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CHAPTER I

INTRODUCTION

Outline

This thesis divides into two parts: the first part tackles various offline learning problems,
with a focus on ranking tasks, based on empirical risk minimization, while the second
part is about learning from online streams of data through the reinforcement learning
framework. Each part is composed of three chapters.

e The introductory chapter [[| presents the different problems and frameworks consid-
ered along the following chapters, as well as the links between them. In addition,
the contributions of each of the six chapters are summarized.

Part [1] focuses on empirical risk minimization and ranking.

e Chapter [[T] tackles a specific transfer learning issue: when the training and testing
distributions are different, the empirical risk minimization approach can be cor-
rected by means of importance sampling weights. This chapter is based on the
conference paper [VACT20] accepted for publication at ICMA 2020.

e Chapter [[T]] considers the continuous ranking problem, formulated as a continuum
of bipartite ranking subproblems: optimal scoring rules are maximizing integrated
versions of the usual ROC and AUC performance measures. It is based on the
conference paper [CA17| (NIPS 2017).

e Chapter [[V] extends the ranking aggregation setting to the problem of dimension-
ality reduction for ranking data: a mass transportation approach is proposed to
approximate a distribution on the symmetric group by a simpler distribution sat-
isfying a bucket order structure. This work was published in the conference paper
[AKCIS| at ALT 2019.

Part [2] deals with risk-awareness in several reinforcement learning problems.

e Chapter [V]describes a variant of the classical multi-armed bandit problem inspired
by default risk management applications. This chapter is based on the conference
paper [ACGIS]| published at ACML 2018.
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I. INTRODUCTION

e Chapter [V]] contributes to the max K-armed bandit problem, motivated by risk-
aware contexts where extreme rewards are more relevant than expected gains. It

is based on the conference paper [ACG™17] (ECML 2017).

e Chapter considers the distributional reinforcement learning setting: we de-
rive new ‘atomic’ Bellman equations by combining novel distributional Bellman
operators with an atomic approximation scheme based on trimmed means. The
development of this final chapter started during an internship at Google DeepMind
(London) from March to July 2019. This chapter is the unique one containing
unpublished content.

1 Ranking by Empirical Risk Minimization

We start by briefly recalling the Empirical Risk Minimization framework where one
intends to minimize a loss function in expectation with respect to some testing distribution
P, based on the observation of independent realizations of P. Then, we present our
contributions to the sample selection bias correction problem, where the observations are
sampled from a training distribution P’ different from P.

Throughout the thesis, the notation X ~ P means that P is the probability distri-
bution of the random variable X.

1.1 Empirical Risk Minimization

The main paradigm of predictive learning is Empirical Risk Minimization (ERM in ab-
breviated form), see e.g. [DGLI6|. In the standard setup, Z is a random variable (r.v. in
short) that takes its values in a space Z with distribution P, © is a parameter space and
?:0 x Z — Ry is a (measurable) loss function. The risk is then defined by: V6 € ©,

Rp(0) =Ep [E(Q, Z)] ) (I-l)

and more generally for any measure Q on Z: Rq(0) = [ £(0, 2)dQ(z). In most practical
situations, the distribution P involved in the definition of the risk is unknown and learning
is based on the sole observation of an independent and identically distributed (i.i.d.)
sample 7y, ..., Z, drawn from P and the risk must be replaced by an empirical
counterpart, typically:

Rp(6) = U0, 2) = Ry, (0), (1.2)
=1

where P, = (1/n) "1 1 8z, is the empirical measure of P and 4, denotes the Dirac mea-
sure at any point z. Any empirical minimizer (Z)\n € arg mingcg R p(60) is then accessible
to the learner — in fact, not necessarily true in practice as the minimization of the em-
pirical risk may be intractable — and may be used as a substitute to the (unknown)
optimal parameters 0* € arg mingcg Rp(f) living in the hypothesis class ©.

2



1. Ranking by Empirical Risk Minimization

Example 1. (BINARY CLASSIFICATION) In binary classification, the flagship problem
in machine learning (see e.g. [DGLI6]), the goal is to find a classifier g : X — {—1,+1}
with classification risk Rp(g) = P{g(X) # Y} as small as possible. The random pair
Z = (X,Y), with distribution P, is valued in Z = X x {—1,+1}, and the feature space
X is typically a subset of R (d > 1) ; X is called the feature vector and Y is the label.
Denoting the posterior probability by n(z) = P{Y = +1|X = z} for allz € X, the Bayes
classifier g*(z) = 2I{n(x) > 3} — 1 is the optimal classification rule as it minimizes Rp:
for any classifier g, Rp(g) > Rp(g*) (see Theorem 2.1 in [DGLIG]). Empirically, the
learner is given a training dataset composed of n i.i.d. copies (X1,Y1),...,(Xn,Yn) of
(X,Y). Using the notations introduced above,

e the parameter space © is a set G of classifiers g,

o the loss function £ is the zero-one loss function £y :
v(gvxay) S g X X X {_17+1}7 EO/I(ga (:E7y)) = H{g(:ﬂ) 7& y}

Binary classification belongs to the family of supervised learning problems as it at-
tempts to learn how to label any new unlabeled observation X, on the basis of labeled
examples (X;,Y;)’s provided by some ‘teacher’. In contrast, the clustering task is an
unsupervised learning problem. Indeed, it consists in finding similarity groups among
the feature space without any label information.

Example 2. (k-MEANS CLUSTERING) Given a number of clusters k > 1, the k-means
clustering approach (see e.g. [Bis06] or [HTF0J]) solves the following minimization prob-

lem:
n

min min ||Z; — m; 2, 1.3
o 0 3 i, 1= (13)
with Z C R and || - ||2 the Euclidean norm. This quantity measures the total squared
Euclidean distance of each observation Z; to its cluster center, namely the nearest point
Mz, with j(Z;) € arg ming <<y ||Zi — mjlla, among the k centroids my,...,my (in
fact here, mj(z,) is not necessarily unique). With our ERM notations, we have that:

e the parameter space is the set of k-tuples (mq,...,my): © = ZF,

e the k-means clustering loss function is:

Y((mi,...,mg),2) € Zk % Z, 4((m1,...,mg),z) = min ||z —mj||§.
1<5<k

In particular, the k-means criterion in FEq. is, up to normalization, equal to the
empirical risk Rp:

N 1o~ .
Re((my...omp) = - : min, [1Z; — myl[3.
1=
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The performance of minimizers @\n of (I.2) can be studied by controlling the ezcess of

~

risk R(0,) — mingcg R(#), which satisfies the elementary inequality (see e.g. [BBL05|)
Rp(6,) — minRp(0) = Rp(0n) — Rp(0,) + Rp(6n) — Rp(67)

< Rp(en) — Rp(en) + RP(H*) — RP(H*) < 221618 ’RP(Q) — 'R,p(@)’ (1.4)
The fluctuations of the maximal deviations supgecg ‘ﬁp(@) — Rp(f)] in Eq. can
then be quantified by means of concentration inequalities, under various complexity as-
sumptions for the functional class F = {£(0, ) : 6 € O} (e.g. VC dimension, metric
entropies, Rademacher averages), see [BLM13] for instance.

Sometimes, the training sample is drawn from a training distribution P’ different from
the target distribution P of interest: this is called sample selection bias. Our approach
to deal with this situation is called WERM for ‘Weighted Empirical Risk Minimization’,
it relies on a reweighting step through the estimation of importance sampling weights for
each observation of the training dataset.

1.2 Sample Selection Bias Correction

Bias selection issues in machine-learning, often resulting from errors during the data ac-
quisition process, are now the subject of much attention in the literature, see [BCZ716],
[ZWY™17|, |BHST19|, [LYLWI6] or [HGBT07|. We consider the case where the i.i.d.
sample Z], ..., Z] available for training is not drawn from P but from another distri-
bution P’, with respect to which P is absolutely continuous, and the goal pursued is to
set theoretical grounds for the application of ideas behind Importance Sampling (IS in
short) methodology to extend the ERM approach to this learning setup. IS methods are
broadly used in machine learning, including in online learning contexts such as bandit
problems (see [NB16]), which are presented in part We highlight that the problem
under study is a very particular case of Transfer Learning (see e.g. [PY10], [BDBC™10]
and [Sto09]), a research area currently receiving much attention in the literature.
Figure[[.1 depicts an example of such sample selection bias in a classification context:
the training dataset is composed of pictures of four types of animals (dog, wolf, tiger
and monkey), whereas the target population is simply a mixture of dogs and wolfs. In
other words, the training labels Y’ are valued in ) = {dog,wolf tiger,monkey}, while, for
the testing/target distribution, Y takes its values in only a subset {dog, wolf} C J. The
histogram levels represent the class probabilities: P{Y’ = y} in blue for training, and
P{Y = y} in green for testing, for each animal y € . We formulate below the WERM
method to deal with these sample selection bias issues.
Weighted ERM (WERM). The Weighted Empirical Risk Minimization (WERM)
approach that we propose in chapter [l consists in minimizing a weighted version of the
empirical risk. We investigate conditions guaranteeing that values for the parameter 6
that nearly minimize can be obtained through minimization of a weighted version
of the empirical risk based on the Z!’s, namely

Rual®) =R, (6). (15)
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Figure 1.1: Example of sample selection bias: for each type of animal in the zoo, the
percentage of pictures in the image database is represented in blue, while its proportion
in the target population of a video surveillance system, aiming at distinguishing wolfs
from dogs (binary classification task), is in green.

where ﬁwm =(1/n)> 0", wibz, and w = (w1, ..., wy) € RY is a certain weight vector.
The ideal weights w* are given by the likelihood function ®(z2) = (dP/dP’)(2): wi =

(2

®(Z!) for i € {1, ..., n}. In this case, the quantity is an unbiased estimate of the
true risk (I.1):

Ep [Rp,. (6)] = Rp(0). (L.6)

and generalization bounds for the R p-risk excess of minimizers of ﬁw*m can be directly
established by studying the concentration properties of the empirical process related to
the Z!’s and the class of functions {®(-)¢(0, -) : 6 € O}. However, the importance
function ® is unknown in general, just like distribution P.

In Figure corresponding to a classification problem with training dataset 7| =
(X1,Y]),...,Z, = (X],Y]), X! being a picture (vector of pixels in [0, 1]¢ for instance)
of an animal of type Y/ € ) = {dog, wolf, tiger, monkey}, the likelihood function is given
by:

80% 20%
= Tou; 1Y = dog} + Jagr

which only depends on vy, if we assume that the conditional distribution of Z = (X,Y") ~
P given Y = y is the same as that of Z/ = (X", Y') ~ P given Y/ =y, for all y € Y
(i.e. P and P’ are both mixtures of the same 4 components/animals but with different
weights).

Contributions. Our main contribution to this problem is to show that, in far from
uncommon situations, the (ideal) weights w} can be estimated from the Z/s combined

V(z,y) € 0,1)" x Y, @((z,y)) I{y = wolf},

5
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with auxiliary information on the target population P. In particular, such favorable cases
include:

e classification problems where class probabilities in the test stage differ from those
in the training step (as in Figure ,

e risk minimization in stratified populations (see [BD18]), with strata statistically
represented in a different manner in the test and training populations,

e positive-unlabeled learning (PU-learning, see e.g. [dPNS14|), which consists in
solving a binary classification problem based on positive and unlabeled data solely.

In each of these cases, we show that the stochastic process obtained by plugging the weight
estimates in the weighted empirical risk functional is much more complex than a
simple empirical process (i.e. a collection of i.i.d. averages) but can be however studied
by means of linearization techniques, in the spirit of the ERM extensions established
in [CLVO0S8] or [CV09al. Learning rate bounds for minimizers of the corresponding risk
estimate are proved and, beyond these theoretical guarantees, the performance of the
weighted ERM approach is supported by convincing numerical results.

1.3 The Bipartite Ranking Problem

We now introduce another ERM problem, of global nature contrary to binary classifica-
tion: the bipartite ranking problem (JAGHT05|,[FISS03|), where one wants to order, by
means of scoring methods, all the elements of the feature space X, given a training dataset
composed of i.i.d. copies of a random pair (X,Y) valued in X x {—1,+1}. Informally,
good scoring rules are mappings s : X — R attributing large scores s(z) to the elements
x € X with large posterior probability P{Y = +1|X = z}. Bipartite ranking finds many
practical applications (see e.g. [CDV13b]), ranging from medical studies, where patients
are ranked based on their probability of being ill, to recommendation systems ordering
a catalogue of products based on some user’s preferences. See for example [BK07] about
some movie recommendation methods used during the ‘Netflix Prize competition’. An-
other application of interest of ranking is the credit-risk screening problem, which will
also serve as a motivation to our profitable bandits approach developed in chapter [V] in
an online learning context. We recall below a few important notions for bipartite ranking
before introducing our contributions to the continuous ranking problem, a generalization
of bipartite ranking to the case of labels Y taking continuous values.

Formal Setup. The probabilistic framework of bipartite ranking is the same as in
binary classification (example. Indeed, we consider a random variable (X, Y') valued in
X x {—1,+1}, with feature space X C R? (d > 1), and with distribution P characterized
by the pair (u,n), where

e the marginal distribution of X denoted by pu,

e the posterior probability for all x € X by

(@) = P{Y = +1|X = 2} — %(E[Y!X — 2]+ 1).
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Equivalently, P can be described by the triplet (p, G, H), where
e p=P{Y = +1} is the probability of occurence of a positive instance,

e (G and H are respectively the conditional distributions of X given Y = +1 and of
X given Y = —1.

The empirical problem of interest is the following: given a sample (X1,Y7),...,(Xn, Ys)
of n > 11i.i.d. copies of (X,Y), a learning agent wants to select a scoring rule, i.e. a
measurable map s : X — R, ordering any new i.i.d. unlabeled sample X7,..., X/, (with
common distribution p) such that, with high probability, the observations X, with large
scores s(X7) have positive (unobserved) labels ¥} = +1 more often than the observations
with smaller scores. This framework arises in many applications, among which music

recommendation systems (see [SDP12]).

Example 3. (Music RECOMMENDATION) Bipartite ranking can be used to build a mu-
sic recommendation system. Consider a collection X of songs, each song x € X being
modelled by d coordinates © = (x1,...,xq): ©1 = ‘title’, xo =‘artist’, xs = ‘duration’, etc.,
for instance. A user of the music platform produces a training dataset composed of n
pairs song-feedback (X1,Y1),...,(Xpn,Y,) with Y; a binary feedback produced by the user
either equal to +1 if he enjoyed the song X; € X, or else Y; = —1 if he disliked it. Based
on this partial information, the music platform may want to predict the preferences of the
user over the whole catalogue of songs X, by giving to each song x € X a score Syser(T).
Then, a good score function Syser would give large scores to the songs that the user is
likely to appreciate.

Formally, for two real-valued random variables U and U’, we recall that U is said
to be stochastically larger than U’ if P{U > t} > P{U’ > t} for all ¢ € R. Then, the
objective is to learn a scoring function s such that the r.v. s(X) given Y = +1 is as
stochastically larger as possible than the r.v. s(X) given Y = —1. In other words, we
want s to maximize the difference between 1 — Gs(t) = G4(t) = P{s(X) > t|Y = +1}
and 1— H(t) = Hs(t) = P{s(X) > t|]Y = —1} for all t € R. This functional criterion can
also be expressed by means of the ROC curve of any scoring rule s, i.e. the parametrized

curve t € R~ (Hg(t),Gs(t)), or equivalently the graph of the mapping
a € (0,1) = ROC4(a) = Gy o (1 — H;7H(1 - w),

where possible discontinuity points are connected by linear segments. Indeed, the optimal
elements s* are those whose ROC curve ROC4+ = ROC* dominates any other ROC curve
ROC; everywhere:

Va € (0,1), ROC*(a) > ROCs(a).

See Figure for an example. It is well known that optimal scoring functions s* are
strictly increasing transforms of the posterior probability function 7 (see e.g. [CLV035]).

7
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Given its functional nature, the ROC curve ROC; is often summarized by a simple scalar
quantity, namely the area under it called the Area Under the ROC Curve (AUC in short):

AUC(s) = Bs(X) < s(X)|Y = ~1,¥" = 41} + ;P{s(X) = s(X)[¥ = 1, ¥ = +1},

where (X’ Y’) is an i.i.d. copy of (X,Y). Indeed, when the ROC curves of two scoring
functions s; and s9 are crossing as in Figure neither can be considered better than the
other, or even equal, from a ROC perspective. On the contrary, a global scalar criterion
such as the AUC always allow to compare two scoring rules. Interestingly, the AUC
comes with a probabilistic interpreation: it is the theoretical rate of concording pairs.
The usual ERM approach for bipartite ranking consists in maximizing the empirical
version of the AUC, given an i.i.d. sample (X1,Y7),..., (X, Yy):

1
ny -n—

AUC,(s) = ST3 Hs(X0) < s} + 5Hs(X) = (X)), (L7)

1:Y;=—175:Y;=+1

with ny = > | I{Y; = +1} = n — n_. Notice that the empirical AUC in Eq. is a
sum of dependent variables: more precisely, it is a U-statistic of degree 2 (see [CLV0S]).
Several algorithms based on the maximization of A/ﬁ?n have been proposed and studied
in the literature, such as the TREERANK approach (JCV09Dh]). Extension to the case of
label Y taking at least three ordinal values, called multipartite ranking, has also been
investigated (JRA05], [SCV13]): we introduce next our contribution to the more general
problem of continuous ranking, where Y is valued in the whole interval [0, 1].

1.4 Ranking Data with Continuous Labels

In chapter [[T]} we consider a ranking task akin to bipartite ranking, the difference lying
in the nature of the label Y, whose support spreads over a continuum of scalar values: we
call this problem continuous ranking. Depending on the context, Y may be represent a
size, a biological measurement, or the cash flow of companies in quantitative finance. We
describe below a potential application of continuous ranking for music recommendation,
adapted from example |3 in the case of bipartite ranking.

Example 4. (ADVANCED MUSIC RECOMMENDATION)

e As in example[3, a music platform wants to smartly recommend the songs of playlist X
to some user, by means of a scoring rule Syser : X — R specific to that user. Here also,
the user generates a training dataset {(X;,Y;)}1<i<n after listening to n songs X; € X.
Nevertheless, each label Y; now corresponds to the quantity of dopamine (a.k.a. the ‘plea-
sure chemical’) released by the user’s brain — and measured by some sensor — while
listening to the i-th song. Hence, these labels Y; are not binary feedbacks/ratings as in
bipartite ranking but are rather taking continuous values. Still, the objective for the rec-
ommender remains similar: giving large scores Syser(x) to the songs x € X that are likely
to release a lot of dopamine in the user’s brain.
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Figure 1.2: The optimal ROC curve ROC* (dashed line) is uniformly above any other
ROC curve. Both scores s; and so perform better than any constant scoring rule, whose
ROC curve ROC(constant) is simply the (dotted) line joining the points (0,0) and (1,1).

e A more realistic example relies on implicit feedbacks, in particular the user’s ac-
tion ‘skip the current song’, that have received much attention in the literature recently

(JRFGST12,|RI05],[IGPT 17]). In this case, a continuous label Y; is defined by:

listening time of song X; until skip
P =

0,1
total duration of song X; € [0,1],

which implicitly interprets as a negative feedback when it is close to zero.

Formally, we assume that the random pair (X,Y) admits a density with respect to
the Lebesgue measure on R, and that the support of Y is compact, equal to [0,1] for
simplicity. The regression function is denoted by

m:xz e X — EY|X =zl

We formulate the continuous ranking problem as a continuum of nested bipartite ranking
problems. Indeed for any threshold value y € (0,1), the bipartite ranking subproblem
related to the pair (X, Z,) with Z, = 2I{Y > y} — 1 can be viewed as a discrete
approximation of the full problem: we respectively denote by ROC;, and AUC,, the
corresponding ROC curve and AUC of any measurable scoring function s : X — R. In
other words, we want to solve simultaneously all these subproblems i.e. to identify a
scoring rule s maximizing ROC,, and AUC; , for all y € (0,1).
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Figure 1.3: The least squares regressor spg (dotted line) is a more accurate proxy than
s* (dashed line) of the regression function m (solid line), in terms of mean squared error.
Still, s* is optimal for the continuous ranking task as it is a strictly increasing transform
of m, while spg is a very poor score function because of its undesirable oscillations.

Contributions. For that purpose, we introduce novel performance measures obtained
by integrating ROC;, and AUC, , with respect to Y’s marginal distribution Fy-:

1 1

ROC; y(a)Fy(dy) and IAUC(s)—/ IROC;(a)dar.

a=0

Va € (0,1), IROC,(a)= /

y=0

Our theoretical analysis is twofold. We show that

(i) under some monotone likelihood ratio condition, the optimal scoring rules are strictly
increasing transforms of the regression function m,

(ii) a scoring rule s* is optimal if and only if its IROC curve dominates any other IROC
curve IROC; everywhere:

Va € (0,1), IROC;+(a) = E[ROCY (a)] > IROC;(x),
and its TAUC is maximal:
IAUC(s") = E[AUCy] > TAUC(s)  for any s.
In addition, we provide a probabilistic expression of the TAUC:
TAUC(s) = P{s(X) < s(X)]Y <Y" <Y’} + %P{S(X) =s(XNY <Y" <Y'},

where (X’,Y”’) is an i.i.d. copy of (X,Y) and Y” is independently sampled from Y’s
marginal distribution Fy. Based on this formula, we empirically estimate IAUC(s) from

10
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an i.i.d. sample (X1,Y7),...,(Xy,Y,) as follows:

IA/U\Cn(S) = n(n _ f;(n — 2) 1<MZ;<”H{S(X1-) < s(Xk),Y; < Y} < Yk}
* n(n — 13;(n —2) Z [{s(Xi) = s(Xy),Yi <Yj < Y},

1<ijk<n

which is a U-statistic of degree 3. Finally, we provide a hierarchical algorithm, CRANK,
aiming at maximizing IA/U\Cn: it returns a piecewise constant scoring rule obtained by
recursively splitting the feature space.

In the next section, we focus on another ranking task, namely ranking aggregation,
aiming at ordering a finite number of items, given complete or incomplete rankings as
training data.

1.5 Ranking Aggregation by Empirical Risk Minimization

The bipartite (resp. continuous) ranking problem presented previously consisted in pro-
ducing a scoring function, and consequently a ranking over some feature space X, given
(vectorial) observations of the form (X1, Y1),...,(Xp,Y,) valued in X x {—1,+1} (resp.
in X x [0,1]). In the ranking aggregation problem, although the goal is still to output a
ranking, their exist two principal differences with the earlier settings:

e the set of elements to rank is of finite cardinality IV, contrary to the infinite feature
spaces X C R? often considered in bipartite/continuous ranking,

e the input data themselves are rankings/comparisons, i.e. relative information con-
trary to labels representing absolute evaluations.

Historical Landmarks. Ranking data analysis dates from the 18-th century with the
design of an election system for the French ‘Académie des Sciences’. Different voting sys-
tems were proposed, each satisfying some desirable properties: in particular, the Borda
count in 1781 (|[Bor84]) and its contender, the Condorcet method in 1785 ([DCT14]),
created the famous Borda-Condorcet debate. Later in 1951, Arrow proved an ‘impossi-
bility theorem’ ([Arrl2]) stating that no election rule can satisfy simulatneously some
set of reasonable properties ; voting systems are also studied in social choice theory (see
[Ris05]). Below, we focus on a specific problem arising in ranking data analysis, namely
that of summarizing a set of rankings by a single permutation.

Ranking Aggregation. Given a list of N > 2 items indexed by [N] = {1, ..., N}
and n > 1 permutations o1, ..., 0, in the symmetric group &y of the items, the ranking
aggregation problem consists in identifying the single ‘consensus’ permutation &, that
best summarizes the o,’s. In many applications using voting systems (e.g. recommen-
dation systems), each ranking o, is obtained by asking an agent to order the N items
by preference. Hence, the consensus a,, can be seen as the permutation maximizing the
simultaneous agreement of the n agents, or equivalently minimizing their disagreement.

11
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Figure [.4: n = 4 rankings of N = 6 sports teams: for a given ranking, ¢ < j means that
team ¢ is preferred over team j.

Given a permutation o € &y and two distinct items (4, §) € [N]?, we will use the no-
tation ¢ < j meaning that ¢ is preferred over j i.e. that ¢ is ranked lower than j in the
ranking o: o(i) < o(j). A dataset of n = 4 rankings of N = 6 items is represented in
Figure [.4. While several methods have been developed to solve this problem, we focus
here on the Kemeny’s consensus approach.

Kemeny’s Consensus. The Kemeny’s consensus method ([Keml|) defines the consensus
ranking ,, as a minimizer of the sum of the distances d(o,,0¢) to the n permuations oy:

n
on € arg minZd(a, o),
ceG N =1
where d is some metric on the set of permutations &y. More specifically, Kemeny’s
rule is based on the choice d = d, with the Kendall’s 7 distance d, defined by: for all
(0,0") € &%,

dr(o,0')= Y H(o(i) —a(i))(e'(i) —o'(j)) < 0},

1<i<j<N

which is the number of pairwise disagreements between o and ¢’. We point out that
computing Kemeny’s consensus &y, is difficult in practice ([DKNSO01]): we refer to
for discussion on tractable algorithms able to reasonably approximate &,,.

Statistical Learning Framework. In [KCSI17|, a statistical learning formulation of
ranking aggregation is introduced: the deterministic permutations oy are interpreted as
i.i.d. random variables ¥; with distribution P on &y. In this probabilisitc setting, the
ultimate goal is to identify a true median ranking ¢* of P characterized by

o* € arg min Lp(o),
ceG N

where Lp(o) = Ex..p[d(c,X)]. Nevertheless, the distribution P being unknown to the
learner having only access to a sample X1, ..., %, the risk Lp and thus the median rank-

12
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ing o* cannot be directly computed. Still, by following the ERM paradigm introduced
earlier, the empirical consensus

- l¢
on € arg min L (0) = — Zd(o, %),
ogEG N " n =1

where P, = (1/n) > iy 0x, denotes the empirical distribution, appears as the natural
alternative to o*. In particular, [KCS17] established minimax bounds of order Op(1/1/n)
for the excess of risk

Lp(Gn) — Lp(a®).

Hence, when the number of observations n grows to infinity, the performance of the em-
pirical solution &, converges to the minimal risk Lp(c*) = min,cg, Lp(o). In addition,
denoting by

pij =Pep{E(i) <X(j)}

the pairwise probability that the item i € [N] is preferred over j € [N]\ {i}, the authors
showed in the Kendall’'s 7 case d = d, that if the distribution P satisfies the following
strict weak stochastic transitivity assumption: for all 1 <i# j < N, p; ; # % and

1

.. . 1
Vk e [N]\ {i,5}, min(pij,pjk) > 5 = pig > 3

2

then the Kemeny median ¢* is unique and equal to the Copeland ranking ocop (see
Theorem 5 in [KCS17]):

, 1 .
ocop(i) =1+ ZH{PM < 5}, Vi € [N].
J#i
Empirically, a similar result also holds: with overwhelming probability, the consensus o,
is equal to the plug-in Copeland ranking ocop defined for each item ¢ € [IN] by

~ . - 1
O'Cop(l) =1+ Zﬂ{pid‘ < 5},
J#i

with empirical pairwise probabilities

n

~ 1 . . .
Pij = Y Ei() < Tu(h)}, VI<i#j<N.
t=1

It follows that this specific instance of the ranking aggregation problem can be solved
efficiently based only on pairwise comparisons 1{¥;(i) < ¥;(j)}, which are a particular
case of incomplete rankings. In other words, one can avoid observing full rankings 3,
that may be painful or expensive to obtain in practice, especially when the number of
items N is large.

13
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1.6 Dimensionality Reduction on Gy

In chapter[[V] we propose a generalization of ranking aggregation and Kemeny’s approach
to the more general problem of dimensionality reduction on the symmetric group Gy.
We first recall that the space of distributions on Gy is of exploding dimensionality
N! — 1 and we highlight that ranking aggregation can be seen as an extreme form of
dimensionality reduction: indeed, it summarizes a whole distribution P on &y by a single
median permutation o*. Nevertheless, this approach presents in its very formulation
the drawback of hiding the complexity of the distribution P, which can for instance
be multimodal and thus cannot be accurately represented by a single permutation. In
contrast, we propose to relax Kemeny’s consensus method by approximating the original
distribution P by a simpler distribution P’ in an optimal transport fashion (see [Vil08|
or |[PC™19]). More precisely, our approach consists in choosing proxies P’ in a set P¢ of
bucket distributions i.e. such that the pairwise probabilities

P =Pop{X (i) < ¥'(j)}

are equal to either zero or one as soon as the two items ¢ and j belong to two distinct
buckets Cr and C; of the bucket order C = (Cy,...,Ck), which is an ordered partition
of [N]. Formally, Ur_,Cr = [N], Cx # D forall 1 < k < K, and if 1 < k <1 < K,
Cr,NC =0 and

(,j) €Ce x C = pl; =1 —p}; =0.

Intuitively, a distribution P’ € P¢ is constrained in such a way that it cannot generate
permutations that are hesistant about the relative rank of atoms in different buckets. For
example with the four rankings o1,...,04 from Figure [[.4] and the three buckets orders

C,C',C" from Figure

e the two rankings o1 and o9 both satisfy the structure of the bucket order C:
{501’502} C P,

e the ranking o3 satisfies C': d,, € Per,

e the last ranking o4 does not satisfy the constraints of any of the three bucket orders:
0oy ¢ PcUPe UPen.

Given a bucket order C, we denote by A = (#Cy,...,#Ck) its shape: it describes the
number of items contained in each of the K buckets and determines the dimensionality
of Pc, namely d¢ = II1<p< g #Ci! — 1.

Then, the optimal proxy P; € P¢ of some general distribution P is chosen by mini-
mizing the Wasserstein metric Wy, 1 = infy, psypr Eld- (2, X)]:

P} € arg minWy_;(P, P').
P'ePe

The unconstrained case K = 1, or equivalently A = N and d¢ = N! — 1, corresponds
to no dimensionality reduction with P¢ equal to the whole space of distributions on &y

14
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(a) Bucket order C corresponding to a geographical hierarchy: Algerian teams are preferred over
the French team, itself preferred over Canadian teams. C has size K = 3, shape A = (3, 1,2) and
dimension d¢ = 3!-1!-2! — 1 =11.
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(b) This bucket order constrains football teams to be preferred over hockey teams. C’ has size
K = 2, shape A = (4,2) and dimension d¢r = 4!-2! — 1 =47.

HOCKEY

\
N
N

(c) C" is based on the same partition as C’ but their buckets are ordered differently. C” has size
K =2, shape A = (2,4) and dimension de» = 2! - 4! — 1 = 47.

Figure 1.5: Three bucket orders of the N = 6 sports teams.

and thus P; = P. In the opposite extreme case K = N, equivalent to A = (1,...,1)
and d¢ = 0, the set P¢ = {05, } is reduced to a singleton: as in ranking aggregation, the
distribution P is simply approximated by a single ranking, here the unique permutation
oc such that i € C,,(;) for all i € [N].

Contributions. Our analysis of this problem relies on the following results.

i) We show that the distortion Ap(C) = minpep, Wy 1(P, P') of any bucket order C
C T
simply writes in terms of pairwise probabilities:

Ap@@) = > > b

1<k<ISK (i,5)€Ck xCy

which can be empirically estimated from pairwise comparisons, similarly to the risk
in Kemeny’s consensus method.

15
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(ii) We derive and analyse the ERM version of the bucket order optimization problem:

in Ap(C
cuin Ap(C),

where Cg \ denotes the set of all bucket orders with same number of buckets K
and shape \.

We point out that for shape A = (1,...,1), problem (#i) coincides with Kemeny’s con-
sensus method: indeed, we have Ap(C) = Lp(o¢) and {o¢ : C € Cy )} = Gy in this
case. Hence, our dimensionality reduction approach naturally extends ranking aggrega-
tion. We also provide a hierarchical algorithm, called BUMERANK, recursively merging
adjacent buckets into coarser bucket orders.

2 Risk-Aware Reinforcement Learning

This section presents our contributions in two (nested) online learning frameworks: multi-
armed bandits and reinforcement learning, the former being a particular case of the latter.
From now on, as opposed to the offline ERM settings exposed in the previous section, the
training datasets are not initially given to the learner. In contrast, the learner/decision-
maker has to interact with an environment to simultaneously collect observations and
design its own strategy.

2.1 The Stochastic Multi-Armed Bandit Problem

The multi-armed bandit (MAB) problem (see e.g. [BCBT12|) is a sequential decision
making problem encountered by a gambler in a casino facing K > 1 slot machines: at
each iteration ¢ € {1,...,7} (with 7" > 1 the time horizon), he chooses a slot machine
(a.k.a. ‘one-armed bandit’, or simply ‘arm’) A; € {1,..., K} to play and receives a ran-
dom reward X 4, ;. Initially, the gambler /learner/decision-maker has no prior knowledge
about the machines and his objective is to maximize his expected total reward across all
iterations, namely E [Zle X At,t:| .

In the stochastic setting, we assume that the rewards Xg1,..., X, 7 generated by
each machine a € {1,..., K} are i.i.d. sampled from some probability distribution v, on
R with expectation p,. Then, the quantity to maximize becomes:

E

T K
) XAt,t] =) HaE[Na(T)], (1.8)
t=1 a=1

where N,(t') = Zilzl I{A; = a} denotes the number of times the arm a has been pulled
up to any time ' > 1. A MAB model D is a set of possible distributions v, with
finite expectation: each K-tuple (v1,...,vk) € DX characterizes an instance of MAB
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2. Risk-Aware Reinforcement Learning

problem. The optimal strategy in hindsight thus consists in always pulling the optimal
arm a*, assumed to be unique:

a* = arg max fiq,
1<a<K

where p1* = i+ = maxi<q<g fla > MaXg-£q* [lq- Formally, a bandit strategy is a mapping
he = (P{Ai+1 = 1|}, ... ,P{Asy1 = K|ht}), where the history of the arms pulled and
of the rewards obtained up to the current iteration ¢ is denoted by

ht = (AlaXA1,17' . .,At,XAt7t).

Finding a strategy maximizing Eq. ([.8) can be equivalently reformulated through the
minimization of the expected regret

RT:T,U,*—E

T K
> XAtvt] = AE[NL(T)],

with gaps A, = p* — pe. This regret interprets as the overall deficit of expected rewards
generated by the bandit strategy compared to the best strategy in hindsight receiving
reward X, at each step 1 <t < T

Exploration versus Exploitation. The MAB problem was originally introduced by
Thompson in 1933 (JTho33|), motivated by clinical trials comparing the effectiveness of
several treatments by testing them over a sequence of patients. In this medical context,
each reward corresponds to the observed effect of a treatment on a patient: hence,
suboptimal treatments must be quickly identified and then discarded to save as many
patients as possible. On the one hand, the range of all possible treatments has to be
explored sufficiently in order to spot, with high confidence, the optimal treatment among
them ; and on the other hand, the best treatment should be exploited as frequently
as possible i.e. provided to the maximum number of patients, by avoiding unnecessary
exploration. This example highlights the exploration-exploitation trade-off arising in
bandit problems, including in modern applications such as ad placement (see [BCB™12]).
Asymptotic Distribution-Dependent Lower Bound. |[LRS85|, [BK96|, [CKI15] and
[GMSI19| proved that, asymptotically, the regret of any wuniformly efficient strategy
is lower bounded by a logarithmic function of the time horizon 7" multiplied by a
distribution-dependent constant involving Kullback-Leibler divergences.

Definition 1. A MAB strategy is uniformly efficient for a model D if for all MAB
problems (Vq)1<a<K € DK and for all suboptimal arms a # a*, it satisfies

E[N,(T)] = o(T®), Va € (0,1].

Theorem 1 (Theorem 1 in [GMS19|). For any model D, uniformly efficient MAB strat-
egy on D, MAB problem (vi,...,vK) € DX and suboptimal arm a,

Ay P
1TH1>101'C1> logT o ICinf(VaHu*aD)’

17
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where
King(Va, 2, D) = inf{ KL(vq,V},) : v, € D and Ex/,y [ X'] > a},

with KL the Kullback-Leibler divergence between two probability distributions.

In particular, if the model D is a one-dimensional exponential family (e.g. Bernoulli
or Poisson distributions), the Kullback-Leibler divergence K L(v,v') between two dis-
tributions v,/ in D is simply a function of their respective means p = Ex.,[X] and
,LL/ = EX/N,/ [X/]Z

KL(v, V,) = d(M7M/)'

Intuitively, any ‘reasonable’ MAB algorithm should at least produce a logarithmic regret:
we next recall celebrated approaches guaranteeing regret with finite-time upper bounds
asymptotically matching the lower bound in Theorem

Asymptotically Optimal Algorithms. Several algorithms were proven to be asymp-
totically optimal, particularly in the case of distributions vy, ..., vx belonging to the same
exponential family distribution, such as KL-UCB (JGC11]), BAYEs-UCB (|Kaul6]) and
THOMPSON SAMPLING ([Tho33|, [KKMI2|, [KKMI13]|). These strategies are all index
policies i.e. they rely on some index u,(t) computed at each round ¢t > 1 for each arm
a €{1,...,K}: a generic index policy is described in Algorithm

Algorithm 1 MAB index policy

Require: time horizon T'.
1. Initialize: Pull each arm once: A, =t, Vte{l,...,K}.
2: fort=KtoT —1do

3:  Compute index ugy(t) for all arms a € {1,..., K}.

4

5

Pull arm Ayyq = arg maxy << g Ua(t).
: end for

e The KL-UCB Algorithm. Based on the same optimism in the face of uncertainty
principle used in the UCB1 algorithm (JACBE02]) through the computation of confidence
intervals for the empirical estimators of expectations u,’s, the KL-UCB algorithm was
introduced in [GCI1]. It is an index policy characterized by the following index:

ta(t) =sup {q > fia(t) : Na(t)d(jta(t), q) < logt + cloglogt }, (L9)

where fi,(t) = (1/Na(t)) 320 T{As = a} X, is the empirical average reward at time
t, and c is a positive constant typically smaller than 3. This strategy is said to be
‘optimistic’ as it pulls the arm with highest upper confidence bound (UCB) w,(t) i.e. it
(optimistically) considers that the true expected value p, is as large as its UCB.

e The BAYES-UCB Algorithm. The BAYES-UCB algorithm ([KCG12]) is a Bayesian
index policy. It relies on the same intuition as KL-UCB but replaces the UCB by an
upper quantile:

ua(t) = Q1 —1/(t(logt)*), ma,t), (1.10)
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2. Risk-Aware Reinforcement Learning

where Q(a, 7,,) denotes the quantile of order « of the posterior distribution 7 for arm
a at time ¢.

e The THOMPSON SAMPLING Algorithm. The THOMPSON SAMPLING strategy
(originally proposed in [Tho33|, and analysed in [KKM12|, [KKM13]) is a Bayesian ap-
proach consisting in sampling a natural parameter (of a one-dimensional exponential
distribution) 6,(t) ~ 74 (t) from the posterior distribution m,(¢) updated with the Ng(t)
observations collected from arm a up to time ¢t. Then, the index is given by:

ua(t) = p(ba(t)), (L11)

with p(0) the expected value of the one-dimensional exponential distribution v € D with
natural parameter 6.

We present in the next subsection our study of a variant of MAB tailored to credit-risk
management applications.

2.2 Bandits for Default Risk Management

In the default risk management problem, a loaner (typically a bank) is receiving credit
requests — that he may either accept or reject — from individuals belonging to dif-
ferent populations. Each of the K > 1 populations is a category/arm, denoted by
a € {1,..., K}, predefined by the bank based on a features such as age, gender, salary
or ethnicity for instance, combined with the average loan amount 7,. Assuming that
the bank has enough budget, it should maximize its total profit by loaning money to
all profitable populations (if there is any), not only the most profitable arm. Hence,
from a bandit point of view, the notion of single optimal arm is not relevant anymore.
More formally, we consider in chapter [V] a variation of the MAB problem, that we call
profitable bandits, where, at each iteration t € {1,...,T}, the learner may pull a subset
Ay C {1,..., K} of the arms, or possibly no arm at all (i.e. A; = 0)). To each popula-
tion/arm a € {1,..., K} is associated an unknown distribution v, and a known threshold
Ta- The threshold 7, corresponds to the average amount of money borrowed to the bank
by each individual from population a. In addition, we assume that at each time step ¢, a
(bounded) random number n,(t) of people from category a are asking for a credit. Then,
the goal is to maximize the expected cumulative profit which sums, for each borrower
ce€{l,...,nq(t)} from all chosen categories a € A;, the difference between the average
reimbursement u, = Ex~,,[X] and the average loan amount 7,:

T K na(t)
Sr=E Z ZH{CL S At} Z Xa,c,t - La,c,t )
t=1 a=1 c=1

where the random variables X, .; are ii.d. sampled from v, and the random loan
amounts L, .; have expectation equal to 7,. Here also, we reformulate the objective
by means of the following expected regret:

Ry = 2;\ AaNo(T) = Sp = E;\ Ay (No(T) = E[N,(T)]) + % AGJE[NL(T)],
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p=2>m=1 Uo =2<T19=3 U3 =5>13=3 e =5<14=06

Figure 1.6: K = 4 slot machines. In order to play with the a-th machine (1 < a < K), a
gambler must insert a coin of value 7,: he receives a random reward with unknown mean
tq. The set A* = {1, 3} contains the profitable arms a for which g > 7.

where N,(T) = E [Zle na(t)} is the expected total number of clients from category a

over the T rounds, Ny (t) = S°%_; na(s)I{a € A} is the number of observations obtained
from category a up to time t > 1, A, = pq— 74 is the (unknown) expected profit provided
by a client of category a and A* = {a e {l,....K},A, > 0} is the set of profitable
arms.

Index Policies. Motivated by the success of the MAB index policies recalled earlier, we
adapt them to profitable bandits: at each iteration ¢ and for each category a, an index
uq(t) is computed, and the arm a is pulled if u,(t) is larger than the known threshold
To (see Algorithm . Then, we propose three index policies for solving our profitable
bandits problem:

o the KL-UCB-4P algorithm (‘4P’ means ‘for profit’) with same index as KL-UCB,
namely u,(t) given by Equation (L.9),

e the BAYES-UCB-4P algorithm with same index as BAYES-UCB (see Eq. (I.10])),

e the T'S-4P algorithm with same index as THOMPSON SAMPLING (see Eq. (L.11))).

Our analysis will show that these three strategies are all asymptotically optimal for the
profitable bandits problem.

Algorithm 2 Profitable bandits index policy

Require: time horizon T, thresholds (74)ae1,.... K} -

1: Initialize: Pull all arms: A; = {1,...,K}.

2: fort=1to7 —1do

3:  Compute index u,(t) for all arms a € {1,..., K}.
4:  Pull arms in Ay ={a €{1,..., K} 1 ug(t) > 74}
5: end for

Contributions. We extend the MAB analysis to our profitable bandits framework
through two main results: lower and upper regret bounds respectively.
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(i) First, we show that any uniformly efficient profitable bandits strategy produces a
regret Rp asymptotically lower bounded as follows:

Rp > |Aa‘

Icinf(Vaa Tay Da) ’

lim inf >
T—oo logT

ag¢ A*

where

Kint(Va, 2, Da) = inf{KL(vy,v},) : v, € Dy and Exry [X'] > z}.

(i) If ng(t) = ne almost surely for all 1 <t < T, with constant n, > 1, then the three
algorithms that we propose, namely KL-UCB-4P, BAYES-UCB-4P and T'S-4P are
all asymptotically optimal i.e. their regret matches the lower bound for T growing
to infinity. Otherwise, a multiplicative gap exists between our lower and upper
bounds. Indeed, we provide upper regret bounds with the following asymptotic
order:

. Ry <n+ > |Aq]
lim sup < )
Tooo logT a%;* na ) Kint(Vas Tas Da)

for constants n},n, > 1 such that n; < n4(t) <n} almost surely for all ¢

2.3 Bandits and Extreme Values

In various risk-aware contexts, the quantities of interest are not necessarily expectations.
In environmental or financial applications for instance, a decision maker may be risk-
averse by taking decisions to ensure sufficient protection against disastrous events such as
flooding or financial crisis (see [BGSTO06], [Res07]). In other words, efficient strategies are
designed by giving more importance to worst-case scenarios than to ‘normal’ observations.
Mathematically, such pessimistic scenarios are often modeled as rare and extreme events.
Hence, in many risk-aware problems, the learner has to optimize a criterion based on the
tail of some distribution, which characterizes its extreme values.

Alternative Risk Measures. We first recall that the expectation of a real-valued ran-
dom variable X with cumulative distribution function (‘c.d.f.” in short) F': z — P{X <
x} is equal to the integral of the quantile function (or generalized inverse distribution
function) F~1: 7 inf{z : F(z) > 7} over the interval [0, 1] (see [Dev08]):

1
E[X] = By [F~(U)] = / P

where U([0,1]) is the uniform distribution on [0,1]. Several risk measures have been
proposed in the literature to replace the expectation:

e the quantile F~1(7) at some level 7 € (0,1], also called ‘value-at-risk’ (VaR) (see
e.g. [ADEH99|), is also a solution of the following asymmetric L; minimization
problem:

F~(r) € arg emin]E[EZ(X —0)], (1.12)

with quantile regression loss (a.k.a. ‘pinball loss’) ¢%(z) = z(7 — I{x < 0}),
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o the conditional value-at-risk (CVaR) CVaRq(X), also referred as ‘expected short-
fall’ or ‘superquantile’ (JRUT00]):

CVaRa(X) = é / B TR (L.13)

describes better the (right) tail of the distribution than the expectation, as the
quantile function F~! is only integrated over an upper part of the whole interval

(0,1),
e the expectile e, (X ), sharing common properties with quantiles, solves an asymmet-
ric Ly minimization problem ([NP87]):

e-(X) = arg Hmin E[¢(X —0)], (L.14)

with expectile loss ¢¢(x) = 22|71 — I{x < 0}|.

We point out that at level 7 = 1/2, the quantile F~!(1/2) is a median of the distribution
of X and the expectile its expectation: e;o(X) = E[X]. Moreover if a = 1, the CVaR
coincides with the expectation: CVaR;(X) = E[X]. Empirically, the CVaR, of some
distribution v can be estimated from an i.i.d. sample X; ~ v for 1 <t < T by:

— 1
CVaRa = > Xow, (L15)
t=|(1-0)T]

with permutation o € &r and the order statistics X,1) < -+ < X,(7). We point

out that CVaR,, is an L-statistic (see [VAV00]), i.e. a linear combination of the order
statistics.

Risk-Aware Bandits. Many variants of the classical MAB problem have been proposed
for risk-aware applications. Basically, they consist in replacing the expectation by differ-
ent risk measures. While [SBEWHI5] focuses on quantiles, [GST13| and |[KJT19] both
propose strategies relying on the estimation of the CVaR. General bandits frameworks
encompassing broad classes of risk criteria (including quantiles and CVaR) are studied
in [TGP19| and [CMZ18]. In [SLMI2|, [VZI16] and [ZLJC14], the quality of an arm is
assessed through a combination of its mean and its variance: for two arms with the same
mean, the one with the smallest variance is deemed safer than the other one. In [Mail3],
the risk-aversion is measured by means of the cumulant generating functions of the dis-
tributions of the arms; the mean-variance approach then appears as a particular case of
this method in the Gaussian scenario (i.e. when v, is a normal distribution for each arm
a). We introduce next the maz K-armed bandit problem, also called ‘extreme bandits’, as
an extreme form of the risk-aware problems discussed above. Indeed, while the CVaR,
(with o << 1) of some distribution v allows to study its right tail — empirically, by
selecting the a-fraction of the largest order statistics X,(|(1—a)7)); - -+ Xo(7) among an
i.id. sample (X;)1<¢<7 (see Eq. (L15)) —, the max K-armed bandit problem defined
below only focuses on the maximal observation of this sample, namely maxj<;<7 X;.
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Extreme Bandits. In some applications in medicine, insurance or finance, the quantity
of interest is not the expected return, but rather the extreme observations ([ BGST06]).
From a multi-armed bandit point of view, the ‘best’ arm should not be defined as the
one with highest expectation, but as that producing the maximal values. This setting,
referred to as extreme bandits in [CV14], was originally introduced by [CS05] by the name
of max K-armed bandit problem. In this framework, the goal pursued is to obtain the
highest possible reward during the 7" > 1 steps. For a given arm a € {1,..., K}, we
denote by

G(a) = max X
T T gy et

the maximal value up to round 7" > 1 and assume that, in expectation, there is a unique
optimal arm
a* = arg maxE [Gﬁﬁ)} .
1<a<K

Then, expected extreme regret of a strategy, pulling the arm A; € {1,..., K} at time ¢,
is defined as

Ry =E [Gg? )} _E L@% XAt,t} , (L.16)
where maxi<;<7 X4, is the maximal value observed by the learner up to the time
horizon T'. When the supports of the K reward distributions v1,...,vg are bounded,
no-regret is expected provided that every arm can be sufficiently explored, as shown
in [NLB16] and [DS16]. If infinitely many arms are possibly involved in the learning
strategy, the challenge is then to explore and exploit optimally the unknown reservoir of
arms, see [CV15]. When, on the contrary, the rewards are unbounded, the situation is
quite different: the best arm is that for which the maximum G(Ta ) tends to infinity faster
than the others. In [NLB16], it is shown that, for unbounded distributions, no policy
can achieve no-regret without restrictive assumptions on the distributions. In accordance
with the literature, we focus on a classical framework in extreme value analysis. Namely,
we assume that the reward distributions are heavy-tailed.

Heavy-tailed distributions are widely used to model extremes in many applications,
where a conservative approach to risk assessment might be relevant (e.g. finance, envi-
ronmental risks). Like in [CV14], we consider that the rewards are distributed as second
order Pareto laws, which are similar to classical Pareto distributions. Formally, a proba-
bility law with c.d.f. F(z) belongs to the («, 3, C, C’)-second order Pareto family if, for
every x > 0,

1 —Ca™ — F(z)] < C'z=0+B) (1.17)

where «, 3,C and C’ are strictly positive constants, see e.g. [Res07]. Naturally, the
Pareto distribution with tail index o and scale parameter C, whose c.d.f. is:

Vo > Ca, F(z)=1-Cx™%,

belongs to this family as it trivially verifies Eq. ([.17). These distributions have indeed
‘heavy tails’, see Figure [.7] for a comparison with a ‘light tail’ folded normal distribu-
tion. For each arm a € {1,..., K}, the distribution v, is assumed to belong to the
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Figure 1.7: Pareto laws for different tail indices a (and same scale parameter C' = 1)
compared to the folded normal distribution of 1+ |X| with X a standard normal variable
(all distributions have same support).

(g Ba, Ca, C')-second order Pareto family with o, > 1, so that the expectation of the
random variable X, ; ~ v, is finite. In this context, [CV14] have proposed the EXTREME-
HUNTER algorithm to solve the extreme bandit problem and provided a regret analysis
with the following upper bound

RT=O<T<1+5)%*>,

where b > 0 is a known lower bound on the (unknown) S-coefficients: b < ming S,.
Contributions. Our contribution to this problem is developed in chapter [VI} it is
twofold.

(i) First, we significantly improve the regret analysis of EXTREMEHUNTER by a poly-
nomial factor in the time horizon 7', by proving that

Ry =0 ((log )22+ /bp=(1=1/ag) T—(b—l/aa*)) ’

and we provide a matching lower bound in a specific case. This essentially relies on
a finer bound for the difference between the expectation of the maximum among
independent realizations X1, ..., X7 of a (o, 8, C, C")-second order Pareto distri-
bution, E[max<;<7 X;] namely, and its rough approximation (TC)Y°T(1 — 1/a)
with T’ the Gamma function. As a by-product, we propose a more simple EXPLORE-
THEN-COMMIT strategy that offers the same theoretical guarantees as EXTREME-
HUNTER.

(ii) Second, we explain how extreme bandit can be reduced to a classical bandit problem
to a certain extent. We show that a MAB strategy such as ROBUST-UCB (see
IBCL13]), applied on correctly left-censored rewards X, +I{ X, + > u} with threshold
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u large enough, may also reach a very good performance. This claim is supported by
theoretical guarantees on the number of pulls of the best arm a* and by numerical
experiments both at the same time.

Next, we consider the general reinforcement learning setting, which includes the
(static) multi-armed bandit problem that we studied. We point out that, halfway be-
tween these two problems, more dynamic MAB frameworks have also been considered
in the literature: in particular, contextual bandits (see [Woo79)|, [SIi14], [PR*13]), where
the rewards depend on observable random covariates.

2.4 Reinforcement Learning

The multi-armed bandit problem discussed above can be seen as a very specific case of
the more general reinforcement learning (RL) framework. In reinforcement learning, an
agent seeks to maximize the expected sum of (discounted) future rewards by sequentially
interacting with his environment. This total return defines policy-dependent value func-
tions of the environment’s state and of the agent’s action. The objective is then to find
an optimal policy maximizing these value functions in each state. If the environment is
always in the same state, then RL is a bandit problem where the arms are the different
actions. We introduce formally the RL setup below.

Mixtures. Here and in chapter we denote by P(€) the set of probability distribu-
tions on a set & (either countable or R). In addition, given a random variable Y valued in
a countable set Y and a mapping v : Y — P(£), we denote by v(Y) € P(€) the mizture
distribution of the following random variable:

Z H{Y = y}UZh
yey

where U, ~ v(y) and Y are independent for any y € ).
Markov Decision Process. A Markov decision process (MDP) is described by a tuple
(X, A, P, R) with

e state space X,

e action space A,

e transition kernel P: X x A — P(X),

o distributional reward function R : X x A — P(R).

For simplicity, we will assume that X and A are both countable. If the environment
is in state x € X and if the agent takes the action a € A, then he receives a reward
Ry ~ R(z,a) and the next state X; is sampled from the distribution P(-|x,a) € P(X)
such that Ry, Xy are independent. See Figure for an example of a simple MDP
with two states, two actions, and deterministic rewards (i.e. there exists a function
7: X X A— Rsuch that R(x,a) = 0,54 for all (z,a) € X x A).
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A policy 7 : X — P(A) maps any state z € X' to a distribution over the actions
7(-|z) € P(A). Given a discount factor v € [0,1), we define the distributional return
Z™(xz,a) of a policy 7 after taking action a € A in state x € X as the probability
distribution of the random variable

(o)
thRt given that Xg = x, 4 = a,
t=0

and for all £ € N, Ry ~ R(Xy, Ap), Xe1 ~ P(| X, Ar), Apr ~ 7(+| Xer). (118)

The discount rate 7 serves as both a mathematical device to ensure the convergence of
the total return, and as a parameter determining the present value of future rewards: a
small value of v gives little importance to future rewards. An alternative to Eq. ,
that we will not consider here, is the sum of rewards Z?zo Ry, which only makes sense
when there is a natural notion of final time step T (see [SB1§|). Usually, RL focuses on
expected returns through the state-action value function

QW('T’ CL) = EZONZ"(m,a) [Zo],
and the value function
VT(x) = Eggmr( o) [Q7 (2, Ao)],
verifying Bellman’s equation (|Bel66]):
V(z,a), Q"(z,a)=E[Ro]+1E[Q"(X1, A1)],

where Ry ~ R(z,a), X1 ~ P(:|z,a) and A; ~ 7(:|X1). The optimal policies can be
characterized by means of the optimal state-action value function Q*(x,a), which verify
Bellman’s optimality equation:

V(z,a), Q*(xz,a)=E[Ro]+ vE[Hbz/%X Q*(Xy,d")).

