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Résumé – Summary in French

Contexte

Cette thèse s’inscrit dans le domaine de la sémantique dénotationnelle, qui est l’étude et
la conception de représentations mathématiques des langages de programmation afin d’en
extraire leur sens et leurs propriétés. Un des sujets d’étude principaux de la sémantique
dénotationnelle est la notion d’équivalence observationnelle, qui est la garantie que deux
programmes ont le même comportement quel que soit le contexte, et peuvent donc être
utilisés indifféremment l’un de l’autre.

Le thème de cette thèse est la sémantique des langages de programmation quantique
et en particulier la conception de modèles interactifs (jeux) pour ces langages. De plus en
plus, les chercheurs en sémantique dénotationnelle cherchent à enrichir les modèles avec des
aspects quantitatifs afin de représenter par exemple des effets probabilistes ou quantiques.
Les programmes du premier ordre contenant ces effets quantitatifs sont en général bien
compris et disposent de modèles à base d’outils mathématiques traditionnels. Par exemple,
pour le quantique, l’un des modèles standard utilise les espaces de Hilbert et les matrices de
densité. Néanmoins, les programmes qui disposent de flot de contrôle plus complexe, par
exemple en présence d’ordre supérieur, sont significativement plus difficiles à modéliser,
car mixer les modèles de sémantique dénotationnelle traditionnelle (domaines, fonctions
continues, etc) et les effets quantitatifs s’avère délicat. Cette thèse explore l’utilisation des
modèles de sémantique dénotationnelle interactive, plus précisément la sémantique des jeux
concurrents, qui permettent une étude plus précise du flot de contrôle, facilitant l’ajout
d’effets quantitatifs tels que le quantique.

Contenu de la Thèse

Le manuscrit de thèse se décompose en trois parties. Au cœur de la première partie
sont les préliminaires quantiques, qui introduisent les notions de calcul quantique utilisées,
deux manières de représenter ces calculs quantiques (états purs et états mixtes), et une
reformulation d’un modèle dénotationnel déjà existant (de Selinger et Valiron) pour le

11
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fragment linéaire du λ-calcul quantique. L’une des propriétés clé des effets quantiques
et de leurs modèles est la notion de linéarité : les états quantiques sont détruits après
utilisation, et ne peuvent pas être dupliqués. Afin de pouvoir mieux modéliser cette notion
de linéarité, cette première partie commence par des préliminaires catégoriques généralisant
la notion de catégorie de Freyd fermée dans un contexte plus adapté à la modélisation des
langages linéaires.

La deuxième partie présente la première contribution de cette thèse, un modèle de
jeux quantiques linéaires. Cette partie commence par des préliminaires posant les bases
techniques des jeux concurrents (de Rideau, Winskel), puis y ajoute la notion de donnée
quantique. Enfin, ces outils sont utilisés pour former un modèle de jeux pour le fragment
linéaire du λ-calcul quantique, pour lequel on montre la pleine adéquation, l’une des pro-
priétés les plus fortes que peut respecter un modèle dénotationnel, qui caractérise la notion
d’équivalence observationnelle mentionnée précédemment.

Lors de ces deux premières parties, nous nous étions restreints au fragment linéaire du
λ-calcul quantique, dans lequel les fonctions et variables ne peuvent être utilisées qu’une
seule et unique fois. Dans le λ-calcul quantique complet, on autorise les fonctions qui ne
consomment pas de ressources quantiques à être dupliquées et réutilisées. Cela introduit des
complexités techniques significatives, mais pour la plupart déjà étudiées dans des cas plus
simples que la sémantique des langages de programmation quantique. Dans la troisième
partie, nous étendons toutes les notions des deux premières parties afin de pouvoir modéliser
le λ-calcul quantique dans toute sa généralité. Nous démontrons que le modèle de jeux ainsi
défini est pleinement adéquat. C’est une des contributions principales de cette thèse : aucun
modèle n’était connu pleinement adéquat pour le λ-calcul quantique complet. Finalement,
nous construisons un pont fonctoriel avec le modèle antérieur de Pagani, Selinger et Valiron,
et déduisons que celui-ci était déjà pleinement adéquat.



Introduction

Context
As quantum programming has been leaving the realm of fiction and preparing its entrance
in the real world, it promises some significant impact on computing and its theory. Tradi-
tional views on algorithms and complexity are challenged, some of the most well known ex-
amples being polynomial time integer factorisation [Sho97], quick data-base search [Gro96],
or quantum cryptography [GRTZ02]. Understanding the computational power that can be
extracted from the unique properties of quantum information is still an active research do-
main, e.g., the reserach on the fundamental mechanisms behind locality and contextuality
[AB11, ABK+15].

As potential uses of quantum mechanics in computing continue to be discovered, many
programming languages including quantum features have been developed, QCL [Öm05]
is one of the first quantum programming languages to be implemented, and is a C-like
imperative programming language allowing its user to define variables of quantum data
type and apply any of the standard quantum operations to it. On the other side of the
spectrum, Quipper [GLR+13], is one of the most recent functional quantum programming
language, and is an Haskell-like language allowing its user to create, manipulate and execute
quantum circuits. As quantum hardware has yet to become mainstream, those languages
come with built-in systems that allow the programmers to simulate the execution of the
quantum program, making quantum programming a field pre-dating quantum hardware.

In order to study quantum programming, similarly to how we study other kinds of
programming, we rely on paradigmatic languages: a paradigmatic language is a program-
ming language which has not been designed to be actually used by programmers; it is a
minimalistic language that has been designed to isolate specific computational features and
study the interactions between them. A well known example of a paradigmatic language
is the λ-calculus: it is a programming language which only features functions, function
calls, and variables. Variants of the λ-calculus are used to study the interaction between
higher-order computation and various other features, like memory [Sum09], probabilistic
branching [ETP14], quantum computation [SV06], and many more.

One of the first steps in studying a language is to define its operational semantics.
Operational semantics are direct descriptions of the behaviour of a program. They are

13
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often presented as rewriting systems, e.g “replace 12 + 30 by 42” or “replace the function
call f(7) by the body of the function f(x) with every instance of the input x substituted
by 7”. Their down-to-earth approach make operational semantics usually easy to define
but hard to analyse.

The natural counterpart of operational semantics is denotational semantics. A deno-
tational semantics of a language is a mathematical abstraction which tries to extract the
underlying meaning of programs, e.g “the function that doubles its input” or “the function
that returns 1 half of the time, 2 a quarter of the time, 3 an eight of the time, . . . ”. Since a
denotational semantics is an abstraction, a central question is to determine how faithful the
abstraction is to the language. The degree of faithfulness describes what kind of properties
proven on the semantics will be able to be lifted to the language itself. The golden standard
is full abstraction [Mil77], which ensures an exact correspondence between the denotational
semantics and the program behaviours within the language. More precisely, a denotational
semantics is said to be fully abstract when for every two terms of the language, those two
terms have the same observational behaviour (i.e., in every context, those two terms are
indistinguishable) if and only if they have exactly the same denotational semantics.

This thesis focuses on two particular kinds of denotational semantics: relational se-
mantics [Ehr12] and game semantics [HO00, AJM00]. The former describes a program by
a relation between possible inputs and possible outputs, e.g., the program that negates its
boolean input would be represented by {(false, true), (true, false)}. Game semantics is part
of the family of dynamic denotational models, as opposed to static denotational models
like relational semantics. In game semantics, a program is represented by the opposition
between a Player, standing for the program itself, and an Opponent, standing for the user
or the environment of the program. The exchange of information between the program
and the user is represented by moves of a game, Opponent moves corresponding to inputs
to the program, and Player moves corresponding to outputs. In fact, game semantics can
be understood as a relational semantics in which we remember the order and possible
interleaving of inputs and outputs of the programs. This makes game semantics a much
more intensional model: while it is not as down-to-earth as the operational semantics, it
is still possible to observe and study the order of evaluation of a program within its game
semantics.

State of the Art

The quantum λ-calculus was introduced in [SV06] as a paradigmatic language for quantum
programming. Like Quipper, it follows the paradigm of quantum data over classical control
flow. It is a λ-calculus together with some quantum primitives allowing us to generate,
act on, and observe quantum data. In [SV06], Selinger and Valiron provide an operational
semantics on tuples of a term of the language together with a quantum store representing
the quantum information (like entanglement) accumulated along the computation. This
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quantum information is represented using vectors in a Hilbert space.
Because of the different challenges of modelling quantum computation, works on deno-

tational semantics first focussed on a fragment of the quantum λ-calculus, called the linear
quantum λ-calculus. Following a line of work from Selinger [Sel04, Sel07], a fully abstract
denotational model for the linear quantum λ-calculus was achieved in [SV08]. This model is
a relational model weighted by completely positive maps representing quantum operations.
This model was later [PSV14] extended into a model for the (full) quantum λ-calculus,
but the proof of full abstraction in the linear case did not generalise to the general case,
leaving the question of full abstraction for the quantum λ-calculus open.

This was not the only attempt at giving a denotational semantics for quantum pro-
gramming. Delbecque [Del11] made a game semantics model for a fragment of the language
with a significant restriction on quantum data, in particular making it impossible for quan-
tum operations to act on quantum data coming from different parts of the program. Those
restrictions ensure that the quantum information remains local, and no “long distance”
entanglement occurs between different parts of the program. More recently, Hasuo and
Hoshino proposed a model, based on Girard’s geometry of interaction [Gir89], of a lan-
guage with a similar restriction as in Delbecque’s language [HH17]. But Pagani, Selinger
and Valiron were not the only ones to manage to avoid this restriction on entanglement,
as Malherbe [MSS13] also presented a model for the quantum λ-calculus (though without
recursion, which was present in [PSV14]), using a model based on presheaves, and Dal
Lago, Faggian, Valiron, and Yoshimizu recently presented a geometry of interaction model
[LFVY17] for the full quantum λ-calculus (with recursion).

Challenges

• Because of entanglement, quantum data is fundamentally non-local, meaning that
the state of a quantum bit might be correlated with the state of other quantum
bits in the program. While this non-locality is very restricted1, multiple previous
models have encountered difficulties when trying to model it in its whole generality
[Del11, HH17].

• Another central property of quantum mechanics is given by the no-cloning theorem:
quantum data cannot be duplicated. We say that quantum data is linear. This
linearity forces the presence in the quantum λ-calculus of two kinds of functions:
linear functions, that consume some quantum data hence can be used only once,
and non-linear functions, that do not consume any quantum data and can be used
as many times as one wants. Any denotational model for the quantum λ-calculus
should be able to represent both linear and non-linear behaviours.

1And in particular does not allow faster-than-light communication [GRW80].
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• The model presented in [PSV14] contains a lot of “junk”, i.e., elements that are
absurd, such that infinite probabilities, or completely positive maps that correspond
to no physically realisable quantum operation. While we did not aim for a definability
result, which would be “every element of the denotational model can be realised by a
term of the quantum λ-calculus”, we wanted to build a model that fits more tightly
within physically realisable quantum computation.

Our Approach

Our model uses the recently developed framework of concurrent game semantics [AM99,
RW11, CCRW17, CCW19]. One of the motivations behind this choice is the privileged
relationship between concurrent game semantics and the relational model. Indeed, given
that game semantics is essentially a denotational semantics in which we remember some
temporal information, one might wonder whether we recover a static denotational seman-
tics when taking a game semantics and “forgetting” the temporal information. This is
unfortunately not always the case, as such forgetting operations are often not functorial
due to issues related to deadlocks, as pointed out in [BDER97], or not semantics-preserving
[CM10]. However, under some reasonable assumptions, “forgetting” the temporal infor-
mation of a concurrent game semantics model will exactly give the relational model. This
collapse has been proven in the case of probabilistic game semantics of probabilistic PCF
in [CCPW18], and we prove it in the case of quantum game semantics.

Our model follows the same paradigm as the quantum λ-calculus: “quantum data,
classical control flow”. Indeed, our games and strategies will be classical games and classical
strategies together with some annotation describing quantum effects. This approach allows
us to expect other works made on concurrent game semantics to smoothly extend to the
quantum case, e.g., semantics of concurrent languages or with state.

Contributions
• The first contribution of this thesis is a minor one: we provide a categorical model

for the Call-by-Value linear lambda calculus, adapting the notion of Freyd category
[PT97, PT99a] to the monoidal case. Freyd categories rely on premonoidal cate-
gories, which distinguish the left-then-right evaluation order from the right-then-left
evaluation order. This level of generality is necessary as game semantics does also
observe the difference in the evaluation order, hence would not fit more restricted
notions of categorical models.

• We extend concurrent games and strategies defined in [CCRW17] to the quantum
case, by defining a notion of quantum strategy consisting of event structures [NPW79]
annotated by completely positive maps. We then make this notion compatible with
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the notion of symmetry on concurrent games [CCW19], used to represent non-linear
behaviours. Moreover, concurrent game semantics à la [CCW19] had only been used
in the context of call-by-name languages [CCPW18, CCW15a, CCW17, CCHW18],
so we adapted some of the definitions to better fit a call-by-value context.

• We build a fully abstract game model for the linear quantum λ-calculus. While [SV08]
already provide a fully abstract model for this language, we believe that the more
intensional approach of game semantics would ease the extension to more effectful
language features.

• Extending our game model from the linear case, we build the first proven fully ab-
stract model for the (full) quantum λ-calculus. The proof of full abstraction relies
on a proof method from [ETP14].

• Relying on the privileged relationship between concurrent game semantics and rela-
tional semantics, we build a semantics-preserving functor from our game semantics
model to a variant of the relational model of [PSV14]. This functor allows us to
deduce the full abstraction of the model of [PSV14] from the full abstraction of our
game model. We believe that our proof of full abstraction could be directly applied
to their model.

• Most previous models of the quantum λ-calculus took a “strictly” linear approach,
meaning that functions could be either non-linear, i.e., usable as many time as one
want, or linear, i.e., usable exactly once. The alternative is the affine approach, where
functions can either be non-linear, or affine, i.e., usable at most once. For all of our
models and results, we provide an affine alternative.

Outline
The thesis is organised in three parts. As this thesis bridges multiple domains, from quan-
tum computation to concurrent game semantics, passing by category theory and relational
semantics, a lot of pages are reserved to explaining the basics of each of those domains.
The first part goes over multiple preliminaries, and contains only minor contributions. The
second part develops our model of quantum game semantics in a simpler context than the
full quantum λ-calculus: the linear quantum λ-calculus, which has no !, i.e., all variables
and function are expected to be used exactly once. The third and last part enriches the
model of the second part into a fully abstract model for the full quantum λ-calculus.

Part I The first part starts with a chapter of preliminaries on category theory. After
some standard definitions, we present the first minor contribution of this thesis: an
adaptation of the notion of Freyd category in a model for the linear call-by-value
λ-calculus. In the second chapter, we present the basic mathematics behind Hilbert
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spaces and completely positive maps, which will be used in the third chapter to
represent quantum computation. In this third chapter, we present the linear quantum
λ-calculus. We conclude by defining a variant of the fully abstract model of [SV08]
for this language.

Part II In the second part, we start in chapter four by introducing the basics of concurrent
game semantics: the partial-order based object called event structure, the notion of
game and strategy, and the notions of composition of strategies, not yet equipped to
deal with symmetry. Then, in chapter five, we present the first major contribution
of this thesis: the category of quantum games and quantum strategies. At last, in
chapter six, we use those quantum strategies to give a fully abstract game semantics
model to the linear quantum λ-calculus, and relate this model to the quantum rela-
tional model defined in the first part. We conclude by explaining how to adapt this
model to the affine quantum λ-calculus, where the condition “variables and functions
must be used exactly once” is relaxed to “variables and functions must be used at
most once”.

Part III In the third part, we start in chapter seven by presenting the full quantum λ-
calculus, and some of its properties. In chapter eight, we extend the quantum rela-
tional model of the first part into a model for the full quantum λ-calculus, similarly
to the model of [PSV14]. In chapter nine, we do the same for the game model of the
second part, and finally in chapter ten we prove that both models are fully abstract,
and related by a collapse functor.
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Background and Preliminaries
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Overview of Part I
In Parts II and III, we build a game semantics model for a quantum λ-calculus QΛ!.

As such, we first need to introduce each of those notions separately before combining them
together.

In the first chapter of this part, we go through some preliminaries on category theory.
We then present a categorical model for Λ, a linear call-by-value λ-calculus. This model
relies on linear Freyd categories, a generalisation of Freyd categories as defined in [PT99b],
and will serve as a template for models of more complex λ-calculi we will study later in this
thesis. We note that while the construction is not particularly original, to the best of our
knowledge this model does not appear in the literature, and as such is the first contribution
of this thesis.

In the second chapter, we present some preliminaries on the mathematics of quantum
computation, including Hilbert spaces, hermitian matrices, and infinitary completion of
partial orders. We then use them to represent quantum computation. This chapter does
not contain any original contribution.

In the third chapter, we define the language QΛ, the linear fragment of QΛ!. We will
restrict ourselves to this fragment until Part III. We present a model for QΛ, which we
call the linear quantum relational model, for its similarity with the relational model. This
model is a reformulation of the model of Selinger and Valiron in [SV08], made to ease the
relationship with game semantics in Section 6.3.3. We provide a proof of full abstraction
of this model, which differs from the one of Selinger and Valiron as we aim to set up some
definitions and methods useful for later proofs.
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Chapter 1

Call-by-Value Semantics for the
Linear λ-calculus

1.1 Notations

We start by recalling some basic notations about sets. We will have a use for three different
kinds of union of sets:

• A ∪B is the standard set-theoretic union.

• A ⊔B is A ∪B, where we additionally know that A ∩B = ∅.

• A ⊎B := {(0, a) | a ∈ A} ⊔ {(1, b) | b ∈ B} is the tagged disjoint union.

We write N,Z,R≥0,R,C for the sets of natural numbers (including zero), integers, non-
negative real numbers, real numbers and complex numbers. We recall some standard
operations on complex numbers in Section 2.1.1.

We also write R≥0 for the set R≥0 ⊔ {+∞}. When needed, we take the conventions
0×∞ = 0 =∞× 0, and carefully restrict ourselves to operations that are compatible with
this convention.

Lastly, when considering tuples a = (a1, . . . , an) ∈ An and a′ = (an+1, . . . , an+k) ∈ Ak,
we will often make implicit the isomorphism between An ×Ak and An+k, writing (a, a′) =
(a1, . . . , an+k) ∈ An+k. Similarly when using monoidal categories, we will often implicitly
use associativity isomorphisms. Those omissions are purely for syntactic convenience. We
keep the uses of unit isomorphisms A×{⋆} � A (and its equivalent in monoidal categories)
and commutativity isomorphisms A×B � B×A (and its equivalent in monoidal categories)
explicit, except when specified otherwise, e.g., quantum annotations in Section 5.3.1.
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1.2 Category Theory
In game semantics, and more generally in denotational semantics, category theory is central
to the representation of types and programs: types are represented by objects, programs
by morphisms and features of the studied programming language translate to structure of
the category; e.g., pairing is represented by a monoidal product, functions are represented
through monoidal closures, booleans rely on coproducts, and replication relies on linear
exponential comonads [Mel09]. This section will focus on the following notions :

• Symmetric monoidal categories (SMC), symmetric premonoidal categories (SPC),
and symmetric linear Freyd categories (SFC)

• Symmetric monoidal closed category (SMCC), compact closed categories (CpCC),
⋆-automonous categories and closed linear Freyd categories (CFC)

• Coproducts and cocartesian categories

• Comonads and Linear Exponential Comonads

All but SFCs and CFCs are standard notions well studied in the literature, as in [PEO15,
Mel09, ML98], and SFCs and CFCs are simple generalisations of existing notions to non-
cartesian contexts.

We recall some notations: for C a category, for A,B ∈ C two objects, we write C(A,B)
the set of morphisms (also called maps) of C from A to B. We also write idA ∈ C(A,A) for
the identity on A. We say that f ∈ C(A,B) is an isomorphism if there exists g ∈ C(B,A)
such that f ◦ g = idB and g ◦ f = idA. When such an isomorphism exits, we say that A
and B are isomorphic, and we write A � B. We refer to [ML98] for more background on
category theory.
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Example 1.1 Category of Relations Rel
As a recurring example, we will consider the category Rel of relations. Its objects are
finite and countably infinite sets. A map R ∈ Rel(A,B) is a subset of A×B, the cartesian
product of A and B. The identity map on A is idRel

A = {(a, a) | a ∈ A}. The composition
of R ∈ Rel(A,B) and R′ ∈ Rel(B,C) is simply:

(a, c) ∈ R′ ◦R ⇐⇒ ∃b ∈ B, (b, c) ∈ R′ and (a, b) ∈ R

We distinguish one singleton object 1 = {⋆}. We define the booleans with ff = (0, ⋆),
tt = (1, ⋆), and bit = 1 ⊎ 1 = {ff, tt}.
With those notations, it can be useful to think of elements of Rel(bit,bit) as non-
deterministic programs from booleans to booleans. So {(tt,ff), (tt, tt)} would be the pro-
gram only terminating on the input tt, which non-deterministically outputs tt or ff in that
case. In fact, in Section 1.4.2, we use Rel as a model of the call-by-value linear λ-calculus
Lλ.

Example 1.2 Category of Weighted Relations WRel
Another recurring example will be the category WRel of weighted relations. Similarly
to Rel, its objects are finite and countably infinite sets. A map w ∈ WRel(A,B) is a
function from A × B to R≥0. The identity map on A is idWRel

A = (a, b) 7→ 1 if a = b and
0 otherwise. The composition w ∈WRel(A,B) and w′ ∈WRel(B,C) is:

(w′ ◦ w)(a, c) =
∑

b∈B
w′(b, c) · w(a, b)

We note that infinite sums of elements of R≥0 are always well defined. Similarly to the
case of Rel, WRel(bit,bit) should be thought of as containing the representation of
probabilistic programs from booleans to booleans. So (a, b) 7→ 0.5 if a = tt and 0 otherwise
would be the program only terminating on the input tt, flipping a fair coin to determine
the output. We note that WRel also contains the representation of programs using absurd
probabilities like 2 or even ∞.
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1.2.1 Monoidal Product in Categories

Symmetric Monoidal Categories

A symmetric monoidal category is a category with a well-behaving notion of “pairing” of
objects and morphisms, but less restrictive than a category with finite products. More
formally:

Definition 1.2.1. A symmetric monoidal category, or SMC, (C,⊗,1) is a category C
together with a distinguished object 1, a bifunctor ⊗ on C, and the following natural
isomorphisms:

• The left-unitor on A written luA ∈ C(1⊗A,A)

• The right-unitor on A written ruA ∈ C(A⊗ 1, A)

• The associator on A,B,C written asA,B,C ∈ C((A⊗B)⊗ C,A⊗ (B ⊗ C))

• The braiding on A,B written brA,B ∈ C(A⊗B,B ⊗A)

Those isomorphisms are expected to make the coherence diagrams of Fig. 1.1 commute.

In a such an SMC, for A1, . . . , An some objects, we can define ⊗1≤i≤nAi := ((A1 ⊗
A2) ⊗ . . . ) ⊗ An. The associator, the braiding and the unitors, ensure that any other
bracketing of the ⊗, any addition of removal of 1 objects, and any other ordering of the
Ai, would give rise to an isomorphic object. For k ≤ n the number of non-1 objects, this
isomorphism induces a permutation over {1 . . . k}. The coherence diagrams ensure that
two isomorphisms obtained from the associator, the braiding, and the unitors, inducing
the same permutation are necessarily equal. See [ML98] for a proof of this statement.

We will keep the uses of the unitors and the braiding explicit, however, for syntactical
convenience, we will often keep the uses of the associator implicit. In particular, we will
usually omit the isomorphism between ⊗1≤i≤nAi ⊗

⊗

n+1≤i≤n+mAi and ⊗1≤i≤n+mAi.

Example 1.3 Symmetric Monoidal Categories
Both (Rel,⊗,1) and (WRel,⊗,1) are SMCs, with:

1 := {⋆}
A⊗B := A×B

R⊗R′ := {((a, a′), (b, b′)) | (a, b) ∈ R and (a′, b′) ∈ R′}
w ⊗ w′ := ((a, a′), (b, b′)) 7→ w(a, b) · w′(a′, b′)

Morphisms of Rel(bit⊗bit,bit) or WRel(bit⊗bit,bit) can be thought of as containing
the representation of non-deterministic or probabilistic programs taking two booleans as
input, and having one boolean as output.
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��

A⊗ (B ⊗ C)
brA,B⊗C// (B ⊗ C)⊗A

asB,C,A

��
(B ⊗A)⊗ C asB,A,C// B ⊗ (A⊗ C)

B⊗brA,C// B ⊗ (C ⊗A)

Figure 1.1: Coherence Diagrams for SMCs

When considering functors between SMCs, we will often require them to respect the
structure of SMCs. For (C,⊗,1) and (D, •, e) two SMCs, we say that a functor F from C
to D is a lax symmetric monoidal functor if for every objects A,B ∈ C, there is a morphism
m1 ∈ D(e, F1) and a natural transformation mA,B ∈ D(FA • FB,F (A ⊗ B)) such that
the diagrams of Fig. 1.2 commute.

A strong symmetric monoidal functor is a lax symmetric monoidal functor such that
both m1 and mA,B are isomorphisms.

Symmetric Premonoidal Categories

In some instances, our categories will have a structure that respects all the properties
of an SMC but one: the monoidal product is not bifunctorial. We call them symmetric
premonoidal categories, and give here a more formal definition. We refer to [PR97] for
more background.

Definition 1.2.2. A binoidal category (C,⊗) is a category with an object A⊗B for each
pair of objects A, B, and two functors A ⊗ _ and _ ⊗ A for every object A, sending the
object B to A⊗B and B ⊗A respectively.

In a binoidal category, a morphism f ∈ C(A,B) is called central if for every f ′ ∈
C(A′, B′), the following diagrams commute:
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FA • e FA•m1//

ruF A

��

FA • F1
mA,1

��
FA F (A⊗ 1)

F (ruA)
oo

e • FA m1•FA//

luF A

��

F1 • FA
m1,A

��
FA F (1⊗A)

F (luA)
oo

FA • FB
brF A,F B

��

mA,B / / F (A⊗B)

F (brA,B)

��
FB • FA mB,A

/ / F (B ⊗A)

(FA • FB) • FC
asF A,F B,F C

��

mA,B•FC
// F (A⊗B) • FC mA⊗B,C // F ((A⊗B)⊗ C)

F (asA,B,C)

��
FA • (FB • FC)

FA•mB,C

// FA • F (B ⊗ C) mA,B⊗C

// F (A⊗ (B ⊗ C))

Figure 1.2: Commutative Diagrams for Symmetric Monoidal Functors

A⊗A′ f⊗A′
//

A⊗f ′

��

B ⊗A′

B⊗f ′

��
A⊗B′

f⊗B′
// B ⊗B′

A′ ⊗A f ′⊗A //

A′⊗f
��

B′ ⊗A
B′⊗f
��

A′ ⊗B
f ′⊗B

// B′ ⊗B

In that case, we write f ⊗ f ′ and f ′ ⊗ f for the composite morphisms.
In general, in any binoidal category, we can define f ⊗ℓ f ′ := (B ⊗ f ′) ◦ (f ⊗ A′) and

f ⊗r f ′ := (f ⊗ B′) ◦ (A ⊗ f ′), which are not bifunctors, but intuitively correspond to
the left-then-right and right-then-left evaluation orders. Morphisms that are central can
be thought of as having “no side-effects”, hence can be evaluated first or second without
changing the result.

Definition 1.2.3. A symmetric premonoidal category, or SPC, (C,⊗,1) is a binoidal
category with a left-unitor, right-unitor, associator and braiding isomorphisms which:

• Respect the same naturality squares and coherence diagrams as in the case of SMC.

• Are central morphisms.

The notion of symmetric monoidal functor extends to premonoidal categories, keeping
the same definition.

Proposition 1.2.4. For any SPC (C,⊗,1), the objects of C and the central morphisms
form a subcategory, called centre of C. The centre is an SMC.
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Example 1.4 Symmetric Premonoidal Categories
Since they are SMCs, Rel and WRel also are SPCs, with all morphisms being central.

Symmetric (Linear) Freyd Categories

Freyd categories [PT99b] are usually defined within the context of cartesian categories,
and are known to be appropriate for modelling call-by-value languages. However, the
pairing in quantum computing is represented with a tensor product, not a cartesian one,
making cartesian categories too restrictive for modelling quantum computation. In fact,
the no-cloning theorem of quantum mechanics enforces linearity of quantum data; linearity
of data translates in the categorical world to the “product” of the category not being a
categorical cartesian product, but still being a symmetric monoidal product. We will define
here the “linear” variant of Freyd categories in the context of monoidal categories. While
the possibility of this generalisation is mentioned in few places, we do not know any paper
where this notion is properly defined, making it the first contribution of this thesis.

Definition 1.2.5. A symmetric (linear) Freyd category, or SFC, (C,V, J,⊗,1), consists
of the following elements:

• An SPC (C,⊗,1), called the category of computations, or computation category.

• An SMC (V,⊗,1), called the category of values, or value category.

• An identity-on-objects symmetric monoidal functor J : V → C, such that for all f
morphism of V the image of J(f) is central in C. We call this functor the Freyd
inclusion.

It follows that J(V) is a subcategory of the centre of C. An SPCs (C,⊗,1), can be seen
as an SFC (C,V, J,⊗,1) with V being the centre of C and J being the identity functor.

Definition 1.2.6. An SFC (C,V, J,⊗,1) is affine if 1 is a final object in the category of
values, meaning that for every object A there exists a unique morphism destrA ∈ V(A,1).

Example 1.5 Symmetric Freyd Categories
Rel and WRel are SMCs, and can be seen as SFC as follows: the value category and the
computation categories are equal, and the Freyd inclusion is the identity functor. However,
none of them are affine, since there is at least one non-identity morphism from 1 to 1: the
empty relation for Rel, and the constant equal to zero for WRel. We detail in Section 5.5
an affine SFC of games and strategies, and it is possible to build and affine variation of
Rel and WRel, which we do in Definition 6.4.2.
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1.2.2 Various Closed Categories

Symmetric Monoidal Closed Categories

Before introducing the notion of monoidal closed category, we first need to introduce the
notion of adjunction. Adjunctions are a central tool in category theory, and the natural
extension of Galois connections from partial order theory. One can see adjunctions as
a weak notion of equivalence of categories: two categories linked by an adjunction are
categories similar enough to have well-behaved “translation functors” from one to another.

Definition 1.2.7. For C and D two categories, with F : C → D and G : D → C two
functors. We say that F and G are respectively the left and right adjoints of an adjunction,
and we write F ⊣ G if for every objects A ∈ C and B ∈ D, we have a bijection between
D(FA,B) and C(A,GB) natural in A and B.

In particular, we will be interested in one specific kind of adjunctions: currying adjunc-
tions. We recall that the currying property is informally “a function with two arguments
behaves the same as a function with one argument but returning a function”. Expressed
in a syntax inspired from the λ-calculus, it is the following:

λ(x, y).M “=” λx.(λy.M)

Expressed formally, it is an adjunction of the form C(A ⊗ B,C) � C(A,B ⊸ C), in other
words (_ ⊗ B) ⊣ (B ⊸ _), for some ⊗ and ⊸ to be defined. Such a situation is usually
described by monoidal closed categories, but we will later focus on two other cases: the
more restricted case of compact closure and the more general case of Freyd closure.

Definition 1.2.8. A symmetric monoidal closed category, or SMCC, (C,⊗,⊸,1) is an
SMC (C,⊗,1), such that (_⊗B) has a right adjoint (B ⊸ _):

C

B⊸_

<<⊥ C

_⊗B

|| C(A⊗B,C) � C(A,B ⊸ C)

The object A⊸ B shall be seen as mimicking the set of functions from A to B. Hence,
SMCCs allow to consider higher order functions.

Compact Closed Categories

In compact closed categories, the object A⊸ B can be expressed as A∗⊗B, with (_)∗ an
adequate notion of duality.
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Definition 1.2.9. A compact closed category, or CpCC, (C,⊗,1, (_)∗) is an SMC (C,⊗,1)
together with, for every object A, a dual object A∗, a unit ηA ∈ C(1, A⊗A∗) and a counit
ϵA ∈ C(A∗ ⊗A,1) such that the following diagrams commute:

A
(ηA⊗A)◦lu−1

A

yyrrrrrrrrrrr ee
ruA◦(A⊗ϵA)

▲▲▲▲▲▲▲▲▲▲▲

(A⊗A∗)⊗A
asA,A∗,A // A⊗ (A∗ ⊗A)

A∗
(A∗⊗ηA)◦lu−1

A

&&▼▼▼▼▼▼▼▼▼▼▼88
ruA◦(ϵA⊗A∗)

qqqqqqqqqqq

(A∗ ⊗A)⊗A∗ asA∗,A,A∗
// A∗ ⊗ (A⊗A∗)

Proposition 1.2.10. A CpCC (C,⊗,1, (_)∗) is an SMCC, i.e., it has a currying adjunc-
tion:

C

B∗⊗_

<<⊥ C

_⊗B

|| C(A⊗B,C) � C(A,B∗ ⊗ C)

Moreover, the dual extends to a contravariant functor by mapping f ∈ C(A,B) to f∗ ∈
C(B∗, A∗) defined as:

B∗ ⊗ (A⊗A∗)
B∗⊗f⊗A∗

// (B∗ ⊗B)⊗A∗

luA∗ ◦(ϵB⊗A∗)

))❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

B∗ f∗
//

(B∗⊗ηA)◦ru−1
B∗

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦
A∗

This contravariant functor is strong symmetric monoidal, and involutive up to a natural
isomorphism, called double dual isomorphism, ddA ∈ C(A,A∗∗).

While compact closed categories can be defined in the more general context of monoidal
categories which might not be symmetric, we will only consider symmetric ones.

⋆-Autonomous Categories

While we will not rely extensively on them, we remark in Section 5.4 that the categories
of games and strategies we define are ⋆-autonomous categories, which can be seen as a
relaxation of the constraints of a CpCC, and as a special case of SMCC.
Definition 1.2.11. A ⋆-autonomous category (C,⊗,⊸,1,⊥) is an SMCC (C,⊗,⊸,1)
together with a global dualising object ⊥ such that the canonical morphism ddA ∈ C(A, (A⊸
⊥)⊸ ⊥) is an isomorphism.

We recall that ddA is obtained as follows from the monoidal closure:

C(A⊸ ⊥, A⊸ ⊥) � C((A⊸ ⊥)⊗A,⊥) � C(A, (A⊸ ⊥)⊸ ⊥)

idA⊸⊥

∈

oo // eval⊥,A

∈

oo // ddA

∈
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Example 1.6 Compact Closed Categories
Rel and WRel are CpCC. The dual of an object is itself, i.e., A∗ = A. The unit and
counit are simply defined as follows:

ηRel
A = {(⋆, (a, a)) | a ∈ A}
ϵRel
A = {(a, a), ⋆) | a ∈ A}

ηWRel
A = (⋆, (a, a)) 7→ 1

otherwise 7→ 0
ϵWRel
A = ((a, a), ⋆) 7→ 1

otherwise 7→ 0

The sets of morphisms Rel(bit∗ ⊗ bit,bit) and WRel(bit∗ ⊗ bit,bit) contain the repre-
sentations of non-deterministic and probabilistic programs taking as an input a function
from booleans to booleans, and returning a boolean.

We write A⊥ for A⊸ ⊥, and A

&

B for (A⊥ ⊗B⊥)⊥. We note that ⊥ � 1⊥.

Proposition 1.2.12. If (C,⊗,⊸,1,⊥) is ⋆-autonomous then (C, &

,⊥) is an SMC, (_)⊥

is a full and faithful contravariant endofunctor, and A⊸ B � A⊥ &

B.

When we say that (C,⊗, &

,1, (_)⊥) is ⋆-autonomous, we instead mean that the category
(C,⊗, [(_)⊥ &_],1,1⊥) is ⋆-autonomous. In the literature, the presentation with ⊗ and &

appears under the name of linearly (or weakly) distributive categories with negation, see
[SCS91]. The two are known to be equivalent.

Closed (Linear) Freyd Categories

Closed (linear) Freyd categories will be the core of our semantic model, as they capture
call-by-value computation. In them, the currying adjunction is between the category of
values and the category of computations. This corresponds to the fact that functions (i.e.,
λ-abstractions) are always values.

Definition 1.2.13. A closed (linear) Freyd category, or CFC, is an SFC (C,V, J,⊗,1)
where for every object B the functor J(_)⊗B has a right adjoint (B � _):

C

B�_

<<⊥ V

J(_)⊗B

|| C(A⊗B,C) � V(A,B � C)

From this adjunction follows the evaluation and coevaluation natural transformations:

evalA,B ∈ C((B � A)⊗B,A) and funA,B ∈ V(A,B � (A⊗B))
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SMCC and CpCC are special cases of CFC, where the category of computations and
the one of values are equal (C = V), the Freyd inclusion J is the identity functor, and
A� B = A⊸ B or A∗ ⊗B respectively.

Example 1.7 Closed Freyd Categories
Since Rel and WRel are CpCCs, they are also CFCs.

1.2.3 Coproducts

We now introduce the notion of coproducts, written ⊕. Coproducts are used to describe
sum types, the most useful of them being booleans defined as 1⊕ 1.

Definition 1.2.14. A cocartesian category (C,⊕,0) is a category C with a distinguished
object 0 called initial object, and for every objects A and B an object A⊕B called coproduct
object, together with two morphisms ιA⊕B

ℓ ∈ C(A,A ⊕ B) and ιA⊕B
r ∈ C(B,A ⊕ B) called

injections, respecting the following universal properties:

∀C

0
∃!0C

OO ∀C

A⊕B
∃!h

OO✤
✤
✤

A
ιA⊕B
ℓ

;;①①①①①①①①①

∀f

::

B
ιA⊕B
r

cc●●●●●●●●●

∀g

dd

The morphism 0C is called the initial morphism. The morphism h is called the copairing
of f and g, and is written [f ; g].

This universal property induces a lot of other properties. Firstly, A ⊕ B and 0 are
necessarily unique up to isomorphism. Secondly, (C,⊕,0) is an SMC. Thirdly, the following
equations are verified:

A⊕ 0 �

[f ;0B ] ""❋❋❋❋❋❋❋❋❋ A

f
��

� 0⊕A

[0B ;f ]||①①①①①①①①①

B

f1 ⊕ f2 = [ιA
′⊕B′

ℓ ◦ f1; ιA
′⊕B′

r ◦ f2]

Moreover, coproducts interact nicely with SPCs. Indeed, if (C,⊕,0) is also an SPC
(C,⊗,1), then we have a natural transformation disAℓ,Ar,B ∈ C((Aℓ⊗B)⊕ (Ar⊗B), (Aℓ⊕
Ar)⊗B) representing the distributivity of ⊗ over ⊕, defined as:

disAℓ,Ar,B = [ιAℓ⊕Ar

ℓ ⊗B; ιAℓ⊕Ar
r ⊗B]
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Definition 1.2.15. A distributive SPC (or SMC) (C,⊗,1,⊕,0) is an SPC (or SMC)
(C,⊗,1) and a cocartesian category (C,⊕,0) such that 00⊗B is an isomorphism, and
disAℓ,Ar,B a natural isomorphism. A distributive SFC (C,V, J,⊗,1,⊕,0) is an SFC (C,V, J,
⊗,1) where both C and V are distributive, and the Freyd inclusion J is such that J(f)⊗_
preserves coproducts.

In the cartesian case, a similar notion of distributive Freyd categories already appears
in [Sta14]. In the case of CFCs, the distributivity of the category of computations comes
for free (but not necessarily the distributivity of the category of values)

Proposition 1.2.16. If (C,V, J,⊗,1) is a CFC, and both (C,⊕,0) and (V,⊕,0) are co-
cartesian categories, then (C,⊗,1,⊕,0) is a distributive SPC.

Proof. The proof sketch is the following. We need to define an inverse for 00⊗B ∈
C(0,0 ⊗ B). But we know that C(0 ⊗ B,0) � V(0, B � 0), so we take 0B�0 ∈
V(0, B � 0), and check it leads to an inverse for 00⊗B. We then need to define an
inverse for disAℓ,Ar,B ∈ C((Aℓ ⊗B)⊕ (Ar ⊗B), (Aℓ ⊕Ar)⊗B). But we know that:

C








⊕

i∈{ℓ,r}
Ai



⊗B,
⊕

j∈{ℓ,r}
(Aj ⊗B)



 � V




⊕

i∈{ℓ,r}
Ai, B �

⊕

j∈{ℓ,r}
(Aj ⊗B)





�
∏

i∈{ℓ,r}
V


Ai, B �
⊕

j∈{ℓ,r}
(Aj ⊗B)



 �
∏

i∈{ℓ,r}
C


Ai ⊗B,
⊕

j∈{ℓ,r}
(Aj ⊗B)





So we take the two morphisms ι(Aℓ⊗B)⊕(Ar⊗B)
ℓ and ιAℓ⊗B⊕Ar⊗B

r and check they lead
to an inverse for disAℓ,Ar,B. □

Corollary 1.2.17. If (C,⊗,1, (_)∗) is a CpCC, and (C,⊕,0) is a cocartesian category,
then (C,⊗,1,⊕,0) is a distributive SMC, and (_)∗ is strong symmetric monoidal with
respect to (C,⊕,0). We call such a category a distributive CpCC.

Example 1.8 Cocartesian Categories
Both Rel and WRel have a cocartesian structure, given by the 0 = ∅ and ⊕ = ⊎. They
also form distributive CpCCs, hence distributive CFCs. The copairing is:

[R;R′] = {((0, a), c) | (a, c) ∈ R} ⊔ {((1, b), c) | (b, c) ∈ R′}
[w;w′] : ((0, a), c) 7→ w(a, c)

((1, b), c) 7→ w′(b, c)
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A
dA

{{✇✇✇✇✇✇✇✇✇
dA

##●●●●●●●●●

A⊗A
dA⊗A

��

A⊗A
A⊗dA

��
(A⊗A)⊗A asA,A,A // A⊗ (A⊗A)

A

dA

��
A⊗A

A⊗eA

// A⊗ 1

ruA

ee▲▲▲▲▲▲▲▲▲▲

A
dA

��✁✁✁✁✁✁✁
dA

��❂❂❂❂❂❂❂

A⊗A
brA,A

// A⊗A

Figure 1.3: Coherence Diagrams for Commutative Comonoids

1.2.4 Linear Exponential Comonads
In Part I and Part II, we will only represent linear and affine languages, i.e., languages
where every variable and function can be used only once. In Part III, we will extend the
results of the first two parts to a language with non-linear constructs. At a categorical
level, we will use linear exponential comonads, as defined in [Mel09] among others.

Commutative Comonoid

We consider an SMC (C,⊗,1) where objects have to be thought of as resources. A map
from A to B means that we can transform the resources of A into the ones of B. The
object A ⊗ B represents the pair of both resources, and the object 1 the absence of any
resource. We want to express the notion of an object A being a non-linear resource, i.e.,
a resource that can be duplicated and discarded at will. For that, we use commutative
comonoids.

Definition 1.2.18. A commutative comonoid on an SMC (C,⊗,1) is an object A together
with a pair of morphisms eA ∈ C(A,1) and dA ∈ C(A,A ⊗ A) such that the coherence
diagrams of Fig. 1.3 commute.

Comonads

Often, non-linear resources will be of the form !A, which stands for “as many A as we
want” and corresponds to the ! modality of linear logic. In the following definition, we
axiomatise the informal notions of “if we have as many A as we want, then we can have
one A” and “if we have as many A as we want, then we can have as many times as we want
as many A as we want”.

Definition 1.2.19. A comonad on a category C is an endofunctor ! on C, together with two
natural transformations ϵA ∈ C(!A,A) and δA ∈ C(!A, !!A), called dereliction and digging,
such that the coherence diagrams of Fig. 1.4 commute.
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!A
δA //

δA

��

!!A

δ!A
��

!!A
!δA

// !!!A

!A

δA

��

δA //

id!A

##❋❋❋❋❋❋❋❋❋ !!A

!ϵA
��

!!A ϵ!A
// !A

Figure 1.4: Coherence Diagrams for Comonads

!A⊗!B

ϵA⊗ϵB ""❊❊❊❊❊❊❊❊
mA,B // !(A⊗B)

ϵA⊗B{{✇✇✇✇✇✇✇✇

A⊗B

1
m1

��

id1

!!❇❇❇❇❇❇❇❇

!1 ϵ1
// 1

!A⊗!B

δA⊗δB

��

mA,B // !(A⊗B)

δA⊗B

��
!!A⊗!!B m!A,!B

// !(!A⊗!B)
!mA,B

// !!(A⊗B)

1 m1 //

m1
��

!1
δ1
��

!1
!m1

// !!1

Figure 1.5: Coherence Diagrams for Symmetric Monoidal Comonads

Definition 1.2.20. The tuple (!, ϵ, δ,m,m1) is a symmetric monoidal comonad on an SMC
(C,⊗,1) if

• The tuple (!, ϵ, δ) is a comonad on C.

• The functor ! is lax symmetric monoidal, with m1 and mA,B for monoidal morphisms.

• The natural transformations ϵ and δ are monoidal, i.e., the coherence diagrams of
Fig. 1.5 commute.

Linear Exponential Comonad

We now take both notions of commutative comonoids and symmetric monoidal comonads,
and require them to be compatible with each other as follows.

Definition 1.2.21. A linear exponential comonad on an SMC (C,⊗,1) is tuple (!, ϵ, δ,w, c,
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m,m1) of an endofunctor !, five natural transformations and a morphism:

! : C → C
ϵA : !A → A
δA : !A → !!A
wA : !A → 1
cA : !A → !A⊗!A

mA,B : !A⊗!B → !(A⊗B)
m1 : 1 → !1

satisfying the following properties:

• The tuple (!, ϵ, δ,m,m1) is a symmetric monoidal comonad.

• The natural transformations wA and cA are lax symmetric monoidal, i.e., the dia-
grams on the first two lines of Fig. 1.6 commute.

• For every object A, (!A,wA, cA) is a commutative comonoid.

• For every free !-coalgebra, i.e., pair (!A, δA) with A an object, wA and cA are coalgebra
morphisms i.e., the third line of Fig. 1.6 commutes.

• The digging δ commutes with the weakening w and the contraction c, i.e., the fourth
line of Fig. 1.6 commutes.

The traditional definition of linear exponential comonad does not have the last item of
the definition and instead has “every coalgebra morphism is a comonoid morphism”, but
we choose to use a simpler definition, as in [BGMZ14, Ead18], which is fully equivalent.

As shown in [Mel09], linear exponential comonads are a core components to models of
MELL, hence are a good categorical tool for representing languages with both linear and
non-linear behaviours.

1.3 The Linear Lambda Calculus (Λ)

The language we will study in Section 3.1 has a classical control flow together with quantum
data. Accordingly, we first study how to represent the classical control flow in the absence
of quantum data. After a quick overview of the language Λ, we detail the syntax, syntactic
sugar and typing rules, and define its call-by-value operational semantics. We will consider
two sets of typing rules for Λ, and will write LΛ for the language using the strict typing
rules, AΛ for the language using the affine typing rules, and Λ for statements that apply
indifferently to both. Section 1.3.2 describes the difference between the two.



38 CHAPTER 1. CBV SEMANTICS FOR Λ
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Figure 1.6: Coherence Diagrams for Linear Exponential Comonads
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1.3.1 Overview of the Language

Λ is a call-by-value λ-calculus. For its types, we have the usual unit and function type,
and arbitrary binary sum types and product types.

A,B ::= 1 | A⊸ B | A⊕B | A⊗B

We write the types using notations from linear logic, as we will later enforce linear
typing rules, meaning that every variable must be used exactly once. We will also consider
an affine variant of Λ, where every variable must be used at most once. We write t, s, . . .
for terms and x, y, . . . for variables. The terms of Λ are the following

• variable “x”, abstraction “λxA.t” and application “t s” as in usual λ-calculus,

• skip “()”, and sequence “s ; t”,

• divergence “⊥Ax1,...,xn
” annotated by the set of variables it uses (see Section 1.3.2),

• injections “injA⊕B
ℓ ” and “injA⊕B

r ”, and discriminator “δ (t, xA.s1, y
B.s2)”,

• pairing “t⊗ s” and destruction “let xA ⊗ yB = t in s”.

In the λ-abstraction, the discriminator, and the pair destruction, the constructs act
as binders for the variables x,y,…. We work up to α-equivalence, hence allow to rename
bound variables as long as it does not cause any capture. We write FV(t) for the set of free
variables of t, with FV(⊥Ax1,...,xn

) = {x1, . . . , xn}. A lot of the constructs of the language
have type annotations to enforce uniqueness of typing, but we will often omit them for
simplicity of notations.

In Table 1.1, we give typing rules for this language. We write typing judgements as
x1 : A1, . . . , xn : An ⊢ t : A. The sequence x1 : A1, . . . , xn : An is called a typing context,
and we expect all the xi to be distinct variables. In particular, when concatenating typing
contexts, we assume no variable appears in both initial typing contexts. While we consider
a typing context as a sequence and not a set, we have the permutation typing rule to
rearrange the variables when needed. The typing context shall bind all the free variables
of t. The typing system we define will respect the following property:

Theorem 1.3.1 (Uniqueness of Typing). For Γ a typing context and t a term, with
FV(t) ⊆ Γ, there exists at most one type A such that the typing judgement Γ ⊢ t : A is
true, i.e., can be derived by the rules of Table 1.1.

The proof of this theorem is direct, by induction over the syntax.
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Structural rules

Γ, x : A, y : B,∆ ⊢ t : C
permutation

Γ, y : B, x : A,∆ ⊢ t : C

Γ ⊢A t : B x < FV(t) (AΛ only)
weakeningΓ, x : A ⊢A t : B

divergence
x1 : A1, . . . , xn : An ⊢ ⊥Ax1,...,xn

: A

λ-calculus

axiom
x : A ⊢ x : A

Γ, x : A ⊢ t : B
abstraction

Γ ⊢ λxA.t : A⊸ B

Γ ⊢ t : A⊸ B ∆ ⊢ s : A application
Γ,∆ ⊢ t s : B

Unit type

skip
⊢ () : 1

Γ ⊢ t : 1 ∆ ⊢ s : A sequence
Γ,∆ ⊢ t ; s : A

Tensor type

Γ ⊢ t : A ∆ ⊢ s : B pairing
Γ,∆ ⊢ t⊗ s : A⊗B

Γ ⊢ t : A⊗B x : A, y : B,∆ ⊢ s : C
let-pair

Γ,∆ ⊢ let x⊗ y = t in s : C

Sum type

Γ ⊢ t : A left-injection
Γ ⊢ injA⊕B

ℓ t : A⊕B
Γ ⊢ t : B right-injection

Γ ⊢ injA⊕B
r t : A⊕B

Γ ⊢ t : A⊕B x : A,∆ ⊢ s1 : C y : B,∆ ⊢ s2 : C
case

Γ,∆ ⊢ δ (t, xA.s1, y
B.s2) : C

Table 1.1: Typing Rules for Λ
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Function type
let x = t in s := (λx.s) t

let f x = t in s := (λf.s) (λx.t)
Unit type

λ().t := λx.x ; t

Tensor type
A1 ⊗ . . .⊗An := (A1 ⊗ . . . )⊗An
x1 ⊗ . . .⊗ xn := (x1 ⊗ . . . )⊗ xn

let x1 ⊗ . . .⊗ xn = t in s :=















let y ⊗ xn = t in
let x1 ⊗ . . . = y in
s

λ(x1 ⊗ . . .⊗ xn).t := λz.let x1 ⊗ . . .⊗ xn = z in t

Sum type
bit := 1⊕ 1
ff := injℓ ()
tt := injr ()

if t then st else sf := δ (t, x.x; sf , y.y; st)

match t with | injℓ x 7→ sℓ
| injr y 7→ sr

:= δ (t, x.sℓ, y.sr)

Table 1.2: Syntactic Sugar for Λ
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1.3.2 Linearity of the Language
The application rule (like many other rules of Λ) is multiplicative, meaning that variables
used in t cannot be used in s, and reciprocally. This prevents duplication of variables,
a central characteristic of linear languages. However, there are two conflicting visions of
linearity, one in which every variable of the typing context must be used at most once,
which we call affine, and one in which every variable in the typing context must be used
exactly once, which we call strictly linear. We write AΛ for Λ together with an affine
typing system, i.e., we have the following weakening rule, and we write LΛ for Λ together
with a strictly linear typing system, i.e., without the following weakening rule. We use
respectively ⊢A and ⊢L for typing judgements, and keep ⊢ for rules that apply to both.

Γ ⊢A t : B x < FV(t) (AΛ only)
weakeningΓ, x : A ⊢A t : B

As we expect in LΛ for variables to be used exactly once, it is practical to have the
divergence ⊥ indexed by the set of variables it “uses”. When multiple ⊥ occur in the same
term, this allows to know which variable is used by which ⊥, information required for
computing the semantics of the term. This is unnecessary in AΛ, as variables can remain
unused.

We note that linearity could be relaxed to not apply to non-functional variables, i.e.,
variables of type built from 1, ⊗ and ⊕ (but not ⊸). Indeed, for such a type A, we can
define two terms ⊢L destrA : A⊸ 1 and ⊢L duplA : A⊸ (A⊗A) which could be inserted
in the term anytime we do not want to use a variable, or anytime we want to use a variable
more than once. For example

destrbit := λx.if x then () else () duplbit := λx.if x then tt⊗ tt else ff ⊗ ff

In the forthcoming extension with quantum primitives, the quantum type qubit will
not have any duplication term, as it is physically impossible to perfectly duplicate quantum
data.

1.3.3 Typing Derivations
A typing derivation for Γ ⊢ t : A is a finite “upward” tree with the typing judgement
Γ ⊢ t : A as a root. For example, a typing derivation T for ⊢ (λx1.x)⊗ tt : (1 ⊸ 1)⊗ bit
is:

T
...

⊢ (λx1.x)⊗ tt : (1⊸ 1)⊗ bit
= x : 1 ⊢ x : 1

⊢ λx1.x : 1⊸ 1
⊢ () : 1

⊢ inj1⊕1
r () : 1⊕ 1

⊢ (λx1.x)⊗ inj1⊕1
r () : (1⊸ 1)⊗ (1⊕ 1)

While the typing of a term is unique, multiple derivations might exist for the same
judgement Γ ⊢ t : A. Non uniqueness of typing derivations comes from the following rules:
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Γ, x : A, y : B,∆ ⊢ t : C

Γ, y : B, x : A,∆ ⊢ t : C
permutation (strict or affine)

Γ ⊢A t : B x < FV(t)

Γ, x : A ⊢A t : B
weakening (affine only)

As soon as the typing context contains at least two elements, it is always possible
to chain permutations in the context in pointless ways, which breaks uniqueness. Addi-
tionally, it is often possible to “move” permutation rules around in the typing derivation.
Another problem appears in the AΛ because of the weakening rule: when deconstructing
an application (or a similar construct), we might be able to split the context in multiple
ways. In other words, when a variable of the typing context is not used in the term, each
time there is a branching in the typing derivation, we have to choose if the variable will
“not be used” by the left branch or by the right one.

1.3.4 Operational Semantics
We define a reduction system on terms, using call-by-value left-then-right evaluation con-
texts. We choose this reduction strategy as one of the objectives of this thesis is find a fully
abstract model for the call-by-value quantum λ-calculus defined in [PSV14]. We note that
we give the same operational semantics for AΛ and LΛ. We start by defining the values
of Λ as v, w ::= () | x | λx.t | injℓ v | injr v | v ⊗ w. The reduction rules are given by
Table 1.3.

This reduction system satisfies subject reduction and is deterministic (hence confluent),
normalising and always progresses. More precisely, we have the following proposition.

Proposition 1.3.2. The following properties hold:

Subject Reduction If Γ ⊢ t : A and t→ s then Γ ⊢ s : A.

Determinism For any term t, there exists at most one term s such that t→ s.

Normalisation For any term t, there is no infinite sequence t→ t1 → t2 → . . . .

Progress For any closed term ⊢ t : A, either t is a value, or ⊥, or there exists a term s
such that t→ s.

We will now define observational equivalence. Two terms are observationally equivalent
if they behave the same in every context. Observational equivalence of two terms is not
easy to check, as one must quantify over every possible context. One of the objectives of
denotational semantics is to build models allowing us to reason on observational equivalence
more directly.

Definition 1.3.3 (Convergence). When we have t→∗ v, with t a term and v a value, we
write t ⇓ v.
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() ; t → t
(λx.t) v → t{x← v}

let x⊗ y = v ⊗ w in t → t{x← v, y ← w}
δ (injℓ v, x.t, y.s) → t{x← v}
δ (injr v, x.t, y.s) → s{y ← v}

E[t] → E[s] whenever t→ s
E[⊥V ] → ⊥FV(E[⊥V ]) whenever E[_] , _

with E[_] ::= _ | E[_] ; t
| E[_] t | v E[_]
| E[_]⊗ t | v ⊗ E[_] | let x⊗ y = E[_] in t
| injℓ E[_] | injr E[_] | δ (E[_], x.t1, y.t2)

Table 1.3: Reduction Rules for Λ terms

If ⊢ t : 1, then we write t ⇓ for t ⇓ ().

Definition 1.3.4 (Observation Context). An observation context for Γ ⊢ A, with Γ a typing
context and A a type, is a term with a unique hole O[_] such that for every Γ ⊢ t : A, we
have ⊢ O[t] : 1.

Definition 1.3.5 (Observational Equivalence). We say that two terms Γ ⊢ t : A and
Γ ⊢ t′ : A are observationally equivalent (for Γ ⊢ A), and we write t =Γ⊢A

obs t′, if for every
observation context O[_] (for Γ ⊢ A), we have

O[t] ⇓ ⇐⇒ O[t′] ⇓

We will often keep the annotation Γ ⊢ A implicit.

1.4 Freyd Categories as a Categorical Model for Λ

1.4.1 Denotational Semantics
Definition 1.4.1. A denotational semantics for Λ is an SPC (C,⊗,1) and an operation
⟦−⟧ which associates to every type A of Λ an object ⟦A⟧ ∈ C and to every typed term
Γ ⊢ t : A of Λ a morphism ⟦t⟧Γ⊢A ∈ C(⊗(xi:Ai)∈Γ ⟦Ai⟧ , ⟦A⟧).

Similarly to =Γ⊢A
obs , we will sometimes keep the typing annotation of ⟦−⟧Γ⊢A implicit.

One of the uses of denotational semantics is to characterise convergence and observational
equivalence. The gold standard of denotational semantics is full abstraction, which means
the semantics exactly characterise them. More formally:

Definition 1.4.2. The semantics is said to be
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Sound if for every term ⊢ t : 1:
t ⇓ =⇒ ⟦t⟧ =

⟦

()
⟧

Sound and Adequate if additionally for every term ⊢ t : 1:

⟦t⟧ =
⟦

()
⟧

=⇒ t ⇓

Fully Abstract if for every pair of terms Γ ⊢ t : A and Γ ⊢ s : A:

⟦t⟧ = ⟦s⟧ ⇐⇒ t =obs s

Proposition 1.4.3. If the semantics is fully abstract, then it is sound and adequate.

To those standard properties, we add some useful intermediate properties:

Value Substituting if for every term Γ, x : A ⊢ t : B, and every value ∆ ⊢ v : A:

⟦t⟧ ◦








⊗

(xi:Ai)∈Γ

⟦Ai⟧



⊗ ⟦v⟧


 =
⟦

t{x← v}⟧

Invariant if for every term Γ ⊢ t : A, if t→ s then

⟦t⟧ = ⟦s⟧

1.4.2 Freyd Categories as a Model
We now build a denotational semantics using Freyd categories. We take a distributive CFC
(C,V, J,⊗,1,�,⊕,0) respecting the following additional constraints:

Bottom We have a distinguished central morphism ⊥ ∈ C(1,0)

Non-Trivial The objects 0 and 1 are not isomorphic. In particular, id1 , 01 ◦ ⊥.

When interpreting AΛ, we will also require the affine property (i.e., 1 is a final object
in V). We do not require it when interpreting LΛ.

Example 1.9
Both Rel and WRel are distributive CpCCs (hence CFCs) which are non-trivial, and have
a bottom morphism, which is the empty relation. None of the two are affine.

We start by giving the interpretation of the types, then the interpretation of typing
derivations, and finally the interpretation of typed terms. The semantics of types is quite
straightforward, and is described in Table 1.4. We also define the semantics of a typing
context as ⟦Γ⟧ :=

⊗

(xi:Ai)∈Γ ⟦Ai⟧. In Tables 1.5 and 1.6, we give to every typing derivation
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⟦1⟧ := 1
⟦A⊸ B⟧ := ⟦A⟧ � ⟦B⟧

⟦A⊕B⟧ := ⟦A⟧⊕ ⟦B⟧
⟦A⊗B⟧ := ⟦A⟧⊗ ⟦B⟧

Table 1.4: Denotational Semantics for Λ types

Structural Rules:
�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ, x : A, y : B,∆ ⊢ t : C

Γ, y : B, x : A,∆ ⊢ t : C

�

�

�

�

�

�

�

�

�

�

�

�

:=

�

�

�

�

�

�

�

�

�

T
...

Γ, x : A, y : B,∆ ⊢ t : C

�

�

�

�

�

�

�

�

�

◦ (⟦Γ⟧⊗ br⟦B⟧,⟦A⟧ ⊗
⟦

∆
⟧

)

⟦

Γ ⊢ ⊥AV : A

⟧

:= 0⟦A⟧ ◦ 0−1
0⊗⟦Γ⟧ ◦ (⊥⊗ ⟦Γ⟧) ◦ lu−1

⟦Γ⟧

AΛ only:

�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢A t : B

Γ, x : A ⊢A t : B

�

�

�

�

�

�

�

�

�

�

�

�

:=

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢A t : B

�

�

�

�

�

�

�

�

�

◦ (⟦Γ⟧⊗ J(destr⟦A⟧))

Functions type:
⟦

x : A ⊢ x : A

⟧

:= id⟦A⟧
�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : A⊸ B

�

�

�

�

�

�

�

�

�

�

�

�

:= J



⟦A⟧ �

�

�

�

�

�

�

�

�

�

T
...

Γ, x : A ⊢ t : B

�

�

�

�

�

�

�

�

�



 ◦ fun⟦Γ⟧,⟦A⟧

�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : A⊸ B

S
...

∆ ⊢ s : A

Γ,∆ ⊢ t s : B

�

�

�

�

�

�

�

�

�

�

�

�

:= eval⟦B⟧,⟦A⟧ ◦




�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : A⊸ B

�

�

�

�

�

�

�

�

�

⊗ℓ
�

�

�

�

�

�

�

�

�

S
...

∆ ⊢ s : A

�

�

�

�

�

�

�

�

�





Table 1.5: Denotational Semantics of Λ Typing Derivations, Part 1

of Γ ⊢ t : A a semantics in C(⟦Γ⟧ , ⟦A⟧). We will then use Theorem 1.4.6 to define the
semantics of typing judgements. There is no subtlety involved in those definitions: we
proceed by structural induction on the typing derivations, and we use the structure of the
distributive CFC. The use of the left-then-right tensor ⊗ℓ correspond to the left-then-right
reduction strategy. Note that we kept the associator isomorphism implicit in the definition
of the semantics.

Definition 1.4.4. If V is a typing derivation for a value Γ ⊢ v : A, then we define its
value-semantics ⟦V ⟧v ∈ V(⟦Γ⟧ , ⟦A⟧) as in Table 1.7.

It is the same inductive definition as ⟦V ⟧, up to the following changes: we propagate
the ⟦−⟧v in every rule (except in the λ-abstraction rule where do not replace the ⟦−⟧ by
a ⟦−⟧v), and we remove the occurrences of J .

Proposition 1.4.5. We always have J(⟦V ⟧v) = ⟦V ⟧
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Unit type:
⟦

⊢ () : 1

⟧

:= id1
�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : 1

S
...

∆ ⊢ s : A

Γ,∆ ⊢ t ; s : A

�

�

�

�

�

�

�

�

�

�

�

�

:= lu⟦A⟧ ◦




�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : 1

�

�

�

�

�

�

�

�

�

⊗ℓ
�

�

�

�

�

�

�

�

�

S
...

∆ ⊢ s : A

�

�

�

�

�

�

�

�

�





Tensor type:
�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : A

S
...

∆ ⊢ s : B

Γ,∆ ⊢ t⊗ s : A⊗B

�

�

�

�

�

�

�

�

�

�

�

�

:=

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : A

�

�

�

�

�

�

�

�

�

⊗ℓ
�

�

�

�

�

�

�

�

�

S
...

∆ ⊢ s : B

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : A⊗B

S
...

x : A, y : B∆ ⊢ s : C

Γ,∆ ⊢ let xA ⊗ yB = t in s : C

�

�

�

�

�

�

�

�

�

�

�

�

:=

�

�

�

�

�

�

�

�

�

S
...

x : A, y : B,∆ ⊢ s : C

�

�

�

�

�

�

�

�

�

◦




�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : A⊗B

�

�

�

�

�

�

�

�

�

⊗ ⟦∆⟧




Sum type:
�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : A

Γ ⊢ injA⊕B
ℓ t : A⊕B

�

�

�

�

�

�

�

�

�

�

�

�

:= ι⟦A⟧⊕⟦B⟧ℓ ◦
�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : A

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : B

Γ ⊢ injA⊕B
r t : A⊕B

�

�

�

�

�

�

�

�

�

�

�

�

:= ι⟦A⟧⊕⟦B⟧r ◦
�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : B

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : A⊕B

S1
...

x : A,∆ ⊢ s1 : C

S2
...

y : B,∆ ⊢ s2 : C

Γ,∆ ⊢ δ (t, xA.s1, y
B.s2) : C

�

�

�

�

�

�

�

�

�

�

�

�

:=





�

�

�

�

�

�

�

�

�

S1
...

x : A,∆ ⊢ s1 : C

�

�

�

�

�

�

�

�

�

;

�

�

�

�

�

�

�

�

�

S2
...

y : B,∆ ⊢ s2 : C

�

�

�

�

�

�

�

�

�



 ◦ dis−1
⟦A⟧,⟦B⟧,⟦∆⟧

◦




�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : A⊕B

�

�

�

�

�

�

�

�

�

⊗ ⟦∆⟧




Table 1.6: Denotational Semantics of Λ Typing Derivations, Part 2
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Structural Rules:
�

�

�

�

�

�

�

�

�

�

�

�

V
...

Γ, x : A, y : B,∆ ⊢ v : C

Γ, y : B, x : A,∆ ⊢ v : C

�

�

�

�

�

�

�

�

�

�

�

�

v

:= ⟦V ⟧v ◦ (⟦Γ⟧⊗ br⟦B⟧,⟦A⟧ ⊗
⟦

∆
⟧

)

AΛ only:

�

�

�

�

�

�

�

�

�

�

�

�

V
...

Γ ⊢A v : B

Γ, x : A ⊢A v : B

�

�

�

�

�

�

�

�

�

�

�

�

v

:= ⟦V ⟧v ◦ (⟦Γ⟧⊗ destr⟦A⟧)

Functions type:
⟦

x : A ⊢ x : A

⟧

v

:= id⟦A⟧
�

�

�

�

�

�

�

�

�

�

�

�

V
...

Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : A⊸ B

�

�

�

�

�

�

�

�

�

�

�

�

v

:= (⟦A⟧ � ⟦V ⟧v) ◦ fun⟦Γ⟧,⟦A⟧

Unit type:
⟦

⊢ () : 1

⟧

v

:= id1

Tensor type:
�

�

�

�

�

�

�

�

�

�

�

�

V
...

Γ ⊢ v : A

W
...

∆ ⊢ w : B

Γ,∆ ⊢ v ⊗ w : A⊗B

�

�

�

�

�

�

�

�

�

�

�

�

v

:= ⟦V ⟧v ⊗ ⟦W⟧v

Sum type:
�

�

�

�

�

�

�

�

�

�

�

�

V
...

Γ ⊢ v : A

Γ ⊢ injA⊕B
ℓ v : A⊕B

�

�

�

�

�

�

�

�

�

�

�

�

v

:= ι⟦A⟧⊕⟦B⟧ℓ ◦ ⟦V ⟧v

�

�

�

�

�

�

�

�

�

�

�

�

V
...

Γ ⊢ v : B

Γ ⊢ injA⊕B
r v : A⊕B

�

�

�

�

�

�

�

�

�

�

�

�

v

:= ι⟦A⟧⊕⟦B⟧r ◦ ⟦V ⟧v

Table 1.7: Value Denotational Semantics of Λ Typing Derivations
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Theorem 1.4.6. If Γ ⊢ t : A has two typing derivations T and T ′, then we have ⟦T⟧ =
⟦

T ′⟧. As the interpretation is independent from the typing derivation, we write it ⟦t⟧Γ⊢A.We
define ⟦−⟧Γ⊢A

v similarly.

This theorem is quite standard. One simple way to prove it is: for every typing judge-
ment, we choose a canonical typing derivation (where the permutations and weakening are
postponed as much as possible, etc.) and show that all the other typing derivations can
be transformed into this canonical one through permutations of rules that preserve the
semantics. To show that permuting rules preserve the semantics, we rely on the fact that
all the structural morphisms (braiding, . . . ) are value morphisms (morphisms that are in
the image of V by J), as it means they are in the centre of the premonoid ⊗, and that the
naturality of funA,B applies.

1.4.3 Proof of Soundness and Adequacy
We prove that our model is value-substituting, satisfies context factorisation, is invariant,
sound, adequate and the direct implication of the full abstraction equivalence. The reverse
implication does not hold for any arbitrary non-trivial distributive CFC with a bottom,
though we could prove with a method similar to Theorem 3.2.14 that it holds for Rel in
the case of LΛ.

Lemma 1.4.7 (Value Substitution). For every term Γ, x : A ⊢ t : B and every value
∆ ⊢ v : A:

⟦t⟧ ◦ (⟦Γ⟧⊗ ⟦v⟧) =
⟦

t{x← v}⟧

Proof. We choose a typing derivation for t and v, and take the corresponding typing
derivation for t{x← v} (i.e., we replace the axioma for x, in the typing derivation of
t by the typing derivation of v). We proceed inductively on the typing derivation of t.
The base case is x : A ⊢ x : A, and we indeed have:

⟦x⟧ ◦ (1⊗ ⟦v⟧) =
⟦

x{x← v}⟧∆⊢A

For the inductive case, since v is a value, we have ⟦v⟧ = J(⟦v⟧v). Going through
all the typing rules, we need to use the following properties that every f ∈ V(A,B)
respects:

• Since J(f) is a central morphism, we always have

(B ⊗ h) ◦ (J(f)⊗ C) = (J(f)⊗ C) ◦ (A⊗ h)
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• Since funA,C is natural in its first argument, we have

funB,C ◦ f = (C � f ⊗ C) ◦ funA,C

• Since 0 is an initial object,

0−1
0⊗B ◦ (0⊗ J(f)) = 0−1

0⊗A

• Since disCℓ,Cr,A is natural in all its arguments, we have

dis−1
Cℓ,Cr,B

◦ (Cℓ ⊕ Cr)⊗ J(f) = ((Cℓ ⊗ J(f))⊕ (Cr ⊗ J(f))) ◦ dis−1
Cℓ,Cr,A

□

aLinearity of the language ensures that there is exactly one axiom for the free variable x.

The value substitution lemma ensures that for simple β-reductions (λx.t) v → t{x← v},
the semantics is preserved. This however does not directly proves the case E[(λx.t) v] →
E[t{x ← v}] for E[−] an evaluation context. We remark that evaluation contexts never
capture variables, so FV(t) ⊆ FV(E[t]). This allows us to state the following lemma.

Lemma 1.4.8 (Context Factorisation). For every pair of terms Γ ⊢ s : A and Γ,∆ ⊢
E[s] : B, with E[−] an evaluation context, we have a morphism ⟦E⟧ ∈ C(⟦A⟧⊗ ⟦∆⟧ , ⟦B⟧)
such that

⟦

E[s]
⟧

= ⟦E⟧ ◦ (⟦s⟧⊗ ⟦∆⟧)

Proof. We follow the same induction as in the previous lemma, with s instead of v,
E[x] instead of t, and E[s] instead of ⟦t{x← v}⟧. All the cases are trivial. □

We now have all the ingredients to prove invariance.

Lemma 1.4.9 (Invariance). For every pair of terms Γ ⊢ t : A and Γ ⊢ s : A

t→ s =⇒ ⟦t⟧ = ⟦s⟧

Proof. We proceed by induction on →. The rule for the sequence is true. The rules
for the λ-abstraction, the pairs, and the discriminator directly follow from the value
substitution lemma. Remains the evaluation context rules. We use the context fac-
torisation lemma and obtain ⟦E[t]

⟧Γ,∆⊢B = ⟦E⟧ ◦
(

⟦t⟧Γ⊢A ⊗ ⟦∆⟧
)

. Invariance by
the reduction rule for evaluation context and bottom follow immediately from this
factorisation property. □

In the simple case of Λ, soundness and adequacy are a direct consequence of the invari-
ance lemma.
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Theorem 1.4.10 (Soundness and Adequacy). For every term ⊢ t : 1, we have

t ⇓ () ⇐⇒ ⟦t⟧ =
⟦

()
⟧

Proof. Using strong normalisation, we obtain that either t→∗ () or t→∗ ⊥. Since the
category is non-trivial, () and ⊥ have different semantics, so we have the equivalence.

□

It follows that we have the direct implication of the full abstraction:

Corollary 1.4.11. For every pair of terms Γ ⊢ t : A and Γ ⊢ s : A, we have

⟦t⟧ = ⟦s⟧ =⇒ t =obs s

Proof. We define the type P =
⊗

(xi:Ai)∈ΓAi, and the values vt = λ
(

⊗

(xi:Ai)∈Γ x
Ai

i

)

.t

and vs = λ
(

⊗

(xi:Ai)∈Γ x
Ai

i

)

.s. We assume that ⟦t⟧ = ⟦s⟧. From the definition of ⟦−⟧,
it follows that ⟦vt⟧ = ⟦vs⟧. We now prove that vt =P⊸A

obs vs. We take an observation
context O[_] for ⊢ P ⊸ A, and we use the value-substituting lemma to obtain that

⟦O[vt]
⟧

=
⟦O[x]

⟧ ◦ ⟦vt⟧ =
⟦O[x]

⟧ ◦ ⟦vs⟧ =
⟦O[vs]

⟧

Using adequacy, it follows that O[vt] ⇓ ⇐⇒ O[vs] ⇓, hence vt =P⊸A
obs vs. We note that

t =obs s ⇐⇒ vt =obs vs. As we can transform an observation context of one into the
other by adding application or λ-abstractions around the hole. □
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Chapter 2

Introduction to Quantum
Computation

2.1 Hilbert spaces
In this section, we go through some basic mathematical notions central in quantum physics.
Namely complex numbers, Hilbert spaces, tensor products and positive operators.

2.1.1 Complex Numbers
We write i and −i for the two complex numbers of square equal to minus one. Every
complex number z ∈ C can be written as z = Re(z) + i Im(z), with Re(z), Im(z) ∈ R being
its real part (or abscissa) and its imaginary part (or ordinate). As such, every complex
number can be seen as a point of the plan R2, as in Fig. 2.1. The representation with real
and imaginary parts is not the most meaningful one in our case, we will more interested
in the polar representation z = |z| · eiArg(z) with |z| ∈ R≥0 and Arg(z) ∈ [0, 2π) being its
module (or radius) and its argument (or angle).

Figure 2.1: The Complex Plane

53
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Indeed, in quantum mechanics, we frequently need to represent a probability p ∈ [0, 1]
together with a cyclic information θ ∈ [0, 2π) (modulo 2π) called phase. For that, we use
the complex number √p · eiθ.

Properties 2.1.1. We recall here some basic properties of complex numbers.

z = |z| · eiArg(z)+2ikπ (∀k ∈ Z)

z̄ = Re(z)− i Im(z) = |z| · e−iArg(z)

z · z̄ = Re(z)2 + Im(z)2 = |z|2

We will often use matrices of complex numbers, hence we recall here the notation A†

for the conjugate transpose of A:







a1,1 · · · a1,n
...

...
am,1 · · · am,n







†

=







a1,1 · · · am,1
...

...
a1,n · · · am,n







We say that a matrix has size m × n if it has m rows and n columns. We say that a
square matrix has size n if it has n rows and n colmuns. A particular kind of matrix that
will come back often is a unitary matrix. A matrix U is called unitary if and only if both
U × U † and U † × U are identity matrices.

2.1.2 Hilbert Spaces
A single complex number is quite limited in terms of the information it can represent. To
represent more information at once, we will use vectors in a Hilbert space. So, we will first
recall some definitions about vector spaces and linear operators.

Definition 2.1.2. For (V, . . . ,+,0) a complex vector space, an hermitian sesquilinear form
⟨−|−⟩ is a function from V × V to C which respects:

Sesquilinear: ⟨a · v1 + b · v2|w⟩ = a · ⟨v1|w⟩+ b · ⟨v2|w⟩
⟨v|a · w1 + b · w2⟩ = a · ⟨v|w1⟩+ b · ⟨v|w2⟩

Hermitian: ⟨w|v⟩ = ⟨v|w⟩

It is said to be an inner product if additionally it is positive definite:

Positive: ⟨v|v⟩ ∈ R≥0

Definite: ⟨v|v⟩ = 0 ⇐⇒ v = 0

A Hilbert space is by definition a complete complex inner-product space, however, since
we will only use finite dimensional Hilbert spaces, the definition simplifies to the following
one.
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Definition 2.1.3. A (finite dimensional) Hilbert space is a finite dimensional complex
vector space (H, ·,+,0) together with an operator ⟨−|−⟩ : H ×H → C which is an inner
product. Hilbert spaces come with a norm, defined as ||v|| =

√

⟨v|v⟩.

