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General Introduction

Context & Motivations

Multidisciplinary approaches are now common in scientific research and provide multiple and
heterogeneous sources of measurements of a given phenomenon. These sources can be viewed as

a collection of interconnected datasets acquired on the same set of individuals. The statistical analysis
of multi-source datasets introduces new degrees of freedom, which raise questions beyond those related
to exploiting each source separately. In the literature, this paradigm can be stated under several names
as “learning from multimodal data”, “data integration”, “data fusion” or “multiblock data analysis”.
Typical examples are found in a large variety of fields such as biology, chemistry, sensory analysis,
marketing, food research, where the common general objective is to identify variables of each block that
are active in the relationships with other blocks. For instance, neuroimaging is increasingly recognized
as an intermediate phenotype (endophenotype) to understand the complex path between genetics and
behavioral or clinical phenotypes. In this imaging-genetics context, the goal is primarily to identify a
set of genetic biomarkers that explains some neuroimaging variability which implies some modification
of the behavior. The high number of measurements (∼1M) in both genetic and neuroimaging data
involves the computation of billions of associations.

In addition to this global multi-source structure, each source can be represented in the form of
higher-order tensors or matrices. For instance, an anatomical Magnetic Resonance Imaging (MRI)
is a three-dimensional image of the brain, so, by nature, a tensor. Another application is found in
Electroencephalography (EEG) or Magnetoencephalography (MEG) that gives access respectively to
the electric or magnetic brain waves. These waves are acquired from multiple sensors at the same
time, leading to spatiotemporal data. When these two-dimensional spatiotemporal data are measured
on different individuals, they become intrinsically a tensor. Taking into account the possible tensor
structure of a source is mandatory in order to avoid altering the natural organization of the data and
risking a loss of information.

The principle of parsimony is central to many areas of science: the simplest explanation to a given
phenomenon should be preferred over more complicated ones. In statistics, it takes the form of variable
selection. For instance, in the context of an imaging-genetic study of a neurodegenerative disease, it
allows a subset of genetic variants to be identified as involved in the atrophy of specific regions of the
brain.
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2 General Introduction

Dedicated modeling algorithms able to cope with the inherent structural properties of such multi-
source datasets are therefore mandatory for harnessing their complexity and provide relevant and
robust information. The overall objective of the analysis of multi-source datasets includes extracting
relevant information within massive amounts of variables spread across different sources, reducing
dimensionality, synthesizing the information in an understandable way and displaying it for interpret-
ation purposes.

Thesis Outline

The development of multivariate statistical methods for multi-source data constitutes the core of this
work. All these developments find their foundations on Regularized Generalized Canonical Correlation
Analysis (RGCCA) and as a matter extend it. RGCCA is a flexible framework for multiblock data
analysis and grasps in a single optimization problem many well known multiblock methods. The
RGCCA algorithm consists in a single yet very simple update repeated until convergence. If this
update is gifted with certain conditions, the global convergence of the procedure is guaranteed (i.e.
convergence of the algorithm towards a stationary point regardless the initialization). Throughout
this work, we tried to preserve both the flexibility and the simplicity of the optimization framework
of RGCCA. The second part of this work illustrates the versatility and usefulness of the proposed
methods on five various studies: two imaging-genetic, two electroencephalography and one Raman
Microscopy studies. In all these analyses, a focus is made on the interpretation of the results that is
eased by considering explicitly the multiblock, tensor and sparse structures. This thesis is organized
as follows:

Chapter 1: Background Methods
This chapter starts by describing Regularized Generalized Canonical Correlation analysis followed

by an overview of multiblock methods - either particular case of RGCCA or not. In a second part, the
mathematical foundations of tensor analysis are provided. Notations and operators used in the tensor
literature are recalled. A brief presentation of the most popular multiway models is also given. A very
general yet very simple optimization framework concludes this chapter. This optimization framework
provides the algorithmic foundations of our developments. As we will see, this optimization framework
offers a systematic approach for constructing globally convergent algorithms.

Chapter 2: Global Regularized Generalized Canonical Correlation Analysis
The objective of RGCCA is to find block components summarizing the relevant information

between and within the blocks. RGCCA belongs to the family of the sequential multiblock compon-
ent methods. It means that the components of each block are determined sequentially (R successive
optimization problems have to be solved to extract R components per block). From an optimization
point of view this strategy seems to be sub-optimal and we present, in Chapter 2, global RGCCA
that allows all the components to be extracted simultaneously by solving a single optimization prob-
lem. The global RGCCA optimization problem is presented and we show that the corresponding
algorithm is globally convergent. Sequential RGCCA and global RGCCA are compared on simulation
experiments.
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Chapter 3: Multiway Generalized Canonical Correlation Analysis (MGCCA)
Multiway Generalized Canonical Correlation Analysis (MGCCA) extends RGCCA to the joint

analysis of a collection of higher-order tensors or matrices. Sequential MGCCA and global MGCCA
optimization problems are proposed. For the sequential procedure, two strategies are developed to
obtain higher level components. We propose two algorithms for global and sequential MGCCA that
are globally convergent. The two approaches are compared on simulation experiments.

Chapter 4: Structured Sparse Generalized Canonical Correlation Analysis
A challenge in the multivariate analysis of heterogeneous datasets containing a large number of

variables is the selection of relevant features. A version of RGCCA, called Sparse Generalized Ca-
nonical Correlation Analysis (SGCCA), enables to select the variables that interact the most between
blocks. A novel and fast algorithm is derived to solve the SGCCA optimization problem efficiently. We
demonstrate that this new algorithm is globally convergent. The variable selection of SGCCA relies
on the `1 penalty which operates without further knowledge on the possible intra-block interactions
between variables. SGCCA was thus enhanced by introducing structured sparse penalties (like group
LASSO, sparse group, fused or elitist LASSO penalty) into the optimization process of SGCCA.

Chapter 5: Multiblock and/or Multiway data studies
Chapter 5 demonstrates the versatility and usefulness of RGCCA and MGCCA on five multiblock

and/or multiway datasets. The first study investigates the influence of genetics on the normal aging
brain from the United Kingdom Biobank (UKB) cohort. The second one is an imaging-genetic study
on the Alzheimer’s disease Neuroimaging Initiative (ADNI) that aims at understanding some mechan-
isms of the disease through several modalities (Genetics, Transcriptomics, longitudinal MRI, Clinical
factors). The third study aims at analyzing the efficiency of a moisturizer from Raman microscopy.
The two last studies aim at identifying brain areas implicated in the process of discrimination between
close syllables in two- to three-month-old human infants from Electroencephalography (EEG).





Chapter 1
Background Methods

Chapter Outline

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Multiblock Component Methods . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Regularized Generalized Canonical Correlation Analysis (RGCCA) . . . . . 6
1.2.2 Special Cases of RGCCA . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Alternative approaches . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Multiway Notations and Operators . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Fibers and slices . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Matrix and Tensor Reshaping . . . . . . . . . . . . . . . . . . . . 12
1.3.4 Tensor-Matrix Operators . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Classical Multiway Models . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 The CANDECOMP/PARAFAC (CP) decomposition . . . . . . . . . . . 15
1.4.2 The Tucker Model . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.3 The Coupled Matrix Tensor Factorization (CMTF) . . . . . . . . . . . . 19

1.5 Optimization Framework . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.1 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.3 Convergence Properties . . . . . . . . . . . . . . . . . . . . . . . 21

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

The background concepts used throughout this manuscript are presented in this chapter. Three
main topics are addressed: multiblock component methods, multiway methods and the optimiz-

ation framework under which the main algorithms of this work are developed.
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6 Background Methods

1.1 Introduction

The field of multiblock data analysis starts with Canonical Correlation Analysis (CCA) [Hotelling,
1936] for analyzing the relationships between two sets of variables. Since then, the state of the art
constantly evolved to cope with the challenges of analyzing the relationships between more than two
sets of variables. Regularized Generalized Canonical Correlation Analysis (RGCCA) was proposed
as a general framework to deal with such challenges. RGCCA, which is the starting point of all the
methodological contributions described throughout this document, is detailed in Section 1.2.

One of the contribution of this work is the extension of RGCCA to multiway data. Multiway notations
and most popular multiway models are detailed in sections 1.3 and 1.4 respectively.

Section 1.5 presents the optimization framework used to solve the RGCCA optimization problem.
This framework offers the algorithmic foundations of the methodological developments of this work.

1.2 Multiblock Component Methods

In this section, we consider the case of several blocks of variables measured on the same set of indi-
viduals. The objective of multiblock component methods is to find block components summarizing the
relevant information between and within the blocks. Each block component is defined as a weighted
sum of the block variables. We consider methods where the weights are obtained by solving some
optimization problem.

The purpose of the present section is to show that a remarkably large number of sequential mult-
iblock component methods appear to be special cases of RGCCA. For all these methods, the same
simple RGCCA algorithm can be used (with proper setting of the parameters).

1.2.1 Regularized Generalized Canonical Correlation Analysis (RGCCA)

Let X1, . . . ,Xl, . . . ,XL be a collection of L data matrices. Each I×Jl data matrix Xl = [xl1, . . . ,xlJl
]

is called a source or a block and represents a set of Jl variables observed on I individuals. The number
and the nature of the variables may differ from one block to another, but the individuals must be
the same across blocks. We assume that all variables are centered. The objective of RGCCA is to
estimate block components yl = Xlwl, l = 1, . . . , L (where the weight vector wl is a column-vector
with Jl elements) summarizing the relevant information between and within the blocks. The most
recent formulation of the RGCCA optimization problem [Tenenhaus et al., 2017] is:

max
w1,...,wL

L∑
k,l=1

ckl g
(
I−1w>k X>k Xlwl

)
s.t. w>l Mlwl = 1, l = 1, . . . , L

(1.1)
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where:

• The design matrix C = {clk} is a symmetric L× L matrix of non-negative elements describing
the network of connections between blocks that the user wants to take into account. Usually,
clk = 1 for two connected blocks and 0 otherwise. These connections are undirected and act as
soft correlations between linear combinations of variables of connected blocks. They can be used
as an exploratory tool rather than a modeling one.

• The scheme function g(x) is defined as any continuously differentiable convex function. Typ-
ical choices of g are the identity (leading to maximizing the sum of covariances between block
components, a.k.a. Horst scheme), the absolute value (yielding maximization of the sum of
the absolute values of the covariances, a.k.a. centroid scheme) or the square function (thereby
maximizing the sum of squared covariances, a.k.a. factorial scheme).

• Ml is any Jl × Jl positive definite matrix.

In [Tenenhaus and Tenenhaus, 2011], the authors consider the following optimization problem:

max
w1,...,wL

L∑
k,l=1

ckl g
(
I−1w>k X>k Xlwl

)
s.t. (1− τl)var(Xlwl) + τl‖wl‖2, l = 1, . . . , L

(1.2)

where τl is the shrinkage parameter varying between 0 and 1. This optimization problem is recovered
with optimization problem (1.1) by setting Ml = τlI + (1 − τl)I−1X>l Xl. This constraint allows to
give two interpretations of the RGCCA optimization problem.

Firstly, the shrinkage parameters τl interpolate smoothly between maximizing the covariance and
maximizing the correlation. Setting the τl to 0 will force the block components to unit variance, in
which case the covariance criterion boils down to the correlation. The correlation criterion is better
in explaining the correlated structure across datasets, thus discarding the variance within each indi-
vidual dataset. Setting τl to 1 will normalize the block weight vectors, which leads to the covariance
criterion. A value between 0 and 1 will lead to a compromise between the two first options. Secondly,
[Ledoit and Wolf, 2004] considers Ml as a shrinkage estimate of the true covariance matrix for block
l. Various formulas for finding an optimal shrinkage constant τl have been proposed (see, for example,
[Schäfer and Strimmer, 2005]).

Guidelines describing how to use RGCCA in practice are provided in [Garali et al., 2017].
The RGCCA algorithm is not detailed in this chapter but fully described in Chapter 2. Moreover,

the RGCCA optimization problem (1.1) extracts only one component per block. The next chapter
presents two strategies to extract more than one component per block.
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1.2.2 Special Cases of RGCCA

From optimization problem (1.2), the term «Generalized» in the acronym of RGCCA embraces at least
four notions. The first one relates to the generalization of two-block methods - including Canonical
Correlation Analysis [Hotelling, 1936], Interbattery Factor Analysis [Tucker, 1958] and Redundancy
Analysis [Van den Wollenberg, 1977] - to three or more sets of variables. The second one relates to
the ability of taking into account some hypotheses on between-block connections: the user decides
which blocks are connected and which are not. The third one relies on the choices of the shrinkage
parameters allowing to capture both correlation or covariance-based criteria. The fourth one relates
to the function g that enables to consider different functions of the covariance.

This generalization is embodied by a triplet of parameters : (g, τl,C) and by the fact that an
arbitrary number of blocks can be handled. This triplet of parameters offers a flexibility to RGCCA
and allows to recover several known methods as particular cases, thus subsuming fifty years of mult-
iblock component methods. Table 1.1 gives the correspondences between the triplet (g, τl,C) and the
corresponding methods. For a complete overview see [Tenenhaus et al., 2017].

In general, and especially for the covariance-based criterion, the data blocks might be pre-processed
to ensure comparability between variables and blocks. To make variables comparable, standardization
is applied (zero mean and unit variance). To make blocks comparable, a strategy is to divide each block
by the square root of its number of variables. This two-step procedure leads to Trace(I−1X>l Xl) = 1
for each block (i.e. the sum of the eigenvalues of the correlation matrix of Xl is equal to 1 whatever
the block).

The next section presents several widely used multiblock methods. One main difference between
those approaches and RGCCA is that the block components are extracted simultaneously. A version
of RGCCA that enables to extract all the components at once is presented in the next chapter.

1.2.3 Alternative approaches

1.2.3.1 Simultaneous Component Analysis

Simultaneous Component Analysis (SCA) [Kiers, 1990, Kiers and ten Berge, 1989, Ten Berge et al.,
1992], considers the following rank-R model:

Xl = TW>
l + El, l = 1, . . . , L (1.3)

where the I × R block components matrix T is shared across the the L datasets, Wl is the Jl × R
specific block weight matrix and El is the I × Jl residual matrix. To estimate the model parameters
T and Wl, the following optimization problem is proposed:

min
T,W1,...,WL

L∑
l=1

∥∥∥Xl −TW>
l

∥∥∥2

F
. (1.4)

An Alternative Least Squares (ALS) procedure is used to solve the optimization problem (1.4) [ten
Berge, 1993]. It consists in alternating between the minimization of (1.4) over T, keeping W1, . . . ,WL

fixed, and the other way round.
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Table 1.1 – Special cases of RGCCA in a situation of L ≥ 2 blocks. When τL+1 is introduced, it
is assumed that X1, . . . ,XL are connected to a (L + 1)th block defined as the concatenation of the
blocks, XL+1 = [X1,X2, . . . ,XL] and that τL+1 corresponds to the shrinkage parameter associated
with XL+1.

Methods g(x) τl C
Canonical Correlation Analysis

[Hotelling, 1936]
x τ1 = τ2 = 0 C1 =

(
0 1
1 0

)
Interbattery Factor Analysis

[Tucker, 1958]
x τ1 = τ2 = 1 C1

Redundancy Analysis

[Van den Wollenberg, 1977]
x τ1 = 1 and τ2 = 0 C1

SUMCOR

[Horst, 1961]
x τl = 0, l = 1, . . . , L C2 =


1 1 . . . 1

1 1 . . .
...

...
. . .

. . . 1
1 . . . 1 1


SSQCOR

[Kettenring, 1971]
x2 τl = 0, l = 1, . . . , L C2

SABSCOR

[Hanafi, 2007]
|x| τl = 0, l = 1, . . . , L C2

SUMCOV-1

[Van de Geer, 1984]
x τl = 1, l = 1, . . . , L C2

SSQCOV-1

[Hanafi and Kiers, 2006]
x2 τl = 1, l = 1, . . . , L C2

SABSCOV-1

[Kramer, 2007]

[Tenenhaus and Tenenhaus, 2011]

|x| τl = 1, l = 1, . . . , L C2

SUMCOV-2

[Van de Geer, 1984]
x τl = 1, l = 1, . . . , L C3 =


0 1 . . . 1

1 0 . . .
...

...
. . .

. . . 1
1 . . . 1 0


SSQCOV-2

[Hanafi and Kiers, 2006]
x2 τl = 1, l = 1, . . . , L C3

Generalized CCA

[Carroll, 1968]
x2 τl = 1, l = 1, . . . , L+ 1 C4 =


0 . . . 0 1
...

. . .
...

...

0 . . . 0 1
1 . . . 1 0


Generalized CCA

[Carroll, 1968]
x2

τl = 0, l = 1, . . . , L1,
τl = 1, l = L1 + 1, . . . , L,
and τL+1 = 0

C4

Hierarchical PCA

[Wold et al.]
x4 τl = 1, l = 1, . . . , L,

and τL+1 = 0 C4

Multiple Co-Inertia Analysis

[Chessel and Hanafi, 1996]
x2 τl = 1, l = 1, . . . , L,

and τL+1 = 0 C4

PLS path modeling-mode B

[Wold, 1982]
|x| τl = 0, l = 1, . . . , L, clk = 1 for two connected

blocks and 0 otherwise
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1.2.3.2 SUM-PCA

To avoid the rotational indeterminacies of SCA it is possible to estimate model (1.3) under the iden-
tification constraints T>T = IR which gives SUM-PCA [Smilde et al., 2003]. Several constraints
used in the context of SCA to avoid such indeterminacies of the solution are discussed in [Deun et al.,
2009]. Interestingly, the SUM-PCA solution can be found by performing a Principal Component Ana-
lysis (PCA) on the concatenated data matrix X = [X1, . . . ,XL]. One major limitation of SUM-PCA
and SCA is that it does not allow for specific block components; which is the purpose of Joint and
Individual Variation Explained (JIVE) [Lock et al., 2013] to be described.

1.2.3.3 Joint and Individual Variation Explained (JIVE)

Performing a rank-rl PCA on each block individually corresponds to the model:

Xl = TlW>
l + El, l = 1, . . . , L, (1.5)

where now each Tl is the I × Jl matrix of block components specific to each block.
JIVE can be viewed as an intermediate model between (1.3) and (1.5) as it corresponds to:

Xl = T0W>
0l + TlW>

l + El, l = 1, . . . , L (1.6)

where the block components matrix T0 is shared among all blocks, and the block components matrices
Tl are block-specific so that T>0 Tl = 0. To estimate the model parameters T0, W0l, Tl and Wl the
following optimization problem is considered:

min
J,A1,...,AL

‖X− J− [A1, . . . ,AL]‖F (1.7)

s.t.


rank(J) = r,

rank(Al) = rl, l = 1, . . . , L,
J>Al = 0J×Jl

, l = 1, . . . , L,
(1.8)

where X = [X1, . . . ,XL] is a I×J matrix (J =
∑
l

Jl), J ∈ RI×J is the joint structure and Al ∈ RI×Jl

is the individual one.
The algorithm proposed to minimize (1.7) subject to (1.8) consists in alternating between the

minimization of (1.7) subject to (1.8) over J, keeping A1, . . . ,AL fixed, and the other way round.
Each optimization problem is solved by the Singular Value Decomposition (SVD) of a certain matrix.
Hence, it means that J = U∆V>, where U and V are two orthonormal matrices of size I × r and
J × r respectively, ∆ is a diagonal matrix of size r composed of non-negative elements and V can be
written as V =

[
V>1 , . . . ,V>L

]>
with Vl ∈ RJl×r, l = 1, . . . , L. Comparably, Al = Pl∆lQ>l , where Pl

and Ql are two orthonormal matrices of size I×rl and Jl×rl respectively and ∆l is a diagonal matrix
of size rl composed of non-negative elements. Hence, the model (1.6) presented in the preamble is
recovered with T0 = U∆1/2, W0l = Vl∆1/2, Tl = Pl∆

1/2
l and Wl = Ql∆

1/2
l .

The next section focuses on presenting the mathematical background and notations that are used
in the tensor literature. The most popular multiway models are also briefly presented.
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1.3 Multiway Notations and Operators

1.3.1 Notations

In the multiway literature, 1-way and 2-way arrays are used to refer to vectors and matrices re-
spectively. When the number of ways/modes/orders is greater than 2, they are simply called N-way
tensors/arrays. The main interest of this work is focused on 2 and 3-way arrays, even-though some
fourth-order tensors might appear here and there. All along this manuscript, scalars are written as
lowercase italic characters x, vectors as boldface lowercase characters x, matrices as boldface upper-
case characters X and three-way arrays as underlined boldface uppercase characters X, following the
standardized notations and terminology proposed by [Kiers, 2000]. Tensor of order N ≥ 4 are denoted
by Euler script letters X .

For sake of clarity, the vast majority of the concepts are presented in the case of a third-order
tensor Xl, even though they can be easily extended to higher-order tensors. The running subscript l
characterizing a block is discarded here in order to simplify the notations.

1.3.2 Fibers and slices

The mode fiber of a tensor is a vector defined by fixing all indices except for one. For example, for a
matrix, columns and rows are respectively associated to mode-1 and mode-2 fibers of the matrix. For
a third-order tensors X, column, row, and tube fibers are denoted by x.jk , xi.k , and xij. , respectively;
see Figure 1.3-1. When extracted from the tensor, fibers are always assumed to be oriented as column
vectors.

Slices, in comparison to fibers, are two-dimensional sections of a tensor. They are defined by fixing
all indices except for two. Figure 1.3-2 shows the horizontal, lateral, and frontal slices of a third-order
tensor X ∈ RI×J×K , denoted by Xi.. ∈ RJ×K , X.j. ∈ RI×K , and X..k ∈ RI×J , respectively.

(a) Mode-1 fibers (columns): x.jk (b) Mode-2 fibers (rows): xi.k (c) Mode-3 fibers (tubes): xij.

Figure 1.3-1 – Third-order tensor mode fibers.
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(a) Horizontal slices: Xi.. (b) Lateral slices: X.j. (c) Frontal slices: X..k

Figure 1.3-2 – Third-order tensor slices.

1.3.3 Matrix and Tensor Reshaping

1.3.3.1 Vectorization: Transforming an Array into a Vector

Commonly, the operator that reshapes a matrix X ∈ RI×J into a column vector is noted as «vec».
Among the various possibilities to vectorize a matrix, we adopt the column-wise vectorization. If
X = [x1, . . . ,xJ ], then vec (X) =

[
x>1 , . . . ,x>J

]>
(also denoted (x1; . . . ; xJ)).

An operator that maps tensors to vectors can also be defined. However, if this operation is needed,
it will be done in two steps here: first a matricization (see next section) and then a vectorization.

1.3.3.2 Matricization: Transforming a Tensor into a Matrix

Matricization, also known as unfolding or flattening, consists in reshaping a tensor into a matrix.
Here, only the case of mode-n matricization is presented, for a broader overview of matricization, see
[Kolda, 2006]. The mode-n matricization of a tensor X ∈ RI×J×K is denoted by X(n) and arranges
the mode-n fibers to be the columns of the resulting matrix. We only need to define in which order
fibers are arranged. We again adopt the notation of [Kolda and Bader, 2009] that suggests to arrange
them in the same order as their modes.

In order to better understand the matricization process, the case of a third-order tensor X ∈ R4×3×2

is taken. Its two frontal slices are:

X..1 =


1 5 9
2 6 10
3 7 11
4 8 12

 , X..2 =


13 17 21
14 18 22
15 19 23
16 20 24

 (1.9)
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Then, the mode-n matricizations for this particular tensor are:

X(1) =


1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19 23
4 8 12 16 20 24

 , (1.10)

X(2) =


1 2 3 4 13 14 15 16
5 6 7 8 17 18 19 20
9 10 11 12 21 22 23 24

 , (1.11)

X(3) =
[

1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24

]
. (1.12)

Therefore, the mode-1 matricization gives a matrix defined as the concatenation of the frontal slices
next to each others X(1) = [X..1, . . . ,X..K ]. The mode-2 matricization is the concatenation of the
transposed frontal slices X(2) =

[
X>..1, . . . ,X>..K

]
. The mode-3 matricization is the concatenation of

the transposed lateral slices X(3) =
[
X>.1., . . . ,X>.J.

]
.

Another way of arranging the fibers when performing a mode-n matricization is presented in [Kiers,
2000]. In the case of a third-order tensor, it only differs from the arrangement presented above for
the mode-2 matricization, which becomes for the example presented in (1.9):

X(2) =


1 13 2 14 3 15 4 16
5 17 6 18 7 19 8 20
9 21 10 22 11 23 12 24

 . (1.13)

Therefore, this mode-2 matricization by [Kiers, 2000] is the concatenation of the horizontal slices
X(2) = [X1.., . . . ,XI..]. This can also be performed by first cyclically permuting the modes of the tensor
such that mode 1, 2, 3 respectively becomes modes 3, 1, 2 and then apply a mode-1 matricization.
Even though this approach seems more natural, we have chosen the way of unfolding introduced by
[Kolda and Bader, 2009] (and presented above) because it is associated with interesting formulas for
unfolding the Tucker and the CANDECOMP/PARAFAC models (see section 1.3.4.2 equation (1.19)
and 1.4.1 equation (1.27)).

1.3.4 Tensor-Matrix Operators

1.3.4.1 Between Vectors/Matrices operators

The Kronecker product ⊗ and the Khatri-Rao product � are presented in this section.

The Kronecker product. For a general definition of the Kronecker product, let us consider two
matrices X ∈ RI×J and Y ∈ RK×L such that X = [x1, . . . ,xJ ], Y = [y1, . . . ,yL] and (X)ij = xij , ∀i ∈
J1; IK, j ∈ J1; JK. Then, the Kronecker product between X of dimension I × J and Y of dimension
K × L is a matrix of dimension (IK)× (JL) such that:

X⊗Y =


x11Y . . . x1JY
...

...
xI1Y . . . xIJY

 = [x1 ⊗ y1, . . . ,x1 ⊗ yL,x2 ⊗ y1, . . . ,x2 ⊗ yL, . . . ,xJ ⊗ yL] . (1.14)
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The Kronecker product can be used between an arbitrary number of matrices/vectors. Considering
X ∈ RI×J , Y ∈ RK×L, W ∈ RJ×M , Z ∈ RL×N and two non singular matrices U ∈ RP×P , V ∈
RQ×Q, then we have the following properties for the Kronecker Product (see [Kolda and Bader, 2009,
Loan, 2000, Smilde et al., 2004]):

(X⊗Y) (W⊗ Z) = (XW⊗YZ)

(X⊗Y)> =
(
X> ⊗Y>

)
(U⊗V)−1 = U−1 ⊗V−1

(1.15)

The Khatri-Rao product between two matrices is the column-wise Kronecker product and therefore
is defined between matrices that have the same number of columns. More formally, the Khatri-Rao
product between a matrix X = [x1, . . . ,xR] of dimension I × R and a matrix Y = [y1, . . . ,yR] of
dimension J ×R is a matrix of dimension (IJ)×R such that:

X�Y = [x1 ⊗ y1, . . . ,xR ⊗ yR] . (1.16)

The Khatri-Rao product can be used between an arbitrary number of matrices that have the same
number of columns. Considering X ∈ RI×R and Y ∈ RJ×R, we have the following property for the
Khatri-Rao Product (see [Kolda and Bader, 2009, Loan, 2000, Smilde et al., 2004]):

(X�Y)> (X�Y) =
(
X>X ?Y>Y

)
, (1.17)

where ? is the element-wise product between matrices, also called the Hadamard product.

1.3.4.2 Between Tensor and Matrix operator

The mode product between a tensor and a matrix is the generalization of the matrix product. Let us
take the example of a third-order tensor X ∈ RI×J×K and a matrix W ∈ RR×J . The mode-2 product
between X of dimension I × J ×K and W of dimension R × J is written X ×2 W and results in a
tensor of dimension I × R × K such that each of its elements are defined as (see [Lathauwer et al.,
2000]):

(X×2 W)irk =
J∑
j=1

xijkwrj ,


∀i ∈ J1; IK
∀r ∈ J1;RK
∀k ∈ J1;KK

(1.18)

The kth frontal slices of the resulting tensor can then be expressed as X..kW>.
Similarly, mode-1 and mode-3 products can be defined.
Considering X ∈ RI×J×K , WI ∈ RRI×I , WJ ∈ RRJ×J and WK ∈ RRK×K , then we have the

following property:

Y = X×1 WI ×2 WJ ×3 WK ⇔ Y(1) = WIX(1)

(
WK ⊗WJ

)>
⇔ Y(2) = WJX(2)

(
WK ⊗WI

)>
⇔ Y(3) = WKX(3)

(
WJ ⊗WI

)>
,

(1.19)

see [Kolda, 2006] for a proof of this property.
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1.3.4.3 Operators Between Tensors

Two inner-products between tensors are presented in this section.
The inner-product between two tensors X and Y of the same size I×J ×K denoted by < X,Y >

is defined as the sum of the product of all their elements:

〈X,Y〉 =
I∑
i=1

J∑
j=1

K∑
k=1

xijkyijk. (1.20)

The norm of a tensor X ∈ RI×J×K is given by ‖X‖2 =< X,X >=
I∑
i=1

J∑
j=1

K∑
k=1

x2
ijk. This is the so-called

Frobenius norm of a tensor and it is referred as ‖.‖F .
Moreover, a generalization of the inner-product between two tensors which only requires to have

at least one mode of the same dimension (not necessarily the same mode) is presented (see [Bader
and Kolda, 2006]). The inner-product between X ∈ RI×J1×K1 and Y ∈ RI2×I×K2 along the first and
second mode respectively is denoted by X×1

2 Y (notation taken from [Zniyed et al., 2019]) and results
in a tensor of size J1 ×K1 × I2 ×K2, given by:

(
X×1

2 Y
)
j1k1i2k2

=
I∑
i=1

xij1k1
yi2ik2

= x.j1k1

>yi2.k2
(1.21)

This tensor concentrates all the possible inner-products between the mode-1 fibers of X and the mode-
2 fibers of Y (J1K1I2K2 in total) arranged in a «specific order» (see [Bader and Kolda, 2006] for
details).

1.4 Classical Multiway Models

As specified in the introducing section 1.3.1, for easier readability, the models are presented in the
case of a third-order tensor X, even-though they can be easily extended to higher-order tensors.

1.4.1 The CANDECOMP/PARAFAC (CP) decomposition

A third-order tensor X ∈ RI×J×K is a rank one tensor if there exists wI ∈ RI , wJ ∈ RJ and wK ∈ RK

such that:
X = wI ◦wJ ◦wK , (1.22)

where ◦ stands for the vector outer product. This means that each element xijk = (X)ijk of the tensor
is the product of the corresponding vector elements:

xijk = wIiw
J
j w

K
k ,


∀i ∈ J1; IK
∀j ∈ J1; JK
∀k ∈ J1;KK

(1.23)

An explanation on how the outer product works can be seen on Figure 1.4-3.



16 Background Methods

Figure 1.4-3 – Outer product.

Hence, a rank-R tensor can be written as a sum of rank-one tensors:

X =
R∑
r=1

wI,(r) ◦wJ,(r) ◦wK,(r) ⇔ xijk =
R∑
r=1

w
I,(r)
i w

J,(r)
j w

K,(r)
k ,


∀i ∈ J1; IK
∀j ∈ J1; JK
∀k ∈ J1;KK

(1.24)

where ∀r ∈ J1;RK : wI,(r) ∈ RI , wJ,(r) ∈ RJ and wK,(r) ∈ RK .
If we introduce matrices WI =

[
wI,(1), . . . ,wI,(R)

]
, WJ =

[
wJ,(1), . . . ,wJ,(R)

]
and WK =[

wK,(1), . . . ,wK,(R)
]
, a concise notation for (1.24) is X = JWI ,WJ ,WKK. It is often useful to

assume that the columns of WI , WJ and WK are normalized with the scaling absorbed into the
vector λ ∈ RR such that:

X =
R∑
r=1

λ(r)wI,(r) ◦wJ,(r) ◦wK,(r) = Jλ; WI ,WJ ,WKK. (1.25)

As explained in [Kolda and Bader, 2009], the first proposition to decompose a tensor into a sum of
rank-one tensors was made in 1927 by [Hitchcock, 1927, 1928]. The concept finally became popular
after its third introduction, in 1970 to the psychometric community, in the form of CANDECOMP (ca-
nonical decomposition) by [Carroll and Chang, 1970] and PARAFAC (parallel factors) by [Harshman,
1970]. We refer to the CANDECOMP/PARAFAC decomposition as CP.

The CP decomposition factorizes a tensor into a sum of rank-one tensors. For example, when the
fit of the CP decomposition is evaluated thanks to the Least Squares (LS), this leads to the following
optimization problem:

argmin
WI ,WJ ,WK

∥∥∥X− JWI ,WJ ,WKK
∥∥∥2

F
(1.26)

The CP decomposition is subsumed in Figure (1.4-4). This CP decomposition also presents useful
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Figure 1.4-4 – CP decomposition of a third-order tensor X ∈ RI×J×K .

unfolding properties. Indeed:

X = JWI ,WJ ,WKK⇔ X(1) = WI
(
WK �WJ

)>
⇔ X(2) = WJ

(
WK �WI

)>
⇔ X(3) = WK

(
WJ �WI

)>
,

(1.27)

As mentioned in [ten Berge, 1993], another formulation of the CP decomposition is possible.
Indeed, let us consider a rank-R tensor, as described in equation (1.24). We can introduce ∆k, k =
1, . . . ,K, which are diagonal matrices of size R such that the diagonal of ∆k is composed of the kth row
of WK . Thus, each frontal slice of X can be re-written as X..k = WI∆kWJ> . With this formulation,
the CP decomposition optimization problem (1.26) can be re-written as:

min
WI ,WJ ,WK

K∑
k=1

∥∥∥X..k −WI∆kWJ>
∥∥∥2

F
. (1.28)

This formulation helps to see the CP decomposition as a version of a SCA model (cf. section 1.2.3.1)
where blocks are replaced by frontal slices. This optimization problem is not strictly equivalent to the
SCA one as the block weight matrices bear a specific structure.

A strong advantage of the CP model is the uniqueness of the decomposition under mild conditions
(see [Kruskal, 1977]). These conditions are designed to avoid two indeterminacies in the CP model.
Indeed, first, there is a permutation indeterminacy: if you apply the same column permutation to
each factor matrix WI ,WJ ,WK , the CP model remains unchanged. Moreover, there is a factor inde-
terminacy: take (a, b, c) ∈ R3 such that abc = 1, then if you multiply the rth column of WI ,WJ ,WK

respectively by the scalar a, b, c, the CP decomposition is left unchanged. These two indeterminacies
can be overcome quite easily.

A first drawback of the CP decomposition, common to almost all tensor factorization models, is
that an equivalent of the Eckart–Young theorem [Eckart and Young, 1936] for matrix factorization is
not possible. Indeed, is we perform a rank-R and a rank-Q (with Q > R) CP decomposition, then the
first R columns of the matrix factors of the rank-Q decomposition are not necessarily equals to the R
columns of the matrix factors of the rank-R decomposition. A second drawback is that this model is
very constraining. Indeed, for example, the rth column of a matrix factor is only interacting with the
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the rth columns of the other matrix factors, hence, each matrix factor has to have the same number
of columns. Among other things, the Tucker model was proposed to overcome this last drawback.

1.4.2 The Tucker Model

This model was first presented in [Tucker, 1963, 1964]. In the case of a third-order tensor X ∈ RI×J×K ,
the Tucker Model aims at factorizing this tensor as three mode products between a core tensor G ∈
RRI×RJ×RK and three factor matrices WI ∈ RI×RI , WJ ∈ RJ×RJ and WK ∈ RK×RK for each mode
of the core tensor, resulting in the following approximate equation:

X ≈ G×1 WI ×2 WJ ×3 WK ⇔ xijk ≈
RI∑
p=1

RJ∑
q=1

RK∑
r=1

gpqrw
I
ipw

J
jqw

K
kr,


∀i ∈ J1; IK
∀j ∈ J1; JK
∀k ∈ J1;KK

(1.29)

Similarly to the CP decomposition, if we introduce matrices WI =
[
wI,(1), . . . ,wI,(RI)

]
, WJ =[

wJ,(1), . . . ,wJ,(RJ )
]
and WK =

[
wK,(1), . . . ,wK,(RK)

]
, then a concise notation for (1.29), introduced

in [Kolda, 2006], is X = JG; WI ,WJ ,WKK. The Tucker model is subsumed in Figure (1.4-5).
Moreover, another notation equivalent to (1.29) is possible:

X ≈
RI∑
p=1

RJ∑
q=1

RK∑
r=1

gpqrwI,(p) ◦wJ,(q) ◦wK,(r). (1.30)

This last formulation helps understanding the link between the CP decomposition and the Tucker
decomposition. Indeed, if G is superdiagonal, meaning gpqr = 0, if p 6= q 6= r, then (1.30) becomes
X ≈

∑min(RI ,RJ ,RK)
r=1 grrrwI,(r) ◦wJ,(r) ◦wK,(r), which is a CP decomposition. We also realize that the

Tucker decomposition does allow every interaction between columns of the factor matrices.
The fit of the Tucker decomposition is evaluated in a Least Squares (LS) sense which leads to the

following optimization problem:

argmin
G,WI ,WJ ,WK

∥∥∥X− JG; WI ,WJ ,WKK
∥∥∥2

F
(1.31)

The major drawback of the Tucker model is its indeterminacy. Indeed, for any non-singular matrices
T ∈ RRI×RI , U ∈ RRJ×RJ and V ∈ RRK×RK , JG ×1 T ×2 U ×3 V; WIT−1,WJU−1,WKV−1K =

Figure 1.4-5 – Tucker decomposition of a third-order tensor X ∈ RI×J×K .
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JG; WI ,WJ ,WKK. Moreover, in comparison to CP decomposition, three parameters have to be set:
RI , RJ and RK instead of one parameter R. Finally, the core tensor G is often difficult to interpret.

1.4.3 The Coupled Matrix Tensor Factorization (CMTF)

The Coupled Matrix Tensor Factorization (CMTF) [Acar et al., 2011] proposes to jointly factorize
a collection of tensors and matrices by coupling them through one or several modes. This model
factorizes each tensor with a CP model and each matrix with a matrix factorization model. Moreover,
the coupled modes share common factor matrices. This factorization model is usually presented in
the case of a third-order tensor X1 ∈ RI×J1×K1 and a matrix X2 ∈ RI×J2 coupled in the first mode,
which leads to the following optimization problem:

argmin
Y,WJ

1 ,W
K
1 ,W

J
2

∥∥∥X1 − JY,WJ
1 ,WK

1 K
∥∥∥2

F
+
∥∥∥X2 −YWJ>

2

∥∥∥2

F
, (1.32)

where WJ
1 ∈ RJ1×R,WK

1 ∈ RK1×R,WJ
2 ∈ RJ2×R and Y ∈ RI×R. This joint factorization is represen-

ted in Figure 1.4-6a. In a second example, two tensors X1 ∈ RI×J1×K and X2 ∈ RI×J×K are coupled
in both their first and third modes and a matrix X3 ∈ RI3×J is coupled with the second mode of X2.
The optimization criterion, associated with this example can be expressed as:

argmin
Y,Z,V,WJ

1 ,W
I
3

∥∥∥X1 − JY,WJ
1 ,ZK

∥∥∥2

F
+ ‖X2 − JY,V,ZK‖2F +

∥∥∥X3 −WI
3V>

∥∥∥2

F
, (1.33)

where WJ
1 ∈ RJ1×R, WI

3 ∈ RI3×R, Y ∈ RI×R, Z ∈ RK×R and V ∈ RJ×R. This joint factorization is
represented in Figure 1.4-6b.

This model is both a multiway and a multiblock model. More recently, an Advanced CMTF
(ACMTF) model was proposed in [Acar et al., 2014] to allow, with an `1-penalty, for each component
of a common factor matrix to be either a common or a specific component to one of the block it is
coupled with.

