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Avant-propos

La science a besoin de la médiation scientifique et la médiation scientifique de la science.
Bien qu’il existe des centres de culture scientifique, technique et industrielle (CCSTI) il
reste beaucoup de progrès à faire dans la transmission et vulgarisation de la science.

La recherche est de manière générale assez innaccessible aux curieux, par la diffi-
culté d’accès aux livres et journaux scientifiques, la barrière de la langue et surtout le
niveau de compétences nécessaires pour comprendre le sujet abordé. Même s’il existe des
journalistes et des revues de vulgarisation, ceci est loin d’être suffisant et représentatif
de la recherche scientifique, les sujets de ces journaux étant souvent choisis pour leur
attrait et leur potentiel vendeur. Il est nécessaire de développer la médiation scientifique
au quotidien. D’une part pour sensibiliser le public à l’importance de la recherche aussi
bien fondamentale qu’appliquée et d’autre part pour le simple plaisir d’ouvrir le public
à des connaissances que d’aucuns considèrent comme peu accessibles.

Pour toutes ces raisons, ainsi que pour ma propre expérience personnelle et profes-
sionnelle, je tiens à ce que cette thèse soit accessible à des non inités, à des étudiants
venant d’autres filières mais aussi je l’espère, à n’importe quel curieux de sciences. Ce-
pendant je ne souhaite pas non plus maltraîter l’exercice de la thèse, et donc il est im-
portant pour moi de garder un corps susceptible d’intéresser les scientifiques rattachés
à ce domaine d’étude. C’est pourquoi il y a deux niveaux de lecture dans ce manuscrit,
chacun rattaché à une langue. Le français est réservé à la médiation scientifique autour
de cette thèse. Pour cela, à chaque début de chapitre se trouve un résumé d’une page
maximum, permettant aux curieux de se faire une idée de la recherche effectuée pendant
ces trois années. L’anglais quant à lui est consacré à tout le corps de la thèse et traite
du sujet de façon attendue pour cet exercice universitaire.

Chaque chapitre est également agrémenté d’un dessin, un cartoon, en lien avec le
sujet du chapitre en question. Outre l’aspect décoratif, ce choix est pour moi un autre
moyen de m’exercer à communiquer la science, car chacun sait qu’une belle image attire
l’œil, et qu’un schéma bien conçu remplace quantité de texte.

Enfin, pour que cette thèse puisse servir à des étudiants ou chercheurs voulant re-
produire nos résultats, j’ai tenu à donner non seulement mes paramètres expérimentaux
mais aussi expliquer en détail le procédé de traîtement des données. C’est pourquoi les
scripts principaux utilisés dans cette étude sont expliqués en détails. Leur compréhension
approfondie n’est cependant pas indispensable pour l’analyse des résultats.

La thèse est un exercice de recherche, mais aussi de communication. Ma manière de
le traîter n’est peut-être pas conventionnelle, mais c’est la façon la plus pertinente pour
moi, pour mes convictions et mon parcours professionnel de mener à bien ce travail. Sur
ces mots, je vous souhaite une bonne lecture.
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Abstract

The impact of a planet in formation with the proto-Earth, also known as the Giant
Impact, is now the main hypothesis for the Moon formation. Nevertheless, there are
still discrepancies between the impact simulations and the observations of the current
Earth-Moon system. To improve their models, geophysicists need a better understanding
of geological materials not only at high pressures and high temperatures, typical of
impacts, but also at low pressures and high temperatures, typical of the debris disc that
follows the impact. Since this latter region cannot be reached by experiments we use
here ab-initio molecular dynamics simulations.

We work on feldspars, with formula (Ca,K,Na)(Al,Si)4O8, as they represent the
major mineral component of the crust of terrestrial bodies. Using the VASP® code
for numerical experiments and the home-made UMD package for post-processing, we
obtain structural, transport and thermodynamic data on a wide range of temperatures
(2000–7000 K) and densities (0.5–6 g cm−3).

