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Insomma, non si può osservare un’onda senza tener conto degli

aspetti complessi che concorrono a formarla e di quelli altret-

tanto complessi a cui essa dà luogo. Questi aspetti variano

continuamente, per cui un’onda è sempre diversa da un’altra

onda; ma è anche vero che ogni onda è uguale a un’altra onda,

anche se non immediatamente contigua o successiva; insomma

ci sono delle forme e delle sequenze che si ripetono, sia pur

distribuite irregolarmente nello spazio e nel tempo.

Italo Calvino, Palomar, lettura di un’onda, 1983.
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RÉSUMÉ ÉTENDU EN FRANÇAIS

La compréhension du couplage entre turbulence et vagues de vent est essentielle pour la
description des interactions air-mer, car celui-ci contrôle les flux de quantité de mouvement,
de chaleur, d’humidité et de CO2: ceux-ci jouent un rôle clef dans les modèles de prévision
numérique, autant aux échelles de la couche limite atmosphérique qu’aux échelles climatiques
[Shimura et al., 2017]. L’influence des vagues de vent sur ces flux a été paramétrée à partir de
mesures, sous la forme d’une relation non-linéaire entre le vent moyen et les flux turbulents
à 10m de hauteur [par exemple, la paramétrisation COARE, Edson et al., 2013]. Cependant,
malgré une bonne compréhension théorique de cette relation, lorsque moyennée sur différentes
conditions de vent, de vagues et de courant, sa variabilité pour un vent moyen donné est mal
expliquée. Cette compréhension pourrait être améliorée par un meilleur échantillonage des
interactions air-mer pour différentes conditions environnementales. Cependant, du fait de la
complexité des mesures en mer et de la difficulté à identifier des signaux reliés aux vagues
[Hristov and Ruiz-Plancarte, 2014], la mise en place et l’interprétation de ces mesures nécessite
également une compréhension théorique de la physique à l’interface air-mer [Villas Boas et al.,
2019].

D’un point de vue théorique, la turbulence au-dessus des vagues de vent présente des
caractéristiques uniques, comparée à la turbulence au-dessus d’autres obstacles tels que les
collines et les tôles ondulées. Ceci provient de la nature multi-échelle et couplée de la surface de
la mer. Comme le montre la figure 1, des vagues de différentes échelles spatiales interagissent
avec le vent sur des échelles de temps différentes. Historiquement, ce couplage a été modélisé
par la modification des lignes de courant moyennes, qui est qualitativement différente selon
l’échelle de la vague (lignes de courant noires dans le plan (x,z) de la Fig. 1). Cette modification
affecte la turbulence par le biais d’une interaction onde/champ moyen. Ces travaux théoriques
ont été simplifiés pour guider le paramétrage du flux de quantité de mouvement uniquement en
fonction de mesures moyennées de la turbulence et des statistiques des vagues, indépendantes
de l’échelle. En particulier, l’accent a été mis sur l’analyse de la modification de la covariance
des fluctuations turbulentes en présence de vagues et sur sa sensibilité à la stabilité dans le
cadre de la théorie de similitude de Monin-Obukhov.

Cette approche moyennée capture une partie de la variabilité des flux de quantité de mou-
vement due à des variations de vent moyen et de stabilité, mais ne fournit d’informations ni
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Figure 1: Schéma résumant le couplage multi-échelle entre le vent et les vagues, dans le
référenciel en mouvement de ces dernières: U est la vitesse de vent moyenne et c
est la vitesse de phase de la vague. Le schéma n’est pas à l’échelle. Les vagues de
vent courtes (à gauche), interagissent avec la turbulence majoritairement à travers
le déferlement. Les vagues de vent intermédiaires (au milieu) et longues (à droite)
modulent la pente des vagues plus courtes, et leurs effets respectifs sur la turbulence
sont qualitativement différents. Les traits noirs dans le plan (x,z) et les tubes de
vorticité en rouge sont, respectivement, les lignes de courant affectées par les vagues
et les structures cohérentes turbulentes.

sur leur dépendance aux échelles spatiales et temporelles du moyennage, ni sur leur sensibilité
à d’autres paramètres environnementaux, tels que les courants et les fronts de température
[Kudryavtsev et al., 2012, Wang et al., 2019]. En outre, des études numériques récentes ont
montré que les vagues modifient directement les propriétés de la turbulence, par un autre biais
que celui de l’interaction avec les lignes de courant déformées: elles affectent la forme des
structures cohérentes qui la composent [voir, par exemple, Yang and Shen, 2009, et les tubes
rouges dans la Fig. 1]. Toutes ces études questionnent les limites du cadre traditionnel présenté
ci-dessus, et dans le Chapitre 1 de cette thèse, pour décrire les interactions entre le vent et les
vagues et le développement de paramétrisations de flux turbulents.

L’objectif de cette thèse a été de revisiter ces modèles théoriques en étudiant la réorganisation
des tourbillons énergétiques au-dessus d’une surface multi-échelle, mouvante et couplée (la sur-
face de la mer). Les tourbillons énergétiques désignent ici ceux dont les propriétés déterminent
les flux turbulents à une hauteur donnée. Cette question a été abordée en utilisant un modèle
phénoménologique développé pour décrire la turbulence proche de paroi [Gioia et al., 2010,
Katul et al., 2011]. Le Chapitre 2 de cette thèse s’attache à comprendre quelles sont les limites
de ce modèle phénoménologique, en étudiant ses hypothèses physiques sous-jacentes pour une
paroi lisse et des conditions de stabilité variables. Le modèle phénoménologique a ensuite
été étendu au cas des vagues de vent longues et leur impact géométrique sur les tourbillons
énergétiques (Chapitre 3) ainsi qu’au couplage dynamique de ces mêmes tourbillons avec des
vagues courtes et déferlantes (Chapitre 4).
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CHAPITRE 2: VERS UN LIEN SPECTRAL POUR LA VITESSE TURBULENTE
VERTICALE?

Comme mentionné ci-dessus, dans cette thèse nous avons revisité l’interaction entre le vent et
les vagues en utilisant un modèle phénoménologique, développé à l’origine pour décrire les
modifications des propriétés moyennes de la turbulence proche d’un mur plat sous l’influence
de la stabilité atmosphérique [Katul et al., 2011]. Ce modèle phénoménologique relie les
mesures de spectres et co-spectres turbulents à des mesures de quantité de mouvement et de
flux de chaleur. Ce lien est établi par un bilan spectral, c’est-à-dire un budget pour chaque
longueur d’onde de la turbulence, qui implique de choisir des fermetures appropriées pour les
termes composant ce bilan. La compréhension des implications de tels choix fait l’objet de ce
chapitre.

Figure 2: (a) Observations de spectres de vitesse verticale pour différents types de surfaces. Ces
spectres révèlent l’existence de deux régimes (separés par la ligne verticale verte).
(b) Représentation phénoménologique de la turbulence proche d’une paroi au travers
d’un tourbillon représentatif (cercle rouge) dont la taille (en vert, h) correspond à
la longueur d’onde séparant les deux régimes présentés dans (a), et détermine la
dissipation d’énergie cinétique turbulente et le flux de quantité de mouvement à une
hauteur donnée du mur (tirets horizontaux).

Dans un premier temps, nous avons proposé un budget spectral pour la vitesse turbulente
verticale, qui permet de faire le lien entre son spectre et sa variance moyennée. La vitesse
verticale est une grandeur qui devrait en effet être fortement affectée par la présence d’une paroi,
puisque les mouvements verticaux sont inhibés par la présence d’une surface rigide horizontale.
L’étude de ce budget a révélé que l’efficacité des tourbillons à redistribuer de l’énergie entre les
différentes composantes turbulentes doit dépendre de leur échelle et des conditions de stabilité:
ce résultat remet en question les fermetures standard [par exemple, Rotta, 1951], utilisées dans
les modèles numériques ainsi que dans les budgets spectraux.

Ces résultats sont importants pour la modélisation, et montrent que des travaux théoriques
sont encore nécessaires pour comprendre pleinement la dépendance de la vitesse turbulente
verticale proche d’une paroi. Dans la deuxième partie du chapitre, nous avons donc étudié
comment le budget spectral d’énergie cinétique turbulente peut être utilisé pour construire
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un modèle phénoménologique qui permette de prédire les propriétés du spectre de la vitesse
verticale en fonction de mesures moyennées. Le bilan d’énergie cinétique turbulente ne contient
aucune information sur la redistribution de l’énergie entre les composantes turbulentes: il ne
présente donc pas les problèmes rencontrés avec le bilan de vitesse verticale. Notre étude a ainsi
montré que, pour que le budget soit suffisamment contraint pour reproduire les observations,
il fallait prendre en compte la coupure du spectre aux hautes fréquences (coupure due à
l’instrument de mesure utilisé).

Au cours de ce chapitre, nous avons donc étudié plusieurs budgets spectraux, visant à relier
les propriétés spectrales de la turbulence à ses propriétés moyennées. Mais quelles propriétés
spectrales avons-nous examinées? Près d’un mur, les spectres de vitesse turbulente présentent
deux régimes: pour les petites échelles, un régime isotrope est atteint avec une dépendance en
k−5/3, alors que pour des grandes échelles la dépendance est en k0 (voir la Fig. 2a, k étant le
nombre d’onde dans la direction du flot moyen). La longueur d’onde à laquelle ce changement
de pente se produit peut être vue comme la taille des tourbillons énergétiques mentionnés
ci-dessus, qui détermine le flux de quantité de mouvement à une distance donnée de la paroi
(voir la Fig. 2b). Ces tourbillons sont attachés à la paroi, et leur taille correspond à la hauteur à
laquelle les flux sont calculés. Dans la suite de la thèse, nous avons utilisé cette représentation
phénoménologique des flux de quantité de mouvement pour étudier l’effet des vagues sur les
propriétés moyennes de la turbulence.

CHAPITRE 3: L’IMPACT GÉOMÉTRIQUE DES VAGUES SUR LA TURBULENCE

Le modèle phénoménologique a tout d’abord été étendu pour comprendre comment la géométrie
d’une frontière mobile et multi-échelle peut affecter la structure des tourbillons énergétiques.
En effet, comme le montre la Fig. 2b, le modèle phénoménologique permet de modéliser les flux
turbulents comme étant liés à des tourbillons représentatifs, dont la taille est proportionnelle à
la hauteur, par rapport à la surface, à laquelle les flux sont calculés.

Dans ce chapitre, nous avons supposé que, en raison des variations de la hauteur de la
surface de la mer, la taille du tourbillon représentatif varie (comme illustré dans la Fig. 3a pour
une onde monochromatique). La taille effective du tourbillon représentatif résulte donc de la
moyenne de toutes les tailles de tourbillon possibles, qui dépend des propriétés de la surface
de la mer. Nous avons démontré que cela affectait essentiellement la dissipation d’énergie
cinétique turbulente à des hauteurs de 10 m ou plus, d’un facteur proportionnel à la pente des
vagues de longueur d’onde d’environ 10 m.

Ce résultat a trois conséquences importantes. Premièrement, la pente des vagues de 10
m de longueur d’onde étant modulée par les courants de surface [voir par exemple Rascle
et al., 2016], le résultat de ce chapitre montre que les courants peuvent affecter la dissipation
d’énergie cinétique turbulente en modulant la taille des tourbillons représentatifs. Ensuite,
nous avons montré que ce changement de dissipation d’énergie cinétique turbulente induisait
une variabilité significative du flux de quantité de mouvement. Cette modulation pourrait
donc être un mécanisme capable d’expliquer la variabilité des flux de quantité de mouvement
mentionnés au début de cette introduction, au travers de l’effet des courants sur les vagues
de 10 m. Enfin, nous avons montré que les vagues de vent pouvaient potentiellement avoir
une signature (i) non seulement sur le flux de quantité de mouvement, (ii) mais aussi sur la
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dissipation d’énergie cinétique turbulente (et, en utilisant le budget spectral du chapitre 2, sur
le spectre de la turbulence). Ces travaux ont donc révélé des variables associées à la turbulence
atmosphérique dont la mesure précise pourrait améliorer notre compréhension des interactions
entre le vent et les vagues.

CHAPITRE 4: L’IMPACT DYNAMIQUE DES VAGUES SUR LA TURBULENCE

Dans la dernière partie de cette thèse, nous avons revisité l’échelle de Beaufort en se posant
la question suivante : le couplage local entre le vent et les vagues peut-il être caractérisé par
une vitesse ou une longueur horizontale associée à la surface de la mer ? En effet, lorsque l’on
observe une mer ventée, on peut remarquer, comme l’ont fait F. Beaufort et G. Simpson, que
malgré la nature multi-échelle de la surface, les conditions de vent peuvent être caractérisées
par une échelle de vagues horizontale, ou une vitesse, associée à un changement des propriétés
de la surface de la mer. En particulier, pour des vents suffisamment forts, celle-ci est reliée à la
taille et à la durée de vie de l’écume résultant des déferlements. Cette échelle horizontale est
donc une mesure du couplage local multi-échelle entre le vent et les vagues.

Ainsi, dans ce chapitre, nous avons d’abord déterminé cette échelle horizontale en analysant
des mesure de statistiques de déférlements [Sutherland and Melville, 2013]. Ces mesures
forment un jeu de données unique, qui capture non seulement la densité des fronts déferlants
associés à la présence d’écume, mais également celle associée à des vagues plus courtes, qui
n’entraînent pas d’air et ne laissent donc pas de trace visible (et ceci grâce à l’utilisation de
caméras infrarouges). L’analyse de cet ensemble de données a permis de déterminer la taille des
vagues dont la densité de fronts déferlants varie le plus pour un changement de vent moyen à
10m, et qui sont donc celles qui, visuellement, traduisent le plus un changement de l’intensité du
couplage vent-vagues: celles-ci vont des vagues centimetriques pour les vents faibles, jusqu’à
des vagues de quelques mètres pour les vents de 10 m/s.

Indépendamment de cette analyse expérimentale, nous avons également utilisé le modèle
phénoménologique présenté ci-dessus pour obtenir une estimation théorique de cette longueur
d’onde horizontale. En effet, s’il existe une échelle de longueur horizontale caractérisant
le couplage vent-vagues, il est raisonnable de supposer que celle-ci laisse également une
empreinte sur les propriétés de la turbulence atmosphérique proche de la surface. Nous avons
donc supposé que les fronts déferlants associés à cette échelle horizontale déterminent la taille
des tourbillons représentatifs du modèle phénoménologique, comme illustré dans la Fig. 3b.
En utilisant cette contrainte sur la taille des tourbillons dans le modèle phénoménologique et
en nous appuyant sur des mesures de flux de quantité de mouvement, nous avons démontré
que l’échelle horizontale ainsi obtenue est en accord avec celle obtenue à partir de l’analyse
expérimentale.

Ce travail montre donc que le système couplé vent-vagues peut être représenté par l’échelle
horizontale des vagues déferlantes qui sont les plus sensibles aux changements de vent. Cette
échelle de longueur horizontale laisse une empreinte sur les statistiques de turbulence dans
les premiers centimètres de la couche de surface de l’atmosphère, régulant l’amplitude du
flux de quantité de mouvement air-mer. C’est un résultat important qui fournit une quantité
(l’échelle horizontale, de quelques dizaines de centimètres) qui est mesurable à la fois avec
des techniques de détection in-situ ou satellite, et qui permettrait de fournir des estimations
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Figure 3: Modèle phénoménologique de la turbulence (Fig. 2b) étendu à deux situations reliées
à l’interaction vent-vagues. (a) Les vagues de vent longues, donc la pente est sen-
sible entre autre aux courants, changent la géométrie des tourbillons représentatifs,
modifiant par la même la dissipation d’énergie cinétique turbulente et pouvant ex-
pliquer la variabilité des flux de quantité de mouvement pour un vent moyen donné.
(b) L’échelle et la vitesse des vagues courtes et déferlantes est couplée à celle des
tourbillons représentatifs proches de la surface. Ce couplage caractérise l’état de mer
et le flux de quantité de mouvement pour une vent donné.

précises de la vitesse du vent, des flux turbulents et de l’état de mer local.

CONCLUSION

Cette thèse porte sur la question de l’interaction entre le vent et les vagues en utilisant un
cadre théorique qui permet une description de la turbulence proche de la surface échelle par
échelle. Cette méthode a été utilisée pour aller au-delà de la description traditionnelle des
flux air-mer, qui repose sur la théorie de similitude de Monin-Obukhov, en montrant que la
signature des interactions vent-vague sur la turbulence atmosphérique peut être importante
sur des variables autres que la covariance des vitesses horizontales et verticales. Un tel cadre
théorique est utile pour l’interprétation de mesures satellite et in-situ de la surface de la mer. Il
l’est également pour l’étude du lien entre les petites échelles turbulentes et les flux moyennés à
des échelles spatiales et temporelles plus grandes. Ces derniers sont notamment nécessaires
pour les paramétrisations des flux air-mer dans les modèles de prévision climatiques.
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INTRODUCTION

In a recent perspective article, J. Jiménez made the following statement: "turbulence research,
in common with other sciences at some point in their development, has changed from a subject
driven by the need for good data, to one driven by the need for new ideas" [Jiménez, 2018].
For low-Reynolds number turbulent flows, which are the subject of Jiménez’s article, and for
which Direct Numerical Simulations are now massively available, this statement is certainly
accurate. Is that the case for open-ocean turbulence close to the sea surface, which is coupled
to wind-waves? Such a question is crucial, since turbulence close to the sea surface, or, more
broadly, wind-and-wave interactions, is at the heart of parameterizations of air-sea fluxes for
heat, gases, humidity and momentum [e.g. Fairall et al., 2003], used in numerical weather
prediction models, both at the synoptic and at the climate scale [e.g. Shimura et al., 2017].

In this thesis we focus on the momentum flux for moderate winds (lower than 20 m s−1). Its
time- or space-averaged value, used in parameterizations, results from a zoology of turbulent
motions, which depend on the scale and the steepness of the underlying surface undulations.
Two examples are shown in Figs. 4a,b for laboratory scale waves [Buckley and Veron, 2016],
and demonstrate that, as steepness increases, detachment of the flow can occur. This complex
picture becomes even more fascinating in open-ocean conditions. As shown in Fig. 4c, a windy
sea is a multiscale rough surface, in which the scales of the waves actively coupled to the
wind span several orders of magnitude (from a few millimeters to tenths of meters). These
wind-waves act as individual roughness elements which grow and decay as they interact (i) with
the multiscale and intermittent wind field above, and (ii) among themselves through non-linear
processes [e.g. wave breaking, Kudryavtsev et al., 2014]. The resulting zoology of turbulent
motions is hence more complex than what can be observed in laboratory conditions, and calls
for field experiments to be unraveled.

However, field experiments suffer from limitations. First, they are subject to oversampling
specific environmental conditions due to practical issues (deployment in a limited set of areas,
technical issues for strong seas, etc.). Hence, quantification of the sensitivity of wind-and-wave
interactions to environmental parameters other than stability is difficult, and would require a
global coverage of wind and waves [e.g. from remote sensing techniques, see Villas Boas et al.,
2019]. In fact, the geometry of wind-waves can be modulated by the presence of swell, slicks,
ocean currents and non-stationary winds, to only cite a few [Vandemark et al., 1997, Grodsky
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Figure 4: [(a), (b)] Snapshots of the streamwise wind field (i.e. blowing from left to right in
the figure) above laboratory-scale waves. As the wave steepness increases, the flow
becomes increasingly detached on the downwind face of the wave [figure adapted
from Buckley and Veron, 2016]. (c) Example of a wind-driven sea surface off the
coast of San Clemente Island, west of San Diego, CA, USA. The sea-surface consists
of a superposition of waves of multiple scales, some of which are breaking. Courtesy
of Laurent Grare.

et al., 2012, Kudryavtsev et al., 2012, Melville, 2018]. This is illustrated in Fig. 5a which
compiles a large number of measurements from field campaigns, and where effects of stability
have been removed [Edson et al., 2013]. While on average, a one-to-one relation between
the time-averaged 10-m wind speed and momentum flux can be defined, the data is scattered
around this mean value. It is unclear what are the parameters driving this spread, and to which
extent this spread is underestimated. The second limitation is the difficulty to test theories for
wind-and-wave interactions in the field, because (i) as mentioned above, the range of scales to
be sampled is wide, while typical experimental settings (see Figs. 5c,d,e) only measure time
series of the flow at some specific heights; (ii) theoretical models [Miles, 1957, Belcher and
Hunt, 1993] predict that the most active part of the coupling, which is believed to occur for
short and steep wind-waves [Munk, 1955], should have a signature in the first meters above the
sea surface, which are difficult to sample above a windy sea. Several field experiments have
nonetheless found conclusive evidence of wind-and-wave interactions at greater heights, giving
support to the seminal Miles [1957] theory of wave growth, for large wind-waves [Hristov
and Ruiz-Plancarte, 2014, Grare et al., 2013, 2018]. However, due to these difficulties many
features of the wind-and-wave coupling are still elusive to observations and hence to theory
[e.g. Soloviev and Kudryavtsev, 2010, Hristov, 2018]

The standard wind-wave-interaction theories on which these experiments are based [Miles,
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1957, Belcher and Hunt, 1993] are valid under a certain number of assumptions. In particular,
only a single monochromatic wave, with low steepness, is considered. Even though some ex-
tensions for steep waves have been proposed [e.g. Melville, 1977, Csanady, 1985, Kudryavtsev
and Makin, 2001, Kukulka and Hara, 2008a], there is still no theoretical framework capable of
consistently relating the multiscale wind and wave fields and the time-averaged momentum flux.
Given the difficulties presented above, such a theory is important, since it can help designing
and interpreting open-ocean measurements. Hence, rephrasing Jiménez’s statement, it seems
more fair to state that turbulence close to the sea surface is a subject driven by the need for both

new data and new ideas.
In this thesis, we address the last of these two needs, by bringing a spectral framework,

developed to describe turbulence over a flat wall [Katul et al., 2011], to the problem of wind-
and-wave interaction. We take a step towards the evaluation of the parameters governing the
relation between turbulent motions and averaged quantities, and hence towards assessing the
validity of the bulk algorithms in use today. In Chapter 1, we review the characteristics of flows
above a flat wall and the sea surface, and the theories used to describe them. In Chapter 2 we
then address several questions regarding the use of the spectral framework, for flow over a
flat wall. Finally, in Chapters 3 and 4 we use the spectral framework to investigate how long
wind-waves and short breaking waves affect the properties of turbulence.
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Figure 5: (a) Large set of measurements of momentum flux from field campaigns vs 10-m wind
speed (dots). Effects of stability have been removed. The dashed and solid lines
are fits to the data, used for the computation of fluxes in the COARE 3.0 and 3.5
algorithms respectively. Notice the spread of the data around those fits [figure from
Edson et al., 2013]. [(b),(c),(d)] Example of measuring devices, with anemometers
measuring wind at increasingly lower heights. (b) The R/P Flip used in e.g. the MBL
experiment [Hristov et al., 2003], with an array of anemometers (on the left) going
down to a height of 4 m. (c) ASIS moored buoy with a 3-m high mast, used during
the CLIMODE experiment. (d) Wave-following OCARINA platform, carrying a
1.5-m mast Bourras et al. [2014, 2019]. (b) and (c) are adapted from [Edson et al.,
2013], and (d) is courtesy of Louis Marié.

22



23



24



CHAPTER 1

TURBULENCE AND WAVES: A LITERATURE REVIEW

"Chidori Birds", School of Katsushika Hokusai (1615–1868).
The Metropolitan Museum of Art, Gift of Annette Young, in memory of her brother, Innis Young, 1956.
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From an atmospheric perspective, the coupling between wind and waves can be seen as
a (very) particular case of a turbulent flow over a rough surface. In this chapter we thus
begin (Sec. 1.1) by a broad overview of wall-bounded turbulence, both over smooth and
rough surfaces. Emphasis is put on dimensional analysis and on the somewhat "empirical"
understanding of the flow by means of coherent structures and eddies, without discussing
mathematical techniques. The phenomenological model of turbulence, used in the rest of this
thesis, relies on this physical view, and is presented in Sec. 1.2. We then move to the wind-
wave problem by critically reviewing historical and state-of-the-art theories of the coupling
between turbulence and wind-waves (Sec. 1.3). Finally, we present the objectives of this work
(Sec. 1.4). Our interest lies in the description of turbulence properties that are relevant for the
determination of the momentum and energy fluxes. We do not describe heat and gas transfer,
which are equally important and interesting problems.

1.1 WALL-BOUNDED TURBULENCE WITH STRATIFICATION

The literature on wall-bounded turbulence is vast, and, in this section, only a few selected
elements, necessary for the rest of the thesis, are described. Included are also concepts that,
arbitrarily, seem interesting for the study of turbulence on top of waves. More precisely, we
focus on the description of the Atmospheric Surface Layer (ASL), which lies at the bottom
of the atmospheric boundary layer. While, in the atmospheric boundary layer interior, the
Coriolis force induces a rotation of the mean wind with height (the Ekman spiral), in the ASL
the direction of the mean wind is constant with height and the Coriolis force can be neglected.
This defines the streamwise (x) direction of a Cartesian coordinate system, aligned with the
mean (ageostrophic) wind U . The flow is further assumed to be horizontally homogeneous,
i.e. horizontal gradients, and in particular advection, cancel. All quantities are thus invariant
with respect to the streamwise and spanwise (y) directions, and vary only with height above the
surface z. The Reynolds-averaged streamwise momentum balance then reads

∂U

∂t
= − ∂p

∂x

∣∣∣∣∣
L
− ∂u′w′

∂z
− ν ∂

2U

∂z2
. (1.1)

We have introduced the (zero-mean) fluctuations of streamwise (u′) and vertical (w′) velocity,
and · , the ensemble Reynolds average (the spanwise fluctuation of velocity is denoted by
v′). We have also introduced the air viscosity ν, and a large scale pressure gradient (∂p/∂x)L
resulting from a bulk atmospheric boundary layer forcing due to a large scale geostrophic
equilibrium. Sufficiently far from the bottom boundary (see below), the viscous stress (the last
term on the RHS) can be neglected with respect to the Reynolds stress (the penultimate term on
the RHS).

The above equation shows that the Eulerian acceleration of the mean flow is related to
turbulence through the vertical gradient of the anisotropic component of the Reynolds stress
tensor u′w′. This bulk anisotropy results from a multiscale zoology of turbulent motions, which
are described, in what follows, in terms of statistical eddies [Townsend, 1972]. This anisotropic
component can be interpreted as a vertical flux of momentum, providing an incentive for its
understanding in terms of events (or coherent motions) which transport momentum through the

26



boundary layer. Some elements of the latter view will also be presented below.
We further consider a stationary ASL (∂U/∂t = 0), and neglect the large-scale pressure

gradient, which leads to the following momentum balance

du′w′

dz
= 0. (1.2)

This defines the friction velocity u∗, as the square root of the (constant) turbulent momentum
flux in the ASL (−u′w′)1/2 (following the meteorological convention, a negative momentum
u′w′ flux is here a downward flux). 1

We now proceed by first presenting a broad overview of the ASL and its eddies for neutral
conditions. We then focus on Monin-Obukhov Similarity Theory (MOST) for the description
of a stratified ASL. This second part is motivated by MOST being at the heart of modern
parameterizations of surface fluxes in the presence of waves.

1.1.1 GENERAL CONSIDERATIONS FOR NEUTRAL CONDITIONS

This section is inspired from several reviews and books, which contain more details and
references than what follows: (i) the reviews about smooth- and rough-wall flows of Raupach
et al. [1991] and Jiménez [2004], (ii) the reviews on coherent structures in low-Reynolds
number flows [Jiménez, 2012, 2018] and on top of (forest) canopies [Finnigan, 2000] and, (iii)
the classic textbooks about turbulence of Pope [2000] and Wyngaard [2010].

FLAT WALL The description of a turbulent boundary layer in the vicinity of a flat wall relies
on several basic quantities. These are (i) the friction velocity u∗, (ii) the air viscosity ν, and
(iii) the height of the boundary layer δBL. If the atmosphere is neutral, those ingredients define
two dimensionless scales: the inner scale lin = zu∗/ν and the outer scale lout = z/δBL. The
inner scale can be interpreted as the Reynolds number for the attached, energetic eddies at a
height z, while a friction Reynolds number can be introduced as Reν = δBLu∗/ν, i.e. as the
Reynolds number of the largest eddies of the boundary layer. For the ASL, ν = O(10−5 m2

s−1), δBL = O(100− 1000 m) and u∗ ∼ 0.5 m s−1. The ASL is hence a high Reynolds-number
flow, i.e. with Reν ranging from 106 to 108 (the latter being for a convective ASL).

The scales lin and lout define different layers, in which the mean wind shear scales differently
(see Fig. 1.1) . The inner layer, where the mean wind shear is independent of δBL and of the
free stream velocity (U(z = δBL)), is defined for lout ≤ 0.1. At the bottom of the inner layer
lies the viscous sublayer (lin < 5) where the Reynolds stress is negligible with respect to the
viscous stress, and the mean wind shear is constant2

dU

dz
=
u2
∗
ν

and U(0) = 0. (1.3)

1Note that, in Tennekes [1973] neglecting the large-scale pressure gradient, which, for mid-latitude ASLs, is
related to neglecting the Coriolis force, was shown to require an ASL height of the order 0.03u∗/f = O(100 m),
with f the Coriolis parameter. This is a practical estimate of the ASL height, which ensures that momentum
flux decreases of about 10 % from its surface value.

2This is readily obtained from Eq. (1.1) which, in the viscous sublayer, reads ν(d2U/dz2) = 0.
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Figure 1.1: Schematic of the different layers and dimensionless quantities on which the mean
wind profile of a wall-bounded flow depends. For a smooth wall, the definition of
the layers depends on lin and lout , and the values given here follow Pope [2000]. For
a rough wall, lin is replaced by z/hr where hr is the height of the roughness sublayer
(bottom right axis). The value U/u∗ is an order of magnitude, corresponding to
pipe flows over a smooth wall. The height of the logarithmic layer (rightmost axis)
is estimated for an ASL of height 100 m and u∗ ∼ 0.5 m s−1.

As height increases, for lin > 50, effects of viscosity become negligible, which marks the
bottom of the outer layer. At the overlap between the inner and outer layers (for lin > 30− 80
and lout < 0.2− 0.3, according to Pope [2000] and Jiménez [2012]), the only relevant quantity
is the height z, and the mean wind follows a logarithmic profile [Townsend, 1976]

U(z) =
u∗
κ
log(z/z0),

dU

dz
=

u∗
κz

. (1.4a,b).

Following the meteorological convention, we have introduced the roughness height z0 which,
for a flat surface, is 0.14ν/u∗. The Von Kármán constant κ ∼ 0.4 is a universal constant (here,
we will not discuss its variations). The logarithmic region exists for sufficiently turbulent flows,
for which the separation between the largest turbulent eddies and the smallest viscous eddies is
broad [e.g. Reν > 750, Jiménez, 2012]. For an ASL of height 100 m, the logarithmic sublayer
range 30 < lin and lout < 0.3 corresponds to 6 × 10−4 m < z < 30 m. Note that above the
logarithmic region lies the wake region, which won’t be discussed here, and where the effects
of the boundary layer height cause a deflect of the mean wind profile from the logarithmic law.

Kraus [1967] proposed an interesting interpretation of the Von Kármán constant. By requiring
continuity of the wind shear on top of the viscous sublayer (between the linear and logarithmic
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profiles), the inner Reynolds number at the top of the viscous sublayer reads lνin = 1/κ. Note
that with the usual value κ ∼ 0.4, this yields lνin ∼ 2.5, of the same order of magnitude than
the value lin = 5 of Pope [2000]. This simplified picture neglects however the presence of
the buffer layer, located in between the viscous and logarithmic sublayers (5 < lin < 50) and
where the linear wind velocity profile gradually merges into the logarithmic profile. The buffer
layer is especially important in low-Reynolds number flows [Reν = O(103) or lower, Smits
et al., 2011], where it is home of a "viscous cycle" in which low momentum streaks destabilize
periodically [Jiménez and Moin, 1991] and act as a TKE source for the boundary layer aloft
[Jiménez, 1999].

ROUGH WALL Smooth walls are almost never encountered in geophysical flows. More
precisely, the presence of surface roughness alters the above picture by introducing at least
an additional scale, the height of the roughness elements hr , which defines the roughness
Reynolds number Rer = hru∗/ν [see the review Raupach et al., 1991]. From this, three regimes
can be defined: aerodynamically smooth flows for Rer < 5, transitional for 5 < Rer < 70 and
aerodynamically rough flows for Rer > 70 [from the sand-grain experiments of Nikuradse,
1933]3

We hence see that, for an ABL flow not to be considered as aerodynamically rough, hr should
be of the order of 10−3 m. As an example, for wheat, typical Rer are of 104, and up to 106

for 23-m high forest canopies such as the Kondo forest [Jarvis, 1976]. In the aerodynamically
rough regime (Rer →∞), the flow becomes independent of Rer (i.e. of viscosity), and the
relevant parameters are then those of the surface geometry (streamwise and spanwise aspect
ratios, density of roughness elements ....). Their determination is strongly dependent on the
nature of the roughness elements, and, as will be seen in the rest of the thesis, is remarkably
difficult for the ocean surface. 4

With respect to the mean flow scaling discussed above, the viscous and buffer sublayers are,
for an aerodynamically rough flow, replaced by the roughness sublayer, in which the mean wind
speed does not depend on viscosity but on the geometry of the roughness elements. Its height is
generally between 2hr and 5hr [see Raupach et al., 1991, and Fig. 1.1]. In this layer, the mean
wind profile deviates from the logarithmic law reflecting, among others, the effect of airflow
separation behind roughness elements, and the presence of dispersive fluxes, resulting from the
spatio-temporal heterogeneity of the surface (see Sec. 1.3). For flow over forest canopies, it is
generally accepted that this deviation results in an exponential law [Finnigan, 2000]. It can
be derived theoretically from the momentum balance, by including an additional form drag,
quadratic with wind speed [e.g. Finnigan and Belcher, 2004]. Note that this is similar to the
description of the impact of breaking waves on the wind profile (as described in Sec. 1.3) even
though, for wind-waves, additional sources of form drag are also present that are not quadratic
with wind speed.

3Note that, as shown in the sand-grain experiments of Bandyopadhyay [1987], these bounds are dependent on
the surface geometry. Jiménez [2004] suggests that the lower bound for an aerodynamically rough flow, is
more broadly Rer > 50− 100.

4This is why, in the wind-wave literature, the roughness Reynolds number is more commonly defined from z0,
i.e. Rez0r = z0u∗/ν. In this case, aerodynamically rough flow begins for Rez0r > 2.2 (and, as mentioned above,
for a smooth flow, Rez0r = 0.14).
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In the logarithmic layer, the essential question, posed here following the meteorological
conventions, is then to determine which geometrical parameters control z0. Here we only
mention the study of Lettau [1969] which has been influential in theoretical works about
wind-wave interactions [Csanady, 1985, Kitaigorodskii et al., 1995]. By studying the flow over
three-dimensional bushel baskets on a frozen lake [Kutzbach, 1961], Lettau [1969] showed that
z0/hr = 0.5hrhy/D

2, where the roughness frontal area par unit surface (or roughness density)
hrhy/D

2 depends on hr , on the mean separation distance between roughness elements (D) and
on their spanwise extension (hy). Note however that, as mentioned by Raupach et al. [1991],
for roughness densities high enough, the ratio z0/hr decreases with roughness density. This
reflects the mutual sheltering of roughness elements. An extreme case of such a sheltering,
first highlighted by Perry et al. [1969], are d-type surfaces, for which z0 depends only on the
boundary layer height δBL.

TKE BALANCE IN THE LOGARITHMIC LAYER Townsend [1961] suggested that the logarith-
mic layer (above flat or rough surfaces alike) is an equilibrium layer, in which the dissipation
of Turbulence Kinetic Energy (TKE) ǫ is balanced by mechanical production

u2
∗
dU

dz
= ǫ. (1.5)

The above equation assumes that the flow is stationary and horizontally homogeneous (which
are the ASL hypotheses), but neglects in addition the vertical transport of TKE (due to vertical
gradients of skewness and of velocity-pressure covariance). Numerous experiments in a near-
neutral ASL have shown that this balance is generally valid in the logarithmic sublayer [e.g
Bradley et al., 1981].

For a low Reynolds-number flow above a smooth surface, Jiménez [1999] further suggested
that this equilibrium layer, in which the energy flux is constant, is fed by the buffer sublayer,
which acts as a source of energy from below, and that this energy in then dissipated in the
overlying wake sublayer (for lout > 0.2). This analysis was quantified by Cimarelli et al. [2016]
using a budget for the second order structure function (interpreted as energy of the dominant
eddies) on DNS data. It hence suggests an upward inverse energy cascade, as energy goes from
small viscous motions to large wake motions.

This picture reversed for ASL flows in the presence of a roughness sublayer. Within the
roughness sublayer, transport terms were shown to be significant, moving TKE from the
top of the roughness sublayer down to the surface where energy is dissipated in the wake
of the roughness elements [Raupach et al., 1991]. This mechanism requires the presence of
an additional term in the TKE budget, the so-called wake production term, resulting from
dispersive fluxes. It will be discussed at length in Sec. 1.3, in the case of the sea surface.

THE ATTACHED EDDY HYPOTHESIS By using the logarithmic wind profile (1.4) in equation
(1.5), the TKE dissipation reads ǫ(z) = u3

∗ /κz. This scaling is consistent with the seminal
attached eddy hypothesis formulated by Townsend [1976] which states that, in the logarithmic
layer, the characteristic size of the dominant momentum-transporting eddies scales with distance
from the surface. This length is defined by considering that ǫ is the ratio of the cube of an eddy

30



Figure 1.2: Schematic of the separation of motions in the logarithmic sublayer. (a) From large
to small scales, eddies at a height z from the surface are separated into inactive
motions which contribute only to the horizontal velocity, energy-containing eddies
which carry most of the momentum flux and small-scale eddies which transfer
energy, in the spectral space, down to the dissipation subrange (at a scale η) at
a rate ǫ. (b) Idealized spectra of total kinetic energy (solid line) vertical kinetic
energy (dashed line) and for the neutral ASL. The spectra exhibits two regimes: the
inertial subrange, at the overlap between energy-containing and small-scale eddies,
and the energy-containing subrange at the overlap between energy-containing and
inactive motions. Note that, since inactive motions do not contribute to vertical
motions, the spectrum of vertical velocities is flatter than the spectrum of TKE.

turnover velocity (u∗) and of its size (z). This corresponds to the size of so-called "energy-
containing eddies", which extract energy from the mean shear at a given height z, before it
cascades down to the Kolmogorov scale η = (ν3/ǫ)1/4 through a 3D isotropic cascade.5 Across

5Note that η, the size of the smallest eddies of the flow, defines an estimate of the separation between the smallest
and largest scales of the flow as δBL/η ∝ Re3/4ν [e.g. Wyngaard, 2010]. This quantity dictates the resolution
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this spectral cascade, the energy flux is constant, and the dissipation rate ǫ of η-scale eddies
is hence equal to the rate at which energy-containing eddies inject energy in the cascade (see
Fig. 1.2a).

Eddies can hence be separated into two kinds: attached (or energy-containing, or active)
eddies, which interact with the mean shear and whose size scales with height z, and small-scale
eddies which transfer energy down to the scale η where it is dissipated. Bradshaw [1967]
further proposed that eddies larger than z act, at a given height, as inactive motions. Those
eddies, unlike energy-containing eddies, do not contribute to vertical motions at a height z,
but only to horizontal motions. Several works have proposed methods for the identification
of attached eddies and their separation from inactive motions, e.g. using wavelet transform
[Katul and Vidakovic, 1996], a watershed algorithm [Srinath et al., 2018], conditional sampling
[Lozano-Durán et al., 2012] or a clustering method [Cheng et al., 2020].

This separation of motions was used by Perry and Abell [1977] to explain the behaviour
of the longitudinal turbulent spectrum, which exhibits two main regimes, shown in Fig. 1.2b,
for the related TKE spectrum, as a function of the streamwise wavenumber k (solid line):
a low-wavenumber regime (the energy-containing subrange) with a k−1 dependence, at the
overlap between the scales of inactive eddies and energy-containing eddies, and a k−5/3 high-
wavenumber regime, indicative of 3D cascade where motions are isotropic6.

The separation between the two regimes occurs at a wavenumber proportional to 1/z,
representative of the size of energy-containing eddies. Perry and Abell [1977] further used this
model to recover the scaling behaviour of the horizontal velocity variances, as also done by
Banerjee and Katul [2013] using a phenomenological model similar to the one presented in
Sec. 1.2 . The presence of a k−1 regime has been observed in a variety of ABL studies [e.g.
Drobinski et al., 2007, and references therein], but it is still unclear under which conditions
it emerges. Note that, since energy-containing motions do not contribute to vertical motions,
the spectrum of vertical velocity (dashed line) lacks the k−1 overlap regime, which is instead
replaced by a k0 regime [see Wyngaard, 2010, p. 234 for a theoretical argument]. The
latter scaling has been more consistently observed than the k−1 regime of the TKE spectrum,
indicative of its robustness to variations in external parameters.

Panchev [1971] (pages 219-223) proposed an interesting argument for the emergence of a
k−1 regime in the TKE spectrum. He considered the budget for the spectrum of TKE at a given
wavenumber, assumed to be a balance between mechanical injection of energy, non-linear
transfer of energy from large to small scales [modeled following Heisenberg, 1948], and viscous
dissipation. With respect to its scale-averaged counterpart (1.5), the spectral balance contains
an additional non-linear transfer of energy term, whose integrated contribution to the averaged
balance is zero. Panchev [1971] showed that the k−1 regime emerged in the limit where,
following Tchen [1953, 1954] the mechanical injection of energy occurs only by interaction
of small-scale turbulent vorticity with the mean wind vorticity. This limit is opposed to the
case where mechanical injection of energy results from the interaction between small and large

required for a Direct Numerical Simulation (DNS) of the full boundary layer, and is also related to the number
of degrees of freedom of the flow [Landau and Lifshitz, 1959].

6Here we do not discuss the very-low-wavenumber regime (k < δ−1BL), where large and very-large scale motions
cause a decay in the spectra, nor the very-high-wavenumber dissipation subrange (k > η−1) where the spectrum
also becomes steeper [see Saddoughi and Veeravalli, 1994].
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scale turbulent vorticity [Tchen, 1953]. The former limit occurs when the ratio between the
large- and Kolmogorov-scale vorticity is small (dU/dx)(ν/ǫ)1/2≪ 1. In the logarithmic layer,
this condition is valid, and can be expressed equivalently as l1/2in ≫ 1 or as (z/η)2/3≫ 1. A
suggested interpretation of this analysis is that energy-containing eddies in the logarithmic
sublayer should be viewed as an imprint of the mean flow on turbulence statistics, giving a
justification for their scaling with mean-flow variables.

In the viscous sublayer, the scale of energy containing-eddies and the scale at which viscous
dissipation occurs are similar, and the above picture does not hold. Note that this is used by
Jiménez [2018] to determine the bottom of the logarithmic sublayer (see its figure 3a).

What is more interesting for the following is what happens in the roughness sublayer, where
the scale of energy-containing eddies is fixed and depends solely on the roughness sublayer
height [Raupach et al., 1991, Gioia et al., 2010, Bonetti et al., 2017]. This is at the core of
Chapter 4 of this thesis. A possible explanation for this scaling is reviewed below. Finally, the
presence of airflow separation events in the roughness sublayer has a last important impact,
as it creates small-scale eddies, shortcutting the Kolmogorov cascade. Large-scale energy is
then directly transported at the dissipation scale, which can have impact on the shape of the
inertial-subrange spectra [Finnigan, 2000].

COHERENT STRUCTURES So far we have described the properties of statistical eddies in the
roughness and logarithmic sublayers, which represent the most likely state of the flow with
respect to some of its properties. The flow can also be described in terms of coherent structures,
which are representative structures of the flow with intrinsic dynamics [Jiménez, 2018].7 This
gives an interesting insight on the dynamics of turbulence, with the hope that the properties of
coherent structures are related to the statistical properties of the flow, and hence to the eddies
described above. Here we discuss some of these coherent structures, summarized in Fig. 1.3.

Energy-containing eddies have been introduced above as "momentum-transporting eddies",
which support most of the turbulent momentum flux −u2

∗ in the logarithmic and roughness
sublayers. A widely-used tool to go beyond this scaling description is quadrant analysis, in
which instantaneous contributions to the momentum flux are separated into four quadrants
(see Fig. 1.3a). The first (Q1, u′ > 0 and w′ > 0) and third (Q3, u′ < 0 and w′ < 0) quadrants
correspond to outward and inward interactions respectively, interpreted as a slow interaction
induced by a momentum-transporting vertical motion w′. The second (Q2, u′ < 0 and w′ > 0)
and fourth (Q4, u′ > 0 and w′ > 0) quadrants correspond respectively to ejections (or bursts)
of low momentum fluid upwards and to sweeps of high momentum fluid downwards. In
wall-bounded flows, since the momentum flux u′w′ is downwards (negative), most of the
contributions to its intensity arise from ejections and sweeps.

In the roughness sublayer above forest canopies, the distribution is skewed towards sweeps
(Fig. 1.3a). As mentioned above, this indicates that the dominant events in the roughness
sublayer of canopies are downward intrusions of high momentum fluid, which transport TKE
down in the roughness elements where it is dissipated. It is interesting to note that, even though
the contribution of sweeps to u′w′ is higher than that of bursts, they are less frequent [Finnigan,

7Eddies are also often associated to a cascade of energy in spectral space, which is not necessarily the case of
coherent structures.
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2000]. This is an example of the statistical properties of turbulence being set by intense and
intermittent events (another one is breaking of ocean surface waves, discussed in Sec. 1.3).

Low-Reynolds-number studies give an interesting insight on the coherent structures associ-
ated with these events. In the logarithmic sublayer, the DNS of Lozano-Durán et al. [2012],
Lozano-Durán and Jiménez [2014] showed that Q2 and Q4 events come in pairs of counter-
rotating vortices, with a statistically significant asymmetry (see Fig. 1.3b) and a long lifetime
in which they grow in a self-similar manner. Interestingly, these pairs have a size and a velocity
similar to Townsend’s attached eddies (z and u∗ respectively). Alternative candidates to these
events are hairpin vortices (see Fig. 1.3c) which originate from a near-wall instability and grow
in packets, transporting momentum and TKE upwards in the logarithmic layer [Adrian, 2007].
This is a much more organized scenario than Lozano-Durán and Jiménez [2014], where Q2-Q4
pairs do not necessarily originate near the wall, but has been very useful in building theoretical
models of near-wall turbulence [Marusic and Monty, 2019].

Some of these structures have been shown to follow a self-sustaining cycle, i.e. they are
observed in DNS without the presence of larger scale flow, and are sufficient to reproduce
the bulk flow statistics. While it is well known that, in buffer-layer, coherent structures are
modulated by the outer flow [e.g. Marusic et al., 2010, Squire et al., 2016], this point is less
clear in the logarithmic layer. As Jiménez [2012] mentions, "we can expect some modulation
of the logarithmic layer, including possibly long-range ordering, from the global modes above
it". This modulation by outer flow eddies is of major importance, since this interaction governs
the general response of wall-bounded flows to external influences. In particular, in the presence
of a roughness sublayer, it has been recently shown that these modulations are particularly
strong [Anderson, 2016].

It should be noted that, besides this bottom-up view of the logarithmic sublayer, other
interpretations exist, such as the top-down approach presented in Hunt and Morrison [2000] for
high-Reynolds number flows. This approach draws on observations of cat’s paws [e.g. Dorman
and Mollo-Christensen, 1973, on top of water], and describes the downward advection of upper
layer eddies down to the surface, which generates ejections and logarithmic-layer vortices
through various mechanisms (an example of such a mechanism is given in Fig. 1.3d). It is
however out of the scope of this introduction to compare those two views in more detail.

We end this discussion on coherent structures by describing a model, first introduced by
[Raupach et al., 1996], to explain the scaling of energy-containing eddies in the roughness
sublayer. The model draws on the analogy between the roughness sublayer top and a plane
mixing layer, supported by data on top of forest canopies. In both cases, the presence of
an inflection point in the mean wind speed generates streamwise rolls by Kelvin-Helmoltz
instability. Secondary instability around these rolls lead to coherent structures of similar
spanwise and streamwise extensions (see Fig. 1.3e). Their extension is dictated by the scale of
the mean wind shear, which is similar to the roughness-sublayer height. Hence this "mixing
layer analogy" describes the scale (2 − 5hr) of energy-containing eddies in the roughness
sublayer as being set by instabilities near the roughness sublayer top.
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Figure 1.3: Example of coherent structures and their analysis. (a) Quadrant analysis on top
of a canopy, showing the predominance of sweep events with respect to ejections
[from Gardiner, 1994]; (b) Conditional surfaces associated with Q2-Q4 pairs in
the logarithmic sublayer, from a low-Reynolds-number DNS. The iso-surfaces
are perturbations to the streamwise velocity. Yellow is the low-speed ejection
(u′ = −0.5u∗) and blue is the high speed sweep (u′ = 0.5u∗). The coordinates
are relative to the center of the structure [from Jiménez, 2018]; (c) Snapshot of
the last stage of the evolution of a packet of hairpin vortices, generated after a
Q2 event in a DNS. At this stage, the scale and velocity of the packet become
similar to Townsend’s attached eddy. The surface is an iso-surface of "swirling
strength", a quantity similar to vorticity [from Adrian, 2007]; (d) Example of a
top-down mechanism: interaction of an outer-layer vortex with the wall, generating
an ejection [from Hunt and Morrison, 2000]; (e) Coherent structures resulting from
a Kelvin-Helmoltz instability and secondary instabilities on top of a roughness
sublayer [from Finnigan, 2000]

35



1.1.2 EFFECT OF STABILITY: MONIN-OBUKHOV SIMILARITY THEORY

SCALING AND UNDERLYING HYPOTHESIS So far, we have described wall-bounded turbulent
flow in neutral conditions. However, in the ASL the presence of buoyancy forces alters the
scaling of the previous section by introducing an additional scale, the Obukhov scale [Obukhov,
1946, Monin and Obukhov, 1954]

L = −θ0

κg

u′w′
3/2

w′θ′
, (1.6)

where g is gravity acceleration, and θ0 and θ′ are a reference potential temperature and its
turbulent deviation respectively. This length accounts for a non-zero turbulent heat flux w′θ′,
which is positive (upwards) for an unstable atmosphere, and negative (downwards) for a stable
atmosphere. 8 Scaling the height with the Obukhov length defines the stability parameter
ζ = z/L, positive for a stable atmosphere and negative for an unstable atmosphere. The absolute
value of this dimensionless length is characteristic of (i.e. proportional to) the height of the
"dynamical sublayer", below which the effect of stratification is negligible [Obukhov, 1971].