(a) Coupling of a third-order tensor X1 ∈ RI×J1×K1

and a matrix X2 ∈ RI×J2 in the first mode.
(b) Coupling of two tensors X1 ∈ RI×J1×K , X2 ∈
RI×J×K in both their first and third modes and a mat-
rix X3 ∈ RI3×J with the second mode of X2.

Figure 1.4-6 – Two examples of the Coupled Matrix Tensor Factorization Model (CMTF).
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1.5 Optimization Framework

The goal of this section is to present the optimization framework under which most of the algorithms
derived in this document were designed. This framework has already been presented in [Tenenhaus
et al., 2017] under the example of a spherical constraint. It is recalled here for a broader class of
constraints.

1.5.1 Optimization Problem

This framework is proposed for the maximization of a continuously differentiable multi-convex function
f(v1, . . . ,vL) : RJ1 × . . . × RJL −→ R (i.e. for each l, f is a convex function of vl while all the other
vk are fixed) under the constraint that each vl belongs to a compact set Ωl ⊂ RJl . This general
optimization problem can be formulated as follows:

max
v1,...,vL

f(v1, . . . ,vL) (1.34)

s.t. vl ∈ Ωl, l = 1, . . . , L. (1.35)

Remark on notations. For such function defined over a set of parameter vectors (v1, . . . ,vL),
we make no difference between the notations f(v1, . . . ,vL) and f(v), where v is the column vector
v =

(
v>1 , . . . ,v>L

)>
of size J =

∑L
l=1 Jl. Moreover, for the vertical concatenation of column vectors,

the notation v = (v1; . . . ; vL) is preferred for the sake of simplification. This last formulation is also
used to define a vertical concatenation of matrices. These notations are used all along this manuscript.

1.5.2 Algorithm

A simple, monotonically and globally convergent algorithm is presented for maximizing (1.34) subject
to (1.35). An algorithm is globally convergent if, regardless of its initialization, it converges towards
a stationary point. For an unconstrained optimization problem with a continuously differentiable
objective function, a stationary point is a point where the derivative of the objective function is
null. For a constrained optimization problem, a stationary point is a point where the derivative of
the Lagrangian function associated with the problem is null. For such a point, the derivative of the
objective function lies in the subspace defined by the derivative of each constraint. This condition is
called the Karush-Kuhn-Tucker (KKT) condition.

The maximization of the function f defined over different parameter vectors (v1, . . . ,vL), is ap-
proached by updating each of the parameter vectors in turn, keeping the others fixed. This update
rule was recommended in [De Leeuw, 1994] and is called cyclic Block Coordinate Ascent (BCA).

In order to do so, let ∇lf(v) be the partial gradient of f(v) with respect to vl. We assume
∇lf(v) 6= 0 in this manuscript. This assumption is not too binding as ∇lf(v) = 0 characterizes the
global minimum of f(v1, . . . ,vL) with respect to vl when the other vectors v1, . . . ,vl−1,vl+1, . . . ,vL
are fixed. We want to find an update v̂l ∈ Ωl such that f(v) ≤ f(v1, ...,vl−1, v̂l,vl+1, ...,vL). As f is
a continuously differentiable multi-convex function and considering that a convex function lies above
its linear approximation at vl for any ṽl ∈ Ωl, the following inequality holds:

f(v1, ...,vl−1, ṽl,vl+1, . . . ,vL) ≥ f(v) +∇lf(v)>(ṽl − vl) := `l(ṽl,v) (1.36)
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On the right-hand side of the inequality (1.36), only the term ∇lf(v)>ṽl is relevant to ṽl and the
solution that maximizes the minorizing function `l(ṽl,v) over ṽl ∈ Ωl is obtained by considering the
following optimization problem:

v̂l = argmax
ṽl∈Ωl

∇lf(v)>ṽl := rl(v). (1.37)

The entire algorithm is subsumed in Algorithm 1.

Algorithm 1 Algorithm for the maximization of a continuously differentiable multi-convex function
1: Result: vs1, . . . ,vsL (approximate solution of (1.34) subject to (1.35))
2: Initialization: choose random vector v0

l ∈ Ωl, l = 1, . . . , L, ε;
3: s = 0 ;
4: repeat
5: for l = 1 to L do

6: vs+1
l = rl

(
vs+1

1 , . . . ,vs+1
l−1 ,v

s
l , . . . ,vsL

)
. (1.38)

7: end for
8: s = s+ 1 ;
9: until f(vs+1

1 , . . . ,vs+1
L )− f(vs1, . . . ,vsL) < ε

1.5.3 Convergence Properties

To study the convergence properties of Algorithm 1, we introduce some notations: Ω = Ω1× . . .×ΩL,
v = (v1; ...; vL) ∈ Ω, cl : Ω 7→ Ω is an operator defined as cl(v) = (v1; ...; vl−1; rl(v); vl+1; ...; vL) with
rl(v) introduced in equation (1.37) and c : Ω 7→ Ω is defined as c = cL ◦ cL−1 ◦ ... ◦ c1, where ◦ stands
for the function composition operator. We consider the sequence {vs = (vs1; ...; vsL)} generated by
Algorithm 1. Using the operator c, the «for loop» inside Algorithm 1 can be replaced by the following
recurrence relation: vs+1 = c(vs). The convergence properties of Algorithm 1 are summarized in the
following proposition:

Proposition 1.5.1. Let {vs}∞s=0 be any sequence generated by the recurrence relation vs+1 = c(vs)
with v0 ∈ Ω. Then, the following properties hold:

(a) The sequence {f(vs)} is monotonically increasing and therefore convergent as f is bounded on

Ω. This result implies the monotonic convergence of Algorithm 1.

(b) If the infinite sequence {f(vs)} involves a finite number of distinct terms, then the last distinct

point satisfies c(vs) = vs and therefore is a stationary point of problem (1.34).
(c) The limit of any convergent subsequence of {vs} is a fixed point of c.

(d) lim
s−→∞f(vs) = f(v?), where v? is a fixed point of c.

(e) The sequence {vs = (vs1; ...; vsL)}, l = 1, ..., L, is asymptotically regular: lim
s−→∞

∑L
l=1 ‖vs+1

l − vsl ‖ =
0. This result implies that if the threshold ε for the stopping criterion in Algorithm 1 is made

sufficiently small, the output of Algorithm 1 will be as close as wanted to a stationary point of

(1.34).
(f) If the equation v = c(v) has a finite number of solutions, then the sequence {vs} converges to

one of them.
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The goal is to demonstrate Proposition 1.5.1 that gathers all the convergence properties of Al-
gorithm 1. For this purpose, the results given in the following lemma are useful.

Lemma 1.5.2. Consider the set Ω, the function f : Ω 7→ R and the operator c : Ω 7→ Ω defined

above. Then, the following properties hold:

(i) Ω is a compact set;

(ii) c is a continuous operator;

(iii) f(v) ≤ f(c(v)) for any v ∈ Ω;

(iv) If f(v) = f(c(v)), then c(v) = v.

Proof of Lemma 1.5.2.

Point (i) In this section, ∀l, Ωl are assumed to be compact. As the Cartesian product of L com-
pact sets is compact, Ω = Ω1 × . . .× ΩL is compact.

Point (ii) We assume that rl(v) defined in equation (1.37) exists and is unique. As Ωl is a com-
pact set and ll defined in equation (1.36) is a real-valued continuous function, Berge’s maximum
theorem applies and guarantees that the maximizer rl(v) of ll(ṽl,v) is continuous on Ωl [Berge, 1966].
This implies that cl : Ω→ Ω is a continuous operator and that c = cL ◦cL−1 ◦ . . .◦c1 is also continuous
as composition of L continuous operators.

Point (iii) According to equation (1.36) based on multi-convexity of f and equation (1.37) that sets
the definition of rl : Ω 7→ Ωl, we know that:

f(v) = `l(vl,v) ≤ `l(rl(v),v) ≤ f(v1, ...,vl−1, rl(v),vl+1, ...,vL) = f(cl(v)). (1.39)

This implies that updating vl by v̂l = rl(v) increases f(v), or f(v) stays the same. Moreover, the
following inequality is deduced from (1.39) for each l = 2, ..., L:

f(cl−1 ◦ ... ◦ c1(v)) ≤ f(cl ◦ cl−1 ◦ ... ◦ c1(v)). (1.40)

This yields the desired inequalities for any v ∈ Ω:

f(v) ≤ f(c1(v)) ≤ f(c2 ◦ c1(v)) ≤ ... ≤ f(cL ◦ ... ◦ c1(v)) = f(c(v)). (1.41)

Point (iv) If f(v) = f(c(v)) for v ∈ Ω then equation (1.41) implies

f(v) = f(c1(v)) = f(c2 ◦ c1(v)) = ... = f(cL ◦ ... ◦ c1(v)) = f(c(v)). (1.42)

Using equation (1.39), the equality f(v) = f(c1(v)) implies `1(v1,v) = `1(r1(v),v) and therefore
v1 = r1(v) as r1(v) is the unique maximizer of `1(r1(ṽ1),v) with respect to ṽ1 ∈ Ω1. From this result,
we deduce v = (v1,v2, . . . ,vL) = (r1(v),v2, . . . ,vL) = c1(v) and then, by transitivity,

v = c1(v) = c2 ◦ c1(v) = . . . = cL ◦ . . . ◦ c1(v) = c(v). (1.43)
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Proof of Proposition 1.5.1.

Point (a) Point (iii) of Lemma 1.5.2 implies that the sequence f(vs) is monotonically increasing,
and therefore, convergent as the continuous function f is bounded on the compact set Ω.

Point (b) If the infinite sequence f(vs) has a finite number of distinct terms, it cannot be a strictly
increasing sequence and consequently there exists some integer M such that f(v0) < f(v1) < . . . <

f(vM ) = (vM+1) . Then, Point (iv) of Lemma 1.5.2 implies that vM is a fixed point of c.

Point (c) to (f) They are deduced from a direct application of Meyer’s monotone convergence the-
orem (Theorem 3.1 in [Meyer, 1976]). This theorem gives quite general conditions under which a
sequence (vs) produced by an algorithm that monotonically increases a continuous objective function
will converge. Meyer considered the case of a point-to-set operator c : Ω 7→ P(Ω), where P(Ω) is the
set of all nonempty subsets of Ω. In this manuscript, c is a point-to-point operator and the conditions
of Meyer’s theorem reduce to the three following conditions (see [Fessler, 2004]): (1) c is a continuous
operator; (2) c is strictly monotone (increasing) with respect to f ; and (3) c is uniformly compact on
Ω. Condition (2) means that points (iii) and (iv) of Lemma 1.5.2 are verified. Condition (3) means
that there exists a compact set K such that c(v) ∈ K for all v ∈ Ω. According to Lemma 1.5.2, these
three conditions are satisfied for Algorithm 1 and therefore, Meyer’s theorem can be applied to any
sequence vs produced by the recurrence equation vs+1 = c(vs) with v0 ∈ Ω.

1.6 Conclusion

In this chapter, we have gathered the mathematical foundations that will be used throughout this ma-
nuscript. We have also described a very general and very simple optimization framework that enables
to maximize a multi-convex function. It provides the algorithmic foundations of our developments.
As we will see, especially in the next two chapters, this optimization framework offers a systematic
approach for constructing globally convergent algorithms.
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2.1 Introduction

A s described in Chapter 1, Regularized Generalized Canonical Correlation Analysis (RGCCA) is
a general multiblock data analysis framework that encompasses several important multivariate

analysis methods such as principal component analysis, partial least squares regression and several
versions of generalized canonical correlation analysis and consensus PCA (see table 1.1 for an overview).

Regularized Generalized Canonical Correlation Analysis (RGCCA) belongs to the family of the
sequential multiblock component methods [Tenenhaus et al., 2017]: at the first stage, block weight-
vectors are computed as solution of some optimization problem; then, higher-stage block weight-vectors
are computed on new blocks obtained by "deflation" of each block on the previous block components.
Using a deflation procedure means that orthogonality constraints are imposed to the block components
within each block. From an optimization point of view, this sequential approach may be seen as sub-
optimal.

From that perspective, the global RGCCA optimization problem is proposed in this chapter. The
objective of this approach is now to find a fixed number (say R) of components per block in one step
by solving a single optimization problem. A globally convergent algorithm is proposed.

This chapter is structured as follows : for the sake of completeness, the optimization framework
used to maximize the sequential RGCCA criterion is presented in details in section 2.2. Section
2.3 presents a novel RGCCA objective function (global RGCCA) that enables to compute all the
components simultaneously. The global convergence of the global RGCCA algorithm is demonstrated.
Finally, section 2.4 compares the sequential and the global approaches on simulation experiments and
shows similar performances.

2.2 Sequential Regularized Generalized Canonical Correlation Analysis

(RGCCA)

2.2.1 First-stage RGCCA block component

Let X1, . . . ,Xl, . . . ,XL be a collection of L data matrices. Each I×Jl data matrix Xl = [xl1, . . . ,xlJl
]

is a block and represents a set of Jl variables observed on I individuals. The number and the nature of
the variables may differ from one block to another, but the individuals must be the same across blocks.
We assume that all variables are centered. The most recent formulation of the RGCCA optimization
problem [Tenenhaus et al., 2017] is:

max
w1,...,wL

L∑
k,l=1

ckl g
(
I−1w>k X>k Xlwl

)
s.t. w>l Mlwl = 1, l = 1, . . . , L

(2.1)

where g, C ∈ RL×L and Ml ∈ RJl×Jl , l = 1, . . . L are defined in Chapter 1, section 1.2.1. The optimiz-
ation problem (2.1) can be simplified by considering the two following transforms Pl = I−1/2XlM

−1/2
l
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and vl = M1/2
l wl, which leads to:

max
v1,...,vL

f(v1, . . . ,vL) =
L∑

k,l=1
clk g

(
v>k P>k Plvl

)
(2.2)

s.t. v>l vl = 1, l = 1, . . . , L. (2.3)

2.2.2 The RGCCA algorithm

The convexity and continuous differentiability of the scheme function g imply that the objective
function f defined in (2.2) is a continuously differentiable multi-convex1 function. Consequently,
the maximization of (2.2) subject to (2.3) can be cast under the general optimization framework
presented in section 1.5. Under this framework, the function f , defined in equation (2.2) over different
parameter vectors (v1, . . . ,vL), is maximized by updating each of the parameter vectors in turn,
keeping the others fixed. Hence, we want to find an update v̂l ∈ Ωl =

{
vl ∈ RJl ; ‖vl‖2 = 1

}
such that

f(v) ≤ f(v1, ...,vl−1, v̂l,vl+1, ...,vL), where v = (v1; . . . ; vL). Following section 1.5.2, this update is
obtained by considering the following optimization problem:

v̂l = argmax
ṽl∈Ωl

∇lf(v)>ṽl = ∇lf(v)
‖∇lf(v)‖2

:= rl(v), (2.4)

where ∇lf(v) is the partial gradient of f(v) with respect to vl:

∇lf(v) = 2
L∑
k=1

clk g′(vl>P>l Pkvk)P>l Pkvk = P>l zl (2.5)

where zl, called the inner component, is defined as zl = 2
∑L
k=1 clk g′(vl>P>l Pkvk)Pkvk. The entire

RGCCA algorithm is subsumed in Algorithm 2.

Algorithm 2 Regularized Generalized Canonical Correlation Analysis (RGCCA) algorithm
1: Data: X1, . . . ,XL, M1, . . . ,ML, g, ε, C
2: Result: vs1, . . . ,vsL (solution of (2.2) subject to (2.3))
3: Initialization: random unit-norm v0

l , l = 1, . . . , L, s = 0;
4: repeat
5: for l = 1 to L do

6: vs+1
l =

∇lf(vs+1
1 , . . . ,vs+1

l−1 ,vsl ,vsl+1, . . . ,vsL)
‖∇lf(vs+1

1 , . . . ,vs+1
l−1 ,vsl ,vsl+1, . . . ,vsL)‖2

7: end for
8: s = s+ 1 ;
9: until f(vs+1

1 , . . . ,vs+1
L )− f(vs1, . . . ,vsL) < ε

At the end of the Algorithm 2, the original weight vectors wl are recovered by wl = (Ml)−1/2vl.
In the case of a single block (L = 1), Algorithm 2 is similar to the gradient-based algorithm

proposed by [Journée et al., 2010] for maximizing a convex function of several variables with spherical
constraints (see Problem 27, p. 529).

1When one element of the diagonal of the design matrix C is equal to 1, additional conditions have to be imposed
on the scheme function g in order for f to still be multi-convex. For example, when g is twice differentiable, a sufficient
condition is that ∀x ∈ R+, g′(x) ≥ 0. All scheme functions g considered in this document respect this condition and
the case where one element of the diagonal of the design matrix C is equal to 1 is never considered in our examples.
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2.2.3 Convergence properties of the RGCCA algorithm

The convergence properties subsumed in Proposition 1.5.1 are satisfied for Algorithm 2. In order
to show that Proposition 1.5.1 holds for the RGCCA algorithm, point (i-iv) of Lemma 1.5.2 are
demonstrated below.

Proof of Lemma 1.5.2 for the RGCCA Algorithm.

Point (i) Ωl =
{
vl ∈ RJl ; ‖vl‖2 = 1

}
is the `2-sphere of radius 1 and is a compact set. As Ω =

Ω1 × . . .× ΩL is the Cartesian product of L compact sets, it is compact.

Point (ii) rl(v) defined in equation (2.4) is the orthogonal projection of ∇lf(v) onto the `2-sphere of
radius 1. Under the assumption made in Chapter 1 section 1.5.2 paragraph 3, rl(v) exists and is unique.

Point (iii) The demonstration presented in Chapter 1 for point (iii) of Lemma 1.5.2 still holds here.

Point (iv) The proof is based on the uniqueness of rl(v) defined in equation (2.4).

Therefore, whatever the starting point, Algorithm 2 converges towards a stationary point of the
RGCCA optimization problem.

2.2.4 Higher-stage RGCCA block component

The optimization problem (2.1) is associated with the first component of RGCCA. A deflation pro-
cedure was proposed in order to extract more than one component.

In this section, let y(1)
l = Xlw

(1)
l , l = 1, . . . , L be the first-stage block components solution of

optimization problem (2.1). Seeking the second-stage block components y(2)
l = Xlw

(2)
l , l = 1, . . . , L,

implies that some constraints must be added to the optimization problem. For example, orthogonal-
ity constraints can be considered, leading to the following formulation of the RGCCA optimization
problem at the second stage:

max
w1,...,wL

L∑
k,l=1

ckl g
(
I−1w>k X>k Xlwl

)
s.t. w>l Mlwl = 1, and w>l X>l y(1)

l = 0, l = 1, . . . , L

(2.6)

For each block, the resulting second-stage block component y(2)
l is uncorrelated with the first-stage

block component y(1)
l .

Problem (2.6) is easy to solve with the first-stage RGCCA algorithm by using a deflation procedure.

This procedure consists in replacing a block Xl by the residual X(1)
l = Xl−y(1)

l

(
y(1)>
l y(1)

l

)−1
y(1)>
l Xl

related to the regression of Xl on the first-stage block component y(1)
l . Moreover, as y(1)

l = Xlw
(1)
l ,

the range space of X(1)
l is included in the range space of Xl, meaning that any block component yl

belonging to the range space of X(1)
l can also be expressed in term of the original block Xl:

yl = X(1)
l w̃l = Xlwl. (2.7)
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Furthermore, by assuming that each Xl is of full-rank, then wl can be expressed in terms of w̃l:
wl =

(
X>l Xl

)−1
X>l X(1)

l w̃l. Thus, the constraint w>l Mlwl = 1 can be rewritten in terms of w̃j :

1 = w>l Mlwl = w̃>l X(1)>
l Xl

(
X>l Xl

)−1
Ml

(
X>l Xl

)−1
X>l X(1)

l w̃l (2.8)

Setting M(1)
l = X(1)>

l Xl

(
X>l Xl

)−1
Ml

(
X>l Xl

)−1
X>l X(1)

l , optimization problem (2.6) becomes equi-
valent to:

max
w̃1,...,w̃L

L∑
k,l=1

ckl g
(
I−1w̃>k X(1)>

k X(1)
l w̃l

)
s.t. w̃>l M(1)

l w̃l = 1, l = 1, . . . , L

(2.9)

So the first-stage RGCCA algorithm can be used to solve (2.9) and leads to the block weight vector
w̃(2)
l and the second-stage block component y(2)

l = X(1)
l w̃(2)

l . This deflation procedure can be iterated
in a very flexible way. For example, in a supervised situation where we want to predict a block based
on other blocks, it might be interesting to apply this deflation procedure to all blocks except the one
to predict.

However, maximizing successive criteria may be seen as suboptimal from an optimization point
of view where a single global criterion might be preferred. Secondly, with this sequential procedure,
if the first components are poorly estimated, this is going to affect the estimation of the following
components, which is a major drawback. Thirdly, as seen previously, we have to assume that each
block matrix Xl is of full-rank in order to properly define the constraint matrix M(1)

l . Nonetheless,
this is not always true.

For those reasons, we propose the global RGCCA objective function that allows estimating all the
block-components simultaneously.

2.3 Global RGCCA

The global RGCCA optimization problem is defined as the following optimization problem:

max
W1,...,WL

f (W1, . . . ,WL) =
L∑

k,l=1
ckl Tr

(
g
(
I−1W>

k X>k XlWl

))
(2.10)

s.t. W>
l MlWl = IR, l = 1, . . . , L. (2.11)

where Wl =
[
w(1)
l , . . . ,w(R)

l

]
is a Jl × R weight matrix defined as the concatenation of the R

weight vectors w(r)
l . As previously, the design matrix C = {clk} is a symmetric L × L matrix of

non-negative entries describing the network of connections between blocks that the user wants to take
into account. Usually, clk = 1 for two connected blocks and 0 otherwise. The function g is convex,
differentiable and element-wise from MR(R) to MR(R) (the set of real square matrices of size R).
Constraint (2.11) is an orthonormal constraint on the weight matrix Wl in the metric space defined
by the positive definite matrix Ml.

As the Trace operator is used in the criterion of optimization problem (2.10), it means that
it focuses only on maximizing the covariance between components of same levels. Indeed, for two
connected blocks l and k, only y(r)>

l y(r)
k , r = 1, . . . , R are part of the criterion, where y(r)

l (resp. y(r)
k )

is the rth component of block l (resp. k).
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The optimization criterion (2.10) can be simplified by considering the transformations Pl =
I−1/2XlM

−1/2
l , Vl = M1/2

l Wl, l = 1, . . . , L, which leads to:

max
V1,...,VL

f (V1, . . . ,VL) =
L∑

k,l=1
ckl Tr

(
g
(
V>k P>k PlVl

))
(2.12)

s.t. V>l Vl = IR, l = 1, . . . , L. (2.13)

As g is element-wise and using the definition of the Trace operator for matrices, we have:

Tr
(
g
(
V>k P>k PlVl

))
=

R∑
r=1

g
(

v(r)>
k P>k Plv

(r)
l

)
(2.14)

Therefore, the optimization problem (2.10) can be re-written as follows:

f (V1, . . . ,VL) =
L∑

k,l=1
ckl

R∑
r=1

g
(

v(r)>
k P>k Plv

(r)
l

)
(2.15)

Furthermore, let us introduce vl = vec(Vl) =
(
v(1)

1 ; . . . ; v(R)
1

)
(see section 1.3.3.1 for details).

Thus, the following equality stands: v(r)>
k P>k Plv

(r)
l = v>k

(
J(r)
R ⊗P>k Pl

)
vl, l = 1, . . . , L, where J(r)

R

is a diagonal matrix of size R such that all its elements are equal to zero except for
(
J(r)
R

)
rr

= 1.
Hence, another formulation of f is possible:

f (V1, . . . ,VL) =
L∑

k,l=1
ckl

R∑
r=1

g
(
v>k
(
J(r)
R ⊗P>k Pl

)
vl
)

(2.16)

This last formulation emphasizes that f is multi-convex according to each vl = vec(Vl), l =
1, . . . , L ; that is, for each l, f is a convex function of vl while all others vk, k 6= l are fixed. In others
words, f is multi-convex according to each Vl, l = 1, . . . , L.

In the next section, the global RGCCA algorithm proposed to solve (2.12) subject to (2.13) is
detailed.

2.3.1 The Global RGCCA Algorithm

The objective function of the global RGCCA criterion is a continuously differentiable multi-convex
function, meaning that we can use the optimization framework described in section 1.5 to solve the
optimization problem (2.12)-(2.13). f defined in equation (2.12) over different parameter matrices
(V1, . . . ,VL), is approached by updating each of the parameter matrices in turn, keeping the others
fixed. Let ∇(r)

l f(V), be the partial gradient of f(V) with respect to v(r)
l , where V = (V1; . . . ; VL).

From equation (2.15), this partial gradient can be written as:

∇(r)
l f(V) = 2

L∑
k=1

clk g′(v(r)>
l P>l Pkv

(r)
k )P>l Pkv

(r)
k = P>l z(r)

l (2.17)

where z(r)
l is defined as z(r)

l = 2
∑L
k=1 clk g′(v(r)>

l P>l Pkv
(r)
k )Pkv

(r)
k . Let Zl =

[
z(1)
l , . . . , z(R)

l

]
, the

partial gradient of f(V) with respect to Vl can be written as:

∇lf(V) =
[
∇(1)
l f(V), . . . ,∇(R)

l f(V)
]

=
[
P>l z(1)

l , . . . ,P>l z(R)
l

]
= P>l Zl (2.18)
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We want to find an update V̂l ∈ Ωl =
{
Vl ∈ RJl×R; V>l Vl = IR

}
such that f(V) ≤ f(V1, . . . ,Vl−1,

V̂l,Vl+1, . . . ,VL). Considering that a convex function lies above its linear approximation at Vl for
any Ṽl ∈ Ωl, and introducing vlij = (Vl)(ij), the following inequality holds:

f(V1, ...,Vl−1, Ṽl,Vl+1, . . . ,VL) ≥ f(V) +
Jl∑
i=1

R∑
j=1

∂f

∂vlij
(ṽlij − vlij)

≥ f(V) + Tr
(
∇lf(V)>

(
Ṽl −Vl

))
:= `l(Ṽl,V)

(2.19)

On the right-hand side of the inequality (2.19), only the term Tr
(
∇lf(V)>Ṽl

)
is relevant to Ṽl and

the solution that maximizes the minorizing function `l(Ṽl,V) over Ṽl ∈ Ωl is obtained by considering
the following optimization problem:

V̂l = argmax
Ṽ>

l
Ṽl=IR

Tr
(
∇lf(V)>Ṽl

)
:= rl(V). (2.20)

According to Theorem A.4.2 [Adachi, 2016], p. 270, solution of optimization problem (2.20) is:

V̂l = QlR>l , (2.21)

where Ql ∈ RJl×R and Rl ∈ RR×R are given by the rank-R Singular Value Decomposition (SVD) of
∇lf(V) defined as ∇lf(V) = Ql∆lR>l , with Q>l Ql = R>l Rl = RlR>l = IR and ∆l a R×R diagonal
matrix whose diagonal elements are all positive and in decreasing order.

The entire Global RGCCA algorithm is described in Algorithm 3.

Algorithm 3 Global Regularized Generalized Canonical Correlation Analysis algorithm
1: Data: X1, . . . ,XL, M1, . . . ,ML, g, ε, C, R
2: Result: Vs

1, . . . ,Vs
L (approximate solution of (2.12) subject to (2.13))

3: Initialization: choose random matrix V0
l , l = 1, . . . , L, such that V0>

l V0
l = IR;

4: s = 0
5: repeat
6: for l = 1 to L do

7: Vs+1
l = rl

(
Vs+1

1 , ...,Vs+1
l−1 ,V

s
l ,Vs

l+1, ...,Vs
L

)
= Qs

lRs>
l (2.22)

8: end for
9: s = s+ 1 ;

10: until f(Vs+1
1 , . . . ,Vs+1

L )− f(Vs
1, . . . ,Vs

L) < ε

where Qs
l ∈ RJl×R and Rs

l ∈ RR×R are given by the rank-R Singular Value Decomposition (SVD)

of ∇sl f(V) =
l−1∑
k=1

P>l PkVs+1
k Ds,s+1

lk +
L∑
k=l

P>l PkVs
kD

s,s
lk of dimension Jl × R with Ds,t

lk a diagonal

matrix of size R whose rth element equals 2clk g′
(

v(r),s
l

>
P>l Pkv

(r),t
k

)
.

The original weight matrix Wl is recovered by Wl = M−1/2
l Vl.
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2.3.2 Convergence properties of the Global RGCCA algorithm

The operators defined in section 1.5.3 are extended here for matrices. cl : Ω 7→ Ω is an operator
defined as cl(V) = (V1; . . . ; Vl−1; rl(V); Vl+1; . . . ; VL) with rl(V) introduced in equation (2.20) and
c : Ω 7→ Ω is defined as c = cL ◦ cL−1 ◦ . . . ◦ c1, where ◦ stands for the function composition operator.
We consider the sequence {Vs = (Vs

1; . . . ; Vs
L)} generated by Algorithm 3. Using the operator c, the

«for loop» inside Algorithm 3 can be replaced by the following recurrence relation: Vs+1 = c(Vs).
The convergence properties subsumed in Proposition 1.5.1 are satisfied for Algorithm 3. In order

to show that Proposition 1.5.1 holds for the global RGCCA algorithm, point (i-iv) of Lemma 1.5.2 are
demonstrated below.

Proof of Lemma 1.5.2 for the global RGCCA Algorithm.

Point (i) Ωl =
{
Vl ∈ RJl×R; V>l Vl = IR

}
is the set of real orthonormal matrices OJl×R of size Jl×R

which is a compact set. Thus, Ω is compact as product of L compact sets.

Point (ii) As long as the solution of optimization problem (2.20) exists and is unique, the demonstra-
tion of the point (ii) of the Lemma 1.5.2 in Chapter 1 still holds. For global RGCCA, rl(V) is the
rank-R SVD of ∇lf(V) and suffers from a sign indeterminacy. However, this first drawback can be cir-
cumvented numerically by imposing for every iteration that each block weight vector v(r),s is positively
correlated with its corresponding value after the first iteration v(r),1

l . Moreover, the uniqueness breaks
down when several non-null singular values of ∇lf(V) are equal and some of their associated singular
vectors lie within the chosen R-dimensional subspace and some others outside of it. Nonetheless, with
real data, this hardly ever occurs and we will here disregard this possibility.

Point (iii) The demonstration presented in Chapter 1 for point (iii) of Lemma 1.5.2 still holds here.

Point (iv) The proof is based on the uniqueness of rl(V) defined in equation (2.4). Under mild
conditions (see the discussion above), this point is satisfied for global RGCCA.

Therefore, the RGCCA algorithm and the global RGCCA algorithm both bear the same conver-
gence properties that are described in Proposition 1.5.1.
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2.4 Simulation experiments

In this section, we compare the performances of global RGCCA with sequential RGCCA.

2.4.1 Data Generation

For this simulation experiment, we consider L = 2 blocks of the same dimension with N = 200 and
J1 = J2 = 30. Each block is simulated according to the following generative matrix model:

Xl = ηYlW>
l + ‖YlW>

l ‖F
‖El‖F

El, l = 1, 2, (2.23)

where Wl ∈ RJl×R? is a randomly generated orthonormal matrix. In this experiment, we consider
R? = 4 components. Furthermore, [Y1,Y2] ∈ RN×2R? is randomly generated such that its columns
are orthonormal, except for y>11y21 = 1, y>12y22 = 0.8, y>13y23 = 0.6, and y>14y24 = 0.4.

The noise matrix El ∈ RN×Jl is defined such that its entries are drawn from a standardized normal
distribution. Finally, the Signal to Noise Ratio (SNR) is equal to 20log10 (η) which enables η to drive
the SNR.

Let Wl and Ŵl, l = 1, 2 be respectively the original and the estimated block weight matrices.
We quantify how well the estimated block weight matrices match the original ones using the accuracy
(ACC) defined as:

ACC = 1
LR

L∑
l=1

R∑
r=1
|ŵ(r)>

l w(r)
l |, (2.24)

where ŵ(r)
l and w(r)

l are the rth column of matrices Ŵl and Wl respectively.

2.4.2 Results

We consider five values of η ∈ {0.2, 0.3, 1, 2, 5}. For each value of η, 100 different datasets were
generated according to equation (2.23). For each dataset, global RGCCA and sequential RGCCA
were applied to extract R = 4 components.

For the two procedures, c12 = c21 = 1 and c11 = c22 = 0, g was set to the square function (or the
element-wise square function) and M1 = M2 = IR. As each method presents potentially many local
maxima, multiple starts were performed (i.e., SVD-based initialization as well as 10 random starts)
and the best solution was kept [Acar et al., 2013, ten Berge, 1993].

Moreover, inspired from [Acar et al., 2011], in order to evaluate to what extent global RGCCA is
impacted by a misspecification of the number of factors to extract, global RGCCA is also evaluated
in condition where R = R? + 1 = 5 components are extracted.

The measure of accuracy (ACC) defined in (2.24) was then computed for each dataset and each
procedure. When R?+1 components are extracted, the ACC is computed with the R? = 4 components
leading to the highest ACC value. The mean and standard deviation (std) of ACC for each value of η
are reported in table 2.1 along with the median (MD) of the number of iterations (and its interquartile
range (IQR)) and the execution time for the best solution. The mean and standard deviation of the
criterion value of each method are also reported (column CRIT).

It appears that regardless of the SNR, each procedure performs very similarly, with a slight im-
provement for global RGCCA in term of ACC and value of the criterion (CRIT). The ACC is always
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improved with a higher value of SNR. For η = 0.2 and η = 0.3, global RGCCA with R? + 1 compon-
ents performs even better than the other methods in term of ACC. The criterion of global RGCCA
with R? + 1 components is always higher as it is computed with one extra component in comparison
to the other methods. For η = 1, 2, 5, the results of Global RGCCA for either R? or R? + 1 are
almost equals in term of ACC and value of the criterion. Considering the number of iterations and
the execution time, they are both always higher for global RGCCA with R? components compared to
the sequential RGCCA, with a factor of 2 for the number of iterations and 10 for the execution time.
global RGCCA with R?+ 1 components has almost the same number of iterations and execution time
as global RGCCA with R?, slightly higher. For both sequential and global RGCCA, on each dataset,
the different initializations lead to the same solution.

Table 2.1 – For each value η ∈ {0.2, 0.3, 1, 2, 5}, 100 datasets were generated. For each dataset,
RGCCA was applied to extract R = 4 components either with a sequential or a global procedure.
Global RGCCA was also applied to extract R = 5 components. For each method, the same stopping
criterion is taken with ε = 10−8. The mean and standard deviation (std) of ACC (defined in (2.24))
for each value of η are reported along with the median (MD) of the number of iterations (and its
interquartile range (IQR)) and the execution time for the best solution. The mean and standard
deviation of the criterion value of each method are also reported (column CRIT).

SNR R Algorithm
ACC Iter Time(s) CRIT

(mean ± std) (MD - IQR) (mean ± std) (mean ± std)

η = 0.2 R?
sequential RGCCA 0.311 ± 0.057 261 - 115 0.4 ± 0.1 (3.06 ± 0.23)1e-8

global RGCCA 0.314 ± 0.064 650 - 490 5.1 ± 2.0 (3.07 ± 0.23)1e-8

R? + 1 global RGCCA 0.326 ± 0.066 761 - 472 6.4 ± 2.6 (3.59 ± 0.25)1e-8

η = 0.3 R?
sequential RGCCA 0.505 ± 0.079 172 - 64 0.3 ± 0.1 (8.80 ± 0.86)1e-9

global RGCCA 0.510 ± 0.076 382 - 365 3.3 ± 1.8 (8.81 ± 0.86)1e-9

R? + 1 global RGCCA 0.516 ± 0.079 492 - 281 4.9 ± 2.4 (10.00 ± 0.88)1e-9

η = 1 R?
sequential RGCCA 0.953 ± 0.016 61 - 12 0.1 ± 0.0 (2.96 ± 0.14)1e-9

global RGCCA 0.956 ± 0.014 113 - 55 1.0 ± 1.0 (2.97 ± 0.14)1e-9

R? + 1 global RGCCA 0.956 ± 0.014 126 - 67 1.1 ± 0.9 (2.97 ± 0.14)1e-9

η = 2 R?
sequential RGCCA 0.989 ± 3e-3 56 - 4 0.1 ± 0.0 (2.77 ± 0.06)1e-9

global RGCCA 0.990 ± 3e-3 105 - 38 0.6 ± 0.1 (2.77 ± 0.06)1e-9

R? + 1 global RGCCA 0.990 ± 3e-3 102 - 36 0.8 ± 0.2 (2.78 ± 0.06)1e-9

η = 5 R?
sequential RGCCA 0.9983 ± 5e-4 54 - 5 0.1 ± 0.0 (2.72 ± 0.03)1e-9

global RGCCA 0.9984 ± 5e-4 106 - 27 0.6 ± 0.1 (2.72 ± 0.03)1e-9

R? + 1 global RGCCA 0.9984 ± 5e-4 104 - 32 0.7 ± 0.1 (2.72 ± 0.03)1e-9

2.5 Conclusion

In this Chapter, two strategies to compute higher-level components were presented: a sequential
approach that relies on deflation and a global one that extracts all the components simultaneously.
We have shown that the RGCCA algorithm has global convergence properties, which remains true
for global RGCCA under mild conditions (i.e. uniqueness of the non-null singular values). Both
approaches were compared on simulations and lead to very similar results.

] ] ]
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R egularized Generalized Canonical Correlation Analysis (RGCCA) is presented in Chapters 1
and 2 as a general multiblock data analysis framework. In this chapter, we extend sequential

RGCCA and global RGCCA to the case where at least one block has a tensor structure. These meth-
ods are called sequential Multiway Generalized Canonical Correlation Analysis and global Multiway
Generalized Canonical Correlation Analysis (MGCCA). Two algorithms are proposed and convergence
properties of these two algorithms are studied. The usefulness of MGCCA is shown on simulations
and compared to competing methods.

3.1 Introduction

The literature of multi-source data analysis is rather unexplored but has seen renewed interest in the
last few years. In the field of supervised methods, the generalized linear model has been extended
to handle higher-order tensor [Zhou et al., 2013]. Multiple tasks regression has been adapted to
the case where a task matrix is predicted by a higher-order tensor [Fu et al., 2014]. Regression has
also been extended to predict a tensor on another tensor [Lock, 2018]. In the field of unsupervised
tensor factorization, the Coupled Matrix Tensor Factorization (CMTF) approach has been studied
in [Acar et al., 2011, 2013, 2014] and allows to jointly analyze datasets of different orders. Roughly
speaking, CMTF can be seen as a multiway extension of simultaneous component analysis [Deun
et al., 2009, Kiers and Berge, 1994]. The sources are modeled by fitting jointly PARAFAC models
[Carroll and Chang, 1970, Harshman, 1970] to higher-order tensors and matrices. CMTF allows to
define which modes (i.e. which dimensions of the tensors) are to be coupled. Another approach,
proposed in [Smilde et al., 2000], allows factorizing tensors according to either a PARAFAC or a
Tucker model [Tucker, 1963, 1964]. The coupling procedure is restricted to the first mode. More
recently, Generalized Structured Component Analysis [Hwang and Takane, 2004] has been extended
to the three-way configuration [Choi et al., 2018].