The three feldspar end-members display a critical density between 0.4 and 0.9 g cm−3

and critical temperatures as follows: 5000 K < TK < 5500 K, 6000 K < TNa < 6500 K
and 7000 K < TCa < 7500 K. At low densities and below the critical temperatures, we
can identify the start of gas bubble nucleation. The vaporization is incongruent, the
gas is mostly made of free Na or K and of SiO, SiO2 or O2 molecules. There is an O2

degassing of the fluids above 4000 K at all densities.
Our study at very high temperatures and pressures tells us that impacts in a cold

crust would at most melt the crust, whereas impacts in a hot crust or in a magma ocean
would completely bring the crust into supercritical state.
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Ma thèse en 1 page

L’hypothèse majeure pour la formation de la Lune est celle d’un Impact Géant entre deux
planètes en formation, généralement appelées Théïa et Gaïa. L’agglomération du disque
de débris résultant aurait ensuite formé la Lune. Cependant aucune des simulations
d’impacts ne permet de reproduire totalement les observations du système Terre-Lune
actuel. Une solution à ce problème pourrait être d’améliorer notre compréhension des
propriétés des différents minéraux, non seulement à hautes pressions et hautes tempé-
ratures (typiques des impacts), mais aussi à basses pressions et hautes températures
(typiques de l’état du disque dans l’espace).

Comme les expériences en laboratoire ne permettent pas d’atteindre ces dernières
conditions, nous réalisons ici des expériences numériques. Nous travaillons sur les feld-
spaths, les minéraux les plus abondants dans les croûtes lunaire et terrestre. Il existe
une multitude de compositions différentes de feldspaths, ici nous nous limitons aux trois
compositions extrêmes idéales : NaAlSi3O8, KAlSi3O8 et CaAl2Si2O8. Au moyen d’un
ensemble de codes informatiques appelé VASP® nous obtenons de nombreuses données
sur les trois feldspaths pour des températures allant d’environ 2000 à 20 000 ◦C et des
masses volumiques entre 0.5 et 6 g cm−3. Les codes du « package » UMD développés
pendant ces trois années au sein de l’équipe permettent l’analyse de ces données.

Ces expériences numériques permettent de construire un diagramme de phases indi-
catif pour chacun des feldspaths étudiés. Nous avons visuellement identifié les conditions
de pressions et températures pour lesquelles le liquide se vaporise (des bulles de gaz ap-
paraissent). Ce gaz semble être constitué majoritairement d’atomes libres Na et K, mais
aussi de petites molécules comme SiO, SiO2 ou O2. Nous avons également estimé la
température critique. En dessous de cette température il est possible de voir un change-
ment de phase liquide-gaz, mais au-dessus nous trouvons un fluide unique appelé fluide
supercritique. Cette température est estimée entre 5250 ◦C et 5750 ◦C pour KAlSi3O8,
entre 6250 ◦C et 6750 ◦C pour NaAlSi3O8 et entre 7250 ◦C et 7750 ◦C pour CaAl2Si2O8.

Les propriétés des feldspaths à très hautes pressions (jusqu’à 4 000 000 de fois la pres-
sion atmosphérique) et températures (jusqu’à 20 000 ◦C) nous permettent d’estimer l’état
physique qu’une croûte planétaire composée de feldspaths pourrait avoir lors d’impacts
météoritiques. Lorsque l’impact se produit sur une croûte froide (entre le zéro absolu et
les conditions atmosphériques classiques) il pourrait au maximum faire fondre la croûte.
Au contraire, lorsque l’impact a lieu sur une croûte chaude voire fondue (2200 ◦C et
plus) il pourrait transformer toute la croûte en fluide supercritique.

Si c’était bien le cas de l’Impact Géant qui a formé la Lune, alors ce fluide super-
critique ainsi créé pourrait permettre de résoudre bien des problèmes de composition
chimique que les simulations d’Impact Géant présentent.
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Il faut un début à tout

Depuis 1969 et les premières missions Apollo, les hypothèses et études sur la formation
de la Lune se sont multipliées considérablement. Dans les années 70-80 on comptait
trois scénarios majeurs pour la formation de la Lune : la fission, l’accrétion binaire et
la capture (Wood, 1986). À partir de 1984 c’est l’hypothèse d’un Impact Géant entre
deux planètes en formation qui devient le scénario le plus accepté. Selon les modèles
d’impacts « canoniques », une planète en formation de la taille de Mars (appelée Théïa)
frappe la proto-Terre (appelée Gaïa). Le disque de débris résultant, à partir duquel se
forme la Lune, proviendrait en majorité de l’impacteur.

Suite à l’incompatibilité des modèles d’impacts canoniques avec les mesures pré-
cises de composition chimique des échantillons lunaires, les modèles d’impacts de haute
énergie et/ou haut moment angulaire apparaissent (ex. Canup, 2012; Ćuk and Stewart,
2012; Reufer et al., 2012). Comme ils ne sont toujours pas totalement satisfaisants de
nouveaux modèles continuent à être développés (ex. Hosono et al., 2019; Lock et al.,
2018).