This scale, forms the basis of the Monin-Obukhov Similarity theory [MOST, see the review
by Foken, 2006]. Using the Buckingham Π theorem, the following dimensionless relations
were posited

κz

u∗

dU

dz
= φm(ζ),

κzu∗
w′θ′

dθ

dz
= φh(ζ), (1.6a,b)

where φm and φh are the so-called MOST universal functions for momentum and heat fluxes
respectively, equal to one for neutral conditions. It is interesting to highlight that these relations
can be interpreted as a modification of the diffusion properties of turbulence in the presence of
heat fluxes. In fact, the momentum Km and heat Kh turbulent diffusion coefficients

u2
∗ = Km

dU

dz
, w′θ′ = −Kh

dθ

dz
(1.7a,b)

can be expressed as

Km = φm(ζ)
−2(κz)2

dU

dz

Kh = Pr−1Km =
φm(ζ)

φh(ζ)
Km

(1.8)

where we have the turbulent Prandtl number Pr, the ratio between momentum and heat turbulent

8In the presence of moisture and hence latent heat fluxes, the potential temperature is replaced by the virtual
potential temperature (θv). The heat flux then reads

wθv =
Hs

ρacp
+0.61T0

Hl

ρaLe
,

where Le is the latent heat of vaporization of water, cp the heat capacity of dry air, T0 a reference temperature,
ρa the air density and Hs and Hl are the potential temperature and latent heat flux respectively [e.g. Fairall
et al., 1996]. For simplicity, moisture is neglected in the following.
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diffusion coefficients. Equation (1.8) shows that (i) φm accounts for the stability-dependent
deviation of the turbulent diffusion coefficient from its neutral value in the logarithmic sublayer
(κz)2(dU/dz) 9 (ii) φh accounts for the influence of stability on the dissimilarity between
turbulent transport of momentum and heat (see the recent analysis of Li et al. [2012, 2015] and
the review of Li [2019]).

This interpretation indirectly highlights two of the fundamental assumptions of MOST. The
first assumption is the existence of linear gradient-flux relationship (i.e. the fact that turbulent
fluxes are related to the local properties of their averaged counterparts, Eq. (1.8)). It is well
known that this assumption may not be valid in the presence of large scale convection or in
the roughness sublayer, where non-local (counter-gradient) fluxes are present [e.g. Kaimal and
Finnigan, 1994].

The second assumption is the existence of a logarithmic-law scaling, which relies on several
other conditions. As shown in Eq. (1.5) (and the related discussion) those are the ABL
hypothesis and Townsend’s view of energy-containing eddies scaling with z (Fig. 1.2). The
ABL hypothesis can be violated for inhomogeneous and non-stationary ABLs. According
to Wyngaard [2010], for a typical height z = 10 m corresponding to standard measurements,
the horizontal length scale on which the ABL has to be homogeneous should be larger than a
few kilometers, while the time scale of variation should be greater than 5 minutes. The ASL
constant-stress assumption can also be invalidated by the presence of pressure gradients or of
dispersive fluxes, which change the momentum balance (1.2).

With respect to the validity of Townsend’s view of energy-containing eddies, let us first
mention that, while the presence of stratification should obviously alter the length scale of the
eddies, it is still proportional to z in MOST, consistent with Townsend’s scaling. Nonetheless,
additional non-local scales can enter the problem for several reasons. First, strong inner-outer
layer interactions, in particular in the presence of large convective structures, introduce outer-
layer or environmental parameters in the similarity theory [e.g. Li et al., 2018, Fodor et al.,
2019]. Additional scales can also be introduced due to the presence of roughness elements [e.g.
Garratt and Hicks, 1990, Zilitinkevich et al., 2006]. Note that in the limiting free convective
conditions [of strong instablity, Tennekes, 1970] and very stable conditions [z-less conditions,
Wyngaard, 1973], which overlap some of the cases mentioned above, MOST scaling is also
invalidated. Here and in the rest of the thesis, the discussion will be restricted to mildly stable
and unstable conditions, defined for |z/L| ≤ 1.

THE O’KEYPS EQUATION Empirical forms of φm and φh have been derived in numerous
experiments, in particular by Businger et al. [1971] using data from the Kansas experiment.
Those are not presented here, and can be found in Appendix A of Sec. 2.2. Note however that
the general behavior is an increase of φm and φh with ζ, reminiscent of a decrease of turbulent
intensity for stable conditions and an increase for unstable conditions.

To match the Businger empirical functions, several authors proposed the so-called O’KEYPS
equation (after Obukhov, Kaimal, Elliot, Yamamoto, Panofsky, Sellers, see Panofsky [1963]

9Note that this neutral value is readily obtained from the logarithmic law Eq. (1.4).
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Figure 1.4: Summary of ABL measurements of the TKE budget for unstable conditions. S is
the mechanical production by interaction with mean wind shear, B is the production
by buoyancy, ǫ is TKE dissipation, and T and P are the turbulent and pressure
transport terms respectively. The pressure transport term has not been directely
measured, but is deduced from the TKE imbalance. The figure is originally from
Wyngaard [1992], and here we show the reprinted version from Wyngaard [2010].

and Businger [1988]). The equation reads

φ4
m −γ

z

L
φ3
m = 1, (1.9)

where γ is a "universal" constant which varies, depending on the experiments, between 5 and
18.

The O’KEYPS equation was derived in Ellison [1957] to fit two limiting regimes mentioned
above: the free convective regime for ζ ≪ −1 (where wind shear can be neglected) and
the stable regime for ζ ≫ 1. Alternative heuristic derivations where presented in Panofsky
[1961] and Sellers [1962], considering that shear- and buoyancy-induced turbulence contribute
independently to the total turbulent diffusion, in which case γ appears as a proportionality
coefficient between these two processes. Using these hypothesis, these studies stress that the
O’KEYPS equation is valid only for an unstable atmosphere. Further, these derivations show
that γ is proportional to the turbulent Prandtl number Pr. Hence the stability-independence
of γ implies that of Pr, which can be questioned in ABLs [Li, 2019]. The "universality" of γ
was discussed in Katul et al. [2011], who related γ to turbulent transport and to properties of
energy-containing eddies, showing its sensitivity to stability and environmental conditions.
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TKE BALANCE We have mentioned that MOST accounts for the change in turbulent intensity
due to buoyancy. The origin of this modification can be traced back to the TKE equation (1.5)
(page 30) which, in the presence of stratification, reads

−u′w′ dU
dz

+
g

θ0
w′θ′ = ǫ. (1.10)

The additional term with respect to Eq. (1.5) is production or destruction of TKE by buoyancy
forces. This additional term explains the changes in turbulence properties when stability is
included. It defines the flux Richardson number Rif

Rif =

g
θ0
w′θ′

u′w′ ∂U
∂z

.

The flux Richardson number can be related to the gradient Richardson number Ri= (g/θ0)
[∂zθ/(∂zU )2] and to ζ using the flux gradient relations (1.7), and reads

Rif =
Kh

Km
Ri = ζφ−1m . (1.11)

This gives another interpretation of ζ in terms of the energetic properties of turbulence, as a the
ratio between energy production/destruction by buoyancy and mechanical energy production.

The TKE balance can be rewritten in dimensionless form by multiplying Eq. (1.10) by κz/u3
∗ ,

and reads
−φm(ζ) + ζ +

κz

u3∗
ǫ = 0, (1.12)

In the above TKE balance, transport terms have again been neglected. Measurements for mildly
unstable conditions, shown in Fig. 1.4, indeed show that the two components of turbulent
transport (transport by turbulent fluctuations and by pressure fluctuations) almost compensate
each other. For mildly unstable conditions, a first order correction can nonetheless be included
in this budget, by replacing ζ by (1+β2)ζ, where β2 ∼ 1 is a proportionality coefficient relating
the dimensionless transport to ζ [e.g. Katul et al., 2011].

1.2 A PHENOMENOLOGICAL SPECTRAL LINK

In the previous section, the description of wall-bounded turbulence has been related to statistical
eddies, transporting momentum and energy both in physical space (the downward turbulent
momentum flux) and in spectral space (the 3D isotropic cascade). In particular, the central
role of "attached eddies", which interact with the mean wind shear at a given height, has been
emphasized. Relying on this phenomenology, several authors have proposed a model, termed
"spectral link", relating the averaged (or bulk) properties of turbulence to its spectral properties.
The original model of Gioia et al. [2010] and its extension for a stratified flow by Katul et al.
[2011] are first reviewed to introduce their use in the modeling of the mean velocity and MOST
functions. They rely on the geometry of the eddies, without necessity of discussing spectral
budgets. The latter are then discussed, along the lines of Katul et al. [2013] and Katul and
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Manes [2014].

BULK MODEL At the core of the concept of an attached eddy is the concept of a momentum-
transporting eddy, i.e. which supports u′w′ at a given height. This was made explicit by Gioia
et al. [2010] by expressing the momentum flux across a horizontal surface at a height z as
the product of an energy-containing eddy turnover velocity ve, depending on the streamwise
scale of the eddy sh, and a streamwise momentum difference transported by the eddy across a
vertical distance sv . To first order, the momentum difference u(z + sv)−u(z − sv) reads 2∂U

∂z
sv ,

which yields the following expression for the momentum flux

−u′w′(z) ∝ ve[sh(z)]
∂U

∂z
(z)sv(z). (1.13)

Using the same phenomenology as for ǫ = u3
∗ /z, the eddy turnover velocity was further

expressed as ve(sh) ∝ (ǫsh)
1/3. The validity of this scaling, which requires that sh lies in the

inertial subrange, has been verified experimentally by Salesky et al. [2013] using ABL data.
Using this expression in Eq. (1.13), the TKE dissipation finally reads

ǫ ∝ u6
∗

(
∂U

∂z

)−3
s−3v s−1h . (1.14)

If the mean wind speed follows a logarithmic law (Eq. (1.4)), the scaling ǫ = u3
∗ /(κz) is

recovered by requiring sv(z) = sh(z) = z in Eq. (1.14) [Gioia et al., 2010]. This can be seen as
indicative that eddies considered in this model are related to Townsend’s attached eddies, since
both have sizes which scale height from the ground (see Fig. 1.2a). Note that, for consistency,
the proportionality factor in Eq. (1.14) has to be in this case κ−4.

For a stratified atmosphere, the mean wind profile deviates from the logarithmic scaling (as
mentioned in the previous section). In addition, Katul et al. [2011] argued that, while the height
of the energy-containing eddies sv should still be equal to z (since they are attached to the
surface, as in Fig. 1.2a), their horizontal extension, and hence energy, can vary due to buoyancy
forces. The authors hence introduced the so-called anisotropy factor fa(ζ) = sh(ζ)/z, larger
than one for an unstable atmosphere (in which eddies are more energetic) and smaller than one
for a stable atmosphere (in which eddies are “squeezed” due to the restoring buoyancy forces).
10

Using MOST universal functions, the dissipation then reads

ǫ =
u3
∗

κz
φ−3m fa(ζ)

−1. (1.15)

Katul et al. [2011] noticed that, using this relation for ǫ in the TKE equation (1.12), a general-

10The anisotropy factor introduced here reflects a geometrical anisotropy in the shape of energy-containing
eddies, which should not be confused with turbulence anistropy, i.e. the difference in energy between turbulent
components and the fact that they are correlated (e.g. a non-zero u′w′).

40



ized form of the O’KEYPS equation (1.9) is obtained

φ4
m − ζφ3

m = fa(ζ)
−1. (1.16)

For unstable conditions, the anisotropy factor can be experimentally determined as a change
in the ratio between the spanwise and streamwise integral length scales of vertical velocity
Salesky et al. [2013]. For stable conditions, Li et al. [2016] showed that a more appropriate
estimate is the Ozmidov length scale (the size of the largest eddy unaffected by buoyancy). In
both cases, using empirical estimates for fa(ζ), the authors were able to predict experimentally-
consistent values of φm, giving support for the capacity of the phenomenological model to
predict mean flow variables.

THE SPECTRAL LINK The underlying idea of the phenomenological model is to relate the
bulk properties of the flow (here TKE dissipation) to its spectral properties, i.e. the energy
and size of energy-containing eddies. In fact, Gioia et al. [2010] had suggested that the eddy
turnover velocity ve(s) should be computed as an integral of the TKE spectrum, truncated at the
energy-containing eddy wavelength. Katul and Manes [2014] went one step further by using
a co-spectral budgets, i.e. budgets of co-spectrum amplitude at a given eddy scale, to derive
Eq. (1.13).

More precisely, the authors considered F̃uw(k), the (one dimensional) streamwise Fourier
transform of −u′w′, where k is the streamwise wavenumber (or inverse eddy size). This
momentum flux co-spectrum satisfies the normalizing condition −u′w′ =

∫ ∞
0

F̃uw(k)dk. It
can be shown [Panchev, 1971, Bos et al., 2004] that F̃uw satisfies a spectral budget which
can be obtained as the Fourier transform of the budget for the correlation tensor (called the
Kármán–Howarth-Monin equation). For stationary and planar-homogeneous flows close to a
wall, in the absence of subsidence (the ASL hypothesis), Katul and Manes [2014] suggested
that the co-spectral budget is a balance between mechanical production, pressure-strain sink
(R̃uw) and viscous dissipation:

∂F̃uw(k)

∂t
= 0 =

dU

dz
F̃ww(k)− R̃uw(k)− 2νk2F̃wu(k), (1.17)

where we have introduced the vertical velocity spectrum F̃ww, such that w′2 =
∫ ∞
0

F̃ww(k)dk.
The pressure-strain term Ruw is an essential component of the budget, acting against the
presence of turbulent anisotropy, in this case against F̃uw. A standard model for this "return-to-
isotropy" tendency is the linear Rotta model [Rotta, 1951], for which R̃uw ∝ F̃uw. Katul and
Manes [2014] used a refined version, called the LRR-IP model [Launder et al., 1975], which
reads

R̃uw(k) =
CR

τ̃(k)
F̃uw(k) +Cl

dU

dz
F̃ww(k). (1.18)

In addition to the first Rotta term, the model contains an "Isotropization of Production" (IP)
correction (the second term). The Rotta constant Cr has a value close to 1.8 (from numerical
simulations) and the second constant Cl is equal to 3/5 (from rapid-distortion theory). Note
that, in its original formulation, the LRR-IP model describes return-to-anisotropy for the bulk
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budget (integrated over all scales). In this case the proportionality constant in front of the
Rotta term reads CR/T , with T = (u′2 + v′2 +w′2)/(2ǫ) the characteristic timescale of return
to isotropy. Besnard et al. [1996], Bos et al. [2004] and Katul and Manes [2014] proposed a
spectral version of the LRR-IP model with a scale-dependent timescale τ̃(k) (Eq. (1.18)). In the
case of Bos et al. [2004] and Katul and Manes [2014], this dependence reads τ̃(k) = ǫ−1/3k−2/3.

The co-spectral budget relates the vertical velocity spectra to the momentum flux co-spectrum,
and, using the normalization condition −u′w′ =

∫ ∞
0

F̃uw(k)dk, hence establishes the following

spectral link between −u′w′ and F̃ww(k)

−u′w′ = dU

dz

1−Cl

CR
ǫ−1/3

∫ ∞

0

k−2/3F̃ww
1+2(ηk)4/3/CR

dk. (1.19)

In this equation, the effect of viscosity is scale dependent, expressed as the ratio between
the considered scale k−1 and the Kolmogorov microscale η. Hence the total contribution
of viscosity to the momentum flux depends on the shape of the vertical velocity spectrum,
presented below. Note that the DNS presented in Katul et al. [2014] show that the co-spectral
budget, and hence Eq. (1.19), are still valid for mildly unstable and stable conditions.

Finally, an idealized vertical velocity spectra, presented in Fig. 1.2, was used by Katul and
Manes [2014] to express the momentum flux in Eq. (1.19), and hence TKE dissipation, under
the same form than the bulk spectral link, Eq. (1.15). The idealized spectra has two ranges,
separated by the so-called spectral peak wavenumber kp:

F̃ww(k) =

{
Cwwǫ

2/3k−5/3p k0, k ≤ kp
Cwwǫ

2/3k−5/3 k > kp
, (1.20)

where Cww = 0.65 is the Kolmogorov constant for the vertical velocity energy spectrum
[Saddoughi and Veeravalli, 1994]. 11 As mentioned previously, the peak wavenumber is
proportional to 1/z. Hence, in the logarithmic sublayer ηkp ≪ 1, and viscosity can be neglected
in the above integral [unlike in the buffer or viscous sublayers, not discussed here, see Katul
and Manes, 2014]. Integrating over the idealized vertical velocity spectra then yields

ǫ ∝ u6
∗

(
dU

dz

)−3
k4p (1.21)

where the integration as well as the Kolmogorov and return-to-isotropy constants are not
explicitly written here for simplicity.

This derivation demonstrates that the horizontal extension of the energy-containing eddy
zfa(ζ), defined above (page 40), is related to the inverse wavenumber of the spectral peak
k−1p , as in Townsend’s imagery of attached eddies. Further, several experiments have shown
that the spectral peak kp varies with stability about 1/z [e.g. Kaimal and Finnigan, 1994],

11The term "spectral peak wavenumber" originates from the presence of a spectral peak in the premultiplied

spectrum kǫ−2/3F̃ww(k). Note also that Katul et al. [2013] discussed the inclusion of intermittency corrections
to the inertial subrange of the above spectrum. The authors showed that the spectral link was unaffected, but
that the resulting mean wind profile no longer follows a logarithmic law but a power law.
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which is consistent with the posited stability-dependent anisotropy factor fa(ζ)
−1. Equations

(1.19) and (1.21) establish a "spectral link" relating spectral properties of the flow to its bulk
characteristics. They show that the latter are in fact not only determined by properties of the
eddies whose size is commensurate to z, but by a weighted contribution of eddies of all scales.

With respect to the bulk analysis of Gioia et al. [2010] and Katul et al. [2011], the co-spectral
budget unravels the physical hypothesis and shortcomings of the phenomenological model. The
first assumption concerns the terms retained in the co-spectral budget. While, as for its bulk
counterpart, the spectral budget is expected to be satisfied in flat-wall ASLs, the flux-transport
term (the spectral analogue of the vertical transport term in the bulk budget) has been ignored.
It can be expected that this term becomes important for some other type of flows, e.g. in the
roughness sublayer, even if measurements for its quantification are lacking. Setting aside that
assumption, the spectral link relies on two models: for the vertical velocity spectrum (Eq. (1.20),
which sets the production of co-spectrum, and for the return-to-isotropy term (Eq. (1.18)). Both
models are expected to be valid for mildly stable and unstable conditions, in a variety of ASL
flows [see the references in Katul et al., 2013, Katul and Manes, 2014]. Nonetheless, it is
important to stress that the LRR-IP model can fail for strongly inhomogeneous flows, in which
the timescale of return to isotropy can exceed the modeled T or τ̃.

As a final note, let us mention that, herein, we have discussed the spectra only in the
wavenumber domain. Conversion to the frequency domain requires a dispersion relation for
turbulent motions. The simplest conversion relies on Taylors’ hypothesis of frozen turbulence
[Taylor, 1938] which assumes that the advection time of turbulent motions of wavenumber k
is smaller than their development time (defined as the time for turbulent structures to change
significantly in their frame of reference, see Phillips [1957]). For turbulent structures advected
at the mean wind speed U , the conversion is then

ω = kU. (1.22)

However, more complex models have been used [see the review Wallace, 2014], including
e.g. the turbulent advection of eddies of a given scale by larger eddies [Wilczek et al., 2015].
Finally, the presence of surface roughnesses can invalidate Taylor’s hypothesis. Squire et al.
[2017] and references therein used measurements to demonstrate that the advection of small
scale structures can be modified, but it is uncertain to which extent. The signature is especially
important on the vertical velocity spectrum. This should be carefully considered when using the
spectral link in complex flows, since the latter relies on spectra expressed in the wavenumber
domain, which are often measured in the frequency domain.

FINAL REMARKS The phenomenological model relates the bulk turbulent momentum flux
to the spectrum of the vertical velocity, whose properties can be represented by means of an
idealized attached eddy. This statistical eddy has dimensions which should be the expression
of the complex instantaneous features of turbulence, e.g. the coherent structures discussed in
Sec. 1.1. This model allows recovering some of the "universal" MOST functions, and gives
hints on their non-universal behavior. It goes beyond MOST scaling arguments, which gives
support to its applicability to establish other spectral links.

As an important example of such a link, the phenomenological model has been used to
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predict the properties of rough pipe flows, using its bulk formulation [Gioia and Bombardelli,
2001] and the co-spectral budget [Bonetti et al., 2017]. The effect of roughness elements has
been included by assuming that, in the roughness sublayer, the size of the energy-containing
eddy sh (or the spectral peak wavenumber kp) is constant with height and equal to the size of
the roughness elements. This is consistent with the measurements presented by Raupach et al.
[1996], and their interpretation as indicative of energy-containing eddies being mixing-layer
eddies, whose size is set by the height of the roughness elements (see Fig. 1.3e).

The model is hence an interesting candidate for a simplified description of the complex
properties of turbulence over rough surfaces, of which the windy sea is an example of. With
this in mind, we first review below the properties of turbulence on top of waves, from the
theoretical modeling perspective.

1.3 THE DYNAMICAL INTERACTION BETWEEN NEAR-SURFACE
TURBULENCE AND WAVES

Understanding the properties of turbulent motions close to the sea surface is of uttermost
importance for air-sea interactions, and is a complex problem due to the presence of ocean
surface waves [see, e.g., the recent reviews on wind-wave interactions in Jones et al., 2001,
Janssen, 2004, Sullivan and McWilliams, 2010, LeMone et al., 2019]. Field observations [e.g.
Edson et al., 2013] indicate that, in the presence of surface waves and for sufficiently strong
winds, the turbulent momentum flux on top of the so-called wave boundary layer (WBL),
of height of about 10 m, is increased with respect to a flat surface, and has a one-to-one
dependence on the mean wind speed (for averaging periods of about 30 minutes). Hence the
disturbances generated by surface waves, whose amplitude is coupled to atmospheric motions,
result in an overall change in the properties of turbulence in the WBL, for a prescribed mean
10m-wind [see experiments of Edson and Fairall, 1998, Sjöblom and Smedman, 2002]. In
the following we review the dynamical properties of the WBL, with emphasis on theoretical
(and, when possible, analytical) models for the interaction between atmospheric turbulence and
waves. What follows is by no means an exhaustive or historical review, but rather one with a
specific focus theoretical studies of the WBL.

Flow over surface waves, while sharing some similarities with flow with hills and wavy
boundaries, exhibits some unique features due to the intrinsic properties of surface waves [see
the review by Belcher and Hunt, 1998, where both flows are compared].

First, surface waves are moving undulations of the sea surface, which follow a dispersion
relation. More precisely, the phase speed c = ω/k of a monochromatic wave depends on its
wavenumber k and frequency ω, which are linked as ω2 = gk +Tswk

3, where g is the gravity
acceleration and Tsw is the dynamical surface water tension. The phase speed has a minimum
for waves of wavelength (λ = 2π/k) of 1.6 cm, which marks the transition between capillary
(smaller) and gravity (larger) waves. The phase speed of gravity waves increases with their
size, as opposed to capillary waves. This first feature implies that the the impact of waves on
atmospheric turbulence should depend not only on their geometry, but also on relative velocity
of the wave with respect to the airflow, and hence on the scale of the wave [see for instance
Kitaigorodskii, 1973, p. 27 to 36, where the surface is modelled as a linear superposition of
moving roughness elements]. The relative velocity of the wave is termed wave age, c/u∗, with
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u∗ the friction velocity (the square root of the momentum flux on top of the WBL).
Second, the airflow bottom boundary condition is non-uniform, and depends on the wave

steepness. As explained by Kraus [1967], the difference in dynamic viscosity between the air
and the water results in the air-sea interface moving at the wave orbital velocity.12 The wave
orbital velocity varies periodically in the reference frame of the wave, and its magnitude, akc,
depends on the wave steepness ak (a is the wave amplitude). As waves grow and decay locally
under the action of the wind, their steepness changes [Longuet-Higgins, 1987]. Hence the
airflow bottom boundary condition is non-uniform, and is dynamically coupled to the wind and
wave fields.

Third, the growth and decay of waves under the action of the wind is a complex mechanism.
It cannot be simply explained by Kelvin-Helmoltz type of instability [as originally proposed by
Lord Kelvin, Thomson, 1871]. Indeed, the suction on top of wave crests required to overcome
the gravity restoring force can only be strong enough for winds of about 6-7 m s−1, for which
waves are already present [Ursell, 1956]. In addition, wave breaking is an essential component
of the sea surface, which is associated with intense energy dissipation events from the wave
field towards ocean currents, but also to intense ejection events and momentum flux spikes in
the atmosphere [Banner and Melville, 1976, Kawamura and Toba, 1988, Melville, 1996].

Finally, a realistic sea surface is described by a broadband wave spectrum: it is a multiscale
interface which can be, to some extent, viewed as a sum of individual sinusoidal components,
each moving at a different phase speed. This implies three additional difficulties: (i) the
roughness properties of waves of different sizes (quantified by e.g. the roughness Reynolds
number) span a wide range of regimes, and hence the overall effect of the multiscale sea
surface is non trivial [Kitaigorodskii, 1973]; (ii) the response of a given wave component to the
airflow depends on its non-linear interaction with other wave components, which redistributes
energy among different wavenumbers [Phillips, 1985]; (iii) the response of the turbulent airflow
to a multiscale surface can be qualitatively different from the superposition of responses to
individual wave components [Deardorff, 1967].

From a practical point of view, it is interesting to represent the impact of those various
features on the atmosphere through a roughness height z0 (the level at which the mean wind
speed, following a logarithmic law, cancels). A very influential scaling was proposed by
Charnock [1955] for sufficiently high winds: z0 ∝ u2

∗ /g , where g is the gravity acceleration.
This scaling can be interpreted in light of the observations of Francis [1954] and Munk [1955],
which indicate that the wind stress (equivalent to z0) should essentially depend on short wind-
waves (smaller than 1m). As argued by Phillips [1977] (p. 194), the amplitude of short
wind-waves depends on wind-induced surface drift (related to u∗) and wave breaking, and
hence scales with u2

∗ /g , explaining the Charnock relation. An important consequence of this

12To understand why, let us consider how the mean flow speed of air and water should match at the interface,
given their bulk values outside of the viscous sublayer. For Stokes waves, the bulk velocities are of opposite
sign (wind bulk speed is negative at the wave crest and positive at the wave through, and conversely for the
water). Hence, the matching at the interface generates a layer of high vorticity. The size of this layer depends
on viscous diffusion, which gradually matches vorticity to its bulk value, and is about 5 times larger for the air
than for the water. The speed of the interface is thus, to a good approximation, close to the bulk water speed.
Note that Kraus [1967] stresses that this argument works for wavelengths greater than 0.1 m, corresponding to
wavelengths smaller than the size of the atmospheric vorticity layer

√
2ν/ω.
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argument is that wind stress is related to the mean square slope of the sea surface, which is
mainly driven by short wind-waves, and not to its mean square height, which is mainly set by
larger, uncoupled waves.

This bulk Charnock scaling, verified experimentally, and commonly used in forecast and
climate models, gives a first intuition on the fact that the steepness of short wind-waves is
important in the coupling of the sea-surface with the atmosphere. While this represents an
aspect of the coupling, in an averaged sense, it does not highlight the physical processes at
stake in the interaction between the highly fluctuating turbulent and wave motions. In the
following, we are interested in reviewing models that go beyond this description, focusing on
theoretical models of a stationary and horizontally-homogeneous WBL, where the turbulent
airflow has balanced with locally-generated wind-waves (i.e. without swell). Those hypothesis
imply that the WBL is a constant-flux layer, described in Sect. 1.3.1. An essential element of
this constant-flux layer is wave-induced stress, resulting from wave-coherent perturbations of
the airflow moving at the waves phase speed. Wave-induced stress is intrinsically related to
wave growth, and we discuss its modeling in Sect. 1.3.2. The interaction of turbulence with
wave-induced motions for a realistic sea surface is then discussed in Sect. 1.3.3. Note that we
only consider the case of waves aligned with the mean wind direction (denoted by U , in the
streamwise, x, direction). In those coordinates, the mean wind speed is zero in the spanwise (y)
and vertical (z) directions.

1.3.1 MOMENTUM BALANCE IN THE WAVE BOUNDARY LAYER

As mentioned above, in the following we focus on the properties of the WBL, which is stationary
and homogeneous, and above which the impact of waves on turbulent motions can be regarded
as negligible. In this section we discuss its momentum balance.

WAVE-INDUCED MOTIONS At the core of the coupling between wind and waves is the
existence of perturbations of atmospheric quantities which are correlated to waves, and that can
extract or lose energy either to the mean flow or to turbulent motions, leading to wave growth or
decay. As described in Stewart [1961], as these motions carry energy down to the surface, their
coherency must increase, in the sense that the different components of the motions become
increasingly correlated. The existence of such motions is similar to that of internal waves in
stably stratified turbulence [e.g. Zilitinkevich et al., 2008], or to flow over inhomogeneous
surfaces, such as canopies [see Kaimal and Finnigan, 1994, p. 84]. In the presence of waves,
the flow, for example the streamwise velocity, is linearly decomposed into a mean component
〈u〉 =U , a wave-induced component u = uw, and a turbulent component u′:

u =U +uw +u′, (1.23)

where · is a Reynolds average, filtering the turbulent motions, and 〈·〉 is a wave average, i.e.
filtering wave-induced motions [Phillips, 1977, p. 118].

Defining wave-induced motions is a non-trivial task from a theoretical point of view, and
this is even more complicated in data (where all the state variables of the flow are often not
observed). For flow over canopies, the existence of a third component in the flow [denoted by
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u′′ in e.g. Kaimal and Finnigan, 1994, p. 84] results from the spatial inhomogeneities of the
canopy, which are fixed in time (at least on the timescales of turbulence). If an observer was to
stand at two different positions in the same horizontal plane, it would see differences in the
time- (or Reynolds-) averaged flow. Those differences then define a space-dependent deviation
of atmospheric quantities from their time and space average [i.e. u(x,y,z) =U(z)+u′′(x,y,z)].
The ocean surface is however non-stationary, and its height is on average zero. Hence the
same observer would, in the case of ocean waves, not see differences in the time-averaged flow.
Hence the previous definition cannot be applied in a straightforward manner to wave-induced
perturbations of the airflow.

This difficulty has led to the development of several methods to define the wave average 〈·〉.
From a theoretical point of view, considering only a single monochromatic wave propagating
in one direction allows analysis of the flow in the frame of reference moving with the wave,
where the undulations of the sea surface are stationary. In this reference frame, deviations from
a Reynolds-averaged flow can, as for flow over canopies, be identified by defining the wave
average 〈·〉 as a space average in the direction of the wave propagation [Phillips, 1977, p. 119].
Wave-induced motions are, in this frame of reference, periodic with respect to the wave period.
Note that the Reynolds average, although sometimes considered as a time average [Makin et al.,
1995, Makin and Mastenbroek, 1996, Hara and Belcher, 2002, 2004], can also be defined as an
average in the direction perpendicular to the wave propagation [Phillips, 1977, Kudryavtsev
and Makin, 2004].

In a realistic setting, the surface is described by a continuous spectrum of waves. Assuming
that each wavelength generates airflow perturbations traveling at its speed, identification of
wave-induced motions requires a space-time Fourier transform, to separate Fourier components
advected at the flow speed from components traveling at the wave speed, as done in LES by
Hao and Shen [2019]. However, simultaneous temporal and spatial measurements of the flow
are seldom available in field experiments. Cross-correlations between the surface displacement
and temporal measurements of the wind field have been used to identify the dominant wave-
coherent motions [Hristov et al., 1998, 2003] and, when detailed measurements of the sea
surface are available, their frequency spectra [Veron et al., 2007, 2008, Grare et al., 2013,
2018].

WAVE-INDUCED STRESS The existence of wave-induced motions and of an undulating
surface has important consequences on the momentum balance of the mean flow. More
precisely the Reynolds- and wave-averaged horizontal momentum balance can be written, for a
stationary and horizontally homogeneous flow, as

τt(z) + τw(z) + τv(z) = u2
∗ . (1.24)

This equation expresses the momentum conservation in the constant-flux WBL. The total
momentum flux divided by air density (u2

∗ ) is split between turbulent (τt), wave-induced
(τw), and viscous (τv) stresses [Janssen, 1989, Makin et al., 1995]. At the top of the WBL,
the momentum flux is supported by turbulent stresses (τw = τv = 0) and, at the surface, the
turbulent stress vanishes, and the flux is supported by wave-induced and viscous stresses. Note
that in the following we consider only the case of wind-waves, extracting momentum from
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the mean flow (i.e. no swell), and hence τw ≥ 0. The additional stress component τw is the
analogue of the "dispersive flux" for flows in the roughness sublayer of canopies [Wilson and
Shaw, 1977].

The presence of an undulating surface implies that the momentum balance should be writ-
ten in surface following coordinates [see, e.g. Phillips, 1977, Chalikov and Makin, 1991,
Kudryavtsev and Makin, 2004, Hara and Sullivan, 2015, for several surface-following coordi-
nate choices]. In these coordinates, the turbulent and wave-induced stresses are expressed as

τt = −〈u′W ′〉 (1.25a)

τw = −〈uwWw〉+ ρ−1a 〈pw∂xη〉, (1.25b)

where W = w− (∂η/∂x)u − (∂η/∂y)v − (∂η/∂t) is the contravariant vertical velocity (η is the
sea-surface height displacement, i.e. 〈η〉 = 0), pw is the wave-induced pressure, and ρa is the
air density. 13

Wave-induced stress (Eq. 1.25b) contains two terms: correlations between wave-induced
motions and correlations between wave-induced pressure and surface slope. At the surface,
the main contribution to wave-induced stress is the pressure-slope correlation, termed “form
drag” by Phillips [1977], which is responsible for the wave growth and hence maintenance
of wave-induced motions [Makin and Mastenbroek, 1996]. In a pioneering work, Longuet-
Higgins [1969a] further showed that form drag, and hence wave growth, results not only from
pressure-slope correlations, but also from wave-induced variations in surface turbulent stress in
phase with the wave height (i.e. in quadrature with the wave slope), which were shown to act
as wave-induced pressure variations in phase with wave slope. Those are included implicitly in
the pressure-slope correlation term, at the surface.

THE VISCOUS SUBLAYER In the momentum balance discussed above, the viscous stress
τv acts only at the bottom of the WBL, in the so-called viscous sublayer. In wind-over-wave
models of the WBL, described below, it represents the “unresolved” (small scale) processes.
These small scale processes include viscous friction, but also wave-induced stresses due to
waves too small to be explicitly included in τw, due to lack of knowledge about their impact.
Historically, the WBL model of Chalikov and Makin [1991] included high frequency gravity
waves in the unresolved processes. They were described through a “background” roughness
coefficient, tuned to observations. Following ideas of Janssen [1989], Makin et al. [1995]
extended the model, with the hypothesis that all surface undulations can be described by a wave
spectrum. This eliminates the need for a background roughness parameter, which was then set

13Note that this expression of wave-induced stress is as presented in recent works [e.g Kudryavtsev and Makin,
2004]. In the original work of Chalikov and Makin [1991], turbulent stress is defined without the contravariant
velocity field and hence the previous equation reads

τt = −〈u′w′〉
τw = −〈uwww〉+ 〈p̃∂xη〉+ 〈u′2∂xη +u′v′∂yη〉
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to the height of the surface viscous sublayer zv0

zv0 = 0.14
ν

τ1/2t (zv0)
. (1.26)

Evaluation of Eq. 1.26 requires specification of the turbulent stress on top of the viscous
sublayer. Makin et al. [1995] further assumed that wave-induced stress is constant with height
in the viscous sublayer [τw(z

v
0) = τw(0)]. This is equivalent to the assumption that all waves

with lengths smaller than zv0 do not contribute to the wave induced stress. Hence, by using
Eq. 1.24 on top of the viscous sublayer (where the viscous stress cancels), the surface turbulent
stress can be expressed as a function of the surface wave-induced stress, i.e. form drag. Note
that it is not expected that the behavior of the flow in this viscous layer is equivalent to the
flow in the viscous layer of smooth-wall flows. In the former, small-scale smooth and breaking
waves act as roughness elements, and most likely perturb the turbulent organization present in
the latter [streaks, or self-sustaining coherent motions, Jiménez, 2012].

To summarize, above the height zv0, the wave-averaged momentum balance in the WBL is a
balance between turbulent and wave-induced stresses, which sum-up to a height-independent
total momentum flux (u2

∗ ). Close to the surface, turbulent stress vanishes, and wave-induced
stress is responsible for the momentum flux to the waves, through form drag.

1.3.2 THEORETICAL MODELS OF WAVE-INDUCED STRESS

The previous section highlighted that the impact of waves on the WBL momentum balance
occurs through wave-induced stress. As an energy balance reveals (see Sect. 1.3.3), wave-
induced stress is related to the extraction of mean-flow energy by waves, and hence to wave
growth. Historically, the determination of wave growth begins with the "separated sheltering"
mechanism of Jeffreys [1925], according to which airflow separation on the leeside of the wave
leads to a pressure drop and hence to wave growth. However, the growth rates predicted by
this mechanism did not match measurements. Phillips [1957] and Miles [1957] proposed two
mechanisms which aim at explaining the initial and later stage of wave growth, respectively.
The mechanism of Phillips [1957] considers the effect of turbulent pressure fluctuations on the
surface, leading to a linear wave growth. The mechanism proposed by Miles [1957] considers
the inviscid growth of wave-induced motions and waves in the context of stability analysis and
neglects turbulent Reynolds stresses, leading to an exponential wave growth. Belcher and Hunt
[1993] later argued that the Miles mechanism might not be valid for short waves, for which the
effect of turbulence becomes important. This led to the "non-separated sheltering" mechanism,
whereby, even without airflow separation (which requires waves to be steep), the presence of
waves results in a pressure anomaly correlated to wave slope. In the following, we discuss in
more details the Miles [1993] and Belcher and Hunt [1993] mechanisms, since our interest lies
in the description of a stationary wind-over-waves system, and not in the initial stages of wave
growth described by Phillips [1957].

To understand the dependence of wave-induced stress on sea state, it is interesting to recast
it in terms of vortex force. For a stationary flow, the Reynolds-averaged horizontal momentum
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Figure 1.5: Two models of wind-wave interactions. a) Laminar and inviscid matched layer
mechanism [Miles, 1957, in the wave frame of reference] and b) non-separated
sheltering mechanism for a turbulent flow [Belcher and Hunt, 1993, in the laboratory
frame of reference]. a) The closed loops formed by the streamlines around the
matched height generate pressure-slope correlations due to vertical velocity (red
arrows), which result in vortex force at the matched height, and wave growth. b) In
the inner (turbulent) region, surface undulations cause, through turbulent stresses
((u′w′)w), a displacement of the streamlines downwind. This results in a pressure
anomaly at the top of the (inviscid) middle layer, which induces (green arrow)
pressure-surface slope correlations at the surface (in red) , and a vortex force at the
top of the inner region. Note that in b), the matched height lies in the bottommost
layer of the flow, called the internal boundary layer.

.
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balance (before wave averaging) can be written as

∂u

∂t
= 0 = − 1

ρa

∂ptot
w

∂x
−Ωwww +

1

ρa

∂η

∂x

∂pw
∂z

+
τx,xj
∂xj

, (1.27)

where we have introduced τxi ,xj , the Reynolds-averaged turbulent and viscous stress tensor (i.e.
such that 〈τx,z〉 = τt + τv), Ωw = ∂zuw −∂xww, the spanwise component of the wave-induced
vorticity, and with ptotw = pw + 1

2(u
2
w +w2

w) the wave-induced total pressure. The term Ωwww

is called the vortex force [Lighthill, 1962].
If Eq. 1.27 is wave-averaged, the horizontal pressure gradient term cancels, due to the

streamwise periodicity of wave-induced motions, and Eq. 1.24 is obtained, with the vertical
gradient of wave-induced stress expressed as

∂τw
∂z

= −〈Ωwww〉. (1.28)

In the following, we discuss models for the computation of the vortex force: Miles [1957]
matched layer theory for a laminar flow and Belcher and Hunt [1993] non-separated sheltering
mechanism for a turbulent flow. In both cases, the wave-induced motions are computed for a
monochromatic wave, of wavenumber k, amplitude a, and phase speed c, traveling in the wind
direction, and small slopes are considered (ak≪ 1). Airflow separation for steep slopes, along
with more recent developments, are discussed in Sect. 1.3.2.3.

The notation dk〈Ωwww〉 is used hereinafter to designate wave-averaged vortex force for
a single monochromatic wave, also called spectral density of vortex force. In the case of a
realistic sea surface, it corresponds to the wave-averaged vortex for waves of wavenumber
between k and k + dk, and is hence related to the total wave-averaged vortex force as

〈Ωwww〉 =
∫

k
dk〈Ωwww〉. (1.29)

1.3.2.1 THE MATCHED LAYER INVISCID THEORY

Miles [1957] proposed a laminar and inviscid theory for the generation of the vortex force in the
WBL. By considering the growth of wave-induced perturbations generated by a monochromatic
wave, he was able, using stability analysis, to derive the wave growth rate, and hence the vortex
force. This analysis was rather mathematical, and in a later work, Lighthill [1962] discussed
Miles’ results using physical arguments.

It is first instructive to consider the following expression, derived by Davis [1972]

− k2[U(z)− c(k)]〈dkΩwww〉 =
〈
∂S
∂x

ww

〉
(1.30)

which links the wave-averaged vortex force to the variations of the Reynolds stress tensor
anisotropy (S is defined as S = −(∂2x−∂2z )〈u′w′〉+∂x∂z(〈u′2〉−〈w′2〉)). For a laminar flow, the
RHS of the above equation vanishes, and wave-averaged vortex force is localized at the matched
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height zm, where U(zm) = c. However, for a turbulent flow, the zone where wave-averaged
vortex force is non-zero might extend around the matched height, according to Eq. 1.30. This
is why, following Phillips [1977], zm is termed the “matched height” instead of the “critical
height”, as originally used by Miles: this emphasizes that, unlike the high-vorticity and thin
critical layer of laminar instability theory, the thickness and intensity of the vortical layer
around the matched height depend on turbulence anisotropy.

Neglecting turbulent stress, Miles [1957] found a vortex force

dk〈Ωwww〉|Matched = −
π

k

U ′′(zm)
U ′(zm)︸       ︷︷       ︸

I

〈w2
w〉(zm)︸    ︷︷    ︸

II

δ(z − zm), (1.31)

where δ is the Dirac function. This expression was obtained by assuming a small wave slope
(ak≪ 1), a wavenumber lying between the boundary layer depth (D) and the matched layer
height (1/D≪ k≪ 1/zm), and a small friction velocity (u∗≪U(1/k)).

The wave-averaged vortex force is localized at the matched height zm and is the product
of two terms. Term I depends on the mean wind curvature (U ′′ = d2U/dz2) and shear
(U ′ = dU/dz) at the matched layer height, and reveals that, in order to have a net transfer of
momentum from wind to waves (a positive vortex force), their ratio should be positive. This is
usually the case in the surface boundary layer, in particular for a logarithmic wind profile. Term
II depends on the wave-induced vertical velocity variance at the matched height 〈w2

w〉(zm). An
expression for 〈w2

w〉(zm) was obtained by Miles, first by an approximate [Miles, 1957] and
then by an exact [Miles, 1959] solution of the small-perturbation equations. Lighthill [1962]
derived a similar expression than Miles [1957] by using a simple balance between wave-induced
pressure perturbations and vortex force. In either case, the resulting vertical velocity was found
proportional to the wave amplitude, i.e. 〈w2

w〉(zm) ∝ a2ω2/2, yielding an exponential wave
growth, unlike the linear Phillips [1957] mechanism. 14 Note that the matched layer mechanism
vortex force was also derived more recently by Hristov and Ruiz-Plancarte [2014], in a a more

14 The link between wave growth and wave-induced stress can be understood by considering atmospheric energy
density (ρa

1
2

∫
U2dz), whose rate of change due to waves is proportional to the integrated work of wave-

induced stress gradient against the wave-averaged horizontal wind
∫
(dτw/dz)Udz (this follows from the

non-stationary version of Eq. 1.24). This variation can be equated to the variation of wave energy which, for a
wave of amplitude a, reads 1

2ρw(g +Tswk
2)a2. For gravity waves growing exponentially under the action of

the wind
∂

∂t

(
a2

2

)∣∣∣∣∣∣
wind

= β
a2

2
,

the wave growth rate β can be expressed as

β = − ρa
ρw

2

ga2

∫
dτw
dz

Udz.

Anticipating the next subsection, this is related to the flux of atmospheric energy to the waves, Πw, as
Π

w =
∫
(dτw/dz)Udz.

Now, in the case of Miles’ theory, if the wave-induced velocity variance is expressed as 〈w2
w〉(zm) =
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general framework.15

The vortex force Eq. 1.31 results from the dynamical structure of the wave-induced flow
around the matched layer, which is described here following Lighthill [1962] and Phillips
[1977]. Assuming that the flow is two-dimensional (in the x,z plane), streamlines of the wave-
induced flow form, in the frame of reference moving with the waves, closed loops (cat’s-eye
patterns) centered at the matched height (see Fig. 1.5a). Outside of the closed loops, the wave-
induced vorticity and vertical velocity are in quadrature, and the contribution of those regions
to the wave-averaged vortex force is zero. Inside of the cat’s eye, fluid elements are trapped
and transport the mean flow vorticity, which results in a wave-induced vorticity proportional
to the mean flow curvature U ′′ (appearing in term I) times the width of the cat’s eye. This
width depends on the efficiency of fluid elements to diffuse vorticity inside the closed loop
region. A diffusion coefficient can be estimated as 〈w2

w〉/U ′, which, upon multiplication by the
wave-induced vorticity U ′′, explains Eq. 1.31. Hence Miles’ vortex force can be interpreted as
resulting from the mean flow vorticity variations, transported by fluid elements trapped in the
cat’s-eye patterns. It is important to highlight that the above picture should be amended when
turbulent motions are considered: turbulence increases vorticity diffusion (increasing vortex
force) and decreases the mean vorticity gradient transported by fluid particles (decreasing
vortex force) [note, however, that Lighthill, 1962, argued that both effects should compensate,
and hence that the wave-averaged vortex force should be unchanged]. It also changes the
horizontal dependence of the vortex force which becomes distributed around the matched
height (Eq. 1.30). Last but not least, while in the laminar case the streamlines defined above
can be interpreted as fluid particle trajectories; this is not true for a turbulent flow.

The time-dependent dynamics of fluid particles inside the cat’s eyes were further analyzed by
Reutov [1980]. It was argued that the oscillation of the particles inside the cat’s eyes leads to a
mixing of vorticity, which causes a decrease in the wave-averaged vortex force. This quenching
of the momentum transfer from wind to waves leads to a stabilisation of the wind-over-waves
coupled system over time. Although in the original analysis of Reutov [1980] the saturated
wave amplitude, at equilibrium, was found to be too small compared to observations, this
concept was recast by Fabrikant [1976] and Janssen [1982] in their quasi-linear theory of wave
generation, explained in Sec. 1.3.2.3.

So far, only the wave-averaged vortex force (〈Ωwww〉) has been discussed. It is however also
interesting to discuss the link between wave-induced pressure (pw) and the Reynolds-averaged
vortex force (Ωwww). For heights sufficiently far from the wavy surface, Eq. 1.27 can be

W2a2ω2/2, the growth rate reads

βMiles = −
ρa
ρw

πW2U
′′(zm)

U ′(zm)
U(zm) = −ω

ρa
ρw

πW2

k

U ′′(zm)
U ′(zm)

where the equality U(zm) = c has been used.
15More precisely, the vortex force reads

dk〈Ωwww〉|Hristov = δ(z − zm)
cℑ(uw)(z0)

kη
(ka)2

With the wave-induced velocity uw (a complex number in their model) stasifying a Taylor-Goldstein equation,
where stability effects could be incorporated.
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simplified by neglecting the pressure-slope term (the third term). Neglecting turbulence (i.e. the
fourth term of Eq. 1.27), the equation is reduced to a balance between the horizontal gradient
of wave-induced pressure and the vortex force. Hence, as depicted in Fig. 1.5a, wave-induced
pressure and vortex force should be in quadrature. If the vortex force is further approximated,
as above, by the product of the wave-averaged shear and the wave-induced vertical velocity
(Ωwww ∼U ′ww), then the wave-induced updrafts and downdrafts should also be in quadrature
with wave-induced pressure. For wave-induced streamlines described by Miles’ cat’s-eye
pattern, the updrafts and downdrafts are located in between the edges and the middle of the
cat’s-eye (vertical red arrows in Fig. 1.5a). Hence, for Miles’ mechanism to describe wind-
waves, i.e. waves that receive momentum from the atmosphere, the center of the cat’s eyes
should be (at least partly) in phase with the wave slope, to induce pressure-slope correlations
[see e.g. Sullivan et al., 2000].16

As a final remark, Eq. 1.31 can be rearranged by (i) introducing the proportionality relation
between 〈w2

w〉 and wave amplitude a mentioned above (〈w2
w〉(zm) ∝ (akc)2/2) and, (ii) using a

logarithmic mean wind profile to express U ′′/U ′ at the matched height17:

dk〈Ωwww〉|Matched ∝
exp(−κc/u∗)

z0k︸         ︷︷         ︸
I

(akc)2

2︸ ︷︷ ︸
II

δ(z − zm). (1.32)

where κ is the Von Kármán constant. This expression shows that term I, originating from
U ′′/U ′, expresses the dependence of the wave-averaged forced force on wave age: as the
underlying wave becomes longer (i.e. faster), the vortex force decreases. Term II originates
from 〈w2

w〉, and is related to the wave orbital velocity (akc) which, as mentioned in the
introduction, is one of the defining characteristics of surface waves when compared to immobile
roughness elements. More importantly, term II also reveals that the wave-averaged vortex force
depends on the slope (ak) of the underlying wave, and not on its amplitude. This dependency,
formulated by Munk [1955], reflects the increase in contact area between air and water due to
the presence of an undulating surface, which increases the momentum flux from wind to waves,
and hence vortex force. Note that the assumption that U follows a log profile, which results in
the wave-age dependence of term I, is not entirely valid in the WBL (see Sect. 1.3.3) and is
used here for illustrative purposes only.

