shown in Figure 4.30. These corrections are at most of
the order of 4% for low-momenta proton (∼ 0.45 GeV) in the high-polar angle region of the FD. The
corrections are applied to protons in both the simulations and the data.

4.4.2 Data-driven momentum corrections

Data-driven momentum corrections for the proton are motivated by the fact that the simulations
depict an "ideal" detector, and therefore do not perfectly reproduce the data. Due to the detection
ine�ciencies of the CVT, the reconstructed momentum in the CD can be shifted from its actual
value. To investigate this issue a method using exclusive two-pion production events was developed.
This method relies on the exclusive measurement of the ep→ e′p′π+π− reaction, where the scattered
electron and the pions are detected in the FD. The kinematics of the scattered proton can then be
studied in two di�erent ways. In one case the proton can be detected by CLAS12, in the other case
its kinematics can be inferred by calculating the missing 4-momentum of X in the ep → e′π+π−X
reaction.

The missing mass spectrum obtained from the latter analysis is shown in Figure 4.31. One can see
that the missing mass shows a clear peak at the proton mass. Furthermore, looking at the dependence
of the missing mass as a function of the missing polar angle in Figure 4.31b, one can see that at high
polar angles (above 35◦) the high-mass component is suppressed and the missing mass spectrum has
a contribution only from the scattered proton. This allows to compare directly the kinematics of the
missing proton to the kinematics of the detected proton.
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Chapter 4. Particle identi�cation and momentum corrections

Figure 4.30: Top left: momenta di�erence (de�ned in Equation (4.22)) as a function of the recon-
structed momentum for polar angles above 27◦ in the FD. The distribution of the mean of each
momentum slice (obtained by a gaussian �t) is �tted with a 2nd order polynomial. The result of this
�t is superimposed to the original distribution (red line). Top right: Corresponding �gure for protons
with polar angles below 27◦ in the FD. Bottom: Corresponding �gure for protons in the CD.

(a) (b)

Figure 4.31: (a) Squared missing mass of the ep → e′π+π−X reaction. One can see a clear peak at
the proton mass and a higher-mass continuum. (b) Missing polar angle as a function of the squared
missing mass for the same reaction. Once can see that the high-polar-angle region, corresponding to
topologies where the missing proton goes in the CD, is free of high-mass background.

Figure 4.32 shows the momentum resolution:

∆P

P
=
PMissing − PRec.

PRec.
(4.23)
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(a) (b)

Figure 4.32: (a) Data-driven momentum resolution as a function of the polar angle for protons in the
CD. (b) Momentum resolution as a function of the momentum.

as a function of the detected polar angles (Figure 4.32a) and the detected momenta (Figure 4.32b).
No large dependencies are seen. The momentum resolution is also plotted as a function of the local
azymuthal angle in the last layer of the CVT, φCV T , as shown in Figure 4.33.

 °) + 90°(
CVT

φ 
150− 100− 50− 0 50 100 150

 P
 /P

 
∆

0.5−

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

0.4

0.5 ResoPVSPhi
Entries  15263
Mean x 58.13− 
Mean y 0.01706− 
Std Dev x   31.41
Std Dev y  0.1204

ResoPVSPhi
Entries  15263
Mean x 58.13− 
Mean y 0.01706− 
Std Dev x   31.41
Std Dev y  0.1204

)°(
CVT

φ 
150− 100− 50− 0 50 100 150

 P
 /P

 
∆

0.5−

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

0.4

0.5 ResoPVSPhi1
Entries  13558
Mean x 26.18− 
Mean y 0.09104− 
Std Dev x   31.29
Std Dev y   0.129

ResoPVSPhi1
Entries  13558
Mean x 26.18− 
Mean y 0.09104− 
Std Dev x   31.29
Std Dev y   0.129

)°(
CVT

φ 
150− 100− 50− 0 50 100 150

 P
 /P

 
∆

0.5−

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

0.4

0.5 ResoPVSPhi2
Entries  13239
Mean x   92.69
Mean y 0.04529− 
Std Dev x   31.42
Std Dev y  0.1297

ResoPVSPhi2
Entries  13239
Mean x   92.69
Mean y 0.04529− 
Std Dev x   31.42
Std Dev y  0.1297

Figure 4.33: Momentum resolution as a function of the local azymuthal angle for protons in the CD, for
the three regions of the CVT. The superimposed black line is the correction function for each region.

Each subplot corresponds to one of the three CVT regions. The distribution of the gaussian means
of each φCV T slices is �tted with a linear function, for each subplot. The resulting resolution corrections
are applied to the proton momenta in the data. The corrections range from almost zero for protons in
the region −210◦ < φCV T < −90◦ to up to 14% at the lower edge of the −90◦ < φCV T < 30◦ region.
These corrections are performed after the MC corrections presented in the previous subsection.
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4.5 Lepton momentum corrections

In this section we present the corrections applied to leptons. First, in Subsection 4.5.1, the shift be-
tween the Monte-Carlo generated and the reconstructed kinematics is analyzed. Second, in Subsection
4.5.2, a speci�c detected-photon correction is presented.

4.5.1 Monte-Carlo corrections
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Figure 4.34: Reconstructed momentum resolution for electrons (top) and positrons (bottom), as a
function of the lab angles θ, φ and the momentum.

As for proton, BH-simulation events are used to investigate the impact of the energy lost by the lepton
in the material of CLAS12 before being detected. This energy loss ultimately a�ects the reconstruction
of the kinematic variables, especially the momentum. Figure 4.34 shows, for the electrons and the
positrons, the momentum resolution:

∆P

P
=
PGen. − PRec.

PRec.
, (4.24)

where PGen. is the generated momentum and PRec. the reconstructed one, as a function of their polar
and azimuthal angles in the lab reference frame, θ and φ, and their momentum. These plots show that
the shift in momentum due to the energy loss of leptons is always smaller than 1%. For this reason,
we decided not to add MC-driven corrections to the momentum of leptons in the subsequent analysis.

4.5.2 Detected radiated photon correction

Leptons propagating through the target material can lose energy by radiating photons. These
photons are emitted at low angles around the direction of the lepton. The process is represented by
the diagram of Figure 4.35.

One way to recover the initial momentum of the lepton, before any radiative energy loss, is to use the
detected photon in the CLAS12 EC. Figure 4.36a shows, in the CLAS12 data, the uncorrected momenta
of electrons versus the di�erence in the polar angle at the vertex between electrons and detected
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e− e−

γ

Figure 4.35: Diagram representing the radiation of a photon from an electron.

photons, ∆θγ , while Figure 4.36b shows the cone angle between electrons and detected photons. One
can see that in both plots there is a signi�cant number of photons detected in the close vicinity of the
electron. The same behaviour is seen for positrons. Similar results are also obtained for simulations,
as seen in Figure 4.37.

(a) (b)

Figure 4.36: (a) Electron momentum as a function of the di�erence of polar angle between the electron
and the photons detected in each event, (b) Cone angle between the electron and same event photons.
These plots are produced with real CLAS12 data.

The 4-momenta of photons within −1.5◦ < ∆θγ < 1.5◦ and with a cone angle below 10◦ are added
to the reconstructed 4-momentum of the corresponding lepton. The e�ect of this correction can be
seen in Appendix I. The improvements in the momentum and angular resolutions are shown for the
electrons for which this correction is applied.

4.6 Fiducial cuts

Fiducial cuts consist in excluding regions where the detection e�ciency is not well reproduced by
the simulations. This mismatch between the data and the simulations mainly occurs on the edge of
the detectors, where the detection e�ciency varies fast. For calorimeters, this occurs in regions where
the energy deposition is incomplete. In this analysis we develop a �ducial cut for the PCAL. This cut
removes parts of the detector where electromagnetic showers are reconstructed too close to the edge
of the active region. This ensures that most of the energy of an electromagnetic shower reconstructed
in the PCAL is measured.

The PCAL �ducial cut developed in this section is based on the width of the measured electromag-
netic shower. The de�nition of the square of the shower width in the PCAL is given in Formula (4.11).
The mean shower size

√
M2 is calculated for each of the three calorimeter coordinates (U, V and W).
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(a) (b)

Figure 4.37: (a) Electron momentum as a function of the di�erence of polar angle between the electron
and the photons detected in each event, (b) Cone angle between the electron and same event photons.
These plots show simulated electrons.

Figures J.1 and J.2 in Appendix J show the distributions, for sectors 1 to 3, of the mean shower size
as a function of respectively low and high values of U, V and W. The shower mean size is estimated
away from the edge of the calorimeter (red lines). The value of the cut is then set at a distance equal
to the mean shower size from the edge of the distribution (black lines). The cut values used in the
TCS analysis are summarized in Table 4.1, where the maximum and minimum values of V and W are
given for each sector of CLAS12. Only the cuts along V and W are used, as cutting on the U bars was
found to be redundant.

sector Vmin Vmax Wmin Wmax

1 9.78924 402.06 9.47359 393.895
2 8.62768 402.389 8.57818 402.064
3 9.23112 403.875 8.23956 403.622
4 19.2814 403.021 8.26354 392.355
5 8.73336 402.915 9.28017 403.634
6 9.12088 403.681 8.13996 403.886

Table 4.1: Values of the �ducial cuts used. The minimum and maximum values for the U and V
coordinates in the PCAL are given for each sector.

The e�ect of the PCAL �ducial cuts on the electron distribution is shown in Figure J.3 in Appendix
J. The left plot shows the removed electrons in black. The plot on the right shows the regions kept for
the analysis. The fraction of electrons lost by these �ducial cuts was estimated on inclusive events (at
least one electron detected in CLAS12) from the inbending data set described in Section 2.8. It ranges
from 5% at 1 GeV to up to 30% at 10 GeV.

Other approaches have been used to de�ne �ducial cuts on the EC of CLAS12 [95]. The values of
the cuts derived with these methods are similar to the ones presented here. For this reason, the TCS
analysis presented in the next chapter adopts the values of the cuts de�ned in this section.
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Chapter 5

Simulations and extraction of the TCS
observables

In this chapter, the various steps towards the experimental measurement of the TCS observables are
presented. The simulation software is presented in Section 5.1. Exclusivity cuts based on simulations
and used for event selection are justi�ed in Section 5.2. The comparison of the kinematic distributions of
data and simulation is reported in Section 5.3. Acceptance and proton e�ciency studies are displayed,
respectively, in Sections 5.4 and 5.6. The background reactions for the TCS events are discussed in
Section 5.7. The formulae used to calculate the TCS observables from data are detailed in Sections
from 5.8 to 5.11. The binning used for data is displayed in Section 5.12. Finally the systematic errors
are estimated in Section 5.13. Results from this analysis will be presented in the next chapter.

5.1 TCS event generator and simulations

Simulations of the γp → e−e+p′ reaction are necessary for the analysis of TCS. They are used
especially to determine relevant exclusivity cuts as well as estimating the acceptance of CLAS12 for
this reaction. Two independent generators are used in this analysis. The �rst one, TCSGen, was
developed during the exploratory TCS analysis of CLAS data [59]. A second generator developed
for HERA, called GRAPE is also used to cross-check TCSGen, as well as to explore pair production
background and interference between �nal-state electrons (see Subsection 5.7.1).

5.1.1 GRAPE

The GRAPE Generator [96] was developed for experiments running at HERA, at the DESY labora-
tory in Hamburg. It is a di-lepton generator to study the electromagnetic background mainly in J/Ψ
and Υ measurements. It is a full generator including the kinematics of the beam electron producing
the real photon. It also includes pair production from the incident electron as well as interferences
between leptons in the �nal state. The diagrams which can be included in the generator are shown in
Figure 5.10. It is a non-weighted event generator.

5.1.2 TCSGen

TCSGen is a generator developed by R.Paremuzyan for the �rst CLAS analysis of TCS, and com-
pleted and corrected for the purpose of this analysis. It generates weighted events, with the possibility
to use BH-only weights or to include the TCS-BH interference cross section. Contrary to GRAPE,
the initial electron from the beam is not included and no possible interferences are taken into account.
Each event is assigned a weight w equal to:

w = psf · σ · fluxγ , (5.1)

where psf is the phase space factor, σ is the cross section of the considered processes, and fluxγ is
the equivalent photon �ux given in [97]. The phase space factor is the product of the ranges allowed
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for each kinematic variable. First the energy of the incoming real photon is randomly picked between
a minimum energy Eγ Min, de�ned by the user of the generator, and the maximum possible energy,
equal to the electron beam energy Eb. The photon energy phase-space factor is psfEγ = Eb −Eγ Min.
Second, the range allowed for the square of the transferred momentum to the proton −t is fully de�ned
by the value of Eγ previously picked. The limit tmin and tmax of the possible range for −t are given
by Equation (5.10) in page 121 of [98]. The associated phase space factor is psft = tmax − tmin. After
randomly picking a value for −t, the kinematically accessible invariant mass is fully de�ned. The
associated phase space is psfM = MMax−MMin. The limits MMin/Max are also given in [98]. Finally
the center-of-mass angles θ and φ are randomly chosen, in the range [0− π] and [0− 2π], respectively.
The �nal-state particles are then boosted to the lab frame and a �nal azymuthal rotation is performed.
The formula for the phase-space factor is:

psf = psfEγ · psft · psfM · psfθ CoM · psfφ CoM · psfφ Lab. (5.2)

The cross section σ can be either the BH one or include the TCS interference term. The formulae
used are those from [57].

The kinematic distributions of events generated with TCSGen and with GRAPE in the same kine-
matic region and with BH cross section only are compared in Appendix K. The two generators agree,
up to a normalization constant. For the TCS analysis, the acceptance calculations were performed
using TCSGen as it allows to cover the whole phase space with less iterations than GRAPE, as it is a
weighted generator and no generated events are discarded.

5.2 Event selection

5.2.1 Final state selection

The initial step of the extraction of TCS observables from the complete RGA dataset is the event
selection. First the �nal state of interest is selected. The complete dataset is skimmed to select events
with exactly one proton, one electron and one positron. We allow any other particle in the event to
avoid removing good events where accidental TOF/EC hits or false tracks are recorded. The particles
are selected according to the pid given by the CLAS12 reconstruction software (see Chapter 4), and
using the dedicated positron identi�cation neural network described in Chapter 4. The cut applied on
the output of the neural network is set at 0.5. The momenta of the detected particles are corrected
and �ducial cuts are applied. Finally a cut on the lepton momentum is also applied (leptons with
momenta greater than 1 GeV are kept). This cut is motivated by the poor momentum reconstruction
for tracks with large curvature (low momentum) in the FD.