Nous pensons que la découverte du modèle « parfait » d’Impact Géant passe par une
meilleure compréhension des propriétés des minéraux, non seulement à hautes pressions
et hautes températurse (typiques des impacts), mais aussi à basses pressions et hautes
températures (typiques de l’état du disque dans l’espace). Comme les expériences en
laboratoire ne permettent pas d’atteindre ces dernières conditions, nous réalisons ici des
expériences numériques. Les deux seules études à basses densités et hautes températures
qui ont déjà été réalisées ont étudié des compositions très simples : SiO2 (Green et al.,
2018) et MgSiO3 (Xiao and Stixrude, 2018).

Nous avons donc décidé de travailler sur des minéraux plus complexes : les feldspaths.
Ce sont les minéraux les plus abondants dans les croûtes lunaire et terrestre. Il existe
une multitude de compositions différentes de feldspaths, ici nous nous limitons aux
trois compositions extrêmes idéales : NaAlSi3O8, KAlSi3O8 et CaAl2Si2O8. Le but de
cette thèse est d’améliorer notre compréhension des propriétés diverses des feldspaths,
d’étudier la transformation liquide-gaz des différents feldspaths ainsi que l’état physique
(solide, liquide, gaz, etc.) dans lequel ils se trouvent lors d’un impact météoritique.

La suite présente donc la méthode employée dans nos expériences numériques au
chapitre 2, puis les résultats et implications de nos expériences dans les chapitres 3 à 6.
Tout d’abord, il est question de la structure des fluides (chapitre 3), puis de l’évaporation
des feldspaths (chapitre 4), suivi de l’étude du déplacement des atomes (chapitre 5) et
enfin des propriétés thermodynamiques (comme la pression, la température, etc.) dans
le chapitre 6. La conclusion de cette thèse et l’ouverture vers d’autres travaux sont
finalement présentées dans le chapitre 7.

Supercritical state of feldspars during the Giant Impact Anaïs Kobsch
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Brief outline This chapter presents first a short historic of the Moon formation the-
ories to introduce and justify the work done in this thesis. The goal of this section 1.1 is
to give an overview of the Moon formation research. For more information about each
theories, pros and cons etc., you can refer to the numerous reviews already written about
it (e.g. Barr, 2016; Canup, 2004; Wood, 1986). Section 1.2 presents quickly the pressures
and temperatures ranges that can be attained by different experimental techniques, from
the in-lab experiments to the numerical experiments. The next part, section 1.3, ex-
plains why we choose to work on feldspars. And finally section 1.4 summarizes the goals
of this thesis and presents the outline of this manuscript.

1.1 Moon formation

The Moon is Earth’s only permanent1 natural satellite. It has been a source of inspira-
tion and questions for centuries, but it is only in the last one that scientists could really
investigate its origin.

1.1.1 The canonical impact and before: brief historical overview

Since 1969 and the first Apollo missions, our understanding of the Moon significantly
improved, mostly thanks to the chemical analysis of lunar samples. In the 70’-80’s there
were essentially three major scenarii for the Moon formation: fission, capture and binary
accretion (Wood, 1986). In the fission model, originally suggested by Darwin (1879),
a very fast-spinning unstable Earth ejected part of its material into space. The Moon
that formed from this material would have the same composition as Earth’s mantle. It
would be depleted in iron if fission occurred after Earth’s core formation. This model
was extensively tested and improved (e.g. Binder, 1974; O’Keefe and Sullivan, 1978) but
was finally abandoned because of many composition and dynamical problems (Taylor,
1982). The capture model (e.g. Singer, 1972), in which a Moon formed somewhere else
in the Solar System and was captured by Earth’s attraction field, is quickly dismissed
by geochemical analysis of lunar rocks (Taylor, 1982). The binary model suggests that
the Moon formed at the same time as Earth from materials which were captured into
geocentric orbit (e.g. Ruskol, 1960). But this scenario cannot explain neither the angular
momentum of the current Earth-Moon system, nor the density difference between the
two bodies (Taylor, 1987).