Canonical Correlation Analysis (CCA) [Hotelling, 1936] is one of the earliest model developed to
capture relationships between two sets of variables. Several generalizations of CCA to more than two
sets of variables have been proposed [Kettenring, 1971, Wold, 1982] and different types of regulariz-
ations have been added for more consistent estimations of the CCA parameters in high dimensional
settings [Chen et al., 2012a, Leurgans et al., 1993, Vinod, 1976, Witten et al., 2009]. More recently,
Regularized Generalized Canonical Correlation Analysis (RGCCA) has been proposed and subsumes
many multiblock component methods as special cases (see [Tenenhaus and Tenenhaus, 2011, Tenen-
haus et al., 2017] and Chapter 1 for an overview).
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To the best of our knowledge, extensions of CCA to situation where at least one of the two sources
is a higher-order tensor has been proposed for two blocks only [Kim and Cipolla, 2009, Lu, 2013,
Min et al., 2019]. RGCCA is currently geared for the joint analysis of a set of data matrices. In
this Chapter, Multiway Generalized Canonical Correlation Analysis (MGCCA) extends RGCCA to
higher-order tensors. Preliminary work can be found in [Tenenhaus et al., 2015] where the higher-
order structure of the sources is fully considered by adding appropriate Kronecker constraints within
the RGCCA optimization problem.

This chapter starts by presenting the sequential MGCCA optimization problem in Section 3.2.
The sequential algorithm and its convergence properties are respectively discussed in Sections 3.2.1
and 3.2.2. Section 3.2.3 details two strategies to obtain higher-level components. Section 3.2.4
presents the results of the sequential MGCCA on two simulated datasets. Then the global MGCCA
optimization problem is presented in section 3.3 to obtain all the components simultaneously. The
algorithm and the convergence properties of this global procedure are also discussed. Finally section
3.3.3 compares the sequential and the global approaches on simulations along with relevant methods.

3.2 The MGCCA optimization problem

For higher-order sources, the RGCCA notations introduced previously need to be extended. As
presented in 1.3, we adopt the standardized notations and terminology proposed by [Kiers, 2000]. Let
us consider L third-order tensors X1, . . . ,Xl, . . . ,XL. Each tensor Xl is of dimension I × Jl ×Kl and
represents a set of Jl variables observed at Kl occasions on I individuals. The number of frontal and
lateral slices and the nature of the variables can differ from one tensor to another, but the individuals
must be the same across tensors. Let Xl

..k be the kth frontal slice of Xl of dimension I×Jl and Xl
.j. be

the jth lateral slice of Xl of dimension I ×Kl. Let Xl = [Xl
..1, . . . ,Xl

..kl
, . . . ,Xl

..Kl
] be the first mode

matricized version of Xl. Each matrix Xl is of dimension I × JlKl and represents all the frontal slices
of Xl next to each other. In this Chapter, the lowercase characters i, j, k, l will be used as running
indices respectively for the mode 1, 2, or 3 and for the tensor considered.

Relationships between tensors can be studied using the RGCCA optimization problem (2.1) applied
to the matricized tensors X1, . . . ,XL but the major drawback of this matricized based strategy is
that the multiway structure of the data is not preserved. This leads to potentially very large JlKl

weight vectors to estimate. Moreover, the corresponding positive definite matrices Ml have prohibitive
dimension JlKl × JlKl. Finally the estimation procedure ignores the original three-way structure of
the data both at the level of the weight vectors and at the level of Ml. This may impair the relevance
of the results as well as their interpretations. From that perspective, we propose Multiway Generalized

Canonical Correlation Analysis (MGCCA) that specifically addresses the higher-order structure of the
sources.

In order to consider the higher-order structure of some sources, the RGCCA optimization problem
(2.1) is reformulated by incorporating Kronecker constraints, intensively used in the multiway literat-
ure [Bro, 1996, Kolda and Bader, 2009, Zhou et al., 2013]. The first stage of sequential MGCCA is
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defined as the following optimization problem:

max
w1,...,wL

L∑
k,l=1

ckl g
(
I−1w>k X>k Xlwl

)
s.t. w>l Mlwl = 1 and wl = wK

l ⊗wJ
l , l = 1, . . . , L.

(3.1)

The weight vectors wl, l = 1, . . . , L are modeled as the Kronecker product between a weight vector
wK
l associated with the Kl frontal slices and a weight vector wJ

l associated with the Jl lateral slices:
wl = wK

l ⊗ wJ
l , l = 1, . . . L. The reformulation proposed in (3.1) using the Kronecker constraints

applied to the weight vectors enables to rewrite the components as follows:

yl = Xlwl = Xl(wK
l ⊗wJ

l ) = Xl(IKl
⊗wJ

l )wK
l =

( Jl∑
j=1

wJljXl
.j.

)
wK
l (3.2)

From equation (3.2), it appears that the component yl can be expressed as a linear combination of
the columns of the matrix

∑Jl
j=1w

J
ljXl

.j. defined as a weighted mean of the lateral slices. In the same
way, yl can be expressed as a linear combination of the columns of

∑Kl
k=1w

K
lkXl

..k defined as a weighted
mean of the frontal slices.

In addition, a Kronecker structure may also be imposed for Ml = MK
l ⊗MJ

l where MK
l and MJ

l are
two positive definite matrices of dimensions Kl ×Kl and Jl × Jl, respectively. Then, the optimization
problem (3.1) can be simplified by considering the two following transforms Pl = I−1/2XlM

−1/2
l and

vl = M1/2
l wl, which can be re-written as:

vl = M1/2
l wl = (MK

l )1/2wK
l ⊗ (MJ

l )1/2wJ
l = vKl ⊗ vJl (3.3)

Finally, the optimization problem (3.1) becomes:

max
v1,...,vL

f(v1, . . . ,vL) =
L∑

k,l=1
clk g

(
v>k P>k Plvl

)
(3.4)

s.t. v>l vl = 1 and vl = vKl ⊗ vJl , l = 1, . . . , L . (3.5)

These Kronecker constraints yield a more parsimonious model. Indeed, for each l ∈ {1, . . . , L}, Jl+Kl

parameters have to be estimated instead of Jl × Kl, which can be tremendously higher. Besides,
distinct weight vectors wK

l and wJ
l are estimated, which enables to interpret the effects of each mode

separately. Furthermore, the Kronecker structure for Ml allows to better fit the three-way structure
of the data and reduces the computational burden of the MGCCA algorithm. The sole requirement
on MK

l and MJ
l is the positive definiteness. The optimization problem (3.1) allows to recover well

known multiway methods such as PARAFAC (first component) [Carroll and Chang, 1970, Harshman,
1970] and N-way Partial Least Squares (NPLS) [Bro, 1996] (see the appendix A sections A.1 and A.2
for more details).

3.2.1 The MGCCA Algorithm

The MGCCA and RGCCA criteria only differ at the level of the constraints. Therefore, the general
optimization framework presented in section 1.5 still applies for MGCCA. The update defined in
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equation (2.4) for RGCCA is extended for MGCCA. This update finds v̂l ∈ Ωl by considering the
following optimization problem:

v̂l = argmax
ṽl∈Ωl

∇lf(v)>ṽl = argmax
ṽl∈Ωl

z>l Plṽl := rl(v), (3.6)

where v = (v1; . . . ; vL), Ωl =
{
vl ∈ RKlJl ; v>l vl = 1 and vl = vKl ⊗ vJl

}
and ∇lf(v) is the partial

gradient of f with respect to vl that can be found in equation (2.5) and zl in the inner component
first derived in equation (2.5) also.

The optimization problem (3.6) boils down to finding a pair of weight vectors vKl and vJl that
produces a component yl = Plvl with maximal scalar product with zl. The problem is equivalent to:

(
vKl ,vJl

)
= argmax

vK
l ,v

J
l

‖vK
l ⊗vJ

l ‖=1

zl>Pl(vKl ⊗ vJl ) = argmax
vK

l ,v
J
l

‖vK
l ⊗vJ

l ‖=1

zl>
[ K∑
k=1

vKlkPl
..k

]
vJl

= argmax
vK

l ,v
J
l

‖vK
l ⊗vJ

l ‖=1

[ K∑
k=1

vKlkzl>Pl
..k

]
vJl = argmax

vK
l ,v

J
l

‖vK
l ⊗vJ

l ‖=1

vKl
>QlvJl (3.7)

where Ql is a Kl × Jl matrix defined by Ql = [(Pl
..1)>zl, . . . , (Pl

..Kl
)>zl]>.

We deduce that vKl and vJl , solution of the optimization problem (3.7), are the first left and right
singular vectors of the matrix Ql of dimension Kl×Jl. The singular vectors vKl and vJl are unit-norm,
thus satisfying the unit-norm constraint on vl. Note that a similar optimization procedure is found
for NPLS [Bro, 1996]. The entire MGCCA algorithm is described in Algorithm 4.

Algorithm 4 Multiway Generalized Canonical Correlation Analysis (MGCCA) algorithm
1: Data: X1, . . . ,XL, M1, . . . ,ML, g, ε, C
2: Result: vs1, . . . ,vsL (solution of (3.4) subject to (3.5))
3: Initialization: v0

l = vK,0l ⊗ vJ,0l , l = 1, . . . , L, where vJ,0l , vK,0l are random unit-norm vectors,
s = 0;

4: repeat
5: for l = 1 to L do

6: vs+1
l = rl

(
vs+1

1 , ...,vs+1
l−1 ,v

s
l ,vsl+1, ...,vsL

)
= (vKl )s+1 ⊗ (vJl )s+1 (3.8)

7: end for
8: s = s+ 1 ;
9: until f(vs+1

1 , . . . ,vs+1
L )− f(vs1, . . . ,vsL) < ε

where (vKl )s+1 and (vJl )s+1 are obtained as the first left and right singular vectors of the matrix
Ql = [(Pl

..1)>zsl , . . . , (Pl
..Kl

)>zsl ]> of dimension Kl × Jl and

zsl = 2
l−1∑
k=1

clk g′(vsl>P>l Pkvs+1
k )Pkvs+1

k + 2
L∑
k=l

clk g′(vsl>P>l Pkvsk)Pkvsk.

From equation (3.3), the original weight vectors wK
l and wJ

l are recovered by wK
l = (MK

l )−1/2vKl
and wJ

l = (MJ
l )−1/2vJl .
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3.2.2 Convergence properties of the MGCCA algorithm

In order to show that Proposition 1.5.1 holds for the MGCCA algorithm, point (i-iv) of Lemma 1.5.2
are verified below.

Proof of Lemma 1.5.2 for the MGCCA Algorithm.

Point (i) Let ΩK
l =

{
vKl ∈ RKl ; ‖vKl ‖2 = 1

}
and ΩJ

l =
{
vJl ∈ RJl ; ‖vJl ‖2 = 1

}
be two compact sets

and the continuous multilinear function fl be defined as:

fl : ΩK
l × ΩJ

l → Ωl

(vKl ,vJl ) 7→ vKl ⊗ vJl .

Ωl is compact as image of a compact set by the continuous function fl. Consequently, Ω is compact
as product of L compact sets.

Point (ii) As long as the solution of optimization problem (3.7) exists and is unique, the demon-
stration of the point (ii) of the Lemma 1.5.2 made in Chapter 1 still holds. For MGCCA, rl(v) is
obtained as the Kronecker product between the first left and right singular vectors of the matrix
Ql = [(Pl

..1)>zl, . . . , (Pl
..Kl

)>zl]> of dimension Kl × Jl. The first singular vectors of a matrix are
defined up to their sign and up to a multiplicative constant. The sign indeterminacy is controlled just
after the first iteration of the algorithm and the MGCCA algorithm guarantees normalized weight
vectors. The uniqueness of the dominant singular value can easily be verified numerically at each it-
eration s. This procedure also guarantees that (vKl , vJl ), and so (wK

l , wJ
l ) are identifiable. In section

3.2.4.1, on a simulated dataset, we monitor the Karush–Kuhn–Tucker (KKT) optimality conditions
in order to assess numerically that this last assumption is not too constraining.

Point (iii) The demonstration presented in Chapter 1 for point (iii) of Lemma 1.5.2 still holds here.

Point (iv) The proof is based on the uniqueness of rl(v) defined in equation (3.7). Under mild condi-
tions (see the discussion above), this point is satisfied for MGCCA.

3.2.3 Higher-level components

At the end of Algorithm 4, the first-level weight vectors w(1)
l , l = 1, . . . , L solutions of the optimization

problem (3.1) are obtained. Two strategies to determine higher-level weight vectors are presented. The
first one yields orthogonal components and the second one yields orthogonal weight vectors.

3.2.3.1 Deflation procedure for orthogonal components

Deflation is the most straightforward way to add orthogonality constraints in many optimization
problems encountered in multivariate analysis. This deflation procedure consists in replacing the
data matrix Xl by its residual matrix X(1)

l obtained by the regression of Xl on y(1)
l : X(1)

l = Xl −
y(1)
l

(
(y(1)
l )>y(1)

l

)−1
(y(1)
l )>Xl. If Ml depends on Xl, then Xl is replaced by its residual X(1)

l in its
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current calculation, otherwise Ml is left unchanged. In both cases, this matrix is defined as M(1)
l . The

second-level MGCCA optimization problem is:

max
w1,...,wL

L∑
k,l=1

ckl g
(
I−1w>k (X(1)

k )>X(1)
l wl

)
s.t. w>l M(1)

l wl = 1 and wl = wK
l ⊗wJ

l , l = 1, . . . , L.

(3.9)

For each l = 1, . . . , L, the resulting component y(2)
l = X(1)

l w(2)
l is orthogonal to y(1)

l . Components
can thus be displayed in a Cartesian coordinate system. This may be interesting for generating a
correlation circle per block in order to see the position of the variables in the components space and
to understand which variables contribute to which components.

3.2.3.2 Orthogonality of the weight vectors

For each l = 1, . . . , L, the second-level weight vector w(2)
l is constrained to be orthogonal to the

first-level weight vector w(1)
l . This novel constraint is written as:

w>l w(1)
l = 0⇔

{
wK>
l wK,(1)

l = 0 or wJ>
l wJ,(1)

l = 0
}
. (3.10)

Therefore, the orthogonality can either be imposed on wK
l or on wJ

l . Hereafter, we discuss the case
where orthogonality is imposed at the level of wJ

l . The other case is recovered similarly.
Assume that for a given Xl, the r first weight vectors wJ,(1)

l , . . . ,wJ,(r)
l have already been computed

and denote WJ,(r)
l =

[
wJ,(1)
l , . . . ,wJ,(r)

l

]
the matrix that contains these weight vectors columnwise. Let

R⊥
WJ,(r)

l

= IJl×Jl
−WJ,(r)

l

(
WJ,(r)>

l WJ,(r)
l

)−1
WJ,(r)>

l be the projection matrix onto the orthogonal

subspace defined by WJ,(r)
l . Solving optimization problem (3.1) with the additional constraint that

WJ,(r)>
l wJ

l = 0 is similar to say that there exists x̃Jl ∈ RJl such that wJ
l = R⊥

WJ,(r)

l

x̃Jl .

The derivation of wl is not straightforward since R⊥
WJ,(r)

l

is of rank Jl− r, which implies that x̃Jl is

not unique. Nevertheless, R⊥
WJ,(r)

l

is real and symmetric and can be decomposed as UWJ,(r)

l

DWJ,(r)

l

U>
WJ,(r)

l

with UWJ,(r)

l

the Jl × (Jl − r) orthonormal matrix of eigenvectors and DWJ,(r)

l

the (Jl − r)× (Jl − r)
diagonal matrix whose elements are the non-null eigenvalues. Thus, there exists a unique xJl ∈ RJl−r

such that wJ
l = UWJ,(r)

l

xJl and therefore, wl can be written as:

wl = wK
l ⊗UWJ,(r)

l

xJl =
(

IKl
⊗UWJ,(r)

l

)(
wK
l ⊗ xJl

)
.

Therefore, from the two following equations

X(r)
l = Xl

(
IKl
⊗UWJ,(r)

l

)
M(r)

l =
(

IKl
⊗U>

WJ,(r)

l

)(
MK

l ⊗MJ
l

)(
IKl
⊗UWJ,(r)

l

)
= MK

l ⊗
(

U>
WJ,(r)

l

MJ
l UWJ,(r)

l

)
,

the (r + 1)th level MGCCA optimization problem is defined as:

max
w1,...,wL

L∑
k,l=1

ckl g
(
I−1w>k (X(r)

k )>X(r)
l wl

)
s.t. w>l M(r)

l wl = 1 and wl = wK
l ⊗ xJl , l = 1, . . . , L,

(3.11)
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and the orthogonality of the weight vectors wJ,(1)
l , . . . ,wJ,(r+1)

l is guaranteed. The optimization prob-
lem (3.11) gives for l = 1, . . . , L, wK,(r+1)

l and xJ,(r+1)
l and wJ,(r+1)

l = UWJ,(r)

l

xJ,(r+1)
l .

This procedure implies the SVD of R⊥
WJ,(r)

l

or R⊥
WK,(r)

l

, which is computationally advantageous
when performed on the mode with the smallest dimension. Imposing orthogonality at the level of the
weight vectors is interesting for evaluating the relative position of the individuals (e.g classification,
clustering) in orthonormal bases defined in the variables space.

Similar deflation is proposed for multiway discriminant analysis in [Lechuga et al., 2016]. Moreover,
in the framework of NPLS [Bro, 1996], a sequential approach to compute the subsequent components
and weight vectors is also proposed in [Hanafi et al., 2015] where no orthogonality conditions are
considered. Our deflation procedure both imposes orthogonality at the level of the weight vectors and
respects the multi-way structure of the data.

3.2.4 Experiments

In this section, the performances of MGCCA are studied on simulations. The first simulation (section
3.2.4.1) evaluates to what extent the hypothesis made in the proof of the global convergence of Al-
gorithm 4 (see section 3.2.2) is not too binding. The second simulation (section 3.2.4.2) compares the
performances of MGCCA, RGCCA, Couple Matrix Tensor Factorization (CMTF) and PARAFAC.

3.2.4.1 Verification of the KKT optimality conditions

As mentioned in section 3.2.2, global convergence of Algorithm 4 relies on a uniqueness assumption.
The objective of this first simulation is to check numerically that this assumption is not too constraining
by monitoring the KKT optimality conditions. For that purpose, three tensors Xl ∈ RI×Jl×Kl , l =
1, 2, 3, following a (R+ 1)-component PARAFAC model are generated (cf. section 1.4.1):

Xl =
R+1∑
r=1

arl ◦ brl ◦ crl + El, (3.12)

where ◦ stands for the outer product (see Figure 1.4-3 for more details). Dimension of each order are
I = 90, J1 = 200, J2 = 500, J3 = 103 and K1 = 5,K2 = K3 = 10. For the first component and the first
mode, every row of A =

[
a1

1,a1
2,a1

3
]
is independently drawn from a multivariate normal distribution

with 0 mean and predefined correlation structure Σ = (σlk), with σ12 = σ13 = σ23 = 0.7, 1 on the
diagonal and 0 otherwise. All coordinates of all other generative vectors are drawn from a uniform
distribution U [0, 1]. Finally, El = (eijk) is a residual tensor with eijk ∼ N (0, 4).

Let f be the objective function of the optimization problem (3.4) and hl = (vKl ⊗ vJl )>(vKl ⊗
vJl ) − 1 the constraint function associated with block l. Let v =

(
vK1 ; vJ1 ; . . . ; vKL ; vJL

)
and denote

by ∇vh = (∇vh1, . . . ,∇vhL) the matrix of partial gradient of each constraint with respect to v. Let
Π = ∇vh

(
∇vh>∇vh

)−1
∇vh> be the projection matrix on the subspace generated by the columns

of ∇vh. As mentioned in the preamble of section 1.5.2, for a stationary point, the derivative of
the objective function lies in the subspace defined by the derivative of each constraint. Thus, if the
solution of Algorithm 4 is a stationary point then at convergence, the KKT optimality condition can
be formulated as (I−Π)∇vf = 0, where vector ∇vf =

(
∇vK

1
f ;∇vJ

1
f ; . . . ;∇vK

L
f ;∇vJ

L
f
)
. For the
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Table 3.1 – For each R ∈ {0, 1, 2, 5, 10}, this table reports the first iteration at which the value
KKT = ‖ (I−Π)∇vf‖/‖∇vf‖ is below a specific threshold (8 different thresholds considered) for
all the 200 runs.

KKT ≤ 10−1 ≤ 10−3 ≤ 10−5 ≤ 10−7 ≤ 10−9 ≤ 10−11 ≤ 10−13 ≤ 10−14

R = 0 8 11 15 18 22 25 29 31

R = 1 5 8 11 15 18 21 24 25

R = 2 6 10 13 17 20 24 27 29

R = 5 7 11 14 18 22 26 29 31

R = 10 10 18 25 33 41 48 56 60

sake of completeness, we mention that the partial gradients of f and hl with respect to vKl and vJl
are equal to ∇vK

l
f = QlvJl , ∇vJ

l
f = Q>l vKl , ∇vK

l
hl = 2‖vJl ‖22vKl and ∇vJ

l
hl = 2‖vKl ‖22vJl .

MGCCA was run 200 times with random initial weights on this simulated dataset to extract one
component with g(x) = x2 (a.k.a. factorial scheme), cij = 1, if i 6= j (a.k.a. complete design),
and MK

l ,MJ
l , l = 1, . . . , 3 defined as identity matrices. For each run and for each iteration s of

the MGCCA algorithm, the quantity KKT = ‖ (I−Π)∇vf‖/‖∇vf‖ is computed. Experiment is
repeated for R ∈ {0, 1, 2, 5, 10}. Table 3.1 reports the number of iterations s at which all the 200 runs
are under a specific value of KKT for the different values of R. It appears that the KKT conditions
are always satisfied in less than 60 iterations, meaning that whatever the initialization, the MGCCA
algorithm converges to a stationary point.

3.2.4.2 Recovering interactions between tensors

This section aims at evaluating the ability of MGCCA to identify variables of each tensor responsible
for the link between them. This time, L = 2 tensors are generated with the same dimension J1 =
J2 = K1 = K2 = 30. In this experiment, rather than using a PARAFAC model, I = 50 samples are
drawn from a centered multivariate normal distribution with covariance matrix Σ defined as:

Σ =
[
Σ11 Σ12

Σ21 Σ22

]
+
[
N11 0

0 N22

]
= S + N (3.13)

where Σlh = Wl∆W>
h , for l, h = 1, 2, with Wl =

[
wK,(1)
l ⊗wJ,(1)

l ,wK,(2)
l ⊗wJ,(2)

l

]
is a 900 × 2

matrix where wK,(r)
l , wJ,(r)

l ∈ R30×1 for l, r = 1, 2. In this context, S is indeed positive definite and
every Σlh, l, h = 1, 2 is a square matrix of size 900. The 2 × 2 diagonal matrix ∆ with diagonal
elements δ1 = 0.7 and δ2 = 0.3 is introduced to control the relative contributions of the two dimen-
sions. Moreover, we add two positive definite noise matrices of size 900 defined as Nll = UlΛlU>l ,
where Ul =

[
uK,(1)
l ⊗ uJ,(1)

l , . . . ,uK,(30)
l ⊗ uJ,(30)

l

]
is a random orthonormal matrix of size 900 × 30

with uK,(r)l , uJ,(r)l ∈ R30×1 for l = 1, 2, r ∈ J1, 30K and Λl ∈ R30×30 is a diagonal matrix whose
diagonal elements are generated from U([10−10; 1]). Finally, the Signal to Noise Ratio is defined as
SNR = 20 log10 (‖S‖F /‖N‖F ) where ‖.‖F stands for the Frobenius norm. The main objective of this
experiment is to recover the interaction terms wJ,(r)

l , wK,(r)
l , l, r = 1, 2. The noise matrix N was

designed to represent variance terms of each of the two tensors separately. Thus in a low SNR case,
PARAFAC can mostly identify variance terms of the noise matrix while CMTF and MGCCA are able
to extract interaction terms hidden among variance terms.
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Figure 3.2-1 – Boxplots of cor
(
w(1), ŵ(1)

)
(left) and cor

(
w(2), ŵ(2)

)
(right) for PARAFAC, CMTF,

MGCCA and RGCCA. 6 different levels of Signal to Noise Ratio, SNR = 20 log10 (‖S‖F /‖N‖F ),
ranging from −20 to 0 dB were evaluated.

MGCCA, RGCCA on the matricized tensors, CMTF and PARAFAC on each tensor separately,
were evaluated and compared on these simulated datasets. The positive definite matrices M1 and
M2 that appear in the constraints of RGCCA and MGCCA optimization problems (see equation
(2.1) and (3.1)) are set to the identity, g(x) = x2 and c12 = 1. The R package RGCCA [Tenen-
haus and Guillemot, 2017] was used for RGCCA and MGCCA. The MATLAB CMTF toolbox (v1.1)
(http://www.models.life.ku.dk/joda/CMTF_Toolbox) was used for CMTF. The R package multiway
[Helwig, 2018] was used for PARAFAC. The tolerance of the stopping criteria ε is set to 10−8 for each
algorithm. As each method presents potentially many local minima/maxima, multiple starts were
performed (i.e., SVD-based initialization as well as 100 random starts) and the best solution was
kept [Acar et al., 2013, ten Berge, 1993]. For a SNR ranging from −20dB to 0dB, we generated
100 datasets according to the simulation protocol described above. MGCCA, RGCCA, CMTF and
PARAFAC were applied and the efficiency of each method was measured, component by component,
by considering, for each of the 100 datasets, the correlation between the estimate ŵ(r) =

(
ŵ(r)

1 ; ŵ(r)
2

)
(where ŵ(r)

l = ŵK,(r)
l ⊗ ŵJ,(r)

l ) and the true vector w(r), for r = 1, 2. Boxplots of these correlations
are reported in Figure 3.2-1. For RGCCA and MGCCA, only two components were estimated. For

http://www.models.life.ku.dk/joda/CMTF_Toolbox
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Figure 3.2-2 – For SNR = −6dB, estimated vectors ŵJ,(2)
1 is represented for the three multiway

methods. Dots stand for the mean of the estimated vector. Black lines graph the true weights. 100
datasets were generated for this SNR. 10 worst runs for each method according to cor

(
w(2), ŵ(2)

)
were removed. For each element of this estimated vector, grey areas stand for the min and max of its
distribution based on the 90 remaining runs. All vectors were normalized to unit norm.

MGCCA, the two procedures described in section 3.2.3 were evaluated and yield similar results. Res-
ults associated with orthogonal weight vectors are reported. For CMTF and PARAFAC, four different
models were fitted with each time a different number of components (from 2 to 5). For both CMTF
and PARAFAC, the couple of weight vectors maximally correlated with the truth are obtained with
the model associated with 5 components. The corresponding correlations with the truth are reported.
All the multiway methods recover the truth above a specific level of SNR. It appears that MGCCA
recovers the truth at a level of SNR significantly lower that the other methods. RGCCA presents
significantly lower results than MGCCA justifying the interest to integrate Kronecker constraints.

Figure 3.2-2 depicts the weight vectors ŵJ,(2)
1 estimated with PARAFAC, CMTF and MGCCA

with SNR = −6dB. The non multiway nature of RGCCA precludes to report the RGCCA estimates.
As expected, for this particular level of SNR, it is clear that MGCCA leads to less biased and more
robust estimates. The overall execution time across SNR values and simulated datasets is 0.04±0.01s
for MGCCA (median ± standard deviation), 0.7 ± 0.2s for CMTF and 0.03 ± 0.01s per tensor for
PARAFAC. RGCCA is the only method with an execution time influenced by the SNR, going from
0.08± 0.05s (SNR = −20 dB) to 0.04± 0.01s (SNR = 0 dB).
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3.3 Global MGCCA

In line of Global RGCCA (see section 2.3), we propose the global MGCCA optimization problem that
can extract all the components simultaneously:

max
W1,...,WL

L∑
k,l=1

ckl Tr
(
g
(
I−1W>

k X>k XlWl

))
(3.14)

s.t. Wl = WK
l �WJ

l , l = 1, . . . , L. (3.15)

WK>
l MK

l WK
l = WJ>

l MJ
l WJ

l = IR, l = 1, . . . , L. (3.16)

where the scheme function g is convex, differentiable and element-wise fromMR(R) toMR(R) (the
set of real square matrices of size R). Wl =

[
w(1)
l , . . . ,w(R)

l

]
is a Jl × R matrix composed of the

concatenation of the R weight vectors w(r)
l . In constraint (3.15), WJ

l =
[
wJ,(1)
l , . . . ,wJ,(R)

l

]
, WK

l =[
wK,(1)
l , . . . ,wK,(R)

l

]
. Moreover � is the Khatri-Rao product. The Khatri-Rao product is the column-

wise Kronecker product. So this constraint imposes that every weight vector w(r)
l is modeled as the

Kronecker product between a weight vector wK,(r)
l associated with the Kl frontal slices and a weight

vector wJ,(r)
l associated with the Jl lateral slices: w(r)

l = wK,(r)
l ⊗wJ,(r)

l (see section 1.3.4.1 for more
details about the Khatri-Rao product). Constraint (3.16) is separated in two orthogonality constraints
on the weight matrices WJ

l and WK
l in the metric spaces defined by the positive definite matrices

MJ
l and MK

l respectively.
The reformulation proposed in (3.14) using the Khatri-Rao constraint applied to the weight

matrices enables to rewrite each component associated with the block l and the level r as follows:

y(r)
l = Xlw

(r)
l = Xl(w

K,(r)
l ⊗wJ,(r)

l ) = Xl(IKl
⊗wJ,(r)

l )wK,(r)
l =

( Jl∑
j=1

w
J,(r)
lj Xl

.j.

)
wK,(r)
l . (3.17)

From equation (3.17), it appears that the component y(r)
l can be expressed as a linear combination

of the columns of the matrix
∑Jl
j=1w

J,(r)
lj Xl

.j. defined as a weighted mean of the lateral slices. In the
same way, y(r)

l can be expressed as a linear combination of the columns of
∑Kl
k=1w

K,(r)
lk Xl

..k defined as
a weighted mean of the frontal slices.

In addition, the positive definite matrix Ml of size JlKl is defined as: Ml = MK
l ⊗MJ

l . Then,
the optimization problem (3.14) can be simplified by considering the two following transforms Pl =
I−1/2XlM

−1/2
l and Vl = M1/2

l Wl, which can be re-written as:

Vl = M1/2
l Wl =

[(
MK1/2

l ⊗MJ1/2

l

) (
wK,(1)
l ⊗wJ,(1)

l

)
, . . . ,

(
MK1/2

l ⊗MJ1/2

l

) (
wK,(R)
l ⊗wJ,(R)

l

)]
=
[(

MK1/2

l wK,(1)
l ⊗MJ1/2

l wJ,(1)
l

)
, . . . ,

(
MK1/2

l wK,(R)
l ⊗MJ1/2

l wJ,(R)
l

)]
=
[
vK,(1)
l ⊗ vJ,(1)

l , . . . ,vK,(R)
l ⊗ vJ,(R)

l

]
= VK

l �VJ
l

(3.18)
Finally, the optimization problem (3.14) becomes:

max
V1,...,VL

f (V1, . . . ,VL) =
L∑

k,l=1
ckl Tr

(
g
(
V>k P>k PlVl

))
(3.19)

s.t. Vl = VK
l �VJ

l , l = 1, . . . , L. (3.20)

VK>
l VK

l = VJ>
l VJ

l = IR, l = 1, . . . , L. (3.21)



3.3. Global MGCCA 47

The objective function of global MGCCA is similar to the one of global RGCCA and can be re-
expressed as:

f (V1, . . . ,VL) =
L∑

k,l=1
ckl

R∑
r=1

g
(

v(r)>
k P>k Plv

(r)
l

)
(3.22)

which emphasizes that f is a multi-convex function (see section 2.3 for more explanations).
In the next section, the global MGCCA algorithm is presented.

3.3.1 The Global MGCCA Algorithm

Once again, we make use of the optimization framework described in section 1.5 for solving the global
MGCCA optimization problem. The update defined in equation (2.20) for global RGCCA is found
again for global MGCCA with differences at the level of the constraints. The global MGCCA update
is obtained as solution of the following optimization problem:

V̂l = argmax
Ṽl∈Ωl

Tr
(
∇lf(V)>Ṽl

)
= argmax

Ṽl∈Ωl

Tr
(
Z>l PlṼl

)
, (3.23)

where V = (V1; . . . ; VL) and Ωl = Ω�l ∩
(
ΩJ
l × ΩK

l

)
, with Ω�l =

{
Vl ∈ RJlKl×R; Vl = VK

l �VJ
l

}
,

ΩJ
l =

{
VJ
l ∈ RJl×R; VJ>

l VJ
l = IR

}
and ΩK

l =
{
VK
l ∈ RKl×R; VK>

l VK
l = IR

}
. ∇lf(V) is the partial

gradient of f with respect to Vl that can be found in equation (2.18) and Zl is the matrix composed
of the concatenation of the R inner components first described in equation (2.18) also.

The optimization problem (3.23) boils down to finding a pair of weight matrices VK
l and VJ

l such
that the Trace of the matrix product between a component matrix Yl = PlṼl with an aggregated
component matrix Zl is maximal. The problem is equivalent to:(

V̂J
l , V̂K

l

)
= argmax

(ṼJ
l
,ṼK

l )∈ΩJ
l
×ΩK

l

Tr
(
Z>l Pl

(
ṼK
l � ṼJ

l

))
(3.24)

There is no analytical solution for the optimization problem (3.24) and the classical procedure consists
in alternating between the maximization of the criterion according to ṼJ

l , keeping ṼK
l fixed, and

inversely. Those two steps are repeated until convergence.
In the line of this alternating strategy, the update of VJ

l is presented hereafter (the case of VK
l

being similar).

V̂J
l = argmax

ṼJ
l
∈ΩJ

l

R∑
r=1

z(r)>
l Pl

(
ṽK,(r)l ⊗ ṽJ,(r)l

)
= argmax

ṼJ
l
∈ΩJ

l

R∑
r=1

z(r)>
l

 Kl∑
k=1

ṽ
K,(r)
lk Pl

..k

 ṽJ,(r)l

= argmax
ṼJ

l
∈ΩJ

l

R∑
r=1

ṽJ,(r)
>

l

 Kl∑
k=1

ṽ
K,(r)
lk Pl>

..k

 z(r)
l = argmax

ṼJ
l
∈ΩJ

l

R∑
r=1

ṽJ,(r)
>

l Pl(2)

(
ṽK,(r)l ⊗ II

)
z(r)
l

= argmax
ṼJ

l
∈ΩJ

l

Tr
(
ṼJ>
l Pl(2)

(
ṼK
l � Zl

))
:= rJl (V),

(3.25)

where Pl(2) = [Pl>
..1, . . . ,Pl>

..Kl
] is the mode-2 matricization of the tensor Pl whose kth frontal slice is

Pl
..k (see section 1.3.3.2 for details on matricization).
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Hence, V̂J
l is given as:

V̂J
l = QJ

l RJ>
l , (3.26)

where QJ
l ∈ RJl×R and RJ

l ∈ RR×R are given by the rank-R SVD of Pl(2)

(
ṼK
l � Zl

)
defined as

Pl(2)

(
ṼK
l � Zl

)
= QJ

l ∆lRJ>
l , with QJ>

l QJ
l = RJ>

l RJ
l = RJ

l RJ>
l = IR and ∆l a R × R diagonal

matrix whose diagonal elements are all positive and in decreasing order.
Similarly, if we introduce Pl(3) = [Pl>

.1., . . . ,Pl>
.Jl.

] the mode-3 matricization of Pl, then it can be
shown that the update for VK

l is:

V̂K
l = argmax

ṼK
l
∈ΩK

l

Tr
(
ṼK>
l Pl(3)

(
ṼJ
l � Zl

))
= QK

l RK>
l := rKl (V), (3.27)

where QK
l ∈ RKl×R and RK

l ∈ RR×R are given by the rank-R SVD of Pl(3)

(
ṼJ
l � Zl

)
defined as

Pl(3)

(
ṼJ
l � Zl

)
= QK

l ∆lRK>
l .

Local solution for (3.24) is usually obtained by alternating (3.26) and (3.27) until convergence.
However, instead of proposing an update

(
V̂J
l , V̂K

l

)
∈ ΩJ

l ×ΩK
l that maximizes optimization problem

(3.24),
(
V̂J
l , V̂K

l

)
is found such that it simply increases the objective function. This principle, called

generalized block relaxation by [De Leeuw, 1994], yields the following update:

rl(V) = rKl

(
V1, . . . ,Vl−1,VK

l � rJl (V),Vl+1, . . . ,VL

)
. (3.28)

We highlight the fact that in (3.28) the update V̂J
l obtained by solving (3.25) is plugged into the

computation of V̂K
l in (3.27). The entire global MGCCA algorithm is described in Algorithm 5.

Algorithm 5 Global Multiway Generalized Canonical Correlation Analysis algorithm
1: Data: X1, . . . ,XL, M1, . . . ,ML, g, ε, C, R
2: Result: Vs

1, . . . ,Vs
L (solution of (3.19) subject to (3.20) and (3.21))

3: Initialization: V0
l = VK,0

l � VJ,0
l , l = 1, . . . , L, where VJ,0

l , VK,0
l are random orthonormal

matrices of size Jl ×R and Kl ×R respectively;
4: s = 0
5: repeat
6: for l = 1 to L do

7: Vs+1
l = rl

(
Vs+1

1 , ...,Vs+1
l−1 ,V

s
l ,Vs

l+1, ...,Vs
L

)
= VK,s+1

l �VJ,s+1
l =

(
QK,s
l RK,s>

l

)
�
(
QJ,s
l RJ,s>

l

)
8: end for
9: s = s+ 1 ;

10: until f(Vs+1
1 , . . . ,Vs+1

L )− f(Vs
1, . . . ,Vs

L) < ε

where QJ,s
l ∈ RJl×R and RJ,s

l ∈ RR×R are given by the rank-R SVD of Pl(2)

(
VK,s
l � Zsl

)
of

dimension Jl×R where Zsl =
∑l−1
k=1 PkVs+1

k Ds,s+1
lk +

∑L
k=l PkVs

kD
s,s
lk of dimension I×R with Ds,t

lk

a diagonal matrix of size R whose rth element equals 2clk g′
(

v(r),s
l

>
P>l Pkv

(r),t
k

)
.

Moreover QK,s
l ∈ RKl×R and RK,s

l ∈ RR×R are given by the rank-R SVD of
Pl(3)

(
VJ,s+1
l � Zs+1/2

l

)
of dimension Kl × R and where Zs+1/2

l is computed similarly to Zsl with
Vs
l = VK,s

l �VJ,s+1
l .
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At the end of Algorithm 5, the original weight matrices WJ
l and WK

l are recovered by WJ
l =

MJ−1/2

l VJ
l and WK

l = MK−1/2

l VK
l respectively.

Remark. It is worth mentioning that the optimization problem (3.24) at the core of the global
MGCCA algorithm is equivalent to:(

V̂J
l , V̂K

l

)
= argmin

(ṼJ
l
,ṼK

l )∈ΩJ
l
×ΩK

l

∥∥∥Pl − JZl, ṼJ
l , ṼK

l K
∥∥∥2

F
, (3.29)

where Pl = I−1/2Xl×2 MJ−1/2

l ×3 MK−1/2

l . The reader is referred to Appendix A, section A.3 for more
details. Therefore, the core update of the global MGCCA procedure can be seen as a constrained rank-
R CP decomposition where the first mode matrix factor is fixed and where the other factor matrices
are constrained to be orthonormal. (cf. section 1.4.1 for the CP decomposition).

3.3.2 Convergence properties of the Global MGCCA algorithm

As detailed below, the convergence properties listed in Proposition 1.5.1 are fulfilled for Algorithm 5.

Proof of Lemma 1 for the global MGCCA algorithm.

Point (i) Let fl be the continuous multilinear function defined as:

fl : ΩK
l × ΩJ

l → Ωl

(VK
l ,VJ

l ) 7→ VK
l �VJ

l .

ΩJ
l and ΩK

l are the sets of real orthonormal matrices ofMJl×R(R) andMKl×R(R) respectively. Those
sets are compact. Therefore, Ωl is a compact set as image of a compact set by the continuous function
fl. Finally, Ω is compact as product of L compact sets.