5.2.2 Exclusivity cuts

Once the events with the relevant �nal state are retrieved, exclusivity cuts are applied. The reaction
of interest is :

γp→ e−e+p′. (5.3)

However the RGA dataset was not taken with a beam of photons but with electrons impinging directly
on the target. Therefore quasi-real photo-production events are used in this analysis. A quasi-real
photon is emitted by an electron from the beam and it interacts with the proton, producing a e+e−

pair in the �nal state, as:
ep→ (e′)γp→ (e′)e−e+p′. (5.4)

The corresponding conservation of momentum equation is:

pbeam + pbeam = pscat. + pγ + ptarget = pscat. + pe+ + pe− + pp. (5.5)

The 4-momenta of the scattered electron and initial real photon are fully de�ned by the measurement
of the 4-momenta of the �nal state particles:

pγ = pe+ + pe− + pp − ptarget, (5.6)
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5.2. Event selection

pscat. = pbeam + ptarget − (pe+ + pe− + pp). (5.7)

Two exclusivity cuts are applied on the missing particle (X) of the pe+e−X system. The mass and
the transverse momentum fraction of the missing particle X are constrained to be close to zero. The
mass cut ensures that the missing particle is an electron. The transverse momentum cut ensures the
low virtuality of the photon. Indeed, the virtuality of the incoming photon can be written:

Q2 = 2EbEX(1− cos(θX)), (5.8)

where Eb is the energy of the electron beam, EX is the energy of the undetected scattered electron,
θX is its scattering angle in the lab frame given by:

tan(θX) =
PtX
PX

, (5.9)

and PX and PtX are, respectively, the momentum and transverse momentum of the missing particle.
The values of these cuts are motivated by simulations. Figure 5.1a shows the distribution of simulated
events in the transverse missing momentum fraction plane (left plot) and the transverse momentum
fraction as a function of the missing mass (right plot). Photo-production events correspond to events
at small transverse momentum fraction and small missing mass. The same distributions are shown for
the data in Figure 5.1b. A similar behavior is seen, with the addition of high missing mass background.

(a)

(b)

Figure 5.1: Distributions of the exclusivity variables for (a) simulations and (b) the data.

The cuts used in the analysis are: ∣∣∣PtX
PX

∣∣∣ < 0.05 (5.10)
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and
|M2

X | < 0.4 GeV2. (5.11)

The resulting distribution of incoming photon virtuality, calculated using Equation (5.8), is shown in
Figure 5.2. Finally, the variation of the extracted quantities with di�erent exclusivity cuts is investi-
gated and accounted for in the systematic uncertainties (see Section 5.13).
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Virtuality incoming photon (Q2)

Figure 5.2: Virtuality of the incoming photon for all the events passing the exclusivity cuts (blue) and
the events included in the analysis (red).

5.3 Phase space of interest and Simulations/Data comparison

After applying the exclusivity cuts detailed above, the invariant mass of the lepton pair is extracted.
Figure 5.3 shows the invariant mass spectrum obtained for the full RGA Fall 2018 dataset. Meson
resonances decaying into an electron-positron pair are visible.

The mass region between 1.5 GeV and the J/Ψ mass (3096 MeV) is selected for the measurement of
TCS. The �rst reason for this choice is theoretical: the hard scale of TCS is given by the invariant mass
of the lepton pair and has to verify Q′2 � mp and Q′2 � −t in order to meet the conditions for the
GPD factorization. As shown in the later analysis, a typical value of proton momentum transfer in this
analysis is 0.3 GeV2, which satisfy the previous condition. The second reason is that the mass range
above 2 GeV is free from vector-meson resonances decaying into a di-lepton pair. The range between
1.5 GeV and 2 GeV has contributions from the wide vector mesons ρ (1450) and ρ (1700). In order
to check the impact of these resonances, the mass spectrum obtained from the data is compared with
BH-weighted simulations, between the Φ and the J/Ψ mass, in Figure 5.4. In this �gure the simulated
spectrum is normalized in order to have equal integral as the data spectrum, between 1.1 and 3 GeV.
According to this plot there is no obvious meson contamination in the mass range of interest. The
e�ect of this contamination on the observables is studied by extracting them in the two mass ranges
([1.5 GeV − 2 GeV] and [2 GeV − 3 GeV]).

Eventually, the phase space selected for the analysis is:

• 1.5 GeV < M =
√
Q′2 < 3 GeV

• 0.15 GeV2 < −t < 0.8 GeV2

• 4 GeV < Eγ < 10.6 GeV.

Note that, unless speci�ed otherwise, the observables are integrated over these kinematic ranges.
The distributions of the three variables −t, Eγ and M for data and simulations in the selected

phase space are compared in Figure 5.5. The simulation distributions are normalized to have the same
integral as data distributions. The simulations-data agreement for all three variable is good and no
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ϕ
ω,ρ

J/Ψ

Figure 5.3: Lepton pair invariant mass spectrum after exclusivity cuts, extracted from data. Meson
resonances (ω/ρ (770/782 MeV); Φ (1020 MeV) and J/Ψ (3096 MeV)) are visible. The peak at zero
mass is due to photon conversion in the target material (γ → e+e−) and π0 Dalitz decay (π0 → γe+e−).
The peak at 0.1 GeV is an artifact induced by noise in the PMTs of the HTCC associated with two
DC tracks in the same sector of CLAS12.
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Figure 5.4: Comparison between data and simulations in the high-mass range. The ratio between the
two plots is also shown. Cuts on the square of the transferred momentum (0.1 GeV2 < −t < 1 GeV2)
and the photon energy (3 GeV < Eγ < 10 GeV) are applied.
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large discrepancies are seen. The kinematics of the particles in the laboratory coordinates P and θLab
are displayed in Appendix L.
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Figure 5.5: Simulations-data comparison for the distributions in (a) −t, (b) Eγ and (c) M . The
simulation distributions are normalized to have equal integral as the data. Both the simulations and
the data are in agreement, and no large discrepancies are seen.

5.4 Proton e�ciency correction

In order to take into account the di�erences in the proton detection e�ciency between real data and
simulations, a proton e�ciency correction to the GEMC simulation is implemented. This correction is
derived using the same data sample as for the proton momentum corrections discussed in Subsection
4.4.2. The ep→ e(p′)ρ→ e(p′)π+π− reaction is selected by applying a cut on the invariant mass of the
two pions, 0.6 GeV < Mπ+π− < 1 GeV. The same reaction is generated using the genev event generator
[99] and passed through the GEMC and the CLAS12 reconstruction softwares. The kinematics of the
missing proton are assumed to be well reconstructed and are used to derive the correction. The proton
e�ciency is measured for data and simulations as:

EffData/Simu.(ΩMis.) =
N

Data/Simu.
Rec. (ΩMis.)

N
Data/Simu.
Mis. (ΩMis.)

, (5.12)

where NData/Simu.
Mis. (ΩMis.) is the number of events with a missing proton in the kinematic bin ΩMis. =

PMis.; θMis.;φMis.), N
Data/Simu.
Rec. (ΩMis.) is the corresponding number of events with a detected proton.
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5.4. Proton e�ciency correction

The proton e�ciency correction is then encoded in the ratio:

EffCorr =
EffData

EffSimu.
. (5.13)

The correction is computed in the CD and in the FD independently, using similar procedures described
in the next two subsections.

5.4.1 E�ciency correction in the central detector

As shown in Figure 4.31b, there is very little background under the missing-proton mass peak in the
high-polar-angle region. The number of events with a missing proton or a detected proton is then given
by the number of events in each bin. The integrated e�ciencies as a function of the momentum, the
polar and the azimuthal angles of the missing proton are shown in Figure 5.6. The e�ciency calculated
in the simulations case is higher than for the data. The e�ciency correction is calculated as a function
of the three variables, with 2 bins in θ (from 37◦ to 45◦ and from 45◦ to 65◦), 4 bins in momentum
(spanning the 0.4 to 1.5 GeV range evenly) and 30 bins in φ (from −180◦ to 180◦). The limits of the
binning are driven by the variation of the correction as a function of each variable. The maximum
value of the correction in the CD is 60%.
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Figure 5.6: Proton e�ciency in the CD, as a function of (a) the momentum, (b) the azimuthal angle
and (c) the polar angle of the missing proton; for simulations in red and data in blue.
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5.4.2 E�ciency correction in the forward detector

The proton e�ciency is also derived for FD protons. Unlike in the case of the CD, where there
is no background under the proton peak, there is a large high-mass background in the missing mass
spectrum for protons at polar angles below 37◦. In this region the number of events with a missing
or reconstructed proton is calculated by �tting the missing proton peak with a gaussian plus a linear
background as shown in Figure 5.7. The integral of the gaussian de�nes the number of events. The �t
on the missing mass peak is done in both the missing-proton case and the reconstructed-proton case.
In the case of the reconstructed proton, only the events with a reconstructed proton are kept in the
missing mass spectrum.

Figure 5.7: Examples of �ts performed for the proton e�ciency analysis in the FD. The missing mass
peak is �tted with a gaussian and a linear background.

Figure 5.8 shows the e�ciency as a function of the momentum, the azymuthal and the polar angles
of the missing proton. As the ratios between simulations and data e�ciencies are fairly constant in θ
and φ, a single di�erential correction in momentum is applied according to the e�ciencies shown in
Figure 5.8a. The correction ranges from 80% at high momentum, around 1 GeV, and drops to 40% for
low-momentum protons (around 0.4 GeV).

5.5 Background merging

The background merging [100] consists in mixing data events recorded with random trigger with
simulation events. The random trigger events are recorded regularly (with a frequency of few hundreds
hertz) during the data taking. For each simulation event, the ADCs and TDCs of the CTOF, FTOF,
DCs, SVT, MVT, EC and HTCC from a random trigger event are added to the list of ADCs and TDCs
obtained from the GEMC simulation. The merged events are then reconstructed with the standard
reconstruction software. This background merging procedure aims at better reproducing the detection
e�ciencies in the simulation by mimicking the backgrounds present during the actual data taking.

In the TCS analysis, the background merging procedure is used as an alternative to the previously
presented proton e�ciency correction. The acceptance (see Section 5.6) is calculated twice, �rst using
the e�ciency correction and without background merging and then using the background merging only.
The di�erence between the results obtained with both methods is assigned as a systematic uncertainty,
as explained in Section 5.13.

5.6 Acceptance estimation

The large angular coverage of CLAS12 permits to detect most of the particles produced when an
electron interacts with the target. However, due to holes between detector subsystems, some particles
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Figure 5.8: Proton e�ciency in the FD, as a function of (a) the momentum, (b) the azimuthal angle
and (c) the polar angle of the missing proton; for simulations in red and data in blue.

may escape without being detected. Furthermore, because of detection ine�ciencies, the reconstructed
particle kinematics may di�er from their initial values at the vertex. In order to correct for these e�ects,
the acceptance of CLAS12 for the γp→ e−e+p′ reaction is estimated using simulations. The acceptance
is calculated in 5-dimensional bins. In a given bin B, the acceptance is de�ned as the number of events
reconstructed in this bin devided by the number of events generated in this bin:

AccB =
NREC
B

NGEN
B

. (5.14)
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The number of reconstructed events in B is:

NREC
B =

∑

{Eγ ,−t,Q′2,θ,φ}REC∈B

Effcorr w, (5.15)

where the e�ciency correction de�ned in Section 5.4 is applied, w is the weight of the event given
by TCSGen (Equation (5.1)) and the sum is performed over all events with reconstructed kinematics
inside the considered bin B. The number of generated events in B is:

NGEN
B =

∑

{Eγ ,−t,Q′2,θ,φ}GEN∈B

w, (5.16)

with the same de�nition as before, except that the sum is now done over events with generated
kinematics inside the bin B. This de�nition encodes both acceptance and bin migration e�ects, provided
that resolutions are well reproduced in simulations. Each event in the analysis is corrected by the
acceptance factor corresponding to its reconstructed kinematics.

The binning used in the analysis is given in Table 5.1.

Variable Bin limits
−t 0.15 - 0.25 - 0.34 - 0.48 - 0.8
Eγ 4.0 - 6.2 - 8.4 - 10.6
Q′2 2.25 - 3.5 - 5.0 - 9.0
θ from 30◦ to 160◦, 10◦ bins
φ from −180◦ to 180◦, 10◦ bins

Table 5.1: Multi-dimensional binning used for the calculation of the acceptance.

For the results shown in Section 6.1, 20 million events were generated using TCSGen, passed
through GEMC and reconstructed using the CLAS12 reconstruction software. In order to remove bins
where there are too few events to perform the acceptance estimation, two additional cuts are used.
The bins with acceptance bellow 5% are removed from the analysis. A cut on the relative error of the
acceptance shown in Figure 5.9 is also applied:

δAcc

Acc
< 50%. (5.17)

The resulting acceptance distributions are shown in Appendix M, as a function of θ and φ for each
{Eγ ,−t, Q′2} bin.

5.7 Background estimations

5.7.1 Electro-production of a lepton pair ep→ pe+(e−)escattered

In Section 5.2, where the exclusivity cuts are presented, the scattered electron is assumed to stay
undetected at low angles. However it could be de�ected at high angle and the electron from the pair
could stay undetected at low angles, mimicking the TCS reaction. Also, because the �nal state of the
reaction has e�ectively two electrons, interferences between them have to be investigated. These e�ects
are included in the Grape generator which allows to investigate the e�ects of using quasi-real photons
for the TCS measurement. Two samples of events were generated. The �rst sample contains events
in which two electrons, the scattered one and the one from the pair, are generated. All possible pair-
production channels are added: the BH channel (top plots in Figure 5.10), the pair production from
radiated photons (bottom plots in Figure 5.10), as well as the interference between the two electrons
involved in the reaction. In the second sample the primary electron is generated at very low angles
and only the BH process is considered.

In the �rst sample including all possible e�ects, the two electrons can be distinguished by their
transverse momentum. The electron with a high transverse momentum is likely to be detected and
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Figure 5.9: Relative error on the acceptance calculation, after bins with acceptance below 5% are
removed. A cut is applied to remove bins with relative error higher than 50%.

Figure 5.10: Diagrams of the processes included in the GRAPE event generator. The top two plots
(a) correspond to the BH processes associated with TCS where the incoming photon is radiated from
an electron. The bottom two plots (b) represent the processes where a radiated photon emits a photon
that then decays in a lepton pair.

identi�ed as a "pair" electron, while the low transverse momentum electron is likely to stay undetected.
Following this observation, two con�gurations for the measurement are possible (a positron and a low
or high transverse momentum electron). Depending on which electron is detected, the reconstructed
invariant mass of the lepton pair, as well as the calculated photon kinematics, are di�erent. Figure
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5.11a shows the distribution of generated events in the plane de�ned by the two possible invariant
masses, Q′2 calculated from the high transverse momentum electron and Q

′2
2 from the low transverse

momentum electron. All the mass con�gurations that could lead to a reconstructed invariant mass in
the range 2 GeV2 − 9 GeV2 are generated. Finally, Figure 5.11b shows the distribution of the photon
energy calculated assuming that the high transverse momentum electron is the one from the lepton
pair. The blue histogram corresponds to the BH-only case, the red one to the full simulation. Both
simulations are normalized to have equal integrals between 2 GeV and 7 GeV.