Then, denoting by V*(z) = max, Q*(z,a) the optimal value function, a policy 7* is
optimal if and only if for all x,

E[Q"(z, Ao)] = V*(x), with Ag ~ 7*(-|z).

Bellman Operators. In the policy evaluation task, one wants to compute Q™ for a
given policy 7, while in the control task, the goal it to approach Q*. The usual dynamic
programming way for solving these two tasks is based on two operators. First, the
Bellman operator T™ (|[Bel66]) defined by: for all @ : X x A — R and (z,a) € X X A,

T"Q(x,a) = E[Ry] + VE[Q(X1, A1)], with X1 ~ P(:|x,a), A1 ~ 7(-|X1).
Second, the Bellman optimality operator T defined by:

TQ(z,a) = E[Ro] + 7E[max Q(X7, a)], with Xy ~ P(:|z,a).
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2. Risk-Aware Reinforcement Learning

In particular, the Bellman operator 7™ (resp. Bellman optimality operator T') is known to
be a 'y-contractionlﬂ for the sup norm and its repeated application to an initial Q-function
to converge exponentially fast to its unique fixed point Q™ (resp. Q*) (|[BT96]).

RL Algorithms. In RL, the transition kernel P is unknown and thus the Bellman
operators cannot be computed exactly. Hence, practical RL methods such as temporal-
difference (TD) learning ([Sut88]), SARSA (JRN94]), or Q-LEARNING ([Wat89|) consist
in computing stochastic approximations of these operators based on trajectories com-
posed of observed ‘state-action-reward’ sequences. Given a single transition

(Xt7 At7 Rt7 Xt+17 At+1)7

with Ry ~ R(Xy, Ay), Xip1 ~ P(+| Xy, A¢), Apr1 ~ 7(+| X¢41), and learning rate 0 < o < 1,
their update rules are the following:

e the TD(0) update:

V(Xy) < (1= a)V(Xy) + (R + vV (Xi11)),

o the SARSA(0) update (using the next action A;4q):

Q(Xt, Ap) +— (1 — )Q(Xy, Ap) + o Ry + vQ(Xi41, Arg1)),

e the Q-LEARNING update:

Q(Xt, At) — (1 — OZ)Q(Xt,At) + Oé(Rt + ’Y(rzl’lgi\{Q(Xt—i_l’a/)).

Under technical conditions (tabular setting, states and actions are visited infinitely many
times, either constant or decaying learning rate, etc.), TD methods were proved to
converge to the value function V™ ([Sut88|, [Day92|), while the SARSA(0) algorithm
(combined with greedy policies, see [SJTLS00]) as well as Q-LEARNING (see [WD92]) both
converge to the optimal state-action value function Q*.

As in the bandit case, many safe RL formulations have been proposed by replacing
the expected returns by some risk-sensitive criterion, we refer to |[GF15] for a survey of
such methods. Our approach to this problem relies on the more challenging topic of
distributional reinforcement learning, where the focus is not only on the value functions
(i.e. expected returns) as in RL but on the whole distributions of the returns, which
potentially allows risk-aware applications based on risk measures such as the CVaR for
instance.

LA function mapping a metric space to itself is called a -contraction (resp. a non-expansion) if it is
Lipschitz continuous with Lipschitz constant v < 1 (resp. x < 1).
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Figure 1.8: The dynamics of reinforcement learning: the agent observes the current state
of the environment, then takes an action, receives a reward, observes the new state, and
so forth...

2.5 Beyond Value Functions: Atomic Bellman Equations

In distributional reinforcement learning (DRL), the focus is on the distribution, denoted
by Z™(z,a), of the random variable _,~,v'R; in Eq. , i.e. not only its expectation
as it is the case in (non-distributional) RL. As shown in [BDMIT], the usual RL tools
such as Bellman’s equations (for expected returns) can be generalized to distributions.
Similarly, the authors proposed two distributional Bellman operators: while the first,
denoted by T™, for distributional policy evaluation of a given policy =, is a contraction,
the second, for the control task, is not (see respectively Lemma 3 and Proposition 1
in [BDMI17|). Formally, the distributional Bellman operator T™ is defined by: for any
state-action distribution function

Z:(z,a) € X x A Z(z,a) € P(R),
the image of Z by 7™ is the state-action distribution function 7™ Z given by:
T"Z : (x,a) — distribution of the r.v. Ry + vZ1, with Ry ~ R(x,a),Z1 ~ Z(Xy, A1),

where X; ~ P(:|z,a) and A; ~ 7(:|X1). The distributional Bellman equation then
writes:
7" =T"Z".

In practical implementations, dealing with general distributions may be difficult from
a computational point of view. Hence, existing DRL approaches have been developed by
projecting the distributions into a simple parametric space of probability measures, thus
leading to tractable computation. For instance, [DRBMI§| and [RBD™18| both approx-
imate distributional returns with atomic distributions but consider different metrics for
evaluating the approximation errors: respectively the 1-Wasserstein distanceE] Wi and
the Cramér distance.

2For p € [1,+00), the p-Wasserstein distance between two distributions D; and D2 on R (with c.d.f.’s
1
Fy and Fy) is W,(D1, Da) = (fj:O | () — B () dT) v,
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2. Risk-Aware Reinforcement Learning

Atomic Projection. Our approach in chapter [VII| relies on the following two design
biases.

(a) We approximate probability distributions D on R by atomic distributions D,y =
Zij\ilwiégi with w; > 0and w; +---+wy=1,and 0; <--- < Oy.

(b) As in our dimensionality reduction problem on the symmetric group (part (1, chap-
ter , we use a mass transportation metric to measure the approximation errors,
namely the 2-Wasserstein distance Ws: the smaller

N w; 2
WQ(D, Dwﬁ) = (Z / - (Ffl(T) — 02)2 d7'> s (119)
i=1vT=Wi-1

with cumulative probabilities w; = j<i Wi the better D, ¢ approximates D.

Importantly, for fixed probability weights w;’s, the approximation error in Eq. ([.19) is
minimized with respect to the atoms 6;’s if and only if for all 1 < i < N such that w; # 0,
0; is equal to the following trimmed mean of the distribution D:

I
0= / F~(r)dr.

tJr=w;_1

We point out that in the monoatomic case N = 1, the unique ‘trimmed mean’ is simply
the expectation. Indeed, it also writes as the integral of the quantile function over the
whole interval (0,1): Ey.p[Y] = le:O F~Y(7)dr, which boils down to classical RL. In
addition, these trimmed means may be used in a risk-aware context to compute risk
measures such as the CVaR:

00+t N
CV&Rl_wiil(Y) = ’N—Z—f— 1 ’

We provide below a use case with two policies having the same expected performance
but different risk levels.

Use Case - Safe versus Risky Policies. For the MDP described in Figure
combined with a discount factor v = %, the two policies m, 7' given by w(a1]-) = 1
(‘always choose action a;’) and 7’(az|-) = 1 (‘always choose action ay’) share the same
value functions:

V(1) = Q(en,an) = 5 = V7 (01) = Q7 (a1, 02)

and V7 (z2) = Q" (22,a1) = ; = V™ (23) = Q" (x3,az). (1.20)

However, 7’ yields deterministic discounted returns, contrary to 7, and is thus the safest
of the two policies. More precisely, the distributional returns with expected values given
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P(x2Ix1,a1 ):1/2 ‘o

P(X1|X1 »ayq )=1/2
P(X2|X1 ,a2)=0
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Figure 1.9: Example of a Markov decision process with 2 states (X = {z1,x2}), 2 actions
(A = {a1,a2}) and deterministic rewards (R(z,a) = 0p(z.q))-

in Eq. ([.20) are concentrated in Dirac masses in the case of the ‘safe’ policy 7/, while
they are uniformly spread over some intervals for the ‘risky’ one 7:
Z™(wr 1) = U(0,1]) # 81 = Z7 (21, a2),
and  Z™(x9,a1) =U([1,2]) # 03 = Z™ (x2,a2), (1.21)
2

where U([e, B]) denotes the uniform distribution on any interval [«, f5].
Contributions. Our contribution is threefold.

(i) First, we introduce two new ‘l-step’ DRL operators, only dealing with the ran-
domness induced by the first step. The first, for policy evaluation, is denoted by
T™ and given by: for any state-action distribution function Z and (z,a) € X x A,
T™Z(x,a) is the distribution of the r.v.

Ro+~E[Z1| X1, A1], with Ry ~ R(x,a), 2y ~ Z(X1, A1), X1 ~ P(-|z,a), Ay ~ 7(-]X1),

while our second DRL operator T (for the control task) is defined such that TZ(z, a)
is the distribution of

Ro—i—'ymaxIE[Zl’a/\Xl], with RO ~ R(x,a),Xl ~ P(]a:, a), Zl,a’ ~ Z(Xl,a’)Va' e A
al

Interestingly, T™ and T are both contraction mappings.

(ii) Then, we describe the projected operators resulting from choices (a) and (b) and
prove that they are also contractions. In addition, we derive the atomic Bellman
equations, that are the fixed-point equations of the projected operators: they gen-
eralize the usual (non-distributional) Bellman equations to the multiatomic case of
several trimmed means.
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2. Risk-Aware Reinforcement Learning

(iii) Finally, we propose new DRL algorithms as multiatomic extensions of the TD
learning and Q-LEARNING methods.

In a nutshell, the final chapter [VI] provides new theoretical DRL tools, namely the
1-step DRL operators and the atomic Bellman equations, that shall be used in risk-aware
situations.

Conclusion - Perspectives

Many perspectives and lines of future research can be drawn from this thesis.

e Extending our WERM approach to solve the bipartite ranking task with positive-
unlabeled data remains an open problem. We describe in section |§| (of chapter
an incremental version of WERM for that purpose.

e The dimensionality reduction framework derived in chapter [[V]relies on the choice
of the Kendall’s 7 distance to quantify the ranking approximation errors. In the
section [7] of the same chapter, we propose an extension of our approach to another
metric, namely the Spearman p distance. We provide an alternative formula for
the distortion: interestingly, it shows that the triplet-wise probabilities p; ;i =
Py.p{X(i) < X(j) < 2(k)} are playing a key role in the Spearman p case, similarly
to the pairwise probabilities p; ; = Pxp{X(i) < X(j)} in the Kendall’s 7 case.

e The DRL approach proposed in the last chapter relies on an optimal spatial distri-
bution of the atoms 6;’s, given predefined probability weights w;’s. In the section
(of chapter , we introduce a notion of optimality for these probabilities: this
paves the way for more sophisticated algorithms optimizing both the atoms and
the probabilities.
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CHAPTER II

WEIGHTED EMPIRICAL RISK
MINIMIZATION: SAMPLE SELECTION BIAS
CORRECTION BASED ON IMPORTANCE
SAMPLING

Abstract

We consider statistical learning problems, when the distribution P’ of the train-
ing observations Z], ..., Z! differs from the distribution P involved in the risk one
seeks to minimize (referred to as the test distribution) but is still defined on the same
measurable space as P and dominates it. In the unrealistic case where the likelihood
ratio ®(z) = dP/dP’(z) is known, one may straightforwardly extends the Empirical
Risk Minimization (ERM) approach to this specific transfer learning setup using
the same idea as that behind Importance Sampling, by minimizing a weighted ver-
sion of the empirical risk functional computed from the ’biased’ training data Z!
with weights ®(Z]). Although the importance function ®(z) is generally unknown
in practice, we show that, in various situations frequently encountered in practice, it
takes a simple form and can be directly estimated from the Z!’s and some auxiliary
information on the statistical population P. By means of linearization techniques,
we then prove that the generalization capacity of the approach aforementioned is
preserved when plugging the resulting estimates of the ®(Z])’s into the weighted em-
pirical risk. Beyond these theoretical guarantees, numerical results provide strong
empirical evidence of the relevance of the approach promoted in this chapter.

1 Introduction

Prediction problems are of major importance in statistical learning. The main paradigm
of predictive learning is Empirical Risk Minimization (ERM in abbreviated form), see
e.g. [DGL96]. In the standard setup, Z is a random variable (r.v. in short) that
takes its values in a feature space Z with distribution P, © is a parameter space and
0:0 x Z — Ry is a (measurable) loss function. The risk is then defined by: V8 € ©,

Rp(0) =Ep [0, 2)], (IL.1)
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II. WEIGHTED EMPIRICAL RISK MINIMIZATION

and more generally for any measure Q on Z: Rq(0) = [ £(6, 2)dQ(z). In most practical
situations, the distribution P involved in the definition of the risk is unknown and learning
is based on the sole observation of an independent and identically distributed (i.i.d.)
sample Z1, ..., Z, drawn from P and the risk must be replaced by an empirical
counterpart (or a possibly smoothed/penalized version of it), typically:

Rp(0) = > 06, 2) =Ry, (6), (11.2)
=1

where P, = (1/n) >, 0z, is the empirical measure of P and J, denotes the Dirac mea-
sure at any point z. With the design of successful algorithms such as neural networks,
support vector machines or boosting methods to perform ERM, the practice of predictive
learning has recently received a significant attention and is now supported by a sound
theory based on results in empirical process theory. The performance of minimizers of
(I1.2)) can be indeed studied by means of concentration inequalities, quantifying the fluc-
tuations of the maximal deviations supycgo IRp(0) — Rp(0)] under various complexity
assumptions for the functional class F = {¢(0, -) : 6 € O} (e.g. VC dimension, metric
entropies, Rademacher averages), see [BLM13| for instance. Although, in the Big Data
era, the availability of massive digitized information to train predictive rules is an undeni-
able opportunity for the widespread deployment of machine-learning solutions, the poor
control of the data acquisition process one is confronted with in many applications puts
practicioners at risk of jeopardizing the generalization ability of the rules produced by
the algorithms implemented. Bias selection issues in machine-learning are now the sub-
ject of much attention in the literature, see [BCZT16|, |[ZWY 17|, [BHST19|, [LYLW16]
or [HGB™T07]. In the context of face analysis, a research area including a broad range
of applications such as face detection, face recognition or face attribute detection, ma-
chine learning algorithms trained with baised training data, e.g. in terms of gender or
ethnicity, raise concerns about fairness in machine learning. Unfair algorithms may in-
duce systemic undesired disadvantages for specific social groups, see [DDB18] for further
details. Several examples of bias in deep learning based face recognition systems are
discussed in [NSS™19].

Throughout the present chapter, we consider the case where the i.i.d. sample Z1, ..., Z/,
available for training is not drawn from P but from another distribution P’, with respect
to which P is absolutely continuous, and the goal pursued is to set theoretical grounds
for the application of ideas behind Importance Sampling (IS in short) methodology to
extend the ERM approach to this learning setup. We highlight that the problem under
study is a very particular case of Transfer Learning (see e.g. [PY10], [BDBC™10] and
[Sto09]), a research area currently receiving much attention in the literature and encom-
passing general situations where the information/knowledge one would like to transfer
may take a form in the target space very different from that in the source space (referred
to as domain adaptation).

Weighted ERM (WERM). In this chapter, we investigate conditions guaranteeing
that values for the parameter 6 that nearly minimize can be obtained through
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2. Importance Sampling - Risk Minimization with Biased Data

minimization of a weighted version of the empirical risk based on the Z!’s, namely
Run(0) = Rp,. (9), (IL.3)

where ﬁwm = (1/n) Y1 widy and w = (w1, ..., wy) € R is a certain weight vector.
Of course, ideal weights w* are given by the likelihood function ®(z) = (dP/dP")(z):
w = ®(Z]) for i € {1, ..., n}. In this case, the quantity is obviously an unbiased
estimate of the true risk :

Ep [Rp. (0)] =Rp(0), (IL4)

and generalization bounds for the R p-risk excess of minimizers of ﬁw*W can be directly
established by studying the concentration properties of the empirical process related
to the Z/’s and the class of functions {®(-)¢(6, ) : 6 € O} (see section [2| below).
However, the importance function ® is unknown in general, just like distribution P. It
is the major purpose of this chapter to show that, in far from uncommon situations, the
(ideal) weights w} can be estimated from the Z/s combined with auxiliary information
on the target population P. As shall be seen below, such favorable cases include in
particular classification problems where class probabilities in the test stage differ from
those in the training step, risk minimization in stratified populations (see [BD18§|), with
strata statistically represented in a different manner in the test and training populations,
positive-unlabeled learning (PU-learning, see e.g. [dPNS14]). In each of these cases,
we show that the stochastic process obtained by plugging the weight estimates in the
weighted empirical risk functional is much more complex than a simple empirical
process (i.e. a collection of i.i.d. averages) but can be however studied by means of
linearization techniques, in the spirit of the ERM extensions established in [CLVO0S§| or
[CV(9a]. Learning rate bounds for minimizers of the corresponding risk estimate are
proved and, beyond these theoretical guarantees, the performance of the weighted ERM
approach is supported by convincing numerical results.

The chapter is structured as follows. In section 2] the ideal case where the importance
function @ is known is preliminarily considered and a first basic example where the
optimal weights can be easily inferred and plugged into the risk without deteriorating
the learning rate is discussed. The main results of the chapter are stated in section
which shows that the methodology promoted can be applied to two important problems in
practice, risk minimization in stratified populations and PU-learning, with generalization
guarantees. Illustrative numerical experiments are displayed in section [ while some
concluding remarks are collected in section [5} Proofs are deferred to section [7}

2 Importance Sampling - Risk Minimization with Biased
Data

Here and throughout, the indicator function of any event £ is denoted by I{£}, the sup
norm of any bounded function h : Z — R by ||h||s. We place ourselves in the framework
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II. WEIGHTED EMPIRICAL RISK MINIMIZATION

of statistical learning based on biased training data previously introduced. As a first go,
we consider the unrealistic situation where the importance function ® is known, insofar
as we shall subsequently develop techniques aiming at mimicking the minimization of the
ideally weighted empirical risk

Ruen(0) = S wit(6, 7). (1L5)
=1

namely the (unbiased) Importance Sampling estimator of based on the instrumen-
tal data Z{, ..., Z],. The following result describes the performance of minimizers 6,
of . Since the goal of this chapter is to promote the main ideas of the approach
rather than to state results with the highest level of generality, we assume throughout
the chapter for simplicity that £ and ® are both bounded functions. For o1, ..., oy
independent Rademacher random variables (i.e. symmetric {—1,1}-valued r.v.’s), in-
dependent from the Z!’s, we define the Rademacher average associated to the class of
function F as R}, (F) := E, [supgee =[S, 03f(6, Z)|] . This quantity can be bounded
by metric entropy methods under appropriate complexity assumptions on the class F, it
is for instance of order Op(1/y/n) when F is a VC major class with finite VC dimension,
see e.g. [BBLO5].

Lemma 1. With probability at least 1 — 9, we have: ¥n > 1,

~ 2log(1/6
Rp(0) — minRp(0) < 4]|0]|oE [R,(F)] +2||®loc  sup  £(6, ) 2log(1/9)
b<o (0,2)€Ox 2 n

Of course, when P’ = P, we have ® = 1 and the bound stated above simply de-
scribes the performance of standard empirical risk minimizers. The proof is based on the
standard bound

Rp(0;) — min Rp(8) < 25up Ry n(0) ~ E | Ry n(6)|
0co EC)

9

combined with basic concentration results for empirical processes, see section [7] for fur-
ther details. Of course, the importance function ® is generally unknown and must be
estimated in practice. As illustrated by the elementary example below (related to binary
classification, in the situation where the probability of occurence of a positive instance
significantly differs in the training and test stages), in certain statistical learning problems
with biased training distribution, ® takes a simplistic form and can be easily estimated
from the Z!’s combined with auxiliary information on P.

Binary Classification with Varying Class Probabilities. The flagship problem in
supervised learning corresponds to the simplest situation, where Z = (X,Y), Y being a
binary variable valued in {—1,+1} say, and the r.v. X takes its values in a measurable
space X and models some information hopefully useful to predict Y. The parameter
space © is a set G of measurable mappings (i.e. classifiers) g : X — {—1, +1} and
the loss function is given by ¢(g, (z,y)) = I{g(z) # y} for all g in G and any (z,y) €
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X x {—1, +1}. The distribution P of the random pair (X,Y") can be either described by
X’s marginal distribution p(dz) and the posterior probability n(x) = P{Y = +1 | X = «}
or else by the triplet (p, Fiy, F_) where p = P{Y = +1} and F;(dx) is X’s conditional
distribution given Y = o1 with ¢ € {—, +}. It is very common that the fraction of
positive instances in the training dataset is significantly lower than the rate p expected
in the test stage, supposed to be known here (see Remark [2| for the case where the rate
p is only approximately known). We thus consider the case where the distribution P’
of the training data (X1,Y7), ..., (X],Y, ) is described by the triplet (p’, F'y, F_) with

p' < p. The likelihood function takes the simple following form

Ba,y) = Hy = +1} 5 + 1y = ~1}7=5 < o(o)

which reveals that it depends on the label y solely, and the ideally weighted empirical
risk process is

Rurale) =5 3 MotX) = -1} +1=5% 3 Ho(x)=+1}. (19

/
n
Y/ =1 o Y] =—1

In general the theoretical rate p’ is unknown and one replaces ([1.6) with

Raoule) = - 3 Hg(X]

+Y’1

P Z ]I{g = +1}, (IL.7)

Y/ =

where n/, =" H{Y/ =+1} =n—-n_, 0} = $(Yz’) and ¢(y) = I{y = +1}np/n! +
I{y = —1}n(1—p)/n’_. The stochastic process above is not a standard empirical process
but a collection of sums of two ratios of basic averages. However, the following result
provides a uniform control of the deviations between the ideally weighted empirical risk
and that obtained by plugging the empirical weights into the latter.

Lemma 2. Let ¢ € (0, 1/2). Suppose that p' € (e, 1 —¢). For any ¢ € (0,1), we have
with probability larger than 1 —§:

~ ~ 2 [log(2/6)
zlellg) Rawn(g) — Rw*,n(g)‘ < =\ o,
as soon asn > 2log(2/68)/e2.
See section [7| for the technical proof. Consequently, minimizing (II1.7)) nearly boils

down to minimizing (II.6). Combining Lemmas [2| and |1, we immediately get the gener-
alization bound stated in the result below.

Corollary 1. Suppose that the hypotheses of Lemma[d are fulfilled. Let g, be any mini-
mizer of Rg« n over class G. We have with probability at least 1 —§:

Rp(i) = inf Rp(g) < ) <2E[R;<g>1 + M(z/‘”) by,

€ n 2n
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as soon as n > 2log(4/0)/e?; where R;,(G) = (1/n)Eq[supyeg | Yoy oil{g(X]) # Y/ }].

Hence, some side information (i.e. knowledge of parameter p) has permitted to weight
the training data in order to build an empirical risk functional that approximates the
target risk and to show that minimization of this risk estimate yields prediction rules with
optimal (in the minimax sense) learning rates. The purpose of the subsequent analysis
is to show that this remains true for more general problems. Observe in addition that
the bound in Corollary [T] deteriorates as e decays to zero: the method used here is not
intended to solve the few shot learning problem, where almost no training data with
positive labels is available (i.e. p’ & 0). As shall be seen in subsection , alternative
estimators of the importance function must be considered in this situation.

Remark 1. Although the quantity can be viewed as a cost-sensitive version of the
empirical classification risk based on the (X[,Y!)’s (see e.g. [BHH06]), we point out that
the goal pursued here is not to achieve an appropriate trade-off between type I and type
II errors in the P’ classification problem as in biometric applications for instance (i.e.
optimization of the (Fy,F_)-ROC curve at a specific point) but to transfer knowledge
gained in analyzing the biased data drawn from P’ to the classification problem related to
distribution P.

Remark 2. (INACCURATE PRIOR INFORMATION ABOUT THE TEST DISTRIBUTION) As
noticed above, it may happen that the rate of positive instances in the target population
is approzimately known only. Suppose that our quess for p is p such that |p — p| < (,
with ¢ € (0,1). Denote by P the distribution over X x {—1,+1} under which X is drawn
from pFy + (1 —p)F_ and such that P(x,y)wﬁ{y =1 X=z}=PxypplY =1 X =
x} =n(z). By a change of measure we have,

dpP
(dP(X, Y) - 1) Y # g(X)}] :

which allows to bound the difference of the classification risks of g under P and P:

Pa(Y # g(X)) =Pp(Y # g(X)) + Ep

dP

—(X,Y)-1
dP(7 )

|R5(9) — Rp(9)] <Ep

] =2lp—pl < 2¢.

Related Work. We point out that the natural idea of using weights in ERM problems
that mimic those induced by the importance function has already been used in [SNK™0§]
for covariate shift adaptation problems (i.e. supervised situations, where the conditional
distribution of the output given the input information is the same in the training and
test domains), when, in contrast to the framework considered here, a test sample is
additionally available (a method for estimating directly the importance function based
on Kullback-Leibler divergence minimization is proposed, avoiding estimation of the test
density). Importance sampling estimators have been also considered in [GVI4] in the
setup of inductive transfer learning (the tasks between source and target are different,
regardless of the similarities between source and target domains), where the authors have
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proposed two methods to approximate the importance function, among which one is again
based on minimizing the Kullback-Leibler divergence between the two distributions. In
[CMRROS], the sample selection bias is assumed to be independent from the label, which
is not true under our stratum-shift assumption or for the PU learning problem (see section
[B). Lemma [1] assumes that the exact importance function is known, as does [CMMI0).
The next section introduces new results for more realistic settings where it has to be
learned from the data.

3 Weighted Empirical Risk Minimization - Generalization
Guarantees

Through two important and generic examples, relevant for many applications, we show
that the approach sketched above can be applied to general situations, where appro-
priate auxiliary information on the target distribution is available, with generalization
guarantees.

3.1 Statistical Learning from Biased Data in a Stratified Population

A natural extension of the simplistic problem considered in section [2] is multiclass clas-
sification in a stratified population. The random labels Y and Y’ are supposed to take
their values in {1, ..., J} say, with J > 1, and each labeled observation (X,Y) be-
longs to a certain random stratum S in {1, ..., K} with K > 1. Again, the dis-
tribution P of a random element Z = (X,Y,S) may be described by the parameters
{Pjr:s Fjr) : 1 <5< J, 1 <k <K} where Fjy is the conditional distribution of X
given (Y, 5) = (j,k) and p;x = Px y.5)~p{Y = J,S = k}. Then, we have

P(z,y,s Zzﬂ{y—J,S—k}pgde,( );

=1 k=1

and considering a distribution P’ with Fj; = F](’k but possibly different class-stratum
probabilities p’; ;, the likelihood function becomes

df) J K
ap ) E:E:

]:1k:1

=j.s =k} < 6(y,5).

A more general framework can actually encompass this specific setup by defining 'meta-
strata’ in {1, ..., J} x {1, ..., K}. Strata may often correspond to categorical input
features in practice. The formalism introduced below is more general and includes the
example considered in the preceding section, where strata are defined by labels.

Learning from Biased Stratified Data. Consider a general mixture model, where
distributions P and P’ are stratified over K > 1 strata. Namely, Z = (X,S5) and
7' = (X', 8") with auxiliary random variables S and S’ (the strata) valued in {1, ..., K}.
We place ourselves in a stratum-shift context, assuming that the conditional distribution
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II. WEIGHTED EMPIRICAL RISK MINIMIZATION

of X given S = k is the same as that of X’ given S’ = k, denoted by Fj(dz), for any
k € {1, ..., K}. However, stratum probabilities p;, = P(S = k) and pj, = P(S' = k)
may possibly be different. In this setup, the likelihood function depends only on the
strata and can be expressed in a very simple form, as follows:

= def
dP, =) Ifs 6(s).

k=1 k

In this case, the ideally weighted empirical risk writes

n K
1
=36, 2) S 1S = kY2,
i3 k=1 Py

If the strata probabilities pg’s for the test distribution are known, an empirical counter-
part of the ideal empirical risk above is obtained by simply plugging estimates of the p)’s
computed from the training data:

n K
Ra-n(0) = D 00, Z}) Y I{S} = k} o7 (IL8)
i=1 k=1 k
with nj, = S {8 = k}, @F = ¢(S) and ¢(s) = S5 | I{s = k}Inpy/n}.

A bound for the excess of risk is given in Theorem [T} that can be viewed as a gener-
alization of Corollary [I}

Theorem 1. Let ¢ € (0,1/2) and assume that pj, € (6,1 —¢) fork=1,..., K. Let 0

be any minimizer of 7:\’:@*” as defined in (IL.8) over class ©. We have with probability at
least 1 —9:

~ . 2 maxy, py , 21log(2/9) AL [log(4K/9)
Re(6:) = jpf Re(0) < ——— <2E[Rn<f R

as soon as n > 2log(4K/68)/e?; where R} (F) = (1/n)Eq[supgee | Yoy 0il(0, Z)|], and
the loss is bounded by L = sup g ycoxz (0, 2).

Just like in Corollary [I} the bound in Theorem [I] explodes when e vanishes, which
corresponds to the situation where a stratum k € {1,..., K} is very poorly represented
in the training data, i.e. when p) << pi. Again, as highlighted by the experiments
carried out, reweighting the losses in a frequentist (ERM) approach guarantees good
generalization properties in a specific setup only, where the training information, though
biased, is sufficiently informative.

42



3. Weighted Empirical Risk Minimization - Generalization Guarantees

3.2 Positive-Unlabeled Learning

Relaxing the stratum-shift assumption made in the previous subsection, the importance
function becomes more complex and writes:

@, 5) = I (2, ) = ;H{ s= k) ),

where Fj, and Fj are respectively the conditional distributions of X given S = k and
of X’ given S’ = k. The Positive-Unlabeled (PU) learning problem, which has recently
been the subject of much attention (see e.g. [dPNS14|, [dPNS15], [KNdPS17]), provides
a typical example of this situation. Re-using the notations introduced in section [2] in the
PU problem, the testing and training distributions P and P’ are respectively described
by the triplets (p, Fy, F_) and (¢, F, F'), where F = pFy + (1 — p)F_ is the marginal
distribution of X. Hence, the objective pursued is to solve a binary classification task,
based on the sole observation of a training sample pooling data with positive labels and
unlabeled data, ¢ denoting the theoretical fraction of positive data among the dataset. As
noticed in [dPNS14] (see also [dPNS15|, [KNdPS17]), the likelihood /importance function
can be expressed in a simple manner, as follows:

p dF+

(11.9)
Based on an i.id. sample (X{,Y]{), ..., (X,,,Y,) drawn from P’ combined with the

knowledge of p (which can also be estimated from PU data, see e.g. [dPS14]) and
using that F_ = (1/(1 — p))(F — pFy), one may obtain estimators of ¢, Fy and F
by computing n'y /n = (1/n) Y1 {Y, = +1}, Fy = (1/n)) S0 HY! = +1}dx
and F = (1/n )37 I{Y] = —1}dx,. However, plugging these quantities into ([I1.9)
do not permit to get a statistical version of the importance function, insofar as the
probability measures ﬁ+ and F' are mutually singular with probability one, as soon as
F is continuous. Of course, as proposed in [dPNS14|, one may use statistical methods
(e.g. kernel smoothing) to build distribution estimators, that ensures absolute continuity
but are subject to the curse of dimensionality. However, WERM can still be applied in
this case, by observing that: Vg € G,

2 1
Relg) == B [qpﬂ{gw) =LY =41+ o Hg(X) =+1, Y = _1}] ,
(I1.10)
which leads to the weighted empirical risk
2
=P Z ]1{ - —1}+— Z ]1{ = +1}. (IL.11)
2 Y/ 7 Yl

Minimization of ([I.11]) yields rules g, whose generalization ability regarding the binary
problem related to (p, Fiy, F—) can be guaranteed, as shown by the following result, the
form of the weighted empirical risk in this case being quite similar to (I1.7]).
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II. WEIGHTED EMPIRICAL RISK MINIMIZATION

Theorem 2. Let ¢ € (0, 1/2). Suppose that q € (¢, 1 —¢€). Let g, be any minimizer of
the weighted empirical risk (I1.11) over class G. We have with probability at least 1 — §:

2max(2p, 1)

Rp (gn)—mf Rp(g) <

)

€ n g2 2n

( SR ()] + 210g(2/5)> L A2p+1) [log(4/6)

as soon as n > 2log(4/9)/<%; where R,(G) = (1/n)Eqfsupyeg | 0y oil{g(X]) # Y/}

Remark 3. Let n(x) = P{Y = +1 | X = a} denote the posterior probability and recall
that (dF, [AF_)(z) = (1~ p)/p)(n(x)/(1 — 1(x)). Observing that

B(ay) = L1y = +1) + - ”H

{y = -1}, (I1.12)
in the case when an estimate 1(x) of n(x) is available, one can perform WERM using
the empirical weight function
d(z,y) = E]I{y =+1} + 177ﬁ(x)]l{y =—1}. (I1.13)
o 1—n//n
A bound that describes how this approach generalizes, depending on the accuracy of esti-
mate 7, can be easily established.

3.3 Learning from Censored Data

Another important example of sample bias is the censorship setting where the learner
has only access to (right) censored targets min(Y’,C”) instead of Y'. Intuitively, this
situation occurs when Y’ is a duration/date, e.g. the date of death of a patient modeled
by covariates X', and the study happens at a (random) date C’. Hence if C' < Y/,
then we know that the patient is still alive at time C” but the target time Y’ remains
unknown. This problem has been extensively studied (see e.g. [FHII|, [ABGKI12| and
the references therein for the asymptotic theory and [ACP19] for finite-time guarantees):
we show here that it is an instance of WERM. Formally, we respectively denote by P
and P’ the testing and training distributions of the r.v.’s (X, min(Y,C),I{Y < C}) and
(X', min(Y’,C"),I{Y’ < C'}) both valued in R x Ry x {0,1} (with Y, Y”,C,C’ all non-
negative r.v.’s) and such that the pairs (X,Y) and (X’,Y”) share the same distribution
Q. Moreover, C' > Y with probability 1 (i.e. the testing data are never censored)
and Y’ and C’ are assumed to be conditionally independent given X’. Hence, for all
(z,y,6) € R x Ry x {0,1}:

dP(x,y,0) = 6dQ(x,y)
and
ddP'(z,y,0) = 6P(C" > y)dP(X' = 2,Y' = y|C’ > y) = 6Sc (y|x)dQ(x, y),
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4. Numerical Experiments

where Scr(ylz) = P(C" > y| X' = x) denotes the conditional survival function of C’ given
X'. Then, the importance function is:

dP

V(,y,6) € R x Ry x {01}, ®(x,y,6) = T (

B 1)
Scr(ylz)

In survival analysis, the ratio 0/S¢/(y|z) is called IPCW (inverse of the probability of
censoring weight) and S (y|z) can be estimated by using the Kaplan-Meier approach,
see [KM5S].

z,y,0)

4 Numerical Experiments

This section illustrates the impact of reweighting by the likelihood ratio on classification
performances, as a special case of the general strategy presented in section[2] A first sim-
ple illustration on known probability distributions highlights the impact of the shapes
of the distributions on the importance of reweighting. This example illustrates in the
infinite-sample case that separable or almost separable data do not require reweighting,
in contrast to noisy data. Since the distribution shapes are unknown for real data,
we infer that reweighting will have variable effectiveness, depending on the dataset.
We detail here a second experiment that uses the structure of ImageNet to illustrate
reweighting with a stratified population and strata distribution bias or strata bias. The
code of the experiments can be found at https://drive.google.com/drive/folders/
1-tWJ4n4WyXuTza8dLPngyHSVprKUZFVJ?usp=sharing,.

We focus on the learning from biased stratified data setting introduced in section
by leveraging the ImageNet Large Scale Visual Recognition Challenge (ILSVRC); a
well-known benchmark for the image classification task, see [RDS™14] for more details.

The challenge consists in learning a classifier from 1.3 million training images spread
out over 1,000 classes. Performance is evaluated using the validation dataset of 50,000
images of ILSVRC as our test dataset. ImageNet is an image database organized ac-
cording to the WordNet hierarchy, which groups nouns in sets of related words called
synsets. In that context, images are examples of very precise nouns, e.g. flamingo, which
are contained in a larger synset, e.g. bird.

The impact of reweighting in presence of strata bias is illustrated on the ILSVRC
classification problem with broad significance synsets for strata. To do this, we encode
the data using deep neural networks. Specifically our encoding is the flattened output
of the last convolutional layer of the network ResNet50 introduced in [HZRS15|. It was
trained for classification on the training dataset of ILSVRC. The encodings X, ..., X,
belong to a 2,048-dimensional space.

A total of 33 strata are derived from a list of high-level categories provided by Ima-
geNeﬂ. By default, strata probabilities py and p) for 1 <k < K are equivalent between
training and testing datasets, meaning that reweighting by ® would have little to no
effect. Since our testing data is the validation data of ILSVRC, we have around 25 times

"http://www.image-net.org/about-stats
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II. WEIGHTED EMPIRICAL RISK MINIMIZATION

Model Reweighting miss rate top-5 error

Unif. =1  0.344 0.130

Linear Strata ® 0.329 0.120
Class ® 0.328 0.119

No bias 0.297 0.102

Unif. =1  0.371 0.143

MLP Strata ® 0.364 0.138
Class ® 0.363 0.138

No bias 0.316 0.111

Table II.1: Results for the strata reweighting experiment with ImageNet.

more training than testing data. Introducing a strata bias parameter 0 < v < 1, we
set the strata train probabilities such that pj, = '71*LK/ 2)/kp,. before renormalization and
remove train instances so that the train set has the right distribution over strata. When
v is close to one, there is little to no strata bias. In contrast, when -~ approaches 0, strata
bias is extreme.

HE Train
0257 mmm Test
0.20 ~
>
2 0.15 A
o]
c |
- 0.10 :
005_ ] I" | | l I J
0.00 -

Strata

Figure II.1: Comparison of py’s and p)’s.

46



4. Numerical Experiments
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Figure I1.2: Dynamics for the linear model for the strata reweighting experiment with

ImageNet.
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Figure 11.3: Dynamics for the MLP model for the strata reweighting experiment with
ImageNet.

The models used are a linear model and a multilayer perceptron (MLP) with one
hidden layer. We report better performance when reweighting using the strata informa-
tion, compared to the case where the strata information is ignored, see Figure and
Table [I.I] For comparison, we added two reference experiments: one which reweights
the train instances by the class probabilities, which we do not know in a stratified popu-
lation experiment, and one with more data and no strata bias because it uses all of the
ILSVRC train data. The dominance of the linear model over the MLP can be justified
by the much higher number of parameters to estimate
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II. WEIGHTED EMPIRICAL RISK MINIMIZATION

4.1 Importance of Reweighting for Simple Distributions

Introduce a random pair (X,Y) in [0, 1] x {—1,+1} where X | Y = +1 has for probability
density function (pdf) fi(z) = (1 +a)z®* a > 0and X | Y = —1 has for pdf f_(z) =
(14 B)(1 —z)?,8 > 0. As in section , the train and test datasets have different class
probabilities p’ and p for Y = +1. The loss ¢ is defined as £(6,z) = I{(x — 0)y > 0}
where 6 > 0 is a learnt parameter.

The true risk can be explicitely calculated. For 8 > 0, we have

Rp(0) = po' ™t + (1 — p)(1 — 0)'*7,

and the optimal threshold 67 can be found by derivating the risk Rp(0). The derivative
is zero when 6 satisfies

p(1+a)0% = (1—p)(1+B)(1-06)7. (11.14)

Solving Eq. (II.14) is straightforward for well-chosen values of «, 8, which are detailed

in Table The excess error £(p',p) = Rp(0y,) — Rp(f}) for the diagonal entries of
Table are plotted in Figure [[T.4] in the infinite sample case.

(@, B)
(0,0) (1/2,1/2) (1,1) (2,2)

o* [07 1] (1*P)2 1— D V1i-p

b PP NN

Table II.2: Optimal parameters 8* for different values of «, 3.

The results of Figure show that the optimum for the train distribution is signif-
icantly different from the optimum for the test distribution when the problem involves
Bayes noise.

4.2 On the Real Data Experiment

We provide further details about the real data experiment.

Strategy to Induce Bias in Balanced Datasets. In the real data experiment de-
scribed above, a strategy is used to induce class distribution bias or strata bias, since the
data is uniformly distributed on strata for the train and test set. Since the experiment
involves a small test dataset, it is kept intact, while we discard elements of the train
dataset to induce bias between the train and test datasets. The bias is parameterized by
a single parameter -y, such that when -y is close to one, there is little strata or class bias,
while when « approaches 0, bias is extreme.

The bias we induce is inspired by a power law, which is often used to model unequal
distributions. The distribution on the strata of the train set is modified so that the
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Figure I1.4: Pdf’s and values of the excess risk £(p’, p) for different values of a, 3.

generated train set follows a power law. Formally, the power law distribution {pﬁg}szl
over S € {1,..., K}, is defined for all 1 <k < K as

_1K/2]
;o v ® pg
Pr= o _IKpl
D1 °® p
where o is a random permutation in {1,..., K}.

To generate a train dataset with modality distribution {p%}lf:l, we sample instances
from the original train data set Dy, = {(X/,Y/, S/)}"_,, where Y/ is the class, S! is the
strata. The generated train dataset is noted D,,. First, we define candidates Z, = {i |
1 <i<mn,S! =k} for each strata k € {1,..., K}. Then we select one of the candidate
sets 7, with the probabilities p)’s, to remove one of its elements, selected at random, and
place it in the train dataset D,,. We repeat this operation until one of the candidate sets

is empty. A more efficient implementation of this process was used in the provided code.

Models. We compare two models: a linear model and a multilayer perceptron (MLP)
with one hidden layer of size 1,524. Given a classification problem of input x of dimension
d with K classes, precisely with d = 2048, K = 1000, a linear model simply learns the
weights matrix W € R¥X and the bias vector b € RX and outputs logits | = Wz + b.
On the other hand, the MLP has a hidden layer of dimension h = | (d+ K)/2] and learns
the weights matrices W, € R W, € {h, K} and bias vectors b; € R" by € RX and
outputs logits | = Wy h(W; z + b1) + by where h is the ReLU function, i.e. h: z
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max(x,0). The MLP model involves approximatively 5M (million) parameters, while the
MLP model uses only 2M. The weight decay or 12 penalization for the linear model and
MLP model are written, respectively

1 1 1

Cost Function. The cost function is the Softmax Cross-Entropy (SCE), which is the
most used classification loss in deep learning. Specifically, given logits | = (I1,...,lx) €
RX | the softmax function is v : R¥ — [0,1]% with v = (y1,...,7x) and for all k €
{1,...,K},

exp(lx) '
S g exp(l;)

Given an instance with logits [ and ground truth class value y, the expression of the
softmax cross-entropy c(l,y) is

"yk:l'—>

K

c(l,y) =Yy = k}log (v(1)) -

k=1

The loss that is reweighted depending on the cases as described in section (3| is this
quantity ¢(l,y). The loss on the test set is never reweighted, since the test set is the
target distribution. The weights and bias of the model that yield the logits are tuned
using backpropagation on this loss averaged on random batches of B elements of the
training data summed with the regularization term A - P where X is a hyperparameter
that controls the strength of the regularization.

Preprocessing, Optimization, Parameters. The images of ILSVRC were encoded
using the implementation of ResNet50 provided by the library keras, see |[CT15|, by
taking the flattened output of the last convolutional layer.

Optimization is performed using a momentum batch gradient descent algorithm on
batches of size 1,000, which updates the parameters 6; at timestep ¢ with an update
vector vy by performing the following operations:

vy = yvi—1 +nVC(0i—1),

0 = 01 — vy,

where n = 0.001 is the learning rate and v = 0.9 is the momentum, as explained in
[Rud16]. The weight decay parameters A were cross-validated by trying values on the
logarithmic scale {1074, 1073,1072,107!,1} and then we tried more fine-grained values
between the two best results, in practice 1072 was best and 1072 was second best so
we tried {0.002,0.003,0.004,0.005}. The standard deviation initialization of the weights
o9 = 0.01 was chosen by trial-and-error to avoid overflows. The learning rate was fixed
after trying different values to have fast convergence while keeping good convergence
properties.
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5. Conclusion

Stratified Information for ImagelNet. In this section, we detail the data prepro-
cessing necessary to assign strata to the ILSVRC data. These were constructed using a
list of 27 high-level categories found on the ImageNet websiteﬂ

Each ILSVRC image has a ground truth low level synset, either from the name of the
training instance, or in the validation textfile for the validation dataset, that is provided
by the ImageNet website. The ImageNet API E| provides the hierarchy of synsets in the
form of is-a relationships, e.g. a flamingo is a bird. Using this information, for each
synset in the validation and training database, we gathered all of its ancestors in the
hierarchy that were high-level categories. Most of the synsets had only one ancestor,
which then accounts for one stratum. Some of the synsets had no ancestors, or even
several ancestors in the table, which creates extra strata, either a no-category stratum or
a strata composed of the union of several ancestors. The final distribution of the dataset
over the created strata is summarized by Figure Observe the presence of a no_ strata
stratum and of unions of two high-level synsets strata, e.g. n00015388 n01905661. The
definitions of the strata can be requested to the API, see Table for examples.
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Figure IL.5: Distribution of the ImageNet train dataset over the created strata, with
examples of definitions in Table

5 Conclusion

In this chapter, we have considered specific transfer learning problems, where the dis-
tribution of the test data P differs from that of the training data, P’, and is absolutely
continuous with respect to the latter. This setup encompasses many situations in prac-
tice, where the data acquisition process is not perfectly controlled. In this situation, a
simple change of measure shows that the target risk may be viewed as the expectation of

2http://www.image-net.org/about-stats
3http://image-net.org/download- API
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II. WEIGHTED EMPIRICAL RISK MINIMIZATION

Strata name Definition

n00015388 101861778 animal, animate being, beast (...) mammal, mammalian
n04524313 vehicle

n13134947 fruit

n00015388 102512053 animal, animate being, beast (...) fish

n00017222 nl11669921 plant, flora, plant life flower

n07566340 n07707451 foodstuff, food product vegetable, veggie, veg

Table I1.3: Examples of definitions of the strata created for the experiments.

a weighted version of the basic empirical risk, with ideal weights given by the importance
function ® = dP/dP’, unknown in practice. Throughout this chapter, we have shown
that, in statistical learning problems corresponding to a wide variety of practical appli-
cations, these ideal weights can be replaced by statistical versions based solely on the
training data combined with very simple information about the target distribution. The
generalisation capacity of rules learnt from biased training data by minimization of the
weighted empirical risk has been established, with learning bounds. These theoretical
results are also illustrated with several numerical experiments.

As a direction of future research, we propose to extend our WERM approach to an
iterative procedure for the challenging problem of bipartite ranking based on PU data.
We motivate this perspective in the next section.

6 Perspective - Extension to Iterative WERM

As highlighted in Remark [3] the importance function can be expressed as a function
of the ideal decision function in certain situations: Eq. involves the regression
function n(z), that defines the optimal (Bayes) classifier g*(x) = 2I{n(x) > 1/2}—1. This
simple observation paves the way for a possible incremental application of the WERM
approach: in the case where the solution of the WERM problem considered outputs an
estimate of the optimal decision function, it can be next re-used for defining and solving
a novel WERM problem. Whereas binary classification based on PU data only aims at
recovering a single level set of the posterior probability n(z), it is not the case of a more
ambitious statistical learning problem, referred to as bipartite ranking, for which such an
incremental version of WERM can be described.

Bipartite Ranking Based on PU Data. In bipartite ranking, the statistical challenge
consists of ranking all the instances x € X through a scoring function s : X — R in
the same order as the likelihood ratio ¥(X) = (dFy/dF_)(X), or, equivalently, as the
regression function n(z) = P{Y = +1 | X = z}, € X: the higher the score s(X), the
more likely one should observe Y = +1. Let S = {s : X — R measurable} denotes the
set of all scoring functions on the input space . A classical way of measuring "how
much stochastically larger" a distribution G on R than another one, H say, consists in
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6. Perspective - Extension to Iterative WERM

drawing the "probability-probability plot":
teR— (1-H(t), 1 -G(t)),

with the convention that possible jumps are connected by line segments (in order to
guarantee the continuity of the curve). Equipped with this convention, this boils down
to plot the graph of the mapping

ROCyg:a € (0,1) = ROCyg=1-GoH (1 —a),

where I'"!(u) = inf{t € R : T'(t) > u} denotes the pseudo-inverse of any cumulative
distribution function I'(t) on R. The closer to the left upper corner of the unit square
[0,1]2, the larger the distribution G is compared to H in a stochastic sense. This approach
is known as ROC analysis. The gold standard for evaluating the ranking performance of
a scoring function s is thus the ROC curve:

def

ROC ROCFS —7Fs +7

where Fs | and Fs_ denote the conditional distributions of s(X) given Y = +1 and given
Y = —1 respectively, i.e. the images of class distributions Fy and F_ by the mapping
s(z). Indeed, it follows from a standard Neyman-Pearson argument that the ROC curve
ROC* of strictly increasing transforms of n(x) is optimal with respect to this criterion
in the sense that:

Va € (0,1), ROCg4(a) < ROC* (),

for any scoring function s. We set S* = {T'on: T :(0,1) :— R}. A summary quantity
of this functional criterion that is widely used in practice is the Area Under the ROC
Curve (AUC in short), given by:

AUC(s / ROC,(

for s € S. Beyond its scalar nature, an attractive property of this criterion lies in the
fact that it can be interpreted in a probabilistic manner, insofar as we have the relation:

Vs e S,
AUC(s) = P {s(X) < s(X') | (¥,Y") = (=1, 4+1) 3P {s(X) = s(X) | (V;¥") = (~1,41)} .

Denoting by (X;,Y:), ¢ € {1, 2}, independent copies of the pair (X,Y) and placing
ourselves in the situation where s(X)’s distribution is continuous, as observed in [CLV0S],
we have AUC(s) =1 — Lp(s)/(2p(1 — p)), where

Lp(s) < P{(s(X1) - s(X2)) (Y1 — Y2)) < 0},

is the ranking risk, the theoretical rate of discording pairs namely, that can be viewed as
a pairwise classification risk. Hence, bipartite ranking can be formulated as the problem
of learning a scoring function s that minimizes the ranking risk

dP dP
Li(s) = Epapr | 5 (X1 V) S5 (X5, ¥9) x T{(s(X]) — s(X3)) (Y] - ¥9)) < 0}
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II. WEIGHTED EMPIRICAL RISK MINIMIZATION

Now, using Eq. (II.12)) and the fact that n = p¥/(1 — p + p¥), we have:

4 ey) = B(a,y) = Py = +1}+ 11_77(;)1[@ — 1
_ Prgy — 1-p _
== 1-q)1-p +p‘I’($))H{y '+

Therefore, it has been shown in [CV09b] (see Corollary 5 therein) that for any s* in ¥,

dF+( - dFe +
dF_""7  dFe _

(s*(X)) almost-surely.

For any s candidate, setting Ws(z) = dF /dFs _(s(x)), one can define

P l1—p
y(x,y) = ={y = +1} + {y = —1}.
o) = = ey Y
From this formula, it is the easy to see how an incremental use of the WERM could be
implemented.

e Start from an initial guess s for the optimal scoring functions (e.g. solve the
empirical ranking risk minimization problem ignoring the bias issue)

e Estimate @ from the (X/,Y/)’s and the knowledge of p, observing that one is not

2 3
confronted with the curse of dimensionality in this case

e Solve the Weighted Empirical Ranking Risk Minimization problem using the weight
function

~ ~

(I)s(xla y1)¢s(x27 y2)a

which produces a new scoring function s and iterate.

Investigating the performance of such an incremental procedure will be the subject
of future research.

7 Technical Proofs

Here we detail the proofs of the results stated in the present chapter and discuss their
connection with related work.

Proof of Lemma

Let § € (0,1). Applying the classic maximal deviation bound stated in Theorem 3.2 of
[BBLO5| to the bounded class K = {z € Z +— ®(2)l(0,z) : 0 € O}, we obtain that, with
probability at least 1 — d:

~ 21log(1/9)

sup (R (0) — B[R n(6)] | < 2B [RL(O)] + [0l sup 1006, 2)] | =2 =2,
0co (0,2)€0x 2 n
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7. Technical Proofs

In addition, by virtue of the contraction principle, we have R} (K) < ||®||oR],(F) almost-
surely. The desired result can be thus deduced from the bound above combined with the
classic bound

Rp(8}) = min Rp(8) < 25up | Ry n(6) — E [Rue ()| ‘ .
0cO PcO

Proof of Lemma
Apply twice the Taylor expansion

r a a? za? '
so as to get
11 -y (n/n—p)?
nly/n 4 P pPnln
1 n /n—1+p (n_/n—1+p)?
n’/n 1—p (1—p)? (1=p)?*n_/n

This yields the decomposition

n

~ ~ P n’ 1
R n(9) = Runl(9) = =5 < - —p’) 5211{9()({) =-1, Y/ =+1}

(3
(I=p)(n_/n—1+p)? 1

A n ~ > Ho(Xj) =+1, v/ =1},
- i=1

>3 >3 ‘nﬁr/n B p/| / / p 1-p
J;,A* - JE”U}* n S - 5 1 - .
w ,n(g) s (g)’ 62 + |n+/n p | ng_/n + 1— ng_/n

By virtue of Hoeffding inequality, we obtain that, for any 6 € (0,1), we have with
probability larger than 1 — ¢:

log(2/6

so that, in particular, min{n/, /n, 1 —n/ /n} > ¢ — \/log(2/6)/(2n). This yields the

desired result.
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Proof of Corollary
Observe first that ||®||o < max(p, 1 — p)/e and

Rp(Gn) — inf Rp(g) < 2sup [Rg-.(g) — 7iw*,n(g)’ +2sup [Ryn(g) — Rp(g)| -
9€g geg 9€G

The result then directly follows from the application of Lemmas combined with the
union bound.

Proof of Theorem
Observe first that ||®||o < maxy px/e and

Rp(65) — inf Rp(6) < 25up |[Ripe n(8) — R n(e)‘ +25up |Rurn(0) — Rp(6)] .
0cO e ' ' 0€0 ’

The result then directly follows from the application of Lemmas combined with the
union bound.

Lemma 3. Let e € (0, 1/2). Suppose that pj € (e, 1 —¢) fork e {1, ..., K}. For any
0 € (0,1), we have with probability larger than 1 — 4

~ ~ 2L [log(2K/9)
a*n(0) = Run(0)] < —\ —5—,
sup R (6) ~ Rurnl®)| < 3 =55

as soon as n > 21og(2K/68)/e?, where L = sup(g,.ycox z £(0, 2).

