Keywords: Requêtes Skyline, Données dynamiques, Optimization des requêtes, Structures d'indexation Skyline queries, Dynamic data, Query optimization, Index structures

Optimisation des requêtes de préférence Skyline dans des contextes dynamiques.

Résumé

Les requêtes de préférence sont des outils intéressants pour traiter les données. Elles permettent par exemple de récupérer à partir d'un ensemble de données, un sous ensemble qui résume les données en entrée. Dans cette thèse, nous abordons principalement l'optimisation des requêtes Skyline dans des contextes dynamiques. Dans un premier temps, nous abordons la maintenance incrémentale de la structure d'indexation NSC qui a été démontrée efficace pour répondre aux requêtes Skyline dans un contexte statique.

Plus précisément, nous abordons (i) le cas des données dynamiques, quand les tuples sont insérés ou supprimés à tout moment, et (ii) le cas des données en flux quand les tuples sont ajoutés et supprimés à des intervalles de temps spécifiques. Dans un deuxième temps, nous abordons l'optimisation des requêtes Skyline en présence d'ordres dynamiques, c'est-à-dire que certains ou tous les attributs de l'ensemble de données sont nominaux et que chaque utilisateur exprime son propre ordre partiel sur le domaine de ces attributs.

Dans ce cas, nous proposons des algorithmes parallèles qui décomposent une requête soumise en un ensemble de sous-requêtes et traitent chacune indépendamment.

Unité de recherche

Université de Bordeaux, CNRS, LaBRI, UMR 5800, F-33400 Talence, France

Résumé

Les requêtes de préférence sont des outils intéressants pour traiter les données. Elles permettent par exemple de récupérer à partir d'un ensemble de données, un sous ensemble qui résume les données en entrée, ou bien d'ordonner les données selon les préférences de l'utilisateur. Ces requêtes sont utilisées dans plusieurs contextes. Par exemple, filtrer les données pour ne garder que les tuples intéressants vis à vis de l'utilisateur. Aussi, elles sont utilisées dans les systèmes de recommandation pour aider l'utilisateur à faire son choix en proposant un sous ensemble de taille limitée. Un cas réel serait un système de réservation de vol où étant donnée les préférences de l'utilisateur, le système propose un ensemble restreint de vols à l'utilisateur.

Les requêtes Skyline sont une classe des requêtes de préférence. Elles retournent un sous ensemble de données qui constituent les "meilleurs" éléments d'un ensemble de données. Elles se basent sur le principe de la domination. Soit deux tuples t et t , t est dit dominé par t si t est meilleur ou égal à t sur tous les attributs, et strictement meilleur sur au moins un attribut. Le skyline est alors l'ensemble des tuples non dominés. Le concept de la requête skyline est une adaptation en bases de données de la frontière de Pareto. Celle-ci représente en études économiques, un ensemble d'états qui ne permettent plus aucune optimisation. Considérons la figure 1 qui représente un ensemble de points décrits par deux attributs f 1 et f 2. Supposons que les plus petites valeurs sur ces attributs sont préférées. Ainsi l'ensemble skyline est l'ensemble de points reliés par la ligne rouge. Dans un premier temps, nous considérons des données totalement ordonnées, c'est à dire, il existe un ordre total sur le domaine des attributs, et nous abordons l'optimisation de requêtes skylines multidimensionnelles. Dans la littérature, il existe principalement des solutions qui calculent le skyline de zéro ou matérialisent le résultat. Récemment, la structure d'indexation NSC a été proposée et a été montrée plus efficace que les solutions de l'état de l'art. NSC est de la forme clé valeur où la clé représente un sous ensemble d'attributs et la valeur est un ensemble de tuples. Quand une requête skyline par rapport à un sous ensemble d'attributs est émise, la procédure d'évaluation des requêtes balaye la structure NSC pour constituer le résultat. Cependant NSC a été conçue en supposant que les données sont statiques. Hors, dans les applications du monde réel, les données changent constamment. Ainsi, nous étudions la maintenance incrémentale de la structure d'indexation NSC. Nous considérons deux types de données: (i) données dynamiques où les tuples peuvent être inserés ou supprimés à tout moment, et (ii) données en flux où les tuples sont ajoutés à intervalle prédéfini.

Dans un contexte de données dynamiques, c'est à dire, des tuples peuvent être inserés ou supprimés à tout moment. Nous avons identifié que la suppression est plus difficile que l'insertion. En effet, il est possible de récupérer l'information qu'un tuple t est dominée par NSC mais pas la source de cette domination, c'est à dire, le ou les tuples qui dominent t. Ainsi, quand des suppressions se produisent au niveau de l'ensemble de données, il est nécessaire de reconstruire NSC. Nous proposons alors une modification de la structure pour pallier à ce problème qui est très couteux. Pour tout tuple, nous ajoutons dans NSC l'information du nombre de tuples qui le dominent par rapport à un sous ensemble d'attributs. Cette approche permet un bon compromis entre le temps de maintenance et l'espace mémoire supplémentaire utilisé. Nous montrons des expériences vii réalisées pour évaluer les performances de NSC par rapport à ses compétiteurs où nous considérons plusieurs ensembles de données réels et synthétiques avec des configurations allant jusqu'à 1 million de tuples et 20 attributs. En général, nous montrons que NSC est jusqu'à 100 fois plus rapides que les méthodes qui calculent le skyline de zéro. Aussi, NSC utilise moins de mémoire (environ 16 fois moins la taille des données). Enfin, il admet une maintenance incrémentale. Par exemple, en ajoutant 10% de la taille des données de départ, le temps de maintenance est aussi 10% du temps de construction du nouvel ensemble de données de zéro. Aussi, nous montrons que pour certaines configurations, le temps moyen pour mettre à jour la structure après une suppression d'un tuple est 1000 fois moins que le temps de reconstruire toute la structure de zéro.

Dans un contexte de données en streaming, c'est à dire, des données qui s'ajoutent chaque θ unité de temps et des requêtes qui considèrent les données insérées dans un intervalle de temps de taille ω. Nous avons conçu un système de gestion des données entrantes MSSD. Ce système gère les données par lot. Nous stockons les données entrantes dans une mémoire tampon durant intervalle de temps de taille k. Puis nous mettons à jour la structure NSCt qui est une adaptation de NSC pour ce contexte. Cette stratégie permet un compromis entre la précision des réponses aux requêtes et la capacité du système à y répondre. En effet, la requête de l'utilisateur ne considère que les données arrivées à l'instant de la dernière maintenance. Par contre, plus la durée de mise en tampon est grande, plus long est l'intervalle de temps qu'a l'utilisateur pour exécuter ses requêtes. Nous montrons empiriquement qu'en adoptant le système de traitement par lot avec NSCt, un utilisateur peut soumettre plusieurs requêtes pendant l'intervalle de lot.

Aussi, l'esapce mémoire utilisé est jusqu'à 100 fois plus petit que l'espace mémoire utilisé par une méthode qui matérialise les résultats. Enfin, nous présentons une expérience sur un flux de tweets collectés en temps réel par notre framework. Nous montrons que dans ce cas aussi, notre solution permet de filtrer les tweets des personnes influentes en un temps plus intéressant que celui des autres approches.

Après avoir démontré théoriquement et empiriquement que NSC est une structure de données rapide et fiable pour l'évaluation des requêtes skyline multidimensionnelles, nous investiguons l'optimisation des requêtes de minimisation de regret à travers NSC.

Ces requêtes ont été proposées comme alternatives aux requêtes skyline et requête Top-K.

En effet les requêtes skyline ne permettent pas la maîtrise de la taille du résultat. Et les requêtes Top-K requièrent une fonction de score. Les requêtes de minimisation de regret ont comme entrée un ensemble de données T , un entier K et une famille de fonctions F. Le résultat est un ensemble S de taille K qui minimise une erreur (regret) ε. Cette erreur est calculée de plusieurs façons dans la littérature. En général, elle représente viii la différence entre le meilleur score obtenu par l'ensemble S comparé à celui obtenu par l'ensemble en entrée T par rapport à la famille de fonction F. Il a été démontré précédemment qu'il est suffisant de considérer le skyline de T , Sky(T), au lieu de tout T pour calculer l'ensemble S. Dans ce manuscrit, nous investiguons l'impact d'autres ensembles candidats pour le calcul de l'ensemble de regret minimum comme le Top-K des skylines fréquents (Top-KF). Globalement, nous montrons que le résultat de la requête Top-KF est un bon ensemble candidat pour calculer un ensemble à regret minimum car (i) il est rapide à calculer par NSC et (ii) il permet de trouver un ensemble résultat de regret intéressant.

Dans un deuxième temps, nous considérons que les domaines de certains attributs sont partiellement ordonnés, par exemple, un attribut "compagnie aérienne". A prioiri, il n'existe pas d'ordre spécifique entre les compagnies. Dans ce cas, chaque utlisateur définit un ordre partiel (préférence) R sur les valeurs des attributs. Dans la littérature, les travaux ayant abordé ce problème ont proposé soit des solutions qui calculent le skyline de zéro soit des approches basées sur la matérialisation des résultats. Cependant, ces solutions sont inefficaces quand le nombre d'attributs à ordre partiel ou les domaines des attributs à ordre partiel grandissent. Dans ce manuscrit, nous proposons une solution qui décompose une requête en plusieurs sous-requêtes. En effet, un utilisateur définit un ordre partiel R sur un attribut. Cet ordre partiel est un ensemble de paires (x, y) tel que la valeur x est préféré à la valeur y. Notre méthode consiste à décomposer une requête en plusieurs sous-requêtes tel que chaque sous requête considère une seule paire (x, y) ∈ R seulement. Le résultat final n'est que l'union des résultats des sous requêtes.

Du fait que ces sous-requêtes sont indépendantes, nous les évaluons en parallèle. Aussi, du fait que le nombre de sous-requêtes est limité, les résultats de ces sous-requêtes peuvent être matérialisées pour optimiser toutes les requêtes possibles. En outre, nous introduisons le problème de sélection d'un sous ensemble de sous-requêtes à matérialiser dans le but d'optimiser un ensemble de requêtes donné, en prenant en considération la contrainte d'espace mémoire disponible. Nous évaluons empiriquement nos propositions pour valider les propriétés théoriques. En général, nous montrons que notre approche est plus efficace quand la taille des données et la taille du domaine des attributs à ordre partiel grandissent. Aussi, nous montrons que le temps d'évaluation des requêtes par notre méthode décroit linéairement avec le nombre de processeurs affectés au calcul.

Introduction

Nowadays, data is driving decisions and is bringing value to businesses. However, often, the amount of data and the multiple criterion make it hard to extract valuable insight directly from the input data. It becomes then imperative to have tools that filter useful data and compute small interesting representatives. Preference queries, for instance, are tools that allow users to extract and rank data with respect to their preferences. One concrete example for preference queries implementation is the flight booking platform Skyscanner. Users are given a small set of flights considered the "best" with respect to their travel information. They can then make their decision based on this set of flights.

Since the introduction of preference queries by the database community in the 90's, two main variants have been extensively studied and expanded to many applications:

Top-K queries [START_REF] Chaudhuri | Evaluating Top-k Selection Queries[END_REF] and Skyline queries [START_REF] Börzsönyi | The Skyline Operator[END_REF]. Both have the same objective, namely retrieving the best tuples, however, they diverge in their semantics. In this dissertation, we consider mainly skyline queries [START_REF] Börzsönyi | The Skyline Operator[END_REF]. Although they have attracted great attention by the database community, their computation is still challenging.

Given a dataset of size n, the time complexity to compute the skyline set is in the worst case O(n 2).

Several works proposed optimization techniques for evaluating skyline queries. Such works can be broadly categorized into three groups. The first group uses indexes such as R-Trees [START_REF] Kossmann | Shooting Stars in the Sky: An Online Algorithm for Skyline Queries[END_REF][START_REF] Papadias | An Optimal and Progressive Algorithm for Skyline Queries[END_REF]. The second group uses preprocessing such as ranking tuples with respect to (wrt) some utility function in order to prune comparisons [START_REF] Chomicki | Skyline with Presorting[END_REF][START_REF] Chomicki | Skyline with Presorting: Theory and Optimizations[END_REF]. The third group uses partitioning in order to continuously prune dominated tuples [START_REF] Lee | BSkyTree: scalable skyline computation using a balanced pivot selection[END_REF][START_REF] Lee | Scalable skyline computation using a balanced pivot selection technique[END_REF][START_REF] Chester | Scalable parallelization of skyline computation for multi-core processors[END_REF]. The later group techniques have been shown the most efficient. More details in Chapter 1.

The above techniques are adapted to systems which receive few skyline queries as they mainly compute the skyline from scratch any time a query is issued. They are not however efficient for systems with high skyline queries throughput. To cope with this limitation, [START_REF] Wu | DeltaSky: Optimal Maintenance of Skyline Deletions without Exclusive Dominance Region Generation[END_REF][START_REF] Tao | Maintaining Sliding Window Skylines on Data Streams[END_REF] proposed the materialization of the skyline query result and proposed techniques to update the materialized result each time the underlying data changes.

Challenges and contributions

In this dissertation, we address the challenges of efficiently answering skyline queries in dynamic contexts. Concretely, in a first part, we address the maintenance of an indexing structure NSC upon updates. This structure has been shown efficient for answering multidimensional skyline queries but was designed for static data. In this dissertation, we redesign the structure and propose procedures to deal with (i) dynamic data and (ii) streaming data. In a second part, we consider the case where data have dynamically ordered attributes and users are allowed to express their own preferences on the attributes' domain. We then propose both scalable on-the-fly algorithms and materialization techniques for efficiently evaluating skyline queries.

Multidimensional skyline queries and moving data Consider the dataset in Table 1.

Users can issue a skyline query wrt any non empty combination of the three attributes (Price, Duration, # of Stops), e.g. Sky(Price, Duration) or Sky(# o f Stops). There exists 2 3 -1 = 7 possible subspace (subset of attributes) skyline queries where 3 is the number of attributes. Table 2 illustrates all subspace skyline queries wrt the dataset in Table 1 In the literature, works proposed the computation and the materialization of all possible subspace skyline queries in a structure called the Skycube, e.g. [START_REF] Lee | Toward efficient multidimensional subspace skyline computation[END_REF]. This approach ensures the minimum cost for evaluating a skyline query, however it requires a high storage cost. Other works proposed partial materialization of the Skycube or dedicated index structures that seek for a reasonable trade-off between the memory cost and the query answering time, e.g, [START_REF] Maabout | Skycube Materialization Using the Topmost Skyline or Functional Dependencies[END_REF][START_REF] Xia | Online subspace skyline query processing using the compressed skycube[END_REF][START_REF] Bøgh | Hashcube: A Data Structure for Space-and Query-Efficient Skycube Compression[END_REF]. In previous work [START_REF] Hanusse | Computing and Summarizing the Negative Skycube[END_REF], the structure NSC has been presented as an index to optimize multidimensional skyline queries. Let D be a set of attributes and T be a dataset, its main idea consists in comparing every tuple t ∈ T to all remaining tuples t in T and summarizing the subspaces where [START_REF] Hanusse | Computing and Summarizing the Negative Skycube[END_REF] have shown the proposed structure NSC to be the most efficient wrt both construction and query answering time, and space consumption (cf. Chapter 2).

However, NSC's incremental maintenance has been left an open question. In This dissertation, we address its incremental maintenance in case of dynamic data, i.e., tuples are inserted/deleted at any time. Regarding insertions, we provide a procedure as well as an incremental technique for the minimization of the set of pairs. Regarding deletions, we propose a slight modification of the structure that allows the identification of impacted tuples by a deletion, i.e., tuples that need their respective set of pairs to be rebuilt. This enables a partial rebuild of the structure rather than a rebuild from scratch. We show trough extensive experiments that these modifications do not alter NSC's query answering performance. Moreover, we show that the maintenance cost is low. Overall, we show that (i) skyline query evaluation time is up to 100 times faster than state of the art skyline algorithm, (ii) memory usage is low (about 16 times less than input data size), and (iii)

the proposed maintenance procedures are effective, e.g. adding 10% of the overall size of initial data requires 10% of the time to build the NSC from scratch (cf. Chapter 3).

In a second time, we address NSC's incremental maintenance in case of streaming data. The proposals in Chapter 3 (dynamic data) are not suited to streaming context because the maintenance latency is variable and uncontrollable. Indeed, some updates may take few milliseconds while others may last several minutes (cf. Section 3.4). Hence, we propose a buffer-based system MSSD which processes data in batch mode. MSSD is composed of (i) a data buffer, (ii) a main dataset, and (iii) NSCt a variation of NSC to deal with streaming data. This system balances the maintenance frequency with the query answering performance. One may choose a longer buffering window if he/she is interested in evaluating a large number of queries (cf Chapter 4). We show that by adopting the batch processing system with NSCt, a user can submit a large number of queries during the batch interval. Also, the memory space used is up to 100 times smaller than that used by a method which materializes the results. Finally, we carried out experiments on tweets collected by our framework. We show that in this case too, our solution filters the tweets of influential people faster than other approaches.

Finally, we leverage NSC to optimize the computation of regret minimization queries proposed by [START_REF] Nanongkai | Regret-Minimizing Representative Databases[END_REF]. Given a dataset T , a family of linear scoring functions L and an integer K. Let f ∈ L and f 1 (T) be the best score by considering tuples in T . The regret minimization query aims to compute a subset S ⊂ T of size K such that for every function f ∈ L, the difference between f 1 (S) and f 1 (T) is minimum. This difference is called the regret ratio. In short, the regret ratio represents how far is the user's best choice within S from the user's best choice within T . [START_REF] Nanongkai | Regret-Minimizing Representative Databases[END_REF] proposed these queries to avoid the limitations of both skyline queries and Top-K queries, i.e. computing a bounded result without requiring a scoring function from the user. [START_REF] Chester | Computing k-Regret Minimizing Sets[END_REF] proved the NP-Hardness of computing such set. In this dissertation, we investigate the improvement provided by a skyline related query, namely Top-K frequent skyline query, to computing regret minimization sets. We principally investigate the speedup of regret minimization queries when they are computed on top of the result of a Top-K frequent skyline query rather than the whole dataset. We explore this mainly because regret minimization queries are (i) time-consuming and (ii) Top-K frequent skyline queries are optimized by NSC. The empirical results show that Top-K frequent skyline query provide interesting execution time and regret ratio.

Skyline queries in presence of dynamic and partial orders Consider the dataset in Table 3. Users may want to include the attribute "Airline company" into their skyline query. However, there does not exist a predefined order over the attribute's domain.

Hence, users express their preferences over companies, e.g., one user may prefer Finnair and Thai over the remaining companies. While another user may prefer Swiss Airline over all. Techniques and algorithms for data with static and total orders are not suitable for this configuration. In the literature, there is two major approaches to handle this situation, (i) algorithms which, given a query q, maps a nominal attribute into a set of virtual totally ordered attributes in accordance to the user preference q.R. Then, a traditional algorithm, e.g. BSkyTree [START_REF] Lee | BSkyTree: scalable skyline computation using a balanced pivot selection[END_REF], is processed over the transformed dataset. For example, [START_REF] Zhang | Efficient Skyline Evaluation over Partially Ordered Domains[END_REF] uses the lattice theorem [START_REF] Peter | Combinatorics and Partially Ordered Sets: Dimension Theory (William T. Trotter)[END_REF][START_REF] Bernhard | Combinatorial optimization: Theory and algorithms[END_REF] to transform a partially ordered attribute into a set of totally ordered attributes. (ii) Algorithms that answer the issued query through a set of cached views. For example, [START_REF] Hsueh | An Efficient Indexing Method for Skyline Computations with Partially Ordered Domains[END_REF] adopts a refinement strategy. Let q be an issued query and let q be a cached view then Ans(q) ⊆ Ans(q) if q .R ⊆ q.R. We say that q is a refinement of q . More details about related work in Chapter 1. In this dissertation, we propose a decomposition technique. It consists in decomposing a query q into a set of sub-queries Q. Each sub-query can be processed independently. The result of q is simply the union of the results of the sub-queries in Q. Moreover, sub-queries result can be materialized such that further issued queries are optimized. We propose and address a cost-based problem to select the relevant sub-queries to materialize. Experiments show that our proposals outperform those in the literature (cf Chapter 6). In general, we show that our approach is more efficient when (i) the size of the input data and (ii) the domain size of the nominal attributes grow. Also, we show that our algorithms are scalable.

Manuscript organization

We first recall the literature relevant to this thesis in Chapter 1. We summarize two decades of work relative to skyline queries. We detail more the aspects related to our work. In Chapter 2, we present the main definitions and notations used throughout the manuscript, and we recall the structure NSC [START_REF] Hanusse | Computing and Summarizing the Negative Skycube[END_REF] which is a building block of our work.

In Chapter 3, we present our first contribution: NSC's incremental maintenance in presence of dynamic data. We address both the cases of insertions and deletions. This work has been published in "Information Systems" Journal [START_REF] Alami | The negative skycube[END_REF].

In Chapter 4, we address NSC's incremental maintenance in presence of streaming data. We present MSSD, a framework that handles data in batch mode and propose a new design for NSC to cope with this setting. Then we present experiments that assess our proposals performance. This work has been published in "Data and Knowledge

Engineering" Journal [START_REF] Alami | A framework for multidimensional skyline queries over streaming data[END_REF] as well as "DASFAA'19" proceedings [START_REF] Alami | Multidimensional Skylines over Streaming Data[END_REF].

In Chapter 5, we investigate the optimization of regret minimization queries through NSC. Concretely, we evaluate Top-K frequent skyline queries results as candidates sets for regret minimization queries. This work is currently under review.

In Chapter 6, we address the optimization of skyline queries in presence of data with dynamic and partial orders. We provide scalable parallel algorithms and materialization techniques to efficiently process these queries. This work is currently under review.

Finally, we conclude the manuscript by providing perspectives for future work.

Chapter 1

Related work

Here we give a general overview of work related to this dissertation. We give skyline queries the larger share of this section as they are the main studied topic. Then we introduce the recently proposed regret minimization queries. Note that further details about related work will be presented in each chapter.

Skyline queries

The Skyline operator was first known as the pareto frontier in economics research [START_REF] William | Pareto Optimality[END_REF]. It was as well studied beforehand in computational geometry as the maximal vector problem [START_REF] Franco | Computational geometry: an introduction[END_REF][START_REF] Kung | On Finding the Maxima of a Set of Vectors[END_REF]. The pareto frontier is composed of optimums, such that given any two optimum points p 1 and p 2 , there exists at least one property f i where p 1 is better than p 2 , and at least one property f j , j = i where p 2 is better than p 1 . T over a set of attributes D, the skyline set Sky(T) is the set of the best tuples of T . Its computation relies on domination relation. We say that a tuple t dominates another tuple t iff t is better or equal on all attributes and strictly better on at least one attribute. The set of skyline tuples is then the set of non dominated tuples.

[2] proposed to extend the SQL syntax to handle the skyline operator by DataBase Management Systems (DBMS) as shown below. The attributes wrt (with respect to) which the skyline is to be computed are listed after the term "SKYLINE OF". Moreover for each attribute, it is necessary to precise if it is to be minimized or maximized. This naive implementation has the disadvantage of being time-consuming. It involves a self-join over the table flight. For every tuple handled through s1, a full read of the same table is executed in order to check if the tuple is dominated. Nonetheless, the evaluation of this SQL query in a database management system is enhanced when data (columns)

are indexed [START_REF] Thu | Evaluating and Optimizing Skyline Algorithms on PostgreSQL[END_REF].

In the following sections, we present (i) relevant algorithms in the literature for computing the skyline from scratch and (ii) approaches for updating a materialized skyline in a dynamic context. Moreover, we present the two variants we consider in this thesis:

(i) subspace or multidimensional skyline and (ii) skyline over partially and dynamically ordered dimensions.

Algorithms

We can divide the relevant skyline algorithms into two groups: (i) early algorithms that mainly targeted pruning comparisons, and (ii) algorithms that used intelligently 1.1. Skyline queries partitioning in order to speed up computation. The second group provided a significant improvement into skyline computation time.

Early algorithms

Authors of [START_REF] Börzsönyi | The Skyline Operator[END_REF] which introduced the skyline operator, proposed BNL algorithm (block nested-loops). It incrementally discards dominated tuples. First, it initializes the skyline set S with some random tuple from the dataset. Then it iterates on the whole dataset.

For each tuple t in the dataset, it compares it to tuples in S. If t is found dominated, it is discarded and never considered again. If t is not dominated, it is then appended to S.

Moreover, tuples in S which are found dominated by t are discarded.

[2] proposed also D&C, a divide and conquer like algorithm. It naively partitions the dataset into several subsets and computes the skyline wrt each subset. The intermediate results from each subset are merged and a final skyline computation is performed.

On another side, [START_REF] Kossmann | Shooting Stars in the Sky: An Online Algorithm for Skyline Queries[END_REF][START_REF] Papadias | An Optimal and Progressive Algorithm for Skyline Queries[END_REF] proposed index based techniques. They specifically used R-Trees [START_REF] Guttman | R-Trees: A Dynamic Index Structure for Spatial Searching[END_REF][START_REF] Beckmann | The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles[END_REF]. We recall that R-Trees are used for multidimensional data indexing. [34] proposed a dedicated index structure inspired from Bitmap [START_REF] Chee | Bitmap Index Design and Evaluation[END_REF]. It encodes data in order to identify the skyline tuples through bitwise "&" operation. However, it is not suitable for high dimensionality and has poor maintenance performance.

Partitioning and parallelization

The algorithms NN and BBS presented above have been the first to come up with a partitioning technique. Their ability to prune dominated tuples has been shown higher than other's. However, despite this performance, these algorithms lack scalability wrt the number of dimensions. Indeed, it is likely that data becomes anti-correlated when the number of dimensions grow. Hence, tuples are often incomparable and the pruning power of these methods weakens. Moreover, the partitioning generates 2 d regions (where d is the number of dimensions), each of which needs to be processed. Hence the algorithm has an exponential complexity wrt the number of dimensions.

Nevertheless, the partitioning technique remains efficient. The following algorithm BSkyTree [7, 8] adopted a different approach for pivot selection, i.e., tuple wrt which data is partitioned. Recall that for NN and BBS, the pivot tuple is always the nearest neighbor to the origin. Authors of BSkyTree have pointed out that existing techniques have weak performance in presence of high dimensionality, and proposed a cost-based selection of pivot tuple for partitioning data that balances both comparability and incomparability.

Once the pivot tuple is selected, the dataset is divided into sub-regions, and dominated tuples are pruned. The process is then repeated for each sub-region. Experiments showed that BSkyTree outperforms by two orders of magnitude the existing algorithms.

1.1. Skyline queries [START_REF] Chester | Scalable parallelization of skyline computation for multi-core processors[END_REF] came up with Hybrid, a multi-core partitioning based techniques. During the process, it maintains a shared, global skyline among all threads, which is used to minimize dominance tests while maintaining high throughput. The algorithm uses an efficiently updatable data structure over the shared, global skyline, based on tuple-based partitioning.

Then, [START_REF] Bøgh | SkyAlign: a portable, work-efficient skyline algorithm for multicore and GPU architectures[END_REF] proposed SkyAlign an adaptation of Hybrid to GPGPU (General Purpose Graphical Processing units). To our knowledge, BSkyTree, Hybrid and SkyAlign are respectively single core, multi-core, and GPU state of art techniques for processing skyline queries.

On another side, works considered the paradigm Map Reduce. This paradigm has been developed for distributed architecture. It allows to distribute computation on a cluster of machine (map) and aggregate the intermediate results (reduce). For processing skyline queries, the map step consists in computing skyline wrt subsets of the dataset. The reduce consists in gathering the skylines and computing the final skyline. [START_REF] Kasper Mullesgaard | Efficient Skyline Computation in MapReduce[END_REF] proposed to use Map Reduce also in the step of data partitioning.

