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Dirigée par Thomas Ehrhard et Ugo Dal Lago

Présentée et soutenue publiquement à Paris le 20 juin 2019
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1



Résumé

Titre : Distances comportementales pour des programmes probabilistes d’ordre supérieur.

Mots-clés : Computations probabilistes d’ordre supérieur, sémantique des langages de
programmation, bisimulation applicative, espace cohérents probabilistes, distances entre
programmes

Cette thèse est consacrée à l’étude d’équivalences et de distances comportementales des-
tinées à comparer des programmes probabilistes d’ordre supérieur. Le manuscrit est divisé
en trois parties. La première partie consiste en une présentation des langages probabilistes
d’ordre supérieur, et des notions d’équivalence et de distance contextuelles pour de tels
langages.

Dans une deuxième partie, on suit une approche opérationnelle pour construire des no-
tions d’équivalences et de métriques plus simples à manipuler que les notions contextuelles :
on prend comme point de départ les deux équivalences comportementales pour le lambda-
calcul probabiliste équipé d’une stratégie d’évaluation basée sur l’appel par nom intro-
duites par Dal Lago, Sangiorgi and Alberti : ces derniers définissent deux équivalences–
la trace équivalence, et la bisimulation probabiliste, et montrent que pour ce langage,
la trace équivalence permet de complètement caractériser–i.e. est pleinement abstraite–
l’équivalence contextuelle, tandis que la bisimulation probabiliste est une approximation
correcte de l’équivalence contextuelle, mais n’est pas pleinement abstraite. Dans la partie
opérationnelle de cette thèse, on montre que la bisimulation probabiliste redevient pleine-
ment abstraite quand on remplace la stratégie d’évaluation par nom par une stratégie
d’évaluation par valeur. Le reste de cette partie est consacrée à une généralisation quan-
titative de la trace équivalence, i.e. une trace distance sur les programmes. On introduit
d’abord une trace distance pour un λ-calcul probabiliste affine, i.e. où le contexte peut
utiliser son argument au plus une fois, et ensuite pour un λ-calcul probabiliste où les
contextes ont la capacité de copier leur argument; dans ces deux cas, on montre que les
distances traces obtenues sont pleinement abstraites.

La troisième partie considère deux modèles dénotationnels de langages probabilistes
d’ordre supérieur : le modèle des espaces cohérents probabiliste, dû à Danos et Ehrhard,
qui interprète le langage obtenu en équipant PCF avec des probabilités discrètes, et
le modèle des cônes mesurables et des fonctions stables et mesurables, développé plus
récemment par Ehrhard, Pagani and Tasson pour le langage obtenu en enrichissant PCF
avec des probabilités continues. Cette thèse établit deux résultats sur la structure de ces
modèles. On montre d’abord que l’exponentielle de la catégorie des espaces cohérents
peut être exprimée en utilisant le comonoide commutatif libre : il s’agit d’un résultat de
généricité de cette catégorie vue comme un modèle de la logique linéaire. Le deuxième
résultat éclaire les liens entre ces deux modèles : on montre que la catégorie des cônes
mesurables et des fonctions stables et mesurable est une extension conservatrice de la
catégorie de co-Kleisli des espaces cohérents probabilistes. Cela signifie que le modèle
récemment introduit par Ehrhard, Pagani et Tasson peut être vu comme la généralisation
au cas continu du modèle de PCF équipé avec des probabilités discrètes dans les espaces
cohérents probabilistes.
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Abstract

Title: Behavioral distances for probabilistic higher-order programs.

Keywords: probabilistic higher-order computations, semantics of programming lan-
guages, applicative bisimulation, probabilistic coherence spaces, distance for programs.

The present thesis is devoted to the study of behavioral equivalences and distances for
higher-order probabilistic programs. The manuscript is divided into three parts. In the
first one, higher-order probabilistic languages are presented, as well as how to compare
such programs with context equivalence and context distance.

The second part follows an operational approach in the aim of building equivalences
and metrics easier to handle as their contextual counterparts. We take as starting point
here the two behavioral equivalences introduced by Dal Lago, Sangiorgi and Alberti for the
probabilistic lambda-calculus equipped with a call-by-name evaluation strategy: the trace
equivalence and the bisimulation equivalence. These authors showed that for their lan-
guage, trace equivalence completely characterizes context equivalence–i.e. is fully abstract,
while probabilistic bisimulation is a sound approximation of context equivalence, but is
not fully abstract. In the operational part of the present thesis, we show that probabilistic
bisimulation becomes fully abstract when we replace the call-by-name paradigm by the
call-by-value one. The remainder of this part is devoted to a quantitative generalization
of trace equivalence, i.e. a trace distance on programs. We introduce first e trace distance
for an affine probabilistic λ-calculus–i.e. where a function can use its argument at most
once, and then for a more general probabilistic λ-calculus where functions have the ability
to duplicate their arguments. In these two cases, we show that these trace distances are
fully abstract.

In the third part, two denotational models of higher-order probabilistic languages are
considered: the Danos and Ehrhard’s model based on probabilistic coherence spaces that
interprets the language PCF enriched with discrete probabilities, and the Ehrhard, Pagani
and Tasson’s one based on measurable cones and measurable stable functions that interpret
PCF equipped with continuous probabilities. The present thesis establishes two results on
these models structure. We first show that the exponential comonad of the category of
probabilistic coherent spaces can be expressed using the free commutative comonoid: it
consists in a genericity result for this category seen as a model of Linear Logic. The
second result clarify the connection between these two models: we show that the category
of measurable cones and measurable stable functions is a conservative extension of the
co-Kleisli category of probabilistic coherent spaces. It means that the recently introduced
model of Ehrhard, Pagani and Tasson can be seen as the generalization to the continuous
case of the model for PCF with discrete probabilities in probabilistic coherent spaces.
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Introduction

Context

Randomized algorithms—i.e. algorithms which are allowed to perform probabilistic choices,
formalized for instance as throwing a dice—are present from the beginning in computer
science [36, 96]: they are for instance central to most algorithms in computational cryp-
tography (where, e.g., secure public key encryption schemes are bound to be probabilis-
tic [57]). Probabilistic algorithms may also allow to solve a problem more efficiently—in
less time—than deterministic algorithms, with the payoff that the output coincides with
the correct answer with high probability, but not necessarily always. This idea is reflected
for instance in computational complexity, e.g. the BPPcomplexity class consists of all
problems that are solved by polynomial-time algorithms with probability at least 2

3 . For
instance, we know that the polynomial identity testing problem—i.e. the problem of decid-
ing whether some given polynomial with several variables is the 0-polynomial—is known to
be in BPP, but it is still not known whether it is in P. Recently, there was a renewed—and
widened—interest in the role of probability theory in computing, in particular in the
machine-learning community. At the core of many machine-learning algorithms, there is
indeed Bayesian reasoning, that can be roughly summarized as the following paradigm:
we start from statistical models—i.e. a network of probability distributions over the set
of possible events—that express our beliefs about the world, and then we update those
models using Bayesian inference—this way developing the ability to condition values of
variables via observations. This kind of reasoning usually focuses on statistical models ex-
pressed using continuous probability distributions, for instance probability distributions
on reals.

In order to formally write and execute probabilistic algorithms, both abstract and
concrete programming languages have been developed. Our focus here is on functional
programming languages that are also higher-order, i.e. where subroutines can take func-
tions in input and produce functions in output. Higher-order languages enjoy a strong
connection with logic, formalized by the Curry-Howard correspondence, that originally
connects typed λ-calculus—a minimal deterministic higher-order language without ground
types or side-effects—with intuitionistic logic. This connection with logic makes higher-
order languages a natural place to develop mathematical tools guaranteeing programs to
be well-behaved—where what well-behaved means may depend on which properties we
are interested in checking, for instance that the execution terminates, or that there is no
deadlock. Randomized algorithms can be written in language like Ocaml or Haskell, that
comes with a random primitive—that returns a real number chosen randomly between 0
and 1. Several concrete probabilistic higher-order languages handling Bayesian reasoning
have also been introduced such as Church [58], or more recently Anglican [117].

In the present thesis, we focus on a problem central to program semantics: compar-
ing two programs implementing distinct algorithms, in order to decide whether they are
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equivalent. This problem occurs for instance when we want to know whether a program
implements a given specification, or when we do code optimization, and we want to be
sure that we do not trigger any major change in the program behavior. Observe that, even
in the case of deterministic programs, it is not enough to simply execute two programs
once to decide if they always behave the same way, since the behavior of the program
can depend on the external environment: we need to check that no environment can
force the two programs to behave differently. In the case of higher-order programming
languages, this can be illustrated by taking programs distinguishers to be program them-
selves. This idea was formalized in Morris’s context equivalence [87], where the external
environment is modeled as a context, i.e. a program that contains a hole; the interaction
of a program with its environment is then modeled as filling the context’s hole with the
program. Two programs are context equivalent when their observable behavior—i.e. what
an external observer can see during the execution—is the same in any context. Morris’s
context equivalence is an almost universally accepted criterion for program equivalence,
but is complicated to use in practice, because all possible contexts need to be considered.
From there, the goal becomes to find handier ways to compare programs, that are sound
with respect to Morris’s context equivalence—i.e. they give us stronger or equal guarantees
than context equivalence—or ideally even fully abstract—i.e. fully characterizes context
equivalence.

Program analysis—including the study of Morris’s context equivalence—asks for a
formalization of the behavior of programs. In the present thesis, we will focus on two
approaches: the operational view where we mostly see programs as processes that can be
executed, and the denotational view, designed to abstract away from the implementation
details and the way the program is actually executed, in order to focus on its mathemat-
ical meaning. Denotational semantics was introduced by the pioneering work of Scott
and Strachey [109, 111] on domain theory, with the aim of building denotational models,
i.e. mathematical universes in which programs can be interpreted. In those universes,
there are often objects that are not the interpretation of any program, and this gap can be
used to inform the development of new programming constructs. Program interpretation
is usually built in a compositional way—i.e. the interpretation of a program can be recov-
ered from the interpretation of its sub-programs. Two programs are considered equivalent
in a denotational model when their denotational interpretations coincide. Operational
and denotational approaches should be seen as complementary: while operational seman-
tics allows to formalize—hence to reason about—how a program is executed, denotational
semantics aim to understand what a program actually do. When introducing a denota-
tional model for some language, this connection need to be made formal by proving an
adequacy theorem, that states that the program interpretation in the denotational model
is invariant under one step of execution on the operational side. Beyond the adequacy
result, we can look for stronger connections between operational and denotational worlds,
by looking at the ability of a denotational model to talk about the operational context
equivalence. A denotational model is sound when, in order to know whether two program
of our language are context equivalent, we can compare their interpretations in our model:
if the two interpretations coincide, then we know that the two programs are equivalent.
The model is fully-abstract when we obtain this way a characterization of context equiva-
lence, meaning that it is enough to look at program interpretations in the model to decide
context equivalence.

Among the operational methods for studying Morris context equivalence, we will focus
in the present thesis on coinductive methodologies [103], that were first used in computer
science for concurrency. Those techniques have been imported into the study of sequen-
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tial higher-order languages by Abramsky’s applicative bisimulation [2] in the setting of
λ-calculus. Applicative bisimulation has been generalized to a wide range of higher-order
languages: for instance languages with ground types [92], non-deterministic languages [76],
stateful languages [106, 69]... Abramsky’s applicative bisimulation consists in building a
transition system that models the operational semantics of the language interactively : this
way we obtain a labeled graph that represents all the possible interactions between a pro-
gram and the external environment. Then, we use a built-in—usually coinductive—notion
of equivalence for the corresponding class of transition systems, this way obtaining an
equivalence on programs. In λ-calculus, the unique way for the environment to interact
with a program is to apply it to some argument, hence the name applicative bisimulation.
This approach enables us to use coinductive techniques—as for instance up-to reason-
ing [103]—developed as enhancement of the bisimulation proof method, and thus gives us
new tools to handle context equivalence between programs. While denotational semantics
aims to understand the structure of those functions that can be implemented by pro-
grams—thus enabling the use of adapted mathematical tools—in the contrary coinductive
methodologies transform higher-order programs into first-order processes—i.e. forgetting
about functions in order of being able to reason on a transition graph. By the way, the
quest for soundness and full abstraction also holds for operationally inspired techniques
for program equivalence.

State of the Art.

The operational semantics of higher-order probabilistic languages have been studied in
depth in recent years, both for discrete and continuous probabilistic programming lan-
guages, with two main approaches. The first one handles explicitly probabilistic distribu-
tions, using a monadic type system: if σ is a type, then Pσ is the type for probability
distributions over type σ. Since probability distributions have a monadic structure, this
approach fits into Moggi’s computational λ-calculus [86]: a probabilistic program taking
objects of type σ in input and outputing objects of type τ can be typed as σ → Pτ , mean-
ing that it can be seen as a process taking non-probabilistic data of type σ, and outputing
a probability distribution over data of type τ . It also gives a roadmap to then find a deno-
tational semantics, by building a categorical model of computational λ-calculus, as defined
by Moggi in [86]. This approach has been for instance used for the discrete language used
by Jones and Plotkin [68], or the continuous languages introduced by Park, Pfenning and
Thrun [91]. In the present thesis, we will focus on another approach, that consists in seeing
all programs as possibly probabilistic, hence treating the same way non-probabilistic and
probabilistic data. It is the case of the untyped discrete probabilistic λ-calculus Λ⊕ intro-
duced by Dal Lago and Zorzi [33]—and that will be our base language in this thesis. This
approach is especially adapted to probabilistic extensions of PCF—the λ-calculus with
integers as ground types introduced by Scott—since the monadic approach enforces a call-
by-value evaluation strategy, while the PCF evaluation strategy is call-by-name: it is the
case of the discrete probabilistic variants of PCF used by Ehrhard, Pagani and Tasson [46],
or Goubault-Larrecq [60] . This approach has also been used for higher-order languages
with continuous probabilities as for instance the variant of PCF with continuous probabil-
ities used by Ehrhard, Pagani and Tasson in [45]—that have continuous distributions, but
does not allow bayesian reasoning—or the λ-calculus with continuous probabilities and
primitives for Bayesian reasoning introduced by Borgström et al [16] as a foundational
calculus for Church.

A generalization of Abramsky’s applicative bisimulation to a probabilistic higher-order
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language was introduced by Dal Lago, Sangiorgi and Alberti in [32]: the authors introduced
two equivalence relations on programs there—both of them being probabilistic adaptations
of Abramsky’s applicative bisimulation: probabilistic trace equivalence and probabilistic
applicative bisimilarity. They showed that for their probabilistic λ-calculus equipped with
a call-by-name evaluation strategy, probabilistic trace equivalence is fully abstract with
respect to context equivalence, while probabilistic applicative bisimilarity is sound, but
not fully abstract. These results were generalized by Deng, Feng, and Dal Lago [38] to a λ-
calculus designed for quantum computation. More recently, Sangiorgi and Vignudelli [107]
studied environmental bisimilarity for a λ-calculus with state—i.e. the possibility for the
program to write and read from memory.

Several denotational models have been introduced for higher-order languages enriched
with either discrete or continuous probabilistic primitives, starting with Jones and Plotkin’s
seminal work [68, 67]. From there, different approaches to build models have been enriched
to model discrete probabilities: the domain-theoretic approach with the line of work initi-
ated by Plotkin and Keimel using Kegelspitzen [95], the game-semantics one starting from
the denotational model of probabilistic Idealized Algol of Danos and Harmer [35], and the
Linear Logic one with the introduction by Danos and Ehrhard of probabilistic coherence
spaces [34]. There have been several full-abstraction results for higher-order languages
enriched with discrete probabilities: for instance the Danos and Harmer’s model of prob-
abilistic Idealized Algol, or the model introduced by Danos and Ehrhard for probabilistic
PCF. It is also the case for a domain-theoretic model introduced by Goubault-Larrecq
for probabilistic PCF extended with statistical convergence testers, i.e. the ability to talk
inside the language about the probability that a program terminates [60]. More recently,
several models have been introduced for higher-order languages with continuous probabil-
ities: for instance the model developed by Staton et al [63] using quasi-Borel spaces with
a focus on interpreting Bayesian reasoning, or models that extend the game-semantics ap-
proach to handle continuous probability [89, 90]. Here, we will mostly focus on the model
introduced by Ehrhard, Pagani and Tasson [45] for PCF with continuous probability, that
is based to a probabilistic generalization of the domain-theoretic notion of stability—used
for instance by Berry for building dI-domains to handle sequentiality.

Challenges

• The results obtained by Dal Lago, Sangiorgi and Alberti [32] strongly rely on the
probabilistic language they chose: for instance, two programs can be context equiv-
alent in some language, and not context equivalent in an extension of the same
language that gives more discriminating power to contexts. Even when fixing the
syntax of the language to be the one of the probabilistic λ-calculus [32], the re-
sults are still only valid for the considered evaluation strategy—i.e. which part of
the program should be executed first. The evaluation strategy chosen in [32] is
call-by-name, meaning that when the program consists of a function applied to an
argument, the argument is passed unevaluated to the function. While the λ-calculus
is confluent—i.e. the evaluation strategy does not matter—it is not the case anymore
when we add probabilistic primitives to the language, which limit the scope of the
soundness and full-abstraction results [32].

• The study of Morris context equivalence for higher-order language enriched with
continuous probabilities is still in its infancy, even though machine-learning algo-
rithms have focused the attention on programming languages able to directly handle
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probability distributions on reals. There is for instance no definition of applicative
bisimulation for an higher-order continuous probabilistic language. As mentioned
earlier, sound denotational models have been developed in this setting in recent
years, but there is no full abstraction result yet. On the operational side, Culpepper
et al [30, 123] have full-abstraction results for equivalences build in the tradition of
Logical Relations, for a language with continuous random variables and scoring, but
there is as for now no work on coinductive methodologies for a higher-order language
with continuous probabilities.

• In a probabilistic setting, the observable behavior of any program is inherently quan-
titative: for instance, two programs can behave the same way on almost all prob-
abilistic paths, but have a totally different behavior on the few remaining paths.
Sometimes, we are not really interested to know if two programs have exactly the
same behavior, but rather investigate how close they are. This is the case for instance
in computational indistinguishability—a security notion coming from cryptography,
where two algorithms are indistinguishable when the difference between their ob-
servable behavior when interacting with any possible adversary must be negligible
with respect to the size of the security parameter. Accordingly, we would like to
be able to study a quantitative counterpart to Morris’s context equivalence: context
distance, namely a measure of how much a context may distinguish two programs.
Notions of distance have been studied in depth for probabilistic processes—for in-
stance [42, 40, 119]. Gebler and Tini [49] introduced and studied a context distance
for a first-order probabilistic language. We can also mention differential privacy [43],
which does not use Morris context distance, but look at certifying that algorithms
do not leak too much information. However, when this thesis started, there was—at
the best of my knowledge—no study of context distance for higher-order languages.
More recently, Gaboardi [6] et al looked at a denotational model for a probabilis-
tic language based on metric spaces, thus going towards a denotational handling of
context distance.

Our Approach

The present thesis aims at adapting tools that come from program semantics for non-
probabilistic—either deterministic or non-deterministic—programs, to the setting of pro-
gramming languages in which some kind of probabilistic primitive is available. In order
to do this, a major trend in the literature consists in transforming a qualitative structure
already used in language-programming theory into a quantitative one. We can interpret
this way the probabilistic generalizations of Abramsky’s applicative bisimulation by Dal
Lago, Sangiorgi and Alberti: indeed, they can be seen as transforming the underlying
LTS used for applicative bisimulation on the λ-calculus into a quantitative transition sys-
tem. For probabilistic trace equivalence, this transformation is distribution-based, hence
we obtain a Observable Labeled Transition System (WLTS) [50], i.e. a LTS where each
state is equipped with a weight. In the case of probabilistic applicative bisimulation, this
transformation is state-based, meaning that the transitions themselves become quantita-
tive, and the transition system obtained this way is a Labeled Markov Chain (LMC) [39]
—a structure developed to represent the evolution of probabilistic processes. In game-
semantics [35], the approach taken is usually to transform strategies into probabilistic
strategies. Likewise, probabilistic coherence spaces—the objects at the core of the deno-
tational model developed by Danos and Ehrhard—are built in the tradition of web-based
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Linear Logic models [54], but the cliques becomes quantitative.
These quantitative structures often come with new tools to analyze them, that are not

present in their qualitative counterparts. For instance, programs are interpreted in Danos
and Ehrhard model as power series, thus allowing us to use the rich class of results on
analytic functions from real analysis [71]. Similarly, LMCs comes not only with a built-
in notion of equivalence —the coinductive notion of bisimulation given by Larsen and
Skou [75]—but also with notions of distances, based on the Kantorowitch-Wasserstein lift-
ing [42]. On the other hand, quantitative problems arise when studying probabilistic lan-
guages: for instance, as highlighted above, program equivalence may sometimes be seen as
too much discriminating, and we can instead ask for approximated equivalences—designed
to guarantee that two programs have almost always the same behavior—or for distances
—i.e. determining how much their behavior is different.

Beyond the usual qualitative measures to evaluate models relevance—i.e. soundness
and full abstraction—we would like to have a better understanding of the connection be-
tween the quantitative structure of the models, and the quantitative behavior of programs.
This work was more specifically designed as an attempt to use existing models of higher-
order languages to talk about context distance. This approach led us first to take a closer
look at context distance directly at the level of programs, and more precisely to explore
the trivialization problem: depending on the expressive power of contexts, when do there
exist programs at context distance strictly between 0 and 1? We then chose three models
of probabilistic higher-order languages, with the aim to explore built-in distances in those
models, that could allow us to gather information about context distance: we considered
two operational—the state-based and distribution-based probabilistic generalizations of
Abramsky’s applicative bisimulation—and a denotational one—the model based on prob-
abilistic coherence spaces introduced by Danos and Ehrhard. On the operational side,
this approach yields encouraging results: we present here results on how to retrieve the
context distance from the distribution-based model. We also obtained partial results on
the state-based models, that we do not present in this thesis, but that can be found else-
where [29]. On the denotational side, we ended up to explore more widely the structure
of the probabilistic coherent spaces model, with results designed to go towards a better
understanding of the kind of quantitative reasoning enabled by the study of probabilistic
higher-order languages.

Contributions

The contributions of the present thesis can be split into two parts: the first ones are re-
sults on behavioral equivalences and metrics, which arise from an analysis of higher-order
probabilistic programming languages using transition systems. Their common starting
point is the seminal work by Dal Lago, Sangiorgi and Alberti on probabilistic general-
izations of Abramsky’s applicative bisimulation, where they consider a call-by-name pure
probabilistic λ-calculus.

• Full abstraction of applicative probabilistic bisimulation for a call-by-
value pure probabilistic λ-calculus. Dal Lago, Sangiorgi and Alberti [32] showed
that for their call-by-name probabilistic λ-calculus, applicative probabilistic bisim-
ulation is sound, but not fully-abstract. By contrast, we show here that applicative
probabilistic bisimulation is fully abstract for the call-by-value counterpart of their
calculus. This result shows a gap between non-deterministic and probabilistic choice,
since in a λ-calculus with non-deterministic choice, applicative bisimilarity is not
fully abstract neither in call-by-name nor in call-by-value [77]. We also showed that
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the asymmetrical counterpart of probabilistic applicative bisimulation—probabilistic
applicative simulation—isn’t fully abstract in call-by-value, thus highlighting a gap
between simulation and bisimulation. This result is a joint work with Dal Lago, and
published in [24].

• Full abstraction of applicative probabilistic simulation for call-by-value
probabilistic λ-calculus with Abramsky’s parallel convergence tester [4].
In order to bridge the gap between the context preorder and applicative probabilis-
tic bisimulation, we looked at how to enhance the expressive power of contexts,
thus making them able to distinguish more programs. Introducing a programming
construct with some sort of non-sequential behavior has often proved successful in
the literature to transform a sound model into a fully abstract one—for instance,
Plotkin showed that the Scott model of continuous functions is fully abstract for
PCF extended with parallel or [93]. The parallel convergence tester works as follows:
it takes two programs as arguments, then evaluate them in parallel, and stops as
soon as one of those evaluation stops. This result is a joint work with Dal Lago,
Sangiorgi and Vignudelli, and published in [27].

• Two trivialization results for a Morris-style context distance—a quanti-
tative generalization of Morris’s context equivalence introduced as a way to talk
about how far apart two programs are. The context distance trivializes when the
context distance between any pair of non-equivalent programs is 1, hence the con-
text distance does not give more information as context equivalence. We show that
trivialization occurs as soon as the considered language has copying abilities and
moreover at least one of the two following assertions holds: all programs terminates,
or Abramsky’s parallel convergence tester is present in the language. The proofs are
based on the construction of amplification contexts, i.e. contexts powerful enough to
transform any small difference in programs behavior into a much bigger one. These
results are a joint work with Dal Lago, and published in [26].

• Definition of fully abstract trace distances for both an affine probabilistic
λ-calculus, and a probabilistic λ-calculus with copying abilities that are
fully abstract with respect to the context distance on their respective
languages. These trace distances are a quantitative generalization of the notion
of probabilistic trace equivalence. On the affine λ-calculus, our trace distance is
a direct generalizing to the quantitative case of the probabilistic trace equivalence
from Dal Lago, Sangiorgi and Alberti. However, the direct way of generalizing trace
equivalence lead to a distance which is unsound for the probabilistic λ-calculus where
functions have an unrestricted access to their arguments. To overcome this problem,
we introduced a different Labeled Transition System to model interactively the op-
erational semantics of the language, with the aim to keep trace of the way different
copies of the same program could be used by an external environment. To build
this LTS, we started from a probabilistic higher-order language with explicit copy-
ing operator, that embeds the more generic probabilistic λ-calculus from Dal Lago,
Sangiorgi and Alberti. These results are joint works with Dal Lago and published
in [29, 26].

The present thesis also contains contributions about the denotational semantics of prob-
abilistic higher-order languages. Our main focus here is the denotational model of prob-
abilistic coherence spaces, introduced by Danos and Ehrhard [34], and later shown to be
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fully abstract for probabilistic PCF by Ehrhard, Pagani and Tasson [46]. We present here
two results that shed light on the structure of this model:

• The exponential comonad of the category of probabilistic coherence spaces
(PCoh)—seen as a model of Linear Logic—is the free exponential comonoid,
thus making PCoh a Lafont model of linear logic. The exponential comonad ! in
Linear Logic transform an object A into an object !A that interpret an unlimited
source of objects of type A. In a model of Linear Logic, several distinct exponential
comonads may coexist: it is for instance the case in the category of coherence spaces,
introduced by Girard [51]. When the free exponential comonoid exists, however, it
defines uniquely— i.e. by a universal property from category theory, that specifies it
is more generic that any other exponential structure—an exponential comonad. This
result gives a category-theoretic justification to the choice of exponential comonad
of probabilistic coherence spaces done by Danos and Ehrhard. Our proof use the
construction developed by Melliès, Tabareau and Tasson [82] to build a free expo-
nential comonoid in a symmetric monoidal category equipped with finite products.
This result is a joint work with Ehrhard, Pagani and Tasson, and was published
in [28].

• The model of PCF equipped with continuous probability, based on mea-
surable cones and stable, measurable functions—introduced recently by
Ehrhard, Pagani, Tasson [45]—is a conservative extension of the model
of probabilistic coherent spaces. In particular, we showed that stable functions
between discrete cones—i.e. cones that can be expressed as PCSs—are in fact mor-
phisms in the co-Kleisli category of PCoh, that is power series with non-negative
coefficients. This result is significant, because it allows to see stable functions be-
tween cones as a generalization of analytic functions, and so we can hope to replicate
the full-abstraction proof for the probabilistic language PCF⊕ in the model of prob-
abilistic coherence spaces, with the aim to obtain a full-abstraction proof of PCF
extended with continuous probabilities in the model of measurable cones and stable,
measurable functions. Our proof use a generalization done by McMillan [80] of a
theorem from real analysis due to S.Bernstein—presented for instance in [113]—,
that we recall at the beginning of this Chapter. The result was published in [23].

Outline.

The manuscript is divided in three parts:

• In a prelude, we mostly precise our approach, and the operational context which we
want to study : in Chapter 1, we present the probabilistic higher-order languages,
in Chapter 2 we introduce Morris style context-equivalence, and in Chapter 3 we
formalize its generalization into a context distance for probabilistic languages.

• In a second part, we use tools from quantitative transition systems to study higher-
order probabilistic programming languages: Chapter 4 is a background chapter,
where we present both probabilistic applicative bisimulation and probabilistic trace
equivalence as they were introduced by Dal Lago, Sangiorgi and Alberti, and we
state the soundness and full-abstraction results already established in the litera-
ture. In Chapter 5, we complete this picture by showing various new soundness and
full-abstraction results: the more interesting one—as explained there—being full
abstraction for CBV probabilistic applicative bisimulation. In Chapter 6, we show

11



our trivialization results for the context distance. In the next Chapter 7, we define
probabilistic λ-calculi that allows for a finer understanding of copying: an affine
language, where no copying can occur, and a language with an explicit operator for
copying. In Chapter 8, we define fully-abstract trace distances for both the affine
calculus and the calculus with explicit copying, and we show that in these case the
trivialization phenomenon does not occur.

• The third part focus on denotational models of probabilistic higher-order languages.
In Chapter 9, we first give a brief overview of the denotational models developed for
probabilistic higher-order languages; then we present in depth two of these models:
the model introduced by Ehrhard and Danos for PCF with discrete probabilities
based on probabilistic coherent spaces, and the model developed by Ehrhard, Pagani
and Tasson for PCF with continuous probabilities using measurable cones and stable
measurable functions. While doing so, we will highlight the categorical structure
behind those models, i.e. that the first one is build as a model of Linear Logic, and
the second one is directly given as a cartesian closed category. Before doing that, we
will briefly recall what a model of Linear Logic is, and we will give two standard ways
to build one: as a Seely category and as a Lafont model. In Chapter 10, we show
that the model of probabilistic coherence spaces is a Lafont model of Linear Logic.
In Chapter 11, we show that the model based on measurable cones and measurable,
stable functions is a conservative extension of the one build of probabilistic coherent
spaces.

We sum up graphically the structure of the thesis in Figure 1; the arrows indicate the
dependencies between chapters.

12



Prelude
Background

Chapters
Contribution

Chapters

Chapter 1:
Probabilistic
λ-calculi.

Chapter 2:
Context

Equivalence.

Chapter 3:
Context Distance.

Chapter 4:
Applicative

Bisimulations for
Λ⊕

(CBN).

Chapter 9:
Denotational models
PCoh + Cstabm.

Chapter 7:
Λ!
⊕: A λ-calculus
with Explicit

Copying

Chapter 5:
Applicative

Bisimulations for
Λ⊕

(CBV).

Chapter 8:
Trace distance for

λ-calculi

Chapter 6:
Trivialization results
for context distance.

Chapter 10:
! is the free

exponential in
PCoh.

Chapter 11:
Cstabm as a
conservative

extension of PCoh.

Figure 1: Organization of the Thesis

13



Contents

I Prelude. 18

1 Probabilistic λ-calculi 19
1.1 The Pure λ-Calculus Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.1 Syntax of Pure λ-Calculus . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.2 Operational Semantics for Λ . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Λ⊕: A Probabilistic Extension of Λ. . . . . . . . . . . . . . . . . . . . . . . 24
1.2.1 One Step Reduction Relation. . . . . . . . . . . . . . . . . . . . . . . 25
1.2.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2.3 Big-step operational semantics for Λ⊕. . . . . . . . . . . . . . . . . . 29

1.3 Probabilistic Typed Higher-Order Languages . . . . . . . . . . . . . . . . . 30
1.3.1 PCF⊕: A Probabilistic Variant of PCF . . . . . . . . . . . . . . . . . 30
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Chapter 1

Probabilistic λ-calculi

In the present chapter, we present several abstract languages that have been introduced
in order to model and study higher-order probabilistic computation. They are all based
on λ-calculus, a functional higher-order language introduced by Church. In the litera-
ture, λ-calculus comes in many flavors: typed or untyped, pure or effectful, with different
evaluation strategies... In the first part of this chapter, we recall briefly some basic in-
formation about the pure untyped λ-calculus. Through the present thesis, we will be
interested only in head-first, weak reduction—i.e. the left-most term is executed first, and
no reduction occurs under a λ-abstraction; this paradigm will be precised in Section 1.1
—for the probabilistic λ-calculi we will consider; the reader interested in the study or
probabilistic λ-calculi with a strong reduction strategy can look for instance at Thomas
Leventis’s work [78]. Accordingly, we focus on two evaluation strategies in our presenta-
tion of the pure λ-calculus: the head-first, weak call-by-value and call-by-name strategies.
In a second part, we do a detailed presentation of Λ⊕, the λ-calculus extended with a
probabilistic binary choice operator introduced by Dal Lago and Zorzi [33]. We will do
this presentation in such a way as to highlight the genericity of such a probabilistic ex-
tension for a deterministic higher-order language; we will use the same framework later in
this thesis to equip with probabilistic primitives various other λ-calculi. In the third part,
we present two typed discrete probabilistic λ-calculi with ground types, that have been
studied in the literature. The first one is a probabilistic variant of Gödel’s System T, that
has been studied by Breuvart, Dal Lago and Herrou [19]: we will use it in the present the-
sis when we will need a probabilistic programming language where all programs terminate
with probability 1. The second one is the probabilistic variant of Plotkin’s PCF that has
been given a fully abstract denotational semantics using probabilistic coherent spaces by
Ehrhard, Pagani and Tasson [46]. Finally, we illustrate how to equip an higher-order lan-
guage with continuous probabilities by presenting the extension of PCF with continuous
probabilistic primitives studied by Ehrhard, Pagani and Tasson in [46].

1.1 The Pure λ-Calculus Λ

λ calculus was introduced by Church in the 1930s, first as a logical formalism, and then as
a programming language. It has then been used to design concrete programming language,
as for instance Caml or Haskell. It is a functional higher-order language, in the sense that
programs represent functions, and that both their input and their output are also func-
tions. As a programming language, λ-calculus is Turing-complete—i.e. every function
computable by a Türing machine can be expressed in λ-calculus. It moreover has the ben-
efit of having a very clean mathematical presentation, with very strong connections with
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1.1. THE PURE λ-CALCULUS Λ

the field of logic. We give here a brief overview of the syntax and operational semantics of
pure untyped λ-calculus—i.e. without computational effects or ground types—and while
doing so we introduce formalism that we will reuse when presenting probabilistic λ-calculi.
A more detailed introduction to the λ-calculus can be found for instance in [8].

1.1.1 Syntax of Pure λ-Calculus

The pure λ-calculus is characterized as a set of terms, designed to represent programs,
and a family of reduction rules, that specifies how to execute the programs represented by
the terms. We first define what terms are: let us suppose that we dispose of a countable
set of variables V. We define the set of λ-terms Λ by giving a grammar in BNF (Backus
Normal Form, see [85]) that generates it:

M,N,L . . . ∈ Λ ::= x | λx.M | MN when x ∈ V. (1.1)

Observe that there are two constructs in the grammar above: the λ-abstraction construct,
and the application construct. A term of the shape λx.M represents a function as follows:
M specify the behavior of the function on an argument represented by the variable x. The
application construct models passing an argument N to a function M .

If a term is of the shape λx.M , we say that the variable x is bound, meaning it is under
the scope of a λ-abstraction. In the following, we will always consider terms up to α-
equivalence, i.e. up to renaming of the bound variables. If M is a term, and x is a variable
that occurs in a non-bounded position—i.e. not under the scope of a λ-abstraction—in
M , we will say that x is free in M . We will denote FV (M) the set of variables free in M .
We say that a term is closed, when it does not have free variables. It is only those closed
terms which have a computational meaning, in the sense that they can be executed. For
this reason, we will call them programs in the following, and we will note PΛ the set of
programs.

1.1.2 Operational Semantics for Λ

We have now to specify how these programs should be executed, i.e. their operational
semantics. Several distinct choices of reduction rules are a priori admissible: the ones
we need to choose depend on the evaluation strategy we want to model, i.e. which part of
the program is going to be evaluated first. Observe that we could also choose to give a
non-deterministic reduction relation, in such a way that every reduction strategy would
then be valid. However, we would have then to consider the question of confluence: does
a program has the same computational behavior under all evaluation strategies? In the
case of pure λ-calculus, it is well-known that it is actually the case. However, as soon as
we make computational effects available, as for instance the ability for the program to read
and write, or to do probabilistic choices—as we will do in the next section—the confluence
property is lost.

For this reason, we look here only at deterministic reduction relations: at each step
of the evaluation of the program, there is only one possible thing to do to go on with
the evaluation. More precisely, we will consider through the present thesis two evaluation
paradigms, called call-by-name (CBN), and call-by-value (CBV). Both specify head-first,
weak reduction—meaning respectively that we first reduce the left-sided term in the ap-
plication case, and that we never reduce under a λ-abstraction. The difference between
them lies in the moment where arguments are passed to functions: in a CBN strategy,
we pass terms as argument to functions without evaluating them first, while in a CBV
strategy we do the evaluation first. In the literature, strong CBV and CBN strategies—i.e.
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1.1. THE PURE λ-CALCULUS Λ

where reduction may occur also under λ-abstraction—have also been considered. Weak
paradigms present however benefits for concrete programming languages, since it allows
for instance to not reduce the body of a function when it is never going to be used. For
instance the evaluation strategy in Haskell is weak call-by-name, while in Caml it is weak
call-by-value.

We present here CBN and CBV operational semantics for programs in Λ. We do this
using the notion of redexes and evaluation contexts, that give us a generic framework to
define a reduction strategy that we will be able to reuse when looking at probabilistic
λ-calculi. This style of operational semantics was first advocated by Felleisen and Flatt
in [47].

CBN and CBV One-Step Reduction Relations for Λ.

The basic reduction rule for Λ-programs is the β-rule, which corresponds to passing an
argument to a function. We denote by M{N/x} the term obtained by replacing in M
every free occurrence of the variable x by N . To define the β-rule for the call-by-value
paradigm, we need first to define formally when a program is a value: for the pure λ-
calculus, it only happens when it is a λ-abstraction, i.e. it can be written as λx.M . We
note VΛ the set of all values: it corresponds to those programs that are already in normal
form.

Definition 1.1.1 (The CBN and CBV β-rule) We define the CBN and CBV β-rules
as respectively the following relations →CBN

β ,→CBV
β ⊆ PΛ ×PΛ:

(λx.M)N →CBN
β M{N/x}; (1.2)

(λx.M)V →CBV
β M{V/x}, V ∈ VΛ. (1.3)

Looking at Definition 1.1.1 above, we see that when we follow the CBN reduction strat-
egy, the β-rule can be used on an application as soon as the left-sided program is a
λ-abstraction, while in the CBV paradigm it is allowed only when both the left-sided and
the right-sided programs are values: it models the fact that the argument is evaluated
before being passed to the function in CBV, but not in CBN.

Redexes are those programs that can be reduced using directly the β-rule—or more
generally by other basic reduction rules when we will consider extensions of λ-calculus.
When a program is not a redex, it can possibly contain sub-programs that are redexes in
a position of being executed—i.e. not under the scope of a λ. The aim of the evaluation
consists in reducing all redexes inside a program until it contains no more executable
redexes, and then the program is in normal form. Observe that in a program, there can
possibly be more than one redex, hence the evaluation strategy must specify which redex
is going to be reduced first. To formalize the evaluation strategy, we use the notion of
evaluation contexts.

Definition 1.1.2 (Λ-Evaluation Contexts for CBN and CBV.) We define the Λ-
evaluations contexts for CBN and CBV as respectively the sets ECBN

Λ and ECBV
Λ gen-

erated by the grammars below:

E ∈ ECBN
Λ ::= [·] | EM, M ∈ PΛ; (1.4)

E ∈ ECBV
Λ ::= [·] | EM | V E M ∈ PΛ, V ∈ VΛ. (1.5)

Observe that in an evaluation context C, there is exactly one occurrence of the hole [·].
We denote by C[M ] the term obtain when we replace the hole [·] with M in C. A choice
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of evaluation contexts for some language L is valid when evaluation contexts uniquely
specify where the reduction should take place, i.e. any program M that is not in normal
form can be written in a unique way as E [R], with R a redex, and E an evaluation context.
We can see that it is indeed the case for the evaluation contexts for the language Λ that
we presented in Definition 1.1.2 above.

We now use the β-rule, and the set of evaluation contexts to define the one-step
reduction relation, in a generic way. Observe that our choice of evaluation strategy is
entirely encoded into the way we define the β-rules, and the evaluation contexts we take.

Definition 1.1.3 Let S ∈ {CBN,CBV } denoting one of the two evaluation strategies we
consider. Then the reduction relation with respect to the strategy S, that we denote →S

is the binary relation in PΛ ×PΛ defined by the following rule:

M →S
β N E ∈ ES

Λ

E [M ]→S E [N ]

We denote by →? the reflexive and transitive closure of →: it means that a step of →?

corresponds to an arbitrary number of execution steps.

Example 1.1.1 We illustrate Definition 1.1.3 on two prototypical Λ-programs: the pro-
gram I representing the identity function, and the program Ω well-known to be non-
terminating—i.e. its execution loops forever. The identity term is defined as I := λx.x.
Observe that it is a normal form, and moreover for any program M , IM → M , mean-
ing that the function I simply output the argument it has been given as input. The
term Ω that we define is the textbook example of a term whose reduction never stops:
Ω := (λx.xx)(λx.xx). We can see that Ω → SΩ for S ∈ {CBV,CBN}, hence we can
indeed see that the reduction of Ω is never going to reach a normal form.

We illustrate now on an example the difference between the call-by-name and the
call-by-value strategy.

Example 1.1.2 We define a program M := (λx.I)Ω. If we consider the CBN evaluation
strategy, we have M →CBN I, and since I is a normal form it means that the execution
stops there. By contrast, when we look at the CBV evaluation strategy, we see that we
need to first reduce Ω before doing the β-reduction. As a consequence M →CBV M , hence
the execution of M never stops.

Big-Step and Small-Step Operational Semantics

The reduction relations we have defined above talk about exactly one step of execution.
We want now to look more globally at program execution by associating to every program
the normal form reached at the end of its execution—when it exists. We present here two
equivalent ways of doing so: small-step operational semantics and big-step operational
semantics. The small-step semantics explicitly uses the one-step execution relation, and
iterates here until reaching a normal form. The big-step semantics is more self-contained,
and takes a more compositional view of computation: the execution of a program is
deduced from the result of the execution of dependent programs.

Definition 1.1.4 (Small-step operational Semantics on Λ) Given a reduction rela-
tion → on Λ, the operational semantics on Λ with respect to → is the relation ↓⊆
Programs × Normal Forms defined inductively using the following rules:

V is a normal form.

V ↓ V
M → N N ↓ V

M ↓ V
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Observe that the fact that we have fixed a particular reduction strategy ensures that for
every program M , there is at most one normal form V such that M ↓ V . If a program
M is such that there is no normal form V with M ↓ V , we will write M ↑: it means that
the program M never terminates. On the contrary, we will sometimes write M ↓ to mean
that there exists a normal form V such that M ↓ V .

Proposition 1.1.1 (Big-step semantics for CBN Λ) The operational semantics with
respect to the call-by-name evaluation strategy can be characterized as the smallest relation
↓ verifying the following rules:

λx.M ↓ λx.M
M ↓ λx.L L{N/x} ↓ V

MN ↓ V

The first rule says that every abstraction is already a normal form. The second one says
that, if we have already done the evaluation of M and we have obtained the normal form
λx.L, then to evaluate the program MN , we have only to do the β-rule: (λx.L)N →
L{N/x}, and then evaluate the resulting program.

We can do the same as Proposition 1.1.1 for the call-by-value operational semantics:
in Proposition 1.1.2 we give a big-step characterization of the call-by-value operational
semantics: the λ-abstraction rule is the same as for CBN, but the application rule changes,
since now we need to evaluate both the left-sided and the right-sided programs before doing
the substitution.

Proposition 1.1.2 (Big-step semantics for CBV Λ) The operational semantics with
respect with the call-by-value evaluation strategy can be characterized as the smallest re-
lation ↓ verifying the following rules:

λx.M ↓ λx.M
M ↓ λx.L N ↓W L{W/x} ↓ V

MN ↓ V

This way of looking at operational semantics is called big-step, since we do not consider
in the rules just one execution step, but all of them at the same time. In the present
thesis, we will consider interchangeably the small-step or the big-step view of operational
semantics, depending on which will be more convenient at the time.

Encoding of Basic Data Types in Λ

We present here examples designed both to illustrate the expressive power of λ-calculus,
and to introduce programs that will be useful in the examples later in the present thesis.
Specifically, we give here an encoding in Λ of booleans and their if-then-else procedure,
then we will present an efficient scheme due to Scott for encoding the natural numbers
in weak λ-calculus, and finally we will present briefly the fixpoint construction. Unless
otherwise specified, the evaluation strategy considered here is the call-by-name ones, but
the situation would be similar with the call-by-value strategy.

Definition 1.1.5 (Encodding of booleans) We define λ-terms true, false and ITE
as follows:

true := λx.(λy.x);

false := λx.(λy.y);

ITE := λx.λy.λz.xyz.
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We can see that for every programs M,N :

ITE trueMN →? M

and ITE falseMN →? N.

It means that ITE represents a function that takes three arguments, and behave as
follows: when it has true as first argument, it outputs its second argument, while when it
has false as first argument it outputs its third argument. In other words, true simulate
the boolean true, false simulate the boolean false, and ITE simulates the if-then-else
construct.

We now present the Scott encoding of integers in λ-calculus. While the Church encod-
ing is more often used, the Scott encoding is —as highlighted in [31]—more efficient when
dealing with weak operational semantics.

Definition 1.1.6 For every n ∈ N, we define a program n in Λ by the following inductive
definition on n:

0 := λx.λy.x; n+ 1 := λx.λy.y n .

We then define Λ-programs encoding the successor function, and a case construct.

S := λn.λx.λy.(yn); case := λn.λa.λf.(naf).

Observe that for every n ∈ N, n is a value, and as a consequence n ↓ n . The programs
S , and case allow to encode basic operations on integers. We need now to show that those
programs behave as expected with respects to integers, i.e. to look at their operational
semantics.

Example 1.1.3 Let be n ∈ N. Then looking at the reduction relation, we can see that:

• S n ↓ n+ 1;

• for any programs M , N , it holds that case 0 MN →? M ;

• for any programs M,N , it holds that case n+ 1 MN →? N n .

While there is no recursion operator available in the syntax of pure λ-calculus, we are
able to encode it. We present here Curry’s fixpoint combinator Y :

Y := λx. ((λy.xyy)(λy.xyy)) .

Example 1.1.4 If we consider any term M , we see that:

YM → (λy.Myy)(λy.Myy)→M(λy.Myy)(λy.Myy).

1.2 Λ⊕: A Probabilistic Extension of Λ.

We are now going to present Λ⊕, the probabilistic extension of pure λ-calculus designed by
Dal Lago and Zorzi in [33]. The idea is to add to the pure λ-calculus a binary probabilistic
choice operator ⊕. Intuitively, we want the program M ⊕N behaves with probability 1

2 as
M , and with probability 1

2 as N . Formally, it means that the set of Λ⊕-terms is generated
by the following grammar:

M,N,L . . . ∈ Λ⊕ ::= x | λx.M | MN | M ⊕N when x ∈ V.
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Here we have simply taken the grammar generating the pure λ-calculus (1.1), and added
the probabilistic choice operator to it. Observe that, as a consequence all closed λ-
terms—as for instance those defined in Example 1.1.1 and Example 1.1.5—can also be
seen as Λ⊕ programs.

We need now to endow Λ⊕ with an operational semantics, to specify how such pro-
grams are executed. As previously, we are going to specify a CBN and a CBV evaluation
strategies. We are going to follow the same path as we did for the pure λ-calculus: first
we are going to define one-step reduction relations, and then we will use them to give the
operational semantics.

1.2.1 One Step Reduction Relation.

As before, the one-step reduction relation is meant to talk about one step of execution of
the program. However, observe that we need now to take into account the fact that pro-
gram behavior is now probabilistic. One solution would be to use a probabilistic reduction
relation: it is for instance what is done by Ehrhard, Pagani and Tasson [46] when defining
a probabilistic variant of PCF. Here however the approach we take is different: we replace
the Λ one-step reduction relation →⊆ PΛ × PΛ between programs by a deterministic
relation →⊆ PΛ⊕ × ∪i∈{1,2}Pi

Λ⊕ between programs and sequences of programs. It means
that when M is not a normal form, we will write:

M → N1, . . . , Nn,

which is designed to express that M is going to be reduced in each of the Ni with proba-
bility 1

n .

The Redex Rules

As before, we need first to specify what are the redexes, and the rules to reduce them.
Recall that in Λ, we had only one kind of redexes: the ones of shape (λx.M)N . We
now have to deal also with a second kind of redexes: the ones corresponding to the
evaluation of a probabilistic choice M ⊕ N . As before, we have to make a decision here
regarding the evaluation paradigm: do we want to first do the probabilistic choice and
then evaluate the resulting program, or first evaluate both M and N and only then choose
fairly between the resulting normal forms ? By analogy with β-reduction, we can see these
options respectively as a choice-by-name and choice-by-value. In their original paper on
Λ⊕, Dal Lago and Zorzi look at a choice-by-value paradigm—with the aim to be coherent
with their overall call-by-value reduction strategy. In the present thesis, however, we will
only consider choice-by-name—regardless if we consider a call-by-name or call-by-value
reduction strategy—because we consider it to be more significant computationally: we
want a program M ⊕N to encode a probabilistic choices between two execution branches
represented by M and N , instead of the juxtaposition of these two execution branches
followed by a probabilistic choice on values. To illustrate this point, we can look at the
program I ⊕ Ω: in choice-by-name, it behaves half the time as I, and never terminates
half the time, while in choice-by-value it never terminates.

In Definition 1.2.1 below, we define the redex rules for Λ⊕. We keep unchanged β-
reduction rules from Definition 1.1.1, and we add a redex rule corresponding to a choice-
by-name paradigm.
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Definition 1.2.1 (The CBN and CBV Redex Rules for Λ⊕) We define the CBN and
CBV redex-rules as respectively the following relations →CBN

R ,→CBV
R ⊆ PΛ⊕ ×PΛ⊕:

M ⊕N →R M,N for S ∈ {CBN,CBV }; (1.6)

(λx.M)N →CBN
β M{N/x}; (1.7)

(λx.M)V →CBV
β M{V/x} when V ∈ VΛ. (1.8)

The One-Step Reduction Relation for Λ⊕.

The evaluation contexts are built exactly as those defined for the pure λ-calculus—recalled
in Definition (1.1.2). We define VΛ⊕—the set of Λ⊕-values—as the set of all λ-abstractions
in Λ⊕, and the evaluation contexts for Λ⊕ in respectively the CBN and the CBV evalua-
tions strategies as follows:

E ∈ ECBN
Λ⊕ ::= [·] | EM, M ∈ PΛ⊕ ; (1.9)

E ∈ ECBV
Λ⊕ ::= [·] | EM | V E M ∈ PΛ⊕ , V ∈ VΛ⊕ . (1.10)

The following definition is simply the adaptation of Definition 1.1.3 to the probabilistic
case: we have now to take sequences of programs into account.

Definition 1.2.2 Let S ∈ {CBN,CBN}. The reduction relation on Λ⊕ with respect to
S is defined as:

M →S
R N1, . . . Nn E ∈ ES

Λ⊕

E [M ]→S E [N1], . . . , E [Nn]

We are going to illustrate on an example how we can write reduction for programs
that are probabilistic in a intrinsic way, i.e which cannot be written in pure λ-calculus.

Example 1.2.1 We consider the following Λ⊕ closed term:

M = ITE (true⊕ false) I Ω,

where ITE , true, false are as defined in Example 1.1.5. We look at what happens when
we reduce M by the CBN one-step reduction relation:

M → (true⊕ false) I Ω → true I Ω , false I Ω.

1.2.2 Operational Semantics

Recall that in the deterministic case, the operational semantics of a program M is given
by a relation M ↓ V , meaning that when we execute the program M , we obtain the value
V . However, in a probabilistic setting, when we execute a program, we may obtain several
different values with different probabilities. It means that the operational semantics of
a probabilistic program cannot consist in a value, but in a sub-distribution of values,
designed to indicate for each value, with how much probability we may obtain it when
executing the program. We precise in Definition 1.2.3 what we mean formally when we
talk about sub-distributions.

Definition 1.2.3 We call sub-distribution over a set S any function D : S → [0, 1],
such that

∑
s∈S D(s) ≤ 1. We call weight of a sub-distribution D , and we denote |D |

the quantity
∑

s∈S D(s). We say that a sub-distribution is a proper distribution when its
weight is equal to 1.
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In the following, we will often say simply distributions when talking about sub-distributions.
Observe that a sub-distribution can possibly contain no value at all: we call empty

sub-distribution over S, and note ∅ the zero function S → [0, 1]. If s is an element of S,
we can construct a distribution giving probability 1 to s: we call s-Dirac distribution, and
we denote {s1} the function defined by {s1}(s′) = 1 if s′ is equal to s, and {s1}(s′) = 0
otherwise. Moreover, if D is a sub-distribution over S, we will call support of D , and we
will note S(D) the set of all the s ∈ S with D(s) > 0.

Approximate Operational Semantics

We are now going to explain how we use a one-step reduction relation for Λ⊕, for instance
the ones we defined before for CBN and CBV reduction strategies, in order to define an
operational semantics for Λ⊕. The idea is to do it in a similar way to what we have done
for the pure λ-calculus in Definition 1.1.4. Recall that the idea was to say: if the program
M is already a normal form, then M ↓ M . Otherwise, we do one step of computation,
and if the resulting term is evaluated into a normal form V , then M is evaluated in the
same normal form V . We are going to adapt this definition to the probabilistic case.

Actually, we are going to give the definition of approximate operational semantics in a
generic way, that is for any probabilistic language L⊕ endowed with a one-step reduction
relation →L⊕ between terms and finite sequences of terms. Definition 1.2.4 can obviously
be applied when we take as language Λ⊕, with the CBV or the CBN one-step reduction
relation.

Definition 1.2.4 Let L⊕ be a probabilistic language, and →⊆ PL⊕×∪i∈{1,2}PL⊕ its one-
step reduction relation. We define the approximation semantics for L⊕ with respect to →
as the smallest relation ⇒ between programs and sub-distributions over normal forms for
→ verifying:

Empty
M ⇒ ∅.

V is a normal form for →.
NF

V ⇒ {V 1}

M → N1, . . . , Nn (Ni ⇒ Ei)1≤i≤n
Step

M ⇒
∑

1≤i≤n
1
n · Ei

Observe the second and third rules are similar to the one in Definition 1.1.4 for pure λ-
calculus. Accordingly, our notion of CBN (CBV) operational approximation semantics for
Λ⊕ can be seen as a probabilistic extension of the CBN (CBV) operational semantics for
Λ, in the following sense: if M is a Λ-program such that M ↓ V , then it also holds that
M ⇒ {V 1} when M is seen as a Λ⊕-program. We illustrate on an example the role played
by the first rule.

Example 1.2.2 We use here the CBN one-step reduction relation, and we consider the
program M := (true⊕ false) I Ω. We know already, as seen in Example 1.2.1, that:

M → true I Ω , false I Ω. (1.11)

Moreover, we know that when we consider Λ with a CBN semantics, it holds that true I Ω ↓
I, hence:

true I Ω⇒ {I1}. (1.12)
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We now use (1.11) and (1.12) to deduce a non-trivial approximation semantics for M .
Indeed, we can construct the following valid proof derivation for ⇒:

(1.11)

M → true I Ω , false I Ω.

(1.12)

true I Ω⇒ {I1} false I Ω⇒ ∅
M ⇒ 1

2 · {I
1}

Observe that in Example 1.2.2, the first rule of Definition 1.2.4 is used to give up on
a branch of the probabilistic execution tree. We see this rule is necessary, because not
all branches of this probabilistic tree are necessarily going to reach a value. However,
adding this rule forces us to accept that we may give up at any point in the execution
tree. As a consequence, for a program D , there may be different sub-distribution D such
that M ⇒ D . In particular, we have always M ⇒ ∅, which says that if we decide to
stop the execution before the beginning, no value at all is collected. Observe moreover
that we cannot be sure that there exists even one of the approximations semantics of a
program M that describes completely the possible behavior of M . Indeed, the fact that
⇒ is inductively defined implies that, whenever M ⇒ D , then D has finite support, that
is that it always collects only a finite number of values. But it is possible to write Λ⊕
program whose execution terminates with non-zero probability on an infinite number of
different values. We give below an example of such program:

Example 1.2.3 Here, Y corresponds to the fixpoint combinator defined in Example 1.1.4,
S and n are the Λ-programs used respectively to encode the successor function and the in-
teger n using Scott’s scheme, as we presented in Example 1.1.3. We consider the following
program—that we have extracted from [33].

M := (Y λx.λy.(y ⊕ x(S y))) 0

We are able to show, that for every N ∈ N, M ⇒ DN with DN :=
∑

1≤n≤N
1

2n {n
1}. The

proof can be done by induction on N .

Observe that when we execute the program M of Example 1.2.3, we are going to obtain
each Scott’s numeral n with probability 1

2n . Accordingly, we would like to obtain as
semantics of M the distribution over values D =

∑∞
1≤n

1
2n {n

1}. However, D cannot be an
approximation semantics for M since every approximation semantics has finite support.
To overcome this problem, we consider a partial order on the set of sub-distribution over
normal-form, in such a way that D will be the least upper-bound of the approximation
semantics for M—that are the (DN )N∈N as illustrated in Example 1.2.3.

Operational Semantics for Λ⊕

We define a partial order on sub-distribution over a set, that consists simply in taking the
pointwise order.

Definition 1.2.5 Let be D , E two sub-distributions over a set S. We say that D ≤ E , if
for any s ∈ S, D(s) ≤ E (s).

Looking at the set of sub-distributions over a set S endowed with this partial order, we
see that it is a complete meet semi-lattice. Moreover, as shown in [33], the set of all
approximation semantics for some fixed program M is directed.

Lemma 1.2.1 For every program M , the set {D |M ⇒ D} is a directed subset of the set
of sub-distributions over normal forms.
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Lemma 1.2.1 allows us to talk about the supremum of all approximation semantics of
M . Accordingly, we take the operational of a program M as the supremum of all its
approximation semantics, as stated in Definition 1.2.6 below for a generic probabilistic
programming language.

Definition 1.2.6 Let L⊕ be a probabilistic language, and →⊆ PL⊕×∪i∈{1,2}PL⊕ its one-
step reduction relation. We define the semantics of the program M with respect to →
as:

JMK = sup{D |M ⇒ D},

where ⇒ denotes the approximation semantics relation as defined in Definition 1.2.4.

Example 1.2.4 We look again at the program M defined in Example 1.2.3. We can see
that the operational semantics of M is as expected, i.e. JMK =

∑∞
1≤n

1
2n {n

1}.

1.2.3 Big-step operational semantics for Λ⊕.

For pure λ-calculus, we have seen that we could characterize alternatively the operational
semantics by way of a big-step definition. We are actually able to do the same for Λ⊕. As
for the small-step semantics, the idea is to define for every program a family of approxi-
mation semantics, and then to take the supremum. It is a non-trivial result, shown in [33],
that for both the CBN and the CBV strategy, it characterizes the operational semantics
for Λ⊕ as defined in Definition 1.2.6.

CBN Big-step Approximation Semantics

Definition 1.2.7 We define the big step approximation semantics relation for call-by-
name as the smallest relation ⇓ between program and sub-distribution over normal forms
verifying:

stop
M ⇓ ∅

nf
λx.M ⇓ {λx.M1}

M ⇓ D N ⇓ E
prob

M ⊕N ⇓ 1
2D + 1

2E

M ⇓ D (L{N/x} ⇓ EL)(L with λx.L∈S(D))
appl-cbn

MN ⇓
∑

L D(λx.L) · EL

Observe that, similarly to what happened in the small-step approximation semantics, we
need a rule (stop) allowing us to give up on some part of the evaluation of a term. The
rule (prob) says that the semantics of a program M ⊕ N is the probabilistic sum of the
semantics of M and the semantics of N . The other two rules (appl-cbn) and (nf) are the
probabilistic counterparts of the rules given for pure λ-calculus in Proposition 1.1.1. Big-
step approximation semantics and small-step approximation semantics do not coincide:
indeed it is not the case that the same sub-distributions D verify M ⇒ D and M ⇓ D .
However, the supremum of these two sets coincide, as shown in [33]. That’s the sense of
Proposition 1.2.2 below.

Proposition 1.2.2 (From [33]) Let be M a program in Λ⊕. Then JMKcbn = sup{D |
M ⇓ D}.
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CBV Big-step Approximation Semantics

We are also able to do something similar to characterize the CBV operational semantics.
More precisely, we define ⇓cbv—the big-step approximation semantics relation for the CBV
strategy—by keeping the rules stop, nf, and prob given in Definition 1.2.7, and replacing
the rule appl-cbn by the following appl-cbv rule:

M ⇓ D N ⇓ E {L{V/x} ⇓ FL,V }λx.L∈S(D),V ∈S(E )
appl-cbv

MN ⇓
∑

D(λx.L) · E (V ) ·FL,V

Similarly to Proposition 1.2.2 for the CBN case, it holds that small-step and big-step
operational semantics for CBV Λ⊕ coincide, as shown by Dal Lago and Zorzi [33], and
stated in Proposition 1.2.3 below:

Proposition 1.2.3 (From [33]) Let be M a program in Λ⊕. Then

JMKcbv = sup{D |M ⇓cbv D}.

1.3 Probabilistic Typed Higher-Order Languages

As seen before, we can express some wild programs in Λ and Λ⊕, in particular non-
terminating programs as Ω. A standard way to tame them, is by adding additional
constraints by way of a type system. It may also be convenient to have primitives to
handle ground data—for instance natural numbers or booleans—instead of dealing with
encodings of those types in untyped λ-calculus. In the present thesis, we will follow this
approach in order to obtain probabilistic higher-order languages where all programs termi-
nate with probability 1, or when we will want to have more control on which argument of
functions can be copied. We present below two probabilistic higher-order languages with
ground types: the first one is a probabilistic variant of Gödel’s system T that has been
studied by Breuvart, Dal Lago and Herrou in [19], while the second one is a probabilistic
variant of the more expressive Scott’s PCF, that has been used as base language to define
a probabilistic denotational semantics by Ehrhard, Pagani and Tasson [46].

1.3.1 PCF⊕: A Probabilistic Variant of PCF

The language PCF was first introduced by Scott in [110] as a formal system, and then
an operational semantics was given by Plotkin [94]: it is an higher-order typed language
with natural numbers as ground type and fixpoint operator. A probabilistic extension of
PCF has been first considered by Saheb-Djahromi [101]. In the present thesis, we will use
the variant considered by Ehrhard, Pagani and Tasson [46], that is obtained from PCF
by adding to it a fair coin primitive—i.e. a program that returns 0 with probability 1

2 ,
and 1 with probability 1

2 . The overall evaluation strategy of PCF⊕ is call-by-name, but
ground types are used in a call-by-value fashion in the if-then-else construct. We present
here only the syntax and the type system for this language; a detail led presentation of
the operational semantics can be found in [46]. There is only one ground type N—that
models natural numbers—and an arrow construct, hence the grammar of types is given
by:

σ, τ ∈ APCF⊕ ::= N | σ → τ.

We look now at the syntax of PCF⊕ —we again consider a fixed countable set of variables
V.
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1.3. PROBABILISTIC TYPED HIGHER-ORDER LANGUAGES

Definition 1.3.1 The PCF⊕ terms are generated as follows:

M ::= x | n | succ(M) | if(M,N, z · L) | coin
| λxσ.M | MN | fixM where σ ∈ APCF⊕ , x ∈ V, n ∈ N.

The fixM construct is an explicit function construct: it is needed because the fixpoint
operators from λ-calculus—for instance the Curry fixpoint that we presented in Exam-
ple 1.1.4—cannot be typed in the PCF type system. As said before, the if-then-else con-
struct is not the standard one in PCF, since in a probabilistic setting we need to handle
natural numbers in a call-by-value way, as explained in depth in [46]. The program
if(M,N, z · L) first executes M , then executes N—as expected—when the natural num-
ber obtained is 0 . The call-by-value behavior occurs when the natural number obtained
is of the form n with n > 0: the program then executes L{n /z}. This construction was
chosen because we want to be able to use the output value of the conditional test when
executing the branch modeled by L, and since the execution of M is probabilistic, there
is no way to be sure to recompute the exact same value if it is not stored in he variable z.

We now give the typing rules for PCF⊕. A typing context is a partial function Γ from
variables to APCF⊕ , with finite domain; it represents a way to associate a type to each
free variable that occurs in an open term. We note Dom(Γ) the domain of the function
Γ. If x 6∈ Dom(Γ), (x : σ,Γ) represents the function which extends Γ to Dom(Γ)∪ {x}, by
associating σ to x.

Definition 1.3.2 A typing judgment is an assertion of the form Γ `M : σ, where Γ is a
context, M is a term, and σ is a type. A typing judgment is valid if it can be inductively
derived by the rules of the formal system given in Figure 1.1.

(x, σ) ∈ Γ

Γ ` x : σ

n ∈ N
Γ ` n : N

Γ `M : N Γ ` N : σ Γ, z : N ` L : σ

Γ ` if(M,N, z · L)σ

Γ, x : σ `M : τ

Γ ` λx.M : σ → τ Γ ` coin : N
Γ `M : N

Γ ` succ(M) : N

Γ `M : σ → τ Γ ` N : σ
Γ `MN : τ

Γ, x : σ → τ `M : σ → τ

Γ ` fixM : σ → τ

Figure 1.1: Type Assignment in PCF⊕

It is important to notice that for a term fixM to be typable, we need M to be a func-
tion—i.e. typable by an arrow type σ → τ . Moreover, observe that the type system do
not take probabilities into account; it is obtained from the type system for deterministic
PCF simply by adding the rule for the fair coin primitive. It is because we consider prob-
abilistic and non-probabilistic data in the same way. As mentioned in introduction, an
alternative typing discipline for probabilistic languages views probability as a monad, this
way reflecting the behavior of programs in types: if σ is a type, �σ would be the type
of probabilistic distributions over σ, and the fair coin operator would always produces
elements of type �N.
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Example 1.3.1 The program Ω from λ-calculus—see Example 1.1.1—is not typable in
PCF. However, we can use the fixpoint primitive to build never-terminating programs. We
define Ω := (fixx) 0 . We can also easily simulate a fair choice operator ⊕ similar to the
one used in Λ⊕:

⊕ := λx.λy.if(coin, x, z · y).

We call PCF⊕-programs those terms M such that there exists σ with `M : σ. In [46],
Ehrhard, Pagani and Tasson give an operational semantics for PCF⊕, that associates to
every PCF⊕-program M of type σ a sub-distribution JMK over the normal-forms of type
σ.

Example 1.3.2 The following type assignments are valid:
• For every type σ, and typing context Γ, Γ ` Ω : σ;
• ∅ ` fix ((λz.0)⊕ λz.((x 0) + 1)) : N→ N.

1.3.2 T⊕: A Probabilistic Variant of Gödel’s System T.

Similarly to PCF, Gödel’s T is a λ-calculus with natural numbers as ground type. Contrary
to PCF, there is no fixpoint primitive in T, and as a consequence the execution of a program
typable in T always stop. Breuvart, Dal Lago and Herrou [19] studied a probabilistic
extension of T, such that this termination property still holds. Here, we only present the
syntax of T⊕, and we state its termination property. The type system and the operational
semantics can be found in [19]. The type system of T⊕ is à la Curry, i.e. without explicit
typing annotations in terms. The grammar for types in T⊕ is as follows: the only ground
type is the type for natural numbers, and we can build product types and functional types.

σ, τ ∈ AT⊕ ::= N | σ → τ | σ × τ.

The syntax of T⊕ is the one of T extended with a binary fair choice operator ⊕.

Definition 1.3.3 The T⊕ terms are generated as follows:

M ::= x | 0 | succ(M) | 〈M,N〉 | π1 | π2 | rec | M ⊕N
| λx.M | MN, with x ∈ V, n ∈ N.

The type system for this language is the type system for T extended with a rule for the
binary choice operator that can be summed up as follows: M ⊕N is of type σ if and only
if both M and N are of type σ.

Γ `M : σ Γ ` N : σ
Γ `M ⊕N : σ

.

The operational semantics given by Breuvart, Dal Lago and Herrou is call-by-value. The
behavior of λ-abstraction and application is as usual in λ-calculi, and the binary fair
choice operator ⊕ behaves as the one in Λ⊕. The construct 〈M,N〉 represent a pair, and
π1, π2 are respectively the left and right projections: if V,W are two values, the one step
reduction relation is such that π1〈V,W 〉 → V , and π2〈V,W 〉 → W . The operator rec

is a recursion operator on natural numbers, whose operational behavior is given by the
following rules:

rec〈〈V,W 〉, 0 〉 → V ; and rec〈〈V,W 〉, succ(n )〉 → V n rec〈〈V,W 〉, n 〉.

Observe that contrary to PCF⊕, there is no primitive if-then-else construct in T⊕. However,
it can be easily encoded in T⊕ using the recursion operator. Accordingly we will consider
to have such a primitive available when using the language T⊕ in Chapter 6.
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Definition 1.3.4 Let L⊕ be a probabilistic programming language, equipped with an op-
erational semantics J·K. We say that L⊕ is almost surely terminating (AST) when for
every program M , it holds that |JMK| = 1.

Proposition 1.3.1 (From [19]) The language T⊕ is AST.

The authors of [19] actually showed a much stronger result—that all the branches in
the execution tree have finite length—but we will need only the almost-sure termination
property in the present thesis.

1.4 Extending λ-calculus with Continuous Probabilities.

As highlighted in Introduction, in some cases we want to model systems where the un-
derlying space of events has inherent continuous aspects: for instance in hybrid control
systems [5], as used e.g. in flight management. In this Section, we look at how to extend
higher-order language extended with primitives designed to model continuous probabilities.
First, we will recall basic concepts of measure theory—needed to handle continuous prob-
ability distributions in a rigorous way—and then we will present the language PCFsample

introduced by Ehrhard, Pagani and Tasson [45] as a continuous probabilistic extension of
PCF.

1.4.1 Overview of Measure Theory

Before now, we were considering discrete probabilities, and consequently we were able
to handle distributions over a countable set X in rather informal ways: they are those
functions D : X → [0, 1] such that

∑
x∈X D(x) = 1. Suppose now that f is a function

X → R, and that we are interested in the average value of the following procedure:
first we sample from the distribution D , and then we apply f to the obtained value.
Then this average value—the expected value of f with respect to D—can be computed
as
∑

x∈X f(x) · D(x). That’s because defining a distribution over a countable set means
assigning a probability to every element of this set. However, when X is not countable,
it is not always possible to do that: indeed when we consider for instance the uniform
distribution U over [0, 1], we see that for every element a ∈ [0, 1], the probability of
obtaining exactly a when sampling from U is 0. Therefore, what we want to do in that
case to describe this distribution is to assign probability not to single points anymore,
but to intervals: that way, we can say that for every a, b with a ≤ b, the probability
of obtaining an element in [a, b] when sampling from U is b − a. Now, to compute the
expected value of a function f : [0, 1]→ R, we need to use an integral instead of a discrete
sum: indeed this expected value may be computed as

∫
x∈[0,1] f(x) · dx. Measure theory

allows to generalize the ideas behind continuous probability beyond the real case. It
provides a general framework to talk about probabilities and integration on a large class
of spaces, called measurable spaces. We review the basics ideas here, but the reader should
refer for instance to [108] for a more complete presentation of this field.

In the setting of measure theory, specifying a probability distribution means to assign
some non-negative real to some subsets—seen as event sets, and called the measurable
subsets. There are however constraints on the collection of measurable subsets we can
choose, namely that they have to form a σ-algebra.

Definition 1.4.1 (Measureable Spaces) A σ-algebra—also called σ-field—over a set
S is a collection Σ ⊆ Parts(X), such that:
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• ∅ ∈ Σ;

• For every countable family (An)n∈N, with Ai ∈ Σ,
⋃

1≤i≤nAi ∈ Σ;

• For every A ∈ Σ, X \A ∈ Σ.

We call measurable space a pair (X,Σ), where Σ is a σ-algebra over X. If Ω = (X,Σ) is
a measurable space, we will use x ∈ Ω to means x ∈ S, and A a measurable subset of Ω
to means that A ∈ Σ. We call measurable those function f : X → Y , such that for every
A ∈ ΣX , it holds that f−1(A) ∈ ΣY .

A useful fact is that from any collection of subsets, we can form a σ-algebra by considering
the closure by countable unions, countable intersections and relative complement. It allows
us to construct the smallest σ-algebra containing this collection.

Proposition 1.4.1 Let X be a set, and Θ ⊆ Parts(X) a collection of subsets of X. Then
there exists a smallest σ-algebra containing Θ, that we call the σ-algebra generated by Θ.

Example 1.4.1 (Borel σ-algebra) For any topological space X, the Borel σ-algebra is
the smallest σ-algebra over X containing all open sets. In the particular case where we
consider X to be R with the usual topology, the Borel σ-algebra coincides with the smallest
σ-algebra that contains intervals.

We call measurable functions Rn → Rk the functions measurable when both Rn and Rk
are endowed with the Borel Σ-algebra associated with the standard topology of R. The
relevant properties of the class of measurable functions Rn → Rk is that they are closed
under arithmetic operations, composition, and pointwise limit, see for example Chapter
21 of [108].

Definition 1.4.2 (Measure over a Measurable Space) Let (X,Σ) be a measurable
space. A measure over (X,Σ) is a function ν : Σ→ [0,∞] such that:

• ν(∅) = 0

• for every countable collection (Ai)i∈N of pairwise disjoint Ai ∈ Σ: ν(
⋃
i∈NAi) =∑

i∈N ν(Ai).

When ν(X) < ∞, we say that ν is a finite measure. When moreover ν(X) ≤ 1, we say
that ν is a sub-distribution over X, and we say that ν is a (proper) distribution when
ν(X) = 1. We note Meas((X,Σ)) the set of all measures over the measurable space (X,Σ).

As said before, one of the main purposes of measure theory is to generalize the Riemann
integral well-known for real functions. We fix here a measurable space(X,ΣX), and ν is
a measure over X, and we equip R with the Borel algebra. To every measurable function
f : X → R+, a quantity

∫
X f · dν ∈ R+ ∪ {+∞} is defined, call the Lebesgue integral of

f with respect to ν. We do not recall here the construction or properties of the Lebesgue
integral, but all results needed for our purposes may be found in [108]. If f : X → R is
a measurable function, f is Lebesgue-integrable with respect to ν when

∫
X |f | · dν < +∞,

and we note L1
ν(X) the set of those functions.

Measure theory also allows us to recover the intuitive view of discrete probability
theory, as we highlight now.

Example 1.4.2 Let X be a countable space. Then Parts(X) is the smallest σ-algebra
that contains the atoms {a} for every a ∈ X. We call it the generic σ-algebra over X,
and we call measurable spaces of the form (X,Parts(X)) discrete measurable spaces.
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Proposition 1.4.2 Let S be any countable set, equipped with the generic σ-algebra over
S. Then it holds that:

• if X is a measurable space, every function f : S → X is measurable;

• for every measure µ on S, and f : S → R,
∫
f · dµ =

∑
s∈S f(s) · µ(s).

A measure on a discrete measurable space is entirely characterized by its values on atoms:
indeed, for any A ∈ Parts(S), we can write A as the countable disjoint union

⋃
a∈A{a},

and consequently µ(A) =
∑

s∈A µ({a}). It means that on a discrete space, a measure can
be seen simply as a function µ : S → R+ ∪ {∞}.

Lemma 1.4.3 Let S be a countable space, and f : S → R+∪{∞}. Then µf : Parts(S)→
R+ ∪∞ defined as µf (A) =

∑
s∈A µ({a}) is a measure over (S,Parts(S)), and moreover:

• µf is a finite measure, if
∑

s∈§ f(s) <∞;

• µf is a distribution if
∑

s∈§ f(s) = 1;

• µf is a sub-distribution if
∑

s∈§ f(s) = 1.

Proof. We verify easily that µf is a measure: indeed µf (∅) = 0, and for every countable
collection of pairwise disjoints An ∈ Parts(S), it holds that µf (

⋃
n∈NAn) =

∑
n∈N µf (An).

Moreover,µf (S) =
∑

s∈S f(s), which concludes the proof. �

1.4.2 The Language PCFsample

An example of higher-order language that handles continuous probability distributions is
PCFsample, defined by Ehrhard, Pagani and Tasson in [45]. PCFsample can be seen as a
continuous counterpart to PCF⊕, where the ability to flip a fair coin is replaced by the
possibility to sample from the uniform distribution on [0, 1]. As such, it does not offer
the full range of continuous probabilistic primitives that other languages [16, 115] often
consider, for instance the score primitive used for Bayesian conditioning. An investigation
on the expressiveness of PCFsample with respect to these probabilistic primitives can be
found in [45]. The base type of PCFsample is the real type R, and types are generated by:

σ, τ ∈ APCFsample
::= R | σ → τ.

