
HAL Id: tel-03043999
https://theses.hal.science/tel-03043999

Submitted on 18 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of Skyline queries in dynamic contexts
Karim Alami

To cite this version:
Karim Alami. Optimization of Skyline queries in dynamic contexts. Databases [cs.DB]. Université de
Bordeaux, 2020. English. �NNT : 2020BORD0135�. �tel-03043999�

https://theses.hal.science/tel-03043999
https://hal.archives-ouvertes.fr

THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR DE

L’UNIVERSITÉ DE BORDEAUX

.............

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET INFORMATIQUE

SPÉCIALITÉ : Informatique

Par Karim ALAMI

Optimization of Skyline queries in dynamic contexts
.........................

Sous la direction de Mcf. Sofian MAABOUT

Soutenue le 09 Octobre 2020

Membres du jury :

M. Guillaume BLIN Professeur à l’Université de Bordeaux Président du jury
Mme Karine ZEITOUNI Professeur à l’Université Versailles St-Quentin Rapportrice
M. Farouk TOUMANI Professeur à l’Université Clermont Auvergne Rapporteur
Mme Nicole BIDOIT Professeur à l’Université Paris-Sud Examinatrice
M. Sofian MAABOUT Mcf. à l’Université de Bordeaux Directeur de thèse

2

i

Titre
Optimisation des requêtes de préférence Skyline dans des contextes dynamiques.

Résumé
Les requêtes de préférence sont des outils intéressants pour traiter les données. Elles

permettent par exemple de récupérer à partir d’un ensemble de données, un sous ensemble

qui résume les données en entrée. Dans cette thèse, nous abordons principalement

l’optimisation des requêtes Skyline dans des contextes dynamiques. Dans un premier

temps, nous abordons la maintenance incrémentale de la structure d’indexation NSC qui

a été démontrée efficace pour répondre aux requêtes Skyline dans un contexte statique.

Plus précisément, nous abordons (i) le cas des données dynamiques, quand les tuples sont

insérés ou supprimés à tout moment, et (ii) le cas des données en flux quand les tuples sont

ajoutés et supprimés à des intervalles de temps spécifiques. Dans un deuxième temps,

nous abordons l’optimisation des requêtes Skyline en présence d’ordres dynamiques,

c’est-à-dire que certains ou tous les attributs de l’ensemble de données sont nominaux

et que chaque utilisateur exprime son propre ordre partiel sur le domaine de ces attributs.

Dans ce cas, nous proposons des algorithmes parallèles qui décomposent une requête

soumise en un ensemble de sous-requêtes et traitent chacune indépendamment.

Mots-clés
Requêtes Skyline, Données dynamiques, Optimization des requêtes, Structures

d’indexation.

Title
Optimization of Skyline queries in dynamic contexts.

Abstract
Preference queries are interesting tools to compute small representatives of datasets.

In this thesis, we mainly focus on the optimization of Skyline queries in dynamic contexts.

In a first part, we address the incremental maintenance of the multidimensional indexing

structure NSC which has been shown efficient for answering skyline queries in a static

context. More precisely, we address (i) the case of dynamic data, i.e. tuples are inserted

or deleted at any time, and (ii) the case of streaming data, i.e. tuples are appended and

discarded at specific interval of time. In a second part, we address the optimization of

skyline queries in presence of dynamic orders, i.e, some or all attributes of the dataset are

nominal and each user expresses his/her own partial order on these attributes’ domain. In

that case, we propose scalable parallel algorithms that decompose an issued query into a

set of sub-queries and process each sub-query independently.

Keywords
Skyline queries, Dynamic data, Query optimization, Index structures.

ii

Unité de recherche

Université de Bordeaux, CNRS, LaBRI, UMR 5800, F-33400 Talence, France

Acknowledgements

Firstly, I would like to thank my supervisor Sofian Maabout for his immense support and

guidance through the three years of Ph.D. His research vision and quality of work have

had an invaluable impact on my research work. I would like to thank BKB Team as well.

The discussions and presentations during the meetings have always been fruitful.

I would like to thank Karine Zeitouni and Farouk Toumani for reviewing my thesis

manuscript. I thank as well Nicole Bidoit and Guillaume Blin for being part of my jury.

My sincere gratitude goes to colleagues and professors in LaBRI. I would like to

name Carole Blanc and Marie Beurton-Aimar. PhD students Trang, Karim, Paul, Jason,

Chahrazad, Attila and many others who made this journey exceptional. I would like to

thank as well the administrative team in LaBRI, Maïté Labrousse, Cathy Roubineau and

Sylvaine Granier for their help and support.

I cannot be grateful enough to my parents who did everything for my success, my

brothers Hicham and Amine, and my sister Maryam.

iii

Résumé

Les requêtes de préférence sont des outils intéressants pour traiter les données. Elles

permettent par exemple de récupérer à partir d’un ensemble de données, un sous ensemble

qui résume les données en entrée, ou bien d’ordonner les données selon les préférences

de l’utilisateur. Ces requêtes sont utilisées dans plusieurs contextes. Par exemple, filtrer

les données pour ne garder que les tuples intéressants vis à vis de l’utilisateur. Aussi,

elles sont utilisées dans les systèmes de recommandation pour aider l’utilisateur à faire

son choix en proposant un sous ensemble de taille limitée. Un cas réel serait un système

de réservation de vol où étant donnée les préférences de l’utilisateur, le système propose

un ensemble restreint de vols à l’utilisateur.

Les requêtes Skyline sont une classe des requêtes de préférence. Elles retournent un

sous ensemble de données qui constituent les "meilleurs" éléments d’un ensemble de

données. Elles se basent sur le principe de la domination. Soit deux tuples t et t ′, t est

dit dominé par t ′ si t ′ est meilleur ou égal à t sur tous les attributs, et strictement meilleur

sur au moins un attribut. Le skyline est alors l’ensemble des tuples non dominés. Le

concept de la requête skyline est une adaptation en bases de données de la frontière de

Pareto. Celle-ci représente en études économiques, un ensemble d’états qui ne permettent

plus aucune optimisation. Considérons la figure 1 qui représente un ensemble de points

décrits par deux attributs f 1 et f 2. Supposons que les plus petites valeurs sur ces attributs

sont préférées. Ainsi l’ensemble skyline est l’ensemble de points reliés par la ligne rouge.

Le point C ne fait pas partie du skyline car les points B et A le dominent. Notons qu’un

seul des deux points est suffisant pour que C ne fasse pas partie du skyline.

Etant donné un ensemble de données T sur un ensemble d’attributs D, l’évaluation

d’une requête skyline est de O(|T |2 · |D|) en temps d’exécution. Notre travail de recherche

vise à étudier et à optimiser l’évaluation de ces requêtes. En base de données, il existe

trois moyens principaux pour répondre à une requête: (i) parcourir tout l’ensemble de

donnée en entrée sans avoir aucune information préalable sur la localisation des données,

(ii) précalcul ou matérialisation des résultats, c’est à dire, sauvegarder en mémoire les

résultats à des requêtes émises auparavant pour répondre à des requêtes futures, et (iii)

utiliser des structures d’indexation qui permettent une recherche rapide des informations.

v

vi

Figure 1: Frontière de Pareto

Nous avons adopté ces trois méthodes pour répondre aux problématiques traitées durant

la thèse.

Dans un premier temps, nous considérons des données totalement ordonnées, c’est à

dire, il existe un ordre total sur le domaine des attributs, et nous abordons l’optimisation

de requêtes skylines multidimensionnelles. Dans la littérature, il existe principalement

des solutions qui calculent le skyline de zéro ou matérialisent le résultat. Récemment, la

structure d’indexation NSC a été proposée et a été montrée plus efficace que les solutions

de l’état de l’art. NSC est de la forme clé valeur où la clé représente un sous ensemble

d’attributs et la valeur est un ensemble de tuples. Quand une requête skyline par rapport

à un sous ensemble d’attributs est émise, la procédure d’évaluation des requêtes balaye

la structure NSC pour constituer le résultat. Cependant NSC a été conçue en supposant

que les données sont statiques. Hors, dans les applications du monde réel, les données

changent constamment. Ainsi, nous étudions la maintenance incrémentale de la structure

d’indexation NSC. Nous considérons deux types de données: (i) données dynamiques où

les tuples peuvent être inserés ou supprimés à tout moment, et (ii) données en flux où les

tuples sont ajoutés à intervalle prédéfini.

Dans un contexte de données dynamiques, c’est à dire, des tuples peuvent être inserés

ou supprimés à tout moment. Nous avons identifié que la suppression est plus difficile

que l’insertion. En effet, il est possible de récupérer l’information qu’un tuple t est

dominée par NSC mais pas la source de cette domination, c’est à dire, le ou les tuples

qui dominent t. Ainsi, quand des suppressions se produisent au niveau de l’ensemble de

données, il est nécessaire de reconstruire NSC. Nous proposons alors une modification

de la structure pour pallier à ce problème qui est très couteux. Pour tout tuple, nous

ajoutons dans NSC l’information du nombre de tuples qui le dominent par rapport à un

sous ensemble d’attributs. Cette approche permet un bon compromis entre le temps de

maintenance et l’espace mémoire supplémentaire utilisé. Nous montrons des expériences

vii

réalisées pour évaluer les performances de NSC par rapport à ses compétiteurs où nous

considérons plusieurs ensembles de données réels et synthétiques avec des configurations

allant jusqu’à 1 million de tuples et 20 attributs. En général, nous montrons que NSC est

jusqu’à 100 fois plus rapides que les méthodes qui calculent le skyline de zéro. Aussi,

NSC utilise moins de mémoire (environ 16 fois moins la taille des données). Enfin, il

admet une maintenance incrémentale. Par exemple, en ajoutant 10% de la taille des

données de départ, le temps de maintenance est aussi 10% du temps de construction

du nouvel ensemble de données de zéro. Aussi, nous montrons que pour certaines

configurations, le temps moyen pour mettre à jour la structure après une suppression d’un

tuple est 1000 fois moins que le temps de reconstruire toute la structure de zéro.

Dans un contexte de données en streaming, c’est à dire, des données qui s’ajoutent

chaque θ unité de temps et des requêtes qui considèrent les données insérées dans un

intervalle de temps de taille ω . Nous avons conçu un système de gestion des données

entrantes MSSD. Ce système gère les données par lot. Nous stockons les données

entrantes dans une mémoire tampon durant intervalle de temps de taille k. Puis nous

mettons à jour la structure NSCt qui est une adaptation de NSC pour ce contexte. Cette

stratégie permet un compromis entre la précision des réponses aux requêtes et la capacité

du système à y répondre. En effet, la requête de l’utilisateur ne considère que les données

arrivées à l’instant de la dernière maintenance. Par contre, plus la durée de mise en

tampon est grande, plus long est l’intervalle de temps qu’a l’utilisateur pour exécuter

ses requêtes. Nous montrons empiriquement qu’en adoptant le système de traitement par

lot avec NSCt, un utilisateur peut soumettre plusieurs requêtes pendant l’intervalle de lot.

Aussi, l’esapce mémoire utilisé est jusqu’à 100 fois plus petit que l’espace mémoire utilisé

par une méthode qui matérialise les résultats. Enfin, nous présentons une expérience sur

un flux de tweets collectés en temps réel par notre framework. Nous montrons que dans ce

cas aussi, notre solution permet de filtrer les tweets des personnes influentes en un temps

plus intéressant que celui des autres approches.

Après avoir démontré théoriquement et empiriquement que NSC est une structure

de données rapide et fiable pour l’évaluation des requêtes skyline multidimensionnelles,

nous investiguons l’optimisation des requêtes de minimisation de regret à travers NSC.

Ces requêtes ont été proposées comme alternatives aux requêtes skyline et requête Top-K.

En effet les requêtes skyline ne permettent pas la maîtrise de la taille du résultat. Et les

requêtes Top-K requièrent une fonction de score. Les requêtes de minimisation de regret

ont comme entrée un ensemble de données T , un entier K et une famille de fonctions

F. Le résultat est un ensemble S de taille K qui minimise une erreur (regret) ε . Cette

erreur est calculée de plusieurs façons dans la littérature. En général, elle représente

viii

la différence entre le meilleur score obtenu par l’ensemble S comparé à celui obtenu

par l’ensemble en entrée T par rapport à la famille de fonction F. Il a été démontré

précédemment qu’il est suffisant de considérer le skyline de T , Sky(T), au lieu de tout

T pour calculer l’ensemble S. Dans ce manuscrit, nous investiguons l’impact d’autres

ensembles candidats pour le calcul de l’ensemble de regret minimum comme le Top-K

des skylines fréquents (Top-KF). Globalement, nous montrons que le résultat de la requête

Top-KF est un bon ensemble candidat pour calculer un ensemble à regret minimum car (i)

il est rapide à calculer par NSC et (ii) il permet de trouver un ensemble résultat de regret

intéressant.

Dans un deuxième temps, nous considérons que les domaines de certains attributs

sont partiellement ordonnés, par exemple, un attribut "compagnie aérienne". A prioiri,

il n’existe pas d’ordre spécifique entre les compagnies. Dans ce cas, chaque utlisateur

définit un ordre partiel (préférence) R sur les valeurs des attributs. Dans la littérature, les

travaux ayant abordé ce problème ont proposé soit des solutions qui calculent le skyline

de zéro soit des approches basées sur la matérialisation des résultats. Cependant, ces

solutions sont inefficaces quand le nombre d’attributs à ordre partiel ou les domaines des

attributs à ordre partiel grandissent. Dans ce manuscrit, nous proposons une solution

qui décompose une requête en plusieurs sous-requêtes. En effet, un utilisateur définit

un ordre partiel R sur un attribut. Cet ordre partiel est un ensemble de paires (x,y)

tel que la valeur x est préféré à la valeur y. Notre méthode consiste à décomposer une

requête en plusieurs sous-requêtes tel que chaque sous requête considère une seule paire

(x,y) ∈ R seulement. Le résultat final n’est que l’union des résultats des sous requêtes.

Du fait que ces sous-requêtes sont indépendantes, nous les évaluons en parallèle. Aussi,

du fait que le nombre de sous-requêtes est limité, les résultats de ces sous-requêtes

peuvent être matérialisées pour optimiser toutes les requêtes possibles. En outre, nous

introduisons le problème de sélection d’un sous ensemble de sous-requêtes à matérialiser

dans le but d’optimiser un ensemble de requêtes donné, en prenant en considération la

contrainte d’espace mémoire disponible. Nous évaluons empiriquement nos propositions

pour valider les propriétés théoriques. En général, nous montrons que notre approche

est plus efficace quand la taille des données et la taille du domaine des attributs à ordre

partiel grandissent. Aussi, nous montrons que le temps d’évaluation des requêtes par notre

méthode décroit linéairement avec le nombre de processeurs affectés au calcul.

Abstract

Preference queries are interesting tools to compute small representatives of datasets or

to rank tuples based on the users’ preferences. In this thesis, we mainly focus on the

optimization of Skyline queries, a special class of preference queries, in dynamic contexts.

In a first part, we address the incremental maintenance of the multidimensional indexing

structure NSC which has been shown efficient for answering skyline queries in a static

context. More precisely, we address (i) the case of dynamic data, i.e. tuples are inserted

or deleted at any time, and (ii) the case of streaming data, i.e. tuples are appended only,

and discarded after a specific interval of time. In case of dynamic data, we redesign the

structure and propose procedures to handle efficiently both insertions and deletions. In

case of streaming data, we propose MSSD a data pipeline which operates in batch mode,

and maintains NSCt a variation of NSC. We moreover investigate the optimization of

regret minimization queries through NSC. In a second part, we address the optimization

of skyline queries in presence of dynamic orders, i.e, some or all attributes of the dataset

are nominal and each user expresses his/her own partial order on these attributes’ domain.

In that case, we propose highly scalable parallel algorithms that decompose an issued

query into a set of sub-queries and process each sub-query independently. In a further

step for optimization, we propose the partial materialization of sub-queries and introduce

the problem of cost-driven sub-queries selection.

ix

Contents

Acknowledgements iii

Résumé v

Abstract ix

List of Figures xvi

List of Tables xviii

List of Algorithms xix

Introduction 1

1 Related work 7
1.1 Skyline queries . 7

1.1.1 Algorithms . 8

1.1.2 Materialization and dealing with updates 11

1.1.3 Subspace skyline answering and the SkyCube structure 13

1.1.4 Skyline wrt partial and dynamic orders 15

1.1.5 Reducing the query output size 16

1.1.6 Variants of skyline queries . 17

1.2 Regret minimization queries . 17

1.2.1 Variants of regret minimization queries 19

1.2.2 Candidate sets for RMS . 20

2 Preliminaries 21
2.1 Global notations and definitions . 21

2.2 The Negative SkyCube . 21

2.2.1 NSC construction . 22

2.2.2 Time and memory optimization for NSC 25

2.2.3 NSC index and query answering 30

xi

xii

I Multidimensional skyline queries and moving data 33

3 Maintenance of NSC with dynamic data 37
3.1 Introduction . 37

3.2 Preliminaries . 38

3.3 Managing NSC updates . 38

3.3.1 Insertions . 38

3.3.2 Deletions . 42

3.4 Experiments . 48

3.4.1 Constructing the structures . 49

3.4.2 Answering skyline queries . 52

3.4.3 Maintenance upon updates . 54

3.5 Conclusion . 63

4 Maintenance of NSC with streaming data 65
4.1 Introduction . 65

4.2 Preliminaries . 67

4.3 MSSD framework . 68

4.3.1 MSSD architecture . 68

4.3.2 NSCt index structure . 69

4.3.3 Query answering . 80

4.4 Experiments . 80

4.4.1 Query evaluation . 82

4.4.2 Time ratio . 83

4.4.3 NSCt versus DBSky . 83

4.4.4 NSCt maintenance time vs. memory consumption 84

4.4.5 Experiments with real data . 86

4.4.6 Concluding remarks . 87

4.5 Conclusion . 88

5 Optimization of regret minimization queries with NSC 89
5.1 Introduction . 89

5.2 Experiments . 90

5.2.1 Speed up with skyline set . 91

5.2.2 Speed up and regret of sphere with multidimensional skyline

metrics as candidate sets . 92

5.2.3 Top-KF and Top-KP as alternatives to RMS algorithms 93

5.2.4 Discussion . 95

xiii

II Skyline queries in presence of dynamic and partial orders 97

6 On-the-fly algorithms and materialization technique 101
6.1 Introduction . 101

6.2 Preliminaries . 104

6.3 dySky algorithm . 105

6.3.1 Single dynamic dimension . 106

6.3.2 Multiple dynamic dimensions 110

6.4 Optimization using materialization . 113

6.4.1 Materialization structure . 113

6.4.2 Full materialization . 114

6.4.3 Constrained materialization . 116

6.5 Experiments . 118

6.5.1 Query answering time . 120

6.5.2 Precomputation time and storage 122

6.5.3 Caching queries . 123

6.5.4 Evaluating other aspects of dySky 124

6.5.5 Concluding remarks . 125

6.6 Conclusion . 126

Conclusion and perspectives 127

List of Publications 131

References 133

List of Figures

1 Frontière de Pareto . vi

1.1 Pareto frontier . 7

1.2 Data partitioning wrt nearest neighbor point 10

1.3 Exclusive dominance region of b . 12

3.1 Build time and memory consumption with independent data 51

3.2 Build time and memory consumption with correlated data 51

3.3 Build time and memory consumption with anticorrelated data 51

3.4 Build time and memory consumption with real data 52

3.5 Query answering with independent data 53

3.6 Query answering with correlated data 53

3.7 Query answering with anticorrelated data 53

3.8 Query answering with real data . 54

3.9 Memory growth ratio: varying d and |∆+| 55

3.10 Speedup evolution ratio varying d and |∆+| 55

3.11 Small ∆+ insertion by varying d (n = 105) 56

3.12 Small ∆+ insertion by varying n (d = 14) 57

3.13 Inserting large ∆+ by varying d (n = 106) 58

3.14 Evaluating impact with n = 105 and d = 16 59

3.15 Deletion time of topmost tuples . 60

3.16 Small ∆− deletion by varying n (d = 16) 60

3.17 Small ∆− deletion by varying d (n = 105) 61

3.18 Deleting large ∆− by varying d (n = 106) 62

3.19 Inserting and deleting 5% of real data 62

4.1 Framework timeline with θ = 1,ω = 12 and k = 4 69

4.2 Execution time to answer 212−1 queries with independent data 82

4.3 Execution time to answer 212−1 queries with anticorrelated data 82

4.4 Time ratio with independent data . 84

4.5 Time ratio with anticorrelated data . 84

4.6 Memory usage with INDE data . 85

xv

xvi

4.7 Memory usage with ANTI data . 85

4.8 Maintenance time with INDE data . 85

4.9 Maintenance time with ANTI data . 85

4.10 NSCt with INDE data . 86

4.11 NSCt with ANTI data . 86

4.12 NSCt vs. BSkyTree with real data . 87

4.13 NSCt vs. DBSky with real data . 87

5.1 Speedup of sphere with skyline set as candidate set by varying

dimensionality d . 92

5.2 Speedup of sphere with skyline set as candidate set by varying the output

size r . 92

5.3 Computation time of sphere with candidate sets (i) skyline (ii) Top-K

frequent and (iii) Top-K priority by varying d 93

5.4 Computation time of sphere with candidate sets (i) skyline (ii) Top-K

frequent and (iii) Top-K priority by varying r 93

5.5 Regret of sphere by candidate sets (i) skyline (ii) Top-KF (iii) Top-KP by

varying d . 94

5.6 Regret of sphere by candidate sets (i) skyline (ii) Top-KF (iii) Top-KP by

varying r . 94

5.7 Regret of (i) sphere (ii) Top-KF (iii) Top-KP by varying d 94

5.8 Regret of (i) sphere (ii) Top-KF (iii) Top-KP by varying k 95

6.1 DAG representation of R . 105

6.2 Processing q . 111

6.3 Query answering with l = 1 . 121

6.4 Query answering time with l = 2 . 121

6.5 Query answering time with l = 3 . 121

6.6 Query answering time with 10M tuples 122

6.7 Query answering time by varying the preference’s density ρ 122

6.8 Query answering time with real data . 123

6.9 Precomputation with one dynamic dimension 123

6.10 dySky_hybrid vs. Ref. 124

6.11 Query answering cost . 124

6.12 Query answering with restricted memory 125

6.13 Parallel throughput . 125

List of Tables

1 Flights connecting Paris to Singapore on March 5th 2

2 Subspace skylines . 3

3 Flights connecting Paris to Singapore on March 5th with airline company

name . 6

1.1 Hotels . 18

1.2 Skyline hotels . 18

1.3 Top-K hotels . 19

2.1 Dataset T . 22

2.2 Notations . 22

2.3 NSC of T . 25

2.4 List of pairs synthesizing dominance subspaces sets 29

2.5 NSC index . 31

3.1 Solutions scores . 38

3.2 Notations . 38

3.3 Updating pairs of the tuples of T . 40

3.4 List of pairs synthesizing dominance subspaces sets 44

3.5 Pairs with counters . 45

3.6 Real datasets . 49

4.1 Notations . 68

4.2 Pairs of t5 . 70

4.3 Dataset T at timestamp 6 . 71

4.4 Dataset T at timestamp 7 . 71

4.5 Pairs of t6 and t7 . 72

4.6 Pairs of t6 and t7 minimized by equivalence 73

4.7 Pairs of t6 and t7 minimized . 73

4.8 Dataset T at timestamp 9 . 80

4.9 Pairs of t6 and t7 at timestamp 9

before minimization . 80

xvii

xviii

4.10 Pairs of t6 and t7 at timestamp 9 after minimization 80

4.11 Indexation of pairs of t6 at timestamp 9 80

4.12 Parameters values . 81

5.1 Datasets parameters . 91

6.1 Movie rating . 102

6.2 Notations . 105

6.3 Dataset with two dynamic dimensions 110

6.4 The preference q.R . 110

6.5 Synthetic datasets . 119

6.6 Real datasets . 120

List of Algorithms

1 buildNSC . 25

2 evaluateSkyline . 26

3 compressByGreedy . 29

4 buildNSC_index . 30

5 evaluateSkyline_Index . 31

6 insertTuple . 39

7 compressByInclusion . 41

8 batchInsertSetOfTuples . 43

9 buildNSC_with_counters . 45

10 deleteTuple . 46

11 batchDeleteSetOfTuples . 47

12 computePairs . 72

13 minimizingNSCt . 77

14 top-K_frequent . 90

15 dySky_1d . 108

16 dySky_1d_optimized . 109

17 dySky_md . 112

18 dySkySeq_build . 115

19 dySkySeq_qa . 115

20 dySkySeq_hybrid . 118

xix

Introduction

Nowadays, data is driving decisions and is bringing value to businesses. However, often,

the amount of data and the multiple criterion make it hard to extract valuable insight

directly from the input data. It becomes then imperative to have tools that filter useful

data and compute small interesting representatives. Preference queries, for instance, are

tools that allow users to extract and rank data with respect to their preferences. One

concrete example for preference queries implementation is the flight booking platform

Skyscanner. Users are given a small set of flights considered the "best" with respect to

their travel information. They can then make their decision based on this set of flights.

Since the introduction of preference queries by the database community in the 90’s,

two main variants have been extensively studied and expanded to many applications:

Top-K queries [1] and Skyline queries [2]. Both have the same objective, namely retrieving

the best tuples, however, they diverge in their semantics. Top-K queries are combined

with utility (scoring) functions that rank tuples, and return bounded results, i.e. a set of

K tuples. While skyline queries depend on order relationship and dominance without

relying on any utility function. Skyline query result contains only those tuples that are

not worse than any other. Concretely, given a set of attributes D, and two tuples t and t ′

sharing these attributes. We say that t dominates t ′ if and only if t is better or equal than

t ′ on all attributes in D and strictly better on at least one attribute. The skyline set is then

the set of non dominated tuples. By contrast to Top-K queries, the result is not bounded.

Example 1. Consider the dataset depicted in Table 1. It represents a set of flights

connecting Paris to Singapore on March 5th. Flights are described by their price, duration

and number of stops.

Top-K queries rely on a utility function. Let us consider the monotonic utility function

f (t) = t[Price]∗10+ t[Duration]∗5+ t[#Stops]∗100 such that t is a tuple representing a

flight. Then, the utility of flight t1 is f (t1) = 321∗10+15.25∗5+1∗100 = 3386.25 and

that of flight t2 is f (t2) = 393∗10+14.10∗5+1∗100 = 4100.5. Considering this utility

function f , Top-3 flights is composed of flights t1, t2 and t3.

Skyline queries rely on order relationship. The order on numerical attributes is the

natural order over R, i.e. < or >.

1

Tuple Price Duration (in hours) # of Stops
t1 321 15.25 1
t2 393 14.10 1
t3 461 12.50 0
t4 392 14.90 1
t5 378 15.75 1
t6 297 20.90 2
t7 327 19.10 1
t8 400 16 1
t9 367 17.80 1
t10 255 23.50 2

Table 1: Flights connecting Paris to Singapore on March 5th

Note that a skyline query is computed with respect the set of attributes the user is

interested into. For example, a user flying on budget, is interested into the skyline set with

respect to Price and Duration only, which is the set {t1, t2, t3, t4, t6, t10}. While another

user, rich enough, is interested in the skyline with respect to Duration and # of Stops,

which is the set {t3}.

In this dissertation, we consider mainly skyline queries [2]. Although they have

attracted great attention by the database community, their computation is still challenging.

Given a dataset of size n, the time complexity to compute the skyline set is in the worst

case O(n2).

Several works proposed optimization techniques for evaluating skyline queries. Such

works can be broadly categorized into three groups. The first group uses indexes such as

R-Trees [3, 4]. The second group uses preprocessing such as ranking tuples with respect

to (wrt) some utility function in order to prune comparisons [5, 6]. The third group uses

partitioning in order to continuously prune dominated tuples [7, 8, 9]. The later group

techniques have been shown the most efficient. More details in Chapter 1.

The above techniques are adapted to systems which receive few skyline queries as

they mainly compute the skyline from scratch any time a query is issued. They are not

however efficient for systems with high skyline queries throughput. To cope with this

limitation, [10, 11] proposed the materialization of the skyline query result and proposed

techniques to update the materialized result each time the underlying data changes.

Challenges and contributions

In this dissertation, we address the challenges of efficiently answering skyline queries

in dynamic contexts. Concretely, in a first part, we address the maintenance of an

2

Subspace Skyline
(P,D,S) {t1, t2, t3, t4, t6, t10}
(P,D) {t1, t2, t3, t4, t6, t10}
(P,S) {t1, t3, t10}
(D,S) {t3}
(P) {t10}
(D) {t3}
(S) {t3}

Table 2: Subspace skylines

indexing structure NSC upon updates. This structure has been shown efficient for

answering multidimensional skyline queries but was designed for static data. In this

dissertation, we redesign the structure and propose procedures to deal with (i) dynamic

data and (ii) streaming data. In a second part, we consider the case where data have

dynamically ordered attributes and users are allowed to express their own preferences

on the attributes’ domain. We then propose both scalable on-the-fly algorithms and

materialization techniques for efficiently evaluating skyline queries.

Multidimensional skyline queries and moving data Consider the dataset in Table 1.

Users can issue a skyline query wrt any non empty combination of the three attributes

(Price, Duration, # of Stops), e.g. Sky(Price,Duration) or Sky(# o f Stops). There exists

23−1 = 7 possible subspace (subset of attributes) skyline queries where 3 is the number

of attributes. Table 2 illustrates all subspace skyline queries wrt the dataset in Table 1

In the literature, works proposed the computation and the materialization of all

possible subspace skyline queries in a structure called the Skycube, e.g. [12]. This

approach ensures the minimum cost for evaluating a skyline query, however it requires

a high storage cost. Other works proposed partial materialization of the Skycube or

dedicated index structures that seek for a reasonable trade-off between the memory cost

and the query answering time, e.g, [13, 14, 15]. In previous work [16], the structure NSC
has been presented as an index to optimize multidimensional skyline queries. Let D be a

set of attributes and T be a dataset, its main idea consists in comparing every tuple t ∈ T

to all remaining tuples t ′ in T and summarizing the subspaces where t ′ dominates t in a

pair 〈X |Y 〉. X represents the attributes where t ′ is strictly better than t and Y represents

the attributes where t and t ′ are equal. Now given a subspace Z ⊆ D, a tuple t belongs

to Sky(Z), i.e. the skyline over the subspace Z, if and only if there does not exist a pair

〈X |Y 〉 associated to t that covers Z, i.e. Z ⊆ XY and Z 6= Y . cover(〈X |Y 〉) denotes the set

of subspaces covered by 〈X |Y 〉. For example, consider a dataset with attributes A, B and

C. The pair 〈AB|C〉 covers the subspaces {A,B,AB,AC,BC,ABC}. The time complexity

3

of NSC is quadratic wrt the size of the dataset as well as its space complexity. However,

not every pair is kept. Let Pairs(t) be the set of pairs associated to t. This set can be

minimized by computing a subset Q ⊆ Pairs(t) such that cover(Q) = cover(Pairs(t)),

i.e. the set of subspaces covered by Pairs(t) are covered by Q as well. Q is considered

an equivalent subset of Pairs(t), Q ≡ Pairs(t). The minimization problem is NP-Hard

and a polynomial greedy approximate algorithm has been proposed. Experiments in [16]

have shown the proposed structure NSC to be the most efficient wrt both construction and

query answering time, and space consumption (cf. Chapter 2).

However, NSC’s incremental maintenance has been left an open question. In This

dissertation, we address its incremental maintenance in case of dynamic data, i.e., tuples

are inserted/deleted at any time. Regarding insertions, we provide a procedure as well as

an incremental technique for the minimization of the set of pairs. Regarding deletions,

we propose a slight modification of the structure that allows the identification of impacted

tuples by a deletion, i.e., tuples that need their respective set of pairs to be rebuilt. This

enables a partial rebuild of the structure rather than a rebuild from scratch. We show

trough extensive experiments that these modifications do not alter NSC’s query answering

performance. Moreover, we show that the maintenance cost is low. Overall, we show that

(i) skyline query evaluation time is up to 100 times faster than state of the art skyline

algorithm, (ii) memory usage is low (about 16 times less than input data size), and (iii)

the proposed maintenance procedures are effective, e.g. adding 10% of the overall size of

initial data requires 10% of the time to build the NSC from scratch (cf. Chapter 3).

In a second time, we address NSC’s incremental maintenance in case of streaming

data. The proposals in Chapter 3 (dynamic data) are not suited to streaming context

because the maintenance latency is variable and uncontrollable. Indeed, some updates

may take few milliseconds while others may last several minutes (cf. Section 3.4). Hence,

we propose a buffer-based system MSSD which processes data in batch mode. MSSD is

composed of (i) a data buffer, (ii) a main dataset, and (iii) NSCt a variation of NSC to

deal with streaming data. This system balances the maintenance frequency with the query

answering performance. One may choose a longer buffering window if he/she is interested

in evaluating a large number of queries (cf Chapter 4). We show that by adopting the

batch processing system with NSCt, a user can submit a large number of queries during

the batch interval. Also, the memory space used is up to 100 times smaller than that used

by a method which materializes the results. Finally, we carried out experiments on tweets

collected by our framework. We show that in this case too, our solution filters the tweets

of influential people faster than other approaches.

Finally, we leverage NSC to optimize the computation of regret minimization queries

4

proposed by [17]. Given a dataset T , a family of linear scoring functions L and an

integer K. Let f ∈ L and f1(T) be the best score by considering tuples in T . The

regret minimization query aims to compute a subset S ⊂ T of size K such that for every

function f ∈ L, the difference between f1(S) and f1(T) is minimum. This difference

is called the regret ratio. In short, the regret ratio represents how far is the user’s best

choice within S from the user’s best choice within T . [17] proposed these queries to

avoid the limitations of both skyline queries and Top-K queries, i.e. computing a bounded

result without requiring a scoring function from the user. [18] proved the NP-Hardness

of computing such set. In this dissertation, we investigate the improvement provided

by a skyline related query, namely Top-K frequent skyline query, to computing regret

minimization sets. We principally investigate the speedup of regret minimization queries

when they are computed on top of the result of a Top-K frequent skyline query rather

than the whole dataset. We explore this mainly because regret minimization queries are

(i) time-consuming and (ii) Top-K frequent skyline queries are optimized by NSC. The

empirical results show that Top-K frequent skyline query provide interesting execution

time and regret ratio.

Skyline queries in presence of dynamic and partial orders Consider the dataset in

Table 3. Users may want to include the attribute "Airline company" into their skyline

query. However, there does not exist a predefined order over the attribute’s domain.

Hence, users express their preferences over companies, e.g., one user may prefer Finnair

and Thai over the remaining companies. While another user may prefer Swiss Airline over

all. Techniques and algorithms for data with static and total orders are not suitable for this

configuration. In the literature, there is two major approaches to handle this situation, (i)

algorithms which, given a query q, maps a nominal attribute into a set of virtual totally

ordered attributes in accordance to the user preference q.R. Then, a traditional algorithm,

e.g. BSkyTree [7], is processed over the transformed dataset. For example, [19] uses

the lattice theorem [20, 21] to transform a partially ordered attribute into a set of totally

ordered attributes. (ii) Algorithms that answer the issued query through a set of cached

views. For example, [22] adopts a refinement strategy. Let q be an issued query and let

q′ be a cached view then Ans(q) ⊆ Ans(q′) if q′.R ⊆ q.R. We say that q is a refinement

of q′. More details about related work in Chapter 1. In this dissertation, we propose a

decomposition technique. It consists in decomposing a query q into a set of sub-queries

Q. Each sub-query can be processed independently. The result of q is simply the union of

the results of the sub-queries in Q. Moreover, sub-queries result can be materialized such

that further issued queries are optimized. We propose and address a cost-based problem

to select the relevant sub-queries to materialize. Experiments show that our proposals

5

outperform those in the literature (cf Chapter 6). In general, we show that our approach is

more efficient when (i) the size of the input data and (ii) the domain size of the nominal

attributes grow. Also, we show that our algorithms are scalable.