PROOF.
Apply the Taylor expansion

1 1 z—a (z—a)?
T a a? xa?
so as to get for all k € {1,..., K}
1 :i_nj,g/n—gﬁ€ (n;c/n—p;g)z.
ne/n D, s i/

This yields the decomposition

>3 > 1 ¢ 1 a ' P (N / pk(nﬁc/”_p@Q
Rie n(0)— R n(0) = EZK(H,Zi)Z]I{Si =k} (-5 (=2 —ph | + ——F ).
=1

/2
n
k=1 Py

We deduce that

5 2 Ly nio/n — 1}
Rae n(0) — Rw*,n(e)\ < 5 Ink/n = pilp (1 + W) .
k=1
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By virtue of Hoeffding inequality, we obtain that, for any k € {1,..., K} and ¢ € (0, 1),
we have with probability larger than 1 — §:

log(2/6)
ng./n —p| < 9y,

so that, by a union bound, maxy{n},/n} > e —+/log(2K/8)/(2n). This yields the desired
result.

Proof of Theorem

Observe first that ||®||oc < max(2p, 1)/e and

Rp(Gn) — inf Rp(g) < 2sup [Raen(g) — 7iw*,n(Q)‘ +2sup [Run(g) — Rp(g)|,
geg geg geg

with weighted empirical risk ﬁw*m(g) defined in ([I.11)). The result then directly follows
from the application of Lemmas combined with the union bound.

Lemma 4. Let € € (0, 1/2). Suppose that q € (¢, 1 —¢€). For any 6 € (0,1), we have
with probability larger than 1 —§:

~ ~ 22p+1) [log(2/9)
R@* n - Rw* n <
ztelg n(9) n(9) = o)

)

as soon as n > 2log(2/6)/e>.

PROOF. Apply twice the Taylor expansion

r  a a? za? '
so as to get
1 1 ni/n—q (n/n—g)?
n'y/n q q* ¢*nly/n
11 n/n-1+q (' /n—1+q)?
n_/n 1l-gq (1-q)? (1—q)*n_/n
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This yields the decomposition

n

ﬁzﬁ*,n(g) - ﬁw*,n(Q) = _27]2) < - Q> ! ZH{Q(X;) =-1, }/i/ = +1}

2\ n n <
1 n’ 1 ¢
T ( 1+Q) HZH{Q(XD =+1, Y/ = —1}
q =1
Ip(ry fr— g2 1 &
Wﬁ ZH{Q(X{) =-1, Y/ =+1}
+

=1

L lfn—1+ g Z{ — 41, Y = —1).

(1—q)?n"_/n n

We deduce that

~ ~ n' /n—q 2p 1
Raal0) = Rurn(o)] < 570 (2ot vt ot ol (204 )

n', /n 1-n//n

By virtue of Hoeffding inequality, we obtain that, for any 6 € (0,1), we have with
probability larger than 1 — §:

log(2/6
ntfn —a] < /B2,

so that, in particular, min{n/ /n, 1 —n/ /n} > e — \/log(2/9)/(2n). This yields the

desired result.
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CHAPTER III

RANKING DATA WITH CONTINUOUS
LABELS THROUGH ORIENTED RECURSIVE
PARTITIONS

Abstract

We formulate a supervised learning problem, referred to as continuous ranking,
where a continuous real-valued label Y is assigned to an observable r.v. X taking
its values in a feature space A and the goal is to order all possible observations x in
X by means of a scoring function s : X — R so that s(X) and Y tend to increase or
decrease together with highest probability. This problem generalizes bi/multi-partite
ranking to a certain extent and the task of finding optimal scoring functions s(z)
can be naturally cast as optimization of a dedicated functional criterion, called the
IROC curve here, or as maximization of the Kendall 7 related to the pair (s(X),Y).
From the theoretical side, we describe the optimal elements of this problem and
provide statistical guarantees for empirical Kendall 7 maximization under appro-
priate conditions for the class of scoring function candidates. We also propose a
recursive statistical learning algorithm tailored to empirical IROC curve optimiza-
tion and producing a piecewise constant scoring function that is fully described by
an oriented binary tree. Preliminary numerical experiments highlight the difference
in nature between regression and continuous ranking and provide strong empirical
evidence of the performance of empirical optimizers of the criteria proposed.

1 Introduction

The predictive learning problem considered in this chapter can be easily stated in an
informal fashion, as follows. Given a collection of objects of arbitrary cardinality, N > 1
say, respectively described by characteristics z1, ..., xn in a feature space X, the goal
is to learn how to order them by increasing order of magnitude of a certain unknown con-
tinuous variable y. To fix ideas, the attribute y can represent the ’size’ of the object and
be difficult to measure, as for the physical measurement of microscopic bodies in chem-
istry and biology or the cash flow of companies in quantitative finance and the features
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III. RANKING DATA WITH CONTINUOUS LABELS

x may then correspond to indirect measurements. The most convenient way to define a
preorder on a feature space X is to transport the natural order on the real line onto it
by means of a (measurable) scoring function s : X — R: an object with charcateristics
x is then said to be ’larger’ (’strictly larger’, respectively) than an object described by
z’ according to the scoring rule s when s(z’) < s(z) (when s(z) < s(z’)). Statistical
learning boils down here to build a scoring function s(z), based on a training data set
D, = {(X1,Y1), ..., (Xp,Yn)} of objects for which the values of all variables (direct
and indirect measurements) have been jointly observed, such that s(X) and Y tend to
increase or decrease together with highest probability or, in other words, such that the
ordering of new objects induced by s(z) matches that defined by their true measures as
well as possible. This problem, that shall be referred to as continuous ranking throughout
the chapter can be viewed as an extension of bipartite ranking, where the output variable
Y is assumed to be binary and the objective can be naturally formulated as a functional
M-estimation problem by means of the concept of ROC curve, see [CV09Dh]. Refer also
to [CLVO05], [FISS03], JAGHT05| for approaches based on the optimization of summary
performance measures such as the AUC criterion in the binary context. Generalization
to the situation where the random label is ordinal and may take a finite number K > 3 of
values is referred to as multipartite ranking and has been recently investigated in [SCV13|
(see also e.g. |[RA05]), where distributional conditions guaranteeing that ROC surface
and the VUS criterion can be used to determine optimal scoring functions are exhibited
in particular.

It is the major purpose of this chapter to formulate the continuous ranking problem
in a quantitative manner and explore the connection between the latter and bi/multi-
partite ranking. Intuitively, optimal scoring rules would be also optimal for any bipartite
subproblem defined by thresholding the continuous variable Y with cut-off ¢ > 0, sepa-
rating the observations X such that Y < t from those such that Y > t. Viewing this way
continuous ranking as a continuum of nested bipartite ranking problems, we provide here
sufficient conditions for the existence of such (optimal) scoring rules and we introduce a
concept of integrated ROC curve (IROC curve in abbreviated form) that may serve as
a natural performance measure for continuous ranking, as well as the related notion of
integrated AUC criterion, a summary scalar criterion, akin to Kendall tau. Generaliza-
tion properties of empirical Kendall tau maximizers are discussed in subsection [£:2] The
chapter also introduces a novel recursive algorithm that solves a discretized version of
the empirical integrated ROC curve optimization problem, producing a scoring function
that can be computed by means of a hierarchical combination of binary classification
rules. Numerical experiments providing strong empirical evidence of the relevance of the
approach promoted in this chapter are also presented.

The chapter is structured as follows. The probabilistic framework we consider is
described and key concepts of bi/multi-partite ranking are briefly recalled in section
Conditions under which optimal solutions of the problem of ranking data with continu-
ous labels exist are next investigated in section [3] while section [4] introduces a dedicated
quantitative (functional) performance measure, the IROC curve. The algorithmic ap-
proach we propose in order to learn scoring functions with nearly optimal IROC curves
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is presented at length in section [f] Numerical results are displayed in section [f] Some
technical proofs are deferred to section

2 Notations and Preliminaries

Throughout the chapter, the indicator function of any event £ is denoted by I{€}. The
pseudo-inverse of any cdf F(¢) on R is denoted by F~!(u) = inf{s € R : F(s) > u},
while 2([0, 1]) denotes the uniform distribution on the unit interval [0, 1].

2.1 The Probabilistic Framework

Given a continuous real valued r.v. Y representing an attribute of an object, its ’size’
say, and a random vector X taking its values in a (typically high dimensional euclidian)
feature space X modelling other observable characteristics of the object (e.g. ’indirect
measurements’ of the size of the object), hopefully useful for predicting Y, the statistical
learning problem considered here is to learn from n > 1 training independent observations
D, = {(X1,Y1), ..., (X,,Yn)}, drawn as the pair (X,Y’), a measurable mapping s :
X — R, that shall be referred to as a scoring function throughout the chapter, so that
the variables s(X) and Y tend to increase or decrease together: ideally, the larger the
score s(X), the higher the size Y. For simplicity, we assume throughout the chapter
that X = R? with d > 1 and that the support of Y’s distribution is compact, equal
to [0,1] say. For any ¢ > 1, we denote by A, the Lebesgue measure on RY equipped
with its Borelian o-algebra and suppose that the joint distribution Fx )y (dzdy) of the
pair (X,Y') has a density fxy(z,y) w.r.t. the tensor product measure A\g ® A;. We also
introduces the marginal distributions Fy (dy) = fy (y)\1(dy) and Fx (dx) = fx(z)\g(dz),
where fy (y) = [ cx fxy(z,y)Aa(dx) and fx(z) = fye[o,l] Ix.v(z,y)\1(dy) as well as the
conditional densities fx|y—,(z) = fxy(z,y)/fy(y) and fyx=.(y) = fxy (2, y)/fx ().
Observe incidentally that the probabilistic framework of the continuous ranking problem
is quite similar to that of distribution-free regression. However, as shall be seen in the
subsequent analysis, even if the regression function m(z) = E[Y | X = x| can be optimal
under appropriate conditions, just like for regression, measuring ranking performance
involves criteria that are of different nature than the expected least square error and
plug-in rules may not be relevant for the goal pursued here, as depicted by Fig. in
the introductory chapter.

Scoring Functions. The set of all scoring functions is denoted by S here. Any scoring
function s € S defines a total preorder on the space X: V(z,2') € X2, z <, 2/ &
s(x) < s(z’). We also set z <5 ' when s(z) < s(2’) and z =5 2’ when s(z) = s(z’) for
(z,2") € X2

2.2 Bi/Multi-partite Ranking

Suppose that Z is a binary label, taking its values in {—1,+1} say, assigned to the r.v.
X. In bipartite ranking, the goal is to pick s in S so that the larger s(X), the greater
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the probability that Y is equal to 1 ideally. In other words, the objective is to learn
s(x) such that the r.v. s(X) given Y = +1 is as stochastically largeTEI as possible than
the r.v. s(X) given Y = —1: the difference between Gs(t) = P{s(X) >t |Y = +1}
and Hy(t) = P{s(X) >t | Y = —1} should be thus maximal for all ¢ € R. This can
be naturally quantified by means of the notion of ROC curve of a candidate s € S, i.e.
the parametrized curve t € R + (Hg(t), G5(t)), which can be viewed as the graph of
a mapping ROC; : a € (0,1) — ROC;(«x), connecting possible discontinuity points by
linear segments (so that ROCs(a) = Gso (1 — H; 1) (1 — a) when Hy has no flat part in
H;1(1—a), where Hy = 1— Hy). A basic Neyman Pearson’s theory argument shows that
the optimal elements s*(z) related to this natural (functional) bipartite ranking criterion
(i.e. scoring functions whose ROC curve dominates any other ROC curve everywhere on
(0,1)) are transforms (T on)(z) of the posterior probability n(xz) = P{Z = +1 | X = z},
where T': sUPP(n(X)) — R is any strictly increasing borelian mapping. Optimization of
the curve in sup norm has been considered in [CV(09b] or in [CV10] for instance. However,
given its functional nature, in practice the ROC curve of any s € § is often summarized
by the area under it, which performance measure can be interpreted in a probabilistic
manner, as the theoretical rate of concording pairs

AUC(s) = IP’{S(X) <s(X"Y|Z=-1,7 = —I—l}—i-%IP’{s(X) =s(X) | Z=-1,27Z" = +1},
(IT1.1)
where (X', Z") denoted an independent copy of (X, Z). A variety of algorithms aiming
at maximizing the AUC criterion or surrogate pairwise criteria have been proposed and
studied in the literature, among which [FISS03|, [Rak04] or [CDV13al, whereas general-
ization properties of empirical AUC maximizers have been studied in [CLV0S|, JAGH™ 05|
and [MW16]. An analysis of the relationship between the AUC and the error rate is given
in [CMO04].

Extension to the situation where the label Y takes at least three ordinal values (i.e.
multipartite ranking) has been also investigated, see e.g. [RA05] or [CR14]. In [SCV13],
it is shown that, in contrast to the bipartite setup, the existence of optimal solutions
cannot be guaranteed in general and conditions on (X,Y)’s distribution ensuring that
optimal solutions do exist and that extensions of bipartite ranking criteria such as the
ROC manifold and the volume under it can be used for learning optimal scoring rules
have been exhibited. An analogous analysis in the context of continuous ranking is
carried out in the next section.

3 Optimal Elements in Ranking Data with Continuous
Labels

In this section, a natural definition of the set of optimal elements for continuous ranking
is first proposed. Existence and characterization of such optimal scoring functions are
next discussed.

LGiven two real-valued r.v.’s U and U’, recall that U is said to be stochastically larger than U’ when
P{U >t} >P{U’' >t} for all t € R.
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3.1 Optimal Scoring Rules for Continuous Ranking

Considering a threshold value y € [0,1], a considerably weakened (and discretized) ver-
sion of the problem stated informally above would consist in finding s so that the r.v.
s(X) given Y > y is as stochastically larger than s(X) given Y < y as possible. This sub-
problem coincides with the bipartite ranking problem related to the pair (X, Z,), where
Zy =2I{Y > y} —1. As briefly recalled in subsection the optimal set Sy is composed
of the scoring functions that induce the same ordering as

ny(X)=P{Y >y | X} =1-(1-py)/(1 —py+pyPy(X)),

where p, =1 — Fy(y) = P{Y >y} and ®,(X) = (dFX|y>y/dFX‘Y<y)(X).

A Continuum of Bipartite Ranking Problems. The rationale behind the definition
of the set §* of optimal scoring rules for continuous ranking is that any element s* should
score observations « in the same order as 7, (or equivalently as ®,).

Definition 1. (OPTIMAL SCORING RULE) An optimal scoring rule for the continuous
ranking problem related to the random pair (X,Y) is any element s* that fulfills: Yy €
(0,1),

V(e ') € X2, ny(x) < ny(@') = *(2) < 5*(). (I11.2)

In other words, the set of optimal rules is defined as S* = ﬂye(m) S,

It is noteworthy that, although the definition above is natural, the set S* can be
empty in absence of any distributional assumption, as shown by the following example.

Example 1. As a counter-ezample, consider the distributions Fxy such that Fy =
U([0,1]) and Fxjy—, = N(|2y — 1|, (2y — 1)%). Observe that (X,1 — Y)i(X, Y), so that
b = <I);1 for all t € (0,1) and there exists t # 0 s.t. Oy is not constant. Hence, there
exists no s* in S such that (II11.2]) holds true for allt € (0,1).

Remark 1. (INVARIANCE) We point out that the class S* of optimal elements for con-
tinuous ranking thus defined is invariant by strictly increasing transform of the ’size’
variable Y (in particular, a change of unit has no impact on the definition of §*): for
any borelian and strictly increasing mapping H : (0,1) — (0,1), any scoring function
s*(x) that is optimal for the continuous ranking problem related to the pair (X,Y") is still
optimal for that related to (X, H(Y)) (since, under these hypotheses, for any y € (0,1):
Y>ys HY)> H(y)).

3.2 Existence and Characterization of Optimal Scoring Rules

We now investigate conditions guaranteeing the existence of optimal scoring functions
for the continuous ranking problem.

Proposition 1. The following assertions are equivalent.

1. For all0 <y <y <1, for all (z,2') € X2: O (x) < Py(z') = Dy (z) < Oy ().
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2. There exists an optimal scoring rule s* (i.e. S* #0).
3. The regression function m(z) = E[Y | X = x| is an optimal scoring rule.

4. The collection of probability distributions Fx|y—,(dxr) = fx)y—y(z)Aa(dx), y €
(0,1) satisfies the monotone likelihood ratio property: there exist s* € S and, for
all 0 <y <y’ <1, an increasing function ¢, : R — Ry such that: Vo € RY,

?“W@=%Mﬂw.
X|Y=y

Refer to section [§] for the technical proof. Truth should be said, assessing that As-
sertion 1. is a very challenging statistical task. However, through important examples,
we now describe (not uncommon) situations where the conditions stated in Proposition
[ are fulfilled.

Example 2. We give a few important examples of probabilistic models fulfilling the prop-
erties listed in Proposition [1]

e Regression Model. Suppose that Y = m(X) + €, where m : X — R is a borelian
function and € is a centered r.v. independent from X. One may easily check that m € S*.

e Exzponential Families. Suppose that fxy—,(z) = exp(k(y)T(z) — ¥ (y))f(x) for all
x € RY where f : RY — R, s borelian,  : [0,1] — R is a borelian strictly increasing
function and T : R* — R is a borelian mapping such that

wly) =log | exp(s(y)T(@)f(@)do < +oc,
z€R4

We point out that, although the regression function m(x) is an optimal scoring func-
tion when 8* # (), the continuous ranking problem does not coincide with distribution-
free regression (notice incidentally that, in this case, any strictly increasing transform of
m(z) belongs to S* as well). As depicted by Fig. the least-squares criterion is not
relevant to evaluate continuous ranking performance and naive plug-in strategies should
be avoided, see Remark [2] below. Dedicated performance criteria are proposed in the
next section.

4 Performance Measures for Continuous Ranking

We now investigate quantitative criteria for assessing the performance in the continuous
ranking problem, which practical machine-learning algorithms may rely on. We place
ourselves in the situation where the set §* is not empty, see Proposition [1| above.

A Functional Performance Measure. It follows from the view developped in the
previous section that, for any (s,s*) € S x §* and for all y € (0,1), we have:

Va € (0,1), ROC;y(a) < ROCy+ y(a) = ROC(a), (I11.3)
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denoting by ROC,, the ROC curve of any s € S related to the bipartite ranking sub-
problem (X, Z,) and by ROCj, the corresponding optimal ROC curve, i.e. the ROC curve
of strictly increasing transforms of n,(x). Based on this observation, it is natural to de-
sign a dedicated performance measure by aggregating these ’sub-criteria’. Integrating
over y w.r.t. a o-finite measure p with support equal to [0, 1], this leads to the follow-
ing definition IROC,, s(a) = [ROC; (a)u(dy). The functional criterion thus defined
inherits properties from the ROC,,’s (e.g. monotonicity, concavity). In addition, the
curve IROC,, ¢+ with s* € §* dominates everywhere on (0, 1) any other curve IROC,, 5 for
s € §. However, except in pathologic situations (e.g. when s(z) is constant), the curve
IROC,, s is not invariant when replacing Y"’s distribution by that of a strictly increasing
transform H(Y"). In order to guarantee that this desirable property is fulfilled (see Re-
mark 7 one should integrate w.r.t. Y’s distribution (which boils down to replacing Y
by the uniformly distributed r.v. Fy(Y)).

Definition 2. (INTEGRATED ROC/AUC CRITERIA) The integrated ROC curve of any
scoring rule s € S is defined as: Vo € (0,1),
1
IROCy(a) = / ROC, () Fy (dy) = E[ROC, v (a)] . (II1L.4)

y=0

The integrated AUC criterion is defined as the area under the integrated ROC curve:

Vs €S,
1

TAUC(s) = / IROC;(a)da. (IT1.5)

a=0

Additional properties of IROC curves are listed below.

4.1 Properties of IROC Curves

For any scoring function s € S and y € (0, 1), we define the conditional cdfs of s(X) as
follows:
Hyy(v) =P(s(X) <0 |Y <y),

Gsy(v) =P(s(X) <v|Y >y).

Now we give some properties of the IROC curve which are easily derived from ROC curve
properties by integration over bipartite ranking subproblems.

Theorem 1. For any scoring function s € S, the following properties hold:
e Limit values. We have IROCs(0) =0 and IROC,(1) = 1.

e Invariance. For any strictly increasing function T : R — R, we have for all
€ (0,1), IROCros(a) = IROCs ().

e Concavity. If for all y € (0,1) the likelihood ratio dG,,/dHs, is a monotone
function, then the IROC curve is concave.
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all0 <y < I, the ROC curve of s at sublevels y and 1—y is ROC; (o) = ROC1-y(a) =
o ==Y and fy(y) = fy(1 —y) = 2(1 — 2y).

for score s and Y’s distribution such that for

PROOF. Use Proposition 24 in [CV09b| for each bipartite ranking subproblem at level
y € (0,1). Then integrate over y w.r.t. Fy.

The following result reveals the relevance of the functional /summary criteria defined
above for the continuous ranking problem.

Theorem 2. Let s* € §. The following assertions are equivalent.

1. The assertions of Proposition [1] are fulfilled and s* is an optimal scoring function
in the sense given by Definition [1}

2. For all « € (0,1), IROCs+(a) = E[ROCY (o)].
3. We have IAUCs = E[AUCY], where AUC;, = f;zo ROCy(a)da for all y € (0,1).

If 8* # 0, then we have: Vs € S,

IROC* () g [ROCS ()], for any o € (0,1),

avc- ¥ Elavc).

IROCs(a) <
TAUC(s) <

In addition, for any borelian and strictly increasing mapping H : (0,1) — (0, 1), replacing
Y by H(Y) leaves the curves IROCs, s € S, unchanged.
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4. Performance Measures for Continuous Ranking

Equipped with the notion defined above, a scoring rule s; is said to be more accurate
than another one sy if IROC,,(a) < IROCq, (a) for all @ € (0,1).The IROC curve
criterion thus provides a partial preorder on S§. Observe also that, by virtue of Fubini’s
theorem, we have TAUC(s) = [AUC,(s)Fy (dy) for all s € S, denoting by AUC,(s) the
AUC of s related to the bipartite ranking subproblem (X, Z,). Just like the AUC for
bipartite ranking, the scalar TAUC criterion defines a full preorder on S for continuous
ranking. Based on a training dataset D,, of independent copies of (X,Y), statistical
versions of the IROC/IAUC criteria can be straightforwardly computed by replacing the

distributions Fy, Fx|y~; and Fy|y«; by their empirical counterparts in (III.3)-(IIL.5).
The lemma below provides a probabilistic interpretation of the IAUC criterion.

Lemma 1. Let (X',Y") be a copy of the random pair (X,Y) and Y a copy of the r.v.
Y. Suppose that (X,Y), (X',Y') and Y are defined on the same probability space and
are independent. Denote by p(dy) = 6P{Y < y}P{Y > y}Fy (dy) the probability measure
used to integrate the ROC curves. For all s € S, we have:

1
TAUC(s) := / [ROC,, ,(a)da

a=0

=P{s(X)<s(X)|Y <Y"<Y'} + %]P){S(X) =s(X')|Y <Y"<Y'}. (IIL6)

This result shows in particular that a natural statistical estimate of IAUC(s) based
on D,, involves U-statistics of degree 3. Its proof is given in section [§

Remark 2. (CONNECTION TO DISTRIBUTION-FREE REGRESSION) Consider the non-
parametric regression model Y = m(X) + €, where € is a centered r.v. independent from
X. In this case, it is well-known that the regression function m(X) = E[Y | X] is the
(unique) solution of the expected least squares minimization. However, although m € S*,
the least squares criterion is far from appropriate to evaluate ranking performance, as de-
picted by Fig. [[.3. Observe additionally that, in contrast to the criteria introduced above,
increasing transformation of the output variable Y may have a strong impact on the
least squares minimizer: except for linear stransforms, E[H(Y') | X| is not an increasing
transform of m(X).

Remark 3. (ON DISCRETIZATION) Bi/multi-partite algorithms are not directly appli-
cable to the continuous ranking problem. Indeed a discretization of the interval [0, 1]
would be first required but this would raise a difficult question outside our scope: how to
choose this discretization based on the training data? We believe that this approach is
less efficient than ours which reveals problem-specific criteria, namely IROC and TAUC.

Before describing a practical algorithm for recursive maximization of the IROC curve,
we discuss the Kendall 7 criterion.
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III. RANKING DATA WITH CONTINUOUS LABELS

4.2 The Kendall 7 Statistic.

The quantity (II1.6)) is akin to another popular way to measure the tendency to define
the same ordering on the statistical population in a summary fashion:

dr(s) B {(s(X) ~ s(X) - (¥ = ¥") > 0} + ;P {s(X) = s(X")}  (IL7)

= P{s(X)<s(X)|Y <Y’} + %]P’ {X = X'},

where (X', Y”) denotes an independent copy of (X,Y), observing that P{Y <Y’} =1/2.
The empirical counterpart of ([I1.7) based on the sample D,,, given by

~ 2 1

dn(s) = m ZH{(S(Xi) —s(X;)) - (Vi —Y;) > 0}4‘”7 ZH{S(Xi) = s(X;)}

i<j (n—1) i<j

(I11.8)
is known as the Kendall T statistic and is widely used in the context of statistical hy-
pothesis testing. The quantity shall be thus referred to as the (theoretical or true)
Kendall 7. Notice that d,(s) is invariant by strictly increasing transformation of s(z)
and thus describes properties of the order it defines. The following result reveals that the
class §*, when non empty, is the set of maximizers of the theoretical Kendall 7. Refer
to section [§ for the technical proof.

Proposition 2. Suppose that S* # (). For any (s, s*) € SxS*, we have: d(s) < d.(s*).

Equipped with these criteria, the objective expressed above in an informal manner

can be now formulated in a quantitative manner as a (possibly functional) M-estimation
problem. In practice, the goal pursued is to find a reasonable approximation of a so-
lution to the optimization problem maxses d-(s) (respectively maxges IAUC(s)), where
the supremum is taken over the set of all scoring functions s : X — R. Of course, these
criteria are unknown in general, just like (X,Y")’s probability distribution, and the em-
pirical risk minimization (ERM in abbreviated form) paradigm (see [DGL96]) invites for
maximizing the statistical version over a class Sy C S of controlled complexity
when considering the criterion d(s) for instance. The generalization capacity of empir-
ical maximizers of the Kendall 7 can be straightforwardly established using results in
[CLVO0S].
On Empirical Kendall 7 Maximization Here we state a result describing the perfor-
mance of scoring rules obtained through maximization of the empirical Kendall 7 over a
class Sy C S of controlled complexity. An empirical Kendall 7 maximizer over Sy is any
scoring function 5, € Sy s.t.

~

(5 = d,(s). 1T.
dn(Sn) max & (s) (IIL.9)

Theorem 3. Suppose that S* # () and set dX = d.(s*) for s* € §*. Assume that Sy
is a VC major class of functions with VC dimension V- < +oo. Let 6 € (0,1). With
probability at least 1 — &, we have:

log(1
d* — d.(3,) < q/% +4 Of(_/f) + {d: - maXdT(s)} . (IIL.10)

sESy
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5. Continuous Ranking through Oriented Recursive Partitioning

PROOF. The argument is based on the simple bound

df — do(3n) < 2 sup |dp(s) — dT(s)‘ + {di — maxdT(s)} ,
SESO SESO

combined with the use of concentration results for the U-process {Jn(s) — d(s)}seSo.
The proof is finished by mimicking that of Corollary 3 in [CLV0S].

From a computational perspective, maximizing c/l\n is a challenge, the optimization
problem being NP-hard due to the absence of convexity /smoothness of the pairwise loss
function I{(s(x) — s(a’))(y — y') > 0}. Whereas replacing this loss by a surrogate loss,
more suited to continuous optimization, is a possible strategy, using greedy algorithms
in the spirit of the popular CART method can also be considered for this purpose. A
slight modification of CART based on recursive maximization of the empirical Kendall
7 criterion (rather than the Gini index or the least squares criterion) permit to build
an oriented ranking tree in a top down manner, see subsection Just like for classi-
fication /regression, the procedure can be followed by a pruning stage (model selection),
based here on (e.g. cross-validation based) estimates of Kendall 7.

Remark 4. (ON KENDALL 7 AND AUC) We point out that, in the bipartite ranking
problem (i.e. when the output variable Z takes its values in {—1, +1}, see subsection
as well, the AUC criterion can be expressed as a function of the Kendall T related
to the pair (s(X),Z) when the r.v. s(X) is continuous. Indeed, we have in this case
2p(1—p)AUC(s) = d;(s), wherep = P{Z = +1} and d(s) = P{(s(X)—s(X"))-(Z-2Z") >
0}, denoting by (X', Z") an independent copy of (X, Z).

5 Continuous Ranking through Oriented Recursive
Partitioning

It is the purpose of this section to introduce the algorithm CRANK, a specific tree-
structured learning algorithm for continuous ranking.

5.1 Ranking Trees and Oriented Recursive Partitions

Decision trees undeniably figure among the most popular techniques, in supervised and
unsupervised settings, refer to [BEFOS84] or [Qui86| for instance. This is essentially due to
the visual model summary they provide, in the form of a binary tree graphic that permits
to describe predictions by means of a hierachichal combination of elementary rules of the
type ‘X < g or ‘XU) > k. comparing the value taken by a (quantitative) component
of the input vector X (the split variable) to a certain threshold (the split value). In
contrast to local learning problems such as classification or regression, predictive rules
for a global problem such as ranking cannot be described by a (tree-structured) partition
of the feature space: cells (corresponding to the terminal leaves of the binary decision
tree) must be ordered so as to define a scoring function. This leads to the definition of
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III. RANKING DATA WITH CONTINUOUS LABELS

\ >

Figure II1.2: A scoring function described by an oriented binary subtree 7. For any
element z € X, one may compute the quantity sy (x) very fast in a top-down fashion
by means of the heap structure: starting from the initial value 27 at the root node, at
each internal node Cjj, the score remains unchanged if  moves down to the left sibling,
whereas one subtracts 2/~ from it if 2 moves down to the right.

ranking trees as binary trees equipped with a ‘left-to-right’ orientation, defining a tree-
structured collection of anomaly scoring functions, as depicted by Fig. [[II.2] Binary
ranking trees have been in the context of bipartite ranking in [CV09b| or in [CDV13a]
and in [SCV13| in the context of multipartite ranking. The root node of a ranking tree
Ty of depth J > 0 represents the whole feature space X: Cyo = &', while each internal
node (j, k) with j < J and k € {0, ..., 27 — 1} corresponds to a subset C;; C X, whose
left and right siblings respectively correspond to disjoint subsets Cji12x and Cji1 241
such that Cj, = Cjy12r UCjir12k+1- Equipped with the left-to-right orientation, any
subtree 7 C T, defines a preorder on X: elements lying in the same terminal cell of T
being equally ranked. The scoring function related to the oriented tree 7 can be written
as:

sr(z) = > 27 (1 - ;) Iz € Cjxl- (I11.11)

Cj k: terminal leaf of T

5.2 The CRANK Algorithm

Based on Proposition[2] one can try to build from the training dataset D,, a ranking tree
by recursive empirical Kendall 7 maximization. We propose below an alternative tree-
structured recursive algorithm, relying on a (dyadic) discretization of the ’size’ variable
Y. At each iteration, the local sample (i.e. the data lying in the cell described by the
current node) is split into two halves (the highest /smallest halves, depending on Y') and
the algorithm calls a binary classification algorithm A to learn how to divide the node
into right /left children. The theoretical analysis of this algorithm and its connection with
approximation of IROC* are difficult questions left as open problems. Indeed we found
out that the IROC cannot be represented as a parametric curve contrary to the ROC,
which renders proofs much more difficult than in the bipartite case.
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6. Numerical Experiments

THE CRANK ALGORITHM

1. Input. Training data D,,, depth J > 1, binary classification algorithm A.
2. Initialization. Set Cy o = &
3. Iterations. For j =0, ..., J—land k=0, ..., 2/ — 1,

a) Compute a median y; of the dataset {Y7, ..., ,¥,} NC; and assign the
binary label Z; = 2I{Y; > y; 1} — 1 to any data point ¢ lying in C; x, i.e. such
that X; € Cj,k.

b) Solve the binary classification problem related to the input space C;; and
the training set {(X;,Y;) : 1 < i < n, X; € Cj}, producing a classifier
9k Cijr — {—1, —‘rl}.

C) Set Cj+1,2k = {I € Cj,k-, gj7k(x) = Jrl} = Cj,k- \Cj+1,2k+1.
4. Output. Ranking tree 7; ={C;x: 0<j < J, 0 <k < D}

Of course, the depth J should be chosen such that 2/ < n. One may also consider
continuing to split the nodes until the number of data points within a cell has reached a
minimum specified in advance. In addition, it is well known that recursive partitioning
methods fragment the data and the unstability of splits increases with the depth. For
this reason, a ranking subtree must be selected. The growing procedure above should be
classically followed by a pruning stage, where children of a same parent are progressively
merged until the root 7y is reached and a subtree among the sequence 7o C ... C Ty
with nearly maximal TAUC should be chosen using cross-validation. Issues related to
the implementation of the CRANK algorithm and variants (e.g. exploiting randomiza-
tion/aggregation) are beyond the scope of the present chapter.

6 Numerical Experiments

In order to illustrate the idea conveyed by Fig. that the least squares criterion is not
appropriate for the continuous ranking problem we compared on a toy example CRANK
with CART. Recall that the latter is a regression decision tree algorithm which minimizes
the MSE (Mean Squared Error). We also runned an alternative version of CRANK which
maximizes the empirical Kendall 7 instead of the empirical IAUC: this method is refered
to as KENDALL from now on.

Experimental Setting. The experimental setting is composed of a unidimensional
feature space X = [0, 1] (for visualization reasons) and a simple regression model without
any noise: Y = m(X). Intuitively, a least squares strategy can miss slight oscillations of
the regression function, which are critical in ranking when they occur in high probability
regions as they affect the order among the feature space. We considered a polynomial
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regression function m over [0, 1] and valued in [0, 1], namely:

where the polynomial function P is given by:
Px)=2%-(241)- (2 +15) - (2+2), with z=25-(z—0.5).

Observe that m slightly oscillates in the interval I = [0.415,0.51] (see [[IL3b). With
respective probabilities p; = 0.1, po = 0.8 and p3 = 0.1, X is uniformly sampled in
one of the three intervals I; = [0,0.415], I and I3 = [0.51,1]: the critical window Iy is
then a high probability region. The three algorithms (CRANK, KENDALL and CART)
where trained on the same dataset (X1,Y1),..., (Xnuins o) With Yy = m(X;) and
Ntrain = 100 with the same constraint on the depth of the tree: at most D = 3. Then we
tested them on ngesy = 2000 new iid copies of X. In Fig. we plot the polynomial
function m and piecewise constant scoring functions provided by the three approaches.
We observe in Fig. that CRANK and KENDALL almost provide the same ranking
functions (ScRaxk & SKenpann) and achieve similar performance (see Fig. . Also
notice in Fig. that CRANK, KENDALL and CART respectively achieve maximum
IAUC, Kendall 7 and MSE. As expected, CART misses the critical oscillations that is
why its TAUC and Kendall 7 are considerably lower than for its concurrents.
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Figure II1.3: Polynomial regression function m and scoring functions provided by
CRANK, KENDALL and CART. For visualization reasons, scranx and SKgxpaL, have
been renormalized by 2P = 8 to take values in [0, 1] and, in Fig. affine functions
have been applied to the three scoring functions.

Results. The results are presented in Table As expected, the CRANK and
KENDALL continuous ranking methods both ouperform the CART regression approach.
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7. Conclusion

TAUC | Kendall 7 MSE

CRANK 0.95 0.92 0.10

KeENDALL | 0.94 0.93 0.10
CART | 0.61 0.58 74x 10712

Table I1I.1: TAUC, Kendall 7 and MSE empirical measures

7 Conclusion

This chapter considers the problem of learning how to order objects by increasing ’size’,
modeled as a continuous r.v. Y, based on indirect measurements X. We provided a rigor-
ous mathematical formulation of this problem that finds many applications (e.g. quality
control, chemistry) and is referred to as continuous ranking. In particular, necessary and
sufficient conditions on (X,Y’)’s distribution for the existence of optimal solutions are
exhibited and appropriate criteria have been proposed for evaluating the performance of
scoring rules in these situations. In contrast to distribution-free regression where the goal
is to recover the local values taken by the regression function, continuous ranking aims
at reproducing the preorder it defines on the feature space as accurately as possible. The
numerical results obtained via the algorithmic approaches we proposed for optimizing the
criteria aforementioned highlight the difference in nature between these two statistical
learning tasks.

8 Technical Proofs

We provide below the proofs of the theoretical results stated in the chapter.

Proof of Proposition

Observe first that 3. = 2. and 1. < 4. are obvious.

2. = 1.. Let us assume that assertion 2. is true. Let (z,z’) 2 and y € (0,1)
such that ®,(z) < ®,(z’). Then, from assumption 2., s*(z) < s*(2’). For t’ € (y,1),
if ®,(z) > @, (), it leads to the following contradiction: s*(z) > s*(2').

Dy (z) < Dy(a').

1. = 3.: Let us assume that assertion 1. is true. Let (z,2’) € X% and y € (0, 1) such that
ny(z) < ny(x’). Observe that (x,y") — n,(z) is continuous. It follows from assumption
1. that for y' € (0,1), ny(z) < ny(2’) with strict inequality on a nonempty interval
by continuity of (z,y’") — n,(x). Integrating the latter inequality against the uniform
distribution over (0, 1) leads to m(z) < m(z’).

Hence
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Proof of Theorem

The implications 1. = 2. and 2. = 3. are obvious.

3. = 1.: Let us assume that assertion 3. is true. Assume ad absurdum that 1. is false.
Then there exists y € (0,1) s.t. AUC,(s*) < AUCy(n,). Notice that (z,y') — ny(x)
and, for any scoring function s, ¥ — AUC,,(s) are continuous. By integration w.r.t. Fy
we obtain IAUC(s*) < E[AUCY/|, which contradicts assertion 3. Hence 1. is true.

Proof of Lemma
Recall that, for any s € S and all y € (0,1), we have:
AUC,(s) =P {s(X XY <y<Y'}+ P{s =s(X)|Y <y<Y'}.

Integrating the terms in the equation above w.r.t. u(dy) leads to the desired formula.
Then, a natural empirical version of IAUC(s) is:

6

IA/[I\Cn(S) = ’I’L(’I’L — 1)(n — 2) 1<§<nH{S(Xi) < S(Xk)aY; < YJ < Yk}
3
T —Dn -2 1<§<nH{S(Xi) = 5(Xp),Y; <Yj < Y3}

Proof of Proposition

We assume that s(X) is a continuous r.v. for simplicity, the slight modifications needed
to extend the argument to the general framework being left to the reader. As a first go,
observe that

1
di(s) = IP’{s(X’)>s(X)\Y’>Y}:/ P{s(X') > s(X)| Y =y, Y < ¢} Fy(dy)
v'=0

Notice next that, for any ¢’ € (0,1), P{s(X’) > s(X) | Y’ =¢/, Y <y} is nothing else
than the AUC criterion of s(x) related to the distribution of X given Y < ¢/ (negative
distribution) and Fxjy—,s (positive distribution). Since we assumed S&* # (), the collec-
tion {Fx|y—, : y € (0,1)} is of increasing likelihood ratio and according to Theorem
any s* € §* is a Neyman Pearson test statistic and thus defines uniformly most pow-
erful tests (among unbiased tests) of Hp : Y < y against H; : Y = y. Hence, for any
y € (0,1), P{s(X) > s(X) | Y' =9, Y <y} <P{s"(X) > s"(X) |V =y, Y <y}
Integrating over 3y’ w.r.t. Fy yields the desired result.
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CHAPTER IV

DIMENSIONALITY REDUCTION AND
(BUCKET) RANKING: A MASS
TRANSPORTATION APPROACH

Abstract

Whereas most dimensionality reduction techniques (e.g. PCA, ICA, NMF) for
multivariate data essentially rely on linear algebra to a certain extent, summarizing
ranking data, viewed as realizations of a random permutation ¥ on a set of items
indexed by ¢ € {1,..., N}, is a great statistical challenge, due to the absence of
vector space structure for the set of permutations & . It is the goal of this chapter
to develop an original framework for possibly reducing the number of parameters
required to describe the distribution of a statistical population composed of rank-
ings/permutations, on the premise that the collection of items under study can be
partitioned into subsets/buckets, such that, with high probability, items in a certain
bucket are either all ranked higher or else all ranked lower than items in another
bucket. In this context, 3’s distribution can be hopefully represented in a sparse
manner by a bucket distribution, i.e. a bucket ordering plus the ranking distributions
within each bucket. More precisely, we introduce a dedicated distortion measure,
based on a mass transportation metric, in order to quantify the accuracy of such
representations. The performance of buckets minimizing an empirical version of the
distortion is investigated through a rate bound analysis. Complexity penalization
techniques are also considered to select the shape of a bucket order with minimum
expected distortion. Beyond theoretical concepts and results, numerical experiments
on real ranking data are displayed in order to provide empirical evidence of the rel-
evance of the approach promoted.

1 Introduction

Recommendation systems and search engines are becoming ubiquitous in modern tech-
nological tools. Operating continuously on still more content, use of such tools generate
or take as input more and more data. The scientific challenge relies on the nature of the
data feeding or being produced by such algorithms: input or/and output information
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generally consists of rankings/orderings, expressing preferences. Because the number of
possible rankings explodes with the number of instances, it is of crucial importance to
elaborate dedicated dimensionality reduction methods in order to represent ranking data
efficiently. Whatever the type of task considered (supervised, unsupervised), machine-
learning algorithms generally rest upon the computation of statistical quantities such
as averages or linear combinations of the observed features, representing efficiently the
data. However, summarizing ranking variability is far from straightforward and extend-
ing simple concepts such as that of an average or median in the context of preference data
raises a certain number of deep mathematical and computational problems. For instance,
whereas it is always possible to define a barycentric permutation (i.e. a consensus rank-
ing) given a set of rankings and a metric on the symmetric group, its computation can
be very challenging, as evidenced by the increasing number of contributions devoted to
the ranking aggregation problem in the machine-learning literature, see e.g. [DKNSO01],
[PS16], [JKSO16| or [JKS16] among others. Regarding dimensionality reduction, it is far
from straightforward to adapt traditional techniques such as Principal Component Anal-
ysis and its numerous variants to the ranking setup, the main barrier being the absence of
a vector space structure on the set of permutations. Even if one can embed permutations
into the Birkhoff polytope (which is the convex hull of the set of permutation matrices,
see [CJT0],[LMC™17]), the coordinates of the embeddings are highly correlated, and a
low-dimensional representation of the original distribution over rankings could not be
interpreted in a straightforward manner. In this chapter, we develop a novel framework
for representing the distribution of ranking data in a simple manner, that is shown to
extend, remarkably, consensus ranking in some sense. The rationale behind the approach
we promote is that, in many situations encountered in practice, the set of instances may
be partitioned into subsets/buckets, such that, with high probability, objects belonging
to a certain bucket are either all ranked higher or else all ranked lower than objects lying
in another bucket. In such a case, the ranking distribution can be described in a sparse
fashion by: 1) a gross ordering structure (related to the buckets) and 2) the marginal
ranking distributions associated to each bucket. Precisely, optimal representations are
defined here as those associated to a bucket order minimizing a certain distortion mea-
sure we introduce, the latter being based on a mass transportation metric on the set
of ranking distributions. Noticeably, this distortion measure is shown to admit a very
simple closed-form expression, based on the marginal pairwise probabilities solely, when
the cost of the mass transportation metric considered is the Kendall’s 7 distance and can
be thus straightforwardly estimated. In the Kendall’s 7 case, we also highlight the fact
that distortion minimization over bucket orders, when buckets are singletons, reduces
to Kemeny consensus ranking. We establish rate bounds describing the generalization
capacity of bucket order representations obtained by minimizing an empirical version of
the distortion over collections of bucket orders and address model selection issues related
to the choice of the bucket order size/shape. Numerical results are also displayed, pro-
viding in particular strong empirical evidence of the relevance of the notion of sparsity
considered, which the dimensionality reduction technique introduced is based on.

The chapter is organized as follows. In section [, a few concepts and results per-
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taining to (Kemeny) consensus ranking are briefly recalled and the extended framework
we consider for dimensionality reduction in the ranking context is described at length.
Statistical results guaranteeing that optimal representations of reduced dimension can
be learnt from ranking observations are established in section [3] while numerical exper-
iments are presented in section [5] for illustration purpose. Some concluding remarks are
collected in section [fl Technical details are deferred to section Rl

2 Preliminaries - Background

It this section, we introduce the main concepts and definitions that shall be used in
the subsequent analysis. The indicator function of any event £ is denoted by I{£}, the
Dirac mass at any point a by d,, the cardinality of any finite subset A by #A. Here
and throughout, a full ranking on a set of items indexed by [N] = {1, ..., N} is
seen as the permutation o € Gy that maps any item 4 to its rank o(i). For any non
empty subset Z C [N], any ranking o on [N] naturally defines a ranking on Z, denoted
by Mz(o) (ie. Vi € T, Hz(o)(i) = 1+ X jen i3 Ho(j) < o(i)}). If X is a random
permutation on &y with distribution P, the distribution of IIz(3) will be referred to as
the marginal of P related to the subset Z. In particular, for a pair of items (¢, j) € [IN],
the quantity p; ; = P{¥X(i) < X(j)} for ¥ ~ P is referred to as the pairwise marginal
of P and indicates the probability that item i is preferred to (ranked lower than) item
J (so pij +pji = 1). A bucket order C (also referred to as a partial ranking in the
literature) is a strict partial order defined by an ordered partition of [N], i.e a sequence
(C1,...,Ck) of K > 1 pairwise disjoint non empty subsets (buckets) of [IN] such that:
(1) UK Cp = [N], (2) V(i,5) € [N]? we have: i <¢ j (i is ranked lower than j in C)
iff 3k < I s.t. (i,7) € Cx x C;. We write @ ~¢ j to mean that ¢ and j belong to the
same bucket (and cannot be compared/ordered by means of C). The items in C; have
thus the lowest ranks (i.e. they are the most preferred items), whereas those in Cx have
the highest ranks. For any bucket order C = (Cy,...,Ck), its number of buckets K is
referred to as its size, while its shape is the vector A = (#C, ..., #Ck), i.e the sequence
of sizes of buckets in C (verifying Zszl #Ci, = N). Hence, any bucket order C of size N
corresponds to a full ranking/permutation o € Gy, whereas the set of all items [N] is
the unique bucket order of size 1.

2.1 Background on Consensus Ranking

Given a collection of n > 1 rankings o1, ..., op, consensus ranking, also referred to
as ranking aggregation, aims at finding a ranking ¢* € Gy that best summarizes it. A
popular way of tackling this problem, the metric-based consensus approach, consists in

solving:
n

i d(o,0), V.1
nin 2 (0,05) (Iv.1)

where d(., .) is a certain metric on Sy. As the set Gy is of finite cardinality, though not
necessarily unique, such a barycentric permutation, called consensus/median ranking,
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IV. DIMENSIONALITY REDUCTION AND (BUCKET) RANKING

always exists. In Kemeny ranking aggregation, the most widely documented version in
the literature, one considers the number of pairwise disagreements as metric, namely the
Kendall’s 7 distance, see [Kem59|:

V(0,0') € &, dr(o.0)) = S H(o() — o))/ ()) — ') <0} (IV.2)

1<j

Remark 1. Many other distances are considered in the literature (see e.g. Chapter 11
in [DD0Y]). In particular, the following distances, originally introduced in the context of
nonparametric hypothesis testing, are also widely used.

1/2
e The Spearman p distance. ¥(o,0') € &%, da(0,0') = (Zfil (o(i) — a’(z’))2>

e The Spearman footrule distance. ¥(o,0') € &%, di(0,0") = SN |0 (i) — o' (4)]
e The Hamming distance. ¥(0,0') € &%, du(o,0') = SN I{o(i) # o' (i)}

The problem can be viewed as a M-estimation problem in the probabilistic
framework stipulating that the collection of rankings to be aggregated /summarized is
composed of n > 1 independent copies X1, ..., ¥, of a generic r.v. 3, defined on a
probability space (2, F, P) and drawn from an unknown probability distribution P on
Sy (i.e. P(o) =P{X = o} for any 0 € Sy). Just like a median of a real valued r.v.
Z is any scalar closest to Z in the L; sense, a (true) median of distribution P w.r.t. a
certain metric d on Sy is any solution of the minimization problem:

min Lp(o), (IV.3)

geG N

where Lp(0) = Expld(X, 0)] denotes the expected distance between any permutation o
and X. In this framework, statistical ranking aggregation consists in recovering a solution
o* of this minimization problem, plus an estimate of this minimum L%} = Lp(c*), as
accurate as possible, based on the observations i, ..., X,. A median permutation
o* can be interpreted as a central value for distribution P, while the quantity L} may
be viewed as a dispersion measure. Like problem , the minimization problem
has always a solution but can be multimodal. However, the functional Lp(.) is
unknown in practice, just like distribution P. Suppose that we would like to avoid rigid
parametric assumptions on P and only have access to the dataset (X5, ..., X,) to
find a reasonable approximant of a median. The Empirical Risk Minimization (ERM)
paradigm, see [Vap00], encourages us to substitute in the quantity Lp (o) with its
statistical version

Ln(o) = % > d(Ss,0) = Lg (0), (IV.4)
s=1

where P, = (1/n) >4, s, denotes the empirical measure. The performance of empir-

~

ical consensus rules, solutions &, of min,ecg, Ln(c), has been investigated in [KCSIT7].
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Precisely, rate bounds of order Op(1//n) for the excess of risk Lp(d,) — L} in probabil-
ity /expectation have been established and proved to be sharp in the minimax sense, when
d is the Kendall’s 7 distance. Whereas problem is NP-hard in general (see e.g.
[Hud08]), in the Kendall’s 7 case, exact solutions, referred to as Kemeny medians, can be
explicitly derived when the pairwise probabilities p; ; = P{¥X(i) < £(j)}, 1 <i#j < N,
fulfill the following property, referred to as stochastic transitivity.

Definition 1. Let P be a probability distribution on Gy.
(i) Distribution P is said to be (weakly) stochastically transitive iff

V(i,j,k) € [N]*: pij >1/2 and pj > 1/2 = p;j > 1/2.

If, in addition, p; ; # 1/2 for alli < j, one says that P is strictly stochastically transitive.
(ii) Distribution P is said to be strongly stochastically transitive iff

V(i,j, k) € [N]?: pij>1/2 and pjj > 1/2 = pig > maz(pij, pjx)-
This is equivalent to the following condition (see [DM59]):
V(i,5) € [INI*: pij >1/2 = pig > pjx for all k € [N]\ {i, j}.

These conditions were firstly introduced in the psychology literature ([Fis73|, [DM59])
and were used recently for the estimation of pairwise probabilities and ranking from pair-
wise comparisons ([SBGW15|, [SW15]). Examples of stochastically transitive distribu-
tions on G are far from uncommon and include most popular parametric models such
as Mallows or Bradley-Terry-Luce-Plackett models, see e.g. [Mal57] or [Pla75]. When
stochastic transitivity holds true, the set of Kemeny medians (see Theorem 5 in [KCS17])
is the set {o € &n : (pij —1/2)(0(j) —o(i)) > 0 for all i < j s.t. p;; # 1/2}, and the
minimum is given by

Lp=> min{pi;,1—pi;} = > {1/2—|pi; —1/2[}. (IV.5)
i<j i<j
If a strict version of stochastic transitivity is fulfilled, we denote by o} the Kemeny
median which is unique and given by the Copeland ranking, that assigns for each i its
rank as:
op(i) =1+ Hpi; <1/2}for 1<i<N. (IV.6)
J#i
Assume that the underlying distribution P is strictly stochastically transitive and verifies
additionally a certain low-noise condition NA (h), defined for h > 0 by:

min [p;; —1/2[ > h. (Iv.7)
1<J
This condition is checked in many situations, including most conditional parametric
models (see Remark 13 in [KCS17]) under simple assumptions on their parameters. It

may be considered as analogous to that introduced in [KB05| in binary classification,
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and was used to prove fast rates also in ranking, for the estimation of the matrix of
pairwise probabilities (see [SBGW15]) or ranking aggregation (see [KCS17]). Indeed it
is shown in [KCSI17] that under condition , the empirical distribution P, is also
strictly stochastically transitive with overwhelming probability, and that the expectation
of the excess of risk of empirical Kemeny medians decays at an exponential rate, see

Proposition 14 therein. In this case, the nearly optimal solution O';% can be made ex-

plicit and straightforwardly computed using Eq. (IV.6) based on thenempirical pairwise
probabilities:

n
Pig = S HE() < S0}
s=1

As shall be shown below, the quantity Lp(o) can be seen as a Wasserstein distance
between P and the Dirac mass d,, so that Kemeny consensus ranking can thus be viewed
as a radical dimensionality reduction procedure, summarizing P by its closest Dirac
measure w.r.t. the distance on the set of probability distributions on &y aforementioned.
The general framework for dimensionality reduction developed in the next subsection can
be viewed as an extension of consensus ranking.

2.2 A Mass Transportation Approach to Dimensionality Reduction
on Gy

We now develop a framework, that is shown to extend consensus ranking, for dimen-
stonality reduction fully tailored to ranking data exhibiting a specific type of sparsity.
For this purpose, we consider the so-termed mass transportation approach to defining
metrics on the set of probability distributions on & as follows, see [Rac91] (incidentally,
this approach is also used in [CJ10] to introduce a specific relaxation of the consensus
ranking problem).

Definition 2. Let d : 6?\, — Ry be a metric on Sy and q > 1. The q-th Wasserstein
metric with d as cost function between two probability distributions P and P’ on Sy 1is
given by:
P,P) = inf E[d(%,Y 1V.
Waq (P, F) = inf E[d(EX)], (IV.8)

where the infimum is taken over all possible couplmgsﬂ (3,3 of (P, P").

As revealed by the following result, when the cost function d is equal to the Kendall’s
7 distance, which case the subsequent analysis focuses on, the Wasserstein metric is
bounded by below by the I; distance between the pairwise probabilities.

Lemma 1. For any probability distributions P and P’ on Sy

Wy, 1 (P, P') > Z pij — Pij
i<j

. (IV.9)

'Recall that a coupling of two probability distributions Q and Q' is a pair (U, U’) of random variables
defined on the same probability space such that the marginal distributions of U and U’ are Q and Q.
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The equality holds true when the distribution P’ is deterministic (i.e. when 3o € Sy s.t.
P =6,).

The proof of Lemma[l| as well as discussions on alternative cost functions (the Spear-
man p distance) are deferred to section . As shown below, is actually an equality
for various distributions P’ built from P that are of special interest regarding dimension-
ality reduction.