Materialization and dealing with updates

The algorithms presented in the previous section compute the skyline from scratch, i.e., every time a skyline query is issued, these algorithms run through the whole dataset. In a real world case where thousands of queries are issued simultaneously, running these algorithms for every issued query is not manageable whatever their efficiency.

Materialization is a technique in databases that provides fast query processing. It consists in storing the queries results in the disk, and retrieving them whenever the same query is issued. However materialized results need to be updated whenever the underlying data change.

Regarding skyline queries, updating materialized results is challenging, mainly because they are not monotonic [START_REF] Abiteboul | Foundations of Databases[END_REF]. The skyline set can change dramatically by both insertions and deletions. However deletions have been shown harder to deal with than insertions. Concretely, given a table T and its corresponding materialized skyline set S.

A newly inserted tuple t + can either join S and exclude zero or more tuples from S, or be dominated by tuples in S. For a recently deleted skyline tuple t -∈ S, non skyline tuples in T may join the skyline set S.

We consider two types of data that change over time:

• Dynamic data: a number of tuples are inserted/deleted at any time.

• Streaming data: a stream of tuples over a window, i.e., tuples have a unique specified lifetime after which they are deleted We make this categorization (dynamic data vs. streaming data) because one efficient approach wrt dynamic data may not be efficient wrt to streaming data, and vice versa.

Dynamic data Works have mainly addressed the deletion of skyline tuples as it is considered more challenging than insertion. [START_REF] Papadias | An Optimal and Progressive Algorithm for Skyline Queries[END_REF] was first to introduce the notion of exclusive dominance regions EDR. Consider a dataset T and its skyline set S. Let t ∈ S, EDR(t) consists of tuples not dominated by any other skyline tuple than t. Hence EDR(t)

constitutes the set of candidate tuples that will integrate the skyline set once t is deleted. Later, [START_REF] Wu | DeltaSky: Optimal Maintenance of Skyline Deletions without Exclusive Dominance Region Generation[END_REF] proposed an O(s • d) algorithm, called DeltaSky.

Streaming data

The semantics of skyline queries in a streaming data context is: the skyline over tuples arrived in the window (τω, τ] such that ω is the size of the window and τ the current time. When queries consider all tuples arrived so far, ω → +∞.

Continuous skyline queries results are meant to be accurate with the current state of the dataset [START_REF] Golab | Issues in data stream management[END_REF]. To the best of our knowledge, [START_REF] Tao | Maintaining Sliding Window Skylines on Data Streams[END_REF] [START_REF] Michael | Efficient Continuous Skyline Computation[END_REF][START_REF] Michael | Efficient continuous skyline computation[END_REF] proposed a slightly different approach. Their algorithm called LookOut maintains a skyline set Sky and an R-tree of the database. An incoming tuple t is processed by the procedure called isSkyline that takes t and the R-tree as inputs and returns true if t is a skyline tuple. Yet, these methods remain unsuitable for multidimensional queries as the structures they manage and the maintenance processes need to be replicated for every subspace, hence an exponential time and space complexity wrt the number of dimensions.

We note however that they guarantee an immediate query answering as the skylines are fully materialized. [START_REF] Huang | Efficient mining of skyline objects in subspaces over data streams[END_REF] addressed subspace skyline query answering. They proposed to maintain potential subspace skyline tuples besides the full skyline (skyline wrt all attributes). Then they answer issued queries through both sets. While this approach stores less data. The maintenance and query answering procedure is more costly.

[43] performed an empirical evaluation of the methods described above and showed that Eager method presented in [START_REF] Tao | Maintaining Sliding Window Skylines on Data Streams[END_REF] is the most efficient wrt execution time, but requires more memory due to the maintenance of the event list. It is the approach to which we compare our proposal in Section 4.4.3.

In a similar field, [START_REF] Kalyvas | Processing skyline queries in temporal databases[END_REF] addressed the skyline query with temporal constraints. However without considering the streaming behavior.

Hereafter we present the research lines that we consider in this manuscript, i.e. (i) multidimensional skyline and (ii) skyline over data with partially and dynamically ordered dimensions.

Subspace skyline answering and the SkyCube structure

Consider again the dataset shown in Table 1. One user, who travels on budget, may be interested into the skyline wrt the attributes Price and Duration, while another, richer, may be interested into the skyline wrt the attributes Duration and # of stops. This use case motivated the subspace (subset of dimensions) skyline research and the Skycube concept. The latter is the set of skylines wrt every possible subspace. [START_REF] Yuan | Efficient Computation of the Skyline Cube[END_REF] and [START_REF] Pei | Catching the Best Views of Skyline: A Semantic Approach Based on Decisive Subspaces[END_REF] have independently introduced subspace skyline queries (multidimensional skylines) and the Skycube concept. They adapted existing algorithms for full skyline to subspace skyline.

[47] highlighted the inefficiency of existing algorithms to deal with multidimensional skyline and proposed SUBSKY . It encodes multidimensional tuples into 1 dimension values, and indexes them with a B-tree. Then answers subspace skyline queries using that structure. [START_REF] Vlachou | SKYPEER: Efficient Subspace Skyline Computation over Distributed Data[END_REF] introduced the concept of Extended Skyline (Ext-SKY). These are the tuples that are not totally and strictly dominated. Those tuples not belonging to this set do not belong to any skyline wrt any subspace, thus can be removed from the underlying data so as to simplify any subsequent computation.

[49] proposed an algorithm for computing the whole Skycube. In this line, [START_REF] Lee | Toward efficient multidimensional subspace skyline computation[END_REF] came up with QSkyCube which computes in a top-down fashion the skyline for each cuboid (subspace) using a tree-like structure. Later, [START_REF] Zhang | RSkycube: Efficient Skycube Computation by Reusing Principle[END_REF] proposed RSkyCube, an optimization of QSkyCube. The reported experiments show up to 10 fold speed up. [START_REF] Maabout | Skycube Materialization Using the Topmost Skyline or Functional Dependencies[END_REF] showed how one can benefit from the functional dependencies holding in the dataset to optimize both full and partial Skycube computation. Following works propose dedicated index structure that speed up subspace skyline computation. [START_REF] Bøgh | Hashcube: A Data Structure for Space-and Query-Efficient Skycube Compression[END_REF] proposed the HashCube structure. It consists essentially to associate a 2 d Boolean vector to every tuple t where position i in the vector is set iff t belongs to Sky(i). Here, i identifies a subspace. While query evaluation is very efficient (for a query Sky(i), check position i for every tuple, hence O(n)) the memory consumption is large:

O(n × 2 d).
In order to save space, each vector is divided into subvectors (called words) of size w. Hence, each word encodes a set of subspaces.

To each word ω j , is associated a set of tuples sharing ω j . The worst case storage is 2 d ω • 2 ω words. However this limit is hardly reached as a word for which no tuple is associated is not stored. In practice, this encoding reduces memory by a factor 10. Even if this space compression technique comes with a little overhead for query evaluation (for Sky(i), one needs to traverse all the words, check whether the subspace i is set in a word then add its associated tuples to the result), HashCube is still remarkably fast for query evaluation.

[51] extended [START_REF] Bøgh | Hashcube: A Data Structure for Space-and Query-Efficient Skycube Compression[END_REF] by proposing, among others, mdmc, an algorithm for building the HashCube structure. Regarding HashCube maintenance, inserting a new tuple t can be handled by comparing it to every other tuple in order to update the previous bit vectors and create the vector associated to t. However, deleting an old tuple requires rebuilding the HashCube from scratch and this represents a severe limitation when dealing with dynamic data. [START_REF] Xia | Online subspace skyline query processing using the compressed skycube[END_REF] proposed the Compressed Sky Cube (CSC). Its main idea consists in associating to every tuple t the smallest subspaces X, in terms of set inclusion, such that t belongs to Sky(X). Sky(X) query is evaluated by first computing the union of the sets of tuples t such that Y ⊂ X is associated to t. Then a standard skyline procedure is evaluated on the so obtained tuples set. We also note that CSC, to our best knowledge, is the only structure for which an incremental maintenance procedure has been provided. Despite its advantages, the experiments conducted by [START_REF] Bøgh | Hashcube: A Data Structure for Space-and Query-Efficient Skycube Compression[END_REF] show that query evaluation via CSC is not efficient. [START_REF] Raïssi | Computing Closed Skycubes[END_REF] proposed the closed Skycube structure. The technique clusters all equal subspace skylines into equivalence classes so that a single copy is materialized. Even if this solution provides an optimal query response time, finding the equivalent classes is time consuming, actually, more than computing the Skycube. Moreover, the size of the 1.1. Skyline queries closed Skycube may reach that of the Skycube in the case where subspace skylines are all different from each others. Reference [START_REF] Pei | Towards multidimensional subspace skyline analysis[END_REF] also proposed a condensed representation of the Skycube. It associates to every tuple a set of pairs Top, Bottoms encoding the subspaces where t is in the skyline. For example, if the pair ABC, {A, B} is associated to t, then for every X such that X ⊆ ABC and X ⊇ A or X ⊇ B, t belongs to Sky(X). [START_REF] Xia | Online subspace skyline query processing using the compressed skycube[END_REF] proved that CSC is smaller than this condensed structure.

In Chapter 2, we present the dedicated index structure for answering subspace skyline queries NSC, for which we study its incremental maintenance in this manuscript.

Skyline wrt partial and dynamic orders

Usually, data is described over nominal attributes, e.g. companies operating flights or movies genre. Initially, there does not exist any order over these attributes' domain. Users are asked to express their preferences (orders) which can be partial. Also, orders change from a user to another, i.e., dynamic. Existing algorithms for skyline query evaluation mainly consider data over attributes with static and total orders. Moreover, these existing techniques can not easily be extended to handle data over attributes with partial and dynamic orders.

We note two approaches in the literature for handling this case: (i) algorithms computing the skyline from scratch and (ii) materialization-based techniques.

Algorithms

In lattice theory, it is well known that every partial order can be embedded into a product of a set of total orders [START_REF] Peter | Combinatorics and Partially Ordered Sets: Dimension Theory (William T. Trotter)[END_REF][START_REF] Bernhard | Combinatorial optimization: Theory and algorithms[END_REF]. This inspired [START_REF] Zhang | Efficient Skyline Evaluation over Partially Ordered Domains[END_REF] to propose CPS, a transformation technique of every partially ordered dimensions. Finding the minimal number of total orders is NP-complete. So, [START_REF] Zhang | Efficient Skyline Evaluation over Partially Ordered Domains[END_REF] used an approximate algorithm. A skyline algorithm for totally ordered dimensions is then applied on the transformed dataset. [START_REF] Yong | Stratified Computation of Skylines with Partially-Ordered Domains[END_REF] proposed to transform each partially ordered dimension into two totally ordered dimensions. The transformed dataset is then processed by any standard algorithm.

However, the output may include false positives, because of the restricted number of total orders. So a filtering pass on the output is required. [START_REF] Sacharidis | Topologically Sorted Skylines for Partially Ordered Domains[END_REF] proposed the framework T SS. It transforms a partially ordered dimension into a single totally ordered dimension corresponding to one of its topological orders. Likewise [START_REF] Yong | Stratified Computation of Skylines with Partially-Ordered Domains[END_REF], a filtering step is needed after getting a first skyline because of false negatives. Hence, CPS [START_REF] Zhang | Efficient Skyline Evaluation over Partially Ordered Domains[END_REF] is the only accurate technique. Moreover, empirical studies showed that CPS combined to BSkyTree outperforms techniques in [START_REF] Zhang | Efficient Skyline Evaluation over Partially Ordered Domains[END_REF][START_REF] Sacharidis | Topologically Sorted Skylines for Partially Ordered Domains[END_REF][START_REF] Yong | Stratified Computation of Skylines with Partially-Ordered Domains[END_REF] wrt query answering time.

Materialization based techniques [START_REF] Hsueh | Caching Support for Skyline Query Processing with Partially Ordered Domains[END_REF][START_REF] Hsueh | An Efficient Indexing Method for Skyline Computations with Partially Ordered Domains[END_REF][START_REF] Raymond | Online Skyline Analysis with Dynamic Preferences on Nominal Attributes[END_REF] addressed skyline queries over dataset with partially and dynamically ordered dimensions with materialization-based techniques. [START_REF] Raymond | Online Skyline Analysis with Dynamic Preferences on Nominal Attributes[END_REF] proposed a tree-like structure Ordered Skyline Tree OST in order to materialize the skylines wrt every total preference. A query q related to a preference q.R is evaluated through combining the skylines of different total preferences. The number of total preferences on one attribute is m!, where m is the cardinality of the nominal attribute. Hence, the memory usage of this tree can rapidly become a bottleneck. Handling several dimensions worsen this limitation, i.e., (m!) l . Nonetheless a compressed version of OST, denoted CST, has been presented and whose worst case of memory usage may reach that of OST.

In [START_REF] Hsueh | Caching Support for Skyline Query Processing with Partially Ordered Domains[END_REF] and its extension [START_REF] Hsueh | An Efficient Indexing Method for Skyline Computations with Partially Ordered Domains[END_REF], authors proposed answering queries by refinement process. Let q, q be two skyline queries and q.R, q .R be their respective preferences.

We say that q is a refinement of q iff q .R ⊆ q.R. In such case it is easy to see ans(q.R) ⊆ ans(q .R). Suppose that a set Q of queries are materialized and consider q as a new submitted query. Their solution consists first to find a refinement q ∈ Q of q and then use its materialized result to evaluate q. The authors propose an index structure to find a refinement given a query. Unfortunately, this index is not complete in that, some refinement can be missed. Hence, it cannot return the best refinement, i.e., the one whose result is the smallest.

Recently, [START_REF] Sultana | Continuous Monitoring of Pareto Frontiers on Partially Ordered Attributes for Many Users[END_REF] considered the problem of maintaining several skylines corresponding to different users preferences. Consider two users looking for Ferraris' deals on Internet. User1 prefers Ferraris with (i) red color over yellow, and (ii) yellow color over green.

While user2 prefers Ferraris with red color over the yellow and green colors, and has no preference between yellow and green. The authors propose to measure the similarity between user's preferences in order to share skyline computations. Hence when a new Ferrari deal is available, it is decided whether it belongs to each user's skyline with less cost.

[58] studied skyline queries on datasets with categorical attributes, i.e., having very small domains, e.g, values are either True or False. However they considered only totally and statically ordered attributes.

Reducing the query output size

The skyline set becomes rapidly close to the whole input dataset when the dimensionality grows and data are anti-correlated. In that setting, the skyline set becomes of minimal interest. Works have proposed techniques to solve this counter-performance.

1.2. Regret minimization queries [START_REF] Papadias | An Optimal and Progressive Algorithm for Skyline Queries[END_REF][START_REF] Papadias | Progressive skyline computation in database systems[END_REF] proposed Top-k skyline queries, it consists on selecting K skyline tuples with the highest score wrt to a utility function f . They showed that their algorithm handles this extension. However, it is of minimal practicality as the skyline operator was proposed in order to avoid the user to express a utility function. [START_REF] Yong | On High Dimensional Skylines[END_REF] proposed the K-dominating queries which return the tuples that dominate the largest number of other tuples. [START_REF] Lin | Selecting Stars: The k Most Representative Skyline Operator[END_REF] proposed a similar query: the k-representative skyline tuples (Top-k RSP).

They propose the function D which given a subset S ⊆ T , D(S) represents the number of tuples dominated by tuples in S. The output of Top-k RSP is the set of K skyline tuples that maximizes D. This technique has been shown useful for reducing the output size, however it may discard interesting tuples. [START_REF] Tao | Distance-Based Representative Skyline[END_REF] showed that the previous technique does not output good representative and redefined the problem of identifying the k-representative skyline tuples based on a distance metric. In [START_REF] Xia | On Skylining with Flexible Dominance Relation[END_REF], authors proposed the epsilon-skyline. It allows to reduce the size by discarding tuples that have bad values in some dimensions.

The following work considered ranking tuples with respect to their behavior in subspaces. Authors in [START_REF] Yong | On High Dimensional Skylines[END_REF] proposed a new metric called skyline frequency. It represents the number of subspace skylines to which a tuple belongs. [START_REF] Vlachou | Ranking the sky: Discovering the importance of skyline points through subspace dominance relationships[END_REF] proposed skyrank which ranks tuples based on the number of tuples it dominates by considering all subspaces.

Variants of skyline queries

Works have proposed variants of skyline query to deal with specific use cases. We cite few of them in this section. [START_REF] Papadias | An Optimal and Progressive Algorithm for Skyline Queries[END_REF][START_REF] Papadias | Progressive skyline computation in database systems[END_REF] proposed the dynamic skyline. This query aims to capture tuples close to a given query tuple t. In this setting, a tuple t 1 dominates a tuple t 2 if the distance wrt some function between t 1 and t is better than that between t 2 and t.

A use case is e.g., a user selects a house on a real estate platform and the query retrieves the similar houses. As a dual query, the reverse skyline query [START_REF] Dellis | Efficient Computation of Reverse Skyline Queries[END_REF] retrieves those tuples in the database whose dynamic skylines contain a given query tuple. Authors proposed dedicated efficient algorithms for the above queries. Nonetheless they can be evaluated by traditional skyline algorithms. Finally, [START_REF] Liu | Finding Pareto Optimal Groups: Group-based Skyline[END_REF] proposed the group skyline which consists in returning a group of K tuples not dominated by any other group of K tuples as well.

This technique can also be used to control the size of the output. [START_REF] Nanongkai | Regret-Minimizing Representative Databases[END_REF] presented the regret minimization queries to leverage the benefits of skyline [START_REF] Börzsönyi | The Skyline Operator[END_REF] and Top-k [START_REF] Chaudhuri | Evaluating Top-k Selection Queries[END_REF] queries, and exclude their limitations. Like Top-K queries, it bounds the result size and like Skyline queries, it does not require the user to provide a scoring function.

Regret minimization queries

Hotels Price

f (t) = ∑ d i=1 w[i] * t[i]
where w is called the weight vector. In a normalized setting, 0 ≤ w

[i] ≤ 1 ∀i ∈ [1, d] and ∑ d i=1 w[i] = 1.
The result of Top-K query, by considering the scoring function f , is K tuples with the best scores.

Example 2. Consider Table 1.1 that describes Hotels by their price and their distance from the beach. Suppose that cheaper and closer to the beach is better

The Skyline set with respect to this dataset is illustrated in Table 1.2. Only h 2 does not belong to the Skyline set because it is dominated by t 1 . Indeed, t 1 is cheaper and closer to the beach. Observe here that we can not control the result size. 1.3 represents the hotels' score wrt three linear scoring functions. Note that lower the score the better the hotel. Top-1 hotels score is underlined wrt every function.

Hotels Price

h 1 is Top-1 wrt (0.5, 0.5), h 3 is Top-1 wrt (0.2, 0.8) and h 5 is Top-1 wrt (0.8, 0.2) [START_REF] Nanongkai | Regret-Minimizing Representative Databases[END_REF] presented the regret minimization queries (RMS) to avoid the limitations of skyline and Top-k queries, i.e., the unbounded result of Skyline queries and the need of scoring functions for Top-K queries. The main idea is to select a subset S from a dataset T such that S minimizes the user regret. In a nutshell, the regret represents how far the user's best tuple in S is from the user's best tuple in T . For example and to simplify, consider the family of 3 functions F = { f (0.2,0.8) , f (0.5,0.5) , f (0. T .

[17] formalized the RMS problem as follows:

Problem RMS Given a dataset T , the family of all linear scoring functions L, an integer K, compute a set S ⊂ T of size K that minimizes the maximum regret ratio mrr(S, L). Now, we present how the maximum regret ratio is computed. Let f ∈ L be a scoring function, and given a dataset T , let f 1 (T) be the highest score by considering tuples in T .

The regret of a subset S ⊆ T wrt f is f 1 (T)f 1 (S) and the regret ratio is f 1 (T)-f 1 (S)

f 1 (T)
. The maximum regret ratio is then mrr(S, L) = max f ∈L

f 1 (T)-f 1 (S) f 1 (T)
.

[18] proved the NP hardness of the RMS problem and [START_REF] Nanongkai | Regret-Minimizing Representative Databases[END_REF] proposed a greedy approximate algorithm to solve it. The regret minimization set (RMS) has been shown (i) scale-invariant, i.e. the maximum regret ratio remains the same even if the values in the dataset are multiplied by the same factor, and (ii) stable, i.e. the RMS does not change when weak tuples (tuples not having the highest score wrt any scoring function)

are inserted or deleted from the dataset.

Algorithms for solving RMS belong to three categories: (i) those solving it exactly and in polynomial time for 2 dimensions' dataset [START_REF] Chester | Computing k-Regret Minimizing Sets[END_REF][START_REF] Cao | k-Regret Minimizing Set: Efficient Algorithms and Hardness[END_REF][START_REF] Asudeh | Efficient Computation of Regret-ratio Minimizing Set: A Compact Maxima Representative[END_REF], (ii) heuristic-based [START_REF] Nanongkai | Regret-Minimizing Representative Databases[END_REF][START_REF] Xie | Efficient k-Regret Query Algorithm with Restriction-free Bound for any Dimensionality[END_REF][START_REF] Peng | Geometry approach for k-regret query[END_REF] and (iii) those providing theoretical guarantees [START_REF] Nanongkai | Regret-Minimizing Representative Databases[END_REF][START_REF] Pankaj | Efficient Algorithms for k-Regret Minimizing Sets[END_REF][START_REF] Cao | k-Regret Minimizing Set: Efficient Algorithms and Hardness[END_REF][START_REF] Xie | Efficient k-Regret Query Algorithm with Restriction-free Bound for any Dimensionality[END_REF][START_REF] Kumar | Faster Approximation Algorithm for the k-Regret Minimizing Set and Related Problems[END_REF][START_REF] Asudeh | Efficient Computation of Regret-ratio Minimizing Set: A Compact Maxima Representative[END_REF]. Sphere [START_REF] Xie | Efficient k-Regret Query Algorithm with Restriction-free Bound for any Dimensionality[END_REF] is currently the state of the art algorithm. Also, it provides theoretical guarantees on the output regret.

Variants of regret minimization queries

[18] proposed a relaxation of RMS, namely the k-regret minimizing set (kRMS). The k-regret represents how far the user's best tuple in S is from the k th user's best tuple in T . Concretely, let f ∈ L be a scoring function, k be an integer, then let f k (T) be the score of the k th ranked point using f . The k-regret of a subset S ⊆ T wrt f is max(0, f k (T)f 1 (S)) 1 and the regret ratio is max(0, f k (T)-f 1 (S))

f k (T)
. The maximum regret ratio is then

max f ∈L max(0, f k (T)-f 1 (S)) f k (T)
. [START_REF] Kessler Faulkner | k-Regret Queries with Nonlinear Utilities[END_REF] introduced the regret minimization problem wrt non-linear scoring functions such as concave and convex functions. [START_REF] Qiu | An Efficient Algorithm for Computing k-Average-Regret Minimizing Sets in Databases[END_REF] considered the average regret ratio rather than the maximum regret ratio. Finally, [START_REF] Asudeh | RRR: Rank-Regret Representative[END_REF] proposed the rank regret minimization queries. Authors measure the regret based on the rank difference rather than the score. The exact semantic of rank regret minimization query is: Given a dataset T , a family of scoring functions FL and an integer k, compute S ⊂ T such that

∀ f ∈ L ∃t ∈ S such that t is at worst ranked k th wrt f .
1.2.2 Candidate sets for RMS [START_REF] Nanongkai | Regret-Minimizing Representative Databases[END_REF] showed that it suffices to consider the skyline set to compute the RMS rather than the whole dataset. In other words, the optimal solution S * is composed of skyline tuples. [START_REF] Peng | Geometry approach for k-regret query[END_REF] presented an even smaller candidate set, namely Happy tuples. However, its computation time is a weakness.

Its time complexity is O(n 2 * d 2)
where n is the size of the dataset and d the number of dimensions. [START_REF] Han | Efficient Processing of k-regret Queries via Skyline Priority[END_REF][START_REF] Han | Efficient Processing of k-regret Queries via Skyline Frequency[END_REF] showed that one can leverage from Skycube to optimize regret queries. Concretely, they proposed the Top-K frequent skyline set and Top-K priority skyline set as candidate sets for RMS. Until now, there is no theoretical guarantee on the RMS calculated from these sets. In this manuscrispt and specifically in Appendix A, we investigate the improvement provided by these candidate sets on RMS by using NSC. Moreover we empirically evaluate the output regret of these approaches compared to RMS dedicated algorithm Sphere [START_REF] Xie | Efficient k-Regret Query Algorithm with Restriction-free Bound for any Dimensionality[END_REF]. 1 The regret is always positive Chapter 2

Preliminaries 2.1 Global notations and definitions

Let T (Id, D) be a relation where D = {D 1 , . . . , D d } is a set of attributes called also dimensions. A subspace, hereafter denoted X,Y, . . . is a subset of D. We assume now that the domain of every D i is associated to a total order < i , or simply < expressing the preference of users.

Hereafter the main definitions for this manuscript: (i) Dominance and (ii) Skyline.

Note that these definitions may slightly change in next Chapters.

Definition 1. Dominance: Given two tuples t and t and a subspace X, t dominates t w.r.t. X, denoted t

≺ X t , iff ∀D i ∈ X : t[D i] ≤ t [D i] and there exists D j ∈ X s.t t[D j] < t [D j].
We say that t is X-dominated by t.

Definition 2. Skyline: The skyline of T w.r.t. X, denoted Sky(T, X) is the set of tuples {t | ∃t : t ≺ X t}. We sometimes write just Sky(X) when T is clear from the context.

Example 3. Table 2.1 will be used as a running example throughout the section. Using this dataset, users may ask for the best tuples (skyline tuples) regarding every combination of the dimensions {A, B,C, D}. For instance, Sky(AB

) = {t 1 ,t 2 } and Sky(ABCD) = {t 2 ,t 3 ,t 4 }.
Table 2.2 summarizes the notations used throughout this manuscript. Note that some notations will be redefined according to the needs of each chapter.

The Negative SkyCube

In this section, we present NSC (Negative SkyCube) [START_REF] Hanusse | Computing and Summarizing the Negative Skycube[END_REF] a concise data structure which, for every tuple t in T , summarizes the set of subspaces X such that t does not belong to Sky(X). This concept was motivated by the following observation: for a tuple t, while we need to compare it to every other tuple in order to state that it belongs to some Sky(X), comparing t to just one t can inform us about a whole set of subspaces where t is dominated, i.e., it does not belong to their respective skyline. Then, answering a subspace skyline Sky(X) consists in finding through the structure the tuples that are not dominated wrt X. In the following we present how NSC is (i) constructed, (ii) optimized wrt time and space, and (iii) used for answering skyline queries.

Id A B C D t 1 1 1 3 3 t 2 1 1 2 3 t 3 2

NSC construction

We start by providing some preliminary definitions.

Definition 3 (Dominance subspaces). Let t ∈ T and X ⊆ D. X is a dominant subspace for t iff t ∈ Sky(X).

Definition 4 (Negative SkyCube). Let t ∈ T and let Dom(t) denote the dominant subspaces for t. The negative skycube of T is the set {Dom(t) | t ∈ T }.

In other words, the negative Skycube stores for every tuple t, the subspaces where it does not belong to their respective skyline.

Example 4. From the running example in Table 2.1, it is easy to check that Dom(t 1) = {ABCD, ABC, ACD, BCD, AC, BC, CD, C, D}.

Clearly, the computation of every skyline Sky(X) is straightforward using NSC: for every tuple t, t ∈ Sky(X) iff X ∈ Dom(t).

Actually, NSC does not store Dom(t)∀t ∈ T but a more concise summary, i.e., Pairs(t)∀t ∈ T . Next we present this concept and we show how NSC can be computed.

