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ii

Titre : Étude mathématique de la dérivation de l’équation de Boltzmann dans
un domaine à bord.

Résumé : Ce travail s’inscrit dans le cadre de l’analyse des équations cinétiques,
qui sont un cas particulier d’équations aux dérivées partielles.
L’équation de Boltzmann se propose de modéliser des gaz fortement dilués. Ses
solutions présentent un comportement intéressant, aussi bien du point de vue
physique que mathématique : elles évoluent de façon irréversible vers un état
d’équilibre bien déterminé. Cependant, l’équation de Boltzmann est obtenue
formellement à partir d’une modélisation microscopique de la matière, où les
interactions entre les atomes constituant le gaz étudié sont temporellement
réversibles. De ce paradoxe apparent est née la motivation d’une obtention
(on parle de dérivation) mathématiquement rigoureuse de l’équation de Boltz-
mann.
Ce manuscrit s’attache à obtenir cette dérivation dans le cadre d’un domaine
à bord (précédemment obtenue par Lanford dans le cas d’un domaine sans
bord, qui est historiquement le premier résultat d’une dérivation rigoureuse de
l’équation de Boltzmann) avec lequel les particules, modélisées par des sphères
dures, interagissent par réflexion spéculaire. Le domaine étudié ici sera le
demi-espace. Cette dérivation s’appuie sur l’étude de suites d’équations, les
hiérarchies BBGKY et de Boltzmann. Après une présentation de l’obtention
formelle de ces hiérarchies dans le cas d’un domaine à bord, un soin tout par-
ticulier a été apporté la définition rigoureuse de ces hiérarchies dans un cadre
fonctionnel approprié. Dans une seconde partie, la preuve de la convergence des
solutions de la hiérarchie BBGKY vers celles de la hiérarchie de Boltzmann est
présentée en détail. En particulier, le contrôle géométrique des recollisions dans
le cas du demi-espace est traité de la façon la plus exhaustive possible.

Mots clés : Analyse, équations aux dérivées partielles, équations cinétiques,
équation de Boltzmann, dérivation de l’équation de Boltzmann, théorème de
Lanford, hiérarchie BBGKY, sphères dures.
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Title : Mathematical derivation of the Boltzmann equation with boundary
condition.

Abstract : This work belongs to the field of kinetic equations, a particular
case of Partial Differential Equations.
The Boltzmann equation is a model introduced in order to describe diluted gases.
The solutions of this equation present an interesting behaviour: they converge ir-
reversibly towards a determined equilibrium. However, the Boltzmann equation
is formally obtained using a microscopic description of the matter, in which the
interactions between the atoms constituting the gas are time-reversible. From
this paradox has emerged the question of a mathematically rigorous derivation
of the Boltzmann equation.
In this work one has obtained such a derivation in the case of a domain with
a boundary (Lanford obtained this derivation in the case when the domain is
the whole Euclidean space, which was historically speaking the first rigorous
derivation of the Boltzmann equation), by prescribing the specular reflexion as
the way the particles and the boundary of the domain interact. The domain
here will be the half-space.
This derivation is using sequences of equations, namely the BBGKY and the
Boltzmann hierarchies. After a presentation of the formal derivation of those
hierarchies in the case of a domain with boundary, one has carefully addressed
the rigorous definition of those hierarchies, detailing the appropriate functional
setting. In a second part, the proof of the convergence of the solutions of the
BBGKY hierarchy towards the solutions of the Boltzmann hierarchy is pre-
sented exhaustively. In particular, the geometrical control of the recollisions in
the case of the half-space has been written in the most comprehensive way.

Keywords : Analysis, PDEs, kinetic equations, Boltzmann equation, deriva-
tion of the Boltzmann equation, Lanford’s theorem, BBGKY hierarchy, hard
spheres.
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1.2 La quantité décrite par l’équation de Boltzmann et l’obtention
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1.2.3 Le cas d’un domaine à bord . . . . . . . . . . . . . . . . . 16

1.2.4 L’équation de Boltzmann . . . . . . . . . . . . . . . . . . 18

1.3 Résultats élémentaires sur l’équation de Boltzmann . . . . . . . . 22

1.3.1 Lois de conservation . . . . . . . . . . . . . . . . . . . . . 22
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Ce travail a pour objet l’obtention rigoureuse de l’équation de Boltzmann
à partir d’une modélisation particulaire de la matière constituant un gaz, qui
évolue à l’intérieur d’un volume délimité par une paroi.

Dans cette introduction, on présentera brièvement au cours d’une première par-
tie l’équation de Boltzmann, son histoire, sa forme et sa signification. Dans cette
même partie, on abordera quelques propriétés élémentaires vérifiées par les so-
lutions de cette équation, et on décrira leurs interprétations physiques.
Dans une deuxième partie, on présentera un bref état de l’art sur l’équation
de Boltzmann, et les grands problèmes ouverts la concernant. En particulier,
on introduira la question centrale autour de laquelle s’articule entièrement ce
travail : le problème de l’obtention rigoureuse (on parle alors de dérivation) de
l’équation de Boltzmann.
Enfin, dans une troisième partie, les résultats réunis dans ce travail seront
présentés.
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Chapitre 1

L’équation de Boltzmann

1.1 Le contexte

L’équation de Boltzmann s’inscrit dans le cadre de la théorie des équations aux
dérivées partielles qui ont trait à la physique, et en particulier la théorie des
équations cinétiques.
Les équations aux dérivées partielles de la physique mésoscopique et macrosco-
pique forment d’une famille particulière d’équations aux dérivées partielles. Elles
apparaissent lorsque l’on tente de comprendre le comportement d’un fluide, bien
souvent un gaz ou un plasma, en effectuant une limite à partir d’une descrip-
tion particulaire, c’est-à-dire une description à l’échelle microscopique par les
constituants élémentaires de ce fluide. Autrement dit, en considérant un très
grand nombre d’atomes, molécules ou ions, constituant le fluide étudié, ou de
façon plus générale, de particules, qui évoluent en suivant des lois qui décrivent
leurs interactions, avec le milieu ambiant d’une part, et entre particules d’autre
part, on cherche à étudier le comportement global de cet ensemble de parti-
cules élémentaires. L’idée remonte au moins au XVIIIe siècle, au cours duquel le
physicien et mathématicien suisse Daniel Bernoulli, décédé à Bâle, a publié en
1738 le traité Hydrodynamica, sive de Viribus et Motibus Fluidorum commen-
tarii [5]. On parle ici de comprendre le comportement d’un fluide, en terme de
mouvements et de phénomènes que l’on observe à échelle humaine. Ces compor-
tements peuvent par exemple être décrits par des températures, des pressions,
ou des vitesses d’écoulement. Bernoulli établit par exemple dans son traité un
lien entre la pression qu’exerce un gaz sur la paroi du récipient qui le contient,
et les chocs contre cette paroi des particules qui constituent ce gaz.
Une telle équation est en fait un pari : on espère comprendre le monde par le
comportement d’éléments, invisibles individuellement à l’échelle des sensations
humaines, mais qui agissant ensemble produisent des effets mesurables. C’est en
ce sens que l’on parle d’un passage de modèles microscopiques vers des modèles
mésoscopiques ou macroscopiques.
Par ailleurs, cette recherche de conséquences sur le comportement d’un tout (à

11



12 CHAPITRE 1. L’ÉQUATION DE BOLTZMANN

une échelle dépassant de loin celle à laquelle évoluent les constituants élémentaires
et très nombreux de ce tout) à partir du comportement individuel et bien com-
pris de ses constituants semble être une approche particulièrement féconde. De
fait, ces équations constituent un outil de choix pour étudier des phénomènes
aussi éloignés a priori que sont la propagation d’épidémies dans une population
ou le mouvement des galaxies dans l’univers.

Enfin, une équation cinétique est une équation dont l’inconnue, qui sera notée
f , est une fonction qui dépend de trois paramètres : le temps, noté t, une posi-
tion de l’espace (souvent à trois dimensions, en vue des applications concrètes),
notée x, et enfin une vitesse, caractérisée par une orientation, un sens, et une
magnitude, ce qui peut aussi se représenter par un point de l’espace (une fois
encore, en général à trois dimensions), notée v.
La quantité

f(t, x, v)

représente le nombre de particules constituant le gaz étudié qui se trouvent, à
l’instant t, à la position x et se déplaçant à la vitesse v. Cette fonction f porte
donc naturellement le nom de densité de présence dans l’espace des phases.
Tout l’objet des équations cinétiques est de décrire l’évolution de cette densité
de présence.
Dans tout ce travail, on se contentera d’étudier des particules décrites seule-
ment par leur vitesse et leur position. En particulier, toutes les particules seront
supposées identiques (avec une même masse), c’est-à-dire que le fluide étudié
ne sera composé que d’une espèce. Par ailleurs, les particules représenteront des
atomes, et non des molécules. Ainsi, l’énergie interne de chaque particule (qui
sert à décrire, par exemple, les vibrations internes à certaines molécules) ne sera
pas prise en compte. Enfin, on ne considérera ici que des particules neutres, qui
n’interagissent pas avec un champ électrique ou magnétique.

1.2 La quantité décrite par l’équation de Boltz-
mann et l’obtention formelle de cette équation

L’équation de Boltzmann est une équation cinétique particulière. Avant de la
décrire, on commence par présenter le modèle microscopique qui permet de
l’obtenir.

1.2.1 Principe d’inertie et transport libre

Si dans un premier temps, on affecte à chaque particule du gaz une vitesse à
l’instant initial t = 0, et si l’on suppose que les particules ne sont soumises
qu’au principe d’inertie, qui signifie exactement que ces particules conservent
leur vitesse pour toujours, et avancent donc en ligne droite à vitesse constante,
on en déduit alors directement la position de chaque particule, à n’importe quel
instant. En effet, si on note x la position d’une particule à l’instant initial t = 0
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et v sa vitesse au même instant, sa position à n’importe quel instant t sera
donnée par la quantité

x+ tv.

Ainsi, si la répartition de l’ensemble des particules à l’instant initial est connue
(c’est-à-dire, si on suppose connues la position et la vitesse de chacune des
particules constituant le gaz étudié au temps t = 0), on peut calculer la densité
de présence du gaz à l’instant initial, que l’on notera f0 (et qui est donc une
fonction qui ne dépend que de la position x et de la vitesse v). Et d’autre
part, puisque l’on connâıt la position et la vitesse de chaque particule, à chaque
instant, on est donc en mesure de connâıtre la densité de présence à tout instant.
Elle est donnée par l’expression

(t, x, v) 7→ f(t, x, v) = f0(x− tv, v).

Si on suppose la donnée initiale suffisamment régulière, on vérifie facilement
qu’elle est solution de l’équation aux dérivées partielles suivante :

∂tf + v · ∇xf = 0, (1.1)

appelée équation de transport libre. Cette équation décrit donc le comportement
d’une densité de présence d’un nuage de particules qui évoluent en suivant le
principe d’inertie.

1.2.2 Le modèle des sphères dures

Il convient d’étudier des modèles moins simplistes que ce dernier. En suivant le
même cheminement que Ludwig Boltzmann, on va donc supposer que les parti-
cules composant le gaz interagissent entre elles.

Mais comment les particules peuvent-elles interagir entre elles ? L’heuristique
peut être d’un certain secours pour répondre à cette question, délicate au de-
meurant, puisque s’il n’est pas aisé d’observer les atomes ou les molécules, il
est sans doute encore plus ardu d’observer directement des particules interagir
entre elles. Un exemple relativement simple d’interactions entre constituants
élémentaires d’un système, chacun des constituants suivant le principe d’iner-
tie lorsqu’il est suffisamment éloigné de tous les autres constituants, est donné
par des boules roulant sur un billard, et entrant de temps à autre en collision
avec une autre boule. On va donc supposer, sans vergogne, que les particules,
constituant le gaz que l’on étudie, évoluent selon les mêmes lois. Autrement dit,
on va supposer que les particules sont des sphères ayant toutes le même rayon,
qui sera noté ε > 0, et qui lorsqu’elles entrent en collision, voient leurs vitesses
modifiées de telle sorte que le choc soit parfaitement élastique.
Bien entendu, il ne s’agit que d’un modèle, obtenu par analogie, et retenu pour
sa simplicité : il est donc critiquable. Ainsi, d’autres modèles, plus réalistes,
mais aussi plus complexes, s’attachent à décrire avec plus de soin les interac-
tions entre les molécules qui constituent un fluide. On renvoie par exemple à
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[23]1 où des modèles d’interaction basés sur des potentiels, comme le modèle de
Lennard-Jones, sont présentés.

Pour définir des interactions qui représentent des collisions élastiques, on peut
poser la loi suivante de modification des vitesses au cours d’une collision entre
deux particules, qui se produit lorsque les centres x1 et x2 d’une paire de par-
ticules sont séparés par une distance d’exactement ε. Si l’on note v et v∗ les
vitesses respectives des deux particules avant la collision, aussi appelées vitesses
pré-collisionnelles, on définit

v′ = v − (v − v∗) · ωω (1.2)

et

v′∗ = v∗ + (v − v∗) · ωω, (1.3)

où v′ et v′∗ représentent les vitesses respectives des deux particules après la
collision, et ω le vecteur normalisé de la position relative de la seconde particule
par rapport à la première, c’est-à-dire :

ω =
x2 − x1∣∣x2 − x1

∣∣ .
On parlera de vitesses post-collisionnelles pour v′ et v′∗, et de paramètre angu-
laire de collision pour ω.
Dire que les particules entrent en collision au temps τ0 signifie d’une part que∣∣x1(τ0)− x2(τ0)

∣∣ = ε

(condition de contact).

D’autre part, puisque les trajectoires respectives des particules s’expriment sous
la forme

x1(τ) = x1(τ0) + (τ − τ0)v

et

x2(τ) = x2(τ0) + (τ − τ0)v∗,

au moins sur un court intervalle de temps avant la collision, dire que la collision
a lieu signifie que la distance entre les particules va en diminuant avant l’impact,
c’est-à-dire que : ï

d

dτ

∣∣x1(τ)− x2(τ)
∣∣ò
τ=τ−0

< 0,

1Voir la section 4 ”Generalizations” du chapitre II ”THE BOLTZMANN EQUATION”, et
en particulier la discussion qui débute page 59.
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mais puisque l’expression explicite des trajectoires juste avant l’impact permet
d’obtenir :ï

d

dτ

∣∣x1(τ)− x2(τ)
∣∣2ò

τ=τ−0

=

ï
d

dτ

∣∣∣(x1(τ0)− x2(τ0)
)

+ (τ − τ0)
(
v − v∗

)∣∣∣2ò
τ=τ−0

=

ï
d

dτ

(∣∣x1(τ0)− x2(τ0)
∣∣2

+2(τ − τ0)
(
x1(τ0)− x2(τ0)

)
·
(
v − v∗

)
+ (τ − τ0)2

∣∣v − v∗∣∣2)ò
τ=τ−0

= 2
(
x1(τ0)− x2(τ0)

)
·
(
v − v∗

)
,

et que la distance entre les particules est bien entendu une quantité strictement
positive, la condition se réécrit :ï

d

dτ

∣∣x1(τ)− x2(τ)
∣∣ò
τ=τ−0

< 0 ⇔
(
x1(τ0)− x2(τ0)

)
·
(
v − v∗

)
< 0

(condition de configuration pré-collisionnelle).

On observe en particulier, grâce aux expressions explicites (1.2) et (1.3) des
vitesses post-collisionnelles, que l’on a :

(
x1(τ0)− x2(τ0)

)∣∣x1(τ0)− x2(τ0)
∣∣ · (v′ − v′∗) = −ω ·

(
v − v∗ − 2(v − v∗) · ωω

)
= ω ·

(
v − v∗

)
,

si bien que (
x1(τ0)− x2(τ0)

)
·
(
v′ − v′∗

)
> 0,

ou encore ï
d

dτ

∣∣x1(τ)− x2(τ)
∣∣ò
τ=τ+

0

> 0,

ce qui montre que les particules vont avoir tendance à s’écarter après la collision.
Par ailleurs, si l’on calcule la quantité de mouvement des deux particules après
la collision (en divisant par les masses des particules, que l’on aura supposées
égales) :

v′ + v′∗ =
(
v − (v − v∗) · ωω

)
+
(
v∗ + (v − v∗) · ωω

)
= v + v∗, (1.4)
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ainsi que l’énergie cinétique post-collisionnelle du même système :

|v′|
2

2

+
|v′∗|
2

2

=
1

2

(
|v|2 − 2

(
(v − v∗) · ω

)(
v · ω

)
+
∣∣(v − v∗) · ω∣∣2

+ |v∗|2 + 2
(
(v − v∗) · ω

)(
v∗ · ω

)
+
∣∣(v − v∗) · ω∣∣2)

=
1

2

(
|v|2 − 2

(
(v − v∗) · ω

)2
+ |v∗|2 + 2

∣∣(v − v∗) · ω∣∣2)
=
|v
∣∣

2

2

+
|v∗|
2

2

, (1.5)

on peut observer que l’on a construit un modèle qui transforme les paires de vi-
tesses pré-collisionnelles en vitesses post-collisionnelles, et qui préserve la quan-
tité de mouvement et l’énergie cinétique au cours du temps (dans le cadre de
collisions entre molécules monoatomiques, où l’énergie interne microscopique
n’apparâıt pas), ce qui est parfaitement satisfaisant.

On peut remarquer que des modèles de collision inélastiques existent aussi (voir
par exemple [6], ainsi que [64]2 pour un tour d’horizon de références sur le sujet).
Mais il semble que le problème de la dérivation de l’équation de Boltzmann à
partir d’un tel modèle soit encore un probème ouvert et qu’il s’avère des plus
délicats.

1.2.3 Le cas d’un domaine à bord

La spécificité de ce travail réside dans la présence d’un obstacle. De nombreuses
références ([25], [26],[64]) incluent dans leur présentation introductive la possi-
bilité de considérer un fluide évoluant autour d’un obstacle, mais il n’existe pas,
à la connaissance de l’auteur de ce travail, de preuve rigoureuse de la dérivation
de l’équation de Boltzmann pour des domaines à bord. Par exemple le théorème
de Lanford, résultat principal de [34]3 est énoncé dans le cas où le domaine est
l’espace euclidien Rd tout entier, ou bien le tore Td.
Si cette fois on souhaite obtenir une dérivation de l’équation de Boltzmann pour
un domaine à bord, il convient de choisir un modèle pour les interactions entre
les particules et le bord du domaine.
Il existe bien des façons de procéder, mais la plus simple consiste en le choix de
la réflexion spéculaire sur le bord de l’obstacle. Cette réflexion, aussi appelée loi
de Snell-Descartes (en référence au phénomène optique de réflexion sur un mi-
roir), est la plus facile à concevoir et à manipuler à bien des égards, ne serait-ce
que parce que le modèle heuristique des boules de billard est la transcription de
l’observation de phénomènes se produisant à échelle humaine.
À l’échelle microscopique, on va donc supposer que lorsqu’une particule du
système, à la position x(τ) au temps τ , atteint l’obstacle (que l’on notera Ω) au

2Voir en particulier le paragraphe ”Enskog equation”, section 2.1 ”Derivation issues : pro-
blems of separation of scales” du dernier chapitre.

3Voir la section 3.1 ”Lanford and King’s theorems”.
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temps τ0, c’est-à-dire que
x(τ0) ∈ ∂Ω,

sa vitesse v(τ−0 ) juste avant l’impact, qui vérifie la condition :

v(τ−0 ) · n(x(τ0)) < 0,

(où n(x(τ0)) est le vecteur normal sortant à l’obstacle au point x(τ0)), est mo-
difiée par la symétrie orthogonale suivante :

v(τ+
0 ) = v(τ−0 )− 2

(
v(τ−0 ) · n(x(τ0))

)
n(x(τ0)). (1.6)

La particule effectue donc un rebond contre l’obstacle Ω, et bien entendu, la
vitesse de la particule immédiatement après le rebond vérifie

v(τ+
0 ) · n(x(τ0)) > 0.

À l’échelle macroscopique, cette interaction avec l’obstacle se traduit par la
condition de bord suivante, vérifiée par la densité de présence en tout point x
du bord de l’obstacle :

∀x ∈ ∂Ω, ∀v ∈ Rd tel que v · n(x) > 0, f(x, v) = f
(
x, v − 2

(
v · n(x)

)
v
)
. (1.7)

L’attrait de ce modèle pour sa simplicité est contrebalancé par quelques défauts
importants. On renvoie à [64]4 pour une discussion sur les limitations de ce
modèle, ainsi que pour un panorama d’autres modèles.
Notamment, une limitation significative réside en le fait qu’il est établi depuis
longtemps (au moins depuis Maxwell) que le modèle de la réflexion spéculaire ne
traduit pas de façon satisfaisante les interactions gaz-paroi réelles. Dans [51]5,
James Clerk Maxwell introduisit et justifia l’utilisation d’un modèle hybride,
où une certaine proportion des particules subit une simple réflexion spéculaire
contre l’obstacle, tandis que le reste est absorbé par la paroi puis réémis de façon
diffuse, en suivant une loi gaussienne donnée (on parle de diffusion de Maxwell),
pour tout point x appartenant au bord du domaine, par la formule suivante :

f(x, v) =
(∫

v′·n(x)<0

f(x, v′)
∣∣v′ · n(x)

∣∣ dv′)Mw(v),

où n(x) est le vecteur normal à l’obstacle en x, et Mw est la maxwellienne :

Mw(x) =
exp

(
− |v|

2

2Tw

)
(
2π
) d−1

2 T
d+1
2

w

,

où Tw est la température correspondant à l’équilibre thermodynamique de la
paroi, et d est la dimension de l’espace euclidien ambiant Rd qui contient le
domaine dans lequel évolue le fluide considéré. Le lecteur pourra consulter [23]6

pour une présentation moderne de ce modèle.

4Voir la section 1.5 ”Boundary conditions” du chapitre I.
5En particulier, une discussion sur le modèle à choisir pour l’interaction entre le gaz et la

paroi se trouve dans l’appendice de cette référence.
6Voir la section 5 ”Maxwell’s boundary conditions. Accomodation coefficients” du chapitre

III.
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1.2.4 L’équation de Boltzmann

On peut maintenant aborder le problème de la dérivation formelle de l’équation
de Boltzmann, à partir du modèle basé sur les interactions particulaires décrites
plus haut.
En ce qui concerne le contexte historique, il convient de noter que les travaux
fondateurs de August Karl Krönig ([47]) datant de 1856, puis ceux obtenus de
façon indépendante par Rudolf Clausius ([28]) en 1857, ont conduit Maxwell en
1860, dans [52], à établir la loi de distribution des vitesses des particules d’un gaz
à l’équilibre thermodynamique. Il montra que les vitesses sont réparties selon
une loi gaussienne particulière, qui s’écrit sous la forme :

M(v) = exp
(
−Av · v + b · v + c

)
,

où A = λId est la matrice d’une homothétie, b est un vecteur de Rd, et c est un
nombre réel. De tels profils portent aujourd’hui son nom : dans le contexte de
la théorie cinétique, on parle de maxwelliennes.
Dans la continuité des travaux de Maxwell, Ludwig Boltzmann généralise ses
résultats dans le cadre d’un gaz hors de l’équilibre thermodynamique, dans l’ar-
ticle [13] publié en 1872, alors qu’il était professeur à Graz. Ainsi écrit-il pour la
première fois l’équation qui porte son nom et qui est le principal objet d’étude
de ce présent travail.
Bien des références traitent de la dérivation formelle de cette équation. Le lecteur
pourra consulter, outre les écrits historiques [13] et [14] de Boltzmann lui-même,
les références plus récentes [26]7, [23]8, ou encore [37]9.
Bien que la dérivation formelle de l’équation de Boltzmann ne sera pas présentée
ici, on s’arrêtera malgré tout sur les hypothèses qui permettent de l’obtenir. En
particulier, des hypothèses supplémentaires à celles déjà vérifiées par le modèle
des sphères dures seront requises. Par ailleurs, les propriétés vérifiées par le
modèle choisi ne lui seront pas propres, de telle sorte que d’autres modèles mi-
croscopiques permettent d’obtenir aussi l’équation de Boltzmann.

On rappelle que l’on a complexifié le modèle simpliste des particules qui n’évoluent
que par inertie, et qui avait permis d’obtenir l’équation de transport libre (1.1)
vérifiée par la densité de présence f , qui s’écrivait

∂tf = −v · ∇xf,

et qui signifie donc que, pour un instant t, pour une position x et une vitesse
v données, la seule façon pour la densité de particule à l’instant t et en (x, v)
d’évoluer au cours du temps provient d’un apport de particules se déplaçant à
la vitesse v, et atteignant le voisinage de la position x au temps t.
Dans le cas de l’équation de Boltzmann, les collisions entre particules décrites

7Voir les trois premières sections du chapitre II : ”Informal Derivation of the Boltzmann
Equation”.

8Voir les cinq premières sections du chapitre II ”THE BOLTZMANN EQUATION”.
9Voir les sections 1.1.2 ”A formal ”derivation” of the Boltzmann Equation”, 1.2 ”The Form

of the Collision Operator”, et 1.3 ”The Hard Sphere Case”.
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par le modèle des sphères dures représentent une autre façon de modifier le
nombre de particules se déplaçant à la vitesse v, et donc de modifier la valeur
de la densité de présence. On s’attend donc à ce que la densité vérifie une
équation de la forme :

∂tf(t, x, v) = −v · ∇xf(t, x, v) +Q(t, x, v), (1.8)

où Q est à déterminer.
Les hypothèses nécessaires pour obtenir l’expression du terme Q, et donc en
fin de compte l’équation de Boltzmann, sont les suivantes. Le lecteur pourra
consulter par exemple les références [26]10 pour une discussion sur la significa-
tion physique des hypothèses requises pour l’obtention de l’équation de Boltz-
mann, et en particulier en ce qui concerne la condition de chaos moléculaire, ou
[64]11 pour une présentation des modèles autres que celui des sphères dures qui
vérifient aussi les hypothèses qui suivent.

1. Les particules interagissent essentiellement via des collisions binaires,
c’est-à-dire que la probabilité qu’une collision impliquant trois particules
se produise est négligeable devant celles impliquant seulement deux parti-
cules.
Cette hypothèse implique que le terme Q écrit dans l’équation précédente
ne fait intervenir que la densité de présence de deux particules, que l’on va
noter f (2). Les densités de présence d’un plus grand nombre de particules
n’ont pas d’effet sur ce terme. Autrement dit, on doit avoir une expression
de la forme

Q(t, x, v) = Q(f (2))(t, x, v).

2. Les effets des collisions sur la densité de présence sont localisées en
temps et en espace. Ceci signifie qu’au temps t, à la position x et pour la
vitesse v, seules les particules présentes au voisinage de la position x au
temps t auront un impact significatif sur la valeur de la densité de présence
en (t, x, v).
En particulier, ce sera le cas pour un modèle tel que le temps d’interac-
tion entre deux particules est bref, et que la distance maximale à laquelle
les particules peuvent interagir est négligeable, ou autrement dit, petite
devant l’échelle spatiale typique du problème. Il est clair d’une part que
le modèle des sphères dures vérifie cette condition, et d’autre part que
d’autres modèles satisfont aussi cette hypothèse. Le modèle des sphères
dures est d’ailleurs un des plus délicats à traiter au vu des autres modèles
candidats vérifiant cette hypothèse, puisque le potentiel d’interaction est
singulier, en ce sens que les interactions entre particules se limitent aux
parties

{∣∣xi − xj∣∣ = ε
}

de l’espace des phases. Le potentiel est concentré
sur ces sous-variétés, et est en ce sens singulier.

10En particulier, les sections 2.2 ”Boltzmann’s Argument in a Modern Perspective” et 2.3
”Molecular Chaos. Critique and Justification”.

11En particulier : la section 1.3 ”Boltzmann’s collision operator”.
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On peut citer par exemple [34]12, référence dans laquelle la dérivation ri-
goureuse de l’équation de Boltzmann à partir d’un modèle de particules
interagissant par le biais d’un potentiel régulier, défini sur un support pe-
tit, est traitée à part égale avec le modèle des sphères dures.
Une tentative intéressante de relaxation de l’hypothèse de localisation du
support du potentiel régissant les interactions entre particules, dans le
cadre de la dérivation rigoureuse de l’équation de Boltzmann linéaire, est
proposée dans [3]. Nathalie Ayi a besoin d’un potentiel avec une très forte

décroissance13 en la variable d’espace x (en exp
(

exp
(

exp
(
−
∣∣x∣∣k)))).

Dans [64]14, Cédric Villani fait remarquer que, bien qu’il semble para-
doxal d’étudier des modèles microscopiques basés sur des interactions à
longue portée entre les particules, et devant conduire à des modèles ma-
croscopiques traduisant des interactions localisées, il n’y a en fait pas de
contradiction, puisque les effets macroscopiques des interactions à longue
distance peuvent être négligeables.
On peut aussi citer [30], qui présente une dérivation rigoureuse de l’équation
de Boltzmann linéaire à partir d’un modèle basé sur une particule évoluant
entre des obstacles fixes agissant sur elle à longue distance. Dans cet ar-
ticle et contrairement à celui de Nathalie Ayi, les interactions ont malgré
tout un support borné, dont la borne est envoyée à l’infini avec le nombre
de particules du système. Cependant, le résultat de convergence obtenu
vers les solutions de l’équation de Boltzmann linéaire est global en temps,
ce qui n’est pas le cas dans [3].
Avec cette hypothèse, le terme Q peut en fait se réecrire

Q(t, x, v) =

∫
v∗

∫
v′

∫
v′∗

[
P
(
(v′, v′∗)→ (v, v∗)

)
f (2)(t, x, v′, x, v′∗)

− P
(
(v, v∗)→ (v′, v′∗)

)
f (2)(t, x, v, x, v∗)

]
dv′∗ dv′ dv∗,

(le fait d’intégrer seulement sur les variables de vitesse traduit la localisa-
tion en temps et en espace) où P

(
(v′, v′∗)→ (v, v∗)

)
représente la probabi-

lité que deux particules, qui se trouvent au même instant au voisinage du
même point, avec des vitesses respectives v′ et v′∗, entrent en collision et
voient leurs vitesses respectives modifiées pour devenir v et v∗. Ce genre
de collision fait bien entendu augmenter le nombre de particules ayant la
vitesse v, et ces collisions seront d’autant plus nombreuses qu’il y aura un
nombre important de couples de particules avec des vitesses respectives v′

et v′∗, ce qui explique le terme

P
(
(v′, v′∗)→ (v, v∗)

)
f (2)(t, x, v′, x, v′∗),

qui est un terme positif.
En revanche, une collision impliquant une particule avec une vitesse pré-

12En particulier, la partie III ”The case of short range potentials”.
13Voir la section 4 ”Terms associated to the long-range part of the potential” pour plus de

détails.
14Voir la section 1.4 ”Collision kernels”.
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collisionnelle v va nécessairement faire décrôıtre le nombre de particules
avec cette vitesse, ce qui explique le terme de perte

P
(
(v, v∗)→ (v′, v′∗)

)
f (2)(t, x, v, x, v∗),

retranché dans l’intégrale ci-dessus.

3. La quantité de mouvement et l’énergie cinétique sont conservées lors des
collisions. Dans le cas du modèle des sphères dures, les calculs présentés
plus haut ((1.4) et (1.5)) montrent que cette hypothèse est vérifiée.
Avec cette hypothèse, le terme de Q se réécrit encore :

Q(t, x, v) =

∫
v∗

∫
v′

∫
v′∗

[
P
(
(v′, v′∗)→ (v, v∗)

)
f (2)(t, x, v′, x, v′∗)

− P
(
(v, v∗)→ (v′, v′∗)

)
f (2)(t, x, v, x, v∗)

]
× 1

v+v∗=v′+v′∗,
|v|
2

2
+
|v∗|
2

2
=
|v′|
2

2
+
|v′∗|
2

2 dv′∗ dv′ dv∗.

4. Les collisions sont micro-réversibles,
c’est-à-dire que la dynamique définie à l’échelle particulaire est réversible
en temps. C’est bien sûr le cas pour le modèle des sphères dures. Cette
hypothèse implique que

P
(
(v′, v′∗)→ (v, v∗)

)
= P

(
(v, v∗)→ (v′, v′∗)

)
,

et donc le terme Q se réécrit

Q(t, x, v) =

∫
v∗

∫
v′

∫
v′∗

P
(
(v, v∗)→ (v′, v′∗)

)
×
[
f (2)(t, x, v′, x, v′∗)− f (2)(t, x, v, x, v∗)

]
× 1

v+v∗=v′+v′∗,
|v|
2

2
+
|v∗|
2

2
=
|v′|
2

2
+
|v′∗|
2

2 dv′∗ dv′ dv∗.

5. L’hypothèse du chaos moléculaire de Boltzmann est vérifiée.
Cette hypothèse, aussi connue sous le nom de Stosszahlansatz et au sens
très subtil (voir à ce sujet la discussion présentée dans [64]15), signifie
que les vitesses de deux particules sur le point d’entrer en collision sont
décorrélées, et donc que la densité de présence d’un couple de particules
se tensorise, autrement dit :

f (2)(t, x, v, x, v∗) = f(t, x, v)f(t, x, v∗).

Avec ces cinq hypothèses, et en utilisant une paramétrisation appropriée, on
obtient l’équation de Boltzmann, qui s’écrit :

∂tf + v · ∇xf = Q(f, f), (1.9)

15Elle se trouve à la fin de la section 2.1 ”Mathematical validity of the Boltzmann equation”
du premier chapitre.
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où Q(f, f) représente ce que l’on appelle souvent le terme de collision, et qui
admet pour écriture explicite l’expression suivante :∫

Rdv∗

∫
Sd−1
ω

B(v − v∗, ω)
[
f(t, x, v′)f(t, x, v′∗)− f(t, x, v)f(t, x, v∗)

]
dω dv∗,

(1.10)

avec B le noyau de collision, dont l’expression dépend du modèle d’interactions
entre particules choisi, et qui ne dépend que de v− v∗ et de ω, le paramètre an-
gulaire introduit dans (1.2) et (1.3) pour définir les vitesses post-collisionnelles.
En réalité, vu l’invariance galiléenne du problème, il ne dépend en fait que de
la norme |v − v∗|, et du produit scalaire (v − v∗) · ω.
Dans le cas des sphères dures (voir [23]16 ou [37]17), le noyau de collision est
donné par l’expression

|ω · (v − v∗)|.

On renvoie le lecteur à [64]18 pour une discussion sur les noyaux de collisions
provenant d’autres modèles.
On a donc obtenu une équation aux dérivées partielles, composée d’un terme de
transport, et d’un terme intégral, quadratique en l’inconnue f . Bien souvent, on
trouvera dans les références la notation Q(f, f) pour le terme de collision, dans
le but d’insister sur son caractère quadratique en f .

1.3 Résultats élémentaires sur l’équation de Boltz-
mann

1.3.1 Lois de conservation

On l’a vu, l’équation de Boltzmann a pour principal souci la description de
la matière à l’échelle mésoscopique ou macroscopique, en se basant sur une
modélisation raisonnable de la matière à l’échelle microscopique, qui prend en
compte des contraintes physiques telles que la conservation de la quantité de
mouvement, ou de l’énergie cinétique à cette échelle au cours du temps. L’étude
du terme de collision va apporter quelques résultats intéressants quant au com-
portement qualitatif des solutions de l’équation de Boltzmann.

Puisque l’inconnue f de l’équation de Boltzmann est une densité de présence
de particules, c’est-à-dire que f(t, x, v) représente à l’instant t, la densité de
particules au voisinage du point x, avec une vitesse qui se trouve au voisinage
de v, on va s’intéresser aux quantités∫

x

∫
v

f(t, x, v) dv dx,

16Voir la section 3 ”The Boltzmann equation for rigid spheres” du chapitre II.
17Voir la section 1.3 ”The Hard Sphere Case”.
18En particulier, voir la section 1.4 ”Collision kernels” du premier chapitre.
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x

∫
v

vf(t, x, v) dv dx

et ∫
x

∫
v

|v|
2

2

f(t, x, v) dv dx,

qui représentent respectivement la masse, la quantité de mouvement et l’énergie
cinétique totales du gaz. Pour ce faire, on va poser une quantité plus générale∫

x

∫
v

f(t, x, v)ϕ(v) dv dx,

qui conduit naturellement à étudier une formulation faible de l’équation de
Boltzmann (voir [64] pour une discussion historique sur cette manipulation).

Soit donc f une solution de l’équation de Boltzmann, supposée suffisamment
régulière pour que les manipulations suivantes soient valides, et ϕ une fonction
régulière qui ne dépend que de la vitesse v. On écrit

d

dt

∫
x

∫
v

f(t, x, v)ϕ(v) dv dx =

∫
x

∫
v

(
∂tf
)
(t, x, v)ϕ(v) dv dx

=

∫
x

∫
v

(
− v · ∇xf +Q(f, f)

)
(t, x, v)ϕ(v) dv dx.

Le premier terme du membre de droite peut se réécrire∫
v

−v ·
(∫

x

∇xf(t, x, v) dx
)
ϕ(v) dv,

et donc si la solution f vérifie une condition d’intégrabilité par rapport à la
variable d’espace x, ou si le domaine est compact (par exemple si x ∈ Td,
où Td est le tore Rd/Zd), et si les conditions éventuelles au bord du domaine
d’intégration en la variable de position x le permettent, ce terme s’annule, et
on trouve

d

dt

∫
x

∫
v

f(t, x, v)ϕ(v) dv =

∫
x

∫
v

Q(f, f)(t, x, v)ϕ(v) dv dx.

On sera donc en mesure de déterminer l’ensemble des quantités conservées par
l’équation au cours du temps si l’on est en mesure de déterminer l’ensemble des
fonctions ϕ qui annulent la quantité∫

x

∫
v

Q(f, f)(t, x, v)ϕ(v) dv dx.

De telles fonctions ϕ s’appellent des invariants de collision.
En utilisant les propriétés de symétrie vérifiées par le terme de collision (voir
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par exemple [26]19), on trouve∫
x

∫
v

Q(f, f)(t, x, v)ϕ(v) dv dx

=
1

4

∫
v

∫
v∗

∫
ω

B(v − v∗, ω)
(
f(v′)f(v′∗)− f(v)f(v∗)

)
×
(
ϕ(v) + ϕ(v∗)− ϕ(v′)− ϕ(v′∗)

)
dω dv∗ dv.

(1.11)

On est donc conduit à étudier, comme Boltzmann l’avait déjà remarqué ([11] et
[12]), l’équation suivante :

ϕ(v) + ϕ(v∗) = ϕ(v′) + ϕ(v′∗). (1.12)

On peut montrer que les seules solutions qui vérifient l’égalité (1.12) sont les
combinaisons linéaires des fonctions

1, vi et
|v|
2

2

,

où 1 ≤ i ≤ d.

On a donc montré que l’équation de Boltzmann conserve la masse totale, la
quantité de mouvement et l’énergie cinétique totale, c’est-à-dire

d

dt

∫
x

∫
v

f(t, x, v) dv dx = 0, (1.13)

d

dt

∫
x

∫
v

vf(t, x, v) dv dx = 0, (1.14)

et

d

dt

∫
x

∫
v

|v|
2

2

f(t, x, v) dv dx = 0. (1.15)

Du reste, la détermination des invariants de collision a été obtenue pour des hy-
pothèses de plus en plus faibles au cours des années. Le lecteur pourra consulter
les références suivantes, classées par ordre chronologique : [39], [40], [19], [24],
[2], [26]20. On peut aussi consulter l’article récent [16], qui adapte une preuve
déjà présente dans [29] et utilisée pour étudier l’équation de Landau.

1.3.2 Entropie et flèche du temps

Un des principaux attraits de l’équation de Boltzmann réside dans l’information
intrinsèque qu’elle contient : la flèche du temps. On peut s’apercevoir en effet

19Voir la section 3.1 ”Collision Invariants” du chapitre III.
20Voir la section 3.1 ”Collision Invariants” du chapitre III, à partir de la page 36.
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que l’on peut associer à chaque solution de l’équation une quantité qui dépend
du temps, et qui est systématiquement décroissante, et que cette quantité n’est
stationnaire que lorsque la solution en question a atteint un profil bien particu-
lier.

En effet, soit f une solution de l’équation de Boltzmann. On lui associe, en
suivant par exemple les références [26]21 ou [55]22, la quantité suivante :

H(f)(t) =

∫
x

∫
v

f(t, x, v) ln f(t, x, v) dv dx, (1.16)

que l’on appelle l’entropie. Il convient du reste de noter que la tradition dans
l’étude mathématique de l’équation de Boltzmann veut que l’on prenne pour
définition de l’entropie l’opposé de l’entropie utilisée dans les travaux de phy-
sique.
La dérivée par rapport au temps de cette quantité vérifie (au niveau formel, et
sous réserve que les conditions aux limites au bord du domaine en la variable
d’espace x le permettent)

d

dt
H(f)(t) =

∫
x

∫
v

∂t
(
f ln f

)
(t, x, v) dv dx

=

∫
x

∫
v

∂tf(t, x, v)
(

ln f(t, x, v) + 1
)

dv dx

= −
∫
x

∫
v

v ·
(
∇xf

)
(t, x, v) ln f(t, x, v) dv dx

+

∫
x

∫
v

Q(f, f)(t, x, v) ln f(t, x, v) dv dx,

et puisque

∇x
(
f ln f

)
=
(
∇xf

)
ln f + f∇x

(
ln f

)
= ∇xf

(
ln f + 1

)
,

on trouve

d

dt
H(f)(t) =

∫
x

∫
v

v · ∇xf dv dx−
∫
x

∫
v

v · ∇x
(
f ln f

)
(t, x, v) dv dx

+

∫
x

∫
v

Q(f, f)(t, x, v) ln f(t, x, v) dv dx,

et donc

d

dt
H(f)(t) =

∫
x

∫
v

Q(f, f)(t, x, v) ln f(t, x, v) dv dx. (1.17)

21Voir la section 3.4 ”The H-Theorem” du chapitre III.
22Voir la section 1.1.2 ”H Functional and H Theorem” du premier chapitre.
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De la même façon que les symétries permettent d’obtenir l’équation (1.11), le
membre de droite de la précédente équation (1.17) se réécrit∫

x

∫
v

Q(f, f)(t, x, v) ln f(t, x, v) dv dx

= −1

4

∫
x

∫
v

∫
v∗

∫
ω

B(v − v∗, ω)

×
(
f(v′)f(v′∗)− f(v)f(v∗)

)
ln
(f(v′)f(v′∗)

f(v)f(v∗)

)
dω dv∗ dv dx.

(1.18)

L’inégalité élémentaire ∀ x > 0, (x− 1) ln(x) ≥ 0 appliquée à la quantité

x =
f(v′)f(v′∗)

f(v)f(v∗)

(sous réserve que la solution f de l’équation de Boltzmann est strictement po-
sitive, ce qui n’est pas un problème trivial : voir [64]23), on en déduit que la
dérivée temporelle de l’entropie H(f) est négative.

La décroissance de l’entropie constitue ce que l’on appelle le théorème H, pu-
blié par Ludwig Boltzmann en 1872, que l’on peut trouver à la fin de [13]. De
fait, puisque l’entropie associée à une solution ne peut que décrôıtre, il devient
alors essentiel de comprendre, d’une part, à quoi ressemblent les solutions pour
lesquelles l’entropie associée est stationnaire (on parle d’équilibres thermody-
namiques pour de telles solutions), et d’autre part, vers quoi convergent les
solutions lorsque le temps avance, c’est-à-dire lorsque leur entropie décrôıt. En
particulier, est-ce que les solutions convergent vers les équilibres thermodyna-
miques ?

On pourrait déterminer les équilibres thermodynamiques en procédant comme
dans la section précédente, puisqu’une solution f dotée d’une entropie constante
vérifie :

0 =
d

dt
H(f)(t) = −1

4

∫
x

∫
v

∫
v∗

∫
ω

B(v − v∗, ω)

×
(
f(v′)f(v′∗)− f(v)f(v∗)

)
ln
(f(v′)f(v′∗)

f(v)f(v∗)

)
dω dv∗ dv dx,

et donc le logarithme ln f de cette solution satisfait à l’équation (1.12), ce qui
permet d’en déduire une expression de f . Mais le lecteur pourra aussi consulter
[55], où est donnée dès la deuxième page24 une détermination des équilibres ther-
modynamiques par une méthode de minimisation sous contraintes. On minimise

23En particulier, la section 6 ”Lower bounds” du chapitre II. Quant à l’affirmation que la
positivité des solutions constitue encore un problème non trivial, Cédric Villani écrit à propos
de cette question (dans l’introduction du second chapitre de la même référence) : ”As for the
strict positivity, the matter is not very clear yet”.

24Dans la section introductive ”Foreword”.
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tout naturellement l’entropie, sous les contraintes (1.13), (1.14) et (1.15) de la
section précédente, c’est-à-dire que l’on tient compte des quantités conservées
par les solutions au cours du temps, et le théorème des multiplicateurs de La-
grange permet de conclure.
Chacune de ces méthodes conduit à la détermination des équilibres thermo-
dynamiques (et on retrouve d’ailleurs le résultat, publié dans [52], de James
C. Maxwell), qui sont par ailleurs des solutions stationnaires à l’équation de
Boltzmann (dans le sens où elles ne dépendent pas du temps), données par
l’expression :

f(x, v) = λ exp
(
b · v + c|v|2

)
,

où λ et c sont des nombres réels et b un vecteur de Rd.

1.3.3 Le paradoxe de l’apparition de l’irréversibilité

On achève cette section par quelques commentaires. L’équation de Boltzmann
décrit des phénomènes irréversibles (c’est le sens du théorème H), et en ce sens,
elle constitue un outil de choix pour les physiciens, puisque les phénomènes
irréversibles sont légions dans la nature.

Figure 1.1 : Trajectoire et flèche du temps. On voit que les particules qui
constituent le jet d’eau suivent une trajectoire parabolique, symétrique par rap-
port à la verticale. Ce qui permet de déduire que les gouttes d’eau vont de la
gauche vers la droite n’est donc pas la forme de la trajectoire qu’elles suivent,
mais la forme générale du jet d’eau, qui va en se délitant : un tel processus est
irréversible. Photographie d’Adèle Godefroy.
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Mais bien que ce constat suscite l’intérêt pour cette équation, il est en même
temps source d’embarras. En effet, l’équation de Boltzmann est obtenue à par-
tir d’une modélisation particulaire de la matière basée sur des phénomènes
réversibles. On discerne alors un paradoxe important : comment un système
intégralement régi par des phénomènes réversibles à l’échelle microscopique
peut-il présenter un comportement global irréversible ?
Cette question, apparemment näıve, est en fait extrêmement profonde, et du
reste de nombreux contemporains de Boltzmann se sont interrogés sur ce sujet.
On peut citer notamment les écrits de Johann Josef Loschmidt [50] et Ernst
Zermelo [68]. On pourra aussi consulter la référence plus moderne [26]25 pour
une discussion sur les paradoxes soulevés par ces deux auteurs.

25Voir les sections 3.5 ”Loschmidt’s Paradox” et 3.6 ”Poincaré’s Recurrence and Zermelo’s
Paradox”.



Chapitre 2

État de l’art sur l’équation
de Boltzmann

2.1 Le problème de Cauchy

Dans le chapitre précédent, on s’est évertué à énumérer des propriétés qua-
litatives des solutions de l’équation de Boltzmann, avec la détermination des
quantités conservées, comme la masse totale du fluide étudié, ou au contraire
avec l’étude de quantités qui ne font que décrôıtre, comme l’entropie.
Cependant, la résolution du problème de Cauchy associé à l’équation de Boltz-
mann (et qui peut conduire par la suite à s’interroger sur le caractère de
problème bien posé au sens de Hadamard ([42]), question fondamentale lorsque
l’on étudie une équation issue de la physique) n’a pas encore été présenté : étant
donnée une densité de présence initiale (x, v) 7→ f0(x, v) définie sur U × Rd
(où U est un ouvert de Rd), existe-t-il, dans un premier temps, une solution au
système ß

∂tf + v · ∇xf = Q(f, f),
f(0, x, v) = f0,

(2.1)

muni d’une condition aux limites, et si oui, dans quel espace fonctionnel ? Dans
un second temps, on pourra s’interroger sur la question de l’unicité de la solution
d’un tel problème.
Pour un tour d’horizon des différentes méthodes et des principaux résultats,
on pourra consulter le livre [37] pour une étude approfondie du problème de
Cauchy associé à l’équation de Boltzmann. Il convient de préciser qu’il existe
deux grandes familles de résultats dans le cadre de la résolution du problème de
Cauchy (2.1), qui vont être présentées brièvement. Ces résultats ne sont malgré
tout qu’une réponse partielle à la résolution du problème de Cauchy associé à
l’équation de Boltzmann, encore largement ouvert.

29
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2.1.1 Théorie perturbative

On a remarqué précédemment que les maxwelliennes sont des solutions station-
naires de l’équation de Boltzmann (1.9), en plus d’être des équilibres thermo-
dynamiques. L’idée de la théorie perturbative consiste à considérer des données
initiales proches de ces équilibres. En imaginant que les solutions issues de ces
données initiales restent proches des équilibres, on peut espérer que la non-
linéarité du terme de collision ait des effets négligeables devant le terme de
transport. En d’autres termes, on essaye de linéariser l’équation. Seiji Ukai ob-
tint le premier dans [61] et [62] le résultat suivant, qui concerne l’équation de
Boltzmann dans le tore, dans le cas inhomogène en espace, en utilisant cette
méthode. Il considère les espaces de Banach suivants :

Hl,β =
{

(x, v) 7→ u(x, v) /
(
1 + |v|

)β
u ∈ L∞

(
R3
v, H

l
(
T3
x

))}
,

munis des normes

||u||l,β = sup
v∈R3

(1 + |v|)β ||u(·, v)||Hl(T3),

où l et β sont des réels strictement positifs, et H l
(
T3
x

)
est l’espace de Sobolev

sur le tore à trois dimensions T3.

Théorème 1 (Ukai [61], 1974). On considère un noyau de collision B(v−v∗, ω)
qui vérifie

0 ≤ B(u, ω) ≤ b0| cosω|
(
|u|+ |u|−δ

)
avec b0 > 0, 0 ≤ δ < 1, et∫ π

0

B(u, ω) sinω dω ≥ b1
|u|

1 + |u|
avec b1 > 0.
Pour tous nombres réels l ≥ 1/2, β ≥ 3/2, ε > 0 et γ > 0 (avec γ assez petit),
il existe deux nombres strictement positifs α1 et α2 tel que si la donnée initiale
f0 s’écrit

f0 = e−|v|
2

+ e−
|v|
2

2

u0

avec u0 qui appartient à l’espace Hl+1+ε,β+1+ε et tel que

||u0||l+1+ε,β+1+ε ≤ α1

(ainsi qu’une condition supplémentaire, détaillée dans [61]), alors l’équation de
Boltzmann admet une unique solution f en temps global qui s’écrit

f = e−|v|
2

+ e−
|v|
2

2

u

avec u qui appartient à l’espace fonctionnel :

L∞
(
[0,+∞[t, Hl+1+ε,β+1+ε

)
∩ C0

(
[0,+∞[t, Hl+1,β+1

)
∩ C1

(
[0,+∞[t, Hl,β

)
,

et qui vérifie :

||u(t)||l+1+ε,β+1+ε ≤ α2e
−γt. (2.2)
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Des progrès continuels sont accomplis dans cette direction depuis ce travail, et on
peut citer par exemple la référence récente [43] qui contient un résultat similaire
au théorème de Ukai, complété par une estimation de la vitesse de convergence
de la solution perturbée vers l’équilibre thermodynamique, de même nature que
le contrôle (2.2).
Par ailleurs, on peut aussi citer les deux articles [18] et [17], qui traitent de la
théorie perturbative de l’équation de Boltzmann dans des domaines à bord.
Enfin, on mentionne l’article [41]. Bien qu’il ne s’inscrive pas à proprement par-
ler dans le cadre de la théorie perturbative, cet article présente un résultat de
régularité pour les solutions de l’équation de Boltzmann dans un domaine à
bord, ici en l’occurrence, un domaine convexe.

Il existe d’autre part une théorie perturbative ”autour du vide”, c’est-à-dire
que dans ce cadre, les données initiales sont supposées proches de la solution
nulle, qui est en particulier un équilibre trivial de l’équation de Boltzmann (c’est
en ce sens que l’on parle encore ici de théorie perturbative). On peut citer le
résultat [4] d’existence et d’unicité de solutions globales à l’équation de Boltz-
mann, dû à Nicola Bellomo et Giuseppe Toscani. Contrairement à de nombreux
résultats de théorie perturbative dans tout l’espace, qui demandent une forte
décroissance en la variable de position de la distribution initiale du gaz, dans [4],
on peut se contenter d’imposer une décroissance en position en l’inverse d’un
polynôme. Il est par contre impératif de conserver une décroissance gaussienne
en vitesse de la donnée initiale.

2.1.2 Les solutions renormalisées de DiPerna et Lions

À la fin des années 1980, Ronald DiPerna et Pierre-Louis Lions ont considéré
une version très affaiblie de l’équation de Boltzmann. Dans [32], ils procèdent à
un changement d’inconnue, non linéaire, et considèrent l’équation

∂tg + v · ∇xg =
1

1 + f
Q(f, f), (2.3)

où g = ln(1 + f), qui est bien entendu équivalente formellement à l’équation
de Boltzmann (1.9). Si f est solution de cette nouvelle équation au sens des
distributions, on parle de solution renormalisée. Dans [33], DiPerna et Lions
parviennent à montrer que chaque terme de l’équation précédente (2.3) fait sens
dans l’espace fonctionnel L1

loc.
Cette méthode permet d’obtenir un résultat d’existence globale, pour des données
initiales quelconques (et en particulier, qui peuvent être loin de l’équilibre ther-
modynamique), et le lecteur trouvera dans [33]1 le théorème suivant.

Théorème 2 (DiPerna, Lions [33], 1989). On suppose que le noyau de collision
B vérifie, pour tout R < +∞ :

1

1 + |v|2

∫
|z−v|≤R

∫
ω

B(z, ω) dω dz −→
|v|→+∞

0.

1Voir la section VIII ”Global existence”.
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Pour toute donnée initiale f0 positive presque partout sur Rd × Rd et telle que∫
v

∫
x

f0

(
1 + |x|2 + |v|2 + | ln f0|

)
dx dv < +∞,

il existe une fonction f ∈ C0
(
[0,+∞[, L1

(
Rd × Rd

))
qui vérifie f(0, ·, ·) = f0 et

qui est une solution renormalisée de l’équation de Boltzmann (1.9).

Ce théorème assure l’existence d’une solution globale en temps pour un choix
très important de données initiales. Malgré tout, le problème de l’unicité, mais
aussi celui de la régularité des solutions renormalisées sont aujourd’hui toujours
ouverts.

2.2 Le comportement des solutions en temps long

On l’a vu, l’entropie d’une solution de l’équation de Boltzmann ne peut que
décrôıtre, et seules les maxwelliennes sont des solutions dont l’entropie n’évolue
pas au cours du temps : autrement dit, on a caractérisé les équilibres thermo-
dynamiques.
Une question naturelle surgit alors : est-ce que chaque solution converge vers un
équilibre thermodynamique ? Et si oui, est-il possible de quantifier la vitesse de
convergence ?
Cette question, bien que fondamentale dans la compréhension qualitative des
solutions de l’équation de Boltzmann, est assez éloignée du cadre de ce travail.
On donne ici simplement quelques références, la plus complète sur le sujet étant
sans doute [55], et une brève discussion sur une conjecture importante, qui peut
désormais être considérée comme pratiquement résolue.
La convergence vers l’équilibre des solutions, si convergence vers l’équilibre il y
a effectivement, doit être quantifiée à l’aide d’une certaine mesure. On renvoie
à [55]2, qui permet de comprendre pourquoi on va étudier la différence d’une
solution f et de son équilibre thermodynamique associé Mf avec la quantité,
notée H

(
f |Mf

)
, et définie par :∫

x

∫
v

(
f −Mf ) lnMf dv dx.

On peut d’ailleurs parler d’équilibre thermodynamique associé à une solution,
puisque la masse, la quantité de mouvement et l’énergie cinétique étant conservées
au cours du temps, si une solution converge vers un équilibre, cet équilibre doit
naturellement avoir mêmes masse, quantité de mouvement et énergie cinétique.
Or ces quantités scalaires (au nombre de 5 en dimension 3, et d + 2 dans le
cas général) caractèrisent entièrement les maxwelliennes (voir encore [55]3 pour
cette caractérisation).
Dans [22], Carlo Cercignani propose une conjecture qui porte aujourd’hui son

2Voir la section 1.1.3 ”What this Course is About : Convergence to Equilibrium”.
3Dans Foreword.
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nom, et qui énonce que l’écart entre une solution et sa maxwellienne doit être
régi par une relation de la forme :

d

dt
H(f) ≥ KH

(
f |Mf

)
, (2.4)

où K est une constante qui peut dépendre de f . Dans la version initiale de
la conjecture, elle ne dépendait que de la masse, la quantité de mouvement
et l’énergie cinétique de f . Une telle inégalité, de type Gronwall, impliquerait
immédiatement une vitesse de convergence exponentielle de la solution vers
l’équilibre thermodynamique qui lui est associé, dans le contexte spatialement
homogène. Ce type d’inégalité est communément appelé ’Entropie - Production
d’Entropie”, ou ”EEP” en anglais.

Cette conjecture dut être perpétuellement revue, puisque des contre-exemples
contredisant des versions de plus en plus faibles furent trouvés. Le théorème le
plus marquant est sans doute celui que le lecteur trouvera dans [7]. Il énonce
que, peu importe la constante K choisie, il est possible de trouver une donnée
initiale f qui ne va pas converger vers son équilibre Mf à la vitesse prescrite
par (2.4). On peut même imposer que les données initiales soient minorées par
une maxwellienne, avoir une très forte décroissance à l’infini, ou bien une très
grande régularité en norme d’espaces de Sobolev, rien n’y fait : on pourra tou-
jours trouver un contre-exemple violant (2.4).
Malgré tout, en 1992 Eric Carlen et Maria Carvalho obtinrent la première
inégalité de production d’entropie dans [20]. Ils prouvèrent qu’il existe une fonc-
tion réelle θ, très plate au voisinage de 0, telle que

d

dt
H(f) ≥ θ

(
H
(
f |Mf

))
.

Puis Cédric Villani et Giuseppe Toscani (voir [59]) obtinrent en 1999, pour un

noyau de collision qui vérifie B(v − v∗, ω) ≥ KB

(
1 + |v − v∗|

)−β
, et pour tout

réel ε strictement positif, une inégalité de production d’entropie de la forme

d

dt
H(f) ≥ K(ε)H

(
f |Mf

)1+ε
,

qui implique une vitesse de convergence sous-exponentielle de la solution vers
son équilibre, et enfin en 2003 Cédric Villani parvint à relaxer la condition sur
le noyau de collision, et donc à couvrir un grand nombre de situations physiques
pertinentes, dans un article [65] titré, de manière évocatrice : ”Cercignani’s
conjecture is sometimes true and always almost true.”

Dans le cas inhomogène, la convergence vers l’équilibre est plus délicate à trai-
ter. En effet, on sait que les solutions doivent converger vers des maxwelliennes,
mais dans ce cadre, les paramètres λ, b et c définissant les maxwelliennes par la
formule

M(v) = exp
(
− (λIdv) · v + bv + c

)
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dépendent a priori de la variable de position x. Si l’on considère un domaine
borné et des conditions aux limites bien choisies, on peut alors montrer que les
équilibres sont en fait des maxwelliennes globales (c’est-à-dire dont les précédents
paramètres ne dépendent pas de la position). La question se pose alors de
déterminer la vitesse de convergence des solutions vers de tels équilibres.
En particulier, l’étude quantitative de ce comportement en temps long d’une
solution de l’équation de Boltzmann, pour des solutions régulières du problème
avec conditions aux limites de réflexion spéculaire dans un ouvert borné a été
traitée dans l’article [31] de Laurent Desvillettes et Cédric Villani. Les outils et
les résultats présentés dans ce travail sont à l’origine du concept d’hypocoerci-
vité. On pourra à ce sujet consulter le mémoire [66].

2.3 Les problèmes de dérivation

Au cours du Congrès international des mathématiciens de 1900, qui eut lieu à
Paris, David Hilbert proposa sa célèbre liste de vingt-trois problèmes non résolus
[44], qui devait guider la recherche mathématique pour les décennies à venir.
Le sixième problème de Hilbert est intitulé ”Traitement mathématique des
axiomes en physique”. Il ajoute en particulier :

”Les travaux de Boltzmann sur les principes de la mécanique suggèrent le
problème de développer mathématiquement les processus limitatifs, juste es-
quissés, qui mènent de la vision atomiste aux lois du mouvement du continu”.

Cet énoncé ouvre les hostilités, et invite les mathématiciens à se saisir de la
validité rigoureuse de l’équation de Boltzmann, à la fois comme objet d’étude
en lui-même, mais aussi en tant qu’étape intermédiaire vers des objectifs plus
ambitieux, comme l’axiomatisation de la mécanique des fluides.
Deux axes principaux ont été suivis. On présentera brièvement le programme
de Kac, qui n’est pas l’objet de ce travail. Ensuite, on introduira le programme
de Grad, le résultat de Lanford et comment le présent travail s’intègre dans ce
programme de recherche.

2.3.1 Le programme de Kac : une approche probabiliste

Contrairement au programme de Grad, le programme de Kac repose sur la
dérivation de l’équation spatialement homogène de Boltzmann, c’est-à-dire que
les solutions ne dépendent pas de la variable d’espace x, si bien que l’équation
étudiée ici s’écrit :

∂tf = Q(f, f). (2.5)

Puisque la variable d’espace n’intervient pas, Mark Kac introduisit en 1956
dans [45] un modèle de trajectoires, appelé le modèle de Boltzmann-Kac, qui
permet malgré tout de faire évoluer les vitesses des particules au cours du
temps. Ces vitesses ne sont pas modifiées lors de collisions particulaires décrites
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précedemment, c’est-à-dire lorsqu’une certaine condition sur la position rela-
tive de deux particules est vérifiée, ce qui ne fait plus sens ici, mais elles sont
modifiées par un processus stochastique. On choisit aléatoirement un couple de
particules i et j et, selon un processus de Poisson, les temps auxquels les vi-
tesses des particules vont être modifiées. On choisit enfin le paramètre angulaire
σ ∈ S2 au hasard, en suivant une loi à densité qui dépend du noyau de collision
B (voir (1.10)), et on modifie les vitesses du couple de particules choisies comme
suit :

v′i =
vi + vj

2
+
|vj − vi|

2
σ

et

v′j =
vi + vj

2
− |vj − vi|

2
σ.

Ce processus conserve lui aussi l’énergie cinétique et la quantité de mouve-
ment du système (il s’agit simplement d’une autre paramétrisation des collisions
conservant ces quantités).
Finalement, l’objet d’étude est la fonction de répartition FN de N particules
évoluant suivant le modèle de Boltzmann-Kac. On suppose au temps initial que
cette fonction de répartition est f0-chaotique (en suivant la définition de Kac),
où f0 est la donnée initiale du problème de Cauchy (2.1). Il convient alors de
montrer que la première marginale de la fonction de répartition FN converge
vers une solution f de (2.5).
On renvoie par exemple à [54] pour une présentation moderne du programme
de Kac.

2.3.2 Le théorème de Lanford : une approche déterministe

Le programme de Grad trouve son origine dans l’obtention d’une suite d’équations

vérifiées par les marginales f
(s)
N (avec 1 ≤ s ≤ N) d’une fonction de répartition

d’un système deN (N ∈ N∗) sphères dures de diamètre ε. Cette suite d’équations
est obtenue à partir de l’équation de Liouville, et s’appelle la hiérarchie BBGKY,
qui doit son nom aux travaux des physiciens et chimistes Nikoläı Bogolioubov
[10], Max Born et Herbert Green [15], John Kirkwood [46] et Jacques Yvon [67].
Grad obtient alors dans [38] une relation vérifiée par la première marginale de
la fonction de répartition du système de sphères dures, et observe que dans la
limite de Boltzmann-Grad N → +∞, Nεd−1 = 1, et avec quelques autres ma-
nipulations, cette équation n’est autre que l’équation de Boltzmann.
Une de ces manipulations consiste à utiliser la propagation du chaos, ce qui

signifie que si la suite des données initiales
(
f

(s)
N,0

)
1≤s≤N est approximativement

tensorisée, c’est-à-dire que cette suite est donnée par les marginales de la distri-
bution initiale :

f
(N)
N,0 (ZN ) =

(
Z−1
N 1ZN∈DεN

) N∏
i=1

f
(1)
N,0(zi) (2.6)

(où ZN = (z1, . . . , zN ) est la configuration du système dans l’espace des phases
DεN d’un système à N particules de rayon ε/2, 1ZN∈DεN est la fonction indicatrice
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de cet espace des phases DεN , encodant en particulier la condition d’exclusion
|xi − xj | > ε pour tous 1 ≤ i < j ≤ N , ce qui signifie que les particules de
rayon ε/2 ne se chevauchent pas, et enfin où Z−1

N est simplement un facteur de
normalisation), alors cette tensorisation se propage aussi à la suite de solutions(
t 7→ f

(s)
N (t, . . . )

)
1≤s≤N pour tout temps dans la limite N → +∞.

Il convient de noter que la limite de Boltzmann-Grad N → +∞, Nεd−1 = 1
a une signification physique importante. Le fait que la quantité Nεd−1 reste
constante lorsque N varie signifie que, indépendamment du nombre de particules
considérées, le temps moyen de parcours libre d’une particule reste constant.
Autrement dit, une particule parcourra en moyenne une distance fixée avant
d’entrer en collision avec une autre particule. Avant cette collision, la parti-
cule s’est donc déplacée librement, en ligne droite. Une discussion un peu plus
poussée sur la signification de cette limite est proposée dans la section 1.1.7.
La limite de Boltzmann-Grad implique alors que le volume occupé par l’ensemble
des particules du système, qui est de l’ordre de Nεd, est en fait de l’ordre de ε

ou, ce qui est équivalent, de l’ordre de N−
1
d−1 , et tend donc vers 0 lorsque N

tend vers l’infini : seule une infime partie du volume occupé par le fluide est en
fait occupée par des particules. C’est une des raisons pour laquelle l’équation
de Boltzmann est utilisée dans le cadre de la modélisation de gaz très dilués.
Par ailleurs, dans le cadre de la résolution du sixième problème de Hilbert men-
tionné plus haut, on utilise cette limite de Boltzmann-Grad de façon cruciale.
D’abord en se fixant un nombre α tel que Nεd−1 = α, on obtient l’équation de
Boltzmann à partir d’une modélisation particulaire de la matière : tout l’objet
de ce travail est de montrer en quel sens cette étape peut être rigoureusement
franchie. Dans la littérature anglophone, cette étape est souvent appelée ”low
density limit”.
Bien qu’il ne s’agisse pas du sujet du présent travail, il ne semblait pas raison-
nable de ne pas mentionner la seconde étape de la résolution du sixième problème
de Hilbert : le passage du modèle cinétique au modèle continu. L’objectif final
de Hilbert était en effet de parvenir à justifier les équations de la mécanique des
fluides. Il est en effet possible d’achever ce programme en prenant appui sur le
résultat de ”low density limit” obtenu, et de retrouver, d’abord formellement,
les équations de Navier-Stokes à partir de l’équation de Boltzmann, en effec-
tuant ce que l’on appelle une limite hydrodynamique. On va faire tendre à son
tour la quantité α vers l’infini, ce qui signifie que le temps moyen de parcours
libre des particules du système va tendre vers zéro. La signification physique de
cette limite est que les particules vont s’entrechoquer à une cadence très élevée.
De nombreux résultats ont été obtenus dans le sens du passage rigoureux à la
limite hydrodynamique. On renvoie le lecteur à la référence [56] sur ce sujet.

Quant à la justification rigoureuse de l’obtention de l’équation de Boltzmann
à partir d’un modèle particulaire déterministe, Carlo Cercignani dans [21] (en
1972), puis Oscar Lanford dans [49] (en 1975) obtiennent les premiers résultats
mathématiques dans le sens de la résolution du programme de Grad. En par-



2.3. LES PROBLÈMES DE DÉRIVATION 37

ticulier, Lanford remarque que la propagation du chaos peut être obtenue par
une étude précise des trajectoires des sphères dures, et apporte une preuve ri-
goureuse de l’apparition de l’irréversibilité. Pour la première fois, une preuve
mathématique démontre la validité rigoureuse de l’équation de Boltzmann lo-
calement en temps, apportant une avancée décisive à la résolution du sixième
problème de Hilbert. Les paradoxes tels que ceux mentionnés à la fin de la sec-
tion 1.3.3 page 27 ne peuvent plus être vus comme des arguments invalidant
l’équation de Boltzmann, et les propriétés de ses solutions a priori surprenantes
changent de statut, passant d’apparentes contradictions qui réduisent l’intérêt
du modèle à celui de phénomènes complexes au sens profond.
Le théorème de Lanford s’énonce comme suit.

Théorème 3 (Lanford [49], 1975). Soit β un nombre réel strictement positif,
et soit f0 : R2d → R+ une densité de probabilité continue qui vérifie∣∣∣∣∣∣∣∣(x, v) 7→ f0(x, v) exp

(β
2
|v|2
)∣∣∣∣∣∣∣∣
L∞(R2d)

< +∞.

On considère le système de N sphères dures de diamètre ε (régi par la dyna-
mique introduite dans la section 1.2.2) décrit par la fonction de répartition fN :
R2dN → R+, distribuées initialement selon la densité f0 de façon indépendante
(au sens où la suite des distributions initiales de s particules, avec 1 ≤ s ≤ N ,
est donnée par les marginales de l’expression (2.6)).
Alors, il existe un temps T > 0 qui ne dépend que de β et de µ où

exp(−µ) =

∣∣∣∣∣∣∣∣(x, v) 7→ f0(x, v) exp
(β

2
|v|2
)∣∣∣∣∣∣∣∣
L∞(R2d)

,

tel que, dans la limite de Boltzmann-Grad :

N → +∞, Nεd−1 = 1,

la première marginale f
(1)
N de la fonction de répartition fN converge vers la

solution f du problème de Cauchy (2.1) associé à l’equation de Boltzmann, avec∣∣(v − v∗) · ω∣∣+ pour noyau de collision B(v − v∗, ω), au sens des observables,

c’est-à-dire que pour tout compact K de l’espace des positions Rd et pour toute
fonction test v ∈ Rd 7→ ϕ(v) ∈ R :∣∣∣∣∣∣∣∣1K(x)

∣∣∣ ∫
Rd

(
f − f (1)

N

)
(t, x, v)ϕ(v) dv

∣∣∣∣∣∣∣∣∣∣∣
L∞([0,T ]t×Rdx)

−→
N→+∞

0.

La preuve de Lanford, qui représente une avancée conceptuelle majeure, a par la
suite été complétée à de nombreuses reprises et beaucoup d’auteurs ont apporté
une contribution significative à l’achèvement de cet édifice particulièrement com-
plexe. On peut citer l’article [60] de Kôhei Uchiyama, le livre [26] de Carlo
Cercignani, Reinhard Illner et Mario Pulvirenti4, ou encore la contribution de

4Voir le chapitre 4, et en particulier les sections 4.4 ”Rigorous Validity of the Boltzmann
Equation” et 4.5 ”Validity of the Boltzmann Equation for a Rare Cloud of Gas in the Vacuum”.
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Herbert Spohn avec [58]. Une étude des arbres de même type, que l’on doit à
Carlo Cercignani, Viktor Ivanovitch Gerasimenko et Dmitri Ya. Petrina, basée
sur un contrôle de la taille des ”trajectoires pathologiques”, c’est-à-dire des tra-
jectoires de sphères dures rendant difficile la comparaison avec les trajectoires
associées obtenues dans la limite de Boltzmann-Grad, a ouvert la voie vers des
preuves de plus en plus quantitatives. Cette étude est présentée dans le livre [25].

Enfin, les travaux de Thierry Bodineau, Isabelle Gallagher, Laure Saint-Raymond,
Sergio Simonella et Benjamin Texier ont apporté une contribution décisive au
programme de Grad. En particulier, alors que le théorème de Lanford a été
présenté pour la première fois en 1975, l’article [34] de 2013 peut être considéré
comme la forme la plus aboutie de la preuve de ce théorème obtenue jusqu’à
présent. Une remarque fondamentale concernant le théorème de Lanford est l’in-
tervalle de temps sur lequel sa conclusion est valide : contrairement aux résultats
présentés dans la section 2.1, la convergence de la première marginale n’a lieu
que sur un intervalle de temps petit, donné par la régularité de la donnée ini-
tiale. En 2016, le plan de preuve de Lanford permet à Bodineau, Gallagher et
Saint-Raymond dans [8] d’obtenir une convergence sur un intervalle de temps
arbitrairement grand de la fonction de distribution d’une particule marquée qui
évolue dans un gaz à l’équilibre thermodynamique, vers la solution de l’équation
de Boltzmann linéaire. Ce résultat est à comparer avec celui de Giovanni Gal-
lavotti [35], qui obtenait la convergence de la fonction de distribution d’une
particule marquée qui évoluait au milieu d’obstacles fixés distribués de façon
aléatoire, vers la solution de l’équation de Boltzmann linéaire.
Ce même groupe d’auteurs a par ailleurs publié un article ([9]) qui revient sur
l’apparition de l’irréversibilité lors du passage à la limite de Boltzmann-Grad.



Chapitre 3

Apports et structure de ce
travail

Ce travail s’inscrit dans le programme de Grad, et vise à obtenir une preuve
du théorème de Lanford dans le cas particuler d’un domaine à bord. Au fur et
à mesure du temps consacré à la résolution de ce problème, l’accent a été mis
progressivement sur une rédaction aussi exhaustive que possible des arguments
déployés pour démontrer le théorème de Lanford. Et puisque ce travail s’appuie
en particulier sur l’article phare [34], le travail d’adaptation de la preuve a permis
de mettre à jour quelques éléments à détailler dans la très longue et très tech-
nique démonstration du théorème de Lanford. Les nouveautés concernent d’une
part l’obtention d’un théorème dérivation rigoureux de l’équation de Boltzmann
dans le cas d’un domaine à bord, et d’autre part les commentaires faits sur la
preuve présentée dans [34].

3.1 Le théorème de Lanford dans le demi-espace

S’agissant de la motivation à l’origine du présent manuscrit, on va démontrer un
résultat analogue au théorème 4, dans le cas où les particules évoluent dans un
domaine à bord. Ce travail est exécuté dans le cadre de sphères dures évoluant
dans le demi-espace, et qui interagissent par réflexion spéculaire avec le bord de
l’obstacle, qui est donc ici un demi-plan.
Comme il a été précisé plus haut, on suivra la preuve de Lanford, qui s’ap-
puie sur une étude minutieuse des trajectoires suivies par les sphères dures. Ce
plan de preuve incite à considérer dans un premier temps un problème simplifié
par rapport au cas d’un obstacle général : on restreint d’abord l’étude au cas
où l’obstacle est convexe. En effet, dans ce cas si une particule rebondit une
première fois contre l’obstacle, elle ne pourra pas rebondir à nouveau contre ce
dernier sans que sa vitesse ne soit modifiée, c’est-à-dire, sans que cette particule
ne soit entrée en collision avec une autre particule du système. Ce simple constat
simplifie grandement l’étude des trajectoires, alors qu’en présence d’un obstacle

39
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quelconque on pourrait parfaitement imaginer des particules rebondissant en
cascade contre l’obstacle, demandant un traitement analytique supplémentaire.
Finalement, on se contentera dans ce travail d’étudier le cas où l’obstacle est le
demi-espace. A priori, on remarque que l’obstacle dont le bord est un hyperplan
est, parmi les obstacles convexes, le pire d’une certaine façon. Le pire, en ce sens
que la convexité a un effet diffusif : si deux particules suivent des trajectoires
parallèles avant d’entrer toutes les deux en collision avec l’obstacle, après rebond
les trajectoires seront divergentes, de sorte que les particules en question auront
tendance à s’écarter l’une de l’autre, prévenant ainsi toute recollison. Lorsque le
bord de l’obstacle est plat, on est dans la situation critique où l’effet diffusif est
nul, et l’on pourrait alors redouter des complications relatives aux trajectoires
que suivent les particules.
Cependant, le demi-espace simplifie encore davantage l’étude du problème. En
effet, dans ce cas, non seulement la convexité permet d’obtenir des trajectoires
simples, mais en plus elles deviennent explicites, ce qui facilite d’autant plus les
calculs de recollisions.

Les nouveautés présentées ici et relatives à la présence de l’obstacle sont les
suivantes.

• Le caractère bien posé, presque partout, du problème de Cauchy pour un
système de sphères dures évoluant dans un domaine à bord a été l’occasion
de revisiter la preuve d’Alexander [1], et conduit à l’obtention de l’énoncé
de la Proposition 2, section 1.2 page 55.

• L’obtention de la hiérarchie BBGKY dans le cas de la présence d’un obs-
tacle suit les travaux fondamentaux des pionniers de la hiérarchie BBGKY.
La présentation de cette dérivation est très proche de celle de [34]. Il
convient de remarquer que le terme B (voir l’équation (2.14) page 71)
est spécifique au cas du domaine à bord, et que si un autre modèle d’in-
teraction avec le bord du domaine avait été choisi, ce terme aurait été
radicalement différent.

• Le coeur du travail présenté ici est l’adaptation au cas du domaine à
bord des lemmes géométriques ayant pour but de contrôler les trajec-
toires pathologiques au sens de [25]. La présence d’un obstacle complique
sérieusement le lemme de tir présenté dans [34]1 ainsi que la proposition
fondamentale qui empêche l’apparition de recollision lorsque l’on ajoute
une autre particule à un système de sphères dures qui n’aurait pas subi de
recollision sans cet ajout2. Ces modifications dans le cas de la présence d’un
obstacle sont soigneusement détaillées dans la section 12.2, débutant page
333. Il est à noter que pour que l’analogue de la Proposition 12.1.1 de [34]
fonctionne, on a dû introduire un cut-off supplémentaire en la proximité
des particules au moment d’une collision. Ce cut-off est traité dans la même

1Voir la section 12.2 ”Geometrical lemmas”.
2Voir la section 12.1 ”Stability of good configurations by adjunction of collisional particles”.
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section 12.2, et il ne change pas fondamentalement la vitesse de conver-
gence obtenue dans le résultat final. En revanche, il nécessite l’écriture
d’un lemme supplémentaire de scattering, très similaire au lemme 12.2.2
de [34]3. Ce nouveau lemme est présenté dans la section 12.2.5 page 368.

• Enfin, un soin tout particulier a été apporté à la définition rigoureuse
du cadre fonctionnel dans lequel on définit puis on résout la hiérarchie
BBGKY et la hiérarchie de Boltzmann. C’est l’objet des sections 5, 6 and
7. En particulier, la plus longue partie4 concerne la définition rigoureuse
de l’opérateur de transport-collision de la hiérarchie BBGKY.
Il est à noter que tous les résultats intermédiaires présentés et les argu-
ments développés dans ce travail au sujet de la définition rigoureuse de
l’opérateur de transport-collision de la hiérarchie BBGKY peuvent déjà
être trouvés dans [34]5, sous une forme plutôt succinte. Ici, on s’est at-
taché à détailler chacun de ces arguments, puisque l’étape de la définition
rigoureuse de la hiérarchie BBGKY est à la fois cruciale et délicate.
À ce stade du texte, il est sans doute utile de préciser une dernière chose
à ce sujet : on montre dans la section 5.1 que la hiérarchie BBGKY fait
sens pour des fonctions continues en temps, à valeurs dans les fonctions
L∞ sur l’espace des phases, et qui vérifient une condition de décroissance
en vitesse : c’est la conclusion du Théorème 1 page 137. En particulier,
on ne sera pas contraint de se contenter de solutions au sens faible de la
hiérarchie BBGKY.

3.2 La preuve du théorème de Lanford détaillée
et commentée

On l’a vu, le théorème de Lanford (théorème 4), obtenu dans [49], et démontré
de plus en plus en détail, d’abord dans [26], puis dans [25] et enfin dans [34],
donne la convergence de la fonction de distribution du système de sphères dures
vers la solution de l’équation de Boltzmann, valide sur un temps court.
On s’intéresse à présent à la description de la topologie utilisée pour décrire
cette convergence. Les auteurs de [34] ont obtenu une convergence localement
uniforme en les variables de temps et d’espace, mais une convergence faible en
vitesse. Cette limitation n’altère nullement l’intérêt pratique de ce théorème,
puisque les quantités décrites par les équations cinétiques ne sont observables
par l’expérience qu’au travers de leurs moments, autrement dit, on ne peut
mesurer que des intégrales contre des fonctions de la vitesse v des solutions des
équations cinétiques. Cependant, l’étude des contrôles obtenus sur les intégrales

de f − f (1)
N contre des observables (c’est-à-dire des fonctions ϕ de la vitesse v)

3Voir la section 12.2.2 ”Modification of bad trajectories by hard sphere reflection.”
4Voir la section 5.1.
5Voir la section 5.1 ”Rigorous formulation of the BBGKY hierarchy”.
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montre que, systématiquement, les bornes comprennent le terme∣∣ϕ∣∣
L∞(Rd)

.

Ce terme semble suggérer qu’une amélioration de la convergence est possible,
et d’un point de vue mathématique, il n’y a a priori aucune raison de ne pas
énoncer le résultat le plus général possible. Dans ce travail, on présente une
convergence plus forte, à savoir une convergence localement uniforme en toutes
les variables : de temps, d’espace et de vitesse. Cependant, cette convergence
n’a pas lieu sur l’espace des phases tout entier. Les compacts choisis ne doivent
pas contenir de vitesses rasantes (c’est-à-dire que les configurations contenues
dans les compacts considérés sont toutes telles que leur produit scalaire avec
le vecteur e1, qui est le vecteur normal unitaire sortant de l’obstacle, ne soit
pas trop proche de zéro). Cette condition d’exclusion est due à la préparation
des données initiales, première étape du travail qui vise à éliminer les trajec-
toires qui présentent des recollisions. Une autre limitation est que les compacts
ne peuvent pas intersecter le bord de l’obstacle. On perd donc une information
quant au comportement des solutions au voisinage de l’obstacle.

Par ailleurs, on peut apporter quelques commentaires quant aux hypothèses
requises dans [34].

• Les théorèmes fondamentaux 6 et 7 de [34]6, qui assurent l’existence et
l’unicité de solutions respectives aux hiérarchies BBGKY et de Boltzmann,
reposent de façon cruciale sur un argument de point fixe, dû à Ukai ([63]).
Dans le cas de la hiérarchie de Boltzmann, pour chaque équation de cette
hiérarchie le cadre fonctionnel choisi dans [34] (comme dans toutes les
références précédentes) est celui des fonctions continues par rapport au
temps, à valeurs dans les fonctions continues sur l’espace des phases. Or
la hiérarchie de Boltzmann, dans sa forme intégrale (voir la section 4.2
page 83), est composée notamment du premier terme

T s,0t

(
f (s)(0, ·)

)
,

qui fait intervenir le transport libre (avec conditions de bord). La conti-
nuité seule de la donnée initiale se révèle insuffisante pour obtenir une
comparaison uniforme en espace de la quantité∣∣∣T s,0t

(
f (s)(0, ·)

)
− f (s)(0, ·)

∣∣∣.
La section 5.2, et en particulier la sous-section 5.2.4 page 179 propose donc
un cadre fonctionnel un peu plus restrictif, mais qui permet en contrepartie
de présenter une version nouvelle de l’argument du point fixe.

• D’autre part, l’argument du point fixe de Seiji Ukai ([63]) repose sur une
inégalité de contraction dans un espace fonctionnel bien choisi.

6Voir la section 5.2 ”Functional spaces and statement of the results”.
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On rappelle que les hiérarchies sont des suites d’équations, où chacune de
ces équations donne une relation entre deux marginales. Chaque équation
des hiérarchies fait donc sens dans un espace fonctionnel qui lui est propre
(c’est l’objet des sections 6.1 et 6.2). Il convient donc, une fois que l’espace
fonctionnel de chaque équation est donné (voir la section 7.1.1), de lier
entre eux ces espaces en considérant une topologie sur la famille formée
par ces espaces (voir la section 7.1.2). On va alors définir chacune des
hiérarchies sur une famille de tels espaces fonctionnels. De plus, on travaille
avec des fonctions qui dépendent du temps. À chaque instant, on a donc
une famille d’espaces fonctionnels, famille dans laquelle, par exemple pour

le cas de la hiérarchie BBGKY, vit la suite de marginales
(
f

(s)
N (t, ·)

)
1≤s≤N .

À chaque instant on peut associer à la famille
(
f

(s)
N (t, ·)

)
1≤s≤N une norme

d’espace de Banach ∣∣∣∣∣∣(f (s)
N (t, ·)

)
1≤s≤N

∣∣∣∣∣∣
·,β̃(t),µ̃(t)

.

Dans la littérature, ces espaces sont introduits dans la section 5.2 ”Functio-
nal spaces and statement of the results” dans [34]. L’inégalité de contrac-
tion due à Ukai, et qui doit être vérifiée par les hiérarchies vues comme
opérateurs agissant sur ces suites d’espaces fonctionnels, repose sur une
utilisation subtile de la décroissance par rapport au temps des poids qui
permettent de définir les espaces fonctionnels sur lesquels les hiérarchies
BBGKY et de Boltzmann sont bien définies (un poids β̃ pour un contrôle
gaussien sur le profil en vitesse de chacune des marginales, introduit dans
les définitions 23 page 206 et 24 page 206, et un poids µ̃ pour un contrôle
de décroissance des normes de la s-ème marginale quand s devient grand,
introduit dans les définitions 25 page 207 et 26 page 207).
Par ailleurs, dans [63], aucune condition de continuité par rapport au
temps n’est choisie, tandis que dans [34], on demande à avoir une conti-
nuité par rapport au temps à valeurs dans les espaces de Banach définis
précédemment, c’est-à-dire, si l’on considère par exemple le cas de la
hiérarchie BBGKY, que l’on impose la condition :

∀t ∈ ]0, T ], lim
u→t−

∣∣∣∣∣∣(f (s)
N (t)

)
1≤s≤N −

(
f

(s)
N (u)

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β̃(t),µ̃(t)

= 0.

(3.1)

Cette condition de continuité fait sens physiquement, d’une part car on
a peine à imaginer les fonctions étranges qui seraient dans un tel espace,
sans condition de continuité, et d’autre part car exiger une continuité
temporelle pour des phénomènes physiques ne semble pas, dans ce cadre,
déraisonnable.
On montre dans ce travail, à la section 8.2 page 251, que cette condi-
tion de continuité engendre des complications lorsque l’on tente d’obtenir
l’inégalité de contraction de Ukai7. On propose dans ce travail deux pistes :

7Dans la référence [34], il s’agit de l’inégalité (5.4.4) de la section 5.4 ”Continuity esti-
mates”.
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la première, d’utiliser un poids µ̃ (qui a vocation à lier les espaces dans
lesquels se trouvent les marginales) plus fort, et la seconde, d’affaiblir la
continuité en temps. Ces deux topologies sont introduites dans la section
7.1.3 et étudiées par la suite. On verra que, vu les conditions que devront
vérifier les données initiales, la deuxième option sera la plus pertinente.
Deux versions de l’inégalité de contraction de Ukai (une pour chacune des
topologies introduites) sont proposées dans ce travail : c’est l’objet de la
section 8.3.

• Enfin, pour obtenir une quantification de la vitesse de convergence de la
première marginale vers la solution de l’équation de Boltzmann, le lemme
14.2.3 de [34]8 joue un rôle crucial puisqu’il a pour objet de contrôler l’er-
reur due à la divergence des trajectoires dans le cas d’une donnée initiale
tensorisée. On revient sur ce résultat, et on propose dans ce travail une
version plus quantitative de ce lemme, avec des hypothèses un peu plus
fortes, présentée dans la section 16.1.3 page 507. Le lecteur pourra aussi
consulter la remarque page 515, qui revient sur les hypothèses plus fortes
de ce nouveau lemme.

3.3 Le résultat principal

On présente maintenant le résultat principal de ce texte.

Théorème 4 (Théorème de Lanford dans le demi-espace). Soit β un nombre
réel strictement positif, et soit f0 :

{
x ∈ Rd / x ·e1 ≥ 0

}
×Rd → R+ une densité

de probabilité continue, qui vérifie :

f(x, v) −→
|(x,v)|→+∞

0,∣∣∣∣∣∣∣∣(x, v) 7→ f0(x, v) exp
(β

2
|v|2
)∣∣∣∣∣∣∣∣
L∞({x∈Rd/x·e1≥0}×Rd)

< +∞,

et

∀x ∈
{
x ∈ Rd / x·e1 = 0

}
, ∀v ∈ Rd tel que v·e1 > 0, f(x, v) = f

(
x, v−2

(
v·e1

)
v
)

(où e1 est le premier vecteur de la base canonique).
On considère dans

{
x ∈ Rd / x · e1 > ε/2

}
× Rd le système de N sphères

dures de diamètre ε, avec réfléxion spéculaire (voir la condition (1.6)), décrit
par la fonction de répartition fN : R2dN → R+, distribuées initialement selon la
densité f0 de façon indépendante (au sens où la suite des distributions initiales
de s particules, avec 1 ≤ s ≤ N , est donnée par les marginales de l’expression
(2.6)).
Alors, il existe un temps T > 0 qui ne dépend que de β et de µ où

exp(−µ) =

∣∣∣∣∣∣∣∣(x, v) 7→ f0(x, v) exp
(β

2
|v|2
)∣∣∣∣∣∣∣∣
L∞({x∈Rd/x·e1≥0}×Rd)

,

8Il s’agit du dernier lemme de contrôle des termes d’erreurs. Voir la section 14.2.3 ”Error
coming from the divergence of trajectories”.
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tel que, dans la limite de Boltzmann-Grad :

N → +∞, Nεd−1 = 1,

la première marginale f
(1)
N de la fonction de répartition fN converge localement

uniformément sur

[0, T ]×
{
x ∈ Rd / x · e1 > 0

}
×
{
v ∈ Rd / v · e1 6= 0

}
vers la solution f du problème de Cauchy associé à l’équation de Bolzmann avec
condition de bord

∂tf + v · ∇xf = Q(f, f),
f(0, ·, ·) = f0(·, ·),
f(x, v) = f

(
x, v − 2

(
v · e1

)
v
)

∀x ∈
{
x ∈ Rd / x · e1 = 0

}
, ∀v ∈ Rd tel que v · e1 > 0,

avec
∣∣(v − v∗) · ω∣∣+ pour noyau de collision B(v − v∗, ω), c’est-à-dire que pour

tout compact K de la partie
{
x ∈ Rd / x · e1 > 0

}
×
{
v ∈ Rd / v · e1 6= 0

}
de

l’espace des phases :∣∣∣∣∣∣1K(x, v)
(
f − f (1)

N

)
(t, x, v)

∣∣∣∣∣∣
L∞([0,T ]t×{x·e1>0}×{v·e1 6=0})

−→
N→+∞

0.

Si de plus la racine carrée de la donnée initiale
√
f0 est lipschitzienne par rapport

à la variable de position x, alors il existe un réel strictement positif a tel que,
dans la limite de Boltzmann-Grad :∣∣∣∣∣∣1K(x, v)

(
f − f (1)

N

)
(t, x, v)

∣∣∣∣∣∣
L∞([0,T ]t×{x·e1>0}×{v·e1 6=0})

= O(εa).

3.4 Perspectives

On conclut cette introduction par quelques pistes de recherches futures suggérées
par ce travail.

On s’est rapidement contenté d’un obstacle très simple pour l’étude de la validié
du théorème de Lanford dans un domaine à bord. Dans un premier temps, il
semble très naturel d’essayer d’obtenir la preuve de ce théorème lorsque les parti-
cules évoluent autour d’un obstacle convexe, d’abord régulier, puis plus général.
Le cas de l’obstacle régulier ne devrait pas poser de difficulté insurmontable.
Par ailleurs, un travail généralisant le lemme de tir 27 page 335 dans ce cadre
est en préparation. En revanche, comment par exemple traiter les singularités
du domaine ? Ou encore les obstacles qui ne sont pas convexes ? Assistera-t-on
à une accumulation de particules dans les éventuelles aspérités de l’obstacle ?
On peut aussi se pencher sur la topologie pour laquelle le résultat de convergence
a été obtenu. En particulier, on peut s’interroger sur la possibilité de démontrer
une convergence sur tout compact de l’espace des phases, et non plus seulement
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pour des compacts qui ne contiennent pas de vitesses rasantes ou des positions
se trouvant au bord de l’obstacle. En particulier, si les compacts que l’on s’au-
torise à considérer peuvent contenir des positions au bord de l’obstacle, cela
impliquerait une bien meilleure compréhension du comportement des solutions
de l’équation de Boltzmann au bord du domaine.

D’autres généralisations sont aussi des sujets d’étude naturels : comment procéder
si les particules ne suivent pas la loi de Snell-Descartes lorsqu’elles atteignent le
bord du domaine, mais évoluent selon un modèle hybride, partiellement diffusif ?
Un changement radical dans le plan de preuve semble s’imposer dans ce cas.
Enfin, on peut aussi étudier le cas d’un obstacle qui n’est plus fixe, mais qui
évolue, par exemple, à la fois sous l’effet sa propre inertie et de la gravité, et
des interactions du nuage de particules qui l’entourent.

Un autre sujet d’étude sans doute passionnant est celui de l’étude du problème
de Cauchy d’un système de particules qui subit des collisions inélastiques. À
la connaissance de l’auteur, il n’y a pour l’instant aucun résultat satisfaisant
obtenu dans cette direction.
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Chapter 1

Dynamics of a finite
number of hard spheres

1.1 Intuitive description of the dynamics

One considers a system of N (N ∈ N∗) spherical particles of mass 1 and of
radius ε/2 (with ε > 0) evolving outside of a convex, closed obstacle Ω of the
Euclidean space Rd (d ≥ 2), such that ∂Ω is of class C1.
All along this work, the dimension of the ambiant Euclidean space will be fixed,
and denoted by d, which is an integer larger or equal to 2.
The dynamics of those N particles is the following. At t = 0, each particle i of
the system starts from its initial position xi ∈ Rd, such that |xi − xj | > ε for
all j 6= i and d(xi,Ω) > ε/2 for all 1 ≤ i ≤ N . Moreover, each particle has an
initial velocity vi ∈ Rd. Let xi(t) and vi(t) respectively denote the position and
velocity at time t of the particle i, with xi(0) = xi and vi(0) = vi.

1.1.1 Definition of the free flow

Following Newton’s first law, the particles are moving along a straight line with
a constant velocity, as long as no interaction (with another particle or with the
obstacle Ω) changes the trajectories, that is :

xi(t) = xi + tvi (1.1)

for all 1 ≤ i ≤ N , and t > 0 such that |xi(t)−xj(t)| = |(xi−xj)+ t(vi−vj)| > ε
for all i 6= j, and d(xi + tvi,Ω) > ε/2 for all i.

Of course, the dynamics of the particles will not be the free transport defined
in (1.1) all the time. Depending on the initial configuration (that is, the value
of (x1, v1, ..., xN , vN )), there can exist times such that the trajectory of some
particles can be changed, that is xi(t) will not be equal anymore to xi + tvi.

49
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Such times will be called events. There are two possible kinds of events, defined
below.

1.1.2 Interaction with the boundary of the domain : the
flow with boundary condition

The first kind of event that one wants to describe happens when a particle
bounces against the boundary of the domain, that is when

d(xi + t0vi,Ω) = ε/2 (1.2)

for some 1 ≤ i ≤ N and t0 > 0.
In that case, the velocity of any particle satisfying the distance condition (1.2)
in this configuration is changed according to the reflexion law of Snell-Descartes,
that is the velocity immediately before the contact with Ω vi(t

−
0 ) is instanta-

neously replaced by

v′i = vi(t
+
0 ) = vi(t

−
0 )− 2vi(t

−
0 ) · n(x̃i(t0))n(x̃i(t0)),

for all 1 ≤ i ≤ N such that d(xi + t0vi,Ω) = ε/2, where x̃i(t0) is the only point
of Ω such that |xi(t0) − x̃i(t0)| = ε/2 (this point exists by definition of t0 and
if the obstacle Ω is a closed set of the Euclidean space, and it is unique if the
obstacle Ω is a convex set), and n(x̃i(t0)) is the outgoing unitary normal vector
to Ω at x̃i(t0), defined as soon as ∂Ω is of class C1. Then, for t ≥ t0 with t− t0
small enough, one has

xi(t) = xi(t0) + (t− t0)v′i,

while the velocities of all the particles not in contact at time t0 with the obstacle
remain of course unchanged.

1.1.3 Interaction between the particles : the hard sphere
flow

The second kind of event that one considers is the collision between two particles.
It occurs when there exists t1 > 0 and 1 ≤ i 6= j ≤ N such that (denoting by
vi(t
−
1 ) and vj(t

−
1 ) the velocities of particles i and j immediately before collision)∣∣(xi(t1)− xj(t1)

)
+ t1

(
vi(t
−
1 )− vj(t−1 )

)∣∣ = ε.

The velocities vi(t
−
1 ) and vj(t

−
1 ) of those two particles, called pre-collisional, are

respectively replaced by the following velocities v′i and v′j , called post-collisional

(one uses the notation vi and vj instead of vi(t
−
1 ) and vj(t

−
1 ) here) :ß

v′i = vi − (vi − vj) · ωi,jωi,j ,
v′j = vj + (vi − vj) · ωi,jωi,j ,
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with

ωi,j =
xi(t1)− xj(t1)

|xi(t1)− xj(t1)|
·

Then, for t ≥ t1 with t− t1 small enough, one has

xi(t) = xi(t1) + (t− t1)v′i, vi(t) = v′i,

and

xj(t) = xj(t1) + (t− t1)v′j , vj(t) = v′j ,

and this modification is done for all couples (i, j) of particles verifying the con-
dition

∣∣(xi − xj) + t(vi − vj)
∣∣ = ε (assuming that for all times, the couples of

particles satisfying this assumption constitute a family of disjointed couples :
one will show later that the initial configurations leading, for some time t, to a
situation such that this is not satisfied, are of measure 0), while the velocities
of the particles which are not in contact with another particle are not modified.

1.1.4 The scattering mapping

One is led to define a mapping acting on pairs of velocities, based on the tran-
sition from pre to post-collisional configurations.

Definition 1 (Scattering mapping). For any vector ω of the sphere Sd−1 (called
the angular parameter), one defines the scattering mapping Sω (or simply S)
as the following function :

Sω : (v, v∗) 7→
(
v −

(
(v − v∗) · ω

)
ω, v∗ +

(
(v − v∗) · ω

)
ω
)
. (1.3)

The pair of velocities obtained from the original pair (v, v∗) after the application
of the scattering mapping will usually be denoted (v′, v′∗), rather than Sω(v, v∗)
(this notation omitting the angular parameter).

One sees that the change of velocities of a pair of colliding particles i and j
at time t defined in the previous section is given by the scattering mapping,
applied for the particular angular parameter

ω =
xi(t)− xj(t)
|xi(t)− xj(t)|

·

One gives briefly some obvious elementary properties verified by the scattering
mapping.

Proposition 1 (Elementary properties of the scattering mapping). For any
angular parameter ω :

• the scattering mapping is an involution, that is

Sω ◦Sω = id,
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• it sends the pre-collisional pairs of velocities to the post-collisional ones and
conversely, that is

(v − v∗) · ω < 0⇔ (v′ − v′∗) · ω > 0,

• it verifies the two following conservation laws :

v′ + v′∗ = v + v∗,

and ∣∣v′∣∣
2

2

+

∣∣v′∗∣∣
2

2

=

∣∣v∣∣
2

2

+

∣∣v∗∣∣
2

2

·

Remark 1. The two conservation laws have in fact an important physical mean-
ing : the first one, which is a vector relation, means that the momentum is pre-
served by scattering mapping, while the second one, which is a scalar relation,
means that the kinetic energy is preserved by this mapping.

1.1.5 The notations for the configurations

The motion of each particle of the system is entirely determined, at any time t,
by its position and its velocity at this time t. Therefore, the configuration of the
whole system is entirely determined by a single vector, which is the collection
of all those positions and velocities. Such a vector is called a configuration.

Definition 2 (Configurations). Let N be a positive integer. For any collection of
N vectors x1, . . . , xN lying in Rd (representing the respective positions of the N
particles of the system), and v1, . . . , vN lying in Rd (representing the respective
velocities of the N particles of the system), one will call configuration of the
system the following vector, denoted

ZN =
(
x1, v1, . . . , xN , vN

)
. (1.4)

One will denote the collection of positions of the configuration ZN , that is(
x1, . . . , xN

)
, as

XN , (1.5)

and the collection of velocities of this configuration, that is
(
v1, . . . , vN

)
, as

VN . (1.6)

Moreover, the specific position (respectively velocity) of the particle i, that is xi
(respectively vi), will be denoted as

ZX,iN or Xi
N (respectively ZV,iN or V iN ). (1.7)
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Finally, when the scattering operator (see Definition 1 above) is applied to the
pair of velocities of the particles i and j of the configuration ZN , one will denote
the new configuration(

x1, v1, . . . , xi, v
′
i, . . . , xj , v

′
j , . . . , xN , vN

)
,

where v′i and v′j are the image by the scattering mapping Sω (for some angular
parameter ω which is not written in the notations, but usually easily identifiable
in the context) as (

ZN
)′
i,j
, or

(
x1, v1, . . . , xN , vN

)′
i,j
. (1.8)

1.1.6 Introducing the free and the hard sphere transports
(with boundary condition)

In this section, one will introduce some notation for the transport operators
used in the sequel.

Definition 3 (Free transport with boundary condition). For any positive inte-
ger s (denoting the number of particles), any configuration

Zs =
(
x1, v1, . . . , xs, vs

)
∈
(
Rd
)2s
,

such that, for all 1 ≤ i ≤ s :
d(xi,Ω) ≥ 0,

(the particles have to lie outside the obstacle Ω) and for any real number t
(denoting time), one will denote by

T s,0t (Zs) (1.9)

the image of the configuration Zs by the free transport dynamics with boundary
condition described above, after a time t (that is, the particles have a radius
of size 0 and move in straight lines with a constant velocity except when they
bounce against the boundary of the obstacle Ω).

Definition 4 (Hard sphere transport with boundary condition). For any posi-
tive integer s (denoting the number of particles), any strictly positive number ε
(denoting the diameter of the particles) and any configuration

Zs =
(
x1, v1, . . . , xs, vs

)
∈
(
Rd
)2s
,

such that, for all 1 ≤ i ≤ s :

d(xi,Ω) ≥ ε/2,

and for all 1 ≤ i < j ≤ s : ∣∣xi − xj∣∣ ≥ ε,



54CHAPTER 1. DYNAMICS OF A FINITE NUMBER OF HARD SPHERES

and for any real number t (denoting time), one will denote by

T s,εt (Zs) (1.10)

the image of the configuration Zs by the hard sphere dynamics described above,
after a time t (that is, the particles move in straight lines with a constant velocity
except when they bounce against the boundary of the obstacle Ω, or when they
collide with each other).

In order to define properly the dynamics described in Section 1.1, one needs
some preliminary work, that one now presents.

1.1.7 The link between the number and the radius of the
particles : the low density limit

So far, no condition was set linking the number N of particles of the system of
hard spheres, and the radius ε/2 of those hard spheres. Following Grad in [38]1,
one will assume in a formal way that, in average, the particles will travel in
straight lines, between two collisions, for a fixed distance, called the mean free
path. In dimension d, this condition can be translated into the following scaling :

Nεd−1 = 1, (1.11)

and, together with the limit N → +∞, the condition (1.11) is called the
Boltzmann-Grad scaling, or the Boltzmann-Grad limit.

The formal link between the mean free path and the scaling condition (1.11) is
the following. One assumes that all the particles of the system are travelling with
a normalized velocity inside a subset A of the Euclidean space Rd. Considering
only one particle i of the system, which is considered to be, one recalls, a sphere
of radius ε/2, since its velocity is of norm 1, during a time interval of length 1,
this particle i will cover a cylinder of volume C(d)εd−1, where C(d) is a con-
stant depending only on the dimension. If this particle i collides with another
particle j, this means that the particle j has to cross the cylinder covered by the
particle i during the time interval [0, 1]. Since there are N − 1 other particles,
the possibility for a collision between the particle i and another particle, that
is the possibility for the particle i to move in a straight line only during a time
interval contained in [0, 1] is proportional to (N − 1)εd−1, that is, it is of order
Nεd−1 when N is large, so that the Boltzmann-Grad scaling is recovered.
One emphasizes here on the fact that this discussion is only formal. However,
this discussion enables to recover the scaling in some natural way.

A consequence of this scaling is that one describes a diluted gas. Indeed, if
the quantity Nεd−1 is equal to 1, the quantity Nεd, which is proportional to

1See the Section 2 ”Elementary Properties of the Boltzmann Equation”, and especially the
paragraph starting page 342 concerning spherical molecules. Grad is himself quoting Chapman
and Cowling ([27]) and Maxwell ([53]).
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the volume occupied by the N spherical particles of the system, is therefore
equal to

C(d)Nεd = C(d)ε = C(d)
(
1/N

) 1
d−1 ,

with C(d) denoting a constant depending only on the dimension, and goes to
zero as N goes to infinity. In other words, only a tiny part of the space in which
lies the gas is filled with the molecules. This is the reason why the Boltzmann-
Grad scaling is sometimes called the low-density limit.

1.2 Rigorous definition of the dynamics of the
hard spheres

1.2.1 Condition on the obstacle Ω : general discussion

One considers particles which follow the dynamics of hard spheres, that is they
are balls with a given diameter ε > 0. Although this parameter ε is meant to
go to zero, one wants to be able to define properly the dynamics of balls of
diameter ε, for all ε < ε0 (with ε0 > 0 given, depending on the obstacle).
The dynamics will be well-defined only if, for a ball centered on x(t) colliding
with ∂Ω, there is only one point belonging to ∂Ω ∩Bε(x(t)).
In the case when d = 2, because ∂Ω is a C1 curve, it can be seen at each point
as the graph of some function. The previous condition is then equivalent to the
fact that the function which represents the boundary has a second derivative
smaller than 1/ε for all ε small enough. Then one sees that the dynamics of one
hard sphere of radius smaller than ε0 is well-defined outside Ω if and only if the
curvature of the boundary ∂Ω is smaller than 1/ε0.
Then it seems convenient to study only subsets of Rd such that their boundaries
are C2 curves, with a bounded curvature.
In this work, one will in fact focus on one of the easiest possible setting : the
obstacle will be the half-space, and therefore the boundary of the domain will
be an hyperplane of the Euclidean space Rd.
A natural extension of this work would consist in considering obstacles which
are the closure of convex open sets of the Euclidean space.

1.2.2 Elimination of a zero-measure set of configurations

One will check here that for almost all initial configurations, the dynamics intro-
duced in Sections 1.1.2 and 1.1.3 is well defined. One first introduces the phase
space.
One needs to choose initial configurations such that none of the particles crosses
any other particle of the system, that is particles have to start far enough one
from the other, while none of the particles is crossing the obstacle either. One
will introduce a notation for this subset, called the phase space, since it will
be in this subset that the configuration describing the state of the system of
particles will evolve.
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Definition 5 (The phase space for N hard spheres of radius ε/2). For any
positive integer N (denoting the number of particles of the system) and any
strictly positive number ε (denoting the diameter of the particles), one will call
the phase space for N hard spheres of radius ε/2 evolving around the obstacle
Ω ⊂ Rd as the subset of R2dN defined as :

DεN =
{
ZN ∈

((
Ω +B(0, ε/2)

)c)N
× RdN /

∀ 1 ≤ i < j ≤ N, |xi − xj | > ε
}
, (1.12)

that is, in the setting of this work, when Ω =
{
x ∈ Rd x · e1 > ε/2

}
:

DεN =
{
ZN ∈

({
x · e1 > ε/2

}
× Rd

)N
/

∀ 1 ≤ i < j ≤ N,
∣∣xi − xj∣∣ > ε

}
,

where e1 denotes the first vector of the canonical basis of the Euclidean space
Rd.

Unfortunately, some configurations could lead to an ill-defined dynamics. One
first observes that in the case of a bouncing against the obstacle, the velocity is
modified, following the Snell-Descartes law introduced in Section 1.1.2 page 50.
In particular, the velocity after the bouncing depends on the point of contact
between the particle and the obstacle. Thanks to the convexity of the obstacle
(in fact any obstacle with a bounded curvature provides the same property up
to assuming that the size of the particles is small enough), none of the initial
configurations could lead to a situation in which a particle touches at the same
time the obstacle at two or more different points.
However, some initial configurations could lead to a situation in which a par-
ticle collides with two other particles (or more) at the same time. One should
also consider an initial configuration leading to a situation in which a particle
bounces against the obstacle, and collides with at least another particle at the
same time. With those two kinds of initial configuration, the dynamics is ill-
defined, indeed : two velocities or more are assigned to the same particle at the
time of the considered event. There is no other possible cause of an ill-defined
dynamics when the obstacle is the half-space. Indeed, for the case of the grazing
velocities, that is, if a particle has a velocity which is parallel to the wall, its
trajectory will be well defined since by hypothesis the particle starts from a
position far enough from the obstacle, and then will remain far enough from it,
as long as the velocity of the particle is not modified. And in this situation, the
only way to modify this velocity is with a collision with another particle.
One calls pathological a trajectory issued from an initial configuration leading
to an ill-defined dynamics.
Fortunately, those initial configurations represent only a very small part of the
set of all initial configurations, the size of which can be controlled (one will show
below that it is a zero-measure set).
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One of the first results stated in [34]2, and based on a proof written in [1], shows
that the pathological trajectories are very rare in the case of particles moving
freely in the whole space or in the torus. One introduces a variable δ, which is
meant to be small, and which will relax a bit the condition ”at the same time”.
Indeed, instead of evaluating the size of the set of initial configurations leading
to two collisions at the same time involving the same particle, one evaluates
the size of the initial configurations leading to two collisions implying the same
particle in a small time interval, of size δ. Some trajectories issued from those
initial configurations, forming a set of size controlled by δ, may be ill-defined,
but one can assert that all the trajectories issued from the other initial config-
urations are well defined.

Here, of course, one has to consider other pathological trajectories due to the
presence of the obstacle. A similar result to the one of [34] is nevertheless ob-
tained in this section following the original reference [1], in the case of particles
evolving outside of an obstacle, showing that the initial configurations which
lead to at least two events during an interval of size δ represent a small part of
all the initial configurations. One recalls that an event is either a collision be-
tween two particles or a bouncing of a particle with the boundary of the obstacle
Ω.

Proposition 2 (Measure of the initial configurations leading to pathological
trajectories, and accumulation of events). Let Ω be the half-space, that is :

Ω =
{
x ∈ Rd / x · e1 ≤ 0

}
,

where e1 denotes the first vector of the canonical basis of the Euclidean space
Rd, let N be an integer larger than 3 and 0 < ε ≤ 1 be a strictly positive number.
Then the two following assertions hold.

• The set of initial configurations contained in the phase space for N hard
spheres DεN leading to a pathological trajectory during the time interval
R+ is of measure zero.

• For every initial configuration ZN ∈ DεN , one considers the subset E(ZN )
of R+ composed of all the times of the events of this dynamics during
the largest time interval where it is well-defined. Then for every initial
configuration ZN outside a subset of the phase space for N hard spheres
DεN , which is of measure zero, E(ZN ) is a discrete set.

Remark 2. The last point of Proposition 2 means that there is no infinite
accumulation of events.

Proof. One starts by proving the first point. The proof of this point, as in the
article [34], relies first on estimates which evaluate the size of the set of initial
configurations leading to several events in small time intervals. A crucial tool
here is the cut-off in very long distances between the particles, and very high

2See Proposition 4.1.1, in Section ”The N -particle flow”.
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energy of the system of particles.

Let δ ∈ ]0, 1], ρ ≥ 1 and R ≥ 1 be three strictly positive real numbers. One
starts by removing configurations featuring large distances between the parti-
cles. One removes also configurations with positions far from x = 0, or with
high energies (that is, norms of the velocities). This means that one considers
initial configurations ZN (see Definition 2 page 52) taken in :

DεN,ρ,R = DεN ∩
Ä
(BRd(0, ρ))

N ×BRdN (0, R)
ä

(see Definition 5 page 56). For every integer 1 ≤ i ≤ N , and any pair 1 ≤ j 6=
k ≤ N with j 6= i and k 6= i, one considers :

Aij,k(δ) =
{
ZN ∈ DεN,ρ,R / |xi − xj | ≤ 2δR+ ε, |xi − xk| ≤ 2δR+ ε

}
.

If ZN does not belong to this subset of initial configurations, it is not possible yet
to claim that the dynamics will be well defined for the whole time interval [0, δ],
but it is clear that the particle i will not be able to collide with the particles
j and k during this time interval. Indeed, if one assumes that there exist two
times t1 and t2 in [0, δ] such that the dynamics of the system of N particles is
well defined on the time interval [0,max(t1, t2)] and such that :ß

|xi(t1)− xj(t1)| = ε,
|xi(t2)− xk(t2)| = ε,

then one would get :

|xi − xj | ≤ |xi − xi(t1)|+ |xi(t1)− xj(t1)|+ |xj(t1)− xj | ≤ 2δR+ ε,

since the velocity of each particle has to be smaller in norm than R. Similarly
one would get |xi − xk| ≤ 2δR+ ε.
On the other hand, one notices that |xi − xj | > ε and |xi − xk| > ε because the
initial configuration lies in DεN . Then the size of the set Aij,k is bounded by :

|BRd(0, ρ)|N−2
(
|BRd(0, 2δR+ ε)| − |BRd(0, ε)|

)2|BRdN (0, R)|,

and using the fact that :(
|BRd(0, 2δR+ ε)| − |BRd(0, ε)|

)2
= C(d)

(
(2δR+ ε)d − εd

)2
,

with C(d) denoting a constant depending only on the dimension d, one can state
that the size of the set Aij,k is bounded by :

∣∣Aij,k∣∣ ≤ C1(d,N)ρd(N−2)RdN
( d∑
k=1

Ç
d

k

å(
2δR

)k
εd−k

)2

, (1.13)

with C1(d,N) denoting a constant depending only on the the dimension d and
the number of particles N .
Similarly, for all integers 1 ≤ i 6= j ≤ N , one considers :

Bij(δ) =
{
ZN ∈ DεN,ρ,R / |xi − xj | ≤ 2δR+ ε, d(Ω, xi) ≤ δR+ ε/2

}
.
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As for the subset Aij,k(δ), the set Bij(δ) is such that, if ZN does not belong to

Bij(δ), then the particle i will not collide with the particle j nor bounce against
the obstacle during the time interval [0, δ].
Indeed, if one assumes that there exist two times t1 ∈ [0, δ] and t2 ∈ [0, δ]
such that the dynamics of the system of N particles is well defined on the time
interval [0,max(t1, t2)] and such that :ß

|xi(t1)− xj(t1)| = ε,
d(Ω, xi(t2)) = ε/2,

then one gets on the one hand, as above :

|xi − xj | ≤ 2δR+ ε.

On the other hand, one gets :

d(Ω, xi) ≤ δR+ ε/2,

since for every y ∈ Ω :

d(Ω, xi) ≤ d(y, xi) ≤ d(y, xi(t2)) + d(xi(t2), xi) ≤ d(y, xi(t2)) + δR

because the velocity of all the particles is bounded by R. Taking the infimum
of the quantity d(y, xi(t2)) + δR for all the y belonging to Ω, one obtains the
result.
The size of the set Bij is also bounded by the following expression :

|BRd(0, ρ)|N−2
(|BRd(0, 2δR+ ε)| − |BRd(0, ε)|) |BRd−1(0, ρ)|
× |[ε/2, δR+ ε/2]| |BRdN (0, R)|

= C2(d,N)ρd(N−1)−1RdN+1δ
d∑
k=1

Ç
d

k

å
(2δR)

k
εd−k, (1.14)

with C2(d,N) denoting a constant depending only on the dimension d and the
number of particles N .
Here one notices that the condition d(Ω, xi) ≤ δR+ε/2 defining the set Bij(δ) is
very easy to transform in a simple condition when the obstacle is the half-space.

Now one is able to define a subset of DεN,ρ,R composed of initial configura-
tions which are all leading to a dynamics well defined on the whole time interval
[0, δ]. Indeed, if one considers :

DεN,ρ,R \ CεN,ρ,R(δ, 1)

with

CεN,ρ,R(δ, 1) =

Å( ⋃
1≤i≤N

1≤j 6=k≤N, j 6=i, k 6=i

Aij,k(δ)
)
∪
( ⋃

1≤i≤N
1≤j≤N, j 6=i

Bij(δ)
)ã
,
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then for every initial configuration ZN taken in this set, no particle can collide
with two different particles during the time interval [0, δ], and there is no particle
which can collide with another particle and bounce against the obstacle Ω during
the same time interval.
Moreover, the size of the excluded set is small, that is one has :

∣∣CεN,ρ,R(δ, 1)
∣∣ =

∣∣∣∣∣
Å( ⋃

1≤i≤N
1≤j 6=k≤N, j 6=i, k 6=i

Aij,k(δ)
)
∪
( ⋃

1≤i≤N
1≤j≤N, j 6=i

Bij(δ)
)ã∣∣∣∣∣

≤ C1(d,N)N

Ç
N − 1

2

å
ρd(N−2)RdN

( d∑
k=1

Ç
d

k

å
(2δR)

k
εd−k

)2

+ C2(d,N)N(N − 1)ρd(N−1)−1RdN+1δ
d∑
k=1

Ç
d

k

å(
2δR

)k
εd−k

≤ C3(d,N)RdN+2
Ä
ρd(N−2)ε2(d−1) + ρd(N−1)−1εd−1

ä
δ2 (1.15)

for δ small enough with ε, R and ρ fixed, with C3 denoting a constant depending
only on the dimension d and the number of particles N , because when ε, δ ≤ 1
and R ≥ 1, if one assumes that :

δ ≤ δ0 = min
1≤k≤d

ε

2R

Ç
d(
d
k

)å1/(k−1)

,

one sees immediately that :Ç
d

k

å
(2δR)

k
εd−k ≤

Ç
d

1

å
2δRεd−1,

so that the last inequality becomes obvious.

One will now use the set constructed just above to prove that the dynamics
is well defined on the whole half real line R+ for almost every initial configura-
tions.
First, let t be a given strictly positive constant. One will prove that the size of
the initial configurations leading to an ill-defined dynamics before the time t is
of measure zero among all the initial configurations.
One chooses δ > 0 such that t/δ is a positive integer, say m. On the one hand,
up to excluding a ”small” subset of DεN,ρ,R, one knows that for every initial
configuration, the dynamics is well-defined until the time δ. On the other hand,
by the definition of the dynamics, one knows that the energy of the system is
constant and is smaller than R. But since the initial positions of the vector ZN
are all taken in BRd(0, ρ), at time δ, the initial configuration ZN becomes a new
configuration which belongs to

DεN ∩
Ä
(BRd(0, ρ+ δR))

N ×BRdN (0, R)
ä
,
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that is DεN,ρ+δR,R, according to the previous notation. Remembering that ε ≤ 1,
the bound (1.15) can be rewritten since

ρd(N−2)ε2(d−1) ≤ ρd(N−1)−1

ρd−1
εd−1 ≤ ρd(N−1)−1εd−1,

so that Ä
ρd(N−2)ε2(d−1) + ρd(N−1)−1εd−1

ä
≤ 2ρd(N−1)−1εd−1. (1.16)

Then, following the same steps as above and thanks to the bound (1.15) rewrit-
ten with (1.16), and up to excluding a small subset CεN,ρ+δR,R(δ, 1) of DεN,ρ+δR,R
of size bounded by

C4(d,N)RdN+2 (ρ+ δR)
d(N−1)−1

εd−1δ2,

(with C4(d,N) = 2C3(d,N)), the dynamics is then well-defined until 2δ. Since
the hard sphere flow preserves the measure (see for example [26]3), it is possible
to exclude from the set of the initial configuration a subset denoted by

CεN,ρ,R(δ, 2), (1.17)

which is the union of two subsets. The first subset, that is CεN,ρ,R(δ, 1), ensures
that the dynamics is well-defined until δ. The second subset, which is :(

TN,ε−δ
(
CεN,ρ+δR,R(δ, 1)

))
∩
(
BRd(0, R)N ×BRdN (0, R)

)
,

ensures that it is well-defined until 2δ (TN,ε∗ denoting the hard sphere flow of
N particles of radius ε).
By induction, up to excluding a subset CεN,ρ,R(δ,m) which has a size smaller
than

C4(d,N)RdN+2εd−1δ2
m−1∑
k=0

Ä
(ρ+ kδR)d(N−1)−1

ä
,

the dynamics is well defined on the whole time interval [0, t]. Taking ρ = R, the
size of the excluded set is then bounded by (remembering that t = mδ) :

C4(d,N)Rd(2N−1)+1εd−1t(1 + (m− 1)δ)d(N−1)−1δ ≤ C(d,N, t, ε)Rd(2N−1)+1δ.
(1.18)

Considering the subset of the initial configurations

FεN,R(t) =
⋂

δ>0 / (t/δ) ∈ N∗
CεN,R,R(δ, t/δ),

that is ⋂
m ∈ N∗

CεN,R,R(t/m,m),

3In particular, see Appendix 4.A ”More About Hard-Sphere Dynamics”.
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which is of course of measure zero thanks to the bound (1.18), one knows that
every initial configuration taken in

DεN,R,R = DεN ∩
Ä
(BRd(0, R))

N ×BRdN (0, R)
ä

and outside the set
FεN,R(t)

is well-defined for the whole time interval [0, t].
It is now sufficient to consider a sequence (Rn)n∈N going to infinity with R0 ≥ 1,
and :

FεN (t) =
⋃
n∈N
FεN,Rn(t),

which is of measure zero as a countable union of subsets of measure zero, and
which contains all the initial configurations (without any condition on the sizes
of the positions and velocities) leading to an ill-defined dynamics before the
time t.
Finally, since the time t has been chosen arbitrarily, one considers the set :

FεN =
⋃
p∈N∗

FεN (pt),

which is once again of measure zero as a countable union of subsets of mea-
sure zero. If taken outside this subset FεN , any initial configuration ZN ∈ DεN
leads to a well-defined dynamics, and the first point of the proposition is proved.

For the second point, one will consider an initial configuration of DεN , which
is not an element of FεN . This subset is, as shown in the previous point, of mea-
sure zero, and the dynamics from this initial configuration is well-defined on the
whole time interval R+.
On the one hand, if one assumes that E(ZN ) admits an accumulation point, say
t0 > 0 (that is there exists a sequence of events (tk)k∈N such that tk −→

k→+∞
t0),

since there is only a finite number of particles (here : N), there exists 1 ≤ N0 ≤
N such that it is possible to extract a subsequence (tϕ(k))k∈N of (tk)k∈N, in such
a way that all the events of this subsequence correspond to the particle N0, that
is each event tϕ(k) is either a collision between N0 and another particle, or it is
a bouncing of the particle N0 against the obstacle.
On the other hand, going back to the definition of the subset FεN , the fact that
ZN /∈ FεN exactly means that :

∀t > 0, ∀ p ∈ N∗, ∀ n ∈ N, ZN /∈ FεN,Rn(pt),

where FεN,ρn,Rn(pt) is defined in the proof of the first point, that is :

∀t > 0, ∀ p ∈ N∗, ∀ n ∈ N, ∃ m ∈ N∗ / ZN ∈ CεN,Rn(pt/m,m).

In particular, one chooses t = 2t0, where t0 is the accumulation point of the
set of events E(ZN ) mentionned above, so that t0 ∈]0, t[, and then there exists
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k0 ∈ N so that for all k ≥ k0, one has :

tϕ(k) ∈ ]0, t[.

Since the sequence
(
Rn
)
n∈N is increasing and tends to infinity, there exists

n0 ∈ N such that :

ZN ∈
(
BRd(0, Rn0

)
)N ×BRdN (0, Rn0

).

Finally, for t = 2t0, n = n0 and p = 1, there exists m0 ∈ N∗ such that :

ZN ∈ CεN,Rn0
(t/m0,m0).

So all the events concerning the particle N0 are separated by a time interval of
length larger than t/m0, which is obviously a contradiction with the fact that
t0 is an accumulation point of events concerning this particle. The second point
of the proposition is then proved.

Remark 3. Even if the propostion is stated in the particular case when the
obstacle is the half-space, it certainly holds for a more general convex obstacle,
namely if one considers the closure of a convex open set of the Euclidean space
Rd with a C2 boundary such that the curvature of this boundary is bounded. The
proof presented here should be essentially the same, except some small addition-
nal geometric arguments. In particular, the size of the set Bij introduced in the
proof depends on the obstacle.
At this level, it is interesting to notice that it is possible to show Proposition 2
for a flow of hard spheres outside of a set a little bit more general than a convex
set, at least in dimension 2. Indeed, it is sufficient to assume that there exists
α > 0 such that, for every x ∈ ∂Ω ⊂ R2, Ω is outside of the convex subset
bounded by the parabola of vertex x and of focal length α. It is easy to show
under such an assumption that if a particle collides twice with the boundary ∂Ω
during a time interval of size δ, then the initial speed of this particle has to lie
in a set of measure of order δ.
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Chapter 2

The BBGKY hierarchy for
the dynamics of N hard
spheres

Now that the motion of the particles has been described, one will study the
behaviour of density functions of a system of such particles. In fact one will see
that it is possible to link the marginals of those density functions by a sequence
of equations, called the BBGKY hierarchy.

2.1 Formal derivation of the BBGKY hierarchy

2.1.1 Introducing the marginals of the distribution func-
tion, and the Liouville equation

One introduces here the notation for the marginals of a distribution function of
a system of N particles. In the following, one will need a slightly more general
definition of the marginals of a nonnegative function, namely : one will define
the s-th marginal, for any s positive integer.

Definition 6 (Marginals of a distribution function). Let N be a positive integer,
and ε be a strictly positive real number. One considers a nonnegative, integrable
function fN defined on the phase space for N hard spheres of radius ε/2 (see
Definition 5 page 56).
For every integer 1 ≤ s ≤ N , one will call the s-th marginal of the function fN ,

the function denoted by f
(s)
N , and defined as :

f
(s)
N (Zs) =

∫
R2d(N−s)

fN (Zs, zs+1, . . . , zN )1ZN∈DεN dzs+1 . . . dzN .

For every integer s > N , one will call the s-th marginal of the nonnegative func-

tion fN , the function denoted by f
(s)
N , and defined as the zero function defined

65
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on Dεs.

One immediately sees that the s-th marginal is defined on Dεs ⊂ R2ds. Moreover,
for any positive integer N , any strictly positive real number ε, and for every
integers 1 ≤ s ≤ N − 1, the marginals satisfy the following property :

f
(s)
N (Zs) =

∫
R2d

f
(s+1)
N (Zs, zs+1) dzs+1.

One recalls that one is considering the simple case of the half-space, that is

Ω =
{
x ∈ Rd / x · e1 ≤ 0

}
.

In this configuration, it is clear that the condition of regularity on ∂Ω (discussed
in Section 1.2.1 page 55) is fulfilled so that the dynamics of N hard spheres, for
any N ∈ N∗, is well defined, and thanks to Proposition 2 page 57, one knows
that the set of the configurations leading to a pathological trajectory is of mea-
sure zero.

Let N ∈ N∗ and ε > 0 be fixed. One recalls that DεN denotes the phase space
for N hard spheres, which is the set

DεN =
{
ZN ∈ R2dN / ∀ 1 ≤ i 6= j ≤ N, |xi − xj | > ε

}
∩
{
ZN ∈ R2dN / ∀ 1 ≤ i ≤ N, xi · e1 > ε/2

}
.

One considers the nonnegative solution fN of the Liouville equation associated
to the transport of N hard spheres of radius ε/2 outside the obstacle Ω, defined
in the phase space DεN . This equation writes :

∀t ≥ 0,∀ZN ∈ DεN ,

∂tfN (t, ZN ) +
N∑
i=1

vi · ∇xifN (t, ZN ) = 0. (2.1)

The reader can see that the boundary conditions are not prescribed yet. This is
the purpose of the following paragraph.

2.1.2 The boundary conditions of the hard sphere dynam-
ics

Boundary conditions are added to equation (2.1) in order to define fN when
its argument is about to enter the phase space, fitting with the hard sphere
dynamics. In other words, those boundary conditions provide a rigorous way of
defining the collisions between particles as well as the bouncings of the particles
against the boundary of the obstacle Ω.

In order to write down those boundary conditions, one defines an involution,
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denoted by χεN , on the boundary of the phase space ∂DεN . One first observes
that for ZN =

(
x1, v1, . . . , xN , vN

)
∈ ∂DεN , either there exist 1 ≤ i 6= j ≤ N

such that |Xi
N −X

j
N | = ε, or there exists 1 ≤ i ≤ N such that Xi

N · e1 = ε/2.
The map χεN is defined almost everywhere on ∂DεN . It acts only on the velocity
variables of the configurations, in the way described in the following Definition.

Definition 7 (Boundary conditions for the hard sphere dynamics). Let s be a
positive integer and ε be a strictly positive number. One defines the boundary
conditions for the hard sphere dynamics of s particles of radius ε/2 around the
obstacle Ω as the following function.

χεs :

ß
∂Dεs → ∂Dεs,
Zs 7→ χεs(Zs),

(2.2)

with
χεN (Zs)

X = (Zs)
X

and is such that if there exist 1 ≤ i 6= j ≤ s such that |xi−xj | = ε, |xk−xl| > ε
for all couples (k, l) 6= (i, j), and xk · e1 > ε/2 for all 1 ≤ k ≤ s : χεs(Zs)

V,i = vi − (1/ε2)(vi − vj) · (xi − xj)(xi − xj),
χεs(Zs)

V,j = vj + (1/ε2)(vi − vj) · (xi − xj)(xi − xj),
χεs(Zs)

V,k = vk for all 1 ≤ k ≤ s, k 6= i, k 6= j,

using the notations (1.7) in Definition 2 page 52 to describe the positions and
the velocities of a given configuration. In other words, the velocities of the pair
of particles i and j are modified using the scattering mapping (see Definition 1
page 51) with the angular parameter

xi − xj∣∣xi − xj∣∣ =
xi − xj

ε
,

that is(
χεs(Zs)

V,i, χεs(Zs)
V,j
)

= S(xi−xj)/ε
(
ZV,is , ZV,js

)
= S(xi−xj)/ε

(
vi, vj

)
.

If there exists 1 ≤ i ≤ s such that xi · e1 = ε/2, xj · e1 > ε/2 for all j 6= i, and
|xj − xk| > ε for all 1 ≤ j < k ≤ s :ß

χεs(Zs)
V,i = vi − 2vi · e1e1,

χεs(Zs)
V,j = vj for all 1 ≤ j ≤ s, j 6= i.

The map χεN describes in a rigorous way how the particles collide with each
other or are reflected on the wall.

The map χεN is defined properly on the set ’∂DεN , defined as :’∂DεN =
( ⋃

1≤i≤N
Bi

)
∪
( ⋃

1≤i<j≤N
Ci,j

)
(2.3)
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with, for all 1 ≤ i ≤ N :

Bi =
{
ZN ∈ R2dN / xi · e1 = ε/2,

∀ j 6= i, xj · e1 > ε/2, ∀ 1 ≤ k < l ≤ N, |xj − xk| > ε
}
, (2.4)

(corresponding to the configurations in which the only event is a bouncing of
the particle i against the wall), and for all 1 ≤ i < j ≤ N :

Ci,j =
{
ZN ∈ R2dN / |xi − xj | = ε,

∀ 1 ≤ k < l ≤ N / (k, l) 6= (i, j), |xk − xl| > ε,

∀ 1 ≤ m ≤ N, xm · e1 > ε/2
}
, (2.5)

(corresponding to the configurations in which the only event is a collision be-
tween the two particles i and j), and one observes that the map χεN is an
involution on this set.

Then, once the map χεN is properly defined on the boundary of the phase space

except for a subset of measure zero, namely, on the set ’∂DεN of full measure, one
defines the boundary condition associated to Equation (2.1) page 66. To do so,

one splits into two parts ’∂DεN , separating the ”incoming” and the ”outgoing”
configurations.
One writes

B in
i =

{
ZN ∈ R2dN / xi · e1 = ε/2,

∀ j 6= i, xj · e1 > ε/2, ∀ 1 ≤ k < l ≤ N, |xj − xk| > ε,

and vi · e1 > 0
}
,

(corresponding to a configuration in which only the particle i is in contact with
the obstacle, and such that, for any strictly positive time, this particle will be at
a distance strictly larger than ε/2 from the obstacle, so that if the configuration
is transpored by the hard sphere flow for a small enough, strictly positive time,
the image of this configuration will lie in the phase spaceDεN . This is an incoming
configuration),
and

C in
i,j =

{
ZN ∈ R2dN / |xi − xj | = ε,

∀ 1 ≤ k < l ≤ N / (k, l) 6= (i, j), |xk − xl| > ε,

∀ 1 ≤ m ≤ N, xm · e1 > ε/2,

and (xi − xj) · (vi − vj) > 0
}
,

(corresponding to a configuration in which only the pair of particles i and j are
colliding one with another, and such that, for any small enough, strictly positive
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time, the distance between those two particles will be strictly larger than ε, this
is also an incoming configuration).
Defining finally

(’∂DεN)in =
( ⋃

1≤i≤N
B in
i

)
∪
( ⋃

1≤i<j≤N
C in
i,j

)
, (2.6)

one sets the boundary condition associated to Equation (2.1) page 66 as :

∀t ≥ 0, ∀ZN ∈
(’∂DεN)in,

fN (t, ZN ) = fN (t, χεN (ZN )). (2.7)

The so-called BBGKY hierarchy is a system consisting of a finite number of
equations holding in a weak sense, that will be detailed below, built at the formal
level from the Liouville equation (2.1) page 66 with the boundary conditions
(2.7), assuming in addition the indistinguishibility of the particles, that is :

∀σ ∈ SN , fN (t, Zσ(N)) = fN (t, ZN ), (2.8)

with Zσ(N) denoting naturally
(
zσ(1), . . . , zσ(N)

)
, and SN denoting the symmet-

ric group on the finite set
{

1, . . . , N
}

.
One observes that indistinguishibility is propagated in time (at the formal level)
by the Liouville equation (2.1) with the boundary conditions (2.7), so that it
is sufficient to assume this indistinguishibility at the level of the initial data only.

Let s be a positive integer smaller than N . Let φs ∈ C∞c
(
R+ × R2ds,R

)
, such

that φs satisfies the following equality, which is a boundary condition in the
phase space of s particles :

∀t ≥ 0, ∀Zs ∈
(‘∂Dεs)in, φs(t, Zs) = φs(t, χ

ε
s(Zs)). (2.9)

Starting from the Liouville equation (2.1) page 66, one sees that

∫
R+×R2dN

ï
∂tfN +

N∑
i=1

vi · ∇xifN
ò
(t, ZN )φs(t, Zs)1ZN∈DεN dZN dt = 0. (2.10)

One first observes that, without considering the integration with respect to the
time variable, the second term in (2.10), denoted by A, can be rewritten as
follows :
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A =

∫
R2dN

N∑
i=1

vi · ∇xifN (t, ZN )φs(t, Zs)1ZN∈DεN dZN

=

∫
R2dN

N∑
i=1

vi ·
[
∇xi

(
fNφs

)
− fN∇xiφs

]
(t, ZN )1ZN∈DεN dZN

=
N∑
i=1

∫
∂Dε

N

fN (t, ZN )φs(t, Zs)vi · n∂Dε
N

dS

−
s∑
i=1

∫
R2dN

vi · ∇xiφs(t, Zs)fN (t, ZN )1ZN∈DεN dZN ,

where n∂Dε
N

denotes the normal unitary outgoing vector at any point belonging
to the boundary ∂DεN , and dS the natural measure on the hypersurface ∂DεN .
Using the decomposition of the boundary of the phase space according to (2.3)

(and throwing away the set ∂DεN\’∂DεN of measure zero), into the subsets Bj ,
or Cj,k, respectively defined in (2.4) and (2.5) just above, with notations for the
normal unitary outgoing vectors to Bj and Cj,k explained in formulas (2.12)
and (2.13) just below, one gets

A =
N∑
i=1

∫
RdN
VN

vi ·
N∑
j=1

∫
xj ·e1=ε/2

fN (t, ZN )φs(t, Zs)n
i
xj ·e1=ε/2 dS

+
N∑
i=1

∫
RdN
VN

vi ·
∑

1≤j<k≤N

∫
|xj−xk|=ε

fN (t, ZN )φs(t, Zs)n
i
|xj−xk|=ε dS

−
s∑
i=1

∫
R2dN
ZN

vi · ∇xiφs(t, Zs)fN (t, ZN )1ZN∈DεN dZN (2.11)

with the explicit expressions of the normal vectors :

nxj ·e1=ε/2 =
(

0, . . . , 0︸ ︷︷ ︸
Rdx1

, . . . ,−1, 0, . . . , 0︸ ︷︷ ︸
Rdxj

, . . . , 0, . . . , 0︸ ︷︷ ︸
RdxN

)
∈ RdN ,

so that
nixj ·e1=ε/2 = −δije1 ∈ Rd, (2.12)

where δij denotes the Kronecker symbol, and :

n|xj−xk|=ε =

√
2

2ε

(
0, . . . , 0︸ ︷︷ ︸

Rdx1

, . . . , xk − xj︸ ︷︷ ︸
Rdxj

, . . . , xj − xk︸ ︷︷ ︸
Rdxk

, . . . , 0, . . . , 0︸ ︷︷ ︸
RdxN

)
∈ RdN ,

so that

ni|xj−xk|=ε =

√
2

2ε

(
δik − δij

)
(xj − xk) ∈ Rd. (2.13)
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The first term of the right-hand side of (2.11), denoted as B, cancels. Indeed
using the explicit form (2.12) of the normal vector to the boundary, one splits
the domain of integration between{

ZN ∈ R2dN / xj · e1 = ε/2, vj · e1 < 0
}
,

(which corresponds to a pre-bouncing situation against the obstacle for the
particle j), and {

ZN ∈ R2dN / xj · e1 = ε/2, vj · e1 > 0
}
,

(which corresponds to a post-bouncing situation for the same particle). Note
that the remaining subset

{
ZN ∈ R2dN / xj · e1 = ε/2, vj · e1 = 0

}
is of

measure zero as a manifold of codimension 2. Then

B =
N∑
i=1

∫
RdN
VN

vi ·
N∑
j=1

∫
xj ·e1=ε/2

fN (t, ZN )φs(t, Zs)n
i
xj ·e1=ε/2 dS

=−
N∑
i=1

∫
RdN
VN

vi · e1

∫
xi·e1=ε/2

fN (t, ZN )φs(t, Zs) dS

=−
N∑
i=1

∫
xi·e1=ε/2
vi·e1<0

fN (t, ZN )φs(t, Zs)vi · e1 dS

−
N∑
i=1

∫
xi·e1=ε/2
vi·e1>0

fN (t, ZN )φs(t, Zs)vi · e1 dS, (2.14)

so that, performing the change of variable ZN 7→ χεN (ZN ) in the last term, one
finds :

B = −
N∑
i=1

∫
xi·e1=ε/2
vi·e1<0

fN (t, ZN )φs(t, Zs)vi · e1 dS

−
N∑
i=1

∫
xi·e1=ε/2
vi·e1<0

fN
(
t, χεN (ZN )

)
× φs

(
t, χεN (ZN )X,1, χεN (ZN )V,1, . . . , χεN (ZN )X,s, χεN (ZN )V,s

)
×
(
χεN (ZN )V,i

)
· e1 dS

= 0,

since (
χεN (ZN )V,i

)
· e1 =

(
vi − 2vi · e1

)
· e1 = −vi · e1
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by definition of χεN on the subset Bi of the boundary.

The second term obtained in (2.11), denoted as C, is then rewritten as follows,
using again the explicit form (2.13) of the normal vector to the boundary :

C =
N∑
i=1

∫
RdN
VN

vi ·
∑

1≤j<k≤N

∫
|xj−xk|=ε

fN (t, ZN )φs(t, Zs)n
i
|xj−xk|=ε dS

= −
∑

1≤i<j≤N

∫
RdN
VN

√
2

2ε
(vi − vj) ·

∫
|xi−xj |=ε

(xi − xj)fN (t, ZN )φs(t, Zs) dS.

Splitting the sum in three terms, one obtains :

C = −
Å ∑

1≤i<j≤s
+

∑
1≤i≤s

s+1≤j≤N

+
∑
s+1≤i
<j≤N

ã ∫
{|xi−xj |=ε}XN×R

dN
VN

√
2

2ε
(vi − vj) · (xi − xj)

× fN (t, ZN )φs(t, Zs) dS. (2.15)

The first and the third sums in equation (2.15) cancel, again due to the definition
of χ. To be more explicit, for the first sum for example, one has to separate the
domain of integration between pre and post-collisional configurations, and after
changing the variables in the post-collisional term using the definition of χ, the
cancellation happens.
For the second sum of the right-hand side of (2.15), one uses that the particles
are indistinguishable, that is one uses the condition (2.8) page 69. One obtains :

−(N − s)
∑

1≤i≤s

∫
{|xi−xs+1|=ε}XN×R

dN
VN

√
2

2ε
(vs+1 − vi) · (xs+1 − xi)fN (t, ZN )φs(t, Zs) dS.