The terms of the language are generated by the grammar below:

M,N ∈ PCFsample ::= x | λxσ.M | MN | fixM

| let(x,M,N) | if(M,N,L) | r | sample | f(M1, . . . ,Mn),

where r is any real number, and f is in a fixed countable set of measurable functions
Rn → R. The constant sample stands for the uniform distribution over [0, 1]. Observe
that since we can choose arbitrarily the countable set of measurable functions we take
as primitives, we can encode classical probability distributions as soon as they can be
obtained in a measurable way from the uniform distribution, as it is for instance the
case for Gaussian or normal distributions. Moreover, we can argue that this language is
also more general than PCF⊕: first it allows to encode integers (since N ⊆ R) and basic
arithmetic operations over them. Secondly, since the order operator ≥: R×R→ {0, 1} ⊆ R
is measurable, we can construct in PCFsample a program that simulates the fair coin as
follows: ≥(sample, 1

2).
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In [45] Ehrhard,Pagani and Tasson formalize the operational semantics for PCFsample.
They give a call-by-name semantics, but the let construct allows to simulate for instance
the non-standard if-then-else construct of PCF⊕. Recall that for any PCF⊕-term M of
type τ , JMK is a discrete distribution over normal forms of type τ . Accordingly, if M is
now a PCFsample-term of type τ , JMK should be a continuous probability distribution of
the values of type τ . However, as we highlighted when presenting the basic principles of
continuous probabilistic reasoning, to talk about a continuous probability distribution on
some set X, we have first to specify which σ-algebra on X we consider. For this reason, the
first step if the construction of an operational semantics for PCFsample [45] is to define, for
each type τ , a σ-algebra over each set of normal forms of type τ , and then the operational
semantics is built as a Markov process on this probabilistic space.
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Chapter 2

Observational Equivalence

Having a good—and usable in practice—notion of program equivalence is a problem
that appears very often in computer science: for example, when we want to check that
a program implements a given specification, or that a compiled program is equivalent
to the original program. When the two programs considered output data of ground
type—e.g. booleans or integers—it is sufficient, while not necessarily easy, to look at
whether they output the same value—or, in the probabilistic case, the same distribution
over values. However, we consider here higher-order languages, hence the result obtained
after evaluating a program can itself be a function. To illustrate this point, let us consider
for instance the two Λ-programs λx.x and λx.(λy.y)x: since we are in a weak evaluation
paradigm—see our presentation of Λ in Chapter 1—those two programs are already in
normal form. These normal forms are distinct, but whenever we pass them an argument
M , the resulting terms (λx.x)M and (λx.(λy.y)x)M have the same operational semantics:
it is an example of two programs that reduce to distinct values but that we nonetheless
would like to see as equivalent.

This idea leads to the notion of context equivalence, that was formalized by Morris [87]:
we say that two programs are equivalent if they have the same observable behavior in any
context. In this chapter, our goal is to formalize Morris context equivalence in the setting
of a generic probabilistic programming language. Observe first that in order to instantiate
this definition on a particular language, we need to decide what is an observable behavior,
and what is a context.

2.1 Observables

We first have to specify what is the observable behavior of a program. It depends on
the language we consider, as well as the distinguishing abilities we want to give to the
observer. For example, if we allow the observer to count the number of execution steps,
then two programs with different running times would never be equivalent. Such a notion
may be of interest—e.g. in computational cryptography, where side-channel attacks can
be executed by adversaries with this ability—but in the present thesis, we will never allow
observers to distinguish between programs that output the exact same data, no matter
how much time they take to produce it.

2.1.1 Deterministic Case:

Let us first consider the pure λ-calculus Λ, with the weak reduction paradigm that we
describe in Chapter 1. Recall that here our programs are actually closed λ-terms. The
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reasonable thing to observe in this setting is program termination: consequently, we for-
malize our notion of observables by a function Obs() : PΛ → {0, 1}, such that for any
closed λ-terms M , we define:

Obs(M) =

{
0 if M ↑
1 if M ↓

∈ {0, 1}.

Observe that {0, 1}—which can be seen as the set of observations—is naturally equipped
with an order structure. It allows us to talk not only about observational equivalence,
but also about the observational preorder. If we compare for instance the observable
behavior of the non-terminating program Ω and the identity function I—both defined
in Example 1.1.1 of Chapter 1—we see that 0 = Obs(Ω) < Obs(I) = 1: it means that
Ω ≤obs I, and that Ω and I are not context equivalent—where ≤obs is the observational
preorder that we will formally define in the next section.

The above definition is suitable for the untyped λ-calculus. If we consider a typed
higher-order language L with ground types, for example PCF, we can also wish to allow
observations only at ground type—e.g. at type Bool. Formally, it means that the ob-
servation becomes two functions that express whether a program of type Bool stops on
respectively true or false:

ObsT (),ObsF () : {M ∈ PL |`M : Bool} → {0, 1}.

2.1.2 Non-deterministic Case:

We now look briefly at how the above notion of observation should be adapted for non-
deterministic higher-order languages, for instance the pure λ-calculus extended with a
binary non-deterministic operator ⊕. Observe that we cannot say anymore that a program
either terminates or has a non-terminating run. Actually, we have to choose between
observing the may-convergence, that is the fact that at least one run of the program
terminates, or the must-convergence, that is the fact that every possible run of the program
terminates. Observational equivalence for both may-convergence and must-convergence
have been investigated in depth by Lassen [77], as well as coinductive methods for studying
equivalence in a non-deterministic setting.

2.1.3 Probabilistic Case:

When we pass from the non-deterministic case to the probabilistic case, we see a change
in the nature of the observables: they are not binary anymore, but quantitative. Indeed,
a probabilistic program terminates with a given probability, that can be strictly between
0 and 1. Formally, we define a function Obs() : PΛ⊕ → [0, 1] as:

Obs(M) = Prob(M ↓) ∈ [0, 1].

It is the fact that observables are now quantitative that will allow us later to extend
the notion of observational equivalence to metrics, because now we can compare the ob-
servables of two programs, and talk about how far they are, instead of just look at if they
coincide or not.

Observe, that as in the probabilistic case, if we are considering a probabilistic λ-
calculus with base type (for example, a probabilistic variant of PCF), we can also restrict
the observed program to consider only the type Bool, and then we take as observables
the sub-distribution over the booleans obtained when evaluating the program.
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2.2 Contexts

Contexts are meant to represent every way the environment can interact with the pro-
gram. Here, we consider that the environment itself consists in agents that use the same
programming language. Since languages that we consider are compositional, we can ex-
press that by saying that the environment is a term of a language with a hole inside, that
is replaced by the program at the time of the interaction. This idea give us a generic way
to construct, for a compositional language L (where L is one of the variation around the
λ-calculus we are considering here), a set CL of contexts for L.

We give here formally the grammar generating contexts in CΛ⊕ when we take as
language the probabilistic λ-calculus:

C ∈ CΛ⊕ ::= [·] | λx.C | CM | MC | C ⊕M | M ⊕ C.
We will denote as C[M ] the term obtained by replacing the hole [·] by M . We would like
the execution of C[M ] to correspond to the interaction between the execution environment
C and the program M . Observe, however, that we have to be careful here: for this to be
the case, we need to be able to certify that C[M ] is indeed an executable program, that is
a closed term: it means that every free variable in M has to be bounded by the context.

To do that, we introduce closeness judgment on contexts, which are of the forms:
x1, . . . xn a C. It is designed to mean: for any term with free variables among the
x1, . . . , xn, then C[M ] is a closed term. To design such ordered family of distinct vari-
ables x1, . . . , xn, we will use the notation x, and we will denote by V the set of all such
families. We will denote by x, x the appending of x to the list x, where x is distinct of
all elements in x. We define validity for judgments of this form by inductive rules on
the structure of C, that can be found in Figure 2.1. Observe that, if we consider a typed

a [·]
x a C x 6∈ x
x, x a λx.C

x a C
x aMC

x a C
x a CM

x a C M ∈ P
x a C ⊕M

x a C M ∈ P
x aM ⊕ C

Figure 2.1: Closeness Judgment for Λ⊕ contexts.

language, we will have to certify that the resulting program is well-typed too, and so we
have to replace our closeness judgment on contexts by well-typed judgments on contexts.

2.3 Observational Equivalence

We are now ready to give the definition of observational equivalence. We first formalize the
minimal requirements that must hold for a programming language so that our definition
of observational equivalence will make sense: we need a notion of programs, a notion of
contexts and a notion of observables,

Definition 2.3.1 An untyped observable programming language consists of:

• a set of terms Terms, built from the variables V and syntactical constructs, and a
function FV () : Terms→ V that denotes the free variables of a term;
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• a notion of observation for programs: i.e. Obs() : P → O, where P is the set of
closed terms, and O is a set of possible outcomes for the observation function;

• a notion of contexts: i.e. for each family of variables x, a set Cx of contexts—where
a context is formally a function Terms→ Terms—such that for every term M with
FV (M) ⊆ x, C[M ] ∈ P.

When we consider a typed language, we have to take into account the fact that, as men-
tioned in Section 2.1, the observation is not necessarily done at all types.

Definition 2.3.2 A typed observable programming language consists of:

• a set of terms Terms, built from the variables V and syntactical constructs, a set of
types A and a set of valid typing judgments of the form Γ ` M : σ, where σ is a
type in A , and Γ a typing context of the form x1 : σ1, . . . , xn : σn;

• a set of observables types Aobs, a set of possible outcomes for the observation O, and
a notion of observation for programs: i.e. for every σ ∈ Aobs: Obsσ() : {M ∈ Pσ} →
O, where Pσ = {M |`M : σ}.

• a notion of contexts: i.e. for each typing context Γ, types σ, τ , a set C(Γ,σ)→τ of
contexts C such that for every term M with Γ ` M : σ, C[M ] ∈ Pτ . We will also
note Γ, [·] : σ ` C : τ to mean that C ∈ C(Γ,σ)→τ .

Two terms M and N are observationally equivalent if, no matter which contexts we
consider, we obtain exactly the same observables. We have however to be careful: the set
of contexts we consider depends on the free variables of the terms we want to compare.
For these reasons, we work with generalizations of relations, that we call open relations
with respect to the language L: those are families of relations R = (Rx)x∈V over terms of
L, indexed by families x of variables. Moreover, we will also note x `MRN for denoting
M(Rx)N .

We extend now the usual notions of reflexivity, symmetry and transitivity to open
relations.

Definition 2.3.3 Let be R an open relation with respect to the language L. We say that
R is:

• reflexive, if for any M , for any x such that the free variables of M are among the
x, it holds that x `MRM ;

• transitive, if for any x ∈ V,for any M,N,L with x `MRN and x ` NRL, it holds
that x `MRL;

• symmetric, if for any x ∈ V,for any M,N with x `MRN , it holds that x ` NRM .

We say that a transitive and reflexive open relation is an open preorder, while a transitive,
reflexive and symmetric open relation is an open equivalence relation.

We give below the generic definition of observational equivalence for a language L with
an observables function Obs(), and a set of contexts C.

Definition 2.3.4 (Observational Equivalence) Let L be an untyped observable pro-
gramming language, with (Cx)x∈V its contexts. The observational equivalence ≡L is the
open relation with respect to L defined by: for x = x1, . . . , xn a family of variables of
L, and M , N two terms of L with free variables among the x1, . . . , xn , it holds that
x `M ≡obs

L N , when:
∀C ∈ Cx, Obs(C[M ]) = Obs(C[N ]).

40



2.3. OBSERVATIONAL EQUIVALENCE

We can see that ≡L,C is indeed an open equivalence relation. We will say that M and N
are observationally equivalent—or context equivalent—if there exists a family x of variables
with x `M ≡L N .

We are now going to give some examples. We take here L as the probabilistic language
Λ⊕. In the case of the (deterministic) λ-calculus, the evaluation strategy we choose has
no effect on the equivalence between terms (it comes from the fact that the calculus is
confluent). However, it is not the case anymore in the probabilistic case, as we are going
to illustrate here by two examples.

Example 2.3.1 (CBV Evaluation Strategy) Let us consider the two following terms
M and N :

M := (λx.I)⊕ (λx.Ω) N := λx. (I ⊕ Ω) .

Observe that the difference between these two terms is the place where we do the proba-
bilistic choice: in the left term, the probabilistic choice is done when the term is evaluated,
while in the right term, it is done when we pass an argument to the program and evaluate
the result.

Let us first place ourselves in a call-by-value strategy. We consider the context:

C = (λy.(yI)(yI))[·].

Using the definition of operational (CBV) semantics for Λ⊕ in Chapter 1, we can see that:
JC[M ]KCBV = 1

2{I
1}, and JC[N ]KCBV = 1

4{I
1}. Observe that, when we know the semantics

of a program L, then we know Obs(L): indeed, Obs(L) is the probability of termination
of L, which is exactly the weight of the sub-distribution JLK. As a consequence, we can
see that: Obs(C[M ]) = 1

2 , and similarly Obs(C[N ]) = 1
4 : it shows that M and N are not

observationally equivalent for a CBV evaluation strategy.

In Example 2.3.2 below, we are going to consider the same terms as in Example 2.3.1
above, but in the setting of a CBN evaluation strategy. We are going to see that, contrary
to the CBV case, these two terms are equivalent.

Example 2.3.2 (CBN Evaluation Strategy) Observe that the context C used in Ex-
ample 2.3.1 can not anymore be used to distinguish M and N : indeed, we can see that
JC[M ]KCBN = JC[N ]KCBN = 1

4{I
1}. Actually, no context is going to work, because M and

N are observationally equivalent for a CBN semantics. To show that, we need to show
that every context C is unable to distinguish them, that is |JC[M ]K| = |JC[N ]K|. Recall that
the definition of J·K is based on the definition of an approximation semantics ⇓. It means
that, to do the proof of equivalence, we need to use the approximation semantics. More
precisely, we have to show that for any approximation semantics D of C[M ], we can find
an approximation semantics E of C[N ] of at least as much weight as D , and reversely.
Formally, we can see that for every terms L such that FV (L) ⊆ x:

• for every sub-distribution D such that L{M/x} ⇓ D , there exist a sub-distribution
E with |D | ≤ |E |, and moreover L{N/x} ⇓ E ;

• and the symmetric condition: ∀E such that L{N/x} ⇓ E , ∃D with |D | ≥ |E |, and
moreover L{M/x} ⇓ D .

Example 2.3.2 show us that, even for terms which have a simple shape as M and N , the
proof of equivalence become complicated. In Chapters 4 and 5, we will see that we can
use characterization of the equivalence both in CBN and in CBV, that makes this kind of
proofs much simpler.
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2.3. OBSERVATIONAL EQUIVALENCE

We now give the definition of observational equivalence for a typed language. We
call open typed relations with respect to the language L the families of relations R =
(R(Γ,σ))Γ a typing context,σ∈A , where RΓ,σ is a relation over the set of those terms M such
that Γ `M : σ. Moreover, we will also note Γ `MRN : σ for denoting M(R(Γ,σ))N .

Definition 2.3.5 (Observational Equivalence for typed Languages) Let L be an
typed observable programming language, with (C(Γ,σ)→τ )x∈V its contexts. The observa-
tional equivalence ≡L is the open typed relation with respect to L defined by: for Γ a
typing context, and σ a type, the relation ≡(Γ,σ)⊆ {M | Γ `M : σ}2 is defined as:

x `M ≡obs
L N when: ∀τ ∈ Aobs, C ∈ C(Γ,σ)→τ , Obsτ (C[M ]) = Obsτ (C[N ]).

2.3.1 On the Observational Equivalence on Open Terms

In Definition 2.3.4, we were considering all terms in the language, even those which are
not closed. However, in this section, we are going to argue that it is actually sufficient to
look at the equivalence between programs, i.e. closed terms: the idea is that, if we know
everything on the equivalence between programs, then we are able to deduce if any two
terms are equivalent or not. Let us suppose that we consider a language L such that: for
any open terms M , and any family of variables x1, . . . , xn containing the free variables
of M , it holds that M is observationally equivalent to (λx1. . . . λxn.M)x1, . . . , xn. It is a
reasonable thing to ask, since these two terms are β-equivalent. In particular, we can see
that it is the case for Λ⊕ with the CBV or CBN semantics.

With this hypothesis, it can be seen that the following holds:

x1, . . . , xn `M ≡obs
L N ⇔` (λx1. . . . λxn.M) ≡obs

L (λx1. . . . λxn.N)

These considerations will allow us, in the following, to focus on equivalence relation
on programs. In particular, the coinductive definition of applicative bisimularity, that we
will give in Chapter 4 for Λ⊕, doesn’t take open terms into account.

2.3.2 Context Preorder

We would like also to express the fact that, no matter its execution environment, a pro-
gram is going to terminate more often than another. That is the sense of the observational
context preorder, which consists in an asymmetrical version of the observational equiva-
lence.

Definition 2.3.6 Let L be an untyped observable programming language. Let x1, . . . , xn
be a family of variables of L, and M , N two terms of L with free variables among the
x1, . . . , xn . We write x1, . . . , xn ` M ≤obs

L N , and we say that M is observationally
smaller than N , when for every C ∈ C with x1, . . . , xn ` C it holds that:

Obs(C[M ]) ≤ Obs(C[N ]).

Example 2.3.3 We place ourselves in the CBV operational strategy, and we look again at
the programs M = (λx.I)⊕ (λx.Ω) and N = λx. (I ⊕ Ω) of Example 2.3.1. Recall that we
have shown in Example 2.3.1 that these two programs are not observationally equivalent,
by building a context C such that Obs(C[N ]) < Obs(C[M ]). We will show in Section 5.2.4
of Chapter 5 that however they are comparable, in the sense that N ≤Λ⊕ M .
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Chapter 3

Go Beyond Observational
Equivalence

As explained in the previous chapter, two programs are observationally equivalent if they
have exactly the same behavior in any context. However, when we consider quantitative
languages, for instance probabilistic languages, we could wish to be able to talk about not
only equivalent programs, but also close programs, i.e. programs that behave almost the
same way. We are going to illustrate this idea in Example 3.0.1 below.

Example 3.0.1 For every ε ∈]0, 1], we define:

M := Ω and Nε := Ω⊕ε I.

Observe that, when ε become very small, M and Nε have almost the same behavior: the
program M never terminates, when Nε terminates with the very small probability ε. How-
ever, it is immediate that these two terms are not equivalent whenever ε > 0, since it is
sufficient to consider the evaluation context [·] to distinguish them.

We would like to be able to use the quantitative difference between the observables to
define a metric about terms: when we consider two programs, we want to know how far
they are from each other. In that end, we are going to introduce a metric generalization
of the observational equivalence in Section 3.1 below.

3.1 Observational Metric

We consider from now on a probabilistic programming language, hence a language with
observation outcomes the set O = [0, 1]. The idea is to say that the context C is able to
distinguish two terms M and N as far as |Obs(C[M ])−Obs(C[N ])|, and then, similarly to
the observational equivalence, we say that the observational distance between M and N
is the supremum of how far any context can distinguish them. We need first to transform
the open relations that we considered in Chapter 2 into open quantitative valuations.

Definition 3.1.1 A quantitative valuation on a set X is simply a function q : X ×X →
[0, 1]. An open quantitative valuation with respect to a language L⊕ is a family (qx)x∈V,
where for each x, qx is a quantitative valuation on the terms M with FV (M) ⊆ x.

Definition 3.1.2 Let L⊕ be an untyped observable programming language, with [0, 1] as
set of possible observation outcomes. We define δctxL⊕ as the open quantitative valuation
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with respect to L⊕ defined as: for every set of variables x, and M , N two terms of L⊕
with free variables among the x,

δctxL⊕,x(M,N) := sup{|Obs(C[M ])−Obs(C[N ])| with C ∈ Cx}.

Observe that the observational distance behaves indeed as a distance, in the sense that
is symmetric, reflexive, and verify the triangular inequality. Formally, it is exactly what
is required to be a pseudo-metric, in the mathematical sense.

Definition 3.1.3 Let S be any set. We say that a function q : S × S → R+ is a pseudo-
metric if:

• q is reflexive, i.e. for every x ∈ S, q(x, x) = 0;

• q is symmetric, i.e. for every x, y ∈ S, q(x, y) = q(y, x);

• the triangular inequality holds for q, i.e. for every x, y, z ∈ S, q(x, z) ≤ q(x, y) +
q(y, z).

Moreover, we can recover the observational equivalence from the observational distance,
since the observational equivalence is exactly the kernel of the observational distance—i.e. two
programs M and N are observationally equivalent if and only the observational distance
between them is 0. It means that the observational distance encodes at least as much
information as the observational equivalence.

We are going to illustrate Definition 3.1.2 here on a simple example: we are going to
consider the two terms I and Ω. We know already that they are not equivalent, but we
now look at how much different they are.

Example 3.1.1 If we take C = [·] as context, we see that Obs(C[I])—the probability of
termination of C[I] = I—is equal to 1, and in the other hand, Obs(C[Ω]) = 0. It means that
C pulls apart I and 1 from the maximal separation possible, which is 1. As a consequence,
we see that δctxΛ⊕

(Ω, I) = 1.

We have seen that I and Ω are as far as possible with our definition of distance. Now,
we are going to look at what happens when we consider programs that are intuitively
between I and Ω: we consider the terms Nε = Ω ⊕ε I, as in Example 3.0.1. Recall that
we showed in Example 3.0.1 that the Nε and Ω were not equivalent by considering the
context C. Using the same context, we see in Example 3.1.2 below that it gives us also
quantitative information, i.e. that the distance between Ω and Nε is greater or equal to ε.

Example 3.1.2 For every ε ∈]0, 1], we define Nε = Ω ⊕ε I. By considering again the
context C = [·], we see that Obs(C[Nε]) = ε. We know already, as seen in Example 3.1.1,
that Obs(C[I]) = 1, and Obs(C[Ω]) = 0. Looking at the definition of context distance, we
see that it implies:

δctxΛ⊕(Ω, Nε) ≥ ε and δctxΛ⊕(I,Nε) ≥ (1− ε).

Observe that, in Example 3.1.2, we show a lower bound on the distance between the
programs we were considering. It is much more complicated to show an upper bound,
since to do that, we have to consider the separation induced by every possible context. We
can notice that, the more expressive power we allow to contexts, the more the distance
between two given terms may decrease, since then the contexts are able to do more tests
to separate the terms.
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We look now at the observational distance for a typed probabilistic language L⊕. We
work here with typed open quantitative valuations, i.e. family of quantitative valuations
(q(Γ,σ))Γ a typing context,σ∈A where each q(Γ,σ) is a quantitative valuation over {M | Γ `M :
σ}.

Definition 3.1.4 Let L⊕ be a typed observable programming language, with [0, 1] as set
of possible observation outcomes. We define δctxL⊕ as the open quantitative valuation with
respect to L⊕ given by:

∀M,N with Γ `M :, Nσ, δctxL⊕,(Γ,σ)(M,N) := sup
τ∈Aobs

{|Obsτ (C[M ])−Obsτ (C[N ])| with C ∈ C(Γ,σ)→τ}.

3.2 The Trivialization Problem

We argued, as a motivation to look at the distance, that it would allow us to express
quantitative information, and not only whether two terms are equivalent or not. However,
observe that it is not immediate that the observational distance is something else that an
equivalence: depending of the expressive power of the contexts, they can indeed achieve
to amplify every small difference to separate completely two terms.

3.2.1 Amplifying the Observed Distance by Copying

We are going to illustrate here, on an example, how, from a small difference in the semantics
of two terms, it is sometimes possible to construct contexts that amplify it. Recall that
we have shown in the previous section, that the distance between I and Nε = Ω⊕ε I is at
least (1− ε). We are going to show that, if the class of C we consider is expressive enough,
then the distance between I and Nε is actually 1 when ε > 0.

Example 3.2.1 Suppose that we consider a class of contexts C, such that it contains the
family of contexts:

Cn = (λx. (xI) . . . (xI)︸ ︷︷ ︸
n times

)(λy.[·]).

We see that Obs(Cn[I]) = 1: the program Cn[I] terminates with probability 1. On the other
hand, it holds that Obs(Cn[Nε]) = εn: indeed the program Cn[Nε] terminates if every one
of the n copies of Nε terminates, and each copy terminates with probability ε.

As a consequence, the separation induced by the context Cn between I and Nε is (1−εn).
By taking the supremum over all these context Cn, we see that the observational distance
between I and Nε is 1.

We can see that if we take CΛ⊕ (defined in 2.2) as our class of contexts, it will verify
conditions of Example 3.2.1: indeed it has as much expressive power as the language Λ⊕
itself. More generally, observe that the important point here is the ability of copying of
contexts: the idea is, if we are able to build a context C separating a little two programs,
then we can build a context that has the same behavior as several sequential copies of C.

3.2.2 Amplification Contexts

We can see that the behavior illustrated in Example 3.2.1 is not specific to the terms I
and Ω ⊕ε I. More generally, if we have two closed terms M,N , and that we have been
able to construct a context D, such that Obs(D[M ]) = 1, and Obs(D[N ]) = (1− ε), with
ε < 1, we can use the family of contexts Cn to amplify this distance ε. Indeed,it holds that
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the separation induced between M and N by the context Cn[D] is always (1 − (1 − ε)n).
It means that the family of contexts Cn gives us a generic way to amplify a difference
between two terms that we have already been able to observe. For this reason, we say
that the family of contexts Cn defined in Example 3.2.1 above are amplification contexts.

However, observe that the family Cn can amplify an observed difference only if one of
the program D[M ] or C[N ] terminates with probability 1, where D is the original context
separating M and N of a distance ε. As an illustration of that, we look in Example 3.2.2
below what happens if we take the programs Ω and Ω⊕ε I.

Example 3.2.2 We have seen in Example 3.1.2 that the terms Ω and Ω ⊕ε I were at
distance at least ε, and we have shown that this separation was done by the context D = [·].

We see that Obs(Cn[Ω]) = 0: the program Cn[I] never terminates. On the other hand,
it holds (as before) that Obs(Cn[Ω ⊕ε I]) = εn. But contrary to the previous case, we see
here that using the context Cn does not amplify the difference: actually, the context Cn
separates less these two programs than the original context [·].

3.2.3 Trivialization

By looking at Example 3.2.1 and 3.2.2, we see that in some circumstances, even a small
difference in the behavior of two programs can be amplified until the maximal distance, but
that building such amplification contexts can be complicated depending on the expressive
power of the language, and on the programs we consider.

Actually, observe that it is not direct (and actually not always true, depending on the
language we consider), that there exist terms such that the distance between them is not
0 or 1.

Definition 3.2.1 Let be L a language, and C a class of contexts. We say that the ob-
servational distance on L with respect to the class C trivializes, if for every comparable
programs M,N of the language, δctx(M,N) ∈ {0, 1}.

Observe that, if we know that the observational distance trivializes, it means that it
is exactly the same thing as the observational equivalence. It means that trivialization of
the observational distance can be seen as some kind of negative result, since it proves that
it is not possible to talk about quantitative information about the similarity in terms, for
a given language and class of context. It may also be seen as an indication that the class
of context we consider is very expressive, and possibly too much to obtain the quantitative
information we want.

3.2.4 Link with Cryptography

Here, we highlight a motivation for our developments on metrics, coming from security,
in order to give intuition of what kind of quantitative information we may want. A
central notion in security is the notion of computational indistinguishability : two programs
are computationally indistinguishable, if for any adversary running in polynomial time,
the advantage of the adversary is a negligible function of the security parameter. The
advantage of the adversary is then defined as the probability for the adversary to be able
to recognize if it interacts with the program M or with the program N . We can relate
out notion of observational distance with computational indistinguishability by seeing
the adversary as a context C, and expressing its advantage using observables, i.e. as:
|Obs(C[M ])−Obs(C[N ])|.
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Part II

Operational Reasoning on Discrete
Probabilistic λ-calculi.
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Chapter 4

Background: Applicative
Bisimilarities for Higher-Order
Probabilistic Calculi

As illustrated in the examples in Chapter 2, it is relatively easy to show that two given
programs are not equivalent: this boils down to exhibiting one context able to distinguish
them. However, it is much harder to show that these programs are equivalent, since we
have to show that their observables are the same under any context, as highlighted in
Example 2.3.2. For this reason, an important part of the work on equivalences for higher-
order languages has been focused on developing notions or proof techniques for program
equivalence. To be useful, such an alternative equivalence relation R should fulfill two
objectives: proving that two programs are related by R has to be easier than proving that
they are contextually equivalent, and moreover whenever two programs are R-related,
they should also be context equivalent. The second requirement is the so-called soundness
property, and is formalized in Definition 4.0.1 below.

Definition 4.0.1 An equivalence relation R on programs is said to be sound with respect
to observational equivalence if for any programs M and N , MRN implies `M ≡obs N .

A weaker requirement—but easier to enforce—that we can ask an equivalence notion
to verify, is observational correctness: if two programs are equivalent, then their observ-
ables are the same. For most equivalence notions that we will consider in the following,
observational correctness will be a immediate consequence of the definition.

Definition 4.0.2 An equivalence relation R on programs is said to be an observation-
ally correct equivalence, if for every programs such that M RN , it holds that Obs(M) =
Obs(N). A pre-order R on programs is said to be an observationally correct pre-order, if
M RN implies that Obs(M) ≤ Obs(N).

Ideally, we would also like the relation R to coincide with context equivalence: when
this is the case, we say that R is fully abstract.

Several different lines of work have been followed in order to define sound equivalence
relations for higher-order languages. One possibility is to define a denotational semantics,
i.e. a mathematical model of the language, and to say that two programs are equivalent
when they have the same interpretation in the denotational model. We will review the
results of this approach for the probabilistic case in Chapter 9, when we will present a
fully abstract denotational model of PCF⊕ introduced by Ehrhard, Pagani and Tasson
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in [46]. In this section, we will focus on the approach initiated by Abramsky in [2] when
he defined so-called applicative bisimulation for call-by-name λ-calculus.

4.1 Abramsky’s Applicative Bisimulation

In concurrency theory, a widely used notion to define equivalences between processes is
the one based on bisimulations relations (see [105] for an overview, and an historical take
on the parallel origins of bisimulation notions in computer science, philosophy and set
theory). Bisimulation is a generic coinductive way of defining equivalence relations for
non-deterministic processes, which comes equipped with a proof technique to show that
two states s, t of a system are indeed equivalent: it is sufficient to construct a relation
containing (s, t) which moreover is a pre-fixpoint for some operator on relations. For
programming languages, bisimulation-based equivalence have been first developed for the
concurrent language CCS by Milner in [83]. In its pioneering work [2], Abramsky adapted
it in order to define applicative bisimulation for an higher-order language, the deterministic
λ-calculus with a weak call-by-name semantics. Programs of Λ are seen as processes, to
which the environment may ask to perform some elementary applicative action, consisting
in passing another program as argument to the current process. From there, Abramsky
defined his equivalence relation for Λ based on ideas from bisimulations for such processes.
Abramsky showed that his notion of applicative bisimulation is fully abstract for weak call-
by-name Λ. From there, notions of applicative bisimulations have been shown to be sound
for various λ-calculi, for instance for λ-calculus endowed with a non-deterministic choice
operator [77], as well as with a probabilistic one [32].

In this chapter, we do a brief presentation of Abramsky’s applicative bisimulation, and
we formalize the link with bisimulation for processes, by giving the underlying Labeled
Transition System used to define applicative bisimulation. Then, we present two sound
applicative equivalence notions developed by Dal Lago, Sangiorgi and Alberti [32] for Λ⊕:
trace equivalence, and probabilistic applicative bisimulation. We do this presentation in
some details, since a major contribution of the present thesis is to generalize this applicative
approach to a quantitative setting, with the aim of obtaining metrics sound with respect
to context distance.

Abramsky’s applicative bisimilarity comes actually in two flavors, depending on the
underlying operating semantics of the weak λ-calculus, which can be call-by-name or as
call-by-value: in a CBN setting, the environment may pass any argument to the program,
while it can only pass values in a CBV setting. We present below Abramsky’s applicative
similarity for call-by-name Λ.

Definition 4.1.1 (From [2]) A relation R on the closed terms of Λ is a simulation if
for any programs M and N , MRN implies:

• if M ↓ V , then there exists a normal form W such that N ↓W , and moreover V RW .

• if (λx.M)R(λx.N), then for all programs L, M{L/x}RN{L/x}.

A relation R is a bisimulation if both R and R−1 are simulations ( where R−1 stands for
the R-opposite relation: MR−1N when NRM .).

Example 4.1.1 We give here an example of simulation to illustrate Definition 4.1.1.
Let us consider: M = λy.Ω, and N = λy.((λz.Ω)I). We define R = {(M,N)} ∪
{(Ω, (λz.Ω)I)}. Observe that both R and R−1 are simulations, so R is a bisimulation.
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We consider simulations and bisimulations to be pre-ordered by the inclusion preorder.
As shown in [2], the relation �appl defined as (∪R|a simulationR) ⊆ P × P—the union of

all the simulations—is also a simulation, and in the same way the relation ≡appl defined
as (∪R|a bisimulationR) ⊆ P × P is also a bisimulation. It means that ≡appl is the greatest

bisimulation, and �appl the greatest simulation.

Definition 4.1.2 (Abramsky’s Applicative Bisimilarity) We will call applicative sim-
ilarity the relation �appl, and applicative bisimilarity the relation ≡appl. If M ≡appl N ,
we say that M and N are bisimilar.

Moreover, �appl is a pre-order, and ≡appl an equivalence relation. We can also show that

(≡appl) = (�appl ∩ �appl−1
)1. If two programs are related by ≡appl, we say that they are

bisimilar. We illustrate in Example 4.1.2 below the bisimulation proof technique: to show
that two terms are bisimilar, it is sufficient to show that there exists a bisimulation that
relates them.

Example 4.1.2 Recall the programs M and N of Example 4.1.1. We have shown in
Example 4.1.1 that there exists a bisimulation R, such that MRN . Since ≡appl is the
greatest bisimulation, it holds that R ⊆ (≡appl), and consequently M ≡appl N .

In [2], Abramsky showed that applicative bisimulation is fully abstract for call-by-name
Λ, hence can be used as a complete proof technique for context equivalence, i.e that it
is sound with respect to context equivalence. We illustrate on the example below how
soundness of applicative bisimulation allows to turn the bisimulation proof technique into
a proof technique for context equivalence.

Example 4.1.3 Consider again the programs M and N defined in Example 4.1.1. In
Example 4.1.2, we have shown that they are bisimilar. As a consequence, the soundness
property of applicative bisimulation tells us that M and N are context equivalent.

4.1.1 Modeling Λ Operational Semantics by a Labeled Transition Sys-
tem (LTS)

Abramsky’s applicative bisimulation is actually an instance of bisimulation on Labeled
Transition Systems (LTSs), a generic way of representing non-deterministic processes that
evolve by interacting with their environment, by performing actions. Here, we make
explicit the underlying LTS for applicative bisimulation. A LTS is a labeled directed
graph, where the nodes are the different possible system states, the labels are all the
possible actions the environment can do, and the edges specify how the system state
changes when the environment does some action on the system.

Definition 4.1.3 A Labeled Transition System (LTS) is a triple L = (S,L,→), where
S is a countable set of states, L is a countable set of labels, and →⊆ S × L × S is the
transition relation of L .

We say that a LTS is deterministic if it does not have internal non-determinism, i.e. that
for any pair (s, a), there exists at most one state t such that s

a−→ t. We say that an
action a is admissible from a state s if there exists a state t with (s, a, t) ∈→.

Bisimulation techniques are a well-accepted way of defining equivalence for structures
describing non-deterministic processes, for instance on relational structures (unlabeled

1It will still be true in the probabilistic case, but it doesn’t hold for instance in the non-deterministic
case.
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directed graphs) or on Kripke structures (see [105]). We give below the formal definition
of bisimulation in the LTS case, since it is the one we use for describing Abramsky’s
applicative bisimulation. Intuitively, we ask to a simulation R on the states of a LTS to
verify the following property: if two states s and t are related by R,whenever s may reach
a state s′ by doing an action a, then t is able to simulate this move, i.e. to perform the
same action a and to end up in a state t′ such that s′Rt′.

Definition 4.1.4 Let L = (S,L,→) be a LTS.

• A simulation is a relation R on S, such that ∀s, t ∈ S with sRt, it holds that whenever
s

a−→ u, there exists v such that t
a−→ v, and moreover uRv.

• A bisimulation is a relation R such that both R and R−1 are simulations.

The greatest simulation—called similarity and denoted �L —and the greatest bisimu-
lation—called bisimilarity and denoted ≡L —exist (see [32]), and they are respectively
the union of all simulations and the union of all bisimulations; we call them respectively
similarity and bisimilarity . We explicit now the link with Abramsky’s applicative bisimu-
lation, by building a deterministic LTS LΛ modeling the operational semantics of Λ. Then,
we will see that bisimilarity on LΛ coincides with Abramsky’s applicative bisimulation.

Definition 4.1.5 (The Applicative LTS for Λ) We define LΛ as the LTS (SΛ,LΛ,→Λ

) where we take:

• the set of states SΛ = PΛ ] V̂Λ, where closed terms and normal forms are taken
as usual modulo α-equivalence and V̂ = {V̂ |V ∈ V} is a set containing copies of
the normal forms in Λ decorated with .̂ We call these normal forms distinguished
normal forms.

• the set of labels LΛ = PΛ ] {eval}, where, again, closed terms are taken modulo
α-equivalence.

• the transition relation → defined by:

• for every M ∈ PΛ, M
eval−→ λ̂x.N when M ↓ λx.N .

• for every λ̂x.M ∈ V̂ and for every N ∈ PΛ, λ̂x.M
N−→M{N/x}.

We can see the LTS LΛ as an interactive way of modeling the operational semantics
of Λ: the environment is able to make a program evolves by asking it to do some action:
either to be evaluated, or, if it is already a value, to be applied to some argument. We
illustrate this idea by representing a fragment of LΛ in Figure 4.1. We can see that the
LTS LΛ is indeed the underlying structure for applicative bisimulation, in the sense that
�appl and ∼LΛ

coincide on programs, as well as ≡appl and ≡LΛ
.

4.1.2 The Non-Deterministic Case

Notions of applicative bisimulations have also been developed for Λ endowed with a non-
deterministic operator ⊕. Recall from Chapter 2 that there are two different ways of defin-
ing context equivalence for non-deterministic higher-order languages: one where we take
may-convergence as observable, and the other one where we take must-convergence. These
two paradigms lead to two distinct ways of adapting Abramsky’s applicative bisimilarity,
which are sound respectively for may and must context equivalence (see the extensive
study carried out by Lassen in his Phd Thesis [77] on equivalences for non-deterministic
Λ). In particular, it was shown [77] that applicative bisimilarity in this setting is not fully
abstract, neither for call-by-name nor for call-by-value operational semantics.
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Ω λy.I

λ̂y.y

V1 V2 . . .

eval

V1 V2
. . .

Figure 4.1: Fragment of the Applicative CBV LTS LΛ.

4.2 Sound Equivalences for Λ⊕.

We are going in this section to present two different generalizations of Abramsky’s ap-
plicative bisimulation, developed by Dal Lago, Sangiorgi and Alberti in [74] for the weak
probabilistic λ-calculus Λ⊕ endowed with a call-by-name semantics: trace equivalence, and
probabilistic applicative bisimilarity. We will do this presentation in such a way as to high-
light how both equivalences can be seen as arising from a probabilistic generalization of
the Λ LTS.

4.2.1 Trace Equivalence for CBN Λ⊕.

The difficult part while proving that two terms are context equivalent is usually to handle
the universal quantification on contexts. One way to make it easier may be to decide to
consider only a restricted set C of contexts: to obtain a sound equivalence, we need to
choose C such that, if no context in C is able to distinguish two programs, then there is
no arbitrary context either that can distinguish them. Here, we present trace equivalence,
also known as CIU equivalence, which is the equivalence notion obtained by restricting
the contexts to applicative contexts , i.e contexts that are in the shape: [·]M1 . . .Mn,
and so that correspond to the environment passing successively the terms M1, . . . ,Mn

as arguments to the program. In the deterministic λ-calculus, trace equivalence coincide
with applicative bisimilarity. It is not the case anymore for non-deterministic λ-calculus
(see [77]).

For CBN Λ⊕, trace equivalence was defined and studied in [74]. To highlight the link
with bisimulation for LTSs, we give here the definition using applicative tests, that we’ll
also call traces, and that can be seen both as an applicative context, or as a sequence of
actions done on the program by the environment.

Definition 4.2.1 A trace α is a sequence in the form M1 · · · ·Mn, where M1, · · ·Mn are
programs. In other words, traces are generated by the following grammar:

α ::= ε |M · α

We note T r the set of traces, and we associate to any trace α a context Cα, that we define
inductively as:

Cε = [·] and CM ·α = Cα[[·]M ].
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Observe that the contexts associated to traces are exactly the applicative contexts, and as
a corollary, they are also evaluation contexts. We may now test a program M under a trace
α by evaluating Cα[M ], and this succeed whenever the execution of Cα[M ] terminates.

Definition 4.2.2 We define the probability that the program M performs successfully un-
der the trace α as Prob(M ↓)(α) = Obs(Cα[M ]).

Two programs are trace equivalent, if their probability of success is the same for all traces,
i.e. if no applicative context is able to distinguish them.

Definition 4.2.3 We say that M and N are trace equivalent, and we note M ≡tr N , if
for every trace α, it holds that Prob(M ↓)(α) = Prob(N ↓)(α). We note M ≤tr N if for
every tract α, Prob(M ↓)(α) ≤ Prob(N ↓)(α)

Example 4.2.1 We consider the programs M1 = (λx.I)⊕ (λx.Ω) and M2 = λx.(I ⊕ Ω).
We are going to show that they are trace equivalent, i.e. that for every trace α, Prob(M1 ↓
)(α) = Prob(M2 ↓)(α). The proof is done by case analysis on the trace α:

• Prob(M1 ↓)(ε) = Prob(M2 ↓)(ε) = 1.

• We look now to the case where α = L · β. Unfolding the definition that a program
performs successfully under a trace α, we can see that for every term M , Prob(M ↓
)(α) = Obs(Cβ[ML]). Moreover, since Cβ is an evaluation context, it holds that:

Obs(Cβ[ML]) =
∑
V ∈V

JMLK(V ) ·Obs(Cβ[V ]).

Since JM1LK = JM2LK = 1
2 · JLK, we can conclude that indeed Prob(M1 ↓)(α) =

Prob(N2 ↓)(α).

Proposition 4.2.1 (From [74]) Trace equivalence is fully abstract for CBN Λ⊕.

The definition of trace equivalence we have given in Definition 4.2.3, following [74], is
inductive in nature. But trace equivalence may also be defined coinductively, using a
LTS obtained by doing the probabilistic lifting of LΛ. We present here this alternative
view, that allows us to see trace equivalence on Λ⊕ as a probabilistic generalization of
Abramsky’s Applicative bisimulation. To do that, we construct a LTS L (Λ⊕

cbn), which
we obtain from LΛ by adding probabilities as follows: states are not programs anymore,
but distributions over programs, while the labels of L (Λ⊕

cbn) are defined as in LΛ.
The transition function of L (Λ⊕

cbn) is obtained from the one of LΛ by lifting it to
distributions.

Definition 4.2.4 We define the probabilistic trace LTS L (Λ⊕
cbn) = (SL (Λ⊕cbn),LL (Λ⊕cbn),→

) where:

• the set of states is SL (Λ⊕cbn) = ∆=(PΛ⊕) ]∆=(V̂Λ⊕);

• the set of labels is LL (Λ⊕cbn) = PΛ⊕ ] {eval};

• the transition relation → is defined by:

– if D ∈ ∆=(PΛ⊕), D
eval−→

∑
M∈PΛ⊕

D(M) · JMK.
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– if D ∈ ∆=(V̂Λ⊕), and N ∈ PΛ⊕:

D
N−→

∑
λx.M∈V̂Λ⊕

D(λx.M) · {M{N/x}1}.

We would like now to use bisimulation one L (Λ⊕
cbn) to define an equivalence relation

for Λ⊕ programs: two programs M and N would be equivalent whenever {M1} and {N1}
are bisimilar as states of L (Λ⊕

cbn). However, the notion of bisimulation for LTSs we have
presented in Definition 4.1.3 is not coarse enough: indeed, we can see that for instance the
states {I ⊕ Ω1} and {I1} are bisimilar in the LTS L (Λ⊕

cbn). To overcome this problem,
we need to specify that whenever two distributions have different weight, they cannot be
bisimilar. To formalize this idea, we introduced an enriched notion of LTSs —weighted
LTSs—, where we add to the LTS a function associating a weight to every state, and we
ask for an bisimulation on weighted LTS, that every bisimilar states should have the same
weight.

Definition 4.2.5 A weighted LTS (WLTS) is a pair (L , w), where L = (S,L,→) is a
LTS, and w is a function S → [0, 1]. A simulation on the WLTS (L , w) is a simulation
R on the LTS L , such that moreover sRt implies that w(s) ≤ w(t). A bisimulation on
(L , w) is a simulation R on (L , w) such that R−1 also is a simulation on (L , w).

Lemma 4.2.2 The greatest simulation and bisimulation on a WLTS exist, and moreover
they are respectively a pre-order and an equivalence. We call them respectively similarity
and bisimilarity.

Proof. Let be S the set of states of the WLTS. We first show that the greatest simulation
exists. We define:

R̃ = (∪R is a WLTS-simulationR) ⊆ S × S.

We want to show that R̃ is the greatest simulation; to do that it is enough to show that it is
indeed a simulation. Let s, t be such that sR̃t. Then there exists R a WLTS-bisimulation,
such that sRt. We see immediately that it implies that w(s) ≤ w(t). Moreover, suppose
that s

a−→ s′. Then, since sRt, it holds that there exists t′, such that t
a−→ t′, and s′Rt′.

Since R ⊆ R̃, it means that s′R̃t′, which allows us to conclude that R̃ is a simulation.
We still have to show that R̃ is a preorder. First, we see easily that it is reflexive:

indeed R = {(s, s) | s ∈ S} is a simulation, and as a consequence R ⊆ R̃. We want now
to show that it is transitive: let s, t, u be such that sR̃t, and tR̃u. It means that there
exists R1, R2 two simulations, such that sR1t and tR2u. We define R1 ◦ R2 = {(s, u) |
∃t s.t. sR1t ∧ tR2u}. We can see that R1 ◦ R2 is a WLTS simulation, which implies that
R̃ is transitive.

The proof for bisimilarity is similar to the one for similarity. �

We can now enriched the LTS L (Λ⊕
cbn) into a WLTS, by taking as weight function

w : SL (Λ⊕cbn) → [0, 1] defined by: w(D) =
∑

s∈S(D) D(s). In the following, we will denote

(by abuse of notation) also L (Λ⊕
cbn) the WLTS (L (Λ⊕

cbn), w).
Observe that, as in LΛ, the transition relation of the WLTS L (Λ⊕

cbn) is deterministic:
it comes from the fact that we have embedded probabilistic aspects on the semantics of
Λ⊕ purely in the states. In the next section, we will present another way of adding
probabilities to the LTS LΛ, by transforming it into a labeled Markov Chain where the
transition function itself becomes probabilistic.
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Figure 4.2: A Fragment of the weighted LTS L (Λ⊕
cbn)

Example 4.2.2 In Figure 4.2, we give as example a fragment of the weighted LTS that
talks about programs of Example 4.2.1.

Example 4.2.3 We consider M and N as in Example 4.2.1:

M = (λx.I)⊕ (λx.Ω) and N = λx.(I ⊕ Ω).

We define, using the notations si, tj , u to denote the states of L (Λ⊕
cbn) as represented in

Figure 4.2:
R = ({M1}, {N1}) ∪ (s1, t1) ∪ (s2, t2) ∪ (u, u).

Looking at Figure 4.2, we can see that both R and R−1 are simulation, hence {M1} and
{N1} are bisimilar as states of the WLTS L (Λ⊕

cbn).

On deterministic WLTS, bisimulation can be characterized by linear tests, i.e by looking
at the behavior of states when we apply to them finite sequences of action.

Definition 4.2.6 (Traces for a LTS) Let be L = (S,L,→) a LTS. A trace in L is a
(possibly empty) finite sequence of actions α = a1, . . . , an such that for every i, ai ∈ L.
Formally, the set of traces is generated by the following grammar:

α ∈ TL ::= ε | a · α where a ∈ L.

If s ∈ S, and α ∈ TL , we denote s
α−→ t when there exist u0, . . . , un ∈ S, such that u0 = s,

un = t, and ∀i, ui−1
ai−→ ui. A trace α is said to be admissible for s if there exists t such

that s
α→t. The set of admissible traces for s is indicated as T (s). We denote Dom(α) the

set of those states s such that ∃t, s α−→ t. The following is a well-posed definition since
by definition the underlying LTS of a deterministic WLTS is deterministic.

Definition 4.2.7 (Success Probability of a Trace) Let be L = (w, (S,L,→)) a de-
terministic WLTS. Let be s ∈ S, and α ∈ T (s). Then there is a unique u such that s

α→u,
and we define the success probability of α starting from s, that we note Prob(α ↓)s, as
w(u).
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We can now use the traces to give an inductive characterization of WLTS bisimilarity.

Definition 4.2.8 (Trace Equivalence for a Deterministic WLTS) Let be L w = (w, (S,L,→
)) a deterministic WLTS. We define the trace preorder �tr

L w on L as: s�tr
L wt when for

every trace t, if there exists s′ such that s
α−→ s′, then there exists also t′ such that t

α−→ t′,
and moreover w(s′) ≤ w(t′).

We say that two states s, t ∈ S are trace equivalent, and we denote s≡tr
L wt when s�tr

L wt
and t�tr

L ws.

Proposition 4.2.3 Let be L a deterministic WLTS. Then two states s, t of L w are
WLTS-similar if and only if s�tr

L wt, and they are WLTS-bisimilar if and only if they are
trace equivalent.

Proof. We consider the deterministic WLTS L = (w, (S,L,→))

• Let be α a finite sequence over L: we are going to show by induction on the length
of α that if s �L t, it holds that whenever s

α−→ s′, there exists t′ with t
α−→ t′ and

w(s′) ≤ w(t′).

– If α is the empty sequence, then the result holds: indeed since s and t are
WLTS-similar, it holds that w(s) ≤ w(t).

– If α = a · β. We suppose that there exists s′, such that s
a·β−→ s′. It means

that there exists s′′, such that s
a−→ s′′, and s′′

β−→ s′. Since s and t are
WLTS-similar, s

a−→ s′′ implies that there exists t′′, such that t
a−→ t′′, and

s′′�L t
′′. We can now apply the induction hypothesis to β, and it tells us that

there exists t′ such that t′′
β−→ t′, and moreover w(s′′) ≤ w(t′′). From there, we

can deduce that t
α−→ t′, and we see that the result holds.

• Now, we suppose that s�tr
L t. In order to show that s and t are WLTS-similar, we

construct a simulation relating them. We take:

R = {(s′, t′) | ∃α, s α−→ s′ ∧ t α−→ t′}.

We have now to show that it is a WLTS simulation. First, since s�tr
L t, we see that

whenever s′Rt′, it holds that w(s′) ≤ w(t′). Moreover, for any action a such that
s

a−→ s′, we can deduce from s�tr
L t that there exists t′ such that t

a−→ t′, and
moreover we see by looking at the definition of R that it also holds that s′Rt′. So R
is a WLTS-simulation, and the result holds.

�

Proposition 4.2.4 Let be L a deterministic WLTS. For every M,N ∈ PΛ⊕, M and N
are trace equivalent if and only if {M1} and {N1} are bisimilar in the WLTS L (Λ⊕

cbn).

Proof. To do the proof, we are going to use Proposition 4.2.3: we see that it is enough to
show that {M1} ≡L (Λ⊕cbn) {N1} whenever M and N are trace equivalent as Λ⊕-programs.
We are going to use the fact that the traces applied to programs can be converted in
finite sequence of actions on the WLTS L (Λ⊕

cbn): for every α = N1 . . . Nn ∈ T r, we
denote α̂ = eval · N1 · eval . . . Nn · eval. We see that for every program M , it holds that

Prob(M ↓)(α) = w(D), where D is such that {M1} α̂−→ D .
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• We suppose that {M1}≡tr
L (Λ⊕cbn)

{N1}. Then as we have observed above, for every

trace α ∈ T r, there exists D ,E such that Prob(M ↓)(α) = w(D), Prob(N ↓)(α) =

w(E ) and {M1} α̂−→ D , {N1} α̂−→ E . Since {M1}≡tr
L (Λ⊕cbn)

{N1}, it holds that

w(D) = w(E ). It means that Prob(M ↓)(α) = Prob(N ↓)(α), and since it holds for
every α ∈ T r, we see that M ≡tr N .

• Now, we suppose that M ≡tr N , and we want to show that {M1}≡tr
L (Λ⊕cbn)

{N1}.
Let α be a finite sequence of actions in L (Λ⊕

cbn), and D such that {M1} α−→ D .
Our goal is to show that the exists E with {N1} α−→ E , and w(D) = w(E ). We do
the proof by case analysis on α: first, we see that α has to be an alternated sequence
of the shape eval · L1 · eval . . ., otherwise we would not have {M1} α−→ D . There is
actually only two possible cases:

– or α = eval · L1 · eval . . . Ln · eval, and then we see that there exists indeed
E =

∑
V JNL1 . . . LnK(V ) · {V̂ 1} with {N1} α−→ E , and moreover w(D) =

Prob(M ↓)(L1 . . . Ln), and w(E ) = Prob(N ↓)(L1 . . . Ln). Since M and N are
trace equivalent, the result holds.

– either α = eval · L1 · eval . . . Ln, and then we see that there exists indeed E =∑
KJNL1 . . . Ln−1K(λx.K) · {K{Ln/x}1} with {N1} α−→ E . Moreover w(D) =

Prob(M ↓)(L1 . . . Ln−1), and w(E ) = Prob(N ↓)(L1 . . . Ln−1), so as previously
the result holds since M and N are trace equivalent.

�

The characterization of bisimilarity on deterministic WLTSs using traces makes it
easier to show that two states are not bisimilar, as we highlight in Example 4.2.4 below.

Example 4.2.4 We consider the two programs M = λx.I, and N = (λx.I ⊕ λx.Ω),
in the setting of the CBN reduction theory. We associate to M and N the L (Λ⊕

cbn)
states respectively {M1} and {N1}. In Figure 4.3 we represent the relevant fragment of
L (Λ⊕

cbn). We consider now the trace α = eval · I · eval. We can see that α ∈ T ({M1})∩
T ({N1}); it means that we can look at the success probability of α starting from respectively
{M1} and {N1}. Looking at Figure 4.3, we see that Prob(α ↓)({M1}) = 1, while Prob(α ↓
)({N1}) = 1

2 . Using the trace characterization of bisimilarity on L (Λ⊕
cbn), we see that it

means that {M1} and {N1} are not bisimilar.

4.2.2 Larsen Skou applicative bisimulation for CBN Λ⊕.

In [74], Dal Lago, Sangiorgi and Alberti introduced also another sound notion of equiv-
alence for CBN Λ⊕, by adapting the Λ LTS into a Labeled Markov Chain (LMC)—aka
reactive probabilistic labeled transition system—to model the operational semantics of Λ⊕,
and then use the bisimulation notion introduced by Larsen and Skou for LMCs to define
an equivalence on Λ⊕ programs, that they call probabilistic applicative bisimulation.

We first introduce the notion of Labeled Markov Chain, that also appears in the liter-
ature as reactive probabilistic labeled transition systems. It is a probabilistic generalization
of LTSs, in the sense that when we do some action starting from some system state, we
do not reach a single system state anymore, but a distribution—or sub-distribution—over
states. LMCs allow for external non-determinism (several different actions may be per-
formed from a given state), but not for internal non-determinism: given a state, and a
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Figure 4.3: A Fragment of the weighted LTS L (Λ⊕
cbn)

label, the system can reach only one distribution over states. The LMCs we consider take
divergence into account, since an action can lead to a strict sub-distribution. For this
reason, it has been also called in the literature partial LMC, or LMC with divergence.

Definition 4.2.9 A labeled Markov chain (LMC) is a triple M = (S,L,P), where S is
a countable set of states, L is a countable set of labels, and P is a transition probability
matrix, i.e., a function P : S × L × S → R such that for every state s ∈ S and for every
label l ∈ L,

∑
t∈S P(s, l, t) ≤ 1.

Larsen and Skou gave in [75] a definition of bisimulation for Labeled Markov Chain.

Notation 4.2.5 For any R ⊆ X × Y , when A is a subset of X, we denote R(A) = {z |
∃x ∈ A, xRz} ⊆ Y .

We can observe that this notation is well-behaved with respect to composition of relation,
in the sense where for every relation R,S, it holds that (R;S)(A) = S(R(A)).

Definition 4.2.10 Let X,Y be two countable sets, and R ⊆ X×Y a binary relation. We

define the asymmetric lifting of R to sub-distributions, as the relation
−→
(R)⊆ ∆(X)×∆(Y )

given by:

D
−→
(R) E when ∀A ⊆ X, D(A) ≤ E (R(A)).

We first state some easily checked fact about the asymmetric lifting of a relation.

Remark 4.2.1 Let X,Y, Z be countable sets. Then the following properties hold:

• If R ⊆ S, then
−→
(R)⊆

−→
(S).

• If R ⊆ S × T, S ⊆ T × U binary relation, then D
−→
(R) E and E

−→
(S) F implies

D
−→

(R;S) F .
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• If (Di)i∈N and (Ei)i∈N are two countable family of sub-distributions over respectively

X and Y such that for every i, it holds that Di

−→
(S) Ei , and (αi)i∈N a family of

non-negative coefficients with
∑

i∈N αi ≤ 1, then
∑

i∈N αi ·Di

−→
(S)

∑
i∈N αi · Ei.

• If E ≤ F , and D
−→
(R) E , then also D

−→
(R) F .

Definition 4.2.11 Let M = (S,L,P) be a labeled Markov chain. A probabilistic simula-

tion is a relation R on S such that (s, t) ∈ R implies that for every l ∈ L, (P(s, l, ·))
−→
(R)

(P(t, l, ·)). A probabilistic bisimulation is a relation R on S such that both R and R−1

are probabilistic simulation relations. We say that s is simulated by t (s�M t) if there
exists a probabilistic simulation R such that sRt. States s, t are bisimilar (s≡M t) if there
exists a probabilistic bisimulation R such that sRt.

Lemma 4.2.6 For any labeled Markov chain M = (S,L,P):

• relations �M and ≡M are the largest simulation and the largest bisimulation on S,
respectively;

• relation �M is a preorder and relation ≡M is an equivalence.

We can adapt the Λ LTS to obtain a LMC Mcbn
Λ⊕

for Λ⊕. The states and labels are the
same as in Lλ, while the transition relation→ of Lλ is replaced by a probability matrix.

Definition 4.2.12 (from [74]) The labeled Markov chain Mcbn
Λ⊕

= (ScbnΛ⊕
,LcbnΛ⊕

,Pcbn
Λ⊕

) is
given by:
• the set of states is ScbnΛ⊕

= PΛ⊕ ] V̂Λ⊕;

• the set of labels is LcbnΛ⊕
= PΛ⊕ ] {eval};

• the transition probability matrix Pcbn
Λ⊕

is defined as:

• for every M ∈ PΛ⊕ and for every V̂ ∈ VΛ⊕:

Pcbn
Λ⊕ (M, eval, V̂ ) = JMK(V )

Pcbn
Λ⊕ (M, eval,M ′) = 0 ∀M ′ ∈ PΛ⊕ ;

• for every λ̂x.M ∈ V̂Λ⊕ and for every N ∈ PΛ⊕:

Pcbn
Λ⊕ (λ̂x.M,N,M{x/N}) = 1;

Pcbn
Λ⊕ (λ̂x.M,N,M ′) = 0 ∀M ′ ∈ PΛ⊕ s.t. M ′ 6= M{x/N}.

Example 4.2.5 We fix the CBN semantics, and we consider the terms M = λx.(I ⊕ Ω)
and N = (λx.I) ⊕ (λx.Ω). Recall from Example 4.2.3 that they are trace equivalent.
However, we are going to show that they are not in ≡Mcbn

Λ⊕
. In Figure 4.4, we have

represented the relevant fragment of the LMC Mcbn
Λ⊕

. We do the proof by contradiction:

suppose that there exists a simulation R, such that MRN . We take X = { ̂λy.(Ω⊕ I)}:
it holds that Pcbn

Λ⊕
(M)(eval)(X) = 1. From the definition of simulation for LMC, we can

deduce that Pcbn
Λ⊕

(N)(eval)(R(X)) = 1. As a consequence (and by looking at Figure 4.4),

it holds that λ̂y.(Ω) and λ̂y.I are in R(X), which means that both ̂λy.(Ω⊕ I)Rλ̂y.(Ω) and
̂λy.(Ω⊕ I)Rλ̂y.(I). But from the latter, doing again one step in the bisimulation game,

we can deduce: (Ω ⊕ I)RI. But then we reach a contradiction, since I can do the action
eval with probability 1, while Ω⊕ I can do it with probability only 1

2 < 1.
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M = λy.(Ω⊕ I) N = (λy.Ω)⊕ (λy.I)

̂λy.(Ω⊕ I) λ̂y.Ω λ̂y.I

(Ω⊕ I) Ω I

Î

eval
eval
1
2

1
2

N N N

eval1
2 eval

Figure 4.4: A Fragment of the LMC Mcbn
Λ⊕

.

As we have done for Λ with LΛ, we are now going to use bisimulation on the LMCMcbn
Λ⊕

to define an equivalence relation on Λ⊕ programs.

Definition 4.2.13 We define ≡Λ⊕ the equivalence relation on the programs of Λ⊕ defined
by: M ≡Λ⊕ N when M and N are bisimilar seen as states of LcbnΛ⊕

.

Observe that Example 4.2.5 tells us that probabilistic applicative bisimulation is coarser
than trace equivalence, since there exist terms that are trace equivalent, but that prob-
abilistic applicative bisimulation is able to distinguish. As a corollary, since trace equiv-
alence is fully abstract, it means that probabilistic applicative bisimulation cannot be
complete.

Proposition 4.2.7 (from [74]) Probabilistic applicative bisimulation for CBN Λ⊕ is sound,
but not fully abstract.
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Chapter 5

Full Abstraction of Applicative
Larsen-Skou’s bisimilarity in CBV.

We have presented in Chapter 4 two distinct equivalence notions developed by Dal Lago,
Sangiorgi and Alberti [74] for the probabilistic higher-order language Λ⊕ endowed with a
CBN semantics: trace equivalence and probabilistic applicative bisimilarity. In the same
work, they also investigate the link of these equivalences with context equivalence: trace
equivalence is fully abstract, while probabilistic applicative bisimulation is sound, but not
complete. One of the contributions of this thesis is a study of these equivalences in the
setting of call-by-value Λ⊕: in this chapter, we show that CBV trace equivalence is not
even sound, while CBV probabilistic applicative bisimulation is fully abstract.

Most of the results we present here have been published in a joint work with Ugo
Dal Lago [24], in the setting of the typed language PCFL⊕, which is a CBV probabilistic
variant of PCFL—an extension of PCF with pairs and infinite lists introduced by Pitts
in [92]. Furthermore, we also studied probabilistic applicative bisimulation for CBV Λ⊕
extended with Abramsky and Ong’s parallel convergence tester operator, in a joint work
with Dal Lago, Sangiorgi and Vignudelli [27]. To keep the proofs simple, we chose to
present our results here in the setting of pure CBV Λ⊕, but it is worth noting that the
techniques presented here are robust enough to be extended without much complications
to higher-order languages with more programming features than Λ⊕. Throughout this
chapter, we will denote by →, ⇓ , and J·K respectively the one-step reduction relation,
big-step evaluation relation and the operational semantics with respect to the weak CBV
strategy on Λ⊕, as they were defined in Chapter 1.

5.1 Probabilistic Applicative Bisimulation for CBV Λ⊕.

We see in Chapter 4 that probabilistic applicative bisimulation was defined by Abramsky
for weak CBN Λ in [2]. Ong introduced in [88] a variant of Abramsky’s applicative
bisimulation for call-by-value Λ, and showed it to be fully abstract with respect to context
equivalence. At the end of their work on equivalences for CBN Λ⊕, Dal Lago, Sangiorgi
and Alberti [74] consider briefly the CBV case; they give a definition of probabilistic
applicative bisimulation in this setting, and claim that this equivalence relation is sound
with respect to context equivalence. In this section, we present probabilistic applicative
bisimulation for CBV Λ⊕, and we spell out the soundness proof, that uses Howe’s method
similarly to what is done in [74] for the CBN case.
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5.1. PROBABILISTIC APPLICATIVE BISIMULATION FOR CBV Λ⊕.

5.1.1 The Labelled Markov Chain Mcbv
Λ⊕

.

In order to adapt the definition of probabilistic applicative bisimulation—given in Defini-
tion 4.2.12 for CBN Λ⊕—to the CBV setting, we have first to slightly change the Markov
Chain Mcbn

Λ⊕
, in order to model CBV interactions instead of CBN ones: accordingly the

labels of Mcbv
Λ⊕

are values instead of being the set of all possible programs.

Definition 5.1.1 (from [74]) The CBV labeled Markov chainMcbv
Λ⊕

is defined asMcbv
Λ⊕

=

(ScbvΛ⊕
,LcbvΛ⊕

,Pcbv
Λ⊕

) where:

• the set of states is ScbvΛ⊕
::= ScbnΛ⊕

= PΛ⊕ ] V̂Λ⊕.

• the set of labels is LcbvΛ⊕
::= VΛ⊕ ] {eval};

• the transition probability matrix Pcbv
Λ⊕

is defined as:

• for every M ∈ PΛ⊕ and for every V̂ ∈ VΛ⊕: Pcbv
Λ⊕

(M, eval, V̂ ) = JMK(V ); and

Pcbv
Λ⊕

(M, eval,M ′) = 0 ∀M ′ ∈ PΛ⊕.

• for every λ̂x.M ∈ V̂Λ⊕ and for every V ∈ VΛ⊕: Pcbv
Λ⊕

(λ̂x.M, V,M{x/V }) = 1; and

Pcbv
Λ⊕

(λ̂x.M, V,M ′) = 0 for all M ′ ∈ PΛ⊕ such that M ′ 6= M{x/V }.

Similarly to the CBN case—see Section 4.2.2 from Chapter 4—we define a preorder �cbv
Λ⊕

and an equivalence relation ≡cbv
Λ⊕

on Λ⊕ programs, by taking respectively the similarity

and bisimilarity relations on the LMC Mcbv
Λ⊕

. The question now, is whether the bisimi-

larity ≡cbv
Λ⊕

may be used to obtain some information on CBV Λ⊕ context equivalence. In

Section 5.1.2 below, we show that ≡cbv
Λ⊕

is sound with respect to context equivalence, and
in Section 5.2 we show that it even coincides with context equivalence.

In order to keep the notations readable, in the remainder of this chapter, we will denote
the CBV probabilistic applicative similarity �cbv

Λ⊕
simply as �, and the bisimilarity ≡cbv

Λ⊕
simply as ≡.

5.1.2 ≡cbv
Λ⊕

is Sound wrt CBV Context Equivalence

Few years after Abramsky’s introduction of applicative bisimulation, Howe [64] gave an
alternative—more direct1—soundness proof for this equivalence relation. His proof tech-
nique was then adapted by Ong [88] to show soundness of applicative bisimulation for CBV
Λ. Later, in [65], Howe gave a more general framework for his method, that encompassed
both call-by-name and call-by-value reduction strategies, as well as non-deterministic vari-
ants of Λ obtained by adding some non-deterministic operator. From there, this proof
method has been adjusted to higher-order languages with various programming features,
for instance to higher-order languages with types [59], or with states [99]. When proving
soundness for probabilistic applicative bisimulation in CBN Λ⊕, Dal Lago, Sangiorgi and
Alberti adapted Howe’s method to a probabilistic setting. Here, we are going to adapt
their proof technique in order to show soundness of probabilistic applicative bisimilarity
for CBV Λ⊕.

More precisely, Howe’s method is designed to show a stronger result than soundness.
Recall that—as defined in Section 2.3—we call open relation a family R = (Rx)x⊆V,
such that each Rx is a relation over the set of Λ⊕- terms that have their free variables
contained in x. Howe’s method provides a path to prove that some fixed open relation R
is compositional, in the following sense:

1Abramsky’s original proof is done by way of a denotational semantics, while Howe’s proof uses only
operational semantics.
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5.1. PROBABILISTIC APPLICATIVE BISIMULATION FOR CBV Λ⊕.

Definition 5.1.2 Let R be an open relation for an untyped observable language L⊕. We
say that R is compositional if whenever two terms M and N are such that M RxN , then
for every context C that captures all variables in x, it holds that C[M ]R∅ C[N ].

So the first step we have to take is to extend ≡—a relation on programs—into an open
relation on all terms: we do that below by defining the open extension of the simulation
preorder.

Open Extension of Simulation Preorder.

To transform a relation R on programs into an open relation (R)◦ on all terms, there is
a generic way formalized by instance in [92]: two terms are related by (R)◦, if for every
possible choice of values2 to replace their free variables, the programs obtained after doing
the substitution are related by R.

Definition 5.1.3 Let R be a relation on Λ⊕ program. We define the call-by-value open
extension of R, that we denote (R)◦ by considering all closing substitutions, i.e., for
all M,N with FV (M), FV (N) ⊆ x = {x1, . . . , xn}, we have x ` M(R)◦N if: for all
V1, . . . , Vn ∈ VΛ⊕,

M{x1, . . . , xn/V1, . . . , Vn}RN{x1, . . . , xn/V1, . . . , Vn}.

Observe that, since� is a preorder on programs, its open extension�◦ is also a reflexive
and transitive open relation—in the sense of Definition 2.3.3 in Chapter 2. Our goal now
is to show that �◦ is compositional; we will see that among other things, compositionality
for �◦ induces soundness for the original relation � with respect to the context preorder.

Compatibility for Open Relations.

Instead of considering directly compositionality, we first introduce compatibility, an induc-
tively defined property on open relations that guarantee compositionality. Intuitively, an
open relation R is compatible, if when we start from pairs of programs related by R, and
we apply any possible sequence of rules in the grammar of Λ⊕, we end up with a pair of
program still in R.

Definition 5.1.4 An open relation R is compatible if and only if the following conditions
hold:
(Com1) ∀x ∈ V, ∀x ∈ x, x ` xRx ;
(Com2) ∀x ∈ V, ∀y 6∈ x,∀M,N , x, y `MRN ⇒ x ` λy.MRλy.N ;
(Com3) ∀x,∀M,N,P,Q, (x `MRN ∧ x ` PRQ)⇒ x `MPRNQ;
(Com4) ∀x,∀M,N,P,Q, x ` (MRN) ∧ x ` (PRQ)⇒ x ` (M ⊕ P )R(N ⊕Q).

Observe that this definition is purely syntactic: in particular, it would be identical if
we were in a call-by-name setting. As a consequence, our definition of compatibility is
exactly the same as the one from Dal Lago, Sangiorgi and Alberti for CBN Λ⊕ [32].

We see now that compatibility is a stronger requirement than compositionality: first,
observe that we cannot derive (Com3) by compositionality, since the contexts we con-
sider have only one hole. However, compatibility implies compositionality, as stated in
Lemma 5.1.1 below.

2Our definition of open extension depends on our reduction strategy; indeed in CBV, only values may
be substituted during the execution of a program, while in CBN all terms may be.
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5.1. PROBABILISTIC APPLICATIVE BISIMULATION FOR CBV Λ⊕.

Lemma 5.1.1 Let R be a compatible open relation with respect to Λ⊕. Then the following
hold:

1. R is a reflexive open relation;

2. R is compositional: if C is any context such that x a C, and y,M,N are such that
x, y `M RN , then it holds that y ` C[M ]R C[N ].

Proof. • We first show that R is reflexive. Let M be such that FV (M) ⊆ x. We
want to show that x ` M RM . The proof is done by induction on the structure of
M .

– We first suppose that M = x. Since x ∈ FV (M), it holds that x ∈ x. As a
consequence, we see using (Com1) that x ` xRx.

– We consider now the case where M = λx.N . Since terms are considered modulo
α-equivalence, we can suppose that x 6∈ x. Moreover, we see that FV (N) ⊆ x, x.
As a consequence, we have by induction hypothesis that x, x ` NRN . Applying
(Com2), we can conclude that x `MRM .

– If M = NL, we have by induction hypothesis that x ` NRN and x ` LRL.
We can then conclude by applying (Com3).

– If M = N ⊕ L, we obtain the result by applying (Com4).

• We now prove that R is compositional, by induction on the validity proof tree of κ :
x a C. Recall that validity for closeness judgments on contexts is defined inductively
in Figure 2.1 of Chapter 2.

– If κ is a [·], then C[M ] = M , C[N ] = N , and the result holds.

– If κ is x, x a λx.D, then the last rule in the proof tree of κ is of the shape:
x a D x 6∈ x
x, x a λx.D

. Then C[M ] = λx.D[M ], while C[N ] = λx.D[N ]. By induc-

tion hypothesis, it holds that x, y ` (D[M ])R (D[N ]). It allows us to apply
(Com2), and to conclude that y ` (λx.D[M ])R (λx.D[N ]).

– If κ is x a D ⊕ L. Looking at the rules in Figure 2.1, it means that x a D,
and L ∈ P. By induction hypothesis, we obtain that ` D[M ]RD[N ]. The first
statement of Lemma 5.1.1 tells us that R is reflexive: as a consequence, since
L is a closed term, FV (L) = ∅, and consequently ` LRL. We can conclude by
applying (Com4).

�

We explain now the relevance of the compatibility property for our purposes, namely
proving soundness of probabilistic applicative bisimulation. If a binary relation R on
programs is an observationally correct equivalence—in the sense of Definition 4.0.2 in
Chapter 4, i.e an equivalence relation such that whenever two programs are connected,
they have the same termination probability—then compatibility of (R)◦ implies soundness
with respect to context equivalence. A similar result holds in the asymmetric case: if R
is a observationally correct preorder—i.e. a preorder such that whenever N is related to
M , the termination property of M is greater or equal to that of N—then as soon as (R)◦

is compatible, it is also sound with respect to the context preorder.

Proposition 5.1.2 Let be R a relation on Λ⊕ programs, such that (R)◦ is compositional.
Then:
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1. if R is an observationally correct preorder, then (R)◦ is sound with respect to the
context preorder;

2. if R is an observationally correct equivalence, then (R)◦ is sound with respect to
context equivalence.

Proof. We suppose that R is a relation on programs verifying item 1, and such that
moreover (R)◦ is compatible. Let be M,N such that x `M(R)◦N ; our objective is to show
that x ` M ≤obs N . Let be C any context in the set CΛ⊕ such that x a C: it guarantees
that both C[M ] and C[N ] are closed terms. Since (R)◦ is compositional, Lemma 5.1.1
tells us that x `M(R)◦N implies ` C[M ](R)◦C[N ]. Looking at the definition of the open
extension, we see that since C[M ] and C[N ] are closed terms, it means: ` C[M ]RC[N ].
Now, we apply (1), and we can deduce from there that Obs(C[M ]) ≤ Obs(C[N ]). Since it
is the case for any context C with x a C, it means that x `M ≤obs N .

The proof of (2) is done similarly �

From there, we may see that in our path towards proving soundness of � and ≡ with
respect to respectively context preorder and context equivalence, the key step consists in
showing that�◦ is compatible. Indeed, since� is observationally correct, Proposition 5.1.2
tells us that compatibility of�◦ implies soundness of� with respect to context equivalence.
Moreover, soundness of ≡ with respect to context equivalence is implied as soon as we
know that � is sound with respect to the context preorder—because ≡ coincides with
� ∩(�)−1 (see Chapter 4), and also ≡ctx coincides with ≤ctx ∩ ( ≤ctx )−1.

Howe’s Method for CBV Λ⊕.

This paragraph is devoted to show that �◦ is indeed compatible, by adapting Howe’s
method to our setting. The main idea behind Howe’s method is to define an auxiliary
relation (�◦)H , which is compatible by design, and thereafter to show that in fact �◦
and (�◦)H coincides. This auxiliary relation (�◦)H is build as the Howe’s lifting of �◦,
where Howe’s lifting is a generic way to construct syntactically a bigger open relation RH

starting from any reflexive open relation R.

Definition 5.1.5 Let R be an open relation. The Howe’s lifting of R is the open relation
RH defined inductively by the rules in Figure 5.1.

x ∪ {x} ` xRM
x ∪ {x} ` xRHM

x ∪ {x} `M RH N x ` λx.N RL

x ` λx.M RH L

x `M RH N x ` LRH K x ` NK RT

x `MLRH T

x `M RH N x ` LRH K x ` (N ⊕K)RT

x ` (M ⊕ L)RH T

Figure 5.1: Howe’s Construction

Observe that Howe’s construction is asymmetric in nature; it is the reason why Howe’s
method has to focus on the similarity preorder, instead of considering directly bisimilar-
ity. Since the definition of Howe’s lifting depends only on the language, and not on the
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reduction strategy, our definition of RH coincides with the one presented in [74]. It means
that the structural properties of Howe’s lifting shown in [74] still hold: we state them in
Lemma 5.1.3 below.

Lemma 5.1.3 (from [74]) Let R be an open relation with respect to Λ⊕.
• Compatibility: If R is reflexive, then RH is compatible.
• Pseudo-Transitivity: If R is transitive, then:

(
x `M RH N

)
∧(x ` N RL)⇒

(
x `M RH L

)
.

• Extended Reflexivity: If R is reflexive, then x `M RN implies x `M RH N .

Observe that these properties do not imply a priori that RH is a preorder, since pseudo-
transitivity is weaker that transitivity. When moreover it holds that x `M RH N implies
x `M RN —i.e. that the Howe’s lifting is contained in the original relation—we say that
the Howe’s lifting of R is conservative.