Point (ii) Assuming existence and uniqueness of the solution of the optimization problem (3.25) and
(3.27), point (ii) of the Lemma 1.5.2 still holds. The uniqueness arguments that were used for global
RGCCA are still valid for global MGCCA.

Point (iii) The demonstration presented in Chapter 1 for point (iii) of Lemma 1.5.2 still holds us-
ing very similar arguments.

Point (iv) The proof is based on the uniqueness of rJl (V) and rKl (V) defined in equation (3.25)
and (3.27) respectively. Under mild conditions (see the discussion above), this point is satisfied for
global MGCCA.
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3.3.3 Experiments

In this experiment, we compare the performances of global MGCCA, sequential MGCCA and the
Coupled Matrix-Tensor Factorization (CMTF) approach. Two scenarii are considered: (i) a coupling
of two third-order tensors (tensor/tensor scenario) and (ii) a coupling between a matrix and a third-
order tensor (tensor/matrix scenario).

3.3.3.1 Data Generation

For the tensor/tensor scenario, we consider L = 2 blocks. Each block is a third-order tensor Xl of
dimension 50× 50× 50 generated according to the following tensor model:

Xl = ηJλ; Y; WJ
l ; WK

l K +

∥∥∥Jλ; Y; WJ
l ; WK

l K
∥∥∥
F

‖El‖F
El, (3.30)

where λ ∈ RR? . For more details about this notation, see Chapter 1, section 1.4.1.
For the tensor/matrix scenario, L = 2 blocks are also considered. On the one hand, a third-order

tensor Xl of dimension 50 × 50 × 50 is generated according (3.30). On the other hand, a matrix Xl

of dimension 50× 50 is generated according to following matrix model:

Xl = ηYΛlWJ>
l +

∥∥∥YΛlWJ>
l

∥∥∥
F

‖El‖F
El, (3.31)

where Λl is a diagonal matrix of dimension R?.
For these scenarii, each block is generated from R? = 4 components and (Λl)1 = λ1 = 1, (Λl)2 =

λ2 = 0.8, (Λl)3 = λ3 = 0.6 and (Λl)4 = λ4 = 0.4.
In this experiment, blocks are coupled through the first mode with the same component matrix

Y ∈ RN×R? randomly generated such that its columns are centered, normalized and orthogonal. This
is the same for WJ

l ∈ RJl×R? , WK
l ∈ RKl×R? and Wl ∈ RJl×R? .

The noise matrix El ∈ RN×Jl and the noise tensor El ∈ RN×Jl×Kl are defined such that each of
their entries are drawn from a standardized normal distribution. Finally, the Signal to Noise Ratio
(SNR) is equal to 20log10 (η) which enables η to drive the SNR.

For the tensor/tensor scenario, let WJ
l ,WK

l and ŴJ
l ,ŴK

l be respectively the original and the
estimated block weight matrices. We quantify how well the estimated block weight matrices match
the original ones using the accuracy (ACC) defined as:

ACC = 1
2LR

L∑
l=1

R∑
r=1
|ŵJ,(r)>

l wJ,(r)
l |+ |ŵK,(r)>

l wK,(r)
l |, (3.32)

where ŵJ,(r)
l and ŵK,(r)

l are the rth column of matrices ŴJ
l and ŴK

l respectively.
For the tensor/matrix scenario, let W2 and Ŵ2, be respectively the original and the estimated

block weight matrices. In this situation, the ACC is defined as:

ACC = 1
3R

R∑
r=1
|ŵJ,(r)>

1 wJ,(r)
1 |+ |ŵK,(r)>

1 wK,(r)
l |+ |ŵ(r)>

2 w(r)
2 |, (3.33)

where ŵ(r)
2 is the rth column of matrix Ŵ2.
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3.3.3.2 Results

We consider three values of η ∈ {0.5, 1, 2}. For each scenario (tensor/matrix or tensor/tensor), 100
datasets were generated according to equation (3.30) or (3.31). For each dataset, sequential MGCCA,
global MGCCA and CMTF were applied to extract R = R? components. For sequential MGCCA,
orthogonality are imposed either at the level of components (c-MGCCA) or at the level of the second
mode weight vectors (w-MGCCA).

For the three MGCCA procedures, c12 = c21 = 1 and c11 = c22 = 0, the function g was set to
the square function (or the element-wise square function) and M1 = M2 = IR. Furthermore, CMTF
was applied to couple only the first mode between the two blocks. The algorithm used for CMTF is
based on a nonlinear conjugate gradient method (see [Acar et al., 2011]). As each method presents
potential local minima/maxima, multiple starts were performed (i.e., SVD-based initialization as well
as 10 random starts) and the best solution was kept [Acar et al., 2013, ten Berge, 1993].

Moreover, inspired from [Acar et al., 2011], in order to evaluate to what extent global methods are
impacted by a misspecification of the number of factors to extract, global MGCCA and CMTF were
also run with R = R? + 1.

The effectiveness of the methods is measured using the ACC metric (defined in equation (3.32) for
the tensor/tensor and (3.33) for the tensor/matrix scenario) for each dataset and each procedure. In
the case where R? + 1 components are extracted, the ACC is computed with the R? = 4 components
leading to the highest ACC value. The mean and standard deviation (std) of ACC for each value of
η are reported in tables 3.2 (scenario tensor/tensor) and 3.3 (scenario tensor/matrix), along with the
median (MD) of the number of iterations (and its interquartile range (IQR)) and the execution time
for the best solution.

For the tensor/tensor scenario, table 3.2, its appears that all methods performed well and managed
to extract the relevant components. As expected, the mean of ACC increases with the SNR and its
standard deviation decreases. Moreover, the execution time and the number of iterations decrease or
stay the same when the SNR increases. Surprisingly, the computational time of CMTF with R? + 1
increases when the SNR increases. This phenomenon might be explained by the fact that it is more
difficult to identify a non-existing component when the SNR is high. For global MGCCA and CMTF,
extracting either R? or R? + 1 components do not affect the performances. However, it increases the
number of iterations and the execution time.

Results of the tensor/matrix scenario are reported in Table 3.3 and similar conclusions can be
drawn. We can add that for η = 0.5, MGCCA methods perform better than CMTF whatever the
measurements (ACC/Iter/Time). Moreover, for all the SNR, the performances of CMTF with R? + 1
components is worse than CMTF with R? components, even though it still manages to extract correctly
the components.

If we compare the two scenarii, it appears that for the same level of SNR, the ACC computed
for the tensor/tensor case is globally higher than the ACC of the tensor/matrix case. This can be
explained by the fact that the factorization of a matrix, as assumed in all those methods, suffers from
a rotational indeterminacy. This rotational indeterminacy does not exist in the CP-model (but it does
in the Tucker model), so coupling a tensor and a matrix help to overcome the rotational indeterminacy
that does exist for the matrix. But still, this may explain the lower ACC results. Moreover, in term
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of number of iterations and execution time, there seems to be no differences between the two scenarii,
except for CMTF with R?+1 components, where an increase of a factor 2 can be observed. If we focus
only on the MGCCA methods, and more specifically on w-MGCCA and global MGCCA that present
almost the same orthogonality constraints, it appears that in the tensor/tensor case, global MGCCA
is quicker than w-MGCCA by a factor 2. However, in the tensor/matrix scenario, they present almost
the same execution time.

On this simulation, it is worth mentioning that MGCCA algorithms are not sensitive to the
starting point as for each MGCCA model and each dataset, the different initializations lead to the
same solution.

Table 3.2 – Scenario tensor/tensor. For each value η ∈ {0.5, 1, 2}, 100 datasets were generated. For
each dataset, CMTF and MGCCA were compared. MGCCA was applied with either a deflation (c-
MGCCA/w-MGCCA) or a global procedure. For CMTF and global MGCCA, R? or R?+1 components
were extracted, where R? is the true number of factors. For each method, the same stopping criterion
is taken with ε = 10−8. The ACC (defined in equation (3.32)) was computed for each dataset and
each procedure, along with the number of iterations and the execution time.

SNR R Algorithm
ACC Iter Time(s)

(mean ± std) (MD - IQR) (mean ± std)

η = 0.5
R?

c-MGCCA 0.9950 ± 3e-4 15 - 1 0.5 ± 0.2

w-MGCCA 0.9951 ± 3e-4 14 - 2 1.0 ± 1.1

global MGCCA 0.9952 ± 3e-4 5 - 1 0.6 ± 0.2

CMTF 0.9951 ± 3e-4 53 - 42 8.3 ± 5.9

R? + 1 global MGCCA 0.9952 ± 3e-4 48 - 55 4.7 ± 1.6

CMTF 0.9951 ± 3e-4 406 - 248 14.0 ± 5.5

η = 1
R?

c-MGCCA 0.99877± 9e-5 12 - 1 0.4 ± 0.1

w-MGCCA 0.99879 ± 8e-5 11 - 2 1.4 ± 1.1

global MGCCA 0.99881 ± 8e-5 4 - 0 0.5 ± 0.1

CMTF 0.99877 ± 9e-5 56 - 29 3.9 ± 3.0

R? + 1 global MGCCA 0.99881 ± 8e-5 29 - 19 2.4 ± 0.5

CMTF 0.99877 ± 9e-5 555 - 348 20.9 ± 8.3

η = 2
R?

c-MGCCA 0.99969 ± 2e-5 12 - 0 0.5 ± 0.2

w-MGCCA 0.99970 ± 2e-5 12 - 4 1.1 ± 1.1

global MGCCA 0.99970 ± 2e-5 3 - 1 0.3 ± 0.1

CMTF 0.99969 ± 2e-5 54 - 44 6.3 ± 9.5

R? + 1 global MGCCA 0.99970 ± 2e-5 13 - 5 1.0 ± 0.2

CMTF 0.99969 ± 2e-5 802 - 507 22.3 ± 8.5
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Table 3.3 – Scenario tensor/matrix. For each value η ∈ {0.5, 1, 2}, 100 datasets were generated. For
each dataset, CMTF and MGCCA were compared. MGCCA was applied with either a deflation (c-
MGCCA/w-MGCCA) or a global procedure. For CMTF and global MGCCA, R? or R?+1 components
were extracted, where R? is the true number of factors. For each method, the same stopping criterion
is taken with ε = 10−8. The ACC (defined in equation(3.33)) was computed for each dataset and
each procedure, along with the number of iterations and the execution time.

SNR R Algorithm
ACC Iter Time(s)

(mean ± std) (MD - IQR) (mean ± std)

η = 0.5
R?

c-MGCCA 0.941 ± 5e-3 20 - 2 0.3 ± 0.1

w-MGCCA 0.941 ± 5e-3 20 - 2 0.4 ± 0.4

global MGCCA 0.942 ± 5e-3 7 - 2 0.4 ± 0.1

CMTF 0.91 ± 0.05 94 - 109 8.8 ± 7.9

R? + 1 global MGCCA 0.942 ± 5e-3 40 - 34 3.1 ± 1.0

CMTF 0.88 ± 0.03 481 - 264 37.1 ± 15.6

η = 1
R?

c-MGCCA 0.982 ± 2e-3 14 - 1 0.3 ± 0.1

w-MGCCA 0.982 ± 2e-3 15 - 1 0.3 ± 0.3

global MGCCA 0.982 ± 2e-3 5 - 1 0.2 ± 0.0

CMTF 0.981 ± 2e-3 51 - 22 4.8 ± 2.7

R? + 1 global MGCCA 0.982 ± 2e-3 29 - 20 2.2 ± 0.5

CMTF 0.95 ± 0.02 540 - 244 42.0 ± 19.1

η = 2
R?

c-MGCCA 0.9951 ± 5e-4 12 - 1 0.3 ± 0.1

w-MGCCA 0.9951 ± 5e-4 12 - 1 0.2 ± 0.2

global MGCCA 0.9951 ± 5e-4 4 - 0 0.2 ± 0.0

CMTF 0.9949 ± 5e-4 54 - 29 4.6 ± 2.0

R? + 1 global MGCCA 0.9951 ± 5e-4 20 - 16 1.2 ± 0.3

CMTF 0.97 ± 0.02 602 - 327 46.3 ± 19.8

3.3.3.3 Conclusion

For the two scenarii, all methods performed similarly. This experiment allows to see global MGCCA
as a relevant alternative to CMTF, geared for coupling a collection of tensors and matrices.

In this experiment, orthonormal weight matrices were generated. This choice was made as global
MGCCA can handle this constraint when MJ

l = IJl
and MK

l = IKl
, see optimization problem (3.14),

constraint (3.16). Even though CMTF does not assume any orthogonality constraints on the factor
matrices, the method fairly manages to estimate them. So in this simulation context, it might be
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unnecessary to add orthogonality constraints. However, in a high-dimensional case (I << Kl or
I << Jl), we believe that enforcing such a constraint might help to better estimate the parameters.

Moreover, as mentioned in section 3.2.3, it might be interesting to evaluate the relative position
of the individuals (e.g classification, clustering) in orthonormal bases defined in the variables space.
Furthermore, we recall that orthogonality is imposed in the metric space of Ml, which offers the
possibility to impose a large variety of orthogonal constraints.

CMTF models the coupled modes by the same matrix and thus imposes identical components,
which is a very strong constraint. In global MGCCA, this constraint is relaxed as we tend only to
maximize the covariance between block component matrices.

In this chapter, simulation results are presented. The reader is referred to Chapter 5 for an
intensive application of MGCCA on real experiments.

3.4 Conclusion and Future Works

In this Chapter, we introduced Multiway Generalized Canonical Correlation Analysis as a versatile
framework for analyzing multi-way and multi-block data. Three strategies to determine higher-level
components are presented. The first one yields orthogonal components and the second one yields
orthogonal weight vectors. The latter respects the multi-way structure of the data. Those two ap-
proaches are sequential and rely on a deflation procedure. The third one is global and extracts all the
components at the same time. Under mild conditions, the global convergence of sequential MGCCA
and global MGCCA algorithms were proven. Furthermore, a Singular Value Decomposition consti-
tutes the core update of each algorithm, which is simple to implement. The presentation of MGCCA
is limited to three-way tensors and can be easily extended for higher-order tensors but would require
introducing more complex notations.

The reliability of MGCCA to recover interactions between higher-order tensors was demonstrated
on simulation studies and compared favorably against existing approaches. A strong improvement of
the results compared to RGCCA is also worth noticing, supporting the relevance of adding Kronecker
constraints to RGCCA. Moreover, both the sequential and global procedures were compared to CMTF
and led to similar results, raising MGCCA to a potential alternative to CMTF. However, when at
least two modes need to be coupled, CMTF is a relevant solution.

In appendix A.4 the link between CMTF and global MGCCA is studied. For that purpose, the
fourth-order cross-covariance tensors Plk = Pl×1

1Pk, for 1 ≤ l < k ≤ L of dimension Jl×Kl×Jk×Kk is
introduced (see section 1.3.4.3 for more details about the operator ×1

1), where Pl is defined in equation
(3.29). Plk contains all 2-by-2 inner products between every mode-1 fibers of Pl and Pk. Under
additional conditions, it is possible to show that solving the global MGCCA optimization criterion is
equivalent to solving a CMTF problem based on coupling all Plk tensors for 1 ≤ l < k ≤ L along all
4 modes. This relation gives more insights on the two methods and open new ways of developments.
Current work aims at studying this equivalence on simulations.

In [Min et al., 2019] a two-block Tensor CCA (TCCA) is presented along with multiple extensions.
In this TCCA model, following our notations, the block TCCA components are computed as (see
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equation (1.19) for more details):

yl =
Rl∑
r=1

Xl ×2 wJ,(r)>
l ×3 wK,(r)>

l = Xl

Rl∑
r=1

wK,(r)
l ⊗wJ,(r)

l , l = 1, 2

In comparison to global MGCCA, where only the covariance between block components of the same
level are taken into account, all conceivable inter-level covariances between block components are
considered. Among other thing, this allows to extract different number of components per block. A
BCA procedure is also used in TCCA, where at each step, a one-component CCA problem is solved.
However, no orthogonal constraint is imposed for each block weight matrix. When only one component
is sought, with the right specification of the Ml matrices, MGCCA and TCCA are identical.

Future works also include developing a sparse version of MGCCA. When sparse constraints are
added to the global MGCCA criterion, they can take the form of an `1 penalty on the whole block
matrix Vl = VK

l � VJ
l . This would allow sparsity to spread among variables, component levels

and modes. Another possibility is to apply a group-LASSO penalty, where each variable, over each
component level, form a group. This would result in the selection of entire rows of the block weight
matrices. Such ideas were presented in the context of CCA in [Kanatsoulis et al., 2019].

] ] ]
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To improve the interpretability of the RGCCA model, an important task is to identify subsets
of variables within each block that are active in the relationships among blocks. This variable

selection step can be achieved by adding within the RGCCA optimization process different kinds of
penalty promoting sparsity (`1) or structured sparsity (like group LASSO, sparse group, fused or elitist
LASSO penalty); compared to competing methods, RGCCA enables to choose a specific penalty for
each block according to its nature.

4.1 Introduction

To improve the interpretability of the RGCCA model, an important task is to identify subsets of
variables within each block that are active in the relationships among blocks. This variable selection
step can be achieved by adding within the RGCCA optimization process different kinds of penalty
promoting sparsity (`1) or structured sparsity (like group LASSO, sparse group, fused or elitist LASSO
penalty). In general, one might think to penalize the `0-pseudo-norm of the block weight vector to
enforce variable selection. However, the resulting optimization problem becomes really hard to solve
due to the combinatorial properties of the `0-pseudo-norm and its non-convexity. A relaxation of
this problem was proposed by replacing the `0-pseudo-norm by its tightest convex envelop [Boyd
and Vandenberghe, 2004], the `1-norm: ‖x‖1 =

∑J
j=1 |xj |. An `1-norm was added to the RGCCA

optimization problem, this algorithm is called Sparse Generalized Canonical Correlation Analysis
(SGCCA) [Tenenhaus et al., 2014]. At the heart of the SGCCA algorithm lies an optimization problem
under both an `1 and an `2-norm constraint. Section 4.3, presents a new procedure for solving this
problem. The convergence properties of SGCCA are also studied.

In dedicated problem, one might want to select together variables that are known to interact. This
can be achieved by regularizing with norms that are different from the `1-norm. Section 4.4 presents
a data integration framework adapted to most frequent sparsity-inducing norms.
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4.2 Sparse Generalized Canonical Correlation Analysis (SGCCA)

A collection of L data matrices X1, . . . ,Xl, . . . ,XL is introduced. Each I × Jl data matrix Xl =
[xl1, . . . ,xlJl

] is a set of Jl variables observed on I individuals. The number and the nature of the
variables may differ from one block to another, but the individuals must be the same across blocks.
We assume that all variables are centered. A sparse version of RGCCA called SGCCA [Tenenhaus
et al., 2014] was proposed to add an `1-norm constraint to the weights in order to perform variable
selection. The optimization criterion of SGCCA can be written as:

max
w1,...,wL

f(w1, . . . ,wL) =
L∑

k,l=1
ckl g

(
I−1w>k X>k Xlwl

)
s.t. wl ∈ Ωl, l = 1, . . . , L,

(4.1)

where function g, and the design matrix C ∈ RL×L are defined in chapter 2 section 2.2.1.
In the original presentation of SGCCA , Ωl = {wl ∈ RI×Jl ; ‖wl‖2 = 1; ‖wl‖1 ≤ sl}, with sl ∈ R?+.

Here, in order to ease the convergence study of SGCCA, a slighty different set is considered:

Ωl = {wl ∈ RI×Jl ; ‖wl‖2 ≤ 1; ‖wl‖1 ≤ sl}. (4.2)

This set is defined as the intersection between the `2-ball of radius 1 and the `1-ball of radius sl ∈ R?+
which are two convex sets. Hence, Ωl is a convex set.

In comparison to RGCCA, Ml, l = 1, . . . , L, are all set to the identity in SGCCA optimization
problem.

4.2.1 Intersection between the `2 and `1-spheres

In the rest of this chapter, the assumption is made that the `2-ball of radius 1 is not included in the
`1-ball of radius sl and the other way round. Otherwise systematically, only one of the two constraints
is active. This assumption is true when the corresponding spheres intersect. When Jl = 2, the two
borderline cases are shown on Figure 4.2-1a. This assumption can be translated into conditions on sl.

The norm equivalence between ‖.‖1 and ‖.‖2 can be formulated as the following inequality:

∀x ∈ RJl , ‖x‖2 ≤ ‖x‖1 ≤
√
Jl‖x‖2. (4.3)

This can be converted into a condition on sl: 1 ≤ sl ≤
√
Jl. When such condition is fulfilled, the

`2-sphere of radius 1 and the `1-sphere of radius sl intersect. This is depicted in figure 4.2-1b.

4.2.2 The SGCCA Algorithm

SGCCA and RGCCA have the same objective function so the general optimization framework presen-
ted in section 1.5 applies for SGCCA. Hence, under this framework, the update defined in equation
(2.4) for RGCCA can be used again here but with Ωl defined in (4.2). This update tries to find
ŵl ∈ Ωl obtained by considering the optimization problem below:

ŵl = argmax
‖w̃l‖2≤1
‖w̃l‖1≤sl

∇lf(w)>w̃l := rl(w) (4.4)



60 Structured Sparse Generalized Canonical Correlation Analysis

−1 0 1

−1

0

1

(a) The `2-sphere of radius 1 (continuous line)
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(b) The `2-sphere of radius 1 and the `1-sphere of
radius sl = 1.2. The small circles highlight the
intersections between the two spheres.

Figure 4.2-1 – Conditions for the intersection between the `2 and `1-spheres.

where w = (w1; . . . ; wL) and ∇lf(w) is the partial gradient of f with respect to wl that can be found
in equation (2.5).

According to [Witten et al., 2009], solution of (4.4) satisfies:

rl(w) = ŵl = S(∇lf(w), λl)
‖S(∇lf(w), λl)‖2

, where λl =

 0 if ‖∇lf(w)‖1

‖∇lf(w)‖2
≤ sl

find λl such that ‖ŵl‖1 = sl
, (4.5)

where function S(., λ) is the soft-thresholding operator. When applied on a vector x ∈ RJ , this
operator is defined as:

u = S(x, λ)⇔ uj =
{

sign(xj)(|xj | − λ), if |xj | > λ

0, if |xj | ≤ λ
, j = 1, . . . , J. (4.6)

In the case of a scalar a ∈ R, Figure 4.2-2 depicts the function S(., λ) with λ = 1.
The entire SGCCA Algorithm is presented in Algorithm 6.
The next section proposes an algorithm to solve problem (4.5) at the heart of SGCCA.

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

−λ
λ = 1

a

S(
a
,λ

)

Figure 4.2-2 – Soft-thresholding operator S(a, λ) in the case where a ∈ R and λ = 1.
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Algorithm 6 Sparse Generalized Canonical Correlation Analysis (SGCCA) algorithm
1: Data: X1, . . . ,XL, g, ε, C, s1, . . . , sL and ∀l, 1 ≤ sl ≤

√
Jl

2: Result: ws
1, . . . ,ws

L (solution of (4.1) subject to (4.2))
3: Initialization: choose random unit-norm w0

l , l = 1, . . . , L.
4: s = 0;
5: repeat
6: for l = 1 to L do

7: ws+1
l = rl

(
ws+1

1 , ...,ws+1
l−1 ,w

s
l ,ws

l+1, ...,ws
L

)
= S(∇sl f, λl)
‖S(∇sl f, λl)‖2

, (4.7)

8: end for
9: s = s+ 1 ;

10: until f(ws+1
1 , . . . ,ws+1

L )− f(ws
1, . . . ,ws

L) < ε

where ∇sl f = X>l

(
2
l−1∑
k=1

clk g′(ws
l
>X>l Xkws+1

k )Xkws+1
k + 2

L∑
k=l

clk g′(ws
l
>X>l Xkws

k)Xkws
k

)
.

λl = 0 if ‖S(∇sl f, λl)‖1/‖S(∇sl f, λl)‖2 ≤ sl and λl is chosen such that ‖ws+1
l ‖1 = sl otherwise.

4.3 The update function of SGCCA

This section focuses on the update of the SGCCA algorithm presented in equation (4.4). This problem
can be stated as follows:

argmax
x∈Ω

a>x, (4.8)

where a ∈ RJ and Ω =
{
x ∈ RJ | ‖x‖2 ≤ 1 and ‖x‖1 ≤ s

}
with s ∈ R?+. As mentioned above, the

solution of (4.8) satisfies u = S(a, λ)/‖S(a, λ)‖2, where λ = 0 if ‖a‖1/‖a‖2 ≤ s and λ is chosen such
that ‖u‖1 = s otherwise.

Several strategies such as Binary Search or the Projection On Convex Set algorithm (POCS),
also known as alternating projection method [Boyd and Dattorro, 2003], can be used to determine
λ verifying the `1-norm constraint. Here, an alternative approach inspired by [van den Berg et al.,
2008] is proposed. In the entire section 4.3, the following assumption is made:

card
(

argmax
i∈J1,JK

|ai|
)

= 1. (4.9)

This assumption is equivalent to say that the maximum value of the vector |a| is reached for only one
element. Appendix B, section B.1 justifies the importance of this assumption.

4.3.1 Projection algorithm onto the `1-norm ball

The proposed approach relies on a very efficient algorithm for projecting a point onto the `1-ball
[van den Berg et al., 2008]. This approach is summarized below. Let ã be the absolute value of a
with its elements sorted in decreasing order. Further, we define the function ϕ(λ) = ‖S(a, λ)‖1 which
is continuous, piecewise linear and decreasing from ϕ(0) = ‖ã‖1 to ϕ(ã1) = 0. Therefore, if ‖a‖1 ≥ s,
as ϕ is continuous, there exists λ such that ϕ(λ) = s.
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Figure 4.3-3 – Principle of the projection algorithm onto the `1-norm ball. ϕ(λ) is represented in the
case of ã = (0.95, 0.9, 0.78, 0.6, 0.4, 0.38, 0.12, 0.01) and s = 2.6.

Hence, the projection algorithm reduces to 4 steps :

1. Take the absolute value of a and sort its elements in decreasing order to get ã.

2. Find i such that ϕ(ãi) ≤ s < ϕ(ãi+1).

3. Find δ such that ϕ(ãi− δ) = s. As ϕ(ãi− δ) =
∑i
j=1 ãj − i(ãi− δ) = ϕ(ãi) + iδ then δ = s−ϕ(ãi)

i .

4. Compute S(a, λ) = sign(a) max(|a| − λ, 0) with λ = ãi − δ.

The idea of this algorithm can be summarized by Figure 4.3-3 where ϕ(λ) is represented in a
specific case. This function is indeed piecewise linear. As mentioned above, ã is the absolute value of
a with its elements sorted in decreasing order. Then ã6 and ã7 are the adjacent elements of ã that
frame the optimal λ. From ã6, a linear interpolation is used to find δ such that λ = ã6 − δ.

A similar algorithm has been proposed by [Candes and Romberg, 2005, Daubechies et al., 2008,
Duchi et al., 2008].

4.3.2 Scalar product maximization under `1 and `2-norm constraints

A similar strategy was adopted when both `1 and `2-norm constraints have to be satisfied [Gloaguen
et al., 2017]. The starting point is to consider the function ψ(λ) = ‖S(ã, λ)‖1/‖S(ã, λ)‖2. It has to
be shown that ψ(λ) is continuous and monotonically decreasing. Moreover, a new expression of δ has
to be found.

To this end, the following two propositions were made.

Proposition 4.3.1. The following function, defined on [0; ã2] 7→ R+, is strictly decreasing:

ψ(λ) = ‖S(ã, λ)‖1
‖S(ã, λ)‖2

, (4.10)

with ψ(0) = ‖a‖1/‖a‖2 and ψ(ã2) = 1.
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Remark. In Proposition 4.3.1, the function is defined on [0; ã2] only. Indeed, ∀λ ∈ [ã2; ã1[, S(ã, λ)
is composed of only one non-null element which is ã1 − λ. Hence, ‖S(ã, λ)‖1 = ‖S(ã, λ)‖2 = ã1 − λ
and ψ(λ) = 1. So function ψ is constant on [ã2; ã1[ that is why it was excluded from its definition in
order to create a strictly decreasing function. When s = 1, the entire interval [ã2; ã1[ is a solution for
λ. However, on this interval, the only element that belongs to the interval of definition of ψ is ã2.

Proposition 4.3.2. Giving s ∈ [1;
√
J ], the assumption that ‖a‖1/‖a‖2 > s is made. Then, there

exists a unique i ∈ J2; JK and a unique δ ∈ [0; ãi − ãi+1[ such that ψ(ãi − δ) = s and δ is a root of a

second degree polynomial equation.

Remark. In the previous proposition, the assumption that ‖a‖1/‖a‖2 > s is made. Indeed, if
‖a‖1/‖a‖2 ≤ s, then a/‖a‖2 is solution of (4.8) as mentioned in the preamble of this section.

The demonstration of proposition 4.3.1 and 4.3.2 is available in appendix B.

Thanks to these two propositions, a four step algorithm is proposed for solving the optimization
problem (4.8):

1. Take the absolute value of a and sort its elements in decreasing order to get ã.

2. Find i such that ψ(ãi) ≤ s < ψ(ãi+1).

3. δ = ‖S(ã,ãi)‖2

i

(
s
√

i−ψ(ãi)2

i−s2 − ψ(ãi)
)
.

4. Compute S(a, λ) = sign(a) max(|a| − λ, 0) with λ = ãi − δ.

A similar algorithm is proposed in [Thom and Palm, 2013].
Sorting the elements of a in step 1 implies that the complexity is at least in O(J ln(J)) with J

the dimension of a. A strategy preventing this sorting step is proposed in [van den Berg et al., 2008]
which reduces the time complexity to O(J) for the projection onto the `1-ball. We used the same
strategy for our implementation, but the complexity of the algorithm has not yet been assessed.

The next section provides a comparison of the proposed method, Binary Search, POCS, and the
projection onto the `1-ball proposed by [van den Berg et al., 2008].

4.3.3 Results

Four methods were selected for the comparison: a binary search (Binary) algorithm to find λ solution
of (4.5), a POCS algorithm consisting in alternating projection onto the `1 and the `2-norm balls, our
method (Fast_l1_l2) and the projection on the `1-ball of radius s mentioned in [van den Berg et al.,
2008] (Proj_l1). Proj_l1 does not solve the same problem as Binary/POCS/Fast_l1_l2. However,
as Fast_l1_l2 is inspired from Proj_l1, we decided to include Proj_l1 in the comparison. Figure
4.3-4 (a) shows that Fast_l1_l2 performs very similarly to Proj_l1 and is almost 10 times faster than
Binary and POCS. Figure 4.3-4 (b) depicts the runtime performances of the different methods as a
function of J .

Fast_l1_l2 has been embedded within the SGCCA algorithm and compared to the original im-
plementation with binary search. For this experiment, we applied SGCCA to the same 3-block real
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Figure 4.3-4 – (a): Violin plots of runtime for each method throughout 100 runs for a vector of length
J =10.000. (b): Log-log plot representing the mean runtime over 20 runs for each method for different
value of J . Each time computations are done with s = 2.3, on a vector generated thanks to a reduced
and centered Gaussian law.

dataset of dimensions J1 = 15702, J2 = 1229, and J3 = 3 measured on a cohort of 53 patients, as
in the original article. For each of these two algorithms SGCCA was run 20 times. Binary search
(resp. Fast_l1_l2) converged in 10.48s (resp. 7.62s) on average with a standard deviation of 0.60s
(resp. 0.29s) on a mid-range laptop computer. We notice that the two implementations of the SGCCA
algorithm converged to the same solution.

4.3.4 Convergence properties of SGCCA

The convergence properties subsumed in Proposition 1.5.1 are satisfied for Algorithm 6. In order
to show that Proposition 1.5.1 holds for the SGCCA algorithm, Points (i-iv) of Lemma 1.5.2 are
demonstrated below.

Proof of Lemma 1.5.2 for the SGCCA Algorithm.

Point (i) Ωl defined in (4.2) is compact as intersection of two compact sets. We conclude that Ω
is compact as product of L compact sets.

Point (ii) As long the solution of optimization problem (4.4) exists and is unique, the demonstra-
tion of the point (ii) of the Lemma 1.5.2 made in Chapter 1 still holds. Based on Proposition 4.3.2,
if:

card
(

argmax
i∈J1,JK

|(∇sl f)i|
)

= 1, (4.11)
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the solution of optimization problem (4.4) is unique (see Algorithm 6 for a definition of ∇sl f).

Point (iii) The demonstration presented in Chapter 1 for point (iii) of Lemma 1.5.2 still holds here.

Point (iv) The proof is based on the uniqueness of rl(w) defined in equation (4.4). Under mild
conditions (see the discussion above), this point is satisfied for SGCCA.

So far, we were interested in the `1-norm in order to perform variable selection. However, such norm
treat each variable individually without taking into account the interactions that may exist between
them. For example, for intra-block variables that are known to interact, one might be interested in
selecting them together. In the next section, SGCCA is enhanced with sparsity-inducing norms that
enable encoding some additional structure about the variables.

4.4 Structured SGCCA

Recently, structured penalties were embedded into the objective function of SGCCA in order to select
variables that are known to interact [Löfstedt et al., 2016]. To account for such structures, the
following optimization problem is defined:

max
w1,...,wL

f(w1, . . . ,wL) =
L∑

k,l=1
ckl g

(
I−1w>k X>k Xlwl

)
−

L∑
k=1

ψkpk (wk) (4.12)

s.t.
{

w>l Mlwl ≤ 1
‖wl‖1 ≤ sl

, l = 1, . . . , L, (4.13)

where the functions pk, k = 1, . . . , L are convex structured penalties (not necessarily differentiable)
with corresponding regularization parameters ψk. In the framework proposed to solve (4.12), the
function g is set to the identity to enforce the criterion to be multi-concave. This optimization
procedure relies on a smoothing technique first described by [Nesterov, 2004], that provides an efficient
method to smooth a non-differentiable function such that it becomes everywhere differentiable [Hadj-
Selem et al., 2018]. This technique is very similar to the Smoothing Proximal-Gradient (SPG) method
presented in [Chen et al., 2012b]. A slight modification of SPG was introduced in the framework of
CCA for exploiting pre-given structures via structured-sparsity-inducing penalties [Chen and Liu,
2012, Chen et al., 2012a].

In these two approaches [Chen et al., 2012b, Löfstedt et al., 2016], the functions pk have to be
written as:

pk(wk) = max
α∈K

α>Akwk, (4.14)

with K a compact convex set in a finite dimensional space and Ak a linear operator between two finite
dimensional vector spaces. Functions pk, k = 1, . . . , L are consequently convex as the maximization of
a convex function over a convex set is convex. If formulation (4.14) is possible, Nesterov’s smoothing
technique introduces a parameter γ to assess the level of smoothness. Many classical penalties fall down
to this formulation including group-lasso [Yuan and Lin, 2006], overlapping group lasso [Obozinski
et al., 2011], total variation [Rudin et al., 1992], graph-constrained Elastic Net [Grosenick et al., 2009],
graph-guided fusion penalty [Chen et al., 2012a, Kim and Cipolla, 2009] to name a few.
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In this chapter a novel optimization framework is proposed to solve problem (4.12) that relies
on the generalized block relaxation method and the Maximization by Minorization (MM) principle
[De Leeuw, 1994, Lange, 2016]. In regards of the algorithms mentioned above, this new framework
can handle any continuously differentiable function g and non-necessarily convex penalties. The only
requirement for functions pk is that they can be majorized by a quadratic and convex function.

This algorithmic framework has already been addressed in the literature in the context of CCA
combined with specific structured sparse regularizations: graph-constrained Elastic Net [Du et al.,
2015, 2016b], graph Octagonal Shrinkage and Clustering Algorithm for Regression (OSCAR) [Du
et al., 2016a] and the truncated-`1 norm [Du et al., 2017] which is a surrogate function of the `0-
pseudo-norm. For each penalty, a perturbation of the real penalty is considered to avoid dividing by
0. We propose a new framework that enables to solve (4.12) subject to (4.13) that is not associated
with peculiar structured sparse penalties, that can handle an arbitrary number of blocks and any
convex differentiable function g.

4.4.1 The Structured SGCCA Algorithm

The Structured SGCCA Algorithm combines the distance majorization method introduced in [Chi
et al., 2013] and the principle of generalized Block Relaxation [De Leeuw, 1994].

4.4.1.1 Quadratic penalty method

The distance majorization method is a quadratic penalty method [Bertsekas et al., 2020] associated
with a specific iterative algorithm.

Let Ω1
l = {wl ∈ RJl ; ‖wl‖1 ≤ sl}, Ω2

l = {wl ∈ RJl ; w>l Mlwl ≤ 1} and Ωl = Ω1
l ∩ Ω2

l be three
convex sets. Let Ω = Ω1 × ... × ΩL be the set of the feasible solutions. Ω is convex as Cartesian
product of convex sets. A quadratic penalty method replaces a constrained optimization problem by
a series of unconstrained penalized problems. In the case of optimization problem (4.12) subject to
(4.13), the following penalized unconstrained problem can be derived:

argmax
w1,...,wL

hµ(w1, . . . ,wL) =
L∑

k,l=1
ckl g

(
I−1w>k X>k Xlwl

)
−

L∑
k=1

ψkpk (wk)−
µ

2 CΩ(w1, . . . ,wL), (4.15)

where CΩ is a quadratic function penalizing the criterion when (w1, . . . ,wL) 6∈ Ω. This penalty
is nonzero when the constraints are violated and null otherwise. The penalty parameter µ ∈ R?+
determines the severity of the penalty. In quadratic penalty methods, an iterative algorithm is used
to solve (4.15) for any possible value of µ and the penalty parameter µ is gradually increased so that
constraints (4.13) are more and more satisfied.

The following section focuses on designing an iterative algorithm in order to solve (4.15). This
method was chosen among others because: (i) it allows dealing with unconstrained optimization
problems usually easier than constrained ones, (ii) as mentioned in [Chi et al., 2013] this approach
is particularly interesting when it is easy to project onto each separate set, but nontrivial to project
onto their intersection.
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4.4.1.2 Definition of the quadratic penalty function

Following [Chi et al., 2013], the quadratic penalty associated with the feasible constraints (4.13) is
defined as:

CΩ(w1, . . . ,wL) =
L∑
l=1

2∑
j=1

dist(wl,Ωj
l )

2, (4.16)

with:
dist(wl,Ωj

l )
2 = inf

x∈Ωj
l

‖wl − x‖22 = ‖wl − PΩj
l
(wl)‖22, l = 1, . . . , L; j = 1, 2, (4.17)

where PΩj
l
(wl) is the projection of wl onto Ωj

l .

4.4.1.3 Generalized Block Relaxation

The maximization of the optimization problem (4.15) over different parameter vectors (w1, . . . ,wL),
is approached by updating each of the parameter vectors in turn, keeping the others fixed as in a
cyclic BCA framework [De Leeuw, 1994].

Let w = (w1; . . . ; wL) be a column vector and f(w) =
∑L
k,l=1 ckl g

(
I−1w>k X>k Xlwl

)
. Moreover,

let fl(w̃l) = f(w1, ...,wl−1, w̃l,wl+1, . . . ,wL) be the function that solely depends on w̃l ∈ RJl . In
order to find an update ŵl ∈ RJl , cyclic block coordinate ascent suggests to consider the following
optimization problem:

ŵl = argmax
w̃l∈RJl

hµl (w̃l) = fl(w̃l)− ψlpl (w̃l)−
µ

2

2∑
j=1

dist(w̃l,Ωj
l )

2, (4.18)

However, optimization problem (4.18) is still hard to solve, mainly due to the possible non-differentiability
of function pl. Thus, instead of proposing an update ŵl ∈ RJl that maximizes hµl (w̃l) over w̃l ∈ RJl ,
ŵl is found such that it simply increases the objective function. As seen in Chapter 3 section 3.3.1,
this principle is called generalized block relaxation by [De Leeuw, 1994] and constitutes the skeleton
of the algorithm to be described.