Sparsity and Bucket Orders. Here, we propose a way of describing a distribution P on
Gy, originally described by N!—1 parameters, by finding a much simpler distribution that
approximates P in the sense of the Wasserstein metric introduced above under specific
assumptions, extending somehow the consensus ranking concept. Let 2 < K < N and
C = (Cy, ..., Ck) be a bucket order of [N] with K buckets. In order to gain insight
into the rationale behind the approach we promote, observe that a distribution P’ can
be naturally said to be sparse if, for all 1 < k <[ < K and all (i,j) € Cx x C; (i.e.
i <c j), we have p}, = 0, which means that with probability one (i) < X'(j), when
Y/ ~ P’. In other words, the relative order of two items belonging to two different buckets
is deterministic. Throughout the chapter, such a probability distribution is referred to
as a bucket distribution associated to C. Since the variability of a bucket distribution
corresponds to the variability of its marginals within the buckets Cy’s, the set P¢ of all
bucket distributions associated to C is of dimension d¢ = [[, #Ci! —1 < NI —1. A
best summary in P¢ of a distribution P on Gy, in the sense of the Wasserstein metric
, is then given by any solution P; of the minimization problem

in W, {(P.P). IV.10
Anin a.1(P, P") ( )

Set Ap(C) = minprep, Wy, 1(P, P’) for any bucket order C.

Dimensionality Reduction. Let K < N. We denote by Cg the set of all bucket
orders C of [N] with K buckets. If P can be accurately approximated by a probabil-
ity distribution associated to a bucket order with K buckets, a natural dimensionality
reduction approach consists in finding a solution ) of

Jnin Ap(C), (IvV.11)

as well as a solution P, , of (IV.10) for ¢ = C**¥) and a coupling (2, Eowry) s.t.
Eld (2, Xe-)] = Ap(C*F).

Connection with Consensus Ranking. Observe that Ucec,Pc is the set of all
Dirac distributions é,, 0 € &y. Hence, in the case K = N, dimensionality reduction
as formulated above boils down to solve Kemeny consensus ranking. Indeed, we have:
Vo € 6n, Wy 1(P,0,) = Lp(o). Hence, medians o* of a probability distribution P (i.e.
solutions of ([V.3)) correspond to the Dirac distributions 4+ closest to P in the sense
of the Wasserstein metric : Pc**(N) = 0+ and Xo.v) = 0. Whereas the space
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of probability measures on Gy is of explosive dimension N! — 1, consensus ranking can
be thus somehow viewed as a radical dimension reduction technique, where the original
distribution is summarized by a median permutation ¢*. In constrast, the other extreme
case K =1 corresponds to no dimensionality reduction at all, i.e. Xo.q) = X.

2.3 Optimal Couplings and Minimal Distortion

Fix a bucket order C = (Cy, ..., Cx). A simple way of building a distribution in P¢
based on P consists in considering the random ranking 3¢ coupled with ¥, that ranks
the elements of any bucket Cy in the same order as > and whose distribution P belongs
to Pe:

VEe{l, ..., K}, Vi€ Cy, Seli)=1+> #C+ > K@) <T@},  (1V.12)
<k J€Ck

which defines a permutation. Distributions P and F¢ share the same marginals within
the Ci’s and thus have the same intra-bucket pairwise probabilities (p; ;) (i.)ec?s for all
k € {1,...,K}. Observe that the expected Kendall’s 7 distance between ¥ and ¥¢ is

given by:
E[d; (2, %c)] = Z Dji = Z Z Pii» (IV.13)

1=cJ 1<k<I<K (i,j)eckXcl

which can be interpreted as the expected number of pairs for which ¥ violates the (partial)
strict order defined by the bucket order C. The result stated below shows that (X, X¢)
is optimal among all couplings between P and distributions in P¢ in the sense where

(IV.13) is equal to the minimum of (IV.10]), namely Ap(C).

Proposition 1. Let P be any distribution on Sy . For any bucket orderC = (Cy, ..., Ck),
we have:
Ap(C) = pj (IV.14)
i<cJ

The proof, given in section |8] reveals that in Lemma (1| is actually an equality
when P’ = F¢ and that Ap(C) = Wy, 1 (P, Pc) =E[d; (X,3¢)]. Attention must be paid
that it is quite remarkable that, when the Kendall’s 7 distance is chosen as cost function,
the distortion measure introduced admits a simple closed-analytical form, depending on
elementary marginals solely, the pairwise probabilities namely. Hence, the distortion of
any bucket order can be straightforwardly estimated from independent copies of ¥, open-
ing up to the design of practical dimensionality reduction techniques based on empirical
distortion minimization, as investigated in the next section. The case where the cost is
the Spearman p distance is also discussed in section [7} it is worth noticing that, in this
situation as well, the distortion can be expressed in a simple manner, as a function of
triplet-wise probabilities namely.

Property 1. Let P be stochastically transitive. A bucket order C = (C1, ..., Ck) is
said to agree with Kemeny consensus iff we have: i <¢ j (i.e. Ik <1, (i,7) € Cx X C;)
= Dji < 1/2.
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As recalled in the previous subsection, the quantity L} can be viewed as a natural
dispersion measure of distribution P and can be expressed as a function of the p; ;’s as
soon as P is stochastically transitive. The remarkable result stated below shows that,
in this case and for any bucket order C satisfying Property [I, P’s dispersion can be
decomposed as the sum of the (reduced) dispersion of the simplified distribution Pr and
the minimum distortion Ap(C).

Corollary 1. Suppose that P is stochastically transitive. Then, for any bucket order C
that agrees with Kemeny consensus, we have:

L = Ly, + Ap(C). (IV.15)

In the case where P is strictly stochastically transitive, the Kemeny median o} of P
is unique (see [KCSIT]). If C fulfills Property|[] it is also obviously the Kemeny median of
the bucket distribution Pc. As shall be seen in the next section, when P fulfills a strong
version of the stochastic transitivity property, optimal bucket orders c*(K) necessarily
agree with the Kemeny consensus, which may greatly facilitates their statistical recovery.

2.4 Related Work

The dimensionality reduction approach developed in this chapter is connected with the
optimal bucket order (OBO) problem considered in the literature, see e.g. [AGR17],
[AGR18|, [EENO0S], [GMPU06|, [UPGMO09]. Given the pairwise probabilities (p; j)1<izj<n
of a distribution P over Gy, solving the OBO problem consists in finding a bucket order
C =(Cy, ..., Cx) that minimizes the following cost:

Ap(C) =" Ipij — Bigl, (IV.16)

i#]

where p; ; = 1ifi <¢ j, pij = 0if j <¢c iand p; j = 1/2if i ~¢ j. In other words, the p; ;'s
are the pairwise marginals of the bucket distribution F¢ related to C with independent
and uniformly distributed partial rankings Il¢, (X¢)’s for 3¢ ~ Pe. Moreover, this cost
verifies:

K
Ap(C)=20p(C)+ Y > Ipij—1/2l. (IV.17)

k=1 (i,5)eC?

Observe that solving the OBO problem is much more restrictive than the framework
we developed, insofar as no constraint is set about the intra-bucket marginals of the
summary distributions solutions of . Another related work is documented in
[SBW16, PMM™17| and develops the concept of indifference sets. Formally, a family
of pairwise probabilities (p; ;) is said to satisfy the indifference set partition (or bucket
order) C when:

pij = by for all quadruples (i, j, 7', j) such that i ~¢ ¢ and j ~¢ j', (IV.18)

83



IV. DIMENSIONALITY REDUCTION AND (BUCKET) RANKING

which condition also implies that the intra-bucket marginals are s.t. p; ; = 1/2 for i ~¢ j
(take ¢/ = j and j/ = i in ([V.18)). Though related, our approach significantly differs
from these works, since it avoids stipulating arbitrary distributional assumptions. For
instance, it permits in contrast to test a posteriori, once the best bucket order C*) is
determined for a fixed K, statistical hypotheses such as the independence of the bucket
marginal components (i.e. HC*(K)(E)’S ) or the uniformity of certain bucket marginal
distributions. A summary distribution, often very informative and of small dimension

both at the same time, is the marginal of the first bucket C| ) (

where m = |CT(K)\).

the top-m rankings

3 Empirical Distortion Minimization - Rate Bounds and
Model Selection

In order to recover optimal bucket orders, based on the observation of a training sam-

ple ¥y, ..., X, of independent copies of ¥, Empirical Risk Minimization, the ma-
jor paradigm of statistical learning, naturally suggests to consider bucket orders C =
(C1, ..., Cx) minimizing the empirical version of the distortion (IV.14))
An(€) = Bji= Ag (C), (IV.19)
i=<cJ

where the p; ;’s are the pairwise probabilities of the empirical distribution. For a given
shape A, we define the Rademacher average

Ra(N) = Ba, e | max — |3 e, SIE0G) < S| -
1

CECK A T - i<cj
where €1, ..., €, are i.i.d. Rademacher r.v.’s (i.e. symmetric sign random variables),
independent from the ¥,’s. Fix the number of buckets K € {1, ..., N}, as well as
the bucket order shape A = (A1, ..., Ag) € N*5 such that Zszl A = N. We recall

that Cx = U)\,_(X N)eNK st SE —NCK y. The result stated below describes the
T ALK -L k=1"k— ’

generalization capacity of solutions of the minimization problem

~

in A, (C), V.20
oluin () ( )

over the class Cg ) of bucket orders C = (Ci,...,Ck) of shape A (i.e. st. A =
(#C1,...,#Ck)), through a rate bound for their excess of distortion. Its proof is given
in section [§

Theorem 1. Let Ck \ be any empirical distortion minimizer over Cg y, i.e solution

of (IV.20). Then, for all 6 € (0,1), we have with probability at least 1 —§:

~ . 2log(3) . .
— < —
Ap(Ck \) Cglch Ap(C) <A4E[R,(N)]+K(N) - + Celél;)\ Ap(C) CgéfK Ap(C) ¢,
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where K(A) = Sh M A X (N = Ap — ... — \p).
We point out that the Rademacher average is of order O(1/y/n): Rp(A) <
k() 210g((1§)) Jnowith (V) = NIU/(#C! x - x #Ck!) = #Cx.r, where £()) is

the number of terms involved in ([V.14))-([V.19)) and (])\\[) is the multinomial coefficient,
i.e. the number of bucket orders of shape A. Putting aside the approximation error, the
rate of decay of the distortion excess is classically of order Op(1/1/n).

Remark 2. (EMPIRICAL DISTORTION MINIMIZATION OVER Cg) We point out that
rate bounds describing the generalization ability of minimizers of over the whole
class Cg can be obtained using a similar argument. A slight modification of Theorem[1)’s
proof shows that, with probability larger than 1 — ¢, their excess of distortion is less than
NYK — 1)/K\/log(N2(K — 1)#Cg/(K6))/(2n). Indeed, denoting by Ac the shape
of any bucket order C in Ck, maxcecy k(Ae) < N2(K — 1)/(2K), the upper bound
being attained when K divides N for Ay = -+ = Axg = N/K. In addition, we have:

#Cx = Sho ()R (F)RY.

Remark 3. (ALTERNATIVE STATISTICAL FRAMEWORK) Since the distortion
inwolves pairwise comparisons solely, an empirical version could be computed in o sta-
tistical framework stipulating that the observations are of pairwise nature, (I{X1(i1) <
510}, o, H{EwGn) < 2n(n)}), where {(is, js), s = 1, ..., n}, are i.i.d.
pairs, independent from the Xg’s, drawn from an unknown distribution v on the set
{(4,j) + 1 < i < j < N} such that v({(i,7)}) > 0 for all i < j. Based on these
observations, more easily available in most practical applications (see e.g. |[CBCTH13],
[PNZ*15]), the pairwise probability p; ;, i < j, can be estimated by:

n

ZH{(i&js) = (iaj)7 Es(is) < Es(js)},

N 7
1, s=1

1

with n; j = > o {(is, js) = (4,7)} and the convention 0/0 = 0.

Remark 4. (LOW-DIMENSIONAL REPRESENTATIONS) For any ranking agent described

by its intrinsic preferences ¥ ~ P, the challenge of dimensionality reduction consists
in avoiding fully observing ¥. Given a solution Ck x of (IV.20), by only asking to the

ranking agent to order items inside each bucket Cip for k € {1,...,K}, one can
reconstruct the assoctated optimal ranking E@“ coupled with ¥ and verifying (see Eq.

([V.13)):
Exvr |4 (2,7, ) (ém} = Ap(Cren).

In other words, the expected approxzimation error (in terms of Kendall’s T distance) for
observing EGK N instead of ¥ is Ap(Ck ), which is controlled by the generalization bound

given in Theorem . This approach actually corresponds to sampling w.r.t. PéK \ instead

of P, their Wasserstein distance being Wq, 1 (P, PéKA) = Ap(éK,A).
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Selecting the Shape of the Bucket Order. A crucial issue in dimensionality re-
duction is to determine the dimension of the simpler representation of the distribution
of interest. Here we consider a complexity regularization method to select the bucket
order shape A that uses a data-driven penalty based on Rademacher averages. Sup-
pose that a sequence {(K,, Am) }1<m<nm of bucket order sizes/shapes is given (observe
that M < Z%:l (%j) = 2N~ In order to avoid overfitting, consider the complexity
penalty given by

PEN(Ap, 1) = 2R (M) (Iv.21)

and the minimizer C, K.\ Of the penalized empirical distortion, with

~

i = arg min {An(CAKm,Am) + PEN()\m,n)} and A, (Cxa) = min A,(C). (IV.22)
1<m<M CeCk,x

The next result shows that the bucket order thus selected nearly achieves the performance

that would be obtained with the help of an oracle, revealing the value of the index m

ruling the bucket order size/shape that minimizes E[Ap(Ck,, A,.)]-

Theorem 2. (AN ORACLE INEQUALITY) Let CAK%A& be any penalized empirical distor-
tion minimizer over Cg .z, i.e solution of (IV.22). Then we have:

~ ~ N s
) < i —.

E [Ar(Cegrs)] < i (B [Ar @] + 2ERuOWIT} 4501 (7 )
The Strong Stochastic Transitive Case. The theorem below shows that, when
strong/strict stochastic transitivity properties hold for the considered distribution P,
optimal buckets are those which agree with the Kemeny median.

Theorem 3. Suppose that P is strongly/strictly stochastically transitive. Let K €

{1, ..., N} and A = (\1, ..., Ak) be a given bucket size and shape. Then, the minimizer
of the distortion Ap(C) over Ck  is unique and given by CKA) = (CT(K’)‘), cee C}}(K’)‘)),
where
N =i Nl S n<op@) <Y Ny forkedl, ..., K}, (IV.23)
1<k 1<k

In addition, for any C € Cg x, we have:

Ap(C) = Ap(C* M) > 23 " (1/2 = pij) - Ipij < 1/2}. (IV.24)
j=ct
In other words, C*(5) is the unique bucket in C &) that agrees with o} (cf Property

. Hence, still under the hypotheses of Theorem [3| the minimizer C*(5) of (IV.11]) also
agrees with o and corresponds to one of the (%j) possible segmentations of the ordered

list (a}kjl(l), e ,a}‘;l(N)) into K segments. This property paves the way to design
efficient procedures, such as the BUMERANK algorithm described in the next section, for
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recovering bucket order representations with a fixed distortion rate of minimal dimension,
avoiding to specify the size/shape in advance. If, in addition, condition is fulfilled,
when ]3n is strictly stochastically transitive (which then happens with overwhelming
probability, see Proposition 14 in [KCS17]), the computation of the empirical Kemeny
median a}g is immediate from formula (replacing P by ﬁn), as well as an estimate

of C*UGA) plugging O'*ﬁ into (I'V.23]) as implemented in the experiments below. When the

empirical distribution ﬁn is not stochastically transitive, which happens with negligible
probability, the empirical median can be classically replaced by any permutation obtained
from the Copeland score by breaking ties at random. The following result shows that,
in the strict/strong stochastic transitive case, when the low-noise condition NA(h) is
fulfilled, the excess of distortion of the empirical minimizers is actually of order Op(1/n).

Theorem 4. (FAST RATES) Let A be a given bucket order shape and éK,A any empir-
ical distortion minimizer over Cg . Suppose that P is strictly/strongly stochastically

transitive and fulfills condition (IV.7). Then, for any § > 0, we have with probability

1-46:
N o N
AP((?K,A) —AP(C*(KJ\)) < (2(2):]\72) y log ((/\)/5>

n

The proof is given in section [§

4 The BUMERANK Algorithm: Hierarchical Recovery of a
Bucket Distribution

Motivated by Theorem (3, we propose a hierarchical "bottom-up’ procedure to recover,
from ranking data, a bucket order representation (agreeing with Kemeny consensus)
of smallest dimension for a fixed level of distortion, that does not requires to specify
in advance the bucket size K and thus avoids computing the optimum for all
possible shape/size.

Suppose for simplicity that P is strictly /strongly stochastically transitive. One starts
with the bucket order of size IV defined by its Kemeny median o%:

C(0) = ({op ")}, -, {op "))

The initial representation has minimum dimension, i.e. d¢(g) = 0, and maximal distortion
among all bucket order representations agreeing with o, i.e. Ap(C(0)) = L%, see
Corollary [l The binary agglomeration strategy we propose, namely the BUMERANK
(for ‘Bucket Merge’) algorithm, consists in recursively merging two adjacent buckets
Ck(j) and Cg41(j) of the current bucket order C(j) = (C1(j), ..., Ck(j)) into a single
bucket, yielding the ’coarser’ bucket order

CU+1)=(Ci(), - Cr105), Cr(d) U Cry1(4), Crr2(d)s - -, Cre (1)) (IV.25)
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The pair (C(j),Cr+1(j)) chosen corresponds to that maximizing the quantity
k .
APeimn= Y e (IV.26)
1€Ck(5),7 €Ck+1(7)

The agglomerative stage C(j) — C(j + 1) increases the dimension of the representation,

#Cr(J) + #Ck+1(j)> 1
#Cr(J) ’

while reducing the distortion by Ap(C(j)) — Ap(C(j + 1)) = Agf) (C(4))-

dC(j+1) = (dC(j) + 1) X ( (IV.27)

BuMERANK Algorithm

1. Input. Training data {¥;}? ;, maximum dimension dy.x > 0, distortion tolerance
e > 0.

2. Initialization. Compute empirical Kemeny median U;‘S and C(0) =
({0’;%_1(1)}, cee {o%_l(N)}). Set K < N.
3. Tterations. While K > 3 and A, (C(N — K)) >,

a) Compute k € arg max; ;< p_1 A%) (C(N—-K)) and C(N — K +1).

n

b) If de(N—K+1) > dmax: g0 to 4. Else: set K < K — 1.
4. Output. Bucket order C(N — K).

For notational convenience, the BUMERANK algorithm is defined taking full rankings
Y.;’s as input, but it remains valid in the pairwise comparisons framework (see Remark.
This algorithm is specifically designed for finding the bucket order C of minimal dimension
de (i.e. of maximal size K) such that a bucket distribution in P¢ approximates well the
original distribution P (i.e. with small distortion Ap(C)). The next result formally
supports this idea in the limit case of P being a bucket distribution.

Theorem 5. Let P be a strongly/strictly stochastically transitive bucket distribution and
denote K* = max{K € {2,..., N}, 3 bucket order C of size K s.t. P € P¢}.
(i) There exists a unique K*-shape X\* such that Ap(C*K"A)) = 0.
(ii) For any bucket order C such that P € Pe: C # C*E"A) = dp > Ao (xc* 2%) -
(1i1) The BUMERANK algorithm, runned with dpme; = N!— 1, € = 0 and theoretical
quantities (0}, Agf) ’s and Ap) instead of estimates, returns C*E"A7),

The proof is deferred to section[8] Hence, the BUMERANK algorithm allows to recover
the bucket order C with minimal dimension such that P € P¢.

5 Numerical Experiments

We provide numerical experiments on both real and artificial datasets.
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5. Numerical Experiments

5.1 Real-World Datasets

10 sushi dataset 10 cars dataset 20 cars dataset K
25 25 80
K K 3
201 3 20 1 . 3 60 4 4
s 151 000p, 4 Si15dan,. 4 5 5
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Figure IV.1: Dimension-Distortion plot for different bucket sizes on real-world preference
datasets.

In this section we illustrate the relevance of our approach through real-world ranking
datasets, which exhibit the type of sparsity considered in the present chapter. The first
one is the well-known Sushi dataset (see [Kam03|), which consists of full rankings describ-
ing the preferences of n = 5000 individuals over N = 10 sushi dishes. We also considered
the two Cars preference datasetsﬂ (see [EAT3]). It consists of pairwise comparisons of
users between N different cars. In the first dataset, 60 users are asked to make all the
possible 45 pairwise comparisons between 10 cars (around 3000 samples). In the second
one, 60 users are asked to make (randomly selected) 38 comparisons between 20 cars
(around 2500 samples). For each dataset, the empirical ranking a}g is computed based

on the empirical pairwise probabilities. In Figure , the dimension dc (in logarithmic
scale) vs distortion A n(C) diagram is plotted for each dataset, for several bucket sizes
(K) and shapes (A). These buckets are obtained by segmenting O'A with respect to A
as explained at the end of the previous section. Each color on a plot corresponds to a
specific size K, and each point in a given color thus represents a bucket order of size K.
As expected, on each plot the lowest distortion is attained for high-dimensional buckets
(i.e., of smaller size K). These numerical results shed light on the sparse character of
these empirical ranking distributions. Indeed, the dimension dz can be drastically re-
duced, by choosing the size K and shape A in an appropriate manner, while keeping
a low distortion for the representation. We provide in the next subsection additional
dimension /distortion plots on toy datasets for different distributions which underline
the sparsity observed here: specifically, these empirical distributions show intermediate
behaviors between a true bucket distribution and a uniform distribution (i.e., without
exhibiting bucket sparsity).

5.2 Toy Datasets

We now provide an illustration of the notions we introduced in this chapter, in particular
of a bucket distribution and of our distortion criteria. For N = 6 items, we fixed a bucket
order C = (C1,C3,Cs3) of shape A = (2,3,1) and considered a bucket distribution P € Pe.

2http://users.cecs.anu.edu.au/ u4940058/CarPreferences.html, First experiment.
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Figure 1V.2: Dimension-Distortion plot for different bucket sizes on simulated datasets.

Specifically, P is the uniform distribution over all the permutations extending the bucket
order C and has thus its pairwise marginals such that p;; = 0 as soon as (7,j) € Cx, x
with & < [. In Figure the first plot on the left is a scatterplot of all buckets of size
K € {2,3} where for any bucket C’ of size K, the horizontal axis is the distortion Ap(C’)
(see (IV.14)) and the vertical axis is the dimension of P¢ in log scale. On the left plot,
one can see that one bucket of size K = 3 attains a null distortion, i.e. when C’ = C, and
two buckets of size K = 2 as well, i.e. when C' = (C;UCs,C3) and when C’' = (C1,C2UC3).
Then, a dataset of 2000 samples from P was drawn, and for a certain part of the samples,
a pair of items was randomly swapped within the sample. The middle and right plot
thus represent the empirical distortions /A\n(C' ) for any C’' computed on these datasets,
where respectively 20% and 50% of the samples were contaminated. One can notice that
the distortion is increasing with the noise, still, the best bucket of size 3 remains C' = C.
However, the buckets C’ attaining the minimum distortion in the noisy case are of size
2, because the distortion involves a smaller number of terms k(A¢/) for a smaller size.

true bucket distribution uniform distribution

25 25
K K
20 A 3 20 A ""n.,_J 3
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Figure IV.3: Dimension-Distortion plot for a true bucket distribution versus a uniform
distribution (N = 10 on top and N = 20 below).
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6. Conclusion

We now perform a second experiment. We want to compare the distortion versus di-
mension graph for a true bucket distribution (i.e., for a collection of pairwise marginals
that respect a bucket order) and for a uniform distribution (i.e., a collection of pairwise
marginals where p;; = 0.5 for all 4,j). This corresponds to the plots on Figure m
One can notice that the points are much more spread for a true bucket distribution, since
some buckets will attain a very low distortion (those who agree with the true one) while
some have a high distortion. In contrast, for a uniform distribution, all the buckets will
perform relatively in the same way, and the scatter plot is much more compact.

6 Conclusion

In this chapter, we have developed novel theoretical concepts to represent efficiently
sparse ranking data distributions. We have introduced a distortion measure, based on a
mass transportation metric on the set of probability distributions on the set of rankings
(with Kendall’s 7 as transportation cost) in order to evaluate the accuracy of (bucket)
distribution representations and investigated the performance of empirical distortion min-
imizers. We have also provided empirical evidence that the notion of sparsity, which the
dimensionality reduction method proposed relies on, is encountered in various real-world
situations. Future research could investigate at length how to exploit such sparse rep-
resentations for improving the completion of certain statistical learning tasks based on
ranking data (e.g. clustering, ranking prediction), by circumventing this way the curse
of dimensionality.

7 Perspective - Alternative Cost Function: The Spearman
p Distance

As a direction of future research, we propose to extend the dimensionality reduction
framework derived in this chapter from the Kendall’s 7 distance, to the Spearman p
distance.

The expression of the distortion Ap(C) obtained in Proposition [1] critically depends
on the choice of the Wasserstein parameters, namely d = d the Kendall’s 7 distance and
g = 1. Although obtaining a closed-analytical form for the distortion is a challenging

problem for general d and ¢, the following result shows that choosing the Spearman p
distance d = do as cost function and ¢ = 2 leads to an alternative distortion measure:

Ap(C) = min Wy, o(P, P’
P( ) Pr/IéllIi’lc d2,2( ) )7
that can be explicitly expressed in terms of the triplet-wise probabilities
Pijik = Poop{E(i) < X(j) < X(k)}-
In addition, the coupling (X, X¢) can also be shown to be optimal in this case:

Np(C) = E[d3 (S, e)] -
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Hence, based on the explicit formula below, the distortion can be straightforwardly es-
timated, just like the p;;.’s, so that an analysis similar to that in section |3| in the
Kendall’s 7 case, can be naturally carried out in order to provide statistical guarantees
for the generalization capacity of empirical distortion minimization procedures.

Proposition 2. Let N > 3 and P be any distribution on Sy. For any bucket order
C=(C, ..., Cx), we have:

2

A/P (C) = m Z Z (N + 1)pc,b,a + N(pb,c,a + pc,a,b) + Pva,c + Pa,cp
1<k<l<m<K (a,b,c)ECk XCy XComn,

2
+ Ni Z { Z N(pb,c,a + pc,b,a) + Db.a,c + DPe,a,b

- Ta<k<i<i \(abe)ec, xCixC

+ Z N(pc,a,b + pc,b,a) + Pa,c,b + DPo,c,a } .
(a,b,c)ECK X Ci xC;

The proof is a straightforward consequence of the result stated below.
Lemma 2. Let N > 3 and P be a probability distribution on Gy .

(i) For any probability distribution P' on Sy :

2
War2 (P P) > 555 > B > max(pijm i) — 1)
a<b<c | (ik)es(abe)

where s(a,b,c) is the set of the 6 permutations of the triplet (a,b,c) and, for any
(i7j7 k) € 5(aab> C)7 p;%k = ]P)ENP’{E(i) < E(]) < E(k)}

(ii) If P € Pc with C a bucket order of [N] with K buckets:
Wa, 2 (P, P') >

2
Ni Z Z (N + 1)p6,b,a + N(pb,c,a + pc,a,b) + Db.a,c + Pa,c,b

T 1<k<i<m<K (a,b,¢)€C, XCXCrm

2
+ m Z { Z N(pb7c,a + pc,b,a) + Pv,a,c + Pe,ab
1<k<I<K (a,b,c)ECk XCyxCy

+ Z N(pc,a,b + pc,b,a) + Paep + pb,c,a} ,
(a,b,c)eck XCp xC;
(IV.28)

equality holding true when P' = P¢, i.e. when P’ is the distribution of Y.
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Its proof is provided in section |8 This expression of the distortion A’%»(C) in terms of
the p; j x’s suggests empirical methods using their estimates

Bk = S HE() < 2) < ()}
s=1

As pointed in Remark [3] for pairs, observing full rankings s may be too costly in prac-
tical applications, where one would rather rely on triplet-wise comparisons I{¥,(is) <
Es(Js) < Xs(ks)}:

n

e D Hliandes k) = (00 0); Bu(ia) < ali) < Zu(k)},
LR s=1

1

Pijk =
with Nijk = Z?:l H{@s,js, ks) = (iaja k)}

8 Technical Proofs

This technical section gathers the detailed proofs of this chapter’s theoretical results.

Proof of Lemma

Consider two probability distributions P and P’ on Sy. Fix i # j and let (X,%’) be
a pair of random variables defined on a same probability space, valued in & and such
that p;; = Poop{2(i) < X(j)} and p} ; = Pyrop{¥'(1) < X'(4)}. Set

mg =P{X' () <T'(j) | 2() < ()}
Equipped with this notation, by the law of total probability, we have:
p;’j = piﬂ'ﬂ'i,j + (1 — piJ)(l — 7Tj7i). (IV.29)

In addition, we may write

E [d-(5,%)] =) E[I{(2() - Z()(X'() = ¥'(j)) < 0}]
1<j
=Y E[{Z() < ZGI{E'G) > 2'(6)} + H{E6) > SO () < Z'(5)}]
1<j
= il =miy) + (1= pig)(1—m0).
1<j
Suppose that p; ; < p;j. Using (IV.29), we have p; ;(1 — m;) + (1 — pij)(1 — 7)) =
i+ (1 —2m;)pij, which quantity is minimum when 7; ; = 1 (and in this case m;; =
(1-p};)/(1=pi;)), and then equal to |p;; —p; ;|. We recall that we can only set m; j = 1
if the initial assumption p;; < pg’j holds. In a similar fashion, if p; ; > pg,j, we have
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pij(1—mij)+ (1 —pij)(1—mj) =2(1 —p;i ;) (1 —mj) +pij —p;j, which is minimum for
7ji = 1 (we have incidentally 7;; = pj ;/p;,; in this case) and then equal to [p;; — p; ;-
Since we clearly have

Wa, 1 (P, P') >

inf P [(2() — 2() (X () — X'(j)) < 0],
Z(E 3 st P{E()<XE()}= plj and P{X/(:)<X'(j)}=p! [( () (]))( () (])) ]

0]

this proves that
Wa,1 (P.P') =) |ph; — pigl-

1<j

As a remark, given a distribution P on Sy, when P’ = Pz with C a bucket order of
[N] with K buckets, the optimality conditions on the 7; ;’s are fulfilled by the coupling
(3, X¢), which implies that:

Wa 1 (P Pe) =) Ipij—pijl= Y. > b (IV.30)

1<J 1<k<I<K (i,j)€Ck xC;
where p} ; = Py.op, [Yc(i) < Ze(f)] = pijI{k = 1} + I{k < [}, with (k,1) € {1,.. LK)
such that (7,7) € C x C;.
Proof of Proposition

Let C be a bucket order of [N] with K buckets. Then, for P’ € P¢, Lemma [1| implies
that:

K
Wa, 1 >3 il =Y. > gl Y > pi

i<j k=14i<j,(i,j)eC? 1<k<I<K (i,7)€Cp xC;

where the last equality results from the fact that péd = 1 when (i,j) € Cr x C; with
k < 1. When P’ = P, the intra-bucket terms are all equal to zero. Hence, it results from

(TV.30) that :
Wa 1 (PP)= > > pii=Ap(0)
1<k<I<K (i,j)€C, xC;
Proof of Theorem

Observe first that the excess of distortion can be bounded as follows:

— <
A (C’K,\) Cé%fKAP(C) 2Cénca;)({A

An(C) — AP(C)( n {Ceigi Ap(0) - it AP(C)} .

By a classical symmetrization device (see e.g. [VAVW]), we have:

E[max

o [Ra(€) - AP(C)H < 2E [Ra(V)]. (IV.31)
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Hence, using McDiarmid’s inequality, for all § € (0,1) it holds with probability at least
1-9:

~ oa L

An(C) - AP(C)) < 2E [Rn(N)] + K(A) Oi,(f)'

max
CECK’A

Proof of Theorem
Following the proof of Theorem 8.1 in [BBL05|, we have for all m € {1,..., M},

E [AP(CAK% m)] <E [AP(@{W, Am)} +E [PEN(Am, 1)]

M
+ E A C—KnC—PEN)\m/, ,
mz/:l Kchrﬁiﬂm, p(C) (€) ( n)) J

where x4 = max(z,0) denotes the positive part of z. In addition, for any é > 0, we have:

IP’{ max Ap(C)—/AXn(C)zPEN()\m,n)+6}

CeCrp,am
)

< — A0 > ~A =
<F {m Ap(€) = Aa(€) 2 E [m Ar(€) An@] * 5}

+ PR () < E[Ru(hm)] — 264 < 2 2n0”

_z wp [ - 20
n\Am) > n\Am 5 > 2€XPp 25/‘4}()\m)2 )
using (IV.31)) for the first inequality, and both McDiarmid’s inequality and Lemma 8.2 in
[BBLO5| for the second inequality. Observing that x(\) < (g) and integrating by parts

conclude the proof.

Proof of Theorem

Consider a bucket order C = (Cq, ..., Ck) of shape A, different from . Hence,
there exists at least a pair {4, j} such that j <¢ i and o}(j) < op(i) (or equivalently
pij < 1/2). Consider such a pair {i,j}. Hence, there exist 1 < k < I < K s.t.
(i,7) € Cr x Cy. Define the bucket order C' which is the same as C except that the
buckets of ¢ and j are swapped: C; = {j} UC; \ {3}, C; = {i} UC/\ {j} and C,, = Cp, if
m e {1,...,K}\ {k,1}. Observe that

Ap(C") = Ap(C) = pij —pji + Z Pia — Pja + Z Pa,j — Payi
aeC\{i} aeC\{j}
-1
+ Z Z Pa,j — Payi + Pia — Pja < 2(pij —1/2) <0.
m=k+1 a€Cyp,
Considering now all the pairs {4, j} such that j <¢ i and p; ; < 1/2, it follows by induction
that
Ap(C) = Ap(C* M) =23 " (1/2 = pij) - Ipiy < 1/2}. (IV.32)

j=ct
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Proof of Theorem

The fast rate analysis essentially relies on the following lemma providing a control of the
variance of the empirical excess of distortion

An(C) = A (C*HN) ZZH{Z SO} (1 <c 5} = I{i <o 53) -
s=1 i#j

Set D(C) = >_,.; {E(j) < X(i)}- (I{i <¢ j} — I{i <cwacny j}). Observe that E[D(C)] =
Ap(C) — Ap(C*EN),

Lemma 3. Let A be a given bucket order shape. We have:

var (D(C)) < 2(3) (N?/h) - E[D(C))].

PROOF. As in the proof of Theorem consider a bucket order C = (Cy, ..., Ck) of
shape ), different from , a pair {7,7} such that there exist 1 < k <[ < K s.t.
(1,7) € Cp x Cp and o5 (j ) < O'P( i) and the bucket order C" which is the same as C except
that the buckets of ¢ and j are swapped. We have:

D(C")=D(C) =I{£(i) < Z()}-L{E() < T3+ Y HEG) < E(@)}-I{Z() < E(a)}

a€Cp\{i}
+ Y K{E(a) <Z(j)} - {(a) < B(i)}
acC\{j}
-1
+ > Y HE(a) <TG} - H{E(e) < D)} + {Z() < £(a)} —{E() < S(a)},

m=k+1 a€Cp,

Hence, we have: var(D(C') — D(C)) < 4N?2. By induction, we then obtain that:

var (D(C)) < 201 AN?)#{(4,5) : i <¢ j and pj; > 1/2}
< 2007 AN/ 3 (1/2 = pig) - Uiy < 1/2} < 2G) (N2 /R)ED(C)),
Jj=ct
by combining ([V.24]) with condition (IV.7]).
Applying Bernstein’s inequality to the i.i.d. average (1/n)> " ; Ds(C), where
=D () < Be(@)} - (i < 5} = i <ceaen 5 5
i#j
for 1 < s < n and the union bound over the bucket orders C in Cg ) (recall that

#Cxg )\ = (])\\[)), we obtain that, for all § € (0,1), we have with probability larger than
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1-6: VC e CK)\,

20ar(D(C))log ( () /9)

n

4K(\) log((3)/9)
3n

E[D(C)] = Ap(C) — AP(C*(K,A)) < A (C) - Kn(c*(K,/\)) I

Since A, (C KA) — A (C*EN) < 0 by assumption and using the variance control provided
by Lemma [3] above, we obtain that, with probability at least 1 — d, we have:

2(3)+1 2 <AP(6K,)\) - AP(C*(K’)\))) /h x1og((%)/9)

n

AP(éK,A) — Ap(C*EN)y <

4r(\) log((} )/5)
3n

Finally, solving this inequality in A P(GK ) — Ap(C*N) yields the desired result.

Proof of Theorem

Straightforward if K* = N: assume K* < N in the following.
(i). Existence is ensured by definition of K* combined with Theorem |3| Assume there
exist two distinct K*-shapes A and X such that Ap(C*E"N) = Ap(C* K" /\/)) = 0.

Necessarily, there exists k € {1,..., K —1} such that, for example, Ck,( )ﬂCk_H £ 0

and ngﬁ*’)‘,) ¢ CZ(K*’)‘). Then, define a new bucket order C of size K* 4 1 as follows:

C= (c;“K*’”),... ) BTN e tREAY

* K*,A/ * K A * K* A/ * K*7A/ * K*,)\/
Cks-l )\<C( )ﬂcks-l )>7ck5-2 UG )>.

Conclude observing that Ap(C) = 0i.e. P € P, which contradicts the definition of K*.
(ii). By Theorem any bucket order C such that P € P¢ agrees with the Kemeny median.
Then, observe that such bucket order C of size K < K* is obtained by iteratively merging
adjacent buckets of C*E"A"): otherwise, following the proof of (i), we could define a new
bucket order C of size K* + 1 such that P € Pz When K = K* -1, Eq. proves
that de¢ > dp.«(x+,2). The general result follows by induction.

(iii). By induction on N —K* € {0,..., N —2}. Initialization is straightforward for K* =
N. Let m € {3,..., N} and assume that the proposition is true for any strongly /strictly
stochastically transitive bucket distribution with K* = m. Let P be a strongly /strictly
stochastically transitive bucket distribution with K* = m — 1. By definition of K*,
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the algorithm runned with distribution P cannot stop before computing C(N —m + 1),
which results from merging the adjacent buckets Cip(N — m) and Cri1(N — m) (with
ke {l,...,m —1}). Then consider a distribution P with pairwise marginals p; j = 1 if
(4,7) € Ck(N =m) x Cp1 (N —m), pij = 0if (4, j) € Cpy1 (N —m) x Cx(N —m) and p; ; =
pi,j otherwise. Hence, Pisa strongly /strictly stochastically transitive bucket distribution
and C(N — m) is, by construction of P, returned by the algorithm when runned with
distribution P. Hence by induction hypothesis: Pe Pe(n—m)- Conclude observing that

Ap(C(N =m)) = Ap(C(N =)+ Y i, (N—m) jeCoss (N—m) Pid = A (C(N —m)), which
implies that Ap(C(N —m+ 1)) = Ap(C(N —m)) — AP (C(N - m)) =0.

Proof of Lemma

We start with proving the first assertion.

(i). Consider a coupling (X, ') of two probability distributions P and P’ on &y. Define
the triplet-wise probabilities p; j ;, = Prop{X(i) < X(j) < E(k)} and p} ; , = Psyrop{X'(i) <
¥'(j) < X'(k)}. For clarity’s sake, we will assume that p; ;; = min(p; jk, p} ;) > 0 for all
triplets (i, j, k), the extension to the general case being straightforward. We also denote
Dijk = max(pi’j’k,p;7j7k). Given two pairs of three distinct elements of [N], (i, 7, k) and
(a,b,c), we define the following quantities:

Tapbeligk = P {2 (a) <X'(b) <X'(c) | 2(i) < 2(j) < B(k)},
Topelijr = P{3(a) <B(b) < X(c) | ¥'(5) < X'(j) < ¥'(k)},

Tabeligk = TabelijklPigk < Pijnt + Top e jxl{Pige > Pijnts
Tabeligk = TapeliiklPigk > Pijnt + Topepij Pk < Pijkl-

The motivation for defining the 7, ; ;x’s is that the coupling condition 7; ; xj; jx = 1,

which implies ; ; ki j = Puik
W Pi,j,k
i jkligk < 1 (resp. Wi,j,kh’,j,k < 1) when pj ;. < pijx (resp. pijr < p; ;). Throughout
the proof, the triplets (a, b, ¢) always correspond to permutations of (3, j, k). Now write:

E [dg (2,5 } ZE [2/(1)3] — 2E[S()(9)],
where
EXG)Y =E[(1+ Y HZ() <S@ODT=1+> (N+pji— > piik
j#i J#i k#i,j
and
E[S(i)S' (1) = 1+ Y _pji+ 0 + P{S() < B(0), ¥'(j) < (i)}

J#
+ > P{R(j) < B(i), X'(k) < 2'(0)}.

k#i,j
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Hence,

E [d2 (2,2’)2} =y ¥ ﬁ {(N = 1) (pjs + 1)) — 2P{S()) < B(), ¥'(j) < ¥'(5)}}
a<b<c (i,5,k)€s(a,b,c)
— Pk — Pk — 2P{E() < X(4), X' (k) < ¥'(9)},
(IV.33)

where s(a, b, ¢) is the set of the 6 permutations of the triplet (a, b, ¢). Some terms involved
in Eq. (IV.33) can be simplified when summing over s(a, b, ¢), namely:

N-1 , . AN -2
Z N 2(pj,i + i) — Piik — Djik = N_2
(3,7,k)€s(a,b,c)

We now simply have:

E [dQ (2,2’)2} -y 4]@{__22 2y ﬁP{Z(j) <230, 2(j) < ¥'6)}
a<b<c (3,3,k)€s(a,b,c)
+P{2(j) < (i), %' (k) < X'(i)}.
(IV.34)

Observe that for all triplets (a,b,c) and (4, j, k):

P(X (a) < X'(b) < ¥'(c),2(1) < B(j) < X(k))
+P(X'(1) < ¥'(j) < ¥'(k), X(a) < B(b) < X(c)) = TapclijcPijk T F;,b,c\i,j,kpé,j,k-

Then, by the law of total probability, we have for all distinct 7, j, k,

. . !/ - !/ -
P{E() <X(1).X(j) <X'(i)}
— 1{ . + / / }
= UGksilskyiPiksi T il kil ki
+1{ o o4 / / }_|_1{ o oo / / }
o sgilk iPRgd T Thjalk,gilhogiad T 9 TG kg kPIbk T T kljii Pk
—I—l{ﬂ’“ M. ‘—I—ﬂ‘l / g o _|_71-’ / }
o UiiskljkiPiskesi T Tkl kil ki T ToksilginkPhisk T ksil i, kPji k
1 / / / /
+ 5{7Tk,j,i|j,k,ipj,k7i + Tk giilikiliki T TikilkgiPhdi T T e ilk.g,iPk.jii }

1 /
/ / /
+ 5{7Tj,z',k|k,j,z'pk,j,z' + T i klkj,iPhigi T ThgilgakPiik + T jijikPiik s
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and

P{X%(j) < X(1),%' (k) < ¥'(i)}
1
D) {7 kil b iDi kei + W;',k,z'\j,k,z‘pgykn‘}
1
STkl iPhgis T jalh g P

]' / / / /
+ *{W kogiilik,iPikyi t T gl k,iPhk,i T Thk,ilk,g,iPk,ji T T j,k,i\k,j,ipk,j,i}

+P{X'(j) < ¥'(k) < X'(1),2(j) < (i) < E(k)}

+P{¥'(k) < X'(i) < ¥'(4), 2(4) < B(k) < 2(i)}
+P{Y'(k) < X'(j) < ¥'(2), X(j) < B(5) < B(k)}
+P{¥' (k) < ¥'(i) < ¥'(5),2(k) < 2(j) < 2(3)}
+P{Y'(k) < X'(i) < T'(5), 2(4) < B(i) < B(k)},

which implies:

P{E(j) < 2(0),5' (k) < Z'(0)} + P{E(k) < 2(i), ¥'(j) < Z'(0)}
W],k,zb,k,zp],k i + ﬂ- k; ’L‘] k Zp] k 'L + ﬂ-k’] Zlk)]ﬂpkv.]vl + 7Tk} j ’L|k:,j ’kaJJ 7

+ T jiljikiPiksi T il kP T Tkilk g iPhogi + T g il j,iPh.ji

1 ’
+3 {ﬂ-j,k,i\j,i,kpj,i,k +m j k|70 kp] ik + Ty k|g.k,iP3g,k,i + 7'('] i,k|j,k, zp] k z}

2
+1 +’ /+.... ..+’ /
o MkstsiliskiPisksi T T, k,ilioki T TgikeilksigPhiig T T kilki,jPhiig
]‘ /
/

+ ) {W k.giilj.ikPjik + T k,] zlj,z,k‘pj ik T T klk,j,iPk,gi + Wj,i,km,j,ipk,j,i}
]‘ / / / /
T3 {Wk,i,j\k,j,ipk,j,i t ik giPhgi T Thgilk,i, i Pkig T Tk ik, Phiij
_|_1 T s i . —|-7T/ /o + 7T . "—|-7T/ oo
2 ki,j15,4,kP3,5,k k.i,j17,,k P30,k Gyi k| ki, Pkyi,g 7,3.k|k.i,5Pk i,

j
)
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which is invariant under permutation of the indices j and k. Hence,

H(a,bo)= Y w—5P{E0) <S0).T'() < ¥'0)} +P{Z() < 2(), ¥'(k) < ¥'(0)}
(4,5,k)€s(a,b,c)
2N -1 _ N-—-1,_ -
- Z 2N —2) 2)7Tj,k,i\j,k,¢ TN 9 Q(Wk,j,i\j,m + T i ki)
(4,5,k)€s(a,b,c)

N-1 _ 1 )
o o) Peidliks  Figaiins) & 5Tiklini (Piki

2N —1 _ N-—-1,_ _

N-1 _ 7 1 _
o =gy Thialiks + Tighlina) + 5Tikilini (Piki

(IV.35)

Djok,i =
ﬁjyk,i) and Ty ;155 +

which is maximum when T ksiljki = 1 (which implies Tjksilj ki =

Tjikljki = 1 — % for all (4,4, k) € s(a,b,c) and then verifies:

N N—1_
Habe)< Do NPkt gPidk
(4,5,k)€s(a,b,c)
1

= N i 7 » - _i )

N _ N Z (p .k +p1,j,k) Pijk (IV.36)

(4,5,k)€s(a,b,c)

_ 1 IN — Z 5
= N _2 Pijk ¢

(i,3:k) €s(ab,c)

which concludes the first part of the proof.

(ii). Now consider the particular case P’ € P¢, with C a bucket order of [N] with K
buckets. We propose to prove that minpep, Wy, 2(P, P') = Wa, o( P, Pe) = E[d3(%, X¢)]
and to obtain an explicit expression. Given three distinct indices (a,b,c) € [N]?, we
consider the following four possible scenarios.

Case 1: (a,b,c) € Cg are in the same bucket. The maximizing conditions for

H(a,b, C) n Eq IV35 are ﬁj,k,i\j,k,i =1 and ﬁk7j7i|jakai + ﬁj,i,k\j,kz,i =1- % fOI‘ all
(i,7,k) € s(a,b,c). All are verified when X' = Y¢ as 3(i) < 2(j) < X(k) iff Xe(i) <
Ye(j) < Ee(k). Hence:

2N -1
N-2"

H(a,b,c) <

with equality when X/ = Y¢.
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Case 2: (a,b,c) € Cq x Cr x C; are in three different buckets (e.g. ¢ <7 < s). For
all (7,k,1) € s(a,b,c)\ {(a,b,c)}, p;,“ = Djki = 0. Hence, H(a,b, c) writes without the
terms related to the five impossible events ¥'(j) < ¥'(k) < X'(i). Moreover, pj; ki = Djk,i
and T c|j ki = 1 so the sum of the corresponding contributions in H (a, b, c) is:

N -1 N -1
N _2 (pb,a,c + pa,c,b) +

1
2(N — 2) c 5 . IvV.
2(N _ 2) (pb,C,a +p ,a,b) + 2pc,b,a ( A% 37)

We have pgp. < pfhb,c =150 Typelape = 1 and for all (i,5,k) € s(a,b,¢), Ty jkjabe =
Pijk- The sum of the corresponding contributions in H(a, b, c) is:

2N —1 N -1 N -1 1
mpa,b,c + 7(pb,a,c + pa7c,b) + m(pb,c,a + pc,a,b) + SPcba- (IV38)

N -2 2

Finally, by summing expressions ([V.37)) and ([V.38),

ON — 1 2N — 1) N-1
N g Pabe T ﬁ(pb,a,c + Pa,cb) + N2

H(CL, b, C) = (pb,c,a + pc,a,b) + Deba

Case 3: (a,b,c) € C; X C; X C, are in two different buckets such that one item
(here a) is ranked first among the triplet (i.e. ¢ <r). For all (j,k,i) € s(a,b,c) \
{(a,b,¢), (a,c,b)}, P} 1 ; = Djk; = 0. Hence, H(a, b, c) writes without the terms related to
the four impossible events ¥'(j) < ¥'(k) < ¥'(i). For all (j,k,i) € s(a,b,¢), Tapcljri +
Ta,cbljki = 1 and the sum of the corresponding contributions in H(a, b, c) is:

2N —1 N-—-1 2N —1 N -1
mﬂa,b,cla,b,c + N _ g Tacblabe | Pabe + mﬁa,c,bm,c,b + N g abdach | Pach
N -1 1 N -1 N -1
+ mﬂ'a,b,db,c,a + Eﬂ'a,c,b|b,c,a Db,c,a 7]\7 — 27ra,b,c|b,a,c + mﬂ'a,c,b\b,a,c Dba,c

N -1 1 N -1 N -1
+ mﬂ-a,(z,bk,b,a + §7Ta,b,c|c,b,a Pe,b,a + mﬂ-a,c,lﬂc,a,b + mﬂ-a,b,c\c,a,b Pc,a,b-
(IV.39)

Observe that the expression above is maximum when 7, 4 cjq.b.c = Ta,cpla,cb = Tabclbea =
Tapbclbac = Tacbleba = Tacbleab = 1, which is verified if ¥’ = Y¢. In this case, ([V.39))

writes:
m(pa,b,c + Pa,ep) + N _9 (Pb,a,c + Peap) + m(pb,qa + Pepa). (IV.40)

Now consider (j,k,i) € {(a,b,c),(a,c,b)}: pfhb,c +pfl,c,b = 1 and the corresponding

102



8. Technical Proofs

contributions in H(a, b, c) sum as follows:

ON -1 N-1,, ,
2(N - 2) 71—a,b,c|a,b,c + N —29 (ﬂb,a,c|a,b,c + 7r0L,C,b|a,b,c)

N -1 ! / 1 ! /
+ 2(N - 2) (Wb,c,a|a,b,c + Trc,a,b\a,b,c) + §7rc,b,a|a,b,c Pab,c

ON -1 N-1,, ,
2(N - 2) Wa,c,b|a,c,b + N —2 (Wc,a,b|a,c,b + Tra,b,c\a,c,b)

N -1 ! / 1 / /
+ 2(N _ 2) (Wc,b,a|a,c,b + Trb,a,c\a,c,b) + iwb,c,am,c,b Pacb

PRI : / . . _ / _ _
which is maximum when 7Ta7(:,b|a,b,c - 7Tc,a,b\a,b,c - 7Tc,b,a\a,b,c =0and 7Ta,b,c|a,c,b - 7Tb,a,c|a,c,b -
/

The.alach = 0: both conditions are verified for ¥’ = Y. Then, the expression above is
upper bounded by:

2N -1 N -1 N -1

m(pa,b,c + Pach) + N 9 (Pv,a,c + Pejap) + m

(pb,c,a + pc,b,a)’ (IV41)

with equality when ¥’ = ¥¢. Finally, by summing (IV.40) and (IV.41]),

IN —1 2(N — 1) N-1

N _29 (pa,b,c + pa7c,b) + ﬁ(pb,a,c + pc,a,b) + 7(pb,c,a + pc,b,a)a

H <
(a’?b7c)— N—2

with equality when ¥/ = Y¢.

Case 4: (a,b,c) € C; x C; x C, are in two different buckets such that one item
(here ¢) is ranked last among the triplet (i.e. ¢ < r). By symmetry with the
previous situation, we obtain:

N —1 2(N — 1) N-1

N _2 (pa,b,c + pb,a,c) + N _2 (pa,c,b + pb7c,a) + m(pc,mb + pc,b,a)a

H(a,b,c) <

with equality when ¥/ = Y¢.
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Part 2

Risk-Aware Reinforcement Learning

“Quand tu joues au go, faut étre aware...
Si t’es pas aware, tes pierres sont mortes, et toi avec.”

Jean-Claude Van Damme






CHAPTER V

PROFITABLE BANDITS

Abstract

Originally motivated by default risk management applications, this chapter in-
vestigates a novel problem, referred to as the profitable bandit problem here. At
each step, an agent chooses a subset of the K > 1 possible actions. For each action
chosen, she then respectively pays and receives the sum of a random number of
costs and rewards. Her objective is to maximize her cumulated profit. We adapt
and study three well-known strategies in this purpose, that were proved to be most
efficient in other settings: KL-UCB, BAYES-UCB and THOMPSON SAMPLING. For
each of them, we prove a finite time regret bound which, together with a lower
bound we obtain as well, establishes asymptotic optimality in some cases. Our goal
is also to compare these three strategies from a theoretical and empirical perspec-
tive both at the same time. We give simple, self-contained proofs that emphasize
their similarities, as well as their differences. While both Bayesian strategies are
automatically adapted to the geometry of information, the numerical experiments
carried out show a slight advantage for THOMPSON SAMPLING in practice.

1 Introduction

Before providing a general formulation of the profitable bandits problem, we first motivate
it with a credit risk management application.

1.1 Motivation

A general and well-known problem for lenders and investors is to choose which prospec-
tive clients they should grant loans to, so as to manage credit risk and maximize their
profit. A classical supervised learning approach, referred to as credit risk scoring con-
sists in ranking all the possible profiles of potential clients, viewed through a collection
of socio-economic features Z by means of a (real valued) scoring rule s(Z): ideally, the
higher the score s(Z), the higher the default probability. A wide variety of learning
algorithms have been proposed to build, from a historical database, a scoring function
optimizing ranking performance measures such as the ROC curve or its summary, the
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AUC criterion, see e.g. [Wes00], [Tho00], [LYW™04|, [Yan07] or [CE04]: the credit risk
screening process then consists in selecting the prospects whose score is below a certain
threshold. However, this approach has a serious drawback in general, insofar as new
scoring rules are often constructed from truncated information only, namely historical
data (the input features X and the observed debt payment behavior) corresponding to
past clients, eligible prospects who have been selected by means of a previous scoring
rule, jeopardizing thus the screening procedure when applied to prospects who would
have been previously non eligible for credit. Hence, the credit risk problem leads to an
exploration vs exploitation dilemma there is no way around for: should clients be used
for improving the credit risk estimates, or should they be treated according to the level
of risk estimated when they arrive? Lenders thus need sequential strategies able to solve
this dilemma.

For simplicity, here we consider the very stylized situation, where each individual
from a given category applies for a loan of the same amount in expectation. Extension of
the general ideas developed in this chapter to more realistic situations will be the subject
of further research. In this chapter, we propose a mathematical model that addresses this
issue. We propose several strategies, prove their optimality (by giving a lower bound on
the inefficiency of any uniformly efficient strategy, together with tight regret analyses)
and empirically compare their performance in numerical experiments.