The last step consists in rewriting xs+1 as xi + ωε, with ωε belonging to the
hypersphere Sd−1(0, ε) or radius ε, and expressing the measure dS explicitly,
namely :

dS =
√

2 dX̂N

s+1
dSd−1

xs+1
(0, ε) dVN ,

where dX̂N

s+1
is the Lebesgue measure on Rd(N−1) (space of XN in which the

coordinate xs+1 is eliminated).
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Finally, gathering all the previous results, one finds that, for 1 ≤ s ≤ N − 1 :

∫
R2dN

fN (0, ZN )φs(0, Zs)1ZN∈DεN dZN

+

∫ +∞

0

∫
R2dN

fN (t, ZN )∂tφs(t, Zs)1ZN∈DεN dZN dt

+
s∑
i=1

∫ +∞

0

∫
R2dN

fN (t, ZN )vi · ∇xiφs(t, Zs)1ZN∈DεN dZN dt

+ (N − s)εd−1
s∑
i=1

∫ +∞

0

∫
R2ds

∫
Rd

∫
Sd−1

∫
Rd(N−s−1)

ω ·
(
vs+1 − vi

)
× fN

(
t, Zs, xi + εω, vs+1, xs+2, vs+2, . . . , xN , vN

)
φs(t, Zs)

× 1ZN∈DεN
(
Zs, xi + εω, vs+1, xs+2, vs+2, . . . , xN , vN

)
dxs+2 dvs+2 . . . dxN dvN dω dvs+1 dZs dt

= 0,

that is

∫
R2ds

φs(0, Zs)
(∫

R2d(N−s)
fN (0, ZN )1ZN∈DεN dzs+1 . . . dzN

)
dZs

+

∫ +∞

0

∫
R2ds

∂tφs(t, Zs)
(∫

R2d(N−s)
fN (t, ZN )1ZN∈DεN dzs+1 . . . dzN

)
dZs dt

+
s∑
i=1

∫ +∞

0

∫
R2ds

vi · ∇xiφs(t, Zs)

×
(∫

R2d(N−s)
fN (t, ZN )1ZN∈DεN dzs+1 . . . dzN

)
dZs dt

+ (N − s)εd−1
s∑
i=1

∫ +∞

0

∫
R2ds

∫
Rd

∫
Sd−1

ω ·
(
vs+1 − vi

)
φs(t, Zs)

×
(∫

Rd(N−s−1)

fN
(
t, Zs, xi + εω, vs+1, xs+2, vs+2, . . . , xN , vN

)
× 1ZN∈DεN

(
Zs, xi + εω, vs+1, xs+2, vs+2, . . . , xN , vN

)
dxs+2 dvs+2 . . . dxN dvN

)
dω dvs+1 dZs dt

= 0.

According to Definition 6 page 65, one can rewrite the last equation using the
marginals of the solution fN of the Liouville equation :
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∫
R2ds

φs(0, Zs)f
(s)
N (0, Zs) dZs +

∫ +∞

0

∫
R2ds

∂tφs(t, Zs)f
(s)
N (t, Zs) dZs dt

+
s∑
i=1

∫ +∞

0

∫
R2ds

vi · ∇xiφs(t, Zs)f
(s)
N (t, Zs) dZs dt

+ (N − s)εd−1
s∑
i=1

∫ +∞

0

∫
R2ds

∫
Rd

∫
Sd−1

ω ·
(
vs+1 − vi

)
φs(t, Zs)

× f (s+1)
N (Zs, xi + εω, vs+1) dω dvs+1 dZs dt

= 0.

This means that the following equation holds on R+ ×Dεs :

∂tf
(s)
N +

s∑
i=1

vi · ∇xif
(s)
N = CN,εs,s+1f

(s+1)
N ,

in the weak sense, that is, testing against smooth, compactly supported functions
verifying the boundary condition (2.9), with additional boundary conditions

properly written in the formal Definition 9 below, and where CN,εs,s+1 is the s-th
collision operator, denoting

CN,εs,s+1f
(s+1)
N (t, Zs) =

s∑
i=1

(N − s)εd−1

∫
Sd−1×Rd

ω · (vs+1 − vi)

× f (s+1)
N (t, Zs, xi + εω, vs+1)dωdvs+1.

Nevertheless, the quantity written here is not entirely satisfactory, since the

marginal f
(s+1)
N is evaluated on incoming configurations of the phase space for

some part of the domain of integration. Namely, for any integer 1 ≤ i ≤ s, for the
i-th term of the sum, when ω·(vs+1−vi) > 0, the configuration

(
Zs, xi+εω, vs+1

)
is an incoming configuration. Therefore, one will use the boundary condition
satisfied by the marginals so that by definition∫

Sd−1×Rd
ω · (vs+1 − vi)f (s+1)

N (t, Zs, xi + εω, vs+1)dωdvs+1

=

∫
Sd−1×Rd

[
ω · (vs+1 − vi)

]
+
f

(s+1)
N (t, Zs, xi + εω, vs+1)dωdvs+1

−
∫
Sd−1×Rd

[
ω · (vs+1 − vi)

]
−f

(s+1)
N (t, Zs, xi + εω, vs+1)dωdvs+1

=

∫
Sd−1×Rd

[
ω · (vs+1 − vi)

]
+

× f (s+1)
N (t, x1, v1, . . . , xi, v

′
i, . . . , xi + εω, v′s+1)dωdvs+1

−
∫
Sd−1×Rd

[
ω · (vs+1 − vi)

]
−f

(s+1)
N (t, Zs, xi + εω, vs+1)dωdvs+1.
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Definition 8 (s-th collision operator of the BBGKY hierarchy). Let N and
s be two positive integers, and ε be a strictly positive real number. Then one
defines the s-th collision operator of the BBGKY hierarchy as the operator

associating to any function f
(s+1)
N depending on t ∈ R and Zs+1 ∈ Dεs+1, a

function CN,εs,s+1f
(s+1)
N depending on t ∈ R and on Zs ∈ Dεs (one stresses the fact

that the image of f
(s+1)
N by this collision operator is defined on a time interval

times the phase space of s particles instead of s + 1 particles) such that for
s ≤ N − 1

CN,εs,s+1f
(s+1)
N (t, Zs)

=
s∑
i=1

(N − s)εd−1

[∫
Sd−1×Rd

[
ω · (vs+1 − vi)

]
+

× f (s+1)
N (t, x1, v1, . . . , xi, v

′
i, . . . , xi + εω, v′s+1)dωdvs+1

−
∫
Sd−1×Rd

[
ω · (vs+1 − vi)

]
−

× f (s+1)
N (t, Zs, xi + εω, vs+1)dωdvs+1

]
,

(2.16)

where v′i and v′s+1 are the images by the scattering mapping introduced in Defi-
nition 1 page 51 of the pair of velocities vi and vs+1, with the angular parameter
(xi + εω)− xi = ω, and such that for s ≥ N

CN,εs,s+1 = 0.

Remark 4.

One notices that the equation verified by f
(s)
N for s = N is exactly the Liouville

equation (2.1).

The previous definition is only formal : here one has not detailed the functional

space in which the marginals f
(s)
N have to be chosen in order to obtain a mean-

ingful expression for the collision operator of the BBGKY hierarchy. This is the
purpose of Section 5 starting page 87 below.

2.2 Definition of the BBGKY hierarchy

One defines the BBGKY hierarchy, obtained at the formal level in the previous
section, from the Liouville equation (2.1) with the boundary condition (2.7),
and the additional assumption of indistinguishibility (2.8).

Definition 9 (BBGKY hierarchy). Let T be a positive number, N ∈ N∗ and
ε > 0. One defines the BBGKY hierarchy as the finite collection of the following
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equations, for 1 ≤ s ≤ N − 1 :

∂tf
(s)
N +

s∑
i=1

vi · ∇xif
(s)
N = CN,εs,s+1f

(s+1)
N , (2.17)

holding in [0, T ]×Dεs, and for s = N :

∂tf
(N)
N +

N∑
i=1

vi · ∇xif
(N)
N = 0,

holding in [0, T ]×DεN , with the additional boundary conditions :

f
(s)
N (t, Zs) = f

(s)
N (t, χεs(Zs)) (2.18)

(using the notation χεs introduced in Definition 7 page 67) for all 1 ≤ s ≤ N ,

t ∈ [0, T ] and Zs ∈
(‘∂Dεs)in (defined in (2.6) page 69).



Chapter 3

The Boltzmann hierarchy

3.1 Formal limit of the BBGKY hierarchy

Noticing that the collision operator CN,εs,s+1 depends on N and ε, and that the

quantity (N −s)εd−1 is naturally involved in the definition of this operator, one
is led to letting ε tend to zero, keeping Nεd−1 constant (say Nεd−1 = 1). This is
the Boltzmann-Grad asymptotics, introduced by Grad in [38], and discussed in
the previous Section 1.1.7. The condition Nεd−1 = 1, in addition to its physical
meaning, is convenient in the limit ε → 0 in order to obtain a formal limit of
the BBGKY hierarchy which is not the free transport equation.
Considering the collision operator of the BBGKY hierarchy introduced in (2.16),
one performs in its second term the change of variables ω → −ω, so that, using
the identity [

ω · (vs+1 − vi)
]
− =

[
(−ω) · (vs+1 − vi)

]
+
,

one finds∫
Sd−1×Rd

[
ω · (vs+1 − vi)

]
−f

(s+1)
N (t, Zs, xi + εω, vs+1)dωdvs+1

=

∫
Sd−1×Rd

[
ω · (vs+1 − vi)

]
+
f

(s+1)
N (t, Zs, xi − εω, vs+1)dωdvs+1.

Letting ε go to zero, the term (N−s)εd−1 tends to 1 according to the Boltzmann-
Grad scaling, and the positions xi + εω and xi − εω are replaced by xi. One
obtains therefore a formal limit operator C0

s,s+1 from the expression of the col-
lision operator of the BBGKY hierarchy, defined as

C0
s,s+1f

(s+1)(t, Zs) =
s∑
i=1

∫
Sd−1×Rd

[ω · (vs+1 − vi)]+

×
Ä
f (s+1)(t, x1, ..., xi, v

′
i, ..., xs, vs, xi, v

′
s+1)− f (s+1)(t, Zs, xi, vs+1)

ä
dωdvs+1,

where v′i and v′s+1 are the images by the scattering mapping introduced in
Definition 1 page 51 of the pair of velocities vi and vs+1, with the angular
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parameter ω.
One emphasizes here that the use of the boundary condition (2.18) satisfied
by the marginals, and the change of variables ω → −ω in the domain of the
integral corresponding to the incoming configurations has to be performed before
the formal limit ε→ 0. Indeed, if one starts by the limit ε→ 0, the formal limit
of the collision operator of the BBGKY hierarchy is :∫

Sd−1×Rd
ω · (vs+1 − vi)f (s+1)

N (t, Zs, xi, vs+1)dωdvs+1,

so that it is not possible to use the boundary condition satisfied by f
(s+1)
N , and

the change of variables ω → −ω in the domain ω · (vs+1 − vi) < 0 provides that
the formal limit of the collision operator is zero (and then the formal limit of
the equations of the BBGKY hierarchy are the free transport equations) if the
limit ε→ 0 is performed without caution.

3.2 Definition of the Boltzmann hierarchy

From the previous discussion, one defines the limiting collision operator obtained
above. One emphasizes here on the fact that this definition is only formal.

Definition 10 (s-th collision operator of the Boltzmann hierarchy). Let s be a
positive integer. Then one defines the s-th collision operator of the Boltzmann
hierarchy as the operator associating to any function f (s+1) depending on t ∈ R
and on Zs+1 ∈

(
Ωc × Rd

)s+1
, a function C0

s,s+1f
(s+1) depending on t ∈ R and

on Zs ∈
(
Ωc × Rd

)s
such that

C0
s,s+1f

(s+1)(t, Zs) =
s∑
i=1

∫
Sd−1×Rd

[
ω · (vs+1 − vi)

]
+

×
(
f (s+1)(t, x1, v1, ..., xi, v

′
i, ..., xs, vs, xi, v

′
s+1)

− f (s+1)(t, Zs, xi, vs+1)
)

dωdvs+1

(3.1)

where v′i and v′s+1 are the images by the scattering mapping introduced in Defini-
tion 1 page 51 of the pair of velocities vi and vs+1, with the angular parameter ω.

One introduces also boundary conditions in the Boltzmann-Grad limit, very
similar to the boundary conditions of the hard sphere dynamics (see Definition
7 page 67). In particular here, the radius of the particles of the system has
been sent to zero, therefore only a set of measure zero can contain initial con-
figurations leading to a collision between two particles. As a consequence, the
boundary condition previously defined when |xi−xj | = ε vanishes here. Besides,
the particles can still bounce against the obstacle : this is the only remaining
boundary condition in the limit. In other words, one has recovered here the free
flow with boundary condition.
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Definition 11 (Boundary conditions for the free flow dynamics). Let s be a
positive integer. One defines the boundary conditions for the free flow dynamics
of s particles around the obstacle Ω as the following function.

χ0
s :

ß
∂
(
Ωc × Rd

)s → ∂
(
Ωc × Rd

)s
,

Zs 7→ χ0
s(Zs),

(3.2)

with
χ0
s(Zs)

X = (Zs)
X

and such that if there exists 1 ≤ i ≤ s such that xi · e1 = 0, and xj · e1 > 0 for
all j 6= i : ß

χ0
s(Zs)

V,i = vi − 2vi · e1e1,
χ0
s(Zs)

V,j = vj for all 1 ≤ j ≤ s, j 6= i.

The hierarchy obtained as a formal limit when ε→ 0, Nεd−1 = 1 of the BBGKY
hierarchy will be called the Boltzmann hierarchy.
One notes that a significant difference with the BBGKY hierarchy lies in the
infinite number of equations involved in the Boltzmann hierarchy. Once again
the following definition is only formal at this step of the work.

Definition 12 (Boltzmann hierarchy). Let T be a strictly positive number.
One defines the Boltzmann hierarchy as the infinite collection of the following
equations, for s ≥ 1 :

∂tf
(s) +

s∑
i=1

vi · ∇xif (s) = C0
s,s+1f

(s+1) (3.3)

holding in [0, T ]×
(
Ωc × Rd

)s
, with the additional boundary conditions :

f (s)(t, Zs) = f (s)(t, χ0
s(Zs)) (3.4)

(using the notation χ0
s introduced in Definition 11) for all s ≥ 1, t ∈ [0, T ] and

Zs ∈ ∂
(
Ωc × Rd

)s
).

If one assumes that f (2) is tensorized, that is if there exists f (1) such that

f (2)(t, x1, v1, x2, v2) = f (1)(t, x1, v1)f (1)(t, x2, v2)

for all t ∈ R+, all x1, x2 ∈ {x ∈ Rd / x · e1 > 0} and all v1, v2 ∈ Rd, and if one
assumes moreover that f (1) and f (2) satisfy the first equation of the Boltzmann
hierarchy, that is :

∂tf
(1)(t, x1, v1) + v1 · ∇x1

f (1)(t, x1, v1) = C0
1,2f

(2)(t, x1, v1),

one obtains in fact that

C0
1,2f

(2)(t, x1, v1) =

∫
Sd−1×Rd

[ω · (v2 − v1)]+

×
Ä
f (2)(t, x1, v

′
1, x1, v

′
2)− f (2)(t, x1, v1, x1, v2)

ä
dωdv2

=

∫
Sd−1×Rd

[ω · (v2 − v1)]+

Ä
f
′(1)
1 f

′(1)
2 − f (1)

1 f
(1)
2

ä
dωdv2



80 CHAPTER 3. THE BOLTZMANN HIERARCHY

with the obvious notations :
f
′(1)
1 = f (1)(t, x1, v

′
1),

f
′(1)
2 = f (1)(t, x1, v

′
2),

f
(1)
1 = f (1)(t, x1, v1),

f
(1)
2 = f (1)(t, x1, v2).

In other words, with all those assumptions, the function f (1) turns out to be a
solution of the Boltzmann equation. So, formally, the first marginal of a distri-
bution function of N hard spheres of radius ε/2 tends, in a certain sense, to a
solution of the Boltzmann equation.
In fact, for any positive integer s, if one considers a solution f of the Boltzmann
equation, and the tensorized function

f (s)
(
z1, . . . , zs

)
= f(z1) . . . f(zs),

one knows ([25]1) that the infinite sequence of functions
(
f (s)

)
s≥1

is a solution

of the Boltzmann hierarchy (3.3).
The core of this work consists then in defining properly this interesting hierarchy,
and showing its proximity with the BBGKY hierarchy in a sense that will be
made more precise in the sequel.

1In particular, one can refer to the first section of Chapter IV : ”Introduction : On the
Boltzmann-Grad limit”.



Chapter 4

The integrated forms of the
hierarchies

One now presents a mild (or integrated) version of the BBGKY and Boltzmann
hierarchies, which will be useful when one wants to show, first, that those hi-
erarchies admit solutions, and the rigorous convergence of the solutions of the
BBGKY hierarchy towards the solutions of the Boltzmann hierarchy.

4.1 Integrated form of the BBGKY hierarchy

One starts from a sequence FN =
Ä
f

(s)
N

ä
s≥1

which is (formally) a solution of

the BBGKY hierarchy, that is

∂tf
(s)
N (t, Zs) +

s∑
i=1

vi · ∇xif
(s)
N (t, Zs)

= (N − s)εd−1
s∑
i=1

∫
Sd−1×Rd

ω · (vs+1 − vi)f (s+1)
N (t, Zs, xi + εω, vs+1)dωdvs+1

for all Zs ∈ Dεs and t ∈ [0, T ] for some T strictly positive, and such that f
(s)
N

satisfies also the boundary condition (2.18).

As in [34]1, one then performs formal computations in order to get the mild
formulation that will be needed in the sequel, and using the notation (1.10)
introduced in Definition 4 page 53 for the hard sphere transport with boundary

1See in particular the end of Section 4.3 ”Weak formulation of Liouville’s equation”, and
the end of Section 4.4 ”The Boltzmann hierarchy and the Boltzmann equation”.
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condition, one finds :

f
(s)
N (t, Zs) = f

(s)
N (0, T s,ε−t (Zs))

+ (N − s)εd−1
s∑
i=1

∫ t

0

∫
Sd−1×Rd

ω · (vs+1 − vi)

× f (s+1)
N (u, T s,εu−t(Zs), T

s,ε
u−t(Zs)

X
i + εω, vs+1)dωdvs+1du.

It is possible to rewrite again the last equation in a more synthetic form, which
will be the integrated form of the BBGKY hierarchy. First, one needs the fol-
lowing definition.

Definition 13 (Hard sphere flow). Let s be a positive integer. One defines the
hard sphere flow as the following mapping, associating to a function depending
on u ∈ R (seen as a time variable) and Zs ∈ Dεs (seen as a variable lying in
the phase space of s particles of radius ε/2) another function depending on t, u
(t ∈ R) and Zs, such that :ß

R× R×Dεs → Dεs,(
t, u, Zs

)
7→ T s,εt f (s)(u, Zs),

(4.1)

with (
T s,εt f (s)

)
(u, Zs) = f (s)(u, T s,ε−t (Zs))

for all t, u ∈ R and Zs ∈ Dεs.

Remark 5. From the hard sphere transport, which is defined as a mapping
acting on configurations of a system of particles, one just defined a mapping
acting on functions, possibly depending on time. If the function on which the
hard sphere flow is acting does not depend on time, one sees however that this
hard sphere flow defines a new function, with a time dependency.

Then, the mild formulation of the BBGKY hierarchy can be properly defined
in the following way.

Definition 14 (Integrated form of the BBGKY hierarchy). Let N be a positive

integer and ε > 0. For a sequence FN = (f
(s)
N )s≥1 of nonnegative functions such

that
∀s ≥ 1, f

(s)
N ∈ C([0, T ], L∞ (Dεs)),

FN is said to be satisfying the integrated form of the BBGKY hierarchy if for
all s ≥ 1 :

f
(s)
N (t, Zs) =

(
T s,εt f

(s)
N (0, ·)

)
(Zs) +

∫ t

0

T s,εt−uC
N,ε
s,s+1f

(s+1)
N (u, Zs)du (4.2)

in some sense that has to be clarified, with CN,εs,s+1 denoting the BBGKY collision
operator defined in 8 page 75.

Remark 6. One notices here the important role of the ”initial data”, that is

the values of the function f
(s)
N at t = 0.
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4.2 Integrated form of the Boltzmann hierarchy

The same computation performed in the previous section 4.1 for the BBGKY
hierarchy, starting from the differential form of the general equation (3.3) page
79 defining the Boltzmann hierarchy, provides also a mild (or integrated) form
of the Boltzmann hierarchy.

Definition 15 (Free flow with boundary condition). Let s be a positive integer.
One defines the free flow with boundary condition as the following mapping,
associating to a function depending on u ∈ R (seen as a time variable) and
Zs ∈

(
Ωc × Rd

)s
(seen as a variable lying in the phase space of s particles of

radius zero) another function depending on t, u (t ∈ R) and Zs, such that :®
R× R×

(
Ωc × Rd

)s →
(
Ωc × Rd

)s
,(

t, u, Zs
)
7→ T s,0t f (s)(u, Zs),

(4.3)

with (
T s,0t f (s)

)
(u, Zs) = f (s)(u, T s,0−t (Zs))

for all t, u ∈ R and Zs ∈
(
Ωc × Rd

)s
.

Definition 16 (Integrated form of the Boltzmann hierarchy). Let T be a strictly
positive number. For a sequence F = (f (s))s≥1 of nonnegative functions such
that

∀s ≥ 1, f (s) ∈ F
(
[0, T ]×

(
Ωc × Rd

)s)
,

F is said to be satisfying the integrated form of the Boltzmann hierarchy if for
all s ≥ 1 :

f
(s)
N (t, Zs) = T s,0t

(
f

(s)
N (0, ·)

)
(Zs) +

∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, Zs)du, (4.4)

in some sense that has to be clarified, with C0
s,s+1 denoting the Boltzmann col-

lision operator defined in (3.1), Definition 10 page 78.
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Part II

Functional setting for the
existence and comparison of

the solutions of the
hierarchies
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Chapter 5

About the rigorous
definition and basic
properties of the collision
operator

Previously, one has introduced the collision operators, respectively for parti-
cles of radius ε/2, and in the Boltzmann-Grad limit. Since those operators are
defined using an integral over a submanifold of dimension (d− 1) + d (see Defi-
nitions 8 page 75 and 10 page 78 : one integrates over Sd−1×Rd), if the function
on which the collision operators is regular enough, no problem occurs.
One will see in the sequel that the functions on which the collision operator
of the BBGKY hierarchy will act will not be continuous in general. One will
consider instead Lp functions, and defining this operator on such a class of func-
tions will be the challenging purpose tackled in Section 5.1, starting just below.

One notices that in the limit, that is considering the Boltzmann hierarchy
(4.4), xs+1 = xi + εω is replaced by xi. Here arises then another singular-
ity, since the sphere xi + εSd−1 is replaced by the point xi : the submanifold{
xi + εω / ω ∈ Sd−1

}
, of codimension 1 in Rd, is replaced by {xi}, which is

of codimension d in Rd. It will prevent to define the collision operator of the
Boltzmann operator on Lp spaces with the method presented used in the case
of the BBGKY hierarchy. Therefore, one will restrict the domain of the collision
operator of the Boltzmann hierarchy to the continuous functions.
Besides, in the case of the Boltzmann hierarchy, one sees that even if the func-
tions f (s) are continuous, the collision operator is in fact acting on functions
composed with the free flow with boundary condition. This can be another
source of discontinuity, and this will be discussed below, in Section 5.2.
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5.1 Definition of the transport-collision opera-
tor for the BBGKY hierarchy

Let N be a given positive integer, ε be a strictly positive real number, and s be
a positive integer which verifies s ≤ N − 1.
First, one will split the operator CN,εs,s+1 into simple elements. One writes :

CN,εs,s+1 = (N − s)
s∑
i=1

(
Cεs,s+1,+,i − Cεs,s+1,−,i

)
with :

Cεs,s+1,±,iϕ
(s+1) = εd−1

∫
Sd−1
ω ×Rdvs+1

(ω · (vs+1 − vi))± ϕ
(s+1)(Zs, xi + εω, vs+1) dω dvs+1.

In order to try to prove that the elementary operators Cεs,s+1,±,i are well de-

fined on L∞ (which is somehow an usual setting, see for example [26]1 for the
homogeneous Boltzmann equation, and especially [25]2 for the BBGKY hier-
archy), one will cut off large positions and large velocities in order to consider
instead L1 functions, and the Fubini-Tonelli theorem will enable to conclude.
The main idea is to use the integration with respect to time to ”add the missing
dimension”, so that the integral of ϕ(s+1), which will be a L∞ function, will be
well-defined.

More explicitly, let R1 and R2 be two strictly positive numbers, which will
be chosen as very large.
If one integrates crudely Cεs,s+1,±,i on all the remaining coordinates of the phase
space (that is if one integrates with respect to the Lebesgue measure dZs), one
will only obtain an integral over a submanifold of the phase space Dεs+1 of codi-
mension 1, so that a dimension is still missing, yet the trace of a L∞ function
is not well-defined on such a submanifold.
But the integrated form of the BBGKY hierarchy (4.2) (see page 82) obtained
in the previous part involves, beside the collision integral, the hard sphere trans-
port, so it is natural to consider those two objects together. Then, one will study
the following quantity :∫ T

0

∫
Dεs

Cεs,s+1,±,iT
s+1,ε
t ϕ(s+1) dZs dt,

for T > 0 given, which is the integrated with respect to time hard sphere flow
(see Definition 13 page 82) composed with the collision operator for particles of
diameter ε.

1See in particular Section 6.3.
2See in particular Chapter III ”The Initial Value Problem for L∞ Data: Thermodynamic

Limit.
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As already noticed, a cut-off in the domain of integration will play a crucial role
in the sequel : first in order to enable to integrate L∞ functions on compact
subsets of the phase space, and second to simplify the expression of the hard
sphere transport. Considering therefore initial configurations inside a bounded
subset of the phase space, the time interval [0, T ] can be divided into smaller
intervals on which the flow of s + 1 hard spheres of diameter ε coincides with
the free flow, that is on those intervals, the particles move in straight lines, with
a constant velocity.
So let δ belong to ]0, 1[. If the kinetic energy of a system of s + 1 particles is
bounded, or, equivalently, the norm of the vector composed of all the velocities of
the particles of the system, is bounded, say, by R2, it is easy to exclude the parts
of the domain of integration which contain initial configurations which can lead
to a change in the velocities before δ. Following [34]3, one is therefore naturally
led to consider truncated operators as follows. When there is no obstacle, which
is the setting considered in [34], the authors introduced4 the truncated phase
space

∂Di,s+1,±
δ =

{
Zs+1 ∈ BR2d(s+1)(0, R) / |xi − x+1| = ε,

±(vi − vs+1) · (xi − xs+1) > 0,

and ∀ (k, l) 6= (i, s+ 1), |xk − xl| > ε+ δR
}
.

In the case of the particles moving outside of an obstacle in the Euclidean space,
one denotes by :

D = D(ε,R1, R2, δ) ⊂ [0, T ]× Sd−1 × Rd ×Dεs
the domain of the truncated collision operator, defined as

D(ε,R1, R2, δ) =
( ∏

1≤j<k≤s+1
(j,k)6=(i,s+1)

1|xj−xk|>ε+
√

2δR2

)( ∏
1≤l≤s+1

1d(xl,Ω)>ε/2+δR2

)
× 1Xs+1∈BRd(s+1) (0,R1)1Vs+1∈BRd(s+1) (0,R2), (5.1)

and one sets :

Cεs,s+1,±,i(R1, R2, δ)ϕ
(s+1)(Zs)

=

∫
Sd−1
ω ×Rdvs+1

εd−1 (ω · (vs+1 − vi))± ϕ
(s+1)(Zs, xi + εω, vs+1)

×

( ∏
1≤j<k≤s+1
(j,k)6=(i,s+1)

1|xj−xk|>ε+
√

2δR2

)( ∏
1≤l≤s+1

1d(xl,Ω)>ε/2+δR2

)

× 1Xs+1∈BRd(s+1) (0,R1)1Vs+1∈BRd(s+1) (0,R2) dω dvs+1.

3See Section 5.1.1 : A local system of coordinates near the boundary.
4At the very end of Section 5.1.1.
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One will discuss quickly this last expression.
If the particles are separated by a distance larger than ε +

√
2δR2, it is clear

that they will not be able to collide with each other during the time interval
[0, δ]. Indeed one has, for any pair of particles 1 ≤ i < j ≤ s+ 1 :∣∣(T s+1,ε

−t (Zs+1)
)X,i − (T s+1,ε

−t (Zs+1)
)X,j∣∣

≥
∣∣(T s+1,ε

0 (Zs+1)
)X,i − (T s+1,ε

0 (Zs+1)
)X,j∣∣

−
∣∣(T s+1,ε
−t (Zs+1)

)X,i − (T s+1,ε
0 (Zs+1)

)X,i∣∣
−
∣∣(T s+1,ε
−t (Zs+1)

)X,j − (T s+1,ε
0 (Zs+1)

)X,j∣∣, (5.2)

following the notations introduced in Definition 4 page 53, the first term of the
right-hand side being of course :(

T s+1,ε
0 (Zs+1)

)X,i − (T s+1,ε
0 (Zs+1)

)X,j
= xi − xj ,

the two other ones being bounded from above by the largest distance crossed
by a particle during a time smaller than δ, that is :∣∣(T s+1,ε

−t (Zs+1)
)X,i − (T s+1,ε

0 (Zs+1)
)X,i∣∣ ≤ δ max

u∈[0,δ]

∣∣(T s+1,ε
−u (Zs+1)

)V,i∣∣,
and similarly :∣∣(T s+1,ε

−t (Zs+1)
)X,j − (T s+1,ε

0 (Zs+1)
)X,j∣∣ ≤ δ max

u∈[0,δ]

∣∣(T s+1,ε
−u (Zs+1)

)V,j∣∣.
Remembering that one has, for all u ∈ R :

s+1∑
k=1

∣∣(T s+1,ε
−u (Zs+1)

)V,k∣∣2 =
s+1∑
k=1

∣∣Vs+1

∣∣2 ≤ R2
2,

by conservation of the kinetic energy along the trajectories of the hard sphere
flow, one has :(∣∣(T s+1,ε

−t (Zs+1)
)X,i − (T s+1,ε

0 (Zs+1)
)X,i∣∣

+
∣∣(T s+1,ε
−t (Zs+1)

)X,j − (T s+1,ε
0 (Zs+1)

)X,j∣∣)2

=
∣∣(T s+1,ε
−t (Zs+1)

)X,i − (T s+1,ε
0 (Zs+1)

)X,i∣∣2
+ 2
∣∣(T s+1,ε
−t (Zs+1)

)X,i − (T s+1,ε
0 (Zs+1)

)X,i∣∣
·
∣∣(T s+1,ε
−t (Zs+1)

)X,j − (T s+1,ε
0 (Zs+1)

)X,j∣∣
+
∣∣(T s+1,ε
−t (Zs+1)

)X,j − (T s+1,ε
0 (Zs+1)

)X,j∣∣2
≤ 2
∣∣(T s+1,ε
−t (Zs+1)

)X,i − (T s+1,ε
0 (Zs+1)

)X,i∣∣2
+ 2
∣∣(T s+1,ε
−t (Zs+1)

)X,j − (T s+1,ε
0 (Zs+1)

)X,j∣∣2
≤ 2δ2R2

2,
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so that the following quantity is bounded from below for all 0 ≤ δ ≤ t :∣∣(T s+1,ε
−t (Zs+1)

)X,i − (T s+1,ε
−t (Zs+1)

)X,j∣∣ > ε,

which implies of course that no collision may occur between the particles i and j.

Remark 7. The cut-off in distance may look like complicated since one can im-
mediately bound from above the distance crossed by the two particles as follows :∣∣(T s+1,ε

−t (Zs+1)
)X,i − (T s+1,ε

0 (Zs+1)
)X,i∣∣

+
∣∣(T s+1,ε
−t (Zs+1)

)X,j − (T s+1,ε
0 (Zs+1)

)X,j∣∣ ≤ 2R2.

However, replacing the constant 2 by
√

2 is optimal.

One has also to take into account the possibility of a bouncing against the
obstacle Ω. To do so, by imposing that d(xl,Ω) > ε/2 + δR2, it is clear that no
particle can bounce against the obstacle during the same time interval [0, δ].

Remark 8. There is here a slight abuse in the notations used to define the
cut-off in the expression of the truncated collision operator defined just above.
Indeed, one used the notation :

|xj − xk| > ε+ δR2

for all couples (j, k) except (j, k) = (i, s+ 1). However, xs+1 does not belong to
the integration variables, and xs+1 has to be understood in the sense of :

xs+1 = xi + εω.

Finally, one will study the quantity :∫ δ

0

∫
Zs∈Dεs

Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1) dZs dt. (5.3)

5.1.1 Definition of the truncated collision operator on L∞

functions

On the restricted domain of the collision operator Cεs,s+1,±,i, and for a small time
interval, say [0, δ], the hard sphere transport coincides with the free flow com-
posed with, depending on whether the configuration

(
Zs, xi + εω, vs+1

)
(which

belongs of course to the boundary ∂Dεs+1 of the phase space, since the distance
between the particles i and s+1 is by definition exactly ε) is pre-collisional (that
is if ω · (vs+1 − vi) < 0) or post-collisional (that is if ω · (vs+1 − vi) > 0), the
scattering operator. In both cases, this free transport can be seen as a change of
variables on the product of the phase space of s particles Dεs with Sd−1×Rd and
with the time interval [0, δ], which is in fact the domain on which the transport-
collision operator will be integrated.
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The interesting fact is, on the one hand, that it is possible to send, by this
transport, which is explicitly (in the simplest case without scattering) :

(Zs, t, ω, vs+1) 7→ (Xs − tVs, Vs, xi + εω − tvs+1, vs+1),

the complicated domain :

[0, δ]t ×
(
Dεs
)
Zs
× Sd−1

ω × Rdvs+1

into the simpler one :

Dεs+1.

On the other hand, and following the previous idea, one sees that it will be
crucial to know the Jacobian determinant of this transport. One will see that it
will be some natural quantity, which appears in the Boltzmann equation, and
the BBGKY and Boltzmann hierarchies.
In the two following propositions one will study this Jacobian determinant, in
the pre and post-collisional cases.

Proposition 3. Consider the following function :

S−s :


Dεs × [0, δ]× Sd−1 × Rd → R2d(s+1),(
Zs, t, ω, vs+1

)
7→ Z̃s+1

=
(
Xs − tVs, Vs, xi + εω − tvs+1, vs+1

)
.

Then the function S−s is one-to-one on the subset of Dεs× [0, δ]×Sd−1×Rd com-
posed of the pre-collisional configurations (that is such that ω · (vs+1 − vi) < 0),
and transforms the measure εd−1

∣∣ω · (vs+1−vi)
∣∣dZs dtdω dvs+1 in the Lebesgue

measure on R2d(s+1). In other words, the absolute value of the Jacobian deter-
minant of S−s is equal to :

εd−1
∣∣ω · (vs+1 − vi)

∣∣.
As an illustration of the general result stated in the previous proposition, one
will compute directly the Jacobian determinant of the function S−s in the case
when the dimension is equal to 2, then 3, which are of course the most physically
meaningful cases. The proof of Proposition 3 will be provided afterwards.

In the case when d = 2, Sd−1 is just the circle of center 0 and of radius 1.
Then it is of course parametrized by :

ω = (cos θ, sin θ),
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with θ ∈ [0, 2π]. The Jacobian matrix of S−s writes therefore :

Jac(S−s ) =



I2s −tI2s −Vs 0 0

0 I2s 0 0 0

0
1 0
0 1

0 0 −vs+1
−ε sin θ
ε cos θ

−t 0
0 −t

0 0 0 0
1 0
0 1



.

(5.4)
Denoting vi = (vi,1, vi,2) and vs+1 = (vs+1,1, vs+1,2), and simplifying the deter-
minant of the matrix (5.4) (see the proof below for this step, detailed in the
general case), one finds

J(S−s ) =

∣∣∣∣∣∣∣∣
1 0 −vi,1 0
0 1 −vi,2 0
1 0 −vs+1,1 −ε sin θ
0 1 −vs+1,2 ε cos θ

∣∣∣∣∣∣∣∣
that is, substracting the first line to the third one, and the second line to the
fourth one :

J(S−s ) =

∣∣∣∣∣∣∣∣
1 0 −vi,1 0
0 1 −vi,2 0
0 0 vi,1 − vs+1,1 −ε sin θ
0 0 vi,2 − vs+1,2 ε cos θ

∣∣∣∣∣∣∣∣
and then developping twice the determinant with respect to the first column :

J(S−s ) =

∣∣∣∣vi,1 − vs+1,1 −ε sin θ
vi,2 − vs+1,2 ε cos θ

∣∣∣∣
= ε
(

cos θ(vi,1 − vs+1,1) + sin θ(vi,2 − vs+1,2)
)

= εω · (vi − vs+1),

which is the result stated in the proposition when d = 2, since one recalls that
the natural measure on the circle S1 is just dθ in the case of the chosen system
of coordinates.
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Now in the case d = 3, Sd−1 is the usual three-dimensional sphere, and one
can for example parametrize it by :

ω = (cos θ cosφ, cos θ sinφ, sin θ),

with θ ∈ [−π/2, π/2] and φ ∈ [0, 2π]. Denoting vi = (vi,1, vi,2, vi,3) and vs+1 =
(vs+1,1, vs+1,2, vs+1,3), and writing directly the Jacobian determinant of S−s after
the early simplifications performed in the general proof, one finds :

J(S−s ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 −vi,1 0 0
0 1 0 −vi,2 0 0
0 0 1 −vi,3 0 0
0 0 0 vi,1 − vs+1,1 −ε sin θ cosφ −ε cos θ sinφ
0 0 0 vi,2 − vs+1,2 −ε sin θ sinφ ε cos θ cosφ
0 0 0 vi,3 − vs+1,3 cos θ 0,

∣∣∣∣∣∣∣∣∣∣∣∣
so that three developments of the determinant with respect to the first column,
and a rough use of the well-known explicit formula for a 3 × 3 determinant
provide

J(S−s ) =

∣∣∣∣∣∣
vi,1 − vs+1,1 −ε sin θ cosφ −ε cos θ sinφ
vi,2 − vs+1,2 −ε sin θ sinφ ε cos θ cosφ
vi,3 − vs+1,3 cos θ 0

∣∣∣∣∣∣
= ε2

(
− (vi,3 − vs+1,3) cos θ sin θ cos2 φ− (vi,2 − vs+1,2) cos2 θ sinφ

− (vi,3 − vs+1,3) cos θ sin θ sin2 φ− (vi,1 − vs+1,1) cos2 θ cosφ
)

= − ε2 cos θ
(
(vi,1 − vs+1,1) cos θ cosφ+ (vi,2 − vs+1,2) cos θ sinφ

+ (vi,3 − vs+1,3) sin θ(cos2 φ+ sin2 φ)
)

= − ε2
(
ω · (vi − vs+1)

)
cos θ.

Once again, this is the result stated in the proposition, since the measure on
the sphere S2 is, in the case of the chosen parametrization, cos θ dθ dφ.

One presents now the proof of Proposition 3, in the general case (that is, for
any dimension d ≥ 2).

Proof of Proposition 3. One starts to show that the function S−s is one-to-one.

For a configuration Z̃s+1 =
(
x̃1, ṽ1, . . . , x̃i, ṽi, . . . , x̃s+1, ṽs+1

)
belonging to the

image by S−s of the subset composed of the pre-collisional configurations, there
exists at least one time t1 such that∣∣(x̃i + t1ṽi)− (x̃s+1 + t1ṽs+1)

∣∣ = ε (5.5)

and such that (
(x̃s+1 + t1ṽs+1)− (x̃i + t1ṽi)

)
· (ṽs+1 − ṽi) < 0 (5.6)
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by definition of the image by S−s of the pre-collisional configurations. Such a
time, fulfilling the two conditions (5.5) and (5.6), is actually unique, since the

function t 7→
∣∣(x̃i + tkṽi) − (x̃s+1 + tkṽs+1)

∣∣2 is a quadratic, positive and non
constant (since one knows that its derivative is non zero at t1 thanks to (5.6))
function of t, so that there exist at most two times tk (with k = 1 or 2) such
that ∣∣(x̃i + tkṽi)− (x̃s+1 + tkṽs+1)

∣∣ = ε,

and one has for the other time t2 :(
(x̃s+1 + t2ṽs+1)− (x̃i + t2ṽi)

)
· (ṽs+1 − ṽi) > 0

(since the minimum of the function t 7→
∣∣(x̃i + tkṽi) − (x̃s+1 + tkṽs+1)

∣∣2 lies
between t1 and t2).
One sees therefore that S−s is one-to-one from the pre-collisional configurations,

taking
(
Zs, t, ω, vs+1

)
as the inverse of the configuration Z̃s+1 with

∀ 1 ≤ j ≤ s+ 1, vj = ṽj ,

t = t1,

ω = (x̃s+1 + t1ṽs+1)− (x̃i + t1ṽi),

∀ 1 ≤ j ≤ s, s 6= i, xj = x̃j + t1ṽj = x̃j + tvj

and finally

xi = x̃i + t1ṽi − ε
(
(x̃s+1 + t1ṽs+1)− (x̃i + t1ṽi)

)
= x̃i + tvi − εω.

Now, one studies the Jacobian determinant of S−s . Using spherical coordinates,
that is using the following parametrization of the sphere Sd−1 :

ω1 = sin θ1 sin θ2 . . . sin θd−1,
ω2 = sin θ1 sin θ2 . . . cos θd−1,
. . .
ωd−2 = sin θ1 sin θ2 cos θ3,
ωd−1 = sin θ1 cos θ2,
ωd = cos θ1,

(5.7)

where

ω = (ω1, . . . , ωd)

denotes a general element of Sd−1, one computes the Jacobian matrix Jac(S−s )
of the mapping S−s using the coordinates (Zs, t, θ1, . . . , θd−1, vs+1) ∈ Dεs×[0, δ]×
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[0, 2π]× [0, π]d−2 × Rd. One finds :

Jac(S−s ) =



Ids −tIds −Vs 0 0

0 Ids 0 0 0

0 Id 0 0 −vs+1 εJac(ω) −tId

0 0 0 0 Id



, (5.8)

where Jac(ω) denotes the Jacobian matrix of the previous parametrization (5.7)
of the sphere, for any ω = (ω1, ω2, . . . , ωd) ∈ Sd−1, that is :



cos θ1 sin θ2 . . . sin θd−1 sin θ1 cos θ2 . . . sin θd−1 . . . sin θ1 sin θ2 . . . cos θd−1

cos θ1 sin θ2 . . . cos θd−1 sin θ1 cos θ2 . . . cos θd−1 . . . − sin θ1 sin θ2 . . . sin θd−1

cos θ1 sin θ2 . . . cos θd−2 sin θ1 cos θ2 . . . cos θd−2 . . . 0
...

... . .
.

0
cos θ1 cos θ2 − sin θ1 sin θ2 . . . 0
− sin θ1 0 . . . 0

 .

Computing the Jacobian determinant J(S−s ) of the Jacobian matrix Jac(S−s ),
one finds, after developing with respect to the lines ds + 1 until 2ds the deter-
minant of the matrix (5.8), and then with respect to the last d lines :

J(S−s ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ids −Vs 0

0 Id 0 −vs+1 εJac(ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (5.9)

then one develops the determinant (5.9) with respect to the ds first columns,
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except the ones which contain more than one entry different from 0, and finds :

J(S−s ) =

∣∣∣∣∣∣∣∣∣∣∣∣
Id −vi 0

Id −vs+1 εJac(ω)

∣∣∣∣∣∣∣∣∣∣∣∣
, (5.10)

and since the two matrices :

Id and

à
−vs+1 εJac(ω)

í
commute, one has :

J(S−s ) =

∣∣∣∣∣∣∣∣∣∣
Id ·

à
−vs+1 εJac(ω)

í
−

à
−vi 0

í
· Id

∣∣∣∣∣∣∣∣∣∣
(or even simpler : after substracting the first d lines of (5.10), respectively, to
the last d ones, and developing the determinant), and then

J(S−s ) =

∣∣∣∣∣∣∣∣∣∣
vi − vs+1 εJac(ω)

∣∣∣∣∣∣∣∣∣∣
.

Then, if one denotes by
∧
Jω the generalized cross product of the columns of

the Jacobian matrix Jac(ω), which is defined by duality as :

∀v ∈ Rd, det
(
Jac(ω), v

)
=
∧
Jω · v,

one sees that :

J(S−s ) = εd−1 det(vi − vs+1, Jac(ω)) = (−ε)d−1 det
(
Jac(ω), vi − vs+1

)
= (−ε)d−1

∧
Jω · (vi − vs+1).

Finally, on the one hand the vector
∧
Jω is built as a vector which is orthogonal

to any tangent vector to the sphere at the point ω, so that in this case :∧
Jω // ω,



98 CHAPTER 5. DEFINITION OF THE COLLISION OPERATOR

and then immediately : ∧
Jω = ±

∣∣∧ Jω
∣∣ω.

On the other hand, the magnitude of the vector
∧
Jω is the volume of the

parallelotope defined by the columns of the Jacobian matrix Jac(ω) of the
parametrization of the sphere. That is why it is used in order to define the
measure of the surface of the sphere. In other words, the measure dω means
exactly that : ∣∣∧ Jω

∣∣ dθ1 . . . θd−1

in coordinates.
In the end, one obtains : |J(S−s )| = εd−1

∣∣ω · (vs+1 − vi)
∣∣.

One can guess that this proposition will be used only in half of the phase space,
more precisely the subset of the phase space that corresponds to pre-collisional
configurations, that is those for which ω · (vs+1 − vi) < 0. In this case, at least
for a small time, the backwards hard sphere flow coincides with the free flow.
In the other half of the phase space, corresponding to post-collisional configura-
tions, that is those for which ω · (vs+1−vi) > 0, if |xi−xs+1| = ε, the scattering
(see Definition 1 page 51) is used to define pre-collisional velocities, so that the
backwards hard sphere flow coincides in that case with the free flow with the
pre-collisional velocities instead of the post-collisional ones. As Proposition 3
gives the Jacobian determinant of the free transport in the pre-collisional case,
the following Proposition studies the post-collisional situation, and provides the
expression of the Jacobian determinant of the free transport composed with the
scattering operator.

Proposition 4. Consider the following function :

S+
s :


Dεs × [0, δ]× Sd−1 × Rd → R2d(s+1)(
Zs, t, ω, vs+1

)
7→ Z̃s+1

=
(
Xs − tV ′s , V ′s , xi + εω − tv′s+1, v

′
s+1

)
,

where V ′s denotes (v1, . . . , v
′
i, . . . , vs), and v′i and v′s+1 are the post-collisional

velocities of vi and vs+1, that is v′i and v′s+1 denotes the image by the scattering
mapping S (see Definition 1 page 51) of the pair of velocities vi and vs+1 with
the angular parameter ω.
Then the function S+

s is one-to-one on the subset of Dεs× [0, δ]×Sd−1×Rd com-
posed of the post-collisional configurations (that is such that ω · (vs+1 − vi) > 0),
and transforms the measure

εd−1
∣∣ω · (vs+1 − vi)

∣∣dZs dtdω dvs+1

in the Lebesgue measure on R2d(s+1). In other words, the absolute value of the
Jacobian determinant of S+

s is equal to :

εd−1
∣∣ω · (vs+1 − vi)

∣∣.
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Proof. The proof of the fact that S+
s is one-to-one is obtained exactly as in the

proof of Proposition 3.
Concerning the absolute value of the Jacobian determinant of this function, the
proof relies strongly on the previous Proposition 3 on the one hand, and on the
other hand on a property of the scattering operator.
Indeed, if ω · (vs+1 − vi) > 0 the function S+

s can of course be seen as the
backwards free-flow applied to the pre-collisional situation associated to the
post-collisional situation (Zs, xi + εω, vs+1), in other words

S+
s = S−s ◦ C,

where C denotes the function

C :

ß
Rd × Rd × Sd−1 → Rd × Rd × Sd−1

(v1, v2, ω) 7→ (v′1 = v1 − (v1 − v2) · ωω, v′2 = v2 + (v1 − v2) · ωω, ω)

(one can notice the similarity of the scattering function defined in Definition 1
page 51).
Then, once the Jacobian determinant of the function C is computed, the result
will be obvious using the result of the previous proposition.
One can immediately see that the definition of the function C makes sense on a
larger subset of R3d, indeed the expression :

C(v1, v2, ω)

makes sense on Rd×Rd×
(
Rd\{0}

)
(it makes even sense on the whole space R3d,

but it will not be useful here). One will use the fact that Rd\{0} is transformed
in Sd−1 × R∗+ by using the polar coordinates.
The function

C :

ß
Rd × Rd ×

(
Rd\{0}

)
→ Rd × Rd ×

(
Rd\{0}

)
(v1, v2, u) 7→ (v1 − (v1 − v2) · uu, v2 + (v1 − v2) · uu, u)

has a differential that can be easily computed since for every h1, h2, h3 ∈ Rd,
one has :

(v1 + h1)−
(
(v1 + h1)− v2

)
· uu = v1 − (v1 − v2) · uu+ h1 − h1 · uu,

v1 −
(
v1 − (v2 + h2)

)
· uu = v1 − (v1 − v2) · uu+ h2 · uu,

v1 − (v1 − v2) ·
(
u+ h3

)(
u+ h3

)
= v1 − (v1 − v2) · uu− (v1 − v2) · uh3

−(v1 − v2) · h3u− (v1 − v2) · h3h3,

and
v2 +

(
(v1 + h1)− v2

)
· uu = v2 + (v1 − v2) · uu+ h1 · uu,

(v2 + h2) +
(
v1 − (v2 + h2)

)
· uu = v2 + (v1 − v2) · uu+ h2 − h2 · uu,

v2 + (v1 − v2) ·
(
u+ h3

)(
u+ h3

)
= v2 + (v1 − v2) · uu+ (v1 − v2) · uh3

+(v1 − v2) · h3u+ (v1 − v2) · h3h3,
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so that the differential of C can be expressed with the following Jacobian matrix
at every point (v1, v2, u) ∈ Rd × Rd ×

(
Rd\{0}

)
:

Id − u⊗ u u⊗ u (v2 − v1) · uId + (v2 − v1)⊗ u

u⊗ u Id − u⊗ u −(v2 − v1) · uId − (v2 − v1)⊗ u

0 0 Id



. (5.11)

The Jacobian determinant J(C) of the matrix (5.11) can be easily computed,
since one can develop it with respect to the last d lines, it remains :

J(C) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Id − u⊗ u u⊗ u

u⊗ u Id − u⊗ u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Id Id

u⊗ u Id − u⊗ u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

or again :

J(C) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Id 0

u⊗ u Id − 2u⊗ u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
Id − 2u⊗ u

∣∣∣∣∣∣∣∣∣∣
= 1 + (−2u) · u,

the last identity being obtained thanks to the property of the tensor product
stating that for all vectors a and b, one has

det
(
Id + a⊗ b

)
= 1 + a · b.
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The result of the proposition is then obtained by computing the product of the
two determinants J(S−s ) and J(C), and by noticing that in the case studied
here, the vector u lies in fact in the sphere Sd−1, so that one has of course

1 + (−2u) · u = 1− 2 = −1.

Those two propositions will be useful to define properly the truncated transport-
collision operators, which is the object of the following lemma.

Lemma 1 (Definition of the truncated in time, position and velocity trans-
port-collision operator, and L1 regularity for L∞ functions). Let s be a positive
integer, ε ≤ 1 and T be two strictly positive numbers. Finally, let R1, R2 be two
strictly positive numbers, and δ be a strictly positive number such that :

δ ≤ δ0(d, ε,R2) = min
1≤j≤d

[
ε

2R2

( d(
d
j

)) 1
j−1

]
. (5.12)

Then for every integer 1 ≤ i ≤ s, and for every function ϕ(s+1) ∈ L∞
(
Dεs+1

)
,

the function
(t, Zs) 7→ Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ(s+1)

defined as :

Cεs,s+1,±,i(R1,R2, δ)T s+1,ε
t ϕ(s+1)(Zs) =

∫
Sd−1
ω ×Rdvs+1

εd−1 (ω · (vs+1 − vi))±

× T s+1,ε
t ϕ(s+1)(Zs, xi + εω, vs+1)

×

( ∏
1≤j<k≤s+1
(j,k)6=(i,s+1)

1|xj−xk|>ε+
√

2δR2

)( ∏
1≤l≤s+1

1d(xl,Ω)>ε/2+δR2

)

× 1Xs+1∈BRd(s+1) (0,R1)1Vs+1∈BRd(s+1) (0,R2) dω dvs+1

is well defined as a function of L1
(
[0, T ]×Dεs

)
, and the following control on its

L1 norm holds :∣∣∣Cεs,s+1,±,i(R1,R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣
L1([0,T ]×Dεs)

≤ C(d, s)εd−1T (R1 + δR2)dsR
d(s+1)+1
2

∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)
. (5.13)

Proof. Here one starts by the pre-collisional case, that is one studies the operator
Cεs,s+1,−,i(R1, R2, δ). If the configuration

(
Zs, xi + εω, vs+1

)
, belonging to( ⋂

1≤j<k≤s+1
(j,k)6=(i,s+1)

{
|xj − xk| > ε+

√
2δR2

})
∩
( ⋂

1≤l≤s+1

{
d(xl,Ω) > ε/2 + δR2

})

∩
((
BRd(s+1)(0, R1)

)
Xs+1

×
(
BRd(s+1)(0, R2)

)
Vs+1

)
,



102 CHAPTER 5. DEFINITION OF THE COLLISION OPERATOR

is assumed to be a pre-collisional configuration, that is if ω · (vs+1 − vi) < 0,
according to the definition of the restricted domain of the truncated collision
operator, one knows that the backwards flow of s+ 1 hard spheres of diameter
ε coincides with the backwards free flow on this domain, at least for any time t
belonging to [0, δ], that is :

T s+1,ε
−t

(
Zs, xi + εω, vs+1

)
= S−s

(
Zs, xi + εω, vs+1

)
for all t ∈ [0, δ]. Then, using Proposition 3 page 92 and the theorem of change
of variables, one has :∫

Iε,−
s,i

(R1,R2,δ)

∣∣∣ϕ(s+1)
(
Z̃s+1

)∣∣∣ dZ̃s+1

=

∫ δ

0

∫
Dεs

∣∣∣Cεs,s+1,−,i(R1, R2, δ)ϕ
(s+1)

(
S−s (Zs, xi + εω, vs+1)

)∣∣∣dZs dt,

with Iε,−s,i (R1, R2, δ) denoting the image by S−s of the domain of integration :

×
ÅÅ ⋂

1≤j<k≤s+1
(j,k)6=(i,s+1)

{|xj − xk| > ε+
√

2δR2}
ã

∩
Å ⋂

1≤l≤s+1

{d(xl,Ω) > ε/2 + δR2}
ã
∩ {|Xs+1| < R1} ∩ {|Vs+1| < R2}

ã
⊂ Dεs × [0, δ]× Sd−1 × Rd.

On the one hand, in particular, if |Xs+1| < R1 (where, as it is precised in the
remark 8 page 91, Xs+1 denotes (x1, . . . , xs, xi+εω)), |Vs+1| < R2 and t ∈ [0, δ],
then one sees that :

|Xs+1 − tVs+1| < R1 + δR2. (5.14)

On the other hand, one has :

ε ≤ |(xi + εω − tvs+1)− (xi − tvi)|, (5.15)

since the configuration is assumed to be pre-collisional, that is ω ·(vs+1−vi) < 0.
Finally, this distance can be bounded from above writing :

|εω − t(vs+1 − vi)|2 = ε2 − 2tεω · (vs+1 − vi) + t2|vs+1 − vi|2

≤ ε2 + 2εt|vs+1 − vi|+ t2|vs+1 − vi|2 = (ε+ t|vs+1 − vi|)2

≤ (ε+ 2δR2)2. (5.16)

Using the three last inequalities, it is possible to bound the size of the set
Iε,−s,i (R1, R2, δ). More precisely, if one considers an element

Z̃s+1 =
(
x̃1, ṽ1, . . . , x̃s+1, ṽs+1

)
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belonging to the image Iε,−s,i (R1, R2, δ), the inequality (5.14) enables to bound
the ds first components x̃1, . . . , x̃s (that is, the components of the s first positions
in the image of S−s , contained in the phase space of s+1 particles) of any element
of Iε,−s,i (R1, R2, δ). The bound on the ds following components ṽ1, . . . , ṽs and the
d last components ṽs+1 (that is, the components of the velocities in the phase
space of s + 1 particles) is a direct consequence of the cut-off |Vs+1| ≤ R2.
Finally, the two inequalities (5.15) and (5.16) enable to bound the norm of the
components of the s+ 1 positions in the phase space, that is one has :

Iε,−s,i (R1, R2, δ) ⊂ BRds(0, R1+δR2)×BRds(0, R2)×BRd(0, R1+δR2)×BRd(0, R2)

with, the following extra condition, consequence of the two inequalities (5.15)
and (5.16) :

x̃s+1 ∈
(
B(x̃i, ε+ 2δR2)\B(x̃i, ε)

)
.

It is then easy to obtain a bound on the size of Iε,−s,i (R1, R2, δ) :∣∣∣Iε,−s,i (R1, R2, δ)
∣∣∣ ≤ C(d, s)(R1 + δR2)dsR

d(s+1)
2

∣∣BRd(0, ε+ 2δR2)\BRd(0, ε)
∣∣,

(5.17)

with C(d, s) a constant depending only on the dimension and the number of
particles s, and then immediately :∫

Iε,−
s,i

(R1,R2,δ)

∣∣∣ϕ(s+1)
(
Z̃s+1

)∣∣∣dZ̃s+1 ≤ C(d, s)(R1 + δR2)dsR
d(s+1)
2

×
∣∣BRd(0, ε+ 2δR2)\BRd(0, ε)

∣∣ · ∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)
.

Using the same argument as in the proof of Proposition 2 page 57, one has :∣∣BRd(0, ε+ 2δR2)\BRd(0, ε)
∣∣ = C(d)

(
(ε+ 2δR2)d − εd

)
= C(d)

d∑
j=1

Ç
d

j

å
εd−j(2δR2)j ,

with C(d) denoting a constant depending only on the dimension d, this measure
being smaller than

C(d)δεd−1R2

if δ is small enough. More precisely, this bound will hold under condition 5.12,
which is

δ ≤ δ0(d, ε,R2) = min
1≤j≤d

[
ε

2R2

( d(
d
j

)) 1
j−1

]
,
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since in this case the sum can be controlled as follows :

d∑
j=1

Ç
d

j

å
εd−j(2δR2)j ≤ 2δR2

d∑
j=1

Ç
d

j

å
εd−j(2δR2)j−1

≤ 2δR2

d∑
j=1

Ç
d

j

å
εd−j

(
ε
( d(

d
j

)) 1
j−1

)j−1

≤ C(d)δR2ε
d−1,

using in the last step that ε ≤ 1. So if δ ≤ δ0, one finds that :∫
Iε,−
s,i

(R1,R2,δ)

∣∣∣ϕ(s+1)
(
Z̃s+1

)∣∣∣dZ̃s+1

≤ C(d, s)δεd−1(R1 + δR2)dsR
d(s+1)+1
2

∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)
, (5.18)

assuming, of course, that ϕ(s+1) is a L∞ function.

For the post-collisional case, that is for Cεs,s+1,+,i(R1, R2, δ), the configuration(
Zs, xi + εω, vs+1

)
is now a post-collisional configuration, which corresponds to

the case when ω · (vs+1 − vi) > 0, and then the backwards flow of s + 1 hard
spheres of diameter ε coincides with the backwards free flow composed this time
with the scattering, on the restricted domain of the truncated transport-collision
operator on the whole time interval [0, δ], that is :

T s+1,ε
−t (Zs, xi + εω, vs+1) = S+

s (Zs, xi + εω, vs+1)

for all t ∈ [0, δ] on D(ε,R1, R2, δ) (introduced in (5.1) page 89). Instead of using
Proposition 3, one uses Proposition 4 and the theorem of change of variables.
From that point, the proof becomes identical, since the image Iε,+s,i of the re-

stricted domain of the truncated collision operator by the application S+
s will

verify the same estimates as Iε,−s,i , and provide the same L1 control.

From now on, one will consider the pre and the post-collisional configurations at
once, and decompose the time interval [0, T ] in dT/δe smaller intervals, of size
δ (except possibly the last, which can be even smaller). Here, the notation dxe
means that one takes the smallest integer larger than x, and bxc means that one
takes the largest integer smaller than x. Then, on each interval, which writes
[nδ, (n+ 1)δ] (except possibly [

(
bT/δc

)
δ, T ] for the last one), one writes :∫ (n+1)δ

nδ

∫
Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

(
Zs+1

)∣∣∣dZs dt

=

∫ (n+1)δ

nδ

∫
Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t−nδ T

s+1,ε
nδ ϕ(s+1)

(
Zs+1

)∣∣∣dZs dt,
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and by change of variables u = t− nδ :

=

∫ δ

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
u T s+1,ε

nδ ϕ(s+1)
(
Zs+1

)∣∣∣dZs du.

(5.19)

Thanks to the inequality :∣∣T s+1,ε
nδ ϕ(s+1)

∣∣
L∞(Dε

s+1
)
≤
∣∣ϕ(s+1)

∣∣
L∞(Dε

s+1
)
,

which is nothing else than the preservation of the L∞ norm by the hard sphere
transport (see [26]5), one sees that, using together the inequalities (5.18) (applied
to the function T s+1,ε

nδ ϕ(s+1)) and (5.19), one has :∫ (n+1)δ

nδ

∫
Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

(
Zs+1

)∣∣∣dZs dt

≤ C(d, s)δεd−1(R1 + δR2)dsR
d(s+1)+1
2

∣∣∣ϕ(s+1)
∣∣∣
L∞
(
Dε
s+1

). (5.20)

Then, it is possible to sum the inequalities (5.20) for all n between 0 (which is,
of course, in fact just the inequality (5.18)) and dT/δe − 1. Choosing δ small
enough (that is fulfilling the condition (5.12) stated in the lemma) and such
that T/δ is an integer, one has [

(
bT/δc,

)
, T ] = [T − δ, T ] and one obtains :∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

(
Zs+1

)∣∣∣dZs dt

=

T/δ−1∑
j=0

∫ (j+1)δ

jδ

∫
Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

(
Zs+1

)∣∣∣dZs dt

≤ C(d, s)εd−1T (R1 + δR2)dsR
d(s+1)+1
2

∣∣∣ϕ(s+1)
∣∣∣
L∞
(
Dε
s+1

). (5.21)

Finally, one has shown that the expression (5.3) page 91 makes sense thanks
to the change of variables induced by the free transport, providing that the
quantity ∫

Iε,−
s,i

(R1,R2,δ)

∣∣∣ϕ(s+1)
(
Z̃s+1

)∣∣∣dZ̃s+1

makes sense itself. Since one has shown that Iε,−s,i is bounded in the phase space,

it is enough to assume that ϕ(s+1) belongs to L∞
(
Dεs+1

)
to be integrable on

5In particular, see Appendix 4.A ”More About Hard-Sphere Dynamics”.
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this domain.
Moreover, one has shown that the function :

(t, Zs) 7→ Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

is, first thanks to the Fubini-Tonelli theorem, a measurable function, and second
thanks to the Fubini-Lebesgue theorem, an integrable function, such that its L1

norm is controlled by the L∞ norm of the function ϕ(s+1) ∈ L∞
(
Dεs+1

)
, exactly

as it is shown in the last inequality.

In summary, the truncated transport-collision operator is well defined on the L∞

functions, and sends such functions into L1 functions. Lemma 1 is proved.

5.1.2 Control of the L∞ norm of the truncated transport-
collision operator

Now that the truncated transport-collision operator is well-defined on L∞
(
Dεs+1

)
,

one wants to obtain an operator which sends functions from some Lebesgue space
into the same space (with less variables, of course, since the collision operator
has to be seen as an integration over the last velocity variable and over a pa-
rameter angle). More precisely, since this operator makes sense on the almost
everywhere bounded functions, one will study its L∞ norm.

From now on, one will consider a measurable subset A of [0, δ] × Dεs, of fi-
nite measure.
Indeed, for an integrable function f on a mesured space (X,µ), one knows that
if there exists a constant C such that, for any measurable subset A of finite
measure, one has : ∫

X

1A
∣∣f ∣∣ dµ ≤ C∣∣A∣∣,

then one can assert that f is almost everywhere bounded by the constant C.

Using the notation (5.1) page 89 for the domain of the truncated transport-
collision operator, one has written previously :∫ δ

0

∫
Dεs

∫
Sd−1
ω

∫
Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t ϕ(s+1)(Zs, xi + εω, vs+1)

× 1D(ε,R1,R2,δ) dvs+1 dω dZs dt

=

∫
S±s (D)

ϕ(s+1)
(
Z̃s+1

)
dZ̃s+1.

One will now replace the term 1D by 1D∩B , with :

B = A× Sd−1 ×BRd(0, R2),

in order to obtain a control on the L∞ norm of the truncated collision operator.
Here, there is an abuse of notation, since the variables defining the subset B are
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not given in a consistent order according to the definition of D. Nevertheless,
this abuse of notation is convenient in order to regroup the variables ω and vs+1

of the domain of integration of the collision operator on the one hand, and the
remaining variables t and Zs on which the indicator function 1A acts on the
other hand.
One wants to study :∫

A⊂[0,δ]×Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣dZs dt,

this quantity being well-defined thanks to Lemma 1 page 101. One now shows
the following result.

Lemma 2 (L∞ regularity of the truncated in time, position and velocity trans-
port-collision operator for L∞ functions). Let s be a positive integer, ε ≤ 1 and
T be two strictly positive numbers. Let R1, R2 be two strictly positive numbers,
and δ be a strictly positive number such that :

δ ≤ δ0(d, ε,R2) = min
1≤j≤d

[
ε

2R2

( d(
d
j

)) 1
j−1

]
.

Then for every integer 1 ≤ i ≤ s, and for every function ϕ(s+1) ∈ L∞
(
Dεs+1

)
,

the function :

(t, Zs) 7→ Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1),

defined as in Lemma 1 page 101 verifies the two following estimates :

• for every measurable subset A of [0, T ]×Dεs of finite measure, one has :∫
A⊂[0,T ]×Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣dZs dt

≤ C(d, s)εd−1Rd+1
2 |A|

∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)
, (5.22)

• in addition :∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣
L∞([0,T ]×Dεs)

≤ C(d, s)εd−1Rd+1
2

∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)
. (5.23)

Proof. Let A be a measurable subset of [0, δ]×Dεs, of finite measure, and let B
be defined by :

B = A× Sd−1 ×BRd(0, R2).

One will assume in addition that B ⊂ D (so that it will not be necessary to
consider D ∩ B, but just B as domain of the integral). Since, for the whole
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time interval [0, δ], the backwards hard sphere flow coincides on D with the
backwards free flow in the case of a pre-collisional configuration, and coincides
with the backwards free flow composed with the scattering in the case of a
post-collisional configuration, this is still true on B, and one has obviously :∫ δ

0

∫
Dεs

∫
Sd−1
ω

∫
Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t ϕ(s+1)1B dvs+1 dω dZs dt

=

∫
S±s (B)

ϕ(s+1)
(
Z̃s+1

)
dZ̃s+1.

Then, since the L∞ norm of ϕ(s+1) is controlled by hypothesis, it will be enough
to control the size of S±s (B).
Then, writing : ∣∣S±s (B)

∣∣ =

∫
1S±s (B),

one gets, using the fact that S±s is one-to-one onto its image, and denoting(
S±s
)−1

its inverse on this image :

∣∣S±s (B)
∣∣ =

∫
Dε
s+1

1B ◦
(
S±s
)−1

dZ̃s+1

=

∫
Dεs×[0,δ]×Sd−1

ω ×Rdvs+1

1B ·
∣∣J(S±s )∣∣dvs+1 dω dZs dt

=

∫
A⊂Dεs×[0,δ]

[∫
Sd−1
ω ×BRdvs+1

(0,R2)

εd−1
∣∣ω · (vs+1 − vi)

∣∣dvs+1 dω

]
dZs dt

≤ εd−1
∣∣Sd−1

∣∣ ∫
A

∫
BRdvs+1

(0,R2)

|vs+1 − vi|dvs+1 dZs dt

≤ 2R2ε
d−1
∣∣Sd−1

∣∣ ∫
A

∫
BRdvs+1

(0,R2)

dvs+1 dZs dt

since if Zs = (. . . , vi, . . . ) belongs to A, then |vi| ≤ R2. One has :∫
A⊂[0,δ]×Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣dZs dt

≤ C(d, s)εd−1Rd+1
2 |A|

∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)
. (5.24)

On the one hand, if one considers, for all m > 0 the subset Am defined as
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follows :

Am =
{

(t, Zs) ∈[0, δ]×Dεs /∣∣∣(Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

)
(Zs)

∣∣∣
≥ C(d, s)εd−1Rd+1

2

∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)

+m
}
,

which is well defined since the truncated transport-collision operator is a mea-
surable function, and which is of finite measure, since it is integrable, thanks to
inequality (5.13), one gets thanks to the inequality (5.24) :∫

Am

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣ dZs dt

≤ C(d, s)εd−1Rd+1
2 |Am|

∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)
.

(5.25)

On the other hand, since the truncated collision operator is integrable on [0, δ]×
Dεs, one obtains by definition of Am :(

C(d, s)εd−1Rd+1
2

∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)

+m
)
|Am|

≤
∫ δ

0

∫
Zs∈Dεs

1Am
∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ(s+1)
∣∣dZs dt, (5.26)

so that inequalities (5.25) and (5.26) imply together that for any m > 0, one
has necessarily :

|Am| = 0.

In other words, one has :∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣(Zs) ≤ C(d, s)εd−1Rd+1
2

∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)

almost everywhere on [0, δ]×Dεs.
In the same way, for all measurable subsets An of [nδ, (n + 1)δ] × Dεs of finite
measure, one denotes :

Aδn =
{

(u, Zs) ∈ [0, δ]×Dεs / (u+ nδ, Zs) ∈ An
}
.

One has of course :
|Aδn| = |An|, (5.27)

and by the change of variables u = t− nδ, one gets :

In =

∫
An

∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣ dZs dt

=

∫
An

∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t−nδ T

s+1,ε
nδ ϕ(s+1)

∣∣ dZs dt

=

∫
Aδn

∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
u T s+1,ε

nδ ϕ(s+1)
∣∣ dZs du.
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Using the inequality (5.24), one gets :

In ≤ C(d, s)εd−1Rd+1
2 |Aδn|

∣∣T s+1,ε
nδ ϕ(s+1)

∣∣
L∞(Dε

s+1
)
,

and then using the equality (5.27) and the control on the L∞ norm for the hard
sphere flow :

In ≤ C(d, s)εd−1Rd+1
2 |An|

∣∣T s+1,ε
nδ ϕ(s+1)

∣∣
L∞(Dε

s+1
)

≤ C(d, s)εd−1Rd+1
2 |An|

∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)
.

This enables to show, as above, that :∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣(Zs) ≤ C(d, s)εd−1Rd+1
2

∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)

almost everywhere on [nδ, (n + 1)δ] × Dεs, for all 0 ≤ n ≤ T/δ − 1, where δ
has been chosen small enough so that it fulfills the condition (5.12) stated in
Lemma 1 page 101, and such that T/δ is an integer.

Finally, one has shown that the truncated transport-collision operator associates
to any function ϕ(s+1) of L∞

(
Dεs+1

)
a function of L∞

(
[0, T ] × Dεs

)
. Moreover,

this operator is continuous on L∞, and satisfies the explicit estimate :∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣
L∞([0,T ]×Dεs)

≤ C(d, s)εd−1Rd+1
2

∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)
,

which is exactly the estimate (5.23) of the lemma. Lemma 2 is proved.

5.1.3 Removing the truncation parameter related to the
time variable

Limit of the sequence of operators for R1, R2 given, when δ goes to 0

One now considers two parameters δ, δ′ such that :

0 < δ′ < δ ≤ 1,

and the new truncated collision operator :

Cεs,s+1,±,i(R1, R2, δ
′, δ)T s+1,ε

t ,

defined as :

Cεs,s+1,±,i(R1, R2, δ
′)T s+1,ε

t − Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t .



5.1. COLLISION OPERATOR AND BBGKY HIERARCHY 111

One then observes that :∫ δ′

0

∫
Zs∈Dεs

∣∣Cεs,s+1,±,i(R1, R2, δ
′, δ)T s+1,ε

t ϕ(s+1)
∣∣dZs dt

=

∫ δ′

0

∫
Zs∈Dεs

εd−1

∣∣∣∣ ∫
Sd−1
ω ×Rdvs+1

(
ω · (vs+1 − vi

)
±T

s+1,ε
t ϕ(s+1)(Zs, xi + εω, vs+1)

×
Å( ∏

1≤j<k≤s+1
(j,k) 6=(i,s+1)

1|xj−xk|>ε+
√

2δ′R2

)( ∏
1≤l≤s+1

1d(xl,Ω)>ε/2+δ′R2

)

−
( ∏

1≤j<k≤s+1
(j,k) 6=(i,s+1)

1|xj−xk|>ε+
√

2δR2

)( ∏
1≤l≤s+1

1d(xl,Ω)>ε/2+δR2

)ã
× 1Xs+1∈BRd(s+1) (0,R1)1Vs+1∈BRd(s+1) (0,R2) dω dvs+1

∣∣∣∣dZs dt.

One will now work to obtain a control on the L1 norm of the difference

Cεs,s+1,±,i(R1, R2, δ
′, δ)T s+1,ε

t ,

in order to prove that the original truncated transport-collision operator

Cεs,s+1,±,iT
s+1,ε
t

constitutes a Cauchy sequence in L1 as δ varies and converges to zero. Notice
that one will not be able to obtain such a result in the L∞ topology. The result
is the following.

Lemma 3 (L1 norm of the difference of two truncated in time, position and
velocity operators for L∞ functions, with the same position and velocity cut-off
parameters). Let s be a positive integer, ε ≤ 1 and T be two strictly positive
numbers. Let R1, R2 be two strictly positive numbers, and δ′ < δ be two strictly
positive numbers such that :

δ ≤ δ0(d,R1, R2) = min
1≤j≤d

[
ε

2R2

( d(
d
j

)) 1
j−1

]
.

Then for every integer 1 ≤ i ≤ s, and for every function ϕ(s+1) ∈ L∞
(
Dεs+1

)
,

the function :
Cεs,s+1,±,i(R1, R2, δ

′, δ)T s+1,ε
t ϕ(s+1)

defined as

Cεs,s+1,±,i(R1, R2, δ
′, δ)T s+1,ε

t ϕ(s+1)

= Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1) − Cεs,s+1,±,i(R1, R2, δ

′)T s+1,ε
t ϕ(s+1),
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verifies the following L1 estimate :∫ T

0

∫
Zs∈Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ
′, δ)T s+1,ε

t ϕ(s+1)
∣∣∣dZs dt

≤ C(d, s, ε, R1, R2)δT
∣∣ϕ(s+1)

∣∣
L∞

. (5.28)

Proof. First, thanks to Lemma 1 page 101, the difference of the transport-
collision operators Cεs,s+1,±,i(R1, R2, δ

′, δ)T s+1,ε
t ϕ(s+1) is well-defined and is in-

tegrable.
One will now try to simplify the notations. For every δ > 0, one denotes by Eδ
the following subset of [0, T ]×Dεs × Sd−1 × Rd :

Eδ =

Å ⋂
1≤j<k≤s+1
(j,k)6=(i,s+1)

{
|xj − xk| > ε+

√
2δR2

}ã
∩
Å ⋂

1≤l≤s+1

{
d(xl,Ω) > ε/2 + δR2

}ã
,

(that is : Eδ is the subset of the domain of the truncated transport-collision
operator in time before δ, encoding a condition on the particles, which prevents
collisions or bouncings against the obstacle during the time interval [0, δ]). One
notices first, if δ′ < δ, if one has |xj−xk| > ε+

√
2δR2, then obviously |xj−xk| >

ε +
√

2δ′R2, and similarly d(xl,Ω) > ε/2 + δR2 implies d(xl,Ω) > ε/2 + δ′R2,
so that the following inclusion holds :

Eδ ⊂ Eδ′ .

In other words, the family of subsets
(
Eδ
)
δ>0

is decreasing with δ.
Secondly, the new truncated transport-collision operator

Cεs,s+1,±,i(R1, R2, δ
′, δ)T s+1,ε

t

integrated over [0, δ′]×Dεs can be rewritten more simply as :∫ δ′

0

∫
Zs∈Dεs

εd−1

∣∣∣∣ ∫
Sd−1
ω ×Rdvs+1

(
ω · (vs+1 − vi

)
±T

s+1,ε
t ϕ(s+1)(Zs, xi + εω, vs+1)1Eδ′\Eδ

× 1Xs+1∈BRd(s+1)(0,R1)
1Vs+1∈BRd(s+1) (0,R2) dω dvs+1

∣∣∣∣dZs dt.

An element of Eδ′\Eδ is such that all the particles are initially separated by a
sufficiently large distance (here : ε +

√
2δ′R2) and are initially sufficiently far

from the obstacle (here at a distance larger than ε/2 + δ′R2). On the other
hand, there exists at least one particle close to the obstacle (here : at a distance
smaller than ε/2 + δR2), or a pair of particles which are close (here : at a dis-
tance smaller than ε+

√
2δR2).
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If a particle is close to the obstacle, say, the particle l0 with 1 ≤ l0 ≤ s + 1,
one has that :

ε/2 + δ′R2 < d(xl0 ,Ω) ≤ ε/2 + δR2.

Since in the setting of this work the obstacle Ω is the half space {x ∈ Rd / x·e1 =
0}, this condition exactly means that :

ε/2 + δ′R2 < xl0 · e1 ≤ ε/2 + δR2.

One wants here a control on the image by S±s of the position of a particle l,
with l < s + 1, since one has already a control on the position of the particle
s+ 1 : this particle will remain close to the particle i.
Assuming therefore that l0 verifies l0 < s + 1, it is clear that when t ≤ δ′, the
backwards hard sphere flow coincides with the backwards free flow because they
coincide on [0, δ], so that for 0 ≤ t ≤ δ′, one has :

ε/2 < (xl0 − tvl0) · e1 ≤ ε/2 + δR2 + δ′R2.

Remembering that |xl0 | < R1, one gets that :

x̃l0 ∈ [ε/2, ε/2 + (δ + δ′)R2]×BRd−1(0, R1 + δ′R2),

which is of course a subset of size bounded by :

C(d)
(
R1 + δ′R2

)d−1
(δ + δ′)R2 ≤ C(d)

(
R1 + δ′R2

)d−1
R2δ,

using the fact that δ′ < δ, which bounds from above the size of the set in which
xl0 lies. On the contrary, if l0 = s+ 1, that is if :

ε/2 + δ′R2 < xs+1 · e1 ≤ ε/2 + δR2,

one is able to deduce also a condition on the position of the particle i after being
transported by S±s . Indeed, since one has by definition

xs+1 = xi + εω,

one obtains for every time 0 ≤ t ≤ δ′ :

ε/2 ≤ (xi + εω − tvi) · e1 < ε/2 + δR2 + δ′R2,

that is :

ε/2− εω · e1 ≤ (xi − tvi) · e1 < ε/2− εω · e1 + (δ + δ′)R2.

One has to be careful here since the first inequality may be insufficient to con-
clude. Remembering that the initial configuration was taken in E′δ, one also
knows that :

d(xi,Ω) > ε/2 + δ′R2,
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that is, for every 0 ≤ t ≤ δ′ :

(xi − tvi) · e1 > ε/2.

Finally, one has shown that :

(xi − tvi) · e1 ∈ [ε/2− εω · e1, ε/2− εω · e1 + (δ + δ′)R2] ∩ [ε/2,+∞[.

The second part of the intersection of the right-hand side of the previous con-
dition shows that the particle i is not too close to the obstacle before a time δ′

(so that the transport of hard spheres coincides with S±s ).
In any case, the quantity (xi − tvi) · e1 lies in an interval of size smaller than
(δ + δ′)R2. The same argument as above, that is xi ∈ BRd(0, R1), enables to
assert that x̃i lies in a subset of the phase space of s + 1 particles with a size
controlled by

C(d)(R1 + δ′R2)d−1(δ + δ′)R2 ≤ C(d)(R1 + δ′R2)d−1R2δ.

One now assumes that a pair of particles are close to each other, say, the two
particles j0 and k0 with j0 < k0, and (j0, k0) 6= (i, s + 1). There are here
two possibilities. Either the particle k0 is the particle s+1, or not. If k0 6= s+1,
one has that :

ε+
√

2δ′R2 < |xj0 − xk0 | ≤ ε+
√

2δR2.

As above, one has to be careful. If both j0 and k0 are different from s+ 1, then
again, after a time t ≤ δ′, the backwards hard sphere flow coincides with the
backwards free flow, and moreover, one has on the one hand

ε < |(xj0 − tvj0)− (xk0 − tvk0)|,

and on the other hand

|(xj0 − tvj0)− (xk0 − tvk0)| ≤ ε+
√

2δR2 +
√

2δ′R2.

In other words, for all 0 ≤ t ≤ δ′, the position xj0−tvj0 belongs to the difference
of the balls :

BRd(xk0 − tvk0 , ε+
√

2(δ + δ′)R2)\BRd(xk0 − tvk0 , ε),

which has size

C(d)
(
(ε+

√
2(δ + δ′)R2)d − εd

)
= C(d)

d∑
p=1

Ç
d

p

å
εd−p

(√
2R2

)p
(δ + δ′)p,

which can be bounded from above when ε ≤ 1 by :

C(d)ε
d∑
p=1

Ç
d

p

å(√
2R2

)p
(δ + δ′)p.
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Then when δ is small enough, that is smaller than :

δ0(d,R2) = min
1≤p≤d

[ d(
d
p

) Å 1√
2R2

ãp−1 ]
, (5.29)

it can be again be bounded from above by :

C(d)εR2(δ + δ′) ≤ C(d)εR2δ.

If now k0 = s + 1, then one deduces that j0 6= i since by hypothesis (j0, k0) 6=
(i, s+ 1). One can get a control on the position of the particle j0, depending on
the position of the particle s+ 1 = k0, depending in turn on the position of the
particle i. More explicitly, one shows easily, as above, that

(xj0 − tvj0) ∈ BRd
(
xs+1 − tvs+1, ε+

√
2(δ + δ′)R2

)
\BRd

(
xs+1 − tvs+1, ε

)
,

and the control of the position x̃s+1 of the particle s+ 1 follows.

As before, and in any case (that is if this is the case of a particle close to
the obstacle, or if this is the case of two particles close to each other), one
knows moreover that for all t ≤ δ′ :

ε ≤
∣∣(xs+1 − tvs+1)− (xi − tvi)

∣∣ ≤ ε+
√

2δ′R2

in the pre-collisional case, and

ε ≤
∣∣(xs+1 − tv′s+1)− (xi − tv′i)

∣∣ ≤ ε+
√

2δ′R2

in the post-collisional case. One recalls that the factor
√

2 comes from the bound
on the velocities, namely

∣∣Vs+1

∣∣ ≤ R2, which implies :

|vs+1 − vi|2 = |vs+1|2 − 2vi · vs+1 + |vi|2 ≤ |vs+1|2 + 2|vi||vs+1|+ |vi|2

≤ 2|vs+1|2 + |vi|2 ≤ 2R2
2.

In summary, as above, if one denotes by Iε,±s,i (R1, R2, δ
′, δ) the image by S±s of

the domain of integration :

[0, δ′]×
(
Eδ′\Eδ ∩

{
|Xs+1| < R1

}
∩
{
|Vs+1| < R2

})
⊂ [0, δ′]×Dεs × Sd−1 × Rd,

in any case (pre or post-collisional, that is either for Cεs,s+1,−,i or for Cεs,s+1,+,i),
one has then

Iε,±s,i (R1, R2, δ
′, δ) ∈ BRds

(
0, R1+δ′R2

)
×BRds

(
0, R2

)
×BRd

(
0, R1 + δ′R2

)
×BRd

(
0, R2

)
,

with in addition, for every Z̃s+1 denoted as :

Z̃s+1 = (x̃1, . . . , x̃k0 , . . . , x̃l0 , . . . ,
‹Vs, x̃s+1, ṽs+1) ∈ Iε,±s,i (R1, R2, δ

′, δ),

the two following extra conditions :
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• either there exist an integer 1 ≤ l0 ≤ s and a real number α such that :

x̃l0 · e1 ∈ [ε/2 + α, ε/2 + α+ (δ + δ′)R2] ∩ [ε/2,+∞[,

or there exist 1 ≤ j0 < k0 ≤ s+ 1 with j0 6= i if k0 = s+ 1 such that :

x̃j0 ∈
(
BRd(x̃k0 , ε+

√
2(δ + δ′)R2)\BRd(x̃k0 , ε)

)
,

• and, in any case :

x̃s+1 ∈
(
B(x̃i, ε+

√
2δ′R2)\B(x̃i, ε)

)
.

One obtains then that :

∣∣Iε,±s,i (R1, R2, δ
′, δ)

∣∣ ≤
conditions on x̃1,...,x̃l0−1,x̃l0+1,...,x̃s︷ ︸︸ ︷(
C1(d(s− 1))(R1 + δ′R2)d(s−1)

)
×

condition on x̃l0︷ ︸︸ ︷(
C2(d− 1)(R1 + δ′R2)d−1(δ′ + δ)R2

)
×

condition on x̃s+1︷ ︸︸ ︷(
C3(d)

(
(ε+

√
2δ′R2)d − εd

)) condition on Ṽs+1︷ ︸︸ ︷
C4(d(s+ 1))R

d(s+1)
2

+

conditions on x̃1,...,x̃j0−1,x̃j0+1,...,x̃s︷ ︸︸ ︷(
C1(d(s− 1))(R1 + δ′R2)d(s−1)

)
×

condition on x̃j0︷ ︸︸ ︷(
C3(d)

(
(ε+

√
2(δ′ + δ)R2)d − εd

))
×

condition on x̃s+1︷ ︸︸ ︷(
C3(d)

(
(ε+

√
2δ′R2)d − εd

)) condition on Ṽs+1︷ ︸︸ ︷
C4(d(s+ 1))R

d(s+1)
2 ,

or again∣∣Iε,±s,i (R1, R2, δ
′, δ)

∣∣ ≤ C(d, s, ε)δ′(δ′ + δ)R
d(s+1)+2
2 (R1 + δ′R2)d(s−1)+d−1

+ C(d, s, ε)δ′(δ′ + δ)R
d(s+1)+2
2 (R1 + δ′R2)d(s−1)

for δ small enough (with an explicit bound on the largest δ verifying the in-
equality above, depending on d, s and ε, given by the condition (5.29)), that
is : ∣∣Iε,±s,i (R1, R2, δ

′, δ)
∣∣ ≤ C(d, s, ε)δ′δ(R1 +R2)ds−1R

d(s+1)+2
2 ,

so that : ∫ δ′

0

∫
Zs∈Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ
′, δ)T s+1,ε

t ϕ(s+1)
∣∣∣ dZs dt

≤ C(d, s, ε, R1, R2)δ′δ
∣∣ϕ(s+1)

∣∣
L∞
(
Dε
s+1

).
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Proceeding as above, that is cutting the time interval [0, T ] into pieces of size δ′,
controlling the L∞ norm of the hard sphere flow applied to ϕ(s+1) and summing
the L1 norm of the truncated transport-collision operator on all subintervals of
size δ′, one immediately gets :∫ T

0

∫
Zs∈Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ
′, δ)T s+1,ε

t ϕ(s+1)
∣∣∣ dZs dt

≤ C(d, s, ε, R1, R2)δT
∣∣ϕ(s+1)

∣∣
L∞

. (5.30)

Lemma 3 is proved.

One is now able to define the limit of the truncated transport-collision operator,
when the condition on the cut-off related to time is relaxed, that is when δ goes
to zero.

Lemma 4 (Definition of the truncated in position and velocity transport-col-
lision operator, and L1, L∞ regularity for L∞ functions). Let s be a positive
integer, ε ≤ 1 and T be two strictly positive numbers. Let also R1, R2 be two
strictly positive numbers.
Then for every integer 1 ≤ i ≤ s, and for every function ϕ(s+1) ∈ L∞

(
Dεs+1

)
,

the sequence of functions :(
Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ(s+1)
)
δ>0

is a converging sequence in L1
(
[0, T ]×Dεs

)
. Moreover, its limit, denoted by :

Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1),

lies in L∞
(
[0, T ]×Dεs

)
, and verifies :

• the following L∞ estimate :∣∣Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1)

∣∣
L∞
(

[0,T ]×Dεs
)

≤ C(d, s)εd−1Rd+1
2

∣∣ϕ(s+1)
∣∣
L∞
(
Dε
s+1

), (5.31)

• and the following convergence result :

Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1) ∗

⇀
δ→0
Cεs,s+1,±,i(R1, R2)T s+1,ε

t ϕ(s+1)

(5.32)

in L∞
(
[0, T ]×Dεs

)
.

Proof. First of all, for δ > 0 small enough the sequence :(
Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ(s+1)
)
δ>0
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is well-defined in L1
(
[0, T ]×Dεs

)
thanks to Lemma 1 page 101. Then, the inequal-

ity (5.28) stated in Lemma 3 means that this sequence is a Cauchy sequence in
L1
(
[0, T ]×Dεs

)
, so thanks to the Riesz-Fischer theorem it converges as δ goes to

zero towards a limit belonging also to L1
(
[0, T ]×Dεs

)
, which will be denoted :

Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1).

One will now show that this limit belongs in fact also to the space L∞
(
[0, T ]×

Dεs
)
. It is a direct consequence of the inequality (5.22) stated in Lemma 2

page 107, which holds in the limit δ → 0. Indeed, for all measurable subsets
A ⊂ [0, T ]×Dεs of finite measure, one can write :∫
A⊂[0,T ]×Dεs

∣∣∣Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1)

∣∣∣dZs dt

≤
∫
A⊂[0,T ]×Dεs

∣∣∣Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1)

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣dZs dt

+

∫
A⊂[0,T ]×Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣dZs dt

≤
∣∣∣Cεs,s+1,±,i(R1, R2)T s+1,ε

t ϕ(s+1)

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣
L1([0,T ]×Dεs)

+ C(d, s)εd−1Rd+1
2 |A|

∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)
,

and the first term in this inequality can be chosen as small as one wants choosing
δ small enough, so that :∫

A⊂[0,T ]×Dεs

∣∣∣Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1)

∣∣∣dZs dt

≤ C(d, s)εd−1Rd+1
2 |A|

∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)
. (5.33)

Now, following exactly the same path as above to obtain the L∞ control of
the first truncated operator (in time, position and velocity), one can now easily
show that Cεs,s+1,±,i(R1, R2)T s+1,ε

t ϕ(s+1) lies in L∞
(
[0, T ]×Dεs

)
and :∣∣Cεs,s+1,±,i(R1, R2)T s+1,ε

t ϕ(s+1)
∣∣
L∞([0,T ]×Dεs)

≤ C(d, s)εd−1Rd+1
2

∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)
. (5.34)

Finally it remains to show that this L1 limit, which is also L∞, is indeed the
limit of the sequence

(
Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ(s+1)
)
δ>0

in some topology on
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L∞
(
[0, T ]×Dεs

)
. It is based on the following general argument.

One has obtained that the sequence(
Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ(s+1)
)
δ>0

is :

• bounded uniformly in δ in L∞ (this is the control (5.23) page 107),

• a converging sequence in L1 (this is the first part of Lemma 4),

• its limit belongs also to L∞ (this is the control (5.31) of Lemma 4).

Those three hypotheses are enough to obtain in the general case a weak-∗ con-
vergence in L∞. Indeed, let (X,µ) be a mesured space. For any g ∈ L1(X),

and any converging sequence
(
fn
)
n≥0
∈
(
L1(X)

)N
towards a certain function

f ∈ L1(X), with ∣∣f ∣∣
L∞
≤ F, ∀n ∈ N,

∣∣fn∣∣L∞ ≤ F
for some strictly positive number F , one knows that∫

X

1|g|>Mg dµ −→
M→+∞

0

(in fact, one knows that the rate of convergence towards zero of this quantity
with respect to M is at least of order 1/M , which is nothing more but the
Markov inequality, but here in fact one does not need a quantitative rate of
convergence to obtain the weak-∗ convergence). Therefore, one writes :∣∣∣ ∫

X

g(fn − f) dµ
∣∣∣ ≤ ∫

X

∣∣g(fn − f)
∣∣dµ

≤
∫
X

1|g|≤M
∣∣g(fn − f)

∣∣dµ+

∫
X

1|g|>M
∣∣g(fn − f)

∣∣dµ
≤M

∫
X

∣∣fn − f ∣∣ dµ+ 2F

∫
X

1|g|>M
∣∣g∣∣ dµ.

Choosing M large enough, the second term of the upper bound found just
above can be chosen as small as one wants. Therefore, choosing the index n of
the sequence large enough, the first term can be chosen also as small as one
wants, hence the weak-∗ convergence in L∞. Lemma 4 is proved.
One notes that the third hypothesis providing the general result (about the limit
belonging to L∞) is in fact a consequence of the two first hypotheses. Indeed, if a
sequence of functions converges in L1 towards some limit, it is possible to extract
a subsequence which converges almost everywhere towards this limit. Therefore,
each term of the subsequence is almost everywhere bounded by hypothesis, and
so is the limit obtained previously in L1, which turns out to be therefore also
in L∞.
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Remark 9. In the last point of the proof of Lemma 4 concerning the weak-∗
convergence in L∞, one followed a fast and general argument.
The reader may find in [34]6 another argument to obtain this weak-∗ conver-
gence, based on the Markov inequality. In [34], the argument is only sketched.
Although all the ideas were presented in this reference, one proposes here for the
sake of completeness a detailed version of this proof.

For δ > 0 small enough, one introduces the set :

Iδ =

ß
(t, Zs) ∈ [0, T ]×Dεs /∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ(s+1) − Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1)

∣∣∣ > √δ ™,
(5.35)

which is of course measurable since the truncated transport-collision operators
Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ(s+1) applied to ϕ(s+1) and the limit of this sequence

of truncated transport-collision operators Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1) applied

to ϕ(s+1) are measurable functions, and in addition the set Iδ is of finite measure
since those functions are integrable.
Using the Markov inequality, one knows that the size of Iδ can be controlled as
follows :

∣∣Iδ∣∣ ≤ 1√
δ

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

− Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1)

∣∣∣
L1([0,T ]×Dεs)

,

and using the inequality (5.28) page 112, which holds in the limit δ′ → 0, one
gets

∣∣Iδ∣∣ ≤ C(d, s, ε, R1, R2, T )
√
δ
∣∣ϕ(s+1)

∣∣
L∞(Dε

s+1
)
. (5.36)

Now, let f be an element of L1
(
[0, T ]×Dεs

)
. Since the integrand of the following

integral is a product of a L1 function with a L∞ one, it is well defined, and one

6See Subsection 5.1.3 ”Removing the truncation”, in the version of the article with Section
”Rigorous formulation of the BBGKY hierarchy”.
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has :∣∣∣∣ ∫
[0,T ]×Dεs

(
Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ(s+1)

− Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1)

)
f dZs dt

∣∣∣∣
≤
∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ(s+1)

− Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1)

∣∣∣
L∞([0,T ]×Dεs)

∫
Iδ

∣∣f ∣∣dZs dt

+
√
δ

∫
(Iδ)c

∣∣f ∣∣dZs dt

≤
(
C(d, s)εd−1Rd+1

2

∣∣ϕ(s+1)
∣∣
L∞(Dε

s+1
)

∫
Iδ

∣∣f ∣∣)+
(√

δ
∣∣f ∣∣

L1([0,T ]×Dεs)

)
,

thanks to the two similar inequalities (5.23) and (5.34) which control the L∞

norm of Cεs,s+1,±,i(R1, R2)T s+1,ε
t , and since f is integrable and the size of Iδ

goes to zero as shown by (5.36), one has :∫
Iδ

∣∣f ∣∣ −→
δ→0

0,

which finishes to show that :

Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1) ∗

⇀
δ→0
Cεs,s+1,±,i(R1, R2)T s+1,ε

t ϕ(s+1)

in L∞
(
[0, T ]×Dεs

)
.

Defining the truncated transport-collision operators for time-dependent
functions, when R1 and R2 given

So far, one has defined Cεs,s+1,±,i(R1, R2)T s+1,ε
t on L∞ functions which do not

depend on time. In the following, it will be useful to define this operator on
time-dependent functions. More precisely, one will show that it can be defined on
C
(
[0, T ], L∞

(
Dεs+1

))
, taking its values in L∞

(
[0, T ]×Dεs

)
, with additional con-

trols. Those controls will be necessary in the sequel, in order to obtain, after an
integration in time, an operator from C

(
[0, T ], L∞

(
Dεs+1

))
to C

(
[0, T ], L∞

(
Dεs
))

,
in which it is possible to use a fixed point argument.

The first step consists in defining the truncated transport-collision operator for
piecewise constant in time functions, taking their values in L∞

(
Dεs+1

)
, in a way

which obviously extends the definition for constant in time functions, as it was
done in Lemma 1 page 101. The piecewise constant in time functions are dense
into C

(
[0, T ], L∞

(
Dεs+1

))
, so that in the sequel the definition of the truncated

transport-collision operator will be extended by continuity to this space.
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One can wonder why is it mandatory to use piecewise constant in time functions.
The reason is the following. The definition of the transport-collision operator
relies on the change of variable induced by the map S−s (or S+

s , depending on
the sign ± of Cεs,s+1,±,i), see Propositions 3 page 92 and 4 page 98 (for the def-
inition of those maps and the study of the change of variable). The domain of
this map is

Dεs × [0, δ]× Sd−1 × Rd,

and in particular any element of this domain is a product of an element Zs of
the phase space of s particles with a time t, and with two other elements which
do not matter here. This time coordinate does not exist anymore in the image
of those maps S−s and S+

s , since the image is a subset of the phase space of s+1
particles. Therefore, one cannot perform directly this change of variable for a
time-dependent function.

Lemma 5 (Definition of the truncated in time, position and velocity transport–
collision operator, and L1, weak L∞ and L∞ regularity for piecewise constant in
time functions). Let s be a positive integer, ε ≤ 1 and T be two strictly positive
numbers. Let R1, R2 be two strictly positive numbers, and δ be a strictly positive
number such that :

δ ≤ δ0(d, ε,R2) = min
1≤j≤d

[
ε

2R2

( d(
d
j

)) 1
j−1

]
. (5.37)

Then for every integer 1 ≤ i ≤ s, and for every function

ϕ
(s+1)
PC ∈ L∞

(
[0, T ],

(
Dεs+1

))
such that

ϕ
(s+1)
PC =

P∑
p=1

1[tp−1,tp[αp

with αp ∈ L∞
(
Dεs+1

)
, the function :

(t, Zs) 7→ Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ

(s+1)
PC ,

defined as :

Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ

(s+1)
PC (t, Zs)

=
P∑
p=1

1[tp−1,tp[Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t αp

can be defined in L1 ∩ L∞
(
[0, T ]×Dεs

)
. Moreover, it satisfies the two following

estimates :
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• control of the L1 norm :∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ

(s+1)
PC

∣∣∣
L1([0,T ]×Dεs)

≤ C(d, s)εd−1T (R1 + δR2)dsR
d(s+1)+1
2

∣∣ϕ(s+1)
PC

∣∣
L∞([0,T ],L∞(Dε

s+1
))
,

(5.38)

• control of the L∞ norm :∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ

(s+1)
PC

∣∣∣
L∞([0,T ]×Dεs)

≤ C(d, s)εd−1Rd+1
2

∣∣ϕ(s+1)
PC

∣∣
L∞([0,T ],L∞(Dε

s+1
))
. (5.39)

Proof. Let ϕ
(s+1)
PC ∈ L∞

(
[0, T ],

(
Dεs+1

))
be a piecewise constant in time function,

that is :

ϕ
(s+1)
PC =

P∑
p=1

1[tp−1,tp[αp,

with αp ∈ L∞
(
Dεs+1

)
for all 1 ≤ p ≤ P , and t0 = 0, tP = T ,

(
tp
)

1≤p≤P being an

increasing sequence of strictly positive numbers. For a time-dependent, piecewise

constant function ϕ
(s+1)
j , the following function is obviously still defined and

integrable :

P∑
p=1

1[tp−1,tp[Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t αp.

Indeed, Lemma 1 page 101 asserts that for all 1 ≤ p ≤ P , each function

Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t αp

is well-defined and integrable, and 1[tp−1,tp[ (which is an abuse of notation for
1[tp−1,tp[×Dεs ) is of course a L∞ function.
One now obtains the announced L1 control. One has :∫ δ

0

∫
Dεs

∫
Sd−1
ω

∫
Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±

∣∣∣∣T s+1,ε
t

Å P∑
p=1

αp1[tp−1,tp[

ã∣∣∣∣
× 1D dvs+1 dω dZs dt

=
P∑
p=1

∫
[0,δ]∩[tp−1,tp[

∫
Dεs

∫
Sd−1
ω

∫
Rdvs+1

ε
(
ω · (vs+1 − vi)

)
±

∣∣αp ◦ S±s ∣∣
× 1D dvs+1 dω dZs dt,

with S±s defined and studied in Propositions 3 page 92 and 4 page 98, and D
denoting the domain of the truncated in time, position and velocity collision
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operator, as defined in (5.1), page 89. The fact that S±s is one-to-one on its
domain [0, δ]×Dεs × Sd−1

ω × Rdvs+1
enables to write that

Iε,±s,i (R1, R2, δ) =
P⊔
p=1

Iε,±s,i (R1, R2, δ, p)

where Iε,±s,i (R1, R2, δ, p) denotes the image by S±s of

D ∩
((

[0, δ] ∩ [tp−1, tp[
)
×Dεs × Sd−1

ω × Rdvs+1

)
,

and, as above, Iε,±s,i (R1, R2, δ) denotes the image by S±s of

D ∩
(

[0, δ]×Dεs × Sd−1
ω × Rdvs+1

)
.

On this set, one knows that the hard sphere transport coincides with the map S±s ,
by change of variables (see Propositions 3 page 92 and 4 page 98), so that∫ δ

0

∫
Dεs
Cεs,s+1,±,iT

s+1,ε
t ϕ

(s+1)
PC dZs dt

=
P∑
p=1

∫
[0,δ]∩[tp−1,tp[

∫
Dεs

∫
Sd−1
ω

∫
Rdvs+1

ε
(
ω · (vs+1 − vi)

)
±

∣∣αp ◦ S±s ∣∣
× 1D dvs+1 dω dZs dt

=
P∑
p=1

∫
Zs+1∈Iε,±s,i (R1,R2,δ,p)

∣∣αp∣∣ dZs+1 ≤ max
1≤p≤P

∣∣αp∣∣L∞(Dε
s+1

)

P∑
p=1

∣∣∣Iε,±s,i (R1, R2, δ, p)
∣∣∣

≤
∣∣ϕ(s+1)
PC

∣∣
L∞([0,T ],L∞(Dε

s+1
))

∣∣∣Iε,±s,i (R1, R2, δ)
∣∣∣. (5.40)

Again, the Fubini-Lebesgue theorem shows that

P∑
p=1

1[tp−1,tp[

∫
Sd−1
ω

∫
Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±

(
αp ◦ S±s

)
1D dvs+1 dω

is a measurable function defined almost everywhere and is moreover a L1 func-
tion on [0, δ] × Dεs, with an additional control on its L1 norm on [0, δ] × Dεs,
thanks to the right-hand side of (5.40). Besides the control of the L∞ norm of
the hard sphere transport operator∣∣T s+1,ε

t αp
∣∣
L∞(Dε

s+1
)

=
∣∣αp∣∣L∞(Dε

s+1
)

for all t ∈ [0, T ] and all 1 ≤ p ≤ P enables, for the particular choices of
t = nδ, for any integer 1 ≤ n ≤ T/δ, to remove the restriction on the time
interval [0, δ], and to extend the previous control of the L1 norm on the whole
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domain [0, T ] × Dεs. One obtains therefore, thanks to the estimate (5.17) page

103 controlling the size of
∣∣∣Iε,±s,i (R1, R2, δ)

∣∣∣, the following control of the L1 norm

on [0, T ]×Dεs of the previous function, which can be rewritten as :∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ

(s+1)
PC (t, Zs)

∣∣∣ dZs dt

≤ C(d, s)εd−1T (R1 + δR2)dsR
d(s+1)+1
2

∣∣ϕ(s+1)
PC

∣∣
L∞([0,T ],L∞(Dε

s+1
))
.

(5.41)

Then, as above, the control of the L∞ norm of the truncated transport-collision
operator for time-dependent functions is obtained with a weak control of the L∞

norm. More precisely, for any measurable subsetA of finite measure of [0, T ]×Dεs,
one divides A as follows :

A =
⊔

1≤n≤T/δ
1≤p≤P

(
A ∩

(
[(n− 1)δ, nδ]×Dεs

)
∩
(

[tp−1, tp[×Dεs
))
.

The set A ∩
(

[(n − 1)δ, nδ] × Dεs
)
∩
(

[tp−1, tp[×Dεs
)

will be denoted by Aδn,p.

Similarly to (5.22), one obtains :∫
Aδn,p

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ

(s+1)
PC

∣∣∣dZs dt

≤ C(d, s)εd−1Rd+1
2 |Aδn,p|

∣∣αp∣∣L∞ .
Summing over all n and p, one gets :∫

A

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ

(s+1)
PC

∣∣∣dZs dt

≤ C(d, s)εd−1Rd+1
2 |A|

∣∣ϕ(s+1)
PC

∣∣
L∞([0,T ],L∞(Dε

s+1
))
.

(5.42)

One deduces from (5.42) that the same inequality as (5.23) page 107 holds, for
time-dependent and piecewise constant functions :∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ
(s+1)
PC

∣∣∣
L∞([0,T ]×Dεs)

≤ C(d, s)εd−1Rd+1
2

∣∣ϕ(s+1)
PC

∣∣
L∞([0,T ],L∞(Dε

s+1
))
.

(5.43)

Lemma 5 is proved.

Lemma 6 (Definition of the truncated in time, position and velocity trans-
port-collision operator in L∞ for functions of C

(
[0, T ], L∞

(
Dεs+1

))
). Let s be a
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positive integer, ε ≤ 1 and T be two strictly positive numbers. Let R1, R2 be two
strictly positive numbers, and δ be a strictly positive number such that :

δ ≤ δ0(d, ε,R2) = min
1≤j≤d

[
ε

2R2

( d(
d
j

)) 1
j−1

]
.

Then for every integer 1 ≤ i ≤ s, and for every converging sequence
(
ϕ

(s+1)
j

)
j≥0

of L∞
(
[0, T ],

(
Dεs+1

))
of piecewise constant in time functions, the sequence(
Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ
(s+1)
j

)
j≥0

is also a converging sequence in L∞
(
[0, T ]×Dεs+1

)
.

In particular, for every function ϕ(s+1) ∈ C
(
[0, T ], L∞

(
Dεs+1

))
, one defines

Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

as the limit in L∞
(
[0, T ]×Dεs

)
of the sequence(

Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ

(s+1)
j

)
j≥0

,

for any sequence
(
ϕ(s+1)

)
j≥0

in L∞
(
[0, T ],

(
Dεs+1

))
of piecewise constant in time

functions, converging towards ϕ(s+1) in L∞
(
[0, T ],

(
Dεs+1

))
.

The result of this lemma follows from the theorem of extension of a contin-
uous, linear map defined on a dense subset (here : the subset composed of
the piecewise constant in time functions) of a complete metric space (here :
C
(
[0, T ], L∞

(
Dεs+1

))
).

Now one wants to recover the L1 and the L∞ controls on the limit

Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

for any function ϕ(s+1) ∈ C
(
[0, T ], L∞

(
Dεs+1

))
.

Lemma 7 (L1 and L∞ regularity of the truncated in time, position and velocity
transport-collision operator for time-dependent functions). Let s be a positive
integer, ε ≤ 1 and T be two strictly positive numbers. Let R1, R2 be two strictly
positive numbers, and δ be a strictly positive number such that :

δ ≤ δ0(d, ε,R2) = min
1≤j≤d

[
ε

2R2

( d(
d
j

)) 1
j−1

]
.

Then for any integer 1 ≤ i ≤ s, and for any function

ϕ(s+1) ∈ C
(
[0, T ], L∞

(
Dεs+1

))
,

the function
Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ(s+1)

defined in Lemma 6 satisfies the two following estimates :
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• control of the L1 norm :∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣
L1([0,T ]×Dεs)

≤ C(d, s)εd−1T (R1 + δR2)dsR
d(s+1)+1
2

∣∣ϕ(s+1)
∣∣
L∞([0,T ],L∞(Dε

s+1
))
,

(5.44)

• control of the L∞ norm :∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣
L∞([0,T ]×Dεs)

≤ C(d, s)εd−1Rd+1
2

∣∣ϕ(s+1)
∣∣
L∞([0,T ],L∞(Dε

s+1
))
. (5.45)

Proof. Of course, the L∞ control (5.39) page 123, true for the piecewise constant
in time functions, stated in Lemma 5, holds in the limit j → +∞, thanks to
the L∞ convergence of the sequence(

Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ

(s+1)
j

)
j≥0

,

for any sequence
(
ϕ

(s+1)
j

)
j≥0

of piecewise constant in time functions converging

towards ϕ(s+1).
Moreover, one can get a L1 control on this limit. Indeed, the inequality (5.38)
(establishing the L1 control on the truncated collision operator defined for piece-
wise constant functions) stated in Lemma 5 page 122 shows that the sequence(

Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ

(s+1)
j

)
j

is also a Cauchy sequence of the functional space L1
(
[0, T ], L∞(Dεs+1)

)
, so that,

by the Riesz-Fischer theorem, this sequence converges towards a limit in this
space denoted by

C̃εs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1).

For this limit, one sees immediately that the L1 control (5.38) page 123 obtained
for each term of the sequence holds also in the limit j → +∞, that is one has :∫ T

0

∫
Dεs

∣∣∣C̃εs,s+1,±,i(R1, R2, δ)T s+1,ε
t

(
ϕ(s+1)(t, Zs)

)∣∣∣dZs dt

≤ C(d, s)εd−1T (R1 + δR2)dsR
d(s+1)+1
2

∣∣ϕ(s+1)
∣∣
L∞([0,T ],L∞(Dε

s+1
))
.

(5.46)

One notices that those two limits are equal, since the L∞ convergence implies
the almost everywhere convergence, while the L1 convergence implies the almost
everywhere convergence up to extracting a subsequence. In other words, one has

C̃εs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1) = Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ(s+1), (5.47)

and then the limit satisfies the L1 and the L∞ controls (5.46) and (5.39). Lemma
7 is proved.



128 CHAPTER 5. DEFINITION OF THE COLLISION OPERATOR

Going back to the removal of the truncation parameters, it is possible to remove
the truncation parameter δ for the truncated collision operator defined on time-
dependent functions following exactly the same steps as in the section starting
page 110 and in the proof of Lemma 3. One checks in the proof of the following
lemma that those steps can still be followed in this more general setting.

Lemma 8 (Definition of the truncated in position and velocity transport-colli-
sion operator, and L1, L∞ regularity for functions of C

(
[0, T ], L∞

(
Dεs+1

))
). Let

s be a positive integer, ε ≤ 1 and T be two strictly positive numbers. Let R1, R2

be two strictly positive numbers.
Then for any integer 1 ≤ i ≤ s, and for any function :

ϕ(s+1) ∈ C
(
[0, T ], L∞

(
Dεs+1

))
,

the sequence of functions :(
Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ(s+1)
)
δ>0

is a converging sequence in L1
(
[0, T ]×Dεs

)
. Moreover, its limit, denoted by :

Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1),

is bounded almost everywhere, and verifies :

• the following L∞ estimate :∣∣Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1)

∣∣
L∞([0,T ]×Dεs)

≤ C(d, s)εd−1Rd+1
2

∣∣ϕ(s+1)
∣∣
L∞([0,T ],L∞(Dε

s+1
))
, (5.48)

• and the following convergence result :

Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1) ∗

⇀
δ→0
Cεs,s+1,±,i(R1, R2)T s+1,ε

t ϕ(s+1)

(5.49)

in L∞
(
[0, T ]×Dεs

)
.

Proof. The analog of the inequality (5.28) page 112, which controls the L1

norm of the difference of the truncated collision operators for δ and δ′, holds for
piecewise constant in time functions, that is :∫ T

0

∫
Zs∈Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ
′, δ)T s+1,ε

t ϕ
(s+1)
j (t, Zs)

∣∣∣dZs dt

≤ C(d, s, ε, R1, R2)δT
∣∣ϕ(s+1)
j

∣∣
L∞([0,T ],L∞(Dε

s+1
))
,

(5.50)
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for all ϕ
(s+1)
j =

∑Pj
p=1 αj,p1[tj,(p−1),tj,p[, piecewise constant in time functions tak-

ing its values in L∞
(
Dεs+1

)
. One has shown the L1 convergence of the sequence(

Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ

(s+1)
j

)
j≥0

towards its limit, so that the last inequal-

ity holds for every function continuous in time, taking its values in L∞
(
Dεs+1

)
:∫ T

0

∫
Zs∈Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ
′, δ)T s+1,ε

t ϕ(s+1)(t, Zs)
∣∣∣dZs dt

≤ C(d, s, ε, R1, R2)δT
∣∣ϕ(s+1)

∣∣
L∞([0,T ],L∞(Dε

s+1
))

(5.51)

for all ϕ(s+1) ∈ C
(
[0, T ], L∞(Dεs+1)

)
. Similarly, the L1 convergence enables to

state immediately an L∞ control on the operator obtained in the limit δ → 0,
which holds in the limit. In other words, one has :∣∣∣Cεs,s+1,±,i(R1, R2)T s+1,ε

t ϕ(s+1)
∣∣∣
L∞([0,T ]×Dεs)

≤ C(d, s)εd−1Rd+1
2

∣∣ϕ(s+1)
∣∣
L∞([0,T ],L∞(Dε

s+1
))
. (5.52)

The proof of the weakly-∗ convergence in L∞ of the sequence(
Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ(s+1)(t, ·)
)
δ>0

towards Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1)(t, ·) is a consequence of the convergence

in L1, and the bound (5.45) of Lemma 7. Lemma 8 is proved.

5.1.4 Removing the truncation parameters in position and
velocity

Finally, one will remove the two remaining truncation parameters in large dis-
tances R1, and large velocities R2. On the one hand, this will complete the
study of the definition of the transport-collision operator, and on the other
hand a satisfactory functional setting will naturally appear.

Limit of the sequence of operators Cεs,s+1,±,i(R1, R2)T s+1,ε
t when R1 goes

to infinity, with R2 given : an almost everywhere convergence

The first step here consists in removing the truncation parameter in high dis-
tance R1. The idea is the following. In fact, it is the same to consider a truncated
transport-collision operator in R1 and R2 acting on L∞ functions on the whole
phase space, and a transport-collision operator, truncated only in high veloci-
ties, that is in R2, according to the previous notations, acting on L∞ functions,
compactly supported with respect to the position variable.
Therefore, after checking that, for any ball in which lies the position variable,
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there exists R1,0 large enough such that for all R1,0 ≤ R1, R
′
1, on the one

hand Cεs,s+1,±,i(R1, R2)T s+1,ε
t , and Cεs,s+1,±,i(R

′
1, R2)T s+1,ε

t on the other hand
coincide on this ball, one will define the truncated transport-collision operator
without truncation in position Cεs,s+1,±,i(R2)T s+1,ε

t ϕ(s+1) as the almost every-

where limit of the sequence of functions
(
Cεs,s+1,±,i(R1, R2)T s+1,ε

t ϕ(s+1)
)
R1>0

.
Finally, the operator obtained in the limit will take its values in L∞, since the
L∞ control of the truncated collision operator does not depend on the trunca-
tion parameter in high position R1.
First, one studies the support of Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ(s+1) with respect
to the position variable. This is the object of the following lemma.

Lemma 9 (Support of the difference of two truncated in time, position and
velocity transport-collision operators with R2 and δ given). Let s be a positive
integer, ε and T be two strictly positive numbers. Let R1, R′1, R2 and δ be four
strictly positive numbers such that :

R1 < R′1,

and :

δ ≤ δ0(d, ε,R2) = min
1≤j≤d

[
d(
d
j

)( ε

2R2

)j−1
]
.

If in addition :
R1 ≥

√
2sε,

then for every integer 1 ≤ i ≤ s, and for every function

ϕ(s+1) ∈ C
(
[0, T ], L∞

(
Dεs+1

))
,

the support of the difference of the truncated transport-collision operators :

Cεs,s+1,±,i(R
′
1, R2, δ)T s+1,ε

t ϕ(s+1) − Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

is contained in [0, T ]×
{

(Xs, Vs) ∈ Dεs /
(
R1√

2
−ε
√
s
)
≤ |Xs| < R′1

}
⊂ [0, T ]×Dεs.

Proof. If one assumes that the vector Xs+1 encoding the positions of the s+ 1
particles has a norm larger than R1, and using the fact that the position of the
s+ 1 particle is by definition xi + εω, one has :

R2
1 ≤ |Xs+1|2 = |Xs|2 + |xi + εω|2 =

s∑
j=1

|xj |2 + |xi|2 + 2εω · xi + ε2

≤ 2
s∑
j=1

|xj |2 + 4ε|xi|+ 2ε2s,

thanks to the Cauchy-Schwarz inequality, and then :

R2
1

2
≤

s∑
j=1

|xj |2 + 2ε
s∑
j=1

|xj |+ ε2s ≤
s∑
j=1

|xj |2 + 2ε
√
s

Ã
s∑
j=1

|xj |2 + ε2s,
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thanks again to the Cauchy-Schwarz inequality applied on the vectors (1, . . . , 1)
and (|x1|, . . . , |xs|), so that one has :

R2
1

2
≤
(
|Xs|+ ε

√
s
)2
,

that is, in other words :

R1√
2
− ε
√
s ≤ |Xs|.

For the end of the proof, one will denote

R∗1 = R∗1(s, ε,R1) =
R1√

2
− ε
√
s.

Now, one considers a function ϕ(s+1) ∈ C
(
[0, T ], L∞

(
Dεs+1

))
. There exists then

a sequence
(
ϕs+1
j

)
j≥0

of piecewise constant in time functions belonging to

L∞
(
[0, T ], L∞

(
Dεs+1

))
which converges towards ϕ(s+1) uniformly with, as usual,

ϕ
(s+1)
j denoting

ϕ
(s+1)
j =

Pj∑
p=1

1[tj,(p−1),tj,p[αj,p,

with αj,p ∈ L∞
(
Dεs+1

)
for every 1 ≤ p ≤ Pj and j ∈ N.

Up to assuming that δ is small enough (that is verifying the condition in Lemma

5 page 122), one knows (thanks to Lemma 5) that Cεs,s+1,±,i(R
′
1, R2, δ)T s+1,ε

t ϕ
(s+1)
j

and Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ

(s+1)
j are integrable over [0, T ]×Dεs. Therefore,

one considers the following quantity :

∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R
′
1, R2, δ)T s+1,ε

t ϕ
(s+1)
j

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ

(s+1)
j

∣∣∣(t, Zs)
×
[
1{|Xs|<R∗1} + 1{R′1≤|Xs|}

]
dZs dt. (5.53)

It is of course 0, which finishes the study of the support of the difference of two
truncated collision operators.
Now one will consider the previous quantity (5.53) and show that it is still
zero in the limit j → +∞, that is it is still true for any function ϕ(s+1) ∈
C
(
[0, T ], L∞

(
Dεs
))

. Thanks to Lemma 7 page 126, one knows that the func-

tions Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1) and Cεs,s+1,±,i(R

′
1, R2, δ)T s+1,ε

t ϕ(s+1) are
integrable. The quantity
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∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R
′
1, R2, δ)T s+1,ε

t ϕ(s+1)

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣(t, Zs)
×
[
1{|Xs|<R∗1} + 1{R′1≤|Xs|}

]
dZs dt.

is then well defined. Besides, since one considers a difference of integrable func-
tions, for any α > 0, there exists R(α) > 0 such that∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R
′
1, R2, δ)T s+1,ε

t ϕ(s+1)

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣(t, Zs)
×
[
1{|Xs|<R∗1} + 1{R′1≤|Xs|}

]
1{|Zs|>R} dZs dt ≤ α/2.

On the other hand, one can easily control the following quantity :∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R
′
1, R2, δ)T s+1,ε

t ϕ(s+1)

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣(t, Zs)
×
[
1{|Xs|<R∗1} + 1{R′1≤|Xs|}

]
1{|Zs|≤R} dZs dt,

thanks to the convergence of the sequences(
Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ
(s+1)
j

)
j≥0

and (
Cεs,s+1,±,i(R

′
1, R2, δ)T s+1,ε

t ϕ
(s+1)
j

)
j≥0

,

respectively towards

Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

and
Cεs,s+1,±,i(R

′
1, R2, δ)T s+1,ε

t ϕ(s+1)

in the L∞
(
[0, T ], L∞

(
Dεs+1

))
norm obtained in Lemma 6 page 125. Indeed one

has that∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R
′
1, R2, δ)T s+1,ε

t ϕ(s+1)

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣(t, Zs)
×
[
1{|Xs|<R∗1} + 1{R′1≤|Xs|}

]
1{|Zs|≤R} dZs dt
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is smaller than∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R
′
1, R2, δ)T s+1,ε

t

[
ϕ(s+1) − ϕ(s+1)

j

]∣∣∣(t, Zs)
×
[
1{|Xs|<R∗1} + 1{R′1≤|Xs|}

]
1{|Zs|≤R} dZs dt

+

∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t

[
ϕ

(s+1)
j − ϕ(s+1)

]
(t, Zs)

∣∣∣
×
[
1{|Xs|<R∗1} + 1{R′1≤|Xs|}

]
1{|Zs|≤R} dZs dt

+

∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R
′
1, R2, δ)T s+1,ε

t ϕ
(s+1)
j

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ

(s+1)
j

∣∣∣(t, Zs)
×
[
1{|Xs|<R∗1} + 1{R′1≤|Xs|}

]
1{|Zs|≤R} dZs dt.

The previous quantity (5.53) is zero, therefore the third term in the expression

above is zero, for any element ϕ
(s+1)
j of the approximating sequence of ϕ(s+1).

The two other ones are controlled in the same following way. For the first one,
denoted T1, one has of course :

T1 =

∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R
′
1, R2, δ)T s+1,ε

t

[
ϕ(s+1) − ϕ(s+1)

j

]∣∣∣(t, Zs)
×
[
1{|Xs|<R∗1} + 1{R′1≤|Xs|}

]
1{|Zs|≤R} dZs dt

≤
∣∣∣Cεs,s+1,±,i(R

′
1, R2, δ)T s+1,ε

t

[
ϕ(s+1) − ϕ(s+1)

j

]∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

×
∫ T

0

∫
Dεs

1{|Zs|≤R} dZs dt

≤ C(d, s)R2dsT
∣∣∣Cεs,s+1,±,i(R

′
1, R2, δ)T s+1,ε

t

[
ϕ(s+1) − ϕ(s+1)

j

]∣∣∣
L∞([0,T ],L∞(Dε

s+1
))
.

One can then choose j0 = j0(d, s, T, α,R) such that, for all j ≥ j0, one will have

C(d, s)R2dsT
∣∣∣Cεs,s+1,±,i(R

′
1, R2, δ)T s+1,ε

t

[
ϕ(s+1) − ϕ(s+1)

j

]∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

≤ α/4.

For such j, one will have then :∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R
′
1, R2, δ)T s+1,ε

t ϕ(s+1)

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣(t, Zs)
×
[
1{|Xs|<R∗1} + 1{R′1≤|Xs|}

]
dZs dt ≤ α.
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Noticing that the left-hand side does not depend on j, one has in fact that :∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R
′
1, R2, δ)T s+1,ε

t ϕ(s+1)

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣(t, Zs)
×
[
1{|Xs|<R∗1} + 1{R′1≤|Xs|}

]
dZs dt = 0,

which concludes the proof of Lemma 9.

Thanks to Lemma 9, one is now able to recover the convergence almost every-
where of the sequence

(
Cεs,s+1,±,i(R1, R2)T s+1,ε

t ϕ(s+1)
)
R1>0

, using the study of
the support of the difference(

Cεs,s+1,±,i(R
′
1, R2)− Cεs,s+1,±,i(R1, R2)

)
T s+1,ε
t ϕ(s+1),

which is nothing more than the result of the previous lemma, in the limit δ → 0.

Lemma 10 (Support of the difference of two truncated in position and velocity
transport-collision operators with R2 given). Let s be a positive integer, ε and
T be two strictly positive numbers. Let R1, R′1 and R2 be three strictly positive
numbers such that :

R1 < R′1.

If in addition :
R1 ≥

√
2sε,

then for every integer 1 ≤ i ≤ s, and for every function

ϕ(s+1) ∈ C
(
[0, T ], L∞

(
Dεs+1

))
,

the support of the difference of the truncated transport-collision operators :

Cεs,s+1,±,i(R
′
1, R2)T s+1,ε

t ϕ(s+1) − Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1)

is contained in [0, T ]×
{

(Xs, Vs) ∈ Dεs /
(
R1√

2
−ε
√
s
)
≤ |Xs| < R′1

}
⊂ [0, T ]×Dεs.

Proof. Thanks to Lemma 8 page 128, one knows that the sequences(
Cεs,s+1,±,i(R

′
1, R2, δ)T s+1,ε

t ϕ(s+1)
)
δ>0

and (
Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t ϕ(s+1)
)
δ>0

are converging sequences in L1
(
[0, T ] × Dεs

)
, towards their respective limits

Cεs,s+1,±,i(R
′
1, R2)T s+1,ε

t ϕ(s+1) and Cεs,s+1,±,i(R
′
1, R2)T s+1,ε

t ϕ(s+1).
Let then α be a strictly positive number. There exists a strictly positive number
δ0(α) such that, for every 0 < δ ≤ δ0, one has :∣∣∣Cεs,s+1,±,i(R

′
1, R2, δ)T s+1,ε

t ϕ(s+1)−Cεs,s+1,±,i(R
′
1, R2)T s+1,ε

t ϕ(s+1)
∣∣∣
L1
(

[0,T ]×Dεs
)

≤ α/2,
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and∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)−Cεs,s+1,±,i(R1, R2)T s+1,ε

t ϕ(s+1)
∣∣∣
L1
(

[0,T ]×Dεs
)

≤ α/2.

One has then immediately :∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R
′
1, R2)T s+1,ε

t ϕ(s+1)

− Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1)

∣∣∣(t, Zs)
×
[
1{|Xs|<R∗1} + 1{R′1≤|Xs|}

]
dZs dt

≤
∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R
′
1, R2)T s+1,ε

t ϕ(s+1)

− Cεs,s+1,±,i(R
′
1, R2, δ)T s+1,ε

t ϕ(s+1)
∣∣∣(t, Zs) dZs dt

+

∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R
′
1, R2, δ)T s+1,ε

t ϕ(s+1)

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

∣∣∣(t, Zs)
×
[
1{|Xs|<R∗1} + 1{R′1≤|Xs|}

]
dZs dt

+

∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t ϕ(s+1)

− Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1)

∣∣∣(t, Zs) dZs dt.

Thanks to Lemma 9, the second term above is zero, while the first and the third
are smaller than α/2 for δ ≤ δ0 thanks to the L1 convergence of the sequences
in δ. In other words :∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R
′
1, R2)T s+1,ε

t ϕ(s+1) − Cεs,s+1,±,i(R1, R2)T s+1,ε
t ϕ(s+1)

∣∣∣
×
[
1{|Xs|<R∗1} + 1{R′1≤|Xs|}

]
dZs dt

≤ α.

The left-hand side does not depend on δ, so that it is in fact zero, which ends
the proof of Lemma 10.

The following lemma, which is an easy consequence of Lemma 10, provides
then the almost everywhere convergence of the sequence of truncated collision
operators in position and velocity, while the truncated parameter in position is
relaxed.
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Lemma 11 (Definition of the truncated in velocity transport-collision operator,
and L∞ regularity for functions of C

(
[0, T ], L∞

(
Dεs+1

))
). Let s be a positive

integer, ε and T be two strictly positive numbers. Let also R2 be a strictly positive
number.
Then for every integer 1 ≤ i ≤ s, and for every function

ϕ(s+1) ∈ C
(
[0, T ], L∞

(
Dεs+1

))
,

the sequence of functions(
Cεs,s+1,±,i(R1, R2)T s+1,ε

t ϕ(s+1)
)
R1>0

converges almost everywhere on [0, T ]×Dεs towards a measurable function. More-
over, its limit, denoted

Cεs,s+1,±,i(R2)T s+1,ε
t ϕ(s+1),

is bounded almost everywhere, satisfies the following equality :

Cεs,s+1,±,i(R2)T s+1,ε
t ϕ(s+1) = Cεs,s+1,±,i(R1, R2)T s+1,ε

t ϕ(s+1)

almost everywhere on
{

(t, Zs) ∈ [0, T ] × Dεs / |Xs| ≤ R1√
2
− ε
√
s
}

for every

R1 ≥
√

2sε, and verifies the following L∞ estimate :∣∣∣Cεs,s+1,±,i(R2)T s+1,ε
t ϕ(s+1)

∣∣∣
L∞([0,T ]×Dεs)

≤ C(d, s)εd−1Rd+1
2

∣∣ϕ(s+1)
∣∣
L∞([0,T ],L∞(Dε

s+1
))
. (5.54)

Limit of the sequence of operators Cεs,s+1,±,i(R2)T s+1,ε
t when R2 goes

to infinity : a Cauchy sequence assuming an additional decrease in
velocity

The last remaining truncation parameter that has to be relaxed is then R2, the
truncation parameter with respect to the velocity variable. One will have to set
additional hypotheses on the function on which the transport-collision acts, in
order to obtain a well-defined operator without any cut-off.
To stress the fact that one is considering functions of L∞

(
[0, T ]×Dεs+1

)
satisfying

additional assumptions, one changes the notations, and the function on which
the transport-collision is acting will be denoted h(s+1) instead of ϕ(s+1). The
notation f (s+1) will be devoted to the solutions of the Boltzmann hierarchy. One
will assume that the function h(s+1) is uniformly bounded on the phase space
by a function which depends essentially only on velocity. In the following, this
bound will have to depend on time too.

Remark 10. If one considers the subset of C
(
[0, T ], L∞

(
Dεs+1

))
composed of

functions h(s+1) which fulfill the following hypotheses, that is for all t ∈ [0, T ]
and for almost every Zs+1 ∈ Dεs+1,

|h(s+1)
(
t, Zs+1

)
| ≤ gs+1

(
t, |Vs+1|

)
,
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then this set of functions is not a vector space, since for λ ∈ R large enough,
the condition :

|λh(s+1)| ≤ gs+1

(
t, |Vs+1|

)
will be of course wrong for general h(s+1) and gs+1.
This is an issue, since it will be convenient to work with a functional space
which is a vector space. Then, one will instead consider functions h(s+1) of
C
(
[0, T ], L∞

(
Dεs+1

))
which verify :

∣∣∣h(s+1)(t, Zs+1)

gs+1(t, |Vs+1|)

∣∣∣
L∞([0,T ],L∞(Dε

s+1
))
< +∞.

Of course, this condition, in order to make sense, imply to assume that gs+1 is
strictly positive .
With this condition, one has defined a sub-Banach space of C

(
[0, T ], L∞

(
Dεs+1

))
.

Finally, one can state (and prove) the crucial theorem which will conclude this
section.

Theorem 1 (Definition of the collision operator of the BBGKY hierarchy for
functions of C

(
[0, T ], L∞

(
Dεs+1

))
decaying sufficiently fast at infinity in the ve-

locity variables). Let s be a positive integer, ε and T be two strictly positive
numbers.
Let in addition gs+1 : [0, T ]× R+ → R+ be a function verifying :

• (t, x) 7→ gs+1(t, x) is measurable and almost everywhere strictly positive,

• for all x ∈ R+, the function

t 7→ gs+1(t, x) (5.55)

is increasing,

• for all t ∈ [0, T ] and almost every (v1, . . . , vs) ∈ Rds, the function

vs+1 7→ |Vs+1|gs+1

(
t, |Vs+1|

)
(5.56)

is integrable on Rd,

• for all t ∈ [0, T ], the function

(v1, . . . , vs) 7→
∫
Rd
|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1 (5.57)

is bounded almost everywhere, and∣∣∣∣∣∣∣∣∫
Rd
1|Vs+1|≥R|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1

∣∣∣∣∣∣∣∣
L∞t L

∞
Vs

(5.58)

converges to zero as R goes to infinity.
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Then for every integer 1 ≤ i ≤ s, and for every function

h(s+1) ∈ C
(
[0, T ], L∞

(
Dεs+1

))
(5.59)

such that ∣∣∣h(s+1)(t, Zs+1)

gs+1

(
t, |Vs+1|

) ∣∣∣
L∞([0,T ],L∞(Dε

s+1
))
< +∞,

the sequence (
Cεs,s+1,±,i(R2)T s+1,ε

t h(s+1)
)
R2>0

converges in L∞
(
[0, T ] × Dεs

)
as R2 goes to infinity towards a limit which will

be denoted Cεs,s+1,±,iT
s+1,ε
t h(s+1), so that in other words :

Cεs,s+1,±,i(R2)T s+1,ε
t h(s+1)

L∞t,Zs−→
R2→+∞

Cεs,s+1,±,iT
s+1,ε
t h(s+1).

Moreover, the following inequality holds almost everywhere on [0, T ]×Dεs :

∣∣∣Cεs,s+1,±,iT
s+1,ε
t h(s+1)(t, Zs)

∣∣∣ ≤ εd−1

∣∣Sd−1
∣∣

2

∣∣∣∣∣h(s+1)(t, Zs+1)

gs+1

(
t, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

×
∫
Rd

(
|vi|+ |vs+1|

)
gs+1

(
t, |Vs+1|

)
dvs+1.

(5.60)

Proof. The proof will be divided into two main parts :

• one starts (page 140) by the convergence of the sequence of operators
truncated in velocity, and hence the rigorous definition of the operator
without any truncation,

• then (page 157), one will study the stability of the control of the decrease
in velocity, that is one will prove the inequality (5.60).

The main idea of the first part, that is the proof of the convergence, is to show
that the sequence of operators :(

Cεs,s+1,±,i(R2)T s+1,ε
t h(s+1)

)
R2>0

is a Cauchy sequence of the complete space L∞
(
[0, T ]×Dεs

)
. On the one hand,

as it was done above, a control of the difference :

Cεs,s+1,±,i(R
′
2)T s+1,ε

t h(s+1) − Cεs,s+1,±,i(R2)T s+1,ε
t h(s+1)

in the L∞ norm will be obtained thanks to the same control obtained for the
truncated in position, velocity and time operator acting on piecewise constant
in time functions, on which the operator is defined as a usual integral. In other
words, one will have, in order to obtain meaningful quantities, to start from the
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beginning of the definition of the collision operator in order to obtain the control
that one wants to show, and extend this definition step by step, removing the
truncation parameters one by one using the lemmas obtained before.
On the other hand, this control will be deduced, as usual too, from a weak L∞

control. For this first part of the proof, one provides here a summary for the
convenience of the reader, since the proof is quite long, technical, but similar to
what was done before in many aspects.

• Page 140 : careful description of the domain corresponding to the difference
of the operators

Cεs,s+1,±,i(R1, R
′
2, δ)T

s+1,ε
t and Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t

with δ,R1, R2, R
′
2 four strictly positive numbers such that R2 < R′2. In

particular, if the transport-collision is applied to piecewise constant in
time functions, it is defined as an usual integral, and this part is devoted
to the description of the three subsets in which this domain will be divided
into, namely A1, A2 and A3, defined respectively by the conditions (5.63)
page 141, (5.64) page 142 and (5.62) page 141.

• Page 142 : weak L∞ control of the transport-collision operator restricted

on the subset A1 for h
(s+1)
PC piecewise constant in time (inequality (5.65)

page 143).

• Page 143 : weak L∞ control of the transport-collision operator restricted
on the subset A2 for h(s+1) piecewise constant in time (inequality (5.66)
page 144).

• Page 144 : weak L∞ control of the transport-collision operator restricted
on the subset A3 for h(s+1) piecewise constant in time (inequality (5.72)
page 150). One insists on the fact that this part relies on new arguments,
namely on the one hand, the control of operator when there exists a bound
decreasing in high velocities, and on the other hand, the modification of
the proof of this control when the bound also depends on time.

The controls for piecewise constant in time functions and for each of the three
parts are then gathered together in the inequality (5.73) page 150.

• Page 150 : weak L∞ control for the three parts, for h(s+1) belonging to
C
(
[0, T ],

(
Dεs+1

))
, with truncation in time, position and velocity (inequal-

ity (5.78) page 154).

• Page 154 : weak L∞ control for the three parts when the truncation pa-
rameters in time and position are relaxed (inequality (5.81) page 157),
and conclusion of the first part of the proof.

The second part of the proof, starting page 157, follows the same plan, starting
by the sought inequality obtained for the truncated transport-collision operator
applied to piecewise constant in time functions, and then by relaxing all the
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truncation parameters. As above, one provides the summary of the different
steps of the second part.

• Page 157 : presentation of the inequality (5.82) page 158, that will be
proved in the following section of the proof, and why it is equivalent to
the inequality (5.60) stated in the lemma.

• Page 158 : proof of the inequality (5.85) page 164. As for the first part of
the proof, this section is clearly the most crucial, since it relies on a careful
study of the bound and the use of the hypothesis about the increasing in
time property of the profile gs+1.

• Page 164 : finally, exactly as for the first part of the proof, one will prove
the inequality (5.82) for continuous in time functions, without any trun-
cation parameter involved in the transport-collision operator.

First part of the proof

Description of the domain of the difference of operators for two
different truncation parameters in velocity

Back to the definition of the first truncated collision operators for time-
dependent, piecewise constant functions (see Section 5.1.3, especially page 121,
and Lemma 5 page 122), one will study, for δ > 0, 0 < R1 and 0 < R2 < R′2,
and for such piecewise constant in time functions :

h
(s+1)
PC =

P∑
p=1

αp1[tj,(p−1),tj,p[ (5.61)

with αp ∈ L∞
(
Dεs+1

)
, the difference :

Cεs,s+1,±,i(R1, R
′
2, δ)T

s+1,ε
t h

(s+1)
PC − Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t h
(s+1)
PC .

In particular, one will study the domain of the difference of those operators.
Denoting by A the domain of the collision operator Cεs,s+1,±,i(R1, R2, δ) :

A =
( ∏

1≤j<k≤s+1
(j,k)6=(i,s+1)

1|xj−xk|>ε+δR2

)( ∏
1≤l≤s+1

1d(xl,Ω)>ε/2+δR2

)
× 1Xs+1∈BRd(s+1) (0,R1)1Vs+1∈BRd(s+1) (0,R2),

and similarly denoting by A′ the domain of Cεs,s+1,±,i(R1, R
′
2, δ) (which is exactly

the same except that R2 is just replaced by R′2) :

A′ =
( ∏

1≤j<k≤s+1
(j,k)6=(i,s+1)

1|xj−xk|>ε+δR′2

)( ∏
1≤l≤s+1

1d(xl,Ω)>ε/2+δR′2

)
× 1Xs+1∈BRd(s+1) (0,R1)1Vs+1∈BRd(s+1) (0,R′2),
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one has to notice the two following points.
First, one has ∣∣1A′ − 1A∣∣ ≤ 1A′\(A∩A′) + 1A\(A∩A′).

Second, for R1, R2 and R′2 given, when δ goes to zero, one has in the limit :

A ⊂ A′.

More precisely, since by definition,

A ∩A′ =
⋂

1≤j<k≤s+1
(j,k)6=(i,s+1)

{
|xj − xk| > ε+ δR2

}
∩

⋂
1≤l≤s+1

{
d(xl,Ω) > ε/2 + δR2

}
∩BXs+1

(0, R1) ∩BVs+1
(0, R2)

∩
⋂

1≤j<k≤s+1
(j,k)6=(i,s+1)

{
|xj − xk| > ε+ δR′2

}
∩

⋂
1≤l≤s+1

{
d(xl,Ω) > ε/2 + δR′2

}
∩BXs+1

(0, R1) ∩BVs+1
(0, R′2)

=
⋂

1≤j<k≤s+1
(j,k)6=(i,s+1)

{
|xj − xk| > ε+ δR′2

}
∩

⋂
1≤l≤s+1

{
d(xl,Ω) > ε/2 + δR′2

}
∩BXs+1

(0, R1) ∩BVs+1
(0, R2),

one sees immediately that Zs+1 ∈ A\(A ∩A′) if and only if

∀j < k / (j, k) 6= (i, s+ 1), |xj − xk| > ε+ δR2,
∀l, d(xl,Ω) > ε/2 + δR2,
|Xs+1| < R1,
|Vs+1| < R2,
∃ (j0, k0) 6= (i, s+ 1) / |xj0 − xk0 | ≤ ε+ δR′2

or ∃ l0 / d(xl0 ,Ω) ≤ ε/2 + δR′2.

(5.62)

Similarly, one has that Zs+1 ∈ A′\(A ∩B) if and only if
∀j < k / (j, k) 6= (i, s+ 1), |xj − xk| > ε+ δR′2,
∀l, d(xl,Ω) > ε/2 + δR′2,
|Xs+1| < R1,
|Vs+1| < R′2,
|Vs+1| ≥ R2.