The update that forces hµl (wl) ≤ hµl (ŵl) is based on iterative minorization. This step is described in
details thereafter. The method of iterative minorization for maximizing a function has been available
in the literature for some time and has been rediscovered several times. Currently, it is perhaps
best known under the name of MM-algorithms (minimization by majorization or maximization by
minorization, [Hunter and Lange, 2004]).

4.4.1.4 The Maximization by Minorization Principle

Here, we consider hµl (w̃l) that needs to be maximized over w̃l ∈ RJl . The core of the method of
iterative minorization is the use of a minorizing function called the surrogate function h̃µl (w̃l|wl)
(with wl being the previous estimate of w̃l) that has to satisfy the three following requirements:

(i). The minorizing surrogate function either touches or is smaller than the original function: hµl (w̃l) ≥
h̃µl (w̃l|wl) (domination condition).

(ii). At the current estimate wl, the so-called supporting point, the two functions must touch:
hµl (wl) = h̃µl (wl|wl) (tangent condition).
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(iii). h̃µl (w̃l|wl) should be a simple function in w̃l, often linear or quadratic which implies that the
coordinates of its maximum ŵl should be easy to compute.

Consequently, we have h̃µl (ŵl|wl) ≥ h̃µl (wl|wl). In addition, we have by construction, hµl (ŵl) ≥
h̃µl (ŵl|wl). Combining these inequalities gives the sandwich inequality:

hµl (ŵl) ≥ h̃µl (ŵl|wl) ≥ h̃µl (wl|wl) = hµl (wl), (4.19)

showing that the update ŵl increases hµl (or hµl stays the same). This step constitutes a single
iteration of a MM algorithm and in our case defines the update needed in Algorithm 7. Generalized
block relaxation combined to the MM principal leads to the new optimization problem:

ŵl = argmax
w̃l∈RJl

h̃µl (w̃l|wl) := rl(w), (4.20)

instead of optimization problem (4.18). Next section focuses on defining the surrogate function
h̃µl (w̃l|wl).

4.4.1.5 Surrogate function

In this section, a minorizing surrogate function of hµl (w̃l) anchored at wl is derived. This minorizing
surrogate function is defined as:

h̃µl (w̃l|wl) = f̃l(w̃l|wl)− ψlp̃l (w̃l|wl)−
µ

2

2∑
j=1

d̃ist(w̃l,Ωj
l |wl)2, (4.21)

where f̃l(w̃l|wl), p̃l (w̃l|wl) and d̃ist(w̃l,Ωj
l |wl)2 are the surrogate functions of the objective function

fl(w̃l), the structured sparse penalty pl (w̃l) and the distance to the constraints dist(w̃l,Ωj
l )2 respect-

ively. All these surrogates are anchored at wl. However, f̃l(w̃l|wl) is a minorizing surrogate function
while p̃l (w̃l|wl) and d̃ist(w̃l,Ωj

l |wl)2 are both majorizing surrogate functions as they are weighted by
the opposite of a non-negative parameter. In the end, h̃µl (w̃l|wl) is a minorizing surrogate function of
hµl (w̃l) anchored at wl.

Surrogate of the objective function. Using the multi-convexity of f and so the convexity of fl,
considering that a convex function lies above its linear approximation at wl for any w̃l ∈ RJl , the
following inequality holds:

fl(w̃l) ≥ fl(wl) +∇fl(wl)>(w̃l −wl) := f̃l(w̃l|wl) (4.22)

with ∇fl(wl) = ∇lf(w), the partial gradient of f with respect to wl which is defined in (2.5) for
example.

Surrogate of the distance to the constraints. The surrogate d̃ist(w̃l,Ωj
l |wl)2 is defined as in

[Chi et al., 2013]:
d̃ist(w̃l,Ωj

l |wl)2 := ‖w̃l − PΩj
l
(wl)‖22, (4.23)
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Indeed, requirements (i− iii) mentioned in section 4.4.1.4 are satisfied by (4.23):

(i). dist(w̃l,Ωj
l )

2 = inf
x∈Ωj

l

‖w̃l − x‖22 ≤ ‖w̃l − PΩj
l
(wl)‖22

(ii). dist(wl,Ωj
l )

2 = ‖wl − PΩj
l
(wl)‖22

(iii). argmin
w̃l∈RJl

‖w̃l − PΩj
l
(wl)‖22 = PΩj

l
(wl).

Surrogate of the structured sparse penalty. The investigation is limited to the case where it
is possible to find a quadratic and convex surrogate function for every penalty pk. Further cases are
mentioned in the discussion. As a matter of fact, the following general majorizing surrogate function
can be defined:

p̃l (w̃l|wl) := pl (wl) + b>l (w̃l −wl) + (w̃l −wl)>Al (w̃l −wl) , (4.24)

where bl ∈ RJl and Al ∈ SJl
+ , the set of symmetric positive semidefinite matrices of size Jl × Jl.

In section 4.4.2.2 and in appendix C section C.2, examples of such quadratic and convex surrogate
functions are given.

4.4.1.6 The Structured SGCCA algorithm

The resulting surrogate defined in (4.21) is strictly concave. Indeed, (4.22) is linear while (4.23)
is strictly convex, (4.24) convex and both of them are weighted by the opposite of a non-negative
parameter. The update ŵl ∈ RJl is thus defined as the solution of a maximization problem introduced
in (4.20) where the criterion is strictly concave. Hence this update is unique. It is obtained by finding
ŵl ∈ RJl such that ∇w̃l

h̃µl (ŵl|wl) = 0Jl
. It can be shown that this solution is:

ŵl = rl(w) = 1
2 [µIJl

+ ψlAl]−1

∇lf(w) + ψl (2Alwl − bl) + µ
2∑
j=1

PΩj
l
(wl)

 , (4.25)

where [µIJl
+ ψlAl] is invertible as Al is symmetric positive semidefinite.

Based on update (4.25), the entire Structured SGCCA algorithm is presented in Algorithm 7.
Following the guidelines of [Chi et al., 2013], the penalization parameter µ is initialized at µ0 = 1

and updated such that µp+1 = 2µp + 1.

4.4.2 Experiments

In this section, we compare the performances of RGCCA, SGCCA and structured SGCCA referred
as MM_SGCCA. We tried hard to provide also a comparison with the structured SGCCA method
presented in [Löfstedt et al., 2016] which is based on the smoothing framework of [Nesterov, 2004] and
proximity operators. However, these results are not presented in the core of this manuscript as this
proximal algorithm always reached the maximum number of iterations allowed. Though, the results
of this proximal method are postponed in the Appendix C section C.3.
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Algorithm 7 Maximization by Minorization (MM) algorithm for Structured SGCCA
1: Data: X1, . . . ,XL, ψ1, . . . , ψL, s1, . . . , sL, M1, . . . ,ML, g, ε1, ε2, C
2: Result: ws

1, . . . ,ws
L (approximate solution of (4.12) subject to (4.13))

3: Initialization: choose random normalized w0
l , l = 1, . . . , L; µ0 > 0;

4: s = 0; p = 0;
5: repeat
6: (w0

1, . . . ,w0
L)←− (ws

1, . . . ,ws
L)

7: s = 0
8: repeat
9: for l = 1 to L do

10: ws+1
l = 1

2 [µpIJl
+ ψlAs

l ]
−1

∇sl f + ψl (2As
lws

l − bsl ) + µp

2∑
j=1

PΩj
l
(ws

l )

 (4.26)

11: end for
12: s←− s+ 1
13: until ‖(ws+1

1 , . . . ,ws+1
L )− (ws

1, . . . ,ws
L)‖2 < ε1

14: Choose new penalty parameter µp+1 > µp
15: p←− p+ 1
16: until ‖(ws

1, . . . ,ws
L)− (w0

1, . . . ,w0
L)‖2 < ε2

where ∇sl f = X>l
(
2
∑l−1
k=1 clk g′(ws

l
>X>l Xkws+1

k )Xkws+1
k + 2

∑L
k=l clk g′(ws

l
>X>l Xkws

k)Xkws
k

)
Moreover, the symmetric positive semi-definite matrix As

l of size Jl and the column vector bsl
of size Jl are defined such that p̃l (wl|ws

l ) := pl (ws
l ) + bs>l (wl −ws

l ) + (wl −ws
l )
>As

l (wl −ws
l )

is a majorizing quadratic and convex surrogate function of pl anchored at ws
l (see section 4.4.2.2

and appendix C section C.2 for examples of such quadratic and convex surrogate functions).

4.4.2.1 Data Generation

For this experiment, we consider 2 blocks of dimensions I = 50, J1 = 150 and J2 = 100. Each block
is generated according to the following matrix model:

Xl = ηylw>l + ‖ylw
>
l ‖F

‖El‖F
El, l = 1, 2

where each row of [y1,y2] ∈ RI×2 follows a multivariate normal distribution N (0,Σ), such that
(Σ)11 = (Σ)22 = 1 and (Σ)12 = (Σ)21 = 0.9 ensuring a correlation of 0.9 between y1 and y2.

Moreover, w1 ∈ RJ1 and w2 ∈ RJ2 are generated with a pre-defined structure as follows:

• w1 is composed of multiple steps whose levels are defined randomly from the uniform distribution
between −0.5 and 0.5. The width of each level is randomly chosen between 5 and 10. Then the
elements of w1 are sorted in an increasing order, w1 is centered, normalized and soft-thresholded
such that ‖w1‖1 = 0.64

√
J1. This procedure allows to define w1 as a succession of plateaux of

increasing level, where one level is null. This kind of structure is particularly well recovered
through a Total Variation penalty (see next section).

• w2 is divided into 7 disjoint groups. All the elements of a group are set to specific constants.
These constants are equal to 0 for groups 1, 5 and 7. w2 is also `2-normalized. This structure
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is particularly well recovered through a group-LASSO penalty (see next section).

The noise matrix El ∈ RI×Jl is defined such that its entries are drawn from a standardized normal
distribution. The Signal to Noise Ratio (SNR) is equal to 20log10 (η) which enables η to drive the
SNR.

4.4.2.2 Penalties and Surrogate functions

Considering the predefined within block structures, w1 was subject to a Total Variation (TV) penalty
while w2 to a group-LASSO (GL) penalty.

The TV penalty, first introduced in [Rudin et al., 1992], is widely used as a tool in image denoising
and restoration. It accounts for the spatial structure of images by encoding piecewise smoothness and
enabling the recovery of homogeneous regions separated by sharp boundaries [Pierrefeu, 2018]. The
TV penalty can be formulated as follows:

p1(w1) =
Jl−1∑
j=1
|(w1)j+1 − (w1)j | = ‖D1w1‖1, (4.27)

where D1 ∈ RJl−1×Jl is defined such that (D1)jj = −1, (D1)jj+1 = 1 and 0 elsewhere. A surrogate
function of the TV penalty can be defined as (see appendix C section C.2.3 for more details):

p̃1(w1|ws
1) := 1

2p1(ws
1) + 1

2w>1 D>1 ∆s
1D1w1, (4.28)

where ∆s
1 is a diagonal matrix of size J1−1 such that (∆s

1)jj = 1
|(ws

1)j+1−(ws
1)j | . This surrogate function

is well defined whenever (ws
1)j+1 6= (ws

1)j .

The non-overlapping group-LASSO, first introduced in [Yuan and Lin, 2006], is the `1,2-mixed norm.
By introducing a partition G of J1; JK (meaning all the groups are disjoint and ∪

g∈G
g = J1; JK), the

group-LASSO penalty is defined as:

p2(w2) =
∑
g∈G
‖(w2)ig‖2, (4.29)

where (w2)ig is a subvector of w2 containing only the elements of the gth group of G. The group-
LASSO penalty acts like the LASSO at the group level and an entire group of variables may drop
out of jointly. A surrogate function of the group-LASSO penalty can be defined as (see appendix C
section C.2.2 for more details):

p̃2(w2|ws
2) := 1

2p2(ws
2) + 1

2w>2 ∆s
2w2, (4.30)

where ∆s
2 is a diagonal matrix of size J2 such that (∆s

2)jj = 1
‖(ws

2)jg‖2
if variable j is in group g. This

surrogate function is defined ∀ws
2 ∈ RJ2 such that ∀g ∈ G, ‖(ws

2)jg‖2 6= 0.

4.4.2.3 Constraints and parameters

For all the methods, the design matrix C is defined such that c12 = c21 = 1 and c11 = c22 = 0 and the
function g is set to the square function. Concerning the `2-norm constraints, for the two blocks and
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all three methods, Ml = IJl
. So, for MM_SGCCA, Ω2

l = {wl ∈ RJl ; w>l wl ≤ 1}, l = 1, 2. An `1-norm
constraint is imposed for the two blocks in SGCCA and only on the first block for MM_SGCCA. For
RGCCA, no sparse constraint is imposed.

In the end, in this setting, RGCCA is parameter free. Two sparse parameters are tuned for
SGCCA: s1 and s2. Three parameters are tuned for MM_SGCCA: s1, ψ1 (for the TV penalty) and
ψ2 (for the group-LASSO penalty).

In order to evaluate each method, several measurements a used. First, similarly to sections 2.4
and 3.3.3, a measurement of accuracy (ACC) is introduced:

ACC = 1
L

L∑
l=1
|ŵ>l wl|, (4.31)

where ŵl ∈ RJl is the estimate of the true block-weight vector wl. Moreover, the Cohen’s kappa
[Cohen, 1960] is used to evaluate the support recovery. This indicator is computed as:

κl = κ
(
1ŵl

,1wl

)
, l = 1, 2, (4.32)

where (1w)i = 1 if |(w)i| = 0, and 0 otherwise. An element of a vector is considered as null if its
absolute value is below the machine threshold (2.2× 10−16).

Parameters are tuned in order to maximize a weighted sum of ACC, κ1 and κ2.
All methods are initialized with the SVD of each block and the same stopping criterion is defined

with ε = 10−8. For MM_SGCCA, two stopping criteria have to be defined, one for the inner «for
loop» (ε1 = 10−4) and one for the whole algorithm (ε2 = 10−8).

4.4.2.4 Computational considerations

Based on the surrogate functions defined in equations (4.28) and (4.30), the updates for a specific µp
in Algorithm 7 becomes:

ws+1
1 = 1

2

[
µpIJ1 + ψ1

2 D>1 ∆s
1D1

]−1
∇s1f (ws

1,ws
2) + µp

2∑
j=1

PΩj
1
(ws

1)

 (4.33)

ws+1
2 = [µpIJ2 + ψ2∆s

2]−1
(
∇s2f

(
ws+1

1 ,ws
2

)
+ µpPΩ2

2
(ws

2)
)

(4.34)

where ∆s
1 and ∆s

2 can be ill-conditioned (see their definition in section 4.4.2.2). In [Figueiredo et al.,
2006, Selesnick, 2012], the authors overcome this issue using the matrix inversion lemma. With such
lemma, these updates becomes:

ws+1
1 = 1

2µp

[
IJ1 + D>1

(2µp
ψ1

∆s−1

1 + D1D>1
)−1

D1

]∇s1f (ws
1,ws

2) + µp

2∑
j=1

PΩj
1
(ws

1)

 (4.35)

ws+1
2 = 1

µp

[
IJ2 +

(
µp
ψ2

∆s−1

2 + IJ2

)−1
] (
∇s2f

(
ws+1

1 ,ws
2

)
+ µpPΩ2

2
(ws

2)
)
. (4.36)

Hence, even if ∆s
1 or ∆s

2 are ill-conditioned, the algorithm is not affected as they are always inverted
first.
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4.4.2.5 Results

For each value of η ∈ {0.5, 1, 2}, 40 datasets are generated. RGCCA, SGCCA and MM_SGCCA
are applied on each dataset. For each algorithm and value of η, mean and standard deviation of the
ACC (defined in (4.31)) and of κl, l = 1, 2 (defined in (4.32)) are computed through datasets and
reported in table 4.1. The median of the number of iterations of each algorithm, their interquartile
range and the mean and standard deviation of the execution time are also presented in this table. On
Figure 4.4-5 and 4.4-6, the weight vectors for the first and second block respectively are shown for
each method.

In table 4.1, all methods performed quite similarly in regard of the ACC measurement, with an
increase of the ACC with the SNR value. However, differences are observed concerning κ1 and κ2

that characterize how well null elements are recovered. First, their value is not reported for RGCCA
due to the absence of sparse constraints in its optimization problem. Then, for MM_SGCCA, κ1

and κ2 are always higher than for SGCCA. MM_SGCCA even perfectly estimates the null elements
when η = 2. This is a relief, the new algorithm proposed to handle structured sparse penalties indeed
provides better results than SGCCA.

Still in table 4.1, from η = 0.5 to 2 for MM_SGCCA, the number of iterations and the execution
time both decreases by a factor of 5 approximately. However, when η = 2, MM_SGCCA is still 103

times longer than SGCCA or RGCCA. For SGCCA and RGCCA, the number of iterations and the
execution time are almost not affected by the SNR.

In figures 4.4-5 and 4.4-6, the rows are associated with a specific value of η and the columns with
a specific method. It is interesting to visualize how the estimations evolve with SNR and methods.
For example, only MM_SGCCA manages to catch almost all the right null elements for η = 0.5 for
the two blocks. SGCCA only reaches this goal when η = 2. As mentioned earlier, RGCCA cannot
perform this estimation as no sparse constraint is imposed.

Table 4.1 – For each value of η ∈ {0.5, 1, 2}, 40 datasets were generated. For each dataset, three
methods are compared: RGCCA, SGCCA and MM_SGCCA. For each algorithm, the mean and
standard deviation (std) of the ACC (defined in (4.31)) and of κl, l = 1, 2 (defined in (4.32)), the
median (MD) of the number of iterations (Iter), their interquartile range (IQR) and the mean and
standard deviation of the execution time (Time) are reported.

SNR Algorithm
ACC κ1 κ2 Iter Time (s)

(mean ± std) (mean ± std) (mean ± std) (MD - IQR) (mean ± std)

η = 0.5
RGCCA 0.952 ± 4e-3 \ \ 6 - 0 0.03 ± 1e-2

SGCCA 0.935 ± 5e-3 0.77 ± 4e-2 0.82 ± 5e-2 6 - 0 0.042 ± 7e-3

MM_SGCCA 0.973 ± 6e-3 0.9 ± 0.1 1 ± 0 2180 - 1055 127 ± 35

η = 1
RGCCA 0.984 ± 2e-3 \ \ 4 - 0 0.03 ± 1e-2

SGCCA 0.981 ± 1e-3 0.90 ± 3e-2 0.97 ± 3e-2 4 - 0 0.033 ± 6e-3

MM_SGCCA 0.9928 ± 7e-4 0.99 ± 1e-2 1 ± 0 740 - 127 46 ± 6

η = 2
RGCCA 0.992 ± 2e-3 \ \ 4 - 0 0.04 ± 2e-2

SGCCA 0.9944 ± 2e-4 0.99 ± 1e-2 1 ± 0 3 - 1 0.029 ± 6e-3

MM_SGCCA 0.9977 ± 2e-4 1 ± 0 1 ± 0 426 - 52 28 ± 3
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Figure 4.4-5 – Continuous lines correspond to the first block weight vector and points to its estimates
obtained with RGCCA, SGCCA and MM_SGCCA. Each row is associated with a specific value of
η (0.5, 1 and 2) arranged in increasing order and each column with a method. 4 worst runs for each
method according to a weighted sum of ACC, κ1 and κ2 were removed. For each element of this
estimated vector, grey areas stand for the min and max of its distribution based on the 36 remaining
runs.
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Figure 4.4-6 – Continuous lines correspond to the second block weight vector and points to its estimates
obtained with RGCCA, SGCCA and MM_SGCCA. Each row is associated with a specific value of
η (0.5, 1 and 2) arranged in increasing order and each column with a method. 4 worst runs for each
method according to a weighted sum of ACC, κ1 and κ2 were removed. For each element of this
estimated vector, grey areas stand for the min and max of its distribution based on the 36 remaining
runs.
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4.5 Conclusion and Discussion

In this Chapter, Fast_L1_L2 was proposed as a new procedure to solve efficiently the SGCCA op-
timization problem. This procedure is faster than binary search and POCS. Under mild conditions,
we have shown that the corresponding SGCCA algorithm is globally convergent.

Moreover, a structured sparse version of RGCCA was presented. Structure sparse penalties allow
to jointly select variables that are known to have intra-block interactions. A previous structured sparse
version of RGCCA was proposed in [Löfstedt et al., 2016] in the framework of proximal algorithm.
However, the function g was limited to the identity and sparse inducing penalties had to be convex.
We propose a new algorithm that enables g to be any continuously differentiable convex function.
In addition, as long as it is possible to find a quadratic and convex surrogate function of the sparse
penalty, this procedure can be used. This algorithm relies on distance majorization, generalized BCA
and MM principle. This approach was compared favorably with RGCCA and SGCCA. Comparison
with other structured sparse CCA algorithms as [Chen and Liu, 2012, Chen et al., 2012a] is under
way.

Here, only the construction of first component was addressed. Similarly to section 2.2.4 a deflation
procedure can be used in structured SGCCA in order to obtain orthogonal higher-level components.

This procedure consists in replacing a block Xl by the residual X(1)
l = Xl−y(1)

l

(
y(1)>
l y(1)

l

)−1
y(1)>
l Xl

related to the regression of Xl on the first-stage block component y(1)
l .

As explained in section 4.4.2.2, if ∃j such that (ws
1)j+1 = (ws

1)j or if ∃g ∈ G such that ‖(ws
2)jg‖2 = 0

then ∆s
1 or ∆s

2 are not defined. This is troublesome when sparse solution is sought. Indeed, no
quadratic surrogate function of the scalar absolute value anchored at 0 can be found [de Leeuw and
Lange, 2009]. As both group-LASSO and TV surrogate functions are derived from the surrogate
function of the scalar absolute value (see appendix C), they inherit this issue. One solution is to
consider a perturbation of the original penalties as discussed in [De Leeuw, 2018, Du et al., 2017,
Yu et al., 2015]. This perturbation introduces a smoothing parameter in order to make the penalty
everywhere differentiable. The MM principle is still needed as the perturbation is hard to minimize.
Work in progress aims at integrating these perturbations inside the procedure to handle this issue. In
practice, this issue is dealt with the matrix inversion lemma presented in section 4.4.2.4.

The general optimization framework presented in Chapter 1 cannot be used as such to demonstrate
the global convergence of the Structured SGCCA algorithm. Indeed, the structure of this algorithm
is different from the others as it is composed of an "inner loop", where the parameter µ that regulates
the amount of the penalty associated with the feasible solutions is fixed, and an "outer loop", where µ
is gradually increased to enforce the solution to be in the feasible set. The convergence of the "inner
loop" can still be studied with the Meyer’s theory. However, it needs to be shown that the sequences
generated by this "inner loop" lies in a compact set, which is verified when the objective function is
coercive. This approach is similar to the work undertaken in [Chi et al., 2013] to prove the global
convergence of the distance majorization algorithm. In this article, convergence of the "outer loop" is
also studied. Work in progress includes adapting this convergence study to our Structured SGCCA
algorithm.

Here, as long as it is possible to find a majorizing surrogate function of pk satisfying points (i− iii)
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defined in section 4.4.1.4, Algorithm 7 is still valid. We limit the investigation to quadratic and convex
surrogate function for every penalty pk. We made this choice as quadratic and convex surrogates are the
most common ones (see appendix C where surrogate functions of multiple structured sparse penalties
are presented).

This project is still ongoing and not yet evaluated on a real dataset. To get an hint on its possib-
ilities, the reader is referred to [Guigui et al., 2019] which applies the structured SGCCA algorithm
proposed in [Löfstedt et al., 2016] on the Alzheimer’s Disease Neuroimaging Initiative (ADNI), an
open dataset on Alzheimer’s disease. In this article, the interactions among three blocks are studied
in a prediction context.
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The usefulness of RGCCA and MGCCA is shown over several applications. The first study in-
vestigates the influence of genetics on the normal aging brain from the United Kingdom Biobank

(UKB) cohort. The second one is an imaging-genetic study on the Alzheimer’s disease Neuroimaging
Initiative (ADNI) that aims at understanding some mechanisms of the disease through several modalit-
ies (Genetics, Transcriptomics, longitudinal MRI, Clinical factors). The third study aims at analyzing
the efficiency of a moisturizer from Raman microscopy. The two last studies aim at identifying brain
areas implicated in the process of discrimination between close syllables in two- to three-month-old
human infants from Electroencephalography (EEG).

5.1 A multivariate haplotype approach in imaging-genetics on the UK

Biobank

At the heart of this work lies the United Kingdom Biobank (UKB) cohort. The UKB is a health
research resource that aims at improving the prevention, diagnosis and treatment of a wide range of
illnesses. Between the years 2006 and 2010, about 500.000 people aged between 45 and 73 years old,
were recruited in the general population across Great Britain. The UKB cohort provides genotype data
(800.000 SNPs), the digitized medical file (with daily updates) and even high quality brain imaging
data (anatomical, functional and diffusion MRIs) for 20.000 of them, with a final goal of 100.000.

Imaging genetic studies of large general population cohorts such as UKB enable to assess the range
of normal variations in brain structures. In this section, a two-block study is performed with RGCCA
in order to investigate the influence of genetics on the normal aging brain.

5.1.1 Background in Imaging-genetics

All the concepts evoked in this section are rather basics and do not pretend to offer a general knowledge
on genetics or neuroimaging but rather a short introduction in order to understand the following work.

5.1.1.1 Genetics

The DeoxyriboNucleic Acid (DNA). All human cells, except red blood cells, have, within the
nucleus, a macro-molecule called the DeoxyriboNucleic Acid (DNA). This DNA bears the genetic
information allowing the development, functioning, growth and reproduction processes. It is structured
in chromosomes, 23 pairs in number, except for germ cells, offering a compact way of storing the genetic
information. Each chromosome of a pair being inherited from either the mother or the father.

For a single chromosome, the DNA is composed of two strands. Each strand is a sequence of nuc-
leotides. Four nucleotides are possible: cytosine (C), guanine (G), adenine (A) or thymine (T). The
two strands of the DNA are linked by their nucleotides through hydrogen bonds. Only links between
the nucleotides A and T or C and G are possible. We commonly talk about pairs of nucleotides. The
human genome is composed of approximately 3.2 billions of pairs of nucleotides, also noted 3.2Gbp
for Giga base pairs.

Genes, Alleles and SNPs. A gene is a fragment of DNA, composed of alternating exons and
introns. Only exons are translated into proteins, according to the genetic code. Triplets of nucleotides
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are called codons. Each codon codes for an amino acid, a sequence of amino acids is a protein. The
genetic code is redundant, meaning that each amino acid can be coded by several codons, allowing
some variability in the human genome. In the end, exons are coding parts of a gene while introns are
non-coding parts. Variability occurs in non coding parts of the genome as well. The human genome is
composed of approximately 23.000 genes. Flanking regions up-and down-stream of a gene do not code
for proteins but can interact with proteins playing a role in the expression regulation of that gene.

In humans, each gene occurs twice: once on the maternal chromosome and once on the paternal
one, possibly in two different versions. A version of a gene is called an allele. When the two al-
leles of a gene are identical, we say that the individual is homozygous for this gene. In opposite,
when the alleles are different, the individual is heterozygous for this gene. When the terms al-
lele/homozygous/heterozygous apply to a single nucleotide, it is called single nucleotide polymorphism
(SNP). SNPs are part of the genome variability and can occur in coding and non coding part of the
genome. The genotype of an individual is defined by the nucleotides for a pair of alleles. The pheno-
type is the set of behavioral, physiological, morphological and cellular features that can be observed or
measured at a macroscopic scale. On the 3.2Gbp of the human DNA, only 1.5% constitutes the exome
(the all set of exons of an individual) and around 80% is non-coding but is considered to be functional.

Genome Wide Association Studies (GWAS). A Genome Wide Association Studies (GWAS)
aim at studying, in a homogeneous population called an ancestry, the correlation between genotypes
and one or several phenotypes. Genotypes are usually evaluated at SNPs loci. As both alleles are
considered, 3 of the following different states can be observed: A/T-A/T, C/G-C/G and A-T/C-G.
The following conventional encoding can be encountered: 0, 1 or 2. 0 means that the participant is
homozygous for the major allele at the considered locus, that is to say the most common allele in the
population under study, 2 means the participant is homozygous for the minor allele, that is to say the
less common allele, and 1 means heterozygous.

GWAS mainly investigate these correlations through univariate methods. This means that the
influence of a SNP on the chosen phenotype is considered independently regarding the other SNPs.
When the phenotype is quantitative (cortical thickness, blood cholesterol, etc), which is mostly the
case in imaging-genetics, this influence is essentially studied through a linear model called an additive
model in genetics. It is called additive because if a minor allele is present twice, the phenotype vari-
ation has to be twice higher or lower. From this additive model, a p-value can be derived. This p-value
indicates if the linear coefficient is effectively different from zero. This model is then repeated with
each SNP. As multiple tests are undertaken, we have to control the Family Wise Error Rate (FWER).
The main correction employed in genetics is the Bonferroni correction. It consists in dividing the
p-values by the number of tests undertaken. As the significant threshold of a single p-value is usually
5%, we can convert this correction to a new threshold for all the tests. In GWAS, the number of
genetic variations considered is often around a million, which leads to a threshold of 5e− 8.

Haplotypes. SNP phasing aims at determining variants that are inherited together either from
the mother or from the father. The genome of an individual is not strictly a combination between
half of the genome of the mother and half of the genome of the father. This is due to the genetic
recombination. In humans, genetic recombinations occur during the meiosis (the cell division that
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generates the gametes). The main recombination that is of interest here is called the chromosomal
crossover. During the meiosis, two chromosomes of the same pair can meet and thus exchange pieces
of DNA sequences. Then, on a chromosome, we have what is called recombination hotspots, defined
by a high recombination rate. The recombination rate is closely related to the linkage disequilibrium
(LD). LD is the non-random association of alleles at different loci in a given population. SNPs are said
to be in LD when the frequency of association of their different alleles is higher or lower than what
would be expected if the loci were independent and associated randomly. Through the LD and the re-
combination rate, a genetic distance between loci can be defined. It is measured in centimorgan (cM).
The lower the genetic distance between two loci, the stronger their link and the higher the probability
that they were inherited together. Usually, between two recombination hotspots, the genetic distances
between loci is low, meaning that the probability that this piece of sequence of DNA was inherited as
it is high. For this kind of DNA chunks, we talk about haplotypic blocks. Thus, an haplotype is a
set of genotyped SNPs located on a chromosome that are usually inherited together. This definition
is not strict as it is still the topic of discussions. In the work considered here, we define haplotypes as
an allele of a specific set of SNPs that may have been inherited together. We realize that in order to
define such haplotypes, we have to know the phase of the SNPs.

5.1.1.2 Neuroimaging

Neurons. The human brain is composed on average of 170 billions of cells of which 86 billions are
neurons. Neurons are nerve cells that are the basis unit of the nervous system. Neurons take care of
the transmission of an electric signal called the Action Potential (AP). A neuron consists of a cellu-
lar body, where lies the nucleus, and of two types of extensions: the axon, that is unique and leads
the AP away from the cellular body and the dendrites, that are numerous and carry the AP to the
cellular body. Depending on the shape of the extensions, their number and localization, many classes
of neurons have been defined. The transmission of an AP between two neurons is achieved through
the synapse. In humans, synapses are essentially chemical and composed of a presynaptic, a postsyn-
aptic cell and of a synaptic cleft between the two membranes. Among other things, presynaptic and
postsynaptic cells can be either an axon or a dendrite. The axons are surrounded by a myelin sheath
which accelerates the propagation speed of the AP.

Grey/White Matter. The human brain is located above the cerebellum and the brain stem. It is
composed of two hemispheres and of the diencephalon which consists of structures that are on either
side of the third ventricle, including the thalamus, the hypothalamus, the epithalamus and the sub-
thalamus. In the two brain hemispheres, there are the grey and the white matter. The grey matter is
located on the peripherical part of the brain and surrounds the white matter. Thus, it forms a kind of
bark (cortex in Latin) around it. The grey matter mainly consists in the cellular body of the neurons.
These cellular bodies are stacked on multiple layers of 3 to 6 cells leading to a thickness between 1
and 4.5 millimeters. Microscopically, it appears darker than the rest of the nerve tissue. The white
matter consists in bundles of whitish-colored myelin-sheathed axonal fibers. The white matter allows
to establish the connection between the cellular bodies of two distinct regions of the cortex.
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Sulci. Geometrical, mechanical and genetic constraints have led to the phenomenon of cortical sul-
cation of the brain in the cranial cavity . The sulci are of variable depth and are delimited by ridges
called gyri. The deepest sulci delimit the cortex into four lobes: the frontal, parietal, temporal and
occipital lobes.

The CerebroSpinal Fluid (CSF). The human brain lies in a liquid called the CerebroSpinal Fluid
(CSF). The main goal of this liquid is to absorb the shocks that could damage it. It is also used as a
channel for the evacuation of waste produced by the brain. In the end, it plays an important role of
immunological protection. Its composition reflects the physiological state of the brain: inflammation,
infection, pharmacological molecules...

Atlases. A large part of the neuroimaging field tries to segment the brain and establish atlases. This
segmentation allows for example to separate grey from white matter, to extract subcortical volumes
(thalamus, hypothalamus...), to identify sulci... Once this segmentation is performed, atlases can be
determined. For the ones we are interested in, they are mainly based on anatomical considerations.
Grey matter or sulci based atlases can thus be found and help to divide the brain into Regions Of
Interest (ROI). On these ROI, specific features can be computed: thickness of the grey matter, depth
of a sulcus...

The Magnetic Resonance Imaging (MRI). The main tool used to study the brain anatomy
is the Magnetic Resonance Imaging (MRI). It exploits the phenomenon of Nuclear Magnetic Reson-
ance (NMR). The nucleus of some atoms has a spin magnetic moment. It is the case for the hydrogen
atom which is present in large quantities in the human organism. When we apply a constant magnetic
field to such atoms, their magnetic spin moment aligns with this magnetic field. In an MRI system
the spin is then tilted perpendicularly to the constant field by an adapted radio-frequency wave. The
return to alignment with the constant field of the spins following a precession trajectory creates the
NMR signal picked up by the reading antennas. This signal has two components, parallel and per-
pendicular, which evolve according to an exponential of time constants T1 and T2 respectively. These
constants reflect the concentrations of water molecules and the interactions these molecules have with
their surroundings. In the end, an MRI allows the construction of T1 or T2 weighted maps that reflect
the concentration or local environment of water molecules.

5.1.1.3 Preliminary Work

The analyses were conducted under UKB data application number #25251 on January 2018 release,
consisting of 20.060 subjects with genotype data and brain T1-weighted MRI. The imaging quality
control (QC) was performed by UKB following information described in [Alfaro-Almagro et al., 2018].
The UKB genetic data underwent also a stringent QC protocol, which was performed at the Wellcome
Trust Centre for Human Genetics [Bycroft et al., 2017]. In the end, 15.612 subjects have been retained
after QC protocol, British ancestry selection, and additional filtering for high heterogeneity, high
missingness, first-degree relatedness and sex mismatch.

The UKB cohort is particularly suited to study natural and pathological aging, with a participants
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mean age of 57 years, and a standard deviation of 8.2. Grey matter thickness is known to shrink with
aging in both diseased and normal brains [Fjell and Walhovd, 2010, Ge et al., 2002, Lockhart and
DeCarli, 2014]. A related effect is the cortical sulcus widening [Kochunov et al., 2005, Shen et al.,
2018]. The width of a sulcus can be estimated using a feature called opening [Rivière et al., 2009]
shown to be robustly related to grey matter thickness and which does not require spatial normalization
nor regional atlas. The opening of a sulcus can be computed as the ratio of CSF volume contained in
the sulcus and surface area of the sulcus. Heritability studies pointed to a dozen sulci that appeared
to be under strong genetic control [Le Guen et al., 2017]. Furthermore, in [Le Guen et al., 2018],
GWAS have identified a reproducible genetic marker associated with the opening of the left posterior
cingulate sulcus (FCMpost_left). In this study, the sulcus opening phenotypes were studied in regards
of 621.852 SNPs (see [Le Guen et al., 2018] for more details about their selection). See Figure 5.1-1
for a sum up of the results.

On Figure 5.1-1.a, for two specific SNPs (rs864736 and rs59084003), the p-value of their association
with ten selected sulci openings is presented. It appears that both of them are strongly associated with
the FCMpost_left sulcus opening. On Figure 5.1-1.b, the corresponding Locuszoom display [Pruim
et al., 2010] is shown, focusing on a 500kb window on chromosome 1 around the two considered SNPs.
Both of them appears to be in the upstream region of the KCNK2 gene. The correlation coefficient
between each represented SNP and either rs864736 (circles) or rs59084003 (triangles) is also reported.
Both rs864736 and rs59084003 pass the genomic threshold of significant association with the opening
of FCMpost_left after correction for multiple testing. However, they appear to be strongly correlated
and are located close to a recombination hotspot. Moreover, 5 other SNPs (the ones named in Figure
5.1-1.b), seem also to have an influence on the opening of FCMpost_left sulcus.

Figure 5.1-1 – Taken from [Le Guen et al., 2018]. GWAS hits upstream of KCNK2 regulating the
sulcal opening. a: the log10 (p-value) of each SNPs (rs864736 and rs59084003) mapped onto the
nominally significant sulci among the ten considered; b: Locuszoom display [Pruim et al., 2010] of the
phenotype-variants association for the region upstream of KCNK2 with the left posterior cingulate
sulcus opening as a phenotype.
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5.1.2 Haplotype multivariate association analysis

In this section, we propose to analyze in a multivariate setup the associations between sets of genetic
variants and multiple sulci widths. The genetic variants we consider are sets of SNPs of known phase
called haplotypes, taken from the upstream region of the KCNK2 gene. To the best of our knowledge,
multivariate analysis in imaging genetics has never been used in haplotype studies.

GWAS use a univariate approach and as such, suffer from several drawbacks, in particular the use
of an unduly conservative multiple test correction and the fact that the correlation structure of the
genome is not accounted for. In the context of complex traits, where individual variant effect size is
expected to be small, only SNPs that are frequent in the population can significantly be associated
with the phenotype. Moreover, univariate analyses are unable to model or predict the role of a
genetic variant within the genomic region. Finally, univariate approaches are inadequate in situations
where a set of variants are jointly associated with multiple phenotypes (pleiotropy). Using a multiple
phenotype multivariate approach, we propose to alleviate these drawbacks by simultaneously analyzing
one hundred related phenotypes and to model interactions between genetic variants within the same
genomic segment.

The work undertaken is still under the UKB data application #25251 and uses the exact same
participants and features as in Le Guen et al. [2018].

5.1.2.1 Imaging

For each selected subject, the brain mask of the T1-weighted image is obtained using SPM8 software
(fil.ion.ucl.ac.uk/spm). Next, individual brain images were segmented into grey matter, white matter
and CSF in BrainVisa. Finally, individual sulci were extracted using Morphologist, the sulcus identi-
fication pipeline of BrainVisa, to automatically segment [Fischer et al., 2012] and label [Perrot et al.,
2011] 126 brain sulci. We retained the 96 most sample-wide identified sulci: a sulci was retained if
it was missing in less than 1000 individuals (94.6% presence rate, see [Borne et al., 2018]). For each
retained sulcus and for each subject, sulcus width or opening (the average distance between both
banks) was estimated as the ratio of CSF volume and surface area of the sulcus [Le Guen et al., 2017,
2018].