The Giant Impact theory, in which a roughly Mars-sized object impacted the forming
Earth, was first proposed by two independent groups: Hartmann and Davis (1975) and
Cameron and Ward (1976). Mainly ignored by the scientific community, the Giant

1At the moment I am writing these lines, the asteroid 2020 CD3 is leaving Earth’s orbit. It is the second
known asteroid, after 2006 RH120, to be temporarily captured by Earth’s attraction.
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4 1.1 - Moon formation

Figure 1.1 – Timeline of the main Moon formation scenarii. Colored squares indicate years for
which one or more article is published about the corresponding scenario. The 1984 conference
about Moon formation marks the end of studies about fission, capture and coaccretion sce-
narii. After the "isotopic crisis", highlighted by Melosh (2007), mostly high-energy/high-angular
momentum Giant Impact are studied.

Impact theory had to wait until the 1984 conference about the Moon formation in
Kona, Hawaii, to become the main theory (Canup, 2004; Stevenson, 1987). This is
best seen on the timeline figure 1.1. With the development of supercomputers, the
following decades see a great advance on Giant Impact simulations. For example, it
was demonstrated that "large impacts are common in late-stage terrestrial accretion",
"a single impact is consistent with the Earth-Moon system", and that "impact-generated
material accretes into a single moon" (Canup, 2004). At this moment, the successful
standard Giant Impact simulations, also called the canonical impact, involve an impactor
velocity approximately equal to Earth’s escape velocity, a total mass MT (target +
impactor) between 0.97 and 1.02 Earth masses, moderate impact angles and an impactor-
to-total mass ratio γ = Mi

MT
between 0.1 and 0.11 (Barr, 2016).

1.1.2 The isotopic crisis and after

While the canonical impact seemed to become the most widely accepted theory for the
Moon formation, isotopic measurements precision increased and finally led to the con-
clusion that Earth and Moon are isotopically identical relative to several elements, for
example oxygen (Pahlevan and Stevenson, 2007), titanium (Zhang et al., 2012) or sili-
con (Armytage et al., 2012). In canonical impacts, about 70 % of the Moon’s mass is
derived from the impactor, then to explain the identical isotopic measurements Pahle-
van and Stevenson (2007) considered the hypothesis of a turbulent mixing between the
protolunar disk and the terrestrial magma ocean. But then appear the so-called "iso-
topic crisis" from Melosh (2007): "Without a plausible mechanism to strongly separate
angular momentum transport from mass exchange, the Pahlevan and Stevenson (2007)
mechanism cannot explain the equilibration of isotopes between the Earth and Moon.".
Likewise, another mixing mechanism investigated by Pahlevan et al. (2011) can explain
the isotopic equilibration of some refractory elements but is thought to generate a silicon
isotopic difference (Halliday, 2012). Then, how to reconcile the Giant Impact scenario
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Table 1.1 – Approximate comparison of the two main Giant Impact models. X means the
constraint is verified by the model, X means the constraint is usually not verified by the model and
∼ indicates the constraint is not entirely verified or requires additional models to be validated.

Canonical
Impact

High
E/AM
Impact

1. Current Earth and Moon masses (ME ,MM ) X X
2. Current Earth-Moon angular momentum (LEM ) X ∼
3. Iron depleted Moon (wF e

M '8 wt %) X X
4. Moon (crust) chemistry (volatile depletion...) X ∼
5. Initial Lunar Magma Ocean (LMO ∼ 200–300 km thick) X X
6. Physical plausibility X ∼

with isotopic measurements? Several alternative models of the Giant Impact then ap-
peared. For example we can cite the impact on fast spinning Earth model proposed
by Ćuk and Stewart (2012), the "half-Earth" impacts investigated by Canup (2012),
the very energetic hit-and-run models (Reufer et al., 2012), the creation of a planetary
structure called synestia in the context of high-energy, high-angular momentum giant
impacts (Lock et al., 2018) or more recently an impact on a proto-Earth covered by a
magma ocean (Hosono et al., 2019).

1.1.3 Comparison of scenarii

To be valid, a scenario of the Moon formation has to verify five major observations:
Earth and Moon current masses, the system’s angular momentum, an iron depleted
Moon (about 8 wt % of iron), the Moon chemistry and a lunar magma ocean initially
200–300 km thick (Barr, 2016). Wood (1986) examined the fission, capture, coaccretion
and Giant Impact scenarii with the knowledge they had at that time and graded the
different scenarii (see table 3 in part 4 of the review by Wood (1986)). Later, other
reviews exposed the pros and cons of the two main Giant Impact models. I summarized
them in table 1.1. The canonical impact usually fails to reproduce the Moon chemistry,
while the other constraints are verified. On the contrary, the high-energy, high angular
momentum scenarii (e.g. Canup, 2012; Ćuk and Stewart, 2012; Reufer et al., 2012) seem
to verify both chemical and physical properties, even though they contain an excess of
angular momentum that needs to be removed from the system afterward. However they
usually correspond to a very narrow range of impact parameters, which makes them less
probable to happen than scenarii with less constraints on the impact parameters.