We first show how by comparing t to some t we obtain a set of subspaces where t is dominated.

Definition 5. Let t,t ∈ T . We define a comparison function compare as follows:

compare(t,t) = X|Y such that X is the set of dimensions D j such that t [D j] < t[D j]
and Y is the set of dimensions D for which t

[D] = t[D].
Example 5. From Table 2.1, we have compare(t

5 ,t 6) = BC|D because t 6 [B] < t 5 [B] , t 6 [C] < t 5 [C]
and both tuples are equal on dimension D.

Obviously, if compare(t,t) = X|Y then X ∩Y = / 0.

Definition 6 (Coverage). Let X|Y be a pair of disjoint subspaces and let Z be a subspace. We say that X|Y covers Z iff Z ⊆ XY and Z ∩ X = / 0. By cover(X|Y)

we refer to the set of subspaces covered by the pair X|Y Example 6. p = AC|B covers subspaces A, AB, AC, BC and ABC. Note that B is not

covered by p because even if B ⊆ ACB, B ∩ AC = / 0.
As stated in the following property of cover, the coverage of multiple pairs is the union of the sets of subspaces covered by the pairs. Property 1. Let {p 1 , . . . , p n } be a set of pairs then cover({p 1 , . . . ,

p n }) = i∈[1,n] cover(p i).
The following proposition shows that the covered subspaces by the pair we obtain when t is compared to t are precisely the subspaces where t dominates t. Consequently, they represent a fraction of Dom(t).

Proposition 1. Let t,t ∈ T , compare(t,t) = X|Y and Z ⊆ D. Then t dominates t over Z iff Z ∈ cover(X|Y).

Proof. 1) Z ∈ cover(X|Y) ⇒ t ≺ Z t: For every two disjoint subspaces Z 1 and

Z 2 such that Z 1 ∪ Z 2 = Z, Z 1 ⊆ X, Z 2 ⊆ Y and Z 1 = / 0 we have: (i) Z 1 ⊆ X ⇒ t ≺ Z 1 t, and (ii)
Z 2 ⊆ Y ⇒ t = Z 2 t. Therefore t ≺ Z=Z 1 ∪Z 2 t. 2) t ≺ Z t ⇒ Z ∈ cover(X|Y): Suppose Z ∈ cover(X|Y), this means that Z ∩ X = / 0 or Z ⊃ XY , then ∀z ∈ Z t[z] ≥ t [z]
, therefore t does not dominate t over Z.

In fact, compare(t,t) is a concise summary of the set of subspaces for which t is dominated by t hence, subspaces where t does not belong to their respective skylines.

Throughout the rest of the paper we denote by Pairs(t, T) = {compare(t,t)∀t ∈ T } the set of all pairs related to t w.r.t. T . We simply write Pairs(t) when it is clear that the pairs are computed w.r.t. T .

Thereby cover(Pairs(t)) = Dom(t) represents all subspaces where t is dominated, hence not in the skyline.

At this point we are ready to provide an algorithm for building the NSC. This structure can then be used to answer skyline queries. Algorithm 1 shows how this data structure is built. Its main principle consists simply in comparing every pair of tuples (t,t) and add compare(t,t) to Pairs(t). So a total of n × (n -1) comparisons. Each of which considers d dimensions. Hence, O(n 2 × d) comparisons. We could neglect d since n d.

From the memory point of view, in the worst case, n -1 distinct pairs are associated to every t, where n = |T |. In practice, this bound is hardly reached for two reasons: (i)

when comparing t, we may obtain duplicate pairs while we need just a single copy of them. (ii) the number of possible distinct pairs depends on the number of dimensions.

Indeed, with d dimensions this number is

N = d ∑ i=1 d i 2 i .
From this expression, one can easily derive the following upper bound: N ≤ 2 2d . Therefore, the NSC size is bounded by n * min(n -1, 2 2d). For example, if d = 6, a maximum of 2 12 pairs can be associated to any tuple.

Note that if NSC size is O(n * 2 d) then it is comparable to the skycube size which means that not only we do not summarize it in terms of memory but more importantly, we have no gain in terms of query performance. In the next section we address the problem of NSC size minimization.

Example 7. From Table 2.1, the data structure returned by BUILDNSC is depicted in

Time and memory optimization for NSC

In this section we show on one hand, how the number of comparisons we must do with every tuple can be reduced, hence the overall execution time is minimized, and on the other hand, how to save space when storing the pairs associated to each tuple.

Execution time reduction

In this section, we show how the time to build NSC can be reduced by comparing every tuple to only tuples in the topmost skyline (See Definition 7). As stated by Theorem 1, it is sufficient to compare the tuples to those belonging to the topmost instead of comparing every pair of tuples thereby avoiding a costly O(n 2) comparisons. This is particularly interesting when the size of topmost skyline is small w.r.t. n.

• P T M (t) = {compare(t,t)|t ∈ topmost}.

Then cover(P T (t)) = cover(P T M (t)).

Proof. To simplify the notation, we omit the parameter t since it is understood from the context.

Clearly, cover(P T) can be written as cover(P T M) ∪ cover(P T M)

where

P T M = {compare(t,t)|t ∈ topmost}
That is to say, cover is distributive over the union. We just need to show that for all

t / ∈ topmost, cover(compare(t,t)) ⊆ cover(P T M)
Let t ∈ T \ topmost. By skyline definition, there must exist a tuple u ∈ topmost such that

u dominates t , i.e., u ≺ D t . Let X 1 |Y 1 = compare(t, u) and X 2 |Y 2 = compare(t,t).
For every subspace Z covered by X 2 |Y 2 , we have (i) t ≺ Z t. On the other hand, u

≺ D t implies that (ii) u Z t (because Z ⊆ D).
From (i) and (ii), u Z t thus Z is covered by

X 1 |Y 1 . Any subspace covered by X 2 |Y 2 is also covered by X 1 |Y 1 .
Hence, for each t / ∈ topmost, compare(t,t) does not need to be considered.

N.B:

The topmost is computed ahead of building NSC. Any state of the art skyline algorithm can be used for that purpose.

Example 8. From our running example, the topmost is made up of tuples t 2 ,t 3 and t 4 . As an example, the list of pairs associated to t 1 is { C|ABD , CD| / 0 } whose size is reduced to 2 instead of a set of 3 pairs if we compare t 1 to all other tuples.

Memory reduction

Reducing the size of NSC not only reduces memory consumption but also optimizes skyline queries evaluation. So the problem we want to solve consists in finding, for every t, a minimal set of pairs which covers exactly the subspaces covered by Pairs(t). To give an intuition about how we proceed, let us consider the following example. We formalize the NSC size reduction problem as follows:

RSP Problem: Given a tuple t and its associated set P = Pairs(t).

Reducing the Size of the set of Pairs P, (RSP), is the problem of finding a subset Q ⊆ P of minimal size such that cover(Q) = cover(P).

The following theorem shows that RSP problem is NP-Hard.

Theorem 2. RSP is NP-Hard.

Proof. By considering all the subsets of P, one can check which are equivalent to P and which are of minimum size. Thus, the problem is in NP. The hardness proof is based on a reduction from the minimal set cover (MSC) problem. Given an MSC instance, we build a table T with a distinguished tuple t where the number of dimensions d is equal to the number of elements to be covered in MSC and where the number n + 1 of tuples is equal to the initial number of sets in MSC in addition to the distinguished t. So, there is a bijection between the n tuples and the n sets of MSC instance. The n tuples form the topmost of T and distinguished tuple t is compared to each of them giving rise to a set of pairs P. We show that the minimum equivalent subset of P coincides with a solution of

MSC.

Let s = {s 1 , s 2 , . . . , s n } be the input set of sets in the MSC instance. W.l.o.g, we assume that there is no inclusion between these sets and none of them does contain all the elements to cover. For every set s j ∈ s, we add to T a tuple t j such that t j [i] = 0 iff i ∈ s j otherwise t j [i] = 1. In addition, we add to T a tuple t = (1, 1, . . . , 1) be a d-tuple.

For example, let s = {s 1 = {1, 2}; s 2 = {2, 3}; s 3 = {1, 3}} be the MSC instance. The number of elements to cover is d = 3 and the number of sets n = 3. So, we get a table T with n + 1 = 4 tuples, including t, and 3 dimensions. This table is depicted below.

Id 1 2 3 t 1 1 1 t 1 0 0 1 t 2 1 0 0 t 3 0 1 0
Clearly, every t j dominates t and t i ≺ t j . Hence, {t 1 , . . . ,t n } is the topmost. By comparing t to the topmost, we obtain P(s) = {p 1 , . . . , p n }. There is a one to one correspondence between s i ∈ s and p i = compare(t,t i). For example, compare(t,t 1) = 12|3 corresponds to s 1 = {1, 2}. Let u ⊆ s and let P(u) be the set of pairs p j such that p j = compare(t,t j)

where t j corresponds to some s j ∈ u. Let cover(P(u)) denote the set of subspaces covered by the pairs in P(u). We show that ∪ s j ∈u s j = ∪ s i ∈s s i iff P(u) ≡ P(s) and this proves the claim.

(i) P(u) ≡ P(s) ⇒ u ≡ s: Every p j ∈ P(u) is of the form X j |Y j thus it covers, among others, the subspace X j which actually corresponds to the content of s j ∈ u. As P(u) ≡ P(s), ∀p i = X i |Y i ∈ P(s), P(u) covers X i and the union of the X i 's is the union of the s i 's.

Hence u ≡ s.

(ii) u ≡ s ⇒ P(u) ≡ P(s): Assume, for the sake of contradiction, that P(u) ≡ P(s). There must exist a subspace Z s.t P(s) covers Z but not P(u). Thus, there exists p i ∈ P(s) such

that p i = X i |Y i s. t Z ⊆ X i Y i and Z ∩ X i = / 0. Note that every p i is of the form s i |U \ s i
where U = ∪ s j ∈s s j . Therefore, to cover Z, a pair s j |U \ s j needs just to satisfy Z ∩ s j = / 0.

Such an s j is necessarily in u because otherwise u ≡ s, i.e., there exists k ∈ U such that there is no s i ∈ u s.t k ∈ s i and thic contradicts the fact that u ≡ s.

We conclude that every (minimum) solution of the set cover problem corresponds to a (minimum) solution to RSP problem regarding the distinguished tuple t of the table T above which terminates the proof.

[78] proposed a greedy polynomial time approximation of MSC (Minimum Set Cover)

problem that chooses at each step the set that covers the highest number of uncovered elements. The adaptation of this algorithm to solve RSP problem is described in Algorithm 3. Regarding the approximation multiplicative factor, let p ∈ P such that p covers the maximum number of subspaces and let be this number. Then by [START_REF] Meng | A Greedy Heuristic for the Set-Covering Problem[END_REF], we have

The

|P G | ≤ |P opt | × log . Since < 2 d , we obtain |P G | ≤ |P opt | × d.

NSC index and query answering

Performing a query related to a given subspace Z requires to check for every tuple t, whether Z is covered by Pairs(t), i.e., there exists X|Y ∈ Pairs(t) such that • Z a subspace of XY , and In this part, we address the maintenance of NSC, an efficient indexing structure for answering subspace skyline queries, upon underlying data updates. We consider two types of moving data: (i) dynamic data in Chapter 3 and (ii) streaming data in Chapter 4.

• Z ∩ X different
Moreover we investigate the optimization of regret minimization queries through NSC in Chapter 5.

Chapter 3

Maintenance of NSC with dynamic data

Introduction

In Section 2.2, we presented NSC the auxiliary compact data structure capable of answering skyline queries wrt any subspace. It consists in storing for each tuple t a set of pairs which summarize the subspaces where t is dominated. We have presented how (i)

NSC is built, (ii) time and space optimized, and (iii) used for answering skyline queries. In [START_REF] Hanusse | Computing and Summarizing the Negative Skycube[END_REF], NSC has been shown time and space efficient compared to its competitors. However no incremental maintenance procedure has been proposed.

In the present chapter, we address NSC incremental maintenance, precisely with dynamic data, i.e tuples can be deleted/inserted at any time. Indeed, an index structure which needs to be computed from scratch each time an update occurs, is not usable.

Hence, we investigate the ability of NSC to handle deletions/insertions. We came up with slight modifications of the data structure and we designed algorithms for both deletions and insertions. We show theoretically and experimentally that these modifications do not highly impact both construction and query answering times, and space consumption of NSC. Moreover we show that incrementally maintaining NSC is many folds faster than rebuilding it from scratch.

Preliminaries

In addition to the definitions and notations presented previously, Table 3 Organization The next section describes the approaches applied on NSC to handle insertions and deletions. Then we present the experiments we performed.

Managing NSC updates

In this section, we present our approach to update NSC structure after inserting/deleting either a single or a set of tuples. We first start with the insertion case which does not require any modification of the original NSC structure. Then we address the deletion which turns to be harder to deal with making us to slightly extend the NSC structure.

Insertions

Inserting a single tuple When a tuple t + is inserted into table T , the naïve solution is to restart the computation of NSC from scratch by providing T ∪ {t + } as input to Algorithm 1. To avoid this solution, we first identify a situation where the insertion of t + does not change the content of NSC.

Lemma 1. Let S + = topmost(T ∪ {t + }) = Sky(T ∪ {t + }, D). If t + ∈ S + then ∀t ∈ T, Pairs(t, T) ≡ Pairs(t, T ∪ {t + }).
The above lemma simply says that the insertion of t + which is D-dominated will not change the structure of the previous NSC(T). All what we need to do is to compute the pairs of t + , add the so obtained pairs to NSC and eventually compress this single set of pairs.

Algorithm 6 is the procedure we use to maintain NSC after the insertion of a single tuple. It first compares t + to the tuples previously belonging to the topmost (For loop in line 3). While computing the pairs of t + (line 7), we check if t + is D-dominated and identify tuples D-dominated by t + . If none of these comparisons show that t + is D-dominated, then t + belongs to the new topmost, therefore every t ∈ T needs to be compared to t + (line 9). We compute compare(t,t +), we append it to Pairs(t, T) and we compress the new set of pairs. The following lemma characterizes pairs inclusion without generating their respective covered subspaces.

Algorithm 6: insertTuple Input: T , topmost(T), NSC(T), t + Output: NSC(T ∪ {t + }), topmost(T ∪ {t + }) 1 NotTopmostAnymore ← / 0 2 Pairs(t + , T ∪ {t + }) ← / 0 3 for t ∈ topmost(T) do 4 if t + ≺ D t then 5 Add t to NotTopmostAnymore 6 else 7 Pairs(t + , T ∪ {t + }) ← Pairs(t + , T ∪ {t + }) ∪ compare(t + ,t) 8 Compress(Pairs(t + , T ∪ {t + })) 9 if t + not D-dominated then 10 for t ∈ T do 11 Pairs(t, T ∪ {t + }) ← Pairs(t, T) ∪ compare(t,t +) 12 CompressByGreedy(Pairs(t, T ∪ {t + })) 13 topmost(T ∪ {t + }) ← topmost(T) ∪ {t + }\ NotTopmostAnymore 14 return NSC(T ∪ {t + }), topmost(T ∪ {t + }) Example 12. Let t + =(1,1,2,2) to be inserted into
Lemma 2. Let p 1 = X 1 |Y 1 and p 2 = X 2 |Y 2 . p 1 p 2 iff X 1 ⊆ X 2 and X 1 Y 1 ⊆ X 2 Y 2 .
For example AB|C ABC|D but AB|C A|BCD .

Thanks to this fast inclusion test, we propose a compression procedure whose complexity is O(π 2) and which does need to manipulate sets of covered subspaces. It is described by Algorithm 7.

Algorithm 7: compressByInclusion Input: Set of pairs P Output: Set of pairs P ≡ P with |P | ≤ |P| 1 for p ∈ P do 2 for q ∈ P and q = p do 3 if q p then 4 Remove q from P 5 Return P

The following property shows that CompressByInclusion returns a summary that is larger than that returned by the greedy algorithm. Proof. We prove that P g ⊆ P i . Let p ∈ P. Then p ∈ P i iff ∃p ∈ P such that p < p . Now, we show that ∀q ∈ P g there is no q" ∈ P g such that q q . We do this by induction on the iterations of the greedy algorithm. The base case is the first iteration where a pair q 1 covering the maximal number of subspaces is chosen. There will be no pair q ∈ P g covering q 1 otherwise, q is chosen first. Suppose that at iteration i, every selected pair has no so super pair in P g . Let q i+1 be the selected pair at step i + 1 then among the not already selected pairs, there remains no q such that q i+1 q otherwise q is selected instead of q i+1 thus there will be no q ∈ P g s.t q i+1 q which concludes the proof.

Besides its lower complexity, compressing by inclusion test is amenable to an incremental implementation by contrast to the greedy algorithm. Indeed, adding a new pair p to an already compressed set of pairs P can be done by just comparing p to the elements of P leading to a linear procedure while, to the best of our knowledge, there is no incremental version of the greedy algorithm.

Distinct values property

Interestingly, when all tuples have distinct values on every dimension, Algorithm 7 is not only as good as the CompressByGreedy algorithm, but it returns the optimal solution. Proof. The maximal subspace covered by a pair p = X| / 0 is X. For p to be removed from P, there should be another pair p = X | / 0 covering X. Thus, X should be included into X meaning that p p .

When T satisfies the distinct values property, i.e., ∀t 1 ,t 2 ∈ T and ∀d i ∈ D we have

t 1 [d i] = t 2 [d i]
, the pairs we obtain satisfy the condition of Proposition 3. Thus, the compression of CompressByInclusion is optimal in this case.

Inserting a set of tuples

In the case we have a set of tuples ∆ + to be inserted, we can iterate Algorithm 6 over each t + ∈ ∆ + . Some of the comparisons we do with this technique can be avoided. For example, let

∆ + = {t + 1 ,t + 2 } such that t + 2 ≺ D t + 1 .
Clearly, comparing the tuples with t + 1 is useless w.r.t. skyline semantics as stated by the following lemma.

Lemma 3. Let t ∈ T and {t

+ 1 ,t + 2 } ⊆ ∆ + , t + 2 ≺ D t + 1 ⇒ compare(t,t + 1) compare(t,t + 2)
Algorithm 8 takes benefit from the previous lemma. First, it computes the new tompost by considering not the whole previous T but just its topmost(line 1). Then every t ∈ T is compared with each t + ∈ ∆ + which belongs to the new topmost (Forall loop, lines 2-5). The new set of pairs is compressed (line 5). Then, every t + ∈ ∆ + is compared to the elements of the new topmost and every set of pairs is compressed (Forall loop, line 6-9).

Note that the compression procedure can be implemented either via CompressByGreedy or CompressByInclusion.

Deletions

Likewise insertions, we consider single and set oriented deletions separately.

Deleting a single tuple

The impact on a tuple t when deleting a tuple t -is that the set of subspaces where t is dominated can decrease. In NSC structure, this set of subspaces is encoded by the pairs Compress(Pairs(t +))

10 topmost(T ∪ ∆ +) ← NewTopmost 11 return NSC(T ∪ ∆ +), topmost(T ∪ ∆ +)
associated to t. The brute force approach to maintain this set of pairs is to rebuild it from scratch, i.e., executing Algorithm 4 by providing T \ {t -} as input parameter.

In this section, we identify some properties which allow us to avoid this heavy computation. We start by observing that when t -∈ topmost then we do not need to recompute NSC. This comes from the fact that the tuples are compared just to topmost(T). Suppose all tuples have the same probability to be deleted, then the probability to not to have to update NSC when a tuple t -deleted, is greater than 1

-|topmost(T)| |T | .
The following example illustrates other situations where the whole NSC maintenance is note required. Indeed, we identify tuples whose associated pairs need not to be recomputed.

Example 14. Table 3.4 depicts the NSC associated to the running example where we add to each pair, the tuple(s) used to obtain it. Recall that topmost(T) = {t 2 ,t 3 ,t 4 }. The existing pairs depend only on these tuples, which means that the deletion of e.g., t 1 has no impact on the other tuples.

Note that deleting the topmost tuple t 3 has no impact on e.g., t 6 since there is no pair associated to t 6 and obtained from t 3 . Moreover, deleting t 3 has no impact on t 1 either. This is because CD| / 0 will still be associated to t 1 via tuple t 4 .

From the example above, we see that the deletion of a tuple t -may impact a tuple t if t -contributes effectively to derive the subspaces where t is dominated. This is formalized by the following proposition. It follows that for a tuple t ∈ T , its set of subspaces where it is dominated may change only if the tuple to be deleted t -is the unique tuple producing a pair p -, i.e., compare(t,t -) = p -, and p -belongs to Pairs(t, T).

Example 15. From Table 3.4, for t 1 , the deletion of either t 3 or t 4 has no impact as the pair CD| / 0) is produced by both of them. However C|ABD is produced uniquely by t 2 .

Thus, deleting t 2 may have an impact on t 1 and actually it does.

To take advantage from the properties stated in Proposition 4, we extend the NSC structure by associating a counter to every pair p ∈ Pairs(t, T). This counter represents the number of tuples which contribute to this pair.

Example 16. The NSC in Table 3.4 is actually stored as follows.

This additional information increases linearly NSC memory consumption. Indeed, instead of using pairs as physical memory units, we rather store triples of the form X|Y |counter . The number of memory units is kept unchanged. To not disturb the Remark: The main difference between Algorithms 9 and 1 is the membership test (Line 5). Actually, this can be done in O(1) by organizing the set of pairs as hash table. Thus, the new algorithm adds little overhead w.r.t. the original one. Furthermore, the insertion algorithms presented so far are adapted accordingly to cope with the counters associated to the pairs. Now we are ready to present our approach to maintain NSC after a single tuple deletion. It is described in Algorithm 10 and we illustrate its execution with various t -in the following example.

Example 17. Let t -= t 1 , t -is not in topmost(T) so the deletion of t -requires no change.

We only delete it from the dataset.

Algorithm 10: deleteTuple

Input: t -,T ,NSC(T),topmost(T)

Output: NSC(T \ {t -}), topmost(T \ {t -}) 1 if t -∈ topmost(T) then 2 topmost(T \ {t -}) ← Sky(T \ {t -}, D) 3 for t ∈ (T \ {t -}) do 4 p ← compare(t,t -) 5 if p ∈ Pairs(t, T) then 6 if p.counter = 1 then 7 Pairs(t) ← / 0 8 for t ∈ topmost(T \ {t -)}) do 9 q ← compare(t,

Deleting a set of tuples

When deleting a subset ∆ -⊂ T , one solution could be to call Algorithm 10 for each t -∈ ∆ -. One problem with this procedure is that the set of pairs associated to a tuple t is computed as many times as there are tuples t -∈ ∆ -which affect it. Moreover, a new topmost skyline is computed for every t -belonging to the previous topmost. Therefore, we propose a batch procedure to avoid the above limitations. Our solution is described in Algorithm 11. It first checks whether there is a deleted tuple belonging to the present topmost (line 1). In this case, the new topmost is computed (line 3). Then for every t remaining in T , it checks whether it is impacted by ∆ -, i.e., there is a pair p ∈ Pairs(t, T)

having its counter set to 0 (line 10). In this case, a new set Pairs(t, T \ ∆ -) is computed by comparing t to all the elements of the new topmost and compressing the so obtained set of pairs (line 12-21).

Algorithm 11: batchDeleteSetOfTuples Input: ∆ -,T ,NSC(T),topmost(T)

Output: NSC(T \ ∆ -), topmost(T \ ∆ -) 1 TopDel ← ∆ -∩ topmost(T) 2 if TopDel = / 0 then 3 topmost(T \ ∆ -) ← Sky(T \ ∆ -, D);
22 return NSC(T \ ∆ -), topmost(T \ ∆ -);

Complexity analysis

The first parameter affecting the deletion procedure is the probability that the set ∆ - intersects the topmost, i.e., at least one of the deleted tuples belongs to the topmost. Recall that if the intersection is empty, the only thing to do is to remove the deleted tuples. Under a uniform hypothesis for deleting any tuple, the probability that the intersection is not

empty by |∆ -| × |topmost| |T | .
Hence, for a fixed |∆ -|, the larger the topmost, the larger is this probability.

The second parameter is the number of impacted tuples by ∆ -∩ topmost. There are two extreme cases: the one where no tuple is impacted and the other where all tuples are impacted. The later worst case makes our algorithm degenerate to the naïve solution since we need to compare all tuples to the new topmost. The formal analysis of the average number of affected tuples by ∆ -is hard, if not impossible, because we need to estimate the probability that a pair is (i) not removed due to the compression process and (ii) all the tuples used to obtain it belong to ∆ -. In Section 3.4 we empirically analyze this behavior and we will see that, e.g., the number of impacted tuples by a topmost one is far from being uniform.

An interesting situation is that of correlated data where the size of the topmost is small, possibly equal to one. In this case, all tuples are compared to the unique tuple of the topmost. Deleting the later will impact all the remaining tuples. However, the probability of deleting this specific tuple is 1 |T | which is rather small.

Experiments

In this section we present the comparative experimental results we obtain with NSC and its principal competitors. For this, we consider the following four criteria: (i) construction time, (ii) memory consumption, (iii) skyline query processing time and (iv) maintenance upon updates. All the implementations we used but CSC are those provided by their respective authors.

First we compare NSC to CSC, HashCube and QSkyCube wrt construction time and space consumption. QSkyCube builds the whole skycube so its output is considered as a baseline to assess the compression ratio of each solution.

As for query evaluation, we use CSC, HashCube and BSkyTree. The later is the baseline since it is the state of the art algorithm for skyline evaluation when no precomputation is available. So it serves to evaluate the optimization ratio provided by each technique against a solution where no extra storage/computation is performed.

Regarding updates, to our knowledge, the only structure for which incremental maintenance algorithms have been provided is CSC. Because, as we will show, it has poor query performance compared to its "materialization based" competitors, i.e. HashCube and NSC, we decided to not include it in this part of the experiments.

Datasets

For the purpose of evaluating NSC, we perform experiments on both real and synthetic datasets. For real datasets, we use commonly cited datasets in skyline literature. In table

Hardware and implementation

All the experiments are conducted on a Linux machine equipped with two 2.6 ghz hexacore CPUs and 32GB RAM. We implemented NSC as well as CSC in c++ together with OpenMP library to parallelize some parts of the algorithms. CSC proceeds levelwise and each subspace of one level is treated independently of the others of the same level, so they can all be processed in parallel. As for NSC, every tuple is processed independently so this is the parallel granularity we used for it. To test HashCube, BSkyTree and QSkyCube we used their respective authors versions which are in c++ too. HashCube implements several algorithms to compute the hashcube structure. As it is shown in [START_REF] Bøgh | Template Skycube Algorithms for Heterogeneous Parallelism on Multicore and GPU Architectures[END_REF],

mdmc is the most efficient so it is the one we use. mdmc can share computation on both CPU and GPU. For the present experimentation, only CPU is used. NSC Source code is available on GitHub1 . This repository contains as well CSC and BSkyTree implementations. HashCube and QSkyCube implementations are available on GitHub as well 2 .

In the remainder, a missing value means that the respective solution could not terminate either because of memory saturation or excessive execution time (stopped after 24 hours).

Constructing the structures

The aim of this experiment is to compare NSC structure to (i) CSC, (ii) HashCube and (iii) QSkyCube wrt construction time and space consumption. We evaluate the behavior of these techniques by varying n and d.

Regarding memory consumption, we report the number of memory units used by each structure: for NSC we count the total number of pairs. CSC and skycube store for each tuple t respectively the smallest and all subspaces where t belongs to the skyline, hence for both of them we count the total number of subspaces that need to be stored. HashCube stores for each word ω encoding a set of subspaces, a list of tuples that share this word.

Recall that the same tuple may be associated to several words. So, we count the total number of tuples that need to be stored.