16This displacement xD of the center of the cat’s eye with respect to the wave crest can be in fact more precisely
related to the wave growth rate as xDk = β/[kU(1/k)] [Belcher and Hunt, 1998].

17assuming a logarithmic profile, U = (u∗/κ) ln(z/z0) leads to c/u∗ = (1/κ) ln(zm/z0) and to U ′′(zm)/U
′(zm) =

−1/zm.
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1.3.2.2 INCLUSION OF TURBULENCE: THE NON-SEPARATED SHELTERING (NSS) MECH-
ANISM

The work of Miles [1957] assumed a laminar and inviscid flow. More precisely, let us write the
momentum balance for wave-induced motions, neglecting the effects of surface curvature, as

Duw
Dt

= − 1

ρa

∂pw
∂x
−
∂
(
u′w′

)
w

∂z
, (1.33)

where D/Dt denotes the Lagrangian derivative, and
(
u′w′

)
w
= u′w′−〈u′w′〉 the wave-induced

variations of turbulent stress [see e.g. Belcher and Hunt, 1998]. The linear analysis of Miles
[1957] derived an expression for wave-induced motions from the above balance by neglecting
turbulence, i.e.

(
u′w′

)
w

.
Following this development, several works included turbulent motions in the derivation

of the wave-averaged vortex force [Townsend, 1972, Jacobs, 1987, Van Duin and Janssen,
1992, Belcher and Hunt, 1993, Belcher, 1999]. In particular, Belcher and Hunt [1993] found
that, for short (i.e. young) waves, effects of turbulence overcome Miles’ mechanism in the
determination of the vortex force. More precisely, they argued, following Townsend [1972],
that there exists a layer close to the surface, called the inner region, in which eddies have a
turnover time smaller than their advection time across the wave.18 In the inner region, of height
li of about 0.1k−1 for a short wave, eddies are in equilibrium with the mean flow and hence
wave-induced variations of turbulent stress can be modeled with a mixing-length model

(
u′w′

)
w
= 2κzu∗

∂uw
∂z

, (1.34)

In the outer region, for heights z > li , the eddies follow rapid distortion theory, and Belcher
and Hunt [1993] found that the flow can be considered as being inviscid (in the sense that(
u′w′

)
w
= 0).

The analysis of Belcher and Hunt [1993] resulted in a mechanism for the generation of wave-
averaged vortex force called "non-separated sheltering" (NSS) mechanism. It is summarized in
Fig. 1.5b for slow waves. To start with, in the presence of an undulating surface, the streamlines
are bent, which creates pressure gradients higher on the crest than on the trough of the wave. In
the inner region, as those horizontal pressure gradients develop they induce vertical gradients
of wave-induced turbulent stress (from Eq. 1.33). This results in higher stress at the surface

18The turnover and advection timescales were defined respectively as

TL =
z

2κu∗
, TA =

1

k|U(z)− c|

And hence the inner region height, where TL > TA, is defined by

li =
2κu∗

k|U(zi )− c|
.
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than at the top of the inner region (bottom-left part of Fig. 1.5b). Hence, in the inner region, the
flow is decelerated as it reaches the surface (from Eq. 1.27) which causes a displacement of the
streamlines downwind by a distance which can be shown to be proportional to [u∗/U(1/k)]2

(middle of Fig. 1.5b). This "sheltering" effect of the flow then causes pressure differences in
the inviscid outer region, at the so-called middle layer height lm, which are slightly in phase
with the wave slope. Those pressure differences affect, at leading order, the pressure at the
surface (green arrow in Fig. 1.5b), causing wave growth, and hence a vortex force. At leading
order in u∗/U(1/k), it reads

dk〈Ωwww〉|NSS = −Cβ
u2
∗
c2︸︷︷︸

I

(akc)2

2︸ ︷︷ ︸
II

δ(z − li), (1.35)

where the vortex-force coefficient C(0)β depends on the mean wind speed in the frame of
reference of the wave Uc(z) =U(z)− c, and reads

Cβ =
U2

c (lm)

U2
c (li)

(
2
Uc(lm)

2

Uc(li)2
− U2

c (li)

U2
c (lm)

+ 1

)
. (1.36)

The NSS vortex force is localized at the inner layer height, and its magnitude depends on two
terms, similar to the matched layer vortex force (Eq. 1.32). Term I depends on wave age, and on
the mean wind shear in the middle layer [Uc(lm)/Uc(li)]. The quadratic dependence on inverse
wave age is an important result, that was originally proposed by Plant [1982] on the basis of
measurements. Term II again expresses the dependence of the vortex force on wave slope.
Note that the estimates of Cβ by Plant [1982] are larger than those found from the analytical
theory of Belcher and Hunt [1993] by a factor of two. 19 Recent works, presented below
[Kudryavtsev and Chapron, 2016], show that this mismatch can be corrected by accounting for
short wind-wave modulations by longer waves.

The NSS mechanism is valid for slow c/u∗ < 15 and fast c/u∗ > 25 waves [Belcher and
Hunt, 1993, Belcher, 1999]. Common to both situations is the matched layer height being
different from the inner region height. For slow waves, the matched layer lies in the inner
layer (see Fig. 1.5b), where wave-induced variations of turbulent stress are the dominant term
in the momentum balance Eq. 1.33. This is true in particular at the matched height, which
is then of little dynamical importance (in the sense that the linear advection terms, on the
left-hand-side of Eq. 1.33, are negligible).20 For intermediate waves, with 15 ≤ c/u∗ ≤ 30, the
matched layer and inner region heights are similar. Belcher and Hunt [1993] mention that, for
this configuration, the matched layer should be significant in the determination of vortex force,
and that the effect of the inner layer dynamics is to tilt the streamlines of the cat’s-eye patterns:
streamlines below and above zm are displaced upwind and downwind, respectively. Note that

19Plant [1982] predicted Cβ = 40. Other theories predicted coefficients of similar magnitude: 15 for Townsend
[1972] and 40, for high winds, in Stewart [1974].

20In Belcher and Hunt [1993]’s theory, the matched layer is simply affecting the height at which the solutions
should start.
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Janssen [2004] has suggested that the matched height mechanism could be valid for all wave
ages. This results from using a different scaling for eddy-turnover time than the one used in the
original work of Belcher and Hunt [1993]. In the following we focus on slow and short waves
which, as mentioned in the introduction, are more determinant in setting the wind-over-waves
equilibrium described in Sect. 1.3.3. We hence do not discuss the case c/u∗ > 25.

In addition to wave age, there is another limitation to the NSS mechanism. When the under-
lying wave is too steep, the downwind thickening of the streamlines can cause a detachment of
the flow on the leeside of the wave, similar to the separated sheltering mechanism [Jeffreys,
1925]. Such airflow separation events, which can occur e.g. for breaking waves, are discussed
below.

1.3.2.3 FURTHER DEVELOPMENTS

Following the works of Miles [1957] and Belcher and Hunt [1993], other expressions for the
vortex force were presented, which we discuss below. Before, we should note that in Eqs. 1.32
and 1.35, the wave amplitude a was used. For a realistic sea surface, the amplitude of an
individual wave component can be related to the wave spectrum S(k) as a2 = S(k)kdk. Upon
replacement in Eqs. 1.32 and 1.35, the total wave-averaged vortex force for a realistic sea
can then be obtained by summation over all wave components (Eq. 1.29). In addition, for
waves whose direction of propagation is at an angle with the mean wind direction, directional
dependencies for the vortex force have been proposed [Plant, 1982, Mastenbroek et al., 1996]
and, for simplicity, are not discussed here.

QUASI-LINEAR THEORY Following Miles [1965] and the analysis of Reutov [1980], Fab-
rikant [1976] and Janssen [1982] proposed a quasi-linear theory of wave generation, where
a broadband wave spectrum and a time-dependent wind were considered. They considered a
continuum of matched layers with random phase, each corresponding to a wave component.
The destructive interference between matched layers resulted in a quenching of the vortex force
which was much larger than found by Reutov [1980], and closer to measurements. 21 The
numerical studies of Janssen [1982, 1989] further revealed that wave growth was quenched
due to the extraction of momentum from the mean component, which reduces the mean wind
curvature (term I in Eq. 1.31): this effect was found to be particularly important for short

21More precisely, a multiscale expansion of quantities as a function of (ρa/ρw)
1/4 was performed. Oscillations

of waves occur on the linear time scale τ0, the mean wind speed changes on a timescale τ1 = (ρa/ρw)
1/2t ,

while wave growth (wind energy input on a scale) occurs on a timescale τ2 = (ρa/ρw)t. This follows from the
expression of the growth rate (see the footnote 14), where it is evident that the growth rate is proportional to
the ratio of water to air density. The resulting vortex force, which governs the evolution of the mean wind
profile on the intermediate timescale τ1, reads

dk〈Ωwww〉|QL = −πc
2k2c

2∆c
W (kc)

2U ′′(zm)S(k)kδ(k − km)dk

whereW is a normalized wave-induced velocity satisfying a Rayleigh equation, depending on the mean wind
profile, and ∆c is the difference between the gravity waves phase and group speed, equal to 1/2 for gravity
waves. Note that this expression is singular when approaching the transition between capillary and gravity
waves, and is hence suited for longer, dispersive waves.
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waves (small c/u∗). This is discussed in more details below in the context of the non-separated
sheltering mechanism. Note that those numerical simulations were then used in Janssen [1991]
to derive a parameterization of vortex force, with the aim to couple numerical weather and
wave prediction models.

IMPACT OF LONGER WAVES ON THE NSS MECHANISM The analysis of Miles [1965] (which
led to the quasi-linear theory) highlighted that the coexistence of multiple wave frequencies
could result in a reduction of the vortex forces generated by each of the wave components.
More precisely, the existence of a vortex force, and hence of wave-induced stress, results in a
change of turbulent stress in the WBL (Eq. 1.24). Hence the NSS mechanism, which results
from variations of turbulent stress in the inner region, should be affected by this modification.

This "sheltering" effect was formalized by Makin and Kudryavtsev [1999] and later by
Belcher [1999]. Based on numerical simulations Mastenbroek et al. [1996], Makin and
Kudryavtsev [1999] suggested using the local turbulent stress on top of the inner region in
place of the friction velocity in the computation of the NSS vortex force (Eq. 1.35), i.e.

dk〈Ωwww〉|NL-NSS = Cβ
τt[li(k)]

c2(k)
c2(k)k2S(k)δ[z − li(k)]kdk. (1.37)

Hence, as longer waves grow they generate vortex force, and hence wave-induced stress, that
"shelters" the shorter waves, reducing the turbulent stress on top of their inner region. The
reduced vortex force of the shorter waves, and hence of their growth leads to a non-linear
stabilization of their amplitude, similar to the quenching mechanism put forth by Janssen
[1982].

IMPACT OF BREAKING WAVES Both the matched layer and the NSS mechanisms require
waves that are not steep. For steep waves, airflow separation can occur, resulting in a sharp
pressure drop on the forward face of the wave associated with a recirculating pattern [see
the experimental work by Banner and Melville, 1976, Banner, 1990, Reul et al., 1999, 2008].
Those transient events are associated with waves whose slope is generally confined between 0.1
and 0.5, which are also often breaking waves [Melville, 1996]. Field measurements indicate
that the wave-breaking distribution is strongly correlated with the wind speed, and hence that it
can be an important parameter in the determination of the wind-and-waves equilibrium [see
the measurements Sutherland and Melville, 2013, which cover a wide range of wave scales].
Note that recently, Husain et al. [2019] found, using Large Eddy Simulations and laboratory
measurements, that for strong winds, a significant fraction of airflow separation events could
also be associated with non-breaking waves.

Airflow separation events have been modeled as additional sources of vortex force by
Kudryavtsev and Makin [2001] and later by Kukulka et al. [2007]. As the airflow separates
over a wave of steepness ǫb and wavenumber k, it creates a pressure difference ∆p between its
forward and backward faces. The wind force per unit surface area at the top of the wave is then
−∆p2kǫlb(k), where lb is the length of of the breaking crest (i.e. perpendicular to the direction

58



of wave propagation). Hence a vortex force results

dk〈Ωwww〉|AFS(z) = ρ−1a ∆p2ǫbδ(z − ǫbk−1)lb(k). (1.38)

The pressure difference was further parameterized (based on experiments) as a function of a
drag coefficient cbd , i.e. ∆p = ρac

b
d[U(ǫbk

−1) − c(k)]2 (and ∆p = 0 if the wind on top of the
breaking crest, U(ǫbk

−1), is smaller than the speed of the wave, c). Note that, similarly to the
reduction of the NSS sheltering mechanism presented above, Kukulka et al. [2007], Kukulka
and Hara [2008b] and Mueller and Veron [2009] proposed a sheltering associated with airflow
separation events: smaller waves, on the leeward side of a breaking wave are sheltered from the
mean flow, leading to a strong reduction of their vortex force and viscous stress. This sheltering
mechanism was found to be important for growing and very young seas, as found mostly in
laboratory conditions [Kukulka and Hara, 2008b].

For a realistic sea surface, lb(k) is replaced by Λ(k)dk, the length of breaking crests of a
given wavenumber per unit area of surface and per unit time. This quantity, introduced by
Phillips [1985], represents the scale-dependent distribution of transient wave-breaking events.
It is stressed that, even if a small fraction of ocean waves are breaking (5%), their impact on
atmospheric turbulence is significant [Banner, 1990, Kudryavtsev et al., 2014]. In addition,
Csanady [1985] argued, on the basis of laboratory measurements of Kawai [1981] and Okuda
et al. [1977], that airflow separation on top of centimeter-scale breaking waves could in fact be
three-dimensional, due to realistic sea-surface waves being short-crested. This has influences
on the properties of the recirculating region, which is no longer isolated from the rest of the
flow, but can lead to a "reversed-horseshoe" kind of motion, with entrained fluid escaping from
the sides of the wave before being advected forward again.

Finally, besides supporting the vortex force, airflow separation events also have a profound
impact on turbulence spectra. As demonstrated by the LES of Suzuki et al. [2013], airflow
separation events shortcut the inertial-subrange energy cascade through two processes. First,
the energy they extract from the mean flow through wake production (see below) is directly
converted to small-scale eddies instead of being injected at the energy-containing scale. Second,
large eddies are transformed into small scale eddies in the wake of the air-flow separation events.
Both processes could change the properties of the energy cascade of the inertial subrange in the
vicinity of the elements causing air-flow separation. While this has been extensively investigated
for flow inside canopies and in their roughness sublayer [Finnigan, 2000], it remains both a
theoretical and experimental challenge for flows over the wind-waves.

IMPACT OF SHORT WAVE MODULATIONS The NSS mechanism (Eq. 1.35) resulted in a
coefficient Cβ which is too low compared to measurements Plant [1982]. Following Longuet-
Higgins [1969b] and Davis [1972], Kudryavtsev and Chapron [2016] recently included the
impact of short wave modulations by longer waves in the NSS mechanism to correct this
deficiency. The orbital velocity of a given wave indeed induces a modulation of the steepness
of shorter waves, larger on the crests than in the troughs of the modulating wave. Hence the
short-wave breaking statistics change (wave breaking becomes more intense on the lee side
of the wave). This asymmetric variation induces additional turbulent stress variations in the
inner region, leading to an enhanced vortex force for the long, modulating wave. Kudryavtsev
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and Chapron [2016] used a wind-over-waves model [Kudryavtsev et al., 2014] to compute
the variation of short-wave breaking statistics along the longer wave, and found a significant
enhancement of the vortex force, consistent with Plant [1982] measurements.22

This indicates that, for a realistic sea surface, the vortex force provided by a single wave
component according to the NSS mechanism is significantly dependent on the existence of
shorter waves, whose amplitude is modulated by that larger wave component.

1.3.2.4 DISCUSSION

In this section we have discussed theoretical models for the generation of vortex force for slow
monochromatic waves (i.e. c/u∗ < 30). All models result in a vortex force localized either at the
matched layer height or at the inner region height. This implies, from Eq. 1.28, a wave-induced
stress which is constant up to the matched or inner region height. This discontinuous picture
must be amended for realistic conditions. As mentioned in Sect. 1.3.2.1, inclusion of turbulence
in the matched layer formalism results in a broadening of the area where the wave-averaged
vortex force is non-zero. In the case of the NSS mechanism, numerical simulations have
shown that the vertical distribution of wave-induced stress is best described by an exponential
function, with a sharp decay on top of the inner region [Mastenbroek et al., 1996]. In addition,
in the case of a broadband wave spectrum, the total wave-induced stress (Eq. 1.29) is smoother
than contributions from individual wave components, even if those are discontinuous [e.g.
Kudryavtsev et al., 2014].

There is no definite consensus on the mechanism responsible for wave-induced stress.
However the matched layer mechanism seems to be dynamically important for long waves,
while the NSS mechanism is significant for shorter waves. Belcher [1999] defined the transition
between the two regimes for waves whose phase speed is c/u∗ = 15. Kihara et al. [2007]
found, using DNS over a single monochromatic wave, that the transition occurs for c/u∗ ∼ 4,
and that for c/u∗ ≥ 16, the NSS mechanism becomes again the dominant mechanism. The
authors mention that they expect their results to be significantly sensitive the the Reynolds
number of the DNS (∝ u∗/(kν)), which in their case was ∼ 150 [consistent with an earlier DNS
analysis at similar Reynolds numbers, Sullivan et al., 2000]. The Reynolds-number dependence
of the vortex force was also discussed by Meirink and Makin [2000] using a second-order
turbulent closure. The authors found a strong increase of form drag with decreasing Reynolds
number. This was related, among others, to an increase of the inner layer height with viscosity,

22 More precisely, if higher order terms are kept, the asymptotic analysis of Belcher and Hunt [1993] leads to the
following vortex force caused by the long modulating wave of wavenumber k

dk〈Ωwww〉|KC16(z) =
τt(li )

c2(k)

U2
c (lm)

U2
c (li )

[
2
Uc(lm)

2

Uc(li )2
− U2

c (li )

U2
c (lm)

+ 1

︸                         ︷︷                         ︸
non-separated sheltering

− ûw
Uc(li )

(
1+

U2
c (li )

U2
c (lm)

)]

︸                    ︷︷                    ︸
impact of surface drift

(ak)2δ(z − li )

where, for simplicity, the dependencies of li and lm with respect to k have been dropped, and Uc denotes the
wind speed in the reference frame moving with the wave (U − c). The second term accounts for the impact of
the surface drift (ûw) on the vortex force. The surface drift is here the maximal variation of wave-induced
horizontal velocity along the crest of the wave. If the variations in the surface drift are evaluated through a
Charnock relation, as in Belcher and Hunt [1993], the result is negligible.
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which in addition results in an increase of the wave-age threshold between NSS and matched
layer mechanisms. Finally, a recent LES study by Åkervik and Vartdal [2019] revealed that
the wave-induced perturbations to turbulence increase with Reynolds number, which seems
to indicate that the NSS mechanism is a high-Reynolds number mechanism, as originally
suggested by Belcher and Hunt [1993]. This Reynolds-number dependence of processes is
not anecdotal since, as mentioned in the introduction, in realistic conditions, the Reynolds
number associated with different wave components can vary greatly with respect to the overall
Reynolds number of the flow.

The matched layer mechanism has been identified in field measurements by Hristov et al.
[2003], for waves such that 16 < c/u∗ < 40, using the wave-coherent motion extraction
technique of Hristov et al. [1998]. This result has been confirmed by Grare et al. [2013, 2018]
using the spectral analysis of Veron et al. [2007, 2008]. In both cases two critical features of
the matched layer mechanism were identified, as also confirmed by the DNS of Sullivan et al.
[2000] over monochromatic waves: (i) a jump in the phase relation between wave-coherent
wind components and the surface elevation when the matched layer height is crossed; (ii)
a step-like distribution of wave-induced stress, which vanishes very fast above the matched
layer height. For smaller waves, the field measurements compiled by Plant [1982] provided
a dependence of wave growth rate with wave age consistent with the NSS mechanism [but
with a difference in magnitude, explained by Kudryavtsev and Chapron, 2016]. These are
an indirect test of the NSS mechanism, and direct measurements of the inner region in field
conditions remain a formidable challenge, due to its size. The Reynolds-averaged Navier-Stokes
equation (RANS) numerical simulations of Makin and Mastenbroek [1996], which included
rapid-distortion effects through the LRR closure scheme [Launder et al., 1975], also confirmed
the NSS mechanism and the vertical distribution of wave-induced perturbations of turbulent
stress. As mentioned above, Kihara et al. [2007] also investigated the NSS mechanism using a
DNS.

To these difficulties is added the complexity emerging from a realistic wave field, where the
sheltering and modulation of small waves by long waves, and the transient wave breaking events
play an important dynamical role in the total wave-induced stress. The multiscale structure
of wave-induced stress results, for a stationary wind-over-waves system, from the coupling
between the broadband wave field and atmospheric turbulence at all heights in the WBL, which
is described in the next section, in the context of wind-over-waves models.

1.3.3 TURBULENCE IN THE WAVE BOUNDARY LAYER

As emphasized above, the equilibrium in the WBL results from a multiscale coupling between
wind and waves, through wave-coherent motions, which change the properties of near-surface
turbulence. In this section we first briefly discuss wind-over-waves models for the description
of this equilibrium (Sect. 1.3.3.1), before discussing how the energetic (Sect. 1.3.3.2) and
instantaneous (Sect. 1.3.3.3) properties of turbulence are modified in the WBL.
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1.3.3.1 WIND-OVER-WAVES MODELS AND THE EQUILIBRIUM RANGE

Several wind-over-waves models have been developed for the description of the local equi-
librium between turbulence and and waves in the WBL. Within a one-dimensional vertical
column, those models couple an atmospheric component, e.g. a momentum balance and TKE
equation, to a wave component, i.e. a balance equation describing the evolution of the wave
spectrum under the action of the wind. The coupling between those two components occurs
through wave-induced stress, which characterizes both the changes in the atmospheric momen-
tum balance (Eq. 1.24) and the momentum input from the wind to the waves (the impact of
wave-induced stress on the TKE balance is described in Sect. 1.3.3.2 below). Assuming that
both the wind and wave systems are stationary, the wind-over-waves models thus describe the
equilibrium between turbulence and locally-generated wind-waves.

More precisely, the range of gravity waves crucial to determine the stationary wind-over-
waves system, described by the wave component of the wind-over-waves model, is the so-called
equilibrium range. It covers wavelengths between the ten-meter scale and the centimeter scale,
when surface tension starts to be important [Kitaigorodskii, 1983, Phillips, 1985]. In this
range, wind input to the wave field is balanced by dissipation, mainly due to wave breaking.
This results in a wave spectrum with a shape as k−4 [see the theoretical works of Phillips,
1958, 1985, Belcher and Vassilicos, 1997]. More recently, the role of centimeter-to-millimeter
waves in the determination of the wind-and-waves equilibrium has been emphasized, as their
amplitude is very sensitive to mean wind speed [Yurovskaya et al., 2013], and those scales
might support a significant fraction of wave-induced stress [Kudryavtsev et al., 1999, 2014].
Larger waves result mostly from an inverse energy cascade due to wave-wave interactions, and
are not directly coupled to the local wind. Their amplitude depends on the history of the wave
field (e.g. on fetch). It is out of the scope of this review to discuss the impact that these long
gravity waves can have on the atmospheric momentum budget, or their impact on the local
wind-over-waves equilibrium through a change in the properties of the overall wave spectrum,
the latter being still an open question.

Following the quasi-linear theory of Fabrikant [1976] and Janssen [1982], Janssen [1991]
developed a wind-over-waves model in which a simple spectrum describing the equilibrium
range was coupled to the atmospheric momentum balance. It was then extended in Janssen
[1991] as being coupled with a numerical wave prediction model. More recently, Hristov et al.
[2003] followed a similar approach, coupling a linearized atmospheric momentum balance
with a simplified wave spectrum of the equilibrium range, with some degree of freedom in the
slope of the spectrum. In those models, wave-induced stress is described by the matched layer
mechanism (and its extension for the quasi-linear theory).

A second set of wind-over-waves models based on the NSS mechanism has been proposed,
with a focus on obtaining the detailed properties of the sea surface, as measured from remote
sensing techniques. In particular, Cox and Munk [1954] made optical measurements of the
mean square sea surface slope, and found a linear increase with wind speed, due to short gravity
and capillary waves, and related to the Charnock relation mentioned in the introduction. 23 This

23This conclusion was reached by comparing measurements of a normal and oil-slick covered surface, in which
short waves are damped. Further remote-sensing studies revealed the link between those short wind-waves
and wind speed [Vandemark et al., 2004]
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triggered the development of a series of one-dimensional wind-over-waves models [starting
from Makin and Kudryavtsev, 1999, Kudryavtsev et al., 1999], in which the whole range of
wave scales is described with, among others, the constraint of having a mean squared sea surface
slope consistent with the measurements of Cox and Munk [1954]. In these models, wave-
induced stress is described by the non-linear NSS mechanism (Eq. 1.37, page 58), with Cβ = 40,
following measurements by Plant [1982]. More recently, Kudryavtsev et al. [2014] included
airflow separation (Eq. 1.38, page 59) as an additional source of wave-induced stress, together
with a consistent spectral wave balance equation for the description of equilibrium-range and
capillary waves in which the effect of breaking waves is included.

These series of models, although simplified, do not provide an analytical solution to the
wind-over-waves equilibrium. Such a solution was obtained by Hara and Belcher [2002, 2004],
but requires waves smaller than 6 cm to be included in the viscous sublayer (see the discussion
at the end of Sect. 1.3.1). This allowed Hara and Belcher [2002] to discuss the range of
waves that are significantly sheltered by long waves (i.e. for which the Reynolds stress used to
compute the vortex force in Eq. 1.37 is reduced with respect to u2

∗ ). They found that this effect
started affecting gravity-range waves for winds of 12 m s−1, and could be important for waves
up to the meter scale for winds of about 18 m s−1. Following those developments, Kukulka
et al. [2007] and Kukulka and Hara [2008a,b] included the effect of airflow separation in the
wind-over-waves model, which required the use of numerics to solve the coupled system of
equations. As discussed, the Kudryavtsev et al. [2014] and Kukulka and Hara [2008a] models
differ in their description of the wave spectra. Additional differences, in the atmospheric
component of the wind-over-waves models, are discussed in Sect. 1.3.3.2 below.

An example of vertical profiles of wave-induced stress from two wind-over-waves models is
shown in Fig. 1.6a, for a prescribed u∗ of 0.7 m s−1 (corresponding to a 10m-wind of about 16
m s−1). Wave-induced stress from the matched layer mechanism [solid line, Janssen, 1982] is
compared to wave-induced stress from the NSS mechanism [Kudryavtsev et al., 2014], without
and with airflow separation (dashed line and grey shading respectively). Wave-induced stress
decays fast with height, and is confined within the first meters of atmospheric surface layer (the
figure only shows the first 0.5 m for clarity). For heights above 0.1 m (upper panel), the order of
magnitude predicted by both models is similar. However, as shown in Fig. 1.6b, wave-induced
stress is not caused by the same range of waves. Waves whose matched layer height lies in
the range 0.1-0.5 m (solid line in Fig. 1.6b) have a wavelength between 30 and 70 m, while
waves whose inner region height is in the range 0.1-0.5 m (dashed line in Fig. 1.6b) have a
wavelength between 5 and 20 m. 24

These differences in wave scale are important when describing the sensitivity of the wind-
and-waves system to external parameters such as ocean surface currents, fetch and slicks, since
the response of the wave field to those forcings differs depending on the scale of the waves
considered. Note that for the value of u∗ considered here, the separation between a regime

24More precisely, the wave scale corresponding to an inner layer of height z is, as mentioned before, 0.1z−1. For
a logarithmic layer, the wave scale corresponding to a matched layer of height z is

k =
gκ2

u2∗ ln
2(z/z0)

.
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Figure 1.6: (a) Comparison of normalized wave-induced stress in the WBL for the matched
layer mechanism (solid line), the NSS mechanism (dashed line) and the NSS
sheltering mechanism with addition of airflow separation (grey shading). The solid
line has been digitized from Janssen [1989], and the dashed line and grey shadings
have been computed from the model of Kudryavtsev et al. [2014], both for u∗ = 7
m s−1. (b) Height of the wave-induced vortex force, as a function of the size of
the underlying wave. Solid line is the matched layer height for a logarithmic wind
profile (with roughness length of about 10−3), dashed line the inner region height
(set to 0.1k−1) and dotted line is the top of the breaking wave crest (set to 0.3k−1).
The leftmost vertical bar denotes the wave length where the minimum in phase
velocity occurs. The rightmost vertical bar denotes the wave age threshold c/u∗ = 4
of Kihara et al. [2007] separating domains of validity of the NSS and the matched
layer mechanism.

where NSS or the matched layer are dynamically important is for waves of 5 m [owing to
Kihara et al., 2007, vertical line in Fig. 1.6b] or 85 m [Belcher and Hunt, 1998]. This shows, as
mentioned earlier, that there exists a great range of uncertainty regarding the relative importance
of the matched layer and NSS mechanisms in the determination of wave-induced stress.

The model of Kudryavtsev et al. [2014] describes wave-induced stress caused by millimeter-
to-meter waves, which is important for heights below 0.1 m. As shown in Fig. 1.6a (bottom
panel), this range of waves support, in the model, a significant fraction of the stress (which can
be larger than 60% of the total momentum flux). As further shown in grey shadings, airflow
separation (i.e. wave breaking) impacts mainly wave-induced stress for this range of waves
(compare top and bottom panels of Fig. 1.6a), by causing a significant increase in wave-induced
stress. It is interesting to note that airflow separation at a given height is associated with a
similar but slightly different wavelength than the NSS mechanism (compare dashed and dotted
lines in Fig. 1.6b). This implies, when both effects are included, that the wind field at a given
height is coupled with several wave scales.
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Hence it is seen that in the above models, the wind-and-wave system results from multiscale
interactions between wind and waves, due to the presence of wave breaking and of the com-
peting NSS and matched layer mechanisms. It must be emphasized that these models give
an averaged description of the WBL, which, in reality, emerges from the transient coupling
between wind and waves, punctuated by wave breaking events. Before focusing again on the
description of the properties of the WBL without swell, it is interesting to highlight that gravity
waves coupled to the wind appear to reach saturation very fast, in the sense that their elevation
spectrum collapses to the k−4 slope for very short fetches, below what is typical of open-ocean
conditions [Vandemark et al., 2004]. As Banner and Donelan [1992] mention, this saturation,
reached both for low and moderate winds, is surprising, since it is unlikely that in the former
regime, gravity-wave breaking plays an important role in maintaining a saturated spectra. This
again demonstrates the complexity of wind-and-wave system, whose transient coupling might
be qualitatively different depending on the wind speed. Note that, from a purely atmospheric
perspective, for low winds where swell is usually present, Kudryavtsev and Makin [2004],
Jiang et al. [2016] have, among others, shown that there exists an inverse transfer of momentum
from the waves to the wind, associated with the emergence of a low-level jet. 25

1.3.3.2 ENERGY BALANCES IN A STATIONARY WBL

Among the quantities characterizing turbulence, TKE is a statistical measure of its intensity.
Discussing the impact of waves on TKE requires analyzing the energy balances in the WBL. In
wind-over-waves models those balances, and the models chosen for the parameterization of
higher order terms, are essential to link turbulent stress to the mean wind speed U . Historically,
Janssen [1982], Chalikov and Makin [1991] and Makin et al. [1995] used an eddy viscosity
model, a first-order closure. However, simulations of Makin and Mastenbroek [1996], using a
two-equation eddy viscosity model, showed that this simple closure was not sufficient. Building
on these results, Makin and Kudryavtsev [1999] extended the model of Makin et al. [1995]
using a TKE budget, which includes the effect of waves. This approach has been used in
subsequent work [Hara and Belcher, 2002, 2004, Kukulka et al., 2007, Kukulka and Hara,
2008a,b, Kudryavtsev et al., 2014] . In the following we discuss the TKE budget to understand
some of the statistical properties of turbulence in the WBL.

MEAN, WAVE-INDUCED, AND TKE BALANCES As discussed in Sect. 1.3.1, in the WBL
the flow is separated into three components. The kinetic energy balance can be expressed

25As a side note, let us mention that the concept of equilibrium range discussed above is based on Phillips [1985]
idea that, in this range of wavenumbers, the wind injects energy in the wave field at all scales, and it is balanced
by dissipation and non-linear interactions. However, it is important to note that other approaches exist for the
description of the equilibrium range. In particular, Zakharov and Filonenko [1966], Hasselmann et al. [1973]
and Kitaigorodskii [1983] introduced the idea that wind injects energy at a bulk scale, and that wave spectrum
in the equilibrium range is dominated by non-linear interactions, up to the scale where energy dissipates
[see the discussion in Gemmrich et al., 1994]. This approach hence considers wind-wave interaction in a
bulk sense, as opposed to the Phillips [1985] approach which however requires understanding of both the
wind-wave coupling and wave-wave interactions (through wave breaking and non-linear interactions) at each
wave scale [Kudryavtsev et al., 2014].
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separately for each component [e.g. Makin and Mastenbroek, 1996]. The mean energy balance

d

dz
(u2
∗U )−Pt −Pw = 0 (1.39)

is between the divergence of mean energy flux (u2
∗U), and the loss of energy to turbulent (Pt)

and wave-induced (Pw) motions, where

Pt = τt
dU

dz
, Pw = τw

dU

dz
. (1.40a,b)

The wave-induced motions energy balance

d

dz
Πw +Pw −D = 0 (1.41)

is between the divergence of wave-induced energy (Πw), mechanical production (Pw) and
energy loss to turbulence (D), where

Πw = 〈uwτw − ρ−1a pwWw〉, D =

〈
(u′w′)w

duw
dz

〉
. (1.42a,b)

Finally, the TKE balance
Pt +D − ǫ = 0 (1.43)

is between mechanical production (Pt), energy uptake from wave-induced motions (D) and
TKE dissipation (ǫ, discussed below). In this last balance, diffusive fluxes are neglected (in the
WBL), following Chalikov and Belevich [1993] and Janssen [1999].

With respect to a stationary and homogeneous surface boundary layer, the presence of wave-
induced motions alters the WBL energy balance in three ways. First, there is an additional
sink of energy for the mean flow, resulting from wave-induced stress (Pw). Second, there is
an additional term (D), accounting for the transfer of energy between TKE and wave-induced
energy. This term depends on the vorticity of wave-induced motions and on the wave-induced
variations of turbulent stress, showing their importance not only for the NSS mechanism
(Sect. 1.3.2.2) but also in the energetic balance of the WBL. Upon summation of Eqs. 1.41 and
1.43, D can be eliminated, and the energy balance for wave-induced and turbulent motions
reads

(τt + τw)
dU

dz
+
dΠw

dz
− ǫ = 0. (1.44)

It reveals that the net effect of wave-induced motions is to act as an additional source for TKE
by extracting energy from the mean flow, by a mechanism similar to wake production of TKE
over canopies [Kaimal and Finnigan, 1994]. The last alteration resulting from wave-induced
motions is the presence of a flux of wave-induced energy Πw. It is related to the energy loss
from wave-induced motions to the waves. More precisely, summation of Eqs. 1.39, 1.41 and
1.43 and integration over the WBL (of height H) results in the following balance [discussed in
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Hara and Belcher, 2004]

u2
∗U −Πw(z = zv0)−

∫ H

zv0

ǫdz = 0. (1.45)

This equation describes the balance for the total energy integrated over the WBL, and shows
that the flux of energy at the top of the WBL is balanced by the flux to the waves at the
surface and TKE dissipation in the WBL (terms from left to right, respectively). The flux of
wave-induced energy is usually related to wave-induced stress of individual wave components
dkτw as Πw =

∫
c(k)dkτw, and as mentioned in Sect. 1.3.1, is mainly related to the work of

wave-induced pressure against the surface vertical velocity 〈ρ−1a pwWw〉.
Several models for the vertical structure of Πw have been proposed. Makin and Kudryavtsev

[1999] [and subsequent work Kudryavtsev et al., 2014] , based on the numerical simulations
of Mastenbroek et al. [1996], suggested that Πw is constant within the WBL, and zero above.
Hence its divergence is zero in the WBL, and Πw only appears in the total balance (Eq. 1.45)
and not in the modified TKE balance (Eq. 1.44). Hara and Belcher [2004] [and subsequent
works Hara and Belcher, 2002, 2004, Kukulka et al., 2007, Kukulka and Hara, 2008a,b]
assumed that that dΠw/dz is important in the TKE balance over the whole WBL, due to the
decay of Πw with height that should follow that of wave-induced stress [Belcher, 1999]. Finally,
note that Janssen [1999] and Cifuentes-Lorenzen et al. [2018] considered that, very close to
the surface, the divergence of the momentum flux is significant in Eq. 1.41, and balances the
wake production of wave-induced energy Pw, which is then transfered directly to the wave
field. Those different choices are related to either numerical or theoretical models and their
underlying assumptions. Anticipating on the next paragraph, and Fig. 1.7b), we choose the
approach of Makin and Kudryavtsev [1999] to compare the effect of different TKE dissipation
parameterizations on the mean wind speed.

To summarize, the presence of wave-induced motions alters the energy budget in the WBL
by extracting energy from the mean flow, which is then transfered to turbulent motions and
surface waves. In particular, this energy transfer results, for a fixed mean wind speed, in an
increase of the turbulent stress at the top of the WBL (u2

∗ ), with respect to a smooth flow
[Edson et al., 2013]. In order to close the balances presented above, a parameterization of TKE
dissipation is needed.

DISSIPATION OF TURBULENT KINETIC ENERGY Several vertical profiles of TKE dissipation
and mean wind speed are shown in Fig. 1.7. In particular, dashed and dotted lines correspond
to two choices of TKE dissipation parameterizations

ǫHara = (κz)−1τ3/2t , ǫMakin = (κz)−4τ3t

(
dU

dz

)−3
, (1.46a,b)

used in the wind-over-waves models of Hara and Belcher [2004] and Makin and Kudryavtsev
[1999], respectively. The mean wind speed profile is computed from the modified TKE balance
Eq. 1.44, where dΠw/dz has been neglected. The turbulent intensity, required to compute the
mean wind speed, is obtained from the momentum balance Eq. 1.24 by using a vertical profile
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Figure 1.7: Comparison of vertical profiles of (a) TKE dissipation and (b) mean wind speed for
three parameterizations of TKE dissipation, with wave-induced stress computed
from the model of Kudryavtsev et al. [2014] (Fig. 1.6a). Dashed lines are the model
of Hara and Belcher [2004], dotted lines the model of Makin and Kudryavtsev
[1999].

of wave-induced stress from the model of Kudryavtsev et al. [2014] (Fig. 1.6a). Once the mean
wind speed profile is computed, TKE dissipation can be diagnosed from the above formulas or
from the modified TKE balance.

First, note that in the absence of waves, i.e. τt = u2
∗ and dU/dz = u∗/κz, both TKE

dissipation parameterizations are equivalent to the logarithmic-law scaling (solid line). The two
parameterizations of TKE dissipation are local, depending on the turbulent stress or turbulent
viscosity (u2

∗ (dU/dz)−1) respectively, and on a mixing length κz. Inclusion of waves results in
a decrease of TKE dissipation, which is slightly weaker for ǫHara (dashed line) than for ǫMakin
(dotted line). This decrease results from the presence of wave-induced stress, which reduces
turbulent stress for a fixed u∗ (see the momentum balance Eq. 1.24). The decrease is stronger
close to the surface, where wave-induced stress is larger (Fig. 1.6a).

As a consequence, the mean wind speed is also affected by the presence of waves (Fig. 1.7b).
As found by Stewart [1961] and Miles [1965], in order to reach their equilibrium with the
wind, waves extract energy from the mean flow (through Pw) and the wind profile deviates
from a logarithmic law towards a linear profile (compare the solid line with the dashed or
dotted lines). This deviation is stronger close to the surface, and follows the changes in TKE
dissipation. Fig 1.7b indicates that 10m-wind speed, which is a commonly measured quantity
in experiments, ranges from 15 to 20 m s−1 depending on the choice of the parameterization for
TKE dissipation. This shows the importance of choosing an appropriate closure for the TKE
budget, to have a realistic description not only of the turbulent statistics but also of the mean
flow quantities.

To summarize, the presence of waves impacts the production, and hence also the dissipation
of TKE, with uncertainties on its modeling in the presence of waves. This is further confirmed
by the LES of Hara and Sullivan [2015], which show the presence of a TKE dissipation anomaly
(excess) in the WBL above a sinusoidal wave. From a spectral perspective, TKE dissipation
is related to the turbulence energy cascade, and to the shape of the TKE spectrum. Hence,
accurate understanding of these changes is essential both to describe the bulk properties of
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turbulence, but also to understand the multiscale coupling between the turbulence and wave
spectra, which, as pointed out in Benilov et al. [1974] and more recently in Ortiz-Suslow and
Wang [2019], is not well understood.

1.3.3.3 IMPACT OF WAVES ON TURBULENT STRUCTURES

Following the discussion on the changes of TKE in the presence of waves, below we briefly
review some recent numerical work on the modulation of instantaneous, coherent turbulent
structures by the presence of waves. The motivation for this review is twofold. First, co-
herent turbulent structures are important in the determination of the turbulent stress both for
smooth-wall [Robinson, 1991, Jiménez, 2012, 2018] and rough-wall [Raupach et al., 1991,
Jiménez, 2004] flows. A wave-induced change in their properties hence reflects the impact
of waves directly on turbulence statistics, and not indirectly as is the case for wave-induced
stress . Second, modifications of the properties of turbulent stress impact vortex force, both
when described through the critical layer mechanism (through Eq. 1.30, page 51) or the NSS
mechanism (through Eq. 1.33, page 55).

As an example of the importance of coherent structures, it is interesting to consider the case
of transitionally rough surfaces. For these surfaces, the Reynolds number similarity, expected
for aerodynamically rough surfaces, is not attained, but the geometry of the roughness elements
impacts the flow. For flow over the sea surface, this transition occurs for winds between 3 and
7.5 m s−1 [Kitaigorodskii and Donelan, 1984], and this results in a minimum of surface drag
(u2
∗ /U(10)2) for winds of about 3 m s−1 [Edson et al., 2013]. For generic surfaces, Jiménez

[2004] suggested that this minimum could result from two competing mechanisms: (i) an
increase of surface drag due to additional form drag from the roughness elements (ii) a decrease
of surface drag due a randomisation of coherent structures in the viscous sublayer which, in
the aerodynamically smooth case, act as a source of turbulence for the logarithmic layer [the
so-called viscous sublayer cycle Jiménez and Moin, 1991, Jiménez, 1999]. In the case of
transitional surfaces, mechanism (ii) can overcome mechanism (i), explaining the observed
decrease of surface drag.

Along these lines, several experiments, including DNS [Sullivan et al., 2000], LES [Sullivan
et al., 2014] and observations [Buckley and Veron, 2016], reveal that the streaky structure
of viscous-layer turbulence above flat walls [e.g Kline and Runstadler, 1959, related to the
viscous sublayer cycle] is affected by the presence of waves. Close to the surface, streaks are
disrupted, and their length appears to be constrained by the wave size. The use of low-Reynolds
number DNS [Sullivan et al., 2000, Yang and Shen, 2009, 2010] allows to further investigate
those changes by analysis of coherent structures. For a slow wave (c/u∗ = 2), Yang and Shen
[2009] found that the negative turbulent stress is induced mainly by contributions from sweep
events in the trough of the wave, and ejection events on the windward face of the wave. This is
consistent with early experimental work of Kawamura and Toba [1988]. Those events were
associated with reversed horseshoe vortices (for sweeps), and to quasi-streamwise vortices (for
bursts). For faster waves, with a high enough matched layer, near surface coherent structures
are advected upwind in the reference frame of the wave. In this situation, quadrant analysis
[Sullivan et al., 2000] reveals that positive contributions to turbulent stress become significantly
higher (Q3, or inward interactions). Those are associated with the bending of quasitreamwise
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vortices as they are advected downwind, which generates vertical vorticity [Yang and Shen,
2009]. Even though these results provide an indication of the mechanisms at stake, they should
however not be readily extrapolated to field-condition flows, due to the low Reynolds number
of the simulations.

The impact of wave breaking on coherent structures was analyzed by means of LES by
Suzuki et al. [2011, 2013]. Suzuki et al. [2011] modeled the effect of a windy sea with breaking
wave crests as an anisotropy in surface drag, stronger in the streamwise (perpendicular to the
crests) than spanwise direction. The authors found an enhancement of the intensity quasi-
streamwise vortices with respect to an isotropic situation, resulting in more intense turbulence
mixing. Suzuki et al. [2013] focused on the impact of airflow separation events on turbulence.
The simulations revealed that due to the separation of the near-surface sheared boundary layer,
near surface streaks (and coherent vortices) were inhibited. Finally, note that the boundary
layer detachments above a breaking crest also result in the creation of vortical structures which
are ejected upwards in the fluid [Reul et al., 2008].

These different studies show that waves certainly affect turbulent coherent structures (as
summarized in Fig. 1.8), suggesting that their accurate modeling might improve the under-
standing of wind-over-wave interactions. We end this review by mentioning two theoretical
works. First, Eifler [1993], who developed a theoretical model of the near-surface WBL (for
heights from 1 to 10 cm) including instantaneous properties of the turbulent flow and multiscale
wave effects. His model was based on the analogy between the WBL flow and flow within the
viscous sublayer over a flat wall. The later has been described by Kline and Runstadler [1959]
and Blackwelder and Eckelmann [1979] as a sequence of growing and collapsing laminar
sublayers, associated with the destabilization of quasi-streamwise vortices. Those growth
and collapses were proposed as a model for observed burst and sweep events. Eifler [1993]
discussed how the spatial distribution of those transient events was constrained by the presence
of an individual surface wave: as the laminar sublayer grows along the wave, near-surface
wind intensity increases, generating small wavelets which act as roughness elements. This
triggers the collapse of the sublayer, hence constraining the spatial distribution of burst and
sweep events. Along similar lines, the theoretical work of Csanady [1985] emphasized the
role of airflow separation events on top of steep and short waves (O(10cm)) for their coupling
with wind. The author argued that, following an airflow separation event, the reattachment of
the airflow on the windward face of such a wave is necessary to maintain a balance between
momentum input to the wave [by means of a shear-stress spike at the point of reattachment,
observed by Okuda et al., 1977] and dissipation of wave energy to the near-surface turbulent
water field. This allows trains of such small-scale waves to be long-lived, and hence to be
coupled by wind through air-flow separation. These works, although conceptual, emphasize
the role of multiscale and transient coupled processes in the wind-and-waves coupling, which
is not covered by the DNS and LES results presented above

1.3.4 CONCLUDING REMARKS

Starting from historical models of the vortex force in the WBL, we have discussed the properties
of turbulence in the WBL. Emphasis was placed on the fact that a realistic sea surface is a
multiscale surface, whose roughness results from transient events (both breaking and non-

70



Figure 1.8: Summarizing scheme presenting a multiscale and three-dimensional view the dy-
namical impact of wind-waves on turbulence. The presence of waves results in both
wave-coherent motions (background streamlines) and modification of the instanta-
neous properties of turbulence (foreground vortex tubes), which are transient events.
The latter are deduced from laboratory observations (for the case of breaking waves)
and low-Reynolds number DNS, and are hence possible processes, not observed
in field conditions. The drawing is in the reference frame of the moving waves,
whose speed increases with wave scale, and the scale of the waves is not respected.
Airflow separation events (left) are mainly associated with short-crested breaking
waves, resulting in inhibition of near surface streaks downwind of the breaking
crest, and ejection of vortical structures in the interior of the fluid. Short waves
(middle) are associated with the non-separated sheltering mechanism of vortex
force, and to intensified sweeps and ejections on the trough and windward face of
the wave. Longer waves (right) are associated with the matched layer mechanism
of vortex force, and to positive contributions to turbulent stress resulting from the
horizontal bending of quasi-streamwise vortices (Q3 events). Finally, both vortex
force mechanisms are dependent on the modulation of the steepness of shorter
waves along the long wave .

breaking waves) which are strongly coupled to the turbulent properties airflow. Figure 1.8
summarizes the multiscale nature of the surface, by showing that depending on the wave size,
wave-induced motions and instantaneous turbulence properties can be significantly different.