In other words, Hilbert spaces are simply the equivalent of Euclidean spaces for complex
numbers. Similarly to Euclidean spaces, Hilbert spaces admit orthonormal bases. An
orthonormal basis of H is a basis (h1, . . . , hdim(H)) such that for all 1 ≤ i, j ≤ dim(H) we
have ⟨hi|hj⟩ = 1 if i = j and 0 otherwise. Given an orthonormal basis (h1, . . . , hn) of H,
every vector v of H can be written as a column matrix of complex numbers:

M(v) =







v1
...
vn






=







⟨v|h1⟩
...

⟨v|hn⟩







Given (h1, . . . , hn) and (k1, . . . , km) orthonormal bases of H and K, any linear operator
f : H → K can be represented as a complex matrix:

M(f) =







f1,1 · · · f1,n
...

...
fm,1 · · · fm,n






=







⟨k1|f(h1)⟩ · · · ⟨k1|f(hn)⟩
...

...
⟨km|f(h1)⟩ · · · ⟨km|f(hn)⟩







With those notations, application and composition can be computed using matrix products
as follows:

M(f(v)) = M(f)×M(v)
M(g ◦ f) = M(g)×M(f)
⟨v|w⟩ = M(v)† ×M(w)

In the following, we always consider Hilbert spaces together with an orthonormal basis,
allowing us to go back and forth between vectorial and matricial representations.

The most commonly used Hilbert spaces are the Cn together with their canonical inner
product ⟨(v1, . . . , vn)|(w1, . . . , wn)⟩ :=

∑n
i=1 vi · wi and the canonical basis

{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}

In fact, without loss of generality, one could only use spaces of the form Cn, since any
Hilbert space of dimension n ∈ N is isomorphic to Cn. In particular the dual space H∗ of
H is isomorphic to H, and we recall here its definition:

• H∗ is the set of linear forms over H, i.e., {⟨h|−⟩ : H → C | h ∈ H}.

• Its inner product is ⟨⟨h|−⟩|⟨k|−⟩⟩ = ⟨k|h⟩. The inversion is required because we have
⟨λh|−⟩ = λ⟨h|−⟩.

• Its orthonormal basis is the set of ⟨h|−⟩ for h in the orthonormal basis of H.
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However, this isomorphism between H and H∗ is not natural1 when the dimension of H is
at least two, in other words the isomorphism depends on the bases chosen for H and H∗.
We still have that H∗∗ and H are naturally isomorphic, and so are C and C∗.

In practice, we will identify objects that are related by a natural isomorphism, hence
we will identify H∗∗ with H, and C with C∗, but we will consider H and H∗ as distinct
spaces when of dimension at least two. This choice to work with every finite dimensional
Hilbert space, rather than only Hilbert spaces of the form Cn, should allow for the results
presented in this thesis to be easily generalised to a more algebraic setting such as dagger
compact closed categories as defined in [Sel07].

The dagger operation on matrices extend to an operation on linear operator. For
f : H → K, we write f † : K → H for the unique linear operator such thatM(f)† =M(f †).
Equivalently, f † : K → H is the unique linear operator such that ⟨u|f(v)⟩ = ⟨f †(u)|v⟩ for
every u ∈ H, v ∈ K.

2.1.3 Tensor Product

A very useful operation on Hilbert spaces is the tensor product ⊗. Intuitively, if vectors
of the Hilbert space H represent the different states of a first system, and K of a second
system, then the vectors of the Hilbert space H ⊗ K represent the state of each of the
systems and how they are correlated to each other. Mathematically, H ⊗K is a Hilbert
space defined as follows:

1. We consider the free vector space F over pairs of elements of H and K, i.e., F =
{∑i ci(vi, wi) | ∀i, ci ∈ C, vi ∈ H,wi ∈ K}.

2. We quotient it by the reflexive transitive closure of ≡ defined as

(v + v′, w) ≡ (v, w) + (v′, w) (c · v, w) ≡ c(v, w)
(v, w + w′) ≡ (v, w) + (v, w′) (v, c · w) ≡ c(v, w)

We write v ⊗ w the equivalence class of (v, w).

3. The inner product is simply ⟨∑i ci ·vi⊗wi|
∑

j c
′
j ·v′

j⊗w′
j⟩ =

∑

i

∑

j cic
′
j⟨vi|v′

j⟩⟨wi|w′
j⟩

It follows that ⊗ : H×K → H⊗K is a bilinear function, and that H⊗K has dimension
dim(H) dim(K). If H has (h1, . . . , hn) as an orthonormal basis, and K has (k1, . . . , km),
then (h1 ⊗ k1, . . . , hn ⊗ km) is an orthonormal basis of H ⊗K.

If we take a vector u ∈ H ⊗K, then two situations arise: either u = v⊗w, then we say
u represents separable states, or u is a non-trivial sum of vi⊗wi, then we say u represents
an entangled state.

1This notion of natural isomorphism coincide with the categorical notion of natural isomorphism.



2.1. HILBERT SPACES 57

We now recall some basic constructions and properties of the tensor product. From
two linear operators f : H → H ′ and g : K → K ′, we define f ⊗ g : H ⊗K → H ′ ⊗K ′ as
follows:

(f ⊗ g)

(

∑

i

ci · vi ⊗ wi
)

=
∑

i

ci · f(vi)⊗ g(wi)

On matrix representations, the tensor product can be computed using the Kronecker
product ⊗ of matrices:

M(v ⊗ w) =M(v)⊗M(w) =







v1 · M(w)
...

vn · M(w)







M(f ⊗ g) =M(f)⊗M(g) =







f1,1 · M(g) · · · f1,n · M(g)
...

...
fm,1 · M(g) · · · fm,n · M(g)







Finally, we state a very simple but important property, which will allow us to represent
functions as vectors.

Proposition 2.1.4. For H,K two Hilbert spaces, linear operators from H to K form a
Hilbert space, written L(H,K). We have L(H,K) � H∗ ⊗K. More generally, for H,K,L
three Hilbert spaces, we have L(H ⊗K,L) � L(H,K∗ ⊗ L).

For f ∈ L(H,H ′) and g ∈ L(K,K ′), and consider their tensor product f ⊗ g ∈
L(H,H ′) ⊗ L(K,K ′), it coincides (up to isomorphism) with f ⊗ g ∈ L(H ⊗ H ′,K ⊗K ′)
defined above.

2.1.4 Positive Operators
We now introduce positive operators, which are used in quantum mechanics to represent
mixed states, i.e., probability distributions of regular quantum states, which are called pure
states. We recall that an hermitian sesquilinear form is a function ⟨−|−⟩ : H × H → C
which respects the sesquilinear and hermitian conditions described in Definition 2.1.2.

Definition 2.1.5. We write Herm(H) for the real vector space of hermitian operators
over H, where f : H → H is an hermitian operator if and only if f † = f . Its dimension
is dim(Herm(H)) = dim(H)2. We define tr : Herm(H)→ R as follows:

tr(f) = tr(M(f)) = tr









m1,1 · · · m1,dim(H)
...

...
mdim(H),1 · · · mdim(H),dim(H)









=

dim(H)
∑

i=1

mi,i ∈ R

We write Pos(H) for the real convex cone (in Herm(H)) of positive operators.
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We recall that f is a positive operator if and only if M(f) = M(f)†, and all the
eigenvalues of M(f) are positive or null. Using the fact that hermitian operators are
always unitarily diagonalisable, we can obtain the following result

Proposition 2.1.6 (Eigenvector Decomposition). If f ∈ Pos(H) and n = dim(H), then
we have

M(f) =
n
∑

i=1

λiM(vi)×M(vi)
†

with λi being the eigenvalues and vi being a corresponding eigenvector of norm one. Choos-
ing a square root for each of the eigenvalues, it follows that there exists fi : C → H such
that

f =
n
∑

i=1

fi ◦ f †
i

This is a well-known result, and we can refer to [Rob19] for one of the multiple proofs.
The trace tr is a linear operation on Herm(H), and tr(f ⊗ g) = tr(f) · tr(g). Moreover,
we have for every f ∈ Pos(H) and every coefficient a ∈ C of M(f), |a| ≤ tr(f).

Positive operators of trace lesser or equal to one are called subdensity operators, we
write the corresponding set Pos≤1(H). Since Pos(H) is a real convex cone, and the trace
is linear, it follows that subdensity operators are stable under subprobability distributions
∑

i pifi with ∑i pi ≤ 1.
Quantum states2 will later be represented by normalised vectors of a Hilbert space H,

i.e., vectors v ∈ H such that ||v|| = ⟨v|v⟩ = 1. To each of those vectors we associate a
subdensity operator fv ∈ Pos(H) defined as fv(u) := ⟨v|u⟩ · v or in other words, M(fv) :=
M(v)×M(v)†. Since subdensity operators are stable under subprobability distributions,
it follows that given a subprobability distribution {(pi, vi) | i ∈ I} of normalised vectors of
H, i.e., quantum states, we can associate to it a canonical subdensity operator ∑i∈I pifvi

.
An important note is that multiple subprobability distributions can correspond to the

same subdensity operator, see Example 2.1. This is by design, as in Theorem 2.3.2, we
show that such subprobability distributions of quantum states are indistinguishable through
experiments.

Proposition 2.1.7. A basis for the real vector space Herm(C2) is, in matrix form:
(

1 0
0 0

) (

0 0
0 1

) (

1/2 1/2
1/2 1/2

) (

1/2 i/2
−i/2 1/2

)

Proof. We consider an element of Herm(C2). Its associated matrix is M =

(

a b
c d

)

with a, b, c, d ∈ C satisfying M † = M , i.e., a = a, b = c, c = b and d = d. In other

2We refer here to pure quantum states as defined in Section 2.3.2.
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Example 2.1 Probability distributions corresponding to the same density operator
We consider the probability distributions p1 and p2 which can be written with matrix
representation as

p1 =

{(

1

2
,

(

1
0

))

,

(

1

2
,

(

0
1

))}

p2 =

{(

1

2
,

(

1/
√

2

1/
√

2

))

,

(

1

2
,

(

1/
√

2

−1/
√

2

))}

They both correspond to the following density operator 1
2 id as:

1

2

(

1 0
0 0

)

+
1

2

(

0 0
0 1

)

=

(

1/2 0
0 1/2

)

=
1

2

(

1/2 1/2
1/2 1/2

)

+
1

2

(

1/2 −1/2
−1/2 1/2

)

words, M =

(

α β + iγ
β − iγ δ

)

with α, β, γ, δ ∈ R. It follows that

M = (α−2β−2γ)

(

1 0
0 0

)

+(δ−2β−2γ)

(

0 0
0 1

)

+2β

(

1/2 1/2
1/2 1/2

)

+2γ

(

1/2 i/2
−i/2 1/2

)

and this decomposition is unique. This proves that the four associated vectors form a
basis. □

Another notable property is the existence of a partial order called the Loewner order,
defined on positive operators as: f ⊑ g whenever g − f is a positive operator.

2.1.5 The Categories of Hilbert Spaces

Two different categories arise from the previous definitions, the rather simple category of
Hilbert spaces and linear operators between them, and the much richer category of Hilbert
spaces and completely positive maps.

The Category Hilb

Proposition 2.1.8. The category Hilb whose objects are (finite dimensional) Hilbert
spaces and whose morphisms are linear operators is a compact closed category (Hilb,⊗,1,
(_)∗) with ⊗ being the usual tensor product, 1 = C, and (_)∗ being the usual dual of Hilbert
spaces.

To avoid confusion with the category defined next, we write idHilb
H , asHilb

H,K,L, . . . for the
identity, the associator, and all the other structural morphisms. Using Proposition 2.1.4,
we can rewrite the unit and counit in a much more intuitive form:
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• The unit ηHilb
H can be seen as a morphism of Hilb(C,L(H∗,H∗)) that maps a scalar

z to z times the identity operator on H∗.

• The counit ϵHilb
H can be seen as a morphism of Hilb(L(H,H),C) that maps an

operator on H to its trace.

Since we do not identify H and H∗, we see spaces “without a star” as positives and
containing actual vectors and spaces “with a star” as negatives and containing linear forms
expecting a vector as an input.

The Category Hilb≤1

A relevant subcategory of Hilb is Hilb≤1, the category of Hilbert spaces and contraction
morphisms, i.e., morphisms f ∈ Hilb(H,K) such that f ◦ f † ⊑ idHilb

H

Proposition 2.1.9. (Hilb≤1,⊗,1) is an SMC, and it is the minimal sub-SMC of Hilb

containing all the morphisms f such that M(f) =

(

U 0
0 0

)

with U a unitary matrix and

the 0s some rectangular null matrices.

In Section 2.3.2, we give a more precise characterisation when the spaces are all of
dimension a power of two, and show that Hilb≤1 can be seen as the subcategory of Hilb
excluding all the operations that are not physically realisable. The operations we keep in
Hilb≤1 precisely correspond to changing the orthonormal basis in which we consider our
vectors, projecting our vectors onto a smaller space, embedding our vectors into a bigger
space, or any sequence of those operations.

The Category CPM

We will now define CPM of completely positive maps, which is the category we will actually
use to represent quantum information. More information about the category CPM can
be found in [Sel04, Sel07]. Informally, maps of CPM are linear functions from matrices to
matrices that preserve positivity in a strong sense. To formally define it, we first define a
temporary notion of matrix operator.

A matrix operator f from a Hilbert space H to a Hilbert space K is simply a linear
operator from L(H,H) to L(K,K). The category of Hilbert spaces and matrix operators
is an SMC with ⊗ for monoidal product and 1 for unit. Indeed, Proposition 2.1.4 implies
that L(H,H)⊗ L(K,K) � L(H ⊗K,H ⊗K).

Definition 2.1.10. The objects of the category CPM are Hilbert spaces, and a morphism
f from H to K is a matrix operator which is:

Positive: the image of Pos(H) by f is included in Pos(K),
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Completely Positive: for every Hilbert space L, idCPM
L ⊗ f is positive, i.e., the image of

Pos(L⊗H) by idCPM
L ⊗ f is included in Pos(L⊗K).

We recall that the Loewner order is defined as f ⊑ g whenever g − f is completely
positive. This means that for f a matrix operator, f ∈ CPM if and only if f ⊒ 0. In
particular, if we consider a linear combination of CPM maps (with positive and negative
real coefficients), to prove that it is a CPM maps, we just need to prove that it is greater
than 0 for the Loewner order.

Since matrix operators are linear operators, the definition of dagger extend to them
and we have that if f ∈ CPM(H,K) then f † ∈ CPM(K,H). We can lift morphisms of
Hilb into morphisms of CPM as follows

L−M : Hilb(H,K) → CPM(H,K)
f 7→ LfM : (ϕ 7→ f ◦ ϕ ◦ f †)

Proposition 2.1.11. The category CPM is a compact closed category (CPM,⊗,1, (_)∗),
with ⊗ being the usual tensor product, 1 = C, and (_)∗ being the usual dual of Hilbert
spaces.

The structure of the SMC comes from Hilb≤1 through L−M, which will be a strong sym-
metric monoidal functor. We write idCPM

H , asCPM
H,K,L, . . . for the images of idHilb

H , asHilb
H,K,L, . . .

Proving that CPM is compact closed is not immediate, but is a direct consequence of the
following theorem.

Theorem 2.1.12 (Choi-Jamiołkowski isomorphism). The set of completely positive maps
CPM(H,K) is isomorphic to the set of positive operators Pos(H∗⊗K). This isomorphism
preserves and reflects3 the Loewner order ⊑.

This theorem is quite standard, and its proof relies on the isomorphism between
L(H,K) and H∗⊗K from Proposition 2.1.4 to obtain that L(L(H,H),L(K,K)) � (H∗)∗⊗
H∗ ⊗K∗ ⊗K � L(H∗ ⊗K,H∗ ⊗K). Then, proving that the completely positive map on
the left hand side is sent to a positive operator on the right hand side is a direct verification
once we make explicit this isomorphism. Proving that we reach all the positive operators
relies on Proposition 2.1.6.

An important consequence of this theorem is Corollary 2.1.13, which justifies the use of
CPM as an extension of Hilb. Indeed, morphisms of Hilb describe quantum operations on
pure states, i.e., along one branch of the execution, whereas morphisms of CPM describe
operations over mixed states, i.e., over multiple branches of the execution at once.

Corollary 2.1.13 (Krauss Representation). For f ∈ CPM(H,K), there exist n ∈ N and
fi ∈ Hilb(H,K) for all 1 ≤ i ≤ n, such that f =

∑n
i=1LfiM.

3An isomorphism reflects a relation if its inverse preserves it.
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Proof. We consider f ∈ CPM(H,K), and use Theorem 2.1.12 to obtain f̂ ∈ Pos(H∗⊗
K). We then use Proposition 2.1.6 and obtain f̂ =

∑

i gi ◦ g†
i . It follows that there

exists some g′
i ∈ L(1,H∗ ⊗K) such that f =

∑

i g
′
i ◦ g′†

i . Using Proposition 2.1.4 we
obtain fi ∈ L(H,K) such that f =

∑n
i=1LfiM. □

The Category CPM≤1

We now introduce the notion of superoperator. Similarly to Hilb≤1 being the subcategory
of Hilb containing the physically realisable operations, CPM≤1 is the subcategory of
CPM containing the physically realisable operations. Superoperators are sometimes called
quantum operations or quantum channels, and come from the work of Sudarshan [SMR61]
on general stochastic transformations for density matrices, though we use the more modern
formalism of Choi and Kraus.

Definition 2.1.14. We say that f ∈ CPM(H,K) is a superoperator if the image of
Pos≤1(H) by f is included in Pos≤1(K). We write CPM≤1 for the subcategory of super-
operators.

We note that the trace defined in Definition 2.1.5 is a superoperator, and we write
TrH ∈ CPM≤1 (H,1) for the associated map f 7→ tr(f) and TrKH for the map associated
to the partial trace, i.e., TrKH = luCPM

K ◦(TrH⊗ idCPM
K ) ∈ CPM≤1(H⊗K,K). Its dagger

Tr†
H ∈ CPM(1,H) generates the identity matrix. We write 1H ∈ CPM≤1(1,H) for the

map that generates the normalised identity matrix.

Tr†
H : z 7→ z















1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1















1H : z 7→ z















1
dimH 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1

dimH















The subcategory CPM≤1 is an SMC, but is not compact closed. We still have a
correspondence between superoperators and a subclass of positive operators.

Corollary 2.1.15 (Bounded Choi-Jamiołkowski isomorphism). The set of superoperators
CPM≤1(H,K) is isomorphic to the set {f ∈ Pos(H∗ ⊗K) | TrH∗

K (f) ⊑ idPos
H∗ }.

Proof. We refine Theorem 2.1.12 by noting that

TrH∗

K (f̂) = (TrH∗

K ◦ (idL(H∗,H∗) ⊗ f))
(

∑

i,i′ H
∗
i,i′ ⊗Hi,i′

)

= (idL(H∗,H∗) ⊗ (TrK ◦ f))
(

∑

i,i′ H
∗
i,i′ ⊗Hi,i′

)

= ÿ�TrK ◦ f

Using linearity of −̂, it follows that TrH − TrK ◦ f ∈ CPM(H,K) if and only if
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ˆTrH −TrH∗

K (f̂) ∈ Pos(H∗), i.e., TrH∗

K (f̂) ⊑ idPos
H∗ . □

In the same way that CPM morphisms are sums of morphisms of Hilb, CPM≤1 mor-
phisms will appear as a probability distribution of morphisms of Hilb≤1.

Proposition 2.1.16. For f ∈ Hilb≤1, we always have LfM ∈ CPM≤1. Conversely,
for f ∈ CPM≤1(H,K), there exists n ∈ N and (fi, pi) ∈ Hilb≤1(H,K) × [0, 1] for all
1 ≤ i ≤ n, with ∑n

i=1 pi = 1, such that

f =
n
∑

i=1

pi · LfiM

Lastly, we note that CPM≤1(1,1) � [0, 1], as every morphism of CPM≤1(1,1) is of
the form λ · idCPM

1 for λ ∈ [0, 1].

Observational Characterisation of CPM Morphisms

We are now interested in ways to “observe” the difference between CPM morphisms. This
will be a central tool for later full abstraction results. We first note the following property:

Proposition 2.1.17. Two morphisms f, g ∈ CPM(H,K) such that f(M) = g(M) for
every M ∈ Pos≤1(H) are necessarily equal.

Proof. We take f, g ∈ CPM(H,K) such that f(M) = g(M) for every M ∈ Pos≤1(H).
For M0 ∈ Pos(H), if tr(M0) > 1 then M0

tr(M0) ∈ Pos≤1(H) so

f(M0)

tr(M0)
= f

(

M0

tr(M0)

)

= g

(

M0

tr(M0)

)

=
g(M0)

tr(M0)

It follows that for every M ∈ Pos(H), f(M) = g(M). For M1 ∈ Herm(H), if we
diagonalise M1 and split the positive and negative eigenvalues, we obtain M1 = M+

1 −
M−

1 with M+
1 ,M

−
1 ∈ Pos(H). So

f(M1) = f(M+
1 )− f(M−

1 ) = g(M+
1 )− g(M−

1 ) = g(M1)

It follows that for every M ∈ Herm(H), f(M) = g(M). For M2 ∈ L(H,H). We write
M+

2 =
M2+M†

2
2 ∈ Herm(H) and M−

2 =
M2−M†

2
2 ∈ Herm(H). So

f(M2) = f(M+
2 ) + if(M−

2 ) = g(M+
2 ) + ig(M−

2 ) = g(M2)

It follows that for every M ∈ L(H,H), f(M) = g(M). □

Testing every M ∈ Pos≤1(H) to determine if f and g are different is impractical, so we
search a more limited number of subdensity operators that are “enough”. If CPM(H,K)
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was a vector space, we could just take elements of its basis. But the set CPM(H,K) is
not a complex vector space, as positivity is not preserved when multiplying by a complex
number. It is not a real vector space either, but it can be seen as the positive fragment
of the real vector space of linear operators from Hilb(H,H) to Hilb(K,K). Using a real
basis well-chosen to contain only superoperators, we obtain the following results.

Proposition 2.1.18 (Basis for CPM). We write GC2 for the set composed of the four
following morphisms of CPM≤1(1,C2):

GC
2

0 : z 7→ z

(

1 0
0 0

)

GC
2

1 : z 7→ z

(

0 0
0 1

)

GC
2

2 : z 7→ z

(

1/2 1/2
1/2 1/2

)

GC
2

3 : z 7→ z

(

1/2 i/2
−i/2 1/2

)

And write T C2 for the set composed of the four following morphisms of CPM≤1(C2,1):

TC
2

0 :

(

a b
c d

)

7→ a TC
2

1 :

(

a b
c d

)

7→ d

TC
2

2 :

(

a b
c d

)

7→ a+b+c+d
2 TC

2

3 :

(

a b
c d

)

7→ a−ib+ic+d
2

We have for every f, g ∈ CPM(C2,C2):

f = g ⇐⇒ ∀b ∈ GC2
,∀b′ ∈ T C2

, b′ ◦ f ◦ b = b′ ◦ g ◦ b

To prove this result, we just need to note that (1) for every M ∈ Pos≤1(C2), there
exists a linear combination ℓ =

∑

0≤n≤3 cnG
C2

n with cn ∈ R such that ℓ : z 7→ z ·M , and (2)
for every M,N ∈ Pos≤1(C2), if M , N then there exists b′ ∈ T C2 such that b′(M) , b′(N).

This proposition also hold for the dual space C2. We write G(C2)∗ for the set composed
of the four morphisms of CPM(1,C2) defined as G(C2)∗

i :=
(

GC
2

i

)∗
, and similarly T (C2)∗

for the set composed of the four morphisms of CPM(C2,1) defined as T (C2)∗

i :=
(

TC
2

i

)∗
.

We keep the natural isomorphism between C and C∗ implicit.
We now want to generalise it to higher dimensions than 2. For H = H1⊗ . . .⊗Hn with

each of the Hk being C2 or (C2)∗, we write GH and T H for the respective sets of morphisms
defined as:

GHi1...in := GH1
i1
⊗ . . .⊗GHn

in
∈ CPM(1,H) THi1...in := TH1

i1
⊗ . . .⊗ THn

in
∈ CPM(H,1)

Corollary 2.1.19. For every f, g ∈ CPM(H,K), with H and K being tensors of multiple
C2 and (C2)∗:

f = g ⇐⇒ ∀b ∈ GH ,∀b′ ∈ T K , b′ ◦ f ◦ b = b′ ◦ g ◦ b
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2.2 Preliminaries on Partial Orders
We will eventually need to take limits within CPM. For that, we need to define the
completion of CPM with infinitary elements. This completion relies on the D-completion
of partials orders as in [ZF10], which we define here. Indeed, CPM is already a complete
metric space, meaning that some limits are already defined, and naive completion methods4

fail to preserve the pre-existing limits.

2.2.1 Partial Orders
Definition 2.2.1. A partially ordered set (S,≤), or poset, is a set S together with a binary
relation ≤ on S which is reflexive (i.e., s ≤ s), transitive (i.e., s ≤ s′ ≤ s′′ =⇒ s ≤ s′′)
and anti-symmetric (i.e., s ≤ s′ ≤ s =⇒ s = s′).

We extend the unions of sets to posets. We consider two posets (S,≤S) and (T,≤T ),
and define ≤S∪T , ≤S⊔T and ≤S⊎T as follows:

• a ≤S∪T b ⇐⇒
{

a, b ∈ S
a ≤S b

or
{

a, b ∈ T
a ≤T b

.

• ≤S⊔T is identical to ≤S∪T , but assumes that S and T are disjoint.

• (i, a) ≤S⊎T (j, b) ⇐⇒
{

i = 0 = j

a ≤S b
or
{

i = 1 = j

a ≤T b

We note that S ∪ T might not be a poset, as we might obtain a pre-order, or a relation
which is not transitive. However, S ⊔ T and S ⊎ T are always a poset.

In a poset (S,≤), we say that X ⊆ S is down-closed if for all x′ ≤ x ∈ X we have
x′ ∈ X.

2.2.2 Directed Complete Partial Orders
Definition 2.2.2. A poset (S,≤) is said to be

Directed if it is non-empty and for every s, s′ ∈ S, there exists an upper bound of {s, s′}
in S (i.e., b ∈ S such that s ≤ b ≥ s′).

Directed Complete if each of its directed subsets has a unique supremum (i.e., least upper
bound).

Note that directed complete posets, or dcpos, are not necessarily directed. In a dcpo,
we write supX for the supremum of the directed subset X, and limn sn for sup{sn | n ∈ N}
when s0 ≤ s1 ≤ . . . .

4Such as ideal completion [Plo81].
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Example 2.2
(R≥0,≤) is a directed poset, but not a dcpo. (R≥0,≤) is a dcpo.

In a poset (S,≤), we say that X ⊆ S is Scott-closed if it is down-closed and if for each
of its directed subsets D ⊆ X that has a supremum in S, we have supD ∈ X.

A function f from a poset to another poset is said to be Scott-continuous if it is
monotone (x ≤ y =⇒ f(x) ≤ f(y)) and preserves all the existing suprema of directed
subsets. We now define the D-completion of a poset, which is the smallest dcpo that
contains the posets.

Definition 2.2.3. To define the D-completion of a poset (S,≤), we proceed as follows:

• We write (Scott(S),⊆) for the dcpo of all Scott-closed subsets of S.

• We write (D(S),⊆) for the smallest dcpo included in (Scott(S),⊆) and containing
all the {x | x ≤ s} for s ∈ S.

• We define the D-completion of (S,≤), written (S,≤), as a chosen superposet of (S,≤)
which is order-isomorphic to (D(S),⊆).

• We say that s ∈ S is finitary if s ∈ S, and infinitary otherwise.

We can choose such a superposet because the function s 7→ {x | x ≤ s} from (S,≤)
to (D(S),⊆) induces an order-isomorphism between (S,≤) and a down-closed subset of
(D(S),⊆). We refer to [ZF10] for more details about D-completions.

Example 2.3
We have D(R≥0) = {[0, x] | x ∈ R≥0} ⊔ {R≥0} � R≥0. This means the dcpo (R≥0,≤) is a
D-completion of the poset (R≥0,≤).

2.2.3 Positive Monoids

Definition 2.2.4. A commutative monoid (C,+, 0) is a set C together with a commutative
and associative operator + : C × C → C and a neutral element for this operator. Such a
monoid is said to be

Cancellative if whenever we have x+ y = x+ z, we necessarily have y = z.

Positive if whenever we have x+ y = 0, we necessarily have x = 0 = y.

Strongly Positive if whenever we have z+x+y = z, we necessarily have z+x = z = z+y.
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Example 2.4
(R≥0,+, 0) is a cancellative positive (hence strongly positive) commutative monoid.
(R≥0,+, 0) is a strongly positive commutative monoid but not a cancellative one, since
+∞+ 1 = +∞+ 2.

Note that a positive cancellative commutative monoid is necessarily strongly positive
and that a strongly positive monoid is positive but not necessarily cancellative.

In a strongly positive commutative monoid (C,+, 0) we define the induced (partial)
order as the relation

x ⊑ y ⇐⇒ ∃z, x+ z = y

While we can define this relation in every commutative monoid, it is a partial order if and
only if the commutative monoid is strongly positive. We say that the strongly positive
commutative monoid is directed complete when the induced order is. When it is, we can
define countably infinite sums as the supremum of finite sums:

∑

i∈N
ci := sup

{

∑

i∈I
ci | I ⊆fin N

}

Lemma 2.2.5. In a directed complete strongly positive commutative monoid, infinite sums
are independent of the order of summing, i.e., for every finite subsets of N I0 ⊂ I1 ⊂ . . .
with ∪n∈N In = N, we have

∑

i∈N
ci = sup







∑

i∈In

ci | n ∈ N






Proof. Since
{
∑

i∈In
ci | n ∈ N

}

is included in {∑i∈I ci | I ⊆fin N}, the supremum of
the former is lesser or equal to the supremum of the latter. We now consider I ⊆fin N.
Since ∪n∈N In = N, there is a k ∈ N such that I ⊆ Ik. By definition of ⊑, it means

∑

i∈I
ci ⊑

∑

i∈Ik

ci

Every element of {∑i∈I ci | I ⊆fin N} is lesser or equal to one of
{
∑

i∈In
ci | n ∈ N

}

,
which means that the supremum of the former is smaller or equal than the supremum
of the latter. □

Example 2.5
(R≥0,+, 0) is a directed complete strongly positive commutative monoid.
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Proposition 2.2.6. A positive cancellative commutative monoid (C,+, 0) which is directed
complete is necessarily the trivial monoid ({0},+, 0).

Proof. We take c ∈ C. Using the directed completion, we consider c′ =
∑

i∈N c. We
have c′ + c = c′, so using the cancellative property, we have c = 0. □

In a cancellative commutative monoid (C,+, 0), we define the subtraction as the partial
operator − : C × C ⇀ C such that (x − y) is the necessarily unique element such that
y + (x− y) = x, if it exists. For ϵ1, . . . , ϵn ∈ {−,+} and x1, . . . , xn ∈ C, we write

n
∑

i=1

ϵixi :=





∑

ϵi=+

xi −
∑

ϵi=−
xi



 when it is defined

2.2.4 Positive Cones

Definition 2.2.7. A positive convex cone (C,+, ·, 0) is a cancellative positive commutative
monoid (C,+, 0) together with an external product · : (R≥0 × C) → C, respecting the
following equations:

λ · (x+ y) = λ · x+ λ · y
λ · 0 = 0

(λ+ κ) · x = λ · x+ κ · x
0 · x = 0

(λ× κ) · x = λ · κ · y
1 · x = x

The induced order and the subtraction partial operator of the monoid extend to the cone.

Example 2.6
For any (finite dimensional) Hilbert spaces H and K, (CPM(H,K),+, ·, 0) is a positive
convex cone. The induced order ⊑ is the Loewner order. We note that the composition
and tensor of CPM are linear, in other words CPM is a category enriched over positive
convex cones.

Definition 2.2.8. A completed positive convex cone (C,+, ·, 0) is a directed complete
strongly positive commutative monoid (C,+, 0) together with an external product · : R≥0 ×
C → C, bilinear with respect to the monoid and the additive monoid of completed non-
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negative real numbers:
λ · (x+ y) = λ · x+ λ · y
λ · 0 = 0

(λ+ κ) · x = λ · x+ κ · x
0 · x = 0

(λ× κ) · x = λ · κ · y
1 · x = x

λ · supX = sup{λ · x | x ∈ X}
The induced order and the infinite sums of the monoid extend to the cone.

A completed positive convex cone is not a positive convex cone (unless it is trivial).

Proposition 2.2.9. The D-completion of positive convex cones for the induced order is a
completed positive convex cone, where ∞ · f is defined as limn n · f .

Example 2.7
We write CPM(H,K) for the D-completion of CPM(H,K) for the induced order. It is
a completed positive convex cone. We note that the composition and tensor of CPM are
linear and continuous, in other words CPM is a category enriched over completed positive
convex cones. We note that if F ⊆ CPM≤1(H,K), then supF ∈ CPM≤1(H,K). It
follows that CPM already contains all trace bounded suprema, in other words:

∀f ∈ CPM(H,K),
[

f ∈ CPM(H,K) ⇐⇒ TrH ◦ f ◦Tr†
K ∈ CPM(1,1) � R≥0

]

2.3 Quantum Computation
We start by giving some basic notions of quantum computation. The basic datatype used in
quantum computation is the quantum bit, written qubit or less frequently qbit. The exact
state of a qubit is physically inaccessible, and only a few operations are available to interact
with them: (1) the preparation, which creates a qubit initialised to any classical state, (2)
the measurement, which destroys a qubit and probabilistically obtains the bit true or false,
with probabilities depending on the state of the qubit and (3) a set of operations called
unitary operations, which modify the state of potentially multiple qubits at once. While
we will give more intuitions later on what those unitary operations are, we can already
note here that the permutation, which exchanges the states of two qubits, is a unitary
operation, while the duplication, which would copy the state of a qubit to another qubit is
not a unitary, and cannot be defined through any combination of creation, measurement
and unitary operations.
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2.3.1 A First Language for Quantum Computation

In order to be able to give examples, we introduce here MiniQ, a linear first-order fragment
of the quantum λ-calculus of Section 7.1 or [PSV14]. In this language, we have data types
A,B ::= bit | qubit | A⊗B, and we have linear first-order operations. Since operations on
qubit cannot duplicate information, we consider here that functions always consume their
argument (hence the argument cannot be reused by another function). This prevention of
duplication is very alike behaviours observed in linear logic, see [Gir87], as such we will
borrow notations from it: we use A⊗B for pairing, later we use A⊸ B for functions that
can be used only once, and !(A ⊸ B) for functions that can be used multiple times. The
terms of MiniQ are the following

• variable x, and let-binding let xA = t0 in t1,

• booleans ff and tt, and conditional if t0 then t1 else t2,

• pairing t⊗ s and destruction let xA ⊗ yB = t0 in t1,

• measurement meas t0, creation new t0 and unitary operations U t0.

Where variables are taken in a set of variables V, terms being considered up to the usual
renaming of variables through α-equivalence. The three quantum primitives we allow are
new which takes a bit and creates a qubit initialised according to the value of the bit,
meas which measures5 a qubit and returns a bit according to the result of the mea-
surement, and U which range over every unitary matrix and represent the corresponding
unitary operation on quantum data. We recall that unitary matrices are square matrices
of complex numbers that are invertible, with U−1 = U †.

We write typing rules with the usual syntax Γ ⊢ t : A, with the typing context Γ being
a sequence of typed variables (x : B). Typing is derived from the rules in Table 2.1.

In all those rules, we ensure that no variable appears twice in the context. Similarly
to Λ, LΛ and AΛ, in AMiniQ, all the variables of the context must be used at most once
in the term and in LMiniQ, we exclude the weakening rule (at the top left of Table 2.1),
meaning that all variables of the context must be used exactly once.

To give a semantics to this very simple language, we need a mathematical represen-
tation of quantum computation. There are two levels at which we can consider quantum
computation: as acting on pure states, or on mixed states. These two are analogous to
respectively classical states and probabilistic states: the first representation encompasses
a single possibility, while the second one encompasses a probabilistic sum of outcomes.
We start by defining pure states, which can be used to define an operational semantics for

5In real experiments, results of a measurement depends on a basis used for the measurement. We assume
a canonical basis is chosen and used. Measures in any other basis can be simulated by applying a well-chosen
unitary and then measuring in the canonical basis.
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Structural Rules

Γ, x : A, y : B,∆ ⊢ t : C
permutation

Γ, y : B, x : A,∆ ⊢ t : C

Γ ⊢A t : B x < FV(t) (AMiniQ only)
weakeningΓ, x : A ⊢A t : B

Variables

axiom
x : A ⊢ x : A

Γ ⊢ t0 : A x : A,∆ ⊢ t1 : B
let

Γ,∆ ⊢ let xA = t0 in t1 : B

Tensor type

Γ ⊢ t : A ∆ ⊢ s : B pair
Γ,∆ ⊢ t⊗ s : A⊗B

Γ ⊢ t : A⊗B x : A, y : B,∆ ⊢ s : C
let-pair

Γ,∆ ⊢ let x⊗ y = t in s : C

Boolean type

false
⊢ ff : bit

true
⊢ tt : bit

Γ ⊢ t0 : bit ∆ ⊢ t1 : A ∆ ⊢ t2 : A conditional
Γ,∆ ⊢ if t0 then t1 else t2 : A

Quantum type

Γ ⊢ t : qubit
meas

Γ ⊢meas t : bit
Γ ⊢ t : bit new

Γ ⊢ new t : qubit

Γ ⊢ t : qubit⊗n U unitary of size 2n
unitary

Γ ⊢ U t : qubit⊗n

Table 2.1: Typing Rules for MiniQ
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MiniQ. We then define mixed states, which can be used to define a denotational seman-
tics for MiniQ. We will not detail here these operational and denotational semantics, and
will instead directly follow with the extension of MiniQ with higher order, which we call
QΛ. One can recover an operational semantics and a denotational semantics for MiniQ by
considering the ones of QΛ in Section 3.1.3 and Section 3.2, and simply restricting them
to the syntax of MiniQ.

2.3.2 Pure States
In the pure state approach, the state of a qubit is represented as a normalised vector q ∈ C2

(with ||q|| = 1). Similarly, the state of a collection of n qubits is represented as a normalised
vector q ∈ C2n . For convenience, we use the following shorthand for these Hilbert spaces

1 = C Q = C2
Q

⊗n = C2n

We use the usual bra-ket notation from quantum physics for them, hence:










a00

a01

a10

a11











∈ Q⊗2 is written a00|00⟩+ a01|01⟩+ a10|10⟩+ a11|11⟩

We note that |aij |2 in [0, 1], and can be understood as the probability of obtaining ij when
fully measuring the state. Some simple examples of quantum states are:

• The trivial quantum states |0⟩ and |1⟩. If measured6, they will return with probability
one a single result, respectively false and true.

• A fair “quantum coin” 1√
2
|0⟩+ 1√

2
|1⟩, which is a quantum superposition of the two

trivial states. If measured, the results will be false or true with probability 1/2 each.

• Another fair “quantum coin” i√
2
|0⟩ − 1√

2
|1⟩, which also yields false or true with

probability 1/2 each when measured, but can be distinguished from the previous one
if we apply a well-chosen unitary operation to both before measuring them.

• A maximally entangled pair 1√
2
|00⟩ + 1√

2
|11⟩, where if we independently measure

each of the two qubits, we are guaranteed to obtain the same result on both sides.

Since operations on qubit cannot duplicate quantum information, we consider the
input of an operation on quantum data is always consumed, and cannot be used elsewhere.
Hence the operation of “doing nothing” will be represented by the identity function from Q
to Q. In fact operations from a state containing n qubits to a state containing m qubits can

6We recall that we only consider measurements in a canonical basis.



2.3. QUANTUM COMPUTATION 73

be represented by a map in Hilb(Q⊗n,Q⊗m). We recall that Hilb≤1 informally contains
“all the quantum operations that can be physically realised”, and we can here refine that
statement:

Proposition 2.3.1. We write Hilb2
≤1 for Hilb≤1 restricted to objects of dimension a

power of two. The category Hilb2
≤1 is the smallest sub-SMC containing all the following

morphisms,

• The creation maps newHilb
ff : z 7→ z|0⟩ and newHilb

tt : z 7→ z|1⟩, both in Hilb(1,Q).

• The measurement maps measHilb
ff : α|0⟩+β|1⟩ 7→ α and measHilb

tt : α|0⟩+β|1⟩ 7→ β,
both in Hilb(Q,1).

• Any unitary map U ∈ Hilb(A,B), i.e., such that U ◦U† = idHilb
B and U† ◦U =

idHilb
A . Note that it implies dim(A) = dim(B).

This follows from Lemma 6.13 of [Sel04].
Morphisms of Hilb≤1 that are norm-preserving can directly be thought of as oper-

ations from quantum states to quantum states. However, morphisms of Hilb≤1 are in
general norm non-increasing, which can be thought of as a probability to fail. In par-
ticular, measHilb

ff physically corresponds to “measuring a qubit, and assuming the result
is false”, while measHilb

tt is the dual operation. It will be practical to step outside of
Hilb≤1 when using the measurement, so that we can talk about both outputs at once. We
define k-measHilb which measure the k-th qubit of a (normalised) state and returns the
non-normalised quantum state obtained from measHilb

ff , and the non-normalised quantum
state obtained from measHilb

tt .

Q
⊗n
||−||=1 → Q

⊗n−1 ×Q⊗n−1

k-measHilb : initial
state 7→

(final
state
if ff

,
final
state
if tt

)

q 7→
(

k-measHilb
ff (q), k-measHilb

tt (q)
)

where k-measHilb
b := Q⊗k−1 ⊗measHilb

b ⊗Q⊗n−k

The Biased Coin

As a first illustration, we will explain how to simulate a coin with probability p of landing
on heads (i.e., tt) and 1− p for tails (i.e., ff). The protocol is very simple.

1. Create a qubit using newHilb
ff . The current state is |0⟩.

2. Apply the unitary operation of corresponding matrix
(√

1− p √
p√

p −√1− p

)

. The

resulting state is
√

1− p|0⟩+
√
p|1⟩.
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3. Measure the qubit. The result is ff with probability 1− p and tt with probability p.
Using the MiniQ language, we can also write it as the term:

⊢LCoinp() : bit

Coinp() := meas
((√

1− p √
p√

p −√1− p

)

(new ff)

)

The Bell States Protocol

To illustrate the quantum effects, we will take the well-known protocol of creating Bell
states. This protocol is also known under the name of the Einstein-Podolsky-Rosen proto-
col, or EPR. The Bell states are the following four maximally entangled pairs of qubits:

1√
2
|00⟩+ 1√

2
|11⟩ 1√

2
|00⟩ − 1√

2
|11⟩

1√
2
|01⟩+ 1√

2
|10⟩ 1√

2
|01⟩ − 1√

2
|10⟩

If we take the first of those states as an example, and measure its first qubit, then the
result of the measurement will be true or false with probability 1/2 each. If the result
is true then we know that the state of the second qubit is |1⟩, whereas if it is false we
know that the state of the second qubit is |0⟩. One notable physical property here is that
the entanglement between those two qubits holds whatever the distance between them, as
such, the Bell states have a central role in quantum cryptography where each of the two
qubits can be owned by a different agent.

The Bell States protocol takes as an input a pair of booleans, and creates one of the
four Bell states according to the value of those booleans. On an input (b, b′), the protocol
is the following:

1. Create two qubits using newHilb
b and newHilb

b′ . On input (ff,ff) the current state
would be |00⟩.

2. Apply to the first qubit the Hadamard unitary, associated to the matrix

H = 1√
2

(

1 1
1 −1

)

. On input (ff,ff) the current state would be 1√
2
|00⟩+ 1√

2
|10⟩.

3. Apply to both the controlled-not unitary operation, associated to the matrix

Nc =











1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0











. On input (ff,ff) the current state would be 1√
2
|00⟩+ 1√

2
|11⟩.

Using the MiniQ language, we can also write it as the term:

b : bit, b′ : bit ⊢LBell(b, b′) : qubit⊗ qubit

Bell(b, b′) := let q1 ⊗ q2 = (new b)⊗ (new b′) in let q3 = H q1 in Nc (q3 ⊗ q2)
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The Bell Measure Protocol

Another simple example is the Bell measurement, which allows us to recover from a maxi-
mally entangled pair which pair of booleans created it. In other words, on an input created
by Bell(b, b′), the Bell measurement will return (b, b′) with probability one. On an input
(q, q′), the protocol is the following:

1. Apply to both the controlled-not unitary operation, associated to the matrix Nc. On
input 1√

2
|00⟩+ 1√

2
|11⟩ the current state would be 1√

2
|00⟩+ 1√

2
|10⟩.

2. Apply to the first qubit the Hadamard unitary, associated to the matrix H. On input
1√
2
|00⟩+ 1√

2
|11⟩ the current state would be |00⟩.

3. Measure both qubits, using meas twice. On input 1√
2
|00⟩+ 1√

2
|11⟩ the current state

would be (ff,ff) with probability 1, and probability 0 for the three other possibilities.

Using the MiniQ language, we can also write it as the term:

q : qubit, q′ : qubit ⊢LBellM(q, q′) : bit⊗ bit

BellM(q, q′) := let q1 ⊗ q2 = Nc (q ⊗ q′) in let q3 = H q1 in (meas q3)⊗ (meas q2)

The Quantum Teleportation Protocol

Finally, we give a less simple example: the quantum teleportation protocol. In this pro-
tocol, an agent has a qubit he wishes to transmit to another agent, only using classical
communication methods and a previously shared quantum state. For that, he will create
a pair of booleans from his qubit, send them to the other agent, and the other agent will
be able to recreate this exact qubit from those two booleans.

This protocol requires a setup phase, where the two agents meet to create some Bell
states. Indeed, for each teleportation the agents will consume one entangled pair of qubits.
The full protocol is the following:

1. The agents Alice and Bob use Bell(ff,ff) to obtain a pair of qubits qA and qB. They
each take one of the qubits.

2. Alice has a qubit q she wishes to communicate. For that, she computes BellM(qA, q),
then send the results to Bob.

3. Bob receives two bits (b, b′), and applies to qB one unitary Ub,b′ with:

Uff,ff =

(

1 0
0 1

)

Uff,tt =

(

0 1
1 0

)

Utt,ff =

(

1 0
0 −1

)

Utt,tt =

(

0 1
−1 0

)
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At the end of this protocol, Bob has a qubit of identical behaviour as the (now destroyed)
qubit q. This includes possible entanglements of q with other qubits, which are also pre-
served by this “teleportation”. Mathematically, the composition of all those operations
gives the identity map. As the protocol has multiple branching points depending on the
result of measurements, with the tools we have defined, it is for the moment unclear how to
actually compute this composition. But we will come back to this example in Section 3.2.2
once we will have introduced the necessary tools.

2.3.3 Mixed States
Mixed states can be understood as subprobability distributions of pure states, where sub-
probability distributions that are indistinguishable are represented by the same mixed
state.

In the mixed state approach, the state of a qubit is represented by a subdensity operator
q ∈ Pos≤1(Q). Similarly, the state of a collection of n qubits is represented by a subdensity
operator q ∈ Pos≤1(Q⊗n). We will often use the matrix M(q) (for the canonical basis)
instead of q. The general form of a qubit becomes:

(

a b
b c

)

with
{

a, c ∈ R≥0

a+ c ≤ 1
and

{

b ∈ C
|b|2 ≤ a · c

Note that a+c can be less than one. This happens when the computation has a probability
of failing or diverging, never returning a result.

Pure states appear as a particular case of mixed states, the pure state a|0⟩ + b|1⟩

corresponding to
(

|a|2 ab
ab |b|2

)

. More generally the embedding is the following:

L_M : H → Pos(H)
q 7→ (q′ 7→ ⟨q|q′⟩ · q)
M(q) 7→ M(q)×M(q)†

We said earlier that mixed states are subprobability distributions of pure states, up to
indistinguishability. We formalise it in the following theorem. Note that this theorem
relies on the operational semantics of LMiniQ that we have yet to define. Since LMiniQ is
a fragment of the LQΛ language defined in next chapter, we simply refer to Section 3.1.3
for the operational semantics of LMiniQ.

Theorem 2.3.2. For every mixed state m ∈ Pos≤1(Q⊗n), there exist some pure states
qi ∈ Q⊗n and some probabilities pi such that:

m =
∑

i

piLqiM
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Two subprobability distribution of quantum states {(pi, qi) | i ∈ I} and {(p′
j , q

′
j) | j ∈ J}

cannot be distinguished through terms of LMiniQ, with operational semantics defined in
Section 3.1.3, if and only if

∑

i

piLqiM =
∑

j

pjLqjM

Proof. For the first part, we simply diagonalise M(m) into SDS† with D being a
diagonal matrix of coefficients di all in [0, 1], of sum lesser or equal to 1. We remark
that M(m) =

∑

i di(Sei)(Sei)
† with ei the i-th vector of the canonical basis of Q⊗n.

We take qi such thatM(qi) = Sei and we have m =
∑

i diLqiM. As a direct consequence
of the full abstraction Theorem 3.2.14, we obtain that two subprobability distributions
of quantum states cannot be distinguished through terms of LQΛ if and only if they
have the same mixed states. □

Operations from a state with n qubits to a state with m qubits will be represented
by maps in CPM(Q⊗n,Q⊗m). For every map f in Hilb≤1(Q⊗n,Q⊗m), we can lift it to
CPM≤1 using the functorial extension of L_M as follows:

LfM : Pos≤1(Q⊗n) → Pos≤1(Q⊗m)
q 7→ f ◦ q ◦ f †

In particular, we have

newCPM
ff = LnewHilb

ff M : z 7→ z ·
(

1 0
0 0

)

newCPM
tt = LnewHilb

tt M : z 7→ z ·
(

0 0
0 1

)

measCPM
ff = LmeasHilb

ff M :

(

a b
c d

)

7→ a measCPM
tt = LmeasHilb

tt M :

(

a b
c d

)

7→ d
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Chapter 3

Relational Model for the Linear
Quantum λ-calculus

3.1 The Linear Quantum λ-calculus

We define here the language QΛ, which is both an extension of Λ with quantum primitives,
and MiniQ with higher order. Like them, it has a strict variant LQΛ and an affine variant
AQΛ, with for only difference the presence of the weakening typing rule. We use ⊢L and ⊢A
for their respective typing judgements, and ⊢ for definitions and propositions that apply
to both. The types are the types of Λ extended with quantum bits. We also add lists as
an example of how to handle recursive types. We recall that lists Aℓ of elements of type A
are the smallest solution of the recursive equation X = 1⊕ (A⊗X).

A,B ::= 1 | A⊸ B | A⊕B | A⊗B | qubit | Aℓ

To the terms of QΛ, we add the following:

• the quantum primitives meas, new and U (for any unitary operation U),

• the list operations fold and unfold.

The typing rules are the same as Λ, augmented by the following ones. The defined
typing system still respects the uniqueness of typing.

Theorem 3.1.1 (Uniqueness of Typing). For Γ a typing context and t a term, with
FV(t) ⊆ Γ, there exists at most one type A such that the typing judgement Γ ⊢ t : A is
valid.

79
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3.1.1 Quantum Primitives
Typing Rules:

Γ ⊢ t : bit new
Γ ⊢ new t : qubit

Γ ⊢ t : qubit
meas

Γ ⊢meas t : bit
Γ ⊢ t : qubit⊗n U of arity n

unitary
Γ ⊢ U t : qubit⊗n

Syntactic Sugar:

p · t+ (1− p) · s := if meas
(√

1− p √
1− p√

p −√p

)

(new ff) then t else s

p · t := p · t+ (1− p) · ⊥
∑n
i=1 pi · ti := p1 · t1 +

∑n
i=2

pi

1−p1
· ti with 0

0 = 0

We note that we are able to define a term destrqubit := λq.destrbit (meas q), hence
even in the LQΛ, the strictness of the linearity can be relaxed for qubit, i.e., we can
discard qubit without using them. However, we do not have a term duplqubit, as quantum
data cannot be duplicated1.

3.1.2 Lists
Typing Rules:

Γ ⊢ t : Aℓ unfold
Γ ⊢ unfold t : 1⊕ (A⊗Aℓ)

Γ ⊢ t : 1⊕ (A⊗Aℓ)
fold

Γ ⊢ fold t : Aℓ

Syntactic Sugar:

[ ] := fold (injℓ ())
t :: s := fold (injr (t⊗ s))

match t with | [ ] 7→ s1

| x :: y 7→ s2
:= δ (unfold t, z.z; s1, z

′.let x⊗ y = z′ in s2)

We note that the impossibility to erase (resp. duplicate) Aℓ even whenever A is erasable
(resp. duplicable) is more a syntactic restriction than a fundamental one. In the extension
QΛ! (see Section 7.1), those are definable using recursion.

1More precisely, we do not have a comonoid for qubit, i.e., we cannot define a duplication term such
that both “duplicating a qubit and then destroying the left hand side qubit” and “duplicating a qubit
and then destroying the right hand side qubit” are observationally equivalent to the identity.
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() ; t → t
(λx.t) v → t{x← v}
let x⊗ y = v ⊗ w in t → t{x← v, y ← w}
δ (injℓ v, x.t, y.s) → t{x← v}
δ (injr v, x.t, y.s) → s{y ← v}
unfold (fold v) → v
E[t] → E[s] whenever t→ s
E[⊥V ] → ⊥FV(E[⊥V ]) whenever E[_] , _

with E[_] ::= _ | E[_] ; t
| E[_] t | v E[_]
| E[_]⊗ t | v ⊗ E[_] | let x⊗ y = E[_] in t
| injℓ E[_] | injr E[_] | δ (E[_], x.t1, y.t2)
| fold E[_] | unfold E[_]
| meas E[_] | new E[_] | U E[_]

Table 3.1: Reduction Rules for QΛ terms

3.1.3 Operational Semantics
We first extend the reduction system of Λ to QΛ by adding reductions for list folding and
unfolding. We start by defining the values of QΛ as v, w ::= () | x | λx.t | injℓ v | injr v | v⊗
w | fold v. The reduction rules are given by Table 3.1.

We do not specify any reduction rules for the quantum primitives yet. Indeed, quantum
variables can be entangled with one another, hence locally describing their value is not
enough, we need a global store to describe the quantum effects that link the different
quantum variables. This will lead us to add a global quantum state tracked along the
reduction sequence of a term, but before tackling this problem, we will recall some standard
properties of the reduction system we just defined.

This reduction system satisfies subject reduction, is deterministic (hence confluent)
and is normalising. Closed terms that do not contain quantum primitives satisfy progress.
More precisely, the following properties hold.

Proposition 3.1.2.

Subject Reduction If Γ ⊢ t : A and t→ s then Γ ⊢ s : A.

Determinism For any term t, there exists at most one term s such that t→ s.

Normalisation For any term t, there is no infinite sequence t→ t1 → t2 → . . . .

Partial Progress For any closed term ⊢ t : A which does not contain meas,new,U , either
t is a value, or ⊥, or there exists a term s such that t→ s.
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We now define the concept of closure, which is a term together with a global memory
state tracking the values of the different quantum variables, including the entanglement
between them. This notion is sometimes called “configuration”, however we reserve this
name for configurations of event structures in Section 4.2.

Definition 3.1.3. A simple (quantum) closure is a triple [q, ℓ, t] where:

• t is a term.

• q is the quantum store, q ∈ Q⊗n for some n ∈ N. We write |q| = n.

• ℓ is a sequence of n variables written |x1 . . . xn⟩. It is an ordering of all the free
variables of t, and it can be seen as a function which to each free variable of the term
indicates where its value is stored.

We say that the simple closure is terminal if t is a value or ⊥. We write ⊢ [q, ℓ, t] : A
whenever

x1 : qubit, . . . , xn,qubit ⊢ t : A

For simplicity of notation, we assumed that every free variable of the term is bound by
the store, hence closures are always closed.

The second subtlety in the definition of this semantics is that reductions are proba-
bilistic. Indeed, the measurements meas lead to two different results, each of them with a
different probability. There are two different ways of handling probabilistic reduction sys-
tems. The first one is to annotate the reductions by a probability, for example “t →0.5 s1

and t→0.5 s2”, and the second is to use probabilistic sums, for example “t→ 1
2s1+ 1

2s2”. For
most practical uses, those two approaches are equivalent. We choose the second approach.

Definition 3.1.4. A closure c is a discrete probability distribution of simple closures,
written as a formal sum ∑

i pici with ci simple closures, 0 ≤ pi ≤ 1 and ∑i pi = 1. We say
it is terminal if all the ci are terminal. We write ⊢∑i pici : A if ⊢ ci : A for every simple
closure ci.

As the formal sum ∑

i pici is just the representation of a discrete probability distribu-
tion, it follows that ∑ is associative, commutative, and has 0 for neutral. We describe in
Table 3.2 the operational semantics of quantum closures.

Proposition 3.1.5. This reduction system on closures

• satisfies subject reduction,

• is deterministic (hence confluent),

• is normalising,
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t0 → t1
[q, ℓ, E[t0]]→ [q, ℓ, E[t1]]

[q, |x1 . . . xn⟩, E[new ff]]→ [q ⊗ |0⟩, |x1 . . . xn+1⟩, E[xn+1]]

[q, |x1 . . . xn⟩, E[new tt]]→ [q ⊗ |1⟩, |x1 . . . xn+1⟩, E[xn+1]]

k-measHilb(q) = (q0, q1)

[q, |x1 . . . xn⟩, E[meas xk]]→
||q0||2

[

q0

||q0|| , |x1 . . . xk−1xk+1 . . . xn⟩, E[ff]
]

+ ||q1||2
[

q1

||q1|| , |x1 . . . xk−1xk+1 . . . xn⟩, E[tt]
]

σ̂ ◦
(

U ⊗Q⊗n−k
)

◦ σ̂−1(q) = q′ σ̂ permutation map induced by σ ∈ Sn
[q, |x1 . . . xn⟩, E[U (xσ(1) ⊗ . . .⊗ xσ(k))]]→ [q′, |x1 . . . xn⟩, E[xσ(1) ⊗ . . .⊗ xσ(k)]]

c→ c′ d terminal 0 < p ≤ 1

pc+ (1− p)d→ pc′ + (1− p)d
c→ c′ d→ d′ 0 ≤ p ≤ 1

pc+ (1− p)d→ pc′ + (1− p)d′

Table 3.2: Reduction Rules for QΛ closures
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• and closures always progress, where value closures are defined as probability distribu-
tions of closures whose term part are values or ⊥.

We emphasise that the determinism is at the level of closures, i.e., probability distri-
butions of simple closures. The reduction system describes non-deterministic behaviours
by encapsulating them in a probability distribution.

We extend the notion of convergence and observational equivalence from Λ, taking into
account that our reductions are now probabilistic.

Definition 3.1.6 (Convergence). For c a closure and v a value, we define the probability
that c converges to v, written P(c ⇓ v), as the supremum of the p ∈ [0, 1] such that
p =

∑n
i=1 pi and c→∗ ∑n

i=1 pi[qi, ℓi, v] + (1− p)c′ with c′ any closure.

By strong normalisation, the supremum is always reached. Whenever ⊢ c : 1, we write
P(c ⇓) for P(c ⇓ ()). Whenever ∅ ⊢ t : 1, we write P(t ⇓) for P([∅,∅, t] ⇓).

An observation context O[_] for Γ ⊢ A with Γ a typing context and A a type, is a term
with a unique hole O[_] such that for every Γ ⊢ t : A, we have ⊢ O[t] : 1.

We say that two terms Γ ⊢ t1 : A and Γ ⊢ t2 : A are observationally equivalent, and we
write t1 =Γ⊢A

obs t2, if for every observation context O[_] for Γ ⊢ A, we have

P(O[t1] ⇓) = P(O[t2] ⇓)

We will keep the annotation Γ ⊢ A implicit in =Γ⊢A
obs .

3.2 The Linear Quantum Relational Model
We want to define a denotational semantics for QΛ. The model presented here is a refor-
mulation of the model of Selinger and Valiron in [SV08], with lists requiring an infinitary
completion as in their later paper [PSV14] with Pagani. Rather than presenting the model
as a generalisation of CPM with coproducts, we formulate it as a variant of the weighted
relational model WRel using CPM annotations instead of probabilistic annotations. We
note that this is a model of LQΛ, but we believe it could be tweaked into a model for AQΛ.

3.2.1 Definition of the Model
We follow the paradigm of quantum data over classical control flow, so rather than trying
to integrate quantum data within the existing framework, e.g., having the web for qubit
list all the possible values for qubit similarly to how the web for bit lists {tt,ff}, we keep
the classical framework unchanged and quantum data over it with the use of “quantum
annotations”. We define the category QRel as follows:

• The objects are pairs A = (|A|,HA) with |A| a finite or countable set, called the web
of A, and HA(a) a finite dimensional Hilbert space for every element a ∈ |A|.
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• The morphisms from an object A to an object B are the functions f that map
(a, b) ∈ |A| × |B| to an annotation f(a, b) ∈ CPM(HA(a),HB(b)), which is the
D-completion of the positive convex cone CPM(HA(a),HB(b)).

• The identity on (|A|,HA) has the annotation idA(a, a) = idCPM
HA(a) for every a ∈ |A|

and idA(a, b) = 0 when a , b.

• The composition is the relational composition:

(g ◦ f)(a, c) :=
∑

b∈|B|
g(b, c) ◦ f(a, b)

We note that this sum might be infinite, hence the need for the D-completion.

Assuming a morphism f ∈ QARel(A,B) represent a programs taking inputs described
by A and producing outputs described by B, the morphism f read as: if the state of the
input is a classical state a ∈ |A| together with a quantum state q ∈ Pos(HA(a)), and the
state of the output is b ∈ |B| together with q′ ∈ Pos(HB(b)), then f(a, b)(q) = q′.

We note the similarity between QRel and the previously mentioned categories of
weighted relations WRel where the composition was

(g ◦ f)(a, c) :=
∑

b∈|B|
g(b, c)× f(a, b)

and of relation Rel where the composition was

(a, c) ∈ (g ◦ f) : ∃b ∈ |B|, (b, c) ∈ g and (a, b) ∈ f

In fact, we have a full and faithful functor from WRel to QRel which send an object A
to the pair (A,H : a 7→ 1) and a morphism R to f(a, b) := R(a, b) · id1.

While we will prove in Proposition 3.2.12 that we never use the elements added by the
D-completion when interpreting LQΛ, we cannot avoid using it in the definition of QRel, as
the composition involves infinite sums which, a priori, have no reason to converge without
the completion. The presence of lists in our language is the only source of objects with
infinite web, hence of infinite sums in the composition.

Theorem 3.2.1. QRel is a distributive CpCC which is non-trivial and has a bottom:

• The monoidal product ⊗ on objects is simply given by (|A|,HA) ⊗ (|B|,HB) :=
(|A| × |B|, (a, b) 7→ HA(a) ⊗ HB(b)). The unit is ({⋆}, ⋆ 7→ 1). On morphisms the
monoidal product is:

(f ⊗ g)(a, b) := f(a)⊗ g(b)

The category (QRel,⊗,1) is an SMC.
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• The dual is (|A|,HA)∗ := (|A|, a 7→ HA(a)∗). The unit and counit are:

ηQRel
A : (⋆, (a, b)) 7→

{

ηCPM
A if a = b

0 otherwise
ϵQRel
A : ((a, b), ⋆) 7→

{

ϵCPM
A if a = b

0 otherwise

The category (QRel,⊗,1, (−)∗) is a CpCC.

• The coproduct ⊕ is defined on objects as

(|A|,HA)⊕ (|B|,HB) :=

(

|A| ⊎ |B|, (0, a) 7→ HA(a)
(1, b) 7→ HB(b)

)

The initial object is (∅,∅). On morphisms f : A→ C and g : B → C, the copairing
[f ; g] : A⊕B → C is:

[f ; g] : ((0, a), c) 7→ f(a, c)
((1, b), c) 7→ g(b, c)

The coproduct is distributive with respect to the monoidal product.

• The bottom morphism ⊥ is the unique morphism from ({⋆}, ⋆ 7→ 1) to (∅,∅).

• It is non-trivial, i.e., ({⋆}, ⋆ 7→ 1) and (∅,∅) are not isomorphic.

It follows that QRel is a distributive CFC, non-trivial and with a bottom, taking the
category of computations and values to be the same, the Freyd inclusion to be the identity
functor, and A� B := A∗ ⊗B.

We can use the semantics described in Section 1.4.2 for most of LQΛ, completed with
the following semantics for types (we recall that Q := C2):

⟦qubit⟧ := ({qb},qb 7→ Q)
⟦

Aℓ
⟧

:= ⟦A⟧ℓ

Where for any object A, we define Aℓ as limn F
n
A(∅,∅) with FA(X) := 1⊕ (A⊗X)) and

for the following dcpo on objects:

(|A|,HA) ≤ (|B|,HB) ⇐⇒ |A| ⊆ |B| and ∀a ∈ |A|,HA(a) = HB(a)

We note that we indeed have FnA(∅,∅) ≤ Fn+1
A (∅,∅) for this dcpo. By definition of Aℓ,

we have FA(Aℓ) = Aℓ.
We complete the semantics for typing derivations as described in Table 3.3.

Theorem 3.2.2. If Γ ⊢L t : A has two typing derivations T and T ′, then we have ⟦T⟧ =
⟦

T ′⟧. As it is independent from the typing derivation, we write it ⟦t⟧Γ⊢L A.

The proof of this theorem is very similar to the proof for LΛ earlier in Theorem 1.4.6,
as it extends without problems to LQΛ.
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Quantum primitives:
⟦qubit⟧ := ({qb},qb 7→ Q)
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Γ ⊢L t : bit
Γ ⊢L new t : qubit
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(γ,qb) := newCPM
tt ◦
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Aℓ
⟧

:= ⟦A⟧ℓ
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Γ ⊢L t : 1⊕ (A⊗Aℓ)
Γ ⊢L fold t : Aℓ
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Γ ⊢L t : 1⊕ (A⊗Aℓ)
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Table 3.3: Denotational Semantics of LQΛ Typing Derivations
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Definition 3.2.3. If ⊢L [q, ℓ, t] : A, we define ⟦[q, ℓ, t]⟧⊢L A ∈ QRel(1, ⟦A⟧) as follows:

• we know we have ∆ ⊢L t : A with ∆ = x1 : qubit, . . . , xn : qubit.

• we recall that LqM ∈ CPM(1,Q⊗n) is defined in Section 2.3.3.

• ⟦[q, ℓ, t]⟧ (⋆, a) := ⟦t⟧ ((⋆,qb, . . . ,qb), a) ◦ LqM

and then we define ⟦∑i pi[qi, ℓi, ti]
⟧

(⋆, a) as ∑i pi
⟦

[qi, ℓi, ti]
⟧

(⋆, a), using the fact that the
set CPM(1,H⟦A⟧(a)) is a completed positive convex cone.

3.2.2 Examples
As an illustration, we go through the same examples as in Section 2.3.2, showing their
denotational semantics in QRel. We sum up semantics of a term Γ ⊢L t : A in tables
similar to the following one. The column Web lists all the element (γ, a) of the web |Γ|×|A|;
the column Operator gives the corresponding morphism ⟦t⟧ (γ,A); and the column Space
describes the objects forming the domain and codomain of the operator, i.e., HΓ(γ) →
HA(a).

Web Space Operator
(γ, a) HΓ(γ)→ HA(a) ⟦t⟧ (γ, a)

The Biased Coin

This protocol simulates a probabilistic choice between the boolean true and false. We recall
its QΛ term here

Coinp() := meas
(√

1− p √
p√

p −√1− p

)

We sum up its semantics in the following table, and note that as expected the probability
associated to tt is p, and the one associated to ff is (1− p).

Web Space Operator
(⋆,ff) 1→ 1 (1− p) · idCPM

1
(⋆, tt) 1→ 1 p · idCPM

1

The Bell States

This protocol creates pairs of maximally entangled qubits, called Bell states. We recall its
QΛ term and sum up its semantics.

Bell(b, b′) := let q1 ⊗ q2 = (new b)⊗ (new b′) in let q3 = H q1 in Nc (q3 ⊗ q2)
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Web Space Operator

((ff,ff), (qb,qb)) 1→ Q⊗2 L 1√
2
|00⟩+ 1√

2
|11⟩M : z 7→ z

2 ·










1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1











((ff, tt), (qb,qb)) 1→ Q⊗2 L 1√
2
|01⟩+ 1√

2
|10⟩M : z 7→ z

2 ·










0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0











((tt,ff), (qb,qb)) 1→ Q⊗2 L 1√
2
|00⟩ − 1√

2
|11⟩M : z 7→ z

2 ·










1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1











((tt, tt), (qb,qb)) 1→ Q⊗2 L 1√
2
|01⟩ − 1√

2
|10⟩M: z 7→ z

2 ·










0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0











For each point of the web, its operator is the image by L−M of one of the four Bell states.

The Bell Measure

This protocol, when applied to a Bell state, recovers the pair of booleans that created it.
We recall its QΛ term and sum up its semantics.

BellM(q, q′) := let q1 ⊗ q2 = Nc (q ⊗ q′) in let q3 = H q1 in (meas q3)⊗ (meas q2)

Web Space Operator
((qb,qb), (ff,ff)) Q

⊗2 → 1 M 7→ m11+m14+m41+m44
2

((qb,qb), (ff, tt)) Q
⊗2 → 1 M 7→ m22+m23+m32+m33

2
((qb,qb), (tt,ff)) Q

⊗2 → 1 M 7→ m11−m14−m41+m44
2

((qb,qb), (tt, tt)) Q
⊗2 → 1 M 7→ m22−m23−m32+m33

2

One can check that ⟦BellM(q, q′)
⟧ ◦ ⟦Bell(b, b′)

⟧

= idQRel
⟦bit⊗2⟧

.

The Quantum Teleportation

In Section 2.3.2, we did not give a term for the quantum teleportation protocol, as multi-
agent protocols are not easily described in our MiniQ language. We will instead use the
quantum teleportation as a way to illustrate higher order terms by reformulating it as in
[PSV14]:

• Alice and Bob create a pair of entangled qubit, then create the functions f : qubit⊸
bit⊗2 which makes a Bell measurement on its input and one of the two qubit of the
pair, and g : bit⊗2

⊸ qubit which applies some well-chosen unitary function to the
second qubit of the pair. We describe them in the term QTelep() below.
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• Alice takes the function f and Bob takes g.

• Alice has a qubit q she wishes to communicate. For that, she computes f(q) and
sends the two resulting booleans to Bob.

• Bob receives two booleans b, b′ and wishes to recover the qubit q. For that, he
computes g(b⊗ b′).

Before defining the term QTelep(), we first define the Bell unitary and give its semantics
in QRel. We note that the semantics of the Bell unitary and the semantics of the Bell
States are identical up to a factor half. This justifies the choice of those specific unitary
matrices.

BellU(b, b′) := λq.if b then
(

if b′ then
(

0 1
−1 0

)

q else
(

1 0
0 −1

)

q

)

else
(

if b′ then
(

0 1
1 0

)

q else
(

1 0
0 1

)

q

)

We sum up the semantics of the Bell unitary protocol:

Web Space Operator

((ff,ff), (qb,qb)) 1→ Q∗ ⊗Q z 7→ z·










1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1











((ff, tt), (qb,qb)) 1→ Q∗ ⊗Q z 7→ z·










0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0











((tt,ff), (qb,qb)) 1→ Q∗ ⊗Q z 7→ z·










1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1











((tt, tt), (qb,qb)) 1→ Q∗ ⊗Q z 7→ z·










0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0











We now define the term QTelep(). This term is typed by ⊢LQTelep() : (qubit ⊸
bit⊗2) ⊗ (bit⊗2

⊸ qubit), and its semantics cannot be described just by describing
separately the two functions it creates: the two functions are linked through quantum
entanglement.

QTelep() := let q1 ⊗ q2 = Bell(ff,ff) in (λq.BellM(q1, q))⊗
(

λ(b⊗ b′).BellU(b, b′)
)

We sum up the semantics of this term in the following table. In this table, we assume b
and b′ to be any booleans, and ¬b and ¬b′ to be their negations.
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Web Space Operator

(⋆, ((qb, (b, b)), ((b, b),qb))) 1→ Q∗ ⊗Q z 7→ z·










1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1











(⋆, ((qb, (b, b′)), ((b,¬b′),qb))) 1→ Q∗ ⊗Q z 7→ z·










0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0











(⋆, ((qb, (b, b′)), ((¬b, b′),qb))) 1→ Q∗ ⊗Q z 7→ z·










1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1











(⋆, ((qb, (b, b′)), ((¬b,¬b′),qb))) 1→ Q∗ ⊗Q z 7→ z·










0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0











The first line here is the most important, as it can be rewritten as
⟦QTelep()

⟧

(⋆, ((qb, (b, b)), ((b, b),qb))) =
⟦

λxqubit.x
⟧

(⋆, (qb,qb))

which shows that if Bob follows the protocol and applies his functions to the bits Alice
sent to him, the whole protocol has the same semantics as

⟦

λxqubit.x
⟧

, in other words the
whole protocol simplifies to an identity function and Bob obtains the qubit Alice wanted
to send.

3.2.3 Soundness and Adequacy for LQΛ

In this section, we state the different properties of QRel: value-substituting, invariant,
sound, adequate and the direct implication of fully abstract. The proofs do not significantly
differ from the proofs in the case of Λ in Section 1.4.3. As such, we refer to them for more
details.
Lemma 3.2.4 (Value Substitution). For every term Γ, x : A ⊢L t : B and every value
∆ ⊢L v : A:

⟦t⟧ ◦ (⟦Γ⟧⊗ ⟦v⟧) =
⟦

t{x← v}⟧

The proof is then the same as for Λ in Section 1.4.3.
Lemma 3.2.5 (Context Factorisation). For every term Γ ⊢L s : A and Γ,∆ ⊢LE[s] : B,
with E[−] an evaluation context, we have a morphism ⟦E⟧ ∈ QRel(⟦A⟧⊗ ⟦∆⟧ , ⟦B⟧) such
that

⟦

E[s]
⟧

= ⟦E⟧ ◦ (⟦s⟧⊗ ⟦∆⟧)
The proof is then the same as for Λ in Section 1.4.3.

Lemma 3.2.6 (Invariance). For every closures Γ ⊢L c : A and Γ ⊢L d : A

c→ d =⇒ ⟦c⟧ = ⟦d⟧
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Proof. Using the same proof as for Λ, we obtain that for every pair of terms Γ ⊢L t : A
and Γ ⊢L s : A that do not use fold or unfold, we have t → s =⇒ ⟦t⟧ = ⟦s⟧.
Since the rules for fold and unfold are trivial, we extend without difficulty to terms
containing them.

Now, we consider reduction rules over closures. Using the context factorisation
Lemma 3.2.5, we obtain that for Γ ⊢L t : A and Γ,∆ ⊢LE[t] : B we have

⟦

[q, ℓ, E[t]]
⟧

= ⟦E⟧ ◦ (⟦t⟧⊗ ⟦∆⟧) ◦ LqM

It follows that if we have t→ s, then we have:

[q, ℓ, E[t]]→ [q, ℓ, E[s]] =⇒ ⟦

[q, ℓ, E[t]]
⟧

=
⟦

[q, ℓ, E[s]]
⟧

For the reduction of new, meas and U, we simply use the fact that the opera-
tional semantics uses morphisms of Hilb while the denotational semantics uses the
corresponding morphisms of CPM.

The last two reductions relies on CPM being a completed positive convex cone,
and composition being linear for this cone. □

Theorem 3.2.7 (Soundness and Adequacy). For every term ⊢L t : 1, we have

∀p ∈ [0, 1],P(t ⇓) = p ⇐⇒ ⟦t⟧ =
⟦

p[∅,∅, ()] + (1− p)[∅,∅,⊥]
⟧

In particular, we have that ⟦t⟧ (⋆, ⋆) ∈ CPM(1,1), so it is finitary in CPM.

Proof. We use strong normalisation: [∅,∅, t]→∗ ∑
i pi[qi, ℓi, ()] +

∑

j p
′
j [q

′
j , ℓ

′
j ,⊥]. For

p =
∑

i pi, we have
⟦

∑

i pi[qi, ℓi, ()] +
∑

j p
′
j [q

′
j , ℓ

′
j ,⊥]
⟧

=
⟦

p[∅,∅, ()] + (1− p)[∅,∅,⊥]
⟧.

Using invariance, we obtain the expected equivalence. □

Corollary 3.2.8. For every pair of terms Γ ⊢L t : A and Γ ⊢L s : A, we have

⟦t⟧ = ⟦s⟧ =⇒ t =obs s

Proof. We take an observation context O[_] for Γ ⊢LA. A simple proof by induction
shows that there exists a function F such that for all term Γ ⊢L t : A we have ⟦O[t]

⟧

=
F (⟦t⟧). When O[_] is an evaluation context, the context factorisation Lemma 3.2.5
shows that F is simply a post-composition, but this is not true in generala. We assume
that ⟦t⟧ = ⟦s⟧. We have ⟦O[t]

⟧

= F (⟦t⟧) = F (⟦s⟧) =
⟦O[s]

⟧. Using adequacy, it
follows that P(O[t] ⇓) = P(O[s] ⇓), hence the result. □

aFor example, if one consider O[t] = s; t, F will be a pre-composition instead.
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3.2.4 Full Abstraction for LQΛ

We now prove the reverse implication of Corollary 3.2.8, i.e., full abstraction. A more
direct proof can be found in [SV08], but here we set up some tools we will use for the full
abstraction proof in the non-linear case in Part III. We utilise a method similar to [ETP14],
i.e., relying on test terms. While we do not yet have any formal parameters in our terms,
this is because we are still in the linear fragment of the language. We will eventually in
Section 10.3.2 define test terms very similar to those in [ETP14].