Real data

The same experiments as above have been performed on real data sets so that to avoid the biases introduced by the (non) correlation of synthetic data. The results are depicted on Regarding the memory consumption, globally, NSC requires less storage space.

IPUMS and HOUSE are the exception: IPUMS has a small n and for HOUSE, d is rather small. Here too, and for the sake of assessing the compression ratio, we report the size of the skycube of every data set even if QSkyCube did not terminate.

Answering skyline queries

For this experiment we compare the performance of NSC to those of (i) CSC, (ii)

HashCube and (iii) BSkyTree wrt query answering execution time. The first three methods use pre-computation while the latter evaluate skyline queries directly from row data.

For each structure we evaluate all possible skyline queries, i.e., the 2 d -1 queries, and report the total execution time. We do so to avoid the impact of dimensionality. Moreover, this total time divided by the total number of queries gives an idea about the average query execution time. Here too, we vary n, d and correlation.

Real data

The obtained results are shown in Figure 3.8. The first noticeable remark is that in most cases, CSC is slower than BSkyTree which makes it definitively not a viable solution.

The second observation is that HashCube is always the best solution. The only exception is with INSEE dataset where the HashCube itself cannot be constructed.

Maintenance upon updates

The aim of this section is to assess the effectiveness of the proposed solutions to maintain the NSC structure upon updates. We compare our proposals of incrementally updating the structure against the process of rebuilding the structure from scratch.

Evaluating insertions

Compression procedures In Section 3.3.1, we have presented the incremental compressing procedure CompressByInclusion as an alternative to CompressByGreedy. This first experiment consists in analyzing the memory increase versus the execution time decrease we obtain when using the compression procedure based on pairs inclusions rather than the greedy algorithm. To the sake of completeness, we also consider the case where no compression is used. We present the results we obtained with an independent data set with n = 10 5 , build its NSC using the greedy algorithm then we evaluate the effect of inserting a set of tuples 3 . We repeat the experiment by varying d and |∆ + |. For both memory usage and execution time, we consider greedy as the reference. More precisely, Execution time analysis In this section we analyze the insertion methods presented in Section 3.3.1. We focus on the insertion of a set of tuples by considering both batch and sequential procedures. The later provides also information about single tuple insertion since it consists in just iterating single insertions. Therefore, we do not report on the execution times we get when a single tuple is inserted.

We suppose that NSC is already built for a data set T and we generate a set of tuples ∆ + with the same correlation type that we append to T .

To be sure that the inserted tuples imply effective update of NSC we select them in such a way that they will be part of the new topmost skyline. More precisely, when |∆ + | is set to 10, we keep generating new tuples until we get 10 that are not dominated on D by any of the previous topmost tuples. Sequential and Batch insertion methods are faster than rebuilding NSC from scratch in all cases. Note however that when |∆ + | is quite small (typically, 10) the sequential procedure is better than the batch one. Recall that the former consists simply in iterating the insertion of a single tuple over ∆ + . This shows that the batch method is worthwhile when ∆ + gets large (typically, more than 10). An exception to this behavior is the case of We also performed some experiments to see whether our incremental solutions degenerate to the naïve solution, i.e., build from scratch, when the amount of inserted tuples is large.

Evaluating deletions

Impact analysis As we have seen, an important parameter influencing the efficiency of handling the deletion of a tuple t -is the number of tuples it impacts, i.e., those for which we need to recompute their associated new set of pairs. We conduct some experiments to analyze the distribution of this parameter. To this aim, we compute the NSC associated to a table T , then for every tuple t ∈ topmost, we compute the number of tuples it impacts whenever t is to be deleted. Note that we do not consider tuples not belonging to topmost since they have no impact. For the three types of data (CORR, INDE and ANTI), we generate a data set with n = 10 5 and d = 16. The characteristics of these data are depicted below. #max represents the maximal number of impacted tuples by an element of the topmost. As it can be noted, the maximal number of tuples impacted by a deletion represents a small portion of the dataset whatever is the correlation nature of data. Interestingly, this number is larger for anti-correlated than independent data. This can be explained by the fact that in the former case, the tuples tend to belong to more skylines hence, they are dominated in less subspaces. Therefore, less pairs are needed to summarize them. By contrast, when the dimensions are correlated, the topmost is small thus many tuples are totally dominated by most tuples in this small set. In consequence, very few pairs are associated to a single topmost tuples.

CORR

Moreover, not all topmost tuples have an impact on T , e.g. for independent data, only 28730 (about 45% of the topmost) are impacting at least one tuple and 68213 for anti-correlated data (about 70% of the topmost) which represent respectively 28 and 68% of T .

We are also interested by the distribution of this number of impacted tuples among the elements of topmost. To this aim, for each data set and each X% ratio of the input table T (X% = 1%, 2%, . . . , #max |T | %), we compute the number of topmost tuples impacting more than X% of T . Figure 3.14 depicts these results. We observe that most topmost tuples impact very few tuples. Said another way, the probability that deleting a tuple, or even a set of tuples, will incur a large amount of work is quite small. To make this observation more concrete, we conducted an experiment to collect some statistics about the execution time required to maintain NSC upon deleting a topmost tuple. We report the min, max, mean, median and Q3 (third quartile) execution times and we contrast these values with the time required to build NSC from scratch. Figure 3.15 shows the results we obtained with an independent dataset by varying both n and d.

We observe, among others, that in most cases, half of the topmost tuples (median) need an execution time which is about two orders of magnitude lower than that for rebuilding NSC.

Execution time analysis We investigate also the execution time of updating NSC upon a deletion of a subset ∆ -⊂ T . We reiterate the operation with different ∆ -of increasing size {10, 30, 50, 70, 90, 110}. Figures 3.16 and 3.17 show the results of maintaining NSC upon deleting ∆ -, respectively, by varying n and by varying d.

Sequential and Batch methods overtake rebuilding NSC in all the experiments. The gap is even larger when n increases, e.g. in Figure 3.16 with d = 16 and n = 10 6 , for both independent and anti-correlated datasets, the gain is at least 100. However, Batch oversteps rebuilding NSC from scratch.

To push even more those experiments, we delete until 10% of an initial data of 10 6

tuples and 20 dimensions. The previous experiments have already shown that sequential is not scalable w.r.t. |∆ -|. Therefore, we compare only Batch with rebuilding NSC. Figure 3.18 shows the results with an independent dataset. We observe that Batch outperforms rebuilding NSC for all configurations. We remark also that the more dimensions we add, the higher the gap between Batch and Rebuild when deleting 10 5 tuples. The main reason is that when d = 8, topmost is smaller than with d = 20, which makes a large portion of topmost included into ∆ -, and this leads to a high number of impacted tuples.

Real data

To evaluate insertions, we compute NSC with 95% of the dataset randomly chosen, and then we insert the remaining 5%. Note that here, the inserted tuples are not guaranteed to belong to the new topmost skyline. We make this choice in purpose so that the experiment becomes closer to realistic situations: users do not insert just not dominated tuples.

Likewise for deletions, we compute NSC for the whole data set, and we delete 5% tuples chosen randomly. The obtained execution times are depicted in Figure 3 In general, we observe the same behavior as with synthetic data, that is Batch method is the fastest for insertions as well as for deletions. We note however some exceptions with the insertion experiments, e.g. for NBA and MBL, Sequential method is as good as Batch method, while for INSEE, Sequential method is clearly faster. We explain this behavior by the fact that the topmost skylines of these three data sets are quite small (see Table 3.6), therefore due to the random selection of the 5% that we insert, ∆ + is likely to be composed of dominated tuples, consequently the topmost will not change. Sequential method checks the tuples of ∆ + one by one whether they are dominated, thus it performs at most |∆ + | * |topmost| comparisons. While Batch method computes topmost of T ∪ ∆ + , i.e. computes skyline of T ∪ ∆ + over D. Note that this behavior is similar to that observed with correlated synthetic datasets.

Experiments conclusion

We learn from NSC maintenance experiments is that the harder the computation of NSC from scratch, the more efficient incremental methods.

When NSC computation is already fast, the lack of the incremental methods gain is not crippling. Moreover, experiments suggest that one should prefer Sequential insertions when the topmost skyline is small. For deletions, Batch method is always the best choice.

Conclusion

In this chapter, we studied the incremental maintenance of the structure NSC in presence of dynamic data. In a previous work, this structure has been shown efficient for answering subspace skyline queries, however no incremental maintenance procedure has been provided. Through slight modifications in the structure design and efficient algorithms, we have shown that NSC can efficiently handle updates. Moreover we have shown that these modifications do not alter its efficiency with respect to both construction and query answering times, and space consumption.

We considered in this chapter data changing in unpredictable way, i.e. a set of unknown size can be deleted/inserted at any time. However in some real world situations, data are appended only and queries consider a window. In such cases, this chapter's proposals are not suitable. For example, consider a dataset where N tuples are inserted every k units of time. Then NSC's update should occur in the interval between every two batches. Otherwise NSC would never provide accurate results for skyline queries. In the next chapter, we give examples of such situation and address the maintenance of NSC in presence of streaming data.

Chapter 4

Maintenance of NSC with streaming data

Introduction

Computing the skyline in a streaming context has been investigated in e.g., [START_REF] Lin | Stabbing the Sky: Efficient Skyline Computation over Sliding Windows[END_REF][START_REF] Tao | Maintaining Sliding Window Skylines on Data Streams[END_REF][START_REF] Michael | Efficient Continuous Skyline Computation[END_REF][START_REF] Michael | Efficient continuous skyline computation[END_REF]. They consider a data set extended every θ units of time by a new tuple. All tuples may have a specified common lifetime ω, i.e., they are valid during a period of size ω starting from their arrival time, then they become obsolete and can be removed. Since the underlying data set is changing every θ units of time, i.e. a new tuple is appended and an old one is discarded, the answer to a skyline query may change at the same frequency. Because the complexity of skyline queries evaluation is, in the worst case, quadratic in the data size, there is a need of incremental procedures to maintain the skyline up to date. Previous works that tackled the issue have mainly considered the problem of maintaining a single skyline. In the present chapter, we investigate the problem of answering multidimensional skyline queries over streaming data. More precisely, we address the incremental maintenance of NSC in a streaming context.

As discussed in Chapter 1 Section 1.1.2, none of the previous solutions to monitor a single skyline can be naturally and efficiently adapted to the context of multidimensional skylines. As a motivating scenario, consider a data analytics agency which receives a live stream of statistical data about tweets. Each tuple represents a tweet statistics of the form (UserId, TweetId, #retweets, #likes, #comments, retweet_depth, #followers, #shares_on_other_social_nets). The agency is interested by the skyline tweets wrt several subsets of attributes in a 24 hours sliding window. This information can be useful for, e.g., identifying the k-most influential tweets by counting the number of subspace skylines they belong to. Considering the last 6 attributes representing statistics, there are 63 distinct skyline queries (2 6 -1) that can be submitted to this multidimensional data stream. Because of data velocity, monitoring the Top-K elements requires to refresh the results as frequently as possible: if each second a new tuple is received and an old tuple is outdated, then each of the 63 queries must be re-evaluated to keep the Top-K tweets wrt to the last 24 hours up to date. Observe that if θ = 1sec. and the evaluation of these queries takes more than 1 second, then the Top-K query answer will never reflect the actual data. One solution to cope with this problem is to reduce the size of input data. This can be done by reducing the tuples validity time, e.g., considering just the last hour instead of the last 24 hours divides the input size by 24. Notice that this may not reflect the business needs of the company. Another solution would be to reduce the number of skyline queries, e.g., select "most representative" 10 queries among the 63 possible ones. Again, this could bias the result.

In this chapter, we present the framework MSSD (Multidimensional Skylines over Streaming Data) that handles (i) a buffer B where tuples are first collected during k units of time, (ii) a main dataset T that stores tuples arrived in a window of size ω and (iii) a variant of NSC called NSCt i.e., NSC with timestamps.

We adopt a micro-batch processing approach: the stream source emits one tuple every θ units of time 1 . Our framework collects the tuples into a buffer during k units of time.

Thereafter, the buffered tuples are inserted into T and the outdated ones are removed from T . Simultaneously, the maintenance of the index structure NSCt is triggered.

When a subspace skyline query is issued, NSCt is used in order to compute the skyline.

Continuing with the analytics agency example, suppose that it is interested in querying a 24 hours window, i.e., ω, and sets the batch interval, i.e., k, to 15 min with a processing at {HH:00, HH:15, HH:30, HH:45}. Then, for example at 13:40, T covers the window (13 : 30(-1 day), 13 : 30]. Note that tuples arrived during the interval (13 : 30, 13 : 40] do not belong to T and are not considered for queries. In addition, those arrived during (13 : 30(-1 day), 13 : 40(-1 day)] still belong to T despite the fact that they are no more valid. So the exact semantics of the queries our framework answers is: the skyline over the data that were valid at the last maintenance time.

We balance the maintenance frequency with the query answering performance. A user interested in querying a more close window will choose to reduce k. However someone who is interested in processing a big number of queries will delay the maintenance process.

Organization The next section gives the additional definitions and notations used throughout the chapter. We then describe our proposed framework. We present NSCt, how it (i) is maintained and (ii) is used to answer skyline queries. Afterwards, we present the experiments we performed.

Preliminaries

We begin by presenting the definitions and notations used throughout the chapter.

Notations and definitions

In addition to the general definitions and notations, in this chapter we consider data appending to a data repository S in a streaming mode. We consider that all tuples share the same validity period of size ω which starts once the tuple is integrated into the data repository S. Every tuple t has a timestamp corresponding to the starting time of its validity period denoted T S(t). To simplify, we consider time as isomorphic to the set of natural numbers which means T S(t) ∈ N. At timestamp T S(t) + ω, the tuple t is considered outdated, therefore deleted from the data repository. We also consider the natural order between timestamps, i.e., T S(t 1) < T S(t 2) ⇔ t 1 has been integrated before In this chapter, the skyline is defined over a window as follows, Definition 9 (Subspace skyline over a window). Let X be a subspace, To simplify the notation, we sometimes write just Sky(X) when the underlying S is understood and we omit [a, b] because we focus on the time interval (ts cω,ts c], i.e., the valid tuples wrt the current timestamp.

Example 18. Let S be the following set of tuples:

Id Timestamp A B C t 1 11 1 2 1 t 2 12 1 1 2 t 3 13 2 2 2 t 4 14 2 3 1
Assume that ω = 2, i.e., a tuple is still valid 2 units of time after its arrival. Because the most recent tuple in S has a timestamp equal to 14, all tuples which arrived at timestamp 14ω = 12 or before, are considered to be outdated and hence removed. In S, this is the case for t 1 and t 2 . Hence, e.g., Sky(AB) = {t 3 } and Sky(BC) = {t 3 ,t 4 }. Now, let ω = 8, i.e., all tuples are valid. Then Sky(AB) = {t 2 } and Sky(BC) = {t 1 ,t 2 }.

MSSD framework

In this section, we present the architecture of our framework, the index structure we propose to maintain the subspaces where a tuple is dominated and the process of answering issued subspace skyline queries.

MSSD architecture

MSSD consists of three data structures, (i) a buffer B, (ii) a main dataset T and (iii) an index structure NSCt. MSSD integrates a micro-batch processing: (i) during a time interval of size k, tuples are first inserted into the buffer B, afterwards (ii) the content δ + of B is inserted into the dataset T , (iii) the outdated tuples are deleted from T , and finally (iv) the update of NSCt is triggered. The framework is clocked by the parameter θ which determines the delay between two timestamps t i and t i+1 , i.e., the delay between two successive tuples. For the ease of the presentation, we consider that every θ units of time, one and only one tuple is buffered by our framework. Moreover, we assume that k is a divisor of ω, and both are multiples of θ . Hence, at each time, the number of tuples belonging to B is at most equal to k θ . On another hand, and after warm up, i.e., current timestamp t c greater than ω, T continuously contains exactly ω k transactions which corresponds to a total of ω θ tuples2 .

pairs are stored. We compress the initial set of pairs P into an equivalent set of pairs P . While this compression step improves the space consumption and query answering time, it makes deletion harder.

Let us consider the set of tuples depicted below:

Id A B C t 1 2 2 2
t 2 0 0 3 the remaining tuples in the dataset to recover its associated pairs. In a streaming context where the flow of insertions/deletions is high, this approach of pairs sets maintenance is not suitable because it is too time consuming.

t
We adapt this structure in order to handle efficiently streaming data without giving up much performance of NSC. More precisely, given a dataset T , for a tuple t in T , we organize its set of pairs Pairs(t) as a sequence of buckets where each bucket Pairs(t).Buck i contains the pairs computed wrt a transaction R[i] in T .

The following example illustrates the update procedure. At timestamp 7, a new tuple t 7 is buffered. The content of B is then inserted into T . In addition, the first two tuples t 0 and t 1 are no more valid so they are removed from T as it

Transaction Id A B C Arrival time R[1] r 0 5 4 1 0 r 1 3 4 2 1 R[2] r 2 5 1 3 2 r 3 1 1 3 3 R[3]
r 4 1 0 4 4 r 5 0 1 5 5 In the following, we detail our approach (i) to compute and organize the pairs of a newly inserted tuple into T and (ii) to update the set of pairs of an existing tuple.

Handling a new tuple

Let δ + be a transaction. Let T be the set of tuples from where the outdated tuples are removed and those in δ + are inserted. Let t be a newly inserted tuple into T , i.e., r ∈ δ + .

We compute its pairs wrt the tuples in T and organize them as follows: we allocate to t a sequence of buckets that we call Pairs(t) where each bucket Pairs(t).Buck i contains the pairs computed wrt a transaction R[i] in T . Since there exists ω k transactions in T , then each tuple has ω k buckets. The timestamp of a bucket, denoted by T S(Buck i), is the timestamp of the tuples to which it is related.

We describe the process of computing the pairs associated to a newly inserted tuple in Algorithm 12 and illustrate it in example 21. Algorithm 12 is called for every tuple in the transaction δ + .

Example 21. We report in Table 4.5 the pairs of tuples t 6 and t 7 from the previous example.

Recall that from the values of ω = 6 and k = 2, the number of transactions in T is 6 2 = 3 which is the number of buckets we associate to each tuple. The first bucket Buck 1 is obtained by comparing t 6 and t 7 to the tuples belonging to the oldest transaction in T , i.e., {r 2 , r 3 } and the second by comparing them to {r 4 , r 5 }. The last bucket corresponds to the pairs obtained by comparing the new tuples to each others, i.e., t 6 to t 7 and vice versa.

Algorithm 12: computePairs

Input: tuple t, T Output:

Pairs(t) 1 Pairs(t) ← / 0 2 Buck i ← / 0 ∀i ∈ [1, ω/k] 3 begin 4 for i ∈ [1, ω/k] do 5 foreach r ∈ transaction R[i] do 6 //

Complexity analysis

Given the parameters ω, k and θ , the size of the dataset T is ω θ . Moreover, the size of a transaction δ + to be inserted is k θ . Let n = |R| and = |δ + |. Each tuple in δ + is compared to tuples in T (except itself) hence the process of computing the pairs of a transaction has a time complexity O(• n). Likewise space complexity is O(• n) as from each comparison, one pair is stored. Observe however that each bucket is a set of pairs. Hence, • n is the maximal number of pairs.

Minimization of Pairs(t).

We show in this section the minimization process of NSCt which is shaped for streaming data.

Let us first recall the notion of set of pairs equivalence.

Definition 10 (Equivalence). Let P and Q be two sets of pairs. Then P and Q are equivalent, P ≡ Q, iff cover(P) = cover(Q) d is equal to the number of elements to be covered in MSC and where the number n + 1 of records is equal to the initial number of sets in MSC in addition to the distinguished t. So, there is a bijection between the n records and the n sets of MSC instance. The n records form the topmost of T and distinguished tuple t is compared to each of them giving rise to a set of pairs P. We show that the minimum equivalent subset of P coincides with a solution of MSC. Let s = {s 1 , s 2 , . . . , s n } be the input set of sets in the MSC instance.

W.l.o.g, we assume that there is no inclusion between these sets and none of them does contain all the elements to cover. For every set s j ∈ s, we add to T a tuple t j such that

t j [i] = 0 iff i ∈ s j otherwise t j [i] = 1.
In addition, we add to T a tuple t = (1, 1, . . . , 1) be a d-tuple. For example, let s = {s 1 = {1, 2}; s 2 = {2, 3}; s 3 = {1, 3}} be the MSC instance.

The number of elements to cover is d = 3 and the number of sets n = 3. So, we get a table

T with n + 1 = 4 records, including t, and 3 dimensions. This table is depicted below.

Id 1 2 3 t 1 1 1 t 1 0 0 1 t 2 1 0 0 t 3 0 1 0
Clearly, every t j dominates t and t i ≺ t j . Hence, {t 1 , . . . ,t n } is the topmost. By comparing t to the topmost, we obtain P(s) = {p 1 , . . . , p n }. There is a one to one Observe that P1 * is equivalent to the MSC problem. Now we show that a solution for P1 * is also a solution for P1.

Theorem 6. Let [s 1 , . . . , s m] ⊆ Pairs(t), then [s 1 , . . . , s m] is a solution for P1 iff T([s 1 , . . . , s m]) is solution of P1 * .
In order to prove the above theorem, we first have to prove that the function T is bijective.

Lemma 5. T is bijective.

Proof of Lemma 5. Observe in the definition that Im(T) is composed of the image by the function T of all possible pairs according to a set of dimensions D, hence T is surjective. Now we show that T is injective. Let seq 1 and seq 2 two sequences of sets of pairs. We prove by contradiction that if T(seq 1) = T(seq 2) then seq 1 = seq 2 . Suppose T(seq 1) = T (seq 2) and seq 1 = seq 2 . We first prove that the two sequences have the same size, i.e.

the same number of sets of pairs. Suppose the size of the sequences is different between seq 1 and seq 2 , e.g. n = |seq 1 | > |seq 2 | = m, let X be a subspace covered by a pair in the n th set of seq 1 . Hence X n does belong to a element in T(seq 1) which is impossible because T(seq 1) = T(seq 2). Therefore seq 1 and seq 2 contain the same number of sets of pairs. Let

seq 1 = [s 1 , . . . , s m] and seq 2 = [s 1 , . . . , s m], we now prove that s i = s i ∀i ∈ [1, m].
Suppose that s i = s i , more particularly suppose p ∈ s i and p ∈ s i such that p = p , we show that it's impossible that cover(p) equals cover(p).

Let p = X 1 |Y 1 and p = X 2 |Y 2 . • if X 1 ⊂ X 2 then ∀Y 1 ,Y 2 ∃Z ∈ X 2 \ X 1 ∈ cover(p). • if X 2 ⊂ X 1 then ∀Y 1 ,Y 2 ∃Z ∈ X 1 \ X 2 ∈ cover(p). • if X 1 = X 2 then -if Y 1 ⊂ Y 2 then X2Y 2 / ∈ cover(p) -if Y 2 ⊂ Y 1 then X1Y 1 / ∈ cover(p)
Hence in all cases, cover(p) = cover(p) therefore T(seq 1) is not equal to T(seq 2) which contradicts our first assumption. We conclude that T is injective and therefore bijective.

Next we show that a solution [s 1 , . . . , s m] for P1 coincides with a solution S * for P1 * , that is proving the previous theorem.

Proof of Theorem 6. ⇒ Let [s 1 , . . . , s m] be a solution for P1. We prove by contradiction that T([s 1 , . . . , s m]) is a solution of P1 * . Suppose that T([s 1 , . . . , s m]) is not a solution of P1 * . So there must exist X i ∈ Z∈T(Pairs(r)) Z such that X i ∈ T([s 1 , . . . , s m]) and i the highest index. As T is bijective, there exists a pair p ∈ Buck i such that X i ∈ T (p, i). As no other S i+1 , . . . , S m covers X then S i should cover X, which is not the case as p not in S i .

Then [s 1 , . . . , s m] is not a solution, which contradicts our assumption.

⇐ Suppose [s 1 , . . . , s m] is not a solution of P1 such that s i is the one that does not satisfies Buck i . Let X be a subspace covered by pairs in Buck i , however not covered by pairs in S i , then as T bijective, X i will not belong to T([s 1 , . . . , s m]).

But X i ∈ T(Pairs(r)) because X ∈ Buck i . Hence T([s 1 , . . . , s m]) is not a solution for P1 * .
This is true for a minimum solution as well.

We present in Algorithm 13 the steps to find a minimal solution for an instance of The batch interval k impacts the minimization process in a way that the resulting minimized set is smaller when k is larger. The following proposition describes this behavior and we process a set of experiments in section 4.4 in order to measure the impact of k on NSCt size. Proposition 5. Let k and k be two batch intervals such that k = c • k with c ≥ 2. Given ω, let t be a tuple, P k and P k be its sets of pairs with respectively k and k . Then

|P k | ≤ |P k |.
Proof. Let k and k be two batch intervals such that k = c • k with c ≥ 2, we prove that

|P k | > |P k | is impossible. Suppose |P k | > |P k |,
then there exists a record r such that compare(r, r) ∈ Buck i and Buck i ∈ P k , this means that p = compare(r, r) is not covered by other pairs in Buck i , more precisely cover(p) ∈ cover(Buck i \ p). Let Buck i1 • • • Buck ic ∈ P k representing the same interval as Buck i . The supposition implies that p is not in any bucket Buck i1 • • • Buck ic , which implies that either cover(p) ∈ cover(Buck i1) or cover(p) ∈ cover(Buck i2) • • • or cover(p) ∈ cover(Buck i2). This is impossible as v=1•••c cover(Buck iv) ≡ cover(Buck i).

Hence |P k | ≤ |P k |.

Updating pairs of an existing tuple

So far we presented the computation, organization and minimization of the pairs of a tuple newly inserted into T . In the following, we explain the update process for a tuple inserted beforetime.

Let t c , the current timestamp, be a maintenance timestamp. Let δ + be the transaction to be inserted into T . To simplify the comprehension, we explain in a first time the maintenance process for a valid tuple r ∈ R inserted at the previous maintenance time, then we generalize for tuples inserted at any time. The sequence of buckets Pairs(t) at t c is [Buck 1 , . . . , Buck m]. The maintenance process consists on two steps, on one hand, the pairs computed wrt outdated tuples must be deleted, on the other hand, new pairs are computed wrt the newly inserted transaction. Regarding the first step, i.e. deletion of pairs, the Suppose a skyline query Sky(AB) is issued then the pair r 6 |B is processed. As AB = B we deduce that t 6 ∈ Sky(AB). If instead query Sky(ABC) is submitted then t 6 belongs to the result because there is no entry in the map related to a superset of ABC and where we can find t 6 .

Transaction Id A B C Arrival time R[1] r 4 1 0 4 4 r 5 0 1 5 5 R[2] r 6 2 0 6 6 r 7 2 1 1 7 R[3]

Experiments

We consider the following scenario in order to evaluate our proposal: a data analytics agency collects data from a stream provider and continuously issues subspace skyline queries for further processing. The stream configuration (θ , d) are imposed upstream. We evaluate the ability of our proposal in responding to the agency needs in terms of subspace skyline answering, i.e., does our framework allow to answer subspace skyline queries with low query execution and maintenance times, and lightweight memory consumption? To assess the performance of our framework, we compare it (i) to a baseline approach which computes the skyline using state of the art algorithm BSkyTree [START_REF] Lee | Scalable skyline computation using a balanced pivot selection technique[END_REF][START_REF] Lee | BSkyTree: scalable skyline computation using a balanced pivot selection[END_REF] and (ii) to DBSky together with its Eager algorithm [START_REF] Tao | Maintaining Sliding Window Skylines on Data Streams[END_REF], an approach for maintaining a single skyline over streaming data. The goal of this comparison is to show that (i) without any index structure, the best skyline algorithm known so far is unable to handle multidimensional skyline queries when the dimensionality is moderately large in a streaming context and (ii)

streaming solutions targeting a single skyline cannot be generalized to multidimensional skyline queries.