Several other problems related to wind-wave interactions have not been reviewed here,
among others: (i) heat fluxes, which are affected by the change in turbulent diffusion in the
WBL [e.g. Kitaigorodskii and Donelan, 1984, Makin and Mastenbroek, 1996, Veron et al.,
2008]; (ii) swell, which, if travelling faster than the wind, can result in a momentum transfer
from waves to the wind [Kudryavtsev and Makin, 2004, Sullivan et al., 2008]; (iii) very strong
winds (above 20 m s−1), under which the surface might be disrupted and the flow becomes
increasingly detached from the waves [Soloviev et al., 2014].
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1.4 OBJECTIVES OF THE PRESENT WORK

In Sec. 1.3 we have emphasized that the interactions between wind-waves and turbulence occur
not only through wave-induced motions, but also possibly through the direct modification
of the instantaneous properties of turbulence. To this aim, several laboratory measurements
[Kawamura and Toba, 1988, Buckley and Veron, 2016] and numerical simulations [Sullivan
et al., 2000, Yang and Shen, 2009, Suzuki et al., 2011, 2013] have been highlighted. Additional
complexity arises from (i) the fact that these modifications should be coupled with local changes
in the wave field, due to the local and transient variations in wind speed; (ii) the nature of
wind-and-wave coupling for a multiscale sea surface, where cross-scale interactions occur
both in the turbulent and wave fields; (iii) the difficulties in defining the correct averaging and
coordinates for a rough surface whose average height is zero. Hence, quantification of these
interactions in wind-and-wave theories remains a challenge.

Yet these changes, if occurring in field conditions, are expected to have a profound impact on
the averaged properties of turbulence in the WBL. As reviewed in Sec. 1.1, transient events are
important in the determination of the overall momentum flux, both for flows over smooth and
rough boundaries. Their modification by the geometry of the roughness elements can also have
consequences on the drag coefficient, i.e. the relation between the mean wind and the turbulent
momentum flux, and on turbulent transport. And what about the interaction between inner
and outer layer structures, which has been shown to be sensitive to surface roughness? These
modifications are all the more important for stratified field conditions, questioning why and
when MOST hypotheses are satisfied. To be clear, what is at sake here is not the improvement
of bulk formulations for wind stress, but the understanding of their limitations, conditions of
applicability, and dependency to environmental conditions.

These instantaneous properties of turbulence can, to some extent, be related to the various
turbulent spectra (by doing so, we obviously completely disregard their phase). The questions
above can then be rephrased by asking what are the interactions between the spectral properties
of turbulence and waves [e.g. Benilov et al., 1974, Ortiz-Suslow and Wang, 2019]. In this
thesis, we take a first step towards this understanding by focusing on a particular spectral
property of turbulence: the wavelength of the peak of the vertical velocity spectrum, or the size
of energy-containing eddies. Both are related through the phenomenological model presented
in Sec. 1.2, which relies on the use of spectral budgets. Hence, in Chapter 2, we question the
hypothesis upon which the spectral budget relies, for a flat-wall and stratified flow. We aim,
more specifically, at understanding the crucial ingredients which determine the value of the
spectral peak wavelength.

In regard to turbulence above a sea surface, a first question is to know what should be the
link between energy-containing eddies and the geometrical properties of the sea surface. This
question, addressed in Chapter 3, is related to the uncertainty in the parameterization of TKE
dissipation within the WBL, mentioned in Sec. 1.3. Indeed the phenomenological model links
TKE dissipation (related to the Kolmogorov cascade) to the geometry of energy-containing
eddies (see Sec. 1.2). Finally, in Chapter 4, we explore the dynamical impact of wind-waves
on energy-containing eddies, through modification of the local mean wind shear. The work
of Raupach et al. [1996], presented in Sec. 1.1, indicated that above canopies, this dynamical
interaction can constrain the scale of energy-containing eddies. In Chapter 4 we consider the

72



most obvious candidates for the definition of an "effective canopy" above a windy surface,
which are breaking waves [Melville, 1977].
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CHAPTER 2

TOWARDS A "SPECTRAL LINK" FOR THE VERTICAL
VELOCITY SPECTRUM?

"Wheat Field with Cypresses", Vincent van Gogh (1889).
The Metropolitan Museum of Art, purchase, The Annenberg Foundation Gift, 1993.
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2.1 INTRODUCTION

GENERAL MOTIVATION Turbulence close to a wall exhibits many distinctive features, one
of which is anisotropy. Indeed, for mildly stable and unstable conditions in the Atmospheric
Surface Layer (ASL), numerous experiments have shown that the horizontal turbulent motions
contain more energy than their vertical counterpart (u′2+v′2 ≥ w′2), and that both are correlated,
which translates into a vertical momentum flux (u′w′ , 0). This can be attributed to (i)
differences in energy pathways, as buoyancy only acts on the vertical component while, for
a horizontally homogeneous flow, mechanical production is a source only for the horizontal
components; (ii) wall-related effects, i.e. the blocking of the vertical velocity near the wall,
and the presence of inactive motions, that only contribute to the horizontal component of the
turbulent field [see, e.g. Katul et al., 1996]. Investigating how energy is redistributed among the
various components of the turbulent field is hence an interesting way to unravel the mechanisms
at play in wall-bounded turbulence.

From a spectral standpoint, this anisotropy is reflected in a difference between the Turbulence
Kinetic Energy (TKE) and vertical velocity spectra at each scale k (k is here the streamwise
wavenumber). In both cases the spectra exhibit two regimes, separated by a transition, or
spectral peak wavenumber kp (see Fig. 1.2b on page 31). The large wavenumber range (k > kp)
is isotropic, corresponding to the Kolmogorov cascade (it is called the inertial subrange).
Scalewise anisotropy is contained in the low wavenumber range (k < kp, the energy-containing
range) where the exponents of the power law for TKE and the vertical velocity spectra are
respectively -1 and 0. 1 Hence most of the bulk (i.e. integrated over all scales) anisotropy can
be explained by the contribution from energy-containing scales, and depends on the value of
kp. For neutral conditions, the spectral peak is inversely proportional to height z, reflecting
the effect of the wall on turbulent eddies (see Townsend’s hypothesis on page 30). For mildly
stable and unstable conditions, several measurements have shown that this spectral peak can
still be defined in the vertical velocity spectrum, and that it varies with stability around 1/z
(see Fig. 2.1 for an example). This variation should reflect the change in the balance between
energy pathways as buoyancy changes.

From a practical perspective, we have introduced, in Chapter 1, a phenomenological model,
which establishes a "spectral link" between the spectrum of vertical turbulent velocities Fww
and the turbulent momentum flux u2

∗ = −u′w′. In the logarithmic sublayer, and using the
canonical shape of the vertical velocity spectrum, it reads

u2
∗ ∝

dU

dz
ǫ1/3k−4/3p , (2.1)

where ǫ is TKE dissipation and U is the mean wind speed. This model hence links a spectral

1Here two comments should be made. First, the value of the transition wavenumber differs slightly depending
which spectrum is considered. Here we disregard these differences for simplicity, and because we are not
interested in quantitative predictions. Second, the shape of the spectra drawn in Fig. 1.2b are canonical,
in the sense that they are an idealized representation of realistic spectra, which retains only their essential
features. Nonetheless, the existence of a -1 power law for the vertical velocity spectrum, and hence for the
TKE spectrum, is still an ongoing debate, at it is unclear under which conditions, in field experiments, this law
can be observed [see e.g. Drobinski et al., 2007].
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Figure 2.1: Premultiplied vertical velocity spectra from the Kansas experiment (on top of of a
uniform wheat field) as a function of frequency [from Kaimal et al., 1972]. The
different curves indicate various values of the stability parameter ζ (negative for
an unstable atmosphere, and conversely). The spectra exhibit a peak, which varies
with stability.

property of anisotropy (kp) to one of its bulk values (u∗). For a neutral ASL in the logarithmic
sublayer, with kp ∝ 1/z, the scaling ǫ ∝ u3

∗ /z is recovered. The stability-dependent variations
kp derived from data (Fig. 2.1) were then used [Katul et al., 2011] to predict MOST stability
functions.

Nonetheless, the spectral link (2.1) is based on a spectral budget, which relies on a certain
number of assumptions (see discussion in Chapter 1). Hence this link is certainly far from
being a universally valid relation. Relations of the type (2.1) might indeed well be valid to
predict some bulk quantities, such as MOST stability functions, but fail in other situations.
With the aim to extend such relations to wind blowing above a sea surface, we investigate in
the present chapter both fundamental and practical issues related to the spectral link.

THE VERTICAL VELOCITY SPECTRAL BUDGET As mentioned above, the spectral peak
wavenumber is essential in the characterization of scalewise anisotropy. Using a scaling
analysis, we now show that its value (kp) cannot be predicted using standard closures for the
vertical velocity spectral budget. This indicates missing physics, setting the frame for the rest
of the Chapter.

A spectral budget for the vertical velocity spectrum F̃ww, derived in Annex A, reads, under
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the ASL hypothesis,
1

2

∂F̃ww(k)

∂t
= B̃+ R̃w − T̃ − ǫ̃. (2.2)

In this budget, the buoyancy source/sink (B̃) is balanced by the interscale transfer of energy
(T̃ ), viscous dissipation (ǫ̃) and the return-to-isotropy term R̃w. This last term, together with
B̃, is essential in the determination of the bulk value of anisotropy, since it accounts for the
redistribution of energy among the different turbulent components, due to pressure-strain
correlations. Several expression of R̃w, with different conventions, are compared in Annex B.

The terms in the RHS of (2.2) can be scaled using the few parameters characterizing spectral
properties of the vertical velocity in the logarithmic sublayer. These are kp, ǫ, ν (which only
enters ǫ̃) and (g/θ0)dθ/dz (which only enters B̃)2 . The scalings are then

B̃ ∝ g

θ0

dθ

dz
ǫ1/3k−7/3p , T̃ ∝ R̃w ∝ ǫk−1p , ǫ̃ ∝ νǫ2/3k1/3p . (2.3)

In the above equation, z does not appear explicitly, and is contained in the dependence of kp
to 1/z. The same holds for the Obukhov length, or the dimensionless stability parameter ζ,
on which kp depends. Note that, in Appendix B of the paper in Sec. 2.2, the balance (2.2)
and the scaling of the different terms (2.3) are derived from canonical spectra, yielding the
proportionality coefficients of (2.3).

The scalings for T̃ and R̃w assume that these two terms depend only on inertial-subrange
variables. This is indeed the case for the widely used Rotta model of R̃w [Rotta, 1951] and
its spectral equivalents [Besnard et al., 1996, Bos et al., 2004], presented in Annex B. This
assumption is also common to many models for the energy transfer term T̃ , such as the ones
of Obukhov [1941], Heisenberg [1948] and Leith [1967], as reviewed in Panchev [1971] (p.
198-219). These models are valid far from the bottom of the logarithmic layer, i.e. for kp ≪ η−1

(where η = (ν/ǫ1/3)3/4 the Kolmogorov microscale).
However, for neutral conditions, where B̃ = 0, the spectral balance (2.2) combined with (2.3)

yields kp ∝ η−1. This inconsistency suggests a missing Reynolds-number dependence in the
above scaling. For sufficiently stratified conditions, for which viscosity can be neglected in
(2.2) the balance yields

kpz ∝
φ3/4
h

(φ2/3
m − ζ)2/3

(2.4)

where φm and φh are the MOST functions introduced in Chapter 1, page 36. This result is
inconsistent with values of kp reported in the literature3, and again suggests some missing
dependence of (2.3) with stability.

This last inconsistency motivates the work presented in Sec. 2.2, in which a modification
to the Rotta scaling of R̃w is proposed. Then, in Sec. 2.3 we suggest an alternative means of
computing the stability-dependent value of kpz, which does not require the spectral budget.

2 We recall that θ and θ0 are the potential temperature and its reference value, respectively, and that g is the
gravity acceleration.

3This is not shown here, but can be easily seen by comparing the expressions of kpz and of φm proposed by
Kaimal et al. [1972], which are both listed in Appendix A of the paper in Sec. 2.2.
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2.2 ARTICLE: "SCALEWISE RETURN-TO-ISOTROPY IN STRAT-
IFIED BOUNDARY LAYER FLOWS"

Manuscript submitted to Journal of Geophysical Research on 10/03/2020.
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Abstract Anisotropic turbulence is ubiquitous in atmospheric and oceanic boundary layers due to

differences in energy injection mechanisms. Unlike mechanical production that injects energy in the

streamwise velocity component, buoyancy affects only the vertical velocity component. This anisotropy in

energy sources, quantified by the flux Richardson number Rif, is compensated by a “return to isotropy”

(RTI) tendency of turbulent flows. Describing RTI in Reynolds‐averaged models and across scales continues

to be a challenge in stratified turbulent flows. Using phenomenological models for spectral energy

transfers, the necessary conditions for which the widely‐used Rotta model captures RTI across various Rif
and eddy sizes are discussed for the first time. This work unravels adjustments to the Rotta constant, with Rif
and scale, necessary to obtain consistency between RTI models and the measured properties of the

atmospheric surface layer for planar‐homogeneous and stationary flows in the absence of subsidence. A

range of Rif and eddy sizes where the usage of a conventional Rotta model is prohibited is also found. Those

adjustments lay the groundwork for new closure schemes.

Plain Language Summary In the atmosphere and in oceans, turbulence dominates much of the

exchanges of momentum, heat, water vapor, and scalars such as carbon dioxide, ozone, or methane.

Representing turbulence in numerical models of the Earth and climate system remains a first‐order

problem, requiring the development of simplified approaches to describe the energetics of the flow. One

such representation is based on the universal tendency of all turbulent flows to attain an isotropic state,

where kinetic energy is equi‐partitioned among its three velocity components, labeled “return to isotropy.”

However, the presence of buoyancy forces and mechanical generation of turbulence causes the flow to

be anisotropic at a wide range of eddy sizes. To what degree this additional layer of complexity invalidates

the use of existing models based on the aforementioned universal attainment of an isotropic state is explored

here. Common representation of such phenomenon within existing climate‐ and meso‐scale models are

shown to be satisfactory only for a restricted range of density stratification. The analysis unfolds conditions

where adjustments to existing representations are required and others where their use is prohibited.

Novel physical processes are also unfolded, providing guidance toward improved turbulence representation

in a plethora of models.

1. Introduction

The significance of boundary layer turbulence in the ocean and the atmosphere is not in dispute given its

control on a plethora of processes related to the exchange of momentum, heat, and scalars. The description

of key flow properties, however, remains a formidable task due to the need of closing the Reynolds‐averaged

Navier‐Stokes equations using appropriate physical models (Canuto et al., 2001; Cuxart et al., 2000; Mellor &

Yamada, 1982). Among the minimal ingredients characterizing turbulence are the sources and sinks of tur-

bulent kinetic energy (TKE): shear and buoyancy. Shear production (Pm) impacts the streamwise turbulent

velocity component (of variance σ2u) whereas buoyancy production/destruction (B) impacts the vertical tur-

bulent velocity component (of variance σ2w). A dimensionless quantity used to measure the relative strength

of these two energy injection mechanisms is the flux Richardson number Rif=−B/Pm. The differences in

energy injection mechanisms introduce anisotropies in the component‐wise turbulent velocity fluctuations

(Lane & Sharman, 2014; Lovejoy et al., 2007), with σ2u=σ
2
w > 3across a wide range of Rif (Kaimal & Finnigan,

1994; Sorbjan, 1989).
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Despite being anisotropic, turbulence exhibits a universal tendency to relax to an isotropic state where TKE

is equally partitioned among its three velocity components. This universal tendency of turbulence has been

used to describe pressure‐strain interactions that redistribute energy between the three components and

hence partially compensate for the anisotropy caused by energy injection mechanisms. This premise forms

the basis of numerous turbulence modeling schemes in use today (Abid & Speziale, 1993; Canuto et al., 2001;

Cuxart et al., 2000; Drobinski et al., 2007; Launder et al., 1975; Lumley & Newman, 1977; Mellor & Yamada,

1982), especially within meso‐scale models such as the Weather Research and Forecasting (or WRF) system.

The common closure scheme in use is the Rotta model (Rotta, 1951) that assumes that the magnitude of the

energy redistribution among velocity components is directly proportional to the degree of energy anisotropy,

which defines the so‐called Rotta constant. This scheme continues to draw research attention in the engi-

neering and geophysical fluid dynamics communities alike (Bou‐Zeid et al., 2018) since the modeling of

the pressure‐strain term is key for turbulent closure schemes used in both atmospheric and oceanic models.

A less‐studied aspect of this universal tendency of turbulence is the connection between anisotropies appear-

ing in the component‐wise turbulent energy spectra at large scales and the attainment of local isotropy at

inertial to small scales (Brugger et al., 2018). The “state of the science” to operationally describe such redis-

tribution of energy between differing velocity components at a given scale remains a spectral version of a lin-

ear return to isotropy scheme put forth by Rotta (Besnard et al., 1996; Katul et al., 2013). Such a scheme

rectifies the absence of a local balance between production and nonlinear transfer across scales for a given

velocity component (since the action of viscous dissipation of kinetic energy is small at large scales). It pro-

vides a redistribution mechanism of kinetic energy between the three different components at a given scale,

assuming a scale‐dependent relaxation time scale is set. What is to be explored is whether such a Rotta

scheme suffices to capture the main redistribution terms across scales when canonical spectra measured

in the atmospheric surface layer (ASL) are used across various Rif. To guide this inquiry, we ask what is

the Rotta constant associated with the scale‐by‐scale energy redistribution. Is it dependent on Rif and scale?

Are there “signatures” of more complex processes such as rapid distortion effects across scales that are

amplified or dampened with changes in Rif?

In section 2, this question is first addressed from a bulk perspective (i.e., integrated over all scales), extending

the results presented in Bou‐Zeid et al. (2018) that did not focus on the Rotta constant. Section 3 introduces a

spectral model of maximum simplicity (following Katul et al., 2013). The model makes use of a

stability‐dependent spectral budget for the vertical velocity energy and TKE spectra. The terms in these bud-

gets are then determined for idealized canonical spectral shapes reported for the ASL in the literature for

modest deviations in Rif∈[−1.2,+0.1] from its neutral value (=0). The implications for a “scale‐by‐scale”

Rotta constant are then discussed in section 4. Conclusions are drawn in section 5.

2. A Bulk Analysis

A bulk analysis of the return‐to‐isotropy problem is first presented so as to introduce notations, concepts,

and review the linear Rotta closure scheme. The three instantaneous turbulent velocity components are

u′, v′, and w′ in the streamwise (x), cross‐stream (y), and vertical (z) directions, respectively, with zero time

(or ensemble) averages (i.e., u′ ¼ v′ ¼w′ ¼ 0). Similarly, ρ′ is the turbulent density fluctuation around a

mean density ρ . As a logical starting point, a stationary and planar‐homogeneous flow at high Reynolds

number in the absence of subsidence is considered. The mean velocity in the streamwise direction is

denoted by U. Because the focus is on surface layer turbulence, the Coriolis term is ignored. For these idea-

lized flow conditions, the budget equations for the vertical velocity variance σ2w ¼w′w′ and TKE e¼ ð1=2Þ

ðu′u′ þ v′v′ þ w′w′Þ reduce to

1

2

∂σ2w
∂t

¼ 0¼ Bþ Rw −
ϵ

3
; (1)

∂e

∂t
¼ 0¼ Pm þ B − ϵ: (2)

Equation 1 is a balance between buoyancy production or destruction B¼−ðg=ρÞw′ρ′ (g is the gravitational

acceleration), the pressure‐strain correlation source/sink Rw (discussed below), and viscous dissipation
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rate ϵ. Equation 2 is a balance between mechanical production Pm ¼−u′w′ðdU=dzÞ (always positive in

boundary layer flows), buoyancy production or destruction, and TKE viscous dissipation rate. In both

budgets, the turbulent transport of w′2 and e is ignored. For near neutral conditions, this assumption may

be plausible but becomes questionable for dynamic convective, free convective, and strongly stable

conditions as discussed elsewhere (Banerjee et al., 2015; Charuchittipan & Wilson, 2009; Ghannam et al.,

2017, 2018; Poggi et al., 2004; Raupach, 1981; Salesky et al., 2013). Data and models for the flux transport

terms in the ASL, especially for the vertical velocity skewness, remain in demand. The form of dissipation

used here (ϵ/3 in Equation 1) assumes that the total viscous dissipation rate is isotropic. For ASL flows,

the isobaric approximation yields ρ∝T−1 where T is potential temperature and thus B¼−ðg=TÞw′T′ . The

pressure‐strain term only redistributes energy between the different turbulent velocity components (Pope,

2000) and does not produce or dissipate TKE.

Mechanical production enters the TKE budget whereas buoyancy enters through both the TKE and σ2w bud-

gets. This difference in energy sources (or sinks) results in ASL turbulence being anisotropic, conventionally

quantified by the so‐called anisotropy tensor (Lumley & Newman, 1977). In the following, the diagonal com-

ponent of the anisotropy tensor for the vertical direction is used and is given by r ¼ ðσ2w=eÞ−2=3. It is based on

the normalized difference (by e/2) between the energy of the vertical turbulent motions, σ2w=2, and the mean

TKE, e/3. The value r=0 is attained only when energy is equi‐partitioned among the velocity components so

that σ2u ¼ σ2v ¼ σ2w ¼ 2e=3. The term “anisotropy” refers to r unless otherwise stated. Hence, the magnitude

and sign of r depends on how far σw is from the energy equipartition state. The Rotta model, described below,

links the pressure‐strain correlation Rw to anisotropy r.

Rearranging Equations 1 and 2 yields an expression for a normalized Rw given by (see Bou‐Zeid et al., 2018)

Rw

Pm
¼
2

3

1

2
þ Rif

� �
: (3)

The normalized Rw only depends on the flux Richardson number Rif=−B/Pm and is constant at 1/3 for

near‐neutral conditions (i.e., Rif=0). This relation, shown in Figure 1a (solid line), exhibits similar trends

Figure 1. (a) Normalized vertical velocity pressure‐strain term Rw/Pm as a function of the flux Richardson number Rif. Symbols ⋆ and ◊ are, respectively, DNS
and LES results (from Bou‐Zeid et al., 2018). Solid line is from Equation 3. Dashed, dotted lines are Rotta model predictions using a standard Rotta constant
CR=0.9 (Equation 5) without rapid‐distortion corrections (dashed) and with rapid distortion corrections (dotted lines). (b) Inferred Rotta constant CR
required for a Rotta model to match the expected pressure‐strain dependence (solid line in (a)) as a function of the flux Richardson number Rif
(Equation 6). Solid and dashed lines are the revised Rotta model without rapid‐distortion terms (αP= βB= 0) and with rapid‐distortion terms
(αP= 0.225 and βB= 1/3) respectively. The dotted line is the standard value CR=0.9 used in canonical boundary layer flows. The shaded
region is where no positive CR value is admitted for the first choice of CR, αp, and βp, and hatches represent the increase of the width
of the forbidden region when rapid‐distortion terms are included. (c) Same as (b) but for the proposed rapid‐distortion coefficients,
βB=2/3 and: αP=−0.026 (solid line), αP=0 (dashed line), and αP=0.225 (dashed‐dotted line).
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as direct numerical simulations (DNSs) and large eddy simulations

(LESs) where the pressure‐strain term is computed (stars and

diamonds). Figure 1a further shows that Rw should change sign at

Rif=−0.5, that is, be a source (respectively a sink) term in

Equation 1 for Rif>−0.5 (resp. Rif<−0.5, shaded area), where the

buoyancy source B exceeds (resp. is lower than) the dissipation sink

ϵ/3. Any model for the pressure‐strain term should thus satisfy this

Rif dependency for the aforementioned idealized flow conditions in

the ASL.

In linear return‐to‐isotropy models for Rw, anisotropic turbulent

flows are assumed to be nudged toward isotropy by the

pressure‐strain correlation term, which is a source or a sink in the

σ2w budget depending on whether r<0 or r>0, respectively. The sim-

plest linear model, the Rotta model, is of the form Rw∝(e/τ)r with τ a

time scale (Rotta, 1951). In addition to this “slow” component, the

Rotta model can be further extended by including rapid‐distortion

terms (Canuto et al., 2001; Lumley & Khajeh‐Nouri, 1975; Pope,

2000). In the case of the vertical velocity component, rapid distortion

terms associated with strain and vorticity vanish (Zeman &

Tennekes, 1975), and the Rotta model can be written as

Rw

Pm
¼−CR

ðe=τÞ

Pm
r þ αP þ βBRif ; (4)

where τ=e/ϵ is a model for the relaxation time scale to isotropic state, CR is the Rotta constant for the slow

part, and αP and βB are rapid‐distortion coefficients associated with the rapid part. Thus, the time scale τ/

CR can be interpreted as the time needed for eddies to redistribute energy among the different components

so to attain the equi‐partition state where r=0. The constant CR is positive, and its optimal value for clo-

sure modeling is 0.9 (Pope, 2000). This value also has justification for near‐neutral flows (Katul et al.,

2013) whereas values for αp and βp continue to draw research attention. Here, we chose αP=0.225 and

βB=1/3, as derived from renormalization theory and used in the stratified boundary layer model of

Canuto et al. (2001).

It is important to stress the differences between Equations 3 and 4. Unlike Equation 4, Equation 3 should be

viewed as a constraint on the numerical value of Rw/Pm (under particular assumptions made about the flow

such as ignoring the turbulent transport terms), rather than reflecting the underlying dynamics governing

Rw/Pm. For example, it would be incorrect to infer from Equation 3 that the physical processes governing

Rw are entirely captured by Rif, since we know from the Navier‐Stokes equation that Rw is dynamically deter-

mined by nonlinear processes associated with correlations between the pressure and strain‐rate fields of the

flow. An analogy can be made to the inertial range of turbulence where the TKE passing through the energy

cascade is on average numerically equal to the kinetic energy dissipation rate (under certain flow condi-

tions). This numerical equality, however, simply reflects an energetic balance; the actual dynamical pro-

cesses governing the energy cascade in the inertial range differ from the dynamical processes governing

the energy dissipation rate at the smallest scales of the flow (see Carbone & Bragg, 2020). Similar to this,

Equation 3 simply denotes a numerical constraint on the flow (under particular conditions), but the under-

lying dynamical processes governing Rw/Pm are not reflected in that constraint equation. In contrast, the

right‐hand side of Equation 4 does represent, in a phenomenological way, the nonlinear dynamical pro-

cesses governing Rw/Pm, and in particular the energy redistribution time scale τ/CR.

A large corpus of data in the ASL (e.g., Kader & Yaglom, 1990; Kaimal & Finnigan, 1994; Sorbjan, 1989)

show that (i) r depends only on two factors: Rif and the relative boundary layer height zi/z, (ii) for the range

of Rif investigated in Figure 1a, r is always negative, and (iii) under near neutral conditions, r∼−0.4. This is

illustrated in Figure 2, where the ASL measurements of r are presented (the empirical fits can be found in

Appendix A). The question we ask below is whether the linear Rotta model, when constrained by those

Figure 2. Anisotropy coefficient r ¼ σ2
w=e − 2=3 computed from Monin‐

Obukhov Similarity Theory as a function of the flux Richardson number Rif
and the ratio between boundary layer height zi and the measurement
height z (see Appendix A for details).
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measurements (i.e. when r is constrained in Equation 4), is compatible with the constraint described by

Equation 3. In other words, we evaluate the ability of the linear Rotta model to represent the nonlinear phy-

sical processes governing Rw for a flow satisfying the idealized energy balance (1)–(2). As the focus of the pre-

sent work is on varying stability conditions, the relative boundary layer height is set to 103 in the following

discussion. Results are not qualitatively sensitive to changes in this height. Note that the properties of aniso-

tropy are valid for planar‐homogeneous flow conditions, predominant for the measurements presented in

Figure 2. For realistic flow conditions, other factors induce variations in anisotropy (including flux transport

terms).

To understand the compatibility between the constraint in Equation 3 and data on r, the TKE budget (2) is

inserted into Equation 4 to arrive at a normalized Rw

Rw

Pm

����
Rotta

¼ CRðRif − 1Þr þ αP þ βBRif : (5)

For neutral conditions and no rapid‐distortion corrections, Equation 5 is compatible with Equation 3 for

CR∼0.9, that is, the optimal value for closure modeling (Pope, 2000). Figure 1a further shows how this ratio

varies with stability for the ASL values of r presented above and a Rotta constant fixed at CR=0.9. With

increasing instability (decreasing Rif), the Rotta constant increases, due to r being negative. The Rotta model,

both without and with rapid distortion corrections (dashed and dotted lines), is not compatible with the

expected values of the pressure‐strain term (solid line and symbols) except for Rif∈[0,0.2].

A compatible variation of normalized Rw can be obtained by allowing CR to adjust with stability. Upon

inserting Equations 2 and 4 in (1) yields

CRðRif ; zi=zÞ ¼
1

3r

1 − 3αP þ ð2 − 3βBÞRif
Rif − 1

� �
; (6)

where r is here to be understood as a function of Rif and zi/z (that is, r=r(Rif,zi/z)). This equation shows

that an “optimal ” CR must be impacted by two parameters: large‐scale anisotropy, r (which, in the ASL,

depends on Rif and zi/z; see Appendix A), and the flux Richardson number Rif, provided that αp≠1/3 and

βp≠2/3 simultaneously. The ratio zi/z can also be interpreted as a relative distance to the wall, hence

showing how wall effects in the surface layer impact CR.

Solid line in Figure 1b shows the optimal Rotta constant without rapid distortion corrections (i.e., αP=βB=0

in Equation 6). For near‐neutral ASL, as mentioned above, CR∼0.9, close to the literature‐based value. Its

value decreases with increasing instability to match the increase of the buoyancy to dissipation ratio, which

requires a decreased Rw in Equation 1. This is consistent with an increase of the average size of eddies as

instability increases (see, e.g., Katul et al., 2011), implying an increase in their turnover time, and hence

in the isotropization time (τ/CR). For Rif<−0.5, the sign change of Rw mentioned above implies a negative

Rotta constant CR, which is not physical. These conditions may also be hinting that other sources, and sinks

must be considered such as the turbulent flux transport terms. There is thus a range of stability conditions

(gray shading) where the linear Rotta model is simply unable to describe Rw for the idealized flow state con-

sidered here. Over the range of allowed Rif values, the Rotta constant varies by a factor 4 around its value for

near‐neutral conditions. Inclusion of rapid distortion terms in the Rotta model (dashed line) even decreases

the range over which CR is positive (hatched area).

A negative Rotta constant originate from the sign of the numerator of the last factor of Equation 6, since r

and Rif−1 are always negative. Setting βB=2/3 and αP<1/3 is a sufficient (but not necessary) condition

for CR to be positive for all stability conditions. Targeting a CR=0.9 for neutral conditions with r∼0.4 and

βB=2/3 requires αP=−0.026. The resulting Rotta constant as a function of stability is shown in Figure 1c

(full line), along with results with two other values of αP: αP=0 (dashed line) and αP=0.225 (dotted‐dashed

line, from Canuto et al., 2001). Results show that these new constraints on the rapid distortion terms allow

for the Rotta model to be unconditionally valid. However, those values differ from suggested literature‐based

values when setting CR=0.9. For βp, the proposed value is about a factor of 2 higher whereas for αP, even the

sign differs.
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Inclusion of vertical turbulent transport terms in the TKE and vertical velocity variance budgets could also

decrease the range of stability conditions over which the Rotta constant is negative. Indeed, several studies

have shown that the vertical transport of TKE (Te) is increasingly important for unstable conditions (e.g.,

Salesky et al., 2013; Wyngaard & Coté, 1971). For the vertical velocity budget, accounting for vertical turbu-

lent transport results in an additional sink term if Te>3Tw, where Tw is the vertical transport of vertical velo-

city variance (see Appendix A of Bou‐Zeid et al., 2018). This has been used to explain the increase in critical

flux Richardson number over roughness sublayers in stably stratified flow, where this condition is met

(Freire et al., 2019). In the present situation, the additional sink in the vertical variance budgets can extend

the range of stability conditions over which the Rotta model is physical since the condition B>ϵ/3 will be

met for more unstable conditions. Estimates of Te/Tw are sparse, and both terms are small for

near‐neutral conditions. We do not discuss this matter quantitatively, but note that including Te and Tw is

expected to increase the range of applicability of the Rotta scheme for a wider range of Rif.

The bulk analysis reveals under what conditions a linear Rotta model is compatible with the properties of an

idealized ASL flow described by Equations 1 and 2, given ASL measurements of Figure 2. The linear Rotta

model (i) should have a Rif‐dependent Rotta constant and (ii) cannot satisfy mildly unstable ASL anisotropy

for the idealized flow conditions considered here when using literature‐based rapid‐distortion constants. We

again stress that these conclusions are valid given the idealized flow conditions considered here, which

might not be entirely valid as flow instability increases, and as other terms become important in the TKE

and vertical velocity variance budgets. However, maintaining this simplified budget allows performing a

scale‐by‐scale analysis to determine the eddies contributing to the variability in CR for the restricted range

in Rif covered here.

3. Spectral Analysis

The Rw analysis and its representation using a Rotta‐like closure is now extended scale by scale using a spec-

tral model. The streamwise TKE [eϕðkÞ] and vertical velocity [eFwwðkÞ] spectra as a function of the streamwise

wave number k are considered with normalizing properties e¼

Z ∞

0

eϕðkÞdk and σ2w ¼

Z ∞

0

eFwwðkÞdk. At very

high Reynolds number, a spectral budget foreFwwðkÞ formulated for eddies in the energy‐containing subrange

(where anisotropy is large) and inertial subrange (where an isotropic state is approached) is given by Tchen

(1953, 1954) and Panchev (1971), as

1

2

∂eFwwðkÞ

∂t
¼ 0¼ eBðkÞþeRwðkÞ−eTðkÞ: (7)

This budget reflects a balance between scalewise buoyancy production/destruction (eB, with
Z ∞

0

eBðkÞdk ¼ B),

velocity‐pressure correlation source/sink (eRw , with

Z ∞

0

eRwðkÞdk ¼ Rw ), and nonlinear transfer of energy

across scales (eT , with
Z ∞

0

eTðkÞdk¼ 0), positive over the range of scales considered (i.e., a sink in the above

budget). The viscous dissipation term (eϵ ¼ 2νk2eFwwðkÞwhere ν is the kinematic viscosity) is ignored relative

to the transfer term in the production‐to‐inertial eddy sizes. This assumption is likely to hold at very high

Reynolds number when kη<<1, where η=(ν3/ϵ)1/4 is the Kolmogorov microscale (Pope, 2000). Finally, as

in the bulk analysis, vertical turbulent flux transport terms are neglected.

Upon integrating Equation 7 over all scales, which requires including eϵ in the budget for small scales (for

k∼η−1), Equation 1 is recovered (since

Z ∞

0

eϵðkÞdk ¼ ϵ). For the energy‐containing and inertial subrange

scales considered here, whereeϵ is neglected, the nonlinear transfer term eT plays a similar role to the dissipa-

tion. The sign of the pressure‐strain correlation thus depends on the magnitude of eB relative to eT : When the

buoyancy term eB exceeds the nonlinear transfer term eT (allowed only for unstable conditions, where eB > 0),

the pressure‐strain correlation should become a sink in the eFww spectral budget (eRw < 0). We ask now
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whether this requirement is compatible with a linear Rotta model for the pressure‐strain term in the spectral

domain. To answer this question, models for the terms in the spectral budget are required.

3.1. Linear Rotta Model Forced by Idealized ASL Spectra

The state‐of‐the‐science spectral Rotta models (e.g., Besnard et al., 1996; Katul et al., 2013) are conceptually

the scale‐wise counterparts of the bulk Rotta model (Equation 4). If extended to include rapid‐distortion cor-

rections, such spectral Rotta models are given as

eR w
ðkÞ ¼−

eCR

eτ ðkÞ eFwwðkÞ−
2

3
eϕðkÞ

� �
þ αPePmðkÞ−βBeBðkÞ

¼−
eCR

eτ ðkÞeϕðkÞer þ αPeP
m
ðkÞ−βBeBðkÞ;

(8)

where eCR is a (spectral) Rotta coefficient, erðkÞ ¼ eFwwðkÞ=eϕðkÞ−ð2=3Þ is the spectral anisotropy, and eτ is

now a scale‐dependent turbulence relaxation time scale for which different models have been proposed.

To maintain links to prior work (Katul et al., 2013), we selected a eτ ¼ ϵ−1=3k−2=3 (following Bos et al.,

2004). The first rapid distortion correction requires the modeling of a spectral mechanical production

ePm (such that Pm ¼

Z ∞

0

ePmðkÞdk). We drop the details about rapid‐distortion corrections in the equations

within the main text and elaborate on them only in Appendix C and in Figure 5.

Closing the spectral budget requires an analytical expression of spectral anisotropy, which results from

choosing idealized expressions for eFww and eϕ based on measurements. Figures 3a and 3b show measured

spectra eϕ and eFww in an open channel experiment (Katul et al., 2012), over an ice sheet (Cava et al., 2001),

grass (Katul et al., 1997), a pine forest (Katul et al., 1999), and a hardwood forest (Katul et al., 1997).

Measurements are for near‐neutral conditions and for runs where stationary conditions prevailed over

extended periods of time.

In agreement with those measurements and earlier work (Banerjee et al., 2015; Grachev et al., 2013;

Højstrup, 1982; Kader & Yaglom, 1991; Kaimal, 1978; Kaimal et al., 1972; Katul et al., 2012), only idea-

lized spectral shapes featured in Figure 3c are considered for analytical tractability. These spectra consist

of two regimes separated by a transition wave number kp (vertical line in Figure 3c): (i) the inertial sub-

range for k>kp, where eϕðkÞ ¼ C0ϵ
2=3k−5=3 and eFww ¼ Cwwϵ

2=3k−5=3 (Kolmogorov, 1941), and (ii) the

energy‐containing range for k≤kp, where eϕðkÞ ¼ C0ϵ
2=3k−2=3p k−1 and eFwwðkÞ ¼ Cwwϵ

2=3k−5=3p k0 (to ensure

continuous spectra). The transition wave number is inversely proportional to the measurement height

and depends on stability as indicated in Appendix A (Fortuniak & Pawlak, 2015; Kaimal et al., 1972).

The spectral constants for boundary layers are taken from Saddoughi and Veeravalli (1994) and are given

as C0=(33/55)CK and Cww=(24/55)CK, with CK=1.55 being the Kolmogorov constant (used for

three‐dimensional spectra). For highly unstable or stable conditions (not discussed here), these idealized

spectral shapes do not hold. However, as long as these shapes exhibit power laws with negative expo-

nents for k/kp<1, the findings presented below do not qualitatively change (discussed later on).

The resulting turbulent motions are nearly isotropic in the inertial subrange (er ¼ 0 for k>kp) and anisotropic

in the energy‐containing subrange, with vertical motions having less energy than horizontal motions (er < 0

for k<kp). Returning to Equation 8, this indicates that in the energy‐containing range, the Rotta model pre-

dicts a source pressure‐strain term (eRw > 0). Thus, in the energy‐containing range, the ability of the Rotta

model to satisfy the spectral budget is conditioned on the relative value of the buoyancy and the nonlinear

transfer term, described below. The inertial subrange, where the return‐to‐isotropy term is almost zero, is

not considered.

In the rest of the analysis, the wave number k is normalized by kp and spectral quantities by powers of ϵ,

which leads to an elegant interpretation of the results, independently of variations of kp and ϵ. Note however

that the idealized spectra depend on stability due to the stability‐dependence of both kp (Fortuniak &

Pawlak, 2015; Kaimal et al., 1972) and ϵ, which, from Equation 2, can be expressed as ϵ=Pm(1−Rif).
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3.2. Nonlinear and Buoyancy Terms

In the following, a cospectral model for the buoyancy termeBmatching several ASL experiments (Katul et al.,

2014; Li et al., 2015) is used. It is expressed as a function of the cospectrum of density‐velocity fluctuations.

For the nonlinear transfer term eT, different models have been proposed (e.g., Heisenberg, 1948; Leith, 1967;

Obukhov, 1941). In the following, the Heisenberg model (Heisenberg, 1948) is used for illustration to be con-

sistent with prior work (Katul et al., 2012). It represents eT as resulting from the action of the viscosity of

small‐scale eddies on large‐scale eddies and depends on one constant, the Heisenberg constant CH. Upon

choosing the idealized spectra presented above, eB and eT depend only on the flux Richardson number and

the relative wave number k/kp. Details can be found in Appendix B (Equations B2 and B5 for the buoyancy

and nonlinear transfer models, respectively), and the resulting normalized spectral budget is shown in

Figure 4 (Equation B11).

Figures 4a–4c show the terms in the spectral eFww budget (Equation 7) as a function of the relative scale for

different stability conditions. The buoyancy term eB (dashed line) is a scale‐independent sink for stable con-

ditions (Figure 4a) and source for increasing unstable conditions (Figures 4b and 4c). The nonlinear transfer

term eT (dashed line) increases with increasing k/kp in the energy containing range and is independent of

stability when normalized and plotted as a function of k/kp. So is the pressure‐strain correlation term eRww

with a Rotta constant eCR ¼ 0:9, which decreases with increasing k/kp, consistent with a decreasing aniso-

tropy as the isotropic inertial subrange is approached. As mentioned earlier, rapid distortion corrections

are not considered here.

Figure 3. (a, b) Measured streamwise spectra of (a) TKE (~ϕðkÞ) (b) vertical velocity (~Fww) for a near‐neutral atmosphere over different terrains, as a function of the

relative wave number k/kp. Spectra have been computed using orthonormal wavelet transforms. (c) Idealized spectra matching measurements, as a

function of the relative wave number k/kp. All spectra are normalized by ϵ
2/3. The vertical line in (c) is the threshold below which ~FwwðkÞ is smaller

than (2/3)~ϕ. The shaded area in (c) is the range of scales where deviations from single‐exponent power laws in the measured spectra are evident,
presumably due to eddies associated with large or very large scale motion (LSM and VLSM). The simplified canonical shapes considered here do not

include them. Note that, when written in dimensional form, those spectra are stability‐dependent due both to variations of ϵ and kp with Rif.
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The imbalance in the eFww spectral budget cannot be canceled at all scales with such a scale‐independent

choice of Rotta constant (red line in Figures 4a–4c). The scale‐by‐scale analysis is now further extended

by allowing the Rotta constant to be scale and stratification dependent so as to satisfy the spectral budget.

4. Scale‐Dependent Rotta Constant

As with the bulk analysis, we asked the question of whether or not a linear Rotta model is compatible with

the spectral budget (7), given the idealized spectral model presented in section 3.1 (based on observations for

mildly stable and unstable conditions). As found above, a linear Rotta model cannot satisfy the spectral bal-

ance (7) over the entire energy‐containing wave number range when eCR is scale independent. However, it

can be satisfied in a limited range of wave numbers if eCR is allowed to depend on scale and stability.

From Equations 7 and 8, and using idealized spectra described in section 3.1, a scale‐ and

stability‐dependent Rotta constant needed to maintain the spectral balance can be derived and is given as

eCRðk=kp; Rif Þ ¼ er k=kp
� �	 


−1 1þ ½eA1ðk=kpÞ−1�Rif
Rif − 1

( )
eA2 k=kp
� �

: (9)

Functions Ã1 and Ã2 depend on the normalized nonlinear transfer term kpeT=ϵ and on the time scale eτ. For
the Rotta time scale selected here, they are given as

eA1ðk=kpÞ ¼
4

7

kpeT
ϵ

ðk=kpÞ

" #
−1

; eA2ðk=kpÞ ¼ C−10

k

kp

� �1=3 kpeT
ϵ

ðk=kpÞ; (10)

where the normalized nonlinear transfer term reads, when modeled with the Heisenberg model,

kpeT
ϵ

ðk=kpÞ ¼ 2CHC
1=2
0 Cww

2

3

k

kp
−

1

4

k

kp

� �2
" #

: (11)

Figure 4. Normalized terms (black) in the spectral budget (7) and residual imbalance (red) as a function of k/kp for
different values of the flux Richardson number Rif. In (a)–(c) the Rotta constant in the pressure‐strain correlation
term is fixed at a constant value of 0.9. In (d)–(f) the Rotta constant evolves with stratification and scale, following
Equation 9. The shaded area is where no positive Rotta constant is admitted since the buoyancy source term
exceeds the nonlinear transfer sink term. The details of the budget can be found in Appendix B. In this
figure, rapid‐distortion corrections to the Rotta model are not included (αP=βB=0).
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The Heisenberg constant CH is set to ð8=9ÞC−3=20 to recover the TKE spec-

tral properties under neutral conditions (Banerjee & Katul, 2013). Details

about the derivation of Equations 9–11 are in Appendix C, which also con-

tains a general expression of eCR when rapid‐distortion terms are included

in the spectral Rottamodel (Equation C14). Note that, in the above expres-

sions, the scale parameter is implicitly stability‐dependent through the

stability dependence of kp.

Figures 4d–4f show the terms of the eFww spectral balance with the

pressure‐strain term parametrized by means of a scale‐ and

stability‐dependent Rotta constant (Equation 9). For stable stratification

(Figure 4d), the balance is satisfied at all scales (the red line is uniformly

zero). With increased instability (Figures 4e and 4f), the dynamic eCRðkÞ

model cannot guarantee a positive Rotta constant at large scales (or small

k/kp) because the redistribution model can no longer predict the sign of

the energy exchanges: for scales large enough (shaded area), the buoyancy

source term exceeds the nonlinear transfer sink term, and hence, the

pressure‐strain term is expected to change sign to maintain a scalewise

balance. From Equation 8, this implies a negative Rotta constant given

that the sign of the anisotropy factor is constant (and negative) in the

energy‐containing range. The range of scales over which the Rotta con-

stant is negative increases with increasing instability (i.e., for k/kp<0.1

and k/kp<0.4 in Figures 4c and 4d, respectively). Similar to the bulk analysis, the spectral model reveals that,

for the idealized flow conditions described in Figure 3c (and based on measurements), (i) a scale‐ and

stability‐dependent Rotta constant is required to close the spectral budget and that (ii) below a critical wave

number, a linear Rotta model fails to predict the correct sign of the pressure‐strain correlation term.

The scale‐by‐scale picture is however more refined. It reveals that for stability conditions over which the

bulk Rotta model fails to predict the correct sign of the pressure‐strain correlation term (for Rif<−0.5, see

Figure 1b), its spectral counterpart is still valid, but over a limited range of scales. This behavior is summar-

ized in Figure 5, which shows the increase of the region over which Rotta constant is negative as a function

of stability and scale (shaded area, where eCR < 0). The figure also reveals that as the scale increases, the

range of stability conditions over which the Rotta model is not physical increases. This finding indicates that

for larger and more anisotropic eddies, the classical linear Rotta model becomes physically unrealistic.

Accounting for rapid‐distortion terms in the Rotta model (as described in Appendix C1) changes the area

where the Rotta constant is not physical (hatches in Figure 5). However, unlike the bulk case, the area

increases for k/kp<0.4 and decreases for k/kp>0.4. This is a consequence of the antagonist behavior of the

two rapid‐distortion terms, respectively, αPePm and −βBeB (see Equation 8). When the rapid distortion terms

are included in the eFww budget as part of the Rotta model, the first term is an additional source in the budget

(since ePm is a source, as in the bulk model), and the second term acts as an additional sink for unstable con-

ditions (since eB > 0 and βB>0). Hence, at a given scale k/kp, the (negative) threshold Rif below which the

buoyancy source exceeds the nonlinear transfer sink (and hence the slow Rotta term must change sign) is

displaced due to these two additional terms. Whether the threshold Rif increases or decreases depends on

the relative magnitude of αPePm with respect to −βBeB, that is, whether the two additional terms add up as

an additional source or a sink in the budget. This further depends on the relative scale k/kp, since ePm and
eB are both scale dependent. The finding here shows that the spectral behavior of the rapid‐distortion terms

is nontrivial as compared to the bulk case. Choosing rapid‐distortion constants that result in a uncondition-

ally positive Rotta constant (as in the bulk case; Figure 1b), although feasible, is nontrivial and is outside of

the scope of the present work. It would require choosing and validating scale‐dependent models for αP and

βB.

Figure 5 also summarizes the variations of the “optimal”Rotta constant as a function of scale and stability, in

the region where it is positive. Consistent with the bulk analysis, the Rotta constant decreases with

Figure 5. Scalewise Rotta constant ~CR as a function of the relative wave

number k/kp<1 (in the energy‐containing subrange) and the flux

Richardson number Rif, following Equation 9. Dashed line is the

level where ~CR matches its standard value of 0.9. The shaded

region is where no positive ~CR is admitted. The area varies
when rapid‐distortion terms are included in the Rotta model
(hatches), as described in Appendix C.
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increasing instability at a fixed large scale. As the inertial subrange is approached (k/kp→1), the observed

increase in eCR results from anisotropy decreasing to zero, and hence the expression for the Rotta constant

losing physical meaning (i.e., the solution becomes degenerate). However, far enough from this limit (e.g.,

on the left of the dashed line for which eCR ¼ 0:9), the behavior of eCR is physically sound. Figure 5 shows that
eCR decreases with increasing scale. This dependence is identical to the nonlinear transfer term variation with

k/kp, which is predicted to decrease down to zero as large scales are approached (dashed lines in Figure 4). It

can be traced back to functionÃ2 (Equation 10), proportional to the nonlinear transfer term. From a physical

perspective, this link implies that the efficiency of eddies at redistributing energy between the different com-

ponents (C−1R ) is related to their efficiency at transporting energy toward small scales (eT ). Choosing other

models for the nonlinear transfer term does not alter this finding, but it affects variations of eCR with k/kp.

The above analysis relies on turbulence satisfying idealized spectral budgets with a prescribed form of the

spectra and their variation with stability (through ϵ and kp). Those spectra are limited by several factors.