(GeV)

(GeV)

(a)

(GeV)

(b)

Figure 5.11: (a) Generated invariant mass phase space in the case where all possible processes leading to
the �nal state pe+(e−)escattered are considered. (b) Generated photon energy distributions for BH-only
events (blue) and including all the possible processes (red).

The two generated samples are then passed through the CLAS12 simulation chain and exclusivity
cuts are applied. The resulting measured distributions are shown in Figure 5.12. No large e�ect coming
from the use of quasi-real photo-production is noticed.

Figure 5.12: Measured invariant mass Q′2 (left), proton transferred momentum −t (middle) and photon
energy Eγ (right) distributions, for the generated BH-only events (blue) and with all the processes
included (red).

5.7.2 Pion contamination

Pions can be mistakenly identi�ed as leptons, especially at high momenta (above ∼ 4.5 GeV) where
the HTCC produces signals for leptons and pions. The pion background is addressed in Chapter 4.
The neural network PID is implemented in the TCS analysis with a cut at 0.5. We show in Chapter
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4 that this method reduces the background ratio by a factor 10, to less than 5%. To account for
the remaining background and to estimate its impact on the measured observables, the background
rejection cut is varied. This latter point is addressed in the Section 5.13.

5.8 Experimental cross-section ratio

The theoretical R ratio is calculated over the full angular phase space of TCS. However CLAS12
acceptance is limited and only covers a fraction of the angular phase space. The theoretical R ratio
is thus inaccessible, but it can be calculated over the CLAS12 acceptance. Following the notations in
[59], we call R′ the ratio integrated over the CLAS12 acceptance. It is calculated as:

R′ =

∑
φ Yφ cos(φ)∑

φ Yφ
, (5.18)

where the sum over φ is done in 10◦ bins and the cos(φ) factor is calculated at the center of each bin.
The Yφ quantity is calculated for each φ bin as:

Yφ =
∑

events in φ bin

(
L

L0

)(
1

Acc

)
, (5.19)

where the ratio L
L0

is calculated event-by-event (the factors L and L0 are given in Equations (1.73) and
(1.77), respectively), and Acc is the acceptance in the kinematic bin of each event (given in Equation
(5.14)). The statistical error of Yφ is calculated as:

E2(Yφ) =
∑

events in φ bin

(
L

L0

)2( 1

Acc

)2

, (5.20)

Statistical uncertainty using Monte Carlo method

As the numerator and the denominator used in the computation of R′ are correlated, a Monte Carlo
approach is used to compute the statistical uncertainty. It works as follows:

• Yφ and E(Yφ) are computed as described above,

• for each φ bin, a value Y R
φ is randomly generated following a gaussian probability distribution of

mean Yφ and sigma E(Yφ),

• the ratio is calculated using the randomly generated values: RR =
∑
φ Y

R
φ cos(φ)∑
φ Y

R
φ

.

• The previous two steps are repeated 10000 times and the resulting distribution of RR is �tted
with a gaussian,

• the σ of the �tted gaussian is de�ned as the statistical uncertainty of the measurement. An
example of the �tted distribution is shown in Figure 5.13.

5.9 Phenomenological study of the TCS Forward-Backward asymme-
try

As mentioned in Section 1.3 where the concept of Forward-Backward asymmetry (AFB) is introduced,
no predictions have yet been published for this observable in TCS. In this section the phenomenological
work performed on the TCS AFB is presented. The main goal of this analysis is to estimate the size
of the asymmetry as well as to gain an insight on its kinematic dependencies in order to determine if
CLAS12 can measure it.

This section is divided in three parts. In Subsection 5.9.1, the limitations of CLAS12 acceptance
and the consequences on the measurement of the AFB are presented. Initial results are compared to
other predictions provided by independent groups and models. The results obtained according to the
conclusion of the �rst section are then displayed in subsequent Subsections 5.9.2 and 5.9.3.
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Figure 5.13: Distribution of RR for the determination of the statistical error for �rst bin in ξ. The full
results are shown in Figure 6.2. The gaussian �t is overlaid.

5.9.1 Early considerations and comparison with other models

To study the TCS AFB, the TCS and BH processes and their interference cross sections have been
calculated using the VGG code [39] provided by Michel Guidal. The formulas used in this code are
described in [58]. The cross section is estimated in the forward and backward directions and the
obtained results are then combined to produce the asymmetry curves shown in the following. The
GPD model used is the VGG model described in [22] and in Section 1.2 of this manuscript. The
D-term contribution to the GPD H is included (unless mentioned otherwise). The α′ coe�cient �xing
the t-dependence of the GPDs is set to 1.098, the bval and bsea parameters �xing the ξ dependence are
set to 1 (unless speci�ed otherwise).

Figure 5.14: Acceptance of CLAS12 in the θ/φ plane. The region around φ = 0◦ and low polar angle,
as well as φ = ±180◦ and high polar angle are well covered by CLAS12.

The CLAS12 acceptance does not cover the full φ - θ plane of TCS. An example of the acceptance
coverage, obtained from the CLAS12 acceptance study presented in Section 5.6, is shown in Figure
5.14. The regions around φ = 0◦ and low θ, and around φ = ±180◦ and high θ are well covered by
CLAS12. Following this observation, it is decided to study the FB asymmetry at φ0 = 0◦.

144



5.9. Phenomenological study of the TCS Forward-Backward asymmetry

A prediction for the asymmetry is shown in Figure 5.15a, where the t-dependence of the asymmetry
is plotted for various values of θ0. These results were cross checked independently by M.Vanderhaeghen
also using the VGG code. Figure 5.15b shows the results of this independent analysis. Both results
are pointing toward an asymmetry with a positive value. Note that these results were obtained after
correcting a missing minus sign in Equation (17) of [58]. The consequence of adding this minus sign is
to �ip the sign of the asymmetry.
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Figure 5.15: (a) FB asymmetry as a function of −t at �xed φ0 = 0◦ for di�erent values of θ0. (b)
Asymmetry as a function of −t at �xed φ0 = 0◦ for di�erent values of θ0 and di�erent models: the
impact of the D-term on the asymmetry is shown. Figure courtesy of M. Vanderhaeghen.

Later predictions realized by Pawel Sznajder [101], using the PARTONS software [102], are shown
in Figure 5.16. These predictions also point to a positive asymmetry, independently of the model used
for the CFFs as well as high order corrections.
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Figure 5.16: FB asymmetry as a function of −t at �xed φ0 = 0◦, θ0 = 60◦, Eγ = 7 GeV and Q′2 = 1.8
GeV 2 (a) using the GK model at LO (dashed) and NLO (plain), (b) using the VGG model at LO.
Figures courtesy of Pawel Sznajder.

Furthermore, the analytical formulae for TCS derived in [57] were used to cross-check the asym-
metry in VGG. This was done after making sure the CFF conventions are consistent. The results
obtained for the analytical formulae are shown in Figure 5.17. The sign of the asymmetry obtained is
consistent with the PARTONS results and with the corrected VGG asymmetries.

A �nal consistency check was performed by calculating the asymmetry from the TCS only and BH
only cross sections. The absence of asymmetry in both cases is well veri�ed.
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Chapter 5. Simulations and extraction of the TCS observables

Figure 5.17: FB asymmetry as a function of −t at �xed φ0 = 0◦ for di�erent values of θ0 using formulas
derived in [57].

5.9.2 TCS AFB kinematic dependencies

A main feature of the FB asymmetry is that it can be measured over a small portion of the TCS
angular phase space. This prevents any large detector-induced false asymmetry caused by holes in
the acceptance, which instead occurs in the case of the R ratio (see Section 5.8). On the contrary,
the statistics dramatically falls if the angular phase space of the measurement is too narrow. The
main goal of this analysis is to determine the angular range that can be used for the measurement in
CLAS12, in order to maximize statistics. One has to make sure that the FB asymmetry conserves its
sign over the angular integration domain to maximize the size of the measured asymmetry. Therefore,
the angular dependence of the FB asymmetry is studied. From the explicit expression of the AFB
derived in Section 1.3 following [57]:

AFB(θ0, φ0) =
− α3

em
4πs2

1
−t

mp
Q′

1
τ
√

1−τ
L0
L cosφ0

(1+cos2 θ0)
sin(θ0) ReM̃−−

dσBH
, (5.21)

one can see that the φ0 dependence is driven by the cos(φ0) factor. The φ0 behavior is shown in Figure
5.18 for �xed θ = 80◦. The asymmetry changes sign at φ0 ≈ ±90◦. This behavior is reproduced by
both the VGG model and the analytical model. The di�erences are attributed to the terms that are
neglected in the analytical model (see [57] for full details). Following this investigation, one can see
that the FB asymmetry in the region around φ0 = 0◦ is maximal and that the sign is constant in its
vicinity. In Figure 5.15a, showing the asymmetry as a function of −t at φ0 = 0◦ and for di�erent values
of θ0, the asymmetry has constant sign over the θ0 range accessible in the CLAS12 acceptance (from
∼ 40◦ to ∼ 100◦).

Finally, the asymmetry was studied as a function of the incoming photon energy Eγ and the
square of the invariant mass of the lepton pair Q′2, aiming at increasing the statistics available for
the measurement. Figure 5.19 shows the Q′2 and Eγ dependencies of the FB asymmetry at φ0 = 0◦

and for various values of θ0. These plots indicate that the sign of the asymmetry is constant over the
kinematic range accessible by CLAS12. This implies that it is possible to integrate the measurement
over a large portion of the phase space and still measure an asymmetry.
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Figure 5.18: FB asymmetry as a function of −t at �xed θ0 = 80◦ for di�erent values of φ0 computed
(a) with the VGG code, (b) using the formulas derived in [57].
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Figure 5.19: FB asymmetry calculated using the VGG code (a) as a function of Q′2 and (b) as a
function of Eγ at �xed φ0 = 0◦ and for di�erent values of θ0.

5.9.3 TCS AFB model dependencies

After exploring the kinematic dependencies of the FB asymmetry, its dependencies on GPD model
parameters are tested.

D-term dependence

The �rst model dependence investigated is the D-term. The FB asymmetry is sensitive to the real
part of the CFFs and thus to the D-term. This makes this observable a good candidate to investigate
its strength. The FB asymmetry is calculated with and without the D-term contribution. The D-term
used is the one presented in [103]. The e�ect of adding the D-term to the GPDs parametrization is
shown in Figure 5.20. One can see a sizable e�ect on the asymmetry induced by the D-term. It is also
important to notice that the amplitude of the asymmetry increases with the addition of the D-term,
and that the sign of the asymmetry does not change when adding it.

bsea-dependence

The dependence of the asymmetry to the skewness parameter bsea is also explored. Indeed in [28] it is
suggested that DVCS data, sensitive to the imaginary part of the H, are better described with skewness
parameters bval = 1 and bsea = 5. Following this observation, the value of the sea parameter is varied
in the asymmetry calculation, from 1 (strong skewness dependence) to 8 (low skewness dependence),
to verify if the FB asymmetry can help in the determination of this parameter. The results are shown
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Figure 5.20: FB asymmetry as a function of −t at φ0 = 0◦ for di�erent values of θ; and with (solid
lines) or without (dashed lines) the D-term contributions to the GPD H.

in Figure 5.21, where the asymmetry dependencies on −t and Q′2 are plotted for various values of the
sea parameter. No large e�ect is seen when varying the parameter bsea.
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Figure 5.21: (a) −t dependence of AFB for di�erent values of the bsea parameter. (b) Q′2 dependence
of AFB for di�erent values of the bsea parameter.

5.10 Experimental Forward-Backward asymmetry

According to the conclusions of the phenomenological study in Section 5.9, the FB asymmetry is
calculated at φ0 = 0◦. Furthermore, by looking at the angular coverage of CLAS12, it is decided to
integrate over the following angular bin in the forward direction:

• −40◦ < φ0 < 40◦

• 50◦ < θ0 < 80◦.

The corresponding backward bin limits are:
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5.10. Experimental Forward-Backward asymmetry

• 140◦ < 180◦ + φ0 < 220◦

• 100◦ < 180◦ − θ0 < 130◦.

Bin volume correction

Figure 5.22 shows the acceptance of CLAS12 in the θ - φ plane for a given −t, Eγ and Q′2 bin. The
limits of the forward and backward bins are shown in green and red, respectively. Although the limits
of the angular bins have been chosen to be covered by the CLAS12 acceptance, some {Eγ ,−t, Q′2}
acceptance bins do not fully cover the forward or backward angular bins. The di�erence in coverage
between the forward and the backward direction can be the source of fake asymmetries. To correct
for this, a bin volume correction is applied during the calculation of the FB asymmetry. For each
acceptance bin {Eγ ,−t, Q′2}, the fraction of the angular bins covered by the acceptance, CorrV olF/B,
is calculated. Each event detected in the forward (resp. backward) bin is then assigned a correction
weight equal to the inverse of the fraction of the volume covered by the acceptance in this bin. This
correction assumes that the cross section of the TCS reaction is relatively constant within the volume
of the forward (resp. backward) bin and that it can be estimated only by measuring it in the volume
covered by the acceptance of CLAS12. This hypothesis is veri�ed by extracting the FB asymmetry with
BH-weighted simulation events and the di�erence between the expected value for BH (null asymmetry)
and the extracted value is assigned as a systematic uncertainty (see Section 5.13). Two sets of volume
correction coe�cients are obtained, one for the forward and one for the backward angular bins.

Figure 5.22: Volume correction for the AFB calculation. The forward bin is represented by the green
square. The red square delimits the backward bin. One can see that CLAS12 does not fully cover the
angular bins for some {Eγ ,−t, Q′2} bins.

For a given bin, the value of the FB asymmetry is calculated as the ratio:

AFB =
NF −NB

NF +NB
(5.22)
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Chapter 5. Simulations and extraction of the TCS observables

where NF/B is the number of events in the forward (resp. backward) angular bin, corrected by the
acceptance and the bin volume, as:

NF/B =
∑ 1

Acc× CorrV olF/B
. (5.23)

The reported statistical error bars are calculated by propagating the weighted error on NF/B:

E2(NF/B) =
∑(

1

Acc× CorrV olF/B

)2

. (5.24)

5.11 Experimental beam-spin asymmetry

As mentioned previously, this analysis is done on quasi-real photoproduction events, where a real
photon is radiated by the initial electron beam. In this con�guration, the circular polarization of the
photon can be inferred from the initial longitudinal polarization of the electron beam. An electron
polarized in the direction (resp. opposite) of the beam emits a right-(resp. left-) handed circularly
polarized photon, with a polarization transfer Poltransf. fully calculable analytically in QED (see
[104, 105] for details and Appendix N for the detailed formulas used to calculate the polarization
transfer).