Tuple Price Duration (in hours) # of Stops Airline company
t1 321 15.25 1 Finnair
t2 393 14.10 1 Lufthansa
t3 461 12.50 0 Singapore Airlines
t4 392 14.90 1 Swiss
t5 378 15.75 1 Thai
t6 297 20.90 2 XiamenAir
t7 327 19.10 1 Finnair
t8 400 16 1 Lufthansa
t9 367 17.80 1 Eva Air
t10 255 23.50 2 Norwegian

Table 3: Flights connecting Paris to Singapore on March 5th with airline company name

Manuscript organization

We first recall the literature relevant to this thesis in Chapter 1. We summarize two

decades of work relative to skyline queries. We detail more the aspects related to our

work. In Chapter 2, we present the main definitions and notations used throughout the

manuscript, and we recall the structure NSC [16] which is a building block of our work.

In Chapter 3, we present our first contribution: NSC’s incremental maintenance in

presence of dynamic data. We address both the cases of insertions and deletions. This

work has been published in "Information Systems" Journal [23].

In Chapter 4, we address NSC’s incremental maintenance in presence of streaming

data. We present MSSD, a framework that handles data in batch mode and propose a

new design for NSC to cope with this setting. Then we present experiments that assess

our proposals performance. This work has been published in "Data and Knowledge

Engineering" Journal [24] as well as "DASFAA’19" proceedings [25].

In Chapter 5, we investigate the optimization of regret minimization queries through

NSC. Concretely, we evaluate Top-K frequent skyline queries results as candidates sets

for regret minimization queries. This work is currently under review.

In Chapter 6, we address the optimization of skyline queries in presence of data with

dynamic and partial orders. We provide scalable parallel algorithms and materialization

techniques to efficiently process these queries. This work is currently under review.

Finally, we conclude the manuscript by providing perspectives for future work.

6

Chapter 1

Related work

Here we give a general overview of work related to this dissertation. We give skyline

queries the larger share of this section as they are the main studied topic. Then we

introduce the recently proposed regret minimization queries. Note that further details

about related work will be presented in each chapter.

1.1 Skyline queries

The Skyline operator was first known as the pareto frontier in economics research [26]. It

was as well studied beforehand in computational geometry as the maximal vector problem

[27, 28]. The pareto frontier is composed of optimums, such that given any two optimum

points p1 and p2, there exists at least one property fi where p1 is better than p2, and at

least one property f j, j 6= i where p2 is better than p1. Figure 1.1 illustrates the above

explained property. Here, smaller values are better values. Points crossed by red line are

optimums and hence belong to the Pareto frontier. E.g., observe the points A and B. B

is better than A on f1, and A is better than B on f2. Both are optimums because no other

point is better than them on both f1 and f2.

Figure 1.1: Pareto frontier

7

[2] introduced the skyline query as an alternative to Top-K queries. Given a dataset

T over a set of attributes D, the skyline set Sky(T) is the set of the best tuples of T . Its

computation relies on domination relation. We say that a tuple t dominates another tuple

t ′ iff t is better or equal on all attributes and strictly better on at least one attribute. The

set of skyline tuples is then the set of non dominated tuples.

[2] proposed to extend the SQL syntax to handle the skyline operator by DataBase

Management Systems (DBMS) as shown below. The attributes wrt (with respect to) which

the skyline is to be computed are listed after the term "SKYLINE OF". Moreover for each

attribute, it is necessary to precise if it is to be minimized or maximized.

SELECT ...FROM ... WHERE ...

GROUP BY ... HAVING ...

SKYLINE OF [DISTINCT] d1 [MIN | MAX | DIFF], ..., dn [MIN | MAX | DIFF]

ORDER BY ...

Evaluating a skyline query on top of a relational database system can be done by

converting the skyline query into a nested SQL query. Hereafter an example of a skyline

query over the dataset in Table 1.

SELECT * FROM flight s1

WHERE NOT EXISTS (SELECT * FROM flight s2

WHERE (s2.price <= s1.price

AND s2.stop <= s1.stop)

AND (s2.price < s1.price

OR s2.stop < s1.stop);

This naive implementation has the disadvantage of being time-consuming. It involves

a self-join over the table flight. For every tuple handled through s1, a full read of the same

table is executed in order to check if the tuple is dominated. Nonetheless, the evaluation

of this SQL query in a database management system is enhanced when data (columns)

are indexed [29].

In the following sections, we present (i) relevant algorithms in the literature for

computing the skyline from scratch and (ii) approaches for updating a materialized skyline

in a dynamic context. Moreover, we present the two variants we consider in this thesis:

(i) subspace or multidimensional skyline and (ii) skyline over partially and dynamically

ordered dimensions.

1.1.1 Algorithms

We can divide the relevant skyline algorithms into two groups: (i) early algorithms

that mainly targeted pruning comparisons, and (ii) algorithms that used intelligently

8

1.1. Skyline queries

partitioning in order to speed up computation. The second group provided a significant

improvement into skyline computation time.

Early algorithms

Authors of [2] which introduced the skyline operator, proposed BNL algorithm (block

nested-loops). It incrementally discards dominated tuples. First, it initializes the skyline

set S with some random tuple from the dataset. Then it iterates on the whole dataset.

For each tuple t in the dataset, it compares it to tuples in S. If t is found dominated, it

is discarded and never considered again. If t is not dominated, it is then appended to S.

Moreover, tuples in S which are found dominated by t are discarded.

[2] proposed also D&C, a divide and conquer like algorithm. It naively partitions the

dataset into several subsets and computes the skyline wrt each subset. The intermediate

results from each subset are merged and a final skyline computation is performed.

On another side, [3, 4] proposed index based techniques. They specifically used

R-Trees [30, 31]. We recall that R-Trees are used for multidimensional data indexing.

Their respective algorithms, i.e. NN (Nearest Neighbor) and BBS (Branch and Bound

Skyline) proceed by a recurrent nearest neighbor search. At the beginning, they select

the nearest tuple to the origin o (consider smaller values are preferred). Let us call this

tuple s1. This tuple is appended immediately to the skyline set. Then they partition the

dataset wrt s1 into 2d regions. The region delimited by s1 and o is empty. One region

is called the dominance region, i.e., all tuples in this region are dominated by s1, and

hence are discarded. Finally the 2d − 2 regions are called anti-dominance regions as the

tuples in these regions are incomparable with s1. This process (nearest neighbor selection,

partitioning and pruning dominated tuple) is repeated for all remaining regions until all

tuples are either found dominated or belonging to the skyline. R-trees are used by these

algorithms in order to speed up the selection of the nearest neighbor. Figure 1.2 shows the

first iteration of the above process. The tuple b is the nearest neighbor tuple to the origin.

First, it is appended to the skyline set. Then data is partitioned wrt b. Tuples a, e, d, f are

discarded as they are in the dominance region of b. The process is repeated on regions

containing (i) f , and (ii) g and c.

[5, 6] proposed a pre-sorting algorithm based on the following observation: given any

ascending scoring function f , a tuple t is not dominated by a tuple t ′ iff f (t) is smaller than

f (t ′) (assuming small values are preferred). Hence, their proposed algorithm SFS sorts

the dataset wrt a function f , and checks the dominance of a tuple only wrt tuples having

better (smaller in this case) scores. More precisely, the algorithm starts by appending the

tuple with the lowest score to the skyline set S. Then, it handles the remaining tuples in

9

o

h
e

b

a

c

d
f

g

Figure 1.2: Data partitioning wrt nearest neighbor point

an ascending order, and it compares them to tuples in S. If a tuple is found not dominated

by tuples in S then it is surely a skyline tuple and is appended to S. [32, 33] came up with

improvements for SFS algorithm with respectively LESS and SaLSa algorithms but both

use this notion of scoring function.

[34] proposed a dedicated index structure inspired from Bitmap [35]. It encodes data

in order to identify the skyline tuples through bitwise "&" operation. However, it is not

suitable for high dimensionality and has poor maintenance performance.

Partitioning and parallelization

The algorithms NN and BBS presented above have been the first to come up with a

partitioning technique. Their ability to prune dominated tuples has been shown higher

than other’s. However, despite this performance, these algorithms lack scalability wrt the

number of dimensions. Indeed, it is likely that data becomes anti-correlated when the

number of dimensions grow. Hence, tuples are often incomparable and the pruning power

of these methods weakens. Moreover, the partitioning generates 2d regions (where d is

the number of dimensions), each of which needs to be processed. Hence the algorithm

has an exponential complexity wrt the number of dimensions.

Nevertheless, the partitioning technique remains efficient. The following algorithm

BSkyTree [7, 8] adopted a different approach for pivot selection, i.e., tuple wrt which data

is partitioned. Recall that for NN and BBS, the pivot tuple is always the nearest neighbor

to the origin. Authors of BSkyTree have pointed out that existing techniques have weak

performance in presence of high dimensionality, and proposed a cost-based selection of

pivot tuple for partitioning data that balances both comparability and incomparability.

Once the pivot tuple is selected, the dataset is divided into sub-regions, and dominated

tuples are pruned. The process is then repeated for each sub-region. Experiments showed

that BSkyTree outperforms by two orders of magnitude the existing algorithms.

10

1.1. Skyline queries

[9] came up with Hybrid, a multi-core partitioning based techniques. During the

process, it maintains a shared, global skyline among all threads, which is used to minimize

dominance tests while maintaining high throughput. The algorithm uses an efficiently

updatable data structure over the shared, global skyline, based on tuple-based partitioning.

Then, [36] proposed SkyAlign an adaptation of Hybrid to GPGPU (General Purpose

Graphical Processing units). To our knowledge, BSkyTree, Hybrid and SkyAlign are

respectively single core, multi-core, and GPU state of art techniques for processing

skyline queries.

On another side, works considered the paradigm Map Reduce. This paradigm has been

developed for distributed architecture. It allows to distribute computation on a cluster of

machine (map) and aggregate the intermediate results (reduce). For processing skyline

queries, the map step consists in computing skyline wrt subsets of the dataset. The reduce

consists in gathering the skylines and computing the final skyline. [37] proposed to use

Map Reduce also in the step of data partitioning.

1.1.2 Materialization and dealing with updates

The algorithms presented in the previous section compute the skyline from scratch, i.e.,

every time a skyline query is issued, these algorithms run through the whole dataset. In

a real world case where thousands of queries are issued simultaneously, running these

algorithms for every issued query is not manageable whatever their efficiency.

Materialization is a technique in databases that provides fast query processing. It

consists in storing the queries results in the disk, and retrieving them whenever the same

query is issued. However materialized results need to be updated whenever the underlying

data change.

Regarding skyline queries, updating materialized results is challenging, mainly

because they are not monotonic [38]. The skyline set can change dramatically by both

insertions and deletions. However deletions have been shown harder to deal with than

insertions. Concretely, given a table T and its corresponding materialized skyline set S.

A newly inserted tuple t+ can either join S and exclude zero or more tuples from S, or be

dominated by tuples in S. For a recently deleted skyline tuple t− ∈ S, non skyline tuples

in T may join the skyline set S.

We consider two types of data that change over time:

• Dynamic data: a number of tuples are inserted/deleted at any time.

• Streaming data: a stream of tuples over a window, i.e., tuples have a unique

specified lifetime after which they are deleted

11

o

h
e

b

a

c

d
f

g

Figure 1.3: Exclusive dominance region of b

We make this categorization (dynamic data vs. streaming data) because one efficient

approach wrt dynamic data may not be efficient wrt to streaming data, and vice versa.

Dynamic data Works have mainly addressed the deletion of skyline tuples as it is

considered more challenging than insertion. [4] was first to introduce the notion of

exclusive dominance regions EDR. Consider a dataset T and its skyline set S. Let t ∈ S,

EDR(t) consists of tuples not dominated by any other skyline tuple than t. Hence EDR(t)

constitutes the set of candidate tuples that will integrate the skyline set once t is deleted.

Figure 1.3 shows the exclusive dominance region of the tuple b. EDR(b) is the rectangle

in gray. Observe that for a and f , despite being dominated by b, are not in EDR(b)

because they are dominated by respectively h, and g and c. However the idea was not

developed nor implemented in that paper. A naive algorithm for computing EDR runs in

time O(sd), where s is the size of the current skyline and d the number of dimensions.

Later, [10] proposed an O(s ·d) algorithm, called DeltaSky.

Streaming data The semantics of skyline queries in a streaming data context is: the

skyline over tuples arrived in the window (τ−ω,τ] such that ω is the size of the window

and τ the current time. When queries consider all tuples arrived so far, ω → +∞.

Continuous skyline queries results are meant to be accurate with the current state of the

dataset [39]. To the best of our knowledge, [11] is the first work to address the continuous

skyline query answering. It was motivated by the fact that state of the art algorithms

are not efficient in presence of data streams. Their approach consists of maintaining two

sets of tuples DBsky and DBrest. DBsky stores skyline tuples, and DBrest stores skyline

candidates, i.e., tuples waiting some tuples from DBsky to expire. They proposed two

approaches to maintain these sets: Lazy method consists of (i) storing the incoming tuple

either in DBsky or DBrest (ii) discarding from DBsky outdated tuples and (iii) migrating

tuples from DBrest to DBsky if they become skyline tuples. The second method, called

Eager, optimizes the migration of tuples from DBRest to DBSky by storing an event list

12

1.1. Skyline queries

which indicates at what timestamp a tuple in DBRest could integrate DBSky. Later, [40,

41] proposed a slightly different approach. Their algorithm called LookOut maintains a

skyline set Sky and an R-tree of the database. An incoming tuple t is processed by the

procedure called isSkyline that takes t and the R-tree as inputs and returns true if t is

a skyline tuple. Yet, these methods remain unsuitable for multidimensional queries as

the structures they manage and the maintenance processes need to be replicated for every

subspace, hence an exponential time and space complexity wrt the number of dimensions.

We note however that they guarantee an immediate query answering as the skylines are

fully materialized. [42] addressed subspace skyline query answering. They proposed

to maintain potential subspace skyline tuples besides the full skyline (skyline wrt all

attributes). Then they answer issued queries through both sets. While this approach stores

less data. The maintenance and query answering procedure is more costly.

[43] performed an empirical evaluation of the methods described above and showed

that Eager method presented in [11] is the most efficient wrt execution time, but requires

more memory due to the maintenance of the event list. It is the approach to which we

compare our proposal in Section 4.4.3.

In a similar field, [44] addressed the skyline query with temporal constraints. However

without considering the streaming behavior.

Hereafter we present the research lines that we consider in this manuscript, i.e. (i)

multidimensional skyline and (ii) skyline over data with partially and dynamically ordered

dimensions.

1.1.3 Subspace skyline answering and the SkyCube structure

Consider again the dataset shown in Table 1. One user, who travels on budget, may be

interested into the skyline wrt the attributes Price and Duration, while another, richer,

may be interested into the skyline wrt the attributes Duration and # of stops. This use

case motivated the subspace (subset of dimensions) skyline research and the Skycube

concept. The latter is the set of skylines wrt every possible subspace. [45] and [46] have

independently introduced subspace skyline queries (multidimensional skylines) and the

Skycube concept. They adapted existing algorithms for full skyline to subspace skyline.

[47] highlighted the inefficiency of existing algorithms to deal with multidimensional

skyline and proposed SUBSKY . It encodes multidimensional tuples into 1 dimension

values, and indexes them with a B-tree. Then answers subspace skyline queries using

that structure. [48] introduced the concept of Extended Skyline (Ext-SKY). These are the

tuples that are not totally and strictly dominated. Those tuples not belonging to this set

13

do not belong to any skyline wrt any subspace, thus can be removed from the underlying

data so as to simplify any subsequent computation.

[49] proposed an algorithm for computing the whole Skycube. In this line, [12] came

up with QSkyCube which computes in a top-down fashion the skyline for each cuboid

(subspace) using a tree-like structure. Later, [50] proposed RSkyCube, an optimization

of QSkyCube. The reported experiments show up to 10 fold speed up. [13] showed how

one can benefit from the functional dependencies holding in the dataset to optimize both

full and partial Skycube computation. Following works propose dedicated index structure

that speed up subspace skyline computation. [15] proposed the HashCube structure. It

consists essentially to associate a 2d Boolean vector to every tuple t where position i in the

vector is set iff t belongs to Sky(i). Here, i identifies a subspace. While query evaluation

is very efficient (for a query Sky(i), check position i for every tuple, hence O(n)) the

memory consumption is large: O(n× 2d). In order to save space, each vector is divided

into subvectors (called words) of size w. Hence, each word encodes a set of subspaces.

To each word ω j, is associated a set of tuples sharing ω j. The worst case storage is 2d

ω
·2ω

words. However this limit is hardly reached as a word for which no tuple is associated is

not stored. In practice, this encoding reduces memory by a factor 10. Even if this space

compression technique comes with a little overhead for query evaluation (for Sky(i), one

needs to traverse all the words, check whether the subspace i is set in a word then add its

associated tuples to the result), HashCube is still remarkably fast for query evaluation.

[51] extended [15] by proposing, among others, mdmc, an algorithm for building the

HashCube structure. Regarding HashCube maintenance, inserting a new tuple t can be

handled by comparing it to every other tuple in order to update the previous bit vectors

and create the vector associated to t. However, deleting an old tuple requires rebuilding

the HashCube from scratch and this represents a severe limitation when dealing with

dynamic data. [14] proposed the Compressed Sky Cube (CSC). Its main idea consists in

associating to every tuple t the smallest subspaces X , in terms of set inclusion, such that t

belongs to Sky(X). Sky(X) query is evaluated by first computing the union of the sets of

tuples t such that Y ⊂ X is associated to t. Then a standard skyline procedure is evaluated

on the so obtained tuples set. We also note that CSC, to our best knowledge, is the only

structure for which an incremental maintenance procedure has been provided. Despite its

advantages, the experiments conducted by [15] show that query evaluation via CSC is not

efficient. [52] proposed the closed Skycube structure. The technique clusters all equal

subspace skylines into equivalence classes so that a single copy is materialized. Even if

this solution provides an optimal query response time, finding the equivalent classes is

time consuming, actually, more than computing the Skycube. Moreover, the size of the

14

1.1. Skyline queries

closed Skycube may reach that of the Skycube in the case where subspace skylines are

all different from each others. Reference [49] also proposed a condensed representation

of the Skycube. It associates to every tuple a set of pairs 〈Top,Bottoms〉 encoding the

subspaces where t is in the skyline. For example, if the pair 〈ABC,{A,B}〉 is associated

to t, then for every X such that X ⊆ ABC and X ⊇ A or X ⊇ B, t belongs to Sky(X). [14]

proved that CSC is smaller than this condensed structure.

In Chapter 2, we present the dedicated index structure for answering subspace skyline

queries NSC, for which we study its incremental maintenance in this manuscript.

1.1.4 Skyline wrt partial and dynamic orders

Usually, data is described over nominal attributes, e.g. companies operating flights or

movies genre. Initially, there does not exist any order over these attributes’ domain. Users

are asked to express their preferences (orders) which can be partial. Also, orders change

from a user to another, i.e., dynamic. Existing algorithms for skyline query evaluation

mainly consider data over attributes with static and total orders. Moreover, these existing

techniques can not easily be extended to handle data over attributes with partial and

dynamic orders.

We note two approaches in the literature for handling this case: (i) algorithms

computing the skyline from scratch and (ii) materialization-based techniques.

Algorithms

In lattice theory, it is well known that every partial order can be embedded into a product

of a set of total orders [20, 21]. This inspired [19] to propose CPS, a transformation

technique of every partially ordered dimensions. Finding the minimal number of total

orders is NP-complete. So, [19] used an approximate algorithm. A skyline algorithm for

totally ordered dimensions is then applied on the transformed dataset.

[53] proposed to transform each partially ordered dimension into two totally ordered

dimensions. The transformed dataset is then processed by any standard algorithm.

However, the output may include false positives, because of the restricted number of total

orders. So a filtering pass on the output is required.

[54] proposed the framework T SS. It transforms a partially ordered dimension into a

single totally ordered dimension corresponding to one of its topological orders. Likewise

[53], a filtering step is needed after getting a first skyline because of false negatives.

Hence, CPS [19] is the only accurate technique. Moreover, empirical studies showed

that CPS combined to BSkyTree outperforms techniques in [19, 54, 53] wrt query

answering time.

15

Materialization based techniques

[55, 22, 56] addressed skyline queries over dataset with partially and dynamically ordered

dimensions with materialization-based techniques. [56] proposed a tree-like structure

Ordered Skyline Tree OST in order to materialize the skylines wrt every total preference.

A query q related to a preference q.R is evaluated through combining the skylines of

different total preferences. The number of total preferences on one attribute is m!, where

m is the cardinality of the nominal attribute. Hence, the memory usage of this tree can

rapidly become a bottleneck. Handling several dimensions worsen this limitation, i.e.,

(m!)l . Nonetheless a compressed version of OST, denoted CST, has been presented and

whose worst case of memory usage may reach that of OST.

In [55] and its extension [22], authors proposed answering queries by refinement

process. Let q, q′ be two skyline queries and q.R, q′.R be their respective preferences.

We say that q is a refinement of q′ iff q′.R ⊆ q.R. In such case it is easy to see

ans(q.R) ⊆ ans(q′.R). Suppose that a set Q of queries are materialized and consider

q as a new submitted query. Their solution consists first to find a refinement q′ ∈ Q of q

and then use its materialized result to evaluate q. The authors propose an index structure

to find a refinement given a query. Unfortunately, this index is not complete in that, some

refinement can be missed. Hence, it cannot return the best refinement, i.e., the one whose

result is the smallest.

Recently, [57] considered the problem of maintaining several skylines corresponding

to different users preferences. Consider two users looking for Ferraris’ deals on Internet.

User1 prefers Ferraris with (i) red color over yellow, and (ii) yellow color over green.

While user2 prefers Ferraris with red color over the yellow and green colors, and has

no preference between yellow and green. The authors propose to measure the similarity

between user’s preferences in order to share skyline computations. Hence when a new

Ferrari deal is available, it is decided whether it belongs to each user’s skyline with less

cost.

[58] studied skyline queries on datasets with categorical attributes, i.e., having very

small domains, e.g, values are either True or False. However they considered only totally

and statically ordered attributes.

1.1.5 Reducing the query output size

The skyline set becomes rapidly close to the whole input dataset when the dimensionality

grows and data are anti-correlated. In that setting, the skyline set becomes of minimal

interest. Works have proposed techniques to solve this counter-performance.

16

1.2. Regret minimization queries

[4, 59] proposed Top-k skyline queries, it consists on selecting K skyline tuples

with the highest score wrt to a utility function f . They showed that their algorithm

handles this extension. However, it is of minimal practicality as the skyline operator

was proposed in order to avoid the user to express a utility function. [60] proposed the

K-dominating queries which return the tuples that dominate the largest number of other

tuples. [61] proposed a similar query: the k-representative skyline tuples (Top-k RSP).

They propose the function D which given a subset S ⊆ T , D(S) represents the number of

tuples dominated by tuples in S. The output of Top-k RSP is the set of K skyline tuples that

maximizes D. This technique has been shown useful for reducing the output size, however

it may discard interesting tuples. [62] showed that the previous technique does not output

good representative and redefined the problem of identifying the k-representative skyline

tuples based on a distance metric. In [63], authors proposed the epsilon-skyline. It allows

to reduce the size by discarding tuples that have bad values in some dimensions.

The following work considered ranking tuples with respect to their behavior in

subspaces. Authors in [60] proposed a new metric called skyline frequency. It represents

the number of subspace skylines to which a tuple belongs. [64] proposed skyrank which

ranks tuples based on the number of tuples it dominates by considering all subspaces.

1.1.6 Variants of skyline queries

Works have proposed variants of skyline query to deal with specific use cases. We cite

few of them in this section. [4, 59] proposed the dynamic skyline. This query aims to

capture tuples close to a given query tuple t. In this setting, a tuple t1 dominates a tuple

t2 if the distance wrt some function between t1 and t is better than that between t2 and t.

A use case is e.g., a user selects a house on a real estate platform and the query retrieves

the similar houses. As a dual query, the reverse skyline query [65] retrieves those tuples

in the database whose dynamic skylines contain a given query tuple. Authors proposed

dedicated efficient algorithms for the above queries. Nonetheless they can be evaluated

by traditional skyline algorithms. Finally, [66] proposed the group skyline which consists

in returning a group of K tuples not dominated by any other group of K tuples as well.

This technique can also be used to control the size of the output.

1.2 Regret minimization queries

[17] presented the regret minimization queries to leverage the benefits of skyline [2] and

Top-k [1] queries, and exclude their limitations. Like Top-K queries, it bounds the result

size and like Skyline queries, it does not require the user to provide a scoring function.

17

Hotels Price Distance
h1 200 120
h2 390 140
h3 465 20
h4 395 90
h5 100 300

Table 1.1: Hotels

Next, we recall the skyline queries and Top-K queries and illustrate their behavior through

Table 1.1. The Skyline queries are based on the dominance relation. A tuple t is said to

be dominated by a tuple t ′ iff (i) t ′ is better or equal on all dimensions and (ii) t ′ is strictly

better on at least one dimension. The Skyline result is then the set of non dominated

tuples. Top-K queries are based on scoring functions given by users. Often, scoring

functions are linear, e.g. f (t) = ∑
d
i=1 w[i] ∗ t[i] where w is called the weight vector. In a

normalized setting, 0≤ w[i]≤ 1∀i ∈ [1,d] and ∑
d
i=1 w[i] = 1. The result of Top-K query,

by considering the scoring function f , is K tuples with the best scores.

Example 2. Consider Table 1.1 that describes Hotels by their price and their distance

from the beach. Suppose that cheaper and closer to the beach is better

The Skyline set with respect to this dataset is illustrated in Table 1.2. Only h2 does not

belong to the Skyline set because it is dominated by t1. Indeed, t1 is cheaper and closer to

the beach. Observe here that we can not control the result size.

Hotels Price Distance
h1 200 120
h3 465 20
h4 395 90
h5 100 300

Table 1.2: Skyline hotels

Table 1.3 represents the hotels’ score wrt three linear scoring functions. Note that

lower the score the better the hotel. Top-1 hotels score is underlined wrt every function.

h1 is Top-1 wrt (0.5,0.5), h3 is Top-1 wrt (0.2,0.8) and h5 is Top-1 wrt (0.8,0.2)

[17] presented the regret minimization queries (RMS) to avoid the limitations of

skyline and Top-k queries, i.e., the unbounded result of Skyline queries and the need of

scoring functions for Top-K queries. The main idea is to select a subset S from a dataset

T such that S minimizes the user regret. In a nutshell, the regret represents how far the

user’s best tuple in S is from the user’s best tuple in T . For example and to simplify,

consider the family of 3 functions F = { f(0.2,0.8), f(0.5,0.5), f(0.8,0.2)}. Now consider the

18

1.2. Regret minimization queries

Hotels – Weight vector (0.2,0.8) (0.5,0.5) (0.8,0.2)
h1 136 160 184
h2 190 215 340
h3 109 242.5 376
h4 151 242.5 334
h5 260 200 140

Table 1.3: Top-K hotels

set S = {h3,h1}. The maximum regret ratio of S wrt F , i.e. mrr(S,F), is 31.4%. This

represents the ratio between the best score within T and the best score within S wrt the

function f(0.8,0.2). Concretely, this means that for a user whose scoring function is in F,

the best score he can get from S is at most 31.4% less than the best score he can get from

T .

[17] formalized the RMS problem as follows:

Problem RMS Given a dataset T , the family of all linear scoring

functions L, an integer K, compute a set S⊂ T of size K that minimizes

the maximum regret ratio mrr(S,L).

Now, we present how the maximum regret ratio is computed. Let f ∈ L be a scoring

function, and given a dataset T , let f1(T) be the highest score by considering tuples in T .

The regret of a subset S⊆ T wrt f is f1(T)− f1(S) and the regret ratio is f1(T)− f1(S)
f1(T)

. The

maximum regret ratio is then mrr(S,L) = max f∈L
f1(T)− f1(S)

f1(T)
.

[18] proved the NP hardness of the RMS problem and [17] proposed a greedy

approximate algorithm to solve it. The regret minimization set (RMS) has been shown

(i) scale-invariant, i.e. the maximum regret ratio remains the same even if the values

in the dataset are multiplied by the same factor, and (ii) stable, i.e. the RMS does not

change when weak tuples (tuples not having the highest score wrt any scoring function)

are inserted or deleted from the dataset.

Algorithms for solving RMS belong to three categories: (i) those solving it exactly

and in polynomial time for 2 dimensions’ dataset [18, 67, 68], (ii) heuristic-based [17, 69,

70] and (iii) those providing theoretical guarantees [17, 71, 67, 69, 72, 68]. Sphere [69]

is currently the state of the art algorithm. Also, it provides theoretical guarantees on the

output regret.

1.2.1 Variants of regret minimization queries

[18] proposed a relaxation of RMS, namely the k-regret minimizing set (kRMS). The

k-regret represents how far the user’s best tuple in S is from the kth user’s best tuple

19

in T . Concretely, let f ∈ L be a scoring function, k be an integer, then let fk(T) be

the score of the kth ranked point using f . The k-regret of a subset S ⊆ T wrt f is

max(0, fk(T)− f1(S))1 and the regret ratio is max(0, fk(T)− f1(S))
fk(T)

. The maximum regret

ratio is then max f∈L
max(0, fk(T)− f1(S))

fk(T)
. [73] introduced the regret minimization problem

wrt non-linear scoring functions such as concave and convex functions. [74] considered

the average regret ratio rather than the maximum regret ratio. Finally, [75] proposed the

rank regret minimization queries. Authors measure the regret based on the rank difference

rather than the score. The exact semantic of rank regret minimization query is: Given a

dataset T , a family of scoring functions FL and an integer k, compute S ⊂ T such that

∀ f ∈ L ∃t ∈ S such that t is at worst ranked kth wrt f .

1.2.2 Candidate sets for RMS

[17] showed that it suffices to consider the skyline set to compute the RMS rather than the

whole dataset. In other words, the optimal solution S∗ is composed of skyline tuples. [70]

presented an even smaller candidate set, namely Happy tuples. However, its computation

time is a weakness. Its time complexity is O(n2 ∗ d2) where n is the size of the dataset

and d the number of dimensions. [76, 77] showed that one can leverage from Skycube

to optimize regret queries. Concretely, they proposed the Top-K frequent skyline set and

Top-K priority skyline set as candidate sets for RMS. Until now, there is no theoretical

guarantee on the RMS calculated from these sets. In this manuscrispt and specifically in

Appendix A, we investigate the improvement provided by these candidate sets on RMS

by using NSC. Moreover we empirically evaluate the output regret of these approaches

compared to RMS dedicated algorithm Sphere [69].

1The regret is always positive

20

Chapter 2

Preliminaries

2.1 Global notations and definitions

Let T (Id,D) be a relation where D = {D1, . . . ,Dd} is a set of attributes called also

dimensions. A subspace, hereafter denoted X ,Y, . . . is a subset of D. We assume now

that the domain of every Di is associated to a total order <i, or simply < expressing the

preference of users.

Hereafter the main definitions for this manuscript: (i) Dominance and (ii) Skyline.

Note that these definitions may slightly change in next Chapters.

Definition 1. Dominance: Given two tuples t and t ′ and a subspace X, t dominates t ′

w.r.t. X, denoted t ≺X t ′, iff ∀Di ∈ X : t[Di] ≤ t ′[Di] and there exists D j ∈ X s.t t[D j] <

t ′[D j]. We say that t ′ is X-dominated by t.

Definition 2. Skyline: The skyline of T w.r.t. X, denoted Sky(T,X) is the set of tuples

{t | 6 ∃t ′ : t ′ ≺X t}. We sometimes write just Sky(X) when T is clear from the context.

Example 3. Table 2.1 will be used as a running example throughout the section. Using

this dataset, users may ask for the best tuples (skyline tuples) regarding every combination

of the dimensions {A,B,C,D}. For instance, Sky(AB) = {t1, t2} and Sky(ABCD) =

{t2, t3, t4}.

Table 2.2 summarizes the notations used throughout this manuscript. Note that some

notations will be redefined according to the needs of each chapter.

2.2 The Negative SkyCube

In this section, we present NSC (Negative SkyCube) [16] a concise data structure which,

for every tuple t in T , summarizes the set of subspaces X such that t does not belong

21

Id A B C D
t1 1 1 3 3
t2 1 1 2 3
t3 2 2 2 2
t4 4 2 1 1
t5 3 4 5 2
t6 5 3 4 2

Table 2.1: Dataset T

Notation Definition
T input table
t, t1, . . . tuples
n number of tuples in T
D the set of all dimensions
d number of dimensions
A,B, . . . dimensions
X ,Y, . . . subspaces, i.e., subsets of D
Sky(X) skyline w.r.t. X
topmost Sky(D)
compare(t, t ′) the pair resulting from comparing t to t ′

〈X |Y 〉 a pair of subspaces
Pairs(t,T) set of pairs associated to t w.r.t. T
NSC(T) set of Pairs(t) ∀t ∈ T

Table 2.2: Notations

to Sky(X). This concept was motivated by the following observation: for a tuple t,

while we need to compare it to every other tuple in order to state that it belongs to some

Sky(X), comparing t to just one t ′ can inform us about a whole set of subspaces where t is

dominated, i.e., it does not belong to their respective skyline. Then, answering a subspace

skyline Sky(X) consists in finding through the structure the tuples that are not dominated

wrt X . In the following we present how NSC is (i) constructed, (ii) optimized wrt time

and space, and (iii) used for answering skyline queries.

2.2.1 NSC construction

We start by providing some preliminary definitions.

Definition 3 (Dominance subspaces). Let t ∈ T and X ⊆ D. X is a dominant subspace

for t iff t 6∈ Sky(X).

22

2.2. The Negative SkyCube

Definition 4 (Negative SkyCube). Let t ∈ T and let Dom(t) denote the dominant

subspaces for t. The negative skycube of T is the set {Dom(t) | t ∈ T}.

In other words, the negative Skycube stores for every tuple t, the subspaces where it

does not belong to their respective skyline.

Example 4. From the running example in Table 2.1, it is easy to check that Dom(t1) =

{ABCD, ABC, ACD, BCD, AC, BC, CD, C, D}.

Clearly, the computation of every skyline Sky(X) is straightforward using NSC: for

every tuple t, t ∈ Sky(X) iff X 6∈ Dom(t).

Actually, NSC does not store Dom(t)∀t ∈ T but a more concise summary, i.e.,

Pairs(t)∀t ∈ T . Next we present this concept and we show how NSC can be computed.

We first show how by comparing t to some t ′ we obtain a set of subspaces where t is

dominated.

Definition 5. Let t, t ′ ∈ T . We define a comparison function compare as follows:

compare(t, t ′) = 〈X |Y 〉 such that X is the set of dimensions D j such that t ′[D j] < t[D j]

and Y is the set of dimensions D` for which t ′[D`] = t[D`].

Example 5. From Table 2.1, we have compare(t5, t6) = 〈BC|D〉 because t6[B] < t5[B] ,

t6[C]< t5[C] and both tuples are equal on dimension D.

Obviously, if compare(t, t ′) = 〈X |Y 〉 then X ∩Y = /0.