At large scales (k<10−1kp), the measured spectra start deviating from the idealized −1 or 0 power laws

(Figures 3a and 3b). For simplicity, this effect is neglected, but its inclusion does not qualitatively change

the findings here. In the energy‐containing range, the −1 power law of the TKE spectra has been a subject

of debate due to differences and uncertainties in the measurements at this range of scales and possible influ-

ence of stability and the use of Taylor's frozen turbulence hypothesis (Banerjee et al., 2015; Drobinski et al.,

2007; Katul & Chu, 1998; Marusic et al., 2010; Morrison et al., 2002; Nickels et al., 2005; Nikora, 1999). Again,

the results here are not significantly dependent on the choice of the power law for eϕ as long as it is smaller

than 0. The general expression of eCR presented in Appendix C is also independent of the choice of the power

law. As instability increases, the −1 power law describing the large‐scale TKE spectrum begins to migrate

toward a −5/3 exponent as evidenced by a number of ASL experiments (Banerjee et al., 2015; Kader &

Yaglom, 1991). In fact, for strongly unstable (near convective) cases (not considered here), measurements

(Kader & Yaglom, 1991) further suggest that the spectra of TKE and w can be almost discontinuous at the

transition wave number kp. These spectra exhibit a −5/3 law at large scales with a discontinuity, followed

by another−5/3 regime associated with Kolmogorov scaling. Hence, in those situations anisotropyer changes
sign, with more energy in the vertical than in the horizontal turbulent components. Finally, additional terms

could partly explain the inconsistency of the spectral Rotta model revealed by the above analysis. As for the

bulk case, inclusion of vertical transport of turbulence in the eFww spectral budget can act as an additional

sink. Given that the bulk transport terms are small for the mildly unstable conditions considered here, inclu-

sion of their effect will not qualitatively change the above analysis, except perhaps above roughness

sublayers (Freire et al., 2019).

5. Conclusion

This work analyzed the implications of using linear return‐to‐isotropy models of the pressure‐strain correla-

tion (or simply Rotta models) to describe planar‐homogeneous and stationary boundary layer turbulence for

mildly stable to mildly unstable conditions. The flow was analyzed by combining TKE and vertical velocity

variance budgets representing the bulk and scale‐by‐scale properties of turbulence. The analysis required

estimates of turbulence anisotropy as well as spectral shapes. Those were externally supplied from measure-

ments in the ASL for which a rich literature on both velocity spectral shapes and bulk anisotropy variations,

along with their dependence with flow instability, is available. The analysis revealed two inconsistencies

when using a linear Rotta model to describe return to isotropy for the idealized flow conditions described

by those measurements. The first is that for some stability conditions and eddy sizes, the Rotta model is

not physical. It should thus be amended by other processes beyond a linear return to isotropy such as quad-

ratic dependencies on anisotropy. The second is that, to satisfy the two aforementioned budgets outside of

the nonphysical range, the Rotta constant should depend on stability and scale. Both results are sensitive

to the balance considered. In particular, the relative importance of the vertical flux transport by turbulence

terms, which were neglected in the present study, cannot be overlooked for stratified ASL flow conditions.

The work here has also remained “silent” on another anisotropy‐producing mechanism, which is likely to

be of significance in the sublayers below the ASL. This mechanism is labeled “wall‐blocking” effect because

the presence of an impervious boundary dampens w′, which, in turn, is sensed everywhere in the domain by
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p′, the pressure perturbation. Classical closure theories accommodate this effect as a new term in the Rotta

return‐to‐isotropy scheme (or its spectral version) as discussed elsewhere (McColl et al., 2016). In

smooth‐wall boundary layers, wall blocking appeared to be minor in the absence of stratification for the

log region. However, the interplay between wall blocking and density stratification has not been explicitly

considered and remains a research topic better kept for the future.

Appendix A: Anisotropy According to Monin‐Obukhov Similarity Functions
In the ASL, stability dependence of bulk flow statistics and spectral properties are routinely analyzed in the

context of Monin‐Obukhov Similarity Theory (MOST Foken, 2006; Monin & Obukhov, 1954). From

dimensional arguments, dimensionless turbulent fluctuations and shear should depend only on a dimen-

sionless stability parameter ζ=z/L (negative for unstable and positive for stable stratification), where z is

the distance from the boundary (or displacement height) and L is the Obukhov length, and on the boundary

layer height, zi.

Numerous ASL measurements (e.g., Sorbjan, 1989, Table 4.2) have provided the following expressions for

dimensionless shear

ϕmðζÞ ¼
κz

ð−u′w′Þ1=2
dU

dz
¼

1þ 4:7ζ if ζ ≥ 0

1 − 15ζð Þ−1=4 if ζ < 0

(
; (A1)

dimensionless vertical velocity standard deviation

ϕwðζ Þ ¼
σw

ð−u′w′Þ1=2
¼

1:25 if ζ ≥ 0

1:25ð1 − 3ζ Þ1=3 if ζ < 0

(
; (A2)

and dimensionless horizontal velocity standard deviation

ϕuh
ζ ;

zi
z

� �
¼

u′hu
′

h

−u′w′

 !1=2

¼

2:28 if ζ ≥ 0

12 − 0:5
zi
z
ζ

� �1=3
if ζ < 0

8
><
>:

; (A3)

where κ=0.4 is the von Kármán constant and uh is either u or v. Finally, the flux Richardson number and

the stability parameter are linked through Rif=ζ/ϕm(ζ).

Figure 2 shows anisotropy

r ¼
ϕ2
w

ð1=2Þðϕ2
w þ ϕ2

u þ ϕ2
vÞ
−

2

3
(A4)

computed for the aforementioned dimensionless functions as a function of the flux Richardson number

and the relative boundary layer height. For the range of stability conditions investigated in the present

work (Rif>−5), which exclude the free convection limit, Figure 2 shows that the anisotropy ratio is always

negative. This indicates that more energy is concentrated in the horizontal than in the vertical turbulent

components. In the main text, the boundary layer height is set to be 103 times higher than the measure-

ment height. The sign of the anisotropy ratio is not sensitive to the choice of the boundary layer height

(not shown).

Finally, as an illustration, we show below an example of a model of kp from the Kansas experiment (Kaimal

& Finnigan, 1994):
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zkkpðζÞ ¼

ζ ; ζ > 2

1:1þ 0:45ζ ; 1 < ζ ≤ 2

0:55þ ζ ; 0 ≤ ζ ≤ 1

0:55þ 0:38ζ ; −1 ≤ ζ < 0

0:17; ζ < −1

8
>>>>>><
>>>>>>:

: (A5)

Note however that the results of the main text are all expressed as a function of k/kp and are hence indepen-

dent of a particular model of kp.

Appendix B: Details on the Spectral Budget

At very high Reynolds number, a spectral budget for eFwwðkÞ formulated for large and inertial subrange

eddies follows from Tchen (1953, 1954) and Panchev (1971) and is given by

1

2

∂eFwwðkÞ

∂t
¼ 0¼ eBðkÞþeRwðkÞ−eTðkÞ: (B1)

Details on the different terms of this budget are now provided. The model for the pressure‐strain term eR is

presented in Equation 8.

For the ASL with an isobaric approximation, the buoyancy source/sink termeB is related to the cospectrum of

temperature fluctuations eFwT as

eBðkÞ ¼− g

T
eFwTðkÞ; (B2)

where the cospectrum has the normalizing property w′T ′ ¼

Z ∞

0

eFwTðkÞdk. Katul et al. (2014) and Li et al.

(2015) proposed a cospectrum matching both a theoretical spectral budget and ASL measurements, of the

form eFwTðkÞ ¼ CwTϵ
1=3dT

dz
k−7=3 for k≥kp and eFwTðkÞ ¼ CwTϵ

1=3dT

dz
k−7=3p for k≤kp. The transition wave num-

ber kp between the energy‐containing and the inertial subranges is proportional to the measurement

height and changes slightly with stratification (Fortuniak & Pawlak, 2015; Kaimal et al., 1972). The spec-

tral constant reads CwT=CuwQ(ζ) with

QðζÞ ¼ 1 −
CTζ

ð1 − C1TÞC0ðϕm − ζÞ
; (B3)

C0=0.9, CT=0.8, C1T=3/5 (Katul et al., 2014), and ζ the stability parameter defined in Appendix A.

The nonlinear transfer term eT is represented using the Heisenberg model (Heisenberg, 1948), to be consis-

tent with the models of the buoyancy and Rotta terms (as explained in the main text). Within this spectral

approach of turbulence, developed by Heisenberg (1948) and Tchen (1953, 1954) (and summarized in

Panchev, 1971, pp. 203–224), what is described is an integrated spectral budget, obtained by integration of

Equation B1 over streamwise wave numbers between k and ∞. This results in an equation describing the

spectral balance for a particular wavelength k, the lower limit of the integral. What is then modeled is fW ,

the integral of the nonlinear transfer term,

fW ðkÞ ¼

Z ∞

k

eT ðpÞdp; (B4)

and hence eT ðkÞ ¼− d

dk
fW ðkÞ. Following Heisenberg (1948), fW is modeled as resulting from the action of

viscosity generated by eddies of wavelength greater than k on eddies of wavelength smaller than k
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fW ðkÞ ¼−2CH

Z ∞

k

eϕðpÞ
p3

 !1=2

dp

Z k

0
p2eFwwðpÞdp; (B5)

where CH ¼ ð8=9ÞC−3=20 for consistency with Kolmogorov scaling in the inertial range (Banerjee & Katul,

2013; Schumann, 1994). Since fW models the nonlinear energy transfer in the vertical component of tur-

bulence, enstrophy (the second factor) is here computed from eFww (and not from the TKE spectrum eϕ
as in Panchev, 1971, where the transfer term was computed for the TKE spectral budget).

Expressions of the terms of the spectral budget in the energy‐containing range (k≤kp) are presented for idea-

lized spectraeϕðkÞ and eFwwðkÞpresented in the main text (and drawn in Figure 3c). First, the nonlinear trans-

fer term reads, from derivation of (B5) with respect to k,

eTðkÞ ¼ 2CHC
1=2
0 Cwwk

−1
p ϵ

2

3

k

kp
−

1

4

k

kp

� �2
" #

: (B6)

Second, the pressure‐strain term following the Rottamodel without rapid‐distortion corrections (Equation 8,

with αP=βB=0) reads

eRw ¼−C1=2
0 CRϵk

−1
p

k

kp

� �2=3

Cww −
2

3
C0

kp
k

� �
: (B7)

Finally, using the idealized eFwT cospectra presented above, the spectral buoyancy term can be rewritten as a

function of the flux Richardson number. This results from the bulk buoyancy B being expressed as a function

of (i) the spectral buoyancy term

B¼−
g

T

Z ∞

0

eF
wT

ðpÞdp

¼−
7

4
ϵ1=3CwT

g

T

dT

dz
k−4=3p

¼
7

4
kpeB

ðkÞ; k ≤ kp; (B8)

and (ii) TKE dissipation, using the bulk TKE budget (Equation 2)

B¼ ϵ
Rif

1 − Rif
: (B9)

This yields

eB ¼
4

7
ϵ k−1p

Rif
Rif − 1

; k ≤ kp: (B10)

The spectral budget (B1) (or Equation 7) normalized by ϵk−1p thus reads

4

7

Rif
Rif − 1

− C1=2
0 CR Cww

k

kp
−

2

3
C0

� �
− 2CHC

1=2
0 Cww

2

3

k

kp
−

1

4

k

kp

� �2
" #

¼ 0; (B11)

a balance between (from left to right) dimensionless buoyancy, energy redistribution, and nonlinear trans-

fer of energy across scales. The terms have been normalized by ϵk−1p and are plotted in Figure 4. As already

mentioned above, we again stress that, in this budget, rapid‐distortion corrections have not been included

in the Rotta model of the energy redistribution term.
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Appendix C: General Derivation of the Scale‐ and Stratification‐Dependent
Rotta Constant
This section presents the steps leading to a generalized form of Equation 9, valid for different choices of time

scales and nonlinear transfer models, and including rapid‐distortion corrections to the Rotta model.

The spectral Rotta models considered in the literature (Bos et al., 2004; Katul et al., 2013) only contain a slow

component. In this work, the spectral Rotta model is generalized by adding rapid distortion terms on the

basis of the bulk model of Canuto et al. (2001), such that

eRw ¼−
eCR

eτ
eFww −

2

3
eϕ

� �
þ αPePm − βBeB; (C1)

where αP and βB are set to their bulk values of 0.225 and 0.35, respectively.

The scalewise production term ePm is obtained from a spectral balance for TKE (e.g., Tchen, 1953), which for

stationary and planar‐homogeneous flow at high Reynolds number in the absence of subsidence reads

∂eϕ
∂t

¼ 0¼ ePm þ eB − eT ϕ: (C2)

Hence, the nonlinear Rotta scheme model reads

eRw ¼−
eCR

eτ
eFww −

2

3
eϕ

� �
þ αPðeT ϕ −

eBÞ−βBeB: (C3)

The nonlinear transfer term eT ϕ is computed using a Heisenberg viscosity approach (see Appendix B for its

application to the vertical velocity spectral budget; Heisenberg, 1948). Heisenberg (1948) and Tchen

(1953,1954) model the terms of an integrated spectral budget, derived by integrating Equation C2 between

k and ∞. The nonlinear transfer term in the resulting equation

fW ϕðkÞ ¼

Z ∞

k

eT ϕðpÞdp (C4)

is then modeled as resulting from the action of viscosity of eddies of wavelength greater than k on eddies

of wavelength smaller than k, that is,

~W ϕ kð Þ ¼−2CH

Z ∞

k

~ϕðpÞ

p3

1=2

dp

Z k

0
p2~ϕ pð Þdp; (C5)

whereCH ¼ ð8=9ÞC−3=20 . The idealized TKE spectrum presented in Figure 3 yields the following form of the

nonlinear transfer term eTϕðkÞ ¼−
d

dk
fW ϕðkÞ for k≤kp,

eTϕðk; ηÞ ¼ 2CHC
3=2
0

2

4
−

1

4

k

kp

� �
ϵk−1p : (C6)

The time scale eτ is usually assumed to be k dependent and to depend only on inertial range variables (ϵ,

conserved across the cascade, k and kp) in conventional spectral models (e.g., Besnard et al., 1996; Katul

et al., 2013; Panchev, 1971). From dimensional considerations, its general form in the energy‐containing

range (k≤kp) is

eτðkÞ ∝ ϵ−1=3k−2=3p

k

kp

� �m

¼ eϕðkÞAτϵ
−1kp

k

kp

� �m − a

(C7)

with eϕðkÞ ¼ C0ϵ
2=3k−5=3 − a

p ka the TKE spectrum of slope a, C0 is the Kolmogorov constant, and m and Aτ

depend on the model used for the time scale. For a TKE spectrum with a=−1, the time scale eτ ¼ ϵ−1=3
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k−2=3 (used in the following Bos et al., 2004; Katul et al., 2013) corresponds to m=−2/3 and Aτ ¼ C−10 ,

while other estimates of the time scale, for example, eτ ¼ k−3=2eϕ−1=2 (Besnard et al., 1996), correspond to

m=−1 and Aτ ¼ C−3=20 .

Using the Rotta model (C3) and the time scale (C7), the eFww spectral budget can be solved for eCR, yielding

eCR ¼er−1 −1þ ð1 − βBÞ−αP½ �
eB
eT
þ αP

eTϕ

eT

( )
eT
ϵ
Aτk

1 − m þ a
p km − a: (C8)

Evaluation of Equation C8 requires an expression for the ratio eB=eT . We now show that, regardless of the

choosen model for the nonlinear transfer of energy across scales (eT ), this ratio reads

eB
eT

¼ eA1
Rif

Rif − 1
: (C9)

The constant eA1 depends on the model and is given below. Different models for the nonlinear transfer term

(Heisenberg, 1948; Leith, 1967; Obukhov, 1941) all assume that it depends on the TKE spectrum and hence

should depend only on k, kp, and ϵ. Dimensional considerations then yield that

eT ¼ eBNLϵk
−1
p ; (C10)

where eBNL depends only on k/kp. For the Heisenberg (1948) model (Equation B6), used in the following, it

reads

eBNL ¼ 2CHC
1=2
0 Cww

2

3

k

kp
−

1

4

k

kp

� �2
" #

: (C11)

In the general case, dividing the expression of the buoyancy term derived in Appendix B (Equation B10)

eB ¼
4

7
ϵk−1p

Rif
Rif − 1

; k ≤ kp; (C12)

by Equation C10, yields Equation C9 with

eA1 ¼
4

7
ϵeT−1k−1p ¼

4

7
eB−1

NL: (C13)

By using (C9) in Equation C8, we obtain the generalized expression of the Rotta constant

eCR ¼er−1
1þ ½ð1 − βB − αPÞeA1 − 1�Rif

Rif − 1
þ αP

eTϕ

eT

( )
eA2; (C14)

where, using (C13),

~A2 ¼Aτk
1 − m þ a
p km − a

eT
ϵ
¼Aτk

−m þ a
p km − aeBNL: (C15)

If the Heisenberg model is used for eT and eTϕ (Equations B6 and C6), their ratio reads

eTϕ

eT
¼ C0C

−1
ww

2

4
−

1

4

k

kp

� �

2

3

k

kp
−

1

4
k
kp

� �2� �: (C16)
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Equation C14 reduces to Equation 9 when rapid‐distortion terms are dropped (αP=βB=0) and when, in the

evaluation of eA1 and eA2, the Heisenberg (1948) and Katul et al. (2013) models are used for the nonlinear

transfer term and the Rotta time scale, respectively, which yields

~A1
k

kp

� �
¼
2

7
C−1H C−1=20 C−1ww

2

3

k

kp
−

1

4

k

kp

� �2
" #

−1

~A2
k

kp

� �
¼ 2CHC

−1=2
0 Cww

2

3

k

kp
−

1

4

k

kp

� �2
" #

k

kp

� �1=3

:

(C17)
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Brest, France
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Abstract

In the atmospheric surface layer (ASL), a characteristic wavelength marking the limit
between energy-containing and inertial subrange scales can be defined from the verti-
cal velocity spectrum. This wavelength is related to the integral length scale of turbu-
lence, used in turbulence closure approaches for the ASL. The scaling laws describing
the displacement of this wavelength with changes in atmospheric stability have eluded
theoretical treatment and are considered here. Two derivations are proposed for mildly
unstable to mildly stable ASL flows - one that only makes use of normalizing constraints
on the vertical velocity variance along with idealized spectral shapes featuring produc-
tion to inertial subrange regimes, while another utilizes a co-spectral budget with a return-
to-isotropy closure. The expressions agree with field experiments and permit inference
of the variations of the wavelength with atmospheric stability. This methodology offers
a new perspective for numerical and theoretical modelling of ASL flows and for exper-
imental design.

Plain Language Summary

Turbulent flows in the atmosphere are composed of a large number of eddies whose
sizes vary from kilometers to fractions of millimeters. The energy content in the verti-
cal direction associated with each eddy size dictates the overall ability of turbulent mo-
tion to mix and transport particles (such as seeds, pollen, or spores), gases (such as car-
bon dioxide, ozone, methane, isoprene, etc...), energy (such as latent and sensible heat)
and momentum from or to the underlying surface. Despite this multiplicity of eddy sizes,
numerous experiments and simulation studies have shown that an effective or dominant
eddy size may be sufficient to represent the overall mixing and transport properties of
turbulent flows. This finding is a corner-stone to representing the effects of turbulence
on transport in Numerical Weather Prediction models. The work here explores how sur-
face heating or cooling (i.e. near-surface atmospheric stability) regulates this dominant
or effective eddy size. The derivation makes use of well-established constraints on the
overall turbulent kinetic energy in the vertical direction, and highlights the parameters
dictating this regulation.

1 Introduction

Close to the ground, in the so-called Atmospheric Surface Layer (ASL), shear and
buoyancy forces impact many flow statistics including the distribution of turbulent ki-
netic energy among eddy sizes (Kaimal & Finnigan, 1994). This is apparent in the spec-
trum of the vertical velocity Eww(k) (k is the streamwise wavenumber related to an in-
verse eddy size) which exhibits a two-regime behaviour, valid for a mildly stable to un-
stable atmosphere (Kaimal & Finnigan, 1994; Wyngaard, 2010, pages 42 and 216 respec-
tively, and references therein). This behaviour is exemplified in Figure 1a for flows above
several surfaces and a near-neutral stratification. At large k (small scales), Eww(k) fol-
lows an approximate k−5/3 law predicted by Kolmogorov’s theory (Kolmogorov, 1941)
for locally homogeneous and isotropic turbulence (the inertial subrange). For low k (in
the so-called production subrange), Eww(k) follows an approximate k0 law, presumed
to occur because the surface leads to ‘splashing’ (redistribution) of energy across scales
(see, e.g., Hoxey & Richards, 1992; Hunt & Carlotti, 2001; Ayet, Katul, et al., 2020).

A key variable in the description of this two-regime behavior, and hence of the near-
surface Eww(k), is the wavenumber kp of the transition between production and iner-
tial subranges. In fact, k−1

p is proportional to the characteristic scale of energy-containing
eddies close to the surface, and to the integral length scale of turbulence (Townsend, 1980;
Katul et al., 2007). As such, its value is needed in closure schemes such as the Mellor-
Yamada scheme (Mellor & Yamada, 1982) used in numerical weather prediction mod-
els and for Large Eddy Simulations. In both cases, an integral length scale (also called
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master length scale) is required (e.g. Mellor & Yamada, 1982; Redelsperger et al., 2001;
Rodier et al., 2017). Furthermore, knowledge of the physics upon which kp depends pro-
vides insights into the energy redistribution mechanisms in the ASL. Indeed kp separates
(small scale) isotropic and (large scale) anisotropic motions, and the difference between
those motions is grounded, among others, in how energy is redistributed among the dif-
ferent turbulent components. In the above-mentioned numerical models, these mecha-
nisms are modelled through return to isotropy closure schemes (Launder et al., 1975; Lum-
ley & Newman, 1977; Abid & Speziale, 1993; Mellor & Yamada, 1982; Cuxart et al., 2000;
Canuto et al., 2001; Drobinski et al., 2007), whose validity has been recently questioned
for a sheared and stratified ASL (Ayet, Katul, et al., 2020).

Finally, knowledge of the transition wavenumber is also essential for other geophys-
ical applications involving Eww(k). Two examples are singled out: the first is the deter-
mination of the effectiveness of the vertical dispersion of scalars, or Lagrangian stochas-
tic modelling of turbulence, which both rely on the vertical velocity variance σ2

w =
∫

∞

0
Eww(k)dk

(e.g. Taylor, 1922) along with a characteristic length or time scale. The second exam-
ple are co-spectral budgets and related phenomenological models describing turbulent
momentum transport in the ASL (Gioia et al., 2010; Katul et al., 2011, 2014). In those
models, the vertical velocity spectrum is prescribed under an idealized form, and the value
of the transition wavenumber is key to recover the flow statistics over a flat wall (Katul
et al., 2011, 2013, 2014), a rough channel (Bonetti et al., 2017) or ocean surface waves
(Ayet, Chapron, et al., 2020).

For the neutral conditions of Figure 1, the transition wavenumber kp is expected
to scale as 1/z, where z is the distance from the surface, due to energy-containing ed-
dies being attached to the latter (Townsend, 1980). This is exemplified in Figure 1b,
in which kp can be determined as the wavenumber of the peak of the so-called “premul-
tiplied spectrum” kE(k). The decade of values spanned by the neutral kp (grey shad-
ings in Figure 1b) shows that there remains uncertainties about the exact value of the
proportionality coefficient. The exact value depends, among others, on the geometrical
properties of the surface.

In this contribution, this uncertainty is not the main focus. What is sought are vari-
ations of the transition wavenumber with shear and buoyancy forces, whose ratio is re-
lated to the atmospheric stability parameter. Indeed, starting from the historical Kansas
and Minnesota experiments, measurements have revealed robust variations of kp with
atmospheric stability (see e.g. Figure 4 of Kaimal et al., 1972). Those relative variations
of kp with respect to its neutral value are key for the applications cited above, since they
determine how the various ASL turbulent processes are influenced by the presence of buoy-
ancy (e.g. the energy redistribution mechanisms, see Bou-Zeid et al., 2018; Ayet, Katul,
et al., 2020). This is also a first step towards understanding the variations of those pro-
cesses due to other external parameters, e.g. fixed roughness elements (Bonetti et al.,
2017) or ocean surface waves (Ayet, Chapron, et al., 2020). In addition to the aforemen-
tioned applications, the relative variations of kp with stability have been recently used
to explain the shape of the stability correction functions to the log-law mean velocity
profile in stratified atmospheric flows (Katul et al., 2011) with caveats partly associated
with the assumed variations of kp with stability (Li et al., 2016; Salesky et al., 2013).
Undoubtedly, there is a need for expressions that predict the displacement of kp with changes
in atmospheric stability. To date, no theoretical expression explaining this displacement
exists, and this knowledge gap frames the scope of this work.

Two links between the spectral and bulk properties of turbulence are used to pro-
vide a constraint on kp and its variation with the dimensionless stability parameter for
mildly stable and unstable conditions (those exclude free convective and very stable con-
ditions where turbulence may be patchy). The expressions derived provide means of es-
timating the transition wavenumber from bulk quantities of the flow in the ASL. These
are then tested with published data sets collected in the ASL (including the weighty Kansas
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Figure 1. Illustrative figure showing the existence of a transition wavenumber in the near-

neutral ASL. (a) Normalized vertical velocity spectra and (b) its premultiplied version (i.e. multi-

plied by k) as a function of the normalized wavenumber. In the normalization factor ǫ2/3z5/3, ǫ is

the TKE dissipation rate and z is the measurement height. In (a) dashed lines show the existence

of two regimes, separated by a transition wavenumber kp, apparent in (b) where it spans one

decade around 1/z (grey shadings) for the data shown here. The experiments and data sources

span forests, grassland, ice sheets, and canonical smooth-walls. The post-processing and data

sources are described elsewhere (Kaimal et al., 1972; Katul, Hsieh, & Sigmon, 1997; Katul, Hsieh,

Kuhn, et al., 1997; Katul & Chu, 1998; Katul et al., 2012, 2016) and are not repeated here. Only

the Kansas data are used in the rest of the analysis since the other data here are available for

near-neutral conditions only, and are only used to illustrate near-neutral conditions above various

types of surfaces.

and Minnesota experiments). The expressions also explicitly account for the filtering prop-
erties of the instruments, should they be needed.

2 Theory

2.1 Definitions and Nomenclature

A turbulent flow within the ASL is considered with u′, v′, w′, and T ′ defining the
three instantaneous turbulent velocity components in the streamwise (x), cross-stream
(y) and vertical (z) directions and the turbulent air temperature fluctuations. These fluc-
tuations have zero-mean so that u′ = v′ = w′ = T ′ = 0, where overline indicates time
(or ensemble) averaging. Stability dependence of bulk flow statistics and spectral prop-
erties of the ASL are routinely expressed in the context of Monin-Obukhov Similarity
Theory (MOST, Monin & Obukhov, 1954; Foken, 2006). This similarity theory consid-
ers a stationary and planar homogeneous flow without subsidence and turbulent flux trans-
port so that the turbulent kinetic energy (TKE) budget is given by

ǫ = u2

∗

dU

dz
+

g

Ta
w′T ′, (1)

where ǫ is, again, the mean TKE dissipation rate, −u2

∗
= u′w′ is the turbulent momen-

tum flux (u∗ is the friction velocity), w′T ′ is the turbulent sensible heat flux, U is the
mean velocity, Ta is the mean air temperature, and g is the gravitational acceleration.
Equation (1) can also be re-arranged to introduce MOST dimensionless quantities:

ǫ =
u3

∗

κz
[φm(ζ)− ζ] , (2)
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where ζ = z/L is the stability parameter, L = −u3

∗
(κgw′T ′/Ta)

−1 is the Obukhov length,
κ = 0.4 is the von Kármán constant, and φm(ζ) is the so-called stability correction func-
tion for the mean velocity profile, defined below. The ASL is labelled as moderately un-
stable when −2 < ζ < −0.1, near neutral when |ζ| ≤ 0.1, and stable when 0.1 < ζ <
1. Conditions where the ASL is in forced (−5 < ζ < 2) to free (ζ > −5) convection
(Kader & Yaglom, 1990) or very stable conditions (ζ ≥ 1, where the flux Richardson
number reaches a maximum, see Grachev et al., 2013; Katul et al., 2014; Li et al., 2016)
are outside the scope of the present work.

Within MOST, φm(ζ) and the dimensionless vertical velocity variances are

φm(ζ) =
κz

u∗

dU

dz
, φw(ζ) =

σ2

w

u2
∗

, (3a, b)

where σ2

w = w′2. In the following, the analysis is restricted to −2 < ζ < 1. The bal-
ance in Equation (1), as well as the validity of the scaling used for MOST stability cor-
rection functions (φm and φw) are expected to hold for the range of ζ corresponding to
mildly stable to unstable conditions, as demonstrated by a number of ASL experiments
(Charuchittipan & Wilson, 2009; Hsieh & Katul, 1997; Salesky et al., 2013).

2.2 A Spectral Link Approach

In this Letter, the normalization condition for the one-dimensional spectrum of ver-
tical velocity Eww(k) is exploited to arrive at expressions for kpz. The measured σ2

w is
linked to Eww(k) using

σ2

w =

∫

2πas/ds

2πai/zi

Eww(k)dk, (4)

where σ2

w is routinely measured using sonic or acoustic Doppler anemometers. Because
scales in the flow are finite in any experiment, the spectrum is integrated between two
wavelengths (grey shading in Figure 2a): (i) a fraction ai of the wavelength of the largest
energetic scale 2π/zi, where zi is the height of the boundary layer: (ii) a fraction of as
of the wavelength sampled by the measuring device 2π/ds. In the case of sonic anemome-
tery common to ASL field experiments, ds is the path length between transducers (of
the order of 0.1 m for many commercial anemometers). For a given measurement height
z, it is assumed that ds < z < zi. The proportionality constant ai accounts for the
fact that, due to a finite sampling period, not all the large scales of the flow might be
sampled. In contrast, the proportionality constant as reflects the effect of instrument av-
eraging on the measured small-scale spectrum of turbulence (Moore, 1986). The quan-
tities 2πai/zi and 2πas/ds are hence the effective wavelengths in between which the spec-
trum is effectively sampled.

To extract information about kp, an idealized spectral shape for Eww(k) is consid-
ered and is given under its normalized form by

Eww(k)

ǫ2/3z5/3
=

{

Cww(zkp)
−5/3k0, k ≤ kp

Cww(zk)
−5/3 k > kp

, (5)

where Cww = 0.65 is the Kolmogorov constant for the vertical velocity energy spectrum
(Saddoughi & Veeravalli, 1994). This spectrum consists of the two regimes mentioned
in the Introduction (dashed lines in Figure 1a, and solid line in Figure 2a): (i) the in-
ertial subrange for k > kp (Kolmogorov, 1941); (ii) the production range for k ≤ kp,
whose spectral constant is determined by requiring continuity (but not smoothness) with
regime (i). Under neutral conditions, the transition wavenumber is inversely proportional
to the measurement height so that kpz = C1 (Townsend, 1980). As mentioned in the
introduction, the focus of the Letter is on the displacement of kp with ζ from its neu-
tral value, labelled kp(0) (for ζ = 0).
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The idealized spectral shapes defined in Equation (5) agree with numerous mea-
surements published in the literature (Kader & Yaglom, 1991; Kaimal & Finnigan, 1994;
Katul et al., 2012) and only few examples are shown in Figure 1 to illustrate their ex-
istence and general features for different surface covers. The measurements reported here
are for different types of ASL experiments: flow over an ice sheet (Katul et al., 2016),
grass (Katul, Hsieh, & Sigmon, 1997), a pine forest (canopy height 14 m) and a hard-
wood forest (canopy height 28 m) (Katul, Hsieh, Kuhn, et al., 1997). For reference, re-
sults for an open channel flow above a smooth stainless steel surface at two differing bulk
Reynolds numbers are also featured (Katul & Chu, 1998). The spectra in the ASL pre-
sented here have been selected for near-neutral conditions and for runs where station-
ary conditions prevailed over extended periods of time (>3600 s). For −2 < ζ < 1,
the idealized spectral shapes for vertical velocity spectra roughly hold but with a dis-
placed kp (e.g. Figure 4 of Kaimal et al., 1972). Note that this is not the case for highly
unstable or very stable stability conditions (not considered here), as shown by several
long-term experiments (Kader & Yaglom, 1991; Grachev et al., 2013). With respect to
more sophisticated models of the spectra (see e.g. Tchen, 1953; Panchev, 1971), the ide-
alized spectral shapes of Equation (5) retain the essential feature needed in the present
work: the existence of two regimes separated by the transition wavenumber kp.

To obtain an expression for zkp, Equation (5) is inserted into Equation (4), yield-
ing

Σ∗ = (zkp)
−2/3

{

[

1−
2πaiz

zi
(zkp)

−1

]

+
3

2

[

1−

(

ds
2πasz

)2/3

(zkp)
2/3

]}

, (6)

where z has been introduced to normalize length scales (as in Equation (5)), and Σ∗ =
σ2

w(Cwwz
2/3ǫ2/3)−1 is a dimensionless vertical velocity variance that depends on the bulk

characteristics of the turbulent flow, and hence only on atmospheric stability (discussed
in section 2.4). Equation (6) has two terms balancing Σ∗ on the right-hand side (RHS):
(i) contributions from the production subrange (first term) and from the inertial sub-
range (second term). Solving this expression for externally supplied zi, ds, and Σ∗ as well
as estimates of ai and as determines zkp.

2.3 A Co-spectral Budget Approach

An alternative model for determining kpz is now proposed based on a different set
of assumptions. It relies on the normalization condition of the co-spectrum of vertical
and horizontal velocity fluctuations Fuw(k)

−u′w′ =

∫

2πas/ds

2πai/zi

Fuw(k)dk. (7)

Using the same idealized flow conditions than those of Equation (1), Fuw(k) fol-
lows a co-spectral budget given as (Panchev, 1971; Bos et al., 2004; Katul et al., 2013)

∂Fuw(k)

∂t
= 0 =

dU

dz
Eww(k)−

CR

τ(k)
Fuw(k)− Cl

dU

dz
Eww(k). (8)

This budget is a balance between mechanical production (first term on the RHS) and
energy redistribution through pressure-strain correlations (second and third terms on the
RHS). The pressure-strain correlations are modeled with a standard spectral Rotta scheme.
Its first component is a linear return-to-isotropy term with a Rotta constant CR ∼ 1.8
(slow part), and a characteristic timescale τ(k) = ǫ−1/3k−2/3 for k ≥ kp and τ(k) =

ǫ−1/3k
−2/3
p for k < kp (Katul et al., 2013). The second component is a non-linear cor-

rection (Zeman & Tennekes, 1975) with characteristic constant Cl = 3/5 (called isotropiza-
tion of the production). Note that the constant CR used in the Rotta scheme is the same
than for return-to-isotropy models used for the vertical velocity variance budget (see, e.g.
Ayet, Katul, et al., 2020).
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This budget has been successfully used (Katul et al., 2013) to model the observed
co-spectrum in a neutral ASL. In this budget, the buoyancy source/sink term is neglected.
This assumption follows from ASL measurements (the Kansas measurements, see Wyn-
gaard et al., 1971; Wyngaard, 2010, page 233), scaling analysis in the inertial subrange,
as well as direct numerical simulations (Katul et al., 2014).

From Equation (8), the co-spectrum Fuw(k) can be expressed as a function of the
spectrum Eww, and hence the normalization condition (Equation (7)) reads

K =
(1− Cl)

CR

∫

2πas/ds

2πai/zi

τ(k)Eww(k)dk, (9)

where K = −u′w′/(dU/dz) is the bulk turbulent viscosity. Using the idealized spec-
trum for Eww(k) presented in Equation (5), the previous expression becomes

K∗ = (zkp)
−4/3

{

[

1−
2πaiz

zi
(zkp)

−1

]

+
3

4

[

1−

(

ds
2πasz

)4/3

(zkp)
4/3

]}

, (10)

with K∗ = K
(

Cwwǫ
1/3z4/3(1− Cl)/CR

)−1

a dimensionless turbulent viscosity that varies
with atmospheric stability. This equation links zkp to the bulk properties of the flow.
It is comparable but not identical to Equation (6), relying on a spectral budget (Equa-
tion (8)).

2.4 Dimensionless variance and stability dependence

The dimensionless transition wavenumber zkp has been linked to bulk properties
of the flow: the dimensionless variance Σ∗ = σ2

w(Cwwz
2/3ǫ2/3)−1 and turbulent viscos-

ity K∗ = K
(

Cwwǫ
1/3z4/3(1− Cl)/CR

)−1

. Those two bulk quantities are now expressed
as a function of the stability parameter ζ using conventional MOST dimensionless func-
tions (Equation (3)) and estimates of TKE dissipation rate from Equation (2).

The dimensionless variance Σ∗ is given as

Σ∗(ζ) =
κ2/3φw(ζ)

Cww(φm − ζ)2/3
. (11)

Accepted MOST dimensionless functions from the Kansas experiment (Kaimal &
Finnigan, 1994; Sorbjan, 1989, see Supporting Information) are used to evaluate Σ∗. As
shown in Figure 2b (solid line), the resulting Σ∗ increase (resp. decrease) for unstable
(resp. stable) conditions. The neutral value of Σ∗ is 1.3, following the fact that φw(0) ∼
1.56.

Similarly, the dimensionless turbulent viscosity can be expressed as a function of
ζ and is given by

K∗ =
κ4/3CK

Cwwφm(φm − ζ)1/3
, (12)

where CK = CR/(1−Cl). Its behavior (dashed line) is similar to Σ∗, even though its
neutral value is of about 2.

3 Discussion

Equation (6) provides values of zkp given the stability parameter ζ (that sets Σ∗

through Equation (11)), and the two cutoff lengths ds/as and zi/ai. In the following,
it is assumed that the measurement height is small relative to the boundary layer height
(i.e. z/zi ≪ 1) which, from Equation (6), yields the following expression of zkp

zkp(ζ) =

(

5

2

)3/2
[

Σ∗(ζ) +
3

2

(

ds
2πasz

)2/3
]

−3/2

. (13)
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Figure 2. (a) Idealized Eww(k) spectrum (solid line), and key wavenumbers used in the

derivation (dashed lines), for z = 1 m and kp = 1/z. In the spectral link (Equations (4) and (9)),

the spectrum is integrated between two finite bounds and the integration area, corresponding to

the measured σ2

w, is shown as a grey shading. (b) Left hand side of Equation (6) (dimensionless

variance Σ∗, solid line) and Equation (10) (dimensionless turbulent viscosity K∗, dashed line) as

a function of stability.

While this approximation is valid in the ASL for a measurement height close to the sur-
face, it can fail for measurements higher up in the atmospheric boundary layer, or for
very stable conditions (not considered here).

In this simplified model, the only remaining parameter that requires specification
is ds/(asz). This parameter depends on the measuring properties of the instrument: the
smallest wavelength sampled by the measuring device (2π/ds) and its averaging and spec-
tral filtering properties (as). An estimate of ds/(asz) may be obtained for neutral con-
ditions by specifying a value of zkp(0) in Equation (13). As discussed in the introduc-
tion and in Figure 1b, there is uncertainty in the value of zkp for neutral conditions, which
we use here to provide a range of values for ds/(asz).

Two limiting cases are considered: kp(0)z = 1, as assumed in prior models (Katul
et al., 2011), and a larger value kp(0)z = 1/κ ∼ 1/0.4 close to the estimates from the
Kansas measurements (Kaimal et al., 1972, see the Supporting Information). Using Equa-
tion (13), and the fact that Σ∗(0) = 1.3 (see Figure 2b) yields ds/(2πasz) = 0.71 and
ds/(2πasz) = 0.017 for the first and second cases respectively. Note that, assuming a
typical measurement height z = 5m and an anemometer path length ds = 0.1m, im-
plies as = 0.003 and as = 0.19 respectively. In the first case (i.e. for kp(0)z = 1), this
corresponds to an effective cutoff wavenumber 2πas/ds (i.e. including the spatial filter-
ing properties of the instrument) three orders of magnitude larger than original instru-
ment cutoff 2π/ds. This is a significant modulation, which questions the physical rele-
vance of assuming kp(0)z = 1 when using MOST dimensionless functions from the Kansas
experiments to constrain Σ∗.

The modeled kp deviations from the neutral value are now compared to reported
measurements and estimates of kp from several published ASL experiments. The esti-
mates of this deviation, kp(ζ)/kp(0), are shown in Figure 3a and summarized in the Sup-
porting Information. First, the widely-used estimate of kp from the Kansas experiment
(Kaimal et al., 1972, measurements form 5 to 22 m on top of wheat stubble) is shown
as a black line. This estimate results from a direct determination of kp as the wavenum-
ber of the peak of the premultiplied vertical velocity spectra (as in Figure 1b). Second,
the Advection Horizontal Array Turbulence Study (AHATS, z from 1 to 7 m on top of
grass) provided an estimate of the streamwise integral lengthscale of the vertical veloc-
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Figure 3. Relative transition wavenumber versus stability. (a) Experiments: spectral mea-

surements from the Kansas experiment, two different estimates of the integral length scale from

Salesky et al. (2013), and estimates of the Ozmidov length scale from Li et al. (2016). (b) Model

predictions: matching between vertical variance and spectra (equation (13)) for kp(0) = 1.6/z

(solid black line) and for a range of values from kp(0) = 1/(κz) = 2.5/z (upper blue line)

to kp(0) = 1/z (lower blue line); matching between turbulent viscosity and co-spectra (equa-

tion (14)) with a fixed return-to-isotropy set of constants (dashed line) and with a stability-

dependent Rotta constant from Ayet, Katul, et al. (2020) (dotted line); envelope covering the

data estimates of panel (a) (grey dashed area).

ity, which is inversely proportional to kp (Salesky et al., 2013, blue lines). Finally, for
moderately stable conditions (0.3 < ζ < 1), Li et al. (2016) argued that the Ozmidov
length scale should be the dominant scale for the turbulence spectra. The authors showed
that replacing other estimates of kp by the Ozmidov length scale in phenomenological
models allowed explaining some of their caveats for mildly stable conditions. Being an
additional estimate of the wavenumber of energy-containing eddies kp, we show the Ozmi-
dov length scale proposed by the authors on the basis of the AHATS data and of addi-
tional data above a lake in red.

The modelled variation of zkp from Equation (13) is shown in Figure 3b for the two
limit values of ds/(asz) mentioned above (blue lines and shading). The trends are con-
sistent with the expected increase (resp. decrease) of zkp for stable (resp. unstable) con-
ditions, which reflects the change, due to buoyancy, in the shape of the dominant eddies
driving the vertical momentum flux (e.g. Katul et al., 2011). Variations of ds/(asz) al-
low testing the sensitivity of zkp to changes in the large wavenumber cutoff, and hence
to changes in the neutral value zkp(0) (as seen in Figure 1b). As expected, the sensitiv-
ity is higher for stable than for unstable conditions. This results from σ2

w being lower
for stable than for unstable conditions (and hence also Σ∗, see Figure 2). A change of
ds/(asz) in Equation (13) is thus larger relative to Σ∗ for stable than for unstable con-
ditions, causing a higher relative change in zkp. In stable conditions, where the bulk vari-
ance is lower, the transition wavenumber is difficult to estimate, being sensitive to such
measurement issues (as expected). Note that z/zi was also varied over a reasonable range
for the ASL (z/zi ≤ 0.3, not shown). The resulting variations of zkp (from Equation
(6)) were found significantly smaller than the variations induced by a change of ds/(asz).

Overall, the range of values obtained by varying zkp(0) (blue shadings) is larger
than the range of values spanned by the data for stable conditions and similar to it for
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Figure 4. Return-to-isotropy constants versus stability. (a) Relative variation of CK =

CR/(1 − Cl) (i) required to match the data from Figure 3 (grey shadings) and (ii) by keeping Cl

fixed and a stability-dependent CR from Ayet, Katul, et al. (2020) (solid line); (b) Grey shadings

show the absolute variations of Cl required to match the data from Figure 3 if CR is assumed to

follow the stability-dependent variations presented in (a), solid line.

unstable conditions (grey hatches). For stable conditions, choosing zkp(0) ∼ 1 results
in a poor estimate of the trend of zkp, with respect to choosing zkp(0) ∼ 1/κ, closer
to the Kansas data. This again hints towards the latter value of zkp(0) being more phys-
ical to describe ASL turbulence above a flat terrain. Nonetheless, the choice zkp(0) ∼
1/κ = 2.5 (which is within the bounds of zkp(0) of Figure 1b, grey shadings) results
in a relative deviation of kp outside the envelope of the data (grey hatches in Figure 3b).
Hence, the best match to the measurements was determined, and is shown in black line
in Figure 3b. It corresponds to zkp(0) = 1.6/z (and to ds/(2πasz) = 0.2). The model
falls close (for −0.8 < ζ < 0.5) or within (for ζ ≤ −0.8 and ζ ≥ 0.5) the envelope of
the data. More precisely, comparison between the AHATS estimates (blue line in Fig-
ure 3a) and the model (black line in Figure 3b) shows that it is correct up to a multi-
plicative factor of order one.

The matching between the spectra and the vertical velocity variance offers an ac-
ceptable constraint to predict the relative variations of the transition wavenumber with
ζ. This is ensured partly from the universality of the Kolmogorov constant Cww. Instead,
the matching between the co-spectra and the turbulent viscosity (Equation (10)) relies
on two return-to-isotropy “constants”, CR and Cl whose universality for different con-
ditions has been recently questioned. As mentioned earlier, CR is also the return-to-isotropy
constant used in the vertical velocity variance budget. In Ayet, Katul, et al. (2020) we
have shown, using such a budget, that the value of the Rotta constant CR should be re-
vised to include stability-dependent effects. In the following, we extend this analysis to
Cl, using the matching between the co-spectra and the turbulent viscosity and compar-
ing it to the data of the transition wavenumber.

The transition wavenumber predicted from the matching between the co-spectra
and the turbulent viscosity is obtained by setting z/zi ≪ 1 in Equation (10):

zkp(ζ) =

(

7

4

)3/4
[

K∗(ζ) +
3

4

(

ds
2πasz

)2/3
]

−3/4

, (14)

where K∗ depends, among others, on the ratio of the return-to-isotropy constant CK =
CR/(1 − Cl) which, for a neutral atmosphere has a value of 4.5 (with CR = 1.8 and
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Cl = 3/5). For a neutral atmosphere, we further assume, following Katul et al. (2013),
that ds/(asz) = 0. This results, using K∗(0) ∼ 2 (see Figure 2), in zkp = (8/7)−3/4 =
0.9, close to the expected unity value put forth in Townsend (1980). Katul et al. (2013)
showed that this choice of ds/as was required for the co-spectral model to recover the
spectral properties of the ASL for neutral conditions.

As shown in Figure 3b (dashed line), the modeled transition wavenumber trend from
Equation (14) is in worse agreement with the data than Equation (13). Since this match-
ing depends on the value of CK , this comparison suggests that CK should be adjusted
with respect to its neutral value of 4.5 to match zkp. As a first adjustment, the stabil-
ity dependence of CR discussed in Ayet, Katul, et al. (2020) is added while maintain-
ing Cl = 3/5 fixed (dotted line in Figure 3b). Even though for stable conditions the
agreement with the data is improved, for unstable conditions the predicted behavior of
zkp is not consistent with its expected (and measured) decrease.

In fact, the variations of CK needed to match the data of Figure 3a are an increase
of CK for mildly unstable and stable conditions (grey shadings in Figure 4a), which is
inconsistent with the predicted decrease of CR from Ayet, Katul, et al. (2020) (solid line
in Figure 4a). Assuming that the stability dependence of CR from Ayet, Katul, et al.
(2020) also applies to the co-spectral budget (in Ayet, Katul, et al. (2020), it was derived
for the budget of the vertical velocity), the only alternative left is that Cl should be stability-
dependent. The values of Cl needed to match the data of Figure 3a are shown as grey
shadings in Figure 4b.

This co-spectral analysis shows that the timescales associated with the Rotta and
non-linear return-to-isotropy constants can be linked to the characteristic wavelength of
the energy-containing spectrum (kp), which is a physical result per-se. They also hint
for revising the value of those constants for non-neutral conditions. Since the constant
CR is also used for return-to-isotropy modelling in the vertical variance budget, this anal-
ysis also gives insights into the return-to-isotropy terms in such budgets, which are es-
sential for numerical modelling (e.g. Mellor & Yamada, 1982; Canuto et al., 2001), and
have been discussed in details in Bou-Zeid et al. (2018) and Ayet, Katul, et al. (2020).

4 Conclusion

An equation linking the bulk and spectral properties of the the vertical turbulent
motions in the ASL was derived to predict the displacement of the transition wavenum-
ber in the pre-multiplied vertical velocity spectrum. The derived expression weakly de-
pends on the atmospheric boundary layer height and instrument cutoff scale (ds/as). The
expression compared reasonably against multiple ASL measurements in a simplified frame-
work where the effects of a finite boundary layer height were neglected. Besides improv-
ing the theoretical understanding of the ASL, this result also opens the path for several
applications: (i) it can be used to diagnose the transition wavenumber from datasets mea-
suring the bulk properties of the flow, and hence help designing experiments where only
large scale information or estimates about the flow are available; (ii) it can assist in build-
ing turbulent closure in numerical simulations by linking the bulk properties of the flow
to that of energy-containing eddies (whose size is proportional to kp, see e.g. Townsend,
1980; Gioia et al., 2010; Katul et al., 2011).

To gain further insight on the physics controlling the transition wavenumber, an
alternative link was studied, based on a co-spectral budget of turbulence. This second
link involves constants controlling the timescale of return-to-isotropy of the flow. In ac-
cordance with the results of Ayet, Katul, et al. (2020), those constants should depend
on stability to ensure a matching between the predicted transition wavenumber from the
co-spectral framework and the data. A fair critique to the method used here is the choice
of τ(k) (that only varies with ǫ) and the determination of ǫ from an equilibrated TKE
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budget. Not withstanding this critique, this second analysis establishes a physical link
between the return-to-isotropy timescales and the transition wavenumber, which could
lead to important insights on how external parameters (buoyancy, surface geometry, large-
scale forcings) can influence near-surface turbulence isotropy. This link will be elaborated
upon in the future.
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Introduction

The Supporting Information provides the expressions for the data used in the
main text.