1.2 Model

We assume that the population (of credit applicants) is stratified according to K > 1
categories a € {1,..., K}. For each category a, the credit risk is modelled by a probability
distribution v,. We assume that at each step ¢ € {1,...,T}, where T denotes the total
number of time steps (or time horizon), the agent is presented a random number n,(t) > 1
of clients of each category a. She must choose a subset A; C {1,..., K} of categories to
which they grant the loans. We denote by X, .; — Lq ¢ the profit brought by the client
number c of category a at step ¢, Ly ¢ being the loan amount and X, .; the corresponding
reimbursement. In addition, we assume that all loans L, . for the same category a have
the same known expectation 7,. We assume that the variables {X, .+} are independent,
and that X, . has distribution v, and expectation p,. We further assume that for any
category a € {1,..., K}, the n,(t)’s are bounded i.e. there exist two positive integers
(ny,nt) € N*2 such that: n, <n,(t) <nf forallt>1.

Here and throughout, a sequential strategy is a set of mappings specifying for each
t which categories to choose at time ¢ given the past observations only. In other words,
denoting by I; = (Xa,c,s, na(s))1§s§t,aeAS,1§c§na(s) the vector of variables observed up
to time t > 1, a strategy specifies a sequence (A¢)¢>1 of random subsets such that, for

each t > 2, Ay is o(l;—1)-measurable.

It is the goal pursued in this work to define a strategy maximizing the expected
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cumulated profit given by
T K na(t)
St =E Z ZH{CL S .At} Z Xa,c,t - La,c,t
t=1 a=1 c=1

This is equivalent to minimizing the expected regret

Rr = ANo(T) - Sr

acA*
= 3 A (FulT) —ENUT)]) + 3 1AG[E[NG(T))
acA* ag¢ A*

where No(T) = E [2?21 na(t)} is the expected total number of clients from category a

over the T rounds, Ny (t) = 34, na(s)I{a € A} is the number of observations obtained
from category a up to time t > 1, A, = g — 74 is the (unknown) expected profit provided
by a client of category a and A* = {a e {l,....,K},A, > 0} is the set of profitable
categories.

1.3 Illustrative Example

Let us consider the credit risk problem in which a bank wants to identify categories of
the population they should accept to loan. It may be naturally formulated as a bandit
problem with K arms representing the K categories of the population considered. The
bank pays 7, when loaning to any member of some category a € {1,...,K}. Each
client ¢ € {1,...,n4(t)} of category a receiving a loan from the bank at time step ¢ is
characterized by her capacity to reimburse it, namely the Bernoulli r.v. By .t ~ B(pa)
with p, € [0, 1]:

e B,.: = 0 in case of credit default, occurs with probability 1 — p,: the bank gets
no refunding,

e B, .+ =1 otherwise, occurs with probability p,: the bank gets refunded (1 + p,)7,
with 7, the loan amount and p, the interest rate.

All individuals from the same category are considered as independent i.e. the By .4’s
are 1.i.d. realizations of B(p,). Hence the refunding X, .; received by the bank writes
as follows: Xy ¢t = (14 pa)TaBa,ct- Therefore the bank should accept to loan to people
belonging to all categories a € {1,..., K} such that E[X,;] > 7,. This condition

rewrites:
1

1+pa'

Hence the role of the bank is to sequentially identify categories verifying Eq. (V.1]) in
order to maximize its cumulative profit over the 1" rounds.

Pa > (V.1)
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1.4 State of the Art

In the multi-armed bandit (MAB) problem, a learner has to sequentially explore and
exploit different sources in order to maximize the cumulative gain. In the stochastic set-
ting, each source (or arm) is associated with a distribution generating random rewards.
The optimal strategy in hindsight then consists in always pulling the arm with highest
expectation. Many approaches have been proposed for solving this problem such as the
UCBLI algorithm (JACBF02]) for bounded rewards or the THOMPSON SAMPLING heuris-
tic first proposed in [Tho33|. More recently many algorithms have been proven to be
asymptotically optimal, particularly in the case of exponential family distributions, such
as KL-UCB (JGC11]), BAYEs-UCB (|[Kaul6]) and THOMPSON SAMPLING ([KKM12],
[KKM13]). In this chapter we consider a variation of the MAB problem, where, at each
time step, the learner may pull several arms simultaneously or no arm at all. To each arm
is associated a known threshold and the goal is to maximize the cumulative profit which
sums, for each arm pulled by the learner, the difference between the mean reward and
the corresponding threshold. This threshold is typically the price to pay for observing a
reward from a given arm, e.g. a coin that has to be inserted in a slot machine. Here the
optimal strategy consists in always pulling the arms whose expectations are above their
respective thresholds. The case where all arms share the same threshold is studied in
[RSL17] with a different definition of regret, which only penalizes pulls of non-profitable
arms and hence do not refer to the notion of profit. A similar problem has been tackled
in [LGC16] in a best arm identification setting with fixed time horizon and for a unique
threshold, where rate-optimal strategies are studied. The purpose of this chapter is how-
ever different, and we argue that the strategies proposed here are more relevant in many
applications (e.g. bank loan management, see Section .

Indeed, in this chapter we mainly focus on deriving asymptotically optimal strategies
in the case of one-dimensional exponential family distributions. Section [2] contains an
asymptotic lower bound for the profitable bandit problem for any wuniformly efficient
policy. The three following sections (respectively and@ are devoted to the adaptation
of three celebrated MAB strategies (respectively KL-UCB, BAYES-UCB and THOMPSON
SAMPLING) to the present problem. We provide in each case a finite-time regret analysis.
Asymptotical optimality properties of these algorithms are discussed in Section [7] The
final Section [§|contains an empirical comparison of the three strategies through numerical
experiments.

2 Lower Bound

The goal of this section is to give an asymptotic lower bound on the expected regret
of any uniformly efficient strategy. In this purpose, we adapt the argument of [LRS5],
rewritten by |[GMSI16|, on asymptotic lower bounds for the expected regret in MAB
problems. First we define the models Dy, ..., Dg where, for any arm a € {1,..., K}, D,
is the set of possible distributions v,. Then, we introduce the class of uniformy efficient
policies that we focus on.
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Definition 1. A strategy is uniformly efficient if, for any profitable bandit problem
(Va> Ta)1<a<K € Hle Dy xR, it satisfies for all arms a € {1,..., K} and for all o €]0, 1],
E[No(T)] = o(Na(T)*) if pa < 7a or No(T) — E[No(T)] = o(Na(T)*) if pta > Ta-

Now we can state our lower bound which applies to these strategies.

Theorem 1. For all models D1,...,Dg, for all uniformly efficient strategies, for all
profitable bandit problems (Vq,Ta)i1<a<k € Hle D, x R, for all non-profitable arms a
such that pg < 74,
E[N,(T 1

lim inf [Na(T)] > ,

T—o00 log T ’Cinf(l/a, Ta, Da)
where Kint(Va, Ta, Do) = Inf{ KL(vg, V),), V), € D, jil, > 7o} with K L(v,,v),) the Kullback-
Leibler divergence between distributions v, and v, and pl, the expectation of V).

In the remainder of the chapter, we mainly focus on proposing asymptotically op-
timal strategies inspired by classical algorithms for MAB, namely KL-UCB (JGCLI]
and [CGM™13|), BAYES-UCB (JKaul6]) and THOMPSON SAMPLING ([KKMI2] and
[KKM13|). For each policy, we prove a corresponding upper bound on its expected
regret which will be hopefully tight with respect to the lower bound stated above.

3 Preliminaries

This section provides preliminary remarks and notions required by the subsequent anal-
ysis.

3.1 Comparison with the Classical Bandit Framework

We briefly compare our setting with some usual MAB conventions.

One-Armed Problems. We point out that the objective of a profitable bandit problem,
characterized by K pairs of reward distributions and thresholds {(v1,71),..., (vk,7K)},
can be equivalently reformulated as simultaneously solving K independent instances of
one-armed subproblems: {(v1,71)}, ..., {(vkx,7x)}. In other words, we could without
loss of generality only consider one-armed instances of the profitable bandit problem i.e.
the case K = 1. Nevertheless, we will still write this chapter in the general case K > 1
in order to refer to MAB notations and to our main motivating application, credit risk,
which naturally formulates with several categories. As a consequence of this ’separation’
property, the theoretical guarantees on the expected regret that we provide for different
policies come with simpler proofs than in MAB: the proofs proposed in this chapter
contain all core ideas of regret analyses of some of the most sucessful bandit strategies
(THOMPSON SAMPLING, BAYES-UCB and KL-UCB) with a somewhat simpler and thus
more accessible setting.

Per Round Numbers of Observations. Another difference with the classical MAB
model (where at each round ¢ > 1 the learner observes only one reward drawn from pulled
arm a) is that we consider here a more general setting where a random number n,(t) of
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i.i.d. rewards sampled from v, are observed. On the other hand, a multiplicative constant
(larger than or equal to 1) appears in the upper bounds on the expected regret that we
propose for different policies and some parts of their proofs become more intricate.

3.2 One-Dimensional Exponential Family

We consider arms with distributions belonging to a one-dimensional exponential family.
It should be noted that the KL-UCB-4P algorithm presented next, as KL-UCB, can be
shown to apply to the non-parametric setting of bounded distributions, although the
resulting approach has weaker optimality properties (see Section .

Definitions and Properties. A one-dimensional canonical exponential family is a
set of probability distributions Pg = {vy,0 € O} indexed by a natural parameter 6
living in the parameter space © =]0~,07[C R and where for all § € ©, vy has a den-
sity fo(z) = A(z)exp(G(x)f — F(0)) with respect to a reference measure . A(x) and
the sufficient statistic G(z) are functions that characterize the exponential family and
F(8) = log [ A(z) exp(G(x)0)dé(x) is the normalization function. For notational sim-
plicity, we only consider families with G(x) = x, which includes many usual distributions
(e.g. normal, Bernoulli, gamma among others) but not heavy-tailed distributions, com-
monly used in financial models, such as Pareto (G(z) = log(x)) or Weibull (G(x) = z*
with ¢ > 0). Nevertheless generalizing all the results proved in this chapter to a gen-
eral sufficient statistic G(x) is straightforward and boils down to considering empirical
sufficient statistics g(n) = (1/n) > G(X,) instead of empirical means. We addition-
ally assume that F is twice differentiable with a continuous second derivative (classic
assumption, see e.g. [WasI3|) which implies that p : 6 — Ex.,,[X] is strictly increasing
and thus one-to-one in §. We denote u~ = p(0~) and u™ = u(61). The Kullback-Leibler
divergence between two distributions vy and vy in the same exponential family admits
the following closed form expression as a function of the natural parameters 6 and €'

K(6,0) = K L(vg, vy) = F(8') — [F(8) + F'(6)(¢/ — 0)].
We also introduce the KL-divergence between two distributions v,-1(,) and v,-1(,:

w
d(z,y) : = K(u™ (), (y))
= sgp{)\a} —log E,,—1(y)[exp(AX)]}, (V.2)

where the last equality comes from the proof of Lemma 3 in [KKM13|. This last ex-
pression of d allows to build a confidence interval on = based on a fixed number of i.i.d.
samples from v,-1(,) by applying the Cramér-Chernoff method (see e.g. [BLM13]).
Examples. In Table [VI] we recall some usual examples of one-dimensional exponen-
tial families. For some of these distributions that are characterized by two parameters
(namely normal, gamma, Pareto and Weibull), one of the two parameters is fixed to
define one-dimensional families.

We mainly investigate the profitable bandit problem in the parametric setting, where
all distributions {vg, }1<q<k belong to a known one-dimensional canonical exponential
family Pg as defined above.
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Distribution Density Parameter 0
Bernoulli B(A) | A(1 — A\)'*I{z € {0,1}} | log (ﬁ)
(=22
Normal N'(), 0?) 2;(72 e 207 2
Gamma I'(k, \) %xkilefm]l{x >0} -
Poisson P(\) /\Iifxl[{x e N} log(\)
Pareto(z,, \) ;‘ﬁ’; x> xm} -A-1
Weibull(£,)) | A(@A) e ) {2 > 0} — )\

Table V.1: Usual examples of one-dimensional exponential families (parameters o2, k,
Zm and £ are fixed).

3.3 Index Policies

All bandit strategies considered in this chapter are index policies: they are fully charac-
terized by an index u,(t) which is computed at each round ¢ > 1 for each arm separately;
only arms with an index larger than the threshold 7, are chosen. Index policies are
formally described in Algorithm

4 The KL-UCB-4P Algorithm

We introduce the KL-UCB-4P algorithm, 4P’ meaning ’for profit’, as a variant of the
UCB1 algorithm (JACBF02|) and more precisely of its improvement KL-UCB introduced
in [GC11]. It is defined by the index

w(t) = sw{g > fat) : Na(Dd(iu(t)) < logt + cloglogt}

where fiq(t) = (1/N,(t) YL {a € AS}ZZi(f) Xa,c,s is the empirical average reward
at time t, d is the divergence induced by the Kullback-Leibler divergence defined in
Equation and c is a positive constant typically smaller than 3. Due to its special
importance for bounded rewards, we name KL-BERNOULLI-UCB-4P the case d = dgern :
(z,y) — zlog(z/y)+ (1 —x)log((1 —z)/(1 —y)) and KL-GAUSSIAN-UCB-4P the choice
d = dgauss : (:Evy) = 2($ - y)2-

Analysis for One-Dimensional Exponential Family. We show for the KL-UCB-
4P algorithm a finite-time regret bound that proves its asymptotic optimality up to a
multiplicative constant n; /n; (see Section [7|for further discussion). To this purpose, we
upper-bound the expected number of times non-profitable arms are pulled and profitable
ones are not. The analysis is sketched below, while detailed proofs are deferred to section
10
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Theorem 2. The KL-UCB-4P algorithm satisfies the following properties.
(i). For any non-profitable arm a € {1,..., K} \ A* and all € > 0,

nyt (logT + cloglogT) I Hi(e)
E[N(T)] < (1+¢) = d i) +n, {1 + TF:© } ;

where Hy(€) and (1(€) are positive functions of € depending on ng , fiq and 74.
(ii). For any profitable arm a € A*, if T > max(3,n}) and ¢ > 3, we have:

No(T) — E[No(T)] < nj{e(2c+3)loglog T +n} +3}.

Sketch of Proof. The analysis goes as follows:

(i). For a non-profitable arm a € {1,..., K'}\ .A*, we must upper bound E[N,(T)].
At first, a sub-optimal arm is drawn because its confidence bonus is large. But after
some Kp ~ klog(T) draws (where £ is the information constant given in the theorem),
the index u,(t) can be large only when the empirical mean of the observations deviates
from its expectation, which has small probability. Thus, we write

E[No(T)] < nf Ko+ Y Pla € A1, Na(t) > Kr)

t>1

One obtains that K gives the main term in the regret. The contribution of the remaining
sum is negligible: denoting d* (z,y) = d(z,y)[{z < y}, we observe that:

(a € A1) = (ua(t) = 7a)
- (dJr(laa(t)vTa) < d(f1a(t), ua(t)))

_ <d+(ﬂa(7§),7'a) < log(t) —|—cloglog(t)> ‘

Na(t)

As a deviation from the mean, the last event proved to have small probability when
N, (t) > Kp. Summing over these probabilities produces a term negligible compared to
Kr.

(ii). For a profitable arm a € A* we must upper bound N, (T) — E[N,(T)]. We

write
T—1

No(T) —E[No(T)] < nf ) Pla ¢ Aa)
t=1

and we control the defavorable events by noting that

(@ & Ary1) = (ua(t) < 7a) C (ua(t) < pia) ,

where the probability of the last event can be upper bounded by means of a self-
normalized deviation inequality such as in Lemma 10 in [CGM™13].
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4.1 Extension to General Bounded Rewards

In this subsection, we consider rewards that are bounded in [0, 1] and we build confidence
intervals wuy(t) with Bernoulli and Gaussian KL divergence, i.e. d = dpem Or d = dGauss,
which respectively define KL-BERNOULLI-UCB-4P and KL-GAUSSIAN-UCB-4P algo-
rithms. Then, with the same proof as in the one-dimensional exponential family setting,
we obtain similar guarantees as in Theorem [2| except that the divergence d is either dpery
or dgauss- By Pinsker’s inequality, dpern (ftas Ta) > dGauss(ta, Ta), which implies that KL-
BERNOULLI-UCB-4P performs always better than KL-GAUSSIAN-UCB-4P. However,
this upper bound is not tight w.r.t. the lower bound stated in Theorem [l| obtained for
general bounded distributions. Hence, none of these two approaches is asymptotically
optimal. A truly non-parametric, optimal strategy might be obtained by the use of
Empirical-Likelihood (EL) confidence intervals, as in [CGM™13|, but this is beyond the
scope of this chapter.

5 The BAYES-UCB-4P Algorithm

This section introduces the BAYES-UCB-4P algorithm.

Analysis. We now propose a Bayesian index policy which is derived from BAYEs-UCB
([Kaul6]). For all arms a € {1,..., K}, a prior distribution is chosen for the unknown
mean fi,. At each round ¢ > 1, we compute the posterior distribution 7, ¢+ using the N (t)
observed realizations of v,. We compute the quantile ¢,(t) = Q(1 — 1/(t(logt)¢); mat),
where Q(a, ) denotes the quantile of order « of the distribution 7. The BAYEs-UCB-4P
is the index policy defined by u4(t) = ga(t). In other words, arm a is pulled (a € A1)
whenever the quantile g,(t) of the posterior is larger than the threshold 7,. The following
results, proved in section show that BAYES-UCB-4P is asymptotically optimal up to
a multiplicative constant n; /n, (see Section [7).

Theorem 3. When running the BAYES-UCB-4P algorithm the following assertions
hold.

(i). For any non-profitable arm a € {1,..., K} \ A* and for all € > 0 there exists a
problem-dependent constant N (€) such that for all T > Ng(e),

1+ €\ nf(logT + cloglogT) Hi(e)
E[N,(T)] < “ T a1+ H
[ ( )] N <1 - 6) ngd(uaﬂ'a) e TR CN

where Ha, Hs(e) and Pa2(€) are respectively a constant and two positive functions of €
depending on ng , Ta, fta and a constant p, verifying p= < pg < fiq-
(ii). For any profitable arm a € A*, if T > t, and ¢ >5,

e(2(c—2)+4)

R(r) - EIN(T)] < nf {2

loglogT + 4, + 1},

where t, = max(e/A, 3, A,n}, Anl) and A is a constant depending on the chosen prior
distribution.

115



V. PROFITABLE BANDITS

Sketch of Proof. We present the main steps of the proof of Theorem [3| (see section
for the complete version). The idea is to capitalize on the analysis of KL-UCB-4P,
and to relate the quantiles of the posterior distributions to the Kullback-Leibler upper-
confidence bounds.

(). For a non-profitable arm a € {1,..., K} \ .A*, we want to upper bound E[N,(T)].
Again, we use the following decomposition:

E[No(T)] < nf § Kr+ ) Pla € Ayr, Nalt) > K7) 3,

t>1

where Kp ~ rlog(T') of the same order of magnitude as the asymptotic lower bound
derived in Theorem[I] This cut-off K7 is expected to be the dominant term in our upper
bound, since the contribution of the remaining sum is negligible compared to Kp: when
Ng(t) > K, we first observe that

(a € Armr) = (qu(t) = 1) = (wam,uﬂ) > t(llgt)) , (v3)

where the 7, is the posterior distribution on p, at round ¢ and g, (¢) is, under 7, ¢, the
quantile of order 1 — # L The key ingredient here is Lemma 4 from [Kaul6], which

Tog )¢ "
relates a quantile of the posterior to an upper confidence bound on the empirical mean:

Tat([Tas 7)) S V/Na(t)e Naldla®)ira),

This permits to conclude as for KL-UCB-4P. B
(ii). For a profitable arm a € A*, we must upper bound N, (T') —E[N4(T")]. We write

T-1
Nu(T) ~ E[NJD)]) < nf 3 Bla ¢ Avs).
t=1

Then we note that for all ¢ > 1,
. 1
(@& A1) = (4a(t) < 7a) = | Taul7a, 7)) < 1= =30 -

(logt)e

Using again the bridge between posterior quantiles and upper-confidence bounds of

Lemma 4 in [Kaul6]:
e~ Na()d(fa(t),7a)

Na(t) ’

Tat([Ta ) 2

we can again argue as for KL-UCB-4P.

6 The TS-4P Algorithm

This section introduces the TS-4P algorithm, a variant of the THOMPSON SAMPLING
approach.
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Analysis. The TS-4P algorithm described in this section is inspired from the analysis
of THOMPSON SAMPLING provided in [KKM13|. Although the guarantees given in Sec-
tion [5] for BAYES-UCB-4P are valid for any prior distribution, the Bayesian approach
proposed in this section will be analyzed only for Jeffreys priors (see [KKM13| for more
details). m,(0) will refer to the prior distribution on 6, and 7,(t) to the posterior distri-
bution updated with the N,(t) observations collected from arm a up to time ¢. At each
time step ¢ > 1, sample 0, (t) ~ m,(t) and define the TS-4P algorithm (see Algorithm [2)
pulling arm a (i.e. @ € Apy1) if uo(t) = pu(04(t)) is larger than or equal to 7,.

Theorem 4. When running the TS-4P algorithm the following assertions hold.
(i). For any non-profitable arm a € {1,..., K} \ A* and for all € €]0,1],

E[N, (T)] < (1 +6> ng log T

— +H47
1—¢) ng d(ﬂaﬂb)

where Hy is a problem dependent constant.
(ii). For any profitable arm a € A*,

No(T) — E[No(T)] < Hs,

with Hs a problem dependent constant.

Sketch of Proof. Here we give the main steps of the proof of Theorem [4] (see section
for complete proof).

(i). For a non-profitable arm a € {1,..., K} \ A*, we must upper bound E[N,(7)].
We first write:

E[No(T)] Sng  Kr+ Y Pla€ A, Bo(t), No(t) > K1) ¢,
t>1

where K ~ klog(T) is, as in the proofs of KL-UCB-4P and BAYES-UCB-4P, a cut-
off corresponding to the main term in our bound as suggested by the asymptotic lower
bound in Theorem [If and E,(t) is a high probability event ensuring that the current
empirical mean at times ¢, namely fi,(t), is well concentrated around the true mean p,.
It remains to prove that the sum of defavorable events (for N,(t) > K7 and under E,(t))
is negligible compared to K7. Observe that the following holds:

Pa € A1, Ea(t), Na(t) > K1) < P(u(0a(t)) > 70, Bo(t), Na(t) > K7),  (V.4)

where 0,(t) is sampled from the posterior distribution 7, (f). Then we upper bound
the right-hand side expression in Eq. thanks to the deviation inequality stated in
Theorem 4 in [KKMI3| and that we recall in Lemma [2] in section Summing over
these probabilities produces a term negligible compared to K.

117



V. PROFITABLE BANDITS

(ii). For a profitable arm a € A*, we must upper bound N,(T') — E[N,(T)], which we
decompose as follows:

T-1
No(T) = E[Na(T)] < 0f ) Pla ¢ Arsa).
t=1
Then, we control the defavorable events: for all £ > 1 and b €]0, 1],

T-1 +00 4o
S Plag¢As) S P (M(ea(t)) < Tas Ea(t)‘Na(t) > tb> +Y P (Na(t) < tb> ,
t=1 t=1 t=1

where the first series is proved to converge thanks to Lemma [2] and the second too by
Lemma (3| provided in section We point out that our proof of Lemma [3] which is a
much simplified version of the proof of Proposition 5 in [KKM13|, takes advantage of the
independence of arms in our objective (see Section .

7 Asymptotic Optimality

A direct consequence of theorems and []is the following asymptotic upper bound on
the regret of KL-UCB-4P (with ¢ > 3), Bayes-UCB-4P (with ¢ > 5) and TS-4P:

Z _nér‘Aa’

a, ra<Ta Na d(ﬂm Ta) ‘

lim sup <
T—oo 108 T

Observe that this asymptotic upper bound on the regret is tight with the asymptotic
lower bound in Section [2l when n; = n_ for all non-profitable arms a € {1,..., K} \ A*,
which is achieved if and only if the n,(t)’s are constant. In this particular case these
three algorithms are asymptotically optimal.

8 Numerical Experiments

We perform three series of numerical experiments for three different one-dimensional
exponential families: Bernoulli, Poisson and exponential. In each scenario, we consider
five arms (K = 5) with distributions belonging to the same one-dimensional exponential
family. For all arms a € {1,...,5} and time steps ¢t € {1,...,T}, ny(t) — 1 is sampled
from a Poisson distribution P (), where (A1,...,A5) = (3,4,5,6,7). Moreover, the time
horizon is chosen equal to T" = 10000 and the regret is empirically averaged over 10000
independent trajectories. Our experiments also include algorithms, all index policies,
whose theoretical properties have not been discussed in this chapter, namely:

e UCB-V-4P: same index as UCB-V introduced in [AMS09] and using empirical
estimates of the variance of each distribution,

e KL-EMP-UCB-4P: same index as empirical KL-UCB introduced in [CGM™13]
and using the empirical likelihood principle,
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e KL-UCB™-4P: derived from KL-UCBT™ introduced in [Kaul6] and defined by the
index wu,(t) = sup {q > fig(t) : Na(t)d(fia(t), q) < log(t(log t)c/Na(t))}.

We also define KL-BERNOULLI-UCB™-4P by replacing the divergence d by dgem in the
index of KL-UCB*-4P.

Scenario 1: Bernoulli. In the first scenario, the K = 5 categories have Bernoulli
distributions B(p,) with parameters (pi,...,ps) = (0.1,0.3,0.5,0.5,0.7) and thresholds
(t1,...,75) = (0.2,0.2,0.4,0.6,0.8). Hence the profitable arms are the second and the
third ones. Notice that although arms 3 and 4 have the same distribution, namely 5(0.5),
their thresholds are different such that arm 3 is profitable but not arm 4.

250

-~ KL-UCB-4P

-7x- BAYEs-UCB-4P
200 - -f=}- TS-4P <>
- KL-UCB+-4P
KL-Emp-UCB-4P

150 - -$%- KL-GAUSSIAN-UCB-4P §>

© -~ UCB-V-4P .
%) y -
D) //
~ 100 8 -
¢ - e
@/2%’,’\/ - ,é—:’;’-’*’"
50 T ‘_/%f é —__,:—_—_’_'_’:—_"
= "’---;gsssﬁ;;::—
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10° 10! 102 10° 10*
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Figure V.1: Regret of various algorithms as a function of time in the Bernoulli scenario.

Observe that KL-GAUSSIAN-UCB-4P produces large regret, which confirms the dis-
cussion in section [4.1] stating that it always performs worse than KL-BERNOULLI-UCB-
4P, which here coincides with KL-UCB-4P.

Scenario 2: Poisson. In the second scenario, the five categories a € {1,...,5} have
Poisson distributions P(6,) with respective mean parameters (61, ...,65) = (1,2,3,4,5)
and thresholds (11,...,75) = (2,1,4,3,6): the profitable arms are 2 and 4. In order
to run KL-EMP-UCB-4P which assumes boundedness, the rewards are truncated at a
maximal value equal to 100.
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Figure V.2: Regret of various algorithms as a function of time in the Poisson scenario.
The right hand-side plot only displays the best performing policies on a harder problem.

The right-hand side plot in Figure [V.2]only displays the regret of the best performing
strategies on a harder problem with same distributions but thresholds closer to expecta-
tions: (r1,...,75) = (1.1,1.9,3.1,3.9,5.1).

Scenario 3: Exponential. In the third scenario, we consider exponential distribu-
tions £(A\,) with respective mean values ()\fl, . .,)\gl) = (1,2,3,4,5) and thresholds
(11,...,75) = (2,1,4,3,6). As in the Poisson scenario, the rewards are truncated at a
maximal value of 100.
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Figure V.3: Regret of various algorithms as a function of time in the exponential scenario.
The right hand-side plot only displays the best performing policies on a harder problem.

The right-hand side plot in Figure [V23] only displays the best performing strategies.
Here again, the distributions are kept the same but the problem is made harder with
new thresholds: (7,...,75) = (1.1,1.9,3.1,3.9,5.1).

Interpretation. In each scenario and for each algorithm, the regret curve presents a
linear regime corresponding to a logarithmic growth as a function of time. We observe
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that the best performing policies (i.e. with small regret) are those adapting to the
parametric family of the reward distributions: through the Kullback-Leibler divergence
for KL-UCB-4P and KL-UCB™-4P, or through prior distributions for BAYES-UCB-4P
and TS-4P. By contrast, KL-GAUSSIAN-UCB-4P always uses the Gaussian Kullback-
Leibler divergence, both KL-BERNOULLI-UCB-4P and KL-BERNOULLI-UCBT-4P the
Bernoulli divergence and KL-EMpP-UCB-4P only assumes that the rewards are bounded.
Hence we see that prior knowledge on reward distributions is critical in the efficiency of
these algorithms.

9 Conclusion

Motivated by credit risk evaluation of different populations in a sequential context, this
chapter introduces the profitable bandit problem, evaluates its difficulty by giving an
asymptotic lower bound on the expected regret and proposes and theoretically analyzes
three algorithms, KL-UCB-4P, BAYES-UCB-4P and TS-4P, by giving finite-time upper
bounds on their expected regret for reward distributions belonging to a one-dimensional
exponential family. All three algorithms are proven to be asymptotically optimal in the
particular setting where for each catefory, a same number of clients is presented to the
loaner at each time step. An extension to general bounded distributions is proposed
through two algorithms KL-BERNOULLI-UCB-4P and KL-GAUSSIAN-UCB-4P coming
with finite-time analysis directly derived from the analysis of KL-UCB-4P. We finally
compare all these strategies empirically and also against other policies inspired from
other multi-armed bandits algorithms. BAYES-UCB-4P and TS-4P perform the best in
our numerical experiments and we observe that policies having prior information on the
distributions, through appropriate prior distribution for BAYES-UCB-4P and TS-4P or
Kullback-Leibler divergence for KL-UCB-4P, perform much better than non-adaptive
strategies like KL-BERNOULLI-UCB-4P and KL-GAUSSIAN-UCB-4P.

10 Technical Proofs

The technical proofs are collected below.

Proof of Theorem

We use the inequality (F) in Section 2 in [GMS16], a consequence of the contraction of
entropy property, which straightforwardly extends from the classical multi-armed bandit
setting to ours where several arms can be pulled at each round ¢ and a number n,(t) > 1
of observations are observed simultaneously for each pulled arm a. Then we have

K
> B [Na(T)KL(va, v3) > KI(E, [Z], E,/[2]), (V.5)
a=1

where Z is any o(Ir)-measurable random variable with values in [0, 1]. Consider a thresh-
olding bandit problem (v,, 74)1<a<k € Hle D, x R with at least one non-profitable arm
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a€{l,...,K}, we define a modified problem (', 7) such that v; = vy, for all k # a and
V. € D, verifies pi, > 7,. Then, considering Z = N,(T)/Ny(T), Eq. (V.5) rewrites as
follows:

E, [Na(T)|KL(va, ) = K(E,[No(T))/Na(T), By [Na(T)] /Na(T))

]
> (1 — W) log ( = Na(T) ) —log(2),
Na(T) Na(T) - EV’ [Na(T)]

where we used for the last inequality that for all (p, q) € [0,1]?,

kl(p,q) = (1 —p)log (1i(1> — log(2).

Then, by uniform efficiency it holds: E, [Ny (T)] = 0(No(T)) and Ny(T) — B, [No(T)] =
o(Ng(T)®) for all a € (0,1]. Hence for all a € (0, 1],

1 No(T
lim inf E, [Ny (T)|KL(vg, v,) > liminf log | = (T) =1-a.
T—oo log T—oo logT No(T)e

Taking the limit @ — 0 in the right-hand side and taking the infimum over all distribu-
tions v/, € D, such that u), > 7, in the left-hand side conclude the proof.

Proof of Theorem

For any arm a € {1,...,K}, the average reward at time ¢ is denoted by f[i,(t) =
Sa(t)/Na(t) where Sq(t) = S 32 X, . J{a € A} and No(t) = 34 na(s)[{a €
As}. For every positive integer s, we also denote by fiq s = (X1 + -+ + Xqo,5)/s with
Xa1;- -+, Xas the first s samples pulled from arm a, so that fi4(t) = fis N, (). The upper
confidence bound for p, appearing in KL-UCB-4P is then given by:

uq(t) = sup{q > fia(t) : Na(t)d(fia(t),q) <logt + cloglogt}.

For all (z,y) € [u~, 52, define d*(z,y) = d(z, y)I{z < y}.
(i). Let a € {1,..., K} \ A" be a non-profitable arm i.e. such that p, < 7,. Given
e €]0, 1[, we upper bound the expectation of N,(T') as follows,

E[N,(T)] = E

Zna(t)]l{a € At}] <niE [Z {a € At}] .

t=1
Now observe for ¢t > 1 that a € A1 implies u,(t) > 7, and hence,

0 (a0, 72) < a0 (1)) = 2 EORIOBE
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Then,
T
Zﬂ{a c .At}
t=1
_1+Zﬂ{aeAt+1}Z >, IRae (] Ana¢ U A
s=1 1<y <--<is <t G€{i1,0nvis } €1t P\ {1 yoris }
x T{(nq(i1) + -+ ng(is))d* (,ua’na(il)Jr...Jrna(is), 7a) < logt+ cloglogt} .
(V.6)

Given € €]0, 1[, we upper bound the last indicator function appearing in Eq. (V.6) by

nds

I{s < K1} + Z I {3 > Kr, kd™ (fia g, 7a) < logT + cloglogT}
k=ng s

njs

d as 'a
<Hs<Kr}+ > H{SZ}Q3d+U@kﬂh)§(f+:)},

k=ng s

where Kp = {(1 + e)%—‘. The last expression in Eq. (V.7) is not using the

indices ¢,11, . ..,is which allows us to exchange the sums over ¢t and s in Eq. (V.6) and
to obtain

T
> Hae A}
t=1
N Has Ta
<1 I K I > Kp,d" ) < ——Z
+Z {s < T}+kz {S 7,d" (flaks Ta) < 1+e}
Ng S

T-1
xZ]I{aEAtH} Z I{ac ﬂ Ai,a ¢ U A;

1<y <-<is <t i€{i1,mis} i€ {1yt P\ {it5eenvis }

d(fras Ta
< Kr+ Z Z {d+ ,UakaTzz)<(f+6)}a

s=Kr k= =ng s
where the last inequality is implied by
T—1
dI{ac A} Y. Iqae (] Aa¢ U Aip <1 (V.8)
t=1 1<iy < <ig <t € {i1,emmvis } 1€{1e P\ {i15eenyis }
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Hence,

+oo  +oo
EINJ(T)] <nf S Kr+ > Y P<d+ Bos a) < d(ua,m>

1
s=K7 k=n_s te
ElogT—i—cloglogTjL +{1+ Hl(e)}

<(1
<( +€)n; e 7a) Th ()

comes from Lemma [l with H;(e) and [ (€) positive functions of e.

(ii). Now consider a € A* i.e. verifying p1, > 7. It follows,

T
Na(T) - E[NG(T)] =E Zna(t)ﬂ{a Qé At ] < n+ Z P Ua < ,Uu .
t=2

Let t € {1,...,T — 1} and observe that (u,(t) < pa) C (A (f1a(t), pa) > d(fia(t), ua(t))).
Hence for ¢ > 3 and ¢ > max(3,n,),
P (ua(t) < pa)
<P (No(t)d" (f1a(t), ta) > 6¢) < (6¢log(nft) + 1) exp(—d; + 1)
e((logt)? + clog(t) loglog(t) + log(n}) log(t) + clog(n; ) loglog(t) + 1)
t(logt)e

< e(2¢+3)
tlogt

)

where d; = logt+cloglogt > 1 and the second inequality results from the self-normalized
concentration inequality stated in Lemma 10 in [CGMT13|. Then by summing over ¢,

T-1
Na(T) = E[N,(T)] < nf {2 +ng +e2e+3) Y tligt}
t=3

<nj {e(2c+3)loglogT +nS +3}.

Lemma 1. Let a € {1,..., K} \ A* a non-profitable arm (i.e. po, < 74), € €]0,1[ and
Kp = {f(e)w—‘ with f a function such that f(€') > 1 for all € €]0,1[. Then

ng d(fta;Ta)
there exist H(e) > 0 and B(e) > 0 such that

NS d(pa,7a)\ _ H(e)
S 3 P (asm < M) < 15

s=Kr = Ng S

where H(e) and B(€) are positive functions of € depeding on pg, T, and n .

PROOF. Observe that d* (figk, Ta) < d(fta;7a)/f(€) if and only if fiqr > 7(€) where
r(€) €]ptq, Ta| verifies d(r(€), 7q) = d(ta, 7a)/ f(€). Thus,

P <d+(ﬂa,ka7'a) < W) — P(,aa,k: > 7"(6)) < e_kd(T(E),Ma)
€
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and

“+o00 —+00

T n;s
>0 3 B () < M) < 37 3 e

s=Kr k=ng s s=Kr = =ng s

—+00

1 —ng sd(r(€),ita
T 1 e dr(9ma) D> et
S_KT

= dr(e) pa) K

Proof of Theorem

We first recall that the posterior distribution on the mean of a distribution belonging to
an exponential family only depends on the number of observations n and the empirical
mean z (see e.g. Lemma 1 in [Kaul6|): for a given arm a € {1,..., K}, we denote
this posterior by 74 .. Given two constants p; > p~ and ,uf{ < pt overifying py <
ta < pg for all arms a € {1,..., K}, we define the truncated empirical mean: fiq(t) =
min(max (i, (t), g )s g ). Then, for any arm a € {1,..., K} and time step ¢ > 1, the
posterior distribution involved in BAYES-UCB-4P defines as follows:

ﬂ-avt = TrayNa(t)vﬂa(t)‘

(i). Let a € {1,..., K} \ A* be a non-profitable arm (i.e. p, < 7,). We upper bound
the expectation of N, (T') as follows:

T T-1
E[N,(T) =E Zna(t)]l{a € .At}] <niE |1+ Z I{qa(t) > Ta}]
t=1

1+ZH{ Ta,Na (t) fia( )([TavﬂJr[)Zt(lOlgt)caaeAtJrl}]

ogt)

1
JE[1+ Z I {Ma(t) < Tas Ta,No ()1 (t) ([Tas 1) 2 tlost)"” € At+1} (V.9)
=1
T—
+ Z {fig(t) > 74,0 € At+1}] . (V.10)
—
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V. PROFITABLE BANDITS

Using Lemma 4 in [Kaul6], the first sum in (V.9)) is upper bounded by
~1

N

(]

H{B N, (e Ne O (alO)70) 5 L GGAM}
(logt)e
—1

t(
H{aeAtH}Z > { N A,,a¢
1
na

-+
I

H)—‘

t

U 4

ALt P\ {10}
1)+ 4na zs))d+(ﬂa ng(ip)4-- +na(zs)»7_a) > 1
~ t(logt)c
(V.11)

where B is a constant depending on 1, M(J)r and on prior densities. Then we upper bound
the last indicator function appearing in Eq. (V.11]) by

s=11<i1 < <5<t IS AT

XH{B\/na(il) -+ ng(is)e

nd s

{s < Kp}+ Z 14 s> Kp,kd" (figr, 7o) <logT + cloglog T + = logk+logB}
k=ng s
nts
<I{s < Kr}+ Z 148> Kp, kd™ (flag, 7o) <logT + cloglog T + 1logk —i—logB}
k=ng s
+ L ftap < 1o }-
(V.12)

We are now able to upper bound the right-hand side expression in Eq. (V.11]) by injecting
Eq. (V.12)) and switching the sums on indices ¢ and s, which leads to

_ 1
tzl I {Ma<t) < Ta77Ta,Na(t)7ﬂa(t)<[Taa pt) > mv ac At-H}
T ni’s

s=1 p—n-s

SKp—1+) > I8s> Ky kd' (,uak,Ta)<logT—|—cloglogT+logk:+logB}
+H{ﬂa,k <M6}7

(V.13)
where we used the same argument as in Eq. (V.8) to get rid of the sum over ¢
Given € €]0, 1] we define Ky = [% %—‘ and denote by N,(¢) the constant
such that 7' > N, (e) implies:

1 1
= 1 _ L |
Kr > [ng-‘ and o (2 log(n, Kr) + log(B)) e (g, Ta), (V.14)

where the first inequality ensures that for all k& > n_ K7, the function k — log(z)/x
decreases.

x
Hence, the first indicator function appearing in the right-hand side in Eq
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(V.13)) is upper bounded by

1—c¢
1+e€

I { > Ko, d* (o 7a) < d(ua,m}. (V.15)

By combining equations (V.9), (V.13)) and (V.15)) we obtain

E[N( )] {KT+ Z Z ( /Jaka'ra) > 1_T_Ed(ﬂa;7—a)>

SKTkns

(V.16)

T-1
+Z Z P(fiak < pg) Z;]P’(ua(t)ZTa»aeAtH)}’

51kns

where the first sum can be upper bounded by Hz(e)T—%2(¢) with Hz(e) > 0 and fa(e) > 0
thanks to Lemma We upper bound the second sum in Eq. (V.16 with Chernoff

inequality:

T n}Ls 400  +oo

—kd s
> Pl <pg) <D D e Fdlmone)
s=1g=n_s s=1 p=n-s

e Ma a d(pg sHa)

(1 - e—d(uaaua)) (1 - e—ncfd(m}ua)) '

Finally, we upper bound the third sum in Eq. (V.16]) by

T—1
E > Hias > Ta,a € At+1}]

t=1

Z]I{aGAtH}Z Z I ac ﬂ Ai a ¢ U A;

s=11<i1 < <is <t i€{i1,0mis} $€{1 e t\{i1,0evis }

x T {ﬂa,na(i1)+---+na(is) 2 Ta}]

e_nt; d(Tavl"a)

1 — ed(Taia)) (1 - e—n;d(fa,ua)) ’

T n[fs
<Y Pliag > 7a) <

s=1 k=ng s (
(V.17)

where we respectively used Eq. (V.8)) and Chernoff inequality in the two last inequalities.
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(ii). Now consider a € A*. We have,

_ T—1 T—1

N.(T) — E[N, > na(t+DHa ¢ A} =nf Y Plga(t) < 7a)
T—1 B T—ltz1

<nf {to -1+ Z P (f1a(t) < Ta, No(t) > (logt)?) + Z P (¢a(t) < 7o, No(t) < (1ogt)2)} :
t=to t=1

(V.18)

where g = max(t1,t2) with ¢; the smallest integer verifying C%t(logty)?® > 1, which
implies for all ¢ > ¢; that fi,(t) < qu(t), and t2 = [exp(2/d(7a, pta))] to ensure that
d(7a, pta)(logt)? > 2logt for all t > t5. To upper bound the first sum in Eq. we
write for t > tg,

t +oo
P(jia(t) < 70 Na(t) = (0gt)?) € D" Pltas <)<y, e *mm)
s=[(logt)?] s=[(logt)?]

< e—d(Tavﬂa)(IOgt) <

Wl

To upper bound the second sum in Eq. (V.18]) use again Lemma 4 in [Kaul6],

1
< 2) = + - — < 2
P (Qa(t) < TaaNa(t) = (IOgt) ) P < Ta,Na(t),fa(t)\[Tar K D < t(logt)c7Na(t) = (IOgt) >
p Ae—Na(t)d(ﬁa(t),Ta) 1 < 1
<
= Na(D) < Hiogaye: Na(t) < (log)?

=P (N0 (ua),72) > o ) 0 < (log1)?)

< P (No(t)d" (a(t), 7a) > log(At) + (c — 2)loglogt) ,

where A is a constant depending on 1 , ,uar and on prior densities. Then for ¢ > 5, using
the self-normalized deviation inequality stated in Lemma 10 in [CGM™13], we have,

P(N,(t)d" (fia(t), 7s) > log(At) + (c — 2)loglogt) < (& log(n}t) + 1) exp(—d; + 1)
= (At(log(t))*™*)"H{e((log(t))? + (¢ — 2) log(t) log log(t) + log(Ang ) log(1)
+ (¢ — 2)log(n}) loglog(t) + log(A) log(n}) + 1)}
e(2(c—2)+4)
Atlog(t) 7

where we assumed ¢t > t, = max(e/A,3, A,n}, An}) to ensure the last inequality and

that 0; = log(At) + (¢ — 2) loglog(t) > 1. Then by summing over t,

_ e(2(c—2)+4) = 1
No(T) = E[No(T)] < ng {ta + A tz:; tlogt}

<nt{e(2(c—2) +4)loglogT + t, + 1}.
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Proof of Theorem

We first introduce some notations. Denote by (X, s)s>1 1.i.d. samples from distribution
Vg. Let L(0) = (1/2) min(1, sup, p(z|f)) and for any d, > 0,
< 5a>

is an event where there is at least one ’likely’ observation of arm a (namely X, ) and
such that the empirical sufficient statistic is close to its true mean. We also define

Eo(t) = Eg N, (1)-

87 ’Xau
Ea,s = (33/ € {17 ce 75}7p(Xa,s”0a) > L(ea)7 M — i

Remark 1. In the definition of E, s, the likely’ observation X, g is only needed for
technical reasons when the Jeffreys prior m,(0) is improper (see Remark 8 in [KKMI13]
for further discussion).

We now recall the Theorem 4 in [KKMI3|, an important result on the posterior
concentration under the event F,(t).

Lemma 2. There exists problem-dependent constants C1 , and N1, and a function A —

C2,4(A) such that for 6 €]0,1] and A > 0 verifying 1 —§,C2 4(A) > 0, it holds whenever

Na(t) > Nl,af

P (11(0a(t) > pa + A, Eo()|(Xa,s)1<s<na 1) < C1,aNq(t)e™ Nal)=D(1=0aC.a(A))d(1a sat2)

and

P (,M(Qa(t)) < fg — A7Ea(t)\(Xa,s)1gs§Na(t)) < CLaNa(t)ef(Na(t)*l)(lféacza(A))d(ua,qu)_

Thanks to these concentration inequalities we can derive bounds on the expected
number of pulls of any arm.

For all arms a € {1,..., K} and t > 1, 0,(¢) is a r.v. sampled from the posterior
distribution 7, (t) on 6, obtained after N, (t) observations. For all s > 1, we also denote by
fa,s a 1.v. sampled from the posterior distribution resulting from the first s observations
pulled from arm a (with arbitrary choice when some of these random variables are pulled
together), so that 0,(t) = 0, v, (1)-

We now prove Theorem

(i). Let a € {1,..., K} \ A" be a non-profitable arm (i.e. p, < 7,). We upper bound
the expectation of N,(T) as follows:

T-1
E[No(T)] = E

t=1
(V.19)
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First observe that the first sum in the right-hand side in Eq. (V.19)) is equal to

T-1 t
EZH{GGAHA}Z Z I{ac ﬂ Ai a ¢ U A;
t=1

s=1 1<y <-<ig<t i€{it,eis} G€{1,t—1P\{i1,.is}

X I[ {/’L(ea,na(il)+“'+na(is)) Z Ta; Eavna(il)'i_“"’—na(is)}] :

Then, given € €]0, 1], by choosing §, < €/C2q(|A4|), defining K = “4—_: %—‘

and observing that I{p(0q n, (i1)4-+na(is)) = Tas Bana(iy)++nalis)} 1 upper bounded by
I{s < K1} + ZZiZ,SH{s > Kr, 1(0ak) > Ta, Eq 1}, We obtain:

T-1 T n?{s
Y Plac A1, Bat)) SKp—14 > Y P(u(0ar) > T, Eas)
t=1 s=KT k=n; s

T n[fs
<Kp—1+ Z Z Cl,ak:e_(k_1)(1_€)d(““’“)
s=Kr k=ng s
1+€¢ logT
T 1—engd(pa,7a)
< 1+¢e¢ logT
T 1—engd(pa,7a)

+ Cl aT(Tl,;_KT)2e_(n‘;KT_l)(l_E)d(#a,Ta)

(ng Kr)?

+ Cl,ae(lie)d(“aﬂ—a) Te )

where we used in the first inequality Eq. . In the second and third inequalities we
assumed T' larger than N,(e) verifying T > N,(¢) = Kr > max(N; q/n,, Nag) with
N1, defined in Lemma [2| and N3, such that the function u — u2e(nau=1)(1-€)d(pa;7a) jg
decreasing for u > Ny ,.

In order to upper bound the second sum in the right-hand side in Eq. (V.19)) we first
introduce the following events:

Ba,s = (VS/ c {17 ) 3}7p(Xa,s/’9a) S L(ell))

>5a>.

and

S
= , X
D = <38’€ {1,...,3},‘W_#a
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Then observing that Eq(t)° C By n, ) U Da,n, ) and it holds
T-1

> Pla € A1, Ea(t))

t=1

Z]I{aGAt+1}Z Z I<ac ﬂ Ai,a ¢ U

A;
s=11<i1 <+ <is<t i€{i1,..,is} ie{1,.. t—1}\{é1,...,is }
n[fs
x ) I[{Baﬁk}%—]l{Da,k}]
k=ng s

<Z Z ak +P(D )

s=1 g=n_s

+o00o
< ansl[” (p(Xa1l6a) < L
s=1

(9(1))";5 + (njl‘s)z (e_(ngs_l)d(ﬂa_(saaua) + e—(n;s—l)d(ua—&—&a,ua)) < 40

where we used Eq. (V.§]) in the second inequality.
(ii). Now consider a € A* i.e. verifying g > 74. Let b €]0, 1], we have:

_ T T-1
No(T) —E[No(T)] =E | > _na(t)I{a ¢ A} ] <nI) P ) < Ta)
T—1 = Tt—l1 +oo
n {Z P (u(ﬁa(t)) < 74, Ea(t)’Na(t) > tb) +Y P (Ea(t)c Na(t) > tb> +Y P (Na(t) < tb)} .
t=1 t=1 t=1

(V.20)
By applying Lemma [2] the first sum in Eq. (V.20) is upper bounded by

Nl/bJr Z Chatbe ~(t"=1)(1-0aC2a(Aal)d(arTa) < 40
t:[Nl/ﬂ

0,a

where Ny , = max(Ny 4, N3 4) with N3 4 such that the function u — we~ (W= (1=0aC2.a(|Aal))d(1a;Ta)
is decreasing for u > N3 ,.

By applying Chernoff inequality we upper bound the second sum in Eq. (V.20]) by

t nas

>tb) ET: > ) P(Bag) +P(Dag)

t=1 s=[tb/nt] k=ng s

+oo ng b Mg 4b L
-4t t°—1 )d(pa—9a,tta —| =%t°—1 )d(pa+0a,tta
< nEP(p(Xanl0a) < LO)) " +2(nf)2 ( G I € ) LY )>
t=1

< +00.
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Finally we upper bound the third sum in Eq. (V.20) with the following result,
inspired from Proposition 5 in [KKM13|. In our case its proof is simpler as there are no
dependencies between arms in the objective of the profitable bandit problem.

Lemma 3. For any profitable arm a € A* and any b €)0, 1], there exists a problem-
dependent constant Cy < 400 such that

+oo
b
;}P’ (Na(t) <t ) <G,

Then, by using the Bernstein-Von-Mises theorem telling us that
lim; 400 P(16(0a(75)) < 7o) = 0, we deduce that there exists a constant C' €]0, 1 such
that for all j > 0, P(u(64(75)) < 74) < C. Hence,

+oo +oo
b b 1-b_q
;P(Na(t)ﬁt)SZ(t +1)Ct < too.

Proof of Lemma

In all this proof we consider a fixed profitable arm a € A*. We follow the lines of the
proof of Proposition 5 in [KKMI13] : let t; be the occurence of the j-th play of the arm a
(with top = 0 by convention). Let &; = t;j;1 —t; — 1, it corresponds to the number of time

steps between the j-th and the (j 4+ 1)-th play of arm a. Hence, t — Ny (t) < Z;V;‘(()t) &;
and we have

P (Na(t) < tb) <P (aj e {0 1], > 170 — 1})
1t)

<Y PGz -1

§=0
[°]
1-b_
<Y P(ulfalry) <7a)t T
§=0
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CHAPTER VI

MAX K-ARMED BANDIT: ON THE
EXTREMEHUNTER ALGORITHM AND
BEYOND

Abstract

This chapter is devoted to the study of the maz K-armed bandit problem, which
consists in sequentially allocating resources in order to detect extreme values. Our
contribution is twofold. We first significantly refine the analysis of the EXTREME-
HUNTER algorithm carried out in [CV14], and next propose an alternative approach,
showing that, remarkably, Extreme Bandits can be reduced to a classical version of
the bandit problem to a certain extent. Beyond the formal analysis, these two
approaches are compared through numerical experiments.

1 Introduction

In a classical multi-armed bandit (MAB in abbreviated form) problem, the objective
is to find a strategy/policy in order to sequentially explore and exploit K sources of
gain, referred to as arms, so as to maximize the expected cumulative gain. Each arm
a € {1, ..., K} is characterized by an unknown probability distribution v,. At each
round t > 1, a strategy m picks an arm A; = 7w((A1, XA, 1), -, (A—1, X4, ,4-1)) and
receives a random reward X 4, ; sampled from distribution v4,. Whereas usual strategies
aim at finding and exploiting the arm with highest expectation, the quantity of interest
in many applications such as medicine, insurance or finance may not be the sum of
the rewards, but rather the extreme observations (even if it might mean replacing loss
minimization by gain maximization in the formulation of the practical problem). In
such situations, classical bandit algorithms can be significantly sub-optimal: the ‘best’
arm should not be defined as that with highest expectation, but as that producing the
maximal values. This setting, referred to as extreme bandits in [CV14], was originally
introduced by [CS05] by the name of maz K-armed bandit problem. In this framework,
the goal pursued is to obtain the highest possible reward during the first T > 1 steps.
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VI. Max K-ARMED BANDIT

For a given arm a, we denote by

ng ) — max X
1<t<T
the maximal value taken until round 7" > 1 and assume that, in expectation, there is a
unique optimal arm
a* = arg maxE[GE,?)] .
1<a<K

The expected extreme regret of a strategy m is here defined as
Ry = E[GY] - EIGY), (VL1)

where ngr ) — maxi<;<7 X 4, ¢ is the maximal value observed when implementing strategy
7. When the supports of the reward distributions (i.e. the v,’s) are bounded, no-regret is
expected provided that every arm can be sufficiently explored, refer to [NLB16] (see also
[DS16] for a PAC approach). If infinitely many arms are possibly involved in the learning
strategy, the challenge is then to explore and exploit optimally the unknown reservoir of
arms, see [CV15]. When the rewards are unbounded in contrast, the situation is quite

different: the best arm is that for which the maximum Gg? ) tends to infinity faster than
the others. In [NLBI16], it is shown that, for unbounded distributions, no policy can
achieve no-regret without restrictive assumptions on the distributions. In accordance
with the literature, we focus on a classical framework in extreme value analysis. Namely,
we assume that the reward distributions are heavy-tailed. Such Pareto-like laws are
widely used to model extremes in many applications, where a conservative approach to
risk assessment might be relevant (e.g. finance, environmental risks). Like in [CV14],
rewards are assumed to be distributed as second order Pareto laws in the present chapter.
For the sake of completeness, we recall that a probability law with cdf F(z) belongs to
the (a, 8, C, C")-second order Pareto family if, for every = > 0,

1 —Caz™® — F(z)] < C'z=o0+H) | (VL.2)

where a, 8,C and C’ are strictly positive constants, see e.g. [Res07]. In this context,
[CV14] have proposed the EXTREMEHUNTER algorithm to solve the extreme bandit prob-
lem and provided a regret analysis.