Consider the terms t := λxbit.x and s := λxbitif x then Coin1/2() else ff. We have
⟦t⟧ , ⟦s⟧, so we want to find an observation context O[_] such that P(O[t] ⇓) , P(O[s] ⇓).
Since ⟦t⟧ , ⟦s⟧, this means that there exists a point of the web a ∈ |bit ⊸ bit| such that
⟦t⟧ (⋆, a) , ⟦s⟧ (⋆, a). For example, we have here a = (tt, tt):

⟦t⟧ (⋆, (tt, tt)) = idCPM
1 ⟦s⟧ (⋆, (tt, tt)) =

1

2
idCPM

1

From this point of the web where they differ, we build the observation context:

O[_] := if _ tt then () else ⊥

And we obtain P(O[t] ⇓) = 1 and P(O[t] ⇓) = 1
2 .

We detail the construction of O[_], and note that it has two main components: a
generator part tt that feeds the adequate value into the term we want to observe, and a
test part if − then () else ⊥ that converge if and only if the output is the expected
output. In this subsection, we generalise this approach and define for every type A and
point of the web a ∈ |A| a generator term ⊢L ⇑Aa : A and a test term ⊢L ⇓Aa : A⊸ 1. Those
terms are heavily inspired from the terms P and N of [ETP14].

There are some additional subtleties whenever A contains qubit. Indeed, no single test
term ⊢L ⇓qubit

qb can distinguish all the terms ⊢L t : qubit that have different semantics.
But Proposition 2.1.18 ensures that four test terms can distinguish them. So we define
in Definition 3.2.10 the test terms ⇓qubit

qb,0 , ⇓qubit
qb,1 , ⇓qubit

qb,2 and ⇓qubit
qb,3 according to the four

morphisms of Proposition 2.1.18, and proceed similarly for generator terms.
We now formalise the extended points of the web, which for qubits are the pairs qb, i

with i ∈ {0, 1, 2, 3}.

Definition 3.2.9. For A a type, we define its extended web |A|e inductively is a similar
way to |A|.

|1|e := |1|
|qubit|e := |qubit| × {0, 1, 2, 3}
|A⊗B|e := |A|e × |B|e
|A⊸ B|e := |A|e × |B|e
|A⊕B|e := |A|e ⊎ |B|e
|Aℓ|e := |1|e ⊕ (|A|e ⊗ |Aℓ|e)
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⇑1
⋆ := ()

⇑qubit
qb,0 := new ff ⇑qubit

qb,1 := new tt

⇑qubit
qb,2 :=

(

1√
2

1√
2

1√
2
− 1√

2

)

(new ff) ⇑qubit
qb,3 :=

(

1√
2

i√
2

i√
2
− 1√

2

)

(new ff)

⇑A⊗B
(a,b) := ⇑Aa ⊗ ⇑Bb ⇑A⊸B(a,b) := λx. ⇓Aa x;⇑Bb
⇑A⊕B

(0,a) := injℓ ⇑Aa ⇑A⊕B
(1,b) := injr ⇑Bb

⇑Aℓ

(0,⋆) := [ ] ⇑Aℓ

(1,(a,b)) := ⇑Aa ::⇑Aℓ

b

Table 3.4: Generator terms ⊢L ⇑Aa : A

For every object (A,HA), and point of its web a ∈ |A|, we define its number of qubits
#qubit(a) as log(dim(HA(a))) (we consider the log in base 2). When this object comes from
a type, this value will always be an integer. For a type A, from e ∈ |A|e, we can canonically
recover a ∈ |A| by removing all the indices, and i ∈ {0, 1, 2, 3}#qubit(a) by collecting all of
them. This is in fact a bijective operation, and we write e = a|i.

Definition 3.2.10. For every element of the extended web of a type A, we define a generator
term and a test term, written ⇑Aa and ⇓Aa as in Tables 3.4 and 3.5. They are typed by:

⊢L ⇑Aa : A ⊢L ⇓Aa : A⊸ 1

We note that the terms for qubit are built from the morphisms of Proposition 2.1.18.

The goal of test terms is to “extract” the coefficient corresponding to a point of the
web. Formally, we expect that for any term x : A ⊢L t : B, we have:

⟦

let xA = ⇑Aa|i in ⇓Bb|j t
⟧

(⋆, ⋆) = T
H⟦B⟧(b)
j ◦ ⟦t⟧ (a, b) ◦GH⟦A⟧(a)

i

where G and T are the morphisms of Proposition 2.1.18. We can deduce this property
from the following lemma.

Lemma 3.2.11 (Semantics of Tests and Generators). For A a type and (a|i) ∈ |A|e:

a , b =⇒
⟦

⇑Aa|i
⟧

(⋆, b) = 01,⟦A⟧ and
⟦

⇓Aa|i x
⟧

(b, ⋆) = 0⟦A⟧,1

And moreover:
⟦

⇑Aa|i
⟧

(⋆, a) = G
H⟦A⟧(a)
i ∈ CPM(1,H⟦A⟧(a))

⟦

⇓Aa|i x
⟧

(a, ⋆) = T
H⟦A⟧(a)
i ∈ CPM(H⟦A⟧(a),1)
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⇓1
⋆ := λ().()

⇓qubit
qb,0 := λq.if meas q then ⊥ else ()

⇓qubit
qb,1 := λq.if meas q then () else ⊥
⇓qubit

qb,2 := λq.if meas
(

1√
2

1√
2

1√
2
− 1√

2

)

q then ⊥ else ()

⇓qubit
qb,3 := λq.if meas

(

1√
2
− i√

2

− i√
2
− 1√

2

)

q then ⊥ else ()

⇓A⊗B
(a,b) := λ(x⊗ y). ⇓Aa x ;⇓Bb y

⇓A⊸B(a,b) := λf.let x = f ⇑Aa in ⇓Bb x

⇓A⊕B
(0,a) := λx.δ (x, y. ⇓Aa y, z.⊥)

⇓A⊕B
(1,b) := λx.δ (x, y.⊥, z. ⇓Bb z)

⇓Aℓ

(0,⋆) := λℓ.match ℓ with ([ ] 7→ () | x :: y 7→ ⊥)

⇓Aℓ

(1,(a,b)) := λℓ.match ℓ with
(

[ ] 7→ ⊥
∣

∣

∣ x :: y 7→⇓Aa x ;⇓Aℓ

b y
)

Table 3.5: Test terms ⊢L ⇓Aa : A⊸ 1

Proof. The terms for A = qubit have been created such that it holds for them. We
then simply proceed by induction on the type, using the compact closure of CPM for
the function case. □

However, to be able to use the properties of G and T described in Proposition 2.1.18,
we first need to ensure that ⟦c⟧ is in CPM, i.e., is a finitary element of CPM.

Proposition 3.2.12 (Finitary Semantics). For Γ ⊢L t : A a term, for every (γ, a) ∈ |Γ| ×
|A|, ⟦t⟧ (γ, a) ∈ CPM(⟦Γ⟧ , ⟦A⟧). In other words ⟦−⟧ never uses infinitary annotations.

Proof. We first note that for every Hilbert space H of dimension n, there exists some
α, β ∈ R>0 such that

∑

i∈{0,1,2,3}n

GHi ⊒ αTr†
H

∑

i∈{0,1,2,3}n

THi ⊒ βTrH

We assume Γ = x1 : A1, . . . , xn : An, and decompose γ = (γ1, . . . , γn). We take
i1, . . . , in, j such that γk|ik ∈ |Ak|e and a|j ∈ |A|e. We define the term si1,...,in,j
defined as si1,...,in,j := let x1 ⊗ . . . ⊗ xn = ⇑X1

γ1|i1 ⊗ . . .⊗ ⇑
Xn

γn|in in ⇓Aa|j t. Using
Lemma 3.2.11, we have

⟦

si1,...,in,j
⟧

(⋆, ⋆) = T
H⟦A⟧(a)
j ◦ ⟦t⟧ (γ, a) ◦

n
⊗

k=1

G
H⟦Ak⟧

(γk)

ik
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Summing over all the possible i1, . . . , in, j (there are finitely many of them), it follows
that there exist some α, β ∈ R>0 such that

∑

i1,...,in,j

⟦

si1,...,in,j
⟧

(⋆, ⋆) ⊒ βTrH⟦A⟧(a) ◦ ⟦t⟧ (γ, a) ◦ αTr†
H⟦Γ⟧(γ)

We note that CPM already has all trace-bounded suprema (the trace is a norm), as
such a morphism of CPM(H,K) is in CPM(H,K) if and only its composition by
the trace TrK and dagger-trace Tr†

H is in CPM(1,1). The soundness and adequacy
ensure that ⟦s⟧ (⋆, ⋆) ∈ CPM(1,1), so it follows that ⟦t⟧ (γ, a) ∈ CPM(⟦Γ⟧ , ⟦A⟧).

□

We then have all the tools to prove the reverse implication of the full abstraction, and
conclude with the full abstraction theorem.

Lemma 3.2.13 (Characterisation by Tests and Generators). We define the set of observers
Ox:A⊢LB as

Ox:A⊢LB =
{

let xA = ⇑Aa|i in ⇓Bb|j _
∣

∣

∣ (a|i) ∈ |A|e, (b|j) ∈ |B|e
}

For every pair of terms x : A ⊢L t : B and x : A ⊢L s : B we have

∀O[_] ∈ Ox:A⊢LB, P(O[t] ⇓) = P(O[s] ⇓) =⇒ ⟦t⟧ = ⟦s⟧

Proof. Using Lemma 3.2.11, for O[_] = let xA = ⇑Aa|i in ⇓Bb|j _, we immediately
have ⟦O[t]

⟧

(⋆, ⋆) = T
H⟦B⟧(b)
j ◦ ⟦t⟧ (a, b) ◦ GH⟦A⟧(a)

i . So if for all observers we have
P(O[t] ⇓) = P(O[s] ⇓), using soundness and adequacy (Theorem 3.2.7) we have for all
(a|i) ∈ |A|e and all (b|j) ∈ |B|e:

T
H⟦B⟧(b)
j ◦ ⟦t⟧ (a, b) ◦GH⟦A⟧(a)

i = T
H⟦B⟧(b)
j ◦ ⟦s⟧ (a, b) ◦GH⟦A⟧(a)

i

Using Proposition 3.2.12, we know that ⟦t⟧ and ⟦s⟧ are in CPM, so using Proposi-
tion 2.1.18 we deduce that for all a ∈ |A| and b ∈ |B| we have:

⟦t⟧ (a, b) = ⟦s⟧ (a, b) □

Theorem 3.2.14 (Full Abstraction). For every pair of terms Γ ⊢L t : A and Γ ⊢L s : A,
we have

⟦t⟧ = ⟦s⟧ ⇐⇒ t =obs s
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Proof. The direct implication is exactly Corollary 3.2.8. We now assume t =Γ⊢L A
obs s.

We write P =
⊗

(x:X)∈ΓX.
We consider t′ = let y = ⊗

(x:X)∈Γ x in t and s′ = let y = ⊗

(x:X)∈Γ x in s. It
follows that c′ =obs d

′. In particular, for every O[_] ∈ Oy:P⊢L A, we have P(O[t′] ⇓) =
P(O[s′] ⇓). It follows from the previous lemma that ⟦t′⟧ =

⟦

s′⟧. From the definition
of the semantics, it follows immediately that ⟦t⟧ = ⟦s⟧. □

We recall that this theorem is essentially the same as the linear full abstraction theorem
of [SV08]. However, the proof is new, and is designed so that it brings useful ingredients
to generalise to the full language later on.
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Part II

Quantum Game Semantics
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Overview of Part II
We now build a fully abstract game semantics model for QΛ.
In the fourth chapter, we go through preliminaries about concurrent games and strate-

gies. We define event structures, a partial-order structure introduced by Nielsen, Plotkin
and Winskel in [NPW79], which we will use later to represent the classical control flow of
programs. We then build on top of event structures the category of concurrent games and
strategies. This chapter does not contain any original contribution, and a more detailed
presentation of those notions can be found in [CCRW17].

In the fifth chapter, we quickly present the already existing notion of probabilistic
strategies from [Win14]2, and then develop the category of quantum games and strategies.
This is the first central key contribution of this thesis.

In the sixth chapter, we add the final ingredients needed to make a model for QΛ,
including a notion of payoff to characterise which configurations are acceptable “stopping
points” of the execution, a visibility condition ensuring the absence of deadlocks, and
framing quantum games and strategies as a distributive closed Freyd category. We then
prove a result of full abstraction for both LQΛ and AQΛ, and show links with the relational
model for LQΛ. This chapter is almost entirely original work, though the notion of payoff
can already be found in [Mel05], the notion of visibility is the same as in [CCW15b], and
the link between game semantics and the relational model was already explored in the
probabilistic case in [CP18].

2While this paper also presents a notion of quantum strategies, no simple link exists between this notion
and ours.
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Chapter 4

Preliminaries on Concurrent Game
Semantics

4.1 Introduction to Game Semantics
In this section, we give a quick informal overview of game semantics. One might remark
some differences with the most common definitions in the literature. This is due to two
choices: firstly, the language we are considering is call-by-value, so is to be compared to
pre-existing literature on call-by-value game semantics like [AM97, HY97], rather than the
more traditional call-by-name game semantics; secondly, we are using the formalism of
concurrent game semantics, which relies on partial orders rather than plays and pointers.

4.1.1 Player and Opponent Moves
The core concepts in game semantics are the concepts of moves, players, games and strate-
gies. A move represents a computational event. As a rough approximation, moves are the
atoms that compose a point of a web, for example in ((⋆,ff), (ff, ⋆)) ∈ |(1⊸ bit)⊗ (bit⊸
1)| each of the four ⋆ and ff will be a different move. Moves are split into two kinds,
Player moves and Opponent moves. In game semantics, we represent the execution of a
program by an interactive system between Player and Opponent. Player represents the
program itself, is usually denoted by the positive polarity, and its moves represent outputs
of the program. Opponent represents the environment, possibly the user of the program, is
usually denoted by the negative polarity, and its moves represent the inputs of the program.

4.1.2 Games
The set of all available moves, together with their polarity and some additional structure
discussed later, is called a game. In game semantics, we will associate such a game to every
type of a language. For example, the game for the type bit will have two moves tt+ and

103
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ff+, which are both Player moves as they correspond to the two different values that a
program of type bit can produce; and those two moves will be said “in conflict”, meaning
that if one is played, the other can no longer be played. As another example, the game for
the type 1⊸ 1 will have three moves λ+, ⋆− and ⋆+, the first and the third for Player and
the second for Opponent, and a partial order λ+ ≤ ⋆− ≤ ⋆+ called causality. The move λ+

is an artefact of call-by-value, and stands for “the function is ready to be called”, it is a
signal sent from the program to a potential user. The move ⋆− stands for “the user called
the function on input ()”. Lastly, the move ⋆+ stands for “the function returns with result
()”. Those three events are ordered by causality, meaning that the first one is a prerequisite
for the second, and the second a prerequisite for the third. Represented with figures, with
the wiggly line standing for “conflict” and the arrows for “causality”, we have

Type

✤
✤
✤
✤
✤
✤
✤
✤
✤ bit

✤
✤
✤
✤
✤
✤
✤
✤
✤ 1 ⊸ 1

Game ff+

�O
�O

λ+

✺vv� ✉✉✉✉✉✉

tt+ ⋆−

✔ &&-❚❚❚❚❚❚❚❚❚❚❚❚❚❚

⋆+

As we will see in Section 6.1, computing the game of a type is compositional, hence every
move of the game corresponds to a syntactic component of the type. A convention we will
follow in figures representing the game of a type is that we write the type at the top of
the figure, and will usually put under every component of the type the moves associated
to this component.

As a more advanced example, we consider the left hand side of Fig. 4.1, which is the
game for bit⊸ bit. As for 1⊸ 1, if we read it from top to bottom it starts with a move
λ+ standing for “a function is ready to be called”. It continues with two moves ff− and tt−

standing for “the user called the function on input false” and “the user called the function
on input true”. Those two negative events are in conflict, as the user can only input one
value, and causally depend on λ+ as the user can only call a function which is ready to be
called. Then, as the output of the function is also a boolean, we should have two positive
moves ff+ and tt+ standing for “the function returns with result false”, and “the function
returns with result true” respectively, in conflict with each other, and causally depending
on the input of the function. However, there are two possible inputs for the function, so
we have a copy of those events for every possible input of the function.

To sum up, a game is a set of moves, each of them being either a Player move or an
Opponent move, together with a causality relation and a conflict relation. It represents all
the observable events of a given type. In Section 4.2, we define event structures which is
the mathematical framework that we will use to formalise games.
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bit ⊸ bit

λ+

✹uu� tttttt

❖��� ✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎

ff−

�O
�O
�O
�O
�O
�O

✔ &&-❚❚❚❚❚❚❚❚❚❚❚❚❚❚

✡ ��)❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏

ff+

�O
�O

tt−

✔ &&-❚❚❚❚❚❚❚❚❚❚❚❚❚❚

✡ ��)❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ tt+

ff+

�O
�O

tt+

bit ⊸ bit

λ+

✹uu� tttttt

▼��
 ✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌

ff−

�O
�O
�O
�O

✌ !!*▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

tt−

✔ &&-❚❚❚❚❚❚❚❚❚❚❚❚❚❚ tt+

ff+

Term represented:

b : bit ⊢ if b then ff else tt : bit

Figure 4.1: A game (left) and a strategy (right)

4.1.3 Strategies
The last core component of game semantics is the notion of strategy. If games are the
representation of types, then strategies are the representation of programs. A strategy
describes a possible behaviour of Player on a game. For example, on the game at the left
hand side of Fig. 4.1, one can craft the strategy for the program that takes a boolean and
returns its negation, and sum it up in this table:

Trigger: Start Opponent plays ff− Opponent plays tt−

Reaction: Play λ+ Play the corresponding tt+ Play the corresponding ff+

Graphically, we represent this strategy with the figure at the right hand side of Fig. 4.1.
Every move of the strategy corresponds to a move from the game, and the strategy just
selects some moves of the game for Player to play in reaction to Opponent moves.

We will usually consider strategies from one game to another. To explain this concept
we will take the example of a well-known strategy to not lose a game of chess against a
grandmaster:

• Play two games of chess at once. In the first, you play Black against grandmaster
G1. In the second, you play White against grandmaster G2.

• Whatever G1 plays, immediately make the same move against G2. Whatever G2

plays, immediately make the same move against G1. The execution of this strategy
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should look alike “G1 moves a pawn; You move the same pawn against G2; G2 moves
a knight; You move the same knight against G1; G1 moves a knight too; You move
the same knight against G2; etc.”.

• Eventually, you will either lose one of the two games, then you will immediately win
the other one, or you will tie a game and immediately tie the other one.

This strategy is called the copy-cat strategy from Chess to Chess. It is the prime example of
a strategy from a game to another: you play the two games at once, adapting your moves
on one game depending on what happens on the other. Note that in the example, the
strategy assumes you are Black in the first game and White in the second. More generally,
a strategy from the game A to the game B plays on both A⊥ and B at once, where A⊥ is
A with Player and Opponent exchanged.

In game semantics, a term typed Γ ⊢ t : A will be represented by a strategy from the
game of Γ to the game of A. Indeed, the strategy should play on A to produce the expected
values (including functions), while being able to use variables (including functions) from
the game of Γ as if it was a user, i.e., Opponent, with respect to this game.

4.2 The Category of Event Structures
To represent those games and strategies formally, we introduce the category of event struc-
tures. Event structures were first introduced in [NPW79] to represent concurrent systems
and the unfolding of Petri Nets. Multiple kinds of event structures have been defined since
then. In this thesis, we use prime event structures, as defined in [NPW79]. While the
language QΛ does not have any concurrent behaviour a priori, we still have a limited use
of concurrency: when representing terms of type (A⊸ B)⊗ (C ⊸ D), it is unknown which
function will be called first, so we represent them as parallel calls.

4.2.1 Event Structures
In order to represent executions of programs, we will use event structure diagrams like
the one of Fig. 4.2. In this diagram, the nodes of the graph are events that can occur,
the arrows are immediate causality relations between those events, and the wiggly lines
are minimal conflicts between events. Immediate causality has to be interpreted in a
conjunctive way, meaning that for an event to occur, every other event it depends on must
have already occurred. Conversely, for an event to occur, none of the events it is in minimal
conflict with must have already occurred. We want to formalise the underlying notions
behind this diagram, however, while the relations _ and /o are very practical for diagrams
and examples, they are often impractical to use in proofs. We define event structures
using causality, which is the reflexive and transitive closure of immediate causality, and
consistency, which describes sets of events that are not in conflict with each others. We
then redefine _ and /o as syntactic sugar. We note that in Fig. 4.2, there are three boxes
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Start

❴���
We print “True or False?”

❴��� ✖ ''.❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

User inputs True

❴���

/o/o/o/o/o/o/o/o/o/o User inputs False

❴���
We print “Two functions ready”

❴���✭ppw ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
Calling library function

❴���
User calls first function

❴���✯qqx ❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥
User calls second function

❴���

Library function returns

❴���

We return True /o/o/o/o/o

❴���

We return False

❴���

We print “Hello”

✩nnu ❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

✭ppw ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

End End End

Figure 4.2: Example of Event Structure

“End”. They have to be understood as three distinct events End0, End1 and End2 where
we kept implicit the indeces for simplicity of notation. In general, whenever we would want
an event to be enabled in multiple different ways, we will split this event into copies, one
for each of its possible causal histories.

Definition 4.2.1. An event structure E is a triple (|E|,≤E ,ConE) with:

• |E| is a set of elements called events.

• (|E|,≤E) is a partial order called causality, which has finite primes:

∀e ∈ |E|, {e′ ∈ |E| | e′ ≤E e} is finite

• ConE ⊆ Pfin(|E|) called consistency relation, which satisfies:

∅ ∈ ConE
e ∈ |E| =⇒ {e} ∈ ConE

Y ⊆ X ∈ ConE =⇒ Y ∈ ConE
e′ ≤E e ∈ X ∈ ConE =⇒ X ∪ {e′} ∈ ConE

As in Section 2.2, we say that a subset of events X ⊆ |E| is down-closed if for all
e′ ≤E e ∈ X we have e′ ∈ X. We define the set of (finite) configurations of E as

C(E) := {x ∈ ConE | x down-closed }
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We say that a configuration is a prime if additionally it has a unique maximal element1.
We use uppercase letters X,Y, Z for arbitrary sets of events, and reserve lowercase letters
x, y, z for configurations. We remark that if X ∈ ConE , then there exists x ∈ C(E) such
that X ⊆ x. Indeed, one can take x =

∪

e∈X{e′ ∈ |E| | e′ ≤E e}.
For E,F event structures, we say that E is a substructure of F if |E| is a down-closed

subset of |F |, and if ≤E and ConE are exactly the restriction of ≤F and ConF to |E|. We
list some standard notations, noting that we will keep the subscript E implicit when there
is no ambiguity:

[e]E := {e′ ∈ |E| | e′ ≤E e} ∈ C(E) prime configuration of e
[e)E := {e′ ∈ |E| | e′ <E e} ∈ C(E)

x−⊂E y : x, y ∈ C(E) and ∃e ∈ |E|, y = x ⊔ {e} one-step extension
e _E e

′ : e <E e
′ and ∄e′′, e <E e′′ <E e′ immediate causality

e /o
E e

′ : {e, e′} < ConE and
{

[e)E ∪ [e′]E ∈ C(E) and
[e]E ∪ [e′)E ∈ C(E)

minimal conflict

Proposition 4.2.2. We say that an event structure E has binary conflict if it satisfies:

∀X ∈ Pfin(|E|),∀e, e′ ∈ X, {e, e′} ∈ ConE =⇒ X ∈ ConE

Or equivalently, for all X,Y, Z ∈ Pfin(|E|), X ∪Y, Y ∪Z,Z ∪X ∈ ConE =⇒ X ∪Y ∪Z ∈
ConE. If E is an event structure with binary conflict, then E is entirely characterised by
(|E|,_E , /o

E).

In all our diagrams, we consider only event structures with binary conflict. Hence, it
is enough to only specify _ and /o in diagrams. Another useful characterisation of event
structures is through configurations.

Proposition 4.2.3. An event structure E is entirely characterised by its set of (finite)
configurations C(E).

In fact, an event structure yields a transition system having as states the configurations,
as initial state the empty configuration, as labels the events, and as transitions labelled by
e the one-step extensions x−⊂x ⊔ {e}.

We now define a category of event structures. Similarly to how event structures yield
transition systems, total maps of event structures can be seen as functional simulations
i.e.,

x
e−−⊂y =⇒ f(x)

f(e)
−−⊂f(y)

Definition 4.2.4. A partial map of event structures f from A to B is a partial function
f : |A|⇀ |B| which:

1Equivalently, x ∈ C(E) is a prime if whenever x ⊆ y ∪ z for y, z ∈ C(E) we have x ⊆ y or x ⊆ z.



4.2. THE CATEGORY OF EVENT STRUCTURES 109

a

❴��� �]
�]
�]
�]
�]

c

❴���❈{{� ✄✄✄✄✄✄✄✄
/o/o/o c′

❴���

f // α

❴���

γ

❴���
b d d′ β /o/o/o δ

f : a 7→ α
b 7→ β
c, c′ 7→ γ
d, d′ 7→ δ

Figure 4.3: Example of map of event structures

Preserves Configurations ∀x ∈ C(A), f x ∈ C(B).

Local Injectivity ∀a, a′ ∈ x ∈ C(A), a, a′ ∈ dom(f) and f(a) = f(a′) =⇒ a = a′.

Where f X := {f(e) | e ∈ X}. The map is called total if the function f is total. Moreover,
we say that this map is an inclusion if A is a substructure of B and f is the identity on
events of A.

Equivalently, f is a partial map of event structure if it is a partial function such that:

Preserves Consistency ∀X ∈ ConA, f X ∈ ConB.

Preserves Down-Closedness ∀X ⊆ |A| down-closed , f X is down-closed.

Local Injectivity ∀a, a′ ∈ X ∈ ConA, a, a′ ∈ dom(f) and f(a) = f(a′) =⇒ a = a′.

See Fig. 4.3 for an example of total map of event structures. The configuration {a, b, c}
on the left hand side is sent by f to {α, β, γ} on the right hand side, which is also a
configuration, and one can check similarly that every configuration on the left is sent to a
configuration on the right. The map f is not injective, however it is still locally injective
as even though f(c) = f(c′), c and c′ never appear together in a configuration.

A notable property of maps of event structure is that they reflect conflict, and locally
reflect causality. Formally:

Lemma 4.2.5. If f is a partial map of event structures from A to B, then

∀a, a′ ∈ dom(f), if {f(a), f(a′)} < ConB then {a, a′} < ConA
∀a, a′ ∈ dom(f), if {a, a′} ∈ ConA and f(a) ≤B f(a′) then a ≤A a′

As a corollary if f(a) ≤B f(a′) and a _A a
′ then f(a) _A f(a′).
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We write ES for the category of event structures and total maps of event structures.
We will usually consider total maps, and will explicitly note when the maps used are par-
tial, like in Definition 4.2.13. Isomorphisms in ES, are simply maps that “rename” the
events of an event structure through a bijection, keeping the causality and the consis-
tency unchanged. Similarly to how configurations characterise event structures, they also
characterise isomorphisms.

Proposition 4.2.6. For E and E′ two event structures, if there exists a bijection ι :
C(E) → C(E′) which preserves union and intersection, i.e., ι(x ∪ y) = ι(x) ∪ ι(y) and
ι(x ∩ y) = ι(x) ∩ ι(y), then f : E → E′ given by f(e) = max(ι([e])) is defined and is an
isomorphism of event structures.

We note that preserving unions and intersections is equivalent to being an order-
isomorphism for the inclusion: ι(x) ⊆ ι(y) ⇐⇒ x ⊆ y.

In game semantics, we will use maps of event structures in the definition of strategies.
If we assume that the game is an event structure E, then the strategy will be represented
by another event structure S, often in examples with the same events as E, and a total
map of event structures σ : S → E, often in examples the identity function on events. More
precisely, S will not be E whenever we needed to duplicate an event of E to authorize it
in several causal histories. The definition of a map of event structures ensures that the
strategy abides by the rules of the game:

• Preservation of down-closedness ensures that the strategy never plays a move not yet
available.

• Preservation of consistency ensures that the strategy never plays a move no longer
available.

As specified in the full definition in Section 4.4.2, strategies come with additional restric-
tions we cannot express yet because of the lack of polarities distinguishing Player moves
from Opponent moves.

4.2.2 Parallel Composition and Coproduct
Definition 4.2.7. For two event structures A and B, we define their parallel composition
A ∥ B and their coproduct A⊕B as follows:

|A ∥ B| := |A| ⊎ |B| =: |A⊕B|
≤A∥B := ≤|A|⊎|B| =: ≤A⊕B

ConA∥B := {X ⊎ Y | X ∈ ConA, Y ∈ ConB}
ConA⊕B := {X ⊎ ∅ | X ∈ ConA} ∪ {∅ ⊎ Y | Y ∈ ConB}

Both operations have the empty event structure (∅,∅, {∅}) as their unit (up to isomor-
phism), which we write ∅. Both operations have infinite variants ∥i∈I Ai and ⊕

i∈I Ai
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for any set I, with | ∥i∈I Ai| = |⊕i∈I Ai| = {(i, a) | i ∈ I, a ∈ Ai}| and the order and
consistency are induced from the Ai as in the binary case.

We note that C(A ∥ B) = {x ⊎ y | x ∈ C(A), y ∈ C(B)}. We will usually write x ∥ y
instead of x⊎y when considering the configurations of C(A ∥ B). We will also write a ∈∥ |A|
as a shorthand for a = (0, a′) with a′ ∈ |A|, and b ∈∥ |B| as a shorthand for b = (1, b′) with
b′ ∈ |B|.

Similarly, since C(A⊕B) = {x⊎∅ | x ∈ C(A)}∪{∅⊎y | y ∈ C(B)}, we write x⊕∅ and
∅ ⊕ y for the configurations of A ⊕ B, and write a ∈⊕ A or b ∈⊕ B whenever a = (0, a′)
with a′ ∈ |A| or b = (1, b′) with b′ ∈ |B|.

Theorem 4.2.8. The category ES forms an SMC for ∥, and a cocartesian category for
the coproduct ⊕. The bifunctor (− ∥ −) and the copairing [−;−] are given by:

(f ∥ g) :

{

(0, a) 7→ (0, f(a))

(1, b) 7→ (1, g(b))
[f ; g] :

{

(0, a) 7→ f(a)

(1, b) 7→ g(b)

ES also has arbitrary coproducts, with the copairing [fi | i ∈ I] given by:

[fi | i ∈ I] : (i, a) 7→ fi(a)

We note that this category is not a distributive SMC. Indeed, A ∥ (B ⊕ C) and (A ∥
B) ⊕ (A ∥ C) do not have the same number of events (unless A is empty). While the
operation ⊕ will correspond to the type constructor ⊕, we did not provide in this section
any construction corresponding to ⊸ or ⊗. We postpone them to Section 5.5, as their
formal definition relies on event structures being of a particular shape.

4.2.3 Interactive Composition
Similarly to how a strategy on a game E will be represented by a map σ : S → E, where
S is represent the behaviour of the strategy, E represent the rules of the game, and σ
guaranty that the strategy abides by the rules, a strategy from the game A to the game B
will be represented by a map σ : S → A ∥ B.

For example, looking at the leftmost column of Fig. 4.4, we have a map g : G→ B ∥ C,
where B is the event structure representing the type 1, with only one event corresponding
to the execution of the term (), and C is the event structure representing the type bit,
with two events in conflict corresponding to the two boolean values. The event structure
G represents a term that reads the context containing data of type 1, and then outputs
the boolean tt, in other words

x : 1 ⊢L x; tt : bit

The map g specifies that the event tt of G indeed corresponds to the move tt of the game,
and likewise for ⋆. Looking at the central column, we have a map f : F → A ∥ B, with the
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Figure 4.4: Example of Interactive Composition

same B, and A representing functions from booleans to booleans. The event structure A
starts with an event λ which is an artefact of call-by-value semantics, one can understand
it as representing “the function is defined, and ready to be called”. This event λ is followed
by two events in conflict representing the possible inputs, and then events representing the
possible outputs. The event structure F represents a term that reads the function present
in its context, inputs the value false, reads the output of the function, and then returns (),
in other words

f0 : bit⊸ bit ⊢L if f0 ff then () else ()

Once again, the map f is here to specify which event of F corresponds to which move of
the game. The goal of this subsection is to manage to compute the rightmost column of
this figure, which corresponds to the composition of the two terms:

f0 : bit⊸ bit ⊢L (x; tt){x← if f0 ff then () else ()}
More precisely, in this subsection, we explain how one can make a map of event struc-

tures f : F → A ∥ B interact with another map g : G → B ∥ C in order to obtain a map
h : H → A ∥ C. This construction is called interactive composition, or “parallel interaction
plus hiding”. It is made in two steps: the interaction through pullbacks, and the hiding.

Pullbacks

We start with some categorical definitions. The notion of pullback is very similar to the
notion of categorical product, in the sense that both of them are categorical limits.
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Definition 4.2.9. In a category C, a pre-pullback of a map f ∈ C(A,C) and g ∈ C(B,C)
is a triple (P, pA, pB) with pA ∈ C(P,A) and pB ∈ C(P,B) such that

f ◦ pA = g ◦ pB

A pullback is a pre-pullback (A ∗f,g B, πA, πB) such that for every pre-pullback (P, pA, pB),
there exists a unique map h ∈ C(P,A ∗f,g B) such that

πA ◦ h = pA πB ◦ h = pB

We write this morphism f ∗ g, and sum up this property in the following diagram:

∀P
∀pA

��

∀pB

��

∃!h
��✤
✤
✤

A ∗f,g B
πA

zzttttttttttt
πB

$$❏❏❏❏❏❏❏❏❏❏❏

f ∗ g

��

A

f
%%❏❏❏❏❏❏❏❏❏❏❏ B

g
yyttttttttttt

C

It follows that A ∗f,g B is unique up to isomorphism if it exists.

We explain what we mean in this diagram in more detail: for all objects and morphisms
inserted at the positions of labels starting with a ∀, if the diagram ignoring dashed arrows
commutes, then there exists unique morphisms inserted at the position of labels starting
with ∃! such that the diagram including dashed arrows commutes.

Proposition 4.2.10. The category ES has all pullbacks.

We refer to [Win07, Win11] for a proof. Pullbacks in ES being syntactically complex
to handle, the standard proof for existence of pullbacks in ES defines them in the category
of certain families of configurations, called stable families, and recovers pullbacks in ES
using an adjunction. The complexity of building pullbacks in ES will not hinder us, as we
only use the universal property of pullbacks and never need the details of the syntactical
definition.

We provide in Fig. 4.5 an example of pullback of ES. In this example, the event structure
A is graphically a rectangle made of conflicts, the event structure B is a triangle made of
causalities and conflicts, and the event structure A ∗f,g B is a small “house” containing
the conflicts and causalities of both A and B. This example highlights that as a first
approximation, once can see a pullback as just “overlapping” the two event structures A
and B to obtain a single event structure A ∗f,g B which contains the causalities and
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conflicts of both A and B. This intuition is incomplete, but holds whenever the maps f
and g are injective.

In the example, the event structure C has only a single conflict between b and c, but this
conflict is irrelevant, as we would have obtained the same A ∗f,g B without it. In general
when computing the pullback A ∗f,g B, we can disregard the causalities and conflicts of
C and obtain the same result.

Interaction

We now use the notion of pullback to define the first step of “parallel interaction plus
hiding”. The interaction can be seen as a composition, but where we remember the inter-
mediate values. It is achieved with pullbacks, the idea being to “make the first strategy
play against the second one on their common game”.
Definition 4.2.11 (Interaction). For two maps of event structures f : F → A ∥ B and
g : G→ B ∥ C, we define the event structure G ⊛f,g F and the map g ⊛ f : G ⊛f,g F → A ∥
B ∥ C as:

G ⊛f,g F := (F ∥ C) ∗f∥C,A∥g (A ∥ G)
g ⊛ f := (f ∥ C) ∗ (A ∥ g)

We sum it up in the following diagram:

∀P
∀pA

��

∀pB

��

∃!h
��✤
✤
✤

G ⊛f,g F
πF ∥C

xxrrrrrrrrrrr
πA∥G

&&▲▲▲▲▲▲▲▲▲▲▲

g⊛f

��

F ∥ C

f∥C %%▲▲▲▲▲▲▲▲▲▲
A ∥ G

A∥gyyrrrrrrrrrr

A ∥ B ∥ C
We provide an example in Fig. 4.6. The right-most column is the result of the inter-

action. Looking at the event structure G ⊛f,g F at the top right of the figure, one can
recognise a fragment corresponding to F , between the events λ and the two events ⋆. One
can also recognise two fragments corresponding to G, starting with the event ⋆ and ending
with tt. The events ⋆ are at the junction between the fragments of F and the fragments
of G. This is because ⋆ is part of the event structure B in (A ∥ B ∥ C). Since F has two
copies of ⋆, when joining G to F , we had to duplicate G: one copy for every ⋆.

We note that since (− ∥ −) is not strictly associative, (A ∥ B ∥ C) is only defined up to
isomorphism, and we should post-compose f ∥ C and A ∥ g with adequate isomorphisms,
this is in general left implicit. For simplicity, we assume that we choose (A ∥ B ∥ C) such
that (A ∥ C) is a substructure of it.
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Figure 4.5: Example of a pullback of event structures
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Figure 4.6: Example of Interaction

Proposition 4.2.12. The interaction is associative up to isomorphism, i.e., H ⊛g,h (G⊛f,g

F ) � (H ⊛g,h G) ⊛f,g F , and the following diagram commutes:

H ⊛g,h (G ⊛f,g F ) oo � //

h⊛(g⊛f)

��

(H ⊛g,h G) ⊛f,g F

(h⊛g)⊛f

��
(A ∥ B ∥ C) ∥ D oo � // A ∥ (B ∥ C ∥ D)

The proof follows from the definition of the pullback: one just needs to remark that
H ⊛g,h (G⊛f,g F ) is a pre-pullback of A ∥ (h⊛ g) and f ∥ C ∥ D, and that (H ⊛g,hG)⊛f,g F
is a pre-pullback of A ∥ B ∥ h and (g ⊛ f) ∥ D.

Hiding

Another central operation for game semantics is hiding, which allows us to “forget” some
events corresponding to intermediate computations.
Definition 4.2.13. A partial map of event structures H : A ⇀ B is said to be a hiding if
|B| ⊆ |A|, with ≤B and ConB being exactly the restriction of ≤A and ConA to |B|, and H
is the identity on events.

By construction, a hiding is intersection and union-preserving on configurations. We
also note that whenever |B| is a down-closed subset of |A|, the hiding is a left-inverse2 of

2A left-inverse, or retraction, of a map f ∈ C(A, B) is a map g ∈ C(B, A) such that g ◦ f = idA.
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the substructure map from B to A.

Proposition 4.2.14. For f : A → B a map and H : B ⇀ B′ a hiding, there exists some
unique event structure A′, hiding H ′ : A ⇀ A′ and map f ′ : A′ → B′ such that:

H ◦ f = f ′ ◦H ′

The proof is pretty straightforward, as we just take A′ such that |A′| = f−1 |B′|.

Interactive Composition

We consider two maps of event structures f : F → A ∥ B and g : G → B ∥ C. We have
G ⊛f,g F and the map g ⊛ f : G ⊛f,g F → A ∥ B ∥ C as previously defined. Since A ∥ C is
a substructure of A ∥ B ∥ C, we can use Proposition 4.2.14 and obtain a uniquely defined
G⊙f,g F and g ⊙ f such that:

H ◦ (g ⊛ f) = (g ⊙ f) ◦H ′

We sum it up in the following diagram:

∀P
∀pA

��

∀pB

��

∃!h
��✤
✤
✤

G ⊛f,g F
πF ∥C

xxrrrrrrrrrrr
πA∥G

&&▲▲▲▲▲▲▲▲▲▲▲

g⊛f

��

G⊙f,g F/H′

g⊙f

��

F ∥ C

f∥C %%▲▲▲▲▲▲▲▲▲▲
A ∥ G

A∥gyyrrrrrrrrrr

A ∥ B ∥ C A ∥ C/H

In Fig. 4.7, we show that to obtain interactive composition described in Fig. 4.4 from the
interaction described in Fig. 4.6, we simply remove from the diagrams all the events coming
from the event structure B, i.e., we remove all the events ⋆.

Proposition 4.2.15. The interactive composition is associative up to isomorphism, i.e.,
H ⊙g,h (G⊙f,g F ) � (H ⊙g,h G)⊙f,g F and the following diagram commutes:

H ⊙g,h (G⊙f,g F ) oo � //

(h⊙g)⊙f
��

(H ⊙g,h G)⊙f,g F
h⊙(g⊙f)

��
(A ∥ C) ∥ E oo � // A ∥ (C ∥ E)
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Figure 4.7: From Interaction to Interactive Composition

The proof follows from the associativity up to isomorphism of the interaction and
Proposition 4.2.14. This interactive composition does not yet define a category, as we
have no identity. Defining an identity for the interactive composition is non-trivial. In
Section 4.4.2, after having added polarities to our event structures and some additional
restrictions relying on those polarities, we will obtain a category with for composition the
interactive composition.

4.3 Matching Pairs of Configurations

In this section, we focus on a tool that will ease the definitions and proof in the following
chapter: the characterisation of configurations of the interaction and of the interactive
composition.

4.3.1 Examples

In this section, we will use some guiding examples we describe here. In examples, we
take for A, B and C the event structures corresponding to 1, (1 ⊸ 1) ⊗ (1 ⊸ 1) and 1
respectively. In other words, A and C are both the event structure with a single event ⋆,
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and B is:
(1 ⊸ 1) ⊗ (1 ⊸ 1)

(λℓ, λr)

✭ppw ❤❤❤❤❤❤❤❤❤❤❤❤❤❤

✡ ��)❏❏❏❏❏

⋆ℓ

✑ $$,◗◗◗◗◗◗◗◗◗ ⋆r

✑ $$,◗◗◗◗◗◗◗◗◗

⋆ℓ ⋆r

The event structure B starts with an event (λℓ, λr) to be understood as “the two functions
are defined and ready to be called”. The four other events correspond to calling those
functions on input (), and those functions returning () as an output. We describe in
Fig. 4.8 the maps f : F → A ∥ B and g : G → B ∥ C. The map f represents the term
that:

• Reads its context of type 1.

• Then defines two functions.

• Then whenever a function is called on input (), returns ().

The map g represents the term that:

• Reads its context of type (1⊸ 1)⊗ (1⊸ 1).

• Then calls the first function of the context, and waits for it to return.

• Then calls the second function of the context, and waits for it to return.

• Then outputs ().

We describe in Fig. 4.9 the maps f ′ : F ′ → A ∥ B and g′ : G′ → B ∥ C. Both maps do
not correspond to terms of Λ, but could correspond to terms in a language with parallel
threads and shared memory. The map f ′ represents the system that:

• Reads its context of type 1.

• Then defines two functions.

• Then whenever a function is called on input (), does nothing for now.

• Then whenever both functions have been called on input (), returns () for both
functions.

This last item requires some synchronisation between two functions being called in parallel.
This can be done within a language with shared memory, but not within Λ. The map g′

represents the system that:
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⋆
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✤
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Figure 4.8: The maps of event structures f and g, with the event structure F and G at
the top, and A ∥ B and B ∥ C at the bottom.

• Reads its context of type (1⊸ 1)⊗ (1⊸ 1).

• Then calls in parallel both functions on input ().

• Whenever the first function returns, it does nothing.

• Whenever the second function returns, it outputs () (even if the first has not yet
returned).

Similarly, this system cannot be represented by a term in Λ, as we cannot start a compu-
tation and continue without waiting for its result.

4.3.2 Definition of Matching Pairs

We consider f : F → A ∥ B and g : G→ B ∥ C two maps of event structures. We have

F ∥ C

f∥C %%▲▲▲▲▲▲▲▲▲▲
A ∥ G

A∥gyyrrrrrrrrrr

A ∥ B ∥ C
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Figure 4.9: The maps of event structures f ′ and g′, with the event structure F ′ and G′ at
the top, and A ∥ B and B ∥ C at the bottom.

For any x ∈ C(F ), we write f x = xA ∥ xB. Similarly, for every y ∈ C(G), we write
g y = yB ∥ yC .

Definition 4.3.1. Two configurations x ∈ C(F ) and y ∈ C(G) are said

Matching if xB = yB.

Matching Compatible if moreover the induced pre-order over xA ∥ xB ∥ yC is acyclic,
i.e., an order. This pre-order is obtained as follows: we note that (x ∥ yC ,≤F∥C)
and (xA ∥ y,≤A∥G) are two posets, we consider their image by f ∥ C and A ∥ g
respectively, and then the transitive closure of the union of both images. The transitive
closure of the union of two posets might not be a poset.

Minimal Matching Compatible if moreover for every (x′, y′) matching compatible, with
x′
A = xA, y′

C = yC , x′ ⊆ x and y′ ⊆ y, we have x′ = x and y′ = y.

Under some reasonable conditions on f and g discussed in Section 6.2.1, matching pairs
are always compatible, in other words the interaction does not create any deadlocks. As
discussed in Lemma A.2.2, matching compatible pairs of configurations that satisfy the
⊕-covered condition will always be minimal.
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Example 4.1 Simple Case
If we look at the configurations |F | ∈ C(F ) and |G| ∈ C(G) containing all the events of F
and G respectively, this pair of configurations is

• Matching, as they project to the same configuration |B| of B.

• Matching compatible, as there is no deadlock.

• Minimal matching compatible. Indeed, if we consider any pair of matching compatible
configuration (x, y) such that yC = {⋆} and xA = {⋆}, then looking at G we are forced
to have y = |G|, so yB = |B|. Since they are matching, it follows that xB = |B|, so
x = |F |. We then have (x, y) = (|F |, |G|).

Example 4.2 Deadlock Case
If we look at the configurations |F ′| ∈ C(F ′) and |G| ∈ C(G) containing all the events of
F ′ and G respectively, this pair of configurations is

• Matching, as they project to the same configuration |B| of B.

• Not matching compatible, as the induced pre-order on |B| has a cycle:

(1 ⊸ 1) ⊗ (1 ⊸ 1)

(λℓ, λr)

✭ppw ❤❤❤❤❤❤❤❤❤❤❤❤❤❤

✡ ��)❏❏❏❏❏

⋆ℓ

✑ $$,◗◗◗◗◗◗◗◗◗

✛ **0❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬ ⋆r

✑ $$,◗◗◗◗◗◗◗◗◗

✦mms⋆ℓ

✦ --3

⋆r

Example 4.3 Non-Minimal Case
If we look at the configurations |F | ∈ C(F ) and |G′| ∈ C(G′) containing all the events of F
and G′ respectively, this pair of configurations is

• Matching, as they project to the same configuration |B| of B.

• Matching compatible, as there is no deadlock.

• Not minimal matching compatible, as ({⋆, (λℓ, λr), ⋆r, ⋆r}, {(λℓ, λr), ⋆r, ⋆r, ⋆}) is a
matching compatible pair which is smaller while having the same projections on A
and C.
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4.3.3 Matching Pairs in the Interaction

We keep the same notations as in previous subsections. We recall the diagram that defines
g ⊛ f :

∀P
∀pA

��

∀pB

��

∃!h
��✤
✤
✤

G ⊛f,g F
πF ∥C

xxrrrrrrrrrrr
πA∥G

&&▲▲▲▲▲▲▲▲▲▲▲

g⊛f

��

F ∥ C

f∥C %%▲▲▲▲▲▲▲▲▲▲
A ∥ G

A∥gyyrrrrrrrrrr

A ∥ B ∥ C

We say that z ∈ C(G⊛f,g F ) is the interaction of x ∈ C(F ) and y ∈ C(G) if πF∥C z = x ∥ yC
and πA∥G z = xA ∥ y.

Lemma 4.3.2. We have the following properties

• For every pair (x, y) ∈ C(F )× C(G), there exists at most one z ∈ C(G ⊛f,g F ) which
is the interaction of x and y. When it exists, we write it y ⊛ x.

• For every z ∈ C(G ⊛f,g F ), there exists exactly one pair (x, y) such that z = y ⊛ x.
Those configurations x and y are the projections of z.

Proposition 4.3.3. We consider f : F → A ∥ B and g : G → B ∥ C two maps of event
structures. We have a bijection between the set of configurations z ∈ C(G ⊛f,g F ) and the
set of matching compatible pairs (x, y) ∈ C(F )×C(G). The bijection is given by z = y ⊛ x.

This proposition is at the core of the notion of matching compatible pairs, and allows
us to work on the interaction of strategies, without having to explicitly use its defini-
tion through the pullback. We will implicitly use this proposition when ranging over the
configurations of G ⊛f,g F saying for example “for y ⊛ x ∈ C(G ⊛f,g F ), . . . ”.

Lemma 4.3.4. The operation ⊛ is union-preserving and intersection-preserving, i.e., if
(x, y), (x′, y′) are matching compatible, and x ∪ x′ and y ∪ y′ are configurations, then
(x ∪ x′, y ∪ y′) is matching compatible and (y ∪ y′) ⊛ (x ∪ x′) = (y ⊛ x) ∪ (y′ ⊛ x′); and a
similar property for the intersection.
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Example 4.4 Interaction without Deadlocks
The Figs. 4.10 and 4.12 describe the interaction of f with g and f with g′. As no deadlock
is involved, all the matching pairs are compatible, so the configurations of C(G⊛f,g F ) and
C(G′ ⊛f,g

′
F ) are in one-to-one correspondence with the pairs of matching configurations

of C(G)×C(F ) and C(G′)×C(F ) respectively. For example in Fig. 4.10, the configuration
{⋆, (λℓ, λr), ⋆l} ∈ C(G⊛f,gF ) comes from the matching pair ({⋆, (λℓ, λr), ⋆l}, {(λℓ, λr), ⋆l}) ∈
C(F )× C(G).

Example 4.5 Interaction for the Deadlock Case
The Fig. 4.11 describes the interaction of f ′ and g. This time, not all pairs of matching
configurations are compatible, which is why the interaction is so small. For example the
matching pair ({⋆, (λℓ, λr), ⋆l, ⋆r}, {(λℓ, λr), ⋆l, ⋆r}) ∈ C(F ′)×C(G) is not compatible as we
have ⋆ℓ ≥ ⋆r on one side and ⋆ℓ ≤ ⋆r on the other.
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Figure 4.10: The interaction and interactive composition of f and g
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Figure 4.11: The interaction and interactive composition of f ′ and g
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Figure 4.12: The interaction and interactive composition of f and g′
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4.3.4 Interactive Composition

We keep the same notations as in the previous subsection. We recall the diagram that
defines g ⊙ f :

∀P
∀pA

��

∀pB

��

∃!h
��✤
✤
✤

G ⊛f,g F
πF ∥C

xxrrrrrrrrrrr
πA∥Y

&&▲▲▲▲▲▲▲▲▲▲▲

g⊛f

��

G⊙f,g F/H′

g⊙f

��

F ∥ C

f∥C %%▲▲▲▲▲▲▲▲▲▲
A ∥ G

A∥gyyrrrrrrrrrr

A ∥ B ∥ C A ∥ C/H

Since H ′ is a hiding map, it is injective, and the events of G⊙f,g F can be seen as events
of G ⊛ F . For z ∈ C(G ⊙f,g F ), we write [z]⊛ for the down-closure of the pre-image of z,
i.e., [H ′−1(z)]G⊛f,gF . Since H ′ reflects consistency, we have [z]⊛ ∈ C(G ⊛f,g F ). We note
that [z]⊛ is the smallest configuration z′ of G ⊛f,g F such that H ′(z′) = z.

We say that z ∈ C(G⊙f,g F ) is the interactive composition of x ∈ C(F ) and y ∈ C(G)
if [z]⊛ = y ⊛ x.

Lemma 4.3.5. We have the following properties

• For every pair (x, y) ∈ C(F )× C(G), there exists at most one z ∈ C(G⊙f,g F ) which
is the interactive composition of x and y. When it exists, we write it y ⊙ x.

• For every z ∈ C(G⊙f,g F ), there exists exactly one pair (x, y) such that z = y ⊙ x.

Proposition 4.3.6. We consider f : F → A ∥ B and g : G → B ∥ C two maps of event
structures. We have a bijection between the set of configurations z ∈ C(G⊙f,g F ) and the
set of minimal matching compatible pairs (x, y) ∈ C(F ) × C(G). The bijection is given by
z = y ⊙ x.

As for the corresponding proposition in the case of the interaction, we will implicitly
use this proposition when ranging over the configurations of G ⊙f,g F saying for example
“for y ⊙ x ∈ C(G⊙f,g F ), . . . ”.

Lemma 4.3.7. The operation ⊙ is union-preserving and intersection-preserving, i.e., if
(x, y), (x′, y′) are minimal matching compatible, and x ∪ x′ and y ∪ y′ are configurations,
then (x∪x′, y∪y′) is minimal matching compatible and (y∪y′)⊙(x∪x′) = (y⊙x)∪(y′⊙x′);
and a similar property for the intersection.
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Example 4.6 Interactive Composition
The Figs. 4.10 to 4.12 describe the interactive composition of f with g, f ′ with g and f
with g′ respectively.

• Looking at g ⊙ f , the pairs of minimal matching configurations are (∅,∅), ({⋆},∅)
and (|F |, |G|). They correspond to the configurations ∅, {⋆}, {⋆, ⋆} ∈ C(G ⊙f,g F )
respectively.

• Looking at g ⊙ f ′, because of the deadlocks, (|F ′|, |G|) is not a matching compatible
pair, so the only minimal matching configurations are (∅,∅) and ({⋆},∅), corre-
sponding to ∅, {⋆} ∈ C(G⊙f ′,g F ′) respectively.

• Looking at g′ ⊙ f , while there is no deadlock, (|F |, |G′|) is not a minimal match-
ing compatible pair as it fails at minimality. The minimal matching configura-
tions are (∅,∅),({⋆},∅) and ({⋆, (λℓ, λr), ⋆r, ⋆r}, {(λℓ, λr), ⋆r, ⋆r, ⋆}), corresponding
to ∅, {⋆}, {⋆, ⋆} ∈ C(G′ ⊙f,g′

F ) respectively.

4.4 Games and Strategies

Usually in game semantics, a game consists of a set of available moves and a set of rules that
Player and Opponent must abide to. A strategy for Player is described by the set of possible
plays (i.e., sequences of moves) if Player chooses to follows this strategy. Obviously, the
strategy must abide to the game, meaning that all the plays of the strategy must respect
the rules of the game.

In previous sections, we introduced event structures. They are used to represent both
games and strategies. Indeed, when representing games, events of the event structures
stand for the available moves, and order and consistency for the rules of the game. Hence,
configurations represent “legal states of the game”. When representing strategies, configu-
rations of the strategy loosely correspond to “plays” of the strategy. The event structure
of the strategy and the event structure of the game are related by a map of event structure,
which formalises “the strategy abides by the rules of the game”. Indeed, maps of event
structure send configurations to configurations, so assuming the maps goes from a strategy
to a game, it will send “plays of the strategy” to “legal states of the game”.

However, with only the definitions of previous sections, there is no difference between
Player moves and Opponent moves. In this section, we add polarities to event structures
to represent Player and Opponent, and build a category in which strategies only describe
the behaviour of Player, i.e., a Player strategy cannot prevent opponent to play a move
which is allowed by the game.
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4.4.1 Event Structures with Polarities
Events of our event structures will correspond to moves of a game. As noted earlier, we
use two-player games, between Player and Opponent, represented by polarities ⊕ and ⊖
respectively.

Definition 4.4.1. An event structure with polarities, or esp, is an event structure E
together with a polarity function pE : |E| → {⊖,⊕}. We say that an esp E is a substructure
of an esp E′ if they are substructures as event structures and the inclusion preserves
polarities. Maps of esps are maps of event structures preserving polarities. We write ESP
for the category.

We extend ∥ and ⊕ inheriting polarities. In fact, ESP is a cocartesian SMC. We extend
all the notations from event structures, and add the following ones for p ∈ {⊖,⊕}:

ep : e ∈ |E| and pE(e) = p
x ⊆p y : x ⊆ y and ∀e ∈ y\x, pE(e) = p
x−⊂py : x−⊂y and ∀e ∈ y\x, pE(e) = p

The notion of hiding also extends to esps.

Definition 4.4.2. For E an esp, we define the negation E⊥ as the esp with the same
underlying event structure as E, but opposite polarities. It extends to an endofunctor on
ESP.

Definition 4.4.3. We consider two maps of esps f : F → A⊥ ∥ B and g : G → B⊥ ∥ C.
We define the esp G⊙f,g F , as the event structure G⊙f,g F together with the polarity

pG⊙f,gF (e) = pA⊥∥C((g ⊙ f)(e))

and we remark that the map of event structures g ⊙ f is a map of esps, from G⊙f,g F to
A⊥ ∥ C. This extends interactive composition to esps.

We note that we cannot properly express the interaction G ⊛f,g F within esps, as the
events at the middle are neither positive nor negative. It is possible to add a third polarity,
neutral, as for example in [CHLW14, CCHW18], but we do not need to do so in this thesis.

4.4.2 The Category of Concurrent Games and Strategies
Definition 4.4.4. A game is an esp A which is

Alternating if whenever a _A b, the events a and b have different polarities.

Race-Free if whenever x−⊂+y and x−⊂−z, then y ∪ z ∈ C(A). In the binary conflict case,
it is equivalent to: whenever a /o

A b, the events a and b have the same polarity.



4.4. GAMES AND STRATEGIES 129

While our games are not strictly “turn-based”, as parallelism might allow a player
to make multiple moves before its opponent plays any, those two properties allow us to
keep intuitions from turn-based games. Those conditions do not appear in the most general
definitions of concurrent games and strategies (see [CCRW17, Win11]), but will be required
for the quantum game model to work so we introduce them immediately. The race freeness
properties can be reformulated to:

x ⊑ y =⇒ x ∪ y ∈ C(A)

where ⊑ := −⊇ ◦ ⊆+. This partial order ⊑ on configurations in called the Scott order
(see [Win13]). It is known to appear in a lot of contexts in concurrent game semantics,
and is reminiscent of the pointwise order on functions in domain theory: increasing in the
order means decreasing the information on inputs (Opponent moves) and increasing the
information on outputs (Player moves).

Definition 4.4.5. A pre-strategy (σ, S) from a game A to a game B is an esp S and a
map of esps σ : S → A⊥ ∥ B. Two pre-strategies σ, σ′ from A to B are said isomorphic,
and we write σ � σ′, if there exists an isomorphism of esps ι : S → S′ such that σ = σ′ ◦ ι.

When we say that “σ is a pre-strategy”, we instead mean “(σ, S) is a pre-strategy”,
keeping the esp S implicit. We take the convention that the esp of a pre-strategy σ will
be named S. Similarly a pre-strategy named τ, σ′, τ ′, σn or τn will have an esp named
respectively T, S′, T ′, Sn or Tn (for n ∈ N).

Definition 4.4.6. The copy-cat pre-strategy ccA : CCA → A⊥ ∥ A is defined as:

• |CCA| = |A⊥ ∥ A|, pCCA
= pA⊥∥A and ccA is the identity on events.

• (i, a) <CCA
(j, b) when a <A b or















a = b

pCCA
(i, a) = ⊖

pCCA
(j, b) = ⊕

• X ∥ Y ∈ ConCCA
when X ∪ Y ∈ ConA.

We refer to Fig. 4.13 for an example of a copy-cat strategy. The definition of copy cat
we gave here is a simplification of the definition given in [CCRW17]. This simplification is
only well-behaved because of the alternating and race-free properties on games3.

It follows from the definition that x ∥ y ∈ C(CCA) if and only if x, y ∈ C(A), y\x contains
only negative events and x\y contains only positive events. This exactly corresponds to
x ⊒ y. We note that ccA ⊙ ccA � ccA. We do not always have ccA ⊙ σ � σ � σ ⊙ ccA for σ a
pre-strategy. However, we will prove in Theorem 4.4.9 that it is true for a restricted class
of pre-strategies, respecting properties called receptivity and courtesy.

3More precisely, in the non-race-free case CCA does not always satisfy the axioms of event structures,
and in the non-alternating case this definition would not give rise to a courteous pre-strategy. See below
for the definition of courtesy.
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Figure 4.13: Example of the copy-cat pre-strategy ccA with A = 1⊸ 1.
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Figure 4.14: Examples of (non)-receptivity and (non)-courtesy.

Definition 4.4.7. A pre-strategy σ from A to B is said to be

Receptive if whenever x ∈ C(S) and σ x−⊂−(σ x ⊔ {e−}), there exists a unique x−⊂−(x ⊔
{s−}) such that σ(s) = e.

Courteous if whenever s _S t, if s is positive or t is negative, we have σ(s) _A⊥∥B σ(t)

Both conditions aim at the same goal: ensuring that the strategy only describe Player’s
behaviour, without putting any restriction on Opponent’s behaviour that was not already
in the game.

In Fig. 4.14, the pre-strategies σ3 and σ4 are non-receptive since we cannot play any
negative move in the pre-strategy from the empty configuration, while we can play a
negative move from the empty configuration in the game. The pre-strategies σ2 and σ4 are
non-courteous since we have an immediate causality ⊕_ ⊖ which does not come from the
game, and courtesy only allows immediate causalities ⊖_ ⊕ as in σ1.

Proposition 4.4.8. For every game A, ccA is receptive and courteous. Additionally, the
interactive composition of two receptive (resp. courteous) pre-strategies is receptive (resp.
courteous).

We refer to [CCRW17] for a proof. When considering the interactive composition τ⊙σ,
we will use T ⊙ S as a shorthand for T ⊙σ,τ S. We similarly write T ⊛ S for T ⊛σ,τ S.

Theorem 4.4.9. For every pre-strategy σ from A to B, σ is receptive and courteous if and
only if ccB ⊙ σ � σ � σ ⊙ ccA.
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This theorem is well-known and its proof detailed in [CCRW17].

Definition 4.4.10. A strategy σ from a game A to a game B is a receptive and courteous
pre-strategy. We write it σ : A 7→ B

Lemma 4.4.11. If σ : S → A⊥ ∥ B is a strategy, then S is alternating and race-free.

Proof. Indeed, assume s _S s
′, then by courtesy we have s negative and s′ positive,

or σ(s) _A⊥∥B σ(s′), and since A and B are alternating, this means that s and s′

have opposite polarities. So S is alternating.
Similarly, assume x−⊂+x ∪ {s+} and x−⊂−x ∪ {t−}, with x ∈ C(S). Using race-

freeness of the game, σ(x) ∪ {σ(s), σ(t)} is a configuration. Using receptivity, there
exists x ∪ {s+}−⊂−x ∪ {s+, t′−} such that σ(t′) = σ(t). Using courtesy, since we do
not have σ(s) _ σ(t′), it means we do not have s _S t

′, so x−⊂−x∪ {t′−}. Using the
uniqueness part of receptivity, we obtain t = t′. It follows that x ∪ {s+, t−} ∈ C(S).
So S is race-free. □

Games and strategies are not per se a category, as the associativity and identity laws
only hold up to isomorphism. In [CCRW17], they are proven to form a bicategory. How-
ever, the bicategorical structure is not a focus of this thesis, and for syntactical simplicity
we choose not to work at the bicategorical level. The natural alternative would be to
quotient by isomorphism, and to consider the category of games and equivalence classes
of strategies. This approach works for every use of the category but one: the recursion.
When trying to model recursion in Section 9.3.3, we will temporarily need to work with
concrete strategies. This is because the substructure order defined in Definition 4.4.1 is
not preserved by isomorphism, and does not induce an order on the quotient category4.
This is why we choose to use an ad hoc in-between: when we write “Game and strategies
form a category up to isomorphism”, we mean that games and strategies have the same
data as a category, but the axioms of a category are only satisfied up to isomorphism. We
hope the reader will excuse this slight abuse of terminology.

Proposition 4.4.12. Games and strategies form a CpCC (Strat, ∥,∅, (_)⊥) up to iso-
morphism.

We refer to [CCRW17] for a proof. We can define a monoidal product ∥ by simply
taking the parallel composition of esps. For σ : S → A⊥ ∥ B, and τ : T → C⊥ ∥ D, we
can see them as maps of esps and consider σ ∥ τ : S ∥ T → A⊥ ∥ B ∥ C⊥ ∥ D. Using the
associator and braiding of the SMC of esps and maps of esps, we can obtain a map of esps
from S ∥ T to A⊥ ∥ C⊥ ∥ B ∥ D, so a pre-strategy from A ∥ C to B ∥ D. We easily check
that receptivity and courtesy are preserved, so it is a strategy. For the unit and counit,
we simply take the copy-cat map CCA → A⊥ ∥ A, and see it either as a strategy from ∅ to
A⊥ ∥ A or from A ∥ A⊥ to ∅. We note the ambiguity between σ ∥ τ seen as strategies and
σ ∥ τ seen as maps of esps, and hope it does not confuse the reader in later proofs.

4The antisymmetry fails.



Chapter 5

Quantum Concurrent Games

5.1 Guiding Example

This chapter focuses on defining the game model. The interpretation of QΛ in this model
will be the the focus of the next chapter. While we will not properly give a semantics to
terms of QΛ in this chapter, we will still have a guiding example coming from QΛ. We
refer to Section 6.1 for an explanation on how the games and strategies of the examples
are computed systematically from the types and terms.

We will consider three terms tN , tP , tQ. The term tQ is from AQΛ, the term tP is from
a probabilistic variant of AQΛ, and tN is from a non-deterministic variant of AQΛ in which
+ stands for a non-deterministic choice. We start by studying a non-deterministic term as
probabilistic and quantum semantics can be seen as non-deterministic semantics weighted
respectively by probabilities or quantum operators.

f0 : 1⊸ bit, f1 : 1⊸ bit ⊢A tN : (1⊸ bit)⊗ (1⊸ bit)
tN := (λ().f0 () + f1 ())⊗ λ().tt

f0 : 1⊸ bit, f1 : 1⊸ bit ⊢A tP : (1⊸ bit)⊗ (1⊸ bit)

tP :=
(

λ().13f0 () + 2
3f1 ()

)

⊗ λ().tt
f0 : 1⊸ bit, f1 : 1⊸ bit ⊢A tQ : (qubit⊸ bit)⊗ (1⊸ bit)

tQ := (λx.if meas x then f0 () else f1 ())⊗ λ().tt

The three terms call either f0 or f1 from the context depending on the result of a choice,
a non-deterministic one for tN , and probabilistic one for tP , and a quantum one for tQ.
In this section, we will explain the semantics of tN . We keep tP and tQ for the next two
sections. First, the games. The return type of our term is (1 ⊸ bit) ⊗ (1 ⊸ bit), which
we represent in the following diagram:

133
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(1 ⊸ bit) ⊗ (1 ⊸ bit)

(λℓ, λr)
+
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This is an event structure with polarities, as defined in Section 4.2. Every event of this event
structure can be seen as corresponding to a component of the type (1⊸ bit)⊗ (1⊸ bit).
Accordingly, we write the type associated to the game at the top of the event, and organise
the events so that each event appears below the corresponding part of the type. Reading
from top to bottom, we have

• A positive event (λℓ, λr)
+, representing Player (i.e., the program) saying “two func-

tions are defined and ready to be called”.

• Two negative events ⋆ℓ and ⋆r, representing Opponent (i.e., the user) calling respec-
tively the first function on input () and the second function on input (). Those two
events causally depend on (λℓ, λr)

+ as the user cannot call a function that does not
exist yet. Those two events have no conflict between them as it is possible for the
user to call both.

• Two positive events at the left hand side ff+
ℓ and tt+

ℓ representing the two possible
outputs that Player can give when the left hand side function is called. They causally
depend on ⋆−

ℓ since a function cannot output before being called. They are in conflict
with each other as Player can only give one output when the function is called.

• Two positive events at the right hand side ff+
r and tt+

r representing the two possible
outputs that Player can give when the right hand side function is called.

To represent the full typing context f0 : 1 ⊸ bit, f1 : 1 ⊸ bit ⊢A (1 ⊸ bit) ⊗ (1 ⊸ bit),
we use the following game. Note that the polarities of the left hand side are reversed
compared to the right hand side, as the functions in the context are given by Opponent
and potentially called by Player.
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1 ⊸ bit , 1 ⊸ bit ⊢A (1 ⊸ bit) ⊗ (1 ⊸ bit)

(λ0, λ1)−
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The term tN is represented by a strategy, which we describe through the event structure
represented in Fig. 5.1 (ignoring dashed lines), together with a correspondence between its
events and the event of the game. In diagrams, this correspondence between events of the
strategy and events of the game is implicitly given by (1) our naming convention of the
events, (2) the presence of the typing context at the top of the diagram, with every event
below the component of the type it corresponds to, and (3) the causal links of the game
being reminded through dashed lines. From top to bottom, the strategy reads as follows:

• Opponent starts the computation with the event (λ0, λ1)− signalling that the func-
tions f0 and f1 are ready to be used by Player.

• Player then answers with the event (λℓ, λr)
+ announcing he successfully managed to

define two functions, and that they are ready to be called.

• Opponent can call any of the two functions with the events ⋆−
ℓ and ⋆−

r , or both.

• If Opponent calls the second function, then Player answer “true” through the event
tt+
r .

• If Opponent calls the first function, then Player non-deterministically chooses be-
tween calling f0 with ⋆+

0 or f1 with ⋆+
1 , but does not call both.

→ If Player calls f0, then Opponent answers a boolean through either ff−
0 or tt−

0 , which
Player forwards as the answer to Opponent’s call to the first function, represented
by either ff+

ℓ or tt+
ℓ .

→ Similarly, if Player calls f1 instead, then Opponent answers a boolean through ei-
ther ff−

1 or tt−
1 , which Player forwards as the answer to Opponent’s call to the first

function, represented by either the second copy of ff+
ℓ or the second copy of tt+

ℓ .
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1 ⊸ bit , 1 ⊸ bit ⊢A (1 ⊸ bit) ⊗ (1 ⊸ bit)

(λ0, λ1)−
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Term represented:

f0 : 1⊸ bit, f1 : 1⊸ bit ⊢A tN : (1⊸ bit)⊗ (1⊸ bit)
tN := (λ().f0 () + f1 ())⊗ λ().tt

Figure 5.1: Example of non-deterministic strategy
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5.2 Probabilistic Concurrent Strategies
Quantum strategies arise as a generalisation of probabilistic strategies as developed in
[Win14]. We give a quick overview of probabilistic strategies here.

5.2.1 The Guiding Example
We now consider the term tP which we recall here:

f0 : 1⊸ bit, f1 : 1⊸ bit ⊢A tP : (1⊸ bit)⊗ (1⊸ bit)

tP :=
(

λ().13f0 () + 2
3f1 ()

)

⊗ λ().tt

Its typing context is the same as tN , hence the game representing the type will be the
same. In fact, tN and tP behave almost exactly the same, the only difference being that
the choice between calling f0 and calling f1 now has probabilities associated: a third for
f0 and two thirds for f1. We describe in Fig. 5.2 the game semantics of tP , and one can
remark that the event structure is exactly identical to the one of tN in Fig. 5.1. The only
difference between their game semantics is the addition of the valuation v which associates
to every configuration of the strategy a probability in [0, 1], which has to be understood as
follows:

On the configuration {(λ0, λ1)−, (λℓ, λr)+, ⋆−
ℓ , ⋆

+
0 }, the valuation is 1/3, meaning that if

we ignore the unknown likelihood of Opponent eventually playing the moves (λ0, λ1)− and
⋆−
ℓ , the probability of eventually reaching a configuration greater or equal to {(λ0, λ1)−,

(λℓ, λr)
+, ⋆−

ℓ , ⋆
+
0 } is 1/3.

This probabilistic valuation will be expected to satisfy a collection of axioms ensuring
that the strategy indeed corresponds to a probabilistic system, rather than having some
arbitrary weight in [0, 1] given to every configuration without any coherence requirement.

5.2.2 Defining Probabilistic Strategies
To give an intuition about the restrictions probabilistic strategies should satisfy, we start
with a simpler case: we consider a finite event structure E, and want to add probabilities
to it.

A first approach is to consider a probability measure µE over C(E). In this approach, if
E describes a system and all its possible executions, then µE({x}) is to be interpreted as the
probability the configuration x being the final state of an execution. More generally, µE(S)
is the probability of the final state of an execution to be any x ∈ S. Since E is finite, a
remarkable property is that µE is entirely characterised by the vE(x) = µE({y | x ⊆ y}) for
x ∈ C(E). We call vE(x) the probabilistic valuation of x, it corresponds to the probability of
reaching at least the configuration x. This notion of valuation obtained from a probability
distribution on configurations of an event structure is extended to the infinite case and
studied in more detail in [Win14].
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1 ⊸ bit , 1 ⊸ bit ⊢A (1 ⊸ bit) ⊗ (1 ⊸ bit)

(λ0, λ1)−
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Probabilistic valuation:

v(x) =















1/3 if ⋆+
0 ∈ x

2/3 if ⋆+
1 ∈ x

1 otherwise

Term represented:

f0 : 1⊸ bit, f1 : 1⊸ bit ⊢A tP : (1⊸ bit)⊗ (1⊸ bit)

tP :=
(

λ().13f0 () + 2
3f1 ()

)

⊗ λ().tt

Figure 5.2: Example of probabilistic strategy
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E µE vE

a /o/o/o b
{∅} 7→ 0
{{a}} 7→ 1/3
{{b}} 7→ 2/3

∅ 7→ 1
{a} 7→ 1/3
{b} 7→ 2/3

Configurations: C(E) = {∅, {a}, {b}}
Property satisfied: vE(∅)− vE({a})− vE({b}) ≥ 0

E µE vE

a b

{∅} 7→ 0
{{a}} 7→ 1/4
{{b}} 7→ 1/2
{{a, b}} 7→ 1/4

∅ 7→ 1
{a} 7→ 1/2
{b} 7→ 3/4
{a, b} 7→ 1/4

Configurations: C(E) = {∅, {a}, {b}, {a, b}}
Property satisfied: vE(∅)− vE({a})− vE({b}) + vE({a, b}) ≥ 0

Figure 5.3: Examples of event structure with probabilities

A second approach is, instead of considering a probability measure and then computing
the valuation of every configuration, to directly axiomatise this probabilistic valuation.
Such a valuation should satisfy the normalisation property vE(∅) = 1, as the probability
of reaching at least the empty configuration is 1, and an inclusion-exclusion principle
illustrated in Fig. 5.3 and formalised as:

x ⊆ y1, . . . , yn =⇒ vE(x)−
∑

∅,I⊆{1,...,n}
∪

i∈I
yi∈C(E)

(−1)|I|−1vE

(

∪

i∈I
yi

)

≥ 0

When adding polarities for strategies, Opponent moves must be treated differently.
Indeed, the strategy should only describe the behaviour of Player, and should not put any
constraint on Opponent. To express this, it is easier to rely on the formalism of probabilistic
valuations than on the one of probability measures, hence the following definition.

Definition 5.2.1. A probabilistic strategy σ from a game A to a game B is a strategy
σ : A 7→ B together with a probabilistic valuation vσ : C(S)→ [0, 1] satisfying:

Normalisation vσ(∅) = 1

Obliviousness x ⊆− y =⇒ vσ(y) = vσ(x)
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Drop condition x ⊆+ y1, . . . , yn =⇒ d(x; y1, . . . , yn) ≥ 0, where

yI :=
∪

i∈I
yi d(x; y1, . . . , yn) := vσ(x)−

∑

∅,I⊆{1,...,n}
yI∈C(S)

(−1)|I|−1vσ(yI)

We recall that S denotes the esp such that σ : S → A⊥ ∥ B. This definition shares a lot
of similarity with [DH02], which defines probabilistic strategies in the context of sequential
game semantics. In fact, if we restrict ourselves to only sequential strategies1, we recover
the same definition of probabilistic strategies.

Definition 5.2.2. The probabilistic valuation of copy-cat is constant equal to 1. The
interactive composition τ ⊙ σ is given by the interactive composition of strategies and

vτ⊙σ(y ⊙ x) := vτ (y)× vσ(x)

Similarly,
vσ∥τ (x ∥ y) := vσ(x)× vτ (y)

We recall that all the configurations of T ⊙ S can be written as y ⊙ x, as per Propo-
sition 4.3.6. We note that proving that the interactive composition of two probabilistic
strategies satisfies the drop composition is non-trivial, and uses the race-freeness of games.
See [Win11] for a proof, or Proposition 5.3.11 for a proof in the more general case of
quantum strategies.

Proposition 5.2.3. Games and probabilistic strategies, up to isomorphism, form a CpCC
(PStrat, ∥,∅, (_)⊥).