Text S1

The MOST dimensionless functions as well as several estimates of the spectral
peaks as a function of atmospheric stability are listed. From the Kansas experiment,
Kaimal and Finnigan (1994) give the following MOST dimensionless functions

φm(ζ) =

{

1 + 4.7ζ, ζ ≥ 0

(1− 15ζ)−1/4, ζ < 0
, φw(ζ) =

{

1.56, ζ ≥ 0

1.56(1− 3ζ)2/3, ζ < 0
(1a, b)

and values of the spectral peak

zkKp (ζ) =



























2πζ, ζ > 2

2π(1.1 + 0.45ζ), 1 < ζ ≤ 2

2π(0.55 + ζ), 0 ≤ ζ ≤ 1

2π(0.55 + 0.38ζ), −1 ≤ ζ < 0

2π0.17, ζ < −1

. (2)

From the AHATS experiment data, Salesky et al. (2013) provided an estimate
of the streamwise integral length scale of the vertical velocity

Λ(z) =

∫

w′(0, z)w′(x, z)

σ2
w(z)

dx (3)

which is inversely proportional to the transition wavenumber. The resulting relative
variations of kp are

ksp(ζ)

ksp(0)
=

{

(1 + 4.01ζ)0.586, ζ ≥ 0

1− 0.462(1− e4.82ζ), ζ < 0
(4)

Li et al. (2016) presents the following expression for the Ozmidov length scale in
accordance with the AHATS experiment and lake data

zLoz = (1/0.4)[ζφm(ζ)]3/4[φm(ζ)− ζ]−1/2, ζ > 0.2. (5)
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2.4 CONCLUSION

Starting from the evident limitations of the standard spectral budgets in predicting the value of
the spectral peak wavenumber kp (Sec. 2.1), we have shown evidence of several flaws in the
Rotta closure for the vertical velocity (Sec. 2.2). This revealed that the time-scale of energy
redistribution by energy-containing eddies should probably be stability and scale dependent.
Besides giving interesting insights on the processes governing anisotropic turbulence in the
ASL, this result is of interest for the numerical modeling community, since numerous subgrid
turbulence schemes used in atmospheric and ocean models, are built on this closure [e.g. Mellor
and Yamada, 1982, Cuxart et al., 2000, Canuto et al., 2001]

In Sec. 2.3, we have evaluated under which conditions kp can be recovered from bulk
turbulence measurements. Using Monin-Obukhov similarity functions as a constraint, we have
derived variations of the spectral properties of the flow. We found that accurate prediction
of kp was subject to properly including, in the spectral link, the high frequency cutoff of
the measuring device. The approach of these two works is inverse to the one pursued by
phenomenological models presented in the literature [e.g. Katul and Manes, 2014, Li et al.,
2016]. They can hence be seen as a necessary (but not sufficient) first step to assess the validity
of many phenomenological models and their underlying assumptions.

As a side remark, it should be noted that, in Sec. 2.2 we have focused on correcting the
model for the return-to-isotropy. Indeed, it seems reasonable to adjust this model to match
measured anisotropy ratios, since it plays a key role in setting their value. Nonetheless, the
scaling (2.3) on page 78 suggests that we could have equivalently focused on adjusting the
inter-scale energy transfer model. In fact, both are related by equation (9) of Sec. 2.2.

To summarize, this Chapter has demonstrated the sensitivity of the spectral link to several of
its ingredients, and in particular to the pressure-strain correlation. On top of sea waves, it is to
be expected that these mechanisms should be strongly modified, as the directionality of waves
certainly induces additional anisotropy in the overlying flow. It is out of the scope of this thesis
to explore these modifications starting from the spectral budget. In the following chapters, we
hence use the bulk formulation of the phenomenological model (i.e. in terms of the geometry
of energy-containing eddies) to explore turbulence on top of waves.

115



116



CHAPTER 3

GEOMETRICAL IMPACT OF WIND-WAVES ON
ENERGY-CONTAINING EDDIES

"Le vent pousse la mer", Zao Wou-Ki (2004).
Private collection © ADAGP, Paris, 2018. Photography : Dennis Bouchard.
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3.1 INTRODUCTION

In Chapter 1 (Sec. 1.2) we have introduced a phenomenological model, which relates the
geometrical properties of energy-containing eddies sh(z) and sv(z), at a given height z, to ǫ, the
dissipation of Turbulent Kinetic Energy (TKE)

ǫ(z) ∝ u6
∗

(
dU

dz

)−3
sv(z)

−3sh(z)
−1, (3.1)

where u∗ is the friction velocity and U the mean wind speed, and sh and sv are the streamwise
and vertical scales of the energy-containing eddy, respectively. Above a windy sea, it is natural
to ask what would be the relation between the geometry of the sea surface and the geometry
of energy-containing eddies. If such a geometrical link exists, we can already guess that it
should involve relatively long and fast wind-waves. Such waves should be capable of producing
geometrical patterns which, in the reference frame of the moving eddy, should persist long
enough to impact the eddy properties. Below we use a simple model to quantify this effect, and
we term these waves as being "long" wind-waves, as opposed to short wind-waves which, in
standard theories, are the main sea-surface components coupled to the wind (see Sec. 1.3).

To evaluate the consequences of this effect on open-ocean momentum fluxes, we further use
a wind-over-waves model, which allows inclusion of this new process in a wind and waves
equilibrium describing open-ocean measurements (see Sec. 1.3.3.1 on page 62). In fact, long
wind-waves are sensitive to environmental conditions (such as fetch and currents). If existing,
the geometrical link could hence introduce a dependency of momentum fluxes to environmental
parameters, which could help explaining the scatter observed in the measurements (as discussed
in the Introduction, page 20).
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3.2 ARTICLE: "ON THE IMPACT OF LONG WIND-WAVES
ON NEAR-SURFACE TURBULENCE AND MOMENTUM FLUXES"
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Abstract

We propose a new phenomenological model to represent the impact of wind-waves on the
dissipation of turbulence kinetic energy near the sea surface. In this model, the momentum
flux at a given height results from the averaged contribution of eddies attached to the sea
surface whose sizes are related to the surface geometry. This yields a coupling between long
wind-waves and turbulence at heights of about 10 m. This new wind-and-waves coupling is
thus not exclusively confined to the short wave range and heights below 5 m, where most of
the momentum transfer to the waves is known to occur. The proposed framework clarifies the
impact of wind-waves on Monin–Obukhov similarity theory, and the role of long wind-waves
on the observed wind-wave variability of momentum fluxes. This work reveals which state
variables related to the wind–wave coupling require more accurate measurements to further
improve wind-over-waves models and parametrizations.

Keywords Air–sea fluxes · Wall-bounded turbulence · Wave boundary layer · Wind stress ·

Wind-waves

1 Introduction

Observing a windy sea immediately reveals that wind and waves are strongly coupled. Yet,
consistent physical mechanisms explaining this two-way coupling are still elusive both to
theory and observations (e.g. Soloviev and Kudryavtsev 2010; Hristov 2018; Villas Boas et al.
2019). Of particular interest is the link between near-surface momentum fluxes and waves,
due to its importance in atmospheric models, from the synoptic to the climate scale (e.g.
Janssen and Viterbo 1996; Shimura et al. 2017; Pineau-Guillou et al. 2018; Villas Boas et al.
2019). For a given near-surface mean wind speed, a large source of variability in turbulent
fluxes is atmospheric stability (e.g. Geernaert 1990; Fairall et al. 2003), consistently described
by Monin–Obukhov similarity theory (MOST, see the review by Foken 2006). However, for
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neutral atmospheric conditions, open-ocean observations exhibit a variability around their
mean value for a given mean wind speed, which has been attributed to waves (see e.g. Edson
et al. 2013). The mean value results from a local equilibrium between short wind-waves
and atmospheric turbulence. For low wind speeds, swell and non-stationary wind conditions
have been suggested as possible reasons of its variability (Drennan et al. 1999), whereas at
moderate to high wind speeds, the physical processes are still not clearly determined.

Close to the surface, wave impact on atmospheric turbulence has been accounted for
through the so-called wave-induced stress. Assuming that wind fluctuations can be described
as a linear superposition of a turbulent and an ocean-wave induced component, wave-induced
stress results, for growing seas, from the transfer of mean flow energy to the wave-induced
component (Janssen 1989). This energy is then transfered to turbulent motions, which sup-
port the growth of wind-waves (Plant 1982). In an equilibrium wind-and-waves situation, i.e.
for waves that have equilibrated with a local stationary airflow, wave-induced stress induces
an enhancement of turbulent motions compared to flow over a smooth surface (Makin and
Mastenbroek 1996). This net enhancement occurs up to a height that defines the wave bound-
ary layer (WBL), above which wave-induced stress vanishes. Wave-induced stress is mostly
correlated to the presence of short wind-waves, which are thus strongly coupled to the low-
level wind field and receive most of the wind energy input. Conceptual models including
this physical process were able to successfully predict measured open-ocean fluxes (Makin
and Kudryavtsev 1999; Hara and Belcher 2002; Kudryavtsev et al. 2014). These single-
column models (called wind-over-waves models in the following) couple a turbulence kinetic
energy (TKE) equation to a spectral wave model through wave-induced stress, and predict
the equilibrated turbulent momentum flux and wind-wave spectrum given a reference-height
mean wind speed. Following experimental and numerical studies, Kudryavtsev et al. (2014)
included wave-breaking effects (i.e. the effect of discontinuities in the surface slope) as an
additional source of wave-induced stress, and showed that this effect could be significant in
explaining the observed momentum fluxes. Being mostly supported by short waves (with
wavelength of the order of 0.01 to 1 m), both processes act on a shallow atmospheric layer,
of height one order of magnitude smaller than their wavelength. This results in a height of
the WBL of at most 5 m in the absence of swell.

While wave-induced contributions to atmospheric variables are often reported as being
particularly difficult to detect at higher altitudes from single-point measurements (Soloviev
and Kudryavtsev 2010), Edson et al. (2004) mention that “field campaigns have shown that
some turbulent statistics, e.g., the pressure transport term in the kinetic energy budget equa-
tion, are influenced by waves up to heights z where kpz ≈ 2, where kp is the peak wavenumber
of the dominant waves. The latter findings suggest a thicker WBL for some characteristics of
the flow”. Hence the coupling between atmospheric turbulence and wind-waves could pos-
sibly extend on vertical scales much above 5 m, suggesting the existence of other processes
beyond wave-induced stress. Similarly to wave-induced stress, those processes result from
spatial correlations between atmospheric quantities on the scale of wind-waves, and should
thus be more easily observed if spatial statistics of the atmospheric field (e.g., multiple-point
measurements) were available. In the absence of such measurements, a method extracting
those spatial correlations from single-point measurements is necessary (as developed for
wave-induced stress in Hristov et al. 1998, 2003). The present study is a first step towards
such a method by revealing state variables in which those processes might be buried.

More generally, the understanding of the local wind-and-waves equilibrium is related
to the longstanding question of the influence of a structured boundary (both in terms of
geometry and of velocity) on the properties of turbulence at a certain distance from the
boundary (see the review by Belcher and Hunt 1998). Wave-induced stress only accounts
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(a) (b)

Fig. 1 a State-of-the-art and b proposed attached-eddy model describing vertical turbulent fluxes through a
surface at a height z (dashed lines). a For wall-bounded turbulence (Gioia et al. 2010), the most energetic
structure (i.e. inducing most of the fluxes) has a vertical length scale 2sv equal to twice the considered height z.
Its horizontal length scale 2sh varies with stratification (Katul et al. 2011). The difference between the upward
and downward vertical velocity of the structure w yields the mean vertical turbulent motion. The structure can
be notionally represented by an attached eddy (thin solid line). b In the presence of a surface wave (thick solid
line), depending on the relative phase between the eddy and the wave (denoted χ ), the height of the surface
and thus the size of the attached eddy varies. We propose that multiple attached eddies contribute to the flux
(only three examples are drawn)

for the interaction of the turbulent field with additional, wave-induced, fluctuations. It does
not represent the possible reorganization of the turbulent fluctuations due to the presence
of a structured boundary (e.g. the formation of rolls presented by Phillips et al. 1996). This
reorganization has been shown to occur due to stratification effects for a flat and non-moving
boundary (in experiments, theory, and numerical simulations respectively: Kaimal et al. 1972;
Elperin et al. 2002; Li et al. 2018).

A phenomenological model enabling the inclusion of organized turbulent structures near
a wall has been recently described in Gioia et al. (2010). The model assumes that the turbu-
lent fluxes at a given height are driven by surface-attached eddies representing cross-wind
atmospheric turbulent structures in a convected frame of reference (invariant in the spanwise
direction), and whose horizontal and vertical length scales are related to the height at which
the flux is computed (dashed line in Fig. 1). The reorganization of these attached eddies due
to stratification was then included in this model by Katul et al. (2011) and Li et al. (2012).
These authors introduced an “eddy anisotropy” coefficient fa (related to the eddies horizontal
to vertical aspect ratio), accounting for the deformation of attached eddies due to buoyancy
forces (Fig. 1a). As this deformation can be linked to properties of the turbulence spectra
(as explained in Katul and Manes 2014), the authors calibrated eddy anisotropy based on
measurements from Kaimal et al. (1972). One of the main outcomes of Katul et al. (2011)
is to recover MOST universal functions, which were obtained through measurements, using
a theoretical model based on a TKE balance. In this balance, the deformation of attached
eddies translated into a change in TKE dissipation.

In the presence of surface waves, the link between the shape and spatial organization of the
turbulent structures and the geometry of the surface is still an open question. Hence, we (i)
propose that wind-waves deform attached eddies, inducing a change in TKE dissipation; (ii)
model this effect within the Katul et al. (2011) framework; and (iii) evaluate the impact of this
deformation on turbulent momentum fluxes, and its ability to explain the observed variability
at moderate wind speeds. The model assumes that the deformed surface allows attached eddies
of different sizes to contribute to the momentum flux at a given height (Fig. 1b). The proposed
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physical mechanism is mainly supported by long wind-waves (wavelengths of the order of
10 m), and results in a modification of TKE dissipation at heights above 5 m. It introduces
a dependency of the wind-wave local equilibrium to the local spectral characteristics of
long wind-waves and to the intensity of the mechanism modulating the size of the eddies.
This variability is then used to explain open-ocean measurements using the wind-over-waves
model of Kudryavtsev et al. (2014) to obtain the mean observed wind-and-waves equilibrium.

The paper is organized as follows: the wall-bounded model and the new physical mecha-
nism are presented in Sects. 2 (for a single wind wave) and 3 (for a realistic sea surface). The
wind-over-waves model is briefly summarized in Sect. 4. Section 5 focuses on the resulting
impact of the coupling mechanism on near-surface momentum fluxes for neutral conditions,
allowing explanation of their variability for a given wind in open ocean measurements. Sec-
tion 6 then studies the effect of stability on near-surface turbulence, by linking the model
with MOST and comparing it to measurements. Conclusions are presented in Sect. 7.

2 AWall-Bounded TurbulenceModel over a Monochromatic Wave

In this section, we propose a new mechanism to model the impact of a wave with a specific
wavenumber on TKE dissipation. To this end, starting from a model developed to describe
wall-bounded stratified turbulence (recalled in Sect. 2.1), an extension is proposed in order
to account for a periodic and undulating surface (Sect. 2.2).

2.1 AModel forWall-Bounded Stratified Turbulence

We first recall the framework presented in Gioia et al. (2010), Katul et al. (2011) and Li et al.
(2012) to describe a stratified surface boundary layer (SBL). The framework models the SBL
by means of a TKE balance equation. The mean wind shear and stratification are specified,
and the model predicts turbulent fluxes. The key result of the framework is to derive a closure
for TKE dissipation by considering the shape of eddies attached to the surface.

The SBL is defined as the lowest part of the surface atmospheric boundary layer (adjacent
to the surface) where the flow is horizontally homogeneous and stationary, and with no
subsidence. In what follows, the dominant wind-waves are assumed to be aligned with the
mean wind direction (and the horizontal coordinate x), so that we only consider perturbations
in the (x , z) directions (where z is the vertical coordinate). The turbulent momentum flux
normalized by air density (ul

∗)
2 = −u′w′ is constant within the layer due to horizontal

homogeneity. Anticipating Sect. 4, ul
∗ is called the local friction velocity.

The TKE balance equation within this layer is assumed to be a balance between mechanical
(or shear) production, buoyancy production/destruction, and TKE dissipation ǫ

− u′w′
∂U

∂z
+

g

θh

w′θ ′ = ǫ, (1)

where U is the mean wind speed and (·)′ denotes turbulent fluctuations. In the following,
water vapour effects are omitted for the sake of simplicity. Defining H , the sensible heat flux
within the SBL, as

H = −ρC pw′θ ′,
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and using the definition of ul
∗, the TKE balance can been written as

(ul
∗)

2 ∂U

∂z
−

gH

ρC pθh

= ǫ, (2)

where g is the acceleration due to gravity, ρ is air density, and C p is the heat capacity of dry
air.

We also introduce the Obukhov length,

L =
ρC pθh(ul

∗)
3

κgH
, (3)

where κ = 0.4 is the von Kármán constant and θh is a reference potential temperature. With
this definition, the stability parameter ζ = z/L , is negative for an unstable boundary layer
and positive in the stable case.

The TKE balance equation can then be rewritten in dimensionless form from Eqs. 2 and 3,
and the definition of ζ (see e.g. Hogstrom 1996)

−
κz

ul
∗

∂U

∂z
+ ζ +

κz

(ul
∗)

3
ǫ = 0. (4)

Following Katul et al. (2011), we further include the first-order effect of the turbulent flux-
transport and pressure redistribution terms (which are neglected in Eq. 1, and were shown to
be significant for non-neutral conditions) as a constant correction β2 to the buoyancy term,
yielding

−
κz

ul
∗

∂U

∂z
+ (1 + β2)ζ +

κz

(ul
∗)

3
ǫ = 0, (5)

where β2 = 1 (Katul et al. 2011).
To solve this equation (i.e. to obtain ul

∗ from given values of ∂U/∂z, z, and ζ ), a closure
for TKE dissipation ǫ is necessary. To this end, Gioia et al. (2010) and Katul et al. (2011)
proposed that turbulent fluxes at a height z are determined by the mean difference between
vertical velocities w at x and x + 2sh (at the same height z) corresponding to the edges of
a turbulent structure with given horizontal (2sh) and vertical (2sv) length scales. In such a
situation, the momentum flux is estimated as

(ul
∗)

2(z) = κT |w(x + 2sh) − w(x)|[U (z + sv) − U (z − sv)]

∼ κT |w(x + 2sh) − w(x)|
∂U

∂z
2sv, (6)

i.e., as the product between the turbulent structure mean vertical velocity and the horizontal
momentum perturbation, assuming that momentum is transported across the entire vertical
extension of the structure (Gioia et al. 2010). In the above expression, κT is a dimensionless
proportionality coefficient.

The vertical velocity differences were then estimated using the Kolmogorov 4/5 law for
the third-order velocity structure function (e.g. Monin and Yaglom 1975),

|w(x + 2sh) − w(x)| = (κǫǫsh)1/3, (7)

where κǫ is a dimensionless proportionality coefficient. Inserting (7) into (6), and after some
algebra, the following expression results for dissipation,

ǫ = κ−4(ul
∗)

6
(

∂U

∂z

)−3

s−3
v s−1

h , (8)
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where κ = 23/4κ
3/4
T κ

1/4
ǫ is the von Kármán constant (this matching is required to recover

the law-of-the-wall under neutral conditions).
In Eqs. 6– 8 only the most energetic structure at a height z is considered, i.e. corresponding

to the leading order contribution to the third-order structure function and hence to the vertical
momentum flux. It is the structure whose half vertical length scales as the height at which the
turbulent flux is computed, i.e. sv = z. In the absence of stratification, the horizontal length
scale is further assumed to be equal to the vertical length scale (Gioia et al. 2010). Katul et al.
(2011) showed that stratification introduces an eddy anisotropy factor fa in the horizontal
length scale, such that

sh = fa(ζ )sv, (9)

where fa = 1 for neutral conditions (i.e. ζ = 0).
Figure 1a shows a conceptual representation of the most energetic turbulent structure for a

height z as an ensemble-mean eddy in a convected frame of reference (following Gioia et al.
2010; Katul et al. 2011). The shape of the eddy depends on the horizontal and vertical length
scales of the turbulent structure. This conceptual representation does not entail any velocity
field associated with the eddy, apart from the vertical velocities at its upward and downward
branches (black arrows), corresponding to w(x) and w(x + 2sh) respectively.

The condition sv = z then yields that the eddies associated with the most energetic
turbulent structures (termed energy-containing eddies) are eddies attached to the surface,
reminiscent of the attached-eddy model of turbulence introduced by Townsend (1980)
(see also the review by Marusic and Monty 2019). The spatial aspect ratio of the energy-
containing eddies, fixed by relation (9), reflects their reorganization due to buoyancy forces
(through the stability parameter ζ ).

2.2 Inclusion of a SingleWaveWithin theWall-BoundedModel

We now propose an extension of the wall-bounded model to include the reorganization of
energy-containing eddies due to a boundary with a spatial structure. Let us first consider the
impact of a wave of wavenumber k and of height Hr (k) on an attached eddy driving the
momentum flux at a height z. In the following, we derive the horizontal extent of the eddy
2s̃h in the presence of the monochromatic wave. More generally, we use the notation (̃·)

throughout to denote the contribution a single wave of wavelength k to turbulent quantities.
The sea-surface height h varies around its reference value depending on the position along

the wave, measured by the relative phase (denoted χ) between the wave and the eddy. The
height variations follow h(k, χ) = Hr (k) cos χ . Within the wall-bounded model presented
in Sect. 2.1, the vertical extent of the most efficient eddy is twice the distance between the
surface and the height z (Fig. 1a). In the presence of a surface wave, the now phase-dependent
vertical extent of the attached eddy driving the momentum flux s̃v varies around its reference
value z. Figure 1b shows the configurations corresponding to χ = 0, π/2, and π.

Using (9), the horizontal length scale of the eddy varies as a function of phase χ as

s̃h(z, ζ, k, χ) = fa(ζ )(z − h(k, χ)))

= z fa(ζ )[1 − (Hr (k)/z) cos χ]. (10)

For a given wave, we further consider only the “outer region” of the SBL (as defined in
Belcher and Hunt 1993, 1998). Within this region, (i) the mean flow speed is larger than the
phase speed of the wave, and (ii) eddies have a turnover time longer than the advection time
above the considered wave. Thus, during the eddy lifetime and its advection above a wave,
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different configurations (depending on χ , and shown in Fig. 1b) can occur, which can all
potentially contribute to the resulting upward transport of momentum (Eq. 6) and to TKE
dissipation (Eq. 8).

We consider the most general form accounting for the contribution of all possible config-
urations to the eddy horizontal length scale, a weighted average over all configurations

〈s̃h〉(z, ζ, k) =

∫
π

0
p(χ)s̃h(z, ζ, k, χ)dχ, (11)

where p(χ) is a weight, or the (normalized) probability density function (p.d.f.) of the
configurations, and 〈·〉 denotes the average over all configurations labeled by χ . The average
vertical extent of the attached eddy is assumed to be unchanged by the presence of waves
(i.e. 〈s̃v〉 = sv = z). From Eq. 6 (see also Gioia et al. 2010), the vertical extent results from
the Taylor expansion of vertical wind variations (i.e. U (z + sv)− U (z − sv) ∼ (∂U/∂z)2sv)
and denotes the height over which the eddy mixes momentum. The horizontal extent denotes
the size and energy of the structure (through Kolmogorov’s law, Eq. 7). We thus consider
that, on average, the presence of waves only affects the energy of the horizontal structure.

If the p.d.f. p(χ) is not symmetric around χ = π/2, then the wave-induced sea-surface
height variation leads on average to a variation of the eddy aspect ratio, affecting TKE dissi-
pation (Eq. 8). In particular, a compression (respectively a stretching) occurs for a distribution
where configurations around χ = 0 (resp. χ = π) are dominant.

The different configurations in χ can also be interpreted as representing TKE bursts.
From Kolmogorov’s law (Eq. 7), a change in sh is related to a change in the vertical velocity
difference of the turbulent structure. Increase or decrease in sh due to a change in the phase
χ can thus be interpreted as an increase or decrease in the vertical velocity at the edges of the
turbulent structure, and those velocity variations can be associated with bursts. The average
horizontal length scale computed in Eq. 11 can thus be interpreted as accounting for the
contribution of bursts to TKE dissipation in the SBL due to the presence of waves. Bursts
were suggested as possibly supporting a large fraction of open-ocean surface momentum
fluxes (Dorman and Mollo-Christensen 1973). Laboratory measurements revealed that such
events could have an asymmetric p.d.f. (see Fig. 26 of Kawamura and Toba 1988).

3 The Impact of Wind-Waves on Near-Surface Turbulent Structures

Section 2 presented a wall-bounded turbulence model where the effects of a single wave
were included in TKE dissipation through the stretching or the compression of an attached
eddy, i.e. the change in its horizontal to vertical aspect ratio. We now generalize the model
to the case of a wave field (Sect. 3.1), while Sect. 3.2 then discusses the physical quantities
modulating the proposed mechanism.

3.1 Generalization of the Eddy-Stretching Process to aWind-Wave Sea

So far we discussed how a monochromatic wave could affect a given turbulent structure. In the
case of a wave field composed of the sum of monochromatic waves of different wavelengths
and directions the question is to determine which waves can potentially stretch or compress
an attached eddy contributing to the momentum flux at a height z (in the sense of changing its
aspect ratio). In the following, we make the assumption that the deformation occurs mainly
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when wave and attached eddy sizes are close, i.e. for a wave of wavelength k scaling as the
inverse of the height 1/z, with z roughly the horizontal extent of the eddy (defined in Eq. 10).

The assumption can be made more precise by considering the physical mechanisms likely
to cause eddy deformation. The geometry of short wind-waves is modulated by the supporting
longer waves. Hence, the resulting surface roughness (due to wave-induced stress from short
wind-waves) varies horizontally following the longer waves, on lengths of half the modu-
lating wave horizontal length scale (e.g. Kudryavtsev and Chapron 2016). This modulation
has been shown to significantly affect the near-surface atmospheric flow (Gent and Taylor
1976; Kudryavtsev and Chapron 2016) and could also impact attached eddies by inducing a
roughness variation on a scale resonant with that of the eddy. The average deformation of an
attached eddy by a wave, described in Sect. 2.2, is thus assumed to be due to these modulated
shorter waves. Within this picture, modulating waves whose half horizontal length scale is
shorter than the horizontal eddy size are not capable of interacting with both the upward
and the downward branch of the attached eddy. Moreover, among these longer modulating
wind-waves, we only consider the one experiencing the longest interaction time with the eddy
advected above, i.e. the shortest (slowest) wind-wave. It is thus assumed that eddy stretching
or compression occurs for a resonant wave whose half-horizontal extent (π/kr ) is equal to
the horizontal length scale of the wall-bounded attached eddy prior to deformation (2z fa)

kr (z) =
π

2z fa(ζ )
. (12)

The horizontal extent of an energy-containing eddy at a height z over a wave field, 2〈sh〉, is
then expressed from the individual contribution of monochromatic waves as

〈sh〉(z, ζ ) = 〈s̃h〉[z, ζ, kr (z)]. (13)

Using Eqs. 10 and Eq. 11, it further reads

〈sh〉(z, ζ ) = z fa(ζ )ge(z, ζ ), (14)

where we defined the eddy-stretching factor ge as

ge(z, ζ ) =

∫
π

0

{
1 −

Hr

z
cos χ

}
p(χ)dχ, (15)

where Hr is the height of the resonant wave.
For a sea surface described by a wave spectrum S(k) (as a function of the isotropic

wavenumber k), Hr can be computed from contributions of a narrow wave-packet around kr ,
of width Δk as

H2
r (kr ) =

∫ kr +Δk/2

kr −Δk/2
S(p)d p ≈ S(kr )Δk. (16)

Note that for the physical picture of Fig. 1 to hold, the resonant wave height must be lower
than the height z at which fluxes are computed, restricting the physical process to cases where
Hr (kr ) < z.

The width of the wave-packet Δk is related to the accuracy of the resonance condition
(Eq. 12), since it quantifies to what extent waves that are not exactly of wavelength kr

contribute to eddy stretching. It can also be related to the magnitude of the physical mechanism
causing eddy stretching, i.e. the modulation of short wind-waves by long wind-waves, which
is highly variable (e.g. due to slicks, sea-surface temperature, and jointly varying surface
currents and stability conditions, see Vandemark et al. 1997; Grodsky et al. 2012; Kudryavtsev
et al. 2012). The wave-packet width is thus considered as a model parameter, called �k . The
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resulting form for the wave-packet width, including the physical condition mentioned above
is

�k =

{
�k for Hr (kr ) < z

0 for Hr (kr ) ≥ z
. (17)

For Hr (kr ) ≥ z, or for no waves (i.e. S(k) = 0), Eq. 14 is reduced to the expression proposed
by Katul et al. (2011) (Eq. 9).

Eddy stretching accounts for the change in the shape of an energy-containing eddy by
interaction with a surface wave of a size resonant with the size of the eddy. Using Eq. 14 in
Eq. 8, TKE dissipation including eddy stretching reads

κz

(ul
∗)

3
ǫ =

(ul
∗)

3

(κz)3

(
∂U

∂z

)−3

fa(ζ )−1ge(z, ζ )−1. (18)

Due to the resonance condition between the wave and the eddy (Eq. 12), the change in TKE
dissipation due to eddy stretching only occurs at heights he = π/[2 fa(ζ )k] ∼ 1/k, matching
the heights suggested in Edson et al. (2004) and also discussed in the introduction.

For ge and fa equal to one (i.e. neutral conditions and a flat boundary), we recover the
expression of TKE dissipation obtained for homogeneous and isotropic turbulence (and used
in the wind-over-waves model of Kudryavtsev et al. 2014, see Sect. 4).

3.2 Sources of Variability of Eddy Stretching

Eddy stretching is a new coupling mechanism between the wave and the wind fields, whose
magnitude can vary for a given mean wind speed. In order to understand the sources of this
variability, the expression of eddy stretching presented in Eq. 15 is rewritten in wavenumber
space, i.e. by defining g̃e such that

ge(z, ζ ) = g̃e(kr , ζ ). (19)

By using Eq. 15 together with the resonance condition (Eq. 12) and the height of the resonant
wave (Eq. 16), g̃e can be expressed as

g̃e(kr , ζ ) = 1 − 2�k1/2 fa(ζ )

π

[k2
r S(kr )]

1/2
∫

π

0
p(χ) cos χdχ. (20)

In addition to stability, g̃e depends on the wavenumber of the resonant wave (kr ) through
the spectrum of the wave slopes (k2

r S(kr )). Typical wind-wave slope spectra exhibit a peak
depending on the degree of sea-state development (e.g. spatial fetch, as modelled in Donelan
et al. 1985; Elfouhaily et al. 1997), and almost vanish for waves below 1 m (corresponding
to kr ∼ 10 m−1). For waves larger than the spectral peak (e.g. 60 m for a fetch of 100 km in
the Donelan et al. 1985, model), k2

r S(kr ) quickly vanishes. Eddy stretching thus reflects the
impact of intermediate to long wind-waves (of the order of tenths of metres) on atmospheric
turbulence, through the increase of the air–sea interface area (related to the sea surface mean
slope). This is consistent with remote sensing measurements indicating a sensitivity of air–
sea fluxes to the air–sea interface area (similar to radar backscatter, e.g. Kitaigorodskii 1973;
Brown 1979; Vandemark et al. 1997). The range of the spectrum contributing the most to
sea-surface slope (long wind-waves) can be highly variable for a given 10-m mean wind
speed, sensitive to fetch, rising/decaying winds, surface currents, modulating longer swells,
thus introducing variability into the wind-wave equilibrium (e.g. see Zhang et al. 2009, where
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surface currents caused long wind-waves to deviate from the mean wind direction, impacting
surface stress).

Eddy stretching also depends on the probability distribution of the different events p(χ)

and the bandwidth coefficient �k . Variations of p(χ) can induce an eddy stretching smaller
or greater than one. As shown in Fig. 1b, for probability distributions where predominant
configurations are for phases smaller than π/2, the horizontal extent of the eddy is reduced
with respect to the wall bounded case, and hence eddy stretching is smaller than one (see
Eq. 14). Conversely, when predominant configurations are for phases greater than π/2, eddy
stretching is larger than one. Both quantities p(χ) and �k are related to the physical process
inducing eddy stretching (the modulation of short wind-wave stress by long wind-waves)
whose magnitude can vary for a given 10-m mean wind speed (Gent and Taylor 1976; Dulov
et al. 2013; Kudryavtsev and Chapron 2016).

For a given 10-m mean wind speed, eddy stretching can thus vary due to, (i) variations of
the wave-slope spectrum, and (ii) variation of the magnitude of the physical process causing
eddy stretching. However, as described in Sect. 4, in order to obtain a realistic wind-wave
spectrum and the associated wind-over-waves equilibrium (i.e. matching observations), we
use the wind-over-waves model of Kudryavtsev et al. (2014). Within this particular model,
the only parameter controlling the long wind-wave spectrum is spatial fetch, following
the parametrization of Donelan et al. (1985). To simply account for deviations from this
parametrization, as well as for the sources of variability mentioned above, Eq. 20 is rewritten
as

g̃e(kr , ζ ) =

⎧
⎨
⎩

1 − γ
fa(ζ )

π

[k2
r S(kr )]

1/2 for Hr (kr ) < z

1 for Hr (kr ) ≥ z

, (21)

where

γ = 2�k
1/2

∫
π

0
p(χ) cos χdχ. (22)

The new parameter γ contains all the dependencies to p(χ) and �k . Implicitly, it also contains
variations in the wind-wave slope spectrum not described by the wind-over-waves model (e.g.
non-stationary winds, surface currents, etc.).

Variations of spatial fetch in the Donelan et al. (1985) parametrization only change the
spectrum of wind-waves greater than about 60 m (by causing a shift of the peak of the
wind-wave slope spectra towards larger waves). From Eq. 21, this induces a change in eddy
stretching at heights he (proportional to the wave size) too large to impact the surface momen-
tum flux u∗ (not shown). On the other hand, variations of γ in Eq. 21 induce a global change
in the eddy-stretching magnitude. This includes a change in the eddy-stretching magnitude
corresponding to 10-m waves, describing a change in the wave energy not described by the
Donelan et al. (1985) parametrization. This corresponds to changes in eddy stretching at
heights around 10 m having a significant impact on momentum fluxes, as will be shown
numerically in Sect. 5.

The condition Hr (kr ) < z in Eq. 21 sets upper and lower bounds on g̃e: since Hr (kr ) is
related to k2

r S(kr ), this condition sets an upper bound on k2
r S(kr ), implying that g̃e cannot be

too large or too small relative to one for γ < 0 or γ ≥ 0 respectively. In practice, evaluating
this condition would require evaluating Hr (kr ) through Eq. 16, and hence choosing a value
for �k . This is not compatible with the choice, made in this work, to use only one free
parameter in the description of eddy stretching (the parameter γ ). Hence, in the following,
the condition Hr (kr ) < z is replaced by setting bounds on ge, i.e. by the condition that
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g̃e < 102 or g̃e > 10−2 for γ < 0 or γ ≥ 0, respectively. This choice of bounds covers two
orders of magnitude of g̃e around one. It also ensures that g̃e is positive, and hence that the
TKE dissipation is positive.

4 Wind-Over-Waves Model

In the previous sections, we proposed a mechanism accounting for the impact of long wind-
waves on TKE dissipation within an SBL model where a wave spectrum was prescribed. We
now briefly describe the wind-over-waves model introduced in Kudryavtsev et al. (2014),
predicting the generation of wind-waves by turbulent motions within a wind-and-waves
equilibrium. This wind-over-waves model is then used in the following sections to explore
the sensitivity of the wind-and-waves equilibrium to the proposed mechanism.

The wind-over-waves model couples an atmospheric TKE equation with an equation
describing a wind-wave field. Low-level turbulent motions lose energy to short wind-waves,
which in turn generate atmospheric fluctuations enhancing TKE by extracting energy from
the mean flow. Wave-wave non-linear interactions then result in an equilibrium wind-and-
waves state, where TKE is enhanced with respect to flow over a smooth surface, reproducing
the mean observed momentum flux in open-ocean measurements for a given mean wind
under neutral conditions. At the core of this coupling is thus the transfer of energy between
atmospheric turbulent motions and atmospheric wave-induced motions, the latter being cou-
pled to the wind-wave field (e.g. Makin and Kudryavtsev 1999; Hara and Belcher 2002;
Kudryavtsev et al. 2014). The atmospheric flow is thus decomposed into a mean component,
a turbulent component and a wave-induced component which decays with height.

The first implication of this triple decomposition is that, as opposed to a standard SBL,
the turbulent momentum flux −u′w′ = (ul

∗)
2 is no longer constant with height, due to the

presence of wave-induced stress τw = ρ(uw
∗ )2 associated to wave-induced motions. The

sum of both wave-induced and turbulent contributions is however constant and equal to u2
∗,

defined as the normalized turbulent momentum flux on top of the WBL (defined as the SBL
sub-layer where wave-induced stress is non-zero, e.g. Makin and Mastenbroek 1996)

(ul
∗)

2(z) + (uw
∗ )2(z) = u2

∗. (23)

From this equation, we introduce the coupling coefficient

αc(z) =

[
uw

∗ (z)

u∗

]2

, (24)

which quantifies the relative impact of wave-induced stress in the SBL. Equation 23 can then
be rewritten as

ul
∗ = (1 − αc)

1/2u∗. (25)

The second implication of the triple decomposition is that the TKE balance in the presence
of wave-induced stress reads

[(uw
∗ )2 + (ul

∗)
2]

∂U

∂z
− (1 + β2)

gH

ρC pθh

= ǫ. (26)

With respect to the wall-bounded case (Eq. 2), the TKE balance now contains an additional
term (uw

∗ )2∂U/∂z, describing the extraction of energy from the mean flow by its interaction
with wave-induced stress. Equation 26 is a straightforward generalization of the Kudryavtsev
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et al. (2014) balance (derived in, e.g., Kudryavtsev and Makin 2004; Hara and Sullivan 2015)
where stratification has been included (through the term gH/C pθh). In this balance, the
presence of waves enhances TKE through the so-called wake production term, as found in
numerical simulations over idealized sinusoidal waves (Hara and Sullivan 2015) and over a
breaking-wave field (Suzuki et al. 2013).

Note that other balances could be considered. In particular, Janssen (1999) and Cifuentes-
Lorenzen et al. (2018) consider that (uw

∗ )2∂U/∂z acts directly as a source of wave energy (and
hence does not appear in Eq. 26), leading to a decrease in TKE in the presence of wind-waves.
This balance describes TKE decrease observed very close to the surface in numerical simula-
tions (Hara and Sullivan 2015). This region is not described by the Kudryavtsev et al. (2014)
model, which is written in Cartesian coordinates, hence losing validity when approaching
wave crests.

Using Eqs. 3 and 25 in Eq. 26, the TKE balance in dimensionless form reads

− (1 − αc)
−1 κz

ul
∗

∂U

∂z
+ (1 + β2)ζ +

κz

(ul
∗)

3
ǫ = 0. (27)

The atmospheric component of the Kudryavtsev et al. (2014) wind-over-waves model is
recovered for a neutral stratification (i.e. ζ 	= 0). The standard TKE equation describing
stratified turbulence in absence of waves is recovered in its dimensionless form (Eq. 5) for
αc = 0.

Using the expression for TKE dissipation Eq. 18 in Eq. 27 further yields

− (1 − αc)
−1 κz

ul
∗

∂U

∂z
+ (1 + β2)ζ +

(ul
∗)

3

(κz)3

(
∂U

∂z

)−3

f −1
a g−1

e = 0, (28)

where eddy anisotropy fa depends on stratification ζ , and eddy stretching ge depends on γ ,
height z, and the wave spectrum (through Eqs. 19 and 21). Equation 28 can thus be solved
for the dimensionless shear [(κz)/ul

∗]∂U/∂z, given ζ , αc, fa , and ge.
The wave-induced stress τw , and thus αc, is required to solve Eq. 28. As presented in

Kudryavtsev et al. (2014), the coupling parameter αc describes not only the wave-induced
stress in the WBL resulting from the smooth deformation of the airflow above waves (losely
called “form drag” in the following), but also the stress induced by airflow separation events
on top of breaking waves (Reul et al. 1999; Husain et al. 2019). For a given wave of wavelength
k, both these effects act over a shallow atmospheric layer, up to heights h(k) ∼ 0.1k−1 and
ha(k) ∼ 0.3k−1 respectively. Note that this is at variance with eddy stretching, acting at
greater heights (i.e. he ∼ 1/k, see Sect. 3).

Furthermore, both form drag and airflow separation are, unlike eddy stretching, mostly
confined to the short wind-wave range (waves of the order of 1 m, following Plant 1982)
and thus couple Eq. 28 to a stationary short wind-wave spectrum (described by Eq. 34 in
Appendix 1). The full wind-wave spectrum is described, in the Kudryavtsev et al. (2014)
model, as a superposition of the aforementioned short wind-wave part and a prescribed long-
wave part, mostly governed by the degree of sea-state development (i.e. fetch and wave age,
following Donelan et al. 1985; Elfouhaily et al. 1997, and discussed in Sect. 3.2). Details
on both the wind-wave spectrum and the parametrization of the coupling coefficient can be
found in Appendix 1.

The resulting wind-and-waves equilibrium matches atmospheric measurements (see
Sect. 5.2) and wave measurements (Yurovskaya et al. 2013). It is not sensitive to varia-
tions in the long wind-wave spectrum (i.e. variations in fetch), since it does not contribute to
form drag nor airflow separation.
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Fig. 2 Flow chart of the wind-over-waves model. The left panel shows the input parameters of the model
and how they impact the different steps of model (dotted-dashed arrows). The parameters used in standard
bulk formulae are called “bulk parameters”, as opposed to the “external parameters”. Note in particular the
different quantities impacting the proxy eddy-stretching parameter γ (dashed box, Eq. 21). Right panel shows
the structure of the wind-over-waves model. The equilibrium solution is obtained by iteratively solving the
two model components (the atmospheric model, Eq. 28 and the wave model, Eq. 34), using a bulk formula as
a first guess for the momentum flux

5 Momentum Fluxes Variability Under ModerateWind Speeds

In this section, we first describe how the new physical mechanism (described in Sects. 2
and 3) can be incorporated in the wind-over-waves model described in Sect. 4 (Sect. 5.1). The
resulting new wind-and-waves equilibrium is then compared to open-ocean measurements
(Sect. 5.2).

5.1 The CoupledModel

As summarized in Fig. 2, the coupled wind-over-waves model solves the TKE balance (28).
The equation depends on the short wind-wave spectrum (through αc) obtained by solving
a budget equation (Eq. 34 in Appendix 1). It also depends on the parameter γ through
ge, introduced in Eq. 21. The coupled system is solved by iterations, given a 10-m wind
speed U10, a heat flux H , fetch (for the prescribed long wind-wave spectrum), and the
parameter γ . It returns a friction velocity on top of the WBL (u∗), a mean wind profile
U (z), and a wind-wave spectrum S(k), characterizing the wind-and-waves equilibrium.
The inclusion of eddy stretching introduces a sensitivity of the wind-and-waves equilib-
rium to long wind-waves, absent in the Kudryavtsev et al. (2014) model and discussed
below.

Note that even though Eq. 28 is valid for any stability condition, only unstable stratification
conditions can be simulated by the coupled model (i.e. when αc is determined recursively
by solving Eq. 34 in Appendix 1). When the atmosphere is stably stratified, the TKE model
yields unrealistically weak turbulence. It is out of the scope of the present paper to describe the
coupled stably-stratified case, that would require the introduction of other physical processes
such as gravity waves or a total kinetic energy balance (e.g. Zilitinkevich et al. 2008).
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5.2 Comparison to Experiments

Near-surface momentum fluxes (u2
∗) from the wind-over-waves model and its extension

presented above were compared to measurements presented in Edson et al. (2013), compiling
data obtained from different field campaigns in open sea. The data were collected 50 km
off the southern Californian coast (Hristov et al. 2003), 10 km off the coast of Denmark
(Mahrt et al. 1996), south of Martha’s Vineyard (Edson et al. 2007), and on the northern
wall of the Gulf Stream (Marshall et al. 2009), and were filtered to retain only young seas
(i.e. with presumably no swell). This dataset covers a wide range of winds speeds (up to
25 m s−1) and stability conditions (stability parameter from −1.2 to 0.8). These observations
are of particular relevance since they were used to calibrate the COARE parametrization (e.g.
Fairall et al. 2003).

Figure 3a shows the observed bin-averaged values of momentum fluxes as a function
of the neutral 10-m wind speed (U10N , black dots). In the observations, the neutral wind
speed is obtained by applying a MOST stability correction to the wind speed extrapolated
from direct measurements. It corresponds to the expected wind speed at equilibrium with
the measured momentum flux in neutral stability conditions (e.g. Liu and Tang 1996). In
the following, measurements will be compared with the wind-over-waves model in neutral
conditions (ζ = 0) leading to an eddy anisotropy factor fa = 1.

The solid line in Fig. 3a shows the equilibrium solution of the coupled model includ-
ing wave-induced stress and without eddy stretching (i.e. γ = 0), for a fetch of 100 km. As
expected from Kudryavtsev et al. (2014), the solution is in good agreement with observations.
On the contrary, without wave-induced stress (i.e. uw

∗ = 0 or αc = 0), the modelled momen-
tum fluxes are smaller than those observed for wind speeds greater than about 10 m s−1

(dashed line in Fig. 3a). The effect of short waves on the SBL (through form drag and airflow
separation, which increase TKE) is thus an essential physical process to explain the mean
dependency of wind stress on U10N . In fact, for the considered range of wind speeds, the
coupling coefficient αc varies between 0 and 0.6, and increases with wind speed (solid line
in Fig. 3b, which shows the maximal coupling coefficient for a given wind speed, located
very near the surface). For wind speeds above 15 m s−1, wave-induced stress is larger than
the turbulent momentum stress (i.e. αc > 0.5).

In the wind-over-waves model, to each value of U10N corresponds a short wind-wave
spectrum. Long wind-waves depend on fetch and on wave age (u∗/cp , with cp the phase
speed of the spectral-peak wave component), following the parametrization of Donelan et al.
(1985). The correspondence between U10N and wave age in the model is shown in Fig. 3b
(dashed line). The modelled range (between 0.6 and 1.2) is consistent with the range of
observed values in Edson et al. (2013), which are interpreted as young seas. Note that even
though there is a one-to-one correspondence between U10N and wave age, there is no reason
for such a relation between wave age and the near-surface momentum flux, which is discussed
below by showing other sources of variability of momentum flux independent of wave age.

The momentum fluxes measurements exhibit a significant scatter (black error bars in
Fig. 3a), which may be attributed to the influence of local processes on the wind-and-waves
equilibrium (Edson et al. 2013). In the present work we investigate the possibility that this
variability is caused by eddy stretching, through a change in the long wind-wave spectrum
(and particularly 10-m waves), or through a change in the intensity of the modulation of
short wind-waves by long wind-waves. To this end, we use the simplified expression of eddy
stretching (Eq. 21) in which a single parameter, γ , is varied as a proxy for these two effects.
Variation of γ between −20 and 8 yields the grey shading in Fig. 3a. This corresponds to
values of eddy stretching between 10−2 and 101, as shown in Fig. 4. The range of variation
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Fig. 3 a Surface momentum fluxes (divided by air density) vs neutral 10-m wind speed. Dots indicate bin-
averaged measurements from Edson et al. (2013), vertical error bars are the associated standard deviations, the
dashed line is the model result without accounting for the impact of waves on the SBL, and the solid line is the
model result with wave-induced stress. Grey shading is the range of values obtained varying eddy stretching
around its neutral value of one (corresponding to γ = 0). b Maximal (i.e. surface) coupling parameter αc

(solid line), and wave age (dashed line) vs 10-m neutral wind speed. For the range of observed wind speeds,
the coupling parameter varies between 0 and 0.6

Fig. 4 Magnitude of eddy
stretching ge at its spectral peak
(from Eq. 21) as function of the
coefficient γ and 10-m wind

in momentum flux resulting from the variation of eddy stretching covers the scatter that is
observed in the data (compare shadings and error bars in Fig. 3a). Note that the lower part of
the grey shading in Fig. 3 corresponds to values of ge greater than one, and conversely. Other
factors could be invoked to explain the scatter in the measurements, in particular fetch. To this
end, fetch was varied in the coupled model between 10 and 1000 km, with fixed γ in Eq. 21.
The resulting variability was not sufficient to explain the observed scatter (not shown). This
is consistent with the fact that fetch variations induce a change in eddy stretching at heights
which do not significantly affect the surface momentum flux (as discussed in Sect. 3.2).
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Fig. 5 TKE dissipation versus 10-m wind speed at different heights. Note the differences in vertical-axis
ranges. The dashed line is the model result without accounting for the impact of waves on the SBL and the
solid line is the model result with wave-induced stress. Grey shading is the range of values obtained varying
eddy stretching around its neutral value of one (corresponding to γ = 0)

Wave-induced stress and eddy stretching were shown above to have a significant impact on
surface momentum fluxes. Figure 5 further shows how both processes change TKE dissipation
(Eq. 18) at different heights. As expected from the wind-over-waves model, TKE dissipation
is enhanced when waves are included in the model (compare the dashed and the solid lines):
the additional TKE production arising from wave-induced stress is locally balanced by an
enhanced TKE dissipation. It is then interesting to focus on the sensitivity of TKE dissipation
to variations of eddy stretching (grey shadings). The sensitivity of TKE dissipation to eddy
stretching first decreases with height for heights below 5 m (compare grey shadings between
Figs. 5a and b), and then increases with height above 5 m (compare grey shadings between
Figs. 5c and d). This highlights two different causes of the sensitivity of TKE dissipation to
changes in eddy stretching. Let us first recall that eddy stretching magnitude at a height z (g̃e)
depends on the slope of waves whose wavenumber kr is such that kr ∝ 1/z, called “resonant
waves”. This follows from Eqs. 12 and 21, where the resonant waves slope is k2

r S(kr ).
Furthermore, the slope of wind-waves decreases with their wavenumber, since S(k) ∝ k−3

(in the “saturation range” of wind-waves, see, e.g. Phillips 1977, p. 148). Hence, near the
surface (below 5 m), the resonant waves (which are small) are not steep, and hence g̃e is close
to one. At those heights, the observed sensitivity of TKE dissipation to eddy stretching thus
results from the changes in the turbulent momentum flux ul

∗ (first factor in Eq. 18), caused
by changes in TKE dissipation over the whole atmospheric column. As height increases, so
does the slope of the resonant waves, and hence for heights above 5 m, the sensitivity of
TKE to eddy stretching results from ge being significantly different from one. Those two
mechanisms show that the impact of long wind-waves on TKE dissipation can both directly
and indirectly affect the whole atmospheric column.