The contribution of this chapter is twofold. First, the regret analysis of the EX-
TREMEHUNTER algorithm is significantly improved, in a nearly optimal fashion. This
essentially relies on a new technical result of independent interest (see Theorem [1| be-
low), which provides a bound for the difference between the expectation of the maximum
among independent realizations X1, ..., X7 of a (a, 8,C, C")-second order Pareto dis-
tribution, E[max;<;<7 X;] namely, and its rough approximation (T'C)/*T'(1 — 1/a). As
a by-product, we propose a more simple EXPLORE-THEN-COMMIT strategy that offers
the same theoretical guarantees as EXTREMEHUNTER. Second, we explain how extreme
bandit can be reduced to a classical bandit problem to a certain extent. We show that
a regret-minimizing strategy such as ROBUST-UCB (see [BCL13]), applied on correctly
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2. Second-Order Pareto Distributions: Approximation of the Expected Maximum
Among i.i.d. Realizations

left-censored rewards, may also reach a very good performance. This claim is supported
by theoretical guarantees on the number of pulls of the best arm ¢* and by numerical
experiments both at the same time. From a practical angle, the main drawback of this
alternative approach consists in the fact that its implementation requires some knowl-
edge of the complexity of the problem (i.e. of the gap between the first-order Pareto
coefficients of the first and second arms). In regard to its theoretical analysis, efficiency
is proved for large horizons only.

This chapter is organized as follows. Section [2 presents the technical result mentioned
above, which next permits to carry out a refined regret analysis of the EXTREMEHUNTER
algorithm in In [] the regret bound thus obtained is proved to be nearly optimal:
precisely, we establish a lower bound under the assumption that the distributions are
close enough to Pareto distributions showing the regret bound is sharp in this situation.
In bl reduction of the extreme bandit problem to a classical bandit problem is explained
at length, and an algorithm resulting from this original view is then described. Finally,
we provide a preliminary numerical study that permits to compare the two approaches
from an experimental perspective.

2 Second-Order Pareto Distributions: Approximation of
the Expected Maximum Among i.i.d. Realizations

In the extreme bandit problem, the key to controlling the behavior of explore-exploit
strategies is to approximate the expected payoff of a fixed arm a € {1, ..., K}. The
main result of this section, stated in Theorem [I| provides such control: it significantly
improves upon the result originaly obtained by [CV14] (see Theorem 1 therein). As shall
be next shown in Section [3] this refinement has substantial consequences on the regret
bound.

In [CV14], the distance between the expected maximum of independent realizations
of a (a,3,C,C")-second order Pareto and the corresponding expectation of a Fréchet
distribution (T'C)Y°T(1 — 1/a) is controlled as follows:

4Dy CYe 2C' Dy
T1-1/a + CB+1-1/aTp-1/a

+ (20'T) T

— lap —
‘E Lrg&}gﬂXt} (TC)°T(1—-1/a)| <

Notice that the leading term of this bound is (2C'T)Y((1+8)) a5 T — +o00. Below, we
state a sharper result where, remarkably, this (exploding) term disappears, the contribu-
tion of the related component in the approximation error decomposition being proved as
(asymptotically) negligible in contrast.

Theorem 1. (FRECHET APPROXIMATION BOUND) If Xy, ..., Xr arei.i.d. r.v.’s drawn
from a («, 8,C,C")-second order Pareto distribution with o > 1 and T > @1, where Q1
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is the constant depending only on «, 3,C and C' given in below, then,

'E [max Xt} —(TC)Y°T(1 - 1/a)

1<t<T

4D, CYe 2C' Dy T
= i1 cﬁ+1—1/aﬁTﬁ—1/a +2(2C'T) A e~ T
= o(T"/),

where H = C(2C")Y/(@(+8) /9 In particular, if B> 1, we have:
_ 1/a _ —
’E L?%}fr Xt] (TC)°T(1—1/a)| =0(1) as T — +oo.

We emphasize that the bound above shows that the distance of E[max;<;<7 X¢] to
the Fréchet mean (TC)Y°T(1 — 1) actually vanishes as T — oo as soon as 3 > 1, a
property that shall be useful in Section [3|to study the behavior of learning algorithms in
the extreme bandit setting.

PROOF. Assume that T" > )1, where

Q1 = 5 max { (20'/0) 9, (80)1+ ) (VL.3)

As in the proof of Theorem 1 in [CV14], we consider the quantity B = (2C'T)'/((1+5)e)
that serves as a cut-off between tail and bulk behaviors. Observe that

— lap(q —
‘E |:11£ta§)§“Xt:| (TC)°T(1-1/a)| <

o0
/ {1 —P(max X; < :c> - 1—|—e_Tcx_a}daz
0 1<t<T
B —a
/ {IP’ ( max X; < m> — e TC= }dx
0 1<t<T
> —a
/ {P < max X; < x) — e TC= }dx' .
B 1<t<T
Forpe {2,8+1}, weset D, =T'(p— é)/a. Equipped with this notation, we may write

00 —a 4D,/ 2C'D
_ —TCxz 2 B+1
/B {IP (fgtag(TXt < ﬂ?) e }dx‘ < Ti-1/a  CA+i-1jaTB—1/a"

<

+

Instead of loosely bounding the bulk term by B, we write

B
/ {]P’ < max X; < a:> — eTcz_a} dz
0 1<t<T

136

B
<BP(X; < B)T+/ e~ T %Ay . (VI4)
0
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First, using (VI.2) and the inequality C/B~(+8e < CB~®/2 (a direct consequence of
\VI1.3)), we obtain

T
P(X, < B)T < (1 —CB™+ C’B_(HB)O‘)
1 “\7 _1 —a _HTA/(B+D)
Second, the integral in [VI.4] can be bounded as follows:

B
/ e~ TCT " 4 < Be~TOB™ — (20/T)V/(1+8)) = 2HT/ (D).
0

This concludes the proof.

3 The EXTREMEHUNTER and EXTREMEETC Algorithms

In this section, the tighter control provided by Theorem [I]is used in order to refine the
analysis of the EXTREMEHUNTER algorithm (Algorithm [3) carried out in [CV14]. This
theoretical analysis is also shown to be valid for EXTEMEETC, a novel algorithm we
next propose, that greatly improves upon EXTREMEHUNTER, regarding computational
efficiency.

3.1 Further Notations and Preliminaries

Throughout the chapter, the indicator function of any event £ is denoted by I{€} and
£ means the complementary event of £. We assume that the reward related to each
arm a € {1, ..., K} is drawn from a (ag, 84, Cq, C’)-second order Pareto distribution.
Sorting the tail indices by increasing order of magnitude, we use the classical notation
for order statistics: () < --- < aqg). We assume that a(q) > 1, so that the random
rewards have finite expectations, and suppose that the strict inequality a(;) < a(z) holds
true. We also denote by N, () the number of times the arm a is pulled up to time ¢. For
1<a< K andt >1, ther.v. )N(mt is the reward obtained at the ¢-th draw of arm a if
t < No(T) or a new r.v. drawn from v, independent from the other r.v.’s otherwise.

We start with a preliminary lemma supporting the intuition that the tail index «
fully governs the extreme bandit problem. It will allow to show next that the algorithm
picks the right arm after the exploration phase, see Lemma [2}

Lemma 1. (OPTIMAL ARM) For T larger than some constant Q4 depending only on
(ta, Ba, Ca)i<a<k and C', the optimal arm for the extreme bandit problem is given by:

a* = arg mina, = arg maz Vg, (VL5)

1<a<K 1<a<K

where V, = (TCy)'/ (1 — L),

Qq
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PROOF. We first prove the first equality. It follows from Theorem [I| that there exists
a constant ()2, depending only on {(ag, Sa;Ca)}1<a<kx and C’, such that for any arm
ac{l, ..., K}, [E[G\)]— V. < V./2. Then for a # a* we have, for all T > Qs
Va/2 < ]E[Gg?)} < E[Ggﬁl*)] < 3V,+/2. Recalling that V, is proportional to T'/® it
follows that a,+ = minj<,<x . Now consider the following quantity:

1
1 1

1
205°T(1— L) | "o ™

Q?) frd 2171&%}*{ 1 Qa . (VIG)
Coe'T(1—-L)

For T > Q4 = max(Q2,Q3), we have V= > 2V, for any suboptimal arm a # a*, which
proves the second equality.
From now on, we assume that 7" is large enough for Lemma [I] to apply.

3.2 The EXTREMEHUNTER Algorithm (JCV14])

Before developing a novel analysis of the extreme bandit problem in Section (see
Theorem , we recall the main features of EXTREMEHUNTER, and in particular the
estimators and confidence intervals involved in the indices of this optimistic policy.

Algorithm 3 EXTREMEHUNTER ([CV14])

1: Input: K: number of arms, T time horizon, b > 0 such that b < minj<,<g B4, N:
minimum number of pulls of each arm (Eq. (VL.9)).
2: Initialize: Pull each arm N times.
3 fora=1,...,Kdo _
Compute estimators hq gkn = ho(N) (Eq. l} and aa,KN = Cu(N) (Eq.
)
Compute index B, gy (Eq. )

end for
Pull arm Agnyy1 = arg max,«x Bo kN
fort=KN+2,...,Tdo

Update estimators BAt_l,t—l and (?*At_l,t_l
10:  Update index By, | ¢—1
11:  Pull arm A; = arg max;,<x Bai—1
12: end for o

=

Theorem [1| states that for any arm a € {1, ..., K}, E[Géﬁl)] ~ (C, )T (1 —
1/ag). Consequently, the optimal strategy in hindsight always pulls the arm a* =
arg max, <, {(TC,)Y*T'(1—1/a,)}. At each round and for each arma € {1, ..., K},
EXTREMEHUNTER algorithm ([CV14]) estimates the coefficients oy, and C, (but not S,
see Remark 2 in [CV14]). The corresponding confidence intervals are detailed below.
Then, following the optimism-in-the-face-of-uncertainty principle (see [ACBF02| and ref-
erences therein), the strategy plays the arm maximizing an optimistic plug-in estimate

138



3. The EXTREMEHUNTER and EXTREMEETC Algorithms

of (C,T)/*T(1 —1/ay). To that purpose, Theorem 3.8 in [CKI4a] and Theorem 2
in |[CK™14b| provide estimators &, (T") and Co(T") for a, and C, respectively, after T”
draws of arm a. Precisely, the estimate a,(7”) is given by

~ (T/) _ 1 Zz‘:l ]I{Xt > 67‘}
Qg - Og T’ ]I{X 41 )
=1 {X¢ > et}

where r is chosen in an adaptive fashion based on Lepski’s method, see [Lep90], while
the estimator of C, considered is

Tl

@(T’) _ 1—2b/(2b+1) Z ]I{f(a > T/Ea(T’)/(2b+1)}’ (VLT)
t=1
where B
ho(T') = min(1/a,(T"),1) . (VL8)
The authors also provide finite sample error bounds for 7/ > N, where
N = Ag(log T)>+1/b, (VL9)

with b a known lower bound on the §,’s (b < minj<,<x f4), and Ay a constant depend-
ing only on (g, Ba; Ca)1<k<i and C’. These error bounds naturally define confidence
intervals of respective widths A and Ay at level &g defined by

2000+

do=T"", where p= . (VI.10)
Qg — 1
More precisely, we have
1 ~ ~
P < — — ho(T)| < A(T), — O (T < AQ(T’)) > 1—2dy, (VL.11)
Qg

where
AL (T") = D+\/1og(1/60)T"~ P+ and Ao (T") = E+/log(T" /6o) log(T")T'~b/ (2+1),

denoting by D and F some constants dependlng only on (g, Ba, Ca)1<a<i and C’'. When
N, (t) > N, denote by Ta t = = ha(Na(t)) and C’at = C,(N,(t)) the estimators based on
the N, (t) observations for simplicity. EXTREMEHUNTER's index B, for arm a at time

t, the optimistic proxy for E[G% )], can be then written as

Rt +A1(Nal(t
)T) ) (VL.12)

By =T (1= T = M(Na(®) ) ((Ca + Aa(Na(1)

where T'(z) = I'(z) if # > 0 and +o00 otherwise.

On Computational Complexity. Notice that after the initialization phase, at each
time ¢t > KN, EXTREMEHUNTER computes estimators hy,; and éAt,t, each having a
time complexity linear with the number of samples Ny, (t) pulled from arm A; up to
time t. Summing on the rounds reveals that EXTREMEHUNTER’s time complexity is
quadratic with the time horizon T

139



VI. Max K-ARMED BANDIT

Complexity | EXTREMEETC | EXTREMEHUNTER
Time O((logT) Q(QI;H)) O(T?)
2(20+1)
Memory | O((logT)™ ¢ ) o(T)

Table VI.1: Time and memory complexities required for estimating (aq,Cqy)i<a<i in
EXTREMEETC and EXTREMEHUNTER.

3.3 EXTREMEETC: A Computationally Appealing Alternative

In order to reduce the restrictive time complexity discussed previously, we now propose
the EXTREMEETC algorithm, an Ezplore- Then-Commit version of EXTREMEHUNTER,
which offers similar theoretical guarantees.

Algorithm 4 EXTREMEETC

1: Input: K: number of arms, T time horizon, b > 0 such that b < minj<,<g B4, N:
minimum number of pulls of each arm (Eq. (VL.9)).

2: Initialize: Pull each arm N times.

3: fora=1,...,K do

o~ ~

4:  Compute estimators hq gknN = ﬁa(N) (Eq. lb and aa,KN = Cu(N) (Eq.
V7))

5. Compute index By xn (Eq. (VI.12))

6: end for

7: Set Awinner = arg max; <,<x Ba kN

8 fort=KN+1,...,T do

9:  Pull arm awinner

10: end for

After the initialization phase, the winner arm, which has maximal index B, g, is
fixed and is pulled in all remaining rounds. Then EXTREMEETC’s time complexity, due
to the computation of ?LmKN and aa,KN only, is O (KN) = O ((log T)2(2b+1)/b), which
is considerably faster than quadratic time achieved by EXTREMEHUNTER. For clarity,
Table summarizes time and memory complexities of both algorithms.

Due to the significant gain of computational time, we used the EXTREMEETC algo-
rithm in our simulation study (Section [6)) rather than EXTREMEHUNTER.

Controlling the Number of Suboptimal Rounds. We introduce a high probability
event that corresponds to the favorable situation where, at each round, all coefficients
(1/ay, Cy)1<k<k simultaneously belong to the confidence intervals recalled in the previ-
ous subsection.

Definition 1. The event &1 is the event on which the bounds

N ha(T")

Qg

< M(T) and |Cy — Co(T")| < Ao(T")
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hold true for any 1 <a < K and N <T' <T.
The union bound combined with (VI.11)) yields
P(&) > 1—-2KT6. (VI.13)

Lemma 2. For T > @5, where Q5 is the constant defined in (VI.15)), EXTREMEETC
and EXTREMEHUNTER always pull the optimal arm after the initialization phase on the
event &1. Hence, for any suboptimal arm a # a*, we have on &;:

No(T)=N and thus Ng-(T) =T — (K — 1)N.

PROOF. Here we place ourselves on the event £;. For any arm 1 < a < K, Lemma 1 in
[CV14] provides lower and upper bounds for B,; when N,(t) > N

Vo < Bay < Vi (1 + Flog T/log(T /65)Na(t) ™t/ <2b+1>) : (VL.14)

where F' is a constant which depends only on (o, 84, Cy)i<a<k and C’. Introduce the
horizon @5, which depends on (g, fa; Ca)1<a<i and C’

@5 = max (e(F' 1+pAab/(2b+1)) 7Q4> : (VL.15)

Then the following Lemma [3] proved in section [§] tells us that for 7" large enough, the
exploration made during the initialization phase is enough to find the optimal arm, with
high probability.

Lemma 3. If T > Q5, we have under the event & that for any suboptimal arm a # a*
and any time t > KN that B, < Bg~ -

Hence the optimal arm is pulled at any time t > K N.
The following result immediately follows from Lemma

Corollary 1. For T larger than some constant depending only on (o, Ba, Ca)i<ae<i and
C" we have under &
N« (T) > T)/2.

Upper Bounding the Expected Extreme Regret. The upper bound on the expected
extreme regret stated in the theorem below improves upon that given in [CV14] for
EXTREMEHUNTER. It is also valid for EXTREMEETC.

Theorem 2. For EXTREMEETC and EXTREMEHUNTER, the expected extreme regret
is upper bounded as follows

Ry =0 ((log T)20H1)/bp—(1=1/agx) Tf(bfl/aa*)> 7
as T — +o0. If b > 1, we have in particular Ry = o(1) as T — +o0.
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The proof of Theorem [2] is deferred to section [§] It closely follows that of Theo-
rem 2 in [CV14], the main difference being that their concentration bound (Theorem 1
therein) can be replaced by our tighter bound (see Theorem (1| in the present chapter).
Recall that in Theorem 2 in [CV14], the upper bound on the expected extreme regret
for EXTREMEHUNTER goes to infinity when T — +oc0:

1
Rr=0 <T<1+”>%*> . (VL.16)

In contrast, in Theorem [2| when b > 1, the upper bound obtained vanishes when
T — +oo. In the case b < 1, the upper bound still improves upon Eq. (VI.16) by a
polynomial factor T'(®a*b(b+1)=0)/((b+1)agx) T/ (200%)

4 Lower Bound on the Expected Extreme Regret

In this section we prove a lower bound on the expected extreme regret for EXTREMEETC
and EXTREMEHUNTER in specific cases. We assume now that o9y > 202, /(aq+ — 1) and
we start with a preliminary result on second order Pareto distributions, proved in [8]

Lemma 4. If X is a r.v. drawn from a («, 8,C, C")-second order Pareto distribution and
r is a strictly positive constant, the distribution of the r.v. X" is a (a/r,8,C,C")-second
order Pareto.

In order to prove the lower bound on the expected extreme regret, we first establish
that the event corresponding to the situation where the highest reward obtained by
EXTREMEETC and EXTREMEHUNTER comes from the optimal arm a* occurs with
overwhelming probability. Precisely, we denote by & the event such that the bound

max max X,; < max Xart-
a#a* 1<t<N 1<t<T—(K—-1)N

holds true. The following lemma, proved in [8] provides a control of its probability of
occurence.

Lemma 5. For T larger than some constant depending only on (aa, Ba, Ca)i<a<k and
C’, the following assertions hold true.

(i) We have:
P(é?) 2 1-— K(S()a

where Oy is given in|VI.10,

(i) Under the event & = &1 N&a, the maximum reward obtained by EXTREMEETC and
EXTREMEHUNTER comes from the optimal arm:

max Xa, ;= max Xart-
1<t<T 1<t<T—(K—-1)N
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The following lower bound shows that the upper bound is actually tight in the
case b > 1.

Theorem 3. If b > 1 and o) > 202. /(g — 1), the expected extreme regret of EX-
TREMEETC and EXTREMEHUNTER are lower bounded as follows

Ry =0 ((log T)2(2b+1)/bT7(171/aa*)) '

PROOF. Here, 7 refers to either EXTREMEETC or else EXTREMEHUNTER. In order to
bound from below Ry = E[Ggﬂl )] - E[ngr)], we start with bounding E[Ggﬂ] as follows

(] _ _ -
E [GT ] —E Lrg% XAt,t] —F Lxgtang XAt,tﬂ{go}} +E Lrg% XAt,tn{go}}

K
< X, I{& .
< P(&)E LgltagT Xat ‘ 50] + ;E ng]&\t[fm Xa,tﬂ{ﬁo}] ; (VL17)

where )?ai has been defined in From (74) in [5, we have

E [max Xyt ( 50} ~E [ max  Xgey ‘ go] . (VL18)
1<t<T 1<t<T—(K—1)N

In addition, in the sum of expectations on the right-hand-side of N, (T) may be
roughly bounded from above by T. A straightforward application of Holder inequality
yields

K

. _ K _agx+1 ﬁ a1
ZE [ maX(T) Xa7tH{§0}] < Z (E [max Xos? }) P (&) ¥ . (VL19)
a=1

1<t<N, - 1<t<T
a=

From (i) in [5| and [VI.13] we have P(&) < K(2T + 1)8. By virtue of the r.v.

X (gﬁ“*ﬂ) /? follows a (20 /(g + 1), Ba, Ca, C')-second order Pareto distribution. Then,

applying |1| to the right-hand side of (VI.19)) and using the identity (VI.18), the upper
bound (VI.17) becomes

] < X,-
E [GT } <E |:1<t<1gi%l}§—1)N Xa ’tH{gO}]

K 2
Qgxt1 * 1 agx+1 agx+1 Qgx—1
+ Z <(TCCL) 2aq F (1 — aa2 + ) + o0 <T 2aq >) (K(QT + 1)50) oy +1

Qg

1
<E [ max )N(a*,t] ) (T_(l_l/%*)> : (VI.20)
1<t 1)N
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where the last inequality comes from the definition of §y. Combining |1| and (VI.20) we
finally obtain the desired lower bound

Ry =E |G| ~E ¢}
> D(1 = 1ag ) Ol (TVo — (T — (K = 1)N)Vor ) 4 0 (T~

a*

o N 1/Oéa>k
_ F(l 1/0511 )Ca,* (K - 1)NT7(171/O¢G*) 4 O <T7(171/04a*)) ,

Qg *

where we used a Taylor expansion of x — (1 + x)l/ %* at zero for the last equality.

5 A Reduction to Classical Bandits

The goal of this section is to render explicit the connections between the max K-armed
bandit considered in the present chapter and a particular instance of the classical Multi-
Armed Bandit (MAB) problem.

5.1 MAB Setting for Extreme Rewards

In a situation where only the large rewards matter, an alternative to the max K-armed
problem would be to consider the expected cumulative sum of the most ‘extreme’ rewards,
that is, those which exceeds a given high threshold u. For a € {1, ..., K} and t €
{1, ..., T}, we denote by Y, these new rewards

Ya,t = Xaﬂg]I{Xa,t > U} .

In this context, the classical MAB problem consists in maximizing the expected cumu-
lative gain

T
E[GMAB] = | Va,,
t=1

It turns out that for a high enough threshold w, the unique optimal arm for this
MAB problem, arg max;«,<x E[Y; 1], is also the optimal arm a* for the max K-armed
problem. We still assume second order Pareto distributions for the random variables Xait
and that all the hypothesis listed in Sectionhold true. The rewards {Y, ; }1<a<k 1<t<T
are also heavy-tailed so that it is legitimate to attack this MAB problem with the ROBUST
UCB algorithm (JBCL13]), which assumes that the rewards have finite moments of order
1+e€

max E [\YGJP“} <, (VL.21)

1<a<K

where € € (0,1] and v > 0 are known constants. Given our second order Pareto as-
sumptions, it follows that Eq. (VI.21) holds with 1 + ¢ < aq). Even if the knowledge

of such constants € and v is a strong assumption, it is still fair to compare ROBUST
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25 Thresholded Pareto expectations
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Figure VI.1: Expected values E[Y] = LUTCA of the thresholded rewards ¥ = XIT{X >

a—1

u} (with X an (o, C)-Pareto r.v.) as a function of the thresholding level w.

UCB to EXTREMEETC/HUNTER, which also has strong requirements. Indeed, EX-
TREMEETC /HUNTER assumes that b and T" are known and verify conditions depending
on unknown problem parameters (e.g. T' > Q1, see Eq. )

The following Lemma, whose proof is postponed to section [§] ensures that the two
bandit problems are equivalent for high thresholds.

Lemma 6.

1 1
2 ! ming <, Ba @ —a
If u > max (1, (O ) s ) (3max1<a<K Ca) @ (U) , (VI1.22)

minlgagK Ca minlgagK Ca

then the unique best arm for the MAB problem is arg min <.« g = a™.

Remark 1. Tuning the threshold u based on the data is a difficult question, outside our
scope. A standard practice is to monitor a relevant output (e.g. estimate of ) as a
function of the threshold u and to pick the latter as low as possible in the stability region
of the output. This is related to the Lepski’s method, see e.g. [BT15], [CK14d], [HWS83/.

5.2 RoBuUsT UCB Algorithm (|JBCL13])

For the sake of completeness, we recall below the main feature of RoBusT UCB and
make explicit its theoretical guarantees in our setting. The bound stated in the following
proposition is a direct consequence of the regret analysis conducted by [BCL13|.
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Proposition 1. Applying the RoBusT UCB algorithm of [BCL13] to our MAB problem,
the expected number of times we pull any suboptimal arm a # a* is upper bounded as
follows

E[Na(T)] = O (logT) .

PROOF. See proof of Proposition 1 in [BCLI13|.
Hence, in expectation, ROBUST UCB pulls fewer times suboptimal arms than EX-
TREMEETC /HUNTER. Indeed with EXTREMEET C/HUNTER,

N,(T) > N = O((log T)22+1)/b),

Remark 2. Proposition[1] may be an indication that the Robust UCB approach performs
better than EXTREMEETC/HUNTER. Nevertheless, guarantees on its expected extreme
regret require sharp concentration bounds on Ng(T) (a # a*), which is out of the scope
of this chapter.

Algorithm 5 RoBusT UCB with truncated mean estimator ([BCLI13])
: Input: u > 0 s.t. Eq. (VI.22)) holds, € € (0,1] and v > 0 s.t. Eq. (VI.21)) holds.

1

2: Initialize: Pull each arm once.
3: fort> K +1do
4
5

fora=1,...,K do
Update truncated mean estimator

— t—1 Na(8)\ 1=
Ha < m 25:1 Yol {As =a,Yss < (11)og(t(2s))) o }

6: Update index
- 2\ €/(1+e€)
By ¢ fia + 40'/0F9) (%)
end for
8:  Play arm Ay = arg max<,<x Ba
9: end for

6 Numerical Experiments

In order to illustrate some aspects of the theoretical results presented previously, we
consider a time horizon T' = 10° with K = 3 arms and exact Pareto distributions with
parameters given in . Here, the optimal arm is the second one (incidentally, the
distribution with highest mean is the first one).

We have implemented RoOBUST UCB with parameters ¢ = 0.4, which satisfies 1+ ¢ <
ag = 1.5, v achieving the equality in (ideal case) and a threshold u equal to the
lower bound in plus 1 to respect the strict inequality. EXTREMEETC is runned
with b = 1 < +00 = minj<,<x B, In this setting, the most restrictive condition on the
time horizon, T' > KN = 7000 (given by, is checked, which places us in the validity
framework of EXTREMEETC. The resulting strategies are compared to each other and
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Arm1 | Arma* =2 | Arm 3

Qg 15 1.5 10

C, 108 1 10°
E[Xa1] 3.7 3 3.5

E [maxi<t<7 X 7.7 5.8-103 11

Table VI.2: Pareto distributions used in the experiments.

3.5 X10° . . . 10? ' ' ' '
2 ~@- random N0~ réndom
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- ~@- EXTREMEETC (b = 1) I ~ 103 |8 RoBUSTUCB (e =0.4) |~ = =u. L
M 2 = = LinRegr(RoBUST UCB) | "~ =~ | "7 7
E\L‘ 8 =@®- EXTREMEETC (b = 1)
| ?n 102 4| - LinRegr(ExTREMEETC) L
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Figure VI.2: Averaged extreme regret (over 1000 independent simulations) for EX-
TREMEETC, RoBUST UCB and a uniformly random strategy. is the log-log
scaled counterpart of with linear regressions computed over ¢t = 5-10%,...,10°.

to the random strategy pulling each arm uniformly at random, but not to THRESHOLD
ASCENT algorithm [SS06] which is designed only for bounded rewards. Precisely, 1000
simulations have been run and Figure depicts the extreme regret in each
setting averaged over these 1000 trajectories. These experiments empirically support the
theoretical bounds in the expected extreme regret of EXTREMEETC converges to
zero for large horizons. On the log-log scale , EXTREMEETC’s extreme regret
starts linearly decreasing after the initialization phase, at T > KN =~ 7000, which is
consistent with [2 The corresponding linear regression reveals a slope ~ —0.333 (with a
coefficient of determination R? ~ 0.97), which confirms [2| and [3| yielding the theoretical
slope —(1 — 1/ae+) = —1/3.

7 Conclusion

This chapter brings two main contributions. It first provides a refined regret bound
analysis of the performance of the EXTREMEHUNTER algorithm in the context of the
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max K-armed bandit problem that significantly improves upon the results obtained in
the seminal contribution [CV14], also proved to be valid for EXTREMEETC, a compu-
tationally appealing alternative we introduce. In particular, the obtained upper bound
on the regret converges to zero for large horizons and is shown to be tight when the tail
of the rewards is sufficiently close to a Pareto tail (second order parameter b > 1). On
the other hand, this chapter offers a novel view of this approach, interpreted here as a
specific version of a classical solution (Robust UCB) of the MAB problem, in the situa-
tion when only very large rewards matter. Based on these encouraging results, several
lines of further research can be sketched. In particular, future work could investigate to
which extent the lower bound established for EXTREMEETC/HUNTER holds true for any
strategy with exploration stage of the same duration, and whether improved performance
is achievable with alternative stopping criteria for the exploration stage.

8 Technical Proofs

This section contains the proofs of some results stated in the present chapter.

Proof of Lemma

For T' > Q3 (defined in Eq. (VL6)), one has Vg > 2max,q+ Vo, which implies that
maxXgq+ Va/ (Ve —V,) < 1. Hence

max e(
a#a*

Then, as N, (t) > N and by definitions of N (Eq. (VI.9))) and 6y (Eq. (VI.10))), we have
for T > @5 that for any suboptimal arm a # a*

— 2 _ 2
Fy1+pA, bﬂQHl)ﬁ) < 6<Fvl+PA0 b/(QbH)) < Q5

(CLT)V% (1 — 1/a,) (1 4 FIOgT\/mNa(t)fb/(2b+l))
< (Co D)V T (1 — 1)

which implies, using Eq. (VI.14)), that under &;: By < By« for t > KN.

Proof of Theorem

We want to upper bound Ry = E[Gg?*)] — E[Ggﬁ)]. To do so, we lower bound ]E[Ggrﬂ)] as
follows

(m ] > - o
Blor] =e [I?saTXXA“} =E Ltsgﬁxa*}XA“t} . Ltsrfrvlfme“ ’t]'

Thus
(™) > X,-
E |G| >E LTE%%%I)N Xa ﬂ{&}] :
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where we used that under &, Ny+«(T) =T — (K — 1)N. Now we call the following result
(Lemma |7}, proved in section , giving a lower bound on the expected maximum of i.i.d.
second order Pareto r.v. given some event.

Lemma 7. Let Xy, ..., X7 be i.i.d. samples from an (a, 3,C,C")-second order Pareto
distribution. Let & be an event of probability larger than 1 — 6. If § < 1/2 and T" >
max (40, (4¢)Y/Plog(2)C(2C")V/8, 810g2(2)) for a given constant ¢ depending only on 3, C
and C', we have

E [ max Xtﬂ{,g}] > (T'C)Y°T <1 — 1) — <4 +

1<¢<T" o

8

o —

' n\1/asil—1/a
1> (T'C)Ves

4D201/Oé 2C/Dﬁ+1 11/ (a(148)) _ T8/ (B+1)

( T 1/a + AT 1app-ija + 202" e e )
Then, applying Lemma [7| with £ = & and § = §p we obtain after simplification
pplymg p

1 1 K _
11/ o 2(2b+1)/b 1-1/agx
RTSHT/O‘ {T_f_ﬁ_i_?(log’f) ( )/ _|_50
+ Tl/(aa* (1+/Ba*))efHa* (T/Z)ﬁ/(5+1) }

)

where H,« = % g (20’)1/(%* (1+82+)) and H' is a constant depending only on (a, Ba, Ca)i<a<i
and C’. The definition of dy concludes the proof.

Proof of Lemma

We follow the proof of Lemma 2 in [CV14] except that we use Theorem [l{instead of their
Theorem 1. Let x5 be such that P(max;<;<7v Xy < 5) =1 — 6. Then we have

E [ max Xt]I{g}] =E [ max Xt] -E [ max Xtﬂ{f_}]

1<t<T" 1<t<T" 1<t<T"
T§ _
=E | max X; —/ P max X {{} > ) do
1<t<T" 0 1<t<T"

_/x P <12§§’ X{&F > £C> dz

é

ZE[maX Xt} —5:1:5—/ IP’( max Xtﬂ{f_}>x> dz,

1<t<T" 5 1<t<T"

where the inequality comes from P (maxlgth’ X I{€} > :c) <P (E) < 4. Since T" >
log(2) max (C(2C")'/#,81og(2)) and § < 1/2, we have from Lemma 3 in [CV14]

’}P’ < max X; < (7"C/log(1/(1 — 5)))1/a> —(1-14)

1<t<T"

4 1 2 2C" 1 1+5
< — _
1-9) (T (IOg 1 —5) * C1+8 <log 1- 5)
2 1
< /(25) + OTip (25) +8 <« cd max (/7 /ﬁ> < cd max </’/B> ,
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where c is a constant that depends only on C, C” and 8. As we have cmax(T"~!,T'~F) <
1/4, this implies

z = (I'C/log(1/(1 — 26)/* < w5 < (I'C/ log(1/(1 - 5/2)))/* =z |

It follows

E[max Xtﬂ{f}] EE[maX Xt] —(5$+—/ IP’< max Xt>x> do .
1<t<T” 1<t<T" T 1<t<T"

From Theorem [[] we deduce

oo
> _ _ _ 7T’Cﬁﬁia
E [12%)"}’ Xt]I{g}] >E Lg}%);/ Xt} Sy /x_ (I—e ) dz

4D, CYe 2C' Dy
| -1/a +Cf,fa’Jrl—l/aT/ﬂ—l/a

+ 2(2C/T/)1/(a(1+5))6HT/ﬁ/(,B-H)) |

From the proof of Lemma 2 in [CV14] we have for ¢ small enough

/ (1 o e—T/C’g;*Q)dx < %(T’C)l/aél_l/a

and
Sz, < A(T'C)Vegi—e
Theorem [I| concludes the proof.

Proof of Lemma

Let F and F, be respectively the cumulative distribution functions of X and X". For
x>0,
Fo(z) =P(X" <2)=P(X <z'/") = F(z'/") .

As X follows an («, 3, C, C")-second order Pareto distribution we have
11— Ca~/" — F.(x)]=1- Cp—/m _ F(ZEI/T” < O~ (a/r)(1+5) ,

which concludes the proof.

Proof of Lemma

We first state the following result (Lemma [8] proved in section , yielding high proba-
bility lower and upper bounds for the maximum of i.i.d. second order Pareto r.v.

Lemma 8. For Xy, ..., X7 i.4.d samples drawn from an (a, 8, C, C")-second-order Pareto
distribution we define high probability lower and upper bound

’ 1/a , 1/
w@_(m) nd L<Tf,5>_(4T0> |

2log % log 11?6
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where § € (0,1) can depend onT" and is such that limp/ o £(T",6) = oo and limp/ o L(T',0) =
0o. For T large enough such that CL(T',8)~* > 2C"0(T",8) 048 CL(T’',5)~* >
C'L(T",6)~*+P) and L(T',6)™* < ;= we have

P < max X; < Z(T',(S)) <é§ and P < max X; > L(T',(S)) <. (VI.23)
1<t<T’ 1<t<T"

With the notations of Lemma [§ we respectively denote by ¢, and L, the high prob-
ability lower and upper bounds for any arm a. Using Eq. (VI.23) we have by a union
bound that with probability higher than 1 — K

max Xa*,t 2 €a* (T - (K - 1)N, 50),
1<¢<T—-(K-1)N

and for any suboptimal arm a # a*

Xot < La(N, ) .
121;%75\/ at > a( , 0)

Under this event, using the definition of the confidence level §y we observe for T larger
than some constant that for any suboptimal arm a # a*, Ly(N,d00) < Lo=(T — (K —
1)N, dp), which concludes the proof.

Proof of Lemma

For the high probability lower bound we write:

P ( max X; < E(T’,é)) =P(X, < T, 6))"
1<t<T’

Tl
< (1 — CUT,5)" + C'U(T, 5)—a<1+/3>)
| A e
<(1-gTeur.e ) <o (107 — .
And for the high probability upper bound:

P( max X; < L(T’,5)> =P(X; < L(T", )"
1<t<T"

T/
> (1 —CL(T',8) - C'L(T',a)—a<1+5>)

—

> (1= 20L(T",8)" )T > ¢ 4TCLT)™ — 1 _§ .

Proof of Lemma |§|
From Theorem (1| we have for any arm a € {1, ..., K},

E[Xo1I{Xa1 > u}] < / P(Xo1I{Xa1 > u} > 2)de
0

o0

=u(l — Fy(u)) —{—/ (1= Fy(z))de < M, + A,,

u
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where M, = (Cpag/(aa—1))u"% 1 and Ay = (C'ag(14-84) / (ata(1484)—1))u~%e(1+F)+1,
Similarly, we have E[X,1I{ X1 > u}] > M, — A,.
For u large enough, we want to prove that M, — Ay« > M, + A, for any arm a #

a*, which would prove that arg max;.,<x E[Ys1] = a*. First, we observe for u >
max(1, (2C"/ minj <4< g Cy)V/ Min<a<k Ba) that A, < %Ma. Then, for

u> (3 max C,/ min C,)" (@@~
1<a<K 1<a<K

we have that %Ma* > %Ma for any arm a # a*, which concludes the proof.
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CHAPTER VII

ATOMIC DISTRIBUTIONAL
REINFORCEMENT LEARNING

The content of this final chapter was mainly designed during an internship at Google
DeepMind (London) with the support of Mark Rowland, Will Dabney, Bilal Piot and
Rémi Munos.

Abstract

In reinforcement learning (RL), an agent is interacting with its environment by
taking actions and receiving rewards in order to find an optimal policy, i.e. a strategy
maximizing the expected total return in each state. This chapter is motivated by
the more challenging problem of distributional reinforcement learning (DRL) where
one is interested about the whole distribution of the return, not only its expected
value. We build on recent work where the distributional returns are modelled by
atomic distributions and the approximation errors are measured with p-Wasserstein
metrics. We first introduce two new distributional operators, for policy evaluation
and control respectively, that are both contraction mappings. Then, we show that
the projected atomic operators obtained by minimizing the 2-Wasserstein distance
lead to a natural extension of non-distributional RL. In particular, we derive the
atomic Bellman equations describing the dynamics of the optimal atoms. Numerical
experiments in a simple two states MDP setting are provided as illustrations.

1 Introduction

In reinforcement learning (RL), an agent seeks to maximize the expected sum of dis-
counted future rewards by sequentially interacting with his environment. This total re-
turn defines policy-dependent value functions of the environment’s state and the agent’s
action. The objective is then to find an optimal policy maximizing these value functions
in each state. In contrast, distributional reinforcement learning (DRL) consists in con-
sidering the whole distribution of the sum of rewards and not only its expected value.
Such distributional approaches have shown to be very effective in practice while ensur-
ing strong theoretical guarantees, see e.g. single-actor algorithms [BDMI17, DRBMI1S|
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VII. AToMIC DISTRIBUTIONAL REINFORCEMENT LEARNING

DOSM1S], distributed training algorithms [GDA*17, BMHB™18], and theoretical analy-
sis [RDK™19, RBD™ 18, [QMX18]. In particular, and as shall be recalled in this chapter,
the usual RL tools such as Bellman’s equations and operators, originally designed for ex-
pected values, turn out to generalize well to their distributional versions. Nevertheless,
learning a whole distribution is more challenging than learning only its mean value, and
different DRL approaches have been developed based on different distributional approxi-
mation schemes. For instance, [DRBM18| and [RBD™ 18| both approximate distributional
returns with atomic distributions but consider different metrics for evaluating approxi-
mation errors: respectively the 1-Wasserstein distance Wy and the Cramér distance. The
approach developed in this chapter relies on the following two design biases.

(a) Probability distributions D on R are approximated by atomic distributions D, 5 =
N
> iz wide,-

(b) Approximation errors are measured with the 2-Wasserstein distance Ws: the smaller
Wa(D, Dy ), the better D, g approximates D.

QOur contribution is threefold.

(i) First, we introduce two new distributional operators, one for policy evaluation and
the other for the control task, that are both contraction mappings.

(ii) Then, we describe the projected operators resulting from choices (a) and (b) and
prove that they are also contractions. In addition, these atomic operators provide
the atomic Bellman equations generalizing the usual non-distributional Bellman
equations.

(iii) Finally, we propose new DRL algorithms as multiatomic extensions of the TD
learning and Q-LEARNING methods.

The chapter is organized as follows. In section[2] a few concepts and results pertaining
to distributional reinforcement learning are briefly recalled as well as the Wasserstein
metrics that we consider to quantify how well a distribution is approximated by another
one. The atomic distributions that will serve as proxies for distributional returns are
defined in section [} among them, we identify the optimal atomic approximations for
different Wasserstein distances. We define and analyse the resulting projected Bellman
operators in section 5] The section [6] focuses on the 2-Wasserstein case, mainly by
introducing the atomic Bellman equation. Numerical experiments are presented in section
Finally, some concluding remarks are collected in section [9}

2 Preliminaries

Let us first recall some notations from the introductory chapter. The set of probability
distributions on a set £ (either countable or R throughout the chapter) is denoted by
P(€) and the Lebesgue measure on R by A. For any probability distribution D, Y ~ D
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means that Y is a random variable sampled from D. For a random variable Y valued in
a countable set ) and a mapping v : Y — P(E), we denote by v(Y') € P(E) the mizture
distribution of the following random variable:

Z Y = y}U,,

yey

where U, ~ v(y) and Y are independent for any y € ).

2.1 Markov Decision Process

We consider a Markov decision process (MDP) described by the tuple (X, A, P, R) with
countable state space X', countable action space A, transition kernel P : X x A — P(X)
and distributional reward function R : X x A — P(R). In particular, if an agent is in
state € X’ and takes an action a € A, then he receives a reward Ry ~ R(x,a) and the
next state X is sampled from the distribution P(:|z,a) € P(X). A policy 7 : X — P(A)
maps any state z € X to a distribution over the actions 7(:|z) € P(A). Given a discount
factor v € [0,1), we define the distributional return Z™(x,a) of a policy 7 after taking
action a € A in state x € X as the probability distribution of the random variable

o0

> V'R, (VIL1)

t=0

given Xg = z, Ap = a and for all t € N, Ry ~ R(Xy, Ay), Xiy1 ~ P(| Xy, Ar) and
Ap1 ~ (| X¢+1). We recall that classical (non-distributional) RL mainly focuses on
expected returns, through the state-action value function Q™ (z, a) = Ez 77 (z,q4)[Z0] and
the value function V™ (x) = E g r(.|o)[Q7 (2, Ao)] verifying Bellman’s equation ([Bel66]):

V(z,a), Q"(x,a)=E[Ro] +~E[QT(X1,A1)], (VIL.2)

where Ry ~ R(z,a), X1 ~ P(:|z,a) and A; ~ 7(:|X1). The optimal policies can be
characterized by means of the optimal state-action value function Q*(z,a), which verify
Bellman’s optimality equation:

V(z,a), Q" (x,a)=E[Ry]+ fyIE[Hza}x Q*(Xy,d)). (VIL.3)

Then, denoting by V*(z) = max, Q*(x,a) the optimal value function, a policy 7* is
optimal if for all z,

E[Q*(x, Ay)] = V*(z), with Ay ~ 7*(:|z).

Bellman Operators. In the policy evaluation task, one wants to compute Q™ for a
given policy 7, while in the control task, the goal it to approach *. The usual dynamic
programming way for solving these two tasks is based on two operators. First, the
Bellman operator T7 (|[Bel66]) defined by: for all @ : X x A — R and (z,a) € X X A,

T7Q(x, a) = E[Ro] + 'yE[Q(Xl, Al)], with X7 ~ P(]m, a), Ay ~ TF(-’Xl).
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Second, the Bellman optimality operator T' defined by:
TQ(z,a) = E[Ro] + yE[max Q(Xx, a)], with Xj ~ P(:|z,a).

In particular, the Bellman operator 7™ (resp. Bellman optimality operator T') is known to
be a 'y-contractionlﬂ for the sup norm and its repeated application to an initial Q-function
to converge exponentially fast to its unique fixed point Q™ (resp. Q*) ([BT96]).

2.2 Wasserstein Distance

In the case one is interested in the whole distribution of the discounted sum of future
rewards in Eq. , more general distributional operators introduced in [BDM17] are
required. Before defining these distributional operators, we first recall the Wasserstein
metrics on which our analysis will rely.

Definition 1. Let D1 and Do be two distributions on R with finite moments and respec-
tive cumulative distribution functions (c.d.f.’s) Fy and F;.

(i) Forp € [1,400), the p-Wasserstein distance between Dy and Ds is

1
_ R —1/_\|P ?
Wy (D1, D2) = |F1 (1) —F, (T)} dr |

7=0
where F~1 : 7+ inf{z € R, F(2) > 7} is the generalized inverse distribution
function of any c.d.f. F.

(ii) Forp = 400, the co-Wasserstein distance is the essential supremum of |F; ' — Fy !
over the interval (0, 1]:

Weo (D1, Dy) = ess 5up|F1_1(7') — Fz_l(T)\
7€(0,1]

We denote by Z the set of state-action distribution functions with finite moments:
Z= {z X x A= P(R) st Vp > 1,V(2,0) € X x A By zmallZ0l] < oo}.

Then, we recall the maximal form of the Wasserstein distance introduced in [BDMI17]:
for all (Z,2') € 22,

Wy(Z,2")= sup Wy(Z(z,a),Z (z,a)).
(z,a)EX XA

2.3 Distributional Bellman Operators

Here, we recall the two distributional Bellman operators introduced in [BDMI17], the first

for policy evaluation and the second for control.

The Distributional Bellman Operator (DBO). The distributional Bellman operator

T : 2 — Z (|BDM17]) is defined as followsﬂ forall Z € Z and (z,a) € XxA, T"Z(z,a)
! A function mapping a metric space to itself is called a vy-contraction (resp. a non-expansion) if it is

Lipschitz continuous with Lipschitz constant v < 1 (resp. & < 1).
*We refer to [RBD™ 18| for a more rigorous measure theoretic definition of 7.
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is the distribution of the random variable
Ro +~%1,

where Ry ~ R(z,a) and Z; ~ Z(X1, A1) with X; ~ P(-|z,a) and Ay ~ 7(-|X1). We
know from Lemma 3 in [BDMI7] that for any Wasserstein order p € [1,400], the distri-
butional Bellman operator 7™ is a «y-contraction in the metric Wp. Moreover, the unique
fixed point of 7™ is Z™, which leads to the distributional version of Bellman’s equation:

ZTI':TWZ’JT.

The Distributional Bellman Optimality Operator (DBOO). In [BDMI17], a dis-
tributional Bellman optimality operator T : Z — Z is defined as any operator following
greedy policies. Formally, for any Z € Z, there exists a greedy policy 7z for Z, i.e. such
that for all z € A:

Z ﬂ—Z(a|x)EZ()NZ(SC,a) [ZO] - I(?E%i( EZONZ(J;,a) [ZO]a
acA

verifying TZ = T7™2 Z. Nevertheless, these optimality operators are not as well-behaved
as DBO’s: indeed, the DBOQ’s are not contractive mappings as shown by Proposition 1
in [BDM17].

3 1-Step Distributional Bellman Operators

We introduce new distributional Bellman operators, namely the ‘1-SDBO’ (for evalua-
tion) and the ‘1-SDBOO’ (for control), taking only into account the randomness induced
by the first step/transition. In a certain sense, they can be seen as less ambitious variants
of the DBO and the DBOO. Most noteworthy is the control setting, where we will show
that the 1-SDBOO is a contraction mapping, contrary to the DBOO 7.

The 1-Step Distributional Bellman Operator (1-SDBO). Given a policy 7, we
define the 1-SDBO T" : Z — Z by: for all Z € Z, for all (z,a), T"Z(x,a) is the
probability distribution of

Ry +~E[Z1]| X1, A4],

where Ry ~ R(z,a), X1 ~ P(:|z,a), A1 ~7(:|X1) and Z1 ~ Z (X1, Ay).
Lemma 1. For all p € [1,400], the 1-SDBO T™ is a ~y-contraction in Wp.

The proof is deferred to section [II} From Lemma [I] we deduce that the 1-SDBO T™
has a unique fixed point, namely a state-action distribution function Z whose expected
value is equal to Q™ (z,a) in each (z,a). Indeed, taking the expectation on both sides
of the fixed point equation Z = T™Z shows that the mean of Z(z,a) solves the non-
distributional Bellman equation . Moreover, one easily proves that if the rewards
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are deterministic i.e. R(x,a) = 0p(z4) With r + X x A — R, the fixed-point of T™ is
simply:
(.T, CL) = Z P(SU/LT’ a)ﬂ-(a/‘xl)ér(m,a)—i-’yQ”(a:’,a’)'
(z',a")eX xA
The 1-Step Distributional Bellman Optimality Operator (1-SDBOO). We de-
fine the 1-SDBOO T : Z — Z by: for all Z € Z, for all (x,a), TZ(z,a) is the probability
distribution of
Ro +ymaxE[Z; | X1],

where Ry ~ R(z,a), X1 ~ P(:|x,a) and Z; o ~ Z(X1,d’) for any action a’. As the 1-
SDBO, the 1-SDBOO is a contraction as stated in the following result proved in section
1l

Lemma 2. For all p € [1,400], the 1-SDBOO T is a ~y-contraction in AW;.

The 1-SDBOO being a contraction, it thus has a unique fixed point. Here again,
by observing that the expectation of the fixed point equation Z = TZ reduces to the
non-distributional Bellman optimality equation , we conclude that the expected
value of this fixed point is Q*(z,a) in each (z,a). In addition, for deterministic rewards
R = §,, the fixed-point of T is:

(z,a) — Z P22, a)0,(3.0) 4V (1)
z’'eX
In the next section, we introduce our approximation procedure for approaching gen-
eral distributions on R by simpler ‘atomic’ distributions, described by finite numbers of
particles.

4 Atomic Approximation

In practice, computing the image of some Z by the DBO/1-SDBO/1-SDBOO is hardly
possible as it lives in a large subspace of Z. On the other hand, parameterized distri-
butions are simpler to deal with in practical implementations. Here, we focus on the
parametric class of atomic distributions and our approach will consist in (optimally)
projecting 77 Z, T™Z or TZ into this subspace.

4.1 Atomic Distributions

In [BDM17], distributional returns are approximated by categorical distributions, where
the probability weights over the atoms are learned but their locations are predefined. In
[DRBM18] and more recently in [RDK™19|, the state-action distributions are approxi-
mated by uniform averages of Dirac distributions, whose locations are learned. In this
chapter, we promote a combination of these two approaches: we first characterize the
optimal atoms’ locations for given probability masses, before analysing optimal mass al-
location. Formally, for a given number of atoms N > 1 we define the following parametric
classes of probability measures on R.
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Definition 2. Let Ay = {w = (wi,...,wy) € [0,1]Y s.t. w1 + - +wy = 1} be the
probability simplex and Sy the subset of RN of sorted vectors:

SNZ{QI(Ql,...,QN)ERN s.t. 91§"'§9N}~

(i) The set of atomic distributions is

N
Dy = {Dwﬁ = Zwi(sgi s.t. 0= (01, - ,HN) €Sy, w= (wl, e ,wN) S AN},
i=1

where w; is the probability mass allocated to the i-th smallest atom 0;.

(i) The set of state-action atomic distribution functions is
Zy = DYA = {ZQ@:XX.AHDN s.t. @:XXAHSN,Q:XX.AHAN},

where Zo e (2, a) = Do(z.0),0(w,qa) for all (z,a).

In other words, an element Zg ¢ of Zy associates to each state-action pair (z,a) an

atomic distribution
N

ZQ,G(:U’ a) = Z Ql(xv a)(s@i(x,a)a
=1

where O(z,a) = (01(z,a),...,0n(x,a)) € Sy and Q(z,a) = (U (z,a),...,0n(z,a)) €
Apy. Moreover, we define for any w,2,

D, = {Dw/ﬂ €Dy s.t. ' = w} and Zq = {ZQ/@ € Zyst. QO = Q}.

We measure the approximation error between a distribution D on R and some proxy
D, ¢ € Dy (with respective c.d.f.’s F' and F, ) in terms of their Wasserstein distance,
which in this case rewrites:

1

N 5 »

Wp(D,Dw,w:(Z / - \F*(T)—ei}pch) 7
i=1 Y T=Wi-1

where w = (wy,...,wy) is the vector of the cumulative sums of w’s components:

wi:ij, Vie{l,...,N}.

J<i

This expression of W,(D, D,, ) results from the fact that the generalized inverse distri-
bution function of D,, ¢ is piecewise constant: for all i € {1,..., N},

Fﬁl(’T) =0;, V1 € (wi_l,wi] .

w,0
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In the same way, we define for any €2 the cumulative probability function Q : (z,a)
(Q(z,a),...,09n(x,a)) such that

Qi(x,a) = ZQj(m, a).
j<i
For fixed probabilities, we characterize in the next subsection the best proxy among
atomic distributions i.e. the optimal spatial distribution of atoms minimizing the Wasser-
stein error.

4.2 2-Wasserstein Error Minimizers

Our strategy consists in minimizing the 2-Wasserstein approximation error to characterize
optimal atomic distributions. Although this choice may seem arbitrary, we show next
that the usual non-distributional Bellman equations and operators pertain to this setting
in the particular monoatomic case N =1 (see Remark . We have,

1
2

WQ(D, Dwﬂ) = (Z/ B (F_l(T) - 92.)2 dT> )
i=1 v T=%i-1

which is, for fixed D and w, minimal if and only if for all : € {1,..., N} such that w; # 0,
0; is equal to the following trimmed mean:

1 [
05, =— / F~(r)dr. (VIL4)

Wi Jr=w;_,

Moreover, notice that if for instance F' is continuous, then this trimmed mean also inter-
prets as the conditional expectation Ey. p[Y|F~}(@;_1) <Y < F~Y(@;)]. Similarly, we
approximate state-action distribution functions Z € Z by atomic distribution functions
Za,e € Zn. For a given mass allocation function (2, the unique minimizer Zg@a in Zq
of the 2-Wasserstein approximation error Wa(Z(z, a), Za ey, (z,a)) for all (z,a) is given
by: for all i € {1,..., N} such that Q;(x,a) # 0,

1 Qi (z,a)
O (r.a) =~ / Fl(r)dr, (VIL5)

Yi(x,0) Jr—a,_ @)

where F, , denotes the c.d.f. of Z(x,a).