When building �◦ as the open extension of �, we have noted that �◦ is a reflexive
and transitive open relation. As a consequence, we can deduce from Lemma 5.1.3 that
(�◦)H is compatible, and contains �◦. So to conclude that �◦ is compatible, we just
need to know that the Howe’s lifting of (�◦)H is conservative, i.e that (�◦)H ⊆�◦. Recall
that to show that some relation R on programs in contained in �, there is the powerful
coinductive proof technique, i.e. it is enough to show that R is a simulation. Here, we need
to adapt this tool for the purpose of showing that an open relation is contained in �◦. For
an open relation R, we call the binary relation R∅ over P the restriction of R to programs,
and we denote it R|P. We would like to know that hypothesizing (�◦)H|P ⊆�,implies that

(�◦)H ⊆�◦. It comes as a consequence from the fact that (�◦)H is value-substitutive, in
the sense of the definition below.

Definition 5.1.6 Let be R an open relation. Then we say that R is value-substitutive if
for all terms M,N and values V,W such that x, x ` M(R)◦

H
N and ∅ ` V (R)◦

H
W , it

holds that x `M{x/V } (R)◦
H
N{x/W}

Looking at the structure of Howe’s lifting, we can see that (�◦)H is value-substitutive.
That’s because Howe’s lifting is designed in such a way that for any relation R on programs
(R)◦

H
is value-substitutive, as expressed in Lemma 5.1.4 below.

Lemma 5.1.4 Let be R a relation on Λ⊕ programs. Then (R)◦
H

is value-substitutive.

Proof. We have to show that ∀M,N ∈ Terms, and V,W ∈ V such that x, x `M(R)◦
H
N

and ∅ ` V (R)◦
H
W , it holds that x `M{x/V } (R)◦

H
N{x/W}. The proof is by induction

on the proof derivation for x, x `M((R)◦)HN .

• If M = x and x, x ` x(R)◦N—with x 6∈ x—then the result holds by definition of
call-by-value open extension: for all V ∈ VΛ⊕, x ` V (R)◦N{x/V }.

• In the case where the derivation is of the form:

x, x, y ` P (R)◦
H
Q x, x ` λy.Q (R)◦N

x, x ` λy.P (R)◦
H
N

Then it holds by induction hypothesis that x, y ` P{V/x} (R)◦
H
Q{V/x}, and by

definition of open extension, it holds that x ` λy.Q{V/x} (R)◦N{V/x}. From there,
by applying the abstraction rule of Howe’s construction, we obtain the result.

The proof is similar in the remaining cases. �

66



5.1. PROBABILISTIC APPLICATIVE BISIMULATION FOR CBV Λ⊕.

We now see that value-substitutivity allows us to extend the coinductive proof tech-
nique to open relations: to show that a value-substitutive open relation R is contained in
�◦, it is enough to show that its restriction to program is a simulation, hence contained
in �. The validity of this proof technique comes as a direct consequence of Lemma 5.1.5
below.

Lemma 5.1.5 Let R be a reflexive, value-substitutive open relation, and S a relation on
programs, such that R|P ⊆ S. Then it holds that R ⊆ (S)◦.

Proof. We suppose that R|P ⊆ S. Let x = {x1, . . . , xn} ∈ V, and M,N be such that
x `M RN . We want to show that x `M (S)◦N . Recall the definition of open extension
given in Definition 5.1.3: we have to show that for all V1, . . . , Vn values, it holds that
M{x1, . . . , xn/V1, . . . , Vn}S N{x1, . . . , xn/V1, . . . , Vn}. Since R is value-substitutive, we
can deduce from x `M RN that:

∅ `M{x1, . . . , xn/V1, . . . , Vn}RN{x1, . . . , xn/V1, . . . , Vn},

which allows us to conclude the proof since R∅ = R|P is contained in S. �

Since (�◦)H is value-substitutive—from Lemma 5.1.4—Lemma 5.1.5 tells us that con-
servativity of the Howe’s lifting of �◦ will be implied as soon as we know that (�◦)H |P
is contained in �. For this purpose, we use the coinductive proof technique, and show
that (�◦)H |P is a simulation3 on the LMC Mcbv

Λ⊕
. To be precise, we have to consider the

binary relation on Scbv
Λ⊕

naturally induced by (�◦)H|P: M and N are connected as soon as

M (�◦)H|PN , and V̂ , Ŵ are connected as soon as V (�◦)H|PW . We will denote (�◦)H|Scbv
Λ⊕

this relation on Scbv
Λ⊕

.
We first recall the Disentangling Lemma, shown by Dal Lago, Sangiorgi and Alberti

for the purpose of the soundness proof for probabilistic applicative bisimilarity in CBN.
Our formulation here is actually a corollary of their Disentangling Lemma. The intuition
is that when D and E are related by the asymmetric lifting of R, then it is possible to go
from D to E by moving weight on paths that are valid for R, that is the path is either in
R, or go from the divergent state ⊥ to a state of T .

Lemma 5.1.6 (From [32]) Let S, T be two countable sets, and R ⊆ S × T a binary
relation. Let D be a finitely supported distribution over S, and E any sub-distribution

over T . Then D
−→
(R) E if and only if there exists a sub-distribution π over R such that :

• for every t ∈ S,
∑

s∈S(D) π(s, t) ≤ E (t);

• for every t ∈ T ,
∑

t∈S(E ) π(s, t) = D(s).

We will say that such a π is an asymmetric coupling from D to E that respects R, and
we will write π J 〈D&E 〉.

Lemma 5.1.7 (Key Lemma) (�◦)H|ScbvΛ⊕
is a simulation on the LMC Mcbv

Λ⊕
.

3In the proof of congruence for the probabilistic call-by-value λ-calculus in [74], we had to consider the
transitive closure of (�◦)H , since the definition of simulation required the relation to be preorder, which
implies that the transitivity of (�◦)H is needed. Here, however, following the presentation in [27], we have
relaxed the definition of simulation, so this is not anymore necessary.
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Proof. Looking at the definition of simulation, and at the structure of the LMC Mcbv
Λ⊕

,
we see that we have to show:

1. For every V ∈ V, and M,N ∈ Terms such that ∅ ` λx.M (�◦)H λx.N , it holds that
∅ `M{V/x} (�◦)H N{V/x}.

2. For all programs M,N such that ∅ ` M (�◦)H N , it holds that JMK
−→

((�◦)H)

JNK—where
−→

((�◦)H) is the asymmetric lifting to sub-distributions, as defined in
Definition 4.2.10 of Chapter 4 i.e.:∀A ⊆ V,JMK(A) ≤ JNK((�◦)H(A)).

Proof of item 1. If ∅ ` λx.M (�◦)H λx.N , and that V is a value. Then looking at
Howe’s construct, we see that it means that there exists L with x ` M (�◦)H L and
∅ ` λx.L �◦ λx.N . Since (�◦)H is reflexive and value substitutive, we obtain that
∅ ` M{V/x} (�◦)H L{V/x}, and since � is a simulation, we obtain that ∅ ` L{V/x} (�◦
)H N{V/x} . We can now conclude by the pseudo-transitivity property from Lemma 5.1.3,
and we see that ∅ `M{V/x} (�◦)H N{V/x}.

Proof of item 2. We first use the following property of the asymmetric lifting—that
can be easily checked from its definition: for any binary relation on S×T , if D is a directed
set of sub-distributions over S, and E any sub-distribution over T , it holds that:

∀D ∈ D,D
−→
(R) E ⇒ supD

−→
(R) E .

This remark allows us to use the approximations semantics instead of the exact semantics
of M , so we we can now reformulate our goal as:

∅ `M (�◦)H N ⇒ ∀D with M ⇓ D , D
−→

((�◦)H) JNK. (5.1)

It is easier to show (5.1) that directly the statement in Lemma 5.1.7, since now we can
reason by induction on the proof derivation of M ⇓ D .

We will also use the fact that given a set of set of open terms X, let λx.X = {λx.M |
M ∈ X}. Since all values are λ-abstractions, a set A ⊆ V may be represented as λx.X,
where X is a set of open terms that no other free variables that x. Now, by looking at the
definition of (�◦)H , we see that (�◦)H(A) =�◦ (λx.(�◦)H(X)). To sum up:

(�◦)H ∩ {(L,K) | L ∈ V} = {(λx.L,K) | ∃T with L (�◦)H T ∧ λx.T �◦ K}, (5.2)

We now show (5.1) by induction on the proof derivation of M ⇓ D . We consider
separately each possible rule which can be applied at the bottom of the derivation:
• If the rule used corresponds to the fact that, for every term, the empty distribution

is an approximate semantics, the derivation is: bv
M ⇓ ∅ then D = ∅, and indeed

∅
−→

((�◦)H) JNK.
• If M is a value V = λx.L and the last rule of the derivation is bv

V ⇓ {V 1}
then D = {V 1} is the Dirac distribution for V and, by the definition of Howe’s lifting,(
∅ ` λx.L (�◦)H N

)
was derived by the following rule:

x ` L(�◦)HK ∅ ` λx.K �◦ N
∅ ` λx.L(�◦)HN
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Recall that (∅ ` λx.K �◦ N) and that � is a simulation on our LMC. Since � and �◦

coincide on closed terms, it tells us that {λx.K1}
−→

(�◦) JNK. Our goal now is to show

that also λx.K
−→

((�◦)H) JNK. Let λx.X ⊆ V. If λx.L 6∈ λx.X then D(λx.X) = 0.
Otherwise, D(λx.X) = D(λx.L) = 1 = JNK(�◦ {λx.K}). It follows from L(�◦)HK
and from λx.L ∈ λx.X that λx.K ∈ λx.((�◦)HX); hence, JNK(�◦ {λx.K}) ≤ JNK(�◦

λx.((�◦)HX)). So using (5.2), we can conclude that {V 1}
−→

((�◦)H) JNK.
• If the derivation of M ⇓ D is of the following form:

M1 ⇓ K M2 ⇓ F {P{x/V } ⇓ EP,V }λx.P∈S(K ),
V ∈S(F)

M1M2 ⇓
∑
V ∈S(F) F (V )

(∑
λx.P∈S(K ) K (λx.P ).EP,V

)
Then M = M1M2 and we have that the last rule used in the derivation of ∅ ` M (�◦
)H N is:

∅ `M1(�◦)HM ′1 ∅ `M2(�◦)HM ′2 ∅ `M ′1M ′2 �◦ N
∅ `M1M2(�◦)HN

We are first going to apply the induction hypothesis to the derivation of M1 ⇓ K and
M2 ⇓ F : by using the Disentangling Lemma—that we recalled in Lemma 5.1.6—we

see that there are two couplings π1, π2 that respect
−→

((�◦)H) such that π1 J 〈K &JM ′1K〉
and π2 J 〈F&JM ′2K〉.

Recall that our goal is to show that D
−→

((�◦)H) JNK. First, we use these couplings to
express the sub-distribution D :

D =
∑
V

F (V )
∑
λx.P

K (λx.P ).EP,V

=
∑
V,P

(∑
W

π1(V,W )

)∑
Q

π2(λx.P, λx.Q)

EP,V

=
∑
W,Q

∑
P,V

π1(V,W ) · π2(λx.P, λx.Q) · EP,V

We fix nowW andQ, and we consider V, P such that π1(V,W ) > 0 and π2(λx.P, λx.Q) >
0. Observe that since π1 and π2 respect (�◦)H , it means that ∅ ` V (�◦)HW and
∅ ` λx.P (�◦)H λx.Q. It implies—by construction of Howe’s lifting—that there exists
S with x ` P (�◦)H S and ∅ ` λx.S �◦ λx.Q.

• We first utilize x ` P (�◦)H S . Since (�◦)H is value-substitutive, it holds that
∅ ` P{V/x} (�◦)H S{W/x}; we may apply the induction hypothesis, and we
obtain that

EP,V
−→

((�◦)H) JS{W/x}K. (5.3)

• We now utilize the fact that ∅ ` λx.S �◦ λx.Q. Since � is a simulation—and
� and �◦ coincide on closed terms—and that in the LMC Lcbv

Λ⊕
, for U ∈ {S,Q},

λ̂x.U
W→{U{W/x}1}, it holds that ∅ ` S{W/x} �◦ Q{W/x}. By doing again one

step forward in this LMC, we see that for U ∈ {S,Q}, U{W/x}eval→ ̂JU{W/x}K.
Since � is a simulation, it tells us that:

JS{W/x}K
−→

(�◦) JQ{W/x}K. (5.4)
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Using Remark 4.2.1 of Chapter 4 on composition for the relational lifting, we see that

we can combine (5.3) and (5.4) to obtain EP,V
−→

(�◦ ◦(�◦)H) JQ{W/x}K. Recall that we
know also from Lemma 5.1.3 that �◦ ◦(�◦)H ⊆ (�◦)H . Moreover, we know also—from

Remark 4.2.1 of Chapter 4 —that whenever R ⊆ S, then
−→
(R) ⊆

−→
(S). As a consequence,

we deduce that EP,V
−→

((�◦)H) JQ{W/x}K.

Summing up, and using that
−→

((�◦)H) is stable by linear combinations —from Re-
mark 4.2.1 of Chapter 4 —we obtain that:

D
−→

((�◦)H)
∑
W,Q

∑
P,V

π1(V,W ) · π2(λx.P, λx.Q) · JQ{W/x}K. (5.5)

Now, we use the fact that π1 J 〈K &JM ′1K〉 and π2 J 〈F&JM ′2K〉 tell us:
∑

P π1(λx.P, λx.Q) ≤
JM ′1K(λx.Q), and similarly

∑
V π2(V,W ) ≤ JM ′2K(W ). From there, we can use the fact

that
−→
(R) is right-stable under pointwise order—see once again Remark 4.2.1—we can

deduce from (5.5) that:

D
−→

((�◦)H)
∑
W,Q

JM ′1K(λx.Q) · JM ′2K(W ) · JQ{W/x}K. (5.6)

Observe now that the right part in (5.6) is exactly JM ′1M
′
2K. As a consequence (5.6)

implies D
−→

((�◦)H) JM ′1M
′
2K.

We are now almost ready to conclude: indeed we know by hypothesis that ∅ `M ′1M ′2 �◦

N , and that �◦ is a bisimulation, it holds that also JM ′1M
′
2K

−→
(�◦) JNK, and we can

conclude by using again that �◦ ◦(�◦)H ⊆ (�◦)H and the composition Lemma for

relational lifting that D
−→

((�◦)H) JNK.
• If M ⇓ D is derived by:

M1 ⇓ D1 M2 ⇓ D2

⇓M1 ⊕M2
1
2D1 + 1

2D2

then ∅ `M (�◦)H N is derived by:

∅ `M1 (�◦)H N1 ∅ `M2 (�◦)H N2 ∅ ` N1 ⊕N2 �◦ N
∅ `M1 ⊕M2 (�◦)H N

By the inductive hypothesis, for i ∈ {1, 2} we have that for any λx.X ⊆ V,

Di(λx.X) ≤ JNiK(�◦ λx.((�◦)HX))

Hence, the result follows from:

1

2
·D1(λx.X) +

1

2
·D2(λx.X)

≤ 1

2
· JN1K(�◦ λx.((�◦)HX)) +

1

2
· JN2K(�◦ λx.((�◦)HX))

�

We have now all ingredients necessary to state compatibility of �◦.

Theorem 5.1.8 �◦ is compatible.
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Proof. Recall that we know already that (�◦)H is compatible, and moreover �◦⊆ (�◦)H :
as a consequence it is enough to show that the Howe’s lifting of �◦ is conservative. Using
the key Lemma 5.1.7, we see that (�◦)H|Scbn

Λ⊕
is a simulation. Since � is the greatest

simulation, it holds that (�◦)H|P ⊆�. We can conclude by applying Lemma 5.1.5: it tells

us that (�◦)H ⊆�◦. �

We may now apply Proposition 5.1.2 since � is a observationally correct preorder, and �◦
a compatible open relation, and we obtain that � is sound with respect for the context
preorder, and by symmetry we also obtain soundness of ≡.

Corollary 5.1.1 �cbv
Λ⊕

is sound with respect to context preorder, and ≡cbv
Λ⊕

is sound with
respect to context equivalence.

5.2 Full Abstraction for Probabilistic Applicative Bisimula-
tion.

In the setting of CBN Λ⊕, Dal Lago, Sangiorgi and Alberti [74] showed that neither prob-
abilistic applicative bisimilarity nor probabilistic applicative similarity are complete—i.e
bisimilarity does not coincide with context equivalence, and similarity does not coincide
with context preorder. In this section, we show that by contrast, for CBV Λ⊕, probabilis-
tic applicative bisimilarity and context equivalence actually coincide, while probabilistic
applicative similarity do not coincide with the context preorder. It highlights a previ-
ously unobserved gap both between the CBN and the CBV semantics, and between the
symmetric and the asymmetric case. At the time where we published it—in a joint work
with Ugo Dal Lago [24]—, it was an unexpected result, because these phenomenon appear
neither in the deterministic case—where both applicative similarity and applicative bisim-
ilarity are fully abstract, irrespective of whether the reduction strategy is call-by-name
or call-by-value—nor in Λ enriched with a non-deterministic operator—where neither ap-
plicative similarity nor applicative bisimilarity are complete, irrespective of whether the
reduction strategy is call-by-name or call-by-value, and of whether we take a may-converge
or must-converge flavor [77].

To show full-abstraction of probabilistic applicative bisimilarity, we are going to use
the characterization of LMC bisimilarity established by Breugel et. al., that is based
on a notion of testing : two states are bisimilar if they have the same success probability
under some family of tests. Our proof method consists in showing that when we consider
the LMC Mcbv

Λ⊕
, every relevant test α may be emulated by a Λ⊕-context C—i.e. for any

program M , the termination probability of C[M ] is the same as the probability that the
test α succeeds when executed on M .

5.2.1 Labeled Markov Processes (LMP)

Breugel et al actually work with more general objects than LMCs: they consider Labeled
Markov Processes, that are a generalization of LMCs designed to deal with continuous
probabilities. The concept of probabilistic bisimulation has been generalized to LMPs
by Desharnais et al, more than ten years ago [39, 41]. Later, Breugel et al showed that
similarity and bisimilarity as defined in the aforementioned paper exactly correspond to
appropriate, and relatively simple, notions of testing [118]. We are going to summarize
here those of their results that are relevant for our purposes. To this end, we will need
the elementary notions of measure theory that have been presented in Chapter 1.
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The first step consists in giving a the definition of Labelled Markov Processes: they
are a generalization of LMCs in which the set of states is not restricted to be countable:

Definition 5.2.1 A Labelled Markov Process (LMP in the following) is a triple M process =
(Ω, Act, µ), consisting of a measurable set of states Ω = (S,Σ)—i.e. S is a set, and
Σ a σ-field over S—, a countable set of labels Act, and a transition probability func-
tion µ : S × Act × Σ → [0, 1], which has to be a Markov Kernel on (Ω, Act), i.e. such
that:
• for all x ∈ S, and a ∈ Act, the naturally defined function µx,a(·) : Σ → [0, 1] is a

sub-probability measure on Ω;
• for all a ∈ Act, and A ∈ Σ, the naturally defined function µ(·),a(A) : S → [0, 1] is

measurable.
We note Ker(Ω, Act) the set of all Markov Kernels on (Ω, Act).

The notion of (bi)simulation can be smoothly generalized to the continuous case. We
give here the definition following [41]. The one given in [118] is slightly different, but as
noted there it leads to the same similarity and bisimilarity notions.

Definition 5.2.2 (From [118]) Let (Ω, Act, µ) be a LMP, with Ω = (S,Σ) and let R be
a relation on S.

• R is a simulation, if it is a preorder and if whenever sR t, then for every a ∈ Act
and A measurable R-closed subset of Ω, it holds that µs,a(A) ≤ µt,a(A).

• R is a bisimulation if it is an equivalence relation, and if whenever sR t, then for
every a ∈ Act and A measurable and R-closed subset of Ω, it holds that µs,a(A) =
µt,a(A).

For a LMP M process, both the greatest simulation and the greatest bisimulation exist [41]:
we call them respectively similarity—that we denote �M process—and bisimilarity—denoted
≡M process . Labelled Markov Chains can be seen as a particular kind of LMPs—the ones
on discrete measurable spaces, where the states space S is countable, and the σ field Σ is
taken as Parts(S) —as highlighted in Example 1.4.2 from Chapter 1 it is indeed a σ-field
over S. We express in Lemma 5.2.1 below that Markov Kernels on those kind of discrete
LMPs are in one-to-one correspondence with probability matrices, meaning that discrete
LMPs are exactly LMCs.

Lemma 5.2.1 Let S be a countable set, and Act a countable set of labels. Let ΩS be the
measurable set (S,Parts(S)). Then we can build a bijection φ from Ker(Ωs, Act) into the
sets of all probability matrices over S, by taking:

φ : µ ∈ Ker(Ωs, Act) 7→ Pµ with Pµ(s, a, t) = µs,a({t}).

Proof. First, we have to show that for every Markov Kernel µ ∈ Ker(ΩS , Act), φ(µ)
is indeed a probability matrix i.e that for every state s ∈ S and for every label l ∈ L,∑

t∈S φ(µ)(s, l, t) ≤ 1. It is a direct consequence of the fact that µs,a(·) is a sub-probability
measure on ΩS : indeed 1 ≥ µs,a(S) =

∑
s∈S µs,a({t}) since S is countable.

Then, we define a function ψ from the set of probability matrices over S into the set
of Markov kernels over (ΩS), and we show that ψ is the inverse of φ. Whenever P is a
probability matrix, we define ψ(P) : S × Act × Parts(S) → [0, 1] as ψ(P)(s,Act, S) =∑

x∈SM (s, a, x). We see that ψ(P) is indeed a sub-distribution over ΩS . Moreover since
S is countable, any function S → [0, 1] is a measurable function: it means that ψ(P) is
indeed a Markov kernel. Moreover, we see easily that both φ ◦ ψ and ψ ◦ φ coincide with
the identity, that concludes the proof.

�
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In the following, if M = (S, Act,P) is a LMC, we will use M σ to denote the LMP
((S,Parts(S)), Act, φ−1(P)). We show now that bisimilarity and similarity are preserved
by φ.

Lemma 5.2.2 Let M = (S, Act,P) be a LMC, and s, t two states in S. Then it holds
that:

1. s �M t, if and only if s �Mσ t;

2. s ≡M t, if and only if s ≡Mσ t;

Proof. We first show item 1. We are going to show that any pre-order R on S is a
simulation for the LMC M if and only if it is a simulation for the LMP M σ.

• Let R be a preorder on S which is a simulation for the LMC M . Let s, t ∈ S be
such that sR t. Let a ∈ Act and A be a measurable R-closed subset of ΩS . Since
R is a simulation on the LMC M , it holds that P(s, a,A) ≤ P(t, a,R(A))). Since
A is R-closed, P(t, a,R(A)) = P(t, a, A), hence P(s, a,A) ≤ P(t, a, (A)). We can
rewrite this inequality using the bijection φ as µφ−1(M )(s, a,A) ≤ µφ−1(M )(t, a, A).
As a consequence, R is a simulation on the LMP φ−1(M ) = M σ.

• Let R be a preorder on S which is a simulation for the LMP M σ. Let s, t ∈ S be such
that sR t. Let a ∈ Act and X ⊆ S. First, observe that R(A) is a measurable set with
respect to the σ-field ΩS—since in the discrete σ-algebra, all subsets are measurable.
Since R is a preorder, it holds that R(R(X)) = R(X), hence R(A) is a R-closed
measurable subset of ΩS . As a consequence, we can use the fact that R is a simulation
for the LMP M σ, and we obtain that: µMσ(s, a,R(A)) ≤ µMσ(t, a,R(A)), which
we can rewrite by looking at the way we define M σ from M as: P(s, a,R(A)) ≤
P(t, a,R(A)). Since moreover A ⊆ R(A)—since R is reflexive—we can deduce that
also P(s, a,A) ≤ P(s, a,R(A)). By combining these two inequalities, we deduce that
P(s, a,A) ≤ P(t, a,R(A)) and from there we obtain that R is a bisimulation for the
LMC M .

Since we know that both the greatest simulation for the LMC M and the greatest sim-
ulation for the LMP M σ are pre-order, we can conclude that they coincide. The proof
of item 2 is similar. �

It means that we are able, using the function φ defined in Lemma 5.2.1, to transfer all
results that hold for bisimilarity or similarity on LMPs to the analogous notions of LMCs.
It is in particular the case of Breugel et. al.’s testing characterization for LMP bisimilarity,
that we present in the next paragraph.

5.2.2 Bisimilarity and Similarity are Characterized by Tests

In 1980, Milner and Hennessy [62, 61] introduced the so-called Hennessy-Milner modal
logic (HML), and showed it fully characterize bisimilarity on LTSs that are image-finite—i.e.
such that, from any state s, and for every action a there is a finite number of state t such
that s

a→t—, i.e. that two states s and t are bisimilar if and only if they satisfy the same
formulas. Using this logical characterization, Abramsky developed in [1] a testing char-
acterization for those LTSs that are both image-finite and finitely branching —for every
s, there is a finite number of actions a that may be done. Intuitively, a test specifies an
interaction between an experimenter and a process, and this interaction may succeed or
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fail. Since LTSs are non-deterministic, several runs of a test on a given process may lead
to different outcomes; for this reason, the behavioral semantics of a test α is a function
JαK : S → Parts({⊥,>}). Abramsky’s showed that his testing language characterizes
bisimilarity, in the sense that two states s, t are bisimilar if and only if, for every test α,
JαK(s) = JαK(t).

When introducing bisimilarity for LMCs [75], Larsen and Skou also introduced a test
language designed to characterize it. As in the LTS case, different runs of a test may lead
to different outcomes; however since we are now in a probabilistic setting, we are not inter-
ested anymore into the set of all possible outcomes, but in the probability of obtaining each
outcome. It means that the semantics of a test is now a function JαK : S → ∆=({⊥,>}).
Observe that since we consider proper distributions, the probability of obtaining ⊥ can
actually be computed from the probability of obtaining >, and so we see that it is enough
to specify for each state s the success probability of α on s. Larsen and Skou showed
that when a LMC verifies the so-called minimal deviation assumption [75]—intuitively,
it requires that whenever two transition probabilities are different, they must not be ar-
bitrarily close—two states s and t are bisimilar if and only if for each test α expressible
in the test language, the success probability of α is the same irrespective of whether it
is applied to s or t. Unfortunately, the minimal deviation assumption is not verified by
the LMC Lcbv

Λ⊕
we are interested in. Breugel et al extended in [118] Larsen Skou’s testing

characterization to the more general class of LMPs, which encompass all LMCs, and so
allows us to get rid of the minimal deviation requirement. They actually consider two test
languages: a language T0 similar to the one of Larsen Skou, that characterizes bisimilarity,
and a larger one T1 that characterizes similarity: two states s, t of a LMP are bisimilar if
and only if they have the same probability of passing successfully each test of T0, while
they are connected by the similarity relation if for every test in T1, t has a greater or equal
probability of passing it successfully than s. We present here the test language T1, T0 and
how to compute the success probability of tests when executed on some LMP state.

We first define tests as purely syntactic objects, generated by a BNF grammar, and
then we construct a family of measurable functions S → [0, 1], that specify the success
probability of a given test starting from any state in S.

Definition 5.2.3 Let M process = (S, Act, µ) be a LMP. We define the test language for
similarity T1(M process), and the test language for bisimilarity T0(M process) respectively as:

α ∈ T1(M process) ::= ω | a · α | 〈α, α〉 | α ∨ α;

α ∈ T0(M process) ::= ω | a · α | 〈α, α〉 where a ∈ Act.

Please observe that tests are finite objects. Each test in T1 specifies an interaction
between an experimenter and a system with buttons: for each action in a, the experimenter
may push the corresponding button, and then the system may fail or accept to carry on the
interaction. We describe now for each test which experiment it specifies. ω is the test that
always succeeds. The test a·α represents the experimenter pushing the button a to ask the
system to perform this action, and in case of success proceeds with performing the test α.
The test 〈α, β〉 is a conjunctive test, that makes two copies of the current underlying state
of the system, tests them independently according to α and β and succeeds iff both tests
succeed. The test α∨ β is a disjunctive test, that also makes two copies of the underlying
state and tests them independently according to α and β, but succeeds as soon asat least
one of these experiments succeed. We now give a behavioral semantics to tests, in a way
consistent with the interpretation of tests as experiments described above. It consists in
associating a success probability to every tests, that depends on the LMP describing the
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underlying system being tested, and also on which state of this LMP we take as initial
state when starting the test run. It is formalized accordingly in Definition 5.2.4 below.

Definition 5.2.4 (From [118]) Given a labeled Markov Process M process = (S,Σ, µ), we
define the behavioral semantics for tests in T1(M process), as the indexed family {PrM process

(·, α)}α∈T1(M process)

(such that PrM process
(·, α) : S → R is a measurable function) by induction on the structure

of α:

PrM process
(s, ω) = 1;

PrM process
(s, a · α) =

∫
PrM process

(·, α)dµs,a;

PrM process
(s, 〈α, β〉) = PrM process

(s, α) · PrM process
(s, β);

PrM process
(s, α ∨ β) = PrM process

(s, α) + PrM process
(s, β)− PrM process

(s, α) · PrM process
(s, β)

Observe that both T1 and T0 encompass traces—i.e. the linear tests presented in Sec-
tion 4.2.1 from Chapter 4—but also offer more possibilities to the experimenter who, at
each step of the experiment, may also decide to copy the process he interacts with.

We consider now the particular case where LMPs are discrete, i.e of the form M σ

where M is a LMC, we denote PrM (s, α) to mean PrMσ
(s, α). Looking at the way

success probability for tests on M σ are defined, we see that we can give a more direct
formulation of PrM (s, α) as expressed in Proposition 5.2.3 below, that takes advantage of
the discrete setting to replace Lebesgue integration with an infinite sum.

Proposition 5.2.3 Let M = (S,L,P) be a LMC.

PrM (s, ω) = 1;

PrM (s, a · α) =
∑
t∈S

PrM (t, α) · P(s, a, t);

PrM (s, 〈α, β〉) = PrM (s, α) · PrM (s, β);

PrM (s, α ∨ β) = PrM (s, α) + PrM (s, β)− PrM (s, α) · PrM (s, β)

Proof. It is a direct consequence of the characterization of Lebesgue integrals for discrete
spaces given in Chapter 1. �

Example 5.2.1 We give here an example of how operates a test on the LMC LcbvΛ⊕
. We

consider the test α = eval · V · 〈eval · ω, eval · ω〉 ∈ T0(Mcbv
Λ⊕

), where V is any value in
V. The interaction specified by this test is as follows: first the experimenter evaluates
the program, and passes to it the value V as an argument, then he takes two copies of
the resulting program, and evaluates each of them independently; the test succeeds if both
evaluations terminate.

We look now at what happens when we apply α to the programs M = λy.(Ω ⊕ I),
and N = (λy.Ω) ⊕ (λy.I). We represent in Figure 5.2 the main steps needed to compute

Pr
LcbvΛ⊕ (M,α) and Pr

LcbvΛ⊕ (N,α). Due to the inductive nature of the definition of tests
success probability, this computation has to be done starting from the states represented to
the bottom of Figure 5.2, towards the states represented at the top: we start from the fact
that Pr(u, ω) = 1, and from there, we build step by step the success probability of α on M

and N . At the end, we obtain that Pr
LcbvΛ⊕ (M,α) = 1

4 , while Pr
LcbvΛ⊕ (N,α) = 1

2 .
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s1 = λy.(Ω⊕ I) t1 = (λy.Ω)⊕ (λy.I)

p1(s2) = 1
4 p1(t1) = 1

2

p1(v) ::= Pr(v, eval · α′)

s2 = ̂λy.(Ω⊕ I)
α′ ::= V · 〈eval · ω, eval · ω〉

p2(v) ::= Pr(v, α′)
p2(s2) = 1

4 p2(t2) = 0 p2(t′2) = 1

t2 = λ̂y.Ω t′2 = λ̂y.I

s3 = (Ω⊕ I)p3(v) ::= Pr(v, eval · ω)

p3(s3) = 1
2 p3(t3) = 0 p3(t′3) = 1

t3 = Ω t′3 = I

u = ÎPr(u, ω) = 1

eval
eval
1
2

1
2

V V V

eval1
2 eval

Figure 5.2: Examples of Tests’s Success Probability in the LMC Mcbv
Λ⊕

.

We state now the characterization of bisimilarity and similarity by testing, as shown by
Breugel et al. for LMPs: it is possible to decide which pair of states are similar and
bisimilar by looking at the probability success of tests when applied to these states.

Theorem 5.2.4 ([118]) Let M process = (S,Σ, µ) be a LMP, and s, t ∈ S. Then:

• s ≡M process t iff PrM process
(s, α) = PrM process

(t, α) for every test α ∈ T0(M process).

• s �M process t iff PrM process
(s, α) ≤ PrM process

(t, α) for every test α ∈ T1(M process).

Recall that bisimilarity on M and M σ coincide, and it is also true for similarity. It
means that for characterizing bisimilarity or similarity on M , Theorem 5.2.4 tells us it is
enough to consider the success probability of tests on M σ.

5.2.3 Every Test in T0 has an Equivalent Context

Our objective now is to apply the testing characterization given in Theorem 5.2.4 to the
particular case where we consider the LMC Lcbv

Λ⊕
—introduced in Section 5.1.1 to define

probabilistic applicative bisimilarity on CBV Λ⊕—in order to show completeness of ≡cbv
Λ⊕

with respect to context equivalence for CBV Λ⊕. Theorem 5.2.4 tells us indeed that
proving (≡cbv

Λ⊕
) ⊇ ( ≡ctx ) boils down to show that whenever M and N have exactly

the same convergence probability under any contexts, they have also exactly the same
success probabilities for all tests. Or, more precisely, that for a given test α, there exists
a context C, such that for all programs M , the success probability of α on M is exactly
the convergence probability of C[M ]:

Pr
Lcbv

Λ⊕ (M,α) = |JC[M ]K|.

When we are able to build such context C, we say that C emulates the test α. We have
to be careful here, since we have in fact two different kinds of states in Scbv

Λ⊕
: programs

and distinguished values. In consequence, we define two encodings ΘP,ΘV : T0 → CΛ⊕

that build contexts emulating the action of tests when they are executed respectively on
programs and distinguished values. It means that for each test α, its success probabil-
ity starting from the state M is the same as the termination probability of the context
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α

·

∧

ω ω

ΘP(α) = λz.(ΘV(V · 〈eval · ω, eval · ω〉)[z])[·]

ΘV(V · 〈eval · ω, eval · ω〉) = ΘP(〈eval · ω, eval · ω〉)[([·]V )];

ΘP(〈eval · ω, eval · ω〉) = f(ΘP(eval · ω),ΘP(eval · ω))

ΘP(eval · ω) = (λx.((ΘV(α)[x])))[·]

ΘV(ω) = λy.[·]

eval

V

eval eval

Figure 5.3: Context ΘP(α) emulating the test α = eval · V · 〈eval · ω, eval · ω〉.

ΘP(α)[M ], and similarly, its success probability starting from the state V̂ is the same as
the termination probability of ΘV(α)[V ].

Definition 5.2.5 We define ΘV ,ΘP : T0(Mcbv
Λ⊕

) → CΛ⊕ by mutual induction on the

structure of α ∈ T0(Mcbv
Λ⊕

), as specified below:

1. Non-relevant actions: ΘP(V · α) = Ω[·] and ΘV(eval · α) = Ω[·];

2. Ever-Successful Test: ΘP(ω) = λx.[·]; ΘV(ω) = λx.[·];

3. Action V : ΘV(V · α) = ΘP(α)[([·]V )];

4. Action eval: ΘP(eval · α) = λx.(ΘV(α)[x])[·] with x 6∈ VΘV(α);

5. Conjunction: ΘP(〈α, β〉) = f(ΘP(α),ΘP(β)) and ΘV(〈α, β〉) = f(ΘV(α),ΘV(β));
where f : CΛ⊕ ×CΛ⊕ → CΛ⊕ is defined as4:

f(C,D) = (λx.(λy, z.I)(C[xI])(D[xI]))(λx.[·]); where x 6∈ VC ∪VD

Observe that Definition 5.2.5 is actually ambiguous, since we have to choose the variable
x arbitrarily in item 4, item 5. However, the contexts it is possible to build are equivalent
using α-conversion, which is enough since we fill them with programs only.

In the example below, we show how the ability of CBV contexts to first evaluate
and next copy programs allows us to emulate tests with a conjunctive structure. By
contrast, CBN contexts do no have this ability, and in consequence are not able to emulate
conjunctive tests.

Example 5.2.2 We look at the test α = eval·V ·〈eval · ω, eval · ω〉 of Example 5.2.1: recall
that we used this test to distinguish the programs λx.(Ω ⊕ I) and (λx.Ω) ⊕ (λx.I), that
cannot be distinguished by linear traces alone. We illustrate Definition 5.2.5 by building
the context emulating the test α: we want to compute ΘP(α). The inductive step-by-
step computation from Definition 5.2.5 is represented in Figure 5.3, where the test α is
represented by its syntax tree. We analyze here the behavior of the resulting context, looking
at each block used to built it.

4Actually, we could replace I in the definition of f by any other program that terminates with probability
1.
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• First, we see that ΘP(eval·ω) = (λx.(λy.x))[·]. We denote this context C↓; intuitively,
it evaluates its argument and then store the result. Observe that for every N , it holds
that the convergence probability of C↓[N ] is equal to that of N .

• We look now at the context ΘP(〈eval · ω, eval · ω〉), that we denote C2×↓. Observe that
as represented in Figure 5.3, we may compute C2×↓ by using C↓ and the conjunctive
function f . We obtain:

C2×↓ = (λx.(λy.λz.I)C↓[xI]C↓[xI])(λx.[·]).

We denote this context We see that for any program N , it holds that:

C2×↓[N ]→ (λy.λz.I)(C↓[(λx.N)I])(C↓[(λx.N)I]).

Recall from Chapter 2 that (λx.N)I is contextually equivalent to N—since they re-
duce to exactly the same distribution over values. As a consequence, the termination
probability of C2×↓[N ] is the same as that of the program below:

(λy.λz.I)(C↓[N ])(C↓[N ]).

On this form, it is easier to understand what C2×↓ does: it takes two copies of its
argument N , evaluates each of them independently using the context C↓, and returns
I—the identity term —whenever this computation terminates.

• Finally, we see that ΘP(α) = (λx.ΘP(〈eval · ω, eval · ω〉)[xV ])[·]. It means that
ΘP(α) does the following: first it evaluates its argument, then it passes to them
the value V , and finally it gives the result to the context C2×↓.

If we sum up the considerations above, we see that the context ΘP(α) emulates indeed the
interaction specified by the test α, that has been analyzed in details in Example 5.2.1.

We now state the main result of this section: for each test α ∈ T0, its behavior on programs
is indeed emulated by the context ΘP(α). This result is crucial for showing completeness
of ≡cbv

Λ⊕
with respect to context equivalence in CBV, since it amounts to show that the

testing characterization of bisimilarity on Mcbv
Λ⊕

can be translated into a characterization
by a family of contexts.

Theorem 5.2.5 Let α be a test in T0(Mcbv
Λ⊕

). Then for every M closed term and every
V value it holds that:

Pr
Mcbv

Λ⊕ (M,α) = |JΘP(α)[M ]K|; Pr
Mcbv

Λ⊕ (V̂ , α) = |JΘV(α)[V ]K|.

Proof. We are going to show the thesis by induction on the structure of the test α.

• If α = ω, then for every closed term M , and every closed value V , both Pr
Mcbv

Λ⊕ (M,ω)

and Pr
Mcbv

Λ⊕ (V̂ , ω) are equal to 1, and we have defined accordingly ΘP(ω) = ΘV(ω) =
λx.[·]. Since ΘP(ω)[M ] and ΘV(ω)[V ] are values, their termination probability is 1,
and so the result holds.
• If α = 〈β1, β2〉 we see by induction hypothesis, that for all 1 ≤ i ≤ 2, ∀M ∈ P, ∀V ∈
V: Pr

Mcbv
Λ⊕ (M,βi) = |JΘP(βi)[M ]K| and Pr

Mcbv
Λ⊕ (V̂ , βi) = |JΘV(βi)[V ]K|. Looking at

Definition 5.2.5, we see that :

ΘP(〈β1, β2〉) = f(ΘP(β1),ΘP(β2))

ΘV(〈β1, β2〉) = f(ΘV(β1),ΘV(β2))
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The overall behavior of the context f(C,D) is to copy the content of its hole into the
holes of the two contexts C and D. For any closed term M , and as soon as x does not
already appear neither in C nor in D, we can express the convergence probability of
f(C,D)[M ] as a function of the convergence probability of C[M ] and D[M ]:

|Jf(C,D)[M ]K| = (|JC[(λx.M)I]K|) · (|JD[(λx.M)I]K|)
= (|JC[M ]K|) · (|JD[M ]K|) since ∀L ∈ P, L ≡ctx (λx.L)I

As a consequence, for any closed term M , and any value V :

|JΘP(〈β1, β2〉)[M ]K| = Pr
Mcbv

Λ⊕ (M,β1) · Pr
Mcbv

Λ⊕ (M,β2) = Pr
Mcbv

Λ⊕ (M, 〈β1, β2〉);

|JΘV(〈β1, β2〉)[V ]K| = Pr
Mcbv

Λ⊕ (V̂ , β1) · Pr
Mcbv

Λ⊕ (V̂ , β2) = Pr
Mcbv

Λ⊕ (V̂ , 〈β1, β2〉);

and so the result holds.
• If α = a · β, then we consider separately the case where a is the action eval, and the

case where it is a value:
• First, let us suppose that a = eval. We first consider ΘV(α): since the eval action

is relevant only for states of Mcbv
Λ⊕

which are terms (and not distinguished values),

we want to show that ΘV(α)[V ] always diverges. Since ΘV(α) = Ω[·] and since
JΩK = ∅, we have indeed that for any V ∈ V, JΘV(α)[V ]K = ∅. We consider now

ΘP(α): by the induction hypothesis, we know that Pr
Mcbv

Λ⊕ (JV K, β) = |JΘV(β)[V ]K|.
Please recall that we have defined ΘP(a · β) = λx.(ΘV(β)[x])[·], where x is a fresh
variable that in particular does not already appear in ΘV(β). We can see now that
for every M ∈ P, it holds that:

|JΘP(a · β)[M ]K| =
∑
V

JMK(V ) · |JΘV(β)[V ]K|

=
∑
V

JMK(V ) · Pr
Mcbv

Λ⊕ (JV K, β)

=
∑
s∈Scbv

Λ⊕

Pcbv
Λ⊕ (M, eval, s) · Pr

Mcbv
Λ⊕ (s, β) = Pr

Mcbv
Λ⊕ (M,β)

• Now, we suppose that a = V , with V ∈ V. First, recall that we have defined

ΘP(V · β) = Ω[·], and so Pr
Mcbv

Λ⊕ (M,V · β) = 0 = |JΘP(V · β)[M ]K|. We look
now at ΘV(V · β), that as been defined in Definition 5.2.5 as ΘP(β)[[·]V ]. For any
W = λx.M ∈ V, we can see that:

|JΘV(V · β)[W ]K| = |JΘP(β)[WV ]K|

= Pr
Mcbv

Λ⊕ (WV, β) by induction hypothesis

= Pr
Mcbv

Λ⊕ (M{V/x}, β) since JWV K = JM{V/x}K

= Pr
Mcbv

Λ⊕ (Ŵ , V · β).

�

We can now use the contexts emulating T0(Mcbv
Λ⊕

) to finally show that ≡cbv
Λ⊕

is fully abstract
with respect to context equivalence in CBV Λ⊕.

Theorem 5.2.6 ≡ is fully abstract with respect to the contextual equivalence.
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Proof. We already know from corollary 5.1.1 that ≡ is sound, that is ≡⊆ ≡ctx . Hence,
what is left to show is that ≡ctx ⊆≡. Let M,N ∈ P be such that M ≡ctx N . We want to
show that M ≡ N . The testing characterization of simulation tells us that it is sufficient

to show that, for every test α ∈ T0(Mcbv
Λ⊕

), Pr
Mcbv

Λ⊕ (M,α) = Pr
Mcbv

Λ⊕ (N,α), which in turn

is a consequence of Theorem 5.2.5, since every test α of T0(Mcbv
Λ⊕

) can be simulated by a
context of CBV Λ⊕. �

5.2.4 The Asymmetric Case: �cbv
Λ⊕

is not complete

Theorem 5.2.6 establishes a precise correspondence between bisimilarity and context equiv-
alence. However, it cannot be extended into a correspondence between similarity and the
context preorder; we are actually able to show that similarity and context preorder do
not coincide, by giving a counterexample, namely a pair of terms which can be com-
pared in the context preorder but which are not similar. This counter-example actually
consists of the same programs as the counter example to completeness of probabilistic
applicative bisimilarity for CBN Λ⊕. Let us fix the following terms: M = λy.(Ω⊕ I) and
N = (λy.Ω)⊕ (λy.I).

Recall that in CBN, M and N are contextually equivalent, but not bisimilar. By
contrast, in CBV M and N are neither context equivalent, nor bisimilar: it is for instance
witnessed by the context C = ΘP(α) build in Example 5.2.2 as the context emulating the
test α = eval · V · 〈eval · ω, eval · ω〉 that distinguished M and N . Since C emulates α, we
can in particular deduce from the success probability of α when applied to M and N—as
computed in Example 5.2.1 —that |JC[M ]K| < |JC[N ]K|: it means that the context C and
the test α actually witness respectively ¬(N ≤ctx M) and ¬(N�cbv

Λ⊕
M).

We look now at the reverse comparison: does M ≤ctx N and M �cbv
Λ⊕

N hold ? We
first consider the situation with respect to the probabilistic applicative similarity.

Lemma 5.2.7 M �cbv
Λ⊕

N does not hold.

Proof. We are able to build a test β ∈ T1(Mcbv
Λ⊕

), that witnesses ¬(M �cbv
Λ⊕

N). We take
β = eval · V · (eval · ω ∨ eval · ω), and we compute its success probability when executed

on M and N as represented in Figure 5.4: we see that that Pr
Mcbv

Λ⊕ (β,M) = 3
4 , while

Pr
Mcbv

Λ⊕ (β,N) = 1
2 . �

Observe that the test β that witnesses ¬(M �cbv
Λ⊕

N) contains a disjunctive construct,

hence is not in T0(Mcbv
Λ⊕

). It means that we cannot construct a context emulating it

by using ΘP. Actually, there doesn’t’ exist a context that emulates β, because it does
hold that M ≤ctx N . Since we cannot use soundness of applicative similarity to show it,
we need to deal with the universal quantification over all contexts. The proof has been
detailed in [24], we recall here only the main steps. Let us first introduce some notation:
we call L0 = λy.Ω, and L1 = λy.I. If b = b1, . . . , bn ∈ {0, 1}n, then Lb denotes the
sequence of terms Lb1 · · ·Lbn . If K is a term, K ⇒ p means that there is a distribution
D such that K ⇒ D and |D | = p (where ⇒ is small-step approximation semantics; see
Definition 1.2.4 from Chapter 1). The idea, now, is to prove that in any term K, if we
replace an occurrence of M by an occurrence of N , we obtain a term T which converges
with probability smaller than the one with which K converges. We first need an auxiliary
lemma, which proves a similar result for L0 and L1.
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s1 = λy.(Ω⊕ I) t1 = (λy.Ω)⊕ (λy.I)

p1(s2) = 3
4 p1(t1) = 1

2

p1(v) ::= Pr(v, eval · β)

s2 = ̂λy.(Ω⊕ I)
β ::= V · (eval · ω ∨ eval · ω)

p2(v) ::= Pr(v, β)
p2(s2) = 3

4 p2(t2) = 0 p2(t′2) = 1

t2 = λ̂y.Ω t′2 = λ̂y.I

s3 = (Ω⊕ I)p3(v) ::= Pr(v, eval · ω)

p3(s3) = 1
2 p3(t3) = 0 p3(t′3) = 1

t3 = Ω t′3 = I

u = ÎPr(u, ω) = 1

eval
eval
1
2

1
2

V V V

eval1
2 eval

Figure 5.4: The test β ∈ T1(Mcbv
Λ⊕

) witnessing ¬(M �cbv
Λ⊕

N)

Lemma 5.2.8 For every term K, if (K{x/L0}) ⇒ p, then there is another real number
q ≥ p such that (K{x/L1})⇒ q.

We are now ready to prove the central lemma of this section, which takes a rather com-
plicated form just for the sake of its inductive proof:

Lemma 5.2.9 Suppose that K is a term and suppose that (K{x, y/M,L}) ⇒ p, where
y = y1, . . . , yn. Then for every b ∈ {0, 1}n there is pb such that (K{x, y/N,Lb})⇒ pb and∑

b
pb
2n ≥ p.

We may then conclude by using Lemma 5.2.9 in the case where n = 0, that indeed
M ≤ctx N . As a consequence, �cbv

Λ⊕
is not complete with respect to the context preorder,

since there are programs connected by ≤ctx but not by �cbv
Λ⊕

.

Proposition 5.2.10 �cbv
Λ⊕

is not fully abstract with respect to the contextual preorder.

5.2.5 Adding Parallel Convergence Testing to Λ⊕

The incompleteness result for the preorder �cbv
Λ⊕

may be seen as a consequence of the
impossibility to write Λ⊕ contexts that emulate disjunctive tests: the crucial point here
is that failure for tests means non-termination for the corresponding contexts. For this
reason, a context is not actually able to emulate the independent execution of two tests,
since once a program in Λ⊕ begin to evaluates a sub-term, it may only stop when the
evaluation of this sub-term stops. However, when we consider a conjunctive test 〈α, β〉,
we are able to sequentialise the experiment: we can decide that the experimenter first
executes the test α, and then if α succeeds he executes the test β. But it is no possible
to sequentialise the disjunctive test α∨ β, since the experiment should succeed as soon as
one of the two tests succeed: it is not possible for the experimenter to decide to begin by
executing α or β. To sum up, non-completeness of the similarity �cbv

Λ⊕
comes from the fact

that the Λ⊕ contexts may only emulates sequential tests.
A way to address this issue is to add parallelism to the language Λ⊕, by enriching it

with a parallel convergence testing operator, similar to the one introduced by Abramsky
and Ong in [4] for lazy Λ-calculus. The addition to a higher-order language of some kind of
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parallel operator has been used before to close the gap between soundness of a denotational
semantics and its full abstraction, for instance in [4] for CBN Λ, or by Plotkin in [93],
where he adds a parallel or operator to PCF 5. In a joint work with Dal Lago, Vignudelli

and Sangiorgi [27], we looked at applicative similarity for the higher-order language Λ
‖
⊕,

which is Λ⊕ extended with a parallel convergence testing operator. We sum up briefly the
results presented there.

The syntax of Λ
‖
⊕ is generated formally as follows:

M,N,L . . . ∈ Λ
‖
⊕ ::= x | λx.M | MN | M ⊕N | [M ‖ N ] .

The behavior of the parallel convergence testing construct ( [· ‖ ·] ) is meant to be as
specified in [4]: the program [M ‖ N ] returns I if at least one of the two programs M
or N terminates, and otherwise does not terminate. We need to extend the operational

semantics to implement this behavior; we define the operational semantics of Λ
‖
⊕, by

adding the two following redex-rules to the Λ⊕ reduction relation presented in Chapter 1:

[V ‖ N ] →R I and [M ‖ V ] →R I,

We define now the evaluation contexts of Λ
‖
⊕ as follows:

E ::= [·] | EM | V E | [E ‖M ] | [M ‖ E ] .

Observe that the reduction may now happens arbitrarily in the two branches of [M ‖ N ] :
it means that the one-step semantics becomes non-deterministic. However it is still true
that {D |M ⇒ D} is a directed set, which allows to extend the operational semantics J·K
to Λ

‖
⊕, by taking JMK = sup{D | M ⇒ D}. Equivalently, we can also define a big-step

approximations operational semantics:

M ⇓ D N ⇓ E
bor

[M ‖ N ] ⇓ (|D |+ |E | − (|D | · |E |)) · {I1}
,

and we can still show that JMK = sup{D |M ⇓ D}.
We may easily define a LMCMcbv

Λ
‖
⊕

that is the counterpart of the LMCMcbv
Λ⊕

for CBV

Λ
‖
⊕, that allows us to define probabilistic applicative similarity and bisimilarity for CBV

Λ
‖
⊕. Soundness of probabilistic applicative similarity and bisimilarity for CBV Λ

‖
⊕ is shown

in [27], using Howe’s method—the proof is an immediate extension of the one for CBV
Λ⊕. We look now at the full abstraction problem for �cbv

Λ
‖
⊕

with respect to the context

preorder. Recall that in the completeness proof for bisimilarity for CBV Λ⊕, we build
contexts designed to emulate all tests in T0. By adding the parallel convergence tester
we gain the ability to emulate also the disjunctive test, hence the whole testing language
T1. We illustrate this by showing that we can write a context that emulates the test
β = V · (eval · ω ∨ eval · ω). Recall that it is the precise test we have used in Section 5.2.4
when showing that it was not the case that λy.(Ω⊕ I) �cbv

Λ⊕
(λy.Ω)⊕ (λy.I).

Example 5.2.3 We consider β = eval·V ·(eval · ω∨eval · ω). We consider the Λ
‖
⊕ context

C = (λx. [xV ‖ xV ] )[·]. Observe that for every program M : JC[M ]K = (|JMV K| − |JMV K|)·
{I1}.

5It should be noted that in a calculus with ground data, parallel or and parallel convergence testing
are not equivalent: for instance parallel or is not expressible in PCF enriched with a parallel convergence
tester, see for instance [4]
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As we outlined in [27] we are able to systematize the construction we have done in Ex-
ample 5.2.3, i.e. to extend the encodings ΘV ,ΘP : T0(Mcbv

Λ⊕
) → CΛ⊕ into ΘV‖ ,Θ

P
‖ :

T1(Mcbv

Λ
‖
⊕

)→ CΛ
‖
⊕ , in such a way that the context ΘP

‖ (α) indeed emulates the test α when

applied on states of the LMC that are programs. It means that all tests in T1 can be emu-

lated by contexts of Λ
‖
⊕, and consequently we have the following full-abstraction theorem

for CBV Λ
‖
⊕:

Theorem 5.2.11 Both �cbv

Λ
‖
⊕

and ≡cbv

Λ
‖
⊕

are fully abstract with respect to respectively context

preorder and context equivalence for CBV Λ
‖
⊕.

5.3 On Trace Equivalence For CBV Λ⊕.

Recall that for CBN Λ⊕, Dal Lago, Sangiorgi and Alberti studied two behavioral equiva-
lences: probabilistic applicative bisimilarity and trace equivalence, that was fully abstract
in this setting. We look here briefly to trace equivalence for CBV Λ⊕. We can actually
follow two distinct approach when generalizing trace equivalence to CBV Λ⊕, depending
how we interpret CBN trace equivalence. The first possibility consists in considering that
trace equivalence is the behavioral equivalence witnessed by traces, i.e. linear tests, while
the second one consists in considering that it is the behavioral equivalence corresponding
to evaluation contexts. Recall that in CBN, these two notions coincide, because evaluation
contexts are exactly applicative contexts, i.e. those contexts that emulate linear tests.

5.3.1 Applicative Contexts Equivalence for CBV

We first define the CBV counterpart of CBN applicative contexts that were defined in Sec-
tion 4.2.1 of Chapter 4: CBV applicative contexts are those contexts of shape [·]V1 . . . Vn,
where V1, . . . , Vn are values. Similarly to what was done for CBN, we say that two pro-
grams M , N are trace equivalent, if for every CBV applicative context C, it holds that
Obs(C[M ]) = Obs(C[N ]). However, the induced equivalence relation is unsound. Indeed,
let us consider again the terms: M = λx.(I⊕Ω) and N = (λx.I)⊕(λx.Ω). We have shown
in example 4.2.1 that M and N were trace equivalent in CBN, and we can see similarly
that they are also trace equivalent in CBV. However, they are not context equivalent in
CBV, as we have shown in Example 2.3.1 of Chapter 2: it is because in CBV, we can write
contexts that evaluate their argument before copying and using it, which is never done by
an applicative context.

It means that trace equivalence is not really relevant when we consider Λ⊕ endowed
with a CBV evaluation strategy.

5.3.2 On CBV CIU-Equivalence

We look now at what happens if we consider the equivalence notion induced by CBV
evaluations contexts. By contrast with the CBN case, evaluations contexts in CBV are
more expressive as linear tests. Indeed, recall from Chapter 1 that CBV evaluations
contexts are generated by the grammar below:

E ::= [·] | EM | V E

We denote ≡CIU the equivalence relation based on evaluation contexts. Observe that it is
immediate that ≡ctx ⊆≡CIU.
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5.3. ON TRACE EQUIVALENCE FOR CBV Λ⊕.

We show now that the reverse inclusion also holds. First, observe that it is equivalent
to show ≡CIU⊆≡cbv

Λ⊕
. Suppose that M,N are two programs that verify ¬(M ≡cbv

Λ⊕
N); we

want to show that ¬(M ≡CIU N). We are again going to use the testing characterization.
Observe that whenever a test α is of the shape eval · α, ΘP(α) is an evaluation context.
Moreover, we can see that whenever two terms can be distinguished by some test in T0,
the they may also be distinguished by a test of the shape eval · α. As a consequence, M
and N may also be separated by an evaluation context, and so we obtain the result.

Proposition 5.3.1 ≡CIU is fully abstract with respect to context equivalence for CBV Λ⊕.
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Chapter 6

The Trivialization Problem for
Observational Distance: A Case
Study.

We argued in Chapter 3 that for the purpose of comparing probabilistic programs, observa-
tional distance is often a more adapted notion than the 2-valued observational equivalence,
because it allows us to talk about programs which behave very similarly, although not be-
ing equivalent. This chapter and the next one are devoted to a more in-depth look at the
structure of observational distance, when considering higher-order languages with discrete
probabilistic primitives. In the present chapter, we focus on the trivialization problem,
which we have informally described before in Section 3.2: more precisely, we identify two
distinct cases where we can build enough amplification contexts—see the considerations
on trivialization in Section 3.2—to enable trivialization of the observational distance: in
the former all programs terminate with probability 1, while in the latter the expressive
power of contexts is enhanced with parallel or. We develop these two cases on concrete
languages: for the first one, we consider T⊕ the probabilistic extension of Gödel’s system
T—introduced by Breuvart, Dal Lago and Herrou [19]—that we presented in Section 1.3.2

of Chapter 1. For the second one, we will consider the language Λ
‖
⊕—i.e. the variant of

Λ⊕ enriched with parallel convergence testing that we have presented in Section 5.2.5 of
Chapter 5.

The work we present here was published jointly with Ugo Dal Lago [29].

6.1 On Amplification Contexts

As we have illustrated in Example 3.2.1 of Chapter 3, there can well be classes of terms
such that the observational distance collapses to observational equivalence, due to the
copying capabilities of the underlying language. The trivialization problem can in fact be
seen as a question about the expressive power of contexts: given two duplicable terms, how
much can any context amplify the observable differences between their behaviors? More

precisely, we would like to identify trivializing fragments of Λ
!,‖
⊕ , that is to say fragments

such that for any pair of duplicable terms, their context distance (with respect to the
fragment) is either 0 or 1.

Our approach is as follows: as soon as two programs M , N are not observationally
equivalent, there exists at least one context C that separates them. Our idea is to take
this context as a starting point, and to see if it is then possible to amplify the difference
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6.1. ON AMPLIFICATION CONTEXTS

induced by C, by building another context D with

|Obs(D[C[M ]])−Obs(D[C[N ]])| > |Obs(C[M ])−Obs(C[N ])|.

The context D that we are going to build for this purpose actually interacts with its
argument only by copying it, and then evaluating all the copies: essentially, Obs(D[L])
depends only of the termination probability of L—it is because D is designed just to
amplify existing differences in the observables.

We want to present this approach in the setting of a generic probabilistic programming
language, no matter typed or untyped: this way, we will be able to apply it to both

T⊕—probabilistic variant of Gödel’s system T—and Λ
‖
⊕. We use here the formalism for

a generic observable programming language that we have introduced in Chapter 2—in
Definition 2.3.1 for an untyped language, and in Definition 2.3.2 for a typed language.
In order to talk about amplification contexts in this setting, we first need to enforce that
contexts can be composed.

Definition 6.1.1 (Compositionality for Contexts) Let L⊕ be an observable program-
ming language. We say that the compositionality requirement for contexts holds when:

• if L⊕ is an untyped language, we ask that for every C,D ∈ C∅, C[D] is also in C∅;

• if L⊕ is a typed language, we ask that for every type σ, ι, for every observable type
τ ∈ Aobs, if C ∈ C(∅,σ)→τ , and D ∈ C(∅,ι)→σ, it holds that C[D] ∈ C(∅,ι)→τ .

In the following, the compositionality requirement for contexts will hold for all the prob-
abilistic programming languages that we will consider. Looking now at the amplification
context we mentioned above, we see that we must require that it accepts all observable
programs in argument. We formalize this by asking it to be an universal context, in the
sense of the definition below.

Definition 6.1.2 (Universal context.) Let L⊕ be a probabilistic observable program-
ming language. We say a universal observable context is:

• any context C ∈ C∅, if L⊕ is an untyped language;

• if L⊕ is a typed language, a context C such that: ∀σ ∈ Aobs,∃τ ∈ Aobs with C ∈
C(∅,σ)→τ .

Ideally, we would like to be able to build for every α an universal amplification contexts
Dα that simulate the threshold functions Tα, that we define in Definition 6.1.4. We first
precise in Definition 6.1.3 below what we mean by simulating a function by a context.

Definition 6.1.3 We say that a universal observable context C simulates a function g :
[0, 1]→ [0, 1] if:

∀M observable program , Obs(C[M ]) = g(Obs(M)).

Indeed, if we have Obs(C[M ]) < Obs(C[N ]), then we can take any α ∈ [0, 1] between them,
and we see that C[M ] and C[N ] are completely separated by Tα, in the following sense:
|Tα(Obs(C[M ]))− Tα(Obs(C[N ]))| = 1.

Definition 6.1.4 (Threeshold Functions) For α in [0,1], we define the function Tα :
[0, 1]→ {0, 1} as follows:
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Figure 6.1: The threshold test functions Tα.

• T 0(0) = 0, and T 0(x) = 1 for x > 1.

• if α > 0: Tα(x) = 0 if x < α, 1 otherwise.

The threshold functions are represented in Figure 6.1. However, requiring the existence
of a context D that simulate Tα for every α ∈ [0, 1] is too strong: we are now going to
progressively weaken this condition. First, we observe considering every α ∈ [0, 1] is not
necessary: since the set Q is dense in R, it is sufficient to look at the Tα for α ∈ Q∩ [0, 1].
We then see that we don’t really have to find a context that exactly simulates Tα, but
that it is enough to find a family of contexts that approximates this function, in the sense
of Definition 6.1.5 below.

Definition 6.1.5 Let f : [0, 1]→ [0, 1] be a real function, and I ⊆ [0, 1]. An approxima-
tion by contexts of f on I is a family (Cn)n∈N of universal contexts such that for every
program M with Obs(M) ∈ I,

lim
n→∞

Obs(Cn[M ]) = f(Obs(M)).

We illustrate now the notion of approximation by contexts. Recall the Λ⊕-contexts Cn
considered in Example 3.2.1 in Chapter 3, that we used to show that δctx

Λ⊕
(I, I ⊕ Ω) = 1.

In Example 6.1.1 below, we reformulate them as a family of approximations for T 1.

Example 6.1.1 We first build in Λ⊕ a n-ary conjunction operator
∧n([·]1, . . . , [·]n) such

that if M1, . . . ,Mn are programs,
∧n(M1, . . . ,Mn) terminates if and only if all the Mi

terminate. Indeed, for every n ∈ N, and n terms M1, . . . ,Mn, we take:∧n
(M1 . . .Mn) = (λz1.λz2. . . . λy.(yz1 . . . zn))M1 . . .Mn.

Using this conjunction operator, we can now use the copying ability of Λ⊕ to build for
every n ∈ N, a Λ⊕-context Cn as follows:

Cn = (λx.
∧n

(xI, . . . , xI))(λx.[·]).

The behavior of this context on a program M is as follows: first it produces n copies
of M , then it evaluates successively all those copies of M , and stops only if all of them
terminate. As a consequence:

∀ program M, Obs(Cn[M ]) = Obs(M)n →n→∞ T 1(Obs(M)).
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It means that (Cn)n∈N is an approximation family for the threshold test T 1 on the whole
interval [0, 1]. As a consequence, for every program M,N , with Obs(M) = 1, Obs(N) < 1,
it holds that δctxΛ⊕

(M,N) = 1.
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Figure 6.2: Approximation Contexts (Cn)n∈N in Λ⊕ for T 1.

As soon as we are able to approximate this way every threshold function by a family of
contexts, we can show that the observational distance trivializes. We state this formally
in the following lemma.

Lemma 6.1.1 Let L⊕ be any probabilistic observable programming language. If for every
α ∈ (0, 1) there exists an approximation of Tα by universal L⊕-contexts on [0, 1] \ {α},
then the observational distance on L⊕ trivializes, i.e.:

∀M,N comparable programs ∈ L⊕, δctxL⊕(M,N) ∈ {0, 1}.

Proof. We give the proof for the untyped case, but the proof when L⊕ is a typed prob-
abilistic language is similar. Let M,N be two programs in L⊕. If M and N are observa-
tionally equivalent in L⊕, then δctx

L⊕(M,N) = 0, and so the result holds. We suppose now
that M and N are not observationally equivalent: it means that there exists a L⊕ context
C such that Obs(C[M ]) 6= Obs(C[N ]). We now fix ε > 0, and show that 1−δctx

L⊕(M,N) ≤ ε.
We denote t0 := Obs(C[M ]), and t1 := Obs(C[N ]). Suppose for instance that t0 < t1.
Then we take α ∈ (t0, t1). By hypothesis, there exists a sequence of universal L⊕ contexts
(Dn)n∈N that approximates Tα. Looking at Definition 6.1.5, we see that it implies:

lim
n→∞

Obs(Dn[C[M ]]) = 0 and lim
n→∞

Obs(Dn[C[N ]]) = 1

As a consequence, there exists n ∈ N such that both:

Obs(Dn[C[M ]]) ≤ ε

2
and Obs(Dn[C[N ]]) ≥ 1− ε

2
,

and from there we deduce that indeed 1− δctx
L⊕(M,N) ≤ ε. �
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We now add a supplementary layer to the condition given in Lemma 6.1.1 that guarantees
trivialization. Indeed, in some cases it is too complicated to explicitly write the family of
contexts approximating the threshold function itself, but we are able to write a sequence
of functions that tends towards it, and such that every function in it sequence can be
approximated by contexts. We precise this idea in Lemma 6.1.2 below.

Lemma 6.1.2 Let L⊕ be a probabilistic observable programming language. If for every
α ∈ (0, 1) there exists a sequence of real function fn : [0, 1]→ [0, 1] such that:

• for every t ∈ [0, 1] \ {α}, limn→∞ fn(t) = Tα(t);

• and for every n ∈ N, there exists a family (Cnm)m∈N of universal contexts that ap-
proximates fn on [0, 1],

then the observational distance on L⊕ trivializes.

In the case where the language considered is Λ⊕—with the CBN or the CBV opera-
tional semantics—it is not possible to approximate all the Tα by Λ⊕ contexts: indeed the
observational distance on Λ⊕ doesn’t trivialize since for instance δctx

Λ⊕
(Ω, (I⊕Ω)) = 1

2—the
formal proof can be done using the coinductive tools we will develop in Chapter 8. It
also means that there is no possible ways to approximate T 0 in Λ⊕. We are now going to
explore two paths that lead to trivialization: in the first one, we enhances the expressive
power of contexts by adding a parallel convergence tester operator, while the second con-
sists in enforcing termination for all programs. We will illustrate these two approaches

respectively on the languages T⊕ and Λ
‖
⊕, by showing that in these two cases, we are able

to approximate the threshold functions, and that consequently the observational distance
trivializes.

6.2 Trivialization in Λ
‖
⊕

We work here with the language Λ
‖
⊕, which is strictly more expressive that Λ⊕, since it has a

parallel convergence tester operator: [M ‖ N ] returns I if at least one of the two programs
M and N terminates, and doesn’t terminate otherwise. Recall that we have introduced

and studied the language Λ
‖
⊕ in Section 5.2.5 of Chapter 5. To be consistent with our

development there, we keep the same CBV operational semantics—but our trivialization
result would also hold for a CBN strategy. Our goal here is to show that all threshold

functions Tα can be approximated by Λ
‖
⊕ contexts, which will then allow us to obtain

trivialization of the observational distance on Λ
‖
⊕ by using Lemma 6.1.1.

Recall from Example 6.1.1 that we can approximate T 1 in Λ⊕; we can see that the

same reasoning still holds in Λ
‖
⊕. In contrast, we are not able to approximate T 0 in Λ⊕.

Here, we first illustrate how the presence of the parallel convergence tester enhances the
discriminating power of contexts by highlighting that T 0 can be approximated by a family

of Λ
‖
⊕ contexts.

Example 6.2.1 In the same way as we defined n-ary conjunction operator in Exam-

ple 6.1.1, we now define a n-ary disjunction operator in Λ
‖
⊕.∨n

(M1, . . .Mn) = [M1 ‖ [M2 ‖ . . .] ] ;

The term
∨n(M1, . . . ,Mn) behaves as a n-ary disjunction: if M1, . . . ,Mn are programs, it

terminates if at least one of the Mi terminates. We now build the family of Λ
‖
⊕ universal
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contexts designed to approximate the threshold function T 0. For every n ∈ N, we build Cn
as:

Cn = (λx.
∨n

((xI), . . . , (xI)))(λy.[·]).

Essentially, Cn makes n copies of its argument, and then converges towards I if at least
one of these copies itself terminates. As a consequence, Obs(Cn[M ]) = 1− (1−Obs(M))n.
Thus the family (Cn)n∈N is an approximation by contexts of the threshold function T 0 on
[0, 1], see Figure 6.3.
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Figure 6.3: Approximation family (Cn)n∈N in Λ
‖
⊕ for T 0 with n ∈ {5, 10, 20, 50}.

Observe that from Example 6.2.1, we can in particular derive that δctx

Λ
‖
⊕

(Ω,Ω⊕ I) = 1.

Our goal now is to show the existence, for every α ∈ (0, 1), of an approximation by
contexts of Tα on [0, 1] \ {α}. From there, we will be able to apply Lemma 6.1.1, and
thus to show that δctx

Λ
‖
⊕

trivializes. To this purpose, we are going to mix the conjunction

and the disjunction operators—defined respectively in Example 6.1.1 and 6.2.1—in order
to obtain a new kind of contexts that we will use later to build threshold approximations.

Definition 6.2.1 We call mixed amplification context of conjunction order n and dis-
junction order m, the universal context (♦mn )n,m∈N defined as follows:

♦mn = λy.
(∧n

(
∨m

((xI), . . . , (xI)), . . . ,
∨m

((xI), . . . , (xI)))
)

(λy.[·])

Observe that the contexts ♦mn compute m-ary conjunctions of n-ary disjunctions. If we
look at the termination probability, we see that:

Obs(♦mn [M ]) = (1−Obs(M)m)n.

Using these mixed amplifications contexts, we are now able to approximate threshold tests.
More precisely, for every α ∈ (0, 1), we need to associate to every index n ∈ N a mixed

amplification context of the form ♦r(n,α)
n . We do this construction in Definition 6.2.2

below, and we will then show that the family of contexts (Cαn )n∈N obtained this way is
indeed an approximation by contexts of Tα on [0, 1] \ {α}.
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Definition 6.2.2 Let α ∈ (0, 1), and n ∈ N. We build the n-th context approximation of

Tα as the Λ
‖
⊕ context Cαn := ♦r(n,α)

n , where we take:

r(n, α) =

⌈(
1

1− α

)n⌉
.
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Figure 6.4: Behavior of the contexts Cαn for n ∈ {3, 5, 10, 20}.

We illustrate in Figure 6.4 the action of Cαn : we can see on an example that indeed
the greater the value of n is, the closer the n-th approximation function is to Tα. We
need now to prove that this is always the case, i.e. that the Cαn are an approximation by
contexts of the threshold tests. To keep the notations readable, we introduce functions
fn,α : [0, 1]→ [0, 1] defined by fn,α(x) = (1− (1− x)n)r(n,ι), i.e. such that:

∀M, Obs(Cαn [M ]) = fn,α(Obs(M)).

Accordingly, we can reformulate our goal as follows: we want to show that for every
α ∈ (0, 1), and t ∈ [0, 1] \ {α}, limn→∞ fn,α(t) = Tα(t). The proof will use tools from
real analysis, essentially the Bounded Convergence Theorem, that we recall below. The
statement and the proof can for instance be found in [100]. It is a particular instance
of a number of theorems in classical analysis, that give conditions to permute limit and
integration.

Theorem 6.2.1 (Bounded Convergence Theorem) If kn is a sequence of uniformly
bounded real-valued measurable functions which converges pointwise on a bounded measure
space (S,Σ, µ) to a function k, then the limit k is an integrable function and:

∫
S limn→∞ kn =

limn→∞
∫
S kn.

The bounded convergence theorem is relevant here, because we can express the approxima-
tions functions fn,α using an integral. In order to simplify the proof, we will work with the
reverse approximation functions gn,α : R→ R defined as gn,α(x) := fn,1−α(1−x). We can
express the gn,α as an integral: indeed, the function g is derivable, and as a consequence,
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for every x ∈ (0, 1):

gn,α(x) =

{∫ x
0 g
′
n,α(t)dt+ 1 if x < α

−
∫ 1
x g
′
n,α(t)dt if x > α

(6.1)

We are now going to fix α, and use the Bounded Convergence Theorem by taking the kn
as g′n,α.

Lemma 6.2.2 For every α ∈ (0, 1), it holds that:

lim
n→∞

∫ x

0
g′n,α(t)dt = 0 when x < α

lim
n→∞

∫ 1

x
g′n,α(t)dt = 0 when x > α.

Proof. We first fix an α ∈ [0, 1], x− ∈ [0, α[, x+ ∈]α, 1]. Our goal now is to show that
both (g′n,α : [0, x−]→ R)n∈N and (g′n,α : [x+, 1]→ R)n∈N are indeed two sequences of uni-
formly—i.e. by a constant that does not depend from n—bounded real-valued measurable
functions which converge pointwise. Observe first that the measurability assumption obvi-
ously holds—we endow as usual both [0, x−] and [x+, 1] with the Lebesgue measure—since
the g′n,α are continuous functions. Let us now look for uniform bounds. First, we can give
a closed form for the function g′n,α: indeed it holds that for every t ∈ [0, 1]:

g′n,α(t) = −r(n, 1− α)e · n · (1− tn)r(n,1−α)−1 · tn−1

Recall that r(n, 1− α) = d( 1
α)ne, and that moreover 0 < α < 1. As a consequence, there

exists N , such that ∀n ≥ N , r(n, 1 − α) ≤
(

1
α

)n
+ 1 ≤

(
1
α

)n+1
. From there—and since

0 ≤ (1− tn) ≤ 1—we can deduce the following bound on the absolute value of the g′n,α:

∀t ∈ [0, 1], |g′n,α(t)| ≤ 1

α2
·
(
t

α

)n−1

· n · (1− tn)( 1
α

)n−1 (6.2)

From there, we consider separately the domains S1 = [0, x−] and S2 = [x+, 1].

• We first consider the sequence g′n,α : S1 → R. From (6.2), we see that for every

t ∈ S1, | g′n,α(t) |≤ K · n ·
(
t
α

)n−1
, where K is a constant. We need now to use the

following well-know result of asymptotic hierarchy.

lim
n→∞

nm · e−n·b = 0 for every m ∈ N, b > 0. (6.3)

Observe that (6.3) can also be retrieved by seeing that limy→∞ (ln(y)− α · y) = −∞
for every α > 0. We can now use (6.3) to see that g′n,α : S1 → R converge pointwise
to the 0-function. We’re now going to show that this sequence of functions admits
a uniform bound.

| g′n,α(t) | ≤ K · n ·
(x−
α

)n−1
since t ≤ x−.

≤ K · sup
n∈N

(n ·
(x−
α

)n−1
) <∞ since (6.3) and x− < α

Thus we have shown that the sequence g′α,n : S1 → R is a sequence of uniformly
bounded real-valued measurable functions that converges pointwise toward the 0
function. Consequently, we can apply the Bounded Convergence Theorem, and we
obtain that limn→∞

∫ x−
0 g′n,α(t)dt = 0.

92



6.3. TRIVIALIZATION IN T⊕.

• We now consider the sequence of functions g′n,α : S2 → R. We start from (6.2), and
we use the fact that since t ∈ [0, 1], ln(1 − tn) ≤ −tn. We moreover assume that
we take n ≥ N0, where N0 is the first natural number with ( 1

α)n − 1—it eventually
holds, since 0 < α < 1. We obtain that for every t ∈ S2:

|g′n,α(t)| ≤ 1

α2
·
(
t

α

)n−1

· n · e((
1
α)

n−1)·(−tn) (6.4)

≤ 1

α2
·
(
t

α

)n−1

· n · e−( tα)
n

· etn ≤ 1

α2
·
(

1

α

)n−1

· n · e−(
x+
α ) · e (6.5)

It is another classical result from the asymptotic hierarchy—that can be retrieved
from 6.3—that for every a, b > 1, it holds that:

lim
m→∞

am ·m · exp(−bm) = 0.