5.3 Quantum Concurrent Games

5.3.1 Definition of Quantum Games
We now want to generalise probabilistic strategies to quantum strategies. We note that
[Win14] defines both the notion of probabilistic strategies detailed in Section 5.2, and
a notion of quantum strategies. However, while our notion of quantum strategies is an
extension of his notion of probabilistic strategies, we choose a completely different repre-
sentation of quantum operations, which we believe to be more suited for game semantics
of the quantum λ-calculus. We will replace the probabilistic valuation vσ : C(S) → [0, 1]
by a quantum valuation Qσ : C(S) → CPM(_,_). However, we need to determine what
Hilbert spaces to put instead of _. Our goal is quantum game semantics, where the game

1A strategy σ is sequential if S has only configurations of the form s0 _S s1 _S . . . _S sn with s0

minimal. In other words, σ is sequential if S is tree-like and its branches are in conflict with each other.
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a+
Q

/o/o/o/o

❴���

b+

❴���
c− d−

(Q⊗2)∗

Figure 5.4: A Quantum Game

will represent the type of a term, and the strategy will represent the term itself. In QΛ, it
is the type of a term that specifies the number of qubits it takes as inputs or outputs. As
such, it should be the game of a strategy that specifies the Hilbert spaces used as domain
and codomain for the quantum valuation.

Definition 5.3.1. A quantum game is a game A together with a space annotation HA which
associates to every event a (finite dimensional) Hilbert space. We write for x ∈ C(A):

HA(x) :=
⊗

e∈x
H(e)

We then take HA⊥(e) := HA(e)∗, HA∥B(0, a) = HA⊕B(0, a) = HA(a) and HA∥B(1, b) =
HA⊕B(1, b) = HB(b).

We note that for the definition of HA(x) to be rigorous, we need to specify an order
in which we go through the e ∈ x. However, we choose to leave them implicit to aid
readability. We leave the order in which we tensor the Hilbert spaces implicit, and leave
the associators, braiding and unitor isomorphisms implicit too. The coherence theorem
of SMCs ensures that the different available ways to insert such isomorphisms lead to the
same result. Additionally, up to the natural isomorphism between H and H∗∗, we have
(A⊥)⊥ = A. As such, one can consider (_)⊥ to be an involution.

In diagrams, we write epH for an event e of polarity p and Hilbert space H. Events
which appears in diagrams without space annotations are implicitly annotated by 1 = C
if they are positive, and 1∗ if they are negative2. For example, in Fig. 5.4, we have

HA(a) = Q = C2 HA(b) = 1 = C HA(c) = 1∗ = C∗ HA(d) = (Q⊗2)∗ = (C4)∗

Those Hilbert spaces on events describe the amount of data received by the environ-
ment, in the case of negative events, or sent to the environment, in the case of positive
events. Those exchanges of information interact naturally with the Scott order (see Sec-
tion 4.4.2), which can be understood as an information order: if x ⊒ y for the Scott order,

2Since 1 and 1∗ are unitarily isomorphic, we will often identify the two. In particular, we will sometimes
consider that luA ∈ CPM(1∗ ⊗ A, A) and ruA ∈ CPM(A ⊗ 1∗, A).
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i.e., there exists z such that x +⊇ z ⊆− y, then y is doing “less work” (less positive events)
with “more resources” (more negative events). In the case of data management, it is al-
ways possible to do less work with more resources: discard the additional work you did,
and discard the additional resources given to you. Formally, this means that whenever
x ⊒ y, we should expect a canonical morphism from H(x) to H(y).

Definition 5.3.2. We write Scott(A) for the category with objects configurations of A,
and maps given by the Scott (partial) order ⊑. We can lift HA into a contravariant functor
from Scott(A) to CPM as follows:

HA(x) :=
⊗

e∈x
H(e)

HA(x ⊆+ y) := idCPM
HA(x) ⊗TrHA(y\x) ∈ CPM(HA(y),HA(x))

HA(x −⊇ y) := idCPM
HA(y) ⊗Tr†

HB(x\y) ∈ CPM(HA(y),HA(x))

We recall that the morphisms Tr†
H ∈ CPM(1,H) and TrH ∈ CPM(H,1) are defined

as follows:

TrH : M 7→ ∑dimH
i=1 mi,i Tr†

H : z 7→ z ·















1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1















The main use of this functor is in upcoming Definition 5.3.3 to have a canonical way to
coerce two functions, one in CPM(HA(xA),HB(xB)) and one in CPM(HA(yA),HB(yB)),
onto a common space CPM(H,K) so that they can be compared to each other.

5.3.2 Back to the Guiding Example

We now consider the term tQ which we recall here:

f0 : 1⊸ bit, f1 : 1⊸ bit ⊢A tQ : (qubit⊸ bit)⊗ (1⊸ bit)
tQ := (λx.if meas x then f0 () else f1 ())⊗ λ().tt

As its type is slightly different from the one of tN and tP , the game differs too and is rep-
resented below: the negative event ⋆−

ℓ is now replaced by (qbℓ)−
Q∗ which comes annotated
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by the space Q∗, as Opponent has to provide one qubit in order to call the function.

1 ⊸ bit , 1 ⊸ bit ⊢A (qubit ⊸ bit) ⊗ (1 ⊸ bit)

(λ0, λ1)−
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1 tt+
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We describe the game semantics of tQ in Fig. 5.5. Note that the difference with the seman-
tics of tP is small: they have exactly the same event structure apart from the renaming of
⋆−
ℓ into (qbℓ)−

Q∗ , and the probabilistic valuation v is replaced by a quantum valuation Q
which provides a CPM operator for every configuration instead of a probability:

• For any configuration x which does not contain (qbℓ)−
Q∗ , all the quantum spaces are

trivial so Q(x) = pid1 with p being the probability that would be associated to this
configuration by a probabilistic semantics, in our case 1.

• For any configuration x containing (qbℓ)−
Q∗ and ⋆+

0 , we are in an execution where
the measurement returned true. The CPM operator corresponding to “measuring

true” is
(

a b
c d

)

7→ d which is in CPM(Q,1). However, we are not measuring a

qubit of the context, we are measuring a qubit obtained from a λ-abstraction. Each
layer of λ-abstraction involves a use of the currying adjunction of the compact closure
of CPM. More formally, we will have Q(x) ∈ CPM(Hcontext,Hterm) with Hcontext
being the tensor of the Hilbert spaces of the events of x that are at the left of the
⊢A , and Hterm being the tensor of the Hilbert spaces of the events of x that are at
the right of ⊢A . So here Q(x) ∈ CPM(1,Q∗). Applying the compact closure on
(

a b
c d

)

7→ d to obtain a morphism of CPM(1,Q∗) gives z 7→
(

0 0
0 z

)

.

• For any configuration x containing (qbℓ)−
Q∗ and ⋆+

1 , we are in the execution where the
measurement returned false. The CPM operator corresponding to “measuring false”

is
(

a b
c d

)

7→ a which is in CPM(Q,1). Using the compact closure as previously, we

obtain z 7→
(

z 0
0 0

)

.
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• For any configuration x containing (qbℓ)−
Q∗ but not yet ⋆+

0 or ⋆+
1 , we are in an

execution where the user gave a qubit as an input but we did not use it yet. Within
our model, an unused qubit is represented in the same way as a qubit measured with
the result of the measurement ignored. Before compact closure, the valuation would

be
(

a b
c d

)

7→ a+ d, so after compact closure the quantum valuation is z 7→
(

z 0
0 z

)

.

5.3.3 Definition of Quantum Strategies
When trying to generalise the obliviousness and drop conditions of probabilistic strategies
to quantum strategies, the main issue is that we have to sum and compare CPM maps that
do not have the same domain and codomain. The room for manoeuvre is quite limited,
as we must ensure that the condition remains preserved under interactive composition of
strategies. The contravariant functorH is a more elegant formulation of the solution present
in our paper [CdV20]. When generalising the conditions on probabilistic valuations vσ to
conditions on quantum valuations Qσ, instead of comparing and summing real numbers,
we now need to compare and sum morphisms of CPM; those morphisms might not have
the same domain and codomain, so we use the functor H as a canonical way to coerce them
into having the same domain and codomain.

Definition 5.3.3. A quantum strategy from a quantum game A to a quantum game B is
a strategy σ : A 7→ B and a quantum valuation Qσ on configurations x ∈ C(S) such that:

σ x = xA ∥ xB =⇒ Qσ(x) ∈ CPM(HA(xA),HB(xB))

Normalisation Qσ(∅) = idCPM
1

Obliviousness x ⊆− x′ =⇒ Qσ(x′) = HB(x′B −⊇ xB) ◦ Qσ(x) ◦ HA(xA ⊆+ x′A)

Drop condition x ⊆+ x1, . . . , xn =⇒ dσ(x;x1, . . . , xn) is defined in CPM, where

dσ(x;x1, . . . , xn) := Qσ(x)−
∑

∅,I⊆{1,...,n}
xI∈C(S)

(−1)|I|−1HB(xB ⊆+ xBI ) ◦Qσ(xI) ◦HA(xAI
−⊇ xA)

and xI :=
∪

i∈I xi.

We recall that S denotes the esp such that σ : S → A⊥ ∥ B. We find it important
to note the domain of the quantum valuation is HA(xA) and not HA⊥(xA), which will
allow for a smooth composition of quantum valuations. Going back to Fig. 5.5, if we look
at the drop condition applied on x = {(λ0, λ1)−, (λℓ, λr)+, (qbℓ)−

Q∗}, x1 = x ∪ {⋆+
0 } and

x2 = x ∪ {⋆+
1 }, we obtain

d(x;x1, x2) = Q(x)−Q(x1)−Q(x2) ∈ CPM(Q,1)
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1 ⊸ bit , 1 ⊸ bit ⊢A (qubit ⊸ bit) ⊗ (1 ⊸ bit)

(λ0, λ1)−
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Quantum valuation:

Q(x) =



























































id1 if (qbℓ)−
Q∗ < x

z 7→
(

z 0

0 0

)

if (qbℓ)−
Q∗ , ⋆

+
0 ∈ x

z 7→
(

0 0

0 z

)

if (qbℓ)−
Q∗ , ⋆

+
1 ∈ x

z 7→
(

z 0

0 z

)

if (qbℓ)−
Q∗ ∈ x = ⋆+

0 , ⋆
+
1

Term represented:

f0 : 1⊸ bit, f1 : 1⊸ bit ⊢A tQ : (qubit⊸ bit)⊗ (1⊸ bit)
tQ := (λx.if meas x then f0 () else f1 ())⊗ λ().tt

Figure 5.5: Example of quantum strategy
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which is correct as Q(x) − Q(x1) − Q(x2) = 0 ∈ CPM(Q,1). We now consider another
example. We represent in Fig. 5.6 the term

x0 : qubit, x1 : qubit ⊢A s : (1⊸ (1⊕ qubit))⊗ (1⊸ qubit)
s := (λ().if meas x0 then injℓ () else injr (new ff))⊗ λ().x1

The event structure for the strategy is quite straightforward, the only subtlety being
that there is a conflict between ⋆+

ℓ and (qbℓ)+
Q

, representing that the left hand side function
can output either a value of type 1, or a value of type qubit, but not both.

The quantum valuation requires a little more explanation. For M ∈ Pos(Q⊗2), we
write mij for its coefficient on the i-th row and the j-th column. If M represents the
two qubits given in the context, then the diagonal coefficients m11, m22, m33 and m44

represent the probability of obtaining when measuring them (ff,ff), (tt,ff), (ff, tt) and
(tt, tt) respectively. In the line Q(x), we have not yet measured any of the two inputs, so
the four are still possible. In the line Q(x ∪ [⋆+

ℓ ]), we have measured the first qubit and
obtained true, this is why the coefficients m11 and m33 have been eliminated. Conversely,
in the line Q(x ∪ [(qbℓ)+

Q
]), we have measured the first qubit and obtained false, which is

why the coefficients m22 and m44 have been eliminated. In the last three lines, we actually
output the second qubit instead of discarding it, hence the appearance of some of the
diagonal coefficients of M .

We consider x = {(qb,qb)−, (λℓ, λr)+, ⋆−
ℓ , ⋆

−
r }, x1 = x ∪ {⋆+

ℓ }, x2 = x ∪ {(qbℓ)+
Q
} and

x3 = x ∪ {(qbr)+
Q
} The drop associated to them is:

d(x;x1, x2, x3) = Q(x)
−Q(x1)−TrQ ◦ Q(x2)−TrQ ◦ Q(x3)
+TrQ ◦ Q(x1 ∪ x3) + TrQ⊗2 ◦ Q(x2 ∪ x3)

If we apply this equation to M ∈ Pos(Q⊗2), we obtain:
d(x;x1, x2, x3)(M) = (m11 +m22 +m33 +m44)

−(m22 +m44)− (m11 +m33)− (m11 +m22 +m33 +m44)
+(m22 +m44) + (m11 +m33)

= 0

We again obtained 0, but this is not always the case. For example, if we consider d(x;x1)
we would obtain:

d(x;x1)(M) = (m11 +m22 +m33 +m44)− (m22 +m44) = m11 +m33 ≥ 0

Non-zero drops happen when the extensions x ⊆+ x1, . . . , xn do not capture all the possible
ways x could be extended, or when the term represented by the strategy has a probability
to diverge and never return.

As the definition of quantum strategies is the core of this thesis, we now detail the
proof of preservation of the different properties of quantum strategies under interactive
composition. The proof given here is very similar to the proof present in [Win11] in the
probabilistic case.
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(qubit,qubit) ⊢A (qubit ⊸ (1 ⊕ qubit)) ⊗ (qubit ⊸ qubit)
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Quantum valuation:

∀∅ , x ⊆ {(qb,qb)−, (λℓ, λr)
+, ⋆−

ℓ , ⋆
−
r }

Q(∅) = id1
Q(x) = M 7→ m11 +m22 +m33 +m44

Q(x ∪ [⋆+
ℓ ]) = M 7→ m22 +m44

Q(x ∪ [(qbℓ)+
Q

]) = M 7→
(

m11 +m33 0
0 0

)

Q(x ∪ [(qbr)+
Q

]) = M 7→
(

m11 +m22 m31 +m42

m13 +m24 m33 +m44

)

Q(x ∪ [⋆+
ℓ ] ∪ [(qbr)+

Q
]) = M 7→

(

m22 m42

m24 m44

)

Q(x ∪ [(qbℓ)+
Q

] ∪ [(qbr)+
Q

]) = M 7→











m11 m31 0 0
m13 m33 0 0

0 0 0 0
0 0 0 0











Term represented:

x0 : qubit, x1 : qubit ⊢A s : (1⊸ (1⊕ qubit))⊗ (1⊸ qubit)
s := (λ().if meas x0 then injℓ () else injr (new ff))⊗ λ().x1

Figure 5.6: Another example of quantum strategy
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5.3.4 Properties of the Drop Function
Before tackling interactive composition of quantum strategies, we first need to state various
properties about the drop condition. In this Section 5.3.4, we assume σ : A 7→ B is a
strategy together with a quantum valuation Qσ which is normalised and oblivious, but
does not necessarily satisfy the drop condition. For any configuration x ∈ C(S), we write
xA and xB the two configurations of A and B such that σ,x = xA ∥ xB. For x ⊆+ x1, . . . , xn
some configurations, we define as in Definition 5.3.3:

x∅ := x xI :=
∪

i∈I
xi (∀∅ , I ⊆ {1, . . . , n})

dσ(x;x1, . . . , xn) :=
∑

I⊆{1,...,n}
xI∈C(S)

(−1)|I|HB(xB ⊆+ xBI ) ◦ Qσ(xI) ◦ HA(xAI
−⊇ xA)

The drop dσ is defined here as a linear map, as it might not be completely positive. Proving
that it is defined in CPM is equivalent to proving that it is greater than 0 for the Loewner
order ⊑. We list a sequence of properties of this drop. Their proofs are trivial algebraic
transformations. One can refer to [Win11] for similar proofs in the probabilistic case.

Lemma 5.3.4. For f a permutation of {1, . . . , n}, we have

dσ(x;x1, . . . , xn) = dσ(x;xf(1), . . . , xf(n))

Moreover, if xn ⊇ xn−1 then dσ(x;x1, . . . , xn) = dσ(x;x1, . . . , xn−1). This allows to unam-
biguously write dσ(x; {xi | 1 ≤ i ≤ n}).

Proof. To prove the first property, we simply use a property of commutation of the
sum of linear maps: we reorder the sum ∑

I⊆{1,...,n}
xI∈C(S)

into ∑f(I)⊆{1,...,n}
xf(I)∈C(S)

. To prove the

second part, we use commutation of the sum in order to split it depending on whether
n < I, n ∈ I but n− 1 < I, or n, n− 1 ∈ I. We note that xJ∪{n} = xJ∪{n−1,n} for any
J ⊆ {1, . . . , n− 2}.

dσ(x;x1, . . . , xn) = dσ(x;x1, . . . , xn−1)

+
∑

I⊆{1,...,n}
n−1<I∋n
xI∈C(S)

(−1)|I|HB(xB ⊆+ xBI ) ◦ Qσ(xI) ◦ HA(xAI
−⊇ xA)

+
∑

I⊆{1,...,n}
n−1∈I∋n
xI∈C(S)

(−1)|I|HB(xB ⊆+ xBI ) ◦ Qσ(xI) ◦ HA(xAI
−⊇ xA)
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We can now change the sums so that they range over J ⊆ {1, . . . , n− 2} instead.

dσ(x;x1, . . . , xn) = dσ(x;x1, . . . , xn−1)

+
∑

J⊆{1,...,n−2}
I=J∪{n}
xI∈C(S)

(−1)|J |+1HB(xB ⊆+ xBI ) ◦ Qσ(xI) ◦ HA(xAI
−⊇ xA)

+
∑

J⊆{1,...,n−2}
I=J∪{n−1,n}
xI∈C(S)

(−1)|J |+2HB(xB ⊆+ xBI ) ◦ Qσ(xI) ◦ HA(xAI
−⊇ xA)

= dσ(x;x1, . . . , xn−1)

Even though both sums do not use exactly use the same index I, I = J ∪ {n} for the
first and I = J ∪ {n − 1, n} for the second), we know that xJ∪{n} = xJ∪{n−1,n} so
every term of one sum is cancelled by the corresponding term of the other sum. □

Lemma 5.3.5. If n > 0 then

dσ(x;x1, . . . , xn) = dσ(x;x1, . . . , xn−1)−
(

HB(xB ⊆+ xBn )

◦dσ
(

xn;

{

xi ∪ xn
∣

∣

∣

∣

∣

1 ≤ i ≤ n− 1
xi ∪ xn ∈ C(S)

})

◦ HA(xAn
−⊇ xA)

)

Proof. We consider dσ(x;x1, . . . , xn) and split the sum in two, one containing all the
terms of dσ(x;x1, . . . , xn−1), and the other containing the remaining ones. We note
that the remaining ones are all pre-composed with

HA(xAI
−⊇ xA) = HA(xAI

−⊇ xAn ) ◦ HA(xAn
−⊇ xA)

and post-composed with

HB(xB ⊆+ xBI ) = HB(xB ⊆+ xBn ) ◦ HB(xBn ⊆+ xBI )

So we can use linearity of the composition and factor HA(xAn
−⊇ xA) and HB(xB ⊆+

xBn ). The sum at the middle is then exactly the expected drop. □
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Lemma 5.3.6. If there exists 1 ≤ i ≤ n such that xi = x, then dσ(x;x1, . . . , xn) = 0

Proof. Since we can reorder the xk, we can consider without loss of generality that
i = n. We use Lemma 5.3.5 and obtain:

dσ(x;x1, . . . , xn) = dσ(x;x1, . . . , xn−1)
− HB(xB ⊆+ xB) ◦ dσ (x; {xi | 1 ≤ i ≤ n− 1}) ◦ HA(xA −⊇ xA)
= 0

□

Lemma 5.3.7. If x ⊆+ x′
n ⊆+ xn, then

dσ(x;x1, . . . , xn) = dσ(x;x1, . . . , x
′
n) +

(

HB(xB ⊆+ x′B
n )

◦dσ
(

x′
n;

{

xi ∪ x′
n

∣

∣

∣

∣

∣

1 ≤ i ≤ n
xi ∪ x′

n ∈ C(S)

})

◦ HA(x′A
n

−⊇ xB)

)

Proof. We use Lemma 5.3.4 and obtain that the drop dσ(x;x1, . . . , x
′
n) is equal to the

drop dσ(x;x1, . . . , xn, x
′
n). We then use Lemma 5.3.5 to decompose dσ(x;x1, . . . , xn, x

′
n)

into dσ(x;x1, . . . , xn) minus dσ(x′
n, {xi ∪ x′

n}) pre and post-composed by some H(−).
This is equivalent to the expected equation. □

If we iterate the use of Lemma 5.3.7, we obtain that dσ(x;x1, . . . , xn) decomposes as
a sum of drop of one-step extensions, composed with some morphisms obtained by H.
Formally, we obtain the following proposition.

Proposition 5.3.8. If for all y−⊂+y1, . . . , ym, we have dσ(y; y1, . . . , ym) ⊒ 0, then for all
x ⊆+ x1, . . . , xn, we have dσ(x;x1, . . . , xn) ⊒ 0.

5.3.5 The Drop Condition
We now take σ and τ two quantum strategies from A to B and B to C, so satisfying the
obliviousness and drop condition, and look at τ ⊛ σ. We define the quantum valuation of
the interaction as follows, using the fact that every configuration of T ⊛ S can be written
as y ⊛ x with y ∈ C(T ) and x ∈ C(S), as per Proposition 4.3.3.

Qτ⊛σ(y ⊛ x) := Qτ (y) ◦ Qσ(x) ∈ CPM(HA(xA),HC(yC))

We assign polarities on T ⊛ S as follows:

pT⊛S(e) :=















pA⊥(a) if (τ ⊛ σ)(e) = a ∈ A
⊕ if (τ ⊛ σ)(e) = b ∈ B
pC(c) if (τ ⊛ σ)(e) = c ∈ C
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As already mentioned in the previous chapter, to properly define the polarity of T ⊛ S,
one should add a third polarity, the neutral polarity 0, and take pT⊛S(e) = 0 whenever
(τ ⊛ σ)(e) = b ∈ B. In the presence of a neutral polarity, the obliviousness condition still
applies only to negative extensions, while the drop condition applies to all non-negative
extensions. So within the context of this proof, neutral events and positive events are
treated the same way.

We consider z−⊂+z1, . . . , zn ∈ C(T ⊛ S), writing z = y ⊛ x and zi = yi ⊛ xi. Each of
those one-step extensions is either positive in S or positive in T . Up to reordering, we have
0 ≤ k ≤ n such that

∀1 ≤ i ≤ k, x−⊂+xi and either y−⊂−yi or y = yi

∀k < i ≤ n, y−⊂+yi and either x−⊂−xi or x = xi

The following lemma is the core of the proof of preservation of the drop condition by
interaction.

Lemma 5.3.9. We have dτ (y; yk+1, . . . , yn) ◦ dσ(x;x1, . . . , xk) = dτ⊛σ(z; z1, . . . , zn)

Proof. For I ⊆ {1, . . . , k} and J ⊆ {k + 1, . . . , n} we have

zI∪J ∈ C(T ⊛ S) ⇐⇒ xI ∈ C(S) and yJ ∈ C(T )

Indeed, zI∪J is a configuration if and only if both yI∪J and xI∪J are configurations and
zI∪J = yI∪J ⊛ xI∪J . Using race-freeness of the games, yBI∪J = xBI∪J are configurations
if and only if yBJ and xBI are configurations. Using receptivity, yI∪J and xI∪J are
configurations if and only if yBJ and xBI are configurations. For I ⊆ {1, . . . , k} and
J ⊆ {k + 1, . . . , n} we have

Qτ (yJ) ◦ HB(yBJ
−⊇ yB) ◦ HB(xB ⊆+ xBI ) ◦ Qσ(xI)

(functoriality of H)
= Qτ (yJ) ◦ HB(yBJ ⊆+ yBJ ∪ xBI ) ◦ HB(yBJ ∪ xBI −⊇ xBI ) ◦ Qσ(xI)

(obliviousness of Qτ and Qσ)
= Qτ (yI∪J) ◦ Qσ(xI∪J)

(definition of Qτ⊛σ)
= Qτ⊛σ(yI∪J ⊛ xI∪J)
= Qτ⊛σ(zI∪J)

This means that



152 CHAPTER 5. QUANTUM CONCURRENT GAMES

(

∑

J⊆{k+1,...,n}
yJ ∈C(T )

(−1)|J | HC(yC ⊆+ yCJ ) ◦ Qτ (yJ) ◦ HB(yBJ
−⊇ yB)

)

◦
(

∑

I⊆{1,...,k}
xI∈C(S)

(−1)|I| HB(xB ⊆+ xBI ) ◦ Qσ(xI) ◦ HA(xAI
−⊇ xA)

)

=

(

∑

I⊆{1,...,k}
xI∈C(S)

∑

J⊆{k+1,...,n}
yJ ∈C(T )

(−1)|I|+|J | HC(yC ⊆+ yCJ ) ◦ Qτ (yJ) ◦ HB(yBJ
−⊇ yB)

◦HB(xB ⊆+ xBI ) ◦ Qσ(xI) ◦ HA(xAI
−⊇ xA)

)

=

(

∑

I⊆{1,...,k}
J⊆{k+1,...,n}
xI∪J ∈C(S)
yI∪J ∈C(T )

(−1)|I|+|J | HC(yC ⊆+ yCJ ) ◦ Qτ⊛σ(zI∪J) ◦ HA(xAI
−⊇ xA)

)

Or, in other words:

dτ (y; yk+1, . . . , yn) ◦ dσ(x;x1, . . . , xk) = dτ⊛σ(z; z1, . . . , zn) □

Lemma 5.3.10. If σ : A 7→ B and τ : B 7→ C are quantum strategies, and τ ⊙ σ with the
quantum valuation Qτ⊙σ(y⊙x) = Qτ (y)◦Qσ(x) satisfies normalisation and obliviousness,
then it satisfies the drop condition.

Proof. Lemma 5.3.9, together with the fact that the composition of completely positive
maps is completely positive, states that since σ and τ satisfy the drop condition, then
τ ⊛ σ satisfies the drop condition for one-step extensions. Using Proposition 5.3.8 it
follows that τ ⊛ σ satisfies the drop condition. We then note that whenever (x, y) are
a minimal matching pair of configurations, then Qτ⊛σ(y ⊛ x) = Qτ⊙σ(y ⊙ x). So for
(y ⊙ x) ⊆+ (y1 ⊙ x1), . . . , (yn ⊙ yn) we have

dτ⊙σ(y ⊙ x; y1 ⊙ x1, . . . , yn ⊙ xn) = dτ⊛σ(y ⊛ x; y1 ⊛ x1, . . . , yn ⊛ xn)

(And since we put positive polarities on events at the middle of T ⊛ S, all the y ⊛ x ⊆
yi ⊛ xi are positive extensions). So τ ⊙ σ satisfies the drop condition too. □

5.3.6 The Category of Quantum Games and Strategies
Proposition 5.3.11. For σ : A 7→ B and τ : B 7→ C two quantum strategies, we define

Qτ⊙σ(y ⊙ x) := Qτ (y) ◦ Qσ(x)

The strategy τ ⊙ σ together with the valuation Qτ⊙σ(y ⊙ x) is a quantum strategy.
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Proof. The drop condition follows from Lemma 5.3.10. The normalisation is trivially
true. We need to prove obliviousness.

We consider y⊙x ⊆− y′⊙x′ ∈ C(T ⊙S), then using Lemma A.1.4, we obtain that
y ⊆− y′ and x ⊆− x′, with all the extensions being on the A⊥ and C side (and none
on the B side). Using obliviousness, we have Qσ(x′) = Qσ(x) ◦ HA(xA ⊆+ x′

A) and
Qτ (y′) = HC(y′

C ⊇− yC) ◦ Qτ (y). It follows that we have Qτ⊙σ(y′ ⊙ x′) = HC(y′
C ⊇−

yC) ◦ Qτ⊙σ(y ⊙ x) ◦ HA(xA ⊆+ x′
A). □

Theorem 5.3.12. Quantum games and strategies, up to isomorphism, form a CpCC
(QStrat, ∥,∅, (_)⊥).

The bifunctor ∥ is given by Qσ∥τ (x ∥ y) := Qσ(x)⊗Qτ (y). This theorem simply follows
from the fact that both Strat and CPM are CpCCs.

5.3.7 The Polarised Quantum Valuation
As CPM is a compact closed category, we can move Hilbert spaces from the domain to
the codomain of the quantum valuation, or vice-versa. More explicitly:

Definition 5.3.13. We take σ : A 7→ B a quantum strategy. For x ∈ C(S), we write
σ x = x− ⊔ x+ with x− containing only negative events, and x+ only positive ones. We
define Q−,+

σ (x) ∈ CPM(HA∥B⊥(x−),HA⊥∥B(x+)) from Qσ(x) using the compact closure
of CPM.

We put the emphasis on the fact that the domain of the valuation uses HA∥B⊥ while
the codomain uses HA⊥∥B, which is its dual. Looking back at the example from Fig. 5.5,
we obtain the following

(qbℓ)−
Q∗ < x (qbℓ)−

Q∗ , ⋆
+
0 ∈ x (qbℓ)−

Q∗ , ⋆
+
1 ∈ x (qbℓ)−

Q∗ < x

Q(x) id1 z 7→
(

z 0
0 0

)

z 7→
(

0 0
0 z

)

z 7→
(

z 0
0 z

)

Q−,+(x) id1

(

a b
c d

)

7→ a

(

a b
c d

)

7→ d

(

a b
c d

)

7→ a+ d

When looking at Q−,+, we directly observe the CPM morphism corresponding to the
operation behaviour, here a measurement. The fact that this measurement is under a λ-
abstraction in the term tQ is no longer observable in Q−,+. Though this information is not
lost as it is contained in the fact that the event (qbℓ)−

Q∗ is at the right hand side of the
game.

A similar definition QX,Yσ could be made for any partition σ x = X ⊔ Y , but we focus
on Q−,+

σ as it has a very interesting property described in Theorem 5.3.15. We first note
it satisfies properties of normalisation, obliviousness and drop condition similar to the
quantum valuation Qσ.
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Proposition 5.3.14. For σ : A 7→ B a quantum strategy, Q−,+
σ satisfies normalisation,

obliviousness, and the drop condition. Formally, if for any x ∈ C(S) we write σ x = x−⊔x+,
then we have

Normalisation Q−,+
σ (∅) = idCPM

1

Obliviousness x ⊆− x′ =⇒ Q−,+
σ (x′) = Q−,+

σ (x) ◦ HA∥B⊥(x− ⊆+ x′−)

Drop condition x ⊆+ x1, . . . , xn =⇒ d−,+
σ (x;x1, . . . , xn) is defined in CPM, where

d−,+
σ (x;x1, . . . , xn) := Q−,+

σ (x)−
∑

∅,I⊆{1,...,n}
xI∈C(S)

(−1)|I|−1HA⊥∥B(x+ ⊆+ x+
I ) ◦ Q−,+

σ (xI)

and xI :=
∪

i∈I xi.

Moreover, for σ : A 7→ B a strategy, and Q a function satisfying the above conditions, there
exists a unique quantum strategy σ such that Q−,+

σ = Q.

The proof is immediate from the compact closure of CPM. Looking back again to the
example from Fig. 5.5 and the Q−,+ we described above, we note that Q−,+(x) is always a
superoperator in this example, in contrast with Q which might not be. We can prove this
is always the case.

Theorem 5.3.15. For σ : A 7→ B a quantum strategy, Q−,+
σ (x) is always a superoperator,

i.e., ∀x ∈ C(S),Q−,+
σ (x) ∈ CPM≤1(HA∥B⊥(x−),HA⊥∥B(x+)).

Proof. We have Q−,+
σ (∅) ∈ CPM≤1. If x ⊆− x′ and Q−,+

σ (x) ∈ CPM≤1, using
obliviousness we obtain

Q−,+
σ (x′) = Q−,+

σ (x) ◦ (idH
A∥B⊥ (x′−) ⊗TrH

A∥B⊥ (x′−\x−)) ∈ CPM≤1

If x ⊆+ x′ and Q−,+
σ (x) ∈ CPM≤1, using the drop condition we obtain

Q−,+
σ (x)− (idH

A⊥∥B
(x′+) ⊗TrH

A⊥∥B
(x′+\x+)) ◦ Q−,+

σ (x′) ∈ CPM

=⇒ Tr ◦ Q−,+
σ (x′) ⊑ Tr ◦ Q−,+

σ (x)

So Q−,+
σ (x′) ∈ CPM≤1. □

As stated earlier, superoperators correspond to “physically realisable operations” ob-
tained from creation, measurement and unitary primitives. Theorem 5.3.15 shows that our
model of quantum computation only uses valuations that correspond to actually plausible
quantum operations. This contrasts with the quantum relational model, where while we
could express a similar notion of “valuation from negative to positive”, this is not always a
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superoperator, and it being a superoperator is not preserved under relational composition.
In fact, we observe a similar behaviour with strategies: if we only required strategies to
be such that Q−,+ was a superoperator (instead of normalisation, obliviousness and drop
condition), this condition would not be preserved under interactive composition. What is
preserved is the much stronger triple “normalisation, obliviousness and drop condition”,
which relies on the causal structure of the strategy, information absent from the relational
model.

Lastly, we note that probabilistic strategies were a special case of quantum strategies:

Proposition 5.3.16. We have a full and faithful functor from PStrat to QStrat which
preserves all the structure.

Proof. For A a game, we associate to each of its events the Hilbert space 1. We note
that (_)⊥ is preserved by the functor, but only up to the natural isomorphism between
1 and 1∗. For σ : A 7→ B a probabilistic strategy, we define Q−,+

σ (x) := vσ(x) · id1.
This is faithful by definition. Fullness follows from Theorem 5.3.15 and the fact that
CPM≤1(1,1) � [0, 1]. □

5.4 Payoff Games and Winning Strategies

In this section, we introduce a notion of payoff on games, and winner on strategies. They
have two purposes

1. Defining the set of configurations of a strategy that are acceptable stopping points of
a computation. In some ways, those correspond to “observable” configurations, and
will be used to characterise the observational equivalence of QΛ in the proof of full
abstraction. Those correspond to points of the web of the relational model.

2. Enforcing strict linearity when interpreting LQΛ.

We note that the first purpose can also be fulfilled through Question/Answer anno-
tations on events and a well-bracketing restriction on strategies as in [Cas17], defining
those acceptable stopping points as “every question has been answered”. In this thesis,
as the notion of payoff tackles both the problem of strict linearity and the problem of
stopping points, we have no need for Questions/Answers annotations and well-bracketing.
The notions of payoff we use here comes from [Mel05].

Definition 5.4.1. A quantum payoff game is a quantum game A together with a payoff
function κA : C(A)→ {−1, 0,+1}. We define the payoff for the empty game ∅ as κ∅(∅) :=
0. A quantum payoff strategy is a quantum strategy between two quantum payoff games.
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Configurations of payoff +1 are said to be winning (for Player), configurations of payoff
−1 are said losing (for Player), and those of payoff 0 are said drawing, and are considered
“acceptable stopping point for a play”. For example, the payoff game for 1⊸ 1 is:

(LQΛ) 1 ⊸ 1 κ(∅) = −1

λ+

❂yy� ⑥⑥⑥⑥
κ({λ+}) = 1

⋆−

✏ ##+PPPPPPPPP κ({λ+, ⋆−}) = −1

⋆+ κ({λ+, ⋆−, ⋆+}) = 0

In this game, the payoff constrains Player and Opponent to continue playing until the
end. This represents a strictly linear behaviour, as the function described by the game
is forced (under penalty of losing) to be called by Opponent at some point. Conversely,
the following game describes an affine function, i.e., a function that can remain unused if
Opponent wishes so:

(AQΛ) 1 ⊸ 1 κ(∅) = −1

λ+

❂yy� ⑥⑥⑥⑥
κ({λ+}) = 0

⋆−

✏ ##+PPPPPPPPP κ({λ+, ⋆−}) = −1

⋆+ κ({λ+, ⋆−, ⋆+}) = 0

When considering the parallel composition A ∥ B of games, a choice arises for the
payoff: should a winning configuration be winning in both A and B, or in at least one of
them? This choice splits ∥ into two different monoidal structures.

Definition 5.4.2. We define two bifunctors &and ⊠ on quantum payoff games and strate-
gies as follows.

• A

&

B and A ⊠B have A ∥ B as their underlying quantum game.

• κA

&

B(x ∥ y) and κA⊠B(x ∥ y) are computed from κA(x) and κB(y) as in Fig. 5.7.

• the quantum payoff strategies σ &

τ and σ ⊠ τ are simply obtained as the quantum
strategy σ ∥ τ from QStrat.

We extend (_)⊥ to quantum payoff games with κA⊥(x) := −κA(x).
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& -1 0 +1
-1 -1 -1 +1
0 -1 0 +1

+1 +1 +1 +1

⊠ -1 0 +1
-1 -1 -1 -1
0 -1 0 +1

+1 -1 +1 +1

Figure 5.7: Payoff functions for the parallel composition

1 ⊸ 1 ⊢L 1 ⊸ 1

λ−

❀xx� ④④④④
λ+

❀xx� ④④④④

⋆+

✑ $$,◗◗◗◗◗◗◗◗◗ ⋆−

✑ $$,◗◗◗◗◗◗◗◗◗

⋆− ⋆+

κ(x) =















1 if x = y ∥ z with y = ∅ or y = {λ−, ⋆+} or z = {λ+}
0 if x = {λ−, ⋆+, ⋆−} ∥ {λ+, ⋆−, ⋆+}
−1 otherwise

Figure 5.8: Example of a payoff game.

We note that (A
&

B)⊥ = A⊥ ⊠B⊥. We use the notation ⊠ instead of the usual ⊗, as
we reserve ⊗ for the monoidal product corresponding to the ⊗ of the QRel language.

For example, the game representing 1 ⊸ 1 ⊢L 1 ⊸ 1, which we compute as A⊥ &

A
with A the game for 1 ⊸ 1, is described in Fig. 5.8. Similarly, the game representing its
affine counterpart 1⊸ 1 ⊢A 1⊸ 1 is represented in Fig. 5.9.

Definition 5.4.3. A winning quantum strategy σ from a quantum payoff game A to a
quantum payoff game B is a quantum payoff strategy σ : A 7→ B such that for all x ∈ C(S)
⊕-covered, i.e., all its maximal events are positive, we have κA⊥

&

B(σ(x)) ≥ 0.

Configurations that are ⊕-covered must be understood as configurations where Player
saw and reacted to all Opponent moves. They are a rough equivalent in concurrent games
of “after a Player move” from sequential games. For example, in Fig. 5.10, the two strate-
gies represent terms that are typed in LQΛ, so they are winning3. Formally, on the left the
configurations {λ−, ⋆+} and {λ−, ⋆+, ⋆−, λ+} have payoff 1 in the game, and the configu-
rations {λ−, ⋆+, ⋆−, λ+, ⋆−, ⋆+} have payoff zero, so all the ⊕-covered configurations have
non-negative payoff. On the right, there is no ⊕-covered configuration so all the ⊕-covered
configurations have non-negative payoff. As another example, in Fig. 5.11, the strategies
correspond to terms that are not well-typed in LQΛ. In both strategies, the configuration

3In fact, we will only use winning strategies to interpret terms of LQΛ and AQΛ.
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1 ⊸ 1 ⊢A 1 ⊸ 1

λ−

❀xx� ④④④④
λ+

❀xx� ④④④④

⋆+

✑ $$,◗◗◗◗◗◗◗◗◗ ⋆−

✑ $$,◗◗◗◗◗◗◗◗◗

⋆− ⋆+

κ(x) =



































1 if x = y ∥ z with y = ∅ or y = {λ−, ⋆+}

0 if x = y ∥ z with















y = {λ−} or y = {λ−, ⋆+, ⋆−}
and
z = {λ+} or z = {λ+, ⋆−, ⋆+}

−1 otherwise

Figure 5.9: Example of payoff game.

{λ−, λ+} is ⊕-covered and has payoff −1. However, if instead we considered them as terms
of AQΛ, i.e., considered the strategies τ0 and τ1 on the game for 1 ⊸ 1 ⊢A 1 ⊸ 1 instead
of 1 ⊸ 1 ⊢L 1 ⊸ 1, then both strategies would be winning as {λ−, λ+} would now have
payoff 0. This is one of the few differences when interpreting AQΛ and LQΛ: the game
for A⊸ B does not have the same payoff on the singleton configuration {λ+}, as in AQΛ
Opponent can choose not to call the the function and stop at {λ+} on a tie (payoff 0) while
in LQΛ Opponent must call the function or lose (payoff 1).

Quantum payoff games and winning strategies, up to isomorphism, form a category.
Indeed, as shown below copy-cat satisfies the winning condition, and this winning condition
is preserved under interactive composition.

Lemma 5.4.4. The copy-cat strategy is winning.

Proof. We consider ccA : A 7→ A with A a quantum payoff game. We consider x ∈ CCA,
and we recall that we have x = y ∥ z. Using Lemma A.2.3, we know that if x is ⊕-
covered then y = z. In particular, we have κA⊥(y) = −κA(z), meaning they are either
both 0, or −1 and +1, and in both cases their &is non-negative. It follows that if x
is ⊕-covered, then κA⊥

&

A(σ x) ≥ 0. □

To show that the winning condition is preserved under interactive composition, we
start by recalling that Lemma A.2.1 proves that ⊕-coveredness is well-behaving with the
interactive composition: a configuration y⊙ x is ⊕-covered if and only if both y and x are
⊕-covered.

Lemma 5.4.5. The interactive composition of two winning quantum strategies is winning.
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1 ⊸ 1 ⊢L 1 ⊸ 1

✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤ 1 ⊸ 1 ⊢L 1 ⊸ 1

λ−

❋}}� ✝✝✝✝✝✝②
✝

✑

λ+

❋}}� ✝✝✝✝✝✝②
✝

✑

λ−

⋆+

✡ ��)❏❏❏❏❏❏❏❏❏❏❂
❇

❋
❏ ◆ ◗

⋆−

✡ ��)❏❏❏❏❏❏❏❏❏❏❂
❇

❋
❏ ◆ ◗

⋆−

✲ 33:

⋆+

Quantum valuations

Qσ0(x) = id1 Qσ1(y) = id1

Terms represented

f : 1⊸ 1 ⊢L f ();λ().() : 1⊸ 1 f : 1⊸ 1 ⊢L⊥ : 1⊸ 1

Figure 5.10: Two winning strategies σ0 (left) and σ1 (right)

Proof. We consider σ : A 7→ B and τ : B 7→ C. We take y ⊙ x ∈ C(T ⊙ S) ⊕-covered.
By Lemma A.2.1, we have x and y ⊕-covered too. It means that κA⊥

&

B(σ x) ≥ 0
and κB⊥

&

C(τ y) ≥ 0. We write σ x = xA ∥ xB and τ y = yB ∥ yC . Looking at the
definition of &, and noting that κB⊥(yB) = −κB(xB), we remark the following:

κA⊥(xA) < 0 =⇒ κB(xB) > 0
=⇒ κB⊥(yB) < 0
=⇒ κC(yC) > 0
=⇒ κA⊥

&

C(xA ∥ yC) > 0

κA⊥(xA) = 0 =⇒ κB(xB) ≥ 0 (and κA⊥(xA) = 0)
=⇒ κB⊥(yB) ≤ 0 (and κA⊥(xA) = 0)
=⇒ κC(yC) ≥ 0 (and κA⊥(xA) = 0)
=⇒ κA⊥

&

C(xA ∥ yC) ≥ 0

κA⊥(xA) > 0 =⇒ κA⊥

&

C(xA ∥ xC) > 0

So we always have κA⊥

&

C(xA ∥ xC) ≥ 0. □

Proposition 5.4.6. Quantum payoff games and winning quantum strategies, up to iso-
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1 ⊸ 1 ⊢L 1 ⊸ 1

✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤ 1 ⊸ 1 ⊢L 1 ⊸ 1

λ− ✤ ,,2λ+

❋}}� ✝✝✝✝✝✝②
✝

✑

λ−

❋}}� ✝✝✝✝✝✝②
✝

✑

✤ ,,2λ+

❋}}� ✝✝✝✝✝✝②
✝

✑
⋆−

✡ ��)❏❏❏❏❏❏❏❏❏❏❂
❇

❋
❏ ◆ ◗

⋆+

✡ ��)❏❏❏❏❏❏❏❏❏❏❂
❇

❋
❏ ◆ ◗

3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s
⋆−

✡ ��)❏❏❏❏❏❏❏❏❏❏❂
❇

❋
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Quantum valuations

Qτ0(x) = id1 Qτ1(y) =

{

id1 whenever |y| ≤ 1
1
2 id1 otherwise

Terms represented

f : 1⊸ 1 ̸⊢L λ().() : 1⊸ 1 f : 1⊸ 1 ̸⊢L
(

1

2
f() +

1

2
()

)

;λ().() : 1⊸ 1

Figure 5.11: Two non-winning strategies τ0 (left) and τ1 (right)
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morphism, form two SMCs (QCG,

&

,∅) and (QCG,⊠,∅). In fact, (QCG, ∥,⊠,∅, (_)⊥)
forms a linearly distributive category with negation, so a ⋆-autonomous category in light of
their equivalence.

5.5 The Freyd Category of Quantum Arenas and Strategies

5.5.1 The Category QA
In order to build a semantics for QΛ, we first prove that we have a denotational model
for Λ. For that, we just need to show that quantum games and strategies form a non-
trivial distributive CFC with a bottom. We place ourselves in a subcategory of games and
strategies, where we choose to only consider games that are well-formed, which we call
arenas.

Definition 5.5.1. A quantum arena A is a quantum payoff game which is:

Positive All its minimal events are positive.

Well-opened All its minimal events are in pairwise conflict.

Forest-like Whenever a ≤A b ≥A a′, we have a ≤A a′ or a ≥A a′.

Initially Losing κA(∅) = −1

It is said to be affine if moreover for every minimal event e, the payoff of {e} is 0. A
quantum strategy σ : A 7→ B between quantum arenas is said to be

Negative if the minimal events of S are negative. We note that they are necessarily sent
to A⊥ per σ.

Thunkable if it is negative and for every minimal event m− of S, there exists a unique
event m+, called runner-up, such that m− _S r

+. Moreover, it satisfies:

σ(r) ∈ B and dσ({m}; {m, r}) = 0

Visible if it satisfies Definition 6.2.2.

Thunkable strategies are to be thought of as “answering immediately”, hence the
runner-up events being on the B side, “answering only one thing”, hence the uniqueness,
and “answering with probability one4”, hence the last condition. Negative strategies will
form the computation category of our Freyd category, while thunkable ones will form the
value category. In Fig. 5.12, we show the strategy σ0 for the term f() and the strategy τ0

4The formal equivalent of “the configuration x has probability one” is “Q−,+(x) is trace preserving”,
i.e., Tr ◦ Q−,+(x) = Tr.
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Quantum valuation:

Qσ0(x) = id1 Qτ0(y) = id1

Term represented:

f : 1⊸ 1 ⊢L f () : 1 ⊢L λx.x : (1⊸ 1)

Figure 5.12: A non-thunkable strategy σ0 (left) and a thunkable strategy τ0 (right)

for the term λx.x. The first term is not a value, and its strategy is not thunkable. The
second term is a value, and its strategy is thunkable.

Visible strategies are strategies that respect a certain notion of scope, and at a certain
point of the computation described by the strategy, Player can only use moves of the
games that are within the scope. In concurrent game semantics, non-visible strategies
usually correspond to strategies using shared memory as in [CCHW18]. We postpone
the definition of visibility to Section 6.2.1, as this property is only required to ensure the
absence of deadlocks, which we use in the proof of full abstraction.

Definition 5.5.2. We write QA for the category of quantum arenas and visible winning
negative quantum strategies. We write QAt for its subcategory restricted to thunkable
strategies. We write QAa and QAa

t for the full subcategories restricted to affine arenas.

We note that quantum arenas decompose in the following way:

• Minimal events are positive and in conflict.

• Each minimal event ai is “followed” by a negative forest-like quantum payoff game
Ai, i.e., the set of events {e > ai | e ∈ |A|} forms a negative forest-like quantum
payoff game Ai.

As such, we write the decomposition of quantum arenas A =
⊕

i∈I ↓(ai:Hi) Ai, where a+
i

are the minimal events, Hi = HA(ai), and Ai the negative games. The operation ↓ is
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A B
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· · ·

B1 B2

A ⊗ B
· · · /o/o/o (ai, bj)

+
Hi⊗Kj

❴��� ✡ ��)❏❏❏❏❏❏❏❏❏
/o/o/o · · ·

Ai Bj

Figure 5.13: The tensor ⊗ of two arenas

called positive shift, and corresponds to “adding a minimal positive events before every
other events”. The payoff of the empty configuration is always −1, and the payoff of other
configurations {ai} ⊔ x is given by κAi

(x).

5.5.2 The Premonoidal Tensor

We now define the operation ⊗. This operation is similar to ⊠, except that instead of
putting in parallel the two arenas, it synchronises the minimal events together. This
construction is familiar from call-by-value games [HY97], and matches the fact that a
value on A⊗B is a pair of values.

Definition 5.5.3. We define the quantum arena 1 as ↓(⋆:1) ∅. For A and B two quantum
arenas, we define A⊗B as in Fig. 5.13. Formally:

A =
⊕

i∈I ↓(ai:Hi) Ai
B =

⊕

j∈J ↓(bj :Kj) Bj
A⊗B :=

⊕

(i,j)∈I×J ↓((ai,bj):(Hi⊗Kj)) (Ai ⊠Bj)

We want to extend this operation ⊗ to strategies, so as to obtain premonoidal product
of an SFC. For σ : A 7→ B and σ′ : A′ 7→ B′, we want to define a strategy from A ⊗ A′

to B ⊗B′. Following the premonoidal structure (Section 1.2.1), we must provide functors
C ⊗_ and _⊗ C for any object C, then

• we can use the left-then-right tensor σ ⊗ℓ σ′ := (σ′ ⊗B)⊙ (A⊗ σ), or

• we can use the right-then-left tensor σ ⊗r σ′ := (B′ ⊗ σ)⊙ (σ′ ⊗A), or
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Figure 5.14: The strategies σ0 ⊗ℓ σ0 (left) and σ0 ⊗r σ0 (right)
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Figure 5.15: The strategies σ0 ⊗ τ0 (left) and σ0 ⊗p σ0 (right)

• if any of the two σ and σ′ comes from the value category, i.e., is thunkable, then
both ⊗ℓ and ⊗r coincide and we can write σ ⊗ σ′ unambiguously.

In Fig. 5.14, we give an example of a case where ⊗ℓ and ⊗r differ: both are tensors
of σ0 from Fig. 5.12 with itself, and the first one starts by exploring the left hand side of
the game while the second one starts by exploring the right hand side of the game. To
illustrate the third item, we show on the left hand side of Fig. 5.15 the tensor of σ0 and
τ0. Notice that the second move of τ0, which is the first move playing on the game for 1,
is postponed so that it synchronised with the fourth move of σ0, which is the first move
playing on the game for 1⊸ 1. Since τ0 is thunkable, there is no ambiguity between which
of σ0 and τ0 gets to act first and explore its side of the game, as τ0 has “nothing to do”
before the event (⋆, λ)+.

To define the SFC, instead of defining first the functors C ⊗_ and _⊗C as expected,
we will use a structure stronger5 than the notion of premonoidal category: the notion

5Stronger in the sense that the parallel tensor generates a premonoidal category, but not all premonoidal
categories have a parallel tensor.
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of parallel tensor. Indeed, while premonoidal products come with a notion of evaluation
order left-then-right ⊗ℓ and right-then-left ⊗r, in our concrete case, taking advantage of
parallelism in our strategies, we have a third evaluation order ⊗p which is symmetric:

(σ ⊗p σ′) ◦ brA′,A � brB′,B ◦ (σ′ ⊗p σ)

and while it is not a bifunctor (as illustrated below), it still satisfies a property that we call
semi-bifunctoriality. This property implies that τ⊗p_ is functorial whenever τ is thunkable,
meaning that C⊗_ := idC⊗p_ and its symmetric _⊗C are two functors, hence generates
a premonoidal category. Moreover, this semi-bifunctoriality implies that all the thunkable
morphisms are in the centre of the premonoid, hence generates an SFC. To our knowledge,
this property does not appear in the literature. The property of symmetry means that
σ ⊗p τ “executes” both σ and τ in parallel. While we do not study parallel evaluation
orders in this thesis, we conjecture that this parallel tensor can be used to build a model
of QΛ where the reductions are not constrained to be left-then-right or right-then-left.

The idea behind ⊗p is to consider σ ⊠ σ′, and then to synchronise the minimal events
of A ⊠ A′ in order to obtain A ⊗ A, and the minimal events of B ⊠ B′ in order to obtain
B ⊗ B′. On the right hand side of Fig. 5.15 we describe this third way to tensor σ0 with
itself which is neither σ0 ⊗ℓ σ0 nor σ0 ⊗r σ0, as it runs both copies of σ0 in parallel. We
note that ⊗p is clearly not bifunctorial even in this simple example, as

σ0 ⊗ℓ σ0 := (cc1 ⊗p σ0) ◦ (σ0 ⊗p cc1⊸1) , σ0 ⊗p σ0 , (σ0 ⊗cc1) ◦ (cc1⊸1 ⊗p σ0) =: σ0 ⊗r σ0

Even though ⊗p is not bifunctorial, it still satisfies the bifunctoriality equations in some
circumstances, like the following (recalling that τ0 is thunkable):

(τ0 ⊗ τ0)⊙ (σ0 ⊗p σ0) � (τ0 ⊙ σ0)⊗p (τ0 ⊙ σ0)

This is what we call the semi-bifunctoriality. We illustrate it in Fig. 5.16. From a term
perspective, this means that we can identify the term (f();λx.x⊗ f();λx.x) with the term
(f()⊗ f()); (λx.x⊗ λx.x).

To formally define this ⊗p, we introduce some terminology: for σ : A 7→ B a negative
quantum strategy, a configuration x ∈ C(S) is either

Empty if it is ∅.

Pre-Value if it is non-empty and it does not contain any s ∈ x such that σ(s) ∈∥ min(B)
(i.e., σ(S) ∈ ∅ ∥ min(B)).

Post-Value if it does contain a s ∈ x such that σ(s) ∈∥ min(B). This event is called the
value-event of x.

If additionally τ : C 7→ D is a negative quantum strategy, we say that x ∈ C(S) and
y ∈ C(T ) are synchronised if they are either both empty, both pre-value, or both post-
value.
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Figure 5.16: The strategy (τ0 ⊗ τ0)⊙ (σ0 ⊗p σ0) � (τ0 ⊙ σ0)⊗p (τ0 ⊙ σ0)

Proposition 5.5.4 (Parallel Tensor of Strategies). For σ : A 7→ B and σ′ : A′ 7→ B′ two
negative quantum strategies, there exists a necessary unique (up to isomorphism) negative
quantum strategy σ ⊗p σ′ such that its configurations z ∈ C(S ⊗p S′) correspond to pairs
written x ⊗p x′ of synchronised configurations x ∈ C(S) and x′ ∈ C(S′), and its quantum
valuation is:

Qσ⊗pσ′(x⊗ x′) = Qσ(x)⊗Qσ′(x′)

Proof. We first note than in a game A⊗A′, every event e has a unique minimal event
(m,m′) smaller than it. Additionally, every event e of A⊗A′ canonically corresponds
to an event of A or A′, or both if it is minimal. We generalise the notation (m,m′) to
events that are not minimal: for e an event greater than a minimal event (m,m′) ∈
|A ⊗ A′|, we write e = (m,a′) if e corresponds to a′ , m′ in A′, and we write e =
(a,m′) if e corresponds to a , m in A. This builds a bijection between |A ⊗ A′| and
{(a, a′) ∈ |A| × |A′| | either a or a′ is minimal}.

We define σ ⊗p σ′. We say that an event e ∈ |A ⊗ A′| is pre-value or post-value
whenever the configuration [e] is pre-value or post-value.

• |S ⊗p S′| =



















(s, s′) ∈ |S| × |S′|

∣

∣

∣

∣

∣

∣

∣

∣

∣

s pre-value, s′ ∈ min(S′) or
s ∈ min(S), s′ pre-value or
s post-value, σ′(s′) ∈ min(B′) or
σ(s) ∈ min(B), s′ post-value



















• σ ⊗p σ′ : (s, s′) ∈ S ⊗p S′ 7→ (σ(s), σ′(s′)) either in (A⊗A′)⊥ or in (B ⊗B′)

• (s, s′) ≤S⊗pS′ (t, t′) : s ≤S t and s′ ≤S′ t′

• ConS⊗pT = {Z | πℓ(Z) ∈ ConS , πr(Z) ∈ ConT }
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• Qσ⊗pσ′(z) = Qσ(πℓ(z))⊗Qσ′(πr(z))

The fact that configurations of C(S⊗p S′) correspond to synchronised pairs is a direct
verification. □

This operation satisfies the property of semi-bifunctoriality, which we detail in the
following proposition, and prove in Appendix B.1.

Proposition 5.5.5 (Semi-Bifunctoriality of the Parallel Tensor). For σ : A 7→ B, σ′ :
A′ 7→ B′, τ : B 7→ C and τ ′ : B′ 7→ C ′ two negative quantum strategies, we have the
semi-bifunctoriality of ⊗p, i.e., up to isomorphism

(τ ⊗p τ ′)⊙ (σ ⊗p σ′) � (τ ⊙ σ)⊗p (τ ′ ⊙ σ′)

whenever τ and τ ′ are thunkable, or σ and σ′ are thunkable.

We recall that ⊗p defined here is not a bifunctor.

Proposition 5.5.6. Quantum arenas and negative visible winning quantum strategies (up
to isomorphism), form an SFC (QA,QAt, id,⊗,1), with for value category the category
of quantum arenas and thunkable quantum strategies (up to isomorphism), and the Freyd
inclusion being the identity functor. If we restrict to affine objects, (QAa,QAa

t , id,⊗,1)
is an affine SFC, meaning that 1 is a terminal object of QAa

t .

Proof. First, we prove that (QA,⊗,1) is an SPC. We define A ⊗ σ as ccA ⊗p σ, and
similarly for σ ⊗ A. The braiding, associator, and unitors are easily built from the
braiding, associator and unitor of (QCG,⊠,∅), and the coherence diagrams deduced
from the ones of QCG. The semi-bifunctoriality ensures that thunkable maps are in
the centre of the SPC.

As for the affineness, we take a thunkable strategy σ : A 7→ 1. Minimal events of
S are negative. Using thunkability, runner-up events of S are positive and necessarily
sent to the unique event of 1 per σ. Using courtesy, second runner-up events of S,
i.e., events that have only two events lower, must be negative. However, there is no
negative event accessible after the runner-up events. It follows that configurations of
S cannot have more than two events. Using thunkability again, it follows that σ is
isomorphic to destrA : DA → A⊥ ∥ 1:

• |DA| = {a− | a ∈ min(A)} ⊔ {⋆+
a | a ∈ min(A)}

• C(DA) = {∅} ⊔ {{a} | a ∈ min(A)} ⊔ {{a, ⋆a} | a ∈ min(A)}

• QdestrA
(x) = TrHA(xA) □

When A is affine, this strategy is winning.
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5.5.3 The Freyd Closure
We now want to define the Freyd closure. We first define the arena A ⊸ B. As a first
approximation, a strategy on A ⊸ B should be the same as a strategy from A to B,
i.e., a strategy on A⊥ &

B. However, since we only consider negative strategies, there is
an implicit causal link from the minimal events of A to the minimal events of B. The
decomposition A =

⊕

i∈I ↓(ai:Hi) Ai can be dualised into A⊥ =
⊕

i∈I ↑(ai:H∗
i

) A
⊥
i , where ↑

represents the negative shift, i.e., adding a minimal negative event before than every other
event. This idea of A⊥ &

B with a causal link from the minimal events of A to the minimal
events of B can be formalised as:

L :=
⊕

i∈I
↑(ai:H∗

i
) (A⊥

i

&

B)

Unfortunately, L is not an arena, as its minimal events are negative. The solution is to add
a minimal event λ+. As explained in multiple prior examples, this minimal event λ+ can
be understood as “the function is defined and ready to be called” (which is an observable
event in call-by-value languages), the event a−

i can be understood as “the user calls the
function on input ai”, the following events of A⊥

i correspond to functions given by the
user that can be called by the program, and the events of B describe the outputs of the
function.

Definition 5.5.7. For A and B two quantum arenas, with A =
⊕

i∈I ↓(ai:Hi) Ai. We
define the quantum arena A⊸ B as in Fig. 5.17. Formally:

A⊸ B :=↓(λ:1)

⊕

i∈I
↑(ai:H∗

i
) (A⊥

i

&

B) with
κA⊸B(∅) = 0
κA⊸B({λ}) = 1
κA⊸B({λ, ai} ⊔X) = κA⊥

&

B({ai} ⊔X)

We then define A � B as A ⊸ B except that κA�B({λ}) = 0 instead of 1. The arena
A� B is affine, while A⊸ B is not.

Lemma 5.5.8. There is a union and intersection preserving bijection between the non-
empty configurations of x ∈ C(A ⊸ B) and the pairs of configurations (xA, xB) ∈ C(A) ×
C(B) such that xA = ∅⇒ xB = ∅. We write x = xA ⊸ xB.

Proof. For xA ∈ C(A) non-empty and xB ∈ C(B), we have a unique minimal event
ai ∈ xA. We take x = {λ} ⊎ {ai} ⊎ (xA\{ai} ∥ xB) ∈ C(A ⊸ B). This forms a union
and intersection preserving partial injection, which we extend into a bijection with
(∅,∅) 7→ {λ}. □

The difference between A ⊸ B and A � B is the payoff of {λ}. For the former, the
payoff is 1, hence the configuration is “winning”, so Opponent will not want to stop there
and will call the function whenever possible, hence strict linearity will be respected. For the
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A

(a1)+
H1

/o/o/o
1q 1q 0p 0p /o /o /o .n .n -m -m ,l

❴���

(a2)+
H2

/o/o/o

❴���

· · ·

A1 A2

A ⊸ B

λ+

✾ww� ②②②②②②②②②

· · · /o/o/o (ai)
−
H∗

i

❴���
✏ ##+PPPPPPPPPPPPPPP

/o/o/o · · ·

A⊥
i B

Figure 5.17: The linear arrow ⊸ of two arenas

latter, the payoff is 0, hence the configuration is a “tie”, so both Player and Opponent might
choose to stop here (and the function is never called), or continue and call the function,
hence describing an affine behaviour. When interpreting LQΛ, we will use A ⊸ B to
represent functions, while we will use A� B instead in AQΛ. We note that in [CdVW19],
we did not use any payoff function to interpret AQΛ, as we did not build a fully abstract
model.

The core property of ⊸ is the currying adjunction QA(A⊗ B,C) � QAt(A,B ⊸ C).
We describe in Figs. 5.18 and 5.19 the games for (A ⊗ B) 7→ C and A 7→ (B ⊸ C), and
give an example of currying in Fig. 5.20. In this example, the top strategy represents

f0 : qubit⊸ 1, f1 : 1⊸ qubit ⊢L f0 (f1 ()) : 1

and the bottom strategy represents

f0 : qubit⊸ 1 ⊢L λf1⊸qubit
1 .f0 (f1 ()) : 1

The main difference between the two is that the event (λ0, λ1)− is split into three events
λ−

0 , λ+ and λ−
1 .

Proposition 5.5.9. (QA,QAt, id,⊗,⊸,1) is a CFC. Similarly, (QAa,QAa
t , id,⊗,�,1)

is an affine CFC.

Proof. We want to prove that there is an adjunction

QA

B⊸_

88
⊥ QAt

_⊗B
yy

QA(A⊗B,C) � QAt(A,B ⊸ C)
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A⊗B 7→ C

· · · (ai, bj)
−
H∗

i
⊗K∗

j

o/ o/ o/

✹uu� ttttttttt

❴���

(ck)
+
Lk

❴���

/o/o/o · · ·

A⊥
i B⊥

j Ck

Figure 5.18: Game for (A⊗B) 7→ C.

A 7→ B ⊸ C

· · · (ai)
−
H∗

i

o/ o/ o/

❴���

λ+

❁yy� ⑤⑤⑤⑤⑤⑤⑤⑤⑤
· · ·

A⊥
i . . . (bj)

−
K∗

j

o/ o/ o/

✑ $$,◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗

❴���
B⊥
j (ck)

+
Lk

❴���

/o/o/o

Ck

Figure 5.19: Game for A 7→ (B ⊸ C).
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(qubit ⊸ 1) ⊗ (1 ⊸ qubit) ⊢L 1

(λ0, λ1)−
❅

▲
❯☞ !!)▲▲▲▲▲

✈
✈

✈
✈

✈
✈

✈
✈

✈
✈

✈
✈

⋆+
1

✓ %%,❙❙❙❙❙❙❙❙❙
▼ P ❙ ❱

(qb1)−
Q∗

★nnt ❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝

(qb0)+
Q

✓ %%,❙❙❙❙❙❙❙❙❙▲ P ❙ ❯ ❳ ❬⋆−
0

✜ **1❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭

⋆+

qubit ⊸ 1 ⊢L (1 ⊸ qubit) ⊸ 1

λ−
0

✕
✕

✕
✕

✕
✕

✕
✕

✕
✕

✕
✕

✜ **1❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭

λ+

✮qqx ✐✐✐✐✐✐✐✐✐✐✐✐✐✐❜❞❢✐❦♠♣
λ−

1♥
⑤

☞ ❁yy� ⑤⑤⑤

⋆+
1

✓ %%,❙❙❙❙❙❙❙❙❙
▼ P ❙ ❱

(qb1)−
Q∗

★nnt ❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝

(qb0)+
Q

✓ %%,❙❙❙❙❙❙❙❙❙▲ P ❙ ❯ ❳ ❬⋆−
0

✜ **1❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭

⋆+

Quantum valuation for both strategies:

Q−,+(x)















id1 if x ⊂ [(qbr)−
Q∗ ]

TrQ if x = [(qbr)−
Q∗ ]

idQ if x ⊃ [(qbr)−
Q∗ ]

Figure 5.20: Example of currying.
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Ignoring quantum valuations and payoff, we remark that for σ ∈ QA(A ⊗ B,C), S
starts by events of the form (ai, bj) with ai ∈ min(A) and bj ∈ min(B). It follows
that:

QA(A⊗B,C) �
∏

i∈I

∏

j∈J
QCG(Ai ⊠Bj , C)

Similarly, for τ ∈ QAt(A,B ⊸ C), T starts by sequences of events ai _ λ _ bj with
ai ∈ min(A) and bj ∈ min(B). It follows that:

QAt(A,B ⊸ C) �
∏

i∈I

∏

j∈J
QCG(Ai, B

⊥
j

&

C)

Since CG is ⋆-autonomous, we obtain that ignoring quantum valuations and payoff:

QA(A⊗B,C) � QAt(A,B ⊸ C)

We immediately note that this bijection sends winning strategies to winning strate-
gies. In fact, ignoring quantum valuation it is a bijection between QA(A ⊗ B,C)
and QAt(A,B ⊸ C). We write Λ(−) for this bijection between strategies. By con-
struction, we have a bijection λ between the non-empty configurations of σ and the
configurations of cardinal at least three of Λ(σ), such that

σ(x) = (xA ⊗ xB) ∥ xC ⇐⇒ Λ(σ)(λ(x)) = xA ∥ (xB ⊸ xC)

The normalisation condition ensures that the quantum valuation on the empty con-
figuration is id1. Similarly, obliviousness ensures that the quantum valuation on
singleton configurations is the trace, and thunkability ensures that there is still a
unique possibility for the quantum valuation of configuration of size two. So because
of normalisation, obliviousness and thunkability, the quantum valuation of a strategy
of QAt(A,B ⊸ C) is uniquely determined by its value on configurations of cardinal
at least three. By taking

Qσ(x) = QΛ(σ)(λ(x))

we obtain, without ignoring anything this time, the bijection

QA(A⊗B,C) � QAt(A,B ⊸ C)

To prove that this bijection defines an adjunction, It suffices check the two following
equations with evalB,C := Λ−1(idB⊸C):

∀σ ∈ QA(A⊗B,C), evalC,B ⊙ (Γ(σ)⊗B) = σ
∀τ ∈ QAt(A,B ⊸ C), Λ(evalB,C ⊙ (τ ⊗B)) = τ
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If we use � instead of ⊸ and restrict ourselves to affine arenas, the proof still works
out. □

5.5.4 The Distributive CFC
The bifunctor ⊕ of QCG is also a bifunctor on QA and QAt. We write 0 for the empty
quantum arena. The difference between the payoff games ∅ and 0 is that the payoffs for
the empty configuration are respectively 0 and −1. We write ⊥ for the unique strategy of
QA(1,0). We note that 0 and 1 are not isomorphic.

Proposition 5.5.10. (QA,QAt, id,⊗,⊸,1,⊕,0) is a distributive CFC. Similarly, (QAa,
QAa

t , id,⊗,�,⊕,0) is an affine distributive CFC.

Proof. The injection from A to A⊕B simply has CCA for esp, with the same quantum
valuation as ccA. Similarly, the injection from B to A ⊕ B simply has CCB for esp,
with the same quantum valuation as ccB.

The copairing of σ and τ simply has S⊕T for esp, with quantum valuation induced
from Qσ and Qτ .

Proposition 1.2.16 ensures that QA is distributive. To prove that QAt is distribu-
tive too, we just need to remark that 00⊗B and disAℓ,Ar,B are thunkable, and that
their inverses are thunkable too. □

It follows that quantum arenas and (negative winning visible quantum) strategies form
a non-trivial distributive CFC with a bottom, hence a sound and adequate denotational
model of LΛ. If we restrict ourselves to affine objects, this category becomes affine, hence
a sound and adequate denotational model for AΛ. While this was not explicit in the
proposition, ⊕ also defines arbitrary coproducts, and the ⊗ is distributive over this infinite
coproduct.
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Chapter 6

Game Semantics for the Linear
Quantum λ-calculus

6.1 Games Model for LQΛ

6.1.1 Semantics for Terms
We use the semantics described in Section 1.4.2 for most of LQΛ, and complete it as
described in Table 6.1. We refer in this table to morphisms newQA, measQA and UQA

which we define in Figs. 6.1 to 6.3.
The semantics for qubit is simply the quantum arena ↓(qb:C2) ∅. In contrast to a

regular bit which has two events, one for true and one for false, a qubit is represented with
a single event, with its set of possible values abstracted as a quantum space annotation.
The semantics for Aℓ is computed through a least fixpoint, for the following partial order.

Definition 6.1.1. For any two quantum arenas A and B , we say that A is a substructure
of B if they are substructures as event structures, and the inclusion function preserves
polarity, payoff, and quantum space annotations. For any quantum arenas A0, A1, . . . with
Ai a substructure of Ai+1 for every i ∈ N, we define ∪i∈NAi as the quantum arenas with
for events ∪i∈N |Ai| and all the structure induced by the Ai.

For any quantum arena A , we write FA(X) := 1⊕ (A⊗X), and remark that FnA(0) is
a substructure of Fn+1

A (0) for every n ∈ N.

Definition 6.1.2. For any quantum arena A, we define

Aℓ :=
∪

n∈N
FnA(0)

We write [ ] ∈ C(Aℓ) for the configuration {⋆} ⊕ ∅ and [x1; . . . ;xn] ∈ C(Aℓ) for the
configuration ∅⊕ (x1 ⊗ [x2; . . . ;xn]).

175
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Quantum primitives:
⟦qubit⟧ := ↓(qb:Q) ∅

�
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T
...

Γ ⊢ t : bit
Γ ⊢ new t : qubit

�
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�

�

�
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�
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:= newQA ⊙
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Γ ⊢ t : qubit
Γ ⊢meas t : bit
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:= measQA ⊙
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Γ ⊢ t : qubit

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : qubit⊗n

Γ ⊢ U t : qubit⊗n
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with newQA, measQA and UQA defined in Figs. 6.1 to 6.3

Lists:
⟦

Aℓ
⟧

:= ⟦A⟧ℓ = 1⊕
(

⟦A⟧⊗ ⟦A⟧ℓ
)

�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : Aℓ

Γ ⊢ unfold t : 1⊕ (A⊗Aℓ)
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Γ ⊢ t : 1⊕ (A⊗Aℓ)
Γ ⊢ fold t : Aℓ
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Γ ⊢ t : 1⊕ (A⊗Aℓ)
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Table 6.1: Game Semantics of LQΛ Typing Derivations
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newQA : bit 7→ qubit

ff−

�O
�O
�O

✑ $$,◗◗◗◗◗◗◗◗◗◗◗◗◗

tt−

✏ ##+PPPPPPPPPPPPPP qb+
C2

qb+
Q

QnewQA(∅) = idCPM
1

QnewQA({ff}) = idCPM
1

QnewQA({tt}) = idCPM
1

QnewQA({ff,qb}) = newCPM
ff

QnewQA({tt,qb}) = newCPM
tt

Figure 6.1: The Strategy newQA : bit 7→ qubit

measQA : qubit 7→ bit

qb−
Q∗

☎ ��&
❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉

✑ $$,◗◗◗◗◗◗◗◗◗◗◗◗◗

ff+

�O
�O

tt+

QmeasQA(∅) = idCPM
1

QmeasQA({qb}) = TrQ
QmeasQA({qb,ff}) = measCPM

ff
QmeasQA({qb, tt}) = measCPM

tt

Figure 6.2: The Strategy measQA : qubit 7→ bit

UQA : qubit⊗n 7→ qubit⊗n

(qbn)−
(Q⊗n)∗

✔ &&-❚❚❚❚❚❚❚❚❚❚

(qbn)+
Q⊗n

QUQA(∅) = idCPM
1

QUQA({(qbn)}) = TrQ⊗n

QUQA({(qbn), (qbn)}) = LUM

Figure 6.3: The Strategy UQA : qubit⊗n 7→ qubit⊗n for U unitary
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qQA : 1 7→ qubit⊗n

⋆−

✒ $$,❘❘❘❘❘❘❘❘❘❘❘❘❘

(qbn)+
Q⊗n

QqQA(∅) = idCPM
1

QqQA({⋆}) = idCPM
1

QqQA({⋆, (qbn)}) = LqM

Figure 6.4: The Strategy qQA : 1 7→ qubit⊗n for q quantum state

Lemma 6.1.3. For any quantum arena A, we have Aℓ �⊕n∈NA
⊗n.

Theorem 6.1.4. If Γ ⊢ t : A has two typing derivations T and T ′, then we have ⟦T⟧ =
⟦

T ′⟧. As it is independent from the typing derivation, we write it ⟦t⟧Γ⊢A.

The proof of this theorem is the same as the proof for LΛ earlier in Theorem 1.4.6,
extended without difficulties to LQΛ.

6.1.2 Semantics for Quantum Closures

We now extend the semantics to quantum closures. However, QA has no “weighted sum”
that satisfies the axioms of a convex cone. Indeed, our game model remembers branching
points so when representing the closure 1

2c + 1
2c we will obtain a different strategy than

when representing c. While this is a problem for the adequacy and later the full abstraction,
this only makes the model more precise than required, so multiple strong properties still
hold. So we will simulate the probabilistic sums through the coproduct ⊕, and postpone
to the next section the amendments we make to our model to obtain full abstraction.

Definition 6.1.5. For pi ∈ [0, 1] for all i ∈ I, with ∑i∈I pi ≤ 1, we define the quantum
strategy choice{pi | i∈I} : 1 → ⊕i∈I1 as described in Fig. 6.5. For σi : A 7→ B (i ∈ I)
negative quantum strategies, we define⊞i∈I pi ·σi : A 7→ B using the copairing as follows:

⊞
i∈I

pi · σi := [σi | i ∈ I]⊙
(

choice{pi | i∈I} ⊗A
)

In Fig. 6.6, we provide an example of binary ⊞, where σ is the representation of the term
λ().ff, τ represents the term λ().tt and ν the quantum closure 1

3 [∅,∅, λ().ff]+ 2
3 [∅,∅, λ().tt].

Lemma 6.1.6. The operation ⊞ is, up to isomorphism, associative, commutative, left-
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1 7→ ⊕i∈I1

⋆−

✑ $$,◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗

⋆+
i

/o/o/o/o . . .

Quantum valuation:

Q(∅) = Q({⋆−}) = id1
∀i ∈ I,Q({⋆−, ⋆+

i }) = pi · id1

Figure 6.5: Strategy choice{pi | i∈I} : 1→ ⊕i∈I1

linear and semi-right-linear, i.e.,

⊞i∈I pi ·⊞j∈J qj · σi,j � ⊞(i,j)∈I×J(piqj) · σi,j
pσ ⊞ qτ � qτ ⊞ pσ

τ ⊙
(

⊞i∈I pi · σi
)

� ⊞i∈I pi · (τ ⊙ σi)
(

⊞i∈I pi · σi
)

⊙ τ � ⊞i∈I pi · (σi ⊙ τ) whenever τ thunkable

We use the notation⊞ rather than ∑ as it is not idempotent:

p · σ ⊞ q · σ ̸� (p+ q) · σ

We can now define the semantics of quantum closures.

Definition 6.1.7. If ⊢ [q, ℓ, t] : A, we define ⟦[q, ℓ, t]⟧⊢A as follows:

• we know we have ∆ ⊢ t : A with ∆ = x1 : qubit, . . . , xn : qubit

• we define qQA as in Fig. 6.4

• ⟦[q, ℓ, t]⟧ := ⟦t⟧⊙ qQA

and we then define ⟦∑i pi[qi, ℓi, ti]
⟧ as⊞i pi

⟦

[qi, ℓi, ti]
⟧.