Then, the subset A\(A ∩A′) can be divided into two parts. Indeed, one has

A\(A ∩A′) = A1 ∪A2,

with Zs+1 ∈ A1 if and only if
∀j < k / (j, k) 6= (i, s+ 1), |xj − xk| > ε+ δR2,
∀l, d(xl,Ω) > ε/2 + δR2,
|Xs+1| < R1,
|Vs+1| < R2,
∃ (j0, k0) 6= (i, s+ 1) / |xj0 − xk0 | ≤ ε+ δR′2,

(5.63)
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and Zs+1 ∈ A2 if and only if
∀j < k / (j, k) 6= (i, s+ 1), |xj − xk| > ε+ δR2,
∀l, d(xl,Ω) > ε/2 + δR2,
|Xs+1| < R1,
|Vs+1| < R2,
∃ l0 / d(xl0 ,Ω) ≤ ε/2 + δR′2.

(5.64)

For the sake of simplicity, the subset A′\(A ∩ A′) will be denoted A3, defined
therefore in (5.62). From this point, three parts have to be controlled, which are
the integrals of respective domains A1, A2 and A3 = A′\(A∩A′). Only the last
one will remain in the limit δ → 0, while the others will vanish.
More precisely, one considers a subset D of finite measure of [0, T ]×Dεs, in order
to obtain, as it was done several time above, a weak L∞ control of the differ-
ence of transport-collision operators with two different truncation parameters
in velocity.

Control for the part A1

For the first part A1, that is the one such that there exists a pair of particles
(j0, k0) satisfying :

ε+ δR2 < |xj0 − xk0 | ≤ ε+ δR′2,

one has, with D denoting any measurable subset of [0, T ]×Dεs of finite measure :∫ δ

0

∫
Dεs

1D

∣∣∣∣ ∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t h

(s+1)
PC 1A1 dω dvs+1

∣∣∣∣ dZs dt

≤
P∑
p=1

∫
[0,δ]

∩[t(p−1),tp[

∫
Dεs

1D

∫
Sd−1
ω ×Rdvs+1

∣∣∣∣εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t αp1A1

∣∣∣∣dω dvs+1 dZs dt

≤
P∑
p=1

∫
Dε
s+1

∣∣αp(Z̃s+1)
∣∣1
S±s

(
A1∩
[((

([0,δ]∩[t(p−1),tp[)×Dεs
)
∩D
)
×Sd−1×Rd

]) dZ̃s+1

≤
∣∣h(s+1)
PC

∣∣
L∞([0,T ],L∞(Dε

s+1
))

∫
Dε
s+1

1S±s (A1∩(D×Sd−1×Rd)) dZ̃s+1

≤
∣∣h(s+1)
PC

∣∣
L∞([0,T ],L∞(Dε

s+1
))

∫
Dε
s+1

1S±s (A1) dZ̃s+1.

Of course, the image S±s (A1) is contained in BXs+1
(0, R1 +δR2)×BVs+1

(0, R2),
and since there exists (j0, k0) 6= (i, s+ 1) such that :

ε+ δR2 < |xj0 − xk0 | ≤ ε+ δR′2,
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then for all 0 ≤ t ≤ δ, one has

ε < |(xj0 − tvj0)− (xk0 − tvk0)| ≤ ε+ δ(R2 +R′2).

As previously, one has to be careful about the possible equality j0 = s + 1 or
k0 = s+ 1.
Keeping in mind that for all 0 ≤ t ≤ δ one has also

ε ≤ (xs+1 − tvs+1)− (xi − tvi)| < ε+ δR2,

so that S±s (A1) is contained in a subset of finite measure of Dεs+1, of which the
measure is smaller than

C(d, s)(R1 + δR2)d(s−1)ε2δ2Rd2(R2 +R′2)dR
d(s+1)
2

≤ C(d, s, ε)δ2(R1 + δR2)d(s−1)R
d(s+2)
2 (R′2)d.

As above, summing on all subintervals of [0, T ] of size δ, that is summing right-
hand sides which individually are of order δ2, provides a control of order δ, so
that one gets :∣∣∣∣1D ∫

Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t h

(s+1)
PC 1A1

dω dvs+1

∣∣∣∣
L1([0,T ]×Dεs)

≤ C(d, s, ε)δ(R1 + δR2)d(s−1)R
d(s+2)
2 (R′2)d

∣∣h(s+1)
PC

∣∣
L∞([0,T ],L∞(Dε

s+1
))
. (5.65)

(the only difference with the previous inequality is the power of δ).

Control for the part A2

For the second part A2, one splits again as usual the time interval [0, T ] in
several smaller intervals of length δ. On each of them, one studies carefully the
consequences of the definition of A2 : there exists a particle, say l0 such that
ε/2 + δR2 < d(xl0 ,Ω) ≤ ε/2 + δR′2.
Since one assumed that the obstacle Ω is the half-plane {x ∈ Rd / x · e1 = 0},
the condition :

ε/2 + δR2 < d(xl0 ,Ω) ≤ ε/2 + δR′2

means :

ε/2 + δR2 < xl0 · e1 ≤ ε/2 + δR′2.

Then for all 0 ≤ t ≤ δ, one has :

ε/2 < (xl0 − tvl0) · e1 ≤ ε/2 + δR′2 + δR2.

If l0 6= s+ 1, the condition above will be useful. But as above, if l0 = s+ 1, that
is if the condition on the closeness of the particle with respect to the obstacle
holds on the particle s+1, one has to deduce a bound on the position of another
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particle, here on the particle i. As above again, one can show that if l0 = s+ 1,
then :

(xi − tvi) · e1 ∈ [ε/2− εω · e1, ε/2− εω · e1 + δ(R2 +R′2)] ∩ [ε/2,+∞[.

The extra condition on the position of xs+1− tvs+1, now usual, enables to state
that S±s (A2) is contained in a subset of finite measure of Dεs+1, of which the
measure of which is smaller than

C(d, s)(R1 + δR2)d(s−1)δ(R2 +R′2)(R1 + δR2)d−1εδR2R
d(s+1)
2

≤ C(d, s, ε)δ2(R1 + δR2)ds−1R
d(s+1)+1
2 R′2.

Again, summing on all subintervals of [0, T ] of size δ, one will still lose the power
2 over δ in the last expression, but the term in δ will be conserved, so that∣∣∣∣1D ∫

Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t h

(s+1)
PC 1A2

dω dvs+1

∣∣∣∣
L1
(

[0,T ]×Dεs
)

≤ C(d, s, ε)δ(R1 + δR2)ds−1R
d(s+1)+1
2 R′2

∣∣h(s+1)
PC

∣∣
L∞([0,T ],L∞(Dε

s+1
))
.

(5.66)

Control for the part A3

For the last part A3 = A′\(A ∩ A′), that is the one such that, in particular,
the velocity variable of all the particles is controlled by

R2 ≤ |Vs+1| < R′2,

one will have to use crucially an additional hypothesis on the decay at infinity

of h
(s+1)
PC in the velocity variables. Since S±s

({
R2 ≥

∣∣Vs+1

∣∣}) =
{
R2 ≥

∣∣‹Vs+1

∣∣},
and of course :

A′\(A ∩A′) ⊂
{
R2 ≤ |Vs+1|

}
,

if one denotes :

Qδ3 =

∫ δ

0

∫
Dεs

1D

∣∣∣ ∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω·(vs+1−vi)

)
±h

(s+1)
PC

(
S±s
)
1A′\(A∩A′) dvs+1 dω

∣∣∣dZs dt

one simply writes, thanks to the change of variable introduced in Propositions
3 page 92 or 4 page 98 (depending on the sign ±) :

Qδ3 ≤
P∑
p=1

∫
Dε
s+1

1S±s (DA
′

δ,p
)

∣∣αp(Z̃s+1)
∣∣ dZ̃s+1,

where DA′

δ,p denotes the image by the function S±s of the subset A′\(A ∩ A′)
intersected with the arbitrary subset D × Sd−1 × Rd and the product of time
interval [0, δ] ∩ [tp−1, tp[ with the others variables of integration, that is :

DA′

δ,p =
(
A′\(A ∩A′)

)
∩
((((

[0, δ] ∩ [tp−1, tp[
)
×Dεs

)
∩D

)
× Sd−1 × Rd

)
.
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One now uses the additional hypothesis (5.59) on the decrease in velocity vari-

ables of h
(s+1)
PC , that is one assumes that :

∣∣h(s+1)
PC

(
t, Z̃s+1

)∣∣ ≤ ∣∣∣∣∣h(s+1)
PC (t, Z̃s+1)

gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

gs+1

(
t, |‹Vs+1|

)
almost everywhere on the phase space of s + 1 particles and for every time

t ∈ [0, T ]. Using the explicit expression (5.61) of the function h
(s+1)
PC , this means

that for all 1 ≤ p ≤ P , for all t ∈ [tp−1, tp[ :

∣∣αp(Z̃s+1

)∣∣ ≤ ∣∣∣∣∣h(s+1)
PC (t, Z̃s+1)

gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

gs+1

(
t, |‹Vs+1|

)
(5.67)

almost everywhere on the phase space of s+ 1 particles, with

vs+1 7→
∣∣Vs+1

∣∣gs+1

(
t, |Vs+1|

)
integrable for all t ∈ [0, T ] and almost every (v1, . . . , vs) (thanks to the hypoth-
esis controlling the quantity (5.56)) and :

(t, v1, . . . , vs) 7→
∫
Rd
|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1

bounded almost everywhere (thanks to the hypothesis controlling the hypothesis
(5.57)).
Of course, one wants to use the bound (5.67) in order to compare the quantities

P∑
p=1

∫ δ

0

∫
Dεs

∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±

× 1DA′
δ,p

∣∣∣h(s+1)
PC

(
S±s
)∣∣∣dvs+1 dω dZs dt

=
P∑
p=1

∫
Dε
s+1

1S±s (DA
′

δ,p
)

∣∣αp(Z̃s+1)
∣∣dZ̃s+1 (5.68)

and∫ δ

0

∫
Dεs

1D

∫
Sd−1
ω ×Rdvs+1

1R2≤|Vs+1|ε
d−1
∣∣Vs+1

∣∣gs+1

(
t,
∣∣(S±s )V ∣∣) dvs+1 dω dZs dt

= εd−1
∣∣Sd−1

∣∣ ∫ δ

0

∫
Dεs

1D

∫
Rdvs+1

1R2≤|Vs+1|
∣∣Vs+1

∣∣gs+1

(
t, |Vs+1|

)
dvs+1 dZs dt.

(5.69)
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One recalls that the quantity (5.68) is defined by the expression on the right-
hand side of the equation (since αp is only a L∞ function, one recalls that an
integral with respect to only some of its variables is not clearly well-defined
without an additional work), while the quantity (5.69) is a usual Lebesgue in-
tegral). So to compare the two quantities and use the bound (5.67), one has
to perform the same change of variables (the one described in Propositions 3
page 92 or 4 page 98). This is not possible here, for the same reason which
leads to work with piecewise constant in time functions if one wants to define
the transport-collision operator for time-dependent functions : this change of
variable does not work for general functions depending on time.
However, one assumed that the bound gs+1 is increasing with respect to time.
Besides, the quantity : ∣∣∣∣∣h(s+1)

PC (t, Z̃s+1)

gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

is assumed to be uniformly bounded on [0, T ]. As a consequence, it is possible

to obtain an interesting bound on
∣∣αp(Z̃s+1

)∣∣, which is sharp enough on the one
hand, and which does not depend on time on the other hand. More precisely,
since the previous inequality (5.67) holds on the whole time interval [tp−1, tp[,
one chooses t = tp−1 so that, for all 1 ≤ p ≤ P :

∣∣αp(Z̃s+1

)∣∣ ≤ ∣∣∣∣∣h(s+1)
PC (tp−1, Z̃s+1)

gs+1

(
tp−1, |‹Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

gs+1

(
tp−1, |‹Vs+1|

)
≤
∣∣∣∣∣h(s+1)
PC (t, Z̃s+1)

gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

gs+1

(
tp−1, |‹Vs+1|

)
.

One has then immediately :

Qδ3 ≤
P∑
p=1

∫
Dε
s+1

1S±s (DA
′

δ,q
)

∣∣∣∣∣h(s+1)
PC (t, Z̃s+1)

gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

× gs+1

(
tp−1, |‹Vs+1|

)
dZ̃s+1. (5.70)

Now, in the integrand of the bound the dependency of gs+1 on the time variable
has been replaced by an evaluation at time tp−1, so that, denoting as usual
Vs+1 =

(
Vs, vs+1

)
, one can perform the change of variable backwards :

Qδ3 ≤
P∑
p=1

∫ δ

0

1[tp−1,tp[

∫
Dεs

1D

∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±1A′\(A∩A′)

× gs+1

(
tp−1, |Vs+1|

)
dvs+1 dω dZs dt.
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Thanks to the Cauchy-Schwarz and then the triangular inequalities on the scalar
product ω · (vs+1 − vi) which provides :∣∣ω · (vs+1 − vi)

∣∣ ≤ |vs+1 − vi| ≤ |vi|+ |vs+1|,

and then again the Cauchy-Schwarz inequality applied to the scalar product of
the two vectors (|vi|, |vs+1|) and (1, 1) of R2, which gives of course :

|vi|+ |vs+1| = (|vi|, |vs+1|) · (1, 1) ≤
√

12 + 12
»
|vi|2 + |vs+1|2 ≤

√
2|Vs+1|,

one obtains

Qδ3 ≤
P∑
p=1

√
2εd−1

∫ δ

0

1[tp−1,tp[

∫
Dεs

1D

∫
Sd−1
ω ×Rdvs+1

1A′\(A∩A′)
∣∣Vs+1

∣∣
× gs+1

(
tp−1, |Vs+1|

)
dvs+1 dω dZs dt.

Besides one sees that the last upper bound for Qδ3 is well defined as the integral
of the product of an indicator function of a subset of finite measure, that is a
L1 function, and a L∞ function, since for all Vs and all integer 1 ≤ p ≤ P , the
function :

vs+1 7→ |Vs+1|gs+1

(
tp−1, |Vs+1|

)
is assumed to be integrable (hypothesis (5.56)), and for all 1 ≤ p ≤ P , the
function :

Vs+1 7→
∫
Rd

∣∣Vs+1

∣∣gs+1

(
tp−1, |Vs+1|

)
is assumed to be essentially bounded (hypothesis (5.57)).
Then using that A′\(A ∩ A′) ⊂ {|Vs+1| ≥ R2}, and the fact that the integrand
of the upper bound does not depend anymore of the variable ω, one finds :

Qδ3 ≤
√

2εd−1
∣∣Sd−1

∣∣∣∣∣∣∣h(s+1)
PC (t, Z̃s+1)

gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

×
P∑
p=1

∫ δ

0

1[tp−1,tp[

∫
Dεs

1D

∫
Rdvs+1

1|Vs+1|≥R2

∣∣Vs+1

∣∣gs+1

(
tp−1, |Vs+1|

)
dvs+1 dZs dt,

and finally, using the fact that gs+1 has been assumed to be increasing in time
(hypothesis (5.55)), that is for all Vs+1 ∈ Rd(s+1) and all t ∈ [tp−1, tp[ :

gs+1

(
tp−1, |Vs+1|

)
≤ gs+1

(
t, |Vs+1|

)
,

one obtains :

Qδ3 ≤
√

2εd−1
∣∣Sd−1

∣∣∣∣∣∣∣h(s+1)
PC (t, Z̃s+1)

gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

×
P∑
p=1

∫ δ

0

1[tp−1,tp[

∫
Dεs

1D

∫
Rdvs+1

1|Vs+1|≥R2

∣∣Vs+1

∣∣gs+1

(
t, |Vs+1|

)
dvs+1 dZs dt,
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so that in the end it is possible to gather the different terms of the sum as :

P∑
p=1

1[tp−1,tp[∩[0,δ] = 1[0,δ],

that is :

Qδ3 ≤
√

2εd−1
∣∣Sd−1

∣∣∣∣∣∣∣h(s+1)
PC (t, Z̃s+1)

gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

×
∫ δ

0

∫
Dεs

1D

∫
Rdvs+1

1|Vs+1|≥R2

∣∣Vs+1

∣∣gs+1

(
t, |Vs+1|

)
dvs+1 dZs dt.

(5.71)

For the sake of simplicity, one will denote the constant
√

2εd−1
∣∣Sd−1

∣∣ as C2(d, ε).

One has considered only the first part [0, δ] of the time interval [0, T ]. For the
whole time interval, one decomposes the subset of finite mesure D ⊂ [0, T ]×Dεs
and one denotes

QT3 =

∫ T

0

∫
Dεs

1D

×
∣∣∣∣ ∫

Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t h

(s+1)
PC 1A′\(A∩A′) dvs+1 dω

∣∣∣∣dZs dt

and then one simply writes

QT3 =

T/δ−1∑
n=0

∫ (n+1)δ

nδ

∫
Dεs

1D

×
∣∣∣∣ ∫

Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t h

(s+1)
PC 1A′\(A∩A′) dvs+1 dω

∣∣∣∣dZs dt

so that, by the change of variable u = t − nδ in each term of the sum, one
obtains :

QT3 =

T/δ−1∑
n=0

∫ δ

0

∫
Dεs

1Dδ,n

×
∣∣∣∣ ∫

Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
u−nδ h

(s+1)
PC 1A′\(A∩A′) dvs+1 dω

∣∣∣∣dZs dt

thanks to the conservation of the L1 norm by the hard sphere transport, withDδ,n

denoting the subset of [0, δ] × Dεs defined as the translation in the time vari-
able of the subset D ∩ [nδ, (n + 1)δ], that is (u, Zs) ∈ Dδ,n if and only if
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(u + nδ, Zs) ∈ D ∩ [nδ, (n + 1)δ]. Each term is then bounded from above in
the same way as (5.71) so that one obtains :

QT3 ≤ C2(d, ε)

T/δ−1∑
n=0

∣∣∣∣∣T
s+1,ε
t−nδ h

(s+1)
PC (t, Z̃s+1)

gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

∫ δ

0

∫
Dεs

1Dn,δ

×
∫
Rdvs+1

1R2≤|Vs+1|
∣∣Vs+1

∣∣gs+1

(
u+ nδ, |Vs+1|

)
dvs+1 dZs du.

The hard sphere transport preserves also the L∞ norm so that for all integer n,
and the bound gs+1 is invariant under its action, so that :∣∣∣∣∣T

s+1,ε
t−nδ h

(s+1)
PC (t, Z̃s+1)

gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

=

∣∣∣∣∣h
(s+1)
PC

(
t, T s+1,ε

nδ−t
(
Z̃s+1

))
gs+1

(
t, T s+1,ε

nδ−t
(
Z̃s+1

)V )
∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

=

∣∣∣∣∣h
(s+1)
PC

(
t, Z̃s+1

)
gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

,

and finally, using the fact that the quantity∫
Rdvs+1

∣∣Vs+1

∣∣gs+1

(
t, |Vs+1|

)
1R2≤|Vs+1| dvs+1

is uniformly controlled in the velocity and in time variables by hypotheses, one
gets :

QT3 ≤ C2(d, ε)
( T/δ−1∑

n=0

∫ δ

0

∫
Dεs

1Dn,δ dZs dt
)∣∣∣∣∣h

(s+1)
PC

(
t, Z̃s+1

)
gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

×
∣∣∣∣∣∣∣∣∫

Rd
1|Vs+1|≥R2

|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1

∣∣∣∣∣∣∣∣
L∞([0,T ],L∞

Vs+1
(Rd(s+1)))

≤ C2(d, ε)|D|
∣∣∣∣∣h

(s+1)
PC

(
t, Z̃s+1

)
gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

×
∣∣∣∣∣∣∣∣∫

Rd
1|Vs+1|≥R2

|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1

∣∣∣∣∣∣∣∣
L∞([0,T ],L∞

Vs+1
(Rd(s+1)))

.

In summary, the fact that the quantity∣∣∣∣∣∣∣∣∫
Rd
1|Vs+1|≥R|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1

∣∣∣∣∣∣∣∣
L∞([0,T ],L∞

Vs+1
(Rd(s+1)))
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converges to zero as R goes to infinity, implies that one has obtained :∣∣∣∣1D ∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t h

(s+1)
PC 1A′\(A∩A′) dω dvs+1

∣∣∣∣
L1([0,T ]×Dεs)

≤ C(d, ε)|D|
∣∣∣∣∣h

(s+1)
PC

(
t, Z̃s+1

)
gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

×
∣∣∣∣∣∣∣∣∫

Rd
1|Vs+1|≥R2

|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1

∣∣∣∣∣∣∣∣
L∞([0,T ],L∞

Vs+1
(Rd(s+1)))

.

(5.72)

Therefore one has obtained a weak L∞ control of the differences of the operators

Cεs,s+1,±,i(R1, R
′
2, δ)T

s+1,ε
t − Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t

defined on piecewise constant in time functions, which can be summarized, gath-
ering the results of the inequalities (5.65), (5.66) and especially (5.72) as :∣∣∣∣1DïCεs,s+1,±,i(R1, R

′
2, δ)T

s+1,ε
t h

(s+1)
PC

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t h

(s+1)
PC

ò∣∣∣∣
L1([0,T ]×Dεs)

≤ C1(d, s, ε)δ(R1 + δR2)d(s−1)R
d(s+1)+1
2 R′2

×
(
Rd−1

2 (R′2)d−1 + (R1 + δR2)d−1
)
|h(s+1)
PC |L∞([0,T ],L∞(Dε

s+1
))

+ C2(d, ε)|D|
∣∣∣∣∣h

(s+1)
PC

(
t, Z̃s+1

)
gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

×
∣∣∣∣∣∣∣∣∫

Rd
1|Vs+1|≥R2

|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1

∣∣∣∣∣∣∣∣
L∞([0,T ],L∞

Vs+1
(Rd(s+1)))

.

(5.73)

Now, one has to check that this control holds in the different limits.

From the control for piecewise constant in time functions to the
control for functions of C

(
[0, T ], L∞

(
Dεs+1

))
First, one will obtain the inequality (5.73) above for all continuous functions

in time, that is one will establish the control on the following quantity :

Cεs,s+1,±,i(R1, R
′
2, δ)T

s+1,ε
t h(s+1) − Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t h(s+1)

(that is after taking the limit j → +∞ for an approximating sequence of piece-

wise constant in time functions
(
h

(s+1)
j

)
j≥0

which converges towards h(s+1)
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belonging to C
(
[0, T ], L∞

(
Dεs+1

))
).

So let h(s+1) be a function belonging to C
(
[0, T ], L∞

(
Dεs+1

))
, and let

(
h

(s+1)
j

)
j≥0

be a sequence of piecewise constant in time functions belonging to the functional
space L∞

(
[0, T ], L∞

(
Dεs+1

))
, and converging towards h(s+1). For the terms with

domains A1 and A2, without any additional hypothesis than the uniform con-
vergence, the following inequality holds in the limit thanks to the density of the
piecewise constant in time functions in C

(
[0, T ], L∞

(
Dεs+1

))
, and thanks to the

extension theorem of a continuous linear application defined on a dense sub-
space into a complete space (here L1

(
[0, T ]×Dεs

)
. One obtains, on the one hand

the rigorous definition of the following quantities, and on the other hand, the
bounds :∣∣∣∣1D ∫

Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t h(s+1)1A1 dω dvs+1

∣∣∣∣
L1([0,T ]×Dεs)

≤ C(d, s, ε)δ(R1 + δR2)d(s−1)R
d(s+2)
2 (R′2)d

∣∣h(s+1)
∣∣
L∞([0,T ],L∞(Dε

s+1
))
,

(5.74)

and∣∣∣∣1D ∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t h(s+1)1A2

dω dvs+1

∣∣∣∣
L1([0,T ]×Dεs)

≤ C(d, s, ε)δ(R1 + δR2)ds−1R
d(s+1)+1
2 R′2

∣∣h(s+1)
∣∣
L∞([0,T ],L∞(Dε

s+1
))
,

(5.75)

so that the two inequalities (5.65) and (5.66) hold in the limit j → +∞, that is
they hold also for depending on time, continuous function h(s+1) belonging to
the functional space C

(
[0, T ], L∞

(
Dεs+1

))
.

For the third term, that is the integral with A3 = A′\(A ∩ A′) as domain,
if one assumes in addition that h(s+1) verifies also that for all t ∈ [0, T ] and
almost everywhere on Dεs+1 :

|h(s+1)(t, Zs+1)| ≤ gs+1

(
t, |Vs+1|),

with gs+1 verifying the assumptions (5.55), (5.56) and (5.58) of the theorem,

then for any sequence
(
h

(s+1)
j

)
j≥0

of piecewise constant in time functions taking

their values in L∞
(
Dεs+1

)
and converging towards h(s+1) in L∞t L

∞
Zs

norm, it is
possible to modify it into a sequence of piecewise constant in time functions still
converging towards h(s+1) and such that, for all j ≥ 0 :

|h(s+1)
j (t, Zs+1)| ≤ gs+1

(
t, |Vs+1|) (5.76)
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for all t ∈ [tj,(p−1), tj,p[ and almost everywhere on Dεs+1.
Then the quantity

∣∣∣∣1D ∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t h(s+1)1A′\(A∩A′) dω dvs+1

∣∣∣∣
L1([0,T ]×Dεs)

makes sense since one has

∣∣∣∣1D ∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t h(s+1)1A′\(A∩A′) dω dvs+1

∣∣∣∣
L1([0,T ]×Dεs)

=

∣∣∣∣1D · Cεs,s+1,±,i(R1, R
′
2, δ)T

s+1,ε
t

(
1A′\(A∩A′) · h(s+1)

)∣∣∣∣
L1([0,T ]×Dεs)

,

the right-hand side being well defined since if h(s+1) belongs to the space
C
(
[0, T ], L∞

(
Dεs+1

))
, then 1A′\(A∩A′) · h(s+1) too. Another way to see the rig-

orous definition of the quantity is the following. The two sides of the equations
make sense and are equal in the particular case when h(s+1) is a piecewise
constant in time function, so the equality holds in the limit when h(s+1) is ap-
proximated by a sequence of such functions.
By linearity, one gets then :

∣∣∣∣1D ∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t h(s+1)1A′\(A∩A′) dω dvs+1

∣∣∣∣
L1([0,T ]×Dεs)

≤
∣∣∣∣1D · Cεs,s+1,±,i(R1, R

′
2, δ)T

s+1,ε
t

(
1A′\(A∩A′) ·

(
h(s+1) − h(s+1)

PC

))∣∣∣∣
L1([0,T ]×Dεs)

+

∣∣∣∣1D · Cεs,s+1,±,i(R1, R
′
2, δ)T

s+1,ε
t

(
1A′\(A∩A′) · h

(s+1)
PC

)∣∣∣∣
L1([0,T ]×Dεs)

for any piecewise constant in time function h
(s+1)
PC . In particular, for any of the

approximating sequence
(
h

(s+1)
j

)
j≥0

converging towards h(s+1) and verifying

the dominating property (5.76), one has, after controlling the first term of the
right-hand side with the help of Lemma 7 page 126, which controls the L∞

norm of the truncated in position, velocity and time collision operator of any
function belonging to C

(
[0, T ], L∞

(
Dεs+1

))
, and after controlling the second one



5.1. COLLISION OPERATOR AND BBGKY HIERARCHY 153

with (5.72) :

∣∣∣∣1D ∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t h(s+1)1A′\(A∩A′) dω dvs+1

∣∣∣∣
L1([0,T ]×Dεs)

≤ C1(d, s)εd−1Rd+1
2 |D|

∣∣h(s+1) − h(s+1)
j

∣∣
L∞([0,T ],L∞(Dε

s+1
))

+ C2(d, ε)|D|
∣∣∣∣∣h

(s+1)
PC

(
t, Z̃s+1

)
gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

×
∣∣∣∣∣∣∣∣∫

Rd
1|Vs+1|≥R2

|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1

∣∣∣∣∣∣∣∣
L∞([0,T ],L∞

Vs+1
(Rd(s+1)))

.

Of course, the first term of the right-hand side of the previous inequality can be
chosen as small as one wants, so that the inequality (5.72) holds in the limit,
that is for any function h(s+1) belonging to C

(
[0, T ], L∞

(
Dεs+1

))
, one has :

∣∣∣∣1D ∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t h(s+1)1A′\(A∩A′) dω dvs+1

∣∣∣∣
L1([0,T ]×Dεs)

≤ C2(d, ε)|D|
∣∣∣∣∣h

(s+1)
PC

(
t, Z̃s+1

)
gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

×
∣∣∣∣∣∣∣∣∫

Rd
1|Vs+1|≥R2

|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1

∣∣∣∣∣∣∣∣
L∞([0,T ],L∞

Vs+1
(Rd(s+1)))

.

(5.77)

After splitting the domain of the difference of truncated collision operators
Cεs,s+1,±,i(R1, R

′
2, δ)T

s+1,ε
t and Cεs,s+1,±,i(R1, R2, δ)T s+1,ε

t in the three terms
studied above and gathering the inequalities (5.74), (5.75) and (5.77), one finally
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obtains :

∣∣∣∣1DïCεs,s+1,±,i(R1, R
′
2, δ)T

s+1,ε
t h(s+1)

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t h(s+1)

ò∣∣∣∣
L1([0,T ]×Dεs)

≤ C1(d, s, ε)δ(R1 + δR2)d(s−1)R
d(s+1)+1
2 R′2

×
(
Rd−1

2 (R′2)d−1 + (R1 + δR2)d−1
)
|h(s+1)|L∞([0,T ],L∞(Dε

s+1
))

+ C2(d, ε)|D|
∣∣∣∣∣h

(s+1)
PC

(
t, Z̃s+1

)
gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

×
∣∣∣∣∣∣∣∣∫

Rd
1|Vs+1|≥R2

|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1

∣∣∣∣∣∣∣∣
L∞([0,T ],L∞

Vs+1
(Rd(s+1)))

,

(5.78)

that is, the inequality (5.73) holds for any continuous in time function.

Removing the truncation parameters in time and position
Now one removes the truncation parameters in time δ, and position R1.

For the truncation parameter δ, one will simply use Lemma 8 page 128. Indeed,
for all strictly positive numbers R1, R, the sequence :

(
Cεs,s+1,±,i(R1, R, δ)T s+1,ε

t h(s+1)
)
δ>0

is a converging sequence in L1
(
[0, T ]×Dεs

)
. If one denotes

QR2,R′2
=

∣∣∣∣1DïCεs,s+1,±,i(R1, R
′
2)T s+1,ε

t h(s+1)

− Cεs,s+1,±,i(R1, R2)T s+1,ε
t h(s+1)

ò∣∣∣∣
L1([0,T ]×Dεs)

,
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one has

QR2,R′2
≤
∣∣∣∣1DïCεs,s+1,±,i(R1, R

′
2)T s+1,ε

t h(s+1)

− Cεs,s+1,±,i(R1, R
′
2, δ)T

s+1,ε
t h(s+1)

ò∣∣∣∣
L1([0,T ]×Dεs)

+

∣∣∣∣1DïCεs,s+1,±,i(R1, R
′
2, δ)T

s+1,ε
t h(s+1)

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t h(s+1)

ò∣∣∣∣
L1([0,T ]×Dεs)

+

∣∣∣∣1DïCεs,s+1,±,i(R1, R2, δ)T s+1,ε
t h(s+1)

− Cεs,s+1,±,i(R1, R2)T s+1,ε
t h(s+1)

ò∣∣∣∣
L1([0,T ]×Dεs)

which implies immediately thanks to the inequality (5.78) :

QR2,R′2
≤
∣∣∣∣Cεs,s+1,±,i(R1, R

′
2)T s+1,ε

t h(s+1)

− Cεs,s+1,±,i(R1, R
′
2, δ)T

s+1,ε
t h(s+1)

∣∣∣∣
L1([0,T ]×Dεs)

+ C(d, s, ε)δ(R1 + δR2)d(s−1)R
d(s+1)+1
2 R′2

×
(
Rd−1

2 (R′2)d−1 + (R1 + δR2)d−1
)
|h(s+1)|L∞([0,T ],L∞(Dε

s+1
))

+ C2(d, ε)|D|
∣∣∣∣∣h

(s+1)
PC

(
t, Z̃s+1

)
gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

×
∣∣∣∣∣∣∣∣∫

Rd
1|Vs+1|≥R2

|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1

∣∣∣∣∣∣∣∣
L∞([0,T ],L∞

Vs+1
(Rd(s+1)))

+

∣∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t h(s+1)

− Cεs,s+1,±,i(R1, R2)T s+1,ε
t h(s+1)

∣∣∣∣
L1([0,T ]×Dεs)

.
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Taking δ > 0 small enough, one can choose the first, the second and the fourth
terms as small as one desires, so one has shown that :

∣∣∣∣1DïCεs,s+1,±,i(R1, R
′
2)T s+1,ε

t h(s+1)

− Cεs,s+1,±,i(R1, R2)T s+1,ε
t h(s+1)

ò∣∣∣∣
L1([0,T ]×Dεs)

= QR2,R′2

≤ C2(d, ε)|D|
∣∣∣∣∣h

(s+1)
PC

(
t, Z̃s+1

)
gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

×
∣∣∣∣∣∣∣∣∫

Rd
1|Vs+1|≥R2

|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1

∣∣∣∣∣∣∣∣
L∞([0,T ],L∞

Vs+1
(Rd(s+1)))

.

(5.79)

One sees then that the previous inequality holds in the limit R1 → +∞. Indeed,
one has :

• thanks to Lemma 11 page 136, for every R > 0, the sequence :

(
Cεs,s+1,±,i(R1, R)T s+1,ε

t h(s+1)
)
R1>0

converges almost everywhere towards the almost everywhere bounded
function Cεs,s+1,±,i(R)T s+1,ε

t h(s+1),

• thanks to Lemma 10 page 134, for every R1, R > 0, the following inequality
holds almost everywhere :

∣∣Cεs,s+1,±,i(R1, R)T s+1,ε
t h(s+1)

∣∣ ≤ ∣∣Cεs,s+1,±,i(R)T s+1,ε
t h(s+1)

∣∣,
• and the right-hand side of the last inequality (5.79) does not depend on

the truncation parameter R1.

Finally, for every measurable subset D of [0, T ] × Dεs of finite measure, the
function :

1D
∣∣Cεs,s+1,±,i(R)T s+1,ε

t h(s+1)
∣∣
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is integrable. Therefore, thanks to the dominated convergence theorem :

∣∣∣∣1DïCεs,s+1,±,i(R
′
2)T s+1,ε

t h(s+1)

− Cεs,s+1,±,i(R2)T s+1,ε
t h(s+1)

ò∣∣∣∣
L1([0,T ]×Dεs)

≤ C2(d, ε)|D|
∣∣∣∣∣h

(s+1)
PC

(
t, Z̃s+1

)
gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

×
∣∣∣∣∣∣∣∣∫

Rd
1|Vs+1|≥R2

|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1

∣∣∣∣∣∣∣∣
L∞([0,T ],L∞

Vs+1
(Rd(s+1)))

.

(5.80)

This last result implies, following an argument now familiar to the reader, that
the difference of the truncated in velocity collision operators verifies :

∣∣∣∣Cεs,s+1,±,i(R
′
2)T s+1,ε

t h(s+1) − Cεs,s+1,±,i(R2)T s+1,ε
t h(s+1)

∣∣∣∣
L∞([0,T ]×Dεs)

≤ C2(d, ε)

∣∣∣∣∣h
(s+1)
PC

(
t, Z̃s+1

)
gs+1

(
t, |‹Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

×
∣∣∣∣∣∣∣∣∫

Rd
1|Vs+1|≥R2

|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1

∣∣∣∣∣∣∣∣
L∞([0,T ],L∞

Vs+1
(Rd(s+1)))

.

(5.81)

This last inequality shows that the sequence
(
Cεs,s+1,±,i(R2)T s+1,ε

t h(s+1)
)
R2>0

is a Cauchy sequence in the complete space L∞
(
[0, T ] × Dεs

)
providing the

additional hypotheses on the decay with respect to the velocity variables, so
that it converges in this functional space, which finishes the proof of the rigorous
definition of the transport-collision operator Cεs,s+,±,iT

s+1,ε
t .

Second part of the proof
Now one will obtain the stability, by the transport-collision operator of the

BBGKY hierarchy, of the control of the decrease in velocity, that is one will
prove the inequality (5.60) stated in the theorem, page 138.

Description of the inequality of stability (5.60) of the theorem
The path is very similar to the one leading to the inequality (5.73) page 150.

One takes a measurable subset D of [0, T ]×Dεs, and a strictly positive number
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R. One will show that∫ T

0

∫
Dεs

1D

∣∣∣1|Xs|≤R Cεs,s+1,±,iT
s+1,ε
t h(s+1)(t, Zs)

∣∣∣dZs dt

≤ εd−1

2

∣∣Sd−1
∣∣ ∫ T

0

∫
Dεs

1D

∫
Rdvs+1

(
|vi|+ |vs+1|

)
gs+1

(
t, |Vs+1|

)
dvs+1 dZs dt,

(5.82)

which enables again to obtain an L∞ inequality because D is arbitrary, in other
words, (5.82) is equivalent to the following assertion, for almost every (t, Zs) ∈
[0, T ]×Dεs :∣∣∣1|Xs|≤R Cεs,s+1,±,iT

s+1,ε
t h(s+1)(t, Zs)

∣∣∣
≤ εd−1

2

∣∣Sd−1
∣∣ ∫

Rdvs+1

(
|vi|+ |vs+1|

)
gs+1

(
t, |Vs+1|

)
dvs+1.

And since the cut-off parameter in position R is arbitrary too, the last inequality
holding for all R is of course equivalent to the inequality (5.60) of the theorem.

Proof of the inequality for sequences of piecewise constant in time
functions approximating a continuous one

For any h(s+1) ∈ C
(
[0, T ], L∞

(
Dεs+1

))
such that for all t ∈ [0, T ] and almost

every Zs+1 ∈ Dεs+1 : ∣∣h(s+1)(t, Zs+1)
∣∣ ≤ gs+1

(
t, |Vs+1|

)
,

there exists a sequence of piecewise constant in time functions
(
h

(s+1)
j

)
j≥0

with,

for every j ∈ N :

h
(s+1)
j =

Pj∑
p=1

αj,p1[tj,(p−1),tj,p[,

and αj,p ∈ L∞
(
Dεs+1

)
for all 1 ≤ p ≤ Pj , such that :

h
(s+1)
j

L∞t L
∞
Zs+1−→

j→+∞
h(s+1).

From this sequence, it is then possible to modify it in order to keep the proper-
ties of convergence in C

(
[0, T ], L∞

(
Dεs+1

))
and the fact that each term of this

sequence is still piecewise constant in time, with in addition that, for all j ∈ N,
for all t ∈ [0, T ] and for almost every Zs+1 ∈ Dεs+1 :∣∣h(s+1)

j (t, Zs+1)
∣∣ ≤ ∣∣h(s+1)(t, Zs+1)

∣∣ ≤ gs+1

(
t, |Vs+1|

)
.

One has then, for every j ≥ 0, for every R1 and R2 strictly positive numbers,
and for every δ > 0 verifying the condition (5.37) of Lemma 5 page 122, that
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the truncated transport-collision operator is well-defined and if one denotes

QT =

∫ T

0

∫
Dεs

1D

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t h

(s+1)
j

∣∣∣(t, Zs) dZs dt,

one has, after the usual decomposition of the time interval such that the hard
sphere and the free transports coincide :

QT =

T/δ−1∑
n=0

∫ (n+1)δ

nδ

∫
Dεs

1D

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t h

(s+1)
j

∣∣∣(t, Zs) dZs dt

=

T/δ−1∑
n=0

Pj∑
p=1

∫ (n+1)δ

nδ

∫
Dεs

1D1[tj,p−1,tj,p[×Dεs

×
∣∣∣∣∣
∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±T

s+1,ε
t αj,p1D(R1,R2,δ) dvs+1 dω

∣∣∣∣∣dZs dt,

where D(R1, R2, δ) denotes the domain of the truncated in time, position and
velocity transport-collision operator, defined by the equation (5.1) page 89.
Taking the crude bound :

QT ≤
T/δ−1∑
n=0

Pj∑
p=1

∫ (n+1)δ

nδ

∫
Dεs

1D1[tj,p−1,tj,p[×Dεs

×
∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±

∣∣∣T s+1,ε
t αj,p

∣∣∣1D(R1,R2,δ) dvs+1 dω dZs dt

and then applying the change of variable u = t − nδ in each term of the first
sum as it was done several times before, one gets

QT ≤
T/δ−1∑
n=0

Pj∑
p=1

∫ δ

0

∫
Dεs

1Dn,δ1[tj,p−1−nδ,tj,p−nδ[×Dεs

×
∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±

∣∣∣T s+1,ε
u+nδ αj,p

∣∣∣1D(R1,R2,δ) dvs+1 dω dZs du,

where Dn,δ denotes, as above, the translation in time of the measurable part D,
that is :

(u, Zs) ∈ Dn,δ if and only if (u+ nδ, Zs) ∈ D ∩ [nδ, (n+ 1)δ].

Recalling that the domain D(R1, R2, δ) (also denoted D at some points in the
following for the sake of simplicity) has been chosen in order to have the following
equality almost everywhere for all 0 ≤ u ≤ δ :

T s+1,ε
−u αj,p

(
Zs, xi + εω, vs+1

)
= S±s

(
Zs, xi + εω, vs+1

)
,
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(where the free transport S±s is defined and studied in details in Section 5.1.1
page 91), the last inequality can then be rewritten as :

QT ≤
T/δ−1∑
n=0

Pj∑
p=1

∫ δ

0

∫
Dεs

1Dn,δ1[tj,p−1−nδ,tj,p−nδ[×Dεs

×
∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±

∣∣∣T s+1,ε
nδ αj,p

(
S±s
(
Zs, xi + εω, vs+1

))∣∣∣
× 1D(R1,R2,δ) dvs+1 dω dZs du.

Now the change of variables studied in Propositions 3 and 4, respectively pages
92 and 98, respectively for the two cases ω ·(vs+1−vi) > 0 and ω ·(vs+1−vi) < 0,
provides, if one denotes :

Dδ,n,p =
(
Dn,δ ∩

(
[tj,p−1 − nδ, tj,p − nδ[ ∩ [0, δ]×Dεs

))
× Sd−1 × Rd

∩D(R1, R2, δ),

the following inequality :

QT ≤
T/δ−1∑
n=0

Pj∑
p=1

∫
Dε
s+1

1S±s (Dδ,n,p)

∣∣T s+1,ε
nδ αj,p

(
Z̃s+1

)∣∣dZ̃s+1.

The hypothesis on the uniform bound in time and position verified by h(s+1),

and then by construction by each term of the sequence h
(s+1)
j means that, for

all u ∈ [tj,p−1, tj,p[ and for almost every Z̃s+1 ∈ Dεs+1 :

∣∣T s+1,ε
nδ αj,p(Z̃s+1)

∣∣ ≤ ∣∣∣∣∣ αj,p
(
T s+1,ε
−nδ

(
Zs+1

))
gs+1

(
u,
∣∣(T s+1,ε
−nδ

(
Zs+1

))V ∣∣)
∣∣∣∣∣
L∞(Dε

s+1
)

× gs+1

(
u,
∣∣(T s+1,ε
−nδ

(
Z̃s+1

))V ∣∣)
≤
∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
u, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

gs+1

(
u, |‹Vs+1|

)
,

thanks to the conservation of the kinetic energy and the L1 norm by the hard
sphere transport.
However, the following bound on QT :

QT ≤
T/δ−1∑
n=0

Pj∑
p=1

∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
u, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

×
∫
Dε
s+1

1S±s (Dδ,n,p)gs+1

(
u, |‹Vs+1|

)
dZ̃s+1,
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even if it is of course true, is not satisfactory under this form. The reason is the
same as in the discussion in the section about the control of the part A3, in the
first part of the proof, starting page 144. Indeed, one wants to apply the change
of variable backwards, since the bound gs+1 has a good behaviour with respect
to the hard sphere transport (since the velocity variable of the bound gs+1 is
in fact only the kinetic energy variable, which is preserved by the transport).
And as in the section for A3, one has to tackle the dependency on time of gs+1,
otherwise the last control will just be useless.
Nevertheless, the trick used to write previously the control (5.70) page 146 will
not be sharp enough here, since one wants to obtain a bound on the transport-
collision operator which depends on time (see the inequality (5.60) stated in the
theorem), and in particular, on the quantity :∣∣∣∣∣h

(s+1)
j (t, Zs+1)

gs+1

(
t, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

,

which cannot be then controlled as brutally as what was done previously by :∣∣∣∣∣h
(s+1)
j (t, Zs+1)

gs+1

(
t, |Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

.

The idea to obtain the control is however somehow similar as the idea used
in (5.70). The difference lies in the introduction of another parameter. For all
1 ≤ p ≤ P1, one will divide the time interval :

[tj,p−1, tj,p[

in Q parts of same size (with Q a positive integer), that is one writes :

[tj,p−1, tj,p[=

Q−1⋃
q=0

[
tj,p−1 + q

(tj,p − tj,p−1)

Q
, tj,p−1 + (q + 1)

(tj,p − tj,p−1)

Q

[
.

For the convenience of the reader, one will denote

tqj,p−1 = tj,p−1 + q
(tj,p − tj,p−1)

Q
. (5.83)

The fact that the bound gs+1 is increasing with respect to the time variable
enables to write that for all t ∈ [tqj,p−1, t

q+1
j,p−1[ :

∣∣T s+1,ε
nδ αj,p(Z̃s+1)

∣∣ ≤ ∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
u, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

gs+1

(
u, |‹Vs+1|

)
≤
∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
tqj,p−1, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

gs+1

(
tq+1
j,p−1, |‹Vs+1|

)
,
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so that one can control QT writing :

QT ≤
T/δ−1∑
n=0

Pj∑
p=1

Q−1∑
q=1

∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
tqj,p−1, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

×
∫
Dε
s+1

1S±s (Dδ,n,p,q)
gs+1

(
tq+1
j,p−1, |‹Vs+1|

)
dZ̃s+1,

with Dδ,n,p,q denoting :

Dδ,n,p =
(
Dn,δ ∩

(
[tqj,p−1 − nδ, t

q+1
j,p−1 − nδ[ ∩ [0, δ]×Dεs

))
× Sd−1 × Rd

∩D(R1, R2, δ). (5.84)

One understands the great advantage of this new bound : on the one hand,
one has removed the dependency with respect to time, so that the change of
variables backwards can be used here, and on the other hand, one can hope to
recover a very sharp control choosing the parameter Q larger and larger.
So applying then the two changes of variable backwards, one obtains, first with
the change of variable S±s :

QT ≤
T/δ−1∑
n=0

Pj∑
p=1

Q−1∑
q=1

∫ δ

0

1[tq
j,p−1

,tq+1
j,p−1

[

∫
Dεs

1Dn,δ

∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
tqj,p−1, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

×
∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±gs+1

(
tq+1
j,p−1, |Vs+1|

)
dvs+1 dω dZs du

(one has deleted also the domain D(R1, R2, δ) of the truncated transport-collision
operator, which is of no use anymore, and which shows that this control will
behave well when the truncated parameters will be removed), and then with the
change of time variable u = t− nδ :

QT ≤
T/δ−1∑
n=0

Pj∑
p=1

Q−1∑
q=1

∫ (n+1)δ

nδ

1[tq
j,p−1

,tq+1
j,p−1

[

∫
Dεs

1D

∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
tqj,p−1, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

×
∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±gs+1

(
tq+1
j,p−1, |Vs+1|

)
dvs+1 dω dZs dt

which can obviously be rewritten after grouping the terms of the first sum in n :

QT ≤
Pj∑
p=1

Q−1∑
q=1

∫ T

0

1[tq
j,p−1

,tq+1
j,p−1

[

∫
Dεs

1D

∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
tqj,p−1, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

×
∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±gs+1

(
tq+1
j,p−1, |Vs+1|

)
dvs+1 dω dZs dt.
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Now, after a Cauchy-Schwarz inequality on the scalar product ω · (vs+1 − vi)
in the integrand, and noticing that the condition ±

(
ω · (vs+1 − vi)

)
≥ 0 in the

integrand implies that the domain for the angle parameter variable ω is in fact,
for vs+1 − vi fixed :

Sd−1 ∩
{
±
(
ω · (vs+1 − vi)

)
≥ 0
}
,

one gets :

QT ≤ εd−1

Pj∑
p=1

∫ T

0

1[tj,p−1,tj,p[

∫
Dεs

1D

∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
tqj,p−1, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

×
∫
Rdvs+1

∫
Sd−1∩

{
±
(
ω·(vs+1−vi)

)
≥0
}(

|vi|+ |vs+1|
)
gs+1

(
tq+1
j,p−1, |Vs+1|

)
dω dvs+1 dZs dt.

the integrand being integrable thanks to the inequality :

|vi|+ |vs+1| ≤ |Vs+1|+ |vi| ≤
√

2
∣∣(Vs, vs+1

)∣∣,
and since now the integrand does not depend on the integration variable ω, and
one has : ∣∣Sd−1 ∩

{
±
(
ω · (vs+1 − vi)

)
≥ 0
}∣∣ =

∣∣Sd−1
∣∣

2
,

one gets in the end :

QT ≤ εd−1

∣∣Sd−1
∣∣

2

Pj∑
p=1

Q−1∑
q=1

∫ tq+1
j,p−1

tq
j,p−1

∫
Dεs

1D

∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
tqj,p−1, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

×
∫
Rdvs+1

(
|vi|+ |vs+1|

)
gs+1

(
tq+1
j,p−1, |Vs+1|

)
dvs+1 dZs dt.

Finally, Q is arbitrary, and one has, for every 1 ≤ p ≤ Pj that the sequence of
functions

Q−1∑
q−1

1[tq
j,p−1

,tq+1
j,p−1

[

∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
tqj,p−1, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

gs+1

(
tq+1
j,p−1, |Vs+1|

)
converges almost everywhere towards∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
t, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

gs+1

(
t, |Vs+1|

)
since the function gs+1 was assumed to be increasing with respect to the time
variable. Again, thanks to the increasing property of gs+1, the integrand of the
last bound of QT is bounded from above by the function :
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εd−1

∣∣Sd−1
∣∣

2
1D

∣∣∣∣∣h(s+1)j
(
t, Zs+1

)
gs+1

(
t, |Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

(
|vi|+ |vs+1|

)
gs+1

(
T, |Vs+1|

)
,

which is integrable thanks to the hypotheses of regularity on the bound gs+1 set
in the statement of the theorem. So the dominated convergence theorem enables
to assert, when Q goes to infinity, that :

QT ≤ εd−1

∣∣Sd−1
∣∣

2

Pj∑
p=1

Q−1∑
q=1

∫ T

0

∫
Dεs

1D

∣∣∣∣∣ h
(s+1)
j

(
t, Zs+1

)
gs+1

(
tqj,p−1, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

×
∫
Rdvs+1

(
|vi|+ |vs+1|

)
gs+1

(
t, |Vs+1|

)
dvs+1 dZs dt.

In the previous control, D is arbitrary and can be replaced by :

D ∩ |Xs| ≤ R.

This change provides that, for all R > 0 and j ≥ 0 :

∫ T

0

∫
Dεs

1D1|Xs|≤R

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t h

(s+1)
j (t, Zs)

∣∣∣dZs dt

≤ εd−1

∣∣Sd−1
∣∣

2

∫ T

0

∫
Dεs

1D

∫
Rdvs+1

(
|vi|+ |vs+1|

)
gs+1

(
t, |Vs+1|

)
dvs+1 dZs dt.

(5.85)

Proof of the inequality for continuous in time functions, and re-
moval of the truncation parameters

To finish the proof of Inequality (5.60) of the theorem, one will now just use
the different results of convergence obtained along the work of the rigorous def-
inition of the BBGKY transport-collision operator.
For any measurable subset D of [0, T ]×Dεs of finite measure and for any strictly
positive number R, one decomposes the quantity

∫ T

0

∫
Dεs

1D1|Xs|≤R

∣∣∣Cεs,s+1,±,iT
s+1,ε
t h(s+1)(t, Zs)

∣∣∣dZs dt
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(this quantity is well defined thanks to the first point of the theorem, proved in
the first part of the proof) as follows :∫ T

0

∫
Dεs

1D1|Xs|≤R

∣∣∣Cεs,s+1,±,iT
s+1,ε
t h(s+1)(t, Zs)

∣∣∣dZs dt

≤
∫ T

0

∫
Dεs

1D1|Xs|≤R

∣∣∣Cεs,s+1,±,iT
s+1,ε
t h(s+1)(t, Zs)

− Cεs,s+1,±,i(R2)T s+1,ε
t h(s+1)(t, Zs)

∣∣∣ dZs dt

+

∫ T

0

∫
Dεs

1D1|Xs|≤R

∣∣∣Cεs,s+1,±,i(R2)T s+1,ε
t h(s+1)(t, Zs)

− Cεs,s+1,±,i(R1, R2)T s+1,ε
t h(s+1)(t, Zs)

∣∣∣dZs dt

+

∫ T

0

∫
Dεs

1D1|Xs|≤R

∣∣∣Cεs,s+1,±,i(R1, R2)T s+1,ε
t h(s+1)(t, Zs)

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t h(s+1)(t, Zs)

∣∣∣dZs dt

+

∫ T

0

∫
Dεs

1D1|Xs|≤R

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t h(s+1)(t, Zs)

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t h

(s+1)
j (t, Zs)

∣∣∣dZs dt

+

∫ T

0

∫
Dεs

1D1|Xs|≤R

∣∣∣Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t h

(s+1)
j (t, Zs)

∣∣∣ dZs dt.

On the one hand, the last term is of course controlled thanks to the inequality
(5.85), which concluded the previous section of this part of the proof. On the
other hand, the four other ones can be chosen as small as one wants, choos-
ing carefully the truncation parameters R1, R2 and δ. Indeed, for any strictly
positive number α, one has the following results.

• the first term is bounded by :

|D|
∣∣∣Cεs,s+1,±,iT

s+1,ε
t h(s+1) − Cεs,s+1,±,i(R2)T s+1,ε

t h(s+1)
∣∣∣
L∞([0,T ]×Dεs)

,

which can be chosen smaller than α/3 for R2 big enough thanks to the
convergence of the sequence of truncated transport-collision operators :(

Cεs,s+1,±,i(R2)T s+1,ε
t h(s+1)

)
R2>0

,

which is the first point of Theorem 1 page 137, just shown in the first part
of this very proof.
Let R0

2 be such R2, fixed until the end of the proof.

• Thanks to Lemma 11 page 136 about the rigorous definition of the trun-
cated in velocity transport-collision operator, one knows that for any
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strictly positive numbers R2, R, the following equality holds almost ev-
erywhere on |Xs| ≤ R for R1 big enough :

Cεs,s+1,±,i(R2)T s+1,ε
t h(s+1) = Cεs,s+1,±,i(R1, R2)T s+1,ε

t h(s+1),

that is one has :

1|Xs|≤R

∣∣∣Cεs,s+1,±,i(R2)T s+1,ε
t h(s+1)(t, Zs)

− Cεs,s+1,±,i(R1, R2)T s+1,ε
t h(s+1)(t, Zs)

∣∣∣ = 0

almost everywhere on [0, T ]×Dεs, in other words the integrand of the sec-
ond term of the previous decomposition is zero almost everywhere for R1

big enough, and so the second term is zero itself for such R1. In particular,
for R2 = R0

2 chosen in the last point, there exists some R1 verifying the
previous equality almost everywhere.
Let R0

1 be such R1, fixed until the end of the proof.

• Thanks to Lemma 8 page 128, one knows that for any strictly positive
numbers R1 and R2, the sequence of operators(

Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t h(s+1)

)
δ>0

is a converging sequence as δ goes to zero in L1
(
[0, T ]×Dεs

)
. In particular

for R1 = R0
1 and R2 = R0

2, it is then possible to choose δ small enough
such that :∫ T

0

∫
Dεs

1D1|Xs|≤R

∣∣∣Cεs,s+1,±,i(R1, R2)T s+1,ε
t h(s+1)(t, Zs)

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t h(s+1)(t, Zs)

∣∣∣dZs dt

≤
∫ T

0

∫
Dεs

∣∣∣Cεs,s+1,±,i(R1, R2)T s+1,ε
t h(s+1)(t, Zs)

− Cεs,s+1,±,i(R1, R2, δ)T s+1,ε
t h(s+1)(t, Zs)

∣∣∣dZs dt

≤ α/3.

In particular, for R1 = R0
1 and R2 = R0

2 fixed in the two previous points,
let δ0 be such δ, fixed for the end of the proof, which verifies the last
inequality.

• Finally the fourth term of the previous decomposition is controlled thanks
to the L∞ estimate (5.48) of the truncated in time, position and velocity
transport-collision operator, stated in Lemma 8 page 128. By linearity of
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the transport-collision operator, one has :∫ T

0

∫
Dεs

1D1|Xs|≤R

∣∣∣Cεs,s+1,±,i(R
0
1, R

0
2, δ

0)T s+1,ε
t h(s+1)(t, Zs)

− Cεs,s+1,±,i(R
0
1, R

0
2, δ

0)T s+1,ε
t h

(s+1)
j (t, Zs)

∣∣∣dZs dt

≤ |D|
∣∣∣Cεs,s+1,±,i(R

0
1, R

0
2, δ

0)T s+1,ε
t

(
h(s+1) − h(s+1)

j

)∣∣∣
L∞([0,T ]×Dεs)

≤ C(d, s)εd−1(R0
2)d+1|D|

∣∣h(s+1) − h(s+1)
j

∣∣
L∞([0,T ],L∞(Dε

s+1
))
.

Now, one has just to choose j0 large enough so that the last upper bound
is itself smaller than α/3.

Gathering all those controls together, one sees that :∫ T

0

∫
Dεs

1D1|Xs|≤R

∣∣∣Cεs,s+1,±,iT
s+1,ε
t h(s+1)(t, Zs)

∣∣∣dZs dt

≤ α/3 + 0 + α/3 + α/3

+ εd−1

∣∣Sd−1
∣∣

2

∫ T

0

∫
Dεs

1D

∫
Rdvs+1

(
|vi|+ |vs+1|

)
gs+1

(
t, |Vs+1|

)
dvs+1 dZs dt,

with α being arbitrary, so that the inequality (5.82) page 158 is proven, which
concludes the proof of the inequality (5.60) of the theorem.
Theorem 1 is proved.

Remark 11. If one denotes Xε,s,gs+1 the Banach space defined as the subset of

C
(
[0, T ], L∞

(
Dεs+1

))
composed of the functions h(s+1) such that :∣∣∣h(s+1)(t, Zs+1)

gs+1

(
t, |Vs+1|

) ∣∣∣
L∞([0,T ],L∞(Dε

s+1
))
< +∞,

one has shown that the collision operator is well-defined on Xε,s,gs+1
, and takes

its values in L∞
(
[0, T ] × Dεs

)
, with in addition a boundedness property on the

velocity variable, uniform on position but depending on time.

5.2 Definition of the collision-transport opera-
tor for the Boltzmann hierarchy, and stabil-
ity of the relevant functional spaces

Even if there is an additional difficuly to define the collision-transport operator
for the Boltzmann hierarchy when the particles evolve around an obstacle re-
garding the case of the whole Euclidean space, that is without any obstacle, its
definition is much simpler than the one of the collision operator for the BBGKY
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hierarchy. The difficulty comes from the fact that the free flow takes into account
the boundary conditions when there is an obstacle, and therefore the particles
are not travelling in straight lines due to the bouncing under the action of the
transport introduced in Definition 3 page 53.

In the case without obstacle (the reader may refer to [34]7, for example), the
Boltzmann hierarchy is defined with a collision operator composed with the
free transport, without any boundary condition. Without any obstacle, the free
transport preserves continuity, so that the collision-transport operator is easy
to define if one decides to work in spaces of continuous functions, up to show-
ing that the collision operator applied to a continuous function makes sense.
When there is an obstacle, the free transport is defined with boundary condi-
tions (here : when a particle bounces against the obstacle, its velocity is changed
according to the Snell-Descartes law). Such conditions imply a loss of continuity
in general. However, the relevant quantity used to define the Boltzmann hierar-
chy is an integral of the collision-transport operator.
So one will show that the collision operator makes sense on some functional
space, and preserves continuity. This is the purpose of Subsection 5.2.1, and of
the following Lemma 12.
Then, in Subsection 5.2.2 one will discuss the loss of continuity generated by
the free flow with boundary condition. In the sequel, this loss will be addressed
thanks to boundary conditions satisfied by the solutions of Boltzmann hierar-
chy.
Afterwards in Subsection 5.2.3, one will show that, even if the functions on
which the integrated in time collision-transport operator of the Boltzmann hi-
erarchy acts do not satisfy any boundary condition, the integral over the time
variable of the free transport with boundary condition enables to recover the
lost continuity. This is the purpose of Lemma 13 page 173.

One recalls the general equation composing the Boltzmann hierarchy (see Sec-
tion 3 page 77 for more details) :

f (s)(t, Zs) = T s,0t f (s)(0, Zs) +

∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, Zs) du,

with the last integral being explicitly :∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, Zs) =

∫ t

0

C0
s,s+1f

(s+1)
(
u, T s,0t−u(Zs)

)
du

=
s∑
i=1

∫ t

0

∫
Sd−1
ω ×Rdvs+1

[
ω · (vs+1 − vi)

]
+

[
f (s+1)

(
u,
(
T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

)′
i,s+1

)

− f (s+1)(u, T s,0u−t(Zs),
(
T s,0u−t(Zs)

)X,i
, vs+1)

]
dω dvs+1 du, (5.86)

7See in particular Section 4.4 ”The Boltzmann hierarchy and the Boltzmann equation”.
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with the notations
(
T s,0u−t(Zs)

)X,i
and

(
T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

)′
i,s+1

in-

troduced in the points (1.7) and (1.8) of Definition 2 page 52, and in Defini-
tion 3 page 53.

5.2.1 Stability of continuous functions by the collision op-
erator of the Boltzmann hierarchy

Lemma 12 (Stability of the subset of continuous functions decaying sufficiently
fast at infinity in the velocity variables). Let T be a strictly positive number.
One considers a measurable function :

gs+1 : [0, T ]× R+ → R+

strictly positive almost everywhere such that for all t ∈ [0, T ]

(v1, . . . , vs+1) 7→ |Vs+1|gs+1

(
t, |Vs+1|

)
∈ L1

(
Rd(s+1)

)
.

Then for every continuous function f (s+1) ∈ C
(
[0, T ]×

(
Ωc×Rd

)s+1)
such that∣∣∣∣∣f (s+1)

(
t, Zs+1

)
gs+1

(
t, |Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞((Ωc×Rd)s+1))

< +∞,

one has that for every (u, Zs) ∈ [0, T ]×
(
Ωc×Rd

)s
, the collision operator of the

Boltzmann hierarchy (introduced in Definition 10 page 78) defined as

C0
s,s+1f

(s+1)(u, Zs) =
s∑
i=1

∫
Sd−1
ω ×Rdvs+1

[
ω · (vs+1 − vi)

]
+

×
ï
f (s+1)

(
u,
(
Zs, xi, vs+1

)′
i,s+1

)
− f (s+1)(u, Zs, xi, vs+1)

ò
dω dvs+1

(5.87)

is well-defined as a converging integral, and the functionß
[0, T ]×

(
Ωc × Rd

)s → R,
(u, Zs) 7→ C0

s,s+1f
(s+1)(u, Zs),

is a continuous function such that∣∣∣∣∣∣∣∣
C0
s,s+1f

(s+1)(t, Zs)∫
Rd
gs+1

(
t,
∣∣Vs+1

∣∣) dvs+1

∣∣∣∣∣∣∣∣
L∞([0,T ],L∞((Ωc×Rd)s))

< +∞.

Moreover, if f (s+1) belongs to C
(
[0, T ]×

(
Ωc ×Rd

)s+1)
(Ωc, which is open, has

been replaced by its closure Ωc), then the function :ß
[0, T ]×

(
Ωc × Rd

)s → R,
(u, Zs) 7→ C0

s,s+1f
(s+1)(u, Zs),
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is well defined and continuous, such that :∣∣∣∣∣∣∣∣
C0
s,s+1f

(s+1)(t, Zs)∫
Rd
gs+1

(
t, |(Vs, vs+1)|

)
dvs+1

∣∣∣∣∣∣∣∣
L∞([0,T ],L∞((Ωc×Rd)s))

< +∞. (5.88)

Proof. The proof is the same for the case where f (s+1) is defined and continuous

on
(
Ωc×Rd

)s+1
, or

(
Ωc×Rd

)s+1
, and this is a simple consequence of the Leibniz

integral rule theorem.
First, for every (u, Zs) ∈ [0, T ]×

(
Ωc×Rd

)s
, the quantity C0

s,s+1f
(s+1) is indeed

well defined, since one has, for every (ω, vs+1) ∈ Sd−1 × Rd :∣∣∣∣∣[ω · (vs+1 − vi)
]
+

ï
f (s+1)

(
u,
(
Zs, xi, vs+1

)′
i,s+1

)
− f (s+1)(u, Zs, xi, vs+1)

ò∣∣∣∣∣
≤
(
|vi|+ |vs+1|

)(∣∣f (s+1)
(
u,
(
Zs, x,vs+1

)′
i,s+1

)∣∣+
∣∣f (s+1)(u, Zs, xi, vs+1)

∣∣)
≤
(
|vi|+ |vs+1|

) ∣∣∣∣∣f (s+1)(u, Zs+1)

gs+1

(
u, |Vs+1|

) ∣∣∣∣∣
L∞(Zs+1)

×
(
gs+1

(
u, |(v1, . . . , v

′
i, . . . , v

′
s+1)|

)
+ gs+1

(
u, |Vs+1|

))
≤ 2
(
|vi|+ |vs+1|

) ∣∣∣∣∣f (s+1)(u, Zs+1)

gs+1

(
u, |Vs+1|

) ∣∣∣∣∣
L∞(Zs+1)

gs+1

(
u, |Vs+1|

)
. (5.89)

So one notices here that each term of the sum defining C0
s,s+1f

(s+1)(u, Zs) is
an integral of a function bounded in absolute value by an integrable function
since by hypothesis, for all t ∈ [0, T ] the function Vs+1 7→ |Vs+1|gs+1

(
t, |Vs+1|

)
is measurable and integrable over Rd(s+1), so by the Fubini-Tonelli theorem, for
all t ∈ [0, T ] and almost every Vs ∈ Rds, the function :

vs+1 7→ gs+1

(
t, |(Vs, vs+1)|

)
is a measurable and integrable function.
One has obtained moreover that :∣∣C0

s,s+1f
(s+1)(u, Zs)

∣∣ ≤ s∑
i=1

∫
Sd−1
ω ×Rdvs+1

(
|vi|+ |vs+1|

) ∣∣∣∣∣f (s+1)(u, Zs+1)

gs+1

(
u, |Vs+1|

) ∣∣∣∣∣
L∞
Zs+1

×
(
gs+1

(
u, |(v1, . . . , v

′
i, . . . , v

′
s+1)|

)
+ gs+1

(
u, |Vs+1|

))
dω dvs+1

≤ 2s|Sd−1|
∣∣∣∣∣f (s+1)(u, Zs+1)

gs+1

(
u, |Vs+1|

) ∣∣∣∣∣
L∞
Zs+1

×
∫
Rdvs+1

(
|vi|+ |vs+1|

)
gs+1

(
u, |Vs+1|

)
dvs+1,
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which proves the control (5.88).
Finally, for the continuity of the collision operator (5.87), this is also a conse-
quence of the bound (5.89) on the integrand, which is uniform in the parameters
(u, Zs), joint with the fact that the function

(u, Zs, ω, vs+1) 7→
∣∣ω · (vs+1 − vi)

∣∣
+

×
ï
f (s+1)

(
u,
(
Zs, xi, vs+1

)′
i,s+1

)
− f (s+1)(u, Zs, xi, vs+1)

ò
is of course a continuous function, so the Leibniz integral rule provides the
conclusion.

Remark 12. The extra condition about the continuity of f (s+1) on the whole
closure of the phase space may look strange, but it will be necessary in the fol-
lowing, when the transport operator will be applied.

5.2.2 Loss of continuity induced by the free transport with
boundary conditions

Now, one is about to address the problem of the loss of continuity induced by
the free transport with boundary collision. First, one will give an explicit exam-
ple of such loss of continuity, in a very simple case.

If one considers the initial distribution function f0 defined on R∗+ × R (here
the position and velocity variables will lie in spaces of dimension 1, that is
x ∈ R∗+ and v ∈ R, so that in this very simple case, the obstacle is the half line
{x ≤ 0}) defined as : ß

R∗+ × R → R,
(x, v) 7→ f0(x, v) = v,

one sees immediately that f0 is continuous. Of course such function does not
fulfill the conditions of the previous lemma providing the rigorous definition
of the collision operator, and moreover the phase space of this function has a
dimension which is so small that this object has no chance to be relevant for the
study of statistical mechanics in general, but this toy model will be interesting
enough to show the process of loss of continuity.
If one applies to f0 the free transport with boundary condition for a time, say
1, one observes the following thing. Since

(
T 1,0

1 f0

)
(x, v) = f0

(
T 1,0
−1 (x, v)

)
, for

every x > 0 and v ≤ 0 (see Definition 15 page 83 for the notation T 1,0), one
has :

x− v > 0,

so that T 1,0
−1 (x, v) = (x − v, v) (that is such an initial configuration never leads

to a bouncing against the obstable x = 0 at time t = 1).
But if v > 0, depending on the sign of x− v, three situations may happen.

• as above, if x− v > 0, then T 1,0
−1 (x, v) = (x− v, v)
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• if x − v = 0, it means that starting from the initial configuration (x, v),
the particle will be at position 0 at time 1, that is a bouncing against
the obstacle occurs at this time, and therefore the free transport with
boundary condition t 7→ T 1,0

−t (x, v) is discontinuous at t = 1, inducing a

discontinuity for the function (t, x, v) 7→ T 1,0
−t f0(x, v) (since the position of

the particle has reached the boundary of the domain, and then its velocity
will change at this time : v will be changed into −v).

• if x − v < 0, then a collision has already happened, so that T 1,0
−1 (x, v) 6=

(x− v, v). The collision happened at the time t when x− tx,vv = 0, that
is tx,v = x/v, and then the position of the particle at time 1 is then :

x− tx,vv − (1− tx,v)(−v) = x− 2tx,vv + v = −x+ v,

so that in fact T 1,0
−1 (x, v) = (−x+ v,−v).

Figure 5.1: The boundary condition induces a jump in the phase space during
a bouncing.

If one considers now the special configuration (1, 1) in the phase space, one sees
that for ε > 0, as small as one desires, the two positions (1 + ε, 1) and (1− ε, 1)
are respectively in the first case and in the last case in the discussion just above.
In particular, one obtains :(

T 1,0
1 f0

)
(1 + ε, 1) = f0(T 1,0

−1 (1 + ε, 1)) = f0(ε, 1) = 1,

while (
T 1,0

1 f0

)
(1− ε, 1) = f0(T 1,0

−1 (1− ε, 1)) = f0(ε,−1) = −1.

In particular T 1,0
1 f0 is not continuous at the configuration (1, 1) of the phase

space. For the specific case of the free transport applied for a time 1, one sees
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that the set of discontinuity points of T 1,0
1 f0 is exactly composed by the points

(x, v) such that x = v, that is :{
(x, x) / x ∈ R∗+

}
.

This half line could be seen as the image in the phase space of the boundary
of the obstacle by the free transport. In general, that is for an arbitrary time
t > 0, the set of discontinuity points of T 1,0

t f0 is :{
(x, x/t) / x ∈ R∗+

}
.

5.2.3 Stability of continuous functions by the integrated in
time collision-transport operator of the Boltzmann
hierarchy

Thanks to the very simple example discussed above, one sees that there is no
hope to recover continuity after applying the free transport with boundary col-
lision on general continuous functions such as C0

s,s+1f
(s+1).

However, even if T s,0t−uC0
s,s+1f

(s+1) cannot be regular for general continuous func-

tions f (s+1), one will see thanks to the following lemma, up to assuming a con-
tinuity hypothesis on the function f (s+1) on the boundary of the obstacle Ω
(which is not a boundary condition, linking two different values of f (s+1), eval-
uated respectively at two points of the boundary of the phase space, such as the
condition (3.4) page 79) that the quantity∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, Zs) du

is smooth, proving therefore a regularizing effect of the collision-transport op-
erator integrated in time of the Boltzmann hierarchy.

One will see along the proof of the following lemma why the assumption about
the continuity of f (s+1) on the closure of the phase space is necessary, that is,
on the boundary of the obstacle Ω.

Lemma 13 (Stability by the integrated in time collision-transport operator of
the Boltzmann hierarchy of the subset of continuous functions decaying suf-
ficiently fast at infinity in the velocity variables). Let T be a strictly positive
number. For every continuous function

f (s) ∈ C
(
[0, T ]×

(
Ωc × Rd

)s)
,

and for every (u, Zs) ∈ [0, T ]×
(
Ωc × Rd

)s
, the quantity∫ t

0

T s,0t−uf
(s)(u, Zs) du
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is well-defined, and the function [0, T ]×
(
Ωc × Rd

)s → R,

(t, Zs) 7→
∫ t

0

T s,0t−uf
(s)(u, Zs) du,

is a continuous function.
Moreover, if there exists a measurable function

gs : [0, T ]× R+ → R+

strictly positive almost everywhere such that for all t ∈ [0, T ] :

Vs 7→ |Vs|gs
(
t, |Vs|

)
∈ L1

(
Rds
)
,

such that if for all t ∈ [0, T ], f (s) satisfies∣∣∣∣∣f (s)(t, Zs)

gs
(
t, |Vs|

) ∣∣∣∣∣
L∞((Ωs×Rd)s)

< +∞,

then

∫ t

0

T s,0t−uf
(s) du verifies also for all t ∈ [0, T ] and almost every

Zs ∈
(
Ωc × Rd

)s
:∫ t

0

T s,0t−uf
(s)(u, Zs) du ≤

∫ t

0

∣∣∣∣∣f (s)(u, Zs)

gs
(
u, |Vs|

) ∣∣∣∣∣
L∞
Zs

gs
(
u,
∣∣Vs∣∣) du. (5.90)

Proof. One starts by showing that the quantity
∫ t

0
T s,0t−uf

(s)(u, Zs) du is well-

defined for every (t, Zs) ∈ [0, T ]×
(
Ωc × Rd

)s
.

First, if t = 0, of course the quantity is 0. Now one focuses on the more interest-
ing case t > 0. There is only a finite number J(Zs) of times tj (∈ R) such that

there exists 1 ≤ ij ≤ s satisfying the condition
(
T s,0ti (Zs)

)X,ij ∈ ∂Ω, since one
considers only a finite number s of particles, and since the obstacle is convex,
each particle can bounce against the obstacle at most once.
It is then clear that the interval [0, T ] can be divided, up to excluding a finite
subset of points contained in {t1, . . . , tJ(Zs)}, into sub-intervals ]tj , tj+1[ such
that ®

[0, T ] →
(
Ωc × Rd

)s
,

u 7→ T s,0−u(Zs)

is continuous on each sub-interval ]tj , tj+1[, with a limit when v → t+j or v → t−j .
In fact, it is important to keep in mind that the discontinuity only appears in
the velocity variable, at the time of a bouncing against the obstacle.
One assumes in addition that the function f (s) is continuous at the boundary of
the phase space, which means that one assumes that f (s) is continuous on

[0, T ]×
(
Ωc × Rd

)s
,
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(and not only on the open subset of R2ds [0, T ]×
(
Ωc × Rd

)s
). Here the points

of the boundary of the phase space are just the configurations such that one of
the particle lies on the boundary of the obstacle, that is there exists at least one

positive integer 1 ≤ i ≤ s such that xi =
(
Zs
)X,i ∈ ∂Ω, or in other words, in

the present context of the half space : xi · e1 = 0. The condition of continuity
at the boundary means that for any point Zs belonging to the boundary of the
phase space and for any time t ∈ [0, T ], the quantity

f (s)(t, Z̃s)

has a finite limit when Z̃s → Zs, then this additional hypothesis is enough to
deduce that the function u 7→ T s,0t−uf

(s)(u, Zs) = f (s)(u, T s,0u−t(Zs)) is piecewise
continuous on [0, T ], with finite limits to the left and to the right of any point
of discontinuity, so that for every t ∈ [0, T ], its integral on the interval [0, t]∫ t

0

T s,0t−uf
(s)(u, Zs) du =

∫ t

0

f (s)
(
u, T s,0u−t(Zs)

)
du

is well defined, thanks to the Riemann integral theory.
Now, the continuity is obtained by a dominated convergence argument. Let
(t, Zs) be any point of [0, T ]×

(
Ωc × Rd

)s
, one will show that the function

(t, Zs) 7→
∫ t

0

T s,0t−uf
(s)(u, Zs) du

is continuous at this point.
Let α be a strictly positive real number such that BRd(xi, α) ⊂ Ωc for every
integer 1 ≤ i ≤ s. One defines a neighbourhood of the point Zs in the phase
space, and one considers all the configurations reached from this neighbourhood
during the time interval [0, T ]. In other words, one considers the ”tube” based
on the neighbourhood around Zs. One considers the image T s,0[−T,0](V(Zs)) of

V(Zs) =
(
BRd(xi, α)×BRd(vi, α)

)s ⊂ (Ωc × Rd
)s

by the free transport with boundary conditions for the whole time interval [0, T ],
that is one defines :

T s,0[−T,0](V(Zs)) =
{
Z ′s ∈

(
Ωc × Rd

)s
/

∃ t ∈ [0, T ], Z̃s ∈ V(Zs) / T
s,0
−t (Z̃s) = Z ′s

}
.

This subset of configurations is a compact set of the phase space, and thanks
to the continuity on f (s) on the whole phase space and its boundary, f (s) is
bounded on T s,0[−T,0](V(Zs)).

Now, for any other (t̃, Z̃s) ∈ [0, T ] ×
(
Ωc × Rd

)s
(one assumes without loss of
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generality that t ≤ t̃), one has∣∣∣∣∣
∫ t̃

0

T s,0
t̃−uf

(s)(u, Z̃s) du−
∫ t

0

T s,0t−uf
(s)(u, Zs) du

∣∣∣∣∣
≤
∣∣∣∣∣
∫ t̃

t

T s,0
t̃−uf

(s)(u, Z̃s) du

∣∣∣∣∣+

∣∣∣∣∣
∫ t

0

[
T s,0
t̃−uf

(s)(u, Z̃s)− T s,0t−uf
(s)(u, Zs)

]
du

∣∣∣∣∣.
For every ε > 0, there exists β(ε) > 0 such that if t̃− t < β and |Z̃s − Zs| < β,
one has ∣∣∣∣∣

∫ t̃

t

T s,0
t̃−uf

(s)(u, Z̃s) du

∣∣∣∣∣ < ε/2.

Indeed, choosing Z̃s ∈ V(Zs), that is taking |Z̃s − Zs| < α, one has

T s,0−t (Z̃s) ∈ T s,0[−T,0](V(Zs))

for all t ∈ [0, T ], so that one has :∣∣∣∣∣
∫ t̃

t

T s,0
t̃−uf

(s)(u, Z̃s) du

∣∣∣∣∣ ≤
∫ t̃

t

∣∣∣f (s)
(
u, T s,0

t̃−u(Z̃s
)∣∣∣du

≤ (t̃− t)
(

max
[0,T ]×T s,0

[−T,0](V(Zs))
f (s)

)
,

which is smaller than ε/2 when

t̃− t < ε

2
(

max[0,T ]×T s,0
[−T,0](V(Zs))

f (s)
) ,

so that it is enough to choose :

β ≤ min

(
α,

ε

2
(

max[0,T ]×T s,0
[−T,0](V(Zs))

f (s)
)).

For the second term, one uses the fact that the free transport with bound-
ary conditions is continuous in the sense that for a configuration of the phase
space Zs, with a finite number of times of discontinuity t1, . . . , tJ(Zs) in the

velocity variable, one has that if Z̃s → Zs, then the sequence of functions

T s,0[−T,0](Z̃s) :

®
[0, T ] →

(
Ωc × Rd

)s
,

t 7→ T s,0−t (Z̃s),

converges almost everywhere towards the function

T s,0[−T,0](Zs) :

®
[0, T ] →

(
Ωc × Rd

)s
,

t 7→ T s,0−t (Zs).
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In fact, one can be more accurate, and say that the convergence holds for any
time except for the times of discontinuity of the trajectory from the initial
configuration Zs.
Besides, for |Z̃s − Zs| < α, one has∣∣∣∣∣

∫ t

0

[
T s,0
t̃−uf

(s)(u, Z̃s)− T s,0t−uf
(s)(u, Zs)

]
du

∣∣∣∣∣
≤
∫ t

0

∣∣∣∣T s,0t̃−uf
(s)(u, Z̃s)− T s,0t−uf

(s)(u, Zs)

∣∣∣∣du
≤
∫ t

0

∣∣∣∣T s,0t̃−uf
(s)(u, Z̃s)− T s,0t−uf

(s)(u, Z̃s)

∣∣∣∣du
+

∫ t

0

∣∣∣∣T s,0t−uf
(s)(u, Z̃s)− T s,0t−uf

(s)(u, Zs)

∣∣∣∣du. (5.91)

The integrand of the first term of the right-hand side of the last inequality (5.91)
is

f (s)
(
u, T s,0

u−t̃(Z̃s)
)
− f (s)

(
u, T s,0u−t(Z̃s)

)
.

Using the fact that the norm of the vector composed of all the velocities of the
system of particles is not modified along the trajectories, one can control the
length of the trajectory of the particles. In other words, it is easy to bound the
following difference : ∣∣∣T s,0

u−t̃(Z̃s)− T
s,0
u−t(Z̃s)

∣∣∣ ≤ (t̃− t)
∣∣‹Vs∣∣,

where ‹Vs denotes the vector composed with all the velocities of the configuration
Z̃s.
But of course, for every u ∈ [0, T ] and every Z̃s ∈ V(Zs), one has

T s,0
u−t̃(Z̃s), T

s,0

u−t̃(Zs) ∈ T
s,0
[−T,0]

(
V(Zs)

)
,

and since f (s) is continuous, it is uniformly continuous on the compact set
[0, T ]× T s,0[−T,0]

(
V(Zs)

)
, and there exists γ > 0 such that if |t̃− t| < γ, then for

every u ∈ [0, T ] and every Z̃s ∈ V(Zs):∣∣∣f (s)
(
u, T s,0

u−t̃(Z̃s)
)
− f (s)

(
u, T s,0u−t(Z̃s)

)∣∣∣ < ε

4T
,

and then of course :∫ t

0

∣∣∣∣T s,0t̃−uf
(s)(u, Z̃s)− T s,0t−uf

(s)(u, Z̃s)

∣∣∣∣du ≤ ∫ T

0

ε

4T
du =

ε

4
.

Finally, the second term of the right-hand side of the inequality (5.91) is con-
trolled thanks to the dominated convergence theorem. Indeed, the integrand∣∣∣∣T s,0t−uf

(s)(u, Z̃s)− T s,0t−uf
(s)(u, Zs)

∣∣∣∣
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can be obviously uniformly bounded on [0, T ]× T s,0[−T,0]

(
V(Zs)

)
by

max
[0,T ]×T s,0

[−T,0](V(Zs))
f (s),

which is of course integrable on the compact interval [0, t] ⊂ [0, T ]. The con-

trol then holds thanks to the convergence almost everywhere of T s,0t−uf
(s)(u, Z̃s)

towards T s,0t−uf
(s)(u, Zs) when Z̃s → Zs, that is there exists δ > 0 such that if∣∣Z̃s − Zs∣∣ < δ, then :∫ t

0

∣∣∣∣T s,0t−uf
(s)(u, Z̃s)− T s,0t−uf

(s)(u, Zs)

∣∣∣∣du < ε

4
,

so that the continuity of the integrated collision-transport of the Boltzmann
hierarchy is proved.
Assuming now that there exists gs fulfilling the hypothesis of boundedness on

f (s)(t, Zs)

gs
(
t,
∣∣Vs∣∣) ,

one has of course almost everywhere that∫ t

0

T s,0t−uf
(s)(u, Zs) du ≤

∫ t

0

∣∣∣∣∣f (s)(u, Zs)

gs
(
u, |Vs|

) ∣∣∣∣∣
L∞((Ωc×Rd)s)

gs
(
u,
∣∣(T s,0t−u(Zs)

)V ∣∣)du

≤
∫ t

0

∣∣∣∣∣f (s)(u, Zs)

gs
(
u, |Vs|

) ∣∣∣∣∣
L∞((Ωc×Rd)s)

gs
(
u,
∣∣Vs∣∣) du,

so Lemma 13 is entirely proved.

In fact, in the sequel, the hypothesis of Lemma 13 page 173 of continuity at the
boundary will be always fulfilled, since one will consider functions satisfying the
stronger boundary condition

f (s)(t, Zs) = f (s)(t, Ẑs),

where Zs is a configuration such that at least one of its particles is on the
boundary of the obstacle, that is in the case of the half space, when there exists
at least one integer 1 ≤ i ≤ s such that

xi · e1 = 0,

with a post-bouncing velocity, that is with

vi · e1 > 0

and where Ẑs is the same configuration except that the velocity of the particles
on the boundary have been replaced by

v̂i = S0(vi),

the orthogonal symmetry with respect to the boundary of the obstacle, that is
the wall x · e1 = 0. Actually, one has in fact naturally recovered the boundary
conditions already given in Definition 11 page 79.
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5.2.4 The need for a decrease in the entire phase space
variable

The loss of uniform continuity in time in the phase space variable

In Section 6.1 one defined properly the transport-collision operator for the
BBGKY hierarchy, proceeding in two steps. First, one considered L∞ func-
tions over the phase space of s+ 1 particles, without any dependence on time.
Afterwards, the natural way to extend the result to time-dependent functions
was to use piecewise constant in time functions, and then consider the closure
of this subset inside the larger functional space L∞

(
[0, T ], L∞

(
Dεs+1

))
. Finally,

the functional space chosen for the rigorous definition of the transport-collision
operator of the BBGKY hierarchy was

C
(
[0, T ], L∞

(
Dεs+1

))
,

with an additional hypothesis of decay in the velocity variable.

For the integrated in time collision-transport operator of the Boltzmann hi-
erarchy, one has seen that the same hypothesis concerning a decrease in the
velocity variable is sufficient, and this hypothesis was important in order to be
able to assert that the integral (12) page 169 defining the collision operator
is converging. But more important here : one has seen that the continuity is
preserved, that is if one considers a function f (s+1) belonging to the functional
space

C
(
[0, T ]×

(
Ωc × Rd

)s+1)
,

(with a decrease in the velocity variable), then its image by the integrated in time
collision-transport operator of the Boltzmann hierarchy has the same regularity,
that is

(t, Zs) 7→
∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, Zs) du ∈ C
(
[0, T ]×

(
Ωc × Rd

)s)
(this is a simple consequence of Lemmas 12 page 169 and 13 page 173 together).

One recalls that one of the main objectives of this work is to prove a con-
vergence of the solutions of the BBGKY hierarchy towards the solutions of the
Boltzmann hierarchy. As a consequence, it is mandatory to find a functional
setting for each hierarchy, such that the solutions of the two hierarchies share
the same properties. Therefore, one is led to choosing the strongest regularity
for the two hierarchies.
However an important problem arises from this additional assumption of conti-
nuity (it is important to note here that the elements of C

(
[0, T ], C

((
Ωc×Rd

)s))
have much better regularity than the elements of C

(
[0, T ]×

(
Ωc ×Rd

)s)
), since
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for two times t1 and t2 close, one has :∣∣∣∣∣
∫ t2

0

T s,0t2−uC
0
s,s+1f

(s+1)(u, Zs) du−
∫ t1

0

T s,0t1−uC
0
s,s+1f

(s+1)(u, Zs) du

∣∣∣∣∣
≤
∣∣∣∣∣
∫ t2

t1

T s,0t2−uC
0
s,s+1f

(s+1)(u, Zs) du

∣∣∣∣∣
+

∫ t1

0

∣∣∣T s,0t2−uC
0
s,s+1f

(s+1)(u, Zs)− T s,0t1−uC
0
s,s+1f

(s+1)(u, Zs)
∣∣∣du.

The first term is controlled without any problem, since the hypothesis on the
uniform in time and position decrease in the velocity variable implies in partic-
ular that the integrand is bounded, and when t2 → t1, it is then clear that the
first term goes to zero.
Nevertheless, the second term causes trouble. Indeed, without any additional
assumption, it seems impossible to assert that it converges to zero, uniformly in
the phase space variable, as t2 converges to t1.
In other words, the continuity in time seems to be lost.

Besides, considering the Boltzmann hierarchy in its totality :

f (s)(t, Zs) =
(
T s,0t f (s)(0, ·)

)
(Zs) +

∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, Zs) du,

in order to obtain something consistent, one wants to have the same regularity
for each term. In particular, one desires to have :

(t, Zs) 7→
(
T s,0t f (s)(0, ·)

)
(Zs) ∈ C

(
[0, T ], C

((
Ωc × Rd

)s))
.

Unfortunately, this cannot be true in general for any continuous initial datum
f (s)(0, Zs).
Indeed, if one chooses the case without obstacle (even if it is possible to construct
such counter-examples when there is a convex obstacle on which the particles
bounce) and if one considers the simple example of a continuous distribution

function for one particle f
(1)
0 ∈ C

(
Ωc × Rd

)
such that :

•
∣∣f (1)

0 (x, v)
∣∣ ≤ 1 for all (x, v) ∈ Ωc × Rd,

• f (1)(xk, e1) = 1, where xk denotes the vector (k, 0, . . . , 0) ∈ Rd and e1

denotes the first vector of the canonical basis of the Euclidean space Rd,

• f (1)(x, e1) = 0 for all x ∈ B(xk, 1/2)\B(xk, 1/2
k),

then it is clear that, for any strictly positive time t, even very small, one can
choose a position xk such that :∣∣f (1)(xk − te1, e1)− f (1)(xk, e1)

∣∣ = 1,
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that is, in other words :∣∣T 1,0
t f (1)(xk, e1)− f (1)(xk, e1)

∣∣ = 1,

which implies of course that :∣∣T 1,0
t f (1) − f (1)

∣∣
∞ 9

t→0
0.

As a consequence, there is no hope for general continuous initial datum to re-
cover the continuity in time after the application of the free transport (with
boundary conditions or not), and then no hope to obtain a well-posed Boltz-
mann hierarchy in the functional space C

(
[0, T ], C

((
Ωc × Rd

)s))
(even with an

additional decrease in the velocity variable, as it was assumed in order to define
the BBGKY hierarchy).

The strategy to recover uniform in the phase space variable continuity
in time

The phenomenon behind this loss of continuity in time is quite easy to identify :
it is a problem of concentration of the derivative. In other words, the problem
is that, even though a continuous function is bounded, its derivative can reach
very high values.
Of course, this problem is specific to the unbounded setting. In the torus for
example, no such example of functions can be found.

To prevent this problem, there are mainly two different solutions.

• One can either ask in addition that the space derivative of the functions
involved to solve the Boltzmann hierarchy is bounded. To be more precise,
since one works with continuous functions only, so that they cannot be
differentiated in general, one can work with Lipschitz functions. However,
from the use of this additional assumption emerge two problems. First, the
uniform norm used to compare functions involved to define the collision-
transport operators does not see the Lipschitz nature of functions, so one
should instead consider another norm, an then work again to check if the
collision operator makes sense for both of the hierarchies. Second, and
it is more or less the same kind of problem, the subset of the Lispchitz
functions is not closed in the set of the continuous functions for the uniform
norm. Since the argument of existence and uniqueness of solutions of the
hierarchies is based on a fixed point argument, as it will be detailed in the
sequel, the setting of a Banach space is essential, but this structure is lost
with this additional assumption.

• Or one can ask in addition that the functions go to zero when the phase
space variable becomes large. Behind, this is the idea of using the theory
of continuous functions defined on compact sets : if the compactness is
not fulfilled, one will just ask in addition that, for any ε > 0, there exists
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a compact set in the phase space such that, outside this set, the function
is smaller than ε, that is negligible. This explains why one did not need
any other assumptions than the continuity in the case of particles evolving
inside a torus, which is of course a compact manifold (see [34]).
The great advantage of this choice is that the set of continuous functions
that go to zero at infinity is closed in the set of continuous functions, and
then it is a Banach space. Moreover, the fact that the initial data, which
are in the context of the statistical physics density functions, go to zero at
infinity in the position variable can be understood as if there is no mass
at infinity, which is a quite satisfying assumption.

• One can in fact state a more general, and then less demanding, assumption
on the initial data. In fact it is enough to assume that the initial data are
uniformly continuous with respect to the position variable. This setting
will not be used in this work, however since the subset of uniformly con-
tinuous functions is closed for the uniform norm in the set of continuous
functions, it is also an interesting setting.

It is now clear that the two problems identified in the previous paragraph, at the
beginning of this Section 5.2.4 are now tackled with this additional assumption.
Indeed, for any function f̃ (s) given by the expression

f̃ (s)(t, Zs) =
(
T s,0t f

(s)
0

)
(Zs) +

∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, Zs) du,

with f
(s)
0 and f (s+1) continuous and vanishing at infinity, if one wants to control

uniformly in the phase space variable Zs the difference

f̃ (s)(t1, Zs)− f̃ (s)(t2, Zs)

as t2 − t1 goes to zero, first one uses the decrease at infinity of the initial

datum f
(s)
0 and of the function f (s+1). Outside a ball of large radius in the

phase space,f (s+1) and f
(s)
0 are uniformly small, and so are T s,0t f

(s)
0 (Zs), and∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, Zs) du.

Now for the remaining part of the phase space, one notices that in any compact
set the uniform continuity of continuous functions can be used, wich enables to
evaluate uniformly in the phase space variable :

T s,0t1−t2f
(s)(Zs)− f (s)(Zs),

and ∫ t2

0

T s,0t2−uC
0
s,s+1f

(s+1)(u, Zs) du−
∫ t1

0

T s,0t1−uC
0
s,s+1f

(s+1)(u, Zs) du,

so that the continuity in time, uniformly in the phase space variable, is recov-
ered. The following lemma presents the result rigorously.
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Lemma 14 (Uniform in the phase space variable continuity in time for con-
tinuous functions verifying decreasing hypothesis with respect to the velocity
variable and vanishing at infinity). Let T be a strictly positive number, and s
be a positive integer. One considers two measurable functions gs : R+ → R+

and gs+1 : [0, T ] × R+ → R+ strictly positive almost everywhere such that for
all t ∈ [0, T ] :

Vs 7→ |Vs|gs
(
t, |Vs|

)
∈ L1

(
Rds
)
,

and
Vs+1 7→ |Vs+1|gs+1

(
t, |Vs+1|

)
∈ L1

(
Rd(s+1)

)
.

Then for every continuous functions :

f
(s)
0 ∈ C0

((
Ωc × Rd

)s)
, f (s+1) ∈ C0

(
[0, T ]×

(
Ωc × Rd

)s+1)
(where C0(X) denotes of course the continuous functions on X vanishing at
infinity) such that ∣∣∣∣∣ f (s)(Zs)

gs
(
t, |Vs+1|

) ∣∣∣∣∣
L∞((Ωc×Rd)s)

< +∞

and ∣∣∣∣∣f (s+1)(t, Zs+1)

gs+1

(
t, |Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞((Ωc×Rd)s))

< +∞,

the continuous functions®
[0, T ]×

(
Ωc × Rd

)s → R,
(t, Zs) 7→ T s,0t f

(s)
0 (t, Zs)

and ®
[0, T ]×

(
Ωc × Rd

)s → R,
(t, Zs) 7→

∫ t
0
T s,0t−uC0

s,s+1f
(s+1)(u, Zs) du

belong to the space C0
(
[0, T ]×

(
Ωc×Rd

)s)
of uniform in the phase space variable

continuous in time functions.

Remark 13. One finishes this section with a short discussion about some gen-
eral considerations related to functions vanishing at infinity in some variables,
and depending in addition on another parameter.

• The functional space C0
(
[0, T ] ×

(
Ωc × Rd

)s)
of continuous functions on

[0, T ]×
(
Ωc×Rd

)s
vanishing at infinity is defined as the set of continuous

functions f (s) on [0, T ]×
(
Ωc × Rd

)s
such that :

|f (s)(t, Zs)| −→
|(t,Zs)|→+∞

0.

The time variable t belongs to the bounded interval [0, T ], so of course t
cannot go to infinity. The notation |(t, Zs)| → +∞ emphasizes on the fact
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that the convergence to zero has to hold not only in the case when t is
fixed.
This space must not be confused with the space of continuous functions on
[0, T ]×

(
Ωc × Rd

)s
such that, for all t ∈ [0, T ], one has :

|f (s)(t, Zs)| −→
|Zs|→+∞

0,

since the last one is strictly larger than C0
(
[0, T ]×

(
Ωc × Rd

)s)
.

Indeed, it is easy to construct an element belonging to the last space while
it is not in the first, replacing

(
Ωc × Rd

)s
by R in order to simplify the

setting. To do so, one can consider the function :

f =


[0, T ]× R → R,

(t, Zs) 7→ f(t, x) = 1[0, 1
2(|x|+1)

]2(|x|+ 1)t

+1] 1
2(|x|+1)

, 1
|x|+1

]2(1− (|x|+ 1)t).

• The elements f (s) of the functional space C0
(
[0, T ] ×

(
Ωc × Rd

)s)
verify

the stronger vanishing property :

∀α > 0,∃R > 0 / ∀t ≥ 0, |Zs| ≥ R⇒ |f (s)(t, Zs)| ≤ α,

which asserts that the convergence to zero is uniform in the time variable t.
Besides, for all functions f of C0

(
[0, T ]×

(
Ωc×Rd

)s)
and for all t ∈ [0, T ],

Zs 7→ f (s)(t, Zs) is uniformly continuous.

• This uniform continuity enables to state the following equality between
functional spaces :

C0
(
[0, T ]×

(
Ωc × Rd

)s)
= C

(
[0, T ], C0

((
Ωc × Rd

)s))
.



Chapter 6

About the rigorous
definition of the hierarchies

One has seen in Section 4.1 page 81 that the BBGKY hierarchy can be rewritten
in an integrated form, that is one has :

f
(s)
N (t, Zs) = T s,εt f

(s)
N (0, Zs) +

∫ t

0

T s,εt−uC
N,ε
s,s+1f

(s+1)
N (u, Zs) du, (6.1)

for N given, and any 1 ≤ s ≤ N − 1, exactly as the Boltzmann hierarchy, which
is composed of the very similar sequence of equations :

f (s)(t, Zs) = T s,εt f (s)(0, Zs) +

∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, Zs) du, (6.2)

for every s ≥ 1.

On the one hand, the results obtained in Section 5.2 provide a functional setting
in which the Boltzmann hierarchy is well defined. In other words, one found that
if f (s) and f (s+1) belong respectively to

C0
(
[0, T ]×

(
Ωc × Rd

)s)
and

C0
(
[0, T ]×

(
Ωc × Rd

)s+1)
,

with in addition for t ∈ [0, T ]∣∣∣∣f (s)(t, Zs)

gs
(
t,
∣∣Vs∣∣)

∣∣∣∣
L∞((Ωc×Rd)s)

< +∞ and

∣∣∣∣f (s+1)(t, Zs+1)

gs+1

(
t,
∣∣Vs+1

∣∣)
∣∣∣∣
L∞((Ωc×Rd)s+1)

< +∞,

with

Vs 7→
∣∣Vs∣∣gs(t, |Vs|) and Vs+1 7→

∣∣Vs+1

∣∣gs+1

(
t, |Vs+1|

)
185
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both integrable, then each term of the equation (6.2) makes sense, and one ob-
tained therefore a consistent equation.
On the other hand, before Section 5.1 dealing with the definition of the col-
lision operator of the BBGKY hierarchy, the equation (6.1) was only formal.
Besides, this operator alone was not defined, one only provided a definition for
the collision operator composed with the hard sphere flow :

CN,εs,s+1T s+1,ε
u h

(s+1)
N

(see Theorem 1 page 137).
In the following Section 6.1, one defines the integrated in time transport-collision-
transport of the BBGKY hierarchy∫ t

0

T s,εt−uC
N,ε
s,s+1f

(s+1)
N (u, Zs) du,

this definition finishing therefore to provide a rigorous definition of all the terms
involved in the writing of the BBGKY hierarchy (6.1) (since the hard sphere

transport preserves the measure, the term
(
T s,εt f

(s)
N (0, ·)

)
(Zs) is not a source

of trouble). Using the functional spaces on which each equation of the BBGKY
hierarchy is defined, this section will be concluded with Theorem 2 (page 194),
providing a functional setting on which the BBGKY hierarchy will be defined.
In Section 6.2, one will write for the sake of completeness the analog of Theorem
2 for the Boltzmann hierarchy (see Theorem 3 page 197), even if this result could
have been written previously, since all the tools were already obtained in the
previous Section 5.2.

6.1 The case of the BBGKY hierarchy

6.1.1 Definition of the conjugate BBGKY hierarchy and
stability on the functional spaces involved

In Section 5, one has shown that the collision operator is well-defined on the
functional space C

(
[0, T ], L∞

(
Dεs+1

))
, assuming in addition a decrease in high

velocities, if one composes it with the hard sphere transport (this is the purpose
of Section 5.1, see its concluding Theorem 1 page 137).
From the finite sequence of equations :

∀ 1 ≤ s ≤ N − 1, f
(s)
N (t, ·) = T s,εt f

(s)
N (0, ·) +

∫ t

0

T s,εt−uC
N,ε
s,s+1f

(s+1)
N (u, ·) du,

one defines formally a new hierarchy, such that the unknown is now h
(s)
N , defined

as
h

(s)
N = T s,ε−t f

(s)
N ,

in order to use Theorem 1. In the following, the theorems of existence and
uniqueness will be stated for this new hierarchy, holding for the conjugate se-

quence
(
h

(s)
N

)
1≤s≤N , since the work done in Section 5 cannot be performed on
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the original integrated equations of the BBGKY hierarchy (6.1).

Rewriting the generic equation of the BBGKY hierarchy with h
(s)
N and h

(s+1)
N

instead of f
(s)
N and f

(s+1)
N , one obtains :

T s,εt h
(s)
N (t, ·) = T s,εt f

(s)
N (0, ·) +

∫ t

0

T s,εt−uC
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, ·) du,

and finally applying the hard sphere transport for a time t to the last equation,
one gets :

h
(s)
N (t, ·) = f

(s)
N (0, ·) +

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, ·) du,

which will be the relevant object in the following.

Definition 17 (Integrated form of the conjugate BBGKY hierarchy). Let N
be a positive integer and T and ε be two strictly positive real numbers. For two
sequences of functions :

FN,0 =
(
f

(s)
N,0

)
1≤s≤N ∈

(
L∞(Dεs

))
1≤s≤N

and
HN =

(
h

(s)
N

)
1≤s≤N ∈

(
C
(
[0, T ], L∞

(
Dεs
)))

1≤s≤N
,

of functions, HN is said to be verifying the the integrated form of the conjugate
BBGKY hierarchy with initial datum FN,0 if for all 1 ≤ s ≤ N − 1 :

h
(s)
N (t, Zs) = f

(s)
N,0(Zs) +

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, Zs) du, (6.3)

and for s = N :

h
(N)
N (t, ZN ) = f

(N)
N,0 (ZN ).

6.1.2 Stability of the continuous in time functions by the
integrated in time transport-collision-transport of
the BBGKY hierarchy

On the one hand, one has only shown so far that the transport-collision operator
of the BBGKY hierarchy takes its values in the functional space

L∞
(
[0, T ]×Dεs

)
(see Theorem 1 page 137), and on the other hand, the relevant functional
space for the image of the transport-collision-transport operator turns out to
be L1

(
[0, T ], X

)
, with X some Banach space, as it is required by the equation

(6.3) written in Definition 17.
Finally, remembering that the BBGKY hierarchy consists in N equations, one
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shall work, not only on functions satisfying any equation separately, but on
sequences of functions such that each term verifies an equation. Besides, the
BBGKY hierarchy is a system of equations which are not closed, except the

last one. Indeed, for any positive integer s ≤ N − 1, each equation involves f
(s)
N

and f
(s+1)
N . So if one assumes that f

(s+1)
N belongs to C

(
[0, T ], L∞

(
Dεs+1

))
with

additional hypotheses on the decay in high velocities, one wants to be able to
define the transport-collision-transport operator such that the equation (6.3)
is consistent, that is such that each side of the equation belongs to the same
functional space. In other words, one wants to prove that :∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N du ∈ C

(
[0, T ], L∞

(
Dεs
))
,

with the same decrease in high velocity. This is the purpose of the following
lemma.

Lemma 15 (Stability by the integrated in time transport-collision-transport
operator of the BBGKY hierarchy of the subset of continuous in time L∞ func-
tions on the phase space decaying sufficiently fast at infinity in the velocity
variables). Let s be a positive integer, ε and T be two strictly positive numbers.
Let in addition gs+1 : [0, T ]× R+ → R+ a function satisfying :

• (t, x) 7→ gs+1(t, x) is a measurable, almost everywhere strictly positive
function,

• for all t ∈ [0, T ] and almost every Vs ∈ Rds, the function :

vs+1 7→ |Vs+1|gs+1

(
t, |Vs+1|

)
is integrable,

• the function :

(t, Vs) 7→
∫
Rd
|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1

is bounded almost everywhere, and∣∣∣∣ ∫
Rd
1|Vs+1|≥R|Vs+1|gs+1

(
t, |Vs+1|

)
dvs+1

∣∣∣∣
L∞(Rds)

converges to zero as R goes to infinity.

Then for every integer 1 ≤ i ≤ s, any sign + or −, and for every function
h(s+1) ∈ C

(
[0, T ], L∞

(
Dεs+1

))
such that∣∣∣∣∣h(s+1)(t, Zs+1)

gs+1

(
t, |Vs+1|

) ∣∣∣∣∣
L∞([0,T ],L∞(Dε

s+1
))

< +∞,
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the function :

(t, Zs) 7→
∫ t

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, Zs) du.

is well-defined and belongs to the functional space C
(
[0, T ], L∞

(
Dεs
))

.
In addition, one has, for every u ≤ t ∈ [0, T ] and for almost every Zs ∈ Dεs :∣∣∣∣∣
∫ t

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, Zs) du

∣∣∣∣∣
≤ εd−1 |Sd−1|

2

×
∫ t

u

∣∣∣∣∣h(s+1)(τ, Zs+1)

gs+1

(
τ, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

∫
Rd

(
|vi|+ |vs+1|

)
gs+1

(
τ, |Vs+1|

)
dvs+1 dτ.

(6.4)

Proof. The proof will start by the definition of the function, for any t ∈ [0, T ] :

Zs 7→
∫ t

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, Zs) du.

First, thanks to Theorem 1 page 137, the function :

(u, Zs) 7→ Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, Zs)

is almost everywhere well defined, measurable and is essentially bounded.
Besides, since the hard sphere transport, well defined on the whole phase space
except for a subset of measure zero and for any time t ∈ [0, T ] (in fact, for every
t ∈ R), is continuous on this interval and preserves the measure, the mapß

[0, T ]×Dεs → [0, T ]×Dεs,
(u, Zs) 7→

(
u, T s,εu (Zs)

)
,

is also defined and continuous almost everywhere on [0, T ] × Dεs and preserves
the measure. In particular, the function

[0, T ]×Dεs → R,
(u, Zs) 7→ Cεs,s+1,±,iT s+1,ε

u h(s+1)
(
u, T s,ε−u(Zs)

)
= T s,ε−u Cεs,s+1,±,iT s+1,ε

u h(s+1)(u, Zs),

is almost everywhere well defined, measurable, essentially bounded and one has,
for almost every u ∈ [0, T ] :∣∣∣Cεs,s+1,±,iT s+1,ε

u h(s+1)
∣∣∣
L∞([0,T ]×Dεs)

=
∣∣∣T s,ε−u Cεs,s+1,±,iT s+1,ε

u h(s+1)
∣∣∣
L∞([0,T ]×Dεs)

.

So for any measurable subset A of [0, T ]×Dεs of finite measure, the function :

1AT s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, ·)
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is measurable, and integrable as a product of an integrable function with an
essentially bounded function, and one has of course :∫ T

0

∫
Dεs

1AT s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1) dZs du

≤ |A|
∣∣∣T s,ε−u Cεs,s+1,±,iT s+1,ε

u h(s+1)
∣∣∣
L∞([0,T ]×Dεs)

≤ |A|
∣∣∣Cεs,s+1,±,iT s+1,ε

u h(s+1)
∣∣∣
L∞([0,T ]×Dεs)

. (6.5)

In particular, for every measurable subset B of Dεs of finite measure and for
every t ∈ [0, T ], the function

1[0,t]×BT s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, ·)

is integrable on [0, T ]×Dεs, so by the Fubini theorem, the function

1B(Zs)

∫ T

0

1[0,t]T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, ·) du

= 1B(Zs)

∫ t

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, ·) du

is almost everywhere well-defined and is integrable. Moreover, the inequal-
ity (6.5) can be rewritten here as∫

Dεs

∣∣∣1B(Zs)

∫ t

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, Zs) du

∣∣∣ dZs
≤
∫ T

0

∫
Dεs

1[0,t]×B

∣∣∣T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, Zs)

∣∣∣dZs du

≤ t|B|
∣∣∣Cεs,s+1,±,iT s+1,ε

u h(s+1)
∣∣∣
L∞([0,T ]×Dεs)

≤ T |B|
∣∣∣Cεs,s+1,±,iT s+1,ε

u h(s+1)
∣∣∣
L∞([0,T ]×Dεs)

.

On the other hand, for every t ∈ [0, T ], one can define the measurable function

Zs 7→
∫ t

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, Zs) du

as the almost everywhere limit of the sequence of functions

Zs 7→ 1Bk

∫ t

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, Zs) du,

where
(
Bk
)
k≥0

denotes any covering sequence of compact subsets of the phase

spaceDεs. Of course this defines a function which does not depend on the covering
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sequence of compact subsets. This function verifies then, for any measurable
subset B of the phase space Dεs of finite measure, the same inequality as above,
that is ∫

Dεs

∣∣∣1B(Zs)

∫ t

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, Zs) du

∣∣∣ dZs
≤ T |B|

∣∣∣Cεs,s+1,±,iT s+1,ε
u h(s+1)

∣∣∣
L∞([0,T ]×Dεs)

,

which proves that, for every t ∈ [0, T ], the function

Zs 7→
∫ t

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, Zs) du

is in fact essentially bounded, and one has :∣∣∣∣ ∫ t

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, ·) du

∣∣∣∣
L∞(Dεs)

≤ T
∣∣∣Cεs,s+1,±,iT s+1,ε

u h(s+1)
∣∣∣
L∞([0,T ]×Dεs)

,

which concludes the first part of the proof.
Now, one will show that the map

[0, T ] → L∞
(
Dεs
)

t 7→
(
Zs 7→

∫ t

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, Zs) du

)
is in fact continuous. This is again an easy consequence of the inequality (6.5).
For any t1, t2 ∈ [0, T ] (one will assume that t1 < t2 without loss of generality),
and for any measurable subset B of finite measure of the phase space Dεs, one
has :

∫
Dεs
1B(Zs)

∣∣∣∣ ∫ t2

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, Zs) du

−
∫ t1

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, Zs) du

∣∣∣∣ dZs
=

∫
Dεs

1B(Zs)

∣∣∣∣ ∫ T

0

1[t1,t2]T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, Zs) du

∣∣∣∣ dZs
≤
∫ T

0

∫
Dεs

1[t1,t2]×B

∣∣∣T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, Zs)

∣∣∣dZs du

≤ |t2 − t1| · |B|
∣∣∣Cεs,s+1,±,iT s+1,ε

u h(s+1)
∣∣∣
L∞([0,T ]×Dεs)

.
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This shows that the difference of the two essentially bounded functions :∫ t2

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u hi(s+1)(u, Zs) du

−
∫ t1

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, Zs) du

has its L∞ norm controlled as follows :∣∣∣∣ ∫ t2

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, ·) du

−
∫ t1

0

T s,ε−u Cεs,s+1,±,iT s+1,ε
u h(s+1)(u, ·) du

∣∣∣∣
L∞(Dεs)

≤ |t2 − t1|
∣∣∣Cεs,s+1,±,iT s+1,ε

u h(s+1)
∣∣∣
L∞([0,T ]×Dεs)

,

which implies in particular the continuity in time in the L∞ norm.
Finally, one will show that the decay property at infinity in the velocitie variable
verified by h(s+1) is propagated to the integrated in time transport-collision-
transport operator applied to h(s+1).
Thanks to the inequality (5.60) stated in Theorem 1 page 138, if one denotes :

Q(t, Zs) =

∣∣∣∣∣
∫ t

u

T s,ε−τ Cεs,s+1,±,iT s+1,ε
τ h(s+1)(τ, Zs) dτ

∣∣∣∣∣,
one has immediately that, for all u ≤ t ∈ [0, T ] and almost every Zs ∈ Dεs :

Q =

∣∣∣∣∣
∫ t

u

Cεs,s+1,±,iT s+1,ε
v h(s+1)

(
v, T s,εv (Zs)

)
dv

∣∣∣∣∣
≤ εd−1

∣∣Sd−1
∣∣

2

×
∫ t

u

∣∣∣∣∣h(s+1)(τ, Zs+1)

fs+1

(
τ, |Vs+1|

) ∣∣∣∣∣
L∞
Zs+1

∫
Rd

(
|vi|+ |vs+1|)gs+1

(
v, |Vs+1|

)
dvs+1 dτ,

where Vs+1 denotes as usual
(
Vs, vs+1

)
, this equality holding true since :∣∣∣(T s,εu (Zs)
)V ∣∣∣ = |Vs|,

by the conservation of the kinetic energy by the hard sphere transport. The
proof of the theorem is complete.

6.1.3 Definition of the appropriate functional spaces for
the BBGKY hierarchy

It is time to introduce again some notations to simplify the statement of the
following Theorem 2 about the definition of the BBGKY hierarchy.
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Definition 18 (X0
ε,s,gs , the functional space of the L∞

(
Dεs
)

functions bounded
in velocity by the function gs). Let s be a positive integer, ε and T be two strictly
positive numbers.
Let in addition gs : R+ → R+ be a function such that :

r 7→ gs(r)

is a measurable, almost everywhere strictly positive function.

One denotes by X0
ε,s,gs the subset of L∞

(
Dεs
)

composed of the functions f
(s)
0

satisfying : ∣∣∣∣Zs 7→ f
(s)
0 (Zs)

gs
(
|Vs|
) ∣∣∣∣
L∞(Dεs)

< +∞.

Definition 19 (‹Xε,s,gs , the functional space of the continuous in time functions
taking their values in L∞

(
Dεs
)

uniformly bounded in velocity by the function
gs). Let s be a positive integer, ε and T be two strictly positive numbers.
Let in addition gs : R+ → R+ be a function such that :

r 7→ gs(r)

is a measurable, almost everywhere strictly positive function.
One denotes by ‹Xε,s,gs the subset of the functional space C

(
[0, T ], L∞

(
Dεs
))

com-

posed of the functions f (s) satisfying, for all t ∈ [0, T ] :∣∣∣∣Zs 7→ f (s)(t, Zs)

gs
(
|Vs|
) ∣∣∣∣

L∞(Dεs)

< +∞.

Remark 14. Those notations may look heavy, therefore one provides a brief
description of them, since those notations will be used extensively in the sequel.
For the functional space X0

ε,s,gs of the initial data introduced in Definition 18,
the exponent 0 means of course that this space is for the initial data of the hi-
erarchy.
On the contrary, the tilde in the notation ‹Xε,s,gs of the functional space intro-
duced in Definition 19 means that one considers functions depending on time,
and this notation for such functional spaces involving time will be used until the
end of this work.

6.1.4 Rigorous definition of the BBGKY hierarchy

One has now all the required tools to define properly the BBGKY hierarchy,
as an operator acting on a finite product of functional spaces, into itself. The
following theorem is an easy consequence of Lemma 15 page 188. The only
important idea here is to find a function which can be integrated several times,
each iterate of integration satisfying for a given positive integer s the conditions
on the function gs+1 of Lemma 15, so that those iterates will play the role of
the uniform bound in velocity for the functions composed with the integrated
in time transport-collision-transport operator of the BBGKY hierarchy.
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Theorem 2 (Rigorous definition of the BBGKY hierarchy for a general family
of functional spaces). Let N be a positive integer, ε and T two strictly positive
numbers.
Let in addition g : R+ → R+ be a function verifying :

• r 7→ g(r) is a measurable, almost everywhere strictly positive function,

• the function :

VN 7→
(
1 + |VN |2

)N/2
g
(
|VN |

)
is integrable,

• for every integer 1 ≤ s ≤ N :∣∣∣∣ ∫
Rd(N−s+1)

1|VN |≥R|VN |
N−s+1g

(
|VN |

)
dvs . . . dvN

∣∣∣∣
L∞(Rd(s−1))

converges to zero as R goes to infinity.

Then (using Definition 18 page 193), for every sequence of initial data :(
f

(s)
N,0

)
1≤s≤N ∈

(
X0
ε,s,gs

)
1≤s≤N ,

and (using Definition 19 page 193) for every sequence of functions :(
f

(s)
N

)
1≤s≤N ∈

(‹Xε,s,gs

)
1≤s≤N

with gN = g and gs denoting, for 1 ≤ s ≤ N − 1 :

gs : Zs 7→
∫
Rd(N−s)

|VN |N−sg
(
|VN |

)
dvs+1 . . . dvN ,

that is such that, for every 1 ≤ s ≤ N :(
f

(s)
N

)
1≤s≤N ∈

(
C
(
[0, T ], L∞

(
Dεs
))

1≤s≤N

with in addition, for all t ∈ [0, T ] and for all 1 ≤ s ≤ N − 1:∣∣∣∣∣∣∣∣
f

(s)
N (t, Zs)∫

Rd(N−s)
|VN |N−sg

(
|VN |

)
dvs+1 . . . dvN

∣∣∣∣∣∣∣∣
L∞(Dεs)

< +∞,

and ∣∣∣∣∣f (N)
N (t, ZN )

g
(
|VN |

) ∣∣∣∣∣
L∞(Dε

N
)

< +∞,

one has that the BBGKY operator(
f

(s)
N

)
1≤s≤N 7→

(
f

(s)
N,0 + 1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u f
(s+1)
N (u, ·) du

)
1≤s≤N

is well defined on
(‹Xε,s,gs

)
1≤s≤N , and takes its values in the same space.
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6.2 The case of the Boltzmann hierarchy

6.2.1 Notations for the appropriate functional spaces for
the Boltzmann hierarchy

One does the same work as for the BBGKY hierarchy, in order to simplify the
statement of Theorem 3 below. First, one starts, as in the previous section, by
introducing some convenient notations.

An important difference with the BBGKY hierarchy lies in the boundary con-
dition verified by the solutions of the Boltzmann hierarchy. Indeed, in Section
5.1, no boundary condition was required to define properly the integrated in
time transport-collision operator of the BBGKY hierarchy. On the contrary,
such a condition was mandatory to define properly the Boltzmann hierarchy
(see Section 5.2, and in particular Section 5.2.3).

Definition 20 (X0
0,s,gs , the functional space of continuous functions on(

Ωc × Rd
)s

vanishing at infinity and bounded in velocity by the function gs).
Let s be a positive integer, T be a strictly positive number.
Let in addition gs : R+ → R+ be a function such that :

r 7→ gs(r)

is a measurable, almost everywhere strictly positive function.
One denotes by X0

0,s,gs the subset of the functional space C0
((

Ωc × Rd
)s)

com-

posed of the functions f
(s)
0 satisfying the boundary condition :

f
(s)
0 (Zs) = f

(s)
0 (χ0

s(Zs)) (6.6)

for all Zs belonging to the boundary of
(
Ωc×Rd

)s
(that is such that there exists

at least an integer 1 ≤ i ≤ s such that xi · e1 = 0 and vi · e1 > 0, with χ0
s defined

in Definition 11 page 79), and the following decay in the velocity variable :∣∣∣∣Zs 7→ f
(s)
0 (Zs)

gs
(
|Vs|
) ∣∣∣∣
L∞(Rds)

< +∞.

Definition 21 (‹X0,s,gs , the functional space of continuous functions on
[0, T ] ×

(
Ωc × Rd

)s
vanishing at infinity uniformly bounded in velocity by the

function gs). Let s be a positive integer, T be a strictly positive number.
Let in addition gs : R+ → R+ be a function such that :

r 7→ gs(r)

is a measurable, almost everywhere strictly positive function.
One denotes by ‹X0,s,gs the subset of the functional space C0

(
[0, T ]×

(
Ωc×Rd

)s)
composed of the functions f (s) satisfying for all t ∈ [0, T ] the boundary condi-
tion :

f (s)(t, Zs) = f (s)(t, χ0
s(Zs)) (6.7)
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for all Zs belonging to the boundary of
(
Ωc×Rd

)s
(that is such that there exists

at least an integer 1 ≤ i ≤ s such that xi · e1 = 0 and vi · e1 > 0, with χ0
s defined

in Definition 11 page 79), and the following decay in the velocity variable :∣∣∣∣Zs 7→ f (s)(t, Zs)

gs
(
|Vs|
) ∣∣∣∣

L∞(Rds)
< +∞.

Remark 15. The only difference with the notations of the spaces introduced for
the BBGKY hierarchy lies in the first index : ε is replaced by zero, which means
that the particle have a radius zero.

6.2.2 A slightly different way of defining the sequence of
functional spaces for the Boltzmann hierarchy

The setting chosen in order to define the finite sequence of functional spaces on
which the BBGKY hierarchy is defined relies on a single function, denoted g in
the statement of Theorem 2 page 194. This function, depending only on the ve-
locity variable, is meant to bound uniformly the distribution functions of the N
particles. Moreover, integrated with respect to the N − s last velocity variables,
the function obtained is meant to bound the s-th marginal, for s ≤ N particles.
One defined therefore a finite family of functional spaces, each marginal lying
in an element of this family, and this function g had to be chosen so that the
BBGKY hierarchy sends actually this finite sequence of functional spaces into
itself.
Of course, this cannot be done for the Boltzmann hierarchy, since this hierarchy
involves an infinite number of equations, and then an infinite sequence of func-
tional spaces. It would imply that, if one tries to follow the idea used for the
BBGKY hierarchy, to find a function with an infinite number of variables, such
that one can obtain, by integrating this function, all of the weights in velocity
used to define each of the functional spaces forming the infinite sequence on
which the Boltzmann hierarchy should be defined.

However, the idea of choosing a single function in velocity (in order to be inte-
grated several times to bound the profile of the marginals) is convenient, but not
mandatory to define this sequence of functional spaces on which the hierarchies
will act. Indeed, going back to the inequalities (5.88) of Lemma 12 page 169,
and (5.90) of Lemma 13 page 173, one sees that if the Boltzmann hierarchy is

well defined on the sequence of functional spaces
(‹X0,s,gs

)
s≥1

(for example, it is

sufficient to assume that Vs 7→ |Vs|gs
(
|Vs|
)

is integrable for every positive inte-

ger s), the k-th term of the image of the sequence
(
f (s)

)
s≥1

by the Boltzmann

operator, which is :

T k,0t f
(k)
0 +

∫ t

0

T k,0t−uC0
k,k+1f

(k+1) du

will belong to the space ‹X0,k,gk if one has :
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• of course that :

f
(k)
0 ∈ X0,k,gk ,

• and that : ∫
Rdvk+1

|Vk+1|gk+1

(
|Vk+1|

)
dvk+1 ≤ gk

(
|Vk|

)
. (6.8)

Indeed, the first inequality ensures that t 7→ T k,0t f
(k)
0 belongs to ‹X0,k,gk , while

the second one, with the two inequalities (5.88) page 169, and (5.90) page
173 proves that the integrated in time collision-transport term belongs also
to ‹X0,k,gk .
This inequality (6.8) will be then the condition used to define the infinite se-
quence of functional spaces on which the Boltzmann operator will act.

6.2.3 The definition of the Boltzmann hierarchy

As for the BBGKY hierarchy, the following theorem is a consequence of the
previous lemmas. However, one will point out an important difference in a very
short proof below the statement.

Theorem 3 (Definition of the Boltzmann hierarchy on the infinite product of

the functional spaces
(
X0,s,gs

)
s≥1

). Let T be a strictly positive number.

Let in addition
(
gs
)
s≥1

be a sequence of functions gs : R+ → R+ verifying :

• for every s ≥ 1, r 7→ gs(r) is a measurable, almost everywhere strictly
positive function,

• for every integer s ≥ 1, the function :

Vs 7→ |Vs|gs
(
|Vs|
)

is integrable,

• for every integer s ≥ 1 :∫
Rdvs+1

|Vs+1|gs+1

(
|Vs+1|

)
dvs+1 ≤ gs

(
|Vs|
)
.

Then for every sequence of initial data :(
f

(s)
0

)
s≥1
∈
(
X0,s,gs

)
s≥1

,

(where
(
X0,s,gs

)
s≥1

is introduced in Definition 20 page 195) and for every se-

quence of functions : (
f (s)

)
s≥1
∈
(‹X0,s,gs

)
s≥1
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(where
(‹X0,s,gs

)
s≥1

is introduced in Definition 21 page 195), the Boltzmann
operator :

(
f (s)

)
s≥1
7→
(
T s,0t f

(s)
0 +

∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, ·) du
)
s≥1

is well-defined on
(‹X0,s,gs

)
s≥1

, and takes its values in the same space.

Proof. The assumption on the boundary condition (6.7) satisfied by each term
of the sequence f (s) (according to Definition 21 page 195) is stronger than the
assumption of continuity on

(
Ωc × Rd

)s
, required to apply Lemma 13 page

173. Therefore, applying together Lemmas 12 page 169 and 13, one sees that
the second term of the Boltzmann hierarchy, namely the integrated in time
collision-transport operator

f (s+1) 7→
(

(t, Zs) 7→
∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, ·) du
)

sends the space ‹X0,s+1,gs+1
into ‹X0,s,gs , and the decrease in velocity is also re-

covered.

For the other term, and this is specific to the case of the Boltzmann hierar-
chy, the boundary condition (6.6) stated in Definition 21 is important to obtain
that

(t, Zs) 7→
(
T s,0t f

(s)
0

)
(Zs)

is continuous, uniformly in Zs, that is, is an element of

C
(
[0, T ], L∞

((
Ωc × Rd

)s))
.

Besides, the decay with respect to the velocity variable and the vanishing prop-
erties at infinity are immediately recovered.

6.3 About the functions used to define the spaces
X0
·,s,gs and ›X·,s,gs

6.3.1 Compatibility between the functions defining the
spaces for the BBGKY and the Boltzmann hierar-
chies

So far, one has proven in this section the rigorous definition of the BBGKY
(Theorem 2 page 194) and the Boltzmann operators (Theorem 3 page 197), and
one has shown in addition that those operators send their respective domains
into themselves.
However to do so, one required that each equation of the two hierarchies is
defined on a functional space composed of functions verifying a uniform decrease
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in velocity, namely, for each functional space, its functions had to be bounded
by a profile depending only on the velocity variables, and those profiles had to
satisfy a compatibility condition : the bound defining the decrease for the s+ 1-
th equation should be integrable, and after an integration one should recover the
bound defining the decrease for the s-th equation. As a summary, one assumed
for the BBGKY hierarchy that there exists a function :

g : R+ → R+

such that :

• for all 1 ≤ s ≤ N , the function :ß
RdN → R+,
VN 7→ |VN |sg

(
|VN |

)
is integrable and for all 2 ≤ s ≤ N the function :

(v1, . . . , vs−1) 7→
∫
Rd(N−s+1)

|VN |N−s+1g
(
|VN |

)
dvs . . . dvN

is bounded almost everywhere,

• for all 1 ≤ s ≤ N :∣∣∣ ∫
Rd(N−s+1)

1|VN |≥R|VN |
N−s+1g

(
|VN |

)
dvs . . . dvN

∣∣∣
L∞(Rd(s−1))

goes to zero as R goes to infinity.

For the Boltzmann hierarchy, one has assumed that there exists a sequence(
gs
)
s≥1

of functions :

gs : R+ → R+

such that :

• for every s ≥ 1, x 7→ gs(x) is a measurable, almost everywhere strictly
positive function,

• for every integer s ≥ 1, the function :

Vs 7→ |Vs|gs
(
|Vs|
)

is integrable,

• for every integer s ≥ 1 :∫
Rdvs+1

|Vs+1|gs+1

(
|Vs+1|

)
dvs+1 ≤ gs

(
|Vs|
)
.
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The final goal of this work is to compare solutions of the BBGKY hierarchy to
solutions of the Boltzmann hierarchy. To do so, those solutions have to belong to
similar spaces, in the sense that one wants to compare elements of the sequence
of functional spaces

(‹Xε,s,gs

)
1≤s≤N with elements of

(‹X0,s,gs

)
s≥1

, the two se-

quences of functional spaces being defined with the same functions gs bounding
uniformly the profile with respect to the velocity variable. To be more explicit,
the idea is to consider

(‹X0,s,gs

)
s≥1

as fixed, while the space
(‹Xε,s,gs

)
1≤s≤N is

the one containing approximating elements of the solution of the Boltzmann
hierachy, this approximation being more and more accurate as the number of
particles N grows, that is as the length of the sequence of functional spaces
composing

(‹Xε,s,gs

)
1≤s≤N grows.

This consideration leads to considering the sequence
(
gs
)
s≥1

defining the space

on which the Boltzmann operator acts as given, and one wants to obtain for any
positive integer N , from the finite sequence g1, . . . , gN , the required properties
that this finite sequence has to verify in order to define properly the BBGKY
operator on this sequence of functional spaces.
In other words, if one assumes that the sequence

(
gs
)
s≥1

verifies the assump-

tions, recalled above, used to define the Boltzmann hierarchy, is it enough to
obtain that the assumptions used to define the BBGKY hierarchy hold true ?
Clearly, it is not. Finally, one will work with sequence of functions

(
gs
)
s≥1

ver-

ifying the following hypotheses.

Definition 22 (Hypotheses for the joint definition of the BBGKY and Boltz-
mann operators). Let

(
gs
)
s≥1

be a sequence of functions gs : R+ → R+. This

sequence
(
gs
)
s≥1

will be called hierarchies-admissible if it verifies the following

hypotheses :

1. for every N ≥ 1, r 7→ gN (r) is a measurable, almost everywhere strictly
positive function,

2. for every integer N ≥ 1, the function

VN 7→
(
1 + |VN |2

)N/2
gN
(
|VN |

)
is integrable,

3. for every integer N ≥ 1, and for every integer 1 ≤ s ≤ N :

1

gN
(
|VN |

) ∫
Rds
|VN+s|sgN+s

(
|VN+s|

)
dvN+1 . . . dvN+s

is bounded almost everywhere.

4. for every integer N ≥ 1, the function :

Vs−1 7→
∫
Rd(N−s+1)

|VN |N−s+1g
(
|VN |

)
dvs . . . dvN

is bounded almost everywhere,
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5. for every integer N ≥ 1, and for every integer 1 ≤ s ≤ N :∣∣∣ ∫
Rd(N−s+1)

1|VN |≥R|VN |
N−s+1gN

(
|VN |

)
dvs . . . dvN

∣∣∣
L∞(Rd(s−1))

goes to zero as R goes to infinity.

With those hypotheses together, Theorems 2 page 194 and 3 page 197 ensure
that the BBGKY and the Boltzmann operators and respectively well defined on(‹Xε,s,gs

)
1≤s≤N , and

(‹X0,s,gs

)
s≥1

.

6.3.2 Existence of functions verifying the hypotheses of
the definition of the spaces X0

·,s,gs and X̃·,s,gs

An important question remains : is it possible to find a sequence of functions(
gs
)
s≥1

which verifies the hypotheses of Definition 22 ?

Luckily, the answer is affirmative. This is the object of the following lemma.

Lemma 16 (Gaussians are hierarchies-admissible). Let
(
βs
)
s≥1

be an increas-

ing sequence of positive numbers, and
(
gs
)
s≥1

be the sequence of functions de-

fined as, for every s ≥ 1 :

gs =

®
R+ → R+

x 7→ exp
(
− βs x

2

2

)
.

Then this sequence is hierarchies-admissible.

Proof. The two first points of Definition 22 are clearly verified.
From the easy inequality :

1

gN
(
|VN |

) ∫
Rds
|VN+s|sgN+s

(
|VN+s|

)
dvN+1 . . . dvN+s

= exp
(
βN
|VN |2

2

)∫
Rds
|VN+s|s exp

(
− βN+s

|VN+s|2

2

)
dvN+1 . . . dvN+s

= exp
(
βN
|VN |2

2

)∫
Rds
|VN+s|s exp

(
− βN+s

|VN |2

2

)
× exp

(
− βN+s

∑N+s
i=N+1 |vi|2

2

)
dvN+1 . . . dvN+s

= exp
(
− (βN+s − βN )

|VN |2

2

)
×
∫
Rds
|VN+s|s exp

(
− βN+s

∑N+s
i=N+1 |vi|2

2

)
dvN+1 . . . dvN+s

≤ exp
(
− (βN+s − βN )

|VN |2

2

)
×
∫
Rds
|VN+s|s exp

(
− βN+s

∑N+s
i=N+1 |vi|2

2

)
dvN+1 . . . dvN+s
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and using the fact that :

|VN+s|s =
(
|VN |2 +

N+s∑
i=N+1

|vi|2
)s/2

≤
(
|VN |+

N+s∑
i=N+1

|vi|
)s

≤ 2s
(
|VN |s +

( N+s∑
i=N+1

|vi|
)s)

,

one obtains the third point, and the fourth is proven the same way.
The last one is obtained, on the one hand after noticing that :

|VN |N−s+1gN
(
|VN |

)
=
(
|VN |N−s+1 exp

(
− βN

2
|VN |2

))
exp

(
− βN

2
|VN |2

)
,

with VN 7→ |VN |N−s+1 exp
(
− βN

2 |VN |
2
)

a radial continuous function, vanishing

at infinity, so that there exists C(d, βN , s) > 0 such that for all VN ∈ RdN :

|VN |N−s+1 exp
(
− βN

2
|VN |2

)
≤ C(d, βN , s),

so that the term implying the power of the norm of VN is under control.
On the other hand, noticing the following inclusion of sets holds :{
VN ∈ RdN / |VN |2 ≥R2

}
⊂
{
VN ∈ RdN / |Vs−1|2 ≥ R2/2 or

N∑
i=s

|vi|2 ≥ R2/2
}
,

that is :{
VN ∈RdN / |VN |2 ≥ R2

}
⊂
{
VN ∈ RdN / |Vs−1|2 ≥ R2/2

}
∪
{
VN ∈ RdN /

N∑
i=s

|vi|2 ≥ R2/2
}
,

one has :∫
Rd(N−s+1)

1|VN |≥R|VN |
N−s+1gN

(
|VN |

)
dvs . . . dvN

≤ 1|Vs−1|2≥R2/2

∫
Rd(N−s+1)

C(d, βN , s) exp
(
− βN

2
|VN |2

)
dvs . . . dvN

+

∫
Rd(N−s+1)

1∑N

i=s
|vi|2≥R2/2

C(d, βN , s) exp
(
− βN

2
|VN |2

)
dvs . . . dvN .

The first term can again be bounded by :

exp
(
− βN

4
R2
)∫

Rd(N−s+1)

C(d, βN , s) exp
(
− βN

2

N∑
i=s

|vi|2
)

dvs . . . dvN ,
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which does not depend on the variable Vs−1 and goes then uniformly to zero as
R goes to infinity since the integrand is integrable and does not depend on any
parameter.
The second term can be bounded by :

C(d, βN , s)

∫
Rd(N−s+1)

1∑N

i=s
|vi|2≥R2/2

exp
(
− βN

2

N∑
i=s

|vi|2
)

dvs . . . dvN ,

which does not depend on the variable Vs−1, and goes similarly to zero as R
goes to infinity as the tail of the integral of an integrable function.
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Chapter 7

Final functional spaces

7.1 Definition of the functional spaces

Thanks to the work done in Sections 5 and 6, one has seen that the relevant
functional spaces which give a rigorous sense to the conjugate BBGKY hierar-
chy :

∀ 1 ≤ s ≤ N − 1 :

h
(s)
N (t, Zs) = f

(s)
N,0(Zs) +

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, Zs) du,

and the Boltzmann hierarchy :

∀ s ≥ 1 :

f (s)(t, Zs) = T s,0t f
(s)
0 (Zs) +

∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, Zs) du

are respectively
(
Xε,s,gs

)
1≤s≤N

, and
(
X0,s,gs

)
s≥1

, with
(
gs
)
s≥1

a sequence

which is hierarchy-admissible in the sense of Definition 22 page 200.
However, and since now the main goal of this section is to obtain the existence
and uniqueness of a solution to each hierarchy, this regularity, which may look
somehow strong, is not enough to obtain easily a fixed point result. So one is
led to introduce new functional spaces, more regular, on which the fixed point
argument will hold.
The main difference with the example of the gaussian given at the end of the
previous section, where the regularity in velocity changed with the number of
particles involved, lies in the fact that this regularity will change according to
time.

205
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7.1.1 Definition of the spaces Xε,s,β and X0,s,β, the func-
tions of the phase space of s particles bounded by a
gaussian in the velocity variables

One starts by the definition of the first kind of functional space, in which each
marginal will lie. First, one introduces the relevant space for the BBGKY hier-
archy, that is for functions defined on the phase space Dεs of s particles and of
diameter ε.

Definition 23 (Norm | · |ε,s,β , space Xε,s,β). Let ε and β > 0 be two strictly
positive numbers and s be a positive integer. For any function h(s) belonging to
L∞
(
Dεs
)
, one defines :

|h(s)|ε,s,β = sup ess
Zs∈Dεs

[∣∣h(s)(Zs)
∣∣ exp

(
β

2

s∑
i=1

|vi|2
)]

,

and the space Xε,s,β as the space of the functions of L∞
(
Dεs
)

with a finite |·|ε,s,β
norm, that is :

Xε,s,β =
{
h(s) ∈ L∞ (Dεs) / |h(s)|ε,s,β < +∞

}
.

Similarly, one defines the same norm for the Boltzmann hierarchy, in the case
where the particles have radius zero, and then are seen as points.

Definition 24 (Norm | · |0,s,β , space X0,s,β). Let β be a strictly positive number
and s be a positive integer. For any function f (s) belonging to C0

((
Ωc × Rd

)s)
,

one defines :

|f (s)|0,s,β = sup
Zs∈
(

Ωc×Rd
)s
[∣∣f (s)(Zs)

∣∣ exp

(
β

2

s∑
i=1

|vi|2
)]

,

and the space X0,s,β as the space of the continuous functions vanishing at infinity
defined on

(
Ωc × Rd

)s
with a finite | · |0,s,β norm, that is :

X0,s,β =
{
f (s) ∈ C0

((
Ωc × Rd

)s)
/ |f (s)|0,s,β < +∞

}
,

and satisfying the following boundary condition

f (s)(Zs) = f (s)(χ0
s(Zs))

for all Zs belonging to the boundary of
(
Ωc×Rd

)s
, that is such that there exists

at least an integer 1 ≤ i ≤ s such that xi · e1 = 0 and vi · e1 > 0, with χ0
s

introduced in Definition 11 page 79.

One has immediately the two following propositions.

Proposition 5. For any β > 0, ε > 0 and any positive integer s, Xε,s,β is a
Banach space with respect to the norm | · |ε,s,β.

Proposition 6. For any β > 0 and any positive integer s, X0,s,β is a Banach
space with respect to the norm | · |0,s,β.
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7.1.2 Definition of the spaces Xε,β,µα and X0,β,µα, the se-
quence of functions of X·,s,β with an exponential weight
with respect to the number of particles

From those functional spaces, which are nothing more than functions defined on
the phase space of s particles, bounded from above by a gaussian in the veloc-
ity variable, one will define spaces of sequences of elements of such functional
spaces, with a varying number s of particles.

One stresses the fact that one defines in fact a family of such spaces, with,
in addition to a real parameter µ, which is the activity of the solution from a
physical point of view, another parameter α, strictly positive, and which will
be taken equal to 1 or 2 in the sequel. The choice of this parameter α and the
consequences of this choice are discussed in Section 8.2 page 251, and it leads
to define two kinds of continuity with respect to time, as done in the following
in Definitions 27 and 29 for the BBGKY hierarchy, and Definitions 28 and 30
for the Boltzmann hierarchy. About the question of notations, the parameter α

appears in the notation of the spaces X and ‹X as the exponent of the index µ
in the sequel.

Definition 25 (Norm ||·||N,ε,β,µα , space XN,ε,β,µα). Let N be a positive integer.
Let ε an β be two strictly positive numbers, µ be a real number and α > 0 be a

strictly positive number. For any finite sequence HN =
(
h

(s)
N

)
1≤s≤N of functions

h
(s)
N of Xε,s,β, one defines :

||HN ||N,ε,β,µα = max
1≤s≤N

(
|h(s)
N |ε,s,β exp(sαµ)

)
,

and the space XN,ε,β,µα as the space of the finite sequences HN =
(
h

(s)
N

)
1≤s≤N

such that for every 1 ≤ s ≤ N , h
(s)
N belongs to Xε,s,β, and such that the sequence(

h
(s)
N

)
1≤s≤N has a finite ||·||N,ε,β,µα norm, that is :

XN,ε,β,µα =
{
HN =

(
h

(s)
N

)
1≤s≤N ∈

(
Xε,s,β

)
1≤s≤N / ||HN ||N,ε,β,µα < +∞

}
.