From this equation, we can deduce that:

lim
n→∞

1

α2
·
(

1

α

)n−1

· n · e−(
x+
α )

n

· e = 0 (6.6)

Now, please observe that combining (6.5) and (6.6) gives us both the pointwise limit
and the uniform bound (since gn,α(t) is bounded by a sequence that doesn’t depends
on t, and has a finite limit when n goes towards infinity). So we can apply the
bounded convergence theorem, and we obtain that limn→∞

∫ 1
x+
g′n,α(t)dt = 0, and

this concludes the proof of Lemma 6.2.2.

�

Lemma 6.2.3 Let n ∈ N, and α ∈ (0, 1). Then for every x ∈ (0, 1) \ {α} it holds that
limn→∞ fn,α(x) = Tα(x).

Proof. By combining Equation (6.1) and Lemma 6.2.2, we obtain that:

lim
n→+∞

gn,α(x) =

{
1 if x < α

0 if x > α
(6.7)

Since gn,α(x) = fn,1−α(1− x), it concludes the proof. �

Lemma 6.2.3 means that for every α ∈ (0, 1), the family of Λ
‖
⊕ contexts (Cαn )n∈N is indeed

an approximation by contexts of Tα on [0, 1]\{α}—in the sense formally stated in Defini-
tion 6.1.5. As a consequence, we can now apply Lemma 6.1.1, and we obtain trivialization

of the observational distance on Λ
‖
⊕, as stated below.

Theorem 6.2.4 δctx
Λ
‖
⊕

trivializes.

6.3 Trivialization in T⊕.

We now consider the language T⊕, introduced by Breuvart, Dal Lago and Herrou [19], and
that we have presented in Section 1.3.2 of Chapter 1. Recall that this language is AST,
i.e. that for every term M , |JMK| = 1.
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6.3. TRIVIALIZATION IN T⊕.

Since T⊕ is a typed language, the relevant notion of observational distance is the one
we gave in Definition 3.1.4 from Chapter 3 for typed observable programming languages.
Recall that, following our formalism for a generic typed observable language, we need to fix
a set of observable types: we choose the natural number type N, and if M is a program of
type N, we take Obs(M) = JMK( 0 ), i.e. the probability that the outcome of the execution
of M will be 0. Observe that since this language is AST, we are forced to take a non
termination-based notion of observation.

(δctx
T⊕ )σ(M,N) = sup

C s.t. [·]:σ`C:N
|JC[M ]K( 0 )− JC[N ]K( 0 )|

In the following, our goal is to show trivialization of context distance on T⊕, as defined
above. To do so, we will use Lemma 6.1.2 based on a double-layered approximation of the
threshold tests Tα: the first step consists in building for every α ∈ (0, 1) a sequence of real
functions that converge pointwise to Tα, while in the second step we need to exhibit an
approximation by contexts for each of those functions. Our approach to the second step is
based on Bernstein’s constructive proof [13] of the Stone-Weierstrass theorem which states
that every continuous function [0, 1]→ R can be uniformly approximated by polynomials.
Bernstein’s proof consists in building, for any fixed continuous function f : [0, 1] → R,
a concrete sequence of polynomials that indeed uniformly converges towards f . More
precisely, our overall approach is as follows: we first construct contexts that are able to
simulate Bernstein’s polynomials for some class of functions f , and then we exhibit in this
class of functions a particular sequence fαn that approximates the Threshold test Tα.

6.3.1 Simulating Bernstein’s Polynomials.

Bernstein’s construction is as follows: the n-th Bernstein’s polynomial with respect to f is
defined as:

P fn (x) =
∑

0≤k≤n
f

(
k

n

)
·Bn

k (x), where Bn
k (x) =

(
n

k

)
· xk · (1− x)n−k. (6.8)

We illustrate on Figure 6.5 how Bernstein’s polynomials approximate a particular contin-
uous function f built as follows: it is zero before some real number α, 1 after some real
number β > α, and an affine function between α and β. Our goal is to show that the con-
texts in T⊕ are able to simulate the Bernstein’s Polynomials for some continuous functions
that globally looks like the f of Figure 6.5, i.e. that verifies the following specification: it
must be a partial test separating α and β, i.e. that returns 0 if x ≤ α, and 1 if x ≥ β.
Observe that this test is partial, in the sense where we do not specify what happens when
x ∈ (α, β).

In the following, even if our base data are natural numbers, we will consider them as
booleans, where 0 is the encoding of true, and any other n the encoding of false.

We are going to build now step by step the contexts that we will use to simulate
Bernstein’s polynomials. The first step consists in a context C such that for any pro-
gram M1, . . . ,Mn, C[M1, . . . ,Mn] has the following behavior: it counts the number of its
arguments that are equal to true, and then executes the corresponding Mi.

Definition 6.3.1 (Counting Contexts) For every n ∈ N, we define a T⊕ context C
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Figure 6.5: f and its approximations P fn for n ∈ {5, 20, 50}.

with n+ 1 holes, as follows:

C[[·]0, . . . , [·]n] = λx1.λx2. . . . λxn.

let i = &0≤i≤nxi in

if (i == 0) then [·]0
if (i == 1) then [·]1

...

if (i == n) then [·]n.

Remark that local variables definitions are not a primitive of T⊕. However, we used them
in Definition 6.3.1 as a notation for nested if-then-else procedure, to keep the definition
above readable. For instance, when n = 1, the real context C is as follows:

C[[·]0, [·]1] = λx1.λx2. if x0 then ( if x1 then [·]2 else [·]1)

else ( if x1 then [·]1 else [·]0).

An important point guaranteed in the unfolded context is that during an execution each
variable xi is evaluated exactly once.

Observe that for every type σ, it holds that

[·]1 : σ, . . . , [·]n : σ ` C[[·]0, . . . , [·]n] : N→ . . .→ N→ σ.

We formalize now the operational semantics of C.

Lemma 6.3.1 We fix σ a type in T⊕. Then for every n-uple M1, . . . ,Mn of programs of
type N, and every (n+ 1)-uple (N0, . . . , Nn) of programs of type σ, it holds that:

JC[M1, . . . ,Mn]N0, . . . , NnK =
∑

0≤j≤n
pj · JNjK,

where for every j, the coefficient pj ∈ [0, 1] is as follows:

pj =
∑

{k1,...,ki}⊆{1,...,n}

∏
j∈{k1,...,kn}

Obs(Mj)
∏

j∈{1,...,n}\{k1,...,kn}

(1−Obs(Mj)).
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6.3. TRIVIALIZATION IN T⊕.

Proof. Intuitively—and looking at C as given in the Definition 6.3.1—it is because the
probability that the local variable i is equal to j is exactly pj : indeed, it is the probability
that exactly j among the programs Mj are true, and that the remaining n − j are false.
Formally, we have to show the result by unfolding the if-then-else procedure, and then
doing the proof by induction on n. �

Actually, for our purpose, we will only ever fills the counting context C with n identical
copies of some program M . In this setting, we can give a more compact formulation of
Lemma 6.3.1, that highlight the link with Bernstein’s polynomials.

Lemma 6.3.2 For every M program of type N, and every (n + 1)-uple (N0, . . . , Nn) of
programs of same type σ, it holds that:

JC[M, . . . ,M ]N0, . . . , NnK =
∑

0≤j≤n
Bn
j (Obs(M)) · JNjK,

where Bn
j are the polynomials defined in (6.8)—as a building block for Bernstein’s polyno-

mials.

The next step is to look at theNj programs. First, since we want the program C[M, . . . ,M ][N0, . . . , Nn]
to be observable, it needs to be of N type, which means that the Nj themselves must be
all natural numbers. We now use Lemma 6.3.2 in order to compute the observable of the
program C[M, . . . ,M ][N0, . . . , N0].

Lemma 6.3.3 Let M be a program of type N, and (N0, . . . , Nn) of n+ 1 programs of type
N. Then:

Obs(C[M, . . . ,M ]N0, . . . , Nn) =
∑

0≤j≤n
Bn
j (Obs(M)) ·Obs(Nj),

Proof. It is a direct consequence of Lemma 6.3.2, and from the definition of observable
for T⊕. �

Looking now at Lemma 6.3.3 and at the shape of Bernstein’s polynomials in (6.8), we see
that the last step before being able to simulates —in the sense of Definition 6.1.3—Bern-
stein’s polynomials P fn , is to exhibit T⊕ programs Nj such that Obs(Nj) = f( jn). A

natural candidate is given by Nj = false ⊕f( j
n

) true. However, recall that this term is
only defined when f( jn) is a dyadic number—since the construction in Λ⊕ of a p-biased
probabilistic choice in Example 7.4.1 of Chapter 7 is valid only when p ∈ D. Observe that
it is not guaranteed for instance for the function f represented in Figure 6.5.

Proposition 6.3.4 Let f : [0, 1] → [0, 1] be a continuous function, such that f(Q) ⊆ D.

Then there exists a T⊕ context that simulates P fn .

We call reachable functions, and we denote by R the class of such continuous functions
[0, 1]→ [0, 1] such that f(Q) ⊆ D.

6.3.2 Approximating Tα with reachable functions

We can first remark that the existence of one function in this class can be established by
looking at Minkowski’s question mark function ?, which is a continuous function [0, 1]→
[0, 1] that sends Q into D. We don’t recall here the concrete definition of the question-
mark function, but the interested reader can find a detailed description of its definition
and properties for instance in [121].

Using this question mark function, we now define a sequence of reachable functions
that converge pointwise towards Tα on [0, 1] \ {α}.
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6.3. TRIVIALIZATION IN T⊕.

Definition 6.3.2 Let α ∈ (0, 1). Since Q is dense in R, there exists two sequences (an)n∈N
and (bn)n∈N of elements in Q such that for every n ∈ N, an < α < bn, and moreover
limn→∞ an = limn→∞ bn = α. We define the function rαn : [0, 1]→ [0, 1] as:

rαn(x) =


0 if x ≤ an
1 if x ≥ bn
?( x−anbn−an ) otherwise.

Observe that for every n ∈ N, the function rαn is a reachable function, and moreover
that the sequence rαn converges pointwise towards Tα. Using this result, and Proposi-
tion 6.3.4—which says that the Bernstein’s polynomials of any reachable functions can be
simulated by T⊕ contexts—we see that the requirements of Lemma 6.1.2 are met, and so
the observational distance trivializes on T⊕.

Theorem 6.3.5 The context distance δctxT⊕ trivializes.

Proof. We see that the requirements of Lemma 6.1.2 hold:

• for every t ∈ [0, 1] \ {α}, limn→∞ r
α
n(t) = Tα(t);

• for every n ∈ N, there exists—by Proposition 6.3.4 a family of contexts Cmn that
simulates the Bernstein’s polynomials of rn. From there, Bernstein’s theorem tells
us that the Bernstein’s polynomials of rn converge towards rn, and consequently
that the Cmn are a family of approximations for rn.

As a consequence, Lemma 6.1.2 tells us that the observational distance trivializes. �
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Chapter 7

Λ!
⊕: A λ-calculus with Explicit

Copying

As we have seen in Chapter 6, the behaviour of the context distance depends strongly on
the copying abilities of the language. For this reason, we will use in this thesis a variant of
probabilistic λ-calculus, that we call Linear Probabilistic λ-Calculus (Λ!

⊕), designed to give
us more control on the copying mechanisms: we are able to specify in Λ!

⊕ which function
arguments can be duplicated, and which one cannot. The present chapter is devoted to
the presentation of Λ!

⊕.

7.1 The Language Λ!
⊕.

7.1.1 Simpson Surface Calculus

In [114], Simpson introduced a deterministic λ-calculus called Surface Calculus, which we
denote Λ!. We give here a very short overview of this programming language, since we
designed Λ!

⊕ as a probabilistic extension of it. The language is based on a distinction in
the syntax between those subterms that can be copied, and those that cannot. To that
end, two λ-abstractions coexist in the syntax: a linear one λx.M , where we ask x to
be used exactly once in M , and a non-linear (or exponential) one λ!x.M , where x may
appear several times in M . In the syntax, there is also a box operator !: the term !M
represents the term M endowed with the ability to be duplicated infinitely often. To an
exponential λ-abstraction λ!x.M , we can only pass as argument a box !N . In [114], two
different ways of enforcing this linear/ non-linear policy are presented: the definition of
criterion on variables assuring that terms are well-formed, and a type system with !-types.

To fix ideas, we give here the syntax of Λ!:

M,N ::= x | MN | λx.M | λ!x.M | !M where x ∈ V.

It is endowed in [114] by an operational semantics. Since there are two different λ-
abstractions, there are also two different kinds of β-redexes:

(λx.M)N →β M{N/x}
(λ!x.M)!N →β M{N/x}

Observe that, as a consequence, only functions of the form λ!x.N can open a box, and
thus destroy it.
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Reduction in [114] is strong, i.e. it goes under the λ-abstractions, and surface, in the
sense where it doesn’t go inside a box !M . The idea is that boxes can be copied, but the
content of the box cannot be executed until the box is opened. It is shown in [114] that
this reduction is confluent, hence CBV and CBN evaluation strategies are equivalent.

Surface Calculus is an untyped language, but it is inspired by the explicitely typed
language Lily, introduced by Bierman, Pitts and Russo in [14]. We will inspire ourselves
loosely of Lily type system when we will design a type system for Λ!

⊕. The main difference
is that, since Lily has also a recursive operator in the syntax, the variant of system F
with !-types given as type system for Lily in [14] gives an expressive enough calculus,
in particular with infinite behaviour. For Λ!

⊕, we will need to incorporate also recursive
types.

7.1.2 The Language Λ!
⊕.

While there is no computationnal effects in Surface Calculus, managing copying through
boxes interacts well with probabilistic execution, since delaying the opening of the box
allows us also to delay the moment when we do the probabilistic choice. Here, we are
going to present Λ!

⊕ as a probabilistic extension of Λ!.

Syntax of Λ!
⊕.

The syntax of Λ!
⊕ is an extension of both Λ⊕ and Surface Calculus. Together with λ-

abstractions, applications and the operator ⊕ for fair probabilistic choice, we take the
same operators as in Surface Calculus to manage copying: the operator ! , which is the
constructor for boxes, and the exponential λ-abstraction λ!x.·, which is the destructor for
boxes—functions of the form λ!x.M accept only boxes as argument, and destroy the box
passed to them in the application process. Therefore, as in Surface Calculus, we have two
distinct λ-abstractions in the syntax. However, we modify here slightly the meaning of
λx.M : we do not want the variable x to appear in M exactly once anymore, but at most
once. It means that the resource x in M is now affine instead of being linear. We will
enforce this by a type system, that we will present in Section 7.2.

Definition 7.1.1 We assume a countable set of variables V. The set of terms of Λ!
⊕ is

defined by the following grammar:

M,N,L . . . ∈ Λ!
⊕ ::= x | MN | λx.M | λ!x.M | !M | M ⊕N

where x ∈ V.

As in Chapter 1, we call programs those terms in Λ!
⊕ that are closed, i.e have no free

variables.

Operationnal Semantics of Λ!
⊕.

We define now an operationnal semantics for Λ!
⊕ programs, following the approach pre-

sented in Section 1.2 for Λ⊕: we first define the one-step reduction relation between
programs and finite sequences of programs modelizing one execution step, then we use
it to associate to a program M a family of distribution over programs–the approxima-
tion semantics of M—and finally we take the semantics of M as the supremum of its
approximation semantics.

As in [114], the reduction in Λ!
⊕ is going to be surface—we do not reduce inside boxes.

However it is also going to be weak—we don’t reduce under λ-abstractions either, in order
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to be in line with the presentation of Λ⊕ in [33], as well as with the work on coinductively
defined equivalences for Λ⊕ done in [32]. Unfortunately, this choice of weak reduction stop
us to have confluence, therefore we have to choose a non-ambiguous evaluation strategy.
We choose the call-by-value paradigm: this semmingly arbitrary choice is justified by the
fact that, as we will show later, we can embedd both CBN Λ⊕ and CBV Λ⊕ in Λ!

⊕ endowed
with our CBV semantics.

The One-Step Reduction Relation for Λ!
⊕.

The one-step reduction we take now depends on the evaluation strategy we want: actually,
as highlighted in Chapter 1 for a generic probabilistic calculus, the one-step reduction
completely determines the language operational semantics. We are going to define it using
the reduction semantics approach based on evaluation contexts, that we have presented in
Chapter 1 for the probabilistic λ-calculus Λ⊕. Since we are in a call-by-value framework,
the first step consists of defining the set of values—programs, that we want to be non-
reducible under our reduction strategy. Since we want our reduction to be weak and
surfaces, they are λ-abstraction, and boxes.

Definition 7.1.2 We define the set VΛ!
⊕

of Λ!
⊕ values as follows:

V ∈ VΛ!
⊕

::= λx.M | λ!x.M | !M.

We need now to define what our redexes are, and to give rules specifying how to reduce
them. We have three different kinds of redexes: the β-reduction of linear abstraction, the
β-reduction of a !-abstraction and the fair probabilistic choice.

Definition 7.1.3 We define the sets of Λ!
⊕-redexes RΛ!

⊕
as follows:

R,S ∈ RΛ!
⊕

::= (λx.M)V | (λ!x.M)!N | M ⊕N,

where M,N,L ∈ Λ!, V ∈ VΛ!
⊕

and x, y ∈ V. We define the reduction →R
Λ!
⊕

for redexes,

as a relation between elements in RΛ!
⊕

and sequences of programs in Λ!
⊕:

(λx.M)V →R
Λ!
⊕
M{V/x} M ⊕N →R

Λ!
⊕
M,N

(λ!x.M)!N →R
Λ!
⊕
M{N/x}.

Observe that the two first rules are the same as for Λ⊕ in call-by-value, while the third
one is the same as the opening of a box in Surface Calculus.

Following the reduction semantics approach, we need now to define the evaluations
contexts: it specifies where in a term we are allowed to reduce redexes. As in Λ⊕, the
execution of a program is done left-first, i.e. a function is evaluated before its argument.
Since we are in call-by-value, the argument has to be evaluated too before reducing the
redex. We sum up these considerations by giving the following grammar for evaluation
contexts:

E ,F ::= [·] | EM | V E with M ∈ Λ!, V ∈ VΛ! .
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Approximate Semantics for Λ!
⊕.

We then define the approximate operationnal semantics M ⇒ D by applying Defini-
tion 1.2.4 of Chapter 1, which has been given for a generic probabilistic language endowed
by a reduction semantics. For any program M , it gives us a family of approximation se-
mantics. We would like now be able to say that this family has a supremum. Recall that
Lemma 1.2.1 of Chapter 1 tells us that it is the case, provided that the one step reduction
relation is unambiguous.

Lemma 7.1.1 The relation → induced by redexes, redexes rules and evaluation contexts
is unambiguous.

Proof. It is enough to see that for every M , there exists at most one E , and R, such that
M = E [R]. �

As a consequence, we see using Lemma 1.2.1 that sup{D | M ⇒ D} is a directed set.
Following Definition 1.2.6, we define for any closed term M :

JMK = sup{D |M ⇒ D}.

Example 7.1.1 We adapt the non-terminating term given in Example 1.1.1 to our ex-
plicit copying setting: we need to replace the λ-abstractions by exponential λ-abstractions,
since the variables are used several times. Hence, we define:

Ω = (λ!x.x(!x))(!λ!x.x(!x)).

We look now at the operational semantics of Ω:

Ω→β Ω

As a consequence, we see that the only approximate denotational semantics for Ω is given
by the (Empty) rule of Definition 1.2.4: Ω⇒ ∅: it means that JΩK = ∅.

We will see later that Ω can be typed in the type system for Λ! that we will give in
Section 7.2.

Recall that we have also defined a recursion operator Y in Example 1.1.4, which has a
shape similar as Ω. We are going to do here the same thing as we have done for Ω: modify
it in order to obtain a program in Λ! respecting our policy on affine/exponential variables.

Example 7.1.2 We are going to present here a variant of Y fixpoint combinator for call-
by-name Λ, which we adapted to our affine/exponential policy, as well as to our evaluation
strategy. We define Y ! the fixpoint combinator in Λ!

⊕ as:

Y ! = λ!x. ((λ!y.x!(y(!y)))! (λ!y.x!(y(!y)))) .

We are now going to highlight how we can see Y ! as a fixpoint operator. Observe that we
have to pass as argument to Y ! a term in a box: it corresponds to the fact that the variable
x is used twice. Let be M in Λ!

⊕. We define

L = (λ!y.M !(y(!y)))! (λ!y.M !(y(!y))) .

Then we can see that Y !(!M) → L and moreover when we do one step of execution from
L, we obtain the function M applied to L: indeed it holds that L→M !L.
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7.2 Type System for Λ!
⊕.

As explained before, when we write a program of the form λx.M , the variable x is meant
to be affine i.e. it has to be used at most once in M . However, we are able to write terms
in Λ!

⊕ that do not respect this rule. To leave such terms out, we introduce now a type
system to enforce our affine/exponential policy on variables. Besides, this type system
will also allow us to avoid deadlocks, i.e. terms that are not values, but are not reductible
by the reduction · → · either: for instance terms as (λ!x.x)λx.x, where the left-hand side
wait for a term in a box, but is given a λ-abstraction.

Observe that we do not want our type system to be too restrictive: we want to enforce
our policies on the use of resources and the absence of deadlocks, but we also want to
be still able to encode Λ⊕. To do that, we use first-order recursive types.To sum up,
our approach consists in combining in our type system tools to manage resources (using
affine and exponentials variables, as well as a ! operator on types to denote the ability
to be copied infinitely often), and tools to increase expressiveness (recursive types), thus
enabling us to encode Λ⊕. We first give a presentation of generic first-order recursive
types for λ-calculi, following [17]. We give it a brief and presentation of it, see [9] for a
more complete account.

7.2.1 Types for Λ!
⊕

Our Λ!
⊕-type system is à la Curry—we don’t add typing anotations to the syntax, but

instead define typing judgments for terms without typing annotations. We have a func-
tionnal type constructor→, a pair type constructor ×, a constructor ! to denote the ability
to be copied, and the fixpoint type operator µα.σ.

The fixpoint type operator µ should be seen as a finite notation for a solution of a
recursive type equation. For instance, the type σ = µα.α→ α represents a solution to the
recursive type equation: A = A→ A.

Definition 7.2.1 (Types for Λ!
⊕) We consider here a fixed countable set of type vari-

ables V T . The set AΛ!
⊕

of types for Λ!
⊕ is defined by the following grammar:

σ, τ . . . ∈ AΛ!
⊕

::=α | σ → τ | !σ | µα.σ
with α, β ∈ V T

The least fixpoint operator µα.σ bound the variable α in σ. From now on, we consider
types up to α-congruence on the bound type variables.

We have to formalize in which sense a type µα.σ can be seen as a solution of an
associated recursive type equation. We follow here [7], and do this by interpreting every
type σ in AΛ! with its (possibly) infinite unfolding of every recursive equation in it: thus
we obtain a (possibly) infinite tree T (σ). We denote by Tree the set of all regular—i.e
with a finite set of subtrees—trees whose leaves are in V T ∪ {⊥}, and whose nodes are
the non-recursive operators of the language, i.e O = {!,→,×, ∀α}.

Definition 7.2.2 Let be σ ∈ AΛ!. We define co-inductively T (σ) ∈ Tree as follows:

• T (α) = α;

• T (σ → τ) = Node(→, T (σ), T (τ));

• T (!σ) = Node(!, T (σ));
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• T (µα.σ) =

{
⊥ if σ = µβ1 . . . µβn · α
T (σ{µα.σ/α}) otherwise.

.

We consider the set Tree up to α-equivalence. We illustrate below how first-order recursive
typescan be used for encoding infinite data types. For the purpose of this example, we add
a product type × to our type constructors. Observe however that our language Λ!

⊕ has no
constructors for pairs, and accordingly our type system for Λ!

⊕ has no product operator.

Example 7.2.1 Let be α ∈ V T , and σ such that α doesn’t occur freely in σ. We consider
the type:

InfiniteListσ = µα.(σ × α).

Observe that this type is indeed designed to model infinite lists of elements of type σ, since
every element of type InfiniteListσ is the given of an element of type σ—the head element
—and another element of type InfiniteListσ —the tail. We see that T (InfiniteListσ) is the
following infinite tree:

×

σ ×

σ ×

σ ...

Observe that two different Λ!
⊕ types can be the finite representation of the same infinite

tree. For instance, the type µα.(σ× (σ×α)) has the same associated tree as InfiniteListσ.
It is an intrinsic feature of recursive types, since the same type can be a solution of several
different recursive equations. Since we are actually interested in the tree itself, and not its
finite representation, we will consider Λ!

⊕ types modulo equality of their associated tree,
following [7].

Definition 7.2.3 =A is the equivalence relation on AΛ!
⊕

defined as: σ =A τ if T (σ) =

T (τ).

With this definition, we can now formalize our earlier idea of recursive equations: if
we consider the type InfiniteListσ of Example 7.2.1, we see that it indeed holds that:
InfiniteListσ =A σ× InfiniteListσ. In the following, we will always consider implicitly the
types up to this equality relation.

Lemma 7.2.1 The equality relation on types =A verify the rules given in Figure 7.1.

7.2.2 Typing System for Λ!
⊕

Now that we have defined a set of types AΛ!
⊕

, we are going to specify the typing rules.

The typing rules we are going to give here are inspired of the one for Lily (see [14]). We
want to establish typing judgments, that guarantee that a term M of Λ!

⊕ is well-typed
under some typing environment Γ: this typing environment specify the type of the free
variable in M . More precisely, a typing judgment will be of the form Γ `M : σ: it means
that when the free variables of M are replaced by terms having the type specified by the
typing environment Γ, then the resulting term is of type σ.

Recall that in a term M of Λ!
⊕, free variables may have two different meanings: they

may be meant to be affine, and in this case they must appear at most once in M , or they
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Fold-Unfold
µα.A =A A[α→ µα.A]

B =A A µ-compat
µα.A =A µα.B

Ai =A Bi for 1 ≤ i ≤ n op ∈ O = {→,×, !,∀α.}
op(A1, . . . ,An) =A op(B1, . . . ,Bn)

σ =A A[α→ σ] τ =A A[α→ τ ] A contractive in α
Contract

σ =A τ

where σ[α→ τ ] is the type obtained by substituting all free occurrences of α by τ in σ;
A is contractive in α when every free occurence of α arrive under an operator in O.

Figure 7.1: Rules verified by =A Relation

may be meant to be exponential, and then they may appear several times. Accordingly,
there will be two kind of elements in our typing environment: affine pairs of the form
(x, σ) which specify that x is an affine free variable of type σ, and exponential pairs of the
form (!x, !σ), that specify that x is an exponential free variable of type σ.

Definition 7.2.4 An environment is a set of expressions in the form x : σ or !x :!σ,
where x ∈ V and σ ∈ AΛ!

⊕
, and in which any variable x occurs at most once.

To make notations more readable, we will indicate the exponential part with metavari-
ables like !Γ, which stands for an environment with only exponential pairs (!x, !σ), and the
affine part by metavariables like ∆ standing for an environment where all the elements are
affine.

Definition 7.2.5 We say that a typing judgment !Γ,∆ ` M : σ is valid it it can be
derived from the rules given in Figure 7.2.

!-V
!Γ, !x :!σ,∆ ` x : σ

V
!Γ,∆, x : σ ` x : σ

!Γ, x : σ,∆ `M : τ
Abstr

!Γ,∆ ` λx.M : σ → τ

!x :!σ, !Γ,∆ `M : τ
!-Abstr

!Γ,∆ ` λ!x.M :!σ → τ

!Γ,∆ `M : σ → τ !Γ,Θ ` N : σ
App

!Γ,∆,Θ `MN : τ

!Γ `M : σ
Box

!Γ `!M :!σ

!Γ,∆ `M : σ !Γ,∆ ` N : σ
Choice

!Γ,∆ `M ⊕N : σ

Figure 7.2: Typing Rules

We give now some explanations on the typing rules given in Figure 7.2. First, observe
that the (Var) and (!-Var) rules imply the ability to weaken variables, in the sense that
non-used variables (both affine or exponential) can be discarded.
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Then, we can see that we have two rules (Abstr) and (!-Abstr), respectively, for the
affine and exponential abstractions. It us an adaption to our affine/ exponential framework
of the standard abstraction rule in typed lambda-calculus.

Let us now look at the application rule (App). We see a difference in the treatment of
the affine typing context and the one of the exponential typing context: when exponential
variables can be used to type both M and N , we have to choose for every affine variable
whether it is going to be used to type M or to type N . This specifies that exponential
variables can be duplicated, while affine variables cannot.

The rule (Box) allow to type terms of the shape !M . It says that if we are able to type
M with the type σ using a typing context with only duplicable variables, then we can put
M in an exponential box, and we obtain a term of type !σ. The idea is that, since all the
free variables of M may be duplicated, we are also able to duplicate M .

The rule (Choice) for probabilistic choice says that we can only do a probabilistic
choice between two programs of the same type. Crucially, an affine variable x can be used
to type both components of a probabilistic choice: it is because it is not a duplication,
but simply the consequence of the fact that x can be used in every probabilistic execution
path.

Definition 7.2.6 We say that M ∈ Λ!
⊕ is a program of type σ, if (`M : σ ) is a valid

typing judgment. We denote by Pσ the set of programs of type σ. We denote by V σ the
set of programs of type σ which are also values.

We are now going show that there exist valid typing judgments for the terms of Λ!
⊕

we gave as examples in the previous section.

Example 7.2.2 (Type for Ω) We are going to show here that for every type σ ∈ AΛ!
⊕

,

it holds that (` Ω : ∀α.α) is a valid typing judgment.

Ω = (λ!x.x(!x))(!λ!x.x(!x)).

In the proof tree, we will use the type τ = µα.!α→ σ. The relevance of τ comes from
the fact that looking at the fold-unfold equation in Figure 7.1, we can see that τ =A !τ → σ.

τ =A !τ → σ
!-V

!x :!τ ` x :!τ → σ

!-V
!x :!τ ` x : τ

Box
!x :!τ `!x :!τ

Appl
!x :!τ ` x(!x) : σ

!-Abstr
` λ!x.x(!x) :!τ → σ

...

` λ!x.x(!x) : τ =A !τ → σ
Box

`!(λ!x.x(!x)) :!τ
App

` (λ!x.x(!x))(!λ!x.x(!x)) : σ

where we take τ ::= (µα.!α→ σ).

Observe that, on the right, it remains to be shown that ` λ!x.x(!x) :!τ → σ. However, we
see that it is sufficient to use again the same derivation tree as in the left part.

Recall that we have also defined a recursion operator Y for Λ!
⊕ in Example 7.1.2. We

are now going to see that we can adapt the proof of typability of Ω to Y .

Example 7.2.3 (Type for the fixpoint combinator Y .) Recall the fixpoint combina-
tor Y that we have defined in Example 7.1.2:

Y = λ!x. ((λ!y.x!(y(!y)))! (λ!y.x!(y(!y)))) .
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We are also able to type Y in our type system. Indeed, it holds that for every type σ ∈ AΛ!
⊕

:

` Y : !(!σ → σ)→ σ.
In the proof, we use the same auxilliary type τ = µα.!α → σ as in Example 7.2.2:

recall that it verifies τ =A !τ → σ. We also use the fact that we have shown in the proof of
Example 7.2.2 that !y :!τ ` y!y : σ (it is the premise of a sub-derivation in the proof tree
presented in Example 7.2.2).

!-V
!x :!(!σ → σ), !y :!τ ` x :!σ → σ

(see Example 7.2.2)

!y :!τ ` y!y : σ
Box

!y :!τ `!(y!y) :!σ
App

!x :!(!σ → σ), !y :!τ ` x!(y(!y)) : σ
!-Abstr

!x :!(!σ → σ) ` Lx :!τ → σ

...

!x :!(!σ → σ) ` Lx : τ =A !τ → σ
Box

!x :!(!σ → σ) `!Lx :!τ
App

!x :!(!σ → σ) ` Lx!Lx : σ
!-Abstr ` λ!x.Lx!Lx :!(!σ → σ)→ σ

∀ intro ` Y = λ!x.Lx!Lx : ∀σ.!(!σ → σ)→ σ

where we take τ ::= (µα.!α→ σ).

and Lx ::= (λ!y.x!(y(!y)))

Figure 7.3: Proof Tree of ` Y : !(!σ → σ)→ σ

Since we are able to type the fixpoint operator Y , we may now use it to express program
recursively defined.

In the following, it will be sometimes useful to type evaluation contexts too. We write
[·] : σ ` E to express the fact that, if we fill some evaluation context E by any program of
type σ, then we will obtain a well-typed program.

Notation 7.2.2 (Typing Judgment for Contexts) Let C be a context. We write [·] :
σ ` C : τ when x : σ ` E [x] : τ . When we don’t need to specify the result type, we will note
[·] : σ ` E, whenever there exists a type ι such that [·] : σ ` C : ι is a valid typing judgment.

7.2.3 Soundness of the Type System for Λ!
⊕.

We are now going to study which properties on programs are enforced by our type system.
We first want to ensure that no deadlock can occur when we execute a well-typed program.
To show that, we need the following two lemmas, that ensure that our type system is well
behaved. The first one is the probabilistic counterpart of the Subject Reduction property
for deterministic typed λ-calculi: it says that, whenever we do one execution step from a
program of type σ, every program we may obtain as a result is also of type σ.

Lemma 7.2.3 (Subject Reduction) Let be M a program such that `M : σ, and more-
over M → N1, . . . , Nn. Then for every i ∈ {1, . . . , n}, it holds that ` Ni : σ.

Proof. As in the deterministic case, the proof of Lemma 7.2.3 is based on an auxilliary
Substitution Lemma:

Lemma 7.2.4 Let be M a program such that `M : σ. Then:

• if x : σ ` N : τ , then it holds that ` N{M/x} : τ .

• if !x :!σ ` N : τ , then it holds that ` N{M/x} : τ .
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Proof. The substitution lemma is shown by induction on the structure of N . �

We conclude the proof of the Subject Reduction lemma by case distinction on redex rules.
�

We show now that our type system enjoys the Progress Property, that says that if
a well typed program cannot be reduced anymore, then it is a value, and not merely a
deadlocked term.

Lemma 7.2.5 (Progress) If M is a typable program which is a normal form for→, then
it is a value.

We are now able to use Subject Reduction and Progress to show that our Λ!
⊕ type

system is sound: if an execution path with a non-zero probability stops at a normal form,
then this normal form is a value of the same type as the original program. We can interpret
this property by saying that it guarantees that well-typed programs are well-behaved.

Proposition 7.2.6 (Soundness of the Type System.) Let be M a program of type σ.
Then for every term N in the support of JMK, it holds that N is a value of type σ.

Proof. Let be M a program of type σ. Recall that JMK = sup{D | M ⇒ D}. It means
that to show Propsition 7.2.6, it is sufficient to show that whenever M ⇒ D , S(D) ⊆ V σ.
The proof is done by induction on the derivation of M ⇒ D .

• If the derivation uses the (Empty) rule as last rule, it means that it is of the form:

M ⇒ ∅ = D
,

and since the support of the empty distribution is empty, the result holds.

• If the derivation uses the (NF) rule as last rule, it means that it is of the form:

V is a → normal form.
Val

M = V ⇒ {V 1} = D
.

It means that the only term in the support of D is M itself, and moreover it is
already in normal form. Using Lemma 7.2.5, we see that it implies that M is a
value.

• If the derivation use the (Step) rule as last rule, it is of the form:

M → N1, . . . , Nn (Ni ⇒ Ei)1≤i≤n
Step

M ⇒ D =
∑

1≤i≤n
1
n · Ei

.

First, we apply Lemma 7.2.3: it tells us that each one of the program N1, . . . , Nn

is of type σ. We can apply now the induction hypothesis on every one of the sub-
derivations Ni ⇒ Ei. As a consequence, we know already that S(Ei) ⊆ V σ for every
i ∈ {1, . . . , n}. Since D =

∑
1≤i≤n

1
n · Ei, it holds that S(D) =

⋃
1≤i≤n S(E )i. We

can see that it leads to the result.

�
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While our type system for Λ!
⊕ is sound and allows us to enforce our ressource policy

on variables, we should also note that type inference is undecidable.

Example 7.2.4 (Boolean in Λ!
⊕.) Recall the terms true = λx.λy.x, false = λx.λy.y,

and ITE = λx.λy.λz.xyz, that we presented in Example 9.2.1 to simulate the boolean
data type in Λ. For every type σ, we note Bσ := σ → σ → σ. Then for every type σ, we
have:

` true : Bσ ` false : Bσ ` ITE : (Bσ → σ → σ)

Since we have fixed a CBV strategy, it means in particular that when evaluating
ITE MNL both conditional branches N and L are executed. To obtain a more intu-

itive version of conditional, we use the term ITE to define the if-then-else procedure,
which is a Λ!

⊕ context with three holes, defined as:

if ([·]1) then [·]2 else [·]3 := ( ITE [·]1(λx.[·]2)(λx.[·]3))I

7.3 Embeddings from Λ⊕ into Λ!
⊕

We see now that Λ!
⊕ allows to encode the untyped probabilistic λ-calculus Λ⊕. To

make this connection more precise, we will define encodings [·]L⊕ : L⊕ → Λ!
⊕, for L⊕ ∈

{Λcbn
⊕ ,ΛCBV

⊕ }, and we will show that these encoddings preserve operational semantics.
Here, we present the embedding []cbn from Λ⊕ endowed with its CBN semantics as

presented in Chapter 1, into Λ!
⊕. To design it, we made use of the connexion between Λ!

⊕
and Linear Logic (LL). Linear Logic is a logic which talk about the use of ressources. Λ!

⊕
can be seen as a linear calculus, in the sens that the syntactic construct of the language
(apart from the probabilitic choice) correspond to the connector of the MELC (Multiplica-
tive Exponential Linear Logic) fragment of LL. In [51], Girard looked at standard ways
to translate the intuitionnistic logic into intuitionnistic linear logic. Using the connection
between logic and lambda-calculi, it gives equivalently a way to translate the simply typed
λ-calculus in the linear term calculus. Girard proposed actually two translations, which
were shown to correspond to a CBN and CBV evaluation strategy. Here, we are going
to adapt these translations to translations from the untyped probabilistic lambda-calculus
Λ⊕ into Λ!

⊕, that can be seen as a probabilistic linear language enhanced with recursive
types.

The Call-By-Name Embedding

We adapt here this translation to an embedding [·]cbn : Λ⊕ → Λ!
⊕.

Definition 7.3.1 We define σcbn = µα.!α→ α, and [·]cbn : Λ⊕ → Λ!
⊕ as:

[x]cbn = x [λx.M ]cbn = λ!x.[M ]cbn

[MN ]cbn = [M ]cbn![N ]cbn [M ⊕N ]cbn = [M ]cbn ⊕ [N ]cbn

Observe that the type σcbn is a solution to the recursive equation σcbn =!σcbn → σcbn.We
illustrate it by giving the representation of its infinite unfolding:

→

!

→

...
...

→

!

...

→

...
...
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Proposition 7.3.1 Let be M ∈ Λ⊕, with FV (M) ⊆ {x1, . . . , xn}. Then it holds that
!x1 :!σcbn, . . . , !xn :!σcbn ` [M ]cbn : σcbn.

A positive point about this embedding, that will be relevant in the following, is that
it is compositionnal, i.e. it preserves the structure of the term. We formalize this idea in
Lemma 7.3.2 below.

Lemma 7.3.2 • Let be M,N ∈ Λ⊕, and z ∈ V ars(). Then [M{N/z}]cbn = [M ]cbn{[N ]cbn/z};
• Let be M ∈ [Λ⊕]cbn, such that there exists an evaluation context E, and N ∈ Λ⊕,

verifying [M ]cbn = E [[N ]cbn]. There for any term L ∈ Λ⊕, it holds that E [[L]cbn] ∈
[Λ⊕]cbn.

The operational semantics of CBN Λ⊕ is preserved by the embedding in the following
sense:

Proposition 7.3.3 Let be M a closed term in Λ⊕. Then [JMK]cbn = J[M ]cbnK.

The Call-By-Value Embedding

Girard gives actually another translation from intutionnistic logic into ILL, that lead to a
CBV evaluation strategy.

Definition 7.3.2 We define σcbv = µα.!(α→ α), and [·]cbv : Λ⊕ → Λ!
⊕ as:

[x]cbv =!x [λx.M ]cbv =!λ!x.[M ]cbv

[MN ]cbv = (λ!x.x[N ]cbv)[M ]cbv [M ⊕N ]cbv = [M ]cbv ⊕ [N ]cbv

7.4 Λ≤1
⊕ : An affine λ-calculus

Here, we are going to define a λ-calculus which is affine, i.e. no variable can be duplicated.
This language is designed to model functions using their arguments at most once.

Observe that we could obtain such an affine higher-order language by looking at the
fragment of Λ!

⊕ obtained when removing the exponential constructs of the syntax of the
language, and similarly the exponential type operator ! of the syntax for types. However,
we instead opt for a presentation with affinity constraints, which is the one we used in the
joint work with Dal Lago in [29]. The Λ≤1

⊕ terms are generated by the following grammar:

M ::= x | λx.M | MM | M ⊕M | Ω,

where Ω models divergence—since we only consider affine terms, we cannot encode diver-
gence by the usual constructions of λ-calculus, and x ranges as usual over a countable set
V of variables. The valid terms of Λ≤1

⊕ are isolated by way of a formal system, whose
judgements are in the form Γ `M (where Γ is any finite set of variables) and whose rules
are the following (where Γ,∆ stands for the union of two disjoints contexts):

Γ, x ` x
Γ, x `M
Γ ` λx.M

Γ `M ∆ ` N
Γ,∆ `MN

Γ `M Γ ` N
Γ `M ⊕N Γ ` Ω

A program is a term such that ∅ ` M , and P
Λ≤1
⊕

is the set of all such terms. We

will call them closed terms. We say that a program is a value if it is of the form λx.M ,
and V

Λ≤1
⊕

is the set of all such programs. The semantics of the just defined calculus is

expressed as a binary relation ⇓ between programs and value subdistributions.
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Definition 7.4.1 The relation ⇓ is inductively defined by the following rules:

Ω ⇓ ∅
V ∈ V

V ⇓ {V 1}
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2D + 1

2E

M ⇓ D N ⇓ E
{L{V/x} ⇓ FL,V }λx.L∈S(D),V ∈S(E )

MN ⇓
∑

D(λx.L) · E (V ) ·FL,V

The divergent program Ω, as expected, evaluates to the empty value distribution ∅ which
assigns 0 to any value. Recall that the expression {V 1} stands for the Dirac’s value distri-
bution on V ; more generally the expression {V p1

1 , . . . , V pn
n } indicates the value distribution

assigning probability pi to each Vi (and 0 to any other value). For every program M , there
exists precisely one value distribution D such that M ⇓ D , that we note JMK. This holds
only because we restrict ourselves to affine terms. Moreover, JMK is always a finite distri-
bution. The rule for application expresses the fact that the semantics is call-by-value: the
argument is evaluated before being passed to the function. There is no special reason why
we adopt call-by-value here, and all we are going to say also holds for (weak) call-by-name
evaluation.

The way ⇓ is defined means that it is a big-step notion of semantics. In some cir-
cumstances, we need to have a more local view of how programs behave. We can define
small-step semantics, again as a relation ⇒ between programs and value distributions (it-
self defined on top of a relation→ between programs and program distributions capturing
a single evaluation step).

Λ≤1
⊕ , seen as a fragment of Λ!

⊕, is stable by the Λ!
⊕ reduction relation →. It means

that we can endow Λ≤1
⊕ with an operational semantics J K simply by taking the restriction

of the Λ!
⊕-operational semantics.

However, we can also give a simpler caracterisation of J K for Λ≤1
⊕ programs. Indeed,

enforcing affinity in terms leads to removind recursion. As a consequence, the set of
approximation semantics of a program in Λ≤1

⊕ becomes finite. Recall that the operational
semantics of a program is defined as the supremum of its approximation semantics: the
previous observation means that we can give a direct inductive caracterisation of the
Λ≤1
⊕ -operational semantics.

Proposition 7.4.1 The operational semantics in Λ≤1
⊕ can be caracterised by the following

inductive definition:

V is a → normal form.
NF

JV K = {V 1}
M → N1, . . . , Nn

Step
JMK =

∑
1≤i≤n

1
n · JNiK

Observe that the rules are the same as for defining approximation semantics (see Chapter 1
Definition 1.2.4), except that we removed the (Empty) rule.

Proof. What we have to show is that for every program M ∈ P≤1, there exists D such
that we can show M ⇒ D using the rules of Λ!

⊕ for the approximation semantics, but
without using the (Empty) rule.

The proof is based on the fact that we can define a function c : P≤1 → N, such that,
if M is a well-typed affine program, and M → N1, . . . , Nn, it holds that for every i ∈ N,
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c(M) > c(Ni). We define c(M) inductively on the structure of M , as follows:

c(x) = 0 c(λx.N) = c(N)

c(Ω) = 1 c(NL) = 1 + c(N) + c(L)

c(M ⊕N) = 1 + max{c(M), c(N)} c(〈M,N〉) = c(M) + c(N)

c(let 〈x, y〉 = M in L) = c(M) + c(N) + 1

The idea is that we take c(M) as the maximal number of redexes on every possible exe-
cution path. We first show the following auxilliary lemma:

Lemma 7.4.2 Let be M such that x1 : τ1, . . . , xm : τm ` M : σ is a valid affine typing
judgment, and a family of terms N such that ` Ni : τi. Then it holds that

c(M{N1/x1} . . . {Nm/xm}) ≤ c(M) +
∑

1≤i≤m
c(Ni)

Proof. The proof of Lemma 7.4.2 is done by induction on the structure of M . We do
explicitely here the application case: suppose that M = KL. Using the typing rules,
we see that we can split the typing context ∆ = x1 : τ1, . . . , xm : τm into two disjoints
typing contexts ∆1 = xi1 : τi1 , . . . , xik : σik , and ∆2 = xj1 : τj1 , . . . , xjl : τjl , such that
∆1 ` N : ι → σ, and ∆2 ` L : ι. Moreover, since ∆1 and ∆2 are disjoint, a free variable
xi of M is substituted either in K, or in L, but not in both. It means that we can write:

M{N1/x1} . . . {Nm/xm} = K ′L′

with K ′ = K{Ni1/xi1} . . . {Nik/xik}
and L′ = L{Nj1/xj1} . . . {Njl/xjl}

Using the definition of c, it tells us that

c(M{N1/x1} . . . {Nm/xm}) = 1 + c(K ′) + c(L′). (7.1)

We apply now the induction hypothesis to both K and L: we obtain that:

c(K ′) ≤ c(K) +
∑

p∈{i1,...,ik}

c(Np) (7.2)

and c(L′) ≤ c(L) +
∑

p∈{j1,...,jl}

c(Np) (7.3)

(7.4)

Since c(M) = c(K) + c(L) by the definition of c, we see that by combining (7.1), (7.2)
and (7.3), we obtain the result.

�

Using 7.4.2, we are now able to show that the function c strictly decrease at each step of
execution. Recall however that we still nonetheless have non-convergence in the calculus
Λ≤1
⊕ , but it is not modelled as a program with an execution that never stops as in Λ or

Λ⊕, but by the primitive program Ω whose reduction rule is Ω→ ∅.

Lemma 7.4.3 M is a well-typed affine program, and M → N1, . . . , Nn, it holds that for
every i ∈ N, c(Ni) ≤ c(M)− 1.
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Proof. The proof is by case distinction on the redex which is actually reduced by →. �

We can now end the proof of Proposition 7.4.1 using Lemma 7.4.3. Indeed, recall that we
have to show that there exists a finite proof derivation of M ⇒ D (seen as the operational
semantics of Λ!

⊕) which does not use the (Empty) rule. Suppose by contradiction that
this is not the case. Since we have a progress Lemma, the fact that there is no finite proof
derivation implies that there exists a family of programs (Mn)n∈N, such that M = M0,
and for every i ∈ N, it holds that Mi → N1, . . . Nk, where Mi+1 is one of the Nj . But then
we have build an infinite strictly decreasing sequence of natural numbers by considering
c(Mi), which does not exist. �

Observe that since we don’t have recursion anymore, the program Ω! is not in Λ≤1
⊕ .

However, we still have non-terminating programs: indeed the generic non-terminating
term Ω is still a constant in the syntax. It is actually our motivation for introducing Ω
in the syntax: we wanted to keep the possiblilty to express non-termination in the affine
fragment of Λ!

⊕: indeed recall that we take as our notion of observation on programs—for
defining context equivalence or context distance—the probability of non-termination (see
Chapters 2 and 3).

Corollary 7.4.1 For any Λ≤1
⊕ -program M , JMK is a sub-distribution with finite support.

Example 7.4.1 (Dyadic Choice.) Let D be the set of dyadic numbers (i.e. those ratio-
nal numbers in the form n

2m (with n,m ∈ N and n ≤ 2m). It is easy to derive, for every
ε ∈ D, a new binary operator on terms · ⊕ε · such that JM ⊕ε NK = (1 − ε)JMK + εJNK
for every closed M,N . It can be defined in Λ≤1

⊕ , e.g., as follows by induction on m:

M ⊕0 N = M

M ⊕1 N = N

M ⊕
n

2m N =

{
M ⊕ (M ⊕

n
2m−1 N) if n ≤ 2m−1

N ⊕ (M ⊕
n−2m−1

2m−1 N) if n > 2m−1

Definition 7.4.2 Contexts in Λ≤1
⊕ We call open Λ≤1

⊕ -contexts the terms C build using

the grammar of Λ≤1
⊕ , with V ars() as set of potential bounded variables, and [·] ∪ V ars()

as set of potential free variables, and such that there exists X ⊆ V ars() with X ∪ [·] ` C.
We call Λ≤1

⊕ -context the open Λ≤1
⊕ -context such that [·] ` C.

Lemma 7.4.4 We can caracterise the open Λ≤1
⊕ -contexts as the terms generated by the

following grammar:

C ::= [·] | MC | CM | λx.C | C ⊕ D | M,

and such that [·] ` C.
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Chapter 8

Applicative Trace Distances for
Higher-order Probabilistic Calculi.

In Chapter 4 and 5 we studied two extensions of Abramsky’s applicative bisimilarity in
the setting of higher-order probabilistic calculi, that were both introduced by Dal Lago,
Sangiorgi and Alberti [32]: trace equivalence—that was shown by the authors of [32] to
be fully abstract for CBN Λ⊕—and the probabilistic applicative bisimilarity—that we
have shown in Chapter 5 to be fully abstract for CBV Λ⊕. We now want to extend
this line of reasoning to the quantitative case, i.e. to build distances on programs that
are easier to handle than the observational distance, while still allowing us to gather as
much useful information as possible about the observational distance. In the first part
of the present Chapter, we revisit the properties for equivalence relations on programs
that we presented in Chapters 4 and 5 —i.e. observational correctness, compositionality,
and soundness—by adapting them to distances, in the setting of a generic observable
probabilistic programming language. In the second part of the present chapter, our goal
thus becomes to extend trace equivalence into a quantitative notion, thus defining sound
trace distances on probabilistic higher-order programs. In the next chapter, we will do
the same for probabilistic applicative bisimilarity, thus obtaining applicative bisimilarity
distances.

When introducing trace equivalence for CBN Λ⊕, Dal Lago, Sangiorgi and Alberti
used a presentation based on applicative contexts. Recall that in Chapter 4, we give also
an alternative presentation using WLTSs, that are deterministic Labeled Transition Sys-
tems with weight. With this viewpoint, defining a trace equivalence for some higher-order
probabilistic language means giving a WLTS that expresses interactively the operational
semantics of this language, and then to use bisimilarity on this WLTS to build an equiv-
alence on programs.

Our approach towards a quantitative extension of trace equivalence is as follows: we
first adapt the notion of WLTS-bisimilarity into a quantitative notion of bisimilarity dis-
tance for WLTSs, and then as in the equivalence case, we build a distance on the set
of programs of a particular language by using the bisimilarity distance of its associated
WLTS. Observe however that while this approach can a priori be used for any higher-order
probabilistic programming language, there is no guarantee that the resulting equivalences
and distances on programs will be sound with respect to the observational equivalence
and the observational distance of the language respectively. To illustrate this point, let
us recall what happens for the language Λ⊕: while the WLTS L (Λ⊕

cbn)—the applicative
WLTS for CBN Λ⊕ that we defined in Definition 4.2.4 in Chapter 4 —leads to a sound
trace equivalence, that is not the case anymore if we use a similarly built WLTS for CBV
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Λ⊕, as we mentioned in Section 5.3 in Chapter 5.
Actually, the situation becomes worse in the quantitative case, since—as we will show

in this Chapter—the trace distance on CBN Λ⊕ induced by L (Λ⊕
cbn) is not sound. As we

will highlight, this gap between the 2-valued case and the quantitative case comes actually
from the copying phenomenon. For this reason, we will first consider the affine language
Λ≤1
⊕ , in which no copying can occur: we will adapt to this language the applicative WLTS

used for CBN Λ⊕, and show that this WLTS indeed leads to a sound—and even fully
abstract—distance for Λ≤1

⊕ programs. The last part of this Chapter deals then with the
copying phenomenon: we look at the language Λ!

⊕ with ! explicit that we presented in
Chapter 7: the presence of this additional syntactic structure allows us to design a WLTS
specifically to get around of the copying problem. We then show that the distance for
Λ!
⊕-programs obtained with this WLTS is sound—and even fully abstract.

The work we present here was published jointly with Ugo Dal Lago in [29, 26], and
our presentation here follows closely the structure of these papers.

8.1 Well-behaved Distances for Higher-Order Languages

We have defined in Chapter 3 the observational distance for a generic observable proba-
bilistic programming language—that is any language equipped with a notion of observation
and a notion of contexts as formalized in Definition 2.3.1 for untyped languages, and in
Definition 2.3.2 for typed languages. In this section, we want to look at a larger class of
distances for such generic observable programming language, and at how we can describe
their behavior with respect to the observational distance.

The distances that we are going to consider are—contrary to the observational dis-
tance—defined on the set of programs, instead of all terms of the language; recall that it
is also the case of the coinductively defined equivalences that we have built in Chapter 4
and 5. In the same way that we used open extension to go from a relation on programs to
a relation on all terms in the equivalence case, we will also be able to go from a distance
on programs to a distance on all terms, as we will illustrate in the next chapter. We
ask our distances to be essentially pseudo-metrics—see Definition 3.1.3 of Chapter 3—on
programs, but when we work with a programming language which is typed, we need to
take also into account the fact that we can compare only programs that have the same
type. Summing up, we formalize below in Definition 8.1.1 the class of distances for any
observable probabilistic programming language.

Definition 8.1.1 Let L⊕ be an observable programming language. A distance on pro-
grams is:

• if L⊕ is untyped, a pseudo-metric µ : P×P→ [0, 1], where P is the set of programs
of L⊕;

• if L⊕ is typed, a family of pseudo-metrics indexed by the types: (µσ)σ∈AL⊕
with

µσ : Pσ × Pσ → [0, 1], where AL⊕ is the set of L⊕-types, and for every σ ∈ AL⊕,
Pσ is the set of all programs of type σ.

As we have explained in Chapter 4, the primary requirement enforced in the literature
on an equivalence relation R on programs is soundness with respect to observational
equivalence, i.e. that M ≡ctx

L⊕ N whenever (M,N) ∈ R. We give here the quantitative
counterpart of this requirement: we ask to a distance µ to move apart programs at least
as much as the observational distance does, in the sense formalized in Definition 8.1.2
below.
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Definition 8.1.2 Let L⊕ be an observable programming language, and µ a distance on
programs. We say that µ is sound with respect to the observational distance when the
following conditions hold:

• if L⊕ is an untyped language, we ask that for every programs M and N , δctx(M,N) ≤
µ(M,N).

• if L⊕ is a typed language, we ask that for every σ ∈ A , M,N ∈ Pσ, δctxσ (M,N) ≤
µσ(M,N).

Observe that this soundness requirement on distances is a generalization of soundness
for equivalence relations, in the sense that whenever a pseudo-metric is sound w.r.t ob-
servational distance, then its kernel is sound w.r.t. observational equivalence. Proving
soundness of an equivalence relation on programs for some higher-order language usually
consists in proving both observational correctness and compositionality; this approach
was for instance followed [32] for trace equivalence and applicative probabilistic bisimi-
larity for CBN Λ⊕, and we also illustrated it here when proving soundness of applicative
probabilistic bisimilarity for CBV Λ⊕ in Chapter 5. We first look at how to generalize
observational correctness to the quantitative case. Recall that an equivalence relation R
is observationally correct when:

M RN ⇒ Obs(M) = Obs(N).

It means that whenever M and N are equivalent with respect to R, the dummy context
[·] that simply executes its argument should not be able to distinguish between M and N .
Similarly, we say that a distance µ is observationally correct when it is at least as informed
as this dummy context, in the sense that it should separate programs at least as much.

Definition 8.1.3 Let L⊕ be an observable programming language, and µ a distance on
programs. We say that µ is an observationally correct distance if the following conditions
hold:

• if L⊕ is an untyped language, we ask that for all programs M,N ∈ P, µ(M,N) ≥
|Obs(M)−Obs(N)|;

• if L⊕ is a typed language, we ask that for every observable type σ ∈ Aobs, and every
programs M,N ∈ Pσ: µσ(M,N) ≥ |Obsσ(M)−Obsσ(N)|., where Aobs is the set of
observable types of L⊕.

Observe that observational correctness is weaker than soundness, since being sound means
to be at least as informed as all possible contexts. As developed in Chapter 5—see
Proposition 5.1.2—if a relation is an observationally correct equivalence, then we know it
is sound with respect to observational equivalence as soon as it is also compositional, i.e. :

M RN ∧ C a context ⇒ (C[M ])R (C[N ]).

We now want to generalize compositionality to the quantitative case. We choose here to
ask for the distance µ to be non-expansive, i.e. that an environment cannot increase the
µ-distance between two programs by filling them into some context. It is the notion which
is used for instance by Reed and Pierce [97] to do compositional reasoning for differential
privacy, as well as by Azevedo et al [6] when developing denotational semantics that are
distance-based. We formalize in our setting this non-expansiveness requirement below.
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Definition 8.1.4 Let L⊕ be an observable programming language, and µ a distance on
programs. We say that µ is non-expansive, when:

• if L⊕ is an untyped language, we ask that for every programs M,N ∈ P, and every
context C, it holds that µ(C[M ], C[N ]) ≤ µ(M,N);

• if L⊕ is a typed language, we ask that for every σ, τ ∈ A , every programs M,N ∈ Pσ,
and every context C ∈ C(∅,σ)→τ , it holds that µτ (C[M ], C[N ]) ≤ µσ(M,N).

It can be interesting to note that non-expansiveness is not the only quantitative generaliza-
tion of compositionality considered in the literature. Gebler and Tini [49], for instance, ask
in their work on distances on a first-order probabilistic language for uniform continuity, i.e.
that if we fix a context C, and an objective ε ∈ [0, 1], to be sure that C[M ] and C[N ] are not
farther away than our objective ε, it is enough to know that M and N are closer than some
quantity δ. Formally, it means that for every small ε ∈ (0, 1], and for every context C, there
exists a δ ∈ [0, 1], such that for all programs M , N µ(M,N) ≤ δ ⇒ µ(C[M ], C[N ]) ≤ ε.
Observe that our non-expansiveness requirement is stronger than uniform continuity.

In Proposition 5.1.2 of Chapter 5, we showed that when an equivalence relation on
program is both observationally correct and compositional, then it is sound with respect
to the observational equivalence. We prove now in Proposition 8.1.1 below that the quan-
titative counterpart is also true, i.e. as soon as we have established both observational
correctness and non-expansiveness for some distance µ on programs, we obtain that µ
is sound with respect to the observational distance. Observe that the non-expansiveness
requirement is also interesting on its own, since it allows us to reason by compositionality
when computing the distance between two programs.

Proposition 8.1.1 Let L⊕ be an observable programming language, and µ a distance on
programs. If µ is both observationally correct and non-expansive, then it is sound with
respect to the observational distance.

Proof. We show Proposition 8.1.1 in the case where L⊕ is an untyped language, but
the reasoning is similar in the typed case. Let µ be a distance on programs, that is
both observationally correct and non-expansive. Let M,N be two programs. Recall the
definition of observational distance:

δctx(M,N) = sup
C a context

|Obs(C[M ])−Obs(C[N ])|.

It means that it is enough to show that for every context C, |Obs(C[M ]) − Obs(C[N ])| ≤
µ(M,N). Since µ is observationally correct, we see that |Obs(C[M ]) − Obs(C[N ])| ≤
µ(C[M ], C[N ]), and since µ is non-expansive, µ(C[M ], C[N ]) ≤ µ(M,N). By combining
these two inequalities, we can conclude the proof. �

8.2 Bisimilarity Distance for WLTSs

Recall that our presentation of sound equivalences for Λ⊕ in Chapter 4 and Chapter 5
relied on built-in notions of equivalence on various classes of quantitative transition sys-
tems. As highlighted there, WLTSs—Weighted Labeled Transition Systems, that we have
introduced in Section 4.2.1 of Chapter 4—is the class of transition systems that allows
to express trace equivalences for probabilistic higher-order languages. In this section, we
focus on WLTSs, and we see that bisimilarity on WLTS can be generalized in a natu-
ral way into bisimilarity distance. Recall that we have gave two equivalent definitions of
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bisimilarity for WLTSs: the first one is inherently coinductive, while the other one char-
acterizes bisimilarity inductively by using linear tests. We follow a similar path here: we
first give a coinductive definition of bisimilarity distance, and then we show that we can
also characterize it by linear tests.

8.2.1 A Coinductive Definition of Bisimilarity Distance for WLTSs.

We look here for a quantitative generalization of the coinductive definition of WLTS-
bisimilarity as the largest WLTS-bisimulation—see Definition 4.2.5 of Chapter 4. Observe
that a necessary condition for two states s and t to be bisimilar is that w(s) and w(t) must
be equal. When dealing with distances, however, we want to be able to express the fact
that two states —that can possibly have distinct images by w(·)—are not farther away
than some small quantity ε. This idea leads us to a relaxed notion of bisimulation: for
each ε ∈ [0, 1], we define below the ε-bisimulation requirement, designed to guarantee that
whenever two states s, t are related, their w-valuation will never be farther away than ε
no matter the evolution of the system.

Definition 8.2.1 Let L w = (w, (S,L,→)) be a WLTS. Let R be a binary relation on S,
and ε ∈ [0, 1]. We say that R is a ε-bisimulation whenever the following two conditions
hold:

1. R is a bisimulation on the LTS L = (S,L,→);

2. if sR t, then |w(s)− w(t)| ≤ ε.

When only the condition (2) holds, we will say that the relation R is ε-bounded. For
every ε ∈ [0, 1], there exists a largest ε-bisimulation, that we indicate as RεL w, and call
ε-bisimilarity on L w.

Observe that a 0-bisimulation is simply a WLTS-bisimulation, so the 0-bisimilarity R0
L w

coincides with the bisimilarity on L w: in that sense our relaxed notion of ε-bisimilarity is
indeed a quantitative extension of bisimilarity. If we now look at the 1-bisimilarity, we see
that since the image of w is contained in [0, 1], R1

L w is the bisimilarity on the underlying
LTS L .In particular, it is an equivalence relation: we say that two states are comparable
when they are in the same equivalence class for R1

L w , and we denote by E (L w) the set of
equivalence classes for R1

L w . We will often in the following ask binary relations on states
to be clustered, i.e. to respect the equivalence class of R1. We formalize this notion in
Definition 8.2.2 below.

Definition 8.2.2 Let L w be a WLTS. We say that a relation R is clustered if sR t
implies that there exists E ∈ E (L ), such that both s ∈ E and t ∈ E.

When R is a clustered relation, we use the following notation: for every E ∈ E (L w),
we will denote sRE t to mean that s, t ∈ E, and sR t. Observe that as soon as R is a
ε-bisimulation for some ε ∈ [0, 1], it holds that R is a clustered binary relation. If we
look now at the ε-relaxed version of bisimilarity RεL w , we see that it is not necessarily an
equivalence relation (since it is not transitive). It is however an reflexive and symmetric
binary relation, as we show below:

Lemma 8.2.1 For every ε ∈ [0, 1], it holds that RεL w is reflexive and symmetric.

Proof. The proof is similar to the one we did to show that the bisimilarity on some LTS
is an equivalence relation: we show that {(s, s) | s ∈ S} is a 0-bisimulation; and that if R
is a ε bisimulation, then also R−1 is a ε-bisimulation. �
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We illustrate on an example the notion of ε-bisimulation, by looking at the WLTS
L (Λ⊕

cbn), which is the applicative WLTS for CBN Λ⊕ that we used to present trace
equivalence in Chapter 4. We want to compare the two programs M = λx.I, and N =
(λx.I ⊕ λx.Ω). Recall that we have shown—in Example 4.2.4 of Chapter 4—that their
corresponding states s(M) := {M1} and s(N) := {N1} are not bisimilar on L (Λ⊕

cbn);
in other words there is no 0-bisimulation that connects them. We show in Example 8.2.1
below that we can however build a 1

2 -bisimulation that connects those states.

Example 8.2.1 We consider the two L (Λ⊕
cbn)-states s(M) := {M1} and s(N) :=

{N1}, with M = λx.I, and N = (λx.I ⊕ λx.Ω). We represent the fragment of L (Λ⊕
cbn)

relevant for these two states in Figure 4.3 of Chapter 4. We build now a 1
2 -bisimulation

that connect s(M) and s(N): recall that the set of states for this WLTS is SL (Λ⊕cbn) =

∆(PΛ⊕)]∆(V̂Λ⊕), i.e. consists of both the distributions over the set of Λ⊕ terms, and the
distributions over the set of Λ⊕ distinguished values; we define a relation R ⊆ SL (Λ⊕cbn)×
SL (Λ⊕cbn) as:

R := {({M1}, {N1}), (s1, t1), (s2, t2)} ∪ {(D , 1

2
·D) | D ∈ ∆(PΛ⊕) ]∆(V̂Λ⊕)},

where s and t are as represented in Figure 4.3. We can then check that R is indeed a
1
2 -bisimulation over L (Λ⊕

cbn).

Intuitively, each of the ε-bisimilarity RεL w is designed to contain all the pairs (s, t) such
that the states s and t are not farther away as ε. When looking at this the other way
around, it means that the distance between s and t should be the smallest ε such that
(s, t) ∈ RεL w . Accordingly with this intuition, we define now the bisimilarity distance on
the states of a WLTS.

Definition 8.2.3 Let be L w = (w, (S,L,→)) a WLTS. We define the bisimulation dis-
tance for the WLTS L w as the family of quantitative valuations (δL w

E )E∈E (L w) where

δL w

E : E × E → [0, 1] is defined as:

δL w

E (s, t) = inf {ε | sRεL w t}.

Observe that the definition above is indeed well-posed, since whenever s and t are com-
parable, the set {ε | sRεL w t} ⊆ [0, 1] contains at least 1—since sR1

L w t by definition of
comparable states—so it is not empty.

Lemma 8.2.2 For every class E ∈ E (L w), it holds that δL w

E is a pseudo-metric.

Proof. Using Lemma 8.2.1, we see that δL w

E is reflexive and symmetric. To see that
the triangular inequality holds, we use the fact that if R is a ε1-bisimulation, and S is
a ε2 bisimulation, then R ◦ S—i.e. the composition of R and S, see its definition in
Chapter 4—is a (ε1 + ε2)-bisimulation. �

Moreover, the infinum in the definition of δL w

E is actually a minimum, as we show in
Lemma 8.2.3 below.

Lemma 8.2.3 Let L w = (w, (S,L,→)) be a WLTS, E ∈ E (L w), and s, t ∈ E. Then
δL w

E (s, t) ≤ ε if and only if sRεL w t.

Proof. The right-to-left implication is given by the definition of δL w

E . The other one
comes from the fact that for every ε ∈ [0, 1], the relation R := {(s, t) | δL w

E (s, t) ≤ ε} is a
ε-bisimulation. �
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The coinductive definition of the bisimilarity distance is well-adapted to show upper bounds
on the distance between two states: indeed, as we illustrate in the Example below, it is
enough to build one ε-bisimulation that contains (s, t) in order to show that δL w

E (s, t) ≤ ε.

Example 8.2.2 We consider once again the WLTS L (Λ⊕
cbn). Observe first that R1

L (Λ⊕cbn)

has two equivalence classes: E (L (Λ⊕
cbn)) = {EP, EV̂} with EP := ∆(PΛ⊕), EV̂ :=

∆(V̂Λ⊕). It means that we can compare either two states that are distributions over pro-
grams, or two states that are distributions over distinguished values. Recall that we have
shown in Example 8.2.1 the existence of a 1

2 -bisimulation, that connects {(λx.I)⊕ (λx.Ω)1}
and {(λx.I)1}. As a consequence:

δ
L (Λ⊕cbn)
EP

({(λx.I)⊕ (λx.Ω)1}, {(λx.I)1}) ≤ 1

2
.

8.2.2 An Inductive Characterization of Bisimilarity Distance for WLTS

In Section 4.2.1 of Chapter 4, we also characterized inductively bisimilarity for WLTSs,
by using linear tests that are represented by traces, i.e. finite sequences of actions. Recall
that for each state s, we defined T (s) the set of traces that we can execute with s as point
of departure, and for every trace α ∈ T (s), we defined the success probability Prob(α ↓)(s)
designed to represent the probability that α succeeds when applied to the state s. Then
we showed—in Proposition 4.2.3—that two states are bisimilar if and only if they have
the same set of admissible traces, and for each such trace the probability of success is the
same for the two states. Here, we keep the same class of tests, and we show that they
also characterize the bisimilarity distance: indeed, as stated formally in Proposition 8.2.4
below, the bisimilarity distance between two comparable states s and t coincides with the
supremum of the separation induced by any trace α on (s, t).

Proposition 8.2.4 Let L w = (w, (S,L,→)) be a WLTS. For any set of traces A ⊆ TL w,
we define: EA := {s | T (s) = A}. Then it holds that the equivalence classes of R1

L w are
the EA, i.e. more precisely E (L w) = {EA | A ⊆ TL w , EA 6= ∅}. Moreover, when A ⊆ TL w

and s, t ∈ EA, it holds that:

δL w

EA
(s, t) = sup

α∈A
|Prob(α ↓)(s)− Prob(α ↓)(t)|.

Proof. We show separately the two inequalities:
• First, if two states s and t are related by an ε-bisimulation, we can see that their set of

admissible traces coincide, and moreover |Prob(α ↓)(s)− Prob(α ↓)(t)| ≤ ε (the proof
is by induction on the length of the trace α, since the states obtained after having done
every action in α are still ε-bisimilar). As a consequence: δL w

EA
(s, t) ≥ supα∈A|Prob(α ↓

)(s)− Prob(α ↓)(t)|.
• To show the other implication, we define for every ε the binary relation on states
Rε := {(s, t) | ∃A ⊆ TL w , s, t ∈ EA ∧ ∀α ∈ A, |Prob(α ↓)(s)− Prob(α ↓)(t) ≤ ε}. We
can see that Rε is indeed a ε-bisimulation, by remarking that if s

a−→ s′, it holds that
T (s′) = {α | a · α ∈ T (s)}, and for α ∈ T (s′), Prob(α ↓)(s′) = Prob(a · α ↓)(s). It
means that two states s, t with the same admissible traces are ε-bisimilar as soon as
the difference between their success probabilities for traces is never greater that ε. As
a consequence, δL w

EA
(s, t) ≤ supα∈A|Prob(α ↓)(s)− Prob(α ↓)(t)|.

�

119



8.3. THE TRACE DISTANCE IN Λ≤1
⊕ .

An immediate corollary of Proposition 8.2.4 is that T (s) and T (t) coincide as soon as
s, t are comparable. Accordingly, we will denote for E ∈ E (L w), T (E) := T (s) with s
any element of E. Recall that the coinductive definition of bisimilarity distance is well-
adapted to show upper bounds on the distance between states, as we have illustrated in
Example 8.2.2. By contrast, the inductive characterization allows to easily show lower
bounds, as we can see in Example 8.2.3 below.

Example 8.2.3 We consider once again the Λ⊕ programs M := λx.I, and N := λx.I⊕
λx.Ω, and we look at what we can learn using the trace characterization of the bisimilarity
distance on the WLTS L (Λ⊕

cbn). Recall that we have shown in Example 4.2.4 of Chapter 4
the existence of a trace α with Prob(α ↓)(({M1})) = 1, while Prob(α ↓)(({N1})) = 1

2 . As
a consequence, Proposition 8.2.4 tells us that:

δ
L (Λ⊕cbn)
EP

({M1}, {N1}) ≥ 1

2
.

By combining this result with the reverse inequality that we have shown in Example 8.2.2,
we see that the bisimilarity distance between {M1} and {N1} in the WLTS L (Λ⊕

cbn) is
1
2 .

8.3 The Trace Distance in Λ≤1
⊕ .

We want now to build well-behaved—i.e. at least sound—distances for higher-order prob-
abilistic programming languages, by using the built-in notion of bisimilarity distance for
WLTSs. Since they are characterized by linear tests, and by analogy with trace equiv-
alences, we will call such distances trace distances. At this point, a natural thing to do
would be to look once again at the language CBN Λ⊕, since we know already that the
WLTS L (Λ⊕

cbn) leads to a sound—and even fully abstract—notion of trace equivalence
for this language, as shown by Dal Lago, Sangiorgi, Alberti [32]. However, a major prob-
lem occurs when we try to do so: the resulting trace distance on programs would be
unsound with respect for the context distance on Λ⊕, as we state in Lemma 8.3.1 below.

Lemma 8.3.1 There exist M,N programs in Λcbn
⊕ such that δL (Λ⊕cbn)({M1}, {N1}) <

δctx(M,N).

Proof. We take M = (λx.I) ⊕ (λx.Ω) and N = λx.I. We can see from Example 8.2.3
that the bisimilarity distance—on the WLTS L (Λ⊕

cbn)—between {M1} and {N1} is
equal to 1

2 . However, as illustrated in Chapter 3, the context distance between these
two Λ⊕ programs is 1—for both the CBV and the CBN reduction theory: it is the usual
trivialization phenomenon. �

As argued in Chapter 6, trivialization arises primarily from the copying ability of the
language. For this reason, as a first step to look at how we can build trace distances
for higher-order probabilistic languages, we ban copying altogether, by considering the
affine language Λ≤1

⊕ —that we introduced in Section 7.4 of Chapter 7. So we first build
a WLTS that expresses interactively the operational semantics for this affine language.
There are two main differences with respect to the WLTS for CBN Λ⊕. First, since the
reduction strategy on Λ≤1

⊕ is call-by-value, the applicative labels are going to be only
values, instead of all programs. Second, the affinity constraint on the language enforces
that the operational semantics of a program has always finite support—see Corollary 7.4.1
in Chapter 7—so the states of the WLTS are not all sub-distributions over programs, but
only those sub-distributions that have finite support.
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Definition 8.3.1 We define the affine LTS L (Λ≤1
⊕ ) := (S

Λ≤1
⊕
,L

Λ≤1
⊕
,→) by taking its set

of states as: S
Λ≤1
⊕

:= {D | D ∈ ∆(P
Λ≤1
⊕

) ]∆(V̂
Λ≤1
⊕

) ∧ D has finite support.}, its set of

labels as L
Λ≤1
⊕

:= V
Λ≤1
⊕
] {eval}, and the transition relation → as follows:

• ∀D ∈ ∆(P
Λ≤1
⊕

), D
eval−→

∑
M∈P

Λ
≤1
⊕

D(M) · ĴMK;

• ∀D ∈ ∆(V̂
Λ≤1
⊕

), V ∈ V
Λ≤1
⊕
, D

V−→
∑

λx.M∈V
Λ
≤1
⊕

D(λ̂x.M) · {M{V/x}1}.

We turn L (Λ≤1
⊕ ) into a WLTS by adding a weight function w : S

Λ≤1
⊕
→ [0, 1], taken as:

w(D) := |D |.

We first want to know which states s, t of L (Λ≤1
⊕ ) are comparable, i.e. what are the

equivalence classes in E (L (Λ≤1
⊕ )). As stated in Lemma 8.3.2 below, the situation is

similar to the case of L (Λ⊕
cbn): we can compare two states when either they are both sub-

distribution over programs, or they are both sub-distributions over distinguished values.
Recall that we called EP and EV̂ the two equivalence classes of R1

L (Λ⊕cbn)
. To keep the

notations readable, we will also write EP and EV̂ for the two elements in E (L (Λ≤1
⊕ )),

without specifying the language considered—unless otherwise specified, in the following
we will be referring to the affine language.

Lemma 8.3.2 The equivalence relation R1
L (Λ≤1

⊕ )
has two equivalence classes, that are

EP := {D ∈ ∆(P
Λ≤1
⊕

) | D has finite support} and EV̂ := {D ∈ ∆(V̂
Λ≤1
⊕

) | D has finite support}.

Proof. The proof is similar to the one we did for L (Λ⊕
cbn)—see Example 8.2.2 in Sec-

tion 8.2. �

We now associate to every program M in Λ≤1
⊕ a L (Λ≤1

⊕ )-state—in the same way as
when characterizing trace equivalence for CBN Λ⊕, by taking s(M) := {M1} ∈ EP. From
there, we define the trace distance between two programs as the bisimilarity distance on
L (Λ≤1

⊕ )—as given in Definition 8.2.3—between their associated states.

Definition 8.3.2 We define the applicative trace distance as the quantitative valuation
δtr

Λ≤1
⊕

: P
L (Λ≤1

⊕ )
×P

L (Λ≤1
⊕ )
→ [0, 1] taken as:

δtr
Λ≤1
⊕

(M,N) := δ
L (Λ≤1

⊕ )

EP
({M1}, {N1}).