5.1.2.2 Genetics

Genotyping data in UKB (UK Biobank Axiom Array) contains 820.967 SNPs. In such data, for a
given SNP, the variant status is obtained without knowing if it lays on the paternal or maternal
chromosome for a heterozygous subject. This raises an issue when one wants to use the chain of
consecutive SNPs. In the 2018 release of UK Biobank, the so-called "phased data" are available for
the 500.000 subjects. With this pre-processing, the succession of SNPs alleles is inferred in contiguous
small regions of maternal or paternal chromosomes. Based on the results of a GWAS [Le Guen et al.,
2018] where SNP rs864736 is found to be associated with the opening of several sulci, we chose a
genomic region of 55.8 kbp on chromosome 1, which contained all the SNPs in LD with rs864736 (i.e.,
SNPs which are supposed to be inherited together from the same parent). This region consists in 18

http://fil.ion.ucl.ac.uk/spm
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SNPs that are inside the black-dashed box in Figure 5.1-1.b. Using the "phased data" of our 15.612
subjects in this region, we derived all the haplotypes with a length of 3 to 18 SNPs.

The construction of the haplotypes matrix is explained in (5.1). In this example, 3 SNPs are
considered and two subjects. A subject is defined as Si,j , where i refers to the subject and j to the
chromosome considered. This time, as the SNPs are phased, they are only coded in 0 or 1 if they are
present in the major or minor allele respectively. Then, the observed haplotypes are derived. Here,
two haplotypes appear: 011 or 100. The first subject is heterozygous for this 3-locus example because
(s)he has the two haplotypes, when the second subject is homozygous for the second haplotype.

Si,j SNP1 SNP2 SNP3 h1 h2





S1,1 0 1 1 1 0
S1,2 1 0 0 0 1
S2,1 1 0 0 0 1
S2,2 1 0 0 0 1

︸ ︷︷ ︸
UKB haplotypes

−→

Si h1 h2[ ]
S1 1 1
S2 0 2

︸ ︷︷ ︸
H

(5.1)

In the end, after considering all the possible haplotypes with a length of 3 to 18 SNPs, and filtered
out the less frequent ones (less than 1% as for the Minor Allele Frequency (MAF) of a SNP), 604
haplotypes are retained.

5.1.2.3 RGCCA

The interplay between neuroimaging and genetic data is uncovered using Regularized Generalized
Canonical Correlation Analysis (RGCCA) (see Chapter 2 for more details). The first block, denoted
X1, is related to neuroimaging and is defined by J1 = 96 sulci measured on I = 15.612 individuals.
The second block X2 is related to genetic information and is defined by J2 = 604 haplotypes measured
on the same set of I individuals. Function g is set to the square function.

For the two blocks, Ml = τlI + (1−τl)
I−1 X>l Xl, l = 1, 2, where τl is a scalar between 0 and 1. Ml

can be considered as a shrinkage estimate of the true variance-covariance matrix Σll [Ledoit and Wolf,
2004]. [Schäfer and Strimmer, 2005] gives an analytical formula for the optimal τl that minimizes
the mean square error between the true covariance matrix Σll for block l and its estimate Ml (see
Chapter 1 section 1.2.1 for more details).

5.1.2.4 Bootstrap procedure and missing data imputation

A balanced bootstrap procedure [Gleason, 1988] is used to assess the reliability of block weight vectors
estimated by RGCCA. For that purpose, B = 2000 bootstrap samples are considered. Some sulci
were not detected in all individuals, therefore a simple regression imputation strategy is used to avoid
missing values in each bootstrap sample of sulci opening data. The regression model is built to
predict each opening value from the covariates Age, Sex, and the 10 first components of UK Biobank-
provided multidimensional scaling. Residuals where reported in a new I × J1 matrix, where subjects
with missing sulci (i.e. where not accounted for in the regression model) are set to 0. This procedure
allows both to impute missing values and remove effects of covariates which are confounding factors in
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our case. Finally, each residual bootstrap sample is standardized within each block in order to make
the variables comparable. To make blocks comparable, each block was divided by the square root of
its number of variables [Tenenhaus et al., 2017]. The RGCCA package (freely available at CRAN:
cran.r-project.org) was then used to yield the weight vectors wb

1 and wb
2 for each bootstrap sample

b = 1, . . . , 2000.
Thanks to this bootstrap procedure, a distribution for each weight wlj , l = 1, . . . , L; j = 1, 2 is

obtained. A weight element wlj is considered relevant if zero is excluded from

min(wbl,j)
b∈J1,BK

,max(wbl,j)
b∈J1,BK

,
where wbl,j is the estimate associated with the bth bootstrap sample of the jth element of the weight
vector corresponding to the block l.

5.1.3 Results

Figure 5.1-2 represents the weights wl, l = 1, 2 computed with RGCCA. Only relevant weights ac-
cording to the procedure described in section 5.1.2.4 are represented.

Figure 5.1-2 – (Left): Weight vector w1 associated with the selected variables of the imaging block. Selected
features were the bilateral posterior cingulate sulci ; (Top, Right): Weight vector w2 associated with the selected
variables of the genetic block. (Bottom, Right): SNP composition of selected haplotypes: light grey bars show
the extent of the sequence and dots indicate the location of alternative alleles (see text for details).

5.1.3.1 Selected variables for imaging block

Figure 5.1-2 (top, left) shows a barplot of the weights associated with the 2 selected features of the
imaging block. The selected variables correspond to the bilateral posterior cingulate sulci. The left

https://cran.r-project.org/web/packages/RGCCA/vignettes/vignette_RGCCA.pdf
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posterior cingulate sulcus opening was reported significantly associated with rs864736 in the univariate
approach.

5.1.3.2 Selected variables for genetic block

Figure 5.1-2 (top, right) depicts the weights associated with the 12 selected haplotypes (in decreasing
order). Figure 5.1-2 (bottom, right) gives the composition of the haplotypes: selected sequences of
variants are represented as a grey box. In each sequence, grey dots indicate the alternative alleles.
Haplotypes are named as follows: [index of starting SNP - sequence of variants], e.g. [4 − 000001]
refers to the haplotype that starts on position #4 with 5 reference alleles and a single alternative allele
at position #9. Selected haplotypes included various combinations of variants (from 3 to 10), however
none of the haplotypes included variants between position 11 to 18.

5.1.3.3 Findings interpretation

We will interpret the sign of the weights using haplotype [4−000001] and left posterior cingulate sulcus
(FCMpost_left) as an example. These both variables have negative weights in the model meaning
that they are negatively correlated to their block component yl, l = 1, 2. However, over the B = 2000
bootstrap samples, correlation between y1 and y2 was always negative. To summarize, the presence
of haplotype [4 − 000001] is associated with a lower opening for FCMpost_left: haplotypes with a
negative weight have a protective effect on the sulcus opening w.r.t aging. Opposite conclusions are
drawn for haplotypes with a positive weight in the model.

5.1.4 Conclusion and future works

Previous studies by our group identified SNP rs864736 (and marginally rs59084003) as significantly
associated with sulcus opening and grey matter thickness for left posterior cingulate, Intra-Parietal
and Central sulci. Here, we proposed a multivariate model for haplotype associations with multiple
quantitative traits that successfully recovered this previously known associations, and gained substan-
tial knowledge regarding the genomic region and associated sulci. We present three new findings:
1) only the genomic region located upstream of rs864736 and rs59084003 seems to be implicated in
the association ; 2) haplotype combinations are explanatory variables regarding posterior cingulate
sulcus in both hemispheres ; and 3) an alternative allele at the third position (rs504473) seems to be
associated with an antagonistic effect w.r.t rs864736 and rs59084003. Future works will extend this
approach to gene clusters, gene pathways and larger intergenic regions to detect regulating patterns
that interact with the observed phenotypes.

This method relies on a critical variable selection procedure based on bootstrap resampling. This
procedure has shown to be sensitive to strongly co-linear variables, therefore we intend to propose
several developments that could enhance this step. First, using a tree-like representation of haplotypes,
we could regularize or combine variables, thus allowing us to keep more observations for the model
estimation. Second, using block sparsity and regularization, multivariate procedures such as sparse
group-LASSO could better account for co-linearity of the variables. For such analysis, sparse versions
of RGCCA (see [Löfstedt et al., 2016, Tenenhaus et al., 2014] or Chapter 4) will be used. In the
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context of imaging genetics, we argue that insights provided by multivariate approaches are key in
uncovering the complex interactions between genes, structure and function.

5.2 A longitudinal imaging-genetic approach to predict Alzheimer’s

disease conversion

The dataset presented in this section was obtained from the Alzheimer’s Disease Neuroimaging Initi-
ative (ADNI) database (adni.loni.usc.edu). ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairments (MCI) and early Alzheimer’s disease (AD). For up-to-date
information, see www.adni-info.org.

5.2.1 Cohort description

The studied cohort was composed of 72 control subjects (CTL), 64 patients diagnosed with Alzheimer’s
disease (AD), 39 patients with Mild Cognitive Impairments (MCI), and 55 MCI who converted to AD
during the study (MCIc). These participants have been recruited in the ADNI1 cohort.

We considered the following data types: longitudinal T1-weighted MRI, single-nucleotide poly-
morphisms (SNPs) and cerebrospinal fluid (CSF). On the MRI scans, Freesurfer (v5.3) has been run
to extract the cortical thickness of different regions of interest and the volume of different subcortical
regions based on the Destrieux (aparc 2009) atlas [Fischl et al., 2004]. Furthermore, these features
were extracted for 4 different visits (time points): at baseline (bl), 6 months (m6), 12 (m12) and
24 (m24). A higher number of visits could have been chosen, however it would have reduced the
number of subjects considered as only the participants present at all visits were kept. As a result,
from the longitudinal T1-weighted MRI, two tensors were created, one associated with the cortical
thickness (X1 ∈ R230×150×4) and one with the subcortical volumes (X2 ∈ R230×59×4). The genetic
block (X3 ∈ R230×148) comprises 148 genotyped SNPs related to known AD genes (ABCA7, MS4A6A,
MS4A4E, EPHA1, CD33, CD2AP, BIN1, CR1, PICALM, CLU, GERAD2, APOE, PSEN1, PSEN2).
The concentration of Amyloid-β (Aβ) 42 and 40 peptide in the CSF at baseline were used as the
fourth block (X4 ∈ R230×2). They were extracted from upennplasma.csv contained in the R package
ADNIMERGE (https://adni.bitbucket.io/). The fifth block (X5) is a group coding matrix containing
the disease status for each subject: CTL, AD, MCI or MCIc.

5.2.2 Question asked

In [Westman et al., 2012], a model was adjusted to discriminate between AD and CTL volunteers and
then applied to predict if an MCI will convert to AD or not. It is a way to evaluate the robustness of the
biomarkers: some biomarkers could be detected very early and enable some preventive management
of the disease. The same approach is adopted here over different methods.
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5.2.3 Methods

Several MGCCA or RGCCA models are trained on this dataset, with a Cross-Validation (CV) pro-
cedure, in order to learn how to discriminate between AD and CTL subjects. Then, these trained
models are used to predict if a MCI will convert to AD or not.

For each trained model, g(x) = x2 and two components are extracted from the cortical thickness
and the subcortical volumes blocks (with different strategies, see below), while only one component is
extracted from the CSF / SNPs / group coding matrix. The specificity of each trained model along
with the Cross-Validation (CV) procedure are explained below.

Normalization. The Combat normalization procedure, first developed to remove batch effect in
microarray expression data [Johnson et al., 2007], was used to remove the scanner and site effects on
imaging blocks X1 and X2 [Fortin et al., 2018]. ComBat was applied both on the dataset composed of
only the AD and CTL volunteers and only the MCI and MCIc volunteers separately. Each time, the
center ID is taken as site variable and age as biological covariate. Then a standardization procedure
(centering and reducing to unit variance) was nested inside the CV procedure.

MGCCA. MGCCA is used with the two sequential strategies to extract the two components of
X1 and X2. These strategies yields (i) orthogonal components (c-MGCCA) or (ii) orthogonal mode-2
(features mode) weight vectors (w-MGCCA). In addition to these two deflation procedures, two differ-
ent design matrices C are evaluated: either (i) all blocks are connected to one another (a.k.a. complete
design: C) or (ii) all blocks are connected only to the 5th block, the diagnosis block (a.k.a. hierarchical
design: H). In the end, 4 different models are trained: c-MGCCA C, c-MGCCA H, w-MGCCA C and
w-MGCCA H.

For c-MGCCA models, Ml is a JlKl × JlKl block diagonal matrix, where the kth block is Mk
l =

τlIJl
+ (1 − τl)Xl>

..kXl
..k, with τl ∈ [0; 1]. This structure was chosen because it comes down to apply

RGCCA constraint seen in Chapter 2 to each frontal slice Xl
..k separately.

For w-MGCCA models, as seen in section 3.2.3.2, Ml needs to have a Kronecker structure.

Thus, Ml = MK
l ⊗ MJ

l with MJ
l = τlIJl

+ (1 − τl)I−1
(∑Kl

k=1 Xl>
..k

)(∑Kl
k=1 Xl

..k

)
and MK

l =

τlIKl
+ (1− τl)I−1

(∑Jl
j=1 Xl>

.j.

)(∑Jl
j=1 Xl

.j.

)
, where τl ∈ [0; 1]. With this structure, MJ

l (resp. MK
l )

represents an estimation of the covariance matrix associated with the sum of the frontal slices (resp.
lateral slices).

RGCCA. RGCCA is used with a sequential procedure to extract two components out of the mode-
1 matricization of X1 and X2 (and one component out of the other blocks). Moreover, all blocks
are connected only to the 5th block, the diagnosis block (a.k.a. hierarchical design: H). Finally,
Ml = τlI + (1− τl)I−1X>l Xl, where τl ∈ [0; 1].

Hyperparameters. For each Ml presented above, one parameter τl has to be tuned. For low-
dimensional blocks (CSF and SNPs), it was fixed to 10−5 in order for these blocks to give more
importance to the correlation with the block component of the group coding matrix. For the group
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coding matrix, τ5 = 0. In the end, only τ1 and τ2 are tuned through a logarithmic grid of 10 values
between 10−6 and 1.

Cross validation. The cross validation is performed only on the AD and CTL subjects (136 parti-
cipants in total) in order to learn how to discriminate between the two groups. A 10-folds Monte-Carlo
Cross-Validation (MCCV) procedure is used to tune parameters. For each fold, the subsampling is
stratified between a training (80%) and testing set (20%). Each MGCCA and RGCCA model is
learned on a train set and leads to 7 components: 2 for the cortical thickness, 2 for the subcortical
volumes and 1 for each of the CSF, SNPs and group coding matrix. Then, these components, except
for the group coding matrix one, are joined together into a 6-column matrix. A linear discriminant
analysis (LDA) is applied onto this 6-column matrix to predict between AD and CTL. Finally, each
trained model (MGCCA or RGCCA model and LDA) is applied to the corresponding test set and
leads to a prediction accuracy. At the end of the 10-fold MCCV, the parameter set that performed
best according to the mean of prediction accuracy, across all test sets, is chosen. In Table 5.1, column
«Test AD/CTL» presents the mean of prediction accuracy across the 10 test sets for the optimized
parameters.

Prediction for MCI/MCIc. With the optimized parameter set, each model is run on the dataset
composed of all AD and CTL subjects. Then, as explained earlier, a 6-column matrix is created by
joining the 2 components associated with the cortical thickness and the subcortical volumes, the SNPs
component and the CSF component. Thus, a LDA and a k-nearest-neighbors (KNN) are trained on
this 6-column matrix to predict for AD vs. CTL. Finally, each trained model (MGCCA or RGCCA
model and LDA or KNN) is applied on the dataset composed of only MCI and MCIc subjects (96
participants). In Table 5.1, prediction results to discriminate between MCI and MCIc based on tuned
models for the discrimination between AD and CTL are in column «Prediction MCI/MCIc». Columns
«LDA» and «KNN» refer to the accuracy of prediction in the MCI/MCIc task with these two methods.
«AUC» column refers to Area Under the Curve computation based on the output of LDA results.

5.2.4 Results

Results are presented in Table 5.1. MGCCA performs slightly better in test than RGCCA and performs
better to predict MCI/MCIc.

Among MGCCA settings, results for the MCI/MCIc task are better for c-MGCCA over w-
MGCCA. This is due to an overfitting. The τl parameters selected for w-MGCCA in the case of
the AD/CTL task present good results in test but poor generalization for the MCI/MCIc task. In
general, these results are quite similar to those reported in the literature, see [Guigui et al., 2019],
where similar methods are employed to analyze the ADNI cohort.

The best results of MGCCA are obtained with the complete connection and the orthogonality at
the component level. An attempt to interpret the weights estimate is provided. For the AD/CTL
task, the prediction power (evaluated with a LDA) in term of accuracy in test for the 2 components
of the cortical thickness block are 0.86 and 0.53, for the 2 components of the subcortical volumes 0.87
and 0.53, for the SNPs block 0.63 and for the CSF block 0.55. We choose to focus our interpretation
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Table 5.1 – Results for the 10-folds MCCV stratified between Train (80%) and Test (20%). Prediction
accuracy are presented for the test sets on the AD/CTL task. All trained models are then applied to
predict if a MCI volunteer will convert or not to AD (Prediction MCI/MCIc). MGCCA and RGCCA
are compared with different settings. H: hierarchical design, C: complete design. c-MGCCA: deflation
with orthogonality between components. w-MGCCA: deflation with orthogonality between weights
wJ
l .

Method Mean Median Std LDA KNN AUC

Test AD/CTL Prediction MCI/MCIc

sequential RGCCA H 0.84 0.84 0.06 0.62 0.60 0.65

c-MGCCA H 0.89 0.89 0.05 0.69 0.72 0.73
c-MGCCA C 0.90 0.89 0.04 0.70 0.68 0.73
w-MGCCA H 0.88 0.88 0.06 0.56 0.59 0.65

w-MGCCA C 0.88 0.88 0.06 0.57 0.60 0.65

on the two components with high prediction power, so the first component of the cortical thickness
and the subcortical volumes.

Figure 5.2-3 depicts the mode-2 block weight vectors (features dimension) associated with the
cortical thickness and the subcortical volumes. For the cortical thickness (Figures 5.2-3.a, b, c and d),
the coefficients associated with the highest magnitude are located in the left and right temporal lobes.
For the subcortical volumes (Figures 5.2-3.e), the coefficients associated with the highest magnitude
are located in the left and right Hippocampus and Amygdala. These results are similar to those
reported in the literature [Guigui et al., 2019, Lorenzi et al., 2018]. If now we take a look at the
mode-3 block weight vectors (time dimension), they are both composed of four values (bsl, m6, m12,
m24) and equal for the cortical thickness to: 0.494, 0.493, 0.507 0.507 and for the subcortical volumes
to: 0.493, 0.489, 0.507, 0.510. These weights are relatively close to each other so it is hard to conclude.
In the following paragraphs, a procedure is presented to enhance the interpretation of these results.
This new interpretation focuses on AD and CTL volunteers.

A common practice in CCA is to look at the components. An interesting advance with MGCCA
is that it is possible to compute mode components. Let us define XN

1 and XN
2 the normalized blocks

of the cortical thickness and the subcortical volumes composed only of the AD and CTL subjects.
The normalization consists in both the Combat normalization and the standardization mentioned
earlier. It is possible to compute the mode-2 components as YJ

l = XN
l

(
wK
l ⊗ IJl

)
, l = 1, 2, which

is homogeneous to the second mode of XN
l . We can even go further and compute yJ,ADl and yJ,CTLl

respectively the median through the AD and CTL subjects for all the elements of YJ
l .

On Figure 5.2-4, yJ,CTLl − yJ,ADl , l = 1, 2 are represented. To begin with, all these elements are
positive except for 2 Regions Of Interest (ROI) of the cortical thickness, even though their distribution
is not significantly different from 0 according to a t-test. It means that this component managed to
catch a neurodegenerative effect characterizing Alzheimer’s disease. For the cortical thickness (Figures
5.2-4.a, b, c and d), the difference between CTL and AD is higher in the left and right temporal
lobes, particularly in the left. The left frontal lobe seems also highlighted in this difference. For the
subcortical volumes (Figures 5.2-4.e), the difference is higher in the left and right Hippocampus and
Amygdala. The left and right Accumbens and the left Putamen are also underlined.
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(a) CT - Left - Intern (b) CT - Left - Extern

(c) CT - Right - Intern (d) CT - Right - Extern

(e) Subcortical Volumes

Figure 5.2-3 – Mode-2 weight vectors for c-MGCCA (deflation with orthogonality between compon-
ents) complete (all blocks connected) associated with the Cortical Thickness (CT): a, b, c, d; and the
Subcortical volumes: e. Each block is associated with its own magnitude scale

(a) CT - Left - Intern (b) CT - Left - Extern

(c) CT - Right - Intern (d) CT - Right - Extern

(e) Subcortical Volumes

Figure 5.2-4 – Representation of yJ,CTLl − yJ,ADl , l = 1, 2 (see the text for more details about their
construction) computed for c-MGCCA (deflation with orthogonality between components) complete
(all blocks connected) associated with (l = 1) the Cortical Thickness (CT): a, b, c, d; and (l = 2)
the Subcortical volumes: e. To compute yJ,CTLl − yJ,ADl , l = 1, 2, only AD and CTL volunteers were
considered. Each block is associated with its own magnitude scale
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Figure 5.2-5 – Boxplot of each of the three columns of both YK,DIFF
l , l = 1, 2 represented for either

the AD or CTL subjects (see text for more details). YK,DIFF
l , l = 1, 2 was computed for c-MGCCA

(deflation with orthogonality between components) complete (all blocks connected) associated with
(l = 1) the Cortical Thickness (CT): left; and (l = 2) the Subcortical volumes: right.

Similarly the mode-3 components can be defined as YK
l = XN

l

(
IKl
⊗wJ

l

)
, l = 1, 2, which is

homogeneous to the third mode of XN
l . This time, instead of directly computing the median through

a class of subject, for each individual, the difference between two consecutive visits is calculated. For
example, in the case of the subcortical volumes, the evolution of the mode-3 component between the m6
and m12 visits is computed as: yK2,3−yK2,2. The resulting matrices are defined as YK,DIFF

l , l = 1, 2 and
are both composed of 3 columns (m6 - bsl, m12 - m6, m24 - m12). On Figure 5.2-5, the distribution of
each column of YK,DIFF

l , l = 1, 2 is represented with a distinction between the AD and CTL subjects.
A t-test is applied for each time difference and block between the AD and CTL and after a Bonferroni
correction, it appears that for both the Cortical thickness and the Subcortical Volumes, the mean of
the two distributions are significantly different for (m24-m12) with a confidence level of 0.05.

Finally, on Figure 5.2-5, the difference between the mean of the CTL and AD subjects is positive for
each time difference considered and increases with time. If we recall that on Figure 5.2-4, yJ,CTLl −
yJ,ADl , l = 1, 2 is almost always positive, it means that these components managed to extract a
neurodegenerative effect worsening over time.

On this particular example, a multiway multiblock method performed better than an only multib-
lock method. When multiway structure is taken into account, results are more interpretable because
it is possible to separately analyze the effects of the cortical thickness (or subcortical volumes) and
the time. Indeed, it appears that the third and fourth visits (m12 and m24) play a greater role in the
discrimination between AD and CTL which is expected because it is a neurodegenerative disease. As
time goes by, brain regions that suffer from atrophy will be more and more different from the same
regions in control subjects.
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5.2.5 Conclusion

In the context of the Alzheimer’s Disease, MGCCA provided components that caught a neurodegen-
erative effect characterizing AD patients. The interpretation of the mode component was particularly
interesting in this analysis in order to determine the different affected regions in the brain.

Even though the results are at the same scale as those reported in the literature (see [Guigui et al.,
2019, Westman et al., 2012]), they are not better. This might be explained by a smaller number
of available subjects (with required data) than in these previous studies. Indeed, we only took into
account subjects without any missing observations in the five blocks considered and also in the four
visits selected to build the two tensors. In this context, it seems particularly interesting to develop an
extension of MGCCA that can handle missing values, which would allow to keep subjects with only
few missing data.

Another possible explanation for these results is the fact that for the study of brain degeneration,
multiway constraints might be too strong. Indeed, by using a multiway method to study this lon-
gitudinal dataset, we made the assumption that all brain regions taken into account degenerate at
the same speed, which is not true. A sparse extension of MGCCA might come in hand to overcome
this drawback. This would allow each extracted component to focus on the degeneration of a specific
group of brain regions.

5.3 Raman Microscopy Data

5.3.1 The Raman Microscopy

When a molecule is illuminated by an intense monochromatic light source (a laser for example), most of
the photons diffused by this molecule have the same wavelength as the source of excitation. However,
1 over 100 millions of the photons are diffused with a different energy and hence a different wavelength.
This is called the Raman effect.

This light spectrum diffused by a molecule after its monochromatic excitation is called the Raman
spectrum. It uniquely characterizes the molecule. Moreover, the intensity of the different light lines
measured is proportional to the concentration of the molecule in the studied environment.

The combination of the Raman effect with a confocal microscope helps to analyze a specific volume
of the studied sample. Indeed, this association both allows to focus the light on a designated volume
of the sample and to spatially filter the light diffused back by it in order to restrain the measurements
to the desired space. This method is called either confocal Raman spectroscopy or Raman microscopy.
For more information about the Raman microscopy, the reader is referred to [Roig, 2015].

In a nutshell, the Raman microscopy is a non invasive technique that allows to study the molecular
composition of different layers of a sample. This technology was used to collect the data of interest in
this section.
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Figure 5.3-6 – Raman spectra associated with the T3 visit of a specific subject in the study. The left
panel is associated with the arm that received a placebo and the right panel to the moisturizer. Each
time, 7 Raman spectra are represented, one per depth of the skin analyzed.

5.3.2 Context of the study

This study aims at analyzing the efficiency of a moisturizer thanks to Raman microscopy.
The study was conducted on 13 volunteers that had received on one arm the moisturizer of interest

and on the other arm, a placebo (with random assignment). Both of their arms were analyzed through
Raman microscopy in order to understand if the moisturizer leads to changes in the constitution of
the skin in comparison to the placebo. The skin of the volunteers was analyzed through a 28 µm

thick portion from the skin surface. This corresponds mainly to the stratum corneum, the outermost
layer of the epidermis. With Raman microscopy, this skin portion was divided in 7 layers of different
depths, which led to 7 different Raman spectra per arm and volunteer, ranging from 2500 to 4000 cm−1.
Finally, the analysis was repeated at different time points: at the time of the moisturizer administration
(T1), 2 weeks later (T2), 4 (T3), 8 (T4) and 12 (T5) weeks later.

The resulting data set is composed of 10 tensors (one per visit and arm) of dimensions 13 subjects
× 751 wavenumbers (in cm−1) of diffusion × 7 depths of the skin. The Raman spectrum associated
with the T3 visit is plotted for both arms of an individual and all layers analyzed in Figure 5.3-6. The
x-axis is labelled as «Raman shift» as the diffusion wavenumbers are measured in comparison to the
wavenumber of the source of excitation. All these spectra were normalized using dedicated procedure
for Raman microscopy data. Moreover, the data is centered and if a cross-validation procedure is
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Figure 5.3-7 – Tensor construction for one visit.

used, this centering is nested inside the cross-validation.

5.3.3 Tensor construction

Our goal is to understand if the moisturizer indeed changed the moisturization of the skin in comparison
to the placebo and if this effect is persistent over time.

For this purpose, MGCCA is used on the 10 tensors mentioned earlier. However, the tensor
are modified in order to account for the pairwise design of the study. Indeed, for each subject, two
measurements were collected, one per arm. If we take the example of the first visit T1, the two tensors
are XP

1 for the placebo and XM
1 for the moisturizer. These tensors are of dimensions 13 × 751 × 7.

A first intermediary tensor XP−M
1 is created by stacking XP

1 and XM
1 along their third mode and a

second intermediary tensor XM−P
1 is created by stacking XM

1 and XP
1 along their third mode. These

intermediary tensors are both of dimensions 13 × 751 × 14. Finally, XP−M
1 and XM−P

1 are stacked
along their first mode leading to X1 of dimensions 26× 751× 14. This procedure is depicted in Figure
5.3-7. It is applied to every visit, hence, 5 tensors of size 26× 751× 14 are constructed.

This particular tensor construction is meant to perform a differential analysis. Indeed, we do not
want to determine if an arm of a subject was, in absolute, treated or not. However, having the Raman
spectrum of both arms, we want to assign a class (treated or not) on both of them at the same time.
This is particularly interesting to handle individual variations. Indeed, the arms of a subject might
be in general more moisturized than the other subjects.

However, with this construction, we cannot learn a treated/non-treated classification model. On
the contrary, as an observation is the concatenation of two arms, what we are going to predict now is
if an observation is composed of first a spectrum associated with a treated arm and then a spectrum
associated with a non-treated arm or the other way round.

In the end, we have 6 blocks: 5 tensors (one per visit) Xl ∈ R26×751×14 and one vector R26

composed of 2 classes: «P-M » (first a non-treated then a treated arm) or «M-P » (first a treated
then a non-treated arm).
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5.3.4 Methods

MGCCA is applied on this 6-block dataset with either a hierarchical (H; all blocks connected to the
block corresponding to y) or a complete (C; all blocks connected together) design. RGCCA is also
applied with a hierarchical design on the mode-1 matricized tensors. For these 3 methods, the function
g is set to the square function, only one component is extracted and all Ml matrices are set to the
identity except for the y block where M6 = 1

Iy
>y (the covariance of y as y is centered).

The different methods are evaluated through a 10-fold Monte-Carlo Cross-Validation (MCCV)
framework. Ten folds are created, where each time 8 individuals (so 16 pairwised observations) are
randomly assigned (without replacement) to the train set and 5 to the test set.

MGCCA and RGCCA weights are learned on the train set. Then a Linear Discriminant Analysis
(LDA) is applied on the components extracted from the 5 tensors in order to predict y. In the end,
the weights learnt for MGCCA/RGCCA and the LDA are applied on the test set in order to classify
the spectra. The results are presented in the next section.

5.3.5 Results and Weights interpretation

All three methods perform the same on the train set with the median of the accuracy equal to 1 over
the 10 folds. However on the test set, the two MGCCA models obtain a median of accuracy of 0.8
(one mistake) against 0.7 (two mistakes) for RGCCA.

The great advantage of MGCCA over RGCCA is the possibility to interpret separately the weight
vectors depending on their mode. Figure 5.3-8 shows for each tensor block both mode-2 and mode-3
weight vectors for MGCCA with either a hierarchical or a complete design. First, concerning the
mode-2 weight vectors, for any block, the Raman shift mainly involved the bandwidth from 3050 to
3700 cm−1, which correspond to the water molecule. Even the shape of these weights is similar to
the diffusion spectrum of the water molecule. Thus, MGCCA found that the best part of the Raman
spectrum that helps distinguishing between a treated and a non-treated arm is the one associated
with the water bandwidth. So, the moisturizer indeed led to a change in the constitution of the skin
and this change concerns water, which is convenient for a moisturizer. Then, for the mode-3 weight
vectors, for any block (except for the fourth visit in the hierarchical model), the main layers involved
in the discrimination between treated and non-treated arms are the deepest ones (the four last ones).
This means that the change in the composition of the skin mentioned earlier is located in these deepest
layers. Moreover, through visits, the magnitude of the weights seems to be constant, and even slightly
increasing if we look at D4 or D5. It means that the effect of the moisturizer is persistent over the 12
weeks of the study.

Furthermore, if we compare the hierarchical and complete models, the complete one, by linking all
blocks together, offers smoother weights. This is particularly interesting here as all blocks have the
same nature. We thus realize that, for the mode-3 weight vectors, T1 and T2 seems to isolate a rather
strong effect at D4 and D5. But then, from T3 to T5, this effect seems to spread homogeneously (and
thus decrease in intensity) among layers between D4 to D7.
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Figure 5.3-8 – MGCCA weight vectors with a hierarchical connection (first row) and a complete
connection (second row). The first column corresponds to the mode-3 weight vectors and the second
to the mode-2. For the mode-2 weight vectors, blocks are represented in the second dimension (Visit).
For the mode-3 weight vectors, the rows are associated with the depth and the columns with the visits
(one per block).
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5.3.6 Conclusion

In this study, we have shown the usefulness of the MGCCA method for the analysis of a Raman
microscopy dataset. In comparison to RGCCA, MGCCA performs not so better, however, it offers a
much richer interpretability thanks to the mode weight vectors.

The discrimination between the placebo and the moisturizer seems to involve only a specific band-
width and particular depths of the skin. It might be interesting to introduce sparsity into MGCCA
in order to extract only these weights. It has already been done in the context of multiway LDA with
this same dataset [Le Brusquet et al., 2015] and indeed led to non-null weights only around 3500 cm−1

for the mode-2 weights and for the last three depths for the mode-3 weights.
Looking at the mode weight vectors of the complete design, they seem quite similar over the visits.

This suggests to handle the data as a fourth order tensor (visits are the fourth mode) rather than
a collection of three-way tensors. In this perspective, we can use PARAFAC to analyze the 4-way
tensor. Thus, the algorithm is going to extract effects that are parallel in every modes. However, for
the new «visit mode», these effects are not parallel. When we get a close look at the mode-3 weights
of the complete design, the magnitude of D4 and D5 decreases after the second visit when the one of
D6 and D7 raises. This could be caught with a PARAFAC model but with two components at least.
PARAFAC offers a way to extract phenomena that are parallel in every mode. MGCCA offers the
possibility to relax this constraint on one mode. This allows to study the specificity of a parallel effect
for every element of the chosen mode.

5.4 The BABABAGA experiment, an ElectroEncephaloGraphy (EEG)

study

5.4.1 ElectroEncephaloGraphy (EEG)

The ElectroEncephaloGraphy (EEG) is a non-invasive technique allowing to measure the electrical
activity of the brain through electrodes placed on the scalp. The electrical signal measured is the
summation of the post-synaptic synchronous action potentials (AP) from a large number of neurons.
The EEG is gifted with a good temporal resolution because its frequency of acquisition is in general
around 250 Hz, so one sample every 4 ms. This is approximately at the same scale of the APs that
last between 1 and 2 ms. However, the spatial resolution is poorer as the classical EEG-headsets
comprise between 64 and 128 channels. Moreover, as the decay of the electric waves is in 1/r2, where
r is the distance from the electric dipole generating the wave, the measured signals mainly correspond
to neurons located in the cortex of the brain.

The main phenomenon studied through EEG in this section and the following one is the Evoked
Potential (EP) also called Event-Related Potential (ERP). It refers to a change in the electrical
potential generated by the nervous system in response to an external stimulus, mainly sensitive (image
or sound), but also to an internal event, mainly cognitive activity (attention, motor attention). As
the ERP are usually weak compared to the ambient noise, they are recorded along multiple trials in
order to average all these trials to raise the SNR.

As mentioned in [Acar and Yener, 2009], multiway methods are particularly suited for EEG
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study. Indeed, for example, when an ERP is generated at a specific location, the time that it takes
to propagate towards the electrodes is so much higher than the time of acquisition that it seems that
the different electrodes capture it simultaneously. However, as explained earlier, the magnitude of
this signal decays with the distance so the electrodes are going to register an effect at the same time
but with different magnitude depending on their distance from the source. This effect can indeed be
decomposed as a Kronecker product.

In this section and the following one, EEG was used in order to collect the data.

5.4.2 Description of the Study

The objective of this study is to identify brain areas implicated in the process of discrimination between
two close syllables /ba/ and /ga/ in two- to three-month-old human infants using high-density electro-
encephalography (EEG). For this purpose, EEG acquisitions were performed on 53 infants while they
were listening to two stimuli of four syllables. The syllables were separated by a silence of 430 ms and
the stimuli by a silence of 4 s. In each stimulus trial, the first three syllables were always repeated
whereas the fourth was either similar to the previous ones (standard trials: «BA-BA-BA-BA» or
«GA-GA-GA-GA») or different (deviant trials: «BA-BA-BA-GA» or «GA-GA-GA-BA»). Thus in
total, four different stimuli are possible. In such a paradigm, we expect that the discriminative times
between standard and deviant stimuli are located after the presentation of the fourth syllable.

A 128-channels recording device with a time resolution of 4 ms (250 Hz) was used. The raw
signals were pre-processed as described in [Dehaene-Lambertz and Dehaene, 1994]. In a nutshell, the
entire recording was band-pass filtered between [0.5-20] Hz, then an 5.8s epoch is defined around the
fourth syllable onset [−4.496 s ; 1.3 s]. Channels contaminated by eye-motion or muscles artefacts were
automatically rejected and trials with more than 50 bad channels were excluded. An average reference
transformation was applied on the artefact-free trials to obtain reference-independent potentials. In
the end, epochs were averaged per subject/individual/stimulus, leading to two tensors of size 53
subjects × 1450 time samples × 124 channels.

5.4.3 Normalization

This normalization procedure was applied per subject and channel and was carried out after averaging
over trials.

It consists in a sliding window procedure. The normalization of a given time sample of an EEG
signal was performed by estimating the mean and standard deviation of this EEG signal on the
window containing this sample and the previous 144 samples (or less depending on the position of this
sample). This procedure was repeated for each time sample. The window size is 580 ms. It was chosen
because it is slightly higher than the time laps of the phenomena we wish to capture. In the end, this
normalization procedure lowered down the size of the second mode of the tensor by one sample.
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5.4.4 Tensor Construction

This construction is very similar to the description in section 5.3.3, except that a difference between
the conditions is performed.

After pre-processing, a simple derivation of this EEG experiment yields to 2 tensors of size 53
subjects × 1450 time samples × 124 channels. The first tensor refers to the standard condition (XS)
and the second one to the deviant condition (XD). Neuroscience studies are mostly interested by
analyzing within-subject differences between the two conditions. This question can be tackled using
the following protocol: a single EEG tensor (X) of dimension 106 samples × 1450 time samples × 124
channels is built as the first mode concatenation of XS−XD and XD−XS . Additionally, a 106-vector
y encoding the class membership: "Std - Dev" or "Dev - Std" is considered as second block.

5.4.5 Method

MGCCA was applied on (X, y) in order to extract one component, with the constraint matrix set to the
identity and g(x) = x2. The tolerance of the stopping criteria ε was set to 10−8. A bootstrap procedure
[Efron, 1979, 1987] was performed to assess the reliability of parameter estimates. Two thousand
bootstrap samples of the same size as the original data were repeatedly sampled with replacement
from the original data. When a subject was sampled, it was for both conditions. MGCCA was then
applied to each bootstrap sample to obtain estimates wK,b (channel weights) and wJ,b (time weights)
for b = 1, . . . , 2000. We then calculated the mean and variance of the estimates over the bootstrap
samples, from which we derived confidence interval with confidence level of 95% (under the assumption
that the parameter estimates exhibited asymptotic normality). The resulting confidence intervals were
not corrected.

5.4.6 Results

The results are presented in Figure 5.4-9. On this figure, grey boxes for the time dimension (left
panel) and black dots for the channel dimension (right panel) mark the significant weights. It appears
that for both dimensions, MGCCA yields significant weights.

The significant time weights (Figure 5.4-9.a) identified after the presentation of the fourth syllable
are located at [0.268; 0.364] ms and [0.672; 0.748] ms (corresponding respectively to 25 and 7 samples).
These two responses were already reported in [Dehaene-Lambertz and Dehaene, 1994]. The first
response corresponds to an early automatic response called mismatch response whose latency is usually
around 300 ms at this age and the second one to a late response between 600 and 1000 ms when
attention is attracted by the change of syllable.

Concerning the significant channel weights (Figure 5.4-9.b), their topography consists in two
clusters of opposite sign, one over the frontal channels and the other over the posterior channels.
In regard of the time weights, these results suggest that the polarity is inverted between the first re-
sponse (negative time weights around 300 ms) and the second response (positive time weights around
700 ms). This polarity reversal has already been reported in [Basirat et al., 2014].
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(a) Time dimension (b) Channels dimension

Figure 5.4-9 – MGCCA mode weights. (a): mode-2 weight vector (time dimension). On this left
panel, vertical black lines indicate the onset of each syllable (−1.8, −1.2, −0.6 and 0 s). Moreover,
continuous black line correspond to the mean of the weights across all bootstrap samples and dashed
lines to the limits of the confidence interval. Grey boxes are associated with weights significantly
different from 0. (b): mode-3 weight vector (channel dimension). On this right panel, black dots are
associated with weights significantly different from 0.