The ability of our solution to handle streaming data is reflected by its throughput per time unit. More specifically, the number of queries it can answer between two consecutive batches. There are mainly four parameters that affect this throughput: (i) the flow of the insertions θ , (ii) the size of the sliding window ω, (iii) the batch interval k and (iv) the number of dimensions d. We vary the values of these parameters as shown in Table 4 Datasets: We generate synthetic independent (INDE) and anti-correlated (ANTI) data types using the framework of [START_REF] Börzsönyi | The Skyline Operator[END_REF]. The generated tuples have either 8, 12 or 16 dimensions as depicted in Table 4.12. Moreover we consider a real stream of tweets where each tweet is described by five numerical attributes. More details in Section 4.4.5.

Implementation and hardware: All algorithms are implemented in C++. Source code is available on GitHub 3 . Experiments are performed on a Linux machine equipped with two 2.6GHz hexa-core processors and 32 Gb RAM.

First, we evaluate NSCt query answering performance and compare it to that of BSkyTree. The goal is to show that despite its maintenance process, NSCt is much more efficient. Second, we report the comparison to DBSky on memory consumption and maintenance time. Finally, we evaluate the impact of parameter k (batch interval) on both the maintenance time and the memory consumption of NSCt. For all experiments, we report the measures after warm up, .i.e., at a timestamp greater than ω so that the size of T becomes stable.

Query evaluation

The goal of this experiment is to evaluate the compatibility of NSCt maintenance delay when coping with streaming data. Indeed, if between two consecutive batches, most or all of the time is devoted to the maintenance, then NSCt becomes useless. To this aim, we compare NSCt to BSkyTree in term of query answering during a batch interval of size k = {5mn, 10mn, 20mn}. To fairly compare them, we report the time to answer all possible skylines with d = 12, i.e. 4095 queries. in the future once the current skyline tuples which dominate them expire. Note that meanwhile, new tuples can be inserted, hence a DBrest element is not guaranteed to become a skyline point. This proposal's target is to deal with just a single skyline.

Obviously, its adaptation to the multidimensional setting we address with NSCt, consists in maintaining a DBSky and a DBrest for every subspace. For NSCt the memory usage corresponds to the number of pairs while for DBSky and DBRest, it represents the number of tuples stored. We set k to 20mn, θ to 1 sec. and 0.1 sec., and repeat the measures by varying d in {8, 12, 16} and ω in {12h, 24h}. Figures 4.6 ,4.7 and 4.8, and 4.9 show the obtained results for respectively memory consumption and maintenance time. We note that we do not report some DBSky performances as it exceeded a reasonable execution time. One can observe that NSCt consistently uses less memory (see figures 4.6 and 4.7). However the memory consumption growth wrt to d is quite the same. A notable information here is that the growth wrt d of the set DBSky is higher than that of DBRest because the greater is d the bigger is the skyline set. In parallel, NSCt maintenance time is faster than DBSky on all configurations (see figures 4.8 and 4.9). We recall that for this experiments, the batch interval time k is set to 20 minutes (1200 seconds), therefore the maintenance time should be less than k in order to allow the user to issue queries.

However, the maintenance time of DBSky is less than k for two configurations only, e.g.

NSCt maintenance time vs. memory consumption

We consider a stream with 12 dimensions and a delay θ = {0.1s, 1s}. We are interested in querying a window of size ω = {6h, 12h, 24h}. Hence, we evaluate the framework performance with respect to NSCt maintenance time and memory consumption with different values of k = {5mn, 10mn, 20mn}. Two observations can be made from Figures 1. On all cases, the memory used by NSCt decreases when selecting a bigger batch interval k. This behavior was expected by proposition 5.

2. The maintenance time ratio wrt k decreases. Let us take the hardest case depicted in This difference is due to a longer minimization process induced by a higher number of pairs when k is smaller.

Experiments with real data

In this section, we report on some experiments we conducted with real data describing tweets sent during a certain period. We obtained these data from an archive website.

The archive is a temporal sequence of Json files each of which contains a description of a set of tweets sent during one minute. We parsed these files and, in addition to its timestamp, we retrieved for each tweet 7 attributes: TweetId, UserId, #followers, #following, #tweets, #likes, #lists. The five last attributes are describing users who sent the tweet: (i) #followers: # of people following UserId, (ii) #following: # of people UserId is following, (iii) #tweets: # of tweets the user has issued, (vi) #likes: # of tweets the user has liked, and (v) #lists: # of twitter lists the user is subscribed to. For all attributes, higher values are preferred. The goal is to retrieve at each time interval the best tweet users wrt any subset of these last five dimensions.

In the following experiments, we consider the batch interval k = 1min, i.e. we process a batch of tweets every one minute, and windows of different sizes ω = {30min, 120min, 480min}, i.e, queries are evaluated over tweets tweeted in the last 30, 120, or 480 minutes.

Remark 7. Batches size vary between 2000 and 3000 tweets, i.e., the number of tweets in every processed file is not static. Hence, the number of tweets is less than 90k when ω = 30min, 360k when ω = 120min, and 1.5M when ω = 480min. Moreover, we observed that the tweets data are highly correlated, hence skylines are rather small.

Comparison to BSkyTree

Here we evaluate, as in Section 4.4.1, the compatibility of NSCt maintenance delay with streaming data. We compare NSCt to BSkyTree in term of query answering during the batch interval. To that purpose, we report the time to answer all possible skylines. In this case, d = 5 thus 31 queries. Figure 4.12 depicts the results. Globally NSCt is 10 times faster. Nevertheless, in the worst case, BSkyTree answers all possible queries in less than 1 second which is less than the batch interval k.

Comparison to DBSky

Regarding the materialization aspect, we compare the memory consumption and maintenance time of NSCt to that of DBSky, as we did in Section 4.4.3. Figure 4.13 depicts the results. Firstly, we see that NSCt outperforms DBSky in both maintenance time and memory consumption. However, we see that DBSky results are not impacted by the growing ω. This is highly due to the fact that data is correlated, hence skylines are small and have same sizes even with larger input data.

Concluding remarks

As the previous experiments have shown and turning back to our motivating example concerning tweets, one may observe that our framework is capable to monitor Top-K influential tweets even with a relatively high frequency (e.g., 50 tweets per second), a large sliding window (e.g., 24h) a reasonable update frequency (e.g., every 5 minutes) and a data dimensionality not too small.

Conclusion

We have proposed a framework for processing subspace skyline queries on streaming data with a validity time window. The proposed approach consists of an index structure whose maintenance is triggered at regular time intervals. Since the queries evaluation is performed using the indexed data, their semantic is relative to the last update not the instant where the query is submitted. This introduces a kind of approximation regarding the results which is in conformance with standard streaming data evaluation algorithms [START_REF] Golab | Data Stream Management[END_REF][START_REF] Golab | Issues in data stream management[END_REF]. The conducted experiments demonstrate the effectiveness of our solution in terms of both memory consumption and its ability to speed up the queries evaluation in such a way that it can be considered as a viable technique in a streaming context.

Chapter 5

Optimization of regret minimization queries with NSC

Introduction

In this chapter, we conduct an experimental study on the optimization of the evaluation of regret minimization queries (RMS) by considering skyline related candidate sets.

As presented in Chapter 1 Section 1.2, [START_REF] Nanongkai | Regret-Minimizing Representative Databases[END_REF] proposed regret minimization queries to overcome the limitation of skyline queries and Top-K queries. However, their computation is challenging. One way to speed up their computation is by providing small candidate sets as input rather than the whole dataset. The challenge when providing smaller candidate sets is to guarantee the same quality of the output (regret) as if RMS were computed on top of the entire input dataset. [START_REF] Nanongkai | Regret-Minimizing Representative Databases[END_REF] proved that the skyline constitutes a good candidate sets as the optimal solution of RMS is inevitably a subset of the skyline set. In this chapter, we investigate specifically the impact of providing the result of either Top-K frequent skyline (Top-KF) or Top-K priority skyline (Top-KP) queries as candidate sets for RMS algorithm sphere. Given D a set of attributes and T a dataset:

• Let t ∈ T , Frequency(t) = |{X ⊆ D s.t. t ∈ Sky(T, X)}|. Top-K frequent skyline is
then the K tuples with the highest frequency.

• Let t ∈ T , Priority(t) = min X⊆D|t∈Sky(X) (|X|). Top-K priority skyline is then the K tuples with the lowest priority.

We consider these queries because they are efficiently evaluated through NSC.

Algorithm 14 describes the procedure to compute Top-KF through NSC. We compute the subspaces where a tuple t is dominated by computing the cover of all pairs related to t (line 4-7). We then deduce the frequency of each tuple and put it in list Score (line 8).

We sort Score and select Top K tuples (line 9-11

Experiments

In this section, we perform experiments to evaluate the impact of different candidate sets on computing the RMS. We proceed in three steps:

1. We evaluate the speed up of RMS computation by considering the skyline set as a candidate set.

2. We investigate the speed up and output regret of RMS algorithm sphere by considering Top-K Frequent and Top-K priority sets as candidate sets.

3. Given an integer K, we evaluate the output regret of sets computed by (i) Top-K frequent, (ii) Top-K priority sets and (iii) sphere. Datasets We consider synthetic datasets generated through the framework in [START_REF] Börzsönyi | The Skyline Operator[END_REF]. The parameters considered for these experiments and their values are illustrated in Table 5.1.

Parameters

Bold values are default values.

Speed up with skyline set

Here, we evaluate the speed up of sphere by considering the skyline set as input, i.e.,

given a dataset T , we run sphere on top of the whole dataset T and the skyline of T .

Note that the output set and regret are the same whether we consider the skyline set or the whole dataset (Refer [START_REF] Nanongkai | Regret-Minimizing Representative Databases[END_REF]). Hence we do not report the output regret. Figures 5.1 and 5.2 depict the results. We can see that the skyline enables faster computation of the minimum regret set on all cases. However, its benefit decreases with growing dimensions. Note that the computation time of the skyline set through NSC in negligible. The reported time is mostly the execution time of sphere. The main cause of the increasing computation time is that the skyline size grows rapidly with growing dimensions. For example, in Figure 5.1 for a dataset with 1 million tuples and independent distribution (blue curve), the skyline set goes from 418 tuples with 4 dimensions to 237726 tuples with 12 dimensions. Hence the speed up of sphere goes from more than 10 3 times to only 5 times faster.

We conclude that considering the skyline set as candidate set has a limitation, even if its computation time is negligible because its size is not controllable. In the next section, we investigate the impact of skyline related ranking queries, i.e. Top-KF and Top-KP, on sphere. The main motivation behind using these queries is that they provide (i) a controllable size of the output and (ii) their computation is optimized by NSC. Regarding computation time, we do not observe an apparent improvement by providing candidate sets Top-1% frequent tuples and Top-1% priority tuples. Indeed, in these settings sphere computation time is improved because the candidate sets are smaller and have constant sizes (1000 tuples). However the computation time of Top-1%F and Top-1%P is higher than that of skyline. For example, in Figure 5.3 with anti-correlated data and 12 dimensions, RMS computation takes 7 seconds on top of the skyline while it takes 5.5 seconds on top of Top-1%F. Regarding the first case, sphere alone takes approximately 6.9 seconds because the skyline approaches 95% of the whole dataset.

While for the second case, sphere takes only few milliseconds. We note however that using these candidate sets is interesting for medium dimensionalities, i.e. d ∈ [START_REF] Chomicki | Skyline with Presorting: Theory and Optimizations[END_REF][START_REF] Lee | Toward efficient multidimensional subspace skyline computation[END_REF]. For smaller d, the skyline is small, hence is a good candidate set. For higher d, Top-KF and Top-KP computation is high even with NSC. Regarding the output regret ratio, we can see that regret ratios of all methods are close. We also observe in Figure 5.6 that for small r (under 60) when considering Top 1% frequent tuples as candidate sets, the regret ratio computed by sphere is better than that with skyline set. This is explained by the fact that sphere is a heuristic approach. Indeed, Top-1% frequent tuples discards some noisy points that are then not select by sphere.

Top-KF and Top-KP as alternatives to RMS algorithms

Above, we showed that Top-KF and Top-KP queries provide good candidate sets for sphere. In this section, we want to answer the question: Can Top-KF or Top-KP (without sphere) compute sets that achieve regret ratio close to that achieved by sphere?

Concretely, we evaluate the regret ratios of sets of size K computed with (i)sphere (ii)

Top-KF and (iii) Top-KP. For sphere we consider the skyline set as input. Figures 5.7

and 5.8 depict the results. Globally, we can see that sphere provides better regret ratio, which is expected as it is dedicated for RMS computation. However, Top-KF achieves a good regret ratio when dimensionality grows (Figure 5.7). Also, Top-KF achieves good regret ratio when K is small (Figure 5.8). We can explain this by the fact that tuple

Discussion

To summarize, we first have shown that sphere is improved by considering the skyline set as a candidate set, even with high dimensions as the skyline is computed through NSC. Second, we investigated Top-KF and Top-KP as candidate sets for sphere. Our experiments show that by selecting a small portion of the input data (1%) representing most frequent skyline points, not only the RMS computation is faster but its quality is sometimes better than that returned by the approximate algorithm sphere when it considers the whole skyline. From the experiments in Figures 5.7 and 5.8, we observe that the regret ratio computed by TopKF gets better with large dimensionalities d and small output size k. Of course, all these preliminary promising empirical results need to be confirmed theoretically. We are currently working on this aspect.

i.e., attribute's domain is a totally ordered set. However, it is usual that datasets have their attributes' domain partially and dynamically ordered. Skyline is harder to compute in that setting because (i) traditional algorithms are not suitable with such datasets and (ii) materializing techniques are costly due to the high number of possible queries. For example, NSC is unsuitable in this situation. Hence, in this part, we address the problem of answering skyline queries with datasets having partially and dynamically ordered attributes. We provide efficient algorithms and materialization techniques that speed up the computation.

Chapter 6

On-the-fly algorithms and materialization technique

Introduction

In the previous chapters, we considered data having only numerical attributes. However in many real world use cases, datasets have nominal attributes for which no order is specified. Users express their preferences on the nominal attribute's domain. In such cases, NSC structure is not suitable, as it is built given a specific order. In this chapter, we address the optimization of skyline queries answering in presence of dynamic and partial orders.

First, we present the context of this study. Consider Table 6.1 where information about movies proposed by a media-services provider is registered. Movies are described by their genre and critic scores. Metacritic and Rotten Tomatoes are online platforms specialized in rating movies. Audience represents the score given by subscribers. A movie is in the skyline of Table 6.1 iff there does not exists any other movie better or equal to it wrt all four attributes, and at least strictly better on one attribute. While comparing movies regarding their respective ratings is natural, considering their genre is not immediate.

In fact, the order relationship among the values of each attribute's domain is expressed by a set of orders (preference) R. Two aspects of R are relevant to skyline queries:

• R is either total or partial. R is total when every two values are ordered. Per contra, R is partial when there exists at least two values which are not comparable. To illustrate, consider Table 6.1. Metacritic, Tomatoes and Audience attributes have their respective domain in N. Since larger ratings are preferred, the preference on each of these three attributes is the relation > on N which is total. By contrast, for Genre attribute, its domain values have not to be totally ordered. E.g., one may

Preliminaries

In this section, we define the additional concepts we use throughout the chapter. Some concepts such as dominance and skyline query are redefined.

The context of the problem we study is as follows: we have a set of dimensions • transitivity:

(d i , d j) ∈ R and (d j , d k) ∈ R then (d i , d k) ∈ R.
• irreflexivity:

(d i , d j) ∈ R then (d j , d i) ∈ R
Observe that a preference over an attribute is nothing but a classical partial order relation defined on its domain.

Remark 8. Recall that D = A ∪ B. Every A i ∈ A is totally and statically ordered. For example, the preference over Tomatoes attribute in Table 6 Given a skyline query q, q.R denotes its related preference R.

B i)∀B i ∈ B R = {R 1 , . . . , R l } preference over B 1 , . . . , B l o
an order q a skyline query q.R preference of the query q Sky q.R (T, D) skyline set wrt q Q a workload Table 6.2: Notations Definition 16 (Skyline query). Given D, T , and a query q. The skyline set Sky q.R (T, D) = {t ∈ T | ∃t ∈ T s.t. t < D t} is the set of not dominated tuples. We denote also the skyline set by Sky q.R (T) or simply Sky q.R when T and/or D are clear from the context. Table 6.2 summarizes the additional notations used throughout the chapter.

In the next section we present the properties of skyline queries that we exploit to devise our solutions.

dySky algorithm

The objective of our work is to efficiently answer skyline queries q wrt user preference q.R over a dataset T . For the ease of the presentation, first, we consider datasets with only one dynamic dimension.

Our approach is based on the following property: given a query q and its related preference q.R. A tuple which does not belong to the skyline set wrt a preference composed of some order in q.R, does not belong to the skyline set wrt q.R. More precisely, Theorem 9. Given D = {A 1 , . . . , A s , B}, a dataset T , and a query q. Let t ∈ T , then t ∈ Sky q.R iff ∃o ∈ q.R s. In the first case t dominates t whatever the preference q.R hence t ∈ Sky {o} ∀o ∈ q.R. For the second case, t ∈ Sky {(t [B],t[B])} .

(ii) ∃o ∈ q.R s.t. t ∈ Sky {o} ⇒ t ∈ Sky q.R : t ∈ Sky {o} means there exists a tuple t such that t < D t. Whatever the remaining orders in q.R, t < D t.

The above theorem states that a tuple t does not belong to the skyline wrt to a given preference q.R if and only if t does not belong to the skyline wrt a singleton preference composed of some order in q.R.

We introduce here the notation of complementary skyline or shortly c-skyline. Given a query q, its c-skyline is NSky q.R , the set of dominated tuples wrt q.R.

To summarize, by computing those tuples not belonging to the skyline wrt every preference composed of some order in q.R, i.e., NSky {o} ∀o ∈ q.R, we deduce NSky q.R as stipulated in the following corollary.

Corollary 10. Given a query q.

NSky q.R = ∀o∈q.R

NSky {o}

Proof. From theorem 9. Let t ∈ T .

t ∈ NSky q.R ⇔ t ∈ NSky {o 1 } ∨ • • • ∨ t ∈ NSky {o n } s.t. o 1 , . . . , o n ∈ q.R then t ∈ ∀o∈q.R NSky {o}
Example 30. Consider the movie dataset in Table 6.1. Given a query q with q.R = {(c, s), (s, h), (c, r), (c, h)} then NSky

q.R = NSky {(c,s)} ∪ NSky {(s,h)} ∪ NSky {(c,r)} ∪ NSky {(c,h)} = {t 2 ,t 5 }.
The skyline is then T \ {t 2 ,t 5 } = {t 1 ,t 3 ,t 4 ,t 6 ,t 7 ,t 8 ,t 9 ,t 10 }.

Even though computing NSky q.R requires to compute as many queries as the number of orders in q.R, in the next section we show that these queries are actually easy to evaluate making the whole computation efficient.

Single dynamic dimension

In this section, we present an algorithm for computing Sky q.R . We consider a table T with D = {A 1 , . . . , A s , B} where B is the unique partially and dynamically ordered dimension.

Theorem 9 and its corollary 10 suggest an algorithm for evaluating queries Sky q.R on T : it evaluates sub-queries, i.e., the c-skyline by considering every o ∈ q.R. The union of the sub-queries results is NSky q.R and thus its complement to T is the response to Sky q.R .

The bottleneck of this direct implementation belongs to the multiple computations of NSky {o} . Before presenting our solution, let us first make the following observation: Let o be an order, and let t be a tuple whose value in the dynamic dimension B is not mentioned in the preference {o}. Let t ∈ T . Then

• t < D t ⇒ t[B] = t [B] • t < D t ⇒ t[B] = t [B]
Said differently, and from the domination relationship, these tuples whose B value does not belong to o can be comparable to only those tuples sharing the same value on B. For example, consider the query q related to a singleton preference q.R = {(horror,thriller)} stating that thrillers are preferred to romances but there is no preference among the remaining genres. The tuples whose genre does not belong to the above two are comparable to only those with the same genre. Hence, we can partition them and restrict the comparisons to the so obtained subsets. To continue the example, we get the partition {{t 1 ,t 8 } c , {t 2 ,t 9 } s , {t 5 } r , {t 6 ,t 10 } a }. The first part {t 1 ,t 8 } c corresponds to the tuples whose genre is c(omedy). To this partition we can add a special part containing the remaining tuples, i.e., {t 3 ,t 4 ,t 7 }. Now, each part can be processed independently to check whether a tuple is dominated or not. For example, comparing t 3 to t 5 is needless because they belong to different parts.

To summarize, computing the c-skyline wrt a singleton preference consists in partitioning the data into subsets of comparable tuples and identify those dominated within each subset. We formalize the above statement in Proposition 6, but first we define a dataset part.

.R = {(b i , b j)}. NSky {(b i ,b j)} (T) = NSky {(b i ,b j)} (Π [B|b i] (T) ∪ Π [B|b j] (T)) ∪ ∀b k ∈dom(B) NSky {(b i ,b j)} (Π [B|b k] (T)) where b k = b i , b j .
Example 31. Again, consider the movie dataset in Table 6.1. Let q be a skyline query s.t.

q.R = {(horror,thriller)} then

The extended preference

Observe in Algorithm 15 (lines 6-7) that for every order (b i , b j), we compute a non skyline set for every b k ∈ {b i , b j }. According to this observation, we modify our algorithm so that every b k not appearing in any order of a query is processed only once. We achieve this by extending the input preferences as follows:

Definition 18 (Extended Preference). Let R be a preference on dimension B. Let U(R)

denotes the values in dom(B) not mentioned in R. The extended preference R is R ∪ {(b i , b i)|∀b i ∈ U(R)}.
Intuitively, adding these "artificial" orders forces Algorithm 15 to compare the tuples sharing a same value not mentioned in a preference R. Therefore, the nested loop in Lines 6-7 can now be completely removed from that Algorithm since the outerloop (line 3) already handles those values b k , provided that as input we have an extended preference.

In the following, we consider that all preferences are extended.

Incrementally discarding dominated tuples

Observe that given two orders o 1 o 2 ,

NSky {o 1 } (T) ∪ NSky {o 2 } (T) = NSky {o 1 } (T \ NSky {o 2 } (T))
The tuples which do not belong to the skyline wrt order o 2 , i.e. NSky {o 2 } (T), should not be reconsidered for computing NSky {o 1 } .

We implement Algorithm 16 according to the above properties.

Algorithm 16: dySky_1d_optimized Input: a set of dimensions D = {A 1 , . . . , A s , B}, a dataset T , a query q Output: Sky

q.R 1 begin 2 T ← T 3 foreach (b i , b j) ∈ q.R in parallel do 4 P ← Π [B|b i] (T) ∪ Π [B|b j] (T) 5 T ← T \ NSky {(b i ,b j)} (P) 6 return T
The complexity of Algorithm 16 remains the same as that of Algorithm 15, however in practice, these modifications show enhancement in performance. Table 6.4: The preference q.R

A 1 A 2 A 3 B 1 B 2 t 1 1 0 1 b 11 b 21 t 2 0 0 1 b 11 b 22 t 3 1 1 1 b 11 b 21 t 4 1 2

Multiple dynamic dimensions

In this section, we present our approach for datasets with multiple partially and dynamically ordered dimensions, i.e. D = {A 1 , . . . , A s , B 1 , . . . , B l }. We recall that in this case, the preference R is composed of preferences over every dimension, i.e. R = {R 1 , . . . , R l }. Corollary 11 is a consequence of Theorem 9 when considering multiple partially ordered dimensions.

Corollary 11. Given D = {A 1 , . . . , A s , B 1 , . . . , B l }, a dataset T , and a query q such that q.R = {R 1 , . . . , R l }. Let t ∈ T , then t ∈ Sky q.R iff

∃(o 1 , . . . , o l) ∈ R 1 × • • • × R l s.t. t ∈ Sky {(o 1 ,...,o l)} .
As said in section 6.3.1, an algorithm which naively computes

Sky {(o 1 ,...,o l)} ∀(o 1 , . . . , o l) ∈ R 1 × • • • × R l
does not take advantage of skyline properties.

Firstly and for the ease of the presentation, we detail our approach in case of two partially ordered dimensions, then we generalize to the case of l partially ordered dimensions.

Consider the dataset and the preference R depicted respectively in Tables 6.3 and 6.4.

Note that smaller values are preferred.

Likewise the case of one partially ordered dimension, our approach consists in computing the sets of comparable tuples T wrt the preference q.R and then deduce the dominated tuples. To that purpose, we proceed as follows: (i) we compute the subsets of tuples and o 23 , i.e., the orders in the preference over dimension B 2 . We illustrate this process in Figure 6.2. Let T be the set of the so computed subsets. Then a tuple t belongs to the skyline wrt T iff it does not belong to any complementary skyline of T ∀T ∈ T. For Figure 6.2: Processing q example, in Figure 6.2, the c-skyline of the subset in the right most leaf is {t 3 ,t 4 }, hence, t 3 ,t 4 ∈ Sky q.R . One may verify that the union of the c-skylines is {t 3 ,t 4 ,t 5 } and therefore, Sky q.R = T \ {t 3 ,t 4 ,t 5 }.

We formalize and generalize the above explanation in the following result.

Proposition 7. Given D, T , and a query q such that q

.R = {R 1 , . . . , R l }. Let O = R 1 × • • • × R l . Then NSky q.R (T) = o∈O NSky {o} (l i=1 Π [B i |b e ∨b f s.t. b e ,b f ∈o i])
Intuitively, the above proposition simply states that by computing the dominated tuples in each obtained subset, we get the set of all dominated tuples. Hence, the skyline set.

Remark 12. One may notice that the obtained subsets do not form a partition. For example, the right most sub-tree in Figure 6.2, we have two sets containing t 1 , t 3 and t 4 . This means that these tuples are compared twice and each time, t 3 and t 4 are found dominated by t 1 . To avoid this redundant computation, it suffices to remove the dominated tuples from the underlying data as soon as possible. So, the right most subset will actually contains only t 1 .

Now we present how we translate Proposition 7 to a concrete algorithm.

Algorithm dySky_md

The algorithm takes as input T and a query q, and returns Sky q.R .

It is composed of a main routine and a recursive procedure called recursiveNSky. The variable NSky stores the complementary skyline throughout the process. It is initialized by an empty set. The variable i indicates the dimension the algorithm is currently processing. In the beginning, i is set to 1, hence the process starts with dimension B 1 .

The algorithm calls the procedure recursiveNSky with the arguments: (i) i, i.e. which

Optimization using materialization

As we have seen so far, the main idea of dySky algorithm is to take a query q and decompose it into a set of sub-queries q i . Each of them operates on a subset of T obtained by a sequence of filters. For example, let us consider again query q (see Table 6.4) from the previous section. In order to answer q, we compute 6 complementary skylines, i.e.). Consider the sub-query q 1 which computes the complementary skyline regarding this subset. Suppose now that the answer of q 1 is materialized. Then whenever q is issued, we get the answer of q 1 automatically. Likewise, the queries sharing the same sub-query q 1 are optimized thanks to this materialization. Obviously, by materializing all possible sub-queries, we optimize all possible queries. This solution is practical only for cases where the number of possible sub-queries is reasonable. When this number is too large, a pragmatic solution is to materialize a subset of these sub-queries. The choice of the best subset should be driven by a query workload. This is the problem we address in this section.

Firstly, we give some definitions needed for this section. Then we address the full materialization of the sub-queries, i.e. we consider that there is no limitation on memory space and we materialize all possible sub-queries. Later, we consider the case where memory space is restricted, and we address the partial materialization of the sub-queries,

i.e, we materialize a set of sub-queries under space constraint.