6.1.3 Soundness and Adequacy
This missing idempotence property is very problematic for the full abstraction, as it means
that our semantics remembers the point of branching and is able to distinguish the quantum
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1 ⊢L 1 ⊸ bit

✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤ 1 ⊢L 1 ⊸ bit

✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤ 1 ⊢L 1 ⊸ bit

⋆−

✍ ""*◆◆◆◆◆◆◆◆◆◆◆◆◆ ⋆−

♥���
✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳ ⋆−

✍ ""*◆◆◆◆◆◆◆◆◆◆◆◆◆

s���

λ+

❑��	 ☛☛☛☛☛☛☛⑧
☛

✕

λ+
0

❑��	 ☛☛☛☛☛☛⑧
☛

✕

�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

⋆−

✝ ��'
❋❋❋❋❋❋❋❋❋

❁
❋

◆

⋆−
0

✝ ��'
❋❋❋❋❋❋❋❋❋❁

❋
◆

ff+ ff+
0

λ+

❑��	 ☛☛☛☛☛☛☛⑧
☛

✕

λ+
1

❑��	 ☛☛☛☛☛☛⑧
☛

✕

⋆−

✝ ��'
❋❋❋❋❋❋❋❋❋

❁
❋

◆

⋆−
1

✝ ��'
❋❋❋❋❋❋❋❋❋❁

❋
◆

tt+ tt+
1

Quantum valuation of σ (left), τ (middle) and ν = 1/3 · σ ⊞ 2/3 · τ (right):

∀x ∈ C(S),Qσ(x) = id1
∀x ∈ C(T ),Qτ (x) = id1

Qν(x) =















id1 whenever x ⊆ {⋆−}
1
3 id1 whenever λ+

0 ∈ x
2
3 id1 whenever λ+

1 ∈ x

Figure 6.6: Example of binary ⊞
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closures 1
2c+ 1

2c and c, while our operational semantics considers both to be the same. The
next section focuses on how to handle this problem, but we first state here the properties
that we do have despite it, i.e., soundness and adequacy.
Lemma 6.1.8 (Value Substitution). For every term Γ, x : A ⊢ t : B and every value
∆ ⊢ v : A, we have up to isomorphism:

⟦t⟧ ◦ (⟦Γ⟧⊗ ⟦v⟧) =
⟦

t{x← v}⟧

The proof is the same as for LΛ in Section 1.4.3.
Lemma 6.1.9 (Context Factorisation). For every term Γ ⊢ s : A and Γ,∆ ⊢ E[s] : B,
with E[−] an evaluation context, we have a morphism ⟦E⟧ ∈ QRel(⟦A⟧⊗ ⟦∆⟧ , ⟦B⟧) such
that

⟦

E[s]
⟧

= ⟦E⟧ ◦ (⟦s⟧⊗ ⟦∆⟧)
The proof is then the same as for LΛ in Section 1.4.3. The following lemma is the

invariance lemma restricted to terms. We recall that LQΛ has two reduction systems:
one on terms that support every feature of the language but quantum ones, and one on
closures that include all the term reductions and support additional reductions for quantum
operations.
Lemma 6.1.10 (Term Invariance). For every pair of terms Γ ⊢ t : A and Γ ⊢ s : A, we
have up to isomorphism:

t→ s =⇒ ⟦t⟧ = ⟦s⟧

Proof. Using the same proof as for LΛ, for every pair of terms Γ ⊢ t : A and Γ ⊢ s : A
that do not use fold or unfold, we have:

t→ s =⇒ ⟦t⟧ = ⟦s⟧

This is proven by induction on typing derivations. Since the rules for fold and unfold
are trivial, the proof extends without problems to terms containing fold and unfold.

□

In presence of branching, the game semantics will record the branching while the op-
erational semantics will merge identical branches; this breaks the invariance lemma for
closures:

[∅,∅, if Coin1/2() then () else ()] →∗ [∅,∅, ()]
⟦

[∅,∅, if Coin1/2() then () else ()]
⟧

= 1
2 idQA

1 ⊞
1
2 idQA

1 , idQA
1

⟦

[∅,∅, ()]
⟧

= idQA
1

We now obtain an adequacy result slightly different from the one of Section 1.4.3, as
a strategy of QA(1,1) is not characterised by its probability of convergence. We have to
recover the probability of convergence by summing over all the different branches that have
been accumulated in σ through the computation.
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Proposition 6.1.11 (Soundness and Adequacy). For every term ⊢ t : 1, we have up to
isomorphism:

P(⟦t⟧ ⇓) = p ⇐⇒ P(t ⇓) = p

where P(σ ⇓) (for σ : 1 7→ 1) is the probability of a positive event being played by σ, in
other words:

∑

x∈C(S)
|x|=2

Qσ(x) = P(σ ⇓) · idCPM
1

This proposition is not obvious to prove as the invariance lemma does not hold on
closures. For conciseness, we choose to not provide a proof of this proposition, however it
easily arises as a consequence of Theorem 6.2.11 below.

6.1.4 Examples
We go through the same examples as in Sections 2.3.2 and 3.2.2 in Figs. 6.7 to 6.11.
The strategy for the biased coin, the Bell state and the Bell measurement are pretty
straightforward, and nearly identical to their relational semantics.

Indeed, when no higher order is present the game semantics is the same as the relational
semantics, but with additional layers of complexities:

• The minimal events of a negative strategy are negative, and because of the receptivity
condition on strategies, they are uniquely determined by the game.

• In the absence of higher order, configurations have cardinal at most two, and config-
urations of size two have one negative event and one positive event.

• The quantum valuation for the empty configuration is id1 since our strategies are
normalised. The quantum valuation for every singleton configuration is uniquely
determined by the obliviousness condition on strategies.

• Every configuration of size two of the strategy of a term lives over a point of the web
of the relational semantics. For example in the case of the Bell states strategy, the
configuration {(ff,ff), (qb,qb)} lives over the point of the web ((ff,ff), (qb,qb)).

• There is a correspondence between the quantum valuations on configurations of size
two, and the quantum annotation on the points of the web of the relational semantics.
For example in the case of the Bell states, the configuration {(ff,ff), (qb,qb)} has
for valuation L 1√

2
|00⟩ + 1√

2
|11⟩M, which is the same as the quantum annotation on

((ff,ff), (qb,qb)) given by the relational semantics of the Bell states.

There are some subtleties in this correspondence. As noted before, the game semantics has
a different semantics for the quantum closures 1

2c+ 1
2c and c, while the relational semantics

does not. Technically, this is because multiple configurations of size two can correspond to
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∅ ⊢L bit

⋆−

✑ $$,◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗

✂ ��%
❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇

ff+

�O
�O
�O

tt+

Quantum valuation:

Q−,+
⟦Coinp()⟧

(∅) = id1

Q−,+
⟦Coinp()⟧

({⋆}) = id1

Q−,+
⟦Coinp()⟧

({⋆,ff}) = (1− p) · id1

Q−,+
⟦Coinp()⟧

({⋆, tt}) = p · id1

Term represented:

⊢LCoinp() : bit

Coinp() := meas
(√

1− p √
p√

p −√1− p

)

Figure 6.7: Strategy for the Biased Coin
⟦

Coinp()
⟧
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bit,bit ⊢L qubit⊗ qubit

(ff,ff)−

✔ &&-❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

�O
�O
�O�B

�D
�G
	I
�K
M
�O
�Q
�S
�U
�W
�Z
�\

~>
�?
�A
�B
�C
�D
�F
�G
�H

J
�L
�O
�R
�T
�V
�W
�X
�Z
�[
�\
�^
�_
 `

(ff, tt)−

✔ &&-❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

�O
�O
�O�B

�E
�G
	I
�K
M
�O
�Q
�S
�U
�W
�Y
�\

(qb,qb)+
Q⊗2

(tt,ff)−

✔ &&-❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

�O
�O
�O

(qb,qb)+
Q⊗2

(tt, tt)−

✔ &&-❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚ (qb,qb)+
Q⊗2

(qb,qb)+
Q⊗2

Quantum valuation:

Q−,+
⟦Bell(b,b′)⟧

(x) = id1

whenever |x| ≤ 1

Q−,+
⟦Bell(b,b′)⟧

({(ff,ff), (qb,qb)}) = L 1√
2
|00⟩+ 1√

2
|11⟩M

Q−,+
⟦Bell(b,b′)⟧

({(ff, tt), (qb,qb)}) = L 1√
2
|01⟩+ 1√

2
|10⟩M

Q−,+
⟦Bell(b,b′)⟧

({(tt,ff), (qb,qb)}) = L 1√
2
|00⟩ − 1√

2
|11⟩M

Q−,+
⟦Bell(b,b′)⟧

({(tt, tt), (qb,qb)}) = L 1√
2
|01⟩ − 1√

2
|10⟩M

Term represented:

b : bit, b′ : bit ⊢LBell(b, b′) : qubit⊗ qubit
Bell(b, b′) := let q1 ⊗ q2 = (new b)⊗ (new b′) in let q3 = H q1 in Nc (q3 ⊗ q2)

Figure 6.8: Strategy for the Bell States ⟦Bell(b, b′)
⟧
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qubit,qubit ⊢L bit⊗ bit

(qb,qb)−
(Q⊗2)∗

✔ &&-❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

✡ ��)❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏

� ��%
❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅

①��!
✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽

(ff,ff)+

�O
�O
�O �\

�Z
�X
�V
�S
�Q
�O
M
�K
�H
�F
�D
�B

!a
�_
�^
�]
�[
�Z
�Y
�W
�V
�T
�R
�O
�L

J
�H
�G
�E
�D
�C
�A
�@
�?
}=

(ff, tt)+

�O
�O
�O �\

�Z
�X
�V
�S
�Q
�O
M
�K
�H
�F
�D
�B

(tt,ff)+

�O
�O
�O

(tt, tt)+

Quantum valuation:

Q−,+
⟦BellM(q,q′)⟧

(∅) = id1

Q−,+
⟦BellM(q,q′)⟧

({(qb,qb)}) = TrQ⊗2

Q−,+
⟦BellM(q,q′)⟧

({(qb,qb), (ff,ff)}) : M 7→ m11+m14+m41+m44
2

Q−,+
⟦BellM(q,q′)⟧

({(qb,qb), (ff, tt)}) : M 7→ m22+m23+m32+m33
2

Q−,+
⟦BellM(q,q′)⟧

({(qb,qb), (tt,ff)}) : M 7→ m11−m14−m41+m44
2

Q−,+
⟦BellM(q,q′)⟧

({(qb,qb), (tt, tt)}) : M 7→ m22−m23−m32+m33
2

Term represented:

q : qubit, q′ : qubit ⊢LBellM(q, q′) : bit⊗ bit
BellM(q, q′) := let q1 ⊗ q2 = Nc (q ⊗ q′) in let q3 = H q1 in (meas q3)⊗ (meas q2)

Figure 6.9: Strategy for the Bell Measure ⟦BellM(q, q′)
⟧
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the same point of the web, in which case the correspondence between quantum valuations
of strategies and quantum annotations of weighted relations uses a sum.

The Bell unitary is slightly more interesting, as we have some higher-order behaviour,
but the semantics is still almost identical to the relational semantics. We chose to use
quantum valuations of the form Q−,+ to highlight the fact that the game semantics allows
us to describe terms using only superoperators.

The Quantum teleportation has some very interesting quantum valuations, that we
describe in Fig. 6.11 and explain as:

• As long as no positive move is played, or that only (λ, λ)+ is played, there are no
observable quantum effects and all the quantum states are discarded without being
used, so the valuation is a trace. We note that operationally, the event (λ, λ)+ is
when the Bell state qubits are computed by the term, but this is not observable.

• If the positive move (b, b′)+ is played, but not yet qb+
Q

, then operationally the Bell
measurement was made, hence the 1

4 of chance of getting the boolean (b, b′)+, but
since the remaining qubits are kept internally, they are not observable and the quan-
tum valuation is still a trace.

• If the positive move qb+
Q

is played but not yet (b, b′), then the Bell unitary was
applied. However, since we are still keeping one of the two qubits from the Bell state

internally, the second qubit is indistinguishable from 1Q =

(

1/2 0
0 1/2

)

, which is a

fixpoint of each of the four Bell unitary operations.

• If we consider a maximal configuration, then operationally the full term was executed
and the quantum valuation is the same as the quantum annotation from the relational
semantics as in Section 3.2.2

We note that we computed Fig. 6.11 by making the following chain of interactive
composition:

⟦QTelep()
⟧

=
(

⟦

λq.BellM(x,q)⟧⊗
⟦

λ(b, b′).BellU(b, b′) x
⟧
)

⊙ ⟦Bell(ff,ff)
⟧

6.2 An ≡-Adequate Model
The goal of this section is to amend our model to one that will later be shown to be
fully abstract. The two obstacles are that our model remembers branching points, and
remembers some causal information like the evaluation order of functions. In our earlier
publication [CdVW19], we use a notion called rigid-equivalence to forget those branching
points. This notion however does not forget the evaluation order, so proved to be insufficient
for full abstraction. So instead, we develop the notion of exhaustive equivalence, as it is
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bit,bit ⊢L qubit ⊸ qubit

(ff,ff)− ✤ ,,2

�O
�O
�O
�O�D

�F
�H

J
�K
M
�O
�Q
�S
�T
�V
�X
�Z

�@
�A
�B
�C
�D
�E
�F
�G
�H

J
�K
�L
M
�N
�O
�P
�Q
�R
�S
�U
�V
�W
�X
�Y
�Z
�[
�\
�]
�^

λ+

✴ss{ ♦♦♦♦♦♦

qb−
Q∗

// qb+
Q

(ff, tt)− ✤ ,,2

�O
�O
�O
�O�D

�F
�H

J
�K
M
�O
�Q
�S
�T
�V
�X
�Z

λ+

✴ss{ ♦♦♦♦♦♦

qb−
Q∗

// qb+
Q

(tt,ff)− ✤ ,,2

�O
�O
�O
�O

λ+

✴ss{ ♦♦♦♦♦♦

qb−
Q∗

// qb+
Q

(tt, tt)− ✤ ,,2λ+

✴ss{ ♦♦♦♦♦♦

qb−
Q∗

// qb+
Q

Quantum valuation:

Q−,+
⟦Bell(b,b′)⟧

(x) = idCPM
1 whenever |x| ≤ 2

Q−,+
⟦Bell(b,b′)⟧

(x) = TrQ whenever |x| = 3

Q−,+
⟦BellU(b,b′)⟧

({(ff,ff), λ,qb,qb}) = L

(

1 0
0 1

)

M

Q−,+
⟦BellU(b,b′)⟧

({(ff, tt), λ,qb,qb}) = L

(

0 1
1 0

)

M

Q−,+
⟦BellU(b,b′)⟧

({(tt,ff), λ,qb,qb}) = L

(

1 0
0 −1

)

M

Q−,+
⟦BellU(b,b′)⟧

({(tt, tt), λ,qb,qb}) = L

(

0 1
−1 0

)

M

Term represented:

b : bit, b′ : bit ⊢LBellU(b, b′) : qubit⊸ qubit

BellU(b, b′) := λq.if b then if b′ then
(

0 1
−1 0

)

q else
(

1 0
0 −1

)

q

else if b′ then
(

0 1
1 0

)

q else
(

1 0
0 1

)

q

Figure 6.10: Strategy for the Bell Unitary ⟦BellU(b, b′)
⟧
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∅ ⊢L (qubit ⊸ bit⊗2) ⊗ (bit⊗2
⊸ qubit)

⋆−

✛ **0❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬

(λ, λ)+

✫oov ❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

✌ !!*▼▼▼▼▼

qb−
Q∗

✓ %%,❙❙❙❙❙❙❙❙❙

✞ ��'
●●●●●●●●●●●●●●

⑤��#
❁❁❁❁❁❁❁❁❁❁❁❁❁❁❁❁❁❁❁

t���
✹✹✹✹✹✹✹✹✹✹✹✹✹✹✹✹✹✹✹✹✹✹✹✹

(ff,ff)−
�O�@�C�F	I

�O
�U �X �[ �^

z:{;|<
�@
�C
�G
�K
�O
�S
�W
�[
�^
"b #c $d

✓ %%,❙❙❙❙❙❙❙❙❙❙

(ff,ff)+

�O �^ �[ �X �U
�O
	I�F�C�@

$d #c "b
�^
�[
�W
�S
�O
�K
�G
�D
�@

|<{;z:

(ff, tt)−
�O�@�C�F	I

�O
�U �X �[ �^

✓ %%,❙❙❙❙❙❙❙❙❙❙
qb+
Q

(ff, tt)+

�O �^ �[ �X �U
�O
	I�F�C�@

(tt,ff)−
�O

✓ %%,❙❙❙❙❙❙❙❙❙❙
qb+
Q

(tt,ff)+

�O
(tt, tt)−

✓ %%,❙❙❙❙❙❙❙❙❙❙ qb+
Q

(tt, tt)+ qb+
Q

Quantum valuation:

Q−,+
⟦QTelep()⟧

(x) = Tr whenever {e+ ∈ x} = ∅ or {(λ, λ)}
Q−,+
⟦QTelep()⟧

(x) = 1
4Tr whenever {e+ ∈ x} = {(λ, λ), (b, b′)} for b, b′ booleans

Q−,+
⟦QTelep()⟧

(x) = Tr⊗ 1Q whenever {e+ ∈ x} = {(λ, λ),qb}

Q−,+
⟦QTelep()⟧

({⋆−, (λ, λ)+,qb−, (b0, b
′
0)+, (b1, b1)−,qb+}) =

idQ if b0 = b1 and b′
0 = b′

1

L

(

0 1
1 0

)

M if b0 = b1 and b′
0 , b

′
1

L

(

1 0
0 −1

)

M if b0 , b1 and b′
0 = b′

1

L

(

0 1
−1 0

)

M if b0 , b1 and b′
0 , b

′
1

Term represented:

⊢LQTelep(q, q′) : (qubit⊸ bit⊗2)⊗ (bit⊗2
⊸ qubit)

QTelep() := let q1 ⊗ q2 = Bell(ff,ff) in (λq.BellM(q1, q))⊗ (λ(b⊗ b′).BellU(b, b′))

Figure 6.11: Strategy for the Quantum Teleportation ⟦QTelep()
⟧
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done in our later publication [CdV20]. The idea behind the notion of exhaustive equivalence
is to select some “observable” configurations of the game, and say that two strategies are
equivalent if they behave the same with respect to those specific configurations.

One of the main difficulties of this exhaustive equivalence is that since we are selecting
configurations of the game and abstracting the behaviour of the strategy to only those
configurations, we are losing some of the causal information of the strategy, which might
mean that when composing strategies, we might miss some causal loops and deadlocks,
meaning the equivalence would not behave properly with respect to the interactive com-
position. In other words, this equivalence between strategies might not be a congruence
for the operations involved in the interpretation.

Fortunately, the condition of visibility announced earlier in Definition 5.5.1 ensures the
absence of such deadlocks, hence the congruence property. We start by defining visibility.

6.2.1 Visibility and Deadlock-Free Composition
In Definition 5.5.1, we included a condition named visibility. In this subsection, we formally
define it, and present one of its properties useful for the proof of adequacy: deadlock free
composition, i.e., when checking that a pair of configurations is matching compatible,
visibility ensures matching pairs are always compatible.

The notion of visibility we define here comes from [CCW15b], where it was introduced
as a weaker form of innocence and used to prove the preservation of conditions like inno-
cence and well-bracketing under interactive composition of strategy. While it shares some
intuition with the visibility condition of sequential games as in [HO00], there is no direct
correspondence between these two notions of visibility. A small contribution of this thesis
is the extension of the definition of visibility to less restricted forms of event structures,
in particular ones that are non-forest-like. However, as the semantics of the quantum λ-
calculus only uses forest-like games, this contribution is not a focus or this thesis, hence
we choose to postpone the generalised proofs to Appendix B.2.

Definition 6.2.1. In an event structure E, a grounded causal chain, or gcc, is a sequence
of events e1 _E e2 _E . . . _E en with e1 minimal in E.

A gcc can be seen as a thread of the computation described by the event structure. For
example, in Fig. 6.12, (λ0, λ1)− _ ⋆+

0 _ ⋆−
0 _ ⋆+ is the gcc corresponding to the thread

where the left hand side function is called. For ρ = e1 _E . . . _E en a gcc, we write
ρ _E e for the gcc e1 _E . . . _E en _E e, and we write e ∈ ρ for ∃i, e = ei.

Definition 6.2.2. A strategy σ : A 7→ B with A and B games is called visible if for every
gcc ρ = ρ′ _S s, there exists s′ ∈ ρ′ such that σ(s′) _A⊥∥B σ(s).

In this situation, we say that s′ justifies s in ρ. This justification relation is very similar
to the notion of pointers in sequential game semantics. The idea is that from the point of
view of the thread represented by the gcc ρ′, for the event s to be added to this thread,
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(1 ⊸ 1) ⊗ (1 ⊸ 1) 7→ 1

(λ0, λ1)−

✱rrz ❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

✁ ��%
❆❆❆❆❆❆❆❤❥❧

♥
q

s

✻
❆

❑
⋆+

0

✞ ��'
●●●●●●●●●●

❃
● ❑ ❖

⋆+
1

✞ ��'
●●●●●●●●●●

❃
● ❑ ❖

⋆−
0

✙ ))/❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨ ⋆−
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Figure 6.12: Example

the event s needs to be “visible”, i.e., there is an event s′ ∈ ρ′ which “enables” it. We
note that in our diagrams for strategies, we chose to represent the causality of the game
through dashed lines, so those dashed lines exactly represent the justification relation.

Another way of understanding visibility is the notion of scope in programming lan-
guages. Consider a program which declares two functions f0 : 1 ⊸ bit and f1 : bit ⊸ 1,
or in a pseudo programming language:

bool f0(u0:unit):{
\\Body of f0
}

unit f1(b1:bool):{
\\Body of f1
}

The function f0 cannot use in its body the input b1 of f1 since it is not in its scope, and
similarly the function f1 cannot use in its body the input u0 of f0. In languages with
powerful enough primitives, it is possible to bypass this restriction and use communication
channels between f0 and f1 so that if both are executed in parallels, f0 would be able to
communicate u0 to f1 and reciprocally f1 would be able to communicate b1 to f0. This
behaviour can be described by the strategy Fig. 6.13. The visibility condition states that
there is no such communication method. In particular, the strategy in Fig. 6.13 which
describes two functions that use the input of one another is not visible. This strategy
breaks the visibility condition because of the gcc (⋆− _ (λ0, λ1)+ _ ff−

1 _ ff+
0 ), as ff+

0

can only be justified by ⋆−
0 which is not in the gcc.
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Figure 6.13: Example of non visible strategy

We note that whenever A and B are tree-like, for example arenas, it is equivalent to
ask for σ ρ to be a configuration for every gcc ρ.

Proposition 6.2.3. Copy-cat is visible.

This is pretty straightforward to prove, as gccs of copy-cat are always of the form
a− _ a+ _ b− _ b+ _ . . . , i.e., alternating between a negative event of A⊥ or A and
the corresponding positive event in A or A⊥ respectively, with each negative event being
justified by the positive event before it.

Proposition 6.2.4. The interactive composition of two visible strategies between arenas
is visible.

Theorem 6.2.5 (Deadlock-Free Composition). We assume A,B,C to be arenas. If σ :
A 7→ B and τ : B 7→ C are two visible strategies, and x ∈ C(S) and y ∈ C(T ) are a pair of
matching configurations, then they are matching compatible.

We refer to [Cas17] for the usual proof for both. However, this proof only covers arenas,
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and relies on their forest-like shape. We provide new proofs in Appendix B.2 which cover
strategies between polarised1 N-free2 games.

6.2.2 The Exhaustive Equivalence ≡
As said before, we define a notion of “observable configurations”, which we name “exhaus-
tive configurations” as in Part III they will represent configurations where “every strictly
linear function has been called and fully resolved, and every non-linear function that has
been called has been fully resolved”. For every exhaustive configuration, we are inter-
ested in the CPM operator obtained by summing all the corresponding valuations in the
strategy.

Definition 6.2.6. A configuration of a game is called exhaustive if its payoff is 0. We
write E(A) for the set of exhaustive configurations of A. Assuming σ : A 7→ B a quantum
strategy, and for xA ∥ xB ∈ E(A⊥ ∥ B), we write witσ(xA, xB) for the set of ⊕-covered
configurations x such that σx = xA ∥ xB, called witnesses of xA ∥ xB. We then write

Qσ(xA, xB) =
∑

x∈witσ(xA,xB)

Qσ(x) ∈ CPM(HA(xA),HB(xB))

A priori, Qσ(xA, xB) might be an infinite sum, however we can prove that it is always
in the finitary fragment of CPM(HA(xA),HB(xB)).

Theorem 6.2.7. For σ : A 7→ B a quantum strategy and xA ∥ xB ∈ E(A⊥ &

B), we have

TrHB(xB)

dimHB(x−
B)
◦ Qσ(xA, xB) ◦ (dimHA(x−

A)) · 1HA(xA) ⊑ id1 ∈ CPM≤1(1,1)

In particular Qσ(xA, xB) is finitary, i.e., Qσ(xA, xB) ∈ CPM(HA(xA),HB(xB)).

Proof. For σ : A 7→ B a quantum strategy, we start by defining σ ∈ QStrat(∅, A⊥ ∥
B) obtained through the compact closure of QStrat. We write C = A⊥ ∥ B.

We rely on the test strategy from Lemma A.3.2. For every xC ∈ C(C), we have
a strategy testC(xC) ∈ Strat(C,1). We extend it as a quantum strategy with the
valuation:

QtestC(xC)(y) = TrHC(y−
C

) ⊗ 1†
H

C⊥ (y+
C

)
=

TrHC(yC)

dimHC(y−
C )

where yC ∥ y1 is the projection of y to the game, and y−
C and y+

C are the sets of respec-
tively negative events and positive events of yC . We check normalisation, obliviousness
and the drop condition without difficulties. So testC(xC) ∈ QStrat(C,1).

We consider xC = xA ∥ xB ∈ E(A⊥ &

B). If x ∈ witσ(xA, xB), then σ x = ∅ ∥ xC

1A polarised game is a game which has all its minimal events of the same polarity.
2See Definition B.2.5 for the definition of N-free games.
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and x is ⊕-covered, so using Lemma A.3.2, if we can write testC(xC)⊙ σ, then ((xC ∥
{⋆})⊙ x) is defined and τ((xC ∥ {⋆})⊙ x) = ∅ ∥ {⋆}.

We note that Lemma 5.3.5 ensures that for any quantum strategy ν, for every
z ∈ C(N) a configuration of the strategy, if U ⊆ V are two finite set of configurations
that are positive extensions of z, then dν(z;U) ⊒ dν(z;V ) ∈ CPM. As such, for
every possibly infinite set W of configurations that are positive extensions of z, we
can define dν(z;W ) ∈ CPM as the infimum for the dν(z,W ′) for W ′ finite subset of
W . It follows that

id1 ⊒ id1 − dτ (∅, {y | τ y , ∅})
=

∑

y | τ y,∅Qτ (y)

⊒ ∑

x∈witσ(xA,xB)Qτ ((xC ∥ {⋆})⊙ x)

=
∑

x∈witσ(xA,xB)QtestC(xC)(xC ∥ {⋆}) ◦ Qσ(x)

=
∑

x∈witσ(xA,xB)
TrHC (xC )

dim HC(x−
C

)
◦ Qσ(x)

Using the compact closure of QStrat and CPM he have that

TrHC (xC )

dim HC(x−
C

)
◦ Qσ(x) =

TrHB(xB)

dim HB(x−
B

)
◦ Qσ(x) ◦

Tr†
HA(xA)

dim HA(x+
A

)

=
TrHB(xB)

dim HB(x−
B

)
◦ Qσ(x) ◦ (dimHA(x−

A)) · 1HA(xA)

□

We now define the exhaustive equivalence, which states that strategies are exhaustively
equivalent if and only if they behave the same on exhaustive configurations.

Definition 6.2.8. For σ, τ : A 7→ B two quantum strategies, we say that they are exhaus-
tively equivalent, and write σ ≡ τ whenever for all xA ∥ xB ∈ E(A⊥ &

B), Qσ(xA, xB) =
Qτ (xA, xB).

We note that two isomorphic strategies are exhaustively equivalent, and so are strategies
rigidly equivalent as defined in [CdVW19].

In Figs. 6.14 and 6.15, we show two examples of exhaustive equivalence. These exam-
ples illustrate that the exhaustive equivalence allows us to “merge” configurations of the
strategy that have the same projection in the game, and that at the term level correspond
to observationally equivalent terms. In particular, Fig. 6.15 shows that the exhaustive
equivalence fully forgets in which order functions are called.

We have idempotence and full linearity of ⊞ up to this equivalence:

p · σ ⊞ q · σ ≡ (p+ q) · σ

τ1 ⊙
(

⊞
i∈I

pi · σi
)

⊙ τ2 ≡⊞
i∈I

pi · (τ1 ⊙ σi ⊙ τ2)
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Quantum valuations

Q(x) =

{
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1
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2
() then ff else ff : bit ⊢L ff : bit

Figure 6.14: First example of two exhaustively equivalent strategies
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Figure 6.15: Second example of two exhaustively equivalent strategies
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This will allow us to obtain adequacy results. But before that, we show that ≡ is compatible
with the structure of QA.

Theorem 6.2.9. The relation ≡ is a congruence in QCG restricted to visible strategies
and forest-like games, meaning it is compatible with ⊙, ⊠, and &, and a congruence in
QA, meaning it is compatible with ⊙, ⊗, ⊸, � and ⊕.

Proof. Most proofs are straight forward, except for ⊙. We first consider σ : A 7→ B
and τ : B 7→ C visible.

Qτ⊙σ(xA, xC) =
∑

z⊙y∈witτ⊙σ(xA,xC)

Qτ (z) ◦ Qσ(y)

We recall that Lemma A.2.1 ensures that z ⊙ y is ⊕-covered if and only if z and y
are. Additionally, visibility ensures that matching configurations are compatible. So
we have

Qτ⊙σ(xA, xC) =
∑

xB∈C(B)

∑

z∈witτ (xB ,xC)

Qτ (z) ◦
∑

y∈witσ(xA,xB)

Qσ(y)

Since both σ and τ are winning, then the right hand side sum is null whenever
κB(xB) < 0 and the left hand side sum is null whenever κB⊥(xB) < 0. This mean
that:

Qτ⊙σ(xA, xC) =
∑

xB∈E(B)

∑

z∈witτ (xB ,xC)

Qτ (z) ◦
∑

y∈witσ(xA,xB)

Qσ(y)

Qτ⊙σ(xA, xC) =
∑

xB∈E(B)

Qτ (xA, xB) ◦ Qσ(xA, xB)

If σ ≡ σ′ : A 7→ B and τ ≡ τ ′ : B 7→ C then using this equation, τ ⊙ σ ≡ τ ′ ⊙ σ′. □

6.2.3 ≡-Adequacy
We now state all the results leading to adequacy up to exhaustive equivalence.

Lemma 6.2.10 (≡-Invariance). For every closures Γ ⊢ c : A and Γ ⊢ c′ : A

c→ c′ =⇒ ⟦c⟧ ≡
⟦

c′⟧

Proof. For all the reduction but the last two, he proof is the same as Lemma 3.2.6.
For the last two reductions, we rely on ⊞ being associative, commutative, idempotent
up to ≡, and linear up to ≡. □

Theorem 6.2.11 (Soundness and ≡-Adequacy). For every term ⊢ t : 1, we have

P(t ⇓) = p ⇐⇒ ⟦t⟧ ≡ ⟦p[∅,∅, ()] + (1− p)[∅,∅,⊥]
⟧
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The proof is the same as the one of Theorem 3.2.7.

Corollary 6.2.12. For every pair of terms Γ ⊢ t : A and Γ ⊢ s : A, we have

⟦t⟧ ≡ ⟦s⟧ =⇒ t =Γ⊢A
obs s

Proof. We take an observation context O[_] for Γ ⊢ A. A simple proof by induction
shows that there exists a function F such that for all term Γ ⊢ t : A we have ⟦O[t]

⟧

=
F (⟦t⟧), and this function preserves ≡. We assume that ⟦t⟧ ≡ ⟦s⟧. We have ⟦O[t]

⟧

=
F (⟦t⟧) ≡ F (⟦s⟧) =

⟦O[s]
⟧. Using adequacy, it follows that P(O[t] ⇓) = P(O[s] ⇓),

hence the result. □

6.3 ≡-Full Abstraction for LQΛ

In this section, we tweak the proof of full abstraction of QRel from Section 3.2.4 into a
proof of full abstraction of QA for LQΛ. We postpone to the next section the proof that
QAa is fully abstract for AQΛ.

6.3.1 Web of a Type

The core of the full abstraction proof is to note that exhaustive configurations in the
game semantics take the role of the web from the relational semantics. For example, for
A = 1⊸ bit a type of LQΛ, we have a clear correspondence between the two:

E(⟦A⟧) = {{λ+, ⋆−,ff+}, {λ+, ⋆−, tt+}}} |A| = {(⋆,ff), (⋆, tt)}

We recall the definition of web of a type and its associated Hilbert space, and then build
a bijection between exhaustive configurations of ⟦A⟧ and points of the web |A|.

Definition 6.3.1. For A a type of LQΛ, we define the web |A|, and the Hilbert space
HA(a) for a ∈ |A|.

|1| := {⋆}
|qubit| := {qb}
|A⊕B| := |A| ⊎ |B|
|A⊗B| := |A| × |B|
|A⊸ B| := |A| × |B|
|Aℓ| := {⋆} ⊎ (|A| × |Aℓ|) (smallest fixpoint)



6.3. ≡-FULL ABSTRACTION FOR LQΛ 197

H1 : ⋆ 7→ 1
Hqubit : qb 7→ Q

HA⊕B : (0, a) 7→ HA(a)
(1, b) 7→ HB(b)

HA⊗B : (a, b) 7→ HA(a)⊗HB(b)
HA⊸B : (a, b) 7→ HA(a)⊗HB(b)
HAℓ : (0, ⋆) 7→ 1

(1, (a, b)) 7→ HA(a)⊗HAℓ(b)

Definition 6.3.2. For A a type of LQΛ, we define a bijection rA : E(⟦A⟧) → |A| induc-
tively:

r1 : {⋆+} 7→ ⋆
rqubit : {qb+} 7→ qb
rA⊕B : xA ⊕ ∅ 7→ (0, rA(xA))

∅⊕ xB 7→ (1, rB(xB))
rA⊗B : xA ⊗ xB 7→ (rA(xA), rB(xB))
rA⊸B : xA ⊸ xB 7→ (rA(xA), rB(xB))
rAℓ : [ ] 7→ (0, ⋆)

[x1; . . . ;xn] 7→ (1, (rA(x1), rAℓ([x2; . . . ;xn])))

This definition is well behaving, in particular, for A a type of LQΛ, and for x ∈
E(⟦A⟧) we have H⟦A⟧QA(x) = HA(rA(x)). But as we will show in Section 6.3.3, it can be
reformulated into a functor from the game semantics to the relational semantics.

6.3.2 Test Terms and Generator Terms
To prove full abstraction for our game semantics, we rely on test terms and generator terms
as in the relational case. In this section, we recall the definition of test terms and generator
terms.

We first recall that the extended web |A|e of a type A is defined exactly as the web
except for |qubit|e = |qubit| × {0, 1, 2, 3}. We use the notation a|i ∈ |A|e with a ∈ |A|
and i ∈ {0, 1, 2, 3}#qubit(a) as formalised in Section 3.2.4.

Definition 6.3.3. For every element of |A|e, we define a generator term and a test term,
written ⇑Aa and ⇓Aa as in Tables 6.2 and 6.3. They are typed by:

⊢L ⇑Aa : A ⊢L ⇓Aa : A⊸ 1

We note that the terms for qubit are built from the morphisms of Proposition 2.1.18.

As in the relational case, the role of test terms is to “extract” the coefficient corre-
sponding to a point of the web by “replaying” a given configuration. Formally, we expect
that for any term x : A ⊢L t : B, we have:
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⇑1
⋆ := ()

⇑qubit
qb,0 := new ff ⇑qubit

qb,1 := new tt

⇑qubit
qb,2 :=

(

1√
2

1√
2

1√
2
− 1√

2

)

new ff ⇑qubit
qb,3 :=

(

1√
2

i√
2

i√
2
− 1√

2

)

new ff

⇑A⊗B
(a,b) := ⇑Aa ⊗ ⇑Bb ⇑A⊸B(a,b) := λx. ⇓Aa x;⇑Bb
⇑A⊕B

(0,a) := injℓ ⇑Aa ⇑A⊕B
(1,b) := injr ⇑Bb

⇑Aℓ

(0,⋆) := [ ] ⇑Aℓ

(1,(a,b)) := ⇑Aa ::⇑Aℓ

b

Table 6.2: Generator terms ⊢L ⇑Aa : A

⇓1
⋆ := λ().()

⇓qubit
qb,0 := λq.if meas q then ⊥ else ()

⇓qubit
qb,1 := λq.if meas q then () else ⊥
⇓qubit

qb,2 := λq.if meas
(

1√
2

1√
2

1√
2
− 1√

2

)

q then ⊥ else ()

⇓qubit
qb,3 := λq.if meas

(

1√
2
− i√

2

− i√
2
− 1√

2

)

q then ⊥ else ()

⇓A⊗B
(a,b) := λ(x⊗ y). ⇓Aa x ;⇓Bb y

⇓A⊸B(a,b) := λf.let x = f ⇑Aa in ⇓Bb x

⇓A⊕B
(0,a) := λx.δ (x, y. ⇓Aa y, z.⊥)

⇓A⊕B
(1,b) := λx.δ (x, y.⊥, z. ⇓Bb z)

⇓Aℓ

(0,⋆) := λℓ.match ℓ with ([ ] 7→ () | x :: y 7→ ⊥)

⇓Aℓ

(1,(a,b)) := λℓ.match ℓ with
(

[ ] 7→ ⊥
∣

∣

∣ x :: y 7→⇓Aa x ;⇓Aℓ

b y
)

Table 6.3: Test terms ⊢L ⇓Aa : A⊸ 1
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O[t] = let xA = ⇑ArA(xA)|i in ⇓BrB(xB)|j t

Q⟦O[y]⟧({⋆}, {⋆}) = T
H⟦A⟧(xA)

i ◦ Q⟦t⟧(xA, xB) ◦GH⟦B⟧(xB)
j

where G and T are the morphisms of Proposition 2.1.18. We can deduce this property
from the following lemma.

Lemma 6.3.4 (Semantics of Tests and Generators). For A a type and (rA(xA)|i) ∈ |A|e:

xA , y =⇒ Q⟦⇑A
rA(xA)|i

x
⟧({⋆}, y) = 0 and Q⟦⇓A

rA(xA)|i
x
⟧(y, {⋆}) = 0

And moreover:

Q⟦⇑A
rA(xA)|i

x
⟧({⋆}, xA) = G

H⟦A⟧(xA)
i ∈ CPM(1,H⟦A⟧(xA))

Q⟦⇓A
rA(xA)|i

x
⟧(xA, {⋆}) = T

H⟦A⟧(xA)
i ∈ CPM(H⟦A⟧(xA),1)

Proof. The terms for A = qubit have been created such that it holds for them. We
then simply proceed by induction on the type, using the compact closure of CPM for
the function case. □

We then have all the tools to prove the reverse implication of the full abstraction, and
conclude with the full abstraction theorem for LQΛ.

Lemma 6.3.5 (Characterisation by Tests and Generators). We define the set of observers
Ov:A⊢LB as

Ov:A⊢LB =
{

let vA = ⇑Aa|i in ⇓Bb|j _
∣

∣

∣ (a|i) ∈ |A|e, (b|j) ∈ |B|e
}

For every pair of terms x : A ⊢L t : B and x : A ⊢L s : B, we have:

∀O[_] ∈ Ox:A⊢LB,P(O[t] ⇓) = P(O[s] ⇓)
=⇒

⟦t⟧ ≡ ⟦s⟧

Proof. Using Lemma 6.3.4, we have immediately that for O[_] = let vA = ⇑ArA(xA)|i

in ⇓BrB(xB)|j _, we have Q⟦O[t]⟧(⋆, ⋆) = T
H⟦B⟧(xB)
j ◦Q⟦t⟧(xA, xB)◦GH⟦A⟧(xA)

i . So if for
all observers we have P(O[t] ⇓) = P(O[s] ⇓), using soundness and adequacy we have
for all (rA(xA)|i) ∈ |A|e and all (rB(xB)|j) ∈ |B|e:

T
H⟦B⟧(xB)
j ◦ Q⟦t⟧(xA, xB) ◦GH⟦A⟧(xA)

i = T
H⟦B⟧(xB)
j ◦ Q⟦s⟧(xA, xB) ◦GH⟦A⟧(xA)

i

Using Theorem 6.2.7, we know that Q⟦t⟧ and Q⟦s⟧ are in CPM, so using Proposi-
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tion 2.1.18 we deduce that for all xA ∈ E(⟦A⟧) and xB ∈ E(⟦xB⟧) we have:

Q⟦t⟧(xA, xB) = Q⟦s⟧(xA, xB) □

Theorem 6.3.6 (≡-Full Abstraction). For every term Γ ⊢L t : A and Γ ⊢L s : A, we have

⟦t⟧ ≡ ⟦s⟧ ⇐⇒ t =obs s

Proof. The direct implication is exactly Corollary 6.2.12. We now assume t =obs s.
We write P =

⊗

(xi:Ai)∈ΓAi.
We consider t′ = let v = ⊗

(vi:Ai)∈Γ vi in s and s′ = let v = ⊗

(vi:Ai)∈Γ vi in s.
It follows that t′ =obs s

′. In particular, for every O[_] ∈ Ov:P⊢L A, we have P(O[t′] ⇓) =
P(O[s′] ⇓). It follows from the previous lemma that ⟦t′⟧ ≡ ⟦s′⟧. From the definition
of the semantics, it follows immediately that ⟦t⟧ ≡ ⟦s⟧. □

6.3.3 Relational Collapse of LQΛ

Since both QRel and QA quotiented by≡ are fully abstract models of LQΛ, it is reasonable
to expect a relationship between those two. In this section, we write ⟦−⟧QA for the games
model of LQΛ, and use ⟦−⟧QRel for the relational model of LQΛ. We will relate the two
models through an intermediate category: the category of quantum relations on arenas.

Definition 6.3.7. The category QARel has quantum arenas as objects, and quantum
relations on arenas as morphisms, where a quantum relation on arenas from A to B is
a function R with ∀xA ∈ E(A), xB ∈ E(B), R(xA, xB) ∈ CPM(HA(xA),HB(xA)). The
composition is the relational composition

(R′ ◦R)(xA, xC) :=
∑

xB∈E(B)

R(xC , xB) ◦R(xA, xB)

The identity quantum relation on arenas is idQARel
A (x, y) = idCPM

H(x) if x = y and 0 other-
wise.

A quantum relation on arenas is called finitary if all its quantum annotations are in
the finitary fragment of CPM.

Proposition 6.3.8. The category (QARel,QARel, id,⊗,1,⊸,⊕,0) is a non-trivial dis-
tributive CFC with a bottom. We have an identity-on-objects functor from QA to QARel
which preserves all the structure, and is given by

σ 7→ Qσ(−,−)

The image of this functor is included in the set of finitary maps of QARel, and this functor
is ≡-faithful: two maps are exhaustively equivalent if and only if they have the same image
by this functor.
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This proposition is essentially a corollary of Theorem 6.2.9. We note that while the
objects of QARel are the same as QA, the maps are the same as QRel, so the additional
structure (⊗,⊸, . . . ) behaves as in QA for objects and the same as in QRel for morphisms.

Theorem 6.3.9 (Factorisation). Up to isomorphism in QRel we have:

LQΛ

⟦−⟧QA
��

⟦−⟧QRel // QRel

QA
Q(−,−)

// QARel

E
OO

Where E is the functor f ∈ QARel(A,B) 7→ f ∈ QRel(E(A), E(B)). The isomorphism
being used is RA ∈ QRel(E(⟦A⟧QA), ⟦A⟧QRel) defined by RA(x, a) = idCPM

HA(x) if a = rA(x)
and 0 otherwise. The proof of this theorem is direct: we make an induction over the typing
derivations, relying on the fact that ≡ is a congruence on QA. We note that this factorisa-
tion allows us to deduce the full abstraction of any of the two models from the other one.
The category QRel is significantly bigger than the image of QA by the functor, containing
a lot of weighted relations that have no computational meaning, describing “systems” that
execute some behaviours with “probabilities” greater than one, or even infinite when the
annotations are in the infinitary fragment of CPM. While not all strategies of QA come
from QΛ, Theorem 5.3.15 ensures that they always have a computational meaning.

6.4 Affine Quantum Semantics
In this section, we tweak the proof of full abstraction of QA for LQΛ into a proof of full
abstraction of QAa for AQΛ.

While we do not define a relational model for AQΛ, this does not prevent us from
defining a variation to the web of types more adapted to AQΛ, and to extend the bijection
rA and the test terms to the affine web. We sum up the differences in Table 6.4

Using exactly the same reasoning and intermediate lemmas as in the strictly linear case,
we obtain

Theorem 6.4.1 (≡-Full Abstraction). For every term Γ ⊢A t : A and Γ ⊢A s : A, we have

⟦t⟧ ≡ ⟦s⟧ ⇐⇒ t =obs s

We also have a similar relational collapse with a category of quantum relations on
arenas, though there is a small subtlety as we cannot discard the notion of thunkability in
the affine case.

Definition 6.4.2. The category QARela is the full subcategory of QARel restricted to
only affine arenas. A quantum relation on arenas R ∈ QARela(A,B) is called thunkable
if
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Strictly Linear Case Affine Case
κ⟦A⊸B⟧({λ+}) := 1 κ⟦A⊸B⟧({λ+}) := 0
|A⊸ B| := |A| × |B| |A⊸ B| := {λ} ⊔ (|A| × |B|)

HA⊸B : (a, b) 7→ HA(a)⊗HB(b) HA⊸B :

{

(a, b) 7→ HA(a)⊗HB(b)

λ 7→ 1

rA⊸B : xA ⊸ xB 7→ (rA(xA), rB(xB)) rA⊸B :

{

xA ⊸ xB 7→ (rA(xA), rB(xB))

{λ+} 7→ λ

⇑A⊸B(a,b) := λx. ⇓Aa x;⇑Bb
⇑A⊸B(a,b) := λx. ⇓Aa x;⇑Bb
⇑A⊸Bλ := λx.⊥

⇓A⊸B(a,b) := λf.let x = f ⇑Aa in ⇓Bb x
⇓A⊸B(a,b) := λf.let x = f ⇑Aa in ⇓Bb x

⇓A⊸Bλ := λf.()

Table 6.4: Differences between the semantics of LQΛ and AQΛ

• for every a ∈ minA, there exists a unique b ∈ minB, such that R({a}, {b}) , 0, and

• for every a ∈ minA, b ∈ minB with R({a}, {b}) , 0, we have

TrHB({b}) ◦R({a}, {b}) = TrHA({a})

We write QARelat for the subcategory of thunkable maps.

Proposition 6.4.3. The category (QARela,QARelat , id,⊗,1,�,⊕,0) is an affine non-
trivial distributive CFC with a bottom. We have an identity-on-objects functor from QAa

to QARela which preserves all the structure, and is given by

σ 7→ Qσ(−,−)

The image of this functor is included in the set of finitary maps of QARela, and this
functor is ≡-faithful: two maps are exhaustively equivalent if and only if they have the
same image by this functor.

If we had defined a relational model for AQΛ, we would expect a similar factorisation
theorem

AQΛ!

⟦−⟧QAa

��

⟦−⟧QRela // QRela

QAa

Q(−,−)
// QARela

E
OO
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Overview of Part III
In this part, we tackle the issue of modelling replicable functions, i.e., functions that

can be used multiple times.
In the seventh chapter, we define the (full) quantum λ-calculus, which is the language

studied in [PSV14]. We then look at the categorical structure required to model it.
In the eighth chapter, we present the category of quantum relations on ∼-arenas, which

is a variation of the relational model presented in [PSV14]. This model was known to
be sound and adequate, but full abstraction was an open question. The main difference
between the category defined in [PSV14] and the model we define in this chapter is that
we use quantum arenas as objects, instead of weighted sets (the webs). As such, this
chapter starts with an introduction on how to represent the replication in arenas: the event
structures with symmetry. We refer to [CCW19] for a more in-depth study of symmetry.

In the ninth chapter, we present our game model for the quantum λ-calculus. While
similar models for probabilistic languages existed, this model is one of the main contribution
of this thesis. We prove soundness and adequacy of this model, which was the main result
of our work in [CdVW19].

In the tenth and last chapter, we present the proof of full abstraction of our game
model, which induces the full abstraction of the relational model. The proof method is an
adaptation of the method of [ETP14] on probabilistic coherence spaces to our quantum
game models.
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Chapter 7

The Quantum λ-calculus

7.1 The Quantum λ-calculus

7.1.1 Motivation
The language QΛ has a crucial restriction: variables and functions must be used linearly.
This linearity restriction exists because of the non-duplicability of quantum data. Indeed,
the function λ().meas q cannot be used multiple times, as it consumes the qubit q when
executed. However, plenty of functions of QΛ do not have this problem, and could be
allowed to be duplicated without contradicting the quantum no-cloning theorem. For
example, the function λ().new ff does not consume any quantum data, so we should be
able to duplicate it at will. As a guiding example in this part, we will use the term Map(f, ℓ)
which applies the replicable function f to every element of the list ℓ:

Map(f, ℓ) := let rec m ℓ′ =

match ℓ′ with | [] 7→ []
| x :: ℓ′′ 7→ (f x) :: (m ℓ′′)

in m ℓ

We will type this term in the following way, writing !(qubit ⊸ qubit) for the type of
replicable functions on qubits.

f :!(qubit⊸ qubit), ℓ : qubitℓ ⊢LMap(f, ℓ) : qubitℓ

7.1.2 Syntax and Typing System
In this section, we define the full quantum λ-calculus, a language for which a sound and
adequate model was already known, but no model was known to be fully abstract before our
work. Up to some small syntactical changes, this is the same language as in [PSV14]. This
language combines quantum primitives with non-linear behaviour, meaning that functions

207
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that cannot be used multiple times due to physical impossibility are restricted to be linear
by the typing system, while functions that are physically replicable will be able to be typed
with a ! indicating they can be used as many times as one wishes to.

Similarly to previously defined languages, the language we consider here has two vari-
ations. We write LQΛ! for the language where functions can either be strictly linear or
non-linear, and AQΛ! for the language where functions can either be affine or non-linear.
Finally, we write QΛ! when we refer indifferently to either of the two variants. For typing
judgements, we use ⊢L , ⊢A and ⊢ respectively. Due to the similarity of QΛ! with QΛ, a
lot of the content of this section is redundant with the content of previous parts, but we
find it more practical to have all the definitions at the same place. Types of QΛ! are

A,B, · · · ::= 1 | qubit | A⊕B | A⊗B | A⊸ B | !(A⊸ B) | Aℓ

The type !(A⊸ B) represents non-linear functions, in contrast to functions of type A⊸ B
which are linear in LQΛ! and affine in AQΛ!. As frequently done in call-by-value languages,
we choose to only replicate functions. Whenever needed, terms of type !A can usually be
simulated through terms of the type !(1⊸ A). While we continue to use A,B, . . . to name
types, we will often use F,G, . . . to range over types of the form A⊸ B. The terms of the
language QΛ! are simply the terms of QΛ together with a recursion operator:

t, s, . . . ::= x | λxA.t | t s | () | t; s | ⊥AV
| injℓ t | injr t | δ (t, s1, s2) | t⊗ s | let xA ⊗ yB = t in s
| meas t | new t | U t | fold t | unfold t

| let rec f !(A⊸B) xA = t in s

The values of the language are the following:

v, w, · · · ::= x | λxA.t | () | v ⊗ w | injℓ v | injr v | fold v

We note that ⊥A and the infinitely looping recursion let rec f !(1⊸A) x1 = f x in f ()
are observationally equivalent1. As previously, we will often omit the typing annotations in
terms, e.g., the ones of xA and f !(A⊸B). In Table 7.1, we recall the syntactic sugar defined
in previous parts, together with the definition of bounded recursions operator let rec [n]
which are forced to diverge after n ∈ N calls.

let rec [0] f x = t in s := ⊥FV(s)\{f}
let rec [n] f x = t in s := let f x = (let rec [n− 1] f x = t in t) in s

In Tables 7.2 and 7.3, we list the typing rules of the language, writing !Ω for the sequence
x1 :!F1, . . . , xn :!Fn whenever Ω = x1 : F1, . . . , xn : Fn. This typing system allows us to
type Map(f, ℓ) as follows:

f :!(qubit⊸ qubit), ℓ : qubitℓ ⊢LMap(f, ℓ) : qubitℓ

1See Section 7.1.4 for the definition of observational equivalence in QΛ!.
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The typing rules of QΛ! are the same as the ones of QΛ, with the following exceptions.
Firstly, all the rules that merge two contexts Γ and ∆ into Γ,∆ now merge the contexts
!Ω,Γ and !Ω,∆ into !Ω,Γ,∆. Indeed, replicable variables can be used multiple times in the
term, so can appear in multiple branches of the typing derivation. Secondly, the axiom rule
is restricted to types that are linear, i.e., not of the form !F , as a special axiom-dereliction
rule is added for types of the form !F . Thirdly, we have four new typing rules which we
detail here.

!Ω, f :!(A⊸ B), x : A ⊢ t : B !Ω,Γ, f :!(A⊸ B) ⊢ s : C

!Ω,Γ ⊢ let rec f !(A⊸B) xA = t in s : C

This rule is the recursion rule. A notable point of this rule is the !Ω on the left hand side
branch, which allows us to use in recursive definitions some external functions, but only
non-linear ones. The right hand side branch can have both linear and non-linear variables
in its context.

x :!F ⊢ x : F

This rule is the axiom-dereliction rule. It means that a non-linear function can be used
linearly, i.e., a function that can be used “as many time as we want” can be used “once”.
We note that even though the regular axiom rule cannot be used on non-linear functions,
so we still have x :!F ⊢ x :!F using the axiom-dereliction rule followed by the promotion
rule presented just below.

!Ω ⊢ v : A⊸ B v value
!Ω ⊢ v :!(A⊸ B)

This rule is the promotion rule. If says that if a linear function only uses non-linear
variables, then we can replicate this function and obtain a non-linear function. Since the
promotion rule leaves no syntactic trace in terms, we do not have uniqueness of typing.
Indeed, we could have Γ ⊢ t : A and Γ ⊢ t : B with A and B differing because of the
presence or absence of one or more ! inside them.

Γ ⊢ t : B x < FV(t)

Γ, x :!F ⊢ t : B

This rule is the exponential weakening rule. In AQΛ!, it is redundant with the weakening
rule, but in LQΛ! it states that every non-linear function can be discarded, i.e., a function
that can be used “as many time as we want” can be used “zero times”.
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Function type
let x = t in s := (λx.s) t

let f x = t in s := (λf.s) (λx.t)

Unit type
λ().t := λx.x ; t

Tensor type
A1 ⊗ . . .⊗An := (A1 ⊗ . . . )⊗An
x1 ⊗ . . .⊗ xn := (x1 ⊗ . . . )⊗ xn

let x1 ⊗ . . .⊗ xn = t in s :=















let y ⊗ xn = t in
let x1 ⊗ . . . = y in
s

λ(x1 ⊗ . . .⊗ xn).t := λz.let x1 ⊗ . . .⊗ xn = z in t

Sum type
bit := 1⊕ 1

ff := injℓ ()
tt := injr ()

if t then st else sf := δ (t, x.x; sf , y.y; st)

match t with | injℓ x 7→ sℓ
| injr y 7→ sr

:= δ (t, x.sℓ, y.sr)

List type
[ ] := fold (injℓ ())

t :: s := fold (injr (t⊗ s))
match t with | [ ] 7→ s1

| x :: y 7→ s2
:= δ (unfold t, z.z; s1, z

′.let x⊗ y = z′ in s2)

Quantum primitives

p · t+ (1− p) · s :=



























if meas
((√

1− p √
1− p

√
p −√p

)

(new ff)

)

then t

else s

p · t := p · t+ (1− p) · ⊥
∑n
i=1 pi · ti := p1 · t1 +

∑n
i=2

pi

1−p1
· ti with 0

0 = 0

Recursion
let rec [0] f x = t in s := ⊥FV(s)\{f}
let rec [n] f x = t in s := let f x = (let rec [n− 1] f x = t in t) in s

Table 7.1: Syntactic Sugar for QΛ!
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Structural rules

Γ, x : A, y : B,∆ ⊢ t : C
permutation

Γ, y : B, x : A,∆ ⊢ t : C

Γ ⊢A t : B x < FV(t) (AΛ only)
weakeningΓ, x : A ⊢A t : B

bottom
x1 : A1, . . . , xn : An ⊢ ⊥Ax1,...,xn

: A

λ-calculus

A linear axiom
x : A ⊢ x : A

Γ, x : A ⊢ t : B
abstraction

Γ ⊢ λxA.t : A⊸ B

!Ω,Γ ⊢ t : A⊸ B !Ω,∆ ⊢ s : A
application

!Ω,Γ,∆ ⊢ t s : B

Unit type

skip
⊢ () : 1

!Ω,Γ ⊢ t : 1 !Ω,∆ ⊢ s : A
sequence

!Ω,Γ,∆ ⊢ t ; s : A

Tensor type

!Ω,Γ ⊢ t : A !Ω,∆ ⊢ s : B
pair

!Ω,Γ,∆ ⊢ t⊗ s : A⊗B

!Ω,Γ ⊢ t : A⊗B x : A, y : B, !Ω,∆ ⊢ s : C
let-pair

!Ω,Γ,∆ ⊢ let x⊗ y = t in s : C

Sum type

Γ ⊢ t : A left-injection
Γ ⊢ injA⊕B

ℓ t : A⊕B
Γ ⊢ t : B right-injection

Γ ⊢ injA⊕B
r t : A⊕B

!Ω,Γ ⊢ t : A⊕B x : A, !Ω,∆ ⊢ s1 : C y : B, !Ω,∆ ⊢ s2 : C
case

!Ω,Γ,∆ ⊢ δ (t, xA.s1, y
B.s2) : C

List type

Γ ⊢ t : Aℓ unfold
Γ ⊢ unfold t : 1⊕ (A⊗Aℓ)

Γ ⊢ t : 1⊕ (A⊗Aℓ)
fold

Γ ⊢ fold t : Aℓ

Table 7.2: Typing Rules for QΛ!, part 1
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Quantum primitives

Γ ⊢ t : bit new
Γ ⊢ new t : qubit

Γ ⊢ t : qubit
meas

Γ ⊢meas t : bit

Γ ⊢ t : qubit⊗n U of arity n
unitary

Γ ⊢ U t : qubit⊗n

Exponential rules

axiom-dereliction
x :!F ⊢ x : F

Γ ⊢ t : B x < FV(t)
!-weakening

Γ, x :!F ⊢ t : B

!Ω ⊢ v : A⊸ B v value promotion
!Ω ⊢ v :!(A⊸ B)

!Ω, f :!(A⊸ B), x : A ⊢ t : B !Ω,Γ, f :!(A⊸ B) ⊢ s : C
recursion

!Ω,Γ ⊢ let rec f !(A⊸B) xA = t in s : C

Table 7.3: Typing Rules for QΛ!, part 2

7.1.3 Operational Semantics

Similarly to QΛ, we have two reduction systems: one at the level of terms that takes
care of all the reductions that are “structural”, and one at the level of quantum closures
which inherits the “structural” reductions from the first one and adds some “quantum”
reductions. We redefine quantum closures as follows. Those reduction systems are nearly
identical to the reduction systems of QΛ in Table 3.1. We use the same definition for
closures, which we recall here.

Definition 7.1.1. A simple (quantum) closure is a triple [q, ℓ, t] where:

• t is a term.

• q is the quantum store, q ∈ Q⊗n for some n ∈ N.

• ℓ is a sequence of n variables written |x1 . . . xn⟩. It is an ordering of all the free
variables of t, and can be seen as a function which to each free variable of the term
indicate where its value is stored.

We say it is terminal if it is of the form [q, ℓ, v] with v a value, or [q, ℓ,⊥]. We write
⊢ [q, ℓ, t] : A whenever

x1 : qubit, . . . , xn,qubit ⊢ t : A
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() ; t → t
(λx.t) v → t{x← v}

let rec f x = t in s → s

{

f ← λx.
let rec f x = t in t

}

let x⊗ y = v ⊗ w in t → t{x← v, y ← w}
δ (injℓ v, x.t, y.s) → t{x← v}
δ (injr v, x.t, y.s) → s{y ← v}
unfold (fold v) → v
E[t] → E[s] whenever t→ s
E[⊥V ] → ⊥FV(E[⊥V ]) whenever E[_] , _

with E[_] ::= _ | E[_] ; t
| E[_] t | v E[_]
| E[_]⊗ t | v ⊗ E[_] | let x⊗ y = E[_] in t
| injℓ E[_] | injr E[_] | δ (E[_], x.t1, y.t2)

Table 7.4: Reduction Rules for QΛ! terms

t0 → t1
[q, ℓ, E[t0]]→ [q, ℓ, E[t1]]

[q, |x1 . . . xn⟩, E[new ff]]→ [q ⊗ |0⟩, |x1 . . . xn+1⟩, E[xn+1]]

[q, |x1 . . . xn⟩, E[new tt]]→ [q ⊗ |1⟩, |x1 . . . xn+1⟩, E[xn+1]]

k-measHilb(q) = (q0, q1)

[q, |x1 . . . xn⟩, E[meas xk]]→
||q0||2

[

q0

||q0|| , |x1 . . . xk−1xk+1 . . . xn⟩, E[ff]
]

+ ||q1||2
[

q1

||q1|| , |x1 . . . xk−1xk+1 . . . xn⟩, E[tt]
]

σ̂ ◦
(

U ⊗Q⊗n−k
)

◦ σ̂−1(q) = q′ σ̂ permutation map induced by σ ∈ Sn
[q, |x1 . . . xn⟩, E[U (xσ(1) ⊗ . . .⊗ xσ(k))]]→ [q′, |x1 . . . xn⟩, E[xσ(1) ⊗ . . .⊗ xσ(k)]]

c→ c′ d terminal 0 < p ≤ 1

pc+ (1− p)d→ pc′ + (1− p)d
c→ c′ d→ d′ 0 ≤ p ≤ 1

pc+ (1− p)d→ pc′ + (1− p)d′

Table 7.5: Reduction Rules for QΛ! closures
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Definition 7.1.2. A (quantum) closure c is a discrete probability distribution of simple
closures, written as a formal sum ∑

i pici with ci simple closures, 0 ≤ pi ≤ 1 and ∑i pi = 1.
We say it is terminal if all the ci are terminal. We write ⊢∑i pici : A if ⊢ ci : A for every
simple closure ci.

We describe the reduction rules for QΛ! in Tables 7.4 and 7.5. We note that they refer
to primitives of the category Hilb defined in Section 2.3.2. The reduction rules are the
same as the ones for QΛ, with the following exception:

• There is an additional rule for recursion.

• In substitutions t{x← v}, the variable x might appear more than once in t,

Proposition 7.1.3. The following properties hold

Subject Reduction For every term Γ ⊢ t : A, if t→ s then Γ ⊢ s : A. Similarly, for every
closure ⊢ c : A, if c→ d then ⊢ d : A.

Determinism For any term t, there exists at most one term s such that t → s. Similarly
for any closure c, there exists at most one closure d such that c→ d.

Partial Normalisation For any term t which does not contain let rec , there is no infinite
sequence t → t1 → t2 → . . . . Similarly, for any closure c which does not contain
let rec, there is no infinite sequence c→ c1 → c2 → . . . .

Progress For any closed term ⊢ t : A, either t is a value, or ⊥, or there exists a term s
such that t → s. Similarly for any closure c, either c is terminal, or there exists a
closure d such that c→ d.

Contrary to QΛ, subject reduction is non-trivial, and looking for example at the β-
reduction (λxA.t) v → t{x← v}, one must distinguish the case where A is linear from the
case where A =!F .

• Whenever A is linear, we obtain a typing derivation for t{x ← v} by considering a
typing derivation for t and replacing the axiom for x by a typing derivation for v.

• Whenever A =!F , we note that every typing derivation for v :!F has a promotion rule
at the root, so we can deduce from them the typing derivations for v : F . We obtain
a typing derivation for t{x ← v} by taking a typing derivation for t and replacing
each of the axiom-derelictions for x by a typing derivation for v : F .

We recall that the determinism of quantum reductions is at the level of closures, i.e., prob-
ability distributions of simple closures. The reduction system describes non-deterministic
behaviours by encapsulating them in a probability distribution. The partial normalisation
is also non-trivial to prove, and is proved in two steps: (1) we prove that the reduction
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system on terms satisfies partial normalisation using the same proof as for the normalisa-
tion of the simply-typed λ-calculus (2) we deduce that the reduction system on quantum
closures satisfies partial normalisation by noting that we reduce all the terms of a sum
∑

i pici at once (except the terminal ones that cannot be reduced).

7.1.4 Convergence and Observational Equivalence
We extend the notions of convergence and observational equivalence to QΛ!. We also state
the approximation lemma, which will be key in proving that the denotational semantics
for QΛ! are adequate.

Definition 7.1.4 (Convergence). For c a closure and v a value, we define the probability
that c converges to v, written P(c ⇓ v), as the supremum of the p ∈ [0, 1] such that
p =

∑n
i=1 pi and c→∗ ∑n

i=1 pi[qi, ℓi, v] + (1− p)c′ with c′ any closure.

By partial normalisation, if c does not contain let rec, then the supremum is reached.
Whenever ⊢ c : 1, we write P(c ⇓) for P(c ⇓ ()). Whenever ⊢ t : 1, we write P(t ⇓) for
P([∅,∅, t] ⇓). If c does contain let rec, the supremum might not be reached, which can
be problematic to prove adequacy results. To take care about closures containing let rec,
we will need the following lemma.

Lemma 7.1.5 (Approximation Lemma). For ⊢ c : 1 a closure, if we write cn for the closure
c where every let rec has been replaced by a let rec [n], then P(c ⇓) = supn P(cn ⇓).

Proof. We start by noting that every reduction reduces by at most one the k of every
let rec [k] in the closure, and that as long as we did not reach 0, the behaviour of let
rec [k] and let rec are the same. From this it follows that if c→k ∑n

i=1 pi[qi, ℓi, ()] +
(1 − p)c′, then we have ck →k ∑n

i=1 pi[qi, ℓi, ()] + (1 − p)d for some closure d. Since
suprema commute, we have the expected result. □

An observation context O[_] for Γ ⊢ A with Γ a typing context and A a type, is a term
with a unique hole O[_] such that for every Γ ⊢ t : A, we have ⊢ t : 1.

We say that two terms Γ ⊢ t1 : A and Γ ⊢ t2 : A are observationally equivalent, and we
write t1 =Γ⊢A

obs t2, if for every observation context O[_] for Γ ⊢ A, we have

P(O[t1] ⇓) = P(O[t2] ⇓)

We will often keep the annotation Γ ⊢ A implicit.

7.2 Categorical Pre-Model for the Quantum λ-Calculus
In this section, we provide the general shape of a semantics for the quantum λ-calculus,
which we will specialise later into the quantum relational model and the quantum game
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model for LQΛ! and AQΛ!. We do not aim for a perfect categorical model that captures
all the properties of the language, the goal of this section is only to factor out some of the
definitions and propositions.

In particular, we will not study in this section the semantics of quantum closures and
their reductions, as the relational model and the game models significantly differ in their
representation of weighted sums of closures. As another example, we expect the equation
for list to be Aℓ = 1⊕ (A⊗Aℓ) since this is the equation both models satisfy, even though
asking for Aℓ � 1⊕ (A⊗Aℓ) would be enough.

7.2.1 The Categorical Pre-Model
As for Λ, we assume we have a non-trivial distributive CFC with a bottom (C,V, J,⊗,1,�
,⊕,0,⊥). When considering the affine language, we additionally assume the CFC is affine.
On top of this CFC, we require the following structure:

• For every object A, an object Aℓ such that Aℓ = 1⊕ (A⊗Aℓ).

• An object qubit together with two morphisms measC ∈ C(qubit,bit), newC ∈
C(bit,qubit) and a morphism UC ∈ C(qubit⊗n,qubit⊗n) for every unitary U of
arity n. We do not expect them to satisfy any particular axiom.

• A full sub-SMC (F ,⊗,1) of (V,⊗,1), which contains at least all the objects of the
form A� B for A,B ∈ V.

• A linear exponential comonad (!, ϵ, δ,w, c,m,m1) on F , as defined in Section 1.2.4.

• A recursor Y : F(W⊗!(A � B), A � B) → F(W, !(A � B)) whenever W is of the
form ⊗

i!Fi, satisfying the following axioms:

– for f ′ ∈ F(W ′,W ) with W ′ of the form ⊗

j !F
′
j we have

Y(f) ◦ f ′ = Y(f ◦ (f ′⊗!(A� B)))

– for contrW,1,1 ∈ F(W,W⊗W ) and digW⊗!(A�B) ∈ F(W⊗!(A� B), !(W⊗!(A�
B))) the morphisms defined below using the the linear exponential comonad,
we have

Y(f) =!f ◦ digW⊗!(A�B) ◦ (W ⊗Y (f)) ◦ contrW,1,1

Definition 7.2.1. We call “pre-model of QΛ!” a category that comes with all the structure
described above.

In QΛ, whenever we had to merge two typing context Γ and ∆ into Γ,∆, the semantics
was simply a tensor of their semantics. Now, in QΛ!, we will often have to merge !Ω,Γ
and !Ω,∆ into !Ω,Γ,∆. At the semantics level, we will simply use the contraction cF ∈
V(!F, !F⊗!F ), which we encapsulate in the following morphism.
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⟦1⟧ := 1
⟦qubit⟧ := qubit
⟦A⊸ B⟧ := ⟦A⟧ � ⟦B⟧
⟦

!(A⊸ B)
⟧

:= !(⟦A⟧ � ⟦B⟧)

⟦A⊕B⟧ := ⟦A⟧⊕ ⟦B⟧
⟦A⊗B⟧ := ⟦A⟧⊗ ⟦B⟧
⟦

Aℓ
⟧

:= ⟦A⟧ℓ

Table 7.6: Denotational Semantics for QΛ! Types

Definition 7.2.2. For every objec W of the form W =
⊗

i!Fi, and two other objects G,D,
we write contrW,G,D ∈ F(W ⊗ (G⊗D), (W ⊗G)⊗ (W ⊗D)) obtained from the associator,
braiding and contraction morphisms.

In the semantics of the promotion rule, we will need to replicate a context !Ω. For
that, we rely on the monoidality morphism mF,F ′ ∈ V(!F⊗!F ′, !(F ⊗ F ′)) and the digging
morphism δF ∈ V(!F, !!F ).

Definition 7.2.3. For W an object of the form W =
⊗

i!Fi, we write digW ∈ F(W, !W )
obtained from the associator, monoidality and digging morphisms.

We describe the semantics of types of QΛ! in Table 7.6, and the semantics of typing
derivations of QΛ! in Tables 7.7 to 7.9. The semantics of the promotion uses ⟦−⟧v which
we define similarly to the linear case:

Definition 7.2.4. If V is a typing derivation for a value Γ ⊢ v : A, then we define its
value-semantics ⟦V ⟧v ∈ V(⟦Γ⟧ , ⟦A⟧) using the same inductive definition as ⟦V ⟧, up to
the following changes: we propagate the ⟦−⟧v in every rule (except in the abstraction rule
where we do not replace the ⟦−⟧ by a ⟦−⟧v), and we remove all the occurrences of J .

Proposition 7.2.5. We always have J(⟦V ⟧v) = ⟦V ⟧

Theorem 7.2.6. If Γ ⊢ t : A has two typing derivations T and T ′, then we have ⟦T⟧ =
⟦

T ′⟧. As the interpretation is independent from the typing derivation, we write it ⟦t⟧Γ⊢A

We define ⟦−⟧Γ⊢A
v similarly.

The proof is the same as Theorem 1.4.6. In the affine case, this is possible because by
definition of destr, we necessarily have

destr⟦!F ⟧ = w⟦F ⟧

7.2.2 Term Invariance for the Categorical Model

We can now prove that the reduction system of QΛ! on terms satisfies invariance. For that,
we start by the value substitution lemma, then we prove the context factorisation lemma.
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Structural rules
�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ, x : A, y : B,∆ ⊢ t : C

Γ, y : B, x : A,∆ ⊢ t : C

�

�

�

�

�

�

�

�

�

�

�

�

:= ⟦T⟧ ◦ (⟦Γ⟧⊗ br⟦B⟧,⟦A⟧ ⊗
⟦

∆
⟧

)

⟦

Γ ⊢ ⊥AV : A

⟧

:= 0⟦A⟧ ◦ 0−1
0⊗⟦Γ⟧ ◦ (⊥⊗ ⟦Γ⟧) ◦ lu−1

⟦Γ⟧

AQΛ! only:

�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢A t : B

Γ, x : A ⊢A t : B

�

�

�

�

�

�

�

�

�

�

�

�

:= ⟦T⟧ ◦ (⟦Γ⟧⊗ J(destr⟦A⟧))

Functions type
⟦

A linear
x : A ⊢ x : A

⟧

:= id⟦A⟧
�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : A⊸ B

�

�

�

�

�

�

�

�

�

�

�

�

:= J ((⟦A⟧ � ⟦T⟧) ◦ fun⟦Γ⟧,⟦A⟧)

�

�

�

�

�

�

�

�

�

�

�

�

T
...

!Ω,Γ ⊢ t : A⊸ B

S
...

!Ω,∆ ⊢ s : A

!Ω,Γ,∆ ⊢ t s : B

�

�

�

�

�

�

�

�

�

�

�

�

:= eval⟦B⟧,⟦A⟧ ◦
(

⟦T⟧⊗ℓ ⟦S⟧
)

◦ J(contr⟦!Ω⟧,⟦Γ⟧,⟦∆⟧)

Exponential rules
⟦

x :!F ⊢ x : F

⟧

:= J(ϵF )
�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : B

Γ, x :!F ⊢ t : B

�

�

�

�

�

�

�

�

�

�

�

�

:= ⟦T⟧ ◦ (⟦Γ⟧⊗ J(wF ))

�

�

�

�

�

�

�

�

�

�

�

�

T
...

!Ω ⊢ v : A⊸ B

!Ω ⊢ v :!(A⊸ B)

�

�

�

�

�

�

�

�

�

�

�

�

:= J(! ⟦T⟧v ◦ dig⟦!Ω⟧)

�

�

�

�

�

�

�

�

�

T
...

!Ω, f :!(A⊸ B), x : A ⊢ t : B

S
...

!Ω,Γ, f :!(A⊸ B) ⊢ s : C

!Ω,Γ ⊢ let rec f !(A⊸B) xA = t in s : C

�

�

�

�

�

�

�

�

�

:=

⟦S⟧ ◦ J((

⟦!Ω,Γ⟧⊗Y









�

�

�

�

�

�

�

�

�

�

�

�

T
...

!Ω, f :!(A⊸ B), x : A ⊢ t : B

!Ω, f :!(A⊸ B) ⊢ λxA.t : A⊸ B

�

�

�

�

�

�

�

�

�

�

�

�









) ◦ contr⟦!Ω⟧,⟦Γ⟧,1)

Table 7.7: Denotational Semantics of QΛ! Typing Derivations, Part 1
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Unit type
⟦

⊢ () : 1

⟧

:= id1
�

�

�

�

�

�

�

�

�

�

�

�

T
...

!Ω,Γ ⊢ t : 1

S
...

!Ω,∆ ⊢ s : A

!Ω,Γ,∆ ⊢ t ; s : A

�

�

�

�

�

�

�

�

�

�

�

�

:=
lu⟦A⟧ ◦

(

⟦T⟧⊗ℓ ⟦S⟧
)

◦J(contr⟦!Ω⟧,⟦Γ⟧,⟦∆⟧)

Tensor type
�

�

�

�

�

�

�

�

�

�

�

�

T
...

!Ω,Γ ⊢ t : A

S
...

!Ω,∆ ⊢ s : B

!Ω,Γ,∆ ⊢ t⊗ s : A⊗B

�

�

�

�

�

�

�

�

�

�

�

�

:=
(

⟦T⟧⊗ℓ ⟦S⟧
)

◦ J(contr⟦!Ω⟧,⟦Γ⟧,⟦∆⟧)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

T
...

!Ω,Γ ⊢ t : A⊗B

S
...

!Ω, x : A, y : B∆ ⊢ s : C

!Ω,Γ,∆ ⊢ let xA ⊗ yB = t in s : C

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:=
⟦S⟧ ◦ (⟦T⟧⊗ ⟦!Ω,∆⟧)
◦J(contr⟦!Ω⟧,⟦Γ⟧,⟦∆⟧)

Sum type
�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : A

Γ ⊢ injA⊕B
ℓ t : A⊕B

�

�

�

�

�

�

�

�

�

�

�

�

:= ι⟦A⟧⊕⟦B⟧ℓ ◦ ⟦T⟧

�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : B

Γ ⊢ injA⊕B
r t : A⊕B

�

�

�

�

�

�

�

�

�

�

�

�

:= ι⟦A⟧⊕⟦B⟧r ◦ ⟦T⟧

�

�

�

�

�

�

�

�

�

�

T
...