5.4.7 Conclusion

In this EEG study, MGCCA managed to locate the relevant information in time and space in order
to discriminate between the deviant and standard stimuli. Again, the Kronecker constraint added in
order to deal with multiway data allowed to interpret the mode weight vectors. Moreover, here, the
number of weights to estimate is only 751 + 124 versus 751× 124 with a non-multiway method, which
is tremendously lower in this case, by a factor of 100.

The use of EEG for infants is particularly tricky as signals are much noisier than when they are
recorded on adults. In particular, it is really hard to place the EEG-headset at the same position for
every baby. In the case of a multiway analysis, this can be troublesome as the effect might lose its
«parallel nature» across subjects due to this misplacement. In order to strengthen the multiway effect
detected, a realignment procedure might be used upstream of the multiway analysis.

Here, a two-block scenario was conducted. In this setting, MGCCA is equivalent to another well
known multiway method, N-way PLS (see appendix A). In the next section, that presents another
EEG study, the potential of MGCCA with more than two blocks will be explored.

5.5 The Phoneme Encoding data, an EEG study

5.5.1 Description of the Study

The objective of this study was to identify whether the infant’s brain encodes the phonetic features
used by linguists to describe speech. Twenty four different consonant-vowel syllables were presented
in a randomized order every 1000 ms during experimental sessions of 1 hour approximately. Brain
responses were recorded at 500 Hz with a high-density electro-encephalographic net comprising 256
channels. In this study, two distinct phonetic features were considered for the consonant: the Manner
Of Articulation (MOA) and the Place Of Articulation (POA). Consonants are divided into two classes
for the MOA: the obstruent (/b/,/d/,/g/) vs. the sonorant (/m/,/n/,/ñ/). The obstruent consonants
are formed by obstructing airflow in contrast with the sonorants which have no such obstruction and
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Figure 5.5-10 – Figure taken from [Gennari and Dehaene-Lambertz, 2019]. Rows correspond to the
phonetic feature called the Manner Of Articulation (MOA) and columns to the Place Of Articulation
(POA). For the MOA, two classes of consonants are considered, either obstruents or sonorants. For
the POA, three classes: bilabials, alveolars and velars. The 6 different consonants studied are followed
by either a /i/ or a /o/ and pronounced by either a female (f) or a male (m) voice.

thus resonate. For the POA, three classes: bilabials (/b/, /m/; articulated with both lips), alveolars
(/d/, /n/; articulated with the tongue against the superior alveolar ridge) and velars (/g/, /ñ/;
articulated with the back of the tongue). Each consonant is followed by two possible vowels (/i/ and
/o/) and pronounced by two voices (male or female) creating the 24 different syllables. The 24 stimuli
are summarized in Figure 5.5-10.

5.5.2 Data Preprocessing

The neural signals were pre-processed in a similar way as described in [Dehaene-Lambertz and De-
haene, 1994]. The correct signal was then divided in epochs [−0.2 s ; 1.4 s] around syllable onsets
(i.e. 800 samples). An average reference transformation was applied on the artifact-free trials to ob-
tain reference-independent potentials. Then, epochs were averaged per subject/individual/stimulus.
For each subject, channel and syllable, averages were normalized thanks to a sliding window pro-
cedure, with a window of 290 samples (time range of 580 ms), as described in section 5.4.3. After
pre-processing, a simple derivation of this EEG experiment yields 24 tensors of size 25 subjects × 799
time samples × 252 channels.

5.5.3 Analysis with MGCCA

MGCCA was applied on all 24 tensors Xl ∈ R799×25×252, l ∈ J1; 24K. The design matrix C ∈ R24×24

was constructed such that all tensors were connected to each other: (C)ij = 1, if i 6= j. Constraint
matrices were all set to the identity, g(x) = x2 (a.k.a. factorial scheme) and 5 components were
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extracted for each block, with orthogonality at the level of the components. Tolerance of the stopping
criteria ε was set to 10−8.

All phonemes are characterized by similar time profiles. Thus MGCCA will be carried out by
considering the time mode as common between tensors and we expect MGCCA to extract specific
channel and subject weights for each phoneme.

A bootstrap procedure [Efron, 1979, 1987] was performed to assess the reliability of parameter
estimates. Two thousand bootstrap samples of the same size as the original data were repeatedly
sampled with replacement from the original data. MGCCA was applied to each bootstrap sample
to obtain estimates wK,(r),b

l (channel weights) and y(r),b
l (time block components) for r = 1, . . . , 5,

b = 1, . . . , 2000 and i = 1, . . . , 24. We then calculated the mean and variance of the estimates over
the bootstrap samples, from which we derived confidence interval with confidence level of 1 − α/nt
(under the assumption that the parameter estimates exhibited asymptotic normality), where nt =
(799 time samples + 252 channels)× 5 components× 24 phonemes is the number of tests undertaken.
The procedure is similar to a Bonferroni correction. A coefficient is declared robust when zero is not
included in its confidence interval.

5.5.4 Results

Only the components exhibiting at least one robust coefficient in its channel mode and time component
were considered. This reduces the analysis to the first three components. Moreover, the third com-
ponent exhibited robust time samples only in the pre-stimulus time range and thus was not considered
either.

For the first component, (Figure 5.5-11.a) represents the mean of the time component across all
syllables (solid line), and subdivided between obstruent (/b/,/d/,/g/: dot and dash) and sonorant
(m/,/n/,/ñ/: dash) phonemes. Grey areas indicate robust time component elements across all syl-
lables simultaneously. These robust time ranges ([0.190; 0.502], [0.736; 1.188] s) correspond to two
responses already reported in [Dehaene-Lambertz and Dehaene, 1994]: first an early auditory response
originating from the associative auditory areas and second a late response between 600 and 1000 ms
probably involving amodal frontal and top-down re-entrant activation of the auditory cortices, as ex-
plained in section 5.4.6. Similarly, main head on (Figure 5.5-11.b) represents the mapping of the mean
of the channel weights across all syllables, with black dots corresponding to robust channel weights
across all syllables simultaneously. This map consists in two clusters of opposite sign, one over the
frontal channels and the other over the posterior channels. In regard of the time component elements,
these results suggest that the polarity is reversed between the first response (positive time component
elements for [0.190; 0.502]s) and the second response (negative component elements for [0.736; 1.188]
s). This polarity reversal has already been reported in [Basirat et al., 2014].

Principal Component Analysis (PCA) was performed on each matrix R(b) ∈ R24×(799+252), b =
1, . . . , 2000 where each line is composed by the row vector

[
y(1),b>
l /‖y(1),b

l ‖2,wK,(1),b>
l

]
associated with

phoneme l = 1, . . . , 24. In order to compare the results provided by each PCA, it is possible to resort
to Procrustes rotation [Kabsch, 1976] to fit the PCA configurations obtained from each R(b) toward
the fixed reference configuration obtained from the original data set. Results are presented in Figure
(5.5-11.c). It appears that the first component explains the phonetic feature called the manner of
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articulation (obstruent/sonorant) and the second component explains the voice (female/male).

Then, matrices R(b), b = 1, . . . , 2000 were averaged element-wise and a t-test was performed,
column-wise, considering the groups composed of manners (obstruent vs. sonorant). P-values were
adjusted with the false discovery rate method [Benjamini and Hochberg, 1995]. It led to three sig-
nificant time intervals ([0.106, 0.200], [0.242, 0.458] and [0.758, 0.926]s) as shown by stars on Figure
(5.5-11.a). Twenty four channels were also declared as significant and are represented on the bottom
left corner of Figure (5.5-11.b). It indicates that the differences between sonorant and obstruent phon-
emes appears around 300 ms and at 800 ms and mainly involved the left hemisphere where language
is processed.

As previously, PCA was carried out on the second set of MGCCA components. It appears that
there were still robust time and channel elements for each phoneme (results not shown). However, it
was less obvious to understand which phenomena were captured.

5.5.5 Conclusion

In this EEG study, MGCCA managed to extract, in a unsupervised way, a component bearing a
phonetic feature called the Manner Of Articulation, along with the gender of the voice heard by the
infants. This study was particularly challenging as 24 blocks were involved. By linking them all
together, MGCCA allowed to explore and found relevant information to characterize the different
phonemes. Moreover, the flexibility of MGCCA was also shown as this time, the dimension used in
order to join the tensors was not the subjects dimension but the time dimension.

As mentioned in section 5.3.6, instead of dealing with 24 tensors, only one tensor of size 25 subjects
× 799 time samples × 252 channels × 24 phonemes could have be analyzed. But again, MGCCA
allows to extract effects that are both common to all blocks and specific to each one of them. If we
had worked with a four order tensor, it would have been impossible to locate in time and space the
specificity of each phoneme. Nonetheless, in the study presented, an ad hoc procedure had to be used
after MGCCA in order to analyze the phonemes specificity. Future works comprise including this
procedure into MGCCA. A way is to introduce a super-block [Garali et al., 2017, Tenenhaus et al.,
2017] which is a concatenation of all the blocks considered. This allows to create a space common to
all variables. In this study, it would have allowed to represent all the phonemes in a common space.

More recently [Girka et al., 2020] analyzed this data set in the framework of sparse Rank-R
multiway logistic regression. This study focus on predicting the MOA and in this context raised
interesting results. However, the POA seems still out of reach. One way to investigate further
this issue is to get back to the trials. Maybe the specificity of the POA is so thin and present so
much individual variances that it is impossible to grasp by averaging across trials. In the case of a
trial analysis, it is impossible to create a four order tensor as trials cannot be a mode. Indeed, for
two different subjects, the same trial cannot be considered common as it was observed in different
conditions. Then MGCCA is of hands in this condition but definitely, before that, a sparse extension
has to be developed because trials would considerably increase the tensor sizes.
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Figure 5.5-11 – Results of the first component of MGCCA on the EEG data. (a): Mean of the time com-
ponent across all syllables (solid line), obstruent (/b/,/d/,/g/: dotdash) and sonorant (m/,/n/,/ñ/:
dash) phonemes. Grey areas indicate robust time component elements for all syllables simultaneously.
Dashed boxes with brackets and stars indicate significant difference in mean between obstruent and
sonorant phonemes. (b): Main head figure is associated with the mean of the channel weights across
all phonemes where black dots refer to robust channel coefficients for all syllables simultaneously. Top
left-hand corner head shows robust channel coefficients again. Bottom left-hand corner head presents
significant channel coefficients difference in mean between obstruent and sonorant phonemes. (c):
PCA was applied on matrices R(b), b = 1, . . . , 2000. Squares and triangles represent the mean of the
first two PCs for all syllables across all bootstrap samples. The name of the phoneme come along with
first the consonant (/b/,/d/,/g/, m/,/n/,/ñ/; the last one is referred as N on the figure), then the
vowel (/i/ or /o/) and then the voices (male or female). Squares/triangles refer to obstruent/sonorant
phonemes and filled/empty shapes refer to female and male voices.
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5.6 Conclusion

In this Chapter, the versatility and usefulness of RGCCA and MGCCA was investigated on five
multiblock and/or multiway datasets. Both methods have presented interesting results in various fields
such as Imaging genetic, Raman Microscopy, Alzheimer’s Disease and EEG data. In all these analyses,
a focus is made on the interpretation of the results by visualizing per block either the weight vectors,
the mode weight vectors or the mode components. Mode weights/components are only available in
the framework of MGCCA thanks to its Kronecker constraint which enables to interpret the effects of
each mode separately. Moreover, this Kronecker constraint drops down, sometimes tremendously, the
number of coefficients to estimate.

In almost all applications, we investigate the simplest situation where Ml, MK
l and Ml are identity

matrices, leading to unit-norm weight/mode-weight vectors. In the case of EEG data for example,
it would have been interesting to add specific proximity constraints at the level, for instance, of the
electrodes by considering MK

l = LK

λ and MJ
l = IJ , where LK is a Laplacian matrix based on a

specific definition of electrodes adjacency and λ ∈ R+ is a tuning parameter which modulates the
importance of this constraint. This type of penalty has been investigated in the context of multiway
Fisher Discriminant Analysis [Le Brusquet et al., 2015].

Furthermore, in order to highlight specific information in the mode weights, a possible strategy is
to integrate within the MGCCA optimization problem (structured) sparsity constraint to any or all
dimensions as explained in [Kanatsoulis et al., 2019, Löfstedt et al., 2016] or in Chapter 4.

] ] ]

] ]

]



General Conclusions and

Perspectives

Multiblock methods have encountered a renewed interest in the past few years as a result of the
emergence of new technologies allowing the collection of various measurements on the same set

of individuals. Each type of measurement is, in itself, difficult to analyze and dedicated algorithms are
required to capture its overall complexity. Hence, multiblock data analysis methods have to evolve to
handle both each source in the suitable way and find interactions between them. In this context, we
have enhanced current data integration methods with various improvements and extensions: sequential
to global, matrix to higher order tensors, variable selection to structured variable selection. We used
a systematic approach that allows designing globally convergent algorithms for the methods proposed
in this manuscript.

Contributions

The RGCCA framework is the foundation of our developments and efforts have been made to extend
this framework in several directions:

• From sequential to global. Global RGCCA has been proposed as an alternative to sequential
RGCCA. Global RGCCA allows extracting all the block components simultaneously through a
single and very simple optimization problem. The global RGCCA algorithm is globally conver-
gent under mild conditions.

• From matrix to higher order tensors. Multiway Generalized Canonical Correlation Analysis
(MGCCA) has been proposed as an extension of RGCCA to higher order tensors. Sequential and
global strategies have been designed for extracting several components per block. The different
variants of the MGCCA algorithm are globally convergent under mild conditions.

• From sparsity to structured sparsity. The core of the SGCCA algorithm (initially proposed
in [Tenenhaus et al., 2014]) has been improved. It provides a much faster globally convergent
algorithm. The SGCCA algorithm has been extended to handle structured sparse penalties.
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All these developments have been evaluated on simulation experiments and/or real studies and were
(or will be) included in the RGCCA package (freely available at CRAN : cran.r-project.org).

Perspectives

Global procedures. In Chapters 2 and 3, sequential and global RGCCA/MGCCA have been
benchmarked on simulation experiments and led to very similar results. Work in progress includes
to compare and assess the efficiency of these methods on real multiblock/multiway datasets. This
benchmark will include state-of-the-art competitors as JIVE, SCA (see section 1.2.3) and Generalized
Structured Component Analysis (GSCA) [Hwang and Takane, 2004].

Regardless of this comparison results, the true asset of the global approaches is that only one
optimization problem needs to be solved to extract all components simultaneously. Especially, it un-
leashes the possibility of adding more constraints across the different component levels. For example,
when sparse constraints are added to the global RGCCA and MGCCA criteria, they can take the
form of an `1 penalty on the whole block matrix Vl for RGCCA and Vl = VK

l �VJ
l for MGCCA.

This would allow sparsity to spread among variables and component levels (and modes for MGCCA).
Another possibility is to apply a group-LASSO penalty, where each variable, over each component
level, form a group. This would result in the selection of entire rows of the block weight matrices.
Such ideas were presented in the context of CCA in [Kanatsoulis et al., 2019].

Convergence study. The optimization framework used to maximize a multi-convex function, de-
scribed in Chapter 1 and used all along this document, is very simple and provides a systematic
strategy to design globally convergent algorithms. However, several variations of this algorithm are
possible. Within the BCA framework, the natural update is to move through the blocks in a cyclic
way. But it is also possible to select the block that seems most in need of improvement or even choose
the blocks in a random order.

The global convergence of an algorithm relies on the existence and uniqueness of the update.
Nonetheless, when the uniqueness is not satisfied (point-to-set maps), the global convergence can still
be studied using the Zangwill’s theory [Zangwill, 1969].

This general optimization framework cannot be used as such to demonstrate the global conver-
gence of the Structured SGCCA algorithm. Indeed, the structure of this algorithm is different from
the others as it is composed of an "inner loop", where the parameter µ that regulates the amount of
the penalty associated with the feasible solutions is fixed, and an "outer loop", where µ is gradually
increased to enforce the solution to be in the feasible set. The convergence of the "inner loop" can
still be studied with the Meyer’s theory. However, it needs to be shown that the sequences generated
by this "inner loop" lie in a compact set, which is verified when the objective function is coercive.
This approach is similar to the work undertaken in [Chi et al., 2013] to prove the global convergence
of the distance majorization algorithm. In this article, convergence of the "outer loop" is also stud-
ied. Work in progress includes adapting this convergence study to our Structured SGCCA algorithm.

Constraints & Parameters. In the RGCCA framework, an `2-norm constraint is imposed and
involves a positive definite matrix Ml. As explained in Chapter 1, this positive definite matrix usually

https://cran.r-project.org/web/packages/RGCCA/vignettes/vignette_RGCCA.pdf
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equals to τlI+(1−τl)I−1X>l Xl, where the shrinkage parameter τl interpolates smoothly between max-
imizing the covariance and maximizing the correlation. MGCCA offers the possibility to define two
positive definite matrices: MJ

l and MK
l , one per mode, which allows to impose dedicated constraint

to each mode depending on their nature. This flexibility is rather unexplored in this document. In
the case of EEG data for example, it would have been interesting to add specific proximity constraints
at the level, for instance, of the electrodes by considering MK

l = LK

λ and MJ
l = IJ , where LK is

a Laplacian matrix based on a specific definition of electrodes adjacency and λ ∈ R+ is a tuning
parameter which modulates the importance of this constraint. This type of penalty has been already
investigated in the context of multiway Fisher Discriminant Analysis [Le Brusquet et al., 2015].

Along with such constraints, parameters have to be tuned. When the analysis is oriented towards
the prediction of a specific block, which is the case of almost all the analyses presented in Chapter
5, parameters can be set based on the cross-validated prediction error. However, for unsupervised
multiblock analysis, permutation based strategies [Witten et al., 2009] can be used.

Another parameter to tune for all multiblock component methods is the number R of components
to extract. As mentioned above, depending on the situation, either a cross-validation or a permutation
based procedure can be used to set this number. It can also be fixed arbitrarily in order to explore
the multi-dimensionality of a dataset. A last possibility is to estimate R before applying a multiblock
method. In [Bro and Kiers, 2003], the core consistency diagnosis (CONCORDIA) is proposed to es-
timate the number of components to extract in a CP model. In the context of MGCCA, CONCORDIA
can be applied to every higher-order cross-covariance matrices Plk = Pl×1

1 Pk, for 1 ≤ l < k ≤ L (see
section 1.3.4.3 for more details about the operator ×1

1) in order to estimate its number of components
to extract Rlk and define R = minRlk

1≤l<k≤L
.

Missing values. In the context of multi-source datasets, some measurements can be missing for
some sources. A first possibility to handle such an issue is to work only with observations without any
missing values across the sources. However, this could tremendously decrease the number of available
observations and lead to a poorly informative model. Another strategy is to impute these missing
data based on the sources that are complete as in [Zhu et al., 2018]. Moreover, these missing values
can appear in different form. For example, in the ADNI dataset, see section 5.2, some individuals
were not present at every visit, which leads to entire mode-2 fibers missing in the tensor. Sometimes
it can be a whole slice of a tensor that is missing, or a row of a matrix or only isolated variables for
some subjects. Taking into account the nature of each block and the global structure of multi-source
dataset is mandatory to properly handle missing values.

Link between blocks. In RGCCA, the definition of the design matrix C specifying which links
are taken into account is left to the user. A perspective is to iteratively estimate them inside the
algorithm. Moreover, the nature of the links can be changed from a linear correlation to a partial
correlation, a non-linear link or a link of causality like in the framework of GSCA [Hwang and Takane,
2004]. The estimation and the nature of the interactions between blocks in RGCCA and in general
in multiblock methods is a relatively unexplored field that calls for new developments.
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Appendix A

MGCCA as a generalization of several

methods

It has been shown that the RGCCA framework allows to recover several important multivariate
analysis methods [Tenenhaus et al., 2017]. In the same vein, the MGCCA optimization criterion (3.1)
allows to recover some well known multiway methods. Let X be a tensor of dimension I × J ×K and
let X = [X..1, . . . ,X..K ] be its first mode matricization of dimension I × JK .

A.1 Normalized PARAFAC

PARAFAC is an acronym for PARAllel FACtor Analysis and has been designed at the same time by
[Harshman, 1970] and [Carroll and Chang, 1970]. In this section, a rank-one normalized PARAFAC
model is considered [ten Berge, 1993]:

min
y,w
‖X− yw>‖2F

s.t. w>w = 1 and w = wK ⊗wJ
(A.1)

For a fixed vector w, the solution of optimization problem (A.1) is obtained for y = Xw. Therefore,
from the following identities: ‖X−yw>‖2F = ‖X−Xww>‖2F = Tr

(
X>X

)
−w>X>Xw, optimization

problem (A.1) is equivalent to:

max
w

w>X>Xw

s.t. w>w = 1 and w = wK ⊗wJ ,
(A.2)

which is a special case of MGCCA (g(x) = x and X links to itself). Hence, it can be solved using
Algorithm 4.

A.2 Multilinear Partial Least Squares Regression

In the framework of N-way Partial Least Squares 2 (NPLS2) [Bro, 1996], we consider the tensor X
and a response matrix Y of dimension I×L. NPLS2 is defined as the following optimization problem:

max
a,q

a>X>Yq

s.t. a>a = q>q = 1 and a = c⊗ b
(A.3)
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which is special case of (3.1), with function g set to the identity function, M1 and M2 are defined as
the identity matrix, c11 = c22 = 0, c12 = c21 = 1 and the second block is a matrix and not a tensor.
Monotone convergence properties of NPLS2 are discussed in [Hanafi et al., 2015] and [Ouertani et al.,
2014]. In the case of a univariate response, NPLS1 is recovered.

A.3 Link between PARAllel FACtor analysis (PARAFAC) and MGCCA

The goal of this section is to show that optimization problem (3.24), at the heart of the global MGCCA
algorithm, is in fact a PARAFAC problem with specific constraints.

As Pl =
[
Pl
..1, . . . ,Pl

..Kl

]
, we can fold this matrix by stacking all the frontal slices in a third mode

of dimension Kl and we get a tensor Pl such that Pl = I−1Xl ×2 MJ−1/2

l ×3 MK−1/2

l , where ×2 and
×3 are respectively the second and third mode product, which is an extension of the inner product
for tensors (see section 1.3.4.2 for more details). That being said, optimization problem (3.24) is
equivalent to a really well-known optimization problem:(

V̂J
l , V̂K

l

)
= argmin

(ṼJ
l
,ṼK

l )∈ΩJ
l
×ΩK

l

∥∥∥Pl − JZl, ṼJ
l , ṼK

l K
∥∥∥2

F
(A.4)

where ‖.‖F is the equivalent of the Frobenius norm for matrices (cf. section 1.3.4.3). For more
explanation about the notation JZl, ṼJ

l , ṼK
l K, see section 1.4.1.

So optimization problem (A.4) is a rank-R PARAFAC model of Pl where the factor matrix asso-
ciated to the first mode is fixed and with orthogonality constraints on the two other factor matrices.

To show the equivalence between (3.24) and (A.4), the above optimization problem (A.4) can be
rewritten by unfolding each tensor in the first mode as explained in (1.27) :

(
V̂J
l , V̂K

l

)
= argmin

(ṼJ
l
,ṼK

l )∈ΩJ
l
×ΩK

l

∥∥∥∥Pl(1) − Zl
(
ṼK
l � ṼJ

l

)>∥∥∥∥2

F
(A.5)

Using properties of the Trace operator, the fact that Pl(1) = Pl and the property (1.17) of the Khatri-
Rao product combined with the constraints, we have that:

(
V̂J
l , V̂K

l

)
= argmin

(ṼJ
l
,ṼK

l )∈ΩJ
l
×ΩK

l

Tr
(
P>l Pl

)
− 2 Tr

(
P>l Zl

(
ṼK
l � ṼJ

l

)>)
+ Tr

((
ṼK
l � ṼJ

l

)
Z>l Zl

(
ṼK
l � ṼJ

l

)>)

= argmin
(ṼJ

l
,ṼK

l )∈ΩJ
l
×ΩK

l

− 2 Tr
((

ṼK
l � ṼJ

l

)
Z>l Pl

)
+ Tr

(
Z>l Zl

(
ṼK
l � ṼJ

l

)> (
ṼK
l � ṼJ

l

))
= argmin

(ṼJ
l
,ṼK

l )∈ΩJ
l
×ΩK

l

− 2 Tr
(
Z>l Pl

(
ṼK
l � ṼJ

l

))
+ Tr

(
Z>l Zl (IR ? IR)

)
= argmax

(ṼJ
l
,ṼK

l )∈ΩJ
l
×ΩK

l

Tr
(
Z>l Pl

(
ṼK
l � ṼJ

l

))
,

(A.6)
which is exactly optimization problem (3.24). The classical algorithm used to solve (A.4) is an
Alternative Least Squares (ALS) algorithm. The PARAFAC-ALS algorithm alternates on each factor
matrices by updating them in turn with each update being the solution of a Least Squares (LS)
problem such as (A.5). Here, a same alternate procedure was proposed for global MGCCA.
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A.4 Link between Coupled Matrix Tensor Factorization (CMTF) and

MGCCA

Let us introduce the following fourth order tensors Plk = Pl×1
1Pk, for 1 ≤ l < k ≤ L of dimension Jl×

Kl×Jk×Kk. Pl was introduced in equation (A.4). So Plk contains all 2-by-2 inner products between
every mode-1 fibers of Pl and Pk. We want to show that solving the global MGCCA optimization
criterion (3.19) (in the case of function g being the identity) under both constraints (3.20) and (3.21)
is equivalent to solving a Coupled Matrix Tensor Factorization (CMTF) problem based on coupling
all Plk tensors for 1 ≤ l < k ≤ L along all 4 modes. This CMTF problem can be formulated as follows:

argmin
VJ

1 ,V
K
1 ...,V

J
L,V

K
L

L∑
k,l=1

clk‖Plk − JVJ
l ,VK

l ,VJ
k ,VK

k K‖2F (A.7)

s.t. VJ
l
>VJ

l = VK
l
>VK

l = IR, l = 1, . . . , L . (A.8)

First, let us notice that working on the Frobenius norm of the tensors or on the Frobenius norm of
their mode-1 matricization is the same:

‖Plk − JVJ
l ,VK

l ,VJ
k ,VK

k K‖2F = ‖ (Plk)(1) −
(
JVJ

l ,VK
l ,VJ

k ,VK
k K
)

(1)
‖2F (A.9)

Moreover, it is possible to show that (cf. [Kolda and Bader, 2009]):(
JVJ

l ,VK
l ,VJ

k ,VK
k K
)

(1)
= VJ

l

(
VK
k �VJ

k �VK
l

)>
. (A.10)

Based on (A.9) and (A.10) and thanks to similar development as in (A.6), we can show that (A.7) is
equivalent to:

argmax
VJ

1 ,V
K
1 ,...,V

J
L,V

K
L

L∑
k,l=1

clk Tr
(
VJ>
l (Plk)(1)

(
VK
k �VJ

k �VK
l

))
(A.11)

s.t. VJ
l
>VJ

l = VK
l
>VK

l = IR, l = 1, . . . , L . (A.12)

Moreover, we have the following equality:

Tr
(
VJ>
l (Plk)(1)

(
VK
k �VJ

k �VK
l

)
.
)

=
R∑
r=1

vJ,(r)
>

l (Plk)(1)

(
vK,(r)k ⊗ vJ,(r)k ⊗ vK,(r)l

)

=
R∑
r=1
Plk ×1 vJ,(r)

>

l ×2 vK,(r)
>

l ×3 vJ,(r)
>

k ×4 vK,(r)
>

k ,

(A.13)

where the last equality comes from [Kolda, 2006], Proposition 4.3.b.
So, for now we have shown that optimization problem (A.7) can be formulated as:

argmax
VJ

1 ,V
K
1 ,...,V

J
L,V

K
L

L∑
k,l=1

clk

R∑
r=1
Plk ×1 vJ,(r)

>

l ×2 vK,(r)
>

l ×3 vJ,(r)
>

k ×4 vK,(r)
>

k (A.14)

s.t. VJ>
l VJ

l = VK>
l VK

l = 1, l = 1, . . . , L. (A.15)

As explained in [Lathauwer et al., 2000], this new formulation can be interpreted as a sum of multi-
linear singular value decomposition of fourth order tensors Plk, for 1 ≤ l < k ≤ L. Moreover, Plk can
be interpreted as a cross-covariance matrix between Pl and Pk.
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Now, lets us focus on reformulating only the term Plk×1 vJ,(r)
>

l ×2 vK,(r)
>

l ×3 vJ,(r)
>

k ×4 vK,(r)
>

k and
let us drop the superscript (r) for the sake of clarity. As explained earlier, this term can be expressed
as:

Plk ×1 vJ>l ×2 vK>l ×3 vJ>k ×4 vK>k = vJ>l (Plk)(1)

(
vKk ⊗ vJk ⊗ vKl

)
(A.16)

If we recall that Plk = Pl ×1
1 Pk and that mode-1 unfolding consists in concatenating mode-1 fibers in

the same order as their modes, then we can see that:

(Plk)(1) =
[
Pl>
..1pk.11|Pl>

..2pk.11| . . . |Pl>
..Kl

pk.11|Pl>
..1pk.21| . . . |Pl>

..Kl
pk.21|Pl>

..1pk.31| . . . |Pl>
..Kl

pk.Jl1|P
l>
..1pk.12| . . .

]
(A.17)

So, vJ>l (Plk)(1) is a row vector and it can be folded into a tensor of size Kl × Jk ×Kk. This tensor is
noted Plk. Then:

Plk ×1 vJ>l ×2 vK>l ×3 vJ>k ×4 vK>k = Plk ×1 vK>l ×2 vJ>k ×3 vK>k
= vK>l (Plk)(1)

(
vKk ⊗ vJk

) (A.18)

And finally, by noticing that (Plk)ijk = vJ>l Pl>
..ipk.jk, we have

vK>l (Plk)(1)

(
vKk ⊗ vJk

)
= vK>l


vJ>l Pl>

..1pk.11 vJ>l Pl>
..1pk.21 . . . vJ>l Pl>

..1pk.Jk1 vJ>l Pl>
..1pk.12 . . .

...
...

...
...

vJ>l Pl>
..Kl

pk.11 vJ>l Pl>
..Kl

pk.21 . . . vJ>l Pl>
..Kl

pk.Jk1 vJ>l Pl>
..Kl

pk.12 . . .

(vKk ⊗ vJk
)

=
[
vKl1

(
Pl
..1vJl

)>
. . . vKlKl

(
Pl
..Kl

vJl
)>]


pk.11 pk.21 . . . pk.Jk1 pk.12 . . .
...

...
...

...
pk.11 pk.21 . . . pk.Jk1 pk.12 . . .

(vKk ⊗ vJk
)

=

 Kl∑
k=1

vK
>

lk

(
Pl
..kvJl

)> [pk.11 pk.21 . . . pk.Jk1 pk.12 . . .
] (

vKk ⊗ vJk
)

=

 Kl∑
k=1

vK
>

lk

(
Pl
..kvJl

)> [Pk
..1 . . . Pk

..Kk

] (
vKk ⊗ vJk

)

=

 Kl∑
k=1

vK
>

lk

(
Pl
..kvJl

)>Pk

(
vKk ⊗ vJk

)
=
[
Pl

(
vKl ⊗ vJl

)]>
Pk

(
vKk ⊗ vJk

)
=
(
vKl ⊗ vJl

)>
P>l Pk

(
vKk ⊗ vJk

)
,

(A.19)
which is exactly the one-component MGCCA criterion, so we have what we wanted to show.

We can also notice that
(
vKl ⊗ vJl

)>
P>l Pk

(
vKk ⊗ vJk

)
=
(
Pl ×2 vJ>l ×3 vK>l

)
×1
(
Pk ×2 vJ>k ×3 vK>k

)
=(

Pl ×2 vJ>l ×3 vK>l
)> (

Pk ×2 vJ>k ×3 vK>k
)
.



Appendix B

Demonstration for the scalar product

maximization under `1 and `2-norm

constraints

This appendix undertakes the explanation of assumption (4.11) and demonstration of proposition 4.3.1
and 4.3.2, all presented in Chapter 4. For the sake of clarity, they are all recalled here.

The optimization problem of interest in this appendix is restated below:

argmax
x∈Ω

a>x,

where a ∈ RJ and Ω =
{
x ∈ RJ | ‖x‖2 ≤ 1 and ‖x‖1 ≤ s

}
with s ∈ R?+. As shown in [Witten et al.,

2009], solution of (4.8) satisfies u = S(a, λ)/‖S(a, λ)‖2, where λ = 0 if ‖u‖1 ≤ s and λ is chosen such
that ‖u‖1 = s otherwise.

B.1 Assumption (4.11)

In section 4.3, the following assumption was made:

card
(

argmax
i∈J1,JK

|ai|
)

= 1.

This assumption is equivalent to say that the maximum value of the vector |a| is reached for only one
element.

In order to understand this condition, an example where all the elements of a are equals is con-
sidered: a = (a, . . . , a)> ∈ RJ , where a ∈ R?+. The fact that a is positive is not necessary but it is
going to ease the discussion. Then, ∀λ ∈ [0; a[, the solution of (4.8) can be written as:

u1 = S(ã, λ)
‖S(ã, λ)‖2

= (a− λ, . . . , a− λ)>√
J × (a− λ)2 = (1/

√
J, . . . , 1/

√
J)>, (B.1)

thus, ‖u1‖1 =
√
J . In this case, if s 6=

√
J , no solution of the form u = S(a, λ)/‖S(a, λ)‖2 can be

found.
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Another example can be studied, where the maximum element of a appears twice: a = (a, a, b, . . . , b)> ∈
RJ , where a, b ∈ R?+ and b < a. This time, ∀λ ∈ [b; a[, the solution of (4.8) can be written as:

u2 = S(ã, λ)
‖S(ã, λ)‖2

= (a− λ, a− λ, 0, . . . , 0)>√
2× (a− λ)2 = (1/

√
2, 1/
√

2, 0, . . . , 0)>, (B.2)

thus, ‖u2‖1 =
√

2. In this case, if s ∈
[
1;
√

2
[
, no solution of the form u = S(a, λ)/‖S(a, λ)‖2 can be

found.

Under the assumption (4.11), these examples never happens. Ongoing work tries to show that
in the demonstration of the solutions of (4.8), these cases are linked to a null Lagrange multiplier
associated to the `2-norm constraint. Hence, when assumption (4.11) is not verified, the point on
Ω =

{
x ∈ RJ | ‖x‖2 ≤ 1 and ‖x‖1 ≤ s

}
that leads to the highest covariance with a is its projection

onto the `1-norm ball of radius s.

B.2 Proof of Proposition 4.3.1

Proposition B.2.1. The following function, defined on [0; ã2] 7→ R+, is strictly decreasing:

ψ(λ) = ‖S(ã, λ)‖1
‖S(ã, λ)‖2

, (B.3)

with ψ(0) = ‖a‖1/‖a‖2 and ψ(ã2) = 1.

Proof of proposition 4.3.1. The numerator and denominator of ψ are continuous as composition of
continuous functions. Moreover, for λ ∈ [0; ã2], ‖S(ã, λ)‖2 6= 0. Therefore, ψ is continuous as quotient
of 2 non-null continuous functions.
Assuming ãp+1 = 0, for λ ∈ [0; ã2] it exists k ∈ J1; JK such that ãk+1 ≤ λ < ãk. For this specific λ, we
have:

‖S(ã, λ)‖1 =

 k∑
j=1

ãj

− kλ (B.4)

‖S(ã, λ)‖22 =
k∑
j=1

(ãj − λ)2 =

 k∑
j=1

ã2
j

− 2λ

 k∑
j=1

ãj

+ kλ2 (B.5)

From equations (B.4) and (B.5), the derivate of ψ is :

ψ′(λ) = 1
‖S(ã, λ)‖22

(
‖S(ã, λ)‖21
‖S(ã, λ)‖2

− k‖S(ã, λ)‖2

)
= 1
‖S(ã, λ)‖2

(ψ(λ)2 − k) (B.6)

Moreover, the number of non-null elements of S(ã, λ) is equal to k. We introduce 1k, the vector of
size J such that (1k)i = 1 if (S(ã, λ))i 6= 0 and (1k)i = 0 otherwise. Therefore, from Cauchy-Schwarz,
the inequality ‖S(ã, λ)‖1 =< 1k, S(ã, λ) >≤

√
k‖S(ã, λ)‖2 =

√
(< 1k,1k >‖S(ã, λ)‖2 holds, implying

that ψ(λ) ≤
√
k and so that ψ′(λ) ≤ 0. Moreover ψ′(λ) = 0 when 1k and S(ã, λ) are colinear, meaning

when all the k non-null elements of S(ã, λ) are equals. Based on assumption (4.11), on [0; ã2], this is
only possible when λ = ã2.
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So, ∀λ ∈ [0; ã2[, ψ′(λ) < 0 and ψ′(ã2) = 0, which means that ψ is strictly decreasing on [0; ã2]
Furthermore, ψ(0) = ‖a‖1/‖a‖2, which is direct. ψ(ã2) = ã1−ã2√

(ã1−ã2)2
= 1.

B.3 Proof of Proposition 4.3.2

Proposition B.3.1. Giving s ∈ [1;
√
J ], the assumption that ‖a‖1/‖a‖2 > s is made. Then, there

exists a unique i ∈ J2; JK and a unique δ ∈ [0; ãi − ãi+1[ such that ψ(ãi − δ) = s, then δ is a root of a

second degree polynomial equation.

Proof of proposition 4.3.2. We assume that ãp+1 = 0. Thus, ψ is strictly decreasing from ψ(ãp+1 =
0) = ‖a‖1/‖a‖2 > s to ψ(ã2) = 1.

Moreover, ã2 6= 0. Otherwise, ψ(ã2) = ‖a‖1/‖a‖2 = 1 ≤ s as s ∈ [1;
√
J ].

It implies that for s ∈ [1;
√
J ], it exists a unique i ∈ J2; pK such that ψ(ãi) ≤ s < ψ(ãi+1). Finally,

as ψ is continuous and strictly decreasing, it exists a unique δ ∈ [0; ãi − ãi+1[ such that ψ(ãi − δ) = s.

Using the notations l1 = ‖S(ã, ãi)‖1 and l2 = ‖S(ã, ãi)‖2:

‖S(ã, ãi − δ)‖1 =
i∑

j=1
[ãj − (ãi − δ)] =

i∑
j=1

[ãj − ãi] + iδ = ‖S(ã, ãi)‖1 + iδ = l1 + iδ (B.7)

‖S(ã, ãi − δ)‖22 =
i∑

j=1
[ãj − (ãi − δ)]2 =

i∑
j=1

[(ãj − ãi)2 + 2δ(ãj − ãi) + δ2] = l22 + 2δl1 + iδ2 (B.8)

Moreover, as ψ(ãi − δ) = s = ‖S(ã, ãi − δ)‖1/‖S(ã, ãi − δ)‖2, the following equality holds:

‖S(ã, ãi − δ)‖21 = s2‖S(ã, ãi − δ)‖22 (B.9)

Incorporating (B.7) and (B.8) in (B.9) gives:

δ2[i2 − is2] + 2δl1[i− s2] + l21 − s2l22 = 0 (B.10)

The goal is now to find the positive root of this second degree polynomial equation. The discriminant
∆ is equal to 4s2[s2 − i][l21 − il22]. It remains to show that ∆ is positive.
First, the number of non-null elements of S(ã, ãi+1) is equal to i and the Cauchy-Schwarz inequal-

ity yields ‖S(ã, ãi+1)‖1 ≤
√
i‖S(ã, ãi+1)‖2. Second, ψ(ãi+1) = ‖S(ã, ãi+1)‖1

‖S(ã, ãi+1)‖2
> s so ‖S(ã, ãi+1)‖1 >

s‖S(ã, ãi+1)‖2. Combining the two previous inequalities yields (i− s2)‖S(ã, ãi+1)‖1 > 0 which implies
that i − s2 > 0. Third, from ψ(ãi) = l1/l2 ≤ s <

√
i, we deduce that l21 − il22 ≤ 0 which ensures that

∆ is positive.