Definition 6 (Coverage). Let 〈X |Y 〉 be a pair of disjoint subspaces and let Z be a

subspace. We say that 〈X |Y 〉 covers Z iff Z ⊆ XY and Z ∩ X 6= /0. By cover(〈X |Y 〉)
we refer to the set of subspaces covered by the pair 〈X |Y 〉

Example 6. p = 〈AC|B〉 covers subspaces A, AB, AC, BC and ABC. Note that B is not

covered by p because even if B⊆ ACB, B∩AC = /0.

As stated in the following property of cover, the coverage of multiple pairs is the

union of the sets of subspaces covered by the pairs.

Property 1. Let {p1, . . . , pn} be a set of pairs then

cover({p1, . . . , pn}) =
⋃

i∈[1,n]
cover(pi).

The following proposition shows that the covered subspaces by the pair we obtain

when t is compared to t ′ are precisely the subspaces where t ′ dominates t. Consequently,

they represent a fraction of Dom(t).

23

Proposition 1. Let t, t ′ ∈ T , compare(t, t ′) = 〈X |Y 〉 and Z ⊆D. Then t ′ dominates t over

Z iff Z ∈ cover(〈X |Y 〉).

Proof. 1) Z ∈ cover(〈X |Y 〉)⇒ t ′ ≺Z t: For every two disjoint subspaces Z1 and Z2 such

that Z1 ∪ Z2 = Z, Z1 ⊆ X , Z2 ⊆ Y and Z1 6= /0 we have: (i) Z1 ⊆ X ⇒ t ′ ≺Z1 t, and (ii)

Z2 ⊆ Y ⇒ t ′ =Z2 t. Therefore t ′ ≺Z=Z1∪Z2 t.

2) t ′ ≺Z t⇒ Z ∈ cover(〈X |Y 〉): Suppose Z 6∈ cover(〈X |Y 〉), this means that Z∩X = /0 or

Z ⊃ XY , then ∀z ∈ Z t[z]≥ t ′[z], therefore t ′ does not dominate t over Z.

In fact, compare(t, t ′) is a concise summary of the set of subspaces for which t is

dominated by t ′ hence, subspaces where t does not belong to their respective skylines.

Throughout the rest of the paper we denote by Pairs(t,T) = {compare(t, t ′)∀t ′ ∈ T}
the set of all pairs related to t w.r.t. T . We simply write Pairs(t) when it is clear that the

pairs are computed w.r.t. T .

Thereby cover(Pairs(t)) = Dom(t) represents all subspaces where t is dominated,

hence not in the skyline.

At this point we are ready to provide an algorithm for building the NSC. This structure

can then be used to answer skyline queries. Algorithm 1 shows how this data structure

is built. Its main principle consists simply in comparing every pair of tuples (t, t ′) and

add compare(t, t ′) to Pairs(t). So a total of n× (n− 1) comparisons. Each of which

considers d dimensions. Hence, O(n2×d) comparisons. We could neglect d since n� d.

From the memory point of view, in the worst case, n− 1 distinct pairs are associated to

every t, where n = |T |. In practice, this bound is hardly reached for two reasons: (i)

when comparing t, we may obtain duplicate pairs while we need just a single copy of

them. (ii) the number of possible distinct pairs depends on the number of dimensions.

Indeed, with d dimensions this number is N =
d
∑

i=1

(d
i

)
2i. From this expression, one can

easily derive the following upper bound: N ≤ 22d . Therefore, the NSC size is bounded

by n∗min(n−1,22d). For example, if d = 6, a maximum of 212 pairs can be associated

to any tuple.

Note that if NSC size is O(n ∗ 2d) then it is comparable to the skycube size which

means that not only we do not summarize it in terms of memory but more importantly, we

have no gain in terms of query performance. In the next section we address the problem

of NSC size minimization.

Example 7. From Table 2.1, the data structure returned by BUILDNSC is depicted in

Table 2.3. Note that pairs 〈X |Y 〉 where X = /0 are not stored because they do not cover

any subspace (see Proposition 1).

24

2.2. The Negative SkyCube

Algorithm 1: buildNSC
Input: Table T
Output: A data structure NSC summarizing the Skycube.

1 begin
2 foreach t ∈ T do
3 foreach t ′ ∈ T do
4 Add compare(t, t ′) to Pairs(t)

5 return NSC(T)

Tuple Pairs
t1 〈C|ABD〉,〈CD| /0〉,〈D| /0〉
t2 〈D|C〉,〈CD| /0〉,〈D| /0〉
t3 〈AB| /0〉,〈AB|C〉,〈CD|B〉
t4 〈AB| /0〉,〈A|B〉,〈A| /0〉
t5 〈ABC| /0〉,〈ABC|D〉,〈BCD| /0〉,〈BC|D〉
t6 〈ABC| /0〉,〈ABC|D〉,〈ABCD| /0〉,〈A|D〉

Table 2.3: NSC of T

Algorithm 2 shows how the NSC structure is used to evaluate any skyline query

Sky(Z). For each tuple t, it scans the set of pairs associated to it. If a pair covering Z

is encountered, then t does not belong to Sky(Z). Otherwise, it is a skyline point.

2.2.2 Time and memory optimization for NSC

In this section we show on one hand, how the number of comparisons we must do with

every tuple can be reduced, hence the overall execution time is minimized, and on the

other hand, how to save space when storing the pairs associated to each tuple.

Execution time reduction

In this section, we show how the time to build NSC can be reduced by comparing every

tuple to only tuples in the topmost skyline (See Definition 7).

Definition 7. Topmost Skyline: Sky(T,D) the skyline w.r.t. all the dimensions.

As stated by Theorem 1, it is sufficient to compare the tuples to those belonging to

the topmost instead of comparing every pair of tuples thereby avoiding a costly O(n2)

comparisons. This is particularly interesting when the size of topmost skyline is small

w.r.t. n.

25

Algorithm 2: evaluateSkyline
Input: NSC structure, subspace Z
Output: Sky(Z)

1 begin
2 foreach t ∈ T do
3 covered← f alse
4 foreach p ∈ NSC[t] do
5 if p covers Z then
6 covered← true
7 break

8 if covered=false then
9 Add t to Sky(Z)

10 return Sky(Z)

Theorem 1. Let t ∈ T . Let

• PT (t) = {compare(t, t ′)|t ′ ∈ T}, and

• PT M(t) = {compare(t, t ′)|t ′ ∈ topmost}.
Then cover(PT (t)) = cover(PT M(t)).

Proof. To simplify the notation, we omit the parameter t since it is understood from the

context.

Clearly, cover(PT) can be written as

cover(PT M)∪ cover(PT M)

where

PT M = {compare(t, t ′)|t ′ 6∈ topmost}

That is to say, cover is distributive over the union. We just need to show that for all

t ′ /∈ topmost,

cover(compare(t, t ′))⊆ cover(PT M)

Let t ′ ∈ T \ topmost. By skyline definition, there must exist a tuple u ∈ topmost such that

u dominates t ′, i.e., u ≺D t ′. Let 〈X1|Y1〉 = compare(t,u) and 〈X2|Y2〉 = compare(t, t ′).

For every subspace Z covered by 〈X2|Y2〉, we have (i) t ′ ≺Z t. On the other hand, u≺D t ′

implies that (ii) u�Z t ′ (because Z ⊆D).

From (i) and (ii), u �Z t thus Z is covered by 〈X1|Y1〉. Any subspace covered by 〈X2|Y2〉
is also covered by 〈X1|Y1〉.

Hence, for each t ′ /∈ topmost, compare(t, t ′) does not need to be considered.

26

2.2. The Negative SkyCube

N.B: The topmost is computed ahead of building NSC. Any state of the art skyline

algorithm can be used for that purpose.

Example 8. From our running example, the topmost is made up of tuples t2, t3 and t4. As

an example, the list of pairs associated to t1 is {〈C|ABD〉,〈CD| /0〉} whose size is reduced

to 2 instead of a set of 3 pairs if we compare t1 to all other tuples.

Memory reduction

Reducing the size of NSC not only reduces memory consumption but also optimizes

skyline queries evaluation. So the problem we want to solve consists in finding, for every

t, a minimal set of pairs which covers exactly the subspaces covered by Pairs(t). To give

an intuition about how we proceed, let us consider the following example.

Example 9. Let p1 = 〈A|BC〉, p2 = 〈C|A〉 and p3 = 〈BC| /0〉 be the pairs associated to

t. From these pairs we derive cover(p1, p2, p3) = {A,AB,ABC,AC,BC,B,C}. Observe

that by considering just p1 and p3, the same subspaces are covered. Indeed, cover(p1) =

{A,AB,ABC,AC} and cover(p3) = {B,C,BC}. Hence, p2 can be removed from Pairs(t)

without losing any information.

We formalize the NSC size reduction problem as follows:

RSP Problem: Given a tuple t and its associated set P = Pairs(t).

Reducing the Size of the set of Pairs P, (RSP), is the problem of finding

a subset Q⊆ P of minimal size such that cover(Q) = cover(P).

The following theorem shows that RSP problem is NP-Hard.

Theorem 2. RSP is NP-Hard.

Proof. By considering all the subsets of P, one can check which are equivalent to P and

which are of minimum size. Thus, the problem is in NP. The hardness proof is based on

a reduction from the minimal set cover (MSC) problem. Given an MSC instance, we

build a table T with a distinguished tuple t where the number of dimensions d is equal to

the number of elements to be covered in MSC and where the number n+ 1 of tuples is

equal to the initial number of sets in MSC in addition to the distinguished t. So, there is

a bijection between the n tuples and the n sets of MSC instance. The n tuples form the

topmost of T and distinguished tuple t is compared to each of them giving rise to a set of

pairs P. We show that the minimum equivalent subset of P coincides with a solution of

MSC.

27

Let s = {s1,s2, . . . ,sn} be the input set of sets in the MSC instance. W.l.o.g, we

assume that there is no inclusion between these sets and none of them does contain all the

elements to cover. For every set s j ∈ s, we add to T a tuple t j such that t j[i] = 0 iff i ∈ s j

otherwise t j[i] = 1. In addition, we add to T a tuple t = (1,1, . . . ,1) be a d-tuple.

For example, let s = {s1 = {1,2};s2 = {2,3};s3 = {1,3}} be the MSC instance. The

number of elements to cover is d = 3 and the number of sets n = 3. So, we get a table T

with n+1 = 4 tuples, including t, and 3 dimensions. This table is depicted below.

Id 1 2 3
t 1 1 1

t1 0 0 1

t2 1 0 0

t3 0 1 0

Clearly, every t j dominates t and ti 6≺ t j. Hence, {t1, . . . , tn} is the topmost. By comparing

t to the topmost, we obtain P(s) = {p1, . . . , pn}. There is a one to one correspondence

between si ∈ s and pi = compare(t, ti). For example, compare(t, t1) = 〈12|3〉 corresponds

to s1 = {1,2}. Let u⊆ s and let P(u) be the set of pairs p j such that p j = compare(t, t j)

where t j corresponds to some s j ∈ u. Let cover(P(u)) denote the set of subspaces covered

by the pairs in P(u). We show that ∪s j∈us j = ∪si∈ssi iff P(u) ≡ P(s) and this proves the

claim.

(i) P(u) ≡ P(s)⇒ u ≡ s: Every p j ∈ P(u) is of the form 〈X j|Yj〉 thus it covers, among

others, the subspace X j which actually corresponds to the content of s j ∈ u. As P(u) ≡
P(s), ∀pi = 〈Xi|Yi〉 ∈ P(s), P(u) covers Xi and the union of the Xi’s is the union of the si’s.

Hence u≡ s.

(ii) u≡ s⇒ P(u)≡ P(s): Assume, for the sake of contradiction, that P(u) 6≡ P(s). There

must exist a subspace Z s.t P(s) covers Z but not P(u). Thus, there exists pi ∈ P(s) such

that pi = 〈Xi|Yi〉 s. t Z ⊆ XiYi and Z∩Xi 6= /0. Note that every pi is of the form 〈si|U\ si〉
where U=∪s j∈ss j. Therefore, to cover Z, a pair 〈s j|U\s j〉 needs just to satisfy Z∩s j 6= /0.

Such an s j is necessarily in u because otherwise u 6≡ s, i.e., there exists k ∈ U such that

there is no si ∈ u s.t k ∈ si and thic contradicts the fact that u≡ s.

We conclude that every (minimum) solution of the set cover problem corresponds to

a (minimum) solution to RSP problem regarding the distinguished tuple t of the table T

above which terminates the proof.

[78] proposed a greedy polynomial time approximation of MSC (Minimum Set Cover)

problem that chooses at each step the set that covers the highest number of uncovered

elements. The adaptation of this algorithm to solve RSP problem is described in

Algorithm 3.

28

2.2. The Negative SkyCube

Algorithm 3: compressByGreedy
Input: Set of pairs P
Output: Set of pairs P′ ≡ P with |P′| ≤ |P|

1 for p ∈ P do
2 p.covers← set of subspaces p covers

3 SubspacesToCover←∪p∈P p.covers
4 while SubspacesToCover 6= /0 do
5 q← argmax

p∈P
|p.covers|

6 Add q to P′

7 Remove q.covers from SubspacesToCover
8 Remove q from P
9 for p ∈ P do

10 p.covers← p.covers\q.covers
11 if p.covers = /0 then
12 Remove p from P

13 Return P′

Example 10. The minimization of Table 2.3 is depicted in Table 2.4. Note that the number

of pairs decreases from 20 to 9.

Tuple Associated list of pairs
t1 〈C|ABD〉,〈CD| /0〉
t2 〈CD| /0〉
t3 〈AB|C〉,〈CD|B〉
t4 〈AB| /0〉
t5 〈ABC|D〉, 〈BCD| /0〉
t6 〈ABCD| /0〉

Table 2.4: List of pairs synthesizing dominance subspaces sets

The following proposition states the time complexity and the approximation guarantee

provided by Algorithm 3.

Proposition 2. Let P be a set of pairs, Popt be a minimal equivalent subset of P and PG be

the output of CompressByGreedy(P). Then (i) the time complexity of CompressByGreedy

is O(|P|2) and (ii) |PG| ≤ |Popt |×d.

Proof. For the time complexity, note that the first for loop (Line 1) is linear in |P|. At

each iteration of the While loop (Line 4), we first select a pair q which covers the maximal

number of subspaces. This can be done in linear time. Since such a q is removed from

P, the for loop (Line 9) is executed O(|P| − 1) times. At worst, |P| decreases by just

29

Algorithm 4: buildNSC_index
Input: Table T (set of tuples)
Output: NSC_index

1 begin
2 foreach tuple t in T do
3 foreach pair 〈X |Y 〉 in Pairs(t) do
4 NSC_index[XY] = NSC_index[XY]∪{(t,Y)};

5 return NSC_index

one unit at each While iteration, hence the while loop is executed at most |P| times, and

each iteration executes a for loop with a decreasing size of P. Therefore, the global time

complexity is O(|P|2).
Regarding the approximation multiplicative factor, let p ∈ P such that p covers the

maximum number of subspaces and let ` be this number. Then by [78], we have |PG| ≤
|Popt |× log`. Since ` < 2d , we obtain |PG| ≤ |Popt |×d.

2.2.3 NSC index and query answering

Performing a query related to a given subspace Z requires to check for every tuple t,

whether Z is covered by Pairs(t), i.e., there exists 〈X |Y 〉 ∈ Pairs(t) such that

• Z a subspace of XY , and

• Z∩X different from empty set (/0)

Since when submitting a query Sky(Z), only pairs 〈X |Y 〉 such that Z is a subspace

of XY are relevant, we use a subspace-based index to optimize the query evaluation

process. More precisely, we use a table which associates to every subspace, a list of

pairs of the form 〈tuple|subspace〉 as follows: let 〈X |Y 〉 ∈ Pairs(t), then the pair 〈t|Y 〉
is added to the list of XY . According to this structure, evaluating Sky(Z) needs just to

check those subspaces XY such that Z ⊆ XY . Algorithm 4 shows how to build this index

structure. Example 11 illustrates the query evaluation process and Algorithm 5 depicts

the procedure.

Example 11. From our running example, the corresponding index structure is shown in

Table 2.5. Note that subspaces with no tuples are removed.

Let us show how Sky(AB) is evaluated using Table 2.5. Only the lists associated to the

supersets of AB i.e., AB, ABC, and ABCD are scanned. With AB, we find 〈t4| /0〉 meaning

that to t4 we associate 〈AB| /0〉 hence t4 is dominated on AB. The same holds with ABC

30

2.2. The Negative SkyCube

Subspace Pairs
AB {〈t4| /0〉}
ABC {〈t3|C〉}
CD {〈t1| /0〉,〈t2| /0〉}
BCD {〈t3|B〉,〈t5| /0〉)}
ABCD {〈t1|ABD〉,〈t5|D〉,〈t6| /0〉}

Table 2.5: NSC index

and t3. From the list associated to ABCD, we deduce that for t1 we have 〈C|ABD〉 and this

pair does not cover AB. Hence, t1 is not dominated. The pairs 〈ABC|D〉 and 〈ABCD| /0〉
are respectively associated to t5 and t6. They both cover AB meaning that t5 and t6 are

dominated w.r.t AB. Thus, only t1 and t2 belong to Sky(AB)1.

Algorithm 5: evaluateSkyline_Index
Input: NSC_index, subspace Z, table T
Output: Sky(Z)

1 begin
2 NotSkylinePoints = /0
3 foreach subspace W such that W ⊇ Z do
4 foreach pair (t,Y) in NSC_index[W] do
5 X =W \Y
6 if Z is covered by 〈X |Y 〉 then
7 Add t to NotSkylinePoints

8 return T \NotSkylinePoints

1In the concrete implementation, the table is sorted w.r.t. subspaces to avoid visiting useless subspaces.

31

Part I

Multidimensional skyline queries and
moving data

33

In this part, we address the maintenance of NSC, an efficient indexing structure for

answering subspace skyline queries, upon underlying data updates. We consider two

types of moving data: (i) dynamic data in Chapter 3 and (ii) streaming data in Chapter 4.

Moreover we investigate the optimization of regret minimization queries through NSC in

Chapter 5.

35

Chapter 3

Maintenance of NSC with dynamic data

3.1 Introduction

In Section 2.2, we presented NSC the auxiliary compact data structure capable of

answering skyline queries wrt any subspace. It consists in storing for each tuple t a set of

pairs which summarize the subspaces where t is dominated. We have presented how (i)

NSC is built, (ii) time and space optimized, and (iii) used for answering skyline queries. In

[16], NSC has been shown time and space efficient compared to its competitors. However

no incremental maintenance procedure has been proposed.

In the present chapter, we address NSC incremental maintenance, precisely with

dynamic data, i.e tuples can be deleted/inserted at any time. Indeed, an index structure

which needs to be computed from scratch each time an update occurs, is not usable.

Hence, we investigate the ability of NSC to handle deletions/insertions. We came up with

slight modifications of the data structure and we designed algorithms for both deletions

and insertions. We show theoretically and experimentally that these modifications do not

highly impact both construction and query answering times, and space consumption of

NSC. Moreover we show that incrementally maintaining NSC is many folds faster than

rebuilding it from scratch.

Table 3.1 provides a preview of the performance of NSC compared to its competitors,

described in Chapter 1 Section 1.1.3. The higher the score of a technique S wrt a criterion

c, the better is S wrt c. As it can be observed, there is no clear winner wrt to the four

criteria. However, NSC seems providing a reasonable trade off.

37

Technique Build Memory Query Mainte-
time consumption time -nance time

NSC 3 3 3 4
HashCube[15] 2 2 4 1

CSC[14] 4 4 1 3
Skycube[12] 1 1 5 1
BSkyTree[8] 5 5 1 5

Table 3.1: Solutions scores

3.2 Preliminaries

In addition to the definitions and notations presented previously, Table 3.2 gives the

notations used throughout this chapter.

Notation Definition
t+ inserted tuple
t− deleted tuple
∆+ inserted transaction
∆− deleted transaction

Table 3.2: Notations

Organization The next section describes the approaches applied on NSC to handle

insertions and deletions. Then we present the experiments we performed.

3.3 Managing NSC updates

In this section, we present our approach to update NSC structure after inserting/deleting

either a single or a set of tuples. We first start with the insertion case which does not

require any modification of the original NSC structure. Then we address the deletion

which turns to be harder to deal with making us to slightly extend the NSC structure.

3.3.1 Insertions

Inserting a single tuple

When a tuple t+ is inserted into table T , the naïve solution is to restart the computation of

NSC from scratch by providing T ∪{t+} as input to Algorithm 1. To avoid this solution,

we first identify a situation where the insertion of t+ does not change the content of NSC.

38

3.3. Managing NSC updates

Lemma 1. Let S+ = topmost(T ∪ {t+}) = Sky(T ∪ {t+},D). If t+ 6∈ S+ then ∀t ∈
T,Pairs(t,T)≡ Pairs(t,T ∪{t+}).

The above lemma simply says that the insertion of t+ which is D-dominated will not

change the structure of the previous NSC(T). All what we need to do is to compute the

pairs of t+, add the so obtained pairs to NSC and eventually compress this single set of

pairs.

Algorithm 6 is the procedure we use to maintain NSC after the insertion of a single

tuple. It first compares t+ to the tuples previously belonging to the topmost (For loop

in line 3). While computing the pairs of t+(line 7), we check if t+ is D-dominated

and identify tuples D-dominated by t+. If none of these comparisons show that t+ is

D-dominated, then t+ belongs to the new topmost, therefore every t ∈ T needs to be

compared to t+(line 9). We compute compare(t, t+), we append it to Pairs(t,T) and we

compress the new set of pairs.

Algorithm 6: insertTuple
Input: T , topmost(T), NSC(T), t+

Output: NSC(T ∪{t+}), topmost(T ∪{t+})
1 NotTopmostAnymore← /0
2 Pairs(t+,T ∪{t+})← /0
3 for t ∈ topmost(T) do
4 if t+ ≺D t then
5 Add t to NotTopmostAnymore

6 else
7 Pairs(t+,T ∪{t+})← Pairs(t+,T ∪{t+})∪ compare(t+, t)

8 Compress(Pairs(t+,T ∪{t+}))
9 if t+ not D-dominated then

10 for t ∈ T do
11 Pairs(t,T ∪{t+})← Pairs(t,T)∪ compare(t, t+)
12 CompressByGreedy(Pairs(t,T ∪{t+}))
13 topmost(T ∪{t+})← topmost(T)∪{t+}\ NotTopmostAnymore

14 return NSC(T ∪{t+}), topmost(T ∪{t+})

Example 12. Let t+=(1,1,2,2) to be inserted into Table 2.1. Recall that topmost(T) =

{t2, t3, t4}. We first compare t+ to t2, t3 and t4 and obtain respectively the pairs

〈 /0|ABC〉,〈 /0|CD〉 and 〈CD| /0〉. None of these pairs covers ABCD meaning that t+ belongs

to the new topmost. Note that while the first two pairs do not cover any subspace,

hence they can be removed from Pairs(t+), they do respectively imply that t2 and t3 are

D-dominated by t+, e.g., compare(t+, t2) = 〈 /0|ABC〉 ⇒ compare(t2, t+) = 〈D|ABC〉. All

the remaining tuples need to be compared to t+, i.e., t1, t5 and t6.

39

Table 3.3 shows the new pairs obtained by comparing every t to t+ beside the existing

list of pairs. It also shows the computed pairs of t+. The pairs to be kept after the

compression are underlined.

Table 3.3: Updating pairs of the tuples of T

Tuple New pair(s) Existing pairs
t1 〈CD|AB〉 〈C|ABD〉,〈CD| /0〉
t2 〈D|ABC〉 〈CD| /0〉
t3 〈AB|CD〉 〈AB|C〉, 〈CD|B〉
t4 〈AB| /0〉 〈AB| /0〉
t5 〈ABC|D〉 〈ABC|D〉, 〈BCD| /0〉
t6 〈ABC|D〉 〈ABCD| /0〉
t+ 〈 /0|ABC〉,〈 /0|CD〉,〈CD| /0〉

Complexity analysis t+ is compared to topmost(T). If it is not D-dominated then

every t is compared to t+ hence n comparisons, and every tuple calls

CompressByGreedy(Pairs(t,T ∪ {t+})) whose complexity is O(π2) if π denotes the

number of pairs per tuple. Hence, O(n× π2) operations just for the compression.

Actually, CompressByGreedy presents two negative points: (i) it is not incremental and

(ii) the polynomial complexity of the greedy procedure hides an exponential term as it

is shown in Algorithm 3. while loop (Line 4) is iterated at most π times (π = |P|) and

for loop (Line 9) is executed at most π times too. Hence, O(π2). Note however that the

sets of covered subspaces we manipulate may have an exponential size w.r.t. the number

of dimensions. One may wonder whether it is possible to implement CompressByGreedy

by just operating on the pairs. It is unfortunately impossible because not every set of

subspaces can be summarized by a pair.

Example 13. Let P = {p1 = 〈A|B〉, p2 = 〈A|C〉} we want to summarize with

CompressByGreedy. Suppose p1 is first chosen to be added to the solution. Now we

need to update the set of still uncovered subspaces associated to p2. The only subspace

covered by p2 and not by p1 is AC. There exists no pair which covers AC and only AC.

Therefore we trade the compression ratio guaranteed by CompressByGreedy by a less

compressing procedure based just on the inclusion we detect between pairs.

Definition 8. p1 is included into p2, noted p1 v p2, iff the set of subspaces covered by p1

is included into the set of subspaces covered by p2.

40

3.3. Managing NSC updates

The following lemma characterizes pairs inclusion without generating their respective

covered subspaces.

Lemma 2. Let p1 = 〈X1|Y1〉 and p2 = 〈X2|Y2〉. p1 v p2 iff X1 ⊆ X2 and X1Y1 ⊆ X2Y2.

For example 〈AB|C〉 v 〈ABC|D〉 but 〈AB|C〉 6v 〈A|BCD〉.
Thanks to this fast inclusion test, we propose a compression procedure whose

complexity is O(π2) and which does need to manipulate sets of covered subspaces. It

is described by Algorithm 7.

Algorithm 7: compressByInclusion
Input: Set of pairs P
Output: Set of pairs P′ ≡ P with |P′| ≤ |P|

1 for p ∈ P do
2 for q ∈ P and q 6= p do
3 if qv p then
4 Remove q from P

5 Return P′

The following property shows that CompressByInclusion returns a summary that is

larger than that returned by the greedy algorithm.

Property 2. Let Pg = CompressByGreedy(P) and Pi = CompressByInclusion(P) for

some set of pairs P. Then |Pg| ≤ |Pi|.

Proof. We prove that Pg ⊆ Pi. Let p ∈ P. Then p ∈ Pi iff 6 ∃p′ ∈ P such that p < p′. Now,

we show that ∀q ∈ Pg there is no q” ∈ Pg such that q v q′. We do this by induction on

the iterations of the greedy algorithm. The base case is the first iteration where a pair

q1 covering the maximal number of subspaces is chosen. There will be no pair q ∈ Pg

covering q1 otherwise, q is chosen first. Suppose that at iteration i, every selected pair

has no so super pair in Pg. Let qi+1 be the selected pair at step i+ 1 then among the

not already selected pairs, there remains no q such that qi+1 v q otherwise q is selected

instead of qi+1 thus there will be no q ∈ Pg s.t qi+1 v q which concludes the proof.

Besides its lower complexity, compressing by inclusion test is amenable to an

incremental implementation by contrast to the greedy algorithm. Indeed, adding a new

pair p to an already compressed set of pairs P can be done by just comparing p to the

elements of P leading to a linear procedure while, to the best of our knowledge, there is

no incremental version of the greedy algorithm.

41

Distinct values property

Interestingly, when all tuples have distinct values on every dimension, Algorithm 7 is not

only as good as the CompressByGreedy algorithm, but it returns the optimal solution.

Proposition 3. Let P be a set of pairs s.t ∀〈X |Y 〉 ∈ P, Y = /0. Let P′ =

CompressByInclusion(P). Then, for every Q, Q≡ P⇒ |Q| ≥ |P′|.

Proof. The maximal subspace covered by a pair p = 〈X | /0〉 is X . For p to be removed

from P, there should be another pair p′ = 〈X ′| /0〉 covering X . Thus, X should be included

into X ′ meaning that pv p′.

When T satisfies the distinct values property, i.e., ∀t1, t2 ∈ T and ∀di ∈ D we have

t1[di] 6= t2[di], the pairs we obtain satisfy the condition of Proposition 3. Thus, the

compression of CompressByInclusion is optimal in this case.

Inserting a set of tuples

In the case we have a set of tuples ∆+ to be inserted, we can iterate Algorithm 6 over

each t+ ∈ ∆+. Some of the comparisons we do with this technique can be avoided. For

example, let ∆+ = {t+1 , t+2 } such that t+2 ≺D t+1 . Clearly, comparing the tuples with t+1 is

useless w.r.t. skyline semantics as stated by the following lemma.

Lemma 3. Let t ∈ T and {t+1 , t+2 } ⊆ ∆+, t+2 ≺D t+1 ⇒ compare(t, t+1)v compare(t, t+2)

Algorithm 8 takes benefit from the previous lemma. First, it computes the new

tompost by considering not the whole previous T but just its topmost(line 1). Then every

t ∈ T is compared with each t+ ∈ ∆+ which belongs to the new topmost (Forall loop,

lines 2-5). The new set of pairs is compressed (line 5). Then, every t+ ∈ ∆+ is compared

to the elements of the new topmost and every set of pairs is compressed (Forall loop, line

6-9).

Note that the compression procedure can be implemented either via

CompressByGreedy or CompressByInclusion.

3.3.2 Deletions

Likewise insertions, we consider single and set oriented deletions separately.

Deleting a single tuple

The impact on a tuple t when deleting a tuple t− is that the set of subspaces where t is

dominated can decrease. In NSC structure, this set of subspaces is encoded by the pairs

42

3.3. Managing NSC updates

Algorithm 8: batchInsertSetOfTuples
Input: T , topmost(T), NSC(T), ∆+

Output: NSC(T ∪∆+), topmost(T ∪∆+)
1 NewTopmost← Sky(∆+∪ topmost(T)),D)
2 forall t ∈ T do
3 for t+ ∈ (∆+∩NewTopmost) do
4 Pairs(t)← Pairs(t)∪ compare(t, t+)

5 Compress(Pairs(t)

6 forall t+ ∈ ∆+ do
7 for t ∈ NewTopmost do
8 Pairs(t+))← Pairs(t+)∪ compare(t+, t)

9 Compress(Pairs(t+))

10 topmost(T ∪∆+)← NewTopmost
11 return NSC(T ∪∆+), topmost(T ∪∆+)

associated to t. The brute force approach to maintain this set of pairs is to rebuild it from

scratch, i.e., executing Algorithm 4 by providing T \{t−} as input parameter.

In this section, we identify some properties which allow us to avoid this heavy

computation. We start by observing that when t− 6∈ topmost then we do not need to

recompute NSC.

Lemma 4. if t− 6∈ topmost(T), then ∀t ∈ T,Pairs(t,T)≡ Pairs(t,T \{t−})

This comes from the fact that the tuples are compared just to topmost(T).

Suppose all tuples have the same probability to be deleted, then the probability to not

to have to update NSC when a tuple t− deleted, is greater than 1− |topmost(T)|
|T | .

The following example illustrates other situations where the whole NSC maintenance

is note required. Indeed, we identify tuples whose associated pairs need not to be

recomputed.

Example 14. Table 3.4 depicts the NSC associated to the running example where we

add to each pair, the tuple(s) used to obtain it. Recall that topmost(T) = {t2, t3, t4}. The

existing pairs depend only on these tuples, which means that the deletion of e.g., t1 has no

impact on the other tuples.

Note that deleting the topmost tuple t3 has no impact on e.g., t6 since there is no pair

associated to t6 and obtained from t3. Moreover, deleting t3 has no impact on t1 either.

This is because 〈CD| /0〉 will still be associated to t1 via tuple t4.

From the example above, we see that the deletion of a tuple t− may impact a tuple t if

t− contributes effectively to derive the subspaces where t is dominated. This is formalized

by the following proposition.

43

Table 3.4: List of pairs synthesizing dominance subspaces sets

Tuple Associated list of pairs
t1 (t2,〈C|ABD〉),({t3, t4}〈CD| /0〉)
t2 (t4,〈CD| /0〉)
t3 (t2,〈AB|C〉,(t4,〈CD|B〉)
t4 (t2,〈AB| /0〉)
t5 (t3,〈ABC|D〉), (t4,〈BCD| /0〉)
t6 (t4,〈ABCD| /0〉)

Proposition 4. Let t ∈ T and t− ∈ topmost(T) be the tuple to be deleted. Let P, resp. P−,

be the compressed list of pairs associated to t in NSC(T), resp. in NSC(T \ {t−}). The

following implications hold:

1. compare(t, t−) 6∈ P⇒ P≡ P−.

2. compare(t, t−) ∈ P and ∃t ′ ∈ topmost(T) s.t

compare(t, t−) = compare(t, t ′)⇒ P≡ P′

Proof. 1. If compare(t, t−) 6∈ P then all subspaces covered by compare(t, t−) are also

covered by P. Hence, by removing t−, these subspaces remain covered.

2. All subspaces covered by compare(t, t−) remain covered thanks to other tuples t ′

in topmost such that compare(t, t−) = compare(t, t ′).

It follows that for a tuple t ∈ T , its set of subspaces where it is dominated may

change only if the tuple to be deleted t− is the unique tuple producing a pair p−, i.e.,

compare(t, t−) = p−, and p− belongs to Pairs(t,T).

Example 15. From Table 3.4, for t1, the deletion of either t3 or t4 has no impact as the

pair 〈CD| /0〉) is produced by both of them. However 〈C|ABD〉 is produced uniquely by t2.

Thus, deleting t2 may have an impact on t1 and actually it does.

To take advantage from the properties stated in Proposition 4, we extend the NSC
structure by associating a counter to every pair p ∈ Pairs(t,T). This counter represents

the number of tuples which contribute to this pair.

Example 16. The NSC in Table 3.4 is actually stored as follows.

This additional information increases linearly NSC memory consumption. Indeed,

instead of using pairs as physical memory units, we rather store triples of the form

〈X |Y |counter〉. The number of memory units is kept unchanged. To not disturb the

44

3.3. Managing NSC updates

Table 3.5: Pairs with counters

Tuple Associated list of pairs
t1 (1,〈C|ABD〉),(2〈CD| /0〉)
t2 (1,〈CD| /0〉)
t3 (1,〈AB|C〉),(1,〈CD|B〉)
t4 (1,〈AB| /0〉)
t5 (1,〈ABC|D〉), (1,〈BCD| /0〉)
t6 (1,〈ABCD| /0〉)

reader, in the remaining sections, we shall still use the term pair to designate the basic

stored information.

The construction of the new structure of NSC follows slightly the same procedure as

in Algorithm 1. For completeness, we describe it in Algorithm 9.

Algorithm 9: buildNSC_with_counters
Input: T , topmost(T)
Output: NSC(T)

1 Pair p
2 for t ∈ T do
3 for t ′ ∈ topmost(T) do
4 p← compare(t, t ′)
5 if p ∈ Pairs(t,T) then
6 p.counter← p.counter+1

7 else
8 p.counter← 1
9 Pairs(t,T)← Pairs(t,T)∪{p}

10 Compress(Pairs(t))

11 return NSC(T)

Remark: The main difference between Algorithms 9 and 1 is the membership test (Line

5). Actually, this can be done in O(1) by organizing the set of pairs as hash table. Thus,

the new algorithm adds little overhead w.r.t. the original one. Furthermore, the insertion

algorithms presented so far are adapted accordingly to cope with the counters associated

to the pairs.