Observe that δtr
Λ≤1
⊕

is indeed a distance on programs for the untyped observable language

Λ≤1
⊕ —in the sense of Definition 8.1.1—since Lemma 8.2.2 tells us it is a pseudo-metric.

Recall that in Example 8.2.3 we saw that the trace distance between the CBN Λ⊕-programs
λx.I and (λx.I ⊕ λx.Ω)—i.e. the bisimilarity distance between their associated states in
the WLTS L (Λ⊕

cbn)—is 1
2 . In Example 8.3.1 below we show that the situation is similar

when we look at those programs as Λ≤1
⊕ -programs.

Example 8.3.1 We consider here the Λ≤1
⊕ programs M := (λx.I ⊕ λx.Ω) and N :=

λx.I—recall that Ω is here a primitive construct of Λ≤1
⊕ , designed as a tool to add diver-

gence to our simplified affine language. To compute the trace distance between M and N ,

121



8.3. THE TRACE DISTANCE IN Λ≤1
⊕ .

we need to consider the L (Λ≤1
⊕ )-states s = {M1}, and t = {N1}. We can show that the

bisimilarity distance between s and t is 1
2 : the proof is similar to the one we did for s

and t seen as states of L (Λ⊕
cbn), in Example 8.2.2 and Example 8.2.3. From there, we

conclude:

δtr
Λ≤1
⊕

(M,N) =
1

2
.

8.3.1 A Roadmap to Soundness.

We want now to show that the trace distance on Λ≤1
⊕ is sound with respect to the obser-

vational distance, i.e:

∀M,N programs, δctx
Λ≤1
⊕

(M,N) ≤ δtr
Λ≤1
⊕

(M,N).

To do that, we use Proposition 8.1.1—see Section 8.1—that tells us it is enough to show
that the trace distance is both observationally correct and non-expansive. The first step
is easily done, by using the inductive characterization by linear tests.

Proposition 8.3.3 The distance on programs δtr
Λ≤1
⊕

is observationally correct for the lan-

guage Λ≤1
⊕ .

Proof. We can see it immediately by using the inductive characterization of bisimilarity
distance on the WLTS L (Λ≤1

⊕ ). Indeed, for every program M , Obs(M) can be computed
as the success probability of the empty trace ε on the state sM . �

The proof of non-expansiveness, however, is considerably more involved. Since the
distance on programs is actually defined using the bisimilarity distance on a WLTS, the
first step consists in expressing non-expansiveness directly as a WLTS-property. More
precisely, we extend the notion of contexts, by transforming the Λ≤1

⊕ -contexts—that rep-
resent an algorithm that takes in input a program and returns another program—into
state-contexts that are algorithm that take in input a state of L (Λ≤1

⊕ ) and return another
state. Since the structure of this non-expansiveness proof is similar to the one of the
proof for the trace distance on Λ!

⊕—that we will introduce in the next section—we will
present the next steps in the setting of a generic WLTS equipped with state-contexts, in
the following sense.

Definition 8.3.3 (WLTS equipped with States-Contexts) Let L w be a WLTS. We
say that we equip L w with state-contexts when specifying for each pair (E1, E2) of ele-
ments in E (L w), a set of functions E1 → E2, that we denote C(E1 → E2), such that:

∀C ∈ C(E1 → E2), ∀s ∈ E1, w(C(s)) = w(s).

By analogy with the contexts of a programming language, we will use C,D . . . to denote
the elements of C(E1 → E2), and if s ∈ E1, we will note C[s] for C(s). There is a slight
abuse in notation here, in the sense that it also depends on the type B that we specify
as output type: the same state-context can be both in C(A→ B1) and C(A→ B2). We
are now ready to formalize the non-expansiveness property on WLTSs that are equipped
with states-contexts: we ask that no state-context can increase the bisimilarity distance
between two states.
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Definition 8.3.4 (Non-Expansiveness for WLTS) Let L w be a WLTS equipped with
state contexts. We say that L w is non-expansive, if for every s, t in the same equivalence
class E, for any state-context C ∈ C(E → E′), it holds that:

δL w

E′ (C[s], C[t]) ≤ δL w

E (s, t).

We now equip our WLTs L (Λ≤1
⊕ ) with state-contexts: in this case, a state-context is

simply a context of the language Λ≤1
⊕ . Recall that here the states are sub-distributions

over Λ≤1
⊕ -programs; in this setting, applying a context to a state consists in applying it to

all the programs in the support of the sub-distribution. We have however to be careful,
because we have two equivalence classes in E (L (Λ≤1

⊕ )): the class EP, that contains those
states that are sub-distributions over programs, and the class EV that contains those
states that are sub-distribution over distinguished values. It means that when considering
C(EP → EV), we keep only the Λ≤1

⊕ contexts that return always a value—even when
they are filled by a program that is not a value. We sum up these considerations in
Definitions 8.3.5 and 8.3.6 below.

Definition 8.3.5 For every pair (E1, E2) of equivalence classes in E (L (Λ≤1
⊕ )), we de-

fine the set of state-contexts with input E1 and output in E2—denoted C(E1 → E2)—as
follows:

• If E2 = EP, C(E1 → E2) := CΛ≤1
⊕ ;

• If E1 = E2 = EV̂ , C(E1 → E2) := {C ∈ CΛ≤1
⊕ | C = [·] ∨ C = λx.D};

• If E1 = EP, and E2 = EV̂ , C(E1 → E2) := {C ∈ CΛ≤1
⊕ | C = λx.D}.

We now formalize what happens when we fill a L (Λ≤1
⊕ ) state-context in C(E1 → E2) by

a state in E1.

Definition 8.3.6 Let E1, E2 be two equivalence classes in E (L (Λ≤1
⊕ )), and s ∈ E1. Let

D be the sub-distribution obtained by taking either D = s if E1 = P, or D such that
D̂ = s, if E1 = V̂. Let C be a state-context in C(E1 → E2). We define the state C[s] in
E2 as follows:

• if E2 = P, we take C[s] =
∑

M D(M) · {C[M ]1};

• if E2 = V̂, we take C[s] =
∑

M D(M) · {Ĉ[M ]
1
};

In Proposition 8.3.4 below, we show that our approach is valid, in the sense that as
soon as we are able to show that L (Λ≤1

⊕ ) is non-expansive, it also holds that the trace

distance on Λ≤1
⊕ -programs is non-expansive.

Proposition 8.3.4 We suppose that the non-expansiveness property holds for L (Λ≤1
⊕ ),

equipped with state-contexts as specified in Definitions 8.3.5 and 8.3.6. Then the trace
metric δtr

Λ≤1
⊕

on Λ≤1
⊕ programs is non-expansive.

Proof. Let M , N be two Λ≤1
⊕ -programs, and C a context in Λ≤1

⊕ . Then C can also be

seen as a state-context in C(EP → EP). Since the WLTS L (Λ≤1
⊕ ) is non expansive, we

obtain that: δ
L (Λ≤1

⊕ )

EP
(C[sM ], C[sN ]) ≤ δ

L (Λ≤1
⊕ )

EP
(sM , sN ). Observe that moreover, C[sM ] =

sC[M ] and similarly C[sN ] = sC[N ]. From there, we obtain that δ
L (Λ≤1

⊕ )

EP
(sC[M ], sC[N ]) ≤

δ
L (Λ≤1

⊕ )

EP
(sM , sN ), and it concludes the proof. �
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8.3.2 Contexts Composition for Relations on States

Our objective now thus becomes to show non-expansiveness for L (Λ≤1
⊕ ). We see that

we can reformulate the non-expansiveness for a WLTS by asking that all ε-bisimilarities
must be compatible, i.e. that as soon as two states s, t are ε-bisimilar, then for every
context C that can be filled with s, t, it holds that also C[s] and C[t] are ε-bisimilar. As a
consequence, a first idea would be to look at the binary relation we obtain by composing R
by state-contexts and to show that whenever R is an ε-bisimulation, the relation we obtain
this way is also a ε-bisimulation. Let us first formalize how we compose by states-contexts
a clustered—see Definition 8.2.2—binary relation on states.

Definition 8.3.7 Let L w be a WLTS equipped with state-contexts. Let R be a clustered
binary relation on states. We call compositions of R by states-contexts, and we denote
by C[R] the binary relation on states defined as follows: for every equivalence class E for
R1

L w, s (C[R]E) t when there exists E′, C ∈ C(E′ → E) and two states s′, t′ such that
s′RE t

′ and s = C[s′], t = C[t′].

Observe that the relation C[R] is also a clustered relation. Moreover, if R is ε-bounded
for some ε ∈ [0, 1], that is also the case for C[R]. As stated in Proposition 8.3.5 below,
we are now able to re-frame our objective of proving non-expansiveness for L (Λ≤1

⊕ ) using
the composition by contexts of a relation on states.

Proposition 8.3.5 Let L w be a WLTS equipped with state-contexts. If for every ε-
bisimulation R, there exists a ε-bisimulation S such that C[R] ⊆ S, then non-expansiveness
holds for L w.

As said before, we would like to establish that composition by contexts preserves ε-
bisimulations, i.e. that when R is a ε-bisimulation on L (Λ≤1

⊕ ), then C[R] itself is also an
ε-bisimulation. This is unfortunately not the case, as we can see in Example 8.3.2 below.

Example 8.3.2 We consider the states s = {(I ⊕ Ω)1} and t = {I1}. Using these two
states, we build an 1

2 -bisimulation:

R = {(s, t)} ∪ {(1

2
· D̂ , ∅̂) | D̂ ∈ EV̂} ∪ {(

1

2
·D , ∅) | D ∈ EP}.

We consider now the relation C[R], and we show that it is not a 1
2 -bisimulation. We start

from the context C = [·]⊕λx.[·]; we can see C as a state-context in C(EP → EP, hence we
can fill C with s and t, and C[s] and C[t] in EP are as follows:

C[s] = (I ⊕ Ω)⊕ λx.(I ⊕ Ω); C[t] = (Ω)⊕ λx.(Ω).

We now look at the effect of the eval action on C[s] and C[t]. We see that C[s] eval−→ u,

C[t] eval−→ v, where the states u, v ∈ EV̂ are as follows:

u :=
1

4
· {Î1}+

1

2
{ ̂λx.I ⊕ Ω

1
}; v :=

1

2
{λ̂x.Ω

1
}.

We show by contradiction that (u, v) 6∈ C[R]. Indeed, let us suppose that (u, v) ∈ C[R].
Looking at the definition of C[R], we see that one among the three following statements
must hold:

∃C ∈ C(EV̂ → EV̂), u = C[1
2
· D̂ ], v = C[∅̂] with D ∈ EV̂ (8.1)

∃C ∈ C(EP → EV̂), u = C[s], v = C[t] (8.2)

∃C ∈ C(EP → EV̂), u = C[1
2
·D ], v = C[∅] with D ∈ EP (8.3)
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By looking at Definition 8.3.6 that specifies how to fill a state-context by a state in L (Λ≤1
⊕ ),

we see that we can rewrite the cases (8.1), (8.2), (8.3) respectively as follows:

∃C ∈ C(EV̂ → EV̂), u =
1

2

∑
V

D(V ) · {Ĉ[V ]
1
}, v = ∅̂ with D ∈ EV̂

∃C ∈ C(EP → EV̂), u = {Ĉ[I]
1
}, v = {Ĉ[Ω]

1
}

∃C ∈ C(EP → EV̂), u =
1

2

∑
M

D(M) · {Ĉ[M ]
1
}, v = ∅̂ with D ∈ EP

Since none of the three cases above holds, we obtain a contradiction.

8.3.3 Convex Structure for a WLTS

Recall that our goal is to find a way to build from an ε-bisimulation R, a relation which
is both a ε-bisimulation and contains C[R]. Example 8.3.2 tells us that this relation
must be larger that C[R]. To this end, we draw on the inherent convex structure of
S

Λ≤1
⊕

—i.e. the fact that we are able to take convex combination of states, since they are

sub-distributions over programs. We formalize this idea by defining a class of WLTSs
that have this property, in Definition 8.3.8 below. We use there the concept of cone,
that can be found in Definition 9.3.1 of Chapter 9—where we use it for totally different
purposes, i.e. when presenting a denotational model developed by Ehrhard, Pagani and
Tasson of the language PCF enriched with continuous probability. A cone C is essentially
a R+-semimodule with a norm ‖ · ‖C , that allows to talk about its unit ball BC.

Definition 8.3.8 We say that a WLTS L w is equipped with a convex structure, if for
every E ∈ E (L w), there exists a cone CE such that E = BCE, and w and ‖ · ‖CE coincide
on BCE.

In Example 8.3.3 below we equip L (Λ≤1
⊕ ) with a convex structure: we use the fact that the

set of finite measures—i.e. distributions-like object with weight in R+, see Definition 1.4.2
of Chapter 1—with finite support over some countable set is stable under addition and
multiplication by a non-negative scalar.

Example 8.3.3 For E ∈ {EP, EV̂}, we build a cone CE as follows:

CEP
:= {µ finite measure over P | card(S(µ)) <∞}; ‖µ‖C = µ(P)

CEV̂ := {µ finite measure over V̂ | card(S(µ)) <∞}; ‖µ‖C = µ(V̂)

We take as +, and . respectively the usual addition and multiplication by a scalar for finite
measures. We can check that CEP

and CEV̂ are indeed cones, and that moreover BCE = E

for E ∈ {EP, EV̂}. It means that this way we have indeed equipped L (Λ≤1
⊕ ) with a convex

structure.

If L w is a WLTS equipped with a convex structure, we can define for every clustered
binary relation R on states its convex closure.

Definition 8.3.9 Let L w be a WLTS equipped with a convex structure. Let R be a
clustered binary relation on states. We say that R is convex closed, if for every E ∈
E (L w), for every α, β ∈ [0, 1] with α+β ≤ 1, for every s1, s2, t1, t2 such that s1RE t1 and

s2RE t2 it holds that (α · s1 + β · s2)RE (α · t1 + β · t2). We write (R)
+

for the smallest
relation that is convex closed and that contains R.
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Observe that since each E ∈ E (L w) is stable by convex sums, it holds that the convex

closure of R is also a clustered relation. We are in fact able to build explicitly (R)
+

starting from R, as stated in Lemma 8.3.6 below.

Lemma 8.3.6 Let L w be a WLTS equipped with a convex structure, and R be a clus-

tered binary relation on states. Then s (R)
+
t if and only if there exists a finite sequence

(sn, tn)1≤n≤N of pairs of states in R, and (αn)1≤n≤N a finite sequence of non-negative real
numbers, such that s =

∑
1≤n≤N αn · sn and t =

∑
1≤n≤N αn · tn.

Our goal in the following is to show that if R is a ε-bisimulation on L (Λ≤1
⊕ ), then

(C[R])
+

—the convex closure of the relation obtained by composing R by contexts—also is
an ε-bisimulation and contains C[R]—thus enabling us to apply Proposition 8.3.5. We see

immediately that (C[R])
+

contains C[R], so from now on we will work towards proving
that this combination of contexts and convex closure preserves ε-bisimulations. We first
look back at the 1

2 -bisimulation R considered in Example 8.3.2, and we see that taking
the context closure of C[R] allows us to overcome the problem highlighted there. Indeed,
recall that our proof of C[R] not being a ε-bisimulation consisted of exhibiting a pair
of states (s, t) ∈ R, and a context C such that (u, v) 6∈ C[R] with u and v defined as

C[s] eval−→ u, C[t] eval−→ v. In Example 8.3.4 below, we show that (u, v) ∈ (C[R])
+

: it means
that in this particular case we are indeed able to overcome the problem by considering

(C[R])
+

instead of C[R].

Example 8.3.4 We keep the notation of Example 8.3.2. We can split u and v as follows:

u =
1

2
(λx.[·])[s] +

1

2
([·])[1

2
· {Î1}]; v =

1

2
(λx.[·])[t] +

1

2
([·])[∅̂].

Moreover it holds that both the pair (s, t) and the pair (1
2 · {Î

1}, ∅̂) ∈ R are in R, and
C1 = λx.[·] ∈ C(EV̂ → EV̂), C2 = [·] ∈ C(EP → EP). As a consequence, we obtain that

u (C[R])
+
v.

We look more in depth to the behavior of the convex closure: we are going to show that it
leads actually to an up-to technique for WLTS. A survey of up-to reasoning on transition
structures can for instance be found in [104]. The general idea is as follows: we want to
show that two states are bisimilar, without going all the way to find a bisimulation that
relates them. If we have a valid up-to technique, it becomes enough to show that the two
states are connected by a relation which is a bisimulation up-to some operator on relation,
which is a weaker requirement as being a bisimulation.

Notation 8.3.7 Let L w = ((S,L,→), w) be a WLTS, and R,S ⊆ S ×S. Then we write
R� S when: ∀(s, t) ∈ R,Act(s) = Act(t), and ∀a ∈ Act(s), (u, v) ∈ S with s

a−→ u and
t

a−→ v.

With this notation, we can rewrite the ε-bisimulation requirement: R is a ε-bisimulation
if and only if it is ε-bounded, and R� R.

Definition 8.3.10 Let L w = ((S,L,→), w) be a WLTS. We call operator on L w-
relations a function O : {R ⊆ S × S} → {R ⊆ S × S}, non-decreasing for the inclusion
order. If O is an operator on L w-relations, we say that a binary relation R ⊆ S × S is a
ε-bisimulation up-to O, if it is ε-bounded, and R� O(R).
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In [107], Vignudelli and Sangiorgi studied up-to techniques for environmental bisim-
ulations—that are equivalences defined using bisimilarity on structures similar to our
WLTSs—on probabilistic λ-calculi. Here, since we are interested in distances, we look at
quantitative up-to techniques, that give us proof techniques for ε-bisimulation.

Definition 8.3.11 Let L w = ((S,L,→), w) be a WLTS. We say that O an operator on
L w-relations is a valid quantitative up-to technique, if every R which is a ε-bisimulation
up-to O is also contained in a ε-bisimulation.

We are now going to exhibit a class of WLTSs with convex structure, such that taking
the convex closure is a valid quantitative up-to technique.

Definition 8.3.12 We say that a WLTS L w is equipped with a well-behaved convex
structure if it is equipped with a convex structure such that:

1. ∀s, t states, and α, β with α+ β ≤ 1, w(α · s+ β · s) = α · w(s) + β · w(t).

2. for every state s that can be decomposed as s =
∑

1≤i≤N αi · ti with αi > 0, then:

• Act(s) = Act(ti) for every i ∈ N.

• for a ∈ Act(s), it holds that v
a−→
∑

1≤i≤N αi · ui, where the ui are defined by

ti
a−→ ui

We can see easily that the convex structure on the WLTS L (Λ≤1
⊕ )—as described in Ex-

ample 8.3.3—is indeed well-behaved.

Lemma 8.3.8 Let L w be a WLTS equipped with a well-behaved convex structure. If R is

a ε-bisimulation then (R)
+

is also a ε-bisimulation.

Proof. The proof consists of two steps:

• if a clustered relation R is ε-bounded, then also (R)
+

is ε-bounded—it comes from
Condition 1 in our definition of a well-behaved convex structure;

• if R� (R)
+

then also (R)
+
� (R)

+
—it comes from Condition 2 in our definition of

a well-behaved convex structure.
�

An immediate consequence of Lemma 8.3.8 is that taking the convex closure is indeed a
valid quantitative up-to-technique for the WLTS L (Λ≤1

⊕ ).

Proposition 8.3.9 If L w is a WLTS equipped with a well-behaved convex structure, the

convex closure R 7→ (R)
+

is a valid quantitative up-to technique.

8.3.4 Combining Composition by Contexts and Convex Closure.

Recall that our goal in the present Section is to show that if R is a ε-bisimulation, and
(s, t) are in C[R], then s and t are ε-bisimilar. Since taking the convex closure is a
valid quantitative up-to technique, it is enough to show that C[R] is ε-bounded—which

is apparent from the definition of C[R]—and that C[R] � (C[R])
+

. So we fix R an

ε-bisimulation, and we show that C[R]� (C[R])
+

, i.e. :

1. if s, t are in EV̂ , with sC[R] t then the pair of states we obtain after doing a V action
—for any value V—is again in C[R].
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2. if s, t are in EP with sC[R] t then the pair of states we obtain after doing a eval

action is in (C[R])
+

.

Requirements (1) and (2) are represented respectively on the right and the left part of
Figure 8.1. We first show the requirement (1), that deals with the case of applicative

EP : s tC[R]

s′ t′(C[R])
+

eval eval

: EV̂s tC[R]

s′ t′C[R]

V V

Figure 8.1: Overview of the proof that (C[R])
+

is a ε-bisimulation.

actions. The proof is based on the fact that when the environment performs an applicative
action V on a state s of the form s = C[s′], it is going to trigger at most one action on the
internal state s.

Lemma 8.3.10 Let s, t ∈ EV̂ , with sC[R] t. Let V ∈ V̂, and let s′, t′ be such that s
V−→ s′

and t
V−→ t′. Then it holds that s′C[R] t′

Proof. Let V be a Λ≤1
⊕ -value, and s, t ∈ EV̂ such that sC[R] t. It means that there exists

a pair of states (s, t) ∈ R, with s = C[s′], t = C[t′]. Recall that moreover C must be in
C(E,EV̂), for some E ∈ {EP, EV̂}. We consider separately the case where E = EV̂ and
the case where E = EP.

• We first suppose that E = EP. It means that s′ and t′ are sub-distributions over
programs, and that C is of the form C = λx.D, where D is an open context for the
language Λ≤1

⊕ , with x as only possible free variable —see how we defined C(E → E′)
in Definition 8.3.5. We now spell out what it implies for the states s and t:

s =
∑

s′(M) · {λx.D[M ]1};

t =
∑

t′(M) · {λx.D[M ]1}.

From there, we look at the effect of the applicative action V on s and t. Observe
that D{V/x} ∈ C(EP → EP); as a consequence we can fill D{V/x} by the states s′

and t′. By looking at the transition relation in the WLTS L (Λ≤1
⊕ ), we can see that

s
V−→ u, and t

V−→ v with:

u := { ̂(D{V/x})[s′]
1
} (8.4)

v := { ̂(D{V/x})[t′]
1
}. (8.5)

Since (s′, t′) ∈ R, Equations (8.4), and (8.5) tell us that (u, v) ∈ C[R], hence
Lemma 8.3.10 holds.

• We now look at the case where E = EV̂ : then s′ and t′ are sub-distributions over
distinguished values, and C can be either of the form C = λx.D—as in the previous
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case—or of the form [·]. In the first case, we obtain the result in the same way as
when E = EP. From now on, we suppose that C = [·]. It means that s′ = s, and

t′ = t. Since R is a ε-bisimulation, and s′R t′, we see that s
V−→ u and t

V−→ v, with
uR v. Since R ⊆ C[R], it implies that the result of Lemma 8.3.10 holds.

�

We have now to look at the eval action, and to show that Requirement (2) is also
satisfied. This case is harder to handle that the case of applicative actions, because when
the environment performs an action eval on a state of the form t = C[s′], it can trigger
a variety of possible sequences of actions on the state s′—depending on the form of the
context C. We first look at the simple case where every program in the support of the
states s, t is actually already a value: it means that the action eval for those states consists
only in transforming values into distinguished values.

Lemma 8.3.11 Let R be an ε-bisimulation on L (Λ≤1
⊕ ). For every s, t ∈ EP such that

s (C[R])
+
t, if moreover the support of s and t consists only of values, then it also holds that

ŝ (C[R])
+
t̂—where û simply refers to the distribution u where every value in the support

of u has been replaced by the associated distinguished value.

Our approach to the general case is as follows: we are going to define an auxiliary
operational semantics, where programs are replaced by pairs of the form (C, s), that allows
us to split the action eval into a sequence of actions that have an atomic effect on s′.

8.3.5 A Contexts-Programs WLTS for Λ≤1
⊕ .

Definition 8.3.13 We call (C × S) the set of all pairs of the form (C, s), where there
exists E ∈ E (L (Λ≤1

⊕ )) such that s ∈ E, C ∈ C(E → EP) . We say that e ∈ (C× S) is a

(C × S)-value if either s ∈ EV̂ and C = [·], or C is of the form λx.D, where D is a Λ≤1
⊕

open context with x as only possible free variable.

Observe that if e = (C, s) is a (C × S)-value, then in particular all the programs in the
support of C[s] are Λ≤1

⊕ -values. We call (C×S)-state a sub-distribution over (C×S) with

finite support, and we denote S(·,·) the set of all such states. We first formalize how we
can retrieve back a L (Λ≤1

⊕ )-state from any state in S(·,·).

Definition 8.3.14 We define the forgetful function F : S(·,·) → S
Λ≤1
⊕

, as follows:

F(s) :=
∑

(C,t)∈(C×S)

s(C, t) · C[t].

For any clustered relation R, we build the explicit composition of R by contexts, which is a
binary relation on S(·,·). It consists of simply putting side by side R-connected programs
and states-contexts.

Definition 8.3.15 Let R be a clustered binary relation on S
Λ≤1
⊕

. Then we define a binary

relation (C♦R) ⊆ S(·,·) × S(·,·) as:

(C♦R) = {({(C, s)1}, {(C, t)1}) | ∃E ∈ {EV̂ , EP}, C ∈ C(E → EP), sRE t}.
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The relation (C♦R) on S(·,·) should be seen as a transposition of the relation C[R] on
S

Λ≤1
⊕

. In Lemma 8.3.12 below, this observation is formalized using the forgetful function

F.

Lemma 8.3.12 Let R be a clustered binary relation on L (Λ≤1
⊕ ), and s, t ∈ S(·,·) such

that s (C♦R) t. Then it holds that F(s) C[R] F(t).

We want now to define an small-step operational semantics on (C × S), designed to
express how we can execute—in a probabilistic way—the elements of (C× S).

Definition 8.3.16 We define the one-step transition relation over (C×S), that we note
→(C×S)⊆ (C× S)×∆((C× S), as specified in Figure 8.2 below.

The β-rule of Figure 8.2 is valid only because Λ≤1
⊕ is affine: indeed that N{C/x} is still

a context is guaranteed by the Λ≤1
⊕ -affinity constraints—see Section 7.4 of Chapter 7.

Observe that this one-step reduction is deadlocks-free, in the sense that for an element
e ∈ (C × S), there exists D such that e −→ D if and only if e is not a (C × S)-value.
We now extend this one-step reduction to elements of S(·,·)—i.e. sub-distributions over
(C× S) with finite support.

Definition 8.3.17 We define →S(·,·)⊆ S(·,·) × S(·,·), that we call the one-step transition
relation over S(·,·), as follows: if s =

∑
i∈I pi · {ei1}+ E where all elements in the support

of E are (C × S)-values, and the ei are not (C × S)-values, and I not empty, then we
define s→S(·,·)D +

∑
i∈I pi · ti with ei →(C×S) ti.

N → E
CR

(NC, s)→(C×S)

∑
L E (L) · {(LC, s)1}

(C, s) a (C× S)-value N → E
CL

(CN, s)→(C×S)

∑
L E (L) · {(CL, s)1}

(C, s)→(C×S) E V ∈ V
SR

(V C, s) τ→(C×S)

∑
D,t E (D, t) · {(VD, t)1}

(C, s) a (C× S)-value
β

((λx.N)C, s)→(C×S) {(N{C/x}, s)1}

Div
(Ω, s)→(C×S) ∅

⊕
(C ⊕ D, s)→(C×S)

1
2
· {(C, s)1}+ 1

2
{(D, s)1}

s ∈ EP s
eval−→ t

eval
([·], s)→(C×S) {([·], t)1}

s ∈ EV̂ s
V−→ t

V
([·]V, s)→(C×S) {([·], t)1}

Figure 8.2: The one-step reduction relation on (C× S).

We say that a state s ∈ S(·,·) is in normal form if there is no t such that s→(C×S) t. Using
the fact that the calculus is affine, and that we consider only finite sub-distributions, we
are able to show that the one-step reduction relation on S(·,·) is strongly normalizing, i.e.
there exists a normal form.
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(I ⊕ [·]V, {λx.(I ⊕ Ω)1})

(I, {λx.(I ⊕ Ω)1})
(C× S)-value

([·]V, {λx.(I ⊕ Ω)1})

([·]V, ̂{λx.(I ⊕ Ω)1})

([·], {(I ⊕ Ω)1})

([·], 1
2
· {̂I1}) (C× S)-value

1
2

1
2

1

1

1

Figure 8.3: Example of the effect of the one-step transition relation for (C× S)

Lemma 8.3.13 For every state s ∈ S(·,·):

• either s is in normal form, and then all e ∈ S(s) are (C× S)-values;

• or s is not in normal form, and then there exists a unique t in normal form such
that s→?

S(·,·)t.

Proof. We can see that the first point holds simply by looking at the rules of Figure 8.2.
We now look at the second point. Recall the cost function c : Terms

Λ≤1
⊕
→ N that we have

used when proving termination for Λ≤1
⊕ -programs in Proposition 7.4.1 from Chapter 7. We

defined c inductively on the structure of terms. We extend here the inductive definition of
C by c([·]) = 1, which allows us to see c as a function C

Λ≤1
⊕
→ C

Λ≤1
⊕

. We now consider a

sequence of reduction: s = {(C, t)1}→S(·,·)s2→S(·,·) . . .. We are going to show by induction
on c(C) that this sequence is finite:

• If c(C) = 0, it means that C = λx.D, and moreover c(D) = 0. As a consequence,
(C, s) is a (C× S)-value, and so the result holds.

• We suppose now that the result holds as soon as c(C) = n, and we want to show it
when c(C) = n+ 1. We first show an intermediary result:

(C, s)→(C×S) D ⇒

{
either ∀(D, t) ∈ S(D), c(D) < c(C)
or s ∈ EP,D = {C, t1} with t ∈ EV̂

To show this intermediary result, we do the proof by induction on the structure of
the proof derivation of (C, s)→(C×S) s2 —i.e. the first reduction step.

– if the first rule applied is eval, i.e. if C = [·],then ([·], s)→(C×S) {([·], t)1}, with

s
eval−→ t, and indeed s ∈ EP, t ∈ EV̂ .

– if the first rule applied is Div, i.e. if C = Ω, then (C, s)→(C×S) ∅, and the result
holds;
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– if the first rule applied is CR, i.e. if C = ND, when N is not a value, we see
that (C, s)→(C×S)

∑
L D(L) · {(LD, s)1}, with N → D . Recall that, as shown

in Lemma 7.4.3, the cost function c decreases at each step of the execution of
programs: it means that for every L ∈ S(D), c(L) ≤ c(N)− 1. From there, we
obtain that c(LD) = c(L) + c(D) < c(C).

– if the first rule applied is CL, it means that C = DN , with (D, s) a (C × S)-
value. Then s2 =

∑
L∈S(D) D(L) · {(DL, s)1}, with N → D . We can see that

c(DL) ≤ c(C)−1 for every L ∈ S(D), and we conclude similarly to the previous
case.

– if the first rule applied is SR, it means that C = VD. We apply the induction
hypothesis on (D, s)→(C×S) E , and this way we obtain the result.

– If the first rule applied is β or V , we see that ((C, s) →(C×S) {(D, t)1} with
c(D) < c(C).

We now use the intermediary result to conclude the proof of Lemma 8.3.13:

– We first suppose that s2 is such that ∀(D, t) ∈ S(s2), c(D) < c(C). If s2 is actu-
ally the empty sub-distribution ∅, then the result holds since ∅ is a (C×S)-value.
Otherwise, we can apply the induction hypothesis to all the e = (D, t) ∈ S(s2):
for every e, there exists a reduction sequence te1 = {e1}→S(·,·)te2 . . .→S(·,·)teNe ,
with teNe is a normal form. Then we see that for every n, we can rewrite sn as:
sn =

∑
e∈S(s2)|Ne≥n−1 ·ten−1 +

∑
e∈S(s2)|Ne≤n−2 ·teNe . Looking at the definition

of →S(·,·) , we see that if the length of the sequence (tn) is greater than N , it
implies that {e | Ne − 1 ≥ N} must be non-empty. Since all the reduction
sequences for the e ∈ S(s2) are of finite length, and that S(s2) is a finite set, we
can conclude that the sequence (tn) is also of finite length.

– We now suppose that the second alternative of the intermediary result holds,
i.e. s ∈ EP, and (C, s) →(C×S) {C, t1} with t ∈ EV̂ . Then the first alternative
holds for (C, t), so we obtain the result.

�

We define accordingly the operational semantics for elements in (C× S).

Definition 8.3.18 Let e ∈ (C × S). We call operational semantics of e, and we denote
JeK the sub-distribution over (C×S)-values defined as the unique state s ∈ S(·,·) in normal
form such that {e1}→?

S(·,·)s.

We extend this notation to all states in S(·,·): if s ∈ S(·,·), we denote JsK the unique normal
form t such that s→?

S(·,·)t. This operational semantics on S(·,·) can be connected with the

operational semantics on Λ≤1
⊕ -programs: more precisely, executing (C, {M1}) is the same

thing as executing the Λ≤1
⊕ -program C[M ], but with using a small-step reduction for C,

and a big-step reduction for M . We formalize this correspondence in Lemma 8.3.14 below.

Lemma 8.3.14 Let s ∈ S(·,·). Then it holds that:
∑

M∈P F(s)(M) · JMK = F(JsK).

Proof. In order to simplify the notations, we extend the operational semantics on Λ≤1
⊕ -

programs to EP, by noting JtK =
∑

M∈P t(M) · JMK, when t ∈ EP, i.e. t is a sub-

distribution over Λ≤1
⊕ -programs. With this notation, we can rewrite our goal as: ∀s ∈ S(·,·),

JF(s)K = F(JsK). We show this result in two steps:
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{(I ⊕ [·]V, {λx.(I ⊕ Ω)1})1}

1
2
{(I, {λx.(I ⊕ Ω)1})1}+ 1

2
{([·]V, {λx.(I ⊕ Ω)1})1}

τ

1
2
{(I, {λx.(I ⊕ Ω)1})1}+ 1

2
{([·]V, ̂{λx.(I ⊕ Ω)1})

1

}

τ

1
2
{(I, {λx.(I ⊕ Ω)1})1}+ 1

2
{([·], {(I ⊕ Ω)1})1}

1
2
{(I, {λx.(I ⊕ Ω)1})1}+ 1

2
{([·], 1

2
{̂I1})

1
} normal form

τ

τ

τ

Figure 8.4: A Fragment of the WLTS L (C×S)

• first, we see—by looking at the rule for →(C×S)—that if s→S(·,·)t, then the opera-

tional semantics of the underlying Λ≤1
⊕ -subdistribution is not modified, i.e. JF(s)K =

JF(t)K;

• then we see that if s is a normal-form, then JF(s)K = F(s), since all the program in
the support of F(s) are Λ≤1

⊕ -values.

We are now able to conclude: let s ∈ S(·,·). By iterating the first step we obtain that
JF(s)K = JF(JsK)K, and then since JsK ∈ S(·,·) is a normal-form, we can use the second
step, and we see that JF(JsK)K = F(JsK), and we have the result.

�

Our goal now is to start from a binary relation on S(·,·) of the form (C♦R)—where R
is taken as a ε-bisimulation—and to study the binary relation over S(·,·) that we obtain
after one step of reduction, that is {(u, v) | (s, t) ∈ (C♦R), s→S(·,·)u, t→S(·,·)v}. We thus
introduce a WLTS L (C×S), which has S(·,·) as set of states, and whose transition relation
is designed to embed the one-step reduction relation on (C× S).

Definition 8.3.19 (The WLTS L (C×S).) We define the execution WLTS for S(·,·) as
L (C×S) := (w, (S(·,·), {τ}, −→ )), where:

• the weight function w is defined as: w(D) :=
∑

(C,s)∈S(D) D(C, s) · |s|;

• if s→(C×S) t, then s
τ−→ t; and if s is in normal form, s

τ−→ s.

Observe that L (C×S) has only one equivalence class in E (L (C×S)), that contains all its
states. Moreover, it has an obvious well-behaved convex structure, based on sum and
multiplication by a non-negative scalar for measures with finite support. We illustrate
how we build the WLTS L (C×S) starting from the relation →(C×S) in Figure 8.4.
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s0 t0C[R]

s
(C×S)
0 t

(C×S)
0

(C♦R)

Js(C×S)
0 K Jt(C×S)

0 K((C♦R))
+

F (Js(C×S)
0 )K) F (Jt(C×S)

0 )K(C[R])
+

̂
F (Js(C×S)

0 K) ̂
F (Jt(C×S)

0 K)(C[R])
+

eval eval

J·K J·K

F F

·̂ ·̂

Figure 8.5: Proof Scheme

8.3.6 Using L (C×S) to conclude the Proof of Non-Expansiveness

We represent graphically in Figure 8.5 our proof strategy, i.e how to use the WLTS L (C×S)

in order to conclude the proof of non-expansiveness for L (Λ≤1
⊕ ). Recall that what remains

to be shown is:

∀s, t ∈ S
Λ≤1
⊕
, s (C[R])P t⇒ u (C[R])

+

V̂ v, with s
eval−→ u, t

eval−→ v. (8.6)

So we fix s0, t0 ∈ SΛ≤1
⊕

such that s0 (C[R])P t0. Our approach is as follows: we split the

moves s0
eval−→ u0 and t0

eval−→ v0 into a sequence of transformations with (s0, t0) as point of
departure, and (u0, v0) as end point.

1. In a first step, we translate our L (Λ≤1
⊕ )-states s0 and t0 into L (C×S)-states. By

definition of C[R], we know that there exists E ∈ E (L (Λ≤1
⊕ )), s′, t′ ∈ E, and

C ∈ C(E → EP) such that s0 = C[s′], and t0 = C[t′]. From there, we define s
(C×S)
0 :=

{(C, s′)1}, and t
(C×S)
0 := {(C, t′)1}. Looking at the definition of (C♦R), we can

immediately see that—as represented in Figure 8.5—this transformation guarantees

that the resulting pair (s
(C×S)
0 , t

(C×S)
0 ) is in (C♦R).

2. Then, we take the operational semantics —as states of L (C×S)—of s
(C×S)
0 , and

t
(C×S)
0 . For this step to work, we need to guarantee that the operational seman-

tics preserves the relation ((C♦R))
+

, i.e. that the resulting pair of S(·,·)-elements

(Js(C×S)
0 K, Jt(C×S)

0 K) is still in (C[R])
+

. We will prove this—which in fact consists in
the core of the non-expansiveness proof —in Lemma 8.3.16 later.

3. In the third step, we go back from S(·,·) to S
L (Λ≤1

⊕ )
, by applying the forgetful function

to Js(C×S)
0 K and Js(C×S)

0 K.We know that the resulting pair of states is back in (C[R])
+

as represented in Figure 8.5: it is an immediate consequence of Lemma 8.3.12.

4. At the end of the third step, we have states that are still in EP—i.e. sub-distributions
over programs—but such that all the program in their support are actually values.
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The fourth step consists in taking the associated states in EV̂ . This transformation

also preserves (C[R])
+

, as we have shown in Lemma 8.3.11.

5. In the last step, we see that the states
̂

F (Js(C×S)
0 K) and

̂
F (Jt(C×S)

0 K) obtained as

described above actually coincide with the states u and v defined by s0
eval−→ u and

t
eval−→ v. It is a consequence of Lemma 8.3.14, and of the fact that F (s

(C×S)
0 ) = s0,

and F (t
(C×S)
0 ) = t0. From there, as represented in Figure 8.5, we can conclude that

u (C[R])
+
v, and as a consequence, we have proved Equation (8.6).

To sum up, it means that what remains to be shown to conclude the proof that (C[R])
+

is a ε-bisimulation is:

∀s, t ∈ S(·,·), s (C♦R) t ⇒ JsK (C♦R) JtK.

The proof is based on the fact that (C♦R) is a ε-bisimulation on the WLTS L (C×S). We
first remark that we have built (C♦R) in such a way that if R is a L (Λ≤1

⊕ ) ε-bisimulation,

then the convex closure of (C♦R) is a ε-bisimulation on L (C×S).

Lemma 8.3.15 Let R be a ε-bisimulation on L (Λ≤1
⊕ ). Then ((C♦R))

+
is a ε-bisimulation

on L (C×S).

Proof. The action τ is the only action on the WLTS L (C×S), and the transition relation
is defined using the one-step transition for S(·,·). It means that it is enough to look at each

rule of Figure 8.2, and to see that indeed ((C♦R))
+

is preserved under those rules. �

Lemma 8.3.16 If s ((C♦R))
+
t, then it holds that also JsK ((C♦R))

+
JtK.

Proof. The proof is by induction on the length of the reduction sequence s→?
S(·,·)JsK.

• If it is 0, it means that s is a normal form. Then we can see from the definition of

((C♦R))
+

that it implies that t too is in normal form: as a consequence JtK = t,
which shows the result.

• We suppose that the results holds for n, and that the length of the reduction sequence

is n + 1. Then we do one step of reduction for both s and t, and since ((C♦R))
+

is a bisimulation, the resulting states are still related by ((C♦R))
+

. From there, we
can apply the induction hypothesis, and it concludes the proof.

�

Observe that we have now shown that all implications represented in Figure 8.5 can be de-

rived; we can deduce from there that whenever sC[R]EP
t, we have also that s′ (C[R])

+

EV̂
t′,

where s′ and t′ are the states obtained by doing the eval action respectively on s and t.
When combining this with the similar result we already have for the applicative actions
in Lemma 8.3.10, we obtain Lemma 8.3.17 below.

Lemma 8.3.17 Let R be a clustered binary relation for L (Λ≤1
⊕ ) such that R� R. Then

it holds that C[R]� (C[R])
+

.
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Since the composition by contexts preserves ε-boundedness, it means that if R is a ε-
bisimulation, then C[R] is a ε-bisimulation up to convex closure. From there—and since
the convex closure is a valid up-to technique—we can conclude—as stated in Proposi-
tion 8.3.18 that the WLTS L (Λ≤1

⊕ ) is non-expansive.

Proposition 8.3.18 The WLTS L (Λ≤1
⊕ )—equipped with state-contexts as specified in

Definitions 8.3.5 and 8.3.6—is non-expansive.

Since we have shown non-expansiveness for L (Λ≤1
⊕ ), we are now able to apply Proposi-

tion 8.3.4, which tells us that the trace distance on Λ≤1
⊕ is non-expansive.

Theorem 8.3.19 δtr
Λ≤1
⊕

is a non-expansive distance.

We know—from Proposition 8.3.3—that the trace distance on Λ≤1
⊕ is observationally cor-

rect and—from Theorem 8.3.19—that it is also non-expansive. As a consequence, we are
now able to apply Proposition 8.1.1, which allows us to finally conclude that it is sound.

Theorem 8.3.20 The trace distance δtr
Λ≤1
⊕

is sound with respect to the observational dis-

tance in Λ≤1
⊕ .

8.3.7 Full Abstraction of the Trace Distance on Λ≤1
⊕ .

We now show that the trace distance is fully-abstract, i.e. that it coincides on programs
with the observational distance. Since we already know that it is sound, what remains to
be shown is that it is complete, i.e.:

∀ programs M,N, δtr
Λ≤1
⊕

(M,N) ≥ δctx
Λ≤1
⊕

(M,N).

Our proof is based on the testing characterization of the bisimilarity distance on a
WLTS—that we presented in Proposition 8.2.4. More precisely, we show that the traces
on L (Λ≤1

⊕ ) can be emulated by Λ≤1
⊕ contexts, that play a similar role to the applicative

contexts we used to define the trace equivalence for CBN Λ⊕ in Definition 4.2.1 in Chap-
ter 4—or the Λ⊕-contexts we used to show completeness of the probabilistic applicative
bisimilarity for CBV Λ⊕ in Chapter 5—Observe that our construction is closer of the
former than of latter, since we are using WLTSs here instead of LMCs. When we look at
the set of those traces that are admissible from a state that consists in a sub-distribution
over programs—that is, a state in EP—we see that:

T (EP) = {ε} ∪ {eval.V1 . . . eval.Vn.eval | ∀i, Vi a value}
∪ {eval.V1 . . . eval.Vn | ∀i, Vi a value}.

For every trace α ∈ T (EP), we build a context that emulates α, i.e. for every program
M , Obs(C[M ]) = Prob(α ↓)(s(M)).

Definition 8.3.20 Let α be a trace in T (EP). We define the Λ≤1
⊕ -context emulating α,

that we denote Cα, as follows:

Cε = [·];
Ceval.V1...eval.Vn.eval = [·]V1 . . . Vn;

Ceval.V1...eval.Vn = Ceval.V1...eval.Vn−1.eval
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Observe that we indeed obtain Λ≤1
⊕ -context, since for every trace α, x ` C[x] is indeed

a valid affinity judgment. Moreover, we can see that for any program M , and for α
admissible trace from {M1}, it holds that: Prob({M1} ↓)(α) = Obs(Cα[M ])—the proof is
done by induction on traces, and uses the fact that all applicative actions are deterministic.
From there, looking at the inductive definition of bisimulation distance for WLTS, we can
show that the context distance is a lower bound on the trace distance.

Proposition 8.3.21 (Completness of the Trace Distance on Λ≤1
⊕ ) δctx

Λ≤1
⊕
≤ δtr

Λ≤1
⊕

.

Proof. Let M,N be two Λ≤1
⊕ programs. Using the trace characterization of bisimilarity

distance—Proposition 8.2.4—we see that:

δtr
Λ≤1
⊕

(M,N) = sup
α∈T (EP)

|Prob({M1} ↓)(α)− Prob({N1} ↓)(α)|.

If we take α ∈ T (EP), we see now that Prob({M1} ↓)(α) = Obs(Cα[M ]), while Prob({N1} ↓
)(α) = Obs(Cα[N ]). Now we observe that by definition of the observational distance it
holds that:

|Obs(Cα[M ])−Obs(Cα[N ])| ≤ δctx
Λ≤1
⊕

(M,N).

Since it is true for every trace α ∈ T (EP), it implies that δtr
Λ≤1
⊕

(M,N) ≤ δctx
Λ≤1
⊕

(M,N),

which shows the result. �

When we combine this completeness result with the soundness result from Theorem 8.3.20,
we obtain that the trace distance and the observational distance coincide on Λ≤1

⊕ -programs.

Theorem 8.3.22 The trace distance δtr
Λ≤1
⊕

is fully abstract with respect to observational

distance for Λ≤1
⊕ .

8.3.8 ε up-to composition by contexts and convex sums.

We have shown already that taking the convex closure is a valid quantitative up-to tech-
nique. We want now to study a more involved up-to technique, in the aim of generalizing
to the quantitative case the up-to-contexts line of reasoning, that is a regular occurrence in
the study of higher-order programming languages. Since we work in a probabilistic affine
setting, we need to combine up-to contexts with up-to convex closure: more precisely, we

are going to show that the operator R 7→ (C[R])
+

is a valid quantitative up-to technique.
First, we can see that this operator preserves ε-boundedness. Recall that in the course of
the non-expansiveness proof, we have shown that:

R� R ⇒ C[R]� (C[R])
+
.

This statement is however weaker than what we need to show now, that is:

R� (C[R])
+ ⇒ C[R]� (C[R])

+
.

The proof follows roughly the same path as the non-expansiveness proof. We consider
separately the applicative actions and the eval action: we deal with the first ones in
Lemma 8.3.23.
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Lemma 8.3.23 Let R be such that R � (C[R])
+

. Let V ∈ V, and s, t be such that

sC[R]EV̂
t. Then it holds that u (C[R])

+

EP
v, where u, v are the L (Λ≤1

⊕ )-states defined

as s
V−→ u, and t

V−→ v.

Proof. By looking at our definition of C[R], we see that there exists E ∈ E (L (Λ≤1
⊕ )),

(s′, t′) ∈ RE , C ∈ C(E → EV̂) such that s = C[s′] and t = C[t′]. We distinguish two cases:

• either C is of the form λx.D, and then u = D[s′]{V/x}, and v = D[t′]{V/x}, and we
see that the result holds.

• or C = [·], and it implies that E = EV̂ . In this case, we see that s
V−→ u, t

V−→ v and
from there we can conclude using the hypothesis on R.

�

We want now to show the counterpart of Lemma 8.3.23 for the action eval. In this end,
we need once again to use the WLTS L (C×S). The main idea is as follows: as in the proof
of non expansiveness, we reduce step-by-step an element in (C × S) of the form (C, s),
with s a L (Λ≤1

⊕ )-state, but we now allow ourselves to also rearrange the L (C×S)-state as
each step of the reduction. Essentially, a rearrangement is a change in the way we split
the underlying global L (Λ≤1

⊕ )-state between a context and a program.

Definition 8.3.21 Let S be a clustered relation on L (Λ≤1
⊕ ), and (s, t) a pair of L (C×S)-

states in (C♦S) such that there exist:

• I a finite set, a family (Ei)i∈I over E (L (Λ≤1
⊕ )), and a family (Ci)i∈I over states-

contexts such that Ci ∈ C(Ei → EP);

• for every i, a finite set Ji, a family (Fi,j)j∈Ij over E (L (Λ≤1
⊕ )), and a family (Di,j)j∈Ij

over C(Fi,j → Ei);

such that the L (C×S)-states s and t can be written as follows:

s =
∑
i∈I

αi · {(Ci, si)1}; ∀i ∈ I, si =
∑
j∈Ji

βi,j · Di,j [s′i,j ]; s′i,j ∈ Fi,j ;

t =
∑
i∈I

αi · {(Ci, ti)1}; ∀i ∈ I, ti =
∑
j∈Ji

βi,j · Di,j [t′i,j ]; t′i,j ∈ Fi,j ;

with ∀i ∈ I, (w(si) = 0 ∧ w(ti) = 0) implies Ji = ∅. Then we say that the pair of states
(u, v) is a meaningful rearrangement for the pair (s, t), where u, v are defined as:

u :=
∑

i∈I,j∈J
αi · βi,j · {(Ci[Di,j ], s′i,j)

1}

v :=
∑

i∈I,j∈J
αi · βi,j · {(Ci[Di,j ], t′i,j)

1}

Observe that rearranging does not change the underlying global L (Λ≤1
⊕ )-state, that can be

retrieved by the forgetful function F: whenever (u, v) is a rearrangement of (s, t), it holds
that F(s) = F(u), and F(t) = F(v). We can also observe that if s, t are both in normal
form, then it is also the case that u and v are in normal form. Moreover, rearranging

is exactly what is needed to go back to ((C♦R))
+

when we start from two states (u, v)

obtained as s
τ−→ u, t

τ−→ v with (s, t) ∈ ((C♦R))
+

, as we state in Lemma 8.3.24 below.
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Lemma 8.3.24 Let s, t be two states in L (C×S) such that s ((C♦(C[R])
+

))
+

t. Then

there exists (u, v) a meaningful rearrangement of (s, t) such that u ((C♦R))
+
v.

We represent our proof technique in Figure 8.6. The idea is that—similarly to what we
have done in the non-expansiveness proof—we start with two L (C×S)-states that are in
(C♦R). Then, we reduce these two states step-by-step in parallel, and at each step we

rearrange them in order to force them to go back in ((C♦R))
+

. In Lemma 8.3.25 below, we
show that this process indeed terminates—i.e. we reach S(·,·)-elements that are in normal
form—and then in Lemma 8.3.26, we will show that by using F we can indeed retrieve
from those normal forms the L (Λ≤1

⊕ )-states produced by the action eval.

Lemma 8.3.25 Let S be any clustered relation, and (s, t) ∈ (C♦S). Then there exists no
pair of infinite sequences (un)n∈N, (vn)n∈N over S(·,·) such that:

1. u0 = s, v0 = t;

2. if i is odd, ui→S(·,·)ui+1 and vi→S(·,·)vi+1 ;

3. if i is even, (ui+1, vi+1) is a meaningful rearrangement of (ui, vi).

Proof. Observe that we had to show in Lemma 8.3.13 a similar—but weaker—result
—with the aim of defining the operational semantics on (C× S). Recall that a key point
there was that if (C, s)→(C×S) D , then for every (D, t) in the support of D , c(D) < c(C),
where c : C → N is as defined in Proposition 7.4.1 from Chapter 7. Here, we cannot use
the function c(·) anymore, because when rearranging a state {(C, s)1}, we can obtain for
instance a state {(D, t)1} with c(C) < c(D). Instead, we build a function p : (C×S)→ N3,
where N3 is equipped with the lexicographic order, as follows:

p((C, s)) = (sup{c(M) |M ∈ S(F(C[s]))}, height(s), is-val(s)),

where is-val(s) = 0 if s ∈ EV̂ , 1 if s ∈ EP; and height(s) = supM∈S(s) height(M) with

height(M) the number of symbols in M . We now associate to each pair s, t ∈ S(·,·) a
element in N3, by taking

p(s, t) = sup{p(C, s′) | (C, s′) ∈ (S(s) ∪ S(t)) not a (C× S)-value},

where the sup is taken with respect to the lexicographical order on N3. We first show the
following auxiliary result: if (sn, tn)n∈N is a sequence such that Conditions 1, 2, 3 hold,
then:

1. if i is odd—i.e. there is a step of reduction in L (C×S)—then p(si+1, ti+1) < p(si, ti),

2. if i is even—i.e. the step consists in a rearranging—then p(si+1, ti+1) ≤ p(si, ti).

From this auxiliary result, we will be able to conclude since there can’t be any infinite
decreasing sequence in N3 equipped with the lexicographical order. We now show that our
auxiliary result indeed holds:

• We first show item 2. We can see by looking at the definition of rearrangement that
if p(si, ti) = (α, β, γ), then the first component of p(si+1, ti+1) is also α—since a
rearranging cannot change F(si), F(ti). We then see that γ can increase only when
β decreases, and that β cannot increase, and we have the result.
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• We then show item 1. To do that, we see—by looking at the rules of Figure 8.2—that
for any (C, s) ∈ (C × S), (C, s) →(C×S) D implies that for every (C′, s′) ∈ S(D), it
holds that p(C′, s′) < p(C, s).

�

It means that a sequence of pairs (si, ti) as specified in Lemma 8.3.25 must at some point
reach a pair (sN , tN ), such that at least one among sN , tN is in normal form for →S(·,·) .
In Lemma 8.3.26 below, we show that when it happens, then both sN , tN are in normal
form, and moreover when applying the forgetful function, we get back the pair (u, v) of

L (Λ≤1
⊕ )-states defined as F(s0)

eval−→ û and F(t0)
eval−→ v̂.

Lemma 8.3.26 Let S be any clustered relation, and s, t be two states connected by (C♦S).
Let (un)0≤n≤N , (vn)0≤n≤N be two maximal finite sequences—i.e. there cannot be ex-
tended—such that the conditions 1, 2, 3 of Lemma 8.3.25 hold. Then it holds that uN
and vN are in normal for for →S(·,·), and moreover F(uN ) = JF(s)K, and F(vN ) = JF(s)K
.

Proof. The proof is similar to the one we did when showing validity for the operational
semantics on (C× S). �

We are now ready to show the counterpart of Lemma 8.3.23 for the action eval.

Lemma 8.3.27 Let R be a clustered relation on the states of the WLTS L (Λ≤1
⊕ ), such

that R� (C[R])
+

. Then it holds that, for every s, t such that sC[R]EP
t, u (C[R])

+

EV̂
v,

with u, v defined by s
eval−→ u, and t

eval−→ v.

Proof. The proof is as represented in Figure 8.6. First sC[R]EP
t means that there exist

E ∈ E (L (Λ≤1
⊕ )), and a state-context C ∈ C(E → EP), such that s = C[s′], and t = C[t′].

Looking at the L (C×S)-states {(C, s′)1} and {(C, t′)1}, we see—using Lemma 8.3.24—that

because R � (C[R])
+

, there exists a pair of sequences (un)1≤n≤N , (vn)1≤n≤N over the
states of L (C×S) such that:

• u0 = {(C, s′)1}, v0 = {(C, t′)1}, and if i is odd, ui →(C×S) ui+1, vi →(C×S) vi+1,
while if i is even, (ui+1, vi+1) is a meaningful rearrangement of (ui, vi).

• N is even, and one among the uN , vN is in normal-form for →(C×S);

• if i is even, (ui, vi) ∈ ((C♦(C[R])
+

))
+

; if i is odd, (ui, vi) ∈ ((C♦R))
+

.

Observe that we can indeed suppose that one among uN , vN is in normal form, because
otherwise we could do one more step →(C×S). It means that we can apply Lemma 8.3.26,

that tells us: F̂(uN ) = u, and F̂(vN ) = v. We moreover know that (uN , vN ) ∈ ((C♦R))
+

,

so when we apply the forgetful function to this pair, we end up in (C[R])
+

, i.e. it means

that (F(uN ),F(vN )) ∈ (C[R])
+

. We are now able to conclude by using Lemma 8.3.11,

that tells that (C[R])
+

is preserved by .̂ �

Proposition 8.3.28 The closure up-to convex sum combined with the composition by

context R 7→ (C[R])
+

is a valid up-to technique on the WLTS L (Λ≤1
⊕ ).
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s0 t0C[R]

s
(C×S)
0 t

(C×S)
0

(C♦R)

u1 v1((C♦(C[R])
+

))
+

u3 v3((C♦(C[R])
+

))
+

...
...

u2 v2((C♦R))
+

uN vN((C♦R))
+

Normal Forms

F (uN ) F (vN )(C[R])
+

F̂ (uN ) F̂ (vN )(C[R])
+

eval eval

τ τ

τ τ

F F

·̂ ·̂

Figure 8.6: Proof Scheme for validity of the up-to technique R 7→ (C[R])
+

.

Proof. Recall that since we know already that taking the convex closure is a valid up-to
technique, it is enough to show that:

R� (C[R])
+ ⇒ C[R]� (C[R])

+
.

So we take R such that R� (C[R])
+

. Lemma 8.3.23 and Lemma 8.3.27 tell us that the
right-hand side holds. �

We now illustrate how the up-to techniques we have just developed help us to compute
the trace distance between Λ≤1

⊕ -programs.

Example 8.3.5 Consider, as an example, a sequence of terms (Mn)n∈N defined induc-
tively as follows:

M0 = λx.Ω; N0 = λx.Ω;

Mn+1 = λy.(yMn); Nn+1 = λy.(y(Nn ⊕
1
2

n+1

Ω)).

We define αN :=
∏

1≤i≤N (1 − 1
2N

). Our goal is to show that the trace distance between
MN and NN is smaller or equal to (1 − αN ). To do that, we fix N ∈ N, and we build
a (1 − αN )-bisimulation up-to closure by oriented contexts. We first define a sequence
(βN )0≤i≤N of non-negative real numbers in [0, 1], by: βN = 1, and βNi =

∏N
j=i+1(1− 1

2j
).

From there, we take as ε-bisimulation candidate the reflexive closure of:

RN ={({MN
1}, {NN

1})} ∪ {({M̂i
1
}, βi · {N̂i

1
}) | 0 ≤ i ≤ N}

∪ {({Mi
1}, βi+1 · {

̂
Ni ⊕

1

2i+1 Ω
1

}) | 0 ≤ i ≤ N − 1}.
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We can first see that RN is indeed (1 − αN )-bounded: indeed, for every (s, t) ∈ RN , it
holds that |w(s)−w(t)| ≤ (1− inf0≤i≤N β

N
i ) = (1− αN ). Figure 8.7 allows us to see that

moreover RN � C[R]N , which concludes the proof. Observe that it would have been much
more complicated to find directly a (1 − αN )-bisimulation, since it has to contain all the

pairs ({VMN−1
1}, {V (NN−1 ⊕

1

2N−1 Ω)
1
}) for every value V .

{MN
1}

weight = 1

R

{NN 1}
weight = 1

R

sN = {M̂N
1
}

weight = 1

tN = {N̂N
1
}

weight = 1

si = {M̂i
1
}

weight = 1

ti = βNi {N̂i
1
}

weight = βNi

{VMi−1
1}

weight = 1

βNi {V (Ni−1 ⊕
1
2i Ω)

1

}
weight = βNi

= C[ui−1] = C[vi−1]

ui = {Mi
1}

weight = 1

vi = βNi+1 · {(Ni ⊕
1

2i+1 Ω)
1

}
weight = βNi+1

{M̂i
1
}

weight = 1

(1− 1
2

i+1
) · βNi+1 · {N̂i

1
}

weight = βNi

s0 = {M̂0
1
} = {N̂0

1
} = t0

weight = 1

= si = ti

R

C[R]

R

R

eval eval

V V

eval eval

Figure 8.7: Fragment of the WLTS L (Λ≤1
⊕ ) to compute the trace distance between MN

and NN .

8.4 Trace Distance for Λ!
⊕

Recall that the bisimilarity distance on WLTSs L (Λ⊕
cbn) and L (Λ⊕

cbv) lead to unsound
distances for respectively CBN Λ⊕ and CBV Λ⊕. Moreover, as we will see in the next
chapter, it is also the case when we consider the bisimilarity distance on the LMC Mcbv

Λ⊕
.

So in order to account for the copying phenomenon, we need a significant change into the
structure of the underlying transition systems. Our approach consists in asking a state
of the transition system to represent several programs—instead of just one program, as
we have done until now. This way, we become able to keep track of the evolution of
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several copies of the same program. In this chapter, we build accordingly an applicative
WLTS for Λ!

⊕ and thus define the trace distance for Λ!
⊕, using the bisimilarity distance

on this WLTS. We then show that this trace distance is fully abstract with respect to the
observational distance for Λ!

⊕.
The work in this section has been published in a joint paper with Ugo Dal Lago [26]. A

long version of this paper can be found in [25]. It contains in particular the details of the
non-expansiveness proof, which is similar—while more involved—to the non-expansiveness
proof for the affine calculus Λ≤1

⊕ , and that we will not recall in full details in the present
thesis.

8.4.1 Some Useful Terminology and Notation

In this section, we will make heavy use of sequences of terms and types. It is thus conve-
nient to introduce some terminology and notation about them.

A finite (ordered) sequence whose elements are e1, . . . , en will be indicated as e =
[e1, . . . , en], and called an n-sequence. Metavariables for sequences are boldface variations
of the metavariables for their elements. Whenever E = {i1, . . . , im} ⊆ {1, . . . , n} and
i1 < . . . < im, the sub-sequence [ei1 , . . . , eim ] of an n-sequence e will be indicated as eE .
If the above holds, E will be called an n-set. If e is an n-sequence, and I is a permutation
on {1, . . . , n}, we note eI the n-sequence [eI(1), . . . , eI(n)]. We can turn an n-sequence into
an (n + 1)-sequence by adding an element at the end: this is the role of the semicolon
operator. We denote by [en] the n-sequence in which all components are equal to e. We
denote by 0̄ the unique 0-sequence—i.e. the empty sequence.

Whenever this does not cause ambiguity, notations like the ones above will be used
in conjunction with syntactic constructions. For example, if σ is an n-sequence of types,
then !σ stands for the sequence [!σ1, . . . , !σn]. As another example, if σ is an n-sequence
of types and E is an n-set, then xE : σE stands for the environment assigning type σi
to xi for every i ∈ E. As a final example, if M is an n-sequence of terms and σ is an
n-sequence of types, `M : σ holds iff `Mi : σi is provable for every i ∈ {1, . . . , n}.

8.4.2 The WLTS L (Λ!
⊕).

Our first building block towards formalizing what the states of L (Λ!
⊕) are is the notion

of a tuple: a tuple element consists in two sequences of programs, where the programs in
the first sequence are non-evaluated programs meant to be duplicable, while programs in
the other one are not allowed to be copied.

Definition 8.4.1 Tuples are pairs of the form K = (M ,N) where M and N are se-
quences of Λ!

⊕-programs. The set of all such tuples is indicated as TUPLES. The first
component of a tuple is called its exponential part, while the second one is called its linear
part.

We now equip tuple elements with types, in order to be able to control the type of each
program contained in the tuple. Moreover, we design typing judgments for tuples which
specify that the programs that appear at some fixed indexes in the linear part of the tuple
must be Λ!

⊕-values. Observe that this idea is a generalization of what happens in L (Λ≤1
⊕ ),

where we have the class of programs, and the class of distinguished values. We first extend
our typing judgments on Λ!

⊕-program: if M is a program, and σ? = (σ, b) ∈ A × {⊥,>},
we write `M : σ? when `M : σ and moreover ((b = >) ⇒ M ∈ VΛ!

⊕
).
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Definition 8.4.2 We define the set of tuple types as

T = {(σ, τ ?) | σ sequence over A , τ ? sequence over A × {>,⊥}}.

We write ` (M ,N) : (σ, τ ?) if `M : σ , `N : τ ?.

We say that (σ, τ ) is a (n,m)-tuple type if σ and τ are, respectively, an n-sequence and
an m-sequence. To make the notations more readable, if (σ, b) ∈ A × {⊥,>}, we will
sometimes denote it as σb.

Definition 8.4.3 We call a pair (K,A) ∈ TUPLES×T such that ` K : A an explicitly
typed tuple. We denote by T` the set of all explicitly typed tuples.

In Example 8.4.1 below, we illustrate this notion of valid typing judgment for tuples.

Example 8.4.1 We consider the program M := (λ!x.I) ⊕ Ω. Observe first—using the
typing rules for Λ!

⊕ given in Chapter 7—that ` M : σ with σ := !α → β → β. We use
this program M to build a tuple element: we take K = ([M,Ω] , [I]). We look now for a
tuple type for K: we take A := ([σ, α→ α] ,

[
(α→ α)>)

]
). Since α → α is a valid type

for both I and Ω, and that moreover I is a value, we see that ` K : A, hence (K,A) is an
instance of explicitly typed tuple.

We now define the set of states we will use for the Λ!
⊕-applicative WLTS. Recall that

the states of the WLTS L (Λ≤1
⊕ ) were of two kinds: sub-distributions over programs, and

sub-distributions over distinguished values. Here, we generalize this idea: the set of states
is the disjoint union over all tuple types A, of sub-distribution over tuples of type A. We
formalize this in Definition 8.4.4 below.

Definition 8.4.4 (States of the Applicative WLTS for Λ!
⊕) We define the set of tuple-

states SΛ!
⊕

as follows:

SΛ!
⊕

:=
⋃

A tuple type

{(D , A) | D ∈ ∆({K | ` K : A})}

Similarly to what we have done for the WLTS L (Λ≤1
⊕ ) for the affine calculus, or the

WLTS L (Λ⊕
cbn) for Λ⊕, we associate a state to every valid typing judgment on Λ!

⊕-

programs. First, to any program M , we associate a tuple element Ṁ as follows: we put
M in the linear part, and we leave the exponential part empty.

Definition 8.4.5 Let M be a Λ!
⊕-program, and σ a Λ!

⊕-type. We define Ṁ as the tuple

element Ṁ := (0̄, [M ]), and σ̇ as the tuple type σ̇ := (0̄,
[
σ⊥
]
) . If κ = (`M : σ) is a valid

typing judgment in Λ!
⊕, we define the state associated to κ as s(κ) := ({Ṁ1}, σ̇) ∈ SΛ!

⊕
.

We will also use the notation sσ(M) to mean s(`M : σ), when `M : σ is a valid typing
judgment.

Example 8.4.2 As in Example 8.4.1, we consider M := (λ!x.I) ⊕ Ω, and σ := !α →
β → β. Then the tuple state associated to the typing judgment for program (` M : σ) is
as follows:

s(`M : σ) = ({(0̄, [(λ!x.I)⊕ Ω])
1}, (0̄,

[
σ⊥
]
)).
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Action Modalities for the environment

How do states in SM !
⊕

interact with the environment? This is captured by the labels

in AM !
⊕

, and the associated probability matrix. As the WLTSs L (Λ≤1
⊕ ) and L (Λ⊕

cbn),

L (Λ!
⊕) has applicative and evaluation actions. However, it has also two other kinds of

actions, called storing actions and Milner’s actions, that are designed to track more closely
the copying phenomenon. All these actions are type directed in the sense that when we
consider some state s = (D , A) ∈ SM !

⊕
, the ability of the environment of performing an

action a depends only on the type A, and similarly the type we will obtain after having
done the action a depends also uniquely on A. Similarly, the actions respect the convex
structure of the states, in the sense that the effect of a on (D , A) can be recovered—in the
natural way—from the action of a on the ({K1}, A) for all K ∈ S(D). As a consequence,
our approach to define the transition relation for the WLTS L (Λ!

⊕) is as follows: for each
kind of action, we first specify the effect those actions have on types—i.e. for each action
a of this kind, we give a relation

a−→ ⊆ T×T—and then we specify the effect they have
on atomic states —i.e. we give a relation

a−→ ⊆ T`×SΛ!
⊕

. From there, we will put back

everything together, and we will define the full transition relation in Definition 8.4.18.

Evaluation Actions

We first define the counterpart of the eval action for L (Λ≤1
⊕ ). The base principle is that

only programs in the linear part of the tuple can be evaluated: this reflects the fact that
in the operational semantics of Λ!

⊕, no reduction can take place inside !-boxes. Observe

that a major difference with the WLTS L (Λ≤1
⊕ ), or the applicative WLTSs for Λ⊕, is

that a state can now contain possibly more than one non-evaluated program available
to the environment. It means that the environment must choose to which one of those
programs he wants to apply an evaluation action. It must be a program that has not been
already evaluated, i.e. it must be typed by a τ⊥; after the evaluation, the tuple type will
be updated to indicate that the program has been evaluated.

Definition 8.4.6 (Evaluation Actions on Types) We define the transition reduction

at type level for evaluation actions:
evali−→ ⊆ T×T by:

(σ, τ ?)
evali−→ (σ, τ ?

{1,...,i−1}; τ
>
i ; τ ?

{i+1,...,n}) when τ?i = τ⊥i .

If A is in the domain of
evali−→ , we say that evali is an admissible action on A.

Definition 8.4.7 Let i ∈ N. We define
evali−→ ⊆ T`×SΛ!

⊕
—that we call atomic transition

relation for the action evali —as follows: if k = (K,A) ∈ T` such that evali is an
admissible action for A, we say that evali is an admissible action for k, and we define:

k
evali−→ (

∑
V

JNiK(V ) · {(M ,N{1,...,i−1};V ;N{i+1,...,n})
1}, B),

where the sequences M , N are such that K = (M ,N), and A
evali−→ B.

Storing Actions

We introduce now the storing actions: it corresponds to the environment choosing a term
of the form !M from the linear part of the underlying tuple, unboxing it and transferring
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the content to the exponential part of the tuple. Observe that for specifying such an
action, it is sufficient to give the index corresponding to the position of the program that
we want to unbox. We will denote (?i) the corresponding label, so we define:

A? := {(?i) | i ∈ N}.

Definition 8.4.8 (The Storing Action on Types) Let A = (σ, τ ?) be a tuple type.
We say that (?i) is an admissible action at the type A if ∃ι with τi =!ι>. If it is the case,

we write A
(?i)−→ B with B = (σ; ι, τ ?

{1,...,n}\{i}).

Observe that whenever the action (?i) is admissible for some type for tuple A, it holds
that for every tuple K = (M ,N) of type A, the program Ni must be of the form !L. This
remark allows us to define the storing action on such tuple K: we remove Ni of the linear
part of the tuple, and we store L in the exponential part.

Definition 8.4.9 (The Storing Action on Tuple Element) Let i ∈ N. We define
(?i)−→ ⊆ T` × SΛ!

⊕
—that we call transition relation for the action (?i) —as follows: if

(K,A) ∈ T` is such that (?i) is an admissible action at the type A, we say that (?i) is an
admissible action for (K,A), and we define:

(K,A)
(?i)−→ ({(M ;L,N{1,...,n}\{i})

1}, B)

where B is the unique type with A
(?i)−→ B, the sequences M , N are such that K = (M ,N),

and the program L is such that Ni =!L.

Please observe that this action is in fact deterministic: it means that the resulting tuple
element is uniquely determined.

Example 8.4.3 We consider the tuple element K = [I] , [I, !Ω], and we note σ = α→ α.
We can see that ` K : A with A = ([σ] ,

[
σ⊥, !σ>

]
) ∈ T. Looking at Definition 8.4.8 and

Definition 8.4.9, we see that the action (?1) is admissible at the type A, so the atomic

transition relation
(?1)−→ is admissible from (K,A), and:

(K,A)
(?1)−→ ({([I,Ω] , [I])1}, ([σ, σ] ,

[
σ⊥
]
)).

Milner’s Actions

We now look at Milner’s actions, that we named this way in reference to the so called
Milner’s law !A ≡ A⊗!A in Linear Logic. The action (!i) takes the i-th term in the
exponential part of the tuple, makes a copy of it, evaluates it and put the result into the
linear part. Observe that—as storing actions—a Milner’s action is entirely specified by
giving the index i identifying the program. We denote (!i) the corresponding label, and
accordingly we define A! := {(!i) | i ∈ N}.

Definition 8.4.10 (Milner’s action on Tuple Types) Let A = (σ, τ ?) be a tuple type.
We say that (!i) is an admissible action at the type A if the length of the exponential part

σ is not smaller than i; when it is the case, we define A
(!i)−→ (σ, τ ?;σ>i ).
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Definition 8.4.11 (Milner’s action on Tuple Elements) Let i ∈ N. We define
(!i)−→

⊆ T`×SΛ!
⊕

—that we call transition relation for the action (!i) —as follows: if (K,A) ∈ T`
is such that (!i) is an admissible action at the type A, we say that (!i) is an admissible
action for (K,A), and we define:

(K,A)
(!i)−→ (

∑
V

JMiK(V ) · {(M ;N ;V )1}, B)

where B is the unique tuple type with A
(!i)−→ B, and the sequences M , N are such that

K = (M ,N).

Example 8.4.4 We note σ = α → α. We define respectively a tuple element K and a
type for tuple A as:

K = ([I ⊕ Ω] , [I]); and A = ([σ] ,
[
σ>
]
).

We see that ` K : A holds, and that the action (!1) is admissible at the indexed tuple
type A, hence the action (!1) is admissible when starting from (K,A). We see that:

(K,A)
(?1)−→ (

1

2
· {([I ⊕ Ω] , [I, I])1}, ([σ] ,

[
σ>, σ>

]
)).

Applicative Actions

We look now at applicative actions, that play the same role as the applicative action on
L (Λ≤1

⊕ ): they model environments passing arguments to programs. Here, we have to
adapt this idea to our tuple framework: indeed, we can see the tuple as a collection of
programs available to the environment, which is free to choose with which of the programs
to interact with by passing it an argument. A crucial point, however, is that when building
this argument, the environment is allowed to use other components of the tuple. For
this reason, we need to be able to express all open terms M that can be build by the
environment using free variables that are designed to be replaced by components of the
tuple.

We first look at a more general problem, which is to describe how we can transform
a tuple into another tuple—in a uniform way: to do this, we define here a notion of
tuple context, that we will use also later. Intuitively, a tuple context is simply a tuple
whose components can possibly have free variables, taken in the set of special symbols
[·]!1, . . . , [·]!n, . . . , [·]1, . . . , [·]n—that are not regular variables, so cannot be used as bounded
variables.

Definition 8.4.12 A tuple context is a pair (M ,N) where M and N are sequences of
(not necessarily closed) typable terms, and their free variables are contained in the set
{[·]i | i ∈ N} ∪ {[·]!i | i ∈ N}.

If C = (M ,N) is a tuple context, and B = (σ, τ ?), A = (ι,υ?) are tuple types, we say
that C is a tuple context from A to B, and we note C ∈ C(B → A) when:
• ![·]! :!σ `M i : ιi;
• We note τ and υ the underlying sequences over A from τ ? and υ?, and n and m their

respective length. We ask that there exists a partition {E1, . . . Em} of {1, . . . , n} such
that for every j ∈ {1, . . . ,m}, it holds that ![·]! :!σ, [·]Ej : τEj ` Nj : υj.

• for every j such that υ?j is of the form υ>j , then either Nj = [·]i with τ?i = τ>i , or Nj is
of the form λz.N , λ!z.N , or !N .

147



8.4. TRACE DISTANCE FOR Λ!
⊕

We now formalize how we can fill a tuple context with a tuple element:

Definition 8.4.13 Let A,B be two tuple types, and C = L,K ∈ C(A → B). Let K =
(M ,N) such that ` K : A. Then we define C[K] = (T ,U) ∈ TUPLES where:

∀i ∈ {1, . . . , n}, Ti = Li{M/[·]!}
∀i ∈ {1, . . . ,m}, Ui = Ki{M/[·]!}{N/[·]},

and n, m are such that B is a (n,m)-tuple type.

Observe that when C ∈ C(A→ B), and ` K : A, it indeed holds that ` C[K] : B. Recall
that our goal here is to build a value that will be passed as argument to one of the values
of type σ → τ contained in the linear part of the original tuple, in order to model the
environment doing an applicative action—so we need to generate a tuple that consists
only of a value in the linear part. More precisely, if we fix A a tuple type, and σ a Λ!

⊕-type
that we take as target, we have to ask for a tuple context C ∈ C(A → (0̄,

[
σ>
]
)): indeed

it guarantees that C[K] will be of the form V̇ , with V some value of type σ, as soon as
` K : A. We also have to keep track of the programs in the linear part that are consumed
when building the value V , hence if A is a tuple type, and E a set of indexes, we define
a set CV(A → σ | E) that corresponds to all the way of generating a value when having
in input a tuple of type A, and such that the only non-duplicable programs used are the
ones with index in E.

Definition 8.4.14 Let A = (σ, τ ?) an tuple type. We denote by CV(A→ σ | E) the set
of those Λ!

⊕-terms M—with possible free variables the [·]i and [·]!i—such that (0̄, [M ]) ∈
C((σ, τ ?

E)→ (0̄,
[
σ>
]
)).

We now define the applicative actions: we need to specify which tuple type we take as
starting point, the index i0 of the non-duplicable program to which we want to pass a
value as argument, and a Λ!

⊕-term that will be used to generate the argument.