Materialization structure

Each sub-query q i is uniquely identified by a filtering sequence seq i . Before defining a sequence, we firstly define the set of orders wrt a dimension B i .

Definition 19. Given a partially ordered dimension B i . The sub-queries materialization structure is a set of pairs (seq i ,CS i) such that seq i is the filtering sequence related to a query q i and CS i is the complementary skyline wrt the filtered data.

Orders(B i) = {(b i j , b ik) ∈ dom(B i) × dom(B i)}
Definition 21 (seqStruct).

Given D = {A 1 , . . . , A s , B 1 , . . . , B l } and T . seqStruct = {(seq i ,CS i)|seq i ∈ Σ and CS i ⊆ T }.
Finally, given a query q, sequences(q) is the set of sequences related to q. Formally speaking, Definition 22 (Sequences related to a query). Given {B 1 , . . . , B l } and a query q such that q.R = {R 1 , . . . , R l }.

sequences(q) = {seq ∈ R 1 × • • • × R l } .
Example 33. Consider q.R depicted in

Full materialization

In a nutshell, the process to materialize all possible sub-queries is to iterate on all possible sequences seq i in Σ , to filter data wrt seq i and to compute the complementary skyline to be stored in seqStruct F. T , (iii) seq, and (iv) the set F (line 5). Inside recursiveSeq, T is filtered wrt B i and o

Sequence selection problem

As said previously, the obvious way to optimize a workload Q is to cache the results of the sub-queries related to Q. Storing all these results may require a storage space larger than the available one H. So, one needs to select a subset fitting H.

Remark 13. Given a seqStruct M, the required space to store M, noted res(M), is the total required space for storing complementary skylines related to sequences in M.

The sequence selection problem we address is,

Problem SS Given D, T , a
g i = Gain(p i , Q) = |{q ∈ Q|p i .seq ∈ sequences(q)}|
It is well known that 0-1 linear programs can be solved by dynamic programming techniques (e.g., see [START_REF] Greenberg | A dynamic programming solution to integer linear programs[END_REF]). Its precise complexity, regarding our setting, is O(|S| * H).

In the present setting, i.e., partial materialization, when a query is submitted, it is first decomposed into a set of sub-queries. Some of them can be already materialized, thus their result is already available. The others are evaluated from scratch. The Algorithm 20

dySkySeq_hybrid implements this procedure.

3. We show the ability of dySky to compete with the refinement strategy Ref proposed in [START_REF] Hsueh | Caching Support for Skyline Query Processing with Partially Ordered Domains[END_REF][START_REF] Hsueh | An Efficient Indexing Method for Skyline Computations with Partially Ordered Domains[END_REF]. We consider the case where a set of queries is cached, and we measure the answering time of another set of queries by both techniques. Refer to Section 6.5.3.

4. Finally, we evaluate other specific aspects of dySky in Section 6.5.4. Specifically, we assess the linear cost function of answering queries presented in Section 6.4.3.

We evaluate the impact of partial materialization of sub-queries on the query answering performance, and we evaluate the benefit of multithreading for dySky.

Hardware and software Experiments are conducted on a machine equipped with 96 cores cadenced with a frequency up to 3.40 Ghz. By default and when possible, computation is parallelized over 96 threads. This machine is also equipped with 1 TB RAM and running CentOS Linux. Regarding software, we use BSkyTree authors version.

All remaining techniques implementations are ours. The software is coded in c++ and the source code is available on GitHub2 .

Datasets We use both synthetic datasets, through the framework of [START_REF] Börzsönyi | The Skyline Operator[END_REF] with independent (INDE) and anti-correlated (ANTI) distribution, and real datasets commonly used in the skyline literature. The real datasets are initially composed of numerical attributes, thus we extend them with nominal attributes. The values of these attributes are randomly and uniformly generated.

For synthetic data, Table 6. . That's, the denser is G the more the values in dom(B i) are comparable. By default, we set ρ = 0.5.

Query answering time

Here we compare our solutions to its competitors in terms of query answering time. In each case, we execute a same workload of 50 queries and we report the average execution time of all solutions. Sometimes OST values are not reported either because its related structure saturated the available memory or its execution did not terminate in a reasonable time (> 24 hours).

Varying n, m, l and data distribution Figures 6.3, 6.4 and 6.5 depict the results with respectively 1, 2 and 3 dynamic dimensions. A first observation is that OST fails to build its structure in many configurations. When its structure can be built, the query answering time of OST is close to non materialization-based approaches CPS and dySky_md (see Figure 6.3). Regarding CPS, we observe that dySkySeq_qa and dySky_md perform better with (i) larger and/or (ii) anti-correlated datasets, i.e., the harder cases. For example, in Figures 6.3 varying both l and m. Globally, we can see that both dySkySeq_qa and dySky_md have better performances than CPS, however dySkySeq_qa scales less good than the two other solutions well wrt l. This trend suggests that materialization would be of no great added value with higher values of l, say l ≥ 6. Varying the preferences density ρ

We generate queries whose ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Figure 6.7 depicts the results with a dataset having the default parameters. We see in the results that for a low density, dySky outperforms CPS by nearly two orders of magnitude. The gap tends to become smaller as the density grows. Recall that the lower the density, the lower the number of orders, while for CPS, the lower the density, the higher the number of dimensions in the transformed Querying real data Figure 6.8 shows the obtained results. These confirm the previous findings, i.e., dySky with its two versions, clearly outperforms CPS.

Precomputation time and storage

In this section we compare the precomputation time and storage of both F and OST structure related respectively to dySkySeq_qa and OST algorithms. Regarding precomputation time, for F we measure the execution time of Algorithm 18 dySkySeq_build and for OST we measure the time of building the whole tree. W.r.t storage, we count the total number of tuples stored by each technique. Figure 6.9 depicts the obtained results with a dataset having one partially ordered dimension. We see that OST can not terminate when m > 10. When m = 10, the gap is large between OST and dySky wrt both time and storage. Results wrt datasets having more than one dynamic order are not reported as OST did not terminate for any configuration. This is due to the high size of the tree when both l and m grow as explained in Section 1.1.4.

Caching queries

In this experiment we show the ability of dySky to compete with the refinement strategy proposed in [START_REF] Hsueh | Caching Support for Skyline Query Processing with Partially Ordered Domains[END_REF][START_REF] Hsueh | An Efficient Indexing Method for Skyline Computations with Partially Ordered Domains[END_REF] to optimize the queries via caching. To this aim, we consider the following scenario: Firstly, a set of queries Q 1 is selected randomly and its result is cached. Recall that for a query q ∈ Q 1 dySky caches the results of sub-queries related to q while Ref caches the result of q. Then a second set Q 2 of queries is evaluated using the previously cached results. Regarding Ref, a query q ∈ Q can benefit from the cache iff there exists q in the cache which is a refinement of q while following dySky, q benefits from the cache if at least one of its sub-queries is cached. We conducted experiments by varying the size of Q 1 . We set n = 100K, m = 10 and l = 2, and a set Q 2 of 50 queries. This is explained by the fact that the maximum number of distinct sub-queries (m 2l = 10 4) can be reached with few queries. Figure 6.10 suggests that with |Q 1 | = 100, the number of distinct sub-queries becomes close to 10 4 , i.e., all queries in Q 2 are completely optimized.

However, for Ref technique, even with a workload of 1000 queries, a refinement is hardly found for queries in Q 2 .

Evaluating other aspects of dySky

In this section, we evaluate specific aspects of dySky.

Query answering cost estimation

In section 6.4.3, we have set the cost of answering a query q to be the number of sequences related to q. In this experiment, we want to confirm this supposition. To that purpose, we evaluate a set of queries each having a different number of sequences. For this experiment, we consider a dataset with n = 100K, l = 2 and m = 10. We generate 6 queries having respectively 60, 120, 240, 480, 960 and 1920 related sequences. The blue curve in Figure 6.11 depicts the obtained results, and the red curve is used to show the linear trend. We can see that the curves overlap, hence, the cost of answering a query q is clearly linear wrt its number of sequences sequences(q).

Query answering time with partial materialization of the sub-queries

We consider the following scenario: we want to optimize the answering of a workload Q.

Let P be the seqStruct containing only sequences involved in Q and let M be the size of P. Obviously, if we store P, queries in Q are completely evaluated through materialized sub-queries. Now we consider the cases where the available memory size is equal to fractions of M, i.e. M 2 , M 4 , M 8 and M 16 . In this experiment, we evaluate the query answering time of queries in Q by considering sets M ⊆ P output of Problem SS presented in Section

Conclusion

In this chapter, we presented dySky, an approach for optimizing skyline queries over data with both totally and statically ordered dimensions, and partially and dynamically ordered dimensions. Given a query q and its related preference on the attributes domain q.R, dySky decomposes q into sub-queries q i , each of which operates on a small part of the dataset. In a further step for optimization, we proposed the sub-queries results as a building block for materialization. In this context, we addressed both full and partial materialization driven by a workload. The empirical experimental results we provide, show the superiority of dySky against its competitors. As future work, we plan to investigate the incremental maintenance of the materialized sub-queries with data updates.

Conclusion and perspectives

In this dissertation, we studied the time and memory optimization of skyline queries evaluation. We specifically considered the cases where the underlying data has dynamic properties. In a first part, we addressed the incremental maintenance of the structure NSC in presence of both dynamic data and streaming data. In a second part, we addressed the optimization of skyline queries in presence of data with dynamic orders.

In Chapter 3, we addressed the incremental maintenance of NSC in presence of dynamic data, i.e., tuples are inserted/deleted at any time. We presented the challenges of updating NSC wrt both insertions and deletions on the efficiency of structure. Regarding insertions, we showed that NSC's state changes only if inserted tuples belong to the topmost. We moreover presented an incremental compression technique based on pairs inclusion. We empirically evaluated this technique and showed it provides an interesting memory/time ratio compared to approximate compression technique. Also, we showed that the maintenance time of NSC upon insertions is proportional to the number of inserted tuples, and is ,in the worst case, better than the rebuild from scratch. Regarding deletions, we showed as well that NSC's state changes only if deleted tuples belong to the topmost. We presented the challenge of identifying the pairs computed wrt the deleted tuples and we proposed to augment the pairs with counters representing the number of tuples associated to a pair. We showed empirically that on one hand this additional information does not increase dramatically the memory usage, and on the other hand, it allows a fast maintenance procedure. Indeed, we showed that in practice very few tuples involve a large maintenance of the structure when they get deleted.

In Chapter 4, we addressed the incremental maintenance of NSC in presence of streaming data. We considered answering skyline queries over a window of size ω. To deal with that setting, we proposed a framework composed of (i) a data buffer, (ii) a main dataset, and (iii) NSCt, a variant of NSC to handle timestamped data. We proposed and explained techniques for both managing new insertions and updates. We evaluated empirically our proposals against a baseline skyline algorithm and a materialization based technique. First, we showed that our proposal outperforms the baseline skyline algorithm in terms of number of processed queries during a batch interval. Second, we exhibited the light memory consumption and fast maintenance process compared to the materialization based technique. Finally, we proved experimentally that our proposal answers continuously and efficiently the Top-K frequent skyline which is the motivation of this work.

In Chapter 5, we investigated the optimization of regret minimization queries through NSC. These queries have been proposed to overcome the limitation of skyline queries and Top-K queries. We experimentally studied the time performance of regret minimization queries algorithms when computed on top of small candidate sets rather than the whole dataset. We showed that Top-K frequent skyline results, computed through NSC, represents a good candidate set for regret minimization queries.

In Chapter 6, we addressed the optimization of skyline queries over data with partially and dynamically ordered attributes. We proposed an approach which (i) decomposes the issued query into sub-queries, (ii) processes each sub-query independently, and (iii) integrates the results. First we considered answering queries on the fly and highlighted the interesting theoretical properties of our approach. Then, we considered the materialization of sub-queries in order to optimize further issued queries. We first described the materialization structure of the sub-queries, and the approach of answering queries through the materialized sub-queries. Then, we introduced the problem of selecting a subset of sub-queries to materialize given (i) a workload and (ii) under space constraint.

We proved the hardness of that problem and proposed an efficient algorithm based on Knapsack dynamic programming algorithm. We evaluated empirically our proposal wrt several aspects. We showed its high performance wrt query answering time compared to its direct competitors. Moreover, we exhibited the improvement provided by both sub-queries materialization and multiprocessing.

The problematics addressed in this dissertation along with our proposals provide some orientations for future work.

Integrating NSC to a DBMS In Chapter 3, we addressed the problem of incrementally maintaining the indexing structure NSC upon updates. We provided techniques and procedures that makes NSC incrementally maintainable upon updates. Hence, NSC becomes an interesting and reliable tool for database management systems. As a future step, we could study NSC's integration to e.g. PostgreSQL.

MSSD in a distributed environment In Chapter 4, we proposed MSSD, a system for handling streaming data and managing NSCt a variant of NSC. We studied MSSD theoretically and proposed algorithms for (i) handling arriving data, (ii) updating the structure NSCt and (iii) answering issued queries. Nowadays, there exists frameworks for efficiently handling streams and distributed computation upon a cluster of machines such as Spark [START_REF] Zaharia | Spark: Cluster Computing with Working Sets[END_REF]. This framework requires programs to follow the MapReduce programming model [START_REF] Dean | MapReduce: Simplified Data Processing on Large Clusters[END_REF]. Hence, we aim to redesign MSSD in MapReduce model.

Theoretical guarantees on the regret of Top-K frequent skyline queries In Chapter 5, we investigated the relationship between regret minimization queries and multidimensional skylines. Our performed experiments provided interesting insights on this relationship. We have shown that Top-K frequent skyline query computes sets with regret close to that computed by a dedicated regret minimization algorithm. Moreover, Top-K frequent skyline computation is optimized by NSC. As future work, we want to push further the experimentation and find theoretical guarantees on regret of sets computed with Top-K frequent skyline queries.

Query preference decomposition into clusters of orders In Chapter 6, we addressed the optimization of skyline queries over data with partially and dynamically ordered attributes. We proposed a solution that decomposes the input query q into a set of sub-queries. Each sub-query considers a singleton preference composed of some order (v i , v j) in the query preference q.R. A sub-query computes a set of dominated tuples wrt the singleton preference (v i , v j). The final result of q is then those tuples not belonging to any sub-query result. To speed up the computation and as sub-queries are independent, we process them in parallel. Still, this approach is disadvantaged in presence of dense preferences. The higher the number of orders in a query preference, the higher the number of sub-queries to compute. This involves as well redundant computation as two tuples may be compared in several sub-queries. One way to avoid this counter-performance is by decomposing the query preference q.R to clusters of orders rather than single orders and to map each cluster to a sub-query. This decomposition is a priory not an easy task.

For example, we might decompose the preference wrt the number of available processors.

Or, we might decompose the preference such that redundant computation is minimized.

Hence, the efficient clustering of orders remains an open question.

Computing negative results of a query In this thesis, our approaches for optimizing skyline queries were based on the idea that computing tuples not belonging to the skyline then infer those belonging to the skyline is better than computing the tuples belonging to the skyline directly. For the problematics we addressed in this dissertation, we have proven the efficiency of such approach. We believe this technique would be extended to more general queries than skyline and sharing with it the same principle. More precisely, those queries that can be expressed by the formula {t ∈ T | ∃t ∈ T , E(t,t)} where T and T are either relations or relational queries, and E is some binary relation. One may even think about other settings like for example graph data sets or ontologies. Note that skyline is an instance of such queries: T and T are the same relation, and E is the dominance relationship.

Figure 1 :

 1 Figure 1: Frontière de Pareto

7 1. 1 7 1. 1 . 1 8 1. 1 . 2

 71711812 Skyline queries . Algorithms . Materialization and dealing with updates 1.1.3 Subspace skyline answering and the SkyCube structure 1.1.4 Skyline wrt partial and dynamic orders 1.1.5 Reducing the query output size

4. 11

 11 NSCt with ANTI data . 4.12 NSCt vs. BSkyTree with real data . 4.13 NSCt vs. DBSky with real data . 5.1 Speedup of sphere with skyline set as candidate set by varying dimensionality d . 5.2 Speedup of sphere with skyline set as candidate set by varying the output size r . 5.3 Computation time of sphere with candidate sets (i) skyline (ii) Top-K frequent and (iii) Top-K priority by varying d 5.4 Computation time of sphere with candidate sets (i) skyline (ii) Top-K frequent and (iii) Top-K priority by varying r 5.5 Regret of sphere by candidate sets (i) skyline (ii) Top-KF (iii) Top-KP by varying d . 5.6 Regret of sphere by candidate sets (i) skyline (ii) Top-KF (iii) Top-KP by varying r . 5.7 Regret of (i) sphere (ii) Top-KF (iii) Top-KP by varying d 5.8 Regret of (i) sphere (ii) Top-KF (iii) Top-KP by varying k 6.1 DAG representation of R . 6.2 Processing q . 6.3 Query answering with l = 1 . 6.4 Query answering time with l = 2 . 6.5 Query answering time with l = 3 . 6.6 Query answering time with 10M tuples 6.7 Query answering time by varying the preference's density ρ 6.8 Query answering time with real data . 6.9 Precomputation with one dynamic dimension 6.10 dySky_hybrid vs. Ref. 6.11 Query answering cost . 6.12 Query answering with restricted memory 6.13 Parallel throughput .List of Tables1 Flights connecting Paris to Singapore on March 5 th 2 Subspace skylines . 3 Flights connecting Paris to Singapore on March 5 th with airline company name . 1.1 Hotels . 1.2 Skyline hotels . 1.3 Top-K hotels . 2.1 Dataset T . 2.2 Notations . 2.3 NSC of T . 2.4 List of pairs synthesizing dominance subspaces sets 2.5 NSC index . 3.1 Solutions scores . 3.2 Notations . 3.3 Updating pairs of the tuples of T . 3.4 List of pairs synthesizing dominance subspaces sets 3.5 Pairs with counters . 3.6 Real datasets . 4.1 Notations .4.2 Pairs of t 5 . 4.3 Dataset T at timestamp 6 . 4.4 Dataset T at timestamp 7 .4.5 Pairs of t 6 and t 7 .

4

 4

Figure 1 .

 1 1 illustrates the above explained property. Here, smaller values are better values. Points crossed by red line are optimums and hence belong to the Pareto frontier. E.g., observe the points A and B. B is better than A on f 1 , and A is better than B on f 2 . Both are optimums because no other point is better than them on both f 1 and f 2 .

Figure 1 . 1 :

 11 Figure 1.1: Pareto frontier

Figure 1 . 3 :

 13 Figure 1.3: Exclusive dominance region of b

Figure 1 .

 1 Figure 1.3 shows the exclusive dominance region of the tuple b. EDR(b) is the rectangle in gray. Observe that for a and f , despite being dominated by b, are not in EDR(b) because they are dominated by respectively h, and g and c. However the idea was not developed nor implemented in that paper. A naive algorithm for computing EDR runs in time O(s d), where s is the size of the current skyline and d the number of dimensions.

Definition 7 .

 7 Topmost Skyline: Sky(T, D) the skyline w.r.t. all the dimensions.

Algorithm 2 :Theorem 1 .

 21 evaluateSkyline Input: NSC structure, subspace Z Output: Sky(Z) Let t ∈ T . Let • P T (t) = {compare(t,t)|t ∈ T }, and

Example 9 .

 9 Let p 1 = A|BC , p 2 = C|A and p 3 = BC| / 0 be the pairs associated to t. From these pairs we derive cover(p 1 , p 2 , p 3) = {A, AB, ABC, AC, BC, B,C}. Observe that by considering just p 1 and p 3 , the same subspaces are covered. Indeed, cover(p 1) = {A, AB, ABC, AC} and cover(p 3) = {B,C, BC}. Hence, p 2 can be removed from Pairs(t) without losing any information.

5 return

 5 NSC_indexone unit at each While iteration, hence the while loop is executed at most |P| times, and each iteration executes a for loop with a decreasing size of P. Therefore, the global time complexity is O(|P| 2).

Property 2 .

 2 Let P g = CompressByGreedy(P) and P i = CompressByInclusion(P) for some set of pairs P. Then |P g | ≤ |P i |.

Proposition 3 .

 3 Let P be a set of pairs s.t ∀ X|Y ∈ P, Y = / 0. Let P = CompressByInclusion(P). Then, for every Q, Q ≡ P ⇒ |Q| ≥ |P |.

Algorithm 8 :

 8 batchInsertSetOfTuples Input: T , topmost(T), NSC(T), ∆ + Output: NSC(T ∪ ∆ +), topmost(T ∪ ∆ +) 1 NewTopmost ← Sky(∆ + ∪ topmost(T)), D) 2 forall t ∈ T do 3 for t + ∈ (∆ + ∩ NewTopmost)do 4 Pairs(t) ← Pairs(t) ∪ compare(t,t +) 5 Compress(Pairs(t) 6 forall t + ∈ ∆ + do 7 for t ∈ NewTopmost do 8 Pairs(t +)) ← Pairs(t +) ∪ compare(t + ,t)

9

 9

Lemma 4 .

 4 if t -∈ topmost(T), then ∀t ∈ T, Pairs(t, T) ≡ Pairs(t, T \ {t -})

4 p 7 else 8 p.counter ← 1 9

 4781 ← compare(t,t) 5 if p ∈ Pairs(t, T) then 6 p.counter ← p.counter + 1 Pairs(t, T) ← Pairs(t, T) ∪ {p} 10 Compress(Pairs(t)) 11 return NSC(T)

 Physically, each storage unit used by CSC or the skycube corresponds to a subspace which can be encoded by a Boolean vector of size d. A pair of subspaces, as used by NSC can be encoded by a 2d vector. Regarding HashCube, a tuple Id can be encoded by a log(n) bit vector. The values of n used in our experiments are sufficiently large to make log(n) ≥ d. Hence, by counting the number of bit vectors used by HashCube, the comparison to NSC or CSC is fair. It is worth to notice that because QSkyCube cannot terminate its execution in some situations, e.g., d = 16, n = 10 5 and anticorrelated data, we obtained the size of the skycube by just evaluating all skyline queries and summing their respective sizes.

Figures 3 . 20 Fig. 3 . 2 .Figure 3 . 1 :Figure 3 . 2 :Figure 3 . 3 :

 32032313233 Figures 3.1, 3.2, 3.3 and 3.4 show the results we obtain with respectively independent, correlated, anticorrelated and real datasets.

Figure 3 . 4 .

 34 Figure 3.4. These data sets exhibit different configurations wrt n and d as well as the size of their respective topmost skylines. In terms of build time, we observe that in general, NSC is the fastest. It is worthwhile to notice that only NSC is able to process INSEE data set. The other algorithms were stopped either due to memory saturation (CSC and QSkyCube) or excessive time (after 24 hours for HashCube).

Figure 3 . 4 :

 34 Figure 3.4: Build time and memory consumption with real data

Figures 3 . 5 , 3 . 6 12 Figure 3 . 5 : 12 Figure 3 . 6 : 12 Figure 3 . 7 :Figure 3 . 8 :

 353612351236123738 Figures 3.5, 3.6 and 3.7 depict the results we obtained with independent, correlated and anticorrelated data. Globally, with respect to d, NSC and HashCube have the same performance and outperform CSC and BSkyTree by more than two orders of magnitude. However HashCube scales remarkably better with increasing n. Its query answering time is almost constant. This shows that the number of distinct words used by HashCube remain almost constant when d is fixed.Interestingly, when d and n are relatively small, BSkyTree, i.e., no materialization, seems to be the best solution. Indeed, with anticorrelated data and d = 4 or even d = 8, answering a single skyline query takes less than half a second when n = 10 5 .

Figure 3 .

 3 Figure 3.9 depicts the values taken by the formula

|∆ + | = 10 3 Figure 3 . 9 :

 339 Figure 3.9: Memory growth ratio: varying d and |∆ + |

Figure 3 . 10 :

 310 Figure 3.10: Speedup evolution ratio varying d and |∆ + |

Figures 3 .

 3 Figures 3.11 and 3.12 plot the results of inserting ∆ + of sizes (10,30,50,70,90,110), with respectively varying d and n.

Figure 3 . 11 :

 311 Figure 3.11: Small ∆ + insertion by varying d (n = 10 5)

Figure 3 . 12 :

 312 Figure 3.12: Small ∆ + insertion by varying n (d = 14)

Figure 3 .

 3 13 shows the results for an independent data set with n = 10 6 and d ∈ {8, 12, 16, 20}. Observe that the execution time of the batch method seems to be linear w.r.t. the size of ∆ + . Its speed up w.r.t. the rebuild procedure is correlated with the inserted tuples ratio independently of the dimensionality even if we observe a slight gain when d increases. More precisely, when |∆ + | = 10 3 = 0.1% × |T | the speed up Time(Rebuild)/Time(Batch) 1000 when d = 16 and it falls to about 10 when |∆ + | = 10 5 = 10% × |T |. So even with large insertions, our solution is still competitive compared to the rebuild method.

20 Figure 3 . 13 :

 20313 Figure 3.13: Inserting large ∆ + by varying d (n = 10 6)

Figure 3 . 14 :

 314 Figure 3.14: Evaluating impact with n = 10 5 and d = 16

Figure 3 . 16 :Figure 3 . 17 :

 316317 Figure 3.15: Deletion time of topmost tuples

20 Figure 3 . 18 :

 20318 Figure 3.18: Deleting large ∆ -by varying d (n = 10 6)

Figure 3 . 19 :

 319 Figure 3.19: Inserting and deleting 5% of real data

t 2 .

 2 By convention, the current timestamp, denoted ts c corresponds to the timestamp of the most recent tuple in the data repository. That is, ts c = argmax t∈S T S(t).

 [a, b] be a time interval and S be a data repository. Let S[a, b] = {t ∈ S|T S(t) ∈ [a, b]}. Then, the subspace skyline of S wrt X over [a, b], denoted Sky [a,b] (X, S), is the set {t ∈ S[a, b]| t ∈ S[a, b] s.t t ≺ X t}.

Example 20 .

 20 Let θ = 1, the window size ω = 6 • θ and a batch interval k = 2 • θ . If the current time t c is 6 then seven tuples t 0 , r 1 , . . . , r 6 are supposed to have arrived so far. Accordingly, at this timestamp, T is composed of 3 transactions {r 0 , r 1 }, {r 2 , r 3 } and {r 4 , r 5 }, and t 6 is just buffered into B. Table4.3 represents the current status of T . It shows the projection of the tuples on the dimensions A, B and C and their arrival time, which corresponds to the timestamp where the framework received the tuple. At the current timestamp, we consider that the pairs of {r 0 , . . . , r 5 } have already been computed.

Example 22 .

 22 Let P = { A|BC , B|C , AB|C }, P covers the subspaces {ABC, AB, AC, BC, A, B}. Then both P 1 = { A|BC , B|C } and P 2 = { AB|C } are equivalent to P. Now, given a sequence of buckets Pairs(t) = [Buck 1 , .

Definition 12 .Problem 1 *

 121 Let D = {D 1 , . . . , D d }. Let t be a tuple and Pairs(t) = [Buck 1 , . . . , Buck m] be its sequence of buckets. Then T(Pairs(t)) is the following set of subspaces {T (p)|∀Buck i , ∀p ∈ Buck i }. The domain of T is a sequence of set of pairs and Im(T) = {T (X|Y , i)|i ∈ N, X ⊆ D,Y ⊆ D and X ∩Y = / 0}. In the following we formalize the problem P1 * Let Pairs(t) = [Buck 1 , . . . , Buck m]. Find S * ⊆ T(Pairs(t)) such that S * covers the same set as T(Pairs(t)) and S * is of minimum size.