The recent apparition of new scenarii (Hosono et al., 2019; Lock et al., 2018) shows
that the Moon formation is still an on-going research area and new hypotheses are
considered to allow more flexibility in the choice of impact parameters.

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



6 1.2 - One step toward the answer: experiments

1.1.4 What can we do now?

Aside from developing new hypotheses, how the existing giant impacts scenarii can be
improved to, maybe, match all the criteria?

One solution is improving our knowledge and understanding of material behavior.
The giant impacts simulations usually model the mantle and the core using particles of
dunite (or forsterite) and iron respectively, whose thermodynamic behavior is ruled by
the widely used equations of states: Tillotson (Tillotson, 1962), ANEOS (Thompson and
Lauson, 1972) or M-ANEOS (Melosh, 2007). These equations not only lack data at very
low pressures, they also model a simple gas instead of a real gas (ANEOS and M-ANEOS
model respectively mono and di-atomic gas). It is then of primary importance to improve
these equations of states by obtaining more data on many different mineral compositions,
from high temperatures and pressures to high temperatures and low pressures.

Another solution is allowing chemical equilibration in the protolunar disk, as sug-
gested initially by Pahlevan and Stevenson (2007). This idea was investigated by sev-
eral studies for Moon formation times ranging from several years to 103–105 years (e.g.
Charnoz and Michaut, 2015; Ward, 2012). Reviews about the Moon formation tend to
show that long term equilibration in the disk between liquid and gas phases may not
be the solution, or at least needs further work on the physical mechanisms responsible
for mixing (Asphaug, 2014; Barr, 2016). On the contrary, chemical mixing on a much
shorter timescale, on the order of days, may be a solution to explain the Moon’s chem-
istry. This idea was already developed by Lock et al. (2018) using the synestia concept
but maybe it can also work in the case of a protolunar disk with part of its material
in the supercritical state, instead of the traditional liquid and gas phases. One of the
particularities of the supercritical state is that there is no discontinuities in the material
properties between this state and the liquid or gas states. Under these circumstances,
chemical and isotopic mixing can occur more rapidly with a supercritical phase than
only between liquid and gas phases. To investigate this hypothesis it is mandatory to
obtain for many different mineral compositions the thermodynamic conditions of the
supercritical state, defined by the critical temperature as indicated in figure 1.2 (see
section 6.1.3 for more explanations).

1.2 One step toward the answer: experiments

1.2.1 In-lab experiments

High-pressure experiments were first conducted using a multi-anvil apparatus and then,
since the late 1950s, using diamond anvil cell (DAC) devices. These static techniques are
still used today for the several advantages they offer. For example, they can be easily
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(a) In case of a high critical temperature we have
a two-phases disk.

(b) In case of a low critical temperature we have
a one-phase disk (gas and supercritical).

Figure 1.2 – Schematic phase diagram showing the physical state of a schematic temperature-
density distribution in a protolunar disk depending on the position of the critical point.

coupled with electrical or laser heating and they allow thermodynamic equilibrium.
For these reasons many phase diagrams were experimentally found using coupled high-
temperature high-pressure static experiments (Saxena and Wang, 2007). Nevertheless
they are usually limited to temperatures of some thousands kelvins and pressures of
terapascals at room-temperature (Saxena and Wang, 2007; Yagi et al., 2020).

In order to reach higher pressures and temperatures, shock compression experiments
were developed. The goal of these experiments is to create a shock wave that propagates
through the sample and changes its pressure, temperature, density and energy according
to a shock equation of state called Hugoniot (see section 6.1.4 for more information). The
shock wave can be created by several techniques: from the in-contact explosive system to
flyer-plate device (with for example the widely used gas-gun systems) or more recently
using a high energy laser. In each case the sample is never in direct contact with the
explosive, laser or flyer-plate. It is in contact with another material that protects it and
in which the shock wave appears from the explosive, laser or flyer-plate impact (Forbes,
2012). With these techniques, in particular the laser-driven shock experiments, it is then
possible to achieve extreme pressures up to several terapascals and temperatures up to
20 000 K or more (Duffy and Smith, 2019). However the temperature measurements
during shock experiments are not entirely reliable and still require improvements.