Definition 26 (Norm ||·||0,β,µα , space X0,β,µα). Let β be a strictly positive
number, µ be a real number and α be a strictly positive number. For any infinite
sequence F =

(
f (s)

)
s≥1

of functions f (s) of X0,s,β, one defines :

||F ||0,β,µα = sup
s≥1

(
|f (s)|0,s,β exp(sαµ)

)
,

and the space X0,β,µα as the space of the infinite sequences
(
f (s)

)
s≥1

such that

for every s ≥ 1, f (s) belongs to X0,s,β, and such that the sequence
(
f (s)

)
s≥1

has

a finite ||·||0,β,µα norm, that is :

X0,β,µα =
{
F =

(
f (s)

)
s≥1
∈
(
X0,s,β

)
s≥1

/ ||F ||0,β,µα < +∞
}
.
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The following result describes the embeddings that exist between the spaces
Xε,s,β for different parameters β on the one hand, and on the other hand between
the spaces XN,ε,β,µα for different parameters β and µ.

Proposition 7 (Embeddings of the spaces Xε,s,β , and XN,ε,β,µα). Let s be a
positive integer and ε be a strictly positive number.

• For any β ≤ β′, one has :

Xε,s,β′ ⊂ Xε,s,β ,

and if h(s) belongs to Xε,s,β′ , one has :

|h(s)|ε,s,β ≤ |h(s)|ε,s,β′ . (7.1)

• For any β ≤ β′, any µ ≤ µ′ and any α > 0, one has :

XN,ε,β′,µ′α ⊂ XN,ε,β,µα ,

and if
(
h

(s)
N

)
1≤s≤N belongs to XN,ε,β′,µ′α , one has :∣∣∣∣∣∣(h(s)

N

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β,µα

≤
∣∣∣∣∣∣(h(s)

N

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β′,µ′α

. (7.2)

Proof. The first inequality (7.1) and the first inclusion are both a direct con-
sequence of the easy following computation. If the function h(s) belongs to the
space Xε,s,β′ , then the following quantity is bounded almost everywhere on the
phase space Dεs, and one has :∣∣h(s)(Zs)

∣∣ exp
(β′

2

s∑
i=1

|vi|2
)

=
∣∣h(s)(Zs)

∣∣ exp
(β′ − β

2

s∑
i=1

|vi|2
)

exp
(β

2

s∑
i=1

|vi|2
)
,

and the quantity β′−β
2

∑s
i=1 |vi|2 is strictly positive, so that of course :

∣∣h(s)(Zs)
∣∣ exp

(β
2

s∑
i=1

|vi|2
)
≤
∣∣h(s)(Zs)

∣∣ exp
(β′

2

s∑
i=1

|vi|2
)

≤
∣∣h(s)

∣∣
ε,s,β′

.

The second inequality (7.2) and the second inclusion are obtained in the same

way for a sequence
(
h

(s)
N

)
1≤s≤N belonging to XN,ε,β′,µ′α . Indeed, for every in-

teger 1 ≤ s ≤ N , one writes :∣∣h(s)
N

∣∣ exp
(β′

2

s∑
i=1

|vi|2
)

exp(sαµ′)

=
∣∣h(s)
N

∣∣ exp
(β

2

s∑
i=1

|vi|2
)

exp(sαµ) exp
(β′ − β

2

s∑
i=1

|vi|2
)

exp
(
sα(µ′ − µ)

)
,
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and one notices that the quantity :

β′ − β
2

s∑
i=1

|vi|2 + (µ′ − µ)sα

is strictly positive by hypothesis.

Similarly, the analog of this proposition holds for the spaces X0,s,β , and X0,β,µα .

Proposition 8 (Embeddings of the spaces X0,s,β , and X0,β,µα). Let s be a
positive integer.

• For any β ≤ β′, one has :

X0,s,β′ ⊂ X0,s,β ,

and if f (s) belongs to X0,s,β′ , one has :

|f (s)|0,s,β ≤ |f (s)|0,s,β′ . (7.3)

• For any β ≤ β′, any µ ≤ µ′ and any α > 0, one has :

X0,β′,µ′α ⊂ X0,β,µα ,

and if
(
f (s)

)
s≥1

belongs to X0,β′,µ′α , one has :∣∣∣∣∣∣(f (s)
)
s≥N

∣∣∣∣∣∣
0,β,µα

≤
∣∣∣∣∣∣(f (s)

)
s≥1

∣∣∣∣∣∣
0,β′,µ′α

. (7.4)

7.1.3 Definition of the spaces X̃
ε,β̃,µ̃α

and X̃
0,β̃,µ̃α

, the func-

tions of sequences belonging to X·,β̃(t),µ̃(t)α
at time t

One will define now spaces of time-dependent functions. It will be important
in the sequel to enable a loss of regularity when time grows, this loss being
described as sequences

(
f (s)(t)

)
s

belonging to larger and larger spaces as the
time parameter t grows. It means in the context that the parameters β and µ,
respectively in the gaussian and exponential weights, as introduced in Definitions
23 and 25 for the BBGKY hierarchy, 24 and 26 for the Boltzmann hierarchy,
are non increasing with respect to time. With such weights, the growth of the
functional spaces as the time variable is increasing is described in Proposition
7 and 8.
From this point, there are two possibilities to define the relevant spaces of time-
dependent functions taking their values in X·,β̃(t),µ̃(t)

, depending on the value

of α. One will see that the value of the parameter α has to be balanced with
the regularity with respect to time, so that the spaces remain stable under the
action of the collision operators of the two hierarchies.
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The case of α = 2, and uniform continuity in time in the parameter s

One follows here the definition1 given in the erratum version of the article [34], in
the sense that one requires the continuity in time, uniformly in the parameter s.
If one wants to preserve this continuity property under the action of the collision
operators of the hierarchies, it is important to choose α > 1. In this work, one
will choose α = 2. Further explanations on this statement are given in Section
8.2 page 251

Definition 27 (Norm |||·|||N,ε,β̃,µ̃2 , space ‹XN,ε,β̃,µ̃2). Let N be a positive integer.
Let ε be a strictly positive number. For any T > 0, any strictly positive, non
increasing function β̃, any non increasing function µ̃, both defined on [0, T ], and
any function ‹HN :

{
[0, T ] →

⋃
t∈[0,T ] XN,ε,β̃(t),µ̃2(t)

,

t 7→ ‹HN (t) =
Ä
h

(s)
N (t)

ä
1≤s≤N

,

such that ‹HN (t) ∈ X
N,ε,β̃(t),µ̃2(t)

for all t ∈ [0, T ], one defines∣∣∣∣∣∣∣∣∣‹HN

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

= sup
0≤t≤T

∣∣∣∣∣∣‹HN (t)
∣∣∣∣∣∣
N,ε,β̃(t),µ̃2(t)

,

and the space ‹XN,ε,β̃,µ̃2 as the space of functions‹HN :

{
[0, T ] →

⋃
t∈[0,T ] XN,ε,β̃(t),µ̃2(t)

t 7→ ‹HN (t) =
Ä
h

(s)
N (t)

ä
1≤s≤N

,

such that ‹HN (t) ∈ X
N,ε,β̃(t),µ̃2(t)

for all t ∈ [0, T ], with a finite |||·|||
N,ε,β̃,µ̃2 , and

verifying a left continuity in time hypothesis :

∀t ∈ ]0, T ], lim
u→t−

∣∣∣∣∣∣‹HN (t)− ‹HN (u)
∣∣∣∣∣∣
N,ε,β̃(t),µ̃2(t)

= 0, (7.5)

that is :‹XN,ε,β̃,µ̃2 =

{‹HN :

{
[0, T ] →

⋃
t∈[0,T ] XN,ε,β̃(t),µ̃2(t)

t 7→ ‹HN (t) =
Ä
h

(s)
N (t)

ä
1≤s≤N

,
/

∀t ∈ [0, T ], ‹HN (t) ∈ X
N,ε,β̃(t),µ̃2(t)

,
∣∣∣∣∣∣∣∣∣‹HN

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

< +∞,

and ∀t ∈ ]0, T ], lim
u→t−

∣∣∣∣∣∣‹HN (t)− ‹HN (u)
∣∣∣∣∣∣
N,ε,β̃(t),µ̃2(t)

= 0

}
.

Remark 16. One has to notice that, to be meaningful, the continuity property
(7.5) in the last definition uses Proposition 7 page 208 concerning the embeddings

of the space of sequences, together with the crucial fact that the functions β̃ and
µ̃ are assumed to be non increasing.

1See the last Definition 5.2.4 of Section 5.2 ”Functional spaces and statement of the results”.
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One defines finally the space of time-dependent sequences of functions (that
is, a space of functions of sequences of functions) for the Boltzmann hierarchy,
exactly in the same way as above.

Definition 28 (Norm |||·|||0,β̃,µ̃2 , space ‹X0,β̃,µ̃2). For any T > 0, any strictly

positive, non increasing function β̃ and any non increasing function µ̃, both
defined on [0, T ], and any function :‹F :

®
[0, T ] →

⋃
t∈[0,T ] XN,ε,β̃(t),µ̃2(t)

t 7→ ‹F (t) =
(
f (s)(t)

)
s≥1

,

such that ‹F (t) ∈ X
0,β̃(t),µ̃2(t)

for all t ∈ [0, T ], one defines∣∣∣∣∣∣∣∣∣‹F ∣∣∣∣∣∣∣∣∣
0,β̃,µ̃2

= sup
0≤t≤T

∣∣∣∣∣∣‹F (t)
∣∣∣∣∣∣

0,β̃(t),µ̃2(t)
,

and the space ‹X0,β̃,µ̃2 as the space of functions‹F :

®
[0, T ] →

⋃
t∈[0,T ] X0,β̃(t),µ̃2(t)

t 7→ ‹F (t) =
(
f (s)(t)

)
s≥1

,

such that ‹F (t) ∈ X
0,β̃(t),µ̃2(t)

for all t ∈ [0, T ], with a finite |||·|||
0,β̃,µ̃2 , and

verifying a left continuity in time hypothesis :

∀t ∈ ]0, T ], lim
u→t−

∣∣∣∣∣∣‹F (t)− ‹F (u)
∣∣∣∣∣∣

0,β̃(t),µ̃2(t)
= 0, (7.6)

that is :‹X0,β̃,µ̃2 =

{‹F :

®
[0, T ] →

⋃
t∈[0,T ] X0,β̃(t),µ̃2(t)

,

t 7→ ‹F (t) =
(
f (s)(t)

)
s≥1

,
/

∀t ∈ [0, T ], ‹F (t) ∈ X
0,β̃(t),µ̃2(t)

,
∣∣∣∣∣∣∣∣∣‹F ∣∣∣∣∣∣∣∣∣

0,β̃,µ̃2
< +∞,

and ∀t ∈ ]0, T ], lim
u→t−

∣∣∣∣∣∣‹F (t)− ‹F (u)
∣∣∣∣∣∣

0,β̃(t),µ̃2(t)
= 0

}
.

The case of α = 1, and continuity in time for every integer s

It is also possible to consider a weaker weight, that is choosing α = 1, and asking
a less restrictive condition of continuity in time : instead of having a continuity
in the ||·||·,β̃(t),µ̃(t)1

norm at time t, one will ask instead, for any positive integer

s, a continuity in the | · |·,s,β̃(t)
-norm at time t.

Definition 29 (Norm |||·|||N,ε,β̃,µ̃1 , space ‹XN,ε,β̃,µ̃1). Let N be a positive inte-
ger, ε be a strictly positive number. For any T > 0, any strictly positive, non
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increasing function β̃, any non increasing function µ̃, both defined on [0, T ], and
any function ‹HN :

{
[0, T ] →

⋃
t∈[0,T ] XN,ε,β̃(t),µ̃1(t)

,

t 7→ ‹HN (t) =
Ä
h

(s)
N (t)

ä
1≤s≤N

,

such that ‹HN (t) ∈ X
N,ε,β̃(t),µ̃1(t)

for all t ∈ [0, T ], one defines∣∣∣∣∣∣∣∣∣‹HN

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃1

= sup
0≤t≤T

∣∣∣∣∣∣‹HN (t)
∣∣∣∣∣∣
N,ε,β̃(t),µ̃1(t)

,

and the space ‹XN,ε,β̃,µ̃1 as the space of functions‹HN :

{
[0, T ] →

⋃
t∈[0,T ] XN,ε,β̃(t),µ̃1(t)

t 7→ ‹HN (t) =
Ä
h

(s)
N (t)

ä
1≤s≤N

,

such that ‹HN (t) ∈ X
N,ε,β̃(t),µ̃1(t)

for all t ∈ [0, T ], with a finite |||·|||
N,ε,β̃,µ̃1 norm,

and verifying a left continuity in time hypothesis :

∀t ∈ ]0, T ], ∀ 1 ≤ s ≤ N, lim
u→t−

∣∣h(s)
N (t)− h(s)

N (u)
∣∣
ε,s,β̃(t)

= 0, (7.7)

that is :‹XN,ε,β̃,µ̃1 =

{‹HN :

{
[0, T ] →

⋃
t∈[0,T ] XN,ε,β̃(t),µ̃1(t)

t 7→ ‹HN (t) =
Ä
h

(s)
N (t)

ä
1≤s≤N

,
/

∀t ∈ [0, T ], ‹HN (t) ∈ X
N,ε,β̃(t),µ̃1(t)

,
∣∣∣∣∣∣∣∣∣‹HN

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃1

< +∞,

and ∀t ∈ ]0, T ], ∀ 1 ≤ s ≤ N, lim
u→t−

∣∣h(s)
N (t)− h(s)

N (u)
∣∣
ε,s,β̃(t)

= 0

}
.

Similarly, one introduces the same kind of spaces for the Boltzmann hierarchy.

Definition 30 (Norm |||·|||0,β̃,µ̃1 , space ‹X0,β̃,µ̃1). For any T > 0, any strictly

positive, non increasing function β̃ and any non increasing function µ̃ both de-
fined on [0, T ], and any function‹F :

®
[0, T ] →

⋃
t∈[0,T ] XN,ε,β̃(t),µ̃1(t)

t 7→ ‹F (t) =
(
f (s)(t)

)
s≥1

,

such that ‹F (t) ∈ X
0,β̃(t),µ̃1(t)

for all t ∈ [0, T ], one defines∣∣∣∣∣∣∣∣∣‹F ∣∣∣∣∣∣∣∣∣
0,β̃,µ̃1

= sup
0≤t≤T

∣∣∣∣∣∣‹F (t)
∣∣∣∣∣∣

0,β̃(t),µ̃1(t)
,
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and the space ‹X0,β̃,µ̃1 as the space of functions‹F :

®
[0, T ] →

⋃
t∈[0,T ] X0,β̃(t),µ̃1(t)

t 7→ ‹F (t) =
(
f (s)(t)

)
s≥1

,

such that ‹F (t) ∈ X
0,β̃(t),µ̃1(t)

for all t ∈ [0, T ], with a finite |||·|||
0,β̃,µ̃1 , and

verifying a left continuity in time hypothesis :

∀t ∈ ]0, T ], ∀ 1 ≤ s ≤ N, lim
u→t−

∣∣h(s)
N (t)− h(s)

N (u)
∣∣
0,s,β̃(t)

= 0, (7.8)

that is :‹X0,β̃,µ̃1 =

{‹F :

®
[0, T ] →

⋃
t∈[0,T ] X0,β̃(t),µ̃1(t)

,

t 7→ ‹F (t) =
(
f (s)(t)

)
s≥1

,
/

∀t ∈ [0, T ], ‹F (t) ∈ X
0,β̃(t),µ̃2(t)

,
∣∣∣∣∣∣∣∣∣‹F ∣∣∣∣∣∣∣∣∣

0,β̃,µ̃2
< +∞,

and ∀ t ∈ ]0, T ], ∀1 ≤ s ≤ N, lim
u→t−

∣∣f (s)(t)− f (s)(u)
∣∣
0,s,β̃(t)

= 0

}
.

7.2 Banach space structure of the spaces ›XN,ε,β̃,µ̃α

and ›X0,β̃,µ̃α

In order to use the Banach-Caccioppoli fixed-point theorem, one needs to work

on complete spaces. Fortunately, the spaces ‹X
N,ε,β̃,µ̃α

and ‹X
0,β̃,µ̃α

defined in

the previous section satisfy this regularity property.

Theorem 4 (Completeness of the space ‹X
N,ε,β̃,µ̃α

). Let N be a positive integer.

Let ε be a strictly positive number. For any T > 0, any strictly positive, non
increasing function β̃ and any non increasing function µ̃, both defined on [0, T ],

and for α = 1 or 2, the space ‹X
N,ε,β̃,µ̃α

is a Banach space.

Proof. It is easy to show that the space ‹X
N,ε,β̃,µ̃α

is indeed a vector space. To

obtain completeness, one will take, without surprise, an arbitrary Cauchy se-

quence of ‹X
N,ε,β̃,µ̃α

in order to prove that it is converging in this same space.

So let
(
t 7→

(
h

(s),n
N (t, ·)

)
1≤s≤N

)
n≥0

be a Cauchy sequence of the space ‹X
N,ε,β̃,µ̃α

.

One will recall the complicated definition of the space of functions of sequences.
It implies in particular that, for all δ > 0, there exists an integer n0(δ) such that
for all integers p, q ≥ n0 :∣∣∣∣∣∣∣∣∣t 7→ (

h
(s),p
N (t, ·)− h(s),q

N (t, ·)
)

1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃α

< δ,
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that is, according to Definitions 27 page 210 and 29 page 211 depending on the
value of α, for all t ∈ [0, T ] and for all p, q ≥ n0 :∣∣∣∣∣∣(h(s),p

N (t, ·)− h(s),q
N (t, ·)

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β̃(t),µ̃α(t)

< δ.

According to Definition 25 page 207, this is equivalent to asserting that, for all
t ∈ [0, T ] and all integer 1 ≤ s ≤ N , and all p, q ≥ n0 :∣∣∣h(s),p

N (t, ·)− h(s),q
N (t, ·)

∣∣∣
ε,s,β̃(t)

< δ exp(−sαµ̃(t)).

Finally, according to Definition 23 page 206, one has in fact assumed that, for
all t ∈ [0, T ], any integer 1 ≤ s ≤ N , almost all Zs ∈ Dεs, and all p, q ≥ n0 :∣∣∣h(s),p

N (t, Zs)− h(s),q
N (t, Zs)

∣∣∣ exp
( β̃(t)

2

s∑
i=1

|vi|2
)
< δ exp(−sαµ̃(t)).

In particular, for all η > 0, t ∈ [0, T ] and any integer 1 ≤ s ≤ N , there exists
δ(η, t, s) > 0 such that :

δ(ε, t, s) exp(−sαµ̃(t)) < η.

For this particular δ, there exists n0(δ) such that for every integers p, q ≥ n0,
one has almost everywhere on Dεs :∣∣∣h(s),p

N (t, Zs)− h(s),q
N (t, Zs)

∣∣∣ exp
( β̃(t)

2

s∑
i=1

|vi|2
)
< η.

This shows that, for every t ∈ [0, T ] and 1 ≤ s ≤ N fixed, the sequence of
functions of L∞

(
Dεs
)

:(
Zs 7→ h

(s),n
N (t, Zs) exp

( β̃(t)

2

s∑
i=1

|vi|2
))

n≥0

is a Cauchy sequence in L∞
(
Dεs
)
. Thanks to the Riesz-Fischer theorem, one

knows that the space L∞
(
Dεs
)

is complete, so that for every t ∈ [0, T ] and every
1 ≤ s ≤ N , this sequence converges in L∞

(
Dεs
)

towards a limit, which will be
denoted

Zs 7→ k
(s)
N (t, Zs).

If one considers the function :

Zs 7→ h
(s)
N (t, Zs) = k

(s)
N (t, Zs) exp

(
− β̃(t)

2

s∑
i=1

|vi|2
)
,

then of course the function :

Zs 7→ h
(s)
N (t, Zs) exp

( β̃(t)

2

s∑
i=1

|vi|2
)
.
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is bounded almost everywhere, which means by definition, that for every t ∈
[0, T ] and every 1 ≤ s ≤ N , the function :

Zs 7→ h
(s)
N (t, Zs)

belongs to the space X
ε,s,β̃(t)

defined in Definition 23.

As usual, it remains to show, on the one hand, that the limit function of the
sequences :

t 7→
(
h

(s)
N (t, ·)

)
1≤s≤N

belongs indeed to the space ‹X
N,ε,β̃,µ̃α

, and on the other hand, that the sequence

converges towards this limit function.
So for any t ∈ [0, T ] and 1 ≤ s ≤ N fixed, one studies first the quantity :∣∣∣h(s)

N (t, ·)
∣∣∣
ε,s,β̃(t)

,

which can be bounded from above by :∣∣∣h(s)
N (t, ·)− h(s),p

N (t, ·)
∣∣∣
ε,s,β̃(t)

+
∣∣∣h(s),p
N (t, ·)

∣∣∣
ε,s,β̃(t)

,

for any p ∈ N. But by the convergence in X
ε,s,β̃(t)

of the sequence :(
h

(s),p
N (t, ·)

)
p≥0

,

towards h
(s)
N (t, ·), the first term of the last upper bound can be chosen, choosing

p big enough, as small as one wants, while the sequence :(
t 7→

(
h

(s),n
N (t, ·)

)
1≤s≤N

)
n≥0

is bounded in the vector space ‹X
N,ε,β̃,µ̃α

as a Cauchy sequence, that is one has,

for every t ∈ [0, T ], 1 ≤ s ≤ N and p ∈ N :∣∣∣h(s),p
N (t, ·)

∣∣∣
ε,s,β̃(t)

≤ sup
n∈N

∣∣∣∣∣∣∣∣∣∣∣∣(t 7→ (
h

(s),n
N (t, ·)

)
1≤s≤N

)
n≥0

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃α

exp(−sαµ̃(t)),

In summary, the control of the norm |||·|||
N,ε,β̃,µ̃α

holds in the limit p → +∞,

that is, for all t ∈ [0, T ] and 1 ≤ s ≤ N :∣∣∣h(s)
N (t, ·)

∣∣∣
ε,s,β̃(t)

≤ sup
n∈N

∣∣∣∣∣∣∣∣∣∣∣∣(t 7→ (
h

(s),n
N (t, ·)

)
1≤s≤N

)
n≥0

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃α

exp(−sαµ̃(t)),

which means exactly that the limit t 7→
(
h

(s)
N (t, ·)

)
1≤s≤N

has a finite |||·|||
N,ε,β̃,µ̃α

norm.
One notices here that the value of the parameter α has no impact here on the
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control on the |||·|||
N,ε,β̃,µ̃α

.

Nevertheless, the proof that the limit belongs to the space ‹X
N,ε,β̃,µ̃α

is not

utterly complete. Indeed, Definition 27 in the case when α = 2 or Definition
29 in the case when α = 1 require also a continuity with respect to time. This
continuity is again obtained with the continuity of each term of the Cauchy
sequence. Indeed, for any δ > 0, there exists n0 ∈ N such that :∣∣∣∣∣∣∣∣∣t 7→ (

h
(s)
N (t, ·)− h(s),n0

N (t, ·)
)

1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃

< δ/4. (7.9)

In the case when α = 2, for any t ∈ ]0, T ] and this same δ > 0, there exists also
0 ≤ u0(δ) < t such that for all u0 ≤ u ≤ t, one has (by definition of the fact

that each term of the Cauchy sequence
(
t 7→

(
h

(s),n
N (t, ·)

)
1≤s≤N

)
n≥0

belongs to

the space ‹X
N,ε,β̃,µ̃2 , so that each term (and in particular the term n0) is left-

continuous in time for all t ∈ ]0, T ] with respect to the norm ||·||
N,ε,β̃(t),µ̃(t)2

),

that is according to the property (7.5) of Definition 27 page 210 :∣∣∣∣∣∣(h(s),n0

N (t, ·)− h(s),n0

N (u, ·)
)

1≤s≤N

∣∣∣∣∣∣
N,ε,β̃(t),µ̃(t)2

< δ/2.

Writing then :∣∣∣∣∣∣(h(s)
N (t, ·)− h(s)

N (u, ·)
)

1≤s≤N

∣∣∣∣∣∣
N,ε,β̃(t),µ̃(t)2

≤
∣∣∣∣∣∣(h(s)

N (t, ·)− h(s),n0

N (t, ·)
)

1≤s≤N

∣∣∣∣∣∣
N,ε,β̃(t),µ̃(t)2

+
∣∣∣∣∣∣(h(s),n0

N (t, ·)− h(s),n0

N (u, ·)
)

1≤s≤N

∣∣∣∣∣∣
N,ε,β̃(t),µ̃(t)2

+
∣∣∣∣∣∣(h(s),n0

N (u, ·)− h(s)
N (u, ·)

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β̃(t),µ̃(t)2

,

and using, on the one hand for the third term the inequality (7.2) of Proposition

7 page 208, which provides since the weights β̃ and µ̃ are non increasing :∣∣∣∣∣∣(h(s),n0

N (u, ·)− h(s),n0

N (u, ·)
)

1≤s≤N

∣∣∣∣∣∣
N,ε,β̃(t),µ̃(t)2

≤
∣∣∣∣∣∣(h(s),n0

N (u, ·)− h(s),n0

N (u, ·)
)

1≤s≤N

∣∣∣∣∣∣
N,ε,β̃(u),µ̃(u)2

,

and on the other hand, the uniform control in time (7.9) for the first and the
third term, one has then :∣∣∣∣∣∣(h(s)

N (t, ·)− h(s)
N (u, ·)

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β̃(t),µ̃(t)α

< δ/4 + δ/2 + δ/4 = δ,

so that the left continuity in time for all t ∈ ]0, T ] with respect to the norm
||·||

N,ε,β̃(t),µ̃(t)α
holds, and then one has proved that the limit :

t 7→
(
h

(s)
N (t, ·)

)
1≤s≤N
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belongs to ‹X
N,ε,β̃,µ̃α

, with in addition :∣∣∣∣∣∣∣∣∣∣∣∣(t 7→ (
h

(s)
N (t, ·)

)
1≤s≤N

)
n≥0

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃α

≤ sup
n∈N

∣∣∣∣∣∣∣∣∣∣∣∣(t 7→ (
h

(s),n
N (t, ·)

)
1≤s≤N

)
n≥0

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃α

.

In the case when α = 1, for the continuity property, one has to check that, for
every integer 1 ≤ s ≤ N , the quantity :∣∣h(s)

N (t, ·)− h(s)
N (u, ·)

∣∣
ε,s,β̃(t)

goes to zero as u tends to t from the left, which is obtained thanks to the con-

tinuity of each term h
(s),n0

N of the sequence
(
h

(s),n0

N

)
1≤s≤N with respect to the

| · |
ε,s,β̃(t)

norm, for a well chosen term of the approximating sequence((
h

(s),n
N

)
1≤s≤N

)
n≥0

(as in the case when α = 2).

As for the last part of the proof, regardless the value of the parameter α since
in this very part, it will play no role, one has to show that the Cauchy sequence
converges towards the obtained limit. The inequality :∣∣∣(h(s),p

N (t, Zs)− h(s),q
N (t, Zs)

)
exp

( β̃(t)

2

s∑
i=1

|vi|2
)∣∣∣ < δ exp(−sαµ̃(t)),

taken in the limit q → +∞ provides, for every t ∈ [0, T ] and every 1 ≤ s ≤ N :∣∣h(s),p
N (t, ·)− h(s)

N (t, ·)
∣∣
ε,s,β̃(t)

< δ exp(−sαµ̃(t)).

In other words, one has that, for all p ≥ n0(δ) :∣∣∣∣∣∣∣∣∣∣∣∣t 7→ (
h

(s),p
N (t, ·)− h(s)

N (t, ·)
)

1≤s≤N

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃α

< δ.

But since δ was chosen arbitrarily, it means that the Cauchy sequence is con-

verging towards an element of ‹X
N,ε,β̃,µ̃α

.

The analog of Theorem 4 holds of course for the space ‹X
0,β̃,µ̃

.

Theorem 5 (Completeness of the space ‹X
0,β̃,µ̃

). For any T > 0, any strictly

positive, non increasing function β̃ and any non increasing function µ̃, both

defined on [0, T ], the space ‹X
0,β̃,µ̃

is a Banach space.

The proof of this theorem is essentially the same as for the previous theorem. The

only difference lies in the fact that the space ‹X
0,β̃,µ̃α

is built with continuous

functions vanishing at infinity, but those two properties hold in the uniform
limit.
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Chapter 8

Fixed point theorem for the
BBGKY and the
Boltzmann operators

Along the previous Chapter 7, one has introduced the useful functional spaces‹X
N,ε,β̃,µ̃α

and ‹X
0,β̃,µ̃α

, and then proved that they are complete. The purpose of

this chapter is now to show that there exists, in those spaces, for any well chosen
initial datum, a unique solution to the BBGKY and Boltzmann hierarchies on
a non trivial time interval.

To do so, this chapter will be divided into three parts.
The first one will be devoted to showing that the BBGKY and the Boltzmann
operators, again up to choosing correctly the initial data, take their values re-

spectively in the spaces ‹X
N,ε,β̃,µ̃α

and ‹X
0,β̃,µ̃α

if one assumes that the functions

of sequences

t 7→
(
h

(s)
N (t, ·)

)
1≤s≤N

and

t 7→
(
f (s)(t, ·)

)
s≥1

are chosen in the same spaces, which means, in other words, that the BBGKY

and the Boltzmann operators send the spaces ‹X
N,ε,β̃,µ̃α

and ‹X
0,β̃,µ̃α

into them-

selves.
The second part will be devoted to showing that the BBGKY and the Boltz-

mann operators, that is the functions (if one denotes t 7→
(
h

(s)
N (t, ·)

)
1≤s≤N by

HN , and t 7→
(
f (s)(t, ·)

)
s≥1

by F ) :

HN 7→
(
t 7→

(
f

(s)
N,0(·) + 1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, ·) du

)
1≤s≤N

)
219



220 CHAPTER 8. FIXED POINT THEOREM

and

F 7→
(
t 7→

(
T s,0t f

(s)
0 (·) +

∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, ·) du
)
s≥1

)
are in fact respectively contracting mappings on ‹X

N,ε,β̃,µ̃α
and ‹X

0,β̃,µ̃α
. The

condition to obtain this phenomenom of contraction will rely on a careful choice
of time T and of the functions β̃ and µ̃.
Finally, the third part will be devoted to the statement of the theorems of exis-
tence and uniqueness of a solution to the BBGKY and the Boltzmann hierarchies

in the spaces ‹X
N,ε,β̃,µ̃α

and ‹X
0,β̃,µ̃α

.

8.1 Image of the spaces ›XN,ε,β̃,µ̃α and ›X0,β̃,µ̃α by
the BBGKY and the Boltzmann operators

8.1.1 The BBGKY operator

One starts by setting a definition for the BBGKY operator, already introduced
informally along this work.

Definition 31 (BBGKY operator). For any sequence of initial data
(
f

(s)
N,0

)
1≤s≤N

belonging to the space X
N,ε,β̃(0),µ̃(0)α

and any function of sequences HN = t 7→(
h

(s)
N (t, ·)

)
1≤s≤N belonging to the space ‹X

N,ε,β̃,µ̃α
, one defines the function of

sequences :

t 7→
(
f

(s)
N,0(·) + 1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, ·) du

)
1≤s≤N , (8.1)

denoted by :

EN,ε

((
f

(s)
N,0

)
1≤s≤N , HN

)
.

The functions which associates EN,ε

((
f

(s)
N,0

)
1≤s≤N , HN

)
to the function of se-

quences HN is called the BBGKY operator with sequence of initial data
(
f

(s)
N,0

)
s
.

Remark 17. One can already notice that this BBGKY operator is well de-
fined thanks to the work done about the definition of the integrated in time
transport-collision-transport operator. The question addressed in this section is

to determine its image, when restricted to the space ‹X
N,ε,β̃,µ̃α

.

Since the goal of this section is to show that, if HN ∈ ‹XN,ε,β̃,µ̃α
, one has :

t 7→
(
f

(s)
N,0(·) + 1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, ·) du

)
1≤s≤N

∈ ‹X
N,ε,β̃,µ̃α

,

that is, using the notation just introduced above :

EN,ε

((
f

(s)
N,0

)
1≤s≤N , HN

)
∈ ‹X

N,ε,β̃,µ̃α
,
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one will prove the two following lemmas, each one addressing the regularity of
a term of the BBGKY operator written here.

Lemma 17. Let N be a positive integer. Let ε be a strictly positive number.
For α = 1 or 2, for any T > 0, any strictly positive, non increasing function β̃
and any non increasing function µ̃, both defined on [0, T ], if the initial datum :(

f
(s)
N,0

)
1≤s≤N

belongs to the space X
N,ε,β̃(0),µ̃(0)α

, then the constant function of sequences :

t 7→
(
f

(s)
N,0

)
1≤s≤N

belongs to the space ‹X
N,ε,β̃,µ̃α

, and one has moreover that :∣∣∣∣∣∣∣∣∣t 7→ (
f

(s)
N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃α

≤
∣∣∣∣∣∣(f (s)

N,0

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β̃(0),µ̃(0)α

. (8.2)

Proof. The hypothesis
(
f

(s)
N,0

)
1≤s≤N ∈ X

N,ε,β̃(0),µ̃(0)α
implies in particular that

the ||·||
N,ε,β̃(0),µ̃(0)α

norm of the element
(
f

(s)
N,0

)
1≤s≤N is finite. If one considers

now the constant function :

FN,0 :

{
[0, T ] → X

N,ε,β̃(0),µ̃(0)α
,

t 7→
(
f

(s)
N,0

)
1≤s≤N ,

the inequality (7.2) of Proposition 7 page 208 provides, thanks to the fact

that the two functions β̃ and µ̃ are non increasing, that for all t ∈ [0, T ], the

||·||
N,ε,β̃(t),µ̃(t)α

norm of
(
f

(s)
N,0

)
1≤s≤N ∈ X

N,ε,β̃(0),µ̃(0)α
is finite, and one has :∣∣∣∣∣∣(f (s)

N,0

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β̃(t),µ̃(t)α

≤
∣∣∣∣∣∣(f (s)

N,0

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β̃(0),µ̃(0)α

,

so that the constant function t 7→
(
f

(s)
N,0

)
1≤s≤N has, by definition (see Defini-

tions 29 or 27 depending on the value of α, for the definition of the |||·|||
N,ε,β̃,µ̃α

norm) a finite |||·|||
N,ε,β̃,µ̃α

norm, and one has :∣∣∣∣∣∣∣∣∣t 7→ (
f

(s)
N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃α

≤
∣∣∣∣∣∣(f (s)

N,0

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β̃(0),µ̃(0)α

,

so that one has obtained the inequality (8.2) of the lemma.

The only missing point to conclude the proof of the lemma is the left conti-
nuity in time for any t ∈ ]0, T ]. Depending on the value of α, one has two
different conditions of continuity (see Definition 27 page 210 for the case α = 2,
Definition 29 page 211 for the case α = 1).
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In the case when α = 2, the left continuity in time is with respect to the
||·||

N,ε,β̃(t),µ̃(t)
norm, that is, one has to show that for any t ∈ ]0, T ] :

lim
u→t−

||FN,0(t)− FN,0(u)||
N,ε,β̃(t),µ̃(t)2

= 0.

But for any t ∈ ]0, T ] and any 0 ≤ u ≤ t, one has of course :

FN,0(t) = FN,0(u)

since the function FN,0 is constant in time, and then one has :

||FN,0(t)− FN,0(u)||
N,ε,β̃(t),µ̃(t)2

= 0,

and then the continuity is proved in the case when α = 2.
In the case when α = 1, the left continuity in time is, for every integer 1 ≤ s ≤ N ,
with respect to the | · |

ε,s,β̃(t)
, that is, one has to show that for any integer

1 ≤ s ≤ N and for any t ∈ ]0, T ] :

lim
u→t−

∣∣f (s)
N,0(t)− f (s)

N,0(u)
∣∣
ε,s,β̃(0)

= 0.

But, exactly as in the case when α = 2, one has F
(s)
N,0(t) = F

(s)
N,0(u) = f

(s)
N,0,

which provides immediately the result on the limit, and the continuity is proved
also in the case α = 1, which ends the proof of the lemma.

Stability by the integral term of the BBGKY hierarchy of the space‹X
N,ε,β̃,µ̃2 (case α = 2)

Here one focuses on the study of the image of the space ‹X
N,ε,β̃,µ̃2 (see Definition

27 page 210, and in particular the continuity condition (7.5)) by the integral
term of the BBGKY hierarchy. For the preservation of the finiteness of the
|||·|||

N,ε,β̃,µ̃2 norm, one follows the proof of Ukai1 ([63]), which is now classical

and integrated in the proof of [34]2. Besides, one focuses on the preservation of
the continuity in time (7.5), which is a crucial verification in order to state that
the BBGKY and Boltzmann operators preserve the functional spaces which one
desires to apply a fixed-point argument on. That is why it is important here to
consider a strong weight, that is to consider the case α = 2.

Lemma 18. Let N be a positive integer and ε be a strictly positive number. For
any T > 0, any β0 > 0, µ0 > 0 and λ > 0 such that :

β0 − λT > 0 and µ0 − λT > 0,

if the function of sequences :

t 7→
(
h

(s)
N (t, ·)

)
1≤s≤N

1See Section 4 ”Uniform Estimates”, and in particular Lemma 4.2 and 4.3.
2See Section 5.4 ”Continuity estimates”.
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belongs to the space ‹X
N,ε,β̃λ,µ̃2

λ

with β̃λ and µ̃λ denoting :

β̃λ :

®
[0, T ] → R∗+,

t 7→ β̃λ(t) = β0 − λt,

and

µ̃λ :

ß
[0, T ] → R∗+,

t 7→ µ̃λ(t) = µ0 − λt,
then the function of sequences :

t 7→
(
1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, ·) du

)
1≤s≤N

belongs to the same space ‹X
N,ε,β̃λ,µ̃2

λ

. In addition, one has the following inequal-

ity∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣t 7→ (

1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, ·) du

)
1≤s≤N

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
N,ε,β̃λ,µ̃2

λ

≤ C(d,N, ε)β̃λ(T )−d/2 exp
(
− 3µ̃λ(T )

)(1 + β̃λ(T )−1/2
)

λ

×
∣∣∣∣∣∣∣∣∣(h(s)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃2

λ

,

(8.3)

with C(d,N, ε) denoting :

C(d,N, ε) = C ′(d)Nεd−1,

and C ′(d) being a constant which depends only on the dimension d.

Proof. First, one will show that the function of sequences :

t 7→
(
1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, ·) du

)
1≤s≤N

has a finite |||·|||
N,ε,β̃λ,µ̃2

λ

norm.

One starts by recalling that why the functional spaces involved in the statement
of the lemma and this quantity are well defined. For any T > 0, β0 > 0, µ0 ∈ R
and λ > 0 such that β0 − λT > 0, one has of course

∀ 0 ≤ t ≤ T, β̃λ(t) = β0 − λt > 0,

and the functions β̃λ and µ̃λ are non increasing, so that the space ‹X
N,ε,β̃λ,µ̃2

λ

is

well defined (thanks to the work done in Section 7 page 205).
Now, by hypothesis since the function :

t 7→
(
h

(s)
N (t, ·)

)
1≤s≤N
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belongs to the space ‹X
N,ε,β̃λ,µ̃2

λ

, it is in particular an element of the sequence

of the functional spaces
(
C
(
[0, T ], L∞

(
Dεs
)))

1≤s≤N
, and each term h

(s)
N is uni-

formly bounded with respect to the position variable by the increasing family
of gaussians :

(t, Zs) 7→ C exp
(
− β̃(t)

2

s∑
i=1

|vi|2
)

for some constant C large enough.

In particular each term h
(s)
N satisfies all the hypotheses of Lemma 15 page 188,

so that the quantity : ∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, ·) du

is well defined, which shows that the function of sequences :

t 7→
(
1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, ·) du

)
1≤s≤N

is well defined, without any additional assumptions on the regularity of the
functions β̃λ and µ̃λ except the fact that they have to be non increasing, and
strictly positive for the first one.

To address the problem of its |||·|||
N,ε,β̃λ,µ̃2

λ

norm, one uses the bound (6.4) ob-

tained in the same Lemma 15 page 188, which states that for any t ∈ [0, T ] and
for any 1 ≤ s ≤ N − 1, and Q denoting :

Q =
∣∣∣ ∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, Zs) du

∣∣∣,
and remembering that CN,εs,s+1 is defined as :

CN,εs,s+1 = (N − s)
s∑
i=1

(
Cεs,s+1,+,i − Cεs,s+1,−,i

)
one has almost everywhere on the phase space Dεs :

Q ≤ (N − s)
s∑
i=1

[∣∣∣ ∫ t

0

T s,ε−u Cεs,s+1,+,iT s+1,ε
u h

(s+1)
N (u, Zs) du

∣∣∣
+
∣∣∣ ∫ t

0

T s,ε−u Cεs,s+1,−,iT s+1,ε
u h

(s+1)
N (u, Zs) du

∣∣∣]

≤ 2(N − s)εd−1 |Sd−1|
2

s∑
i=1

∫ t

0

∣∣∣h(s+1)
N (u, Zs+1) exp

( β̃λ(u)

2

s+1∑
j=1

|vj |2
)∣∣∣
L∞(Dε

s+1
)

×
∫
Rd

(
|vi|+ |vs+1|

)
exp

(
− β̃λ(u)

2

s+1∑
j=1

|vj |2
)

dvs+1 du.
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Using the definition of the norm |·|
ε,s,β̃λ(t)

(Definition 23 page 206), and denoting

C(d,N, ε) = Nεd−1|Sd−1|, one finds :

Q ≤ C(d,N, ε)

∫ t

0

∣∣h(s+1)
N (u, ·)

∣∣
ε,s+1,β̃λ(u)

×
∫
Rd

( s∑
i=1

|vi|+ s|vs+1|
)

exp
(
− β̃λ(u)

2

s+1∑
j=1

|vj |2
)

dvs+1 du.

Splitting the integral in the two following parts :

Q1 =
s∑
i=1

|vi|
∫ t

0

∣∣h(s+1)
N (u, ·)

∣∣
ε,s+1,β̃λ(u)

exp
(
− β̃λ(u)

2

s+1∑
j=1

|vj |2
)

×
∫
Rd

exp
(
− β̃λ(u)

2
|vs+1|2

)
dvs+1 du,

and

Q2 = s

∫ t

0

∣∣h(s+1)
N (u, ·)

∣∣
ε,s+1,β̃λ(u)

exp
(
− β̃λ(u)

2

s+1∑
j=1

|vj |2
)

×
∫
Rd
|vs+1| exp

(
− β̃λ(u)

2
|vs+1|2

)
dvs+1 du,

and performing the change of variables ws+1 =

√
β̃λ(u)

2 vs+1 in the integral over

Rd, one obtains :

Q1 =
s∑
i=1

|vi|
∫ t

0

∣∣h(s+1)
N (u, ·)

∣∣
ε,s+1,β̃λ(u)

exp
(
− β̃λ(u)

2

s+1∑
j=1

|vj |2
)

×

(∫
Rd

( 2

β̃λ(u)

)d/2
exp

(
− |ws+1|2

)
dws+1

)
du

= C1(d)
s∑
i=1

|vi|
∫ t

0

( 2

β̃λ(u)

)d/2∣∣h(s+1)
N (u, ·)

∣∣
ε,s+1,β̃λ(u)

× exp
(
− β̃λ(u)

2

s+1∑
j=1

|vj |2
)

du,

with

C1(d) =
(∫ +∞

−∞
exp(−x2) dx

)d
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and :

Q2 = s

∫ t

0

∣∣h(s+1)
N (u, ·)

∣∣
ε,s+1,β̃λ(u)

exp
(
− β̃λ(u)

2

s+1∑
j=1

|vj |2
)

×
Å 

2

β̃λ(u)

d+1 ∫
Rd

»
β̃λ(u)2|vs+1| exp

(
− β̃λ(u)

2
|vs+1|2

)  β̃λ(u)

2

d

dvs+1

ã
du

= sC2(d)

∫ t

0

Å 
2

β̃λ(u)

ãd+1∣∣h(s+1)
N (u, ·)

∣∣
ε,s+1,β̃λ(u)

exp
(
− β̃λ(u)

2

s+1∑
j=1

|vj |2
)

du

with

C2(d) =

∫
Rd
|ws+1| exp

(
− |ws+1|2

)
dws+1.

Remembering that one wants to obtain a bound on the |||·|||
N,ε,β̃λ,µ̃2

λ

norm of the

function of sequences :

t 7→
(
1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, ·) du

)
1≤s≤N

,

one will consider the product of Q with

exp
( β̃(t)

2

s∑
i=1

|vi|2
)
× exp

(
s2µ̃(t)

)
,

in order to bound that product uniformly in t ∈ [0, T ] and 1 ≤ s ≤ N − 1. One
gets, denoting

Q(t, s, Zs) = exp
( β̃λ(t)

2

s∑
i=1

|vi|2
)

exp
(
s2µ̃λ(t)

)
×
∣∣∣∣∣
∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, Zs) du

∣∣∣∣∣,

Q(t, s, Zs) ≤ C3(d,N, ε)

∫ t

0

( s∑
i=1

|vi|+ sβ̃λ(u)−1/2
)
β̃λ(u)−d/2

×
∣∣h(s+1)
N (t, ·)

∣∣
ε,s+1,β̃λ(t)

exp
((β̃λ(t)− β̃λ(u)

)
2

s∑
i=1

|vi|2 + s2µ̃λ(t)
)

du,

with C3(d,N, ε) denoting C(d,N, ε) max(C1(d), C2(d)).
Using now the definition of the ||·||

N,ε,β̃λ(t),µ̃λ(t)2
norm (Definition 25 page 207),

one has, for every time u ∈ [0, T ] and every integer 1 ≤ s ≤ N − 1 :

exp
(
(s+ 1)2µ̃λ(u)

)∣∣h(s+1)
N (u, ·)

∣∣
ε,s+1,β̃λ(u)

≤
∣∣∣∣∣∣(h(s)

N (u, ·)
)

1≤s≤N

∣∣∣∣∣∣
N,ε,β̃λ(u),µ̃λ(u)

,
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and the definition of the |||·|||
N,ε,β̃λ,µ̃2

λ

norm (Definition 27 page 210), one has for

every time u ∈ [0, T ] :∣∣∣∣∣∣(h(s)
N (u, ·)

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β̃λ(u),µ̃λ(u)2

≤
∣∣∣∣∣∣∣∣∣(h(s)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃2

λ

,

so that it provides the bound on Q(t, s, Zs) :

Q(t, s, Zs) ≤ C3(d,N, ε)
∣∣∣∣∣∣∣∣∣(h(s+1)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃2

λ

∫ t

0

( s∑
i=1

|vi|+ sβ̃λ(u)−1/2
)

× β̃λ(u)−d/2 exp
((β̃λ(t)− β̃λ(u)

)
2

s∑
i=1

|vi|2 + s2µ̃λ(t)− (s+ 1)2µ̃λ(u)
)

du.

(8.4)

Except for the loss of the possible cancellations between gain and loss terms in
the collision operator, that is one has written that∣∣∣CN,εs,s+1,i

∣∣∣ =
∣∣∣CN,εs,s+1,i,+ − C

N,ε
s,s+1,i,−

∣∣∣ ≤ ∣∣∣CN,εs,s+1,i,+

∣∣∣+
∣∣∣CN,εs,s+1,i,−

∣∣∣,
which is of course not sharp at all, one was in the rest of the computation as
careful as possible. And here, one sees the need to add assumptions on the non
increasing functions β̃ and µ̃. Indeed, the last bound (8.4) on Q(t, s, Zs) is not
uniform in s, nor in the phase space variable Zs. If one considers very simple,
non increasing functions for β̃ and µ̃, for example if one assumes that they are
constant, that is for all t ∈ [0, T ] :

β̃(t) = β0

and
µ̃(t) = µ0,

the bound (8.4) becomes :

Q(t, s, Zs) ≤ C3(d,N, ε)
∣∣∣∣∣∣∣∣∣(h(s+1)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

( s∑
i=1

|vi|+ sβ
−1/2
0

)
× β−d/20

∫ t

0

exp
(
− µ0

)
du,

which will never provide the fact that the BBGKY operator sends the space‹X
N,ε,β̃,µ̃2 into itself in those conditions, since the bound depends strongly on s

and Zs.

However, looking carefully at the integral in the bound (8.4) :∫ t

0

( s∑
i=1

|vi|+ sβ̃(u)−1/2
)
β̃(u)−d/2

× exp
( β̃(t)− β̃(u)

2

s∑
i=1

|vi|2 + s2
(
µ̃(t)− µ̃(u)

)
− (2s+ 1)µ̃(u)

)
du,
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one has noticed just before that if β̃ and µ̃ are not chosen wisely, then the term

s∑
i=1

|vi|+ sβ̃(u)−1/2

ruins immediately any chance to get a bound independent on s and Zs. In
other words, one has to compensate this term. But the integral is close to the
expression

∫
y′ exp(y), so using elementary differential calculus, it seems possible

to control the other term, next to the exponential term under the integral.
Choosing then simple functions β̃ = β̃λ and µ̃ = µ̃λ that can lead to an explicit
computation, that is taking :

β̃λ(t) = β0 − λt

and

µ̃λ(t) = µ0 − λt,

which are of course non increasing for λ > 0, the bound (8.4) can be rewritten
as follows :

Q(t, s, Zs) ≤ C3(d,N, ε)
∣∣∣∣∣∣∣∣∣(h(s+1)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃2

λ

∫ t

0

( s∑
i=1

|vi|+ sβ̃λ(u)−1/2
)

× β̃λ(u)−d/2 exp
(λ(u− t)

2

s∑
i=1

|vi|2 + s2λ(u− t)− (2s+ 1)µ̃λ(u)
)

du.

About the properties verified by the weight functions β̃λ and µ̃λ, one recalls that
those two functions have to be chosen non increasing in order to use the embed-
ding property of the X

ε,s,β̃λ(t)
and X

N,ε,β̃λ(t),µ̃λ(t)2
spaces, so that the condition

of left continuity in time (7.5), given in the definition 27 of the ‹X
N,ε,β̃λ,µ̃λ

page

210 makes sense.
On the other hand, one recalls that the fact that the function β̃λ is strictly
positive on the whole time interval [0, T ] is mandatory in order to get a control

in the high velocity on h
(s)
N , so that the integrated in time transport-collision-

transport of this function is well defined (see section 6.1.2 and Lemma 15 page
188).
Finally, the condition on the positivity of the function µ̃λ is a consequence of the
fact that, for the next step of the proof, that is the one about the left continuity
in time of the integral term of the BBGKY operator, one needs a strong weight
on the number of particles. This weight will impose then to have positivity for
µ̃λ in order to recover the fact that the integral term of the BBGKY operator
has a finite |||·|||

ε,β̃λ,µ̃2
λ

norm. About the need of this weight, and what kind of

continuity one can obtain if the weight is not assumed to be that strong, the
reader can refer to the first paragraph of Section 8.2 page 251 below.
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The functions u 7→ β̃λ(u)−1/2, u 7→ β̃λ(u)−d/2 and u 7→ exp
(
− (2s + 1)µ̃λ(u)

)
being all increasing, the following bound holds :

Q(t, s, Zs) ≤ C3(d,N, ε)
∣∣∣∣∣∣∣∣∣(h(s+1)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃2

λ

∫ t

0

( s∑
i=1

|vi|+ sβ̃λ(T )−1/2
)

× β̃λ(T )−d/2 exp
(λ(u− t)

2

s∑
i=1

|vi|2 + s2λ(u− t)− (2s+ 1)µ̃λ(T )
)

du,

that is :

Q(t, s, Zs) ≤ C3(d,N, ε)
∣∣∣∣∣∣∣∣∣(h(s+1)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃2

λ

β̃λ(T )−d/2

× exp
(
− (2s+ 1)µ̃λ(T )

)
×
∫ t

0

( s∑
i=1

|vi|+ sβ̃λ(T )−1/2
)

exp
(
λ(u− t)

( s∑
i=1

|vi|2

2
+ s2

))
du.

The integral of the last inequality can be then computed explicitly as follows :∫ t

0

( s∑
i=1

|vi|+ sβ̃λ(T )−1/2
)

exp
(
λ(u− t)

( s∑
i=1

|vi|2

2
+ s2

))
du

=
( s∑
i=1

|vi|+ sβ̃λ(T )−1/2
)[exp

(
λ(u− t)

(∑s
i=1

|vi|2
2 + s2

))
λ
(∑s

i=1
|vi|2

2 + s2
) ]t

0

≤
∑s
i=1 |vi|+ sβ̃λ(T )−1/2

λ
(∑s

i=1
|vi|2

2 + s2
) .

Splitting again in two terms the bound obtained for the integral, if one denotes

I1 =

∑s
i=1 |vi|

λ
(∑s

i=1
|vi|2

2 + s2
)

and

I2 =
sβ̃λ(T )−1/2

λ
(∑s

i=1
|vi|2

2 + s2
) ,

one obtains, using the Cauchy-Schwarz inequality for the two vectors

(|v1|, . . . , |vs|)

and

(1, . . . , 1)
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a control of the term I1 and an obvious bound from below for the denominator
of the term I2 :

I1 + I2 ≤

»(∑s
i=1 |vi|2

)(∑s
i=1 12

)
λ
(∑s

i=1
|vi|2

2 + s2
) +

sβ̃λ(T )−1/2

s2λ

≤ 1

λ

( 1
2

(∑s
i=1 |vi|2 + s

)∑s
i=1

|vi|2
2 + s2

+ β̃λ(T )−1/2
)

≤ 1

λ

(
1 + β̃λ(T )−1/2

)
.

In summary, one has obtained :

Q(t, s, Zs) ≤ C3(d,N, ε)β̃λ(T )−d/2 exp
(
− (2s+ 1)µ̃λ(T )

)(1 + β̃λ(T )−1/2
)

λ

×
∣∣∣∣∣∣∣∣∣(h(s+1)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃2

λ

. (8.5)

Finally, the fact that the function µ̃λ has been chosen strictly positive is used
crucially here to write that, for any positive integer s :

exp
(
− (2s+ 1)µ̃λ(T )

)
≤ exp

(
− 3µ̃λ(T )

)
.

Recalling that Q(t, s, Zs) is defined as :

Q(t, s, Zs) = exp
( β̃λ(t)

2

s∑
i=1

|vi|2
)

exp
(
s2µ̃λ(t)

)
×
∣∣∣∣∣
∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, Zs) du

∣∣∣∣∣,
and noticing that the right-hand side of the last inequality (8.5), combined with
the last remark about the positivity of µ̃λ, does not depend on s nor Zs, one
has in fact shown that :∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣t 7→ (∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, ·) du

)
1≤s≤N

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
N,ε,β̃λ,µ̃2

λ

≤ C3(d,N, ε)β̃λ(T )−d/2 exp
(
− 3µ̃λ(T )

)(1 + β̃λ(T )−1/2
)

λ

×
∣∣∣∣∣∣∣∣∣(h(s+1)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃2

λ

,

up to assuming that β̃λ and µ̃λ are given by the expressions :

β̃λ(t) = β0 − λt

and
µ̃λ(t) = µ0 − λt,
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and with the only extra conditions β0 − λT > 0 and µ0 − λT > 0, and the
inequality (8.3) of the Lemma on the |||·|||

ε,β̃λ,µ̃2
λ

norm is proven.

In other words, the integral term of the image by the BBGKY operator of

any element of the functional space ‹X
N,ε,β̃λ,µ̃2

λ

has a finite |||·|||
N,ε,β̃λ,µ̃2

λ

norm.

To finish showing that the integrated in time transport-collision-transport op-

erator sends the space ‹X
N,ε,β̃λ,µ̃2

λ

into itself, it remains only to check the left

continuity for all t ∈ ]0, T ] with respect to the ||·||
N,ε,β̃λ(t),µ̃λ(t)2

norm.

One considers then, for any t ∈ ]0, T ], for any 0 ≤ u ≤ t, for any integer
1 ≤ s ≤ N − 1, and for any Zs ∈ Dεs the difference :

Q =

∣∣∣∣∣
∫ t

0

T s,ε−τ C
N,ε
s,s+1T s+1,ε

τ h
(s+1)
N (τ, Zs) dτ

−
∫ u

0

T s,ε−τ C
N,ε
s,s+1T s+1,ε

τ h
(s+1)
N (τ, Zs) dτ

∣∣∣∣∣.
The quantity Q can be controlled, as above, thanks to the inequality (6.4) of
Lemma 15 page 188, in the particular case of :

gs+1(τ, |Vs+1|) = exp
(
− β̃λ(τ)

2
|Vs+1|2

)
,

taking carefully into account the bounds of the integral with respect to time.
One obtains then :∣∣∣∣∣
∫ t

u

T s,ε−τ C
N,ε
s,s+1T s+1,ε

τ h
(s+1)
N (τ, Zs) dτ

∣∣∣∣∣ ≤ 2(N − s)
s∑
i=1

εd−1

∣∣Sd−1
∣∣

2

×
∫ t

u

∣∣∣∣∣h(s+1)(τ, Zs+1)

gs+1

(
τ, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

∫
Rd

(
|vi|+ |vs+1|

)
gs+1

(
τ, |Vs+1|

)
dvs+1 dτ

≤ (N − s)εd−1
∣∣Sd−1

∣∣
×
∫ t

u

∣∣h(s+1)(τ, ·)
∣∣
ε,s,β̃(τ)

∫
Rd

( s∑
i=1

|vi|+ s|vs+1|
)

exp
(
− β̃λ(τ)

2
|Vs+1|

)
dvs+1 dτ.

As above, using the definition of the ||·||
N,ε,β̃λ(τ),µ̃λ(τ)2

norm, that is :∣∣h(s+1)(τ, ·)
∣∣
ε,s,β̃λ(τ)

≤
∣∣∣∣∣∣(h(s)

N (τ, ·)
)

1≤s≤N

∣∣∣∣∣∣
N,ε,β̃λ(τ),µ̃λ(τ)2

exp(−(s+ 1)2µ̃λ(τ))

≤
∣∣∣∣∣∣∣∣∣(h(s)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃2

λ

exp(−(s+ 1)2µ̃λ(τ))

and multiplying the quantity Q by the product of weights

exp
( β̃λ(t)

2
|Vs|2

)
exp(s2µ̃λ(t)),
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one has :

Q exp
( β̃λ(t)

2
|Vs|2

)
exp(s2µ̃λ(t)) ≤ C(d,N, ε)

∣∣∣∣∣∣∣∣∣(h(s)
N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃2

λ

×
∫ t

u

( s∑
i=1

|vi|+ sβ̃λ(T )−1/2
)
β̃λ(T )−d/2

× exp
(λ

2
(τ − t)

s∑
i=1

|vi|2 + s2µ̃λ(t)− (s+ 1)2µ̃λ(τ)
)

dτ.

Using the fact that the function µ̃λ is non increasing, one has :

exp
(λ

2
(τ − t)

s∑
i=1

|vi|2 + s2µ̃λ(t)− (s+ 1)2µ̃λ(τ)
)

= exp
(λ

2
(τ − t)

s∑
i=1

|vi|2 + s2(µ̃λ(t)− µ̃λ(τ))− (2s+ 1)µ̃λ(τ)
)

≤ exp(−µ̃λ(T )) exp(−2sµ̃λ(T )) exp
(λ

2
(τ − t)

s∑
i=1

|vi|2 + s2(µ̃λ(t)− µ̃λ(τ))
)
.

If one denotes then Q′ the quantity :

Q′ = Q exp
( β̃λ(t)

2
|Vs|2

)
exp(s2µ̃λ(t)),

one has in fact :

Q′ ≤ C(d,N, ε)β̃λ(T )−d/2 exp(−µ̃λ(T ))
∣∣∣∣∣∣∣∣∣(h(s)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃2

λ

×
( s∑
i=1

|vi|+ sβ̃λ(T )−1/2
)

exp(−2sµ̃λ(T ))

×
∫ t

u

exp
(λ

2
(τ − t)

s∑
i=1

|vi|2 + λs2(τ − t)
)

dτ.

Here, the key argument is the use of the Cauchy-Schwarz inequality in the
integral. One writes :∫ t

u

exp
(λ

2
(τ − t)

s∑
i=1

|vi|2 + λs2(τ − t)
)

dτ

≤

 ∫ t

u

12 dτ

Ã∫ t

u

exp
(λ

2
(τ − t)

s∑
i=1

|vi|2 + λs2(τ − t)
)2

dτ

≤
√
t− u 1»

λ
(∑s

i=1 |vi|2 + 2s2
) .
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The quantity Q′ is then controlled by :

Q′ ≤ C(d,N, ε)β̃λ(T )−d/2 exp(−µ̃λ(T ))
∣∣∣∣∣∣∣∣∣(h(s)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃2

λ

×
( s∑
i=1

|vi|+ sβ̃λ(T )−1/2
) exp(−2sµ̃λ(T ))»

λ
(∑s

i=1 |vi|2 + 2s2
)√t− u.

The left continuity will be proved if one is able to show that the quantity :( s∑
i=1

|vi|+ sβ̃λ(T )−1/2
) exp(−2sµ̃λ(T ))»

λ
(∑s

i=1 |vi|2 + 2s2
)

is uniformly bounded in s and Zs. The first term, denoted as Q1, that is :

Q1 =
s∑
i=1

|vi|
exp(−2sµ̃λ(T ))»
λ
(∑s

i=1 |vi|2 + 2s2
) ,

can be controlled as, thanks to the Cauchy-Schwarz inequality applied to the
vectors

(
|v1|, . . . , |vs|

)
and (1, . . . , 1) of Rs :

Q1 ≤ exp(−2sµ̃λ(T ))

√
s
√∑s

i=1 |vi|2»
λ
(∑s

i=1 |vi|2 + 2s2
) .

Then, with an obvious bound from below in the denominator, one gets :

Q1 ≤
1√
λ

√
s exp(−2sµ̃λ(T )).

Thanks now to the crucial hypothesis µ̃λ(T ) > 0, one can state that the sequence
of strictly positive numbers :(√

s exp(−2sµ̃λ(T ))
)
s≥1

is bounded by some constant C(µ̃λ(T )) since
√
s exp(−2sµ̃λ(T )) −→

s→+∞
0,

so that in fact

Q1 ≤
C(µ̃λ(T ))√

λ
.

For the second term Q2 defined as :

Q2 = sβ̃λ(T )−1/2 exp(−2sµ̃λ(T ))»
λ
(∑s

i=1 |vi|2 + 2s2
) ,

one has easily, since exp(−2sµ̃λ(T )) < 1 and
∑s
i=1 |vi|2 ≥ 0, that :

Q2 ≤ β̃λ(T )−1/2 s√
2λs2

=
β̃λ(T )−1/2

√
2λ

.
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Here one has noticed the crucial role played by the power 2 over s in the de-
nominator (in fact, it just has to be strictly larger than 1) : without it, it was
not possible to bound uniformly the quantity Q2.
Gathering the controls on Q1 and Q2 provides then for Q′ :

Q′ ≤ C(d,N, ε)
β̃λ(T )−d/2

(
C(µ̃λ(T )) + β̃λ(T )−1/2

)
exp(−µ̃λ(T ))

√
λ

×
∣∣∣∣∣∣∣∣∣(h(s)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃2

λ

√
t− u,

and the left continuity for all time t ∈ ]0, T ] is proved.

The two previous Lemmas 17 page 221 and 18 page 222 together show that the

BBGKY operator sends indeed the space ‹X
N,ε,β̃λ,µ̃2

λ

into itself, up to assuming

some additional hypotheses on the weights β̃λ and µ̃λ.

Remark 18. One can notice here, along the part of the proof devoted to the
left continuity in time of the integral term of the BBGKY operator, that the

hypothesis on the uniform in s left continuity of the argument
(
h

(s)
N

)
1≤s≤N was

not used. Therefore, the integral term of the BBGKY operator has a regularizing
effect, in the sense that, in the case when α = 2, the hypothesis on the left
continuity in time has not to be assumed to be recovered for the image of the
integral term of the operator.
One notices also that if the parameter α is strictly larger than 1 (and not exactly
2), the proof above still works. One has only to replace the Cauchy-Schwarz
inequality by the Hölder inequality, providing therefore the continuity in time,
with a rate of convergence a bit different (it is still a power of t− u).

Stability by the integral term of the BBGKY hierarchy of the space‹X
N,ε,β̃,µ̃1 (case α = 1)

In this paragraph, one does the same work on the image by the integral term of

the BBGKY hierarchy, but this time of the space ‹X
N,ε,β̃,µ̃1 (see Definition 29

page 211, and in particular the continuity condition (7.7)). After the complete
statement of the Lemma, only the parts of the proof that are different from the
proof of Lemma 18 will be written. One stresses here the fact that there is no
positivity condition of µ0 nor of the function µ̃ in this particular case α = 1.

Lemma 19. Let N be a positive integer and ε be a strictly positive number. For
any T > 0, any β0 > 0, µ0 ∈ R and λ > 0 such that :

β0 − λT > 0,

if the function of sequences :

t 7→
(
h

(s)
N (t, ·)

)
1≤s≤N
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belongs to the space ‹X
N,ε,β̃λ,µ̃1

λ

with β̃λ and µ̃λ denoting :

β̃λ :

®
[0, T ] → R∗+,

t 7→ β̃λ(t) = β0 − λt,

and

µ̃λ :

ß
[0, T ] → R,

t 7→ µ̃λ(t) = µ0 − λt,

then the function of sequences :

t 7→
(
1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, ·) du

)
1≤s≤N

belongs to the same space ‹X
N,ε,β̃λ,µ̃1

λ

. In addition, one has the following inequal-

ity :∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣t 7→ (

1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, ·) du

)
1≤s≤N

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
N,ε,β̃λ,µ̃1

λ

≤ C(d,N, ε)β̃λ(T )−d/2 exp(−µ̃λ(T ))
(1 + β̃λ(T )−1/2)

λ

×
∣∣∣∣∣∣∣∣∣(h(s)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃1

λ

(8.6)

with C(d,N, ε) denoting :

C(d,N, ε) = C ′(d)Nεd−1

and C ′(d) being a constant which depends only on the dimension d.

Proof. The rigorous definition of the quantity studied in this lemma is obtained
in the same way as for the previous one.
For the finiteness of the |||·|||

N,ε,β̃λ,µ̃1
λ

norm, the relevant analog of the quantity

previously denoted Q(t, s, Zs), will be here :

Q(t, s, Zs) = exp
( β̃λ(t)

2

s∑
i=1

|vi|2
)

exp(sµ̃λ(t))

×
∣∣∣ ∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, Zs) du

∣∣∣
(the power 2 over s in the last exponential of the first line has been of course
replaced by 1, in order to control the |||·|||

N,ε,β̃λ,µ̃1
λ

norm introduced in Definition

29 page 211), and this quantity will verify the analog of the inequality (8.4) page
227, with the same arguments as in the proof of the previous Lemma, so that
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one obtains in this case :

Q(t,s, Zs) ≤ C3(d,N, ε)
∣∣∣∣∣∣∣∣∣(h(s+1)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃1

λ

∫ t

0

( s∑
i=1

|vi|+ sβ̃(u)−1/2
)

× β̃λ(u)−d/2 exp
( (β̃λ(t)− β̃λ(u))

2

s∑
i=1

|vi|2 + sµ̃λ(t)− (s+ 1)µ̃λ(u)
)

du

(8.7)

(here again, the crucial change lies in the replacement of s2 by s). According

to the affine expressions chosen for the functions β̃λ and µ̃λ, the last inequality
becomes :

Q(t, s, Zs) ≤ C3(d,N, ε)
∣∣∣∣∣∣∣∣∣(h(s+1)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃1

λ

∫ t

0

( s∑
i=1

|vi|+ sβ̃λ(u)−1/2
)

× β̃λ(u)−d/2 exp
(λ(u− t)

2

s∑
i=1

|vi|2 + sλ(u− t)− µ̃λ(u)
)

du.

The functions β̃λ and µ̃λ being non increasing, one obtains :

Q(t, s, Zs) ≤ C(d,N, ε)β̃λ(T )−d/2 exp(−µ̃λ(T ))
(1 + β̃λ(T )−1/2)

λ

×
∣∣∣∣∣∣∣∣∣(h(s)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃1

λ

,

which provides the control on the |||·|||
N,ε,β̃λ,µ̃1

λ

norm of the integral term of the

BBGKY operator, and the inequality (8.6) of the lemma.

As for the left continuity in time, one considers, for each 1 ≤ s ≤ N fixed

Q exp
( β̃λ(t)

2
|Vs|2

)
exp(sµ̃λ(t)),

instead of :

Q exp
( β̃λ(t)

2
|Vs|2

)
exp(s2µ̃λ(t))

(one is considering here the case when α = 1), with :

Q =

∣∣∣∣∣
∫ t

0

T s,ε−τ C
N,ε
s,s+1T s+1,ε

τ h
(s+1)
N (τ, Zs) dτ

−
∫ u

0

T s,ε−τ C
N,ε
s,s+1T s+1,ε

τ h
(s+1)
N (τ, Zs) dτ

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

u

T s,ε−τ C
N,ε
s,s+1T s+1,ε

τ h
(s+1)
N (τ, Zs) dτ

∣∣∣∣∣.



8.1. IMAGE OF THE SPACES ‹X
N,ε,β̃,µ̃α

AND ‹X
0,β̃,µ̃α

237

Once again, using the definition of the norms | · |
ε,s,β̃λ(t)

, ||·||
N,ε,β̃λ,µ̃λ(t)1

and

|||·|||
N,ε,β̃λ,µ̃λ

, and the fact that the functions β̃λ and µ̃λ are decreasing, one

finds, similarly as above :

Q exp
( β̃λ(t)

2
|Vs|2

)
exp(sµ̃λ(t)) ≤ C(d,N, ε)

∣∣∣∣∣∣∣∣∣(h(s)
N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃1

λ

×
∫ t

u

( s∑
i=1

|vi|+ sβ̃λ(T )−1/2
)
β̃λ(T )−d/2

× exp
(λ

2
(τ − t)

s∑
i=1

|vi|2 + sµ̃λ(t)− (s+ 1)µ̃λ(τ)
)

dτ

and then

Q exp
( β̃λ(t)

2
|Vs|2

)
exp(sµ̃λ(t)) ≤ C(d,N, ε)β̃λ(T )−d/2

∣∣∣∣∣∣∣∣∣(h(s)
N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃1

λ

× exp(−µ̃λ(T ))
( s∑
i=1

|vi|+ sβ̃λ(T )−1/2
)

×
∫ t

u

exp
(λ

2
(τ − t)

s∑
i=1

|vi|2 + λs(τ − t)
)

dτ.

Once again, the Cauchy-Schwarz inequality provides∫ t

u

exp
(λ

2
(τ − t)

s∑
i=1

|vi|2 + λs(τ − t)
)

dτ

≤

 ∫ t

u

12 dτ

Ã∫ t

u

exp
(λ

2
(τ − t)

s∑
i=1

|vi|2 + λs(τ − t)
)2

dτ

≤
√
t− u 1»

λ
(∑s

i=1 |vi|2 + 2s
) .

In this case, one obtains :

Q exp
( β̃λ(t)

2
|Vs|2

)
exp(sµ̃λ(t)) ≤ C(d,N, ε)

∣∣∣∣∣∣∣∣∣(h(s)
N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃1

λ

×
∫ t

u

( s∑
i=1

|vi|+ sβ̃λ(T )−1/2
)
β̃λ(T )−d/2

× exp
(λ

2
(τ − t)

s∑
i=1

|vi|2 + sµ̃λ(t)− (s+ 1)µ̃λ(τ)
)

dτ

≤ C(d,N, ε)β̃λ(T )−d/2 exp(−µ̃λ(T ))
∣∣∣∣∣∣∣∣∣(h(s)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃1

λ

×
∑s
i=1 |vi|+ sβ̃λ(T )−1/2»
λ
(∑s

i=1 |vi|2 + 2s
) √t− u.
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The last fraction above will not have its numerator compensated by its denomi-
nator uniformly in s, however it is not important in the setting α = 1, since one
wants, for every s fixed, a bound which has to be uniform only in the variable
Zs of the phase space. One has :∑s

i=1 |vi|…
λ
(∑s

i=1 |vi|2 + 2s
) ≤ √s√∑s

i=1 |vi|2√
λ
√∑s

i=1 |vi|2
=

…
s

λ
,

and :

sβ̃λ(T )−1/2…
λ
(∑s

i=1 |vi|2 + 2s
) ≤ sβ̃λ(T )−1/2

√
2λs

= β̃λ(T )−1/2

…
s

2λ
,

so that the left continuity in time, for every 1 ≤ s ≤ N , is recovered in the
| · |

ε,s,β̃λ(t)
norm, since one has :∣∣∣∣∣

∫ t

u

T s,ε−τ C
N,ε
s,s+1T s+1,ε

τ h
(s+1)
N (τ, Zs) dτ

∣∣∣∣∣ exp
( β̃λ(t)

2
|Vs|2

)
≤ C(d,N, ε)β̃λ(T )−1/2 exp(−2µ̃λ(T ))

(
1 + β̃λ(T )−1/2

)
√
λ

∣∣∣∣∣∣∣∣∣(h(s)
N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃1

λ

×
√
s
√
t− u,

that is, for every 1 ≤ s ≤ N :∣∣h(s)
N (t)− h(s)

N (u)
∣∣
ε,s,β̃λ(t)

−→
u→t−

0,

and then the proof of the lemma is complete.

8.1.2 The Boltzmann operator

In this section, one gives a definition of the Boltzmann operator, in an analogous
way as for the BBGKY one.

Definition 32 (Boltzmann operator). For any sequence of initial data
(
f

(s)
0

)
s≥1

belonging to the space X
0,β̃(0),µ̃(0)α

and any function of sequences F = t 7→(
f (s)(t, ·)

)
s≥1

belonging to the space ‹X
0,β̃,µ̃α

, one defines the function of se-
quences :

t 7→
(
T s,0t f

(s)
0 (·) +

∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, ·) du
)
s≥1

, (8.8)

denoted by :

E0

((
f

(s)
0

)
s≤1

, F
)
.

The functions which associates E0

((
f

(s)
0

)
s≥1

, F
)

to the function of sequences F

is called the Boltzmann operator with sequence of initial data
(
f

(s)
0

)
s
.
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Exactly as in the previous section, one will show that the Boltzmann operator :

F 7→
(
t 7→

(
T s,0t f

(s)
0 (·) +

∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, ·) du
)
s≥1

)
, (8.9)

with F = t 7→
(
f (s)(t, ·)

)
s≥1

, sends the space ‹X
0,β̃,µ̃α

into itself, and as in the

previous section, one will study the two terms of this operator, that is :

F 7→
(
t 7→

(
T s,0t f

(s)
0 (·)

)
s≥1

)
and

F 7→
(
t 7→

( ∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, ·) du
)
s≥1

)
,

which is the purpose of the two following lemmas.

The first lemma will require a meaningful and important additional hypothesis

to obtain the control of the image of the function of sequences t 7→
(
T s,0f (s)

0

)
s≥1

,

namely the boundary condition for the sequence of initial data.

Lemma 20. Let α = 1 or 2. For any T > 0, any β̃ and µ̃ two decreasing
functions both defined on [0, T ], if the initial datum :(

f
(s)
0

)
s≥1

belongs to the space X
0,β̃(0),µ̃(0)α

, and verifying in addition the boundary condi-

tion, for all s ≥ 1 :

f
(s)
0

(
χ0
s(Zs)

)
= f

(s)
0 (Zs)

for every Zs such that there exists 1 ≤ i ≤ s such that xi · e1 = 0 (where χ0
s is

introduced in Definition 11 page 79), then the function of sequences :

t 7→
(
T s,0t f

(s)
0 (·)

)
s≥1

belongs to the space ‹X
0,β̃,µ̃α

, and one has moreover that :∣∣∣∣∣∣∣∣∣t 7→ (
T s,0t f

(s)
0

)
s≥N

∣∣∣∣∣∣∣∣∣
0,β̃,µ̃α

≤
∣∣∣∣∣∣(f (s)

0

)
s≥1

∣∣∣∣∣∣
0,β̃(0),µ̃(0)α

. (8.10)

Proof. First one recalls that, for the case of the Boltzmann hierarchy, the space‹X
0,β̃,µ̃α

is defined in particular as a subspace of the continuous functions on(
Ωc × Rd

)s
, vanishing at infinity.

However, one cannot just consider functions of C
((

Ωc × Rd
))

for initial data.
Indeed, the discussion of the section 5.2.2 page 171 has shown that for general

continuous functions f
(s)
0 , if t is non zero, the function :

T s,εt f
(s)
0
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can be discontinuous. Nevertheless, if one restricts the set in which the initial

datum f
(s)
0 is chosen, that is if one considers in addition continuous functions

on : (
Ωc × Rd

)s
verifying the boundary condition

f
(s)
0

(
χ0
s(Zs)

)
= f

(s)
0 (Zs),

for any configuration of the phase space Zs belonging to the boundary of the
domain, that is such there exists at least one integer 1 ≤ i ≤ s such that
xi ∈ ∂Ω = {x · e1 = 0} (where one has used the notations of Definition 11 page
79), one will be able to show that for any number t, the function :

Zs 7→ T s,0t f
(s)
0 (Zs)

is continuous on the whole phase space(
Ωc × Rd

)s
.

There are only two cases. Either the configuration T s,0−t (Zs) does not belong to
the boundary of the domain, or it does.
In the first case, there exists a neighbourhood V(Zs) of Zs such that the function®

V(Zs) →
(
Ωc × Rd

)s
,

Z∗s 7→ T s,0−t (Z∗s )

is continuous, and so by composition, the function :

Z∗s 7→ T
s,0
t f

(s)
0 (Z∗s ) = f

(s)
0

(
T s,0−t (Z∗s )

)
is continuous on the neighbourhood V(Zs), so that the function is continuous
at Zs.
In the second case, that is if Zs belongs to the boundary of the domain, there
exists at least one integer 1 ≤ i0 ≤ s such that one has :(

T s,0−t (Zs)
)X,i0 · e1 > 0.

One denotes 1 ≤ i1 < · · · < ip ≤ s the numbers of the particles bouncing against
the obstacle at time t, that is such that :(

T s,0−t (Zs)
)X,ik · e1 > 0.

For each particle ik lying at the configuration (x′, v′) ∈ Ωc × Rd in the phase
space of one particle, its configuration belongs to exactly one of those three
subsets :
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•
{

(x′, v′) ∈ Ωc × Rd / (x′ − tv′) · e1 > 0
}

, that is the particle has not
bounced against the obstacle during the time interval [0, t]. In this case,
for such a particle, one has :(

T s,0−t (x′, v′)
)ik = (x′ − tv′, v′).

•
{

(x′, v′) ∈ Ωc × Rd / (x′ − tv′) · e1 = 0
}

, that is the particle bounces
against the obstacle exactly at time t. In this case, for such a particle,
one has, if v′ · e1 < 0 (using the convention for the definition of the free
transport with boundary condition, such that any bouncing configuration
is pre-bouncing) :

T s,0−t (x′, v′) = (x′ − tv′, v′),

and if v′ · e1 > 0 :
T s,0−t (x′, v′) = (x′ − tv′,−v′).

• and finally
{

(x′, v′) ∈ Ωc × Rd / (x′ − tv′) · e1 < 0
}

, that is the particle
has already bounced against the obstacle before time t. In this case, for
such a particle, one has :

T s,0−t (x′, v′) =
(
x′ − 2x′ · e1e1 + t(v′ − 2v′ · e1e1), v′ − 2v′ · e1e1

)
.

So one considers then a neighbourhood of the point Zs, which belongs to the
boundary of the domain, and one divides this neighbourhood in the three sub-
parts described above. The goal is to show that for a point Z∗s of the neighbour-
hood, such that each of the particles in this configuration belongs to any of the
three subparts, close enough to Zs, the quantity :∣∣f (s)

(
T s,0−t (Zs)

)
− f (s)

(
T s,0−t (Z∗s )

)∣∣
can be chosen as small as one wants.
One denotes I1 the subset of particles of the configuration Z∗s which belong to
the first subpart, I2 the subset of particles which belong to the second part, and
of course I3 the subset of particles which belong to the third part.
One has then :∣∣f (s)

(
T s,0−t (Zs)

)
− f (s)

(
T s,0−t (Z∗s )

)∣∣ ≤ ∣∣f (s)
(
T s,0−t (Zs)

)
− f (s)

(ÿ�
T s,0−t (Z∗s )

)∣∣
+
∣∣f (s)

(ÿ�
T s,0−t (Z∗s )

)
− f (s)

(
T s,0−t (Z∗s )

)∣∣,
where the configuration

ÿ�
T s,0−t (Z∗s ) denotes the vector of the phase space of s

particles defined as follows :

• if the particle ik belongs to I1 or I2, then the configuration of the particle

ik in the configuration
ÿ�
T s,0−t (Z∗s ) is the one of the configuration Z∗s , that is

(ÿ�
T s,0−t (Z ′s)

)ik =
(
T s,0−t (Z ′s)

)ik ,
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• if the particle ik belongs to I3, then the position of the particle ik in the

configuration
ÿ�
T s,0−t (Z∗s ) is the one of the configuration Zs, while its velocity

is the one of the configuration Z∗s , that is :(ÿ�
T s,0−t (Z∗s )

)X,ik =
(
T s,0−t (Zs)

)X,ik and
(ÿ�
T s,0−t (Z∗s )

)V,ik =
(
T s,0−t (Z∗s )

)V,ik .
This way of writing the difference f (s)

(
T s,0−t (Zs)

)
− f (s)

(
T s,0−t (Z∗s )

)
shows the

continuity of the function T s,0t f
(s)
0 , since one has obtained, for particles ik be-

longing to I1 and I2 :∣∣∣f (s)
(
T s,0−t (Zs)

)
− f (s)

(ÿ�
T s,0−t (Z∗s )

)∣∣∣+
∣∣∣f (s)

(ÿ�
T s,0−t (Z∗s )

)
− f (s)

(
T s,0−t (Z∗s )

)∣∣∣
=
∣∣∣f (s)

(
. . . ,

(
T s,0−t (Zs)

)ik , . . . )− f (s)
(
. . . ,

(ÿ�
T s,0−t (Z∗s )

)ik , . . . )∣∣∣
+
∣∣∣f (s)

(
. . . ,

(ÿ�
T s,0−t (Z∗s )

)ik , . . . )− f (s)
(
. . . ,

(
T s,0−t (Z∗s )

)ik , . . . )∣∣∣
=
∣∣∣f (s)

(
. . . ,

(
T s,0−t (Zs)

)ik , . . . )− f (s)
(
. . . ,

(
T s,0−t (Z∗s )

)ik , . . . )∣∣∣
+
∣∣∣f (s)

(
. . . ,

(
T s,0−t (Z∗s )

)ik , . . . )− f (s)
(
. . . ,

(
T s,0−t (Z∗s )

)ik , . . . )∣∣∣,
so that for the second term, the components of the particles belonging to I1 or
I2 are the same. For the first term, one has :∣∣∣f (s)

(
. . . ,

(
T s,0−t (Zs)

)ik , . . . )− f (s)
(
. . . ,

(
T s,0−t (Z∗s )

)ik , . . . )∣∣∣
=
∣∣∣f (s)

(
. . . , xik − tvik ,

(
T s,0−t (Zs)

)V,ik), . . . )
− f (s)

(
. . . , x∗ik − tv

∗
ik
,
(
T s,0−t (Z∗s )

)V,ik), . . . )∣∣∣.
Here, if ik belongs to I1, then it is clear that

(
T s,0−t (Z∗s )

)V,ik) = v∗ik . But if ik
belongs to I2, one can have :(

T s,0−t (Z∗s )
)V,ik) = v∗ik or v∗ik − 2v∗ik · e1e1,

and similarly, the same problem occurs for Zs. But for a neighbourhood of Zs
chosen small enough, one can state that

(
T s,0−t (Z∗s )

)V,ik) and
(
T s,0−t (Z∗s )

)V,ik) are
of the same form (that is, there are either both of the form v, or both of the
form v − 2v · e1e1).
The comparison of the components of particles belonging to I3 is very similar,
and then thanks to the boundary condition and the continuity of the initial

datum f
(s)
0 , one has is fact obtained the continiuity of the function T s,0t f

(s)
0 at

the point Zs if Zs belongs to the boundary of the domain, so in summary, one
has shown the continuity everywhere.

The fact that the |||·|||
0,β̃,µ̃α

norm of the function of sequences t 7→
(
T s,0t f

(s)
0 (·)

)
s≥1

is finite is easy to prove.
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Indeed, for every nonnegative time t, every positive integer s ≥ 1 and every
Zs ∈

(
Ωc × Rd

)s
, one has that, since the weights β̃ and µ̃ are non increasing :

∣∣T s,0t f
(s)
0 (Zs)

∣∣ exp
( β̃(t)

2
|Vi|2

)
exp(sαµ̃(t))

≤
∣∣T s,0t f

(s)
0 (Zs)

∣∣ exp
( β̃(0)

2
|Vi|2

)
exp(sαµ̃(0))

=
∣∣f (s)

0

(
T s,0−t (Zs)

)∣∣ exp
( β̃(0)

2

∣∣(T s,0−t (Zs)
)V ∣∣2) exp(sαµ̃(0))

≤
∣∣∣∣∣∣(f (s)

0

)
s≥1

∣∣∣∣∣∣
0,β̃(0),µ̃(0)α

,

this last bound being finite by hypothesis on the regularity of the sequence of

initial data
(
f

(s)
0

)
s≥1

, so that the inequality (8.10) of the lemma is proved.

To conclude the proof of the lemma, the left continuity for every time t ∈ ]0, T ]
has to be verified. For the case when α = 2, it is with respect to the norm
||·||

0,β̃(t),µ̃(t)α
, if α = 1, it is, for every s ≥ 1, with respect to the | · |

0,s,β̃(0)
norm.

One writes the proof only in the case when α = 2 (see Definitions 26 page
207 and 28 page 211), since for α = 1 the arguments are exactly the same. For
t ∈ ]0, T ], one will show that :∣∣∣∣∣∣∣∣(T s,0t f

(s)
0 − T s,0u f

(s)
0

)
s≥1

∣∣∣∣∣∣∣∣
0,β̃(t),µ̃(t)2

−→
u→t−

0,

that is, in other words, for every ε > 0, there exists u0(ε) ∈ [0, t[ such that for
every u ∈ [u0, t], any positive integer s and any configuration Zs of the phase
space of s particles, one has :

∣∣∣T s,0t f
(s)
0 (Zs)− T s,0u f

(s)
0 (Zs)

∣∣∣ exp
( β̃(t)

2
|Vs|2

)
exp(s2µ̃(t)) < ε.

First, one will reduce the problem and consider only a finite number of particles.
To do so, if one denotes :

Q =
∣∣∣T s,0t f

(s)
0 (Zs)− T s,0u f

(s)
0 (Zs)

∣∣∣ exp
( β̃(t)

2
|Vs|2

)
exp(s2µ̃(t)),

then one has just to notice that, for any positive integer s and any configuration
Zs :

Q ≤
[∣∣∣f (s)

0

(
T s,0−t (Zs)

)∣∣∣+
∣∣∣f (s)

0

(
T s,0−u(Zs)

)∣∣∣] exp
( β̃(t)

2
|Vs|2

)
exp(s2µ̃(t)),

and then by conservation of the kinetic energy along the trajectories of the free
transport with boundary condition, and the fact the function β̃ is non increasing,
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one has :

Q ≤
∣∣∣f (s)

0

(
T s,0−t (Zs)

)∣∣∣ exp
( β̃(t)

2

∣∣∣(T s,0−t (Zs)
)V ∣∣∣2) exp(s2µ̃(t))

+
∣∣∣f (s)

0

(
T s,0−u(Zs)

)∣∣∣ exp
( β̃(t)

2

∣∣∣(T s,0−u(Zs)
)V ∣∣∣2) exp(s2µ̃(t))

≤
∣∣∣f (s)

0

(
T s,0−t (Zs)

)∣∣∣ exp
( β̃(0)

2

∣∣∣(T s,0−t (Zs)
)V ∣∣∣2) exp(s2µ̃(t))

+
∣∣∣f (s)

0

(
T s,0−u(Zs)

)∣∣∣ exp
( β̃(0)

2

∣∣∣(T s,0−u(Zs)
)V ∣∣∣2) exp(s2µ̃(t)),

and then using the fact that, by hypothesis, for every positive integer s the
quantity : ∣∣f (s)

0 (Zs)
∣∣ exp

( β̃(0)

2
|Vs|2

)
is uniformly bounded in Zs by

∣∣f (s)
0

∣∣
0,s,β̃(0)

, one obtains :

Q ≤ 2
∣∣f (s)

0

∣∣
0,s,β̃(0)

exp(s2µ̃(t)).

Since the function µ̃ is decreasing and t is strictly positive, one has that :

µ̃(t)− µ̃(0) < 0,

so that on the one hand :

exp
(
s2(µ̃(t)− µ̃(0)

)
−→
s→+∞

0,

and on the other hand :

Q ≤ 2
∣∣f (s)

0

∣∣
0,s,β̃(0)

exp(s2µ̃(0)) exp
(
s2(µ̃(t)− µ̃(0)

)
exp(s2µ̃(0))

≤ 2
∣∣∣∣∣∣(f (s)

0

)
s≥1

∣∣∣∣∣∣
0,β̃(0),µ̃(0)2

exp
(
s2(µ̃(t)− µ̃(0)

)
,

the last inequality holding thanks to the fact that the sequence of initial data
belongs to the space X

0,β̃(0),µ̃(0)2
.

One can therefore find a positive integer s0(ε) = s0 such that, for all s ≥ s0,
one has

exp
(
s2(µ̃(t)− µ̃(0)

)
≤ ε

2

∣∣∣∣∣∣(f (s)
0

)
s≥1

∣∣∣∣∣∣−1

0,β̃(0),µ̃(0)2
. (8.11)

For such s, the quantity Q is then uniformly bounded in Zs by ε, and so one
has only to consider the remaining cases, that is the finite number of cases when
1 ≤ s < s0.
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In the same way, for the remaining cases 1 ≤ s < s0, one will reduce the problem
to the case of a bounded energy. One writes again :

Q =
∣∣∣T s,0t f

(s)
0 (Zs)− T s,0u f

(s)
0 (Zs)

∣∣∣ exp
( β̃(t)

2
|Vs|2

)
exp(s2µ̃(t))

≤
∣∣∣f (s)

0

(
T s,0−t (Zs)

)∣∣∣ exp
( β̃(t)

2
|Vs|2

)
exp(s2µ̃(t))

+
∣∣∣f (s)

0

(
T s,0−u(Zs)

)∣∣∣ exp
( β̃(t)

2
|Vs|2

)
exp(s2µ̃(t)),

and using once more that the function µ̃ is decreasing and the conservation of
the kinetic energy along the trajectories of the free transport, one gets :

Q ≤
(∣∣∣f (s)

0

(
T s,0−t (Zs)

)∣∣∣ exp
( β̃(0)

2

∣∣∣(T s,0−t (Zs)
)V ∣∣∣2)

+
∣∣∣f (s)

0

(
T s,0−u(Zs)

)∣∣∣ exp
( β̃(0)

2

∣∣∣(T s,0−t (Zs)
)V ∣∣∣2))

× exp
((β̃(t)− β̃(0)

)
2

|Vs|2
)

exp(s2µ̃(0)),

so that thanks to the fact that the sequence of initial data belongs to the space
X

0,β̃(0),µ̃(0)2
, one obtains :

Q ≤ 2
∣∣f (s)

0

∣∣
0,s,β̃(0)

exp(s2µ̃(0)) exp
((β̃(t)− β̃(0)

)
2

|Vs|2
)

≤ 2
∣∣∣∣∣∣(f (s)

0

)
s≥1

∣∣∣∣∣∣
0,β̃(0),µ̃(0)2

exp
((β̃(t)− β̃(0)

)
2

|Vs|2
)
.

Thanks to the fact that one considers now only a finite number of integers
s, there exists a strictly positive number R(ε, s0) = R(ε) such that for every
1 ≤ s < s0, and for every Vs ∈ Rds such that

|Vs| ≥ R,

one has

exp
((β̃(t)− β̃(0)

)
2

|Vs|2
)
≤ ε

2

∣∣∣∣∣∣(f (s)
0

)
s≥1

∣∣∣∣∣∣−1

0,β̃(0),µ̃(0)2
. (8.12)

This means that for such 1 ≤ s < s0 and configurations with an energy larger
than R2, the quantity Q is again bounded by ε.
Finally, for s smaller than s0 and for an energy lower than R, one will use the

fact that the functions f
(s)
0 are uniformly continuous as functions vanishing at

infinity. Recalling that the quantity Q is given by :

Q =
∣∣∣T s,0t f

(s)
0 (Zs)− T s,0u f

(s)
0 (Zs)

∣∣∣ exp
( β̃(t)

2
|Vs|2

)
exp(s2µ̃(t)),
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it can be rewritten as :

Q =
∣∣∣T s,0t f

(s)
0 (Zs)− T s,0u−tT

s,0
t f

(s)
0 (Zs)

∣∣∣ exp
( β̃(t)

2
|Vs|2

)
exp(s2µ̃(t)),

or again :

Q =
∣∣∣T s,0t f

(s)
0 (Zs)− T s,0t f

(s)
0

(
T s,0t−u(Zs)

)∣∣∣ exp
( β̃(t)

2
|Vs|2

)
exp(s2µ̃(t)).

Using the fact that one is now considering the case of the bounded energy, one
has :

Q ≤
∣∣∣T s,0t f

(s)
0 (Zs)− T s,0t f

(s)
0

(
T s,0t−u(Zs)

)∣∣∣ exp
( β̃(t)

2
R2
)

exp(s2µ̃(t)).

From the fact that∣∣Zs − T s,0t−u(Zs)
∣∣ ≤ (t− u)|Vs| ≤ (t− u)R,

and the fact that the initial data are verifying the boundary condition (this point
is important, since the free transport is not continuous in its velocity variables),
one knows that the function

Zs 7→ T s,0t f
(s)
0 (Zs)

is continuous, and therefore uniformly continuous since it vanishes at infinity.

Thanks to the uniform continuity of each function T s,0t f
(s)
0 for 1 ≤ s < s0, there

exists then u0(ε, s0, R) = u0 ∈ [0, t[ such that for all u0 ≤ u ≤ t, all positive
integers 1 ≤ s ≤ s0 and all configurations Zs of the phase space of s particles,
one has :∣∣∣T s,0t f

(s)
0 (Zs)− T s,0t f

(s)
0

(
T s,0t−u(Zs)

)∣∣∣ ≤ exp
(
− β̃(t)

2
R2
)

exp(−s2µ̃(t))ε,

(8.13)

and then for such conditions that the quantity Q is again bounded by ε.
So, in summary, one has shown that, for any ε > 0, there exist a positive integer
s0(ε) and a strictly positive number R(ε, s0) such that, uniformly in the positive
integer s (if it is larger or equal to s0, this is the control (8.11)) and uniformly
in the configuration Zs of the phase space of s particles (if its energy is larger
than R2, this is the control (8.12), and for all the remaining cases, this is the
last control (8.13)), the quantity Q is smaller than ε, up to choosing u close
enough to t, that is one has obtained the left continuity in time with respect to
the ||·||

0,β̃(0),µ̃(0)2
norm.

Hence the lemma is entirely proved.

Remark 19. Here one has to notice that it was mandatory to assume that the
weights β̃ and µ̃ are strictly decreasing, and not only non increasing, in order in
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particular to recover the left continuity in time with respect to the ||·||
0,β̃(t),µ̃(t)α

norm.
Besides, the last part of the proof, about continuity in time, was written for a
weight in s2. However, if the power above s were only 1, the proof would have
been the same.

Finally, the two following lemmas will address the question of the image of the
second term of the Boltzmann operator, namely the integrated in time collision-

transport operator, in the two particular cases of the spaces ‹X
0,β̃,µ̃α

, for α = 2,

then α = 1. One recalls that the first one deals with the case of a strong weight
with respect to the number of particles s and a uniform in s continuity in time,
while the second one focuses on the case of a continuity in time which is not
uniform in s. The statements of thoses two lemmas are very similar to lemmas
18 and 19, and so are their proofs, since whatever the hierarchy considered
is, the integrated in time transport-collision (or transport-collision-transport)

operators satisfy the same continuity properties on the spaces ‹X·,β̃λ,µ̃λ . One

will then just write the statements of those lemmas in a first time, and then
point out briefly the differences in the proofs.

Stability by the integral term of the Boltzmann hierarchy of the space‹X
0,β̃,µ̃2 (case α = 2)

Lemma 21. For any T > 0, any β0 > 0, µ0 > 0 and λ > 0 such that :

β0 − λT > 0 and µ0 − λT > 0,

if the function of sequences :

t 7→
(
f (s)(t, ·)

)
s≥1

belongs to the space ‹X
0,β̃λ,µ̃2

λ

with β̃λ and µ̃λ denoting :

β̃λ :

®
[0, T ] → R∗+,

t 7→ β̃λ(t) = β0 − λt,

and

µ̃λ :

ß
[0, T ] → R∗+,

t 7→ µ̃λ(t) = µ0 − λt,

then the function of sequences :

t 7→
(∫ t

0

T s,εt−uC0
s,s+1f

(s+1)(u, ·) du
)
s≥1
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belongs to the same space ‹X
0,β̃λ,µ̃2

λ

. In addition, one has the following inequality :∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣t 7→ (∫ t

0

T s,εt−uC0
s,s+1f

(s+1)(u, ·) du
)
s≥1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
0,β̃λ,µ̃2

λ

≤ C(d)β̃λ(T )−d/2 exp
(
− 3µ̃λ(T )

)(1 + β̃λ(T )−1/2
)

λ

×
∣∣∣∣∣∣∣∣∣(f (s)

)
s≥1

∣∣∣∣∣∣∣∣∣
0,β̃λ,µ̃2

λ

, (8.14)

with C(d) denoting a constant which depends only on the dimension d.

Stability by the integral term of the Boltzmann hierarchy of the space‹X
0,β̃,µ̃1 (case α = 1)

Lemma 22. For any T > 0, any β0 > 0, µ0 ∈ R and λ > 0 such that :

β0 − λT > 0,

if the function of sequences :

t 7→
(
f (s)(t, ·)

)
s≥1

belongs to the space ‹X
0,β̃λ,µ̃1

λ

with β̃λ and µ̃λ denoting :

β̃λ :

®
[0, T ] → R∗+,

t 7→ β̃λ(t) = β0 − λt,

and

µ̃λ :

ß
[0, T ] → R,

t 7→ µ̃λ(t) = µ0 − λt,
then the function of sequences :

t 7→
(∫ t

0

T s,εt−uC0
s,s+1f

(s+1)(u, ·) du
)
s≥1

belongs to the same space ‹X
0,β̃λ,µ̃1

λ

. In addition, one has the following inequality :∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣t 7→ (∫ t

0

T s,εt−uC0
s,s+1f

(s+1)(u, ·) du
)
s≥1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
0,β̃λ,µ̃1

λ

≤ C(d)β̃λ(T )−d/2 exp(−µ̃λ(T ))
(1 + β̃λ(T )−1/2)

λ

×
∣∣∣∣∣∣∣∣∣(f (s)

)
s≥1

∣∣∣∣∣∣∣∣∣
0,β̃λ,µ̃1

λ

(8.15)

with C(d) denoting a constant which depends only on the dimension d.
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The changes in the proof in the case of the integral part of the Boltz-
mann operator

For the sake of completeness, one provides in what follows the points that have
to be changed in the proof of Lemmas 18 and 19 in order to obtain Lemmas 21
and 22.

Proof. One starts the proof by the fact that, for every t ∈ [0, T ] and for every
s ≥ 1, the function :

Zs 7→
∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, Zs) du

is a continuous function on
(
Ωc × Rd

)s
vanishing at infinity.

This is a consequence of the results of the section 5.2 page 167, namely, Lemmas
12 page 169 and 13 page 173.
Now, it remains to check that the function of sequences :

t 7→
( ∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, ·) du
)
s≥1

has a finite |||·|||
0,β̃,µ̃α

norm, and the quantity, for all 0 ≤ u ≤ t with t ∈ ]0, T ] :

t 7→
( ∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, ·) du
)
s≥1

has a ||·||
0,β̃(t),µ̃(t)α

norm which goes to zero when u goes to t.

For those two controls, one denotes :

Q =
∣∣∣ ∫ t

u

T s,0t−τC0
s,s+1f

(s+1)(τ, Zs) dτ
∣∣∣ exp

( β̃(t)

2

s∑
j=1

|vj |2
)

exp(sαµ̃(t))

and one will make explicit the expression of Q. For all 0 ≤ u ≤ t ≤ T , for all
positive integer s and for all configuration Zs ∈

(
Ωc × Rd

)s
:

Q =
∣∣∣ ∫ t

u

s∑
i=1

∫
Sd−1
ω ×Rdvs+1

(
ω · (vs+1 − vi)

)
+

×
(
f (s+1)

(
τ,
(
T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

)′
i,s+1

)
− f (s+1)

(
τ, T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

)))
dτ
∣∣∣

× exp
( β̃(t)

2

s∑
j=1

|vj |2
)

exp(sαµ̃(t)), (8.16)
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where one has used the notations detailed in the point (1.8) of Definition 2 page
52. This quantity can be roughly bounded from above writing :

Q ≤
s∑
i=1

∫ t

u

∫
Sd−1
ω ×Rdvs+1

∩ ω·(vs+1−vi)>0

(
ω · (vs+1 − vi)

)
+

∣∣f (s+1)(τ, ·)
∣∣
0,s+1,β̃(τ)

×
(

exp
(
− β̃(τ)

2

∣∣∣(T s,0u−t(Zs),
(
T s,0u−t(Zs)

)X,i
, vs+1

)′
i,s+1

∣∣∣2)
+ exp

(
− β̃(τ)

2

∣∣∣(T s,0u−t(Zs),
(
T s,0u−t(Zs)

)X,i
, vs+1

)∣∣∣2)) dτ

× exp
( β̃(t)

2

s∑
j=1

|vj |2
)

exp(sαµ̃(t)),

the right-hand side of the last inequality being equal, thanks to the conservation
of the kinetic energy along the trajectories of the free transport and during the
collisions, to :

s∑
i=1

∫ t

u

∫
Sd−1
ω ×Rdvs+1

∩ ω·(vs+1−vi)>0

2
(
ω · (vs+1 − vi)

)
+

∣∣f (s+1)(τ, ·)
∣∣
0,s+1,β̃(τ)

exp
(
− β̃(τ)

2

∣∣Vs+1

∣∣2)dτ

× exp
( β̃(t)

2

s∑
j=1

|vj |2
)

exp(sαµ̃(t)),

so that, after applying the Cauchy-Schwarz inequality to the scalar product
ω · (vs+1 − vi), one obtains :

Q ≤
s∑
i=1

∫ t

u

∫
Sd−1
ω ×Rdvs+1

∩ ω·(vs+1−vi)>0

2
(
|vi|+ |vs+1|

)
+

∣∣f (s+1)(τ, ·)
∣∣
0,s+1,β̃(τ)

exp
(
− β̃(τ)

2

∣∣Vs+1

∣∣2)dτ

× exp
( β̃(t)

2

s∑
j=1

|vj |2
)

exp(sαµ̃(t)),

and then using the control of the |||·|||
0,β̃,µ̃α

of the function of sequences t 7→(
f (s)(t, ·)

)
s≥1

, one has :∣∣f (s+1)(τ, ·)
∣∣
0,s+1,β̃(τ)

≤
∣∣∣∣∣∣∣∣∣(f (s)

)
s≥1

∣∣∣∣∣∣∣∣∣
0,β̃,µ̃α

exp(−(s+ 1)αµ̃(τ)),

which provides in the end :

Q ≤
s∑
i=1

∫ t

u

∫
Sd−1
ω ×Rdvs+1

∩ ω·(vs+1−vi)>0

2
(
|vi|+ |vs+1|

)
+

exp(−(s+ 1)αµ̃(τ)) exp
(
− β̃(τ)

2

∣∣Vs+1

∣∣2)dτ

× exp
( β̃(t)

2

s∑
j=1

|vj |2
)

exp(sαµ̃(t))
∣∣∣∣∣∣∣∣∣(f (s)

)
s≥1

∣∣∣∣∣∣∣∣∣
0,β̃,µ̃α

.
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The last upper bound obtained for Q is then exactly the same as the one ob-
tained in the inequality (8.4) of the proof of Lemma 18 page 227 in the case
when α = 2, and in the case when α = 1, it is the same as the upper bound
of the inequality (8.7) of Lemma 19 page 236. So, the same assumptions on the

weights β̃ and µ̃ provide the same conclusions, and then the two lemmas about
the integral term of the Boltzmann operator are proved.

So, as in the previous section, Lemma 20 and Lemma 21 together show that the

Boltzmann operator sends the space ‹X
0,β̃,µ̃2 into itself for the case α = 2, and

in the case α = 1, Lemma 20 and Lemma 22 together show that this operator

sends the space ‹X
0,β̃,µ̃1 into itself, when the weights β̃ and µ̃ are wisely chosen

(note that the choice on those weights is more restrictive in the case α = 2).

8.2 About the strength of the weight in s and its
consequences on the continuity in time for
the BBGKY and the Boltzmann operators

Here one can wonder why such a stronger weight was used to define the ||·||·,β̃(t),µ̃(t)2

norm (one stresses that one is focusing on the case α = 2). Recall that, for the
BBGKY hierarchy of the Boltzmann hierarchy indistinctly, one has defined,
along Definition 27 for the BBGKY hierarchy, and Definition 28 for the Boltz-
mann hierarchy, for a sequence

(
f (s)

)
s

of functions f (s) of the phase space of s
particles : ∣∣∣∣∣∣(f (s)

)
s

∣∣∣∣∣∣
·,β,µα

= sup
s

(∣∣f (s)
∣∣
·,β,µ exp(s2µ)

)
.

The square over s, as the fact that the function µ̃ has to be strictly positive, were
crucially used to recover the left continuity in time for the ||·||·,β̃(t),µ̃(t)2

norm of

the image of the integral term of the BBGKY or the Boltzmann operators.
Since the continuity of the solutions of the Boltzmann and the BBGKY hi-
erarchies are important, a question naturally arises from that proof : is this
hypothesis really necessary ? Then, one will discuss the pros and the cons of
those two different continuity hypotheses preserved by the integrated in time
transport-collision-transport operator.

8.2.1 About the necessity of a strong weight for the uni-
form in s continuity setting

A condition set to belong to the spaces ‹X
N,ε,β̃,µ̃2 and ‹X

0,β̃,µ̃2 was the left

continuity in time for the ||·||·,β̃(t),µ̃(t)2
norm, that is one has to show that,

for all t ∈ ]0, T ] and 0 ≤ u ≤ t :

lim
u→t−

∣∣∣∣∣∣‹G(t)− ‹G(u)
∣∣∣∣∣∣
·,β̃(t),µ̃(t)2

= 0.
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One will take the example of the BBGKY operator, the same problems arising
exactly in the same way for the Boltzmann operator. To obtain the left con-
tinuity in time for the integral term of the BBGKY operator, if one considers
the proof of Lemma 18 page 222, but with weaker weights, that is if one works

with a function of sequences t 7→
(
h

(s)
N

)
1≤s≤N verifying only that, uniformly in

t ∈ [0, T ] and 1 ≤ s ≤ N :∣∣h(s)
N (t, ·)

∣∣
ε,s,β̃(t)

exp(sµ̃(t)) ≤ C

with C a strictly positive constant (which is the norm introduced in Definition
25 page 207, in the case α = 1), one wants to show the left continuity in
time, uniformly in s (which is the continuity hypothesis set to define the spaces‹X
ε,β̃,µ̃2 , see Definition 27 page 210) :

lim
u→t−

∣∣∣∣∣
∣∣∣∣∣(1s≤N−1

∫ t

u

T s,ε−τ C
N,ε
s,s+1T

s+1,ε
−τ h

(s+1)
N (τ, ·) dτ

)
1≤s≤N

∣∣∣∣∣
∣∣∣∣∣
N,ε,β̃(t),µ̃(t)1

= 0,

that is, here in the context of the weaker weight :

lim
u→t−

[
max

1≤s≤N−1

∣∣∣ ∫ t

u

T s,ε−τ C
N,ε
s,s+1T

s+1,ε
−τ h

(s+1)
N (τ, ·) dτ

∣∣∣
ε,s,β̃(t)

exp(sµ̃(t))

]
= 0.

In other words, one wonders if the left continuity in time, uniformly in the
number of particles s, can be conserved if the weight exp(s2µ) is replaced by
exp(sµ), this continuity property being of course more restrictive than the one

chosen to define the spaces ‹X
N,ε,β̃,µ̃1 (see Definition 29 page 211).

The problem, following the proof of Lemma 18, is then solved if one is able to
show that the following quantity Q goes to zero, uniformly in s and Zs :

Q =

∫ t

u

( s∑
i=1

|vi|+ s
)

exp
(λ

2
(τ − t)

s∑
i=1

|vi|2 + s(µ̃(t)− µ̃(τ))
)

dτ,

that is, using the definition of the function µ̃ :

Q =

∫ t

u

( s∑
i=1

|vi|+ s
)

exp
(λ

2
(τ − t)

s∑
i=1

|vi|2 + s(τ − t)
)

dτ.

However, this last quantity can be computed explicitly, and for s and Zs fixed,
one obtains :

Q =

∑s
i=1 |vi|+ s

λ
(

1
2

∑s
i=1 |vi|2 + s

)(1− exp
(λ

2
(u− t)

s∑
i=1

|vi|2 + s(u− t)
))
,

so that :

Q ∼
u→t

1

λ

( s∑
i=1

|vi|+ s
)

(t− u).
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In other words, there is no hope to obtain simultaneously a uniform control in
s and Zs on the quantity Q, and a control on a convergence towards zero as
u → t−, hence the necessity of a stronger weight to obtain the left continuity
in time for the BBGKY operator, and for the same reason, for the Boltzmann
hierarchy.
In other words, the uniform in s left continuity in time can be recovered after
an application of the integrated in time transport-collision-transport operator
only if one is in the case α = 2 (or, more generally, in the case α > 1), and in
the case α = 1, one can consider only a left continuity in time, for each s.

8.2.2 About the advantages and the disadvantages of the
two different continuity in time hypotheses

One will see in the following that the left continuity in time, uniform in s, that
is the one obtained in the case when α = 2, will provide a strong result in
the preparation phase of the comparison of the solutions of the two hierarchies.
Namely : the cut-offs in high number of collisions, large energy and small time
difference between collisions will be controlled in the |||·|||·,β̃,µ̃α norm.

To be explicit, one will see that the two first cut-offs (the first, concerning the
cut-off in high number of adjunctions, addressed in Section 11.1, and stated in
11 page 278, and the second, concerning the cut-off in high energies, addressed
in Section 11.2, and stated in 12 page 281) hold whatever the value of α is. But
one can compare the difference of the strength of the results 14 page 301 and 15
page 308, stated in Section 11.3 dealing with the cut-off in small time difference
between the adjunctions, those two results depending crucially on the value of
α, and providing two very different kinds of convergence.

However, an important step in the comparison of the two solutions lies in the
choice of initial data for the Boltzmann hierarchy. On the one hand, one will
see that it will be very convenient, for several crucial reasons, to work with
tensorized initial data (besides, they are also the most easy to consider). On
the other hand, there are only few initial data which are, at the same time,
tensorized and belonging to the space X0,β0,µ2

0
, due in particular to the fact

that the function µ̃ has to remain strictly positive in this setting, which is a
very demanding condition.

Indeed, if one considers the sequence of initial data
(
f

(s)
0

)
s≥1

, obtained by the

tensorization of the gaussian

g(z) = exp
(
− β

2

∣∣v∣∣2)
(with z = (x, v) ∈ Ωc × Rd, and v ∈ Rd), that is, for all s ≥ 1,

f
(s)
0 (Zs) = g⊗s(Zs) =

s∏
i=1

exp
(
− β

2

∣∣vi∣∣2),
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one sees immediately, if µ > 0, that :∣∣f (s)
∣∣
0,s,β

exp
(
sµ
)

= exp
(
sµ
)
−→
s→+∞

+∞

so that
sup
s≥1

∣∣f (s)
∣∣
0,s,β

exp
(
sµ
)

=
∣∣(f (s)

)
s≥1

∣∣
0,β,µ

= +∞.

So one can consider instead some normalization of this tensorized datum, such
as

f̃ (s) = C(s)g⊗s,

with
C(s) ≤ exp

(
− sµ

)
,

but in this case, for s large enough, f̃ (s) is not a density, which is a too restrictive
setting for physical applications.
For the less strong continuity, that is the one obtained in the case α = 1, the
advantages and the disadvantages are exactly exchanged : the control of the
effects of the cut-offs in the preparation phase will be only obtained, for each
number of particles s fixed, in the | · |·,s,β̃(t)

norm.

Conversely, in this setting, there is no condition on the sign of the function µ̃,
and then of course a much larger class of initial data can be chosen in order to
apply Theorem 6.

8.3 Contraction estimates on the collision oper-
ators

The previous section 8.1 was devoted to showing that the BBGKY and the

Boltzmann hierarchies preserve respectively the spaces ‹X
N,ε,β̃,µ̃α

and ‹X
0,β̃,µ̃α

,

for α = 1 or 2. One has seen that a sufficient condition to obtain this stability
is to assume that the functions β̃ and µ̃ are affine, strictly positive (in fact,

if α = 1, it is sufficient to require only that β̃ strictly positive) on [0, T ] and
decreasing.
The following section will be devoted to investigating a sufficient condition on

those functions β̃ and µ̃ to obtain, not only operators from the spaces ‹X
N,ε,β̃,µ̃α

and ‹X
0,β̃,µ̃α

into themselves, but in addition such that those operators are con-

tracting mappings, of course in order to apply a fixed point theorem.

Remark 20. Here one will use crucially the setting of the Boltzmann-Grad
limit, which is, one recalls, an assumption on the limit of the quantity :

Nεd−1.

The goal of this assumption is, first, to obtain the same bound on the norm of
the BBGKY and Boltzmann operators, for β0 > 0 and µ0 > 0 given, and second,
to obtain especially a control on those norm which is uniform in the number of
particles N , which, one recalls, is to be sent to infinity.
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One starts by two statements of a contraction inequality holding for the BBGKY
operator, one for each case depending on the values of α.

Lemma 23 (Contraction lemma for the BBGKY operator). Let α be 1 or 2.
Let N be a positive integer and ε be a strictly. In the Boltzmann-Grad limit :

Nεd−1 = 1,

for any strictly positive real number β0 and any (strictly positive in the case
α = 2) real number µ0, there exist two strictly positive real numbers T and λ
such that β0 − λT is strictly positive, and in the case α = 2, µ0 − λT is also
strictly positive, and such that, if one defines the two functions :

β̃λ =

®
[0, T ] → R∗+,

t 7→ β̃λ(t) = β0 − λt,

and, in the case α = 2

µ̃λ =

ß
[0, T ] → R∗+,

t 7→ µ̃λ(t) = µ0 − λt,

(here µ̃λ has to be strictly positive), or in the case α = 1

µ̃λ =

ß
[0, T ] → R,

t 7→ µ̃λ(t) = µ0 − λt,

then for any sequence
(
f

(s)
N,0

)
1≤s≤N of initial data belonging to XN,ε,β0,µα0

, the

integral term of the BBGKY operator associated to this sequence of initial data
has a |||·|||

N,ε,β̃λ,µ̃αλ
norm smaller than 1/2.

In other words, for every HN = t 7→
(
h

(s)
N (t, ·)

)
1≤s≤N ∈ ‹XN,ε,β̃λ,µ̃αλ

, the follow-

ing control holds :∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣t 7→ (

1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, ·) du

)
1≤s≤N

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
N,ε,β̃λ,µ̃αλ

≤ 1

2
|||HN |||N,ε,β̃λ,µ̃αλ

.

(8.17)

Proof. One writes the proof in detail for the case α = 2 only, since in the case
α = 1, the arguments are essentially the same. In the case α = 1, one has to
work with the quantity :

T 7→ Q(T ) = C(d)
(
β0 − λT

)−d/2
exp

(
−
(
µ0 − λT

))(1 +
(
β0 − λT

)−1/2)
λ

,

given by the control (8.6) of Lemma 19 page 234 instead of what follows. Be-
sides, the reader can find a detailed proof for the case α = 1 in [34]3.

3See Section 5.4 ”Continuity estimates”, and in particular the very end of the proof of
Lemma 5.4.3.
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For any β0 > 0 and µ0 > 0, and any λ > 0, one can choose T such that
β0 − λT and µ0 − λT are both strictly positive. For example, one can choose :

T (β0, µ0, λ) = min
( 9β0

10λ
,

9µ0

10λ

)
. (8.18)

This condition means exactly that β̃(t) ≥ β0/10 > 0 and µ̃(t) ≥ µ0/10 > 0 for
all time t ∈ [0, T ].

For such λ and T , Lemma 18 page 222 can be applied, and one has, thanks
to the inequality (8.3) of that very Lemma, that the |||·|||

N,ε,β̃,µ̃2 norm of the

integral term of the BBGKY operator is smaller than Q, with Q defined as :

Q = C(d)β̃λ(T )−d/2 exp
(
− 3µ̃λ(T )

)(1 + β̃λ(T )−1/2
)

λ

for some constant C(d) depending only on the dimension.
Of course, the goal of the proof is to find λ and T such that the quantity Q is
smaller than 1/2.
Recalling that

Q = C(d)β̃λ(T )−d/2 exp
(
− 3µ̃λ(T )

)(1 + β̃λ(T )−1/2
)

λ

= C(d)
(
β0 − λT

)−d/2
exp

(
− 3
(
µ0 − λT

))(1 +
(
β0 − λT

)−1/2)
λ

= Q(T ),

one notices first, if one sees here Q as a function of T , that :

Q(0) = C(d)β
−d/2
0 exp(−3µ0)

(
1 + β

−1/2
0

)
λ

,

so, for β0 and µ0 given, one sees immediately that Q(0) can be chosen as small
as one wants up to choosing λ large enough.
So let λ = λ(β0, µ0) such that :

Q(0) ≤ 1/4.

Since the function :

T 7→ Q(T ) = C(d)
(
β0 − λT

)−d/2
exp

(
− 3
(
µ0 − λT

))(1 +
(
β0 − λT

)−1/2)
λ

is well defined and continuous around 0, one can then find a strictly positive T

(here : T = T (β0, µ0, λ) = T (β0, µ0)), smaller than the bound min
(

9β0

10λ ,
9µ0

10λ

)
(which granted the positivity of β̃ and µ̃) such that, for every t ∈ [0, T ] :

Q(t) ≤ 1/2,

so that the lemma is proven.
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Similarly, for the Boltzmann operator, the proof relies on Lemma 21 for the case
when α = 2, and on Lemma 22 for the case when α = 1, which are the analogs
of Lemmas 18 and 19 for the integral term of the BBGKY operator, and the
result is essentially the same.

Lemma 24 (Contraction lemma for the Boltzmann operator). Let α be 1 or
2. For any strictly positive real number β0 and any (strictly positive in the case
α = 2) real number µ0, there exist two strictly positive real numbers T and λ
such that β0 − λT is positive, and in the case α = 2, µ0 − λT is also strictly
positive, and such that if one defines the two functions :

β̃λ =

®
[0, T ] → R∗+,

t 7→ β̃λ(t) = β0 − λt,

and, in the case α = 2

µ̃λ =

ß
[0, T ] → R∗+,

t 7→ µ̃λ(t) = µ0 − λt,

(here µ̃λ has to be strictly positive), or in the case α = 1

µ̃λ =

ß
[0, T ] → R,

t 7→ µ̃λ(t) = µ0 − λt,

then for any sequence
(
f

(s)
0

)
s≥1

of initial data belonging to X0,β0,µα0
, the integral

term of the Boltzmann operator associated to this sequence of initial data has a
|||·|||

N,ε,β̃λ,µ̃αλ
norm smaller than 1/2.

In other words, for every F = t 7→
(
f (s)(t, ·)

)
s≥1
∈ ‹X

0,β̃λ,µ̃αλ
, the following

control holds :∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣t 7→ (∫ t

0

T s,εt−uC0
s,s+1f

(s+1)(u, ·) du
)
s≥1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
0,β̃λ,µ̃αλ

≤ 1

2
|||F |||

0,β̃λ,µ̃αλ
. (8.19)

Remark 21. Although Lemmas 23 and 24 are stated independently, it is impor-
tant to stress the fact that, thanks to the additional hypothesis of the Boltzmann-
Grad limit, the time interval [0, T ] on which the respective integral term of the
BBGKY and the Boltzmann operators has a |||·|||·,β̃λ,µ̃αλ

norm smaller than 1/2

is the same (since it depends in fact only on β0 and µ0). In particular, this
time interval does not depend on the number of particles N , and then one does
not run the risk anymore of seeing the size of the time interval on which the
operators are contracting mappings vanishing while this number of particles N
is sent to infinity.
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Chapter 9

Existence and uniqueness of
solutions to the hierarchies

One is now able to state one of the two key results of this work.

Theorem 6 (Joint local in time existence and uniqueness of solutions to the
BBGKY and Boltzmann hierarchies). Let α be 1 or 2. Let β0 be a strictly
positive real number and µ0 a (strictly positive in the case α = 2) real number.
There exist a time T > 0, a strictly positive decreasing function β̃ and a (strictly
positive in the case α = 2) decreasing function µ̃ defined on [0, T ] such that :

β̃(0) = β0, µ̃(0) = µ0,

and such that for any positive integer N and any strictly positive number ε > 0
verifying the Boltzmann-Grad limit :

Nεd−1 = 1,

any pair of sequences of initial data FN,0 =
(
f

(s)
N,0

)
1≤s≤N and F0 =

(
f

(s)
0

)
s≥1

be-

longing respectively to XN,ε,β0,µα0
and X0,β0,µα0

give rise respectively to a unique

solution HN = t 7→
(
h

(s)
N (t, ·)

)
1≤s≤N in ‹XN,ε,β̃,µ̃α to the BBGKY hierarchy

with initial datum FN,0 and F = t 7→
(
f (s)(t, ·)

)
s≥1

in ‹X0,β̃,µ̃α to the Boltz-

mann hierarchy with initial datum F0, that is, using the notation introduced in
Definitions 31 page 220 and 32 page 238, there exists a unique pair of elements

HN and F belonging respectively to the spaces ‹X
N,ε,β̃,µ̃α

and ‹X
0,β̃,µ̃α

such that,

for every t ∈ [0, T ] :

HN (t) = EN,ε
(
FN,0, HN

)
(t),

and

F (t) = E0

(
F0, F

)
(t).

259
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Moreover, the decreasing functions β̃ = β̃λ and µ̃ = µ̃λ are affine, given by the
expressions

β̃λ =

®
[0, T ] → R∗+,

t 7→ β̃λ(t) = β0 − λt,
and

µ̃λ =

ß
[0, T ] → R (R∗+ in the case α = 2),

t 7→ µ̃λ(t) = µ0 − λt,
with λ and T given in Lemmas 23 page 255 and 24 page 257.

Proof. The idea of the proof is very simple : one will show that the BBGKY
and the Boltzmann operators are contracting mappings on the respective Ba-

nach spaces ‹X
N,ε,β̃,µ̃α

and ‹X
0,β̃,µ̃α

, so the Banach-Caccioppoli will provide the

result of the theorem. The work will be done only for the BBGKY operator and
the case α = 2, since, whatever α is, any result used for this operator has its
equivalent for the Boltzmann hierarchy, and all the arguments can be directly
used for the study of the Boltzmann operator in the same way.

First, Lemmas 17 page 221 and 18 page 222 together show, up to defining
two particular weights β̃ and µ̃ on some non empty time interval [0, T ] (those
weights and time interval being independent of the positive integer N and the
strictly positive number ε assuming that one is working in the Boltzmann-Grad
limit), that the BBGKY operator (defined in Definition 31 page 220) associated

to any sequence of initial data
(
f

(s)
N,0

)
1≤s≤N of the space XN,ε,β0,µ2

0
is well de-

fined and continuous on the space ‹X
N,ε,β̃,µ̃2 , and sends this space into itself.

One fixes then the sequence of initial data FN,0 =
(
f

(s)
N,0

)
1≤s≤N ∈ XN,ε,β0,µ2

0
,

and takes two functions of sequences HN,1 = t 7→
(
h

(s)
N,1(t, ·)

)
1≤s≤N and HN,2 =

t 7→
(
h

(s)
N,2(t, ·)

)
1≤s≤N . One will consider the difference :

EN,0
(
FN,0, HN,1

)
− EN,0

(
FN,0, HN,2

)
which is by definition equal to :

t 7→
(
f

(s)
N,0(·) + 1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N,1 (u, ·) du

)
1≤s≤N

−
(
f

(s)
N,0(·) + 1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N,2 (u, ·) du

)
1≤s≤N

,

that is, since the first terms with the initial data obviously cancel :

EN,0
(
FN,0, HN,1

)
− EN,0

(
FN,0, HN,2

)
= t 7→

(
1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N,1 (u, ·) du

− 1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N,2 (u, ·) du

)
1≤s≤N

,
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and then, by linearity of the transport-collision-transport integrated in time :

EN,0
(
FN,0, HN,1

)
− EN,0

(
FN,0, HN,2

)
= t 7→

(
1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u

(
h

(s+1)
N,1 (u, ·)− h(s+1)

N,2 (u, ·)
)

du
)

1≤s≤N
.

Finally, only the norm of the integral term of the BBGKY operator will play a
role for the contracting property of the operator. Moreover, for any β0 and µ0

strictly positive, Lemma 23 page 255 shows that it is possible to find a non empty
time interval [0, T ] and to define two weights β̃ and µ̃ with additional hypotheses

satisfied by those weights on this time interval such that, on the space ‹X
N,ε,β̃,µ̃2 ,

the integral term of the BBGKY operator EN,ε has a |||·|||
N,ε,β̃,µ̃2 norm smaller

than 1/2. The following quantity is then well defined and verifies obviously :∣∣∣∣∣∣EN,0(FN,0, HN,1

)
− EN,0

(
FN,0, HN,2

)∣∣∣∣∣∣
N,ε,β̃,µ̃2

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u

(
h

(s+1)
N,1 (u, ·)− h(s+1)

N,2 (u, ·)
)

du
)

1≤s≤N

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
N,ε,β̃,µ̃2

≤ 1

2

∣∣∣∣∣∣∣∣∣(h(s+1)
N,1 − h(s+1)

N,2

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

=
1

2
|||HN,1 −HN,2|||N,ε,β̃,µ̃2 .

In other words, the BBGKY operator associated to the sequence of initial data
FN,0 is Lipschitz with a Lipschitz constant smaller than 1, that is it is a con-
tracting mapping.
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Part III

Convergence of the
solutions of the BBGKY

hierarchy towards the
solutions of the Boltzmann

hierarchy

263
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Now that the problem of the existence (and uniqueness) of solutions of the
Boltzmann and the BBGKY hierarchies has been addressed, one will work on
the comparison of those solutions. The goal of this part is to show that, in the
appropriate topology, the solutions of the BBGKY hierarchy converge towards
the solutions of the Boltzmann hierarchy.

The two next chapters (Chapters 10 and 11) will be devoted to preliminary
simplifications. One gives here a brief description of those preliminary simplifi-
cations.

• In Chapter 10, starting page 267, the solutions of the hierarchies found
previously will be rewritten in order to have an explicit expression, using
only the operators defined in Subsections 8.1.1 page 220 and 8.1.2 page
238 (see Definitions 31 page 220 and 32 page 238) and the initial data.
One will see that the solutions will have the aspect of a sum of iterates of
the transport-collision-transport operators for the BBGKY hierarchy, and
of collision-transport operators for the Boltzmann hierarchy, applied only
on the elements of the sequences of initial data.

• In Chapter 11, starting page 277, one will consider truncated versions of
the sums described above, and study the effects of the corresponding cut-
offs. The idea is, on the one hand, to consider dynamics on the time interval
[0, T ] implying only a bounded energy, a bounded number of collisions, and
such that those collisions are clearly separated in time. This section will
be a first preparation for the effective comparison of the solutions of the
two hierarchies, performed carefully at the end of this part. On the other
hand, one will show that the difference between the original sums and the
truncated ones can be chosen as small as one wants up to choosing wisely
the truncation parameters.

The main arguments of the effective comparison are then presented in Chapters
12 and 13, and are based on a geometrical point of view of the convergence of
the trajectories described by the BBGKY hierarchy, towards the trajectories
described by the Boltzmann hierarchy.

• Chapter 12, starting page 309, is devoted to the last cut-offs required to
compare easily the trajectories described by the two hierarchies.

• In Chapter 13, starting page 449, one provides a quantitative comparison
of the trajectories described by the two hierarchies.

The results of those two last chapters enable finally to state the convergence of
the main terms of the decomposition of the solutions of the BBGKY hierarchy
towards the main terms of the decomposition of the solutions of the Boltzmann
hierarchy : this is the purpose of Section 13.3, starting page 475. The first result
obtained is only qualitative at this step, but it will be improved below.
The last error terms, which constitute the difference between the solutions and
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the main terms of the decomposition of those solutions, are controlled in Chap-
ter 14.

Finally, in Chapter 15 , all the controls obtained are gathered, and one finally
presents the first convergence result of this work : Theorem 7, page 493. This
result is also only qualitative, but asserts the convergence of the solutions of the
BBGKY hierarchy towards the solutions of the Boltzmann hierarchy.
Considering more restrictive hypotheses (in particular, concerning the initial
data), one presents in Chapter 16 the final result of this work, Lanford’s the-
orem for a domain with boundary conditions (Theorem 8 page 517), which
asserts in the Boltzmann-Grad limit N → +∞, Nεd−1 = 1 the convergence
of the first marginal of a distribution function of a system of N hard spheres
evolving around an obstacle, towards the solution of the Boltzmann equation
(this is from this solution that the initial distribution functions of the system
of N hard spheres are built). One notices that this theorem, unlike Theorem
7, provides a quantitative convergence towards the solutions of the Boltzmann
equation.



Chapter 10

Rewriting the solutions of
the hierarchies in terms of
the initial data

Starting from the integrated forms of the conjugate BBGKY hierarchy (see the
sequence of equations (6.3) page 187) and the Boltzmann hierarchy (see the
sequence of equations (4.4) page 83), it is possible to rewrite those equations

so that for all positive integers N and s, h
(s)
N and f (s) are rewritten in terms of

initial data. This new expression is called the iterated Duhamel formula.
One starts by the easier case of the solutions of the BBGKY hierarchy, since
it implies only a finite number of equations and initial data. The case of the
Boltzmann hierarchy will require a small additional work.

10.1 The iterated Duhamel formula for the
BBGKY hierarchy

The following proposition expresses the solutions of the BBGKY hierarchy only
in terms of initial data, after introducing new notations for the sake of simplicity.

Definition 33 (Notations for the integrated in time transport-collision-trans-
port operator of the BBGKY hierarchy). Let α be 1 or 2. For all positive inte-

gers N and s and any sequence of functions
(
f

(s)
N

)
1≤s≤N belonging to the space‹X

ε,β̃,µ̃α
, one will denote its image by the integrated in time transport-collision-

transport operator of the BBGKY hierarchy :

t 7→
∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u f
(s+1)
N,0 du

267
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as :

t 7→
(
IN,εs f

(s)
N,0

)
(t, ·). (10.1)

The k-th iterate of this operator applied on any function f
(s+k)
N,0 ∈ Xε,s+k,β0

,
that is :

t 7→
∫ t

0

T s,ε−t1C
N,ε
s,s+1T

s+1,ε
t1

∫ t1

0

T s+1,ε
−t2 CN,εs+1,s+2T

s+2,ε
t2 . . .∫ tk−1

0

T s+k−1,ε
−tk CN,εs+k−1,s+kT

s+k,ε
tk

f
(s+k)
N,0 dtk . . . dt2 dt1,

which can be denoted as :

t 7→
(
IN,εs ◦ IN,εs+1 ◦ · · · ◦ I

N,ε
s+k−1f

(s+k)
N,0

)
(t, ·),

thanks to the new notations (10.1), will be in fact often denoted as :

t 7→
(
IN,εs,s+k−1f

(s+k)
N,0

)
(t, ·). (10.2)

(The second subscript index describes the number of iterations).

Remark 22. In the notation (10.2), the function f
(s)
N,0 does not depend on time.

Indeed IN,εs,s+k−1 will be applied in practice to the initial data.

Proposition 9 (Iterated Duhamel formula for the solution of the BBGKY
hierarchy). Let α = 1 or 2. Let N be a positive integer and ε be a strictly
positive number. In the Boltzmann-Grad limit :

Nεd−1 = 1,

for any strictly positive number β0, any (strictly positive in the case α = 2)
number µ0, and for any sequence of initial data :

FN,0 =
(
f

(s)
N,0

)
1≤s≤N

belonging to the space XN,ε,β0,µα0
, the unique solution of the integrated form of

the conjugate BBGKY hierarchy with initial datum FN,0 on the time interval
[0, T ] (given by Theorem 6 page 259) is the sequence of functions (using the
notations (10.1) and (10.2) introduced in Definition 33) :

HN = t 7→
(
f

(s)
N,0 +

N−s∑
k=1

1s≤N−k
(
IN,εs,s+k−1f

(s+k)
N,0

)
(t, ·)

)
1≤s≤N

. (10.3)

Proof. One considers a positive integer N and a strictly positive number ε. In
the Boltzmann-Grad limit :

Nεd−1 = 1,
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thanks to Theorem 6 page 259, for any strictly positive number β0, any (strictly
positive if α = 2) number µ0, and for any sequence of initial data FN,0 =(
f

(s)
N,0

)
1≤s≤N , there exists a unique solution HN =

(
h

(s)
N,0

)
1≤s≤N on a non empty

time interval [0, T ] of the integrated form of the conjugate BBGKY hierarchy
with initial datum FN,0 (see Definition 17 page 187 for the rigorous definition
of the BBGKY hierarchy).

One has then, according to the theorem quoted :

HN = EN,ε
(
FN,0, HN

)
,

which is equivalent to say that, for every time t ∈ [0, T ] and every integer
1 ≤ s ≤ N :

h
(s)
N (t, ·) = f

(s)
N,0 + 1s≤N−1

∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u h
(s+1)
N (u, ·) du. (10.4)

In particular, the last equation of the N ones described in (10.4) writes exactly,
for all t ∈ [0, T ] :

h
(N)
N (t, ·) = f

(N)
N,0 , (10.5)

so that the last term of the solution of the BBGKY is entirely determined, and
expressed only with the initial data. Besides, one can combine the last and the
penultimate terms described in (10.4). One obtains, for every time t ∈ [0, T ] :

h
(N−1)
N (t, ·) = f

(N−1)
N,0 +

∫ t

0

T N−1,ε
−u CN,εN−1,NT

N,ε
u h

(N)
N (u, ·) du

= f
(N−1)
N,0 +

∫ t

0

T N−1,ε
−u CN,εN−1,NT

N,ε
u f

(N)
N,0 du, (10.6)

so the penultimate term of the solution of the BBGKY hierarchy is also de-
termined, using only initial data and the integrated in time transport-collision-
transport operator.
One sees then immediately that it is possible to iterate the process, thanks to
the linearity of the integrated in time transport-collision-transport operator, in
order to obtain the same description for any term of the solution of the BBGKY
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hierarchy. For h
(N−2)
N , one obtains :

h
(N−2)
N (t, ·) = f

(N−2)
N,0 +

∫ t

0

T N−2,ε
−t1 CN,εN−2,N−1T

N−1,ε
t1 h

(N−1)
N (t1, ·) dt1

= f
(N−2)
N,0 +

∫ t

0

T N−2,ε
−t1 CN,εN−2,N−1T

N−1,ε
t1(

f
(N−1)
N,0 +

∫ t1

0

T N−1,ε
−t2 CN,εN−1,NT

N,ε
t2 f

(N)
N,0 dt2

)
dt1

= f
(N−2)
N,0 +

∫ t

0

T N−2,ε
−t1 CN,εN−2,N−1T

N−1,ε
t1 f

(N−1)
N,0 dt1

+

∫ t

0

T N−2,ε
−t1 CN,εN−2,N−1T

N−1,ε
t1

∫ t1

0

T N−1,ε
−t2 CN,εN−1,NT

N,ε
t2 f

(N)
N,0 dt2 dt1.

One can therefore iterate the process without any difficuly, and using the nota-
tions just introduced in Definition 33 to simplify the presentation, one obtains
in the end the result stated in Proposition 9.

10.2 The iterated Duhamel formula for the Boltz-
mann hierarchy

Of course, the same work can be done for the Boltzmann hierarchy. This is the
purpose of the following proposition. As above, one introduces new notations
for the sake of simplicity, after the presentation of a short computation which
will give an idea of how to process in this case.
For any positive integer s, for a solution

(
f (s)

)
s≥1

of the Boltzmann hierarchy,

that is satisfying the equations (32) page 238, one has :

f (s)(t, ·) = T s,0t f
(s)
0 (·) +

∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(t1, ·) du,

and :

f (s+1)(t, ·) = T s+1,0
t f

(s+1)
0 (·) +

∫ t

0

T s+1,0
t−u C0

s+1,s+2f
(s+2)(u, ·) du,

so that, combining those two equations, one obtains :

f (s+1) = T s,0t f
(s)
0 +

∫ t

0

T s,0t−t1C
0
s,s+1

(
T s+1,0
t1 f

(s+1)
0 (·)

+

∫ t1

0

T s+1,0
t1−t2 C

0
s+1,s+2f

(s+2)(t2, ·) dt2
)

dt1

= T s,0t f
(s)
0 +

∫ t

0

T s,0t−t1C
0
s,s+1T

s+1,0
t1 f

(s+1)
0 (·) dt1

+

∫ t

0

T s,0t−t1C
0
s,s+1

∫ t1

0

T s+1,0
t1−t2 C

0
s+1,s+2f

(s+2)(t2, ·) dt2 dt1.
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Definition 34 (Notations for the integrated in time collision-transport operator
of the Boltzmann hierarchy). For any positive integer s and any function of
sequences t 7→

(
f (s+1)

)
s≥1

belonging to the space X
0,β̃,µ̃α

, one will denote the

image of its s-th term by the integrated in time collision-transport operator of
the Boltzmann hierarchy :

t 7→
∫ t

0

T s,0t−uC0
s,s+1f

(s+1)(u, ·) du

as :

t 7→
(
I0
sf

(s)
)
(t, ·). (10.7)

The k-th iterate of the integrated in time transport-collision operator :

t 7→
∫ t

0

T s,0t−t1C
N,ε
s,s+1

∫ t1

0

T s,0t1−t2C
0
s+1,s+2 . . .∫ tk−1

0

T s+k−1,0
tk−1−tk C

0
s+k−1,s+kf

(s+k)(tk, ·) dtk . . . dt2 dt1,

will be denoted as :

t 7→
(
I0
s,s+k−1f

(s+k)
)
(t, ·). (10.8)

The fact that, unlike the BBGKY hierarchy, the Boltzmann hierarchy is not
studied after a conjugation in time, has absolutely no impact here. However, the
fact that the Boltzmann hierarchy implies an infinite number of functions makes
the result a bit harder to obtain. Indeed, for the conjugate BBGKY hierarchy,
since one considers only a finite number N of particles, at some point, iterating
the integrated in time transport-collision-transport forces to consider the last

term of the hierarchy, which is simply given by the initial datum h
(N)
N = f

(N)
N,0 .

In the case of the Boltzmann hierarchy, the process will never stop.

Nevertheless, the analog of equation (10.3) of Proposition 9 will hold for the
Boltzmann hierarchy. Heuristically, remembering that the Boltzmann hierarchy
is obtained from the BBGKY hierarchy after sending the number of particles
N to infinity (in the Boltzmann-Grad limit), one expects that the following
formula for the Boltzmann hierarchy holds :

f (s)(t, ·) = T s,0t f
(s)
0 (·) +

+∞∑
k=1

(
I0
s,s+k−1g

(s+k)
0

)
(t, ·)

= g
(s)
0 (t, ·) +

+∞∑
k=1

(
I0
s,s+k−1g

(s+k)
0

)
(t, ·),

where g
(s)
0 (t, ·) denotes T s,0t f

(s)
0 (·).
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Proposition 10 (Duhamel formula for the Boltzmann hierarchy). Let α = 1 or
2. For any strictly positive number β0, any (strictly positive in the case α = 2)
number µ0, and for any sequence of initial data :

F0 =
(
f

(s)
0

)
s≥1

belonging to the space X0,β0,µα0
, the unique solution of the integrated form of the

Boltzmann hierarchy with initial datum F0 on the time interval [0, T ] (given by
Theorem 6 page 259) is the sequence of functions (using the notations (10.7)
and (10.8) introduced in Definition 34 page 271) :

F = t 7→
(
T s,0t f

(s)
0 (·) +

+∞∑
k=1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

. (10.9)

Proof. First, one will prove that the function (of sequences) :“F = t 7→
(
T s,0t f

(s)
0 (·) +

+∞∑
k=1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

is indeed well defined. To do so, one considers, for any positive integer n, the
finite sum :

Fn = t 7→
(
T s,0t f

(s)
0 (·) +

n∑
k=1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

.