Now we are ready to present our approach to maintain NSC after a single tuple

deletion. It is described in Algorithm 10 and we illustrate its execution with various

t− in the following example.

Example 17. Let t−= t1, t− is not in topmost(T) so the deletion of t− requires no change.

We only delete it from the dataset.

45

Algorithm 10: deleteTuple
Input: t−,T ,NSC(T),topmost(T)
Output: NSC(T \{t−}), topmost(T \{t−})

1 if t− ∈ topmost(T) then
2 topmost(T \{t−})← Sky(T \{t−},D)
3 for t ∈ (T \{t−}) do
4 p← compare(t, t−)
5 if p ∈ Pairs(t,T) then
6 if p.counter = 1 then
7 Pairs(t)← /0
8 for t ′ ∈ topmost(T \{t−)}) do
9 q← compare(t, t ′)

10 if q ∈ Pairs(t) then
11 q.counter← q.counter+1

12 else
13 q.counter = 1
14 Add q to Pairs(t)

15 Compress(Pairs(t))

16 else
17 p.counter← p.counter−1

18 return NSC(T \{t−}), topmost(T \{t−});

Now let t− = t2, and we use the initial dataset. t− belongs to topmost(T) so we

need to compute topmost(T \ {t−}) = {t1, t3, t4}. Every tuple t needs to be compared to

t−. It turns that t− impacts t1 because compare(t1, t2) = 〈C|ABD〉 and (i) this pair is in

Pairs(t1) and (ii) its counter is set to 1. Therefore, Pairs(t1) needs to be recomputed. The

same situation holds for t3 and t4 whose respective pairs need to be recomputed. Note

however that t2 does not impact neither t5 nor t6.

Deleting a set of tuples

When deleting a subset ∆− ⊂ T , one solution could be to call Algorithm 10 for each

t− ∈ ∆−. One problem with this procedure is that the set of pairs associated to a tuple t

is computed as many times as there are tuples t− ∈ ∆− which affect it. Moreover, a new

topmost skyline is computed for every t− belonging to the previous topmost. Therefore,

we propose a batch procedure to avoid the above limitations. Our solution is described

in Algorithm 11. It first checks whether there is a deleted tuple belonging to the present

topmost (line 1). In this case, the new topmost is computed (line 3). Then for every t

remaining in T , it checks whether it is impacted by ∆−, i.e., there is a pair p ∈ Pairs(t,T)

46

3.3. Managing NSC updates

having its counter set to 0 (line 10). In this case, a new set Pairs(t,T \∆−) is computed

by comparing t to all the elements of the new topmost and compressing the so obtained

set of pairs (line 12-21).

Algorithm 11: batchDeleteSetOfTuples
Input: ∆−,T ,NSC(T),topmost(T)
Output: NSC(T \∆−), topmost(T \∆−)

1 TopDel← ∆−∩ topmost(T)
2 if TopDel 6= /0 then
3 topmost(T \∆−)← Sky(T \∆−,D);
4 for t− ∈ TopDel do
5 //Find the impacted tuples
6 for t ∈ T \∆− do
7 p← compare(t, t−)
8 if p ∈ Pairs(t,T) then
9 p.counter← p.counter−1

10 if p.counter = 0 then
11 Add t to ImpactedTuples

12 for t ∈ ImpactedTuples do
13 //Recompute the pairs of impacted tuples
14 for t ′ ∈ topmost(T \∆−) do
15 p← compare(t, t ′)
16 if p ∈ Pairs(t,T \∆−) then
17 p.counter← p.counter+1

18 else
19 p.counter← 1
20 Pairs(t,T \∆−)← Pairs(t,T \∆−)∪ p

21 Compress(Pairs(t))

22 return NSC(T \∆−), topmost(T \∆−);

Complexity analysis

The first parameter affecting the deletion procedure is the probability that the set ∆−

intersects the topmost, i.e., at least one of the deleted tuples belongs to the topmost. Recall

that if the intersection is empty, the only thing to do is to remove the deleted tuples. Under

a uniform hypothesis for deleting any tuple, the probability that the intersection is not

empty by |∆−| × |topmost|
|T | . Hence, for a fixed |∆−|, the larger the topmost, the larger is

this probability.

The second parameter is the number of impacted tuples by ∆−∩ topmost. There are

two extreme cases: the one where no tuple is impacted and the other where all tuples

47

are impacted. The later worst case makes our algorithm degenerate to the naïve solution

since we need to compare all tuples to the new topmost. The formal analysis of the

average number of affected tuples by ∆− is hard, if not impossible, because we need to

estimate the probability that a pair is (i) not removed due to the compression process and

(ii) all the tuples used to obtain it belong to ∆−. In Section 3.4 we empirically analyze

this behavior and we will see that, e.g., the number of impacted tuples by a topmost one

is far from being uniform.

An interesting situation is that of correlated data where the size of the topmost is

small, possibly equal to one. In this case, all tuples are compared to the unique tuple

of the topmost. Deleting the later will impact all the remaining tuples. However, the

probability of deleting this specific tuple is 1
|T | which is rather small.

3.4 Experiments

In this section we present the comparative experimental results we obtain with NSC and

its principal competitors. For this, we consider the following four criteria: (i) construction

time, (ii) memory consumption, (iii) skyline query processing time and (iv) maintenance

upon updates. All the implementations we used but CSC are those provided by their

respective authors.

First we compare NSC to CSC, HashCube and QSkyCube wrt construction time and

space consumption. QSkyCube builds the whole skycube so its output is considered as a

baseline to assess the compression ratio of each solution.

As for query evaluation, we use CSC, HashCube and BSkyTree. The later is

the baseline since it is the state of the art algorithm for skyline evaluation when no

precomputation is available. So it serves to evaluate the optimization ratio provided by

each technique against a solution where no extra storage/computation is performed.

Regarding updates, to our knowledge, the only structure for which incremental

maintenance algorithms have been provided is CSC. Because, as we will show, it has poor

query performance compared to its “materialization based” competitors, i.e. HashCube
and NSC, we decided to not include it in this part of the experiments.

Datasets

For the purpose of evaluating NSC, we perform experiments on both real and synthetic

datasets. For real datasets, we use commonly cited datasets in skyline literature. In table

3.6 we present the datasets, their cardinality n, the cardinality of the set of dimensions

d, and the size of the topmost. For synthetic datasets, we generate data through the

48

3.4. Experiments

framework presented in [2], with different distributions (Independent (INDE), Correlated

(CORR), Anti-correlated (ANTI)). For each, we vary n in {104,105,106} and d in

{4,8,12,16,20}.

Dataset d n |topmost|
NBA 17 20493 3
MBL 18 92797 78

IPUMS 10 75836 3852
HOUSE 6 127931 127931
INSEE 22 2628433 58
POKER 11 1000000 14131

Table 3.6: Real datasets

Hardware and implementation

All the experiments are conducted on a Linux machine equipped with two 2.6 ghz

hexacore CPUs and 32GB RAM. We implemented NSC as well as CSC in c++ together

with OpenMP library to parallelize some parts of the algorithms. CSC proceeds levelwise

and each subspace of one level is treated independently of the others of the same level, so

they can all be processed in parallel. As for NSC, every tuple is processed independently

so this is the parallel granularity we used for it. To test HashCube, BSkyTree and

QSkyCube we used their respective authors versions which are in c++ too. HashCube
implements several algorithms to compute the hashcube structure. As it is shown in [51],

mdmc is the most efficient so it is the one we use. mdmc can share computation on

both CPU and GPU. For the present experimentation, only CPU is used. NSC Source

code is available on GitHub1. This repository contains as well CSC and BSkyTree
implementations. HashCube and QSkyCube implementations are available on GitHub

as well 2.

In the remainder, a missing value means that the respective solution could not

terminate either because of memory saturation or excessive execution time (stopped after

24 hours).

3.4.1 Constructing the structures

The aim of this experiment is to compare NSC structure to (i) CSC, (ii) HashCube and

(iii) QSkyCube wrt construction time and space consumption. We evaluate the behavior

1https://github.com/karimalami7/NSC
2https://github.com/sean-chester/skycube-templates

49

https://github.com/karimalami7/NSC
https://github.com/sean-chester/skycube-templates

of these techniques by varying n and d.

Regarding memory consumption, we report the number of memory units used by each

structure: for NSC we count the total number of pairs. CSC and skycube store for each

tuple t respectively the smallest and all subspaces where t belongs to the skyline, hence

for both of them we count the total number of subspaces that need to be stored. HashCube
stores for each word ω encoding a set of subspaces, a list of tuples that share this word.

Recall that the same tuple may be associated to several words. So, we count the total

number of tuples that need to be stored. Physically, each storage unit used by CSC or the

skycube corresponds to a subspace which can be encoded by a Boolean vector of size d. A

pair of subspaces, as used by NSC can be encoded by a 2d vector. Regarding HashCube, a

tuple Id can be encoded by a log(n) bit vector. The values of n used in our experiments are

sufficiently large to make log(n)≥ d. Hence, by counting the number of bit vectors used

by HashCube, the comparison to NSC or CSC is fair. It is worth to notice that because

QSkyCube cannot terminate its execution in some situations, e.g., d = 16,n = 105 and

anticorrelated data, we obtained the size of the skycube by just evaluating all skyline

queries and summing their respective sizes.

Figures 3.1, 3.2, 3.3 and 3.4 show the results we obtain with respectively independent,

correlated, anticorrelated and real datasets.

Synthetic data

With respect to construction time, all techniques have almost the same behavior wrt

varying n even though QSkyCube is in general the slower. When varying d, we observe

an advantage for NSC when d increases, e.g. in Figure3.1(a), NSC construction time

grows by a factor smaller than 10 between both d = 12 and d = 16, and d = 16 and

d = 20 while for CSC and HashCube the factor is approximatively 60. Regarding

QSkyCube, it is performing well with small d, e.g. d = 4, however it does not terminate

in a reasonable time or saturates the available memory, e.g., with d = 16 for independent

and anticorrelated datasets Fig. 3.1 Fig. 3.3, and even with correlated data when d = 20

Fig. 3.2.

With respect to memory consumption, we observe the same behavior for all techniques

when varying n, i.e., a linear increase wrt n. By varying d, we note that NSC and CSC
scale better with large d whatever is the data correlation type. For example, when d = 20,

NSC uses about 100× less memory than HashCube and even 1600× with correlated data

(Fig. 3.1(b),3.2(b) and 3.3(b)).

Remark: When d is set to 20, the larger NSC is obtained with anti-correlated data and

n = 105 (Figure 3.3(b)). In that case, the average number of pairs per tuple is 740. By

50

3.4. Experiments

contrast, the average number of subspaces where a tuple belongs to the skyline is' 4 ·105.

So, for the same information NSC stores 4·105

740 ' 540 less memory than the skycube.

4 8 12 16 20

10−3
10−1

101
103
105

d

Ti
m

e
(s

ec
.)

n = 105

NSC CSC
HashCube(mdmc) QSkyCube

10
4

10
5

10
6

100
101
102
103

n

d = 12

(a) Build time

4 8 12 16 20

103
105
107
109

1011

d

St
or

ag
e

un
its

n = 105

NSC CSC
HashCube SkyCube

10
4

10
5

10
6

105

106

107

n

d = 12

(b) Memory consumption

Figure 3.1: Build time and memory consumption with independent data

4 8 12 16 20

10−3

10−1

101

103

d

Ti
m

e
(s

ec
.)

n = 105

NSC CSC
HashCube(mdmc) QSkyCube

10
4

10
5

10
6

10−3
10−2
10−1

100
101
102

n

d = 12

(a) Build time

4 8 12 16 20

102
103
104
105
106
107

d

St
or

ag
e

un
its

n = 105

NSC CSC
HashCube SkyCube

10
4

10
5

10
6

102
103
104
105
106

n

d = 12

(b) Memory consumption

Figure 3.2: Build time and memory consumption with correlated data

4 8 12 16 20

10−1

101

103

105

d

Ti
m

e
(s

ec
.)

n = 105

NSC CSC
HashCube(mdmc) QSkyCube

10
4

10
5

10
6

100
101
102
103
104

n

d = 12

(a) Build time

4 8 12 16 20

103
105
107
109

1011

d

St
or

ag
e

un
its

n = 105

NSC CSC
HashCube SkyCube

10
4

10
5

10
6

106

107

108

n

d = 12

(b) Memory consumption

Figure 3.3: Build time and memory consumption with anticorrelated data

51

Real data

The same experiments as above have been performed on real data sets so that to avoid the

biases introduced by the (non) correlation of synthetic data. The results are depicted on

Figure 3.4. These data sets exhibit different configurations wrt n and d as well as the size

of their respective topmost skylines. In terms of build time, we observe that in general,

NSC is the fastest. It is worthwhile to notice that only NSC is able to process INSEE

data set. The other algorithms were stopped either due to memory saturation (CSC and

QSkyCube) or excessive time (after 24 hours for HashCube).

Regarding the memory consumption, globally, NSC requires less storage space.

IPUMS and HOUSE are the exception: IPUMS has a small n and for HOUSE, d is rather

small. Here too, and for the sake of assessing the compression ratio, we report the size of

the skycube of every data set even if QSkyCube did not terminate.

N
B

A

M
B

L

IP
U

M
S

H
O

U
SE

PO
K

E
R

IN
SE

E

10−2

100

102

104

Ti
m

e
(s

ec
.)

NSC CSC
HashCube(mdmc) SkyCube(QSkyCube)

(a) Build time

N
B

A

M
B

L

IP
U

M
S

H
O

U
SE

PO
K

E
R

IN
SE

E

104

106

108

1010

St
or

ag
e

un
its

(b) Memory consumption

Figure 3.4: Build time and memory consumption with real data

3.4.2 Answering skyline queries

For this experiment we compare the performance of NSC to those of (i) CSC, (ii)

HashCube and (iii) BSkyTree wrt query answering execution time. The first three

methods use pre-computation while the latter evaluate skyline queries directly from row

data.

For each structure we evaluate all possible skyline queries, i.e., the 2d−1 queries, and

report the total execution time. We do so to avoid the impact of dimensionality. Moreover,

this total time divided by the total number of queries gives an idea about the average query

execution time. Here too, we vary n, d and correlation.

52

3.4. Experiments

Synthetic data

Figures 3.5, 3.6 and 3.7 depict the results we obtained with independent, correlated and

anticorrelated data.

Globally, with respect to d, NSC and HashCube have the same performance and

outperform CSC and BSkyTree by more than two orders of magnitude. However

HashCube scales remarkably better with increasing n. Its query answering time is almost

constant. This shows that the number of distinct words used by HashCube remain almost

constant when d is fixed.

Interestingly, when d and n are relatively small, BSkyTree, i.e., no materialization,

seems to be the best solution. Indeed, with anticorrelated data and d = 4 or even d = 8,

answering a single skyline query takes less than half a second when n = 105.

4 8 12 16 20

10−4
10−2

100
102
104
106

d

Ti
m

e
(s

ec
.)

n = 105
NSC CSC HashCube BSkyTree

10
4

10
5

10
6

10−1
100
101
102
103
104

n

d = 12

Figure 3.5: Query answering with independent data

4 8 12 16 20

10−6
10−4
10−2

100
102
104

d

Ti
m

e
(s

ec
.)

n = 105
NSC CSC HashCube BSkyTree

10
4

10
5

10
6

10−3

10−1

101

103

n

d = 12

Figure 3.6: Query answering with correlated data

4 8 12 16 20

10−3
10−1

101
103
105
107

d

Ti
m

e
(s

ec
.)

n = 105
NSC CSC HashCube BSkyTree

10
4

10
5

10
6

10−1
100
101
102
103
104

n

d = 12

Figure 3.7: Query answering with anticorrelated data

53

N
B

A

M
B

L

IP
U

M
S

H
O

U
SE

PO
K

E
R

IN
SE

E

10−3

10−1

101

103

105

Ti
m

e
(s

ec
.)

NSC CSC
HashCube BSkyTree

Figure 3.8: Query answering with real data

Real data

The obtained results are shown in Figure 3.8. The first noticeable remark is that in most

cases, CSC is slower than BSkyTree which makes it definitively not a viable solution.

The second observation is that HashCube is always the best solution. The only exception

is with INSEE dataset where the HashCube itself cannot be constructed.

3.4.3 Maintenance upon updates

The aim of this section is to assess the effectiveness of the proposed solutions to maintain

the NSC structure upon updates. We compare our proposals of incrementally updating

the structure against the process of rebuilding the structure from scratch.

Evaluating insertions

Compression procedures In Section 3.3.1, we have presented the incremental

compressing procedure CompressByInclusion as an alternative to CompressByGreedy.

This first experiment consists in analyzing the memory increase versus the execution

time decrease we obtain when using the compression procedure based on pairs inclusions

rather than the greedy algorithm. To the sake of completeness, we also consider the case

where no compression is used. We present the results we obtained with an independent

data set with n= 105, build its NSC using the greedy algorithm then we evaluate the effect

of inserting a set of tuples3. We repeat the experiment by varying d and |∆+|. For both

3We emphasize the fact that we performed the same experiment with correlated and anti-correlated data
and we obtained similar results.

54

3.4. Experiments

memory usage and execution time, we consider greedy as the reference. More precisely,

Figure 3.9 depicts the values taken by the formula

Size of the new NSC−Size of initial NSC
Size of new NSC with greedy−Size of initial NSC

Intuitively, this formula represents the loss ratio in compression when we use

CompressByInclusion or NoCompression over CompressByGreedy. For the execution

time, Figure 3.10 shows the speed up of an execution method (without compression and

CompressByInclusion) over CompressByGreedy, i.e.,

Time to get the new NSC with Greedy
Time to to get the new NSC with other

We observe that, the size of NSC obtained with CompressByInclusion gets closer to that

returned by CompressByGreedy when d increases. By contrast, CompressByInclusion

speedup gets higher. We also observe that for a fixed d, the speedup decreases wrt |∆+|.
To conclude, these experiments show that summarization is worthwhile (it divides

NSC size by a factor of almost 100). CompressByInclusion does provide an interesting

trade off between execution time and memory usage. Therefore, CompressByInclusion is

the procedure we use in the next experiments.

12 16 20
101
102
103
104

|∆+|= 10

M
em

or
y

ra
tio

Without Compression CompressByInclusion

12 16 20
101
102
103
104

|∆+|= 102

12 16 20
101
102
103

|∆+|= 103

Figure 3.9: Memory growth ratio: varying d and |∆+|

12 16 20
0

20
40
60

|∆+|= 10

Sp
ee

d
U

p

Without Compression CompressByInclusion

12 16 20
0

20
40
60

|∆+|= 102

12 16 20
0

20
40
60

|∆+|= 103

Figure 3.10: Speedup evolution ratio varying d and |∆+|

Execution time analysis In this section we analyze the insertion methods presented in

Section 3.3.1. We focus on the insertion of a set of tuples by considering both batch and

sequential procedures. The later provides also information about single tuple insertion

since it consists in just iterating single insertions. Therefore, we do not report on the

execution times we get when a single tuple is inserted.

55

We suppose that NSC is already built for a data set T and we generate a set of tuples

∆+ with the same correlation type that we append to T .

To be sure that the inserted tuples imply effective update of NSC we select them in

such a way that they will be part of the new topmost skyline. More precisely, when |∆+|
is set to 10, we keep generating new tuples until we get 10 that are not dominated on D

by any of the previous topmost tuples.

Figures 3.11 and 3.12 plot the results of inserting ∆+ of sizes (10,30,50,70,90,110),

with respectively varying d and n.
10 30 50 70 90 11

0

10−2

10−1

|∆+|

Ti
m

e
(s

ec
.)

d = 12

Sequential Batch Rebuild

10 30 50 70 90 11
0

10−2

10−1

|∆+|

d = 16

10 30 50 70 90 11
0

10−2

10−1

|∆+|

d = 20

(a) CORR

10 30 50 70 90 11
0

100
101

|∆+|

Ti
m

e
(s

ec
.)

d = 12

10 30 50 70 90 11
0

100
101
102

|∆+|

d = 16

10 30 50 70 90 11
0

101
102
103

|∆+|

d = 20

(b) INDE

10 30 50 70 90 11
0

100

101

102

|∆+|

Ti
m

e
(s

ec
.)

d = 12

10 30 50 70 90 11
0

101

102

|∆+|

d = 16

10 30 50 70 90 11
0101

102
103

|∆+|

d = 20

(c) ANTI

Figure 3.11: Small ∆+ insertion by varying d (n = 105)

Sequential and Batch insertion methods are faster than rebuilding NSC from scratch

in all cases. Note however that when |∆+| is quite small (typically, 10) the sequential

procedure is better than the batch one. Recall that the former consists simply in iterating

the insertion of a single tuple over ∆+. This shows that the batch method is worthwhile

when ∆+ gets large (typically, more than 10). An exception to this behavior is the case of

56

3.4. Experiments

10 30 50 70 90 11
0

10−3

10−2

10−1

|∆+|

Ti
m

e
(s

ec
.)

n = 104

Sequential Batch Rebuild

10 30 50 70 90 11
0

10−2

10−1

|∆+|

n = 105

10 30 50 70 90 11
0

10−1

100

|∆+|

n = 106

(a) CORR
10 30 50 70 90 11
010−1

100

101

|∆+|

Ti
m

e
(s

ec
.)

n = 104

10 30 50 70 90 11
0

100
101
102

|∆+|

n = 105

10 30 50 70 90 11
0

101

103

105

|∆+|

n = 106

(b) INDE

10 30 50 70 90 11
0

100

101

|∆+|

Ti
m

e
(s

ec
.)

n = 104

10 30 50 70 90 11
0

101
102
103

|∆+|

n = 105
10 30 50 70 90 11

0101

103

105

|∆+|

n = 106

(c) ANTI

Figure 3.12: Small ∆+ insertion by varying n (d = 14)

correlated data where even rebuilding NSC from scratch is a viable solution since it takes

about 100msec.

We also performed some experiments to see whether our incremental solutions

degenerate to the naïve solution, i.e., build from scratch, when the amount of inserted

tuples is large. Figure 3.13 shows the results for an independent data set with n = 106

and d ∈ {8,12,16,20}. Observe that the execution time of the batch method seems to

be linear w.r.t. the size of ∆+. Its speed up w.r.t. the rebuild procedure is correlated

with the inserted tuples ratio independently of the dimensionality even if we observe

a slight gain when d increases. More precisely, when |∆+| = 103 = 0.1%× |T | the

speed up Time(Rebuild)/Time(Batch)' 1000 when d = 16 and it falls to about 10 when

|∆+| = 105 = 10%×|T |. So even with large insertions, our solution is still competitive

compared to the rebuild method.

57

103 104 105
100
101
102

|∆+|
Ti

m
e

(s
ec

.)

d = 8

Batch Rebuild

103 104 105

101
102
103

|∆+|

d = 12

103 104 105
101
102
103
104

|∆+|

Ti
m

e
(s

ec
.)

d = 16

103 104 105

103
104
105

|∆+|

d = 20

Figure 3.13: Inserting large ∆+ by varying d (n = 106)

Evaluating deletions

Impact analysis As we have seen, an important parameter influencing the efficiency of
handling the deletion of a tuple t− is the number of tuples it impacts, i.e., those for which
we need to recompute their associated new set of pairs. We conduct some experiments to
analyze the distribution of this parameter. To this aim, we compute the NSC associated to
a table T , then for every tuple t ∈ topmost, we compute the number of tuples it impacts
whenever t is to be deleted. Note that we do not consider tuples not belonging to topmost
since they have no impact. For the three types of data (CORR, INDE and ANTI), we
generate a data set with n = 105 and d = 16. The characteristics of these data are depicted
below. #max represents the maximal number of impacted tuples by an element of the
topmost.

CORR INDE ANTI

|topmost| #max |topmost| #max |topmost| #max

26 4 63091 9916 97847 8462

As it can be noted, the maximal number of tuples impacted by a deletion represents a

small portion of the dataset whatever is the correlation nature of data. Interestingly, this

number is larger for anti-correlated than independent data. This can be explained by the

fact that in the former case, the tuples tend to belong to more skylines hence, they are

dominated in less subspaces. Therefore, less pairs are needed to summarize them. By

contrast, when the dimensions are correlated, the topmost is small thus many tuples are

58

3.4. Experiments

totally dominated by most tuples in this small set. In consequence, very few pairs are

associated to a single topmost tuples.

Moreover, not all topmost tuples have an impact on T , e.g. for independent data,

only 28730 (about 45% of the topmost) are impacting at least one tuple and 68213 for

anti-correlated data (about 70% of the topmost) which represent respectively 28 and 68%

of T .

We are also interested by the distribution of this number of impacted tuples among the

elements of topmost. To this aim, for each data set and each X% ratio of the input table T

(X% = 1%,2%, . . . , #max
|T | %), we compute the number of topmost tuples impacting more

than X% of T . Figure 3.14 depicts these results. We observe that most topmost tuples

impact very few tuples. Said another way, the probability that deleting a tuple, or even a

set of tuples, will incur a large amount of work is quite small.

123456789
100

102

% of |T |

(a) INDE

1 2 3 4 5 6 7 8
100

102

% of |T |

(b) ANTI

Figure 3.14: Evaluating impact with n = 105 and d = 16

To make this observation more concrete, we conducted an experiment to collect some

statistics about the execution time required to maintain NSC upon deleting a topmost

tuple. We report the min, max, mean, median and Q3 (third quartile) execution times

and we contrast these values with the time required to build NSC from scratch. Figure

3.15 shows the results we obtained with an independent dataset by varying both n and d.

We observe, among others, that in most cases, half of the topmost tuples (median) need

an execution time which is about two orders of magnitude lower than that for rebuilding

NSC.

Execution time analysis We investigate also the execution time of updating NSC upon

a deletion of a subset ∆− ⊂ T . We reiterate the operation with different ∆− of increasing

size {10,30,50,70,90,110}. Figures 3.16 and 3.17 show the results of maintaining NSC
upon deleting ∆−, respectively, by varying n and by varying d.

Sequential and Batch methods overtake rebuilding NSC in all the experiments. The

gap is even larger when n increases, e.g. in Figure 3.16 with d = 16 and n = 106, for

both independent and anti-correlated datasets, the gain is at least 100. However, Batch

59

8 12 16

10−2
10−1

100
101
102
103

Ti
m

e
(s

ec
.)

n = 105

Min Median Q3
Mean Max Rebuild

(a) Varying d

104 105 106

10−310−210−1100101102103104

d = 12

(b) Varying n

Figure 3.15: Deletion time of topmost tuples

10 30 50 70 90 11
0

10−5

10−3

10−1

|∆−|

Ti
m

e
(s

ec
.)

n = 104

Sequential Batch Rebuild
10 30 50 70 90 11

010−3

10−2

10−1

|∆−|

n = 105

10 30 50 70 90 11
0

10−3
10−2
10−1

100

|∆−|

n = 106

(a) CORR

10 30 50 70 90 11
0

10−2
10−1

100
101

|∆−|

Ti
m

e
(s

ec
.)

n = 104

10 30 50 70 90 11
0

10−1

101

103

|∆−|

n = 105

10 30 50 70 90 11
010−1

101
103
105

|∆−|

n = 106

(b) INDE

10 30 50 70 90 11
0

10−2
10−1

100
101

|∆−|

Ti
m

e
(s

ec
.)

n = 104

10 30 50 70 90 11
0

10−1

101

103

|∆−|

n = 105

10 30 50 70 90 11
0

100
102
104

|∆−|

n = 106

(c) ANTI

Figure 3.16: Small ∆− deletion by varying n (d = 16)

tends to be better with larger ∆−, due to the fast evolution of sequential execution time,

e.g. in Figure 3.16, for anti-correlated data with d = 16 and n = 104, sequential deletion

60

3.4. Experiments

10 30 50 70 90 11
0

10−3
10−2
10−1

|∆−|

Ti
m

e
(s

ec
.)

d = 12

Sequential Batch Rebuild

10 30 50 70 90 11
010−4

10−3
10−2
10−1

|∆−|

d = 16

10 30 50 70 90 11
010−1

100
101
102

|∆−|

d = 20

(a) CORR
10 30 50 70 90 11

010−2

100

102

|∆−|

Ti
m

e
(s

ec
.)

d = 12

10 30 50 70 90 11
0

102
103
104
105

|∆−|

d = 16

10 30 50 70 90 11
0

103
104
105
106

|∆−|

d = 20

(b) INDE

10 30 50 70 90 11
0

10−1
100
101
102

|∆−|

Ti
m

e
(s

ec
.)

d = 12

10 30 50 70 90 11
010−1

101

103

|∆−|

d = 16
10 30 50 70 90 11
0

100

102

104

|∆−|

d = 20

(c) ANTI

Figure 3.17: Small ∆− deletion by varying d (n = 105)

oversteps rebuilding NSC from scratch.

To push even more those experiments, we delete until 10% of an initial data of 106

tuples and 20 dimensions. The previous experiments have already shown that sequential is

not scalable w.r.t. |∆−|. Therefore, we compare only Batch with rebuilding NSC. Figure

3.18 shows the results with an independent dataset. We observe that Batch outperforms

rebuilding NSC for all configurations. We remark also that the more dimensions we add,

the higher the gap between Batch and Rebuild when deleting 105 tuples. The main reason

is that when d = 8, topmost is smaller than with d = 20, which makes a large portion of

topmost included into ∆−, and this leads to a high number of impacted tuples.

61

103 104 105

10−1
100
101
102

|∆−|

Ti
m

e
(s

ec
.)

d = 8

Batch Rebuild

103 104 105

100

102

104

|∆−|

d = 12

103 104 105
100

102

104104

|∆−|

Ti
m

e
(s

ec
.)

d = 16

103 104 105

102
103
104
105

|∆−|

d = 20

Figure 3.18: Deleting large ∆− by varying d (n = 106)

Real data

To evaluate insertions, we compute NSC with 95% of the dataset randomly chosen, and

then we insert the remaining 5%. Note that here, the inserted tuples are not guaranteed to

belong to the new topmost skyline. We make this choice in purpose so that the experiment

becomes closer to realistic situations: users do not insert just not dominated tuples.

Likewise for deletions, we compute NSC for the whole data set, and we delete 5% tuples

chosen randomly. The obtained execution times are depicted in Figure 3.19.

N
B

A

M
B

L

IP
U

M
S

H
O

U
SE

PO
K

E
R

IN
SE

E

10−2

100

102

Ti
m

e
(s

ec
.)

Sequential Batch Rebuild

(a) Inserting 5%

N
B

A

M
B

L

IP
U

M
S

H
O

U
SE

PO
K

E
R

IN
SE

E

10−3

10−1

101

103

Ti
m

e
(s

ec
.)

(b) Deleting 5%

Figure 3.19: Inserting and deleting 5% of real data

In general, we observe the same behavior as with synthetic data, that is Batch method

is the fastest for insertions as well as for deletions. We note however some exceptions

with the insertion experiments, e.g. for NBA and MBL, Sequential method is as good

as Batch method, while for INSEE, Sequential method is clearly faster. We explain this

62

3.5. Conclusion

behavior by the fact that the topmost skylines of these three data sets are quite small (see

Table 3.6), therefore due to the random selection of the 5% that we insert, ∆+ is likely to

be composed of dominated tuples, consequently the topmost will not change. Sequential

method checks the tuples of ∆+ one by one whether they are dominated, thus it performs

at most |∆+|∗ |topmost| comparisons. While Batch method computes topmost of T ∪∆+,

i.e. computes skyline of T ∪∆+ over D. Note that this behavior is similar to that observed

with correlated synthetic datasets.

Experiments conclusion We learn from NSC maintenance experiments is that the

harder the computation of NSC from scratch, the more efficient incremental methods.

When NSC computation is already fast, the lack of the incremental methods gain is not

crippling. Moreover, experiments suggest that one should prefer Sequential insertions

when the topmost skyline is small. For deletions, Batch method is always the best choice.

3.5 Conclusion

In this chapter, we studied the incremental maintenance of the structure NSC in presence

of dynamic data. In a previous work, this structure has been shown efficient for answering

subspace skyline queries, however no incremental maintenance procedure has been

provided. Through slight modifications in the structure design and efficient algorithms,

we have shown that NSC can efficiently handle updates. Moreover we have shown that

these modifications do not alter its efficiency with respect to both construction and query

answering times, and space consumption.

We considered in this chapter data changing in unpredictable way, i.e. a set of

unknown size can be deleted/inserted at any time. However in some real world situations,

data are appended only and queries consider a window. In such cases, this chapter’s

proposals are not suitable. For example, consider a dataset where N tuples are inserted

every k units of time. Then NSC’s update should occur in the interval between every two

batches. Otherwise NSC would never provide accurate results for skyline queries. In the

next chapter, we give examples of such situation and address the maintenance of NSC in

presence of streaming data.

63

Chapter 4

Maintenance of NSC with streaming
data

4.1 Introduction

Computing the skyline in a streaming context has been investigated in e.g., [79, 11, 40,

41]. They consider a data set extended every θ units of time by a new tuple. All tuples

may have a specified common lifetime ω , i.e., they are valid during a period of size ω

starting from their arrival time, then they become obsolete and can be removed. Since

the underlying data set is changing every θ units of time, i.e. a new tuple is appended

and an old one is discarded, the answer to a skyline query may change at the same

frequency. Because the complexity of skyline queries evaluation is, in the worst case,

quadratic in the data size, there is a need of incremental procedures to maintain the skyline

up to date. Previous works that tackled the issue have mainly considered the problem

of maintaining a single skyline. In the present chapter, we investigate the problem of

answering multidimensional skyline queries over streaming data. More precisely, we

address the incremental maintenance of NSC in a streaming context.

As discussed in Chapter 1 Section 1.1.2, none of the previous solutions to monitor a

single skyline can be naturally and efficiently adapted to the context of multidimensional

skylines. As a motivating scenario, consider a data analytics agency which receives

a live stream of statistical data about tweets. Each tuple represents a tweet statistics

of the form (UserId, TweetId, #retweets, #likes, #comments,

retweet_depth, #followers, #shares_on_other_social_nets). The

agency is interested by the skyline tweets wrt several subsets of attributes in a 24 hours

sliding window. This information can be useful for, e.g., identifying the k-most influential

tweets by counting the number of subspace skylines they belong to. Considering the last

65

6 attributes representing statistics, there are 63 distinct skyline queries (26−1) that can be

submitted to this multidimensional data stream. Because of data velocity, monitoring the

Top-K elements requires to refresh the results as frequently as possible: if each second a

new tuple is received and an old tuple is outdated, then each of the 63 queries must be

re-evaluated to keep the Top-K tweets wrt to the last 24 hours up to date. Observe that if

θ = 1sec. and the evaluation of these queries takes more than 1 second, then the Top-K

query answer will never reflect the actual data. One solution to cope with this problem is

to reduce the size of input data. This can be done by reducing the tuples validity time,

e.g., considering just the last hour instead of the last 24 hours divides the input size by

24. Notice that this may not reflect the business needs of the company. Another solution

would be to reduce the number of skyline queries, e.g., select “most representative" 10

queries among the 63 possible ones. Again, this could bias the result.

In this chapter, we present the framework MSSD (Multidimensional Skylines over

Streaming Data) that handles (i) a buffer B where tuples are first collected during k units

of time, (ii) a main dataset T that stores tuples arrived in a window of size ω and (iii) a

variant of NSC called NSCt i.e., NSC with timestamps.

We adopt a micro-batch processing approach: the stream source emits one tuple every

θ units of time1. Our framework collects the tuples into a buffer during k units of time.

Thereafter, the buffered tuples are inserted into T and the outdated ones are removed

from T . Simultaneously, the maintenance of the index structure NSCt is triggered.