To date, these experiments improved equations of states of a variety of major geo-
logical materials, like MgSiO3 glass, enstatite or olivine (Luo et al., 2004), silica (Kraus
et al., 2012), or MgO (Root et al., 2015). Nevertheless, while these techniques are appro-
priate to sample extreme high pressure, high temperature conditions, they can hardly
reach the low pressures and high temperatures typical of the protolunar disk. For this
case it is mandatory to use numerical experiments.

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



8 1.2 - One step toward the answer: experiments

1.2.2 Numerical experiments

When an experiment cannot be performed in laboratory, due to problems like mechani-
cal, financial etc., simulations are used instead to get the properties we are looking for.
The first step is to model the material investigated, for example, to create an atomic
description of a real liquid. Then we carry out computer simulations from this model
and compare the results obtained with experimental results on the one hand and the-
oretical predictions on the other hand. The simulations we talk about here are often
called "numerical (or computer) experiments" for two reasons. First, they play the role
of a bridge between the in-lab experiments, models and theoretical predictions. And
second, they are very similar to in-lab experiments in the way they are conducted and
analyzed (Allen and Tildesley, 1989).

From an atomic description of a liquid we can obtain its thermodynamic properties
thanks to statistical mechanics: it links the thermodynamic properties of the matter to
its microscopic behavior, as the velocities, positions or momenta of atoms (Frenkel and
Smit, 2002a). Only very few systems can be solved analytically, like the two-dimensional
Ising model. For more complicated systems we need the help of computers to obtain
data that can be compared to experimental results.

The first work on computer experiments, in 1953, was the basis of the modern
"Monte Carlo" simulations (Allen and Tildesley, 1989). In order to also obtain the
dynamic properties of the material, like the transport properties, the molecular dynamics
(MD) simulations were developed a few years later, in 1957. In short, the MD solves
Newton’s equations of motion for a system of interacting atoms or molecules. Since we
are interested in both thermodynamic and dynamic properties of minerals, we want to
use MD simulations. For more information about MD and the similarities with in-lab
experiments regarding the process, see sections 2.1.1 and 2.2.1 respectively.

Today we can distinguish between two main categories of MD simulations: classical
molecular dynamics and first principles molecular dynamics (FPMD), also called Ab-
Initio Molecular Dynamics. In classical MD, interactions between the different atoms
or molecules are represented by interatomic potentials, as the Lennard Jones potential.
These potentials are usually fit to a set of experimental data, which means they cannot
be used for other systems nor very different thermodynamic conditions (Adjaoud et al.,
2008). It also means they may not be accurate for simulations outside the pressure and
temperature range already investigated by experiments. Nevertheless, they have the big
advantage of being extremely fast. Classical MD simulations can usually model several
thousands of atoms for hundreds of picoseconds or even several nanoseconds. On the
contrary, FPMD simulations can model no more than about 200 atoms for only tens
of picoseconds. Their main advantage is they do not require experimental data. The
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density functional theory (DFT) is used to accurately describe the electronic structure
and then provide the interatomic forces (see section 2.1.2 for more information). This
method is not only easily transferable, but also accurate to predict material behavior
for thermodynamic conditions that have not been investigated experimentally before.
As previously mentioned, we want to investigate the properties of minerals outside the
range of experiments. This is why we decide to use FPMD simulations.

Many simulations on liquid minerals were already carried out using FPMD. We can
cite for example the numerous studies on liquid MgSiO3 (e.g. Stixrude and Karki, 2005;
Wan et al., 2007), Mg2SiO4 (e.g. de Koker et al., 2008; Hernández et al., 2015) and
silica (e.g. Karki et al., 2007). Studies on more complicated melts are rarer. We have
for example the first fully ab-initio study on calcium aluminosilicate melt (Benoit et al.,
2001) or some studies about liquid anorthite (de Koker, 2010; Karki et al., 2011), diopside
(Sun et al., 2011) and pyrolite (Caracas et al., 2019; Solomatova and Caracas, 2019).
In each of these studies, the thermodynamic range investigated is the high-pressure,
high-temperature range, typical of planet interiors and magma oceans. To date there
are only two studies in the low-pressure, high-temperature range, and both investigate
simple systems: silica (Green et al., 2018) and MgSiO3 (Xiao and Stixrude, 2018). Then
there is a real need of computational experiments on a more complex mineral in this
thermodynamic region.