Definition 8.4.15 We call applicative labels the objects of the form (A, i, E,M) where:

• A = (σ, τ ?) is an tuple type, and there exists ι, υ such that τ?i = (ι→ υ)>;

• M is a Λ!
⊕-term such that M ∈ CV(A→ ι | E), and i 6∈ E.

We note A@ the set of all applicative labels.

We will also sometimes denote @i
A(E,M) for the label (A, i, E,M). An applicative action

(A, i, E,M) is admissible only when starting from the type A. After having done the
action, the resulting tuple type is as follows: τi must be replaced by υ, and all the programs
in the linear part—hence usable only once—that have been used to build the argument
must be removed.

Definition 8.4.16 (Applicative actions on Types) Let B = (σ, τ ?) be a tuple type,
and a = (A, i, E,M) be an applicative label . We say that this label is an admissible action
for the tuple typeB when A = B. If it is the case, we write B

a−→ (σ, τ ?
{1,...,n}\(E∪{i}); υ

>),

with A = (σ, τ ?), and υ the Λ!
⊕-type such that τ?i = (ι→ υ)>.

Definition 8.4.17 (Applicative actions on Tuple elements) Let a = (A, i, E,M) be
an applicative label. We define

a−→ ⊆ T` × SΛ!
⊕

as follows: for every (K,A) ∈ T` such

that a is admissible for A, we take:

(K,A)
a−→ (

∑
V

JWi(M [K])K(V ) · {(M ,N{1,...,n}\(E∪{i});V )1}, B).

where B is the unique type with A
a−→ B, the sequences M , N are such that K = (M ,N).
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Definition of the WLTS

We are now ready to define the applicative WLTS for Λ!
⊕. Our definition is based on

the atomic transition relations
a−→ that we have defined for evaluation actions, storing

actions, Milner’s actions, and applicative actions respectively in Definitions 8.4.7, 8.4.9,
8.4.11 and 8.4.17. We also add actions indexed by tuple types, in order to be always able
to distinguish between two explicitly typed tuples with distinct types.

Definition 8.4.18 We define the applicative WLTS for Λ!
⊕ as L (Λ!

⊕) = (SΛ!
⊕
,LΛ!

⊕
,→

, w) where:

• SΛ!
⊕

is as defined in Definition 8.4.4;

• LΛ!
⊕

:= {evali | i ∈ N} ∪ A! ∪ A? ∪ A@ ∪ATUPLES;

• The transition relation is defined as follows: if s = (D , A), then an action a is
admissible for s if:

– or a = A, and then s
A−→ s.

– or a ∈ {evali | i ∈ N}∪A! ∪A? ∪A@, and the action a is admissible at the type
A. Then:

s
a−→ (

∑
K∈D

D(K) · EK , B),

where B is defined by A
a−→ B, and for every K ∈ S(D), DK is defined by

(K,A)
a−→ (EK , B).

• w(D , A) = |D |.

Example 8.4.5 We give in Figure 8.8 a fragment of L (Λ!
⊕), designed to illustrate our

definitions. We consider programs of the form Mε =!(Ω⊕ε I), for ε ∈ D. We type those
programs with the recursive type σ := µα.(!α→!α): recall that it means that σ =!σ →!σ.
We look at the effect of some of the actions that can be triggered by the environment when
starting from the state:

s!σ(Mε) = ({(0̄, [Mε])
1}, 0̄,

[
!σ⊥
]
).

8.4.3 The Trace Distance for Λ!
⊕

Our goal now is to use the WLTS L (Λ!
⊕) to build a distance on Λ!

⊕-programs, as we

have done for the affine language Λ≤1
⊕ with L (Λ≤1

⊕ ). We first look at which states of
L (Λ!

⊕) are comparable: we have to find the equivalence classes for R1
L (Λ!

⊕ )
. As stated in

Lemma 8.4.1 below, these equivalence classes are obtained by taking all states with the
same underlying tuple type.

Lemma 8.4.1 For every tuple type A, we define EA := {s ∈ SΛ!
⊕
| ∃D , s = (D , A)}.

Then E (L (Λ≤1
⊕ )) = {EA | A ∈ T, EA 6= ∅}.

Definition 8.4.19 We define the applicative trace distance as the distance on Λ!
⊕ pro-

grams (δtr
Λ!
⊕

)σ : Pσ ×Pσ → [0, 1] taken as:

(δtr
Λ!
⊕

)σ(M,N) := δ
L (Λ!

⊕ )

Eσ̇
(sσ(M), sσ(N)).
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s!σ(Mε) {(0̄, !(Ω⊕ε I))1}, (0̄,
[
!σ>

]
)

{([Ω⊕ε I] , 0̄)1}, ([σ] , 0̄)

ε · {([Ω⊕ε I] , [I])1},
([σ] ,

[
σ>
]
)

(ε2 · {[Ω⊕ε I] , [I, I]1}),
([σ] ,

[
σ>, σ>

]
)

(ε · {([Ω⊕ε I] , [V ])1}
, ([σ] ,

[
!σ>

]
))

with ` V :!σ

(ε · {([Ω⊕ε I] , [!(Ω⊕ε I)])1},
([σ] ,

[
!σ>

]
)

since ![·]!1 :!σ `![·]!1 :!σ

eval1

(?1)

(!1)

(!1) @1
([σ],[σ>])

(∅, V )

@1
([σ],[σ>])

(∅, ![·]!1)

Figure 8.8: A Fragment of L (Λ!
⊕)

Example 8.4.6 Recall that the two Λ≤1
⊕ -programs (Ω⊕ε1 I) and (Ω⊕ε2 I) are at observa-

tional distance |ε1 − ε2| —as we can see easily for instance using the characterization by
traces of the observational distance for Λ≤1

⊕ . We want now to look at what happens when
we are allowed to duplicate these programs, so we consider the family of Λ!

⊕-programs
Mε := !(Ω ⊕ε I) for ε ∈ D that we introduced in Example 8.4.5. We fix any type τ , and
define σ = τ → τ ; we can see that ` Mε :!σ. In the present Example, we show—again by
using a characterization by traces—that:

(δtr
Λ!
⊕

)σ(Mε1 ,Mε2) ≥ sup
n∈N
|εn1 − εn2 |.

Indeed, observe that s(` Mε :!σ) = ({(0̄, [!(Ω⊕ε I)])
1}, (0̄,

[
!σ⊥
]
)). Let us now consider,

for every n ∈ N, the trace αn = eval1 · (?1) · (!1)n. For every ε ∈ [0, 1], the execution of the

trace αn starting from sMε := s(`Mε :!σ) is as follows: sMε

eval1→ t
(?1)→ s0

(!1)→ . . .
(!1)→sn with:

t = ({(0̄, [!(Ω⊕ε I)])
1}, (0̄,

[
!σ>
]
))

si = (εi · {([Ω⊕ε I] , [I, . . . , I])1}, ([σ] ,
[
σ>, . . . , σ>

]
));

As a consequence, we see that Prob(sMε ↓)(αn) = εn, which allows us to conclude that:

(δtr
Λ!
⊕

)!σ(Mε1 ,Mε2) ≥ sup
n∈N
|Prob(sMε1

↓)(αn)− Prob(sMε2
↓)(αn)| = sup

n∈N
|εn1 − εn2 |.

We will show later—using an up-to technique combining contexts and convex closure—that
the other inequality also holds.

Our first correctness criterion for a distance on programs is that it should be observa-
tionally correct, in the sense of Definition 8.1.3, i.e. that the distance should distinguish
at least as much as the context [·], that simply executes the program it receives as input.
As we show in Proposition 8.4.2 below, it is indeed the case for the trace distance on Λ!

⊕
that we have just defined.
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Proposition 8.4.2 The trace distance on Λ!
⊕-programs δtr

Λ!
⊕

is observationally correct.

Proof. Let σ be a type in AΛ!
⊕

, and M,N two Λ!
⊕-programs at this type. Our goal is to

show that (δtr
Λ!
⊕

)σ(M,N) ≥ |Obsσ(M)−Obsσ(N)|. As a first step, we unfold the definition

of (δtr
Λ!
⊕

)σ, and rewrite the observational correctness requirement using the trace distance

on L (Λ!
⊕). It becomes:

δ
L (Λ!

⊕ )

Eσ̇
(sσ(M), sσ(N)) ≥ |Obsσ(M)−Obsσ(N)|.

We are going to use the characterization by traces of distance bisimilarity. Observe
first that w(sσ(L)) = Obsσ(M) for every L with ` L : σ. Then we see that the empty
trace ε is admissible for every state s, and besides w(s) = Prob(s ↓)(α), hence we can
conclude:

δ
L (Λ!

⊕ )

Eσ̇
(sσ(M), sσ(N)) ≥ |Prob(sσ(M) ↓)(ε)− Prob(sσ(N) ↓)(ε)|

= |w(sσ(M))− w(sσ(N))| = |Obsσ(M)−Obsσ(N)|.

�

Full Abstraction

The proofs of soundness and non-expansiveness for the trace distance on Λ!
⊕ follow the

same path as the ones for the Λ≤1
⊕ trace distance—that we have presented in details in

Section 8.3.1. We give here the main steps, but a complete proof can be found in [25]. We
first equip the WLTS L (Λ!

⊕) with state-contexts—in the sense of Definition 8.3.3—since
we want to be able to express non-expansiveness as a property of the WLTS L (Λ!

⊕). To
do this, we use the tuple-contexts that we have build in Definition 8.4.12: recall that for
every pair of tuple types A,B, we called C(A→ B) the set of tuple context with A as point
of departure, and B as target. Here, we need to define sets of state-contexts C(E1 → E2)
for every pair E1, E2 of equivalence classes in E (L (Λ!

⊕)). Recall that we have shown in
Lemma 8.3.2 that E (L (Λ!

⊕)) = {EA | A ∈ T}, where the EA are all the states of the form
(D , A) ∈ SΛ!

⊕
.

Definition 8.4.20 We take C(EA → EB) := C(A → B). If s = (D , A) ∈ EA, and
C = (M ,N) ∈ C(A→ B), we denote by C[s] the state in EB defined as:

C[s] := (
∑
K

D(K) · {C[K]1}.

Any context for the programming language Λ!
⊕ can also be seen as a state-context: we

state this formally in Remark 8.4.1 below.

Remark 8.4.1 For every Λ!
⊕-program M of type σ, and C a Λ!

⊕-context such that [·] : σ `
C : τ . Then C′ = (0̄, [C{[·]1/[·]}]) is a state-context in C(Eσ̇ → Eτ̇ ). By abuse of notation,
we will again note C for the state-context C′. Observe that with these notation, for every
program M of type σ, sτ (C[M ]) = C[sσ(M)].

We first show that proving non-expansiveness for the WLTS L (Λ!
⊕) is a valid approach

to show non-expansiveness of the trace distance on the programming language Λ!
⊕.

Proposition 8.4.3 If the WLTS L (Λ!
⊕) equipped with state-contexts as specified in Def-

inition 8.4.12 is non-expansive, then the trace distance on Λ!
⊕ is also non-expansive.
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Proof. Let M,N be two Λ!
⊕-programs of type σ, and C a Λ!

⊕-context such that [·] : σ ` C :

τ . To prove non-expansiveness of the trace distance, we need to show: δ
L (Λ!

⊕ )

Eτ̇
(sτ (C[M ]), sτ (C[N ])) ≤

δ
L (Λ!

⊕ )

Eσ̇
(sσ(M), sσ(N)). Using Remark 8.4.1, we are able to rewrite our objective as:

δ
L (Λ!

⊕ )

Eτ̇
(C[sσ(M)], C[sσ(N)]) ≤ δ

L (Λ!
⊕ )

Eσ̇
(sσ(M), sσ(N)). We see that the latter statement

holds as soon as the WLTS L (Λ!
⊕) is non-expansive, which concludes the proof. �

The path to show non-expansiveness for the WLTS L (Λ!
⊕) is broadly similar to the one we

followed when showing non-expansiveness of the WLTS L (Λ≤1
⊕ ). The first step consists in

equipping L (Λ!
⊕) with a convex sum operator. As for L (Λ≤1

⊕ ), our construction here is
based on the fact that finite measure are a cone: if s = (D , A) and t = (E , A) are two states
in EA, we can take α·s+β ·t := (α·D +β ·E , A). It means that we can consider the convex
closure of any clustered relation on states, as defined in Definition 8.3.9. Moreover, we can
see that the convex structure L (Λ!

⊕) is well-behaved, in the sense of Definition 8.3.12: as a
consequence, using Proposition 8.3.9, we see that taking the convex closure is a valid up-to
technique. However, there is a major difference with L (Λ≤1

⊕ ), that essentially comes from

the fact that Λ≤1
⊕ is an affine calculus, hence the operational semantics of a Λ!

⊕-program
has always finite support. It is not the case here for Λ!

⊕, and as illustrated in Example 8.4.7
below, it implies that we cannot replicate the main component of the non-expansiveness

proof for Λ≤1
⊕ —the fact that as soon as R is a ε-bisimulation, it is also the case of (C[R])

+
.

Example 8.4.7 We fix σ = σcbn → σcbn—where σcbn is the type for the encoding of CBN
Λ⊕ into Λ!

⊕, that we defined in Chapter 7—, and we build a 1
2 -bisimulation on L (Λ!

⊕) as
follow:

R = {(sσ(Ω), sσ(I ⊕ Ω))} ∪ {(∅, A), (
1

2
·D , A) | (D , A) ∈ SΛ!

⊕
}.

We are now going to build a particular context C in C(Eσ̇ → σ̇), such that it is not the

case that (C[sσ(Ω)], C[sσ(I⊕Ω)])� (C[R])
+

. To do this, we are going to use the program
L ∈ Λ⊕—that we build in Example 1.2.3 and analyzed in Example 1.2.4 of Chapter 1—such
that its operational semantics in CBN Λ⊕ is JLK =

∑∞
1≤n

1
2n · {n

1}, where n is the n-th

Scott natural number. We look at the encoding of L in Λ!
⊕, and we denote again n for the

encoding of n in Λ!
⊕.

We now consider the Λ!
⊕-context C = λx.(λy.[·]x)L, and we transform it into a tuple

context by taking as usual (0̄, [C{[·]1/[·]}]). We denote again C this state-contexts, and we
see that C ∈ C(σ̇ → σ̇). We see that:

C[sσ(M)] = ({(0̄, [C[Ω]])
1}, σ̇)

eval1−→ s =
∑
n∈N

1

2n
· {0̄, [λy.(Ωn)]

1}, (0̄,
[
σ>
]
)

C[sσ(N)] = ({(0̄, [C[I ⊕ Ω]])
1}, σ̇)

eval1−→ t =
∑
n∈N

1

2n
· {0̄, [λy.((I ⊕ Ω)n)]

1}, (0̄,
[
σ>
]
)

But we can see now that (s, t) 6∈ (C[R])
+

, hence (C[R])
+

is not a 1
2 -bisimulation.

This problem comes from the fact that the probabilistic execution tree of a Λ!
⊕-program

can have infinite branches. To overcome this, we define the closure of a relation up-to
infinite convex sum. We first need to add additional structure to a WLTS equipped with
a convex structure, in order to be able to talk about infinite sum of states.
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Definition 8.4.21 We say that a WLTS L w is equipped with a countable convex sum
operator, if it is equipped with a convex structure, and that moreover for every E ∈ E (L w),
the cone CE is sequentially complete—in the sense of Definition 11.1.1 in Chapter 9.

The completeness requirement on cones guarantee that, if (sn)n∈N is a sequence in E for
some E ∈ E (L w), such that all the terms of the increasing sequence tN =

∑
n≤N sn are

still in E, then the sequence (tN )N∈N has a supremum in E, that we denote by
∑

n∈N sn.

Definition 8.4.22 Let L w be a WLTS equipped with a countable convex sum convex oper-
ator. Let R be a clustered binary relation on states. We call closure of R by infinite convex
sum, and we denote (R)

?
the clustered relation defined as: for every E ∈ E (L (Λ!

⊕)):

∀(sn)n∈N, (tn)n∈N sequences over E, ∀(pn)n∈N with
∑

pi ≤ 1,

(∀n ∈ N, snR tn) ⇒ (
∑
n∈N

pn · sn) (R)
?

(
∑
n∈N

pn · tn).

The key of our non-expansiveness proof is that the operator R 7→ (C[R])
?

preserves ε-
bisimulation on the WLTS L (Λ!

⊕). The proof of this result—that can be found in [25]—is

similar to the one we did to show that R 7→ (C[R])
+

preserves ε-bisimulation on L (Λ≤1
⊕ ),

but more involved, since we need to deal with approximation semantics.

Proposition 8.4.4 Let R be a ε-bisimulation on L (Λ!
⊕). Then (C[R])

?
is also an ε-

bisimulation.

Since C[R] ⊆ (C[R])
?
, Proposition 8.4.4 tells us that the WLTS L (Λ!

⊕) is non-expansive.

Theorem 8.4.5 The WLTS L (Λ!
⊕), equipped with state-contexts as specified in Defini-

tion 8.4.12, is non-expansive.

As a consequence, we obtain using Proposition 8.4.3 that the trace distance on Λ!
⊕ is

non-expansive.

Theorem 8.4.6 (Non-Expansiveness) The trace distance on Λ!
⊕ is non-expansive.

Since we have shown that the trace distance on Λ!
⊕ is both observationally correct and

non-expansive, we can now use Proposition 8.1.1, and concludes that it is sound with
respect to observational distance. We can also prove completeness of the trace distance,
by using the inductive characterization of the bisimilarity distance on the WLTS L (Λ!

⊕).

Similarly to the Λ≤1
⊕ case, the proof—that can be found in [25]—is based on building

contexts design to emulate traces. By combining completeness with soundness, we obtain
full-abstraction as stated in Theorem 8.4.7 below.

Theorem 8.4.7 (Full Abstraction) For every σ, for every program M,N of type σ, it
holds that:

(δtr
Λ!
⊕

)σ(M,N) = (δctx
Λ!
⊕

)σ(M,N).

8.4.4 Up-to techniques on the applicative WLTS for Λ!
⊕

We also looked at up-to techniques on the applicative WLTS L (Λ!
⊕). A detailed account

can be found in [25], we recall here only the main results.

Proposition 8.4.8 Both R 7→ (R)
?

and R 7→ (C[R])
?

are valid quantitative up-to tech-
niques on L (Λ!

⊕).
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We can observe that these quantitative up-to technique are respectively the quantitative
counterpart of the up-to lifting technique and up-to lifting and contexts technique that
Vignudelli and Sangiorgi [107] develop for environmental bisimulation on Λ⊕.

Example 8.4.8 Recall the programs Mε := !(Ω ⊕ε I), for ε ∈ D, that we considered in
Example 8.4.6, and we fix σ any type of the form τ → τ . We have shown in Exam-
ple 8.4.6—using the trace characterization of the bisimilarity distance on L (Λ!

⊕) a lower
bound on the trace distance between Mε1 and Mε2 for any ε1, ε2 ∈ D:

(δtr
Λ!
⊕

)!σ(Mε1 ,Mε2) ≥ sup
n∈N
|εn1 − εn2 |.

Using our up-to techniques, we are now able to show that this lower bound is also an upper
bound. In order to simplify the notations, we define for every ε ∈ D, and n ∈ N ∪ {−1},
the states sεn ∈ L w

Λ!
⊕

as:

sε−1 = ({(0̄, !(Ω⊕ε I)
1}, (0̄,

[
!σ>
]
))

sεn = (εn · {([(Ω⊕ε I)], 0̄)
1}, ([σ] , 0̄)),

We fix ε1, ε2 ∈ D, and we define the relation R as:

R = {(s!σ(Mε1), s!σ(Mε2))} ∪ {(sε1n , sε2n ) | n ∈ N ∪ {−1}} .

For any ε, We represent in Figure 8.9 the effect of all admissible actions that start from
the states s!σ(Mε) and sεn. We can see that R is a α-bisimulation up to R 7→ (C[R])

?
, with

α = supn∈N|εn1 − εn2 |. Since, as stated in Proposition 8.4.8, the infinite convex closure of
the composition by contexts is a valid up-to technique, we obtain that:

(δtr
Λ!
⊕

)σ(Mε1 ,Mε2) = sup
n∈N
|εn1 − εn2 |.

8.4.5 Trace Distance for Λ⊕ via encoding in Λ!
⊕

In [25], we also show that our results on the trace distance for Λ!
⊕ can be lifted back to

ordinary probabilistic λ-calculi Λ⊕, both when call-by-name evaluation and call-by-value
are considered. It is based on the embeddings of CBN and CBV Λ⊕ into Λ!

⊕, that we
have presented in Section 7.3 of Chapter 7. More precisely, we defined L (Λ⊕

CBN ) and
L (Λ⊕

CBV ) two restrictions of the WLTS L (Λ!
⊕) for respectively the CBN and the CBN

operational semantics, by keeping only the states and action relevant in the setting of the
embedding, and we showed that the trace distances obtained this way are fully abstract.
It may be remarked that the WLTS obtained this way looks closely like the structure used
by Vignudelli and Sangiorgi to define environmental bisimulation on CBN and CBV Λ⊕
in [107]. In this sense, what we obtain in this case can be seen as a quantitative extension of
the environmental bisimulation studied by Vignudelli and Sangiorgi. We actually develop
our trace distance for Λ!

⊕ roughly at the same time as Vignudelli and Sangiorgi worked on
environmental bisimulation for probabilistic λ-calculi, and our common point of departure
was the behavioral equivalences for Λ⊕ developed by Dal Lago, Sangiorgi and Alberti
in [32]. Our objectives were however different, since our goal was to be able to talk
about distances instead of equivalences, while they were looking for a notion of applicative
equivalence compatible with imperative features as the ability for programs to store data.
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s!σ(Mε)

sε−1 = {(0̄, [!(Ω⊕ε I)])1}, (0̄,
[
!σ>

]
)

sε0 =

{([Ω⊕ε I] , 0̄)1},
([σ] , 0̄)

sε1 =

ε · {([Ω⊕ε I] , 0̄)1},
([σ] , 0̄)

sε2 =

ε2 · {([Ω⊕ε I] , 0̄)1},
([σ] , 0̄)

ε · {([Ω⊕ε I] , [I])1},
([σ] ,

[
σ>
]
)

= C[sε1]

ε2 · {([Ω⊕ε I] , [I])1},
([σ] ,

[
σ>
]
)

= C[sε2]

C = ((
[
[·]!1
]
, [I])) ∈ C(([σ] , 0̄)→ ([σ] ,

[
σ>
]
))

. . .

eval1

(?1)

(!1)

(!1)

(!1)

Figure 8.9: A Fragment of L (Λ!
⊕)

It is remarkable that the answer to these two problems actually happened to be similar,
i.e. to look at states that track the evolution of several programs—that correspond to the
program we test, and its environment in environmental bisimulation—instead of just one
program.
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Part III

Denotational Semantics for
Higher-Order Languages with

Probabilities.
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Chapter 9

Background: Two Denotational
Models for Higher-Order
Languages with Probability

The growing interest in enhancing programming languages with various probabilistic prim-
itives led to a drive for adapting existing denotational semantics in order to make them
able to interpret probabilistic behaviors. The first denotational semantics for an higher-
order language with probabilistic features was put forward by Saheb-Djahromi in [102],
but while overall his language is higher-order, the probability distributions are considered
only on values of ground types, i.e. integers and booleans. To handle his language, Saheb-
Djahromi adapts the non-deterministic powerdomain—considered before by Plotkin—into
a probabilistic powerdomain for ground domains, i.e. the ones that interpret the integers
and booleans types. Then, in their pioneering work [68, 67] Jones and Plotkin extend the
probabilistic powerdomain to all types, and use it to give a denotational semantics for
a higher-order language similar to PCF⊕, resulting in a computationally adequate model.
Their construction is based on Moggi’s work on computational λ-calculus [86]—where he
gives a denotational semantics to a λ-calculus with generic computational effect in any
Cartesian closed category equipped with a strong monad—that they apply with a monad
built from the probabilistic power-domain. This monadic approach has been continued
by several works [10] [84] aiming to add a notion of approximation to Jones and Plotkin’s
model, with changes to both the monad and the underlying category. Another branch of
the domain-theoretic approach based on the study of powerdomains for probability led
to the introduction of Kegelspitzen by Keimel and Plotkin [95] that combines both the
structure of a convex set and the structure of a directed-complete partial order; it has
resulted in a denotational model of a variant of PCF⊕ based on Kegelspitzen that has
been built in [98]. A very different perspective on denotational semantics for higher-order
probabilistic languages has been brought from the tradition of games semantics, where
types are interpreted as games, and programs as strategies on these games. The first
probabilistic model using games semantics is defined by Danos and Harmer [35], who in-
troduced a fully abstract semantics for a probabilistic variant of idealized algol—i.e. an
extension of PCF⊕ with ground state. Recently, a model of PCF⊕ itself, using concurrent
game semantics has also been introduced and shown to be fully abstract [22]. In this
thesis, we are actually mainly interested by yet another approach, that uses ideas coming
from quantitative semantics and Linear Logic. It has been introduced by Girard in [55]
for the purpose of defining probabilistic coherent spaces, designed as a generalization of
coherent spaces, the objects he used in his model of Linear Logic. Danos and Ehrhard [34]
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then used this notion to build a model of PCF⊕, that was then shown to be fully abstract
in [46]. Probabilistic coherent spaces were also used to build a fully abstract model of a
probabilistic variant of Levy’s Call-by-push-value language [116].

If instead of adding primitives for expressing discrete probabilities, we want to add
primitives for continuous probabilities to a programming language, the problem of giving
an adequate denotational semantics becomes even more complex. The first attempt in
this direction was done by Kozen [70] on a first-order language with a while loop that
was enriched with a random generator on real numbers. Kozen interpreted programs as
stochastic Markov kernels between measurable spaces, obtaining a fully abstract denota-
tional semantics. The category of Markov kernels and measurable spaces, however, is not
Cartesian closed, which makes it impossible to use this category to build a model of an
higher-order language. While there is at the present time no known fully abstract model
for higher-order languages with continuous probabilities, a variety of models have been
proposed over the past few years, and are still under investigation. Staton et al. devel-
oped [63] a denotational semantics for a continuous higher-order language that moreover
handles Bayesian reasoning. Their model is based on Quasi-Borel spaces, that both al-
low to express continuous probability, and give rise to a Cartesian closed category. More
recently, Ehrhard Pagani and Tasson [45] introduced a denotational model for PCFsample

based on the notion of cones and a stability condition on morphisms. The game semantics
approach has been extended as well to the continuous case: Danos and Harmer model has
been generalized by Ong and Vákár [89] into an adequate model of Idealized Algol enriched
with continuous probabilities, while Paquet and Winskel [90] gave an adequate model for
PCFsample—PCF enriched with continuous probabilities, presented in Chapter 1—using
concurrent game semantics.

In this chapter, we are going to present the model of PCF⊕ based on probabilistic
coherent spaces introduced by Danos and Ehrhard [34], and the model for PCFsample based
on complete cones and stable functions introduced by Ehrhard, Pagani and Tasson [45].
In the first part of this chapter, we recall briefly some notions of category theory, that we
then use to describe the underlying structure of the models. We then introduce PCoh,
the category of probabilistic coherence spaces, and Cstabm, the category of measurable
cones and measurable stable functions.

9.1 Categorical Semantics For Higher-Order Languages

In this section, we are going to present some tools from category theory that are designed
to build denotational models for programming languages. Indeed, category theory allows
us to describe which structural properties a concrete model should verify, in order to be a
good candidate for soundness with respect to a given programming language. We assume
the reader familiar with the basic definitions about category theory, for which we refer
to [79]. A category is a collection of objects connected by arrows —called morphisms—that
can be combined by a composition operator ◦. If C is a category, and A,B two object
of C, we denote by C(A,B) the collection of morphisms from A to B. Since we will
usually consider in the following small categories, this collection will actually be a set,
and accordingly we will call hom-sets the sets of morphisms of the form C(A,B). We
denote by C×D the product category of two categories C and D, as defined in Chapter 2
of [79] .
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9.1.1 Cartesian Closed Categories

When interpreting a typed programming language in a category, types are interpreted
as objects, while programs are interpreted as morphisms. It means that the category
we consider should come with functors designed to express the type constructs. For
instance, in the very simple setting of the simply typed λ-calculus with pairs, there are two
type constructs: the binary product ×, and the arrow construct →. The corresponding
categorical structure is Cartesian closeness, that ensures that every objects A, B of such
category have a product object A × B, and an arrow object A ⇒ B. We recall here
the definition of Cartesian Closed Category, since such categories are the natural place to
build any model of higher-order computations.

Definition 9.1.1 (Product) Let C be a category, and A1, A2 two objects of C. A prod-
uct of A1 and A2 is an object (A1 ×A2) together with two morphisms π1 : A1 ×A2 → A1,
π2 : A1 ×A2 → A2, that verifies the universal property represented below:

B

A1 A1 ×A2 A2

f1

f2
f1×f2

π1

π2

Whenever—as it is the case for Cartesian Closed categories, that we define below —binary
product exists for every pair of objects, it actually defines a functor × : C × C → C
(see [79]). To interpret also the → type construct, we need our category to have moreover
an arrow object. Accordingly, we ask for it to be cartesian closed, as defined below:

Definition 9.1.2 A category C is a Cartesian closed category (CCC) if:

• it has a terminal object > —i.e. such that, for every object A of C, there exists
exactly one morphism from A to >.

• Any two objects A, B have a product A×B in C—in the sense of Definition 9.1.1.

• For any two objects A, B, there exists an object (A⇒ B), and a morphism evalA,B :
(A⇒ B)×A→ B in C such that:

∀C object , ∀g ∈ C(C ×A,B),

∃!curry(g) ∈ C(C,A⇒ B) such that g = evalA,B ◦ (curry(g)× idA)

C

A⇒ B

curry(g)

C ×A

(A⇒ B)×A B

curry(g)×idA g

evalA,B

We say that the morphism curry(g) is the currying of g.

In any Cartesian closed category, we can construct a model of simply typed λ-calculus:
a typing judgments of the form x1 : σ1, . . . , xn : σn ` M : τ is interpreted as a morphism
from the object Jσ1K × . . . × JσnK to the object JτK. If we want to be able to interpret
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not only the simply typed λ-calculus, but also more expressive higher-order languages, we
need to add additional structures to some Cartesian closed category. We can for instance
add coproducts, which led to models of λ-calculus with sum-types, and on the logical side
to models of propositional intuitionistic logic. We could also want to interpret the untyped
λ-calculus: in this case we have to ask for the presence of a reflexive object A, i.e. such
that A is isomorphic to A ⇒ A; it comes from the fact that in an untyped setting, we
cannot distinguish between first order function, second-order function, etc, as we do in the
simply typed λ calculus. The first example of such Cartesian closed category with reflexive
object to be looked at—the category DCpo of directed complete partial orders and Scott
continuous functions—was built by Scott and Strachey [109, 111] in their pioneering work
that gave rise to domain theory.

If our target language is PCF, we need to add to a model of simply typed λ-calculus the
categorical structures needed to deal with ground types and with the fixpoint construction.
Scott [110] introduced the standard model of PCF in the category DCpo, that was then
shown by Plotkin [93] to be adequate, while not fully abstract. It has been then generalized
into the class of standard models of PCF which are the cartesian closed category, with
moreover a natural number object—the categorical structure encoding a recursive definition
of natural numbers—and that is ω-cpo-enriched—in particular, it has for consequence that
for every object A,B, the hom-set C(A,B) is a ω complete partial-order. A more general
axiomatisation of sound models for PCF has been later formalized by Hyland and Ong [66]
using the notion of c-fix category. A categorical axiomatisation for adequate—i.e. every
non-terminating program is interpreted by the bottom element of hom-sets—models of
PCF has also been proposed in [18].

9.1.2 Categorical Model of Linear Logic

Linear Logic (LL) has been introduced by Girard in [51]. We recall here only some basic
facts about this logic; more intuitions and details may be found for instance in [54]. Linear
Logic has three kind of connectives used to build formulas: the multiplicative connectives
`,⊗,1,⊥, the additive ones &,⊕,>, 0, and the exponential ones !, ?. An essential feature
of LL is the presence of two disjunctions ` and ⊕, as well as two conjunctions & and ⊗.
The formulas of LL can be interpreted in terms of resources available to some operator;
for instance, we can interpret the two conjunctions as follows: A ⊗ B corresponds to the
case where the operator may use simultaneously the resource A and B, while A&B means
that the operator has to choose whether he wants to use the resource A or the resource
B. The exponential construct !A means that the operator have unlimited access to the
resource A.

The Classical Linear Logic (LL) formulas are generated as follows:

A ::= p | p⊥ | A⊗ A | A⊕ A | A & A | A` A

| > | ⊥ | 1 | 0

| !A | ?A,

where p is an element of a fixed set of logical atoms. Moreover, the dual operator ⊥ is
extended from logical atoms to all formulas using the following rules:

In its original presentation of LL, Girard defined inference rules using one-sided se-
quents, of the form ` γ, where γ is a list of formulas. The sequent ` A⊥1 , . . . ,A

⊥
n ,B1, . . . ,Bm
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(p)⊥ := p⊥ (p⊥)⊥ := p

(A⊗ B)⊥ := A⊥ ` B⊥ (A` B)⊥ := A⊥ ⊗ B⊥

(A⊕ B)⊥ := A⊥ & B⊥ (A & B)⊥ := A⊥ ⊕ B⊥

1⊥ := ⊥ ⊥⊥ := 1 0⊥ := > >⊥ := 0

(!A)⊥ := ?(A⊥) (?A)⊥ := !(A⊥)

Figure 9.1: Duality Operator in Linear Logic

` Γ,A,B,∆
exch` Γ,B,A,∆

init.seq.
` A,A⊥

` Γ,A ` A⊥,∆
cut` Γ,∆

` Γ,A ` ∆,B
⊗

` Γ,∆,A⊗ B

` Γ,A,B `` Γ,A` B
1` 1

` Γ ⊥` Γ,⊥

` Γ,A ` Γ,B
&` Γ,A & B

` Γ,A
⊕L` Γ,A⊕ B

` Γ,B
⊕R` Γ,A⊕ B

>` Γ,>

` Γ weakening
` Γ, ?A

` Γ, ?A, ?A
contraction` Γ, ?A

` ?Γ,A
promotion

` ?Γ, !A

` Γ,A
dereliction` Γ, ?A

Figure 9.2: Deduction Rules for Linear Logic

should be understood as follows: whenever all the formulas Ai are true, then at least one
of the formula Bj holds. The LL inference rules are the ones presented in Figure 9.2. Ob-
serve that both the cut rule and the initial sequent rule use the duality operator defined in
Figure 9.1. The resource policy is reflected in the deduction rules: for instance, the rule ⊗
may be read as follows: in order to know that ` Γ⊥,A⊗B—i.e. if all formulas in the list Γ
hold, then A⊗ B also holds—we have to split the list Γ into two disjoint parts, where the
first one has the resources needed to build A, and the second one has the resources needed
to build B. By contrast, the rule & may be understood as: in order to show ` Γ⊥,A & B,
it is enough to prove that with the resources from Γ, we are able to construct separately
both A and B. We can interpret the rules for exponentials in the same resource oriented
framework. The weakening rule expresses the possibility of discarding a resource of type
!A. The contraction rule allows to transform a data of type !A into a pair consisting of two
data of type !A: it may be interpreted as observing that whenever we have an unlimited
source of A, this situation is equivalent to having two unlimited sources of A available.
The promotion rule should be interpreted as follows: if we are able to construct an element
of type A using only resources of type !B, then as soon as we have an unlimited access
to resources of type B, we can also build as many resource of type A as we like ; it is
because we can duplicate the procedure to produce a A res-source as many times as we
want, and so we are actually able to build an unlimited number of data of type A. The
dereliction rule should be interpreted as extracting a single resource of type A from an
unlimited supply of resources of type A.
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If we have a proof—i.e. a derivation tree built using the rules and axioms of Fig-
ure 9.2—for a particular sequent ` Γ, we are able to transform this proof into another
proof of the same sequent ` Γ that is cut-free—i.e. such that the rule Cut doesn’t ap-
pear in its derivation tree; this transformation is called the cut-elimination procedure,
and its definition may be found in [54]. There is also an intuitionistic variant of Linear
Logic—ILL (Intuitionistic Linear Logic)—that was formalized in a subsequent paper by
Girard and Lafont [52]. In ILL, the connective `, ?,⊥ are absent, and we add as connec-
tive the linear implication (, that can be encoded in LL as A ( B ::= A⊥ ` B. The
rules for ILL may be found for instance in [54]. We will consider also in the following
the fragments MLL—Multiplicative Linear Logic—and MILL—Multiplicative Intuitionis-
tic Linear Logic, that consists in the restriction of respectively LL and ILL to formulas
and proof trees that use only the multiplicative connectives.

The resource interpretation makes LL a natural framework for building a type system
for higher-order programming languages that handle limited resources. LL, and relevant
fragments of it, have been given this way a computational content in the spirit of the
Curry-Howard correspondence; several linear λ-calculi have been proposed, including by
Lafont [72], Abramsky [3], by Wadler [122], etc. The Surface λ-calculus we presented in
Chapter 7, corresponds to ILL extended with recursive types. Recall that this language
has non-terminating programs, meaning that the underlying logic has no cut-elimination
procedure.

Categorical Semantics for Exponential Free Linear Logic

As illustrated before, when building a model for a typed programming language in some
category, we usually interpret types as objects, and programs as morphisms. Simi-
larly—once again in the spirit of the Curry-Howard’s correspondence—a model of a logical
system L is a category C equipped with an interpretation function J·K, that associates to
every formula of L an object in C, and to every proof in L a morphism in C. We also ask
for a correctness criterion on models: a model of a programming language is sound if the
program interpretation is invariant by reduction. Similarly, we look at the equivalence on
proofs defined as the reflexive and transitive closure of the cut-elimination procedure, plus
some additional modularity constraints —we refer to [81] for a more precise definition of
this equivalence relation—and we say that a model of LL should be sound with respect to
this equivalence, i.e. that whenever two proofs are equivalent then their interpretation in
the model coincide.

Definition 9.1.3 If L is a logical system equipped with a cut-elimination procedure, a
category C is a sound model of L if there exists an interpretation function J·K such that
whenever two proofs are equivalent with respect to the cut-elimination procedure, their
interpretation by J·K coincide.

The next step consists in investigating the minimal requirements needed to guarantee that
some concrete category is indeed a sound model for LL. We follow here the perspective
developed by Melliès in [81]. We first look at less complex fragments of LL. First in order to
have a model of MILL—multiplicative intuitionistic linear logic, i.e only the connectives
⊗,(,1 are present—, we need a symmetric closed monoidal category (SMCC): it is a
category equipped with a tensor product, and an object of morphisms, that allows to
interpret respectively the connective ⊗ and(, and with symmetry morphisms, that allows
to implement the exchange rule. Below, we present the formal definition of SMCC in three
steps: first we define what a monoidal category is, then we add symmetry requirement to
it, and finally we give the definition of SMCC.
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Definition 9.1.4 (Monoidal Category) A monoidal category (MC) is a category C
equipped with:

• A bifunctor ⊗ : C× C→ C, called the tensor product;

• An object 1 called the unit object;

• Three natural isomorphisms expressing respectively associativity of ⊗, and that 1 is
a left and right neutral element:

aA,B,C : (A⊗B)⊗ C ∼= A⊗ (B ⊗ C);

lA : (1⊗A) ∼= A;

rA : (A⊗ 1) ∼= A;

such that the two diagrams below commute:

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B

aA,1,B

rA⊗idB
idA⊗lB

((A⊗B)⊗ C)⊗D (A⊗B)⊗ (C ⊗D)

(A⊗ (B ⊗ C))⊗D

A⊗ ((B ⊗ C)⊗D) A⊗ (B ⊗ (C ⊗D))

aA,B,C⊗idD

aA⊗B,C,D

aA,B,C⊗D

aA,B⊗C,D

idA⊗aB,C,D

If we want moreover to be able to swap the objects A, B in the tensor product A⊗B,
we need to ask the monoidal category to be also symmetric, i.e. equipped with a natural
isomorphism swap that performs the swapping.

Definition 9.1.5 (Symmetric Monoidal Categories) A symmetric monoidal category
(SMC) is a monoidal category (C,⊗,1) equipped with a natural isomorphism

swapA,B : A⊗B ∼= B ⊗A,

such that the three following diagrams commute:

A⊗ 1 1⊗A

A

swapA,1

rA

lA

B ⊗A

A⊗B A⊗B

swapB,AswapA,B

idA⊗B

(A⊗B)⊗ C (B ⊗A)⊗ C

A⊗ (B ⊗ C) B ⊗ (A⊗ C)

(B ⊗ C)⊗A B ⊗ (C ⊗A)

swapA,B⊗idC

aA,B,C aB,A,C

swapA,B⊗C idB⊗swapA,C
aB,C,A
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Every cartesian category—i.e. equipped with a terminal object and finite products—is
also a symmetric monoidal category: indeed, we can define natural isomorphisms for
associativity and elimination of the neutral element as a, l, r by combining the projections
π1, π2.

To model the linear arrow of ILL, we need to add a closed structure to a SMC. The
approach is similar to the way we add a closed structure to a cartesian category in Defi-
nition 9.1.2, thus obtaining a cartesian closed category.

Definition 9.1.6 (Symetric Monoidal Closed Category) A symmetric monoidal closed
category (SMCC) C is a SMC equipped, for every object A,B with an object (A ( B)
and a morphism evalA,B : (A( B)⊗A→ B such that:

∀C object , ∀g ∈ C(C ⊗A,B),

∃!curry(g) ∈ C(C,A( B) such that g = evalA,B ◦ (curry(g)⊗ idA).

We want now to add to a categorical model of MILL—i.e. a SMCC—the categorical
structure required in order to obtain a categorical model for MLL. Observe that the LL
multiplicative connective ` not present in ILL may be expressed by using the duality
operator and the multiplicative connectives from ILL. It means that as soon as we have
an appropriate duality mechanism in our category, we can reconstruct a denotation for
multiplicative LL from a denotation for multiplicative ILL. We can use this observation to
define what is a categorical model of multiplicative LL: it is a ?-autonomous category, i.e. a
SMCC with a dualizing object. The notion of ?-autonomous category was introduced by
Barr [11].

Definition 9.1.7 (?-autonomous category) A ?-autonomous category is a symmetric
monoidal closed category (C,⊗,1,() endowed with a dual object ⊥ such that the mor-
phism

dA : A→ (A( ⊥)( ⊥

is an isomorphism —where dA is defined as the transpose of the evaluation map evalA,⊥ :
(A( ⊥)⊗A→ ⊥.

The definition of a ?-autonomous category may also be understood in a logical way: indeed
asking for d to be an isomorphism correspond to adding the law of excluded middle to a
model of ILL.

When we want to add the additive connectives &,⊕, we need to add Cartesian product
to our model: accordingly, a model of exponential-free LL is a ?-autonomous category with
finite products.

Categorical Models for Linear Logic

Difficulties arise, however, when we want to add to a ?-autonomous category a structure
interpreting the exponential connective !. Our account here follows again [81], to which
we refer the reader for a more extensive presentation. A slightly different viewpoint may
be also found in [37]. We can see first that ! should be a comonad, i.e. a functor ! : C→ C
with two natural transformation η : !→ IdC and µ : !→ !2 that moreover verify additional
commutative diagrams (that the reader may find in [79]). From this co-monadic structure,
we obtain morphisms for the dereliction and digging : for every object A ∈ L, we have
morphisms derA : !A → A, and diggA : !A → !!A. However, a co-monad ! does not
necessarily give rise to a sound model of LL. From there, several distinct propositions to
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strengthen the interaction of ! with the structure of the ?-autonomous category had been
put forward, and it’s only recently that they were discovered to be all particular instances
of linear-non-linear models, a categorical axiomatisation introduced by Benton [12].

We present below two of the earlier axiomatisations of sound LL models, in the sense
of Definition 9.1.3 : the new-Seely Model and the Lafont Model. The notion of Lafont’s
model was introduced by Lafont in [73], while the new-Seely model is due to Seely [112]
and Bierman [15].

Lafont Models of Linear Logic

Lafont’s model is based on the notion of commutative comonoid, that we recall below.

Definition 9.1.8 Let (C,⊗,1) be a monoidal category. Then a co-monoid consists of
a triple (M, d, e), where M is an object of C, and d : M → M ⊗ M —called co-
multiplication—and e : M → 1 —called the co-unit—are two morphisms in C such that
the two diagrams below hold:

M M ⊗M (M ⊗M)⊗M

M ⊗M M ⊗ (M ⊗M)

d

d

d⊗idM

aM,M,M

idM⊗d

1⊗M M ⊗M (M ⊗ 1)

M
l

e⊗idM idM⊗e

r
d

If (M1, d1, e1) and (M2, d2, e2) are two comonoids, a morphism of comonoid from M1 to
M2, denoted f : (M1, d1, e1) → (M2, d2, e2), is a morphism f ∈ C(M1,M2) that respects
the comonoid structure, i.e. such that the two diagrams below commute:

M1 M2

M1 ⊗M1 M2 ⊗M2

f

d1 d2

f⊗f

M1 M2

1

e1

f

e2

If moreover (C,⊗,1) is a commutative monoidal category, a comonoid (M, d, e) is
commutative if the following diagram holds:

M

M ⊗M M ⊗M

d

d
swapM,M

The next step to present Lafont construction is the notion of free commutative comonoid
generated by some object A.

165



9.1. CATEGORICAL SEMANTICS FOR HIGHER-ORDER LANGUAGES

Definition 9.1.9 Let (C,⊗,1) a commutative monoidal category, and A an object of C.
A comonoid (M, d, e) is the free commutative comonoid over A if there exists a morphism
εA : M → A, such that moreover the following universal property holds:

∀(M ′, d′, e′) commutative comonoid ∀f : M ′ → A

∃!f †comonoid morphism(M ′, d′, e′)→ (M, d, e)

such that the diagram below commutes in C :

M A

M ′

εA

ff †

The universal property of Definition 9.1.9 implies that when it exists, the free comutative
comonoid over A is unique up to (unique) isomorphism. Another formulation of this uni-
versal property is that the category of commutative comonoids over A has M as terminal
object. By definition, the structure of an exponential modality turns an object A into a
commutative comonoid !A, with the comultiplication given by contraction and the neutral
element given by weakening:

1 !A !A⊗ !A.
weak!A contr!A

The converse does not hold in general, since commutative comonoids may lack a comonad
structure (dereliction, digging, and the action on morphisms). However, Lafont proves
that in case the commutative comonoid is the free one then its universal property allows
one to canonically construct the missing structure, in such a way that we obtain a sound
model of LL.

Definition 9.1.10 (Lafont Model) A ?-autonomous category C is a Lafont model if:

1. it has finite products and,

2. for every object A, there exists a commutative comonoid (!fA, weak!fA, contr!fA)
which is the free commutative comonoid generated by A.

For every A, we denote by derfA the morphism in C(!fA,A) obtained by the universal
property stated in Definition 9.1.9. It is this morphism that implements the dereliction
rule of LL.

New-Seely Models of Linear Logic

Another axiomatisation was proposed by Seely—and then corrected by Bierman. It may
be noted that until now, every known concrete sound models of LL is a new-Seely category.

Definition 9.1.11 (New-Seely Category) A new-Seely category consists of:

• A ?-autonomous category C with finite products

• A comonad (!, der, digg) to model the modality

• Two natural isomorphisms m0 : 1 ∼= !> and m2 : !A⊗ !B ∼= !(A & B).
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such that the diagrams below commute:

!A⊗ !B !(A & B)

!!(A & B)

!!A⊗ !!B !(!A & !B)

m2A,B

diggA⊗diggB

diggA&B

!(!π1×!π2)

m2!A,!B

(!A⊗ !B)⊗ !C !A(!B⊗ !C)

!(A & B)⊗ !C !A⊗ !(B & C)

!((A & B) & C) !(A & (B & C))

a!A,!B,!C

m2A,B⊗id!C id!A⊗m2
B,C

m2
A&B,C m2

A,B&C

!aA,B,C

!A⊗ 1 !A

!A⊗ !> !(A &>)

r!A

id!A⊗m0
m2
A,>

!rA

1⊗ !B !B

!>⊗ !B !(>& B)

l!B

m0⊗id!B

m2
>,B

!lB

!A⊗ !B !B⊗ !A

!(A & B) !(B & A)

swap!A,!B

m2A,B m2B,A

!swapA,B

The definition of new-Seely category may also be expressed in a more elegant way by using
the notion of monoidal adjunction; this viewpoint is developed in [81].

Every model of Linear Logic may be seen as a model of Intuitionistic Logic, i.e. we can
construct a Cartesian closed category from any sound model of Linear Logic. The Seely
axiomatisation of LL models had the explicit purpose of guaranteeing that the co-Kleisli
category associated to ! should be cartesian closed, thus giving a model of Intuitionistic
Logic, or equivalently of simply typed λ-calculus. We recall below the co-Kleisli construc-
tion.

Definition 9.1.12 (Co-Kleisli Category) Let C be a category, and (T, η, µ) a co-monad
on C. The co-Kleisli category CT associated to T is defined as:

• the objects of CT are the same as those of C;

• for every A,B objects of CT , CT (A,B) = C(TA,B).

When the category C is a new-Seely category, the co-Kleisli category C! becomes Cartesian
closed, and consequently a model of simply typed λ-calculus.

Proposition 9.1.1 If C is a new-Seely category, then the category C! is Cartesian closed.

Example 9.1.1 (Coh) The first model of LL was introduced by Girard using the notion
of coherence space [51]. A coherence space A = (|A| ,¨A) is a pair of a set |A|, the web,
and a symmetric reflexive relation ¨A, the coherence.

The exponential modality of the original model is given by the finite cliques functor,
|!A| = {x ⊆f |A| | ∀a, a′ ∈ x, a ¨A a

′}, leading to a new-Seely model. By contrast, the free
exponential modality |!fA| = {µ ∈ Mf (|A|) | ∀a, a′ ∈ S(µ), a ¨A a

′} is given by the finite
multi-cliques functor, as shown in [120]. The morphism (der!A)† factoring !A through !fA
is given by the support relation: (der!A)† = {(S(µ), µ) ; µ ∈ |!fA|}.

On the non-uniqueness of exponential structure.

The additive and multiplicative connectives of LL are entirely determined by the logical
rules that we have presented in Figure 9.2: indeed, if we add another tensor product
⊗′ to the logical system, then for every formulas A,B, it holds that A ⊗ B and A ⊗′ B
are isomorphic. This phenomenon is reflected in the categorical semantics of LL: given a
category, the multiplicative-additive structures (if exist) are unequivocally characterized by
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universal properties as soon as a notion of multilinear map is given. It is notably different
for the exponential: if we add another exponential connective !′ into the linear system,
we are not able, using the linear logic rules, to show that ! and !′ are equivalent. This
has also consequences on the semantics side: it means that several unrelated exponential
notions can coexist in a model of linear logic. An example of such situation may be found
when looking at the category Coh, the model of Linear Logic introduced by Girard, that
we have already considered in Example 9.1.1. As mentioned in Example 9.1.1, we can
define two distinct exponentials in the Coh model: the finite cliques functor and the
finite multi-cliques functor. Such a situation also arises in the category Rel of sets and
relations, when the standard exponential is given by the multiset functor, but where a wide
family of exponential modalities has been introduced using infinite multiplicities [21].

The choice of an exponential structure decides how the model is going to implement
the erasure and copy operations when interpreting a programming language. It may have
deep consequences on the structure of programs interpretations: for instance choosing the
finite cliques functor lead to a finite model of simply typed λ-calculus with finite ground
types—e.g. booleans. Such a choice of exponential structure may also depend on which
computational properties we want the denotational semantics to capture: for instance, in
Rel the exponential from [21] leads to a non-sensible —meaning that non-terminating
terms do not have necessarily the same denotational semantics—model of untyped λ-
calculus, while every model of this language based on the standard exponential is sensible.
A well-chosen exponential modality may also allow to model a more expressive language
in the category: for instance, the Rel modalities introduced in [21] were used in [20] to
give a denotational semantics to a λ-calculus with co-effects.

In this setting, Lafont’s models—presented in Definition 9.1.10—offer a canonical cri-
terion to choose an exponential modality. Indeed, while for every exponential modality,
!A is a commutative comonoid generated by A with respect to ⊗, there is at most one free
commutative comonoid.

Moreover, Lafont’s way of defining the exponential structure expresses a direct con-
nection with the tensor product of the underlying symmetric monoidal category. The
universal property associated to the free exponential allows to express every exponential
modality using the free one, thus giving some genericity to the Lafont construction. More
precisely, if ! is any exponential modality in the same symmetric monoidal category, the
fact that der† is a morphism of comonoids means that we have the diagrams presented in
Figure 9.3:
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!fA A

!A

derfA

der∃!der†

!fA

!A

1

der†

wf

w

!fA

!A

!fA⊗!fA

!A⊗!A

A⊗A⊗ ...

. . .

. . .

der†

c!f

c
der† ⊗ der†

der⊗nf

der⊗n

Figure 9.3: Expressing any exponential modality ! using the free exponential modality !f .

9.2 PCoh: The Category of Probabilistic Coherent Spaces

We present now the category PCoh of probabilistic coherence spaces, and its structure
as a model of Linear Logic, as investigated by Danos and Ehrhard in [34]. Linear Logic
formulas are interpreted by probabilistic coherence spaces (PCS). A PCS consists of both
a web, and a set of quantitative cliques that are vectors over this web, and that moreover
must verify some conditions designed to guarantee that the set of quantitative cliques is
well-formed.

We use the following notations: R+ is the set of non-negative real numbers. When
talking about vectors over a countable set |A|, ea denotes the base vector for a ∈ |A|:
(ea)b := δa,b, with δ the Kronecker delta; and for any vector v ∈ R|A|, we denote va its a
component. If X is a set of vectors over |A|, we call dual of X the set X⊥ = {y | ∀x ∈
X, 〈x, y〉≤ 1}, where the scalar product for x, y ∈ R|A|+ is taken as 〈x, y〉=

∑
a∈|A| xaya ∈

R+ ∪ {∞}.

Definition 9.2.1 ([55, 34]) A probabilistic coherence space is a pair A = (|A| ,P (A))
where |A| is a countable set called the web of A and P (A) is a subset of (R+)|A| called
the cliques of A, such that the following conditions hold:

closeness: P (A)⊥⊥ = P (A),

boundedness: ∀a ∈ |A|, ∃µ > 0, ∀v ∈ P (A), va ≤ µ,

completeness: ∀a ∈ |A|, ∃λ > 0, λea ∈ P (A),

where the dual of a PCS A is defined by A⊥ := (|A| ,P (A)⊥).
A pair (|A| ,P (A)) that verifies the boundedness and completeness conditions—but that

may not be closed—is called a pre-PCS.

The boundedness condition means that for every a in the web, we can look at the supremum
of the valuation of any clique on this particular element of the web. Since we will need
later to talk about those least upper bound, we introduce the following notation now.

Notation 9.2.1 For any PCS A, we will call maximum coefficient of a in A the positive
real (supA)a := supx∈P(A) xa.
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We may observe that the family of maximum coefficients for all a do not completely
characterize the PCS: it can be seen for instance by looking at the PCSs represented
respectively in Example 9.2.1 and Example 9.2.6.

PCSs are a probabilistic generalization of coherent spaces: instead of coherence spaces
cliques—sets of vertices contained in the web—we are now interested into quantitative
cliques: a PCS clique do not associate a boolean value at each vertex anymore, but a
weight that is an element in R+. The bi-duality condition enforced in Definition 9.2.1 is
also similar to the one used by Girard on coherence spaces, in order to distinguish the
family of set vertices that are indeed the cliques of some underlying graph structure.

The duality operator gives us a standard way to construct PCS from some generating
elements: indeed if we take any pre-PCS X, it holds that X⊥⊥ is a PCS. We also endows
the set of cliques P (A) with a partial order : we take the pointwise order on vectors,
i.e. u ≤ v when for all a ∈ |A|, ua ≤ va. With this partial order, we can express in a more
geometrical way the requirements enforced in Definition 9.2.1. The bi-duality operation
can indeed be interpreted as taking the closure of the space of cliques under Scott-closure
and convexity. It is expressed by the following proposition, proved in [55] by a standard
application of the Hahn-Banach Theorem.

Proposition 9.2.2 ([55]) Let I be a countable set and S ⊆ R+[I]. The pair (I, S) is a
probabilistic coherence space iff:

1. S is bounded and complete (see Def. 9.2.1);

2. S is Scott closed, i.e. ∀u ≤ v ∈ S, u ∈ S, and ∀D ⊆ S directed, it holds that
supD ∈ S;

3. S is convex, i.e. ∀u, v ∈ S, λ ∈ [0, 1], λu+ (1− λ)v ∈ S.

The convexity inherent to PCSs makes PCoh particularly suitable for modeling (discrete)
probabilistic computations: the barycentric sum κv + ρw (for κ, ρ ∈ [0, 1], κ+ ρ ≤ 1, v, w
vectors) expresses a computation which returns v with probability κ, w with probability
ρ, and the remainder 1 − (κ + ρ) is the probability that the computation diverges. We
illustrate this idea by looking at the PCSs modeling data, i.e. corresponding to ground
types.

Example 9.2.1 (The PCS Bool.)

t

f

P (Bool)

To model the boolean type, we take as web the pure—i.e. non-
probabilistic—data of this type, i.e. |Bool| = {t, f}. The cliques
are then generated as P (Bool) = {(1, 0), (0, 1)}⊥⊥, meaning that
we take the convexity closure and Scott closure of the program
that returns true with probability 1, and the one that returns
false with probability 1. What we obtain is all the sub-probability
distributions over booleans, i.e P (Bool) = {(p, q) ; p+ q ≤ 1}.

The way we defined the PCS Bool may be extended to other kinds of ground type data.
We give below the PCS modeling the type N of natural numbers in PCF⊕: the cliques are
all sub-distributions over natural numbers.

Example 9.2.2 (PCS of Natural Numbers) We define the PCS NPCoh by taking |N|PCoh =
N, and P

(
NPCoh

)
= {u ∈ RN

+ |
∑

n∈N un ≤ 1}.
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We look now at the morphisms of the category PCoh: the morphisms from a PCS A to
a PCS B are the Scott-continuous and linear functions mapping the vector set P (A) into
the vector set P (B). These linear maps are described as (usually infinite-dimensional)
matrices. The connective ( is interpreted in such a way that we have immediately the
correspondence with PCoh-morphisms: the cliques over A( B are exactly the morphism
from A to B.

Definition 9.2.2 (PCS morphisms) Let A, B two PCSs.

• A PCS morphism from A to B is a matrix f ∈ (R+)|A|×|B| s.t.:

∀v ∈ P (A) , f v ∈ P (B) , (9.1)

where f v is the usual matricial product: ∀b ∈ |B|, (f v)b :=
∑

a∈|A| fa,bva.

• The object of linear morphisms A ( B is defined as |A( B| := |A| × |B|, and
P (A( B) := PCoh(A,B).

We will often use Lemma 9.2.3 below, allowing us to infer condition (9.1) for all v ∈ P (A),
just by testing it on a set G of generators of P (A).

Lemma 9.2.3 Let A,B be two probabilistic coherence spaces and f be a matrix in R|A|×|B|+ .

Let G ⊆ P (A) such that: (i) G⊥⊥ = P (A), and (ii) ∀v ∈ G, f v ∈ R|B|+ ,then: f(G)⊥⊥ =
f(P (A))⊥⊥.

We illustrate Definition 9.2.3 by looking at the morphisms from Bool to itself. Using
Lemma 9.2.3, we see that it is those matrices that send both et—the pure state true—and
ef—the pure state false—into the cliques space of Bool. We see that these morphisms
correspond exactly to Markov chains on two states.

Example 9.2.3 (Morphisms in Bool( Bool.) The element of P (Bool( Bool) are

the matrices x ∈ R{t,f}×{t,f}+ such that xt,t + xt,f ≤ 1, and also xf,t + xf,f ≤ 1. Those
matrices are the one that represent Markov Chains on two states, as illustrated on the
figure below.

true false x ∈ P (Bool( Bool) defined as:

xt,t = 0 xt,f = 1 xf,t = 1
2 xf,f = 1

2 .

1

1
2

1
2

We define now the category PCoh: we need to specify its objects, its hom-sets, and
how the composition and identity for morphisms are defined.

Definition 9.2.3 The category PCoh has as objects PCSs, and PCSs morphisms as
morphisms.

• The identity idA on A is defined as the diagonal matrix given by (idA)a,a′ = δa,a′.

• Composition of morphisms is matrix multiplication: (g◦f)a,c =
∑

b∈|B| fa,bgb,c, where
f ∈ PCoh(A,B), g ∈ PCoh(B, C), and a ∈ |A|, c ∈ |C|.

The above sum
∑

b∈|B| fa,bgb,c converges in R+, because f, g verify condition (9.1).
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9.2.1 PCoh as Model of Exponential-Free Linear Logic

We are now going to present the structure of PCoh as a model of linear logic, that have
been built by Danos and Ehrhard in [34]. First, we give the ?-autonomous structure of
PCoh, and then we define the comonad that have been introduced in [34] in order to
make PCoh a new-Seely category. Our presentation here follows the same structure as
the one done in [28].

We first look at the monoidal structure of PCoh: we present here the bifunctor ⊗ :
PCoh×PCoh→ PCoh that interprets the tensor product.

Definition 9.2.4 (The bifunctor ⊗.) We define a bifunctor ⊗ : PCoh × PCoh →
PCoh as follows:

• The action of ⊗ on objects is specified by: |A ⊗ B| := |A| × |B|, and P (A⊗ B) :=
{v⊗w | v ∈ P (A) , w ∈ P (B)}⊥⊥, where (x⊗ y)(a,b) = xayb, for a ∈ |A| and b ∈ |B|.

• The action of ⊗ on morphisms u ∈ PCoh(A,B) and v ∈ PCoh(A′,B′) is defined
as (u⊗ v)(a,a′),(b,b′) := ua,bva′,b′, for (a, a′) ∈ |A ⊗A′|, (b, b′) ∈ |B ⊗ B′|.

• The symmetry swap ∈ PCoh(A⊗ B,B ⊗A) is given by swap(a,b),(b′,a′) := δa,a′δb,b′.
The other natural isomorphisms (associativity, neutrality) are given similarly.

Example 9.2.4 (The PCS Bool⊗Bool.) Looking at the definition of ⊗, we see that:

|Bool⊗Bool| = {(t, t), (t, f), (f, t), (f, f)}

P (Bool⊗Bool) = {x ∈ R|Bool⊗Bool|
+ | xt,t + xt,f + xf,t + xf,f ≤ 1}.

Observe that the cliques of Bool ⊗ Bool correspond to all sub-distributions over pair of
booleans—it is because the tensor product distributes on the coproduct due to the monoidal
closure. Consider the program M = 〈N,N〉, where N = true ⊕ false. We see that we
can take as denotation: JMK(b1,b2) = 1

4 for every b1, b2 ∈ {t, f}. It corresponds to the fact
that the probability of obtaining (b1, b2) after evaluating M is equal to the probability of
obtaining first b1 and then b2 when we evaluate twice N .

Example 9.2.5 (Actions of ⊗ on morphisms from Bool to Bool.) We illustrate here
the action of ⊗ on morphisms, by considering u, v ∈ PCoh(Bool,Bool) corresponding to
the Markov chains in Figure 9.4a and 9.4b respectively. The resulting morphism u⊗v may
be interpreted as follows: it is the Markov chain that has for states the pair of booleans,
and whose transition function is defined as follows: from a state (b1, b2), it applies in-
dependently the transition function of the Markov chain encoded by u to the boolean on
the left, and the one encoded by v to the boolean on the right. This morphism u ⊗ v is
represented in Figure 9.4c.

The unit of ⊗ is given by the singleton web PCS 1 := ({?}, [0, 1]{?}), which is also equal to
A⊗0 for any A. Observe that, accordingly to the rules of Linear Logic, we can express the
object of linear morphisms in PCoh using only the bifunctor ⊗ and the dual construction
on PCSs: indeed, it holds that A ( B = (A⊥ ⊗ B)⊥. With the bifunctor ⊗, and the
linear implication (, we have in effect equipped the category PCoh with a symmetric
monoidal closed structure, i.e. a model of multiplicative ILL.

Proposition 9.2.4 (from [34]) The category PCoh is symmetric monoidal closed.
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true false

1
2

1
2

1
2

1
2

(a) u ∈ PCoh(Bool,Bool)

true false
1

1

(b) v ∈ PCoh(Bool,Bool)

(true, true)

(false, false)(true, false)

(false, true)

1
2

1
2

1
2
1
2

1
2
1
2

1
2

1
2

(c) u⊗ v ∈ PCoh(Bool⊗Bool,Bool⊗Bool)

Figure 9.4: Example of tensor product of morphisms in PCoh.

To obtain a model of multiplicative LL —i.e Linear Logic with only the multiplicative
connective ⊗,`,1—we need to define now a dualizing object ⊥ in the category PCoh,
that makes it ?-autonomous: we take ⊥ := 1⊥. Moreover, we can see that 1 is preserved
by dualization, i.e. ⊥ = 1.

Proposition 9.2.5 (from [34]) The category PCoh is ?-autonomous.

Example 9.2.6

(t, ?)

(f, ?)

P (Bool( ⊥)

We illustrate here the use of the dualizing object by
considering the PCS (Bool ( ⊥). Looking at the
definition of the linear implication (, we see that
|Bool( ⊥| = {(t, ?), (f, ?)} and P (Bool( ⊥) =

{x ∈ R|Bool(⊥|
+ | x(t,?) ≤ 1 ∧ xf,? ≤ 1}. Observe

that this PCS is isomorphic to Bool⊥.

Recall that to have a model of exponential-free LL, we need to build finite products
on top of the ?-autonomous structure of PCoh. It will allow to interpret the additive
connective &, and by duality also the additive connective ⊕.

Proposition 9.2.6 (from [34]) PCoh admits Cartesian products of any countable fam-
ily (Ai)i∈I of PCSs, defined as

|&i∈IAi| :=
⊎
i∈I
|Ai| =

⋃
i∈I

({i}×|Ai|),

P (&i∈IAi) :=
{
v ∈ R+

|&i∈IAi|; ∀i ∈ I, πi v ∈ P (Ai)
}

where πi v is the vector in (R+)|Ai| denoting the i-th component of v, i.e. πi va := v(i,a).

Notice that the empty product yields the terminal object > defined as |>| = ∅ and
P (>) = {0}. We may write the binary product by A1 &A2. If u ∈ P (A) and v ∈ P (B),
we note 〈u, v〉 the cartesian product of the vector u and v defined as: for a ∈ P (A),
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〈u, v〉(1,a) = ua, and for b ∈ P (B), 〈u, v〉(2,b) = vb. When P (A) and P (B) are disjoint,
we will also omit the indexes. Observe that any v ∈ P (A1 &A2) is equal to the pair
(〈π1 v, π2 v〉) ∈ P (A1)× P (A2) of its components.

Example 9.2.7 We illustrate the product construct of Proposition 9.2.6 by looking at the
PCS Bool&Bool. By definition, P (Bool & Bool) consists of those elements x such that
both π1 x and π2 x are in P (Bool). For instance, it contains the following element:

x(1,t) =
1

2
x(1,t) =

1

2
and x(2,t) = 1 x(2,f) = 0.

We can see that elements in P (Bool & Bool) encode two independent distribution over
the booleans, in contrast with elements in P (Bool⊗Bool), that encode one distribution
over the set of pairs of booleans.

Observe that using the product construct &, we can easily constructs PCSs that cannot
be interpreted as the set of sub-distributions on some underlying set: it is for instance the
case of the PCS Bool & Bool of Example 9.2.7.

9.2.2 PCoh as a new-Seely category, hence a model of LL.

We recall here briefly the exponential modality given by Danos and Ehrhard in [34], that
makes PCoh a new-Seely category and as a consequence gives it the structure of a model
of linear logic. We call this exponential modality the entire exponential modality, denoted
by !e. The use of the adjective entire is motivated by the fact that the morphisms in the
Kleisli category associated to !e should be seen as entire functions from P (A) to P (B), as
we will highlight in this section. We refer to [34] for details.

Definition 9.2.5 We define a functor !e : PCoh→ PCoh.

• Its action on objects is taken as:

|!eA| := Mf (|A|), P (!eA) := {v!e | v ∈ P (A)}⊥⊥, (9.2)

where v!e is the promotion of v, i.e. the vector of (R+)Mf (|A|) defined as v!e
µ :=∏

a∈S(µ) v
µ(a)
a , for any µ ∈Mf (|A|).

• The action of !e on a morphism f ∈ PCoh(A,B) is defined, for any µ ∈ |!eA| and
ν = [b1, . . . , bn] ∈ |!eB|, as:

(!ef)µ,ν :=
∑

(a1,...,an) s.t.
[a1,...,an]=µ

n∏
i=1

fai,bi (9.3)

Notice that the above sum varies on the set of different enumerations of µ. If µ is a
multiset [a, . . . , a] of support a singleton, then the sum has only one term, while in case
of multisets with no repetitions, the sum has n! terms. Remark also that the definition is
independent from the chosen enumeration of ν.

Example 9.2.8 We look to the effect of !e on the morphisms from Bool to itself. Let us
consider the morphism g ∈ PCoh(Bool,Bool) defined at Example 9.2.3. !eg becomes then
a morphism from !eBool to itself. First, we see that !egµ,ν = 0 whenever the cardinality
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of µ and ν are not equal. We look then at what happens when we consider multiset ν, µ
of cardinality 1:

(!eg)[t],[t] = g(t,t) (!eg)[t],[f] = g(t,f) (!eg)[f],[t] = g(f,t) (!eg)[f],[f] = g(f,f)

So we can see that the projections of !eg on the set of multiset of cardinality 1 are essentially
the linear morphism g. If we consider now the multisets of cardinality 2, we see that for
instance:

(!eg)[t2],[t,f] = g(t,t)g(t,f) (!eg)[f2],[t,f] = g(f,t)g(f,f)

(!eg)[t,f],[t,f] = g(t,t)g(f,f) + g(t,f)g(f,t)

We see that the coefficients are obtained by looking at all the possible ways to choose how
to send elements of the multisets µ into elements of the multiset ν, and then taking into
account the cost of sending them using the Markov transition g.

Example 9.2.9 Equation (9.3) introduces arbitrary large scalars, moving us away from
the intuitive setting of distributions and stochastic matrices (see Examples 9.2.1, 9.2.3).
For an example, consider the morphism f ∈ PCoh(Bool,1) defined by ftrue,∗ = ffalse,∗ =

1. Remark that for any n,m ∈ N, we have: !ef[truen,falsem],[?n+m] = (n+m)!
n!m! , which is

the number of different enumerations of the multiset [truen, falsem] with n (resp. m)
occurrences of true (resp. false). This shows why, in the definition of a PCS, coefficients
have to be in the whole of R+ and cannot be restricted to [0, 1].

Denotations of PCF⊕ programs are going to be morphisms in the co-Kleisli category
associated with the comonad !e, i.e. elements of PCoh(!eA,B). Recall that the morphisms
in PCoh(A,B) are the linear functions from the set of A cliques to the set of B cliques.

Formally, morphisms in PCoh(!eA,B) are matrices in RMf (|A|)×|B|
+ . We can however

represent them also as functions from P (A) into P (B), as highlighted below.

Definition 9.2.6 We call functional interpretation of a matrix f ∈ RMf (|A|)×|B|
+ the func-

tion:

f̃ :P (A)→ (R+ ∪ {∞})|B|

x 7→ f x!e

Lemma 9.2.7 (from [34]) The functional interpretation entirely characterizes the mor-
phisms in PCoh(!eA,B), in the following sense:

• For any f ∈ RMf (|A|)×|B|
+ , f is a morphism in PCoh(!eA,B), if and only if the

image of the functional interpretation of f is contained in P (B).

• Two morphisms f, g ∈ PCoh(!eA,B) are equal if and only if their functional inter-
pretation f̃ and g̃ coincide.

Observe that the functional interpretation of morphisms in PCoh(!eA,B) are the power
series with non-negative coefficients from A cliques into B cliques. We highlight this below
on examples for the Bool type.

Example 9.2.10 We consider the denotation of the following two PCF⊕ programs—for
a CBN operational semantics.

M1 = λx. [if x then (if x then I elseΩ) else (if x thenΩ else I)] ;

M2 = λx. [if x then (if x thenΩ else I) else (if x then I elseΩ)] .
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These programs take as argument a probability distribution on booleans. At execution time,
they both sample two times their argument. M1L terminates if and only if the two sampling
of L coincide, while M2L terminates if and only if the two sampling of L do not coincide.
We represent this idea below by looking at the execution tree:

M1L ↓
M2L ↑

M1L ↑
M2L ↓

M1L ↓
M2L ↑

M1L ↑
M2L ↓

L← true L← false

L← true L← false L← true L← false

The morphism f1, f2 in PCoh(!Bool,1) interpreting respectively the program M1 and
N2 are as follows:

f1
µ,? =

{
1 if µ = [t, t] or µ = [f, f];

0 otherwise.
f2
µ,? =

{
2 if µ = [t, f];

0 otherwise.

Observe that the coefficient f iµ,? above corresponds to the number of paths in the execution
tree such that the multiset consisting of all sample results coincide with µ, and moreover
the path end up in a terminating state for MiL. In particular, we see that we can obtain
coefficients that are greater that 1, as soon as we consider types build using !e. Those
scalars may become arbitrarily large when we construct programs that sample arbitrarily
many times from their argument. We can now look at the functional interpretation of f :
it it the function from P (Bool) into P (1) defined as:

f̃1(x) = f1 x!e = x!e
[t,t] + x!e

[f,f] f̃2(x) = f2 x!e = 2 · x!e
[t,f]

= x2
t + x2

f = 2 · xt · xf

We can see that both f̃1 and f̃2 are polynomials of order two with two indeterminates,
that moreover have all their coefficients non-negative.

Example 9.2.11 We present here an example of morphism in PCoh(!eBool,1) that is
not a polynomial, but is still an analytic function, i.e. a power series. Let us consider the
following program of PCF⊕, build using the fixpoint construction—see the syntax of PCF⊕
in Definition 1.3.1 of Chapter 1:

N = fixxB→1λy.B(if y then I elsexy)

This program’s behavior is as follows: it takes an argument of boolean type, and samples
it repeatedly until it gets the value true. In PCoh, the program N is interpreted as the
morphism g ∈ PCoh(!eBool,1) defined as:

gµ,b =

{
1 if ∃n, µ = [fn, t];

0 otherwise.

Looking now at the functional interpretation of g, we see that g̃ is a power series which
has as indeterminates xt and xf:

g̃(x) =
∑
n∈N

xnfxt
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The functorial promotion is equipped with a structure of comonad. The counit (or
dereliction) derA ∈ PCoh(!eA,A) is defined as (derA)µ,a = δµ,[a]. The comultiplication
(or digging), denoted as diggA ∈ PCoh(!eA, !e!eA), is given by (diggA)µ,M = δµ,

⊎
M ,

where
⊎
M is the multiset in |!eA| obtained as the multiset union of the multisets in

M ∈ |!e!eA|.

Proposition 9.2.8 (from [34]) PCoh with the co-monad !e is a new-Seely category,
hence a model of Linear Logic.

In particular, contraction contrA ∈ PCoh(!eA, !eA⊗!eA) and weakening weakA ∈ PCoh(!eA,1)
are given by (contrA)µ,(µ′,µ′′) = δµ,µ′]µ′′ , and (weakA)µ,? = δµ,[ ].

9.2.3 PCoh!: a model for higher-order languages with discrete proba-
bility.

In [34], Danos and Ehrhard define a denotational semantics in PCoh! for both Λ⊕ and
PCF⊕. We first look at how the convexity inherent to the PCS structure allows to encode
the probabilistic choice: the interpretation of a term M ⊕ N is taken as the morphism
1
2JMK + 1

2JNK, where JMK and JNK are respectively the denotational interpretation of
the terms M and N . Danos and Ehrhard then need to build in PCoh! the categorical
structure allowing to build models of untyped λ-calculus and PCF: as we have already
mentioned, it is respectively the existence of a reflexive object, and the existence of a
natural numbers object and cpo-enrichment. The reflexive object is obtained in PCoh! as
the fixpoint of the operation A 7→ (!( &n∈NA))⊥. The natural numbers object is the PCS
NPCoh that we have presented in Example 9.2.2, while the partial order on morphisms is
taken as the componentwise order on matrices—i.e if u, v ∈ PCoh!(A,B), u ≤ v if for all
µ ∈ Mf (|B|), and b ∈ |B|, it holds that uµ,b ≤ vµ,b. Observe that this order is stronger
that the extensional order on the functional interpretations of morphisms—where the
extensional order is taken as: ũ ≤ext ṽ if for every x ∈ P (A), ũ(x) ≤ ṽ(x), with ≤ the
componentwise order on |A|.

Building on these elements, Ehrhard and Danos define formally an interpretation of
every PCF⊕ term in PCoh!. The resulting denotational model has been shown to be fully
abstract by Ehrhard, Pagani, and Tasson in [46].

9.3 Cstabm: The Category of Measurable cones and mea-
surable stable functions.

We give here a brief overview of the Cartesian closed category Cstabm that was introduced
by Ehrhard, Pagani, and Tasson in [45]. It has been designed to provide a model of higher-
order computations with continuous probabilities. To illustrate this, the authors of [45]
built in Cstabm a computationally adequate model of the language PCFsample—the higher-
order language with continuous probabilities presented in Chapter 1. The construction
of the category Cstabm in [45] is done in two steps: the authors first built the category
Cstab of abstract cones and so-called stable functions between cones, and then defined
the category Cstabm as a refinment of Cstab with additional measurability constraints.
We present here the two categories Cstab and Cstabm following the presentation in [45].
All the results we state in this section have also been extracted from [45].
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9.3.1 Cones

The use of a notion of cones in denotational semantics to deal with probabilistic behavior
goes back to Kozen [70]. We take here the same definition of cone as in [45].