!Ω,Γ ⊢ t : A⊕B

S1
...

!Ω, x : A,∆ ⊢ s1 : C

S2
...

!Ω, y : B,∆ ⊢ s2 : C

!Ω,Γ,∆ ⊢ δ (t, xA.s1, y
B.s2) : C

�

�

�

�

�

�

�

�

�

�

:=
[⟦S1⟧ ; ⟦S2⟧] ◦ dis−1

⟦A⟧,⟦B⟧,⟦!Ω,∆⟧

◦ (⟦T⟧⊗ ⟦!Ω,∆⟧) ◦ J(contr⟦!Ω⟧,⟦Γ⟧,⟦∆⟧)

List type
�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : Aℓ

Γ ⊢ unfold t : 1⊕ (A⊗Aℓ)

�

�

�

�

�

�

�

�

�

�

�

�

:= ⟦T⟧

�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : 1⊕ (A⊗Aℓ)
Γ ⊢ fold t : Aℓ

�

�

�

�

�

�

�

�

�

�

�

�

:= ⟦T⟧

Table 7.8: Denotational Semantics of QΛ! Typing Derivations, Part 2
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Quantum primitives
�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : bit
Γ ⊢ new t : qubit

�

�

�

�

�

�

�

�

�

�

�

�

:= newC ◦ ⟦T⟧

�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : qubit
Γ ⊢meas t : bit

�

�

�

�

�

�

�

�

�

�

�

�

:= measC ◦ ⟦T⟧

�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢ t : qubit⊗n

Γ ⊢ U t : qubit⊗n

�

�

�

�

�

�

�

�

�

�

�

�

:= UC ◦ ⟦T⟧

Table 7.9: Denotational Semantics of QΛ! Typing Derivations, Part 3

Lemma 7.2.7 (Value Substitution). For every term !Ω,Γ, x : A ⊢ t : B and every value
!Ω,∆ ⊢ v : A:

⟦t⟧ ◦ (⟦!Ω,Γ⟧⊗ ⟦v⟧) ◦ J(contr⟦!Ω⟧,⟦Γ⟧,⟦∆⟧) =
⟦

t{x← v}⟧

Proof. If A is not of the form !F , then the proof is the same as for Λ, relying on
the first property we asked for Y to substitute under recursion. If A =!F , then any
typing derivation for v must have a promotion as the bottom-most rule, and in every
typing derivation of t, the axiom for x is an axiom-dereliction rule. We simply proceed
by induction similarly to the case where A is not !F , relying on the properties of
linear exponential comonads, more precisely the interaction between the ! functor and
the digging morphism δ used in the promotion rule, the dereliction morphism ϵ used
in the axiom-dereliction rule, and the contraction morphisms c used when merging
contexts. □

As in the case of Λ, evaluation contexts never capture variables, so FV(t) ⊆ FV(E[t]). This
allows us to state the following lemma.

Lemma 7.2.8 (Context Factorisation). For every term !Ω,Γ ⊢ s : A and !Ω,Γ,∆ ⊢ E[s] :
B, with E[−] an evaluation context, we have a morphism ⟦E⟧ ∈ C(⟦A⟧ ⊗ ⟦!Ω,∆⟧ , ⟦B⟧)
such that

⟦

E[s]
⟧

= ⟦E⟧ ◦ (⟦s⟧⊗ ⟦!Ω,∆⟧) ◦ J(contr⟦!Ω⟧,⟦Γ⟧,⟦∆⟧)

Proof. This lemma can be rewritten
⟦

E[x]
⟧ ◦ (⟦!Ω,Γ⟧⊗ ⟦s⟧) ◦ J(contr⟦!Ω⟧,⟦Γ⟧,⟦∆⟧) =

⟦

E[x]{x← s}⟧
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So compared to the value-substitution Lemma 7.2.7, we generalised the value v into any
term s, and restricted the term t to the special case E[x]. Those changes compensate
for each others, so the same proof holds. □

Lemma 7.2.9 (Invariance). For every pair of terms Γ ⊢ t : A and Γ ⊢ s : A

t→ s =⇒ ⟦t⟧ = ⟦s⟧

Proof. We proceed by induction on →. The rule for the sequence and the lists are
true. The rules for the λ-abstraction, the pairs, and the discriminator directly follow
from the value substitution lemma. We look at the reduction rule:

let rec f x = t in s→ s

{

f ← λx.
let rec f x = t in t

}

We look at the semantics of the left hand side:

⟦let rec f x = t in s⟧ = ⟦s⟧ ◦ J (⟦!Ω,Γ⟧⊗Y (⟦λx.t⟧)) ◦ J(contr⟦!Ω⟧,⟦Γ⟧,1)

We write r for the typed term !Ω ⊢ λxA.let rec f x = t in t :!(A ⊸ B). Using the
substitution lemma, we look at the semantics of the right hand side:

⟦

s{x← r}⟧ = ⟦s⟧ ◦ (⟦!Ω,Γ⟧⊗ ⟦r⟧) ◦ J(contr⟦!Ω⟧,⟦Γ⟧,1)

So it is sufficient to prove the ⟦r⟧ = J(Y(⟦λx.t⟧)). We unfold the semantics of r:

⟦r⟧ = J(!((⟦A⟧ � ⟦let rec f x = t in t⟧) ◦ fun⟦!Ω⟧,⟦A⟧) ◦ dig⟦!Ω⟧)

⟦let rec f x = t in t⟧ = ⟦t⟧ ◦ J (⟦!Ω⟧⊗Y (⟦λx.t⟧)) ◦ J(contr⟦!Ω⟧,1,1)

Using naturality of fun in V, we obtain

⟦r⟧ = J
(

! (⟦λx.t⟧ ◦ (⟦!Ω⟧⊗Y (⟦λx.t⟧)) ◦ contr⟦!Ω⟧,1,1) ◦ dig⟦!Ω⟧
)

Using the linear exponential comonad and the naturality of digging, we have:

⟦r⟧ = J
(

! ⟦λx.t⟧ ◦ dig⟦!Ω,f :!(A⊸B)⟧ ◦ (⟦!Ω⟧⊗Y (⟦λx.t⟧)) ◦ contr⟦!Ω⟧,1,1
)

We then rely on the second property we asked for Y:

Y(⟦λx.t⟧) =! ⟦λx.t⟧ ◦ dig⟦!Ω,f :!(A⊸B)⟧ ◦ (⟦!Ω⟧⊗Y (⟦λx.t⟧)) ◦ contr⟦!Ω⟧,1,1
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So exactly ⟦r⟧ = J(Y(⟦λx.t⟧)). This proves the invariance of the recursion rule.
Remains the evaluation context rules. We use the context factorisation lemma and
obtain

⟦

E[t]
⟧

= ⟦E⟧ ◦ (⟦t⟧⊗ ⟦!Ω,∆⟧) ◦ J(contr⟦!Ω⟧,⟦Γ⟧,⟦∆⟧)

Invariance by the reduction rule for evaluation context and bottom follows immediately
from this factorisation property. □



Chapter 8

Relational Semantics for the
Quantum λ-calculus

8.1 Modelling Replication

8.1.1 Quantum Relations on Arenas instead of Webs

The quantum relational model for LQΛ! is more complex than the one for LQΛ. In partic-
ular, objects are significantly more complex, as they shall come with a permutation group.
For example, take the type !(1⊸ qubitℓ), and consider three different function calls which
return respectively one, three and one qubits. The returned value is represented by a CPM
operator from 1 to Hilbert space Q⊗Q⊗3 ⊗Q. However, QΛ! satisfies a uniformity prop-
erty: a function cannot distinguish between its different calls, hence from the point of view
of the called function, those three calls are unordered and can be shuffled around, whereas
the tensor Q ⊗ Q⊗3 ⊗ Q puts them in a specific order. To enforce this property, we must
add to the type a group of permutations under the action of which quantum valuations
must be invariant, ensuring that the function does not behave fundamentally differently
on different calls.

The category defined in [PSV14] tackles this issue perfectly. However, for conciseness
we choose instead to take an approach much more similar to the solution used in our game
model. Instead of extending QRel (quantum relations) and QA (quantum strategies) into
two denotational models for LQΛ!, and building a collapse from QA to QRel by relating
exhaustive configurations to points of the web, we will extend QARel (quantum relations
on arenas) and QA (quantum strategies), into two denotational models ∼-QARel and
∼-QA for LQΛ!, and build a collapse from ∼-QA to ∼-QARel.

Similarly to how we have proved a full and faithful functor that preserves the structure
from QARel to QRel (i.e., those two categories have “the same maps” but different
objects), we will have a full and faithful functor from ∼-QARel to the model presented in
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Figure 8.1: Arena for qubitℓ.
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Figure 8.2: Arena for !(qubit⊸ qubit).

[PSV14].

8.1.2 Arenas and the Notion of Symmetry
We recall the guiding example

f :!(qubit⊸ qubit), ℓ : qubitℓ ⊢LMap(f, ℓ) : qubitℓ

When giving a semantics to LQΛ!, we will extend the semantics of LQΛ. In particular,
the arena for qubitℓ will be the same as in the case of LQΛ, i.e., the arena described in
Fig. 8.1. To represent !(qubit ⊸ qubit), we use the arena described in Fig. 8.2, which is
simply the arena of qubit⊸ qubit with the function call copied countably many times:

• It starts with a single positive event λ+ signifying “the function is ready to be called”.

• This minimal event is followed by a (countable) infinity of events (qbn)−
Q∗ , all com-

patible with each other, each of them representing a different call to the function,
either with the same or with a different value as argument.

• Each event (qbn)−
Q

is followed by an event (qbn)+
Q

representing the output of the
function when called.

However, without additional structure, Fig. 8.2 is missing some of the information of the
type: !(qubit ⊸ qubit) is not the same as (qubit ⊸ qubit) ⊗ (qubit ⊸ qubit) ⊗ . . . .
Indeed, as said earlier, ! satisfies a notion of uniformity, meaning that this is the same
function duplicated, not infinitely many different functions. To represent this information,
we follow [CCW19] and introduce the notion of a ∼-arena. In a ∼-arena, we have a relation
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≃ between configurations called symmetry, which means “those configurations are the same
up to changing copy indices of replicable function calls”. In Fig. 8.2, the equivalence classes
for the relation ≃ would be:

∅

{λ+}
{λ+, (qb0)−

Q∗} ≃ {λ+, (qb1)−
Q∗} ≃ · · ·

{λ+, (qb0)−
Q∗ , (qb0)+

Q
} ≃ {λ+, (qb1)−

Q∗ , (qb1)+
Q
} ≃ · · ·

{λ+, (qb0)−
Q∗ , (qb1)−

Q∗} ≃ {λ+, (qb0)−
Q∗ , (qb2)−

Q∗} ≃ · · ·
{λ+, (qb0)−

Q∗ , (qb1)−
Q∗ , (qb0)+

Q
} ≃ {λ+, (qb1)−

Q∗ , (qb0)−
Q∗ , (qb1)+

Q
} ≃ · · ·

In ∼-arenas, the relation ≃ will have two sub-relations ≃+ and ≃−, corresponding to “those
configurations are the same up to Player changing copy indices of replicable function calls”
and “those configurations are the same up to Opponent changing copy indices of replicable
functions calls”. In Fig. 8.2, all the symmetries ≃ are in fact negative symmetries ≃−, since
it is Opponent which has the agency of changing copy indices by choosing which copy of
the function they call. Conversely, in the ∼-arena for !(qubit⊸ qubit)⊗qubitℓ ⊢ qubitℓ
described in Fig. 8.3, all the symmetries ≃ are in fact positive symmetries ≃+, since we
use the dual of the ∼-arena described in Fig. 8.2, so now it is Player who has the agency
to choose which copy of the function to use. In the case of the quantum relational model
on arenas, we will not use ≃+ and ≃−, but those sub-symmetries will be central to the
definition of quantum ∼-strategies.

In practice, we will need more than just the equivalence classes of configurations for ≃,
≃− and ≃+. We will need to know how two configurations are symmetric. For example,
in Fig. 8.3, the configuration {(λ,qb⊗2)−

(Q⊗2)∗ , (qb0)+
Q
, (qb0)−

Q∗ , (qb1)+
Q
, (qb1)−

Q∗} is sym-
metric to itself in two different ways, represented respectively by dotted and dashed lines
below:

(λ,qb⊗2)−
(Q⊗2)∗

✯qqx ❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

❑��	
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✯qqx ❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

❑��	
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Q
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!(qubit ⊸ qubit) ⊗qubitℓ ⊢L qubitℓ
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Symmetry:

x ≃ y whenever there is an order-isomorphism between x and y

Figure 8.3: ∼-Arena for !(qubit⊸ qubit)⊗ qubitℓ ⊢L qubitℓ
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We formally define those arenas with symmetry in Section 8.2

8.1.3 Quantum Valuations and Symmetry
On those ∼-arenas, we will consider quantum relations which we define in Section 8.4, and
quantum ∼-strategies which we define in Section 9.3.2. Both those notions will leverage
the symmetries of the ∼-arenas in some way, representing the fact that different copies of
a replicable function are indistinguishable.

For that, we will lift the bijections describing how configurations are symmetric to one
another into a set of morphisms of CPM describing some permutations of Hilbert spaces,
and ask the quantum valuation to be preserved under those morphisms.

Considering once again the example of Fig. 8.3, we can look at the configuration

{(λ,qb⊗2)−
Q⊗2 , (qb0)+

Q
, (qb0)−

Q
, (qb1)+

Q
, (qb1)−

Q
}

on the left hand side, and at the configuration {(λ,qb⊗2)+
Q⊗2} on the right hand side. If

we write Q the quantum annotation from the quantum relations on ∼-arenas for those
configurations, we then have:

Q ∈ CPM((Q∗ ⊗Q)⊗ (Q∗ ⊗Q)⊗Q⊗2,Q⊗2)

The two auto-symmetries on the left hand side can be lifted into the identity morphism,
and the morphism brCPM

(Q∗⊗Q),(Q∗⊗Q) ⊗ idCPM
Q⊗2 . So we will expect the following condition to

be satisfied:
Q = Q ◦ (brCPM

(Q∗⊗Q),(Q∗⊗Q) ⊗ idCPM
Q⊗2 )

8.2 Event Structures with Symmetry
The goal of this section is to define and state basic properties about the objects of our
two categories of quantum relations on ∼-arenas and quantum ∼-strategies. More details
about this notion of symmetry can be found in [CCW19, Win07].

8.2.1 The Category of Event Structures with Symmetry
Definition 8.2.1. For (E,≤) a poset, we say that θ is an order-isomorphism from a down-
closed set x to a down-closed set y if θ : x → y is a bijection that preserves and reflects1

the order ≤.

When considering order-isomorphisms, we will use both the functional notation θ : e 7→
e′ and the relational notation θ = {(e, e′), . . . }. If x′ is a down-closed subset of x, we write
θ|x′ for θ restricted to x′. If ≃ denotes a set of order-isomorphisms, then we write θ : x ≃ y
when θ ∈ ≃ and θ is an order isomorphism from x to y.

1A bijection reflects a relation if its inverse preserves it.
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Definition 8.2.2. A ∼-es (|E|,≤E ,ConE ,≃E) is an event structure together with a set
≃E of order-isomorphisms between configurations such that

Groupoid The set ≃E contains all the identity order-isomorphisms, and is stable under
composition and inverse.

Restriction For every θ : x ≃E y, if x′ ⊆ x, then θ|x′(x′) ∈ C(E) and θ|x′ ∈ ≃E.

Extension For every θ : x ≃E y, if x ⊆ x′ then there exists a non-necessarily unique
y ⊆ y′ ∈ C(E) and ϕ : x′ ≃E y′ such that ϕ|x = θ.

We write C≃(E) for the equivalence classes of configurations of E, and x for the equivalence
class containing x ∈ C(E).

x = {y ∈ C(E) | ∃θ : x ≃E y}
While we do not have explicit copy indices on events in the generality of ∼-arenas, the

intuition “θ : x ≃ y means that x and y are the same up to copy indices” will still stand.
A particularly interesting subset of ≃ is the set of auto-symmetries:

Definition 8.2.3. For E a ∼-es and x ∈ C(E), we define AE(x) the set of auto-symmetries
over x, i.e., AE(x) = {θ : x ≃E x}.
Lemma 8.2.4. Whenever θ : x′ ≃ x, we have |AE(x′)| = |AE(x)|

Proof. The operation ϕ 7→ θ−1 ◦ϕ◦θ forms a bijection between AE(x) and AE(x′). □

We can extend the notion of polarity to ∼-es.

Definition 8.2.5. A ∼-esp (|E|,≤E ,ConE , pE ≃E) is both an esp2 and a ∼-es, such that
every symmetry θ ∈ ≃ preserves the polarities.

For E a ∼-es, we consider θ : x ≃E y and ϕ : x′ ≃E y′. We write θ ⊆ ϕ if x ⊆ x′ and
ϕ|x = θ. If E is a ∼-esp, we define θ ⊆− ϕ and θ ⊆+ ϕ similarly.

To build a category, we need a notion of maps of ∼-esps. Similarly to the notion of
maps of esps, this notion can be seen as a notion of “simulation” of one event structure by
the other.

Definition 8.2.6. Maps of ∼-es are maps of event structures f : E → E′ that preserve
the symmetry:

(e, e′) ∈ θ ∈ ≃E and e ∈ dom(f) =⇒ e′ ∈ dom(f)

θ : x ≃ y =⇒ {(f(e), f(e′)) | (e, e′) ∈ θ} : f(x) ≃E′ f(y)

We write f θ := {(f(e), f(e′)) | (e, e′) ∈ θ}. For f, g : E ⇀ E′ two maps of ∼-es, we say
that f and g are symmetric and write f ≃ g if for every x ∈ C(E) we have

{(f(e), g(e)) | e ∈ x} : f(x) ≃E′ g(x)
2An event structure with polarities. See Definition 4.4.1.
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As in the case of event structures, the definition covers both partial (⇀) and total (→)
maps, but we will almost always use total maps. We define similarly maps of ∼-esps as
maps of esps that preserve the symmetry.

Proposition 8.2.7. The relation ≃ forms a congruence for the category ∼-ES of ∼-es
and total maps of ∼-es, and for the category ∼-ESP of ∼-esps and total maps of ∼-esps.

We recall that a congruence is simply an equivalence relation on maps that is compatible
with the structure of the category: if f ≃ f ′ and g ≃ g′ then f ◦ g ≃ f ′ ◦ g′. In fact, this
relation is also compatible with the additional structures which we define now. For E and
E′ two ∼-esp:

• We define E⊥ as the esp E⊥ with the same symmetry.

• For θ : x ≃E y and θ′ : x′ ≃E′ y′, we define θ ∥ θ′ as the order-isomorphism between
x ∥ x′ and y ∥ y′ obtained by the disjoint union of θ and θ′. We define E ∥ E′ as the
esp E ∥ E′ with for symmetries every θ ∥ θ′ for θ ∈ ≃E and θ′ ∈ ≃E′ .

• For θ : x ≃E y we define θ ⊕ ∅ as the order-isomorphism between x ⊕ ∅ and y ⊕ ∅
induced by θ. For θ′ : x′ ≃E′ y′, we define ∅ ⊕ θ′ symmetrically. We then define
E⊕E′ as the esp E⊕E′ with for symmetries every θ⊕∅ and every ∅⊕θ′ for θ ∈ ≃E
and θ′ ∈ ≃E′ .

• We define the empty ∼-esp ∅ as the esp ∅ with the trivial symmetry. Up to isomor-
phism, it is a unit for both ∥ and ⊕.

Proposition 8.2.8. The category ∼-ESP of ∼-esps and total maps between them forms
an SMC for ∥, and a cocartesian category for the coproduct ⊕. ∼-ESP also has arbitrary
coproducts. The relation ≃ is a congruence for those additional structures.

8.2.2 Games with Symmetry
The ∼-esps defined above are very general, and it is possible to define symmetries that
cannot be simply explained through the idea of “exchanging copy indices”. This level
of generality can be very problematic in some instances, and would be a major obstacle
to the definition of the category of ∼-strategies. That is why in this section we refine
it as hinted before by distinguishing two sub-symmetries of ≃ corresponding to “only
Player is changing copy indices” and “only Opponent is changing copy indices”. We call
∼-games those refined ∼-esps. The notion of ∼-game coincides with the notion of thin
concurrent game defined in [CCW19], modulo the representability condition which was
added later in [Cla20]. The name “thin concurrent games” comes from the fact that this
refinement of ≃ into (≃,≃+,≃−) is central to the category of “thin concurrent strategies”
developed in this same paper. The quantum ∼-strategies (see Section 9.3.2) we will define
are quantum variants of those thin concurrent strategies. Since we will not rely on the
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polarised symmetries ≃+ and ≃− for the relational model, we include them in the definition
of ∼-games but postpone to Definition 9.1.1 the details of the conditions they must satisfy.
Definition 8.2.9. A ∼-game is an esp E together with

• three sets ≃E ,≃+
E ,≃−

E called symmetry, positive symmetry and negative symmetry,
such that (E,≃E), (E,≃+

E) and (E,≃−
E) are ∼-esps, and ≃+

E and ≃−
E are subsets of

≃E;

• a selection of canonical configurations (−) : C≃(E) → C(E) such that x ∈ x for all
x ∈ C≃(E);

• an implicit total order on C≃(E);
satisfying the properties described in Definition 9.1.1. We write AE(x), A+

E(x) and A−
E(x)

for the sets of auto-symmetries, auto-positive-symmetries and auto-negative-symmetries
over x.

We do not assume any specific property on the implicit total ordering of C≃(E), as we
just need it to exist and be fixed. This ordering will be used when ranging over C≃(E)
with operations that are not commutative, like ∥x∈C≃(E) . . . in the following subsection. In
contrast with [CCW19] for example, our ∼-games come with an explicit choice of canonical
representatives for equivalence classes (−). This will be very useful when considering
quantum valuations in later sections. The core of the additional restrictions on ∼-games
are to ensure that ≃−

E and ≃+
E indeed correspond to Opponent choices and Player choices

respectively. We postpone them to Definition 9.1.1 as they are only used for defining
∼-strategies. We now extend the structure of ∼-ESP to ∼-games, starting with maps.
Definition 8.2.10. Maps of ∼-games are maps of esps that are maps of ∼-esps (for the
three symmetries).We write f ≃ g whenever two maps of ∼-games f and g are symmetric
as maps of ∼-esps.

In particular, we do not expect the canonical selection of configuration to be preserved
by maps. For E,E′ two ∼-games:

• We define E⊥ as the esp E⊥ with ≃− and ≃+ exchanged, and the same −.

• We define E ∥ E′ as the ∼-esp E ∥ E′ for the three symmetries and x ∥ y := x ∥ y.

• We define E⊕E′ as the ∼-esp E⊕E′ for the three symmetries, and x⊕ ∅ := x⊕∅,
∅⊕ y := ∅⊕ y.

• We define the empty ∼-game ∅ as (∅, {id∅}, {id∅}, {id∅},∅ = ∅). Up to isomor-
phism, it is a unit for both ∥ and ⊕.

Proposition 8.2.11. The category ∼-Game of ∼-games and total maps between them
forms an SMC for ∥, and a cocartesian category for the coproduct ⊕. ∼-Game also has
arbitrary coproducts. The relation ≃ is a congruence.
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Figure 8.4: The ! operation on 1⊸ 1

8.2.3 The Linear Exponential Comonad !
The goal of this subsection is to build the operation ! that will allow us to compute the
∼-game for !(A ⊸ B) from the ∼-game for A ⊸ B, and then show that it is a linear
exponential comonad3. The definition of ! can be found in [CCW19] and is a variation of
the definition of the exponential in AJM games, but the remainder of the development of
this subsection, starting with anti-maps, is a contribution of this thesis.

We illustrate the ! construction in Fig. 8.4. Something notable is that ! does not affect
the minimal event λ+. Operationally, this is because the minimal event of !(A ⊸ B)
corresponds to the computation done before the function call, and is not duplicated if the
function is called more than once. Categorically, this is because ! is naturally defined on
negative4 ∼-games, and then lifted to positive5 games by adding the minimal event λ+.
We postpone the lifting of ! to positive ∼-games to Section 8.3.2, and we first focus on its
action on negative ∼-games.

Definition 8.2.12. For (E,∼E ,∼+
E ,∼−

E) a negative ∼-game, we define the negative ∼-
game (!E,∼!E ,∼+

!E ,∼−
!E) as the esp E ∥ E ∥ . . . (so its events are |!E| = N× |E|) together

with the symmetries:

θ : (x0 ∥ x1 ∥ . . . ) ≃!E (y0 ∥ y1 ∥ . . . ) if ∃σ perm. of N, ∀n ∈ N, θ|xn : xn ≃E yσ(n)

θ : (x0 ∥ x1 ∥ . . . ) ≃+
!E (y0 ∥ y1 ∥ . . . ) if ∀n ∈ N, θ|xn : xn ≃+

E yn
θ : (x0 ∥ x1 ∥ . . . ) ≃−

!E (y0 ∥ y1 ∥ . . . ) if ∃σ perm. of N, ∀n ∈ N, θ|xn : xn ≃−
E yσ(n)

3See Definition 1.2.21.
4All the minimal events of the ∼-game are negative.
5All the minimal events of the ∼-game are positive.
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And the canonical selection for x = x0 ∥ x1 ∥ . . . ∈ C≃(!E):

x :=∥y∈C≃(E) y∥card{n | xn∈y}

For (E,∼E ,∼+
E ,∼−

E) a positive ∼-game, we define the positive ∼-game (?E,∼?E ,∼+
?E ,∼−

?E)
dually.

We have (!E)⊥ =?(E⊥). For the canonical selection, we cannot simply take x = x0 ∥
x1 ∥ . . . as we need the canonical selection to be the same for every x′ ∈ x. This is why we
order the xi in an “canonical” way. For that we rely on the implicit total order on C≃(E)
from Definition 8.2.9.

We would like to show that ! forms a linear exponential comonad in ∼-Game, but this
is incorrect. While ! will be a linear exponential comonad for both quantum relations on
∼-arenas and quantum ∼-strategies, the maps of ∼-Game are conveying an operational
meaning too different from the strategies. For example, we do not have a weakening map
from !E to ∅, as maps of ∼-Game are total. However, we do always have a (unique) map
from ∅ to (!E)⊥. In the following, we define a notion of “anti-map”, and show that for
anti-maps of ∼-games, ! is a linear exponential comonad. In later sections, we will show
that we can lift every anti-map of ∼-games into a quantum relation on ∼-arenas, and into
a quantum ∼-strategy. This lifting will allow us to deduce that ! is a linear exponential
comonad in both∼-QARel and∼-QA from the fact that it is a linear exponential comonad
for anti-maps.
Definition 8.2.13. An anti-map of ∼-games from A to B is a map of ∼-games from B⊥

to A⊥. We write ∼-Game⊥ for the category of ∼-games and total anti-maps between them.
Proposition 8.2.14. The category (∼-Game⊥, ∥,∅) is an SMC. The relation ≃ is a
congruence for ∼-Game⊥ too.
Proposition 8.2.15. The SMC (∼-Game⊥

⊖, ∥,∅) of negative ∼-games and (total) anti-
maps of ∼-games has a linear exponential comonad ! up to ≃.

Proof. The ! functor is given by !f = f ∥ f ∥ . . . . To prove that ! is a linear exponential
comonad for anti-maps, we need to check that ? is the dual of a linear exponential
comonad for maps. The comonoidality, coweakening, cocontraction, codereliction,
codigging maps are given by:

cm∅ : ?∅ → ∅

_ 7→ _

cmA,B : ?(A ∥ B) → ?A ∥?B
(n, (0, a)) 7→ (0, (n, a))
(n, (1, b)) 7→ (1, (n, b))

cwA : ∅ → ?A
_ 7→ _

ccA : ?A ∥?A → ?A
(0, (n, a)) 7→ (2n, a)
(1, (n, a)) 7→ (2n+ 1, a)
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cϵA : A → ?A
a 7→ (0, a)

cδA : ??A → ?A
(n, (m,a)) 7→ (ι(n,m), a)

where ι(n,m) is a bijection between N× N and N. They satisfy the dual axioms of a
linear exponential comonad (described in Section 1.2.4) up to ≃. In fact they are true
up to ≃+. Taking the corresponding anti-maps, we obtain (!, ϵ, δ,w, c,m,m1) which
satisfies the axioms up to ≃. □

8.3 Quantum Games and Arenas with Symmetry

8.3.1 Quantum Payoff Games with Symmetry

We extend the previous definitions with Hilbert space annotations and payoff.

Definition 8.3.1. A quantum payoff ∼-game, is a quantum payoff game6 E together with
≃E ,≃+

E ,≃−
E ,− such that:

• (E,≃E ,≃+
E ,≃−

E ,−) is a ∼-game

• ∀θ : x ≃E y, κE(x) = κE(y) and ∀e ∈ x,HE(e) = HE(θ(e))

We define E≃(E) as the set of equivalence classes of exhaustive configurations:

E≃(E) = {x ∈ C≃(E) | κE(x) = 0}

We note that whenever θ : x ≃ y, we have ∀e ∈ |E|,HE(e) = HE(θ(e)) but that does
not mean thatHE(x) = HE(y). Indeed, HE(x) andHE(y) are necessarily tensors involving
the same Hilbert spaces, but not necessarily in the same order. We can lift this reordering
of Hilbert spaces into a permutation isomorphism7 in HE(θ) ∈ CPM(HE(x),HE(y)).

Definition 8.3.2. For E a quantum payoff ∼-game, we define the ∼-Scott category of E
as the category with objects C(E) and morphisms:

(x −⊇ θ≃⊆+ y) ∈ ∼-Scott(x, y) whenever















x −⊇ x′

θ : x′ ≃E y′

y′ ⊆+ y

6So an alternating race-free esp with an Hilbert space annotation on events and a payoff annotation on
configurations. See Definition 4.4.4.

7A permutation isomorphism is an isomorphism obtained by composing only associator and braiding
isomorphisms.
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For E a quantum payoff ∼-game, H extends to a contravariant functor from the ∼-Scott
category to CPM, as follows:

HE(x) :=
⊗

e∈xH(e)

HE(x ⊆+ y) := idCPM
HE(x) ⊗TrHE(y\x) ∈ CPM(HE(y),HE(x))

HE(x −⊇ y) := idCPM
HE(y) ⊗Tr†

HB(x\y) ∈ CPM(HE(y),HE(x))

HE(θ : x ≃E y) := HE(θ) ∈ CPM(HE(y),HE(x))

This allows us to express the idea that “quantum annotation is preserved by symmetry”,
which we call uniformity.

Definition 8.3.3. For E a quantum payoff ∼-game, and for G ⊆ ∼-Scott(x, y), we define8

HE(G) :=
∑

g∈G

HE(g)

|G| ∈ CPM(HE(y),HE(x))

A function f ∈ CPM(HE(x),HE(y)) is uniform if

f = HE(AE(y)) ◦ f ◦ HE(AE(x))

The operations (_)⊥,⊕, &and ⊠ on quantum payoff games extend to quantum payoff
∼-games, with the symmetry respectively behaving as for the operations (_)⊥,⊕, ∥ and
again ∥ on ∼-games.

Definition 8.3.4. A map of quantum payoff ∼-games is a total map f : E → E′ of
∼-games such that f preserves the Hilbert space annotation and is payoff non-decreasing:

∀e ∈ |E|,HE(e) = HE′(f(e)) ∀x ∈ C(E), κE(x) ≤ κE′(f(x))

The payoff non-decreasing condition implies that a map must send non-losing config-
urations to non-losing configurations. We note that while ∀e ∈ |E|,HE(e) = HE′(f(e)),
that does not mean that ∀x ∈ C(E),HE(x) = HE′(f x), that just means they are related
by a permutation isomorphism.

Proposition 8.3.5. A map of quantum payoff ∼-games f : E → E′ induces a permutation
isomorphism Hf (x→ f(x)) ∈ CPM(HE′(f(x)),HE(x)) for every x ∈ C(E), such that

x

(

x −⊇ θ≃⊆+y

)

��

f // f(x)

(

(f x) −⊇
f θ
≃ ⊆+(f y)

)

��
y

f
// f(y)

=⇒ HE(x)
OO

HE

(

x −⊇ θ≃⊆+y

)

oo
Hf (x→f(x)) HE′(f(x))

OO

HE′

(

(f x) −⊇
f θ
≃ ⊆+(f y)

)

HE(y) oo
Hf (y→f(y))

HE′(f(y))

8We note that G is necessarily finite, of cardinality at most |x|!.
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Definition 8.3.6. An anti-map of quantum payoff ∼-games from A to B is a map of
quantum payoff ∼-games from B⊥ to A⊥.

Proposition 8.3.7. The category ∼-QGame (resp. ∼-QGame⊥) of quantum payoff ∼-
games and total maps (resp. anti-maps) between them forms two SMCs for &and ⊠, and
a cocartesian (resp. cartesian) category for the coproduct ⊕. ∼-Game also has arbitrary
coproducts (resp. products). The relation ≃ is a congruence.

It is not a ⋆-autonomous category. The closure only exists at the level of strategies,
but not of maps of ∼-games.

Definition 8.3.8. For E a negative quantum payoff ∼-game, we define !E as the ∼-game
!E together with

∀(n, e) ∈ |!E| = N× |E|,H!E((n, e)) := HE(e)

κ!E(x0 ∥ x1 ∥ . . . ) :=⊠
n∈N

κE(xn) =















−1 if ∃n ∈ N, κE(xn) = −1 and xn , ∅
0 if ∀n ∈ N, κE(xn) = 0 or xn = ∅

+1 otherwise
For E a positive quantum payoff ∼-game, we define ?E dually.

We have (!E)⊥ =?(E⊥). For the payoff, note that even if κE(∅) , 0, we have κ!E(∅) =
0. This represents the fact that since ! means “as many times as we want”, we can always
choose “zero times”.

Proposition 8.3.9. The category (∼-QGame⊥
⊖,⊠,∅) of negative initially-non-losing9

quantum payoff ∼-games and total anti-maps between them forms a linear exponential
comonad up to ≃.

This follows directly from the fact that ∼-Game⊥
⊖ forms a linear exponential comonad.

Indeed, one just need to check that the morphisms of the linear exponential comonads
are defined (the restriction to initially-non-losing payoff ∼-games is to ensure that all of
them are indeed payoff non-decreasing), and the commutation of the diagrams exactly
corresponds to the commutation of the diagrams in ∼-Game⊥

⊖.

8.3.2 Quantum Arenas with Symmetry
In Section 5.5, we refined the notion of games to obtain a notion of arena, tailored to the
QΛ language. We now extend this notion with symmetries.

Definition 8.3.10. A ∼-arena is a quantum payoff ∼-game which is an arena10 with trivial
minimal symmetry:

θ : {a} ≃ {a′} =⇒ a = a′

9E is initially-non-losing if κE(∅) ≥ 0.
10So a positive, well-opened, tree-like and initially losing payoff quantum game. See Definition 5.5.1.
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We say that a ∼-arena is affine if it is affine as an arena, i.e., every singleton configuration
has payoff 0.

The “trivial minimal symmetry” condition makes it possible to lift the property of
decomposition of quantum arenas to ∼-arenas.

Lemma 8.3.11. Every ∼-arena A can be decomposed as A =
⊕

i∈I ↓ai:Hi
Ai with Ai some

negative quantum payoff ∼-games.

The operations ⊗,⊸,�, (_)ℓ extend to ∼-arenas, with canonical configurations chosen
as follows:

x⊗ y := x⊗ y x⊸ y := x⊸ y






[ ] := {⋆} ⊕ ∅
[x1; ...; xn] := ∅⊕

(

x1 ⊗ [x2; ...; xn]
)

We now want to lift the linear exponential comonad ! on negative ∼-games to ∼-arenas.
We note that we will only ever need ! to be defined on the ∼-arenas representing functions
A ⊸ B (or A � B), and tensor ⊗ of such ∼-arenas. For technical convenience, we will
not try to define ! on every ∼-arena, and will restrict ourselves to the following notion of
functional ∼-arena.

Definition 8.3.12. A functional ∼-arena is a ∼-arena F with a single minimal event and

HF (minF ) = 1 κF ({minF}) ≥ 0

A functional ∼-arena can always be decomposed as A = ↓m:1 N with N a negative
initially-non-losing game. In particular, for any A,B ∼-arenas, (A⊸ B) and (A� B) are
functional ∼-arenas.

Definition 8.3.13. For F =↓m:1 N a functional ∼-arena, we define !F as the functional
∼-arena ↓m:1!N .

Theorem 8.3.14. The category (∼-QArena⊥
fun,⊗,1) of functional ∼-arenas and anti-

maps between them is an SMC, and has a linear exponential comonad ! up to ≃

This theorem follows from Proposition 8.3.9, as a functional ∼-arena is just a negative
initially-non-losing quantum payoff ∼-game lifted by ↓m:1, and this lifting is actually a full
and faithful functor from ∼-QGame⊥

⊖ to ∼-QArena⊥
fun which preserves all the structure.

8.4 Quantum Relations on Arenas with Symmetry
In this section, we define the category ∼-QARel of quantum ∼-arenas and quantum rela-
tions on ∼-arenas. We show it is a pre-model for LQΛ!, and then use it to model quantum
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closures, giving rise to a sound and adequate model for LQΛ!. The category ∼-QARel is
an extension of QARel as defined in Section 6.3.3. We recall that objects of QARel are
quantum payoff arenas and morphisms of QARel(A,B) are quantum valuations on pairs of
configurations in E(A)×E(B) — keep in mind the correspondence between exhaustive con-
figurations of arenas in QARel and points of the webs in QRel. When defining ∼-QARel,
we will take quantum ∼-arenas as objects, and as morphisms in ∼-QARel(A,B) we will
take quantum valuations on pairs of equivalence classes of exhaustive configurations of
E≃(A)× E≃(B). This choice preserves the correspondence with the web in more standard
relational models like the one of [PSV14]. As we detail in Definition 8.4.1, we expect those
quantum valuations to be uniform with respect to the symmetry of the game.

8.4.1 Example
We consider the example Map(f, ℓ). We recall its definition here:

Map(f, ℓ) := let rec m ℓ′ =

match ℓ′ with | [] 7→ []
| x :: ℓ′′ 7→ (f x) :: (m ℓ′′)

in m ℓ

f :!(qubit⊸ qubit), ℓ : qubitℓ ⊢LMap(f, ℓ) : qubitℓ

We describe in Fig. 8.5 the esp, ≃,≃+ and ≃− of its ∼-arena. The canonical configurations
− are given by the definition of ! and ⊸, but could be arbitrarily chosen without signif-
icant consequences, as what matters is only their existence. Every canonical exhaustive
configuration of the left hand side Γ =!(qubit⊸ qubit)⊗ qubitℓ is of the form:

xn,m := {(qb0)−
Q∗ , (qb0)+

Q
} ∥ . . . ∥ {(qbn)−

Q∗ , (qbn)+
Q
} ∥ {(λ,qbm)+

Q⊗m}
On the right hand side qubitℓ, they are of the form:

yk := {(λ,qbk)+
Q⊗k}

We write xn,m and yk for their respective equivalence classes, and as said earlier, we will
weight equivalence classes rather than single configurations. The quantum relation on
∼-arenas for Map is given as follows. In every case, we have

⟦Map(f, ℓ)
⟧

(xn,m,yk) ∈ CPM((Q∗ ⊗Q)⊗n ⊗Q⊗m,Q⊗k)

where (Q∗⊗Q)⊗n corresponds to the n calls to the function f , Q⊗m corresponds to the list
ℓ of size m, and Q⊗k corresponds to the output list of size k. Unless m = n = k, we have
⟦Map(f, ℓ)

⟧

(xn,m,yk) = 0. Indeed, the Map operator takes a list and returns a list of the
same size, so we must have m = k, and calls the function as many times as the number of
elements in the list, so we must have n = m.
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!(qubit ⊸ qubit) ⊗qubitℓ ⊢L qubitℓ
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Symmetry:

θ : x ≃ y whenever θ is an order-isomorphism
and is the identity on minimal events

θ : x ≃+ y whenever θ is an order-isomorphism
and is the identity on minimal events

θ : x ≃− y whenever θ is an identity

Figure 8.5: ∼-Arena for !(qubit⊸ qubit)⊗ qubitℓ ⊢L qubitℓ
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If m = n = k, we will have ⟦Map(f, ℓ)
⟧

(xn,m,yk) ∈ CPM((Q∗ ⊗ Q)⊗n ⊗ Q⊗n,Q⊗n).
The operational action of Map is to take every element of the list, to apply a function
to it and then to return the list of outputs. Up to the compact closure of CPM, this
⟦Map(f, ℓ)

⟧

(xn,m, yk) is a morphism of CPM((Q∗ ⊗Q)⊗n, (Q⊗n)∗ ⊗Q⊗n).
Writing splitnA,B for the natural transformation from (A⊗B)⊗n to A⊗n⊗B⊗n obtained

from the braiding and the associator, we could be tempted to simply take ⟦Map(f, ℓ)
⟧

(xn,m,yk) as Λ(splitnQ∗,Q), which is splitnQ∗,Q up to compact closure. However, we want our
semantics to satisfy some properties of uniformity with respect to replication, in particular
we do not want to say that “we use the first copy of the function for the first element of
the list, we use the second copy of the function for the second element of the list, …”, and
want instead to represent “we use any copy of the function for the first element of the list,
we use any other copy of the function for the second element of the list, …”. So we take:

⟦Map(f, ℓ)
⟧

(xn,m,yk) = H⟦Γ⟧(A⟦Γ⟧(xn,n)) ◦ Λ(splitnQ∗,Q)

8.4.2 The Category ∼-QARel
We define here the category ∼-QARel as the category with “the objects of ∼-QA and
the morphisms of QRel”, similarly to how QARel (see Section 6.3.3) is the category with
“the objects of QA and the morphisms of QRel”. Up to our knowledge, this category does
not appear in the literature.

Definition 8.4.1. We define the category ∼-QARel as follows:

• Its objects are quantum ∼-arenas

• Its morphisms σ ∈ ∼-QARel(A,B) are CPM-weighted relations between equivalence
classes of exhaustive configurations

σ : ((xA,xB) ∈ E≃(A)× E≃(B)) 7→ CPM(HA(xA),HB(xB))

which are uniform, i.e., for every (xA,xB) ∈ E≃(A)× E≃(B), we have

σ(xA,xB) = HB(AB(xB)) ◦ σ(xA,xB) ◦ HA(AA(xA))

As a comparison, [PSV14] defines the following category CPMs⊕:

• An object is a set A called the web together with for every element a ∈ A a pair
(na, Ga) of an integer na and a group Ga of permutations of {1, . . . , n}.

• A morphism f ∈ CPMs⊕
(A,B) is a collection of morphisms fa,b ∈ CPM(Cna ,Cnb)

for (a, b) ∈ A×B which are uniform in the following sense:

fa,b =
∑

g∈Ga

H(g)

|Ga|
◦ fa,b ◦

∑

g′∈Gb

H(g′)
|Gb|
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where H(g) for g ∈ Ga is a permutation morphism of CPM(Cna ,Cna) corresponding
to the permutation g.

Theorem 8.4.2. There is a full and faithful functor from ∼-QARel to the category
CPMs⊕ defined in [PSV14].

This functor sends a ∼-arena A to the web E≃(A), together with nxA
= dim(HA(xA))

and GxA
being the group of permutations induced by AA(xA). Its action on morphisms is

simply pre-composing and post-composing by the isomorphism between the Hilbert spaces
H and CdimH .

The category QARel is a full subcategory of ∼-QARel (an arena is a ∼-arena with
trivial symmetry). We can extend the structure of QARel (from Proposition 6.3.8) to
∼-QARel, and obtain the following.

Proposition 8.4.3. (∼-QARel,∼-QARel, id,⊗,1,⊸,⊕,0) is a non-trivial distributive
CFC with a bottom.

We now go through all the structure required in Section 7.2 to be a pre-model of LQΛ!.

The Lists

For every ∼-arena A, we have a ∼-arena Aℓ such that Aℓ = 1⊕ (A⊗Aℓ).

The Quantum Primitives

We also have a ∼-arena qubit =↓qb:Q ∅, and some quantum relations on ∼-arenas
meas∼-QARel, new∼-QARel, and U∼-QARel defined from the morphisms of Hilb as below:

meas∼-QARel({⋆}, {b}) := LmeasHilb
b M

new∼-QARel({b}, {⋆}) := LnewHilb
b M

U∼-QARel({q}, {q}) := LUM

Where L−M is the functor from Hilb to CPM defined in Section 2.1.5.

The Functional Sub-SMC

We take F the full sub-SMC of ∼-QARel with all the functional ∼-arenas (see Defini-
tion 8.3.12), and note that !A is always defined in this subcategory.

The Linear Exponential Comonad

We lift the linear exponential comonad from ∼-QArena⊥
fun into a linear exponential

comonad for F .
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Definition 8.4.4. For f ∈ ∼-QArena⊥
fun(A,B), we define its lifting f̂ ∈ F(A,B) as

follows:

f̂(xA,xB) :=

{

Hf (xB → f(xB)) ◦ HA(K[f(xB)]) ◦ HA
(AA(xA)

)

if f(xB) ∈ xA

0 otherwise

where for every xA ∈ E(A) we have arbitrarily chosen K[xA] : xA ≃ xA.
While K[f(xB)] appears in the definition, different choices for it have no influence on

the resulting map for F . Indeed, assume θ : f(xB) ≃ xA, we have

HA(K[f(xB)]) ◦ HA
(AA(xA)

)

= HA(K[f(xB)]) ◦∑ϕ∈AA(xA)
HA(ϕ)

|AA(xA)|

= HA(θ) ◦∑ϕ∈AA(xA)
HA(θ−1◦K[f(xB)]◦ϕ)

|AA(xA)|
= HA(θ) ◦ HA

(AA(xA)
)

To prove that this lifting is indeed a map of ∼-QARel, we have to prove that the
annotation is preserved by auto-symmetries. It is trivial for auto-symmetries on the A
side, and for auto-symmetries on the B side one must use the Proposition 8.3.5 and the
diagram satisfied by Hf .

This notion of lifting is actually inspired by a similar notion of lifting for strategies,
defined in [CCW19], and used later in Section 9.3.2 in the context of quantum ∼-strategies.
Lemma 8.4.5 (Lifting lemma). The lifting “− is a symmetric monoidal functor from
(∼-QArena⊥

fun,⊗,1) to (F ,⊗,1). Moreover,

f ≃ f ′ =⇒ f̂ = “f ′

Proposition 8.4.6. The modality ! forms a linear exponential comonad (!, ϵ, δ,w, c,m,m1)
on F .

Proof. We simply lift all the morphisms from the linear exponential comonad of
∼-QArena⊥

fun, and just need to provide a definition for the functor !.
For x = x1 ∥ . . . ∥ xn (with only non-empty configurations), and y = y1 ∥ . . . ∥ ym

(with only non-empty configurations), we define !σ(x,y) = 0 whenever n , m, and as
follows whenever n = m:

!σ(x,y) := H!B(A!B(y)) ◦









∑

ι perm
of {1,...,n}

n
⊗

i=1

brι ◦ σ(xi,yι(i))









◦ H!A(A!A(x))

where brι is the permutation morphism corresponding to ι : {1, . . . , n} → {1, . . . , n}
obtained from the associator and braiding isomorphisms. All the diagrams but the
naturality follows from the functoriality of the lifting, and their commutation up to
≃ become commutations up to equality thanks to the lifting Lemma 8.4.5. We then
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check the naturality diagrams without difficulties. □

The Recursor

We define the recursor Y through a supremum.

Definition 8.4.7. For f, g ∈ ∼-QARel(A,B), we say that f ≤ g if for every (xA,xB) ∈
E≃(A)× E≃(B), f(xA,xB) ⊑ g(xA,xB) for the Loewner order.

Proposition 8.4.8. The poset (∼-QARel(A,B),≤) is a dcpo with a minimal element

⊥A,B : (xA,xB) 7→ 0

This dcpo is an enrichment of ∼-QARel, i.e., all the operations of ∼-QARel are monotone
and continuous for this dcpo.

Continuity and monotonicity of structure of ∼-QARel for ≤ follows from the fact that
the operations of CPM are continuous and monotone for the Loewner order ⊑.

Definition 8.4.9. For f ∈ ∼-QARel(W⊗!(A⊥⊗B), A⊥⊗B) with W of the form ⊗

i!Fi,
we define the operation

Ff : ∼-QARel(W, !(A⊥ ⊗B)) → ∼-QARel(W, !(A⊥ ⊗B))
y 7→ !f ◦ digW⊗!(A⊥⊗B) ◦ (W ⊗ y) ◦ contrW,1,1

And the recursor
Y(f) := lim

n
Fnf

(

⊥W,!(A⊥⊗B)

)

This definition relies on Proposition 8.4.8, which ensures that Fnf
(

⊥W,!(A⊥⊗B)

)

≤
Fmf

(

⊥W,!(A⊥⊗B)

)

whenever n ≤ m.

Lemma 8.4.10. The recursor Y satisfies the two axioms required in Section 7.2, i.e.,

Y(f) ◦ f ′ = Y(f ◦ (f ′⊗!(A⊥ ⊗B)))

Y(f) =!f ◦ digW⊗!(A⊥⊗B) ◦ (W ⊗Y (f)) ◦ contrW,1,1

Proof. The second axiom is the definition of Y(f). The first axiom can be proved by
induction on n for all the Fnf

(

⊥W,!(A⊥⊗B)

)

, and using continuity of all the operations
(Proposition 8.4.8), it is true for Y(f). □

It follows that ∼-QARel is a pre-model of LQΛ! as defined in Section 7.2, and in
particular satisfies the invariance lemma for terms.
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8.4.3 A Sound and Adequate Semantics for LQΛ!

To prove that QARel forms a sound and adequate model for LQΛ!, we first need to define
the semantics of quantum closures. The definition is the same as for LQΛ.

Definition 8.4.11. If ⊢L [q, ℓ, t] : A, we define ⟦[q, ℓ, t]⟧⊢L A ∈ ∼-QARel(1, ⟦A⟧) as follows:

• we know that we have ∆ ⊢L t : A with ∆ = x1 : qubit, . . . , xn : qubit.

• we recall that LqM ∈ CPM(1,Q⊗n) is defined in Section 2.3.3.

• ⟦[q, ℓ, t]⟧ ({⋆},xA) := ⟦t⟧ ({q},xA) ◦ LqM

and we then define ⟦∑i pi[qi, ℓi, ti]
⟧

({⋆},xA)) as ∑i pi
⟦

[qi, ℓi, ti]
⟧

({⋆},xA), using the fact
that the set CPM(1,H⟦A⟧(xA)) is a completed positive convex cone.

We can now extend the invariance lemma to closures.

Lemma 8.4.12 (Invariance). For every closures Γ ⊢L c : A and Γ ⊢L d : A

c→ d =⇒ ⟦c⟧ = ⟦d⟧

Proof. We already proved in Lemma 7.2.9 that we had invariance for terms. We
consider reduction rules over closures. Using the context factorisation Lemma 7.2.8,
we obtain that for !Ω,Γ ⊢L t : A and !Ω,Γ,∆ ⊢LE[t] : B we have

⟦

E[s]
⟧

= ⟦E⟧ ◦ (⟦s⟧⊗ ⟦!Ω,∆⟧) ◦ contr⟦!Ω⟧,⟦Γ⟧,⟦∆⟧

It follows that if we have t→ s, then we have:

[q, ℓ, E[t]]→ [q, ℓ, E[s]] =⇒ ⟦

[q, ℓ, E[t]]
⟧

=
⟦

[q, ℓ, E[s]]
⟧

For the reduction of new, meas and U, we simply use the fact that the opera-
tional semantics uses morphisms of Hilb while the denotational semantics uses the
corresponding morphisms of CPM.

The last two reductions relies on CPM being a completed positive convex cone,
and composition being linear for this cone. □

In order to prove adequacy, in the linear case, we used strong normalisation of the
reductions. However, in LQΛ!, strong normalisation only holds for terms that do not have
any let rec. In order to bypass this problem, we prove the following approximation lemma,
that shows that every term with let recs can be approximated in the semantics by a term
without let recs.
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Lemma 8.4.13 (Approximation Lemma). For Γ ⊢ t : A a term, if we write tn for the
term where every let rec has been replaced by let rec [n] (as defined in Table 7.1), then

⟦t⟧ = lim
n
⟦tn⟧

The same holds for closures.

Proof. We first note that ⟦let rec [0] f x = t in s
⟧

= ⊥⟦!Ω,Γ⟧,C , so

∀s, t,∀n ∈ N, ⟦let rec [0] f x = t in s
⟧ ≤ ⟦let rec [n] f x = t in s

⟧

We also note that
⟦let rec [n+ 1] f x = t in s

⟧

= ⟦s⟧ ◦ (⟦!Ω,Γ⟧
⊗ ⟦λx.let rec [n] f x = t in t

⟧

) ◦ contr⟦!Ω⟧,⟦Γ⟧,1

Using monotonicity of the structure (Proposition 8.4.8), and by induction on i we
have:

∀i ∈ N,∀s, t,∀n ∈ N, ⟦let rec [i] f x = t in s
⟧ ≤ ⟦let rec [n+ i] f x = t in s

⟧

Using monotonicity of the structure again, we obtain that we always have ⟦tn⟧ ≤ ⟦tm⟧
whenever n ≤ m, so the limit is well defined. We now want to prove that the limit is
t. For that, we just check that for Ff defined in Definition 8.4.9, we have

F⟦λx.t⟧(
⟦

λx.let rec [n] f x = t in t
⟧

) =
⟦

λx.let rec [n+ 1] f x = t in t
⟧

(The proof of this equation is very similar to the proof of invariance by the recur-
sion reduction rule). Since ⟦λx.let rec [0] f x = t in t

⟧

= ⊥⟦!Ω⟧,⟦!(A⊸B)⟧, and by
uniqueness of limits, this proves

∀t,Y(⟦λx.t⟧) = lim
n

⟦

λx.let rec [n] f x = t in t
⟧

Using continuity of the structure (Proposition 8.4.8), it follows that

∀t, s, ⟦let rec f x = t in s⟧ = lim
n

⟦

λx.let rec [n] f x = t in s
⟧

Then, by induction over the typing derivation of t, using limn limm fm,n = limn fn,n
and using the continuity of the structure, we obtain:

⟦t⟧ = lim
n
⟦tn⟧

Using continuity of the structure, the same holds for closures. □

We now conclude with soundness and adequacy as in the case of LQΛ.
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Theorem 8.4.14 (Soundness and Adequacy). For every term ⊢L t : 1, we have

P(t ⇓) = p ⇐⇒ ⟦t⟧ =
⟦

p[∅,∅, ()] + (1− p)[∅,∅,⊥]
⟧

In particular, we have ⟦t⟧ (⋆, ⋆) ∈ CPM(1,1), so finitary in CPM.

Proof. If t does not contain a let rec, we use normalisation (Proposition 7.1.3) and
write t→∗ ∑

i pi[qi, ℓi, ()] +
∑

j p
′
j [q

′
j , ℓ

′
j ,⊥]. Writing p for ∑i pi we have that

�

�

�

�

�

�

�

�

∑

i

pi[qi, ℓi, ()] +
∑

j

p′
j [q

′
j , ℓ

′
j ,⊥]

�

�

�

�

�

�

�

�

=
⟦

p[∅,∅, ()] + (1− p)[∅,∅,⊥]
⟧

Using invariance, we obtain the expected equivalence.
If t does contain a let rec. We consider tn which is t where all the let rec

have been replaced by some let rec [n]. From the previous lemma, we know that
⟦t⟧ = limn ⟦tn⟧. Using Lemma 7.1.5, we obtain that P(t ⇓) = supn P(tn ⇓). The result
immediately follows. □

Corollary 8.4.15. For every pair of terms Γ ⊢L t : A and Γ ⊢L s : A, we have

⟦t⟧ = ⟦s⟧ =⇒ t =obs s

The proof is the same as the proof of Corollary 3.2.8. This model is in fact fully
abstract, and the proof of full abstraction is a major contribution of this thesis. How-
ever, we will not prove it directly and only deduce it from the full abstraction of the
game model in Section 9.3.3. Hence, we postpone the full abstraction theorem to Sec-
tion 10.3. We note that the proof of full abstraction could be written in this model,
assuming one first proves that for every term Γ ⊢ L t : A, we have ⟦t⟧ finitary, i.e.,
∀xΓ ∈ E≃(⟦Γ⟧),∀xA ∈ E≃(⟦A⟧), ⟦t⟧ (xΓ,xA) ∈ CPM(H⟦Γ⟧(xΓ),H⟦A⟧(xA)). We refer
to Proposition 43 of [PSV14] for a proof of finitaryness in the case of CPMs⊕.

8.4.4 Affine Case
In Definition 6.4.2, we defined an affine variant of QARel. We can do the same for
∼-QARel, with a definition of thunkability which is identical, relying on the fact that by
definition of ∼-arenas, the equivalence classes of singleton configurations are trivial, so we
always have {a} = {a}.

Definition 8.4.16. The category ∼-QARela is the full subcategory of ∼-QARel restricted
to only affine11 ∼-arenas. A quantum relation on ∼-arenas σ ∈ ∼-QARela(A,B) is called
thunkable if

11i.e., every singleton configuration is an exhaustive configuration.
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• for every a ∈ minA, there exists a unique b ∈ minB, such that σ({a}, {b}) , 0, and

• for every a ∈ minA, b ∈ minB with σ({a}, {b}) , 0, we have

TrHB({b}) ◦ σ({a}, {b}) = TrHA({a})

We write QARelat for the subcategory of thunkable maps.

Proposition 8.4.17. The category (∼-QARela,∼-QARelat , id,⊗,1,�,⊕,0) is an affine
non-trivial distributive CFC with a bottom. It also forms a categorical model for AQΛ!.

The categorical model for AQΛ! uses the same lists, same quantum primitives, the
category F is also the subcategory with only functional ∼-arenas, and it has the same !
and almost the same recursor Y. The main difference is that ⊥A,B < ∼-QARelat , so we
cannot take

Y(f) := lim
n
Fnf

(

⊥W,!(A⊥⊗B)

)

Even though we do not have ⊥ in ∼-QARelat , we still have a minimum, which is the
morphism corresponding to the term λx.⊥, so we can take:

Y(f) := lim
n
Fnf (⟦λx.⊥⟧)

The proofs are the same as in the case of ∼-QARel, except that we need to check that
the structural morphisms of ! satisfy the thunkability condition, and that the recursor
preserves thunkability. Using the same proofs as in the linear case, we obtain soundness
and adequacy of ∼-QARel for AQΛ!. And similarly to the linear case, this model is also
fully abstract, and the full abstraction will arise from the full abstraction of the game
model as stated in Theorem 10.3.9.



Chapter 9

Game Semantics for the Quantum
λ-calculus

9.1 Polarisation of the Symmetry

9.1.1 Uniformity of Strategies
Ensuring uniformity of ∼-strategies is more subtle than ensuring uniformity of relations.
This comes from a major difference in design philosophy between the two: in the relational
case, we put quantum valuations on equivalence classes of configurations of the arena,
meaning we put the annotation “after” having taken into account the symmetry; in the case
of strategies, we will put quantum valuations on configurations of the strategy, meaning
we put the annotation “before” having taken into account the symmetry. Accordingly,
before defining quantum ∼-strategies, we start by simply considering quantum strategies
over ∼-arenas, temporarily ignoring the symmetry of the arena.

9.1.2 The Map(-,-) Example
We look back at the Map(f, ℓ) example, and we describe in Fig. 9.1 the esp of its strategy.
We remind the reader that dashed lines represent causal dependencies from the game.

We choose to describe its quantum valuation through Q−,+ rather than Q, as it is
easier to explain. For x a configuration, the quantum valuation Q−,+(x) is a composition
and tensor of braiding, associator, trace and identity morphisms: the quantum information
received through the event (λ,qb⊗n)−

(Q⊗n)∗ is fed to the events (qbi)+
Q

as much as possible,
the remainder being traced away, and the information received through the events (qbi)−

Q∗

is fed to the event (λ,qb⊗n)+
Q⊗n if this event is in the configuration, or traced away if it is

not.
But what about uniformity? The strategy we defined here arbitrarily chooses some copy

indices for each function call: first the copy index 0, then 1, etc., but it could have chosen

247
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!(qubit ⊸ qubit) ⊗qubitℓ ⊢L qubitℓ

(λ,qb⊗0)−
(Q⊗0)∗
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Term Represented:

Map(f, ℓ) := let rec m ℓ′ =

match ℓ′ with | [] 7→ []
| x :: ℓ′′ 7→ (f x) :: (m ℓ′′)

in m ℓ

f :!(qubit⊸ qubit), ℓ : qubitℓ ⊢LMap(f, ℓ) : qubitℓ

Figure 9.1: Strategy for Map(f, ℓ)
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to only use odd copy indices, or any other arbitrary choice. All the strategies that are the
same as ⟦Map(f, ℓ)

⟧ up to changing those copy indices are said to be weakly isomorphic to
⟦Map(f, ℓ)

⟧. Already in the classical case [CCW19], it was a challenge to find conditions
on strategies ensuring that weak isomorphism is a congruence. That is the purpose of
“thin concurrent games” and in particular of the condition “thin”. A lot of properties of
the game model will only be satisfied up to weak isomorphism.

9.1.3 Another Example
The example ⟦Map(f, ℓ)

⟧ had a replicable function in a contravariant position. While in the
relational model there is no significant difference between replication in contravariant and
covariant positions, this is not the case for the game model. So we consider the following
example to illustrate the covariant case:

⊢LApplyU () :!(qubit⊸ qubit)

ApplyU () := λqqubit.U q

We provide the esp for the strategy ⟦ApplyU
⟧ in Fig. 9.2. As previously, we choose to

describe its quantum valuation through Q−,+ rather than Q. For a non-empty ⊕-covered
configuration x of the strategy, we have x = {⋆−, λ+} ⊔ ⊔i∈I{(qbi)−

Q∗ , (qbi)+
Q
} for some

I ⊆fin N, and
Q−,+(x) =

⊗

i∈I
LUM ∈ CPM(Q⊗|I|,Q⊗|I|)

The annotation Q−,+ on a configuration which is not “non-minimal ⊕-covered” is given by
the normalisation and the obliviousness property on quantum strategies.

In contrast to Fig. 9.1 where the strategy was selecting some copy indices from the
game, in Fig. 9.2 the receptivity condition forces the strategy to acknowledge all the copy
indices of the game.

What about uniformity? In this example, uniformity appears directly in the strategy:
the esp is preserved by permutation of the copy indices, and so is the quantum valuation.
In general, we enforce this constraint of uniformity by adding a symmetry to the esp of the
strategy, which in this example is

θ : x ≃ y whenever θ is an order-isomorphism

and expect the quantum valuation to be uniform with respect to this symmetry. This will
be made formal in Section 9.3.2.

9.1.4 Polarisation of Symmetry
As illustrated in the above examples, uniformity imposes very different requirement for
replicable functions in covariant and contravariant position. This is why ∼-arenas come
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∅ ⊢L !(qubit ⊸ qubit)

⋆−

++❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

λ+

✻vv� ✈✈✈✈✈✈✈✈✈♦
✈

�

◗��� ✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑
☞

✌

✎

✑

✓

✔

✖

P���

✚

✙

✙

✘

✘

✘

✗

✗

✖

✖

✕

✕

✔

✔

✓

(qb0)−
Q∗

✓ %%,❙❙❙❙❙❙❙❙❙❙❙❙❙❙
❖

◗
❙ ❚ ❱

(qb0)+
Q

(qb1)−
Q∗

✓ %%,❙❙❙❙❙❙❙❙❙❙❙❙❙❙
❖

◗
❙ ❚ ❱

(qb1)+
Q

...

Figure 9.2: Strategy for ApplyU
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with three symmetries: the negative symmetry ≃− used by covariant replicable functions,
the positive symmetry ≃+ used by contravariant replicable functions, and the non-polarised
symmetry≃ which contains both. As those polarised symmetries are now relevant, it is time
to give the full definition of ∼-games which we previously postponed in Definition 8.2.9.

Definition 9.1.1. A ∼-game is an esp E together with

• three sets ≃E ,≃+
E ,≃−

E called symmetry, positive symmetry and negative symmetry,
such that (E,≃E), (E,≃+

E) and (E,≃−
E) are ∼-esps, and ≃+

E and ≃−
E are subsets of

≃E;

• a selection of canonical configurations (−) : C≃(E)→ C(E) such that x ∈ x for every
x ∈ C≃(E);

• an implicit total order on C≃(E);

satisfying the following properties:

Polarised If θ ∈ ≃+ and θ ∈ ≃−, then θ is an identity symmetry.

Positive extension If θ ∈ ≃− and θ ⊆− ϕ ∈ ≃ then ϕ ∈ ≃−.

Negative extension If θ ∈ ≃+ and θ ⊆+ ϕ ∈ ≃ then ϕ ∈ ≃+.

Representable For every x ∈ C≃(E), we have

∀ϕ : x ≃E x,∃!ϕ+ : x ≃+
E x,∃!ϕ− : x ≃−

E x, ϕ = ϕ+ ◦ ϕ−

We recall that we write AE(x), A+
E(x) and A−

E(x) for the sets of auto-symmetries,
auto-positive-symmetries and respectively auto-negative-symmetries over x. Following the
intuition of a symmetry as a valid change of copy indices, the conditions on ∼-games mean
the following:

• “Polarised” is the central property of ∼-games: no change of copy indices can be made
by both Player and Opponent alone, either the change can be made by Player alone
(and not by Opponent alone), or the change can be made by Opponent alone (and
not by Player alone), or the change requires an action of both Player and Opponent
(and none can do it alone).

• “Positive extension” ensures that a valid change of copy indices that only changes
copy indices of Player moves is a change that can be made by Player alone.

• “Negative extension” is the symmetric condition for Opponent.

• “Representable” is a technical condition that was added to ensure that |AE(x)| =
|A+

E(x)| · |A−
E(x)| (Lemma 9.1.3), which is a central property needed for the collapse

of quantum ∼-strategies into quantum relations on ∼-arenas.
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a+

✲ssz ♠♠♠♠♠♠♠♠♠♠♠

✑ $$,◗◗◗◗◗◗◗◗◗◗◗

b−
0

❃yy� ⑦⑦⑦⑦
� ��%

❅❅❅❅
b−

1

❃yy� ⑦⑦⑦⑦
� ��%

❅❅❅❅

c+
0,0 c+

0,1 c+
1,0 c+

1,1

Symmetries:

θ− ∈ ≃− : ∀(e, e′) ∈ θ−, e = e′ or
{

∃i ∈ {0, 1}, (e, e′) = (b−
i , b

−
1−i), or

∃i, j ∈ {0, 1}, (e, e′) = (c+
i,j , c

+
1−i,j)

θ+ ∈ ≃+ : ∀(e, e′) ∈ θ+, e = e′ or ∃i, j ∈ {0, 1}, (e, e′) = (c+
i,j , c

+
i,1−j)

θ ∈ ≃ whenever θ is an order-isomorphism

Figure 9.3: Example of ∼-game.

Indeed, while Lemma 8.2.4 ensures that ∀x′ ∈ x, |AE(x′)| = |AE(x)|, this is not al-
ways the case of A+

E and A−
E , meaning that the choice of the canonical representative is

important. We refer to [Cla20] for more technical motivation behind the representable
condition.

In the following, we try to give an intuition on the difference between a configuration
which satisfies the representable condition (hence is a valid choice for a canonical configu-
ration), and a configuration which does not. For that, we consider the example in Fig. 9.3.
In this game, Opponent has control over the first copy index, while Player has control over
the second. We can look at the following equivalence class for ≃:

{a, b−
0 , c

+
0,0, b

−
1 , c

+
1,0} ≃ {a, b−

0 , c
+
0,0, b

−
1 , c

+
1,1} ≃ {a, b−

0 , c
+
0,1, b

−
1 , c

+
1,0} ≃ {a, b−

0 , c
+
0,1, b

−
1 , c

+
1,1}

This equivalence class corresponds to “taking a+, two copies of b−, and then one copy of c+

for every copy of b−”. In this equivalence class, the first and the last representatives stand
out as more “uniform”, as we made consistent choices: whenever we had to take “one copy
of c+ for every copy of b−”, we always choose the first copy, or always the second copy.
This “uniformity” is what the representability condition enforces. Let us consider a “non-
uniform” configuration of this class, for example {a, b−

0 , c
+
0,0, b

−
1 , c

+
1,1}. This configuration

has the following auto-symmetry:
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a+

❂yy� ⑥⑥⑥⑥⑥

✁ ��%
❆❆❆❆❆

≃
a+

❂yy� ⑥⑥⑥⑥⑥

✁ ��%
❆❆❆❆❆

b−
0

❃yy� ⑦⑦⑦⑦
b−

1

� ��%
❅❅❅❅

b−
0

❃yy� ⑦⑦⑦⑦
b−

1

� ��%
❅❅❅❅

c+
0,0 c+

1,1 c+
0,0 c+

1,1

There is only one way to decompose1 this auto-symmetry into a negative symmetry followed
by a positive symmetry, and it is the following:

a+

◆��
 ✍✍✍✍✍✍

♣���
✵✵✵✵✵✵

≃−

a+

❀xx� ④④④④④④④④

✄ ��&
❈❈❈❈❈❈❈❈

≃+
❴❴❴❴❴❴❴❴❴❴❴ a+

◆��
 ✍✍✍✍✍✍

♣���
✵✵✵✵✵✵

b−
0

◆��
 ✍✍✍✍✍✍
b−

1

♣���
✵✵✵✵✵✵

b−
0

♣���
✵✵✵✵✵✵

❤ ❣ ❢ ❞ ❝ ❜ ❵ ❴ ❫ ❭ ❬ ❩ ❳ ❲ ❱
b−

1

◆��
 ✍✍✍✍✍✍

❦ ❣ ❝ ❴ ❬ ❲ ❙
b−

0

◆��
 ✍✍✍✍✍✍
b−

1

♣���
✵✵✵✵✵✵

c+
0,0 c+

1,1 c+
0,1 ❚ ❲ ❬ ❴ ❝ ❣ ❥c+

1,0 ❲ ❳ ❩ ❭ ❴ ❜ ❞ ❢ ❣c+
0,0 c+

1,1

Note that this auto-symmetry did not decompose into a negative auto-symmetry and
a positive auto-symmetry, as the middle configuration is not the same as the left and
right hand side configurations. So {a, b−

0 , c
+
0,0, b

−
1 , c

+
1,1} does not satisfy the representability

condition. On the cardinality side, we have

x {a, b−
0 , c

+
0,0, b

−
1 , c

+
1,0} {a, b−

0 , c
+
0,0, b

−
1 , c

+
1,1}

|A(x)| 2 2
|A+(x)| 1 1
|A−(x)| 2 1

|A(x)| = |A−(x)| · |A+(x)| Yes No

9.1.5 Miscellaneous Lemmas on Games with Symmetry

In this section, we mention two important lemmas in relation with the decomposition of
the symmetry ≃ into the positive symmetry ≃+ and the negative symmetry ≃−.

Lemma 9.1.2. If (E,≃,≃+,≃−,−) is a ∼-game, the function (θ+, θ−) 7→ θ+ ◦ θ− forms
an order-isomorphism between {(θ+, θ−) ∈ (≃+ ×≃−) | dom(θ+) = codom(θ−)} and ≃,
with for order ⊆ × ⊆ on the left hand side, and ⊆ on the right hand side.

1In fact, Lemma 9.1.2 shows that every symmetry can be decomposed in a unique way into a negative
symmetry followed by a positive symmetry.
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We refer to lemma 3.19 of [CCW19] for a proof. This lemma ensures that every symme-
try can be uniquely decomposed into a positive symmetry and a negative one. In particular,
the morphisms ϕ+ and ϕ− of the representable condition in Definition 9.1.1 are necessarily
unique if they exist. We note that the opposite lemma, which decomposes a symmetry
uniquely into a negative symmetry and a positive one, is a direct corollary2.

Lemma 9.1.3. If (E,≃,≃+,≃−,−) is a ∼-game, then for every x ∈ C≃(E), |AE(x)| =
|A+

E(x)| × |A−
E(x)|.

Proof. The representable condition on ∼-games provides us with a bijection between
AE(x) and A+

E(x)×A−
E(x). □

9.2 Strategies with Symmetry
In this section, we go through the definitions and some the basic properties of thin con-
current strategies as defined in [CCW19, Cla20], which we will refer to for proofs. We call
them ∼-strategies. All the technical choices are motivated by obtaining a notion of weak
isomorphism between ∼-strategies which is a congruence, and up to which ! behaves as an
exponential.

9.2.1 Interactive Composition with Symmetry
In order to define ∼-strategies, we have to define the symmetry on the interaction G ⊛ F
and on the interactive composition G⊙ F from the symmetries on G and F .

Definition 9.2.1. For f : F → A⊥ ∥ B and g : G → B⊥ ∥ C two maps of ∼-esps, we
define on the event structure G ⊛ F the following family of order-isomorphisms ≃G⊛F :

θ : y ⊛ x ≃G⊛F y′
⊛ x′ whenever πG θ : y ≃G y′ and πF θ : x ≃F x′

Similarly, we define on the esp G⊙ F the following family of order-isomorphisms:

θ : y ⊙ x ≃G⊙F y
′ ⊙ x′ whenever ∃ϕ : y ⊙ x ≃G⊙F y

′ ⊙ x′ s.t θ ⊆ ϕ

It is important to note that those families of isomorphisms might not give rise to a
∼-es and a ∼-esp as the extension property of symmetries might not be satisfied. This is
an unfortunate problem, and leads to the fact that the category ∼-ES does not have all
pullbacks (see [CCW19]). The notion of ∼-receptivity is a solution to this problem.

Definition 9.2.2. A map of ∼-esps f : A→ B is said to be
2Using the fact that θ = θ− ◦ θ+ if and only if θ−1 = (θ+)−1 ◦ (θ−)−1.
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a− b− f−−−−−→ a− b−

Symmetries:
∀x, idx ∈ ≃ ∀x, idx ∈ ≃

{(a−, b−)} ∈ ≃
{(b−, a−)} ∈ ≃

{(a−, b−), (b−, a−)} ∈ ≃

Figure 9.4: Map of ∼-esps which is not ∼-receptive.

a− b− f−−−−−→ a− b−

Symmetries:
∀x, idx ∈ ≃ ∀x, idx ∈ ≃
{(a−, b−)} ∈ ≃ {(a−, b−)} ∈ ≃
{(b−, a−)} ∈ ≃ {(b−, a−)} ∈ ≃

{(a−, b−), (b−, a−)} ∈ ≃ {(a−, b−), (b−, a−)} ∈ ≃

Figure 9.5: Map of ∼-esps which is ∼-receptive.

∼-Receptive if whenever we have the first and the second following diagrams, there exists
a unique a′− ∈ |A| such that we have the third diagram:

x❴

f

��

θ
≃A

// x′
❴

f
��

y
f θ

≃B

// y′

x ∪ {a−}
❴

f
��

y ∪ {b−} f θ∪{(b,b′)}
≃B

// y′ ∪ {b′−}

x ∪ {a−}
❴

f
��

θ∪{(a,a′)}
≃A

// x′ ∪ {a′−}
❴

f
��

y ∪ {b−} f θ∪{(b,b′)}
≃B

// y′ ∪ {b′−}

Similarly to how receptivity prevents a strategy from “forgetting” some Opponent
moves, ∼-receptivity prevents a strategy from “forgetting” a symmetry between some Op-
ponent moves. We provide in Fig. 9.4 an example of a map which is not ∼-receptive. The
map f in this example, which is the identity on events, is a map of ∼-esps as it preserves
the symmetry. However, it does not reflect the symmetry, and in particular it does not
reflect the symmetry between a− and b−, which breaks the ∼-receptivity condition. The
identity map is always ∼-receptive, as such the map in Fig. 9.5 is ∼-receptive.

One might find strange that in order to obtain a pullback in ∼-ES, we consider a
condition which refers to polarities, but this is a core feature of the solution: we leverage
the fact that during the interaction of f : F → A⊥ ∥ B, and g : G → B⊥ ∥ C, the map
f has B in its codomain while the map g has B⊥ in its codomain, so every event of B is
negative on one side or the other.
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∀pA
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��✤
✤
✤
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πF ∥C
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πA∥G

&&▼▼▼▼▼▼▼▼▼▼

g⊛f

��

F ∥ C

f∥C %%▲▲▲▲▲▲▲▲▲▲
A ∥ G
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A ∥ B ∥ C

G ⊛ F
πF ∥C

xxqqqqqqqqqq
πA∥G

&&▼▼▼▼▼▼▼▼▼▼

g⊛f

��

G⊙ F/H′

g⊙f

��

F ∥ C

f∥C %%▲▲▲▲▲▲▲▲▲▲
A ∥ G

A∥gyyrrrrrrrrrr

A ∥ B ∥ C A ∥ C/H

Figure 9.6: Diagrams for the interaction (left) and the interactive composition (right).

Lemma 9.2.3. If both f : F → A⊥ ∥ B and g : G → B⊥ ∥ C are ∼-receptive maps of
∼-esp, then G ⊛ F together with ≃G⊛F as defined in Definition 9.2.1 is a ∼-es and forms
a pullback in ∼-ES, which we sum up the diagram at the left of Fig. 9.6. It follows that
the interaction is associative up to isomorphism.