1.3 Working material

1.3.1 Earth and Moon

Earth and Moon have complex structure and composition, but both can be approximated
as follow: a metallic core, a mantle and a crust. It is thought that Earth’s core has
85 wt % of Fe, 5 wt % of Ni and 10 wt % of light elements (McDonough, 2018). The crust
is separated into two parts: the thin oceanic crust (between ∼3 and 10 km thick) with an
approximate basaltic composition, and the thick continental crust (in average∼35–40 km
thick) with roughly andesitic composition (Perfit, 2018). The mantle extends from the
core-mantle boundary, at 2900 km depth, to the base of the crust. Its composition is
mostly peridotitic (Stracke, 2018).

Compared to Earth’s iron core, the Moon’s core is tiny: 350 km radius at best for
a mean lunar radius of 1737.1 km. The successful Giant Impact models show that the
majority of iron from the impactor, denser than the silicates, is located within the
Earth’s Roche limit, the distance below which a celestial body would be torn apart
due to the competition between its gravitational self-attraction and Earth’s tidal forces
(Canup and Asphaug, 2001). Then, most of the impactor iron sank into the early Earth.
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Figure 1.3 – Pie charts of the Earth and Moon crusts compositions. (a) Composition of the
Moon highland crust from Taylor and McLennan (2008). (b) Modal composition of the Earth
bulk crust from Ronov and Yaroshevsky (1969).

The crust is visually made of two parts: the mare basalts and the highland crust.
The highland crust is about 50 km thick and is mostly made of ferroan anorthosites
(at least 80 %), followed by the Mg-suite (about 10 %) and in minor proportion other
components like KREEP (Taylor and McLennan, 2008). Its formation is explained by
the cristallization and flotation of plagioclases (the major components of anorthosites),
in the lunar magma ocean (e.g. Smith et al., 1970; Warren, 1985). The mare basalts cover
17 % of the lunar surface but represent in volume less than 1 % of the crust (Anderson,
1989; Taylor and McLennan, 2008). They are ferroan lava flows that are concentrated
within great impact basins (Warren, 1985). The bulk Moon shows an enrichment in
refractory elements and a depletion in volatile elements compared to Earth.

During meteoritic impacts, the part of the planet that is mostly affected is the
crust. The anorthosite Moon crust averages more than 95 % of plagioclase feldspars
(Ca,Na)(Al,Si)4O8, which contain 95–97 % anorthite (CaAl2Si2O8) and 3–5 % albite
(NaAlSi3O8) (Taylor and McLennan, 2008). Regarding the total bulk upper lunar crust,
it averages about 75 % plagioclase (Warren, 1985). For Earth, the normative mineralogy
of the current bulk continental crust shows about 58.9 % of feldspars, with 6.5 % of
orthoclase (KAlSi3O8) and 52.4 % of plagioclase feldspars which are evenly distributed
between albite and anorthite (Taylor and McLennan, 1995). As the major mineral of
Earth and Moon crusts (see figure 1.3), feldspars are of great interest to study.

1.3.2 Feldspars

Feldspars are aluminosilicates with general formula (Ca,Na,K)(Al,Si)4O8. They are
classified into two principal series of solid solutions: the alkali feldspars (Na-K) and
the plagioclase feldspars (Na-Ca). Feldspars have been widely studied for more than a
century. The first melting experiments were done in the beginning of the last century on
plagioclase feldspars (Bowen, 1913), in which Ca- and Na- end-members melted at about
1823 and 1373 K respectively. Structure, composition, thermodynamic parameters, etc.,
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the amount of data about feldspars is substantial in the solid region and close to the
melting curve (e.g. Angel, 1994; Nekvasil, 1994; Smith and Brown, 1988). The Hugoniot
lines for the three end members and several intermediate compositions were investigated
through shock experiments (e.g. Ahrens et al., 1969; Asimow and Ahrens, 2010; McQueen
et al., 1967). More recently, MD simulations gave access to a lot of additional information
(e.g. thermodynamic properties, structure and dynamics of the melts) over a large range
of temperatures (2500–6100 K) and pressures (0–160 GPa), using either classical MD
(e.g. Neilson et al., 2016; Spera et al., 2009) or FPMD (e.g. Karki et al., 2011). Some of
the results obtained in these studies will be presented and compared to our own results
in the analysis chapter of this thesis.

1.4 Goals and outline

In this thesis we want to obtain an indicative phase diagram of the liquid-gas regions of
feldspars, with the position of the critical point. Combined with a shock state analysis
applied to high velocity impacts, this phase diagram may allow us to infer the physical
state of Earth and Moon crusts (or at least their feldspathic part) during meteoritic
impacts. With the assumption of similar compositions for the early crusts, we may also
infer the physical state of the crusts during the Giant Impact. To help geophysicists
improve their impact simulations we also want to make available various data about
the structure of the fluids, transport and thermodynamics properties of feldspars over a
wide range of densities and temperatures, spanning the liquid and liquid-gas regions.