This function Fn is itself well defined and is an element of ‹X
0,β̃,µ̃α

. Indeed, its

first term
t 7→

(
T s,0t f

(s)
0

)
s≥1

is an element of ‹X
0,β̃,µ̃α

because F0 is an element of X0,β0,µ0 , and thanks to

Lemma 20 page 239.
For the other terms, starting again from the fact that

t 7→
(
T s,0t f

(s)
0

)
s≥1

is an element of ‹X
0,β̃,µ̃α

, and using the fact that several iterations of the inte-

grated in time collision-transport operator of the Boltzmann hierarchy, which is

the integral term of the Boltzmann operator sends the space ‹X
0,β̃,µ̃α

into itself

(thanks to Lemma 21 in the case α = 2, and thanks to Lemma 22 in the case
α = 1), one obtains that(

I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

is itself an element of ‹X
0,β̃,µ̃α

.

Moreover, the sequence (of functions of sequences...) :

Fn =
(
t 7→

(
T s,0t f

(s)
0 (·) +

n∑
k=1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

)
n≥1

,
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is a Cauchy sequence of the Banach space ‹X
0,β̃,µ̃α

up to choose carefully the

weights β̃ and µ̃. Indeed, for any positive integers p < q, one has :

F q − F p =
(
t 7→

(
T s,0t f

(s)
0 (·) +

q∑
k=1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

)
−
(
t 7→

(
T s,0t f

(s)
0 (·) +

p∑
k=1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

)
= t 7→

( q∑
k=p+1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

,

so that, evaluating the distance between two terms of the sequence
(
Fn
)
n≥1

:

|||F q − F p|||
0,β̃,µ̃α

≤
q∑

k=p+1

∣∣∣∣∣∣∣∣∣∣∣∣t 7→ ((
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

∣∣∣∣∣∣∣∣∣∣∣∣
0,β̃,µ̃α

,

and since one is considering the unique solution of the Boltzmann hierarchy
given by Theorem 6 page 259, the weights β̃ and µ̃ are given by

β̃ = β̃λ

and
µ̃ = µ̃λ

as in Lemma 24 page 257, so that the right-hand side of the last inequality being
controlled (thanks to the inequality (8.19) of the same Lemma 24) with :

|||F q − F p|||
0,β̃λ,µ̃αλ

≤
q∑

k=p+1

(1

2

)k∣∣∣∣∣∣∣∣∣t 7→ (
T s,0t f

(s)
0

)
s≥1

∣∣∣∣∣∣∣∣∣
0,β̃λ,µ̃αλ

≤
( +∞∑
k=p+1

(1

2

)k)
||F0||0,β0,µα0

=
1

2p
||F0||0,β0,µα0

.

The sequence
(
Fn
)
n≥1

converges then in the space ‹X
0,β̃λ,µ̃αλ

, which finishes to

show that the quantity :“F = t 7→
(
T s,0t f

(s)
0 (·) +

+∞∑
k=1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

is meaningful, as the limit of the sequence
(
Fn
)
n≥1

.

Now, one will show that the function “F verifies the fixed point equation

E0

(
F0, “F ) = “F ,
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where, one recalls, the Boltzmann operator is introduced in Definition 31 page
220. Therefore, using the uniqueness of the solution of this fixed point equation
(as stated in Theorem 6 page 259), one will deduce that F = “F and the Lemma
will be entirely proved.

One considers then the quantity E0

(
F0, F

n
)
, where the terms of the sequence

Fn will be denoted fn,(s) for all s ≥ 1, that is :

Fn =
(
fn,(s)

)
s≥1

.

One has by definition of the Boltzmann operator E0 :

E0

(
F0, F

n
)

= t 7→
(
T s,0t f

(s)
0 +

∫ t

0

T s,0t−u
(
C0
s,s+1f

n,(s+1)
)
(u, ·) du

)
s≥1

where fn,(s+1) is given by the expression

fn,(s+1)(t, ·) = T s,0t f
(s)
0 (·) +

n∑
k=1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·),

so that

E0

(
F0, F

n
)

= t 7→
(
T s,0t f

(s)
0 (·) +

∫ t

0

T s,0t−u

ï
C0
s,s+1(

v 7→ T s+1,0
v f

(s+1)
0 (·)

+
n∑
k=1

(
I0
s+1,s+k

(
τ 7→ T s+k+1,0

τ f
(s+k+1)
0

))
(v, ·)

)ò
(u, ·) du

)
s≥1

then using the linearity of the transport and the collision operators :

E0

(
F0, F

n
)

= t 7→
(
T s,0t f

(s)
0 (·)

+

∫ t

0

T s,0t−u

ï
C0
s,s+1

(
v 7→ T s+1,0

v f
(s+1)
0 (·)

)ò
(u, ·) du

+
n∑
k=1

∫ t

0

T s,0t−uï
C0
s,s+1

(
v 7→

(
I0
s+1,s+k

(
τ 7→ T s+k+1,0

τ f
(s+k+1)
0

))
(v, ·)

)ò
(u, ·) du

)
s≥1

,

and now, recalling the definition of the free flow acting on functions (see Defi-
nition 15 page 83), that is :(

T s,0t g(s)
)
(u, Zs) = g(s)

(
u, T s,0−t (Zs)

)
,
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one can rewrite the equation using the notation introduced in Definition 34 :

E0

(
F0, F

n
)

= t 7→
(
T s,0t f

(s)
0 (·) + I0

s

(
u 7→ T s+1,0

u f
(s+1)
0

)
(t, ·)

+
n∑
k=1

I0
s

(
u 7→

(
I0
s+1,s+k

(
τ 7→ T s+k+1,0

τ f
(s+k+1)
0

))
(u, ·)

)
(t, ·)

)
s≥1

= t 7→
(
T s,0t f

(s)
0 (·) +

(
I0
s

(
u 7→ T s+1,0

u f
(s+1)
0

))
(t, ·)

+
n∑
k=1

(
I0
s,s+k

(
u 7→ T s+k+1,0

u f
(s+k+1)
0

))
(t, ·)

)
s≥1

= t 7→
(
T s,0t f

(s)
0 (·) +

n+1∑
k=1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

.

Finally, one has :
E0

(
F0, F

n
)

= Fn+1,

so by letting n going to infinity, and thanks to the continuity of the Boltzmann
operator associated to the initial datum F0 E0(F0, ·) (this continuity is a conse-
quence of the contracting property (8.19) of the integral term of the Boltzmann
operator, stated in Lemma 24 page 257), and thanks to the fact that :

Fn+1 −→
n→+∞

“F
one obtains that :

E0

(
F0, “F ) = “F ,

concluding therefore the proof of the proposition.
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Chapter 11

Cut-off in parameters
describing the dynamics of
the particles

In the case of the Boltzmann hierarchy, thanks to the equation (10.9) of Propo-
sition 10 page 272, one knows that the sequence of functions F = t 7→

(
f (s)

)
s≥1

belonging to ‹X
0,β̃,µ̃α

is the solution of the Boltzmann hierarchy with initial

datum F0 if and only if F is defined by the formula

F = t 7→
(
T s,0t f

(s)
0 (·) +

+∞∑
k=1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

.

One will see that this infinite sum of iterations of transport-collision operators
applied on functions decreasing quickly with respect to the velocity variable
(since for every positive integer s and for every time t ∈ [0, T ], the function

Zs 7→ T s,0t f
(s)
0 (Zs) belongs to the space X

0,s,β̃(t)
) can be divided in a principal

part, and some remainders, taking into account the cases of respectively, a high
number of iterations (see Section 11.1 page 277), configurations with a large
energy (see Section 11.2 page 280), and iterations of the transport-collision
operators at two successive times which are close (see Section 11.3 page 290),
all of them being controlled independently and carefully in the following sections.
The main term will be composed then by a finite number of iterations, clearly
separated in time, of the transport-collision-transport operator applied on the
elements of the initial data, after removing the configurations of the phase space
with a large energy.

11.1 Cut-off in high number of collisions

This section is devoted to the cut-off in high number of collisions.

277
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Proposition 11 (Cut-off in high number of collisions). Let α = 1 or 2. Let β0

be a strictly positive number and µ0 be a real number (which has to be strictly
positive too in the case when α = 2). For any positive integer n, any positive
integer N and any strictly positive number ε > 0 verifying the Boltzmann-Grad
limit :

Nεd−1 = 1,

and any couple of sequences of initial data FN,0 =
(
f

(s)
N,0

)
1≤s≤N and F0 =(

f
(s)
0

)
s≥1

belonging respectively to XN,ε,β0,µα0
and X0,β0,µα0

, the respective unique

solutions HN ∈ ‹XN,ε,β̃λ,µ̃αλ
to the BBGKY hierarchy with initial datum FN,0 and

F ∈ ‹X
0,β̃λ,µ̃αλ

to the Boltzmann hierarchy with inital datum F0 (where β̃λ, µ̃λ,

HN and F are given by Theorem 6 page 259) satisfy :∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣HN −

(
f

(s)
N,0 +

n∑
k=1

1s≤N−k
(
IN,εs,s+k−1f

(s+k)
N,0

))
1≤s≤N

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
N,ε,β̃λ,µ̃αλ

≤
(1

2

)n
||FN,0||N,ε,β0,µα0

, (11.1)

and∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣F − (t 7→ T s,0t f

(s)
0 +

n∑
k=1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
0,β̃λ,µ̃αλ

≤
(1

2

)n
||F0||0,β0,µα0

. (11.2)

Proof. The proof is exactly the same, whether α = 1 or 2, or whether one
considers the solution of the BBGKY hierarchy and one wants to prove the
inequality (11.1), or the solution of the Boltzmann hierarchy and the inequality
(11.2). The proof will be therefore written only in the case when α = 2, for the
solution of the Boltzmann hierarchy.
Using the Duhamel formula (10.9), one knows that the unique solution of the

Boltzmann hierarchy in the space ‹X
0,β̃λ,µ̃2

λ

can be expressed as :

F = lim
m→+∞

(
t 7→ T s,0t f

(s)
0 +

m∑
k=1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

.

On the one hand, for any positive integer n given, the quantity :

Qn,m =
(
t 7→T s,0t f

(s)
0 +

m∑
k=1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

−
(
t 7→ T s,0t f

(s)
0 +

n∑
k=1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1
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converges when m goes to infinity towards :

F −
(
t 7→ T s,0t f

(s)
0 +

n∑
k=1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

in the space ‹X
0,β̃λ,µ̃2

λ

. On the other hand, this quantity Qn,m can be of course

rewritten as :

Qn,m =
(
t 7→

m∑
k=n+1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

.

The inequality (8.19) of the Contraction Lemma 24 page 257 (in general, de-
pending on the situation, one has to use the appropriate lemma among Lemmas
23 or 24) applied to the sequence of conjugate initial data(

h(s)
)
s≥1

=
(
t 7→ T s,0t f

(s)
0

)
s≥1

,

which is an element of ‹X0,β̃λ,µ̃2
λ

as Lemma 20 page 239 shows it, provides :

|||Qn,m|||0,β̃λ,µ̃2
λ

≤
m∑

k=n+1

∣∣∣∣∣∣∣∣∣∣∣∣t 7→ (
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

)
(t, ·)

)
s≥1

∣∣∣∣∣∣∣∣∣∣∣∣
0,β̃λ,µ̃2

λ

≤
m∑

k=n+1

1

2k

∣∣∣∣∣∣∣∣∣∣∣∣t 7→ (
T s,0t f

(s)
0 (t, ·)

)
s≥1

∣∣∣∣∣∣∣∣∣∣∣∣
0,β̃λ,µ̃2

λ

≤
( +∞∑
k=n+1

1

2k

)∣∣∣∣∣∣∣∣∣∣∣∣t 7→ (
T s,0t f

(s)
0 (t, ·)

)
s≥1

∣∣∣∣∣∣∣∣∣∣∣∣
0,β̃λ,µ̃2

λ

≤ 1

2n

∣∣∣∣∣∣∣∣∣∣∣∣t 7→ (
T s,0t f

(s)
0 (t, ·)

)
s≥1

∣∣∣∣∣∣∣∣∣∣∣∣
0,β̃λ,µ̃2

λ

.

Finally, the inequality (8.10) of Lemma 20 provides a control of the |||·|||
0,β̃λ,µ̃2

λ

norm of the transported sequence of initial data, that is :∣∣∣∣∣∣∣∣∣∣∣∣t 7→ (
T s,0t f

(s)
0

)
s≥1

∣∣∣∣∣∣∣∣∣∣∣∣
0,β̃λ,µ̃2

λ

≤
∣∣∣∣∣∣(f (s)

0

)
s≥1

∣∣∣∣∣∣
0,β0,µ2

0

.

One obtains that :

|||Qn,m|||0,β̃λ,µ̃2
λ

≤ 1

2n

∣∣∣∣∣∣(f (s)
0

)
s≥1

∣∣∣∣∣∣
0,β0,µ2

0

,

hence the lemma is proved, by letting m go to infinity.

If one denotes the solution of the BBGKY hierarchy after the cut-off for more
than n collisions as :

Hn
N = t 7→

(
f

(s)
N,0(·) +

n∑
k=1

1s≤N−k
(
IN,εs,s+k−1f

(s+k)
N,0

)
(t, ·)

)
1≤s≤N

,
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one has shown that, uniformly in the number of particles N and their diameter
ε, in the Boltzmann-Grad limit :

|||HN −Hn
N |||N,ε,β̃λ,µ̃αλ

≤ 1

2n
||FN,0||N,ε,β0,µα0

,

that is the solution of the BBGKY hierarchy can be approximated in the
|||·|||

N,ε,β̃λ,µ̃αλ
norm as much as one wants, by only a finite sum of iterates of

the integrated in time transport-collision-transport operator applied to the ini-
tial data.
One introduces therefore the following notations for the sake of simplicity.

Definition 35 (Cut-off in high number of collisions of the solutions of the

hierarchies). For any sequence of initial data FN,0 =
(
f

(s)
N,0

)
1≤s≤N belonging

to XN,ε,β0,µα0
, one defines the truncated in high number of collisions solution

of the conjugate BBGKY hierarchy associated to the initial datum FN,0 as the
function :

Hn
N = t 7→

(
f

(s)
N,0(·) +

n∑
k=1

1s≤N−k
(
IN,εs,s+k−1f

(s+k)
N,0

)
(t, ·)

)
1≤s≤N

.

For any sequence of initial data F0 =
(
f

(s)
0

)
s≥1

belonging to X0,β0,µα0
, one de-

fines the truncated in high number of collisions solution of the Boltzmann hier-
archy associated to the initial datum F0 as the function :

Fn = t 7→
(
T s,0t f

(s)
0 +

n∑
k=1

(
I0
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0

))
(t, ·)

)
s≥1

.

11.2 Cut-off in large energy

One now splits the sequences of initial data into two terms, with a condition on
the energy of the initial configuration. Namely, one will write :(

f
(s)
N,0

)
1≤s≤N =

(
f

(s)
N,01|Vs|≤R

)
1≤s≤N +

(
f

(s)
N,01|Vs|>R

)
1≤s≤N ,

and one will control any finite sum of iterations of the integrated in time
transport-collision-transport operator applied on the second term of this de-
composition, that is the part of the sequence of initial data with large energy
configurations.
As in the previous section, one introduces new notations in order to simplify
the statement of the following lemma.

Definition 36 (Cut-off in large energy of the solutions of the hierarchies). For

any sequence of initial data FN,0 =
(
f

(s)
N,0

)
1≤s≤N belonging to XN,ε,β0,µα0

, one

defines the truncated in high number of collisions and in large energy solution
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of the conjugate BBGKY hierarchy associated to the initial datum FN,0 as the
function :

Hn,R
N = t 7→

(
f

(s)
N,0(·)1|Vs|≤R

+
n∑
k=1

1s≤N−k
(
IN,εs,s+k−1

(
f

(s+k)
N,0 1|Vs+k|≤R

))
(t, ·)

)
1≤s≤N

.

For any sequence of initial data F0 =
(
f

(s)
0

)
s≥1

belonging to X0,β0,µα0
, one de-

fines the truncated in high number of collisions and in large energy solution of
the Boltzmann hierarchy associated to the initial datum F0 as the function :

Fn,R = t 7→
(
T s,0t f

(s)
0 (·)1|Vs|≤R

+
n∑
k=1

(
IN,εs,s+k−1

(
u 7→ T s+k,0u f

(s+k)
N,0 1|Vs+k|≤R

))
(t, ·)

)
s≥1

.

Proposition 12 (Cut-off in large energy configurations). Let α = 1 or 2. Let
β0 be a strictly positive number and µ0 be a real number (which has to be strictly
positive in the case α = 2). There exists an affine, strictly positive, decreasing

function β̃′ < β̃ defined on [0, T ] (where β̃ = β̃λ is given by Theorem 6 page
259) and two constants :

C1(d, β0, µ0) and C2(d, β0, µ0),

depending only on the dimension d and on the numbers β0 and µ0, such that
for any positive integer n, any strictly positive number R, any positive integer
N and any strictly positive number ε > 0 verifying the Boltzmann-Grad limit :

Nεd−1 = 1,

and any pair of sequences of initial data FN,0 =
(
f

(s)
N,0

)
1≤s≤N and F0 =

(
f

(s)
0

)
s≥1

belonging respectively to XN,ε,β0,µα0
and X0,β0,µα0

, the truncated in high number

of collisions solution of the BBGKY hierarchy Hn
N ∈ ‹XN,ε,β̃λ,µ̃αλ

associated to

the initial datum FN,0 and the truncated in high number of collisions solution

of the Boltzmann hierarchy Fn ∈ ‹X
0,β̃λ,µ̃αλ

associated to the inital datum F0

(where β̃λ and µ̃λ are given by Theorem 6 page 259) satisfy :∣∣∣∣∣∣∣∣∣Hn
N −H

n,R
N

∣∣∣∣∣∣∣∣∣
N,ε,β̃′,µ̃α

λ

≤ C1 exp
(
− C2R

2
)
||FN,0||N,ε,β̃′(0),µα0

, (11.3)

and ∣∣∣∣∣∣Fn − Fn,R∣∣∣∣∣∣
0,β̃′,µ̃α

λ

≤ C1 exp
(
− C2R

2
)
||F0||0,β̃′(0),µα0

. (11.4)

Proof. One will write the proof only in the case α = 2 and for the BBGKY
hierarchy, since for the other cases α = 1 or for the Boltzmann hierarchy, the
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arguments are the same.
Back to the control of the norm of the integral part of the BBGKY operator,
that is the inequality (8.3) of Lemma 18 page 222 (in general, depending on the
situation, one has to use the appropriate lemma among Lemmas 19, 18, 22 or
21), one knows that for every strictly positive numbers β0, µ0, T and λ such that
β0 − λT and µ0 − λT are strictly positive, the |||·|||

N,ε,β̃λ,µ̃2
λ

norm of the integral

term of the BBGKY hierarchy, that is of :

t 7→
(
1s≤N−1

(
IN,εs f

(s+1)
N,0

)
(t, ·)

)
1≤s≤N

is smaller than :

C(d,N, ε)(β0 − λT )−d/2 exp
(
− 3(µ0 − λT )

)
×
(
1 + (β0 − λT )−1/2

)
λ

∣∣∣∣∣∣∣∣∣(f (s)
N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃2

λ

.

However, the setting is more restrictive, since in order to apply the fixed point
theorem which provides the existence and the uniqueness of the solution HN of
the BBGKY hierarchy, one has chosen, according to Lemma 23 page 255 (again,
in general, depending on the situation, one has to use the appropriate lemma
among Lemmas 23 or 24), λ and T such that in addition one has :

C(d,N, ε)(β0 − λT )−d/2 exp
(
− 3(µ0 − λT )

)(1 + (β0 − λT )−1/2
)

λ
≤ 1

2
.

Noticing that the condition :

β0 − λT > 0

holds true and that the function :

β 7→C(d,N, ε)(β − λT )−d/2 exp
(
− 3(µ0 − λT )

)(1 + (β − λT )−1/2
)

λ

= C(d,N, ε) exp
(
− 3(µ0 − λT )

)
(β − λT )−d/2

(
1 + (β − λT )−1/2

)
λ

is continuous, there exists β′0 < β0 such that :

β′0 − λT > 0,

and

C(d,N, ε)(β′0 − λT )−d/2 exp
(
− 3(µ0 − λT )

)(1 + (β′0 − λT )−1/2
)

λ
< 1.

One recalls here that since one works in the setting of the Boltzmann-Grad
limit Nεd−1 = 1, the choice of β′0 does not depend on the parameters N or ε,
because one has here, as it is stated in Lemma 18 (in general, depending on the
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situation, one has to use the appropriate lemma among Lemmas 19, 18, 22 or
21) :

C(d,N, ε) ≤ C ′(d).

One denotes then :

C(d,N, ε)(β′0 − λT )−d/2 exp
(
− 3(µ0 − λT )

)(1 + (β′0 − λT )−1/2
)

λ
= θ,

with θ ∈ ]0, 1[, and one defines :

β̃′ =

®
[0, T ] → R∗+,

t 7→ β̃′(t) = β′0 − λt.

Using those notations, one has of course that for all t ∈ [0, T ] :

0 < β̃′(t) < β̃λ(t),

and one has in fact shown that the integral term of the BBGKY hierarchy, and
in fact more generally its iterates :(

t 7→
(
h

(s)
N (t, ·)

)
1≤s≤N

)
7→
(
t 7→

(
1s≤N−k

(
IN,εs,s+k−1

(
u 7→ h

(s+k)
N (u, ·)

))
(t, ·)

)
1≤s≤N

)
are all well defined on the space ‹X

N,ε,β̃′,µ̃λ
(where the first weight β̃λ has been

replaced by β̃′), take their values into this same space, and verify the contracting
property :∣∣∣∣∣∣∣∣∣∣∣∣t 7→ (

1s≤N−k
(
IN,εs,s+k−1

(
u 7→ h

(s+k)
N (u, ·)

))
(t, ·)

)
1≤s≤N

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃′,µ̃2

λ

≤ θk
∣∣∣∣∣∣∣∣∣t 7→ (

h
(s)
N (t, ·)

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃′,µ̃2

λ

. (11.5)

Considering finally the difference of functions of sequences Hn
N −H

n,R
N , one has

Hn
N −H

n,R
N =

(
t 7→

(
f

(s)
N,0(·) +

n∑
k=1

1s≤N−k
(
IN,εs,s+k−1

(
f

(s+k)
N,0

))
(t, ·)

)
1≤s≤N

)
−
(
t 7→

(
f

(s)
N,0(·)1|Vs|≤R +

n∑
k=1

1s≤N−k
(
IN,εs,s+k−1

(
f

(s+k)
N,0 1|Vs+k|≤R

))
(t, ·)

)
1≤s≤N

)
=
(
t 7→

(
f

(s)
N,0(·)1|Vs|>R +

n∑
k=1

1s≤N−k
(
IN,εs,s+k−1

(
f

(s+k)
N,0 1|Vs+k|>R

))
(t, ·)

)
1≤s≤N

)
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by linearity of the iterates of the integrated in time transport-collision-transport
operator, so that one has :∣∣∣∣∣∣∣∣∣Hn

N −H
n,R
N

∣∣∣∣∣∣∣∣∣
N,ε,β̃′,µ̃2

λ

≤
∣∣∣∣∣∣∣∣∣t 7→ (

f
(s)
N,01|Vs|>R

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃′,µ̃2

λ

+

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣t 7→ ( n∑

k=1

1s≤N−k
(
IN,εs,s+k−1

(
f

(s+k)
N,0 1|Vs+k|>R

))
(t, ·)

)
1≤s≤N

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
N,ε,β̃′,µ̃2

λ

≤
∣∣∣∣∣∣∣∣∣t 7→ (

f
(s)
N,01|Vs|>R

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃′,µ̃2

λ

+
n∑
k=1

∣∣∣∣∣∣∣∣∣∣∣∣t 7→ (
1s≤N−k

(
IN,εs,s+k−1

(
f

(s+k)
N,0 1|Vs+k|>R

))
(t, ·)

)
1≤s≤N

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃′,µ̃2

λ

≤
∣∣∣∣∣∣∣∣∣t 7→ (

f
(s)
N,01|Vs|>R

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃′,µ̃2

λ

+
n∑
k=1

θk
∣∣∣∣∣∣∣∣∣t 7→ (

f
(s)
N,01|Vs|>R

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃′,µ̃2

λ

thanks to the previous inequality (11.5), that is :∣∣∣∣∣∣∣∣∣Hn
N −H

n,R
N

∣∣∣∣∣∣∣∣∣
N,ε,β̃′,µ̃2

λ

≤ 1

1− θ

∣∣∣∣∣∣∣∣∣t 7→ (
f

(s)
N,01|Vs|>R

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃′,µ̃2

λ

.

Applying then the inequality (8.2) of Lemma 17 page 221 to the constant func-
tion of sequences :

t 7→
(
f

(s)
N,01|Vs|>R

)
1≤s≤N ,

one immediately obtains that :∣∣∣∣∣∣∣∣∣Hn
N −H

n,R
N

∣∣∣∣∣∣∣∣∣
N,ε,β̃′,µ̃λ

≤ 1

1− θ

∣∣∣∣∣∣(f (s)
N,01|Vs|>R

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β′0,µ

2
0

. (11.6)

Finally, since for every integer 1 ≤ s ≤ N and almost everywhere on the phase
space of s particles Dεs :∣∣1|Vs|>Rf (s)

N,0(Zs)
∣∣ exp

(β′0
2
|Vs|2

)
= 1|Vs|>R exp

(β′0 − β0

2
|Vs|2

)∣∣f (s)
N,0(Zs)

∣∣ exp
(β0

2
|Vs|2

)
,

and since β′0 < β0, one gets∣∣1|Vs|>Rf (s)
N,0(Zs)

∣∣ exp
(β′0

2
|Vs|2

)
≤ 1|Vs|>R exp

(β′0 − β0

2
R2
)∣∣f (s)

N,0(Zs)
∣∣ exp

(β0

2
|Vs|2

)
,

so that ∣∣1|Vs|>Rf (s)
N,0

∣∣
ε,s,β′0

≤ exp
(β′0 − β0

2
R2
)∣∣f (s)

N,0

∣∣
ε,s,β0

.
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Multiplying the last inequality by exp(s2µ0) and taking the supremum on the
number of particles s, one obtains that, since by hypothesis the sequence of
initial data belongs to the space XN,ε,β0,µ0

:∣∣∣∣∣∣(f (s)
N,01|Vs|>R

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β′0,µ

2
0

≤ exp
(β′0 − β0

2
R2
)∣∣∣∣∣∣(f (s)

N,0

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β0,µ2

0

.

(11.7)

Collecting the inequalities (11.6) and (11.7) together, and denoting :

C1 =
1

1− θ
,

and

C2 =
β′0 − β0

2
,

one obtains in the end the inequality stated in the lemma, since the constant
θ depends only on β′0, µ0, λ, T and the dimension, the quantities λ, T and β′0
depending themselves only on β0, µ0, and the dimension d.

Remark 23. It is important here to notice that in order to be able to compare
solutions before and after a truncation in large energy and to obtain a small
remainder as the parameter of cut-off becomes larger and larger, one has to pay
a price in the strength of the |||·|||·,β̃,µ̃ norm, in the sense that one is only able

to compare solutions taken in the space with some weight β̃ in a norm defined
with a less strong weight β̃′ < β̃.

One proves here a simple result of propagation of finiteness of the energy by
the integrated in time (transport-) collision-transport operators for the two hi-
erarchies, which will be useful in the sequel, and in particular in the estimates
related to the next cut-off.

Proposition 13 (Stability of the cut-off in large energy by the integral terms
of the BBGKY and Boltzmann operators). Let α = 1 or 2. For any T > 0, any
β0 > 0, µ0 > 0 and λ > 0 such that :

β0 − λT > 0 (and µ0 − λT > 0 if α = 2),

for any strictly positive number R > 0, if one defines β̃λ and µ̃λ as the functions

β̃λ :

®
[0, T ] → R∗+,

t 7→ β̃λ(t) = β0 − λt,

and

µ̃λ :

ß
[0, T ] → R,

t 7→ µ̃λ(t) = µ0 − λt,

one has :
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• for the integral term of the BBGKY operator, for any positive integer N
and any strictly positive number ε, and for any function of sequences :

t 7→
(
h

(s)
N (t, ·)

)
1≤s≤N

belonging to the space ‹X
N,ε,β̃λ,µ̃αλ

, one has the following equality :

t 7→
(
1s≤N−1

(
IN,εs

(
h

(s+1)
N 1|Vs+1|≤R

))
(t, ·)

)
1≤s≤N

= t 7→
(
1|Vs|≤R1s≤N−1

(
IN,εs

(
h

(s+1)
N 1|Vs+1|≤R

)
(t, ·)

))
1≤s≤N

.

(11.8)

• for the integral term of the Boltzmann operator, for any function of se-
quences :

t 7→
(
f (s)(t, ·)

)
s≥1

belonging to the space ‹X
0,β̃λ,µ̃αλ

, one has the following equality :

t 7→
((
I0
s

(
f (s+1)1|Vs+1|≤R

))
(t, ·)

)
s≥1

= t 7→
(
1|Vs|≤R

(
I0
s

(
f (s+1)1|Vs+1|≤R

))
(t, ·)

)
s≥1

. (11.9)

Proof. First, one will provide a proof for the last inequality, concerning the
Boltzmann operator. Secondly, a proof for the BBGKY operator will be pro-
posed, separately, since it requires different arguments and tools.
The proof is quite straightforward in the case of the Boltzmann operator. In-
deed, for every positive integer s, the following quantity is a classical integral of
a continuous function. For any strictly positive number R and any positive inte-
ger s, one goes back to the definition of the integrated in time collision-transport
operator of the Boltzmann hierarchy. It provides :∫ t

0

T s,0t−uC0
s,s+1

(
f (s+1)(u, Zs)1|Vs+1|≤R

)
du

=
s∑
i=1

∫ t

0

∫
Sd−1
ω ×Rdvs+1

(
ω ·
(
vs+1 −

(
T s,0u−t(Zs)

)V,i))
+

×
Å(
f (s+1)1|Vs+1|≤R

)(
u,
(
T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

)′
i,s+1

)
−
(
f (s+1)1|Vs+1|≤R

)(
u, T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

)ã
dω dvs+1 du

using first the definition of the free flow (see Definition 15 page 83) and then the
definition of the collision operator of the Boltzmann hierarchy (see Definition



11.2. CUT-OFF IN LARGE ENERGY 287

10 page 78), where the following quantity(
T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

)′
i,s+1

denotes the configuration obtained from the configuration(
T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

)
,

after applying the scattering operator (see Definition 1 page 51) for the pair of
particles i and s+ 1, that is replacing the velocities(

T s,0u−t(Zs)
)V,i

and vs+1,

by (((
T s,0u−t(Zs)

)V,i)′
, v′s+1

)
,

with ω as angular parameter.
Now since in the integrand appears the function f (s+1) multiplied with the
indicator function

1|Vs+1|≤R,

if the vectors composed of the velocities of the configurations(
T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

)′
i,s+1

and
(
T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

)
have a norm larger than R, that is if the vectors((

T s,0u−t(Zs)
)V,1

, . . . ,
((
T s,0u−t(Zs)

)V,i)′
, . . . , v′s+1

)
and

(
T s,0u−t(Zs)

V , vs+1

)
have a norm larger than R, then the integrand is zero.
But for any configuration Zs ∈

(
Ωc × Rd

)s
such that

∣∣Vs∣∣ > R, and for any
vs+1 ∈ Rd, one has that, on the one hand :∣∣∣((T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

)′
i,s+1

)V ∣∣∣
=
∣∣∣(T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

)V ∣∣∣
thanks to the conservation of the kinetic energy during collisions between the
particles, and on the other hand :∣∣∣(T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

)V ∣∣∣2 =
∣∣∣(T s,0u−t(Zs)

)V ∣∣∣2 + |vs+1|2

=
∣∣Vs∣∣2 + |vs+1|2

thanks to the conservation of the kinetic energy along the trajectory of the free
transport with boundary conditions, so that :∣∣∣(T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

)V ∣∣∣2 ≥ ∣∣Vs∣∣2 > R2.
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So if
∣∣Vs∣∣ > R, both configurations :(

T s,0u−t(Zs),
(
T s,0u−t(Zs)

)X,i
, vs+1

)′
i,s+1

and (
T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

)
belong to the domain : {

Zs+1 /
∣∣Vs+1

∣∣ > R
}
,

so that the integrand :(
ω ·
(
vs+1 −

(
T s,0u−t(Zs)

)V,i))
+

×
((
f (s+1)1|Vs+1|≤R

)(
u,
(
T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

)′
i,s+1

)
−
(
f (s+1)1|Vs+1|≤R

)(
u, T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,i
, vs+1

))
is zero, for any Zs such that

∣∣Vs∣∣ > R, for all (ω, vs+1) ∈ Sd−1 × Rd.
In other words, one has indeed shown the following equality, for any positive
integer s, any time t ∈ [0, T ] and any configuration Zs :∫ t

0

T s,0t−uC0
s,s+1

(
f (s+1)(u, Zs)1|Vs+1|≤R

)
du

= 1|Vs|≤R

(∫ t

0

T s,0t−uC0
s,s+1

(
f (s+1)(u, Zs)1|Vs+1|≤R

)
du
)
,

which is exactly the equality (11.9) stated in the lemma, in the case of the
Boltzmann operator.

For the integral part of the BBGKY operator, one recalls that the transport-
collision operator is not an integral, except for the special cases of regular func-
tions h(s+1) (see Section 5 page 87). However, if the function h(s+1) is bounded
by a weight which depends on time (as the elements of the sequences belonging

to the spaces ‹X
N,ε,β̃λ,µ̃λ

), one knows that the image by the integrated in time

transport-collision-transport collision of such function can be controlled by a
classical Lebesgue integral of the weight, as Lemma 15 page 188 shows it.
If the function of sequences :

t 7→
(
h

(s)
N (t, ·)

)
1≤s≤N

belongs to the space ‹X
N,ε,β̃λ,µ̃αλ

, it means in particular that for all integer 1 ≤
s ≤ N and for all t ∈ [0, T ], the quantity :

∣∣h(s)
N (t, Zs)

∣∣ exp
( β̃(t)

2
|Vs|2

)
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is almost everywhere finite on the phase space Dεs. It implies immediately that,
for any strictly positive number R, the quantity

1|Vs|≤R
∣∣h(s)
N (t, Zs)

∣∣ exp
( β̃(t)

2
|Vs|2

)
is also almost everywhere finite. Then one can apply Lemma 15 to the function :

h(s+1) = (t, Zs+1) 7→ 1|Vs+1|≤R
∣∣h(s+1)
N (t, Zs+1)

∣∣,
with the bound controlling the decrease in velocity :

gs+1 = (t, Vs+1) 7→ 1|Vs+1|≤R exp
(
− β̃(t)

2
|Vs+1|2

)
,

which verifies all the assumptions of the lemma, since

(t, Vs+1) 7→ exp
(
− β̃(t)

2
|Vs+1|2

)
also verifies all of them and bounds from above gs+1. The inequality (6.4) of
Lemma 15 provides then :

∣∣∣(IN,εs

(
h

(s+1)
N 1|Vs+1|>R

))
(t, ·)

∣∣∣ ≤ (N − s)εd−1
∣∣Sd−1

∣∣ ∫ t

0

∣∣h(s+1)
N (u, ·)

∣∣
ε,s+1,β̃(u)

×
∫
Rd
1|Vs+1|≤R

( s∑
i=1

|vi|+ s|vs+1|
)

exp
(
− β̃(u)

2
|Vs+1|2

)
dvs+1 du.

For

Vs+1 =
(
Vs, vs+1

)
,

writing simply :

|Vs+1|2 = |Vs|2 + |vs+1|2 ≥ |Vs|2,

one immediately sees that :

|Vs| > R⇒ |Vs+1| > R,

so that in other words :

{Zs+1 ∈ Dεs+1 / |Vs| > R} ⊂ {Zs+1 ∈ Dεs+1 / |Vs+1| > R},

or again :

1|Vs|>R ≤ 1|Vs+1|>R.
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One obtains then immediately :

1|Vs|>R

∣∣∣(IN,εs

(
h

(s+1)
N 1|Vs+1|>R

))
(t, ·)

∣∣∣
≤ (N − s)εd−1

∣∣Sd−1
∣∣1|Vs|>R ∫ t

0

∣∣h(s+1)
N (u, ·)

∣∣
ε,s+1,β̃(u)

×
∫
Rd
1|Vs+1|≤R

( s∑
i=1

|vi|+ s|vs+1|
)

exp
(
− β̃(u)

2
|Vs+1|2

)
dvs+1 du

≤ (N − s)εd−1
∣∣Sd−1

∣∣ ∫ t

0

∣∣h(s+1)
N (u, ·)

∣∣
ε,s+1,β̃(u)

×
∫
Rd

(
1|Vs+1|>R1|Vs+1|≤R

)( s∑
i=1

|vi|+ s|vs+1|
)

exp
(
− β̃(u)

2
|Vs+1|2

)
dvs+1 du,

which implies in particular that

t 7→ 1|Vs|>R
(
IN,εs

(
h

(s+1)
N 1|Vs+1|≤R

))
(t, ·)

is the zero function, and then(
IN,εs

(
h

(s+1)
N 1|Vs+1|≤R

))
(t, ·) = 1|Vs|≤R

(
IN,εs

(
h

(s+1)
N 1|Vs+1|≤R

))
(t, ·)

+ 1|Vs|>R
(
IN,εs

(
h

(s+1)
N 1|Vs+1|≤R

))
(t, ·)

= 1|Vs|≤R
(
IN,εs

(
h

(s+1)
N 1|Vs+1|≤R

))
(t, ·),

which concludes the proof of the inequality (11.8), hence the lemma is entirely
proved.

11.3 Cut-off in small time difference between
two collisions

One finishes by the cut-off in small time difference between two collisions, which
will be the last of the preliminary cut-offs.
After two iterations of the integrated in time transport-collision operator, one
gets the formula :∫ t

0

T s,0t−t1C
0
s,s+1

∫ t1

0

T s+1,0
t1−t2 C

0
s+1,s+2f

(s+2)(t2, ·) dt2 dt1

It means that, after an application of the transport of s particles during a time
t − t1, one adds a particle. After that, one transports again the s + 1 particles
during a time t1 − t2, and finally adds a last particle, so that one finishes with
s+ 2 particles at time t− (t− t1)− (t1− t2) = t1− t2. One sees that the length
of the time interval between the two collisions is t1 − t2. It can be arbitrarily
small, which may cause troubles in the sequel. The cut-off in small difference be-
tween two collisions means that one will bound from below the difference t1−t2.
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Let δ > 0 be a small parameter. One recalls that, thanks to the Duhamel
formula (see Propositions 9 page 268 and 10 page 272), the solutions of the hi-
erarchies are written as sums of iterations of the integrated in time (transport-)
collision-transport operator. For the case of the BBGKY hierarchy, each term
is written, using the notations (10.2) introduced in Definition 33 page 268, in
the following way : (

IN,εs,s+k−1f
(s+k)
N,0

)
(t, ·),

which is defined as :∫ t

0

T s,ε−t1C
N,ε
s,s+1T

s+1,ε
t1

∫ t1

0

T s,ε−t2C
N,ε
s+1,s+2T

s+2,ε
t2 . . .∫ tk−1

0

T s+k−1,ε
−tk CN,εs+k−1,s+kT

s+k,ε
tk

f
(s+k)
N,0 dtk . . . dt2 dt1.

If one wants to separate in time, by a lower bound of size δ, the applications of
the collision operators CN,εs+j,s+j+1, it means that one asks that :

• t1 − t2 ≥ δ in order to separate in time CN,εs,s+1 and CN,εs+1,s+2,

• t2 − t3 ≥ δ in order to separate CN,εs+1,s+2 and CN,εs+2,s+3,

• . . .

• and finally, tk−1−tk ≥ δ, in order to separate CN,εs+k−2,s+k−1 and CN,εs+k−1,s+k.

Taking all those conditions and starting by the last one, one sees that in par-
ticular, they imply that

• tk−1 ≥ δ,

• tk−2 ≥ δ + tk−1 ≥ 2δ

• . . .

• t1 ≥ (k − 1)δ.

It will be useful in the following to require in addition a time separation between
the time t of evaluation of the solution of the hierarchy (this time t appearing
in the upper bound of the first integral defining the solution of the hierarchy in
the Duhamel formula (10.3) page 268), and the first application of the collision

operator CN,εs,s+1. In other words, one will set the additional condition

t− t1 ≥ δ.

Regrouping all the conditions, one sees that in particular

t ≥ kδ.



292 CHAPTER 11. THE FIRST CUT-OFFS

This separation in time requires then to cut the time domain on which one
integrates the transport-collision-transport operators, and to control the size of
the removed small time intervals.
One introduces therefore new notations. They are rather natural in the sense
that the additional index and exponent added in this new notation correspond to
the new bounds of the time interval on which the (transport-) collision-transport
operator is integrated.

Definition 37 (Notations for the integrated in time, truncated in time, trans-
port-collision-transport operator of the BBGKY hierarchy). For any positive

integer N , any strictly positive number ε, any function t 7→
(
f

(s)
N (t, ·)

)
1≤s≤N

belonging to the space ‹X
N,ε,β̃,µ̃α

, any integer 1 ≤ s ≤ N , and any mesurable

functions

a :

ß
R+ → R+,
t 7→ a(t),

and b :

ß
R+ → R+,
t 7→ b(t),

one will denote its image by the integrated in time transport-collision-transport
operator, truncated in time, of the BBGKY hierarchy (with [a, b] ⊂ [0, t]) :

t 7→
∫ t

0

1u≥a(t)1u≤b(t)T s,ε−u C
N,ε
s,s+1T s+1,ε

u f
(s+1)
N (u, ·) du

as :

t 7→
((
IN,εs

)b(t)
a(t)

f
(s+1)
N

)
(t, ·). (11.10)

One will also consider additional conditions for the cut-off in the time variable,
namely :

t 7→ 1t<c

∫ b

a

T s,ε−u C
N,ε
s,s+1T s+1,ε

u f
(s+1)
N (u, ·) du

and

t 7→ 1t≥c

∫ b

a

T s,ε−u C
N,ε
s,s+1T s+1,ε

u f
(s+1)
N (u, ·) du

which will be respectively denoted as :

t 7→
(−
c

(
IN,εs

)b
a
f

(s+1)
N

)
(t, ·) and t 7→

(
+
c

(
IN,εs

)b
a
f

(s+1)
N

)
(t, ·). (11.11)

Remark 24. When there is an additional condition t ≤ c, the dependency on
t of a and b is dropped in the notations. The reason is that in practice, in the
case of this additional condition, the two first conditions u ≥ a and u ≤ b will
be given by functions a and b which do not depend on t.

One introduces the same notations for the Boltzmann hierarchy.

Definition 38 (Notations for the integrated in time, truncated in time, colli-
sion-transport operator of the Boltzmann hierarchy). For any function of se-

quences t 7→
(
f (s)(t, ·)

)
s≥1

belonging to the space ‹X
0,β̃,µ̃α

, any positive integer
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s, and any mesurable functions

a :

ß
R+ → R+,
t 7→ a(t),

and b :

ß
R+ → R+,
t 7→ b(t),

one will denote its image by the integrated in time collision-transport operator,
truncated in time, of the Boltzmann hierarchy :

t 7→
∫ t

0

1u≥a(t)1u≤b(t)T s,0t−uC0
s,s+1f

(s+1)(u, ·) du

as :

t 7→
((
I0
s

)b(t)
a(t)

f (s+1)
)
(t, ·). (11.12)

Similarly as for the BBGKY hierarchy, one will denote :

t 7→ 1t<c

∫ b

a

T s,0−u C0
s,s+1T s+1,0

u f (s+1)(u, ·) du

and

t 7→ 1t≥c

∫ b

a

T s,0−u C0
s,s+1T s+1,0

u f (s+1)(u, ·) du

respectively as :

t 7→
(−
c

(
I0
s

)b
a
f (s+1)

)
(t, ·) and t 7→

(
+
c

(
I0
s

)b
a
f (s+1)

)
(t, ·) (11.13)

The decomposition that one has in mind at this point of the work can be pic-
tured thanks to the following Figure 11.1.

One decomposes then (in the example here, in the case of the BBGKY hierarchy)
each iterations of the integrated in time transport-collision-transport operator
as follows :

(
IN,εs,s+k−1

(
f (s+k)

))
(t, ·) =

∫ t

0

T s,ε−t1C
N,ε
s,s+1T

s+1,ε
t1

∫ t1

0

T s+1,ε
−t2 CN,εs+1,s+2T

s+2,ε
t2

. . .

∫ tk−1

0

T s+k−1,ε
−tk CN,εs+k−1,s+kT

s+k,ε
tk

f
(s+k)
N,0 dtk . . . dt2 dt1
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Figure 11.1: The different decompositions of the initial integral I ·s,s+k−1f
(s+k)
·

into the separated in time collisions part and the remainders, represented by
squares on the figure

=
(
1t<kδ

∫ t

0

T s,ε−t1C
N,ε
s,s+1T

s+1,ε
t1

+ 1t≥kδ

([∫ (k−1)δ

0

+

∫ t−δ

(k−1)δ

+

∫ t

t−δ

]
T s,ε−t1C

N,ε
s,s+1T

s+1,ε
t1

))
(
1t1<(k−1)δ

∫ t1

0

T s+1,ε
−t2 CN,εs+1,s+2T

s+2,ε
t2

+ 1t1≥(k−1)δ

([∫ (k−2)δ

0

+

∫ t1−δ

(k−2)δ

+

∫ t1

t1−δ

]
T s+1,ε
−t2 CN,εs+1,s+2T

s+2,ε
t2

))
. . .(

1tk−1<δ

∫ tk−1

0

T s+k−1,ε
−tk CN,εs+k−1,s+kT

s+k,ε
tk

+ 1tk−1≥δ

([∫ tk−1−δ

0

+

∫ tk−1

tk−1−δ

]
T s+k−1,ε
−tk CN,εs+k−1,s+kT

s+k,ε
tk

))
f

(s+k)
N,0 (tk, ·) dtk dtk−1 . . . dt1,
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so that in fact, considering each of the j iterations (with 1 ≤ j ≤ k), using
the new notations introduced in Definition 33 page 267, and 37 page 292, one
decomposes(
IN,εs+j−1f

(s+j)
)
(tj−1, ·) =1tj−1<aj,2

(
IN,εs+j−1f

(s+j)
)
(tj−1, ·)

+ 1tj−1≥aj,2

4∑
l=2

((
IN,εs+j−1

)aj,l+1

aj,l
f (s+j)

)
(tj−1, ·),

with, for the last iteration, that is for application of the integrated in time

transport-collision-transport

∫ t

0

T s,ε−t1C
N,ε
s,s+1T

s+1,ε
t1 to distribution functions of s+

1 particles (the indices are inversed with the order of the composition of the
operators) :

c1 = kδ, a1,1 = 0, a1,2 = (k − 1)δ, a1,3 = t− δ, a1,4 = t,

and, in the general case 1 ≤ j ≤ k :

cj = (k − j + 1)δ, aj,1 = 0, aj,2 = (k − j)δ, aj,3 = tj−1 − δ, aj,4 = tj−1

(where t0 denotes t).
In order to obtain a more synthetic expression of the decomposed integrated in
time collision-transport operator, one writes :

(
IN,εs+j−1f

(s+j)
)
(tj−1, ·) = 1tj−1<cj

3∑
l=1

((
IN,εs+j−1

)aj,l+1

aj,l
f (s+j)

)
(tj−1, ·)

+ 1tj−1≥cj

3∑
l=1

((
IN,εs+j−1

)aj,l+1

aj,l
f (s+j)

)
(tj−1, ·),

that is, using the notation (11.11) of Definition 37 :

(
IN,εs+j−1f

(s+j)
)
(tj−1, ·) =

∑
±

3∑
l=1

((±
cj

(
IN,εs

)aj,l+1

aj,l

)
f (s+j)

)
(tj−1, ·).

Decomposing the terms describing the solution of the BBGKY hierarchy given
by the Duhamel formula, one obtains(
IN,εs,s+k−1f

(s+k)
N,0

)
(t, ·)

=
((
IN,εs ◦ IN,εs+1 ◦ · · · ◦ I

N,ε
s+k−1

)
f

(s+k)
N,0

)
(t, ·)

=
((∑
±1

3∑
l1=1

(
±1
c1

(
IN,εs

)a1,l1+1

a1,l1

))
◦
(∑
±2

3∑
l2=1

(
±2
c2

(
IN,εs+1

)a2,l2+1

a2,l2

))

◦ · · · ◦
(∑
±k

3∑
lk=1

(
±k
ck

(
IN,εs+k−1

)ak,lk+1

ak,lk

))
f

(s+k)
N,0

)
(t, ·),
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and then using the linearity of the integrated in time collision-transport opera-
tors :(
IN,εs,s+k−1f

(s+k)
N,0

)
(t, ·)

=
(∑
±1

3∑
l1=1

∑
±2

3∑
l2=1

. . .
∑
±k

3∑
lk=1

((
±1
c1

(
IN,εs

)a1,l1+1

a1,l1

)
◦
(
±2
c2

(
IN,εs+1

)a2,l2+1

a2,l2

)
◦ · · · ◦

(
±k
ck

(
IN,εs+k−1

)ak,lk+1

ak,lk

))
f

(s+k)
N,0

)
(t, ·).

Of course, the idea is to show that, for small parameters of separation in time
δ, the contribution of the elements of the decomposition implying an integral
with a time domain of size of order δ provide only a small contribution. In other
words, one expects that only the parts of the form :

1tk−j≥jδ

∫ tk−j−δ

jδ

dtk−j+1

provide a significant contribution to the integrated in time collision-transport
operator. Hence, for the iteration I0

s,s+k−1, one expects that only the term :

1t≥(k−1)δ

∫ t

(k−1)δ

T s,ε−t1C
N,ε
s,s+1T

s+1,ε
t1

(
1t1≥(k−1)δ

∫ t1−δ

(k−2)δ

T s+1,ε
−t2 CN,εs+1,s+2T

s+2,ε
t2

. . .
(
1tk−1≥δ

∫ tk−1−δ

0

T s+k−1,ε
−tk CN,εs+k−1,s+kT

s+k,ε
tk

f
(s+k)
N,0 (tk, ·) dtk

)
. . .
)

dt1,

that is, using the notations (11.10) and (11.11) of Definition 37,((
+
c1

(
I0
s

)a1,3
a1,2

)
◦
(

+
c2

(
I0
s+1

)a2,3
a2,2

)
◦ · · · ◦

(
+
ck

(
I0
s+k−1

)ak,3
ak,2

))
f

(s+k)
0

will play a significant role.
This will be proved along the next lemmas, and one is led to introduce the
following notations.

Definition 39 (Iteration of the integrated in time (transport-) collision-trans-

port operator with collisions separated in time). For any function f
(s+k)
N,0 belong-

ing to Xε,s+k,β0
, one defines the k-th truncated in high number of collisions,

large energy and small separation in time between collisions of the BBGKY
hierarchy as the function :

IN,ε,δs,s+k−1(f
(s+k)
N,0 ) =

((
+
c1

(
IN,εs

)a1,3
a1,2

)
◦
(

+
c2

(
IN,εs+1

)a2,3
a2,2

)
◦ · · · ◦

(
+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0 , (11.14)

and for any function f
(s+k)
0 belonging to X0,s+k,β0

, one defines the k-th trun-
cated in high number of collisions, large energy and small separation in time
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between collisions of the Boltzmann hierarchy as the function :

I0,δ
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
N,0

)
=
((

+
c1

(
I0
s

)a1,3
a1,2

)
◦
(

+
c2

(
I0
s+1

)a2,3
a2,2

)
◦ · · · ◦

(
+
ck

(
I0
s+k−1

)ak,3
ak,2

))(
u 7→ T s+k,0u f

(s+k)
0

)
, (11.15)

with, for all 1 ≤ j ≤ k :
cj = (k − j + 1)δ

and
aj,1 = 0, aj,2 = (k − j)δ, aj,3 = tj−1 − δ, aj,4 = tj−1.

Definition 40 (Cut-off in small time difference between the collisions of the so-

lutions of the hierarchies). For any sequence of initial data FN,0 =
(
f

(s)
N,0

)
1≤s≤N

belonging to XN,ε,β0,µα0
, one defines (using the notation (11.14) of Definition 39)

the truncated in high number of collisions, large energy and small time differ-
ence between collisions solution of the conjugate BBGKY hierarchy associated
to the initial datum FN,0 as the function :

Hn,R,δ
N = t 7→

(
f

(s)
N,0(·)1|Vs|≤R

+
n∑
k=1

1s≤N−k

(
IN,ε,δs,s+k−1

(
f

(s+k)
N,0 1|Vs+k|≤R

))
(t, ·)

)
1≤s≤N

.

For any sequence of initial data F0 =
(
f

(s)
0

)
s≥1

belonging to X0,β0,µα0
, one de-

fines (using the notation (11.15) of Definition 39) the truncated in high number
of collisions, large energy and small time difference between collisions solution
of the Boltzmann hierarchy associated to the initial datum F0 as the function :

Fn,R,δ = t 7→
(
T s,0t f

(s)
0 (·)1|Vs|≤R

+
n∑
k=1

(
IN,ε,δs,s+k−1

(
u 7→ T s+k,0u f

(s+k)
N,0 1|Vs+k|≤R

))
(t, ·)

)
s≥1

.

Remark 25. The decomposition described above used strongly the linearity of
the integrated in time (transport-) collision-transport operator. However, this
decomposition is only formal until one is able to show that the collision-transport
operator can be indeed applied to each term of the decomposition. Here, it seems
to be a problem, since, for the case of the BBGKY hierarchy (but the problem
is the same for the Boltzmann hierarchy), the transport-collision operator of a
time-dependent function has been proven to be well defined if this function is an
element of C

(
[0, T ], L∞

(
Dεs
))

(as it was done in Section 5). In particular, the
condition of continuity in time was crucial. Besides, multiplying by the indicator
function of a time interval breaks immediately this continuity, so in particular,
the following terms of the decomposition :(

+
ak,2

(
I0
s+k−1

)ak,3
ak,2

)(
u 7→ T s+k,0u f

(s+k)
0

)
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are not continuous in time.
However, this loss of continuity is not a problem, since if one considers carefully
the paragraph 5.1.3 page 121 devoted to the definition of the transport-collision
operator for time depending-function, one sees that in fact assuming the conti-
nuity is somehow too strong, because one considers only functions that belong
to the closure of step functions, that is, piecewise constant in time functions,
taking their values in L∞

(
Dεs
)
. In other words, the transport-collision operator

is in fact perfectly defined for piecewise continuous in time functions. The last
step which enables to obtain the final operator, that is an integration with respect
to time, is therefore not a source of trouble.
In particular, the multiplication of the integrand by an indicator function of a
time interval causes no problem, so that one can still consider iterations of the
integrated in time transport-collision-transport operator in the case if the cut-off
in time described in this section is applied. Of course, the function obtained does
not belong to the same space in which the fixed point theorem and the results of
existence and uniqueness of the solutions of the hierarchies have been obtained,
however it is still meaningful to consider its |||·|||

N,ε,β̃,µ̃
norm.

One now states two lemmas, which are in fact nothing more than an intermediate
statement of a result obtained to show the continuity in time of the integrated
in time transport-collision-transport operator, in the second part of the proof
of Lemma 18 page 222 for the case when α = 2, and of Lemma 19 page 234 for
the case when α = 1. They will be useful to obtain the sought control on the
difference :

I ·s,s+k−1f
(s+k)
· − I ·,δs,s+k−1f

(s+k)
· .

Lemma 25 (Control of the cut-off in the time domain of the integrated in time
(transport-) collision-transport operator, case α = 2). Let T , β0, µ0 and λ be
four strictly positive numbers such that :

β0 − λT > 0 and µ0 − λT > 0.

One denotes β̃ and µ̃ as :

β̃ :

®
[0, T ] → R∗+,

t 7→ β̃(t) = β0 − λt,

and

µ̃ :

ß
[0, T ] → R∗+,

t 7→ µ̃(t) = µ0 − λt.

In the case of the BBGKY hierarchy, for any positive integer N and any strictly
positive number ε > 0 in the Boltzmann-Grad limit :

Nεd−1 = 1,

for any piecewise continuous in time function of sequences t 7→
(
h

(s)
N (t, ·)

)
1≤s≤N

defined on [0, T ], taking its values in
(
L∞
(
Dεs
))

1≤s≤N , and with a finite |||·|||
N,ε,β̃,µ̃2
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norm, for any continuous functions

a = t 7→ a(t) < b = t 7→ b(t)

and any number c ∈ [0, T ], for any integer 1 ≤ s ≤ N − 1, the function :

t 7→
(±
c (IN,εs )

b(t)
a(t)

)
h

(s+1)
N

is well defined and is piecewise continuous with respect to time. In addition, one
has, for any integer 1 ≤ s ≤ N − 1, the following inequality :∣∣∣∣∣∣∣∣∣∣∣∣t 7→ (

1s≤N−1

(−
c (IN,εs )t0

)
h

(s+1)
N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣∣∣∣
ε,β̃,µ̃2

≤ C(d)β̃(T )−d/2λ−1/2

×
∣∣∣∣∣∣∣∣∣(h(s)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

√
c,

(11.16)

and for all t ∈ [0, T ] :∣∣∣∣∣∣∣∣t 7→ (
1s≤N−1

(
+
c (IN,εs )

b(t)
a(t)

)
h

(s+1)
N

)
1≤s≤N

∣∣∣∣∣∣∣∣
ε,β̃(t),µ̃(t)2

≤ C(d)β̃(T )−d/2λ−1/2

×
∣∣∣∣∣∣∣∣∣(h(s)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

»
b(t)− a(t),

(11.17)

with C(d) denoting a constant which depends only on the dimension d.
In the case of the Boltzmann hierarchy, for any piecewise continuous in time
function of sequences t 7→

(
f (s)(t, ·)

)
s≥N defined on [0, T ], taking its values in(

C0
((

Ωc ×Rd
)s))

s≥1
, and with a finite |||·|||

0,β̃,µ̃2 norm, and for any continuous

functions
a = t 7→ a(t) < b = t 7→ b(t)

and any number c ∈ [0, T ], for any integer s ≥ 1, the function :

t 7→
(±
c (I0

s )
b(t)
a(t)

)
h

(s+1)
N

is well defined and is piecewise continuous with respect to time. In addition, one
has the following inequality :∣∣∣∣∣∣∣∣∣∣∣∣t 7→ ((−

c (I0
s )t0
)
f (s+1)

)
s≥1

∣∣∣∣∣∣∣∣∣∣∣∣
0,β̃,µ̃2

≤ C(d)β̃(T )−d/2λ−1/2
∣∣∣∣∣∣∣∣∣(f (s)

)
s≥1

∣∣∣∣∣∣∣∣∣
0,β̃,µ̃2

√
c,

(11.18)

and for all t ∈ [0, T ] :∣∣∣∣∣∣∣∣t 7→ ((
+
c (I0

s )
b(t)
a(t)

)
f (s+1)

)
s≥1

∣∣∣∣∣∣∣∣
0,β̃(t),µ̃(t)2

≤ C(d)β̃(T )−d/2λ−1/2

×
∣∣∣∣∣∣∣∣∣(f (s)

)
s≥1

∣∣∣∣∣∣∣∣∣
0,β̃,µ̃2

»
b(t)− a(t),

(11.19)

with C(d) denoting a constant which depends only on the dimension d.
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Lemma 26 (Control of the cut-off in the time domain of the integrated in time
(transport-) collision-transport operator, case α = 1). Let T , β0 and λ be three
strictly positive numbers and µ0 be a real number such that :

β0 − λT > 0.

One denotes β̃ and µ̃ as :

β̃ :

®
[0, T ] → R∗+,

t 7→ β̃(t) = β0 − λt,

and

µ̃ :

ß
[0, T ] → R,

t 7→ µ̃(t) = µ0 − λt.

In the case of the BBGKY hierarchy, for any positive integer N and any strictly
positive number ε > 0 in the Boltzmann-Grad limit :

Nεd−1 = 1,

for any piecewise continuous with respect to time function of sequences t 7→(
h

(s)
N (t, ·)

)
1≤s≤N defined on [0, T ], taking its values in

(
L∞
(
Dεs
))

1≤s≤N , and

with a finite |||·|||
N,ε,β̃,µ̃1 norm, and for any continuous functions a = t 7→ a(t) <

b = t 7→ b(t) and any number c ∈ [0, T ], for any integer 1 ≤ s ≤ N − 1, the
function :

t 7→
(±
c (IN,εs )

b(t)
a(t)

)
h

(s+1)
N

is well-defined and is a piecewise continuous with respect to time function. In
addition, one has, for every 1 ≤ s ≤ N − 1, the following inequality :∣∣∣(−c (IN,εs )t0

)
h

(s+1)
N

∣∣∣
ε,s,β̃(t)

≤ C(d)β̃(T )−d/2 exp
(
− 2µ̃(T )

)(1 + β̃(T )−1/2
)

√
λ

×
∣∣∣∣∣∣∣∣∣(h(s)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃1

√
s
√
c,

(11.20)

and∣∣∣(+c (IN,εs )
b(t)
a(t)

)
h

(s+1)
N

∣∣∣
ε,s,β̃(t)

≤ C(d)β̃(T )−d/2 exp
(
− 2µ̃(T )

)(1 + β̃(T )−1/2
)

√
λ

×
∣∣∣∣∣∣∣∣∣(h(s)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃1

√
s
»
b(t)− a(t),

(11.21)

with C(d) denoting a constant which depends only on the dimension d.
In the case of the Boltzmann hierarchy, for any piecewise continuous with respect
to time function of sequences (of functions) t 7→

(
f (s)(t, ·)

)
s≥N defined on [0, T ],

taking its values in
(
C0
((

Ωc ×Rd
)s))

s≥1
, and with a finite |||·|||

0,β̃,µ̃2 norm, and
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for any continuous functions a = t 7→ a(t) < b = t 7→ b(t) and any number
c ∈ [0, T ], for any integer s ≥ 1, the function :

t 7→
(±
c (I0

s )
b(t)
a(t)

)
h

(s+1)
N

is well defined and is a piecewise continuous with respect to time function. In
addition, one has the following inequality :∣∣∣(−c (I0

s )t0
)
f (s+1)

∣∣∣
0,s,β̃(t)

≤ C(d)β̃(T )−d/2 exp
(
− 2µ̃(T )

)(1 + β̃(T )−1/2
)

√
λ

×
∣∣∣∣∣∣∣∣∣(f (s)

)
s≥1

∣∣∣∣∣∣∣∣∣
0,β̃,µ̃1

√
s
√
c, (11.22)

and∣∣∣(+c (I0
s )
b(t)
a(t)

)
f (s+1)

∣∣∣
0,s,β̃(t)

≤ C(d)β̃(T )−d/2 exp
(
− 2µ̃(T )

)(1 + β̃(T )−1/2
)

√
λ

×
∣∣∣∣∣∣∣∣∣(f (s)

)
s≥1

∣∣∣∣∣∣∣∣∣
0,β̃,µ̃1

√
s
»
b(t)− a(t),

(11.23)

with C(d) denoting a constant which depends only on the dimension d.

Finally, one can state the two most important propositions of this section, which
will make explicit the control of the cut-off in small time difference between the
collisions. The first proposition will be devoted to the case when α = 2 (that is,

for the solutions to the hierarchies in the space ‹X·,β̃,µ̃2 , see Definitions 27 and

28 page 211), while the second proposition will address the case when α = 1
(see Definitions 29 and 30 page 212).

Proposition 14 (Cut-off in small time difference between the collisions, case
α = 2). Let β0 and µ0 be two strictly positive number. There exists a constant :

C3(d, β0, µ0)

depending only on the dimension and on the numbers β0 and µ0, such that for
any positive integer n, any strictly positive numbers R and δ, any positive integer
N and any strictly positive number ε > 0 verifying the Boltzmann-Grad limit :

Nεd−1 = 1,

and any couple of sequences of initial data FN,0 =
(
f

(s)
N,0

)
1≤s≤N and F0 =(

f
(s)
0

)
s≥1

belonging respectively to XN,ε,β0,µ2
0

and X0,β0,µ2
0
, the respective trun-

cated in high number of collisions and in large energy solutions Hn,R
N ∈ ‹X

N,ε,β̃,µ̃2

to the BBGKY hierarchy with initial datum FN,0 and F ∈ ‹X
0,β̃,µ̃2 to the Boltz-

mann hierarchy with inital datum F0, verifies :∣∣∣∣∣∣∣∣∣Hn,R
N −Hn,R,δ

N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

≤ C3n
3/2
√
δ||FN,0||N,ε,β0,µ2

0
, (11.24)
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and ∣∣∣∣∣∣∣∣∣Fn,RN − Fn,R,δN

∣∣∣∣∣∣∣∣∣
0,β̃,µ̃2

≤ C3n
3/2
√
δ||F0||0,β0,µ2

0
. (11.25)

Remark 26. Since the time T and the quantity λ are depending on β0 and µ0

(see the proof of Lemma 23 page 255), any expression depending on β0, µ0, λ
and T can of course be expressed only with β0 and µ0, which is in particular
the case for the constant C3 involved in the bounds (11.24) and (11.25) of the
proposition.

Proof. The proof will be written only for the BBGKY hierarchy, since the case
of the Boltzmann hierarchy does not present any difference.
One has :

IN,εs,s+k−1f
(s+k)
N,0 =

(
IN,εs ◦ IN,εs+1 ◦ · · · ◦ I

N,ε
s+k−2 ◦ I

N,ε
s+k−1

)
f

(s+k)
N,0

=
(
IN,εs ◦ IN,εs+1 ◦ · · · ◦ I

N,ε
s+k−2 ◦

(∑
±k

3∑
lk=1

±k
ck

(
IN,εs+k−1

)ak,lk+1

ak,lk

))
f

(s+k)
N,0

=
∑
±k

3∑
lk=1

(
IN,εs ◦ IN,εs+1 ◦ · · · ◦ I

N,ε
s+k−2 ◦

(
±k
ck

(
IN,εs+k−1

)ak,lk+1

ak,lk

))
f

(s+k)
N,0

using the notation (11.11) page 292.
One can then control, on the one hand, the terms obtained in the case when
±k = −. One has, for every 1 ≤ lk ≤ 3, and almost everywhere on [0, T ] ×
Dεs+k−1, thanks to the inequality (11.16) of the previous Lemma 25 :∣∣∣∣∣∣∣∣∣∣∣∣tk−1 7→

(
1s≤N−1

(−
ck

(IN,εs )
ak,lk+1

(tk−1)

ak,lk (tk−1)

)
f

(s+1)
N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

≤ C(d)β̃(T )−d/2λ−1/2
∣∣∣∣∣∣∣∣∣(f (s)

N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

√
δ,

using in the end the fact that ak,2 = δ (one has to be careful here : this is specific
to the case of the first iteration, since in general aj,2 = (k − j)δ).
Choosing then λ and T given by Lemma 23 page 255, the integrated in time
transport-collision-transport operator is in this case a contracting mapping as
the inequality (8.17) of this very Lemma asserts it, and one obtains therefore
for every 1 ≤ lk ≤ 3 :∣∣∣∣∣∣∣∣∣∣∣∣tk−1 7→

(
1s≤N−k

(
IN,εs,s+k−2 ◦

(−
ck

(
IN,εs+k−1

)ak,lk+1(tk−1)

ak,lk (tk−1

))
f

(s+k)
N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

≤ 1

2k−1
C(d)β̃(T )−d/2λ−1/2

∣∣∣∣∣∣∣∣∣(f (s)
N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

√
δ.

(11.26)

In the same way, for the case when ±k = + and lk = 1 or 3, one has for every
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tk−1 ∈ [0, T ], thanks to the inequality (11.17) of Lemma 25 :∣∣∣∣∣∣∣∣(1s≤N−1

(
+
ck

(IN,εs )
ak,lk+1

(tk−1)

ak,lk (tk−1)

)
f

(s+1)
N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣
N,ε,β̃(tk−1),µ̃(tk−1)2

≤ C(d)β̃(T )−d/2λ−1/2
∣∣∣∣∣∣∣∣∣(f (s)

N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

»
ak,lk+1

(tk−1)− ak,lk(tk−1),

and recalling that one has chosen ak,1 = 0, ak,2 = δ, ak,3 = tk−1 − δ, and
ak,4 = tk−1, one finds in fact that, for lk = 1 :∣∣∣∣∣∣∣∣(1s≤N−1

(
+
ck

(IN,εs )
ak,2(tk−1)

ak,1(tk−1)

)
f

(s+1)
N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣
N,ε,β̃(tk−1),µ̃(tk−1)2

≤ C(d)β̃(T )−d/2λ−1/2
∣∣∣∣∣∣∣∣∣(f (s)

N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

√
δ − 0,

and for lk = 3 :∣∣∣∣∣∣∣∣(1s≤N−1

(
+
ck

(IN,εs )
ak,2(tk−1)

ak,1(tk−1)

)
f

(s+1)
N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣
N,ε,β̃(tk−1),µ̃(tk−1)2

≤ C(d)β̃(T )−d/2λ−1/2
∣∣∣∣∣∣∣∣∣(f (s)

N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

»
tk−1 − (tk−1 − δ),

so that the right-hand side does not depend on time. It is then possible to
consider the supremum with respect to the time variable tk−1 for the left-hand
side to obtain :∣∣∣∣∣∣∣∣∣∣∣∣tk−1 7→

(
1s≤N−1

(
+
ck

(IN,εs )
ak,lk+1

(tk−1)

ak,lk (tk−1)

)
f

(s+1)
N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

≤ C(d)β̃(T )−d/2λ−1/2
∣∣∣∣∣∣∣∣∣(f (s)

N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

√
δ.

As in the case when ±k = −, several iterations of the contracting integrated in
time transport-collision-transport operator provides for lk = 1 or 3 :∣∣∣∣∣∣∣∣∣∣∣∣(1s≤N−kIN,εs,s+k−2 ◦

(
+
ck

(
IN,εs+k−1

)ak,lk+1

ak,lk

)
f

(s+k)
N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

≤ 1

2k−1
C(d)β̃(T )−d/2λ−1/2

∣∣∣∣∣∣∣∣∣(f (s)
N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

√
δ.

(11.27)

The controls (11.26) and (11.27) enable to write that :

IN,εs,s+k−1f
(s+k)
N,0 =

(
IN,εs,s+k−2 ◦

(
+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0

+
∑
±k

1≤lk≤3
(±k,lk) 6=(+,2)

(
IN,εs,s+k−2 ◦

(±k
ck

(
IN,εs+k−1

)ak,lk+1

ak,lk

))
f

(s+k)
N,0 ,
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with each term in the sum of the right-hand side being small in the |||·|||
N,ε,β̃,µ̃

norm and controlled by
√
δ. One gets∣∣∣∣∣∣∣∣∣IN,εs,s+k−1f

(s+k)
N,0 −

(
IN,εs,s+k−2 ◦

(
+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

≤
∑
±k

1≤lk≤3
(±k,lk)6=(+,2)

∣∣∣∣∣∣∣∣∣(IN,εs,s+k−2 ◦
(±k
ck

(
IN,εs+k−1

)ak,lk+1

ak,lk

))
f

(s+k)
N,0

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

≤
∑
±k

1≤lk≤3
(±k,lk)6=(+,2)

1

2k−1
C(d)β̃(T )−d/2λ−1/2

∣∣∣∣∣∣∣∣∣(f (s)
N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

√
δ

≤ 5

2k−1
C(d)β̃(T )−d/2λ−1/2

∣∣∣∣∣∣∣∣∣(f (s)
N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

√
δ. (11.28)

Then, one only has to iterate the process, by decomposing :(
IN,εs+k−2 ◦

(
+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0

in the following parts :((
+
ck−1

(
IN,εs+k−2

)ak−1,3

ak−1,2

)
◦
(

+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0

+
∑
±k−1

1≤lk−1≤3
(±k−1,lk−1) 6=(+,2)

((±k−1
ck−1

(
IN,εs+k−2

)ak−1,lk−1+1

ak−1,lk−1

)
◦
(

+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0 .

One has to use here the fact that :∣∣∣∣∣∣∣∣∣∣∣∣t 7→ ((
+
cj

(
IN,εs+j−1

)aj,3(t)

aj,2

)
g(s+j)(t, ·)

)
1≤s≤N

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

≤
∣∣∣∣∣∣∣∣∣∣∣∣t 7→ ((

IN,εs+j−1g
(s+j)

)
(t, ·)

)
1≤s≤N

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

,

(11.29)

which holds true since the domain of the integral of the left-hand side is strictly
contained in the domain of the integral of the right-hand side.
For the first iteration of the argument, that is for the case j = k − 1, one will
consider

g(s+k−1) =
(

+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0 .

It is then possible to apply the inequalities (11.26) or (11.27) depending on the

term of the sum considered, replacing f
(s+k)
N,0 by

(
±k
ck

(
IN,εs+k−1

)ak,lk+1

ak,lk

)
f

(s+k)
N,0 , so

that the sum :∑
±k−1

1≤lk−1≤3
(±k−1,lk−1) 6=(+,2)

((±k−1
ck−1

(
IN,εs+k−2

)ak−1,lk−1+1

ak−1,lk−1

)
◦
(

+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0
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is also controlled in the |||·|||
N,ε,β̃,µ̃2 norm, and is of order

√
2δ (previously, it

was
√
δ, but the term with ± = − is in the general case of order

√
(k − j)δ).

The iterations of the contracting integrated in time transport-collision-transport
operator provides that the function of sequences :

(
t 7→

(
1s≤N−k

∑
±k−1

1≤lk−1≤3
(±k−1,lk−1) 6=(+,2)

IN,εs,s+k−3 ◦
(
±k−1
ck−1

(
IN,εs+k−2

)ak−1,lk−1+1

ak−1,lk−1

)

◦
(

+
ck

(
IN,εs+k−1

)ak,3
ak,2

)
f

(s+k)
N,0

)
(t, ·)

)
1≤s≤N

is bounded in the |||·|||
N,ε,β̃,µ̃2 norm by :

1

2k−1
C(d)β̃(T )−d/2λ−1/2

∣∣∣∣∣∣∣∣∣(f (s)
N,0

)
s≥1

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

√
2δ, (11.30)

and one gets

∣∣∣∣∣∣∣∣∣∣∣∣IN,εs,s+k−1f
(s+k)
N,0

−
(
IN,εs,s+k−3 ◦

(±k−1
ck−1

(
IN,εs+k−2

)ak−1,lk−1+1

ak−1,lk−1

)
◦
(

+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

≤
∣∣∣∣∣∣∣∣∣∣∣∣IN,εs,s+k−1f

(s+k)
N,0 −

(
IN,εs,s+k−2 ◦

(
+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

+

∣∣∣∣∣∣∣∣∣∣∣∣(IN,εs,s+k−2 ◦
(

+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0

−
(
IN,εs,s+k−3 ◦

(±k−1
ck−1

(
IN,εs+k−2

)ak−1,lk−1+1

ak−1,lk−1

)
◦
(

+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

≤
∣∣∣∣∣∣∣∣∣∣∣∣IN,εs,s+k−1f

(s+k)
N,0 −

(
IN,εs,s+k−2 ◦

(
+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

+
∑
±k−1

1≤lk−1≤3
(±k−1,lk−1)6=(+,2)

∣∣∣∣∣∣∣∣∣∣∣∣IN,εs,s+k−3 ◦
(
±k−1
ck−1

(
IN,εs+k−2

)ak−1,lk−1+1

ak−1,lk−1

)

◦
(

+
ck

(
IN,εs+k−1

)ak,3
ak,2

)
f

(s+k)
N,0

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

,

that is, using the control (11.28) for the first term of the last upper bound, and
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the control (11.30) for the second term :

∣∣∣∣∣∣∣∣∣∣∣∣IN,εs,s+k−1f
(s+k)
N,0

−
(
IN,εs,s+k−3 ◦

(±k−1
ck−1

(
IN,εs+k−2

)ak−1,lk−1+1

ak−1,lk−1

)
◦
(

+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

≤ 5

2k−1
C(d)β̃(T )−d/2λ−1/2

∣∣∣∣∣∣∣∣∣(f (s)
N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

√
δ

+
∑
±k−1

1≤lk−1≤3
(±k−1,lk−1) 6=(+,2)

1

2k−1
C(d)β̃(T )−d/2λ−1/2

×
∣∣∣∣∣∣∣∣∣∣∣∣t 7→ ((

+
ck

(
IN,εs+k−1

)ak,3
ak,2

)
f

(s+k)
N,0

)
1≤s≤N

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

√
2δ.

Recursively, one is now able to isolate the main term, denoted by

((
+
c1

(
IN,εs

)a1,3
a1,2

)
◦
(

+
c2

(
IN,εs+1

)a2,3
a2,2

)
◦ · · · ◦

(
+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0 .

One obtains :

IN,εs,s+k−1f
(s+k)
N,0 =

∑
±k

1≤lk≤3
(±k,lk) 6=(+,2)

(
IN,εs ◦ · · · ◦ IN,εs+k−2 ◦

(±k
ck

(
IN,εs+k−1

)ak,lk+1

ak,lk

))
f

(s+k)
N,0

+
∑
±k−1

1≤lk−1≤3
(±k−1,lk−1)6=(+,2)

(
IN,εs ◦ · · · ◦ IN,εs+k−3 ◦

(±k−1
ck−1

(
IN,εs+k−2

)ak−1,lk−1+1

ak−1,lk−1

)

◦
(

+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0

+ . . .

+
∑
±1

1≤l1≤3
(±1,l1)6=(+,2)

((±1
c1

(
IN,εs

)a1,l1+1

a1,l1

)
◦
(

+
c2

(
IN,εs+1

)a2,3
a2,2

)

◦ · · · ◦
(

+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0

+
((

+
c1

(
IN,εs

)a1,3
a1,2

)
◦
(

+
c2

(
IN,εs+1

)a2,3
a2,2

)
◦ · · · ◦

(
+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0
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that is

IN,εs,s+k−1f
(s+k)
N,0 =

∑
±1,±2,...,±k
1≤l1,...,lk≤3

(±1,...,±k,l1,...,lk)6=(+,...,+,2,...,2)

((±1
c1

(
IN,εs

)a1,l1+1

a1,l1

)
◦ · · · ◦

(±k
ck

(
IN,εs+k−1

)ak,lk+1

ak,lk

))
f

(s+k)
N,0

+
((

+
c1

(
IN,εs

)a1,3
a1,2

)
◦
(

+
c2

(
IN,εs+1

)a2,3
a2,2

)
◦ · · · ◦

(
+
ck

(
IN,εs+k−1

)ak,3
ak,2

))
f

(s+k)
N,0 ,

or again, in a more synthetic way and using the notations (10.2) page 268 and
(11.14) page 296 :

IN,εs,s+k−1f
(s+k)
N,0 = IN,ε,δs,s+k−1f

(s+k)
N,0

+
k−1∑
j=0

∑
±k−j

1≤lk−j≤3
(±k−j ,lk−j)6=(+,2)

(
IN,εs,s+k−j−2 ◦

(±k−j
ck−j

(
IN,εs+k−j−1

)ak−j,lk−j+1

ak−j,lk−j

)
◦ IN,ε,δs+k−j,s+k−1

))
f

(s+k)
N,0 .

One has then obtained :∣∣∣∣∣∣∣∣∣∣∣∣t 7→ ((
IN,εs,s+k−1f

(s+k)
N,0

)
(t, ·)−

(
IN,ε,δs,s+k−1f

(s+k)
N,0

)
(t, ·)

)
1≤s≤N

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃

≤
k−1∑
j=0

1

2k−1
C(d)β̃(T )−d/2λ−1/2

∣∣∣∣∣∣∣∣∣(f (s)
N,0

)
s≥1

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

√
kδ,

so that∣∣∣∣∣∣∣∣∣Hn,R
N −Hn,R,δ

N

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃

≤
n∑
k=1

∣∣∣∣∣∣∣∣∣∣∣∣t 7→ ((
IN,εs,s+k−1f

(s+k)
N,0

)
(t, ·)−

(
IN,ε,δs,s+k−1f

(s+k)
N,0

)
(t, ·)

)
1≤s≤N

∣∣∣∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃

≤
n∑
k=0

k−1∑
j=0

1

2k−1
C(d)β̃(T )−d/2λ−1/2

∣∣∣∣∣∣∣∣∣(f (s)
N,0

)
s≥1

∣∣∣∣∣∣∣∣∣
N,ε,β̃,µ̃2

√
kδ

≤
n∑
k=0

1

2k−1
C(d)β̃(T )−d/2λ−1/2

∣∣∣∣∣∣(f (s)
N,0

)
s≥1

∣∣∣∣∣∣
N,ε,β̃0,µ̃2

0

n
√
nδ,

hence the lemma is proven.

For the case α = 1, the result on the control on the cut-off in small difference in
time between the collisions is of a different nature, since in this situation one is
not able to recover a convergence in the |||·|||·,β̃,µ̃ norm of the truncated solutions

when the truncation parameter in small time δ goes to zero. However, one will
recover an almost everywhere convergence, in the sense that for every number
of particles s fixed, the convergence will be obtained in the uniform norm on
the phase space of s particles.



308 CHAPTER 11. THE FIRST CUT-OFFS

Proposition 15 (Cut-off in small time difference between the collisions, case
α = 1). Let β0 be a strictly positive number and µ0 be a real number. There
exists a constant :

C3(d, β0, µ0)

depending only on the dimension d and on the numbers β0 and µ0, such that
for any positive integer n, any strictly positive numbers R and δ, any positive
integer N and any strictly positive number ε > 0 verifying the Boltzmann-Grad
limit :

Nεd−1 = 1,

and any couple of sequences of initial data FN,0 =
(
f

(s)
N,0

)
1≤s≤N and F0 =(

f
(s)
0

)
s≥1

belonging respectively to XN,ε,β0,µ1
0

and X0,β0,µ1
0
, the respective trun-

cated in high number of collisions and in large energy solutions Hn,R
N ∈ ‹X

N,ε,β̃,µ̃1

to the BBGKY hierarchy with initial datum FN,0 and F ∈ ‹X
0,β̃,µ̃1 to the Boltz-

mann hierarchy with inital datum F0 verifies, for all integer 1 ≤ s ≤ N and
time t ∈ [0, T ] :∣∣∣(Hn,R

N

)(s)
(t, ·)−

(
Hn,R,δ
N

)(s)
(t, ·)

∣∣∣
ε,s,β̃(t)

≤ C3||FN,0||N,ε,β0,µ1
0

√
sn3/2

√
δ,

(11.31)

and∣∣∣(Fn,R)(s)(t, ·)− (Fn,R,δ)(s)(t, ·)∣∣∣
0,s,β̃(t)

≤ C3||F0||0,β0,µ1
0

√
sn3/2

√
δ. (11.32)

The proof is very similar to the proof of Proposition 14, and it is based on
the same decomposition. However, the change of the regularity in the initial
data enables only to use Lemma 26 (instead of Lemma 25), so that once the
decomposition is done, one can only estimate the size of the remainders when
the number s of particles is fixed.



Chapter 12

Final preparation for the
comparison

12.1 Decomposition of the solutions into terms
of the same type

12.1.1 A geometric view of the iterations of the transport-
collision operators and the dominated convergence
argument

Since one wants to compare the solutions of the two hierarchies, and since the
corresponding equations are given by the iterated Duhamel formulae (10.3) page
268, and (10.9) page 272, one will compare each term of the sum defining the

solutions. Recalling that the transport-collision operator CN,εs,s+1T s+1,ε of the
BBGKY hierarchy (see Section 5.1 page 88) is defined as :

CN,εs,s+1T s+1,ε = (N − s)
s∑
i=1

(
Cεs,s+1,+,iT s+1,ε − Cεs,s+1,−,iT s+1,ε

)
,

each term :
IN,εs,s+k−1f

(s+k)
N,0 = IN,εs ◦ · · · ◦ IN,εs+k−1f

(s+k)
N,0

obtained in the decomposition provided by the iterated Duhamel formula (10.3)
can again be splitted, following the notations introduced in Definition 33 page
267, as follows :(( ∑

1≤j1≤s
±1

(±11
)
IN,εs
±1,j1

)
◦ · · · ◦

( ∑
1≤jk≤s+k−1

±k

(±k1
)
IN,εs+k−1
±k,jk

))
f

(s+k)
N,0

=
∑
J

∑
M

(±11
)
. . . (±k1

)(
IN,εs
±1,j1

◦ · · · ◦ IN,εs+k−1
±k,jk

)
f

(s+k)
N,0 , (12.1)
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where IN,εs+l−1
±l,jl

denotes

(N − s− l + 1)

∫ t

0

T s+l−1,ε
−t1 Cεs+l−1,s+l,±l,jlT

s+l,ε
t1 dt1.

Of course, the same decomposition can be done for the solutions of the Boltz-
mann hierarchy. Recalling that the generic equation of the Boltzmann hierarchy
was written as :

∂tf
(s) +

s∑
i=1

vi · ∇xif (s) = C0
s,s+1f

(s+1),

with the collision operator written in the form :

C0
s,s+1f

(s+1) =
s∑
i=1

∫
Sd−1

∫
Rd

[
ω · (vs+1 − vi)

]
+

(
f (s+1)(t,

(
Zs, xi, vs+1

)′
i,s+1

)

− f (s+1)(t, Zs, xi, vs+1)
)

dvs+1 dω

(see Definition 2 page 52 for the notation
(
Zs, xi, vs+1

)′
i,s+1

, and one recalls that

[x]+ and [x]− denote respectively the positive and the negative part of the real
number x).
This collision operator can be rewritten, with the simple change of variable
ω → −ω, as :

C0
s,s+1f

(s+1) =
s∑
i=1

[∫
Sd−1

∫
Rd

[
ω · (vs+1 − vi)

]
+
f (s+1)(t,

(
Zs, xi, vs+1

)′
i,s+1

)

−
[
ω · (vs+1 − vi)

]
−f

(s+1)(t, Zs, xi, vs+1) dvs+1 dω

]
,

this new form enabling a termwise comparison between the solutions of the two
hierarchies.
One will indeed, in the following, compare each term of this new decomposition
to obtain the result of convergence. This is in this sense that the titles of the
following Subsection 12.1.3 page 329 and Section 13.3 page 475 have to be un-
derstood : this termwise comparison will enable to compare the solutions of the
two hierarchies, which are the sums of all those terms.
The idea is the following. Still considering the case of the Boltzmann hierarchy,

each term I0
s,s+k−1f

(s+k)
0 of the decomposition provided by the Duhamel for-

mula (10.9) (except the first one, which is simply an element of the sequence of
the initial data composed with a transport), writes :

t 7→
∫ t

0

T s,0t−t1C
0
s,s+1

∫ t1

0

T s+1,0
t1−t2 C

0
s+1,s+2 . . .∫ tk−1

0

T s+k−1,0
tk−1−tk C

0
s+k−1,s+kT

s+k,0
tk

f
(s+k)
0 (tk, ·) dtk . . . dt2 dt1.
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Explicitly, for the second term (that is, the first one involving an integrated in
time collision-transport operator), one has :

∫ t

0

T s,0t−t1C
0
s,s+1T

s+1,0
t1 f

(s+1)
0 (t1, ·) dt1

=
s∑

j1=1

((
I0
s

+,j1
− I0

s
−,j1

)(
t1 7→ T s+1,0

t1 f
(s+1)
0

))
(t, ·)

where I0
s

+,j1
f (s+1) and I0

s
−,j1

f (s+1) denote respectively

∫ t

0

T s,0t−t1

(∫
Sd−1
ω ×Rdvs+1

[
ω · (vs+1 − vj1)

]
+
f (s+1)

(
t1,
(
Zs, xj1 , vs+1

)′
j1,s+1

)
dω dvs+1

)
dt1

and

∫ t

0

T s,0t−t1

(∫
Sd−1
ω ×Rdvs+1

[
ω · (vs+1 − vj1)

]
−f

(s+1)
(
t1, Zs, xj1 , vs+1

)
dω dvs+1

)
dt1,

that is :

∫ t

0

T s,0t−t1C
0
s,s+1T

s+1,0
t1 f

(s+1)
0 (t1, ·) dt1

=
s∑

j1=1

∫ t

0

∫
Sd−1
ω ×Rdvs+1

[
ω ·
(
vs+1 −

(
T s,0t1−t(Zs)

)V,j1)]
+

×

[
f

(s+1)
0

(
T s+1,0
−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

))
− f (s+1)

0

(
T s+1,0
−t1

(
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

))]
dω dvs+1 dt1,

(12.2)
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or again, after the change of variable ω → −ω :

∫ t

0

T s,0t−t1C
0
s,s+1T

s+1,0
t1 f

(s+1)
0 (t1, ·) dt1

=
s∑

j1=1

∫ t

0

∫
Sd−1
ω ×Rdvs+1

[
ω ·
(
vs+1 −

(
T s,0t1−t(Zs)

)V,j1)]
+

× f (s+1)
0

(
T s+1,0
−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

))
dω dvs+1 dt1

−
s∑

j1=1

∫ t

0

∫
Sd−1
ω ×Rdvs+1

[
ω ·
(
vs+1 −

(
T s,0t1−t(Zs)

)V,j1)]
−

× f (s+1)
0

(
T s+1,0
−t1

(
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

))
dω dvs+1 dt1. (12.3)

One gives also the third one, for the reader interested in the explicit forms of
such terms :

∫ t

0

T s,0t−t1C
0
s,s+1

∫ t1

0

T s+1,0
t1−t2 C

0
s+1,s+2T

s+2,0
t2 f

(s+2)
0 (t2, ·) dt2 dt1

=
s∑

j1=1

s+1∑
j2=1

(((
I0
s

+,j1
− I0

s
−,j1

)
◦
(
I0
s+1
+,j2

− I0
s+1
−,j2

))
(
t2 7→ T s+2,0

t2 f
(s+2)
0

))
(t, ·),
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that is, after the change of variables ω → −ω :

∫ t

0

T s,0t−t1C
0
s,s+1

∫ t1

0

T s+1,0
t1−t2 C

0
s+1,s+2T

s+2,0
t2 f

(s+2)
0 (t2, ·) dt2 dt1

=
s∑

j1=1

∑
±1

s+1∑
j2=1

∑
±2

∫ t

0

∫
Sd−1
ω1
×Rdvs+1

(±1)
[
ω1 ·

(
vs+1 −

(
T s,0t1−t(Zs)

)V,j1)]
±1

×
∫ t1

0

∫
Sd−1
ω2
×Rdvs+2

(±2)ï
ω2 ·

(
vs+2 −

(
T s+1,0
t2−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′(if ±1=+)

j1,s+1

))V,j2)ò
±2

× f (s+2)
0

(
T s+2,0
−t2

((
T s+1,0
t2−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′(if ±1=+)

j1,s+1

)
,

(
T s+1,0
t2−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′(if ±1=+)

j1,s+1

))X,j2
, vs+2

)′(if ±2=+)

j2,s+2

))
dω2 dvs+2 dt2 dω1 dvs+1 dt1,

(12.4)

or again, focusing on the decomposition described in this section :

=
s∑

j1=1

s+1∑
j2=1

∫ t

0

∫
Sd−1
ω1
×Rdvs+1

[
ω1 ·

(
vs+1 −

(
T s,0t1−t(Zs)

)V,j1)]
+

×
∫ t1

0

∫
Sd−1
ω2
×Rdvs+2

ï
ω2 ·

(
vs+2 −

(
T s+1,0
t2−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

))V,j2)ò
+

× f (s+2)
0

(
T s+2,0
−t2

((
T s+1,0
t2−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

)
,

(
T s+1,0
t2−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

))X,j2
, vs+2

)′
j2,s+2

))
dω2 dvs+2 dt2 dω1 dvs+1 dt1

(terms corresponding to ±1,±2 = +) (12.5)
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−
s∑

j1=1

s+1∑
j2=1

∫ t

0

∫
Sd−1
ω1
×Rdvs+1

[
ω1 ·

(
vs+1 −

(
T s,0t1−t(Zs)

)V,j1)]
−

×
∫ t1

0

∫
Sd−1
ω2
×Rdvs+2

ï
ω2 ·

(
vs+2 −

(
T s+1,0
t2−t1

(
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

))V,j2)ò
+

× f (s+2)
0

(
T s+2,0
−t2

((
T s+1,0
t2−t1

(
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)
,

(
T s+1,0
t2−t1

(
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

))X,j2
, vs+2

)′
j2,s+2

))
dω2 dvs+2 dt2 dω1 dvs+1 dt1

(terms corresponding to ±1 = −,±2 = +)

−
s∑

j1=1

s+1∑
j2=1

∫ t

0

∫
Sd−1
ω1
×Rdvs+1

[
ω1 ·

(
vs+1 −

(
T s,0t1−t(Zs)

)V,j1)]
+

×
∫ t1

0

∫
Sd−1
ω2
×Rdvs+2

[
ω2 ·

(
vs+2 −

(
T s+1,0
t2−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

))V,j2)]
−

× f (s+2)
0

(
T s+2,0
−t2

(
T s+1,0
t2−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

)
,

(
T s+1,0
t2−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

))X,j2
, vs+2

))
dω2 dvs+2 dt2 dω1 dvs+1 dt1

(terms corresponding to ±1 = +,±2 = −)
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+
s∑

j1=1

s+1∑
j2=1

∫ t

0

∫
Sd−1
ω1
×Rdvs+1

[
ω1 ·

(
vs+1 −

(
T s,0t1−t(Zs)

)V,j1)]
−

×
∫ t1

0

∫
Sd−1
ω2
×Rdvs+2

ï
ω2 ·

(
vs+2 −

(
T s+1,0
t2−t1

(
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

))V,j2)ò
−

× f (s+2)
0

(
T s+2,0
−t2

(
T s+1,0
t2−t1

(
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)
,

(
T s+1,0
t2−t1

(
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

))X,j2
, vs+2

))
dω2 dvs+2 dt2 dω1 dvs+1 dt1

(terms corresponding to ±1,±2 = −).

One will focus later on a way to simplify the computation and the manipulation
of such complicated expressions.

Remark 27. One notes that a difference between the iterates of the integrated in
time (transport-) collision-transport operators of the two hierarchies lies in the
presence or not of the prefactors. Namely, in the case of the BBGKY hierarchy,
the transport-collision operators defined in Section 5.1 page 88 are composed of
the elementary operators Cεs,s+1,±,i, multiplied by the factor (N − s). Of course,
when those operators are iterated, a factor

(N − s)(N − s− 1) . . . (N − s− k + 1)

appears. Keeping in mind that the measure used to integrate the transported
function T s+1,ε

t f (s+1) on which acts the collision operator is

εd−1
(
ω · (vs+1 − vi)

)
± dω dvs+1,

the prefactor in front of the sum of all the iterated transport-collision-transport
operators of the BBGKY hierarchy (for k iterates) is

(N − s)(N − s− 1) . . . (N − s− k + 1)εk(d−1).

Back to the sketch of proof for the comparison, taking the example of the second
term (written in (12.3) for the Boltzmann hierarchy), one expects that it will
be possible to compare the quantities :

T s+1,0
−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

)
for the Boltzmann hierarchy, and :

T s+1,ε
−t1

((
T s,εt1−t(Zs),

(
T s,εt1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

)
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for the BBGKY hierarchy, when ε is small.
Then one wants to compare the integral terms, that is, the elements of the
two respective hierarchies implying the same dynamics. In other words, one will
compare, pairwise, each term of the decomposition described just above (in the
general case, but in an abstract way for the BBGKY hierarchy in (12.1), and in
an explicit way for the Boltzmann hierarchy in (12.2) for the case k = 1, and
in (12.4) for the case k = 2) of the solution of the BBGKY hierarchy with the
associated term of the solution of the Boltzmann hierarchy.
One can say, somehow, that those elements are of same type, since they are
obtained, starting from the same initial configuration Zs, after modifications
related to adjunctions of new particles, and choices of pre- or post-collisional
configurations.

For the sake of simplicity, the description of this new decomposition was done
starting from the Duhamel formula obtained in Proposition 9, that is, before
the preliminary cut-offs in high number of collisions (see section 11.1 page 277),
large energy (see section 11.2 page 280) and in small time difference between
the collisions (see section 11.3 page 290). Of course those cut-offs will play a
decisive role in the comparison of the new elementary terms just described, so
one will start from the quantities Hn,R,δ

N and Fn,R,δ (see Definition 40 page 297
for the introduction of those two quantities) to define properly the elementary
terms. One will then introduce once again new notations, which will take into
account the corresponding decomposition.

One starts by a simple convention on the indices, which will simplify the no-
tations for the sum over all the possible decompositions into elements of same
type.

Definition 41 (Convention for the indices of the decomposition into elements
of same type). For any positive integers s and k, one denotes the set of the
sequences of selected particles for the adjunctions by :

Jsk

the set of vectors, composed with the generic elements denoted :

Jk = (j1, j2, . . . , jk)

such that j1, . . . , jk are all positive integers verifying, for all 1 ≤ i ≤ k :

1 ≤ ji ≤ s+ i− 1.

For any positive integer k, one denotes by :

Mk

the set of ”vectors”, composed with the generic elements denoted :

Mk = (±1, . . . ,±k).
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Remark 28. For an initial configuration Zs ∈ Dεs, the set Jsk describes all the
possible ways Jk to add recursively particles to the set of s particles starting
from the position Zs : after an evolution following for a while the hard sphere
or the free flow, one will choose the particle j1 to add a particle next to it, let
the system evolves again under the hard sphere or the free flow for a while, and
then add again a particle next to the particle j2, and so on.
Similarly, the set Mk describes if one chooses to add, at each step, the particle
in a pre or in a post-collisional configuration.

One starts here from the notations (10.1) and (10.7) for the iterates of the
(transport)-collision-transport operators, introduced respectively in Definitions
33 page 267 and 34 page 271. One will now refine a bit those notations, and one
will also use the notations about the cut-off in small time difference between
the collisions, introduced in Definitions 37 page 292, 38 page 292 and 39 page
296.

Definition 42 (Decomposition of the solutions of the BBGKY hierarchy into
elements of same type). For any positive integer s, any integer 1 ≤ j ≤ s, any

sign ± = + or −, and any function f
(s+1)
N,0 belonging to the space Xε,s,β, one

will denote its image by the element of the integrated in time transport-collision-
transport operator of the BBGKY hierarchy

t 7→ (N − s)
∫ t

0

T s,ε−t1C
ε
s,s+1,±,jT

s+1,ε
t1 f

(s+1)
N,0 dt1

as :

t 7→
(
IN,εs
±,j

f
(s+1)
N,0

)
(t, ·). (12.6)

For any positive integer k, any elements Mk = (±1, . . . ,±k) ∈ Mk and Jk =
(j1, . . . , jk) ∈ Jsk, the iterates of such operators, that is :

t 7→ (N − s)!
(N − s− k)!

∫ t

0

T s,ε−t1C
ε
s,s+1,±1,j1T

s+1,ε
t1

∫ t1

0

T s+1,ε
−t2 Cεs,s+1,±2,j2T

s+2,ε
t2 . . .∫ tk−1

0

T s+k−1,ε
−tk Cεs+k−1,s+k,±k,jkT

s+k,ε
tk

f
(s+k)
N,0 dtk . . . dt2 dt1

will be denoted as :

t 7→
(
IN,εs,s+k−1
Mk,Jk

f
(s+k)
N,0

)
(t, ·). (12.7)

Considering the cut-off in small time difference between collisions as in Defi-
nition 37 page 292, one denotes the element of type Mk, Jk of the BBGKY
hierarchy as

t 7→
(
IN,ε,δs,s+k−1
Mk,Jk

f
(s+k)
N,0

)
(t, ·). (12.8)
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One introduces the same notations for the Boltzmann hierarchy.

Definition 43 (Decomposition of the solutions of the Boltzmann hierarchy into
elements of same type). For any positive integer s, any integer 1 ≤ j ≤ s, any
sign ± = + or −, and any function of sequences t 7→

(
f (s+1)

)
s≥1

belonging to

the space X
0,β̃,µ̃1 , one will denote the image of its s-th term by the element of

the integrated in time collision-transport operator of the Boltzmann hierarchy :

t 7→
∫ t

0

T s,0t−t1C
0
s,s+1,±,jf

(s+1)(t1, ·) dt1

as :

t 7→
(
I0
s
±,j
f (s+1)

)
(t, ·). (12.9)

For any positive integer k, any elements Mk = (±1, . . . ,±k) ∈ Mk and Jk =
(j1, . . . , jk) ∈ Jsk, the iterates of such operators, that is :

t 7→
∫ t

0

T s,0t−t1C
0
s,s+1,±1,j1

∫ t1

0

T s+1,0
t1−t2 C

0
s,s+1,±2,j2 . . .∫ tk−1

0

T s+k−1,0
tk−1−tk C

0
s+k−1,s+k,±k,jkf

(s+k)(tk, ·) dtk . . . dt2 dt1

will be denoted as :

t 7→
(
I0
s,s+k−1
Mk,Jk

f (s+k)
)
(t, ·). (12.10)

Considering the cut-off in small time difference between collisions as in Defini-
tion 37, one denotes the element of type Mk, Jk of the Boltzmann hierarchy
as :

t 7→
(
I0,δ
s,s+k−1
Mk,Jk

f (s+k)
)
(t, ·). (12.11)

Using the notations just introduced, one can decompose the truncated solutions
Hn,R,δ
N and Fn,R,δ of the two hierarchies. Starting from the Definition 40 page

297 of the truncated solutions, and decomposing, for all integer 1 ≤ l ≤ k each
operator as

I ·,δs+l−1 =
∑
±l

∑
1≤jl≤s+l−1

I ·,δs+l−1
±l,jl

,

and then by iterations and linearity

I ·,δs,s+k−1 = I ·,δs ◦ · · · ◦ I ·,δs+k−1

=
∑
±1

∑
1≤j1≤s

. . .
∑
±k

∑
1≤jk≤s+k−1

I ·,δs
±1,j1

◦ · · · ◦ I ·,δs+k−1
±k,jk

,
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(see Definitions 37 page 292 and 38 page 292 for the notation I ·,δs+l−1, and 39

page 296 for the notation I ·,δs,s+k−1) and finally using the convention for the
indices introduced in Definition 41 page 316, one obtains :

I ·,δs,s+k−1 =
∑

Mk∈Mk

∑
Jk∈Jsk

I ·,δs,s+k−1
Mk,Jk

.

It provides

Hn,R,δ
N = t 7→

(
f

(s)
N,0(·)1|Vs|≤R

+
n∑
k=1

1s≤N−k
(
IN,ε,δs,s+k−1

(
f

(s+k)
N,0 1|Vs+k|≤R

))
(t, ·)

)
1≤s≤N

= t 7→
(
f

(s)
N,0(·)1|Vs|≤R

+
n∑
k=1

1s≤N−k
∑

Mk∈Mk

∑
Jk∈Jsk

k∏
l=1

(±l)
(
IN,ε,δs,s+k−1
Mk,Jk

(
f

(s+k)
N,0 1|Vs+k|≤R

))
(t, ·)

)
1≤s≤N

and

Fn,R,δ = t 7→
(
T s,0t f

(s)
0 (·)1|Vs|≤R

+
n∑
k=1

(
I0,δ
s,s+k−1
Mk,Jk

(
u 7→ T s+k,0u f

(s+k)
0 1|Vs+k|≤R

))
(t, ·)

)
s≥1

= t 7→
(
T s,0t f

(s)
0 (·)1|Vs|≤R

+
n∑
k=1

∑
Mk∈Mk

∑
Jk∈Jsk

k∏
l=1

(±l)
(
I0,δ
s,s+k−1
Mk,Jk

(
u 7→ T s+k,0u f

(s+k)
0 1|Vs+k|≤R

))
(t, ·)

)
s≥1

.

Introducing a notation for the pseudo-trajectories

For the sake of simplicity, one will introduce once again new notations. The pur-
pose of the following notations is to make readable the decompositions written
explicitly in (12.3) page 312 and (12.4) page 313.
For example, the equation (12.4) gives the third term of the sum of the iter-
ated Duhamel formula (10.9) page 272, which is a way to express explicitly the
solution of the Boltzmann hierarchy. This quantity is itself decomposed into a
sum, with four terms, the first one being given by the equation 12.5 page 313,
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namely :

s∑
j1=1

s+1∑
j2=1

∫ t

0

∫
Sd−1
ω1
×Rdvs+1

[
ω1 ·

(
vs+1 −

(
T s,0t1−t(Zs)

)V,j1)]
+

×
∫ t1

0

∫
Sd−1
ω2
×Rdvs+2

ï
ω2 ·

(
vs+2 −

(
T s+1,0
t2−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

))V,j2)ò
+

× f (s+2)
0

(
T s+2,0
−t2

((
T s+1,0
t2−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

)
,

(
T s+1,0
t2−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

))X,j2
, vs+2

)′
j2,s+2

))
dω2 dvs+2 dt2 dω1 dvs+1 dt1

which corresponds to :

I0
s,s+1

(+,+),(j1,j2)

(
t 7→ T s+2,0

t f
(s+2)
0

)
,

according to the notations of Definition 43 page 318.

This example should be quite convincing that it is mandatory to introduce
a notation to describe the position of a system of particles after several appli-
cations of the transport and the adjunction of a new particle.

First, one will however discuss a bit the concept of ”pseudo-trajectories”. In
the case of the Boltzmann hierarchy, the argument taken by the initial datum

f
(s+1)
0 in the first term I0

s
(+),(j1)

(
t 7→ T s+1,0

t f
(s+1)
0

)
(see (12.3) page 312) is :

T s+1,0
−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

)
.

If one looks carefully at this quantity, one sees that it is obtained following the
steps below, presented for the two hierarchies.

1. First, one chooses an initial datum Zs, taken in the phase space of s
particles.

2. Then this initial datum is transported by T s,0 in the case of the Boltzmann
hierarchy, and by T s,ε in the case of the BBGKY hierarchy, during a time
t1−t, that is the configuration Zs evolves naturally during t1−t, following
the laws of the free transport with boundary condition in the case of the
Boltzmann hierarchy, or following the hard sphere transport during the
same time in the case of the BBGKY hierarchy.



12.1. DECOMPOSITION OF THE SOLUTIONS 321

3. Then, and this is a crucial step, another particle is added to the system of
s particles. For the Boltzmann hierarchy, at time t1 − t, the particle s+ 1
will start from the position of the particle j1, that is T s,0t1−t(Zs), and one
will choose vs+1 as the velocity of this new particle, and ω1 as the angular
parameter. Afterwards, if the following quantity is strictly positive :

ω ·
(
vs+1

(
T s,0t1−t(Zs)

)V,j1)
in the case of the Boltzmann hierarchy, and

ω ·
(
vs+1

(
T s,εt1−t(Zs)

)V,j1)
in the case of the BBGKY hierarchy, the scattering (see Definition 1 page
51) is applied to the pair of velocities of the two particles j1 and s+ 1 of
this new configuration of s+1 particles, that is one considers the quantity :(

T s,0t1−t(Zs),
(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

.

The use of the scattering implies that the angular parameter ω plays an
important role at this step. However, in the case of a pair of particles in
a pre-collisional configuration, the angular parameter does not play any
role for the Boltzmann hierarchy.
But it does in the case of the BBGKY hierarchy, since the new particle is
added at the position : (

T s,0t1−t(Zs)
)X,j1

+ εω,

so that in the case of the hard sphere dynamics, one considers the new
system of s+ 1 particles in the configuration :(

T s,εt1−t(Zs),
(
T s,εt1−t(Zs)

)X,j1
+ εω, vs+1

)′
j1,s+1

.

One can see here that there is a difference between the different variables
used to describe entirely the dynamics. The initial configuration Zs has
to be considered as fixed, while the adjunction parameters, namely the
velocity vs+1 of the new particle and the angular parameter ω are inte-
gration variables : one will consider all the possible trajectories obtained
when (ω, vs+1) varies in Sd−1×Rd. The quantity t−t1 has an intermediate
status, since the time t is fixed as Zs, but t1 varies in the interval [0, t],
and one integrates over this time interval.

4. And finally, one transports during a time t1 the new system of s + 1
particles.

The previous steps are illustrated on Figure 12.1 below.
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Figure 12.1: Construction, step by step, of a pseudo-trajectory starting from the
configuration Zs, for the BBGKY hierarchy

Remark 29. The respective steps of the construction of the pseudo-trajectory
are in the following colours. In black : the choice of the initial configuration Zs
in the phase space at time t (step 1), in red : the transport of this configuration
during t1 − t (step 2), in green : the adjunction of a new particle and the scat-
tering (step 3) and finally in blue : the last transport of the new configuration
of s+ 1 particles, during −t1 (step 4).
Note that on the figure, at time t′, a bouncing of the particle k against the ob-
stacle Ω, which follows the hard sphere flow with boundary condition, has been
represented.

Now, one provides a few comments about the terminology of ”pseudo-trajectories”.
This name is used in [34]1, and emphasizes on the fact that the trajectories stud-
ied are not directly linked to the physical dynamics of the particles. Indeed, the
number of particles of a pseudo-trajectory changes along time. On the other
hand, if one studies the s-th marginal of the distribution function of a large
number of particles, that is if one considers only the evolution of s of such par-
ticles, this object focuses only on the particles involved in the dynamics of those
s particles : at the beginning, they evolve as if they are alone, but sometimes,

1See Section 7.4 ”Reformulation in terms of pseudo-trajectories”
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collisions happen, which are represented here by the adjunction of a particle to
the system. After the first and before the second ajunction, the system which
is considered has s + 1 particles, evolving again as if they are alone, until the
next collision, implying once again that a new particle is added to the system,
and so on.

Now that the pseudo-trajectories are properly introduced, it is time to introduce
notations for those pseudo-trajectories.

Definition 44 (Notations for the adjunction parameters of the pseudo-trajec-
tories). Let t be a strictly positive number. For any positive integers s and k,
one denotes the set of sequences of times of adjunction by :

Tk

the set composed of the strictly decreasing sequences of k elements belonging to
[0, t], that is

Tk =
{

(t1, . . . , tk) ∈ [0, t]k / t1 < · · · < tk

}
.

One denotes the sequence of adjunction parameters by :

Ak

the set composed of the sequences of k elements belonging to Sd−1 ×Rd, that is

Ak =
{(

(ω1, vs+1), . . . , (ωk, vs+k)
)}
.

Definition 45 (Backwards pseudo-trajectory of the Boltzmann hierarchy). Let
s and k be two positive integers, and t be a strictly positive number.
For any initial configuration Zs ∈

( {
x ∈ Rd / x · e1 > 0

}
×Rd

)s
, any sequence

of times of adjunction (ti)1≤i≤k ∈ Tk, any sequence of selected particles for the
adjunctions Jk ∈ Jsk and any sequence of adjunction parameters

(
ωi, vs+i

)
1≤i≤k ∈

Ak, one defines the backwards pseudo-trajectory of the Boltzmann hierarchy
with adjunction parameters Tk, Jk, Ak, which will be denoted Z0(Tk, Jk, Ak)(·)
or sometimes to simplify Z0(·), as follows (the configurations Z0

s,k are defined
recursively):

• for all τ ∈ [t1, t] :

Z0(Tk, Jk, Ak)(τ) = Z0
s,0(Tk, Jk, Ak)(τ) = T s,0τ−t(Zs),

• for all τ ∈ [t2, t1[ :

Z0(Tk, Jk, Ak)(τ) = Z0
s,1(Tk, Jk, Ak)(τ)

= T s+1,0
τ−t1

(
Z0
s,0(Tk, Jk, Ak)(t1),

(
Z0
s,0(Tk, Jk, Ak)(t1)

)X,j1
, vs+1

)
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if j1 = −, and

Z0(Tk,Jk, Ak)(τ) = Z0
s,1(Tk, Jk, Ak)(τ)

= T s+1,0
τ−t1

((
Z0
s,0(Tk, Jk, Ak)(t1),

(
Z0
s,0(Tk, Jk, Ak)(t1)

)X,j1
, vs+1

)′
j1,s+1

)
if j1 = + (following the notations of Definition 2 page 52),

• in general, for all τ ∈ [tk+1, tk[ :

Z0(Tk, Jk, Ak)(τ) = Z0
s,k(Tk, Jk, Ak)(τ)

= T s+k,0τ−tk
(
Z0
s,k−1(Tk, Jk, Ak)(tk),

(
Z0
s,k−1(Tk, Jk, Ak)(tk)

)X,jk , vs+k)
if jk = −, and

Z0(Tk, Jk, Ak)(τ) = Z0
s,k(Tk, Jk, Ak)(τ)

= T s+k,0τ−tk

((
Z0
s,k−1(Tk, Jk, Ak)(tk),

(
Z0
s,k−1(Tk, Jk, Ak)(tk)

)X,jk , vs+k)′jk,s+k)
if jk = +.

Similarly for the dynamics of the hard spheres of radius ε/2 (for some ε > 0),
one introduces the corresponding notations.

Definition 46 (Backwards pseudo-trajectory of the BBGKY hierarchy). Let s
and k be two positive integers, and ε and t be two strictly positive numbers.
For any initial configuration Zs ∈ Dεs, any sequence of times of adjunction
(ti)1≤i≤k ∈ Tk, any sequence of selected particles for the adjunctions Jk ∈ Jsk
and any sequence of adjunction parameters

(
ωi, vs+i

)
1≤i≤k ∈ Ak, one defines

the backwards pseudo-trajectory of the BBGKY hierarchy with adjunction pa-
rameters Tk, Jk, Ak, which will be denoted Zε(Tk, Jk, Ak)(·) or sometimes to
simplify Zε(·), as follows (the Zεs,k are defined recursively) :

• for all τ ∈ [t1, t] :

Zε(Tk, Jk, Ak)(τ) = Zεs,0(Tk, Jk, Ak)(τ) = T s,ετ−t(Zs),

• for all τ ∈ [t2, t1[ :

Zε(Tk,Jk, Ak)(τ) = Zεs,1(Tk, Jk, Ak)(τ)

= T s+1,ε
τ−t1

(
Zεs,0(Tk, Jk, Ak)(t1),

(
Zεs,0(Tk, Jk, Ak)(t1)

)X,j1
+ εω1, vs+1

)
if j1 = −, and

Zε(Tk, Jk, Ak)(τ) = Zεs,1(Tk, Jk, Ak)(τ)

= T s+1,ε
τ−t1

((
Zεs,0(Tk, Jk, Ak)(t1),(
Zεs,0(Tk, Jk, Ak)(t1)

)X,j1
+ εω1, vs+1

)′
j1,s+1

)
if j1 = +,
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• in general, for all τ ∈ [tk+1, tk[ :

Zε(Tk, Jk, Ak)(τ) = Zεs,k(Tk, Jk, Ak)(τ)

= T s+k,ετ−tk
(
Zεs,k−1(Tk, Jk, Ak)(tk),

(
Zεs,k−1(Tk, Jk, Ak)(tk)

)X,jk + εωk, vs+k
)

if jk = −, and

Zε(Tk, Jk, Ak)(τ) = Zεs,k(Tk, Jk, Ak)(τ)

= T s+k,ετ−tk

((
Zεs,k−1(Tk, Jk, Ak)(tk),(
Zεs,k−1(Tk, Jk, Ak)(tk)

)X,jk + εωk, vs+k
)′
jk,s+k

)
if jk = +.

Remark 30. From the definition of a general pseudo-trajectory

τ 7→ Z ·s,k(Tk, Jk, Ak)(τ),

it is easy to recover the sequence Mk encoding the type of this pseudo-trajectory.
Indeed, its general term ml is the sign of the quantity

ωl ·
(
vs+l − v ·,jls,l−1(tl)

)
.

In addition, instead of using the previous notations
(
Z ·(Tk, Jk, Ak)(τ)

)X,j
or(

Z ·(Tk, Jk, Ak)(τ)
)V,j

to denote respectively the position and the velocity of the
particle j of following a pseudo-trajectory, one will introduce another notation
to simplify the writing of the elementary terms composing the solutions of the
hierarchies.

Definition 47 (Position and velocity of particles of the pseudo-trajectories).
Let s and k be two positive integers, and ε and t be two strictly positive numbers.
For any initial configuration Zs ∈ Dεs, any sequence of times of adjunction
(ti)1≤i≤k ∈ Tk, any sequence of selected particles for the adjunctions Jk ∈
Jsk and any sequence of adjunction parameters

(
ωi, vs+i

)
1≤i≤k ∈ Ak, one will

denote respectively by :

x0,j
s,k(Tk, Jk, Ak)(τ) and xε,js,k(Tk, Jk, Ak)(τ) (12.12)

the positions of the particle j of the pseudo-trajectories
(
Z0
s,k(Tk, Jk, Ak)(τ)

)X,j
of the Boltzmann hierarchy and

(
Zεs,k(Tk, Jk, Ak)(τ)

)X,j
of the BBGKY hierar-

chy.
Similarly, one will denote respectively by :

v0,j
s,k(Tk, Jk, Ak)(τ) and vε,js,k(Tk, Jk, Ak)(τ) (12.13)
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the velocities of the particle j of the pseudo-trajectories
(
Z0
s,k(Tk, Jk, Ak)(τ)

)V,j
of the Boltzmann hierarchy and

(
Zεs,k(Tk, Jk, Ak)(τ)

)V,j
of the BBGKY hierar-

chy.
Finally, one will denote respectively

X0
s,k(Tk, Jk, Ak)(τ) and Xε

s,k(Tk, Jk, Ak)(τ) (12.14)

the collection (
x0,1
s,k(Tk, Jk, Ak)(τ), . . . , x0,s+k

s,k (Tk, Jk, Ak)(τ)
)

of the positions of all the particles of the configuration Z0
s,k(Tk, Jk, Ak)(τ), and

the collection (
xε,1s,k(Tk, Jk, Ak)(τ), . . . , xε,s+ks,k (Tk, Jk, Ak)(τ)

)
of the positions of all the particles of the configuration Zεs,k(Tk, Jk, Ak)(τ).
Similarly, one denotes

V 0
s,k(Tk, Jk, Ak)(τ) and V εs,k(Tk, Jk, Ak)(τ) (12.15)

the collection of the velocities of all the particles of the configuration Z0
s,k(τ),

and of the configuration Zεs,k(τ).

Using those new notations, the first term

I0
s

(+),(j1)

(
t 7→ T s+1,0

t f
(s+1)
0

)
detailed in (12.3) page 312 can now be rewritten as∫ t

0

∫
Sd−1
ω1
×Rdvs+1

[
ω1 ·

(
vs+1 − v0,j1

s,0

(
t1, j1, (ω1, vs+1)

)
(t1)

)]
+

× f (s+1)
0

(
Z0
s,1

(
t1, j1, (ω1, vs+1)

)
(t1)

)
dω1 dvs+1 dt1,

and the term
I0
s,s+1

(+,+),(j1,j2)

(
t 7→ T s+2,0

t f
(s+2)
0

)
,

can be rewritten as∫ t

0

∫
Sd−1
ωs+1

×Rdvs+1

[
ωs+1 ·

(
vs+1 − v0,j1

s,0

(
(t1, t2), (j1, j2),

(
(ω1, vs+1), (ω2, vs+2)

))
(t1)

)]
+

×
∫ t1

0

∫
Sd−1
ωs+2

×Rdvs+2

[
ωs+2 ·

(
vs+2 − v0,j2

s,1

(
(t1, t2), (j1, j2),

(
(ω1, vs+1), (ω2, vs+2)

))
(t2)

)]
+

× f (s+2)
0

(
Z0
s,2

(
(t1, t2), (j1, j2),

(
(ω1, vs+1), (ω2, vs+2)

))
(0)
)

dωs+2 dvs+2 dt2 dωs+1 dvs+1 dt1.



12.1. DECOMPOSITION OF THE SOLUTIONS 327

12.1.2 The concept of trees, and the first limitations of
the naive approach

As Figure 12.1 page 322 suggests it, a geometrical interpretation of the pseudo-
trajectories is natural. The reader may refer to the book [26]2, where a sharp
study of the geometrical properties of the trajectories of the two hierarchies play
a significant role, or to [34]3, in which the trajectories are rigorously controlled.
The reader is also invited to refer to [57], in which a systematic computation on
pseudo-trajectories is introduced.
One will call, following for example the reference [34], the geometrical represen-
tation (as performed in Figure 12.1) a tree.
The terminology should be commented : the representations of the pseudo-
trajectories are called trees because following along time τ the positions of all
the particles of the system (the number of them increases as τ grows), the pic-
ture obtained will look like a tree (possibly a strange one, with broken branches
due to the bouncings against the obstacle, or tangled, if two particles of the
pseudo-trajectory collide).

The possibility of using the dominated convergence arises from the careful ob-
servation of Figure 12.2 page 331 below. One sees that in general, the trees of
same type of the respective BBGKY and Boltzmann hierarchies are very close.
However, in some situations, the trees are not comparable at all, even if they
are of same type.

One of the most serious problems comes out of the recollisions : in the Boltz-
mann hierarchy, the particles follow the free flow, so that they cannot collide
with each other (they have a zero radius). This is not the case for the BBGKY
hierarchy, and this difference may generate singularities, in the sense that the
trees become radically different, and the pseudo-trajectories cannot in this case
be easily compared. This is pictured in the following Figure 12.3 page 332 : at
time t1, a particle is added to particle 2 (the particle adjoined is called therefore
particle 3), but a recollision happens at time t2 between this new particle 3
and the particle 1. This recollision has the immediate effect that the velocities
of those particles are changed by scattering, so that one is not able to com-
pare anymore pairwise the particles of the two hierarchies. And as time still
decreases, this change in velocity implies of course a strong divergence between
the positions of the particles of the two hierarchies : for example, at time 0 the
positions x0,3

2,1(0) and xε,32,1(0) are now separated by an important distance, and
it seems not obvious at all to control this distance as ε goes to zero.

The problem of the recollision is unavoidable, and has nothing to do with the
presence of an obstacle. Indeed, the setting chosen in [34] is, either the whole
Euclidean space Rd, or the torus Td, and the core of the proof of the main the-

2See Section 4.4 ”Rigorous Validity of the Boltzmann Equation”, and especially Theorem
4.4.1 and its proof.

3See in particular Sections 12 ”Elimination of recollisions” and 14 ”Convergence proof”.
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orem of this reference is the control of the recollisions4.
In the case of a phase space with a boundary, additional difficulties have to be
taken into account, and this is the very interest of this work. Indeed, before a
bouncing against the obstacle, even if the pair of particles j of the two hierarchies
occupy the same position and have the same velocity, that is if x0,j

s,k(τ) = xε,js,k(τ)

and v0,j
s,k(τ) = vε,js,k(τ), two singularities, of different nature, appears during the

bouncing (in this situation, if the particle of one of the two hierarchies bounces,
then the other will bounce too). Those phenomena can be observed on Figure
12.4 page 332 below.
The particle of the Boltzmann hierarchy will not in general bounce against the
boundary at the same time as the particle of the BBGKY hierarchy. On Fig-
ure 12.4, the times of bouncing are denoted respectively by t′0 and t′ε. As a
consequence, during the whole time interval [t′0, t

′
ε], the velocities v0,j

s,k(τ) and

vε,js,k(τ) are very different, and therefore preventing the uniform comparison
of the pseudo-trajectories. Since it is not reasonable to consider only pseudo-
trajectories such that t′0 = t′ε for any bouncing in the dynamics, the only hope
lies then in the fact that such time interval [t′0, t

′
ε] must be small. This subset of

pathological times is discussed in Section 12.2.5 page 368 below. Nevertheless,
this pathological time interval is not always small. For example, if a particle is
grazing the obstacle, it is easy to imagine a very long time separating the respec-
tive times of bouncing of this particle, when it follows the pseudo-trajectory of
the BBGKY hierarchy, and the pseudo-trajectory of the Boltzmann hierarchy.
But if one is able to exclude the grazing collisions, then this time interval should
be smaller and smaller as ε goes to zero. One sees then here what kind of new
cut-off has to be done.
Another difference appears between the pseudo-trajectories of the Boltzmann
and the BBGKY hierarchies : after the bouncing of the same particle against
the obstacle (that is when τ ≤ min(t′0, t

′
ε)), one sees on Figure 12.4 that the

positions x0,j
s,k(0) and xε,js,k(0) are separated by a small distance. In the case of

the half-plane, this distance does not change along time if no other bouncing
or particle addition happens, since one has v0,j

s,k(τ) = vε,js,k(τ) for τ ≤ min(t′0, t
′
ε).

If the obstacle is more general and presents some curvature, then after the two
bouncings of the particle for the two dynamics, the velocities v0,j

s,k(τ) and vε,js,k(τ)
can slightly differ, causing therefore an increasing distance between the posi-
tions along time. However, this difference should be easily controlled as ε goes
to zero.

4See the very end of Section 7.4 ”Reformulation in terms of pseudo-trajectories” for a
sketch of proof, and Section 12 ”Elimination of recollisions” for the practical application of
this sketch.
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12.1.3 Details on the dominated convergence argument :
the choice of the trees and sketch of the geometrical
part of the proof

This last subsection will summarize the ideas developed in the two previous
Subsections 12.1.1 and 12.1.2.

After the decomposition in elements of same type, one has seen that the rele-
vant quantities that have to be compared in order to obtain the convergence of
the solutions of the BBGKY hierarchy towards the solutions of the Boltzmann
hierarchy are, formally (for example, in the case of two iterations)∫ t

0

∫
Sd−1
ωs+1

×Rdvs+1

[
ωs+1 ·

(
vs+1 − v0,j1

s,0 ((±1,±2), (j1, j2), t1)
)]
±1

×
∫ t1

0

∫
Sd−1
ωs+2

×Rdvs+2

[
ωs+2 ·

(
vs+2 − v0,j2

s,1 ((±1,±2), (j1, j2), t2)
)]
±2

× f (s+2)
0

(
Z0
s,2((±1,±2), (j1, j2), 0)

)
dωs+2 dvs+2 dt2 dωs+1 dvs+1 dt1.

(12.16)

in the case of the Boltzmann hierarchy, and :∫ t

0

∫
Sd−1
ωs+1

×Rdvs+1

[
ωs+1 ·

(
vs+1 − vε,j1s,0 ((±1,±2), (j1, j2), t1)

)]
±1

×
∫ t1

0

∫
Sd−1
ωs+2

×Rdvs+2

[
ωs+2 ·

(
vs+2 − vε,j2s,1 ((±1,±2), (j1, j2), t2)

)]
±2

× f (s+2)
N,0

(
Zεs,2((±1,±2), (j1, j2), 0)

)
dωs+2 dvs+2 dt2 dωs+1 dvs+1 dt1.

(12.17)

in the case of the BBGKY hierarchy.
One used the word ”formally” in order to emphasize that, in the case of the
BBGKY hierarchy, the work done in Chapter II, and especially in Section 5.1
page 88, shows that the iterated operator used to define the solutions described
in the iterated Duhamel formula (10.3) page 268 is not defined as a usual inte-
gral. Indeed, for the case of the BBGKY hierarchy one recalls that the transport-
collision operator is defined as the limit of a sequence of integrals, but it is not
clear that this limit can be itself written as an integral.
One noticed that the trees obtained using the dynamics of the free flow and
those obtained using the dynamics of the hard sphere flow can dramatically
diverge, preventing any geometric comparison in general. However, for the two
quantities written above, only specific parts of those two trees have to be close.
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Namely, one wants to compare the following (components of the) nodes of the
two trees :

• v0,j1
s,0 ((±1,±2), (j1, j2), t1) with vε,j1s,0 ((±1,±2), (j1, j2), t1),

• v0,j2
s,1 ((±1,±2), (j1, j2), t2) with vε,j2s,1 ((±1,±2), (j1, j2), t2),

• and Z0
s,2((±1,±2), (j1, j2), 0) with Zεs,2((±1,±2), (j1, j2), 0).

Two principles will enable a safe comparison.
First one will remove trees undergoing recollisions in the case of the hard sphere
dynamics (since such trees will be absolutely impossible to compare with their
analog corresponding to the free flow dynamics).
Second, one will take into account the presence of the obstacle. This is the
very core of this work, and also the main difference with the setting studied in
[34]. One will see that the obstacle has an impact on how to exclude trees with
recollisions, but also, even without recollisions. Indeed, the quantities :

v0,j1
s,0 ((±1,±2), (j1, j2), t1) and vε,j1s,0 ((±1,±2), (j1, j2), t1)

cannot be compared, if only one of the particles of the two trees has bounced
against the obstacle while the other has not.

One will remove in the time domain the times corresponding to an addition
of a particle too close to the obstacle. Of course, something has to be done to
show that this removal will generate only a small error term.
For the whole configurations at time 0

Z0
s,2((±1,±2), (j1, j2), 0)

and
Zεs,2((±1,±2), (j1, j2), 0),

such a work is not possible anymore, since at this level, the two trees have been
entirely determined until the time of the final evaluation of the configuration of
the whole system described by the pseudo-trajectory : the time 0.
One recalls that, even if the recollisions have been excluded so that the posi-
tions of all the particles are close between the two pseudo-trajectories, the two
velocities for the same particle following the BBGKY on the one hand, and the
Boltzmann pseudo-trajectory on the other hand, may be very different due to a
bouncing, if this bouncing is close in time to the final time evaluation 0. How-
ever, this object of concern is not that serious. Even if it seems a very tough
problem, implying very sharp geometric lemmas if one wants to control this
proximity with the obstacle of all the particles at the final time t = 0, one has
to keep in mind that the two relevant quantities that have to be compared, ac-
cording to the expressions (12.16) and (12.17) page 329 above, are not directly
the final configurations, but instead the whole expressions :

f
(s+2)
0

(
Z0
s,2((±1,±2), (j1, j2), 0)

)
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and
f

(s+2)
N,0

(
Zεs,2((±1,±2), (j1, j2), 0)

)
.

Here appears the question of the convergence of the initial data of the BBGKY
hierarchy towards the initial data of the Boltzmann hierarchy, but if one can
obtain that :

f
(s+2)
N,0

(
Zεs,2((±1,±2), (j1, j2), 0)

)
and

f
(s+2)
0

(
Zεs,2((±1,±2), (j1, j2), 0)

)
are close, then since the distance between the positions of the particles between
the two pseudo-trajectories is small, an important difference between the veloci-
ties of the same particle following respectively the Boltzmann pseudo-trajectory
on the one hand, and the BBGKY hierarchy on the other hand, implies in fact
that this particle has bounced against the obstacle at a time very close to the
time 0. Therefore, using the boundary condition verified by the initial datum

f
(s+2)
0 , the convergence of the element described in (12.17) towards the element

described in (12.16) is obtained.

Figure 12.2: Comparison of the trees of the two hierarchies : when the radius
of the particles is small, the distance between the particles of the two trees is
uniformly controlled.
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Figure 12.3: Case of a recollision in the dynamics of the hard spheres, and
divergence from the dynamics of particles of radius zero, following the free flow.

Figure 12.4: The two phenomena of divergence of the pseudo-trajectories ap-
pearing during a bouncing against the obstacle.
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12.2 Geometric lemmas

This section is then entirely devoted to the elimination of the recollisions and
the control of the size of the cut-off of those recollisions.

12.2.1 The concept of good configurations

The following key concept here is the notion of ”good configurations”, which is
the set of initial data such that all particles start from a certain distance to each
other, and transported by the hard sphere or the free flow, all particles remain
at this distance from each other.

Definition 48 (Good configuration). Let ε and c be two strictly positive con-
stants and k be a positive integer.
One defines the set of good configurations for the hard sphere dynamics of k
particles, separated by at least c (here the radius of the particles is ε/2) as the
subset of Dεk composed of the configurations Zk such that, for all τ > 0 and
1 ≤ i 6= j ≤ k : ∣∣∣ ÄT k,ε−τ (Zk)

äX,i
−
Ä
T k,ε−τ (Zk)

äX,j ∣∣∣ > c.

The set of the good configurations for the hard sphere dynamics of k particles
separated by at least c is denoted by Gεk(c).
Similarly, one defines the set of good configurations for the free flow with
boundary condition dynamics of k particles, separated by at least c (here the
radius of the particles is zero) as the subset of

(
Ωc × Rd

)s
composed of the

configurations Zk such that, for all τ > 0 and 1 ≤ i 6= j ≤ k :∣∣∣ ÄT k,0−τ (Zk)
äX,i
−
Ä
T k,0−τ (Zk)

äX,j ∣∣∣ > c.

The set of the good configurations for the free flow with boundary condition
dynamics of k particles separated by at least c is denoted by G0

k(c).

Of course, if c ≥ ε, then, in particular, none of the configurations of Gεk(c) leads
to a collision between two particles following the hard sphere dynamics, for any
strictly positive time. In the case of the half-plane, the hard sphere transport
of a particle is very simple. Indeed, if the particle i, of the system starting from
the initial configuration Zk, starts from xi ∈ Ωc (that is such that xi ·e1 > ε/2),
with initial velocity vi, there are only two cases :

• either vi · e1 ≤ 0, so that
(
T k,ε−t (Zk)

)V,i
= vi and

(
T k,ε−t (Zk)

)X,i · e1 > ε/2
(following the notations introduced in Definition 4 page 53) and then(

T k,ε−t (Zk)
)X,i

= xi − tvi

for all t ≥ 0,
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• or vi · e1 > 0, so that there exists a unique ti1 = (xi · e1− ε/2)/(vi · e1) > 0
such that xi(−ti1) · e1 = ε/2 and then(

T k,ε−t (Zk)
)V,i

= vi − 1t>ti1 · (2vi · e1e1),

(
T k,ε−t (Zk)

)X,i
= xi − tvi +

Ç∫ t

0

1s>ti1
ds

å
· (2vi · e1e1).

In the last case, for t > ti1, one has(
T k,ε−t (Zk)

)X,i
= xi − tvi + (t− ti1)(2vi · e1e1)

= xi − (xi · e1 − ε/2)/(vi · e1))(2vi · e1e1)− t(vi − 2vi · e1e1)

= xi − 2xi · e1e1 + εe1 − t(vi − 2vi · e1e1).

12.2.2 The shooting lemma

One introduces some notations for the orthogonal symmetries with respect to
some hyperplanes, such as the wall x · e1 = 0, the boundary of the obstacle Ω.

Definition 49 (Notations for the orthogonal symmetries). For any vector x ∈
Rd, one denotes by :

S0(x) = x− 2x · e1e1 (12.18)

its image by the orthogonal symmetry with respect to the hyperplane x · e1 = 0.
Similarly, for any strictly positive number ε, one denotes by :

Sε(x) = x− 2x · e1e1 + εe1 (12.19)

its image by the orthogonal symmetry with respect to the hyperplane x ·e1 = ε/2.

One starts by introducing a convenient notation for the cylinders of the Eu-
clidean space Rd.

Definition 50 (Notations for the cylinders). Let v be a vector of Rd, w be a
non zero vector of Rd and ρ be a nonnegative number. One denotes by :

K(v, w, ρ)

the cylinder of origin v, of axis w, and of radius ρ, that is :

K(v, w, ρ) =
{
x ∈ Rd / ∀u ∈ Sd−1 such that u · w = 0, (x− v) · u ≤ ρ

}
.

(12.20)
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The shooting lemma in the case of the half-plane, first version

Lemma 27 (Shooting lemma in the case of the half-plane, with varying axes).
Let R, δ, ε, ã and ε0 be five strictly positive numbers, such that :

ε ≤ ã, 2
√

3ã ≤ ε0. (12.21)

One considers two points x1, x2 ∈
{
x ∈ Rd / x ·e1 > 0

}
such that |x1−x2| ≥ ε0,

and v1 ∈ B(0, R).
Then for all x1 ∈ B(x1, ã) ∩

{
y ∈ Rd / y · e1 > ε/2

}
, x2 ∈ B(x2, ã) ∩

{
y ∈

Rd / y · e1 > ε/2
}

, and v2 ∈ B(0, R), if one denotes :

Z2 =
(
x1, v1, x2, v2

)
and Z2 =

(
x1, v1, x2, v2

)
,

1. if for some δ > 0

v2 /∈ K(v1, x1 − x2, ε0/δ) ∪K(S0(v1),S0(x1)− x2, ε0/δ), (12.22)

(using the notation (12.18) page 334 for S0) one has for all τ ≥ δ :∣∣∣(T 2,0
−τ
(
Z2

))X,1
−
(
T 2,0
−τ
(
Z2

))X,2∣∣∣ > ε0,

or in other words :
T 2,0
−δ
(
Z2

)
∈ G0

2(ε0),

2. if in addition :

v2 /∈ K(v1, x1 − x2, 12Rã/ε0) ∪K(S0(v1),S0

(
x1 − Sε(x2)

)
, 12Rã/ε0)

∪K(S0(v1),Sε(x1)− x2, 12Rã/ε0), (12.23)

(using the notation (12.19) page 334 for Sε), one has for all τ > 0 :∣∣∣∣ÄT 2,ε
−τ (Z2)

äX,1
−
Ä
T 2,ε
−τ (Z2)

äX,2∣∣∣∣ > ε,

or in other words :
Z2 ∈ Gε2(ε).

Proof. One starts by the proof of the condition (12.23), concerning the hard
sphere dynamics.

Proof of the condition (12.23)
If one assumes that the set of times τ of collisions is non empty, that is

τ̃coll =

ß
τ ≥ 0 /

∣∣∣∣ÄT 2,ε
−τ (Z2)

äX,1
−
Ä
T 2,ε
−τ (Z2)

äX,2∣∣∣∣ = ε

™
6= ∅,

one will consider τ0 = inf τ̃coll, which is an element of τ̃coll, because all the points
of τ̃coll are isolated points. Then, by definition of the smallest element of τ̃coll,
the particles have followed the free flow of particles of radius ε/2 before τ0, with
boundary conditions (that is : the particles interact with the obstacle, but not
with each other), and then there are only four possible cases, depending on the
fact that each particle can bounce against the obstacle before τ0 or not.
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• First subcase :Ä
T 2,ε
−τ0(Z2)

äX,1
= x1 − τ0v1 and

Ä
T 2,ε
−τ0(Z2)

äX,2
= x2 − τ0v2,

this is the case of a collision before a bouncing against the obstacle of any of
the two particles. One has

|(x1 − x2)− τ0(v1 − v2)| = ε,

and then

|(x1 − x2)− τ0(v1 − v2)| ≤ ε+ 2ã ≤ 3ã.

Figure 12.5: Construction of the cone containing the relative velocity v1 − v2

This means exactly that v1 − v2 belongs to the ball centered on (x1 − x2)/τ0,
of radius 3ã/τ0, so that v1 − v2 belongs to the cone of vertex 0 ∈ Rd, based on
the ball centered on x1 − x2 and of radius 3ã.

Of course, v1 − v2 has a norm smaller than 2R. The intersection of this cone
with the ball centered on 0, of radius 2R is contained in the cylinder of origin
0, of axis x1 − x2 and of radius ρ > 0 with

ρ =
2R · 3ã√

|x1 − x2|2 − (3ã)2
.

One sees that

ρ ≤ 12Rã

ε0

as soon as ε2
0 − 9ã2 ≥ ε2

0/4, that is ε0 ≥ 2
√

3ã. Since the condition holds on v2

for v1 given, one obtains the first term of the subset of the excluded velocities
v2 described in the condition (12.23).
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• Second subcase :Ä
T 2,ε
−τ0(Z2)

äX,1
= x1 − τ0v1 and

Ä
T 2,ε
−τ0(Z2)

äX,1
= Sε(x2 − τ0v2),

this is the case of a collision after a single bouncing against the obstacle, in-
volving the second particle. One has, using the notation (12.19) for symmetries
introduced in Definition 49 page 334 :∣∣∣ ÄT 2,ε

−τ0(Z2)
äX,1

−
Ä
T 2,ε
−τ0(Z2)

äX,1 ∣∣∣ =
∣∣∣(x1 − τ0v1)− Sε(x2 − τ0v2)

∣∣∣
=
∣∣(x1 − τ0v1)− (x2 − 2x2 · e1e1 + εe1 − τ0(v2 − 2v2 · e1e1))

∣∣
=
∣∣(x1 − (x2 − 2x2 · e1e1)− εe1)− τ0(v1 − (v2 − 2v2 · e1e1))

∣∣.
The orthogonal symmetry Sε with respect to the hyperplane x ·e1 = ε/2 writes :

Sε(x) = x− 2(x · e1)e1 + εe1.

Similarly, the orthogonal symmetry S0 with respect to the hyperplane x · e1 = 0
writes :

S0(x) = x− 2(x · e1)e1.

One can then rewrite the difference between the position of the two particles :∣∣∣ ÄT 2,ε
−τ0(Z2)

äX,1
−
Ä
T 2,ε
−τ0(Z2)

äX,1 ∣∣∣ =
∣∣∣(x1 − Sε(x2)

)
− τ0

(
v1 − S0(v2)

)∣∣∣,
which is equal to ε by hypothesis, and then using the fact that S0 is a linear
isometry, one obtains :∣∣∣ ÄT 2,ε

−τ0(Z2)
äX,1

−
Ä
T 2,ε
−τ0(Z2)

äX,1 ∣∣∣ =
∣∣∣S0

((
x1 − Sε(x2)

)
− τ0

(
v1 − S0(v2)

))∣∣∣
=
∣∣∣S0

(
x1 − Sε(x2)

)
− τ0

(
S0(v1)− v2

)∣∣∣
= ε.

Then, using the linearity of the symmetry S0 :

S0

(
x1 − Sε(x2)

)
= S0

(
(x1 − x1) + x1 − Sε(x2)− Sε(x2) + Sε(x2)

)
= S0(x1 − x1) + S0

(
x1 − Sε(x2)

)
− S0

(
Sε(x2)− Sε(x2)

)
.