To conclude, the sign of l
2
1 − s2l22
i2 − is2 corresponds to the sign of the product of the 2 roots. As this term

is negative, the 2 roots have opposite signs. The single solution of ψ(ãi − δ) = s is:

δ = −2l1(i− s2) +
√

∆
2i(i− s2) =

−2l1(i− s2) + 2s
√

[s2 − i][l21 − il22]
2i(i− s2) = − l1

i
+ s

i

√
il22 − l21
i− s2 .
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Using the fact that ψ(ãi) = l1/l2, the previous equation can be simplified as

δ = ‖S(ã, ãi)‖2
i

s
√
i− ψ(ãi)2

i− s2 − ψ(ãi)

 . (B.11)

Remark. s <
√
i implies that if you know the number of non-null elements you want to keep, then s

is in [1;
√
i].



Appendix C

Surrogate functions of structured sparse

penalties and extended results

In this appendix, the concept of Sharp Quadratic Majorization is introduced, followed by the present-
ation of quadratic majorizing surrogate functions of several penalties. Extended results are also
presented on the comparison between RGCCA, SGCCA, structured SGCCA with either the smooth-
ing framework of [Nesterov, 2004] and proximity operators [Löfstedt et al., 2016] (PROX_SGCCA)
or with the distance majorization algorithm [Chi et al., 2013] which combines two key ingredients:
quadratic penalty method and MM principle (MM_SGCCA) (see section 4.4.2).

C.1 Sharp Quadratic Majorization

The goal here is to define the notion of Sharp Quadratic Majorization. Let us consider a function
f defined from R to R. Then, as explained in [de Leeuw and Lange, 2009], if f is differentiable at
w0 ∈ R and a > 0, we have the following inequality ∀w ∈ R:

f(w) ≤ f(w0) + f ′(w0)(w − w0) + 1
2a(w − w0)2, (C.1)

which is true if and only if ∀w 6= w0:

a ≥ f(w)− f(w0)− f ′(w0)(w − w0)
1
2(w − w0)2 . (C.2)

This condition is not needed when w = w0 as f(w0) ≤ f(w0) is already true. The left part of
inequality (C.1) is a surrogate function of f anchored at w0 as it satisfies both the tangent and
domination condition (see section 4.4.1.4).

Let us define the function:

A(w0) = sup
w 6=w0

f(w)− f(w0)− f ′(w0)(w − w0)
1
2(w − w0)2 . (C.3)

Whenever A(w0) < ∞, a quadratic majorization is considered as sharp if a = A(w0). This notion
comes from the fact that if we want to minimize f in a MM framework, we would repeatedly minimize
the majorization function of f defined in (C.1). This leads to the update w = w0 − 1

af
′(w0). We

realize that if we set a to its minimal value possible, the descent is optimal.
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C.2 Quadratic majorizing surrogate functions of several structured

sparse penalties

In this section, penalties are referred as p(w), where w = [w1, . . . , wJ ] ∈ RJ , and their surrogate as
p̃(w|w0), where w0 =

[
w0

1, . . . , w
0
J

]
∈ RJ is the supporting point of the surrogate function. For all

the penalties considered (except SparseStep and Smoothed `q-regularization), when at the supporting
point w0, the penalty is not differentiable, it is not possible to find a quadratic majorizing surrogate.
As these points can be identified quite easily, they are not mentioned again in the rest of this appendix.
This is troublesome as these supporting points correspond to sparse vectors. This issue is evoked in
the discussion of Chapter 4.

C.2.1 Least Absolute Shrinkage and Selection Operator (LASSO)

In order to find a sharp quadratic majorization for the LASSO penalty, A(w0) has to be computed. As
presented in [de Leeuw and Lange, 2009], in the case where w0 > 0, f ′(w0) = +1 and (C.3) becomes:

sup
w 6=w0

|w| − w
1
2(w − w0)2 = 1

|w0|
. (C.4)

Similarly, it is possible to show that in the case where w0 < 0:

sup
w 6=w0

|w|+ w
1
2(w − w0)2 = 1

|w0|
. (C.5)

So in the end, ∀w0 ∈ R?, A(w0) = 1/|w0|. This lead to the following sharp quadratic majorization
∀w0 ∈ R?+, ∀w ∈ R+:

|w| ≤ |w0|+ sign(w0)(w − w0) + 1
2|w0|

(w − w0)2 = 1
2
w2

|w0|
+ 1

2 |w
0|. (C.6)

When w0 = 0, no quadratic majorization exists [de Leeuw and Lange, 2009]. This inequality can be
also found thanks to the inequality of arithmetic and geometric means (see [de Leeuw and Lange, 2009]
for more details) or through the concavity of the square root function (see [Lange, 2016, O’Connell
et al., 2006, Van Deun et al., 2011]).

Finally, the following surrogate function can be defined for the LASSO penalty:

p(w) =
J∑
i=1
|wi| = ‖w‖1 ≤

1
2w>∆w + 1

2‖w
0‖1 := p̃(w|w0), (C.7)

where ∆ is a diagonal matrix of size J such that (∆)jj = 1
|w0

j |
.

C.2.2 The group-LASSO (GL) penalty

As presented in section 4.4.2.2, the non-overlapping group-LASSO, first introduced in [Yuan and Lin,
2006], is the `1,2-mixed norm. By introducing a partition G of J1; JK, the group-LASSO penalty is
defined as:

p(w) =
∑
g∈G
‖wig‖2, (C.8)
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where wig is a subvector of w containing only the elements of the gth group of G. The group-
LASSO penalty acts like the LASSO at the group level and an entire group of variables may drop out
of jointly.

By introducing wG = (‖wi1‖2, . . . , ‖xwG‖2), it appears that ‖wG‖1 = p(w). Hence, the surrogate
function derived for the `1-norm can be used again for the group-LASSO penalty, applied on wG :

p̃(w|w0) := 1
2p(w

0) + 1
2w>∆w, (C.9)

where ∆ is a diagonal matrix of size J such that (∆)jj = 1
‖w0

jg
‖2

if variable j is in group g. This
surrogate function for the group-LASSO penalty can also be found in [Van Deun et al., 2011].

C.2.3 Total Variation (TV)

As explained in section 4.4.2.2, the TV penalty, first introduced in [Rudin et al., 1992], is widely
used as a tool in image denoising and restoration. It accounts for the spatial structure of images by
encoding piecewise smoothness and enabling the recovery of homogeneous regions separated by sharp
boundaries [Pierrefeu, 2018]. The TV penalty can be formulated as follows:

p(w) =
J−1∑
j=1
|wj+1 − wj | = ‖Dw‖1, (C.10)

where D ∈ RJ−1×J is defined such that (D)jj = −1, (D)jj+1 = 1 and 0 elsewhere.
In order to find a surrogate function, equation (C.6) is applied to wj+1 − wj :

|wj+1 − wj | ≤
1
2 |w

0
j+1 − w0

j |+
1

2|w0
j+1 − w0

j |
(wj+1 − wj)2 . (C.11)

Then we can sum the previous expression on j from 1 to J−1 and get the following surrogate function:

p̃(w|w0) := 1
2

J−1∑
j=1
|w0
j+1 − w0

j |+
1
2

1
|w0
j+1 − w0

j |
(wj+1 − wj)2 = 1

2p(w
0) + 1

2w>D>∆Dw, (C.12)

where ∆ is a diagonal matrix of size J − 1 such that (∆)jj = 1
|w0

j+1−w
0
j |
.

C.2.4 Elitist LASSO

The Elitist LASSO (e-LASSO) is the `2,1-mixed norm. Similarly to the group-LASSO penalty, a
partition G of J1; JK is introduced. However, the e-LASSO penalty, instead of promoting sparsity
between groups, enforces sparsity within groups. The e-LASSO penalty is defined as:

p(w) =
∑
g∈G
‖wig‖21 =

∑
g∈G

(|wi1,1|+ . . .+ |wi1,Jg |)2 =
∑
g∈G

 Jg∑
i=1

w2
ig ,i + 2

∑
1≤i<j≤Jg

|wig ,i||wig ,j |


=
∑
g∈G

‖wig‖22 + 2
∑

1≤i<j≤Jg

|wig ,i||wig ,j |

 (C.13)

where Jg is the cardinal of the gth group of G, wig is a subvector of w containing only the elements of
this group and wig ,j is its jth element.
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To begin with, the groups are discarded to clarify the notations. The following inequality can be
written:

0 ≤


√√√√ |w0

j |
|w0
i |
|wi| −

√√√√ |w0
i |
|w0
j |
|wj |


2

=
|w0
j |
|w0
i |
|wi|2 + |w

0
i |
|w0
j |
|wj |2 − 2|wi||wj |

2|wi||wj | ≤
|w0
j |
|w0
i |
|wi|2 + |w

0
i |
|w0
j |
|wj |2

(C.14)

Then, if this inequality is summed on i and j, a surrogate for the square of the `1-norm can be found:

2
∑

1≤i<j≤p
|wi||wj | ≤

Jg∑
i=1

|wi|2

|w0
i |

(
‖w0‖1 − |w0

i |
)

= −‖w‖22 + ‖w0‖1
Jg∑
i=1

|wi|2

|w0
i |

‖w‖22 + 2
∑

1≤i<j≤p
|wi||wj | ≤ ‖w0‖1

Jg∑
i=1

|wi|2

|w0
i |

‖w‖21 ≤ ‖w0‖1
Jg∑
i=1

|wi|2

|w0
i |

(C.15)

Thus, if the previous inequality is summed on groups, a surrogate function of the e-LASSO can be
defined:

p(w) =
∑
g∈G
‖wig‖21 ≤

∑
g∈G

‖w0
ig‖1

Jg∑
i=1

|wig ,i|2

|w0
ig ,i
|

 := p̃(w|w0). (C.16)

Such surrogate function can also be found in [Van Deun et al., 2011].

C.2.5 Octagonal Shrinkage and Clustering Algorithm for Regression (OSCAR)

The Octagonal Shrinkage and Clustering Algorithm for Regression (OSCAR) regularization [Bondell
and Reich, 2008] can be seen as a trade-off between an `1-norm, promoting sparsity, and a pairwise
`∞-norm, encouraging the equality of each pair of entries in w [El Gueddari, 2019]. This penalty
function can be written as:

pλ,γ(w) = λ‖w‖1 + γ
∑

1≤j<i≤J
max(|wj |, |wi|) = λ‖w‖1 + γ

2
∑

1≤j<i≤J
(|wj − wi|+ |wj + wi|)

= λ‖w‖1 + γ

2 (‖D−w‖1 + ‖D+w‖1) ,
(C.17)

where D− and D+ are two matrices of size J(J−1)/2×J that allow to compute all pairwise difference
and sum respectively. Thus w>D>−D−w =

∑
1≤j<i≤J(wj − wi)2 and w>D>+D+w =

∑
1≤j<i≤J(wj +

wi)2.

Then, using the surrogate function of the LASSO and the TV penalty defined in equation (C.7)
and (C.12) respectively, the following surrogate function can be stated for the OSCAR penalty:

pλ,γ(w) ≤ 1
2w>

(
λ∆ + γ

2
(
D>−∆−D− + D>+∆+D+

))
w + 1

2p
λ,γ(w0) := p̃λ,γ(w|w0) (C.18)

where ∆,∆−,∆+ are diagonal matrices of size J(J−1)/2 such that (∆)ii = 1
|w0

i |
, (∆−)ii = 1

|w0
j−w

0
i |
and (∆+)ii =

1
|w0

j +w0
i |
. This surrogate function has already been presented in [Sharma et al., 2013].
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C.2.6 Pairwise Absolute Clustering and Sparsity (PACS)

In [Sharma et al., 2013], a weighted version of the OSCAR penalty is proposed. This new penalty is
called Pairwise Absolute Clustering and Sparsity (PACS) and can be stated as follow:

pλ,γ(w) = λ
J∑
j=1

βj |wj |+
γ

2
∑

1≤j<i≤J
βji(−)|wj − wi|+

γ

2
∑

1≤j<i≤J
βji(+)|wj + wi| (C.19)

where βj , βji(−), βji(+) are non-negative weights defined by the user.
Following the previous section, a surrogate function for the PACS penalty can be defined as:

pλ,γ(w) ≤ 1
2w>

(
λ∆ + γ

2
(
D>−∆−D− + D>+∆+D+

))
w + 1

2p
λ,c(w0) := p̃λ,γ(w|w0), (C.20)

where ∆,∆−,∆+ are diagonal matrices of size J(J − 1)/2 such that (∆)ii = βi

|w0
i |
, (∆−)ii = βji(−)

|w0
j−w

0
i |

and (∆+)ii = βji(+)

|w0
j +w0

i |
. This surrogate function has already been presented in [Sharma et al., 2013].

C.2.7 Truncated `1-norm or Capped `1-norm penalty

The truncated `1-norm penalty (TLP) [Zhang, 2010] is a non-convex approximation of the `0-pseudo-
norm. It can be formulated as follows:

pτ (w) =
J∑
i=1

min
( |wi|
τ
, 1
)

=
J∑
i=1

1
2τ [|wi|+ τ − ||wi| − τ |] , (C.21)

where τ ∈ R?+. Given an appropriate τ , TLP balances between the `1-norm and the `0-pseudo-norm.
Indeed, for one term of the sum, it is equivalent to the `1-norm if |wi| ≤ τ , while it becomes the
`0-pseudo-norm as the coefficient goes beyond the threshold τ .

Using (C.6), it is possible to show that:

|wi|+ τ ≤ w2
i + w02

i

2|w0
i |

+ τ

||wi| − τ | ≤ sign
(
|w0
i | − τ

)(w2
i + w02

i

2|w0
i |
− τ

) (C.22)

Thus, the following surrogate function for the TLP, already presented in [Du et al., 2017], can be
expressed:

pτ (w) ≤ 1
2τ

J∑
i=1

[
w2
i + w02

i

2|w0
i |

(
1− sign

(
|w0
i | − τ

))
+ τ

(
1 + sign

(
|w0
i | − τ

))]

≤ 1
2τw>∆w + Cste

(
w0, τ

)
:= p̃τ (w|w0)

(C.23)

where ∆ ∈ RJ×J is a diagonal matrix such that (∆)ii = (1−sign(|w0
i |−τ))

2|w0
i |

.

C.2.8 Truncated Group-LASSO or Capped Group-LASSO

As it is possible to define an evolution of the LASSO that promote sparsity at the group level, it
is also possible to introduce a group-TLP [Du et al., 2017]. By defining a partition G of J1; JK, the
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group-TLP can be written as:

pτ (w) =
∑
g∈G

min
(
‖wig‖2
τ

, 1
)
, (C.24)

where τ ∈ R?+ and wig is a subvector of w containing only the elements of the gth group of G.
Based on the surrogate function of the TLP (see previous section):

pτ (w) ≤ 1
2τw>∆w + Cste

(
w0, τ

)
:= p̃τ (w|w0),

where ∆ ∈ RJ×J is a diagonal matrix such that (∆)ii = (1−sign(‖wig‖2−τ))
2‖wig‖2

.

C.2.9 SparseStep penalty

Another approximation of the `0-pseudo-norm was proposed in [de Rooi and Eilers, 2011] and is called
the SparseStep penalty, which can be formulated as:

pγ(w) =
J∑
i=1

f(wi) =
J∑
i=1

w2
i

w2
i + γ2 , (C.25)

where γ ∈ R?. Indeed, lim
γ−→0+

pγ(w) = card ({i ∈ J1; JK;wi 6= 0}), the `0-pseudo-norm.

As explained in [van den Burg, 2018], since the function f , defined in equation (C.25) is differ-
entiable, an even function and f

′(w)/w is decreasing on [0,+∞[, Theorem 4.5 from [de Leeuw and
Lange, 2009] applies and a sharp quadratic majorization function of f is given as:

f̃(wi|w0
i ) := f

′(w0
i )

2w0
i

(w2
i −w02

i )+f(w0
i ) = γ2(

w02

i + γ2
)2 (w2

i −w02

i )+ w02

i

w02

i + γ2
= γ2w2

i + w04

i(
w02

i + γ2
)2 , (C.26)

which leads to the following surrogate function for the Sparstep penalty:

p̃γ(w|w0) :=
J∑
i=1

γ2w2
i + w04

i(
w02

i + γ2
)2 = w>∆w +

J∑
i=1

f(w0
i )2, (C.27)

where ∆ ∈ RJ×J is a diagonal matrix such that (∆)ii = γ2(
w02

i +γ2
)2 .

C.2.10 Smoothed `q-regularization

For q ∈ [0, 2] , p ≥ q, and γ ≥ 0, the Smoothed `q-regularization [van den Burg, 2018] can be defined
as:

pγ(w) =
J∑
i=1

f(wi) =
J∑
i=1

|wi|p

|wi|p−q + γp−q
(C.28)

The limit case for γ → 0 is one of the reasons this penalty is interesting:

lim
γ→0

pγ(w) =
J∑
i=1
|wi|q,

which is the `q-norm. The Smoothed `q-regularization can be seen as a generalization of the SparseStep
penalty. Indeed, when q = 0 and p = 2, equation (C.25) is recovered.
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As explained in [van den Burg, 2018], since the function f , defined in equation (C.28) is differ-
entiable, an even function and f ′(w)/w is decreasing on [0,+∞[ (see [van den Burg, 2018], equation
(5.13) for more details which explains also why q ∈ [0, 2]), Theorem 4.5 from [de Leeuw and Lange,
2009] applies and a sharp quadratic majorization function of f is given as:

f̃(wi|w0
i ) := f

′(w0
i )

2w0
i

(
w2
i − w02

i

)
+ f(w0

i ) (C.29)

which leads to the following surrogate function for the Smoothed `q-regularization:

p̃γ(w|w0) :=
J∑
i=1

f
′(w0

i )
2w0

i

(
w2
i − w02

i

)
+ f(w0

i ) =
(
w−w0

)>
∆
(
w−w0

)
+ pγ(w0),

where ∆ is a diagonal matrix such that (∆)ii = f
′ (w0

i )
2w0

i
.

C.3 Extended results on Structured SGCCA

This section presents extended results for the experiment of Chapter 4 section 4.4.2. This study
compares RGCCA, SGCCA and MM_SGCCA on simulated data sets. Here, the comparison with
PROX_SGCCA, the structured SGCCA method with the smoothing framework of [Nesterov, 2004]
and proximity operators [Löfstedt et al., 2016], is added. For further information about how the data
are generated, which structured sparse penalties are used, which constraints are imposed and how
parameters are tuned, the reader is referred to sections 4.4.2.1, 4.4.2.2 and 4.4.2.3.

Here, PROX_SGCCA is used in the exact same configuration as MM_SGCCA (same design
matrix C, same structured penalties, same constraints, same parameters to tune) except for the
function g which is set to the identity function (versus the square function) for PROX_SGCCA as
it is the only function handled. Moreover, for PROX_SGCCA, this configuration is evaluated under
two different values of the smoothing parameter γ (see the preamble of section 4.4 in Chapter 4 for
more details about γ): γ = 5× 10−3 for both penalties or γ = 5× 10−4 for both penalties.

C.3.1 Results

For each value of η ∈ {0.5, 1, 2}, 40 datasets were generated according to section 4.4.2.1. For each
dataset, four methods are compared: RGCCA, SGCCA, MM_SGCCA and PROX_SGCCA. For
PROX_SGCCA, 2 values of the smoothing parameter are considered (γ = 5×10−3 and γ = 5×10−4).
For each algorithm and value of η, mean and standard deviation of the ACC (defined in (4.31)) and of
κl, l = 1, 2 (defined in (4.32)) are computed through datasets and reported in table C.1. The median
of the number of iterations of each algorithm, their interquartile range and the mean and standard
deviation of the execution time are presented in table C.2. On Figure C.3-1 and C.3-2, the weight
vectors for the first and second block respectively are shown for each method.

In table C.1, PROX_SGCCA κ1 results are as good as MM_SGCCA or even better. However, κ2

is always equal to zeros, meaning no selection at the group level is performed. This must be explained
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by a wrong setting of the parameters (s1, ψ1 and ψ2) or of the smoothing parameters γ. In comparison
to MM_SGCCA two additional parameters have to be tuned.

In table C.2, it appears that PROX_SGCCA always reach the maximum number of iterations
authorized. This should be dealt with in future works as it makes the result not really comparable to
the other methods.

In figures C.3-1 and C.3-2, the rows are associated with a specific value of η and the columns with
a specific method. It is interesting to visualize how the estimations evolve with SNR and methods. For
example, only MM_SGCCA manages to catch almost all the right null elements for η = 0.5 for the two
blocks. SGCCA only reaches this goal when η = 2. As mentioned earlier, RGCCA cannot perform this
estimation as no sparse constraint is imposed. Furthermore, especially for η = 1 and the first block
weight vector, PROX_SGCCA (γ = 5 × 10−3) presents smoother estimates than PROX_SGCCA
(γ = 5× 10−4) as its smoothing parameter is higher.

C.3.2 Conclusion

Cautions must be taken with these results as PROX_SGCCA always reached the maximum number
of iterations allowed. Work in progress aims at improving the results obtain with PROX_SGCCA and
adding the comparison with other structured sparse CCA algorithms as [Chen and Liu, 2012, Chen
et al., 2012a].

Table C.1 – For each value of η ∈ {0.5, 1, 2}, 40 datasets were generated. For each dataset, four
methods are compared: RGCCA, SGCCA, MM_SGCCA and PROX_SGCCA. For PROX_SGCCA
2 values of γ (5 × 10−3 or 5 × 10−4) are considered. For each algorithm, the mean and standard
deviation (std) of the ACC (defined in (4.31)) and of κl, l = 1, 2 (defined in (4.32)) are reported.

SNR Algorithm
ACC κ1 κ2

(mean ± std) (mean ± std) (mean ± std)

η = 0.5

RGCCA 0.952 ± 0.004 \ \

SGCCA 0.935 ± 0.005 0.77 ± 0.04 0.82 ± 0.05

MM_SGCCA 0.973 ± 0.006 0.9 ± 0.1 1 ± 0

PROX_SGCCA γ = 5e− 3 0.969 ± 0.004 0.94 ± 0.03 0 ± 0

PROX_SGCCA γ = 5e− 4 0.966 ± 0.004 0.91 ± 0.06 0 - 0

η = 1

RGCCA 0.984 ± 0.002 \ \

SGCCA 0.981 ± 0.001 0.90 ± 0.03 0.97 ± 0.03

MM_SGCCA 0.9928 ± 0.0007 0.99 ± 0.01 1 ± 0

PROX_SGCCA γ = 5e− 3 0.989 ± 0.001 0.99 ± 0.01 0 - 0

PROX_SGCCA γ = 5e− 4 0.988 ± 0.001 0.98 ± 0.02 0 - 0

η = 2

RGCCA 0.992 ± 0.002 \ \

SGCCA 0.9944 ± 0.0002 0.99 ± 0.01 1 ± 0

MM_SGCCA 0.9977 ± 0.0002 1 ± 0 1 ± 0

PROX_SGCCA γ = 5e− 3 0.9959 ± 0.0002 0.999 ± 0.004 0 - 0

PROX_SGCCA γ = 5e− 4 0.9961 ± 0.0002 1 ± 0.002 0 - 0
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Table C.2 – For each value of η ∈ {0.5, 1, 2}, 40 datasets were generated. For each dataset, four
methods are compared: RGCCA, SGCCA, MM_SGCCA and PROX_SGCCA. For PROX_SGCCA,
2 values of γ (5 × 10−3 or 5 × 10−4) are considered. For each algorithm, the median (MD) of the
number of iterations (Iter), their interquartile range (IQR) and the mean and standard deviation of
the execution time (Time) are reported.

SNR Algorithm
Iter Time (s)

(MD - IQR) (mean ± std)

η = 0.5

RGCCA 6 - 0 0.03 ± 0.01

SGCCA 6 - 0 0.042 ± 0.007

MM_SGCCA 2180 - 1055 127 ± 35

PROX_SGCCA γ = 5e− 3 19980 - 0 74 ± 17

PROX_SGCCA γ = 5e− 4 19980 - 0 63 ± 23

η = 1

RGCCA 4 - 0 0.03 ± 0.01

SGCCA 4 - 0 0.033 ± 0.006

MM_SGCCA 740 - 127 46 ± 6

PROX_SGCCA γ = 5e− 3 19980 - 0 84 ± 13

PROX_SGCCA γ = 5e− 4 19980 - 0 80 ± 26

η = 2

RGCCA 4 - 0 0.04 ± 0.02

SGCCA 3 - 1 0.029 ± 0.006

MM_SGCCA 426 - 52 28 ± 3

PROX_SGCCA γ = 5e− 3 19980 - 0 64 ± 20

PROX_SGCCA γ = 5e− 4 19980 - 0 93 ± 31
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Figure C.3-1 – Continuous lines correspond to the first block weight vector and points to its estimates
obtained with RGCCA, SGCCA, MM_SGCCA and PROX_SGCCA. For PROX_SGCCA, 2 values
of γ (5 × 10−3 or 5 × 10−4) are considered. Each row is associated with a specific value of η (0.5, 1
and 2) arranged in increasing order and each column with a method. 4 worst runs for each method
according to a weighted sum of ACC, κ1 and κ2 were removed. For each element of this estimated
vector, grey areas stand for the min and max of its distribution based on the 36 remaining runs.
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Figure C.3-2 – Continuous lines correspond to the second block weight vector and points to its es-
timates obtained with RGCCA, SGCCA, MM_SGCCA and PROX_SGCCA. For PROX_SGCCA, 2
values of γ (5×10−3 or 5×10−4) are considered. Each row is associated with a specific value of η (0.5,
1 and 2) arranged in increasing order and each column with a method. 4 worst runs for each method
according to a weighted sum of ACC, κ1 and κ2 were removed. For each element of this estimated
vector, grey areas stand for the min and max of its distribution based on the 36 remaining runs.





Appendix D

Résumé en français

Abstract in French

Sujet : Un cadre statistique et algorithmique pour l’analyse de données multibloc et multivoie.

Nous résumons ici les différents aspects abordés au travers de cette thèse. Après avoir décrit les enjeux
et motivations qui nous ont poussé au développement des méthodes abordées dans ce travail, nous
résumerons chacune des contributions.

Motivations et contextes

L’étude des relations entre plusieurs ensembles de variables mesurées sur un même groupe d’individus
est un défi majeur en statistique. La littérature fait référence à ce paradigme sous plusieurs termes :
«analyse de données multimodales», «intégration de données», «fusion de données» ou «analyse de
données multibloc». Ce type de problématique se retrouve dans des domaines aussi variés que la
biologie, la chimie, l’analyse multi-capteurs, le marketing, la recherche agro-alimentaire, où l’objectif
commun est d’identifier les variables de chaque bloc intervenant dans les intéractions entre blocs.
Par exemple, afin d’expliquer le lien complexe entre un phénotype comportemental ou clinique et la
génétique, la neuroimagerie est souvent utilisée comme phénotype intermédiaire (ou endophénotype).
Ainsi, en imagerie-génétique, le but est d’identifier un ensemble de biomarqueurs génétiques expliquant
une certaine variabilité de la neuroimagerie, elle-même engendrant des variations du comportement.
Par ailleurs, chaque bloc est composé d’un très grand nombre de variables (∼ 1M), nécessitant le calcul
de milliards d’associations. L’élaboration d’un cadre statistique adapté à la structure particulière des
données ainsi qu’à leur hétérogénéité est donc primordial pour étudier ce type de données.

En plus de cette structure globale multi-source, chaque source peut être représentée sous la forme
d’un tenseur ou d’une matrice d’ordre supérieur. Par exemple, l’Imagerie par Résonance Magnétique
(IRM) permet d’obtenir une image tridimensionnelle du cerveau, donc par nature, un tenseur. De
même, l’ÉlectroEncéphaloGraphie (EEG) ou la MagnétoEncéphaloGraphie (MEG) donnent accès res-
pectivement aux ondes cérébrales électriques ou magnétiques. Ces ondes sont mesurées par plusieurs
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capteurs simultanément, ce qui permet d’obtenir des données spatio-temporelles. Lorsque ces don-
nées spatio-temporelles bidimensionnelles sont mesurées sur différents individus, un tenseur peut alors
être construit. Le respect de cette structure tensorielle éventuelle est indispensable pour analyser les
données sans risque de perte d’information.

Le principe de parcimonie est au cœur de nombreux domaines scientifiques ; en effet, une expli-
cation plus simple d’un phénomène donné doit être préférée aux explications plus complexes. En
statistique, cette parcimonie peut se traduire par de la sélection de variables. Dans le cadre de l’étude
d’une maladie neurodégénérative impliquant à la fois des mesures en génétique et en imagerie, cette
sélection de variables permet d’identifier un sous-ensemble de variants génétiques impliqués dans la
neurodégénérescence de certaines régions du cerveau.

Des algorithmes de modélisation spécialisés, capables de prendre en compte les propriétés struc-
turelles inhérentes à ces ensembles de données multi-sources, sont donc indispensables pour exploiter
pleinement leur complexité et fournir des informations pertinentes et robustes.

Déroulement du manuscrit de thèse

Le développement de méthodes d’analyse de données hétérogènes, potentiellement de grande dimen-
sion, est au coeur de ce travail. Ces développements se basent sur l’Analyse Canonique Généralisée
Régularisée (RGCCA), un cadre général pour l’analyse de données multiblocs. Le coeur algorithmique
de RGCCA se résume à une unique «update», répétée jusqu’à convergence. Si cette update possède
certaines «bonnes» propriétés, la convergence globale de l’algorithme est garantie. Tout au long de ce
manuscrit, nous avons essayé de préserver à la fois la flexibilité et la simplicité du cadre d’optimisation
algorithmique proposé par RGCCA.

Dans une seconde partie, l’analyse de plusieurs jeux de données est menée à l’aide de ces nouvelles
méthodes. La polyvalence des ces outils est démontrée sur (i) deux études en imagerie-génétique,
(ii) deux études en électroencéphalographie ainsi (iii) qu’une étude en microscopie Raman. L’accent
est mis sur l’interprétation des résultats facilitée par la prise en compte des structures multiblocs,
tensorielles et/ou parcimonieuses.

Ce manuscrit de thèse est organisé comme suit :

Chapitre 1 : Contexte des méthodes multiblocs et multivoies
Ce chapitre commence par une description de l’Analyse Canonique Généralisée Régularisée (RGCCA),

suivie d’un aperçu d’autres méthodes multiblocs - cas particulier ou non de RGCCA. Dans une
deuxième partie, les notations et opérateurs classiques de l’analyse tensorielles sont rappelées. Les
modèles multivoie les plus courants sont également présentés. Ce chapitre se conclut par la présen-
tation d’un cadre d’optimisation algorithmiques simple et très général. Ce cadre va nous servir de
base pour tous les développements algorithmiques abordés dans le cadre de ce travail. Comme nous le
verrons, il offre une approche systématique pour construire des algorithmes globalement convergents.

Chapitre 2 : Une version gloable de l’Analyse Canonique Généralisée et Régularisée
L’objectif de RGCCA est de construire un ensemble de composantes pour chaque bloc permettant

de décrire les blocs et les relations entre blocs. RGCCA appartient à la famille des méthodes multiblocs
séquentielles. Cela signifie que les composantes de chaque bloc sont déterminées séquentiellement (R
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problèmes d’optimisation successifs doivent être résolus afin d’extraire R composants de chaque bloc).
D’un point de vue algorithmique, cette stratégie semble être sous-optimale. Aussi, nous présentons dans
le chapitre 2 une version globale de RGCCA permettant d’extraire simultanément les composantes
de chaque bloc à l’aide d’un unique problème d’optimisation. Ce problème d’optimisation globale de
RGCCA est présenté et nous montrons que l’algorithme correspondant est globalement convergent.
Les approches séquentielle et globale de RGCCA sont enfin comparées sur données simulées.

Chapitre 3 : L’Analyse Canonique Généralisée et Multivoie (MGCCA)
L’Analyse Canonique Généralisée Multivoie (MGCCA) étend RGCCA à l’analyse conjointe d’un

ensemble de tenseurs ou de matrices d’ordre supérieur. Des versions séquentielle et globale de MGCCA
sont proposées. Pour l’approche séquentielle, deux stratégies différentes permettent d’obtenir des com-
posantes de niveau supérieur. Les deux algorithmes proposés pour MGCCA (global ou séquentiel) sont
globalement convergents. Ces deux approches sont comparées sur données simulées.

Chapitre 4 : Parcimonie Structurée dans l’Analyse Canonique Généralisée Parcimonieuse (SGCCA)
Un des défis majeurs de l’analyse de données multi-source est d’identifier les variables de chaque

source forcent de liaison entre blocs, notamment lorsque les données sont de grande dimension. L’Ana-
lyse Canonique Généralisée Parcimonieuse (SGCCA) est une version de RGCCA permettant de sélec-
tionner les variables qui interagissent le plus entre les blocs. Un nouvel algorithme est présenté pour
résoudre plus rapidement le problème d’optimisation de SGCCA. Nous démontrons que ce nouvel
algorithme est globalement convergent. La sélection de variables dans SGCCA repose sur la norme
`1 qui ne prend pas en compte les intéractions possibles entre les variables à l’intérieur d’un bloc.
SGCCA a donc été améliorée en introduisant de la parcimonie structurée (LASSO, groupe LASSO,
élitiste LASSO) dans son critère d’optimisation.

Chapitre 5 : Analyse de données multiblocs multivoies
Dans ce dernier chapitre, la polyvalence de RGCCA et/ou MGCCA est évaluée sur cinq jeu de

données de nature multibloc et/ou multivoie. Dans une première étude, on cherche à questionner l’in-
fluence de la génétique sur le vieillissement normal du cerveau au sein de la cohorte United Kingdom
Biobank (UKB). La seconde est une étude d’imagerie-génétique sur la base de données «Alzheimer’s di-
sease Neuroimaging Initiative»(ADNI) qui vise à comprendre certains mécanismes de la maladie grâce
à une approche multimodale (génétique, transcriptomique, IRM longitudinale, facteurs cliniques). La
troisième étude vise à analyser, à partir de la microscopie Raman, l’efficacité d’une crème hydratante.
Les deux dernières études cherchent à identifier chez le nourrisson humain, à partir de l’ÉlectroEncé-
phaloGraphie (EEG), des zones du cerveau impliquées dans le processus de discrimination entre des
syllabes proches.
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Titre : Un cadre statistique et algorithmique pour l’analyse de données multibloc et multivoie
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Résumé :
L’étude des relations entre plusieurs ensembles de variables
mesurées sur un même groupe d’individus est un défi ma-
jeur en statistique. La littérature fait référence à ce paradigme
sous plusieurs termes : ”analyse de données multimodales”,
”intégration de données”, ”fusion de données” ou encore ”ana-
lyse de données multibloc”. Ce type de problématique se re-
trouve dans des domaines aussi variés que la biologie, la chi-
mie, l’analyse multi-capteurs, le marketing, la recherche agro-
alimentaire, où l’objectif commun est d’identifier les variables
de chaque bloc intervenant dans les intéractions entre blocs.
Par ailleurs, il est possible que chaque bloc soit composé d’un
très grand nombre de variables (∼1M), nécessitant le calcul
de milliards d’associations. L’élaboration d’un cadre statistique
épousant la complexité et l’hétérogénéité des données est
donc primordial pour mener une analyse pertinente.
Le développement de méthodes d’analyse de données
hétérogènes, potentiellement de grande dimension, est au
coeur de ce travail. Ces développements se basent sur l’Ana-
lyse Canonique Généralisée Régularisée (RGCCA), un cadre
général pour l’analyse de données multiblocs. Le coeur al-
gorithmique de RGCCA se résume à un unique ”update”,
répété jusqu’à convergence. Si cet update possède certaines
”bonnes” propriétés, la convergence globale de l’algorithme
est garantie. Au cours de ces travaux, le cadre algorithmique

de RGCCA a été étendu dans plusieurs directions :
Du séquentiel au global. Plutôt que d’extraire de chaque bloc
les composantes de manière séquentielle, un problème d’op-
timisation globale permettant de construire ces composantes
simultanément a été proposé.
De la matrice au tenseur. L’Analyse Canonique Généralisée
Multivoie (MGCCA) étend RGCCA à l’analyse conjointe d’un
ensemble de tenseurs. Des versions séquentielle et globale
de MGCCA ont été proposées. La convergence globale de ces
algorithmes est montrée.
De la parcimonie à la parcimonie structurée. Le coeur
de l’algorithme d’Analyse Canonique Généralisée Parcimo-
nieuse (SGCCA) a été amélioré en fournissant un algorithme
à convergence globale beaucoup plus rapide. Des contraintes
de parcimonie structurée ont également été ajoutées à
SGCCA.
Dans une seconde partie, l’analyse de plusieurs jeux de
données est menée à l’aide de ces nouvelles méthodes.
La polyvalence des ces outils est démontrée sur (i)
deux études en imagerie-génétique, (ii) deux études en
électroencéphalographie ainsi (iii) qu’une étude en microsco-
pie Raman. L’accent est mis sur l’interprétation des résultats
facilitée par la prise en compte des structures multiblocs, ten-
sorielles et/ou parcimonieuses.

Title : A statistical and computational framework for multiblock and multiway data analysis

Keywords : Multivariate Statistics ; Canonical Correlation Analysis ; Multiway Analysis ; Sparsity ; Neuroimaging ; Genetics ;

Abstract :
A challenging problem in multivariate statistics is to study re-
lationships between several sets of variables measured on the
same set of individuals. In the literature, this paradigm can
be stated under several names as “learning from multimodal
data”, “data integration”, “data fusion” or “multiblock data ana-
lysis”. Typical examples are found in a large variety of fields
such as biology, chemistry, sensory analysis, marketing, food
research, where the common general objective is to identify
variables of each block that are active in the relationships with
other blocks. Moreover, each block can be composed of a high
number of measurements (∼1M), which involves the compu-
tation of billion(s) of associations. A successful investigation of
such a dataset requires developing a computational and statis-
tical framework that fits both the peculiar structure of the data
as well as its heterogeneous nature.
The development of multivariate statistical methods constitutes
the core of this work. All these developments find their founda-
tions on Regularized Generalized Canonical Correlation Ana-
lysis (RGCCA), a flexible framework for multiblock data ana-
lysis that grasps in a single optimization problem many well
known multiblock methods. The RGCCA algorithm consists in
a single yet very simple update repeated until convergence. If
this update is gifted with certain conditions, the global conver-
gence of the procedure is guaranteed. Throughout this work,

the optimization framework of RGCCA has been extended in
several directions :
From sequential to global. We extend RGCCA from a se-
quential procedure to a global one by extracting all the block
components simultaneously with a single optimization pro-
blem.
From matrix to higher order tensors Multiway Generalized
Canonical Correlation Analysis (MGCCA) has been proposed
as an extension of RGCCA to higher order tensors. Sequential
and global strategies have been designed for extracting seve-
ral components per block. The different variants of the MGCCA
algorithm are globally convergent under mild conditions.
From sparsity to structured sparsity The core of the Sparse
Generalized Canonical Correlation Analysis (SGCCA) algo-
rithm has been improved. It provides a much faster globally
convergent algorithm. SGCCA has been extended to handle
structured sparse penalties.
In the second part, the versatility and usefulness of the pro-
posed methods have been investigated on various studies : (i)
two imaging-genetic studies, (ii) two Electroencephalography
studies and (iii) one Raman Microscopy study. For these ana-
lyses, the focus is made on the interpretation of the results ea-
sed by considering explicitly the multiblock, tensor and sparse
structures.
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