In the monoatomic case N = 1 where the whole distribution Z(z, a) is summarized by
a single scalar, the minimum Wa-error is attained at the (global) mean. More generally
for any number of atoms N > 1, this mean simply expresses as the average of the N
trimmed means:

N
> Qi(x,0)0% (2, a) = Ezyez(0,0)[Z0)- (VIL6)
i=1
This property turns out to be useful in Q-learning methods where Q-functions, which
are expected values, must be computed even in distributional Q-learning variants such

as C51 (JBDMI7]) and QR-DQN (JDRBMIS]).
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5. Atomic Bellman Operators

5 Atomic Bellman Operators

Here, we introduce the atomic Bellman operators: they are compositions of some dis-
tributional Bellman operator followed by a Ws-projection on the space of atomic dis-
tributions. These atomic Bellman operators allow to design DRL methods restricted to
atomic distributions.

5.1 Atomic Projections

Motivated by the atomic approximation scheme discussed in the previous section, we
define for any probability weights w € Ay, the (2,w)-atomic projection Il as follows:
for any distribution D € P(R) with finite moments and c.d.f. F,

H3,D = D, g € Dy, with 0, = (605,,....05 n),

w,ls

where 07, ; is given by Eq. (VIL4). Similarly for any mass allocation function £ : X xA —
An, we define the Q-atomic projection Ilp o by: for all distribution functions Z € Z,

Mo 0Z : (x,a) = Ty e Z(z,a) for (z,a) € X x A.

z,a
By denoting ©¢,(x,a) = 9;‘2(1 a)> We have: [l 0Z = Zg ez, € Za.

Lemma 3. Let N > 1 and Q : X x A = Ay. The atomic projection Ily o is a non-
expansion in Wy.

By combining this atomic projection with DRL operators, we define below the atomic
Bellman operators.

5.2 The Atomic Bellman Operators

Given a policy m, we define atomic Bellman operators as compositions of the DBO/1-
SDBO/1-SDBOO followed by the (2,)-atomic projection, i.e. respectively:

HZQTW, HQQTW and Hg}QT.

By analogy with the usual names and notations for non-distributional operators, we will
refer to 77 = Ilo oT™ as the atomic Bellman operator (ABO), to Tf = Il oT™ as the
1-step atomic Bellman operator (1-SABO) and to Tq = Ilp oT as the I-step atomic
Bellman optimality operator (1-SABOO).

Remark 1. In the monoatomic case N = 1, where necessarily Q(z,a) = Qi(z,a) = 1,
we point out that TG = Tg, is simply the usual non-distributional Bellman operator T™
and Tq (= H27Q7—) the non-distributional Bellman optimality operator T'.

Then, by combining Lemma with respectively Lemma 3 in [BDM17], Lemma and
Lemma [2 we obtain that the ABO, 1-SABO and 1-SABOO are all three contractive
maps.
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Corollary 1. For any number of atoms N > 1, policy m and state-action mass allocation

Junction Q : X x A — An, the ABO T, the 1-SABO Tg, and 1-SABOO Tgq are all
~y-contractions for the metric W.

The next subsection evaluates the loss of accuracy induced by our atomic projections:
we focus on the distortion of the distributional fixed points.

5.3 W_-Approximation Error of the Atomic Model

For the co-Wasserstein distance, we provide an upper bound on the approximation error
resulting from approaching the distributional returns by atomic distributions. For all
distributional operators T' € {77, T™, T}, denoting by Z (resp. Zq) the fixed point of T
(resp. To =13 oT'), we prove that WOO(ZQ, Z) is essentially of order O(1/N).

Proposition 1. Let 7 be a policy. For any operator T € {T™,T™, T}, let Z and Zg be
the respective fived points of T and Tq = 1o oT'. Then, the Wy, distance between Z and
Zq s upper bounded as follows:

—~ 1
We(Za,Z) < ——  sup eqlx,a),
=~ (z,0)eX XA

where
= Fya(Q — Fya(Qi-
ca(z,a) ISiSJ\rf%i}((m,a)io ra($li(2, @) ra(flim1 (@, 0)4),
with Fyq the c.d.f. of Z(x,a) and F; ! (T+) the right limiﬂ of the quantile function F, }
at any point 0 < 7 < 1.

In particular for Q;(z,a) = %, if Z(z,a) has a convex support and a density lower

bounded by M > 0 for all (z,a), then eq(x,a) < ﬁ and the approximation error

WOO(ZQ, Z) is thus of order O(1/N). This rate is empirically verified in Figure [VII.1

6 Atomic Bellman Equations

The purpose of this section is to provide explicit expressions for the ABO, 1-SABO and
1-SABOO and to deduce generalizations of Bellman’s equations. By considering atomic
distribution functions Z, as in DRL algorithms such as QR-DQN in [DRBMI1S]|, and by
assuming that the rewards are deterministic (R = §,), the trimmed means of 7" Z(z, a),
T"Z(z,a) and TZ(z,a) can all be written in closed-form. These formulas will lead us to
atomic Bellman equations.

$We recall that c.d.f.’s are right-continuous with left limits while quantile functions are left-continuous
with right limits, see e.g. [EH13].
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Figure VIL.1: Log-log plot of the approximation error Wy (Z3(z,a), Z™(x,a)) (with
Qi(z,a) = 1/N and Z§ the fixed point of 7J) in function of the number of atoms
N: it follows the rate O(1/N) of Proposition Same two states MDP setting as in
section 8]

6.1 The Atomic Bellman Equation

For deterministic rewards and Z = Zg ¢ € Zy an atomic distribution function, we have
an explicit expression for the projected distribution 7}, Zo e(x,a) (with €' potentially
different from 2) as shown in the next result.

Lemma 4. Let 7 be a policy and Zg g € Zn. Let Q' : Xx A — Ay and©®' : X x A — Sy
such that Zo o = T3 Za,e. Then, assuming deterministic rewards R = 6,, we have for
all (z,a) € X x A andi € {1,...,N} such that Q(x,a) # 0,

Oj(z,0) = r(z,a) + Q,,(Z 5 2 (0:,0,0) -0
T 9ed

with the set © = {©;(2',d) : (2/,d,j) € X x Ax {1,...,N}} and the weight functions
wy given by:

M?(@, T, a, 9) = )\(Wi—l(x, CL), W’L(‘Tﬂ a)] N [H;,a(9)7 G;a(@)]),
= (min{@i('%a)’ Gg,a(a)} - maX{W’i—l(xﬂ a)’ H;:r,a(e)})

+ )
where X is the Lebesque measure on R, (z)+ = max{0, z} denotes the positive part of any
z € R, GT , is the c.d.f. of Zge(X1, A1) given Xy ~ P(-|z,a) and Ay ~ 7(-|X1):

z,a

N
Y. P@ram(la’) Y, d){6;(’,d) < 6},

(z',0")eXx A Jj=1

Gral0) =
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and HE , : 0 — G7 ,(0—) is the left limit function of G7 , also equal to

N
Hy (0) = Z P(2'|x,a)m ZQJ (2',dI{O;(a',d") < 6}.
7j=1

(z',a")eXx A

The proof of Lemma |4 is deferred to section |1 . We emphasize that O is a set of
unique elements: if for instance X and A are both finite, then the cardinality of ) may
be strictly smaller than |X|-|A|- N in the case of repeated valued of the atoms ©;(z’, a’).

The fixed point Zg g~ of the ABO 77 is the unique solution of the atomic Bellman
equation: T Zo e = Zg er.

Proposition 2. (AToMIC BELLMAN EQUATION) For deterministic rewards R = 9§y,
the fized point Zo e~ of the ABO Ty is given by the unique solution © of the atomic
Bellman equation: for all (x,a) € X x A, for alli € {1,...,N} such that Q;(x,a) # 0,

OF (z,a) = r(z,a) +

O,z a,0) -0, (VILT)
peom

where O = {07 (2',d') : (a',d',j) € X x Ax {1,...,N}} and the weight functions jiff
are given by Lemma [f] with Q' = Q.

For clarity purpose, we point out that in the particular case of uniform probability
weights Q;(z,a) = 1/N, Eq. (VIL7)) writes as:

O (z,a) =r(z,a) +yN Z ur(©™ z,a,0) -0,
9com
with -
wr (07, x,a,0) = (mln{ , G (0)} - max{%, HQG(H)})JF.

An immediate consequence of Proposition 2 2| is that the average of the N atoms O] (z, a)
is equal to the state-action value function Q™ (z, a).

Property 1. Let Zq e~ be the fized point of the ABO T . Then for all (x,a),

Z Qi(x,a)07 (z,a) = Q" (z,a).

The proof is straightforward by averaging the atomic Bellman equations and
observing that ) . Q;(x,a)O7 (z,a) is the solution of the (non-distributional) Bellman
equation. Property|[I]is also verified empirically: see Figure[VIL.2]in section[§] Notice that
for any (z,a), the two distributions Zg o~ (x, a) and Z™(z, a) have the same expectation,
namely Q™ (z,a). Nevertheless, these two distributions are not equal in general (they are
if Z™ € ZQ)
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6. Atomic Bellman Equations

6.2 The 1-Step Atomic Bellman Equation

Similarly for the 1-SABO applied on some atomic distribution function, we have the
following formula in the case of deterministic rewards.

Lemma 5. Let N > 1, QO : X x A — Ay be a mass allocation function, and assume
deterministic rewards R = 6,. The image of any Zge € Zn by the 1-SABO Tg, is
Zo o =T Zae, where for all (x,a) € X x A, i € {1,..., N} such that Q(z,a) # 0,

v m .
T 2 M(Omaa) q.
q€2(O)

with Q(O) the set of Q-values Q(a',a’) = Zjvzl Qj(a,d)0;(',d):

Ol(z,a) =r(z,a) +

N
Q(O) = ZQj(:z/,a/)@j(a:/,a’) c(2,d)e X x Ay,
j=1

and the weight functions ui given by:

:u;r(@axaaa Q) = )‘(Wi—l(xaa)a Wl(xaa)} N [H;:r,a(Q)v Gg,a(q)])v
where GF , is the c.d.f. of Q(X1, A1) given X1 ~ P(:|z,a), Ay ~ 7(-|X1):

Gra@= Y Pl ar(d){Q@ d) < q},

(z',a")eXx A
and
H7,(¢)=Gi.(a=)= Y  P@lza)m@ ) {Q',d) < q}.
(z',0/)EX XA

The fixed point Zg g~ of the 1-SABO Tg, provides the 1-step atomic Bellman equation.

Proposition 3. (1-STEP ATOMIC BELLMAN EQUATION) For deterministic rewards R =
0p, the fized point Zg e~ of the 1-SABO Tg, is given by the unique solution ©™ of the
1-step atomic Bellman equation: for all (x,a) € X x A, for alli € {1,...,N} such that
Qi (l‘a (L) 75 0;

07 (x,a) = r(z,a) + > uF (O, xa,q9) q, (VIL8)

where the weight functions ] are given by Eq. (@ with ' = Q.

As in Property [I] for the solution of the ABO, the solution O™ described in Proposition
satisfies the following averaging property.
Property 2. Let Zg e~ be the fixed point of the 1-SABO Tg,. Then for all (z,a),
N

Z Qi(x,a)0] (z,a) = Q" (z,a).

=1

In the next subsection, we give similar results concerning the 1-SABOO.
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6.3 The 1-Step Atomic Bellman Optimality Equation

Similarly to Lemmas [4] and [5] the following result holds when applying the 1-SABOO to
an atomic distribution function.

Lemma 6. Let N > 1, ' : X x A — Ay be a mass allocation function, and assume
deterministic rewards R = 0,. The image of any Zoe € Zn by the 1-SABOO Tq is
Zo o = TarZa,e, where for all (z,a), i such that Q(z,a) # 0,

O(w,0) = 1@ )+ s 30 wi(O.ma0)a,
v ’ qegmax(@)

with the set of mazimal Q-values Q(x',a’) = Eévzl Q;(@,d")0;(z', )

Omax(0) = {maxQ(x’,a’) cax’ € X} ,
a’eA

and the weight functions u; given by:

M:(@,%,(I, Q) = )‘(Wifl(xaa)v Wl(xva)} N [H;:(,a(q)v G;,Q(Q)])v
where G% , is the c.d.f. of maxy Q(X1,ad") given Xy ~ P(-|x,a):

z,a

Grala) = Y P(@/|2,0)1{maxQ(a’,a') < g},

a'eA
r’'eX

and

Ho(q) = Ghala=) = Y Pla'le,a)l{maxQ(«’,a') < q.

r'eX
Then, we derive I1-step atomic Bellman optimality equation.

Proposition 4. (1-STEP ATOMIC BELLMAN OPTIMALITY EQUATION) For determin-
istic rewards R = 0., the fized point Zg e+ of the 1-SABOO Tgq is given by the unique
solution ©* of the 1-step atomic Bellman optimality equation: for all (z,a) € X x A,
forallie{1,...,N} such that Q;(z,a) # 0,

* _ L * * .
Gi (Qf,a) - r(a:,a) + Qi(.’IJ,a) Z 22 (6 y Ly @, Q) q, (VIIQ)
qegmax(@*)

where the weight functions p; are given by Eq. (@ with Q' = Q.

Here also, the averaging property holds: it allows to recover the optimal state-action
value function @Q* from the atoms ©*.

Property 3. Let Zg g+ be the fized point of the 1-SABOO Tq. Then for all (z,a),

N
> Qi(z,0)0] (z,a) = Q*(x, a).
=1
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From Atomic Bellman Operators to DRL. In practice, the model P is unknown to
the learner. Hence, the update rules from lemmas [ [5] [6] cannot be exactly applied. In
the next section, we promote DRL approaches approximating the weight functions 7,
by plug-in estimators obtained by sequentially learning the c.d.f.’s G7 ., G% . and their

T,a T x.a

left limits HJ ,, H , in a temporal difference fashion as in [MSK™10], [MSK™12].

z,a’

7 Atomic DRL Algorithms

From our atomic operators/equations, we derive two DRL algorithms for policy evalu-
ation and one for the control task. For each of the three algorithms, we describe one
iteration based on a single transition. We denote by N > 1 the number of atoms, ;(z, a)
the probability weights, O;(z,a) the atoms, G q(0) the c.d.f.’s, Hy 4(0) the ‘left limit’
functions. All our methods rely on two nested learning procedures, both based on the
computation of exponentially weighted moving averages:

(1) the first for learning the functions G 4, H; , with a learning rate 0 < 8 <1,

(2) the second for learning the atoms ©;(z, a) with a learning rate 0 < o < 1.

7.1 Atomic Temporal-Difference Learning

Based on the (1-step) atomic Bellman equations derived in the previous section, we adapt
the temporal-difference (TD) learning algorithm ([Sut88]), suited to non-distributional
RL, to our multiatomic framework. We present two algorithms for the policy evaluation
task. Consider a policy 7 and a single transition z,a,r(z,a), X1, A1 such that Xy ~
P(-|lz,a), Ay ~ 7(-| X1).

AtoMIiC TEMPORAL-DIFFERENCE (ATD) - Stochastic Approximation of the
ABO. Initialize © = (), then update for all 2’ € X, d’ € A, j € {1,...,N},

(a) 0+ ©;(z',d),
(b) © + O U {6},
() Gral8) = (1= B)GralB) + B Y11, (X1, AHOK(X1, A1) < 6},

(d) Hya(0) < (1= B)Haa(0) + B3 31, (X1, AN){Ok (X1, A1) < 6},

(e) V1 <i <N, 11i(©,2,a,0) + max{0, min{Q;(z, a), Gya(0)} —max{Q;_1(z,a), Hya(0)}}.
Then, return the updated atoms in state-action (z,a): for 1 <i < N,

Oi(z,a) + (1 —a)O;(z,a) + a(r(w,a) + QZ(Z o) Z,ui(@,x,a, 0) - 9).
66

1-STEP ATOMIC TEMPORAL-DIFFERENCE (1-SATD) - Stochastic Approxi-
mation of the 1-SABO. Initialize Q(©) = (), then update for all 2’ € X, a’ € A,
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(a) ¢ 250, (', a")8;(a’,d),

(b) Q(©) + Q(®) U {g},

(©) Gralg) < (1= B)Guralq) + B, (X1, A1)Ok(X1, A1) < g},

(d) Healg) < (1= B)Healg) + B, Qu(X1, A1)Ox(X1, A1) < g},

(e) V1 <i< N, p;(0,z,a,q) + max{o, min{Q;(z, a), G4 4(q)}—max{Q;_1(z,a), Hm(q)}}.

Then, return the updated atoms in state-action (z,a): for 1 <i < N,

Oi(z,a) + (1 — ®)O;i(z,a) + a(r(m,a) + Q(l ) Z 1i(©,z,a,q) -q).
T geq(0)

We point out that both the ATD and the 1-SATD algorithms coincide with TD(0)
(for Q-functions) if N =1 and g = 1.

7.2 Atomic Q-Learning

Now, we rely on the 1-step atomic Bellman optimality equation to define our DRL
algorithm for the control task. Consider a single transition z,a,r(z,a), X1 with X3 ~
P(:|z,a).

AToMIC Q-LEARNING - Stochastic Approximation of the 1-SABQOO. Initialize
Omax(©) = 0, then update for all 2’ € X,

(2) q maxgea Yy, Qa',d)0;(,d),

(b) Qmax(©) ¢ Qumax(©) U {q},

() Gaalq) ¢ (1= B)Guralq) + BH{maxyca Ypo, U(X1,a)Ok(X1,a') < g},

(d) Haalg) < (1= B)Haalg) + Bl{maxgca Ypy (X1, a)Ok(X1,d) < g},

(€) V1 <i <N, pui(©,z,a,q) < max{0, min{Q;(z,a), Gyq(q)}—max{Qi_1(z,a), Hya(q)}}.

Then, return the updated atoms in state-action (z,a): for 1 <i < N,

Z 1i(©,x,a,q) -q).

qe Qmax(@)

Oi(z,a) « (1 - )0;(x,a) + a(r(z,a) + XEN)

We point out that this approach can be seen as an extension of the Q-LEARNING
algorithm ([Wat89]). Indeed, ATOMIC Q-LEARNING boils down to Q-LEARNING in the
monoatomic case N = 1 combined with c.d.f. learning rate g = 1.
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8 Distributional Policy Evaluation in a Two States MDP

We consider a policy evaluation setting in a 2 states MDP characterized by:

e state space X = {z1,x2},

e action space A = {a},

e transition probabilities: for all (z,2') € {x1,22}?, P(2'|7,a) = 1/2,

e deterministic rewards R(r,a) = 6,(3,q) With r(21,a) =0, 7(z2,a) = 1,
e discount rate vy = 1/2.

In fact, it is the same MDP as in Figure[[.9]except that the action space is restricted to the
singleton {a;}. Then, we denote by 7 the unique policy: it verifies w(a|z,) = 7(a|x2) = 1.
Basic computation shows that Z™(z, a) is a uniform distribution on the interval [0, 1] if
x =z or on [1,2] if z = x9.

The Figure displays four dotted lines corresponding to the trajectories of the
N = 4 atoms of an atomic distribution Zg o (2i(z,a) = 1/4, ©;(x,a) = (i—1)/4 initially)
on which we recursively apply the atomic Bellman operator 77, by implementing the
formula from Lemma In less than ten iterations, the atoms have already converged
to the values of the atoms O (z,a) of the fixed point distribution Zg g~ (z,a) for the
two states & € {x1,z2}. Moreover, the dark dashed line representing the average of the
four atoms experimentally confirms the Property [1| as Q™ (z1,a) = 1/2 and Q™ (z2,a) =
3/2. On Figure 7 obtained by running the tabular ATD algorithm introduced
in the previous section, the atoms are converging to the same values as with the exact
method; the probabilities ;(x, a) = 1/4 are uniform and, in each of the 1000 independent
instances, the atoms ©;(x,a) are randomly initialized from the uniform distribution
u((o, 1))

9 Conclusion

In this chapter, we extended existing DRL approaches based on atomic distributional
approximations in terms of p-Wasserstein metrics. We discussed different approxima-
tion schemes for particular Wasserstein metrics (W, Wa, Wy,) and gave contraction
guarantees for the corresponding projected Bellman operators. A careful study of the
2-Wasserstein case led to our main contribution, namely a generalization of the Bellman
equations. Given the transition probabilities, these new atomic Bellman equations allow
to approximate the policy distribution by a fixed point distribution with same expecta-
tion. The empirical study of a simple two states MDP is presented as an illustration of
the theory.
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Figure VII.2: Exact dynamic programming approach (‘model P is known’). The N =4
atoms (dotted lines) converge to the atoms of the fixed point distribution Zg g~ (x,a) by
iteratively applying the atomic Bellman operator 7 (state x = x on the left, state =
x9 on the right). As expected from Property |1} the average of the 4 atoms (dashed line)
converges to the theoretical Q-value in each state: Q™ (z1,a) = 1/2 and Q™ (z2,a) = 3/2.

10 Perspective - Optimal Mass Allocation

So far we have been projecting distributions for given probabilities over the atoms. Here,
we define a notion of optimality for the probability functions €2 and we show its link with

the fixed point of the atomic Bellman operator.

Definition 3. Let Z € Z. A mass allocation function Q* : X x A — Ay is Z-optimal
if it minimizes for all (x,a) € X x A the 2-Wasserstein error

Wo(Z(z,a),1l 0« Z(x,a)) = min Wa(Z(z,a),Ily,Z(x,a)).

WEAN

Notice that if Z = Zg g € Zn, then Q" = Q is Z-optimal. Moreover, Il o«Z = Z and
the Wasserstein error is equal to zero everywhere on X x A: V[N/Q(Z, Iy o« Z(x,a)) = 0.
Ws-Error & Trimmed Variances. The 2-Wasserstein optimal mass functions are
simply maximizing dot products with the squared trimmed means.

Proposition 5. Let Z € Z. A mass allocation function Q* is Z-optimal if and only if
for all (z,a) € X x A, Q*(x,a) mazimizes over Ay the dot product

O (z,a) € arg max (w,@jfx o)
wEAN 77
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Figure VIL.3: Stochastic DRL approach (‘model P is unknown’). The curves are averaged
over 1000 instances of the ATD algorithm run on 300 iterations with learning rates
a=p=0.1.

with trimmed means vector 03, . , given by Eq. (VII.4) with F' = F o the c.d.f. of Z(x,a):

I
, x _ ~1
Vi s.t. Wy 75 0, w,T,ad F:p,a (T)dT,
Wi Jr=w;
and componentwise squared operation: 037, o = (057 415+ -+ 057 4 v)-

The proof relies on decomposing the squared Wasserstein error as a weighted sum
of trimmed variances. Proposition [5] reduces the optimal mass allocation problem to
maximizing dot products over the simplex, which may be easily implemented in practical
algorithms.

11 Technical Proofs

For notational convenience, we will sometimes denote the expectation of a distribution D
by E[D] = Ey.p[Y], and the p-Wasserstein distance between the respective distributions
D, D’ of two random variables Y, Y’ by W, (Y,Y’) = W,(D, D’).

Partition Lemma

We state a stronger version of the ‘partition lemma’ given in [BDMI17]: it will be useful
to prove lemmas [T] and [2]
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Lemma 7 (Partition Lemma). Let (C;)ien be a sequence of binary random variables
valued in {0,1} such that 3, Ci = 1 almost surely. Then for all p € [1,+00] and
real-valued random variables Y,Y”,

WE(Y,Y') <) WE(CY,CiY").
i>0
We point out that Lemma [7| implies Lemma 1 in [BDM17], which states that
W,(YV,Y') <Y W, (CiY, CiY).
i>0

In fact, the proof of Lemma 1 in [BDM17| also proves Lemma

Proof of Lemma
Let p € [1,+00], Z, Z" in Z. We have (with some abuse of notations):

W;(T”Z(x, CL), TWZ,($, CL)) = WII;(RO + ’7E[Z1|X1, Al], Ro + ’)/E[ZHXL Al])
<APWP(E[Z1] X1, A1], E[Z1] X1, A1)
< AP Z WH(I{X, =2, Ay = d}E[Z(2,a)]|,[{ X1 = o', Ay = o}E[Z' (2, d")])

<Py B a)n(d|2)|E[Z (2, o)) ~ E[Z'(2',d')]P

<APsup WP(Z(2',d), Z'(2/,d)) = PWE(Z, Z)),

z’,a’

where we used Lemma [7]in the second inequality and Holder’s inequality in the last one.

Proof of Lemma
Let p € [1,+00], Z, Z" in Z. We have:

WH(TZ(x,a),TZ (z,a)) = W) (R + ymaxE[Z | X1], Ro + ymax E[Z] /| X1])
a/ a/ )
< APWP(max E[Z) 4| X1], max E[Z] | X1])
a/ al I

< ’ypz WHI{X, = 2"} H;E}XE[Z(J}/, a)],I{X; = 2’} H}IE}XE[Z/(JJ/, a)])

<" Y P(|e, a)| maxE[Z(«, )] - maxE[Z'(2/,a")]?
"l)l

<A"Y Pz, a) max |E[Z(«,o))] - E[Z' (2!, )]

m/

<APsup WP (Z(a',d'), Z' (2!, d")) = WPW;D(Z, 7z,
z’,a’
where we used Lemmal/[7]in the second inequality and Holder’s inequality in the last one.
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Proof of Lemma

Let us prove that the projection Il o is a non-expansion in WOO. Let (Z,2") € 22 such
that for all (z,a) € X x A, Z(z,a) and Z'(x,a) have respective c.d.f.’s F, , and Gy 4.
We have:

We (202 (2,a), s 072 (z,a)) =

1
max ———
1IN Qi(z,a)

F:;; (r)dr — / G;}I(T)dT )

/(Qil(x,a),ﬂi(x,a)] (6171(967(1)751‘(337@)]

Then,
We (2 0Z(z,a), 102 (z,a)) < max ess sup ‘F;;(T) - G;}l(T)‘
1<i<N __ = = : ;
7€(Qi—1(z,a),94(x,a)]
= WOO(Z($7 a)7 Z/({L‘, CL)),
where the inequality holds because quantile functions are left continuous with right limits.

Taking the supremum over X x A on both sides of the previous inequality concludes the
proof.

Proof of Lemma

First notice that for Z = Zg ¢ € Zq and deterministic rewards R(z,a) = 6,(z,q),

N
TTFZQ,@ (ZL’, a) = Z P(l’l|$, a)ﬂ'(al|$l) Z Qj ($/7 a,)(sr(a:,a)—‘rv@j (z',a’)s
(z/,a")eX XA Jj=1

and, for X; ~ P(:|z,a), A1 ~ 7(:|X1), the mixture of Dirac distributions
N

Zoo(X1,A) =Y P@lx,a)m(d|2)) Q' d)oe,w )
(z/,a")eXx A Jj=1

has the following c.d.f.:

N
VieR Gl )= Y Pl am(dld) 05 d) O, o) < 2.
(z',0')eX XA Jj=1

We conclude the proof by observing that
vre (0,1, Gl =30 1{GI.00-) < 7 < GL.(0)],
6c6

which implies:

Qi (z,a)
/ Gr () = Y (0,,0,0) 0,
7= ;_1(z,a) 0cd

where

M?(@ﬂ'%a? 9) = )‘(Wi—l(xﬂa)ﬂ Wl(xﬂa)] N [G;a(@—), Gg,a(e)])
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Proof of Lemma
Similarly to the proof of Lemma [d] we first write:
TWZQ,@(:Uv (I) = Z P($,|x7 a)ﬂ-(a/|x/)5r(ac,a)+'yQ(x’,a’)7
(z’,a")eXx A

with Q-values

N

Q',d) =) Q;(2!,d)0;(2',d), V(' d) € X x A
j=1

In addition, the mixture of Dirac distributions

> Pz, a)m(a|r))dg

(z',a")eX x A
has the following c.d.f.:
VzeER, Gr.(z)= > P@lxan)d){Q@,d) < z}.
(z',0")eX XA

We conclude the proof by observing that
vre 1, Gl =Y ¢ {6 <7<}
q€2(0)

which implies:

Wi(:t,(l) _1
/ Vo (za) Gﬁrr,a (T)dT = E M;T(@’ T, a, q) q,
=0 _1(x,a

where - o
M;T(@? Z,a, q) = )‘( [Q/i—l(x7 a)? Q,i(wv a)] N [Gg,a(q_)7 G;;r,a(qn )
Proof of Lemma @

We have:

TZQ,@(QS‘,CZ) = Z P(x/|x7a)dr(cc,a)—i-'ymaxa/eA Q(z,a’)»
r'eX

with Q-values defined as in Lemma
N
Q2',d) = ZQj(x',a’)@j(:L",a'), V(z',d') e X x A.
j=1

In addition, the mixture of Dirac distributions

Z P(‘r/‘xva)(smaxa/eA Q(z',a’)
r'eX
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has the following c.d.f.:

VzeR, G,,.(2)= Z P(2'|x,a)l {ngf@(x',a’) < z} :

r'eX
Finally we have,
vre 1], Gln= Y ¢ qGile-) <7< G0},
qumax(Q)

which implies:

Qi (x,a)
[0 eilmar= Y wi@saga,

T:Q’iil(gp,a) qGQmax(@)
where - o
M;‘k<@7 T, a, Q) - )‘( [Q/i—l(‘rv CL), Q/i(‘r7 CL)] N [G;,a(q—), G;,a(Q)] )
Proof of Proposition
We have,

WOO(ZQ, Z) < WOO(ZQ, HZQZ)"‘WOO(HQ,QZ, Z) = Woo (TQZQ7 H27QTZ)+WOO(H27QZ, Z)

S ’YWOO(Zﬂa Z) + WOO(HQ,QZ7 Z)7
where the first inequality is a triangular inequality and the second inequality comes from

Corollary (1| stating that T = Il o7 is a y-contraction for W . Hence,

Woo(Za, Z) < 1fw (207, 7).

Then, by denoting I(z,a) = {i € {1,...,N} s.t. Q;(x,a) # 0} for all (z,a) € X x A, we
have:

Woo(lly0Z(z,a), Z(z,a)) =

1 ﬁi(CLQ)
—1 -1/, !
max ess sup Foo (1) — / o (r)dr
€1(2,0) 2e( @, (2,0). (2,0)] Qi(z,a) T'=Qi-1(2,)
< ma ess sup 1 /Q(Ia) ‘F_l( ) F_l( /)‘d !
< X = 2,a\T) = L'y a\T )] AT
icl(z,a) T€(Qi_1(x,a),9 (x,a)] Q (‘T’ a’) ™=Q;_1(z,a)
< max ess sup max {|F;i(7') — F;;(ﬁi_l(x, a)+)|, F;;(T) — F;;(ﬁl(x,a))u

icl(z,a) 7€(Qi—1(z,a),Q; (z,a)]

< I??(&X)F (Qi(:v,a))—Fm_;(ﬁifl(w,a)—l—),
iel(z,a ’ ’

which concludes the proof.
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Proof of Proposition
We have,

WQQ(Z(:I:, a), Za ey, (x,a)) =

N Q;(z,a) Qs (x,a) )
> (R - g | Fi(r)r') dr
i1 /T=Qi_1(z,0) ’ Q; (33, a) =0 )

/:Qifl (.Z,CL)

N

= 2
[ rdera - o ([ Ele
= z,a\T T = z,a\T)0T
7=0 ' i—1 Qi(lﬁ,a) 7=0Q;_1(,a) '
= ]EZONZ(:C,G,) [Zg] - <Q(:L', a)’(_)}k)(xaay%

where (-,-) is the dot product on RY and the squared operation is applied on each
component of the trimmed means vector: 0% (r,a)? = (0% ,(z,a)?,...,0% v(z,a)?).
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APPENDIX A

RESUME DES CONTRIBUTIONS

1 Ordonnancement par minimisation du risque empirique

Nous commencons par rappeler briévement le cadre de la minimisation du risque em-
pirique ol I'on entend minimiser une fonction de perte en espérance par rapport a une
certaine distribution de test P, sur la base de 'observation de réalisations indépendantes
de P. Ensuite, nous présentons nos contributions au probléme de correction du biais
de sélection d’échantillonnage, ot les observations sont échantillonnées & partir d’une
distribution d’entrainement P’ différente de P.

Tout au long de la thése, la notation X ~ P signifie que P est la distribution de
probabilité de la variable aléatoire X.

1.1 Minimisation du risque empirique

Le principal paradigme de l'apprentissage prédictif est la minimisation du risque em-
pirigue (MRE en abrégé), voir e.g. [DGLI6|. Dans la configuration standard, Z est une
variable aléatoire (v.a. en abrégé) qui prend ses valeurs dans un espace Z et de distri-
bution P, © est un espace de paramétres et £ : © x Z — R, est une fonction de perte
(mesurable). Le risque est alors défini par : V0 € O,

Rp(0) =Ep[(0,2)], (A1)

et plus généralement pour toute mesure Q sur Z : Ro(#) = [;/4(0,2)dQ(z). Dans
la plupart des situations pratiques, la distribution P impliquée dans la définition du
risque est inconnue et ’apprentissage est basé sur la seule observation d’un échantillon
indépendant et identiquement distribué (i.i.d.) Zy, ..., Z, tiré¢ de P et le risque
doit étre remplacé par une contrepartie empirique, généralement :

Ro(6) = % S 66, %) = Ry (6), (A2)
=1

ou P, = (1/n) >oi 10z, est la mesure empirique de P et §, désigne la mesure de Dirac
en un point z. Tout minimiseur empirique #,, € arg mingeg Rp(#) est alors accessible &
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I’apprenant — en fait, cela n’est pas nécessairement vrai en pratique car la minimisation
du risque empirique peut parfois s’avérer étre difficilement réalisable — et peut étre
utilisé comme substitut aux parameétres optimaux (inconnus) #* € arg mingcg Rp(6)
vivant dans la classe d’hypothése ©.

Example 1. (CLASSIFICATION BINAIRE) Dans la classification binaire, le probléme
phare de ’apprentissage machine (voir par exemple [DGLI0)), le but est de trouver un
classifieur g : X — {—1,+1} avec un risque de classification Rp(g) = P{g(X) # Y}
aussi faible que possible. La paire aléatoire Z = (X,Y), avec distribution P, est a valeur
dans Z = X x {—1,+1}, et l’espace des caractéristiques X est typiquement un sous-
ensemble de R (d > 1) ; X est appelé le vecteur de caractéristique et Y est I’étiquette.
Désignant la probabilité postérieure par n(x) = P{Y = +1|X = z} pour tout x € X, le
classifieur de Bayes g*(x) = 2I{n(x) > %} — 1 est la regle de classification optimale car
elle minimise Rp : pour tout classifieur g, Rp(g) > Rp(g*) (voir le Théoréme 2.1 dans
[DGLY6]). Empiriquement, 'apprenant regoit un ensemble de données d’entrainement
composé de n copies i.i.d. (X1,Y1),...,(Xn,Yy) de (X,Y). En utilisant les notations
introduites ci-dessus,

e ['espace des paramétres © est un ensemble G de classifieurs g,

e la fonction de perte € est la fonction de perte zéro-un £y :
v(gvxvy) € g X X x {_17 +1}a f0/1(97 (xay)) = H{g(l‘) # y}

La classification binaire appartient & la famille des problémes d’apprentissage su-
pervisé car elle tente d’apprendre comment étiqueter toute nouvelle observation non
étiquetée X, sur la base d’exemples étiquetés (X;,Y;) fournis par un “professeur”. En
revanche, la tache de partitionnement de données est un probléme d’apprentissage non
supervisé. En effet, elle consiste & trouver des groupes de similitudes dans ’espace des
caractéristiques sans aucune information de type étiquette.

Example 2. (PARTITIONNEMENT EN k-MOYENNES) Etant donné un certain nombre de
groupes k > 1, la méthode de partitionnement en k-moyennes (voir par exemple [Bis06)]
ou [HTFEFQ9]) résout le probléme de minimisation suivant :

n

min min ||Z; — m;||2 A3
(ma,...smp )€ 2k S 1<j<k 1Zi ill2, (A.3)

avec Z C R et ||-||2 la norme euclidienne. Cette quantité mesure la distance euclidienne
totale au carré de chaque observation Z; par rapport au centre de son groupe, & savoir le
point le plus proche mj 7.y, avec j(Z;) € arg miny<;<y, || Zi—myl|2, parmi les k centroides
mi,...,my (en fait ici, mj(z,;) n’est pas nécessairement unique). Avec nos notations de
MRE, nous avons que :

e lespace des paramétres est U'ensemble des k-uplets (my,...,my) : © = ZF,
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1. Ordonnancement par minimisation du risque empirique

e la fonction de perte du partitionnement en k-moyennes est :

Y((mi,...,mg),2) € Zk % Z, l((mq,...,mg),z) = min ||z —mj||%.
1<5<k

En particulier, le critére du partitionnement en k-moyennes dans [’Eq. est, a nor-
malisation prés, égal au risque empirique Rp :
1 n
Rp((my,...,mg)) = — min ||Z; — m;||3.
P(( ’ ’ k)) n - ISjSkH 4 JHQ

La performance des minimiseurs 6,, de (A.2)) peut étre étudiée en controlant 1’exzcédent

de risque R(6y,) — mingcg R(A), qui satisfait & 'inégalité élémentaire (voir par exemple

[BBLO5))

Rp(0,) — min Rp(6) = Rp(6n) — Rp(8,) + Rp(6n) — Rp(67)

< Rp(0n) — Rp(0n) + Rp(07) — Rp(07) < 2sup IRp(0) —Rp(0)]. (A4)

Les fluctuations des écarts maximaux supgeg IRp(0) — Rp(6)| dans IEq. peuvent
ensuite étre quantifiées au moyen d’inégalités de concentration, sous diverses hypothéses
de complexité pour la classe fonctionnelle F = {¢(0, -) : 6 € ©} (e.g. dimension VC,
entropies métriques, moyennes de Rademacher), voir [BLM13| par exemple.

Parfois, I’échantillon d’entrainement est tiré d’une distribution d’entrainement P’ dif-
férente de la distribution cible P d’intérét : c’est ce qu’on appelle un biais de sélection
d’échantillonnage. Notre approche pour faire face & cette situation est appelée MREP
pour “minimisation du risque empirique pondéré”, elle repose sur une étape de repondéra-
tion par ’estimation de poids d’échantillonnage préférentiel pour chaque observation de
I’ensemble de données d’entrainement.

1.2 Correction du biais de sélection d’échantillonnage

Les problémes de sélection biaisée dans ’apprentissage machine, qui résultent souvent
d’erreurs lors du processus d’acquisition des données, font désormais 1’objet d’une grande
attention dans la littérature, voir [BCZ716|, [ZWY 17|, [BHS™19], [LYCWT6] ou [HGB™07].
Nous considérons le cas ou l'échantillon iid. Zj, ..., Z/ disponible pour la phase
d’entrainement n’est pas tiré de P mais d’une autre distribution P’, par rapport a laque-
lle P est absolument continue. Le but poursuivi est de poser les bases théoriques de
I’application des idées qui sous-tendent la méthodologie de I’échantillonnage préférentiel
(EP en bref) pour étendre 'approche MRE & ce dispositif d’apprentissage. Les méthodes
d’EP sont largement utilisées dans 'apprentissage machine, y compris dans des contextes
d’apprentissage en ligne tels que les problémes de bandits (voir [NB16]), qui sont présen-
tés dans la partie[2] Nous soulignons que le probléme a I’étude est un cas trés particulier
d’apprentissage par transfert (voir e.g. [PY10], [BDBCT10] et [Sto09]), un domaine de
recherche qui fait actuellement I'objet d’une grande attention dans la littérature.
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La figure [[.T] illustre un exemple de ce type de biais de sélection d’échantillonnage

dans un contexte de classification : I’ensemble de données d’entrainement est composé
d’images de quatre types d’animaux (chien, loup, tigre et singe), alors que la popula-
tion cible est simplement un mélange de chiens et de loups. En d’autres termes, les
étiquettes d’entrainement Y’ sont a valeurs dans ) = {chien,loup,tigre,singe}, alors que,
pour la distribution test/cible, Y prend ses valeurs seulement dans le sous-ensemble
{chien, loup} C ). Les niveaux de I’histogramme représentent les probabilités de classe
: P{Y’ = y} en bleu pour I'entrainement, et P{Y = y} en vert pour le test, pour chaque
animal y € ). Nous formulons ci-dessous la méthode MREP pour traiter ces questions
de biais de sélection d’échantillonnage.
MRE Pondéré (MREP). La minimisation du risque empirique pondéré (MREP) que
nous proposons au chapitre [[I] consiste & minimiser une version pondérée du risque em-
pirique. Nous étudions les conditions garantissant que les valeurs du paramétre 6 qui min-
imisent presque ((A.1]) peuvent étre obtenues par la minimisation d’une version pondérée
du risque empirique basé sur les Z/, a savoir

Run(0) =Ry, (0), (A.5)

ou ]Sw,n = (1/n) 320 widz et w= (w1, ..., wy) € RY est un certain vecteur de poids.
Les poids idéaux w* sont donnés par la fonction de vraisemblance ®(z) = (dP/dP’)(z) :
w = ®(Z!) pour i € {1, ..., n}. Dans ce cas, la quantité (A.5)) est un estimateur non

1

biaisé du risque réel (A.1)) :
Ep [Rp,. (6)] = Rp(0), (A.6)

et des bornes de généralisation pour l'excés de risque Rp des minimiseurs de ﬁw*’n
peuvent étre directement établies en étudiant les propriétés de concentration du processus
empirique lié aux Z/ et a la classe de fonctions {®(-)¢(6, ) : 0 € ©}. Cependant, la
fonction d’importance ® est inconnue en général, tout comme la distribution P.

Dans la figure [.I, qui correspond a un probléme de classification ot I'ensemble de
données d’entrainement 7| = (X1,YY),..., Z, = (X],Y,), avec X une image (vecteur de
pixels dans [0, 1]¢ par exemple) d’un animal de type Y] € ) = {chien, loup, tigre, singe},
la fonction de vraisemblance est donnée par :

80% 20%
— I v = chi
T0v; Lty = chien} + 7067

qui ne dépend que de y, si l'on suppose que la distribution conditionnelle de Z = (X,Y") ~
P sachant Y = y est la méme que celle de Z' = (X', Y’) ~ P’ sachant Y’ = y, pour tout
y €Y (ie. Pet P’ sont deux mélanges des mémes 4 composantes animales mais avec
des poids différents).

Contributions. Notre principale contribution & ce probléme est de montrer que, dans
des situations loin d’étre rares en pratique, les poids (idéaux) w; peuvent étre estimés a
partir des Z! combinés & des informations auxiliaires sur la population cible P. Ces cas
favorables comprennent notamment :

(z,y) € 0,17 x Y, ®((z,y))

{y = loup},
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e les problémes de classification lorsque les probabilités de classe dans ’étape de test
différent de celles de I’étape d’entrainement (comme dans la figure ,

e la minimisation de risque dans des populations stratifiées (voir [BD18]), les strates
étant représentées statistiquement de maniére différente dans les populations de
test et d’entrainement,

e l'apprentissage “positive-unlabeled” (voir e.g. [dPNS14]), qui consiste a résoudre
un probléme de classification binaire basé uniquement sur des données positives et
non étiquetées.

Dans chacun de ces cas, nous montrons que le processus stochastique obtenu en utilisant
les estimateurs des poids dans la fonction de risque empirique pondéré est beaucoup
plus complexe qu'un simple processus empirique (i.e. une collection de moyennes i.i.d.)
mais peut cependant étre étudié au moyen de techniques de linéarisation, dans 'esprit
des extensions de la MRE établies dans [CLV0§| ou [CV09al]. Des bornes de convergence
pour les minimiseurs de ’estimateur du risque correspondant sont prouvées et, au-dela
de ces garanties théoriques, la performance de ’approche MREP est soutenue par des
résultats numériques convaincants.

1.3 Ordonnancement a partir de données étiquetées de fagon binaire

Nous introduisons maintenant un autre probléme de MRE, de nature globale contraire-
ment & la classification binaire : le probléme d’ordonnancement & partir de données
étiquetées de fagon binaire, que nous appelerons aussi ordonnancement bipartite, (voir
[AGH™05],[FISS03]), ott I'on veut ordonner, au moyen de méthodes de scoring, tous les
éléments de I'espace caractéristique X', a partir de 'observation d’un ensemble de don-
nées d’entrainement composé de copies i.i.d. d’une paire aléatoire (X,Y’) a valeur dans
X x {—1,41}. Intuitivement, les bonnes régles de scoring sont les fonctions s : X — R
attribuant des scores importants s(z) aux éléments x € X avec une grande probabilité
postérieure P{Y = +1|X = z}. L’ordonnancement trouve de nombreuses applications
pratiques (voir par exemple [CDV13b|), allant d’études médicales, ou les patients sont
ordonnés en fonction de leur probabilité d’étre malades, aux systémes de recomman-
dation qui classent un catalogue de produits en fonction des préférences de certains
utilisateurs. Voir par exemple [BK07| a propos de certaines méthodes de recommanda-
tion de films utilisées lors de la compétition du “Netflix Prize”. Une autre application de
I’ordonnancement est la gestion du risque de crédit, qui servira également de motivation
a notre probléme de bandits manchots rentables exposé au chapitre [V] dans un contexte
d’apprentissage en ligne. Nous rappelons ci-dessous quelques notions importantes pour
I’ordonnancement avant d’introduire nos contributions au probléme d’ordonnancement
avec Etiquettes continues, une généralisation au cas ol les étiquettes Y prennent des
valeurs continues.

Cadre Formel. Le cadre probabiliste de 'ordonnancement bipartite est le méme que
celui de la classification binaire (voir exemple . En effet, nous considérons une variable
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aléatoire (X,Y) ~ P a valeur dans X x {—1,+1}, avec un espace de caractéristiques
X CR? (d > 1), et avec la distribution P caractérisée par la paire (i, 7), oi

e la distribution marginale de X est u,

e la probabilité postérieure pour tout x € X est

(@) = P{Y = +1|X = 2} = %(E[Y!X — 2]+ 1).

De méme, P peut étre décrite par le triplet (p, G, H), ou
e p=P{Y = 41} est la probabilité d’occurrence d’un cas positif,

e (G et H sont respectivement les distributions conditionnelles de X sachant Y = +1
et de X sachant ¥ = —1.

Le probléme empirique qui nous intéresse est le suivant : étant donné un échantillon
(X1,Y1),...,(Xpn,Y,) de n > 1 copies i.i.d. de (X,Y), un agent apprenant souhaite
sélectionner une régle de notation, c’est-a-dire une fonction mesurable s : X — R, capable
d’ordonner tout nouvel échantillon non étiqueté X7i,..., X/, (de distribution commune
1) tel que, avec grande probabilité, les observations X, avec des scores élevés s(X]) ont
des étiquettes positives Y/ = +1 plus souvent que les observations avec de plus petits
scores. Ce probléme se retrouve dans de nombreuses applications, parmi lesquelles les
systémes de recommandation de musique (voir [SDP12]).

Example 3. (RECOMMANDATION MUSICALE) L’ordonnancement bipartite peut étre
utilis€ pour construire un systéme de recommandation musicale. Considérons une col-
lection X de chansons, chaque chanson x € X étant modélisée par les d coordonnées r =
(T1,...,2q) : x1 =“titre”, xo =“artiste”, xg =“durée”, etc. Un utilisateur d’une plateforme
musicale produit un ensemble de données d’entrainement composé de n paires chanson-
évaluation (X1,Y7), ..., (X, Ys) avec Y; une note binaire donnée par lutilisateur et égale
a +1 8%l a apprécié la chanson X; € X, ou bien Y; = —1 s’il ne l'a pas aimée. Sur la
base de ces informations partielles, la plateforme musicale veut prédire les préférences de
lutilisateur sur l’ensemble du catalogue de chansons X, en donnant a chaque chanson
x € X un score Syser(x). Dés lors, une bonne fonction de score syser donne des scores
élevés auxr chansons que lutilisateur est susceptible d’apprécier.

Formellement, pour deux variables aléatoires a valeurs réelles U et U’, nous rappelons
que U est stochastiquement supérieure a U’ si P{U > t} > P{U’ > t} pour tout ¢t € R.
Deés lors, le but est d’apprendre une fonction de score s telle que la v.a. conditionnelle
s(X) sachant Y = +1 soit la plus stochastiquement supérieure a s(X) sachant YV =
—1 que possible. En d’autres termes, nous voulons que s maximise la différence entre

1—-Gs(t) =Gs(t) =P{s(X) > t]Y = +1} et 1 — Hs(t) = Hq(t) = P{s(X) > t|]Y = -1}
pour tous les niveaux t € R. Ce critére fonctionnel peut également étre exprimé au
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moyen de la courbe ROC de toute régle de notation s, c’est-a~dire la courbe paramétrée

t € R+ (Hy(t),G4(t)), ou de facon équivalente le graphique de la fonction
€ (0,1) = ROC,(a) = Gs0 (1 — H;H(1 - a),

ou les éventuels points de discontinuité sont reliés par des segments. En effet, les éléments
optimaux s* sont ceux dont la courbe ROC ROCgs = ROC* domine toute autre courbe

ROC ROC; partout :
Va € (0,1), ROC*(a) > ROC,(a).

Voir la figure [.2] pour un exemple. Il est bien connu que les fonctions de score optimales
s* sont les transformées strictement croissantes de la fonction de probabilité postérieure
n (voir par exemple [CLV05]). Compte tenu de sa nature fonctionnelle, la courbe ROC
ROC; est souvent résumée par une quantité scalaire plus facile & manier, & savoir son

aire appelée Aire Sous la Courbe ROC (AUC en bref) :
AUC(s) = P{s(X) < s(X)|Y = -1,Y' = +1} + %P{S(X) =s(X)|Y = -1,V = +1},

ot (X', Y”") est une copie i.i.d. de (X,Y"). En effet, lorsque les courbes ROC de deux fonc-
tions de score s1 et so se croisent comme dans la figure aucune des deux ne peut étre
considérée comme meilleure que I'autre, ou méme égale, du point de vue du critére ROC.
Au contraire, un critére scalaire global tel que ’AUC, permet toujours de comparer deux
régles de score. Il est intéressant de noter que ’AUC s’accompagne d’une interprétation
probabiliste : c’est le taux théorique de paires concordantes. L’approche MRE habituelle
pour l'ordonnancement bipartite consiste & maximiser la version empirique de ’AUC,
étant donné un échantillon i.i.d. (X1,Y7),...,(X,, Ys) :

%n_ > > H{S(Xi)<3(Xj)}+%H{S(Xi):S(Xj)}, (A7)

#Yi=—15:Y;=+1

AUC,(s) = -
+

avecny = y i I{Y; = +1} = n—n_. Remarquez que ’AUC empirique dans 'Eq. (A.7)
est une somme de variables dépendantes : plus précisément, c’est une U-statistique de
degré 2 (voir [CLVO0§|). Plusieurs algorithmes basés sur la maximisation de AUC,, ont
été proposés et étudiés dans la littérature, tels que approche TREERANK ([CV09D]).
Une extension au cas ou 'étiquette Y prend au moins trois valeurs ordinales, appelée
ordonnancement multi-partite, a également été étudiée (JRA05|, [SCVI3]) : nous présen-
tons dans ce qui suit notre contribution au probléme plus général de I’ordonnancement
continu, ou Y prend ses valeurs dans tout l'intervalle [0, 1].

1.4 Ordonnancement a partir de données étiquetées de fagon continue

Dans le chapitre[[I]} nous considérons une tache d’ordonnancement similaire & 'ordonnancement
bipartite, la différence résidant dans la nature de I'étiquette Y, dont le support s’étend
sur un continuum de valeurs scalaires : nous appelons ce probléme ordonnancement
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continu. Selon le contexte, Y peut représenter une taille, une mesure biologique, ou le
cash-flow des entreprises en finance quantitative. Nous décrivons ci-dessous une applica-
tion potentielle de I’ordonnancement continu pour la recommandation musicale, adaptée
de I'exemple |3| (ordonnancement bipartite).

Example 4. (RECOMMANDATION MUSICALE AVANCEE)
Comme dans Uexemple [3, une plateforme musicale veut recommander intelligemment
les chansons de la playlist X o un utilisateur donné, au moyen d’une régle de notation
Suser © X — R propre a cet utilisateur. Ici aussi, l'utilisateur génére un ensemble de
données d’entrainement {(X;,Yi) hi<i<n aprés avoir écouté n chansons X; € X. Néan-
moins, chaque étiquette Y; correspond maintenant & la quantité de dopamine (alias la
“molécule du plaisir”) libérée par le cerveau de l'utilisateur — et mesurée par un capteur
— pendant l’écoute de la i-eme chanson. Par conséquent, ces étiquettes Y; ne sont pas des
évaluations binaires comme dans [’ordonnancement bipartite, mais prennent plutdt des
valeurs continues. Néanmoins, 'objectif du systéeme de recommandation reste le méme
: donner des scores importantes Syser(z) auz chansons x € X qui sont susceptibles de
libérer beaucoup de dopamine dans le cerveau de utilisateur.
o Un exemple plus réaliste s’appuie sur les évaluations implicites, en particulier [’action
de lutilisateur “sauter la chanson en cours”, qui ont regu beaucoup d’attention dans la lit-
térature récemment ([RFGST12],[RJ05],[JGPT17]). Dans ce cas, une étiquette continue
Y, est définie par :

temps d’écoute de la chanson X; avant saut

Y= € [0,1],

durée totale de la chanson X;

qui s’interprete implicitement comme une évaluation négative lorsqu’elle est proche de
Z€70.

Formellement, nous supposons que la paire aléatoire (X,Y) admet une densité par
rapport & la mesure de Lebesgue sur R4, et que le support de Y est compact, égal a
[0, 1] pour simplifier. La fonction de régression est désignée par

m:x € X — E[Y|X =z

Nous formulons le probléme de 'ordonnancement continu comme un continuum de prob-
lémes d’ordonnancement bipartite imbriqués. En effet, pour toute valeur seuil y € (0, 1),
le sous-probléme d’ordonnancement bipartite lié & la paire (X, Z,) avec Z, = 2I{Y >
y} — 1 peut étre considéré comme une approximation discréte du probléme complet :
nous désignons respectivement par ROC; , et AUC; ,, la courbe ROC correspondante et
I’AUC de toute fonction de score mesurable s : X — R. En d’autres termes, nous voulons
résoudre simultanément tous ces sous-problémes, c’est-a-dire identifier une régle de score
s maximisant ROC, , et AUC, , pour tout y € (0,1).

Contributions. Dans ce but, nous introduisons de nouvelles mesures de performance
obtenues en intégrant ROC; , et AUC; , par rapport a la distribution marginale Fy de
Y :

1 1

ROC; y(a)Fy (dy) et IAUC(S):/ IROC;(a)dor.
a=0

Va € (0,1), IROCS(a):/

y=0
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Notre analyse théorique est double. Nous montrons que :

(i) dans certaines conditions, les régles de notation optimales sont des transformées
strictement croissantes de la fonction de régression m,

(ii) une régle de notation s* est optimale si et seulement si sa courbe IROC domine
uniformément n’importe quelle autre courbe IROC IROC; :

Va € (0,1), IROCs«(a) = E[ROCy (a)] > IROCs(a),
et son JAUC est maximale :
IAUC(s") = E[AUCy| > IAUC(s)  pour tout s.
En outre, nous fournissons une expression probabiliste de 'TAUC :
TAUC(s) = P{s(X) < s(X|Y <Y" <Y’} + %]P){S(X) =s(X|Y <Y" <Y’}
ou (X', Y”) est une copie i.i.d. de (X,Y) et Y est échantillonné indépendamment de la

distribution marginale Fy de Y. A partir de cette formule, nous estimons empiriquement
I'TAUC(s) a partir d’un échantillon i.i.d. (X1,Y1),...,(X,,Y,) comme suit :

mn(S) - n(n — 1?(” -2 1<7;JZk<nH{S(Xi) <s(Xk),Yi < Y; < Yi}
_+nM—4;n_2) > I{s(Xy) = s(Xp),Y; <Y; < Vi),

1< j,k<n

qui est une U-statistique de degré 3. Enfin, nous fournissons un algorithme hiérarchique,
CRANK, visant & maximiser ﬁ}n : il renvoie une régle de notation constante par
morceaux obtenue en divisant récursivement 1’espace des caractéristiques.