Figure 5.23: Distributions of the photon helicity asymmetry as a function of φ for four bins in −t (as
described in Section 5.12). The �t used to extract the asymmetry is overlaid. The �t amplitudes are
displayed in Figure 6.11.
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5.12. Binning of the data

The photon polarization asymmetry is calculated as a function of the azymuthal angle φ as:

BSA(−t, Eγ,M ;φ) =
1

Poleff

N+ −N−
N+ +N−

, (5.25)

where the number of events with reported positive N+ (resp. negative N−) electron helicity in each
bin is corrected for the acceptance and the polarization transfer as:

N± =
∑ 1

Acc
Poltransf.. (5.26)

Poleff is the e�ective polarization of the CEBAF electron beam, which is estimated to be 85% on
average. The φ-distribution is then �tted with a sinus function:

BSA(−t, Eγ,M ;φ) = BSA(−t, Eγ,M) sin(φ), (5.27)

as shown in Figure 5.23. Following the de�nition of [58], the amplitude of the sinus function given by
the �t (BSA at φ = π/2) is extracted. The reported statistical error bars are given by the �t error on
the amplitude of the function.

5.12 Binning of the data

The phase space used for the analysis is binned to have similar number of events in each bin for the
t, Eγ and ξ variables. This aims at achieving similar error bars in each bins. There are four bins in
−t, three in Eγ and ξ. For the lepton invariant mass, the ranges from 1.5 GeV to 2 GeV and from
2 GeV to 3 GeV are divided in two bins each, in order to study the possible e�ect of vector-meson
contamination in the low-mass bin. Besides, the binning in −t is di�erent in the two mass ranges. The
bin limits are summarized in Table 5.2 and superimposed on the kinematic distributions of the data
in Figure 5.24.

Variable Bin limits
−t (1.5 GeV < M < 2 GeV) 0.15 - 0.25 - 0.34 - 0.48 - 0.8
−t (2 GeV < M < 3 GeV) 0.15 - 0.35 - 0.45 - 0.55 - 0.8

Eγ 4.0 - 6.4 - 8.0 - 10.6
M =

√
Q′2 1.5 - 1.7 - 2.0 - 2.5 - 3.0

ξ 0.0 - 0.12 - 0.15 - 0.4

Table 5.2: The binning grid used for the data in this analysis. Two di�erent binnings for −t are used,
one for each invariant mass range.

5.13 Systematic errors estimation

In this section the methods used to estimate the systematic errors are described. Five di�erent
sources of systematic uncertainties have been studied. For each source of uncertainty, a value of
systematic shift is calculated for every observable and for each bin. The errors are then added in
quadrature.

Method

The method used to calculate the observable involves binned acceptance corrections and bin volume
corrections for the FB asymmetry. To estimate the impact of these corrections on the extracted values,
the method systematic error is computed using simulations. First the observables are calculated using a
sample of generated BH-weighted events, without passing them through GEMC and with no corrections
applied. This corresponds to the green point in Figure 5.25a. In the case of the R′ ratio, only events
within a non-zero acceptance bin are kept. In the case of the FB asymmetry, the observable is calculated
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Figure 5.24: Binning grid for the TCS observables in (a) the Eγ - (−t) plane (the binning in −t used
in this �gure is the one used for the [1.5 GeV − 2 GeV] mass range), (b) the M - (−t) plane and (c)
the M - Eγ plane.

within the full angular bin de�ned in Section 5.10. Finally, in the case of the BSA, a random beam
helicity is associated to each event. Then the observables are calculated a second time with the full-
chain simulation events, applying all the corrections, except that the acceptance is not corrected for
e�ciency and data-driven momentum corrections are not applied. Two samples of simulation events
are used, one using weighted events from TCSGen and one generated with GRAPE (blue points and
red points on Figure 5.25a). The systematic uncertainty associated with the extraction method is
the di�erence between the ideal case (no corrections) and the value extracted after the full analysis
procedure. The systematic error is set between 0 and the di�erence between the ideal case and the
extracted case for the two simulation samples. This procedure can thus result in an asymmetric error
in order to re�ect the shift induced by the measurement method. This systematics mostly a�ects
observables binned in ξ (for example the R′ ratio in Figure 6.2), as the acceptance is not binned in this
variable. The maximum error induced on the extracted observables is at most 0.1 for the AFB binned
in ξ in Figure 6.7.

E�ciency / Background merging

A method to estimate the proton e�ciency is described in Section 5.4. A second method, the
background merging, used to reproduce the detection e�ciencies is presented in Section 5.5. The
systematic error associated with these corrections is estimated by the di�erence of the values of the
observables obtained with both methods, ∆Eff . The systematic error bar is then de�ned as ±∆Eff/2.
Figure 5.25b illustrates the determination of the e�ciency systematic error. As shown in Section 6.1,
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5.13. Systematic errors estimation

the e�ciency systematics is most of the time dominated by other sources of systematic errors for most
of the observables. The maximum observed shift on the extracted observables is 0.1 for the AFB as a
function of −t (Figure 6.9) and the BSA as a function of M (Figure 6.10).

Positron identi�cation

In this analysis the positron identi�cation algorithm plays an important role. To estimate the
impact of the remaining pion contamination, the cut applied on the output of the neural network
is varied around the chosen value, 0.5 ± 0.1. The acceptance is also recalculated accordingly. The
di�erence between the observables extracted with the standard and the shifted cuts is assigned as
the positron identi�cation systematics. This systematics can be asymmetric as the variation of the
extracted observables with the shifted positron cuts can be di�erent in each case. As illustrated in
Figure 5.25c, the variation is small for most of the observables. The induced shift is at most 0.1 for
the AFB as a function of −t in the high-mass region in Figure 6.9, but usually limited to 0.03 for most
of the observables.

Acceptance model

The dependence of the extracted results on the model used in the acceptance is also studied. The
acceptance is calculated with BH-weigthed events and events without weights (i.e. phase-space gener-
ator). The di�erence between the two methods ∆Acc is de�ned as the acceptance model systematics,
and the associated error bar is set to ±∆Acc/2. The method is illustrated in Figure 5.25d. This source
of systematics becomes large for observables with low statistics, such as the AFB, for which the induced
absolute shift can reach values up to 0.05 (as in Figure 6.4).

Exclusivity cuts

Finally, the last source of systematic uncertainty studied is the values chosen for the exclusivity
cuts. To estimate this uncertainty, the analysis is performed with tighter cuts than those presented in
Section 5.2: ∣∣∣PtX

PX

∣∣∣ < 0.04 (5.28)

and
|M2

X | < 0.3 GeV2. (5.29)

The di�erence between the two extractions ∆Exclu is assigned as the exclusivity-cuts systematic error
and the associated error bars are symmetric around zero ±∆Exclu/2, as shown in Figure 5.25e. This
systematics dominates in bins where the statistics is limited, especially for the AFB and the BSA at high
mass in Figure 6.10. This shows that the exclusivity cut error is largely correlated with the statistical
error in these bins. However, the observed systematic shift always remains within the statistical error
bars.
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Figure 5.25: Systematic errors for the FB asymmetry in the 1.5 GeV < M < 2 GeV mass range, as blue
bands with respect to a reference value of 0. The vertical error bars correspond to the statistical errors
and horizontal error bars expand along the bin size. The same study is done for all the observables
extracted in this analysis. (a) Systematic error from the extraction method. The green points are
calculated from generated events, the blue and the red points are obtained after the full chain simulation
and analysis. The data points are also displayed in yellow in order to compare this systematics with
the statistical error bars. (b) E�ciency systematic error obtained from the values of the observables
with the proton e�ciency correction (blue) and the background merging (yellow). (c) Positron ID
systematic error. The cut on the output of the neural network is varied from 0.5 (blue) by ±0.1 (red
and yellow) to obtain the value of this error. (d) Acceptance model systematics obtained by calculating
the observable with a �at acceptance (red). (e) The error associated to the exclusivity cuts is estimated
by tightening the transverse momentum and the missing mass cuts (red) with respect to the standard
cut (blue).
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Chapter 6

Results and comparison with model
predictions

This chapter presents the results obtained with the Fall 2018 CLAS12 dataset in the inbending
con�guration (see Section 2.8 for more details). The three TCS observables (R′ ratio, AFB and BSA)
are extracted for di�erent kinematic bins as a function of di�erent variables. First, all the extracted
values of the TCS observables and their systematic errors are shown in Section 6.1. A comparison with
the CLAS data is shown in Section 6.2. Finally some results are compared with model predictions and
discussed in Section 6.3.

6.1 Complete CLAS12 results for the TCS observables

In this section all the data points obtained in the analysis are displayed. For each observable and for
each bin, the statistical error bar is shown as a vertical error bar. The horizontal error bar corresponds
to the size of the bin. The horizontal position of the data points is the average value of the variable in
the bin, corrected by the acceptance (and in the case of the AFB, also by the bin volume correction).
The grey bands show the total systematic uncertainty de�ned as the quadratic sum of all of the
systematic contributions described in Section 5.13. The decomposition of the systematic uncertainty
is shown under each plot. The red points reported on each plots correspond to the expected values
of the observables in each bin for BH-only events. These points are calculated using BH-weighted
simulation events and, within the acceptance of CLAS12 for the R′ ratio and the BSA, and within
the experimental forward and backward bin for the FB asymmetry. Finally, the mean values of the
integrated kinematic variables, calculated using the same simulations, are given above each plot.

6.1.1 R′ ratio

The R′ ratio is extracted as a function of −t (Figure 6.1) and ξ (Figure 6.2), with all the other
variables integrated. The dependence on −t is further explored by plotting the ratio as a function of
−t in the invariant mass bin [2 GeV − 3 GeV] (Figure 6.3).

The measured values of the R′ ratio are always bigger than the values expected if only the BH
process was contributing to the γp → p′e+e− cross section (red points in the following �gures). This
behavior is also seen in the high-mass region [2 GeV − 3 GeV] in Figure 6.3, where no vector-meson
contamination is expected. This observation validates the fact that the CLAS12 data are sensitive to
the BH-TCS interference cross section.

6.1.2 AFB

The FB asymmetry is extracted as a function of Eγ (Figure 6.4),M (Figure 6.5), −t (Figure 6.6) and
ξ (Figure 6.7), with all the other variables integrated. In order to explore the invariant mass dependence
further, and especially to investigate the e�ect of low-mass vector-meson resonances, it is also measured
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Chapter 6. Results and comparison with model predictions

as a function of −t for the two additional mass bins, in the low-mass bin [1.5 GeV − 2 GeV] (Figure
6.8) and in the high-mass bin [2 GeV − 3 GeV] (Figure 6.9).

As in the case of the R′ ratio discussed above, the extracted values of the AFB shown in Figures
6.4, 6.5 and 6.6 are not compatible with zero, con�rming that the BH process does not contributes
alone to the γp → p′e+e− cross section. A none-zero asymmetry is seen in both the low-mass and
high-mass bins. The signal seen in the high-mass bin, in Figure 6.9, can be attributed to the BH-TCS
interference cross section, as there is no known vector-meson resonance in this mass range.

6.1.3 BSA

The BSA is extracted in CLAS12 acceptance, as a function of M (Figure 6.10), −t (Figure 6.11)
and ξ (Figure 6.12), with all the other variables integrated.

In each of these �gures a clear photon polarization asymmetry is reported. This is a further con�r-
mation that we observe the BH-TCS interference in the CLAS12 dataset, as the expected asymmetry
for the BH process only is zero.
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Figure 6.1: R′ ratio as a function of −t, integrated over all the other variables. The horizontal error
bars denote the bin size, the vertical error bars are statistical errors and the grey bands display the
total systematic uncertainty. The red points are expected values for BH-only events, obtained with
simulations. Tabulated values in Table O.1 in Appendix O.
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Figure 6.2: R′ ratio as a function of ξ, integrated over all the other variables, using the same plotting
conventions as in Figure 6.1. Tabulated values in Table O.2 in Appendix O.
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Figure 6.3: R′ ratio as a function of −t, for the mass range [2 GeV − 3 GeV], integrated over all the
other variables, using the same plotting conventions as in Figure 6.1. Tabulated values in Table O.3
in Appendix O.
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Figure 6.4: AFB as a function of Eγ , integrated over all the other variables, using the same plotting
conventions as in Figure 6.1. Tabulated values in Table O.4 in Appendix O.
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Figure 6.5: AFB as a function of M , integrated over all the other variables, using the same plotting
conventions as in Figure 6.1. Tabulated values in Table O.5 in Appendix O.
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Figure 6.6: AFB as a function of −t, integrated over all the other variables, using the same plotting
conventions as in Figure 6.1. Tabulated values in Table O.6 in Appendix O.
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Figure 6.7: AFB as a function of ξ, integrated over all the other variables, using the same plotting
conventions as in Figure 6.1. Tabulated values in Table O.7 in Appendix O.
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Figure 6.8: AFB as a function of −t, in the [1.5 GeV − 2 GeV] mass range, integrated over all the
other variables, using the same plotting conventions as in Figure 6.1. Tabulated values in Table O.8
in Appendix O.
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Figure 6.9: AFB as a function of −t, in the [2 GeV − 3 GeV] mass range, integrated over all the
other variables, using the same plotting conventions as in Figure 6.1. Tabulated values in Table O.9
in Appendix O.
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Figure 6.10: BSA as a function of M , integrated over all the other variables, using the same plotting
conventions as in Figure 6.1. Tabulated values in Table O.10 in Appendix O.
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Figure 6.11: BSA as a function of −t, integrated over all the other variables, using the same plotting
conventions as in Figure 6.1. Tabulated values in Table O.11 in Appendix O.
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Figure 6.12: BSA as a function of ξ, integrated over all the other variables, using the same plotting
conventions as in Figure 6.1. Tabulated values in Table O.12 in Appendix O.
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6.2 Comparison with CLAS results

In the exploratory study performed on CLAS data, a �rst extraction of the cross-section ratio R′

was performed. Because of the low energy of the electron beam delivered to CLAS (5.48 GeV), the
lepton invariant mass range was limited between 0 and 2 GeV. The analysis was thus performed in
the mass region above the φ(1020), and the ratio was extracted as a function of the squared proton
transferred momentum [59].

For the comparison presented in this section, the same kinematic region as for the CLAS analysis
is selected from the CLAS12 dataset:

• 2 GeV < Eγ < 5 GeV

• 0.15 GeV2 < −t < 0.8 GeV2

• 1.1 GeV < M < 1.7 GeV

and the R′ ratio was extracted and compared to the CLAS results. The CLAS12 dataset allows to
have a thinner binning and to keep statistical error bars well below the CLAS ones. The ratio R′ is
calculated for eight −t bins and the size of each bin is indicated by the horizontal error bars in the
plot bellow. Note that the CLAS12 points are obtained without performing a complete acceptance
calculation; the lowest-mass and lowest-energy bin of the acceptance presented in Section 5.6 is used.
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Figure 6.13: CLAS12 results for the R′ ratio as a function of −t in the kinematic region accessible by
CLAS, together with the CLAS results obtained in [59] and BH-only simulations for comparison. The
error bars correspond to the statistical error only.