This lemma is a consequence of Lemma 3.12 of [CCW19]. Now that we have the
interaction, we just need to extend the notion of hiding to ∼-es and we will have the
interactive composition.

Definition 9.2.4. A partial map of ∼-es H : A ⇀ B is said to be a hiding if it is a hiding
map of event structures (see Definition 4.2.13) such that θ : x ≃B y if and only if there
exists θ′ : x′ ≃A y′ such that H θ′ = θ.

Lemma 9.2.5. For f : A→ B a map of ∼-es and H : B ⇀ B′ a hiding, there exists some
unique ∼-es A′, hiding H ′ : A ⇀ A′ and map f ′ : A′ → B′ such that:

H ◦ f = f ′ ◦H ′

This lemma follows from Proposition 4.2.14.

Lemma 9.2.6. If both f : F → A⊥ ∥ B and g : G → B⊥ ∥ C are ∼-receptive maps of
∼-esp, then G ⊙ F together with ≃G⊙F as defined in Definition 9.2.1 is a ∼-esp and the
diagram at the right of Fig. 9.6 commutes with H,H ′ hiding maps. It follows that the
interactive composition is associative up to isomorphism.

This lemma is a consequence of Lemmas 9.2.3 and 9.2.5.
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9.2.2 Strategies with Symmetry
We can now define the category of ∼-arenas and ∼-strategies. As in the case without
symmetry, ∼-strategies will be receptive and courteous, but we also expect them to be
∼-receptive and thin. We refer to [CCW19] for the exact technical motivations behind the
thin condition, and just mention that its main use is to ensure that the weak isomorphism
defined in Definition 9.2.11 is a congruence, and it does so by making positive extensions
“unique”.

Definition 9.2.7. A ∼-strategy from a ∼-game A to a ∼-game B is a map of ∼-esps
σ : S → A⊥ ∥ B which is courteous, receptive, ∼-receptive and

Thin whenever θ : x ≃S y−⊂+(y∪{s′+}) there exists a unique s+ such that θ∪{(s+, s′+)} :
(x ∪ {s+}) ≃S (y ∪ {s′+}).

Note that while S is a ∼-esps, A and B are ∼-games, i.e., S has only one symmetry
while A and B have a symmetry, a positive symmetry and a negative symmetry. As hinted
before, when a part of the game is duplicated with a negative symmetry, all the copies will
be present in the ≃-strategy, while when a part of the game is duplicated with a positive
symmetry, only the copies actively used are in the ≃-strategy. We provide in Figs. 9.7
and 9.8 an example of a thin map, and an example of a non-thin map. The thin condition
can be seen as a dual of ∼-receptivity:

• In Fig. 9.5, we see in the strategy two events a− and b− that are two copies of the
same “action” (their corresponding move in the game are symmetric). Those are
Opponent actions, which means that the strategy is bound to react uniformly to
those two actions, which is why they are symmetric in the game.

• In Fig. 9.7, we see in the strategy two events a+ and b+, which are also two copies
of the same “action”. Those two copies are not symmetric to each other, as there is
nothing that bind Player to behave the same way on two different function calls it
initialised. This is alike to how in a programming language, it is obviously possible
to use the same function twice, in different contexts, and still behave differently
afterwards.

Definition 9.2.8. We define the copy-cat ∼-strategy ccA : A 7→ A as the copy-cat strategy
together with the following symmetry on CCA:

θ : x ∥ y ≃CCA
x′ ∥ y′ whenever θ = θ′ ∥ θ′′ with θ′ : x ≃A⊥ x′ and θ′′ : y ≃A y′

Similarly to the case without symmetries, copy-cat will be the identity for the interactive
composition up to “renaming of the events”, which we call strong isomorphism. The
interactive composition will also be associative up to strong isomorphism.
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a+ b+ f−−−−−→ a+ b+

Symmetries:
∀x, idx ∈ ≃ ∀x, idx ∈ ≃

{(a+, b+)} ∈ ≃
{(b+, a+)} ∈ ≃

{(a+, b+), (b+, a+)} ∈ ≃

Figure 9.7: Map of ∼-esps which is thin.

a+ b+ f−−−−−→ a+ b+

Symmetries:
∀x, idx ∈ ≃ ∀x, idx ∈ ≃
{(a+, b+)} ∈ ≃ {(a+, b+)} ∈ ≃
{(b+, a+)} ∈ ≃ {(b+, a+)} ∈ ≃

{(a+, b+), (b+, a+)} ∈ ≃ {(a+, b+), (b+, a+)} ∈ ≃

Figure 9.8: Map of ∼-esps which is not thin.

Definition 9.2.9. We say that two ∼-strategies σ : S → A⊥ ∥ B and σ′ : S′ → A⊥ ∥ B
are strongly isomorphic, and write σ � σ′, whenever there exists an isomorphism of ∼-esps
f : S → S′ which commutes with the strategies, i.e., σ′ ◦ f = σ.

Similarly to the case without symmetry, ∼-strategies form a category up to strong
isomorphism, more precisely:

Theorem 9.2.10. For σ a ∼-strategy from A to B, and τ a ∼-strategy from B to C, τ ⊙σ
is a ∼-strategy from A to C. Moreover ccB ⊙ σ � σ � σ ⊙ ccA.

We refer to [CCW19] for a proof. We will often use a weaker notion of isomorphism,
which represents the fact that the two strategies are the same “up to symmetry”, or in
other words “up to renaming the events and changing the copy indices”. In Fig. 9.9 we
present three ∼-strategies σ0, σ1, σ2 (we put in the same column the events and their image
by the map of ∼-esps), all representing the term

f :!(1⊸ bit) ⊢L f () : bit

We have σ0 and σ1 strongly isomorphic, as their only difference is the “name” of the events.
We have σ1 and σ2 weakly isomorphic, as σ0 uses the “first copy” of f while σ1 uses the
“second copy” of f . Formally, weak isomorphism is defined as follows.
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Figure 9.9: Examples of strong and weak isomorphisms

Definition 9.2.11. Two ∼-strategies σ : S → A⊥ ∥ B and σ′ : S′ → A⊥ ∥ B are said
weakly isomorphic, and we write σ ≃ σ′, if S and S′ are isomorphic ∼-esps and the
isomorphism commutes with the strategy up to ≃+

A⊥∥B; i.e., there exists an invertible map
of ∼-esps f : S → S′:

∀x ∈ C(S), {(σ′ ◦ f)(e), σ(e) | e ∈ x} : (σ′ ◦ f)x ≃+
A⊥∥B σ x

In other words, two strategies are weakly isomorphic whenever they only differ by the
copy indices that Player chooses. We note that if σ and σ′ are strongly isomorphic, then
they are weakly isomorphic too.

Proposition 9.2.12. Two ∼-strategies σ : S → A⊥ ∥ B and σ′ : S′ → A⊥ ∥ B are weakly
isomorphic, if and only if:

Weak Equivalence There exist two maps of ∼-esps f : S → S′ and g : S′ → S such that,
for ≃ the congruence on ∼-ESP we have:

σ ◦ g ≃ σ′ g ◦ f ≃ idS
σ′ ◦ f ≃ σ f ◦ g ≃ idS′

This is a consequence of Corollary 3.30 of [CCW19]. The direction “weakly isomorphic
⇒ weakly equivalent” is trivial as we can keep the same isomorphism f between S and
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S′ and take g = f−1. The direction “weakly equivalent ⇒ weakly isomorphic” requires
more work as we have to build an isomorphism from f and g that are only inverse up to
symmetry.

Lemma 9.2.13. Weak isomorphism is a congruence, i.e., for σ, σ′ two ∼-strategies from
A to B, and τ, τ ′ two ∼-strategies from B to C, we have

σ ≃ σ′ and τ ≃ τ ′ =⇒ τ ⊙ σ ≃ τ ′ ⊙ σ′

This is a consequence of proposition 3.40 of [CCW19], and note that the proof of this
proposition relies on the thin condition of ∼-strategies.

Proposition 9.2.14. ∼-games and ∼-strategies, up to strong isomorphism, form a CpCC
(∼-Strat, ∥,∅, (_)⊥). The weak isomorphism is a congruence for this additional structure.

The bifunctor ∥ on ∼-strategies is deduced from the bifunctor ∥ on maps of ∼-esps as
in the case without symmetry. We refer to theorem 3.42 of [CCW19] for a proof of the
compact closure.

9.3 Quantum Strategies with Symmetry

9.3.1 Example
We previously considered the example Map(f, ℓ) where the replicable function is in contra-
variant position, and the example ApplyU () where the replicable function is in covariant
position. We now consider Square(f) := λxqubit.f(f(x)) where we have both.

We describe its associated esp in Fig. 9.10. For each function call on the right hand side,
there are two function calls on the left hand side. The symmetry of this ∼-strategy simply
contains all the order-isomorphisms. The quantum valuation Q−,+ on ⊕-covered configu-
rations is simply the identity, as the quantum data from (qbrn)−

Q∗ is fed into (qbℓ2n)+
Q

, the
quantum data from (qbℓ2n)−

Q∗ is fed into (qbℓ2n+1)+
Q

, and the quantum data of (qbℓ2n+1)−
Q∗

is fed into (qbrn)+
Q

.
In this example, we note once again that the function in covariant position has all its

copies symmetric in the strategy, because the strategy must answer uniformly to Opponent
calling replicable functions. However, the function in contravariant position has no unifor-
mity restriction, and the strategy arbitrarily chooses which copy indices to use. Different
choices of copy indices lead to weakly isomorphic strategies.

9.3.2 Quantum Strategies with Symmetry
Definition 9.3.1. A quantum ∼-strategy σ : A 7→ B is a ∼-strategy between quantum
payoff ∼-games together with a quantum valuation Qσ on configurations x ∈ C(S) such
that:

σ x = xA ∥ xB =⇒ Qσ(x) ∈ CPM(HA(xA),HB(xB))
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!(qubit ⊸ qubit) ⊢L !(qubit ⊸ qubit)

(λℓ)−

✜ **1❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭

☎
☎

☎
☎

☎
☎

☎
✔

✒

✑

✎

✌

☛

✠

✜

✛

✚

✚

✙

✘

✗

✖

✕

✔

✓

✒

✑

✏

✎

✧
✦

✥

✤

✢

✜

✛

✙

✘

✖

✕

✓

✒

✏

✎
✍

✌

(λr)+

✰rry ❦❦❦❦❦
❡❦

r

❙��� ✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✎
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✑
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✓

✔
✕

✕
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✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✙✗

✗
✗

✗
✗

✗
✗

✘
✘

✘
✘

✘
✘

✙
✙

✙
✙

✙
✙

✙
✚

✚
✚

✚
✚

✚
✚

✛
✛

✛

(qbr0)−
Q∗

✧mmt ❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜
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❄
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❄

❄
❄
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❄
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❄

❄
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Q

✙ ))/❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨
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Q

✙ ))/❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨
❯ ❲ ❨ ❩ ❭ (qbℓ1)−

Q∗

✜ **1❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭
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Q

(qbr1)−
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❄
❄

❄
❄

❄
❄

❄
❄

❄
❄

❄
❄

❄
❄

❄
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Q

✙ ))/❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨
❯ ❲ ❨ ❩ ❭ (qbℓ2)−

Q∗

✪oou ❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

(qbℓ3)+
Q

✙ ))/❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨
❯ ❲ ❨ ❩ ❭ (qbℓ3)−
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Q

...

Term Represented:

f :!(qubit⊸ qubit) ⊢L Square(f) :!(qubit⊸ qubit)

Square(f) := λxqubit.f(f(x))

Figure 9.10: Strategy for Square(f)
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Quantum strategy The normalisation, obliviousness and drop conditions of Definition 5.3.3
are satisfied.

Winning x ⊕-covered =⇒ κA⊥

&

B(σ x) ≥ 0.

Uniform θ : x ≃S x′ =⇒ Qσ(x′) = HB(θ−1
B ) ◦ Qσ(x) ◦ HA(θA), where σ θ = θA ∥ θB.

An important observation is that the “Uniform” condition is applied to the symmetry
in the strategy, not to the symmetry in the ∼-game. In the example of Square(f) Fig. 9.10,
if we consider the configuration {(λℓ)−, (λr)+, (qbr0)−

Q∗ , (qbℓ0)+
Q
, (qbr1)−

Q∗ , (qbℓ2)+
Q
} there is

an auto-symmetry in the strategy that exchanges (qbr0)−
Q∗ with (qbr1)−

Q∗ and (qbℓ0)+
Q

with
(qbℓ2)+

Q
, so the quantum valuation must be preserved by this auto-symmetry. However,

if we consider {(λℓ)−, (λr)+, (qbr0)−
Q∗ , (qbℓ0)+

Q
, (qbℓ0)−

Q∗ , (qbℓ1)+
Q
, (qbℓ1)−

Q∗ , (qbr0)+
Q
}, there is

no non-trivial auto-symmetry in the strategy, and in particular the auto-symmetry of the
game that exchanges (qbℓ0)+

Q
with (qbℓ1)+

Q
and (qbℓ0)−

Q∗ with (qbℓ1)−
Q

is not reflected in the
strategy, hence the uniformity condition does not apply here. We mentioned earlier that
the choice of copy indices by Player was arbitrary, and that different choices lead to weakly
isomorphic strategies. The weak and strong isomorphisms are defined as follows:

Lemma 9.3.2. For σ, σ′ : A 7→ B two ∼-strategies and f : S → S′ a map of ∼-esps such
that σ ≃ σ′ ◦ f as maps of ∼-esps, then for every x ∈ C(S) we have an induced symmetry
Ψf
A(x) ∥ Ψf

B(x) : σ x ≃A⊥∥B σ′ (f x) such that the following diagram commutes:

x
f //

σ

��

f x

σ′

��
σ x

Ψf
A

(x)∥Ψf
B

(x)

// σ (f x)

Definition 9.3.3. For two quantum ∼-strategies σ, σ′ : A 7→ B, we say that a map of
∼-esp f : S → S′ preserves the quantum valuation whenever:

Qσ′(f x) = HB((Ψf
B(x))−1) ◦ Qσ(x) ◦ HA(Ψf

A(x))

The quantum ∼-strategies σ and σ′ are said

Strongly Isomorphic Whenever they are strongly isomorphic as ∼-strategies with associated
isomorphism f , and f preserves quantum valuations.

Weakly Isomorphic Whenever they are weakly isomorphic as ∼-strategies with associated
isomorphism f , and f preserves quantum valuations.

Weakly Equivalent Whenever they are are weakly equivalent as ∼-strategies with associated
maps f : S → S′ and g : S′ → S, and both f and g preserves quantum valuation.



9.3. QUANTUM STRATEGIES WITH SYMMETRY 263

Lemma 9.3.4. Strong isomorphism implies weak isomorphism. Weak isomorphism and
weak equivalence are equivalent.

This follows from Proposition 9.2.12 and Lemma 3.29 of [CCW19].
We take the same quantum valuation for copy-cat ccA, for the interactive composition

⊙, for the two parallel composition ⊠ and &, and for the negation (_)⊥ as in the case
without symmetry. We obtain the following result:

Proposition 9.3.5. Quantum payoff ∼-games and quantum ∼-strategies, up to strong
isomorphism, form two SMCs (∼-QCG,

&

,∅) and (∼-QCG,⊠,∅). In fact, (∼-QCG, ∥
,⊠,∅, (_)⊥) forms a linearly distributive category with negation, so a ⋆-autonomous cate-
gory in light of their equivalence. Weak isomorphism is a congruence in ∼-QCG.

Proof. Most of those claims can be deduced from the case with quantum valuation
but without symmetry together with the case with symmetry but without quantum
valuations. We prove the congruence of weak isomorphism. We consider σ ≃ σ′ ∈
∼-QCG(A,B) and τ ≃ τ ′ ∈ ∼-QCG(B,C). By definition of weak equivalence, it
means we have f : S → S′, f ′ : S′ → S, g : T → T ′ and g′ : T ′ → T maps of ∼-esps
such that

S
f

,,≃

σ
��❄❄❄❄❄❄❄❄❄❄❄

≃

S′

σ′

~~⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦
f ′

ll

A⊥ ∥ B

T

σ
��❅❅❅❅❅❅❅❅❅❅❅

g
,,≃

≃

T ′

σ′

~~⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥
g′

ll

B⊥ ∥ C

Qσ′(f x) = HB((Ψf
B(x))−1) ◦ Qσ(x) ◦ HA(Ψf

A(x))

Qσ(f ′ x′) = HB((Ψf ′

B (x′))−1) ◦ Qσ′(x′) ◦ HA(Ψf ′

A (x′))
Qτ ′(g y) = HC((Ψg

C(y))−1) ◦ Qτ (y) ◦ HB(Ψg
B(y))

Qτ (g′ y′) = HC((Ψg′

C (y′))−1) ◦ Qτ ′(y′) ◦ HB(Ψg′

B(y′))

We want to prove that τ ⊙ σ ≃ τ ′ ⊙ σ′. Using Lemma 3.21 from [CCW19], We obtain
two maps of ∼-es h : T ⊛ S → T ′ ⊛ S′ and h′ : T ′ ⊛ S′ → T ⊛ S such that the following
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diagram commutes up to ≃:

T ⊛ S
h

--

πS∥C

||①①①①①①①①①①①①①①①①①①

πA∥T

''❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖ T ′ ⊛ S′

h′

mm

πS′∥C

ww♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

πA∥T ′

##●●●●●●●●●●●●●●●●●●●

S ∥ C
f∥C

,,

σ∥C

((◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗ S′ ∥ C

σ′∥C

��❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃
f ′∥C

ll A ∥ T
A∥g

,,

A∥τ

��⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧
A ∥ T ′

A∥g′

ll

A∥τ ′

vv♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

A ∥ B ∥ C

In particular for y ⊛ x ∈ C(T ⊛ S), the following diagram commutes

y ⊛ x
h //

πS∥C

vv♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

πA∥T

((❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘ y′ ⊛ x′

πS′∥C

vv♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠
πA∥T ′

((❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘

x ∥ yC
f∥C //

σ∥C

��✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻
x′ ∥ yC

θS′ ∥θC//

σ′∥C

��

x′ ∥ y′
C

σ′∥C

##

xA ∥ y
A∥g //

A∥τ

{{

xA ∥ y′ϕA∥ϕT ′//

A∥τ ′

vv♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠
x′
A ∥ y′

A∥τ ′

��✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞

xA ∥ z′
B ∥ y′

C

ϕA∥ϕB∥ϕC

❲❲❲

++❲❲❲

xA ∥ zB ∥ yC
Ψf

A
(x)∥Ψf

B
(x)∥C

❲❲

++❲❲

A∥Ψg
B

(y)∥Ψg
C

(y)❣❣❣

33❣❣❣

x′
A ∥ z′

B ∥ y′
C

x′
A ∥ z′

B ∥ yC
θA∥θB∥θC❣❣❣

33❣❣❣

From that diagram it follows that

Qτ ′⊛σ′(y′ ⊛ x′) = Qτ ′(y′) ◦ Qσ′(x′)
= HC((ϕC ◦Ψg

C(y))−1) ◦ Qτ (y) ◦ HB(ϕB ◦Ψg
B(y))

◦ HB((θB ◦Ψf
B(x))−1) ◦ Qσ(x) ◦ HA(θA ◦Ψf

A(x))

= HC(θ−1
C ) ◦ Qτ (y) ◦ Qσ(x) ◦ HA(ϕA)

= HC(θ−1
C ) ◦ Q(τ ⊛ σ)(y ⊛ x) ◦ HA(ϕA)
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Symmetrically, for y′ ⊛ x′ ∈ C(T ′ ⊛ S′) and y ⊛ x = h′ (y′ ⊛ x′) we obtain

Qτ⊛σ(y ⊛ x) = HC((θ′
C)−1) ◦ Qτ⊛σ(y′

⊛ x′) ◦ HA(ϕ′
A)

Using hiding (Lemma 9.2.5), we obtain two maps of ∼-esps k : T ⊙ S → T ′ ⊙ S′ and
k′ : T ′ ⊙ S′ → T ⊙ S such that

T ⊙ S
k

--≃

τ⊙σ
""❊❊❊❊❊❊❊❊❊❊❊

≃

T ′ ⊙ S′

τ ′⊙σ′

||①①①①①①①①①①①①
k′

mm

A⊥ ∥ C

Qτ ′⊙σ′(k z) = HC((Ψk
B(z))−1) ◦ Qτ⊙σ(z) ◦ HA(Ψk

A(z))

Qτ⊙σ(k′ z′) = HC((Ψk′

B (z′))−1) ◦ Qτ⊙σ(x′) ◦ HA(Ψk′

A (z′))

So τ ⊙ σ ≃ τ ′ ⊙ σ′. □

9.3.3 Categorical Model for LQΛ!

If A and B are quantum ∼-arenas, we define negative and thunkable quantum ∼-strategies
as in Definition 5.5.1, and visible quantum strategies as in Definition 6.2.2. We write
∼-QA and ∼-QAt the categories (up to strong isomorphism) of quantum ∼-arenas and
respectively negative visible quantum ∼-strategies and negative thunkable visible quantum
∼-strategies. In Section 8.3.2, we already extended the operations ⊸,⊕, (_)ℓ to quantum
∼-arenas.

Proposition 9.3.6. (∼-QA,∼-QAt, id,⊗,1,⊸,⊕,0), up to strong isomorphism, a non-
trivial CFC with a bottom. Weak isomorphism is a congruence.

The proof is the same as in the case without symmetry. To prove that it is a pre-model
of LQΛ! as defined in Section 7.2, we recall that we need lists, quantum primitives, a
functional sub-SMC, a linear exponential comonad and a recursor.

The Lists

For every ∼-arena A, we have a ∼-arena Aℓ such that Aℓ = 1⊕ (A⊗ Aℓ), so we have the
first item.

The Quantum Primitives

We also have a ∼-arena qubit =↓qb:Q ∅, and some quantum ∼-strategies meas∼-QA,
new∼-QA, and U∼-QA which are simply the strategies measQA, newQA, and UQA.
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The Functional Sub-SMC

We take ∼-QAf the full sub-SMC of ∼-QAt with all the functional ∼-arenas (see Defini-
tion 8.3.12), and note that !A is always defined in this subcategory.

The Linear Exponential Comonad

We lift the linear exponential comonad from ∼-QArena⊥
fun into a linear exponential

comonad for ∼-QAf .

Definition 9.3.7. For f ∈ ∼-QArena⊥
fun(A,B), if f is receptive, courteous and ∼-

receptive, then we define its lifting f̂ ∈ ∼-QAf (A,B) as follows:

CCB
ccB //

f̂ $$■■■■■■■■■ B⊥ &

B

f

&

B
��

A⊥ &

B

This notion of lifting is called co-lifting in [CCW19].

Lemma 9.3.8 (Lifting lemma). The lifting “− is a symmetric monoidal functor from the
subcategory of (∼-QArena⊥

fun,⊗,1) containing all the receptive courteous and ∼-receptive
maps to (∼-QAf ,⊗,1). Moreover,

f ≃ f ′ =⇒ f̂ ≃ “f ′

and the ⊕-covered configurations of f̂ are necessarily of the form f(x) ∥ x.

Proposition 9.3.9. The modality ! forms a linear exponential comonad (!, ϵ, δ,w, c,m,m1),
up to weak isomorphism, on ∼-QAf .

Proof. We first check that all the morphisms from the linear exponential comonad of
∼-QArena⊥

fun are receptive courteous and ∼-receptive. We then lift all of them to
∼-QAf , and just need to provide a definition for the functor !.

We take σ ∈ ∼-QAf (A,B) ⊆ ∼-QAt(A,B). We have A =↓a:1 A′, B =↓b:1 B′ with
A′, B′ some negative quantum payoff ∼-games . Using thunkability S =↑a′:1↓b′:1 S

′,
with S′ a negative ∼-esp and σ(a′) = (0, a), σ(b′) = (1, b). We define the map of ∼-esp
!σ as follows:

!σ : ↑a′:1↓b′:1!S′ → (↓a:1!A′)⊥ &

(↓b:1!B′)
a′ 7→ (0, a)
b′ 7→ (1, b)

(n, s) 7→ (i, (n, e)) whenever σ(s) = (i, e)
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And we take the valuation:

Q!σ({a′, b′} ⊔ (x0 ∥ . . . ∥ xn)) =
n
⊗

i=1

Qσ({a′, b′} ⊔ xi)

All the diagrams but the naturality follow from the functoriality of the lifting, and
their commutation up to ≃ become commutations up to weak isomorphism thanks
to the lifting lemma. We then check the naturality diagrams by using Lemmas A.2.3
and A.2.4. The naturality will be satisfied up to strong isomorphism. As an exam-
ple, we treat the case of the dereliction ŵA ∈ ∼-QA(!A,A). We want to prove the
commutation of the following diagram:

!A
ŵA //

!σ
��

A

σ
��

!B
”wB // B

The ⊕-covered configurations of σ⊙ ŵA are of the form x⊙ (wA(xA) ∥ xA) with σ x =
xA ∥ xB. The ⊕-covered configurations of ŵB⊙!σ are of the form (wB(xB) ∥ xB)⊙ y
with (!σ) y = yA ∥ wB(xB). Since wB(xB) only uses the copy of B of index 0, then
necessarily y only uses the copy of S of index 0. This means that y = {0}×x for some
x ∈ C(S) ⊕-covered with σ x = xA ∥ xB. This allows us to build a bijection between
⊕-covered configurations of σ ⊙ ŵA and the ones of ŵB⊙!σ:

{x⊙ (wA(xA) ∥ xA) | σ x = xA ∥ xB}⇄ {(wB(xB) ∥ xB)⊙ ({0}×x) | σ x = xA ∥ xB}

This bijection is an order-isomorphism, so using Lemma A.2.4, σ⊙ ŵA � ŵB⊙!σ when
seen as strategies. Since this isomorphism preserves and reflects the symmetry and
the quantum valuation, they are strongly isomorphic as quantum ∼-strategies. □

The Recursor

For the last item required for the pre-model, we define the recursor Y through a supremum.
As explained in Section 4.4.2 for the case without symmetry, we took an in-between stance
with respect to strong isomorphism: the morphisms of ∼-QA are actual ∼-strategies, not
equivalence classes of such, but all the categorical laws are only satisfied up to strong
isomorphism. This ad hoc stance avoids the technical overload of defining a bicategory,
while allowing us to still talk about concrete strategies instead of equivalence classes.

This choice is motivated by the fact that in order to build the recursor, we will use a
supremum for a certain order, but the substructure order on esps (see Definition 4.4.1) is
no longer a partial order when we work up to isomorphisms of esps3.

3The antisymmetry fails in some infinite cases.
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While ∼-QA is only a “non-trivial distributive CFC with a bottom” up to strong
isomorphism, it has the same data (objects and morphisms) as a regular “non-trivial dis-
tributive CFC with a bottom”. The associativity (and other axioms from a “non-trivial
distributive CFC with a bottom”) are valid only up to strong isomorphism, but that does
not prevent us from building concrete ∼-strategies for the terms of QΛ!, postponing the
strong isomorphism to the lemmas (value substitution, etc.)

Since the interactive composition is only associative up to strong isomorphism, we make
its bracketing explicit in the remaining of this section.
Definition 9.3.10. For σ, τ : A 7→ B two ∼-strategies, we say that σ ≤ τ if there is a map
of ∼-esp f : S → T which

• is a substructure map of esp,

• preserves and reflects the symmetry,

• commutes with the ∼-strategies: σ = τ ◦ f as maps of ∼-esps,

• preserves the quantum valuation: Qσ(x) = Qτ (f x).
Proposition 9.3.11. The poset (∼-QA(A,B),≤) is a dcpo for any quantum ∼-arenas
A and B. This dcpo is an enrichment of ∼-QA, i.e., all the operations of ∼-QA are
monotone and continuous for this dcpo. Moreover ({σ ⊙ lu−1

A | σ ∈ ∼-QA(1⊗A,B)},≤)
has a minimal element

⊥A,B = ((0B ⊙ 0−1
0⊗A)⊙ (⊥⊗A))⊙ lu−1

A

The fact that ⊥A,B is minimal comes from the fact that ⊥A,B is the ∼-strategy with only
minimal events and no other event in its ∼-esp, and from Lemma A.1.5 which ensures that
⊥A,B and σ ⊙ lu−1

A have the same minimal events. Unfortunately, ⊥A,B is not thunkable,
which means that to use its minimality, we need some back and forth between ∼-QAt and
∼-QA.
Definition 9.3.12. For σ ∈ ∼-QAf (W⊗!(A ⊸ B), A ⊸ B) with W of the form ⊗

i!Fi,
we define the operations

Λ! : ∼-QA(W ⊗A,B) → ∼-QAf (W, !(A⊸ B))

τ 7→ ! ((A⊸ τ)⊙ funW,A)⊙ digW
Λ−1

! : ∼-QAf (1⊗W, !(A⊸ B)) → ∼-QA((1⊗W )⊗A,B)

υ 7→ evalB,A ⊙ ((ϵA⊸B ⊙ υ)⊗A)

Fσ : ∼-QA(W ⊗A,B) → ∼-QA(W ⊗A,B)

τ 7→ Λ−1
!

(

(

(!σ ⊙ digW⊗!(A⊸B))⊙ (W ⊗ Λ!(τ))
)

⊙(contrW,1,1 ⊙ br1,W )

)

⊙ lu−1
W⊗A

And the recursor Y(σ) := Λ! (limnFnσ (⊥W⊗A,B))
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This definition relies on Proposition 9.3.11, which ensures that whenever n ≤ m we
have Fnσ (⊥W⊗A,B) ≤ Fmσ (⊥W⊗A,B).

Lemma 9.3.13. The recursor Y satisfies up to weak isomorphism the two axioms required
in Section 7.2, i.e.,

Y(σ)⊙ σ′ ≃ Y(σ ⊙ (σ′⊗!(A⊸ B)))

Y(σ) ≃
((

(!σ ⊙ digW⊗!(A⊸B))⊙ (W ⊗ υ)
)

⊙ contrW,1,1
)

⊙ ru−1
W

Proof. The second axiom is the definition of Y(σ), with Λ−1
! and Λ! cancelling each

other up to weak isomorphism. To prove the first axiom, we proceed by induction on
n and prove that it is satisfied by all the Λ! (Fnσ (⊥W⊗A,B)), relying on the properties
of the linear exponential comonad up to weak isomorphism. We then use continuity
of all the operations (Proposition 9.3.11) to show that Y(σ) satisfies this property. □

It follows that ∼-QA, up to weak isomorphism, is a pre-model of LQΛ!, and in partic-
ular satisfies the invariance lemma for terms, up to weak isomorphism:

t→ s =⇒ ⟦t⟧ ≃ ⟦s⟧

9.3.4 Pre-Model for AQΛ!

Similarly, (∼-QAa,∼-QAa
t , id,⊗,1,�,⊕,0) is a non-trivial affine CFC with a bottom,

has lists, quantum primitives, and a functional subcategory (with only functional affine
∼-arenas), has a linear exponential comonad up to weak isomorphism, and has a recursor
up to weak isomorphism, so is a pre-model for AQΛ! in the sense of Section 7.2, up to weak
isomorphism.

9.4 The Exhaustive Equivalence
In this section, we extend the notion of exhaustive equivalence to ∼-strategies, and the
collapse of ∼-strategies into relations on ∼-arenas. This exhaustive equivalence is central
to the proof of full abstraction, but proving that this exhaustive equivalence is a congruence
is very technical. We start by laying down multiple definitions and lemmas on ∼-strategies
useful for this proof.

9.4.1 Motivation
As seen in Section 6.2.2, the core notions behind the exhaustive equivalence of quantum
strategies are the notion of witnesses of a quantum strategy σ : A 7→ B:

witσ(xA, xB) :=

{

x ∈ C(S)

∣

∣

∣

∣

∣

x ⊕-covered
σ x ∈ xA ∥ xB

}
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Term Represented:

f :!(1⊸ 1) ⊢L f() : 1

Figure 9.11: Two weakly isomorphic ∼-strategies.

And the notion of collapsed quantum valuation:

Qσ(xA, xB) :=
∑

x∈witσ(xA,xB)

Qσ(x)

Two strategies are exhaustively equivalent if and only they have the same collapsed quan-
tum valuations. Unfortunately, this notion of exhaustive equivalence is not directly com-
patible with symmetry.

For example, in Fig. 9.11, we provide two∼-strategies (with trivial symmetry and trivial
quantum valuation), each playing exactly one copy of the replicated function, one playing
the copy of index 0 and one of index 42; they are weakly isomorphic but not exhaustively
equivalent as strategies as

Left hand side Right hand side
Q({λ−, ⋆+

0 , ⋆
−
0 }, {⋆+}) id1 0

Q({λ−, ⋆+
42, ⋆

−
42}, {⋆+}) 0 id1

The main issue is that Q(−,−) only sums over witnesses, and not “witnesses up to sym-
metry”. In fact, instead of defining Q(−,−) on configurations of the game, we would like
to define it on equivalence classes of configurations:

Qσ : (xA,xB) ∈ C≃(A)× C≃(B) 7→
∑

x witness of
xA∥xB

Qσ(x)
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Term Represented:

⊢L λ().() :!(1⊸ 1)

Figure 9.12: The ∼-strategy for the identity function.

Note that this is not a proper definition, as (1) we did not define what it means to be
a witness of an equivalence class and (2) the sum does not type-check as multiple Qσ(x)
might have different domain and codomain Hilbert spaces.

One might think that we could simply define the witnesses of an equivalence class
xA ∥ xB as the set of all x ∈ C(S) such that σ x ∈ xA ∥ xB. This is however not a sensible
definition, as it leads to infinite sums even in simple examples like ⊢L λ().() :!(1 ⊸ 1)
described in Fig. 9.12 (with for symmetry every order-isomorphism, and a trivial quantum
valuation). With this definition of witnesses, we would indeed have:

Q({⋆−}, {λ+, ⋆−
0 , ⋆

+
0 }) =∞ · id1

As explained in more detail in [Cla20], a better solution is to only consider the x ∈ C(S)
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such that there exists θ+ : σ x ≃+ xA ∥ xB. With this new definition of witnesses, where we
only consider witnesses positively symmetric to canonical configurations, we would obtain

Q({⋆−}, {λ+, ⋆−
0 , ⋆

+
0 }) = Q({⋆−, λ+, ⋆−

0 , ⋆
+
0 }) = id1

As shown in Lemma 9.4.2, we do not miss any information by counting only those, as
every witness according to the old definition is symmetric in the ∼-strategy to a witness
according to the new definition.

To answer the second issue of “the sum does not type-check as multiple Qσ(x) might
have different domain and codomain Hilbert spaces”, we consider configurations x ∈ C(S)
together with a positive symmetry θA ∥ θB : σ x ≃+

A⊥

&

B
xA ∥ xB, which will allow us to

use HB(θ−1
B ) ◦Q(x) ◦HA(θ−1

A ) in the sum. Now that we have explained the basics, we give
formal definitions.

9.4.2 Configurations with Symmetry

Definition 9.4.1. For σ ∈ ∼-Strat(A,B), a +∼-configuration ⌈x⌉ = (Θx
A, x,Θ

x
B) ∈ +∼-C(S)

is a configuration x ∈ C(S) together with two symmetries Θx
A and Θx

B:

Θx
A : xA ≃−

A xA Θx
B : xB ≃+

B xB where σ x = xA ∥ xB

We note that we only coerce through positive symmetries in A⊥ &

B, i.e., negative
symmetries in A and positive symmetries in B. This is related to counting problems as
hinted before, and backed up by the following lemma, which states that we can always put
ourselves in a situation where coercion through positive symmetry is enough:

Lemma 9.4.2. For σ ∈ ∼-Strat(A,B), if x ∈ C(S) and θA ∥ θB : σ x ≃A⊥∥B xA ∥ xB,
then there exist ⌈y⌉ ∈ +∼-C(S) and ϕ : x ≃S y such that the following diagram commutes:

x

ϕ

��

σ // σ x

σ ϕ

��

θA∥θB

((◗◗◗◗◗◗◗◗◗◗◗◗◗

y
σ // σ y

Θy
A

∥Θy
B

// xA ∥ xB

This lemma is a consequence of lemma B.4 of [CCW19]. We can extend the notion of
matching and compatibility from Definition 4.3.1 to +∼-configurations. While we could also
extend the notion of minimally matching compatible to +∼-configurations, we will not use
this notion.

Definition 9.4.3. For σ : A 7→ B and τ : B 7→ C, and two +∼-configurations ⌈x⌉ ∈ +∼-C(S)

and ⌈y⌉ ∈ +∼-C(T ), we write σ x = xA ∥ xB and τ y = yB ∥ yC . Those two ∼-configurations
are said:
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Matching if xB = yB

Matching Compatible if moreover the induced pre-order over xA ∥ xB ∥ yC is acyclic,
i.e., an order. This pre-order is obtained as follows: we note that (x ∥ yC,≤F∥C)
and (xA ∥ y,≤A∥G) are two posets, take their image by (Θx

A ∥ Θx
B) ◦ (σ ∥ C) and

(Θy
B ∥ Θy

C) ◦ (A ∥ τ), and then the transitive closure of the union of both. The
transitive closure of the union of two posets might not be a poset.

Lemma 9.4.4 (Deadlock-Freeness). If σ ∈ ∼-Strat(A,B) and τ ∈ ∼-Strat(B,C) are
two ∼-strategies that satisfy the visibility condition (see Definition 6.2.2), and A,B,C
are ∼-arenas, then the interactive composition is deadlock-free, i.e., matching pairs of
configurations are compatible. Moreover, it is +∼-deadlock-free, i.e., matching pairs of
+∼-configurations are compatible.

Proof. The first part follows directly from Theorem 6.2.5 which proves deadlock-
freeness on strategies without symmetry. For the second part, we can adapt the
proof of Theorem 6.2.5 to matching +∼-pairs instead of matching pairs. □

As in the case without replication, this deadlock-freeness lemma is necessary to prove
that the exhaustive equivalence is a congruence.

9.4.3 Witnesses up to Symmetry

In Definition 6.2.6, we defined witσ(xA, xB) as the set of ⊕-covered configurations that
project to xA ∥ xB, and this set plays a major role in the definition of both the exhaustive
equivalence and the relational collapse. We extend this definition with symmetry as hinted
earlier, and prove two groups of lemmas: the first on how to apply a symmetry to a +∼-
configuration (which is central to the proof that the collapse of a quantum ∼-strategy is
a quantum relation on ∼-arenas), and the second on witnesses of the interaction of two
∼-strategies (which is central to the proof that the exhaustive equivalence is a congruence).
We refer to [Cla20] for the proofs of those lemmas.

Definition 9.4.5. For σ ∈ ∼-Strat(A,B) a ∼-strategy and (xA,xB) ∈ C≃(A) × C≃(B),
we define

+∼-witσ(xA,xB) :=

{

⌈x⌉ ∈ +∼-C(S)

∣

∣

∣

∣

∣

x ⊕-covered
σ x ∈ xA ∥ xB

}

We start by a property that states that we can “apply” a negative symmetry of the ∼-
game to a +∼-configuration of a ∼-strategy and obtain another +∼-configuration in a bijective
way.
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Lemma 9.4.6. For σ ∈ ∼-Strat(A,B) a ∼-strategy and (xA,xB) ∈ C≃(A)×C≃(B), there
is a group action (_↷ _) : A−

A⊥∥B(xA ∥ xB)× +∼-witσ(xA,xB)→ +∼-witσ(xA,xB). such
that for all ⌈y⌉ = φ− ↷ ⌈z⌉ there is ϕ : z ≃S y such that the following diagram commutes:

σz
Θz

A
∥Θz

B

≃+

A⊥∥B

//

σ ϕ ≃
A⊥∥B

��

xA ∥ xB

φ−≃−

A⊥∥B

��
σy

Θy
A

∥Θy
B

≃+

A⊥∥B // xA ∥ xB

This lemma is exactly Proposition 17 of [Cla20]. Its dual with positive symmetry is
also true, though the proof is much simpler:
Lemma 9.4.7. For σ ∈ ∼-Strat(A,B) a ∼-strategy and (xA,xB) ∈ C≃(A)×C≃(B), there
is a group action (_ ↷ _) : A+

A⊥∥B(xA ∥ xB) × +∼-witσ(xA,xB) → +∼-witσ(xA,xB) such
that for all ⌈y⌉ = φ+ ↷ ⌈z⌉ there is ϕ : z ≃S y such that the following diagram commutes:

σz
Θz

A
∥Θz

B

≃+

A⊥∥B

//

σ ϕ ≃
A⊥∥B

��

xA ∥ xB

φ+≃+

A⊥∥B

��
σy

Θy
A

∥Θy
B

≃+

A⊥∥B // xA ∥ xB

Proof. We consider ⌈z⌉ ∈ +∼-witσ(xA,xB) and φ+ ∈ A+
A⊥∥B(xA ∥ xB). We write

φ+ = φ+
A ∥ φ+

B. We note that can simply post-compose by the symmetry φ+ and
obtain:

σz
Θz

A
∥Θz

B

≃+

A⊥∥B

// xA ∥ xB

φ+≃+

A⊥∥B

��
σz

((ϕ+
A

)−1◦Θz
A

)∥((ϕ+
B

)−1◦Θz
B

)

≃+

A⊥∥B // xA ∥ xB

So we take φ+ ↷ ⌈z⌉ := (((ϕ+
A)−1 ◦Θz

A), z, ((ϕ+
B)−1 ◦Θz

B)). This is a group action. □

We now want to prove properties about the witnesses of the interaction of two ∼-
strategies. The end goal of those properties is Proposition 9.4.17 which shows that the
exhaustive equivalence is a congruence, and that the relational collapse is a functor. We
start by defining what is a witness of the interaction.
Definition 9.4.8. For σ ∈ ∼-Strat(A,B),τ ∈ ∼-Strat(B,C) two ∼-strategies, we define
the +∼-configurations of the interaction ⌈y ⊛ x⌉ ∈ +∼-C(T ⊛ S) as the configuration y ⊛ x ∈
C(T ⊛ S) together with two symmetries Θy⊛x

A and Θy⊛x
C :

Θy⊛x
A : xA ≃−

A xA Θy⊛x
C : yC ≃+

C yC where σ x = xA ∥ xB and τ y = xB ∥ yC



9.4. THE EXHAUSTIVE EQUIVALENCE 275

Definition 9.4.9. For σ ∈ ∼-Strat(A,B),τ ∈ ∼-Strat(B,C) two ∼-strategies and for
(xA,xB,xC) ∈ C≃(A)× C≃(B)× C≃(C), we define

+∼-witτ⊛σ(xA,xB,xC) :=

{

⌈y ⊛ x⌉ ∈ +∼-C(T ⊛ S)

∣

∣

∣

∣

∣

y, x ⊕-covered
(τ ⊛ σ) (y ⊛ x) ∈ xA ∥ xB ∥ xC

}

Proposition 9.4.10. For σ ∈ ∼-Strat(A,B),τ ∈ ∼-Strat(B,C) two ∼-strategies and
(xA,xB,xC) ∈ C≃(A)× C≃(B)× C≃(C), there is a bijection

Υ :
+∼-witσ(xA,xB)× +∼-witτ (xB,xC)

matching compatible
→ +∼-witτ⊛σ(xA,xB,xC)×AB(xB)

such that if we write Υ(⌈y⌉, ⌈z⌉) = (⌈wT ⊛ wS⌉, θ), and yA, yB, zB, zC , wA, wB, wC for
their respective projections, then there exists ϕS : y ≃S wS projecting to ϕA and ϕB and
ψT : z ≃T wT projecting to ψB and ψC such that the following diagrams commute:

yA
Θy

A

}}④④④④④④④④

ϕA

��

yB
Θy

B //

ϕB

��

xB

θ

��

zB
Θz

Boo

ψB

��

zC
Θy

C

!!❈❈❈❈❈❈❈❈❈

ψC

��

xA xB xC

wA
Θ

wT ⊛wS
A

bb❉❉❉❉❉❉❉❉
wB wB

K[wB ]

OO

wB wC
Θ

wT ⊛wS
C

<<③③③③③③③③

Where we K[wB] : wB ≃B wB = xB is an arbitrarily chosen symmetry of B (fixed once
and for all). A different choice for K[wB] only affects θ, and has no later consequence. This
proposition is exactly corollary 23 from [Cla20].

9.4.4 Quantum Valuations and Symmetry
Now that we have defined witnesses up to symmetry, and proved some powerful lemmas
on them, we can define the collapsed quantum valuation of a quantum ∼-strategy, and
leverage the previous lemmas. As hinted before, we will sum over the configurations x of
the strategy σ such that σ x is positively symmetric to a canonical configuration xA ∥ xB,
and we will coerce the quantum annotation according to how they are positively symmetric.
However, what do we do when there are multiple ways of being positively symmetric? The
correct answer is average over all the possibilities. How many possibility are there? The
answer is the following.

Lemma 9.4.11. For σ ∈ ∼-QA(A,B) and ⌈x⌉ ∈ +∼-C(S) with σ x = xA ∥ xB.

|{(θB, x, θA) ∈ +∼-C(S)}| = |A+
A⊥

&

B
(xA ∥ xB)|
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1 7→ ?1

⋆−

''❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖

**❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

++❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

⋆+
0 ⋆+

1 · · ·
Symmetry for the ∼-Game:

θ ∈ ≃+
1⊥ &

?1 whenever θ is a polarity-preserving isomorphism
θ ∈ ≃−

1⊥ &

?1 whenever θ is the identity
θ ∈ ≃1⊥ &

?1 whenever θ is a polarity-preserving isomorphism

Symmetry for the ∼-Strategy: Quantum Valuation for the ∼-Strategy:

θ ∈ ≃ whenever θ is the identity Q(x) = id1
Q({⋆}, {⋆0}) =∞ · id1

Figure 9.13: Example of infinitary ∼-strategy.

Proof. We have a bijection between the two, given by

(θB, x, θA) 7→ (θB||θA) ◦ (Θx
B ∥ Θx

A)−1
□

This allows us to take the following definitions.

Definition 9.4.12. For σ ∈ ∼-QA(A,B) and ⌈x⌉ ∈ +∼-C(S), we define

Qσ(⌈x⌉) := HB((Θx
B)−1) ◦ Qσ(x) ◦ HA(Θx

A)

Then for xA ∈ C≃(A) and xB ∈ C≃(B), we define

Qσ(xA,xB) :=
∑

⌈x⌉∈+∼-witσ(xA,xB)

Qσ(⌈x⌉)

|A+

A⊥ &

B
(xA∥xB)| ∈ CPM(HA(xA),HB(xB))

=
∑

⌈x⌉∈+∼-witσ(xA,xB)

HB((Θx
B

)−1)

|A+
B

(xB)| ◦ Qσ(x) ◦ HA(Θx
A

)

|A−
A

(xA)|

While the sum is potentially infinite, meaning a priori Qσ(xA,xB) can be in the infini-
tary fragment of CPM, as proven in Corollary 10.3.4, this is never the case for ∼-strategies
between arenas that come from types of QΛ!. Outside of QΛ! types, we provide in Fig. 9.13
an example of a ∼-strategy from 1 to ?1 which reaches the infinitary fragment: the strat-
egy here “uses ?1” infinitely often, in parallel, with probability one every time. There is
however one simple situation where Q(−,−) is finitary:
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Lemma 9.4.13. For σ ∈ ∼-QA(1,1), we have Qσ({⋆}, {⋆}) ⊑ idCPM
1 .

Proof. We write m for the minimal event of S. We consider the witnesses x1, . . . , xn ∈
+∼-witσ({⋆}, {⋆}). We necessarily have {m} ⊂+ x1, . . . , xn. Using the drop condition
we obtain

id1 −Qσ(x1)− · · · − Qσ(xn) ⊒ 0

So ∑n
i=1Qσ(xi) ⊑ id1. If +∼-witσ({⋆}, {⋆}) is finite, then we immediately have

Qσ({⋆}, {⋆}) ⊑ idCPM
1

Otherwise, we need to take a supremum and obtain Qσ({⋆}, {⋆}) ⊑ idCPM
1 . □

In order to translate the diagrams from Lemmas 9.4.6 and 9.4.7 into properties on the
quantum valuation, we use the following lemma:

Lemma 9.4.14. We assume ⌈x⌉, ⌈y⌉ ∈ +∼-C(S), and write σ x = xA ∥ xB and σ y = yA ∥
yB. If ϕ : x ≃S y and φA ∥ φB : xA ∥ xB ≃A⊥

&

B yA ∥ yB are such that the following
diagram commutes:

σx
Θx

A

&

Θx
B

≃+

A⊥ &

B

//

σ ϕ ≃
A⊥ &

B

��

xA ∥ xB

φA∥φB
≃

A⊥ &

B

��
σy

Θy
A

∥Θy
B

≃+

A⊥ &

B // yA ∥ yB

Then Qσ(⌈y⌉) = HB(φ−1
B ) ◦ Qσ(⌈x⌉) ◦ HA(φA).

Proof. By definition of quantum ∼-strategies, since ϕ : x ≃S y, if we write ϕA and ϕB
for its projections then

Qσ(y) = HB(ϕ−1
B ) ◦ Qσ(x) ◦ HA(ϕA)

It follows that:

Qσ(⌈y⌉) = HB((Θy
B)−1) ◦ HB(ϕ−1

B ) ◦ Qσ(x) ◦ HA(ϕA) ◦ HA(Θy
A)

Using the commutation of the diagram, we obtain the expected result. □

This allow us to proves that Qσ(−,−) is uniform for the symmetry of the game:

Proposition 9.4.15. For σ ∈ ∼-QA(A,B), xA ∈ C≃(A), and xB ∈ C≃(B):

HB (AB(xB)) ◦ Qσ(xA,xB) ◦ HA (AA(xA)) = Qσ(xA,xB)
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Proof. We will prove the following property which is equivalenta:

∀θA ∈ AA(xA), θB ∈ AB(xB),HB(θ−1
B ) ◦ Qσ(xA,xB) ◦ HA(θA) = Qσ(xA,xB)

We use the definition of Qσ(xA,xB) and obtain that the left hand side is equal to:

∑

⌈z⌉∈+∼-witσ(xA,xB)

HB(θ−1
B ) ◦ Qσ(⌈z⌉)

|A+
A⊥

&

B
(xA ∥ xB)| ◦ HA(θA)

If θA ∥ θB ∈ A−
A⊥

&

B
(A,B), then using Lemma 9.4.6 and Lemma 9.4.14, the left hand

side is equal to:
∑

⌈z⌉∈+∼-witσ(xA,xB)

Qσ((θB ∥ θA)↷ ⌈z⌉)
|A+

A⊥

&

B
(xA ∥ xB)|

Since↷ is a group action, (θB ∥ θA)↷ _ forms a bijection, the left hand side is equal
to:

∑

⌈y⌉∈+∼-witσ(xA,xB)

Qσ(⌈y⌉)
|A+

A⊥

&

B
(xA ∥ xB)|

Which is by definition the right hand side. If θA ∥ θB ∈ A+
A⊥

&

B
(A,B), then we

proceed similarly using Lemma 9.4.6 and Lemma 9.4.14. In the general case, we
decompose θA ∥ θB as a positive and negative auto-symmetry, using the fact that
A⊥ &

B is representable, and we apply successively the reasoning for the negative and
positive case. □

aFor the direct implication, we use that AB(xB) and AA(xA) are groups. For the reverse implica-
tion, we simply use the linearity of the sum.

As an immediate corollary, we have the following:

Corollary 9.4.16. For σ ∈ ∼-QA(A,B), we have Qσ(−,−) ∈ ∼-QARel(A,B).

Note that this does not mean that the collapse Q(−,−) is a functor from ∼-QA to
∼-QARel, as we still need to prove its functoriality. We can now collect all the different
lemmas proven up until now, and combine them to obtain the following proposition, which
will be central in the proof of congruence of the exhaustive equivalence, and the proof of
functoriality of the collapse.

Proposition 9.4.17. For σ ∈ ∼-QA(A,B) and τ ∈ ∼-QA(B,C), which we recall are
visible ∼-strategies, and for xA ∈ C≃(A),xC ∈ C≃(C) we have

Qτ⊙σ(xA,xC) =
∑

xB∈C≃(B)

Qτ (xB,xC) ◦ Qσ(xA,xB)
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Proof.

Qτ⊙σ(xA,xC) =
∑

⌈wT ⊙wS⌉∈+∼-witσ(xA,xB)

HC((Θ
wT ⊙wS
C

)−1)

|A+
C

(xC)| ◦ Qτ⊙σ(wT ⊙ wS) ◦ HA(Θ
wT ⊙wS
A

)

|A−
A

(xA)|
(1)

=
∑

xB∈C≃(B)

∑

⌈wT⊛wS⌉∈+∼-witσ(xA,xB,xC)

HC((Θ
wT ⊛wS
C

)−1)

|A+
C

(xC)| ◦ Qτ⊛σ(wT ⊛ wS) ◦ HA(Θ
wT ⊛wS
A

)

|A−
A

(xA)|
(2)

=
∑

xB∈C≃(B)

∑

⌈wT⊛wS⌉∈+∼-witσ(xA,xB,xC)

HC((Θ
wT ⊛wS
C

)−1)

|A+
C

(xC)| ◦ Qτ (wT ) ◦ Qσ(wS) ◦ HA(Θ
wT ⊛wS
A

)

|A−
A

(xA)|
(3)

=
∑

xB∈C≃(B)

∑

⌈z⌉∈+∼-witτ (xB,xC)

⌈y⌉∈+∼-witσ(xA,xB)
Υ(⌈y⌉,⌈z⌉)=(⌈wT⊛wS⌉,θ)

HC((Θ
wT ⊛wS
C

)−1)

|A+
C

(xC)| ◦ Qτ (wT ) ◦ id
|AB(xB)| ◦ Qσ(wS) ◦ HA(Θ

wT ⊛wS
A

)

|A−
A

(xA)|
(4)

=
∑

xB∈C≃(B)

∑

⌈z⌉∈+∼-witτ (xB,xC)

⌈y⌉∈+∼-witσ(xA,xB)
HC((Θz

C
)−1)

|A+
C

(xC)| ◦ Qτ (z) ◦
HB(Θz

B
◦(Θy

B
)−1)

|AB(xB)| ◦ Qσ(y) ◦ HA(Θy
A

)

|A−
A

(xA)|
(5)

=
∑

xB∈C≃(B)
∑

⌈z⌉∈+∼-witτ (xB,xC)

HC((Θz
C

)−1)

|A+
C

(xC)| ◦ Qτ (z) ◦
HB(Θz

B
)

|A−
B

(xB)|

◦ ∑

⌈y⌉∈+∼-witσ(xA,xB)

HB((Θy
B

)−1)

|A+
B

(xB)| ◦ Qσ(y) ◦ HA(Θy
A

)

|A−
A

(xA)|

(6)
=

∑

xB∈C≃(B)
Qτ (xB,xC) ◦ Qσ(xA,xB)

For (1), we use Lemma A.2.2, to obtain that matching compatible pairs of ⊕-covered
configurations are necessarily minimal matching compatible. For (2), we simply use the
definition of the valuation on the interaction. For (3), we use Proposition 9.4.10 and
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Lemma 9.4.4. For (4), we use the definition of quantum ∼-strategies, more precisely
the stability under symmetry of the valuation:

Qτ (wT ) = HC(ψ−1
C ) ◦ Qτ (z) ◦ HB(ψB) Qσ(wS) = HB(ϕ−1

B ) ◦ Qσ(z) ◦ HA(ψA)

And then we use the commuting diagrams of Proposition 9.4.10. For (5), we use
Lemma 9.1.3 and linearity of the sum. For (6), we simply use the definitions. □

Similarly to the case without replication, we can replace the sum over C≃(B) by a sum
over E≃(B) using the fact that strategies are winning.

Corollary 9.4.18. For σ, τ ∈ ∼-QA(A,B), and for xA ∈ E≃(A),xC ∈ E≃(C) we have

Qτ⊙σ(xA,xC) =
∑

xB∈E≃(B)

Qτ (xB,xC) ◦ Qσ(xA,xB)

Proof. Since both σ and τ are winning, and since the symmetry of the game preserves
the payoff, it means that whenever κB⊥(xB) < 0, we have Qτ (xB,xC) = 0, and
whenever κB(xB) < 0, we have Qσ(xA,xB) = 0. Since κB⊥(xB) = −κB(xB), this
means that we can eliminate from the sum every term where κB(xB) , 0. □

9.4.5 Exhaustive Equivalence of Strategies with Symmetry

We can now define the exhaustive equivalence and prove it is a congruence. Similarly
to the case without symmetry, the exhaustive equivalence “forgets branching points of
the program”, i.e., makes equivalent the strategies for if Coin1/2 then () else () and (),
and “forgets the evaluation order”, i.e., makes equivalent the strategies for f0(); f1() and
f1(); f0(). Additionally, the exhaustive equivalence will “forget copy indices”, i.e., strategies
that are weakly isomorphic will be exhaustively equivalent.

Definition 9.4.19. We say that two ∼-strategies σ, τ ∈ ∼-QA(A,B) are exhaustively
equivalent and write σ ≡ τ whenever

∀xA ∈ E≃(A),∀xB ∈ E≃(B),Qσ(xA,xB) = Qτ (xA,xB)

Theorem 9.4.20. The relation ≡ is a congruence in ∼-QA and is compatible with all the
additional structure. In particular, if σ ≃ τ then σ ≡ τ .

Proof. The congruence with respect to ⊙ comes from Corollary 9.4.18. The fact that
if σ ≃ τ then σ ≡ τ comes from the “Uniform” property of quantum ∼-strategies. The
congruence with respect to the others constructs of ∼-QA is a direct verification. □



9.5. A SOUND AND ≡-ADEQUATE GAME MODEL 281

9.4.6 Collapse of Strategies into Relations on Arenas
Similarly to the case without symmetry, the exhaustive equivalence is tightly related to a
collapse of ∼-QA into ∼-QARel.
Theorem 9.4.21 (Factorisation). We have a functor from ∼-QA into ∼-QARel:

σ 7→ Qσ(−,−)

This functor preserves all the structure and is ≡-faithful: two ∼-strategies correspond to
the same relations on ∼-arenas if and only if they are exhaustively equivalent. We have:

LQΛ!

⟦−⟧QA
��

⟦−⟧∼-QARel

))❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘

∼-QA
Q(−,−)

// ∼-QARel

AQΛ!

⟦−⟧QAa

��

⟦−⟧∼-QARela

))❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

∼-QAa

Q(−,−)
// ∼-QARela

The proof of this theorem is direct: the functoriality follows from Corollary 9.4.18, and
Corollary 9.4.16 ensures that the image of the functor is indeed in ∼-QARel. The category
∼-QARel is significantly bigger than the image of ∼-QA by the functor, containing a
lot of weighted relations that have no computational meaning, describing “systems” that
execute some behaviours with “probabilities” greater than one, or even infinite when the
annotations are in the infinitary fragment of CPM. While not all strategies of ∼-QA come
from QΛ!, we can extend to the case with symmetry the Theorem 5.3.15 which ensure that
if we consider Q−,+ is always a superoperator, in other words the quantum valuations
always correspond to physically realisable operations.

9.5 A Sound and ≡-Adequate Game Model
To prove that ∼-QA forms a sound and adequate model for QΛ!, we first need to define
the semantics of quantum closures of QΛ!. The definition is essentially the same as for QΛ.
Definition 9.5.1. For pi ∈ [0, 1] for all i ∈ I, with ∑i∈I pi ≤ 1, we define the quantum
∼-strategy choice{pi | i∈I} : 1 → ⊕i∈I1 as described in Fig. 9.14. For σi : A 7→ B (i ∈ I)
negative quantum strategies, we define⊞i∈I pi · σi : A 7→ B with the copairing as follows:

⊞
i∈I

pi · σi := [σi | i ∈ I]⊙
(

choice{pi | i∈I} ⊗A
)

Lemma 9.5.2. The operation ⊞ is, up to strong isomorphism, associative, commutative,
left-linear and semi-right-linear, i.e.,

⊞i∈I pi ·⊞j∈J qj · σi,j � ⊞(i,j)∈I×J(piqj) · σi,j
pσ ⊞ qτ � qτ ⊞ pσ

τ ⊙
(

⊞i∈I pi · σi
)

� ⊞i∈I pi · (τ ⊙ σi)
(

⊞i∈I pi · σi
)

⊙ τ � ⊞i∈I pi · (σi ⊙ τ) whenever τ thunkable
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1 7→ ⊕i∈I1

⋆−

✑ $$,◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗

⋆+
i

/o/o/o/o . . .

Quantum valuation:

Q(∅) = Q({⋆−}) = id1
∀i ∈ I,Q({⋆−, ⋆+

i }) = pi · id1

Symmetry:

θ : x ≃ y whenever θ = idx

Figure 9.14: Strategy choice{pi | i∈I} : 1→ ⊕i∈I1

Moreover, it is right-linear and idempotent up to exhaustive equivalence:
(

⊞i∈I pi · σi
)

⊙ τ � ⊞i∈I pi · (σi ⊙ τ)

p · σ ⊞ (1− p) · σ ≡ σ

Definition 9.5.3. If ⊢ [q, ℓ, t] : A, we define ⟦[q, ℓ, t]⟧⊢A ∈ ∼-QA(1, ⟦A⟧) as follows:

• we know we have ∆ ⊢ t : A with ∆ = x1 : qubit, . . . , xn : qubit.

• we recall that LqM ∈ CPM(1,Q⊗n) is defined in Section 2.3.3, and define qQA as in
Fig. 9.15

qQA : 1 7→ qubit⊗n

⋆−

✒ $$,❘❘❘❘❘❘❘❘❘❘❘❘❘❘

(qbn)+
C2n

QqQA(∅) = idCPM
1

QqQA({⋆}) = idCPM
1

QqQA({⋆, (qbn)}) = LqM

Figure 9.15: The Strategy qQA : 1 7→ qubit⊗n for q quantum state
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• ⟦[q, ℓ, t]⟧ := ⟦t⟧⊙ qQA

and we then define ⟦∑i pi[qi, ℓi, ti]
⟧ as⊞i pi

⟦

[qi, ℓi, ti]
⟧.

We can now extend the invariance lemma to closures.

Lemma 9.5.4 (≡-Invariance). For every closures Γ ⊢ c : A and Γ ⊢ d : A

c→ d =⇒ ⟦c⟧ ≡ ⟦d⟧

This lemma can be either proven directly through a proof almost identical to the one
for Lemma 8.4.12, or deduced from Lemma 8.4.12 through Theorem 9.4.21. In fact the
same can be said for the soundness and ≡-adequacy, by following the same method as for
∼-QARel or by using the Theorem 9.4.21, we obtain the following:

Lemma 9.5.5 (Approximation Lemma). For Γ ⊢ t : A a term, if we write tn for the term
where every let rec has been replaced by let rec [n] (as defined in Table 7.1), then

⟦t⟧ ≃ lim
n
⟦tn⟧

The same holds for closures.

Theorem 9.5.6 (Soundness and ≡-Adequacy). For every term ⊢ t : 1, we have

P(t ⇓) = p ⇐⇒ ⟦t⟧ ≡ ⟦p[∅,∅, ()] + (1− p)[∅,∅,⊥]
⟧

In particular, we have ⟦t⟧ ({⋆}, {⋆}) ∈ CPM(1,1), so finitary in CPM.

Corollary 9.5.7. For every pair of terms Γ ⊢ t : A and Γ ⊢ s : A, we have

⟦t⟧ ≡ ⟦s⟧ =⇒ t =obs s

This model is in fact fully abstract (both for LQΛ! and AQΛ!), and the proof of full
abstraction is the subject of the next and last chapter (before the conclusion).
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Chapter 10

Full Abstraction for the Quantum
λ-calculus

10.1 Adding Formal Parameters

10.1.1 Motivation
The core of our proof of full abstraction for QΛ was to build for every type A a set of test
terms ⇓Ai (and generator terms) of type A ⊸ 1 such that for every ⊢ t : A and ⊢ t′ : A,
there exists one of those test terms ⇓Ai such that ⇓Ai t and ⇓Ai t′ converge with distinct
probabilities. In order to generalise the proof to QΛ!, we “just” need to find such test terms
(and generator terms) for the type !(A⊸ B).

As an example, let us focus on the typing context f :!(1⊸ bit) ⊢ 1. Here, we would like
to find some generator terms ⊢⇑!(1⊸bit)

i :!(1⊸ bit) such that for every f :!(1⊸ bit) ⊢ t : 1
and f :!(1 ⊸ bit) ⊢ t′ : 1 not observationally equivalents to one another, one of those
generator terms ⇑!(1⊸bit)

i is such that t{x←⇑!(1⊸bit)
i } and t′{x←⇑!(1⊸bit)

i } converge with
different probabilities. We consider the case

t = Ignore(f()); Ignore(f()); tt t′ = if f() then f() else Not(f())

where Ignore(b) = if b then () else () and Not(b) = if b then ff else tt. Both t and t′

always call f twice, but to distinguish them, we need a generator term that can behave
differently on two different calls, like for example

⊢ λ().Coin1/2() :!(1⊸ bit)

However, the choice of probabilities here was arbitrary, and other terms might require other
choices, for example if

t = if f() then f() else Ignore(f()); Coin1/2()

285
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t′ = if f() then f() else Not(f())

then the previous generator term no longer distinguishes the two, and we have to take a
different probability than 1/2. In general, to distinguish terms using ! in their type, we
will need to use terms with probabilistic choices inside them, and we will be faced with the
problem of proving that “at least one of the possible assignment of probability works”.

Following the proof method of [ETP14], we do so by considering terms with formal
parameters X,Y, . . . standing for probabilities, and we will postpone as much as possible
the moment where we need to replace the formal parameters by a probability. In the
previous example, the generator term would be:

λ().

(

X

2
ff +

Y

2
tt
)

10.1.2 QΛ! with Formal Parameters
We define the languages LQΛparam

! and AQΛparam
! as respectively LQΛ! and AQΛ! with

the following additional primitive for terms. We use QΛparam
! in statements that apply to

both LQΛparam
! and AQΛparam

! indifferently.

t, s ::= . . . | X · t

where X is taken from a countably infinite set F of formal parameters, and will eventually
be substituted with a probability in [0, 1]. We recall that we defined the syntactic sugar
p · t with p ∈ [0, 1] in Table 7.1. We write ⊢param

L ,⊢param
A ,⊢param for the typing sequents

of LQΛparam
! , AQΛparam

! and QΛparam
! respectively. The typing rules are the same as for

LQΛ!, AQΛ! and QΛ! respectively, with the additional following rule:

Typing Rules: Γ ⊢paramt : A

Γ ⊢paramX · t : A
Syntactic Sugar:

pX · t := p · (X · t)

We choose not to define an operational semantics to QΛparam
! , as it is only an inter-

mediate language for the sake of defining the test and generator terms. We will focus on
defining its game semantics, and then use the properties of this game semantics for QΛparam

!

to prove the game semantics for QΛ! is fully abstract.

10.1.3 Formal Power Series
We start by defining formal power series, which are a generalisation of polynomials with
a countably infinite number of terms. One of the core issues when considering formal
power series is the convergence: which instantiations of the parameters give a convergent
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infinite sum. We will consider formal power series with coefficient in R≥0, CPM(H,K)
and CPM(H,K) for any Hilbert spaces H and K. In the latter, the convergence is
trivial, as the existence of suprema ensures that every infinite sum is converges. In par-
ticular, infinite sums of elements of CPM(H,K) give the same result independently of
the order of summing (Lemma 2.2.5). Since CPM(H,K) is a fragment of CPM(H,K),
it follows that while not every infinite sum might converges, when it does the result
is independent from the order of summing. This also applies to R≥0, as it is isomor-
phic to CPM(1,1). In more general contexts, a notion of “absolute convergence” would
be required to obtain this independence. We take (C,+, ·, 0) to be either (R≥,+, ·, 0),
(CPM(H,K),+, ·, 0), or (CPM(H,K),+, ·, 0) and write C for its D-completion for the
induced order (or CPM(H,K) = CPM(H,K) in the latter case). We take F a countably
infinite set of formal parameters, ranged over by X,Y, . . . .

Definition 10.1.1. A formal power series s with parameters X1, . . . , Xn ∈ F on C is a
function from Nn to C. We write

s =
∑

(k1,...,kn)∈Nn

s(k1, . . . , kn) ·Xk1
1 . . . Xkn

n

For p1, . . . , pn ∈ R≥0, we write

s[p1, . . . , pn] :=
∑

(k1,...,kn)∈Nn

pk1
1 · · · · · pkn

n · s(k1, . . . , kn) ∈ C

We say that s is [0, 1]-convergent if

∀p1, . . . , pn ∈ [0, 1], s[p1, . . . , pn] ∈ C

We write C[X1, . . . , Xn] for the positive convex cone (or completed positive convex cone)
of [0, 1]-convergent formal power series over C with parameters X1, . . . , Xn. The skeleton
of a formal power series s is s(1, . . . , 1), i.e., the coefficient of X1 . . . Xn.

In the notation with sums, we will keep the terms of coefficient 0 and the parameters
of exponent 0 implicit. So for example 1 · X1 + 2 · X2 stands for the formal power series
s : (k1, k2) 7→ 1 if (k1, k2) = (1, 0) or (k1, k2) = (0, 1) and 0 otherwise. Using those
notations, for every X ⊆ Y ⊆fin F, we have a canonical embedding of C[X ] into C[Y] which
is simply the “identity”.

∑

k∈Nn

sk ·Xk1
1 . . . Xkn

n 7→
∑

k∈Nn

sk ·Xk1
1 . . . Xkn

n

In particular, we have a canonical embedding of C = C[] in C[X ]. We will use very few
results on formal power series, but one of them will be a central piece in the proof of full
abstraction, as it will allow us to extract an instantiation of the formal parameters:
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Theorem 10.1.2. Let s, s′ be two formal power series over R≥0, with the same finitely
many parameters X1, . . . , Xn. If s and s′ are [0, 1]-convergent, then

s = s′ ⇐⇒ ∀p1, . . . , pn ∈ [0, 1], s[p1, . . . , pn] = s′[p1, . . . , pn]

Proof. We consider s − s′, which is a power series from Rn to R which is absolutely
convergent on [0, 1]n and equal to zero on [0, 1]n, so using [Gou18], all the coefficients
of the power series s− s′ are zero. □

10.2 Parametrised Game Semantics

We now define the parametrised game model that will allow us to represent QΛparam
! .

Since ∼-QA is not a positive convex cone, we cannot simply take formal power series
of quantum ∼-strategies. Instead, we consider ∼-strategies annotated by formal power
series of quantum valuations. We note that the game semantics of QΛparam

! will only use
polynomials as quantum valuations, not infinite formal power series. However, since the
collapsed quantum valuation Q(−,−) is potentially an infinite sum of quantum valuations,
it might not always be a polynomial (see Fig. 10.1).

10.2.1 Parametrised Quantum Strategy with Symmetry
We assume a set of formal parameters F, and X ⊆fin F a finite set of parameters.

Definition 10.2.1. The category CPM[X ] is the category with the same objects as CPM,
for morphisms CPM[X ](A,B) := CPM(A,B)[X ], which we recall are [0, 1]-convergent
power series, for identity and composition the following:

idCPM[X ]
A (k1, . . . , kn) :=

{

idCPM
A whenever k1 = · · · = kn = 0

0 otherwise




∑

k∈Nn

gk ·Xk1
1 . . . Xkn

n



 ◦




∑

j∈Nn

fj ·Xj1
1 . . . Xjn

n



 :=
∑

j,k∈Nn

(gk ◦ fj) ·Xk1+j1
1 . . . Xkn+jn

n

Or in other words:

(s ◦ s′)(k1, . . . , kn) :=
∑

∀i,0≤ℓi≤ki

s(ℓ1, . . . , ℓn) ◦ s(k1 − ℓ1, . . . , kn − ℓn)

The category CPM[X ] inherits the compact closure of CPM.

Definition 10.2.2. For s, s′ ∈ CPM[X ](A,B), we say that s is smaller than s′ for
the Loewner order, and write s ⊑ s′, if for every instantiation p1, . . . , pn ∈ [0, 1] of the
parameters of X , we have

s[p1, . . . , pn] ⊑ s′[p1, . . . , pn]
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Using the canonical embedding of CPM(A,B)[X ] in CPM(A,B)[Y] whenever X ⊂ Y ,
we also have the following:

Definition 10.2.3. The category CPM[−] is the category with the same objects as CPM,
for morphisms CPM[−](A,B) :=

∪

X ⊆finFCPM(A,B)[X ], for identity and composition
the following: idCPM[−]

A := idCPM[]
A , and for s ∈ CPM[X ](A,B) and s′ ∈ CPM[Y](B,C),

we compose them by embedding them in CPM[X ∪ Y](A,B) and CPM[X ∪ Y](B,C)
respectively, and then composing them as in CPM[X ∪ Y].

The category CPM[−] inherits the compact closure of CPM. And we can see CPM
as a subcategory of CPM[−], meaning that the functor H can be seen as a contravariant
functor from the ∼-Scott category to CPM[−].

We extend the definition of quantum ∼-strategies to the parametrised case.

Definition 10.2.4. A parametrised quantum ∼-strategy σ : A 7→ B is a ∼-strategy together
with a finite set of parameters Xσ, and a parametrised quantum valuation Q on configu-
rations x ∈ C(S) satisfying the same properties as the quantum valuations of quantum
∼-strategies:

σ x = xA ∥ xB =⇒ Qσ(x) ∈ CPM[Xσ](HA(xA),HB(xB))

Normalisation Qσ(∅) = idCPM[Xσ ]
1

Obliviousness x ⊆− x′ =⇒ Qσ(x′) = HB(x′B −⊇ xB) ◦ Qσ(x) ◦ HA(xA ⊆+ x′A)

Drop condition x ⊆+ x1, . . . , xn =⇒ dodd
σ (x;x1, . . . , xn) ⊑ deven

σ (x;x1, . . . , xn), where

dodd
σ (x;x1, . . . , xn) :=

∑

∅,I⊆{1,...,n}
|I| odd
xI∈C(S)

HB(xB ⊆+ xBI ) ◦ Qσ(xI) ◦ HA(xAI
−⊇ xA)

deven
σ (x;x1, . . . , xn) := Qσ(x) +

∑

∅,I⊆{1,...,n}
|I| even
xI∈C(S)

HB(xB ⊆+ xBI ) ◦Qσ(xI) ◦HA(xAI
−⊇ xA)

and xI :=
∪

i∈I xi.

Winning x ⊕-covered =⇒ κA⊥

&

B(σ x) ≥ 0.

Uniform θ : x ≃S x′ =⇒ Qσ(y) = HB(θ−1
B ) ◦ Qσ(x) ◦ HA(θA), where σ θ = θA ∥ θB.

Equivalently, one could ask that every instantiation of the parameters of Xσ in [0, 1]
gives rise to a quantum ∼-strategy. For the interactive composition, we simply take the
interactive composition of ∼-strategies together with

Xτ⊙σ = Xτ ∪ Xσ Qτ⊙σ(y ⊙ x) = Qτ (y) ◦ Qσ(x)
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We define the copy-cat parametrised quantum ∼-strategy as the copy-cat quantum ∼-
strategy together with XccA

= ∅. We extend strong isomorphism, weak isomorphism, and
weak equivalence by taking the same definition and asking Xσ to be preserved.

Proposition 10.2.5. The category ∼-QA[−] of quantum ∼-arenas and parametrised neg-
ative visible quantum ∼-strategies up to weak isomorphism forms a pre-model for LQΛ!, as
defined in Section 7.2, and when restricted to affine quantum ∼-arenas it forms up to weak
isomorphism a pre-model for AQΛ!.

To represent terms of the form X · t in QΛparam
! , we use

�

�

�

�

�

�

�

�

�

�

�

�

T
...

Γ ⊢paramt : A

Γ ⊢paramX · t : A

�

�

�

�

�

�

�

�

�

�

�

�

:= X · ⟦T⟧

Where X · σ is defined as follows.

Definition 10.2.6. For σ ∈ ∼-QA[−](A,B), and X ∈ F, we define X ·σ ∈ ∼-QA[−](A,B)
as the same ∼-strategy as σ but with

XX·σ = Xσ ∪ {X} QX·σ(x) =

{

X · Q(x) whenever ∃e ∈ x, pS(e) = ⊕
Q(x) whenever ∀e ∈ x, pS(e) = ⊖

Lemma 10.2.7. The above definition gives a parametrised quantum ∼-strategy.

Proof. All the conditions are trivial to check but the drop condition. We consider
x ⊆+ x1, . . . , xn. Using Lemma 5.3.4, we can assume without loss of generality that
x ⊂+ x1, . . . , xn, which ensures that every xi contains at least a positive event. If x
contains a positive event, then we have

dodd
X·σ(x;x1, . . . , xn) = X · dodd

σ (x;x1, . . . , xn)
⊑ X · deven

σ (x;x1, . . . , xn)
= deven

X·σ (x;x1, . . . , xn)
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If x does not contain a positive event, then using X · QX·σ(x) ⊑ QX·σ(x) we obtain

dodd
X·σ(x;x1, . . . , xn) = X · dodd

σ (x;x1, . . . , xn)
⊑ X · deven

σ (x;x1, . . . , xn)

= X · Qσ(x) +
∑

∅,I⊆{1,...,n}
|I| even
xI∈C(S)

HB(xB ⊆+ xBI )
◦ (X · Qσ(xI))
◦HA(xAI

−⊇ xA)

= X · QX·σ(x) +
∑

∅,I⊆{1,...,n}
|I| even
xI∈C(S)

HB(xB ⊆+ xBI )
◦QX·σ(xI)

◦HA(xAI
−⊇ xA)

⊑ QX·σ(x) +
∑

∅,I⊆{1,...,n}
|I| even
xI∈C(S)

HB(xB ⊆+ xBI )
◦QX·σ(xI)

◦HA(xAI
−⊇ xA)

= deven
X·σ (x;x1, . . . , xn)

□

As said earlier, for every parametrised term Γ ⊢paramt : A, its semantics ⟦t⟧ only uses
polynomials, i.e., for every configuration x of ⟦t⟧, Q⟦t⟧(x) is a formal power series with only
a finite number of non-zero coefficients. This can be proved by an immediate induction
on the typing derivation of t, as all the operations on strategies used in the interpretation
obviously preserve this invariant.