Definition 9.3.1 A cone C is a R+-semimodule given together with an R+ valued function
‖ · ‖C called norm of C, and verifying:(

x+ y = x+ y′
)
⇒ y = y′ ‖αx‖C = α‖x‖C

‖x+ x′‖C ≤ ‖x‖C + ‖x′‖C ‖x‖C = 0⇒ x = 0

‖x‖C ≤ ‖x+ x′‖C

The most immediate example of cone is the non-negative real half-line, when we take as
norm the identity. Another example is the positive quadrant in a 2-dimensional plane,
endowed with the euclidean norm. In a way, the notion of cone is the generalization of
the idea of a space where all elements are non-negative. This analogy gives us a generic
way to define a pre-order, using the + of the cone structure.

Definition 9.3.2 Let be C a cone. Then we define a partial order �C on C by: x�C y
if there exists z ∈ C, with y = x+ z.

If x�C y, we will denote by y−x the—unique—element z such that y = x+ z. We define
BC as the set of elements in C of norm smaller or equal to 1. We will sometimes call it
the unit ball of C. Moreover, we will also be interested in the open unit ball B◦C, defined
as the set of elements of C of norm smaller than 1. In [45], the authors restrict themselves
to cones verifying a completeness criterion: it allows them to define the denotation of the
recursion operator in PCFsample, thus enforcing the existence of fixpoints.

Definition 9.3.3 A cone C is said to be sequentially complete if any non-decreasing
sequence (xn)n∈N of elements of BC has a least upper bound supn∈N xn ∈ BC.

We illustrate Definition 11.1.1 by giving the sequentially complete cone used in [45] as the
denotational semantics of the base type R in PCFsample.

Example 9.3.1 We take Meas(X) as the set of finite measures over a measurable space
X and we take ‖µ‖Meas(X) = µ(X) as the underlying norm. It holds that Meas(X) is a
sequentially complete cone, and moreover its unit ball is exactly the set of sub-probability
measures.

The cone Meas(R) —where R is endowed with the Borel σ-field as done in Exam-
ple 1.4.1 in Chapter 1—allows to model continuous data, as shown in [45]: indeed we can
interpret in it the term r of PCFsample for every r ∈ R: we take its denotational semantics
as δr, the Dirac measure with respect to r defined by taking δr(U) = 1 if r ∈ U , and
δr(U) = 0 otherwise.

Example 9.3.2 We look now at another example of sequentially complete cone. We fix
X a measurable space, and µ a measure on X. We take as cone the set of measurable
function X → R+ for some measurable space X, with the norm given as ‖f‖ =

∫
A fdµ.

Lebesgue Monotone Convergence Theorem—see [100]—shows that this cone is sequentially
complete.

Definition 9.3.4 The product cone is defined as
∏
i∈I Ci = {(xi)i∈I | ∀i ∈ I, xi ∈ Ci},

and ‖x‖∏
i∈I Ci

= supi∈I ‖xi‖Ci. We denote by C1 × C2 the binary product
∏
i∈{1,2}Ci.
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The object of the category Cstab are going to be sequentially complete cones. We
need now to look at the morphisms between such cones. The relevant part of the cone for
interpreting programs is actually its unit ball: as a consequence, our morphisms from a
cone C into a cone D are going to be a particular class of functions BC → D.

Definition 9.3.5 Let C, D be cones. We call cone-functions from C to D the functions
BC → D.

• We say that a cone function f from C to D is bounded, if there exists α > 0 such
that f(BC) ⊆ α ·BD = {α · x | x ∈ BD}. We say that f is 1-bounded if it holds
with α = 1.

• We say that a bounded cone function is sequentially Scott-continuous if it is non-
decreasing, and it commutes with the least upper bound of non-decreasing sequences.

It is standard, in order-based denotational models, to ask morphisms to be Scott-
continuous. We can first observe that the addition and the scalar operation—seen as
cones functions—of a sequentially complete cone are always Scott-continuous.

Lemma 9.3.1 Let C be a sequentially complete cone. The addition + : BC × C → C
and the scalar multiplication · : [0, 1]×BC → C are sequentially Scott-continuous.

However, Ehrhard Pagani and Tasson remarked that if we take as morphisms all Scott-
continuous and 1-bounded cones functions, the resulting category is not Cartesian closed.
We sum up briefly the problem here; it essentially comes from the fact that the cone
order on Scott-continuous functions is much stronger than the extensional order. First,
we will consider the denotation of Abramsky’s parallel convergence tester—it takes two
programs, and terminates if at least one of them terminates; see Chapter 5 for a more
detailed computational description.

Definition 9.3.6 (Parallel Convergence Tester for Cones) We denote as 1 the se-
quentially complete cones R+, with the absolute value |·| as norm. We consider the cone
function T‖ : B1×B1→ B1, defined as:

T‖(x, y) = x+ y − x · y.

The cone function T‖ is 1-bounded, non-decreasing, and also Scott-continuous—it can be
seen by observing that it is continuous in the sense of real analysis.

Suppose now that the category of sequentially complete cones, and Scott-continuous 1-
bounded cones functions is Cartesian closed. It means that we can consider the currying
of T‖, that is a morphism T curr

‖ : 1 → (1 ⇒ 1). Since it is a morphism, it has to be

non-decreasing, and as a consequence T curr
‖ (0) ≤ T curr

‖ (1). It’s here that the fact that
we take an order on cones much stronger than the extensional order intervenes: indeed,
what the previous inequality means is that there exists a 1-bounded non-decreasing Scott-
continuous function g : B1 → 1 such that T curr

‖ (0) + g = T curr
‖ (1). However, we can see

that:

T curr
‖ (0, ·) :B1→ 1 T curr

‖ (1, ·) :B1→ 1

z 7→ z z 7→ 1,

and as a consequence we should have g = 1 − z. We reach a contradiction here, because
it means that g isn’t non-increasing: it proves that the category we considered cannot be
Cartesian closed.
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To obtain a Cartesian closed category, Ehrhard Pagani and Tasson ask for an ad-
ditional condition, i.e. the stability condition presented in the next section. Another
possibility would be to relax the requirement of Scott-continuity, by asking them to be
Scott-continuous for the extensional order, instead of the cone order. It is similar to what
is done for Kegelspitzen, for instance in [95]. However, sticking with the cone order and
adding the stability condition also allows to put more constraints on the morphisms.

9.3.2 Cstab: The Category of cones and stable functions.

Stable functions on cones are a generalization of well-known absolutely monotonic functions
in real analysis: they are those functions f : [0,∞)→ R+ which are infinitely differentiable,
and such that moreover all their derivatives are non-negative. The relevance of such
functions in real analysis comes from a result due to Bernstein: every absolutely monotonic
function coincides with a power series. Moreover, it is possible to characterize absolutely
monotonic functions without explicitly asking for them to be differentiable: it is exactly
those functions such that all the so-called higher-order differences—which are quantities
that can be define for any real function—are non-negative. (see [124], chapter 4). The
definition of pre-stable functions in [45] generalizes this characterization.

First, we want to be able to talk about those ~u = (u1, . . . , un), such that ‖x+
∑
ui‖C ≤

1 for a fixed x ∈ BC, and n ∈ N. To that end, we introduce a cone Cnx whose unit ball is
exactly such elements. It is an adaptation of the definition given in [45] for the case where
n = 1, and we show in the same way that it is indeed a cone.

Definition 9.3.7 (Local Cone) Let be C a cone, n ∈ N, and x ∈ B◦C. We call n-local
cone at x, and we denote Cnx the cone Cn endowed with the following norm:

‖(u1, . . . , un)‖Cnx = inf

1

r
| x+ r ·

∑
1≤i≤n

ui ∈ BC ∧ r > 0

.
For n ∈ N, we use P+(n) (respectively P−(n)) for the set of all subsets I of {1, . . . , n} such
that n − card(I) is even (respectively odd). We are now ready to introduce higher-order
differences. Since we have only explicit addition, not subtraction, we define separately
the positive part ∆n

+ and the negative part ∆n
− of those differences: For f : BC → D,

x ∈ BC, ~u ∈ BCnx , and ε ∈ {−,+}, we define:

∆n
ε (f)(x | ~u) =

∑
I∈Pε(n)

f(x+
∑
i∈I

ui)

Definition 9.3.8 We say that a cone function f : BC → D is pre-stable if, for every
n ∈ N, for every x ∈ BC, ~u ∈ BCnx , it holds that:

∆n
−(f)(x | ~u) ≤ ∆n

+(f)(x | ~u).

If f is pre-stable, we will set ∆nf(x | ~u) = ∆n
+f(x | ~u) − ∆n

−f(x | ~u). Observe that
the quantity ∆nf(x | ~u) is actually symmetric in ~u, i.e. stable under permutations of the
coordinates of ~u.

Definition 9.3.9 A cone function f : BC → D is called a stable function from C to D
if it is bounded, sequentially Scott-continuous, and pre-stable.
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Definition 9.3.10 The category Cstab has as objects the sequentially complete cones,
and as morphisms from C to D the stable functions f from C to D such that f(BC) ⊆
BD.

It was shown in [45] that it is possible to endow Cstab with a Cartesian closed structure.
The function cone C ⇒ D is the set of all stable functions, with ‖f‖C⇒D = supx∈BC ‖f(x)‖D.

It was also shown in [45] that these cones are indeed sequentially complete, and that the
lub in C ⇒ D is computed pointwise. We will use also the cone of pre-stable functions
from C to D, which is also sequentially complete.

9.3.3 Adding Measurability Requirements

In order to obtain a model of PCFsample based on stable functions, the authors of [45]
imposed measurability requirements to the category Cstab. The necessity of taking into
account the measurability appears when looking at the denotational semantics of the
letx = M inN . First, recall the typing rule for the let · = · in construct:

Γ, x : R `M : R Γ ` N : R

Γ ` letx = N inM : R

The interpretation of those typing judgments—in the case where Γ is the empty typing
context—in the denotational model should be as follows:

Jx : R `M : RK : Meas(R)→ Meas(R)

J` N : RK : Meas(R)

The computational behavior of the term letx = N inM is as follows: first it samples
from the distribution over reals encoded by M , and then it executes the program N
with replacing the variable x by the result of the sampling. To express this behavior
mathematically, we would like J` letx = N inM : RK to be the measure over R expressed
as follows:

J` letx = N inM : RK : Borels(R)→ R+

U 7→
∫
r∈R

gU (r)dµ

where the measure µ is obtained as µ = JΓ ` N : RK, and the function gU : R → R+ is
defined as gU (r) = J` letx = N inM : RK({r1})(U). However, to be able to write this
integral, we need to be sure that the function gU is measurable. It is for this purpose that
Ehrhard Pagani and Tasson impose additional measurability constraint at all types, thus
refining the category Cstab into another category Cstabm.The objects of Cstabm are
going to be complete cones, endowed with a family of measurability tests.

If C is a complete cone, we denote by C ′ the set of linear and Scott-continuous functions
C → R+.

Definition 9.3.11 A measurable cone (MC) is a pair consisting of a cone C, and a
collection of measurability tests (Mn(C))n∈N), where for every n, Mn(C) ⊆ C ′R

n

, such
that:

• for every n ∈ N, 0 ∈Mn(C);

• for every n, p ∈ N, if l ∈ Mn(C), and h : Rp → Rn is a measurable function, then
l ◦ h ∈Mp(C);
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• for any l ∈Mn(C), and x ∈ C, the function u ∈ Rn 7→ l(u)(x) ∈ R is measurable.

Example 9.3.3 (from [45]) Let X be a measurable space. We endow the cone of finite
measures Meas(X) with the family M(X) of measurable tests defined as:

Mn(X) = {εU | U ∈ ΣX} where εU (~r)(µ) = µ(U),

where ΣX is the set of all measurable subsets of X. Observe that in this case, the measur-
able tests are those functions that takes a measure—and a parameter ~r—and return the
value of the measure on some measurable set U . In the following, we will denote Meas(X)
the measurable cone (Meas(X), (Mn(X))n∈N).

We define now measurable paths, which are meant to be the admissible ways to send Rn
into a MC C.

Definition 9.3.12 (Measurable Paths) Let be (C, (Mn(C))n∈N) a measurable cone. A
measurable path of arity n at C is a function γ : Rn → C, such that γ(Rn) is bounded in C,
and for every k ∈ N, for every l ∈ Mk(C), the function (~r,~s) ∈ Rk+n 7→ l(~r)(γ(~s)) ∈ R+

is a measurable function.

We denote Pathsn(C) the set of measurable paths of arity n for the MC C . When a
measurable path γ verifies γ(Rn) ⊆ BC , we say it is unitary. Using measurable paths,
the authors of [45] add measurability requirements to their definition of stable functions.

Definition 9.3.13 Let be C,D two MCs. A stable function f : BC → D is measurable
if for all unitary γ ∈ Pathsn(C), f ◦ γ ∈ Pathsn(D).

The category Cstabm is therefore the category whose objects are MCs, and whose mor-
phisms are measurable stable functions between MCs. In [45], the Cartesian closed struc-
ture of Cstabm is derived from that of Cstab by endowing its exponentials and products
with the measurability tests presented in Figure 9.5.

Mn(
∏
i∈I

Ci) = {
⊕
i∈I

li | ∀i ∈ I, li ∈Mn(Ci)} with I finite set.

Mn(C ⇒m D) = {γ Bm | γ ∈ Pathsn(C),m ∈Mn(D)},

with (
⊕

i∈I li(~r))((xi)i∈I) =
∑

i∈I li(~r)(xi) ∈ R+;
and (γ Bm)(~r)(f) = m(~r)(f(γ(~r))).

Figure 9.5: Cartesian Closed structure of Cstabm.
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Chapter 10

! is the free comonoid in PCoh.

As we developed at some length in Chapter 9, distinct exponential structures may coexist
in a model of Linear Logic. The axiomatisation proposed by Lafont, where the exponential
modality !A is the free comonoid generated by A, leads to a genericity criterion, since
there is at most one free exponential modality in a model, and moreover it allows—up to
some point, see the considerations in Section 9.1.2—to factorize every other exponential
structure. The free exponential modality is well-known in both the coherence space model
of LL Coh—see Example 9.1.1 in Chapter 9—and the relational model of LL Rel, being
given respectively by the multi-clique and the multi-set functors. The goal of this chapter
is to prove the existence of and to study the free exponential modality of the category
PCoh of probabilistic coherence spaces. The only known exponential modality of PCoh
is the entire exponential modality !e, introduced by Danos and Ehrhard in [34], that we
have presented in Chapter 9, and which is based on the notion of entire function. It is
then natural to ask whether !f exists in PCoh and if it is the case, how it relates with
!e. In this chapter, we answer the first question positively and prove that !f and !e are
the same modality, in spite of their different presentations. This result was published in a
joint work with Ehrhard, Pagani and Tasson in [28].

Our main tool is a recipe given by Melliès, Tabareau and Tasson [82] for constructing !f
out of a model of the multiplicative additive fragment of LL—i.e. a ?-autonomous category
with finite products, see Chapter 9. The idea is to adapt the well-known formula defining
the symmetric algebra generated by a vector space, the latter being the free commutative
monoid. More precisely, the recipe gives (under suitable conditions) !fA as the limit of a
sequence of approximates A≤n which correspond to the equalizers of the tensor symmetries
of a suitable space (see Section 10.1). At a first sight, A≤n moves us far away from the
entire exponential !eA of [34], in fact the coefficients appearing in A≤n are greater than
those of !eA, so that one is tempted to suppose that !fA is a space much bigger than !eA,
exactly as it is the case for standard coherence spaces where the images under the finite
multi-clique functor strictly contain those under the finite clique functor (Example 9.1.1).
For any n, the coefficients of A≤n are larger than those of !eA, but as n → ∞, these
coefficients tend to be exactly those of !eA (see Section 10.3).

10.1 Melliès, Tasson and Tabareau’s formula

Melliès et al. give a recipe for constructing free commutative comonoids in [82], adapting
the well-known formula defining the symmetric algebra generated by a vector space in the
setting of LL. This adaptation is non-trivial mainly because the vector space construction
uses biproducts, while products and coproducts are in general distinct in LL models, and
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in fact this is the case for PCoh. The idea of [82] is to define !fA as the projective limit
of the sequence of its “approximates” A≤0, A≤1, A≤2, . . . , where an approximate A≤n is
the equalizer of the n! tensor symmetries over (A & 1)⊗n. Intuitively, the object A≤n

describes the behavior of data of type !fA when duplicated at most n times. This be-
havior is given by the equalizers of the tensor symmetries because the model does not
distinguish between the evaluation order of the n copies (in categorical terms, we are con-
sidering commutative comonoids). We start from A & 1 instead of A because, in order
to have a sequence, we need that each A≤n in some sense encompasses its predecessors
A≤0, A≤1, . . . , A≤n−1. The exact meaning of “to encompass” is given by a family of mor-
phisms pn,n−1 ∈ C(A≤n, A≤n−1) generated by the right projection of the product A & 1
(see Definition 10.1.9). In standard coherence spaces, this turns out to be the simple fact
that the set of cliques of A≤n+1 contains the cliques of A≤n. In contrast, this intuition is
misleading for PCoh (Example 10.2.5), making our construction considerably subtler.

10.1.1 The tensor product of n objects

This section deals with the formal definition of the categorical object A⊗n, as well as
the n! symmetries over it, in the setting of any symmetric monoidal category. The for-
mal construction is a bit involved, but we deemed necessary to include this presentation
here, because symmetries are the basic building blocks of the categorical construction
done by Melliès, Tabareau and Tasson, on which we rely heavily for this work. How-
ever, as it will be highlighted in Example 10.1.7, the concrete symmetry morphisms in
PCoh are actually quite simple, and can be easily inferred from the definition of the ⊗
bifunctor—Definition 9.2.4 from Chapter 9.

To handle the tensor product of n objects in a monoidal category C, we would like to
consider an object of the form A1 ⊗ (A2 ⊗ (. . .)), but we have to be careful since there
are different possible ways to do the bracketing. In [79], Mac Lane encodes syntactically
those bracketing as ⊗-words.

Definition 10.1.1 The set of ⊗-words is generated by the following grammar:

w ::= 1 | | (w ⊗ w)

We associate inductively a length to all ⊗-words, by taking length(1) = 0, length( ) = 1
and length(w ⊗ w′) = length(w) + length(w′).

For any ⊗-word of length n, and any MC C, we define a functor w̃C : Cn → C, as
follows: when A1, . . . , An are objects of C, w̃C(A1, . . . , An) is defined inductively on the
length n of w as:

1̃C() = 1C; (̃ )
C

(A) = A;

˜(w ⊗ w′)
C

(A1, ·, An, An+1, ·, An+m) = w̃C(A1, ·, An) ⊗C w̃′
C

(An+1, ·, An+m)

when w of length n, w′ of length m.

Example 10.1.1 We illustrate here the action of ⊗-words on any MC C, by looking at
⊗-words of length 4. We consider the two different bracketings given by the ⊗-words:
w = ( ⊗ )⊗ ( ⊗ ) and w′ = 1⊗ ( ⊗ ( ⊗ ( ⊗ ))). Whenever A1, . . . , A4 are four objects

of C, the functors w̃C and w̃′
C

act on these objects as follows:

w̃C(A1, . . . , A4) = (A1 ⊗C A2)⊗C (A3 ⊗C A4)

w̃′
C

(A1, . . . , A4) = 1C ⊗C (A1 ⊗C (A2 ⊗C (A3 ⊗C A4))).
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Notation 10.1.1 We illustrate here how the functors w̃ allow to formalize the different
ways of bracketing a tuple of elements. We place ourselves in the symmetric monoidal
category Set, when we take the monoidal product as ×—the cartesian product on sets—and
the set with a unique element {?} as 1Set. If a1, . . . , an are n elements of some set
X, we note wSet(a1, . . . , an) for the unique element in the set w̃({a1}, . . . , {an}). With
this notation, we see that if we consider for instance the ⊗-word w = ( ⊗ ) ⊗ ( ⊗ ),
wSet(a1, a2, a3, a4) is the tuple ((a1, a2), (a3, a4)), while if we take w′ = 1⊗( ⊗( ⊗( ⊗ ))),
we obtain w′Set(a1, a2, a3, a4) = (?, (a1, (a2, (a3, a4)))).

Notation 10.1.2 Recall that when we presented the bifunctor ⊗ for PCoh—in Defi-
nition 9.2.4 of Chapter 9—we also defined a tensorial product ⊗ on vectors with non-
negative real coefficients: if x ∈ RX+ , y ∈ RY+, x ⊗ y is the vector in RX×Y+ defined as
(x ⊗ y)(v,w) = xv · yw. Below, we formalize the n-tensor product of such vectors by using
the functors w̃ from Definition 10.1.1. We will indeed need to talk about n-tensor products
of vectors when considering the n-tensor product in the category PCoh.

We define the category Vect as follows: the objects are the pair (A, x) such that A
is a countable set, and x ∈ RA+, and the only morphisms in the category are the identity
morphisms. We endow Vect with a symmetric monoidal structure: the action of ⊗ on
objects is as follows (A, x)⊗ (B, y) = (A× B, x⊗ y), where (x⊗ y)a,b = xa · yb for every
a ∈ A, b ∈ B, accordingly to what we did in Definition 9.2.4. Since the only morphisms are
the identity morphisms, we define ⊗ on morphisms as idA,x⊗idB,y = id(A,x)⊗(B,y). We take

as 1Vect the pair (?, 1). If x ∈ RA+, we will also note simply x for the object (A, x) in Vect.
To illustrate the notation, we see that if w = ( ⊗ ) ⊗ , then w̃Vect(

1
2et + 1

2ef, et, ef) =
1
2e((t,t),f) + 1

2e((f,t),f) ∈ R{t,f}
3

+ .

We look now at the unitary restriction of the functors w̃, i.e. when they are seen as
functors C→ C instead of Cn → C. Indeed recall that our goal in this part is to investigate
the n-th tensor product of a single object A.

Definition 10.1.2 (Power Tensor Functors) Let be C a MC. If w is an ⊗-word of
length n, we note wC : C→ C the functor defined as wC(A) = w̃C(A, . . . , A), and wC(f) =
w̃C(f, . . . , f).

For every n ∈ N, we define a particular ⊗-word wn: it is the ⊗ word of length n that
corresponds to the precise bracketing ((( ⊗ ) ⊗ ) . . .), i.e. the rightmost bracketing. We

call n power of A the object A⊗n := wn
C

(A).

Observe that the bracketing is chosen in such a way that A⊗n+1 = A⊗n⊗A. We illustrate
her the n-th tensor power when applied to the category PCoh: recall indeed that we
are primarily interested in applying Melliès, Tabareau and Tasson recipe to this concrete
SMC.

Example 10.1.2 Let be n ∈ N, and A be a PCS. Recall the definition of the bifunctor ⊗
in PCoh—given in Definition 9.2.4. We see that A⊗n is the PCS described as follows:∣∣A⊗n∣∣ = {w̃Set(a1, . . . , an) | ∀i, ai ∈ |A|}

P
(
A⊗n

)
= {w̃Vect(x1, . . . , xn) | ∀i, xi ∈ P (A)}⊥⊥

The next step is to look at how we can go from one bracketing to another, when using
only the morphisms induced by the monoidal structure of C, i.e. a, l, r and their inverses.
Observe that, as we illustrate in Example 10.1.3 below, if w1 and w2 are two different
⊗-words, then there may actually be several different ways to construct such morphism
from w1(A) to w2(A).
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Example 10.1.3 Let C be a monoidal category. We consider the two ⊗-words w1 =
((( ⊗ )⊗ )⊗ ), and w2 = ( ⊗ ( ⊗ ( ⊗ ))). The two paths in the diagram below represent
two different ways to go from the bracketing specified by w1 to the one specified by w2.

((A⊗A)⊗A)⊗A (A⊗ (A⊗A))⊗A

(A⊗A)⊗ (A⊗A) A⊗ ((A⊗A)⊗A)

A⊗ (A⊗ (A⊗A))

aA,A,A⊗idA

aA⊗A,A,A aA,A⊗A,A

aA,A,A⊗A

idA⊗aA,A,A

From the coherence diagrams for a symmetric monoidal category—that we recalled in Def-
inition 9.1.4 from Chapter 9—it it possible to show that the diagram above commutes. As
a consequence these two different ways to go from w1 to w2 are equivalent.

As illustrated in Example 10.1.1, the morphisms induced by the monoidal structure may
be combined in different ways to go from one bracketing to another. Mac Lane shows
in [79] a coherence theorem, that states that all these combinations lead actually to the
same morphism in the category C. We first define syntactic expressions to handle the
construction of those morphisms. We say that a formal SMC morphism is a syntactic
element generated by the following grammar.

e ::= (e⊗ e) | e−1 | idw | lw | rw | aw1,w2,w3 | e ◦ e,
where w,w1, w2, w3 are ⊗-words. To an expression e, we can associate in a natural way
both a domain D(e) and a co-domain C(e), that are ⊗-words. Observe that we cannot in
fact do this for all expressions, but for those which are valid, i.e. such that ◦ occurs only
between expressions such that the domain of the first and the codomain of the second
coincide.

Definition 10.1.3 We say that a formal morphism e is valid if it is possible to associate
to it a domain Dom(e) and a codomain C(e) under the inductive procedure of Figure 10.1.

D(idw) = w C(idw) = w

D(lw) = 1⊗ w C(lw) = w

D(rw) = w ⊗ 1 C(rw) = w

D(aw1,w2,w3) = (w1 ⊗ w2)⊗ w3 C(aw1,w2,w3) = w1 ⊗ (w2 ⊗ w3)

D(e⊗ e′) = (D(e)⊗D(e′)) C(e⊗ e′) = (C(e)⊗ C(e′))

D(e−1) = C(e) C(e−1) = D(e)

if C(e′) = D(e) D(e ◦ e′) = D(e′) C(e ◦ e′) = C(e)

Figure 10.1: Domain and codomain for formal morphisms

For any valid formal MC morphism e, and for any category C, we can define the inter-

pretation of e as a natural transformation in C from the functors D(e)
C

to C(e)
C

. It is
obtained simply by replacing the syntactic construct id,⊗, . . . in the formal morphism by
the concrete morphism of same name in the category C.
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Definition 10.1.4 Let C be a MC. The interpretation of a valid formal MC morphism e in
C with w1 as domain and w2 as co-domain is the natural transformation [e]C : w1

C → w2
C

formally defined in Figure 10.2.

[idw]CA = id
C
wC(A)

[lw]CA = l
C
wC(A) [rw]CA = r

C
wC(A)

[aw1,w2,w3 ]CA = a
C
w1

C(A),w2
C(A),w3

C(A) [e⊗ e′]C = [e]C ⊗ [e′]C

[e−1]C = ([e]C)−1 [e ◦ e′]C = [e]C ◦ [e′]C

Figure 10.2: Interpretation for valid formal morphisms

Example 10.1.4 We illustrate here how we interpret a formal morphism in some monoidal
category C. We consider the formal morphism

e = (id ⊗ ⊗ l−1) ◦ a−1
, ,

It is indeed a valid morphism, since we are able to attribute a domain and a codomain
to e, by following the procedure in Figure 10.1. We represent graphically this procedure
below, by splitting e into its basic components, and exhibiting the domain and codomain
for each of them.

⊗ ( ⊗ ) ( ⊗ )⊗ ( ⊗ )⊗ (1⊗ )
a−1
, , id ⊗ ⊗l−1

It means that Dom(e) = ⊗ ( ⊗ ), while C(e) = ( ⊗ )⊗ (1⊗ ). Since e is a valid formal
morphism, it has an interpretation in every MC C: for every object A in C, [e]CA is the C
morphism in A⊗ (A⊗A)→ (A⊗A)⊗ (1C ⊗A) built as follows:

A⊗ (A⊗A) (A⊗A)⊗A (A⊗A)⊗ (1⊗A)
a−1
A,A,A idA⊗A⊗l−1

A

As stated in Mac Lane’s Coherence Theorem below, if we take any two expression e and
e′ with the same domain and codomain, then their interpretation in any MC C coincide.
Moreover, there always exists such an interpretation between two ⊗ words of same length.

Proposition 10.1.3 (Mac Lane’s Coherence Theorem) Let C be a monoidal cate-
gory, and w1, w2 be two ⊗-words of length n. Then for every object A, there exists a
unique (natural) isomorphism w1

C(A) → w2
C(A) which is the interpretation of a valid

SMC formal morphism.

As a consequence of the coherence theorem, every formal morphism—i.e. resulting from
the interpretation of a formal morphism with wn as both domain and co-domain—that
we can draw from A⊗n to itself coincide with idA⊗n .

When moreover the category C is a symmetric monoidal category, we can also use the
symmetry swap on the object A⊗n, and we obtain a new class of formal endomorphisms
on A⊗n.
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Definition 10.1.5 The SMC formal morphisms are the syntactic expression generated by
the grammar below:

e ::= e⊗ e | e−1 | idw | lw | rw | aw1,w2,w3 | e ◦ e | swapw1,w2
,

where w,w1, w2, w3 are ⊗ words.

We now extend the definition of valid formal morphisms, domain and codomain to this
new class of formal morphisms. We need to extend both the definition of domain and
codomain from Figure 10.1, and the definition of interpretations from Figure 10.2 to the
SMC formal morphisms, i.e. to specify how we deal with the formal morphism swapw1,w2

.

D(swapw1,w2
) = (w1 ⊗ w2) C(swapw1,w2

) = (w2 ⊗ w1)

[swapw1,w2
]C
A

= swapC
w1

C(A),w2
C(A)

Observe that it is not necessarily true—i.e. false in the non trivial case—that the
interpretations of all SMC formal morphisms with wn as both domain and codomain
coincide with the identity on A⊗n. This phenomenon is highlighted in Example 10.1.5
below.

Example 10.1.5 Let C be any SMC. Observe that we can construct for instance a formal
morphism f with w3 = ( ⊗ )⊗ as both domain and codomain, as follows:

( ⊗ )⊗ ( ⊗ )⊗ ⊗ ( ⊗ )

( ⊗ )⊗ ⊗ ( ⊗ )

swap , ⊗id a , ,

id ⊗swap ,

a−1 , ,

It does not hold in general—and indeed it does not holds in PCoh, that the interpretation
of f and the interpretation of id coincide on every A⊗3.

What actually happens is that a formal morphism is not characterized just by its do-
main and co-domain anymore, but also by its underlying permutation, that keep track of all
the transposition done while applying the morphism, and that can be defined inductively
on the structure of formal morphisms.

Definition 10.1.6 (Underlying Permutation) For every SMC formal morphisms e,
with domain and co-domain of length n, we define its underlying permutation as the el-
ement p(e) ∈ Sn defined inductively on the structure of e as specified in Figure 10.3.

Example 10.1.6 We see that the underlying permutation of the formal SMC morphism
f defined in Example 10.1.5 is σ = (2, 3) ◦ (1, 2) ∈ S3.

Mac Lane showed for SMC a similar coherence theorem as the one for MC: essentially it
states that every formal diagrams generated by the structural SMC morphisms commute
as soon as they have the same underlying permutation, and that moreover such a diagram
exist for every permutation.
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p(idw) = 1Sn ; p(lw) = 1Sn ; p(rw) = 1Sn ; with n = |w|

p(aw1,w2,w3) = 1Sn ; with n = |w1|+ |w2|+ |w3|
p(e⊗ e′) = p(e) n |m p(e′) with n = |D(e)|; m = |D(e′)|

p(e−1) = p(e)−1 p(e ◦ e′) = p(e) ◦ p(e′)

p(swapw1,w2
) = j ∈ {1, . . . , n+m} 7→(j − n if j > n; j +m if j ≤ n)

with n = |w1|,m = |wn|

Figure 10.3: Underlying permutation for SMC formal morphisms

Proposition 10.1.4 (Mac Lane’s Coherence Theorem for SMC) Let be C a SMC,
and n ∈ N. Then for every permutation σ, there exists a unique natural isomorphism
A⊗n → A⊗n which is the interpretation of a formal morphism with wn as domain and
codomain, and underlying permutation σ. We will call symmetry specified by σ over A⊗n

this isomorphism, and we will denote it sσA : A⊗n → A⊗n.

Example 10.1.7 Let A be a PCS. Recall the expression of A⊗n from Example 10.1.2.
For every n ∈ N, and σ ∈ Sn, we can see that sσA ∈ PCoh(A⊗n,A⊗n) is the matrix
defined as follows:

(sσA)wn(a1,...,an),wn(a′1,...,a
′
n) = δa′1,aσ(1)

. . . δa′n,aσ(n)
.

In the following, we will use sequences of the form ~a = a1, . . . , an to represent the elements
wn(a1, . . . , an) ∈ |A⊗n|. We will also use x1 ⊗ . . .⊗ xn to represent wn(x1, . . . , xn), when
the xi are vectors with non-negative real coefficients.

10.1.2 The Equalizer of symmetries

We present now the first building block of Melliès, Tabareau and Tasson’s construction:
it consists in building the exponential approximations A≤n, for every order n ∈ N. These
A≤n are taken as—when it exists—the equalizer of the n! symmetries from (A & 1)⊗n.
Here, we recall the definition of equalizers in category theory, as well as Melliès, Tabareau,
Tasson’s definition of the exponential approximations.

Definition 10.1.7 (Equalizer) Let C be some category, and A, B two objects of C. Let
f1, . . . , fn a family of morphisms in C(A,B). An equalizer of the (fi)1≤i≤n is a pair
(E, eqE), where E is an object in C, and eqE ∈ C(E,A), such that:

A B

E

f1

fneqE

. . .

∀i, j, (fi ◦ eqE = fj ◦ eqE)

A B

EC

f1

fneqEg

∃!g†

. . .

Universal property:

∀i, j fi ◦ g = fj ◦ eqE
⇒ ∃!g†, g = eqE ◦ g†
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Observe that there is no guarantee on the existence of such equalizer. However, as
soon as it exists, the universal property implies that the equalizer object is unique up
to (unique) isomorphism. Melliès, Tabareau and Tasson’s construction does not only ask
for the existence of some equalizers, but also ask for those to commute with the tensor
product, in the sense of Definition 10.1.8 below.

Definition 10.1.8 (Commutation of an equalizer with ⊗) Let C be a monoidal cat-
egory, A1, A2 two objects of C, and f1, . . . , fn a family of morphisms in C(A1, A2). We
suppose that the equalizer of the (fi)1≤i≤n exists, and we denote it by (E, eqE). We
say that this equalizer commutes with the tensor product, if for every object B in C,
(E ⊗ B, eqE ⊗ idB) is an equalizer for the family of morphisms (fi ⊗ idB : A1 ⊗ B →
A2 ⊗B)1≤i≤n.

Looking at Definition 10.1.8 we can see that asking for an equalizer (E, eq) for the (fi)1≤i≤n
to additionally commutes with the tensor product actually boils down to require the
following additional universal property:

E ⊗B A1 ⊗B

C

eqE ⊗ idB
A2 ⊗B

.

.

.

(fi ⊗ idB)i∈N
g

∃!g†

(10.1)

Melliès, Tabareau and Tasson’s construction asks for equalizers to exist for very specific
families of morphisms: the symmetry morphisms over objects build as (A & 1)⊗n. We
consider from now on C to be a SMC with finite products. Recall that the symmetry
morphisms sσA are the one formalized in Proposition 10.1.4. Once such equalizers are
obtained, Melliès, Tabareau and Tasson use them to define the exponential approximations
to all orders, that will be used in the next step of the construction to build the free
exponential structure.

Definition 10.1.9 (Exponential Approximations) Let C be a SMC with finite prod-
ucts, such that for every object A, and every n ∈ N, the equalizer of the family of mor-
phisms sσA&1 : (A & 1)⊗n → (A & 1)⊗n exists. Then we denote by (A≤n, eqA≤n) this
equalizer, and we say that the object A≤n is the exponential approximation of the object
A at order n.

We sum up graphically below the requirements for the A≤n—they are inferred from
the relevant instantiation of Definition 10.1.7.

A≤n (A&1)⊗n

C

eqA≤n

(A&1)⊗n
.
.
.

n! symm.
f

∃!f†

Universal property of (A≤n, eq): ∀C,∀f ∈
C(C, (A ⊗ 1)⊗n) invariant under ⊗ symm.,
∃!f † ∈ C(C,A≤n) making the adjacent dia-
gram commute.

The exponential approximation A≤n should be understood as follows: it contains the
resources of type A that can be duplicated as most n times. If we go on with this analogy,
we see that whenever a resource of type A may be duplicated at most n + 1 times, we
can discard the information about its n + 1-th occurrence, and obtain a resource that
may be duplicated at most n times. Melliès, Tabareau and Tasson formalize this in their
categorical framework by looking at the canonical projection morphisms A≤n+1 → A≤n,
that arise from the universal property for exponential approximations as described below.
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Definition 10.1.10 Let C be a SMC with products, and n ∈ N such that both A≤n and
A≤n+1 are defined. We define the projection morphism at order n, that we note pn+1,n

as the morphism in C(A≤n+1, A≤n) obtained by applying the universal property of the
equalizer (A≤n, eqA≤n) to:

• the object C = A≤n+1

• the morphism f : C → A≤n taken as f = r(A&1)⊗n ◦ (id ⊗ π2) ◦ eqA≤n+1, with π2

denoting the right projection of A& 1.

We represent graphically the definition of pn+1,n below:

A≤n (A&1)⊗n

(A& 1)⊗n ⊗ 1

(A& 1)⊗n+1A≤n+1

eqA≤n

(A&1)⊗n
.
.
.

n! symm.

eqA≤n+1

id(A&1)⊗n ⊗ π2A&1

r(A&1)⊗n

∃!pn+1,n

10.1.3 The free Commutative Comonoid as limit of the exponential ap-
proximations.

To complete their construction, Melliès, Tabareau and Tasson assume the existence of
the exponential approximations to all orders, and additionally ask for the existence of a
categorical limit to the diagram formed by the projection morphisms between them. More
precisely, the idea is to look at the diagram ∆≤ below, that sums up the action of the
projection morphisms on the A≤n and to take !fA as the limit cone, when it exists, of this
diagram ∆≤—what it precisely meant for such a diagram to have a limit will be stated
later in Definition 10.1.12:

∆≤ : A≤0 A≤1 A≤2 A≤3 . . .
p4,3p3,2p2,1p1,0

The next definitions deal with the formal presentation of limit cones for diagrams that are
chain-like—i.e. that have the same shape as ∆≤. There is in fact also a generic categorical
way to define the limit object of an arbitrary diagram, that can be found for instance
in [79], but for this work we need to consider only chain-like diagram. We actually split
our definition in two parts: in Definition 10.1.11 below, we define projective cones for
chain-like diagram, and then we take the limit cone as the most general projective cone,
in a sense formalized by a universal property that we give in Definition 10.1.12.

Definition 10.1.11 (∆-cone) Let C be a category, and ∆ a chain-like diagram, i.e. that
consists of a family of objects (Ai)i∈N and a family of morphisms (fi+1,i : Ai+1 → Ai)i∈N:

∆ : A1 A2 A3 A4 . . .
f4,3f3,2f2,1f1,0
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A projective cone based on ∆ is an object C, and a family of morphisms (gi : C → Ai)i∈N
such that ∀i ∈ N, (gi = fi+1,i ◦ gi+1) i.e. the following diagram commute:

A0 A1 A2 . . .

. . .

C

. . .

f3,2f2,1f1,0

g0 g1 g2

A chain-like diagram ∆ admits a limit when one of its projective cones is more general
than all the others. We formalize this idea by a universal property in Definition 10.1.12
below.

Definition 10.1.12 Let C be a category, and ∆ = ((Ai)i∈N, fi+1,i : Ai+1 → Ai) a chain-
like diagram. A limit cone for the diagram ∆ is a projective cone based on ∆ (A∞, (f∞,i :
A∞ → Ai)) such that: for every projective cone based on ∆ (C, (gi : C → Ai)i∈N) ∃!u :
C → A∞ such that ∀i ∈ N, (gi = f∞,i ◦ u). We represent this requirement graphically
below:

A0 A1 A2 . . .

. . .

A∞C

. . .

f∞,0

f∞,1
f∞,2

f3,2f2,1f1,0

g0 g1 g2

∃! u

We say that moreover the limit cone (A∞, (f∞,i : A∞ → Ai)i∈N) of the diagram ∆ com-
mutes with tensor products, if the projective cone (A∞ ⊗ B, (f∞,i ⊗ idB : A∞ ⊗ B →
Ai ⊗B)i∈N) is the limit cone of the diagram ∆⊗B taken as:

∆⊗B : A0 ⊗B A1 ⊗B A2 ⊗B . . .
f3,2 ⊗ idBf2,1 ⊗ idBf1,0 ⊗ idB

Observe that the universal property specified in Definition 10.1.12 above guarantees
that as soon as the limit of ∆ exists, it is unique—as usual, up to unique isomorphism.
The result of Melliès, Tabareau and Tasson in [82] said that: assuming the existence of all
the A≤i, and moreover of a limit cone for ∆≤, as well as some additional requirements with
respect to the commutation of these structures with ⊗, it holds that the limit cone of ∆≤

is exactly the free commutative comonoid. It means that when we start from a category
C which is already a model of exponential-free LL—i.e. ?-autonomous, see Chapter 9—we
obtain this way a Lafont model—see Section 9.1.2—and consequently a sound model of
LL.

We state formally this result in Proposition 10.1.5 below.

Proposition 10.1.5 (Melliès, Tabareau Tasson [82]) Let A be an object of a sym-
metric monoidal category with finite products C. The free commutative comonoid gener-
ated by A is the limit cone !fA of the diagram ∆≤, provided that:

1. ∀n ∈ N, the equalizer A≤n exists and commutes with tensor products;

2. the limit cone (!fA, (p∞,i :!fA → A≤i)i∈N) of the diagram ∆≤ exists and commutes
with tensor products.

We sum up graphically condition 2 of Proposition 10.1.5, in Figure 10.4.
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A≤0 ⊗B A≤1 ⊗B A≤2 ⊗B . . .

. . .

!fA⊗BC

. . . p∞,0 ⊗ id p∞,1 ⊗ id p∞,2 ⊗ id

p3,2 ⊗ idp2,1 ⊗ idp1,0 ⊗ id

f0 f1 f2

∃! u

Figure 10.4: Diagram defining the commutation of the limit !fA with ⊗: for every objects
B,C and family of morphisms (fi)i∈N as represented in the diagram, there exists a unique
u ∈ C(C, !fA⊗B) making the diagram commute.

10.2 The free exponential structure in PCoh.

Our goal now is to apply Melliès, Tabareau and Tasson’s construction in order to build
the free commutative comonoid in PCoh. In that end, we need to check that PCoh
verifies the conditions 1 and 2 of Proposition 10.1.5. We introduce now some notations to
handle sequences and multiset over a PCS web, that we will need in the following technical
development

Notation 10.2.1 We denote by Mn(X) the subset of Mf (X) consisting of the finite
multisets over X of length exactly n, and M≤n(X) =

⋃
k≤nMk(X) the set of those of

length not greater than n. If ~a is a sequence of n elements in |X|, we denote by
∼
~a the

underlying multiset in Mn(X). With this notation, if we have any multiset µ ∈ Mf (X),

we call enumerations of µ all sequences ~a such that their underlying multiset
∼
~a coincides

with µ. We denote Enum(µ) the set of all enumerations of µ. We call multinomial
coefficient of µ, and denote m(µ) the number of the enumeration of µ, i.e. the cardinality
of Enum(µ).

10.2.1 Construction of the equalizer of n! symmetries.

The next lemmas and definitions deal with the proof that condition 1 indeed holds in the
category PCoh; we will be able to state this result in Proposition 10.2.6. More precisely,
starting from any PCS A, we build here the equalizer of the symmetries over A⊗n—that
we will note A=n—and we show that it commutes with ⊗. From there, we will be able to
build the exponential approximations, since by Definition 10.1.9, A≤n = (A& 1)⊗n.

We first discuss our construction informally: we want to build a PCS A=n such that
the diagram below commutes:

A⊗n A⊗nA=n
s
σ,n
A

eqA=n

. . .

and we want to do so in the most general possible way, in the aim that A=n also meets
the requirements of the universal properties of Definition 10.1.7. Our approach is as
follows: we take the cliques in P (A⊗n) as a starting point, and we seek to erase from
them any information that is not invariant under symmetries. This erasure operation can
be expressed internally in the category PCoh, by the morphism jnA : A⊗n → A⊗n formed
as the barycentric sum of the actions of Sn over A. Formally, for n ∈ N, and A a PCS,
we define jnA ∈ PCoh(A⊗n,A⊗n) as:

jnA :=
1

n!

∑
σ∈Sn

s
σ,n
A .
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Observe that this construction is made possible by the convex structure on PCoh-morphisms
highlighted in Proposition 9.2.2. Looking at the concrete description —done in Exam-
ple 10.1.7—of the symmetry morphisms s

σ,n
A in PCoh, we also give in Lemma 10.2.2

below a more direct characterization of this morphism, as a matrix in R|A
⊗n|×|A⊗n|

+ .

Lemma 10.2.2 Let A be a PCS, and n ∈ N. Then for every ~a,~a′ ∈ |A⊗n|:

(jnA)~a,~a′ = δ∼
~a,
∼
~a′

1

m(
∼
~a)
,

where
∼
~a and m(

∼
~a) have meaning as specified in Notation 10.2.1.

Proof. To see why Lemma 10.2.2 holds, it is enough to see that:

(jnA)~a,~a′ =
#
{
σ ∈ Sn ; ∀i ≤ n,~aσ(i) = ~a′i

}
n!

= δ∼
~a,
∼
~a′

∏
a∈S(

∼
~a)

(
∼
~a)(a)!

n!
.

�

We can think about this endomorphism as a jammer, in the sense that it chooses randomly
a permutation, and then applies it to its input. We illustrate this point in Example 10.2.1
below, where we consider pairs of booleans.

Example 10.2.1 (Jammer morphism on Bool⊗2) There are only two elements in the
permutation group S2: the identity and the exchange map. As a consequence, we see that:

j2
Bool =

1

2
idBool⊗Bool +

1

2
swapBool,Bool : Bool⊗2 → Bool⊗2

Thus j2
Bool is the matrix in R{t,f}×{t,f}+ defined as: (j2

Bool)(a1,a2),(a′1,a
′
2) = 1

2δa1,a′1
δa2,a′2

+
1
2δa1,a′2

δa2,a′1
, i.e. represents the following Markov chain:

(true, true) (false, false)

(true, false) (false, true)

1

1
2

1
2 1

1
2

1
2

Observe that as desired, the morphism j2
Bool erases asymmetric information: when we

apply the morphism j2
Bool to some arbitrary distribution D over pairs of booleans, the

probabilities D(true, false) and D(false, true) are uniformly reallocated between these
two states. We illustrate this by looking for instance at u = 1

2 · e(t,t) + 1
2 · e(t,f) in

P (Bool⊗Bool). Then we see that indeed (j2
Bool u) ∈ P (Bool⊗Bool) is as follows:

j2
Bool u =

1

2
· e(t,t) +

1

4
· e(t,f) +

1

4
· e(f,t).

The observation done in the example above holds more generally: indeed for any PCS A,
jnA acts on A⊗n by reallocating the coefficients in such a way as to erase the information
about the orders of the elements in a n-length sequence. Accordingly the morphism
jnA is invariant by all symmetries, in the following sense: for every σ ∈ Sn, it holds that
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s
σ,n
A ◦jnA = jnA—we prove this by looking at the definition of jnA, since τ ∈ Sn 7→ σ◦τ ∈ Sn

is a bijection over Sn.
It is tempting, as a consequence, to choose as cliques for A=n the set jnA(P (A⊗n)) :=

{jnA x | x ∈ P (A⊗n)}. We have however to be careful, since (|A⊗n| , jnA(P (A⊗n))) is not a
PCS: indeed it is not even downward closed for the pre-PCS order—see Section 9.2 from
Chapter 9—as we illustrate on the example below,.

Example 10.2.2 We look at the same vector u ∈ Bool⊗2 as the one we defined in Ex-
ample 10.2.1. We see that for instance 1

4 · e(t,f) ≤|A⊗n| j2
Bool u, but we can see that

1
4 · e(t,f) 6∈ j2

Bool(P
(
Bool⊗2

)
), since indeed this vector is not invariant under symmetry

morphisms—for instance, it is not invariant by the symmetry morphism that swaps the
states (t, f) and (f, t).

To overcome this problem, we choose to build a PCS (|A=n| ,P (A=n)) whose set of cliques
P (A=n) is isomorphic to jnA(P (A⊗n)), through a change of basis: we see by Lemma 10.2.2
that every vector of the form (jnA x) may be expressed as:

jnA x =
∑

µ∈Mn(|A|)

 1

m(µ)
·

∑
~a∈Enum(µ)

x~a

 · e′µ,
where for any multiset µ ∈ Mn(|A|) we have taken e′µ =

∑
~a∈Enum(µ) e~a. It means that

Mn(|A|) can be seen as the canonical base of the image set jnA(P (A⊗n)).To make this

change of basis formal, we construct now a matrix jmnA ∈ R|A
⊗n|×Mn(|A|)

+ , such that:

∀x ∈ P
(
A⊗n

)
, jnA x =

∑
µ∈Mn(|A|)

(jmnA x)µ · e′µ

Definition 10.2.1 Let A be a PCS, and n ∈ N. We define the modified jammer matrix

jmnA ∈ R|A
⊗n|×Mn(|A|)

+ as:

(jmnA)~a,µ := δ
µ,
∼
~a
· 1

m(µ)
, for µ ∈Mn(|A|), ~a ∈

∣∣A⊗n∣∣
Observe that (jmnA)~a,µ = (jnA)~a,~a′ for ~a′ any enumeration of µ. Essentially jnA x ∈ R|A

⊗n|
+

and jmnA x ∈ RMn(|A|)
+ are the same vector, but expressed in a different canonical base. It

is relevant, because the canonical base generated by multisets lead to a presentation of
jmnA (A⊗n) as the cliques of a PCS—that we make explicit below—while it was not the
case with the base generated by sequences.

Definition 10.2.2 Let A be a PCS, and n ∈ N. We define the PCS A=n by:

|A=n| =Mn(|A|) P (A=n) = {jmnA u | u ∈ P
(
A⊗n

)
}.

We see that the space A=n is indeed a PCS by using Proposition 9.2.2. Our goal now
is to check that it is indeed the equalizer of n! symmetry. First, we define a morphism
eqA=n : A=n → A⊗n, designed to meet the requirements of Definition 10.1.7. We define it
as the matrix (eqA=n)µ,~a := δ

µ,
∼
~a

. Observe that it essentially reverses the change of basis,

since indeed:
(eqA=n ◦ jmnA)x = jnA x . (10.2)

We need first to check that eqA=n is indeed a morphism in PCoh(A=n,A⊗n). It comes
as a consequence of Equation 10.2, as can be seen in the proof of Lemma 10.2.3 below:
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Lemma 10.2.3 Let A be a PCS, and n ∈ N. Then eqA=n is a morphism in PCoh(A=n,A⊗n).

Proof. We need to show that for every x ∈ P (A=n), it holds that (eqA=n)x ∈ P (A⊗n).
Looking at the definition of the PCS A=n, we see that our goal can be reformulated as:

∀y ∈ P
(
A⊗n

)
, (eqA=n ◦ jmnA) y ∈ P

(
A⊗n

)
(10.3)

From Equation (10.2), we can go one step further: (10.3) can actually be deduced
as soon as we know: ∀y ∈ P (A⊗n) , (jnA) y ∈ P (A⊗n) . Since jnA is a morphism in
PCoh(A⊗n,A⊗n), we see that the latter claim holds, which ends the proof. �

Using equation (10.2) we also see that every vector of the form eqA=n x is invariant by all
symmetry morphisms, as stated in Lemma 10.2.4 below.

Lemma 10.2.4 Let A be a PCS, and n ∈ N. Then for every σ ∈ Sn, it holds that
(eqA=n ◦ sσ,nA = eqA=n), i.e.:

A⊗n A⊗nA=n
s
σ,n
A

eqA=n

. . .

Proof. We have to show that for every σ ∈ Sn, and x ∈ P (A=n), it holds that (eqA=n ◦ sσ,nA )x =
eqA=n x. Let σ ∈ Sn, and x ∈ P (A=n). Let y ∈ A⊗y, such that x = sn y; from Equa-
tion 10.2, we see that: eqA=n x = jnA y. Recall that jnA is invariant by symmetry, it means
that (jnA ◦ s

σ,n
A ) y = s

σ,n
A y, and it ends the proof. �

Our goal now is to check that the universal property for equalizers—as stated in Defi-
nition 10.1.7—holds for (A=n, eqA=n). Toward this goal, we first show in Lemma 10.2.5
below, an alternative characterization of A=n, focusing on a set of generators that can be
computed directly from A.

Lemma 10.2.5 For every PCS A, and n ∈ N, P (A=n) = {jmnA (⊗ni=1ui) ; ui ∈ P (A)}⊥⊥ .

Proof. We denote by (A=n)? the pre-PCS defined as |(A=n)?| =Mn(|A|), and P ((A=n)?) =
{jmnA (⊗ni=1ui) ; ui ∈ P (A)}⊥⊥. First, we can observe that (A=n)? is a PCS, since it is
generated by bi-duality, and that the boundedness conditions on coefficients also hold. The
equivalence between (A=n)? and A=n is then obtained by Lemma 9.2.3 from Chapter 9,
taking A = A⊗n, G = {⊗ni=1ui ; ui ∈ P (A)}, B = A=n and f = jmnA. Then (A=n)? is
equal to f(G)⊥⊥ = f(P (A⊗n))⊥⊥ which turns out to be the bipolar of B by Lemma 9.2.3.
We conclude since we have already shown A=n to be a PCS, and as thus A=n = (A=n)⊥⊥.
�

We are now ready to check that (A=n, eqA=n) is indeed the equalizer of the n! symmetry
over A⊗n. Recall that it is the first step in order to apply Melliès, Tabareau and Tasson
recipe to PCoh, as presented in Proposition 10.1.5.

Proposition 10.2.6 Let A be a PCS and n ∈ N. The object A=n together with the
morphism eqA=n ∈ PCoh(A=n,A⊗n), is the equalizer of the n! symmetries of the n-fold
tensor A⊗n. Moreover, these equalizers commute with the tensor product, in the sense of
Definition 10.1.8.
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Proof. We only prove the commutation with ⊗, as the universal property of the equalizer
is a direct consequence of the commutation, taking B = 1. Let C be a PCS and f ∈
PCoh(C,A⊗n ⊗B) be a morphism such that (sσ,nA ⊗ idB) ◦ f = f for any σ ∈ Sn. Then,

define f † ∈ PCoh(C,An ⊗ B) as follows: for every c ∈ |C|, b ∈ |B|, µ ∈ |A=n|, f †c,(µ,b) =

fc,(~a,b), where ~a is any enumeration of µ (no matter which one because f is invariant under

the tensor symmetries). The fact that f † is the unique morphism commuting the diagram
of Equation (10.1) is a trivial calculation. We have then to prove that it is indeed a
morphism in PCoh(C,A=n⊗B), that means that, for any v ∈ P (C), f † v ∈ P (A=n ⊗ B).

Consider w ∈ P (A=n ⊗ B)⊥ and let us prove that 〈f † v, w〉≤ 1. This will allow us to
conclude f † v ∈ P (A=n ⊗ B). Our proof strategy is as follows: we build a vector w derived
from w, such that:

w ∈ P
(
A⊗n ⊗ B

)⊥
(10.4)

〈f † v, w〉=〈f v, w〉 (10.5)

Define w ∈ R|A
⊗n⊗B|

+ as w(~a,b) = 1

m(
∼
~a)
w∼
~a,b

. We first show that Equation (10.4) holds.

In fact, for any u ∈ P (A⊗n), z ∈ P (B):

〈u⊗ z, w〉 =
∑
~a,b

u~azbw(~a,b) =
∑
~a,b

u~azb
1

m(
∼
~a)
w∼
~a,b

=
∑
µ,b

zbwµ,b
∑

~a∈Enum(µ)

1

m(µ)
u~a

=
∑
µ,b

zbwµ,b(jm
n
A u)µ =〈(jmnA u)⊗ z, w〉 .

From there, we can use the fact that by definition of A=n, (jmnA u) ∈ P (A=n). Since
z ∈ P (B), it means that (jmnA u)⊗ z ∈ P (A⊗n ⊗ B). Recall moreover that we have taken

w ∈ P (A=n ⊗ B)⊥; it allows us to conclude that 〈u⊗ z, w〉≤ 1. Since the elements u⊗ z,
with u ∈ P (A⊗n), z ∈ P (B) are generators of A⊗n⊗B—see the definition of the bifunctor
⊗ in PCoh stated in Chapter 9—it means that indeed w ∈ P

(
(A⊗n ⊗ B)⊥

)
.

We show now Equation 10.5: 〈f † v, w〉=〈f v, w〉. In fact,

〈f † v, w〉 =
∑
µ,b

(f † v)µ,bwµ,b =
∑
~a,b

(f v)~a,bw∼
~a,b

m(
∼
~a)

=
∑
~a,b

(f v)~a,bw~a,b =〈f v, w〉 .

Now from Equations (10.4) and (10.5) we can obtain the result, because by hypothesis
f v ∈ P (A⊗n ⊗ B), and thus 〈f † v, w〉=〈f v, w〉≤ 1. �

Remark 10.2.1 We have tried to present above a way to understand where our con-
struction for A=n comes from, by starting from the jammer morphism jnA. It should be
reminded, however, that the notion of equalizer is only defined up to (unique) isomorphism,
which means that the choice of the matrix jmnA is somewhat arbitrary. Our construction
has the advantage to make the equalizer morphism eqA=n as simple as possible, i.e. a web
morphism, in the sense defined by Danos and Ehrhard: a morphism entirely specified by
a function between the PCSs webs.

Example 10.2.3 Let us illustrate the construction of A=n in the case where A is the
boolean space Bool. It is trivial to check that Bool=0 is isomorphic to 1 and Bool=1 to
Bool. Concerning Bool=2, we have:∣∣Bool=2

∣∣ = {[t, f], [t, t], [f, f]}.
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By definition, P
(
Bool=2

)
= {jm2

Bool u | u ∈ Bool⊗2}. Looking now at the definition of
jm2

Bool we see that the action of jm2
Bool on any clique u ∈ P

(
Bool⊗2

)
is as follows:

jm2
Bool u = u(t,t)e[t,t] + u(f,f)e[f,f] + (

1

2
· u(t,f) +

1

2
· u(f,t)) · e[t,f].

We want now to obtain a more direct characterization—i.e. one that does not use P (Bool)
explicitly. Recall that Example 9.2.4 computes P

(
Bool⊗2

)
as the set of sub-probability

distributions over boolean pairs. As a consequence every element of the form (jm2
Bool u)

must verify the following constraint:

2 · (jm2
Bool u)[t,f] + (jm2

Bool u)[t,t] + (jm2
Bool u)[f,f] = u(t,f) + u(f,t) + u(t,t) + u(f,f) ≤ 1

This constraint means that P
(
Bool=2

)
⊆ X, where X is the vector set defined as X :=

{w ∈ RMf (2)|Bool|
+ ; w[t,f] + w[f,f] + 2w[t,f] ≤ 1}. We want now to show that the reverse

inclusion also holds. Recall that since Bool=2 is a PCS, it coincides with its bi-dual, and

consequently for every x ∈ RM2(|Bool|)
+ :(

∀y ∈ P
(

(Bool=2)⊥
)
, 〈x, y〉≤ 1

)
⇒ x ∈ P

(
Bool=2

)
(10.6)

So let x ∈ X, and y ∈ P
(
(Bool=2)⊥

)
. To show that 〈x, y〉≤ 1, we first enforce upper

bounds on the coefficients of y. Since y has to be dual with every element of the form
jm2

Bool (u1 ⊗ u2) with ui ∈ P (Bool), we obtain in particular the following inequalities:

1 ≥〈y, jm2
Bool (et ⊗ et)〉= y[t,t] 1 ≥〈y, jm2

Bool (ef ⊗ ef)〉= y[f,f]

1 ≥〈y, jm2
Bool (et ⊗ ef)〉=

1

2
· y[t,f].

From those inequalities we are now able to show that:

〈x, y〉 = x[t,t] · y[t,t] + x[f,f] · y[f,f] + x[t,f] · y[t,f]

≤ x[t,t] + x[f,f] + 2 · x[t,f] · y[t,f]

≤ 1 since x ∈ X.

And using Equation 10.6 we can now conclude that P
(
Bool=2

)
= {w ∈ RM2(|Bool|)

+ ; w[t,f]+
w[f,f] + 2w[t,f] ≤ 1}.

10.2.2 The approximations A≤n

The existence of equalizers for the symmetry morphisms over A=n for any PCS A —that
we established in Proposition 10.2.6 —implies that we can now define in PCoh the expo-
nential approximations, that consist of the family of PCSs A≤n := (A & 1)=n. Here, we
look at those PCSs more extensively, thus obtaining a direct characterization of A≤n by
means of an operator 〈u1, . . . un〉 over the vectors in P (A), crucial for the next step. This
characterization is presented in Lemma 10.2.7 below, where we use the following notation:
M≤n(X) is the set of all multisets over X of length smaller or equal to n, and f : X ↪→ Y
to denote an injective function from X to Y .

Lemma 10.2.7 (Caracterisation of the A≤n) The PCS A≤n can be presented as fol-
lows: ∣∣A≤n∣∣ =M≤n(|A|), P

(
A≤n

)
= {〈u1, . . . , un〉 ; ∀i ≤ n, ui ∈ P (A)}⊥⊥
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where, for any [a1, . . . , ak] ∈
∣∣A≤n∣∣,

〈u1, . . . , un〉[a1,...,ak] =
1

n!

∑
σ∈Sn

k∏
i=1

(uσ(i))ai (10.7)

=
(n− k)!

n!

∑
f :{1,...,k}↪→{1,...,n}

k∏
i=1

(uf(i))ai . (10.8)

Proof. In the proof, we note A≤n for the new presentation proposed in the statement,
and (A & 1)=n for the one coming from the definition of symmetries equalizers in Defi-
nition 10.2.2. First, notice that there is a bijection between

∣∣A≤n∣∣ and Mn(|A| ] {?}) =
|(A& 1)=n| obtained just by adding the necessary number of ?’s to a multiset in

∣∣A≤n∣∣.
Second, the definitions of P

(
A≤n

)
and of 〈u1, . . . , un〉 follow by remarking that the latter

is a notation for jmnA ((〈u1, e?〉) ⊗ · · · ⊗ (〈un, e?〉)), with jmnA the morphism (A & 1)⊗n →
(A & 1)≤n defined in Definition 10.2.1, and 〈u, v〉 the cartesian product between vectors
defined in Section 9.2.1 of Chapter 9—i.e. when defining the cartesian product in PCoh.
The result is then a consequence of Lemma 9.2.3: indeed recall from the definition of ⊗
that G = {v1 ⊗ . . .⊗ vn | vi ∈ P (A& 1)} is a set of generators for (A& 1)⊗n. Moreover,
observe that for every v ∈ P (A& 1) it holds that v ≤|A&1| 〈π1v, e?〉. As a consequence,
if we denote G′ = {(〈u1, e?〉) ⊗ · · · ⊗ (〈un, e?)〉 | u ∈ P (A)}, we see that G′ ⊆ G, and
that every element in G is dominated by an element in G′, and since the bi-duality op-
erator is downward closing, it implies that G′⊥⊥ = G⊥⊥. As a consequence, G′ also is a
set of generators for A & 1, and we can conclude using Lemma 9.2.3, that tells us that
P ((A& 1)=n) = jmnA (G′)⊥⊥. �

Example 10.2.4 We have no simple characterization of Bool≤2, but Lemma 10.2.7 helps
us in computing its generators. For example, we have:

〈et, ef〉 = e[·] +
1

2
e[t,f] +

1

2
e[t] +

1

2
e[f]

〈et, et〉 = e[·] + e[t] + e[t,t],

One can observe more generally that (supBool≤n)µ = 1 for any multiset µ ∈M≤n({t, f})
which is uniform (i.e. of which support is at most a singleton), while (supBool≤n)µ < 1
for µ non-uniform.

Henceforth, we will consider A≤n as presented in Lemma 10.2.7.

10.2.3 The limit !fA

The quest for a limit !fA of the family (A≤n)n∈N requires studying the relations between
exponential approximations of different degree. This is done starting from the following
notions of injection and projection. Given A,B s.t. |A| ⊆ |B|, we define the matrices

injection ιA,B ∈ R|A|×|B|+ and projection ρB,A ∈ R|B|×|A|+ as follows:

(ιA,B)a,b = (ρB,A)b,a = δa,b. (10.9)

The injection ιA,B maps a vector u ∈ R|A|+ to the vector (〈u,~0〉) ∈ R|B|+ associating the
directions in |B| \ |A| with zero—here × denotes the cartesian product between vectors as
defined in Section 9.2.1 of Chapter 9, and ~0 the zero vector. The projection ρB,A maps
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a vector (〈u, v〉) ∈ R|B|+ to its restriction u to the directions within |A|. In order to have

these matrices as morphisms in PCoh, we have to prove that (〈u,~0〉) ∈ P (B) whenever
u ∈ P (A) (resp. u ∈ P (A) whenever (〈u, v〉) ∈ P (B)).

The projection matrix ρA≤n+1,A≤n of A≤n+1 into A≤n actually coincide with the cate-
gorically defined projection morphisms pn+1,n from Definition 10.1.10. As a corollary, we
get the following lemma.

Lemma 10.2.8 For any m ≥ n and A, we have: ρA≤m,A≤n ∈ PCoh(A≤m,A≤n) and

ιA≤n⊥,A≤m⊥ ∈ PCoh(A≤n⊥,A≤m⊥).

Proof. Let n ∈ N. Recall that pn+1,n is defined as the unique morphism such that the
following morphisms A≤n+1 → (A& 1)⊗n coincide:

r(A&1)⊗n ◦ (id⊗ π2) ◦ eqA≤n+1 = eqA≤n ◦ pn+1,n (10.10)

When we unfold Equation (10.10) by looking at matrix coefficients—recall the expressions
of r, π2 in PCoh, stated in Section 9.2.1—we obtain that for every µ ∈ M≤n+1(|A|),
and ~a ∈ |A& 1|,

∑
ν∈M≤n(|A|)(pn+1,n)

ν,
∼
~a

= δ
µ,
∼
~a

. We see that these constraints entirely

characterize the matrix pn+1,n, and more precisely that pn+1,n must be exactly ρA≤n+1,A≤n .
As a consequence, ρA≤n+1,A≤n ∈ PCoh(A≤n+1,A≤n). Since for every m,n with m > n,
ρA≤m,A≤n = ρA≤n+1,A≤n ◦ . . . ◦ ρA≤m,A≤m−1 , it also holds that ρA≤m,A≤n is a morphism
in PCoh(A≤m,A≤n). Moreover, we can also see that ιA≤n⊥,A≤m⊥ is indeed a morphism

A≤n⊥ → A≤m⊥, since:

(∀x ∈ P
(
A≤m

)
, ρA≤m,A≤n ∈ P

(
A≤n

)
)

⇒ (∀y ∈ P
(
A≤n

)⊥
, ιA≤n⊥,A≤m⊥ ∈ P

(
A≤m

)⊥
)

�

The interesting point is that the dual version of Lemma 10.2.8 does not hold: in general,
the injection of A≤n into A≤n+1 (resp. projection of (A≤n+1)⊥ into (A≤n)⊥) is not a
morphism of PCoh. We illustrate this using the boolean PCS Bool in Example 10.2.5
below.

Example 10.2.5 In Example 10.2.4, we discussed 〈et, ef〉 ∈ P
(
Bool≤2

)
. Let us prove

now that ιBool≤2,Bool≤3 〈et, ef〉 /∈ P
(
Bool≤3

)
. It is a consequence of the following facts:

(ιBool≤2,Bool≤3 〈et, ef〉)[t,f] = 〈et, ef〉[t,f] =
1

2

(sup P
(
Bool≤3

)
)[t,f] =

1

3
.

The latter claim is because:

P
(
Bool≤3

)
= {〈et, et, et〉, 〈et, et, ef〉, 〈et, ef, ef〉, 〈ef, ef, ef〉}⊥⊥

and the maximal value of these generators on [t, f] is 1
3 . Since the bi-duality operator con-

sists in the convex, downward and Scott-closure, it means that no element in P
(
Bool≤3

)
may have a coefficient on [t, f] greater that 1

3 .
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One can however, for every N ≥ n, add a correction factor to the injection matrix ιA,n,N
in order to obtain a new matrix ιcorA,n,N that embeds A≤n into A≤N , i.e. that is both

invertible, and a morphism A≤n → A≤N . We define the amended injection matrix ιcor as
follows:

(ιcorA,n,N )µ,ν :=


(N−k)!qkn!
N !(n−k)! if µ = ν and #µ = k ≤ n

and q = bNn c and r = N modn;

0 otherwise.

(10.11)

Lemma 10.2.9 For every PCS A, and for any n,N ∈ N with n < N , the amended injec-
tion matrix ιcorA,n,N is a morphism in PCoh(A≤n,A≤N ) mapping, in particular, 〈u1, . . . , un〉 ∈
P
(
A≤n

)
to 〈uq1, . . . , u

q
n,~0r〉 ∈ P

(
A≤N

)
, where q is the quotient bNn c and r the remainder

N modn of the euclidean division N
n . Moreover, uqi is a notation for ui, . . . , ui︸ ︷︷ ︸

q times

(and simi-

larly for ~0r).

Proof. One has just to prove the last part of the statement, the rest follows by Lemma 9.2.3
because the vectors of the form 〈u1, . . . , un〉 are a set of generators for P

(
A≤n

)
(Lemma 10.2.7).

We have, for any multiset µ = [a1, . . . , ak],

(ιcorA,n,N 〈u1, . . . , un〉)µ =

(
(N − k)!qkn!

N !(n− k)!

)
(n− k)!

n!

∑
f :{1,...,k}↪→{1,...,n}

k∏
i=1

(uf(i))ai

=
(N − k)!

N !
qk

∑
f :{1,...,k}↪→{1,...,n}

k∏
i=1

(uf(i))ai

=
(N − k)!

N !

∑
f :{1,...,k}↪→{1,...,nq}

k∏
i=1

(u(bf(i)/qc)+1)ai

= 〈uq1, . . . , u
q
n,0

r〉µ.

where we use ↪→ to denote injective functions and where from line 2 to 3, we use the count
qk to enlarge the codomain of the injections f indexing the sum. �

At this point, we can do the following crucial observation: if we fix n ∈ N, and we look
at the morphism ιcorA,n,N : A≤n → A≤N when N tends towards +∞, we can see that
the corresponding matrix coefficients also admit a limit. We express that formally in
Equations (10.12) and (10.13) below. If we note N = nq + r, it holds that:

lim
N→∞

(N − k)!qkn!

N !(n− k)!
=

n!

nk(n− k)!
, (10.12)

( lim
N→∞

ιcorA,n,N 〈u1, . . . , un〉)µ =
1

nk

∑
f :{1,...,k}↪→{1,...,n}

k∏
i=1

(uf(i))ai . (10.13)

This observation allows us to take the following approach to construct the limit object:
the contribution of each A≤n to the limit object !fA should be the limit of its contribution
to the A≤N , when N is greater than n and tends toward +∞. We formalize this intuition
in Definition 10.2.3 below, and then proceed to show that the object we build this way is
indeed the free exponential comonoid.
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Definition 10.2.3 Given A, we define !fA as:

|!fA| =Mf (|A|), P (!fA) = {〈〈u1, . . . , un〉〉 ; n ∈ N,∀i ≤ n, ui ∈ P (A)}⊥⊥ ,

where: 〈〈u1, . . . , un〉〉[a1,...,ak] = 1
nk

∑
f :{1,...,k}↪→{1,...,n}

∏k
i=1(uf(i))ai.

Notice that whenever k > n, 〈〈u1, . . . , un〉〉[a1,...,ak] = 0.

Proposition 10.2.10 Let A be a PCS. The object !fA together with the family of mor-
phisms ρ!fA,A≤n ∈ PCoh(!fA,A≤n) for n ∈ N, constitutes the limit of the chain:

1
p1,0← A≤1 p2,1← A≤2 p3,2← . . .

Moreover, this limit commutes with the tensor product (Figure 10.4).

Proof. First, we prove that ρ!fA,A≤m is a correct morphism mapping P (!fA) into P
(
A≤m

)
,

for any m. By Lemma 9.2.3 it is enough to check that any 〈〈u1, . . . , un〉〉 is mapped to the

PCS P
(
A≤m

)
by ρ!fA,A≤m . As P

(
A≤m

)
= P

(
A≤m

)⊥⊥
, it is equivalent to show that for

any n ∈ N, ui ∈ P (A), and w ∈ P
(
A≤m

)⊥
we have:

〈ρ!fA,A≤m 〈〈u1, . . . , un〉〉, w〉≤ 1 (10.14)

Lemma 10.2.8 and 10.2.9 give us, ∀N ≥ m,n, resp.: ιA≤m,A≤N w ∈ P
(
A≤N

)⊥
and

ιcorA,n,N 〈u1, . . . , un〉 ∈ P
(
A≤N

)
. Thus the inner product between the two vectors is bounded

by 1. Consider then the limit of this product for N →∞:

1 ≥ lim
N→∞

〈ιcorA,n,N 〈u1, . . . , un〉, ιA≤m,A≤N w〉

=〈〈〈u1, . . . , un〉〉, ιA≤m,!fAw〉 (Eq. (10.13) and Def. 10.2.3)

=〈ρ!fA,A≤m 〈〈u1, . . . , un〉〉, (ρ!fA,A≤m ◦ ιA≤m,!fA)w〉

=〈ρ!fA,A≤m 〈〈u1, . . . , un〉〉, w〉

Line 2 gives line 3 using of the definition of ι and π in (10.9). Now we prove that !fA
together with its projections ρ!fA,A≤m is indeed a limit cone. As for Proposition 10.2.6,
we prove straight the commutation with the ⊗, as the first part of the statement is a
consequence of this latter, taking B = 1.

Take a PCS C and an N-indexed family of morphisms fn ∈ PCoh(C,A≤n ⊗ B) com-

muting with the chain B p1,0← A≤1 ⊗ B p2,1← A≤2 ⊗ B p3,2← . . . . We should define a unique f †

s.t. Figure 10.4 commutes. The matrix f † is defined as:

f †c,(µ,b) = (f#µ)c,(µ,b).

The fact that f † is the unique one such that Figure 10.4 commutes is an easy calculation.
We should then prove that it is a morphism in PCoh(C, !fA⊗B), i.e. for every v ∈ P (C),
f † v ∈ P (!fA⊗ B). Since P (!fA⊗ B) = P (!fA⊗ B)⊥⊥, it is equivalent to prove that:

∀w ∈ P (!fA⊗ B)⊥, 〈f † v, w〉≤ 1. For any n, define w ↓n∈ R|A
≤n⊗B|

+ as:

(w ↓n)(µ,b) =

{
n!

nk(n−k)!
w(µ,b) if #µ = k ≤ n,

0 otherwise.
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Notice that, for any 〈u1, . . . , un〉 ∈ P
(
A≤n

)
and z ∈ P (B), we have the inequality:

〈〈u1, . . . , un〉 ⊗ z, w ↓n〉=〈〈〈u1, . . . , un〉〉 ⊗ z, w〉≤ 1.

We conclude that w ↓n∈ P
(
A≤n ⊗ B

)⊥
, for any n. Then we have:

1 ≥ lim
n→∞

〈fn v, w ↓n〉= lim
n→∞

〈(ρ!fA,A≤n ◦ f
†) v, w ↓n〉 (def f †)

=〈f † v, w〉 since lim
n→∞

n!

nk(n− k)!
= 1

�

Propositions 10.1.5, 10.2.6 and 10.2.10 give the last corollary.

Corollary 10.2.1 For any PCS A, the PCS !fA yields the free commutative comonoid
generated by A.

The free comonad !fA yields to a Lafont model—see Definition 9.1.10 in Chapter 9—of
linear logic which seems different from the new-Seely one developed by Danos and Ehrhard
—that we’ve presented in Section 9.2.2 of Chapter 9 —because the definition of !fA seems
apparently different from the entire exponential modality !eA (Definition 9.2.5). In fact,
the two spaces are the same, as shown in the following section.

10.3 The free and entire exponential modalities are the same.

How do the exponential approximations A≤n of !fA relate with !eA? Let us consider the
PCS A = Bool, and compare the maximal coefficients of these spaces on [t, f]. It is easy
to check that:

(sup !eBool)[t,f] = (
et + ef

2
)!
[t,f] =

1

4
.

On the other hand, if we look at the value of those same maximal coefficients in the
exponential approximations Bool≤n, we obtain:

(sup Bool≤n)[t,f] = (〈eb
n
2
c

t , e
dn

2
e

f )[t,f] = (〈ed
n
2
e

t , e
bn

2
c

f )[t,f],

whose values are, for n = 2, 3, 4, . . . (using Equation (10.8)):

1

2
,
1

3
,
1

3
,

3

10
,

3

10
,
2

7
, . . . ,

1

n(n− 1)
bn

2
cdn

2
e . . . n→∞→ 1

4

This remark can be generalized, showing that the exponential approximations A≤n are
actually approaching to !eA from above, giving that their limit is equal to !eA.