Figure 6.13 shows the data point from CLAS (blue), CLAS12 (red) as well as the R′ ratio calculated
from BH-only simulation events with kinematics inside the CLAS12 acceptance (green). Both CLAS
and CLAS12 datasets give roughly compatible results, given the error bars, indicating an asymmetry
well above the one obtained from BH simulations. The di�erence between the CLAS and CLAS12
results can be explained by the fact that the ratio is calculated within the respective detector accep-
tance. Although in this mass region the energy scale might be too low to ensure factorization and
vector-meson resonances might be too important to extract any information on TCS, both analyses
have coherent results, indicating that the extraction method is under control.
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6.3 Comparison Data/Models and physical interpretations

The TCS reaction is of great interest as it allows to measure the D-term via the the R′ ratio and
the AFB asymmetry, both sensitive to the real part of the H CFF, as well to verify the universality of
GPDs by extracting the photon polarization asymmetry (or BSA), which is sensitive to the imaginary
part of H. In this section, the data points obtained for the AFB and the BSA are compared to model
predictions provided by M.Vanderhaeghen using the VGG model [46, 47, 39] and by P.Sznajder using
the GK model [40] in the PARTONS software [102].

BSA interpretation

Most of the data used to constrain GPDs have been measured in DVCS and Deeply Virtual Meson
Production (DVMP). However, DVMP and DVCS data are di�cult to compare directly as the former
reaction involves Meson Distribution Amplitudes that must be measured using other reactions before
being able to interpret DVMP in terms of GPDs. Contrary to DVMP, TCS does not involve distri-
bution amplitudes and is only parameterized by GPDs, making it directly comparable to DVCS. The
comparison between these two processes is an important test of the universality of the GPDs. This
can be done using the TCS BSA, as it is directly sensitive to the imaginary part of the CFF H which
is itself well constrained by DVCS data.
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Figure 6.14: CLAS12 data points for the TCS BSA as a function of −t, evaluated at φ = 90◦, integrated
over CLAS12 acceptance and over all the other variables. The vertical blue error bars are statistical
uncertainties while the grey bands correspond to systematic uncertainties. Three model predictions,
obtained using the VGG and GK models, are also displayed. The model predictions are calculated at
the mean kinematic point given above the plot. The red points are the expected values of the BSA for
BH-only events, obtained using BH-weighted simulations.

Figure 6.14 shows the TCS BSA extracted from the CLAS12 data as a function of −t, compared
to three theoretical predictions. The two VGG curves (cyan and magenta) display the −t dependence
of the BSA evaluated at φ = 90◦ and for θ integrated from π/4 to 3π/4. The other variables, Eγ and
M , are set to 7 GeV and 1.8 GeV respectively. The BSA is calculated for two di�erent values of the
sea skewness parameter (see Subsection 1.2.3 for the de�nition). The hypothesis bsea = 1 (cyan) is the
default value of the VGG model, while the bsea = 5 hypothesis (magenta) seems to be favored by the
analysis of DVCS data in [29]. The GK prediction (orange) is evaluated at the mean kinematic point
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of the plot, and the angular kinematics and integration are identical to those of VGG.
The values of the BSA extracted from the CLAS12 data are in agreement, within error bars, with

the three theoretical predictions. This observation tends to validate the use of the GPD formalism to
describe TCS data and is a hint for the universality of the GPDs, as the VGG model also describes
well the DVCS data [29]. However, our data points do not strongly favor any of the VGG hypothesis.
Further studies on the dependence of the TCS BSA with the bsea parameter should be made in order
to identify the kinematic regions where one could discern between both values.

Figure 6.15 shows the measured BSA as a function of the invariant mass of the lepton pair, M . The
prediction obtained with the GK model, for the mean kinematic point speci�ed above the plot and for
angular dependencies identical to the ones in Figure 6.14, is superimposed (orange line). The GK curve
is only displayed in the mass range between 1.5 GeV to 2.3 GeV, as values of the mass higher than 2.3
GeV are not kinematically allowed at the mean kinematic point of this plot. Nevertheless, the data
points are in agreement, within error bars, with the theoretical prediction in the [1.5 GeV− 2.3 GeV]
mass range. This is an indication that the GPD factorization seems to apply to TCS in a large part
of the mass range accessible by CLAS12.
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Figure 6.15: CLAS12 data points for the BSA as a function of M . The blue error bars are statistical
uncertainties while the grey bands represent the systematic errors. The orange curve is the GK model
prediction at the mean kinematic point of the data. The red points are the expected values for BH
only (from simulations).

AFB interpretation

The AFB asymmetry has the advantage that it can be easily compared to theory, as it does not
involve acceptance limits. Also, as shown in Section 5.9, it has a large sensitivity to the D-term,
making it a valuable observable to extract this quantity.

The t-dependence of the AFB extracted from data is compared to theoretical predictions in three
cases. In all three cases the GK predictions are calculated for the average Eγ and the invariant mass
of the lepton pair given above each plot. For the VGG predictions the mean kinematics are given in
the corresponding �gure captions.

In Figure 6.16 the AFB asymmetry data points are plotted against −t, and all the other variables
are integrated over the phase space detailed in Section 5.12. They are compared to predictions obtained
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using the VGG model for M = 1.8 GeV (red lines) and for di�erent values of θ0 (at the lower edge
of the angular bin θ0 = 50◦ (dashed), at its center θ0 = 65◦ (solid), and at its upper edge θ0 = 80◦

(dash-double-dotted)). The e�ect of changing the average mass is also illustrated with the green curve
calculated for M = 1.5 GeV. The cyan curve is calculated without the contribution of the D-term to
the GPD H (the D-term contribution used for this calculation is the one described in [37]). Finally the
GK prediction (orange) shown here is obtained by integrating the BH-TCS cross section in the forward
and backward angular bin de�ned in Section 5.10. Also it has to be noticed that the GK prediction
does not include the contribution of the D-term.

As already mentionned in Section 5.9, the VGG curves produced with and without the D-term
clearly indicate that the D-term contribution to the GPD H has a large e�ect on the value of FB
asymmetry. The data points are better described by the VGG model when the D-term is included,
although error bars are still too large to completely rule out the case without the D-term. The GK
model prediction seems to largely underestimate the asymmetry. This could be explained by the
absence of D-term in this prediction. In order to ensure that this interpretation is valid for the whole
mass range studied, the same comparison is done in the low-mass region [1.5 GeV − 2 GeV] and in
the high-mass region [2 GeV − 3 GeV]. Indeed low mass events dominate when the asymmetry is
integrated over the full mass range [1.5 GeV − 3 GeV], therefore low-mass vector-meson resonances
(e.g. ρ(1450)) could be the origin of the observed FB asymmetry.
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Figure 6.16: CLAS12 AFB as a function of −t, integrated over all other variables. The data points are
compared with theory predictions realized using the VGG and GK models. The cyan line is calculated
with VGG and without the D-term contribution to H. The red lines correspond to three di�erent θ0

values for the forward direction, using the VGG model. The green line is the prediction of the VGG
model for a lower invariant mass value (1.5 GeV). All the VGG curves are calculated at Eγ = 7.0 GeV,
and at the invariant masses indicated in the legend. The orange line is the GK model prediction
obtained with PARTONS, at the mean kinematic point of the plot, and integrated in the same angular
range as the experimental AFB. The red points are the expected values for BH only (from simulations).

Figure 6.17 shows the data points extracted in the [1.5 GeV − 2 GeV] low-mass region. They are
compared with the same VGG predictions as in the full mass range case, as the average mass and the
average photon energy do not change dramatically. The GK prediction is however recalculated at the
mean kinematic point of this plot. The data points do not change substantially when the mass range
is restricted to the [1.5 GeV − 2 GeV] range as the events included in this analysis mostly have a low
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invariant mass, as seen in the mass distribution in Figure 5.5c. Therefore the conclusions drawn for
Figure 6.16 also apply to Figure 6.17. Again the data points are better described when the D-term
contribution is taken into account.
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Figure 6.17: CLAS12 AFB as a function of −t, integrated over all the other variables, with the invariant
mass of the lepton pair integrated in the range [1.5 GeV − 2 GeV]. The VGG curves are the same as
in Figure 6.16. The GK prediction is calculated at the mean kinematic point. The red points are the
expected values for BH only (from simulations).

The AFB measured in the high-mass region [2 GeV − 3 GeV] is shown in Figure 6.18. The data
points are compared with predictions for the FB asymmetry calculated with the VGG model at the
center of the angular bin (θ0 = 65◦) and for two mass and photon-energy hypotheses. The prediction
obtained when neglecting the D-term is displayed (cyan). The GK model prediction (orange) is also
shown. While the e�ect of changing the kinematic point has little e�ect on the predicted asymmetry,
the D-term plays again a very important role in the value of the asymmetry. As in the case of the
full invariant mass integration, the data points tend to indicate that the D-term contribution to the
asymmetry is necessary to explain its value. Indeed, both the VGG curve without the D-term and
the GK curve underestimate the value of the asymmetry. The error bars shown in this plot do not
allow for further conclusions. However, by increasing the available statistics, one could �t directly the
D-term contribution and extract the pressure distribution inside the proton from this observable.

The mass and the photon-energy dependences of the extracted AFB data points are also compared
to GK model predictions. In both cases the GK model is evaluated at the mean kinematic point of the
plots and integrated over the experimental forward and backward bins. Figure 6.19 shows the CLAS12
AFB as a function ofM . The GK prediction is only plotted in the [1.5 GeV−2.3 GeV], as higher mass
are kinematically forbidden at the mean kinematic point used to calculate the curve. A prediction for
the GK model with a slightly di�erent mean −t (−t = 0.33 GeV2) is also shown. The data points are
not well reproduced by the GK model in the [1.5 GeV− 2.3 GeV] mass range. This discrepancy could
originate from a possible vector-meson contamination, although the conclusions drawn from Figure
6.16 seem to indicate that the absence of the D-term in the model is the reason why the data and the
GK model do not agree.

Figure 6.20 displays the AFB data points as a function of the photon energy, Eγ . The GK prediction
for this observable is also shown. As already observed in Figures 6.16 and 6.19, the GK predictions
largely underestimate the measured FB asymmetry.
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Figure 6.18: CLAS12 AFB as a function of −t, integrated over all the other variables and with the
invariant mass integrated in the range [2 GeV − 3 GeV]. The VGG model cyan curve does not take
into account the D-term contribution. The plain red curve is calculated using VGG with the invariant
mass set to 2.2 GeV and Eγ = 7.88 GeV while for the dot-dashed curveM is set to 2 GeV and Eγ = 7.0
GeV. The orange line is the GK model prediction at the mean kinematic point. The red points are the
expected value for BH only (from simulations).
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Figure 6.19: CLAS12 AFB as a function ofM , integrated over all the other variables. The vertical blue
error bars are statistical errors and the grey bands are systematic uncertainties. The orange and brown
curves are two predictions obtained with the GK model, for −t = 0.37 GeV2 and −t = 0.33 GeV2,
respectively. The red points are the expected values for BH only (from simulations).
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Figure 6.20: CLAS12 AFB as a function of Eγ , integrated over all the other variables. The vertical
blue error bars are statistical errors and the grey bands are systematic uncertainties. The orange curve
is obtained with the GK model. The red points are the expected value for BH only (from simulations).
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Conclusion

The description of the inner structure of the nucleon is a complex problem due to the nature of
the interaction between its constituents, quarks and gluons. The theory of quantum chromodynamics
describing their dynamics cannot be computed perturbatively at low energy. This phenomenon, called
asymptotic freedom, imposes the use of ad hoc structure functions to encode the distribution of partons
inside the nucleons. This manuscript is dedicated to the study of one set of structure functions, the
Generalized Parton Distributions, particularly investigating two main topics: the commissioning of
the Central Neutron Detector of CLAS12 and the measurement of the Timelike Compton Scattering
process.

The �rst part of this manuscript is dedicated to the installation, calibration, reconstruction and
performance validation of the Central Neutron Detector (CND). The CND allows to measure DVCS
observables on the neutron by detecting the struck neutron in the ed → en′(p′)γ reaction. This
measurement plays a crucial role in the determination of the contribution from the angular momentum
carried by valence quarks to the total spin of the nucleon. It also allows to extract GPDs in terms of
quark �avors. The CND, located on the outer layer of the Central Detector of CLAS12, was installed
at the beginning of this thesis. The cabling and part of the electronics were also installed during that
time. The work described in this manuscript was performed after the installation.

The reconstruction and calibration softwares presented in this work were developed in parallel.
The algorithms used in these sofwares are similar to the ones used in the other TOF detectors of
CLAS12. However, due to the unconventional single-sided readout design of the CND, they were
adapted to take into account features induced by this architecture. The CND calibration suite, a
visual interface designed to provide an easy calibration procedure to the CND calibrators, was also
partly developed during this thesis. Finally the performances of the CND were estimated from real
data. The extracted timing resolution (∼ 185ps) and position resolution (∼ 3 cm) are slightly above
the design values. However we showed in this manuscript that despite these resolutions, the CND
still achieves to separate neutrons from photons for momenta up to 0.8 GeV. The neutron detection
e�ciency was also estimated from data using the ep→ e′π+(n) reaction. The e�ciency value obtained
(∼ 10%) is in agreement with the design value. A comparison with the e�ciency calculated from
simulations was also done and it shows a good agreement over the whole range of momenta and polar
angles accessible by the CND. Finally, very preliminary results obtained with real data taken by the
CND were shown to illustrate its impact on the neutron DVCS measurement.

The second part of the manuscript focuses on the measurement of TCS observables using the RGA
dataset recently taken by the CLAS12 detector. After presenting the experimental setup, the data
analysis framework was explained in details. One of the main issue encountered during the analysis
was the positron identi�cation. Indeed two-pions electroproduction events where the negative pion
stays undetected (ep → e′p′π+(π−)) may mimic TCS events (γp → p′e+e−). In particular, when the
momentum of the π+ is higher than the HTCC threshold, the pion can be mistakenly identi�ed as
a positron. An algorithm based on neural networks was developed to solve this issue. The approach
presented in this manuscript allows to reduce the π+ contamination at high momenta by a factor ten,
from 50% to 5%. The neural network was validated both on simulation events and on real data. Other
tools were also developed for this analysis, such as proton e�ciency corrections. These corrections
were put in place in order to correct the momenta shifts observed in the data and which were not well
reproduced in the simulations.
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A phenomenological study on the Forward-Backward asymmetry (AFB) for TCS was also performed
during this thesis. Indeed, it was the �rst time that this observable was investigated for TCS, both
theoretically and with real data. We proved that this observable is strongly sensitive to the real part
of the CFFs. In particular it is shown in this thesis that the contribution of the D-term, a quantity
which is linked to the pressure distribution inside the nulceon, has an important e�ect on the AFB.