P1. 2 I ← / 0 3 for i ∈ [1 , m] do 4 for p ∈ Buck i do 5 I 6 S ← MSC(I) 7 Pairs(t) ← / 0 8 for s ∈ S do 9 10 return

 23145678910 It first transforms the instance of P1 to an instance of P1 * by computing the union of a pairs sequence (Lines 3 to 5), then according to Theorem 2 it solves P1 * by using a greedy algorithm solving MSC[START_REF] Meng | A Greedy Heuristic for the Set-Covering Problem[END_REF] (Line 6). Finally, for every element in the solution of the second problem S, we keep the corresponding pair in Pairs(t) (lines 7-10).Algorithm 13: minimizingNSCtInput:Pairs(t) = [Buck 1 , . . . , Buck m] Output: Pairs(t) 1 begin ← I ∪ T (p, i) Pairs(t) ← Pairs(t) ∪ T -1 (s) Pairs(t)Time complexity and size guarantee Given ω, k, θ and d. Let r be a tuple, Pairs(t) = {Buck 1 , . . . , Buck ω k } be its set of buckets. Each bucket contains at most k θ pairs (duplicate pairs are stored once). To simplify, let m = ω k , n = |R| = ω θ and l = |δ + | = k θ . Regarding the time complexity, computing the set I takes O(m • l) = O(n) time. I contains n sets at most, hence computing a solution by MSC greedy algorithm presented in [78] takes O(n 2) time. The final step (line 8-9) is linear in the size of the solution S. This size is guaranteed by [78] to be |S| ≤ |S opt | • log(e) such that e is the size of the largest element in I and which is bounded by 2 d • m. Hence |S| ≤ |S opt | • (d + log(m))

Figure 4 . 2 : 1 queries

 421 Figure 4.2: Execution time to answer 2 12 -1 queries with independent data

Figure 4 . 3 :

 43 Figure 4.3: Execution time to answer 2 12 -1 queries with anticorrelated data

Figures 4 .Figure 4 . 5 :

 445 Figures 4.2and 4.3 depict the results with respectively independent and anticorrelated data. For both data types, we vary θ in {0.1s, 1s} and ω in {12h, 24h}. Red dashed lines represent the value of k. When it is exceeded, it means that the approach cannot answer all issued queries during the batch interval. Recall that BSkyTree does not require any

in figure 4 . 8 ,

 48 when d = 8, θ = 1sec and ω = 12h. It even attains unreasonable execution time, e.g. in figure 4.8, when d = 12, θ = 0.1sec and ω = 12h, the execution time is more than 2.10 5 seconds (55 hours). This make DBSky a non viable solution to deal with multidimensional skylines over streaming data.

Figure 4 . 6 :Figure 4 . 7 :Figure 4 . 9 :

 464749 Figure 4.6: Memory usage with INDE data

Fig 4 .

 4 Fig 4.11(b) and consider the result wrt ω = 24h. For k=5 min, the maintenance lasts 210 seconds which represents two third of the batch interval while for k=20 min, the maintenance lasts 330 seconds, which represents a quarter of the batch interval.

Figure 4 . 10 :

 410 Figure 4.10: NSCt with INDE data

Figure 4 . 11 :

 411 Figure 4.11: NSCt with ANTI data

Figure 4 . 12 :Figure 4 . 13 :

 412413 Figure 4.12: NSCt vs. BSkyTree with real data

Figure 5 . 1 :Figure 5 . 2 :

 5152 Figure 5.1: Speedup of sphere with skyline set as candidate set by varying dimensionality d

Figure 5 . 3 :Figure 5 . 4 :

 5354 Figure 5.3: Computation time of sphere with candidate sets (i) skyline (ii) Top-K frequent and (iii) Top-K priority by varying d

Figure 5 . 5 :Figure 5 . 6 :

 5556 Figure 5.5: Regret of sphere by candidate sets (i) skyline (ii) Top-KF (iii) Top-KP by varying d

Figure 5 . 7 :Figure 5 . 8 :

 5758 Figure 5.7: Regret of (i) sphere (ii) Top-KF (iii) Top-KP by varying d

(1 .

 1 attributes) D composed of both totally and statically ordered dimensions A = {A 1 , . . . , A s } , and partially and dynamically ordered dimensions B = {B 1 , . . . , B l }. A dataset T over the set of dimensions D. Users are interested in the skyline set of T by considering their preferences over {A 1 , . . . , A s , B 1 , . . . , B l } domains. We first define the order relation which expresses the user preference between two values. Definition 13. (Order) Let D ∈ D, dom(D) denotes its domain, and d i , d j ∈ dom(D). o = (d i , d j) is an order which expresses that d i is preferred over d j . We use as well the notation d i ≺ D d j Definition 14. (Preference) Let D ∈ D. A preference R over D is a set of orders over dom(D). R respects the following properties:

Figure 6 . 1 :

 61 Figure 6.1: DAG representation of R

Definition 17 (Proposition 6 .

 176 Part). Given D and T . Let D ∈ D. A part of T wrt a value d of D, denoted Π [D|d] (T), is the set {t ∈ T |t[D] = d}. Given D = {A 1 , . . . , A s , B} and T . Let b i , b j ∈ dom(B) and q such that q

1 b 13 b 21 t 5 1 0 2 b 12 b 23

 23

R 1 R 2 o

 2 11 = (b 11 , b 12) o 21 = (b 21 , b 22) o 12 = (b 11 , b 13) o 22 = (b 22 , b 23) o 23 = (b 21 , b 23)

6

 sub-queries, as illustrated in Figure 6.2. Consider the left most subset in that Figure which is obtained by the filter sequence ((b 11 , b 12), (b 21 , b 22)

Example 32 .

 32 is the set of all possible orders wrt B i .It is easy to see that |Orders(Bi)| = |dom(B i)| 2 .Given a set of partially ordered dimensions B = {B 1 , . . . , B l }, a sequence is an l-tuple which belongs to the Cartesian product Orders(B 1) × • • • × Orders(B l). Formally speaking, Definition 20 (Sequence). Given B = {B 1 , . . . , B l }. A sequence is an element of Orders(B 1) × • • • × Orders(B l). Consequently, the set of all possible sequences is Σ (B) = {seq|seq ∈ Orders(B 1) × • • • × Orders(B l)}. Clearly, |Σ (B)| = Π l i=1 |Orders(B i)|. Hereafter, we note just Σ when B is understood. Consider again Table 6.3. We have dom(B 1) = {b 11 , b 12 , b 13 } and dom(B 2) = {b 21 , b 22 , b 23 }. One possible sequence is ((b 13 , b 11), (b 22 , b 22)). Σ contains in total 81 sequences.

ρ

 ∈ [0, 1]. Let's recall its definition. Let G = (V, E) be a DAG, then the density of G is ρ(G) = 2|E| |V | * (|V | -1)

, 6.4 and 6 . 5 ,

 65 for n = 1M, dySky_md and dySkySeq_qa are respectively about one and three orders of magnitude faster than CPS.

Figure 6 .

 6 Figure 6.6 depicts the query answering times for a dataset of 10M tuples and by

Figure 6 . 3 :Figure 6 . 4 :Figure 6 . 5 :

 636465 Figure 6.3: Query answering with l = 1

20 Figure 6 . 6 :Figure 6 . 7 :

 206667 Figure 6.6: Query answering time with 10M tuples

Figure 6 . 8 :Figure 6 . 9 :

 6869 Figure 6.8: Query answering time with real data

Figure 6 .Figure 6 . 10 :

 6610 Figure 6.10 reports the average execution time of queries in Q 2 . As it may be observed, in all cases dySky provides better execution times than Ref making it a serious candidate to be used in a caching context. More precisely, Figure 6.10 shows that query answering time of Ref does not improve considerably when caching more queries. While dySky_hybrid performance improves until |Q 1 | = 100 then it remains almost constant with larger |Q 1 |.

Figure 6 . 11 :

 611 Figure 6.11: Query answering cost

 Global notations and definitions . 2.2 The Negative SkyCube . 2.2.1 NSC construction . Memory usage with ANTI data . 4.8 Maintenance time with INDE data . 4.9 Maintenance time with ANTI data . 4.10 NSCt with INDE data .

	xvi
	4.7
	2 Preliminaries
	2.1 xi

1.1.6 Variants of skyline queries . 1.2 Regret minimization queries . 1.2.1 Variants of regret minimization queries 1.2.2 Candidate sets for RMS . 2.2.2 Time and memory optimization for NSC 2.2.3 NSC index and query answering

 .6 Pairs of t 6 and t 7 minimized by equivalence4.7 Pairs of t 6 and t 7 minimized . Pairs of t 6 and t 7 at timestamp 9 after minimization 4.11 Indexation of pairs of t 6 at timestamp 9 4.12 Parameters values . 5.1 Datasets parameters . 6.1 Movie rating . 6.2 Notations . 6.3 Dataset with two dynamic dimensions 6.4 The preference q.R . 6.5 Synthetic datasets . 6.6 Real datasets . of Algorithms 1 buildNSC . 2 evaluateSkyline . 3 compressByGreedy . 4 buildNSC_index . 5 evaluateSkyline_Index .

	xviii
	4.10 List
	xvii

4.8 Dataset T at timestamp 9 . 4.9 Pairs of t 6 and t 7 at timestamp 9 before minimization . 6 insertTuple . 7 compressByInclusion . 8 batchInsertSetOfTuples . 9 buildNSC_with_counters .

Table 1 :

 1 Flights connecting Paris to Singapore on March 5

	Tuple Price Duration (in hours) # of Stops
	t 1	321	15.25	1
	t 2	393	14.10	1
	t 3	461	12.50	0
	t 4	392	14.90	1
	t 5	378	15.75	1
	t 6	297	20.90	2
	t 7	327	19.10	1
	t 8	400	16	1
	t 9	367	17.80	1
	t 10	255	23.50	2

Top-K queries are combined with utility (scoring) functions that rank tuples, and return bounded results, i.e. a set of K tuples. While skyline queries depend on order relationship and dominance without relying on any utility function. Skyline query result contains only those tuples that are not worse than any other. Concretely, given a set of attributes D, and two tuples t and t sharing these attributes. We say that t dominates t if and only if t is better or equal than t on all attributes in D and strictly better on at least one attribute. The skyline set is then the set of non dominated tuples. By contrast to Top-K queries, the result is not bounded. Example 1. Consider the dataset depicted in Table 1. It represents a set of flights connecting Paris to Singapore on March 5 th . Flights are described by their price, duration and number of stops. Top-K queries rely on a utility function. Let us consider the monotonic utility function f (t) = t[Price] * 10 +t[Duration] * 5 +t[#Stops] * 100 such that t is a tuple representing a flight. Then, the utility of flight t 1 is f (t 1) = 321 * 10 + 15.25 * 5 + 1 * 100 = 3386.25 and that of flight t 2 is f (t 2) = 393 * 10 + 14.10 * 5 + 1 * 100 = 4100.5. Considering this utility function f , Top-3 flights is composed of flights t 1 , t 2 and t 3 .

Skyline queries rely on order relationship. The order on numerical attributes is the natural order over R, i.e. < or >. th Note that a skyline query is computed with respect the set of attributes the user is interested into. For example, a user flying on budget, is interested into the skyline set with respect to Price and Duration only, which is the set {t 1 ,t 2 ,t 3 ,t 4 ,t 6 ,t 10 }. While another user, rich enough, is interested in the skyline with respect to Duration and # of Stops, which is the set {t 3 }.

Table 2 :

 2 D, S) {t 1 ,t 2 ,t 3 ,t 4 ,t 6 ,t 10 } (P, D) {t 1 ,t 2 ,t 3 ,t 4 ,t 6 ,t 10 } (P, S) {t 1 ,t 3 ,t 10 } Subspace skylines

	Subspace	Skyline
	(P, (D, S)	{t 3 }
	(P)	{t 10 }
	(D)	{t 3 }
	(S)	{t 3 }

Table 3 :

 3 Flights connecting Paris to Singapore on March 5 th with airline company name

	Tuple Price Duration (in hours) # of Stops Airline company
	t 1	321	15.25	1	Finnair
	t 2	393	14.10	1	Lufthansa
	t 3	461	12.50	0	Singapore Airlines
	t 4	392	14.90	1	Swiss
	t 5	378	15.75	1	Thai
	t 6	297	20.90	2	XiamenAir
	t 7	327	19.10	1	Finnair
	t 8	400	16	1	Lufthansa
	t 9	367	17.80	1	Eva Air
	t 10	255	23.50	2	Norwegian

 DBrest to DBsky if they become skyline tuples. The second method, called Eager, optimizes the migration of tuples from DBRest to DBSky by storing an event list which indicates at what timestamp a tuple in DBRest could integrate DBSky. Later,

	is the first work to address the continuous
	skyline query answering. It was motivated by the fact that state of the art algorithms
	are not efficient in presence of data streams. Their approach consists of maintaining two
	sets of tuples DBsky and DBrest. DBsky stores skyline tuples, and DBrest stores skyline
	candidates, i.e., tuples waiting some tuples from DBsky to expire. They proposed two
	approaches to maintain these sets: Lazy method consists of (i) storing the incoming tuple
	either in DBsky or DBrest (ii) discarding from DBsky outdated tuples and (iii) migrating
	tuples from

Table 1 .

 1 1: HotelsNext, we recall the skyline queries and Top-K queries and illustrate their behavior through Table1.1. The Skyline queries are based on the dominance relation. A tuple t is said to be dominated by a tuple t iff (i) t is better or equal on all dimensions and (ii) t is strictly better on at least one dimension. The Skyline result is then the set of non dominated

			Distance
	h 1	200	120
	h 2	390	140
	h 3	465	20
	h 4	395	90
	h 5	100	300

tuples. Top-K queries are based on scoring functions given by users. Often, scoring functions are linear, e.g.

Table 1 .

 1

			Distance
	h 1	200	120
	h 3	465	20
	h 4	395	90
	h 5	100	300

2: Skyline hotels

Table

Table 1 .

 1 3: Top-K hotels set S = {h 3 , h 1 }. The maximum regret ratio of S wrt F , i.e. mrr(S, F), is 31.4%. This represents the ratio between the best score within T and the best score within S wrt the function f (0.8,0.2) . Concretely, this means that for a user whose scoring function is in F, the best score he can get from S is at most 31.4% less than the best score he can get from

	h 1	136	160	184
	h 2	190	215	340
	h 3	109	242.5	376
	h 4	151	242.5	334
	h 5	260	200	140

8,0.2) }. Now consider the 1.2. Regret minimization queries Hotels -Weight vector (0.2, 0.8) (0.5, 0.5) (0.8, 0.2)

Table 2 .

 2 Output: A data structure NSC summarizing the Skycube.

	1 begin
	2	foreach t ∈ T do
	3	foreach t ∈ T do
	4	Add compare(t,t) to Pairs(t)
	5	return NSC(T)
		Tuple Pairs
		t 1	C|ABD , CD| / 0 , D| / 0
		t 2	D|C , CD| / 0 , D| / 0
		t 3	AB| / 0 , AB|C , CD|B
		t 4	AB| / 0 , A|B , A| / 0
		t 5	ABC| / 0 , ABC|D , BCD| / 0 , BC|D
		t 6	ABC| / 0 , ABC|D , ABCD| / 0 , A|D

[START_REF] Kossmann | Shooting Stars in the Sky: An Online Algorithm for Skyline Queries[END_REF]

. Note that pairs X|Y where X = / 0 are not stored because they do not cover any subspace (see Proposition 1).

Algorithm 1: buildNSC

Input: Table

T

Table 2 .

 2

3: NSC of T

Algorithm 2 shows how the NSC structure is used to evaluate any skyline query Sky(Z). For each tuple t, it scans the set of pairs associated to it. If a pair covering Z is encountered, then t does not belong to Sky(Z). Otherwise, it is a skyline point.

Table 2 .

 2 Negative SkyCube Algorithm 3: compressByGreedy Input: Set of pairs P Output: Set of pairs P ≡ P with |P | ≤ |P| 1 for p ∈ P do 4: List of pairs synthesizing dominance subspaces sets The following proposition states the time complexity and the approximation guarantee provided by Algorithm 3.

	2	p.covers ← set of subspaces p covers
	3 SubspacesToCover ← ∪ p∈P p.covers
	4 while SubspacesToCover = / 0 do
	5	q ← argmax	|p.covers|
		p∈P	

6

Add q to P 7 Remove q.covers from SubspacesToCover 8 Remove q from P 9 for p ∈ P do 10 p.covers ← p.covers \ q.covers 11 if p.covers = / 0 then 12 Remove p from P 13 Return P Example 10. The minimization of Table 2.3 is depicted in Table 2.4. Note that the number of pairs decreases from 20 to 9. 2) and (ii) |P G | ≤ |P opt | × d. Proof. For the time complexity, note that the first for loop (Line 1) is linear in |P|. At each iteration of the While loop (Line 4), we first select a pair q which covers the maximal number of subspaces. This can be done in linear time. Since such a q is removed from P, the for loop (Line 9) is executed O(|P| -1) times. At worst, |P| decreases by just Algorithm 4: buildNSC_index Input: Table T (set of tuples)

Table 2 . 5 :

 25 NSC index and t 3 . From the list associated to ABCD, we deduce that for t 1 we have C|ABD and this pair does not cover AB. Hence, t 1 is not dominated. The pairs ABC|D and ABCD| / 0 are respectively associated to t 5 and t 6 . They both cover AB meaning that t 5 and t 6 are dominated w.r.t AB. Thus, only t 1 and t 2 belong to Sky(AB) 1 .

	Subspace Pairs
	AB	{ t 4 | / 0 }
	ABC	{ t 3 |C }
	CD	{ t 1 | / 0 , t 2 | / 0 }
	BCD	{ t 3 |B , t 5 | / 0)}
	ABCD	{ t 1 |ABD , t 5 |D , t 6 | / 0 }

from empty set (/ 0) Since when submitting a query Sky(Z), only pairs X|Y such that Z is a subspace of XY are relevant, we use a subspace-based index to optimize the query evaluation process. More precisely, we use a table which associates to every subspace, a list of pairs of the form tuple|subspace as follows: let X|Y ∈ Pairs(t), then the pair t|Y is added to the list of XY . According to this structure, evaluating Sky(Z) needs just to check those subspaces XY such that Z ⊆ XY . Algorithm 4 shows how to build this index structure. Example 11 illustrates the query evaluation process and Algorithm 5 depicts the procedure.

Example 11. From our running example, the corresponding index structure is shown in Table 2.5. Note that subspaces with no tuples are removed. Let us show how Sky(AB) is evaluated using Table 2.5. Only the lists associated to the supersets of AB i.e., AB, ABC, and ABCD are scanned. With AB, we find t 4 | / 0 meaning that to t 4 we associate AB| / 0 hence t 4 is dominated on AB. The same holds with ABC Algorithm 5: evaluateSkyline_Index Input: NSC_index, subspace Z, table T Output: Sky(Z) 1 begin 2 NotSkylinePoints = / 0 3 foreach subspace W such that W ⊇ Z do 4 foreach pair (t,Y) in NSC_index[W] do 5 X = W \Y 6 if Z is covered by X|Y then 7 Add t to NotSkylinePoints

Table 3 .

 3 1 provides a preview of the performance of NSC compared to its competitors, described in Chapter 1 Section 1.1.3. The higher the score of a technique S wrt a criterion c, the better is S wrt c. As it can be observed, there is no clear winner wrt to the four criteria. However, NSC seems providing a reasonable trade off.

	Technique	Build	Memory	Query	Mainte-
		time consumption time -nance time
	NSC	3	3	3	4
	HashCube[15]	2	2	4	1
	CSC[14]	4	4	1	3
	Skycube[12]	1	1	5	1
	BSkyTree[8]	5	5	1	5

Table 3 .

 3

1: Solutions scores

Table 3 .

 3

	.2 gives the

2: Notations

Table 2 .

 2 1. Recall that topmost(T) = {t 2 ,t 3 ,t 4 }. We first compare t + to t 2 ,t 3 and t 4 and obtain respectively the pairs

	/ 0|ABC , / 0|CD and CD| / 0 . None of these pairs covers ABCD meaning that t

+ belongs to the new topmost. Note that while the first two pairs do not cover any subspace, hence they can be removed from Pairs(t +), they do respectively imply that t 2 and t 3 are D-dominated by t + , e.g., compare(t + ,t 2) = / 0|ABC ⇒ compare(t 2 ,t +) = D|ABC . All the remaining tuples need to be compared to t + , i.e., t 1 ,t 5 and t 6 .

Table 3 .

 3 [START_REF] Kossmann | Shooting Stars in the Sky: An Online Algorithm for Skyline Queries[END_REF] shows the new pairs obtained by comparing every t to t + beside the existing list of pairs. It also shows the computed pairs of t + . The pairs to be kept after the compression are underlined. Suppose p 1 is first chosen to be added to the solution. Now we need to update the set of still uncovered subspaces associated to p 2 . The only subspace covered by p 2 and not by p 1 is AC. There exists no pair which covers AC and only AC.

	Table 3.3: Updating pairs of the tuples of T
	Tuple	New pair(s)	Existing pairs
	t 1	CD|AB	C|ABD , CD| / 0
	t 2	D|ABC	CD| / 0
	t 3	AB|CD	AB|C , CD|B
	t 4	AB| / 0	AB| / 0
	t 5	ABC|D	ABC|D , BCD| / 0
	t 6	ABC|D	ABCD| / 0
	t +	/ 0|ABC , / 0|CD , CD| / 0	

Complexity analysis t + is compared to topmost(T). If it is not D-dominated then every t is compared to t + hence n comparisons, and every tuple calls CompressByGreedy(Pairs(t, T ∪ {t + })) whose complexity is O(π 2) if π denotes the number of pairs per tuple. Hence, O(n × π 2) operations just for the compression.

Actually, CompressByGreedy presents two negative points: (i) it is not incremental and (ii) the polynomial complexity of the greedy procedure hides an exponential term as it is shown in Algorithm 3. while loop (Line 4) is iterated at most π times (π = |P|) and for loop (Line 9) is executed at most π times too. Hence, O(π 2). Note however that the sets of covered subspaces we manipulate may have an exponential size w.r.t. the number of dimensions. One may wonder whether it is possible to implement CompressByGreedy by just operating on the pairs. It is unfortunately impossible because not every set of subspaces can be summarized by a pair. Example 13. Let P = {p 1 = A|B , p 2 = A|C } we want to summarize with CompressByGreedy. Definition 8. p 1 is included into p 2 , noted p 1 p 2 , iff the set of subspaces covered by p 1 is included into the set of subspaces covered by p 2 .

Table 3 .

 3 4: List of pairs synthesizing dominance subspaces sets Let t ∈ T and t -∈ topmost(T) be the tuple to be deleted. Let P, resp. P -, be the compressed list of pairs associated to t in NSC(T), resp. in NSC(T \ {t -}).

	Tuple Associated list of pairs
	t 1	(t 2 , C|ABD), ({t 3 ,t 4 } CD| / 0)
	t 2	(t 4 , CD| / 0)
	t 3	(t 2 , AB|C , (t 4 , CD|B)
	t 4	(t 2 , AB| / 0)
	t 5	(t 3 , ABC|D), (t 4 , BCD| / 0)
	t 6	(t 4 , ABCD| / 0)
	Proposition 4. The
	following implications hold:	
	1. compare(t,t	

-) ∈ P ⇒ P ≡ P -.

2. compare(t,t -) ∈ P and ∃t ∈ topmost(T) s.t compare(t,t -) = compare(t,t) ⇒ P ≡ P Proof.

1. If compare(t,t -) ∈ P then all subspaces covered by compare(t,t -) are also covered by P. Hence, by removing t -, these subspaces remain covered.

2. All subspaces covered by compare(t,t -) remain covered thanks to other tuples t in topmost such that compare(t,t -) = compare(t,t).

Table 3 .

 3 The construction of the new structure of NSC follows slightly the same procedure as in Algorithm 1. For completeness, we describe it in Algorithm 9.

		5: Pairs with counters
	Tuple Associated list of pairs
	t 1	(1, C|ABD), (2 CD| / 0)
	t 2	(1, CD| / 0)
	t 3	(1, AB|C), (1, CD|B)
	t 4	(1, AB| / 0)
	t 5	(1, ABC|D), (1, BCD| / 0)
	t 6	(1, ABCD| / 0)
	reader, in the remaining sections, we shall still use the term pair to designate the basic
	stored information.	

Algorithm 9: buildNSC_with_counters Input: T , topmost(T) Output: NSC(T) 1 Pair p 2 for t ∈ T do 3 for t ∈ topmost(T) do

 t)

	10	if q ∈ Pairs(t) then
	11	q.counter ← q.counter + 1
	12	else
	13	q.counter = 1

14

Add q to Pairs(t) 15 Compress(Pairs(t)) 16 else 17 p.counter ← p.counter -1 18 return NSC(T \ {t -}), topmost(T \ {t -});

Now let t -= t 2 , and we use the initial dataset. t -belongs to topmost(T) so we need to compute topmost(T \ {t -}) = {t 1 ,t 3 ,t 4 }. Every tuple t needs to be compared to t -. It turns that t -impacts t 1 because compare(t 1 ,t 2) = C|ABD and (i) this pair is in Pairs(t 1) and (ii) its counter is set to 1. Therefore, Pairs(t 1) needs to be recomputed. The same situation holds for t 3 and t 4 whose respective pairs need to be recomputed. Note however that t 2 does not impact neither t 5 nor t 6 .

 For synthetic datasets, we generate data through the framework presented in[START_REF] Börzsönyi | The Skyline Operator[END_REF], with different distributions (Independent (INDE), Correlated (CORR), Anti-correlated (ANTI)). For each, we vary n in {10 4 , 10 5 , 10 6 } and d in {4, 8, 12, 16, 20}.

	Dataset d	n	|topmost|
	NBA	17	20493	3
	MBL	18	92797	78
	IPUMS 10	75836	3852
	HOUSE 6	127931	127931
	INSEE 22 2628433	58
	POKER 11 1000000	14131
		Table 3.6: Real datasets

3.6 we present the datasets, their cardinality n, the cardinality of the set of dimensions d, and the size of the topmost.

Table 4 .

 4 1 summarizes the additional notations for this chapter.

	Term	Meaning
	ts c , i, j, . . .	timestamps
	ω	size of sliding window = validity duration of tuples
	k	batch interval = frequency of batch updates
	θ	streaming delay = time separating two successive tuples
	B	buffer = set of tuples waiting to be inserted
	T S(t)	timestamp of tuple t
	Transaction δ set of tuples

Table 4 . 1 :

 41 Notations

Table 4 .

 4 Comparing t 5 to the other tuples returns the following set of pairs Compare(r 5 , r 1) Compare(r 5 , r 2) Compare(r 5 , r 3) Compare(r 5 , r 4)

		3 5 1 3		
		t 4 1 1 3		
		t 5 1 0 4		
	C| / 0	AC|B	C| / 0	C|A

2: Pairs of t 5 For example, observe in Table 4.2 that subspaces covered by both C|A and C| / 0 are likewise covered by AC|B , hence NSC keeps only one single pair, i.e., AC|B computed wrt t 2 . Now assume that t 2 is deleted from the dataset, hence t 5 has to be compared to all

Table 4 .

 4 3: Dataset T at timestamp 6

	Transaction Id A B C Arrival time
	R[1]	r 2 5 1 3	2
		r 3 1 1 3	3
	R[2]	r 4 1 0 4	4
		r 5 0 1 5	5
	R[3]	r 6 2 0 6	6
		r 7 2 1 1	7

Table 4 .

 4 4: Dataset T at timestamp 7 is depicted in Table 4.4. At the same time, NSCt maintenance is triggered in order to (i) compute the pairs of t 6 and t 7 wrt {r 2 , . . . , r 7 } (ii) update the pairs of {r 2 , . . . , r 5 } wrt t 6 and t 7 .

Table 4 .