10.2.2 The Exhaustive Equivalence
We now extend the exhaustive equivalence to the parametrised case. The definitions are
the same as in the non-parametric case.

Definition 10.2.8. For σ ∈ ∼-QA[−](A,B) and ⌈x⌉ ∈ +∼-C(S), we define

Qσ(⌈x⌉) := HB((Θx
B)−1) ◦ Qσ(x) ◦ HA(Θx

A)

Then for xA ∈ C≃(A) and xB ∈ C≃(B), we define

Qσ(xA,xB) :=
∑

⌈x⌉∈+∼-witσ(xA,xB)

Qσ(⌈x⌉)

|A+

A⊥ &

B
(xA∥xB)| ∈ CPM[−](HA(xA),HB(xB))

=
∑

⌈x⌉∈+∼-witσ(xA,xB)

HB((Θx
B

)−1)

|A+
B

(xB)| ◦ Qσ(x) ◦ HA(Θx
A

)

|A−
A

(xA)|

where CPM[−](H,K) is defined similarly to CPM[−](H,K).
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∅ ⊢param
L 1

⋆−

✞ ��'
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⋆+
0

/o/o/o/o ⋆+
1

/o/o/o · · ·
Quantum valuation:

Q(∅) = Q({⋆−}) = id1 Q({⋆−, ⋆+
n }) =

Xn

2n+1
· id1

Term represented:

⊢param
L let rec f () = if Coin1/2 then X · f() else () in f() : 1

Figure 10.1: Example of non-polynomial collapsed quantum valuation.

Proposition 10.2.9. For σ ∈ ∼-QA[−](A,B) and τ ∈ ∼-QA[−](B,C), which we recall
are visible ∼-strategies, and for xA ∈ C≃(A),xC ∈ C≃(C) we have

Qτ⊙σ(xA,xC) =
∑

xB∈C≃(B)

Qτ (xB,xC) ◦ Qσ(xA,xB)

The proof is the same as in the non-parametric case.

Definition 10.2.10. We say that two ∼-strategies σ, τ ∈ ∼-QA[−](A,B) are exhaustively
equivalent and write σ ≡ τ whenever

∀xA ∈ E≃(A),∀xB ∈ E≃(B),Qσ(xA,xB) = Qτ (xA,xB)

Corollary 10.2.11. The relation ≡ is a congruence on ∼-QA[−].

While for every parametrised term Γ ⊢paramt : A, its semantics ⟦t⟧ only uses polynomi-
als, it does not mean that its collapsed valuations Q⟦t⟧(−,−) are necessarily polynomials.
In fact, in the example Fig. 10.1, we have

Q({⋆−}, {⋆+}) =
∑

n≥0

Xn

2n+1
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10.2.3 The Skeleton of a Strategy
We defined the skeleton of a formal power series as the coefficient of X1 . . . Xn, i.e., the
coefficient of the monomial where every formal parameter appears exactly once. We have
a similar notion in game semantics.

Definition 10.2.12. For σ ∈ ∼-QA[−](A,B), we define sklσ(x) (for x ∈ C(S)), sklσ(⌈y⌉)
(for ⌈y⌉ ∈ +∼-C(S)) and sklσ(zA, zB) (for zA ∈ C≃(A), zB ∈ C≃(B)) as the skeleton for
the set of parameters Xσ of Qσ(x), Qσ(⌈y⌉) and Qσ(zA, zB) respectively.

In the next section, every formal parameter will be associated to a specific “call” to a
non-linear function, so “one of each formal parameter” will correspond to “every subterm
decorated with a formal parameter is visited exactly once”.

Lemma 10.2.13. For σ ∈ ∼-QA[−](A,B) and τ ∈ ∼-QA[−](B,C), if Xσ ∩Xτ = ∅ then

∀y ⊙ x ∈ C(T ⊙ S), sklτ⊙σ(y ⊙ x) = sklτ (y) ◦ sklσ(x)
∀zA ∈ C≃(A), zC ∈ C≃(C) sklτ⊙σ(zA, zC) =

∑

zB∈C≃(B) sklτ (zB, zC) ◦ sklσ(zA, zB)

∀zA ∈ E≃(A), zC ∈ E≃(C) sklτ⊙σ(zA, zC) =
∑

zB∈E≃(B) sklτ (zB, zC) ◦ sklσ(zA, zB)

This lemma follows from the corresponding lemmas on quantum ∼-strategies.

10.3 Full Abstraction
Similarly to the case without symmetry, the proof of full abstraction relies on test and
generator terms. We start by proving full abstraction for LQΛ!.

10.3.1 Extended Configurations of an Arena
In order to define test and generator terms in Tables 6.2 and 6.3, we used a notion of
extended web, which was the web of a type together with some indices in {0, 1, 2, 3}, one
for each qubit. Their goal was to specify for each qubit which of the four test or generator
term we want to use. We lift this notion onto arenas.

Definition 10.3.1. An extended event of a quantum ∼-arena A is (a, i) with a ∈ |A| and
i ∈ {0, 1, 2, 3}log(dim(HA(a))). We write |A|e for the set of extended events of A.

This notion is only well-defined when Hilbert space annotations have dimensions that
are a power of 2. It is immediate that it is satisfied for any ∼-arena arising from a type of
QΛparam

! . An extended event is simply an event together with one index in {0, 1, 2, 3} for
each qubit it represents. For x ∈ C(A) and i ∈ {0, 1, 2, 3}log(dim(HA(x))) we write x|i ⊆ |A|e
for the extended configuration where we slitted the index of i along the configuration.
Every extended configuration of |A|e can be uniquely decomposed as x|i for some x and i.
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Definition 10.3.2. An extended configuration of a quantum ∼-arena A is x ∈ Pfin(|A|e)
such that x = x′|i for x′ ∈ C(A) and i ∈ {0, 1, 2, 3}log(dim(HA(x))). We write Ce(A) for the
set of extended configurations of A, and Ee(A) the set of exhaustive ones (meaning that
x′ ∈ E(A)).

We extend the operations ⊗,⊸,⊕, [. . . ] from configurations to extended configurations.
In practice, we will only use canonical extended exhaustive configurations x|i, using the
fact that x⊸ y = x ⊸ y (and same for the other constructs) by definition of ⊸ (and by
definition of the other constructs).

10.3.2 Parametrised Test and Generator Terms
We provide in Tables 10.1 and 10.2 the test and generator terms we will be using. There
are a few notable differences with the terms provided in Tables 6.2 and 6.3:

• Rather than indexing parameters by points of a web, we index them by exhaustive
extended configurations of a ∼-arena: when we write ⇓Ax or ⇑Ax , we have x ∈ Ee(⟦A⟧),
as defined above. This difference is purely a presentation choice.

• We give terms for types of the form !(A ⊸ B), which allows us to cover all the
types of QΛparam

! . Exhaustive extended configurations of !(A ⊸ B) are of the form
(x1 ⊗ . . .⊗ xn) with xi an exhaustive extended configuration of A ⊸ B. For clarity,
we treat the case n = 0 separately.

• Some terms use formal parameters. Parameters used are always fresh, i.e., chosen
such that generator and test terms never use the same parameter multiple times in
them, and when we consider two generator and/or test terms, they are implicitly
assumed to have disjoint sets of parameters.

10.3.3 Example
We come back to the example from earlier in this chapter:

t = Ignore(f()); Ignore(f()); tt t′ = if f() then f() else Not(f())

We describe their semantics in Fig. 10.2. Both ∼-strategies have trivial symmetry and
quantum valuation, and only differ by the final boolean output. Those two ∼-strategies
are not exhaustively equivalent, and in particular they differ on xΓ ∥ xA with xΓ =
{λ, ⋆0,ff0, ⋆1, tt1} and xA = {tt}. For t, we have two configurations of the strategy that
match the canonical configuration up to positive symmetry, while we have none for t′, so:

Q⟦t⟧(xΓ,xA) = Q⟦t⟧({λ,ff0, ⋆1, tt1, tt}) +Q⟦t⟧({λ, tt0, ⋆2, tt2, tt}) = 2 · id1
Q⟦t′⟧(xΓ,xA) = 0
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⇑1
{⋆+} := ()

⇑qubit
{(qb+

Q
,0)} := new ff ⇑qubit

{(qb+
Q
,1)} := new tt

⇑qubit
{(qb+

Q
,2)} :=

(

1√
2

1√
2

1√
2
− 1√

2

)

(new ff) ⇑qubit
{(qb+

Q
,3)} :=

(

1√
2

i√
2

i√
2
− 1√

2

)

(new ff)

⇑A⊗B
xA⊗xB

:= ⇑AxA
⊗ ⇑BxB

⇑A⊸BxA⊸xB
:= λx. ⇓AxA

x;⇑BxB

⇑A⊕B
xA⊕∅ := injℓ ⇑AxA

⇑A⊕B
∅⊕xB

:= injr ⇑BxB

⇑Aℓ

[ ] := [ ] ⇑Aℓ

[x1;...;xn] := ⇑Ax1
::⇑Aℓ

[x2;...;xn]

⇑!F
{λ+} := λx.⊥ ⇑!F

x1⊗...⊗xn
:= λv.

∑n
i=1

Xi

n ·
(

⇑Fxi
v
)

Table 10.1: Generator terms ⊢param
L ⇑Aa : A

⇓1
{⋆+} := λ().()

⇓qubit
{(qb+

Q
,0)} := λq.if meas q then ⊥ else ()

⇓qubit
{(qb+

Q
,1)} := λq.if meas q then () else ⊥

⇓qubit
{(qb+

Q
,2)} := λq.if meas

(

1√
2

1√
2

1√
2
− 1√

2

)

q then ⊥ else ()

⇓qubit
{(qb+

Q
,3)} := λq.if meas

(

1√
2
− i√

2

− i√
2
− 1√

2

)

q then ⊥ else ()

⇓A⊗B
xA⊗xB

:= λ(x⊗ y). ⇓AxA
x ;⇓BxB

y
⇓A⊸BxA⊸xB

:= λf.let x = f ⇑AxA
in ⇓BxB

x

⇓A⊕B
xA⊕∅ := λx.δ (x, y. ⇓AxA

y, z.⊥)

⇓A⊕B
∅⊕xB

:= λx.δ (x, y.⊥, z. ⇓BxB
z)

⇓Aℓ

[ ] := λℓ.match ℓ with ([ ] 7→ () | x :: y 7→ ⊥)

⇓Aℓ

[x1;...;xn] := λℓ.match ℓ with
(

[ ] 7→ ⊥
∣

∣

∣ x :: y 7→⇓Ax1
x ;⇓Aℓ

[x2;...;xn] y
)

⇓!F
{λ+} := λf.()

⇓!F
x1⊗...⊗xn

:= λf !F . ⇓Fx1
f ; . . . ; ⇓Fxn

f

Table 10.2: Tests term ⊢param
L ⇓Aa : A⊸ 1
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!(1 ⊸ bit) ⊢L bit
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✤
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✤
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✤ !(1 ⊸ bit) ⊢L bit

λ−

❁yy� ⑤⑤⑤⑤⑤♦
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❂yy� ⑥⑥⑥⑥
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❂yy� ⑥⑥⑥⑥
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▼ ✑ $$,◗◗◗◗◗◗◗◗◗◗◗◗
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❆❆❆❆✸
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◆ ◗ ❙ ❱ff−

1
/o/o

✑ $$,◗◗◗◗◗◗◗◗◗◗◗◗ tt−
1

✑ $$,◗◗◗◗◗◗◗◗◗◗◗ ff−
1

/o/o

✑ $$,◗◗◗◗◗◗◗◗◗◗◗◗ tt−
1

✑ $$,◗◗◗◗◗◗◗◗◗◗◗

⋆+
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❆❆❆❆✸
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/o/o

✒ $$,❘❘❘❘❘❘❘❘❘❘❘❘ tt−
2
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Figure 10.2: The strategies for t and t′ respectively.
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∅ ⊢L 1

✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤ ∅ ⊢L 1

⋆−
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❈❈❈❈❈❈❈❈
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✵✵✵✵✵✵✵✵✵✵✵✵✵✵✵✵
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tt,ff

/o/o/o ⋆+
tt,tt

Figure 10.3: The strategies for t0 and t′0 respectively.

We now look at the test and generator terms. We have

⇓bit
xA

= λb.if b then () else ⊥
⇑!(1⊸bit)

xΓ
= λ().X2 ff + Y

2 tt

If we use those test and generator terms as context for t and t′, we obtain

t0 := let f = ⇑!(1⊸bit)
xΓ

in ⇓bit
xA

t

t′0 := let f = ⇑!(1⊸bit)
xΓ

in ⇓bit
xA

t′

If we compute their semantics, we obtain strategies described in Fig. 10.3, where each
event ⋆b,b′ corresponds to the branch of the computation where the first call to f returned
b and the second call to f returned b′. Those quantum ∼-strategies have trivial symmetry
and

Q⟦t0⟧({⋆−, ⋆+
ff,ff}) = 1

4 id1XX Q⟦t′0⟧({⋆
−, ⋆+

ff,ff}) = 1
4 id1XX

Q⟦t′0⟧({⋆
−, ⋆+

ff,tt}) = 1
4 id1XY

Q⟦t′0⟧({⋆
−, ⋆+

tt,ff}) = 1
4 id1Y X

Q⟦t0⟧({⋆−, ⋆+
tt,tt}) = 1

4 id1Y Y Q⟦t′0⟧({⋆
−, ⋆+

tt,tt}) = 1
4 id1Y Y

So, if we look at the collapsed quantum valuation we have

Q⟦t0⟧({⋆}, {⋆}) = 1
4 id1XX + 1

4 id1Y Y
Q⟦t′0⟧({⋆}, {⋆}) = 1

4 id1XX + 1
4 id1Y Y + 2

4 id1XY

Those two formal power series differ on a coefficient: the coefficient of XY , i.e., the skeleton
of the formal power series. In fact, we have

skl⟦t0⟧({⋆}, {⋆}) = 1
4Q⟦t⟧(xΓ,xA)

skl⟦t′0⟧({⋆}, {⋆}) = 1
4Q⟦t′⟧(xΓ,xA)
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We note the importance of the skeleton: in order to “replay” the configuration xΓ, we have
to ensure that f is called exactly once with each of the desired inputs and output, and
each of the two formal parameters X and Y corresponds to a “correct call”, so we want
exactly one of each.

10.3.4 Properties of Test and Generator Terms
As in the case without symmetry, the goal of test terms is to “extract” the coefficient
corresponding to a point of the web by “replaying” a given configuration. Formally, we
expect that for any non-parametrised term x : A ⊢L t : B, we have:

skl⟦
let xA = ⇑A

xA|i
in ⇓B

xB|j
t

⟧({⋆}, {⋆}) = cst · T
H⟦B⟧(xB)

j ◦ skl⟦t⟧(xA,xB) ◦G
H⟦A⟧(xA)

i

where G and T are the morphisms of Proposition 2.1.18 and cst ∈ R>0. We can deduce
this property from the following lemma.
Lemma 10.3.3 (Semantics of Tests and Generators). For A a type and (xA|i) ∈ Ee(⟦A⟧):

xA , yA =⇒ skl⟦
⇑A

xA|i

⟧({⋆},yA) = 0 and skl⟦
⇓A

xA|i
x

⟧(yA, {⋆}) = 0

And for some α(xA|i), β(xA|i) ∈ N>0 we have:

skl⟦
⇑A

xA|i

⟧({⋆},xA) = α(xA|i)G
H⟦A⟧(xA)

i ∈ CPM(1,H⟦A⟧(xA))

skl⟦
⇓A

xA|i
x

⟧(xA, {⋆}) = β(xA|i)T
H⟦A⟧(xA)

i ∈ CPM(H⟦A⟧(xA),1)

Proof. The terms for A = qubit have been created such that it holds for them. We
then simply proceed by induction on the type, using the fact that every formal variable
appears at most once in the test/generator term so the skeleton of an interactive
composition is the composition of the skeletons (Lemma 10.2.13). For the function
case, we use the compact closure of CPM. The only difficult case is the ! for the
generator term, as it introduces new formal parameters. For !F =!(A ⊸ B) a type
and (xF|i) = (x1|i1)⊗ . . .⊗ (xn|in) ∈ Ee(⟦!F⟧), we have:

⇑!F
xF|i:= λv.

n
∑

k=1

Xk

n
·
(

⇑Fxk|ik v
)

⟦

⇑!F
xF|i

⟧

:= !

(

Λ

( n

⊞
k=1

Xk

n
Λ−1

(

⟦

⇑Fxk|ik

⟧

)

))

◦m1

Λ(f) := (⟦A⟧⊸ f)⊙ fun⟦B⟧,⟦A⟧ Λ−1(g) := eval⟦B⟧,⟦A⟧ ⊙ (g ⊗ ⟦A⟧)
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We recall that m1 : 1 7→!1. Since ⊞ is linear up to ≡, we have

⟦

⇑!F
xF|i

⟧

≡ !

(

Λ

(

Λ−1

( n

⊞
k=1

Xk

n

⟦

⇑Fxk|ik

⟧

)))

◦m1 � !

( n

⊞
k=1

Xk

n

⟦

⇑Fxk|ik

⟧

)

◦m1

We write σ for
⟦

⇑!F
xF|i

⟧

and σk for
⟦

⇑F
xk|ik

⟧

. As usual, we write S and Sk for their
respective ∼-esps. We note that we have

S = S1 ⊗p . . .⊗p Sn

For ⊗p the parallel tensor as defined in Proposition 5.5.4. If we take a configuration
y ∈ C(S), it corresponds to a set of configurations yj ∈ C(Skj

) for 1 ≤ j ≤ m. More
precisely,

y = y1 ⊗p . . .⊗p ym
For sklσ(y) to be non-zero, we need to have exactly one configuration per Sk, in other
words we need j 7→ kj to be a bijection between {1, . . . ,m} and {1, . . . , n}. Moreover,
since permuting the different yj results in a negative symmetry in the game, and the
Q(−,−) only considers configurations up to positive symmetry, not only do we need
to have exactly one configuration per Sk, but they have to be in the exact order
S1, . . . , Sn, i.e., j 7→ kj is the identity. This means we have

skl⟦
⇑!F

xF|i

⟧({⋆},xF) =
⊗n

k=1
1
nskl⟦

⇑F
xk|ik

⟧({⋆},xk)

= 1
nn

∏n
i=1 α(xk|ik)

⊗n
k=1G

H⟦F ⟧(xk)

ik

= 1
nn

∏n
i=1 α(xk|ik)G

H⟦!F ⟧(xF)

i

So for α(xF|i) = 1
nn

∏n
i=1 α(xk|ik) we obtain the expected result. □

As a corollary of this lemma, we obtain the following finiteness result:

Corollary 10.3.4. For σ ∈ ∼-QA[−](⟦A⟧ , ⟦B⟧) and xA ∈ E(⟦A⟧),xB ∈ E(⟦B⟧), we have
Qσ(xA,xB) ∈ CPM[−](H⟦A⟧(xA),H⟦B⟧(xB)), i.e., is a [0, 1]-convergent formal power
series of CPM operators.

Proof. We start by the non-parametric case σ ∈ ∼-QA(⟦A⟧ , ⟦B⟧). We write I =
{i | (xA|i) ∈ Ee(⟦A⟧)} and J = {j | (xB|j) ∈ Ee(⟦B⟧)}. We consider

τ :=

(

⊞
j∈J

1

|J |
⟦

⇓BxB|j var
⟧var:B⊢L 1)

⊙ σ ⊙
(

⊞
i∈I

1

|I|
⟦

⇑AxA|i

⟧⊢L A)
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Using Corollary 9.4.18, we obtain

Qτ ({⋆}, {⋆}) =





∑

j∈J
1

|J |
∑

yB∈E(⟦B⟧)Q⟦⇓B
xB|j

x

⟧(yB, {⋆})




⊙ Qσ(xA,xB)

⊙




∑

i∈I
1

|I|
∑

yA∈E(⟦A⟧)Q⟦⇑A
xA|i

⟧({⋆},yA)





Using Lemma 10.3.3, since σ has no parameters, and that the parameters of
⟦

⇑A
xA|i

⟧

and
⟦

⇓B
xB|j

⟧

are disjoint we have

sklτ ({⋆}, {⋆}) =





∑

j∈J
1

|J |skl⟦
⇓B

xB|j
x

⟧(xB, {⋆})




⊙ Qσ(xA,xB)

⊙




∑

i∈I
1

|I|skl⟦
⇑A

xA|i

⟧({⋆},xA)





=

(

∑

j∈J
β(xB|i)

|J | T
H⟦B⟧(xB)

j

)

⊙ Qσ(xA,xB)

⊙
(

∑

i∈I
α(xA|i)

|I| G
H⟦A⟧(xA)

i

)

If we instantiate all the parameters of τ by 1, we obtain a quantum ∼-strategy
τ [1, . . . , 1] from 1 to 1. Using Lemma 9.4.13, we have

Qτ [1,...,1]({⋆}, {⋆}) ⊑ idCPM
1

Since we consider formal power series over CPM operators, all the terms of the formal
power series are positive, so

sklτ ({⋆}, {⋆}) ⊑ Qτ [1,...,1]({⋆}, {⋆}) ⊑ idCPM
1

We also note that




∑

j∈J
T

H⟦B⟧(xB)

j



 ⊒ TrH⟦B⟧(xB)

(

∑

i∈I
G

H⟦A⟧(xA)

i

)

⊒ 1H⟦A⟧(xA)
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So we obtain, for some α, β ∈ R>0

βTrH⟦B⟧(xB) ◦ Qσ(xA,xB) ◦ α1H⟦A⟧(xA) ⊑ idCPM
1

It follows that Qσ(xA,xB) is finitary. If we now look at the parametrised case σ ∈
∼-QA[−](⟦A⟧ , ⟦B⟧), we obtain that all its instantiations with parameters in [0, 1] are
non-parametric strategies, so all the Q(−,−) of those instantiations are finitary, so
the formal power series Qσ(−,−) is necessarily [0, 1]-convergent with parameters in
CPM. □

10.3.5 Full Abstraction for LQΛ!

We then have all the tools to prove the reverse implication of the full abstraction, and
conclude with the full abstraction theorem for LQΛ!.

Definition 10.3.5. For Γ ⊢paramt : A a parametrised term, we say that the term Γ ⊢ t′ : A
is an instance of t if there exists some p1, . . . , pn ∈ [0, 1] such that by replacing the formal
parameters X1, . . . , Xn of t by p1, . . . , pn gives t′.

Lemma 10.3.6 (Characterisation by Tests and Generators). We define the set of observers
Ox:A⊢LB as

Ox:A⊢LB =











let vA = Gen in Test _

∣

∣

∣

∣

∣

∣

∣

(xA|i) ∈ Ee(⟦A⟧), (xB|j) ∈ Ee(⟦B⟧),
⊢LGen : A instance of ⇑A

xA|i,
⊢LTest : A⊸ 1 instance of ⇓B

xB|j











For every pair of terms x : A ⊢L t : B and x : A ⊢L s : B, we have:

∀O[_] ∈ Ox:A⊢LB,P(O[t] ⇓) = P(O[s] ⇓)
=⇒

⟦t⟧ ≡ ⟦s⟧

Proof. Using Lemma 10.3.3, we have immediately that for any parametrised observer
P[_] = let vA = ⇑A

xA|i in ⇓B
xB|j _, we have

skl⟦O[t]⟧({⋆}, {⋆}) = α(xB|j)β(xA|i)T
H⟦B⟧(xB)

j ◦ Q⟦t⟧(xA,xB) ◦GH⟦A⟧(xA)

i

If for all observers we have P(O[t] ⇓) = P(O[s] ⇓), using soundness and adequacy
(Theorem 9.5.6) we have for all (xA|i) ∈ Ee(⟦A⟧) and all (xB|j) ∈ Ee(⟦B⟧):

⟦O[t]
⟧ ≡ ⟦O[s]

⟧
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So for every observer O[_], we have

Q⟦O[t]⟧({⋆}, {⋆}) = Q⟦O[s]⟧({⋆}, {⋆})

Using Theorem 10.1.2, we obtain that that for the parametrised observer P[_] =
let vA = ⇑A

xA|i in ⇓B
xB|j _, we have

Q⟦P[t]⟧({⋆}, {⋆}) = Q⟦P[s]⟧({⋆}, {⋆})

In particular, their skeletons are equal, so:

α(xB|j)β(xA|i) T
H⟦B⟧(xB)

j ◦ Q⟦t⟧(xA,xB) ◦ G
H⟦A⟧(xA)

i

= α(xB|j)β(xA|i) T
H⟦B⟧(xB)

j ◦ Q⟦s⟧(xA,xB) ◦ G
H⟦A⟧(xA)

i

Using Corollary 10.3.4, we know that skl⟦t⟧ and skl⟦s⟧ are in CPM, so using Propo-
sition 2.1.18 we deduce that for all xA ∈ E(⟦A⟧) and xB ∈ E(⟦xB⟧) we have:

Q⟦t⟧(xA,xB) = Q⟦s⟧(xA,xB) □

Theorem 10.3.7 (≡-Full Abstraction). For every term Γ ⊢L t : A and Γ ⊢L s : A, we have

⟦t⟧ ≡ ⟦s⟧ ⇐⇒ t =obs s

Proof. The direct implication is exactly Corollary 9.5.7. We now assume t =obs s. We
write P =

⊗

(vi:Ai)∈ΓAi. We consider

t′ = let var =
⊗

(vari:Ai)∈Γ

vari in s and s′ = let var =
⊗

(vari:Ai)∈Γ

vari in s

It follows that t′ =obs s
′. In particular, for every O[_] ∈ Oy:P⊢L A, we have P(O[t′] ⇓) =

P(O[s′] ⇓). It follows from the previous lemma that ⟦t′⟧ ≡ ⟦s′⟧. From the definition
of the semantics, it follows immediately that ⟦t⟧ ≡ ⟦s⟧. □

10.3.6 Affine Case
In the affine case, we simply take

⇓A⊸B{λ+} := λf.()

⇑A⊸B{λ+} := λx.⊥
And with the exact same reasoning we obtain a full abstraction result for AQΛ!.

Theorem 10.3.8 (≡-Full Abstraction). For every term Γ ⊢A t : A and Γ ⊢A s : A, we have

⟦t⟧ ≡ ⟦s⟧ ⇐⇒ t =obs s
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10.3.7 Full Abstraction of the Relational Model
We recall that we have the following factorisation result.

LQΛ!

⟦−⟧QA
��

⟦−⟧∼-QARel

))❘❘❘❘❘❘❘❘❘❘❘❘❘❘

∼-QA
Q(−,−)

// ∼-QARel

AQΛ!

⟦−⟧QAa

��

⟦−⟧∼-QARela

))❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

∼-QAa

Q(−,−)
// ∼-QARela

Since the functor from ∼-QA to ∼-QARel preserves all the structure, and is ≡-faithful,
we can deduce the full abstraction of the relational model on ∼-arenas from the full ab-
straction of the game model.

Theorem 10.3.9. We have the following results of full abstraction for LQΛ! and AQΛ!:

• For every term Γ ⊢L t : A and Γ ⊢L s : A, we have

⟦t⟧∼-QA ≡ ⟦s⟧∼-QA ⇐⇒ t =obs s ⇐⇒ ⟦t⟧∼-QARel = ⟦s⟧∼-QARel

• For every term Γ ⊢A t : A and Γ ⊢A s : A, we have

⟦t⟧∼-QAa ≡ ⟦s⟧∼-QAa ⇐⇒ t =obs s ⇐⇒ ⟦t⟧∼-QARela = ⟦s⟧∼-QARela

As shown in Theorem 8.4.2, ∼-QARel and CPMs⊕ as defined in [PSV14] are essen-
tially the same model, so the full abstraction of CPMs⊕ immediately follows.
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Conclusion and Perspectives

This thesis closes the open question of finding a fully abstract model for the quantum
λ-calculus. This thesis is part of a line of work about denotational models for languages
having both quantitative effects and rich control flows; we expect the methods and tools
built along this thesis to have a larger impact than just answering the question of full
abstraction for the quantum λ-calculus. While the goal of this thesis has been completed,
there are still a number of possible continuations of this work.

• Following the work in [dV19] on event structures supporting two branching structures:
(1) a non-quantitative non-deterministic choice and (2) a probabilistic choice, we
expect to be able to build a model for a quantum λ-calculus extended with a non-
quantitative non-deterministic choice.

• As our model relies on concurrent game semantics, a natural continuation of our
work would be to consider a concurrent quantum λ-calculus. Relying on the previous
item and the concurrent game model for IPA [CCHW18], we hope to build a model
for a quantum λ-calculus extended with concurrency, reference cells, and the non-
determinism coming from concurrent access to shared reference cells.

• The quantum λ-calculus is a call-by-value language. It is unclear to us whether
we could easily convert our game model into a model for a call-by-name quantum
programming language.

• The quantum λ-calculus is a language in which the user directly controls quantum
data. This is not the case of every quantum programming language, with for example
Quipper [GLR+13] in which the user builds and controls quantum circuits, which are
then executed. To our knowledge, there is not yet any game semantics model for a
language like this.

• The question of finding a model with good definability properties for the quantum
λ-calculus is still open, but we expect that a refinement of our model with a notion
of innocence similar to [CCW15a, CCW17, CCPW18] would work.

• The proof used to solve the full-abstraction problem for the quantum λ-calculus by-
passed the traditional route to proving a model for a language fully abstract, i.e., via
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definability, mentioned above. In trying to achieve definability we have worked on a
definition of quantum strategies with quantum valuations on extensions x ⊆ y rather
than on configurations x, to make them functorial with respect to the inclusion order
on configurations. From this a notion of “quantum Petri net” has arisen, which we
plan to investigate.

• For the most part of this thesis, the category CPM of quantum computation could
be replaced by an arbitrary compact closed category, giving rise to a model for a
λ-calculus parametrised by a CpCC similar to [TAO18]. Further work would be
required to determine if we can model a λ-calculus parametrised by a category with
weaker properties than a CpCC, e.g., an SMC. This would allow us to cover a wide
range of effects and language features, e.g., continuous probabilities.
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Appendix A

Miscellaneous Lemmas

A.1 Interaction and Interactive Composition
In this subsection, we list five lemmas about the interaction and interactive composition
of strategies. In all those lemmas, we consider σ, σ′ : A 7→ B and τ, τ ′ : B 7→ C, writing
S, S′, T, T ′ for their respective esps.

• The Lemma A.1.1 formalises the concept of projecting events from T ⊙ S to T or S.

• The Lemma A.1.2 highlights the fact that the causalities of T ⊛S are a superposition
of the causalities of T and the ones of S.

• The Lemma A.1.3 highlights the fact that every event at the “middle” of an interac-
tion T ⊛ S is covered by a positive event.

• The Lemma A.1.4 notes that negative extensions on T ⊙ S correspond to negative
extensions on T and S. We will rely on it for the proof of preservation of obliviousness
in Proposition 5.3.11.

• The Lemma A.1.5 allows us to tame the isomorphism between strategies by noting
that, within some reasonable conditions, we can prove the minimal events of two
strategies are the exactly the same.

Lemma A.1.1. We take y ⊙ x ∈ C(T ⊙ S). There are two polarity-preserving order-
reflecting bijection:

πS : {e ∈ y ⊙ x | (τ ⊙ σ)(e) ∈∥ |A⊥|} → {e ∈ x | σ(e) ∈∥ |A⊥|}
πT : {e ∈ y ⊙ x | (τ ⊙ σ)(e) ∈∥ |C|} → {e ∈ y | τ(e) ∈∥ |C|}

They extend to y ⊛ x = [y ⊙ x]⊛ into two order-reflecting bijections:

πS : {e ∈ y ⊛ x | (τ ⊛ σ)(e) <∥ |C|} → x

πT : {e ∈ y ⊛ x | (τ ⊛ σ)(e) <∥ |A⊥|} → y
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The bijections πS and πT are simply obtained from the maps of event structures πS∥C
and πA∥T of the diagram defining τ ⊙ σ.
Lemma A.1.2. If e _T⊛S e′, then either πS∥C(e) _S∥C πS∥C(e′) or πA∥T (e) _A∥T
πA∥T (e′).

We refer to Lemma 2.10 in [CCRW17] for a proof.
Lemma A.1.3. For every y⊙x ∈ C(T ⊙S), for every eS ∈ x such that σ(eS) ∈∥ |B|, there
exists s+ ∈ x such that eS ≤S s. Symmetrically, for every eT ∈ y such that τ(eT ) ∈∥ |B|,
there exists t+ ∈ y such that eT ≤T t.

Proof. Since configurations are finite, it is equivalent to prove that for every eS ∈ x
maximal and negative, we do not have σ(eS) ∈∥ |B|. We proceed by contradiction and
take eS ∈ x maximal and negative with σ(eS) ∈∥ |B|.

Using Lemma A.1.1, we obtain e ∈ (y ⊛ x)\(y ⊙ x) such that πS(e) = eS . Since
y⊛x = [y⊙x]⊛, it follows we have e′ ∈ y⊙x such that e <T⊛S e′. We take e′ minimal,
and since eS was maximal we obtain e _T⊛S e

′. Using Lemma A.1.2, we know that
either πS∥C(e) _S∥C πS∥C(e′) or πA∥T (e) _A∥T πA∥T (e′).

• Assume (τ ⊛ σ)(e′) ∈∥ |A|. We can quickly eliminate the second possibility as
the two events are not in the same part of A ∥ T . We obtain πS(e) _S πS(e′),
which contradicts maximality of eS .

• Assume (τ ⊛ σ)(e′) ∈∥ |C|. We can quickly eliminate the first possibility as the
two events are not in the same part of S ∥ C. We obtain πT (e) _T πT (e′). Since
σ plays on B while τ plays on B⊥, eS and πT (e) have opposite polarities, so
πT (e) is positive. Using courtesy of τ , it follows that τ(πT (e)) _B⊥∥C τ(πT (e′)),
which is impossible as one is in B⊥ while the other is in C.

This proves that for every eS ∈ x maximal and negative, we do not have σ(eS) ∈∥
|B|. We proceed symmetrically for proving that for every eT ∈ y maximal and negative,
we do not have τ(eT ) ∈∥ |B|. □

Lemma A.1.4. If y′ ⊙ x′ ⊆− y ⊙ x ∈ C(T ⊙ S) then y′ ⊆− y ∈ C(T ) and x′ ⊆− x ∈ C(S).
Moreover, for every s ∈ x\x′ we have σ(s) ∈∥ |A⊥|, and for every t ∈ y\y′ we have
τ(t) ∈∥ |C|.

Proof. We consider y′⊙x′ ⊆− y⊙x ∈ C(T ⊙S). Since the down-closure is a monotone
operation, we have y′ ⊛ x′ = [y′ ⊙ x′]⊛ ⊆ [y ⊙ x]⊛ = y ⊛ x.

We take an event e maximal such that e ∈ (y ⊛ x)\(y ⊙ x). We will show that
necessarily e ∈ (y′ ⊛ x′).

Since (τ⊛σ)(e) ∈∥ |B|, using Lemmas A.1.1 and A.1.3 we find πS(e) ≤S s+ ∈ x and
πT (e) ≤T t+ ∈ y. Since (τ ⊛σ)(e) ∈∥ |B|, we know that πT (e) and πS(e) have opposite
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polarities, so we obtain either πS(e) <S s
+ or πT (e) <S t

+. Using Lemma A.1.1 we
obtain e <T⊛S e

′ ∈ y ⊛ x with either πS(e′) = s+ or πT (e′) = t+. Since we assumed
maximality of e, this means that e′ ∈ y ⊙ x and that e′ has positive polarity, so
e′ ∈ y′ ⊙ x′, and then e ∈ [y′ ⊙ x′]⊛ = y′ ⊛ x′.

This means that none of the events of the extension y′ ⊛ x′ ⊆ y ⊛ x are sent to B
by τ ⊛ σ. Using Lemma A.1.1, this means that all the events of the extensions x′ ⊆ x
and y′ ⊆ y correspond to events of the extension y′ ⊙ x′ ⊆− y ⊙ x, and have negative
polarity. □

Lemma A.1.5. If the minimal events of A,B,C are positive, and the minimal events of
S, T, T ′ are negative, then T ⊙ S and T ′ ⊙ S have exactly the same minimal events (not
up to renaming).

Proof. The minimal negative events of A⊥ ∥ C are all in A, and minimal events of
T⊙S or T ′⊙S must be sent to minimal negative events of A⊥ ∥ C. It follows that they
are on the S side. While we refer for [CCRW17] for the exact construction of ⊙, the
fact is that minimal events of T ⊙S are pairs (x,∅) with x any singleton configuration
of S, meaning that we obtain the same minimal events for T ⊙ S and T ′ ⊙ S. □
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A.2 ⊕-Covered Configurations
We say that a configuration x is ⊕-covered if all its maximal events are positive. We
write C+(E) for the set of ⊕-covered configurations of E. We list four lemmas about the
properties of those configurations. In all of those lemmas, we assume A,B,C to be three
games and σ : A 7→ B and τ : B 7→ C to be two strategies, and write S and T being their
respective esps.

• The Lemma A.2.1 proves the stability of the concept of⊕-coveredness by composition,
which will be central for payoff games in Section 5.4.

• The Lemma A.2.2 shows that the minimality condition of minimal matching com-
patible is superfluous when considering only ⊕-covered configurations.

• The Lemma A.2.3 shows the interaction between the copy-cat strategy and the con-
cept of ⊕-coveredness.

• The Lemma A.2.4 shows that strategies are characterised by their set of ⊕-covered
configurations.

Lemma A.2.1. The configuration y ⊙ x ∈ C(T ⊙ S) is ⊕-covered if and only if both
x ∈ C(S) and y ∈ C(T ) are ⊕-covered.

Proof. If y ⊙ x is not ⊕-covered, then we have y′ ⊙ x′ ⊂− y ⊙ x. Using Lemma A.1.4,
we obtain that y′ ⊆− y and x′ ⊆− x. Both cannot be equalities, and if y′ ⊂− y then
y is not ⊕-covered, while if x′ ⊂− x then x is not ⊕-covered. We assume that y⊙ x is
⊕-covered. We take an event s ∈ x maximal. If σ(s) ∈∥ |B| then using Lemma A.1.3
we know that s is positive. If σ(s) ∈∥ |B|, using Lemma A.1.1 we obtain e ∈ y ⊙ x
such that πS(e) = s. If e is maximal in y⊙ x, then it is positive by hypothesis, so s is
positive. If e is not maximal in y⊙ x, then it is not maximal in y ⊛ x either. We have
e _T⊛S e

′ ∈ y ⊛ x. Using Lemma A.1.2, we know that either πS∥C(e) _S∥C πS∥C(e′)
or πA∥T (e) _A∥T πA∥T (e′).

• In the first case, this means that both e and e′ project to the S side of S ∥ C.
This implies s _S πS(e′) ∈ x, which contradicts maximality of s.

• In the second case, this means that both e and e′ project to the A side of
A ∥ T . This implies that the _ causality comes from the game A, which leads
to s <S πS(e′) ∈ x, which also contradicts maximality of s.

So every maximal event of x is positive. We proceed symmetrically for y. □

Lemma A.2.2. If y ⊛ x ∈ C(T ⊛ S) with y and x ⊕-covered, then (y, x) is a minimal
matching pair of configurations,i.e., y ⊙ x is defined.
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y ⊆−

⊆
+

x

⊆
+

f // f(y) ⊆−

⊆

f(x)

v ⊆− u f(v) ⊆− f(u)

σ

��
σ′

��

σy ⊆−

⊆
+

σx

⊆
+

id // σ′f(y) ⊆−

⊆
+

σ′f(x)

⊆
+

σv ⊆− σu σ′f(v) ⊆− σ′f(u)

Figure A.1: Diagram for the proof of Lemma A.2.4.

Proof. If y ⊛ x is not minimal, then that means we can “remove” at least one event of
y ⊛ x which is sent to B. In other words, there is a maximal event of y ⊛ x which is
sent to B. This maximal event is either sent to a maximal negative event of y, or a
maximal negative event of x. This contradicts ⊕-coveredness of x and y. □

Lemma A.2.3. For A a game and z = x ∥ y ∈ C(CCA), z is ⊕-covered if and only if
x = y.

Proof. By definition of copy-cat, we have x ⊒ y with ⊑ the Scott order. We also have
that an event e ∈ z is maximal in z if and only if

• Either e = (0, a), a is maximal in x , and e is positive (so a negative).

• Or e = (1, a), a is maximal in y, and e is positive (so a positive).

• Or e = (0, a), a is maximal in x, e is negative (so a positive), and a < y.

• Or e = (1, a), a is maximal in y, e is negative (so a negative), and a < x.

So z is ⊕-covered if and only if we are never in the second case, so every event of x
positive in A (so negative in A⊥) is in y, and every event of y negative in A is in x.
Combining with x ⊑ y, which says that every negative event of x is in y, and every
positive event of y is in x, we obtain x = y. □
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Lemma A.2.4. For σ, σ′ : A 7→ B, if there exists a bijection f : C+(S)→ C+(S′) which is
an order-isomorphism for the inclusion, i.e., x ⊆ y ⇐⇒ f(x) ⊆ f(y), and commutes with
the strategies, i.e., the following diagram commutes

C+(S)

σ $$❏❏❏❏❏❏❏❏❏

f / / C+(S′)

σ′yyttttttttt

A⊥ ∥ B

then σ � σ′.

Proof. We start by using receptivity to extend f as a bijection between C(S) and
C(S′):

• For x ∈ C(S), there exists a unique y ∈ C+(S) such that y ⊆− x. Using
receptivity of σ′, there exists a unique f(y) ⊆− x′ ∈ C(S′) such that σ′ x′ = σ x.
We take f(x) := x′.

• Conversely, for x′ ∈ C(S′), there exists a unique f(y) ∈ C+(S′) such that f(y) ⊆−

x′. Using receptivity of σ, there exists a unique y ⊆− x ∈ C(S′) such that
σ′ x′ = σ x. By uniqueness, we have f(x) = x′.

However, it might not be an order-isomorphism any more. We consider x, u ∈ C(S)
with x ⊆ u. There exists a unique x −⊇ y ∈ C+(S) and a unique u −⊇ v ∈ C+(S). If
x ⊆− u, then y = v and the uniqueness part of the receptivity ensures that f(x) ⊆−

f(u). So f preserves negative extensions. We now assume x ⊆+ u. By construction,
we have the diagram described in Fig. A.1. We recall that because of Lemma 4.4.11,
S′ must be race-free, so f(v)∪f(x) ∈ C(S′). Using uniqueness of receptivity, it follows
that f(u) = f(v)∪f(x), hence f(x) ⊆+ f(u). So f preserves positive extensions. This
means that f preserves the order. As f is a bijection, we can make the reverse reasoning
and obtain that f reflects the order. So f is an order-isomorphism for the inclusion.
This means it is union and intersection preserving, so induces an isomorphism between
S and S′ per Proposition 4.2.6. This isomorphism commutes with the maps σ and σ′,
it is an isomorphism of strategies. □
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A.3 Test Strategies
The Lemma A.3.2 shows the properties of a test strategy that targets a specific ⊕-covered
configuration of a given strategy. We write 1 for the esp with a single event ⋆ which is
positive. We consider A a game. For xA ∈ C(A), we write xA⊕ for its positive saturation,
which is the game obtained when taking the unique substructure of A containing all the
events of xA plus all the positive events accessible from xA. While the set |xA⊕| of all the
events of xA⊕ is a down-closed set of events of A, it is usually not a configuration of A.

We recall that Proposition 4.2.3 allows us to characterise an event structure through
its set of configurations.

Definition A.3.1. For xA ∈ C(A), we define the strategy testA(xA) : A 7→ 1 as the
identity-on-events map testA(xA) : TA(xA) → A⊥ ∥ 1, where TA(xA) has the same events
as (xA

⊕)⊥ ∥ 1, the same polarity, and the following configurations:

y ∈ C(TA(x)) :

{

y = {0} × z whenever z ∈ C(xA⊕)

y = {0} × z ∪ {(1, ⋆)} whenever z ∈ C(xA⊕) and ∀e+ ∈ xA, e+ ∈ z

Checking that this set of configuration indeed comes from an event structure is direct.
The ⊕-saturation ensures that the strategy is receptive, and since we only put causal link
from events positive in x (so negative in the strategy) to the positive event ⋆, the courtesy
is satisfied too.

Lemma A.3.2. We consider A a game and σ : ∅ 7→ A, and x ∈ C(S) ⊕-covered. We
write σ x = ∅ ∥ xA. We consider the interactive composition τ = testA(xA)⊙ σ. We have

• The pair (x, xA ∥ {⋆}) is minimal matching compatible.

• τ((xA ∥ {⋆})⊙ x) = ∅ ∥ {⋆}.

Proof. The pair is trivially matching compatible, but we need to prove the minimality.
Assume (y, z) matching compatible with z ⊆ x and y ⊆ xA ∥ {⋆} with the same
projection on ∅ and 1. In other words, y = yA ∥ {⋆} with yA ⊆ xA. By definition of
the test strategy, it follows that yA contains all the positive events of xA. We then
have z ⊆ x with σ z = ∅||yA. Since yA contains all the positive events of xA, and x is
⊕-covered, it follows that z = x and xA = yA. □
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Appendix B

Postponed Proofs

B.1 Parallel Tensor and Semi-Bifunctoriality

B.1.1 Definitions and Objective

In Section 5.5.2, we defined the parallel tensor ⊗p on strategies and claimed that this op-
eration satisfied the property of semi-bifunctoriality. We recall here some of the definitions
and propositions: for σ : A 7→ B a negative quantum strategy, a configuration x ∈ C(S) is
either

Empty if it is ∅.

Pre-Value if it is non-empty and it does not contain any s ∈ x such that σ(s) ∈∥ min(B).

Post-Value if it does contain a s ∈ x such that σ(s) ∈ min(B). This event is called the
value-event of x.

If additionally τ : C 7→ D is a negative quantum strategy, we say that x ∈ C(S) and
y ∈ C(T ) are synchronised if they are either both empty, both pre-value, or both post-
value. We recall Proposition 5.5.4

Proposition B.1.1 (Parallel Tensor of Strategies). For σ : A 7→ B and σ′ : A′ 7→ B′ two
negative quantum strategies, there exists a necessary unique (up to isomorphism) negative
quantum strategy σ ⊗p σ′ such that its configurations z ∈ C(S ⊗p S′) correspond to pairs
written x ⊗p x′ of synchronised configurations x ∈ C(S) and x′ ∈ C(S′), and its quantum
valuation is:

Qσ⊗pσ′(x⊗ x′) = Qσ(x)⊗Qσ′(x′)

And we recall the semi-bifunctoriality Proposition 5.5.5 that we have yet to prove:
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Proposition B.1.2 (Semi-Bifunctoriality of the Parallel Tensor). For σ : A 7→ B, σ′ :
A′ 7→ B′, τ : B 7→ C and τ ′ : B′ 7→ C ′ two negative quantum strategies, we have the
semi-bifunctoriality of ⊗p, i.e., up to isomorphism

(τ ⊗p τ ′)⊙ (σ ⊗p σ′) � (τ ⊙ σ)⊗p (τ ′ ⊙ σ′)

whenever τ and τ ′ are thunkable, or σ and σ′ are thunkable.

B.1.2 Initialised Interactive Composition
As a tool in the proof of semi-bifjunctoriality, we will need a slight variation of minimal
matching compatible pairs. As in Section 4.3, we consider f : F → A ∥ B and g : G →
B ∥ C two maps of event structures. We have

F ∥ C

f∥C ((◗◗◗◗◗◗◗◗ A ∥ G

A∥gvv♥♥♥♥♥♥♥♥

A ∥ B ∥ C
For any x ∈ C(F ), we write f x = xA ∥ xB. Similarly, for every y ∈ C(G), we write

g y = yB ∥ yC . The goal of this section is Proposition B.1.6, which proves that under
some conditions on f and g, configurations of G ⊙f,g F are in bijections with pairs of
configurations of x and y that satisfies properties very alike to the usual minimal matching
compatible, but such that the middle part of the interaction is “initialised” is the following
sense.

• A configuration z of an event structure is called initialised if there is no minimal
event e such that z−⊂z ∪ {e}. We write Ci(E) for the initialised configurations of E.

• A map f : F → A ∥ B of event structures is called right-initialised if for every x ∈
Ci(F ), either xB ∈ Ci(B) and we write x = x, or there exists a unique x ⊆ x ∈ Ci(F )
such that xB ∈ Ci(B) and x\x contains only events that are sent to minimal events
of B. This is the case if f is a thunkable strategy as defined in Definition 5.5.1, or
the parallel composition of multiple thunkable strategies.

• A map g : G → B ∥ C of event structures is called left-initialised if for every
y ∈ Ci(G), yB ∈ Ci(B) and moreover for every m ∈ Ci(B) containing only minimal
events, there exists a unique ym ∈ Ci(G) such that g(ym) = m. This is the case if
g is a negative strategy as defined in Definition 5.5.1, or the parallel composition of
multiple negative strategies.

Lemma B.1.3. If f : F → A ∥ B is right-initialised and g : G→ B ∥ C is left-initialised,
then for every z ∈ Ci(G ⊛f,g F ), either z has an initialised projection on B and we write
z = z, or there exists a unique z ⊆ z ∈ Ci(G⊛f,g F ) such that z has an initialised projection
on B and z\z contains only events send to minimal events of B.
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Definition B.1.4. Given f : F → A ∥ B right-initialised and g : G → B ∥ C left-
initialised, two matching compatible configurations x ∈ C(F ) and y ∈ C(G) are said

Initialised Matching Compatible if xB = yB is initialised.

Minimal Initialised Matching Compatible if moreover for every (x′, y′) initialised matching
compatible, with x′

A = xA, y′
C = yC , x′ ⊆ x and y′ ⊆ y, we have x′ = x and y′ = y.

We say that z ∈ Ci(G⊙f,g F ) is the initialised interactive composition of x ∈ Ci(F ) and
y ∈ Ci(G) if [z]⊛ = y ⊛ x.

Lemma B.1.5. We have the following properties

• For every pair (x, y) ∈ Ci(F )×Ci(G), there exists at most one z ∈ Ci(G⊙f,g F ) which
is the initialised interactive composition of x and y. When it exists, we write it y⊙ix.

• For every z ∈ Ci(G⊙f,g F ), there exists exactly one pair (x, y) such that z = y ⊙i x.

Proposition B.1.6. We consider f : F → A ∥ B is right-initialised and g : G → B ∥ C
is left-initialised. We have a bijection between the set of configurations z ∈ Ci(G ⊙f,g F )
and the set of pairs of minimal initialised matching compatible pairs (x, y) ∈ Ci(F )×Ci(G).
The bijection is given by z = y ⊙i x.

Lemma B.1.7. The operation ⊙i is union-preserving and intersection-preserving, i.e.,
if (x, y), (x′, y′) are minimal initialised matching compatible, and x ∪ x′ and y ∪ y′ are
configurations, then (x ∪ x′, y ∪ y′) is minimal initialised matching compatible and (y ∪
y′)⊙i (x ∪ x′) = (y ⊙i x) ∪ (y′ ⊙i x′); and a similar property for the intersection.

B.1.3 Proof of Semi-Bifunctoriality
To prove the semi-bifunctoriality, we start by two lemmas which highlight the interaction
of thunkability on the interactive composition.

Lemma B.1.8. We assume σ : A 7→ B and τ : B 7→ C two negative quantum strategies.
If τ is thunkable and y ⊙ x ∈ C(T ⊙ S) then

• y ⊙ x is empty if and only if y and x are both empty.

• y ⊙ x is pre-value if and only if y is empty and x is pre-value.

• y ⊙ x is post-value if and only if both y and x are post-value.

Proof. For y⊙x to be pre-value, either y⊛x contains an event sent to B, i.e., y is pre-
value and x is post-value, or y ⊛x does not any event sent to B, i.e., y is empty and x
is pre-value. Since τ is thunkable, the only pre-value configurations are singletons. So
if y is pre-value and x is post-value, that would make (x, y) a non-minimal matching
compatible pair of configurations, since (x\{vx},∅) with vx the value-event of x is a
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matching compatible pair with the same projection on A and B. This proves the first
item. The second item is immediate. □

For the following lemma, we rely on ⊙i defined in Appendix B.1.2. We recall that the
main difference between ⊙i and ⊙ is that while y ⊙ x can be such that the projection of y
and x on B are empty, we expect in y ⊙i x that y and x contain as many events minimal
in B as possible.
Lemma B.1.9. We assume σ : A 7→ B and τ : B 7→ C two negative quantum strategies.
If σ is thunkable, then for y ⊙i x ∈ Ci(T ⊙ S) we have

• y ⊙i x is pre-value if and only if y is pre-value and x is post-value.

• y ⊙i x is post-value if and only if both y and x are post-value.
Moreover, Qτ⊙σ(y ⊙i x) = Qτ (y) ◦ Qσ(x).

Proof. Since τ is negative, it is left-initialised as defined in Appendix B.1.2. Since σ
is thunkable, it is right-initialised as defined in this same section. This allows us to
use Proposition B.1.6, meaning that all the configurations of Ci(T ⊙S) are of the form
y ⊙i x.. For y ⊙i x to be pre-value, either y ⊛ x contains an event sent to B, i.e., y is
pre-value and x is post-value, or y ⊛ x does not contain any event sent to B, i.e., y is
empty and x is pre-value. By definition of ⊙i, y is non-empty so this proves the first
item. The second item is immediate.

The equation on quantum valuations comes from the thunkability of σ, and relies
on the property “dσ({m}, {m, e}) = 0”. We know that (x, y) is minimal initialised
matching compatible. If (x, y) is also minimal matching compatible, then that means
y ⊙ x = y ⊙i x, and we have

Qτ⊙σ(y ⊙i x) = Qτ⊙σ(y ⊙ x) = Qτ (y) ◦ Qσ(x)

Otherwise, using the results of Appendix B.1.2, this means that for y′⊙x′ = y⊙ix, we
have y′ ⊛ x′ ⊂ y ⊛ x, with the difference being events that are sent to negative events
in B. Since B is an arena, its minimal events are in conflict so y′ ⊛x′ e−−⊂y ⊛x, with e
being sent to B. So y = (y′ ⊔{πT (e)−}) and x = (x′ ⊔{πS(e)+})). Using thunkability
of σ, we obtain that necessarily x′ is a singleton, and we have

dσ(x′;x) = 0

In other words
Qσ(x′) = HB(x′

B ⊆+ xB) ◦ Qσ(x)

On the other side, using obliviousness, we have

Qτ (y) = Qτ (y′) ◦ HB(y′
B ⊆+ yB)
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Combining the two, we obtain

Qτ⊙σ(y ⊙i x) = Qτ⊙σ(y′ ⊙ x′)
= Qτ (y′) ◦ Qσ(x′)
= Qτ (y′) ◦ HB(x′

B ⊆+ xB) ◦ Qσ(x) = Qτ (y) ◦ Qσ(x)

□

We now prove the semi-bifunctoriality.
Proposition B.1.10 (Semi-Bifunctoriality of the Parallel Tensor). For σ : A 7→ B, σ′ :
A′ 7→ B′, τ : B 7→ C and τ ′ : B′ 7→ C ′ two negative quantum strategies, we have the
semi-bifunctoriality of ⊗p, i.e., up to isomorphism

(τ ⊗p τ ′)⊙ (σ ⊗p σ′) � (τ ⊙ σ)⊗p (τ ′ ⊙ σ′)

whenever τ and τ ′ are thunkable, or σ and σ′ are thunkable.

Proof. We write S, S′, T, T ′ for the esps associated to the strategies σ, σ′, τ, τ ′. We will
prove a union-preserving and intersection-preserving bijection between C(T ⊗p T ′) ⊙
(S⊗p S′) and C((T ⊙S)⊗p (T ′⊙S′)), which will allow us to use Proposition 4.2.6 and
conclude that they are isomorphic as esps.

We assume that τ and τ ′ are thunkable. It follows that τ ⊗ τ ′ is thunkable too.
We take (y⊙x) ∈ C(T ⊙S) and (y′⊙x′) ∈ C(T ′⊙S′). Using Lemma B.1.8, we obtain
that

((y ⊙ x), (y′ ⊙ x′)) synchronised ⇐⇒ (y, y′) and (x, x′) synchronised

We now have the following equivalence sequence:

(y ⊙ x)⊗p (y′ ⊙ x′) ∈ C((T ⊙ S)⊗p (T ′ ⊙ S′))
⇐⇒

{

(y ⊙ x) ∥ (y′ ⊙ x′) ∈ C((T ⊙ S) ∥ (T ′ ⊙ S′))

((y ⊙ x), (y′ ⊙ x′)) synchronised
⇐⇒

{

(y ∥ y′)⊙ (x ∥ x′) ∈ C(T ∥ T ′)⊙ (S ∥ S′)

(y, y′) and (x, x′) synchronised
⇐⇒

(y ⊗p y′)⊙ (x⊗p x′) ∈ C(T ⊗p T ′)⊙ (S ⊗p S′)

This forms a union-preserving and intersection-preserving bijection, as Lemma 4.3.7
ensures that ⊙ preserves union. Using Proposition 4.2.6, we know they are isomorphic
as esps. We check without difficulties that the quantum valuations also match, so we
have an isomorphism of quantum strategies.
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We now assume instead that σ and σ′ are thunkable. It follows that σ ⊗ σ′ is
thunkable too. We take (y ⊙i x) ∈ Ci(T ⊙ S) and (y′ ⊙i x′) ∈ Ci(T ′ ⊙ S′). Using
Lemma B.1.9, we obtain that

((y ⊙i x), (y′ ⊙i x′)) synchronised ⇐⇒ (y, y′) and (x, x′) synchronised

We now have the following equivalence sequence:

(y ⊙i x)⊗p (y′ ⊙i x′) ∈ Ci((T ⊙ S)⊗p (T ′ ⊙ S′))
⇐⇒

{

(y ⊙i x) ∥ (y′ ⊙i x′) ∈ Ci((T ⊙ S) ∥ (T ′ ⊙ S′))

((y ⊙i x), (y′ ⊙i x′)) synchronised
⇐⇒

{

(y ∥ y′)⊙i (x ∥ x′) ∈ Ci(T ∥ T ′)⊙ (S ∥ S′)

(y, y′) and (x, x′) synchronised
⇐⇒

(y ⊗p y′)⊙i (x⊗p x′) ∈ Ci(T ⊗p T ′)⊙ (S ⊗p S′)

This forms a union-preserving and intersection-preserving bijection, as Appendix B.1.2
ensures that ⊙i preserves union. We extend without problems this bijection from Ci
to C by mapping the empty configuration to the empty configuration. Using Propo-
sition 4.2.6, we know they are isomorphic as esps. Using Lemma B.1.9, we check
without difficulties that the quantum valuations also match, so we have an isomor-
phism of quantum strategies. □
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B.2 Visibility and Deadlock-Free Composition
In this section, we provide a new proof for the deadlock-free composition of visible strate-
gies. This proof is more general than the proof the can be found in [Cas17], as it extends to
strategies between games that might not be forest-like. We start by recalling the definition
of visibility we gave before.

B.2.1 Definitions
Definition B.2.1. For f : S → E a map of es, we say that s′ ∈ |S| justifies s ∈ |S|
whenever s′ ≤S s and f(s′) _E f(s).
Definition B.2.2. A (potentially partial) map of es f : S ⇀ E is said to be visible
whenever for every gcc ρ = s0 _S . . . _S sn starting with a minimal event s0, if σ(sn) is
non-minimal in E, then there exists s′ ∈ ρ which justifies sn.

A practical characterisation of visibility is through grounded sets.
Definition B.2.3 (Grounded Sets). In an event structure E, a set of events X ∈ Pfin(E)
is said to be grounded if for every e ∈ X, either e is minimal in E, or there exists e′ _E e
such that e′ ∈ X.

We note that a grounded set are exactly union of gccs.
Lemma B.2.4. A (potentially partial) map of es f : S ⇀ E is visible if and only if for
every gcc ρ of S, f ρ is grounded. A (potentially partial) map of es f : S ⇀ E is visible if
and only if for every grounded set G ∈ Pfin(S), f G is grounded.

Proof. We take f visible. By induction on the size of gccs, we obtain that for every
gcc ρ of S, we have f ρ grounded. Since a grounded set is a union of gccs, and that
grounded sets are stable by unions, it follows that the image of every grounded set is
grounded. Conversely, if we assume that f preserves grounded sets, then for any gcc
ρ = s0 _S . . . _S sn, σ ρ must be a grounded set. Using the definition of grounded
sets, it follows that there is e′ _E σ sn with e′ ∈ f ρ. This mean that we have s′ ∈ ρ
such that f(s′) _E f(sn). □

While the definition of visibility does not depend on the property of the games, visibility
is ill-behaving on some games of arbitrary shape. This is why in earlier papers, visibility
was only defined on forest-like games. As a contribution of this thesis, we generalise to a
larger class of games than forest-like games: the N-free games.
Definition B.2.5. A game A is said to be N-free if such that

∀a, b, c, d ∈ |A| distincts with {a, b, c, d} ∈ ConA,
a

❴��� ⑥��$
❂❂❂❂❂❂❂ b

❴���
c d

=⇒ b <A c
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We note that we only restrict immediate causality, and if a <A e <A d instead, then
we do not forbid {c, d} ∈ ConA. We also note that forest-like games (like arenas in Def-
inition 5.5.1) are always N-free. The N-freeness is central into leveraging the courtesy
property of our strategies:

Lemma B.2.6 (Courtesy). If σ : A 7→ B is a strategy with A and B N-free games1, then
whenever s+ <S t

− with σ(s)+ _A⊥∥B σ(t)−, we have s+ _S t
−.

Proof. Assume we have a chain s = e0 _S . . . _S en = t with n > 1 (not necessarily
a gcc as s might not be minimal). Since we have s+ _S e1, it follows from courtesy
that σ(s) _A⊥∥B σ(e1). Similarly, we have σ(en−1) _A⊥∥B σ(t). Assume n = 2, i.e.,
e1 = en−1. That would make σ(s) _A⊥∥B σ(e1) _A⊥∥B σ(t) and σ(s) _A⊥∥B σ(t),
which is a contradiction. So n > 2 and σ(s), σ(t), σ(e1), σ(en−1) are distinct. They
form a N-pattern, so necessarily σ(en−1) <A⊥∥B σ(e1) or {σ(e1), σ(t)} < ConA⊥∥B,
both contradicting e1 <S en−1 ≤S t. □

B.2.2 Category of Visible Strategies
To prove that visibility is preserved under interactive composition, we start by a lemma
about the interaction.

Lemma B.2.7. If we consider the interaction of two visible strategies σ : A 7→ B and
τ : B 7→ C between N-free games, as described in the following diagram:

∀P
∀pA

��

∀pB

��

∃!h
��✤
✤
✤

T ⊛ S
πS∥C

xxrrrrrrrrrr
πA∥T

&&▼▼▼▼▼▼▼▼▼▼

τ⊛σ

��

S ∥ C

σ∥C %%▲▲▲▲▲▲▲▲▲▲
A ∥ T

A∥τyyrrrrrrrrrr

A ∥ B ∥ C

and if we write πS : T ⊛S ⇀ S and πT : T ⊛S ⇀ T for the partial maps of es which are the
projection maps respectively πS∥C and πA∥T post-composed by hiding maps, then πS and
πT are visible.

1A game is an alternating race-free esps. We will not use the race-freeness in this section.
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Proof. We take a gcc ρ in T ⊛ S, and want to prove that its image on S ∥ C and on
A ∥ T are grounded. If ρ is empty or singleton, this is trivially true. Otherwise, we
proceed inductively. We have ρ = ρ′ _T⊛S e. We write e′ _T⊛S e for the final element
of ρ′. The event e is send by ρ ⊛ σ to an event either in A, B or C. We recall that by
Lemma A.1.2, we have necessarily πS(e′) _S πS(e) or πT (e′) _T πT (e).

• We assume the former and write πS(e′) = s′ _S s = πS(e). By induction
hypothesis, πS ρ′ and πT ρ

′ are grounded. Since e is justified by e′, it follows
that πS ρ is grounded. We need to prove that πT ρ is grounded.

– If σ(s) ∈∥ |A|, then e < dom(πT ), so πT ρ = πT ρ
′. So πT ρ is grounded.

– If σ(s) ∈∥ |B| and s positive, then e ∈ dom(πT ). We write t = πT (e), which
is necessarily negative.

∗ If τ(t)− is minimal in B⊥ ∥ C, then by receptivity t− is minimal in T .
So πT , ρ is grounded.

∗ If τ(t)− is non-minimal in B⊥ ∥ C, then σ(s)+ is non-minimal in A⊥ ∥
B, so using visibility of σ, there exists a s−

0 ∈ σ ρ′ which justifies s+.
The mean that we have e0 ∈ ρ′ such that (τ ⊛σ)(e0) _A∥B∥C (τ ⊛σ)(e).
It also means that (τ ⊛ σ)(e0) ∈∥ |B|, so e0 ∈ dom(πT ). We write
t0 = πT (e0). We have t+0 justifies t− (the polarities comes from the
fact that the games are alternating). Using Lemma B.2.6, it we have
t+0 _T t

−, so πT ρ is grounded.
– If σ(s) ∈∥ |B| and s negative then using courtesy of σ we must have
σ(s′+) _A⊥∥B σ(s−), so σ(s′+) ∈∥ |B|. Since e, e′ ∈ dom(πT ), we write
t+ = πT (e) and t′− = πT (e′). Since we know that σ(s′+) _A⊥∥B σ(s−),
we have τ(t′−) _B⊥∥C τ(t+). This mean that πT (e′) = t′ <T t = πT (e).
Lastly, since e′ _T⊛S e, then using Lemma 4.2.5 we have πT (e′) _T πT (e),
so πT ρ is grounded.

• In the latter case, we proceed symmetrically. □

Proposition B.2.8. The copy-cat strategy is visible.

This is pretty straightforward to prove, as gccs of copy-cat are always of the form
a− _ a+ _ b− _ b+ _ . . . , i.e., alternating between a negative event of A⊥ or A and
the corresponding positive event in A or A⊥ respectively, with each negative event being
justified by the positive event before it.

Proposition B.2.9. The interactive composition of two visible strategies between N-free
games is visible.
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Proof. We consider the interactive composition of σ : A 7→ B and τ : B 7→ C. We
note that to prove that a strategy is visible, we just need to prove the for all gcc ρ, the
(τ ⊙ σ) ρ is grounded. So we take a gcc ρ of T ⊙ S. We look at the interaction T ⊛ S,
and choose a gcc ρ′ of T ⊛S such that its hiding is exactly ρ. Using Lemma B.2.7, we
obtain that πT ρ′ and πS ρ′ are grounded. Since (τ ◦πT ) ρ∪ (σ ◦πS) ρ = (τ ⊛σ) ρ, then
using the visibility of τ and σ, we it follows that (τ ⊛ σ) ρ is grounded in A ∥ B ∥ C,
which implies that (τ ⊙ σ) ρ is grounded in A ∥ C. □

B.2.3 Deadlock-Free Composition
To prove deadlock-free composition, we need an additional restriction on our games: a
game is called polarised whenever all its minimal events have the same polarity.

Theorem B.2.10 (Deadlock-Free Composition). We assume A,B,C to be N-free polarised
games. If σ : A 7→ B and τ : B 7→ C are two visible strategies, and x ∈ C(S) and y ∈ C(T )
are a pair of matching configurations, then they are matching compatible.

Proof. In this proof, we see (σ ∥ C⊥) as a visible strategy from A to B ∥ C⊥, and
(A ∥ τ) as a visible strategy from A ∥ B to C, and look at the following diagram:

S ∥ C⊥

σ∥C⊥

��

A ∥ T
A∥τ
��

A⊥ ∥ B ∥ C⊥ (−)⊥

A ∥ B⊥ ∥ C

We note that whenever (σ ∥ C⊥)(ℓ) = (A ∥ τ)(r), then ℓ and r have opposite polarities.
We take x and y matching configurations, so with σ x = xA ∥ xB and σ y = yB ∥ yC

and xB = yB. Since those are a priori not compatible, we cannot write y ⊛ x yet.
However, since we want to talk about this set of event to prove that it exists, we build
instead the following set E.

We define E = {(ℓ, r) ∈ (x ∥ yC) × (xA ∥ y) | (σ ∥ C⊥)(ℓ) = (A ∥ τ)(r)}, and the
relation (ℓ, r) ◀ (ℓ′, r) whenever ℓ <S∥C⊥ ℓ′ or r <A∥T r

′. The matching configurations
are compatible if an only if (E,◀) is a acyclic. We set up some additional definitions.

• We define π(ℓ, r) as (σ ∥ C⊥)(ℓ) = (A ∥ τ)(r).

• We write (ℓ, r) ◁ (ℓ′, r′) whenever π(ℓ, r) _A∥B∥C π(ℓ′, r′). We call it the jus-
tification order. We note that if we have (ℓ′, r′) ∈ E and ℓ ∈ x such that
(σ ∥ C⊥)(ℓ) _A∥B∥C (σ ∥ C⊥)(ℓ′) then there exists a unique r such that
(ℓ, r) ◁ (ℓ′, r). Symmetrically, when we have r, there exists a unique corre-
sponding ℓ.
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• For (ℓ, r) ∈ E, we define its additive depth d(ℓ, r) as the sum over the (ℓi, ri) ◁
(ℓ, r) of the d(ℓi, ri), plus 1. If the games are forest-like, this is simply the distance
to the ground of π(ℓ, r). We note that if (ℓ, r) ◁ (ℓ′, r′) then d(ℓ, r) < d(ℓ′, r′).

• When we consider a cycle (ℓ1, r1) ◀ · · · ◀ (ℓn, rn) ◀ (ℓ1, r1), with n ≥ 2, we define
its length as n and its depth as the sum of all the d(ℓi, ri).

Assuming (E,◀) is not acyclic, we take a cycle of minimal depth (ℓ1, r1) ◀ · · · ◀
(ℓn, rn) ◀ (ℓ1, r1). When we write (ℓi, ri), we consider i modulo n. We prove a short
lemma that will allow to eliminate a lot of contradictory cases.

Lemma B.2.11 (Justification). There is no (ℓ, r) such that

(ℓi, ri) ◀= (ℓ, r) ◁ (ℓi+1, ri+1)

Proof. We necessarily have (ℓ, r) ◀ (ℓi+2, ri+2). If the hypothesis is an equality,
then (ℓi, ri) ◀ (ℓi+2, ri+2) so we can find a shortcut in the cycle. This would
decrease the depth of the cycle, so this is a contradiction. If the hypothesis is not
an equality, then we also found a cycle of smaller depth using (ℓi, ri) ◀ (ℓ, r) ◀
(ℓi+2, ri+2). □

We can now analyse this minimal cycle, and find a lot of properties that minimality
forces on it.

• This cycle alternate ℓi < ℓi+1 and rj < rj+1. Indeed, if we had ℓi < ℓi+1 < ℓi+2,
then we could remove (ℓi+1, ri+1) from the cycle and reduce the size. Same
arguments for rj . Without loss of generality, we assume that ℓ2k < ℓ2k+1 and
r2k+1 < r2k+2 for every k.

• The length n is even. Indeed, if it was odd, we would obtain ℓ1 < · · · < ℓn < ℓ1,
hence n = 1. We assumed n ≥ 2.

• This cycle is alternating in polarities, with (ℓ−2k, r
+
2k) and (ℓ+2k+1, r

−
2k+1). Indeed,

assume
(ℓ2k−1, r2k−1) ◀ (ℓ+2k, r

−
2k) ◀ (ℓ2k+1, r2k+1)

Using courtesy of A ∥ τ , there exists r2k−1 ≤ r _A∥T r−
2k such that (A ∥

τ)(r2k−1) _A∥B∥C (A ∥ τ)(r−
2k). We take ℓ ≤ ℓ2k such that (ℓ, r) ◁ (ℓ+2k, r

−
2k). We

have
(ℓ2k−1, r2k−1) ◀ (ℓ, r) ◁ (ℓ+2k, r

−
2k)

By the justification lemma, we have a contradiction.
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• All the π(ℓi, ri) are in B. Indeed, assume π(ℓ2k, r2k) or π(ℓ2k+1, r2k+1) is in
C. Since ℓ2k <S∥C⊥ ℓ2k+1, and S and C⊥ are disjoint in S ∥ C⊥, we have
both π(ℓ2k, r2k) and π(ℓ2k+1, r2k+1) in C. It follows that we have π(ℓ2k, r2k) ≤C
π(ℓ2k+1, r2k+1), meaning that r2k ≤A∥T r2k+1, then

(ℓ2k−1, r2k−1) ◁ (ℓ2k, r2k)

By the justification lemma, we have a contradiction. We proceed symmetrically
to prove that none of them are in A.

• None of the π(ℓi, ri) are minimals in B. Indeed, assume π(ℓ−2k, r
+
2k) is minimal.

By courtesy, it follows that ℓ−i is minimal in S ∥ C⊥. We have

(ℓ2k, r2k) ◀ (ℓ2k+1, r2k+1)

Since (σ ∥ C⊥)(ℓ2k) and (σ ∥ C⊥)(ℓ2k+1) have opposite polarities, and B is
positive or negative, both cannot be minimal events in B, so (σ ∥ C⊥)(ℓ2k+1) is
not minimal. Using visibility of (σ ∥ C⊥), and Lemma B.2.4, we obtain ℓ < ℓ2k+1

such that (σ ∥ C⊥)(ℓ) _A∥B∥C (σ ∥ C⊥)(ℓ2k+1) and ℓ and ℓ2k are comparable
in S ∥ C⊥. Since ℓ2k is minimal, it means ℓ2k ≤ ℓ. We take r < r2k+1 such that
(l, r) ◁ (ℓ2k+1, r2k+1). So we have

(ℓ2k, r2k) ◀= (l, r) ◁ (ℓ2k+1, r2k+1)

By the justification lemma, this is a contradiction.

We now enter the core of the argumentation. We focus on an arbitrary (ℓ2k, r2k). We
have

(ℓ2k−1, r2k−1) ◀ (ℓ2k, r2k)

We take a gcc ρ0 of A ∥ T ending on r+
2k and containing r−

2k−1. Since (A ∥ τ)(r2k) is
not minimal, using visibility of (A ∥ τ) and Lemma B.2.4, we can find b−

0 in ρ0 such
that (A ∥ τ)(b−

0 ) _A∥B∥C (A ∥ τ)(r+
2k). We find a+

0 such that (a+
0 , b

−
0 ) ◁ (ℓ−2k, r

+
2k). If

we had r−
2k−1 ≤ b−

0 , we could find a contradiction using the justification lemma. So
r−

2k−1 > b−
0 . We then have:

(ℓ2k−1, r2k−1) ▶ (a0, b0) ◁ (ℓ2k, r2k) ◀ (ℓ2k+1, r2k+1)

We now reuse a similar reasoning, taking a gcc ρ1 of S ∥ C⊥ ending on ℓ+2k+1 and
containing ℓ−2k and containing a0. Since (σ ∥ C⊥)(ℓ2k+1) is not minimal, using visibility
of (σ ∥ C⊥), and Lemma B.2.4, we can find a−

1 in ρ1 such that (σ ∥ C⊥)(a−
1 ) _A∥B∥C
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σ : ∅ 7→ B Game B τ : B 7→ ∅
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Figure B.1: Visibility does not prevent deadlock without N-freeness

(σ ∥ C⊥)(ℓ+2k+1). We find b+
1 such that (a−

1 , b
+
1 ) ◁ (ℓ2k+1, r2k+1). If we had ℓ−2k ≤ a−

1 ,
we could find a contradiction using the justification lemma so ℓ−2k > a−

1 . We then have

(a+
0 , b

−
0 ) (a−

1 , b
+
1 )

▶ ▷ ▶ ▷

(ℓ+2k−1, r
−
2k−1) ▶ (ℓ−2k, r

+
2k) ◀ (ℓ+2k+1, r

−
2k+1)

However, we also note that ρ1 was chosen such that a0 was in it. So a+
0 and a−

1

are comparable. From polarity, they cannot be equal. Since B is N-free, using the
courtesy lemma we that a+

0 _S ℓ
−
2k. Since we have a−

1 <S ℓ
−
2k and a0, a1, ℓ2k in the

same gcc, we must have a−
1 ≤ a+

0 , hence

(a0, b0) ▶ (a1, b1)

We iterate, using dual reasoning for odd indices, and create a chain

(a0, b0) ▶ (a1, b1) ▶ (a2, b2) ▶ . . .

Since all of them are lower in the justification order than elements of the cycle, which
form a finite set, we can take the smallest j such that there is a i < j with (ai, bi) =
(aj , bj). So we have

(ai, bi) ▶ · · · ▶ (aj , bj) = (ai, bi)

We remark that the depth of this cycle is at least n lower than the initial depth, so
we found a contradiction. □
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