Coming back to momentum fluxes, two effects can be invoked to explain their sensitivity
to eddy stretching. First, as discussed above, stretching ge could directly affect atmospheric
turbulence through its (direct or indirect) effect on TKE dissipation ǫ (Eq. 18). Second, as the
wave growth rate depends on atmospheric turbulence through ul

∗ (Eq. 35 in Appendix 1), the
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Fig. 6 a Modelled saturation spectrum (k4 S(k)) for a 10-m wind speed of 15 m s−1 and an eddy stretching
parameter γ of −10 (dashed line), 0 (solid line), and 5 (dotted line); b Relative impact on momentum fluxes of
a change in the wind-wave spectrum due to eddy stretching change represented as function of the coefficient
γ and 10-m wind. Black dots indicate the three values of U10 and γ presented in (a)

aforementioned modification, through a change in the wind-wave spectrum S(k), could affect
wave-induced stress τw , ultimately leading to a change in atmospheric turbulence. Figure 6a
shows three examples of modelled wind-wave spectra for the same value of 10-m wind and
different values of γ . It reveals that the short wind-wave spectrum on which wave-induced
stress depends (i.e. k of the order of 103 m−1) is not significantly sensitive to variations in eddy
stretching. To further assess if these variations are significant, we quantified their impact on
atmospheric turbulence. Runs of an uncoupled version of the wind-over-waves model were
performed and compared to coupled runs. A set of wave spectra were first computed by
running a coupled wind-over-waves model with no eddy stretching (γ = 0) and different
values of U10N . The uncoupled model was then run, meaning that the wind-wave dependent
coupling variables αc and ge in Eq. 28 were derived from the previous coupled runs at the
same wind. The resulting momentum flux was then compared to the result of a coupled run
with the same values of γ and U10N . Over all the ranges of U10N and γ , the relative difference
between the momentum fluxes obtained from the coupled and uncoupled runs is lower than
0.4 %, as shown on Fig. 6b, indicating that the variations in wind-wave spectrum due to
eddy stretching do not significantly affect atmospheric turbulence. Thus, variations in eddy
stretching do not significantly impact the short wind-wave spectrum, which was calibrated in
Kudryavtsev et al. (2014) to fit observations (Yurovskaya et al. 2013). The short wind-wave
spectrum is indeed determined by the coupling between low-level flow and short waves,
occurring at heights where eddy stretching is negligible (i.e. at around 1 m).

6 Effects of Stability on the Surface Boundary Layer

As discussed in Sect. 4, Kudryavtsev et al. (2014) did not include atmospheric stratification
in their wind-over-waves model. However, the atmospheric turbulence model presented in
Sect. 2.1 includes atmospheric stratification effects in the TKE balance. In Katul et al. (2011)
it was further compared to Monin–Obukhov similarity theory (MOST). Based on dimensional
arguments, MOST represents the impact of stratification on near surface momentum fluxes
by means of a universal function (called the MOST momentum function), determined from
measurements. Katul et al. (2011) computed an analytical form of the MOST momentum
function matching measurements. In this section we discuss how inclusion of waves into the
Katul et al. (2011) framework changes the analytical MOST momentum function (Sect. 6.1),
and how this compares to measurements (Sect. 6.2).
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Fig. 7 Inverse universal momentum function φ−1
m (proportional to turbulent diffusion) as a function of a

stability and the coupling coefficient for eddy stretching set to one, b stability and eddy stretching for a
coupling coefficient set to zero

6.1 Dependence of theMonin–Obukhov Similarity Theory Momentum Function on

Wind-Waves

One of the main outcomes of the Katul et al. (2011) work was to recover the MOST uni-
versal momentum function from the TKE budget (Eq. 5) and eddy anisotropy ( fa). The
authors recovered the O’KEYPS equation (Panofsky 1963; Businger 1988), which was
originally derived based on heuristic and dimensional arguments to recover the empirical
MOST momentum function over land (see Foken 2006), such as the Businger–Dyer function
(Businger 1988, Eq. 39 in Appendix 2).

Defining the MOST momentum universal function (or dimensionless shear) as

φm =
κz

ul
∗

∂U

∂z
, (29)

Eq. 28 can be rewritten as

(1 − αc)
−1φ4

m − (1 + β2)ζφ3
m = f −1

a g−1
e , (30)

assuming that (1 − αc)u
4
∗ 	= 0.

The resulting equation reveals that φm depends on the wind-wave spectrum through αc

and ge, unlike standard MOST which assumes that the universal momentum function only
depends on ζ . Furthermore, it extends the O’KEYPS equation and the results of Katul et al.
(2011) who considered the case of a flat boundary (i.e. αc = 0 and ge = 1).

Equation 30 can be solved analytically (solutions, presented in the supporting information
of Katul et al. 2011, can be easily extended to the present case), yielding the MOST momentum
function φm . Note that in the following, we take αc and ge as parameters of the model, unlike
the coupled case where they are determined recursively by the wave model (Sect. 5.1). This
allows exploration of all the range of stability conditions (in particular stable conditions
ζ > 0).

The inverse of the solution of Eq. 30 as a function of ζ , αc, and ge is shown in Fig. 7. The
inverse of the MOST momentum function is of particular interest since φ−2

m proportional to
the turbulent diffusion coefficient (K , defined as (ul

∗)
2 = K ∂zU ). Note first that the expected

dependence of the turbulent diffusion coefficient with atmospheric stability is observed: tur-
bulent diffusion is higher for an unstable atmosphere (z/L < 0) than for a stable atmosphere
(z/L > 0). Second, an increase in wave-induced stress (i.e. in αc in Fig. 7a) for a fixed
stability induces an increase in turbulent diffusion. This is consistent with enhanced turbu-
lent motions due to enhanced wake production. Third, eddy stretching greater (respectively
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Fig. 8 Monin–Obukhov universal momentum function as a function of stability. Dots indicate bin-averaged
measurements from Edson et al. (2013) and vertical error bars are the associated standard deviations. Red
and black lines are the Businger–Dyer function (Businger 1988) and the present model result, respectively.
Grey shading and dashed lines are the range of values obtained varying the wave coupling parameter and eddy
stretching respectively

lower) than one causes an increase (respectively a decrease) in turbulent diffusion, for a given
stability (Fig. 7b). Since eddy stretching larger than one implies reduced TKE dissipation,
the observed increase in turbulent energy is consistent with an increase in the production
term in the TKE equation, balanced by a constant energy-transfer term from wave motions
and buoyancy, and a decreasing dissipation.

Figures 7a, b show how the sensitivity of atmospheric turbulence (i.e. the diffusion coeffi-
cient) to stability is modulated by wave-induced stress and eddy stretching. Figure 7a reveals
that increasing wave-induced stress causes an increase in this sensitivity. This is also the
case for ge < 1, while eddy stretching larger than one causes a decrease in this sensitiv-
ity (Fig. 7b). The sensitivity of atmospheric turbulence to stability is an important feature
since, as mentioned in the introduction, the first source of variability of turbulent momentum
fluxes is atmospheric stability. These results indicate that short and long wind-waves play an
important role in this variability.

6.2 Comparison to Measurements

Figure 8 shows the bin-averaged MOST momentum function as a function of stability for the
measurements over open ocean from Edson et al. (2013) described in Sect. 5.2 (black dots).
The measurements were performed above or close to the expected height of the WBL (of the
order of 5 m) where MOST is expected to work (since wave-induced stress vanishes).

The solid black line in Fig. 8 represents the solution of Eq. 30 excluding the effect of
waves (i.e. αc = 0 and ge = 1) using the expression of eddy anisotropy fa from Katul et al.
(2011) (Eq. 40 in Appendix 2). The values of fa are based on observed turbulent statistics
over land (Kaimal et al. 1972). There is a good qualitative agreement between the model
solution and the data, consistent with the measurements being at the expected height of the
WBL. The Businger–Dyer function (red line) is also shown in Fig. 8 and fits similarly to the
measurements, even though it differs from the Katul et al. (2011) solution in the stable case.

The scatter observed in the measurements (black error bars) contains contributions from
both eddy-covariance sampling uncertainties and variations in surface wave conditions. To
investigate the contribution of the second effect on the scatter, Eq. 30 was solved for different
values of the coupling coefficient αc and eddy stretching ge.
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We first varied the coupling coefficient αc to test the importance of wave-induced stress
on atmospheric turbulence (through its effect on MOST) at heights above 5 m. Even though
it is usually assumed that this is not the case, airflow separation events on top of breaking
waves could, for instance, extend higher in the SBL (see e.g. the numerical simulations
of Suzuki et al. 2013). The range of variation of αc (between 0 and 0.6) is inferred from
the range obtained with the coupled wind-over-waves model in Sect. 5.2, and shown in
Fig. 3b. It captures the range of observed short wind-wave conditions, neglecting atmospheric
stratification effects. The resulting variation in modelled MOST functions (grey shading)
shows that αc might explain some scatter in the data, but the scatter is smaller than that found
in observations. In particular, the data scatter in the stable case (z/L > 0) is not explained.
Provided that waves are significant in explaining the measured scatter, this result indicates
that sources of variability of φm other than short wind-wave variability should be investigated,
such as eddy stretching.

Eddy stretching impacts TKE dissipation at heights above 5 m (being supported by 10-
m waves, see Sect. 3.2), and can thus impact MOST momentum function (from Eq. 30).
Variation of eddy stretching ge between 0.3 and 3 (dashed lines) covers the data scatter. This
variation range is consistent with the one used in Sect. 5 (and shown in Fig. 4), showing
that eddy stretching, and thus long wind-wave variability, seems to be able to explain the
variability of MOST momentum function. Note however that the variation range required
to explain the observed scatter is smaller than the one required to explain the scatter of
momentum fluxes under neutral conditions, and that this range could be even smaller if eddy
covariance sampling uncertainties are deduced from the observed scatter.

Comparison of the wind-over-waves model with measurements thus shows that (i)
observed stratification effects on MOST momentum function are consistent with the the-
oretical SBL model; (ii) Monin–Obukhov similarity theory quantities are less sensitive to
the presence of wind-waves than momentum fluxes, as found in Hristov and Ruiz-Plancarte
(2014) by only considering wave-induced motions within the momentum WBL.

6.3 Dimensionless Dissipation

Similarly to Fig. 5, we now investigate the sensitivity of TKE dissipation ǫ to stability.
Following MOST, we define dimensionless dissipation φǫ as

φǫ =
κzǫ

(ul
∗)

3
, (31)

which can be computed from Eqs. 28 and 29 as

φǫ = φm − (1 + β2)ζ. (32)

The solid black line in Fig. 9 is the dimensionless dissipation computed with φm from
Eqs. 30, excluding the effect of waves (i.e. αc = 0 and ge = 1). As expected, there is a good
agreement between this value and the Businger–Dyer function (red line). Values of ge larger
(resp. smaller) than one cause a decrease (resp. an increase) in φǫ , consistent with Eq. 18
(dashed lines, which correspond to ge = 0.3 and 3 respectively). Finally, as also shown in
Fig. 5 for neutral conditions, an increase of wave-induced stress causes an increase of TKE
dissipation (grey shading), consistent with the additional production term in the TKE balance
equation. Overall, waves have a significant impact on the dimensionless TKE dissipation,
consistent with previous studies (e.g. Cifuentes-Lorenzen et al. 2018).
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Fig. 9 Dimensionless TKE
dissipation as a function of
stability. Red line is the
Businger–Dyer function
(Businger 1988) and black line is
the model result. Grey shading
and dashed lines are the range of
values obtained varying the wave
coupling parameter or eddy
stretching respectively. The inset
shows the same quantities, but for
a different choice of
normalization velocity

In deriving the dimensionless equations (30) and (32), ul
∗ has been chosen as the nor-

malizing velocity in the definition of φm , φǫ , and ζ . This choice is physically sound, since
in this case φ−2

m is proportional to the turbulent diffusion. In measurements, however, it is
difficult to disentangle wave-induced stresses from turbulent stresses (see e.g. Hristov et al.
2003), and the only measurable quantity could then be u∗, the total momentum flux. Hence,
we must discuss the differences between choosing u∗ instead of ul

∗ as a normalizing velocity
in MOST, i.e. by considering the following alternative forms of the universal momentum
function, dimensionless dissipation, and stability parameter

φt
m =

κz

u∗

∂U

∂z
, φt

ǫ =
κzǫ

u3
∗

, ζ t =
κzgH

ρC pθhu3
∗

. (33)

First, there is no qualitative difference in the behaviour of φt
m with respect to φm (not

shown). However, the behaviour of φt
ǫ , is qualitatively different from φǫ . As shown in the

inset of Fig. 9, an increase in wave-induced stress now causes a decrease in dimensionless
dissipation (the grey shading is below the solid black line in the inset), inconsistent with the
conclusions drawn earlier (in the main figure, the grey shading as above the black curve).
This shows that MOST is sensitive to the choice of the normalization in the presence of
waves. This could have important implications for the interpretation of measurements.

7 Conclusion

We investigated the role of wind-waves and atmospheric stratification on atmospheric
turbulence and momentum fluxes. The geometry of the ocean surface, resulting from
the superposition of (periodic) surface wind-waves, is assumed to change the shape of
energy-containing turbulent structures (conceptually viewed as attached eddies). Extend-
ing a wall-bounded turbulence model proposed by Katul et al. (2011) allowed to model
the impact of this deformation on TKE dissipation, for a surface whose height follows a
wind-wave spectrum.

It was further argued that for an attached eddy of a given horizontal length scale, most of the
deformation of its shape is due to surface waves with a similar horizontal extension. This was
based on the assumption that the eddy deformation is caused by the surface wave periodically
modulating the surface roughness induced by shorter waves, on a length scale resonant with
that of the attached eddy. The overall result is a modification of TKE dissipation by long
wind-waves (of the order of 10 m), at heights above 5 m, where the impact of wind-waves on
atmospheric turbulence has been observed but was unexplained by wind-over-waves models.
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The impact of the new mechanism on surface momentum fluxes was quantified by its
inclusion in a wind-over-waves model (Kudryavtsev et al. 2014), which predicts a wind-and-
waves equilibrium by coupling a TKE budget to a wind-wave energy budget. The wind-and-
waves equilibrium, normally defined solely by 10-m wind speed and atmospheric stability, is
now also dependent on a single parameter linked to the long wind-wave spectrum and to the
intensity of the modulation of short wind-wave roughness by long wind-waves (i.e. related to
the deformation of attached eddies by wind-waves). The variability observed over open ocean
for both momentum flux (for a given 10-m wind speed) and MOST momentum function (for
a given stability), was explained by variation of this parameter. If existent, the distortion of
atmospheric eddies by the geometry of 10-m wind-waves is thus an important process in the
determination of surface momentum fluxes. This analysis also revealed that the sensitivity of
MOST momentum functions to stability is impacted by the presence of both short and long
wind-waves. Both processes should be included in momentum flux parametrizations.

Wind-waves longer than 10 m were found to modify TKE dissipation at a height too
high to impact surface momentum fluxes. However, if the assumptions of stationarity and
horizontal homogeneity were relaxed (i.e. the SBL is no longer a constant-stress layer, which
can occur, e.g., when the boundary-layer height decreases significantly), their impact on TKE
could significantly affect momentum fluxes in the whole surface layer. This process could then
play an important role in the coupling of wind-waves with large scale atmospheric structures.

This theoretical work is based on the idea that surface waves are able to distort atmo-
spheric eddies. However it does not rely on experimental evidence, and the expression of the
distortion includes a free parameter. Katul and Manes (2014) linked the shape of the attached
eddies to properties of the vertical turbulent velocity spectra. This link could be further inves-
tigated within open-ocean measurements in order to test the present theory. The proposed
framework thus opens new paths for numerical and experimental investigations of turbulence
on top a realistic sea surface. Those would require the joint analysis of atmospheric vertical
velocity and sea surface elevation/slope signals to infer the expected changes in turbulence
spectral properties.

More generally, our study is a step towards a more precise description of multi-scale
interactions within the WBL, linking the shape of large atmospheric structures with macro-
scopic properties of the surface wave field. By showing the importance of atmospheric eddy
distortions for air–sea fluxes, we emphasize that this description is essential in order to
advance our understanding of the wind-and-waves coupled system and to improve air–sea
flux parametrizations.
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Appendix1:CouplingBetweenShortWind-WavesandAtmosphericTur-
bulence

Details are provided on the coupling between short wind-waves and atmospheric turbulence,
following the wind-over-waves model presented in Kudryavtsev et al. (2014) and references
therein. The short wind-wave model is first described, and expressions for wave-induced
stress are then presented.
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Waves are described by their wavenumber k, frequency ω, phase speed c, and direction
of propagation ψ , and follow the dispersion relation ω2 = gk + Tswk3 where Tsw is the
dynamical surface water tension. The wave field is specified by means of the directional
spectrum Sd(k, ψ). We also introduce the saturation spectrum B(k, ψ) = k4Sd(k, ψ), which
will be used in the following.

As proposed by Kudryavtsev et al. (2014), the full wave spectrum can be defined as a
composition of a short-wave spectrum Bsw and a long-wave spectrum Blw (in this study,
the fetch-dependent spectrum of Donelan et al. 1985, is used). The weighted sum between
Blw and Bsw represents a wind-driven sea spectrum, without the presence of non-local waves
(swell). It is in a one-to-one relation with the local atmospheric state. The short-wave spectrum
is coupled to atmospheric turbulence through form drag, and further affects the momen-
tum WBL through airflow separation stresses. The long-wave part is prescribed given some
parameters (here spatial fetch).

The short-wave component Bsw describes both gravity waves and parasitic capillary
waves. The latter are generated on the forward face of shorter gravity waves (in the wave-
length range 0.03–0.3 m), as they approach their maximum steepness, which, for longer
gravity waves, would lead to breaking (Longuet-Higgins 1963).

The gravity short wind-wave spectrum results from a balance between wind forcing (β),
non-linear energy losses due to wave breaking (or generation of parasitic capillary waves
for shorter waves), and generation of short waves by large breakers (or of parasitic capillary
waves by steep and shorter waves, Qb). The balance equation reads

βv(k, ψ)B(k, ψ) − B(k, ψ)

(
B(k, ψ)

a

)ng

+ Qb(k, ψ) = 0, (34)

with βv(k, ψ) = β(k, ψ) − 4νk2/ω the effective growth rate (with ν air viscosity), and
a = 2.2 × 10−3 and ng = 10 two tuning constants fitted to observations (from Yurovskaya
et al. 2013). Expression for the source term Qb can be found in Appendix A of Kudryavtsev
et al. (2014).

The short parasitic capillary waves, corresponding to waves of wavelengths of 3×10−4 m
or less, follow the balance Eq. 34 without the wind input term, and with modified constants
a and ng . For this range of waves for which wave breaking does not occur, the non-linear
term is associated to a non-linear saturation of the wave spectrum.

Both equations are solved by iterations, given a wind forcing resulting from the WBL
model (Eq. 28), and expressed as

β(k, ψ) =

⎧
⎪⎨
⎪⎩

cβ

{
ul

∗[h(k)]

c

}2

cos ψ | cos ψ | for U [h(k)] > c

0 for U [h(k)] < c

(35)

where cβ = 3 × 10−2 is Plant’s constant and h(k) = 0.1 k−1 is the inner region height. Note
that since wind input depends on the ratio between friction velocity and wave phase speed,
it is supported mostly by slow (and short) waves (Plant 1982).

To solve Eq. 28, the wave-induced stress must be specified. Let T̃ and T̃a be the intensity
of form drag and airflow separation induced by a wave component of wavenumber k. Both
these effects act over a shallow atmospheric layer, up to heights h(k) ∼ 0.1k−1 and ha(k) ∼

0.3k−1, respectively (Kudryavtsev et al. 2014). We further assume, for simplicity, that form
drag (respectively airflow separation) is constant up to h (resp. ha) and cancels for z > h

(resp. z > ha). This yields the following expression for the total wave-induced stress
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(uw
∗ )2(z) =

∫
T̃ (k)He[h(k) − z]dk

+

∫
T̃a(k)He[ha(k) − z]dk (36)

where He(x) is the Heaviside step function (He(x) = 1 for x > 0 and 0 otherwise). This
expression couples the short wind-wave model (Eq. 34) to the SBL model (Eq. 28).

Form drag describes the impact of the wind-to-waves energy transfer on atmospheric
turbulence, and is expressed as

T̃ (k) =

⎧
⎨
⎩

cβ

k

ρw

ρa

{ul
∗[h(k)]}2

∫
B(k, ψ) (cos ψ)3 dψ for U [h(k)] > c

0 for U [h(k)] < c

, (37)

where ρw and ρa are the density of water and air respectively.
Waves of wavelength greater than 0.3 m generate an additional stress due to airflow

separation on top of breaking waves (Reul et al. 1999). The expression for airflow separation
stress for a given wavenumber depends on wave-breaking statistics. However, following
Phillips (1985), wave-breaking statistics can be related to wave energy dissipation (the second
term from the left in Eq. 34). For waves in the equilibrium range, on top of which most of
airflow separation events occur, the spectral balance (Eq. 34) is further assumed to be reduced
only to a balance between wind input and dissipation. This results in the following expression
for airflow separation for U [ha(k)] > c

Ta(k) =
2cdbcβ

a
ha(k)k fg(k)

(
U [ha(k)]

c
− 1

)2 ∫
B(k, ψ)(cos ψ)5 dψ (38)

where fg(k) is a cut-off function restricting airflow separation in the equilibrium range, and
cdb is the local roughness on top of breaking crests, which has a mean value of 0.35 (see
Kudryavtsev and Makin 2001). For U [ha(k)] < c, airflow separation is assumed to vanish
(i.e. Ta = 0) which limits airflow separation to slow (short) waves (similar to form drag).

Appendix2: Expressions for theEddyAnisotropyand theBusinger–Dyer
Momentum Function

The Businger–Dyer universal momentum function (Businger 1988), derived from the Kansas
measurements, reads

φB
m (ζ ) =

{
1 + 4.7ζ for ζ > 0

(1 − 15ζ )−1/4 for ζ < 0
. (39)

This empirical function was recovered by Katul et al. (2011), by considering an eddy
anisotropy of the form

fa(ζ ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 −

0.38

0.55
[1 − exp(15ζ )]

)−1

for ζ ≤ 0

(
1 +

1

0.55
ζ

)−6

for ζ > 0

. (40)

This expression was obtained from measurements of turbulent vertical velocity spectra (from
Kaimal et al. 1972).
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3.3 CONCLUSION

Figure 3.1: Preliminary results from an LES over periodic roughness patterns in the streamwise
direction (blue and red lines), and from a reference LES with constant roughness
(black lines), for u∗ ∼ 0.22 m s−1. (a) TKE dissipation as a function of height, with
grey shading indicating the range of values obtained from the coupled model of
Sec. 3.2. (b) Ratio between the contributions of sweeps (Q4) and ejection (Q2)
events to the vertical momentum flux u′w′ (computed using conditional averages).

In this Chapter we have proposed a relation between the geometry of long wind-waves
and TKE dissipation in the WBL. A candidate mechanism for this relation is the modulation
of short wind-waves by long wind-waves, which results in the emergence of patterns in the
sea-surface roughness field, whose characteristic scale can leave an imprint on the scale of the
overlying energy-containing eddies. More precisely, the imprint changes the "anisotropy factor"
of energy-containing eddies, an effect similar to that of buoyancy (see page 40 of Chapter 1).

The resulting modification in TKE dissipation could not be estimated from the theory, and
would require e.g. Large Eddy Simulations (LES) over periodic roughness patterns in order to
be quantified. In Fig. 3.1 we show some preliminary spatially-averaged statistics of such an
LES, where we imposed a roughness length z0 varying periodically in the streamwise direction
around an averaged Charnock value by ±75% (see Annex C for details on the simulation).
1 The variations had a wavelength λz0 of 5m and 10m (blue and red lines respectively).
Figure 3.1a shows the averaged TKE dissipation, computed from the LES subgrid model.
Differences between the various cases (solid lines) seem to be similar to the spread investigated
with the theoretical model (grey shading), even though no clear trend is observed with respect
to variations of λz0 . The same holds for a measure of the instantaneous properties of turbulence,
the sweep to ejection ratio (Fig. 3.1b), for which no clear trend is observed. The sweep to

1The variations of ±75% are an upper bound for the modulation of short wind-waves by long wind-waves [Gent
and Taylor, 1976].
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ejection ratio is the ratio between the contribution of sweeps and that of ejections to the vertical
momentum flux, which is e.g. close to two in the roughness sublayer of canopies, where sweeps
dominate with respect to ejections (see the discussion page 33).

These results are preliminary and, in particular, are sensitive to the choice of the spatial
averaging box. This indicates the need for more simulations to test the convergence of the
averaging procedure and to understand its effects on the resulting statistics. Other statistics also
need to be explored, e.g. statistics conditional to the relative phase with respect to the roughness
patterns. Finally, this simulation aims at isolating the effect of roughness variations on the
overlying flow, i.e. without considering the geometrical effect of the surface-height variations
induced by long wind-waves. The latter could be important in the process described in Sec. 3.2,
requiring the need for more sophisticated LES, over a wavy boundary [e.g. Husain et al.,
2019]. Overall, these results again show the difficulty of extracting signatures of wind-wave
interactions from the wind field [Soloviev and Kudryavtsev, 2010, Hristov, 2018, Villas Boas
et al., 2019].

Close to the surface (below a height of 1 m), it is fair to state that the interaction between
energy-containing eddies and wind-waves should follow different rules. Indeed, for the scale
of waves that should be considered at those heights, wave-breaking is much more frequent
and intense. Hence the geometrical elements interacting with energy-containing eddies are
intermittent, both in space and time. This is explored in the next Chapter.
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CHAPTER 4

DYNAMICAL IMPACT OF WIND-WAVES ON
ENERGY-CONTAINING EDDIES

" Seestück (See-See)"/"Seascape (Sea-Sea)", Gerhard Richter (1970)
Nationalgalerie, Staatliche Museen zu Berlin, Berlin, Germany © 2020 Gerhard Richter
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4.1 INTRODUCTION

In the previous Chapter, we have discussed how the geometry of energy-containing eddies can
be modified by long wind-waves, at heights above 1 m. This involved an interaction between
waves and eddies of similar horizontal extension, proportional to the height z. However, as
the surface gets closer, the waves that could possibly interact with energy-containing eddies
are steeper and more prone to breaking. At these heights, the geometrical elements affecting
energy-containing eddies are hence closer to being organized in intense and intermittent patches
[as envisioned by Melville, 1996] than in smooth undulations (as considered in the previous
Chapter).

It could then be argued that these events trigger instabilities in the overlying flow, generating
vortices at their top in a similar way to the coherent vortices described on top of canopies
by Raupach et al. [1996] (see page 34). This criterion can be used to define the roughness
sublayer associated to these geometrical elements, where the instabilities constrain the size
of energy-containing eddies to the scale of the wind shear u∗/(dU/dz) [what Harman and
Finnigan, 2007, call the vorticity thickness, with u∗ the friction velocity and dU/dz the mean
wind shear].

In this Chapter we pursue this analogy by defining an effective roughness height associated
to these instabilities above a windy sea. The roughness height is estimated from measurements
of momentum fluxes, using the phenomenological model of Bonetti et al. [2017] (an extension
of the model presented in Sec. 1.2 to rough surfaces). This height is intended to characterize
in a compact form the complex interplay between turbulent structures, and breaking and
non-breaking waves close to the surface (as described in Sec. 1.3).
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4.2 ARTICLE: "REVISITING BEAUFORT SCALE: THE DY-
NAMICAL COUPLING BETWEEN TURBULENCE AND BREAK-
ING WAVES"

Manuscript to be submitted to the Proceedings of the National Academy of Sciences.

4.2.1 MAIN TEXT

153



D
R
A
F
T

Revisiting the Beaufort scale: the dynamical
coupling between turbulence and breaking waves
Alex Ayeta,b,1, Bertrand Chaprona, Peter Sutherlanda, and Gabriel G. Katulc

aIfremer, CNRS, IRD, Univ. Brest/ Laboratoire d’Océanographie Physique et Spatiale (LOPS), IUEM, Brest, France; bLMD/IPSL, CNRS, École Normale Supérieure, PSL
Research University, Paris, France; cNicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708-0328, USA

This manuscript was compiled on October 15, 2020

The coupling between wind–waves and atmospheric surface layer

turbulence is usually represented through a roughness length. Orig-

inally suggested on purely dimensional grounds, this roughness

length does not directly correspond to a measurable physical quan-

tity of the wind-and-wave system. Here, ideas underlying the Beau-

fort scale are formalized by quantifying the interaction between tur-

bulent velocities and roughness elements that contribute most to mo-

mentum transport. A length associated with the velocity and size of

breaking short waves is identified. This length scale represents the

effects of breaking waves which efficiently impede turbulent struc-

tures, and which are strongly coupled to the wind field. Scales of the

eddies contributing to momentum fluxes are then constrained inside

a so-called roughness sub-layer. Unlike previous theoretical develop-

ments, the dynamical coupling thus becomes directly measurable.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

air-sea coupling | momentum flux | wind wave interactions | wave

breaking

When at sea, an experienced seafarer can estimate the1

wind velocity just by looking at the local sea surface.2

A windy sea indeed demonstrates an apparent visual organiza-3

tion associated with the occurrence and intensity of breaking4

waves. This led George Simpson, in 1906, to derive a scale5

for the surface wind speed, labelled the Beaufort scale after6

the original classification of the sea surface by Frances Beau-7

fort in 1831 (red text in Fig. 1). While under duration- and8

fetch-limited conditions, the wind speed can be linked, in a9

remarkably concise form, to the evolution of the wind-wave10

peak energy and period (1–3), the Beaufort scale relies partly11

on the visual properties of short-scale breaking waves. Those12

small-scale properties must hence contain the imprint of the13

wind aloft and of its direct coupling with wind-waves, no mat-14

ter the history of the system. In this work, a first step towards15

quantifying this wind-dependent imprint is taken in the form16

of two summarizing scales: a vertical scale for near surface17

turbulence, and a horizontal scale for the breaking wave field18

(Fig. 1). This is the first instance of such a mathematical19

quantification of the Beaufort scale.20

The Beaufort scale partly relies on wind-wave coupling21

being independent of the peak wind-wave energy “provided22

short wave scales are well established" (4). More precisely,23

the mean-squared slope of the surface, largely governed by24

short wave scales, is linked to surface roughness statistics and25

hence to wind stress (5). The slope distribution of the short26

waves is further related to wave breaking and formation of27

whitecaps. Hence wave breaking statistics are related to the28

wind-wave coupling (6–8). Yet, the impact of wind-waves on29

turbulence in the atmospheric surface layer is, to date, usually30

represented through a roughness length (9–11), which does not31

directly correspond to measurable turbulence or surface wave32

physical quantities (12). This is largely due to the challenges33

associated with modelling a surface that is no longer connected 34

due to wave breaking, and for which the governing equations 35

of motion are not fully known (13). 36

The goal of this article is to demonstrate that this complex 37

process can be summarized through a horizontal wave length 38

scale, associated with the velocity of short-scale breaking 39

fronts. The wave properties associated with the predicted 40

length scale (italic text in Fig. 1, from Ref. 7) correspond to the 41

Beaufort scale. A key result is that this length scale is derived 42

independently from (i) recent high-resolution measurements of 43

wave-breaking statistics (14, 15) and (ii) a phenomenological 44

model of turbulence that does not presume wave statistical 45

properties (16–19). Unlike previous theoretical developments, 46

this is a directly measurable trace of the dynamical wind- 47

wave coupling. Furthermore, the turbulence model allows 48

the definition of a vertical length associated with the typical 49

scales of energy-containing eddies within the air-side roughness 50

sublayer. 51

Analysis of wave-breaking measurements 52

Data. Open-ocean measurements of wave-breaking statistics 53

(14, 15) were obtained during three field campaigns on-board 54

R/V FLIP: the RaDyO experiment, which took place 120 km 55

south of the Island of Hawai’i in 2009 (20), and the HiRes 56

and SoCal experiments, which took place 25km off the coast 57

of Northern California and in the Southern California Bight, 58

respectively. As shown in Fig. 2 (red diamonds), the 10-meter 59

mean wind U10 (averaged over 20-minute intervals) ranged 60

Significance Statement

Wind drag on the ocean surface is a key control and uncertainty
on many geophysical phenomena, from global circulation to
hurricanes. It results from the complex interplay between waves
and turbulence, which has been modeled using a turbulent
roughness length. Yet, its physical interpretation has remained
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structure of atmospheric turbulence directly to the velocity of
breaking waves. Consequently, by measuring the distribution of
breaker velocities - possible via remote sensing - ocean surface
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something seafarers have been doing for centuries; estimating
wind velocity by simply "looking at the sea" (the Beaufort scale).
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Fig. 1. Beaufort scale (red text) and its quantifi-
cation using two wind-dependent length scales:
a representative wavelength of breaking fronts
(horizontal axis) and height of the roughness
sublayer, equivalent to the smallest size of
energy-containing eddies (the vertical axis).
Classification of breaker types on the horizontal
axis is from (7).

Fig. 2. Momentum flux u2

∗
versus U10 from the COARE 3.5 parameterization (solid

line) and the corresponding open-ocean measurements (11, dots and bins). The
flat-wall dependence is included for reference (dashed line). The open-ocean mea-
surements used in this study (14, 15) are shown as diamonds. The COARE 3.5
parameterization is used to obtain hr(U10) from the phenomenological turbulence
model.

from 2 to 16 m s−1 with few measurements for U10 > 10 m s−1.61

Fig. 2 also shows the measured friction velocity u∗ defined as62

u2
∗ = τ/ρa, where τ is the directly-measured turbulent wind63

stress at 10-m height and ρa is the mean air density. These64

measurements are consistent with other experiments (11) (dots65

and bins) used to calibrate the COARE parameterization (solid66

line). The presence of wind-waves at equilibrium results in a67

bulk drag coefficient Cd = u2
∗/U2

10 that is higher than a Cd68

associated with a flat surface (dashed line, and see also e.g.69

Ref. 21, their Fig. 3). Except for very low winds, atmospheric70

stability was almost neutral during the measurements (SI71

Supplementary). For this reason, atmospheric stability effects72

are not discussed further and low U10 runs are filtered out so as73

to only maintain near-neutral atmospheric stability conditions.74

In the measurements, no strong correlation was found between75

variations in atmospheric stability conditions for low winds 76

and variations in u∗ for a given U10. 77

To each point in Fig. 2 corresponds a 20-minute averaged 78

spectrum of wave-breaking statistics, measured using a stereo 79

pair of long-wave infrared cameras. In contrast to measure- 80

ments in the visible range (22), the use of infrared cameras 81

allows the measurement of non-air-entraining microbreakers 82

with crest speeds as slow as the gravity-capillary phase speed 83

minimum. 84

Results. The statistics of the breaker front length Λ(c) per unit 85

area of sea surface per unit increment of breaking front velocity 86

c are now analyzed (defined in Ref. 6). Near breaking crests, 87

local energy fluxes, proportional to c3, become too large for the 88

ocean surface to stay smooth (13). The associated roughness 89

elements modify near-surface turbulent stress (8), and the 90

intensity of the modification depends on c3Λ(c) (Fig. 3a). 91

Further, as the Beaufort scale relies on the changes of the 92

visual characteristics of breaking waves, the gradient of c3Λ(c) 93

with respect to changes in U10 must be used (Fig. 3b). The 94

choice of c3Λ(c) is also justified by the turbulence model (see 95

below). 96

The physical arguments presented in this work depend on 97

the breaker crest speed and not on wavelength. However, the 98

intuitive interpretation of the results is facilitated by following 99

Ref. (6) in assuming that the breaker crest speed is equal to 100

the phase speed, c, of a linear deep water wave whose length, 101

λ, is related to that phase speed by the dispersion relation, 102

λ = 2πc2/g, where g is gravitational acceleration. 103

Data were first binned for U10 intervals corresponding to 104

Beaufort numbers (see Fig. 1 for the intervals). Dots and 105

error bars in Fig. 3c show the average and standard deviation 106

of c3Λ(c) for each Beaufort number bin, normalized by the 107

wavenumber-dependent maximum it reaches in the range of 108

measured U10. Examples of the dependence of c3Λ(c) with 109

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Ayet et al.



D
R
A
F
T

Fig. 3. Analysis of the wave breaking measurements. The data was binned in U10 intervals corresponding to Beaufort numbers. (a) Binned c3Λ(c) vs breaker speed for
different Beaufort numbers. (b) Gradient of the binned c3Λ(c) with respect to changes in Beaufort number vs breaker speed, for different Beaufort numbers. The vertical
dashed lines correspond, for each Beaufort number, to the speed whose gradient ∂[c3Λ(c)]/∂B is the largest. (c) Average and standard deviation of binned c3Λ(c) for
different breaker speeds vs U10 and Beaufort number. Dots and error bars correspond to data binned in U10 intervals corresponding to Beaufort numbers, and shadings to
intervals of 1 m s−1. The wavelengths λw = 2πc2/g correspond to those of deep-water linear waves travelling with phase speed c, and have been included for reference.
The colors in (c) correspond to the to the phase speeds of the vertical lines in (a) and (b).

c are shown in Fig. 3a. For a fixed breaker speed c, the110

increase in c3Λ(c) with Beaufort number (B) is not constant,111

but is maximal around a particular wind speed before c3Λ(c)112

reaches its maximal value (see the solid lines in Fig. 3c). For113

a given B, the increase is found strongest around a speed cr,114

termed representative wave speed in the following (see Fig. 3b).115

This speed increases with Beaufort number: for B = 2, it is116

cr = 0.75 m s−1 (blue vertical line in Fig. 3b) while for B = 6,117

it is cr = 1.75 m s−1 (orange vertical line in Fig. 3b). Note118

that, even though for B = 7 such a wave speed can still be119

defined (cr = 2.25 m s−1, yellow line in Fig. 3b), the low120

number of measurement points used for binning induces noise121

in the gradient of c3Λ(c).122

Hence, for each Beaufort number B, a representative veloc-123

ity (and associated wavelength) can be defined, corresponding124

to the short scale waves whose breaking statistics are the most125

sensitive to changes in mean wind speed (red line in Fig. 4).126

Sensitivity to the bin size was tested by using 10-m wind speed127

binning intervals of a width of 1 and 2 m s−1. The resulting128

variability of the average value of c3Λ(c) in each bin is shown129

as shadings in Fig. 1a, and as dashed and dotted lines in Fig. 4.130

The outcomes are qualitatively consistent with the analysis131

above.132

A measurable kinematic relation. A key property of the rep-133

resentative velocity cr is its kinematic link with the friction134

velocity135

cr = 2.5u∗. [1]136

While an approximate form of this relation can be obtained137

from a best fit to the data (in Fig. 4), the turbulence model138

presented in the next section provides an exact derivation of139

Eq. 1. It results from a kinematic condition on the motion of140

turbulent eddies near the surface141

Such a relation was discussed in Ref. (4) (p. 141) when142

considering the interaction between small scale waves and 143

surface drift induced by viscous wind stress. The magnitude 144

of the surface drift was indeed reported to be q = 0.55u∗ m 145

s−1 (23), and (4) argued that small waves with phase speeds 146

"smaller by a factor of at least five than" the surface drift 147

would be strongly impacted. Hence, wave scales such that 148

c = 5 × 0.55u∗ ∼ 2.5u∗ are the smallest waves that do not 149

significantly interact with surface drift. Interactions with 150

surface drift tends to reduce the critical steepness needed for 151

wave breaking. This leads to (i) a reduction of the amplitude 152

of drift-affected waves with respect to a no-drift situation, and 153

hence to (ii) a reduction of the strength of the breaking event, 154

i.e. its capacity to be visually detected. 155

Consequence (ii) can explain the existence of a maximum 156

in the gradient of c3Λ(c) with respect to Beaufort number 157

in Fig. 3b. With increasing winds, short wave-breaking oc- 158

currence is expected to increase. However, this increase is 159

truncated for drift-affected waves. This leads to the Bell- 160

shaped curves of Fig. 3b, i.e. to the fact that a representative 161

surface wave characteristic can be visually defined for a given 162

wind. As for consequence (i), it implies that amplitudes of 163

drift-affected waves are reduced, and so is their contribution 164

to "effective roughness elements" for atmospheric turbulence, 165

such as discussed in the next section. 166

To summarize, breaker data analysis suggests that it is 167

possible to relate a change in U10 to a change in the energetic 168

properties of breaking crests of a particular wave front velocity. 169

This reflects both local wind stress variations and changes in 170

wind-induced surface drift. 171

A roughness sublayer from a phenomenological turbu- 172

lence model 173

In this section, a phenomenological model of turbulence above 174

fixed roughness elements (16, 19) is now applied to a windy 175

Ayet et al. PNAS | October 15, 2020 | vol. XXX | no. XX | 3
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Fig. 4. Representative wave speed of the wind-wave local coupling as a function of
10-m wind speed and Beaufort number. Solid red line is the result from analysis of
wave-breaking statistics c3Λ(c), binned in Beaufort number intervals or, dotted and
dashed lines, in intervals of 1 and 2 m s−1 respectively. Solid black line is the result
from the phenomenological model of turbulence. The conversion between Beaufort
number and wind speed is U10 = 0.836B3/2 m s−1 (25). The wavelengths
λw = 2πc2/g correspond to those of deep-water linear waves travelling with phase
speed c, and have been included for reference.

sea.176

The model. The phenomenological model describes turbulence177

in the Surface Boundary Layer (SBL), where the flow is hor-178

izontally homogeneous and stationary with no subsidence,179

and hence u∗ is height-independent. Turbulence is modelled180

through a turbulence kinetic energy balance and so-called181

energy-containing eddies (red in Figs. 5b,c), which are leading182

order contributors to the vertical momentum flux at a given183

height (dashed lines in Figs. 5b,c).184

Those eddies are defined by their streamwise extension185

or height se and their turnover velocity, proportional to u∗186

(consistent with other models of turbulence, e.g. Ref. 24). For187

neutral conditions, the mean wind shear is then expressed as188

∂U

∂z
(z) =

u∗

κse(z)
, [2]189

where U is the mean wind speed in the streamwise (x) direction,190

and z is height, whose origin is the mean sea surface height,191

and κ ∼ 0.4 is the Von Kármán constant. Details on the192

derivation of Eq. 2 from the model hypotheses (18, 19, 21)193

are in the SI Appendix. It is to be noted that this model is194

also compatible with (though not explicitly derived from) the195

Maximum Entropy Production (MEP) principle (see also SI196

Appendix).197

The phenomenological model defined in Eq. 2 thus links198

the mean wind shear to the friction velocity and the size199

of the energy-containing eddies. For flow past a rough wall,200

Refs. (16, 19) proposed that the surface boundary can be201

decomposed into two sublayers, depicted in Fig. 5a. The202

highest sublayer is a logarithmic layer, in which the size of the203

energy-containing eddies scales with distance from the wall204

(se(z) = z), corresponding to attached eddies (as proposed in205

Ref. 26, and depicted in Fig. 5b). From Eq. 2, the mean wind206

profile is hence logarithmic207

Ulog(z) =
u∗

κ
log(z/z0), for z ≥ hr, [3]208

Fig. 5. Phenomenological model describing the SBL in the presence of an effective
roughness element of height hr . (a) The SBL is divided into two sublayers: (b) the
logarithmic sublayer, where energy-containing eddies scale with z; (c) the roughness
sublayer, where their size is independent of height and is equal to hr , yielding a linear
wind profile.

where z0 is the roughness height. Below the logarithmic sub- 209

layer lies the roughness sublayer of height hr. In this layer, 210

the size of the energy-containing eddies is constant with height 211

and scales with the height of the roughness elements, equal to 212

hr. To ensure continuity of the mean wind shear at the inter- 213

face between both layers, the scaling constant is considered 214

to be equal to one, i.e. se(z) = hr for z ≤ hr (see Fig. 5c and 215

Ref. 19). Equation (2) then yields a linear wind profile 216

Ulin(z) =
u∗

κ

z

hr
, for 0 ≤ z ≤ hr. [4] 217

The height of the roughness elements hr is in general different 218

from the roughness height z0 (which is an extrapolation of the 219

logarithmic profile) and, by definition, hr ≥ z0 (27). 220

In the present case, this relation can be made more precise 221

by requiring continuity of the wind profile at hr. This yields 222

z0 = hr exp(−1). [5] 223

This equation defines the height of roughness elements given 224

z0. We term these roughness elements as being effective, since 225

the height hr models the bulk effect of intermittent wind-wave 226

breaking events on the SBL, but not the height of measurable 227

monochromatic wind-waves. Instead, only their speed cr can 228

be readily interpreted, and we define it below as equal to the 229

phase speed of wind-waves contributing the most to shape 230

roughness-sublayer energy-containing eddies. 231

In the aerodynamically smooth regime, hr matches the 232

height of the viscous sublayer exp(1)zv
0 , where zv

0 = γν/u∗ 233

is the viscous roughness height (and ν and γ ∼ 0.11 are the 234

kinematic viscosity of the air and the roughness Reynolds 235

number of smooth flows, respectively). The resulting relation 236

between u2
∗ and U10 is plotted in Fig. 2 (dashed line). 237

Model extension to an ocean surface. Using open-ocean mea- 238

surements of u∗ and U10 and their COARE fit (solid line 239

in Fig. 2), a wind-dependent z0 can be inferred and a cor- 240

responding hr can be computed from Eq. 5. As shown in 241

Fig. 1, hr ranges from 10−4 m to 10−2m. For winds below 3 242

m s−1, hr decreases with increasing U10 as expected for an 243

aerodynamically smooth surface (28). For higher winds, the 244

effect of wind-waves becomes predominant and hr increases 245

with increasing U10. These two regimes are reminiscent of the 246

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Ayet et al.
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Charnock parameterization of the roughness height z0 (see247