Proposition 10.3.1 For any PCS A, we have !fA =!eA.

Proof. The two spaces have the same web, we prove that P (!fA) = P (!eA). We first show
that P (!fA) ⊆ P (!eA). Take any 〈〈u1, . . . , un〉〉 ∈ P (!fA), we have 〈〈u1, . . . , un〉〉 ∈ P (!eA),
because 〈〈u1, . . . , un〉〉 ≤ ( 1

n

∑
i ui)

! ∈ P (!eA).
Conversely, let un denotes u, . . . , u repeated n times in

〈〈un〉〉[a1,...,ak] =
n!

nk(n− k)!

k∏
i=1

uai =
n!

nk(n− k)!
u!

[a1,...,ak].

As for k < n, n!
nk(n−k)!

is an increasing sequence converging to 1, we get that ∀u ∈ P (A),

supn〈〈un〉〉 = u!. Now, u! ∈ P (!fA) since it is Scott-closed. Since u! for u ∈ P (A) are
generating P (!eA), we conclude that P (!eA) ⊆ P (!fA). �
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Chapter 11

PCoh is a full subcategory of
Cstabm

The category Cstabm was introduced as a model for PCFsample—the higher-order lan-
guage with continuous probabilities that we presented in Section 9.3 from Chapter 9 —by
Ehrhard, Pagani and Tasson in [45], i.e. they built in Cstabm a sound and adequate
interpretation of PCFsample. It is not known, however, if this model is also fully abstract.
We do not solve this question here, but the work we present now was designed in the hope
that it could be a first step in this direction. Our perspective is as follows: while we have
until now no full abstraction result for a model of an higher-order language with continu-
ous probabilities, it is different in the case of discrete probabilities: for instance PCoh is
a fully abstract model of PCF⊕, and there are also game models that have been shown to
be fully abstract for diverse higher-order language with probabilities—see Chapter 9 for
a more precise account. What we do here is to look at Cstabm from the perspective of
discrete probabilities: our result consists in establishing that the discrete model induced
by Cstabm is exactly the PCF⊕ model in PCoh. It enables us to reformulate the full-
abstraction problem as follows: is it possible to generalize the full-abstraction proof for
PCoh in a more general—i.e. continuous—setting ?

To make more precise what we mean when we talk about Cstabm as a model of discrete
higher-order computation, let us first consider a continuous higher-order language with
an explicit discrete fragment. We define a language PCF⊕,sample that has all syntactic
constructs of both PCF⊕ and PCFsample, with both a real type R, and a natural number
type N as base types. We want this language to be able to convert natural data types into
real data type, and reversely, in the following sense: first, we endow this language with a
conversion operatorreal, that turns every distribution over N into a distribution over R,
without information loss, and consequently is associated with a typing rule as follows:

Γ `M : N

Γ ` real(M) : R

This operator is designed to enable the continuous constructs to act on the discrete
fragment, by giving a way to see any distribution on N as a distribution on R. The lan-
guage PCF⊕,sample is designed to talk about approximating by discrete tests the programs
in PCFsample: for instance if we consider a PCFsample program M : R → R, we can ap-
proximate its behavior by considering all programs λx ·KM(Lx) : N → N , where L and
K are PCF⊕,sample programs of type respectively N → R, and R → N . Observe that
the program K may be built using for instance the order operators—see Section 1.4.2 of
Chapter 1—while the existence of such programs L is guarantee by our real(·) construct.
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11.1. A GENERALIZATION OF BERNSTEIN’S THEOREM FOR PRE-STABLE FUNCTIONS

We can extend in a natural way the denotational semantics of PCFsample given in [45] to
PCF⊕,sample: in the same way that the denotational semantics of R is taken as the set of
all finite measures on R, we take the denotational semantics of N as the set Meas(N) of
all finite measures over N. We take as denotational semantics of the operator real the
function: JrealKCstabm : µ ∈ Meas(N) 7→ (A ∈ ΣR 7→

∑
n∈N∩A µ(n)) ∈ Meas(R). We will

see later that this function is indeed a morphism in Cstabm(Meas(N),Meas(R)). What
we would like to know is: what is the structure of the sub-category of Cstabm given by
the discrete types of PCF⊕,sample, i.e generated inductively by JNKCstabm , ⇒, × ?

The starting point of our work is the connection highlighted in [45] between PCSs
and complete cones: every PCSs can be seen as a complete cone, in such a way that the
denotational semantics of N in PCoh! becomes the set of finite measures over N. We
formalize this connection by a functor Fm : PCoh! → Cstabm. However, to be able
to use PCoh! to obtain information about the discrete types sub-category of Cstabm,
we need to know whether this connection is preserved at higher-order types: does the ⇒
construct in Cstabm make some wild functions not representable in PCoh! to appear,
e.g. not analytic? In this paper, we show that this is not the case, meaning that the
functor Fm is full and faithful, and cartesian closed. Since PCoh! is a fully abstract
model of PCF⊕, it means that the discrete fragment of PCF⊕,sample is fully abstract in
Cstabm. More generally, it tells us also that for any PCFsample program M , regardless
of the continuous computations it does, every approximation of M by discrete tests has
for denotation in Cstabm a power series: hence we are able to gather information on the
behavior of M by looking only at power series, that are much easier to handle that general
functions between cones.

It was noted in [45] that there is a natural way to see any probabilistic coherent space as
an object of Cstab. In this work, we show that this connection leads to a full and faithful
functor F from PCoh!—the Kleisli category of PCoh—into Cstab. We do that by
showing that every stable function between probabilistic coherent spaces can be seen as a
power series, using McMillan’s extension [80] to an abstract setting of Bernstein’s theorem
for absolutely monotonic functions. We then show that this functor F is cartesian closed,
i.e. respects the cartesian closed structure of PCoh!. In the last part, we turn F into a
functor Fm : PCoh! → Cstabm, and we show that Fm too is cartesian closed. To sum
up, the contribution of this paper is the construction of a cartesian closed full embedding
from PCoh! into Cstabm. Since PCoh! is known to be a fully abstract denotational
model of PCF⊕, an immediate corollary is that Cstabm too is a fully abstract model of
PCF⊕.

11.1 A generalization of Bernstein’s theorem for pre-stable
functions

In [80], McMillan generalized Bernstein’s Theorem on absolutely monotonic function from
real analysis to general domains with partitions systems. Here, we present its result in
the more restricted setting of pre-stable functions on directed-complete lattice cones. Its
approach consists in first defining an analogue of derivatives for pre-stable functions, and
then showing that pre-stable functions can be written as the infinite sum generated by an
analogue of Taylor expansion on B◦C. We give here the main steps of the construction
directly on cones, and highlight some properties of the Taylor series which are true for
directed-complete lattice cones, but not in the general framework McMillan considered.
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11.1. A GENERALIZATION OF BERNSTEIN’S THEOREM FOR PRE-STABLE FUNCTIONS

11.1.1 Directed-complete Lattice Cones

We first define the restricted set of cones that we consider; it is designed to enable us to
use McMillan’s results while also containing all cones fenrated by PCSs.

Definition 11.1.1 A cone C is said to be:

• directed complete if for any directed subset D of BC, D has a least upper bound
supD ∈ BC.

• a lattice cone if any two elements x, y of C have a least upper bound x ∨ y.

Observe that a directed-complete cone is always sequentially complete.

Lemma 11.1.1 Let be C a lattice cone. Then it holds that:

• Any two element x, y of C have a greatest lower bound x ∧ y.

• Decomposition Property: if z ≤ x + y, there there exists z1, z2 ∈ C such that z =
z1 + z2, and z1 ≤ x, and z2 ≤ y.

Proof. Recall that, if a ≥ b, we denote by a− b the element c such that a = b+ c.

• We consider z = x + y − (x ∨ y), and we show that z is indeed the greatest lower
bound of x and y.

• We take z2 = (x ∨ z)− x, and z1 = z − z1. First, we see that z2 ≤ (x+ y)− x, and
so z2 ≤ y. Moreover, z1 = x− ((x ∨ z)− z) ≤ x.

�

11.1.2 Derivatives of a pre-stable function

We are now going, following McMillan [80], to construct derivatives for pre-stable functions
on directed complete cones. This construction is based on the use of a notion of partition:
a partition of x ∈ BC is a multiset π = [u1, . . . , un] ∈ Mf (C) such that x =

∑
1≤i≤n ui.

We write π ∼ x when the multiset π is a partition of x. We will denote by + the usual
union on multiset: [y1, . . . , yn] + [z1, . . . , zm] = [y1, . . . , yn, z1, . . . , zm]. We call Parts(x)
the set of partitions of x.

Definition 11.1.2 (Refinement Preorder) If π1, π2 are in Parts(x), we says that π1 ≤
π2 if π1 = [u1, . . . , un], and π2 = α1 + . . .+ αn with each of the αi a partition of ui.

Observe that when π1 and π2 are partition of x, π2 ≤ π1 means that π1 is a more finely
grained decomposition of x. If ~u is an n-tuple in BC, we extend the refinement order to
Parts(~u) = Parts(u1)× . . .× Parts(un).

Lemma 11.1.2 Let C be a lattice cone, and x ∈ C. Then Parts(x) is a directed set.

Proof. We are going to use the following notion: we say that two non-zero elements x
and y of C are orthogonal, and we note x ⊥ y, if x ∧ y = 0. Let be π1, π2 ∈ Parts(x).
We first show that it cannot exist z ∈ π1 which is orthogonal to all the element of π2.
Indeed, suppose that it is the case: we take y1, . . . , yn such that π2 = [y1, . . . , yn]. Then
by hypothesis, z ≤ x =

∑
1≤i≤n yi. We can now use the decomposition property from
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Lemma 11.1.1. It means that z =
∑

1≤i≤n zi, with zi ≤ yi. But since for all i, z ⊥ yi, it
folds that zi = 0 for all i, and so z = 0, and we have a contradiction.

Now, we are going to present a procedure to construct a partition π of x with π ≤ π1,
and π ≤ π2. We can suppose that all elements of π1 and π2 are non-zero. We start form
π = [], θ1 = π1, θ2 = π2, and w = x, v = 0. Through the procedure, we guarantee:

• θ1, θ2 ∈ Parts(w), π ∈ Parts(v), and w + v = x;

• all the elements of Θ1 and Θ2 are non-zero;

• π + Θ1 ≤ π1, and π + Θ2 ≤ π2 (for the refinment order).

Then at each step of the procedure, if θ1 is non empty, we do the following: let θ1 =
[a1, . . . , an], and θ2 = [b1, . . . , bm]. Then we know that there is a j, such that a1 and bj
are not orthogonal. We modify the variables as follows:

π = π + [a1 ∧ bj ]
v = v + a1 ∧ bj

θ1 =

{
[a1 − a1 ∧ bj , a2, . . . an] if a1 ∧ bj 6= a1

[a2, . . . , an] otherwise.

θ2 =

{
[b1, . . . , bj−1, bj − a1 ∧ bj , bj+1, . . . , bm] if a1 ∧ bj 6= bj

[b1, . . . , bj−1, bj+1, . . . , bm] otherwise.

x = x− a1 ∧ bj

At every step of the procedure presented above, the quantity:

card((i, j) | not (ai ⊥ bj))

decreases. Indeed:

• or we remove either a1 of Θ1, or bj of Θ2, and then the statement above holds.

• or we replace a1 by (a1 − a1 ∧ bj), and bj by (bj − a1 ∧ bj). Then we see that
(a1 − a1 ∧ bj) ⊥ (a1 − a1 ∧ bj). Moreover, the pairs that were orthogonal before are
still orthogonal: indeed for every z with z ⊥ a1 it holds that z ⊥ a1 − a1 ∧ bj , and
the same for bj .

As a consequence, the procedure will terminates. It means that we reach a state where
Θ1 is empty, and all the invariants presented above hold. Then we see that π ∈ Parts(x),
and π ≤ π1, π2.

We are going to illustrate the procedure above on a very basic example. We consider
the cone consisting of the positive quadrant of R2, endowed by the order defined as: x ≤ y
if x1 ≤ y1, and x2 ≤ y2. We take two partitions of a vector x ∈ R2: π1 = [b1, b2], and
π2 = [a1, a2], where a1, a2, b1, b2 are taken as pictured in Figure 11.1a. We are going to
apply our procedure in order to obtain a refinment of both π1 and π2. At the beginning,
we have Θ1 = π1, Θ2 = π2, w = x, v = 0.

• The first step is represented in Figure 11.1a. Observe that the procedure is actually
non-deterministic: we may choose any (a, b) with a ∈ π1, b ∈ π2, and a and b not
orthogonal. Here, we choose to start from (b1, a1). We take v = a1 ∧ b1 (and we
represent it by a red vector in Figure 11.1a): it is going to be the first element of our
new partition π. Accordingly, we take π = [v]. We know update the partition Θ1 and
Θ2 into partitions of w = x− v: Θ2 becomes [a′1, a2], and Θ1 becomes [b′1, b2] where
a′1 = a1 − b1 ∧ a1 and b′1 = b1 − a1 ∧ b1 are represented also in red in Figure 11.1a.
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• The second step is represented in Figure 11.1b. Observe that now a′1 and b′1 are
orthogonal, so we have to choose another pair. Here, we choose (b′1, a2). As before,
we add to π the glb of b′1 and a2: we obtain π = [a1 ∧ b1, b′1 ∧ a2]. Observe that now
(as can be seen on Figure 11.1b, b′1 ≤ a2, and so b′1 ∧ a2 = b′1. So when we update
the partition Θ1 and Θ2, we take: Θ2 = [b2], and Θ1 = [a′1, a′2] where a′2 = a2 − b′1
is represented in purple in Figure 11.1b.

• By doing again two steps of the procedure, we see that the final partition π is
[a1∧b1, b′1, a′1, a′2]. We can see by looking at Figure 11.1b that it is indeed a refinment
of both π1 and π2..

0

x

a1
a′1

a2

b1

b′1

b2

b1 ∧ a1

(a) First step of the Pro-
cedure

0

x

a1

a2

b1

b2

b1 ∧ a1

a′1

b′1

b′1 ∧ a2

a′1

a′2

(b) Second Step of the
Procedure

Figure 11.1: Illustration of the Proof of Lemma11.1.2

�

Observe that, as a consequence, the refinement preorder turns also Parts(~u) into a
directed set.

Definition 11.1.3 (from [80]) Let C be a lattice cone, D a cone, and let f : BC → D
be a pre-stable function. Then for every x ∈ BC, and ~u = (u1, . . . , un) ∈ BCnx , we define

Φf,n
x,~u : Parts(~u)→ D as:

Φf,n
x,~u(π1, . . . πn) =

∑
y1∈π1

. . .
∑
yn∈πn

∆nf(x | y1, . . . , yn).

It holds (see [80] for more details) that Φf,n
x,~u is a non-increasing function whenever f

is pre-stable (it is shown in Lemma 3.2 of [80] by looking at the definition of higher-order

differences). Since Parts(~u) is a directed set (by Lemma 11.1.2), Φf,n
x,~u has a greatest lower

bound whenever D is a directed-complete cone.

Definition 11.1.4 (from [80]) Let be C a lattice cone, D a directed-complete lattice
cone, and f : BC → D a pre-stable function. Let be ~u ∈ BCnx . Then the derivative of f
in x at rank n towards the direction ~u is the function Dnf(x | ·) : BCnx → D defined as

Dnf(x | ~u) = inf
~π∈Parts(~u)

Φf
x,~u(~π).

In order to highlight the link with differentiation in real analysis, we illustrate Defini-
tion 11.1.4 on the basic case where f : R+ → R+,
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Example 11.1.1 We take C and D as the positive real half-line, and x ∈ [0, 1). Let be h
such that x+ h ≤ 1. Then:

D1f(x | h) = inf
π with π∼h

∑
y∈π

f(x+ y)− f(x).

Since f is pre-stable hence an absolutely monotonic function on reals, f is convex, and
moreover differentiable (see [124]). From there, by considering a particular family of
partitions, we can show that D1f(x | h) = h · f ′(x).

Proof. First, let π be any partition of y. Since f is differentiable and convex, it holds
that:

∀z, f(x+ z)− f(x) ≥ f ′(x) · z.

As a consequence, we see that for any partition π of h, it holds that
∑

y∈π f(x+y)−f(x) ≥
f ′(x) · h, and it implies that D1f(x | h) ≥ f ′(z) · h. To show the reverse inequality, it is
enough to consider the particular family of partition πn = [hn , . . . ,

h
n ] of h: we see that∑

y∈πn
f(x+ y)− f(x) = n · f(x+

h

n
)− f(x)

= h ·
f(x+ h

n)− f(x)
h
n

→n→∞ h · f ′(x).

�

Lemma 11.1.3 (from [80]) Let C be a lattice cone, D a directed complete cone, f a
pre-stable function from C to D. Let be x ∈ B◦C. Then Dnf(x | ·) is a symmetric
function B(Cnx )→ D such that moreover:

• 0 ≤ Dnf(x | ~u) ≤ ∆nf(x | ~u);

• both ~u 7→ Dnf(x | ~u) and ~u 7→ ∆nf(x | ~u)−Dnf(x | ~u) are pre-stable functions from
Cnx to D.

Proof. The proof is given in Lemma 3.31 in [80]. It comes almost directly from Defini-
tion 11.1.4. �

We have seen in Example 11.1.1 that our so-called derivatives of pre-stable functions
play the same role as the differential of a differentiable function, which are actually linear
operators dfnx : Rn → R. While the abstract domains considered in [80] do not have to be
R+ semi-modules, so have no notion of linearity, we are able to show in our case that the
Dnf are linear in the sense of Lemma 11.1.4 below.

Lemma 11.1.4 Let C, D be two directed complete lattice cones, x ∈ B◦C.

• Let f : BC → D be a pre-stable function. Then Dnf(x | ·) : B(Cnx )→ D is n-linear,
in the sense that:

Dnf(x | u1, . . . , λ · v + w, . . . un) = λ ·Dnf(x | u1, . . . , v, . . . un)

+ Dnf(x | u1, . . . , w, . . . un).

• For any ~u ∈ B(Cnx ), the function f ∈ Cstab(C,D) 7→ Dnf(x | ~u) ∈ D is linear and
directed Scott-continuous.
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Proof. We are going to use the following auxiliary lemma:

Lemma 11.1.5 (from [80]) Let C and D be two directed cones, and f : C → D linear
and non-decreasing, such that moreover for all subset F of C directed for the reverse order,
f(inf F ) = inf f(F ). Then f is directed Scott-continuous.

Proof. Let be E a directed subset of C. We define F = {supE − x | x ∈ E}. Since E
is directed, F is directed for the reverse order, and as a consequence:inf f(F ) = f(inf F ).
But we see that inf F = 0. Therefore, since f is linear, f(inf F ) = 0. As a consequence
(and again by linearity of f): f(supE)− sup f(E) = inf f(F ) = 0. �

We are now going to show Lemma 11.1.4.

• We first show that Dnf(x | ·) : B(Cnx ) → D is n-linear. The additivity is given by
Lemma 3.72 of [80]. The commutation with scalar multiplication is not proved on
this form in [80] because they have a more general notion of a system of partition.
We first show that the result holds when λ is a rational number. To do that, we
use the fact that π = [xn , . . . ,

x
n ] is always a partition of x. Then, let λ ∈ R+ and

~u = (u1, . . . , un) such that both ~u and ~v = (u1, . . . , λui, . . . , un) are in BCnx . Let be
r = (rm)m∈N, q = (qm)m∈N two sequences of rational number such that r tends to λ
by below, and q tends to λ by above. We see that:

Dnf(x | ~v) = 2 ·Dnf(x | u1, . . . ,
λ

2
· ui, . . . un).

We take N such that for every m ≥ N , qm ≤ 2 ·λ: since Dnf(x | ·) is non-decreasing,
we see that:

Dnf(x | u1, . . . ,
rm
2
· ui, . . . , un)

≤ Dnf(x | u1, . . . ,
λ

2
· ui, . . . , un)

≤ Dnf(x | u1, . . . ,
qm
2
· ui, . . . , un)

Applying now the linearity for rational numbers, we see that for every m ≥ N :

rm ·Dnf(x | u1, . . . ,
1

2
· ui, . . . , un)

≤ Dnf(x | u1, . . . ,
λ

2
· ui, . . . , un)

≤ qm ·Dnf(x | u1, . . . ,
1

2
· ui, . . . , un)

As a consequence:

sup
m≥N

rm ·Dnf(x | u1, . . . ,
1

2
· ui, . . . , un)

≤ Dnf(x | u1, . . . ,
λ

2
· ui, . . . , un)

≤ inf
m∈N

qmDnf(x | u1, . . . ,
1

2
· ui, . . . , un)
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and by Scott-continuity of ·, it tells us that Dnf(x | u1, . . . ,
λ
2 ·ui, . . . , un) = λDnf(x |

u1, . . . ,
1
2 · ui, . . . , un). We can now conclude: recall that Dnf(x | ~v) = 2 ·Dnf(x |

u1, . . . ,
λ
2 · ui, . . . un). Therefore:

Dnf(x | ~v) = 2 · λ ·Dnf(x | u1, . . . ,
1

2
· ui, . . . , un)

= λ ·Dnf(x | ~u) since
1

2
∈ Q.

• We show now that f ∈ Cstab(C,D) 7→ Dnf(x | ~u) ∈ D is linear and Scott-
continuous. It is immediate that it is linear, since every one of the f 7→ ∆nf(x | u)
is. We are now going to use 11.1.5 to show the Scott-continuity: it tells us that
we have only to check that for every E ⊆ C ⇒m D directed for the reverse order,
Dnf(inf E | ~u) = inf Dnf(E | ~u). Observe that:

Dn(inf E)(x | ~u) = inf
~π∈Parts(~u)

∑
y1∈π1

. . .
∑
yn∈πn

∆n(inf E)(x | y1, . . . , yn)

= inf
~π∈Parts(~u)

∑
y1∈π1

. . .
∑
yn∈πn

inf
f∈E
{∆nf(x | y1, . . . , yn)}

= inf
~π∈Parts(~u)

inf
f∈E
{
∑
y1∈π1

. . .
∑
yn∈πn

∆nf(x | y1, . . . , yn)}

= inf
f∈E

Dnf(x | ~u) since the infs can be exchanged.

�

The linearity of the derivatives means that for every x ∈ B◦C, we can extend Dnf(x | ·)
to a function Cxn → D. We will use implicitly this extension in the following, especially in
Definition 11.1.5.

11.1.3 Taylor Series for pre-stable functions

We have seen above that the Dnf are a notion of differential for pre-stable functions.
Following further this idea, McMillan defined an analogue to the Taylor expansion. We
give here a slightly different, but equivalent, formulation, taking advantage of the linearity
of the derivatives for cones (the original formulation, as well as the proof of equivalence,
are detailed in the long version). In all this section C and D are going to be directed
complete lattice cones, and f : BC → D a pre-stable function.

Definition 11.1.5 Let be x ∈ B◦C. We call Taylor partial sum of f in x at the rank
N the function TfN (x | ·) : BC1

x → D defined as:

TfN (x | y) = f(x) +
N∑
k=1

1

k!
Dkf(x | y, . . . , y).

The next step consists in establishing that the TNf are actually a non-increasing bounded
sequence in the cone of pre-stable functions from C to D, which will allow to define the
Taylor series of f , as the supremum of the TNf .

To that end, we are first going to establish an alternative characterization of the Taylor
series, which is the one used in [80], in the framework of abstract domains. It consists
in substituting each of the Dnf(x | y, . . . , y) with its expression given by Lemma 11.1.6
below. The validity of Lemma 11.1.4, and thus the equivalence of the two definitions,
depends on the fact we work with directed-complete cones.
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Lemma 11.1.6 (Alternative Caracterisation of Derivatives) Let x ∈ B◦C, y ∈ BC1
x,

and k ∈ N. Then it holds that Dkf(x | y, . . . , y) is equal to:

sup
π=[u1,...,un]∈Parts(y)

∑
σ:[[1,k]]↪→[[1,n]]

Dkf(x | uσ(1), . . . uσ(n))

Proof. We first introduce the following notation: if π = (u1, . . . , un) is a partition of
x, and σ : [[1, k]] ↪→ [[1, n]] an injective function, we denote σ(π) = (uσ(1),...,uσ(k)). We

denote by A = supπ∈Parts(y)

∑
σ:[[1,k]]↪→[[1,n]] D

kf(x | σ(π)). We show separately the two
inequalities.

• We first show that A ≥ Dkf(x | y, . . . , y). For every n ∈ N, it holds that π =
( 1
n · y, . . . ,

1
n · y) is a partition of y. Therefore for every n ∈ N:

A ≥
∑

σ:[[1,k]]↪→[[1,n]]

Dkf(x | y
n
, . . . ,

y

n
)

=
n!

(n− k)!
Dkf(x | y

n
, . . . ,

y

n
)

=
n!

(n− k)! · nk
Dkf(x | y, . . . , y)

The sequence n!
(n−k)!·nk tends to 1 when n tends to infinity (see in the long version).

By Scott-continuity, it means that A ≥ Dkf(x | y, . . . , y).

• Let us show now that A ≤ Dkf(x | y, . . . , y). Let be π = (u1, . . . , un) ∈ Parts(y).
Then: ∑

σ:[[1,k]]↪→[[1,n]]

Dkf(x | σ(π))

≤
∑

i1∈{1,n}

. . .
∑

ik∈{1,...,n}

Dkf(x | ui1 , . . . uik)

= Dkf(x | y, . . . , y) by n-linearity of Dkf(x | ·)

Since A = supπ∈Parts(y)

∑
σ:[[1,k]]↪→[[1,n]] D

kf(x | σ(π)), we see that A ≤ Dkf(x |
y, . . . , y), which ends the proof.

�

With this characterization, [80] shows that the sequence of functions (x ∈ BC1
y 7→ Tfn(x |

y)) is bounded by (x ∈ BC1
y → f(x + y)) in the cone of pre-stable functions from C1

x to
D.

Lemma 11.1.7 Let be y is in B◦C, and x in BC1
y . Then ∀N ∈ N, TfN (x | y) ≤ f(x+y),

and the function (x ∈ BC1
y 7→ f(x+ y)− TfN (x | y)) is pre-stable.

Proof. Let be x ∈ B◦C and y ∈ BCx. We are able to express f(x+y) by using f(x) and
finite differences on any partition of y: indeed, for every partition π of y, it holds that:

f(x+ y) = f(x) +
∑

1≤k≤n

1

k!

∑
σ:[[1,k]]↪→[[1,n]]

∆kf(x, σ(π)) (11.1)
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Proof. It is an algebraic calculation, done in [80]. We give here the proof for n = 2. Let
π = [y1, y2] a partition of y. Then we see that:

f(x) +
∑

1≤k≤n

1

k!

∑
σ:[[1,k]]↪→[[1,n]]

∆kf(x, σ(π))

= f(x) + ∆1f(x, y1) + ∆1f(x, y2)

+
1

2
· (∆2f(x, y1, y2) + ∆2f(x, y2, y1))

= f(x) + (f(x+ y1)− f(x)) + (f(x+ y2)− f(x))

+ (f(x+ y1 + y2)− f(x+ y1)− f(x+ y2) + f(x))

= f(x+ y1 + y2) = f(x+ y).

�

Moreover we are also able to express the derivatives of f at x towards the direction y also
using the partitions of y (it is the sense of Lemma 11.1.6). Accordingly:

TfN (x | y) = f(x) +
N∑
k=1

1

k!
Dkf(x | y, . . . , y)

= f(x) +

N∑
k=1

1

k!
sup

π∈Parts(y)

∑
σ:[[1,k]]↪→[[1,n]]

Dkf(x | σ(π))

Using Lemma 11.1.3, we see that it implies:

TfN (x | y) ≤ f(x) +

N∑
k=1

1

k!
sup

π∈Parts(y)

∑
σ:[[1,k]]↪→[[1,#(π)]]

∆kf(x | σ(π))

We can now use the Scott continuity of + and ·, and we obtain:

TfN (x | y) ≤ sup
π∈Parts(y)

f(x) +

N∑
k=1

1

k!

∑
σ:[[1,k]]↪→[[1,#(π)]]

∆kf(x | σ(π))

We can now conclude using (11.1):

TfN (x | y) ≤ sup
π∈Parts(y)

f(x+ y) ≤ f(x+ y)

The proof of the pre-stability of the function can be found in [80]. It is based on the
fact that each one of the above inequality can be seen as an inequality in the cone of
pre-stable functions. �

Since we have shown that the partial sum of the Taylor series of f was a bounded non-
decreasing sequence in the sequentially complete cone of pre-stable functions from C1

x to
D, we can now define the Taylor series of f as its supremum.

Definition 11.1.6 We define Tf(x | ·) : BC1
x → D the Taylor series of f in x and

Rf(x | ·) : BC1
x → D the Remainder of f in x as:

Tf(x | y) = sup
N∈N

TfN (x | y)

Rf(x | y) = f(x+ y)− Tf(x | y).
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11.1.4 Extended Bernstein’s theorem

Our goal from here is to show that for any x ∈ B◦C, Rf(0 | x) = 0. We recall here the
main steps of the proof of [80]. It is based on two technical lemmas, that analyze more
precisely the behavior of the remainder of f . The first one is actually a summary of several
technical results shown separately in [80].

Lemma 11.1.8 Let be x ∈ B◦C. Then it holds that both:

Rfx : y ∈ BC1
x 7→ Rf(x | y) ∈ D

and Rfy : x ∈ BC1
y 7→ Rf(x | y) ∈ D

are pre-stable functions. Moreover Rfx(0) = 0, and for every x ∈ BC1
y , it holds that

T (Rfy)(0 | x) = 0.

Proof. We give here only sketches of the proofs. The detailed proof can be found in [80].

• For Rfy, it is a consequence of the fact that both fy : (x ∈ BC1
y 7→ f(x + y) and

Tfy : x ∈ BC1
y → Tf(x | y) are pre-stable functions, with Tfy ≤ fy in the cone of

pre-stable functions, and Rfy = fy − Tfy.

• The pre-stability of Rfx is stated in Theorem 4.1. of [80]. It is based on a previous
technical lemma shown in [80], which says it is sufficient for a function to be pre-
stable, to have all its differences in 0 to be non-negative. Then the idea is to fix x, and
to consider for every N ∈ N, the function gN : y ∈ BC1

x 7→ f(x+y)−TfN (x | y). It
is then possible to show that for any n ∈ N, and ~u ∈ BCny , ∆ngN (0 | ~u) = ∆nf(x |
~u) − ∆n(TfNx )(0 | ~u), with TfNx : y 7→ TfN (x | y). By a computation on the
∆n(TfNx )(0 | ~u), we see that the ∆ngN (0 | ~u) are non-negative. Then, we conclude
using the fact that Rfx(y) = infN∈N Tf

N
x (y).

• The fact that Rfx(0) = 0 is a direct consequence of the n-linearity of the map
~u 7→ Dnf(x | ~u) for n ≥ 1.

• The fact that T (Rfy)(0 | x) = 0 is shown in [80] in Lemma 5.26. It is based on the
fact that the Scott-continuity of f 7→ Dnf(x | ~u) allows us to show that if we take
g(y) = Dnf(x | ~u), then Dkg(x | ~v) = Dn+kf(y0 | ~u,~v), and from there to compute
the Taylor series of Rfy.

�

The second technical lemma gives us a way to decompose Rf(x | y) into smaller pieces.
It is stated in Theorem 5.3 in [80].

Lemma 11.1.9 Let be x, y such that x + y ∈ BC. Then Rf(0 | x + y) ≤ Rf(y |
x)+Rf(x | y), and furthermore Rf(0 | x+y) ≥ Rf(x | y), and Rf(0 | x+y) ≥ Rf(y | x),
and moreover all the inequality are in the cone of pre-stable functions.

Proof. We give here a brief sketch of the proof of the first statement. More details can
be found in [80]. We introduce the function Rf+x : y ∈ BC1

x 7→ Rf(0 | x+ y). The proof
is based on the fact that it is possible to establish (see [80]):

T (Rf+x)(0 | y) = T (Rfx)(0 | y) (11.2)

and R(Rf+x)(0 | y) = R(Rfx)(0 | y) (11.3)
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As a consequence, we can write:

Rf(x | y) +Rf(y | x) = Rfx(y) +Rfx(y)

= T (Rfx)(0 | y) +R(Rfx)(0 | y) + T (Rfx)(0 | y) +R(Rxf )(0 | y)

= T (Rfx)(0 | y) +R(Rf+x)(0 | y) + T (Rf+x)(0 | y) +R(Rxf )(0 | y)

by (11.2) and (11.3)

= Rf+x(y) + T (Rfx)(0 | y) +R(Rxf )(0 | y)

≥ Rf+x(y) = Rf(0 | x+ y),

and we see that we have also shown that the difference is pre-stable. The other two
statement are shown in a similar way. �

We use Lemma 11.1.9 to show the a more involved upper bound on Rf(0 | x).

Lemma 11.1.10 Let be x ∈ BC, and π = [x1, . . . , xn] a partition of x, such that for
every xi ∈ π, x+ xi ∈ BC. Then Rf(0 | x) ≤

∑
1≤i≤n infπi|πi∼xi

∑
z∈πi Rf(x | z).

Proof. For every x ∈ BC, we denote gx : y ∈ BC1
x 7→ f(x + y). From the definitions of

the Dn, we see that it holds that Rgx(0 | y) = Rf(x | y).
Let be π1, . . . , πn such that πi is a partition of xi over J . Then π1 + . . . + πn is a

partition of x. Lemma 11.1.9 applied several times , combined with the fact that Rgx(0 |
y) = Rf(x | y), tells us that:

Rf(0 | x0) ≤
∑

z∈π1+...+πn

Rf(z′ | z),

where z′ =
∑

u∈π1+...+πn|u6=z u. Moreover, we know thatRfz is pre-stable (by lemma 11.1.8).

Since, for every z ∈ π1 + . . .+πn, z′ ≤ x (it is immediate, since π1 + . . .+πn is a partition
of x), it folds that Rf(z′ | z) = Rfz(z′) ≤ Rfz(x) = Rf(x | z). As a direct consequence,
we see that Rf(0 | x0) ≤

∑
i

∑
z∈πi Rf(x | z), which leads to the result. �

We are now ready to show the main result of this section.

Proposition 11.1.11 (Extended Bernstein’s Theorem) Let be C, D directed-complete
lattice cones, and f : BC → D a pre-stable function. Then for every x ∈ B◦C, it holds
that f(x) = Tf(0 | x).

Proof. Let be x ∈ BC. First, we consider the partition π = [ xN , . . . ,
x
N ] of x, with N

taken such as x + x
N ∈ BC. We know that such an N exists since x is in the open unit

ball B◦C. We use Lemma 11.1.10 on Rf(0 | x), and the partition π, and it tells us that:

Rf(0 | x) ≤
∑

1≤j≤N
inf

π=(u1,...,un)∈Parts( x
N

)

∑
1≤i≤n

Rf(x | ui). (11.4)

Observe that the above expression is valid, since for every ui in a partition π of x
N ,

x + ui ∈ BC. We know, by Lemma 11.1.8 that Rf(x | 0) = 0. Therefore, we can
rewrite (11.4) as:

Rf(0 | x) ≤
∑

1≤j≤N
inf

π=(u1,...,un)∈Parts( x
N

)

∑
1≤i≤n

Rf(x | ui)−Rf(x | 0). (11.5)
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Moreover, we are able to express the right part of (11.5) by the finite differences of the
pre-stable function Rfx; indeed for each i,

∆1Rfx(0, ui) = Rf(x | ui)−Rf(x | 0). (11.6)

By the definition of derivatives (see Definition 11.1.4), we see that

D1Rfx(0 | x
N

) = inf
π∈Parts( x

N
)

∑
v∈π

∆1Rfx(0, v) (11.7)

We see now that combining (11.5), (11.6) and (11.7) leads us toRf(0 | x) ≤
∑

1≤j≤N D1Rfx(0 |
x
N ). Moreover, we know that for every y ∈ BC1

x, D1Rfx(0 | y) ≤ T (Rfx)(0 | y). Hence by
using again Lemma 11.1.8, which says that T (Rfx)(0 | xN ) = 0, it holds that Rf(0 | x) = 0.
�

11.2 Cstab is a conservative extension of PCoh!

Probabilistic coherence spaces (PCSs) were introduced by Ehrhard and Danos in [34] as
a model of higher-order probabilistic computation. We presented them in Chapter 9. In
this section, we highlight an embedding from PCSs into cones. As highlighted in Example
4.4 from [45], we can associate in a generic way a cone to any PCS. The idea is that we
consider the extension of the space of cliques by all uniform scaling by positive reals. We
formalize this idea in Definition 11.2.1 below.

Definition 11.2.1 Let be X a PCS. We define a cone CX as the R+ semi-module {α ·
x s.t. α ≥ 0, x ∈ P (X )} where the + is the usual addition on vectors. We endow it with
‖ · ‖CX defined by:

‖x‖CX = sup
y∈P(X⊥)

〈x, y〉 = inf{1

r
| r · x ∈ P (X )}.

It is easily seen that it is indeed a cone—observe that the proof uses the so-called technical
conditions from Definition 9.2.1. Moreover, we can see that BCX consists exactly in the
set P (X ) of cliques of X . Looking at the cone order �CX , as defined in Definition 9.3.2,
we see that it coincides on P (X ) with the pointwise order in R+|X |. It is relevant since
we know already from [34] that P (X ) is a bounded-complete and ω-continuous cpo with
respect to this pointwise order.

Lemma 11.2.1 For every PCS X , it holds that CX is a directed-complete lattice cone.

Proof. To show that CX is directed complete, we use the fact that P (X ) is a complete
partial order. To show that it is a lattice, we see that x ∨ y can be defined as: (x ∨ y)a =
maxxa, ya ∀a ∈ |X |. �

11.2.1 A fully faithful functor F : PCoh! → Cstabm.

Recall that Definition 11.2.1 gave a way to see a PCS as a cone. Moreover, as stated in
Proposition 11.2.2 below, a morphism in PCoh! can also be seen as a stable function, in
the sense that EX ,Y ⊆ Cstab(CX , CY).

Proposition 11.2.2 Let be f ∈ PCoh!(X ,Y). Then f̃ is a stable function from CX to
CY .
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Proof. We know from [34] that f̃ : P (X ) → P (Y) is sequentially Scott-continuous with
respect to the orders �CX , �CY . Moreover f̃ is pre-stable: it comes from the fact that

f̃ can be written as a power series with all its coefficients non-negative. Finally, we have
to show that f̃(BCX ) ⊆ BCY). Since BCX = P (X ), BCX = P (X ), and moreover f is
a morphism in PCoh!(X ,Y), we see that the result holds. �

Thus we can define a functor F : PCoh! → Cstab, by taking FX = CX , and Ff = f̃ . Our
goal now is to show that F is full and faithful, which will make PCoh! a full subcategory of
Cstab. As mentioned before, it was shown in [34] that ·̃ is a bijection from PCoh!(X ,Y)
to EX ,Y . It tells us directly that F is indeed faithful. In the remainder of this section, we
are going to show that F is actually also full, hence makes Cstab a conservative extension
of PCoh!.

In the following, we fix X and Y two PCSs, and g ∈ Cstab(FX ,FY). Our goal is to
show that there exists f ∈ PCoh!(X ,Y) such that f̃ = g. First, recall that we have shown
in Lemma 11.2.1 that for every PCS Z, the cone FZ is a directed complete lattice cone.
It means that all results in Section 11.1 can be used here: in particular, g has higher-order
derivatives Dng, which makes Definition 11.2.2 below valid.

Definition 11.2.2 We define f ∈ R+Mf (|X |)× |Y| by taking:

f[a1,...,ak],b =
α[a1,...,ak]

k!

(
Dkg(0 | ea1 , . . . eak)

)
b
∈ R+.

where αµ = #{(c1, . . . , ck) ∈ |X |k with µ = [c1, . . . , ck]}.

We have to show now that f ∈ PCoh!(X ,Y), and that f̃ coincides with g on P (X ). The
key observation here is that we have actually built f in such a way that it is going to
coincide with Tg(0 | ·)—the Taylor series of g defined in Definition 11.1.6. We first show
it for the elements of P (X ) with finite support, by using finite additivity of the Dkg(0 | ·).

Lemma 11.2.3 Let be x ∈ P (X ), such that Supp(x) = {a ∈ P (X ) | xa > 0} is finite.
Then it holds that f · x! is finite, and moreover f · x! = Tg(0 | x).

Proof. Let A = {a1, . . . , am} ⊆ |X | be the set Supp(x). For any b ∈ |Y|, we can deduce
from the definition of f that:

(f · x!)b =
∞∑
k=0

∑
µ=[c1,...,ck]∈Mn(k)A

αµ
k!
·Dkg(0 | ec1 , . . . eck)b · xµ

Looking at the definition of αµ, we see that this implies:

(f · x!)b =

∞∑
k=0

∑
(c1,...,ck)∈Ak

1

k!
Dkg(0 | ec1 , . . . eck)b ·

k∏
i=1

xci (11.8)

By Lemma 11.1.4, we know that Dkg(0 | ·) is k-linear. As a consequence, and since
x =

∑m
i=1 xci · eci and that moreover A is finite, we see that (11.8) implies the result:

(f · x!)b =
∞∑
k=0

1

k!
Dkg(0 | x, . . . x)b = Tg(0 | x).

�
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We are now going to apply the generalized Bernstein’s theorem, as stated in Proposi-
tion 11.1.11, to the stable function g from FX to FY. It tells us that:

∀x ∈ B◦CX , g(x) = Tg(0 | x). (11.9)

Combining (11.9) with Lemma 11.2.3, we obtain that:

∀x ∈ B◦CX with Supp(x) is finite, f · x! = g(x). (11.10)

We can now use (11.10) to show that f̃ and g coincide on P (X ): the key point is that
the subset of elements in P (X ) of norm smaller than 1 and finite support is dense, and
that moreover g is Scott-continuous.

Lemma 11.2.4 ∀x ∈ P (X ) , f · x! = g(x), and moreover f ∈ PCoh!(X ,Y).

Proof. Let be x ∈ P (X ). It is easy to see that there exists a non-decreasing sequence yn,
with x = supn∈N yn, and for every n, ‖yn‖CX < 1, and yn has finite support. For every

yn, we can use (11.10), and we see that g(yn) = f · y!
n. Since g is a morphism in Cstab,

g is sequentially Scott-continuous, hence:

g(x) = sup
n∈N

g(yn). (11.11)

Moreover, we know from [34] that both x 7→ x! and x 7→ u · x are Scott continuous. It
means that:

f · x! = sup
n∈N

f · y!
n. (11.12)

Combining (11.11) and (11.12), we obtain f ·x! = g(x). Since g(BCX ) ⊆ BCY , it implies
also that f̃(P (X )) ⊆ P (Y). Thus by Lemma 9.2.7 f ∈ PCoh!(X ,Y). �

Since we have indeed be able to show in Lemma 11.2.4 that for any fixed stable function
g in Cstab(FX ,FY), there exists a f ∈ PCoh!(X ,Y) such that Ff = g, we have indeed
shown that F is full.

11.2.2 F preserves the cartesian structure.

We want now to give more guarantee on the functor F : we want to show that it is a
cartesian closed functor, meaning that it embeds the cartesian closed category PCoh!

into the cartesian closed category Cstab in such a way that:

• F preserves the product: for every family (Xi)i∈I of PCSs, F(
∏PCoh!
i∈I Xi) is isomor-

phic to
∏Cstabm
i∈I FXi;

• F preserves function spaces: for every X ,Y PCSs, F(X ⇒ Y) is isomorphic to FX ⇒
FY.

Lemma 11.2.5 F preserves cartesian products.

Proof. We fix a family F = (Xi)i∈I of PCSs. In order to construct an isomorphism, we
have a canonical candidate, given by:

ΨF = 〈F(πi) | i ∈ I〉 ∈ Cstab(F(

PCoh!∏
i∈I
Xi),

Cstabm∏
i∈I

FXi).
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Let us now see that ΨF is an isomorphism. Looking at the definition of cartesian product
in PCoh! defined in Section 9.2 of Chapter 9, and the one of cartesian product in Cstab,
defined in Section 9.3.2, we see that for every x ∈ BF(

∏PCoh!
i∈I Xi):

ΨF (x) = (yi)i∈I where ∀i ∈ I, ∀a ∈ |Xi| , (yi)a = x(i,a).

We want now to show that ΨF has an inverse. The only candidate is ΘF : y ∈
B(
∏Cstab
i∈I FXi) 7→ Θ(y) ∈ (F(

∏PCoh!
i∈I Xi)), defined by: ∀i ∈ I, a ∈ |Xi| ,Θ(y)i,a = (yi)a.

We see immediately that ΘF is linear, hence pre-stable, and that moreover it is Scott-
continuous. Besides, it is also non-expansive since∀y ∈ BD, ‖ΘF (y)‖F(

∏PCoh!
i∈I Xi)

=

‖y‖∏Cstab
i∈I FXi . We show now the non-expansiveness of ΘF :

‖ΘF (y)‖C = inf{1

r
| r ·ΘF (y) ∈ P

(∏)PCoh!

i∈I
Xi}

= inf{1

r
| ∀i ∈ I, r · yi ∈ P (X )i} = sup

i∈I
‖yi‖FXi = ‖y‖∏Cstab

i∈I FXi .

Thus ΘF is a morphism in Cstab. �

Lemma 11.2.6 F preserves function spaces.

Proof. Let X ,Y two PCSs. As previously, there is a canonical candidate for the isomor-
phism: we define ΥX ,Y as the currying in Cstab of the morphism:

F(X ⇒ Y)×FX
ΘX⇒Y,X

−−−−−→ F(X ⇒ Y × X )
F(evalX ,Y )

−−−−−−→ FY,

where ΘX⇒Y,X is as defined in the proof of Lemma 11.2.5 above.
Unfolding the definition, we see that actually: ΥX ,Y : f ∈ BF(X ⇒ Y) 7→ f̃ ∈ (FX ⇒

FY). Since we have shown that F is full and faithful, we can consider ΞX ,Y the inverse
function of ΥX ,Y . Recall from the proof of the fullness of F in Section 11.2.1 that for
every µ = [a1, . . . , ak] ∈Mf (|X |), and b ∈ |Y|:

ΞX ,Y(f)µ,b =
α[a1,...,ak]

k!

(
Dkf(0 | ea1 , . . . eak)

)
b
.

Recall from Lemma 11.1.4 that for any ~u ∈ B(Ckx), the function f ∈ Cstab(FX ,FY) 7→
Dkf(x | ~u) ∈ FY is linear and Scott-continuous. As a consequence, ΞX ,Y too is linear and
Scott-continuous.

To know that ΞX ,Y is stable, we have still to show that it is bounded: we are actually
going to show that it preserves the norm. Indeed, for every f ∈ B(FX ⇒ FY), we see
using the definition of the norm on a cone obtained from a PCS (see Definition 11.2.1),
that:

‖ΞX ,Y(f)‖F(X⇒Y) = inf{1

r
| r · ΞX ,Y(f) ∈ P (()X ⇒ Y)} (11.13)

It was shown in [34] that:

r · ΞX ,Y(f) ∈ P (()X ⇒ Y) ⇔ ∀x ∈ P (X ) , (r · ΞX ,Y(f)) · x! ∈ P (Y) . (11.14)

We see that (r ·ΞX ,Y(f)) ·x! = r · f(x) since ΞX ,Y has been defined as the inverse of ΥX ,Y .
It means that we can rewrite (11.14) as:

r · ΞX ,Y(f) ∈ P (()X ⇒ Y) ⇔ ∀x ∈ P (X ) , r · f(x) ∈ P (Y) . (11.15)
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Since for every PCS Z, it holds that P (Z) = BFZ, we can now use (11.15) to rewrite (11.13)
as:

‖ΞX ,Y(f)‖F(X⇒Y) = inf{1

r
| ∀x ∈ BFX , r · f(x) ∈ BFY} (11.16)

Looking now at the definition of the norm in the cone FX ⇒ FY, we can complete the
proof using (11.16) and the homogeneity of the norm. Indeed:

‖ΞX ,Y(f)‖F(X⇒Y) = inf{1

r
| ‖r · f‖FX⇒FY ≤ 1}

= inf{1

r
| r · ‖f‖FX⇒FY ≤ 1}

= ‖f‖FX⇒FY

�

As a direct consequence of Lemma 11.2.5 and Lemma 11.2.6, we can state the following
theorem:

Theorem 11.2.7 F is full and faithful, and it respects the cartesian closed structures.

11.3 PCoh! is a full subcategory of Cstabm

We want now to convert the functor F : PCoh! → Cstab into a functor Fm : PCoh! →
Cstabm. To build Fm, we are going to endow each FX with measurability tests, in such
a way that F(f) will be a measurable stable function for any morphism f ∈ PCoh!.

Observe that this requirement does not determine uniquely the choice of measurability
tests. For instance, it would be verified if we choose {0} as measurability tests for every
FX . However, as explained in the introduction of the present chapter, we want also
Fm(NPCoh) to be isomorphic to JCstabmKCstabm : we would like to be able to inject any
discrete distribution on N into a distribution on R. A natural way to ensure this is to use
the discrete structure of the web to give the following definition of the MC arising from a
PCS.

Definition 11.3.1 For any X ∈ PCoh, we define CmX as the measurable cone CX en-
dowed with the family Mn(X )n∈N of measurability tests defined as Mn(X ) = {εa | a ∈
|X |}, where εa(~r, x) = xa.

We see that the εa are indeed linear (i.e commuting with linear combinations), and more-
over Scott-continuous: hence they are indeed element of C ′X . It is easy to verify that the
other conditions are verified, and so CmX is indeed a MC.

Lemma 11.3.1 Let be X a PCS. Then Pathsn(CmX ) is the set of those γ : Rn → CX such
that:

• ∃λ ∈ R, γ(Rn) ⊆ λBCX

• ∀a ∈ |X |, γa : ~r ∈ Rn 7→ γ(~r)a ∈ R+ is measurable.

Two MCs with the same underlying cone, but different measurability tests may be iso-
morphic in Cstab: it is enough for them to have the same measurable paths. It is what
happens in the example below, where we consider FmNPCoh and Meas(N). It is actually
also what happens at higher-order types, as we will explain in Section 11.4.
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Example 11.3.1 Recall from the definition of Fm that the underlying cones of FmNPCoh

and Meas(N) are the same. However they have not the same measurable tests:

Mn(FmNPCoh) = {εn | n ∈ N}; Mn(Meas(N)) = {εU | U ⊆ N}.

We consider the identity function id : x ∈ P (N)PCoh 7→ (A 7→
∑

n∈A xn) ∈ Meas(N). Let
γ ∈ Pathsn(FmNPCoh). We want to show that for every U ⊆ N:

~u ∈ Rn 7→ εU (id(γ(~u)) ∈ R+ is measurable.

We see that εU (id(γ(~u)) =
∑

n∈U εn(γ(~u)). Since γ ∈ Pathsn(FmNPCoh) it holds that
for every n ∈ N, the function (~u ∈ Rn 7→ εn(γ(~u)) ∈ R+) is measurable. Since the
class of measurable functions are closed by finite sum and pointwise limit, we see that
(~u ∈ Rn 7→ εU (id(γ(~u)) ∈ R+) is measurable too, and therefore id is a morphism in
Cstabm. We show in the same way that its inverse is measurable too, and we have the
result.

Lemma 11.3.2 Let X ,Y be two PCSs, and f ∈ PCoh!(X ,Y). Then Ff is measurable
from CmX into CmY .

Proof. We have to show that Ff preserves measurable paths. Let γ ∈ Pathsn(CmX ):
our goal is to show that f ◦ γ ∈ Pathsn(CmY ). Recall that Lemma 11.3.1 gives us a
characterization of Pathsn(CmY ). Since γ and Ff are bounded, we see immediately that
Ff ◦ γ is bounded. Let b be in |Y|. We see that:

(Ff ◦ γ)b(~r) =
∑

µ∈Mf (|X |)

fµ,b ·
∏

a∈Supp(µ)

γa(~r)
µ(a).

Since γ ∈ Pathsn(CmX ), it holds that γa : Rn → R+ is measurable for all a ∈ |X |. We
conclude by using the fact that the class of measurable functions Rn → R+ is closed
under multiplication, finite sums and limit of non-decreasing sequences: it tells us that
~r ∈ Rn 7→ (Ff ◦ γ)b(~r) ∈ R+ is measurable, and the result folds. �

Theorem 11.3.3 The functor Fm : PCoh! → Cstabm defined as FmX = CmX , and
Fmf = Ff , is full and faithful.

Proof. It is a direct consequence of the fact that F is full and faithful, coincide with Fm
on morphisms, and moreover Cstabm(FmX ,FmY) ⊆ Cstab(FX ,FY). �

11.4 Fm is cartesian closed.

We want now to show that just as F , Fm is cartesian closed. Since the forgetful functor
between Cstabm and Cstab is cartesian closed, we see that we have only to show that
the Cstab-isomorphisms used in the proofs Lemmas 11.2.5 and 11.2.6 are also morphisms
in Cstabm. Observe that it is immediate that the ΨF and ΥX ,Y are also morphisms
in Cstabm: indeed we have defined them canonically by using the structural morphisms
linked to the cartesian structure of Cstab, which are the same in Cstabm (see [45]).

Lemma 11.4.1 For all F = (Xi)i∈I a finite family of PCSs,

ΘF ∈ Cstabm(

Cstabm∏
i∈I

FmXi,Fm(

PCoh!∏
i∈I
Xi)).
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Proof. Since we already know that ΘF is a morphism in Cstab, we have only to show that
it is measurable, i.e. that it preserves measurable paths. Let γ be in Pathsn(

∏Cstabm
i∈I FmXi).

We have to show that ΘF ◦ γ is a measurable path for Fm(
∏PCoh!
i∈I Xi). Recall that

Lemma 11.3.1 gives us a characterization of such paths. Since both ΘF and γ are bounded,

it is immediate that ΘF ◦γ is bounded too. Now we show that for all (i, ai) ∈
∣∣∣∏PCoh!

i∈I Xi
∣∣∣,

(ΘF ◦ γ)(i,ai) is measurable.

By looking at the definition of ΘF , we see that (ΘF ◦ γ)(i,ai)(~r) = (γ(~r)i)a. We

see now that we can construct a measurability test m ∈ M0(
∏Cstabm
i∈I FmXi) such that

(γ(~r)i)a = m(·)(γ(~r)): it is enough to take m = ⊕j∈I lj , with lj = 0 if j 6= i, and li = εai .
Since γ is a measurability tests, it means that ~r ∈ Rn 7→ m(·)(γ(~r)) ∈ R+ is measurable,
and the result folds. �

Lemma 11.4.2 For all X , Y PCSs, ΞX ,Y is in Cstabm(FmX ⇒ FmY,F(X ⇒ Y)).

Proof. We have to show that ΞX ,Y preserves measurable paths. Let γ be in Pathsn(FmX ⇒
FmY). We fix µ ∈Mf (|X |), and b ∈ |Y|. Our goal is to show that (ΞX ,Y ◦γ)µ,b : Rn → R+

is measurable. Since γ is a measurable path, we know that for every p ∈ N, and
l ∈ Pathsp(FmX ), εb B l is a measurability test on FmX ⇒ FmY, and therefore:

(~r, ~u) ∈ Rp+n 7→ (εb B l(~r))(γ(~u)) ∈ R+ is measurable. (11.17)

We are going to apply (11.17) to a particular measurable path on FmX . Let p be the
cardinality of Supp(µ), and {a1, . . . , ap} = Supp(µ). We define lµ : Rp → FmX as:

lµ : ~r ∈ Rp 7→

{∑
1≤i≤m ri · eai if ri ≥ 0∀i and

∑
1≤i≤m ri ≤ 1;

0 otherwise.

We see that lµ(Rp) is bounded in FmX , and moreover for every a ∈ |X |, the function
~r ∈ Rp 7→ lµ(~r)a ∈ R+ is measurable. Using the characterization of Pathsp(FmX ) in
Lemma 11.3.1, we see that lµ is in Pathsp(FmX ). Thus we can apply (11.17) with l = lµ.
Observe that

(εb B l
µ(~r))(γ(~u)) = (γ(~u)(lµ(~r)))b .

Therefore (11.17) tells us that φµ,b : Rp+n → R+ is measurable, with φµ,b defined as
φµ,b : (~r, ~u) ∈ Rp+n 7→ γ(~u)(lµ(~r))b ∈ R+. We define J ⊆ Rp as [0, 1

p [p. We are going to

look at the restriction of the function φµ,b to J×Rn: indeed we are going to show that φµ,b

has partial derivatives on that interval. We define ψµ,b : J × Rn → R+ as the restriction
of φµ,b to J ×Rn. Since φµ,b is a measurable function, and J ×Rn a measurable subset of
Rp+n, ψµ,b also is measurable.

Lemma 11.4.3 below (which is shown in the long version) is key: it says that we can
recover the coefficients of the power series ψµ,b by looking at its partial derivatives. We
will then show that we can do it in a measurable way.

Lemma 11.4.3 For every multiset ν ∈Mf ({1, . . . , p}), there exists an interval K of the

form [0, c]p such that the partial derivative ∂νψµ,b =
∂(ψµ,b|K×Rn )

card(ν)

∂r1ν(1)...∂rpν(p) : K×Rn → R+ exists,

and moreover:
∂νψµ,b(~0, ~u) = ΞX ,Y(γ(~u))ν,b ·

∏
1≤i≤p

ν(i)!

222



11.4. FM IS CARTESIAN CLOSED.

Proof. Since lµ(~r) =
∑

1≤i≤p ri · ei for ~r ∈ J , we see that:

φµ,b(~r, ~u) =
∑

ν∈Mf (|X |)

ΞX ,Y(γ(~u))ν,b · ~r
ν ∈ R+.

For a fixed ~s, we can see it as a generalization of entire series in real analysis. There
are well-known results about the differentiation of such series: for instance, a uniformly
convergent entire series is differentiable on its (open) domain of convergence. Here, we
are going to show the counterpart of some properties on entire series, on what we call
multisets series of p real variables: those are the series of the form

S(~r) =
∑

ν∈Mf (1,...,p)

aν · ~rν where ~r ∈ Rp.

First, we observe that for each ~r, we can look at S(~r) as an infinite sum over natural
numbers:

S(~r) =
∑
n∈N

(
∑

µ∈Mf (1,...,m)|card(µ)=n

aµ · ~rµ).

We recall here a classical result of real analysis on power series, that we will use in the
following.

Lemma 11.4.4 [Derivation of a series] Let fn : I → R be a sequence of functions from
a bounded interval I. We suppose that f(x) =

∑
n∈N fn(x) is convergent for every x ∈ I,

and moreover for each n ∈ N, fn is derivable and
∑

n∈N f
′
n is uniformly convergent on I.

Then f is derivable, and moreover f ′ =
∑

n∈N f
′
n.

Lemma 11.4.5 Let p ∈ N, and S(~r) =
∑

ν∈Mf ({1,...,p}) aν · ~rν with non-negative coeffi-

cients aµ, such that S is convergent on an interval I = [−c, c]p, with c > 0.
Then there exists 0 < b < c, such that the function g : ~r ∈] − b, b[p 7→ S(~r) ∈ R is

partially derivable in each of the ri variables, and moreover:

∂g

∂ri
(~r) =

∑
ν∈Mf ({1,...,p})|i∈ν

aν · ~rν−[i] · ν(i).

Proof. We take b = c
2 , and set J =] − b, b[. To simplify the notations, we suppose here

that i = 1, but the proof is the same in other cases. We want to show that for any fixed
~u ∈ Jp−1, the function h~u : r 7→ g(r, ~u) is derivable on J . Let us fix ~u ∈] − b, b[p−1. We
are going to use Lemma 11.4.4 on h~u. We see that h~u(r) =

∑
n∈N hn(r), where

hn(r) = (
∑

ν∈Mf (2,...,p)

aν+[1n] · ~uν) · rn,

where [1n] is the multiset consisting of n occurrences of 1. We see that for every n ∈ N,
the function hn is derivable on J , and:

h′n(r) = (
∑

ν∈Mf (2,...,p)

aν+[1n] · ~uν) · n · rn−1.

223
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We see now that the series
∑

n∈N h
′
n is uniformly convergent on J : for every r ∈ J , it

holds that:

|h′n(r)| ≤ (
∑

ν∈Mf (2,...,p)

aν+[1n] · |~u|ν) · n · |r|n−1

= (
∑

ν∈Mf (2,...,p)

aν+[1n] · |~u|ν · cn) · n · 1

c
·
(
|r|
c

)n−1

= (
∑

η∈Mf (1,...,p)|η(1)=n

aη · |(c, ~u)|η) · n · 1

c
· |r|

n−1

cn−1

Since the series S(~r) =
∑
aµ · ~rµ is convergent on I, and (c, |~u|) ∈ I, it holds that there

exists M ≥ 0, with
∑

ν∈Mf (1,...,p)|ν(1)=n aν · |(c, ~u)|ν ≤ M. As a consequence, and since

moreover for each r ∈ J , it holds that |r| ≤ b, we can now write:

∀r ∈ J, |h′n(r)| ≤M · n
c
·
(
|r|
c

)n−1

≤M · n
c
·
(
b

c

)n−1

(11.18)

Since b < c, we know that the quantity in the right part of (11.18) defines a convergent
series. As a consequence, the series

∑
n∈N h

′
n is uniformly convergent on J , which means

that we are able to apply Lemma 11.4.4: we see that ∂g
∂r1

exists on Jn, and moreover:

∂g

∂r1
(~r) =

∑
n∈N

h′n(r, (r2, . . . , rp))

=
∑
n∈N

(
∑

ν∈Mf ({2,...,p})

aν+[1n](r2, . . . , rn)ν) · n · rn−1

=
∑

ν∈Mf ({1,...,p})|1∈ν

aν · ~rν−[1] · ν(1) and the result folds.

�

We iterate now Lemma 11.4.5 in order to look at higher-order partial derivatives.

Lemma 11.4.6 Let S(~r) =
∑

ν∈Mf ({1,...,p}) aν ·(~r)ν with aν ≥ 0. We suppose S convergent

on I =] − b, b[p, with b > 0. Then for every multiset ν ∈ Mf ({, 1 . . . , p}), there exists
0 < b ≤ a, such that, when we define g : ~r ∈ [−b, b]p 7→ S(~r), the partial higher-order

derivative ∂gcard(ν)

∂r1ν(1)...∂rpν(p) exists, and moreover:

∂gcard(ν)

∂r1
ν(1) . . . ∂rpν(p)

(~r) =
∑

η∈Mf ({1,...,p})

aν+η · ~rη ·
∏

1≤i≤p

(η + ν)(i)!

η(i)!
.

Proof. The proof is by induction on card(ν), and uses Lemma 11.4.5. It is clear that the
result holds for ν = ∅. Now, we suppose that it holds for every ν of cardinality N . Let
κ be a multiset of cardinality N + 1, and we take ν, and i such that κ = ν + [i]. By the
induction hypothesis, there exists c > 0, such that, when we define g : ~r ∈ [−c, c]p 7→ S(~r),

the partial derivative ∂gcard(ν)

∂r1ν(1)...∂rpν(p) exists, and is equal to:

T (~r) =
∑

η∈Mf ({1,...,p})

aη+ν · ~rη ·
∏

1≤j≤p

(η + ν)(j)!

η(j)!
.
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We see we can apply Lemma 11.4.5 with T as multiset series, and I = [−c, c]p. It means
that there exist 0 < d < c, such that ∂T

∂ri
exists, and

∂T

∂ri
(~r) =

∑
η∈Mf ({1,...,p})|i∈η

aη+ν · ~rη−[i] · η(i) ·
∏

1≤j≤p

(η + ν)(j)!

η(j)!

=
∑

ι∈Mf ({1,...,p})

aι+κ · ~rι · (ι+ [i])(i) ·
∏

1≤j≤p

(ι+ κ)(j)!

(ι+ [i])(j)!

=
∑

ι∈Mf ({1,...,p})

aι+κ · ~rι ·
∏

1≤j≤p

(ι+ κ)(j)!

ι(j)!
.

�

We end the proof of Lemma 11.4.3 by using Lemma 11.4.6 for each ~u ∈ Rn on the multiset
series given by

S~u(~r) =
∑

ν∈Mf ({1,...,p})

(ΞX ,Yγ(~u))ν,b · ~rν .

We see that it is indeed absolutely convergent on I =] − 1
p ,

1
p [p, using the fact that for

~r ∈ [0, 1
p ]p, S~u(~r) = ψµ,b(~r, ~u) for ~r ∈ Rp. �

We can now end the proof of Lemma 11.4.2. Indeed, since the class of real-valued mea-
surable functions is closed by addition, multiplication by a scalar and pointwise limit, and
that ψµ,b : K × Rp → R+ is measurable, it holds that the partial derivatives (when they

exist) are measurable too. Indeed, observe that ∂ψµ,b

∂r1
((r1, ~r), ~u) = limn→∞ fn((r1, ~r), ~u),

with

fn((r1, ~r), ~u) = n · f((r1 +
1

n
,~r), ~u)− f((r1, ~r), ~u).

As a consequence, applying Lemma 11.4.3 with ν = µ leads us to:

~u ∈ Rn 7→ ∂(ψµ,b)
card(µ)

∂r1
µ(1) . . . ∂rpµ(p)

(~0, ~u) is measurable.

Therefore (again by Lemma 11.4.3), (~u ∈ Rn 7→ ΞX ,Y(γ(~u))µ,b·
∏

1≤i≤p µ(i)! is measurable),
and the result folds. �

Theorem 11.4.7 Fm is a cartesian closed full and faithful functor.

11.5 Conclusion

Our full embedding of PCoh! into Cstab implies that every stable function f from P (X )
to P (Y) can be characterized by an element ΞX ,Y(f) ∈ RMf (|X |)×|Y|, that has to be seen
as a power series. It gives us a concrete representation of stable functions on discrete
cones, similar to the notion of trace introduced by Girard in [53] for stable functions on
quantitative domains. There are well-known real analysis results on power series, as for
instance the uniqueness theorem—any power series which is null on an open subset has
all its coefficients equal to 0—on which is based the proof of full abstraction for PCF⊕
in PCoh! [46]. While we have not been able to extend such a concrete representation to
cones which are not directed-complete, as for instance the cone Meas(R)⇒m Meas(R), our
result could hopefully be a first step in this direction. This kind of characterization could
lead to a way towards a full abstraction result for the continuous language PCFsample in
Cstabm, and more generally gives us new tools to reason about continuous probabilistic
programs.
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Chapter 12

Perspectives

12.1 Abramsky’s applicative bisimulation for an higher-
order language with continuous probabilities.

The present thesis aimed to contribute to a better understanding of coinductive techniques
for studying context equivalence and distance for higher-order languages with discrete
probabilities. In this setting, we now have quite an extensive picture of the situation:
we can cite for instance the seminal work of Dal Lago, Sangiorgi and Alberti [32] on
state-based and distribution-based generalization of Abramsky’s applicative bisimulation
for call-by-name Λ⊕, the study presented in the present thesis for call-by-value Λ⊕, the
development by Vignudelli and Sangiorgi [107] of an environmental bisimulation for a
probabilistic λ-calculus with imperative features as local states... By contrast, operational
techniques based on coinduction have not yet been extended to higher-order languages
equipped with primitives handling continuous distributions. Such a step further would
ask to replace the quantitative transition systems on which are based the discrete proba-
bilistic generalization of Abramsky’s applicative bisimulation with quantitative transition
systems that also embed concepts of measure theory. This necessity already appears when
defining the operational semantics of the language: for instance when Ehrhard Pagani and
Tasson [45] define the operational semantics for their continuous language PCFsample, they
need to express it as a Labeled Markov Process—thus generalizing to continuous probabil-
ities the way they defined the operational semantics of the discrete probabilistic language
PCF⊕ using a Labeled Markov Chain. Coinductively defined notions of both equivalences
and distances have been studied in depth for Labelled Markov Processes [39, 41, 48] —and
in some cases, reasoning on these continuous transition systems has proved easier than
reasoning on their discrete counterpart, as we have highlighted in Chapter 5 when look-
ing at the testing characterization of equivalence on Labeled Markov Processes developed
in [118].

12.2 State-based Applicative Bisimulation Distances for Prob-
abilistic Higher-Order Languages.

As we presented in details in Chapter 4, Dal Lago, Sangiorgi and Alberti introduced [32]
two generalizations of Abramsky’s applicative bisimulation to a discrete probabilistic set-
ting: the state-based and distribution-based applicative bisimulation. It may be noted
that while the underlying transition system of the state-based applicative bisimulation
has a more complex transition structure than the one obtained in the distribution-based

226



12.3. THE FULL ABSTRACTION PROBLEM FOR PCFSAMPLE IN THE CATEGORY OF MEASURABLE
CONES AND MEASURABLE STABLE FUNCTIONS.

setting—in the sense that the transition are truly probabilistic—the states space of the
former is by contrast simpler as the one of the latter, since it consists of all programs of
the language instead of all distributions over all programs of the language. In Chapter 8,
we looked at quantitative generalizations of distribution-based applicative bisimulation,
for both a probabilistic affine λ-calculus and a probabilistic λ-calculus with copying capa-
bilities, and in both cases we showed that the resulting distances on programs are fully-
abstract with respect to context distance. In a joint work [29] with Ugo Dal Lago—that
is not presented in the present thesis—we looked at a quantitative generalization of state-
based applicative bisimulation, for our affine probabilistic λ-calculus, and we showed that
we obtain this way a sound but not fully abstract notion of distance. To do so, we
used the existence of a built-in notion of coinductive distance on the states of a Labelled
Markov Chain [40, 42], and we applied it to the particular Labelled Markov Chain built to
model interactively the operational semantics of our language. The next step would be to
generalize the notion of state-based applicative bisimulation distance to the case of a prob-
abilistic language with copying abilities. The definition of such a state-based applicative
bisimulation distance for a λ-calculus with copying abilities would have two challenges to
face. The first one is similar to the one we encountered when defining distribution-based
context distance: it consists in the fact that we cannot keep the Labelled Markov Chain
used to define state-based equivalence on Λ⊕, because we will then obtain an unsound
distance. Similarly to what we did for the distribution-based distance, the solution may
lay in embedding the ability to copy into the states space of the transition system. The
second complication is more specific to the state-based setting. The soundness proof for
the state-based distance in the affine case were greatly facilitated by the fact that the
Labelled Markov Chain we used for the affine λ-calculus was finitely branching—i.e. there
are a finite number of states that can be reached with non-zero probability when we fix the
state of departure and the transition label, hence allowing us to use the results from [42].
However, it is not be the case anymore as soon as we consider a Labelled Markov Chain
of a language at least as expressive as Λ⊕, because it becomes possible to write programs
that can output an infinite numbers of possible values.

12.3 The Full Abstraction Problem for PCFsample in the cat-
egory of measurable cones and measurable stable func-
tions.

There is no known fully-abstract denotational model yet for an higher-order language with
continuous probabilities. When introducing the model of measurable complete cones and
measurable stable functions for PCFsample [45], Ehrhard, Pagani and Tasson designed it
as an extension of the denotational model based on probabilistic coherence spaces for the
discrete probabilistic language PCF⊕, already known to be fully abstract [46]. In Chap-
ter 11, we formalized this connection categorically by defining a full and faithful functor
from PCoh!—the co-Kleisli category of the LL model based on probabilistic coherence
spaces—and Cstabm—the category of complete measurable cones and stable measurable
functions. The fullness of this functor means that when we consider two discrete cones, the
stable measurable functions between them are exactly the power series with non-negative
coefficients that are morphisms in PCoh!. This connection could hopefully be a first step
towards generalizing the full abstraction proof for PCF⊕ in PCoh! into a full-abstraction
proof for PCFsample in Cstabm. The ability of seeing measurable stable function as a gen-
eralization of power series is especially encouraging, because the full-abstraction proof for
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PCF⊕ uses crucially the power-series structure of program interpretation. More precisely,
if f is a power series is the denotation of some program M , it is possible to build for any
index a a sequence of arguments to pass to M that allow us to recover the coefficient fa
of the power series. From there, the aim would be to study stable functions with the aim
of generalizing the reasoning done on power series to the case where the cones we consider
are not discrete anymore.

12.4 Is Cstabm the co-Kleisli category of a LL model ?

As highlighted in Chapter 9, the denotational model of PCF⊕ lives actually in the co-Kleisli
category of the PCoh model of Linear Logic(LL). By contrast, the category of measurable
cones and measurable stable functions is a cartesian closed category, which is not yet known
as being the co-Kleisli category of a model of LL. The connection between PCoh! and
Cstabm that we highlighted in Chapter 11 lead to the question of whether we can draw
a similar connection between PCoh, and a LL model that would generate Cstabm as
its co-Kleisli category. Such a construction would allow for instance to interpret a linear
λ-calculus with primitive for handling continuous probabilities—e.g. a continuous variant
of Λ!

⊕. We can also recall that Ehrhard and Tasson [116] gave a fully-abstract denotational
semantics in PCoh to a discrete probabilistic extension of Levy’s Call-by-Push-Value—a
λ-calculus with a polarized type system, that allows for the call-by-name and call-by-
value evaluation paradigm to coexist. Their construction of program interpretation use
the structure of PCoh as a model of Linear Logic. Similarly, having a model of LL
that would generate Cstabm as its co-Kleisli category could potentially be used to give a
denotational semantics to a call-by-push-value with continuous probabilities.

12.5 A Context Distance adapted to Polytime Adversaries.

In Chapter 6 we show that for an expressive enough calculus where moreover all programs
stop, the context distance always trivializes, i.e. the distance between two programs is
either 0 or 1. Termination of programs is a strong requirement, but nonetheless one
which is often enforced on concrete programming situation. As a consequence, we can ask
ourselves whether our notion of context distance is really adapted to the aim of talking
about programs that are close without being equivalent, and in particular whether take all
contexts into account is really significant. In some setting, as for instance computational
cryptography, we do not want to consider all contexts, but only those that are run in
polynomial time on some security parameter—e.g. the size of the encryption key. Formally,
it would mean to have a more restricted language for contexts as the one for programs,
possibly using a type system guaranteeing polytime execution in the spirit of Bounded
Linear Logic [56]. Another option would be to explore tamed versions of the context
distances, where context have a price to pay each time they use their input: concretely
every time they call their input, they enter in an infinite loop with some fixed probability
ε. These tamed distances are for instance considered for PCF⊕ in a recent unpublished
work by Ehrhard [44]. The problem would then become how to adapt the coinductive
operational techniques for context distances that we explored in Chapter 8 to these new
way of comparing quantitatively programs.

228



Bibliography

[1] S. Abramsky. Observation equivalence as a testing equivalence. Theoretical Com-
puter Science, 53(2-3):225–241, 1987.

[2] S. Abramsky. The Lazy λ-Calculus. In D. Turner, editor, Research Topics in Func-
tional Programming, pages 65–117. Addison Wesley, 1990.

[3] S. Abramsky. Computational interpretations of linear logic. Theor. Comput. Sci.,
111(1&2):3–57, 1993.

[4] S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda calculus. In-
formation and Computation, 105(2):159–267, 1993.

[5] R. Alur, T. A. Henzinger, and E. D. Sontag, editors. Hybrid Systems III: Veri-
fication and Control, Proceedings of the DIMACS/SYCON Workshop on Verifica-
tion and Control of Hybrid Systems, October 22-25, 1995, Ruttgers University, New
Brunswick, NJ, USA, volume 1066 of Lecture Notes in Computer Science. Springer,
1996.

[6] A. Azevedo de Amorim, M. Gaboardi, J. Hsu, S.-y. Katsumata, and I. Cherigui. A
semantic account of metric preservation. In ACM SIGPLAN Notices, volume 52,
pages 545–556. ACM, 2017.

[7] H. Barendregt. Lambda calculi with types, handbook of logic in computer science
vol. ii, 1992.

[8] H. P. Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 1984.

[9] H. P. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus with Types. Per-
spectives in logic. Cambridge University Press, 2013.

[10] T. Barker. A monad for randomized algorithms. Electronic Notes in Theoretical
Computer Science, 325:47–62, 2016.

[11] M. Barr. *-Autonomous categories, volume 752. Springer, 2006.

[12] P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. In
International Workshop on Computer Science Logic, pages 121–135. Springer, 1994.

[13] S. Bernstein. Constructive proof of weierstrass approximation theorem, comm.
Kharkov Math. Soc, 13(1-2), 1912.

[14] G. Bierman, A. Pitts, and C. Russo. Operational properties of lily, a polymorphic
linear lambda calculus with recursion. Electronic Notes in Theoretical Computer
Science, 2001.

229



BIBLIOGRAPHY

[15] G. M. Bierman. What is a categorical model of intuitionistic linear logic? In
International Conference on Typed Lambda Calculi and Applications, pages 78–93.
Springer, 1995.

[16] J. Borgström, U. Dal Lago, A. D. Gordon, and M. Szymczak. A lambda-calculus
foundation for universal probabilistic programming. In ACM SIGPLAN Notices,
volume 51, pages 33–46. ACM, 2016.

[17] M. Brandt and F. Henglein. Coinductive axiomatization of recursive type equality
and subtyping. In P. de Groote and J. Roger Hindley, editors, Typed Lambda Calculi
and Applications, volume 1210 of Lecture Notes in Computer Science, pages 63–81.
Springer Berlin Heidelberg, 1997.
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[27] R. Crubillé, U. Dal Lago, D. Sangiorgi, and V. Vignudelli. On applicative similarity,
sequentiality, and full abstraction. In Proc. of Correct System Design - Symposium
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