Finally the last part of this work summarizes our results on TCS. All the extracted quantities were
compared to the values that are expected for them if only the BH process contributes. We observed
that the data points always di�er from the ones obtained with the BH-only contribution. This behavior
was also reported in the resonance-free mass region, proving that we indeed extracted the BH-TCS
interference contribution of the γp → p′e+e− reaction. These results were also compared with the
predictions of two models, VGG and GK. The photon polarization asymmetry data points suggest
that the GPD formalism describes well the CLAS12 TCS data. This observation advocates for the
description of TCS in terms of GPDs, and thus for their universal nature. We also noted the fact that
the FB asymmetry data points are better reproduced by the VGG model, which includes the D-term.
This indicates the important role played by the D-term in the modeling of GPDs. However, because of
the size of our error bars, no direct extraction of the D-term could be performed. Nevertheless, these
results point out that a direct extraction of the D-term should be possible with the higher statistics
provided by the complete CLAS12 dataset.
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Appendix A

Calculation of the ξ2 term in the 1st
x-moment of the GDP H

In this appendix the calculations of Equation (1.53) in Subsection 1.2.3 are detailed. The contribution
to the ξ2 term in the �rst x-moment of the GPD H comes from the D-term integral and reads:

∫ 1

−1
dx x θ(ξ − |x|) 1

Nf
D(

x

ξ
, t) =

1

Nf

∑

n odd

dn(t)

∫ 1

−1
θ(ξ − |x|)dx x(1− z2)C3/2

n (z), (A.1)

where D(xξ , t) is expended as a sum of Gegenbauer polynomials as:

D(t, z) = (1− z2)
∑

n odd

dn(t)C3/2
n (z), (A.2)

and z is given by z = x/ξ, with the property:

|z| ≤ 1. (A.3)

The integral of Equation (A.1) can be written as:

∫ 1

−1
θ(ξ − |x|)dx x(1− z2)C3/2

n (z) =

∫ ξ

−ξ
dx x(1− z2)C3/2

n (z) = ξ2

∫ 1

−1
dz z(1− z2)C3/2

n (z), (A.4)

where in the �rst equality we have taken advantage of the step function and the fact that ξ < 1, and
in the second equality the change of variable x→ zξ has been done.

Using the Gegenbauer polynomial orthogonality properties:

∫ 1

−1
dz (1− z2)α−

1
2Cαn (z)Cαm(z) ∝ δn,m, (A.5)

and noting that Cα1 (z) = 2αz, one can re-write the right-hand side of Equation (A.4) as:

ξ2

∫ 1

−1
dz(1− z2)

1

3
C

3/2
1 (z)C3/2

n (z) = δn,1 ξ
2

∫ 1

−1
dz 3z2(1− z2) = ξ2δn,1

4

5
. (A.6)

The ξ2 contribution thus reads:

∫ 1

−1
dx x θ(ξ − |x|) 1

Nf
D(

x

ξ
, t) =

1

Nf
ξ2 4

5
d1(t). (A.7)
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Appendix B

Fisher discriminant

The Fisher discriminant method (also referred as linear discriminant analysis) consists in �nding an
axis in the hyperspace of the input variables such that, when projecting the signal and the background
on this axis, the signal subset is as far as possible from the background subset, while all the signal
(resp. background) events stay in the same neighborhood.

Let xS(B),k(i) be the value of the variable k ∈ [1, Nvar] for an event i which is in the signal subset
(S) (resp. in the background subset (B)), let xU,k be the mean of the variable k for events in the subset
U = {S,B}.

The within-class matrix is de�ned as:

Wk` =
∑

U=S,B

〈(xU,k − xU,k)(xU,` − xU,`)〉 = CS,k` + CB,k` , (B.1)

where CS(B) is the covariance matrix of the signal (background) sample.
The Fisher coe�cients, Fk, are given by

Fk =

√
NSNB

NS +NB

Nvar∑

`=1

W−1
k` (xS,` − xB,`) , (B.2)

where NS(B) is the number of signal (background) events in the training sample. The Fisher discrimi-
nant yFi(i) of an event i is given by:

yFi(i) = F0 +
Nvar∑

k=1

Fkxk(i) . (B.3)

where the o�set F0 centers the sample mean yFi(i) of all the events at zero.
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Appendix C

Boosted decision tree

Decision tree

Decision trees classify signal and background events by applying successive cuts on the input vari-
ables. Let xi be the set of input variables for the event i. A decision tree �rst �nds a cut c1 and a variable
x1 that results in the best separation of signal and background. Then the total signal+background
sample is divided into two subsets according to the cut. These two subsets are called nodes. The �nal
nodes with no sons are called leafs. For each node the purity of the subset is de�ned as:

P =

∑
SWS∑

SWS +
∑

BWB
(C.1)

where the subscript S (B) denotes signal (background), and WS(B) is the weight of the event. So far
all the weights are equal and set to 1/N where N is the total number of events. The Gini score G of
a node is de�ned as:

G =
n∑

i=1

Wi P (1− P ) (C.2)

where the index i runs over the n events in the given node. The value of the cut c is optimized to
minimize the total score of the two son nodes. The process is repeated until the algorithm reaches
some prede�ned stop criterion (e.g. the maximum depth of the tree is reached or the number of events
in a leaf is too small). The depth of a tree is de�ned by the number of nodes to cross to reach a leaf
(e.g. the tree shown in Figure C.1 has a depth of 3). If a leaf has purity higher then 1/2 then it is
called a signal leaf, otherwise a background leaf. Events that end up in signal leaves are classi�ed as
signal, the others as background. The schematic structure of a decision tree is shown in Figure C.1
and a real decision tree used in the MVA analysis of Chapter 4 is shown in Figure C.2. .

Boosting

A large number of decision trees are created sequentially for a single classi�er. Boosting consists in
changing the weights Wi of events i that have been mis-classi�ed by the tree k for the training of the
subsequent tree k + 1. In the following the notation of [107] is used. Let:

• yi = 1 if event i is signal, yi = −1 otherwise

• Tk(xi) = 1 if the tree k classi�es event i as signal, Tk(xi) = −1 otherwise

• Ii = 0 if the tree k classi�es event i in the good subset (i.e. yi = Tk(xi)), Ii = 1 otherwise.

In the following, the adaptative boosting algorithm is presented as it is used in Chapter 4. Other
boosting algorithms are possible and are described in [106].

The classi�cation error of the tree k is de�ned as:

errk =

∑N
i=1WiIi∑N
i=1Wi

. (C.3)

189



Appendix C. Boosted decision tree

Figure C.1: Schematic structure of a decision tree. The event set at each node is split according to the
best available cut to distinguish signal and background. Figure extracted from [106].

The boost weight of tree k is de�ned as:

αk = β ln

(
1− errk
errk

)
, (C.4)

where β is called the learning rate and is �xed before training. After the training of tree k, all weights
are changed as:

Wi →Wi e
αkIi , (C.5)

and normalized:

Wi →
Wi∑N
i=1Wi

. (C.6)

The new weights are then used to build the tree k + 1. The previous steps increase the weight of
mis-classi�ed events by the tree k. The next tree k + 1 will thus look for better cuts to distinguish
these speci�c high-weight events. In practice the �rst trees to be built will have a classi�cation error
lower than later trees. The output of the complete classi�er for event i is de�ned as:

T (xi) =

Ntree∑

k=1

αkTk(xi), (C.7)

where the sum runs over all the trees included in the classi�er. The adaptative boosting method is
powerful on small individual decision trees (with depth lower or equal to 3). Although small individual
decision trees have a low separation power, boosting allows the classi�er to reach good performances
[106]. Furthermore small decision trees are less subject to overtraining (i.e. classi�cation based on
features speci�c to the training sample). In the analysis presented in Chapter 4 we use trees with
depth smaller or equal to 3. The learning rate β is set to 0.5 as it is reported to give good results
[106, 107]. The number of decision trees trained in our analysis is 850. Finally we require that a leaf
has to have at least 2.5% of the total number of training events.
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Bagging

In addition to the boosting algorithm, one can apply the bagging procedure during the training
of the classi�er. Bagging refers to the process of picking with replacement a subset of events from
the whole training set, and perform the training on this subset. In practice, at each iteration of the
boosting procedure (ie: for each tree k), a subset of the training sample is randomly picked and the
tree k is built using this subset. In the analysis of Chapter 4 half of the whole training set was used
at each iteration.

Architecture

The architecture of the �rst 6D tree used in the analysis presented in Chapter 4 is shown in Figure
C.2.

S/(S+B)=0.906 S/(S+B)=0.127

S/(S+B)=0.724

m2PCAL> 25.7

S/(S+B)=0.798 S/(S+B)=0.122

S/(S+B)=0.329

m2PCAL> 12.5
S/(S+B)=0.054

S/(S+B)=0.138

SFPCAL< 0.07

S/(S+B)=0.497

SFPCAL<0.0956

Decision Tree no.: 0Pure Signal Nodes

Pure Backgr. Nodes

Figure C.2: First iteration of the BDT algorithm for the 6D analysis presented in Chapter 4. One can
see that the cut made in the �rst node is on the sampling fraction of the PCAL, which is the most
e�cient variable to distinguish the true positrons from the pions.
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Appendix D

Multilayer perceptron

Architecture

A Multilayer Perceptron (MLP) is a classi�er formed of entities called neurons (see Figure D.1)
linked together by connections. In a MLP neurons are arranged in layers and connections are only
allowed between neurons from consecutive layers. A network starts with an input layer with one neuron
for each input variable and ends with an output layer with a single neuron. There can be any number
of layers and any number of neurons per layer between the input and output layers: such layers are
called "hidden layers". A theoretically perfect classi�er would be a MLP with only one layer with an
in�nite number of neurons. In the analysis presented in Chapter 4 an MLP with a single hidden layer
is used. The number of neurons in the hidden layer is equal to the number of input variables plus �ve.

yl
j

wl−1
1j

wl−1
2j..

.
yl−1

2

yl−1
1

wl−1
njyl−1

n

Σ

Output

Input

ρ

Figure D.1: Schematic description of a single neuron. The neuron is located in layer l, has n connections
to the previous layer, and each connection has a weight wl−1

ij . Figure taken from [106].

Neuron response function

In the following we use the notation of [106], illustrated in Figure D.1. Each neuron of a given layer
is connected to all the neurons from the previous layer. A neuron j in a layer l transforms its input
variables yl−1

i provided by the neurons from the layer l − 1 via n connections with weights wl−1
ij into

its output ylj . The function (yl−1
1 , ..., yl−1

n ) → ylj is called the neuron response function. It can be
decomposed into the synapse function and the activation function. The synapse function combines
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Figure D.2: An example of a multilayer perceptron with one hidden layer. Figure taken from [106].
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Figure D.3: MLP using three input variables
developed for the positron identi�cation algo-
rithm described in Chapter 4.
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Figure D.4: MLP using six input variables
developed for the positron identi�cation algo-
rithm described in Chapter 4.

the input variables and the connections weights in one of the following ways:

(y
(`)
1 , .., y(`)

n |w(`)
0j , .., w

(`)
nj )→





w
(`)
0j +

n∑
i=1

y
(`)
i w

(`)
ij Sum,

w
(`)
0j +
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i=1

(
y

(`)
i w

(`)
ij

)2
Sum of squares,

w
(`)
0j +
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|y(`)
i w

(`)
ij | Sum of absolutes.

(D.1)
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The activation function transforms the output of the synapse function to give the output of the neuron
in the desired way:

x→





x Linear,

1
1+e−kx

Sigmoid,

ex−e−x
ex+e−x Tanh,

e−x
2/2 Radial.

(D.2)

In this analysis we used the Sum synapse function and the Tanh activation function as recommended
in the TMVA documentation [106].

Training of the neural network with Back-propagation

For a MLP with the previously described architecture (one hidden layer, Sum synapse function and
the Tanh activation function), one can write the output of the network as:

yMLP =

nh∑

j=1

y
(2)
j w

(2)
j1 =

nh∑

j=1

tanh

(
Nvar∑

i=1

xiw
(1)
ij

)
· w(2)

j1 , (D.3)

where the notations are the same as in Figure D.2 and Nvar and nh are the number of neurons in the
input layer and in the hidden layer, respectively.

The aim of the training process is to adjust the set of weights wlij of the network such that the
output for all the training events obeys the following rule: if an event is background the output of the
MLP is 0, otherwise it is 1. In the training sample the nature of the events (signal or background) is
known a priori so one can compare the expected response with the actual response of the network and
adjust the weights accordingly. The initial weights are randomly picked. Then the following algorithm
is repeated until the weights converge. For an event with input variable vector x one can calculate the
response of the network yMLP and compare it to the expected output ŷ (0 or 1). The comparison is
performed using the error function E such that:

E(x|w) =
1

2
(yMLP − ŷ)2 , (D.4)

where w is the set of weights.
The weights are updated according to the gradient descent method, that is to say in the direction

in the w-space where the error decreases the most. After a number of iterations ρ of this process, the
weights w(ρ+1) read:

w(ρ+1) = w(ρ) − η∇wE , (D.5)

where η is the called the learning rate and it is set to 0.02 in this analysis. Working out Equation
(D.5) one can write the variation of weights for each layer. The weights connected with the output
layer are updated by

∆w
(2)
j1 = −η ∂E

∂w
(2)
j1

= −η (yMLP − ŷ) y
(2)
j , (D.6)

and the weights connected with the hidden layers are updated by

∆w
(1)
ij = −η ∂E

∂w
(1)
ij

= −η (yMLP − ŷ) y
(2)
j (1− y(2)

j )w
(2)
j1 xi , (D.7)

The weight iteration is done for each event. Thus this method requires to randomize the input
events. The training sample is then used repeatedly on the network, each time with a new randomized
events sequence.
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Appendix E

Training tests from the TMVA package

This appendix shows the training tests performed on the di�erent MVA classi�ers used for the
positron identi�cation analysis. Each plot shows the output of the corresponding classi�er obtained
after the training, and the one obtained with the test sample. Both distributions should superimpose
to validate the training, which is the case in both the 3D and the 6D analysis of the three classi�ers
(see Figures E.1, E.2, E.3, E.4, E.5 and E.6).

Figure E.1: 3D Fisher training histograms.
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Figure E.2: 6D Fisher training histograms.

Figure E.3: 3D BDT training histograms.
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Appendix E. Training tests from the TMVA package

Figure E.5: 3D MLP training histograms.
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Figure E.6: 6D MLP training histograms.
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Appendix F

Correlations of the input variables

In this appendix we display the linear correlations between the variables used in the MVA analysis.
The linear correlation of two random variables is de�ned as:

ρ(X,Y ) =
Cov(X,Y )

σXσY
=

E[(X − E[X])(Y − E[Y ])]√
E[(X − E[X])2]

√
E[(Y − E[Y ])2]

, (F.1)

where E stands for expected value.