Using now the explicit expression of the symmetry Sε, one finds :

Sε(x2)− Sε(x2) = S0(x2)− S0(x2) = S0(x2 − x2)

so that, proceeding as in the previous case, that is using the triangular inequality,
one obtains :∣∣∣S0

(
x1 − Sε(x2)

)
− τ0

(
S0(v1)− v2

)∣∣∣ ≤ ε+
∣∣∣S0(x1 − x1)

∣∣∣+
∣∣x2 − x2

∣∣
≤ 3ã. (12.24)
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This implies that S0(v1)−v2 belongs to the cone of vertex 0 ∈ Rd, based on the
ball centered on S0

(
x1 − Sε(x2)

)
and of radius 3ã.

Moreover, for all x1 and x2 in
{
x ∈ Rd/x · e1 > ε/2

}
, one has that :∣∣∣x1 − Sε(x2)

∣∣∣ ≥ ∣∣x1 − x2

∣∣.
Indeed, by continuity there exists a unique θ ∈ ]0, 1[ such that

(θx1 + (1− θ)Sε(x2)) · e1 = ε/2.

Denoting by xθ the quantity θx1 + (1− θ)Sε(x2), one has :∣∣∣Sε(x2)− xθ
∣∣∣ =

∣∣∣Sε(x2)− Sε(xθ)
∣∣∣ =

∣∣∣S0(x2 − xθ)
∣∣∣ =

∣∣x2 − xθ
∣∣,

thanks to the explicit expressions (12.19) and (12.18) of the symmetries, and
because Sε preserves all points of the hyperplane

{
x ∈ Rd / x · e1 = ε/2

}
, so

it preserves in particular xθ. Then using the fact that, by definition, xθ belongs
to the segment [x1,Sε(x2)] :∣∣∣Sε(x2)− x1

∣∣∣ =
∣∣∣Sε(x2)− xθ|+ |xθ − x1

∣∣∣
=
∣∣x2 − xθ

∣∣+
∣∣xθ − x1

∣∣ ≥ ∣∣x2 − x1

∣∣.
Finally, using the same arguments as in the first case, the intersection of the
cone defined just above with the ball centered on 0 of radius 2R is contained in
the cylinder of origin 0, of axis S0

(
x1 − Sε(x2)

)
and of the same radius ρ > 0

as in the previous case thanks to the fact that

|Sε(x2)− x1| ≥ |x2 − x1| ≥ ε0,

and then one obtains the second term of the subset of the excluded velocities
v2 described in the condition (12.23).

• Third subcase :Ä
T 2,ε
−τ0(Z2)

äX,1
= Sε(x1 − τ0v1) and

Ä
T 2,ε
−τ0(Z2)

äX,2
= x2 − τ0v2,

this is the case, very similar to the previous one, of a collision after a single
bouncing against the obstacle, involving the first particle. One writes in the
same way :∣∣∣ ÄT 2,ε

−τ0(Z2)
äX,1

−
Ä
T 2,ε
−τ0(Z2)

äX,2 ∣∣∣ =
∣∣∣Sε(x1 − τ0v1)− (x2 − τ0v2)

∣∣∣
=
∣∣(x1 − 2x1 · e1e1 + εe1 − τ0(v1 − 2v1 · e1e1))− (x2 − τ0v2)

∣∣
=
∣∣(x1 − 2x1 · e1e1 + εe1 − x2)− τ0(v1 − 2v1 · e1e1 − v2)

∣∣
=
∣∣∣(Sε(x1)− x2

)
− τ0

(
S0(v1)− v2

)∣∣∣,



12.2. GEOMETRIC LEMMAS 339

which is equal, by hypothesis, to ε. Writing, as above (without composing by
the symmetry S0) :

Sε(x1)− x2 =
(
Sε(x1)− Sε(x1)

)
+ Sε(x1)− x2 + (x2 − x2)

= S0(x1 − x1) + Sε(x1)− x2 + (x2 − x2),

so that one obtains that :∣∣∣Sε(x1)− x2 − τ0
(
S0(v1)− v2

)∣∣∣ ≤ 3ã. (12.25)

Then the vector S0(v1)− v2 belongs to the cone of vertex 0 ∈ Rd, based on the
ball centered on Sε(x1)− x2 and of radius 3ã. As above, one can show that :∣∣∣Sε(x1)− x2

∣∣∣ ≥ ∣∣x1 − x2

∣∣ ≥ ε0,

so that if ε0 is large enough beside ã, namely, if ε0 ≥ 2
√

3ã, then the vector
v2−S0(v1) belongs to the cylinder of origin 0, of axis Sε(x1)−x2, and of radius
12Rã/ε0. Then by a simple translation, one obtains the third term of the subset
of the excluded velocities v2 of the condition (12.23).

• Fourth subcase :Ä
T 2,ε
−τ0(Z2)

äX,1
= Sε(x1 − τ0v1) and

Ä
T 2,ε
−τ0(Z2)

äX,2
= Sε(x2 − τ0v2),

in this case, the two particles have already bounced against the obstacle before
being close at time τ0. One gets very easily, thanks to the explicit expressions
(12.19) and (12.18) of the symmetries, that :∣∣∣ ÄT 2,ε

−τ0(Z2)
äX,1

−
Ä
T 2,ε
−τ0(Z2)

äX,2 ∣∣∣ =
∣∣∣Sε(x1 − τ0v1)− Sε(x2 − τ0v2)

∣∣∣
=
∣∣∣S0

(
(x1 − τ0v1)− (x2 − τ0v2)

)∣∣∣ = ε,

but since the symmetry S0 is an isometry, the condition of proximity of the two
particles is equivalent to :∣∣(x1 − x2)− τ0(v1 − v2)

∣∣ = ε,

which is of course the condition studied in detail in the first case, and this
condition provides the first term of the condition (12.23), so all the cases have
been investigated, and the first part of the proof, dedicated to the study of the
condition (12.23), is complete.

Proof of the condition (12.22)

One addresses now the proof of the condition (12.22), concerning the free flow
dynamics with boundary condition.
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One is now studying a problem for particles of radius zero. Therefore, those
particles will not interact with each other, and there will be no trouble with
recollisions.
If one assumes that there exists some time τ0 such that :∣∣∣ ÄT 2,0

−τ0
(
Z2

)äX,1
−
Ä
T 2,0
−τ0
(
Z2

)äX,2 ∣∣∣ ≤ ε0,

then one will have to study the same possible subcases as in the first part of the
proof, starting page 335.

• First subcase :Ä
T 2,0
−τ0
(
Z2

)äX,1
= x1 − τ0v1 and

Ä
T 2,0
−τ0
(
Z2

)äX,2
= x2 − τ0v2.

One has : ∣∣(x1 − x2)− τ0(v1 − v2)
∣∣ ≤ ε0.

In particular, for all unit vector n which is orthogonal to x1 − x2, one has :∣∣n · ((x1 − x2)− τ0(v1 − v2))
∣∣ = τ0

∣∣n · (v1 − v2)
∣∣ ≤ ε0.

This means exactly that v1−v2 belongs to the cylinder of origin 0, of axis x1−x2

and of radius ε0/τ0, and since of course one has by hypothesis :

τ0 ≥ δ,

this cylinder is obviously contained in K(0, x1 − x2, ε0/δ).

• Second subcase :Ä
T 2,0
−τ0
(
Z2

)äX,1
= x1 − τ0v1 and

Ä
T 2,0
−τ0
(
Z2

)äX,2
= S0(x2 − τ0v2).

Here one assumes that :∣∣∣(x1 − S0(x2)
)
− τ0

(
v1 − S0(v2)

)∣∣∣ ≤ ε0.

Applying the symmetry S0, which is an isometry, one obtains :∣∣∣S0

((
x1 − S0(x2)

)
− τ0

(
v1 − S0(v2)

))∣∣∣ =
∣∣∣S0(x1)− x2 − τ0

(
S0(v1)− v2

)∣∣∣ ≤ ε0.

(12.26)

Similarly, for all unit vector n which is orthogonal to S0(x1)− x2 :

τ0
∣∣n · (S0(v1)− v2)

∣∣ ≤ ε0,

so that S0(v1)− v2 belongs to the cylinder of origin 0, axis S0(x1)− x2 and of
radius ε0/δ, and then the second term of the condition (12.22) is recovered.
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• Third subcase :(
T 2,0
−τ0
(
Z2

))X,1
= S0

(
x1 − τ0v1

)
and

(
T 2,0
−τ0
(
Z2

))X,2
= x2 − τ0v2.

This is the symmetrical situation of the previous case. With the same argument,
one deduces that v2−S0(v1) belongs to the cylinder of origin 0, axis S0

(
x1

)
−x2

and of radius ε0/δ, which is the same cylinder as for the previous case, and it
is the second term of the condition (12.22).

• Fourth subcase :(
T 2,0
−τ0
(
Z2

))X,1
= S0

(
x1 − τ0v1

)
and

(
T 2,0
−τ0
(
Z2

))X,2
= S0

(
x2 − τ0v2

)
.

For this last case, the condition :∣∣∣S0

(
x1 − τ0v1

)
− S0

(
x2 − τ0v2

)∣∣∣ =
∣∣∣S0 ((x1 − x2)− τ0(v1 − v2))

∣∣∣ ≤ ε0/δ,

is equivalent, because S0 is an isometry, to :∣∣(x1 − x2)− τ0(v1 − v2)
∣∣ ≤ ε0/δ.

But this condition is, as for the first part of the proof, already studied, and has
already been given by the first term of the condition (12.22), so that the proof
of this second part, hence of the whole lemma, is complete.

Remark 31. The size of the cylinders which contain the excluded velocities
in the previous lemma is small, providing of course that the conditions which
link the parameters ã, ε and ε0 are fulfilled. To be more precise, the size of the
cylinders is of order :

Rd
Å
ã

ε0

ãd−1

+R
(ε0

δ

)d−1

.

The shooting lemma in the case of the half-plane, second version

Some additional comments can be made about the conditions (12.23) and (12.22)
obtained in the previous lemma. Considering the three cylinders obtained for
the condition (12.23), that is :

K(v1, x1 − x2,12Ra/ε0), K(S0(v1),S0

(
x1 − Sε(x2)

)
, 12Ra/ε0),

and K(S0(v1),Sε(x1)− x2, 12Ra/ε0),

one sees in fact that the two last ones are very close, in the sense that in the
limit ε→ 0, they become identical, since their respective axis become :

S0

(
x1 − Sε(x2)

)
→ S0

(
x1 − S0(x2)

)
= S0(x1)− x2
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for the first axis, and :

Sε(x1)− x2 → S0(x1)− x2

for the second axis. One may be tempted then to replace this condition, con-
cerning three cylinders by a condition concerning only two, which is already the
case for the condition (12.22).

One notices also in the condition (12.23) that the axes of the cylinders depend
on ε. One will see in the following that it may cause trouble when one tries to
prove the convergence verified by the solutions of the BBGKY hierarchy towards
the Boltzmann hierarchy. The goal of the following lemma is to address the two
previous remarks : first, one will relax a bit the condition (12.23) (that is, one
will work with cylinders with a larger radius) but such that the conditions, in
the limit of the small parameters ε, a, ε0, δ → 0, describe a subset of the phase
space composed of cylinders with fixed axes, that is, which do not depend on
the varying parameters ε, a, ε0 and δ. Second, one will notice immediately, by
doing so, that the relaxation on the radius of the cylinders will indeed enable
to consider conditions concerning only two cylinders.

Lemma 28 (Shooting lemma in the case of the half-plane, with fixed axes).
Let R, δ, ε, a and ε0 be five strictly positive numbers, such that :

ε ≤ a, 2
√

3a ≤ ε0. (12.27)

One considers two points x1, x2 ∈
{
x ∈ Rd / x ·e1 > 0

}
such that |x1−x2| ≥ ε0,

and v1 ∈ B(0, R).
Then for all x1 ∈ B(x1, a), x2 ∈ B(x2, a), and v2 ∈ B(0, R), if :

v2 /∈ K(v1, x1 − x2, 12Ra/ε0) ∪K(S0(v1),S0(x1)− x2, 16Ra/ε0), (12.28)

(using the notations (12.18) and (12.19) for the symmetries), one has for all
τ > 0 : ∣∣∣∣ÄT 2,ε

−τ (Z2)
äX,1

−
Ä
T 2,ε
−τ (Z2)

äX,2∣∣∣∣ > ε.

Proof. The proof of this new version of the shooting lemma is in fact simply
obtained from a slight modification of the proof of the first version.
Concerning the proof of the first point, going back to the ”conic estimates”,
that is the part of the proof dedicated to the first point of Lemma 27, first one

found that if
(
T 2,ε
−τ0(Z2)

)X,1
= Sε(x1 − τ0v1) and

(
T 2,ε
−τ0(Z2)

)X,2
= x2 − τ0v2,

then (see the inequality (12.25) page 339) :∣∣∣S0

(
x1 − Sε(x2)

)
− τ0

(
S0(v1)− v2

)∣∣∣ ≤ 3a.

Since the goal is to remove the dependency on ε in the axis S0

(
x1−Sε(x2)

)
pre-

viously found, one writes (according to the explicit expression of the symmetries
(12.18) and (12.19)) :

Sε(x2) = S0(x2) + εe1.
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One obtains then easily that :∣∣∣S0

(
x1 − S0(x2)

)
− τ0

(
S0(v1)− v2

)∣∣∣−∣∣∣S0(εe1)
∣∣∣

≤
∣∣∣S0

(
x1 − Sε(x2)

)
− τ0

(
S0(v1)− v2

)∣∣∣,
so that : ∣∣∣S0

(
x1 − S0(x2)

)
− τ0

(
S0(v1)− v2

)∣∣∣ ≤ 3a+ ε ≤ 4a. (12.29)

From this new inequality, following the same path as the one used for the proof
of the previous Lemma 27, if one assumes(

T 2,ε
−τ0(Z2)

)X,1
= x1 − τ0v1,(

T 2,ε
−τ0(Z2)

)X,2
= Sε(x2 − τ0v2),

and ∣∣∣(T 2,ε
−τ0(Z2)

)X,1
−
(
T 2,ε
−τ0(Z2)

)X,2∣∣∣ = ε,

then the inequality (12.29) implies that the relative velocity v2−S0(v1) belongs
to the cone of vertex 0 ∈ Rd and based on the ball B

(
S0

(
x1−S0(x2)

)
, 4a
)
. Since

in addition the relative velocity lies in the ball B(0, 2R), one deduces that v2

belongs to the cylinder K(S0(v1),S0

(
x1−S0(x2)

)
, 16Ra/ε0). This new cylinder

plays the role of the second term of the condition (12.28) of Lemma 27.

Secondly, one showed that if
(
T 2,ε
−τ0(Z2)

)X,1
= x1 − τ0v1 and

(
T 2,ε
−τ0(Z2)

)X,2
=

Sε(x2 − τ0v2), then (see the inequality (12.24) page 337) :∣∣∣Sε(x1)− x2 − τ0
(
S0(v1)− v2

)∣∣∣ ≤ 3a.

Again, writing :
Sε(x1) = S0(x1) + εe1,

one obtains : ∣∣∣S0(x1)− x2 − τ0
(
S0(v1)− v2

)∣∣∣ ≤ 3a+ ε ≤ 4a.

One knows then that this condition implies that the velocity v2 belongs to the
cylinder K(S0(v1),S0(x1) − x2, 16Ra/ε0). This new cylinder plays the role of
the last term of the control (12.23) of Lemma 27, but since of course :

S0

(
x1 − Sε(x2)

)
= S0(x1)− x2,

one sees that the two last terms of the control (12.23) of Lemma 27 have been
replaced by a single one, which is a cone defined with an axis which does not
depend on ε, hence the point of the new version of the shooting lemma.
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12.2.3 Effects of the scattering on the excluded cylinders :
removing the recollisions after scattering

When the k-th adjunction occurs, that is when a particle is added to a system of
s+k−1 particles, depending on the sign ± of the collision operator (introduced
in Definitions 42 page 317 and 42 page 317)

I ·s
±,j
,

the configuration is either pre or post collisional. For the BBGKY hierarchy,
and in the first case, corresponding to the sign −, a particle is added to the
particle jk, at the position xε,jks,k−1(tk) + εωk, one chooses a velocity vs+k (such

that ωk ·(vε,jks,k−1(tk)−vs+k) > 0) and one applies only the backwards hard sphere
transport until the next adjunction. The trajectories after this adjunction and
before the next one (that is, for times t ≤ tk and t > tk+1) are represented in
red on the following Figure 12.6.

Figure 12.6: Adjunction of a particle to the system, in a pre-collisional configu-
ration.

In the second case, corresponding to the sign +, after the adjunction at the
position xε,jks,k−1 + εωk, one will apply the scattering operator (see Definition 1
page 51) to the configuration :(

xε,jks,k−1(tk), vε,jks,k−1(tk), xε,jks,k−1(tk) + εωk, vs+k
)
.

On Figure 12.7, one sees the trajectories of the particles modified by the scat-
tering operator. In green are pictured the trajectories that the particles would
have followed without the effect of this scattering operator, which leads to an
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Figure 12.7: Adjunction of a particle to the system, in a post-collisional config-
uration.

overlapping of the particles for times t < tk. The trajectory obtained after mod-
ifying the velocities with the scattering are represented in red. The effect on the
pair of velocities

(
vε,jks,k−1, vs+k

)
of this operator is pictured in blue.

Therefore, in order to keep a system in a good configuration, it is mandatory
to obtain a condition on the velocity vs+k (and, if acting only on the velocity
variable vs+k is not enough, on the angular parameter ωk) such that, after the
scattering, the two pre-collisional velocities lie outside the pathological cylinders
defined with respect to all the other particles of the configuration.
The following lemma focuses on the way the pathological sets are modified by
the collisions. One defines :

N ∗(w, y, ρ)(v1) =
{

(ω, v2) ∈ Sd−1 ×B(0, R) / (v2 − v1) · ω > 0,

v′1 ∈ K(w, y, ρ) or v′2 ∈ K(w, y, ρ)
}
,

where v′1 and v′2 denote, as usual, the post-collisional velocities associated to the
pre-collisional velocities v1 and v2 and the angular parameter ω. The following
lemma is also written in [34].

Lemma 29 (Scattering lemma for cylinders). There exists a strictly positive
constant C5(d) depending only on the dimension d such that for all strictly
positive numbers ρ and R, all vectors (y, w) ∈ Rd ×B(0, R), and v1 ∈ B(0, R),
one has :

|N ∗(w, y, ρ)(v1)| ≤ C5R
d+1/2ρd−3/2.
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One notices that this lemma does not involve the geometry of the domain in
which the particles are moving. In particular, the fact that particles are inter-
acting with an obstacle has no consequence here. Therefore, the proof that the
reader may find in [34] provides the result.

12.2.4 Adjunction of particles and recollisions

Definition 51 (Stability by adjunction of the good configurations). Let k be
a positive integer, and R, δ, ε, a, ε0 be five strictly positive numbers. For Zk ∈
G0
k(ε0), one defines

Bk(R, δ, ε, a, ε0)(Zk) ⊂ Sd−1 ×B(0, R)

as the complement of the set of the elements (ω, v) of Sd−1×B(0, R) such that,
for all

Zk ∈ Gεk(ε)

with, for all 1 ≤ i ≤ k∣∣xi − xi∣∣ =
∣∣∣(Zk)X,i − (Zk)X,i∣∣∣ ≤ a,

vk = vk, that is
(
Zk
)V,k

=
(
Zk
)V,k

,

and for all 1 ≤ i ≤ k − 1 :

vi = vi or vi = S0(vi), that is (Zk)V,i =
(
Zk
)V,i

or (Zk)V,i = S0

(
(Zk)V,i

)
then :

• if ω · (v − vk) < 0 :

– the configuration (Zk, xk + εω, v) does not lead to a further recollision :

∀τ > 0,∀ 1 ≤ i < j ≤ k + 1,∣∣∣ ÄT k+1,ε
−τ (Zk, xk + εω, v)

äX,i
−
Ä
T k+1,ε
−τ (Zk, xk + εω, v)

äX,j ∣∣∣ > ε,

(12.30)

that is (
Zk, xk + εω, v

)
∈ Gεk+1(ε),

– the configuration
(
Zk, xk, v

)
is a good configuration for the free flow dy-

namics of k + 1 particles with boundary condition, separated by at least ε0

(see Definition 48 page 333) after a time δ :

∀τ > δ, ∀ 1 ≤ i < j ≤ k + 1,∣∣∣(T k+1,0
−τ

(
(Zk, xk, v)

))X,i
−
(
T k+1,0
−τ

(
(Zk, xk, v)

))X,j∣∣∣ > ε0, (12.31)

that is
T k+1,0
−δ

(
Zk, xk, v

)
∈ G0

k+1(ε0),
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• if ω · (v − vk) > 0 :

– the configuration
(
Zs, xk + εω, v

)′
k,k+1

(see Definition 1 page 51 and the

point (1.8) of Definition 2 page 52 for the notations) does not lead to a
further recollision :

∀τ > 0,∀ 1 ≤ i 6= j ≤ k + 1,∣∣∣(T k+1,ε
−τ

((
Zk, xk + εω, v

)′
k,k+1

))X,i
−
(
T k+1,ε
−τ

((
Zk, xk + εω, v

)′
k,k+1

))X,j∣∣∣ > ε, (12.32)

that is (
Zs, xk + εω, v

)′
k,k+1

∈ Gεk+1(ε),

– the configuration
(
Zk, xk, v

)
is a good configuration for the free flow dy-

namics of k + 1 particles with boundary condition, separated by at least ε0

after a time δ :

∀τ > δ, ∀ 1 ≤ i < j ≤ k + 1,∣∣∣(T k+1,0
−τ

((
Zk, xk, v

)′
k,k+1

))X,i
−
(
T k+1,0
−τ

((
Zk, xk, v

)′
k,k+1

))X,j∣∣∣ > ε0,

(12.33)

that is
T k+1,0
−δ

((
Zk, xk, v

)′
k,k+1

)
∈ G0

k+1(ε0).

Remark 32. Here, one wants to obtain an upper bound on the size of the set∣∣∣Bk(R, δ, ε, a, ε0

)(
Zk
)∣∣∣. Finding a sharp bound will mean that there are a lot of

ways to add a particle to a system of k particles in a good configuration, which
lead to a new system of k + 1 particles in a good configuration.

One notices that there is an important degree of freedom introduced in Defi-
nition 51 : one authorizes a possible small difference between the positions of

the configurations Zk ∈
(
Ωc × Rd

)k
and the positions of the vector Zk ∈ Dεk,

while the velocities of those two configurations are the same, or at most differ
by a symmetry (that is vk = vk or S0(vk)).
The necessity of this additional degree of freedom is actually clear. Indeed, even
if one compares trees without recollision, a small difference in the positions of
the configurations will appear between the trees of the BBGKY and the Boltz-
mann hierarchies. It is due, on the one hand, to the radius of the particles, and
on the other hand, to the interaction with the obstacle, as it was already noticed
in Section 12.1.2 page 327, and represented on Figures 12.2 page 331 and 12.4
page 332.

Proposition 16 (Control of the size of the good configurations by adjunction
of particles). There exists a strictly positive constant C(d) depending only on
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the dimension d such that for any positive integer k, and for all R, δ, ε, a, ε0, ρ, η
strictly positive real numbers such that

2ε ≤ a, 4
√

3a ≤ ε0, ε0 ≤ ηδ, 3a ≤ ρ, (12.34)

R ≥ 1 and ε0/δ ≤ 1, (12.35)

and for all Zk ∈ G0
k(ε0) such that

xk · e1 =
(
Zk
)X,k · e1 ≥ ρ, (12.36)

there exists a measurable subset B̃k(R, δ, ε, a, ε0, ρ, η)(Zk) ⊂ Sd−1×B(0, R) such
that :

Bk(R, δ, ε, a, ε0)(Zk) ⊂ B̃k(R, δ, ε, a, ε0, ρ, η)(Zk)

and ⋃
Zk∈ Gk(ε0),
xk·e1≥ρ

{Zk} × B̃k(R, δ, ε, a, ε0, ρ, η)(Zk)

is measurable. Moreover, one has :∣∣∣B̃k(R, δ, ε, a, ε0, ρ, η)(Zk)
∣∣∣

≤ C(d)

Å
ηd +Rd

(a
ρ

)d−1

+ kR2d−1
( a
ε0

)d−3/2

+ kRd+1/2
(ε0

δ

)d−3/2
ã
.

(12.37)

Proof. For a configuration Zk ∈ G0
k(ε0), one wants to study the subset

Bk(R, δ, ε, a, ε0)(Zk)

of Sd−1 ×B(0, R).
The hypothesis on Zk means exactly, according to Definition 48 page 333, that
for all τ > 0 and all 1 ≤ i < j ≤ k :∣∣∣(T k,0−τ (Zk))X,i − (T k,0−τ (Zk))X,j∣∣∣ > ε0.

The subset Bk(R, δ, ε, a, ε0)(Zk), associated to the configuration Zk, according
to Definition 51 page 346, is defined as the complement of the subset of the
angular and velocity adjunction parameters such that, for all configurations
Zk ∈ Gεk(ε) ”close enough” to Zk (that is such that, first the positions of the
particles of the configuration Zk are not too far from the positions of Zk, that
is : ∣∣Xk −Xk

∣∣ =
∣∣(Zk)X − (Zk)X ∣∣ ≤ a,

and second, the velocties of the particles of the configuration Zk, up to the
application of the symmetry S0, are the same (except for the last particle k : in
that case, the velocities have to be the same), that is :

vk = vk, that is
(
Zk
)V,k

=
(
Zk
)V,k

,
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and for all 1 ≤ i ≤ k − 1 :

vi = vi or vi = S0(vi)),

when one ”adds” the (k + 1)-th particle to the system of k particles, the new
system of k + 1 particles, has to satisfy the two following conditions :

• for the hard sphere dynamics, the new particle is added at position xk + εω,
and at velocity v, and the new system of k + 1 particles (Zk, xk + εω, v) has
to verify the condition (12.30) of Definition 51 if (xk, vk, xk + εω, v) is a pair

of pre-collisional particles, and the system
(
Zk, xk + εω, v

)′
k,k+1

has to verify

the condition (12.32) of Definition 51 if (xk, vk, xk + εω, v) is a pair of post-
collisional particles,

• for the free flow with boundary condition, the new particle is added at position
xk, and at velocity v, and the new system of k + 1 particles (Zk, xk + εω, v)
has to verify the condition (12.31) of Definition 51 if (xk, vk, xk, v) is a pair

of pre-collisional particles, and the system
(
Zk, xk, v

)′
k,k+1

has to verify the

condition (12.33) of Definition 51 if (xk, vk, xk, v) is a pair of post-collisional
particles.

The conditions on the hard sphere dynamics

One starts by a problem of rigorous definition. Since the hard sphere flow for

k + 1 particles is not defined on the whole space
(
{y · e1 > ε/2} × Rd

)k+1
, but

only on Dεk+1 (in fact, after removing a measurable subset of measure zero), one
needs to be sure that the configuration :(

Zk, xk + εω, v
)

belongs to Dεk+1. One will start by verifying that the configuration does not
present an overlapping between two particles, that is one needs to be sure that,
for all 1 ≤ i ≤ k − 1 : ∣∣xi − (xk + εω)

∣∣ > ε.

But on the one hand, one knows that Zk ∈ G0
k(ε0), so in particular for all

1 ≤ i ≤ k − 1 : ∣∣xi − xk∣∣ ≥ ε0.

On the other hand, since : ∣∣Xk −Xk

∣∣ ≤ a,
one can see in particular that for all 1 ≤ j ≤ k :∣∣xj − xj∣∣ ≤ a.
All together, it implies that :∣∣xi − (xk + εω)

∣∣ ≥ ∣∣xi − xk∣∣− ∣∣xi − xi∣∣− ∣∣xk − xk∣∣− ∣∣εω∣∣
≥ ε0 − 2a− ε ≥ ε0 − 3a.
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The condition

5a ≤ ε0, (12.38)

together with ε < 2a implies that :∣∣xi − (xk + εω)
∣∣ > ε,

and as a consequence, the configuration(
Zk, xk + εω, v

)
does not include any overlapping.
It is also mandatory to check that the position xk + εω is far enough from the
obstacle, so that the added particle does not overlap the obstacle.
The hypothesis (12.36) of the proposition implies that :

(xk + εω) · e1 = xk · e1 +
(
xk − xk

)
· e1 + εω · e1 ≥ ρ− a− ε ≥ ρ− 2a.

Recalling that

3a ≤ ρ, (12.39)

one has therefore, since ε/2 < a :

(xk + εω) · e1 > ε/2,

so that the configuration (
Zk, xk + εω, v

)
belongs indeed to Dεk+1.

Having checked that the hard sphere transport applied to the new configu-
ration of k + 1 particles is well defined, one now checks the conditions (12.30)
and (12.32).

The pre-collisional case for the hard sphere dynamics : the condi-
tion (12.30)

One now focuses on the pre-collisional case (that is ω · (v− vk) < 0), and prove
the inequality (12.30).

One assumes therefore that the pair of particles (xk, vk) and (xk + εω, v) is
a pre-collisional pair, so that there is no scattering used at time 0 in the defini-
tion of the configuration of k+ 1 particles on which the backwards hard sphere
flow will act.
One will remove the adjunction parameters leading to recollision. Here a rec-
ollision means that there exists a pair of particles of the new system of k + 1
particles, such that the two particles of the pair, after following the hard sphere
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flow, are at some point at distance ε from each other.
Therefore, if one assumes that the set of times τ of collisions is non empty, that
is

τ̃k+1
coll =

⋃
1≤i 6=j≤k+1

ß
τ > 0 /

∣∣∣(T k+1,ε
−τ

(
Zk, xk + εω, v

))X,i
−
(
T k+1,ε
−τ

(
Zk, xk + εω, v

))X,j∣∣∣ = ε

™
6= ∅,

one defines τ0 = inf τ̃k+1
coll = min τ̃k+1

coll . One has to determine which couple of
particles (i, j) can collide, that is∣∣∣(T k+1,ε

−τ0
(
Zk, xk + εω, v

))X,i
−
(
T k+1,ε
−τ0

(
Zk, xk + εω, v

))X,j∣∣∣ = ε, (12.40)

which would contradict the validity of the condition (12.30) of Definition 51,
and what are the consequences on the initial velocities.
For all 0 ≤ τ ≤ τ0, each particle of the system follows the hard sphere flow for
a single particle (which takes into account the interaction with the obstacle for
a particle of radius ε/2, but not the interactions with other particles), because
by definition, before τ0 the particles are far enough from one another, not to
collide. It means in particular that the particles can still have their respective
velocity modified by a bouncing against the obstacle (which is assumed to be
here the half-space). For any particle l, one will denote as above :

τl = inf
{
τ > 0 /

Ä
T k+1,ε
−τ (Zk, xk + εω, v)

äX,l
· e1 = ε/2

}
,

the time of first bouncing of the particle l against the obstacle (which may be
non finite).

• 1 ≤ i < j ≤ k :
No such couple can verify (12.40), because for all τ ≤ τ0 and 1 ≤ j ≤ k, one
has Ä

T k+1,ε
−τ (Zk, xk + εω, v)

äX,l
=
Ä
T k,ε−τ (Zk)

äX,l
,

and one assumed that Zk ∈ Gεk(ε).

• i = k and j = k + 1 :
Here, several cases have to be distinguished, depending on the possibility
of bouncing against the obstacle before the time τ0, that is before identity
(12.40) holds.

– τ0 ≤ min{τk, τk+1} :
If the particles k and k + 1 do not bounce against the obstacle before τ0
that is if τ0 ≤ min{τk, τk+1}, the particles k and k + 1 follow then the
backwards free flow and one has for all 0 ≤ τ ≤ τ0 :

T k+1,ε
−τ ((Zk, xk + εω, v))X,k = xk − τvk,
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(one used here vk = vk) and

T k+1,ε
−τ ((Zk, xk + εω, v))X,k+1 = xk + εω − τv.

Then ∣∣∣T k+1,ε
−τ ((Zk, xk + εω, v))X,k − T k+1,ε

−τ ((Zk, xk + εω, v))X,k+1
∣∣∣

= |εω − τ(v − vk)| ≥ ε,

since

|εω − τ(v − vk)|2 = ε2 − 2τεω · (v − vk) + τ2|v − vk|2

≥ ε2,

and even
|εω − τ(v − vk)| > ε

for all 0 < τ ≤ τ0, up to assuming that v 6= vk, that is up to the exclusion
of the subset Sd × {vk}, of course of measure zero in Sd ×B(0, R).

– min{τk, τk+1} < τ0 ≤ max{τk, τk+1} :
If one has :

min{τk, τk+1} < τ0 ≤ max{τk, τk+1},
that is if only one of the two particles k and k+ 1 has bounced against the
obstacle before the time τ0 in the equation (12.40), and∣∣∣∣ ÄT k+1,ε

−τ0 (Zk, xk + εω, v)
äX,k

−
Ä
T k+1,ε
−τ0 (Zk, xk + εω, v)

äX,k+1
∣∣∣∣ = ε,

then the norm of the difference of the two positions writes∣∣Sε(xk − τ0vk)− (xk + εω − τ0v
)∣∣

=
∣∣(xk − τ0vk − 2(xk − τ0vk) · e1e1 + εe1

)
−
(
xk + εω − τ0v

)∣∣
=
∣∣− 2xk · e1e1 − εω + εe1 − τ0

(
S0(vk)− v

)∣∣ = ε

or∣∣∣(xk − τ0vk)− Sε(xk + εω − τ0v
)∣∣∣

=
∣∣∣(xk − τ0vk)− (xk + εω − τ0v

)
+ 2
(
xk + εω − τ0v

)
· e1e1 − εe1

∣∣∣
=
∣∣∣2xk · e1e1 + 2εω · e1e1 − εω − εe1 − τ0

(
vk − S0(v)

)∣∣∣
=
∣∣∣S0

(
2xk · e1e1 + 2εω · e1e1 − εω − εe1 − τ0

(
vk − S0(v)

))∣∣∣
=
∣∣∣S0

(
2xk · e1e1

)
+ S0

(
2εω · e1e1 − εω

)
− S0

(
εe1

)
− τ0

(
S0

(
vk
)
− v)

)∣∣∣
=
∣∣∣− 2xk · e1e1 − εω + εe1 − τ0

(
S0(vk)− v)

)∣∣∣ = ε,
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so the two possible cases lead to the same equation. One wants a control
on the difference v − S0(vk) which does not depend on the position of the
particle k of the configuration Zk, nor on the angular parameter ω, but
only on the configuration Zk. One writes then :

ε =
∣∣∣2xk · e1e1 + εω − εe1 − τ0

(
v − S0(vk)

)∣∣∣
≥
∣∣∣2xk · e1e1 − τ0

(
v − S0(vk)

)∣∣∣− ∣∣2xk · e1e1 − 2xk · e1e1

∣∣− ∣∣εω∣∣− ∣∣εe1

∣∣
≥
∣∣∣2xk · e1e1 − τ0

(
v − S0(vk)

)∣∣∣− 2a− 2ε,

so that, thanks to the inequality ε ≤ a :∣∣∣2xk · e1e1 − τ0
(
v − S0(vk)

)∣∣∣ ≤ 5a.

Following the same arguments as in the proof of Lemma 27, one deduces
that the relative velocity v − S0(vk) belongs to the cone of vertex 0 ∈ Rd
and based on the ball B(2xk · e1e1, 5a). Remembering that this relative
velocity lies also in the ball B(0, 2R), one deduces that it lies in particular
in the cylinder of origin 0 ∈ Rd, of axis 2xk · e1e1 and, up to assuming that
xk is large enough compared to a (in order to have

∣∣2xk · e1e1

∣∣ ≥ (5a), so
that the denominator of the following fraction is strictly positive), of radius

2R · 5a»∣∣2xk · e1e1

∣∣2 − (5a)2
,

with, as above, S0(x) denoting the orthogonal symmetry of the vector x ∈
Rd with respect to the hyperplane {x ∈ Rd / x · e1 = 0}.
Thanks to the hypothesis on the distance with the obstacle (12.36), that
is :

ρ ≤ xk · e1,

and remembering that :

5√
3
a ≤ ρ, (12.41)

that is : √
4ρ2 − 25a2 ≥ ρ,

one has :
10Ra√

4(xk · e1)2 − 25a2
≤ 10Ra

ρ
,

which bounds from above the radius of the cylinder. So up to the exclusion
of the cylinder

K
(
S0(vk), 2xk · e1e1, 10Ra/ρ

)
, (12.42)
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for every τ such that 0 < min{τk, τk+1} < τ ≤ max{τk, τk+1}, one has :∣∣∣T k+1,ε
−τ ((Zk, xk + εω, v))X,k − T k+1,ε

−τ ((Zk, xk + εω, v))X,k+1
∣∣∣

> ε.

The measure of the intersection of the cylinder (12.42) with the ball B(0, R)
(in which v lies) is then controlled by

C(d)(4R)
(10Ra

ρ

)d−1

. (12.43)

– τ0 > max{τk, τk+1}:
Now, if the two particles k and k + 1 have already bounced against the
obstacle, that is if :

τ0 > max{τk, τk+1}

and ∣∣∣∣ ÄT k+1,ε
−τ0 (Zk, xk + εω, v)

äX,k
−
Ä
T k+1,ε
−τ0 (Zk, xk + εω, v)

äX,k+1
∣∣∣∣ = ε,

then

T k+1,ε
−τ0 ((Zk, xk + εω, v))X,k = Sε

(
xk − τ0vk

)
= (xk − τ0vk)− 2(xk − τ0vk) · e1e1 + εe1

=
(
xk − 2xk · e1e1 + εe1

)
− τ0

(
vk − 2vk · e1e1

)
= Sε(xk)− τ0S0(vk)

and

T k+1,ε
−τ0 ((Zk, xk + εω, v))X,k+1 = Sε(xk + εω)− τ0S0(v),

so that∣∣∣T k+1,ε
−τ0 ((Zk, xk + εω, v))X,k − T k+1,ε

−τ0 ((Zk, xk + εω, v))X,k+1
∣∣∣

=
∣∣∣(Sε(xk)− τ0S0(vk)

)
−
(
Sε(xk + εω)− τ0S0(v)

)∣∣∣
=
∣∣∣(xk − 2xk · e1e1 + εe1 − τ0S0(vk)

)
−
(
xk + εω − 2(xk + εω) · e1e1 + εe1 − τ0S0(v)

)∣∣∣
=
∣∣∣− εS0(ω)− τ0

(
S0(vk)− S0(v)

)∣∣∣
=
∣∣εω − τ0(v − vk)

∣∣,
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and even ∣∣∣∣T k+1,ε
−τ ((Zk, xk + εω, v))X,k

− T k+1,ε
−τ ((Zk, xk + εω, v))X,k+1

∣∣∣∣ > ε.

This quantity was assumed to be equal to ε, which is not possible except
if v = vk.

At this point, the condition (12.30) is verified (up to the sets which were
eliminated) for the case i = k, j = k + 1, and the only remaining case that
one has to check is when i < k and j = k + 1.

• i ≤ k − 1 and j = k + 1 :
For this last possibility in the choice of the particles which could contradict
the condition (12.30), one will simply use the Shooting Lemma 27 page 335
(in particular, one notices that no hypothesis on the distance between the
particles and the obstacle is required to apply this lemma). Indeed, for all
times τ before the time τ0 of the first violation of the separation inequality
(12.30), the particles do not interact with each other, and then one has of
course : (

T k+1,ε
−τ

(
Zk, xk + εω, v

))X,i
=
(
T 2,ε
−τ
(
xi, vi, xk + εω, v

))X,1
and (

T k+1,ε
−τ

(
Zk, xk + εω, v

))X,k+1

=
(
T 2,ε
−τ
(
xi, vi, xk + εω, v

))X,2
.

Therefore, by hypothesis, one has∣∣xi − xk∣∣ ≥ ε0,∣∣xi − xi∣∣ ≤ a,
and ∣∣xk − (xk + εω)

∣∣ ≤ a+ ε ≤ 2a.

One has to be careful here, since there are two possibilities : vi = vi, or
vi = S0(vi). Remembering that :

4
√

3a ≤ ε0, (12.44)

and taking ã = 2a, one recovers the hypothesis (12.21) of Lemma 27 page 335,
so it can be applied there twice (one for each possible value of the velocity
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vi), and therefore, up to assuming that :

v /∈
(
K(vi, xi − xk, 24Ra/ε0) ∪K

(
S0(vi),S0

(
xi − Sε(xk)

)
, 24Ra/ε0

)
∪K

(
S0(vi),Sε(xi)− xk, 24Ra/ε0)

)
∪
(
K
(
S0(vi), xi − xk, 24Ra/ε0

)
∪K

(
vi,S0

(
xi − Sε(xk)

)
, 24Ra/ε0

)
∪K

(
vi,Sε(xi)− xk, 24Ra/ε0)

)
, (12.45)

then
(
xi, vi, xk + εω, v

)
∈ Gε2(ε). Therefore, up to the exclusion of those cylin-

ders, the first recollision cannot be between the particles i and k+1. The size
of the six cylinders (12.45) is controlled by

6C(d)(4R)
(24Ra

ε0

)d−1

(12.46)

Finally, all the possible cases of a recollision from the configuration
(
Zk, xk +

εω, v
)

have been investigated so far in the pre-collisional case.

The post-collisional case for the hard sphere dynamics : the con-
dition (12.32)

One finishes the study of the conditions concerning the hard sphere dynamics
with the post-collisional case, that is when ω · (v − vk) > 0.

In this case, the particles k and k + 1 form a post-collisional pair, and ac-
cording to the definition of the hard sphere dynamics, their respective velocities
are changed into v′k and v′ (see Definition 1 page 51 in which the scattering
operator is introduced) before being transported. Then, one has to do the same
work as for the previous part of the proof, since

(
xk, v

′
k, xk + εω, v′

)
is a pair

of particles in a pre-collisional configuration. One wants to be sure that there is
no strictly positive time τ and no couple of integers 1 ≤ i < j ≤ k+ 1 violating
the condition (12.32).
One considers then, as for the pre-collisional configuration, the smallest time τ0
such that :∣∣∣(T k+1,ε

−τ0
(
xk, v

′
k, xk+εω, v′

))X,i
−
(
T k+1,ε
−τ0

(
xk, v

′
k, xk + εω, v′

))X,j∣∣∣ = ε.

A significant difference with the pre-collisional case is the following. One will
have to exclude not only some velocities v, but also some angular parameters ω.

• 1 ≤ i < j ≤ k − 1 :
A simple remark, as in the case 1 ≤ i < j ≤ k for a pre-collisional configura-
tion, enables to solve this case : the change of the velocities produced by the
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scattering due to the post-collisional configuration does not affect the veloc-
ities of the particle i for 1 ≤ i ≤ k − 1, and since by hypothesis Zk ∈ Gεk(ε),
the first recollision cannot be between two such particles.
Of course, the scattering has modified the velocity of the particle k, so this
argument cannot be used for j = k.

• 1 ≤ i ≤ k − 1 and j = k :
After the collision, the velocity vk of the particle k is modified into v′k by the
scattering operator (see Definition 1 page 51), so one can imagine that the
condition (12.32) can be violated, for some i ≤ k − 1 and j = k. But since∣∣xi − xk∣∣ ≥ ε0,

and ∣∣xi − xi∣∣ ≤ a and
∣∣xk − xk∣∣ ≤ a,

remembering that

2
√

3a ≤ ε0, (12.47)

one can apply twice (for vi = vi, and for vi = S0

(
vi
)
) Lemma 27 with ã = a,

so that up to the exclusion of the following union of cylinders :(
K
(
vi, xi − xk, 12Ra/ε0

)
∪K

(
S0(vi),S0

(
xi − Sε(xk)

)
, 12Ra/ε0

)
∪K(S0(vi),Sε(xi)− xk, 12Ra/ε0)

)
∪
(
K
(
S0(vi), xi − xk, 12Ra/ε0

)
∪K

(
vi,S0

(
xi − Sε(xk)

)
, 12Ra/ε0

)
∪K

(
vi,Sε(xi)− xk, 12Ra/ε0

))
, (12.48)

in which v′k is chosen, one can assert that if the configuration(
Zk, xk + εω, v

)′
k,k+1

leads to a first recollision, then it will not be between the particles i and k.

• 1 ≤ i ≤ k − 1 and j = k + 1 :
Similarly, one wants to prevent a first recollision between the particles 1 ≤
i ≤ k − 1 and j = k + 1.
Thanks to the work done above for the pre-collisional case, if one knows that
v′ does not belong to the family of cylinders (12.45) page 356, then the first
recollision cannot imply the particles i ≤ k − 1 and k + 1.

• i = k and j = k + 1 :
Finally, one wants to prevent a first recollision between the particles k and
k + 1. Such a recollision would lead to the existence of a time τ0 > 0 such
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that : ∣∣∣(T k+1,ε
−τ0

((
Zk, xk + εω, vk+1

)′
k,k+1

))X,k
−
(
T k+1,ε
−τ0

((
Zk, xk + εω, vk+1

)′
k,k+1

))X,k+1∣∣∣ = ε.

One cannot copy here the work done above in the pre-collisional case : indeed,
the trajectories, after the scattering, are defined with the two velocities v′k and
v′, which both depends on v, and, even more seriously, on ω. Previously, at
most one of the two velocities was depending on v.
By hypothesis, since (xk, v

′
k) and (xk + εω, v′k+1) form a pre-collisional pair,

no recollision can happen if none of the particles, or both particles already
have bounced against the obstacle, that is the recollision is possible only if
min{τk, τk+1} < τ0 ≤ max{τk, τk+1}.
In the case when min{τk, τk+1} < τ0 < max{τk, τk+1}, one has then, as for
the pre-collisional case, and for the two cases τk = min{τk, τk+1} or τk+1 =
min{τk, τk+1} : ∣∣2xk · e1e1 + εω − εe1 − τ0

(
v′ − S0

(
v′k
))∣∣ = ε.

As for the pre-collisional case, one obtains that the vector v′−S0

(
v′k
)

belongs
to the cylinder of origin 0 ∈ Rd, of axis 2xk · e1e1, and of radius

10Ra

ρ
.

However this is not a satisfactory condition, since it seems hard to deduce
from it something on v itself. It is not even possible to consider ω fixed
and to apply the Scattering Lemma for cylinders, since the question of the
dependency on ω of the subset excluded by the Scattering Lemma seems not
obvious to master at all.
The idea for getting rid of the complicated dependency on v and ω of the
difference

v′ − S0

(
v′k
)

appearing in the last recollision equation, and for recovering a condition on v
alone, is to write :

v′ − S0

(
v′k
)

= v′ − v′k −
(
S0(v′k)− v′k

)
.

On the one hand, using the very definition of the scattering of the velocities
(vk, v) with angular parameter ω (see Definition 1 page 51), one has :

v′ − v′k =
(
v − vk

)
− 2
(
v − vk

)
· ωω.

On the other hand, one notices that

S0(v′k)− v′k
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is colinear to e1. But of course, for any vector x, and for any scalar λ, x
belongs to the cylinder K(0, y, ρ) if and only if

x+ λy

belongs to the same cylinder (see Definition 50 page 334 for the notation and
the definition of the cylinders). Therefore, v′−S0

(
v′k
)

belongs to the cylinder

K
(
0, e1, 10Ra/ρ

)
(12.49)

if and only if (
v − vk

)
− 2
(
v − vk

)
· ωω

belongs to the same cylinder. At this step, one has recovered a condition on
v instead of a condition on v′. However, the condition on the velocity v still
depends on ω.

Now one notices that

κ : x ∈ Rd 7→ x− 2x · ωω ∈ Rd

is the orthogonal symmetry with respect to ω, which is of course an involution.
Therefore, (

v − vk
)
− 2
(
v − vk

)
· ωω

belongs to
K(0, e1, 10Ra/ρ)

if and only if

κ
((
v − vk

)
− 2
(
v − vk

)
· ωω

) [
= κ2

(
v − vk

)
= v − vk

]
belongs to

κ
(
K(0, e1, 10Ra/ρ)

)
= K

(
0, κ(e1), 10Ra/ρ

)
.

Therefore, if one excludes among the angular and velocity adjunction param-
eters

(
ω, v

)
∈ Sd−1 × Rd the subset( ⋃

ω∈Sd−1

{ω} ×K
(
vk, e1 − 2e1 · ωω, 10Ra/ρ

))
, (12.50)

then the first recollision will not be between the particles k and k + 1.

The size of the subset (12.50) is then controlled by

C(d)(4R)
(
10Ra/ρ

)d−1
, (12.51)

with C(d) a constant depending only on the dimension, using the fact that∣∣v − vk∣∣ ≤ 2R.
One notices here that the Scattering Lemma was not useful for the specific
case of the recollision between k and k + 1.
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Back to the cases not totally solved (namely (1 ≤ i ≤ k − 1 and j = k) and
(1 ≤ i ≤ k − 1 and j = k + 1)), one obtained conditions on v′ and v′k, which
have not to belong to cylinders depending on the configuration Zk. To be more
explicit, one obtained the two unions of cylinders (12.48) page 357 and (12.45)
page 356. One sees in fact that the subset (12.48) is contained in the subset
(12.45), since they are defined with cylinders with the same origins and the
same axis, while the radii are larger in the case of (12.45).
Those exclusion conditions hold on the velocity v′, and one wishes to translate
this condition into conditions on v and ω. Thanks to the Scattering Lemma for
cylinders 29 page 345, it is possible to exclude six subsets of Sd−1×B(0, R) such
that if (ω, v) does not belong to those subsets, then neither v′ nor v′k belong to
any of the six cylinders described just above. Moreover, the size of each of those
subset is also controlled thanks to the Scattering Lemma for cylinders. Namely,
the size of each of those subset is smaller than

C5(d)Rd+1/2

Å
24Ra

ε0

ãd−3/2

where C5 is the constant, depending only on the dimension d, given by the
Scattering Lemma 29, that is :

C(d)R2d−1
( a
ε0

)d−3/2

, (12.52)

with
C(d) = 24d−3/2C5(d).

The conditions on the free flow dynamics with boundary condition

One now focuses on the conditions for the free flow dynamics. One wants to
show that if Zk belongs to G0

k(ε0), then except for a small subset of angular and
velocity adjunction parameters (ω, v), the new configuration of k + 1 particles
(possibly after the application of the scattering, depending on the pre or post-
collisional character of the configuration (vk, v) with angular parameter ω), the
new configuration (

Zk, xk, v
)

is also an element of G0
k+1(ε0) (possibly after a small time).

The pre-collisional case for the free flow dynamics with boundary
condition : the condition (12.31)

As for the hard sphere dynamics, one will consider different cases, by studying
all the possible ways to choose a pair of particles which contradict the condition
(12.31) page 346, and see what it implies on the adjunction parameters.

• 1 ≤ i < j ≤ k :

This case is by far the easiest to solve. By hypothesis, the configuration Zk
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belongs to G0
k(ε0), which means that for every pair of particles 1 ≤ i < j ≤ k

and for any strictly positive time τ :∣∣∣(T k,0−τ (Zk))X,i − (T k,0−τ (Zk))X,k∣∣∣ > ε0.

But since the particles do not interact with each other in the free flow with
boundary condition dynamics, one has for all 1 ≤ i ≤ k and all τ ≥ 0 :(

T k,0−τ
(
Zk
))X,i

=
(
T k+1,0
−τ

(
Zk, xk, v

))X,i
,

so in particular one deduces that for all τ ≥ δ :∣∣∣(T k+1,0
−τ

(
Zk,xk, v

))X,i
−
(
T k+1,0
−τ

(
Zk, xk, v

))X,j∣∣∣ ≥ ε0.

• i = k and j = k + 1 :
One writes explicitly the trajectory of the free flow with boundary condition
here.
One denotes τ0 any time such that∣∣∣(T k+1,0

−τ0
(
Zk, xk, v

))X,k
−
(
T k+1,0
−τ0

(
Zk, xk, v

))X,k+1∣∣∣ ≤ ε0.

Clearly, if
((
T k+1,0
−τ0

(
Zk, xk, v

))X,k)
· e1 ≥ 0, one has :

(
T k+1,0
−τ0

(
Zk, xk, v

))X,k
= xk − τ0vk,

and if not, one has :(
T k+1,0
−τ0

(
Zk, xk, v

))X,k
= S0

(
xk − τ0vk

)
.

Similarly, for the particle k + 1, if
((
T k+1,0
−τ0

(
Zk, xk, v

))X,k+1)
· e1 ≥ 0, one

has : (
T k+1,0
−τ0

(
Zk, xk, v

))X,k+1

= xk − τ0v,

and if not, one has :(
T k+1,0
−τ0

(
Zk, xk, v

))X,k+1

= S0

(
xk − τ0v

)
.

Therefore, the quantity∣∣∣(T k+1,0
−τ0

(
Zk, xk, v

))X,k
−
(
T k+1,0
−τ0

(
Zk, xk, v

))X,k+1∣∣∣
can be only equal to∣∣(xk − τ0vk)− (xk − τ0v)∣∣ = τ0

∣∣v − vk∣∣
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or to ∣∣S0

(
xk − τ0vk

)
−
(
xk − τ0v

)∣∣ =
∣∣τ0(v − S0(vk)

)
−
(
S0(xk)− xk

)∣∣.
In the first case, for any strictly positive number η, up to the exclusion of the
ball

B(vk, η)

in the set of admissible v contained in B(0, R), one can assume that∣∣v − vk∣∣ > η. (12.53)

Under this assumption, one has :∣∣∣(T k+1,0
−τ0

(
Zk, xk, v

))X,k
−
(
T k+1,0
−τ0

(
Zk, xk, v

))X,k+1∣∣∣ = τ0
∣∣v − vk∣∣ > τ0η,

and if τ0 ≥ δ, then of course :∣∣∣(T k+1,0
−τ0

(
Zk, xk, v

))X,k
−
(
T k+1,0
−τ0

(
Zk, xk, v

))X,k+1∣∣∣ > δη,

so a soon as

ε0 ≤ δη (12.54)

(as assumed in the proposition), the separation condition is recovered.
In the second case∣∣∣(T k+1,0

−τ0
(
Zk, xk, v

))X,k
−
(
T k+1,0
−τ0

(
Zk, xk, v

))X,k+1∣∣∣
=
∣∣τ0(v − S0(vk)

)
−
(
S0(xk)− xk

)∣∣,
the condition of closeness exactly means that :∣∣τ0(v − S0(vk)

)
−
(
S0(xk)− xk

)∣∣ ≤ ε0.

Noticing that :

S0(xk)− xk = xk − 2xk · e1e1 − xk = −2xk · e1e1,

and proceeding as in the Shooting Lemma, one sees that for any unitary vector
u orthogonal to e1 :

τ0
∣∣u · (v − S0(vk)

)∣∣ =
∣∣u · (τ0(v − S0(vk)

)
−
(
S0(xk)− xk

))∣∣
≤
∣∣τ0(v − S0(vk)

)
−
(
S0(xk)− xk

)∣∣ ≤ ε0.

Assuming that τ0 ≥ δ, this condition is implied by the (less stringent) condi-
tion ∣∣u · (v − S0(vk)

)∣∣ ≤ ε0/δ,
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and since u is any unitary and orthogonal to e1 vector, this condition exactly
means that v belongs to the cylinder

K
(
S0(vk), e1, ε0/δ

)
. (12.55)

In summary, if v does not belong to the subsets described in (12.53) or (12.55),
then the particles k and k+ 1 will be at a distance larger than ε0 after a time
δ, and the measure of the union of those two subsets is controlled by :

C(d)
(
ηd +R

(ε0

δ

)d−1)
. (12.56)

• 1 ≤ i ≤ k − 1 and j = k + 1 :
In this case, the problem of choosing the velocity v in such a way that the
particles i (≤ k − 1) and k stay at a distance large enough from each other
will be solved thanks to the first point (12.22) of the Shooting Lemma 27
page 335, which can be applied directly (the first point of the lemma does not
require a relation of comparison between a and ε0, for example). Then, up to
the exclusion of the union of the two cylinders :

K
(
vi, xi − xk, ε0/δ

)
∪K

(
S0(vi),S0(xi)− xk, ε0/δ

)
, (12.57)

the particles i and k + 1 will be at a distance larger than ε0 after a time δ,
which ends the study of the pre-collisional case. The size of the union of those
two cylinders is then controlled by

2C(d)R
(ε0

δ

)d−1

. (12.58)

The post-collisional case for the free flow dynamics with boundary
condition : the condition (12.33)

One finally studies the pathological adjunction parameters for the free flow dy-
namics with boundary condition, in the case of a post-collisional configuration.

• 1 ≤ i < j ≤ k − 1 :
Only the velocities of the particles k and k + 1 are modified by the scat-
tering, so this case does not present more pathological velocities leading
to a small difference in position between the particles 1 ≤ i < j ≤ k − 1
than the pre-collisional case. In this situation, one will always have∣∣∣(T k+1,0

−τ
(
Zk, xk, v

))X,i
−
(
T k+1,0
−τ

(
Zk, xk, v

))X,j∣∣∣ > ε0.

• 1 ≤ i ≤ k − 1 and j = k :
In this situation, it is sufficient to apply the first point of the Shooting
Lemma 27 to the configuration(

xi, vi, xk, v
′
k

)
.
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Up to choosing v′k outside of the union of the two cylinders

K
(
vi, xi − xk, ε0/δ

)
∪K

(
S0(vi),S0(xi)− xk, ε0/δ

)
(12.59)

the separation condition (12.33) is obtained for any pair of particles 1 ≤
i ≤ k − 1 and k.

• 1 ≤ i ≤ k − 1 and k + 1 :
Exactly as for the previous point, up to choosing v′ outside of the union
of the two cylinders

K
(
vi, xi − xk, ε0/δ

)
∪K

(
S0(vi),S0(xi)− xk, ε0/δ

)
(12.60)

the separation condition (12.33) is obtained for any pair of particles 1 ≤
i ≤ k − 1 and k + 1.

• i = k and j = k + 1 :
As for the pre-collisional case, the violation of the condition (12.33) writes
in this case :

τ0
∣∣v′ − v′k∣∣ ≤ ε0

or ∣∣τ0(v′ − S0(v′k)
)
−
(
S0(xk)− xk

)∣∣ ≤ ε0.

Assuming that the post-collisional velocity v′ does not belong to the ball
B(v′k, η), one gets :

τ0
∣∣v′ − v′k∣∣ > τ0η.

For τ0 ≥ δ, one uses the condition (12.54) assumed in the proposition :

ε0 ≤ δη, (12.61)

so that the condition (12.33) is fulfilled. However, the assumption v′ /∈
B(v′k, η) is not satisfactory since it is not a condition on v and ω. But a
simple consequence of the definition of the scattering operator (see Def-
inition 1 page 51) that is the conservation of the kinetic energy in the
center-of-mass frame, implies that the following equation holds :∣∣v′ − v′k∣∣ =

∣∣v − vk∣∣.
This means of course that v′ belongs to the ball B

(
v′k, η

)
if and only if v

belongs to the ball B
(
vk, η

)
. Therefore, the condition∣∣v − vk∣∣ > η (12.62)

enables, exactly as for the pre-collisional case, to recover the separation
condition (12.33).
Finally studying carefully the condition∣∣τ0(v′ − S0(v′k)

)
−
(
S0(xk)− xk

)∣∣ ≤ ε0,
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one deduces using the same arguments as above, first (as for the pre-
collisional situation with the free flow dynamics) that the vector

v′ − S0(v′k)

belongs to the cylinder of origin 0, axis e1 and of radius ε0/δ when τ0 ≥ δ.
Second, using again the decomposition (as for the post-collisional situation
with the hard sphere dynamics) :

v′ − S0

(
v′k
)

= v′ − v′k −
(
S0(v′k)− v′k

)
,

one deduces that the vector(
v − vk

)
− 2
(
v − vk

)
· ωω

belongs to the cylinder
K
(
0, e1, ε0/δ

)
,

which implies that the vector v − vk belongs to the cylinder

K
(
0, e1 − 2e1 · ωω, ε0/δ

)
.

Therefore, one excludes in this case( ⋃
ω∈Sd−1

{ω} ×K
(
0, e1 − 2e1 · ωω, ε0/δ

))
. (12.63)

The size of the excluded subset (12.63) is then controlled by

C(d)(4R)
(
ε0/δ

)d−1
, (12.64)

with C(d) a constant depending only on the dimension.

As for the hard sphere dynamics, one will finally apply the Scattering Lemma
29 page 345 to conclude the study of the remaining cases (1 ≤ i ≤ k − 1 and
j = k), and (1 ≤ i ≤ k − 1 and j = k + 1). This lemma states that there exists
a subset of Sd−1 × Rd such that if (ω, v) does not belong to this subset, then
v′ nor v′k do not belong to the two cylinders, described in (12.59) or in (12.60).
Moreover, the size of this subset is controlled by

C(d)Rd+1/2
(ε0

δ

)d−3/2

. (12.65)

Collect of the hypotheses and cut-offs coming from the different cases

In summary, for the hard sphere dynamics, regardless the fact that the config-
uration is pre or post-collisional, one has assumed :

• the conditions (12.38) page 350 and (12.39) page 350, that is

5a ≤ ε0 and 3a ≤ ρ

so that the new configuration
(
Zs, xk + εω, v

)
belongs to Dεk+1,
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• the conditions (12.41) page 353, (12.44) page 355 and (12.47) page 357, that
is

5√
3
a ≤ ρ, 4

√
3a ≤ ε0 and 2

√
3a ≤ ε0

so that outside of the following excluded subsets, the dynamics of the new
system of hard spheres will not undergo a recollision.

Thanks to those assumptions, one has excluded the following subsets among the
angular and velocity adjunction parameters (ω, v) ∈ Sd−1 ×B(0, R) :

• the cylinder (12.42) page 353 (with a size smaller than (12.51) page 359),

• the six cylinders described in (12.45) page 356 (the size of their union being
controlled by (12.52) page 360) for each integer 1 ≤ i ≤ k−1, so that one has
to remove in fact 6(k − 1) cylinders from B(0, R),

• the images by the scattering operator of the 12(k − 1) cylinders given by
(12.48) page 357 and (12.45) page 356, corresponding in fact, due to an obvi-
ous inclusion, to the images by the scattering of the 6(k−1) cylinders (12.45)
page 356 (the size of each of those images is controlled by (12.52) page 360),

• the family of cylinders, parametrized with the angular parameter ω lying in
the sphere Sd−1, and given by (12.50) page 359 this family (which is a subset
of Sd−1 ×B(0, R), having a measure controlled by (12.51) page 359).

The union of those 12(k − 1) + 3 subsets of Sd−1 ×B(0, R) will be denoted :

B̃k
(ε)

(R, ε, a, ε0, ρ)(Zk),

it corresponds therefore to the set of adjunction parameters (ω, v) that one has
to exclude to keep the new system of k + 1 particles in a good configuration
for the hard sphere dynamics, separated by at least ε, and it has a size smaller
than :

C(d)
(
Rd
(a
ρ

)d−1

+6(k − 1)Rd
( a
ε0

)d−1

+ 6(k − 1)R2d−1
( a
ε0

)d−3/2

+Rd
(a
ρ

)d−1)
. (12.66)

For the free-flow dynamics with boundary condition, one has only assumed
(12.54) page 362 and (12.61) page 364, which is in fact only one condition,
namely

ε0 ≤ δη,

and one has excluded the following subsets from Sd−1×B(0, R) for the adjunc-
tion parameters (ω, v) :



12.2. GEOMETRIC LEMMAS 367

• the ball of velocities too close to vk (condition (12.53) page 362) and the
cylinder (12.55) page 363 (the measure of the union of those subsets being
controlled by (12.56) page 363),

• for every integer 1 ≤ i ≤ k − 1, the pair of cylinders (12.57) page 363 (of
which the size is controlled by (12.58) page 363), so in the end, one excludes
here 2(k − 1) cylinders,

• the images by the scattering operator of the 2(k−1) cylinders given by the two
conditions (giving, for every integer 1 ≤ i ≤ k− 1, the same pair of cylinders)
(12.59) page 364 and (12.60) page 364 (and the size of each of those image is
controlled by (12.65) page 365),

• since the exclusion of the ball (12.62) page 364 has already been done pre-
viously (condition (12.53) page 362) one finishes by excluding the family of
cylinders, parametrized with the angular parameter ω lying in the sphere
Sd−1, and given by (12.63) page 365 (this family, which is a subset of Sd−1 ×
B(0, R), having a measure controlled by (12.64) page 365).

This union of those 4k − 1 subsets of Sd−1 ×B(0, R) will be denoted :

B̃k
(ε0)

(R, δ, ε, ε0, η)(Zk),

and here it corresponds to the set of ajdunction parameters (ω, v) that one has
excluded to keep again the new system of k+1 particles in a good configuration
for the free-flow dynamics with boundary condition, separated by at least ε0,
for any time larger than δ, and it has a size smaller than :

C(d)
(
ηd +R

(ε0

δ

)d−1

+ 2(k − 1)R
(ε0

δ

)d−1

+ 2(k − 1)Rd+1/2
(ε0

δ

)d−3/2

+R
(ε0

δ

)d−1)
. (12.67)

It is clear at this step that one will consider the set :

B̃k
(ε)

(R, ε, a, ε0, ρ)(Zk) ∪ B̃k
(ε0)

(R, δ, ε, ε0, η)(Zk),

denoted as :

B̃k(R, δ, ε, a, ε0, ρ, η)(Zk)

(the dependency on ε is through the axis of the excluded cylinders), in order
to obtain a subset of Sd−1×Rd that contains Bk(R, δ, ε, a, ε0)(Zk). Besides, the

size of B̃k(R, δ, ε, a, ε0, ρ, η)(Zk) is given by the size of its two parts, the first
being controlled by (12.66), and the second by (12.67), hence the control (12.37)
of the lemma about the size, up to assuming in the end that :

R ≥ 1, a/ε0 ≤ 1 and ε0/δ ≤ 1.
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Finally, the measurability of⋃
Zk∈ Gk(ε0),
xk·e1>ρ

{Zk} × B̃k(R, δ, ε, a, ε0, ρ, η)(Zk)

is a simple consequence of the fact that all the subsets composing B̃k are given
by regular parametrizations, which depend in addition smoothly on the configu-
ration Zk for most of them, and for the others, that is the ones defined with the
scattering operator, one recalls that this operator is a continuous involution.

Remark 33. It is absolutely crucial here to notice that one needs to introduce
a cut-off on the distance between the particle k (on which one adds formally
another particle), and the obstacle. In the following, it will be important to
evaluate the possible cases in which particles are indeed close to the obstacle,
and if possible, control the size of those events.

12.2.5 Taking into account the cut-off in proximity with
the obstacle

In Proposition 16, an important hypothesis is the bound from below concerning
the distance between the particle colliding (named k in the proposition) and
the obstacle in order to exclude only a set of velocities of small size. Since one
cannot have a restrictive condition on the position, one will try to prevent the
infringement of this hypothesis by cutting again some small subsets off in the
domains of integration of the elements of the decomposition of the solutions.

Translating the condition of proximity with the obstacle in terms of
non-grazing trajectories and small pathological times intervals

It is not possible to cut off all the initial configurations leading to a bouncing
against the obstacle such that the measure of this cut-off remains small. Indeed,
in particular for a single particle it means that one would have to cut all the
initial speeds off leading to a collision, that is, half of the sphere in which the
initial velocities are chosen.
So the solution is to make small the set of times during which the particle chosen
for the adjunction is close to the obstacle. It implies two things : removing the
grazing collisions (otherwise one can imagine very large time intervals in which
a particle remains close to the obstacle), and once it is done, removing the times
which are still problematic, but which are only few now thanks to the cut-off in
grazing trajectories.

Considering a small parameter α � 1, and assuming that a velocity v veri-
fies

|v · e1| > α,
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then if a particle starts with such a velocity from a position x ∈
{
x · e1 > ε/2

}
,

the size of the time interval such that

|T 1,ε
−τ (x, v) · e1| ≤ ρ

is then smaller than
2ρ/α.

If now k particles starting from Zk are in good configuration and such that

|
Ä
T k,ε−τ (Zk)

äV,i
· e1| > α for all i ∈ {1, ..., k} and τ ≥ 0, and if one adds to the

particle k another one (that is one adds a particle starting from (xk+εω, vk+1))
such that (xk, vk) and (xk + εω, vk+1) are in a pre-collisional configuration, it is
clear that to fulfill the condition∣∣∣∣ÄT k+1,ε

−τ

äX,k+1
· e1

∣∣∣∣ > α,

one has just to exclude the set

{v / |v · e1| ≤ α}

of the ball in which vs+1 is chosen. Then, if the radius of the ball in which the
velocity v is chosen is, say, R, then the excluded set as a size smaller than

C(d)Rd−1α, (12.68)

with C(d) depending only on the dimension.

Scattering lemma for excluded spaces between two hyperplanes : re-
moving grazing trajectories after the scattering

Now if (xk, vk) and (xk + εω, vk+1) are in a post-collisional configuration, one
needs to control the size of the subset of adjunction parameters (ω, vk+1) such
that this configuration, after the scattering, contains particles following a grazing
trajectory.
In other words, one needs a similar result as the control obtained in Lemma 29
page 345.

Definition 52 (Adjunction parameters inducing grazing collisions after scatter-
ing). For any v1 ∈ B(0, R), one will call the subset of the adjunction parameters
inducing grazing collisions after adding a particle to another one with velocity
v1 and after scattering, and one will denote

N ∗(R,α)(v1) ⊂ Sd−1 ×B(0, R)

for the set defined by :

N ∗(R,α)(v1) =

ß
(ω, v2) ∈ Sd−1 ×B(0, R) / (v2 − v1) · ω > 0,

v′1 ∈ {|v · e1| ≤ α} or v′2 ∈ {|v · e1| ≤ α}
™
.
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Since one wants to remove the grazing trajectories, one needs to control the size
of this subset N ∗(R,α)(v1). To do so, one will use the following lemma.

Lemma 30 (Control of the measure of the part of a sphere contained between
two parallel hyperplanes). Let α, r and R be three strictly positive numbers.
One recalls that e1 denotes the first vector of the canonical basis of the Euclidean
space Rd.
In the case d = 2, if

R ≥ 1, α ≤ min

ß
1,
(R

6

)2

,
(1− (

√
3−
√

2)
√

3
2 +

√
2

)2
™
, 2
√
α ≤ r ≤ 2R,

and if ∣∣x · e1

∣∣ ≤ r −√α,
one has ∣∣∣{y ∈ ∂B(x, r) /

∣∣y · e1

∣∣ ≤ α}∣∣∣ ≤ √Rα1/4. (12.69)

In the case d ≥ 3, there exists a constant C(d) depending only on the dimension
such that if r ≤ 2R, one has∣∣∣{y ∈ ∂B(x, r) /

∣∣y · e1

∣∣ ≤ α}∣∣∣ ≤ C(d)rd−2α. (12.70)

Proof. For α, r and R three strictly positive numbers, x ∈ B(0, R) and a given
ball of Rd, centered on x and of radius r such that :

r ≤ 2R,

one will study the size of the subset consisting of the points of the boundary
of the ball B(x, r) contained between the two hyperplanes {y · e1 = α} and
{y · e1 = −α}. In other words, one studies the size of the set :

{y ∈ ∂B(x, r) / |y · e1| ≤ α} . (12.71)

One denotes the quantity |x·e1| by p. Without loss of generality, one will assume
that

x · e1 ≥ 0,

that is x ·e1 = p. There are, depending on the radius r, the distance 2α between
the two planes and the distance p between the center of the ball B(x, r) and the
plane

{
x ∈ Rd / x · e1 = 0

}
, three possible cases.

• The case r < p− α : the trival case of the empty intersection.
If p − α > r, one has the configuration represented on the following Figure
12.8, for every y ∈ ∂B(x, r) ⊂ B(x, r) :

|y · e1| = |x · e1 + (y − x) · e1|
≥ |x · e1| − |(y − x) · e1|
≥ p− r > α,
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so that {
y ∈ ∂B(x, r) / |y · e1| ≤ α

}
= ∅,

and one immediately gets∣∣∣{y ∈ ∂B(x, r) / |y · e1| ≤ α
}∣∣∣ = 0. (12.72)

Figure 12.8: The first case r < p− α.

• The case r ≥ p− α, and
[
r ≤ p+ α or r ≤ α

]
: the case of the ball which does

not cross the two planes delimiting the space −α ≤ x · e1 ≤ α.
Here there are two subcases, the first one (r ≤ p + α) is represented on the
following Figure 12.9. Those two cases are somehow intermediate cases.

For the subcase r ≤ α, one has obviously{
y ∈ ∂B(x, r) / |y · e1| ≤ α

}
⊂
{
y ∈ ∂B(x, r)

}
,

so that of course for the subcase r ≥ p− α, r < α, one has∣∣∣{y ∈ ∂B(x, r) / |y · e1| ≤ α
}∣∣∣ ≤ ∣∣∂B(x, r)

∣∣ = C(d)rd−1, (12.73)

with C(d) denoting a constant depending only on the dimension d.
This equation provides, on the one hand, the control (12.69) of the lemma
(concerning the case when d = 2) in the particular case r ≤ α, since one has

rd−1 = r ≤ α ≤
√
Rα1/4,
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Figure 12.9: The case p− α ≤ r ≤ p+ α.

since α ≤ 1 and R ≥ 1.
On the other hand, it provides also the control (12.70) of the lemma (concern-
ing the case d ≥ 3) in the particular case r ≤ α, since one has immediately,
using the hypothesis r ≤ α :

rd−1 ≤ rd−2α.

For the subcase r ≤ p + α (which does not exclude the previous subcase
r ≤ α), one will in fact reduce the study of this case to the case in which the
ball is crossing entirely the space −α ≤ x · e1 ≤ α between the planes if the
radius of the ball is large enough, or to the case in which the ball is entirely
contained in the space −α ≤ x · e1 ≤ α between the two planes, if the radius
of the ball is small compared to the distance 2α between the planes.
The idea for this reduction is pictured in Figure 12.10 below.
Dividing the interval [−α, α] (which has to be seen as a subset of the vectorial
line generated by the vector e1) into two parts [−α, p− r[ and [p− r, α], the
first corresponding to none of the scalar products y · e1, for any y belonging
to the boundary of the ball B(x, r). Indeed :

y · e1 = x · e1 + (y − x) · e1

≥ p− |(x− y) · e1|
≥ p− r.

Then one sees, using α ≤ p− r + 2α (which is equivalent to r ≤ p+ α), that
the following inclusion holds :{
y ∈ ∂B(x, r) / |y · e1| ≤ α

}
⊂
{
y ∈ ∂B(x, r) / p− r ≤ y · e1 ≤ p− r + 2α

}
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Figure 12.10: An illustration of the idea which enables to state the inequality
(12.74).

so that : ∣∣∣{y ∈ ∂B(x, r) / |y · e1| ≤ α
}∣∣∣

in the case when p > r−α is smaller than the measure of the same set in the
case when p = r − α. In other words, if r − α ≤ p ≤ r + α, then∣∣∣{y ∈ ∂B(x, r) / |y · e1| ≤ α

}∣∣∣ ≤ ∣∣∣{y ∈ ∂B((r − α) e1, r) / |y · e1| ≤ α
}∣∣∣.

(12.74)

• The case r > p+ α and r > α : the case of the ball which crosses the two
planes delimiting the space −α ≤ x · e1 ≤ α.
In this case, one will compute explicitly the measure of the subset (12.71),
with two subcases depending on the dimension d.

First, one assumes that d ≥ 3.
In this case, the explicit computation provides

{
y ∈ ∂B(x, r) / |y · e1| ≤ α

}
=

∫
(x+rSd−1)∩{|y·e1|≤α}

dS

=

∫
[p−r,p+r]∩[−α,α]

∣∣(»r2 − (p− z)2)Sd−2
∣∣dz,
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where x+ rSd−1 denotes :{
y ∈ Rd / ∃ ωd ∈ Sd−1 / y = x+ rωd

}
= ∂B(x, r),

and (
√
r2 − (p− y)2)Sd−2 denotes the submanifold of codimension 1 of Rd−1

defined as :{
z ∈ Rd−1 / ∃ ωd−1 ∈ Sd−2 / z =

»
r2 − (p− y)2ωd−1

}
.

From the hypothesis p < r − α, one sees immediately that p − r < −α.
Remembering that r > α, one has :

p+ r > p+ α ≥ α,

so that of course :

[−α, α] ⊂ [p− r, p+ r],

and then one can easily complete the computation :∣∣∣{y ∈ ∂B(x, r) / |y · e1| ≤ α
}∣∣∣ =

∫ α

−α
(r2 − (p− y)2)

d−2
2

∣∣Sd−2
∣∣dy,

so that one obtains :∣∣∣{y ∈ ∂B(x, r) / |y · e1| ≤ α
}∣∣∣ = C(d)rd−1

∫ α−p
r

− (α+p)
r

(
1− u2

) d−2
2 du. (12.75)

The function :

p 7→
∫ α−p

r

− (α+p)
r

(1− u2)
d−2
2 du

is defined and differentiable on the whole interval [0, r − α] since u 7→ (1 −
u2)

d−2
2 is defined and continuous on [−1, 1], and since p < r−α and p+r > α,

one obtains −1 ≤ −α−pr and α−p
r ≤ 1. Thanks to the following inequality :

∂

∂p

∫ α−p
r

− (α+p)
r

(
1− u2

) d−2
2 du =

1

r

[Å
1−

(p+ α

r

)2ã d−2
2

−
Å

1−
(p− α

r

)2ã d−2
2

]
(12.76)

≤ 0

for p ≥ 0 (since the function (1−u2)
d−2
2 is decreasing), and since |p−α| ≤ p+α

for all p ≥ 0, one can write :∫ α−p
r

− (α+p)
r

(
1− u2

) d−2
2 du ≤ 2

∫ α/r

0

(1− u2)
d−2
2 du ≤ 2α/r.
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This last control concludes the study in the case when d ≥ 3, r > α and
p ≤ r − α :∣∣∣{y ∈ ∂B(x, r) / |y · e1| ≤ α

}∣∣∣ ≤ C(d)rd−1α

r
= C(d)rd−2α. (12.77)

Moreover, when r > α and r − α ≤ p ≤ r + α (which was the second case
studied), one can complete the result obtained above :∣∣∣{y ∈ ∂B(x, r) / |y · e1| ≤ α

}∣∣∣ ≤ C(d)rd−2α,

since the right-hand side of the inequality (12.74) page 373, which writes∣∣∣{y ∈ ∂B((r − α) e1, r) / |y · e1| ≤ α
}∣∣∣

is equal, according to the computation (12.75), to the function :

p 7→ C(d)rd−1

∫ α−p
r

−α+p
r

(1− u2)
d−2
2 du,

evaluated at point p = r−α (since if x = (r−α)e1, then p = r−α). One used
already the inequality (12.76) to show that this function is decreasing on the
interval [0, r−α]. So the right-hand side of the inequality (12.74) is bounded
by the value of the same function evaluated at p = 0, this value being∫ α

r

−αr

(
1− u2

) d−2
2 du,

which is exactly the same quantity used to obtain (12.77).

Second, one assumes that d = 2.
One performs the same direct computation as in the case d ≥ 3. One finds in
this case∣∣∣{y ∈ ∂B(x, r) / |y · e1| ≤ α

}∣∣∣ = r

Å
arccos

Å
− (α+ p)

r

ã
− arccos

(α− p
r

)ã
.

The control on this quantity is obtained in three steps.

– First, one removes the dependency on p (inequality (12.79)).

– Second, one removes the dependency on r (inequality (12.85) page 378).

– Finally, since the right-hand side obtained in (12.85) is a complicated
expression given with the inverse function of the cosine, one will simplify
this control.
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One begins by removing the dependency on p and computes therefore for all
p ≥ 0 :

∂

∂p

[
r
(

arccos

Å
− (α+ p)

r

ã
− arccos

(α− p
r

))]
=

1»
1− (p+α)2

r2

− 1»
1− (p−α)2

r2

≥ 0,

so that, if one assumes in addition that

p ≤ r − αa (12.78)

with a ∈ ]0, 1[ (in other words, one excludes some values of p, representing a
set of size of order αa), one has :

r
(

arccos

Å
− (α+ p)

r

ã
− arccos

(α− p
r

))
≤ r
(

arccos

Å
αa − α
r

− 1

ã
− arccos

Å
αa + α

r
− 1

ã)
. (12.79)

Now one removes the dependency on r on the control obtained in (12.79).
One considers the right-hand side of this inequality as a function of r. After
a computation of its derivative, one can see that the function

r 7→ r

Å
arccos

Å
αa − α
r

− 1

ã
− arccos

Å
αa + α

r
− 1

ãã
(12.80)

is increasing. Indeed, the following expression for the derivative of the function
(12.80) holds :

r 7→
Å

arccos

Å
αa − α
r

− 1

ã
− arccos

Å
αa + α

r
− 1

ãã
+ r

(Å
αa − α
r2

ã
1 

1−
Å
αa−α
r − 1

ã2
−
Å
αa + α

r2

ã
1 

1−
Å
αa+α
r − 1

ã2

)
,

and the second term can be rewritten as :

r

(Å
αa − α
r2

ã
1…

2
(
αa−α
r

)
−
(
αa−α
r

)2
−
Å
αa + α

r2

ã
1…

2
(
αa+α
r

)
−
(
αa+α
r

)2

)

= (αa − α)
1√

2r(αa − α)− (αa − α)2
− (αa + α)

1√
2r(αa + α)− (αa + α)2

,
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so that the derivative of the function (12.80) is strictly positive for a given r
if and only ifÅ

arccos

Å
αa − α
r

− 1

ã
− arccos

Å
αa + α

r
− 1

ãã
≥ αa + α√

2r(αa + α)− (αa + α)2
− αa − α√

2r(αa − α)− (αa − α)2
. (12.81)

On the other hand, with an additional hypothesis on r, namely :

2αa ≤ r, (12.82)

with the same a ∈]0, 1[ as the one taken for the condition (12.78), if α ≤ 1,
one finds that

αa − α
r

− 1 ≤ αa + α

r
− 1 ≤ 2αa

r
− 1 ≤ 0.

So using the convexity of the function arccos on [−1, 0], one has that :

arccos
(αa − α

r
− 1
)
− arccos

(αa + α

r
− 1
)

≥
Å(αa + α

r
− 1
)
−
(αa − α

r
− 1
)ã 1…

1−
(
αa+α
r − 1

)2
,

that is :

arccos
(αa − α

r
− 1
)
− arccos

(αa + α

r
− 1
)

≥ 2α

r

…
2
(
αa+α
r

)
−
(
αa+α
r

)2
=

2α√
2r(αa + α)− (αa + α)2

, (12.83)

so that it is sufficient to prove that :

2α√
2r(αa + α)− (αa + α)2

≥ αa + α√
2r(αa + α)− (αa + α)2

− αa − α√
2r(αa − α)− (αa − α)2

(12.84)

in order to obtain the inequality (12.81).
But the last inequality (12.84) is of course equivalent to :

αa − α√
2r(αa − α)− (αa − α)2

≥ αa − α√
2r(αa + α)− (αa + α)2

,

and assuming that 0 < α, a < 1, one sees that αa − α > 0, so that the
inequality (12.84) is equivalent to :

2r(αa − α)− (αa − α)2 ≤ 2r(αa + α)− (αa + α)2,
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that is :
αa ≤ r,

which is implied by the hypothesis (12.82). Therefore :

r

Å
arccos

Å
αa − α
r

− 1

ã
− arccos

Å
αa + α

r
− 1

ãã
≤ R

Å
arccos

Å
αa − α
R

− 1

ã
− arccos

Å
αa + α

R
− 1

ãã
(12.85)

if 2αa ≤ r ≤ R.

In order to obtain a result similar to (12.77) in the case when d = 2, 2αa ≤
r ≤ R, one needs to remove the inverse function of the cosine in the right-hand
side. To do so, one will use the asymptotic equivalence relation

arccos(x)− π ∼
−1
−
»

2(x+ 1).

More precisely, back to the definition of the cosine of a real number using a
series, one has :

∀ |x| ≤ 2, 1− x2

2
≤ cos(x) ≤ 1− x2

2
+
x4

24
,

since the serie which defines the cosine of x is an alternating series (in fact,
it is easy to show by simple arguments of analysis that those two inequalities
hold in fact on R). Moreover, using the fact that :

∀x ∈ [−2, 2],
x4

24
≤ x2

6
,

one gets :

∀x ∈ [−2, 2], 1− x2

2
≤ cos(x) ≤ 1− x2

3
.

Those two inequalities are equivalent to :

∀x ∈ [π − 2, π + 2],
(x− π)2

3
− 1 ≤ cos(x) ≤ (x− π)2

2
− 1. (12.86)

Since one wants to use a theorem of comparison of limits on the inverse func-
tion of the cosine around −1, the last inequality is relevant only on [π− 2, π].
The function which is the lower bound in the two inequalities above evaluated
at π−2 is 1/3, which will give the largest interval on which one can deduce an
inequality for the inverses of the functions implied in the inequalities (12.86).
So taking the inverse of those inequalities, one obtains :

∀x ∈ [−1,−2/3], π −
»

3(x+ 1) ≤ arccos(x) ≤ π −
»

2(x+ 1). (12.87)
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Remark 34. Notice that one can be more precise for the lower bound of the
inverse function of the cosine around −1. Indeed, one can use :

π −
»

6− 2
√

3− 6x ≤ arccos(x) (12.88)

instead of the left-hand side of the inequality (12.86), obtained by the same
method but replacing the arbitrarily chosen lower bound of the cosine by the
sharper one :

x 7→ −1 +
(x− π)2

2
− (x− π)4

24
,

this bound holding true for all x ∈ R. However, this lower bound is one to one
only on [π −

√
6, π], onto [−1, 1/2], so that the sharper lower bound (12.88)

is true for all x ∈ [−1, 1/2].
This bound gives a better rate for the end of the proof, but it will not be useful
in the sequel.

Finally, if

0 ≤ αa + α

R
≤ 1/3, (12.89)

the two inequalities (12.87) applied on

arccos
(αa − α

R
− 1
)

and arccos
(αa + α

R
− 1
)

enable to write :

arccos
(αa − α

R
− 1
)
− arccos

(αa + α

R
− 1
)
≤
…

3
αa + α

R
−
…

2
αa − α
R

.

(12.90)
In particular, since αa ≥ α (due to the fact that α ≤ 1 and a < 1), if one
has :

α ≤
Å
R

6

ã1/a

, (12.91)

then the condition (12.89) is fulfilled.
Now, the right-hand side of the inequality (12.90) can be first rewritten as :

αa/2√
R

(√
3
√

1 + α1−a −
√

2
√

1− α1−a
)
,

and then bounded by (since α < 1) :

αa/2√
R

(√
3(1 +

1

2
α1−a)−

√
2(1− α1−a)

)
thanks to the concavity of the functions x 7→

√
1 + x and x 7→

√
1− x, which

enables in particular, if 0 ≤ x ≤ 1, to write that :

√
1− x ≥ 1− x.
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Last, but not least, if one has :(√3

2
+
√

2
)
α1−a ≤ 1− (

√
3−
√

2),

that is :

α ≤

(
1− (

√
3−
√

2)
√

3
2 +

√
2

) 1
1−a

, (12.92)

the following inequality holds true :

αa/2√
R

(√
3
√

1 + α1−a −
√

2
√

1− α1−a
)
≤ αa/2√

R
. (12.93)

Gathering the intermediate inequalities (12.79), (12.85), (12.90) and (12.93),
if the two conditions (12.78) and (12.82), namely :

r ≥ 2αa and p ≤ r − αa,

are fulfilled ((12.78) used to obtain (12.79), and (12.82) used to obtain (12.85)),
if in addition :

α ≤ min
{

1,
(R

6

)1/a

,

(
1− (

√
3−
√

2)
√

3
2 +

√
2

) 1
1−a}

, (12.94)

(conditions α < 1 used from the beginning, (12.91) in order to use the in-
equality (12.90), (12.92) in order to use the inequality (12.93)) then one has :∣∣∣{y ∈ ∂B(x, r) / |y · e1| ≤ α

}∣∣∣
= r
(

arccos
(
− (α+ p)

r

)
− arccos

(α− p
r

))
≤
√
Rαa/2, (12.95)

which concludes the study of the last subcase, that is for r > p + α, r > α,
and for d = 2. The result of the lemma is obtained taking a = 1/2.

Lemma 31. There exist two strictly positive constants C(d) and c(d) depending
only on the dimension d such that for all strictly positive numbers α ≤ c(d) and
R ≥ 1, and all v ∈ B(0, R), one has :∣∣∣N ∗(R,α)(v)

∣∣∣ ≤ C(d)R2α1/8 (12.96)

in the case d = 2, and ∣∣∣N ∗(R,α)(v)
∣∣∣ ≤ C(d)Rd−1α (12.97)

in the case d ≥ 3.
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Proof. The idea of the proof is the following.

• One starts (see the paragraph ”Description of the image of the scatter-
ing” starting page 381) by a general study of the image of the scattering
operator (see Definition 1 page 51). In particular, one obtains geometric
relations, on the one hand, between the post-collisional velocities v′1 and
v′2 and the pre-collisional velocities v1 and v2, and on the other hand, be-
tween the difference of the pre and post-collisional velocities (v′2 − v2 and
v′1 − v1) and the angular parameter ω.

• Then one discusses (see the paragraph ”Sketch of the proof” starting page
381), using a figure, the link that one can observe between the post-
collisional velocities when they are contained in the space between the
two planes

{
x ∈ Rd / x · e1 = −α

}
and

{
x ∈ Rd / x · e1 = α

}
, and the

angular parameter ω.

• One develops then rigorously the general idea described in the previous
paragraph, by decomposing the subset N ∗(R,α)(v1) (see the paragraph
”Decomposition of the set N ∗(R,α)(v1)” starting page 383).

• Then one proceeds by controlling the measure of the subsets of

N ∗(R,α)(v1),

each one being defined with v2 fixed (see the paragraph ”Control of the
quantities

∣∣N ∗(R,α)(v1, v2)
∣∣” starting page 384).

Description of the image of the scattering
Using the scattering operator introduced in Definition 1 page 51, one starts

by writing the post-collisional velocities v′1 and v′2 using the pre-collisional ve-
locities v1 and v2.
For the two pre-collisional velocities v1, v2 ∈ B(0, R) and for any angular pa-
rameter ω ∈ Sd−1, the post-colisional velocities v′1 and v′2 verify

v′1 + v′2
2

=
v1 + v2

2
and |v′1 − v′2| = |v1 − v2|, (12.98)

that is v′1 and v′2 are the two vertices of a diameter of the circle which has also
[v1, v2] as diameter. In other words, for v1 and v2 given (and if ω varies in Sd−1),
the vectors v′1 and v′2 lies in the boundary of the ball centered on (v1 + v2)/2
and of radius |v1 − v2|/2.
Moreover, using again the explicit expressions of the post-collisional velocities
given in Definition 1, the three vectors v′1 − v1, v′2 − v2 and ω have the same
direction.

Sketch of the proof
It is now possible to describe the geometric argument that will be used to

control the size of N ∗(R,α)(v1). One will use for that the following Figure
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Figure 12.11: Consequence of the two equalities (12.98).

12.12. One recalls that the goal of this lemma is to determine, for a velocity
v1 ∈ B(0, R) given, a condition on the velocity v2 ∈ B(0, R) and the angular
parameter ω ∈ Sd−1 such that, either v′1 or v′2 satisfy∣∣v′ · e1

∣∣ ≤ α.
One chooses to find a condition on ω when v2 is also fixed. Of course, afterwards
one has to study the dependency of this condition on v2.
Then, if v2 is also fixed, one knows, thanks to the equations (12.98), if ω varies,
that v′1 and v′2 lie in the intersection between the boundary of the ball centered
on (v1 + v2)/2 and of radius

∣∣v2 − v1

∣∣/2, and the space −α ≤ v · e1 ≤ α. In the
two-dimensional case, this intersection is represented in blue on Figure 12.12.
For such v′1, one sees that the intersection between the segment between v1

and v′1, and the ball centered on v1 and of radius
∣∣v2 − v1

∣∣/2 lies in the part
represented in green on the Figure. In blue, one sees a solid angle defining a
cone of vertex (v1 + v2)/2, in green this is a solid angle defining a cone of vertex
v1. Since v1 lies by definition on the boundary of the ball

B
(v1 + v2

2
,

∣∣v2 − v1

∣∣
2

)
,

the inscribed angle theorem states that the blue angle measures twice the green
angle (at least, in the two-dimensional case). And since v′1−v1 and ω are colinear
(and have the same orientation, since N ∗ is a subset of

{
(v2 − v1) · ω > 0

}
⊂

Sd−1
ω ×Bv2(0, R)), if v′1 is between the two planes x ·e1 = −α and x ·e1 = α, one
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Figure 12.12: The link between the difference of the velocities v′1 − v1 and the
angular parameter ω.

deduces that the angular parameter ω has to lie in the part of the ball centered
on v1 represented in red on Figure 12.12.

Decomposition of the set N ∗(R,α)(v1)
Following the sketch of the proof introduced in the previous paragraph, one

defines, for v1 and v2 fixed, the subset of angular parameters lying in the sphere
Sd−1 as

N ∗(R,α)(v1, v2) =
{
ω ∈ Sd−1 / v′1 ∈ {|v · e1| ≤ α} or v′2 ∈ {|v · e1| ≤ α}

}
.

One has therefore∣∣N ∗(R,α)(v1)
∣∣ =

∫
v2∈B(0,R)

∣∣N ∗(R,α)(v1, v2)
∣∣dv2.

It is now possible to simplify the problem by using symmetries. Indeed, any
two-dimensional plane which contains the straight line through the velocity v1

and orientated by e1 (the first vector of the canonical basis) enables to consider
only a two-dimensional problem, which is always the same whatever the two-
dimensional plane chosen, and this problem is in fact exactly the one described
on Figure 12.12.
Therefore, for any velocity v2, one considers the plane which contains the straight
line through v1 and orientated by e1, and the velocity v2.
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In other words, one considers the orthogonal projection of the velocity v2 on
the wall v · e1 = 0, and one denotes u(v2) its normalization. Using the polar
coordinates in the plane containing e1 and u(v2), it is possible to write :

∣∣N ∗(R,α)(v1)
∣∣ ≤ C(d)

∫
Sd−2

∫ 2R

0

∫ π

0

ρd−1
∣∣N ∗(R,α)

(
v1, v2(u, ρ, θ)

)∣∣dθ dρ du,

(12.99)

with
v2(u, ρ, θ) = v1 + ρ(cos θe1 + sin θu),

and C(d) denoting a constant depending only on the dimension.
It remains to study the quantity

∣∣N ∗(R,α)(v1, v2)
∣∣, which is, according to the

previous discussion, a subset of the boundary of a ball in the Euclidean space
Rd.

Control of the quantities
∣∣N ∗(R,α)(v1, v2)

∣∣
Back to the study of the sets N ∗(R,α)(v1, v2), as it was noticed previously, for

v1 and v2 fixed, the post-collisional velocities v′1 and v′2 lie in the ball centered
on (v1 + v2)/2 of radius

∣∣v2 − v1

∣∣/2.
Therefore, considering

x = (v1 + v2)/2,

and
r =

∣∣v2 − v1

∣∣/2
that is, using the coordinates introduced in the previous section :

x = v1/2 +
(
v1 + ρ(cos θe1 + sin θu

)
/2

with u orthogonal to e1, and
r = ρ/2,

one sees that ω belongs to N ∗(R,α)(v1, v2) if and only if v′1 or v′2 belong to

∂B(x, r) ∩
{
|y · e1| ≤ α

}
. (12.100)

Lemma 30 page 370 provides then a control on the size of the subset (12.100).
One needs now to use the link between v′1 (or v′2) and ω. Remembering the
argument of the inscribed angle theorem described in the paragraph ”Sketch of
the proof” page 381 above, one will consider the following map.
For a given point x0 of the boundary of the ball B(x, r) (that is

∣∣x− x0

∣∣ = r),
one defines the function :

ω̃x0
:

®
∂B(x, r)\{x0} → B(0, 1),

y 7→ y−x0

|y−x0| .

Thanks to the inscribed angle theorem applied in any plane which contains
the straight line through x0 orientated by the vector e1, one deduces that the
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measure of the image of the subset
{
y ∈ ∂B(x, r) /

∣∣y · e1

∣∣ ≤ α} is smaller than
half the measure of the subset itself

{
y ∈ ∂B(x, r) /

∣∣y · e1

∣∣ ≤ α
}

, divided by
the surface C(d)rd−1 of the sphere ∂B(x, r).
But since v′1 − v1 and ω are colinear, with the same orientation, one sees that
choosing x0 = v1 in the definition of the previous map, which sends elements of
the boundary of the ball B(x, r) into the ball centered on 0 and of radius 1, one
has in fact :

ω̃v1(v′1) = ω.

Similarly :

ω̃v2(v′2) = ω,

so that∣∣N ∗(R,α)(v1, v2)
∣∣ ≤ ∣∣∣ω̃v1({y ∈ ∂B(x, r) /

∣∣y · e1

∣∣ ≤ α})∣∣∣
+
∣∣∣ω̃v2({y ∈ ∂B(x, r) /

∣∣y · e1

∣∣ ≤ α})∣∣∣
≤ 2

1

2C(d)rd−1

∣∣∣{y ∈ ∂B(x, r) /
∣∣y · e1

∣∣ ≤ α}∣∣∣. (12.101)

Now returning to the control of the measure of the set N ∗(R,α)(v1), in the case
d ≥ 3, using the decomposition (12.99) :

∣∣N ∗(R,α)(v1)
∣∣ ≤ C(d)

∫
Sd−2

∫ 2R

0

∫ π

0

ρd−1
∣∣N ∗(R,α)

(
v1, v2(u, ρ, θ)

)∣∣dθ dρdu

and then the controls (12.101), and (12.70) of Lemma 30 page 370 provide

∣∣N ∗(R,α)(v1)
∣∣ ≤ C(d)

∫
Sd−2

∫ 2R

0

∫ π

0

ρd−1
( 1

ρd−1
ρd−2α

)
dθ dρdu

since, one recalls, r = ρ/2. In the end one finds

∣∣N ∗(R,α)(v1)
∣∣ ≤ C(d)

∫ 2R

0

ρd−2α dρ

≤ C(d)Rd−1α.

In the case d = 2, it will be relevant in the sequel to cut-off the small difference
between the velocities v1 and v2 (as it was done also in Proposition 16 page
347). One considers therefore a strictly positive number b smaller than 1, and
one writes :∣∣N ∗(R,α)(v1)

∣∣ ≤ ∫
v2∈B(v1,αb)

∣∣N ∗(R,α)(v1, v2)
∣∣dv2

+

∫
v2∈B(v1,2R)\B(v1,αb)

∣∣N ∗(R,α)(v1, v2)
∣∣dv2.
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Using again the decomposition (12.99), one writes∣∣N ∗(R,α)(v1)
∣∣ ≤ ∫

v2∈B(v1,αb)

∣∣N ∗(R,α)(v1, v2)
∣∣dv2

+ C(d)

∫ 2R

αb

∫ π

0

ρ
∣∣N ∗(R,α)

(
v1, v2(ρ, θ)

)∣∣dθ dρ.

In order to apply the control (12.69) of Lemma 30, one needs to remove from
the integral the centers x of the balls B(x, r) such that∣∣x · e1

∣∣ > r −
√
α.

This condition is equivalent to∣∣v1 · e1 + (ρ cos θ)/2
∣∣ > r −

√
α.

One obtained also, along the proof of Lemma 30, thaf if r <
∣∣x · e1

∣∣ − α (or,
with the notations of Lemma 30 : r < p− α), then∣∣∣{y ∈ ∂B(x, r) /

∣∣y · e1

∣∣ ≤ α}∣∣∣ = 0.

Therefore, one decomposes the interval [0, π], in which θ lies, in three parts, by
the following conditions :

• the first one is given by∣∣v1 · e1 + (ρ cos θ)/2
∣∣ > r + α. (12.102)

This case corresponds to the first case r < p − α of the proof of Lemma
30, when the center of the ball B(x, r) is too far from the space{

x ∈ Rd / − α ≤ x · e1 ≤ α
}
,

so that the ball does not cross this space, and then in this case∣∣∣N ∗(R,α)
(
v1, v2(ρ, θ)

)∣∣∣ = 0,

• the second one is given by

r −
√
α <

∣∣v1 · e1 + (ρ cos θ)/2
∣∣ ≤ r + α. (12.103)

On this interval one has no sharp estimate on the size of N ∗(R,α)(v1, v2),
but one will control the term thanks to the size of the interval,

• and finally the third one is given by∣∣v1 · e1 + (ρ cos θ)/2
∣∣ ≤ r −√α. (12.104)

On this interval, one will use (12.69).
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Remembering that r = ρ/2, the condition (12.103) is equivalent to

1− 2

ρ

(√
α+ v1 · e1

)
< cos θ ≤ 1 +

2

ρ

(
α− v1 · e1

)
or

−1− 2

ρ

(
α+ v1 · e1

)
< cos θ ≤ −1 +

2

ρ

(√
α− v1 · e1

)
,

or again, since the cosine function is decreasing on [0, π] :

arccos
(

min
(
1, 1 +

2

ρ

(
α− v1 · e1

)))
≤ θ < arccos

(
min

(
1, 1− 2

ρ

(√
α+ v1 · e1

)))
or

arccos
(

max
(
− 1,−1 +

2

ρ

(√
α− v1 · e1

)))
≤ θ < arccos

(
max

(
− 1,−1− 2

ρ

(
α+ v1 · e1

)))
.

As in the end of the proof of Lemma 30, one has to control those differences of
inverse function of the cosine. Using the explicit expression of the derivative of
the function x 7→ arccos(x), one has :

∀ − 1 < x < 1,
d

dx
arccos(x) = − 1√

1− x2
,

and then

∀ − 1 < x < 1,
d2

dx2
arccos(x) = −

(
− 1

2

) −2x

(1− x2)3/2
= − x

(1− x2)3/2
.

This quantity being nonnegative for all −1 < x ≤ 0, the derivative of the inverse
function of the cosine is increasing on ]− 1, 0]. It provides, for any

−1 ≤ x < y < 0,

and any
0 < ε ≤ y − x,

arccos(x+ ε)− arccos(y) = −
∫ y

x+ε

d

dt
arccos(t) dt

= −
∫ −1+(y−x)

−1+ε

d

dt
arccos(t) dt

−
∫ −1+ε

x+ε

d

dt
arccos(t) dt

+

∫ −1+(y−x)

y

d

dt
arccos(t) dt.
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Using the hypothesis on ε, one can control the two last term of the right-hand
side of the last equation as follows, thanks to the change of variables t →
t− (y − x) + ε in the last term :

−
∫ −1+ε

x+ε

d

dt
arccos(t) dt+

∫ −1+(y−x)

y

d

dt
arccos(t) dt

=

∫ x+ε

−1+ε

d

dt
arccos(t) dt−

∫ y

−1+(y−x)

d

dt
arccos(t) dt

=

∫ x+ε

−1+ε

ï
d

dt
arccos(t)− d

dt
arccos(t+ (y − x)− ε)

ò
dt.

This last quantity is negative, since the integrand is negative, thanks to the
fact that the derivative of the inverse function of the cosine is increasing on the
interval ]− 1, 0], and that (y − x)− ε > 0. Therefore :

arccos(x+ ε)− arccos(y) ≤ −
∫ −1+(y−x)

−1+ε

d

dt
arccos(t) dt

≤ arccos(−1 + ε)− arccos(−1 + (y − x)).

Taking the limit ε→ 0, one gets :

∀ − 1 ≤ x ≤ y < 0, arccos(x)− arccos(y) ≤ arccos(−1)− arccos(−1 + y − x).

It provides here that (of course, for the first difference below, one uses the fact
that the function x 7→ arccos(x)− π/2 is odd) the two quantities

arccos
(

min
(
1, 1− 2

ρ

(√
α+ v1 · e1

)))
− arccos

(
min

(
1, 1 +

2

ρ

(
α− v1 · e1

)))
and

arccos
(

max
(
−1,−1− 2

ρ

(
α+v1·e1

)))
−arccos

(
max

(
−1,−1+

2

ρ

(√
α−v1·e1

)))
are smaller than

arccos(−1)− arccos
(
− 1 +

2

ρ
(α+

√
α)
)

≤ arccos(−1)− arccos
(
− 1 +

4

ρ

√
α
)
.

Finally one uses the inequality

∀x ∈ [−1,−2/3], π −
»

3(x+ 1) ≤ arccos(x). (12.105)

One finds

max(A1, A2) ≤
 

3
4

ρ

√
α, (12.106)
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where

A1 = arccos
(

min
(
1, 1− 2

ρ

(√
α+ v1 · e1

)))
− arccos

(
min

(
1, 1 +

2

ρ

(
α− v1 · e1

)))
and

A2 = arccos
(

max
(
− 1,−1− 2

ρ

(
α+ v1 · e1

)))
− arccos

(
max

(
− 1,−1 +

2

ρ

(√
α− v1 · e1

)))
,

this control holding true if

−1 +
4

ρ

√
α ≤ −2/3

(in order to apply the inequality 12.105), that is
√
α

ρ
≤ 1/12.

Recalling that one has split the first integral into two parts using the condition

ρ ≥ αb,

one finds therefore∣∣∣{θ ∈ [0, π] / r −
√
α <

∣∣v1 · e1+(ρ cos θ)/2
∣∣ ≤ r + α

}∣∣∣
≤ 2
(

arccos(−1)− arccos
(
− 1 +

2

ρ

))
≤ 4
√

3α1/4−b/2. (12.107)

The decomposition of
∣∣N ∗(R,α)(v1)

∣∣ can be rewritten as∣∣N ∗(R,α)(v1)
∣∣ ≤ ∫

v2∈B(v1,αb)

∣∣N ∗(R,α)(v1, v2)
∣∣dv2

+ C(d)

∫ 2R

αb

∫ π

0

ρ
∣∣N ∗(R,α)

(
v1, v2(u, ρ, θ)

)∣∣ dθ dρ

≤
∫
v2∈B(v1,αb)

∣∣N ∗(R,α)(v1, v2)
∣∣dv2

+ C(d)

∫ 2R

αb

∫
ρ/2−

√
α<|v1·e1+(ρ cos θ)/2|≤ρ/2+α

ρ
∣∣N ∗(R,α)

(
v1, v2(u, ρ, θ)

)∣∣ dθ dρ

+ C(d)

∫ 2R

αb

∫
|v1·e1+(ρ cos θ)/2|≤ρ/2−

√
α

ρ
∣∣N ∗(R,α)

(
v1, v2(u, ρ, θ)

)∣∣ dθ dρ,
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(the two last terms of the right-hand side are respectively corresponding to
the conditions (12.103) and (12.104), while the integral corresponding to the
condition (12.102) vanishes), then, since by definition N ∗(R,α)(v1, v2) is a sub-
set of the sphere S1, one bounds directly the integrands of the two first terms
respectively by ∣∣S1

∣∣
and

2R
∣∣S1
∣∣,

while one uses the control (12.69) of Lemma 30 for the last term, which holds
only if

R ≥ 1, α ≤ min
{

1,
(R

6

)2

,
(1−

(√
3−
√

2
)

√
3

2 +
√

2

)2}
and √

α ≤ r/2 = ρ/4.

Since R is larger than 1, the condition on α is in fact a condition which does
not depend on R.
Besides, if one takes b < 1/2, and if ρ ≥ αb, one has

ρ

4
√
α
≥ αb

4
√
α

=
1

4
αb−1/2 −→

α→0
+∞.

This implies immediately that there exists a positive constant c(b) depending
only on the parameter b such that for all 0 < α ≤ c(b), one has

ρ/4 ≥
√
α and

√
α

ρ
≤ 1/12

for any ρ belonging to the interval [αb, 2R]. For such α smaller than c(b), one
can then appy the control (12.69) of Lemma 30 on the one hand, and the control
(12.106) on the other hand.
It provides ∣∣N ∗(R,α)(v1)

∣∣ ≤ ∫
v2∈B(v1,αb)

∣∣S1
∣∣dv2

+ C

∫ 2R

αb

∫
ρ/2−

√
α<|v1·e1+(ρ cos θ)/2|≤ρ/2+α

2R
∣∣S1
∣∣dθ dρ

+ C

∫ 2R

αb

∫
|v1·e1+(ρ cos θ)/2|≤ρ/2−

√
α

ρ
(1

ρ

√
Rα1/4

)
dθ dρ,

and finally using the control (12.107) for the size of the domain of the integral
in θ for the second term, one obtains∣∣N ∗(R,α)(v1)

∣∣ ≤ C
(
α2b +R2α1/4−b/2 +R3/2α1/4

)
,
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smaller than
CR2

(
α2b + α1/4−b/2)

for R ≥ 1 and α ≤ 1.
To obtain a quantity which goes to zero as α goes to zero (for R fixed), one is
again led to choose b < 1/2, for example b = 1/4, hence the result stated in the
lemma for d = 2.

Remark 35. The parameter ρ used to describe the radius in the polar coor-
dinates in the previous proof must not be confused with the cut-off parameter
in small distance between the obstacle and the particles used, for example, in
Proposition 16 page 347, and more generally in the end of this work. Indeed, in
the previous proof, the quantity

√
α/ρ goes to zero as α goes to zero, while in

Chapter 15, and especially in the proof of Theorem 7 page 493, the quantity ρ/α
can be chosen as small as one wants.

12.3 Excluding the pathological pseudo-trajecto
-ries

Now, all the useful tools such as the geometric lemmas of the two previous
sections have been shown, and one is finally able to perform the plan described
in Section 12.1.1 page 309 above, and to study the trees introduced in Section
12.1.2 page 327.

12.3.1 Preparation of the initial configurations

One recalls that one has in mind to show that the trajectories with boundary
conditions of the hard sphere flow and the free flow are close, up to excluding a
small subset among all the variables involved in the definition of the dynamics.
One has seen that the significant divergences between those two trajectories
come from the recollisions.
The purpose of this section is to remove the first possible source of recollisions,
which are the pathological initial configurations (the second source is the patho-
logical way of adding another particle to the system). One has then to prepare
the initial configurations Zs so that the geometric lemmas can be applied.

First, one discusses what was done before, in the article [34]. In their setting,
the idea to remove the pathological initial configurations is the same that the
one to remove the pathological adjunction parameters, since they consider ob-
servables, that is integrals of solutions of the hierarchies integrated against some
test functions in the velocity variable, which enable to cut off in this velocity
domain the pathological initial configurations. It is indeed possible, since the
condition defining pathological initial configurations holds only on the velocity
variable. As a consequence, it is possible to control the error done in that step
of the proof since the size of the removed subset of the domain is controlled
thanks to the geometric lemmas, and besides this method imposes to consider
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local uniform convergence in the position variable, but only a weak convergence
in the velocity variable.
In this work, one will be able to state a local uniform convergence in all the
variables of the phase space, up to removing a small subset of this phase space,
which is therefore a stronger result of convergence than the one stated in [34].

Introducing the domain of local uniform convergence

It is important here to notice that the version of the shooting lemma used here
is the one with fixed axis (see Lemma 28 page 342), that is, the axes of the
cylinders of pathological velocities do not depend on ε. This will be important
in the sequel in order to obtain the uniform convergence on every compact set
outside some submanifold of the phase space. If the dependency with respect
to the parameter ε is not removed, it is not clear that one can take compact
sets outside a submanifold, so that the uniform convergence will not be satisfied
anymore.
One introduces therefore the set, for which the uniform convergence on every
compact set contained in its complementary can be stated.

Definition 53 (Domain of local uniform convergence Ωs). Let s be a positive
integer. One defines the domain of local uniform convergence, denoted as Ωs, as
the subset of the phase space of s particles D0

s =
({
x ∈ Rd / x · e1 > 0

}
× Rd

)s
defined as :

Zs ∈ Ωs ⇔ Zs ∈ Ω1
s ∩ Ω2

s ∩ Ω3
s ∩ Ω4

s,

that is

Ωs =
4⋂
j=1

Ωjs,

with :

Ω1
s =

{
Zs ∈ D0

s / ∀ 1 ≤ i 6= j ≤ s, xi 6= xj

}
,

Ω2
s =

{
Zs ∈ D0

s / ∀ 1 ≤ i ≤ s, vi · e1 6= 0
}
,

Ω3
s =

{
Zs ∈ D0

s / ∀ 1 ≤ i < j ≤ s, vj /∈ vi + Vect(xi − xj)
}
,

Ω4
s =

{
Zs ∈ D0

s / ∀1 ≤ i < j ≤ s, vj /∈ S0(vi) + Vect
(
S0(xi)− xj

)}
,

where S0 denotes the orthogonal symmetry with respect to the first vector of the
canonical basis e1, that is S0(v) = v − 2

(
v · e1

)
e1.

One then defines a family of special subsets of Ωs, so that any compact subset of
Ωs will be contained in some element of this family, and on which the geometrical
lemmas can easily be applied.

Definition 54 (Subsets of preparation of the initial configurations). One de-
fines, for any positive integer s and any strictly positive numbers ε, ε0, R, α
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and γ the subset of preparation of the initial configurations ∆s(ε,R, ε0, α, γ) as
the following subset of Ωs :

∆s = ∆s(ε,R, ε0, α, γ) =
6⋂
j=1

∆j
s,

with

∆1
s = ∆1

s(ε) =
{
Zs ∈ R2ds / ∀1 ≤ i ≤ s, xi · e1 > ε/2

}
, (12.108)

∆2
s = ∆2

s(R) =
{
Zs ∈ R2ds /

∣∣Vs∣∣ ≤ R}, (12.109)

∆3
s = ∆3

s(ε0) =
{
Zs ∈ R2ds / min

1≤i<j≤s

∣∣xi − xj∣∣ ≥ ε0

}
, (12.110)

∆4
s = ∆4

s(α) =
{
Zs ∈ R2ds / min

1≤i≤s

∣∣vi · e1

∣∣ ≥ α}, (12.111)

∆5
s = ∆5

s(γ) =
{
Zs ∈ R2ds / min

1≤i<j≤s
d
(
vj , vi + Vect(xi − xj)

)
≥ γ

}
, (12.112)

∆6
s = ∆6

s(γ)

=
{
Zs ∈ R2ds / min

1≤i<j≤s
d
(
vj ,S0(vi) + Vect

(
S0(xi)− xj

))
≥ γ

}
. (12.113)

One can note that each of the six conditions defining ∆s are of different nature.
The first condition (12.108) is mandatory to have particles starting inside the
phase space (otherwise, the particles may overlap the obstacle, and the trans-
port would be not defined for such initial configurations).
The third condition (12.110) means that in particular the particles start with a
distance large enough between each other. One will be then able, thanks to the
second condition (12.109) to use the results stated in Lemma 28 page 342, which
provides the small set of pathological velocities to exclude such that all the other
configurations starting with velocities outside this pathological set will remain
far enough from each other : those configurations are in a good configuration
(see Definition 48 page 333). The two last conditions (12.112) and (12.113) are
then used to make sure that the velocities are outside the cylinders given by
Lemma 28, which contain pathological initial configurations. With those condi-
tions, the system of s particles will face no recollision in the future.
Finally, the fourth condition (12.111) ensures that no particle will follow a graz-
ing trajectory, nor it will be close to the obstacle during a long time. This
condition is not necessary to make sure that the initial system, of s particles,
will face no recollision. However, this condition will be used when one will add
another particle to the system. Indeed, one knows, thanks to Lemma 16 page
347, that if all the particles of the system are far enough from the obstacle and
in a good configuration, then it will possible to add another particle so that the
new system of s+ 1 particles will be also in a good configuration.
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Compact subsets of the domain Ωs and good configurations : prepar-
ing the initial configurations

Proposition 17. Let s be a positive integer, and let ε, R, δ, ε0 and α be five
strictly positive numbers such that :

2
√

3ε ≤ ε0.

Then for any initial configuration Zs ∈ D0
s such that :

Zs ∈ ∆s

(
ε,R, ε0, α,max(16Rε/ε0, ε0/δ)

)
one has that :

• no recollision will happen from the initial configuration Zs following the
hard sphere flow (introduced in Definition 4 page 53), that is

Zk ∈ Gεs(ε), (12.114)

• after a time δ, the particles of the configuration Zs, following the free flow
with boundary condition (introduced in Definition 3 page 53) will be in a
good configuration, separated by at least ε0, that is

T s,0−δ (Zk) ∈ G0
s (ε0), (12.115)

• for all 1 ≤ i ≤ s and any strictly positive number ρ > 0 :∣∣∣∣{τ ≥ 0 /
∣∣∣(T s,0−τ (Zs)

)X,i
· e1

∣∣∣ ≤ ρ}∣∣∣∣ ≤ 2ρ

α
. (12.116)

Remark 36. Note that in Lemma 28 page 342, Definition 48 page 333 and in
Proposition 16 page 347, one authorises a small difference of position between
the vectors Xk and Xk (this distance is controlled by the quantity denoted pre-
viously by a). At the present point of the work, this quantity does not appear :
indeed the role of this quantity is to take into account that one is considering
configurations such that their respective images by the hard sphere and the free
flows are close, but with a possible small difference. Here, one is only at the
preparation step : the same initial configuration will be used to start the two
dynamics (the dynamics of the hard spheres, and the dynamics of the free flow).

Proof. The first point (12.114) of the result stated in the proposition is exactly
the result (12.28) of Lemma 28 page 342, which can be applied since the con-
dition (12.27) of this lemma is fulfilled. One applies it recursively (that is, for
all the particles). Any velocity v1 can be chosen for the first particle, and once
this velocity is chosen, one applies the shooting lemma for fixed v1, obtaining
therefore a condition excluding some velocity v2, the velocity of the second par-
ticle. Then one iterates the process, and excludes some velocities v3 for the third
particles due to the conditions imposed by the shooting lemma, depending on
the velocities v1 and v2 chosen, and so on. Of course, the shooting lemma can
be applied thanks to the following hypotheses :
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•
∣∣Vs∣∣ ≤ R,

• d
(
Zs, (Ω

1
s)
c
)
≥ ε0, that is for every i 6= j, one has :

∣∣xi − xj∣∣ ≥ ε0,

• and min
(
d
(
Zs, (Ω

3
s)
c
)
, d
(
Zs, (Ω

4
s)
c
))
≥ max

(
16Ra/ε0, 4ε0/δ), that is for

every j > i, the velocity vj chosen for the particle j does not belong to
any of the two cylinders of radius 16Ra/ε0 and of respective origins and
axis vi and xi − xj , and S0(vi) and S0(xi)− xj ,

which are the first, the second and (first part of) the last hypotheses of the
lemma.
Similarly, the second point (12.115) stated in the proposition is a consequence
of the second result of Lemma 27 page 335, using exactly the same hypotheses
except the last, replacing the radius 16Ra/ε0 by ε0/δ.
Finally, the last point corresponds just to excluding the set

{v ∈ BRd(0, R) / |v · e1| ≤ α}

for every velocity component vs of Zs.

12.3.2 Surgery in time, velocity and angular parameter
for the integrated in time (transport-) collision-
transport operators

If one considers only pseudo-trajectories starting from initial configurations
which are in a good configuration (see Definition 48 page 333), which was pre-
pared by the restriction performed in the previous Section 12.3.1, the goal now
is to determine pseudo-trajectories that are still not pathological after the ad-
junction steps, that is such that there will be no recollision after adding new
particles to the system.
Thanks to the geometric lemmas of Section 12.2 page 333, one will aim to remove
the sets of all possible velocities (of the new particle) and angular parameters
(determining the position of the new particle at the time of adjunction) which
will generate a pathological pseudo-trajectory at this step of construction of the
tree, so that when a particle will be added to a finite number of other particles
in a good configuration, the new set of particles remains in a good configuration
and so that no particle stays close too long to the boundary of the obstacle.

The difference with the previous paragraph lies in the fact that this exclusion
will take place in the domain of the integrals defining the (transport-) collision-
transport operators, and not among the set of the initial configurations. One is
then led to study the effects of a cut-off in the domains of the operators of the
hierarchies.

Surgery on the domain of the integrated in time collision-transport
operator for the Boltzmann hierarchy

This exclusion will have then a different effect from the restriction of the do-
main of convergence obtained in the previous Section 12.3.1 : instead of giving
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conditions on the type of convergence (previously, by excluding some initial con-
figurations, since one saw that the local uniform convergence will not be possible
on the whole phase space, but only on Ωs, that is only when some pathological
submanifolds are removed), this time this exclusion will create a small error
term due to the cut-off made in the domains of the integrals defining the colli-
sion operators.
This cut-off has to be controlled, and this is the purpose of the present para-
graph. One starts by a general surgery lemma, detailing the effects of such a
cut-off in the domain of the integral of the collision operators, here in the easiest
case of the Boltzmann hierarchy, since it is defined as a usual Lebesgue integral
and therefore will not require an additional important work to solve the ques-
tion of the rigorous definition.

On the one hand, in the spirit of the geometric lemmas, one wants to authorize
adjunctions of particles to a system in a good configuration only when the par-
ticle which will undergo the adjunction is not too close to the obstacle. The way
to obtain this property was discussed above, and will be obtained by removing
pathological times during which the particle is close to the obstacle (those times
are meant to be few due to the fact that the trajectory of the particle is not
grazing the obstacle). Therefore, one will have to study the effects of surgery
on the time domain of the integrated in time collision-transport operator. Of
course, the geometric lemmas describe also which kind of velocity and angular
parameter one has to avoid to keep the system with the additional particle in
a good configuration, which will imply on the other hand to study the effects
of a surgery on the domain of the collision operator itself, that is on the vari-
ables vs+1 and ω. Once those two cut-offs are made, a simple iteration of the
geometric lemmas provides that the hard sphere flow outside the removed sub-
sets is very similar to the free flow, or in other words, one will obtain that the
pseudo-trajectories are not pathological.

A last word about the cut-off in time : here the removal of some subsets of
the domains of the time integrals will not only have the effect of providing only
non pathological pseudo-trajectories. Even if a particle of the system is not
meant to undergo an adjunction, if this particle bounces against the obstacle,
there will be a small time during which the hard sphere and the free flows will
not be easily comparable. Indeed, one of those two dynamics will generate a
bouncing first. From this time and until the bouncing against the obstacle pre-
scribed by the other dynamics, the two pseudo-trajectories will not be similar,
in the sense that the velocities of the particle will be quite different following
one or the other dynamics (see Figure 12.4 page 332). The solution to avoid this
problem lies again in cutting-off those pathological times, which will be, again
thanks to the cut-off in grazing trajectories, hopefully quite few.
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Introducing the decomposition induced by the surgery in adjunction
parameters for the Boltzmann hierarchy
One recalls also that one starts from solutions which have already been simpli-
fied, thanks to the results of Section 11 page 277. In particular, one considers
only (finite numbers of) iterations of the Boltzmann operator with a separation
in time between those iterations, applied to functions truncated in high energy.

For the generic post-collisional first integral term of the Duhamel formula ((10.9)
page 272) after the cut-offs of Section 11, that is :

1t≥δ

∫ t−δ

0

∫
Sd−1
ω ×Rdvs+1

[
ω ·
(
vs+1 −

(
T s,0t1−t(Zs)

)V,j1)]
+
1|Vs+1|≤R

×f (s+1)
0

(
T s+1,0
−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

))
dω dvs+1 dt1,

one will decompose, finally, as follows :

1t≥δ

∫ t−δ

0

1Uj1 (Zs)

∫
Sd−1
ω ×Rdvs+1

[
ω ·
(
vs+1 −

(
T s,0t1−t(Zs)

)V,j1)]
+
1|Vs+1|≤R

× f (s+1)
0

(
T s+1,0
−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

))
dω dvs+1 dt1

+ 1t≥δ

∫ t−δ

0

1Uj1 (Zs)c

∫
Sd−1
ω ×Rdvs+1

1Ej1 (T s,0
t1−t

(Zs))

×
[
ω ·
(
vs+1 −

(
T s,0t1−t(Zs)

)V,j1)]
+
1|Vs+1|≤R

× f (s+1)
0

(
T s+1,0
−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

))
dω dvs+1 dt1

+ 1t≥δ

∫ t−δ

0

1Uj1 (Zs)c

∫
Sd−1
ω ×Rdvs+1

1Ej1 (T s,0
t1−t

(Zs))c

×
[
ω ·
(
vs+1 −

(
T s,0t1−t(Zs)

)V,j1)]
+
1|Vs+1|≤R

× f (s+1)
0

(
T s+1,0
−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

))
dω dvs+1 dt1,

(12.117)

where Uj1(Zs) and Ej1
(
T s,0t1−t(Zs)

)
denote respectively the subset of [0, T ] com-

posed of the pathological times on the one hand, and the subset of Sd−1 × Rd
composed of the pathological angular parameters and velocities on the other
hand. Those subsets will be properly defined below, in the paragraph starting
page 432.



398 CHAPTER 12. FINAL PREPARATION FOR THE COMPARISON

The first term, defined with a double condition [0, t− δ] ∩ Uj1(Zs) on the time
domain (with Uj1(Zs) representing the time interval during which the particle
j1 is close to the obstacle), and the second term, defined with a time domain
being the complement of Uj1(Zs) and with a condition Ej1(Zs) on the adjunc-
tion parameters (ω, vs+1) domain (with Ej1(Zs) representing the pathological
adjunction parameters determined in the geometric lemmas, leading to a system
which is not in a good configuration after adding another particle). Both terms
are meant to be small, as the size of the subsets Us(Zs) and Ej1(Zs), while the
third term will be, on the one hand, the most significant part, and on the other
hand, it will correspond to pseudo-trajectories without recollision.

Remark 37. One emphasizes that the subsets Uj1(Zs) and Ej1(T s,0t1−t(Zs)) de-
pend of course on the initial configuration Zs. The second subset also depends on
the time t1 chosen for adding a particle, indeed the adjunction parameters are
of course excluded with respect to the global position of the system of particles
at the very time chosen for the adjunction. This is the object of the following
discussion, just below the remark.

The dependency of the subsets excluded by the surgery on the initial configu-
ration forces to be quite careful when one defines the truncated in adjunction
parameters, integrated in time collision-transport operator of the Boltzmann
hierarchy. The reason is the following. At Zs fixed, it is enough to ask only
that Uj1(Zs) is measurable. But the regularity for the other subset Ej1 is more
demanding, since one composes the indicator function of this subset with the
transport. One will then require, in addition with the fact that Ej1(Zs) is mea-
surable for any configuration Zs, that⋃

Zs∈(Ωc×Rd)s

(
{Zs} × Ej1(Zs)

)
is measurable, which will provide, for t and Zs fixed, that the function

t1 7→ 1Ej1 (T s,0
t1−t

(Zs))

is measurable, since t1 7→ T s,0t1−t(Zs) is piecewise continuous, and then the fol-
lowing quantity, for t and Zs fixed, will be well defined.

Definition 55 (Truncated in adjunction parameters (time, velocity and angular
parameter), integrated in time collision-transport operator of the Boltzmann
hierarchy). For any integer 1 ≤ j ≤ s, any function f (s+1) ∈ C

(
[0, T ] ×

(
Ωc ×

Rd
)s+1)

with f (s+1)(t, ·) ∈ X0,s+1,β for any t ∈ [0, T ], for any function :

U : Zs 7→ U(Zs) ∈ P([0, t− δ])

and

E : Zs 7→ E(Zs) ∈ P
(
Sd−1 × Rd

)
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of measurable subsets U(Zs) and E(Zs), one denotes the truncated in adjunction
parameters, integrated in time collision-transport operator of the Boltzmann
hierarchy of type (±, j) the function :

1t≥δ

∫ t−δ

0

1U(Zs)

∫
Sd−1
ω ×Rdvs+1

1E(T s,0
u−t(Zs))

[
ω ·
(
vs+1 −

(
T s,0u−t(Zs)

)V,j)]
+

×f (s+1)(u,
(
T s,0u−t(Zs),

(
T s,0u−t(Zs)

)X,j
, vs+1

)′
j,s+1

) dω dvs+1 du

if ± = +, and :

1t≥δ

∫ t−δ

0

1U(Zs)

∫
Sd−1
ω ×Rdvs+1

1E(T s,0
u−t(Zs))

[
ω ·
(
vs+1 −

(
T s,0u−t(Zs)

)V,j)]
−

× f (s+1)
(
u, T s,0u−t(Zs),

(
T s,0t1−t(Zs)

)X,j
, vs+1

)
dω dvs+1 du

if ± = − as :

I0,δ
s
±,j

(U,E)f (s+1)(t, Zs). (12.118)

In the case when E(Zs) = Sd−1 × Rd for every Zs (surgery only in the time
variable), one will simply denote :

I0,δ
s
±,j

(
U,Sd−1 × Rd

)
f (s+1)(t, Zs) = I0,δ

s
±,j

(U)f (s+1)(t, Zs). (12.119)

The decomposition (12.117) presented page 397 writes then, following the no-
tations just introduced :

I0,δ
s
±,j

f (s+1)(t, Zs) = I0,δ
s
±,j

(Uj1)f (s+1)(t, Zs) + I0,δ
s
±,j

(U cj1 , Ej)f
(s+1)(t, Zs)

+ I0,δ
s
±,j

(U cj1 , E
c
j1)f (s+1)(t, Zs),

with only the last term of the right-hand side representing an important contri-
bution in this decomposition.
For any positive integer k, and any generic elements Mk = (±1, . . . ,±k) ∈Mk

and Jk = (j1, . . . , jk) ∈ Jsk, the same decomposition will be then performed for
the iterated integrated in time collision-transport operator of the Boltzmann
hierarchy of type (Mk, Jk), that is, only formally at this step :

I0,δ
s,s+k−1
(Mk,Jk)

f
(s+k)
0 = I0,δ

s
±1,j1

◦ I0,δ
s+1,s+k−1

(±2,...,±j),(j2,...,jk)

f
(s+k)
0

=
[
I0,δ
s

±1,j1
(Uj1) + I0,δ

s
±1,j1

(U cj1 , Ej1) + I0,δ
s

±1,j1
(U cj1 , E

c
j1)
]
◦ I0,δ

s+1,s+k−1
(±2,...,±j),(j2,...,jk)

f
(s+k)
0

(at this step, one has just performed the decomposition described above on the

operator I0,δ
s , which is applied to the function I0,δ

s+1,s+k−1f
(s+k)
0 ). Now one will
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iterate this decomposition on the last of the three terms obtained, while the two
first ones will be let unchanged :

I0,δ
s

Mk,Jk
f

(s+k)
0 =

[
I0,δ
s

±1,j1
(Uj1) + I0,δ

s
±1,j1

(U cj1 , Ej1)
]
◦ I0,δ

s+1,s+k−1
(±2,...,±k,j2,...,jk)

f
(s+k)
0

+ I0,δ
s

±1,j1
(U cj1 , E

c
j1)
[
I0,δ
s+1
±2,j2

(Uj2) + I0,δ
s+1
±2,j2

(U cj2 , Ej2)

+ I0,δ
s+1
±2,j2

(U cj2 , E
c
j2)
]
◦ I0,δ

s+2,s+k−1
(±3,...,±k),(j3,...,jk)

f
(s+k)
0 ,

and so on, applying again the decomposition on the last of the three terms just
obtained. One finds then :

I0,δ
s,s+k−1
Mk,Jk

f
(s+k)
0 =

[
I0,δ
s

±1,j1
(Uj1) + I0,δ

s
±1,j1

(U cj1 , Ej1)
]
◦ I0,δ

s+1,s+k−1
(±2,...,±k),(j2,...,jk)

f
(s+k)
0

+I0,δ
s

±1,j1
(U cj1 ,E

c
j1)
[
I0,δ
s+1
±2,j2

(Uj2) + I0,δ
s+1
±2,j2

(U cj2 , Ej2)
]
◦ I0,δ

s+2,s+k−1
(±3,...,±k),(j3,...,jk)

f
(s+k)
0

+ . . .

+ I0,δ
s

±1,j1
(U cj1 , E

c
j1) ◦ · · · ◦ I0,δ

s+k−2
±k−1,jk−1

(U cjk−1
, Ecjk−1

)

◦
[
I0,δ
s+k−1
±k,jk

(Ujk) + I0,δ
s+k−1
±k,jk

(U cjk , Ejk)
]
f

(s+k)
0

+ I0,δ
s

±1,j1
(U cj1 , E

c
j1) ◦ · · · ◦ I0,δ

s+k−1
±k,jk

(U cjk , E
c
jk

)f
(s+k)
0 .

Of course, the idea is that, on the right-hand side, each term of the decom-
position will be negligible except the last one, which represents the pseudo-
trajectories which are not pathological.

Here, however the problem of rigorous definition after surgery occurs again in
the case of the iterated operators. Indeed, the main term of the decomposition
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of the element I0,δ
s,s+1

(+,+),(j1,j2)

(
t 7→ T s+2,0

t f
(s+2)
0

)
writes :

1t≥2δ

∫ t−δ

δ

1Uj1 (Zs)c

∫
Sd−1
ω1
×Rdvs+1

1Ej1 (T s,0
t1−t

(Zs))c

[
ω1 ·

(
vs+1 −

(
T s,0t1−t(Zs)

)V,j1)]
+

× 1t1≥δ
∫ t1−δ

0

1Uj2 ((T s,0
t1−t

(Zs),(T
s,0
t1−t

(Zs))X,j1 ,vs+1)′
j1,s+1

)c

×
∫
Sd−1
ω2
×Rdvs+2

1Ej2 (T s+1,0
t2−t1

((T s,0
t1−t

(Zs),(T
s,0
t1−t

(Zs))X,j1 ,vs+1)′
j1,s+1

))c

×
[
ω2 ·

(
vs+2 −

(
T s+1,0
t2−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

))V,j2]
+

×

[
f

(s+2)
0

(
T s+2,0
−t2

((
T s+1,0
t2−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

,

(
T s+1,0
t2−t1

((
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, vs+1

)′
j1,s+1

))X,j2
, vs+2

)′
j2,s+2

))
dω2 dvs+2 dt2 dω1 dvs+1 dt1.

One sees that the dependency of Uj2 on its variable has to be regular enough
so that the integrand is at least measurable. Nevertheless, this regularity is
mandatory, even if one does not consider iterations of the truncated operator,
because one does not consider only the number :

I0,δ
s
±,j

(
U,Sd−1 × Rd

)
f (s+1)(t, Zs) = I0,δ

s
±,j

(U)f (s+1)(t, Zs),

for t and Zs, but of course a function of those variables. So if one desires to
consider at least measurable functions, one is led to assume that⋃

Zs∈(Ωc×Rd)s

(
{Zs} × U(Zs)

)
is also measurable.
Besides the question of the functional setting has to be discussed a bit. For
the Boltzmann hierarchy, one worked with continuous functions. But as soon
as a cut-off in high energy and small time difference between adjunctions has
been performed, the continuity with respect to the phase space variable on the
one hand, and to time on the other hand, have been lost. However, this is not
an object of serious concern here : it is not mandatory anymore to work in
some Banach space for the cut-offs (it was important before for the fixed point
argument).
The only sufficient hypotheses here, in order to iterate the integrated in time
collision-transport operator, will be that the subsets removed for the cut-off
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will be given by measurable functions, as the integrand, that is f composed
with pseudo-trajectories (the measurability of f composed with the pseudo-
trajectories is obtained in the case of the Boltzmann hierarchy thanks to the
continuity of f). In those conditions, the iterations of the operators after surgery
are meaningful, defined as an usual Lebesgue integral.

Definition 56 (Iterated truncated in adjunction parameters (time, velocity
and angular parameter), integrated in time collision-transport operator of the
Boltzmann hierarchy). Let k be a positive integer, Jk = (j1, Jk−1) be an element
of Jsk and Mk = (±1,Mk−1) be an element of Mk.

For any measurable function f (s+k) : [0, T ] ×
(
Ωc × Rd

)s+k → R such that

f (s+k)(t, ·) ∈ X0,s+k,β for any t ∈ [0, T ], for any family of measurable subsets

UJk = (Uj1 , . . . , Ujk) = (Uj1 , UJk−1
)

of [0, t− δ]k and any family of measurable subsets

EJk = (Ej1 , . . . , Ejk) = (Ej1 , EJk−1
)

of
(
Sd−1×Rd

)k
, one denotes the iterated, truncated in adjunction parameters,

integrated in time collision-transport operator of the Boltzmann hierarchy of
type (Mk, Jk) the function, defined thanks to the previous Definition 55 and by
recursion :

1t≥kδ

∫ t−δ

(k−1)δ

1Uj1 (Zs)

∫
Sd−1
ω ×Rdvs+1

1Ej1 (T s,0
t1−t

(Zs))

[
ω1 ·

(
vs+1 −

(
T s,0u−t(Zs)

)V,j)]
+

×
(
I0,δ
s+1,s+k−1
Mk−1,Jk−1

(UJk−1
, EJk−1

)f (s+k)
)
(t1,

(
T s,0t1−t(Zs), xj , vs+1

)′
j,s+1

) dω dvs+1 du

if ± = +, and :

1t≥kδ

∫ t−δ

(k−1)δ

1Uj1 (Zs)

∫
Sd−1
ω ×Rdvs+1

1Ej1 (T s,0
u−t(Zs))

[
ω ·
(
vs+1 −

(
T s,0u−t(Zs)

)V,j)]
−

×
(
I0,δ
s+1s+k−1
Mk−1,Jk−1

(UJk−1
, EJk−1

)f (s+1)(u, Zs, xj , vs+1)
)

dω dvs+1 du

if ± = −, as :

I0,δ
s,s+k−1
(Mk,Jk)

(UJk , EJk)f (s+k). (12.120)

One recalls that, formally, one wants to perform the following decomposition :

I0,δ
s,s+k−1
(Mk,Jk)

f (s+k) = I0,δ
s,s+k−1
(Mk,Jk)

(
U cJk , E

c
Jk

)
f (s+k) + remainder terms,
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where one has denoted :
U cJk =

(
U cj1 , . . . , U

c
jk

)
and

EcJk =
(
Ecj1 , . . . , E

c
jk

)
,

with the families of measurable subsets :

UJk =
(
Uj1 , . . . , Ujk

)
,

and
EJk =

(
Ej1 , . . . , Ejk

)
composed with only small measure respective subsets of the time interval for
the U , and of Sd−1 × Rd for the E.
One can therefore state the two following lemmas, which will respectively control
the two types of remainder terms, namely :

I0,δ
s,s+k−1
Mk,Jk

(
U cJk , E

c
Jk

)
◦ I0,δ

s+k
±k+1,jk+1

(Ujk+1
)

and
I0,δ
s,s+k−1
Mk,Jk

(
U cJk , E

c
Jk

)
◦ I0,δ

s+k
±k+1,jk+1

(U cjk+1
, Ejk+1

).

Surgery in time domain of the integrated in time collision-transport
operator for the Boltzmann hierarchy

Lemma 32 (Surgery lemma in the time domain of the iterated, integrated
in time collision-transport operator of the Boltzmann hierarchy). Let s be a
positive integer, k be a nonnegative integer, β0 be a strictly positive number,
and µ0 be a real number.
Let Ujl be a function of measurable subsets

Ujl : Zs+l−1 7→ Ujl(Zs+l−1)

of [(k + p− l)δ, t− δ], with 1 ≤ l ≤ k + 1 and 1 ≤ jl ≤ s+ l − 1 , such that⋃
Zs+l−1∈(Ωc×Rd)s+l−1

(
{Zs+l−1} × Ujl(Zs+l−1)

)
is measurable and Ujs+1

has a measure uniformly bounded in Zs+k and in js+1

(by a constant denoted
∣∣U ∣∣) and let Ejl be a function of measurable subsets

Ejl : Zs+l−1 7→ Ejl(Zs+l−1)

of Sd−1 × Rd, with 1 ≤ l ≤ k and 1 ≤ jl ≤ s+ l − 1, such that⋃
Zs+l−1∈(Ωc×Rd)s+l−1

(
{Zs+l−1} × Ejl(Zs+l−1)

)
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is measurable.
Then there exist two strictly positive real numbers T and λ such that :

β0 − λT > 0,

and such that for any sequence of regulated functions
(
f (s)

)
s≥1

, with for every
s ≥ 1,

f (s) : [0, T ]×
(
Ωc × Rd

)s → R,

and with
(
f (s)

)
s≥1

having a finite |||·|||
0,β̃λ,µ̃1

λ

norm, one has that for all t ∈ [0, T ]

and any strictly positive number R > 0 :∣∣∣∣∣ ∑
Mk+1

∑
Jk+1

k+1∏
l=1

(±l)I0,δ
s,s+k−1
Mk,Jk

(
(UJk)c, EcJk

)
◦ I0,δ

s+k
±k+1,jk+1

(Ujk+1
)
(
1|Vs+k+1|≤Rf

(s+k+1)
)

(t, ·)
∣∣∣∣∣
0,s,β̃λ(t)

≤ C(d, β0, µ0)
(s+ k)

2k
R
∣∣U ∣∣∣∣∣∣∣∣∣∣∣(f (s)

)
s≥1

∣∣∣∣∣∣∣∣∣
0,β̃λ,µ̃1

λ

(12.121)

with :

C(d, β0, µ0) =
√

2
∣∣Sd−1

∣∣ exp
(
− µ̃λ(T )

)( ∫
Rd

exp
(
− β̃λ(T )

2

∣∣v∣∣2)dv
)
.