When a subspace skyline query is issued, NSCt is used in order to compute the skyline.

Continuing with the analytics agency example, suppose that it is interested in querying a

24 hours window, i.e., ω , and sets the batch interval, i.e., k, to 15 min with a processing

at {HH:00, HH:15, HH:30, HH:45}. Then, for example at 13:40, T covers the window

(13 : 30(−1 day),13 : 30]. Note that tuples arrived during the interval (13 : 30,13 : 40]

do not belong to T and are not considered for queries. In addition, those arrived during

(13 : 30(−1 day),13 : 40(−1 day)] still belong to T despite the fact that they are no more

valid. So the exact semantics of the queries our framework answers is: the skyline over

the data that were valid at the last maintenance time.

We balance the maintenance frequency with the query answering performance. A user

interested in querying a more close window will choose to reduce k. However someone

who is interested in processing a big number of queries will delay the maintenance

process.

1This limitation of the number of tuples per θ units of time is set just for the ease of the presentation.
Without any change, our framework can handle the case of multiple tuples per time unit.

66

4.2. Preliminaries

Organization The next section gives the additional definitions and notations used

throughout the chapter. We then describe our proposed framework. We present NSCt,
how it (i) is maintained and (ii) is used to answer skyline queries. Afterwards, we present

the experiments we performed.

4.2 Preliminaries

We begin by presenting the definitions and notations used throughout the chapter.

Notations and definitions

In addition to the general definitions and notations, in this chapter we consider data

appending to a data repository S in a streaming mode. We consider that all tuples share

the same validity period of size ω which starts once the tuple is integrated into the data

repository S. Every tuple t has a timestamp corresponding to the starting time of its

validity period denoted T S(t). To simplify, we consider time as isomorphic to the set

of natural numbers which means T S(t) ∈ N. At timestamp T S(t) + ω , the tuple t is

considered outdated, therefore deleted from the data repository. We also consider the

natural order between timestamps, i.e., T S(t1) < T S(t2)⇔ t1 has been integrated before

t2. By convention, the current timestamp, denoted tsc corresponds to the timestamp of the

most recent tuple in the data repository. That is, tsc = argmax
t∈S

T S(t).

In this chapter, the skyline is defined over a window as follows,

Definition 9 (Subspace skyline over a window). Let X be a subspace, [a,b] be a time

interval and S be a data repository. Let S[a,b] = {t ∈ S|T S(t)∈ [a,b]}. Then, the subspace

skyline of S wrt X over [a,b], denoted Sky[a,b](X ,S), is the set {t ∈ S[a,b]|@t ′ ∈ S[a,b] s.t

t ′ ≺X t}.

To simplify the notation, we sometimes write just Sky(X) when the underlying S is

understood and we omit [a,b] because we focus on the time interval (tsc−ω, tsc], i.e., the

valid tuples wrt the current timestamp.

Example 18. Let S be the following set of tuples:

Id Timestamp A B C

t1 11 1 2 1

t2 12 1 1 2

t3 13 2 2 2

t4 14 2 3 1

67

Assume that ω = 2, i.e., a tuple is still valid 2 units of time after its arrival. Because the

most recent tuple in S has a timestamp equal to 14, all tuples which arrived at timestamp

14−ω = 12 or before, are considered to be outdated and hence removed. In S, this is the

case for t1 and t2. Hence, e.g., Sky(AB) = {t3} and Sky(BC) = {t3, t4}. Now, let ω = 8,

i.e., all tuples are valid. Then Sky(AB) = {t2} and Sky(BC) = {t1, t2}.

Table 4.1 summarizes the additional notations for this chapter.

Term Meaning
tsc, i, j, . . . timestamps
ω size of sliding window = validity duration of tuples
k batch interval = frequency of batch updates
θ streaming delay = time separating two successive tuples
B buffer = set of tuples waiting to be inserted
T S(t) timestamp of tuple t
Transaction δ set of tuples

Table 4.1: Notations

4.3 MSSD framework

In this section, we present the architecture of our framework, the index structure we

propose to maintain the subspaces where a tuple is dominated and the process of

answering issued subspace skyline queries.

4.3.1 MSSD architecture

MSSD consists of three data structures, (i) a buffer B, (ii) a main dataset T and (iii)

an index structure NSCt. MSSD integrates a micro-batch processing: (i) during a time

interval of size k, tuples are first inserted into the buffer B, afterwards (ii) the content

δ+ of B is inserted into the dataset T , (iii) the outdated tuples are deleted from T , and

finally (iv) the update of NSCt is triggered. The framework is clocked by the parameter

θ which determines the delay between two timestamps ti and ti+1, i.e., the delay between

two successive tuples. For the ease of the presentation, we consider that every θ units

of time, one and only one tuple is buffered by our framework. Moreover, we assume

that k is a divisor of ω , and both are multiples of θ . Hence, at each time, the number

of tuples belonging to B is at most equal to k
θ

. On another hand, and after warm up,

i.e., current timestamp tc greater than ω , T continuously contains exactly ω

k transactions

which corresponds to a total of ω

θ
tuples2.

2If at most ` tuples can arrive at the same time instead of just 1, then |B| ≤ ` · k
θ

and |R| ≤ ω

θ
· `.

68

4.3. MSSD framework

Note here that throughout the paper, the timestamp of a tuple t, i.e. T S(t), corresponds

to the timestamp when the tuple t has been inserted into T . Hence, all tuples of a single

transaction share the same timestamp.

Example 19. In Figure 4.1, we depict two timestamps of the framework timeline. We

consider the following configuration: window size ω = 12 ·θ and maintenance frequency

k = 4 ·θ . Therefore B and T contains respectively 4 and 12 tuples.

(a) Framework state at 18

(b) Framework state at 19

Figure 4.1: Framework timeline with θ = 1,ω = 12 and k = 4

In Figure 4.1(a), the current timestamp is tc = 18, T contains tuples arrived during

the window [4,15]. From timestamp 16, tuples are appended to the buffer. The queries

issued during [16,19) target tuples in T , i.e, the window [4,15]. In Figure 4.1(b), tc = 19

and tuple t19 is appended to the buffer, thereafter transaction δ+ = {r16,r17,r18,r19} is

inserted into T and δ− = {r4,r5,r6,r7} is discarded from T . The window covered by T

is henceforth [8,19]. Note that T can be seen as a sequence R[i]1≤i≤ω/k of transactions

where R[i] corresponds to a set of tuples inserted at the same time. Here T is a sequence

of ω/k = 3 transactions. At tc = 19, R[3] = δ+.

Remark 3. As illustrated in the previous example, considering S as the set of all tuples

seen until current time tc and for given ω and k, T contains the tuples arrived during the

interval (te−ω, te] where te = tc− ((tc +1)modulo k). Thus, the exact queries evaluated

at tc are Sky(te−ω,te](X ,S) (c.f Definition 9).

4.3.2 NSCt index structure

In this section, we present our framework index structure NSCt, (Negative SkyCube with

timestamps) which is inspired from NSC presented earlier.

We recall NSC and explain why it is not suitable for streaming data. NSC stores

for each tuple, a set of pairs which summarize the set of subspaces where the tuple is

dominated. The pairs are computed wrt each tuple in the dataset. However, not all

69

pairs are stored. We compress the initial set of pairs P into an equivalent set of pairs

P′. While this compression step improves the space consumption and query answering

time, it makes deletion harder.

Let us consider the set of tuples depicted below:

Id A B C

t1 2 2 2

t2 0 0 3

t3 5 1 3

t4 1 1 3

t5 1 0 4

Comparing t5 to the other tuples returns the following set of pairs

Compare(r5,r1) Compare(r5,r2) Compare(r5,r3) Compare(r5,r4)
〈C| /0〉 〈AC|B〉 〈C| /0〉 〈C|A〉

Table 4.2: Pairs of t5

For example, observe in Table 4.2 that subspaces covered by both 〈C|A〉 and 〈C| /0〉 are

likewise covered by 〈AC|B〉, hence NSC keeps only one single pair, i.e., 〈AC|B〉 computed

wrt t2. Now assume that t2 is deleted from the dataset, hence t5 has to be compared to all

the remaining tuples in the dataset to recover its associated pairs. In a streaming context

where the flow of insertions/deletions is high, this approach of pairs sets maintenance is

not suitable because it is too time consuming.

We adapt this structure in order to handle efficiently streaming data without giving

up much performance of NSC. More precisely, given a dataset T , for a tuple t in T , we

organize its set of pairs Pairs(t) as a sequence of buckets where each bucket Pairs(t).Bucki

contains the pairs computed wrt a transaction R[i] in T .

The following example illustrates the update procedure.

Example 20. Let θ = 1, the window size ω = 6 · θ and a batch interval k = 2 · θ . If

the current time tc is 6 then seven tuples t0,r1, . . . ,r6 are supposed to have arrived so

far. Accordingly, at this timestamp, T is composed of 3 transactions {r0,r1}, {r2,r3}
and {r4,r5}, and t6 is just buffered into B. Table 4.3 represents the current status of

T . It shows the projection of the tuples on the dimensions A, B and C and their arrival

time, which corresponds to the timestamp where the framework received the tuple. At the

current timestamp, we consider that the pairs of {r0, . . . ,r5} have already been computed.

At timestamp 7, a new tuple t7 is buffered. The content of B is then inserted into T . In

addition, the first two tuples t0 and t1 are no more valid so they are removed from T as it

70

4.3. MSSD framework

Transaction Id A B C Arrival time
R[1] r0 5 4 1 0

r1 3 4 2 1
R[2] r2 5 1 3 2

r3 1 1 3 3
R[3] r4 1 0 4 4

r5 0 1 5 5

Table 4.3: Dataset T at timestamp 6

Transaction Id A B C Arrival time
R[1] r2 5 1 3 2

r3 1 1 3 3
R[2] r4 1 0 4 4

r5 0 1 5 5
R[3] r6 2 0 6 6

r7 2 1 1 7

Table 4.4: Dataset T at timestamp 7

is depicted in Table 4.4. At the same time, NSCt maintenance is triggered in order to (i)

compute the pairs of t6 and t7 wrt {r2, . . . ,r7} (ii) update the pairs of {r2, . . . ,r5} wrt t6
and t7.

In the following, we detail our approach (i) to compute and organize the pairs of a

newly inserted tuple into T and (ii) to update the set of pairs of an existing tuple.

Handling a new tuple

Let δ+ be a transaction. Let T be the set of tuples from where the outdated tuples are

removed and those in δ+ are inserted. Let t be a newly inserted tuple into T , i.e., r ∈ δ+.

We compute its pairs wrt the tuples in T and organize them as follows: we allocate to t

a sequence of buckets that we call Pairs(t) where each bucket Pairs(t).Bucki contains

the pairs computed wrt a transaction R[i] in T . Since there exists ω

k transactions in T ,

then each tuple has ω

k buckets. The timestamp of a bucket, denoted by T S(Bucki), is the

timestamp of the tuples to which it is related.

We describe the process of computing the pairs associated to a newly inserted tuple in

Algorithm 12 and illustrate it in example 21. Algorithm 12 is called for every tuple in the

transaction δ+.

Example 21. We report in Table 4.5 the pairs of tuples t6 and t7 from the previous example.

Recall that from the values of ω = 6 and k = 2, the number of transactions in T is 6
2 = 3

which is the number of buckets we associate to each tuple. The first bucket Buck1 is

obtained by comparing t6 and t7 to the tuples belonging to the oldest transaction in T ,

i.e., {r2,r3} and the second by comparing them to {r4,r5}. The last bucket corresponds

to the pairs obtained by comparing the new tuples to each others, i.e., t6 to t7 and vice

versa.

71

Algorithm 12: computePairs
Input: tuple t, T
Output: Pairs(t)

1 Pairs(t)← /0
2 Bucki← /0 ∀i ∈ [1,ω/k]
3 begin
4 for i ∈ [1,ω/k] do
5 foreach r′ ∈ transaction R[i] do
6 // we iterate over the tuples belonging to the ith transaction of T
7 Bucki← Bucki∪{compare(r,r′)}
8 Pairs(t)← Pairs(t)]Bucki

9 return Pairs(t)

Id Buck1 Buck2 Buck3
t6 〈A|C〉,〈 /0|C〉 〈A| /0〉,〈A|B〉 〈C|A〉
t7 〈A|B〉,〈 /0|B〉 〈A|B〉,〈AB| /0〉 〈B|A〉

Table 4.5: Pairs of t6 and t7

Complexity analysis

Given the parameters ω , k and θ , the size of the dataset T is ω

θ
. Moreover, the size of a

transaction δ+ to be inserted is k
θ

. Let n = |R| and `= |δ+|. Each tuple in δ+ is compared

to tuples in T (except itself) hence the process of computing the pairs of a transaction has a

time complexity O(` ·n). Likewise space complexity is O(` ·n) as from each comparison,

one pair is stored. Observe however that each bucket is a set of pairs. Hence, ` · n is the

maximal number of pairs.

Minimization of Pairs(t).

We show in this section the minimization process of NSCt which is shaped for streaming

data.

Let us first recall the notion of set of pairs equivalence.

Definition 10 (Equivalence). Let P and Q be two sets of pairs. Then P and Q are

equivalent, P≡ Q, iff cover(P) = cover(Q)

Example 22. Let P = {〈A|BC〉,〈B|C〉,〈AB|C〉}, P covers the subspaces

{ABC,AB,AC,BC,A,B}. Then both P1 = {〈A|BC〉,〈B|C〉} and P2 = {〈AB|C〉} are

equivalent to P.

Now, given a sequence of buckets Pairs(t) = [Buck1, . . . ,Buckm], for each Bucki we

compute a subset si ⊆ Bucki such that ∀p ∈ si the set si \ p 6≡ si, i.e., si is a minimal

72

4.3. MSSD framework

equivalent subset of Bucki. We illustrate in the following example the buckets of t6 and t7
where each bucket is replaced by a minimum equivalent subset.

Example 23. Table 4.6 shows the new set of pairs of t6 and t7 (cf. Table 4.5) after

summarizing their respective buckets. For example, the pair 〈A| /0〉 is removed from the

Bucket2 of t6 because it is covered by 〈A|B〉 belonging to the same bucket.

Id 1 2 3
t6 〈A|C〉 〈A|B〉 〈C|A〉
t7 〈A|B〉 〈AB| /0〉 〈B|A〉

Table 4.6: Pairs of t6 and t7 minimized by equivalence

The intra-bucket size minimization as described above can be extended to

inter-buckets minimization to further reduce the memory storage. Intuitively, a pair

belonging to Bucki is redundant if the subspaces it covers are covered by pairs in more

recent buckets. Let us illustrate this observation.

Example 24. Consider Pairs(r6) and Pairs(r7) depicted in Table 4.6. Observe that for

tuple t7, the subspaces that the pair 〈A|B〉 in Buck1 covers ({AB,A}) are covered by 〈AB| /0〉
in Buck2 ({AB,A,B}). Therefore, we discard 〈A|B〉 from Buck1. We report in Table 4.7

the minimized set of pairs of t6 and t7.

Id 1 2 3
t6 〈A|C〉 〈A|B〉 〈C|A〉
t7 〈AB| /0〉 〈B|A〉

Table 4.7: Pairs of t6 and t7 minimized

Remark 4. From the example above, one may wonder why pair 〈B|A〉 is not removed

from Buck3 of t7 since it is covered by 〈AB| /0〉 in Buck2. We make the choice to keep it

for update optimization considerations. Indeed, while the deletion of that pair reduces

memory consumption and preserves skyline semantics, it makes the update procedure

harder: as pairs in Buck2 become outdated before those in Buck3, more precisely the

tuples which served to obtain them, then as soon as Buck2 becomes outdated we need to

recover 〈B|A〉 because the reason of its removal becomes no more valid. So our choice

to not minimizing the buckets wrt to older ones can be seen as trade off between memory

minimization and update efficiency.

We combine the two minimization processes explained above (intra and inter buckets)

and formalize the problem of the global minimization of Pairs(t) for a given tuple t as

follows:

73

Problem 1 Let Pairs(t) = [Buck1, . . . ,Buckm]. Then ∀i ∈ [1,m], find si ⊆ Bucki s.t si∪
m⋃

j=i+1
Buck j ≡

m⋃
j=i

Buck j and si is of minimum size.

The problem above addresses the minimization of Pairs(t) by both intra and inter

buckets minimization. Indeed, for every bucket Bucki in Pairs(t), we look for a subset

si ⊆ Bucki such that the set of pairs si ∪
m⋃

j=i+1
Buck j and

m⋃
j=i

Buck j are equivalent. The

resulting set si contains then pairs not covered by pairs in the union of buckets following

Bucki, i.e.,
m⋃
j=i

Buck j

Theorem 5. Problem 1 is NP Hard.

Proof. For the special case where Pairs(r) contains only one bucket Buck1, hence we look

for s1 ⊆ Buck1 such that cover(s1) ≡ cover(Buck1) and s1 with minimum size. The time

complexity is O(2|Buck1|).

Let P = Buck1, by considering all the subsets of P, one can check which are equivalent

to P and which are of minimum size. Thus, the problem is in NP. The hardness proof

is based on a reduction from the Minimal Set Cover (MSC) problem. Given an MSC
instance, we build a table T with a distinguished tuple t where the number of dimensions

d is equal to the number of elements to be covered in MSC and where the number n+1 of

records is equal to the initial number of sets in MSC in addition to the distinguished t. So,

there is a bijection between the n records and the n sets of MSC instance. The n records

form the topmost of T and distinguished tuple t is compared to each of them giving rise

to a set of pairs P. We show that the minimum equivalent subset of P coincides with a

solution of MSC. Let s = {s1,s2, . . . ,sn} be the input set of sets in the MSC instance.

W.l.o.g, we assume that there is no inclusion between these sets and none of them does

contain all the elements to cover. For every set s j ∈ s, we add to T a tuple t j such that

t j[i] = 0 iff i ∈ s j otherwise t j[i] = 1. In addition, we add to T a tuple t = (1,1, . . . ,1) be a

d-tuple. For example, let s = {s1 = {1,2};s2 = {2,3};s3 = {1,3}} be the MSC instance.

The number of elements to cover is d = 3 and the number of sets n = 3. So, we get a table

T with n+1 = 4 records, including t, and 3 dimensions. This table is depicted below.

Id 1 2 3
t 1 1 1

t1 0 0 1

t2 1 0 0

t3 0 1 0

Clearly, every t j dominates t and ti 6≺ t j. Hence, {t1, . . . , tn} is the topmost. By

comparing t to the topmost, we obtain P(s) = {p1, . . . , pn}. There is a one to one

74

4.3. MSSD framework

correspondence between si ∈ s and pi = Compare(t, ti). For example, Compare(t, t1) =

〈12|3〉 corresponds to s1 = {1,2}. Let u ⊆ s and let P(u) be the set of pairs p j such that

p j =Compare(t, t j) where t j corresponds to some s j ∈ u. Let Cover(P(u)) denote the set

of subspaces covered by the pairs in P(u). We show that ∪s j∈us j = ∪si∈ssi iff P(u)≡ P(s)

and this proves the claim.

(i) P(u) ≡ P(s)⇒ u ≡ s: Every p j ∈ P(u) is of the form 〈X j|Yj〉 thus it covers, among

others, the subspace X j which actually corresponds to the content of s j ∈ u. As P(u) ≡
P(s), ∀pi = 〈Xi|Yi〉 ∈ P(s), P(u) covers Xi and the union of the Xi’s is the union of the si’s.

Hence u≡ s.

(ii) u≡ s⇒ P(u)≡ P(s): Assume, for the sake of contradiction, that P(u) 6≡ P(s). There

must exist a subspace Z s.t P(s) covers Z but not P(u). Thus, there exists pi ∈ P(s) such

that pi = 〈Xi|Yi〉 s. t Z ⊆ XiYi and Z∩Xi 6= /0. Note that every pi is of the form 〈si|U\ si〉
where U=∪s j∈ss j. Therefore, to cover Z, a pair 〈s j|U\s j〉 needs just to satisfy Z∩s j 6= /0.

Such an s j is necessarily in u because otherwise u 6≡ s, i.e., there exists k ∈ U such that

there is no si ∈ u s.t k ∈ si and thic contradicts the fact that u≡ s. We conclude that every

(minimum) solution of the set cover problem corresponds to a (minimum) solution to our

problem regarding the distinguished tuple t of the table T above which terminates the

proof.

A Polynomial time greedy algorithm for pairs minimization

We present in this section a polynomial time greedy algorithm for solving Problem 1. We

establish the theoretical guarantees of its solution wrt an optimal solution as well as its

time complexity. For the ease of the presentation, in the following we denote by P1 the

problem we address. We transform an instance of our problem P1 into an instance of a

problem P1∗ and show that a given sequence [s1, . . . ,sm] that is a solution for P1 coincides

with S∗ a solution of P1∗.

We begin by defining a function T which takes as input a pair p and the index of the

bucket p belongs to, and returns the set of subspaces it covers duplicated i times. More

specifically:

Definition 11. Let t be a tuple and Pairs(t) = [Buck1, . . . ,Buckm] be its associated

sequence of buckets. Let p ∈ Bucki, then T (p, i) = {Z1, . . . ,Zi|Z ∈ cover(p)}

Example 25. Consider Pairs(r7) depicted in Table 4.7 and 〈AB| /0〉 ∈ Buck2. Then the

transformation of the pair 〈AB| /0〉 is T (〈AB| /0〉,2) = {A1,B1,AB1,A2,B2,AB2}.

Now we define a function T that transforms an instance of P1.

75

Definition 12. Let D = {D1, . . . ,Dd}. Let t be a tuple and Pairs(t) = [Buck1, . . . ,Buckm]

be its sequence of buckets. Then T(Pairs(t)) is the following set of subspaces

{T (p)|∀Bucki,∀p ∈ Bucki}. The domain of T is a sequence of set of pairs and Im(T) =

{T (〈X |Y 〉, i)|i ∈ N,X ⊆ D,Y ⊆ D and X ∩Y = /0}.

In the following we formalize the problem P1∗

Problem 1∗ Let Pairs(t) = [Buck1, . . . ,Buckm]. Find S∗ ⊆ T(Pairs(t)) such that S∗

covers the same set as T(Pairs(t)) and S∗ is of minimum size.

Observe that P1∗ is equivalent to the MSC problem. Now we show that a solution for P1∗

is also a solution for P1.

Theorem 6. Let [s1, . . . ,sm] ⊆ Pairs(t), then [s1, . . . ,sm] is a solution for P1 iff

T([s1, . . . ,sm]) is solution of P1∗.

In order to prove the above theorem, we first have to prove that the function T is bijective.

Lemma 5. T is bijective.

Proof of Lemma 5. Observe in the definition that Im(T) is composed of the image by the

function T of all possible pairs according to a set of dimensions D, hence T is surjective.

Now we show that T is injective. Let seq1 and seq2 two sequences of sets of pairs. We

prove by contradiction that if T(seq1) = T(seq2) then seq1 = seq2. Suppose T(seq1) =

T (seq2) and seq1 6= seq2. We first prove that the two sequences have the same size, i.e.

the same number of sets of pairs. Suppose the size of the sequences is different between

seq1 and seq2, e.g. n = |seq1| > |seq2| = m, let X be a subspace covered by a pair in the

nth set of seq1. Hence Xn does belong to a element in T(seq1) which is impossible because

T(seq1) = T(seq2). Therefore seq1 and seq2 contain the same number of sets of pairs. Let

seq1 = [s1, . . . ,sm] and seq2 = [s′1, . . . ,s
′
m], we now prove that si = s′i ∀i ∈ [1,m]. Suppose

that si 6= s′i, more particularly suppose p ∈ si and p′ ∈ s′i such that p 6= p′, we show that

it’s impossible that cover(p) equals cover(p′). Let p = 〈X1|Y1〉 and p′ = 〈X2|Y2〉.

• if X1 ⊂ X2 then ∀Y1,Y2 ∃Z ∈ X2 \X1 6∈ cover(p).

• if X2 ⊂ X1 then ∀Y1,Y2 ∃Z ∈ X1 \X2 6∈ cover(p′).

• if X1 = X2 then

– if Y1 ⊂ Y2 then X2Y 2 /∈ cover(p)

– if Y2 ⊂ Y1 then X1Y 1 /∈ cover(p′)

76

4.3. MSSD framework

Hence in all cases, cover(p) 6= cover(p′) therefore T(seq1) is not equal to T(seq2) which

contradicts our first assumption. We conclude that T is injective and therefore bijective.

Next we show that a solution [s1, . . . ,sm] for P1 coincides with a solution S∗ for P1∗,

that is proving the previous theorem.

Proof of Theorem 6. ⇒ Let [s1, . . . ,sm] be a solution for P1. We prove by contradiction

that T([s1, . . . ,sm]) is a solution of P1∗. Suppose that T([s1, . . . ,sm]) is not a solution

of P1∗. So there must exist Xi ∈
⋃

Z∈T(Pairs(r))Z such that Xi 6∈ T([s1, . . . ,sm]) and i the

highest index. As T is bijective, there exists a pair p ∈ Bucki such that Xi ∈ T (p, i). As no

other Si+1, . . . ,Sm covers X then Si should cover X , which is not the case as p not in Si.

Then [s1, . . . ,sm] is not a solution, which contradicts our assumption.

⇐ Suppose [s1, . . . ,sm] is not a solution of P1 such that si is the one that does not

satisfies Bucki. Let X be a subspace covered by pairs in Bucki, however not covered by

pairs in Si, then as T bijective, Xi will not belong to T([s1, . . . ,sm]). But Xi ∈ T(Pairs(r))

because X ∈ Bucki. Hence T([s1, . . . ,sm]) is not a solution for P1∗.
This is true for a minimum solution as well.

We present in Algorithm 13 the steps to find a minimal solution for an instance of

P1. It first transforms the instance of P1 to an instance of P1∗ by computing the union

of a pairs sequence (Lines 3 to 5), then according to Theorem 2 it solves P1∗ by using a

greedy algorithm solving MSC [78] (Line 6). Finally, for every element in the solution of

the second problem S, we keep the corresponding pair in Pairs(t) (lines 7-10).

Algorithm 13: minimizingNSCt
Input: Pairs(t) = [Buck1, . . . ,Buckm]
Output: Pairs(t)

1 begin
2 I← /0
3 for i ∈ [1,m] do
4 for p ∈ Bucki do
5 I← I∪T (p, i)

6 S←MSC(I)
7 Pairs(t)← /0
8 for s ∈ S do
9 Pairs(t)← Pairs(t)∪T−1(s)

10 return Pairs(t)

77

Time complexity and size guarantee Given ω , k, θ and d. Let r be a tuple, Pairs(t) =

{Buck1, . . . ,Buck ω

k
} be its set of buckets. Each bucket contains at most k

θ
pairs (duplicate

pairs are stored once). To simplify, let m = ω

k , n = |R|= ω

θ
and l = |δ+|= k

θ
. Regarding

the time complexity, computing the set I takes O(m · l) = O(n) time. I contains n sets

at most, hence computing a solution by MSC greedy algorithm presented in [78] takes

O(n2) time. The final step (line 8-9) is linear in the size of the solution S. This size is

guaranteed by [78] to be |S| ≤ |Sopt | · log(e) such that e is the size of the largest element

in I and which is bounded by 2d ·m. Hence |S| ≤ |Sopt | · (d + log(m))

The batch interval k impacts the minimization process in a way that the resulting

minimized set is smaller when k is larger. The following proposition describes this

behavior and we process a set of experiments in section 4.4 in order to measure the impact

of k on NSCt size.

Proposition 5. Let k and k′ be two batch intervals such that k = c ·k′ with c≥ 2. Given ω ,

let t be a tuple, Pk and Pk′ be its sets of pairs with respectively k and k′. Then |Pk| ≤ |Pk′|.

Proof. Let k and k′ be two batch intervals such that k = c · k′ with c ≥ 2, we prove that

|Pk|> |Pk′| is impossible.

Suppose |Pk| > |Pk′|, then there exists a record r′ such that compare(r,r′) ∈ Bucki and

Bucki ∈ Pk, this means that p = compare(r,r′) is not covered by other pairs in Bucki, more

precisely cover(p) 6∈ cover(Bucki \ p). Let Bucki1 · · ·Buckic ∈ Pk′ representing the same

interval as Bucki. The supposition implies that p is not in any bucket Bucki1 · · ·Buckic,

which implies that either cover(p) ∈ cover(Bucki1) or cover(p) ∈ cover(Bucki2) · · · or

cover(p) ∈ cover(Bucki2). This is impossible as
⋃

v=1···c cover(Buckiv) ≡ cover(Bucki).

Hence |Pk| ≤ |Pk′|.

Updating pairs of an existing tuple

So far we presented the computation, organization and minimization of the pairs of a tuple

newly inserted into T . In the following, we explain the update process for a tuple inserted

beforetime.

Let tc, the current timestamp, be a maintenance timestamp. Let δ+ be the transaction

to be inserted into T . To simplify the comprehension, we explain in a first time the

maintenance process for a valid tuple r ∈ R inserted at the previous maintenance time,

then we generalize for tuples inserted at any time. The sequence of buckets Pairs(t) at tc is

[Buck1, . . . ,Buckm]. The maintenance process consists on two steps, on one hand, the pairs

computed wrt outdated tuples must be deleted, on the other hand, new pairs are computed

wrt the newly inserted transaction. Regarding the first step, i.e. deletion of pairs, the

78

4.3. MSSD framework

pairs computed wrt outdated tuples are located in Pairs(t).Buck1. Therefore, it suffices to

delete Buck1 from Pairs(t). This step takes O(1) time. For the ease of presentation, the

oldest bucket is always denoted Buck1. Hence at this step, the sequence of buckets of t

is Pairs(t) = [Buck1, . . . ,Buckm−1]. Now regarding the second step, i.e. computation of

pairs wrt newly inserted tuples, let Pnew be the set of the new pairs computed wrt tuples

in δ+. We merge this set with the head of the sequence, i.e. Pairs(t).Buckm−1. We

proceed like this as the lifetime of pairs in Pnew is the same as the lifetime of pairs in

Buckm−1. Indeed, observe that pairs in Buckm−1 which are computed wrt to tuples having

the same timestamp as t, remain in Pairs(t) during the whole validity period of t. Hence,

Buckm−1 is discarded at the mth maintenance period after the integration of t into T , which

coincides with the timestamp t is discarded from T . Therefore, pairs in Pnew and Buckm−1

are discarded at the timestamp where t gets outdated.

We generalize the update process for tuples inserted into T at anytime before the

current timestamp. Let t be such tuple, let Pairs(t) = [Buck1, . . . ,Buckv] be its sequence

of buckets such that v < m. Let δ+ be the new transaction, then the update process

is as follows, (i) delete Pairs(t).Buck1 (ii) compute pairs wrt δ+ and insert them into

Pairs(t).Buckv−1, and (iii) minimize Pairs(t) by running Algorithm 13 with Pairs(t) as

input. We illustrate the update process in the following example.

Example 26. Let us continue with tuples t6 and t7 for which the sequence of buckets has

been computed at timestamp 7, see Example 24. Now, suppose the current timestamp is 9

and a new transaction δ+ = {r8,r9} is inserted. We illustrate the update of Pairs(r6) and

Pairs(r7) wrt to δ+. Table 4.8 shows the running dataset T at timestamp 9, Tables 4.9

and 4.10 display the updated sequence of buckets of t6 and t7 at timestamp 9 respectively

before and after the minimization process. Hereafter, We explain the steps for the update

process for both tuples. First, observe that tuples t2 and t3 are removed from T ; they are

outdated. Buck1 is deleted from Pairs(r6) and Pairs(r7) so both of them contain just two

buckets. Then t6 and t7 are compared to t8 and t9 which produces respectively the pairs

〈AC| /0〉 and 〈C|A〉, and 〈A| /0〉 and 〈 /0|AB〉. These pairs are appended to Buck2 which is

the most recent bucket in the sequence, see Table 4.9. Then the minimization process is

triggered which leads to the sequence of buckets depicted in Table 4.10. For t6, the pair

〈C|A〉 in Buck2 is discarded because it is covered by 〈AC| /0〉 in Buck2 as well. For t7, the

pair 〈 /0|AB〉 is discarded as it covers no subspace. In addition, 〈AB| /0〉 is deleted from

Buck1 because all the subspaces it covers ({A,B,AB}) are jointly covered by more recent

pairs 〈B|A〉 and 〈A| /0〉 in Buck2.

Now that the data structures used in our framework and their maintenance are

explained, we complete the presentation by showing in the next section, the query

79

Transaction Id A B C Arrival time
R[1] r4 1 0 4 4

r5 0 1 5 5
R[2] r6 2 0 6 6

r7 2 1 1 7
R[3] r8 1 2 5 8

r9 2 1 4 9

Table 4.8: Dataset T at timestamp 9

Id 1 2
t6 〈A|B〉 〈C|A〉,〈AC| /0〉
t7 〈AB| /0〉 〈B|A〉,〈A| /0〉,〈 /0|AB〉

Table 4.9: Pairs of t6 and t7 at timestamp 9
before minimization

Id 1 2
t6 〈A|B〉 〈AC| /0〉
t7 〈B|A〉,〈A| /0〉

Table 4.10: Pairs of t6 and t7 at timestamp 9
after minimization

answering process.

4.3.3 Query answering

Likewise NSC, we apply the subspace index presented in Section 2.2.3 to NSCt.

Example 27. Let us take the pairs of t6 at timestamp 9 as depicted in Table 4.10. The

resulting index is illustrated in the following table.

Subspaces Pairs
AB 〈r6|B〉
AC 〈r6| /0〉

Table 4.11: Indexation of pairs of t6 at timestamp 9

Suppose a skyline query Sky(AB) is issued then the pair 〈r6|B〉 is processed. As AB 6= B

we deduce that t6 6∈ Sky(AB). If instead query Sky(ABC) is submitted then t6 belongs to

the result because there is no entry in the map related to a superset of ABC and where we

can find t6.

4.4 Experiments

We consider the following scenario in order to evaluate our proposal: a data analytics

agency collects data from a stream provider and continuously issues subspace skyline

queries for further processing. The stream configuration (θ , d) are imposed upstream. We

80

4.4. Experiments

evaluate the ability of our proposal in responding to the agency needs in terms of subspace

skyline answering, i.e., does our framework allow to answer subspace skyline queries with

low query execution and maintenance times, and lightweight memory consumption? To

assess the performance of our framework, we compare it (i) to a baseline approach which

computes the skyline using state of the art algorithm BSkyTree [8, 7] and (ii) to DBSky

together with its Eager algorithm [11], an approach for maintaining a single skyline

over streaming data. The goal of this comparison is to show that (i) without any index

structure, the best skyline algorithm known so far is unable to handle multidimensional

skyline queries when the dimensionality is moderately large in a streaming context and (ii)

streaming solutions targeting a single skyline cannot be generalized to multidimensional

skyline queries.

The ability of our solution to handle streaming data is reflected by its throughput per

time unit. More specifically, the number of queries it can answer between two consecutive

batches. There are mainly four parameters that affect this throughput: (i) the flow of the

insertions θ , (ii) the size of the sliding window ω , (iii) the batch interval k and (iv) the

number of dimensions d. We vary the values of these parameters as shown in Table 4.12.

Parameters Values
θ {0.1sec,1sec}
ω {6h,12h,24h}
k {5mn,10mn,20mn}
d {8,12,16}

Table 4.12: Parameters values

Datasets: We generate synthetic independent (INDE) and anti-correlated (ANTI) data

types using the framework of [2]. The generated tuples have either 8, 12 or 16 dimensions

as depicted in Table 4.12. Moreover we consider a real stream of tweets where each tweet

is described by five numerical attributes. More details in Section 4.4.5.