Figure F.1a shows the correlations of the input variables for true positrons, while Figure F.1b is for
π+ that are mistakenly identi�ed as positrons. One can see that the sampling fraction in the PCAL
is strongly anti-correlated with the sampling fraction in the ECIN and in the ECOUT, in both cases.
This means that if the sampling fraction is high in the PCAL, it will be low in the ECIN/ECOUT;
or the opposite situation. This behavior is explained by the fact that positrons tend to deposit most
of their energy in a single calorimeter layer. We also observe a large correlation between the sampling
fraction in the PCAL and the shower m2 in this layer, depicting the relation between a high energy
deposition and a large shower radial size.
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Figure F.1: Linear correlation matrix of the 6 input variables for (a) Background (mis-id. pions) and
(b) Signal (true-positrons)
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Appendix G

Pseudo-ROC curves from data

Figure G.1 corresponds to a zoomed version of the pseudo-ROC curves displayed in Figure 4.16 in
Chapter 4. The region of low background and high number of TCS events is selected, in order to com-
pare the performances of the di�erent classi�ers. This �gure clearly shows the gradual improvements
in the suppression of the background, from the χ2 based approaches, to the 3D MVA techniques and
�nally the 6D approaches, which are the most e�cient in selecting the signal while rejecting the most
background.
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Figure G.1: Zoom on the high signal e�ciency and high background rejection region of Figure 4.16.
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Appendix H

Derivation of the background/signal ratio

Let B(x) and S(x) respectively be the number of background (mis-id. pions) and signal (true positron)
events in the TCS sample for a background strength x (x ∈ [0, 1]).

The number of background events in the TCS sample is linear with the background strength x:

B(x) = βx, (H.1)

where β is the number of background events in the TCS sample when no cut is applied.
The function S(x) is unknown but we assume it is increasing with x (when background is removed,

signal events might also be removed by mistake), and does not vary much with x (signal events should
not be removed by the classi�er).

The normalized number of TCS events can then be described in the linear region with the following
expression:

y(x) =
S(x) + βx

S(1) + β
. (H.2)

Although this formula is only applicable in the linear region, we can extrapolate it to x = 0:

y(0) =
S(0)

S(1) + β
. (H.3)

Assume the chosen cut yields to a normalized background strength x0 in the linear region. The
corresponding normalized number of TCS events is:

y(x0) =
S(x0) + βx0

S(1) + β
. (H.4)

We want to estimate the background/signal ratio for a given normalized background strength x0,
B(x0)
S(x0) . Solving B(x0) from Equations (H.1) and (H.4) one can write for the B/S ratio at x0:

B(x0)

S(x0)
= y(x0)

S(1) + β

S(x0)
− 1 =

y(x0)

y(0)

S(0)

S(x0)
− 1 . (H.5)

We can estimate the ratio S(x0)
S(0) using simulations. It is most of the time very slightly bigger than 1 as

seen in Figure 4.20 of Chapter 4. Therefore one �nds:

y(x0)

y(0)
− 1 ' B(x0)

S(x0)
, (H.6)

and the quantity y(x0)
y(0) − 1 gives a good estimate of the ratio B(x0)

S(x0) .
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Appendix I

Lepton radiative corrections

In this appendix Figure I.1 shows the e�ect of the detected radiated photon correction applied to
the simulated electrons, as described in Subsection 4.5.2 of Chapter 4. The plots shown contain only
electrons corrected for this e�ect. The reconstructed kinematics are compared to the generated ones.

Figure I.1: Distributions of the momentum resolution (top), the θ di�erence (middle) and the φ
di�erence (bottom) before and after applying the detected radiated photon correction to the simulated
electrons (in the left and right plots, respectively).
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Appendix J

Fiducial Cuts

The �ducial cuts described in Section 4.6 in Chapter 4 are shown in Figures J.1 and J.2 in this appendix,
while Figure J.3 compares the electron distributions in the PCAL of CLAS12 data before and after
the �ducial cuts are performed.
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Figure J.1: Mean shower width as a function of U, V and W (low values) for three sectors of CLAS12.
The red line corresponds to the mean shower size calculated away from the edge of the distribution.
The black line corresponds to the �ducial cut.
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Appendix J. Fiducial Cuts
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Figure J.2: Same plots as in Figure J.1 for the case of high values of U, V and W.
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Figure J.3: E�ect of the �ducial cuts on the electron distribution in the natural coordinate plane of
the PCAL. The left plot shows the electrons which are removed in black. The plot on the right shows
all the electrons that passed the PCAL �ducial cuts.
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Appendix K

Generator checks: comparison between
GRAPE and TCSGen

Bethe-Heitler events have been generated using TCSGen and GRAPE within the following phase
space:

• Lepton momenta bigger than 1 GeV

• Lepton polar angle in the lab in CLAS12 acceptance 5◦ < θLab e+/− < 45◦

• 0.01 GeV 2 < −t < 1 GeV 2

• 1.7 GeV < M < 3.08 GeV

• 2 GeV < Eγ < 10.6 GeV

• 40◦ < θCOM < 140◦,

and the results of both generators have been compared.

The following plots in Figures K.1 to K.5 show the distributions of all �ve relevant TCS variables,
obtained for both generators as well as their ratio. Each distribution is normalized by the integral of
the Eγ distribution obtained for each generator.
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Appendix K. Generator checks: comparison between GRAPE and TCSGen
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Figure K.1: Comparison of the generated proton momentum transfer squared −t distributions obtained
with TCSGen (in red) and GRAPE (in blue), as well as their ratio.
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Figure K.2: Comparison of the generated invariant mass of the lepton pair M distributions obtained
with TCSGen (in red) and GRAPE (in blue), as well as their ratio.
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Figure K.3: Comparison of the generated photon energy Eγ distributions obtained with TCSGen (in
red) and GRAPE (in blue), as well as their ratio.
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Figure K.4: Comparison of the generated COM azymuthal angle φ distributions obtained with
TCSGen (in red) and GRAPE (in blue), as well as their ratio.
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Figure K.5: Comparison of the generated COM polar angle θ distributions obtained with TCSGen (in
red) and GRAPE (in blue), as well as their ratio.
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Appendix L

Final state particle kinematics

Figures L.1 and L.2 in this appendix show the kinematics of the three �nal state particles of the TCS
reaction in the CLAS12 data. The top three plots of Figure L.1 show these kinematics for all events
in CLAS12 data in which a proton, an electron and a positron are detected. The three bottom plots
in the same �gure, show the kinematic distributions once the exclusivity cuts presented in Section 5.2
are applied. The plots displayed in Figure L.2 show the kinematics of the �nal state particles for the
events selected in the analysis of this manuscript.
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Figure L.1: Top: Kinematics of the TCS �nal state particles (polar angle in the laboratory frame vs
momentum) for events with one proton and two opposite-sign leptons. Bottom: Same plots after the
exclusivity cuts to select the photoproduction events are applied.
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Appendix L. Final state particle kinematics

Figure L.2: Kinematics of the �nal state particles for TCS events with invariant mass between 1.5 and
3 GeV.
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Appendix M

CLAS12 Acceptance for TCS

Figures M.1, M.2 and M.3 show the acceptance of CLAS12 for the TCS process. Each plot in the grids
corresponds to a single {Eγ ,−t, Q′2} bin, as de�ned in Table 5.1 in Chapter 5. The acceptance plots
shown here are made prior to applying the acceptance quality cuts described in Section 5.6.
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Appendix M. CLAS12 Acceptance for TCS
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Appendix N

Photon polarization transfer

The circular polarization P of the incoming quasi-real photon in the ep→ (e′)γp→ (e′)e−e+p′ reaction
can be fully calculated in QED. It is given by the helicity S of the electron from the beam that emitted
the photon multiplied by a polarization transfer coe�cient L. If the electron has positive helicity
the photon has right-handed polarization, while a negative helicity electron will emit a left-handed
polarized photon. The following formulas are developed in [104], and the notation of [105] is used.

The photon circular polarization P is given as a function of the incoming electron beam helicity S
as:

P = S L, (N.1)

L = k
[
(E1 + E2)(3 + 2Γ)− 2E2(1 + 4u2ξ2Γ)

]
/I0, (N.2)

I0 = (E2
1 + E2

2)(3 + 2Γ)− 2E1E2(1 + 4u2ξ2Γ). (N.3)

where L is the polarization transfer factor, E1 and E2 are respectively the energy of the incident and
the scattered electrons and k = (E1 −E2) is the energy of the photon. The Coulomb screening factor
Γ is given by:

Γ = F
(
δ

ξ

)
− ln(δ)− 2− f(Z), (N.4)

where δ = k/2E1E2. The factor ξ is calculated as ξ = 1/(1 + u2), with u = E1 sin θγ , where θγ is
the angle between the incoming electron and the radiated photon. The function F accounts for the
screening e�ects. Tabulated values for F are given in Table N.1. The screening function is also plotted
in Figure N.1. Finally the Coulomb correction function f(Z) is given by:

f(a) = a2
∞∑

n=1

1

n(n2 + a2)
, (N.5)

where a = αZ, α is the electromagnetic coupling constant and Z is the atomic number of the target
material where the radiation of the photon occurs.

∆ 0.5 1 2 4 8 15 20 25 30 35

F
(
δ
ξ

)
0.0145 0.0490 0.14 0.3312 0.6758 1.126 1.367 1.564 1.731 1.875

∆ 40 45 50 60 70 80 90 100 120

F
(
δ
ξ

)
2.001 2.114 2.216 2.393 2.545 2.676 2.793 2.897 3.078

Table N.1: Tabulated values of the screening function F as a function of ∆ = (6Z−1/3/121)(ξ/δ).

The polarization transfer function L used for the TCS analysis is plotted as a function of the ratio
between the energy of the photon and the energy of the beam in Figure N.2.
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Appendix N. Photon polarization transfer

∆
0 20 40 60 80 100 120

F

0

0.5

1

1.5

2

2.5

3

Figure N.1: Screening function F as a function of ∆.
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Figure N.2: Polarization transfer function used for the TCS analysis plotted as a function of the ratio
between the energy of the radiated photon and the energy of the electron beam. At high energy (for
Eγ/Eb > 0.86), the calculated polarization transfer is bigger than one. The polarization transfer is set
to one when this happens.
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Appendix O

Tabulated results

The results for the three TCS observables obtained from Fall 2018 CLAS12 dataset (see Chapter 6)
are tabulated in this appendix, with the corresponding statistical and systematic uncertainties. Tables
O.1, O.2 and O.3 contain results for the R′ ratio, Tables O.4 to O.9 display the results for the FB
asymmetry and Tables O.10, O.11 and O.12 show the BSA tabulated results.

−t(GeV 2) R′ Stat. error Low Syst. Error High Syst. Error
0.209 0.235 0.0339 0.00992 0.0247
0.294 0.203 0.0326 0.0202 0.0202
0.403 0.22 0.0304 0.0042 0.0184
0.606 0.229 0.0292 0.00921 0.0169

Table O.1: R′ ratio as a function of −t (see Figure 6.1).

ξ R′ Stat. error Low Syst. Error High Syst. Error
0.101 0.253 0.027 0.00731 0.0231
0.134 0.248 0.0302 0.0135 0.0461
0.196 0.178 0.0264 0.0241 0.00697

Table O.2: R′ ratio as a function of ξ (see Figure 6.2).

−t(GeV 2) R′ Stat. error Low Syst. Error High Syst. Error
0.278 0.121 0.072 0.0291 0.0229
0.396 0.191 0.0798 0.0428 0.0365
0.501 0.207 0.0734 0.0264 0.0117
0.657 0.134 0.0647 0.0205 0.0156

Table O.3: R′ ratio as a function of −t in the mass range [2 GeV − 3 GeV] (see Figure 6.3).
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Appendix O. Tabulated results

Eγ(GeV ) AFB Stat. error Low Syst. Error High Syst. Error
5.39 0.316 0.115 0.0822 0.0839
7.23 0.33 0.105 0.0322 0.0352
8.9 0.221 0.0988 0.0362 0.0378

Table O.4: AFB as a function of Eγ (see 6.4).

M(GeV ) AFB Stat. error Low Syst. Error High Syst. Error
1.6 0.44 0.0884 0.0433 0.117
1.85 0.153 0.105 0.0987 0.0606
2.18 0.301 0.143 0.106 0.0965
2.63 -0.237 0.261 0.0711 0.0359

Table O.5: AFB as a function of M (see 6.5).

−t(GeV 2) AFB Stat. error Low Syst. Error High Syst. Error
0.216 0.394 0.142 0.0482 0.0548
0.298 0.155 0.098 0.0399 0.0394
0.407 0.233 0.0912 0.0367 0.0433
0.61 0.294 0.0992 0.0246 0.0352

Table O.6: AFB as a function of −t (see 6.6).

ξ AFB Stat. error Low Syst. Error High Syst. Error
0.102 0.282 0.0957 0.034 0.102
0.135 0.305 0.131 0.0559 0.0812
0.198 0.27 0.0924 0.0774 0.0534

Table O.7: AFB as a function of ξ (see Figure 6.7).

−t(GeV 2) AFB Stat. error Low Syst. Error High Syst. Error
0.215 0.426 0.146 0.0482 0.061
0.299 0.138 0.112 0.0609 0.06
0.407 0.251 0.106 0.0639 0.0717
0.603 0.265 0.127 0.028 0.0647

Table O.8: AFB as a function of −t in the mass range [1.5 GeV − 2 GeV] (see 6.8).

−t(GeV 2) AFB Stat. error Low Syst. Error High Syst. Error
0.272 0.125 0.235 0.187 0.181
0.395 0.217 0.223 0.0378 0.00355
0.49 0.426 0.239 0.143 0.0539
0.658 0.335 0.178 0.0685 0.0519

Table O.9: AFB as a function of −t in the mass range [2 GeV − 3 GeV] (see 6.9).

M(GeV ) BSA Stat. error Low Syst. Error High Syst. Error
1.59 0.202 0.0589 0.016 0.016
1.84 0.307 0.064 0.0211 0.0234
2.18 0.166 0.0939 0.0346 0.0361
2.63 0.19 0.262 0.126 0.14

Table O.10: BSA as a function of M (see Figure 6.10).
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−t(GeV 2) BSA Stat. error Low Syst. Error High Syst. Error
0.209 0.151 0.0848 0.0209 0.0165
0.294 0.307 0.0775 0.0245 0.0236
0.403 0.334 0.0699 0.0236 0.0244
0.607 0.18 0.0681 0.00951 0.0132

Table O.11: BSA as a function of −t (see Figure 6.11).