Remark 38. One recalls, according to the proof of Lemma 24 page 257, that
the two numbers T and λ are functions of the parameters β0 and µ0 (they are
chosen so that the integrated in time collision-transport operator is a contracting

mapping on the space ‹X
0,β̃,µ̃

), so the notation for the constant involved in the

last inequality of the lemma, and in particular, the dependency stated with respect
to β0 and µ0 only, is clear now.
One notes moreover that the control of the remainder is only in the | · |

0,s,β̃λ(t)

norm, uniformly in t, and not in the |||·|||
0,β̃λ,µ̃λ

norm. The limitation is the same

that when one tried to cut-off the solutions in small time difference between the
adjunctions.

Proof. Writing the definition of the iterated, truncated in adjunction parame-
ters, integrated in time, transport-collision operator

I0,δ
s,s+k−1
Mk,Jk

(
U cJk , E

c
Jk

)
◦ I0,δ

s+k
±k+1,jk+1

(Ujk+1
)
(
1|Vs+k+1|≤Rf

(s+k+1)
)
,

one has, using the notations for the pseudo-trajectories introduced in Definitions
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45 page 323 and 47 page 325, that the quantity

∣∣∣∣∣ ∑
Mk+1

∑
Jk+1

k+1∏
l=1

(±l)I0,δ
s,s+k−1
Mk,Jk

(
U cJk , E

c
Jk

)
◦ I0,δ

s+k
±k+1,jk+1

(Ujk+1
)
(
1|Vs+k+1|≤Rf

(s+k+1)
)∣∣∣∣∣(t, Zs)

can be rewritten as :

∣∣∣∣∣ ∑
Mk+1

∑
Jk+1

k+1∏
l=1

(±l)I0,δ
s,s+k−1
Mk,Jk

(
U cJk , E

c
Jk

)
◦ I0,δ

s+k
±k+1,jk+1

(Ujk+1
)
(
1|Vs+k+1|≤Rf

(s+k+1)
)∣∣∣∣∣(t, Zs)

= 1t≥(k+p)δ

∣∣∣∣∣
∫ t−δ

(k+p−1)δ

1Uj1 (Zs)

∫
Sd−1
ω1
×Rdvs+1

∑
±1

s∑
j1=1

(±1)1Ec
j1

(Z0
s,0(Mk+1,Jk+1,t1))

×
[
ω1 ·

(
vs+1 − v0,j1

s,0 (Mk+1, Jk+1, t1)
)]
±1

× 1t1≥(k+p−1)δ

∫ t1−δ

(k+p−2)δ

1Uj2 (Z0
s,1(Mk+1,Jk+1,t1))

∫
Sd−1
ω2
×Rdvs+2

∑
±2

s+1∑
j2=1

(±2)

× 1Ec
j2

(Z0
s,1(Mk+1,Jk+1,t2))

[
ω2 ·

(
vs+2 − v0,j2

s,1 (Mk+1, Jk+1, t2)
)]
±2

. . .

×1tk−1≥(p+1)δ

∫ tk−1−δ

pδ

1Ujk (Z0
s,k−1

(Mk+1,Jk+1,tk−1))

∫
Sd−1
ωk
×Rdvs+k

∑
±k

s+k−1∑
jk=1

(±k)

× 1Ec
jk

(Z0
s,k−1

(Mk+1,Jk+1,tk))

[
ωk ·

(
vs+k − v0,jk

s,k−1(Mk+1, Jk+1, tk)
)]
±k

× 1tk≥pδ
∫ tk−δ

(p−1)δ

1Ujk+1
(Z0
s,k

(Mk+1,Jk+1,tk))

∫
Sd−1
ωk+1

×Rdvs+k+1

∑
±k+1

s+k∑
jk+1=1

(±k+1)

×
[
ωk+1 ·

(
vs+k+1 − v

0,jk+1

s,k (Mk+1, Jk+1, tk+1)
)]
±k+1

× 1|Vs+k+1|≤Rf
(s+k+1)

(
tk+1, Z

0
s,k+1(Mk+1, Jk+1, 0)

)
dωk+1 dvs+k+1 dtk+1 dωk dvs+k dtk . . . dω2 dvs+2 dt2 dω1 dvs+1 dt1

∣∣∣∣∣.
One bounds crudely this quantity thanks to (a massive use of) the triangular
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inequality and the removal of most of the indicator functions, so that one obtains∣∣∣∣∣ ∑
Mk+1

∑
Jk+1

k+1∏
l=1

(±l)I0,δ
s,s+k−1
Mk,Jk

(
U cJk , E

c
Jk

)
◦ I0,δ

s+k
±k+1,jk+1

(Ujk+1
)
(
1|Vs+k+1|≤Rf

(s+k+1)
)∣∣∣∣∣(t, Zs)

≤
∫ t

0

∫
Sd−1
ω1
×Rdvs+1

∑
±1

s∑
j1=1

[
ω1 ·

(
vs+1 − v0,j1

s,0 (Mk+1, Jk+1, t1)
)]
±1

×
∫ t1

0

∫
Sd−1
ω2
×Rdvs+2

∑
±2

s+1∑
j2=1

[
ω2 ·

(
vs+2 − v0,j2

s,1 (Mk+1, Jk+1, t2)
)]
±2

. . .

×
∫ tk−1

0

∫
Sd−1
ωk
×Rdvs+k

∑
±k

s+k−1∑
jk=1

[
ωk ·

(
vs+k − v0,jk

s,k−1(Mk+1, Jk+1, tk)
)]
±k

×
∫ tk

0

1Ujk+1
(Z0
s,k

(Mk+1,Jk+1,tk))

∫
Sd−1
ωk+1

×Rdvs+k+1

∑
±k+1

s+k∑
jk+1=1

×
[
ωk+1 ·

(
vs+k+1 − v

0,jk+1

s,k (Mk+1, Jk+1, tk+1)
)]
±k+1

× 1|Vs+k+1|≤R

∣∣∣f (s+k+1)
(
tk+1, Z

0
s,k+1(Mk+1, Jk+1, tk+1)

)∣∣∣
dωk+1 dvs+k+1 dtk+1 dωk dvs+k dtk . . . dω2 dvs+2 dt2 dω1 dvs+1 dt1,

and then, using the boundedness of f (s+k+1)(u, ·) in the | · |
0,s+k+1,β̃λ(u)

norm,

and the boundedness of
(
f (s)

)
s≥1

in the |||·|||
0,β̃λ,µ̃1

λ

norm, that is, one recalls :

∣∣f (s+k+1)(tk+1,Vs+k+1)
∣∣ ≤ ∣∣∣∣∣∣∣∣∣(f (s)

)
s≥1

∣∣∣∣∣∣∣∣∣
0,β̃λ,µ̃1

λ

exp
(
− (s+ k + 1)µ̃λ(tk+1)

)
× exp

(
− β̃λ(tk+1)

2

∣∣Vs+k+1

∣∣2),
so that the quantity∣∣∣∣∣ ∑
Mk+1

∑
Jk+1

k+1∏
l=1

(±l)I0,δ
s,s+k−1
Mk,Jk

(
U cJk , E

c
Jk

)
◦ I0,δ

s+k
±k+1,jk+1

(Ujk+1
)
(
1|Vs+k+1|≤Rf

(s+k+1)
)∣∣∣∣∣(t, Zs) exp

(βλ(t)

2
|Zs|2

)
can be controlled in the following way.
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One has

∣∣∣∣∣ ∑
Mk+1

∑
Jk+1

k+1∏
l=1

(±l)I0,δ
s,s+k−1
Mk,Jk

(
U cJk , E

c
Jk

)
◦ I0,δ

s+k
±k+1,jk+1

(Ujk+1
)
(
1|Vs+k+1|≤Rf

(s+k+1)
)∣∣∣∣∣(t, Zs) exp

(βλ(t)

2
|Zs|2

)
≤
∫ t

0

∫
Sd−1
ω1
×Rdvs+1

∑
±1

s∑
j1=1

[
ω1 ·

(
vs+1 − v0,j1

s,0 (Mk+1, Jk+1, t1)
)]
±1

×
∫ t1

0

∫
Sd−1
ω2
×Rdvs+2

∑
±2

s+1∑
j2=1

[
ω2 ·

(
vs+2 − v0,j2

s,1 (Mk+1, Jk+1, t2)
)]
±2

. . .

×
∫ tk−1

0

∫
Sd−1
ωk
×Rdvs+k

∑
±k

s+k−1∑
jk=1

[
ωk ·

(
vs+k − v0,jk

s,k−1(Mk+1, Jk+1, tk)
)]
±k

×
∫ tk

0

1Ujk+1
(Z0
s,k

(Mk+1,Jk+1,tk))

∫
Sd−1
ωk+1

×Rdvs+k+1

∑
±k+1

s+k∑
jk+1=1

×
[
ωk+1 ·

(
vs+k+1 − v

0,jk+1

s,k (Mk+1, Jk+1, tk+1)
)]
±k+1

× 1|Vs+k+1|≤R

∣∣∣∣∣∣∣∣∣(f (s)
)
s≥1

∣∣∣∣∣∣∣∣∣
0,β̃λ,µ̃1

λ

exp
(
− (s+ k + 1)µ̃λ(tk+1)

)
× exp

(
− β̃λ(tk+1)

2

∣∣V 0
s,k+1

∣∣2)dωk+1 dvs+k+1 dtk+1

dωk dvs+k dtk . . . dω2 dvs+2 dt2 dω1 dvs+1 dt1.

Now one bounds the two last integrals

∫ tk

0

1Ujk+1
(Z0
s,k

(Mk+1,Jk+1,tk))

∫
Sd−1
ωk+1

×Rdvs+k+1

∑
±k+1

s+k∑
jk+1=1

×
[
ωk+1 ·

(
vs+k+1 − v

0,jk+1

s,k (Mk+1, Jk+1, tk+1)
)]
±k+1

1|Vs+k+1|≤R

× exp
(
− (s+ k + 1)µ̃λ(tk+1)

)
exp

(
− β̃λ(tk+1)

2

∣∣V 0
s,k+1(Mk+1, Jk+1, tk+1)

∣∣2)
dωk+1 dvs+k+1 dtk+1
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as follows :

∫ tk

0

1Ujk+1
(Z0
s,k

(Mk+1,Jk+1,tk))

∫
Sd−1
ωk+1

×Rdvs+k+1

∑
±k+1

s+k∑
jk+1=1

×
[
ωk+1 ·

(
vs+k+1 − v

0,jk+1

s,k (Mk+1, Jk+1, tk+1)
)]
±k+1

1|Vs+k+1|≤R

× exp
(
− (s+ k + 1)µ̃λ(tk+1)

)
exp

(
− β̃λ(tk+1)

2

∣∣V 0
s,k+1(Mk+1, Jk+1, tk+1)

∣∣2)
dωk+1 dvs+k+1 dtk+1

≤ exp
(
− (s+ k)µ̃λ(tk)

)
exp

(
− µ̃λ(T )

) ∫ tk

0

1Us+k(Z0
s,k

(Mk+1,Jk+1,tk))

×
∫
Sd−1
ωk+1

×Rdvs+k+1

1
(±k+1)ωk+1·

(
vs+k+1−v

0,jk+1
s,k

(Mk+1,Jk+1,tk+1)
)
≥0
1|Vs+k+1|≤R

×
∑
±k+1

s+k∑
jk+1=1

(∣∣vs+k+1

∣∣+
∣∣v0,jk+1

s,k (Mk+1, Jk+1, tk+1)
∣∣)

× exp
(
− β̃λ(tk+1)

2

∣∣V 0
s,k+1(Mk+1, Jk+1, tk+1)

∣∣2)dωk+1 dvs+k+1 dtk+1

since the function µ̃λ is decreasing. On the other hand, since one has, first thanks
to the very definition of the pseudo-trajectories (see Definition 45 page 323), and
second due to the conservation of the kinetic energy by the free transport and
the scattering :

∣∣V 0
s,k+1(Mk+1, Jk+1,tk+1)

∣∣2 =
∣∣V 0
s,k(Mk+1, Jk+1, tk+1)

∣∣2 +
∣∣vs+k+1

∣∣2
=
∣∣V 0
s,k(Mk+1, Jk+1, tk)

∣∣2 +
∣∣vs+k+1

∣∣2
=

︷ ︸︸ ︷∣∣V 0
s,k−1(Mk+1, Jk+1, tk−1)

∣∣2 +
∣∣vs+k∣∣2 +

∣∣vs+k+1

∣∣2,
and so on, so that one has in the end :

∣∣V 0
s,k+1(Mk+1, Jk+1,tk+1)

∣∣2 =
∣∣Vs∣∣2 +

k+1∑
l=1

∣∣vs+l∣∣2.
One deduces then in particular that

(∣∣vs+k+1

∣∣+
∣∣v0,jk+1

s,k (Mk+1, Jk+1, tk+1)
∣∣)1|Vs+k+1|≤R ≤

√
2R.
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One finds therefore, since the function β̃λ is also decreasing :

exp
(
− (s+ k)µ̃λ(tk)

)
exp

(
− µ̃λ(T )

) ∫ tk

0

1Us+k(Z0
s,k

(Mk+1,Jk+1,tk))

×
∫
Sd−1
ωk+1

×Rdvs+k+1

1
(±k+1)ωk+1·

(
vs+k+1−v

0,jk+1
s,k

(Mk+1,Jk+1,tk+1)
)
≥0
1|Vs+k+1|≤R

×
∑
±k+1

s+k∑
jk+1=1

(∣∣vs+k+1

∣∣+
∣∣v0,jk+1

s,k (Mk+1, Jk+1, tk+1)
∣∣)

× exp
(
− β̃λ(tk+1)

2

∣∣V 0
s,k+1(Mk+1, Jk+1, tk+1)

∣∣2)dωk+1 dvs+k+1 dtk+1

≤ exp
(
− (s+ k)µ̃λ(tk)

)
exp

(
− µ̃λ(T )

) ∫ tk

0

1Us+k(Z0
s,k

(Mk+1,Jk+1,tk))

× exp
(
− β̃λ(tk)

2

(∣∣Vs∣∣2 +
k∑
l=1

∣∣vs+l∣∣2))
×
∫
Sd−1
ωk+1

×Rdvs+k+1

√
2R 1

(±k+1)ωk+1·
(
vs+k+1−v

0,jk+1
s,k

(Mk+1,Jk+1,tk+1)
)
≥0

×
∑
±k+1

s+k∑
jk+1=1

exp
(
− β̃λ(T )

2

∣∣vs+k+1

∣∣2)dωk+1 dvs+k+1 dtk+1,

the right-hand side being in fact equal to :

√
2
∣∣Sd−1

∣∣ exp
(
− µ̃λ(T )

)( ∫
Rd

exp
(
− β̃λ(T )

2

∣∣vs+k+1

∣∣2) dvs+k+1

)
× exp

(
− (s+ k)µ̃λ(tk)

)
exp

(
− β̃λ(tk)

2

(∣∣Vs∣∣2 +
k∑
l=1

∣∣vs+l∣∣2))
× (s+ k)R

∣∣Us+k∣∣.
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One sees finally that the quantity :∫ t

0

∫
Sd−1
ω1
×Rdvs+1

∑
±1

s∑
j1=1

[
ω1 ·

(
vs+1 − v0,j1

s,0 (Mk+1, Jk+1, t1)
)]
±1

×
∫ t1

0

∫
Sd−1
ω2
×Rdvs+2

∑
±2

s+1∑
j2=1

[
ω2 ·

(
vs+2 − v0,j2

s,1 (Mk+1, Jk+1, t2)
)]
±2

. . .

×
∫ tk−1

0

∫
Sd−1
ωk
×Rdvs+k

∑
±k

s+k−1∑
jk=1

[
ωk ·

(
vs+k − v0,jk

s,k−1(Mk+1, Jk+1, tk)
)]
±k

× exp
(
− (s+ k)µ̃λ(tk)

)
exp

(
− β̃λ(tk)

2

(∣∣Vs∣∣2 +
k∑
l=1

∣∣vs+l∣∣2)) dωk dvs+k dtk

. . . dω2 dvs+2 dt2 dω1 dvs+1 dt1

is nothing more than the usual iterated, integrated in time, collision-transport of
the Boltzmann hierarchy, crudely bounded regardless of the possible cancellation
effects between pre and post-collisional terms, applied to the function :

gs+k : (tk, Vs+k) 7→ exp
(
− (s+ k)µ̃λ(tk)

)
exp

(
− β̃λ(tk)

2

(∣∣Vs∣∣2 +
s+k∑
l=1

∣∣vs+l∣∣2)),
with of course (

gs
)
s≥1
∈ ‹X

0,β̃λ,µ̃λ
.

This quantity is then controlled as in Lemma 24 page 257. For β0 and µ0 fixed, if
T and λ are carefully chosen, one recalls that it is possible to obtain an operator
with a |||·|||

0,β̃λ,µ̃λ
norm smaller than 1/2. One obtains therefore in the end, after

multiplying by the gaussian weight in velocity :∣∣∣∣∣ ∑
Mk+1

∑
Jk+1

k+1∏
l=1

(±l)I0,δ
s,s+k−1
Mk,Jk

(
U cJk , E

c
Jk

)
◦ I0,δ

s+k
±k+1,jk+1

(Ujk+1
)
(
1|Vs+k+1|≤Rf

(s+k+1)
)∣∣∣∣∣(t, Zs) exp

(βλ(t)

2
|Zs|2

)
≤ C(d, β0, µ0)

(s+ k)

2k
R
∣∣Ujk+1

∣∣∣∣∣∣∣∣∣∣∣(f (s)
)
s≥1

∣∣∣∣∣∣∣∣∣
0,β̃λ,µ̃λ

with :

C(d, β0, µ0) =
√

2
∣∣Sd−1

∣∣ exp
(
−µ̃λ(T )

)( ∫
Rd

exp
(
− β̃λ(T )

2

∣∣vs+k+1

∣∣2)dvs+k+1

)
,

which is the inequality stated in the lemma.
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Surgery in the angular parameter and velocity domain of the inte-
grated in time collision-transport operator for the Boltzmann hierar-
chy

Lemma 33 (Surgery lemma in the angular parameter and velocity domain of
the iterated, integrated in time, collision-transport operator of the Boltzmann
hierarchy). Let s be a positive integer, k be a nonnegative integer, β0 be a strictly
positive number, and µ0 be a real number.
Let Ujl be a function of measurable subsets

Ujl : Zs+l−1 7→ Ujl(Zs+l−1)

of [(k + p− l)δ, t− δ], with 1 ≤ l ≤ k + 1, such that⋃
Zs+l−1∈(Ωc×Rd)s+l−1

(
{Zs+l−1} × Us+l−1(Zs+l−1)

)
is measurable, and let Ejl be a function of measurable subsets

Ejl : Zs+l−1 7→ Ejl(Zs+l−1)

of Sd−1 × Rd, with 1 ≤ l ≤ k + 1 and 1 ≤ jl ≤ s+ l − 1, such that :⋃
Zs+l−1∈(Ωc×Rd)s+l−1

(
{Zs+l−1} × Ejl(Zs+l−1)

)
is measurable, and Ejk+1

has a measure uniformly bounded in Zs+k and in jk+1

by a constant denoted
∣∣E∣∣.

Then there exist two strictly positive real numbers T and λ such that :

β0 − λT > 0,

and such that for any sequence of regulated functions
(
f (s)

)
s≥1

, with for every
s ≥ 1,

f (s) : [0, T ]×
(
Ωc × Rd

)s+k → R

and with
(
f (s)

)
s≥1

having a finite |||·|||
0,β̃λ,µ̃1

λ

norm, one has that for all t ∈ [0, T ]

and any strictly positive number R > 0 :∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
Å ∑
Mk+1

∑
Jk+1

k+1∏
l=1

(±l)I0,δ
s,s+k−1
Mk,Jk

(
U cJk , E

c
Jk

)
◦ I0,δ

s+k
±k+1,jk+1

(
U cjk+1

, Ejk+1

)(
1|Vs+k+1|≤Rf

(s+k+1)
)ã

s≥1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
0,β̃λ,µ̃1

λ

≤ C(β0, µ0)
1

2k
R
∣∣E∣∣∣∣∣∣∣∣∣∣∣(f (s)

)
s≥1

∣∣∣∣∣∣∣∣∣
0,β̃λ,µ̃1

λ

(12.122)

with :

C(β0, µ0) =
√

2
exp

(
− µ̃λ(T )

)
λ

.
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Proof. As for the proof of the previous lemma, one is in the end led to control
the following quantity :∫ tk

0

1Uc
jk+1

(Z0
s,k

(Mk+1,Jk+1,tk))

∫
Sd−1
ωk+1

×Rdvs+k+1

∑
±k+1

s+k∑
jk+1=1

1Ejk+1
(Z0
s,k

(Mk+1,Jk+1,tk+1))

×
[
ωk+1 ·

(
vs+k+1 − v

0,jk+1

s,k (Mk+1, Jk+1, tk+1)
)]
±k+1

1|Vs+k+1|≤R

× exp
(
− (s+ k + 1)µ̃λ(tk+1)

)
exp

(
− β̃λ(tk+1)

2

∣∣V 0
s,k+1(Mk+1, Jk+1, tk+1)

∣∣2)
dωk+1 dvs+k+1 dtk+1,

denoted here by Q.
This time one will be able to recover a control in the |||·|||

0,β̃λ,µ̃1
λ

norm. One

computes therefore the product of Q with the relevant weights, namely :

exp
(
(s+ k)µ̃λ(tk)

)
exp

( β̃λ(tk)

2

∣∣Vs+k∣∣2).
One finds :

Q exp
(
(s+ k)µ̃λ(tk)

)
exp

( β̃λ(tk)

2

∣∣Vs+k∣∣2)
=

∫ tk

0

1Uc
jk+1

(Z0
s,k

(Mk+1,Jk+1,tk))

∫
Sd−1
ωk+1

×Rdvs+k+1

∑
±k+1

s+k∑
jk+1=1

1Ejk+1
(Z0
s,k

(Mk+1,Jk+1,tk+1))

×
[
ωk+1 ·

(
vs+k+1 − v

0,jk+1

s,k (Mk+1, Jk+1, tk+1)
)]
±k+1

1|Vs+k+1|≤R

× exp
(
− (s+ k + 1)µ̃λ(tk+1)

)
exp

(
(s+ k)µ̃λ(tk)

)
× exp

(
− β̃λ(tk+1)

2

∣∣V 0
s,k+1(Mk+1, Jk+1, tk+1)

∣∣2) exp
( β̃λ(tk)

2

∣∣Vs+k∣∣2)
dωk+1 dvs+k+1 dtk+1,

and one drops immediately the indicator function in the time variable, since in
the spirit of the whole work, Ujk+1

is meant to be small and has already provided
a control (see the previous Lemma 32), so its complement is very close to the
whole time interval [0, tk], and then no control can be provided from this term.
Using, as in the proof of the previous lemma, that :(∣∣vs+k+1

∣∣+
∣∣v0,jk+1

s,k (Mk+1, Jk+1, tk+1)
∣∣)1|Vs+k+1|≤R ≤

√
2R,

and :

∣∣V 0
s,k+1(Mk+1, Jk+1, tk+1)

∣∣2 =
∣∣Vs∣∣2 +

k+1∑
l=1

∣∣vs+l∣∣2 =
∣∣Vs+k∣∣2 +

∣∣vs+k+1

∣∣2,
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one obtains :

Q exp
(
(s+ k)µ̃λ(tk)

)
exp

( β̃λ(tk)

2

∣∣Vs+k∣∣2)
≤ exp

(
− µ̃λ(T )

) ∫ tk

0

exp
(
(s+ k)(µ̃λ(tk)− µ̃λ(tk+1))

)
×
∫
Sd−1
ωk+1

×Rdvs+k+1

√
2R

s+k∑
jk+1=1

1Ejk+1
(Z0
s,k

(Mk+1,Jk+1,tk+1))

× exp
( β̃λ(tk)− β̃λ(tk+1)

2

∣∣Vs+k∣∣2) exp
(
− β̃λ(tk+1)

2

∣∣vs+k+1

∣∣2)
dωk+1 dvs+k+1 dtk+1

(the first sum over the two possible signs of ±k+1 has disappeared since one has
in fact :∑
±k+1

1Ejk+1
(Z0
s,k

(Mk+1,Jk+1,tk+1))

×
[
ωk+1 ·

(
vs+k+1 − v

0,jk+1

s,k (Mk+1, Jk+1, tk+1)
)]
±k+1

= 1Ejk+1
(Z0
s,k

(Mk+1,Jk+1,tk+1))

∣∣∣ωk+1 ·
(
vs+k+1 − v

0,jk+1

s,k (Mk+1, Jk+1, tk+1)
)∣∣∣).

One has to notice here that the argument inside the two gaussians in velocity

β̃λ(tk)− β̃λ(tk+1)

2

∣∣Vs+k∣∣2 =
(β0 − λtk)− (β0 − λtk+1)

2

∣∣Vs+k∣∣2
=
λ(tk+1 − tk)

2

∣∣Vs+k∣∣2
and

− β̃λ(tk+1)

2

∣∣vs+k+1

∣∣2
are both negative, so that the term under the integral

exp
( β̃λ(tk)− β̃λ(tk+1)

2

∣∣Vs+k∣∣2) exp
(
− β̃λ(tk+1)

2

∣∣vs+k+1

∣∣2)
can be bounded from above by 1. Once again, this control can look like brutal,
but since one integrates only over the subset Ejk+1

, compact and meant to be
small, the decrease at infinity of the gaussian will play no role here.
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One has therefore :

Q exp
(
(s+ k)µ̃λ(tk)

)
exp

( β̃λ(tk)

2

∣∣Vs+k∣∣2)
≤ exp

(
− µ̃λ(T )

) ∫ tk

0

exp
(
(s+ k)(µ̃λ(tk)− µ̃λ(tk+1))

)
×
∫
Sd−1
ωk+1

×Rdvs+k+1

√
2R

s+k∑
jk+1=1

1Ejk+1
(Z0
s,k

(Mk+1,Jk+1,tk+1)) dωk+1 dvs+k+1 dtk+1

≤
√

2R exp
(
− µ̃λ(T )

) ∫ tk

0

exp
(
(s+ k)(µ̃λ(tk)− µ̃λ(tk+1))

)
×

s+k∑
jk+1=1

∣∣Ejk+1
(Z0

s,k(Mk+1, Jk+1, tk+1))
∣∣dtk+1,

and since the measure of the subset Ejk+1
(Z0

s,k(Mk+1, Jk+1, tk+1)) is uniformly

bounded in Zs+k and jk+1 by
∣∣E∣∣, one has :

Q exp
(
(s+ k)µ̃λ(tk)

)
exp

( β̃λ(tk)

2

∣∣Vs+k∣∣2)
≤ exp

(
− µ̃λ(T )

) ∫ tk

0

exp
(
(s+ k)(µ̃λ(tk)− µ̃λ(tk+1))

)
×
∫
Sd−1
ωk+1

×Rdvs+k+1

√
2R

s+k∑
jk+1=1

1Ejk+1
(Z0
s,k

(Mk+1,Jk+1,tk+1)) dωk+1 dvs+k+1 dtk+1

≤
√

2R exp
(
− µ̃λ(T )

) ∫ tk

0

exp
(
(s+ k)(µ̃λ(tk)− µ̃λ(tk+1))

)
×

s+k∑
jk+1=1

∣∣Ejk+1
(Z0

s,k(Mk+1, Jk+1, tk+1))
∣∣ dtk+1

≤
√

2R exp
(
− µ̃λ(T )

)
(s+ k)

∣∣E∣∣ ∫ tk

0

exp
(
(s+ k)(µ̃λ(tk)− µ̃λ(tk+1))

)
dtk+1.

Finally, noticing that the integral term in time can be computed explicitly, one
finds :∫ tk

0

exp
(
(s+ k)(µ̃λ(tk)− µ̃λ(tk+1))

)
dtk+1 =

∫ tk

0

exp
(
λ(s+ k)(tk+1 − tk)

)
dtk

=

[
1

λ(s+ k)
exp

(
λ(s+ k)(tk+1 − tk)

]tk
0

≤ 1

λ(s+ k)
,

so that the term depending on s and k in the bound found above is compensated
by this integral.
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In summary, one has obtained

Q exp
(
(s+ k)µ̃λ(tk)

)
exp

( β̃λ(tk)

2

∣∣Vs+k∣∣2) ≤ √2
exp

(
− µ̃λ(T )

)
λ

R
∣∣E∣∣,

this bound being uniform in s and Zs+k, which means that

|||Q|||
0,β̃λ,µ̃λ

≤
√

2
exp

(
− µ̃1

λ(T )
)

λ
R
∣∣E∣∣.

As in the proof of the previous lemma, the control of the whole remainder∑
Mk+1

∑
Jk+1

k+1∏
l=1

(±l)I0,δ
s,s+k−1
Mk,Jk

(
U cJk , E

c
Jk

)
◦ I0,δ

s+k
±k+1,jk+1

(
U cjk+1

, Ejk+1

)(
1|Vs+k+1|≤Rf

(s+k+1)
)
,

this time in the |||·|||
0,β̃λ,µ̃1

λ

norm, is obtained using the fact that the term

I0,δ
s,s+k−1
Mk,Jk

(
U cJk , E

c
Jk

)
is a contracting mapping with respect to this norm. This

concludes the proof of the lemma.

Remark 39. One notices that the controls (32) and (33) of the two previous
lemmas hold only in the context of functions already truncated in high energy.
Without this assumption, one would not have been able to recover the result.

Surgery on the domains of the integrated in time collision-transport
operator of the BBGKY hierarchy

The same result holds for the truncated in adjunction parameters operator of the
BBGKY hierarchy. However, the proof is much longer, since one needs to give a
sense to this truncated operator. One faced the same problem when one wanted
to define properly the transport-collison operator of the BBGKY hierarchy : the
following integral

εd−1

∫
Sd−1
ω ×Rdvs+1

(ω · (vs+1 − vi))± ϕ
(s+1)(Zs, xi + εω, vs+1) dω dvs+1

did not make sense a priori due to a lack of regularity of the integrand. The
problem was then solved along Section 5.1 starting page 88, first by dividing the
integral and cutting off the pathological initial configurations leading to a too
complicated expression of the hard sphere transport, and second by showing that
the parameters of the cut-off, defining sequences of transport-collision operators
with respect to thoses parameters, can be relaxed, that is the sequences converge
as the parameters of the cut-offs are removed.
In the present case this work cannot be reused directly, but it can be adapted
in order to take into account the additional cut-offs in pathological adjunction
parameters.
One starts therefore by this problem of rigorous definition.
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Rigorous definition of the truncated in adjunction parameters, inte-
grated in time transport-collision-transport of the BBGKY hierarchy

One can wonder why one has to use piecewise constant in time functions, and
then a density argument to obtain the result. Instead, one could try to find a
subspace of C

(
[0, T ], L∞

(
Dεs
))

, of regular functions, such that the straightfor-
ward computation done for the case of the Boltzmann hierarchy could also be
performed, and then conclude by a density argument. The problem is that there
is no hope to find, at least continuous functions (with respect to the phase space
variable) which form a dense subspace into C

(
[0, T ], L∞

(
Dεs
))

.

One starts by a first lemma, which states that the truncated in adjunction pa-
rameters transport-collision operator of the BBGKY hierarchy is a well-defined
function, and which verifies the following stability condition : if the argument
h(s+1) of the transport-collision operator is uniformly bounded in velocity by
some function decreasing fastly enough at infinity, then the transport-collision
operator applied to h(s+1) is bounded in the same way by some other function
decreasing at infinity.
Those two properties constitute the analog of Theorem 1 page 137. And, with-
out any surprise, those results are obtained in the same way, that is one will
follow exactly the same path as in Section 5.1, starting page 88. To be accu-
rate, one will in fact obtain the same bounds used in several of the lemmas of
this section, which will then of course provide the same conclusion. On the one
hand, the difference lies only in the checking that the cut-off in the pathological
adjunction parameters (that is, the difference in the domains of the integral
defining the collision operator) does not prevent to apply the same arguments
as in Section 5.1. On the other hand, if the new domain of the integral defining
the analog of the collision operator is small, one has to show that it is possible to
obtain a control on this new transport-collision operator, truncated in adjunc-
tion parameters, which takes into account the size of this small domain. To be
more explicit about this control, and it is the main difference with Section 5.1,
one will obtain an upper bound on the |||·|||

N,ε,s,β̃λ,µ̃1
λ

norm of the truncated in

adjunction parameters, iterated, integrated in time transport-collision-transport
operator, which is a function of the size of the excluded subset of adjunction
parameters.
One notes that this result will use the crucial hypothesis that one considers
functions defined only on a domain of bounded energy.

Lemma 34 (Surgery lemma in the domain of the transport-collision operator
of the BBGKY hierarchy). Let s be a positive integer, ε and T be two strictly
positive numbers. Let gs+1 : [0, T ]× R+ → R+ be a function verifying :

• (t, x) 7→ gs+1(t, x) is measurable and almost everywhere non-negative,

• for all x ∈ R+, the function :

t 7→ gs+1(t, x)
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is increasing,

• for all t ∈ [0, T ] and almost every (v1, . . . , vs) ∈ Rds, the function :

vs+1 7→
∣∣Vs+1

∣∣gs+1

(
t,
∣∣Vs+1

∣∣)
is integrable on Rd,

• for all t ∈ [0, T ], the function :

(v1, . . . , vs) 7→
∫
Rd

∣∣Vs+1

∣∣gs+1

(
t,
∣∣Vs+1

∣∣)dvs+1

is bounded almost everywhere, and :∣∣∣ ∫
Rd
1|Vs+1|≥R

∣∣Vs+1

∣∣gs+1

(
t,
∣∣Vs+1

∣∣) dvs+1

∣∣∣
L∞t L

∞
Vs

converges to zero as R goes to infinity.

Let in addition Ej be a function :

Ej : Zs ∈ Dεs 7→ Ej(Zs) ∈ P
(
Sd−1 × Rd

)
such that : ⋃

Zs∈(Ωc×Rd)s

(
{Zs} × Ej(Zs)

)
is measurable, and such that Ej(Zs) is also measurable.
Then for any integer 1 ≤ j ≤ s, any sign ± = + or −, and for any regulated
function :

h(s+1) ∈ L∞
(
[0, T ], L∞

(
Dεs+1

))
such that for all t ∈ [0, T ], there exists a nonnegative number C(t) such that for
almost every Zs+1 ∈ Dεs+1 :∣∣h(s+1)(t, Zs+1)

∣∣ ≤ C(t)gs+1

(
t,
∣∣Vs+1

∣∣)
(for all t, the smallest constant C(t) verifying this condition will then be denoted
as : ∣∣∣h(s+1)(t, Zs+1)

gs+1

(
t,
∣∣Vs+1

∣∣) ∣∣∣L∞(Dε
s+1

)
),

and for any sequence of piecewise constant in time function :

(
h

(s+1
k

)
k≥0
∈
(
L∞
(
[0, T ], L∞

(
Dεs+1

))N
converging in L∞

(
[0, T ], L∞

(
Dεs+1

)
towards h(s+1), one has that the sequence

(depending on the strictly positive numbers δ, R1, R2 and on the integer k) of
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integrals :

Cεs,s+1,±,j(δ,R1, R2)(E)T s+1,ε
t h

(s+1)
k

= εd−1

∫
Sd−1
ω ×Rdvs+1

(
ω · (vs+1 − vj)

)
±T

s+1,ε
t h

(s+1)
k 1D1Ej dvs+1 dω (12.123)

(where D = D(ε,R1, R2, δ) denotes, as in (5.1) page 89 the domain of the trun-
cated in time, position and velocity transport-collision operator of the BBGKY
hierarchy) is a well-defined sequence of integrable and bounded almost every-
where functions on [0, T ]×Dεs, and :

1. it converges in L∞
(
[0, T ]×Dεs

)
as the integer j goes to infinity towards a

limit denoted as

Cεs,s+1,±,j(δ,R1, R2)(Ej)T s+1,ε
t h(s+1),

which does not depend on the sequence
(
h

(s+1)
k

)
k≥0

and which is also in

L1
(
[0, T ]×Dεs

)
,

2. the sequence of functions
(
Cεs,s+1,±,j(δ,R1, R2)(Ej)T s+1,ε

t h(s+1)
)
δ>0

con-

verges in L1
(
[0, T ] × Dεs

)
as the parameter δ goes to zero towards a limit

denoted as
Cεs,s+1,±,j(R1, R2)(Ej)T s+1,ε

t h(s+1),

the sequence converging also weak-∗ in L∞
(
[0, T ]×Dεs

)
towards the same

limit,

3. the sequence of functions
(
Cεs,s+1,±,j(R1, R2)(Ej)T s+1,ε

t h(s+1)
)
R1>0

con-

verges almost everywhere on [0, T ]×Dεs as the parameter R1 goes to infinity
towards a limit denoted as

Cεs,s+1,±,j(R2)(Ej)T s+1,ε
t h(s+1)

belonging to L∞
(
[0, T ]×Dεs

)
,

4. the sequence of functions
(
Cεs,s+1,±,j(R2)(Ej)T s+1,ε

t h(s+1)
)
R2>0

converges

in L∞
(
[0, T ] × Dεs

)
as the parameter R2 goes to infinity towards a limit

denoted as
Cεs,s+1,±,j(Ej)T

s+1,ε
t h(s+1).

This limit

Cεs,s+1,±,j(Ej)T
s+1,ε
t h(s+1) (12.124)

is called the truncated in adjunction parameters transport-collision operator of
the BBGKY hierarchy.
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Moreover, this truncated in adjunction parameters operator verifies the additivity
property of the domains, that is for every functions of measurable subsets Ej,1
and Ej,2 such that for almost every Zs :∣∣Ej,1(Zs) ∩ Ej,2(Zs)

∣∣ = 0,

one has :

Cεs,s+1,±,j(Ej,1 ∪ Ej,2)T s+1,ε
t h(s+1)

= Cεs,s+1,±,j(Ej,1)T s+1,ε
t h(s+1) + Cεs,s+1,±,j(Ej,2)T s+1,ε

t h(s+1),

(12.125)

and the two following controls : one has almost everywhere on [0, T ]×Dεs :∣∣∣Cεs,s+1,±,j(Ej)T
s+1,ε
t h(s+1)(t, Zs)

∣∣∣ ≤ εd−1

∣∣Sd−1
∣∣

2

∣∣∣∣∣h(s+1)(t, Zs+1)

gs+1

(
t, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

×
∫
Rd

(
|vj |+ |vs+1|

)
gs+1

(
t, |Vs+1|

)
dvs+1,

(12.126)

and for any strictly positive number R :∣∣∣Cεs,s+1,±,j(Ej)T
s+1,ε
t

(
1|Vs+1|≤Rh

(s+1)(t, Zs)
)∣∣∣ ≤ √2εd−1R

×
∣∣∣∣∣h(s+1)(t, Zs+1)

gs+1

(
t, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

∫
Sd−1
ω ×Rdvs+1

1±ω·(vs+1−vj)≥01Ej(Zs)gs+1

(
t,
∣∣Vs+1

∣∣)dω dvs+1.

(12.127)

Remark 40. The first equality (12.125) will be of course used in order to decom-
pose the original integrated in time transport-collision-transport operator into
two terms. On the one hand, the first term is composed of the pathological ad-
junction parameters, which has to be seen as a remainder, so that this term will
be controlled by the last control (12.127) (using therefore the control of the size
of the pathological adjunction parameters, stated in Proposition 16 page 347).
On the other hand, the second term, which is composed of all the other adjunc-
tion parameters (so that if one adds a particle to the system which is in a good
configuration, the new system with this new particle stays in a good configura-
tion), will play the role of the main term.
Finally, the purpose of the second control (12.126) enables to state that this
main term preserves the |||·|||

ε,β̃,µ̃1 norm.

Proof. One starts the proof by the rigourous definition of the quantity :

Cεs,s+1,±,i(δ,R1, R2)(E)h
(s+1)
j

= εd−1

∫
Sd−1
ω ×Rdvs+1

(
ω · (vs+1 − vi)

)
±T

s+1,ε
t h

(s+1)
j 1D1E dvs+1 dω, (12.128)
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which turns out to be an integrable function on [0, T ]×Dεs.

This point is very similar to the control (5.38) of Lemma 5 page 122 of the
section 5.1.3 page 121, and it is obtained following exactly the same steps as the
proof of this lemma. The redaction will be quite fast, the reader can go back to
the detailed proof of Lemma 5 for the missing arguments here.

The function h
(s+1)
j is assumed to be piecewise constant in time, in other words

it can be written :

h
(s+1)
j =

Pj∑
i=1

1[tp−1,tp[αj,p,

where αj,p is a function belonging to L∞
(
Dεs+1

)
. For the three strictly positive

numbers δ, R1 and R2 defining the domain D of the truncated in time, position
and velocity transport-collision operator of the BBGKY hierarchy (defined in
(5.1) page 89), one defines the quantity :

I1 =

T/δ−1∑
n=0

Pj∑
p=1

∫
Dε
s+1

1S±s (Eδ,n,p)

∣∣T s+1,ε
nδ αj,p

(
Z̃s+1

)∣∣dZ̃s+1,

with Eδ,n,p denoting :(
[tj,p−1 − nδ, tj,p − nδ[ ∩ [0, δ]×Dεs

)
× Sd−1 × Rd

∩D(R1, R2, δ)

∩ [0, δ]×
⋃

Zs∈Dεs

(
{Zs} × E(Zs)

)
,

(which is measurable, in particular thanks to the hypothesis on the measurability
of
⋃
Zs∈Dεs ({Zs} × E(Zs))) and S±s introduced and studied in Propositions 3

page 92 and 4 page 98, one sees that this integral I1 is finite thanks to the
conservation of the L∞ norm by the hard sphere flow :

I1 ≤
Pj∑
p=1

∣∣αj,p∣∣L∞(Dε
s+1

)

T/δ−1∑
n=0

∫
Dε
s+1

1S±s (Eδ,n,p) dZ̃s+1

≤
∣∣h(s+1)
j

∣∣
L∞t L

∞
Zs+1

Pj∑
p=1

T/δ−1∑
n=0

∫
Dε
s+1

1S±s (Tδ,n,p)1S±s (D(R1,R2,δ))
dZ̃s+1

(one just forgets the condition restricting the domain to E(Zs) in the integral
over Sd−1 × Rd) with Tδ,n,p denoting :

[tj,p−1, tj,p[ ∩ [0, δ]×Dεs × Sd−1 × Rd,

so that :

I1 ≤
∣∣h(s+1)
j

∣∣
L∞t L

∞
Zs+1

T/δ−1∑
n=0

∫
Dε
s+1

1S±s (D(R1,R2,δ))
dZ̃s+1.
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Then, a careful study of the size of the image of D(R1, R2, δ) by the application
S±s , already done in the proof of Lemma 1, provides the same result (also rewrit-
ten in (5.38) in Lemma 5 page 122 for the case of a time-dependent function)
in this case, that is :

I1 ≤ C(d, s)εd−1T (R1 + δR2)dsR
d(s+1)+1
2

∣∣h(s+1)
j

∣∣
L∞t L

∞
Zs+1

,

up to assuming that the condition (5.12) page 101 is fulfilled. This condition
can be replaced by the less accurate statement ”up to assuming δ small enough
for R1 and R2 fixed”, which is not a problem, since one of the next steps of the
program is to consider the limit δ → 0 (see the proof of Lemma 1 page 101 for
more details about the origin of this condition).
I1 being finite implies therefore that the function :

T/δ−1∑
n=0

Pj∑
p=1

1S±s (Eδ,n,p)T
s+1,ε
nδ αj,p

(
Z̃s+1

)
is integrable over the phase space of s + 1 particles, so that by the changes of
variable described in Propositions 3 and 4 (and since the domain D is designed
in order to have the condition S±s = T s+1,ε

t when t ∈ [0, δ]), the function :

Pj∑
p=1

1[tp−1,tp[ ε
d−1
(
ω · (vs+1 − vi)

)
±1E(Zs)1D(R1,R2,δ)T

s+1,ε
t αj,p

is integrable over the space product [0, T ]×Dεs×Sd−1×Rd. Then by the Fubini
theorem, the function :

Pj∑
p=1

1[tp−1,tp[ ε
d−1

∫
Sd−1
ω ×Rdvs+1

(
ω · (vs+1 − vi)

)
±1E(Zs)1D(R1,R2,δ)T

s+1,ε
t αj,p

is well-defined, measurable and integrable. In other words, the quantity :

Cεs,s+1,±,i(δ,R1, R2)(E)h
(s+1)
j

is well-defined and is an integrable function on [0, T ]×Dεs.

Now, as for the almost everywhere bound on [0, T ]×Dεs, choosing any mesurable
subset D of finite measure of [0, T ]×Dεs, if one considers the integral :

I2 =

T/δ−1∑
n=0

Pj∑
p=1

∫
Dε
s+1

1S±s (DEδ,n,p)

∣∣T s+1,ε
nδ αj,p

(
Z̃s+1

)∣∣dZ̃s+1,

with :

(u, Zs) ∈ Dn,δ if and only if (u+ nδ, Zs) ∈ D ∩ [nδ, (n+ 1)δ[,
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DEδ,n,p denoting :(
Dn,δ ∩

(
[tj,p−1 − nδ, tj,p − nδ[ ∩ [0, δ]×Dεs

))
× Sd−1 × Rd

∩D(R1, R2, δ)

∩ [0, δ]×
⋃

Zs∈Dεs

(
{Zs} × E(Zs)

)
, (12.129)

the conservation of the L∞ norm by the hard sphere flow provides again :

I2 ≤
Pj∑
p=1

∣∣αj,p∣∣L∞(Dε
s+1

)

T/δ−1∑
n=0

∫
Dε
s+1

1S±s (DEδ,n,p) dZ̃s+1,

while the use of the change of variables S±s described in Propositions 3 and 4
used backwards enables to write :

I2 ≤
∣∣h(s+1)
j

∣∣
L∞t L

∞
Zs+1

Pj∑
p=1

T/δ−1∑
n=0

∫ δ

0

∫
Dεs

∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±

× 1D,Eδ,n,p dvs+1 dω dZs du

≤
∣∣h(s+1)
j

∣∣
L∞t L

∞
Zs+1

T/δ−1∑
n=0

∫ δ

0

∫
Dεs

1Dn,δ(u, Zs)

∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±

× 1E(Zs)1D(R1,R2,δ) dvs+1 dω dZs du

≤
∣∣h(s+1)
j

∣∣
L∞t L

∞
Zs+1

T/δ−1∑
n=0

∫ (n+1)δ

nδ

∫
Dεs

1D∩[nδ,(n+1)δ](t, Zs)

×
∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±1D(R1,R2,δ) dvs+1 dω dZs dt

≤
∣∣h(s+1)
j

∣∣
L∞t L

∞
Zs+1

∫ T

0

∫
Dεs

1D(t, Zs)

∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±

× 1D(R1,R2,δ) dvs+1 dω dZs dt.

Finally, using a rough Cauchy-Schwarz and then triangular inequalities on the
scalar product ω · (vs+1 − vi), and remembering that if :

(Zs, t, ω, vs+1) ∈ D(R1, R2, δ),

then in particular vs+1 belongs to the ball BRd(0, R2), one finds that :

I2 ≤ C(d, s)εd−1Rd+1
2 |D|

∣∣h(s+1)
j

∣∣
L∞t L

∞
Zs+1

.
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As it was done a lot of times along the section 5.1, and in particular in the
paragraph 5.1.2 starting page 106, the previous inequality, implies in particular
that, for any measurable subset D of [0, T ]×Dεs of finite measure :∣∣∣1DCεs,s+1,±,i(δ,R1, R2)(E)h

(s+1)
j

∣∣∣
L1([0,T ]×Dεs)

≤ C(d, s, ε, R2)|D|
∣∣h(s+1)
j

∣∣
L∞t L

∞
Zs+1

,

the last control is equivalent to the following control in the L∞ norm :∣∣∣Cεs,s+1,±,i(δ,R1, R2)(E)h
(s+1)
j

∣∣∣
L∞([0,T ]×Dεs)

≤ C(d, s, ε, R2)
∣∣h(s+1)
j

∣∣
L∞t L

∞
Zs+1

.

Before proving the four points of the lemma preceeding the equality (12.125) and
the controls (12.126) and (12.127) (those points establishing the rigourous defini-
tion of the truncated in adjunction parameters operator Cεs,s+1,±,i(E)), one will
in fact prove those equality and controls on the elements Cεs,s+1,±,i(δ,R1, R2)(E)
that one has just defined, which is the only interesting part of the proof.
The rest, that is, the four points stating the convergence of the operators in the
respective limits in j, δ, R1 and R2, has been essentially done previously for the
case of the operator without truncation in adjunction parameters, and besides
one will simply emphasize on the controls which will enable to plug into the
proofs already written above.
Similarly, the fact that the equality (12.125) and the controls (12.126) and
(12.127) are propagated through those respective limits will be also a conse-
quence of the proofs written previously.

One starts then by the equality (12.125) for Cεs,s+1,±,i(δ,R1, R2)(E). If one con-
siders two functions of measurable subsets E1 and E2 such that for almost every
Zs ∈ Dεs, one has : ∣∣E1(Zs) ∩ E2(Zs)

∣∣ = 0,

then the following equality holds almost everywhere on [0, T ]×Dεs×Sd−1×Rd :

Pj∑
p=1

1[tp−1,tp[ ε
d−1
(
ω · (vs+1 − vi)

)
±1E1(Zs)∪E2(Zs)1D(R1,R2,δ)T

s+1,ε
t αj,p

=

Pj∑
p=1

1[tp−1,tp[ ε
d−1
(
ω · (vs+1 − vi)

)
±1E1(Zs)1D(R1,R2,δ)T

s+1,ε
t αj,p

+

Pj∑
p=1

1[tp−1,tp[ ε
d−1
(
ω · (vs+1 − vi)

)
±1E2(Zs))1D(R1,R2,δ)T

s+1,ε
t αj,p.

According to the definition of the function Cεs,s+1,±,i(δ,R1, R2)(E)h
(s+1)
j , the

Fubini theorem applied to each term of this equality provides therefore that one
has in fact :

Cεs,s+1,±,i(δ,R1, R2)(E1 ∪ E2)h
(s+1)
j

= Cεs,s+1,±,i(δ,R1, R2)(E1)h
(s+1)
j + Cεs,s+1,±,i(δ,R1, R2)(E2)h

(s+1)
j .

(12.130)
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The control (12.126) for Cεs,s+1,±,i(δ,R1, R2)(E) is very similar to the control
(5.60) of Theorem 1 page 137.
Following the second part of the proof of Theorem 1, devoted to the control
(5.60) and starting page 157, one sees that the control is obtained for piecewise
constant in time functions (see page 158) once the quantity, denoted QT , is
controlled by :

QT ≤
T/δ−1∑
n=0

Pj∑
p=1

Q−1∑
q=1

∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
tqj,p−1, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

×
∫
Dε
s+1

1S±s (Dδ,n,p,q)
gs+1

(
tq+1
j,p−1, |‹Vs+1|

)
dZ̃s+1.

But of course the right-hand side of the last inequality bounds also from above
the quantity :∫ T

0

∫
Dεs

1D

∣∣∣Cεs,s+1,±,i(R1, R2, δ)(E)T s+1,ε
t h

(s+1)
j

∣∣∣ dZs dt,

it is a simple consequence of the fact that :

DEδ,n,p,q ⊂ Dδ,n,p,q

following the notations (12.129) page 422 for the set in the left-hand side. The
times tj,p−1 and tj,p are also replaced by tqj,p−1 and tq+1

j,p−1, those times being
defined in (5.83) page 161, and (5.84) page 162 for the right-hand side, since
the set described in the left-hand side is simply defined with an additional re-
strictive criterion.
From this observation, one can therefore use the rest of the second part of the
proof of Theorem 1.

For the last (and the most important of this lemma !) control (12.127), one
considers again a measurable subset D of [0, T ] × Dεs, and one starts from the
quantity :

I =

∫ T

0

∫
Dεs

1DCεs,s+1,±,i(R1, R2, δ)(E)T s+1,ε
t

(
1|Vs+1|≤Rh

(s+1)
j

)
dZs dt,

which is, by definition :

I =

T/δ−1∑
n=0

Pj∑
p=1

∫
Dε
s+1

1S±s (DEδ,n,p)T
s+1,ε
nδ

(
1|Ṽs+1|≤R

αj,p(Z̃s+1)
)

dZ̃s+1,

with, one recalls, DEδ,n,p defined in (12.129) above. One introduces, as for the
previous control, an additional division of the time interval, that is, as in (5.83)
page 161, writing :

[tj,p−1, tj,p[=

Q−1⋃
q=0

[
tj,p−1 + q

(tj,p − tj,p−1)

Q
, tj,p−1 + (q + 1)

(tj,p − tj,p−1)

Q

[
,
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for Q an arbitrary integer, denoting in addition for the sake of simplicity :

tqj,p−1 = tj,p−1 + q
(tj,p − tj,p−1)

Q
,

and one finally replaces DEδ,n,p by DEδ,n,p,q(Q), defined as :(
Dn,δ ∩

(
[tqj,p−1 − nδ, t

q+1
j,p−1 − nδ[ ∩ [0, δ]×Dεs

))
× Sd−1 × Rd

∩D(R1, R2, δ)

∩ [0, δ]×
⋃

Zs∈Dεs

(
{Zs} × E(Zs)

)
. (12.131)

This additional division provides then :

I =

T/δ−1∑
n=0

Pj∑
p=1

Q−1∑
q=0

∫
Dε
s+1

1S±s (DEδ,n,p,q(Q))T
s+1,ε
nδ

(
1|Ṽs+1|≤R

αj,p(Z̃s+1)
)

dZ̃s+1.

The bound gs+1 being increasing with respect to time variable, one has :

∣∣∣T s+1,ε
nδ

(
1|Ṽs+1|≤R

αj,p(Z̃s+1)
)∣∣∣ ≤ ∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
tqj,p−1,

∣∣Vs+1

∣∣)
∣∣∣∣∣
L∞(Dε

s+1
)

× 1|Ṽs+1|≤R
gs+1

(
tq+1
j,p−1,

∣∣‹Vs+1

∣∣),
so that :

I ≤
T/δ−1∑
n=0

Pj∑
p=1

Q−1∑
q=0

∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
tqj,p−1,

∣∣Vs+1

∣∣)
∣∣∣∣∣
L∞(Dε

s+1
)

×
∫
Dε
s+1

1S±s (DEδ,n,p,q(Q))1|Ṽs+1|≤R
gs+1

(
tq+1
j,p−1,

∣∣‹Vs+1

∣∣)dZ̃s+1.

Using the change of variable S±s backwards, one obtains then :

I ≤
Pj∑
p=1

Q−1∑
q=0

∫ T

0

1[tq
j,p−1

,tq+1
j,−1

[

∫
Dεs

1D

∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
tqj,p−1,

∣∣Vs+1

∣∣)
∣∣∣∣∣
L∞(Dε

s+1
)

×
∫
Sd−1
ω ×Rdvs+1

εd−1
(
ω · (vs+1 − vi)

)
±1E(Zs)1|Vs+1|≤R gs+1

(
tq+1
j,p−1,

∣∣‹Vs+1

∣∣)dω dvs+1 dZs dt.

The following equality holds on the domain
{
|Vs+1| ≤ R

}
:∣∣ω · (vs+1 − vi)

∣∣ ≤ √2R,
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and the sequence of functions :∣∣∣∣∣ αj,p(Zs+1)

gs+1

(
tqj,p−1,

∣∣Vs+1

∣∣)
∣∣∣∣∣
L∞(Dε

s+1
)

gs+1

(
tq+1
j,p−1,

∣∣‹Vs+1

∣∣)
converges almost everywhere towards :∣∣∣∣∣h(s+1)(t, Zs+1)

gs+1

(
t,
∣∣Vs+1

∣∣)
∣∣∣∣∣
L∞(Dε

s+1
)

gs+1

(
t,
∣∣‹Vs+1

∣∣)
as Q goes to infinity and is uniformly bounded by the integrable function :∣∣∣∣∣h(s+1)(t, Zs+1)

gs+1

(
t,
∣∣Vs+1

∣∣)
∣∣∣∣∣
L∞(Dε

s+1
)

gs+1

(
T,
∣∣‹Vs+1

∣∣),
so the dominated convergence theorem enables to obtain the control (12.127)
for Cεs,s+1,±,i(δ,R1, R2)(E).

It remains now to finish the rigourous definition of the truncated in adjunction
parameters operator of the BBGKY hierarchy, that is one will define the inte-
grated in time transport-collision-transport operator, with in addition a trun-
cation for some angular and velocity parameters of another particle adjunction.
The proof of the following lemma is just the same, without any change as the
one of Lemma 15 page 188. This similarity is not a surprise, the work is the
same, and the only important change in this section lies in the integral over
Sd−1 × Rd, this change having an effect only in the previous steps implied for
the definition of the transport-collision operator of the BBGKY hierarchy, while
the other change, namely the surgery in the time domain, will not cause any
additional difficulty).

Lemma 35 (Surgery lemma in the time domain for the integrated in time
transport-collision-transport operator of the BBGKY hierarchy). Let s be a
positive integer, ε and T be two strictly positive numbers.
Let gs+1 : [0, T ]× R+ → R+ be a function verifying :

• (t, x) 7→ gs+1(t, x) is measurable and almost everywhere non-negative,

• for all x ∈ R+, the function :

t 7→ gs+1(t, x)

is increasing,

• for all t ∈ [0, T ] and almost every (v1, . . . , vs) ∈ Rds, the function :

vs+1 7→
∣∣Vs+1

∣∣gs+1

(
t,
∣∣Vs+1

∣∣)
is integrable on Rd,
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• for all t ∈ [0, T ], the function :

(v1, . . . , vs) 7→
∫
Rd

∣∣Vs+1

∣∣gs+1

(
t,
∣∣Vs+1

∣∣) dvs+1

is bounded almost everywhere, and :∣∣∣ ∫
Rd
1|Vs+1|≥R

∣∣Vs+1

∣∣gs+1

(
t,
∣∣Vs+1

∣∣) dvs+1

∣∣∣
L∞t L

∞
Vs

converges to zero as R goes to infinity.

Let in addition Uj be a function :

Uj : Zs ∈ Dεs 7→ Uj(Zs) ∈ P([0, t])

such that ⋃
Zs∈(Ωc×Rd)s

(
{Zs} × Uj(Zs)

)
is measurable, and such that Uj(Zs) is also measurable, and let Ej be a function :

Ej : Zs ∈ Dεs 7→ Ej(Zs) ∈ P
(
Sd−1 × Rd

)
such that ⋃

Zs∈(Ωc×Rd)s

(
{Zs} × Ej(Zs)

)
is measurable, and such that Ej(Zs) is also measurable.
Then for any integer 1 ≤ j ≤ s, any sign ± = + or −, and for any regulated
function :

h(s+1) ∈ L∞
(
[0, T ], L∞

(
Dεs+1

))
such that for all t ∈ [0, T ], there exists a nonnegative number C(t) such that for
almost every Zs+1 ∈ Dεs+1 :∣∣h(s+1)(t, Zs+1)

∣∣ ≤ C(t)gs+1

(
t,
∣∣Vs+1

∣∣)
(for all t, the smallest constant C(t) verifying this condition will then be denoted
as : ∣∣∣h(s+1)(t, Zs+1)

gs+1

(
t,
∣∣Vs+1

∣∣) ∣∣∣L∞(Dε
s+1

)
),

one has that the function :

(t, Zs) 7→ 1t≥(p+1)δ

∫ t−δ

pδ

1Uj(Zs)T
s,ε
−u Cεs,s+1,±,i(Ej)T s+1,ε

u h(s+1)(u, Zs) du.

is well defined and is a regulated in time function, belonging to the functional
space L∞

(
[0, T ], L∞

(
Dεs
))

.
This function, denoted :

IN,ε,δs
±,j

(Uj , Ej)h
(s+1),
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is called the truncated in adjunction parameters, integrated in time, transport-
collision-transport operator of the BBGKY hierarchy. In the case when Ej =
Sd−1×Rd for every Zs (surgery only in time variable), one will simply denote :

IN,ε,δs
±,j

(
Uj ,Sd−1 × Rd

)
h(s+1) = IN,ε,δs

±,j
(Uj)h

(s+1).

Moreover this truncated in adjunction parameters operator verifies the two fol-
lowing additivity properties of the domains, that is for every functions Ej,1 and
Ej,2 such that for almost every Zs :∣∣Ej,1(Zs) ∩ Ej,2(Zs)

∣∣ = 0,

one has :

IN,ε,δs
±,j

(
Uj , Ej,1 ∪ Ej,2

)
h(s+1) = IN,ε,δs

±,j

(
Uj , Ej,1

)
h(s+1) + IN,ε,δs

±,j

(
Uj , Ej,2

)
h(s+1),

(12.132)

and for every functions Uj,1 and Uj,2 such that for almost every Zs :∣∣Uj,1(Zs) ∩ Uj,2(Zs)
∣∣ = 0,

one has :

IN,ε,δs
±,j

(
Uj,1 ∪ Uj,2, Ej

)
h(s+1) = IN,ε,δs

±,j

(
Uj,1, Ej

)
h(s+1) + IN,ε,δs

±,j

(
Uj2 , Ej

)
h(s+1).

(12.133)

and the three following controls : one has, for every u ≤ t ∈ [0, T ] and for almost
every Zs ∈ Dεs :

∣∣∣∣IN,ε,δs
±,j

(Uj , Ej)h
(s+1)(t, Zs)

∣∣∣∣ ≤εd−1 |Sd−1|
2

∫ t

0

∣∣∣∣∣h(s+1)(τ, Zs+1)

gs+1

(
τ, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

×
∫
Rd

(
|vi|+ |vs+1|

)
gs+1

(
τ, |Vs+1|

)
dvs+1 dτ,

(12.134)

∣∣∣∣IN,ε,δs
±,j

(Uj)
(
1|Vs+1|≤Rh

(s+1)
)

(t, Zs)

∣∣∣∣ ≤ εd−1 |Sd−1|
2

R

×
∫ t

0

1Uj(Zs)

∣∣∣∣∣h(s+1)(τ, Zs+1)

gs+1

(
τ, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

∫
Rd
gs+1

(
τ, |Vs+1|

)
dvs+1 dτ,

(12.135)
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and :∣∣∣∣IN,ε,δs
±,j

(Uj , Ej)
(
1|Vs+1|≤Rh

(s+1)
)

(t, Zs)

∣∣∣∣
≤ εd−1R

∫ t

0

1Uj(Zs)

∣∣∣∣∣h(s+1)(τ, Zs+1)

gs+1

(
τ, |Vs+1|

) ∣∣∣∣∣
L∞(Dε

s+1
)

×
∫
Sd−1
ω ×Rdvs+1

1±ω·(vs+1−vj)≥01Ej(Zs)gs+1

(
τ, |Vs+1|

)
dvs+1 dτ.

(12.136)

Remark 41. One recalls that the equation (12.132) is non trivial, since the
integrated in time transport-collision-transport operator of the BBGKY hierar-
chy is not defined as an usual integral on the angular parameter and velocity
variables, on the contrary on the operator of the Boltzmann hierarchy.
Besides the equation (12.133) is easier to obtain, since the integration with re-
spect to time variable of the transport-collision-transport operator is, this time,
an usual integral.

Decomposition induced by the surgery in adjunction parameters for
the BBGKY hierarchy
One is now able to decompose, as for the Boltzmann hierarchy, any element
of type Mk, Jk of the BBGKY hierarchy. And as for the Boltzmann hierarchy,
one will introduce a notation for the iteration of the truncated in adjunction
parameters, integrated in time, transport-collision-transport operator.

Definition 57 (Iterated, truncated in adjunction parameters (time, velocity and
angular parameter), integrated in time transport-collision-transport operator of
the BBGKY hierarchy). For any positive integer k, any generic elements Jk =
(j1, Jk−1) ∈ Jsk and Mk = (±1,Mk−1) ∈Mk and any regulated in time function
f (s+k) ∈ L∞

(
[0, T ], L∞

(
Dεs+1

))
with f (s+k) verifying the bound conditions of

previous Lemmas 34 and 35, for any families of measurable subsets

UJk = (Uj1 , . . . , Ujk) = (Uj1 , UJk−1
)

of [0, t− δ]k and

EJk = (Ej1 , . . . , Ejk) = (Ej1 , EJk−1
)

of
(
Sd−1×Rd

)k
, one denotes the iterated, truncated in adjunction parameters,

integrated in time transport-collision-transport operator of the BBGKY hierar-
chy of type (Mk, Jk) the function, defined thanks to the result of Lemma 35 and
by recursion :

IN,ε,δs
(±1,j1)

(Uj1 , Ej1)h(s+k) ◦ IN,ε,δs+1,s+k−1
(Mk−1,Jk−1)

(UJk−1
, EJk−1

)h(s+k)
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as :

IN,ε,δs,s+k−1
(Mk,Jk)

(UJk , EJk)h(s+k). (12.137)

Therefore, the two same results as for the Boltzmann hierarchy can be stated in
this context. The proof is exactly the same as for the case of the other hierarchy.

Lemma 36 (Surgery lemma in the time domain of the iterated, integrated in
time collision-transport operator of the BBGKY hierarchy). Let ε be a strictly
positive number, N and s be two positive integers, k be a nonnegative integer,
β0 be a strictly positive number and µ0 be a real number.
Let in addition Ujl be a function of measurable subsets

Ujl : Zs+l−1 7→ Ujl(Zs+l−1)

of [(k + p− l)δ, t− δ], with 1 ≤ l ≤ k + 1 and 1 ≤ jl ≤ s+ l − 1, such that :⋃
Zs+l−1∈(Ωc×Rd)s+l−1

(
{Zs+l−1} × Ujl(Zs+l−1)

)
,

is measurable and such that Ujk+1
has a measure uniformly bounded in Zs+k

and in jk+1 by a constant denoted |U |, and let Ejl be a function of measurable
subsets

Ejl : Zs+l−1 7→ Ejl(Zs+l−1)

of Sd−1 × Rd, with 1 ≤ l ≤ k and 1 ≤ jl ≤ s+ l − 1, such that :⋃
Zs+l−1∈(Ωc×Rd)s+l−1

(
{Zs+l−1} × Ejl(Zs+l−1)

)
is measurable.
Then, in the Boltzmann-Grad limit :

Nεd−1 = 1

there exist two strictly positive real numbers T and λ such that

β0 − λT > 0,

and such that for any sequence of regulated in time functions
(
h

(s)
N

)
1≤s≤N such

that for every s, h
(s)
N ∈ L∞

(
[0, T ], L∞

(
Dεs
))

has a finite |||·|||
N,ε,β̃λ,µ̃1

λ

norm, one

has that for all t ∈ [0, T ] and all strictly positive number R > 0 :∣∣∣∣∣ ∑
Mk+1

∑
Jk+1

k+1∏
l=1

(±l)IN,ε,δs,s+k−1
Mk,Jk

(
(UJk)c, EcJk

)
◦ IN,ε,δs+k
±k+1,jk+1

(Ujk+1
)
(
1|Vs+k+1|≤Rh

(s+k+1)
N

)
(t, ·)

∣∣∣∣∣
ε,s,β̃λ(t)

≤ C(d, β0, µ0)
(s+ k)

2k
R
∣∣U ∣∣∣∣∣∣∣∣∣∣∣(h(s)

N

)
1≤s≤N

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃1

λ

(12.138)
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with :

C(d, β0, µ0) =
√

2
∣∣Sd−1

∣∣ exp
(
− µ̃λ(T )

)( ∫
Rd

exp
(
− β̃λ(T )

2

∣∣v∣∣2) dv
)
.

Lemma 37 (Surgery lemma in the angular parameter and velocity domain
of the iterated, integrated in time, collision-transport operator of the BBGKY
hierarchy). Let ε be a strictly positive number, N and s be two positive integers,
k be a nonnegative integer, β0 be a strictly positive number, µ0 be a real number
µ0.
Let in addition Ujl be a function of measurable subsets :

Ujl : Zs+l−1 7→ Ujl(Zs+l−1)

of [(k + p− l)δ, t− δ], with 1 ≤ l ≤ k + 1 and 1 ≤ jl ≤ s+ l − 1, such that :⋃
Zs+l−1∈(Ωc×Rd)s+l−1

(
{Zs+l−1} × Ujl(Zs+l−1)

)
,

is measurable, and let Ejl be a function of measurable subsets :

Ejl : Zs+l−1 7→ Ejl(Zs+l−1)

of Sd−1 × Rd, with 1 ≤ l ≤ k + 1 and 1 ≤ jl ≤ s+ l − 1, such that :⋃
Zs+l−1∈(Ωc×Rd)s+l−1

(
{Zs+l−1} × Ejl(Zs+l−1)

)
is measurable, and such that Ejk+1

has a measure uniformly bounded in Zs+k
and in jk+1 by a constant denoted

∣∣E∣∣.
Then, in the Boltzmann-Grad limit :

Nεd−1 = 1

there exist two strictly positive real numbers T and λ such that

β0 − λT > 0,

and such that for any sequence of regulated in time functions
(
h

(s)
N

)
1≤s≤N such

that for every s, h
(s)
N ∈ L∞

(
[0, T ], L∞

(
Dεs
))

has a finite |||·|||
N,ε,β̃λ,µ̃1

λ

norm, one

has that for all t ∈ [0, T ] and all strictly positive number R > 0 :∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
Å
1s+k+1≤N

∑
Mk+1

∑
Jk+1

k+1∏
l=1

(±l)IN,ε,δs,s+k−1
Mk,Jk

(
(UJk)c, EcJk

)
◦ IN,ε,δs+k
±k+1,jk+1

(
U cjk+1

, Ejk+1

)(
1|Vs+k+1|≤Rh

(s+k+1)
N

)ã
1≤s≤N

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
N,ε,β̃λ,µ̃1

λ

≤ C(β0, µ0)
1

2k
R
∣∣E∣∣∣∣∣∣∣∣∣∣∣(f (s)

)
s≥1

∣∣∣∣∣∣∣∣∣
N,ε,β̃λ,µ̃1

λ

(12.139)

with :

C(β0, µ0) =
√

2
exp

(
− µ̃λ(T )

)
λ

.



432 CHAPTER 12. FINAL PREPARATION FOR THE COMPARISON

12.3.3 Removing the pathological adjunction parameters
in the elements constituting the solutions of the
hierarchies

Now that the pathological ajdunction parameters, leading to recollisions, have
been determined when a particle is added to a system of particles (see Section
12.2 and especially Proposition 16 page 347), and that modifications of the do-
mains of integration of the operators defining the two hierarchies are controlled
(see Section 12.3.2 and especially Propositions 33 page 411 and 37 page 431),
one will naturally mix those two results, in order to keep only subsets of the
domains of integration producing trees without recollision for the hard sphere
dynamics.

Introducing the excluded pathological subsets of adjunction parame-
ters and the elementary terms

One starts by naming the subsets of the domains that will be excluded at each
iteration of the operators, first for the velocity and angular adjunction param-
eters, and then for the time of adjunctions.

Remark 42. One has to notice here that the same subsets are removed from
the domains of integration for the two hierarchies.

Definition 58 (Excluded velocities and angular parameters). Let k and jk be
two positive integers such that 1 ≤ jk ≤ k and ε,R, δ, a, ε0, ρ, η and α be eight
strictly positive numbers. For every Zk ∈ ∆k, one defines the set of the excluded
velocities and angular parameters of a system of k particles in configuration
Zk, for an adjunction to the particle jk as the subset Ejk(Zk) of the elements
(ω, v) ∈ Sd−1 ×B(0, R) with

Ejk(Zk) = Ejk(R, δ, ε, a, ε0, ρ, η, α)(Zk)

= B̃k(R, δ, ε, a, ε0, ρ, η)(Zk)

∪
(
Sd−1 ×

{
v · e1 ≥ α

})
∪N ∗(R,α)((Zk)

V,jk), (12.140)

with B̃k(R, δ, ε, a, ε0, ρ, η)(Zk) ⊂ Sd−1 × B(0, R) given by Proposition 16 page

347, and N ∗(R,α)((Zk)
V,jk) introduced in Definition 52 page 369.

Remark 43. One notices that the subset B̃k(Zk) given by Proposition 16 is
defined for a particle added to the system in contact with the particle k. Of
course when another particle of the system is chosen for the adjunction, one
does not define the same subset of pathological velocities and angular parameters.
Nevertheless, there is no loss of generality, since the proof of Proposition 16 is
identical, and the control on the size of the analog of B̃k(Zk) for another particle
chosen for the ajunction is exactly the same.

It remains now to define the set of the times that one wants to exclude, that is the
times such that, for the particle jk involved in the k-th adjunction, the distance
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between the obstacle and this particle is large enough to apply the geometrical
lemmas. Those geometrical lemmas will then provide a set of velocities of small
size that one will exclude in order to only obtain trees without recollisions, that
is such that the particles of the BBGKY hierarchy follow the characteristics of
the free transport with boundary condition.

Definition 59 (Excluded times). Let k and jk be two positive integers such
that 1 ≤ jk ≤ k, and let ρ be a strictly positive number. For every Zk ∈

(
Ωc ×

Rd
)k

, one defines the set of the excluded times of a system of k particles in
configuration Zk, for an adjunction to the particle jk as the subset Ujk(t, Zk) of
R+ such that :

Ujk(Zk) = Ujk(ρ)(Zk)

=
{
τ ≥ 0 /

Ä
T k,0−τ (Zk)

äX,jk · e1 ≤ ρ
}
. (12.141)

It is therefore possible to define the terms composing the Boltzmann and the
BBGKY solutions thanks to the Duhamel formula (10.9) page 272 and (10.3)
page 268, after performing the surgery on the domains, to keep only pseudo-
trajectories without any recollision. One will see thanks to the geometrical lem-
mas that, indeed, those terms after surgery bring the most important contri-
bution to the decomposition of the solutions, while the pathological adjunction
parameters in the domains are removed and regrouped in a remainder term,
which can be chosen as small as one wants.

Definition 60 (Elementary Boltzmann terms). For any positive integers s
and k, any elements Mk ∈ Mk and Jk ∈ Jsk, any strictly positive numbers

R, δ, ε, a, ε0, ρ, η and α and any sequence of initial data F0 =
(
f

(s)
0

)
s≥1

belong-

ing to X
0,β0,µ̃1 , one defines the elementary Boltzmann term of type (Mk, Jk) of

the s-th function of the hierarchy as the function :

(t, Zs) 7→ I0,δ
s,s+k−1
Mk,Jk

(
U cJk(ρ), EcJk(R, δ, ε, a,ε0, ρ, η, α)

)
(
u 7→ T s+k,0u f

(s+k)
0

)
(t, Zs),

denoted as :

J 0,δ
s,s+k−1
Mk,Jk

(U c, Ec)f
(s+k)
0 = J 0,δ

s,s+k−1
Mk,Jk

(U c, Ec)(R, δ, ε, a,ε0, ρ, η, α)f
(s+k)
0 ,

with :
U cJk(ρ) =

(
U cj1(ρ), . . . , U cjk(ρ)

)
and

EcJk(R, δ, ε, a,ε0, ρ, η, α)

=
(
Ecj1(R, δ, ε, a, ε0, ρ, η, α), . . . , Ecjk(R, δ, ε, a, ε0, ρ, η, α)

)
,
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using, on the one hand, Definition 56 page 402 for the iterated, truncated in ad-
junction parameters, integrated in time collision-transport operator, and on the
other hand, Definitions 58 page 432 and 59 page 433 for the truncated domains
specified here.

The elementary term J 0,δ
s,s+k−1
Mk,Jk

(U c, Ec) writes then explicitly :

J 0,δ
s,s+k−1
Mk,Jk

(U c, Ec) = 1t≥kδ

∫ t−δ

(k−1)δ

1Uc
j1

(Zs)

∫
Sd−1
ω1
×Rdvs+1

(±1)1Ec
j1

(Z0
s,0(Mk,Jk,t1))

×
[
ω1 ·

(
vs+1 − v0,j1

s,0 (Mk, Jk, t1)
)]
±1

× 1t1≥(k−1)δ

∫ t1−δ

(k−2)δ

1Uc
j2

(Z0
s,1(Mk,Jk,t1))

∫
Sd−1
ω2
×Rdvs+2

(±2)1Ec
j2

(Z0
s,1(Mk,Jk,t2))

×
[
ω2 ·

(
vs+2 − v0,j2

s,1 (Mk, Jk, t2)
)]
±2

. . .

× 1tk−1≥δ

∫ tk−1−δ

0

1Uc
jk

(Z0
s,k−1

(Mk,Jk,tk−1))

∫
Sd−1
ωk
×Rdvs+k

(±k)1Ec
jk

(Z0
s,k−1

(Mk,Jk,tk))

×
[
ωk ·

(
vs+k − v0,jk

s,k−1(Mk, Jk, tk)
)]
±k

× 1|Vs+k|≤Rf
(s+k)
0

(
Z0
s,k(Mk, Jk, 0)

)
dωk dvs+k dtk . . . dω2 dvs+2 dt2 dω1 dvs+1 dt1,

thanks to the notation for the pseudo-trajectories introduced in Definition 45
page 323.

Remark 44. One sees that the excluded times defined in (12.141), Definition
59, are in fact measurable subsets, depending also continuously on the configu-
ration Zk, so the elementary Boltzmann terms are well defined.

One introduces similarly the elementary BBGKY terms.

Definition 61 (Elementary BBGKY terms). For any positive integer N and
any strictly positive number ε, any positive integers s and k such that s +
k ≤ N , any elements Mk ∈ Mk and Jk ∈ Jsk, any strictly positive numbers

R, δ, ε, a, ε0, ρ, η and α, and any sequence of initial data FN,0 =
(
f

(s)
N,0

)
1≤s≤N be-

longing to X
N,ε,β0,µ̃1 , one defines the elementary BBGKY term of type (Mk, Jk)

of the s-th function of the hierarchy as the function :

(t, Zs) 7→ T s,εt

(
IN,ε,δs,s+k−1
Mk,Jk

(
U cJk(ρ), EcJk(R, δ, ε, a,ε0, ρ, η, α)

)
f

(s+k)
N,0 (t, Zs)

)
,
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denoted as :

JN,ε,δs,s+k−1
Mk,Jk

(U c, Ec)f
(s+k)
N,0 = JN,ε,δs,s+k−1

Mk,Jk

(U c, Ec)(R, δ, ε, a,ε0, ρ, η, α)f
(s+k)
N,0 ,

with :

U cJk(ρ) =
(
U cj1(ρ), . . . , U cjk(ρ)

)
and

EcJk(R, δ, ε, a,ε0, ρ, η, α)

=
(
Ecj1(R, δ, ε, a, ε0, ρ, η, α), . . . , Ecjk(R, δ, ε, a, ε0, ρ, η, α)

)
,

using Definition 57 page 429 and Definitions 58 page 432 and 59 page 433.

Remark 45. Here, once again, the elementary BBGKY term cannot be written
as a usual integral, at least without additional work. However, the explicit writ-
ing for the elementary Boltzmann term will hold also for the BBGKY hierarchy.
This will be discussed below.
One notices also that one is entering the final part of the comparison of the so-
lutions. Therefore, one is not considering the solution of the conjugate BBGKY
hierarchy anymore. This is why there is a hard sphere transport operator applied
on the iterated, truncated in adjunction parameters, integrated in time transport-
collision-transport operator.

Control of the error coming from the removal of the pathological
adjunction parameters

One recalls that, after the preliminary cut-offs performed in Section 11 starting
page 277, one has reduced the study of the respective solutions of the hierarchies
to the functions :

Fn,R,δ = t 7→
(
T s,0t f

(s)
0 (·)1|Vs|≤R

+
n∑
k=1

I0,δ
s,s+k−1

(
u 7→ T s+k,0u f

(s+k)
0 1|Vs+k|≤R

)
(t, ·)

)
s≥1

= t 7→
(
T s,0t f

(s)
0 (·)1|Vs|≤R

+
n∑
k=1

∑
Mk∈Mk

∑
Jk∈Jsk

I0,δ
s,s+k−1
Mk,Jk

(
u 7→ T s+k,0u f

(s+k)
0 1|Vs+k|≤R

)
(t, ·)

)
s≥1
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for the Boltzmann hierarchy, and :

Fn,R,δN = t 7→
(
T s,εt

(
f

(s)
N,0(·)1|Vs|≤R

+
n∑
k=1

1s≤N−kIN,ε,δs,s+k−1

(
f

(s+k)
N,0 1|Vs+k|≤R

)
(t, ·)

))
1≤s≤N

= t 7→
(
T s,εt f

(s)
N,0(·)1|Vs|≤R

+
n∑
k=1

1s≤N−k
∑

Mk∈Mk

∑
Jk∈Jsk

T s,εt I
N,ε,δ
s,s+k−1
Mk,Jk

(
f

(s+k)
N,0 1|Vs+k|≤R

)
(t, ·)

)
1≤s≤N

for the BBGKY hierarchy.
The idea is of course to control the error obtained when the operators :

I0,δ
s,s+k−1
Mk,Jk

T s+k,0t and T s,εt I
N,ε,δ
s,s+k−1
Mk,Jk

are respectively replaced by :

J 0,δ
s,s+k−1
Mk,Jk

(U c, Ec) and JN,ε,δs,s+k−1
Mk,Jk

(U c, Ec),

so that the new cut-off leads to compare the solutions of the hierarchy with,
respectively, the two new following expressions :

t 7→
(
T s,0t f

(s)
0 (·)1|Vs|≤R

+
n∑
k=1

∑
Mk∈Mk

∑
Jk∈Jsk

J 0,δ
s,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
0 1|Vs+k|≤R

)
(t, ·)

)
s≥1

and

t 7→
(
T s,εt f

(s)
N,0(·)1|Vs|≤R

+
n∑
k=1

1s≤N−k
∑

Mk∈Mk

∑
Jk∈Jsk

JN,ε,δs,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
N,0 1|Vs+k|≤R

)
(t, ·)

)
1≤s≤N

.

This is the purpose of the following proposition.

Definition 62 (Cut-off in pathological adjunction parameters). For any se-

quence of initial data F0 =
(
f

(s)
0

)
s≥1

belonging to X0,β0,µ1
0
, one defines the trun-

cated in high number of collisions, large energy, small time difference between
collisions and in pathological adjunction parameters solution of the Boltzmann
hierarchy associated to the initial datum F0 as the function :

Fn,R,δ(U c, Ec) = t 7→
(
T s,0t f

(s)
0 (·)1|Vs|≤R

+
n∑
k=1

∑
Mk∈Mk

∑
Jk∈Jsk

J 0,δ
s,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
0 1|Vs+k|≤R

)
(t, ·)

)
s≥1

.
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For any sequence of initial data FN,0 =
(
f

(s)
N,0

)
1≤s≤N belonging to XN,ε,β0,µ1

0
,

one defines the truncated in high number of collisions, large energy, small time
difference between collisions and in pathological adjunction parameters solution
of the BBGKY hierarchy associated to the initial datum FN,0 as the function :

Fn,R,δN (U c, Ec) = t 7→
(
T s,εt f

(s)
N,0(·)1|Vs|≤R

+
n∑
k=1

1s≤N−k
∑

Mk∈Mk

∑
Jk∈Jsk

JN,ε,δs,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
N,0 1|Vs+k|≤R

)
(t, ·)

)
1≤s≤N

.

Proposition 18 (Cut-off in pathological adjunction parameters). Let β0 be a
strictly positive number and µ0 be a real number. Then there exist two strictly
positive constants :

c(d) and C4(d, β0, µ0),

the first one depending only on the dimension, and the second one depending
only on the dimension and on the numbers β0 and µ0, such that the following
holds :
let FN,0 =

(
f

(s)
N,0

)
1≤s≤N and F0 =

(
f

(s)
0

)
s≥1

be two sequences of initial data

belonging respectively to XN,ε,β0,µ1
0

and X0,β0,µ1
0
.

For any positive integer n, any strictly positive numbers R and δ, any posi-
tive integer N and any strictly positive number ε verifying the Boltzmann-Grad
limit :

Nεd−1 = 1,

and any strictly positive numbers a, ε0, ρ, η and α such that

R ≥ 1, η ≤ 1, 2ε ≤ a, 4
√

3a ≤ ε0, ε0 ≤ ηδ, 3a ≤ ρ and α ≤ c(d),

one has for the BBGKY hierarchy :

1∆s(ε,R,ε0,α,max(16Ra/ε0,ε0/δ))(Zs)

×
∣∣∣T s,εt

(
Hn,R,δ
N

)(s)
(t, Zs)−

(
Fn,R,δN (U c, Ec)

)(s)
(t, Zs)

∣∣∣ exp
( β̃λ(t)

2

∣∣Vs∣∣2)
≤ C4(d, β0, µ0)n(s+ n)R

×
Å
ρ

α
+ ηd +Rd

(a
ρ

)d−1

+ nR2d−1
( a
ε0

)d−3/2

+ nRd+1/2
(ε0

δ

)d−3/2

+Rd−1α+Rdα1/8

ã
×
∣∣∣∣∣∣(f (s)

N,0

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β0,µ1

0

(12.142)
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and for the Boltzmann hierarchy :

1∆s(ε,R,ε0,α,max(16Ra/ε0,ε0/δ))(Zs)

×
∣∣∣(Fn,R,δ)(s) − (Fn,R,δ(U c, Ec))(s)∣∣∣(t, Zs) exp

( β̃λ(t)

2

∣∣Vs∣∣2)
≤ C4(d, β0, µ0)n(s+ n)R

×
Å
ρ

α
+ ηd +Rd

(a
ρ

)d−1

+ nR2d−1
( a
ε0

)d−3/2

+ nRd+1/2
(ε0

δ

)d−3/2

+Rd−1α+Rdα1/8

ã
×
∣∣∣∣∣∣(f (s)

0

)
s≥1

∣∣∣∣∣∣
0,β0,µ1

0

,

(12.143)

where one used the notations of Definition 54 page 392 for ∆s.

Proof. The proof will be written for the Boltzmann hierarchy, since it is exactly
the same for the BBGKY hierarchy.
One considers, for any t ∈ [0, T ] and any positive integer s given, the difference :

1
∆s

(
ε,R,ε0,α,max(16Ra/ε0,ε0/δ)

)(Zs)
×
∣∣∣(Fn,R,δ)(s) − (Fn,R,δ(U c, Ec))(s)∣∣∣(t, Zs) exp

( β̃λ(t)

2

∣∣Vs∣∣2).
Starting by the term :∣∣∣(Fn,R,δ)(s) − (Fn,R,δ(U c, Ec))(s)∣∣∣(t, Zs),
that is :∣∣∣∣∣ n∑

k=1

∑
Mk∈Mk

∑
Jk∈Jsk

k∏
l=1

(±l)I0,δ
s,s+k−1
Mk,Jk

(
u 7→ T s+k,0u f

(s+k)
0 1|Vs+k|≤R

)
(t, Zs)

−
n∑
k=1

∑
Mk∈Mk

∑
Jk∈Jsk

k∏
l=1

(±l)J 0,δ
s,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
0 1|Vs+k|≤R

)
(t, Zs)

∣∣∣∣∣,
which is of course bounded by :

n∑
k=1

∣∣∣∣∣ ∑
Mk∈Mk

∑
Jk∈Jsk

k∏
l=1

(±l)
Å
I0,δ
s,s+k−1
Mk,Jk

(
u 7→ T s+k,0u f

(s+k)
0 1|Vs+k|≤R

)
− J 0,δ

s,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
0 1|Vs+k|≤R

)ã
(t, Zs)

∣∣∣∣∣,
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for all 1 ≤ m ≤ k, one writes :

M1,m−1 = (±1, . . . ,±m−1), J1,m−1 = (j1, . . . , jm−1)

and

Mm+1,k = (±m+1, . . . ,±k), Jm+1,k = (jm+1, . . . , jk)

so that :

Mk = (M1,m−1,±m,Mm+1,k) and Jk = (J1,m−1, jm, Jm+1,k).

Each term

I0,δ
s,s+k−1
Mk,Jk

will be decomposed as :

I0,δ
s,s+k−1
Mk,Jk

=
k∑

m=1

I0,δ
s,s+m−2

M1,m−1,J1,m−1

(
U cJ1,m−1

, EcJ1,m−1

)
◦
[
I0,δ
s+m−1
±m,jm

(Ujm) + I0,δ
s+m−1
±m,jm

(
U cjm , Ejm

)]
◦ I0,δ

s+m,s+k−1
Mm+1,k,Jm+1,k

+ I0,δ
s,s+k−1
Mk,Jk

(
U cJk , E

c
Jk

)
.

One has then :

I0,δ
s,s+k−1
Mk,Jk

(
u 7→ T s+k,0u f

(s+k)
0 1|Vs+k|≤R

)
− J 0,δ

s,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
0 1|Vs+k|≤R

)
=

k∑
m=1

I0,δ
s,s+m−2

M1,m−1,J1,m−1

(
U cJ1,m−1

, EcJ1,m−1

)
◦
[
I0,δ
s+m−1
±m,jm

(Ujm) + I0,δ
s+m−1
±m,jm

(
U cjm , Ejm

)]
◦ I0,δ

s+m,s+k−1
Mm+1,k,Jm+1,k

,
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and therefore :∣∣∣(Fn,R,δ)(s) − (Fn,R,δ(U c, Ec))(s)∣∣∣
≤

n∑
k=1

k∑
m=1

∣∣∣∣∣ ∑
Mk∈Mk

∑
Jk∈Jsk

k∏
l=1

(±l) I0,δ
s,s+m−2

M1,m−1,J1,m−1

(
U cJ1,m−1

, EcJ1,m−1

)
◦
[
I0,δ
s+m−1
±m,jm

(Ujm) + I0,δ
s+m−1
±m,jm

(
U cjm , Ejm

)]
◦ I0,δ

s+m,s+k−1
Mm+1,k,Jm+1,k

(
u 7→ T s+k,0u f

(s+k)
0 1|Vs+k|≤R

)∣∣∣∣∣
≤

n∑
k=1

k∑
m=1

∣∣∣∣∣ ∑
Mk∈Mk

∑
Jk∈Jsk

k∏
l=1

(±l) I0,δ
s,s+m−2

M1,m−1,J1,m−1

(
U cJ1,m−1

, EcJ1,m−1

)
◦ I0,δ

s+m−1
±m,jm

(Ujm) ◦ I0,δ
s+m,s+k−1

Mm+1,k,Jm+1,k

(
u 7→ T s+k,0u f

(s+k)
0 1|Vs+k|≤R

)∣∣∣∣∣
+

n∑
k=1

k∑
m=1

∣∣∣∣∣ ∑
Mk∈Mk

∑
Jk∈Jsk

k∏
l=1

(±l) I0,δ
s,s+m−2

M1,m−1,J1,m−1

(
U cJ1,m−1

, EcJ1,m−1

)
◦ I0,δ

s+m−1
±m,jm

(
U cjm , Ejm

)
◦ I0,δ

s+m,s+k−1
Mm+1,k,Jm+1,k

(
u 7→ T s+k,0u f

(s+k)
0 1|Vs+k|≤R

)∣∣∣∣∣.
(12.144)

The first term of the right-hand side of the last inequality (12.144) contains all
the terms such that the more demanding cut-off is the restriction to Ujm (which
is meant to be small) for the time domain.
Splitting the sums and products as follows :

∑
Mk∈Mk

∑
Jk∈Jsk

k∏
l=1

=
∑

(M1,m−1,±m)∈Mm

∑
(J1,m−1,jm)∈Jsm

m∏
l=1

(±l)

×
∑

Mm+1,k∈Mk−m

∑
Jm+1,k∈Js+m−1

k−m

k∏
l=m+1

(±l),

and writting :

∑
Mm+1,k∈Mk−m

∑
Jm+1,k∈Js+m−1

k−m

k∏
l=m+1

(±l)I0,δ
s+m,s+k−1

Mm+1,k,Jm+1,k

= I0,δ
s+m,s+k−1,

the first term of (12.144) can be controlled thanks to the inequality (12.121) of
Lemma 32 page 403, applied to :(

I0,δ
s+m,s+k−1

(
u 7→ T s+k,0u

(
1|Vs+k|≤Rf

(s+k)
0

)))
s≥0

,
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which is possible since one has in fact :(
I0,δ
s+m,s+k−1

(
u 7→ T s+k,0u

(
1|Vs+k|≤Rf

(s+k)
0

)))
s≥0

=
(
1|Vs+m|≤R I

0,δ
s+m,s+k−1

(
u 7→ T s+k,0u

(
1|Vs+k|≤Rf

(s+k)
0

)))
s≥0

according to Proposition 13 page 285, about the stability of the cut-off in large
energy by the integrated in time collision-transport operator of the Boltzmann
hierarchy. Adding the indicator which prepares the initial configuration, this
lemma provides :

1∆s(ε,R,ε0,α,max(16Ra/ε0,ε0/δ))(Zs)

×
n∑
k=1

k∑
m=1

∣∣∣∣∣ ∑
Mk∈Mk

∑
Jk∈Jsk

I0,δ
s,s+m−2

M1,m−1,J1,m−1

(
U cJ1,m−1

, EcJ1,m−1

)
◦ I0,δ

s+m−1
±m,jm

(Ujm) ◦ I0,δ
s+m,s+k−1

Mm+1,k,Jm+1,k

(
u 7→ T s+k,0u

(
1|Vs+k|≤Rf

(s+k)
0

))∣∣∣∣∣(t, Zs)
× exp

( β̃λ(t)

2

∣∣Vs∣∣2)
≤ C(d, β0, µ0)

n∑
k=1

k∑
m=1

(s+m− 1)

2m−1
R
(

sup
Z0
s,m−1(tm−1)

1≤jm≤s+m−1

∣∣Ujm(Z0
s,m−1(tm−1))

∣∣)

×
∣∣∣∣∣∣∣∣∣∣∣∣( I0,δ

s+m,s+k−1

(
u 7→ T s+k,0u

(
1|Vs+k|≤Rf

(s+k)
0

)))
s≥0

∣∣∣∣∣∣∣∣∣∣∣∣
0,β̃λ,µ̃1

λ

,

and finally, thanks to the contracting property of the integrated in time collision-
transport operator :

n∑
k=1

k∑
m=1

∣∣∣∣∣ ∑
Mk∈Mk

∑
Jk∈Jsk

I0,δ
s,s+m−2

M1,m−1,J1,m−1

(
U cJ1,m−1

, EcJ1,m−1

)
◦ I0,δ

s+m−1
±m,jm

(Ujm) ◦ I0,δ
s+m,s+k−1

Mm+1,k,Jm+1,k

(
u 7→ T s+k,0u

(
1|Vs+k|≤Rf

(s+k)
0

))∣∣∣∣∣(t, Zs)
× exp

( β̃λ(t)

2

∣∣Vs∣∣2)
≤ C(d, β0, µ0)

(
sup

1≤m≤n
sup

Z0
s,m−1(tm−1)

1≤jm≤s+m−1

∣∣Ujm(Z0
s,m−1(tm−1))

∣∣)

×R
n∑
k=1

k∑
m=1

(s+m− 1)

2m−1

1

2k−m

∣∣∣∣∣∣∣∣∣∣∣∣(u 7→ T s,0u

(
1|Vs|≤Rf

(s)
0

)
s≥0

∣∣∣∣∣∣∣∣∣∣∣∣
0,β̃λ,µ̃1

λ

.

Then, using the conservation of the | · |
ε,s,β̃(t)

norm by the transport operator

T s,0u , and the embeddings of the spaces X
0,s,β̃λ(u)

⊂ X0,s,β0 on the one hand,
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and X
0,β̃λ(u),µ̃1

λ
(u)
⊂ X0,β0,µ1

0
on the other hand (see Proposition 8 page 209) :

n∑
k=1

k∑
m=1

∣∣∣∣∣ ∑
Mk∈Mk

∑
Jk∈Jsk

I0,δ
s,s+m−2

M1,m−1,J1,m−1

(
U cJ1,m−1

, EcJ1,m−1

)
◦ I0,δ

s+m−1
±m,jm

(Ujm) ◦ I0,δ
s+m,s+k−1

Mm+1,k,Jm+1,k

(
u 7→ T s+k,0u

(
1|Vs+k|≤Rf

(s+k)
0

))∣∣∣∣∣(t, Zs)
× exp

( β̃λ(t)

2

∣∣Vs∣∣2)
≤ C(d, β0, µ0)

(
sup

1≤m≤n
sup

Z0
s,m−1(tm−1)

1≤jm≤s+m−1

∣∣Ujm(Z0
s,m−1(tm−1))

∣∣)

×R
n∑
k=1

k∑
m=1

(s+m− 1)

2k−1

∣∣∣∣∣∣(f (s)
0

)
s≥0

∣∣∣∣∣∣
0,β0,µ1

0

.

One notes also that :

n∑
k=1

k∑
m=1

(s+m− 1)

2k−1
≤ n(s+ n)

+∞∑
k=1

1

2k−1
= 2n(s+ n),

so the first term of (12.144) verifies the following control :

n∑
k=1

k∑
m=1

∣∣∣∣∣ ∑
Mk∈Mk

∑
Jk∈Jsk

I0,δ
s,s+m−2

M1,m−1,J1,m−1

(
U cJ1,m−1

, EcJ1,m−1

)
◦ I0,δ

s+m−1
±m,jm

(Ujm)

◦ I0,δ
s+m,s+k−1

Mm+1,k,Jm+1,k

(
u 7→ T s+k,0u

(
1|Vs+k|≤Rf

(s+k)
0

))∣∣∣∣∣ exp
( β̃λ(t)

2

∣∣Vs∣∣2)
≤ C(d, β0, µ0)n(s+ n)R

(
sup

1≤m≤n
sup

Z0
s,m−1(tm−1)

1≤jm≤s+m−1

∣∣Ujm(Z0
s,m−1(tm−1))

∣∣)

×
∣∣∣∣∣∣(f (s)

0

)
s≥0

∣∣∣∣∣∣
0,β0,µ1

0

,

(12.145)

replacing the constant C(d, β0, µ0) given by Lemma 32 page 403 by 2C(d, β0, µ0).

For the second term of (12.144), the stronger cut-off is the restriction to Ejm ,
and it is controlled thanks to the inequality (12.122) of Lemma 33 page 411,
applied, as in the case of the first term, to(

I0,δ
s+m,s+k−1

(
u 7→ T s+k,0u

(
1|Vs+k|≤Rf

(s+k)
0

)))
s≥0

,

again due to the stability of the cut-off in large energy, which is mandatory to
apply Lemma 33. Again, adding the indicator preparing the initial configura-
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tions, one obtains :

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
Å
1∆s(ε,R,ε0,α,max(16Ra/ε0,ε0/δ))(Zs)

×
n∑
k=1

k∑
m=1

∑
Mk∈Mk

∑
Jk∈Jsk

k∏
l=1

(±l)I0,δ
s,s+m−2

M1,m−1,J1,m−1

(
U cJ1,m−1

, EcJ1,m−1

)
◦ I0,δ

s+m−1
±m,jm

(
U cjm , Ejm

)
◦ I0,δ

s+m,s+k−1
Mm+1,k,Jm+1,k

(
u 7→ T s+k,0u f

(s+k)
0 1|Vs+k|≤R

)ã
s≥1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
0,β̃λ,µ̃1

λ

≤
n∑
k=1

k∑
m=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
Å
1∆s(ε,R,ε0,α,max(16Ra/ε0,ε0/δ))(Zs)

×
∑

Mk∈Mk

∑
Jk∈Jsk

k∏
l=1

(±l)I0,δ
s,s+m−2

M1,m−1,J1,m−1

(
U cJ1,m−1

, EcJ1,m−1

)
◦ I0,δ

s+m−1
±m,jm

(
U cjm , Ejm

)
◦ I0,δ

s+m,s+k−1
Mm+1,k,Jm+1,k

(
u 7→ T s+k,0u f

(s+k)
0 1|Vs+k|≤R

)ã
s≥1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
0,β̃λ,µ̃1

λ

.

Now thanks to the control of Lemma 33, one gets :

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
Å
1∆s(ε,R,ε0,α,max(16Ra/ε0,ε0/δ))(Zs)

×
n∑
k=1

k∑
m=1

∑
Mk∈Mk

∑
Jk∈Jsk

k∏
l=1

(±l)I0,δ
s,s+m−2

M1,m−1,J1,m−1

(
U cJ1,m−1

, EcJ1,m−1

)
◦ I0,δ

s+m−1
±m,jm

(
U cjm , Ejm

)
◦ I0,δ

s+m,s+k−1
Mm+1,k,Jm+1,k

(
u 7→ T s+k,0u f

(s+k)
0 1|Vs+k|≤R

)ã
s≥1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
0,β̃λ,µ̃1

λ

≤ C(β0, µ0)R
n∑
k=1

k∑
m=1

1

2m−1

(
sup

Z0
s,m−1(tm)

1≤jm≤s+m−1

∣∣Ejm(Z0
s,m−1(tm))

∣∣)

×
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
Å
I0,δ
s,s+k−m−1

(
u 7→ T s+k−m,0u f

(s+k−m)
0 1|Vs+k|≤R

)ã
s≥1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
0,β̃λ,µ̃1

λ

,

and again using the contracting property of the iterated, integrated in time
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collision-transport operator :∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
Å
1∆s(ε,R,ε0,α,max(16Ra/ε0,ε0/δ))(Zs)

×
n∑
k=1

k∑
m=1

∑
Mk∈Mk

∑
Jk∈Jsk

k∏
l=1

(±l)I0,δ
s,s+m−2

M1,m−1,J1,m−1

(
U cJ1,m−1

, EcJ1,m−1

)
◦ I0,δ

s+m−1
±m,jm

(
U cjm , Ejm

)
◦ I0,δ

s+m,s+k−1
Mm+1,k,Jm+1,k

(
u 7→ T s+k,0u f

(s+k)
0 1|Vs+k|≤R

)ã
s≥1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
0,β̃λ,µ̃1

λ

≤ C(β0, µ0)R
n∑
k=1

k∑
m=1

1

2k−1

(
sup

Z0
s,m−1(tm)

1≤jm≤s+m−1

∣∣Ejm(Z0
s,m−1(tm))

∣∣)

×
∣∣∣∣∣∣∣∣∣(u 7→ T s+k−m,0u f

(s+k−m)
0 1|Vs+k|≤R

)
s≥1

∣∣∣∣∣∣∣∣∣
0,β̃λ,µ̃1

λ

≤ C(β0, µ0)n(s+ n)R
(

sup
1≤m≤n

sup
Z0
s,m−1(tm)

1≤jm≤s+m−1

∣∣Ejm(Z0
s,m−1(tm))

∣∣)

×
∣∣∣∣∣∣(f (s)

0

)
s≥1

∣∣∣∣∣∣
0,β0,µ1

0

.

Translating the |||·|||
0,β̃λ,µ̃λ

norm of the last inequality, one obtains for the second

term of (12.144) :∣∣∣∣∣ n∑
k=1

k∑
m=1

∑
Mk∈Mk

∑
Jk∈Jsk

k∏
l=1

(±l)I0,δ
s,s+m−2

M1,m−1,J1,m−1

(
U cJ1,m−1

, EcJ1,m−1

)
◦ I0,δ

s+m−1
±m,jm

(
U cjm , Ejm

)
◦ I0,δ

s+m,s+k−1
Mm+1,k,Jm+1,k

(
u 7→ T s+k,0u f

(s+k)
0 1|Vs+k|≤R

)∣∣∣∣∣
× 1∆s(ε,R,ε0,α,max(16Ra/ε0,ε0/δ))(Zs) exp

( β̃λ(t)

2

∣∣Vs∣∣2)
≤ C(β0, µ0)n(s+ n) exp

(
− sµ̃λ(t)

)
R

×
(

sup
1≤m≤n

sup
Z0
s,m−1(tm)

1≤jm≤s+m−1

∣∣Ejm(Z0
s,m−1(tm))

∣∣)∣∣∣∣∣∣(f (s)
0

)
s≥1

∣∣∣∣∣∣
0,β0,µ1

0

≤ C(β0, µ0)n(s+ n) exp
(
− sµ̃λ(T )

)
R

×
(

sup
1≤m≤n

sup
Z0
s,m−1(tm)

1≤jm≤s+m−1

∣∣Ejm(Z0
s,m−1(tm))

∣∣)∣∣∣∣∣∣(f (s)
0

)
s≥1

∣∣∣∣∣∣
0,β0,µ1

0

(12.146)

since the function µ̃λ is decreasing.

Now combining the inequalities (12.145) page 442 and (12.146) page 444, one
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finds :

1∆s(ε,R,ε0,α,max(16Ra/ε0,ε0/δ))(Zs)

×
∣∣∣(Fn,R,δ)(s) − (Fn,R,δ(U c, Ec))(s)∣∣∣(t, Zs) exp

( β̃λ(t)

2

∣∣Vs∣∣2)
≤ C(d, β0, µ0)n(s+ n)R

×
Å

sup
1≤m≤n

sup
Z0
s,m−1(tm−1)

1≤jm≤s+m−1

∣∣Ujm(Z0
s,m−1(tm−1))

∣∣
+ exp

(
− sµ̃λ(T )

)
sup

1≤m≤n
sup

Z0
s,m−1(tm)

1≤jm≤s+m−1

∣∣Ejm(Z0
s,m−1(tm))

∣∣ã
×
∣∣∣∣∣∣(f (s)

0

)
s≥1

∣∣∣∣∣∣
0,β0,µ1

0

.

First, the fact that Zs is chosen in ∆s

(
ε,R, ε0, α,max(16Ra/ε0, ε0/δ)

)
, and

especially the fact that
∣∣vi · e1

∣∣ ≥ α for all 1 ≤ i ≤ s, enables to use the
inequality (12.116) of Proposition 17 page 394, that is, following Definition 59
page 433, one has :

sup
Zs∈∆s
1≤j1≤s

∣∣Uj1(Zs)
∣∣ ≤ 2

ρ

α
.

Then one wants to show that if Zs is chosen in ∆s and t− t1 outside Uj1(Zk), it
is possible to apply Proposition 16 page 347, so that the size of the pathological
adjunction parameters will be controlled.
Using the notations for the pseudo-trajectories introduced in Definition 45 page
323, t− t1 chosen outside Uj1(Zs) means that :

x0,j1
s,0 (t1) · e1 =

(
Z0
s,0(t1)

)X,j1 · e1 =
(
T s,0t1−t(Zs)

)X,j1 · e1 ≥ ρ,

that is the particle j1 is far enough from the obstacle at time t1.
This is the bound (12.36) (of Proposition 16 page 347) from below on the dis-
tance to the obstacle of the particle undergoing the adjunction. Besides, another
consequence of the fact that Zs ∈ ∆s is that thanks to Proposition 17 page 394,
waiting long enough, that is, if t − t1 ≥ δ, the second point (12.114) of this
proposition provides exactly that :

T s,0t1−t(Zs) = Z0
s,0(t1)

belongs to G0
s (ε0). As a consequence, if the parameters verify :

R ≥ 1, 4
√

3a ≤ ε0, ε0/δ ≤ 1, 2ε ≤ a, ε0 ≤ ηδ and 3a ≤ ρ,

on the one hand, Proposition 16 can be applied and it provides the existence of
the subset

B̃k
(
T s,0t1−t(Zs)

)
(R, δ, ε, a, ε0, ρ, η)
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of Sd−1×Rd, so that outside this subset, the configuration Z0
s,1(t1), after adjunc-

tion, and possibly after scattering according to the pre or post-collisional charac-

ter of the configuration
(
Z0
s,0(t1), x0,j1

s,0 (t1), v
)

=
(
T s,0t1−t(Zs),

(
T s,0t1−t(Zs)

)X,j1
, v
)
,

is a good configuration of s + 1 particles for the free flow dynamics, separated
by at least ε0, after applying the free flow during δ. In other words :

T s+1,0
−δ

(
Z0
s,1(t1)

)
∈ G0

s+1(ε0).

Moreover, the size of this subset B̃k
(
T s,0t1−t(Zs)

)
is controlled by the inequality

(12.37) page 348 of the same proposition.
On the other hand, the conditions

R ≥ 1, α ≤ c(d)

enable to use Lemma 31 page 380.
Then, as in Definition 58 page 432, one considers the subset Ej1

(
Z0
s,0(t1)

)
,

which is composed of B̃k
(
T s,0t1−t(Zs)

)
, and in addition of the angular and velocity

adjunction parameters that could produce a configuration with a particle grazing
the obstacle. The size of Ej1

(
Z0
s,0(t1)

)
is then controlled by Proposition 16 page

347 on the one hand, and on the other hand by the inequality (12.68) page 369
and Lemma 31 (the first of the two last results controls the size of parameters
leading to grazing trajectory without scattering, while the second one controls
the effect of the scattering in addition), so that :∣∣∣Ej1(Z0

s,0(t1)
)∣∣∣ ≤ C(d)

Å
ηd +Rd

(a
ρ

)d−1

+ kR2d−1
( a
ε0

)d−3/2

+ kRd+1/2
(ε0

δ

)d−3/2

+Rd−1α+Rdα1/8

ã
.

Here, since it will have no significant impact in the end of the proof to make a
difference between the cases d = 2 and d ≥ 3, one has chosen the more general
(but less accurate) bound

C(d)Rdα1/8

to control the size of the grazing velocities after the application of the scattering.
It is indeed a more general control since for R ≥ 1 and α ≤ 1, this quantity is
larger than the two bounds provided by Lemma 31, namely

C(d)R2α1/8

for the case d = 2 and
C(d)Rd−1α

for the case d ≥ 3.

The cut-off in adjunction parameters implying a particle with a grazing tra-
jectory enables to state that :

sup
Zs∈∆s
1≤j1≤s

t1∈Ucj1 (Zs), (ω1,vs+1) ∈ Ecj1 (Z0
s,0(t1))

1≤j2≤s+1

∣∣Uj2(Z0
s,1(t1)

)∣∣ ≤ 2
ρ

α
.



12.3. EXCLUDING THE PATHOLOGICAL PSEUDO-TRAJECTORIES 447

Moreover, since t2 is chosen such that t1 − t2 does not belong to Uj2
(
Z0
s,1(t1)

)
,

one has : (
x0,j2
s,1 (t2)

)
· e1 =

((
Z0
s,1(t2)

)X,j2) · e1 ≥ ρ,

and since t1 − t2 ≥ δ, one has

T s+1,0
t2−t1

(
Z0
s,1(t1)

)
= Z0

s,1(t2) ∈ Gs+1

(
ε0

)
,

one can again apply Proposition 16 page 347. Therefore, one can iterate the
process, and one obtains a subset Ej2

(
Z0
s,1(t2)

)
of Sd−1×Rd such that for every

t3 with t2 − t3 ≥ δ, Z0
s,2(t3) ∈ Gs+2(ε0) and

(
x0,j3
s,2 (t3)

)
· e1 ≥ ρ, and so on.

At each step of the process, that is for any integer 1 ≤ m ≤ n, one obtained
two subsets Ujm

(
Z0
s,m−1(tm−1)

)
and Ejm

(
Z0
s,m−1(tm)

)
belonging respectively

to [0, T ] and Sd−1 ×BRd(0, R), and verifying :∣∣∣Ujm(Z0
s,m−1(tm−1)

)∣∣∣ ≤ 2
ρ

α

and∣∣∣Ejm(Z0
s,m−1(tm)

)∣∣∣ ≤ C(d)

Å
ηd +Rd

(a
ρ

)d−1

+ kR2d−1
( a
ε0

)d−3/2

+ kRd+1/2
(ε0

δ

)d−3/2

+Rd−1α+Rdα1/8

ã
,

the bound being uniform in the respective parameters Z0
s,m−1(tm−1) and Z0

s,m−1(tm),
that is, uniform in all the parameters defining the pseudo-trajectories :

Zs ∈ ∆s, 1 ≤ j1 ≤ s, t1 ∈ U cj1(Zs),

(ω1, vs+1) ∈ Ecj1
(
Z0
s,0(t1)

)
= Ecj1

(
T s,0t1−t(Zs)

)
,

. . .

1 ≤ jm ≤ s+m− 1, tm ∈ U cjm
(
Z0
s,m−1(tm−1)

)
.
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Chapter 13

Pointwise convergence of
the pseudo
-trajectories and dominated
convergence argument

One starts here the very core of the proof of Lanford’s theorem : the compari-
son of the pseudo-trajectories, and the consequence on the convergence on the
elementary terms of the two dynamics.

13.1 Divergence between the pseudo-trajectories
of the two dynamics

One studies here carefully the difference in position and velocity between the
pseudo-trajectories of the BBGKY and the Boltzmann dynamics. This is the
purpose of the following lemma.

One recalls that the notations used in the statement of the following lemma,
such as Tk ∈ Tk, Jk ∈ Jsk, Ak ∈ Ak, Z0(Tk, Jk, Ak) and Zε(Tk, Jk, Ak) concern-
ing the pseudo-trajectories are introduced in Section 12.1.1 starting page 319
(see in particular Definitions 44, 45 page 323 and 46 page 324), ∆s concerning
the subset of preparation of the initial configurations is introduced in Definition
54 page 392, and finally Uji and Eji concerning the excluded pathological sub-
sets of adjunction parameters are introduced in Definitions 59 page 433 and 58
page 432.

Lemma 38 (Uniform comparison of the pseudo-trajectories). Let ε,R and
δ be three strictly positive numbers, s and k be two positive integers, Tk =
(t1, . . . , tk) be an element of Tk, Jk = (j1, . . . , jk) be an element of Jsk and

449
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Ak =
(
(ω1, vs+1), . . . , (ωk, vs+k)

)
be an element of Ak. One considers the back-

wards pseudo-trajectory of the Boltzmann hierarchy Z0(Tk, Jk, Ak), and the
backwards pseudo-trajectory of the BBGKY hierarchy Zε(Tk, Jk, Ak), both start-
ing from Zs ∈

(
Ωc × Rd

)s
.

For all strictly positive numbers a, ε0, ρ, η and α, if one assumes that :

4
√

3a ≤ ε0, 3a ≤ ρ, ε0 ≤ ηδ, (13.1)

R ≥ 1, η ≤ 1 and α ≤ c(d), (13.2)

where c(d) is a strictly positive constant depending only on the dimension d and

2kε ≤ a, (13.3)

Zs ∈ ∆s

(
ε,R, ε0, α,max(16Ra/ε0, ε0/δ)

)
, (13.4)

and for all 1 ≤ i ≤ k :

ti−1 − ti ≥ δ,

(with t0 denoting T )

ti /∈ Uji
(
ρ, Z0

s,i−1(ti−1)
)

and

(ωi, vs+i) /∈ Eji
(
R, δ, ε, a, ε0, ρ, η, α)

(
Z0
s,i−1(ti)

)
,

then one has :

∀ 1 ≤ j ≤ s+ k,
∣∣xε,js,k(0)− x0,j

s,k(0)
∣∣ ≤ 2kε, (13.5)

that is ∣∣∣(Zεs,k(Tk, Jk, Ak)(0)
)X,j − (Z0

s,k(Tk, Jk, Ak)(0)
)X,j∣∣∣ ≤ 2kε,

and

∀ 1 ≤ i ≤ k, vε,jis,i−1(ti) = v0,ji
s,i−1(ti), (13.6)

that is (
Zεs,i−1(Tk, Jk, Ak)(ti)

)V,ji
=
(
Z0
s,i−1(Tk, Jk, Ak)(ti)

)V,ji
.

Proof. The result is obtained by induction. To be more accurate, the second
point (13.6) of the Lemma will be established this way, step by step starting
from the case i = 1, while the first one (13.5) will be obtained recursively, by
showing the three following intermediate results.
The first of those intermediate results is that, for any integer 1 ≤ i ≤ k :

Zεs,i−1(ti) ∈ Gεs+i−1(ε), Z0
s,i−1(ti) ∈ G0

s+i−1(ε0), (13.7)
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which can be rewritten as follows : for any integers 1 ≤ l < m ≤ s + i − 1 and
for any strictly positive number τ :∣∣∣T 1,ε

−τ

((
Zεs,i−1

(
Tk, Jk, Ak

)
(ti)
)X,l)

− T 1,ε
−τ

((
Zεs,i−1

(
Tk, Jk, Ak

)
(ti)
)X,m)∣∣∣ > ε

and ∣∣∣T 1,0
−τ

((
Z0
s,i−1

(
Tk, Jk, Ak

)
(ti)
)X,l)

− T 1,0
−τ

((
Z0
s,i−1

(
Tk, Jk, Ak

)
(ti)
)X,m)∣∣∣ > ε0.

The second intermediate result is that, for all integers 1 ≤ j ≤ s+ i− 1 and for
all nonnegative numbers τ :∣∣∣(T s+i−1,ε

−τ
(
Zεs,i−1(Tk, Jk, Ak)(ti−1)

))X,j
−
(
T s+i−1,0
−τ

(
Z0
s,i−1(Tk, Jk, Ak)(ti−1)

))X,j∣∣∣ ≤ (2i− 1)ε, (13.8)

vε,js,i−1(ti) = v0,j
s,i−1(ti) or vε,js,i−1(ti) = S0

(
v0,j
s,i−1(ti)

)
, (13.9)

and finally the third intermediate result is that, for any nonnegative number τ ,
if vε,js,i−1(τ) 6= v0,j

s,i−1(τ), (that is if vε,js,i−1(τ) = S0

(
v0,j
s,i−1(τ)

)
), then∣∣x0,j

s,i−1(τ) · e1

∣∣ ≤ (2i− 3/2)ε. (13.10)

The three last conditions are nothing more than a control on the positions, and
on the velocities of the particles of the pseudo-trajectories of the two hierarchies,
just before the adjunctions of the additional particles. The three first interme-
diate conditions (13.7), (13.8) and (13.9) will be useful to apply Proposition 16
page 347.

Case i = 1.

First, thanks to the hypothesis (13.4), since Zs is chosen inside

∆s

(
ε,R, ε0, α,max(16Ra/ε0, ε0/δ)

)
,

Proposition 17 page 394 can be applied. First, one knows that T s,0−δ (Zs) ∈ G0
s (ε0).

In particular, since (thanks to the cut-off in small time difference between ad-
junctions) T − t1 ≥ δ, one has :

T s,0−t1(Zs) = Z0
s,0(t1) ∈ G0

s (ε0). (13.11)
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Second, one has also (again thanks to Proposition 17 page 394) that Zs ∈ Gεs(ε).
Then on the first hand, one has in particular

T s,ε−t1(Zs) = Zεs,0(t1) ∈ Gεs(ε). (13.12)

The two conditions (13.11) and (13.12) mean that the first intermediate condi-
tion (13.7) holds for the first case i = 1.
On the other hand, one can assert that for all t1 ≤ τ ≤ T , Zε(τ) = Zεs,0(τ)
is obtained from Zs using only the free transport with boundary condition for
particles of radius ε/2. So, for each particle 1 ≤ j1 ≤ s, one has

xε,j1s,0 (τ) = x0,j1
s,0 (τ)

as long as xε,j1s,0 (τ) · e1 ≥ ε/2 and x0,j1
s,0 (τ) · e1 ≥ 0.

If this condition is fulfilled for all t1 ≤ τ ≤ T , the intermediate condition (13.8)
on the position of the particles of the system is obviously true, and so is the
condition (13.6), since no velocity is modified during the time interval [t1, T ],
due to the absence of bouncing against the obstacle.
If there exists t1 ≤ τ0,j1

s,0 ≤ T such that

x0,j1
s,0 (τ0,j1

s,0 ) · e1 = 0,

then by continuity there exists τε,j1s,0 such that

τ0,j1
s,0 ≤ τ

ε,j1
s,0 ≤ T

and
xε,j1s,0 (τε,j1s,0 ) · e1 = ε/2

(that is the particle of the BBGKY dynamics bounces first against the obstacle
here).
Then for all τ0,j1

s,0 ≤ τ ≤ τ
ε,j1
s,0 , one has®

x0,j1
s,0 (τ) = xj1 − (T − τ)vj1 ,

xε,j1s,0 (τ) = xj1 − (T − τε,j1s,0 )vj1 − (τε,j1s,0 − τ)S0

(
vj1
)
.

This gives ∣∣xε,j1s,0 (τ)− x0,j1
s,0 (τ)

∣∣ =
∣∣− 2(τε,m1

s − τ)vj1 · e1e1

∣∣
≤ 2
∣∣τε,j1s,0 − τ

0,j1
s,0

∣∣ · ∣∣vj1 · e1

∣∣,
and one deduces that ∣∣xε,j1s,0 (τ)− x0,j1

s,0 (τ)
∣∣ ≤ ε

since
τ0,j1
s,0 = (xj1 · e1)/vj1 · e1,

and
τε,j1s,0 =

(
xj1 · e1 − ε/2

)
/vj1 · e1,
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those two last times being well defined since Zs ∈ ∆s implies in particular
that the velocities composing this initial configuration are not grazing, namely
vj1 · e1 ≥ α > 0.

Similarly, for all t1 ≤ τ ≤ τ0,j1
s,0 , one has :®

x0,j1
s,0 (τ) = xj1 − (T − τ0,j1

s,0 )vj1 − (τ0,j1
s,0 − τ)S0

(
vj1
)
,

xε,j1s,0 (τ) = xj1 − (T − τε,j1s,0 )vj1 − (τε,j1s,0 − τ)S0

(
vj1
)
.

This gives ∣∣xε,j1s,0 (τ)− x0,j1
s,0 (τ)

∣∣ =
∣∣2(τ0,j1

s,0 − τ
ε,j1
s,0 )vj1 · e1e1

∣∣ = ε.

Moreover, one has
v0,j1
s,0 (t1) = S0(vj1)

and
vε,j1s,0 (t1) = S0(vj1),

so that the condition (13.6) on the velocity of the pseudo-trajectories, which is
stated for the specific particle j1 in the case i = 1, is fulfilled for this case i = 1
and when the particle j1 of size zero (that is for the free flow dynamics) bounces
against the obstacle before the time t1.

Now one will show that either both of the particles x0,j1
s,0 (τ) and xε,j1s,0 (τ) of

respective radius zero and ε/2 bounce against the obstacle during the same
time interval [t1, T ], or none of those particles bounces. Of course, this will be
obtained thanks to the hypothesis of the cut-off in the time variable t1, which
prevents the particle j1 to be too close to the obstacle during the adjunction.
This is mandatory to obtain this result, otherwise, at adjunction time t1, one
can have :

v0,j1
s,0 (t1) 6= vε,j1s,0 (t1).

One has shown that if the particle of radius zero bounces, then so does the one
of strictly positive radius, at an anterior time, for the specific case of i = 1. In
other words, if τ0,j1

s,0 ∈ [t1, T ], then one has also τε,j1s,0 ∈ [t1, T ].
Conversely, if the particle of radius ε/2 bounces against the obstacle, say at time
τε,j1s,0 with t1 ≤ τε,j1s,0 ≤ T , one knows that the time interval delimited by t1 and

τε,j1s,0 is not too small. Indeed, by hypothesis t1 /∈ Uj1(ρ, Zs), which means that :

x0,m1

s,0 (t1) · e1 ≥ ρ.

Using the explicit expressions for the times τε,j1s,0 and τε,j1s,0 , one obtains :

τε,j1s,0 − τ
ε,j1
s,0 =

ε

2vj1 · e1
≤ ε

2α
.

But now thanks to the crucial hypothesis (13.3), and the relation between a and
ρ asserted in (13.1), one has :

τ0,j1
s,0 − τ

ε,j1
s,0 ≤

a

2kα
≤ ρ

6kα
≤ ρ

α
.
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In other words, the time τε,j1s,0 belongs to the time interval Uj1(ρ, Zs), while by
hypothesis t1 does not belong to this time interval. As an obvious consequence

t1 < τε,j1s,0 < τ0,j1
s,0 ,

or in other words : if the particle j1 bounces against the obstacle for the BBGKY
dynamics in the time interval [t1, T ], then so does the same particle for the Boltz-
mann dynamics.
Therefore, one has indeed that, in the time interval [t1, T ], the particle j1 of the
Boltzmann dynamics bounces against the obstacle if and only if the particle j1
of the BBGKY dynamics bounces against the obstacle too.
So, and in particular thanks to the condition (13.3), the intermediate control
(13.8) stated at the beginning of the proof of the Lemma is fulfilled for the case
i = 1.

For the difference between the velocities of all the particles of the two pseudo-
trajectories, that is the intermediate result (13.9), one uses again the fact that
the hard sphere flow from the initial configuration Zs does not lead to any
recollision between two particles of the system of s particles, that is

Zs ∈ Gεs(ε).

As a consequence, the only way to observe a modification in the velocities of
the particles of the pseudo-trajectory of the BBGKY hierarchy starting from
the configuration Zs is through a bouncing against the obstacle. Therefore, one
can have only, for all integer 1 ≤ j ≤ s :

vε,js,0(t1) = vε,js,0(T ) = vj

or
vε,js,0(t1) = S0

(
vε,js,0(T )

)
= S0(vj).

For the pseudo-trajectories of the Boltzmann hierarchy, this is also the only way
to modify the velocities (for this dynamics, it is even true in general, regardless
any preparation of the initial configuration), and since v0,j

s,0(T ) = vε,js,0(T ) = vj ,
the last intermediate result (13.9) holds for the case i = 1.
Finally, for the last intermediate result (13.10), one notices again that from
the configuration Zs (which is, at this step, the starting point for the pseudo-
trajectories of the two dynamics), if a pair j of particles bounces with the
obstacle (using one more time the fact that the trajectories are explicitly given
for the two dynamics, because there is no recollision), then the particle of radius
ε/2, that is, the one following the hard sphere flow, is the first to bounce. Before
this bouncing, and after the bouncing of the particle following the free flow with
boundary condition, the two particles of the pair have the same velocity, which
is nothing else than

vj = (Zs)
V,j .

So the particles of the pair j have distinct velocities only on the time interval

[τ0,j
s,0 , τ

ε,j
s,0 ],
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with (
xj − τε,js,0vj

)
· e1 = ε/2

and (
xj − τ0,j

s,0 vj
)
· e1 = 0,

this time interval being therefore characterized by the condition

0 ≤ (xj − τvj) · e1 ≤ ε/2.

If τ = ti belongs to [τ0,j
s,0 , τ

ε,j
s,0 ], the intermediate result (13.10) page 451 is then

obtained for the first case i = 1.

Case i > 1.

Now, let i be a positive integer smaller than k, strictly larger than 1. To perform
the proof by recursion, one will assume that

Zεs,i−2

(
Tk, Jk, Ak

)
(ti−1) ∈ Gεs+i−2(ε),

Z0
s,i−2

(
Tk, Jk, Ak

)
(ti−1) ∈ G0

s+i−2(ε0). (13.13)

One assumes also that for all integers 1 ≤ j ≤ s+ i− 2 and for all nonnegative
numbers τ : ∣∣∣T 1,ε

−τ
(
xε,js,i−2(ti−2)

)
− T 1,0
−τ
(
x0,j
s,i−2(ti−2)

)∣∣∣ ≤ (2i− 3)ε,

that is∣∣∣(T s+i−2,ε
−τ

(
Zεs,i−2(Tk, Jk, Ak)(ti−2)

))X,j
−
(
T s+i−2,0
−τ

(
Z0
s,i−2(Tk, Jk, Ak)(ti−2)

))X,j∣∣∣ ≤ (2i− 3)ε, (13.14)

the two assumptions (13.13) and (13.14) are the statements ot the two interme-
diate results (13.7) and (13.8) for the particular case i− 1. One assumes finally
that, for every integer 1 ≤ j ≤ s+ i− 2,

vε,js,i−2(ti−1) = v0,j
s,i−2(ti−1) or vε,js,i−2(ti−1) = S0

(
v0,j
s,i−2(ti−1)

)
, (13.15)

and for every integer 1 ≤ j ≤ s + i − 2, and every nonnegative number τ , if
vε,js,i−2(τ) 6= v0,j

s,i−2(τ), then∣∣(x0,j
s,i−2(τ)

)
· e1

∣∣ ≤ (2i− 1/2)ε, (13.16)

which are the last intermediate results (13.9) and (13.10) stated page 451 at the
beginning of the Lemma, assumed to be true for the particular case i− 1. One
notes that those three hypotheses were obtained in the first part of the proof
for the specific case i = 1.
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By definition of the backwards pseudo-trajectories for the free-flow with bound-
ary condition and for the hard sphere dynamics (see Definitions 45 page 323
and 46 page 324), a particle is added at time ti−1 next to the particle ji−1,
with an angular parameter ωi−1 and a velocity vs+i−1. Explicitly, one recalls
that the configuration obtained after the adjunction, first for the Boltzmann
pseudo-trajectory, is

Z0
s,i−1

(
Tk, Jk, Ak

)
(ti−1) =

(
Z0
s,i−2

(
Tk, Jk, Ak

)
(ti−1), x

0,ji−1

s,i−2 (ti−1), vs+i−1

)
if mi−1 = − (pre-collisional case) and

Z0
s,i−1

(
Tk, Jk, Ak

)
(ti−1)

=
(
Z0
s,i−2

(
Tk, Jk, Ak

)
(ti−1), x

0,ji−1

s,i−2 (ti−1), vs+i−1

)′
ji−1,s+i−1

if mi−1 = + (post-collisional case), the scattering being applied with the angular
parameter ωi−1 (see Definition 1 page 51), and second for the BBGKY pseudo-
trajectory, is

Zεs,i−1

(
Tk, Jk, Ak

)
(ti−1)

=
(
Z0
s,i−2

(
Tk, Jk, Ak

)
(ti−1), x

0,ji−1

s,i−2 (ti−1) + εωi−1, vs+i−1

)
if mi−1 = − and

Zεs,i−1

(
Tk, Jk, Ak

)
(ti−1)

=
(
Z0
s,i−2

(
Tk, Jk, Ak

)
(ti−1), x

0,ji−1

s,i−2 (ti−1) + εωi−1, vs+i−1

)′
ji−1,s+i−1

if mi−1 = +, the scattering being also applied with the angular parameter ωi−1.

Thanks to the cut-off in proximity with the obstacle (that is, thanks to the
hypothesis stating that ti−1 /∈ Uji−1

, see Definition 59 page 433), one knows
that

x
0,ji−1

s,i−2 (ti−1) · e1 ≥ ρ.

Moreover, one has assumed the conditions (13.15), (13.15) and (13.10). There-
fore, this large enough distance between the particle ji−1 and the obstacle
and the conditions on the velocities enable to use Proposition 16 page 347 :
by hypothesis, the adjunction parameters ωi−1 and vs+i−1 are chosen outside
Eji−1

(
Z0
s,i−2(ti−1)

)
. As a consequence, by definition of Eji−1

(see Definition 58
page 432), with the hypotheses of good configuration (13.13), and if

(2i− 3)ε ≤ a

then, one has first :

T s+i−1,0
−δ

(
Z0
s,i−1(ti−1)

)
∈ G0

s+i−1(ε0)
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and

Zεs,i−1(ti−1) ∈ Gεs+i−1(ε). (13.17)

Therefore, one has of course :

T s+i−1,ε
−(ti−1−ti)

(
Zεs,i−1(ti−1)

)
= Zεs,i−1(ti) ∈ Gεs+i−1(ε),

and since ti−1 − ti ≥ δ :

T s+i−1,0
−(ti−1−ti)

(
Z0
s,i−1(ti−1)

)
= Z0

s,i−1(ti) ∈ G0
s+i−1(ε0),

those two last condition being exactly the first intermediate result (13.7) page
450.

Now one studies the velocities of the particles of the two pseudo-trajectories
at time ti−1, after the adjunction of the particle s+ i− 1.
By definition the velocities of all the particles 1 ≤ j ≤ s+ i− 2, with j 6= ji−1,
and also the velocity of the particles ji−1 in the case of a pre-collisional con-
figuration, are not changed during the adjunction (for the two dynamics), that
is :

v0,j
s,i−1(ti−1) = v0,j

s,i−2(ti−1) and vε,js,i−1(ti−1) = vε,js,i−2(ti−1).

In the case of a pre-collisional configuration, by definition of the adjunction one
has :

v0,s+i−1
s,i−1 (ti−1) = vε,s+i−1

s,i−1 (ti−1) = vs+i−1.

In the case of a post-collisional configuration, the velocities v
0,ji−1

s,i−1 and v
ε,ji−1

s,i−1

are computed from the velocities v
0,ji−1

s,i−2 and v
ε,ji−1

s,i−2 of the pair of particles ji−1

of the two pseudo-trajectories according to the scattering, computed with the
same second velocity vs+i−1 for the second particles s + i − 1 colliding, and
with the same angular parameter ωi−1, for both of the two dynamics. But the
velocities before the adjunction are linked thanks to the hypothesis (13.15),
hence one has, regardless whether the configuration after the adjunction is pre
or post-collisional, for all 1 ≤ j ≤ s+ i− 1 :

vε,js,i−1(ti−1) = v0,j
s,i−1(ti−1) or vε,js,i−1(ti−1) = S0

(
v0,j
s,i−1(ti−1)

)
. (13.18)

One knows that the only way to observe a modification in the velocity of the
particles along the trajectories of the free flow dynamics with boundary condi-
tion is during a bouncing against the obstacle. In other words, one has for every
time τ ≤ ti−1 :

v0,j
s,i−1(τ) = v0,j

s,i−1(ti−1) or v0,j
s,i−1(τ) = S0

(
v0,j
s,i−1(ti−1)

)
. (13.19)

Besides, using the intermediate result (13.17) page 457, one knows that no recol-
lision can occur in the past (since one considers the backwards dynamics) follow-
ing the hard sphere flow dynamics starting from the configuration Zεs,i−1(ti−1).
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As a consequence, and exactly as the free flow dynamics, only the bouncings
can change the velocity of the particles following the hard sphere dynamics.
Therefore, one can describe explicitly the velocities of the pseudo-trajectory of
the BBGKY hierarchy starting from this configuration, and one has also :

vε,js,i−1(τ) = vε,js,i−1(ti−1) or vε,js,i−1(τ) = S0

(
vε,js,i−1(ti−1)

)
. (13.20)

Collecting the statements (13.18), (13.19) and (13.20) together with the obvious
fact that the symmetry S0 is an involution, one obtains that for all integer
1 ≤ j ≤ s+ i− 1 :

vε,js,i−1(ti) = v0,j
s,i−1(ti) or vε,js,i−1(ti) = S0

(
v0,j
s,i−1(ti)

)
,

which is exactly the intermediate result (13.9) page 451, for the particular case i.

As for the difference between the positions of the same particle following the
two pseudo-trajectories, first one considers the case of the particles which are
not affected by the adjunctions. If the adjunction i − 1 is post-collisional, the
velocities of all particles j such that j 6= ji−1 and j 6= s+ i− 1 are not modified
by the adjunction, and if the adjunction i− 1 is pre-collisional, the velocities of
all particles j such that j 6= s+ i− 1 are not modified by the adjunction, as it
was already recalled just above. Therefore, since such particles follow the free
flow, one has for all τ ∈ [ti, ti−1] :

xε,js,i−1(τ) = T 1,ε
−(ti−1−τ)

(
(xε,js,i−1(ti−1), vε,js,i−1(ti−1))

)
=
(
T 1,ε
−(ti−1−τ)

(
(xε,js,i−2(ti−1), vε,js,i−2(ti−1))

))X
=
(
T 1,ε
−(ti−1−τ)

(
T 1,ε
−(ti−2−ti−1)

(
(xε,js,i−2(ti−2), vε,js,i−2(ti−2))

)))X
=
(
T 1,ε
−(ti−2−τ)

(
(xε,js,i−2(ti−2), vε,js,i−2(ti−2))

))X
for the BBGKY pseudo-trajectory, and similarly for the Boltzmann pseudo-
trajectory :

x0,j
s,i−1(τ) =

(
T 1,0
−(ti−2−τ)

(
(x0,j
s,i−2(ti−2), v0,j

s,i−2(ti−2))
))X

.

For such pairs of particles, the result concerning the difference of the positions
is then a direct consequence of the intermediate hypothesis (13.14).
If the adjunction i− 1 is post-collisional, at the time ti−1 of the adjunction, the
velocities of the particles of the pair ji−1 are the same, equal to

v
0,ji−1

s,i−1 (ti−1) = v
0,ji−1

s,i−1 (ti−1) =
(
v

0,ji−1

s,i−2 (ti−1)
)′
,(

v
0,ji−1

s,i−2 (ti−1)
)′

denoting the first velocity obtained after applying the scattering

operator to the pair of velocities
(
v

0,ji−1

s,i−2 (ti−1), vs+i−1

)
, with the angular pa-

rameter ωi−1. According to Proposition 16, one knows that the two particles of
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the pair ji follow the free flow, so that one has for all τ ≤ ti−1 :

x
ε,ji−1

s,i−1 (τ) = T 1,ε
−(ti−1−τ)

((
x
ε,ji−1

s,i−1 (ti−1),
(
v

0,ji−1

s,i−2 (ti−1)
)′))

for the BBGKY pseudo-trajectory, and similarly for the Boltzmann pseudo-
trajectory :

x
0,ji−1

s,i−1 (τ) =
(
T 1,0
−(ti−2−τ)

((
x0,j
s,i−2(ti−2),

(
v

0,ji−1

s,i−2 (ti−1)
)′)))X

.

Then, depending on the sign of the scalar product
(
v

0,ji−1

s,i−2 (ti−1)
)′ · e1, either

both of the particles of the pair bounce against the obstacle, or none does.
If none does, then clearly∣∣xε,ji−1

s,i−1 (τ)− x0,ji−1

s,i−1 (τ)
∣∣ =

∣∣∣(xε,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)

−
(
x

0,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)∣∣∣

=
∣∣xε,ji−1

s,i−1 (ti−1)− x0,ji−1

s,i−1 (ti−1)
∣∣,

the right-hand side being smaller than (2i− 3)ε, since it is equal to∣∣∣T 1,ε
−(ti−2−ti−1)

(
x
ε,ji−1

s,i−2 (ti−2)
)
− T 1,0
−(ti−2−ti−1)

(
x

0,ji−1

s,i−2 (ti−2)
)∣∣∣,

this quantity being controlled thanks to the intermediate hypothesis (13.14)
page 455.
If both particles of the pair ji−1 bounce against the obstacle, the trajectory of
the particle ji−1 of the Boltzmann pseudo-trajectory is given by

x
0,ji−1

s,i−1 (τ) = x
0,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′

if τ
0,ji−1

s,i−1 ≤ τ ≤ ti−1, and

x
0,ji−1

s,i−1 (τ) = x
0,ji−1

s,i−1 (ti−1)− (ti−1 − τ0,ji−1

s,i−1 )
(
v

0,ji−1

s,i−2 (ti−1)
)′

− (τ
0,ji−1

s,i−1 − τ)S0

((
v

0,ji−1

s,i−2 (ti−1)
)′)

= S0

(
x

0,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)
,

if τ ≤ τ0,ji−1

s,i−1 , with τ
0,ji−1

s,i−1 verifying(
x

0,ji−1

s,i−1 (ti−1)− (ti−1 − τ0,ji−1

s,i−1 )
(
v

0,ji−1

s,i−2 (ti−1)
)′) · e1 = 0.

The trajectory of the particle ji−1 of the BBGKY pseudo-trajectory is given
similarly by

x
ε,ji−1

s,i−1 (τ) = x
ε,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′
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if τ
ε,ji−1

s,i−1 ≤ τ ≤ ti−1, and

x
ε,ji−1

s,i−1 (τ) = x
ε,ji−1

s,i−1 (ti−1)− (ti−1 − τε,ji−1

s,i−1 )
(
v

0,ji−1

s,i−2 (ti−1)
)′

− (τ
ε,ji−1

s,i−1 − τ)S0

((
v

0,ji−1

s,i−2 (ti−1)
)′)

= Sε
(
x
ε,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)

if τ ≤ τε,ji−1

s,i−1 , with τ
ε,ji−1

s,i−1 verifying(
x
ε,ji−1

s,i−1 (ti−1)− (ti−1 − τε,ji−1

s,i−1 )
(
v

0,ji−1

s,i−2 (ti−1)
)′) · e1 = ε/2,

and where Sε denotes the orthogonal symmetry with respect to the hyperplane
x · e1 = ε/2.

Clearly, if τ ≥ max
(
τ

0,ji−1

s,i−1 , τ
ε,ji−1

s,i−1

)
, one has∣∣∣xε,ji−1

s,i−1 (τ)− x0,ji−1

s,i−1 (τ)
∣∣∣ =

∣∣∣(xε,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)

−
(
x

0,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)∣∣∣,

controlled as for the case of no bouncing, and then this quantity is smaller than
(2i− 3)ε.

If min
(
τ

0,ji−1

s,i−1 , τ
ε,ji−1

s,i−1

)
≤ τ ≤ max

(
τ

0,ji−1

s,i−1 , τ
ε,ji−1

s,i−1

)
, one has :∣∣∣xε,ji−1

s,i−1 (τ)− x0,ji−1

s,i−1 (τ)
∣∣∣ =

∣∣∣(xε,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)

− S0

(
x

0,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)∣∣∣

or∣∣xε,ji−1

s,i−1 (τ)− x0,ji−1

s,i−1 (τ)
∣∣ =

∣∣∣Sε(xε,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)

−
(
x

0,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)∣∣∣.

One uses here once again a result appearing in the proof of Lemma 27 page 335,
namely, for all points x1 and x2 belonging to x · e1 = α/2, one has∣∣x1 − Sα(x2)

∣∣ ≥ ∣∣x1 − x2

∣∣,
with Sα denoting as usual the orthogonal symmetry with respect to the hyper-
plane

{
x ∈ Rd / x · e1 = α/2

}
.