Implementation and hardware: All algorithms are implemented in C++. Source code

is available on GitHub3. Experiments are performed on a Linux machine equipped with

two 2.6GHz hexa-core processors and 32 Gb RAM.

First, we evaluate NSCt query answering performance and compare it to that of

BSkyTree. The goal is to show that despite its maintenance process, NSCt is much

more efficient. Second, we report the comparison to DBSky on memory consumption and

maintenance time. Finally, we evaluate the impact of parameter k (batch interval) on both

the maintenance time and the memory consumption of NSCt.
2https://twitter.com/
3https://github.com/karimalami7/MSSD

81

https://twitter.com/
https://github.com/karimalami7/MSSD

12 24

102

103

ω

tim
e

in
se

c.
θ = 0.1s

NSCt BSkyTree

12 24

101

102

ω

θ = 1s

(a) k = 5min

12 24

102

103

ω

tim
e

in
se

c.

θ = 0.1s
12 24

101

102

ω

θ = 1s

(b) k = 10min

12 24

102

103

ω

tim
e

in
se

c.

θ = 0.1s

12 24

101

102

ω

θ = 1s

(c) k = 20min

Figure 4.2: Execution time to answer 212−1
queries with independent data

12 24

102

103

104

ω

tim
e

in
se

c.

θ = 0.1s

NSCt BSkyTree

12 24

101

102

103

ω

θ = 1s

(a) k = 5min

12 24

102

103

104

ω
tim

e
in

se
c.

θ = 0.1s

12 24

101

102

103

ω

θ = 1s

(b) k = 10min

12 24
103

104

ω

tim
e

in
se

c.

θ = 0.1s

12 24

101

102

103

ω

θ = 1s

(c) k = 20min

Figure 4.3: Execution time to answer 212−1
queries with anticorrelated data

For all experiments, we report the measures after warm up, .i.e., at a timestamp greater

than ω so that the size of T becomes stable.

4.4.1 Query evaluation

The goal of this experiment is to evaluate the compatibility of NSCt maintenance delay

when coping with streaming data. Indeed, if between two consecutive batches, most or

all of the time is devoted to the maintenance, then NSCt becomes useless. To this aim,

we compare NSCt to BSkyTree in term of query answering during a batch interval of

size k = {5mn,10mn,20mn}. To fairly compare them, we report the time to answer all

possible skylines with d = 12, i.e. 4095 queries.

Figures 4.2 and 4.3 depict the results with respectively independent and anticorrelated

data. For both data types, we vary θ in {0.1s,1s} and ω in {12h,24h}. Red dashed lines

represent the value of k. When it is exceeded, it means that the approach cannot answer

all issued queries during the batch interval. Recall that BSkyTree does not require any

82

4.4. Experiments

maintenance so query evaluation can start as soon as a new transaction is inserted into T ,

while for NSCt we include the maintenance time. We point out two observations from

this experiment:

1. NSCt is faster with more than one order of magnitude in all cases despite the fact

that its maintenance time is also included.

2. BSkyTree is unable to answer all the issued queries for several scenarios, e.g. in

Figure 4.2(a), with θ = 0.1 sec., k = 5mn and ω = 12 hours, BSkyTree takes more

than 5 minutes to answer all queries.

4.4.2 Time ratio

For this experiment, we consider the scenario where we have a workload set Q of random

queries with |Q|= {10,100,1000,10000}. All these queries are intended to be evaluated

between two consecutive updates. We want to compare NSCt to BSkyTree. More

precisely, our aim is to identify the situations where using an auxiliary structure like

NSCt, which needs to be updated before starting query evaluation, is worthwhile. For

this purpose, we report the following ratio T R(Q):

T R(Q) =
Maintenance Time o f NSCt + NSCt Processing Time o f Q

BSkyTree Processing Time o f Q

When T R(Q) is greater than one, BSkyTree is the best solution, otherwise one would

prefer NSCt. We set k = 5mn which reflects the number of inserted/deleted tuples

(5× 60 when θ = 1sec. and 5× 600 when θ = 0.1 sec.) during NSCt maintenance.

Figures 4.4 and 4.5 show the obtained results with respectively independent data and

anticorrelated data. The general observation is that when |Q| increases, T R(Q) decreases.

With approximately 100 queries, T R(Q) is close to 1. Notice that this behavior is rather

the same independently of the data correlation, θ and ω . For example, Figure 4.5 shows

for θ = 1s that starting from |Q| = 100, T R(Q) is less than 1 which means NSCt is
1

T R(Q) times faster than BSkyTree. However, with small |Q|, BSkyTree is faster. This

indicates that using NSCt with its update delay is worthwhile when the number of queries

is sufficiently large.

4.4.3 NSCt versus DBSky

We compare the memory consumption and maintenance time of NSCt to the approach

described in [11] that consists of maintaining the skyline on D called DBSky and potential

skyline tuples DBrest, i.e., those that have the potential to enter the skyline some time

83

10 10
0

10
00

10
00

0

10−1

100

101

Number of queries

Ti
m

e
ra

tio
θ = 0.1s

ω = 12h ω = 24h

10 10
0

10
00

10
00

0

10−1

100

101

Number of queries

θ = 1s

Figure 4.4: Time ratio with independent data

10 10
0

10
00

10
00

0

10−2

10−1

100

101

Number of queries

Ti
m

e
ra

tio

θ = 0.1s
ω = 12h ω = 24h

10 10
0

10
00

10
00

0

10−2

10−1

100

101

Number of queries

θ = 1s

Figure 4.5: Time ratio with anticorrelated data

in the future once the current skyline tuples which dominate them expire. Note that

meanwhile, new tuples can be inserted, hence a DBrest element is not guaranteed to

become a skyline point. This proposal’s target is to deal with just a single skyline.

Obviously, its adaptation to the multidimensional setting we address with NSCt, consists

in maintaining a DBSky and a DBrest for every subspace. For NSCt the memory usage

corresponds to the number of pairs while for DBSky and DBRest, it represents the number

of tuples stored. We set k to 20mn, θ to 1 sec. and 0.1 sec., and repeat the measures by

varying d in {8,12,16} and ω in {12h,24h}. Figures 4.6 ,4.7 and 4.8, and 4.9 show the

obtained results for respectively memory consumption and maintenance time. We note

that we do not report some DBSky performances as it exceeded a reasonable execution

time. One can observe that NSCt consistently uses less memory (see figures 4.6 and

4.7). However the memory consumption growth wrt to d is quite the same. A notable

information here is that the growth wrt d of the set DBSky is higher than that of DBRest

because the greater is d the bigger is the skyline set. In parallel, NSCt maintenance time

is faster than DBSky on all configurations (see figures 4.8 and 4.9). We recall that for

this experiments, the batch interval time k is set to 20 minutes (1200 seconds), therefore

the maintenance time should be less than k in order to allow the user to issue queries.

However, the maintenance time of DBSky is less than k for two configurations only, e.g.

in figure 4.8, when d = 8, θ = 1sec and ω = 12h. It even attains unreasonable execution

time, e.g. in figure 4.8, when d = 12, θ = 0.1sec and ω = 12h, the execution time is

more than 2.105 seconds (55 hours). This make DBSky a non viable solution to deal with

multidimensional skylines over streaming data.

4.4.4 NSCt maintenance time vs. memory consumption

We consider a stream with 12 dimensions and a delay θ = {0.1s,1s}. We are interested

in querying a window of size ω = {6h,12h,24h}. Hence, we evaluate the framework

performance with respect to NSCt maintenance time and memory consumption with

different values of k = {5mn,10mn,20mn}. Two observations can be made from Figures

84

4.4. Experiments

8 12 16

105

106

107

108

d

st
or

ag
e

un
its

ω = 12h
NSCt DBSky

8 12 16

106

107

108

d

ω = 24h

(a) θ = 1sec

8 12 16

106

107

108

109

d

st
or

ag
e

un
its

ω = 12h
8 12 16

106

107

108

109

d

ω = 24h

(b) θ = 0.1sec

Figure 4.6: Memory usage with INDE data
8 12 16

106

107

d

st
or

ag
e

un
its

ω = 12h
NSCt DBSky

8 12 16

106

107

108

d

ω = 24h

(a) θ = 1sec

8 12 16

107

108

d
st

or
ag

e
un

its

ω = 12h

8 12 16

107

108

109

d

ω = 24h

(b) θ = 0.1sec

Figure 4.7: Memory usage with ANTI data

8 12 16

10−1
100
101
102
103
104

d

tim
e

in
se

c.

ω = 12h
NSCt DBSky

8 12 16

100
101
102
103
104

d

ω = 24h

(a) θ = 1sec

8 12 16

100
101
102
103
104
105
106

d

tim
e

in
se

c.

ω = 12h

8 12 16

101
102
103
104
105
106

d

ω = 24h

(b) θ = 0.1sec

Figure 4.8: Maintenance time with INDE data

8 12 16

100

101

102

d

tim
e

in
se

c.

ω = 12h
NSCt DBSky

8 12 16

100

101

102

103

d

ω = 24h

(a) θ = 1sec

8 12 16

102

103

d

tim
e

in
se

c.

ω = 12h

8 12 16

102

103

104

d

ω = 24h

(b) θ = 0.1sec

Figure 4.9: Maintenance time with ANTI data

4.10 and 4.11.

1. On all cases, the memory used by NSCt decreases when selecting a bigger batch

interval k. This behavior was expected by proposition 5.

2. The maintenance time ratio wrt k decreases. Let us take the hardest case depicted in

Fig 4.11(b) and consider the result wrt ω = 24h. For k=5 min, the maintenance lasts

210 seconds which represents two third of the batch interval while for k=20 min,

the maintenance lasts 330 seconds, which represents a quarter of the batch interval.

85

5 10 20
0

10

k in min

tim
e

in
se

c.

Maintenance time

ω = 6h ω = 12h ω = 24h

5 10 20

106

107

k in min.
st

or
ag

e
un

its

Memory consumption

(a) θ = 1sec

5 10 20

10

110

210

k in min.

tim
e

in
se

c.

Maintenance time
5 10 20

106

107

108

k in min.

st
or

ag
e

un
its

Memory consumption

(b) θ = 0.1sec

Figure 4.10: NSCt with INDE data

5 10 20

0
5

10
15
20

k in min.

tim
e

in
se

c.

Maintenance time

ω = 6h ω = 12h ω = 24h

5 10 20

106

107

k in min.

st
or

ag
e

un
its

Memory consumption

(a) θ = 1sec

5 10 20

10

210

410

k in min.
tim

e
in

se
c.

Maintenance time

5 10 20

107

108

109

k in min.

st
or

ag
e

un
its

Memory consumption

(b) θ = 0.1sec

Figure 4.11: NSCt with ANTI data

This difference is due to a longer minimization process induced by a higher number

of pairs when k is smaller.

4.4.5 Experiments with real data

In this section, we report on some experiments we conducted with real data describing

tweets sent during a certain period. We obtained these data from an archive website.

The archive is a temporal sequence of Json files each of which contains a description

of a set of tweets sent during one minute. We parsed these files and, in addition to

its timestamp, we retrieved for each tweet 7 attributes: TweetId, UserId, #followers,

#following, #tweets, #likes, #lists. The five last attributes are describing users who sent

the tweet: (i) #followers: # of people following UserId, (ii) #following: # of people UserId

is following, (iii) #tweets: # of tweets the user has issued, (vi) #likes: # of tweets the user

has liked, and (v) #lists: # of twitter lists the user is subscribed to. For all attributes, higher

values are preferred. The goal is to retrieve at each time interval the best tweet users wrt

any subset of these last five dimensions.

In the following experiments, we consider the batch interval k = 1min, i.e. we

process a batch of tweets every one minute, and windows of different sizes ω =

{30min,120min,480min}, i.e, queries are evaluated over tweets tweeted in the last 30,

120, or 480 minutes.
3https://archive.org/

86

https://archive.org/

4.4. Experiments

Remark 7. Batches size vary between 2000 and 3000 tweets, i.e., the number of tweets

in every processed file is not static. Hence, the number of tweets is less than 90k when

ω = 30min, 360k when ω = 120min, and 1.5M when ω = 480min. Moreover, we observed

that the tweets data are highly correlated, hence skylines are rather small.

Comparison to BSkyTree

Here we evaluate, as in Section 4.4.1, the compatibility of NSCt maintenance delay with

streaming data. We compare NSCt to BSkyTree in term of query answering during the

batch interval. To that purpose, we report the time to answer all possible skylines. In this

case, d = 5 thus 31 queries. Figure 4.12 depicts the results. Globally NSCt is 10 times

faster. Nevertheless, in the worst case, BSkyTree answers all possible queries in less than

1 second which is less than the batch interval k.

30 12
0

48
0

100

101

102

103

ω in min.

tim
e

in
m

se
c.

NSCt BSkyTree

Figure 4.12: NSCt vs. BSkyTree with real data

30 12
0

48
0

100

101

102

103

ω in min.

tim
e

in
m

se
c.

Maintenance time
NSCt DBSky

30 12
0

48
0

103

104

105

ω in min.
st

or
ag

e
un

its

Memory consumption

Figure 4.13: NSCt vs. DBSky with real data

Comparison to DBSky

Regarding the materialization aspect, we compare the memory consumption and

maintenance time of NSCt to that of DBSky, as we did in Section 4.4.3. Figure 4.13

depicts the results. Firstly, we see that NSCt outperforms DBSky in both maintenance

time and memory consumption. However, we see that DBSky results are not impacted by

the growing ω . This is highly due to the fact that data is correlated, hence skylines are

small and have same sizes even with larger input data.

4.4.6 Concluding remarks

As the previous experiments have shown and turning back to our motivating example

concerning tweets, one may observe that our framework is capable to monitor Top-K

influential tweets even with a relatively high frequency (e.g., 50 tweets per second), a

large sliding window (e.g., 24h) a reasonable update frequency (e.g., every 5 minutes)

and a data dimensionality not too small.

87

4.5 Conclusion

We have proposed a framework for processing subspace skyline queries on streaming

data with a validity time window. The proposed approach consists of an index structure

whose maintenance is triggered at regular time intervals. Since the queries evaluation

is performed using the indexed data, their semantic is relative to the last update not the

instant where the query is submitted. This introduces a kind of approximation regarding

the results which is in conformance with standard streaming data evaluation algorithms

[80, 39]. The conducted experiments demonstrate the effectiveness of our solution in

terms of both memory consumption and its ability to speed up the queries evaluation in

such a way that it can be considered as a viable technique in a streaming context.

88

Chapter 5

Optimization of regret minimization
queries with NSC

5.1 Introduction

In this chapter, we conduct an experimental study on the optimization of the evaluation

of regret minimization queries (RMS) by considering skyline related candidate sets.

As presented in Chapter 1 Section 1.2, [17] proposed regret minimization queries

to overcome the limitation of skyline queries and Top-K queries. However, their

computation is challenging. One way to speed up their computation is by providing

small candidate sets as input rather than the whole dataset. The challenge when providing

smaller candidate sets is to guarantee the same quality of the output (regret) as if RMS

were computed on top of the entire input dataset. [17] proved that the skyline constitutes

a good candidate sets as the optimal solution of RMS is inevitably a subset of the skyline

set. In this chapter, we investigate specifically the impact of providing the result of either

Top-K frequent skyline (Top-KF) or Top-K priority skyline (Top-KP) queries as candidate

sets for RMS algorithm sphere. Given D a set of attributes and T a dataset:

• Let t ∈ T , Frequency(t) = |{X ⊆ D s.t. t ∈ Sky(T,X)}|. Top-K frequent skyline is

then the K tuples with the highest frequency.

• Let t ∈ T , Priority(t) = minX⊆D|t∈Sky(X)(|X |). Top-K priority skyline is then the K

tuples with the lowest priority.

We consider these queries because they are efficiently evaluated through NSC.

Algorithm 14 describes the procedure to compute Top-KF through NSC. We compute

the subspaces where a tuple t is dominated by computing the cover of all pairs related to

t (line 4-7). We then deduce the frequency of each tuple and put it in list Score (line 8).

89

We sort Score and select Top K tuples (line 9-11). Algorithm for Top-KP is similar to

Algorithm 14 with a difference in computing the score (line 8).

Algorithm 14: top-K_frequent
Input: NSC, T , K, D
Output: Top−KF

1 begin
2 Top−KF ← /0
3 Score← []
4 foreach t ∈ T in parallel do
5 E← /0
6 foreach p ∈ NSC[t] do
7 E← E ∪ cover(p)

8 Score.append(t,2|D|−|E|)
9 sort(Score)

10 foreach i ∈ [0,K) do
11 Top−KF ← Top−KF ∪Score[i]. f irst

12 return Top−KF

Thus, the experiments we carry out in this chapter are: we calculate candidate sets of

size K by either Top-KF or Top-KP then we compute a set of minimum regret of size r on

top of these candidate sets. Our hypothesis is that by considering these candidate sets, we

evaluate the regret minimization query faster, and the output regret will be close to if the

regret minimization query is evaluated on top of the entire input dataset.

5.2 Experiments

In this section, we perform experiments to evaluate the impact of different candidate sets

on computing the RMS. We proceed in three steps:

1. We evaluate the speed up of RMS computation by considering the skyline set as a

candidate set.

2. We investigate the speed up and output regret of RMS algorithm sphere by

considering Top-K Frequent and Top-K priority sets as candidate sets.

3. Given an integer K, we evaluate the output regret of sets computed by (i) Top-K

frequent, (ii) Top-K priority sets and (iii) sphere.

90

5.2. Experiments

Parameters Values
distribution ANTI, INDE

n (dataset size) 100K,1M
d(number of dimensions) 4,8,12

r(output size) 20,30,40,60,80,100

Table 5.1: Datasets parameters

Hardware and software We consider the state of the art algorithm sphere [69] for

computing regret minimizing sets and the structure NSC [23] for computing skyline

related queries, i.e., (i) skyline, (ii) Top-K frequent and (iii) Top-K priority sets. All

the experiments are conducted on a Linux machine equipped with two 2.6 ghz hexacore

CPUs and 32GB RAM. Software is in C++ and available on GitHub1.

Datasets We consider synthetic datasets generated through the framework in [2]. The

parameters considered for these experiments and their values are illustrated in Table 5.1.

Bold values are default values.

5.2.1 Speed up with skyline set

Here, we evaluate the speed up of sphere by considering the skyline set as input, i.e.,

given a dataset T , we run sphere on top of the whole dataset T and the skyline of T .

Note that the output set and regret are the same whether we consider the skyline set or the

whole dataset (Refer [17]). Hence we do not report the output regret. Figures 5.1 and 5.2

depict the results. We can see that the skyline enables faster computation of the minimum

regret set on all cases. However, its benefit decreases with growing dimensions. Note that

the computation time of the skyline set through NSC in negligible. The reported time is

mostly the execution time of sphere. The main cause of the increasing computation time

is that the skyline size grows rapidly with growing dimensions. For example, in Figure 5.1

for a dataset with 1 million tuples and independent distribution (blue curve), the skyline

set goes from 418 tuples with 4 dimensions to 237726 tuples with 12 dimensions. Hence

the speed up of sphere goes from more than 103 times to only 5 times faster.

We conclude that considering the skyline set as candidate set has a limitation, even if

its computation time is negligible because its size is not controllable. In the next section,

we investigate the impact of skyline related ranking queries, i.e. Top-KF and Top-KP,

on sphere. The main motivation behind using these queries is that they provide (i) a

controllable size of the output and (ii) their computation is optimized by NSC.

1https://github.com/karimalami7/NSC

91

https://github.com/karimalami7/NSC

4 8 12

10−2
10−1

100
101
102

d

Ti
m

e
(s

ec
.)

INDE

D(105) S(105) D(106) S(106)

4 8 12

10−2
10−1

100
101
102

d

ANTI

Figure 5.1: Speedup of sphere with skyline set as candidate set by varying dimensionality d

20 40 60 80 10
0

10−1

100

101

102

r

Ti
m

e
(s

ec
.)

INDE

D(105) S(105) D(106) S(106)

20 40 60 80 10
0

10−1

100

101

102

r

ANTI

Figure 5.2: Speedup of sphere with skyline set as candidate set by varying the output size r

5.2.2 Speed up and regret of sphere with multidimensional skyline
metrics as candidate sets

In this section, we evaluate the speedup of sphere by providing Top-KF and Top-KP sets

as candidate sets. Figures 5.3, 5.4 depict the execution times. Figures 5.5 and 5.6 depict

the output regrets.

Regarding computation time, we do not observe an apparent improvement by

providing candidate sets Top-1% frequent tuples and Top-1% priority tuples. Indeed, in

these settings sphere computation time is improved because the candidate sets are smaller

and have constant sizes (1000 tuples). However the computation time of Top-1%F and

Top-1%P is higher than that of skyline. For example, in Figure 5.3 with anti-correlated

data and 12 dimensions, RMS computation takes 7 seconds on top of the skyline while

it takes 5.5 seconds on top of Top-1%F. Regarding the first case, sphere alone takes

approximately 6.9 seconds because the skyline approaches 95% of the whole dataset.

While for the second case, sphere takes only few milliseconds. We note however that

using these candidate sets is interesting for medium dimensionalities, i.e. d ∈ [6,12]. For

smaller d, the skyline is small, hence is a good candidate set. For higher d, Top-KF and

Top-KP computation is high even with NSC.

92

5.2. Experiments

4 8 12

10−2

10−1

100

101

d

Ti
m

e
(s

ec
.)

INDE

S Top-1%F Top-1%P

4 8 12

10−2

10−1

100

101

d

ANTI

Figure 5.3: Computation time of sphere with candidate sets (i) skyline (ii) Top-K frequent and
(iii) Top-K priority by varying d

20 40 60 80 10
0

10−1

100

r

Ti
m

e
(s

ec
.)

INDE

S Top-1%F Top-1%P

20 40 60 80 10
0

10−1

100

101

r

ANTI

Figure 5.4: Computation time of sphere with candidate sets (i) skyline (ii) Top-K frequent and
(iii) Top-K priority by varying r

Regarding the output regret ratio, we can see that regret ratios of all methods are

close. We also observe in Figure 5.6 that for small r (under 60) when considering Top 1%

frequent tuples as candidate sets, the regret ratio computed by sphere is better than that

with skyline set. This is explained by the fact that sphere is a heuristic approach. Indeed,

Top-1% frequent tuples discards some noisy points that are then not select by sphere.

5.2.3 Top-KF and Top-KP as alternatives to RMS algorithms

Above, we showed that Top-KF and Top-KP queries provide good candidate sets for

sphere. In this section, we want to answer the question: Can Top-KF or Top-KP (

without sphere) compute sets that achieve regret ratio close to that achieved by sphere?

Concretely, we evaluate the regret ratios of sets of size K computed with (i)sphere (ii)

Top-KF and (iii) Top-KP. For sphere we consider the skyline set as input. Figures 5.7

and 5.8 depict the results. Globally, we can see that sphere provides better regret ratio,

which is expected as it is dedicated for RMS computation. However, Top-KF achieves a

good regret ratio when dimensionality grows (Figure 5.7). Also, Top-KF achieves good

regret ratio when K is small (Figure 5.8). We can explain this by the fact that tuple

93

4 8 12

10−2

10−1

100

d

re
gr

et
ra

tio

INDE

S Top-1%F Top-1%P

4 8 12

10−2

10−1

100

d

ANTI

Figure 5.5: Regret of sphere by candidate sets (i) skyline (ii) Top-KF (iii) Top-KP by varying d

20 40 60 80 10
0

10−2

10−1

100

r

re
gr

et
ra

tio

INDE

S Top-1%F Top-1%P

20 40 60 80 10
0

10−2

10−1

100

r

ANTI

Figure 5.6: Regret of sphere by candidate sets (i) skyline (ii) Top-KF (iii) Top-KP by varying r

are better ranked in high dimensions. Indeed, suppose d = 4, the frequency domain is

[0,24− 1]=[0,15] which is small. Many tuples may share the same frequency and hence

it is hard to rank them. The higher d, the larger the frequency domain, and so the better

the ranking.

4 8 12

10−2

10−1

100

d

re
gr

et
ra

tio

INDE

sphere TopKF TopKP

4 8 12

10−2

10−1

100

d

ANTI

Figure 5.7: Regret of (i) sphere (ii) Top-KF (iii) Top-KP by varying d

94

5.2. Experiments

20 40 60 80 10
0

10−2

10−1

100

k

re
gr

et
ra

tio
INDE

sphere TopKF TopKP

20 40 60 80 10
0

10−2

10−1

100

k

re
gr

et
ra

tio

ANTI

Figure 5.8: Regret of (i) sphere (ii) Top-KF (iii) Top-KP by varying k

5.2.4 Discussion

To summarize, we first have shown that sphere is improved by considering the skyline

set as a candidate set, even with high dimensions as the skyline is computed through

NSC. Second, we investigated Top-KF and Top-KP as candidate sets for sphere. Our

experiments show that by selecting a small portion of the input data (1%) representing

most frequent skyline points, not only the RMS computation is faster but its quality

is sometimes better than that returned by the approximate algorithm sphere when it

considers the whole skyline. From the experiments in Figures 5.7 and 5.8, we observe

that the regret ratio computed by TopKF gets better with large dimensionalities d and

small output size k. Of course, all these preliminary promising empirical results need to

be confirmed theoretically. We are currently working on this aspect.

95

Part II

Skyline queries in presence of dynamic
and partial orders

97

In Part I, we have considered datasets having totally and statically ordered attributes,

i.e., attribute’s domain is a totally ordered set. However, it is usual that datasets have

their attributes’ domain partially and dynamically ordered. Skyline is harder to compute

in that setting because (i) traditional algorithms are not suitable with such datasets and

(ii) materializing techniques are costly due to the high number of possible queries. For

example, NSC is unsuitable in this situation. Hence, in this part, we address the problem

of answering skyline queries with datasets having partially and dynamically ordered

attributes. We provide efficient algorithms and materialization techniques that speed up

the computation.

99

Chapter 6

On-the-fly algorithms and
materialization technique

6.1 Introduction

In the previous chapters, we considered data having only numerical attributes. However

in many real world use cases, datasets have nominal attributes for which no order is

specified. Users express their preferences on the nominal attribute’s domain. In such

cases, NSC structure is not suitable, as it is built given a specific order. In this chapter, we

address the optimization of skyline queries answering in presence of dynamic and partial

orders.

First, we present the context of this study. Consider Table 6.1 where information about

movies proposed by a media-services provider is registered. Movies are described by their

genre and critic scores. Metacritic and Rotten Tomatoes are online platforms specialized

in rating movies. Audience represents the score given by subscribers. A movie is in the

skyline of Table 6.1 iff there does not exists any other movie better or equal to it wrt

all four attributes, and at least strictly better on one attribute. While comparing movies

regarding their respective ratings is natural, considering their genre is not immediate.

In fact, the order relationship among the values of each attribute’s domain is expressed

by a set of orders (preference) R. Two aspects of R are relevant to skyline queries:

• R is either total or partial. R is total when every two values are ordered. Per contra,

R is partial when there exists at least two values which are not comparable. To

illustrate, consider Table 6.1. Metacritic, Tomatoes and Audience attributes have

their respective domain in N. Since larger ratings are preferred, the preference on

each of these three attributes is the relation > on N which is total. By contrast,

for Genre attribute, its domain values have not to be totally ordered. E.g., one may

101

Metacritic Tomatoes Audience Genre
t1 56 65 85 c : comedy
t2 63 70 75 s : sci− f i
t3 89 80 90 h : horror
t4 70 72 88 h : horror
t5 63 70 50 r : romance
t6 45 42 80 a : action
t7 52 69 75 t : thriller
t8 64 74 52 c : comedy
t9 73 80 90 s : sci− f i
t10 81 71 84 a : acion

Table 6.1: Movie rating

prefer comedy over thriller but has no preference between comedy and sci-fi. These

two last values are incomparable regarding the user’s preference.

• R can be either static or dynamic. Again, consider Table 6.1. The orders on

Metacritic, Tomatoes and Audience respective domains are unique and set a priori.

While for Genre, the order depends on users preferences. More precisely, during

their quest of the best movies, users are asked to express their own preference on

Genre’s domain in terms of an order relation.

Example 28. Consider Table 6.1. While the preference on Metacritic, Tomatoes and

Audience is: the higher the score the better the movie. For Genre, there is no prior

preference over the attribute’s domain. Users are asked to describe their preferences

through a set of value to value comparability. One user preference could be R =

{(horror,comedy),

(sci-fi, thriller)}which expresses that horror is preferred to comedy, and sci-fi is preferred

to thriller. This preference makes comparable the movies having comedy or horror genre,

i.e., {t1, t3, t4, t8}. Likewise, {t2, t7, t9} are comparable because of sci-fi and thriller genres.

The skyline set over the movie dataset by considering the user preference R expressed

above is composed of {t3, t5, t9, t10}. The remaining tuples are dominated. For example,

• t1 is not in the skyline because it is dominated by t3 which has better scores and

better genre (horror is preferred over comedy).

• t6 is not in the skyline because t10 has better scores and both have the same genre

action. Observe that this genre is not mentioned in R making t6 comparable to only

those tuples sharing the same genre.

The skyline set changes dramatically with the user preference. Consider

R′= {(romance,horror),(sci− f i,horror),(comedy,horror),(action,horror),(thriller,horror)},

102

6.1. Introduction

i.e. every genre is better than horror. The skyline set is then {t1, t2, t3, t5, t6, t7, t8, t9, t10}.
Observe that t3 belongs to the skyline set despite being a horror movie. This is because t3
has the higher ratings in the dataset.

As presented in Chapter 1 Section 1.1.4, previous work which investigated skyline

computation with partially ordered attributes either proposed on-the-fly algorithms,

i.e., computing the query from scratch, or proposed materialization techniques, i.e.,

precomputing some indexing structures. One of the techniques proposed so far to

implement on-the-fly algorithms is: given a dataset with partially ordered attribute B,

transform B into a set of totally ordered virtual attributes φ(B) and then run state of the art

skyline algorithm on the transformed dataset [19]. Regarding materialization techniques,

[56] proposed to compute and store the skylines wrt every total order over the attribute

B. Then answer a query q which considers a preference R through the stored skylines.

[22, 55] proposed indexes to cache skyline sets and their respective preferences R’s then

answer issued queries through refinement. We say that R′ is a refinement of R iff R⊂R′.

Accordingly the skyline wrt R′ is included in the skyline wrt R.

In this chapter, we exhibit a couple of properties letting the decomposition of every

skyline query q, using a preference R, into a set Q of independent sub-queries. The result

of q is obtained by just combining the results of the sub-queries q′ ∈ Q. Because these

queries are independent from each others, we execute them in parallel. On another side, if

all or some of these sub-queries are materialized, the computation time can be optimized.

More specifically, the main contributions of the present work are:

• A novel approach to compute skyline queries with partially and dynamically

ordered attributes.

• A materialization technique to optimize skyline query answering.

• A workload driven selection of sub-queries to materialize.

• Extensive experiments showing the effectiveness of our proposals.

Chapter organization The next section presents the main definitions used throughout

the chapter. Then we present our approach, first, in case of datasets with only one partially

ordered attribute. Afterwards, we generalize to the case of multiple attributes. In section

6.4, we address the sub-queries materialization. Finally, we empirically evaluate our

proposals wrt direct competitors.

103

6.2 Preliminaries

In this section, we define the additional concepts we use throughout the chapter. Some

concepts such as dominance and skyline query are redefined.

The context of the problem we study is as follows: we have a set of dimensions

(attributes) D composed of both totally and statically ordered dimensions A =

{A1, . . . ,As} , and partially and dynamically ordered dimensions B = {B1, . . . ,Bl}. A

dataset T over the set of dimensions D. Users are interested in the skyline set of T by

considering their preferences over {A1, . . . ,As,B1, . . . ,Bl} domains.

We first define the order relation which expresses the user preference between two
values.

Definition 13. (Order) Let D ∈ D, dom(D) denotes its domain, and di,d j ∈ dom(D).

o = (di,d j) is an order which expresses that di is preferred over d j. We use as well the

notation di ≺D d j
1.

Definition 14. (Preference) Let D ∈ D. A preference R over D is a set of orders over

dom(D). R respects the following properties:

• transitivity: (di,d j) ∈ R and (d j,dk) ∈ R then (di,dk) ∈ R.

• irreflexivity: (di,d j) ∈ R then (d j,di) 6∈ R

Observe that a preference over an attribute is nothing but a classical partial order

relation defined on its domain.

Remark 8. Recall that D = A∪B. Every Ai ∈ A is totally and statically ordered. For

example, the preference over Tomatoes attribute in Table 6.1 is the relation > over N. So

from now on, we consider only preferences defined on those attributes admitting dynamic

partial orders over their respective domains, i.e., Bi ∈B.

Example 29. Consider the movie rating in Table 6.1. A user preference over the attribute

Genre can be expressed by R={(c,s),(s,h),(c,h),(c,r),(r,h),(h,t),(s,t),(r,t),(t,a),(s,a),

(r,a),(h,a)}. Obviously, this preference can be represented by the DAG in Figure 6.1.

Definition 15 (Dominance). Let T be a table over D = {A1, . . . ,As,B1, . . . ,Bl} and let

R = {R1, . . . ,Rl} be a preference over the attributes B1, . . . ,Bl . Let t, t ′ be two tuples,

then t dominates t ′ iff t[D] �D t ′[D] ∀D ∈ D and ∃D ∈ D such that t[D] ≺D t ′[D]. We

denote the dominance relation by t <D t ′.

Given a skyline query q, q.R denotes its related preference R.
1We use the term order for ordering just a single pair of values.

104

6.3. dySky algorithm

comedy

sci-firomance

horror

thriller

action

Figure 6.1: DAG representation of R

Notation Definition
A1, . . . ,As totally ordered attributes
B1, . . . ,Bl partially ordered attributes

D set of all attributes
m size of dom(Bi)∀Bi ∈B

R= {R1, . . . ,Rl} preference over B1, . . . ,Bl
o an order
q a skyline query

q.R preference of the query q
Skyq.R(T,D) skyline set wrt q

Q a workload

Table 6.2: Notations

Definition 16 (Skyline query). Given D, T , and a query q. The skyline set Skyq.R(T,D) =

{t ∈ T | 6 ∃t ′ ∈ T s.t. t ′ <D t} is the set of not dominated tuples. We denote also the skyline

set by Skyq.R(T) or simply Skyq.R when T and/or D are clear from the context.

Table 6.2 summarizes the additional notations used throughout the chapter.

In the next section we present the properties of skyline queries that we exploit to

devise our solutions.

6.3 dySky algorithm

The objective of our work is to efficiently answer skyline queries q wrt user preference

q.R over a dataset T . For the ease of the presentation, first, we consider datasets with only

one dynamic dimension.

Our approach is based on the following property: given a query q and its related

preference q.R. A tuple which does not belong to the skyline set wrt a preference

composed of some order in q.R, does not belong to the skyline set wrt q.R. More

precisely,

105

Theorem 9. Given D = {A1, . . . ,As,B}, a dataset T , and a query q. Let t ∈ T , then

t 6∈ Skyq.R iff ∃o ∈ q.R s.t. t 6∈ Sky{o}.

Proof. (i) t 6∈ Skyq.R⇒ ∃o ∈ q.R s.t. t 6∈ Sky{o} : let t 6∈ Skyq.R then there exists a tuple

t ′ dominating t such that either (i) t ′[B] = t[B] and t ′ ≺A t or (ii) t ′[B]≺B [B] and t ′ �A t.