ξ BSA Stat. error Low Syst. Error High Syst. Error
0.101 0.25 0.0642 0.0299 0.0329
0.134 0.237 0.0767 0.0117 0.00396
0.196 0.219 0.0627 0.00569 0.0176

Table O.12: BSA as a function of ξ (see Figure 6.12).
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Résumé en Français

Introduction

La majorité de la matière visible de l'univers est formée d'atomes. Le noyau atomique est lui même
composé de nucléons, les protons et les neutrons. Les découvertes successives du proton en 1919 par
Rutherford, du neutron en 1932 par Chadwick, et plus tard la mise en évidence de la structure composite
des nucléons par les expériences de di�usion profondément inélastique (DIS) en 1969 à SLAC, forment
les bases de la physique hadronique. Ce domaine de la physique a pour but la compréhension des
interactions entre quarks et gluons, les constituants fondamentales des nucléons.

La théorie qui décrit l'interaction forte entre les quarks et les gluons (aussi appelés partons) est la
Chromodynamique quantique (QCD). Cette théorie possède un caractère di�érent suivant les énergies
considérées. À hautes énergies, la QCD est calculable par l'approche perturbative car la constante de
couplage de l'interaction forte est petite: c'est le phénomène de la liberté asymptotique. Cependant
cette approche n'est plus possible à faibles énergies, par exemple pour des énergies similaires à la
masse des nucléons. Dans ce cas, il est nécessaire d'introduire des fonctions de structure pour décrire
les interactions entre partons. Historiquement, les premières fonctions de structure introduites sont les
facteurs de forme (FF). Ces fonctions décrivent la distribution spatiale des partons dans le nucléon.
Les FFs sont accessibles dans les expériences de di�usion élastique de leptons sur des protons par
exemple. Un second ensemble de fonctions de structure sont les fonctions de distribution des partons
(PDF). Ces fonctions décrivent la probabilité de trouver, à l'intérieur d'un nucléon, un quark ou un
gluon possédant une certaine fraction x de l'impulsion du nucléon.

x+ ξ x− ξ

p p′

GPD

(a)

γ∗ γ

x+ ξ x− ξ

p p′

GPD

(b)

Figure Résumé-Fr-1: (a) Représentation diagrammatique des GPDs. Les GPDs dépendent des variables
x, ξ et t = (p′− p)2 présentées dans ce diagramme. (b) Représentation diagrammatique de la réaction
DVCS. Un photon virtuel interagit avec un unique quark, possédant une fraction x+ ξ de l'impulsion
p du proton initial. Un photon réel est émis et le proton reste intact durant la réaction.

Dans cette thèse, je présente ensuite une troisième famille de fonctions de structure, les distributions
généralisées de parton (GPD). Ces fonctions ont été introduites dans le courant des années 1990, dans
le but d'étendre le concept des FFs et des PDFs. Il y a quatre GPDs conservant l'hélicité du quark,
H, H̃, E et Ẽ. Ces GPDs peuvent être représentées par la Figure Résumé-Fr-1a. Elles peuvent
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être reliées, de manière indépendante des modèles, aux FFs et PDFs. La réaction la plus simple et
qui est principalement utilisée expérimentalement pour accéder aux GPDs est la di�usion Compton
profondément virtuelle sur proton (DVCS, ep→ e′γ∗p→ e′p′γ). La Figure Résumé-Fr-1b représente le
diagramme de Feynman associé à DVCS. Les GPDs apparaissent dans les formules de sections e�caces
du DVCS au sein de quantités complexes, les facteurs de forme Compton (CFFs).

Cette thèse est ensuite composée de trois parties. Dans la première partie, je présente le détecteur
CLAS12 situé à Je�erson Lab, aux États-Unis, et dont les données sont utilisées dans ce travail.
La partie suivante présente le détecteur central de neutron de CLAS12. En�n la dernière partie du
manuscrit est consacrée à l'analyse des données de CLAS12, dans le but d'extraire des observables de
la réaction de di�usion Compton de genre temps.

JLab et le détecteur CLAS12

Figure Résumé-Fr-2: Le détecteur CLAS12 est situé dans le Hall B de JLab. Le faisceau d'électron
délivré par le CEBAF arrive depuis la droite de l'image, et interagit avec la cible située dans le détecteur
central. Les particules possédant un faible angle polaire sont détectées par le détecteur avant. Il est
composé d'un aimant toroïdal, d'un système de chambres à dérive (DC) qui mesurent l'impulsion des
particules, de détecteurs de temps de vol (FTOF), de calorimètres (EC et PCAL) et de compteurs
Cherenkov (HTCC et LTCC) pour l'identi�cation des particules. Les particules émises à grands angles
polaires, sont détectées dans le détecteur central construit à l'intérieur d'un aimant solenoïdal. Un
système de détection de trace (CVT) permet la mesure de l'impulsion. Le détecteur central de temps
de vol (CTOF) permet l'identi�cation des particules. En�n le détecteur central de neutron (CND) est
présenté dans une autre partie de la thèse.

Le détecteur CLAS12 (CEBAF Large Acceptance Spectrometer 12-GeV) est un détecteur de partic-
ules installé au laboratoire national américain, Thomas Je�erson National Accelerator Facility (JLab).
Ce laboratoire, situé à Newport News sur la côte Est des États-Unis, étudie la physique hadronique
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depuis sa création en 1984. JLab est construit autour du CEBAF (Continuous Electron Beam Accel-
erator Facility) qui est un accélérateur d'électrons polarisés pouvant atteindre une énergie de 12 GeV.
Le détecteur CLAS12 (voir Figure Résumé-Fr-2) est installé dans le Hall B de JLab et reçoit une lumi-
nosité nominale de 1035cm−2s−1. Il est composé du détecteur à l'avant (FD), qui identi�e les particules
émises à bas angles polaires, et d'un détecteur central (CD) construit autour de la cible. Les données
montrées dans cette thèse ont été prises par CLAS12 en automne 2018, avec une cible d'hydrogène
liquide et un faisceau d'électrons avec une énergie de 10,6 GeV.

Le détecteur central de neutrons

Le détecteur central de neutrons de CLAS12 (CND) est un détecteur cylindrique de 10 cm d'épaisseur
situé entre le CTOF et la paroi interne de l'aimant solenoïdal de CLAS12. Il a été conçu dans le but
d'augmenter la capacité de détection des neutrons émis à grands angles polaires. Ce détecteur va ainsi
permettre la mesure de la réaction DVCS sur le neutron, étape nécessaire dans la compréhension de la
structure du spin du nucléon. Ce détecteur a été conçu et fabriqué à l'Institut de Physique Nucléaire
d'Orsay et a été installé au début de ma thèse (voir la photographie de la Figure Résumé-Fr-3a). Dans
cette thèse, je présente le travail réalisé sur la reconstruction et la calibration du CND. En�n je montre
les performances du détecteur. Plus particulièrement, l'e�cacité de détection des neutrons est estimée
à l'aide de la réaction exclusive de production de pion positif (ep → eπ+n). L'e�cacité est calculée
comme le ratio du nombre d'événements où le neutron est détecté dans le CND et du nombre totale de
ces événements avec un neutron manquant susceptible d'être détecté par le CND. L'e�cacité mesurée
est de 10% (voir Figure Résumé-Fr-3b), en accord avec la valeur nominale, dé�nie lors de la phase de
R&D du CND.
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Figure Résumé-Fr-3: (a) Photographie prise après l'installation du CND à Je�erson Lab en Octobre
2017. (b) E�cacité de détection des neutrons mesurée à l'aide de la réaction exclusive ep → eπ+n.
Les performances de détection du CND sont proches des valeurs nominales.

Analyse de données: Di�usion Compton de genre temps

La dernière partie de la thèse présente le travail que j'ai réalisé pour l'analyse de la réaction de
di�usion Compton de genre temps (TCS). Après avoir présenté les motivations pour la mesure de
cette réaction, la stratégie d'analyse est détaillée. Les résultats obtenus pour trois observables sont
présentés. Une étude des incertitudes systématiques est aussi décrites. Finalement l'interprétation des
résultats obtenus à l'aide des prédictions de deux modèles théoriques est discutée.

233



Résumé en Français

Motivation

Le processus Compton de genre temps (TCS) est la réaction symétrique en temps de la réaction
DVCS. Un photon réel interagit avec un quark, qui émet un photon virtuel, et décroît ensuite en une
paire de leptons (γp→ γ∗p′ → e+e−p′). Le diagramme correspondant est présenté en Figure Résumé-
Fr-4. Le processus de Bethe-Heitler (BH), purement électromagnétique, contribue aussi à la réaction
de photo-production d'une paire de lepton.

γ e−

e+

γ∗

x+ ξ x− ξ

p p′

GPD

Figure Résumé-Fr-4: Le diagramme de Feynman de la réaction TCS γp→ p′e+e−

La mesure du TCS permet:

• d'accéder à la partie imaginaire du CFFs H, et ainsi de pouvoir tester le caractère universel des
GPDs,

• de mesurer la partie réelle de H, une quantité encore mal connue, et qui peut être reliée aux
propriétés mécaniques des nucléons.

Sélection de la réaction d'intérêt

Pour sélectionner la réaction d'intérêt (ep→ (e′)γp→ (e′)p′e+e−), la stratégie suivante est adoptée:

• les particules de l'état �nal sont sélectionnées. Le proton est identi�é par le technique du temps-
de-vol. Les leptons (électrons et positrons) sont identi�és à l'aide du calorimètre et du compteur
Cherenkov à haut seuil (HTCC). Un réseau de neurones est utilisé pour identi�er les positrons
à grandes impulsions (P > 4.9 GeV). L'architecture du réseau de neurones est montrée dans la
Figure Résumé-Fr-5a. La courbe ROC caractérisant les performances de cette approche se trouve
en Figure Résumé-Fr-5b,

• des coupures �duciaires sont appliquées et les impulsions des particules sont corrigées pour pren-
dre en compte les pertes d'énergies ainsi que les e�ets intrinsèques aux systèmes de détection de
traces,

• des coupures exclusives sont appliquées pour s'assurer de l'exclusivité de la réaction mesurée.

Résultats

Trois observables du TCS sont mesurées dans cette thèse. La première observable est l'asymétrie
de polarisation circulaire du photon réel (BSA), sensible à la partie imaginaire de H. Elle est calculée
comme dans l'équation suivante:

BSA =
σ+ − σ−
σ+ + σ−

,
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Figure Résumé-Fr-5: (a) Réseau de neurones utilisé pour l'identi�cation des positrons de grandes
impulsions. (b) Courbes ROC de l'identi�cation des positrons pour plusieurs méthodes testées durant
cette thèse, en particulier pour le réseau de neurones présenté précédemment. Ces courbes sont calculées
à l'aide de données réelles prises par CLAS12.

où σ+ (resp. σ−) est la section e�cace du TCS lorsque le photon réel a une polarisation circulaire
droite (resp. gauche). Le BSA en fonction du carré de l'impulsion transférée au proton t est présenté
en Figure Résumé-Fr-6. Les points expérimentaux sont comparés avec des prédictions théoriques
issues de deux modélisations de GPDs, le modèle VGG et le modèle GK. Les asymétries mesurées
sont supérieures aux asymétries prévues en présence du processus de Bethe-Heitler seulement. Cela
est une preuve de la mesure du processus TCS. L'amplitude de l'asymétrie est bien reproduite par
les prédictions théoriques. Cela est un indice de l'universalité des GPDs car ces modèles reproduisent
également les mesures expérimentales du DVCS.

La seconde observable mesurée est le ratio intégré de la section e�cace pondérée par cos(φ), et
dé�nie par:

R(
√
s,Q′2, t) =

∫ 2π
0 dφ cos(φ) dS

dQ′2dtdφ∫ 2π
0 dφ dS

dQ′2dtdφ

.

Néanmoins cette observable est sensible à l'acceptance angulaire de CLAS12, ce qui induit de fausses
asymétries. Ce phénomène rend di�cile la comparaison de ce ratio avec des prédictions théoriques.

Une troisième observable, l'asymétrie avant/arrière, est donc introduite et discutée dans cette thèse.
L'asymétrie avant/arrière (AFB), dont aucune prédiction n'a été faite pour la réaction du TCS avant ce
travail, permet de s'a�ranchir des problèmes d'acceptance rencontrés pour le ratio de section e�cace.
L'asymétrie AFB est dé�nie comme:

AFB(θ0, φ0) =
dσ(θ0, φ0)− dσ(180◦ − θ0, 180◦ + φ0)

dσ(θ0, φ0) + dσ(180◦ − θ0, 180◦ + φ0)
,

où dσ(θ0, φ0) (resp. dσ(180◦ − θ0, 180◦ + φ0)) correspond à la section e�cace de la réaction lorsque
l'électron �nal est émis à l'avant (resp à l'arrière), la direction de l'électron étant dé�nie par un
angle polaire θ0 et un angle azimutal φ0 dans le centre de masse de la paire de leptons. L'asymétrie
AFB permet d'accéder à la partie réelle de H. Figure Résumé-Fr-7 représente l'asymétrie mesurée.
Les points expérimentaux sont comparés aux prédictions théoriques. Comme pour le BSA, l'AFB
mesurée est non-nulle, ce qui traduit la mesure du processus TCS en plus du processus BH. De plus,
la comparaison avec les modèles théoriques nous renseigne sur les propriétés du terme D, qui est un
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Figure Résumé-Fr-6: BSA en fonction de t. Les points expérimentaux sont en bleu. Les rectangles
grisés représentes les incertitudes systématiques pour chaque intervalle. Les courbes théoriques sont
calculées pour les cinématiques moyennes citées au dessus du graphique. Les points rouges représentent
les valeurs attendues si seulement le processus BH contribuait.
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Figure Résumé-Fr-7: AFB en fonction de t.

facteur important dans la modélisation de la partie réelle de H. En e�et les données sont mieux
reproduites par le modèle VGG quand le terme D est inclus.

Conclusion

La description de la structure interne des nucléons est un problème complexe, aussi bien d'un point
de vue théorique qu'expérimentale. En e�et, il est nécessaire d'utiliser des fonctions de structure,
telle que les GPDs. De plus, l'extraction expérimentale des GPDs nécessite de mesurer de nombreuses
observables sur di�érentes réactions sensibles aux GPDs. Dans cette thèse, j'ai présenté deux aspects
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de la mesure expérimentale des GPDs. Dans une première partie, le travail réalisé sur le détecteur
central de neutron de CLAS12 est présenté. Ce détecteur permet la mesure de la réaction de DVCS sur
le neutron, étape nécessaire dans la compréhension de la structure du spin du nucléon. La procédure
de calibration mise en place durant ma thèse a permis d'atteindre des performances comparables à
celles attendues. Cela permet déjà d'obtenir des résultats préliminaires encourageant pour la mesure
du DVCS sur neutron. La seconde partie est dédiée à la mesure expérimentale du TCS, réaction
complémentaire du DVCS dans l'extraction des GPDs. Les résultats obtenus sont comparés à des
prédictions théoriques, qui permettent de tirer des conclusions sur l'universalité des GPDs, ainsi que
sur la structure mécanique des nucléons.
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