Dans la section suivante, nous nous concentrons sur une autre tache de classement, a
savoir [’agrégation de classements, visant & ordonner un nombre fini d’éléments, & partir
de classements (complets ou incomplets) constituant les données d’entrainement.

1.5 Agrégation de classements par minimisation du risque empirique

Le probléme d’ordonnancement bipartite (resp. continu) présenté précédemment consis-
tait & produire une fonction de notation, et par conséquent un ordre sur un espace de
caractéristiques X', a partir d’observations (vectorielles) de la forme (X1, Y1), ..., (Xn, Yn)
a valeurs dans X x {—1,+1} (resp. dans X x [0,1]). Dans le probléme d’agrégation de
classements, bien que 'objectif soit toujours d’établir un ordre, il existe deux différences
principales avec les problémes précédents :

e ’ensemble des éléments & classer est de cardinalité finie IV, contrairement aux es-
paces de caractéristiques infinis X C R? souvent considérés dans 1’ordonnancement
bipartite /continu,

199



A. RESUME DES CONTRIBUTIONS

e les données d’entrée elles-mémes sont des classements/comparaisons, c’est-a-dire
des informations relatives contrairement aux étiquettes représentant des évaluations
absolues.

Repéres Historiques. L’analyse des données de classement date du 18-éme siécle avec
la conception d’un systéme d’élection pour 1’Académie des Sciences frangaise. Différents
systémes de vote ont été proposés, chacun satisfaisant a certaines propriétés souhaitables
. en particulier, la méthode de Borda en 1781 (|[Bor84]) et son concurrent, la méthode de
Condorcet en 1785 ([DCT14]), ont créé le fameux débat Borda-Condorcet. Plus tard, en
1951, Arrow a prouvé un “théoréme d’impossibilité” (JArrl2]) selon lequel aucune régle
électorale ne peut satisfaire simultanément un ensemble de propriétés raisonnables ; les
systémes de vote sont également étudiés dans la théorie du choix social (voir [Ris05]).
Nous nous concentrons ci-dessous sur un probléme spécifique qui se pose dans ’analyse
des données de classement, & savoir celui de la synthése d’un ensemble de classements
par une seule permutation.

Agrégation de Classements. Etant donné une liste de N > 2 éléments indexés par
[N] =A{1, ..., N} et n > 1 permutations o1, ...,0, dans le groupe symétrique Sy de
I'ensemble [N], le probléeme d’agrégation de classements consiste a identifier une seule
permutation “consensus’ 7, qui résume au mieux les o;. Dans de nombreuses appli-
cations utilisant des systémes de vote (par exemple les systémes de recommandation),
chaque classement o; est obtenu en demandant a un agent d’ordonner les N éléments par
préférence. Ainsi, le consensus &, peut étre considéré comme la permutation maximisant
I’accord simultané des n agents ou, de maniére équivalente, minimisant leur désaccord.
Etant donné une permutation ¢ € &y et deux éléments distincts (i,7) € [IN]?, nous
utiliserons la notation ¢ < j signifiant que i est préféré a j, c’est-a-dire que 7 est classé
avant j dans le classement o : 0(i) < o(j). Un jeu de données composé de n = 4 classe-
ments de N = 6 éléments est représenté dans la figure Si plusieurs méthodes ont
été développées pour résoudre ce probléme, nous nous concentrons ici sur I’approche du
consensus de Kemeny.

Consensus de Kemeny. La méthode du consensus de Kemeny (|[Kem]) définit le
classement consensus g, comme un minimiseur de la somme des distances d(o,, o) aux

n permuations oy :
n

on € arg minZd(a, o),
oEG N t=1

ou d est une métrique sur I’ensemble des permutations & . Plus précisément, la régle de
Kemeny est basée sur le choix d = d, avec la distance d, de Kendall définie par : pour
tous (o,0") € &%,

dr(o,0') =Y H(o(i) = a(j)(0'()) — o' (5)) < 0},

1<i<j<N

qui est le nombre de désaccords entre paires entre o et ¢’. Nous soulignons que cal-
culer le consensus de Kemeny &, est difficile en pratique ([DKNS01]) : nous nous
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référons a [AM12] pour une discussion sur les algorithmes tractables capables d’approcher
raisonnablement 7,,.
Cadre d’Apprentissage Statistique. Dans [KCS17], 'agrégation de classements est
formulée comme un probléme d’apprentissage statistique : les permutations déterministes
o sont remplacées par des variables aléatoires i.i.d. X; avec distribution P sur & . Dans
ce cadre probabiliste, le but ultime est d’identifier un véritable classement médian o* de
P caractérisé par

o* € arg min Lp(o),

ceGN

ou Lp(c) = Ex.p[d(o,X)]. Néanmoins, la distribution P étant inconnue de 'apprenant
n’ayant accés qu’a un échantillon X1, ...,3,, le risque Lp et donc le classement médian
o* ne peuvent étre directement calculés. Cependant, en suivant le paradigme de MRE
introduit précédemment, le consensus empirique

- IR
on € arg min Lp (0) = — Zd(m %),
ceG N " n =1

oi P, = (1/n) 3", s, indique la distribution empirique, apparait comme ’alternative
naturelle & o*. En particulier, [KCS17] a établi des bornes minimax d’ordre Op(1/4/n)
pour I'excédent de risque

Lp(c,) — Lp(o™).

Ainsi, lorsque le nombre d’observations n augmente & I'infini, la performance de la solu-
tion empirique &,, converge vers le risque minimal Lp(c*) = minyeg, Lp(o). En outre,
en indiquant par

pij =Pop{E(i) <X(j)}

la probabilité que 'élément i € [N] soit préféré a j € [N] \ {i}, les auteurs ont montré
dans le cas du 7 de Kendall d = d, que si la distribution P satisfait I’hypothése suivante
de stricte transitivité stochastique faible : pour tous 1 < i # j < N, p; ; # % et

1

.. . 1
Vk € [N]\ {4,5}, min(pij,pjk) > 5 = pig > 3

2

alors la médiane de Kemeny o* est unique et égale au classement de Copeland ocop (voir
Théoréme 5 dans [KCS17]) :

. 1 .
ocop(?) =1+ Zﬂ{pm < 5}, Vi € [N].
J#i

Empiriquement, un résultat similaire est également valable : avec une probabilité écras-
ante, le consensus o, est égal au classement plug-in de Copeland & oy, défini pour chaque
élément ¢ € [N] par

~ . N 1

O'Cop(l) =1 + gﬂ{pld < 5},

JF#i
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avec des probabilités par paire empiriques

n

- 1 ) ) L,
pij = n;H{Et(@) <X(j)}, VI<i#j<N.

Il s’ensuit que ce cas spécifique du probléme d’agrégation de classements peut étre résolu
efficacement en se basant uniquement sur les comparaisons par paires 1{3;(i) < X¢(j)},
qui sont un cas particulier de classements incomplets. En d’autres termes, on peut éviter
d’observer des classements complets Y; qui peuvent étre cotiteux & obtenir en pratique,
surtout lorsque le nombre d’éléments N est grand.

1.6 Reéduction de la dimensionnalité sur Gy

Dans le chapitre [[V] nous proposons une généralisation de I’agrégation de classements et
de 'approche de Kemeny au probléme plus général de la réduction de la dimensionnalité
sur le groupe symétrique &y. Nous rappelons d’abord que ’espace des distributions sur
G est de dimensionnalité explosive N!—1 et nous soulignons que ’agrégation de classe-
ments peut étre considérée comme une forme extréme de réduction de la dimensionnalité
. en effet, elle résume une distribution entiére P sur &y par une seule permutation mé-
diane o*. Néanmoins, cette approche présente dans sa formulation méme I’'inconvénient
de masquer la complexité de la distribution P, qui peut par exemple étre multimodale et
ne peut donc pas étre fidélement représentée par une seule permutation. Pour remédier
A cela, nous proposons une relaxation de la méthode du consensus de Kemeny en ap-
proximant la distribution originale P par une distribution plus simple P’, en suivant
une approche de transport optimal (voir [Vil08] ou [PCT19]). Plus précisément, notre
méthode consiste & choisir des distributions P’ dans un ensemble P de distributions de
“bucket”, c’est-a-dire telles que les probabilités par paire

pij = Pop{X(0) < ¥'(5)}

sont égales a zéro ou & un aussitdét que les deux éléments 7 et j appartiennent & deux
cellules distinctes Cy, et C; de I'ordre de “bucket” C = (Cy,...,Ck), qui est une partition
ordonnée de [N]. Formellement, Ule Cr = [N], Cr # 0 pour tout 1 < k < K, et si
1<k<I<K,alorsC,NC =0 et

(i,§) €Ck x = pj; =1—p;; =0.

Intuitivement, une distribution P’ € P¢ est contrainte de telle maniére qu’elle ne peut pas
générer de permutations hésitantes sur le rang relatif de deux éléments dans différentes
cellules. Par exemple avec les quatre classements o1, ...,04 de la figure et les trois
ordres de bucket C,C’,C" de la figure

e les deux classements oq et o9 satisfont tous deux la structure de 'ordre de bucket
C: {5517(552} C Pc,

e le classement o3 satisfait C' : 6,, € Per,
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e le dernier classement o4 ne satisfait les contraintes d’aucun des trois ordres de
bucket : d,, ¢ PcUPe UPen.

Etant donné un ordre de bucket C, nous dénotons par A\ = (#Ci,...,#Cx) sa forme :
elle décrit le nombre d’éléments contenus dans chacune des K cellules et détermine la
dimensionnalité de P¢, a savoir d¢ = Il1<p<g#Cp! — 1.

Ensuite, le proxy optimal P; € P¢ d’une distribution générale P est choisi en min-
imisant la distance de Wasserstein Wy, 1 = infy. pyvp Eld-(2,Y)] :

P} € arg minWy_(P, P').
P'ePe

Le cas sans contrainte K = 1, ou de fagon équivalente A = N et d¢ = N!—1, correspond
a aucune réduction de la dimensionnalité avec P, égal & tout 1’espace des distributions
sur Sy et donc P = P. Dans le cas extréme opposé K = N, équivalent a A = (1,...,1)
et de = 0, 'ensemble P¢ = {0, } est réduit a un singleton : comme dans I'agrégation
de classements, la distribution P est simplement approchée par un seul classement, ici la
permutation unique o¢ telle que i € Cy(;) pour tous les i € [N].

Contributions. Notre analyse de ce probléme repose sur les résultats suivants.

i) Nous montrons que la distorsion Ap(C) = minp/cp, Wy 1(P, P') de tout ordre de
ePc T
bucket C s’écrit simplement en termes de probabilités par paire :

Ap@) = Y > b

1<k<I<K (i,j)€CixC;

qui peut étre estimée empiriquement & partir de comparaisons par paire, de maniére
similaire au risque de la méthode du consensus de Kemeny.

(ii) Nous formulons et analysons la version MRE du probléme d’optimisation de ’ordre
de bucket :

in Ap(C
o p(C),

ou Cg ) désigne I'ensemble de tous les ordres de bucket avec le méme nombre de
cellules K et la méme forme A.

Nous soulignons que pour la forme A = (1,...,1), le probléme (i7) coincide avec la
méthode du consensus de Kemeny : en effet, nous avons Ap(C) = Lp(oc) et {oc :
C € Cy)} = 6y dans ce cas. Par conséquent, notre approche de réduction de la
dimensionnalité prolonge naturellement I'agrégation de classements. Nous fournissons
également un algorithme hiérarchique, appelé BUMERANK, qui fusionne récursivement
les cellules adjacentes dans des ordres de bucket plus grossiers.
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2 Apprentissage par renforcement avec aversion au risque

Cette section présente les contributions de cette thése dans deux cadres (imbriqués)
d’apprentissage en ligne : les bandits manchots et 'apprentissage par renforcement, le
premier étant un cas particulier du second. Désormais, contrairement aux problémes de
MRE hors ligne exposés dans la section précédente, les données d’entrainement ne sont
pas initialement mises a la disposition de l'apprenant. En effet, 'apprenant/décideur
doit interagir avec un environnement pour simultanément recueillir des observations et
concevoir sa propre stratégie.

2.1 Bandits manchots stochastiques

Le probléme du bandit manchot (BM) (voir par exemple [BCBT12|) est un probléme de
prise de décision séquentiel rencontré par un joueur dans un casino face a K > 1 machines
a sous : a chaque itération ¢ € {1,...,T} (avec T" > 1 I'horizon temporel), il choisit
une machine a sous (alias “bandit & un bras”, ou simplement “bras”) A, € {1,..., K}
puis recoit une récompense aléatoire X4, ;. Au début, le joueur/apprenant/décideur
n’a aucune connaissance préalable des machines et son objectif est de maximiser sa
récompense totale moyenne a travers toutes les itérations, & savoir E {Z?:l X At,t:|'

Dans le cadre stochastique, nous supposons que les récompenses X, 1, ..., X, 1 générées
par chaque machine a € {1,..., K} sont échantillonnées de fagon i.i.d. depuis une dis-
tribution de probabilité v, sur R d’espérance p,. Dés lors, la quantité & maximiser
s’écrit :

E

T K
) XAM] = 1aE[N(T)], (A.8)
t=1 a=1

ou Ny(t') = Zilzl I{A; = a} indique le nombre de fois ou le bras a a été tiré jusqu’a
un instant ¢ > 1. Un modéle D de BM est un ensemble de distributions possibles v,
avec espérances finies : chaque K-tuple (vq,...,vk) € DK caractérise une instance de
probléme de BM. La stratégie optimale en rétrospective consiste donc & toujours tirer le
bras optimal a*, supposé unique :
a* = arg max i,
1<a<K

ol p* = pgr = MaXi<q<K Mo > MaXq4q* [lg. Formellement, une stratégie de BM est une
fonction hy — (P{Air1 = 1|he}, ... ,P{Awy1 = K|h}), ou Uhistorique des bras tirés et
des récompenses obtenues jusqu’a l'itération courante t est dénotée par

ht = (A17 XA1,17 e 7At7 XAt,t)'

La recherche d’une stratégie maximisant 1'éq. (A.8) peut étre reformulée de maniére
équivalente par la minimisation du regret espéré

T K
Ry =Tu" —E [Z XAt,t] =Y AE[N(T)],
t=1 a=1
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2. Apprentissage par renforcement avec aversion au risque

avec Ay = p* —pq. Ce regret s’interpréte comme le déficit global de récompenses espérées
généré par une stratégie par rapport a la meilleure stratégie en rétrospective recevant la
récompense X, a chaque étape 1 <t < T

Exploration contre Exploitation. Le probléme du BM a été introduit & ’origine par
Thompson en 1933 (|Tho33|), motivé par des essais cliniques comparant efficacité de
plusieurs traitements par des tests sur une série de patients. Dans ce contexte médical,
chaque récompense correspond a l’effet observé d’un traitement sur un patient : les traite-
ments sous-optimaux doivent donc étre rapidement identifiés, puis écartés pour sauver
le plus grand nombre de patients possible. D’une part, I’éventail de tous les traitements
possibles doit étre suffisamment exploré pour permettre de repérer, avec un degré de
confiance élevé, le meilleur d’entre eux ; et d’autre part, le meilleur traitement devrait
étre exploité aussi fréequemment que possible, c’est-a-dire fourni au plus grand nombre de
patients, en évitant toute exploration superflue. Cet exemple met en évidence le compro-
mis ezploration-exploitation qui se pose dans les problémes de bandits, y compris dans les
applications modernes telles que le placement d’annonces publicitaires (voir [BCBT12|).
Bornes inférieures asymptotiques. [LRS85|, [BK96|, [CK15] et [GMS19] ont prouveé
que, asymptotiquement, le regret de toute stratégie uniformément efficace est borné
inférieurement par une fonction logarithmique de I’horizon temporel T multipliée par
une constante dépendant de la distribution et impliquant des divergences de Kullback-
Leibler.

Definition 1. Une stratégie de BM est uniformément efficace pour un modéle D si pour
tous les problémes de BM (vg)1<a<ik € DE et pour tous les bras sous-optimauz a # a*,
elle vérifie :

E[Ny(T)] = o(T?), Va € (0,1].

Theorem 1 (Théoréme 1 dans [GMS19|). Pour tout modele D, toute stratégie de BM
uniformément efficace sur D, tout probléme de BM (v1,...,vk) € DX et tout bras sous-
optimal a,

ENJ(T)] 1

Tooo  logT = Kint(Va, u*, D)’

ol
King(Va, 2, D) = inf{ KL(v,,V},) : v, € D et Exry [X'] > 2},

avec KL la divergence de Kullback-Leibler entre deuz distributions de probabilité.

En particulier, si le modeéle D est une famille exponentielle unidimensionnelle (par ex-
emple, les distributions de Bernoulli ou de Poisson), la divergence de Kullback-Leibler
KL(v,V') entre deux distributions v,/ dans D est simplement une fonction de leurs
moyennes respectives = Ex.,[X] et p/ = Exr/[X'] :

KL(V7 V/) = d(ﬂa/ﬁ/)-

Intuitivement, tout algorithme de BM “raisonnable” devrait au moins produire un re-
gret logarithmique : nous rappelons ensuite des stratégies garantissant un regret borné
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supérieurement avec une asymptotique correspondant a la limite inférieure du théoréme
1l

Algorithmes asymptotiquement optimaux. Plusieurs algorithmes se sont avérés
étre asymptotiquement optimauzx, en particulier dans le cas de distributions vy, ..., vk
appartenant a la méme familiale exponentielle, tels que KL-UCB ([GC11]), BAYEs-UCB
([Kaul6]) et THOMPSON SAMPLING ([Tho33|, [KKM12|, [KKM13]). Ces stratégies sont
toutes des politiques d’indice c’est-a-dire qu’elles s’appuient sur un certain indice wug(t)
calculé a chaque tour t > 1 pour chaque bras a € {1,..., K} : une politique d’indice
générique est décrite dans 1’Algorithme

e L’algorithme KL-UCB. Partant du méme principe d’optimisme face a lincertitude
utilisé¢ dans l'algorithme UCB1 (JACBF02]) a travers le calcul d’intervalles de confiance
autour des estimateurs empiriques des moyennes i, ’algorithme KL-UCB a été introduit
dans [GCII]. 1l s’agit d’une politique d’indice caractérisée par l'indice suivant :

ta(t) = sup {q > fia(t) : Na(t)d(jta(t), q) < logt + cloglogt }, (A.9)

ot fig(t) = (1/Na(t)) 32 T{As = a}X,s est la récompense moyenne empirique au
moment ¢, et ¢ est une constante positive généralement inférieure & 3. Cette stratégie
est dite “optimiste” car elle tire le bras avec la borne supérieure de confiance (en anglais:
“upper confidence bound”, abrégé en “UCB”) w,(t) la plus élevée, c’est-a-dire qu’elle
considére (de fagon optimiste) que la véritable moyenne i, est aussi grande que sa borne
supérieure.

e L’algorithme BAYES-UCB. L’algorithme BAYES-UCB ([KCGI12]) est une politique
d’indice bayésienne. Il repose sur la méme intuition que KL-UCB mais remplace 'UCB

par un quantile supérieur :
ua(t) = QUL — 1/(t(log t)°), Ta.), (A.10)

ot Q(a, m,,) désigne le quantile d’ordre a de la distribution postérieure 7, ; pour le bras
a au moment t.

e L’algorithme THOMPSON SAMPLING. La stratégie THOMPSON SAMPLING (ini-
tialement proposée dans [Tho33|, et analysée dans [KKMI2|, [KKMI3|) est une approche
bayésienne consistant & échantillonner un parameétre naturel (d’une distribution exponen-
tielle unidimensionnelle) 6,(t) ~ 7,(t) de la distribution postérieure m,(t) mise a jour
avec les N, (t) observations obtenues du bras a jusqu’au temps t. Ensuite, l'indice est
donné par :

Ua(t) = /J’(ea(t))’ (A'll)

avec 1(#) la valeur moyenne de la distribution exponentielle unidimensionnelle v € D de
paramétre naturel 6.

Nous présentons dans la sous-section suivante notre étude d’une variante du probléme
de BM adaptée aux applications de gestion du risque de crédit.
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2.2 Bandits pour la gestion du risque de défaut

Dans le probléme de la gestion du risque de défaut, un préteur (généralement une banque)
recoit des demandes de crédit — qu’il peut soit accepter soit rejeter — de la part
d’individus appartenant a des populations différentes. Chacune des K > 1 populations
est une catégorie (alias un bras), désignée par a € {1,..., K}, prédéfinie par la banque
sur la base de caractéristiques telles que ’age, le sexe, le salaire ou 'appartenance eth-
nique par exemple, combiné avec le montant moyen du prét 7,. En supposant que la
banque dispose d’'un budget suffisant, elle souhaite maximiser son profit total en prétant
de 'argent a toutes les catégories de clients rentables, et non pas uniquement & la caté-
gorie la plus rentable. Ainsi, du point de vue bandit manchot, la notion d’unique bras
optimal n’est plus pertinente. Plus formellement, nous considérons au chapitre [V] une
variation du probléme de BM, que nous appelons bandits rentables, o1, & chaque itération
t € {1,...,T}, Papprenant peut tirer un sous-ensemble A; C {1,..., K} des bras, ou
potentiellement aucun bras (c’est-a-dire A; = 0). A chaque population a € {1,..., K}
est associée une distribution inconnue v, et un seuil connu 7,. Le seuil 7, correspond
au montant moyen d’argent emprunté a la banque par chaque individu de la popula-
tion a. En outre, nous supposons qu’a chaque étape t, un nombre aléatoire (borné)
nq(t) de personnes de la catégorie a demandent un crédit. Ensuite, le but est de max-
imiser le profit cumulé espéré qui s’écrit, pour chaque emprunteur ¢ € {1,...,n,(t)} de
toutes les catégories choisies a € Ay, comme la différence entre le remboursement moyen
ta = Ex~,,[X] et le montant moyen du prét 7, :

T K na(t)
ST =E Z ZH{CL S At} Z Xa,c,t - La,c,t )
t=1 a=1 c=1

ou les variables aléatoires X, .; sont échantillonnées de facon i.i.d. a partir de v, et
les montants aléatoires L, .; des préts ont une espérance égale a 7,. Ici aussi, nous
reformulons I'objectif au moyen du regret espéré suivant :

Ry = Z Aaﬁa(T) - St = Z Aq (Na(T) - E[Na(T)]) + Z ’Aa|E[Na(T)]7

a€A* a€A* ag A*

ot N,(T) = E [Zle na(t)} est le nombre total espéré de clients de la catégorie a au

cours des T tours, Nu(t) = 3.\ na(s)I{a € As} est le nombre d’observations obtenues
de la catégorie a jusqu’au temps t > 1, A, = u, —7, est le profit espéré (inconnu) produit
par un client de la catégorie a et A* = {a e{l,....K}, Ay > 0} est ’ensemble des bras
rentables.

Politiques d’indice. Motivés par le succés des politiques d’indice de BM rappelées plus
haut, nous les adaptons & ce nouveau probléme de bandits rentables : & chaque itération
t et pour chaque catégorie a, un indice u,(t) est calculé, et le bras a est tiré si u,(t) est
supérieur au seuil connu 7, (voir Algorithme . Ainsi, nous proposons trois politiques
d’indice :
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e l'algorithme KL-UCB-4P (“4P” signifiant “for profit”) avec le méme indice que KL-
UCB, a savoir u,(t) défini a I'éq. (A.9)),

e lalgorithme BAYES-UCB-4P avec le méme indice que BAYES-UCB (voir 1'éq.

(A.10)).

e lalgorithme TS-4P avec le méme indice que THOMPSON SAMPLING (voir ’éq.
(A.11))).

Notre analyse montre que ces trois stratégies sont toutes asymptotiquement optimales
pour le probléme des bandits rentables.

Contributions. Nous étendons ’analyse de BM a notre cadre de bandits rentables par
le biais de deux résultats principaux : respectivement, les bornes inférieure et supérieure
sur le regret.

(i) Premiérement, nous montrons que toute stratégie uniformément efficace de bandits
rentables produit un regret Ry asymptotiquement borné inférieurement comme
suit :

Ry S A

lim inf —_—,
ICinf(Vm Ta, Da)

T—oo logT — oyt
ol
Kint(Va, 2, Dg) = inf{KL(vq,v},) : v, € Dy et Exrr [X'] > 2}

(ii) Si ng(t) = ng presque sirement pour tous les 1 <t < T, avec la constante ng >
1, alors les trois algorithmes que nous proposons, a savoir KL-UCB-4P, BAYES-
UCB-4P et TS-4P sont tous asymptotiquement optimaux c’est-a-dire que leur
regret correspond asymptotiquement & la borne inférieure. Sinon, il existe un écart
multiplicatif entre nos bornes inférieure et supérieure. En effet, nous fournissons
des bornes supérieures sur le regret avec ’asymptotique suivante :

. Ry <n+> |Aq|
lim su < =)
T;)OOp log T — CL%ZA* Ng ]Cinf(Va, Tas Da)

pour les constantes nj‘, n, > 1 telles que n; < ny(t) < nj presque stirement pour
tous les t.

2.3 Bandits et valeurs extrémes

Dans divers contextes d’aversion au Tisque, les quantités d’intérét ne sont pas néces-
sairement des moyennes. Dans certaines applications environnementales ou financiéres
par exemple, un décideur peut étre averse au risque en s’assurant qu’il est suffisamment
a labri d’événements désastreux tels que des inondations ou une crise financiére (voir
[BGSTO06], [Res07]). En d’autres termes, les stratégies efficaces sont congues en accordant
plus d’importance aux scénarios les plus défavorables qu’aux observations “normales”.
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Mathématiquement, ces scénarios pessimistes sont souvent modélisés comme des événe-
ments rares et extrémes. Ainsi, dans de nombreux problémes liés & la prise de risque,
I’apprenant doit optimiser un critére basé sur la queue d’une certaine distribution, qui
caractérise ses valeurs extrémes.
Mesures du risque. Rappelons d’abord que l’espérance d’une variable aléatoire a
valeur réelle X de fonction de répartition (“f.d.r.” en abrégé) F : x — P{X < z} est
égale a 'intégrale de la fonction quantile (ou fonction de répartition inverse généralisée)
F~l:7winf{z: F(z) > 7} sur 'intervalle [0, 1] (voir [Dev08]) :
1
E[X] = Eyuo)FH(U)] = OF_l(T)dT,

=
ou U([0,1]) est la distribution uniforme sur [0,1]. Plusieurs mesures de risque ont été
proposées dans la littérature pour remplacer 1'espérance :

e le quantile F~'(7) a un certain niveau 7 € (0, 1], parfois appelé “value at risk”
(VaR) (voir par exemple [ADEH99]), s’écrit aussi comme une solution du probléme
de minimisation asymétrique L suivant :

F(r) € arg 6?min]E[EZ(X —0)], (A.12)

avec la fonction de perte de la régression quantile (alias “perte pinball”) ¢1(z) =
z(t — {x < 0}),

e la “conditional value-at-risk” (CVaR) CVaR,(X), aussi appelée “expected shortfall”
ou encore “superquantile” (JRUT00]) :

CVaRq(X) = ;/1 F~Y(r)dr, (A.13)

décrit mieux la queue (droite) de la distribution que ne le fait 'espérance, car la
fonction quantile F~1 n’est intégrée que sur une partie supérieure de 'intervalle

(07 1)7

o “expectile” e, (X ), partageant des propriétés communes avec les quantiles, résout
quant & lui un probléme de minimisation asymétrique Lo (JNP8T7]) :

er(X) = arg Hmin E[¢S(X —0)], (A.14)

avec la fonction de perte expectile £¢(z) = 22|71 — I{z < 0}|.

Nous signalons qu’au niveau 7 = 1/2, le quantile F~!(1/2) est une médiane de la distri-
bution de X et 'expectile son espérance : e;/5(X) = E[X]. De plus, si a =1, la CVaR
coincide avec l'espérance : CVaRy(X) = E[X]. Empiriquement, la CVaR,, d’une certaine
distribution v peut étre estimée a partir d'un échantillon i.i.d. X; ~v (1 <t <T) par :

CVaR, =

T
> Xou) (A.15)

1
T
oT] (o)
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ou la permutation o € & numérote les statistiques d’ordre Xy (1) < --- < X5 (7). Nous

rappelons que CVaR, est une L-statistique (voir [VAV00]), c¢’est-a-dire une combinaison
linéaire des statistiques d’ordre.

Bandits Prudents. De nombreuses variantes du probléme classique de BM ont été
proposées pour des applications sensibles au risque. Elles consistent essentiellement &
remplacer l'espérance par différentes mesures de risque. Alors que [SBEWHI5| se con-
centre sur les quantiles, [GST13| et [KJ™19| proposent tous deux des stratégies reposant
sur I'estimation de la CVaR. Des cadres généraux de bandits englobant de larges classes
de critéres de risque (y compris les quantiles et la CVaR) sont étudiés dans [TGP19] et
[CMZ18|. Dans [SLM12], [VZ16] et |[ZIJC14], la qualité d’un bras est évaluée par une
combinaison de sa moyenne et de sa variance : pour deux bras ayant la méme moyenne,
celui ayant la plus faible variance est jugé plus str que Pautre. Dans [Mail3|, 'aversion
au risque est mesurée au moyen des fonctions génératrices des cumulants des distribu-
tions des bras ; 'approche moyenne-variance apparait alors comme un cas particulier
de cette méthode dans le scénario gaussien (c’est-a-dire lorsque v, est une distribution
normale pour chaque bras a). Nous présentons ensuite le probléme de “max K-armed
bandit”, également appelé “bandits extrémes”, comme une forme extréme des problémes
averses au risque évoqués précédemment. En effet, si la CVaR,, (avec @ << 1) d’une
certaine distribution v permet d’étudier sa queue droite — empiriquement, en sélection-
nant la fraction « des plus grandes statistiques d’ordre X,(|(1—a)7))s- -+ Xo(7) Parmi
un échantillon iid. (X;)i<<p (voir Eq. (A.15)) —, le probléme de bandits extrémes
défini ci-dessous se concentre uniquement sur ’observation maximale de cet échantillon,
a savoir maxj<¢<7 X;.

Bandits Extrémes. Dans certaines applications en médecine, assurance ou finance, la
quantité d’intérét n’est pas le rendement moyen, mais plutot les observations extrémes
(IBGSTO06]). Du point de vue des bandits manchots, le “meilleur” bras n’est alors pas
forcément celui qui a la récompense moyenne la plus élevée, mais plutot celui produisant
les valeurs maximales. Ce cadre, appelé bandits extrémes dans [CV14], a été introduit
a lorigine par |CS05] sous le nom de probléme de “max K-armed bandit”. Dans ce
probléme, 'objectif poursuivi est d’obtenir la plus haute récompense au cours des T > 1
étapes. Pour un bras donné a € {1, ..., K}, nous dénotons par

G(a) = max X
T T eyt

la réalisation maximale jusqu'a I’étape T' > 1 et supposons que, en moyenne, il y a un
unique bras optimal
a* = arg maxE [Ggﬂ)} .

1<a<K
Ensuite, le regret extréme espéré d’une stratégie, tirant le bras A; € {1,..., K} au temps
t, est défini par
Rr—E [G(a*)] —E Xatl, A.16
T T 121%}% At ( )

ol maxi<¢<1 X4, est la valeur maximale observée par 'apprenant jusqu’a I’horizon
temporel T'. Lorsque les supports des K distributions des récompenses v, ...,V sont

210



2. Apprentissage par renforcement avec aversion au risque

bornés, aucun regret n’est attendu a condition que chaque bras puisse étre suffisamment
exploré, comme le montrent [NLBI16] et [DS16]. Si le nombre de bras est infini, le défi
consiste alors & explorer et & exploiter de maniére optimale le réservoir inconnu de bras,
voir [CV15|. Lorsqu’au contraire les récompenses ne sont pas bornées, la situation est tout
a fait différente : le meilleur bras est celui pour lequel le maximum Gg? ) tend vers l'infini
plus vite que les autres. Dans [NLB16], il est montré que, pour des distributions non
bornées, aucune politique ne peut parvenir & un regret nul sans hypothéses restrictives
sur les distributions. Conformément a la littérature, nous nous concentrons sur un cadre
classique en analyse des valeurs extrémes. Plus précisément, nous supposons que chaque
distribution de récompense est & queue lourde.

Les distributions & queue lourde sont trés largement utilisées pour modéliser les ex-
trémes dans de nombreuses applications, lorsqu’une approche prudente par évaluation
des risques est requise (par exemple en finance, ou pour gérer les risques environnemen-
taux). Comme dans [CV14], nous supposons que les récompenses sont distribuées selon
des lois de Pareto du second ordre, qui sont semblables aux distributions de Pareto clas-
siques. Formellement, une loi de probabilité avec f.d.r. F(x) appartient a la famille
(o, B8, C, C")-Pareto du second ordre si, pour chaque x > 0,

I1—Cz™® — F(z)| < C'a—o0+H) (A.17)

ou «, 3,C et C' sont des constantes strictement positives, voir e.g. [Res07]. Naturelle-
ment, la distribution de Pareto avec indice de queue « et paramétre d’échelle C', dont la
f.d.r. est: )

Ve>Ca, F(z)=1-Cx %,

appartient & cette famille car elle vérifie trivialement I’équation . Ces distributions
sont en effet a “queue lourde”, voir la figure[[.7] pour une comparaison avec une distribution
normale repliée a “queue légére”. Pour chaque bras a € {1,..., K}, la distribution v,
appartient par hypothése a la famille de Pareto du second ordre (ag, 4, Cq, C’) avec
ag > 1, de sorte que 'espérance de la variable aléatoire X,; ~ v, est finie. Dans ce
contexte, [CV14] ont proposé 'algorithme EXTREMEHUNTER pour résoudre le probléme
de bandits extrémes et ont fourni une analyse du regret extréme avec la borne supérieure
suivante :

RT:O(TW;)%*),

ot b > 0 est une borne inférieure connue sur les coefficients (inconnus) f, : b < min, f,.
Contributions. Notre contribution a ce probléme est présentée dans le chapitre [V]] :
elle est double.

(i) Premiérement, nous améliorons significativement ’analyse du regret de EXTREME-
HUNTER par un facteur polynomial en ’horizon temporel T, en prouvant que

Ry =0 ((log )220+ 1) /bp—(1=1/ag) T-(b_1/%*)) :

et nous fournissons une borne inférieure correspondante dans un cas spécifique. Cela
repose essentiellement sur une majoration plus fine de la différence entre 1’espérance
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du maximum parmi les réalisations indépendantes X7, ..., X7 d’une distribution
(e, B, C, C")-Pareto du second ordre, a savoir E[max;<;<7 X;|, et son approxima-
tion (T'C)Y/°T(1 — 1/a) avec T la fonction Gamma. Comme conséquence, nous
proposons une stratégie plus simple du type “Explore-Then-Commit” offrant les
mémes garanties théoriques qU EXTREMEHUNTER.

(ii) Dans un second temps, nous expliquons comment les bandits extrémes peuvent,
dans une certaine mesure, étre réduits & un probléme de bandits classique. Nous
montrons qu’une stratégie de BM telle que RoBUST-UCB (voir [BCL13]), appliquée
sur des récompenses correctement tronquées a gauche X, I{X,; > u} avec un seuil
u suffisamment élevé, peut aussi étre performante. Cette affirmation est soutenue
par des garanties théoriques sur le nombre de tirages du meilleur bras a* ainsi que
par des expériences numériques.

Ensuite, nous considérons le cadre général de I'apprentissage par renforcement, qui
inclut le probléme de bandit manchot (statique) précédemment discuté. Nous soulignons
que, & mi-chemin entre ces deux problémes, des variantes plus dynamiques du BM ont
également été étudiées dans la littérature : en particulier, les bandits contextuels (voir
[Woo79|, [SIiT4], |[PR™13]), ou les récompenses dépendent de covariables aléatoires ob-
servables.

2.4 Apprentissage par Renforcement

Le probléme de bandit manchot évoqué plus haut peut étre considéré comme une in-
stance trés spécifique du cadre plus général de I'apprentissage par renforcement (AR).
Dans 'apprentissage par renforcement, un agent cherche & maximiser la somme espérée
des récompenses futures (actualisées) en interagissant de maniére séquentielle avec son
environnement. Cette récompense totale définit des fonctions de valeur dépendant de
I’état de 'environnement et de I’action prise par 'agent. L’objectif est alors de trou-
ver une politique optimale maximisant ces fonctions de valeur dans chaque état. Si
I’environnement est toujours dans le méme état, alors ’AR est un probléme de bandit
ot les armes sont les différentes actions. Nous présentons formellement le cadre de I’AR
ci-dessous.

Mélanges. Ici ainsi qu’au chapitre nous désignons par P(€) 'ensemble des dis-
tributions de probabilité sur un ensemble & (soit dénombrable soit R). En outre, étant
donné une variable aléatoire Y a valeur dans un ensemble dénombrable ) et une fonction
v:Y — P(E), nous dénotons par v(Y) € P(E) la distribution de mélange de la variable

aléatoire suivante :
Z H{Y = y}Uya
yey

ou Uy ~ v(y) et Y sont indépendantes pour tout y € V.
Processus de décision markovien. Un processus de décision markovien (PDM) est
décrit par un quadruplet (X, A, P, R) avec

e l'ensemble d’états X,
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2. Apprentissage par renforcement avec aversion au risque

e ’ensemble d’actions A,
e le noyau de transition P: X x A — P(X),
e la fonction de récompense R : X x A — P(R).

Pour simplifier, nous supposons que X" et A sont tous deux dénombrables. Sil’environnement

est dans l'état x € X et si ’agent prend l'action a € A, alors il regoit une récompense

Ry ~ R(x,a) et I'état suivant X est échantillonné depuis la distribution P(-|z,a) € P(X)

de telle sorte que Ry, X1 soient indépendants. Voir la figure pour un exemple basique

de PDM a deux états, deux actions, et des récompenses déterministes (c’est-a-dire qu’il

existe une fonction r : X x A — R telle que R(x,a) = 0,(;,4) pour tout (z,a) € X' x A).
Une politique 7 : X — P(A) associe & tout état z € X' une distribution sur les actions

7(-|z) € P(A). Avec un facteur d’actualisation v € [0, 1], nous définissons la distribution

Z™(xz,a) du revenu total d’une politique 7 aprés avoir pris l'action a € A dans 1'état

x € X comme étant la distribution de probabilité de la variable aléatoire suivante :

o
Z'tht étant donné que Xo =z, Ag = a,
t=0

et pour tout ¢ € N, Ry ~ R(Xy, Ay), Xey1 ~ P(-| Xy, Ar), Apr1 ~ m(-| Xiq1).  (A18)

Le taux d’actualisation v sert a la fois & assurer la convergence du revenu total, et de
paramétre déterminant la valeur actuelle des récompenses futures : une petite valeur de
~ donne peu d’importance aux récompenses futures. Une alternative a I’'Eq. , que
nous ne considérerons pas ici, est la somme des récompenses ZE:O Ry, qui n’a de sens
que lorsqu’il existe une notion naturelle d’horizon temporel T' (voir [SBI1§|). En général,
I’AR se concentre sur les revenus espérés par le biais de la fonction de valeur état-action

Qﬂ(gja a) = EZONZ”(z,a) [ZO])
et la fonction de valeur
V() = Eagmn(a) @7 (z, A0)],
vérifiant I’équation de Bellman (|Bel66]) :
\V/(CU,CL), QW(J/‘7CL) = ]E[RU] +7E[QW(X17A1)]7

ot Ry ~ R(z,a), X1 ~ P(-|z,a) et Ay ~ 7(:|X1). Les politiques optimales peuvent étre
caractérisées au moyen de la fonction de valeur optimale état-action Q*(x,a), qui vérifie
I’équation d’optimalité de Bellman :

V(m,a)’ Q*(%a) :E[Ro] +7E[HE}XQ*(X17GI)]'

Ensuite, en désignant par V*(z) = max, Q*(x,a) la fonction de valeur optimale, une
politique 7* est optimale si et seulement si pour tout état x,

E[Q*(z, Ay)] = V™ (z), avec Ay~ 7*(:|z).
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Opérateurs de Bellman. Dans la tache d’evaluation de politique, on souhaite calculer
Q™ pour une politique donnée m, alors que dans la tache de contréle, le but est d’approcher
Q*. La méthode classique de programmation dynamique pour résoudre ces deux taches
repose sur deux opérateurs. D’une part, 'opérateur de Bellman T™ (|Bel66]) défini par :
pour tout @ : ¥ x A = Ret (z,a) € X x A,

T"Q(x,a) = E[Ro] + VE[Q(X1, A1)], avec X1 ~ P(-|z,a), Ay ~ 7(-|X1).
D’autre part, ’opérateur d’optimalité de Bellman T défini par :

TQ(z,a) = E[Ro] + 7E[max Q(X1,d")], avec X1 ~ P(|z,a).

En particulier, 'opérateur de Bellman 7™ (resp. opérateur d’optimalité de Bellman T')
est une w—contractionﬂ pour la norme sup et son application répétée & une (Q-fonction
initiale converge exponentiellement rapidement vers son unique point fixe Q™ (resp. Q%)
(IBT94)).

Algorithmes d’AR. En AR, le noyau de transition P est inconnu et les opérateurs
de Bellman ne peuvent donc pas étre calculés exactement. D’otll les méthodes pratiques
d’AR telles que le “temporal-difference learning” (TD) ([Sut88]), SARSA (JRN94]), ou
encore Q-LEARNING ([Wat89]), consistant & calculer des approximations stochastiques de
ces opérateurs a partir de trajectoires composées de séquences “état-action-récompense”
observées. Avec une seule transition

(Xt Ag, Ry, X1, A1)

ou Ry ~ R(Xy, Ay), Xeg1 ~ P(+| Xy, A), Apr1 ~ (-] Xi41), et le taux d’apprentissage
0 < a <1, leurs régles de mise a jour sont les suivantes :

e TD(0) :
V(Xy) = (1= a)V(Xe) + (R + 7V (Xe41)),

e SARSA(0) (utilisant 'action suivante A;41) :

Q(Xt, Ap) = (1 — )Q(Xy, Ap) + a(Re + 7Q(Xit1, Artr)),
e (Q-LEARNING :
Q(Xt, Ar) + (1 — )Q(Xy, Ap) + (R + ’ygleaﬁQ(XtH,G,))-
Sous certaines hypothéses techniques (cadre tabulaire, états et actions visités un nombre
infini de fois, taux d’apprentissage constant ou décroissant, etc.), il a été prouvé que

les méthodes T'D convergent vers la fonction de valeur V™ ([Sut88|, [Day92]), tandis que
I'algorithme SARSA(0) (combiné avec des politiques gloutonnes, voir [SJLS00]) ainsi que

1Une fonction d’un espace métrique vers lui-méme est appelée une ~-contraction (resp. une non-
expansion) si elle est Lipschitz avec constante de Lipschitz v < 1 (resp. x < 1).
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Q-LEARNING (voir [WD92]) convergent tous deux vers la fonction de valeur état-action
optimale Q*.

Comme dans le cas du bandit manchot, de nombreuses variantes averses au risque
de AR furent proposées en remplacant les revenus espérés par des critéres sensibles au
risque, nous renvoyons a |[GF15] pour un apergu de telles méthodes. Notre approche
pour ce probléme s’appuie sur le cadre plus général de ’apprentissage par renforcement
distributionnel (ARD), ou l'accent n’est pas seulement mis sur les fonctions de valeur
(c’est-a-dire les revenus moyens) comme dans I’AR, mais sur les distributions entiéres de
ces mémes revenus, ce qui permet potentiellement des applications sensibles au risque
basées sur des mesures de risques comme la CVaR par exemple.

2.5 Au-dela des fonctions de valeur : les équations de Bellman
atomiques

Dans 'apprentissage par renforcement distributionnel (ARD), 'accent est mis sur la dis-
tribution, désignée par Z™(z,a), de la variable aléatoire Y ,-,7'R; dans I'Eq. ,
et non pas uniquement sur son espérance comme c’est le cas dans ’AR (non distribu-
tionnel). Comme le montre [BDM17|, les outils d’AR habituels tels que les équations de
Bellman (pour les revenus espérés) peuvent étre généralisés aux distributions. De méme,
les auteurs ont proposé deux opérateurs de Bellman distributionnels : alors que le pre-
mier, désigné par 7™, pour I’évaluation distributionnelle d’une politique donnée 7, est
une contraction, le second, pour la tache de controle, ne 'est pas (voir respectivement le
Lemme 3 et la Proposition 1 dans [BDMI7]). Formellement, 1'opérateur distributionnel
de Bellman T™ est défini par : pour toute fonction de distribution état-action

Z:(xz,a) € X x A Z(x,a) € P(R),
I'image de Z par 77 est la fonction de distribution état-action 7™ Z donnée par :
T"Z : (x,a) — distribution de la v.a. Ry +vZ1, avec Ry ~ R(x,a),Z1 ~ Z(X1, A1),

ou X; ~ P(:z,a) et Ay ~ 7(-|X1). L’équation de Bellman distributionnelle s’écrit
ensuite :

ZTI' — 7"7TZ7T.

En pratique, il peut s’avérer compliqué de calculer des distributions générales. Par
conséquent, les approches d’ARD existantes ont été développées en projetant les distribu-
tions dans un espace paramétrique plus simple de mesures de probabilité, facilitant ainsi
les calculs. Par exemple, [DRBM18| et [RBD™ 18| approximent tous deux les revenus dis-
tributionnels par des distributions atomiques mais considérent des métriques différentes
pour évaluer les erreurs d’approximation : respectivement la distance 1—WassersteinE|
Wi et la distance de Cramér.

2Pour p € [1,+00), la distance p-Wasserstein entre deux distributions Dq et D2 sur R (de f.d.r. Fy

1

et Ib) est Wy, (D1, Ds) = (f:zo |F1’1(T) — F2*1(T)|P dT) v
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Projection Atomique. Notre approche au chapitre [VII] repose sur les deux choix
suivants.

(a) Nous approximons les distributions de probabilité D sur R par des distributions
atomiques Dy, g = Zf\;l widp, avec w; > 0 et wi +---+wy=1,et 0 <--- < 0On.

(b) Comme dans notre probléme de réduction de la dimensionnalité sur le groupe symétrique
(partie chapitre7 nous utilisons une métrique de transport optimal pour mesurer
les erreurs d’approximation, & savoir la distance 2-Wasserstein Ws :

1
2

N o
WQ(D, Dw,&) = (Z/ B (F_l(T) - 91)2 dT) 5 (Alg)
i=1 v T=Wi-1

avec les probabilités cumulées w; = 3, w;.

Il est important de noter que pour des probabilités w; fixées, 'erreur d’approximation
dans I'Eq. est minimisée par rapport aux atomes 6; si et seulement si pour tout
1 < i < N tel que w; # 0, 0; est égal a la moyenne tronquée suivante de la distribution
D _

1 (v

00 = / F~(r)dr.

Wi Jr=w;_1
Nous soulignons que dans le cas monoatomique N = 1, 'unique “moyenne tronquée”
est simplement ’espérance. En effet, elle s’écrit aussi comme l'intégrale de la fonction
quantile sur tout l'intervalle (0,1) : Ey p[Y] = le:O F~Y(7)dr, ce qui nous raméne &
I’AR classique. En outre, ces moyennes tronquées peuvent étre utilisées dans un contexte
d’aversion au risque pour calculer des mesures de risque telles que la CVaR :

0 4+ 0
CVaRi 5, (V) = =5 1W’N

Nous présentons ci-dessous une étude de cas avec deux politiques ayant les mémes per-
formances moyennes mais des niveaux de risque différents.

Etude de cas - Politique prudente contre politique risquée. Pour le PDM décrit
dans la figure , combiné avec un facteur d’actualisation v = %, les deux politiques m, 7’
données par m(ai|-) = 1 (“toujours choisir action a1”) et 7’(az|-) = 1 (“toujours choisir
l’action ag”) partagent les mémes fonctions de valeur :

V(o) = @ (a1 = 5 = V7 (1) = Q7 (a1, a2)

ot V(x2) = Q"(2, 1) = % — V™ (29) = Q (22, a5). (A.20)

Cependant, 7' produit des revenus déterministes, contrairement a 7, et est donc la
plus stire des deux politiques. Plus précisément, les distributions des revenus dont les
moyennes sont données dans ’'Eq. ([A.20)) sont concentrées en des masses de Dirac dans le
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cas de la politique “stre” 7', alors qu’elles sont uniformément réparties sur des intervalles
dans le cas “risqué” :

!

- ZTr (.Il,CLQ),

et Z”(azg,al):Z/{([l,Q]);«éég:Z’Tl(xg,ag), (A.21)

Zﬂ(xhal) = U([O, 1]) 7é d

1
2

ou U([a, B]) désigne la distribution uniforme sur tout intervalle [«, /].
Contributions. Notre contribution est triple.

(i) Tout d’abord, nous introduisons deux nouveaux opérateurs “a 1 étape” d’ARD, qui
ne traitent que l'aléa induit par la premiére étape. Le premier, pour 1’évaluation
de politique, est désigné par T™ et défini par : pour toute fonction de distribution
état-action Z et (z,a) € X x A, T"Z(x,a) est la distribution de la v.a.

RQ—F’YE[ZﬂXl,Al], avec Ry ~ R(.CC,CL), Zy~ Z(Xl,Al),Xl ~ P(-|x,a),A1 ~ 71'('|X1),

tandis que notre second opérateur d’ARD T (pour la tache de controle) est défini
de telle sorte que TZ(z,a) est la distribution de

Ro+ymaxE[Z; »|X1], avec Ry ~ R(z,a), X1 ~ P(:|z,a), Zy o ~ Z(X1,d")Vd' € A.
a/

Il est intéressant de noter que T™ et T sont tous deux des contractions.

(ii) Ensuite, nous décrivons les opérateurs projetés résultant des choix (a) et (b) et prou-
vons qu’ils sont aussi des contractions. En outre, nous aboutissons aux équations
de Bellman atomiques, qui sont les équations de point fixe des opérateurs projetés
. elles généralisent les équations de Bellman habituelles (non distributionnelles) au
cas multiatomique de plusieurs moyennes tronquées.

(iii) Enfin, nous proposons de nouveaux algorithmes d’ARD prolongeant au cas mul-
tiatomique les méthodes TD et Q-LEARNING.

En bref, le dernier chapitre [VII| fournit de nouveaux outils théoriques d’ARD, & savoir
les opérateurs a 1 étape et les équations de Bellman atomiques, qui sont voués a étre
utilisés dans des situations d’aversion au risque.
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Résumé : Les travaux de cette thése se situent
a linterface de deux thématiques de I'apprentis-
sage automatique : I'apprentissage de préférences
d’'une part, et 'apprentissage par renforcement de
lautre. La premiere consiste a percoler différents
classements d’'un méme ensemble d’objets afin d’en
extraire un ordre général, la seconde a identifier
séquentiellement une stratégie optimale en obser-
vant des récompenses sanctionnant chaque action
essayée. La structure de la thése suit ce découpage
thématique. En premiere partie, le paradigme de mi-
nimisation du risque empirique est utilisé a des fins
d’ordonnancement. Partant du probleme d’apprentis-
sage supervisé de regles d’'ordonnancement a partir
de données étiquetées de fagon binaire, une exten-
sion est proposée au cas ou les étiquettes prennent
des valeurs continues. Les critéres de performance
usuels dans le cas binaire, a savoir la courbe ca-
ractéristique de l'opérateur de réception (COR) et
I'aire sous la courbe COR (ASC), sont étendus au
cas continu : les métriques COR intégrée (CORI) et

Titre : Contribution a des problémes statistiques d’ordonnancement et d’apprentissage par renforcement avec

Mots clés : minimisation du risque empirique, ordonnancement, bandit manchot, apprentissage par renforce-

ASC intégrée (ASCI) sont introduites a cet effet. Le
second probleme d’ordonnancement étudié est ce-
lui de 'agrégation de classements a travers lidenti-
fication du consensus de Kemeny. En particulier, une
relaxation au probleme plus général de la réduction
de la dimensionnalité dans I'espace des distributions
sur le groupe symétrique est formulée a I'aide d’outils
mathématiques empruntés a la théorie du transport
optimal. La seconde partie de cette thése s’intéresse
a l'apprentissage par renforcement. Des problemes
de bandit manchot sont analysés dans des contextes
ou la performance moyenne n’est pas pertinente et ou
la gestion du risque prévaut. Enfin, le probleme plus
général de I'apprentissage par renforcement distribu-
tionnel, dans lequel le décideur cherche a connaitre
I'entiere distribution de sa performance et non pas
uniguement sa valeur moyenne, est considéré. De
nouveaux opérateurs de programmation dynamique
ainsi que leurs pendants atomiques ménent a de nou-
veaux algorithmes stochastiques distributionnels.

Abstract : This thesis divides into two parts: the
first part is on ranking and the second on risk-aware
reinforcement learning. While binary classification is
the flagship application of empirical risk minimization
(ERM), the main paradigm of machine learning, more
challenging problems such as bipartite ranking can
also be expressed through that setup. In bipartite ran-
king, the goal is to order, by means of scoring me-
thods, all the elements of some feature space based
on a training dataset composed of feature vectors with
their binary labels. This thesis extends this setting to
the continuous ranking problem, a variant where the
labels are taking continuous values instead of being
simply binary. The analysis of ranking data, initiated
in the 18th century in the context of elections, has
led to another ranking problem using ERM, namely
ranking aggregation and more precisely the Kemeny’s
consensus approach. From a training dataset made of

Title : Ranking and Risk-Aware Reinforcement Learning

Keywords : empirical risk minimization, ranking, multi-armed bandit, distributional reinforcement learning

ranking data, such as permutations or pairwise com-
parisons, the goal is to find the single ‘median per-
mutation’ that best corresponds to a consensus order.
We present a less drastic dimensionality reduction ap-
proach where a distribution on rankings is approxima-
ted by a simpler distribution, which is not necessarily
reduced to a Dirac mass as in ranking aggregation.
For that purpose, we rely on mathematical tools from
the theory of optimal transport such as Wasserstein
metrics. The second part of this thesis focuses on
risk-aware versions of the stochastic multi-armed ban-
dit problem and of reinforcement learning (RL), where
an agent is interacting with a dynamic environment
by taking actions and receiving rewards, the objective
being to maximize the total payoff. In particular, a no-
vel atomic distributional RL approach is provided: the
distribution of the total payoff is approximated by par-
ticles that correspond to trimmed means.
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