Refs. 9, 11, and SI Appendix).248

The height of the effective roughness elements hr can be249

further projected into a horizontal speed or length scale using250

the physical interpretation of the roughness sublayer. Unlike251

z0, which is defined as the extrapolated height where the wind252

speed is zero for a logarithmic wind profile, the wind speed at253

hr is such that254

U(hr) =
u∗

κ
, [6]255

and we argue below that it corresponds to the phase speed cr256

of the waves most coupled to atmospheric turbulence (which257

defines the velocity of the effective roughness elements).258

The argument relies on the dynamical interpretation of259

U(hr) as setting the properties of energy-containing eddies in260

the roughness sublayer. Energy-containing eddies can be seen261

as resulting from the interaction between mean wind shear262

and turbulence: rearranging Eq. 2, the streamwise extension263

of energy-containing eddies (which defines their properties)264

can be expressed as se ∝ weTe, i.e. as a product of an the265

eddy turnover velocity we ∝ u∗ and time Te ∝ (dU/dz)−1.266

For roughness-sublayer eddies, the turnover velocity further267

reads Te = (U(hr)/hr)−1, indicating that those are controlled268

by the bulk mean wind shear over the sublayer, whose essential269

parameters are its scale hr and magnitude U(hr). Roughness-270

sublayer eddies can thus be viewed as originating from an271

instability of a similar form to those above canopies (29),272

triggered by the wind shear whose scale, also labelled vorticity273

thickness (30), matches the eddy size (se ∝ hr). The scale274

is already set by the continuity of the wind profile at hr275

(Eq. 5). Now, if the wind shear in the roughness sublayer is276

set by intermittent, yet intense wave breaking events, fluid is277

entrained at the speed cr of the breaker fronts (31). Hence278

the magnitude of the bulk wind shear U(hr) should be equal279

to the wave speed280

U(hr) = cr. [7]281

Note that this kinematic condition, together with Eq. 6, readily282

yields Eq. 1.283

The above discussion shows that the linear mean wind pro-284

file in the roughness sublayer is not essential for the description285

of energy-containing eddies. What is instead essential is the286

bulk mean wind shear across the sublayer (see also MEP ar-287

guments in the SI appendix). In fact, the mean wind speed in288

the roughness sublayer does not have a well-defined physical289

interpretation. In the logarithmic sublayer, it is the convection290

velocity of energy-containing eddies (see e.g. Ref. 32). But,291

in the roughness sublayer, the convection velocity could be292

ill-defined due to transient roughness elements (12). Certainly,293

it is more reasonable to assume that the convection velocity of294

eddies at all heights zv
0 ≤ z ≤ hr is U(hr), is the convection295

velocity of the roughness-sublayer eddies of size hr.296

Equation 7 could at first glance lead to an interpretation of297

the roughness height as (i) the lowest height at which waves of298

phase speed cr can induce airflow separation events (12, 31),299

or (ii) the height at which inviscid instabilities above a free300

surface are generated (33). While both mechanisms certainly301

play a role in the generation of roughness-sublayer eddies, they302

are associated with wind-wave generation, which is not what303

we aim to describe through the kinematic condition Eq. 1304

and roughness-sublayer eddies. The latter should instead be305

viewed as wave-coherent motions (as defined in 34), which are306

an indirect imprint of wind-wave growth. Indeed, wind-wave307

growth occurs at smaller wave scales and greater heights (8), 308

and it is through its role in setting the properties of the wave 309

breaking field (6) that it affects roughness-sublayer eddies. 310

At those greater heights, wind-wave growth is also charac- 311

terized by the presence of wave-induced motions, which cause 312

a deviation of the mean wind from a logarithmic profile (35). 313

In the SI Appendix, the phenomenological model is extended 314

to account for these motions above the roughness sublayer 315

(following Ref. 21). In this case, Eq. 5 is more complex, but 316

the resulting hr are only slightly different than results re- 317

ported in Fig. 1. More interestingly, with increasing wind, 318

wave-induced motions become more energetic, and the ratio 319

se/hr is found to increase (up to 2.2 for 16 m s−1). This 320

finding is consistent with detailed laboratory experiments on 321

flow over granular roughness elements that reported (i) attain- 322

ment of spatially uniformity in flow statistics and (ii) a log 323

region commencing at approximately 1.6 times the mean grain 324

height (36). It also supports the interpretation of the effective 325

roughness elements as being intermittent, with an average size 326

smaller than the scale of the eddies they generate. Finally, 327

it reveals the existence of a direct interaction between wave 328

growth and roughness-sublayer eddies, through the presence 329

of wave-induced motions. 330

The phenomenological model used here does not contain 331

any a priori spectral information on the wave field, and solely 332

requires specification of the bulk information contained in 333

open-ocean measurements of u∗ and U10. Yet, the resulting 334

wave velocity is similar to the one obtained from analysis of 335

wave-breaking statistics. This is shown in Fig. 4, where the 336

wave velocity cr corresponding to the velocity obtained from 337

Eq. 7 (black line) is of the same order of magnitude than 338

that of obtained from data (red line), with a similar trend 339

as a function of U10. For very low winds, model and data 340

trends disagree (see inset of Fig. 4), but suggested scales are 341

close to the capillary-gravity transition, and hence also to the 342

measurement limit of the wave-breaking data. 343

This analysis shows the that there is a correspondence 344

between the properties of the wave breaking field and those 345

of the energy-containing eddies. This positive result is used 346

below to propose a three-dimensional interpretation of the 347

phenomenological model in the presence of roughness elements 348

associated to wave breaking. 349

A three-dimensional view of wave-breaking- 350

constrained turbulence 351

In the previous section, a roughness height was found, related 352

to the streamwise scale of energy-containing eddies se. The- 353

oretical (37, 38), experimental (39) and numerical (40) work 354

further revealed that the interaction between breaking waves 355

and turbulence is a three-dimensional processes in which the 356

spanwise length of the breaking crests plays an essential role. 357

In the following, the phenomenological model of turbulence is 358

extended so as to bridge this spanwise length to the stream- 359

wise scale of energy-containing eddies. The model is sketched 360

in Fig. 6a, and described below. The spanwise direction is 361

labelled as y. 362

Let lΛ be a spanwise extension of surface roughness ele- 363

ments, proportional to the individual crest length associated 364

with breaking fronts of speed c (whose sum per unit area of 365

ocean surface is Λ(c)dc). Roughness elements are assumed 366

to trigger spanwise atmospheric eddies of similar extension 367
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Fig. 6. Three-dimensional interpretation of the phenomenological model (Fig. 5) over a rough sea surface. (a) Breaker fronts of speed c and spanwise extension Λdc constrain
the spanwise extension lΛ of vortices advected at a speed U = c (blue circles). The streamwise scale of energy-containing eddies se (red circle) results from the spiraling
motion of a fluid parcel (red line) due to advection at mean wind speed and rotation at a turnover velocity u∗. Over their liftetime (longer than the eddie lifetime), breaker fronts
cover an approximate streamwise distance g−1c2 and hence the dotted area. Note the difference in the geometry of the individual breaker front and of the effective roughness
element (black line in the (x, z) transect). (b) Required lΛ for logarithmic-layer energy-containing eddies, i.e. for se = z and U ∝ u∗ ln(z/z0).

with a turnover velocity proportional to u∗. These eddies are368

also advected at the mean wind at a speed U (blue circle in369

Fig. 6a). The turnover time of the eddies is TΛ ∝ lΛ/u∗, and370

the streamwise distance, se, travelled by a representative fluid371

parcel during a turnover time se = UTλ, is372

se(z) ∝ U(z)lΛ(z)/u∗. [8]373

As sketched in Fig. 6a (red line), the distance se can be374

represented as the streamwise Lagrangian distance separating375

the ascending and descending branches of the eddy, in between376

which a representative fluid parcel would undergo a spiraling377

motion. It is hence also the streamwise extension of the energy-378

containing eddies defined in the phenomenological turbulence379

model (red circle). As for the phenomenological model, this380

representation is to be understood in an ensemble mean sense,381

unlike similar but instantaneous representations of turbulence382

over flat walls (41, 42) and waves (37, 38) which would result383

from conditional sampling of the flow.384

This three-dimensional interpretation relates, through Eq. 8,385

the streamwise extension of the energy-containing eddy se386

to the spanwise extension of the roughness elements con-387

straining its size, lΛ. For a logarithmic layer, se = z and388

U ∝ u∗ ln(z/z0), and Eq. 8 then yields the lΛ(z) required389

to obtain attached energy-containing eddies at each height390

z satisfying the law of the wall. As shown in Fig. 6b, after391

some algebra, lΛ(z) has a minimum, reached at a height corre-392

sponding to the roughness sublayer height hr defined in Eq. 5.393

For a wavy surface, an increase of lΛ with decreasing height394

is not physical. This would indeed imply an increase of the395

spanwise extension of breaking fronts (proportional to lΛ) as396

height decreases. Further, for decreasing heights, the speed397

and wavelength of the representative waves decrease (Eq. 7).398

This result would hence imply an increase of the breaking399

front average length with decreasing wavelength, which is not400

realistic (see Refs. 43, 44, which, among others, highlight the401

self-similarity of breaking fronts). Hence, breaking fronts can 402

only imprint their spanwise scale on energy-containing eddies 403

for z ≥ hr. 404

Subsequently, hr represents the smallest height at which 405

roughness elements associated with breaking fronts can set 406

the spanwise and streamwise extension of energy-containing 407

eddies. Below this height, the scale of energy-containing eddies 408

is hr. This interpretation offers an alternative argument for 409

the importance of hr in the characterization of the wind-over- 410

waves coupling. 411

From the wave-breaking data, this scale emerged from the 412

variations of c3Λ(c)dc with U10. Assuming foam patches to 413

have a lifetime proportional to the underlying wave period (44), 414

g−1c2Λ(c)dc is related to the the fraction of sea-surface turned 415

over by breaking fronts, weighted by their lifetime. Hence 416

c3Λ(c)dc also contains information about both the lifetime of 417

roughness elements and their momentum (proportional to c). 418

The fact that a change in the properties of roughness-sublayer 419

energy containing eddies is coupled to a change in c3
rΛ(cr)dc 420

thus indicates that not only the size of the breaking fronts 421

(∝ lΛ) but also their momentum (∝ cr) and lifetime (∝ cr/g) 422

are essential for the description of near-surface turbulence 423

properties. 424

Conclusions 425

The Beaufort scale analysis was revisited by identifying a 426

wave speed corresponding to small scale breakers that are 427

most coupled to the atmosphere. Infrared measurements of 428

wave breaking statistics have indeed revealed that variations 429

of c3Λ(c)dc with wind (or Beaufort number) are significant 430

only for a particular breaker speed, which increases with fric- 431

tion velocity. We consistently interpreted this measurable 432

kinematic relation as a macroscopic property of the turbulent 433

flow, resulting from the existence of a minimal scale for energy- 434

containing eddies related to the spanwise extension of breaking 435
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fronts (Fig. 6). An important feature of this description is that436

it does not require specification of the spectrum of waves or437

roughness elements through form drag and air-flow separation438

(as in e.g. Refs. 8, 45, 46). It instead describes an overall439

modification of near surface turbulence over a moving windy440

sea.441

The turbulence model used herein relies on the existence442

of a roughness sublayer, sensing the waves, at the bottom of443

the logarithmic sublayer. While the existence of a roughness444

sublayer over a windy sea has already been suggested elsewhere445

(e.g. Refs. 10, 12, 37), the properties of roughness-sublayer446

eddies proposed herein are not supported by empirical evidence,447

but based on an analogy with other types of surfaces (19, 47).448

These energy-containing eddies have been related to spectral449

properties of turbulence in prior work (19, 48, 49). The present450

work hence enables new hypotheses of wind-wave interactions451

to be formulated and tested using direct numerical simulations452

(50) or in situ measurements of turbulence spectral properties453

(51).454

Finally, the representative wave speed was converted to a455

wave scale associated with the visual description of a rough456

windy sea by the Beaufort scale (Fig. 1). The scale results457

from the selective attenuation of the amplitude of short waves458

by surface drift. The amplitude of those waves is generally459

described by a wave action budget balancing wind input, break-460

ing wave dissipation and non-linear wave-wave interactions461

(6). On the other hand, the size of energy-containing eddies462

was found to be dependent on the presence of wave-induced463

motions (SI Supplementary). Hence, the dynamical wind-wave464

coupling expressed by those two scales should be sensitive to465

modifications of these different processes by environmental466

conditions, e.g. the presence of slicks, surface currents and467

modulating longer waves that can alter surface drift (52), the468

wave action budget (53) and wave-induced motions (21). Ad-469

ditionally, atmospheric stability effects, not considered in the470

present work, can be integrated into the proposed dynamical471

framework, as modifying the scale of energy-containing eddies472

(18, 54).473

This measurable breaker scale is a promising candidate for474

the characterization of air-sea interactions and their modula-475

tion by changes in environmental conditions, both by in situ476

or remote sensing methods. It can guide methods for the inter-477

pretation of remote sensing observations, sensitive to breakers478

and foam-coverage properties, as well as help design future479

satellite-borne instruments, especially to directly retrieve sea480

surface Doppler estimates.481
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Phenomenological model of turbulence. The derivation of Eq. 2 in the main text is offered starting from a phenomenological13

model of wall-bounded turbulence (1, 2). The calculations follow closely Ref. (3).14

An idealized SBL is defined as the lowest part of the atmospheric boundary layer (adjacent to the surface) where the flow is15

high Reynolds number, horizontally homogeneous and stationary, with no subsidence. All averaged atmospheric quantities16

are invariant with respect to the streamwise and spanwise directions, and depend only on height (z) from the surface. The17

Turbulence Kinetic Energy (TKE) equation is then a balance between mechanical production and dissipation18

u2
∗

∂U

∂z
= ǫ, [1]19

where U is the mean wind speed (in the streamwise direction), u∗ is the friction velocity, and ǫ is the TKE dissipation rate.20

To obtain a link between the mean wind speed and friction velocity, a closure for ǫ is needed. To this end, it was hypothesized21

(1, 2) that turbulent structures of half streamwise and vertical extension se are attached to the surface (red circles in Fig. 5b,c).22

The turnover velocity of these structures was related to ǫ using the Kolmogorov 4/5 law for the third-order velocity structure23

function (4),24

we(se) ∝ (ǫse)1/3. [2]25

The momentum flux u2
∗ through a given surface at a height z (dashed lines in Fig. 5b,c of the main text) then relates to the26

vertical transport of mean wind momentum by the turbulent structures as27

u2
∗(z) ∝ we(se)[U(z + se) − U(z − se)] ∝ we(se)

∂U

∂z
2se. [3]28

The TKE dissipation is obtained by using Eq. 3 in Eq. 2. Using this result in Eq. 1, Eq. 2 of the main text is obtained29

∂U

∂z
=

u∗

κse
, [4]30

as well as the scaling we ∝ u∗.31

In Eq. 3, wave-induced fluctuations were not separated from turbulent fluctuations, as done in Ref. (3). Rather, we consider32

u2
∗ to be the average over contributions for different wavelengths ũ2

∗(k) weighted by a PDF p(k), i.e.33

u2
∗ =

∫

ũ2(k)p(k)dk = κǫ1/32∂zUse
4/3, [5]34

where the mean scale se reads35

se =

[
∫

p(k)s4/3
e (k))dk

]3/4

. [6]36

Using this approach, which does not rely on the triple decomposition of atmospheric quantities (5), allows representation of37

the bulk effect of waves on atmospheric turbulence without having to distinguish between (i) the energy exchange between38

wave-induced components and turbulent components (6, 7) (ii) the direct modulation of turbulence by the wavy surface (3, 8).39

An MEP consistency argument for dU/dz. To illustrate the connection between Eq. 4 and the Maximum Entropy Production40

(MEP) principle, consider a gradient-diffusion closure for u′w′(z) given by41

u′w′ = −Kt
dU

dz
= −

(

lm(z)
dU

dz

)2

, [7]42

where Kt is the eddy-diffusivity and lm(z) is an unknown mixing length set by boundary conditions on the flow. The turbulent43

kinetic energy production, assumed to be roughly balancing ǫ (or simply proportional to it), as in Eq. 1, is given by44

ǫ = −u′w′
dU

dz
= −

(

lm(z)
dU

dz

)2 dU

dz
. [8]45

As discussed in the main text on page 5, in the roughness sublayer only bulk quantities are assumed to be physical. For46

what follows and to be applicable to the logarithmic layer and to the roughness sublayer, the bulk dissipation rate, i.e. the47

depth-integrated ǫ(z) up to a height h is considered and is given as48

ǫb(h) = −
∫ h

0

(

lm(z)
dU

dz

)2 dU

dz
dz. [9]49

Maximizing the magnitude of ǫb is equivalent to maximizing entropy production as discussed in Ref. (9). This maximization50

can be solved by setting the Lagrangian of the system as La = lm(z)2U̇3 where U̇ = dU/dz (used for notation consistency with51

Hamiltonian mechanics). The Euler-Lagrange equation then reduces to52

∂La

∂U
− d

dz

(

∂La

∂U̇

)

= 0 − 3
d

dz
lm(z)2U̇2 = 0. [10]53
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Integrating with respect to z yields54

lm(z)2U̇2 = c1,
dU

dz
=

√
c1

lm(z)
. [11]55

A constant u′w′ = u2
∗ sets c1 ∼ u2

∗. And lm(z) = se recovers Eq. 4. In short, the resulting velocity profile satisfies Eq. 11 when56

boundary conditions force the shape of lm(z) to also satisfy the MEP principle (at least within the confines of gradient-diffusion57

arguments). These assumptions and the MEP approach taken here are not identical to those invoked in the phenomenological58

model (e.g. local isotropy required when employing Eq. 2) thereby adding robustness to Eq. 4.59

Height of the roughness sublayer. The wind-dependent roughness sub-layer height hr discussed in the main text (Fig. 1) is60

here compared to other heights in Fig. S2a. As shown in the log-log inset, hr (black solid line) and z0 (dashed line) follow a61

power law whose exponent is negative for winds lower than 3 m s−1, and tends towards u2.5
∗ for wind speeds larger than 8 m62

s−1. These two regimes are reminiscent, of the dependence of z0 with u∗, which is usually parameterized as (10)63

z0 = zv
0 + αc

u2
∗

g
. [12]64

where αc is the Charnock coefficient, which depends on U10 or u∗ (see e.g. Ref. 11). Through Eq. 5 of the main text, this65

dependence is hence similar to that of hr.66

In wind-over-waves models (e.g. 7, 12–14), the impact of waves on the SBL can encompass the contribution from breaking67

waves through air-flow separation (15), and the contribution of waves with low steepness through wave-induced stress (16, 17).68

For a given wind-wave field, both mechanisms decay exponentially with height, and dashed-dotted and dotted lines correspond69

to their vertical integral length scales divided by 100. When scaled, the integral length scales of both mechanisms seems70

to have the same order of magnitude of hr, but do not exhibit the correct power-law exponent (as shown in the log-log71

inset). Characterizing as a whole the wind-over-wave coupling, hr thus encompasses both wave-induced stress and air-flow72

separation mechanisms, and corresponds to the height of an effective roughness element, representing the bulk effect of individual73

wind-waves on the energy-containing eddies in the SBL.74

Coupling with wave-induced motions. It is however well known that above the roughness sublayer, wave-induced motions and75

wave-induced stress induce a deviation in the wind profile from its logarithmic form (e.g 5–7). This in turn affects the wind76

speed at the bottom of logarithmic layer and hence the properties of the roughness sublayer.77

In the presence of wave-induced stress, the TKE dissipation is modified (see Ref. 3), leading to a wind gradient of the form78

(see also Ref. 18)79

dU

dz
(z) =

u∗[1 − αc(z)]3/4

κse(z)
, for z ≥ hr [13]80

where αc = (u2
∗ − u′w′)/u2

∗ < 1 is the coupling coefficient that accounts for attenuation of the turbulent momentum flux u′w′81

as height decreases, due to motions being increasingly coherent with the waves (i.e. the presence of wave-induced stress, see82

Refs. 5, 19). In the roughness sublayer, as mentioned above, it is assumed that turbulent motions are indistinguishable from83

wave-induced motions, and hence84

dU

dz
(z) =

u∗

κse
, for z ≤ hr [14]85

The continuity of the mean wind shear at the top of the roughness sublayer leads to a relation between the size of86

roughness-sublayer energy-containing eddies and the height of the roughness sublayer that depends on wave-induced stress at87

the bottom of the roughness sublayer88

se = hr[1 − αc(hr)]−3/4. [15]89

As discussed in the main text, this interesting relation reveals that the properties of roughness-sublayer energy-containing90

eddies are coupled with wave-induced motions aloft.91

In general, the dependence of αc with height is non trivial and analytical calculations of hr are not possible. In Fig. S2a we92

show (red line) hr using a wind-dependent profile of αc from the wind-over-waves model of Ref. (7). In this model, αc includes93

both airflow separation events and wave-induced stress to yield a momentum flux and short wind-wave spectrum consistent94

with measurements and the COARE parameterization. The power-law dependence of hr discussed above is affected by the95

presence of wave-induced motions the logarithmic sublayer (see inset). However, the order of magnitude of hr is similar to96

that when wave-induced motions are neglected (compare black and red lines). In Fig. S2b, we further show the values of the97

coupling coefficient at the top of the roughness sublayer (dashed line) and the resulting ratio between se and hr (solid line).98

The latter is discussed in the main text (page 5).99

For completeness, a simplified case for which the roughness sublayer height can be computed explicitly is illustrated. To100

that end, a simplified height dependence of wave-induced stress is assumed (20) and given as101

αc(z) = α0
cH(hw − z), [16]102

where H is the Heaviside step function, and hw is the height at which the effect of waves on momentum flux becomes negligible.103

This expression assumes that the coupling coefficient is constant and equal to α0
c below a height hw, and zero above.104
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Equation (13) reveals that wave-coherent motions induce a deviation from the logarithmic profile. Nevertheless, by105

extrapolating a logarithmic profile, a roughness height z0 can still be defined from the wind at an arbitrary height z,106

U(z) = (u∗/κ) log(z/z0). Upon using this expression, the simplified height dependence of αc, and integrating Eq. 13 from an107

arbitrary height z down to hr, the mean wind speed at the roughness sublayer height reads108

U(hr) =
u∗

κ
log

(

h
(1−α0

c)3/4

r

z0
h

1−(1−α0
c)3/4

w

)

[17]109

By further using Eq. 15, the mean wind speed and the roughness sublayer height can be expressed as

U(hr) = (u∗/κ)(1 − αc(hr))−3/4, hr = z
(1−α0

c)−3/4

0 h
1−(1−α0

c)−3/4

w e(1−α0
c)−3/4

. (18a, b)

The above expressions show that, as αc increases, the roughness sublayer height increases from z0 exp(1), and so does the mean110

wind speed on top of the roughness sublayer. The limit αc → 1 is out of the range of the model, since the mean wind shear can111

no longer be continuous in this regime.112
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Fig. S1. Environmental variables of the measurements of wave-breaking statistics used in this study, grouped by campaign. (a) Friction velocity and (b) atmospheric stability
versus 10-m wind speed. Atmospheric stability was quantified by the dimensionless stability parameter z/L, where z is the height of the measurement, and L the Obukhov
length. In the analysis of the main text, only measurements for which −0.2 ≤ z/L ≤ 0.2 have been used.
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Fig. S2. Properties of the roughness sublayer. (a) Different sublayer heights are compared: the roughness sublayer height (solid line) from this study, the roughness height z0

using the Charnock parameterization. Also shown are the vertical integral length scales of airflow separation (dotted-dashed line) and wave-induced stress (dotted line) from
the wind-over-wave model of Ref. (7). (b) The ratio of the size of roughness-sublayer eddies and the height of the roughness sublayer when wave-induced motions are included
in the logarithmic sublayer (solid line, left axis). This ratio has been computed from Eq. 15, using a coupling coefficient at the top of the roughness sublayer (dashed line, right
axis) from the wind-over-wave model of Ref. (7).
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4.3 CONCLUSION

In this Chapter we have described the dynamical impact of wind-waves on energy-containing
eddies. By entraining fluid during the wave-breaking process, short and steep waves maintain a
mean wind gradient in the roughness sublayer, whose length scale and intensity control the size
of energy-containing eddies. It was further found that this length scale could be related to a
particular wave breaker speed, corresponding to the smallest scale of waves whose breaking
properties are not significantly affected by wind-induced drift. The intensity (or speed) of this
particular breaker has been used to summarize the overall effect of the complex wind-wave
interactions occurring close to the surface without relying on standard theories.

Hence, compared to Chapter 3, this analysis does not rely on a specific wind-over-waves
model, and results in a characterization of open-ocean momentum fluxes by means of a
measurable quantity, the speed of the breakers, unlike usual parameterizations that rely on the
roughness length (see e.g. page 45).

An interesting consequence of this work is to highlight the sensitivity of the near-surface
coupling process to the presence of ocean currents. Let us assume that, to first order, the effect
of a surface ocean current of streamwise speed Uo is to induce a Doppler shift in the phase
speed of waves. Then, the speed c of the smallest waves which are not affected by surface drift
(Eq. 1 in the main text of Sec. 4.2) changes such that

c +Uo = 2.5u∗. (4.1)

As a consequence, wind stress, and surface drift, must adjust to satisfy this kinematic relation,
and also because the energy of attached eddies in the roughness sublayer will be affected by
the change of c. Hence the variations of u∗ with respect to a situation with no currents are of
the order of Uo/2.5.

This estimate is not realistic, since a current of 1 m s−1 would induce a change in u∗ of 0.4
m s−1. Indeed, this exploratory analysis relies on a number of assumptions. First, it is assumed
that the kinematic relation (Eq. 1 in the main text of Sec. 4.2) is a general property of the
wind-and-waves system, which can be extrapolated beyond the data used in Sec. 4.2. Second,
currents certainly have other effects on the wind-and-waves system than just inducing a Doppler
shift of the wave speed. As an example, the presence of currents changes the relative wind felt
by waves, affecting their growth. It is also associated to the presence of sea-surface temperature
fronts, which affect the properties of turbulence aloft [Ayet and Redelsperger, 2019]. Hence,
the adjusted equilibrium in the presence of currents is certainly more complex than the simple
relation (4.1). Field experiments should be used to understand these processes further.
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CONCLUSION

In this thesis we have addressed, from a theoretical perspective, questions related to the
organization of near-surface turbulence by wind-waves. As mentioned in Chapter 1, this is a
key element of the wind-and-waves coupling, whose understanding would allow going beyond
standard parameterizations in use in numerical models, by assessing their limiting assumptions
and their sensitivity to environmental parameters. Presently, these parameterizations rely on a
description of wind-and-wave interactions through the interaction of turbulent motions with
wave-induced motions, coherent with the wave phase. This flow decomposition has proven
to be useful for the description of the generation of low-steepness wind-waves [e.g. Miles,
1957, Hara and Belcher, 2002, Kudryavtsev et al., 2014], even though it generally fails at
recovering the infamous "inconvenient sea truth", i.e. the linear link between wind speed and
the mean squared slope parameter, "to be too fundamental to be ignored, too incomplete to be
understood" [Munk, 2009]. Hence, the ability of such a theoretical framework to accurately
describe the mechanisms at stake for a realistic multiscale and coupled sea-surface, with, among
others, local changes in topology due to wave breaking [Newell and Zakharov, 1992], and a
coupling between waves and currents, can be questioned.

In fact, even in the uncoupled case, several numerical studies have revealed the effect of the
sea surface on the instantaneous properties of turbulence, beyond the presence of wave-induced
motions [Sullivan et al., 2000, 2014, Yang and Shen, 2009, 2010, Suzuki et al., 2011, 2013].
This suggests that turbulent eddies above the sea surface might behave differently than above a
flat surface [see e.g. Srinath et al., 2018], e.g. as observed for flow above canopies [Raupach
et al., 1996]. In an effort to bridge the gap between these ideas, we have proposed an alternative
theoretical framework, based on a phenomenological representation of turbulence, which relates
a spectral property of the flow to two of its bulk properties: the vertical momentum flux and
TKE dissipation. The spectral property is the wavenumber of the peak of the premultiplied
vertical velocity spectrum, equivalently interpreted as the size of energy-containing eddies at a
given height (defined on page 30).

The link between the peak wavenumber and the bulk properties of the flow was explored
in Chapter 2. This link relies on so-called spectral budgets, which are obtained as a Fourier
transform of the Kármán-Howart-Monin equation (for the two-point correlations of the flow).
These budgets describe the energy balances at a given wavenumber, and rely on a certain
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number of simplifying assumptions. The first assumption is to use a standard Rotta model
for the modeling of the energy redistribution between turbulent components, and we showed
that such a model was unable to close the spectral budget for a canonical ASL. Instead, we
proposed that the timescale of energy redistribution between turbulent components, which
is usually a (Rotta) constant, should depend both on stability and on the eddy scale. The
second assumption is to use a limited number of parameters to describe the turbulent spectra
(what we called "canonical spectra"). We showed that the relation between the spectral peak
wavenumber and the variance of vertical velocities is very sensitive to one of these parameters,
the high-wavenumber spectral cutoff in the vertical velocity spectrum due to the measuring
instrument resolution.

Chapters 3 and 4 then presented two extensions of the phenomenological model to the
wind-and-waves coupled system. Those are exemplified in Fig. 4.1 where they are compared to
the properties of a logarithmic sublayer (solid black lines).

First, the geometrical imprint of wind-waves on energy-containing eddies was investigated in
Chapter 3. We showed that this imprint was effective mainly for long wind-waves, of the order
of 10m, which could change the size of energy-containing eddies at similar heights. Using the
phenomenological model, we then showed that this resulted in a change of TKE dissipation
which propagates at all heights (blue shadings in Fig. 4.1a). Going one step further, we then
proposed that this geometrical imprint could be related to long wind-waves modulating the
steepness of shorter waves, which results in organized patches of roughness on the scale of the
long waves. Hence the geometrical imprint was proposed to be sensitive to external parameters
upon which this modulation depends (currents, slicks, etc.). The exact link between the changes
in TKE dissipation and the modulation couldn’t be derived, and hence a sensitivity test was
carried, resulting in TKE dissipation varying over the range of values shown as blue shadings in
Fig. 4.1a. Preliminary results from numerical simulations were presented, aiming at quantifying
those variations. Note that, besides these variations, the mean value of TKE dissipation and the
mean wind profile deviate from their logarithmic layer counterparts below 0.1 m, due to the
presence of wave-induced motions which follow from standard theories (compare the middle
of the blue shadings and the black lines).

In Chapter 4 we then investigated the dynamical coupling between wave-breaking events and
the geometry of energy-containing eddies. Using the phenomenological model, we defined the
so-called roughness sublayer, in which the properties of energy-containing eddies are set by the
bulk mean wind shear across the layer (horizontal dashed line in Fig. 4.1). Using wave breaking
measurements, the bulk wind shear was related to the phase speed of the most actively breaking
waves. These waves were further interpreted as the smallest waves on which wind-induced
surface drift has not effect. Smaller waves have a reduced steepness due to wind-induced
drift, and hence the intensity of their coupling with the atmosphere through wave breaking is
weakened. This work allows a description of the coupled wind-and-waves system through a
measurable speed, that of the most actively breaking waves. It does not rely on a theoretical
paradigm, such as the coupling of turbulence with wave-induced motions, and hence allows
a description of the complex zoology of wind-and-wave motions close to surface by means
of very few parameters. It also allows inclusion of external parameters (currents, fronts) in
the wind-over-waves coupled system through the modulation of three-way coupling between
turbulence, wave breaking events, and surface drift, even though this would require additional
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Figure 4.1: Example of the implications of the processes proposed in Chapters 3 and 4 on (a)
TKE dissipation and (b) mean wind speed. The ASL if forced with a 10-m mean
wind of 16 m s−1, corresponding to u∗ = 0.7 m s−1 on top of wind-waves. Solid
line is to logarithmic-layer scaling of TKE dissipation ǫ = u3

∗ /(κz) and mean wind
U = (u∗/κ) log(z/z0), where z0 follows the Charnock parameterization. The blue
shadings are computed from the wind-over-waves model presented in Sec. 3.2, and
the scatter corresponds to variations of the anisotropy factor of energy-containing
eddies as in Figs. 3a and 5 of Sec. 3.2. The red lines are the TKE dissipation and
mean wind profiles in the roughness sublayer, whose height and properties follow
the derivation in Sec. 4.2.

observations, given its complexity (see page 167 and below).
One consequence of this last work is that the size of energy-containing eddies, and hence

TKE dissipation, should be constant with height in this sublayer (red line in Fig. 4.1a). Similarly,
the mean wind is linear in this sublayer (red line in Fig. 4.1b). It should be stressed that both
roughness-sublayer profiles, even though they are a consequence of the model, are not one of
its necessary features: their evaluation from data, which is a difficult task, can yield different
results depending on the averaging method. Only the bulk (i.e. vertically-averaged) quantities
over the roughness sublayer are important for the properties of energy-containing eddies.

One of the main limitations of the theoretical framework presented in this thesis is the
fact that the spectral link and subsequent phenomenological model disregard, by definition,
the phase of the turbulent motions. Hence it does not enable an instantaneous description
of their modulation by wind-waves, which would require e.g. using a wavelet-transformed
Kármán-Howart-Monin equation [see, recently, Dubrulle, 2019]. This description would allow
including effects more directly related to the instantaneous modulation of coherent structures
described in Chapter 1.

This thesis opens several promising avenues, which shall guide future work. First the analysis
carried in Chapter 2 revealed that the standard models of the energy-redistribution term in
use in numerical models (the Rotta model) might fail in closing the ASL turbulent budget
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for non-neutral conditions. A possible alternative model would rely on a spectral analysis to
compute a spectrum- and stability-dependent energy-redistribution term. This should be tested
in Large Eddy Simulations and compared with Direct Numerical Simulations. This failure of
the Rotta model also highlights that, in the presence of wind-waves which introduce additional
(coupled) forcings in the system, the need to reconsider the energy-redistribution term is even
more pregnant. This could guide the analysis of direct numerical simulations over moving
waves [e.g. Sullivan et al., 2000, Yang and Shen, 2010], but should also be addressed from a
theoretical perspective (along the lines of Sec. 2.2).

The analysis of Chapters 3 and 4 set a first step towards the understanding of the relation
between turbulent fluctuations and bulk variables (TKE dissipation and, more importantly, the
turbulent momentum flux), in the presence of a multiscale and coupled sea surface. From
a theoretical standpoint, an important next step would be to understand how the averaging
operation, which filters some of these scales, affects the bulk variables, in order to assess the
scale-dependence and limitations of parameterizations in use in numerical weather prediction
models [a similar approach than Bachman et al., 2017].

As stressed in Chapter 4, the complexity of the relation between turbulence and bulk variables
arises not only from the direct coupling between wind and waves, but also from the surface
drift induced by the wind, which sets the scale of the most actively breaking waves [this is
a similar argument than Csanady, 1985]. This invites going beyond the traditional thinking
of wind-and-wave interaction, in which the governing parameters are the relative wave age
and stability, by explicitly including surface drift in the wind-and-waves system. This would
allow a better understanding of how the wind-and-waves equilibrium adjusts to variations in
environmental parameters: the presence of swell, ocean currents and associated sea-surface
temperature fronts, slicks, and also changes in boundary-layer scale turbulence conditions.
These processes all have identifiable signatures on the short wind-waves roughness [Wang et al.,
2019], and should hence affect the wind-and-waves system. Besides theoretical approaches,
along the line of this thesis or of Ayet and Redelsperger [2019], advances should be driven
by targeted field or remote sensing experiments. Those experiments should aim at capturing
the simultaneous spatio-temporal features of near-surface wind, waves and currents, using
multiple-point measurements [e.g. Buckley and Horstmann, 2020], and should span a variety of
environmental conditions (e.g. the upcoming SWOT mission and associated field experiments).

To guide those experiments, the spectral link needs to be better understood, along the lines of
Sec. 2.3. In fact, in Chapters 3 and 4 only the bulk formulation of the phenomenological model
has been used, and the spectral link has not been exploited. However, as mentioned in Chapter 1,
the presence of roughness elements can have an imprint on the spectral properties of turbulence,
besides affecting energy-containing eddies. In particular, the associated form drag can result
in a shortcutting of the inertial turbulent cascade, leading to enhanced TKE dissipation in the
roughness sublayer. Hence, linking the proposed modifications of TKE dissipation (Fig. 4.1a)
to spectral properties of turbulence other than the peak wavenumber seems a promising research
avenue, which could support the design of experiments [see, recently, Ortiz-Suslow and Wang,
2019].
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APPENDICES

ANNEX A: SOME STEPS FOR THE DERIVATION OF THE SPEC-
TRAL BUDGET

In this Annex we give some details on the steps needed to derive the spectral budget presented
in Sec. 2.1. We start from a Reynolds decomposition of the flow

u = u +u′. (4.2)

Within this decomposition, the Kármán-Howarth-Monin equation for the spatial correlation
tensor

Bij(r) = u′i (0)u
′
j(r) (4.3)

is readily obtained from the equation for the fluctuations, yielding

∂tBil +uj∂jBil +Bjl∂jui +Bij∂jul +u′l (r)∂j(u
′
ju
′
i ) +u′i∂j(u

′
j(r)u

′
l (r))

= −u′l (r)∂ip′ +u′i∂lp
′(r) +B+DS (4.4)

where r is the three-dimensional coordinate vector, u denotes u(0) and B and DS are the
buoyancy and dissipation terms respectively. Their expressions can be found in Panchev [1971].
The dependence of the turbulent field with time has been dropped.

For a horizontally homogeneous, stationary ASL with no subsidence, the equation for the
vertical covariance tensor B33 reads

u′3(r)∂j(u
′
ju
′
3) +u′3∂j(u

′
j(r)u

′
3(r)) = −u′3(r)∂3p′ +u′3∂3p

′(r) +B+DS (4.5)

The spectrum can then be computed by Fourier transform of the correlation tensor

F̃uiuj (k) =

∫
Bij(x)e

ikxdx, (4.6)
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yielding the spectral budget for the vertical velocity spectrum F̃ww

T̃ (k) +
g

T
F̃wT (k)− 2νk2F̃ww(k) = 0. (4.7)

Studies such as Heisenberg [1948], Tchen [1954], Panchev [1971] and more recently Katul
et al. [2012] use an integrated form of the above budget. More precisely, if the previous budget
is integrated between k and∞, we get

∫ ∞

k
T̃ (s)ds +

g

T

∫ ∞

k
F̃wT (s)ds +2ν

∫ k

0
s2F̃ww(s)ds = 2ν

∫ ∞

0
s2F̃ww(s)ds (4.8)

where
∫ ∞
0

s2F̃ww(s)ds is the total dissipation for the vertical fluctuations denoted by ǫ/3.

ANNEX B: COMPARISON OF SEVERAL ROTTA CONSTANTS

Due to the variety of notations in the turbulence literature, in this Annex we compare the bulk
budget considered in Sections 2.1 and 2.2, with the budgets considered in other works, and
compute the associated Rotta constants in our notations.

We are considering a budget of the form

1

2

∂σ2
w

∂t
= 0 = B+Rw −

ǫ

3
(4.9)

with

Rw = −CR

τ
(σ2

w −
2

3
e) +αPPm −

2

3
(1− βB)B, (4.10)

and τ = e/ǫ, and a spectral budget of the form

1

2

∂F̃ww(k)

∂t
= 0 = B̃(k) + R̃w(k)− T̃ (k), (4.11)

with

R̃w(k) = −
C̃R

τ̃(k)

(
F̃ww(k)−

2

3
φ̃(k)

)
. (4.12)

Taking the example of the bulk budget, the notation differences with the literature can be
separated into two categories.

1. a difference in the considered budget, i.e instead of a half-variance budget, a budget of
the form

α

2

∂σ2
w

∂t
= 0 = αB+Rα

w −α
ǫ

3
(4.13)

with α , 1, and involving Rα
w which we would like to link to Rw of our notations. The

half variance budget then reads

1

2

∂σ2
w

∂t
= 0 = B+

1

α
Rα
w −

ǫ

3
(4.14)
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and hence Rw = 1
αR

α
w. In the case of a spectral budget [Besnard et al., 1996], the

correction should also apply to the non-linear transfer term.

2. A difference in the definition of the quantities considered in the return-to-isotropy term
(or the non-linear term in the case of the spectral budget), for example

R =
Cα
R

τ
(ασ2

w −
2

3
αe), (4.15)

with α , 1 and Cα
R the Rotta constant we want to link to our notations. In this case,

factoring α out leads to CR = αCα
R . This also works in the case of the coefficient for the

non-linear term.

BOU-ZEID ET AL. Bou-Zeid et al. [2018] follow closely the notations used in the present
work, by also considering half variance (bulk) budgets. In their work, the mean value of Cr

is 0.9, with some variations (0.7 to 1.1) based on DNS results. Theoretical bounds for Cr are
also derived to ensure a physically-sound critical Richardson number.

CANUTO ET AL. Canuto et al. [2001] consider a full variance budget, i.e. a budget on σ2
w

(instead of 0.5σ2
w). Hence, in this budget, the buoyancy term is equal to 2B and the return-to-

isotropy term to 2Rw (case 1 above, with α = 2).. Their model for the return-to-isotropy term
is (their Equation (7a) )

2Rw = −2τ−1ρv (σ2
w −

2

3
e) +

4

5
eS33 −

4

3
(1− βB)B−RD, (4.16)

where Sij is the strain tensor (defined below).
The last (rapid-distortion) term RD, reads

RD = −α1Σ33 −α2Z33. (4.17)

The two quantities, Σ33 and Z33 depend on the strain tensor

Sij =
1

2
(δ13 + δ31)

dU

dz

and on the vorticity tensor

Vij =
1

2
(δ13 − δ31)

dU

dz
(4.18)

where δij the Kronecker Delta. Those two expressions are written for a horizontally homoge-
neous flow in the absence of subsidence, and with the x direction aligned with the mean wind
U .
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The two quantities, Σ33 and Z33, then read

Σ33 = S31b13 + S31b31 −
2

3
[S13b13 + S31b31] =

1

3
u′w′

dU

dz
(4.19)

Z33 = V31b13 +V31b31 = −u′w′
dU

dz
(4.20)

where bij = τij − 2
3δije is the anisotropy tensor. This leads to the following expression of

return-to-isotropy term

Rw = −τ−1ρv (σ2
w −

2

3
e)− 2

3
(1− βB)B+

1

2
(α2 −

α1

3
)Pm (4.21)

where Pm = −u′w′dU/dz is the production term in the TKE equation.
Following the notations of Canuto et al. [2001], the constant τ−1ρv is linked to a turbulence

timescale τC by defining a constant λ (their equation (12))

λ = τρv(τ
C)−1 (4.22)

with τC = 2e/ǫ (notice the factor 2, unlike the definition of τ in the present work). By
identifying this expression with Equation (4.10), we get the following expression for the Rotta
constant

CR = (2λ)−1 (4.23)

Two models are proposed for λ (their equations (20b) and (22c) respectively): λ = 2/5 which
leads to CR = 1.25, and λ = (15/4)0.127, leading to CR = 1.05.

The two constants α1 and α2 are linked to other constants λ2 and λ3 (in the Canuto et al.
[2001] notation, their equation (12)) as

α1 = 1− 2λ2

λ
, α2 = 1− 2λ3

λ
(4.24)

For the two models mentioned above, the final constant for the rapid distortion term is

1

2
(α2 −

α1

3
) = αP =

{
0.225

0.15
(4.25)

The buoyancy correction coefficient βB is equal to 1/2 for model 1 and to 0.48 for model 2.
Those values are summarize in Table 4.1

ZEMAN AND TENNEKES Zeman and Tennekes [1975] consider full variance budgets as in
the previous example. The notations are slightly different, and the return-to-isotropy term reads
(their equation (17))

2Rw = −C1

τZ
(σ2

w −
2

3
e) + 2α0q

2S33 +α1q
2As

33 +γ1q
2Ar

33 (4.26)
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where C1/τ
Z , α0, α1 and γ1 are constants defined in Zeman and Tennekes [1975], and q2 = 2e.

The terms As
33 and Ar

33 are, as in the Canuto et al. [2001] model, expressed as a function of the
strain and vorticity tensors, and read

q2As
33 =

2

3
u′1u

′
3

dU

dz
(4.27)

q2Ar
33 = −2u′1u′3

dU

dz
. (4.28)

This yields the following return-to-isotropy

Rw = − C1

2τZ
(σ2

w −
2

3
e) + (γ1 −

1

3
α1)Pm (4.29)

where Pm = −u′w′dU/dz and τZ = 2eβ/ǫ, and hence

Cr = C1/4β. (4.30)

Using simplified bulk budgets, Zeman and Tennekes [1975] further evaluate the constants
C1/β, α1 and γ1 for different experimental data, based on measured turbulent variances. The
resulting Rotta and rapid distortion constants are presented in Table 4.1. Case numbers are the
same than in Zeman and Tennekes [1975].

Note that in Equation (20) of Zeman and Tennekes [1975], the σ2
w bulk budget is normalized

by ǫ, where ǫ = Pm, and reads

2

[
−C1

2β

1

2e

(
σ2
w −

2

3
e
)
+γ1 −

1

3
α1 −

1

3

]
= 0. (4.31)

BESNARD AND COWORKERS Besnard et al. [1996] derive a spectral budget for the half three-
dimensional spectra of vertical velocity E33 and TKE E. If we assume isotropic turbulence and
Kolmogorov inertial range scaling, those are linked to the streamwise spectra as E33 =

1
2
55
24 F̃ww

and E = 55
33 φ̃ [see, e.g. Banerjee et al., 2016] (E33 and E are the notations in Besnard et al.

[1996], Clark and Zemach [1995], while F̃ww and φ̃ are the spectra used in the present work).
We are thus in a situation where case 1 and case 2, defined above, are combined. The

following return-to-isotropy for the vertical component is considered in Besnard et al. [1996]

24

55
R̃w = −cmk

√
kE(E33 −

1

3
E) (4.32)

which, in the present notations, reads, assuming that the norm of the three-dimensional
wavenumber (considered in Besnard et al. [1996]) and the streamwise cut (denoted by k),
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CR αP βB
Pope [2000] 0.9 N/A N/A
Zeman and Tennekes [1975] cases
1 0.81 0.18 N/A
2 (atmospheric surface layer) 0.95 0.05 N/A
3 0.49 0.15 N/A
4 (atmospheric surface layer) 0.87 0.12 N/A
5 0.67 0.15 N/A
6 0.44 0.14 N/A
7 0.48 0.10 N/A
Canuto et al. [2001]
model 1 (renormalization group method) 1.25 0.225 1/2
model 2 (surface layer scaling) 1.05 0.15 0.48

Table 4.1: Values of the Rotta constant Cr and the rapid-distortion correction constants for
several works.
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And cm is determined from

cm ∼
26

9
c2 (4.36)

with c2 = 0.148 a constant associated to the Leith [1967] non-linear transfer model. This leads
to cm = 0.42, and in our notations, to c̃r ∼ 2.93cm = 1.2. We should again stress that this
expression is valid if we assume isotropy, and we do an approximation of the coefficients (Eq.
(4.34)).

The value of cm was chosen to match experiments Clark [1992], but as mentioned in Clark
and Zemach [1995]: "There is some experimental evidence, admittedly inconclusive, that this
is the proper behavior for the anisotropic spectral components of stress. [...] More decisive
experiments would be needed to discriminate between Eq. (4.36) and other choices for cm, and
to test the general adequacy of [the spectral budget] to describe the decay of the deviatoric
components of the spectral tensor."

KATUL ET AL. Katul et al. [2013] consider co-spectral budgets, and hence the Rotta constant
to be considered is equal to twice the constant considered in the present work. Their value is
consistent with Pope [2000] and Bou-Zeid et al. [2018] value.
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ANNEX C: DETAILS ON THE PRELIMINARY NUMERICAL SIM-
ULATION

The numerical simulations presented in Sec. 3.3 were performed using the Meso-NH code
[Lafore et al., 1997, Lac et al., 2018], in a configuration similar to Stevens et al. [2014]. As
shown in Fig. 3.2a, the simulation was carried in a doubly-periodic box, with a resolution of
0.5 m. The flow was forced by a constant pressure gradient at all levels and an initial uniform
wind of 10 m s−1 which, at equilibrium, results in a friction velocity u∗ ∼ 0.22 m s−1. The
roughness pattern was set to vary sinusoidally around a mean value by ±75% (red and blue
stripes in Fig. 3.2a). This mean value is was computed from the Charnock parameterization
which, as discussed on page 45, is such that z0 = αcu

2
∗ /g where g is the gravity acceleration,

u∗ the friction velocity, and αc a wind-dependent Charnock constant [see e.g. the COARE
parameterization, Edson et al., 2013]. Here, u∗ ∼ 0.22, yielding z0 ∼ 2×10−4. The box extends
up to 300 m, and here we only show the first 60 m. Figure 3.2b shows the resulting mean
wind speed, with, in particular, U10 ∼ 6 m s−1. The differences between the different cases are
sensitive to the averaging procedure, and it is hence out of the scope of this preliminary study
to discuss them.
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Figure 4.2: (a) Configuration of the LES, showing in particular a snapshot of streamwise
velocity at the center of the simulation after 8h (corresponding to a statistically
equilibrated turbulent regime, (x,z) panel), and the modulation coefficient of surface
roughness around its mean value ((x,y) panel, red and blue correspond to the
maxima and minima respectively). (b) Spatially averaged streamwise velocity (i.e.
mean streamwise wind) as a function of height.
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Titre : Flux de quantité de mouvement à l’interface air-mer : approche théorique du couplage entre 
turbulence et vagues de vent 

Mots clés :  flux de quantité de mouvement, turbulence proche de paroi, budgets spectraux, vagues de vent, 
génération de vagues, interactions air-mer. 

Résumé : Malgré de nombreuses études, le lien de 
causalité entre vent et vagues fait toujours l’objet de 
controverses : cela est dû entre autres au caractère 
multi-échelle d'une surface océanique réaliste, et à la 
présence de déferlements, qui modifient radicalement 
sa topologie. Dans cette thèse, ces deux questions 
sont abordées sous un angle théorique, à travers un 
modèle phénoménologique, qui relie les propriétés 
spectrales et moyennées de la turbulence proche de 
paroi en utilisant la géométrie de tourbillons attachés 
à celle-ci. La première partie de la thèse revisite ce 
modèle phénoménologique en questionnant ses 
hypothèses sous-jacentes et révèle, en particulier, 
des incohérences dans les modèles utilisés pour 
décrire le terme de redistribution d'énergie entre 
composantes turbulentes (modèle de Rotta). Le 
modèle phénoménologique est ensuite utilisé pour 
étudier le couplage entre vagues de vent longues (de 
l'ordre de 10m) et turbulence. 

Les résultats démontrent que la déformation des 
tourbillons attachés induite par cette interaction 
pourrait expliquer une partie de la variabilité des flux 
de quantité de mouvement à un vent moyen donné. 
Finalement, le couplage entre la turbulence et les 
vagues courtes et déferlantes est abordé en 
définissant une sous-couche rugueuse dans laquelle 
les proprietés des tourbillons attachés sont définies 
par la vitesse des fronts déferlants dominants pour 
un vent donné. Ces deux études posent les bases 
d'un nouveau paradigme, permettant d'étudier le 
couplage multi-échelle entre le spectre turbulent et le 
spectre des vagues. Celui-ci pourrait permettre de 
mieux prendre en compte l'influence de paramètres 
environnementaux sur les flux de quantité de 
mouvement et de chaleur. Il ouvre ainsi de nouvelles 
perspectives pour les études théoriques et pour 
l’exploration des données expérimentales. 

 

Title : Air-sea momentum fluxes in the vicinity of the sea surface : a theoretical study of the coupling 
between turbulence and wind-waves 

Keywords :  momentum flux, wall-bounded turbulence, spectral budgets, wind-waves, wave generation, air-
sea interactions 

Abstract :  Despite numerous works, the causal link 
between wind and waves is still a controversial 
subject. This is due, among others, to the multi-scale 
nature of a realistic ocean surface and to wave 
breaking, which changes its topology. In this thesis, 
such problems are studied from a theoretical 
perspective, using a phenomenological model linking 
the spectral and averaged properties of wall-bounded 
turbulence through the geometry attached eddies. 
The first part of the thesis revisits this 
phenomenological model by questioning its 
underlying assumptions and, in particular, reveals 
inconsistencies in the models used for the energy 
redistribution between turbulence components (the 
Rotta model). The phenomenological model is then 
used to study the coupling between long wind-waves 
(of order 10m) and turbulence 

. Results indicate that the deformation of attached 
eddies, induced by this interaction, could explain 
some of the variability in momentum fluxes for a 
given mean wind. Finally, the study of the coupling 
between turbulence and short breaking waves is 
approached by defining a roughness sublayer, in 
which the properties of the attached eddies depend 
solely on the speed of the dominant breaking fronts 
for a given wind. These two studies from the basis of 
a new paradigm to study the multi-scale coupling 
between the turbulent and wave spectra. This would 
allow accounting for the influence of environmental 
parameters on momentum and heat fluxes, and 
opens new paths both from a theoretical perspective 
and for the analysis of experimental data. 
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