 4 we iterate over the tuples belonging to the i th transaction of T Buck i ← Buck i ∪ {compare(r, r)} 5: Pairs of t 6 and t 7

	7			
	8	Pairs(t) ← Pairs(t) Buck i	
	9 return Pairs(t)		
		Id	Buck 1	Buck 2	Buck 3
		t 6	A|C , / 0|C	A| / 0 , A|B	C|A
		t 7	A|B , / 0|B	A|B , AB| / 0	B|A

Table 4 .

 4 . . , Buck m], for each Buck i we compute a subset s i ⊆ Buck i such that ∀p ∈ s i the set s i \ p ≡ s i , i.e., s i is a minimal equivalent subset of Buck i . We illustrate in the following example the buckets of t 6 and t 7 where each bucket is replaced by a minimum equivalent subset.Example 23. Table4.6 shows the new set of pairs of t 6 and t 7 (cf. Table 4.5) after summarizing their respective buckets. For example, the pair A| / 0 is removed from the Bucket 2 of t 6 because it is covered by A|B belonging to the same bucket. 6: Pairs of t 6 and t 7 minimized by equivalence The intra-bucket size minimization as described above can be extended to inter-buckets minimization to further reduce the memory storage. Intuitively, a pair belonging to Buck i is redundant if the subspaces it covers are covered by pairs in more recent buckets. Let us illustrate this observation.

	Id	1	2	3
	t 6	A|C	A|B	C|A
	t 7	A|B	AB| / 0	B|A

Example 24. Consider Pairs(r 6) and Pairs(r 7) depicted in Table

4

.6. Observe that for tuple t 7 , the subspaces that the pair A|B in Buck 1 covers ({AB, A}) are covered by AB| / 0 in Buck 2 ({AB, A, B}). Therefore, we discard A|B from Buck 1 . We report in Table 4.7 the minimized set of pairs of t 6 and t 7 .

Table 4 .

 4 7: Pairs of t 6 and t 7 minimized Remark 4. From the example above, one may wonder why pair B|A is not removed from Buck 3 of t 7 since it is covered by AB| / 0 in Buck 2 . We make the choice to keep it for update optimization considerations. Indeed, while the deletion of that pair reduces memory consumption and preserves skyline semantics, it makes the update procedure harder: as pairs in Buck 2 become outdated before those in Buck 3 , more precisely the tuples which served to obtain them, then as soon as Buck 2 becomes outdated we need to recover B|A because the reason of its removal becomes no more valid. So our choice to not minimizing the buckets wrt to older ones can be seen as trade off between memory minimization and update efficiency. Let Pairs(t) = [Buck 1 , . . . , Buck m]. Then ∀i ∈ [1, m], find s i ⊆ Buck i s.t s i ∪ and s i is of minimum size. The problem above addresses the minimization of Pairs(t) by both intra and inter buckets minimization. Indeed, for every bucket Buck i in Pairs(t), we look for a subset s i ⊆ Buck i such that the set of pairs s i ∪ For the special case where Pairs(r) contains only one bucket Buck 1 , hence we look for s 1 ⊆ Buck 1 such that cover(s 1) ≡ cover(Buck 1) and s 1 with minimum size. The time complexity is O(2 |Buck 1 |).

	m		m		
	j=i+1	Buck j ≡	j=i	Buck j m	m
				Buck j and	Buck j are equivalent. The
				j=i+1	j=i
	resulting set s i contains then pairs not covered by pairs in the union of buckets following m
	Buck i , i.e.,	Buck j	
		j=i			
	Theorem 5. Problem 1 is NP Hard.	
	Proof.			

We combine the two minimization processes explained above (intra and inter buckets) and formalize the problem of the global minimization of Pairs(t) for a given tuple t as follows:

Problem 1

Let P = Buck 1 , by considering all the subsets of P, one can check which are equivalent to P and which are of minimum size. Thus, the problem is in NP. The hardness proof is based on a reduction from the Minimal Set Cover (MSC) problem. Given an MSC instance, we build a table T with a distinguished tuple t where the number of dimensions

Table 4 .

 4 9: Pairs of t 6 and t 7 at timestamp 9

			r 8 1 2 5	8		
			r 9 2 1 4	9		
			Table 4.8: Dataset T at timestamp 9	
	Id	1	2	Id	1	2
	t 6	A|B	C|A , AC| / 0	t 6	A|B	AC| / 0
	t 7	AB| / 0	B|A , A| / 0 , / 0|AB	t 7		B|A , A| / 0
	before minimization				

Table 4 .

 4 10: Pairs of t 6 and t 7 at timestamp 9 Example 27. Let us take the pairs of t 6 at timestamp 9 as depicted in Table 4.10. The resulting index is illustrated in the following table.

	after minimization

Likewise NSC, we apply the subspace index presented in Section 2.2.3 to NSCt.

Table 4 .

 4 11: Indexation of pairs of t 6 at timestamp 9

Table 4 .

 4 .12. 12: Parameters values

	Parameters	Values
	θ	{0.1sec, 1sec}
	ω	{6h, 12h, 24h}
	k	{5mn, 10mn, 20mn}
	d	{8, 12, 16}

). Algorithm for Top-KP is similar to Algorithm 14 with a difference in computing the score (line 8). Top -KF ∪ Score[i]. f irst 12 return Top -KF Thus, the experiments we carry out in this chapter are: we calculate candidate sets of size K by either Top-KF or Top-KP then we compute a set of minimum regret of size r on top of these candidate sets. Our hypothesis is that by considering these candidate sets, we evaluate the regret minimization query faster, and the output regret will be close to if the regret minimization query is evaluated on top of the entire input dataset.

	Algorithm 14: top-K_frequent
		Input: NSC, T , K, D
		Output: Top -KF
	1 begin
	2	Top -KF ← / 0
	3	Score ← []
	4	foreach t ∈ T in parallel do
	5	E ← / 0
	6	foreach p ∈ NSC[t] do
	7	E ← E ∪ cover(p)
	8	Score.append(t, 2 |D| -|E|)
	9	sort(Score)
	10	foreach i ∈ [0, K) do

11

Top -KF ←

Table 5 .

 5 1: Datasets parametersHardware and software We consider the state of the art algorithm sphere[START_REF] Xie | Efficient k-Regret Query Algorithm with Restriction-free Bound for any Dimensionality[END_REF] for computing regret minimizing sets and the structure NSC[START_REF] Alami | The negative skycube[END_REF] for computing skyline related queries, i.e., (i) skyline, (ii) Top-K frequent and (iii) Top-K priority sets. All the experiments are conducted on a Linux machine equipped with two 2.6 ghz hexacore CPUs and 32GB RAM. Software is in C++ and available on GitHub 1 .

		Values
	distribution	ANTI, INDE
	n (dataset size)	100K, 1M
	d(number of dimensions)	4, 8, 12
	r(output size)	20, 30, 40, 60, 80, 100

 .1 is the relation > over N. So from now on, we consider only preferences defined on those attributes admitting dynamic partial orders over their respective domains, i.e., B i ∈ B. Example 29. Consider the movie rating in Table 6.1. A user preference over the attribute Definition 15 (Dominance). Let T be a table over D = {A 1 , . . . , A s , B 1 , . . . , B l } and let R = {R 1 , . . . , R l } be a preference over the attributes B 1 , . . . , B l . Let t,t be two tuples, then t dominates t iff t[D] D t [D] ∀D ∈ D and ∃D ∈ D such that t[D] ≺

	Genre can be expressed by R ={(c,s),(s,h),(c,h),(c,r),(r,h),(h,t),(s,t),(r,t),(t,a),(s,a),
	(r,a),(h,a)}. Obviously, this preference can be represented by the DAG in Figure 6.1.

D t [D]. We denote the dominance relation by t < D t .

 t. t ∈ Sky {o} . Proof. (i) t ∈ Sky q.R ⇒ ∃o ∈ q.R s.t. t ∈ Sky {o} : let t ∈ Sky q.R then there exists a tuple t dominating t such that either (i) t [B] = t[B] and t ≺ A t or (ii) t [B] ≺ B [B] and t A t.

Table 6 .

 6 3: Dataset with two dynamic dimensions

 T 1 and T 2 having respectively values in o 11 and o 12 , i.e., the orders belonging to the preference related to the first dimension B 1 , (ii) from T 1 and T 2 , we compute the subsets of tuples having respectively values in o 21 , o 22

Table 6

 6

.4. It has 6 related sequences. E.g., (o 11 , o 21) and (o 11 , o 22).

 Algorithm 18 (dySkySeq_build) designed to this aim proceeds in a smarter way. Intuitively, one may observe that each sequence is actually a conjunction of conditions and several conditions may share the same conjunct prefix. For example, the sequences (o 11 , o 21) and (o 11 , o 22) share the same prefix o 11 . To filter T wrt these two sequences, we first consider o 11 . The result is then used for both o 21 and o 22 .Algorithm dySkySeq_build This procedure (see Algorithm 18) takes D and T as input, and returns a seqStruct F. At the beginning, F is empty. Variable i indicates the dimension the algorithm is processing and is initialized to 1. Variable seq is a stack structure and is

used to store the sequences. The algorithm proceeds in a Depth-First fashion. It calls the recursive function recursiveSeq with parameters (i) i to indicate the dimension B i , (ii)

Table 6 .

 6 [START_REF] Chomicki | Skyline with Presorting[END_REF] shows the different parameters. Bold values are the default. 5: Synthetic datasets Table6.6 shows the characteristics of the real data in addition to their respective skyline size wrt the totally ordered dimensions.Queries generationIn some of the following experiments we need to generate random queries. These are completely defined by their respective preferences on the B i 's

	Parameter	Values
	n (dataset size)	100K, 1M, 10M
	s (static dims)	6
	l (dynamic dims)	1, 2, 3
	m (dynamic dims values)	10, 15, 20
	distribution	ANTI, INDE

Table 6 .

 6 6: Real datasets attributes. Each preference on a dimension B i is actually a DAG whose set of nodes is dom(B i). Thus, we generate random DAGs on dom(B i) following a density parameter

In the concrete implementation, the table is sorted w.r.t. subspaces to avoid visiting useless subspaces.

https://github.com/karimalami7/NSC

https://github.com/sean-chester/skycube-templates

We emphasize the fact that we performed the same experiment with correlated and anti-correlated data and we obtained similar results.

This limitation of the number of tuples per θ units of time is set just for the ease of the presentation. Without any change, our framework can handle the case of multiple tuples per time unit.

If at most tuples can arrive at the same time instead of just 1, then |B| ≤ • k θ and |R| ≤ ω θ • .

https://twitter.com/

https://github.com/karimalami7/MSSD

https://archive.org/

https://github.com/karimalami7/NSC

We use the term order for ordering just a single pair of values.

https://github.com/karimalami7/dySky

Acknowledgements

Firstly, I would like to thank my supervisor Sofian Maabout for his immense support and guidance through the three years of Ph.D. His research vision and quality of work have had an invaluable impact on my research work. I would like to thank BKB Team as well.

The discussions and presentations during the meetings have always been fruitful. I would like to thank Karine Zeitouni and Farouk Toumani for reviewing my thesis manuscript. I thank as well Nicole Bidoit and Guillaume Blin for being part of my jury.

My sincere gratitude goes to colleagues and professors in LaBRI. I would like to name Carole Blanc and Marie Beurton-Aimar. PhD students Trang, Karim, Paul, Jason, Chahrazad, Attila and many others who made this journey exceptional. I would like to thank as well the administrative team in LaBRI, Maïté Labrousse, Cathy Roubineau and Sylvaine Granier for their help and support.

I cannot be grateful enough to my parents who did everything for my success, my brothers Hicham and Amine, and my sister Maryam.

Note here that throughout the paper, the timestamp of a tuple t, i.e. T S(t), corresponds to the timestamp when the tuple t has been inserted into T . Hence, all tuples of a single transaction share the same timestamp. In Figure 4.1(a), the current timestamp is t c = 18, T contains tuples arrived during the window [START_REF] Papadias | An Optimal and Progressive Algorithm for Skyline Queries[END_REF][START_REF] Bøgh | Hashcube: A Data Structure for Space-and Query-Efficient Skycube Compression[END_REF]. From timestamp 16, tuples are appended to the buffer. The queries issued during [START_REF] Hanusse | Computing and Summarizing the Negative Skycube[END_REF][START_REF] Zhang | Efficient Skyline Evaluation over Partially Ordered Domains[END_REF] target tuples in T , i.e, the window [START_REF] Papadias | An Optimal and Progressive Algorithm for Skyline Queries[END_REF][START_REF] Bøgh | Hashcube: A Data Structure for Space-and Query-Efficient Skycube Compression[END_REF]. In Figure 4.1(b), t c = 19 and tuple t 19 is appended to the buffer, thereafter transaction δ + = {r 16 , r 17 , r 18 , r 19 } is inserted into T and δ -= {r 4 , r 5 , r 6 , r 7 } is discarded from T . The window covered by T is henceforth [START_REF] Lee | Scalable skyline computation using a balanced pivot selection technique[END_REF][START_REF] Zhang | Efficient Skyline Evaluation over Partially Ordered Domains[END_REF]. Note that T can be seen as a sequence R[i] 1≤i≤ω/k of transactions where R[i] corresponds to a set of tuples inserted at the same time. Here T is a sequence of ω/k = 3 transactions. At t c = 19, R [START_REF] Kossmann | Shooting Stars in the Sky: An Online Algorithm for Skyline Queries[END_REF] = δ + . Remark 3. As illustrated in the previous example, considering S as the set of all tuples seen until current time t c and for given ω and k, T contains the tuples arrived during the interval (t eω,t e] where t e = t c -((t c + 1) modulo k). Thus, the exact queries evaluated at t c are Sky (t e -ω,t e] (X, S) (c.f Definition 9).

NSCt index structure

In this section, we present our framework index structure NSCt, (Negative SkyCube with timestamps) which is inspired from NSC presented earlier.

We recall NSC and explain why it is not suitable for streaming data. NSC stores for each tuple, a set of pairs which summarize the set of subspaces where the tuple is dominated. The pairs are computed wrt each tuple in the dataset. However, not all correspondence between s i ∈ s and p i = Compare(t,t i). For example, Compare(t,t 1) = 12|3 corresponds to s 1 = {1, 2}. Let u ⊆ s and let P(u) be the set of pairs p j such that p j = Compare(t,t j) where t j corresponds to some s j ∈ u. Let Cover(P(u)) denote the set of subspaces covered by the pairs in P(u). We show that ∪ s j ∈u s j = ∪ s i ∈s s i iff P(u) ≡ P(s) and this proves the claim.

(i) P(u) ≡ P(s) ⇒ u ≡ s: Every p j ∈ P(u) is of the form X j |Y j thus it covers, among others, the subspace X j which actually corresponds to the content of s j ∈ u. As P(u) ≡ P(s), ∀p i = X i |Y i ∈ P(s), P(u) covers X i and the union of the X i 's is the union of the s i 's. Hence u ≡ s.

(ii) u ≡ s ⇒ P(u) ≡ P(s): Assume, for the sake of contradiction, that P(u) ≡ P(s). There must exist a subspace Z s.t P(s) covers Z but not P(u). Thus, there exists p i ∈ P(s) such

where U = ∪ s j ∈s s j . Therefore, to cover Z, a pair s j |U \ s j needs just to satisfy Z ∩ s j = / 0.

Such an s j is necessarily in u because otherwise u ≡ s, i.e., there exists k ∈ U such that there is no s i ∈ u s.t k ∈ s i and thic contradicts the fact that u ≡ s. We conclude that every (minimum) solution of the set cover problem corresponds to a (minimum) solution to our problem regarding the distinguished tuple t of the table T above which terminates the proof.

A Polynomial time greedy algorithm for pairs minimization

We present in this section a polynomial time greedy algorithm for solving Problem 1. We establish the theoretical guarantees of its solution wrt an optimal solution as well as its time complexity. For the ease of the presentation, in the following we denote by P1 the problem we address. We transform an instance of our problem P1 into an instance of a Now that the data structures used in our framework and their maintenance are explained, we complete the presentation by showing in the next section, the query maintenance so query evaluation can start as soon as a new transaction is inserted into T , while for NSCt we include the maintenance time. We point out two observations from this experiment:

1. NSCt is faster with more than one order of magnitude in all cases despite the fact that its maintenance time is also included.

2. BSkyTree is unable to answer all the issued queries for several scenarios, e.g. in

Time ratio

For this experiment, we consider the scenario where we have a workload set Q of random queries with |Q| = {10, 100, 1000, 10000}. All these queries are intended to be evaluated between two consecutive updates. We want to compare NSCt to BSkyTree. More precisely, our aim is to identify the situations where using an auxiliary structure like NSCt, which needs to be updated before starting query evaluation, is worthwhile. For this purpose, we report the following ratio T R(Q): With approximately 100 queries, T R(Q) is close to 1. Notice that this behavior is rather the same independently of the data correlation, θ and ω. For example, Figure 4.5 shows

times faster than BSkyTree. However, with small |Q|, BSkyTree is faster. This indicates that using NSCt with its update delay is worthwhile when the number of queries is sufficiently large.

NSCt versus DBSky

We compare the memory consumption and maintenance time of NSCt to the approach described in [START_REF] Tao | Maintaining Sliding Window Skylines on Data Streams[END_REF] prefer comedy over thriller but has no preference between comedy and sci-fi. These two last values are incomparable regarding the user's preference.

• R can be either static or dynamic. Again, consider Table 6.1. The orders on Metacritic, Tomatoes and Audience respective domains are unique and set a priori.

While for Genre, the order depends on users preferences. More precisely, during their quest of the best movies, users are asked to express their own preference on Genre's domain in terms of an order relation.

Example 28. Consider Table 6.1. While the preference on Metacritic, Tomatoes and

Audience is: the higher the score the better the movie. For Genre, there is no prior preference over the attribute's domain. Users are asked to describe their preferences through a set of value to value comparability. One user preference could be R = {(horror, comedy), (sci-fi,thriller)} which expresses that horror is preferred to comedy, and sci-fi is preferred to thriller. This preference makes comparable the movies having comedy or horror genre, i.e., {t 1 ,t 3 ,t 4 ,t 8 }. Likewise, {t 2 ,t 7 ,t 9 } are comparable because of sci-fi and thriller genres.

The skyline set over the movie dataset by considering the user preference R expressed above is composed of {t 3 ,t 5 ,t 9 ,t 10 }. The remaining tuples are dominated. For example,

• t 1 is not in the skyline because it is dominated by t 3 which has better scores and better genre (horror is preferred over comedy).

• t 6 is not in the skyline because t 10 has better scores and both have the same genre action. Observe that this genre is not mentioned in R making t 6 comparable to only those tuples sharing the same genre.

The skyline set changes dramatically with the user preference. Consider R = {(romance, horror), (scif i, horror), (comedy, horror), (action, horror), (thriller, horror)}, i.e. every genre is better than horror. The skyline set is then {t 1 ,t 2 ,t 3 ,t 5 ,t 6 ,t 7 ,t 8 ,t 9 ,t 10 }.

Observe that t 3 belongs to the skyline set despite being a horror movie. This is because t 3 has the higher ratings in the dataset.

As presented in Chapter 1 Section 1.1.4, previous work which investigated skyline computation with partially ordered attributes either proposed on-the-fly algorithms, i.e., computing the query from scratch, or proposed materialization techniques, i.e., precomputing some indexing structures. One of the techniques proposed so far to implement on-the-fly algorithms is: given a dataset with partially ordered attribute B, transform B into a set of totally ordered virtual attributes φ (B) and then run state of the art skyline algorithm on the transformed dataset [START_REF] Zhang | Efficient Skyline Evaluation over Partially Ordered Domains[END_REF]. Regarding materialization techniques, [START_REF] Raymond | Online Skyline Analysis with Dynamic Preferences on Nominal Attributes[END_REF] proposed to compute and store the skylines wrt every total order over the attribute

B. Then answer a query q which considers a preference R through the stored skylines. [START_REF] Hsueh | An Efficient Indexing Method for Skyline Computations with Partially Ordered Domains[END_REF][START_REF] Hsueh | Caching Support for Skyline Query Processing with Partially Ordered Domains[END_REF] proposed indexes to cache skyline sets and their respective preferences R's then answer issued queries through refinement. We say that R is a refinement of R iff R ⊂ R .

Accordingly the skyline wrt R is included in the skyline wrt R.

In this chapter, we exhibit a couple of properties letting the decomposition of every skyline query q, using a preference R, into a set Q of independent sub-queries. The result of q is obtained by just combining the results of the sub-queries q ∈ Q. Because these queries are independent from each others, we execute them in parallel. On another side, if all or some of these sub-queries are materialized, the computation time can be optimized.

More specifically, the main contributions of the present work are:

• A novel approach to compute skyline queries with partially and dynamically ordered attributes.

• A materialization technique to optimize skyline query answering.

• A workload driven selection of sub-queries to materialize.

• Extensive experiments showing the effectiveness of our proposals.

Chapter organization

The next section presents the main definitions used throughout the chapter. Then we present our approach, first, in case of datasets with only one partially ordered attribute. Afterwards, we generalize to the case of multiple attributes. In section 6.4, we address the sub-queries materialization. Finally, we empirically evaluate our proposals wrt direct competitors. Sky q.R is only T \ NSky.

Algorithm 15: dySky_1d Input: a set of dimensions D = {A 1 , . . . , A s , B}, a dataset T , a query q Output: Sky

Algorithm 17: dySky_md

Input: a set of dimensions D = {D 1 , . . . , D s , B 1 , . . . , B l }, a dataset T (D), a query q Output: Sky q.R (T) 1 Procedure recursiveNSky(i, T , NSky) i.e. the algorithm is not processing the last dimension, it recalls recursiveNSky with new parameters(line 5). Otherwise (i = l), i.e. the algorithm is currently processing the last dimension B l , it computes the complementary skyline wrt T and add it to NSky (line 7).

Finally, the skyline wrt the query q is T minus NSky (line 5 in the main routine).

Complexity analysis Given the parameters m, l, n and s. Suppose the preferences on the dynamic dimensions have the same number of orders r, i.e.,

At each level, dySky_md iterates on r orders. Globally, the algorithm iterates r l times. We consider the filtering operations take a constant time. The argument here is that one can use bitmap indexes on the B i 's dimensions. The final step consists in computing the complementary skyline. In case of uniform distribution of the values in dom(B i)∀i ∈ [1..l] , at the last level of filtering, the datasets T contains n m l tuples. Then the overall complexity is O(r l * (n m l) 2 * (s + l)). When the preferences R i 's are total, r equals m(m-1)

2

.

In such case, this algorithm's complexity becomes that of a naive algorithm, however, in practice dySky_md performs better.

is pushed onto seq (line 3-4). If (i < l), i.e. , the algorithm is not processing the last dimension, it recalls recursiveSeq with new parameters (line 6). Otherwise, i.e. (i = l), at this step, seq contains l orders. Hence it computes the complementary skyline wrt T and inserts the pair (seq, NSky {seq} (T)) in F (line 8). Finally, o is popped from the sequence (line 9).

Query answering We describe here how to evaluate a query using F. Algorithm 19 (dySkySeq_qa) takes as input F, T , and a query q and returns Sky q.R . The algorithm simply merges the complementary skylines associated to sequences related to the query q.

Algorithm 19: dySkySeq_qa Input: a query q, F, T Output:

5 return T \ NSky

Constrained materialization

Generally, materializing all the sub-queries can be costly. In this section we address partial materialization of the sub-queries, i.e, we materialize only a subset P ⊆ F. However, we want to select the sequences in P such that the answering cost of a workload Q is optimal.

Without any constraint, the solution to this problem is obvious: materialize all and only the sequences related to Q. Even when considering just Q and not all possible queries, the storage space may become prohibitive. So, we constrain the query cost optimization problem with an available memory storage H that has not to be overtaken by the chosen sequences to be materialized.

We start by defining the costs of answering queries and workloads. Then we present the partial materialization problem.

Query answering cost

We set the answering cost of a query q as the number of sequences related to q, namely,

The rationale behind this choice of cost function is that, under uniform distribution, the size of the filtered data from which the complementary skyline is computed is the same whatever is the sequence. Now consider a set of materialized sub-queries P, then the cost of answering q through P is

Cost(q, P) = Cost(q) -|{p ∈ P|p.seq ∈ sequences(q)}| In other words, partial materialization saves query execution time proportionally to the number of sub-queries that are already materialized. The cost of a workload Q wrt P is defined accordingly:

Note that with the above definitions, when using full materialization, the cost of any query is null, thus Cost(Q, F) = 0. This reflects the fact that retrieving a query answer is done without any effort.

In the next section, we formalize the problem of partial materialization of sub-queries, and we provide an algorithm to select the set P.

Algorithm 20: dySkySeq_hybrid Input: a query q, a seqStruct M and a dataset T Output: Sky q.R 1 Procedure computeSeq(i, T , seq, NSky)

Experiments

In this section we compare our proposals to relevant literature techniques. We consider both non materialization and materialization based solutions. For the first family, we consider the algorithm CPS proposed by [START_REF] Zhang | Efficient Skyline Evaluation over Partially Ordered Domains[END_REF] as a representative solution. We recall that CPS transforms partially ordered dimensions into totally ordered dimensions. We combine it with BSkyTree [START_REF] Lee | BSkyTree: scalable skyline computation using a balanced pivot selection[END_REF][START_REF] Lee | Scalable skyline computation using a balanced pivot selection technique[END_REF] in order to compute the skyline over the transformed dataset. For materialization-based techniques, we consider Ordered Skyline Tree (OST) structure [START_REF] Raymond | Online Skyline Analysis with Dynamic Preferences on Nominal Attributes[END_REF]. In the remainder, we denote by OST both the structure and its corresponding algorithm for answering queries. Moreover we consider the query answering through refinement technique as presented in [START_REF] Hsueh | Caching Support for Skyline Query Processing with Partially Ordered Domains[END_REF][START_REF] Hsueh | An Efficient Indexing Method for Skyline Computations with Partially Ordered Domains[END_REF] and we denote it by

Ref. We adapted the BSkyTree algorithm and its authors implementation so that it returns the complementary skyline which is the main procedure of our solutions.

The experiments are organized in three parts:

1. In Section 6.5.1 and regarding query answering time, we evaluate algorithms which answer queries on the fly, i.e., dySky_md and CPS as well as those using pre-computed structures, i.e., dySkySeq_qa and OST .

2. In Section 6.5.2 and for pre-computation based techniques, we compare their respective structure build time and their memory consumption. 16 for H. We consider datasets with n = 10M, l = 1, and m in {10, 15, 20} as well as a workload Q of 100 queries. Figure 6.12 depicts the results. We globally observe the same trend for all values of m. When H is equal to M, P is completely materialized and therefore queries in Q are fully optimized. As long as we reduce the available memory H, the query answering time grows as now some sub-queries need to be computed from scratch.

Parallel processing throughput of dySky

In this experiment, we want to measure the multithreadring performance of dySky. We specifically consider Algorithm 18 dySkySeq_build. We run experiments with parameters n = 10M, s = 6, l = 2 and m = 20. We vary the number of parallel threads in {6, 12, 24, 48, 96}. Figure 6.13 depicts the results. We use the red curve just to show the linear trend. The results show that our algorithm is highly parallelizable because the sequential part is negligeable.

Concluding remarks

Globally, the performed experiments showed that our proposals outperform its competitors. Regarding query answering on the fly, we showed that in presence of challenging datasets, i.e., large and anti-correlated datasets, our algorithm dySky_md performs better than CPS which, to our knowledge, is the state of the art algorithm.

Regarding precomputation based technique, we showed that our proposed structure, compared to OST , (i) is built faster, (ii) stores less data (iii) and provides better query answering performance. Regarding queries caching solutions, we showed that with much less cached queries, our proposal achieves better query performance than the refinement technique Ref. Finally, and thanks to dySky design, we showed that it is highly parallelizable.

List of Publications