In the first case t ′ dominates t whatever the preference q.R hence t 6∈ Sky{o}∀o ∈ q.R. For

the second case, t 6∈ Sky{(t ′[B],t[B])}.

(ii) ∃o ∈ q.R s.t. t 6∈ Sky{o}⇒ t 6∈ Skyq.R: t 6∈ Sky{o} means there exists a tuple t ′ such

that t ′ <D t. Whatever the remaining orders in q.R, t ′ <D t.

The above theorem states that a tuple t does not belong to the skyline wrt to a given

preference q.R if and only if t does not belong to the skyline wrt a singleton preference

composed of some order in q.R.

We introduce here the notation of complementary skyline or shortly c-skyline. Given

a query q, its c-skyline is NSkyq.R, the set of dominated tuples wrt q.R.

To summarize, by computing those tuples not belonging to the skyline wrt every

preference composed of some order in q.R, i.e., NSky{o}∀o ∈ q.R, we deduce NSkyq.R as

stipulated in the following corollary.

Corollary 10. Given a query q.

NSkyq.R =
⋃
∀o∈q.R

NSky{o}

Proof. From theorem 9. Let t ∈ T .

t ∈ NSkyq.R ⇔ t ∈ NSky{o1} ∨ ·· · ∨ t ∈ NSky{on} s.t. o1, . . . ,on ∈ q.R then t ∈⋃
∀o∈q.RNSky{o}

Example 30. Consider the movie dataset in Table 6.1. Given a query q with

q.R= {(c,s),(s,h),(c,r),(c,h)} then NSkyq.R = NSky{(c,s)}∪NSky{(s,h)}∪NSky{(c,r)}∪
NSky{(c,h)} = {t2, t5}.

The skyline is then T \{t2, t5}= {t1, t3, t4, t6, t7, t8, t9, t10}.

Even though computing NSkyq.R requires to compute as many queries as the number

of orders in q.R, in the next section we show that these queries are actually easy to evaluate

making the whole computation efficient.

6.3.1 Single dynamic dimension

In this section, we present an algorithm for computing Skyq.R. We consider a table T with

D = {A1, . . . ,As,B} where B is the unique partially and dynamically ordered dimension.

106

6.3. dySky algorithm

Theorem 9 and its corollary 10 suggest an algorithm for evaluating queries Skyq.R on T :

it evaluates sub-queries, i.e., the c-skyline by considering every o ∈ q.R. The union of the

sub-queries results is NSkyq.R and thus its complement to T is the response to Skyq.R.

The bottleneck of this direct implementation belongs to the multiple computations of

NSky{o}. Before presenting our solution, let us first make the following observation: Let o

be an order, and let t be a tuple whose value in the dynamic dimension B is not mentioned

in the preference {o}. Let t ′ ∈ T . Then

• t <D t ′⇒ t[B] = t ′[B]

• t ′ <D t⇒ t[B] = t ′[B]

Said differently, and from the domination relationship, these tuples whose B value does

not belong to o can be comparable to only those tuples sharing the same value on B. For

example, consider the query q related to a singleton preference q.R= {(horror, thriller)}
stating that thrillers are preferred to romances but there is no preference among the

remaining genres. The tuples whose genre does not belong to the above two are

comparable to only those with the same genre. Hence, we can partition them and restrict

the comparisons to the so obtained subsets. To continue the example, we get the partition

{{t1, t8}c, {t2, t9}s, {t5}r, {t6, t10}a}. The first part {t1, t8}c corresponds to the tuples

whose genre is c(omedy). To this partition we can add a special part containing the

remaining tuples, i.e., {t3, t4, t7}. Now, each part can be processed independently to check

whether a tuple is dominated or not. For example, comparing t3 to t5 is needless because

they belong to different parts.

To summarize, computing the c-skyline wrt a singleton preference consists in

partitioning the data into subsets of comparable tuples and identify those dominated

within each subset. We formalize the above statement in Proposition 6, but first we define

a dataset part.

Definition 17 (Part). Given D and T . Let D ∈D. A part of T wrt a value d of D, denoted

Π[D|d](T), is the set {t ∈ T |t[D] = d}.

Proposition 6. Given D = {A1, . . . ,As,B} and T . Let bi,b j ∈ dom(B) and q such that

q.R= {(bi,b j)}.
NSky{(bi,b j)}(T) = NSky{(bi,b j)}(Π[B|bi](T)∪Π[B|b j](T))

∪
⋃
∀bk∈dom(B)NSky{(bi,b j)}(Π[B|bk](T)) where bk 6= bi,b j.

Example 31. Again, consider the movie dataset in Table 6.1. Let q be a skyline query s.t.

q.R= {(horror, thriller)} then

107

NSkyq.R(T) = NSky{(h,t)}(Π[genre|h](T)∪Π[genre|t](T))

∪NSky{(h,t)}(Π[genre|c](T))∪NSky{(h,t)}(Π[genre|s](T))

∪NSky{(h,t)}(Π[genre|r](T))∪NSky{(h,t)}(Π[genre|a](T))

= {t1, t3, t8, t9, t10}

Algorithm dySky_1d Algorithm 15 is the implementation of Proposition 6. First the

variable NSky which will store the dominated tuples is initialized (line 2). Then for each

order (bi,b j) ∈ q.R, the algorithm computes the c-skyline in two steps: (i) it computes

P, the subset of tuples having the values bi,b j on dimension B, then computes dominated

tuples in P (line 4-5). (ii) It iterates on all values bk 6= bi,b j of the domain of B, partitions

T wrt to these values, and compute the dominated tuples within each partition (line 6-7).

Skyq.R is only T \NSky.

Algorithm 15: dySky_1d
Input: a set of dimensions D= {A1, . . . ,As,B}, a dataset T , a query q
Output: Skyq.R

1 begin
2 NSky← /0
3 foreach (bi,b j) ∈ q.R in parallel do
4 P←Π[B|bi](T)∪Π[B|b j](T)
5 NSky← NSky∪NSky{(bi,b j)}(P)
6 foreach (bk) ∈ dom(B)\{bi,b j} do
7 NSky← NSky∪NSky{(bi,b j)}(Π[B|bk](T))

8 return T \NSky

Complexity analysis First, we consider the time complexity for evaluating a skyline

query wrt some dataset of size v and over c dimensions as O(v2 · c). Likewise the time

complexity for evaluating the complementary skyline. Now, regarding our algorithm,

let n = |T | be the size of the dataset T , s+ 1 be the number of its dimensions and m

be the number of values in dom(B). Consider that the values in dom(B) are uniformly

distributed over T . Then the size of each part wrt B is v = n
m . Let q be a query. The

algorithm iterates on all orders in q.R, hence |q.R| iterations. For every (bi,b j) in q.R, (i)

it partitions and computes the c-skyline wrt every value in dom(B), hence O(m · (n
m)

2 · s),
and (ii) it partitions and computes the c-skyline wrt values bi and b j, hence O((2 n

m)
2 · s).

The overall time complexity is then O(|q.R| · (n
m)

2 · s).
In the next sections, we highlight two properties that we implement in Algorithm 16,

an optimized version of Algorithm 15.

108

6.3. dySky algorithm

The extended preference

Observe in Algorithm 15 (lines 6-7) that for every order (bi,b j), we compute a non skyline

set for every bk 6∈ {bi,b j}. According to this observation, we modify our algorithm so that

every bk not appearing in any order of a query is processed only once. We achieve this by

extending the input preferences as follows:

Definition 18 (Extended Preference). Let R be a preference on dimension B. Let U(R)

denotes the values in dom(B) not mentioned in R. The extended preference R̂ is R∪
{(bi,bi)|∀bi ∈U(R)}.

Intuitively, adding these “artificial" orders forces Algorithm 15 to compare the tuples

sharing a same value not mentioned in a preference R. Therefore, the nested loop in

Lines 6-7 can now be completely removed from that Algorithm since the outerloop (line

3) already handles those values bk, provided that as input we have an extended preference.

In the following, we consider that all preferences are extended.

Incrementally discarding dominated tuples

Observe that given two orders o1 o2,

NSky{o1}(T)∪NSky{o2}(T) = NSky{o1}(T \NSky{o2}(T))

The tuples which do not belong to the skyline wrt order o2, i.e. NSky{o2}(T), should not

be reconsidered for computing NSky{o1}.

We implement Algorithm 16 according to the above properties.

Algorithm 16: dySky_1d_optimized
Input: a set of dimensions D= {A1, . . . ,As,B}, a dataset T , a query q
Output: Skyq.R

1 begin
2 T ′← T
3 foreach (bi,b j) ∈ q.R in parallel do
4 P←Π[B|bi](T

′)∪Π[B|b j](T
′)

5 T ′← T ′ \NSky{(bi,b j)}(P)

6 return T ′

The complexity of Algorithm 16 remains the same as that of Algorithm 15, however

in practice, these modifications show enhancement in performance.

109

A1 A2 A3 B1 B2
t1 1 0 1 b11 b21
t2 0 0 1 b11 b22
t3 1 1 1 b11 b21
t4 1 2 1 b13 b21
t5 1 0 2 b12 b23

Table 6.3: Dataset with two dynamic dimensions

R1 R2
o11 = (b11,b12) o21 = (b21,b22)
o12 = (b11,b13) o22 = (b22,b23)

o23 = (b21,b23)

Table 6.4: The preference q.R

6.3.2 Multiple dynamic dimensions

In this section, we present our approach for datasets with multiple partially and

dynamically ordered dimensions, i.e. D = {A1, . . . ,As,B1, . . . ,Bl}. We recall that in

this case, the preference R is composed of preferences over every dimension, i.e. R =

{R1, . . . ,Rl}. Corollary 11 is a consequence of Theorem 9 when considering multiple

partially ordered dimensions.

Corollary 11. Given D = {A1, . . . ,As,B1, . . . ,Bl}, a dataset T , and a query q such that

q.R = {R1, . . . ,Rl}. Let t ∈ T , then t 6∈ Skyq.R iff ∃(o1, . . . ,ol) ∈ R1× ·· · ×Rl s.t. t 6∈
Sky{(o1,...,ol)}.

As said in section 6.3.1, an algorithm which naively computes

Sky{(o1,...,ol)}∀(o1, . . . ,ol) ∈ R1× ·· ·×Rl does not take advantage of skyline properties.

Firstly and for the ease of the presentation, we detail our approach in case of two partially

ordered dimensions, then we generalize to the case of l partially ordered dimensions.

Consider the dataset and the preference R depicted respectively in Tables 6.3 and 6.4.

Note that smaller values are preferred. Likewise the case of one partially ordered

dimension, our approach consists in computing the sets of comparable tuples T wrt the

preference q.R and then deduce the dominated tuples. To that purpose, we proceed as

follows: (i) we compute the subsets of tuples T1 and T2 having respectively values in o11

and o12, i.e., the orders belonging to the preference related to the first dimension B1, (ii)

from T1 and T2, we compute the subsets of tuples having respectively values in o21, o22

and o23, i.e., the orders in the preference over dimension B2. We illustrate this process

in Figure 6.2. Let T be the set of the so computed subsets. Then a tuple t belongs to the

skyline wrt T iff it does not belong to any complementary skyline of T ′ ∀T ′ ∈ T. For

110

6.3. dySky algorithm

Figure 6.2: Processing q

example, in Figure 6.2, the c-skyline of the subset in the right most leaf is {t3, t4}, hence,

t3, t4 6∈ Skyq.R. One may verify that the union of the c-skylines is {t3, t4, t5} and therefore,

Skyq.R = T \{t3, t4, t5}.
We formalize and generalize the above explanation in the following result.

Proposition 7. Given D, T , and a query q such that q.R = {R1, . . . ,Rl}. Let O = R1×
·· ·×Rl . Then

NSkyq.R(T) =
⋃

o∈O
NSky{o}(

l⋂
i=1

Π[Bi|be∨b f s.t. be,b f∈oi])

Intuitively, the above proposition simply states that by computing the dominated

tuples in each obtained subset, we get the set of all dominated tuples. Hence, the skyline

set.

Remark 12. One may notice that the obtained subsets do not form a partition. For

example, the right most sub-tree in Figure 6.2, we have two sets containing t1, t3 and

t4. This means that these tuples are compared twice and each time, t3 and t4 are found

dominated by t1. To avoid this redundant computation, it suffices to remove the dominated

tuples from the underlying data as soon as possible. So, the right most subset will actually

contains only t1.

Now we present how we translate Proposition 7 to a concrete algorithm.

Algorithm dySky_md The algorithm takes as input T and a query q, and returns Skyq.R.

It is composed of a main routine and a recursive procedure called recursiveNSky. The

variable NSky stores the complementary skyline throughout the process. It is initialized

by an empty set. The variable i indicates the dimension the algorithm is currently

processing. In the beginning, i is set to 1, hence the process starts with dimension B1.

The algorithm calls the procedure recursiveNSky with the arguments: (i) i, i.e. which

111

Algorithm 17: dySky_md
Input: a set of dimensions D = {D1, . . . ,Ds,B1, . . . ,Bl}, a dataset T (D), a query

q
Output: Skyq.R(T)

1 Procedure recursiveNSky(i, T ′, NSky)
2 foreach o ∈ Ri in parallel do
3 T ′′←Π[Bi|o.le f t](T ′)∪Π[Bi|o.right](T ′)
4 if i < l then
5 recursiveNSky(i+1,T ′′,NSky)

6 else
7 NSky← NSky∪NSky(T ′′)

1 begin
2 NSky← /0
3 i← 1
4 recursiveNSky(i,T,NSky)

5 return T \NSky

indicates the first dimension, (ii) the dataset T and (iii) NSky (line 4). Regarding the

procedure recursiveNSky, for each order o in Ri, it filters T ′ wrt o (line 3), then if i < l,

i.e. the algorithm is not processing the last dimension, it recalls recursiveNSky with new

parameters(line 5). Otherwise (i = l), i.e. the algorithm is currently processing the last

dimension Bl , it computes the complementary skyline wrt T ′′ and add it to NSky (line 7).

Finally, the skyline wrt the query q is T minus NSky (line 5 in the main routine).

Complexity analysis Given the parameters m, l, n and s. Suppose the preferences on

the dynamic dimensions have the same number of orders r, i.e., |Ri| = r, ∀i ∈ [1..l]. At

each level, dySky_md iterates on r orders. Globally, the algorithm iterates rl times. We

consider the filtering operations take a constant time. The argument here is that one can

use bitmap indexes on the Bi’s dimensions. The final step consists in computing the

complementary skyline. In case of uniform distribution of the values in dom(Bi)∀i ∈
[1..l] , at the last level of filtering, the datasets T ′ contains n

ml tuples. Then the overall

complexity is O(rl ∗ (n
ml)

2 ∗ (s+ l)). When the preferences Ri’s are total, r equals m(m−1)
2 .

In such case, this algorithm’s complexity becomes that of a naive algorithm, however, in

practice dySky_md performs better.

112

6.4. Optimization using materialization

6.4 Optimization using materialization

As we have seen so far, the main idea of dySky algorithm is to take a query q and

decompose it into a set of sub-queries qi. Each of them operates on a subset of T obtained

by a sequence of filters. For example, let us consider again query q (see Table 6.4) from

the previous section. In order to answer q, we compute 6 complementary skylines, i.e.

6 sub-queries, as illustrated in Figure 6.2. Consider the left most subset in that Figure

which is obtained by the filter sequence ((b11,b12),(b21,b22)). Consider the sub-query

q1 which computes the complementary skyline regarding this subset. Suppose now that

the answer of q1 is materialized. Then whenever q is issued, we get the answer of q1

automatically. Likewise, the queries sharing the same sub-query q1 are optimized thanks

to this materialization. Obviously, by materializing all possible sub-queries, we optimize

all possible queries. This solution is practical only for cases where the number of possible

sub-queries is reasonable. When this number is too large, a pragmatic solution is to

materialize a subset of these sub-queries. The choice of the best subset should be driven

by a query workload. This is the problem we address in this section.

Firstly, we give some definitions needed for this section. Then we address the full

materialization of the sub-queries, i.e. we consider that there is no limitation on memory

space and we materialize all possible sub-queries. Later, we consider the case where

memory space is restricted, and we address the partial materialization of the sub-queries,

i.e, we materialize a set of sub-queries under space constraint.

6.4.1 Materialization structure

Each sub-query qi is uniquely identified by a filtering sequence seqi. Before defining a

sequence, we firstly define the set of orders wrt a dimension Bi.

Definition 19. Given a partially ordered dimension Bi.

Orders(Bi) = {(bi j,bik) ∈ dom(Bi)×dom(Bi)} is the set of all possible orders wrt Bi.

It is easy to see that |Orders(Bi)| = |dom(Bi)|2. Given a set of partially ordered

dimensions B = {B1, . . . ,Bl}, a sequence is an l-tuple which belongs to the Cartesian

product Orders(B1)×·· ·×Orders(Bl). Formally speaking,

Definition 20 (Sequence). Given B = {B1, . . . ,Bl}. A sequence is an element of

Orders(B1)×·· ·×Orders(Bl). Consequently, the set of all possible sequences is Σ(B) =

{seq|seq ∈ Orders(B1)×·· ·×Orders(Bl)}.

Clearly, |Σ(B)|= Π l
i=1|Orders(Bi)|. Hereafter, we note just Σ when B is understood.

113

Example 32. Consider again Table 6.3. We have dom(B1) = {b11,b12,b13} and

dom(B2) = {b21,b22,b23}. One possible sequence is ((b13,b11),(b22,b22)). Σ contains

in total 81 sequences.

The sub-queries materialization structure is a set of pairs (seqi,CSi) such that seqi is

the filtering sequence related to a query qi and CSi is the complementary skyline wrt the

filtered data.

Definition 21 (seqStruct). Given D= {A1, . . . ,As,

B1, . . . ,Bl} and T .

seqStruct = {(seqi,CSi)|seqi ∈ Σ and CSi ⊆ T}.

Finally, given a query q, sequences(q) is the set of sequences related to q. Formally

speaking,

Definition 22 (Sequences related to a query). Given {B1, . . . ,Bl} and a query q such that

q.R= {R1, . . . ,Rl}.
sequences(q) = {seq ∈ R1×·· ·×Rl}

.

Example 33. Consider q.R depicted in Table 6.4. It has 6 related sequences. E.g.,

(o11,o21) and (o11,o22).

6.4.2 Full materialization

In a nutshell, the process to materialize all possible sub-queries is to iterate on all possible

sequences seqi in Σ , to filter data wrt seqi and to compute the complementary skyline to

be stored in seqStruct F. Algorithm 18 (dySkySeq_build) designed to this aim proceeds in

a smarter way. Intuitively, one may observe that each sequence is actually a conjunction

of conditions and several conditions may share the same conjunct prefix. For example,

the sequences (o11,o21) and (o11,o22) share the same prefix o11. To filter T wrt these two

sequences, we first consider o11. The result is then used for both o21 and o22.

Algorithm dySkySeq_build This procedure (see Algorithm 18) takes D and T as input,

and returns a seqStruct F. At the beginning, F is empty. Variable i indicates the dimension

the algorithm is processing and is initialized to 1. Variable seq is a stack structure and is

used to store the sequences. The algorithm proceeds in a Depth-First fashion. It calls

the recursive function recursiveSeq with parameters (i) i to indicate the dimension Bi, (ii)

T , (iii) seq, and (iv) the set F (line 5). Inside recursiveSeq, T ′ is filtered wrt Bi and o

114

6.4. Optimization using materialization

is pushed onto seq (line 3-4). If (i < l), i.e. , the algorithm is not processing the last

dimension, it recalls recursiveSeq with new parameters (line 6). Otherwise, i.e. (i = l), at

this step, seq contains l orders. Hence it computes the complementary skyline wrt T ′′ and

inserts the pair (seq,NSky{seq}(T ′′)) in F (line 8). Finally, o is popped from the sequence

(line 9).

Algorithm 18: dySkySeq_build
Input: a set of dimensions D= {A1, . . . ,As,B1, . . . ,Bl}, a dataset T
Output: seqStruct F

1 Procedure recursiveSeq(i,T ′,seq,F)
2 foreach o ∈ Orders(Bi) in parallel do
3 T ′′←Π[Bi|o.le f t](T ′)∪Π[Bi|o.right](T ′)
4 seq.push(o)
5 if i < l then
6 recursiveSeq(i+1,T ′′,seq,F)

7 else
8 F← F∪ (seq,NSky{seq}(T ′′))

9 seq.pop(o)

1 begin
2 F← /0
3 i← 1
4 seq← /0
5 recursiveSeq(i,T,seq,F)

6 return V

Query answering We describe here how to evaluate a query using F. Algorithm 19

(dySkySeq_qa) takes as input F, T , and a query q and returns Skyq.R. The algorithm

simply merges the complementary skylines associated to sequences related to the query

q.

Algorithm 19: dySkySeq_qa
Input: a query q, F, T
Output: Skyq.R

1 begin
2 NSky← /0
3 foreach seq ∈ sequences(q) do
4 NSky← NSky∪F[seq]

5 return T \NSky

115

6.4.3 Constrained materialization

Generally, materializing all the sub-queries can be costly. In this section we address partial

materialization of the sub-queries, i.e, we materialize only a subset P⊆ F. However, we

want to select the sequences in P such that the answering cost of a workload Q is optimal.

Without any constraint, the solution to this problem is obvious: materialize all and only

the sequences related to Q. Even when considering just Q and not all possible queries,

the storage space may become prohibitive. So, we constrain the query cost optimization

problem with an available memory storage H that has not to be overtaken by the chosen

sequences to be materialized.

We start by defining the costs of answering queries and workloads. Then we present

the partial materialization problem.

Query answering cost

We set the answering cost of a query q as the number of sequences related to q, namely,

Cost(q) = |sequences(q)|

The rationale behind this choice of cost function is that, under uniform distribution, the

size of the filtered data from which the complementary skyline is computed is the same

whatever is the sequence.

Now consider a set of materialized sub-queries P, then the cost of answering q through

P is

Cost(q,P) =Cost(q)−|{p ∈ P|p.seq ∈ sequences(q)}|

In other words, partial materialization saves query execution time proportionally to the

number of sub-queries that are already materialized. The cost of a workload Q wrt P is

defined accordingly:

Cost(Q,P) = ∑
q∈Q

Cost(q,P)

Note that with the above definitions, when using full materialization, the cost of any query

is null, thus Cost(Q,F) = 0. This reflects the fact that retrieving a query answer is done

without any effort.

In the next section, we formalize the problem of partial materialization of sub-queries,

and we provide an algorithm to select the set P.

116

6.4. Optimization using materialization

Sequence selection problem

As said previously, the obvious way to optimize a workload Q is to cache the results of

the sub-queries related to Q. Storing all these results may require a storage space larger

than the available one H. So, one needs to select a subset fitting H.

Remark 13. Given a seqStruct M, the required space to store M, noted res(M), is the

total required space for storing complementary skylines related to sequences in M.

The sequence selection problem we address is,

Problem SS Given D, T , a workload Q, a seqStruct S related to Q,

and an integer H ≥ 0, compute a set M⊆ S such that res(M)≤ H and

Cost(Q,M) is minimum.

A dynamic programming algorithm Our problem can be solved exactly by a 0-1

Integer Linear Programming problem

maximize
n

∑
j=1

g j x j

subject to
n

∑
j=1

w jx j ≤W,

x j ∈ {0,1}, j = 1, . . . ,n

(6.1)

We set n as the size of S and W as H. The weight vector (w1, . . . ,wn) equals

(|p1.CS|, . . . , |pn.CS|)∀pi ∈ S. The gain gi represents the number of queries in Q which

have the sequence pi.seq in their respective set of sequences. It is defined by the following

formula.

gi = Gain(pi,Q) = |{q ∈ Q|pi.seq ∈ sequences(q)}|

It is well known that 0-1 linear programs can be solved by dynamic programming

techniques (e.g., see [81]). Its precise complexity, regarding our setting, is O(|S| ∗H).

In the present setting, i.e., partial materialization, when a query is submitted, it is first

decomposed into a set of sub-queries. Some of them can be already materialized, thus

their result is already available. The others are evaluated from scratch. The Algorithm 20

dySkySeq_hybrid implements this procedure.

117

Algorithm 20: dySkySeq_hybrid
Input: a query q, a seqStruct M and a dataset T
Output: Skyq.R

1 Procedure computeSeq(i,T ′,seq,NSky)
2 T ′′←Π[Bi|seq[i].le f t](T ′)∪Π[Bi|seq[i].right](T ′)
3 if i < l then
4 computeSeq(i+1,T ′′,seq,NSky)

5 else
6 NSky← NSky∪NSky{seq}(T ′′)

1 begin
2 NSky← /0
3 foreach seq ∈ sequences(q) do
4 if seq ∈M then
5 NSky← NSky∪M[seq]

6 else
7 computeSeq(1,T,seq,NSky)

8 return T \NSky

6.5 Experiments

In this section we compare our proposals to relevant literature techniques. We consider

both non materialization and materialization based solutions. For the first family, we

consider the algorithm CPS proposed by [19] as a representative solution. We recall

that CPS transforms partially ordered dimensions into totally ordered dimensions. We

combine it with BSkyTree [7, 8] in order to compute the skyline over the transformed

dataset. For materialization-based techniques, we consider Ordered Skyline Tree

(OST) structure [56]. In the remainder, we denote by OST both the structure and

its corresponding algorithm for answering queries. Moreover we consider the query

answering through refinement technique as presented in [55, 22] and we denote it by

Ref. We adapted the BSkyTree algorithm and its authors implementation so that it returns

the complementary skyline which is the main procedure of our solutions.

The experiments are organized in three parts:

1. In Section 6.5.1 and regarding query answering time, we evaluate algorithms

which answer queries on the fly, i.e., dySky_md and CPS as well as those using

pre-computed structures, i.e., dySkySeq_qa and OST .

2. In Section 6.5.2 and for pre-computation based techniques, we compare their

respective structure build time and their memory consumption.

118

6.5. Experiments

3. We show the ability of dySky to compete with the refinement strategy Ref proposed

in [55, 22]. We consider the case where a set of queries is cached, and we measure

the answering time of another set of queries by both techniques. Refer to Section

6.5.3.

4. Finally, we evaluate other specific aspects of dySky in Section 6.5.4. Specifically,

we assess the linear cost function of answering queries presented in Section 6.4.3.

We evaluate the impact of partial materialization of sub-queries on the query

answering performance, and we evaluate the benefit of multithreading for dySky.

Hardware and software Experiments are conducted on a machine equipped with

96 cores cadenced with a frequency up to 3.40 Ghz. By default and when possible,

computation is parallelized over 96 threads. This machine is also equipped with 1 TB

RAM and running CentOS Linux. Regarding software, we use BSkyTree authors version.

All remaining techniques implementations are ours. The software is coded in c++ and the

source code is available on GitHub2.

Datasets We use both synthetic datasets, through the framework of [2] with independent

(INDE) and anti-correlated (ANTI) distribution, and real datasets commonly used in the

skyline literature. The real datasets are initially composed of numerical attributes, thus

we extend them with nominal attributes. The values of these attributes are randomly and

uniformly generated.

For synthetic data, Table 6.5 shows the different parameters. Bold values are the

default.

Parameter Values
n (dataset size) 100K,1M,10M
s (static dims) 6

l (dynamic dims) 1,2,3
m (dynamic dims values) 10,15,20

distribution ANTI, INDE

Table 6.5: Synthetic datasets

Table 6.6 shows the characteristics of the real data in addition to their respective

skyline size wrt the totally ordered dimensions.

Queries generation In some of the following experiments we need to generate random

queries. These are completely defined by their respective preferences on the Bi’s

2https://github.com/karimalami7/dySky

119

https://github.com/karimalami7/dySky

Parameter POKER IPUMS HOUSE
n 1M 75836 127931
s 11 10 6
l 2 2 3
m 15 30 10

|Skyline| 14131 3852 127931

Table 6.6: Real datasets

attributes. Each preference on a dimension Bi is actually a DAG whose set of nodes

is dom(Bi). Thus, we generate random DAGs on dom(Bi) following a density parameter

ρ ∈ [0,1]. Let’s recall its definition. Let G = (V,E) be a DAG, then the density of G

is ρ(G) =
2|E|

|V | ∗ (|V |−1)
. That’s, the denser is G the more the values in dom(Bi) are

comparable. By default, we set ρ = 0.5.

6.5.1 Query answering time

Here we compare our solutions to its competitors in terms of query answering time. In

each case, we execute a same workload of 50 queries and we report the average execution

time of all solutions. Sometimes OST values are not reported either because its related

structure saturated the available memory or its execution did not terminate in a reasonable

time (> 24 hours).

Varying n, m, l and data distribution

Figures 6.3, 6.4 and 6.5 depict the results with respectively 1, 2 and 3 dynamic

dimensions. A first observation is that OST fails to build its structure in many

configurations. When its structure can be built, the query answering time of OST is close

to non materialization-based approaches CPS and dySky_md (see Figure 6.3). Regarding

CPS, we observe that dySkySeq_qa and dySky_md perform better with (i) larger and/or

(ii) anti-correlated datasets, i.e., the harder cases. For example, in Figures 6.3, 6.4 and

6.5, for n = 1M, dySky_md and dySkySeq_qa are respectively about one and three orders

of magnitude faster than CPS.

Figure 6.6 depicts the query answering times for a dataset of 10M tuples and by

varying both l and m. Globally, we can see that both dySkySeq_qa and dySky_md have

better performances than CPS, however dySkySeq_qa scales less good than the two other

solutions well wrt l. This trend suggests that materialization would be of no great added

value with higher values of l, say l ≥ 6.

120

6.5. Experiments

10 15 20

10−4

10−2

100

102

m

Ti
m

e
in

se
c.

n = 100K

dySkySeq_qa dySky_md CPS OST

10 15 20

m

n = 1M

(a) INDE

10 15 20

10−4

10−2

100

102

m

n = 100K

10 15 20

m

n = 1M

(b) ANTI

Figure 6.3: Query answering with l = 1

10 15 20

10−3

10−1

101

103

m

Ti
m

e
in

se
c.

n = 100K

dySkySeq_qa dySky_md CPS

10 15 20

m

n = 1M

(a) INDE

10 15 20
10−3

10−1

101

103

m

n = 100K

10 15 20

m

n = 1M

(b) ANTI

Figure 6.4: Query answering time with l = 2

10 15 20

10−2

100

102

m

Ti
m

e
in

se
c.

n = 100K

dySkySeq_qa dySky_md CPS

10 15 20

m

n = 1M

(a) INDE

10 15 20

10−2

100

102

m

n = 100K

10 15 20

m

n = 1M

(b) ANTI

Figure 6.5: Query answering time with l = 3

Varying the preferences density ρ

We generate queries whose ρ ∈ {0.1,0.3,0.5,0.7,0.9}. Figure 6.7 depicts the results with

a dataset having the default parameters. We see in the results that for a low density, dySky

outperforms CPS by nearly two orders of magnitude. The gap tends to become smaller as

the density grows. Recall that the lower the density, the lower the number of orders, while

for CPS, the lower the density, the higher the number of dimensions in the transformed

121

1 2 3

10−2

100

102

104

l

Ti
m

e
in

se
c.

m = 10

dySkySeq_qa dySky_md CPS

1 2 3

10−2

100

102

104

l

m = 15

1 2 3

10−2

100

102

104

l

m = 20

Figure 6.6: Query answering time with 10M tuples

0.1 0.3 0.5 0.7 0.9
10−2

100

102

ρ

Ti
m

e
in

se
c.

dySkySeq_qa dySky_md CPS

Figure 6.7: Query answering time by varying the preference’s density ρ

dataset.

Querying real data

Figure 6.8 shows the obtained results. These confirm the previous findings, i.e., dySky

with its two versions, clearly outperforms CPS.

6.5.2 Precomputation time and storage

In this section we compare the precomputation time and storage of both F and

OST structure related respectively to dySkySeq_qa and OST algorithms. Regarding

precomputation time, for F we measure the execution time of Algorithm 18

dySkySeq_build and for OST we measure the time of building the whole tree. W.r.t

storage, we count the total number of tuples stored by each technique. Figure 6.9 depicts

the obtained results with a dataset having one partially ordered dimension. We see that

OST can not terminate when m > 10. When m = 10, the gap is large between OST and

dySky wrt both time and storage. Results wrt datasets having more than one dynamic

order are not reported as OST did not terminate for any configuration. This is due to the

high size of the tree when both l and m grow as explained in Section 1.1.4.

122

6.5. Experiments

PO
K

E
R

IP
U

M
S

H
O

U
SE

10−2

100

102

Ti
m

e
in

se
c.

dySkySeq_qa dySky_md CPS

Figure 6.8: Query answering time with real data

10 15 20

10−1

101

103

105105

m

Ti
m

e
in

se
c.

n = 100K

dySkySeq_build OST

10 15 20

m

n = 1M

(a) Precomputation time

10 15 20

104

106

108

1010

m

#
of

tu
pl

es

n = 100K

F OST

10 15 20

m

n = 1M

(b) Storage

Figure 6.9: Precomputation with one dynamic dimension

6.5.3 Caching queries

In this experiment we show the ability of dySky to compete with the refinement strategy

proposed in [55, 22] to optimize the queries via caching. To this aim, we consider the

following scenario: Firstly, a set of queries Q1 is selected randomly and its result is

cached. Recall that for a query q ∈ Q1 dySky caches the results of sub-queries related

to q while Ref caches the result of q. Then a second set Q2 of queries is evaluated using

the previously cached results. Regarding Ref, a query q ∈Q can benefit from the cache iff

there exists q′ in the cache which is a refinement of q while following dySky, q benefits

from the cache if at least one of its sub-queries is cached. We conducted experiments by

varying the size of Q1. We set n = 100K, m = 10 and l = 2, and a set Q2 of 50 queries.

Figure 6.10 reports the average execution time of queries in Q2. As it may be observed, in

all cases dySky provides better execution times than Ref making it a serious candidate to

be used in a caching context. More precisely, Figure 6.10 shows that query answering time

of Ref does not improve considerably when caching more queries. While dySky_hybrid

performance improves until |Q1| = 100 then it remains almost constant with larger |Q1|.

123

10 10
0

10
00

10−2

10−1

100

|Q1|, # of cached queries

Ti
m

e
in

se
c.

dySky_hybrid Ref

Figure 6.10: dySky_hybrid vs. Ref.

60 12
0

24
0

48
0

96
0

19
20

−1
0
1
2
3
4

of sequences

Ti
m

e
in

se
c.

dySky
Linear regession curve

Figure 6.11: Query answering cost

This is explained by the fact that the maximum number of distinct sub-queries (m2l = 104)

can be reached with few queries. Figure 6.10 suggests that with |Q1|= 100, the number of

distinct sub-queries becomes close to 104, i.e., all queries in Q2 are completely optimized.

However, for Ref technique, even with a workload of 1000 queries, a refinement is hardly

found for queries in Q2.

6.5.4 Evaluating other aspects of dySky

In this section, we evaluate specific aspects of dySky.

Query answering cost estimation

In section 6.4.3, we have set the cost of answering a query q to be the number of sequences

related to q. In this experiment, we want to confirm this supposition. To that purpose, we

evaluate a set of queries each having a different number of sequences. For this experiment,

we consider a dataset with n = 100K, l = 2 and m = 10. We generate 6 queries having

respectively 60, 120, 240, 480, 960 and 1920 related sequences. The blue curve in Figure

6.11 depicts the obtained results, and the red curve is used to show the linear trend. We

can see that the curves overlap, hence, the cost of answering a query q is clearly linear

wrt its number of sequences sequences(q).

Query answering time with partial materialization of the sub-queries

We consider the following scenario: we want to optimize the answering of a workload Q.