As a consequence, if τ
ε,ji−1

s,i−1 ≤ τ
0,ji−1

s,i−1 , and if τ
ε,ji−1

s,i−1 ≤ τ ≤ τ
0,ji−1

s,i−1 , one has

S0

(
x

0,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′) · e1 ≥ 0
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and then :

∣∣xε,ji−1

s,i−1 (τ)− x0,ji−1

s,i−1 (τ)
∣∣ =

∣∣∣(xε,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)

− S0

(
x

0,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)∣∣∣

≤
∣∣∣(xε,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)

− S0

(
S0

(
x

0,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′))∣∣∣

≤
∣∣xε,ji−1

s,i−1 (ti−1)− x0,ji−1

s,i−1 (ti−1)
∣∣.

Again, the right-hand side is bounded by (2i− 3)ε.

If τ
0,ji−1

s,i−1 ≤ τ
ε,ji−1

s,i−1 , and if τ
0,ji−1

s,i−1 ≤ τ ≤ τ
ε,ji−1

s,i−1 , one has

Sε
(
x
ε,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′) · e1 ≥ ε/2

and since

(
x

0,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′

+
ε

2
e1

)
· e1 ≥ ε/2,

then :

∣∣xε,ji−1

s,i−1 (τ)− x0,ji−1

s,i−1 (τ)
∣∣ =

∣∣∣Sε(xε,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)

−
(
x

0,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′

+
ε

2
e1 −

ε

2
e1

)∣∣∣
≤
∣∣∣Sε(Sε(xε,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′))

−
(
x

0,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′

+
ε

2
e1

)∣∣∣
+
ε

2

≤
∣∣xε,ji−1

s,i−1 (ti−1)−
(
x

0,ji−1

s,i−1 (ti−1) +
ε

2
e1

)∣∣+
ε

2
.

This time, the right-hand side is bounded by (2i− 2)ε.
To finish the study of the case of the pair bouncing against the obstacle, if
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τ ≤ min
(
τ

0,ji−1

s,i−1 , τ
ε,ji−1

s,i−1

)
, one has∣∣xε,ji−1

s,i−1 (τ)− x0,ji−1

s,i−1 (τ)
∣∣ =

∣∣∣Sε(xε,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)

− S0

(
x

0,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)∣∣∣

=
∣∣∣(xε,ji−1

s,i−1 (ti−1)− (ti−1 − τε,ji−1

s,i−1 )
(
v

0,ji−1

s,i−2 (ti−1)
)′

− (τ
ε,ji−1

s,i−1 − τ)S0

((
v

0,ji−1

s,i−2 (ti−1)
)′))

−
(
x

0,ji−1

s,i−1 (ti−1)− (ti−1 − τ0,ji−1

s,i−1 )
(
v

0,ji−1

s,i−2 (ti−1)
)′

− (τ
0,ji−1

s,i−1 − τ)S0

((
v

0,ji−1

s,i−2 (ti−1)
)′))

≤
∣∣xε,ji−1

s,i−1 (ti−1)− x0,ji−1

s,i−1 (ti−1)
∣∣

+
∣∣∣(τ0,ji−1

s,i−1 − τ
ε,ji−1

s,i−1

)(
S0

((
v

0,ji−1

s,i−2 (ti−1)
)′)− (v0,ji−1

s,i−2 (ti−1)
)′)∣∣∣.

Recalling that one has

ti−1 − τ0,ji−1

s,i−1 =
x

0,ji−1

s,i−1 (ti−1) · e1((
v

0,ji−1

s,i−2 (ti−1)
)′) · e1

and

ti−1 − τε,ji−1

s,i−1 =

(
x
ε,ji−1

s,i−1 (ti−1) · e1 − ε/2
)((

v
0,ji−1

s,i−2 (ti−1)
)′) · e1

,

one obtains therefore∣∣xε,ji−1

s,i−1 (τ)− x0,ji−1

s,i−1 (τ)
∣∣ =

∣∣∣Sε(xε,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)

− S0

(
x

0,ji−1

s,i−1 (ti−1)− (ti−1 − τ)
(
v

0,ji−1

s,i−2 (ti−1)
)′)∣∣∣

=
∣∣∣(xε,ji−1

s,i−1 (ti−1)− (ti−1 − τε,ji−1

s,i−1 )
(
v

0,ji−1

s,i−2 (ti−1)
)′

− (τ
ε,ji−1

s,i−1 − τ)S0

((
v

0,ji−1

s,i−2 (ti−1)
)′))

−
(
x

0,ji−1

s,i−1 (ti−1)− (ti−1 − τ0,ji−1

s,i−1 )
(
v

0,ji−1

s,i−2 (ti−1)
)′

− (τ
0,ji−1

s,i−1 − τ)S0

((
v

0,ji−1

s,i−2 (ti−1)
)′))

≤
∣∣xε,ji−1

s,i−1 (ti−1)− x0,ji−1

s,i−1 (ti−1)
∣∣

+
∣∣∣ −ε/2((

v
0,ji−1

s,i−2 (ti−1)
)′) · e1

(
− 2
((
v

0,ji−1

s,i−2 (ti−1)
)′) · e1e1

)∣∣∣,
using the explicit definition of the orthogonal symmetry S0, so that the right-
hand side is bounded again by (2i− 2)ε.
One has shown that in general∣∣∣T 1,ε
−τ
(
x
ε,ji−1

s,i−2 (ti−1), v
0,ji−1

s,i−1 (ti−1)
)
− T 1,0
−τ
(
x

0,ji−1

s,i−2 (ti−2), v
0,ji−1

s,i−1 (ti−1)
)∣∣∣ ≤ (2i− 2)ε.
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To conclude the study of the difference of the positions of the particles of any
pair, it remains to study the case of the pair j = s+i−1. Regardless the fact that
the adjunction i−1 is pre or post-collisional (which has as only consequence that
the two velocities vε,s+i−1

s,i−1 (ti−1) = vε,s+i−1
s,i−1 (ti−1) of the pair s + i− 1 are both

equal to vs+i−1 or v′s+i−1, with v′s+i−1 denoting the second velocity obtained

after applying the scattering operator to the pair
(
v

0,ji−1

s,i−2 (ti−1), vs+i−1

)
, with

the angular parameter ωi−1), one will study, for all τ ≤ ti−1, the difference
between the positions(

T 1,0
−(ti−1−τ)

((
x0,s+i−1
s,i−1 (ti−1), v0,s+i−1

s,i−1 (ti−1)
)))X

=
(
T 1,0
−(ti−1−τ)

((
x

0,ji−1

s,i−2 (ti−1), v0,s+i−1
s,i−1 (ti−1)

)))X
and (

T 1,ε
−(ti−1−τ)

((
xε,s+i−1
s,i−1 (ti−1), vε,s+i−1

s,i−1 (ti−1)
)))X

=
(
T 1,ε
−(ti−1−τ)

((
x

0,ji−1

s,i−2 (ti−1) + εωi−1, v
0,s+i−1
s,i−1 (ti−1)

)))X
.

One proceeds exactly as in the case j = ji−1 in the post-collisional case. The
only difference lies in the difference of position

x
ε,ji−1

s,i−2 (ti−1) = x
0,ji−1

s,i−2 (ti−1) + εωi−1,

which simply induces an additional error smaller than
∣∣εωi−1

∣∣ = ε. In this case,
one finds∣∣∣(T 1,0

−(ti−1−τ)

((
x0,s+i−1
s,i−1 (ti−1), v0,s+i−1

s,i−1 (ti−1)
)))X

−
(
T 1,ε
−(ti−1−τ)

((
xε,s+i−1
s,i−1 (ti−1), vε,s+i−1

s,i−1 (ti−1)
)))X ∣∣∣ ≤ (2i− 1)ε.

(13.21)

To summarize, one has obtained the intermediate result (13.8).

As for the link between the difference of velocities of the particles of the same
pair, and the proximity with the obstacle, now that the trajectories of the par-
ticles can be explicitly written for the pseudo-trajectories associated to the two
hierarchies, one will proceed as for the first case i = 1, and show that after
ti−1, for any pair 1 ≤ j ≤ s + i − 1 of particles of the two pseudo-trajectories,
either they have the same velocity, or if they do not, then the particle of the
Boltzmann pseudo-trajectory has to be close to the obstacle, that is one will
obtain the intermediate result (13.10) page 451.
One proceeds as for the difference between the positions of the particles of the
pairs.
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First, for all times τ ≤ ti−1 and for all pairs such that j 6= ji−1 and j 6= s+ i−1
if the adjunction i− 1 is post-collisional, and just such that j 6= s+ i− 1 if the
adjunction i− 1 is pre-collisional, the free flow applied to the configurations of
the particles of such pairs is

T 1,ε
−(ti−1−τ)

(
(xε,js,i−1(ti−1), vε,js,i−1(ti−1))

)
= T 1,ε

−(ti−2−τ)

(
(xε,js,i−2(ti−2), vε,js,i−2(ti−2))

)
for the BBGKY pseudo-trajectory, and similarly for the Boltzmann pseudo-
trajectory :

T 1,0
−(ti−1−τ)

(
(x0,j
s,i−1(ti−1), v0,j

s,i−1(ti−1))
)

= T 1,0
−(ti−2−τ)

(
(x0,j
s,i−2(ti−2), v0,j

s,i−2(ti−2))
)
.

Therefore, the intermediate result (13.10) page 451 is obtained for the case i
and for those particular pairs, since it is implied by the intermediate hypothesis
(13.16) page 455, that is one has, if(

T 1,ε
−(ti−1−τ)

(
(xε,js,i−1(ti−1), vε,js,i−1(ti−1))

)V
6=
(
T 1,0
−(ti−1−τ)

(
(x0,j
s,i−1(ti−1), v0,j

s,i−1(ti−1))
)V
,

then (
T 1,ε
−(ti−1−τ)

(
(xε,js,i−1(ti−1), vε,js,i−1(ti−1))

))X
· e1 ≤ (2i− 5/2)ε. (13.22)

Second, if the adjunction i− 1 is post-collisional, one recalls that the configura-
tions of the particles of the pair ji−1 at time ti−1 just after the adjunction are
given by (

x
ε,ji−1

s,i−1 (ti−1), v
ε,ji−1

s,i−1 (ti−1)
)

=
(
x
ε,ji−1

s,i−2 (ti−1),
(
v

0,ji−1

s,i−2 (ti−1)
)′)

and (
x

0,ji−1

s,i−1 (ti−1), v
0,ji−1

s,i−1 (ti−1)
)

=
(
x

0,ji−1

s,i−2 (ti−1),
(
v

0,ji−1

s,i−2 (ti−1)
)′)
.

In particular, the two particles of this pair have the same velocity at time ti−1.
Therefore, the difference of velocities(

T 1,ε
−(ti−1−τ)

(
(x
ε,ji−1

s,i−1 (ti−1), v
ε,ji−1

s,i−1 (ti−1))
)V

6=
(
T 1,0
−(ti−1−τ)

(
(x

0,ji−1

s,i−1 (ti−1), v
0,ji−1

s,i−1 (ti−1))
)V
,

can happen if and only if the two particles bounce against the obstacle, that is
when ((

v
0,ji−1

s,i−2 (ti−1)
)′) · e1 > 0,
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(one recalls that this scalar product has to be positive, since one considers the
backwards free flow), and then this difference of velocity happens exactly in the

time interval determined by the respective times of bouncing τ
0,ji−1

s,i−1 and τ
ε,ji−1

s,i−1

of the two particles. If one has τ
0,ji−1

s,i−1 ≤ τ
ε,ji−1

s,i−1 , that is if the particle of the
BBGKY pseudo-trajectory bounces first against the obstacle, then during the
time interval [

τ
0,ji−1

s,i−1 , τ
ε,ji−1

s,i−1

]
,

one has ((
v

0,ji−1

s,i−2 (ti−1)
)′) · e1 > 0,

so that(
T 1,0
−(ti−1−τ)

(
(x

0,ji−1

s,i−1 (ti−1), v
0,ji−1

s,i−1 (ti−1))
)X
· e1

=
(
x

0,ji−1

s,i−1 − (ti−1 − τ)v
0,ji−1

s,i−1 (ti−1)
)
· e1

≤
(
x

0,ji−1

s,i−1 − (ti−1 − τε,ji−1

s,i−1 )v
0,ji−1

s,i−1 (ti−1)
)
· e1

≤
(
T 1,0

−(ti−1−τ
ε,ji−1
s,i−1

)

(
(x

0,ji−1

s,i−1 (ti−1), v
0,ji−1

s,i−1 (ti−1))
)X
· e1,

that is, in other words, the distance, during this time interval, between the
obstacle and the particle of the Boltzmann pseudo-trajectory, is the largest
when the BBGKY particle of the pair bounces against the obstacle. But one
knows thanks to the intermediate result (13.21) page 463 obtained just above
that in particular∣∣∣(T 1,ε

−(ti−1−τ
ε,ji−1
s,i−1

)

(
(x
ε,ji−1

s,i−1 (ti−1), v
ε,ji−1

s,i−1 (ti−1))
)X

−
(
T 1,0

−(ti−1−τ
ε,ji−1
s,i−1

)

(
(x

0,ji−1

s,i−1 (ti−1), v
0,ji−1

s,i−1 (ti−1))
)X ∣∣∣ ≤ (2i− 1)ε,

and since by definition(
T 1,ε

−(ti−1−τ
ε,ji−1
s,i−1

)

(
(x
ε,ji−1

s,i−1 (ti−1), v
ε,ji−1

s,i−1 (ti−1))
)X
· e1 = ε/2,

collecting the results together, one has therefore :(
T 1,0
−(ti−1−τ)

(
(x

0,ji−1

s,i−1 (ti−1), v
0,ji−1

s,i−1 (ti−1))
)X
· e1

≤
(
T 1,0

−(ti−1−τ
ε,ji−1
s,i−1

)

(
(x

0,ji−1

s,i−1 (ti−1), v
0,ji−1

s,i−1 (ti−1))
)X
· e1

≤
∣∣∣(T 1,ε

−(ti−1−τ
ε,ji−1
s,i−1

)

(
(x
ε,ji−1

s,i−1 (ti−1), v
ε,ji−1

s,i−1 (ti−1))
)X

−
(
T 1,0

−(ti−1−τ
ε,ji−1
s,i−1

)

(
(x

0,ji−1

s,i−1 (ti−1), v
0,ji−1

s,i−1 (ti−1))
)X ∣∣∣

+
(
T 1,ε

−(ti−1−τε,ji−1 )

(
(x
ε,ji−1

s,i−1 (ti−1), v
ε,ji−1

s,i−1 (ti−1))
)X
· e1

≤ (2i− 1/2)ε.
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If τ
ε,ji−1

s,i−1 ≤ τ
0,ji−1

s,i−1 , the reasoning is exactly the same and provides the same
result.

Third and last, for the pair of particles s + i − 1, again the reasoning is the
same as in the previous case, using the intermediate result (13.21) page 463.
One has in fact obtained the intermediate result (13.10) page 451 for all the
pairs of particles, in the case i.

One is now able to conclude the proof. The intermediate result (13.8) page
451 provides immediately the first point (13.5), since one has for all integer
1 ≤ j ≤ s+ k :

(
Zεs,k(0)

)X,k − (Zεs,k(0)
)X,k

=
(
T 1,ε
−tk
((
xε,js,k(tk), vε,js,k(tk)

)))X
−
(
T 1,0
−tk
((
x0,j
s,k(tk), v0,j

s,k(tk)
)))X

.

The second point (13.6) is a direct consequence of the intermediate results (13.9)
page 451 and (13.10) page 451, since thanks to the cut-off in proximity between
the obstacle and the particle chosen for the adjunction at the time of this ad-
junction, one is able to exclude the fact that the respective velocities of the
two particles of the pair chosen for the adjunction are different. The lemma is
proved.

13.2 Rewriting the elementary terms of the
BBGKY hierarchy

13.2.1 Pseudo-trajectories reduced to free flow with bound-
ary condition thanks to surgery

Along the proof of the previous lemma, one has in fact obtained that the pseudo-
trajectories of the BBGKY hierarchy, for adjunction parameters chosen outside
the subsets defined by the cut-offs, are given by the free flow between two
adjunctions. In other words, the goal of removing recollisions has been reached.
To be more accurate, one has obtained the intermediate result (13.7) page 450,
which enables to state the following corollary of Lemma 38, which will be useful
in the sequel.

Corollary 1 (Absence of recollision in the BBGKY pseudo-trajectories). Let
ε be a strictly positive number, s and k be two positive integers. Let Tk =
(t1, . . . , tk) be an element of Tk, Jk = (j1, . . . , jk) be an element of Jsk and
Ak =

(
(ω1, vs+1), . . . , (ωk, vs+k)

)
be an element of Ak (see Definition 44 page

323 for those notations).
One considers then the backwards pseudo-trajectory of the Boltzmann hierarchy
Z0(Tk, Jk, Ak) (see Definition 46 page 324), and the backwards pseudo-trajectory
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of the BBGKY hierarchy Zε(Tk, Jk, Ak) (see Definition 46 page 324), both start-
ing from Zs ∈

(
Ωc × Rd

)s
.

Under the assumptions of Lemma 38, for all 0 ≤ i ≤ k and for all τ ∈ [ti+1, ti],
and for all 1 ≤ j ≤ s+ k one has :(

Zεs,i(Tk, Jk, Ak)(τ)
)j

= T 1,ε
−(ti−τ)

((
Zεs,i(Tk, Jk, Ak)(ti)

)j)
, (13.23)

where T 1,ε is the hard sphere transport introduced in Definition 4 page 53.
In other words, between adjunctions, the particles following the BBGKY pseudo-
trajectory starting from Zs, with removed pathological adjunction parameters,
evolve without interacting one with another.

13.2.2 Rewriting the elementary terms of the BBGKY hi-
erarchy as a usual integral

Here one will provide a much simpler writing of the elementary terms of the
BBGKY hierarchy, introduced in Definition 61 page 434. One recalls that those
quantities were defined as iterations of operators, defined themselves as limits
of Cauchy sequences of classical Lebesgue integrals. One will see that the cut-
off performed along the initial configurations and the adjunction parameters
defining the pseudo-trajectories will enable a very simple, though equivalent,
definition of those elementary terms.

Proposition 19 (Rewriting the elementary terms of the BBGKY hierarchy as
an usual integral). Let s, k and N be three positive integers, and ε be a strictly
positive number.
Let Jk = (j1, . . . , jk) be an element of Jsk and Mk = (±1, . . . ,±k) be an element

of Mk. Let f
(s+k)
N,0 be a function of Xε,s+k,β0

and let K be a compact set of the
domain of local uniform convergence Ωs (see Definition (53) page 392).
Then, there exist five strictly positive numbers ε, ε0, α, γ and R (depending only
on the compact set K) such that for every strictly positive numbers R, δ, ε, a, ε0, ρ, η
and α which satisfy

ε ≤ ε, ε0 ≤ ε0, α ≤ α, max
(
16Rε/ε0, ε0/δ

)
≤ γ

and R ≥ R,
(13.24)

and
4
√

3a ≤ ε0, 3a ≤ ρ, ε0 ≤ ηδ, R ≥ 1, η ≤ 1 and α ≤ c(d),
with c(d) a constant depending only on the dimension d, and

2kε ≤ a,

(13.25)

one has that the elementary term of the BBGKY hierarchy evaluated on the
compact set K, that is :

1KJN,ε,δs,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
N,0 1|Vs+k|≤R

)
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can be rewritten as the following Lebesgue integral :

1K1t≥kδ
(N − s)!

(N − s− k)!
εk(d−1)

∫ t−δ

(k−1)δ

1Uc
j1

(Zs)(t1)

∫
Sd−1
ω1
×Rdvs+1

1Ec
j1

(Z0
s,0(t1)

)(ω1, vs+1)

× (±1)
[
ω1 ·

(
vs+1 − vε,j1s,0

)]
±1

×
∫ t1−δ

(k−2)δ

1Uc
j2

(Z0
s,1(t1))(t2)

∫
Sd−1
ω2
×Rdvs+2

1Ec
j2

(Z0
s,1(t2))(ω2, vs+2)

× (±2)
[
ω2 ·

(
vs+2 − vε,j2s,1 (t2)

)]
±2

. . .

×
∫ tk−1−δ

0

1Uc
jk

(Z0
s,k−1

(tk−1))(tk)

∫
Sd−1
ωk
×Rdvs+k

1Ec
j2

(Z0
s,k−1

(tk))(ωk, vs+k)

× (±k)
[
ωk ·

(
vs+k − vε,jks,k−1(tk)

)]
±k
f

(s+k)
N,0

(
Zεs,k(0)

)
dωk dvs+k dtk . . . dω2 dvs+2 dt2 dω1 dvs+1 dt1.

(13.26)

Proof. The proof is in two parts. First, one starts by showing that the expression
(13.26) makes sense. Second, one shows that this expression is indeed another
writing of the elementary term of the BBGKY hierarchy, provided that it is eval-
uated on the subset of preparation of the initial configurations, and provided
also that the parameters of cut-off defining the excluded subsets of pathological
adjunction parameters satisfy the conditions (13.25).

For the definition of the expression (13.26), one provides details for the case
k = 1, which will enable to introduce naturally the relevant notations involved
in the proof, and which will lead to a better understanding of the general case
k ∈ N∗.
Expliciting the pseudo-trajectories introduced in (46) page 324, the expression
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(13.26) in the case k = 1 is given by :

1K(Zs)1t≥kδ

∫ t−δ

(k−1)δ

1Uc
j1

(Zs)(t1)

× T s,εt−t1

Å∫
Sd−1
ω1
×Rdvs+1

1Ec
j1

(T s,0
t1−t

(T s,ε
t−t1

(Zs)))
(ω1, vs+1)(±1)

[
ω1 ·

(
vs+1 − vj1

)]
±1

1|Vs+1|≤R

×
∑

R1∈{0,1}s+1

s+1∏
l1=1

1
(−1)

r
l1
1

(
S
±1
s

(
Zs,t1,ω1,vs+1

))X,l1 ·e1≥ε
× f (s+1)

N,0

(
SR1

(
S±1
s

(
Zs, t1, ω1, vs+1

)))
dω1 dvs+1

ã
dt1,

that is, expliciting the effect of the transport T s,0t−t1 :

1K(Zs)

× 1t≥kδ
∫ t−δ

(k−1)δ

1Uc
j1

(Zs)(t1)

∫
Sd−1
ω1
×Rdvs+1

1Ec
j1

(T s,0−(t−t1)
(Zs))

(ω1, vs+1)

× (±1)
[
ω1 ·

(
vs+1 −

(
T s,ε−(t−t1)(Zs)

)V,j1)]
±1

1|Vs+1|≤R

×
∑

R1∈{0,1}s+1

s+1∏
l1=1

1
(−1)

r
l1
1

(
S
±1
s

(
T s,ε−(t−t1)

(Zs),t1,ω1,vs+1

))X,l1 ·e1≥ε/2
× f (s+1)

N,0

(
SR1

(
S±1
s

(
T s,ε−(t−t1)(Zs), t1, ω1, vs+1

)))
dω1 dvs+1 dt1,

(13.27)

where R1 = (r1
1, . . . , r

s+1
1 ) and

SR1
(
Z̃s+1

)
= SR1

(
x̃1, ṽ1, . . . , x̃s+1, ṽs+1

)
denotes (

Sr
1
1
ε

(
x̃1

)
,Sr

1
1

0

(
ṽ1

)
, . . . ,Sr

s+1
1
ε

(
x̃s+1

)
,Sr

s+1
1

0

(
ṽs+1

))
.

One notices that the argument of the indicator function 1Ec
j1

is T s,0−(t−t1)(Zs),

which is not the configuration of the BBGKY pseudo-trajectory at time t1, but
the configuration of the Boltzmann pseudo-trajectory. The decomposition

∑
R1∈{0,1}s+1

s+1∏
l1=1

1
(−1)

r
l1
1

(
S
±1
s

(
T s,ε−(t−t1)

(Zs),t1,ω1,vs+1

))X,l1 ·e1≥ε
is here to consider the effects of the obstacle : if the position of the particle l1,
after the application of the free transport (that is, after the application of S±1

s ),
verifies :

S±1
s

(
T s,ε−(t−t1)(Zs), t1, ω1, vs+1

)X,l1 · e1 < ε/2,
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then according to the dynamics prescribed for the hard spheres, since there is
no recollision between the particles (thanks to the cut-offs on the initial config-
uration Zs and the adjunction parameters t1, ω1 and vs+1), this particle should
have bounced against the obstacle, that is its position is replaced by

Sε
(
S±1
s

(
T s,ε−(t−t1)(Zs), t1, ω1, vs+1

)X,l1)
and its velocity is replaced by

S0

(
S±1
s

(
T s,ε−(t−t1)(Zs), t1, ω1, vs+1

)V,l1)
.

Those modifications are taken into account by the function SR1 .
To give sense to the expression (13.27), one will follow the same idea as the one
used to define the truncated transport-collision operator (see Section 5.1 page
88).

First, the mapping f
(s+1)
N,0 ◦ SR1 is measurable and bounded almost everywhere

(since it is the case for f
(s+1)
N,0 itself), and multiplied by the indicator function :

1S±s (K×[0,t−δ]×Sd−1×BRd (0,R)),

which is the indicator of a compact set of Dεs+1, one obtains an integrable
function on Dεs+1.
Using the fact that the Jacobian determinant of the mapping S±s has been found
in Propositions 3 page 92 and 4 page 98 to be equal to[

ω1 ·
(
vs+1 − vj1

)]
±1

,

one knows thanks to the Fubini theorem that for almost every (Zs, t1), the
function

(ω1, vs+1) 7→ 1(K×[0,t−δ]×Sd−1×Rd)(±1)
[
ω1 ·

(
vs+1 − vj1

)]
±1

1|Vs+1|≤R

× f (s+1)
N,0 ◦ SR1 ◦ S±1

s

= (ω1, vs+1) 7→ 1(K×[0,t−δ]×Sd−1×Rd)(±1)
[
ω1 ·

(
vs+1 − vj1

)]
±1

1|Vs+1|≤R

×
∑

R1∈{0,1}s+1

s+1∏
l1=1

1
(−1)

r
l1
1

(
S
±1
s

(
Zs,t1,ω1,vs+1

))X,l1 ·e1≥ε
× f (s+1)

N,0 ◦ SR1 ◦ S±1
s

is well defined almost everywhere and integrable on Sd−1
ω1
× Rdvs+1

, and so is

(ω1, vs+1) 7→ 1Ec
j1

(Zs)(ω1, vs+1)1(K×[0,t−δ]×Sd−1×Rd)(±1)
[
ω1 ·

(
vs+1 − vj1

)]
±1

× 1|Vs+1|≤R
∑

R1∈{0,1}s+1

s+1∏
l1=1

1
(−1)

r
l1
1

(
S
±1
s

(
Zs,t1,ω1,vs+1

))X,l1 ·e1≥ε
× f (s+1)

N,0 ◦ SR1 ◦ S±1
s ,
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and its integral on Sd−1
ω1
× Rdvs+1

is a function well defined almost everywhere,
integrable on Dεs × [0, t− δ].
Composing now the function obtained by the mapping(

t1, Zs, ω1, vs+1

)
7→
(
t1, T

s,ε
−(t−t1)(Zs), ω1, vs+1

)
,

which is a measurable mapping defined and regular almost everywhere of Jaco-
bian determinant 1, so that it does not change the results on the integrability
and then the results obtained with the change of variable nor the Fubini theo-
rem, one obtains that the function :

(t1, Zs) 7→
∫
Sd−1
ω1
×Rdvs+1

1Ec
j1

(T s,0−(t−t1)
(Zs))

(ω1, vs+1)

× (±1)
[
ω1 ·

(
vs+1 −

(
T s,ε−(t−t1)(Zs)

)V,j1)]
±1

1|Vs+1|≤R

×
∑

R1∈{0,1}s+1

s+1∏
l1=1

1
(−1)

r
l1
1

(
S
±1
s

(
T s,ε−(t−t1)

(Zs),t1,ω1,vs+1

))X,l1 ·e1≥ε/2
× f (s+1)

N,0

(
SR1

(
S±1
s

(
T s,ε−(t−t1)(Zs), t1, ω1, vs+1

)))
dω1 dvs+1

is well defined and integrable over [0, t− δ]×Dεs.
Using again the Fubini theorem, for almost every Zs ∈ Dεs, the function

t1 7→
∫
Sd−1
ω1
×Rdvs+1

1Ec
j1

(T s,0−(t−t1)
(Zs))

(ω1, vs+1)

× (±1)
[
ω1 ·

(
vs+1 −

(
T s,ε−(t−t1)(Zs)

)V,j1)]
±1

1|Vs+1|≤R

×
∑

R1∈{0,1}s+1

s+1∏
l1=1

1
(−1)

r
l1
1

(
S
±1
s

(
T s,ε−(t−t1)

(Zs),t1,ω1,vs+1

))X,l1 ·e1≥ε/2
× f (s+1)

N,0

(
SR1

(
S±1
s

(
T s,ε−(t−t1)(Zs), t1, ω1, vs+1

)))
dω1 dvs+1

is well defined almost everywhere and integrable, this integral being a measur-
able function in Zs on Dεs, and so is the function

t1 7→1Uc
j1

(Zs)(t1)

∫
Sd−1
ω1
×Rdvs+1

1Ec
j1

(T s,0−(t−t1)
(Zs))

(ω1, vs+1)

× (±1)
[
ω1 ·

(
vs+1 −

(
T s,ε−(t−t1)(Zs)

)V,j1)]
±1

1|Vs+1|≤R

×
∑

R1∈{0,1}s+1

s+1∏
l1=1

1
(−1)

r
l1
1

(
S
±1
s

(
T s,ε−(t−t1)

(Zs),t1,ω1,vs+1

))X,l1 ·e1≥ε/2
× f (s+1)

N,0

(
SR1

(
S±1
s

(
T s,ε−(t−t1)(Zs), t1, ω1, vs+1

)))
dω1 dvs+1,
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which concludes the definition of the expression (13.27) page 469 in the case
k = 1.
One will now detail the definition of the expression (13.27) in the case k = 2.
This time, the expression writes :

1K(Zs)

× 1t≥2δ

∫ t−δ

δ

1Uc
j1

(Zs)(t1)

∫
Sd−1
ω1
×Rdvs+1

1Ec
j1

(T s,0−(t−t1)
(Zs))

(ω1, vs+1)

× (±1)
[
ω1 ·

(
vs+1 −

(
T s,ε−(t−t1)(Zs)

)V,j1)]
±1

×
∑

R1∈{0,1}s+1

s+1∏
l1=1

1
(−1)

r
l1
1

(
S
±1
s

(
T s,ε−(t−t1)

(Zs),t1,ω1,vs+1

))X,l1 ·e1≥ε/2
×
∫ t1−δ

0

1Uc
j2

((T s,0−(t−t1)
(Zs),(T

s,0

−(t−t1)
(Zs))X,j1 ,vs+1))(t2)

∫
Sd−1
ω2
×Rdvs+2

1Ec
j2

(Z0
s,1(t2))(ω2, vs+2)

× (±2)
[
ω2 ·

(
vs+2 −

(
T s+1,ε
t2

(
S±1
s

(
T s,ε−(t−t1)(Zs), t1, ω1, vs+1

)))V,j2)]
±2

×
∑

R2∈{0,1}s+2

×
( s+2∏
l2=1

1
(−1)

r
l2
2

(
S
±1
s+1

(
T s,εt2

(
S
±1
s

(
T s,ε−(t−t1)

(Zs),t1,ω1,vs+1

))
,t2,ω2,vs+2

))X,l2
·e1≥ε/2

)
× f (s+2)

N,0

(
SR2

(
S±2
s+1

(
T s+1,ε
t2

(
SR1

(
S±1
s

(
T s,ε−(t−t1)(Zs), t1, ω1, vs+1

))
, t2, ω2, vs+2

))))
dω2 dvs+2 dt2 dω1 dvs+1 dt1,

(13.28)

where Z0
s,1(t2), the argument of the indicator function 1Ec

j2
, means

T s+1,0
−(t1−t2)

(
T s,0−(t−t1)(Zs), (T

s,0
−(t−t1)(Zs))

X,j1 , vs+1

)
in the pre-collisional case ±1 = −, and

T s+1,0
−(t1−t2)

((
T s,0−(t−t1)(Zs), (T

s,0
−(t−t1)(Zs))

X,j1 , vs+1

)′
j1,s+1

)
in the post-collisional case ±1 = +.
Once again, thanks to the cut-offs performed for the initial configuration and
the adjunction parameters, since there is no recollision between the particles,
rewriting the arguments of the second excluded subsets among the times t2 and
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the adjunction parameters (ω2, vs+2), namely :(
T s,ε−(t−t1)(Zs),

(
T s,ε−(t−t1)(Zs)

)X,j1
+ εω1, vs+1

)
= T s+1,ε

t1

(
SR1

(
S±1
s

(
T s,ε−(t−t1)(Zs), t1, ω1, vs+1

)))
and

T s+1,ε
−(t1−t2)

(
T s,ε−(t−t1)(Zs),

(
T s,ε−(t−t1)(Zs)

)X,j1
+ εω1, vs+1

)
= T s+1,ε

t2

(
SR1

(
S±1
s

(
T s,ε−(t−t1)(Zs), t1, ω1, vs+1

))
,

one sees that the expression (13.28) for the case k = 2 will make sense using the

work done for the expression (13.27), replacing f
(s+1)
N,0 by the function

(t1, Zs+1) 7→
∫ t1−δ

0

1
Uc
j2

(
T s+1,0
t1

(Zs+1)
)(t2)

∫
Sd−1
ω2
×Rdvs+2

1
Ec
j1

(
T s+1,0
t2

(Zs+1)
)(ω2, vs+2)

× (±2)
[
ω2 ·

(
vs+2 −

(
T s+1,ε
t2 (Zs+1)

)V,j2)]
±2

×
∑

R2∈{0,1}s+2

s+2∏
l2=1

1
(−1)

r
l2
2

(
SR2

(
S
±1
s+1

(
T s,εt2

(Zs+1),t2,ω2,vs+2

)))X,l2 ·e1≥ε/2
× f (s+2)

N,0

(
SR2

(
S±2
s+1

(
T s+1,ε
t2 (Zs+1), t2, ω2, vs+2

)))
dω2 dvs+2 dt2.

(13.29)

Therefore, the last expression (13.29) has to be studied to conclude the definition
of the expression (13.28), that is the case k = 2. But following the same steps
as for the case k = 1, that is first showing that the function

(t1, t2, Zs+1) 7→
∫
Sd−1
ω2
×Rdvs+2

1Ec
j2

(Zs+1)(ω2, vs+2)

× (±2)
[
ω2 ·

(
vs+2 − vj2

)]
±2

×
∑

R2∈{0,1}s+2

s+2∏
l2=1

1
(−1)

r
l2
2

(
SR2

(
S
±1
s+1

(
Zs+1,t2,ω2,vs+2

)))X,l2 ·e1≥ε/2
× f (s+2)

N,0

(
SR2

(
S±2
s+1

(
Zs+1, t2, ω2, vs+2

)))
dω2 dvs+2 dt2

is well defined and integrable, composing it with the hard sphere transport
T s+1,ε
t2 , multiplying it by the function

1
Uc
j2

(
T s+1,ε
t1

(Zs+1)
),

and integrating the product of those two functions on [0, t1 − δ] with respect
to the time variable t2, one obtains that the previous expression (13.29) makes
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sense, and so the expression of the elementary term of the BBGKY hierarchy
for the case k = 2.
For the general case, that is for a general integer k, one sees that the steps used
for the case k = 2 enable in general to give sense to the expression (13.26) of
the proposition, by a simple induction.

For the second part of the proof, the fact that K is a compact subset of the
domain of local uniform convergence Ωs (see Definition 53 page 392) implies
that there exist five strictly positive numbers ε, δ, ε0, α and γ small enough,
and a strictly positive number R large enough such that, for all strictly positive
numbers ε,R, δ, ε0 and α such that

ε ≤ ε, ε0 ≤ ε0, α ≤ α, γ ≤ γ and R ≥ R,

one has :
K ⊂ ∆s(ε,R, ε0, α, γ).

If in addition the parameters are chosen such that

2
√

3ε ≤ ε0, max(16Rε/ε0, ε0/δ) ≤ γ,

one can use the results (12.114) and (12.115) of Proposition 17 page 394.
Now the cut-offs performed respectively in the time domain (for the variable
t1) on the one hand, and in the angular parameter and velocity domain (for the
variables ω1 and vs+1), namely :

t− t1 ≥ δ, t1 /∈ Uj1(Zs)

and
(ω1, vs+1) /∈ Ej1

(
T s,0−(t−t1)(Zs)

)
together with the results enable to use Proposition 16 page 347, asserting that
the new configuration after the adjunction to the particle j1 (for the system
of particles now in the configuration T s,ε−(t−t1)(Zs), just before the adjunction,

for the BBGKY pseudo-trajectory) is in a good configuration. Therefore, no
recollision will happen for the new system of s+ 1 particles following the hard
sphere flow.
In particular, the hard sphere flow starting from the configuration(

T s,ε−(t−t1)(Zs),
(
T s,ε−(t−t1)(Zs)

)X,j1
+ εω1, vs+1

)
will coincide with the flow used to define the term (13.27) page 469, that is one
has

T s+1,ε
−τ

(
T s,ε−(t−t1)(Zs),

(
T s,ε−(t−t1)(Zs)

)X,j1
+ εω1, vs+1

)
=

s+1∏
l1=1

1
(−1)

r
l1
1

(
S
±1
s

(
T s,ε−(t−t1)

(Zs),τ,ω1,vs+1

))X,l1
× SR1

(
S±1
s

(
T s,ε−(t−t1)(Zs), t1, ω1, vs+1

))
.
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By induction, one can show that the final configuration Zεs,k(0) can be expressed

using only the mappings S±s , . . . , S
±
s+k−1 and the orthogonal symmetries S0 and

Sε, applied to the configuration T s,ε−(t−t1)(Zs).

Therefore, the elementary term of the BBGKY hierarchy, defined in Lemma 61
page 434, as the limit of a sequence of integrals, is in fact given by a classical
integral. The expression (13.26) of the proposition is in fact a simple writing of
the elementary term of the BBGKY hierarchy, which concludes the proof.

13.3 The dominated convergence argument

Thanks to Proposition 19 page 467 of the previous section, one sees that the
elementary term of the BBGKY hierarchy

1KJN,ε,δs,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
N,0 1|Vs+k|≤R

)
,

evaluated on any compact subset K of the domain of uniform convergence (up
to choosing small enough the parameters defining the pathological subsets for
the adjunction parameters, removed by surgery, and up to choosing those pa-
rameters such that they satisfy some conditions), can be written as follows, as
a usual Lebesgue integral :

1K1t≥kδ
(N − s)!

(N − s− k)!
εk(d−1)

∫ t−δ

(k−1)δ

1Uc
j1

(Zs)(t1)

∫
Sd−1
ω1
×Rdvs+1

1Ec
j1

(Z0
s,0(t1)

)(ω1, vs+1)

× (±1)
[
ω1 ·

(
vs+1 − vε,j1s,0

)]
±1

×
∫ t1−δ

(k−2)δ

1Uc
j2

(Z0
s,1(t1))(t2)

∫
Sd−1
ω2
×Rdvs+2

1Ec
j2

(Z0
s,1(t2))(ω2, vs+2)

× (±2)
[
ω2 ·

(
vs+2 − vε,j2s,1 (t2)

)]
±2

. . .

×
∫ tk−1−δ

0

1Uc
jk

(Z0
s,k−1

(tk−1))(tk)

∫
Sd−1
ωk
×Rdvs+k

1Ec
jk

(Z0
s,k−1

(tk))(ωk, vs+k)

× (±k)
[
ωk ·

(
vs+k − vε,jks,k−1(tk)

)]
±k
f

(s+k)
N,0

(
Zεs,k(0)

)
dωk dvs+k dtk . . . dω2 dvs+2 dt2 dω1 dvs+1 dt1.

(13.30)

In Section 13.1 (in particular, in Lemma 38 page 449), one obtained a con-
trol on the difference of the pseudo-trajectories of the two hierachies, provided
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that the cut-offs in pathological initial configurations and adjunction parame-
ters have been performed. This control invites to consider a slightly different
elementary term, which is an intermediary between the elementary terms of the
two hierarchies, namely one will remove the prefactors

(N − s)!
(N − s− k)!

εk(d−1),

and replace the s+k-th initial datum f
(s+k)
N,0 of the BBGKY hierarchy by f

(s+k)
0 ,

the s + k-th initial datum of the Boltzmann hierarchy, but one will keep the
BBGKY pseudo-trajectory. This gives :

1K1t≥kδ

∫ t−δ

(k−1)δ

1Uc
j1

(Zs)(t1)

∫
Sd−1
ω1
×Rdvs+1

1Ec
j1

(Z0
s,0(t1)

)(ω1, vs+1)

× (±1)
[
ω1 ·

(
vs+1 − vε,j1s,0

)]
±1

×
∫ t1−δ

(k−2)δ

1Uc
j2

(Z0
s,1(t1))(t2)

∫
Sd−1
ω2
×Rdvs+2

1Ec
j2

(Z0
s,1(t2))(ω2, vs+2)

× (±2)
[
ω2 ·

(
vs+2 − vε,j2s,1 (t2)

)]
±2

. . .

×
∫ tk−1−δ

0

1Uc
jk

(Z0
s,k−1

(tk−1))(tk)

∫
Sd−1
ωk
×Rdvs+k

1Ec
jk

(Z0
s,k−1

(tk))(ωk, vs+k)

× (±k)
[
ωk ·

(
vs+k − vε,jks,k−1(tk)

)]
±k
f

(s+k)
0

(
Zεs,k(0)

)
dωk dvs+k dtk . . . dω2 dvs+2 dt2 dω1 dvs+1 dt1. (13.31)

One will denote this intermediate elementary term as

1KJ
ε,δ
s,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
0 1|Vs+k|≤R

)
. (13.32)

The purpose of the present section is then to control the difference

1K

(
J 0,δ
s,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
0 1|Vs+k|≤R

)
− J ε,δs,s+k−1

Mk,Jk

(U c, Ec)
(
f

(s+k)
0 1|Vs+k|≤R

))
.

Remark 46. The intermediate elementary term defined above makes sense as
an integral of a continuous function.

Lemma 39 (Error coming from the divergence of the trajectories, qualitative
version). Let s and n be two positive integers, and β0 be a strictly positive

number. For all integers 1 ≤ k ≤ n, let f
(s+k)
0 be a function of X0,s+k,β0

, and
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let K be a compact set of the domain of local uniform convergence Ωs.
Then, there exist five strictly positive numbers ε, ε0, α, γ and R (depending only
on the compact set K) such that for all strictly positive numbers R, δ, ε, a, ε0, ρ, η
and α which satisfy


ε ≤ ε, ε0 ≤ ε0, α ≤ α, max

(
16Rε/ε0, ε0/δ

)
≤ γ

and R ≥ R,
(13.33)

and


4
√

3a ≤ ε0, 3a ≤ ρ, ε0 ≤ ηδ, R ≥ 1, η ≤ 1 and α ≤ c(d),
with c(d) a constant depending only on the dimension d, and

2nε ≤ a,

(13.34)

one has that, in the Boltzmann-Grad limit N → +∞, Nεd−1 = 1, for s, n, R,
δ, a, ε0, η, ρ and α fixed, the following uniform convergence on the compact set
K, and uniform on the time interval [0, T ], holds :

∣∣∣∣∣
∣∣∣∣∣1K n∑

k=1

∑
Mk∈Mk

∑
Jk∈Jsk

(
J 0,δ
s,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
0 1|Vs+k|≤R

)
− J ε,δs,s+k−1

Mk,Jk

(U c, Ec)
(
f

(s+k)
0 1|Vs+k|≤R

))
(Zs)

∣∣∣∣∣
∣∣∣∣∣
L∞

−→
ε→0

0.

(13.35)

Proof. First, thanks to the second point (13.6) of Lemma 38 page 449, the
velocities of the two pseudo-trajectories at the times of adjunctions are the
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same, so that one has :

1K

(
J 0,δ
s,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
0 1|Vs+k|≤R

)
− J ε,δs,s+k−1

Mk,Jk

(U c, Ec)
(
f

(s+k)
0 1|Vs+k|≤R

))
= 1K1t≥kδ

∫ t−δ

(k−1)δ

1Uc
j1

(Zs)(t1)

∫
Sd−1
ω1
×Rdvs+1

1Ec
j1

(Z0
s,0(t1)

)(ω1, vs+1)

× (±1)
[
ω1 ·

(
vs+1 − v0,j1

s,0

)]
±1

×
∫ t1−δ

(k−2)δ

1Uc
j2

(Z0
s,1(t1))(t2)

∫
Sd−1
ω2
×Rdvs+2

1Ec
j2

(Z0
s,1(t2))(ω2, vs+2)

× (±2)
[
ω2 ·

(
vs+2 − v0,j2

s,1 (t2)
)]
±2

. . .

×
∫ tk−1−δ

0

1Uc
jk

(Z0
s,k−1

(tk−1))(tk)

∫
Sd−1
ωk
×Rdvs+k

1Ec
jk

(Z0
s,k−1

(tk))(ωk, vs+k)

× (±k)
[
ωk ·

(
vs+k − v0,jk

s,k−1(tk)
)]
±k
1|Vs+k|≤R

×
(
f

(s+k)
0

(
Z0
s,k(0)

)
− f (s+k)

0

(
Zεs,k(0)

))
dωk dvs+k dtk . . . dω2 dvs+2 dt2 dω1 dvs+1 dt1.

Using then the first point (13.5) of Lemma 38, one sees that, at time 0, for any
particle 1 ≤ j ≤ s+ k :∣∣∣(Zεs,k(0)

)X,j − (Z0
s,k(0)

)X,j∣∣∣ −→
ε→0

0.

At time 0, the velocity of a given particle can be different for the BBGKY
and the Boltzmann pseudo-trajectories, depending on a possible non empty
interval of time between the respective bouncings of this particle for the two
pseudo-trajectories. But since the positions of this particle for the two pseudo-
trajectories are close, one can use the boundary condition verified by the initial
datum of the Boltzmann hierarchy.
Namely, if the velocities of a particle j are different at time 0, only one of the
two pseudo-trajectories induces a bouncing for the particle. But in all cases, the
particle following the Boltzmann pseudo-trajectory will bounce as well, possibly
after the time 0 though. One will denote tj0 this time of bouncing. One has then
by definition : (

Z0
s,k(tj0)

)X,j · e1 = 0,

and thanks to the boundary condition verified by the initial datum

f
(s+k)
0

(
Z0
s,k

(
(tj0)+

))
= f

(s+k)
0

(
Z0
s,k

(
(tj0)−

))
.
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One denotes p the number of particles having different velocities at time 0 de-
pending on the pseudo-trajectory followed. Those particles are denoted j1, . . . , jp.
One will use p times the boundary condition in order to modify the diverging
velocity, that is one writes :

f
(s+k)
0

(
Z0
s,k(0)

)
− f (s+k)

0

(
Zεs,k(0)

)
= f

(s+k)
0

(
X0
s,k(0), V 0

s,k(0)
)
− f (s+k)

0

(
Xε
s,k(0), V εs,k(0)

)
= f

(s+k)
0

(
X0
s,k(0), V εs,k(0)

)
−

p∑
l=1

(
f

(s+k)
0

(
X0
s,k(tjl0 ), Vl

)
− f (s+k)

0

(
X0
s,k(tjl0 ), Vl

))
− f (s+k)

0

(
Xε
s,k(0), V εs,k(0)

)
=
(
f

(s+k)
0

(
X0
s,k(0), V 0

s,k(0)
)
− f (s+k)

0

(
X0
s,k(tj10 ), V 0

s,k(0)
))

+

p−1∑
l=1

(
f

(s+k)
0

(
X0
s,k(tjl0 ), Vl

)
− f (s+k)

0

(
X0
s,k(t

jl+1

0 ), Vl+1

))
+
(
f

(s+k)
0

(
X0
s,k(t

jp
0 ), Vp

)
− f (s+k)

0

(
Xε
s,k(0), V εs,k(0)

))
, (13.36)

where Vl is defined as follows :

V1 = V 0
s,k(0) =

(
v0,1
s,k(0), . . . , v0,s+k

s,k (0)
)
,

V2 =
(
v0,1
s,k(0), . . . , v0,j1−1

s,k (0),S0

(
v0,s+k
s,k (0)

)
, v0,j1+1
s,k , . . . , v0,s+k

s,k (0)
)

=
(
v0,1
s,k(0), . . . , v0,j1−1

s,k (0), vε,s+ks,k , v0,j1+1
s,k , . . . , v0,s+k

s,k (0)
)
,

and so on.
In other words, V1 is defined as the collection of all the velocities of the Boltz-
mann pseudo-trajectory at time 0. Then the collection of velocities V2 is defined
from the collection V1, in which the velocity of the particle j1 of the Boltzmann
pseudo-trajectory is replaced by the one of the same particle of the BBGKY
pseudo-trajectory at the same time 0. Similarly, V3 is defined from V2 by replac-
ing the velocity of the particle j2 following the Boltzmann pseudo-trajectory
at time 0 by the velocity of the same particle at the same time, but following
the BBGKY pseudo-trajectory. All the Vl are defined by induction, so that in
the end, one has Vp = V εs,k(0), and then the last term of the expression (13.36)
above is

f
(s+k)
0

(
X0
s,k(t

jp
0 ), V εs,k(0)

)
− f (s+k)

0

(
Xε
s,k(0), V εs,k(0)

)
.

One is now able to use the boundary condition satisfied by the s + k-th initial
datum of the Boltzmann hierarchy, that is

f
(s+k)
0

(
X0
s,k(tjl0 ), Vl

)
− f (s+k)

0

(
X0
s,k(t

jl+1

0 ), Vl+1

)
= f

(s+k)
0

(
X0
s,k(tjl0 ), Vl+1

)
− f (s+k)

0

(
X0
s,k(t

jl+1

0 ), Vl+1

)
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(the velocities Vl in the first initial datum have been replaced by Vl+1, since at
tjl0 , one has

x0,jl
s,k (tjl0 ) · e1 = 0,

and then the boundary condition can be used).

For any compact subset K ′ of
(
{x ·e1 > 0}×Rd

)s+k
and for any strictly positive

number η, one will denote

θK
′

f
(s+k)
0

(η) = sup
Z1
s+k,Z

2
s+k∈K

′

|Z1
s+k−Z

2
s+k|≤η

∣∣∣f (s+k)
0

(
Z1
s+k

)
− f (s+k)

0

(
Z2
s+k

)∣∣∣,
which is a well defined, finite quantity, and which goes to zero as η goes to zero

thanks to the continuity of the s+ k-th initial datum f
(s+k)
0 .

For all the terms except the last of the expression (13.36), one uses again the
following fact. As ε goes to zero, the difference between the positions of the
particles of the two pseudo-trajectories is going to zero as well, so the times of
bouncing tj0 are converging to the final time t = 0, uniformly in the initial con-
figuration Zs and in the adjunction parameters (since, one recalls, those times
are given by the pseudo-trajectory). Then the difference between the positions

of any particle m between tjl0 and t
jl+1

0 verifies :∣∣x0,m
s,k (tjl0 )− x0,m

s,k (t
jl+1

0 )
∣∣ ≤ |tjl0 − tjl+1

0 |
∣∣v0,m
s,k (tjl0 )

∣∣ ≤ R|tjl0 − tjl+1

0 |,

so that ∣∣X0
s,k(tjl0 )−X0

s,k(t
jl+1

0 )
∣∣ ≤ √s+ kR|tjl0 − t

jl+1

0 |.

Since all the configurations Zs and the adjunction parameters are lying in com-
pact sets, so are the final configurations (that is, at time t = 0) of the pseudo-
trajectories. One will denote (with a slight abuse, but the following notation
emphasizes which quantities really matter here, recalling in particular that α
denotes, following the notations introduced in Section 12.2.5 page 368, the pa-
rameter of cut-off in the grazing velocities)

Zs+k(K,R, α) ⊂
(
Ωc × Rd

)s+k
. (13.37)

the subset in which lie the final configurations Z0
s,k(0) and Zεs,k(0).

It is easy to provide a brief description of this subset, since the cut-off in large
energy (performed along Section 11.2 page 280) enables to state that for any final
configuration Z0

s,k(0) = (X0
s,k(0), V 0

s,k(0)) (see the points (12.14) and (12.15) of
Definition 47 page 325 for those notations) belonging to Zs+k(K,R, α), one has :∣∣V 0

s,k(0)
∣∣ ≤ R,

so that
X0
s,k(0) ∈

(
BRd(0, rK +R)

)s+k
,

with rK denoting the radius of the smallest ball of the Euclidean space R2ds

containing the compact subset K.



13.3. THE DOMINATED CONVERGENCE ARGUMENT 481

Therefore, the 1 + (p − 1) first terms of the expression (13.36) are uniformly
converging to zero as ε goes to zero, writing :∣∣∣(f (s+k)

0

(
X0
s,k(0), V 0

s,k(0)
)
− f (s+k)

0

(
X0
s,k(tj10 ), V 0

s,k(0)
))

+

p−1∑
l=1

(
f

(s+k)
0

(
X0
s,k(tjl0 ), Vl+1

)
− f (s+k)

0

(
X0
s,k(t

jl+1

0 ), Vl+1

))∣∣∣
≤
∣∣∣f (s+k)

0

(
X0
s,k(0), V 0

s,k(0)
)
− f (s+k)

0

(
X0
s,k(tj10 ), V 0

s,k(0)
)∣∣∣

+

p−1∑
l=1

∣∣∣f (s+k)
0

(
X0
s,k(tjl0 ), Vl+1

)
− f (s+k)

0

(
X0
s,k(t

jl+1

0 ), Vl+1

)∣∣∣
≤

p−1∑
l=0

θ
Zs+k(K,R,α)

f
(s+k)
0

(√
s+ kR

∣∣tjl0 − tjl+1

0

∣∣),
where tj00 denotes 0. Now, the last term

f
(s+k)
0

(
X0
s,k(t

jp
0 ), Vp

)
− f (s+k)

0

(
Xε
s,k(0), V εs,k(0)

)
= f

(s+k)
0

(
X0
s,k(t

jp
0 ), V εs,k(0)

)
− f (s+k)

0

(
Xε
s,k(0), V εs,k(0)

)
of the expression (13.36) converges uniformly to zero as ε goes to zero, thanks
to the first point (13.5) of Lemma 38 page 449. Indeed, one writes :∣∣∣f (s+k)

0

(
X0
s,k(t

jp
0 ), V εs,k(0)

)
− f (s+k)

0

(
Xε
s,k(0), V εs,k(0)

)∣∣∣
≤
∣∣∣f (s+k)

0

(
X0
s,k(t

jp
0 ), V εs,k(0)

)
− f (s+k)

0

(
X0
s,k(0), V εs,k(0)

)∣∣∣
+
∣∣∣f (s+k)

0

(
X0
s,k(0), V εs,k(0)

)
− f (s+k)

0

(
Xε
s,k(0), V εs,k(0)

)∣∣∣. (13.38)

The first term of the right-hand side of (13.38) is controlled in the same way as
for the p first terms :∣∣∣f (s+k)

0

(
X0
s,k(t

jp
0 ), V εs,k(0)

)
− f (s+k)

0

(
X0
s,k(0), V εs,k(0)

)∣∣∣
≤ θZs+k(K,R,α)

f
(s+k)
0

(√
s+ kR

∣∣tjp0 ∣∣),
and for the second term, since Lemma 38 provides

∣∣X0
s,k(0)−Xε

s,k(0)
∣∣ =

Ã
s+k∑
l=1

∣∣x0,l
s,k(0)− xε,ls,k(0)

∣∣2
≤

Ã
s+k∑
l=1

(
2kε
)2

= 2(
√
s+ k)kε,
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one finds therefore∣∣∣f (s+k)
0

(
X0
s,k(0), V εs,k(0)

)
− f (s+k)

0

(
Xε
s,k(0), V εs,k(0)

)∣∣∣
≤ θZs+k(K,R,α)

f
(s+k)
0

(
2(
√
s+ k)kε

)
.

The decomposition presented in (13.36) enables then to obtain the following
bound ∣∣f (s+k)

0

(
Z0
s,k(0)

)
−f (s+k)

0

(
Zεs,k(0)

)∣∣
≤ (p+ 1)θ

Zs+k(K,R,α)

f
(s+k)
0

(
2(
√
s+ k)R sup

1≤l≤p
|tjl0 |

)
+ θ

Zs+k(K,R,α)

f
(s+k)
0

(
2(
√
s+ k)kε

)
.

Now one wants a bound on
∣∣f (s+k)

0

(
Z0
s,k(0)

)
−f (s+k)

0

(
Zεs,k(0)

)∣∣ which is uniform
on the compact set Zs+k(K,R, α).
On the one hand, one recalls that p is the number of particles having not
the same velocity at time 0 following the Boltzmann or the BBGKY pseudo-
trajectories. This number depends strongly on the pseudo-trajectories, that is
on the initial data Zs and the adjunction parameters, but this number is of
course bounded by the number of particles of the system at time 0, that is s+k.
On the other hand, the times tjl0 are the times of bouncing against the obstacle
following the Boltzmann pseudo-trajectory, of the particles having not the same
velocity at time 0 following the Boltzmann or the BBGKY pseudo-trajectory.
So those times depend also on the initial data and the adjunction parameters.
However, it can be bounded uniformly, since on Zs+k(K,R, α), several cut-offs
have been performed so that at any time (and then in particular at time 0) the
velocities of the particles of the system are not grazing. Using this fact together
with the result of proximity of the two pseudo-trajectories obtained in Lemma
38, one deduces that the times tjl0 all go to zero, as ε goes to zero, uniformly in
l and the adjunction parameters, that is uniformly on Zs+k(K,R, α). In other
words, for any compact subset K of the phase space of s particles, for any
positive integer k, there exists a function T0(K, k,R, α) depending on ε such
that

∀1 ≤ l ≤ p, tjl0 ≤ T0(K, k,R, α)(ε)

and
T0(K, k,R, α)(ε) −→

ε→0
0.

Taking the supremum of the quantity
∣∣f (s+k)

0

(
Z0
s,k(0)

)
− f (s+k)

0

(
Zεs,k(0)

)∣∣ over
Zs+k(K,R, α), one finds

sup
Zs+k(K,R,α)

∣∣f (s+k)
0

(
Z0
s,k(0)

)
−f (s+k)

0

(
Zεs,k(0)

)∣∣
≤ (s+ k + 1)θ

Zs+k(K,R,α)

f
(s+k)
0

(
2(
√
s+ k)RT0(K, k)(ε)|

)
+ θ

Zs+k(K,R,α)

f
(s+k)
0

(
2(
√
s+ k)kε

)
.
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One can then bound each term∣∣∣∣1K(J 0,δ
s,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
0 1|Vs+k|≤R

)
− J ε,δ

s,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
0 1|Vs+k|≤R

))∣∣∣∣,
of the decomposition (13.35) of the lemma, denoted here to simplify the nota-
tions as QMk,Jk . Recalling that this quantity writes :

QMk,Jk = 1K1t≥kδ

∣∣∣∣∣
∫ t−δ

(k−1)δ

1Uc
j1

(Zs)(t1)

∫
Sd−1
ω1
×
(
BRd (0,R)

)
vs+1

1Ec
j1

(Z0
s,0(t1)

)(ω1, vs+1)

× (±1)
[
ω1 ·

(
vs+1 − v0,j1

s,0

)]
±1

×
∫ t1−δ

(k−2)δ

1Uc
j2

(Z0
s,1(t1))(t2)

∫
Sd−1
ω2
×
(
BRd (0,R)

)
vs+2

1Ec
j2

(Z0
s,1(t2))(ω2, vs+2)

× (±2)
[
ω2 ·

(
vs+2 − v0,j2

s,1 (t2)
)]
±2

. . .

×
∫ tk−1−δ

0

1Uc
jk

(Z0
s,k−1

(tk−1))(tk)

∫
Sd−1
ωk
×
(
BRd (0,R)

)
vs+k

1Ec
jk

(Z0
s,k−1

(tk))(ωk, vs+k)

× (±k)
[
ωk ·

(
vs+k − v0,jk

s,k−1(tk)
)]
±k
1|Vs+k|≤R

×
(
f

(s+k)
0

(
Z0
s,k(0)

)
− f (s+k)

0

(
Zεs,k(0)

))
dωk dvs+k dtk . . . dω2 dvs+2 dt2 dω1 dvs+1 dt1

∣∣∣∣∣,
it can be bounded easily as

QMk,Jk ≤
(

2
∣∣Sd−1 ×BRd(0, R)

∣∣R)k(∫ t

0

∫ t1

0

. . .

∫ tk−1

0

dtk . . . dt2 dt1

)
×
(

(s+ k + 1)θ
Zs+k(K,R,α)

f
(s+k)
0

(
2(
√
s+ k)RT0(K, k, α)(ε)

)
+ θ

Zs+k(K,R,α)

f
(s+k)
0

(
2(
√
s+ k)kε

))
.

Since k ≤ n and since the functions θ
Zs+k(K,R,α)

f
(s+k)
0

are non decreasing, and recall-
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ing that R ≥ 1, one has

(s+ k + 1)θ
Zs+k(K,R,α)

f
(s+k)
0

(
2(
√
s+ k)RT0(K, k,R, α)(ε)

)
+ θ

Zs+k(K,R,α)

f
(s+k)
0

(
2(
√
s+ k)kε

)
≤ (s+ n+ 1)θ

Zs+k(K,R,α)

f
(s+k)
0

(
2(
√
s+ n)RT0(K, k,R, α)(ε)

)
+ θ

Zs+k(K,R,α)

f
(s+k)
0

(
2n(
√
s+ n)Rε

)
.

Denoting ψ(K, k,R, α)(ε) = max
(
ε, T0(K, k,R, α)(ε)

)
, one finds

QMk,Jk ≤
(
C(d)Rd+1

)k tk
k!

(s+ n+ 2)θ
Zs+k(K,R,α)

f
(s+k)
0

(
2n(
√
s+ n)Rψ(K, k,R, α)(ε)

)
.

Finally, one wants to sum over all the contributions 1 ≤ k ≤ n, Mk ∈ Mk,
Jk ∈ Jsk, since the quantity controlled by the lemma is smaller than

n∑
k=1

∑
Mk∈Mk

∑
Jk∈Jsk

QMk,Jk .

For K, s, R and α given, all the n functions of the family(
ε 7→ θ

Zs+k(K,R,α)

f
(s+k)
0

(
2n(
√
s+ n)Rψ(K, k,R, α)(ε)

))
1≤k≤n

converge to zero as ε goes to zero. Therefore, one has also

sup
1≤k≤n

(
θ
Zs+k(K,R,α)

f
(s+k)
0

(
2n(
√
s+ n)Rψ(K, k,R, α)(ε)

))
−→
ε→0

0,

and then
n∑
k=1

∑
Mk∈Mk

∑
Jk∈Jsk

QMk,Jk

≤
n∑
k=1

∑
Mk∈Mk

∑
Jk∈Jsk

Å(
C(d)Rd+1

)k tk
k!

(s+ n+ 2)

× θZs+k(K,R,α)

f
(s+k)
0

(
2n(
√
s+ n)Rψ(K, k,R, α)(ε)

)ã
≤ (s+ n+ 2)

( ∑
Mn∈Mn

∑
Jn∈Jsn

1
)( n∑

k=1

(
C(d)Rd+1

)k tk
k!

)
× sup

1≤k≤n

(
θ
Zs+k(K,R,α)

f
(s+k)
0

(
2n(
√
s+ n)Rψ(K, k,R, α)(ε)

))
≤ (s+ n+ 2)

(s+ n− 1)!

(s− 1)!
2n exp

(
C(d)Rt

)
× sup

1≤k≤n

(
θ
Zs+k(K,R,α)

f
(s+k)
0

(
2n(
√
s+ n)Rψ(K, k,R, α)(ε)

))
.
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Denoting

ψ1(s, n,R, α)(ε) = sup
1≤k≤n

(
θ
Zs+k(K,R,α)

f
(s+k)
0

(
2n(
√
s+ n)Rψ(K, k,R, α)(ε)

))
,

one obtains the result stated in the lemma.
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Chapter 14

Control of the last error
terms

This part is now devoted to controlling the error produced by the changes made
in the elementary term of the BBGKY hierarchy to define the intermediate
elementary term, namely the removal of the prefactors (see Section 14.1 below)
and the substitution of the initial datum of the BBGKY hierarchy by the one
of the Boltzmann hierarchy (see Section 14.2 page 488 below).

14.1 Limit and rate of convergence of the pref-
actors of the collision operators

In the Boltzmann-Grad limit, one can control the error produced by the removal
of the prefactor term thanks to the following lemma.

Lemma 40 (Limit and rate of convergence of the prefactor of the collision op-
erators in the Boltzmann-Grad limit). Let s, n and N be three positive integers,
and ε be a strictly positive number. For s and k ≤ n fixed, in the Boltzmann-
Grad limit Nεd−1 = 1, one has :

(N − s)!
(N − s− k)!

εk(d−1) −→
N→+∞

1. (14.1)

Moreover, one has for all positive integers s and n, in the Boltzmann-Grad limit
Nεd−1 = 1 and for N large enough :

1− 2
(s+ n)2

N
≤ (N − s)!

(N − s− k)!
εk(d−1) ≤ 1. (14.2)

487
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Proof. Thanks to the Stirling formula, one has :

(N − s)!
(N − s− k)!

εk(d−1) ∼
√

2π(N − s)
(
N−s
e

)(N−s)√
2π(N − s− k)

(
N−s−k

e

)(N−s−k)
N−k

∼
Å

N − s
N − s− k

ãN−s+1/2

e−k(N − s− k)kN−k.

Then one usesÅ
N − s

N − s− k

ãN−s+1/2

= exp

Å
(N − s+ 1/2) ln

Å
N − s

N − s− k

ãã
∼ exp

Å
(N − s+ 1/2)

k

N − s− k

ã
∼ ek,

which gives the first result (14.1).

For the second pair of inequalities (14.2), one has :

(N − s)!
(N − s− k)!

εk(d−1) = (N − s− k + 1)(N − s− k + 2)...(N − s)εk(d−1)

≥
(
(N − s− k)εd−1

)k
= ek ln(εd−1(N−s−k)).

Then using the definition of the Boltzmann-Grad limit Nεd−1 = 1, one has :

ln
(
εd−1(N − s− k)

)
= ln

Å
N − s− k

N

ã
≥ −2

(s+ k)

N

for N large enough (2(s+ k) ≤ 2(s+ n) ≤ N is enough, since −1 < − ln 2), so
that

(N − s)!
(N − s− k)!

εk(d−1) ≥ 1 + k ln
(
εd−1(N − s− k)

)
≥ 1− 2k

(s+ k)

N
≥ 1− 2

(s+ n)2

N
.

14.2 Error coming from the substitution of the
initial datum and the removal of the pref-
actor

Finally, one studies here the last error term, coming from, on the one hand the
removal of the prefactors, and on the other hand the substitution of the initial
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datum of the BBGKY hierarchy in the elementary term of the same hierarchy,
by the initial datum of the Boltzmann hierarchy to define the intermediate

elementary term J ε,δ
s,s+k−1
Mk,Jk

(U c, Ec).

Lemma 41 (Error coming from the substitution of the initial data and the
removal of the prefactors, qualitative version). Let s and n be two positive in-
tegers, β0 be a strictly positive number, and µ0 be a real number.

Let F0 =
(
f

(s̃)
0

)
s̃≥1

be a sequence of functions belonging to X0,β0,µ1
0
, and for any

positive integer N , let FN,0 =
(
f

(s̃)
N,0

)
1≤s̃≤N be a sequence of functions belonging

to XN,ε,β0,µ1
0

such that for any s̃ ∈ N∗,

f
(s̃)
N,0 −→

N→+∞
f

(s̃)
0

locally uniformly on the phase space of s̃ particles
(
Ωc × Rd

)s̃
. Let in addition

K be a compact set of Ωs.
Then, there exist five strictly positive numbers ε, ε0, α, γ and R (depending only
on the compact set K) such that for every strictly positive numbers R,δ,ε,a,ε0,ρ,η
and α which satisfy

ε ≤ ε, ε0 ≤ ε0, α ≤ α, max
(
16Rε/ε0, ε0/δ

)
≤ γ

and R ≥ R,
(14.3)

and
4
√

3a ≤ ε0, 3a ≤ ρ, ε0 ≤ ηδ, R ≥ 1, η ≤ 1 and α ≤ c(d),
with c(d) a constant depending only on the dimension d, and

2nε ≤ a,

(14.4)

one has that, in the Boltzmann-Grad limit N → +∞, Nεd−1 = 1, for s, n, R,
δ, a, ε0, η, ρ and α fixed, the following uniform convergence on the compact set
K, and uniform on the time interval [0, T ], holds :∣∣∣∣∣
∣∣∣∣∣1K n∑

k=1

∑
Mk∈Mk

∑
Jk∈Jsk

(
J ε,δ
s,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
0 1|Vs+k|≤R

)
− JN,ε,δs,s+k−1

Mk,Jk

(U c, Ec)
(
f

(s+k)
N,0 1|Vs+k|≤R

))
(Zs)

∣∣∣∣∣
∣∣∣∣∣
L∞

−→
ε→0

0.

(14.5)
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Proof. The difference

1K

(
J ε,δ
s,s+k−1
Mk,Jk

(U c, Ec)
(
f

(s+k)
0 1|Vs+k|≤R

)
− JN,ε,δs,s+k−1

Mk,Jk

(U c, Ec)
(
f

(s+k)
N,0 1|Vs+k|≤R

))

that one has to study here can be splitted in two terms Q1,Mk,Jk and Q2,Mk,Jk

that write explicitly as follows.

The first one is defined as :

Q1,Mk,Jk = 1K1t≥kδ

(
1− (N − s)!

(N − s− k)!
εk(d−1)

)
×
∫ t−δ

(k−1)δ

1Uc
j1

(Zs)(t1)

∫
Sd−1
ω1
×Rdvs+1

1Ec
j1

(Z0
s,0(t1)

)(ω1, vs+1)

× (±1)
[
ω1 ·

(
vs+1 − v0,j1

s,0 (t1)
)]
±1

×
∫ t1−δ

(k−2)δ

1Uc
j2

(Z0
s,1(t1))(t2)

∫
Sd−1
ω2
×Rdvs+2

1Ec
j2

(Z0
s,1(t2))(ω2, vs+2)

× (±2)
[
ω2 ·

(
vs+2 − v0,j2

s,1 (t2)
)]
±2

. . .

×
∫ tk−1−δ

0

1Uc
jk

(Z0
s,k−1

(tk−1))(tk)

∫
Sd−1
ωk
×Rdvs+k

1Ec
jk

(Z0
s,k−1

(tk))(ωk, vs+k)

× (±k)
[
ωk ·

(
vs+k − v0,jk

s,k−1(tk)
)]
±k
1|Vs+k|≤Rf

(s+k)
0

(
Zεs,k(0)

)
dωk dvs+k dtk . . . dω2 dvs+2 dt2 dω1 dvs+1 dt1,
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(it takes into account the removal of the prefactors), and

Q2,Mk,Jk = 1K1t≥kδ

∫ t−δ

(k−1)δ

1Uc
j1

(Zs)(t1)

∫
Sd−1
ω1
×Rdvs+1

1Ec
j1

(Z0
s,0(t1)

)(ω1, vs+1)

× (±1)
[
ω1 ·

(
vs+1 − v0,j1

s,0 (t1)
)]
±1

×
∫ t1−δ

(k−2)δ

1Uc
j2

(Z0
s,1(t1))(t2)

∫
Sd−1
ω2
×Rdvs+2

1Ec
j2

(Z0
s,1(t2))(ω2, vs+2)

× (±2)
[
ω2 ·

(
vs+2 − v0,j2

s,1 (t2)
)]
±2

. . .

×
∫ tk−1−δ

0

1Uc
j2

(Z0
s,k−1

(tk−1))(tk)

∫
Sd−1
ωk
×Rdvs+k

1Ec
jk

(Z0
s,k−1

(tk))(ωk, vs+k)

× (±k)
[
ωk ·

(
vs+k − v0,jk

s,k−1(tk)
)]
±k
1|Vs+k|≤R

×
(
f

(s+k)
0

(
Zεs,k(0)

)
− f (s+k)

N,0

(
Zεs,k(0)

))
dωk dvs+k dtk . . . dω2 dvs+2 dt2 dω1 dvs+1 dt1,

for the second one (here one takes into account the replacement of the initial
data of the BBGKY hierarchy by the initial data of the Boltzmann hierarchy).
The first term is immediately controlled thanks to Lemma 40 page 487, and the
contracting property of the integrated in time collision operator (each iterate of
this operator provides a 1/2 term, thanks to Lemma 23 page 255).
The second one is controlled as in the proof of the previous Lemma 39 : one
bounds crudely almost everywhere the integrand of the quantity Q2,Mk,Jk . The
argument of the difference

1Zs+k(K,R)

(
f

(s+k)
0

(
Zεs,k(0)

)
− f (s+k)

N,0

(
Zεs,k(0)

))
lies in a compact subset of the phase space of s+ k particles, since it is the case
for the initial configuration Zs and all the adjunction parameters. As in the
proof of the previous Lemma 39, one denotes by Zs+k(K) this compact subset.
One writes then∣∣∣1Zs+k(K)

(
f

(s+k)
0

(
Zεs,k(0)

)
− f (s+k)

N,0

(
Zεs,k(0)

))∣∣∣
≤
∣∣∣∣∣∣∣∣1Zs+k(K)

(
f

(s+k)
0 − f (s+k)

N,0

)∣∣∣∣∣∣∣∣
L∞

,

the right-hand side being by hypothesis a function which converges to zero as N
goes to infinity. Considering then the supremum of this quantity for 1 ≤ k ≤ n,
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one still has an upper bound which converges to zero as N goes to infinity, so
that one has, performing the same control as in the end of the proof of Lemma
39 :

Q2,Mk,Jk ≤
(

2
∣∣Sd−1 ×BRd(0, R)

∣∣R)k(∫ t

0

∫ t1

0

. . .

∫ tk−1

0

dtk . . . dt2 dt1

)
× sup

1≤k≤n

∣∣∣∣∣∣∣∣1Zs+k(K)

(
f

(s+k)
0 − f (s+k)

N,0

)∣∣∣∣∣∣∣∣
L∞

,

so that, summing over all the contributions 1 ≤ k ≤ n, Mk ∈ Mk, Jk ∈ Jsk for
the quantities Q2,Mk,Jk , one obtains

n∑
k=1

∑
Mk∈Mk

∑
Jk∈Jsk

Q2,Mk,Jk

≤
n∑
k=1

∑
Mk∈Mk

∑
Jk∈Jsk

(
C(d)Rd+1

)k tk
k!

sup
1≤k≤n

∣∣∣∣∣∣∣∣1Zs+k(K)

(
f

(s+k)
0 − f (s+k)

N,0

)∣∣∣∣∣∣∣∣
L∞

,

and then the conclusion of the lemma.



Chapter 15

Gathering the estimates,
and a first result : the
convergence of the solutions
of the BBGKY hierarchy
towards the solutions of the
Boltzmann hierarchy

In this section, one will finally put together all the cut-offs introduced previ-
ously, and one will be able to compare the solutions of the Boltzmann hierarchy
with the solutions of the BBGKY hierarchy. This comparison is stated in the
following theorem, which is one of the main results of this work.

One emphasizes on the fact that the convergence obtained in the following
theorem is not quantitative. This is due, on the one hand, to the initial datum

of the Boltzmann hierarchy : if the functions f
(s)
0 composing the sequence of

initial data
(
f

(s)
0

)
s≥1

of the Boltzmann hierarchy are assumed to be only con-

tinuous, then this lack of regularity prevents to use in a sharp way the result
of the uniform convergence between the pseudo-trajectories obtained in Lemma
38 page 449.
On the other hand, another limitation comes from the convergence of the se-
quences of initial data of the BBGKY hierarchy towards the initial datum of the
Boltzmann hierarchy : if this convergence is not quantified, then the final con-
vergence of the two solutions starting from those respective initial data cannot
be quantified either.

493
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Theorem 7 (Convergence of the solutions of the BBGKY hierarchy towards
the solutions of the Boltzmann hierarchy). Let β0 be a strictly positive number
and µ0 be a real number. Then, there exists a time T > 0 such that the following
holds :
let F0 =

(
f

(s)
0

)
s≥1

be a sequence of initial data of the Boltzmann hierarchy be-

longing to X0,β0,µ1
0

(see Definition 26 page 207), and for any positive integer

N , let FN,0 =
(
f

(s)
N,0

)
1≤s≤N be a sequence of initial data of the BBGKY hierar-

chy, belonging to XN,ε,β0,µ1
0

with Nεd−1 = 1 (see Definition 25 page 207). One
assumes that for any s ∈ N∗,

f
(s)
N,0 −→

N→+∞
f

(s)
0 (15.1)

locally uniformly on the phase space of s particles
(
Ωc × Rd

)s
, with in addition

sup
N≥1
||FN,0||N,ε,β0,µ1

0
< +∞. (15.2)

Then, in the Boltzmann-Grad limit N → +∞, Nεd−1 = 1, if one denotes
F =

(
f (s)

)
s≥1

the solution on [0, T ] of the Boltzmann hierarchy with initial

data F0, and FN = T εt HN =
(
T s,εt h

(s)
N

)
1≤s≤N where HN =

(
h

(s)
N

)
1≤s≤N is the

solution on [0, T ] of the conjugate BBGKY hierarchy with initial data FN,0 (the
time T and the solutions are provided by Theorem 6 page 259), one has that, for
every positive integer s, the following locally uniform convergence on the domain
of local uniform convergence Ωs (see Definition 53 page 392), uniform on the
time interval [0, T ], holds :

f
(s)
N −→

N→+∞
f (s).

Proof. For any positive integer N and any initial data FN,0 =
(
f

(s)
N,0

)
1≤s≤N ∈

XN,ε,β0,µ1
0

on the one hand, and for any initial datum F0 =
(
f (s)

)
s≥1
∈ X0,β0,µ1

0

on the other hand, one uses Theorem 6 page 259, which provides simultaneously,

a unique solution HN =
(
h

(s)
N

)
1≤s≤N to the conjugate BBGKY hierarchy with

initial datum FN,0, and a unique solution F =
(
f (s)

)
s≥1

to the Boltzmann

hierarchy with initial datum F0, on the same time interval [0, T ] (the upper
bound T of this time interval depends only on the parameters β0 and µ0).

Those solutions HN and F belong respectively to the spaces ‹X
N,ε,β̃λ,µ̃1

λ

and‹X
0,β̃λ,µ̃1

λ

(see Definitions 29 page 211 and 30 page 212 for the introduction of

the spaces ‹X·,β̃λ,µ̃1
λ

, and the statement of Theorem 6 for the introduction of the

weights β̃λ and µ̃λ).
One recalls that Theorem 6 holds in the Boltzmann-Grad limit, which means
that the diameter ε of the particles considered here satisfies

Nεd−1 = 1.
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Using Proposition 11 page 278, one starts by cutting off the large number of
adjunctions. Let n be the parameter of cut-off in large number of adjuntions
(which means that one will consider only pseudo-trajectories with at most n
adjunctions). For the solution of the BBGKY hierarchy, since the hard sphere
transport preserves the measure, one finds, using the notations introduced in
Definition 35 page 280 and thanks to the first point (11.1) of Proposition 11 :

|||FN − T εt Hn
N |||N,ε,β̃λ,µ̃1

λ

=
∣∣∣∣∣∣T εt (HN −Hn

N

)∣∣∣∣∣∣
N,ε,β̃λ,µ̃1

λ

= |||HN −Hn
N |||N,ε,β̃λ,µ̃1

λ

≤
(1

2

)n
||FN,0||N,ε,β0,µ1

0

≤
(1

2

)n(
sup
N≥1
||FN,0||N,ε,β0,µ1

0

)
. (15.3)

Similarly, for the solution of the Boltzmann hierarchy, thanks to the second
point (11.2) of Proposition 11, one finds :

|||F − Fn|||
0,β̃λ,µ̃1

λ

≤
(1

2

)n
||F0||0,β0,µ1

0
. (15.4)

Now, cutting off in high velocities, let R be the parameter of cut-off in high
velocities (which means that one will consider only pseudo-trajectories such that,
evaluated at the final time t = 0, the norm of the vector composed of all the
velocities of the system is smaller than R). One knows, thanks to Proposition 12
page 281, that there exist two positive constants C1(d, β0, µ0) and C(d, β0, µ0),
depending only on the dimension d and the parameters β0 and µ0, and a strictly
positive and strictly decreasing affine weight β̃′ < β̃λ, such that, using the
notations introduced in Definition 36 page 280 :∣∣∣∣∣∣T εt Hn

N − T εt H
n,R
N

∣∣∣∣∣∣
N,ε,β̃′,µ̃1

λ

=
∣∣∣∣∣∣T εt (Hn

N −H
n,R
N

)∣∣∣∣∣∣
N,ε,β̃′,µ̃1

λ

≤ C1 exp
(
− C2R

2
)
||FN,0||N,ε,β̃′(0),µ̃1

0

≤ C1 exp
(
− C2R

2
)
||FN,0||N,ε,β0,µ1

0

≤ C1 exp
(
− C2R

2
)(

sup
N≥1
||FN,0||N,ε,β0,µ1

0

)
(15.5)

for the truncated solution of the BBGKY hierarchy, and such that :∣∣∣∣Fn − Fn,R∣∣∣∣
0,β̃′,µ̃1

λ

≤ C1 exp
(
− C2R

2
)
||F0||0,β0,µ1

0
(15.6)

for the truncated solution of the Boltzmann hierarchy.
Cutting off in small time difference between the adjunctions, let δ be the param-
eter of cut-off in small time difference between the adjunctions (which means
that one considers only pseudo-trajectories such that the time interval between
two adjunctions of particles is larger than δ). Proposition 15 page 308 states
that there exists a positive constant C3(d, β0, µ0) depending only on the dimen-
sion d and on the parameters β0 and µ0, such that one has (using the notations
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introduced in Definition 40 page 297), for all positive integer s and uniformly
on [0, T ] :∣∣∣(T s,εt

(
Hn,R
N

)(s))
(t, ·)−

(
T s,εt

(
Hn,R,δ
N

)(s))
(t, ·)

∣∣∣
ε,s,β̃λ(t)

=
∣∣∣(Hn,R

N (t, ·)
)(s) − (Hn,R,δ

N (t, ·)
)(s)∣∣∣

ε,s,β̃λ(t)

≤ C3

√
sn3/2

√
δ||FN,0||N,ε,β0,µ1

0

≤ C3

√
sn3/2

√
δ
(

sup
N≥1
||FN,0||N,ε,β0,µ1

0

)
(15.7)

for the BBGKY hierarchy, and similarly for the Boltzmann hierarchy :∣∣∣(Fn,R)(s)(t, ·)− (Fn,R,δ)(s)(t, ·)∣∣∣
0,s,β̃λ(t)

≤ C3

√
sn3/2

√
δ||F0||0,β0,µ1

0
. (15.8)

Finally, proceeding to the last cut-off, in pathological adjunction parameters,
one uses Proposition 18 page 437. There exists a positive constant C4(d, β0, µ0)
depending only on the dimension d and on the parameters β0 and µ0, and
another positive constant c(d) depending only on the dimension such that if the
parameter R satisfies

R ≥ 1, (15.9)

and for any strictly positive numbers a, ε0, ρ, η and α such that :

2ε ≤ a, 4
√

3a ≤ ε0, ε0 ≤ ηδ, ε0/δ ≤ 1, 3a ≤ ρ and α ≤ c(d), (15.10)

the following controls hold (using the notations introduced in Definition 62 page
436) :

1∆s(ε,R,ε0,α,max(16Ra/ε0,ε0/δ))(Zs)

×
∣∣∣T s,εt

(
Hn,R,δ
N

)(s)
(t, Zs)−

(
Fn,R,δN (U c, Ec)

)(s)
(t, Zs)

∣∣∣
≤ C4n(s+ n)R

( ρ

α
+ ηd +Rd

(a
ρ

)d
+ nR2d−1

( a
ε0

)d−3/2

+ nRd+1/2
(ε0

δ

)d−3/2

+Rd−1α+Rdα1/8
)

× exp
(
− β̃λ(t)

2
|Vs|2

)∣∣∣∣∣∣(f (s)
N,0

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β0,µ1

0

≤ C4n(s+ n)R
( ρ

α
+ ηd +Rd

(a
ρ

)d
+ nR2d−1

( a
ε0

)d−3/2

+ nRd+1/2
(ε0

δ

)d−3/2

+Rd−1α+Rdα1/8
)

×
(

sup
N≥1

∣∣∣∣∣∣(f (s)
N,0

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β0,µ1

0

)
(15.11)
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for the BBGKY hierarchy, and similarly for the Boltzmann hierarchy :

1∆s(ε,R,ε0,α,max(16Ra/ε0,ε0/δ))(Zs)

×
∣∣∣(Fn,R,δ)(s)(t, Zs)− (Fn,R,δ(U c, Ec))(s)(t, Zs)∣∣∣

≤ C4n(s+ n)R
( ρ

α
+ ηd +Rd

(a
ρ

)d
+ nR2d−1

( a
ε0

)d−3/2

+ nRd+1/2
(ε0

δ

)d−3/2

+Rd−1α+Rdα1/8
)∣∣∣∣∣∣(f (s)

0

)
s≥1

∣∣∣∣∣∣
0,β0,µ1

0

.

(15.12)

For the solution of the BBGKY hierarchy, collecting the results (15.3), (15.5),
(15.7) and (15.11) together, one obtains, for all t ∈ [0, T ] and almost every
Zs ∈ Dεs :

1∆s

∣∣∣F (s)
N (t, Zs)−

(
Fn,R,δN (U c, Ec)

)(s)

(t, Zs)
∣∣∣

≤
(

sup
N≥1
||FN,0||N,ε,β0,µ1

0

)Å(1

2

)n
exp

(
− β̃λ(t)

2
|Vs|2

)
exp

(
− sµ̃λ(t)

)
+ C1 exp

(
− C2R

2
)

exp
(
− β̃′(t)

2
|Vs|2

)
exp

(
− sµ̃λ(t)

)
+ C3

√
sn3/2

√
δ exp

(
− β̃λ(t)

2
|Vs|2

)
+ C4n(s+ n)R

( ρ

α
+ ηd +Rd

(a
ρ

)d
+ nR2d−1

( a
ε0

)d−3/2

+ nRd+1/2
(ε0

δ

)d−3/2

+Rd−1α+Rdα1/8
)ã

≤
(

sup
N≥1
||FN,0||N,ε,β0,µ1

0

)Å
exp

(
− sµ̃λ(T )

)((1

2

)n
+ C1 exp

(
− C2R

2
))

+ C3

√
sn3/2

√
δ

+ C4n(s+ n)R
( ρ

α
+ ηd +Rd

(a
ρ

)d
+ nR2d−1

( a
ε0

)d−3/2

+ nRd+1/2
(ε0

δ

)d−3/2

+Rd−1α+Rdα1/8
)ã
.

(15.13)
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One obtains the same control for the solution of the Boltzmann hierarchy.

1∆s

∣∣∣F (s)(t, Zs)−
(
Fn,R,δ(U c, Ec)

)(s)

(t, Zs)
∣∣∣

≤ ||F0||0,β0,µ1
0

Å
exp

(
− sµ̃λ(T )

)((1

2

)n
+ C1 exp

(
− C2R

2
))

+ C3

√
sn3/2

√
δ

+ C4n(s+ n)R
( ρ

α
+ ηd +Rd

(a
ρ

)d
+ nR2d−1

( a
ε0

)d−3/2

+ nRd+1/2
(ε0

δ

)d−3/2

+Rd−1α+Rdα1/8
)ã
.

(15.14)

Therefore, let r be any strictly positive number. One starts by choosing n large
enough such that

max
(

sup
N≥1
||FN,0||N,ε,β0,µ1

0
, ||F0||0,β0,µ1

0

)
exp

(
− sµ̃λ(T )

)(1

2

)n
≤ r/10. (15.15)

Then one chooses R large enough such that

C1 max
(

sup
N≥1
||FN,0||N,ε,β0,µ1

0
, ||F0||0,β0,µ1

0

)
× exp

(
− sµ̃λ(T )

)
exp

(
− C2R

2
)
≤ r/10.

(15.16)

Afterwards, since now n is fixed, one chooses δ small enough such that

C3 max
(

sup
N≥1
||FN,0||N,ε,β0,µ1

0
, ||F0||0,β0,µ1

0

)√
sn3/2

√
δ ≤ r/10. (15.17)

Now considering any compact set K of the domain of local uniform convergence
Ωs, there exist five strictly positive numbers ε, ε0, α, γ and R such that for any
strictly positive numbers ε, ε0, α, γ and R which satisfy :ß

ε ≤ ε, ε0 ≤ ε0, α ≤ α, γ ≤ γ,
R ≥ R, (15.18)

one has
K ⊂ ∆s

(
ε,R, ε0, α, γ

)
.

One considers therefore the parameters n, R and δ fixed as soon as they are
chosen such that they satisfy the conditions (15.15) for n, (15.9), (15.16) and
(15.18) for R, and (15.17) for δ. The choice of those three parameters constitutes
the first step of the final control.
The objective is now to fix all the other parameters but ε such that the quantity

n(s+ n)R
( ρ

α
+ ηd +Rd

(a
ρ

)d
+ nR2d−1

( a
ε0

)d−3/2

+ nRd+1/2
(ε0

δ

)d−3/2

+Rd−1α+Rdα1/8
)
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is arbitrarily small, and such that in addition one has (15.10), (15.18) and

max(16Ra/ε0, ε0/δ) ≤ γ, (15.19)

the two last conditions implying then that

K ⊂ ∆s

(
ε,R, ε0, α,max(16Ra/ε0, ε0/δ)

)
.

• Condition on α :
One starts by choosing α such that

α ≤ c(d) and α ≤ α (15.20)

(so that α fulfills the conditions (15.10) and (15.18)),

C4 max
(

sup
N≥1
||FN,0||N,ε,β0,µ1

0
, ||F0||0,β0,µ1

0

)
n(s+ n)Rdα ≤ r/70, (15.21)

and

C4 max
(

sup
N≥1
||FN,0||N,ε,β0,µ1

0
, ||F0||0,β0,µ1

0

)
n(s+ n)Rd+1α1/8 ≤ r/70.

(15.22)

Actually one sees that the condition (15.22) implies the condition (15.21).
The two conditions (15.20) and (15.22) provide an upper bound α̃(n,R) on α,
depending on the other truncation parameters n and R. No other truncation
parameters are involved in the expression of the upper bound.

• Condition on η : In parallel, one chooses η such that

C4 max
(

sup
N≥1
||FN,0||N,ε,β0,µ1

0
, ||F0||0,β0,µ1

0

)
n(s+ n)Rηd ≤ r/70. (15.23)

The upper bound η̃(n,R) on η also depends only on the truncation parameters
n and R.

The choice of the parameters α and η constitutes the second step of the final
control. One can fix now the parameters of the third step.

• Condition on ρ :
One chooses ρ such that

C4 max
(

sup
N≥1
||FN,0||N,ε,β0,µ1

0
, ||F0||0,β0,µ1

0

)
n(s+ n)R

ρ

α
≤ r/70. (15.24)

The upper bound ρ̃(n,R, α) on the parameter ρ depends on n and R, but also
on α, so that this parameter has to be chosen after α.



500 CHAPTER 15. GATHERING THE ESTIMATES

• Condition on ε0 :
In parallel, one chooses η such that

ε0 ≤ ηδ, (15.25)

(providing from the condition (15.10))

ε0 ≤ min(ε0, δγ) (15.26)

(providing from the condition (15.18) and (15.19)) and

C4 max
(

sup
N≥1
||FN,0||N,ε,β0,µ1

0
, ||F0||0,β0,µ1

0

)
n2(s+ n)Rd+3/2

(ε0

δ

)d−3/2

≤ r/70.

(15.27)

The upper bound ‹ε0(n,R, δ, η) on the parameter ε0 depends on n, R and δ,
but also on η.

One can finally fix the parameter a. This is the fourth and last step of the final
control.

Condition on a :
One chooses a such that

a ≤ min
( ε0

4
√

3
,
ρ

3

)
, (15.28)

(providing from the condition (15.10))

a ≤ γε0

16R
, (15.29)

(providing from the condition (15.18))

C4 max
(

sup
N≥1
||FN,0||N,ε,β0,µ1

0
, ||F0||0,β0,µ1

0

)
n(s+ n)Rd+1

(a
ρ

)d
≤ r/70, (15.30)

and

C4 max
(

sup
N≥1
||FN,0||N,ε,β0,µ1

0
, ||F0||0,β0,µ1

0

)
n2(s+ n)R2d

( a
ε0

)d−3/2

≤ r/70.

(15.31)

The upper bound ã(ρ, ε0) depends on the truncation parameters ρ and ε0, so
that a was the last parameter that can be chosen.
Then finally, if one chooses ε smaller than a/2, all the hypotheses of Proposition
18 page 437 are fulfilled, and the controls (15.11) for the BBGKY hierarchy,
and (15.12) for the Boltzmann hierarchy, together with the conditions (15.21),
(15.22), (15.23), (15.24), (15.27), (15.30) and (15.31) provide first that

1∆s(Zs)
∣∣∣T s,εt

(
Hn,R,δ
N

)(s)
(t, Zs)−

(
Fn,R,δN (U c, Ec)

)(s)
(t, Zs)

∣∣∣ ≤ r/10,
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and

1∆s
(Zs)

∣∣∣(Fn,R,δ)(s)(t, Zs)− (Fn,R,δ(U c, Ec))(s)(t, Zs)∣∣∣ ≤ r/10.

In addition, the controls (15.3), (15.5) and (15.7) for the BBGKY hierarchy,
and the controls (15.4), (15.6) and (15.8) for the Boltzmann hierarchy provide

1∆s

∣∣∣F (s)
N (t, Zs)−

(
Fn,R,δN (U c, Ec)

)(s)

(t, Zs)
∣∣∣ ≤ 4r/10 (15.32)

and

1∆s

∣∣∣F (s)(t, Zs)−
(
Fn,R,δ(U c, Ec)

)(s)

(t, Zs)
∣∣∣ ≤ 4r/10. (15.33)

In order to apply the two last Lemmas 39 page 476 and 41 page 489, one will
require in addition that

2nε ≤ a. (15.34)

One finds therefore that

1K

∣∣∣F (s)(t, Zs)− F (s)
N (t, Zs)

∣∣∣ ≤ 1K

∣∣∣F (s)(t, Zs)−
(
Fn,R,δ(U c, Ec)

)(s)

(t, Zs)
∣∣∣

+1K

∣∣∣(Fn,R,δ(U c, Ec))(s)

(t, Zs)−
(
Fn,R,δN (U c, Ec)

)(s)

(t, Zs)
∣∣∣

+1K

∣∣∣(Fn,R,δN (U c, Ec)
)(s)

(t, Zs)−
(
F

(s)
N (t, Zs)

)∣∣∣.
Since K ⊂ ∆s, the first and the third term of the right-hand side of the last
inequality are controlled uniformly in time, in the phase space variable, and in
ε by 4r/10, as the controls (15.32) and (15.33) assert it. The second term is
finally controlled thanks to Lemmas 39 and 41, which assert that this term,
when all the truncation parameters except ε are fixed, converges uniformly to
zero as N goes to infinity, that is as ε goes to zero, and the proof of the theorem
is complete.
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Chapter 16

Lanford’s theorem

The previous part ended with a theorem describing a result of convergence of
solutions of the BBGKY hierarchy towards solutions of the Boltzmann hierar-
chy. In this section, one goes back to the Boltzmann equation. To do so, one
will consider solutions of the Boltzmann hierarchy with initial data built by a
tensorization of a one particle density distribution. Besides, one will improve
the convergence result stated in Theorem 7 above, by giving an explicit rate of
convergence according to additionnal hypotheses on the initial datum. This is
the purpose of Theorem 8 stated below, the final result of this work.

16.1 Adding hypotheses to the initial data

In this section one will construct a family of suitable initial data for the BBGKY
hierarchy, following exactly [34]1. Indeed, the work done in Section 10 page 267
shows clearly that the initial data play an important role in the explicit de-
scription of the solutions, besides the link between the initial data of the two
hierarchies plays a crucial role in the comparison of the solutions of the two
hierarchies, as it was shown in Section 13 starting page 449, and especially in
the paragraph 13.3 page 475, dealing with the dominated convergence argument
and the convergence of the pseudo-trajectories of the two hierarchies. First, one
will discuss what kind of initial data one can choose for the Boltzmann hierar-
chy. Second, one will construct, for any initial datum of this kind, an associated
initial datum of the BBGKY hierarchy.

1See Section 6.1 ”Quasi-independence”.
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16.1.1 Admissible initial data for the Boltzmann hierar-
chy

For any positive number s, one recalls the definition of the domain of local
uniform convergence Ωs, introduced in Definition 53 page 392 :

Ωs = Ω1
s ∩ Ω2

s ∩ Ω3
s ∩ Ω4

s,

with :

Ω1
s =

{
Zs ∈ D0

s / ∀ 1 ≤ i 6= j ≤ s, xi 6= xj

}
,

Ω2
s =

{
Zs ∈ D0

s / ∀ 1 ≤ i ≤ s, vi · e1 6= 0
}
,

Ω3
s =

{
Zs ∈ D0

s / ∀ 1 ≤ i < j ≤ s, vj /∈ vi + Vect(xi − xj)
}
,

Ω4
s =

{
Zs ∈ D0

s / ∀1 ≤ i < j ≤ s, vj /∈ S0(vi) + Vect
(
S0(xi)− xj

)}
.

For any compact subset of this domain, one was able to perform cut-offs on the
pathological adjunctions parameters so that all the pseudo-trajectories of the
BBGKY hierarchy, starting from an initial configuration of this compact subset
and obtained with non pathological adjunction parameters, converge uniformly
as the number N of particles of the system goes to infinity to the associated
pseudo-trajectory of the Boltzmann hierarchy. One was then naturally led to

consider, for a sequence
(
f

(s)
0

)
s≥1

of initial data of the Boltzmann hierarchy, a

sequence (of sequences)
((
f

(s)
N,0

)
s≥1

)
N≥1

of initial data of the BBGKY hierarchy,

such that for any positive integer s :

f
(s)
N,0 −→

N→+∞
f

(s)
0

uniformly on every compact set of the domain Ωs. This convergence enabled to
obtain Theorem 7 page 493.
Besides, recalling that the BBGKY and the Boltzmann hierarchies were ob-
tained from the distribution function of a system of N hard spheres, verifying
the Liouville equation, and the study of its sequence of marginals (see Section 2.1
page 65), it seems reasonable to work with initial data satisfying this ”marginal
relation”.
One will therefore introduce a definition for sequences of initial data of the
Boltzmann hierarchy that satisfy those two properties.

Definition 63 (Admissible Boltzmann data). For any positive integer s, let f
(s)
0

be a nonnegative function which is integrable and continuous over
(
Ωc × Rd

)s
.

The family
Ä
f

(s)
0

ä
s≥1

is said to be an admissible Boltzmann datum if :

• (marginal property) for all s ≥ 1 :∫
Ωc×Rd

f
(s+1)
0 (Zs, zs+1)dzs+1 = f

(s)
0 (Zs),
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• (boundary condition) for all s ≥ 1,

f
(s)
0 (Zs) = f

(s)
0 (χ0

s(Zs))

for all Zs belonging to the boundary of
(
Ωc ×Rd

)s
, that is such that there

exists at least an integer 1 ≤ i ≤ s such that xi · e1 = 0 and vi · e1 > 0,
with χ0

s introduced in Definition 11 page 79,

• there exist two numbers β0 > 0 and µ0 ∈ R, and for any positive integer N ,

a function f
(N)
N,0 such that if one defines the sequence

(
f

(s)
N,0

)
1≤s≤N defined

as, for any integer 1 ≤ s ≤ N :

f
(s)
N,0(Zs) =

∫
(Ωc×Rd)N−s

1ZN∈DεN f
(N)
N,0 dzs+1...dzN ,

all of the finite sequences of N initial data FN,0 = (f
(s)
N,0)1≤s≤N belong to

the space XN,ε,β0,µ0 (see Definition 25 page 207) with Nεd−1 = 1 and

sup
N≥1

∣∣∣∣∣∣(f (s)
N,0

)
1≤s≤N

∣∣∣∣∣∣
N,ε,β0,µ0

< +∞,

and for all positive integer s, the following convergence on Ωs holds :

f
(s)
N,0 −→

N→+∞
f

(s)
0 ,

locally uniformly.

The sequence of initial data
(
FN,0

)
N≥1

is called the associated sequence of

BBGKY initial data.

In particular, any solution of the Boltzmann hierarchy with initial data that are
admissible Boltzmann satisfy the convergence stated in Theorem 7 page 493.

16.1.2 Tensorized initial data

One gives here a crucial result stated in [34]2, which shows that the set of admis-
sible Boltzmann data is not empty. Actually, it even shows that the functional
spaces introduced in Section 7 page 205 provide a good setting to work on the
problem of convergence of the solutions of the BBGKY hierarchy to the solutions
of the Boltzmann hierarchy.

Proposition 20. Let β0 > 0 and µ0 ∈ R two real numbers. For any nonneg-
ative, normalized function f0 belonging to the space X0,1,β0

(see Definition 24
page 206) such that

eµ0 |f0|0,1,β0
≤ 1,

2See Section 6.1.2 ”Conditioning”, and Section 6.1.3 ”Characterization of admissible Boltz-
mann initial data”.
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the sequence of chaotic configurations
(
f⊗s0

)
s≥1

defined, for all positive integer
s as

f⊗s0 (Zs) =
s∏
i=1

f0(zi)

for all 1 ≤ s ≤ N , is a sequence of admissible Boltzmann data.

One does not rewrite the proof, since the reader may find it in [34]. One just
gives the main steps of the proof for the sake of completeness.
The result is based on the conditioning on energy surfaces (the reader may
refer to the sources already given in [34], namely [36] and [48]). One defines the
conditioned datum built on f0 as the function

f
(N)
N,0 : ZN 7→ Z−1

N 1ZN∈DεN f
⊗N
0 (ZN ),

with ZN denoting the function

ZN : ZN 7→
∫

(Ωc×Rd)N
1ZN∈DεN f

⊗N
0 (ZN ) dZN ,

and, for all 1 ≤ s ≤ N − 1, the marginals f
(s)
N,0 of the function f

(N)
N,0 . The se-

quence
(
FN
)
N≥1

, with FN =
(
f

(s)
N,0

)
1≤s≤N will then be an associated sequence

of BBGKY initial data to the sequence of initial data
(
f⊗s0

)
s≥1

. This result will

be a consequence of the two controls (16.1) and (16.2) below.

Since the initial datum f0 belongs to X0,1,β0 , the L1 norm in velocity of this
function is uniformly bounded in position, that is

f0 ∈ L∞
(
Ωcx, L

1
(
Rdv
))
.

One obtains first the following control :

1 ≤ Z−1
N ZN−s ≤

(
1− C(d)ε|f0|L∞(Ωc,L1(Rd))

)−s
, (16.1)

with C(d) a constant depending only on the dimension d, and decomposing :

f
(s)
N,0 = Z−1

N 1Zs∈Dεsf
⊗s
0

(
ZN−s −Z[(s+1,N)

)
(where Z[(s+1,N) is entirely defined since the expressions of f

(s)
N,0, f⊗s0 , ZN and

ZN−s are given), one finds in addition

0 ≤ Z−1
N Z

[
(s+1,N) ≤ C(d)sε|f0|L∞(Ωc,L1(Rd))

(
1− C(d)ε|f0|L∞(Ωc,L1(Rd))

)
,

(16.2)

with C(d) a constant depending only on the dimension d (and which is the same
as in (16.1)).
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One finds therefore :

0 ≤ 1Zs∈Dεsf
⊗s
0 − f (s)

N,0 ≤
((

1−Z−1
N ZN−s

)
+ Z−1

N Z
[
(s+1,N)

)
1Zs∈Dεsf

⊗s
0

≤
((

1− C(d)ε|f0|L∞(Ωc,L1(Rd))

)−s − 1

+C(d)sε|f0|L∞(Ωc,L1(Rd))

(
1− C(d)ε|f0|L∞(Ωc,L1(Rd))

))
1Zs∈Dεsf

⊗s
0 .

Since (
1− C(d)ε|f0|L∞(Ωc,L1(Rd))

)−s − 1 ∼
ε→0

C(d)sε|f0|L∞(Ωc,L1(Rd)),

one can bound the quantity
(
1− C(d)ε|f0|L∞(Ωc,L1(Rd))

)−s − 1 by

2C(d)sε|f0|L∞(Ωc,L1(Rd))

for ε small enough, so that

0 ≤ 1Zs∈Dεsf
⊗s
0 − f (s)

N,0 ≤ 3C(d)sε|f0|L∞(Ωc,L1(Rd)). (16.3)

In other words, one has obtained a control on the difference between the ten-
sorized sequence of initial data

(
f⊗s0

)
s≥1

and its associated sequence of BBGKY

initial data, which is given by the tensorized initial data themselves multiplied
by a constant converging to zero as ε→ 0, that is as N → +∞.
Here one provided only a sufficient condition for a sequence of initial data of
the Boltzmann hierarchy to obtain, for every s-th term (s ≥ 1) of the sequence,
the locally uniform converge on Ωs. In [34], the reader may in fact find a char-
acterization3.

16.1.3 Error coming from a tensorized sequence of initial
data

In the case of a tensorized sequence of initial data for the Boltzmann hierarchy,
it is possible to improve the results obtained in Lemmas 39 page 476 and 41
page 489, to obtain quantitative bounds.

Lemma 42 (Error coming from the divergence of the trajectories, quantitative
version for sequences of initial data obtained with a tensorization of a square
root Lipschitz function). Let s and n be two positive integers, β0 be a strictly
positive number and µ0 ∈ R be a real number. Then there exists a time T ′

satisfying 0 ≤ T ′ < T (where T is given by Theorem 6 page 259) such that the
following holds :
let f0 be a nonnegative, normalized function belonging to X0,1,β0

such that
√
f0 is

3See Proposition 6.1.1 and its proof in Section 6.1.3 ”Characterization of admissible Boltz-
mann initial data”.
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Lipschitz with respect to the position variable uniformly in the velocity variable.
Let K be a compact set of the domain of local uniform convergence Ωs.
Then, there exist five strictly positive numbers ε, ε0, α, γ and R (depending only
on the compact set K) such that for every strictly positive numbers R, δ, ε, a,
ε0, ρ, η and α which satisfy

ε ≤ ε, ε0 ≤ ε0, α ≤ α, max
(
16Rε/ε0, ε0/δ

)
≤ γ

and R ≥ R,
(16.4)

and
4
√

3a ≤ ε0, 3a ≤ ρ, ε0 ≤ ηδ, R ≥ 1, η ≤ 1 and α ≤ c(d),
with c(d) a constant depending only on the dimension d, and

2nε ≤ a,

(16.5)

one has that, in the Boltzmann-Grad limit N → +∞, Nεd−1 = 1, for s, n, R,
δ, a, ε0, η, ρ and α fixed, the following uniform convergence on the compact set
K, uniform on the time interval [0, T ′], of the sequence of the sum of the inter-
mediate elementary terms for the sequence of tensorized initial data

(
f⊗s0

)
s≥1

towards the sum of the elementary Boltzmann terms for the same sequence of
tensorized initial data

(
f⊗s0

)
s≥1

holds :∣∣∣∣∣
∣∣∣∣∣1K n∑

k=1

∑
Mk∈Mk

∑
Jk∈Jsk

(
J 0,δ
s,s+k−1
Mk,Jk

(U c, Ec)
(
f
⊗(s+k)
0 1|Vs+k|≤R

)
− J ε,δs,s+k−1

Mk,Jk

(U c, Ec)
(
f
⊗(s+k)
0 1|Vs+k|≤R

))
(Zs)

∣∣∣∣∣
∣∣∣∣∣
L∞

≤ C(d)(s+ n)2nR
ε

α

∣∣∇x√f0

∣∣
∞||F0||0,β0/2,µ0

.

(16.6)

It is important to notice here that the norm in the space X0,β0/2,µ0
of the

sequence of initial data appears in the right-hand side of the inequality of the
Lemma, and not the norm in the smaller space X0,β0,µ0 .

Proof. The proof of the lemma is very similar to the proof of Lemma 39 page
476. The only difference lies in the uniform control of the difference

f
(s+k)
0

(
Z0
s,k(0)

)
− f (s+k)

0

(
Zεs,k(0)

)
.

As in the proof of Lemma 39, one makes sure that, possibly with a small change
in position, one is comparing pseudo-trajectories with same velocities.
One denotes j1, . . . , jp the labels of the particles having different velocities at
time 0 after following the BBGKY and the Boltzmann pseudo-trajectories, and
tjl0 (for 1 ≤ l ≤ p) the times such that

x0,jl
s,k (tjl0 ) · e1 = 0.
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One has, following the notations of the proof of Lemma 39 :∣∣f (s+k)
0

(
Z0
s,k(0)

)
− f (s+k)

0

(
Zεs,k(0)

)∣∣
≤
∣∣∣f (s+k)

0

(
X0
s,k(0), V 0

s,k(0)
)
− f (s+k)

0

(
X0
s,k(tj10 ), V 0

s,k(0)
)∣∣∣

+

p−1∑
l=1

∣∣∣(f (s+k)
0

(
X0
s,k(tjl0 ), Vl+1

)
− f (s+k)

0

(
X0
s,k(t

jl+1

0 ), Vl+1

))∣∣∣
+
∣∣∣f (s+k)

0

(
X0
s,k(t

jp
0 ), V εs,k(0)

)
− f (s+k)

0

(
Xε
s,k(0), V εs,k(0)

)∣∣∣. (16.7)

Now one can use that the initial datum f
(s+k)
0 is tensorized. For example, for

the first term of the right-hand side of the last inequality (16.7), one writes∣∣∣f (s+k)
0

(
X0
s,k(0), V 0

s,k(0)
)
− f (s+k)

0

(
X0
s,k(tj10 ), V 0

s,k(0)
)∣∣∣

=
∣∣∣f0

(
x0,1
s,k(0), v0,1

s,k(0)
)
. . . f0

(
x0,s+k
s,k (0), v0,s+k

s,k (0)
)

− f0

(
x0,1
s,k(tj10 ), v0,1

s,k(0)
)
. . . f0

(
x0,s+k
s,k (tj10 ), v0,s+k

s,k (0)
)∣∣∣,

that is ∣∣∣f (s+k)
0

(
X0
s,k(0), V 0

s,k(0)
)
− f (s+k)

0

(
X0
s,k(tj10 ), V 0

s,k(0)
)∣∣∣

=
∣∣∣ s+k∏
l=1

f0

(
x0,l
s,k(0), v0,l

s,k(0)
)
−
s+k∏
l=1

f0

(
x0,l
s,k(tj10 ), v0,l

s,k(0)
)∣∣∣.

One now decomposes the first product as follows :

f0

(
x0,1
s,k(0), v0,1

s,k(0)
)
f0

(
x0,2
s,k(0), v0,2

s,k(0)
)
. . . f0

(
x0,s+k
s,k (0), v0,s+k

s,k (0)
)

= f0

(
x0,1
s,k(0), v0,1

s,k(0)
)
f0

(
x0,2
s,k(0), v0,2

s,k(0)
)
. . . f0

(
x0,s+k
s,k (0), v0,s+k

s,k (0)
)

− f0

(
x0,1
s,k(tj10 ), v0,1

s,k(0)
)
f0

(
x0,2
s,k(0), v0,2

s,k(0)
)
. . . f0

(
x0,s+k
s,k (0), v0,s+k

s,k (0)
)

+ f0

(
x0,1
s,k(tj10 ), v0,1

s,k(0)
)
f0

(
x0,2
s,k(0), v0,2

s,k(0)
)
. . . f0

(
x0,s+k
s,k (0), v0,s+k

s,k (0)
)
,

that is

s+k∏
l=1

f0

(
x0,l
s,k(0), v0,l

s,k(0)
)

=
(
f0

(
x0,1
s,k(0), v0,1

s,k(0)
)
− f0

(
x0,1
s,k(tj10 ), v0,1

s,k(0)
)) s+k∏

l=2

f0

(
x0,l
s,k(0), v0,l

s,k(0)
)

+ f0

(
x0,1
s,k(tj10 ), v0,1

s,k(0)
) s+k∏
l=2

f0

(
x0,l
s,k(0), v0,l

s,k(0)
)
,
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and now decomposing the second term, and so on, one obtains in the end :

s+k∏
l=1

f0

(
x0,l
s,k(0), v0,l

s,k(0)
)
−
s+k∏
l=1

f0

(
x0,l
s,k(tj10 ), v0,l

s,k(0)
)

=
s+k∑
m=1

ï m−1∏
lm=1

f0

(
x0,lm
s,k (tj10 ), v0,lm

s,k (0)
)

×
(
f0

(
x0,m
s,k (0), v0,m

s,k (0)
)
− f0

(
x0,m
s,k (tj10 ), v0,m

s,k (0)
))

×
s+k∏

lm=m+1

f0

(
x0,lm
s,k (0), v0,lm

s,k (0)
)ò
. (16.8)

For the first term

f0

(
x0,1
s,k(0), v0,1

s,k(0)
)
f0

(
x0,2
s,k(0), v0,2

s,k(0)
)
. . . f0

(
x0,s+k
s,k (0), v0,s+k

s,k (0)
)

− f0

(
x0,1
s,k(tj10 ), v0,1

s,k(0)
)
f0

(
x0,2
s,k(0), v0,2

s,k(0)
)
. . . f0

(
x0,s+k
s,k (0), v0,s+k

s,k (0)
)

obtained in the last decomposition (16.8), that is

(
f0

(
x0,1
s,k(0), v0,1

s,k(0)
)
− f0

(
x0,1
s,k(tj10 ), v0,1

s,k(0)
)) s+k∏

l=2

f0

(
x0,l
s,k(0), v0,l

s,k(0)
)
,

one writes :

∣∣∣(f0

(
x0,1
s,k(0), v0,1

s,k(0)
)
− f0

(
x0,1
s,k(tj10 ), v0,1

s,k(0)
)) s+k∏

l=2

f0

(
x0,l
s,k(0), v0,l

s,k(0)
)∣∣∣

≤
∣∣∣f0

(
x0,1
s,k(0), v0,1

s,k(0)
)
− f0

(
x0,1
s,k(tj10 ), v0,1

s,k(0)
)∣∣∣∣∣∣ s+k∏

l=2

f0

(
x0,l
s,k(0), v0,l

s,k(0)
)∣∣∣,

and now, in order to use the Lipschitz control on the square root of the initial
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data :∣∣∣(f0

(
x0,1
s,k(0), v0,1

s,k(0)
)
− f0

(
x0,1
s,k(tj10 ), v0,1

s,k(0)
)) s+k∏

l=2

f0

(
x0,l
s,k(0), v0,l

s,k(0)
)∣∣∣

≤
∣∣∣√f0

(
x0,1
s,k(0), v0,1

s,k(0)
)
−
√
f0

(
x0,1
s,k(tj10 ), v0,1

s,k(0)
)∣∣∣

×
(√

f0

(
x0,1
s,k(0), v0,1

s,k(0)
)

+
√
f0

(
x0,1
s,k(tj10 ), v0,1

s,k(0)
))

×
∣∣∣ s+k∏
l=2

f0

(
x0,l
s,k(0), v0,l

s,k(0)
)∣∣∣

≤
∣∣∇x√f0

∣∣
∞

∣∣x0,1
s,k(0)− x0,1

s,k(tj10 )
∣∣

×
(√

f0

(
x0,1
s,k(0), v0,1

s,k(0)
)

+
√
f0

(
x0,1
s,k(tj10 ), v0,1

s,k(0)
))

×
∣∣∣ s+k∏
l=2

f0

(
x0,l
s,k(0), v0,l

s,k(0)
)∣∣∣.

Then, one uses the fact that f0 ∈ X0,1,β0
, so in particular

√
f0 ∈ X0,1,β0/2, and

then∣∣∣(f0

(
x0,1
s,k(0), v0,1

s,k(0)
)
− f0

(
x0,1
s,k(tj10 ), v0,1

s,k(0)
)) s+k∏

l=2

f0

(
x0,l
s,k(0), v0,l

s,k(0)
)∣∣∣

≤
∣∣∇x√f0

∣∣
∞

∣∣x0,1
s,k(0)− x0,1

s,k(tj10 )
∣∣

× 2 exp
(
− β0

4

∣∣v0,1
s,k(0)

∣∣2) exp
(
− β0

2

s+k∑
l=2

∣∣v0,l
s,k(0)

∣∣2).
One now needs to obtain an explicit control on the time tj10 .

One knows that x0,1
s,k(tj10 ) and xε,1s,k(tj10 ) are separated by a distance smaller than

2kε (thanks to Lemma 38 page 449). But since the velocities of the pseudo-
trajectories are not grazing, one has

∣∣v0,1
s,k(tj10 ) · e1

∣∣ =
∣∣vε,1s,k(tj10 ) · e1

∣∣ ≥ α (thanks

to the cut-off in pathological adjunction parameters), where tj10 is the time of
bouncing of the particle j1 following the Boltzmann pseudo-trajectory. If one
denotes tj1ε the time of bouncing of the same particle following the BBGKY
pseudo-trajectory, one has

xε,j1s,k (tj10 ) · e1 ≤ 2kε,

and since by definition xε,j1s,k (tj1ε ) · e1 = ε/2, and using the fact that

xε,j1s,k (tj1ε ) = xε,j1s,k (tj10 ) + (tj1ε − t
j1
0 )vε,j1s,k (tj1ε ),

this implies that∣∣tj1ε − tj10 ∣∣ =

∣∣(xε,j1s,k (tj1ε )− xε,j1s,k (tj10 )) · e1

∣∣∣∣vε,j1s,k (tj1ε ) · e1

∣∣ ≤ 2kε+ ε/2

α
.



512 CHAPTER 16. LANFORD’S THEOREM

By definition, the particle j1 does not have the same velocity following the
Boltzmann or the BBGKY hierarchy, which means that the final time 0 lies in
the time interval bounded by the two times of bouncing of this particle j1 for
each of the two pseudo-trajectories. This provides the control on the times tjl0 :

tjl0 ≤
2k + 1/2

α
ε,

and then, using the fact that the norms of the velocities of all the particles of
the system are bounded by R :∣∣x0,1

s,k(0)− x0,1
s,k(tj10 )

∣∣ ≤ 2k + 1/2

α
εR.

For the sum which is the second term of the right-hand side of the inequality
(16.7), one obtains exactly the same bound on each term of the decomposition,
but with a slight difference : ∣∣x0,1

s,k(0)− x0,1
s,k(tj10 )

∣∣
has to be replaced by ∣∣x0,1

s,k(tjl0 )− x0,1
s,k(t

jl+1

0 )
∣∣,

this term being controlled by∣∣tjl+1

0 − tjl0
∣∣R ≤ 2

2k + 1/2

α
εR

(the only difference with the previous case is a factor 2).
The last term of the right-hand side of the inequality (16.7)∣∣∣f (s+k)

0

(
X0
s,k(t

jp
0 ), V εs,k(0)

)
− f (s+k)

0

(
Xε
s,k(0), V εs,k(0)

)∣∣∣
=
∣∣∣f0

(
x0,1
s,k(t

jp
0 ), vε,1s,k(0)

)
f0

(
x0,2
s,k(t

jp
0 ), vε,2s,k(0)

)
. . . f0

(
x0,s+k
s,k (t

jp
0 ), vε,s+ks,k (0)

)
− f0

(
xε,1s,k(0), vε,1s,k(0)

)
f0

(
xε,2s,k(0), vε,2s,k(0)

)
. . . f0

(
xε,s+ks,k (0), vε,s+ks,k (0)

)∣∣∣
that is : ∣∣∣ s+k∏

l=1

f0

(
x0,l
s,k(t

jp
0 ), vε,ls,k(0)

)
−
s+k∏
l=1

f0

(
xε,ls,k(0), vε,ls,k(0)

)∣∣∣
can be also decomposed as :

s+k∑
m=1

ï m−1∏
lm=1

f0

(
xε,lms,k (0), vε,lms,k (0)

)
×
(
f0

(
x0,m
s,k (t

jp
0 ), vε,ms,k (0)

)
− f0

(
xε,ms,k (0), vε,ms,k (0)

))
×

s+k∏
lm=m+1

f0

(
x0,lm
s,k (t

jp
0 ), vε,lms,k (0)

)ò
.
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Now decomposing

∣∣∣f0

(
x0,m
s,k (t

jp
0 ), vε,ms,k (0)

)
− f0

(
xε,ms,k (0), vε,ms,k (0)

)∣∣∣
as

(∣∣∣f0

(
x0,m
s,k (t

jp
0 ), vε,ms,k (0)

)
− f0

(
x0,m
s,k (0), vε,ms,k (0)

)∣∣∣
+
∣∣∣f0

(
x0,m
s,k (0), vε,ms,k (0)

)
− f0

(
xε,ms,k (0), vε,ms,k (0)

)∣∣∣),
one finds

∣∣∣ s+k∏
l=1

f0

(
x0,l
s,k(t

jp
0 ), vε,ls,k(0)

)
−
s+k∏
l=1

f0

(
xε,ls,k(0), vε,ls,k(0)

)∣∣∣
≤

s+k∑
m=1

∣∣∣f0

(
x0,m
s,k (t

jp
0 ), vε,ms,k (0)

)
− f0

(
x0,m
s,k (0), vε,ms,k (0)

)∣∣∣
×
( m−1∏
lm=1

∣∣f0

(
xε,lms,k (0), vε,lms,k (0)

)∣∣)( s+k∏
lm=m+1

∣∣f0

(
x0,lm
s,k (t

jp
0 ), vε,lms,k (0)

)∣∣)

+
s+k∑
m=1

∣∣∣f0

(
x0,m
s,k (0), vε,ms,k (0)

)
− f0

(
xε,ms,k (0), vε,ms,k (0)

)∣∣∣
×
( m−1∏
lm=1

∣∣f0

(
xε,lms,k (0), vε,lms,k (0)

)∣∣)( s+k∏
lm=m+1

∣∣f0

(
x0,lm
s,k (t

jp
0 ), vε,lms,k (0)

)∣∣).
The first term of the right-hand side of the last inequality is controlled as the
first term of the inequality (16.7), while the second one is directly controlled
thanks to Lemma 38 page 449.
Gathering all those results concerning the first decomposition of the proof :

∣∣f (s+k)
0

(
Z0
s,k(0)

)
− f (s+k)

0

(
Zεs,k(0)

)∣∣
≤
∣∣∣f (s+k)

0

(
X0
s,k(0), V 0

s,k(0)
)
− f (s+k)

0

(
X0
s,k(tj10 ), V 0

s,k(0)
)∣∣∣

+

p−1∑
l=1

∣∣∣(f (s+k)
0

(
X0
s,k(tjl0 ), Vl+1

)
− f (s+k)

0

(
X0
s,k(t

jl+1

0 ), Vl+1

))∣∣∣
+
∣∣∣f (s+k)

0

(
X0
s,k(t

jp
0 ), V εs,k(0)

)
− f (s+k)

0

(
Xε
s,k(0), V εs,k(0)

)∣∣∣,
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one obtains∣∣f (s+k)
0

(
Z0
s,k(0)

)
− f (s+k)

0

(
Zεs,k(0)

)∣∣
≤
(∣∣∇x√f0

∣∣
∞(s+ k)

2k + 1/2

α
εR

× 2 exp
(
− β0

4

∣∣v0,1
s,k(0)

∣∣2) exp
(
− β0

2

s+k∑
l=2

∣∣v0,l
s,k(0)

∣∣2))
+ (p− 1)

(∣∣∇x√f0

∣∣
∞2(s+ k)

2k + 1/2

α
εR

× 2 exp
(
− β0

4

∣∣v0,1
s,k(0)

∣∣2) exp
(
− β0

2

s+k∑
l=2

∣∣v0,l
s,k(0)

∣∣2))
+
(∣∣∇x√f0

∣∣
∞(s+ k)

2k + 1/2

α
εR

× 2 exp
(
− β0

4

∣∣v0,1
s,k(0)

∣∣2) exp
(
− β0

2

s+k∑
l=2

∣∣v0,l
s,k(0)

∣∣2)
+
∣∣∇x√f0

∣∣
∞(s+ k)kε

× 2 exp
(
− β0

4

∣∣v0,1
s,k(0)

∣∣2) exp
(
− β0

2

s+k∑
l=2

∣∣v0,l
s,k(0)

∣∣2)),
or again∣∣f (s+k)

0

(
Z0
s,k(0)

)
− f (s+k)

0

(
Zεs,k(0)

)∣∣ ≤ ∣∣∇x√f0

∣∣
∞(s+ k)

(
2p

2k + 1/2

α
Rε+ kε

)
× 2 exp

(
− β0

4

∣∣v0,1
s,k(0)

∣∣2) exp
(
− β0

2

s+k∑
l=2

∣∣v0,l
s,k(0)

∣∣2).
The number p depends on the pseudo-trajectory, but is bounded by definition
by s+ k, so finally one bounded uniformly the difference∣∣f (s+k)

0

(
Z0
s,k(0)

)
− f (s+k)

0

(
Zεs,k(0)

)∣∣
by the constant

2
∣∣∇x√f0

∣∣
∞(s+ k)

(
2(s+ k)

2k + 1/2

α
Rε+ kε

)
,

multiplied by the gaussian weight

exp
(
− β0

4

∣∣v0,1
s,k(0)

∣∣2) exp
(
− β0

2

s+k∑
l=2

∣∣v0,l
s,k(0)

∣∣2)
≤ exp

(
− β0

4

∣∣v0,1
s,k(0)

∣∣2) exp
(
− β0

4

s+k∑
l=2

∣∣v0,l
s,k(0)

∣∣2).
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The conservation of the kinetic energy along the pseudo-trajectories enables to
write then

exp
(
− β0

4

∣∣v0,1
s,k(0)

∣∣2) exp
(
− β0

4

s+k∑
l=2

∣∣v0,l
s,k(0)

∣∣2) = exp
(
− β0

4

∣∣Vs+k∣∣2).
The inequality of the lemma is therefore obtained using the contracting prop-
erty of the integrated in time transport-collision-operator. However, one has to
be careful here : the time interval [0, T ] on which Theorem 6 page 259 pro-
vides the existence and uniqueness of respective solutions of the Boltzmann and
BBGKY hierarchies, for initial data in X·,β0,µ0

, depends strongly on β0. Here,
the gaussian weight obtained is not an element of this functional space X·,β0,µ0 ,
but belongs to the larger space X·,β0/2,µ0

. The integrated in time transport-
collision-transport operator is still a contracting map for initial data taken in
this space, but the time interval on which holds this contracting property is
smaller (see the proof of Lemma 23 page 255 for the method to obtain this time
interval). This explains the change in the time interval stated in the lemma.

Remark 47. One notices that one used in the previous lemma, in addition
to a gaussian control in velocity on the initial datum f0, an assumption on a
Lipschitz control on the square root of this function f0. Another way to obtain a
similar result as the control of the Lemma 42 is to ask instead a gaussian control
in velocity on the gradient in position of f0. In fact, this other assumption is
implied by the first one. Indeed, for a function f0 with a Lipschitz control on its
square root, one has :

∇xf0 = ∇x
(√

f0

√
f0

)
= 2
√
f0∇x

(√
f0

)
≤ 2
∣∣∇x(√f0

)∣∣
∞

√
f0,

where of course
√
f0 is controlled by a gaussian in velocity, since f0 is also

controlled in the same way by hypothesis.

Lemma 43 (Error coming from the substitution of the initial data and the
removal of the prefactors, quantitative version for tensorized sequences of initial
data). Let s and n be two positive integers, β0 be a strictly positive number and
µ0 ∈ R be a real number.
Let f0 be a nonnegative, normalized function belonging to ∈ X0,1,β0

and let K
be compact set of the domain of local uniform convergence Ωs.
Then, there exist five strictly positive numbers ε, ε0, α, γ and R (depending only
on the compact set K) such that for every strictly positive numbers R, δ, ε, a,
ε0, ρ, η and α which satisfy

ε ≤ ε, ε0 ≤ ε0, α ≤ α, max
(
16Rε/ε0, ε0/δ

)
≤ γ

and R ≥ R,
(16.9)
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and
4
√

3a ≤ ε0, 3a ≤ ρ, ε0 ≤ ηδ, R ≥ 1, η ≤ 1 and α ≤ c(d),
with c(d) a constant depending only on the dimension d, and

2nε ≤ a,

(16.10)

one has that, for all positive integer N in the Boltzmann-Grad limit N → +∞,
Nεd−1 = 1, for s, n, R, δ, a, ε0, η, ρ and α fixed, the following uniform
convergence on the compact set K, and uniform on the time interval [0, T ],
of the sequence of the sum of the elementary BBGKY terms for the sequence
of initial data

(
FN,0

)
N≥0

associated sequence of initial data to the sequence of

tensorized initial data
(
f⊗s0

)
s≥1

(with FN,0 =
(
f

(s)
N,0

)
1≤s≤N ), towards the sum

of the intermediate elementary terms for the sequence of tensorized initial data(
f⊗s0

)
s≥1

holds :∣∣∣∣∣
∣∣∣∣∣1K n∑

k=1

∑
Mk∈Mk

∑
Jk∈Jsk

(
J ε,δs,s+k−1

Mk,Jk

(U c, Ec)
(
f
⊗(s+k)
0 1|Vs+k|≤R

)
− JN,ε,δs,s+k−1

Mk,Jk

(U c, Ec)
(
f

(s+k)
N,0 1|Vs+k|≤R

))
(Zs)

∣∣∣∣∣
∣∣∣∣∣
L∞

≤ C(d)(s+ n)ε
∣∣f0

∣∣
L∞(Ωc,L1(Rd))

||F0||0,β0,µ0
.

(16.11)

Proof. The lemma is an immediate consequence of the control (16.3) page 507,
which bounds the integrand of each difference of elementary terms by a quantity
going to zero as N goes to infinity multiplied by the tensorized initial datum,
belonging to X0,β0,µ0

, space on which the integrated in time collision-transport
operator is a contracting map.

16.2 The final result

With the additional assumptions of Section 16.1, it is possible to obtain Lan-
ford’s theorem, which is a quantitative version of Theorem 7 page 493, for a
smaller class of initial data.
This smaller class of initial data is composed of tensorized initial data. One
knows in particular (see [25]4), as it was already noticed in Section 3.2, that if f
is a solution of the Boltzmann equation with initial datum f0, then

(
f⊗s

)
s≥1

is

a solution of the Boltzmann hierarchy with initial data
(
f⊗s0

)
s≥1

. Therefore, the

following result can be applied in this particular setting, and for the case s = 1,
it provides a rigorous derivation of the Boltzmann equation, with in addition an
explicit rate of convergence of the one particle distribution of a system of hard
spheres towards the solution of the Boltzmann equation.

4In particular, one can refer to the first section of Chapter IV : ”Introduction : On the
Boltzmann-Grad limit”.



16.2. THE FINAL RESULT 517

Theorem 8 (Lanford’s theorem in the half-space). Let β0 be a strictly positive
number and µ0 be a real number. Then there exist two times 0 ≤ T ′ < T such
that the following holds :
let f0 be a nonnegative normalized function belonging to X0,1,β0

which satisfies

|f0|0,1,β0
≤ exp(−µ0)

and such that
√
f0 is Lipschitz with respect to the position variable uniformly in

the velocity variable.
Then if one considers the solution F =

(
f (s)

)
s≥1

on [0, T ] of the Boltzmann

hierarchy with the tensorized initial datum F0 =
(
f⊗s0

)
s≥1

, and if one con-

siders for every positive integer N the solution FN =
(
f

(s)
N

)
s≥1

on [0, T ] of the

BBGKY hierarchy with the initial datum FN,0 =
(
f

(s)
N,0

)
1≤s≤N , where

(
FN,0

)
N≥0

is the sequence of initial data associated to the sequence of tensorized initial data(
f⊗s0

)
s≥1

, (the time T and the solutions are provided by Theorem 6 page 259),

one has that, in the Boltzmann-Grad limit N → +∞, Nεd−1 = 1, for every
positive integer s, the following locally uniform convergence on the domain of
local uniform convergence Ωs, uniform on the time interval [0, T ′], holds :

f
(s)
N −→

N→+∞
f (s),

moreover, whatever the dimension d is, the rate of convergence is of order O(εγ),
for all γ ∈ ]0, 13/128[.

The functional space X0,1,β0
quoted in the statement of the theorem is intro-

duced in Definition 24 page 206, and the domain of local uniform convergence
Ωs is introduced in Definition 53 page 392.

Remark 48. One can notice that the time interval on which holds the conver-
gence of f

(s)
N towards f (s) is smaller than the time interval on which the solutions

of the Boltzmann and the BBGKY hierarchies exist simultaneously. This loss in
the length of the time interval comes from Lemma 42 page 507 : in order to use
in a quantitative way the control of the difference between the pseudo-trajectories
of the two hierarchies, one has to consider the difference

∣∣√f0(z1)−
√
f0(z2)

∣∣ if
one wants to take advantage of the Lipschitz control holding on

√
f0.

One cannot directly use a Lipschitz control on the difference |f0(z1) − f0(z2)|,
since it is mandatory to keep a term fa0 (z1) . . . fa0 (zs+k) on which the integrated
in time collision-transport operator acts, with 0 < a, in order to use the con-
tracting property of this operator. But therefore, taking a < 1 implies that one
has to relax the weight β defining the space X0,1,β in which fa0 lies (necessarily
smaller than the weight β0 such that f0 ∈ X0,1,β0

). As a consequence, this re-
laxation reduces the length of the time interval [0, T ′] such that the integrated in

time collision-transport operator is a contracting mapping on the space ‹X
0,β̃,µ̃1 ,

with β̃ : [0, T ′] → R∗+ and β̃(0) = β (see Definition 30 page 212 for the intro-

duction of the time-dependent weighted spaces ‹X
0,β̃,µ̃1 , and Section 8.3 page 254
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for the link between those functional spaces and the contracting property of the
integrated in time collision-transport operator).

Proof of Theorem 8. The main difference with Theorem 7 is that, here, one is
looking for an explicit rate of convergence. So back to the proof of this theorem,
one had to find, for any compact set of the domain of local uniform convergence
Ωs, truncation parameters n, R, δ, a, ε0, ρ η and α fulfilling on the one hand
the conditions :

R ≥ 1, (16.12)

2ε ≤ a, 4
√

3a ≤ ε0, ε0 ≤ ηδ, η ≤ 1, 3a ≤ ρ and α ≤ c(d), (16.13)

where c(d) denotes a positive constant depending only on the dimension d, and

2nε ≤ a, (16.14)

and on the other hand the conditions :

K ⊂ ∆s

(
ε,R, ε0, α,max(16Ra/ε0, ε0/δ)

)
, (16.15)

in order to apply the different lemmas used to compare properly the solutions
of the two hierarchies. Besides, the truncation parameters were chosen in such
a way that the errors obtained thanks to those lemmas were arbitrarily small.
Namely, for example in the case of the BBGKY hierarchy, the errors were con-
trolled by the inequalities (15.3) page 495, (15.5) page 495, (15.7) page 496 and
(15.11) page 496.

If all the truncation parameters are written as functions of ε, and if in addition
one has

n(ε)ε

a(ε)
−→
ε→0

0,
a(ε)

ε0(ε)
−→
ε→0

0,
ε0(ε)

η(ε)δ(ε)
−→
ε→0

0,

ε0(ε)

δ(ε)
−→
ε→0

0,
a(ε)

ρ(ε)
−→
ε→0

0, α(ε) −→
ε→0

0 and R(ε) −→
ε→0

+∞,

all the conditions (16.12), (16.13), (16.15) and (16.15) will hold for ε small
enough. Following [34], one will therefore choose such functions of ε, such that
the errors go to zero as ε goes to zero, with an explicit rate.
Choosing n = C5

∣∣ log(ε)
∣∣ with C5 a strictly positive constant, the right-hand

side of the inequality (15.3) controlling the first error becomes(1

2

)−C5 log(ε)(
sup
N≥1
||FN,0||N,ε,β0,µ1

0

)
= exp

(
− C5 log(ε) log(1/2)

)(
sup
N≥1
||FN,0||N,ε,β0,µ1

0

)
= exp

(
log(2)C5 log(ε)

)(
sup
N≥1
||FN,0||N,ε,β0,µ1

0

)
=
(

sup
N≥1
||FN,0||N,ε,β0,µ1

0

)
εlog(2)C5 .
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Choosing R =
»
C6

∣∣ log(ε)
∣∣, the right-hand side of (15.5) becomes

C1 exp
(
C2C6 log(ε)

)(
sup
N≥1
||FN,0||N,ε,β0,µ1

0

)
= C1

(
sup
N≥1
||FN,0||N,ε,β0,µ1

0

)
εC2C6 .

It is now possible to choose all the other truncation parameters as powers of ε
and

∣∣ log(ε)
∣∣ such that in the end the sum of the errors is controlled by a power

of ε.
There are several restrictions on the rate of convergence coming from the inter-
mediate lemmas. On the one hand, the right-hand side of (15.7) is given by a
square root of δ, but δ has to be larger ε0, itself larger than ε. Moreover ε0 has
to be smaller than ηδ. The rate of convergence cannot be better than ε1/2. On
the other hand, this rate is at most the rate of convergence of α1/8 (due to the
right-hand side of (15.11)), but α has to be larger than ρ (otherwise the term
ρ/α in (15.11) wouldn’t be controlled), itself larger than a, and then larger than
ε. Therefore, one cannot obtain a rate of convergence better than ε1/8.

Choosing

δ = ε1/2
∣∣ log(ε)

∣∣3,
a = ε

∣∣ log(ε)
∣∣2,

ε0 = ε3/4
∣∣ log(ε)

∣∣2,
η = ε1/4,

ρ = ε15/16
∣∣ log(ε)

∣∣2,
α = ε13/16

∣∣ log(ε)
∣∣2,

one obtains the rate of convergence claimed in the theorem, since the last error
terms, which were not quantitatively studied in Theorem 7, are controlled in the
present case by Lemmas 42 page 507 and 43 page 515. The rate of convergence
of Lemma 42 is O(εγ1) for every γ1 < 3/16 if α is chosen as ε13/16| log(ε)|2, and
the rate of convergence of Lemma 43 is O(εγ2), for every γ2 < 1.

Remark 49. The limitation in the rate of convergence comes from, essentially,
the geometric estimates, and in particular from Lemmas 30 page 370 and 31
page 380. Those estimates are clearly not optimal, and therefore the limitation
in the final rate of convergence obtained in the previous theorem is of technical
nature. Nevertheless, it would be surprising to recover the rate of convergence
O(ε).
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[6] Alexander V. Bobylev, José A. Carrillo, and Irene M. Gamba. On some
properties of kinetic and hydrodynamic equations for inelastic interactions.
Journal of Statistical Physics, 98(3-4):743–773, 2000.

[7] Alexander V. Bobylev and Carlo Cercignani. On the rate of entropy pro-
duction for the Boltzmann equation. Journal of statistical physics, 94(3-
4):603–618, 1999.

[8] Thierry Bodineau, Isabelle Gallagher, and Laure Saint-Raymond. The
Brownian motion as the limit of a deterministic system of hard-spheres.
Inventiones mathematicae, 203(2):493–553, 2016.

[9] Thierry Bodineau, Isabelle Gallagher, Laure Saint-Raymond, and Sergio
Simonella. One-sided convergence in the Boltzmann-Grad limit. arXiv
preprint arXiv:1612.03722, 2016.
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[43] Frédéric Hérau, Daniela Tonon, and Isabelle Tristani. Cauchy theory and
exponential stability for inhomogeneous Boltzmann equation for hard po-
tentials without cut-off. arXiv preprint arXiv:1710.01098, 2017.

[44] David Hilbert. Mathematical problems. Bull. Amer. Math. Soc., 8(10):437–
479, 1902.

[45] Mark Kac. Foundations of kinetic theory. In Proceedings of The third
Berkeley symposium on mathematical statistics and probability, volume 3,
pages 171–197. University of California Press Berkeley and Los Angeles,
California, 1956.

[46] John G. Kirkwood. The statistical mechanical theory of transport processes
i. General theory. The Journal of Chemical Physics, 14(3):180–201, 1946.
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[60] Kōhei Uchiyama. Derivation of the Boltzmann equation from particle dy-
namics. Hiroshima mathematical journal, 18(2):245–297, 1988.

[61] Seiji Ukai. On the existence of global solutions of mixed problem for non-
linear Boltzmann equation. Proceedings of the Japan Academy, 50(3):179–
184, 1974.

[62] Seiji Ukai. Les solutions globales de l’équation de Boltzmann dans l’espace
tout entier et dans le demi-espace. CR Acad. Sci. Paris Ser. AB, 282:317–
320, 1976.

[63] Seiji Ukai. The Boltzmann-Grad limit and Cauchy-Kovalevskaya theorem.
Japan journal of industrial and applied mathematics, 18(2):383, 2001.

[64] Cédric Villani. A review of mathematical topics in collisional kinetic theory.
Handbook of mathematical fluid dynamics, 1(71-305):3–8, 2002.

[65] Cédric Villani. Cercignani’s conjecture is sometimes true and always almost
true. Communications in mathematical physics, 234(3):455–490, 2003.

[66] Cédric Villani. Hypocoercivity. Memoirs of the American Mathematical
Society, 202(950), 2009.
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Wärmetheorie. Annalen der Physik, 293(3):485–494, 1896.