Let P be the seqStruct containing only sequences involved in Q and let M be the size of

P. Obviously, if we store P, queries in Q are completely evaluated through materialized

sub-queries. Now we consider the cases where the available memory size is equal to

fractions of M, i.e. M
2 , M

4 , M
8 and M

16 . In this experiment, we evaluate the query answering

time of queries in Q by considering sets M⊆P output of Problem SS presented in Section

124

6.5. Experiments

M
16

M
8

M
4

M
2

M
10−2

10−1

100

Available memory H

Ti
m

e
in

se
c.

m = 10 m = 15 m = 20

Figure 6.12: Query answering with restricted
memory

6 12 24 48 96
0

100

200

300

of threads

Ti
m

e
in

se
c.

dySky Ideal time

Figure 6.13: Parallel throughput

6.4.3 wrt values M, M
2 , M

4 , M
8 , and M

16 for H. We consider datasets with n = 10M, l = 1,

and m in {10,15,20} as well as a workload Q of 100 queries. Figure 6.12 depicts the

results. We globally observe the same trend for all values of m. When H is equal to M, P

is completely materialized and therefore queries in Q are fully optimized. As long as we

reduce the available memory H, the query answering time grows as now some sub-queries

need to be computed from scratch.

Parallel processing throughput of dySky

In this experiment, we want to measure the multithreadring performance of dySky. We

specifically consider Algorithm 18 dySkySeq_build. We run experiments with parameters

n = 10M, s = 6, l = 2 and m = 20. We vary the number of parallel threads in

{6,12,24,48,96}. Figure 6.13 depicts the results. We use the red curve just to show

the linear trend. The results show that our algorithm is highly parallelizable because the

sequential part is negligeable.

6.5.5 Concluding remarks

Globally, the performed experiments showed that our proposals outperform its

competitors. Regarding query answering on the fly, we showed that in presence of

challenging datasets, i.e., large and anti-correlated datasets, our algorithm dySky_md

performs better than CPS which, to our knowledge, is the state of the art algorithm.

Regarding precomputation based technique, we showed that our proposed structure,

compared to OST , (i) is built faster, (ii) stores less data (iii) and provides better query

answering performance. Regarding queries caching solutions, we showed that with

much less cached queries, our proposal achieves better query performance than the

refinement technique Ref. Finally, and thanks to dySky design, we showed that it is highly

parallelizable.

125

6.6 Conclusion

In this chapter, we presented dySky, an approach for optimizing skyline queries over data

with both totally and statically ordered dimensions, and partially and dynamically ordered

dimensions. Given a query q and its related preference on the attributes domain q.R, dySky

decomposes q into sub-queries qi, each of which operates on a small part of the dataset. In

a further step for optimization, we proposed the sub-queries results as a building block for

materialization. In this context, we addressed both full and partial materialization driven

by a workload. The empirical experimental results we provide, show the superiority of

dySky against its competitors. As future work, we plan to investigate the incremental

maintenance of the materialized sub-queries with data updates.

126

Conclusion and perspectives

In this dissertation, we studied the time and memory optimization of skyline queries

evaluation. We specifically considered the cases where the underlying data has dynamic

properties. In a first part, we addressed the incremental maintenance of the structure NSC
in presence of both dynamic data and streaming data. In a second part, we addressed the

optimization of skyline queries in presence of data with dynamic orders.

In Chapter 3, we addressed the incremental maintenance of NSC in presence of

dynamic data, i.e., tuples are inserted/deleted at any time. We presented the challenges of

updating NSC wrt both insertions and deletions on the efficiency of structure. Regarding

insertions, we showed that NSC’s state changes only if inserted tuples belong to the

topmost. We moreover presented an incremental compression technique based on pairs

inclusion. We empirically evaluated this technique and showed it provides an interesting

memory/time ratio compared to approximate compression technique. Also, we showed

that the maintenance time of NSC upon insertions is proportional to the number of

inserted tuples, and is ,in the worst case, better than the rebuild from scratch. Regarding

deletions, we showed as well that NSC’s state changes only if deleted tuples belong to the

topmost. We presented the challenge of identifying the pairs computed wrt the deleted

tuples and we proposed to augment the pairs with counters representing the number

of tuples associated to a pair. We showed empirically that on one hand this additional

information does not increase dramatically the memory usage, and on the other hand, it

allows a fast maintenance procedure. Indeed, we showed that in practice very few tuples

involve a large maintenance of the structure when they get deleted.

In Chapter 4, we addressed the incremental maintenance of NSC in presence of

streaming data. We considered answering skyline queries over a window of size ω . To

deal with that setting, we proposed a framework composed of (i) a data buffer, (ii) a

main dataset, and (iii) NSCt, a variant of NSC to handle timestamped data. We proposed

and explained techniques for both managing new insertions and updates. We evaluated

empirically our proposals against a baseline skyline algorithm and a materialization

based technique. First, we showed that our proposal outperforms the baseline skyline

algorithm in terms of number of processed queries during a batch interval. Second, we

exhibited the light memory consumption and fast maintenance process compared to the

materialization based technique. Finally, we proved experimentally that our proposal

127

answers continuously and efficiently the Top-K frequent skyline which is the motivation

of this work.

In Chapter 5, we investigated the optimization of regret minimization queries through

NSC. These queries have been proposed to overcome the limitation of skyline queries and

Top-K queries. We experimentally studied the time performance of regret minimization

queries algorithms when computed on top of small candidate sets rather than the whole

dataset. We showed that Top-K frequent skyline results, computed through NSC,

represents a good candidate set for regret minimization queries.

In Chapter 6, we addressed the optimization of skyline queries over data with partially

and dynamically ordered attributes. We proposed an approach which (i) decomposes

the issued query into sub-queries, (ii) processes each sub-query independently, and (iii)

integrates the results. First we considered answering queries on the fly and highlighted the

interesting theoretical properties of our approach. Then, we considered the materialization

of sub-queries in order to optimize further issued queries. We first described the

materialization structure of the sub-queries, and the approach of answering queries

through the materialized sub-queries. Then, we introduced the problem of selecting a

subset of sub-queries to materialize given (i) a workload and (ii) under space constraint.

We proved the hardness of that problem and proposed an efficient algorithm based on

Knapsack dynamic programming algorithm. We evaluated empirically our proposal wrt

several aspects. We showed its high performance wrt query answering time compared

to its direct competitors. Moreover, we exhibited the improvement provided by both

sub-queries materialization and multiprocessing.

The problematics addressed in this dissertation along with our proposals provide some

orientations for future work.

Integrating NSC to a DBMS In Chapter 3, we addressed the problem of incrementally

maintaining the indexing structure NSC upon updates. We provided techniques and

procedures that makes NSC incrementally maintainable upon updates. Hence, NSC
becomes an interesting and reliable tool for database management systems. As a future

step, we could study NSC’s integration to e.g. PostgreSQL.

MSSD in a distributed environment In Chapter 4, we proposed MSSD, a system

for handling streaming data and managing NSCt a variant of NSC. We studied MSSD
theoretically and proposed algorithms for (i) handling arriving data, (ii) updating the

structure NSCt and (iii) answering issued queries. Nowadays, there exists frameworks for

efficiently handling streams and distributed computation upon a cluster of machines such

128

6.6. Conclusion

as Spark [82]. This framework requires programs to follow the MapReduce programming

model [83]. Hence, we aim to redesign MSSD in MapReduce model.

Theoretical guarantees on the regret of Top-K frequent skyline queries In

Chapter 5, we investigated the relationship between regret minimization queries and

multidimensional skylines. Our performed experiments provided interesting insights on

this relationship. We have shown that Top-K frequent skyline query computes sets with

regret close to that computed by a dedicated regret minimization algorithm. Moreover,

Top-K frequent skyline computation is optimized by NSC. As future work, we want

to push further the experimentation and find theoretical guarantees on regret of sets

computed with Top-K frequent skyline queries.

Query preference decomposition into clusters of orders In Chapter 6, we addressed

the optimization of skyline queries over data with partially and dynamically ordered

attributes. We proposed a solution that decomposes the input query q into a set of

sub-queries. Each sub-query considers a singleton preference composed of some order

(vi,v j) in the query preference q.R. A sub-query computes a set of dominated tuples wrt

the singleton preference (vi,v j). The final result of q is then those tuples not belonging to

any sub-query result. To speed up the computation and as sub-queries are independent,

we process them in parallel. Still, this approach is disadvantaged in presence of dense

preferences. The higher the number of orders in a query preference, the higher the number

of sub-queries to compute. This involves as well redundant computation as two tuples

may be compared in several sub-queries. One way to avoid this counter-performance is

by decomposing the query preference q.R to clusters of orders rather than single orders

and to map each cluster to a sub-query. This decomposition is a priory not an easy task.

For example, we might decompose the preference wrt the number of available processors.

Or, we might decompose the preference such that redundant computation is minimized.

Hence, the efficient clustering of orders remains an open question.

Computing negative results of a query In this thesis, our approaches for optimizing

skyline queries were based on the idea that computing tuples not belonging to the skyline

then infer those belonging to the skyline is better than computing the tuples belonging

to the skyline directly. For the problematics we addressed in this dissertation, we have

proven the efficiency of such approach. We believe this technique would be extended to

more general queries than skyline and sharing with it the same principle. More precisely,

those queries that can be expressed by the formula {t ∈ T | 6 ∃t ′ ∈ T ′, E(t, t ′)} where T and

T ′ are either relations or relational queries, and E is some binary relation. One may even

129

think about other settings like for example graph data sets or ontologies. Note that skyline

is an instance of such queries: T and T ′ are the same relation, and E is the dominance

relationship.

130

List of Publications

Journals

• Karim Alami, Nicolas Hanusse, Patrick Kamnang-Wanko, Sofian Maabout. The

negative skycube. Information Systems, Elsevier, 2020, 88, pp.101443.

• Karim Alami, Sofian Maabout. A framework for multidimensional skyline queries

over streaming data. Data & Knowledge Engineering, Elsevier, 2020, pp.101792.

• Karim Alami, Sofian Maabout. A Partitioning Approach for Skyline Queries in

Presence of Partial and Dynamic Orders. (Under review)

Conferences

• Karim Alami, Sofian Maabout. Multidimensional Skylines over Streaming Data.

Database Systems for Advanced Applications - 24th International Conference,

DASFAA 2019, Chiang Mai, Thailand, April 22-25, 2019, Proceedings, Lecture

Notes in Computer Science, pp.338-342, 2019.

• Karim Alami, Sofian Maabout. Computational aspects around preference queries.

Proceedings of the VLDB 2019 PhD Workshop, August 26th, 2019. Los Angeles,

California.

• Karim Alami, Sofian Maabout. Experimental study of regret minimization sets and

multidimensional skylines. (Under review)

131

References

[1] Surajit Chaudhuri and Luis Gravano. “Evaluating Top-k Selection Queries”. In:

VLDB’99, Proceedings of 25th International Conference on Very Large Data

Bases, September 7-10, 1999, Edinburgh, Scotland, UK. Ed. by Malcolm P.

Atkinson et al. Morgan Kaufmann, 1999, pp. 397–410.

[2] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. “The Skyline

Operator”. In: Proceedings of the 17th International Conference on Data

Engineering, April 2-6, 2001, Heidelberg, Germany. Ed. by Dimitrios

Georgakopoulos and Alexander Buchmann. IEEE Computer Society, 2001,

pp. 421–430.

[3] Donald Kossmann, Frank Ramsak, and Steffen Rost. “Shooting Stars in the Sky:

An Online Algorithm for Skyline Queries”. In: Proceedings of 28th International

Conference on Very Large Data Bases, VLDB 2002, Hong Kong, August 20-23,

2002. Morgan Kaufmann, 2002, pp. 275–286.

[4] Dimitris Papadias et al. “An Optimal and Progressive Algorithm for Skyline

Queries”. In: Proceedings of the 2003 ACM SIGMOD International Conference

on Management of Data, San Diego, California, USA, June 9-12, 2003. Ed. by

Alon Y. Halevy, Zachary G. Ives, and AnHai Doan. ACM, 2003, pp. 467–478.

[5] Jan Chomicki et al. “Skyline with Presorting”. In: Proceedings of the 19th

International Conference on Data Engineering, March 5-8, 2003, Bangalore,

India. Ed. by Umeshwar Dayal, Krithi Ramamritham, and T. M. Vijayaraman.

IEEE Computer Society, 2003, pp. 717–719.

[6] Jan Chomicki et al. “Skyline with Presorting: Theory and Optimizations”.

In: Intelligent Information Processing and Web Mining, Proceedings of the

International IIS: IIPWM’05 Conference held in Gdansk, Poland, June 13-16,

2005. Ed. by Mieczyslaw A. Klopotek, Slawomir T. Wierzchon, and Krzysztof

Trojanowski. Vol. 31. Advances in Soft Computing. Springer, 2005, pp. 595–604.

[7] Jongwuk Lee and Seung-won Hwang. “BSkyTree: scalable skyline computation

using a balanced pivot selection”. In: EDBT 2010, 13th International Conference

on Extending Database Technology, Lausanne, Switzerland, March 22-26, 2010,

133

References

Proceedings. Ed. by Ioana Manolescu et al. Vol. 426. ACM International

Conference Proceeding Series. ACM, 2010, pp. 195–206.

[8] Jongwuk Lee and Seung-won Hwang. “Scalable skyline computation using a

balanced pivot selection technique”. In: Inf. Syst. 39 (2014), pp. 1–21.

[9] Sean Chester et al. “Scalable parallelization of skyline computation for multi-core

processors”. In: 31st IEEE International Conference on Data Engineering, ICDE

2015, Seoul, South Korea, April 13-17, 2015. Ed. by Johannes Gehrke et al. IEEE

Computer Society, 2015, pp. 1083–1094.

[10] Ping Wu et al. “DeltaSky: Optimal Maintenance of Skyline Deletions without

Exclusive Dominance Region Generation”. In: Proceedings of the 23rd

International Conference on Data Engineering, ICDE 2007, The Marmara Hotel,

Istanbul, Turkey, April 15-20, 2007. Ed. by Rada Chirkova et al. IEEE Computer

Society, 2007, pp. 486–495.

[11] Yufei Tao and Dimitris Papadias. “Maintaining Sliding Window Skylines on Data

Streams”. In: IEEE Trans. Knowl. Data Eng. 18.2 (2006), pp. 377–391.

[12] Jongwuk Lee and Seung-won Hwang. “Toward efficient multidimensional

subspace skyline computation”. In: VLDB J. 23.1 (2014), pp. 129–145.

[13] Sofian Maabout et al. “Skycube Materialization Using the Topmost Skyline

or Functional Dependencies”. In: ACM Trans. Database Syst. 41.4 (2016),

25:1–25:40.

[14] Tian Xia et al. “Online subspace skyline query processing using the compressed

skycube”. In: ACM Trans. Database Syst. 37.2 (2012), 15:1–15:36.

[15] Kenneth S. Bøgh et al. “Hashcube: A Data Structure for Space- and Query-Efficient

Skycube Compression”. In: Proceedings of the 23rd ACM International

Conference on Conference on Information and Knowledge Management, CIKM

2014, Shanghai, China, November 3-7, 2014. Ed. by Jianzhong Li et al. ACM,

2014, pp. 1767–1770.

[16] Nicolas Hanusse, Patrick Kamnang Wanko, and Sofian Maabout. “Computing

and Summarizing the Negative Skycube”. In: Proceedings of the 25th

ACM International Conference on Information and Knowledge Management,

CIKM 2016, Indianapolis, IN, USA, October 24-28, 2016. Ed. by Snehasis

Mukhopadhyay et al. ACM, 2016, pp. 1733–1742.

[17] Danupon Nanongkai et al. “Regret-Minimizing Representative Databases”. In:

Proc. VLDB Endow. 3.1 (2010), pp. 1114–1124.

134

References

[18] Sean Chester et al. “Computing k-Regret Minimizing Sets”. In: Proc. VLDB

Endow. 7.5 (2014), pp. 389–400.

[19] Shiming Zhang et al. “Efficient Skyline Evaluation over Partially Ordered

Domains”. In: Proc. VLDB Endow. 3.1 (2010), pp. 1255–1266.

[20] Peter C. Fishburn. “Combinatorics and Partially Ordered Sets: Dimension Theory

(William T. Trotter)”. In: SIAM Review 35.3 (1993), pp. 519–520.

[21] Korte Bernhard and J Vygen. “Combinatorial optimization: Theory and

algorithms”. In: Springer, Third Edition, 2005. (2008).

[22] Yu-Ling Hsueh, Chia-Chun Lin, and Chia-Che Chang. “An Efficient Indexing

Method for Skyline Computations with Partially Ordered Domains”. In: IEEE

Trans. Knowl. Data Eng. 29.5 (2017), pp. 963–976.

[23] Karim Alami et al. “The negative skycube”. In: Inf. Syst. 88 (2020).

[24] Karim Alami and Sofian Maabout. “A framework for multidimensional skyline

queries over streaming data”. In: Data Knowl. Eng. 127 (2020), p. 101792.

[25] Karim Alami and Sofian Maabout. “Multidimensional Skylines over Streaming

Data”. In: Database Systems for Advanced Applications - 24th International

Conference, DASFAA 2019, Chiang Mai, Thailand, April 22-25, 2019,

Proceedings, Part III, and DASFAA 2019 International Workshops: BDMS, BDQM,

and GDMA, Chiang Mai, Thailand, April 22-25, 2019, Proceedings. Ed. by

Guoliang Li et al. Vol. 11448. Lecture Notes in Computer Science. Springer, 2019,

pp. 338–342.

[26] William B. T. Mock. “Pareto Optimality”. In: Encyclopedia of Global Justice.

Ed. by Deen K. Chatterjee. Dordrecht: Springer Netherlands, 2011, pp. 808–809.

ISBN: 978-1-4020-9160-5.

[27] Franco P Preparata and Michael I Shamos. Computational geometry: an

introduction. Springer Science & Business Media, 2012.

[28] H. T. Kung, Fabrizio Luccio, and Franco P. Preparata. “On Finding the Maxima of

a Set of Vectors”. In: J. ACM 22.4 (1975), pp. 469–476.

[29] Thi Thu Trang Ngo. Evaluating and Optimizing Skyline Algorithms on PostgreSQL.

May 2019. DOI: 10.13140/RG.2.2.20177.76646.

[30] Antonin Guttman. “R-Trees: A Dynamic Index Structure for Spatial Searching”.

In: SIGMOD Rec. 14.2 (June 1984), 47–57. ISSN: 0163-5808.

135

https://doi.org/10.13140/RG.2.2.20177.76646

References

[31] Norbert Beckmann et al. “The R*-Tree: An Efficient and Robust Access

Method for Points and Rectangles”. In: Proceedings of the 1990 ACM SIGMOD

International Conference on Management of Data, Atlantic City, NJ, USA, May

23-25, 1990. Ed. by Hector Garcia-Molina and H. V. Jagadish. ACM Press, 1990,

pp. 322–331.

[32] Parke Godfrey, Ryan Shipley, and Jarek Gryz. “Maximal Vector Computation in

Large Data Sets”. In: Proceedings of the 31st International Conference on Very

Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005. Ed. by

Klemens Böhm et al. ACM, 2005, pp. 229–240.

[33] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. “Efficient sort-based skyline

evaluation”. In: ACM Trans. Database Syst. 33.4 (2008), 31:1–31:49.

[34] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. “Efficient Progressive Skyline

Computation”. In: VLDB 2001, Proceedings of 27th International Conference on

Very Large Data Bases, September 11-14, 2001, Roma, Italy. Ed. by Peter M. G.

Apers et al. Morgan Kaufmann, 2001, pp. 301–310.

[35] Chee Yong Chan and Yannis E. Ioannidis. “Bitmap Index Design and Evaluation”.

In: SIGMOD 1998, Proceedings ACM SIGMOD International Conference on

Management of Data, June 2-4, 1998, Seattle, Washington, USA. Ed. by

Laura M. Haas and Ashutosh Tiwary. ACM Press, 1998, pp. 355–366.

[36] Kenneth S. Bøgh, Sean Chester, and Ira Assent. “SkyAlign: a portable,

work-efficient skyline algorithm for multicore and GPU architectures”. In: VLDB

J. 25.6 (2016), pp. 817–841.

[37] Kasper Mullesgaard et al. “Efficient Skyline Computation in MapReduce”.

In: Proceedings of the 17th International Conference on Extending Database

Technology, EDBT 2014, Athens, Greece, March 24-28, 2014. Ed. by Sihem

Amer-Yahia et al. OpenProceedings.org, 2014, pp. 37–48.

[38] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.

Addison-Wesley, 1995. ISBN: 0-201-53771-0. URL: http://webdam.inria.

fr/Alice/.

[39] Lukasz Golab and M. Tamer Özsu. “Issues in data stream management”. In:

SIGMOD Record 32.2 (2003), pp. 5–14.

[40] Michael D. Morse, Jignesh M. Patel, and William I. Grosky. “Efficient Continuous

Skyline Computation”. In: Proceedings of the 22nd International Conference on

Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA. Ed. by Ling Liu

et al. IEEE Computer Society, 2006, p. 108.

136

http://webdam.inria.fr/Alice/
http://webdam.inria.fr/Alice/

References

[41] Michael D. Morse, Jignesh M. Patel, and William I. Grosky. “Efficient continuous

skyline computation”. In: Inf. Sci. 177.17 (2007), pp. 3411–3437.

[42] Zhenhua Huang, Sheng-Li Sun, and Wei Wang. “Efficient mining of skyline objects

in subspaces over data streams”. In: Knowl. Inf. Syst. 22.2 (2010), pp. 159–183.

[43] Alexander Tzanakas, Eleftherios Tiakas, and Yannis Manolopoulos. “Skyline

Algorithms on Streams of Multidimensional Data”. In: New Trends in Databases

and Information Systems - ADBIS 2016 Short Papers and Workshops, BigDap,

DCSA, DC, Prague, Czech Republic, August 28-31, 2016, Proceedings. Ed. by

Mirjana Ivanovic et al. Vol. 637. Communications in Computer and Information

Science. Springer, 2016, pp. 63–71.

[44] Christos Kalyvas, Theodoros Tzouramanis, and Yannis Manolopoulos. “Processing

skyline queries in temporal databases”. In: Proceedings of the Symposium on

Applied Computing, SAC 2017, Marrakech, Morocco, April 3-7, 2017. Ed. by

Ahmed Seffah et al. ACM, 2017, pp. 893–899.

[45] Yidong Yuan et al. “Efficient Computation of the Skyline Cube”. In: Proceedings

of the 31st International Conference on Very Large Data Bases, Trondheim,

Norway, August 30 - September 2, 2005. Ed. by Klemens Böhm et al. ACM, 2005,

pp. 241–252.

[46] Jian Pei et al. “Catching the Best Views of Skyline: A Semantic Approach Based

on Decisive Subspaces”. In: Proceedings of the 31st International Conference on

Very Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005. Ed. by

Klemens Böhm et al. ACM, 2005, pp. 253–264.

[47] Yufei Tao, Xiaokui Xiao, and Jian Pei. “SUBSKY: Efficient Computation of

Skylines in Subspaces”. In: Proceedings of the 22nd International Conference on

Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA. Ed. by Ling Liu

et al. IEEE Computer Society, 2006, p. 65.

[48] Akrivi Vlachou et al. “SKYPEER: Efficient Subspace Skyline Computation over

Distributed Data”. In: Proceedings of the 23rd International Conference on Data

Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007.

Ed. by Rada Chirkova et al. IEEE Computer Society, 2007, pp. 416–425.

[49] Jian Pei et al. “Towards multidimensional subspace skyline analysis”. In: ACM

Trans. Database Syst. 31.4 (2006), pp. 1335–1381.

137

References

[50] Kaiqi Zhang et al. “RSkycube: Efficient Skycube Computation by Reusing

Principle”. In: Database Systems for Advanced Applications - 22nd International

Conference, DASFAA 2017, Suzhou, China, March 27-30, 2017, Proceedings, Part

II. Ed. by K. Selçuk Candan et al. Vol. 10178. Lecture Notes in Computer Science.

Springer, 2017, pp. 51–64.

[51] Kenneth S. Bøgh et al. “Template Skycube Algorithms for Heterogeneous

Parallelism on Multicore and GPU Architectures”. In: Proceedings of the 2017

ACM International Conference on Management of Data, SIGMOD Conference

2017, Chicago, IL, USA, May 14-19, 2017. Ed. by Semih Salihoglu et al. ACM,

2017, pp. 447–462.

[52] Chedy Raïssi, Jian Pei, and Thomas Kister. “Computing Closed Skycubes”. In:

Proc. VLDB Endow. 3.1 (2010), pp. 838–847.

[53] Chee Yong Chan, Pin-Kwang Eng, and Kian-Lee Tan. “Stratified Computation of

Skylines with Partially-Ordered Domains”. In: Proceedings of the ACM SIGMOD

International Conference on Management of Data, Baltimore, Maryland, USA,

June 14-16, 2005. Ed. by Fatma Özcan. ACM, 2005, pp. 203–214.

[54] Dimitris Sacharidis, Stavros Papadopoulos, and Dimitris Papadias. “Topologically

Sorted Skylines for Partially Ordered Domains”. In: Proceedings of the 25th

International Conference on Data Engineering, ICDE 2009, March 29 2009 -

April 2 2009, Shanghai, China. Ed. by Yannis E. Ioannidis, Dik Lun Lee, and

Raymond T. Ng. IEEE Computer Society, 2009, pp. 1072–1083.

[55] Yu-Ling Hsueh and Tristan Hascoet. “Caching Support for Skyline Query

Processing with Partially Ordered Domains”. In: IEEE Trans. Knowl. Data Eng.

26.11 (2014), pp. 2649–2661.

[56] Raymond Chi-Wing Wong et al. “Online Skyline Analysis with Dynamic

Preferences on Nominal Attributes”. In: IEEE Trans. Knowl. Data Eng. 21.1

(2009), pp. 35–49.

[57] Afroza Sultana and Chengkai Li. “Continuous Monitoring of Pareto Frontiers

on Partially Ordered Attributes for Many Users”. In: Proceedings of the 21th

International Conference on Extending Database Technology, EDBT 2018, Vienna,

Austria, March 26-29, 2018. Ed. by Michael H. Böhlen et al. OpenProceedings.org,

2018, pp. 85–96.

138

References

[58] Md Farhadur Rahman et al. “Efficient Computation of Subspace Skyline over

Categorical Domains”. In: Proceedings of the 2017 ACM on Conference on

Information and Knowledge Management, CIKM 2017, Singapore, November 06 -

10, 2017. Ed. by Ee-Peng Lim et al. ACM, 2017, pp. 407–416.

[59] Dimitris Papadias et al. “Progressive skyline computation in database systems”. In:

ACM Trans. Database Syst. 30.1 (2005), pp. 41–82.

[60] Chee Yong Chan et al. “On High Dimensional Skylines”. In: Advances in Database

Technology - EDBT 2006, 10th International Conference on Extending Database

Technology, Munich, Germany, March 26-31, 2006, Proceedings. Ed. by Yannis E.

Ioannidis et al. Vol. 3896. Lecture Notes in Computer Science. Springer, 2006,

pp. 478–495.

[61] Xuemin Lin et al. “Selecting Stars: The k Most Representative Skyline Operator”.

In: Proceedings of the 23rd International Conference on Data Engineering,

ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007. Ed. by

Rada Chirkova et al. IEEE Computer Society, 2007, pp. 86–95.

[62] Yufei Tao et al. “Distance-Based Representative Skyline”. In: Proceedings of the

25th International Conference on Data Engineering, ICDE 2009, March 29 2009

- April 2 2009, Shanghai, China. Ed. by Yannis E. Ioannidis, Dik Lun Lee, and

Raymond T. Ng. IEEE Computer Society, 2009, pp. 892–903.

[63] Tian Xia, Donghui Zhang, and Yufei Tao. “On Skylining with Flexible

Dominance Relation”. In: Proceedings of the 24th International Conference

on Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, Mexico. Ed. by

Gustavo Alonso, José A. Blakeley, and Arbee L. P. Chen. IEEE Computer Society,

2008, pp. 1397–1399.

[64] Akrivi Vlachou and Michalis Vazirgiannis. “Ranking the sky: Discovering the

importance of skyline points through subspace dominance relationships”. In: Data

Knowl. Eng. 69.9 (2010), pp. 943–964.

[65] Evangelos Dellis and Bernhard Seeger. “Efficient Computation of Reverse Skyline

Queries”. In: Proceedings of the 33rd International Conference on Very Large Data

Bases, University of Vienna, Austria, September 23-27, 2007. Ed. by Christoph

Koch et al. ACM, 2007, pp. 291–302.

[66] Jinfei Liu et al. “Finding Pareto Optimal Groups: Group-based Skyline”. In: Proc.

VLDB Endow. 8.13 (2015), pp. 2086–2097.

139

References

[67] Wei Cao et al. “k-Regret Minimizing Set: Efficient Algorithms and Hardness”.

In: 20th International Conference on Database Theory, ICDT 2017, March 21-24,

2017, Venice, Italy. Ed. by Michael Benedikt and Giorgio Orsi. Vol. 68. LIPIcs.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 11:1–11:19.

[68] Abolfazl Asudeh et al. “Efficient Computation of Regret-ratio Minimizing Set: A

Compact Maxima Representative”. In: Proceedings of the 2017 ACM International

Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL,

USA, May 14-19, 2017. Ed. by Semih Salihoglu et al. ACM, 2017, pp. 821–834.

[69] Min Xie et al. “Efficient k-Regret Query Algorithm with Restriction-free Bound

for any Dimensionality”. In: Proceedings of the 2018 International Conference on

Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,

2018. Ed. by Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein.

ACM, 2018, pp. 959–974.

[70] Peng Peng and Raymond Chi-Wing Wong. “Geometry approach for k-regret

query”. In: IEEE 30th International Conference on Data Engineering, Chicago,

ICDE 2014, IL, USA, March 31 - April 4, 2014. Ed. by Isabel F. Cruz et al. IEEE

Computer Society, 2014, pp. 772–783.

[71] Pankaj K. Agarwal et al. “Efficient Algorithms for k-Regret Minimizing Sets”.

In: 16th International Symposium on Experimental Algorithms, SEA 2017, June

21-23, 2017, London, UK. Ed. by Costas S. Iliopoulos et al. Vol. 75. LIPIcs. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 7:1–7:23.

[72] Nirman Kumar and Stavros Sintos. “Faster Approximation Algorithm for

the k-Regret Minimizing Set and Related Problems”. In: Proceedings of the

Twentieth Workshop on Algorithm Engineering and Experiments, ALENEX

2018, New Orleans, LA, USA, January 7-8, 2018. Ed. by Rasmus Pagh and

Suresh Venkatasubramanian. SIAM, 2018, pp. 62–74.

[73] Taylor Kessler Faulkner, Will Brackenbury, and Ashwin Lall. “k-Regret Queries

with Nonlinear Utilities”. In: Proc. VLDB Endow. 8.13 (2015), pp. 2098–2109.

[74] Xianhong Qiu and Jiping Zheng. “An Efficient Algorithm for Computing

k-Average-Regret Minimizing Sets in Databases”. In: Web Information Systems

and Applications - 15th International Conference, WISA 2018, Taiyuan, China,

September 14-15, 2018, Proceedings. Ed. by Xiaofeng Meng et al. Vol. 11242.

Lecture Notes in Computer Science. Springer, 2018, pp. 404–412.

140

References

[75] Abolfazl Asudeh et al. “RRR: Rank-Regret Representative”. In: Proceedings of

the 2019 International Conference on Management of Data, SIGMOD Conference

2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. Ed. by Peter A. Boncz

et al. ACM, 2019, pp. 263–280.

[76] Sudong Han, Jiping Zheng, and Qi Dong. “Efficient Processing of k-regret Queries

via Skyline Priority”. In: Web Information Systems and Applications - 15th

International Conference, WISA 2018, Taiyuan, China, September 14-15, 2018,

Proceedings. Ed. by Xiaofeng Meng et al. Vol. 11242. Lecture Notes in Computer

Science. Springer, 2018, pp. 413–420.

[77] Sudong Han, Jiping Zheng, and Qi Dong. “Efficient Processing of k-regret Queries

via Skyline Frequency”. In: Web Information Systems and Applications - 15th

International Conference, WISA 2018, Taiyuan, China, September 14-15, 2018,

Proceedings. Ed. by Xiaofeng Meng et al. Vol. 11242. Lecture Notes in Computer

Science. Springer, 2018, pp. 434–441.

[78] V. Chvatal. “A Greedy Heuristic for the Set-Covering Problem”. In: Mathematics

of Operations Research 4.3 (1979), pp. 233–235. ISSN: 0364765X.

[79] Xuemin Lin et al. “Stabbing the Sky: Efficient Skyline Computation over

Sliding Windows”. In: Proceedings of the 21st International Conference on Data

Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan. Ed. by Karl Aberer,

Michael J. Franklin, and Shojiro Nishio. IEEE Computer Society, 2005,

pp. 502–513.

[80] Lukasz Golab and M. Tamer Özsu. Data Stream Management. Synthesis Lectures

on Data Management. Morgan & Claypool Publishers, 2010.

[81] Harold Greenberg. “A dynamic programming solution to integer linear programs”.

In: Journal of Mathematical Analysis and Applications 26.2 (1969), pp. 454–459.

[82] Matei Zaharia et al. “Spark: Cluster Computing with Working Sets”. In: 2nd

USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’10, Boston,

MA, USA, June 22, 2010. Ed. by Erich M. Nahum and Dongyan Xu. USENIX

Association, 2010.

[83] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing

on Large Clusters”. In: 6th Symposium on Operating System Design and

Implementation (OSDI 2004), San Francisco, California, USA, December 6-8,

2004. Ed. by Eric A. Brewer and Peter Chen. USENIX Association, 2004,

pp. 137–150.

141

	Acknowledgements
	Résumé
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Related work
	Skyline queries
	Algorithms
	Materialization and dealing with updates
	Subspace skyline answering and the SkyCube structure
	Skyline wrt partial and dynamic orders
	Reducing the query output size
	Variants of skyline queries

	Regret minimization queries
	Variants of regret minimization queries
	Candidate sets for RMS

	Preliminaries
	Global notations and definitions
	The Negative SkyCube
	NSC construction
	Time and memory optimization for NSC
	NSC index and query answering

	I Multidimensional skyline queries and moving data
	Maintenance of NSC with dynamic data
	Introduction
	Preliminaries
	Managing NSC updates
	Insertions
	Deletions

	Experiments
	Constructing the structures
	Answering skyline queries
	Maintenance upon updates

	Conclusion

	Maintenance of NSC with streaming data
	Introduction
	Preliminaries
	MSSD framework
	MSSD architecture
	NSCt index structure
	Query answering

	Experiments
	Query evaluation
	Time ratio
	NSCt versus DBSky
	NSCt maintenance time vs. memory consumption
	Experiments with real data
	Concluding remarks

	Conclusion

	Optimization of regret minimization queries with NSC
	Introduction
	Experiments
	Speed up with skyline set
	Speed up and regret of sphere with multidimensional skyline metrics as candidate sets
	Top-KF and Top-KP as alternatives to RMS algorithms
	Discussion

	II Skyline queries in presence of dynamic and partial orders
	On-the-fly algorithms and materialization technique
	Introduction
	Preliminaries
	dySky algorithm
	Single dynamic dimension
	Multiple dynamic dimensions

	Optimization using materialization
	Materialization structure
	Full materialization
	Constrained materialization

	Experiments
	Query answering time
	Precomputation time and storage
	Caching queries
	Evaluating other aspects of dySky
	Concluding remarks

	Conclusion

	Conclusion and perspectives
	List of Publications
	References