Chapter 2 presents the methodology used in this work. We give key points about the
theory of MD simulations and DFT, along with the several parameters and processes
used in the numerical experiments. It also presents the post-processing package (UMD)
our group developed during these years and the figure 2.7 that concludes this chapter
gives the working axis of this thesis, each one of them defining a separate chapter.

In the first analysis part (chapter 3) we talk about the structure of the fluid. In other
words, we look at the organization in space of all the atoms using two tools: the bond
distance and the coordination number. We also study more finely this latter property
by computing the coordination polyhedra proportions.

The chapter 4 is about the vaporization of the fluid. Unlike the previous chapter, in
which we were interested in the short-range structure of the fluids, here we want to look
for the chemical species, defined as the largest chains of connected atoms. We expect
the liquid to be made of one infinite 3D species (all atoms linked together), while if gas
appears it will be made of small finite species not linked to the main species.

The next chapter (n°5) presents the transport properties of the fluids, in other words
the translation motion of atoms inside the fluids. This is done through two main tools:
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the mean square displacement (MSD) and the self-diffusion coefficient.
In the last analysis part (chapter 6), we investigate the thermodynamic properties of

the fluids. We present first some results about equations of states and then the spinodal
analysis used to estimate the position of the critical point. This leads to an attempt
of phase diagrams which are used to infer on the physical state of feldspars during
meteoritic impacts.

Finally this thesis ends with a conclusion chapter (n°7) to summarize the main results
and discussions presented here, and talk about future work and applications in this field.

$
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Méthodologie en bref

Le travail réalisé ici peut être rangé dans la catégorie des expériences numériques, car il
suit le même schéma que celui des expériences en laboratoire. Tout d’abord, il faut un
échantillon sur lequel travailler. Pour les expériences en laboratoire c’est par exemple un
morceau de roche ou de minéral. Ici, nous travaillons à partir de la structure atomique
des feldspaths, c’est-à-dire des positions dans l’espace des différents atomes constituant
le cristal. Ensuite il nous faut des outils de travail, presque l’équivalent du four qui va
chauffer nos échantillons et des machines qui vont analyser la position des atomes, la
composition, la température etc. Nous utilisons un ensemble de codes informatique ap-
pelé VASP® pour Vienna Ab-initio Simulation Package. Ce groupe de codes simule le
mouvement des atomes dans notre cristal en fonction des conditions (pression, tempéra-
ture, etc.) imposées à l’échantillon. C’est le mouvement résultant des atomes qui change
les propriétés du matériau, par exemple l’état physique (solide, liquide, gazeux, etc.).
En voici le principe général.

Chaque atome a une position et une vitesse qui lui sont propres et exerce sur ses
voisins une force qui peut être attractive ou répulsive, appelée force électrostatique.
En utilisant une théorie fondée sur la mécanique quantique, appelée la théorie de la
fonctionnelle densité (DFT), le code va estimer pour chaque atome la force résultante,
qui nous donne ensuite l’accélération grâce à la seconde loi de Newton. La sélection d’un
pas de temps dt, généralement de l’ordre de 1 fs = 10−15 s, nous permet d’obtenir la
nouvelle vitesse de chaque atome (au temps t+ dt), ainsi que sa nouvelle position.

Ceci clôt un cycle de dynamique moléculaire (MD). C’est en répétant des milliers de
fois ce cycle, en utilisant à chaque fois les nouvelles positions et vitesses des particules,
que l’on reproduit les déplacements naturels des atomes dans la matière. Mais avant de
faire les expériences et d’acquérir des données, il faut un protocole. Il consiste ici à chauf-
fer progressivement notre système, c’est-à-dire à accélérer artificiellement les atomes,
pour atteindre les différentes températures que l’on souhaite étudier et à augmenter
ou diminuer la taille de notre cellule de simulation pour changer la masse volumique,
balayant ainsi une large portion du diagramme de phases que l’on souhaite construire.

Enfin, il est nécessaire d’exploiter les données acquises en réalisant des schémas, des
tableaux de données, des statistiques etc. À cause du nombre phénoménal de données
recueillies il est impossible d’utiliser un logiciel comme Excel®. Il est dans ce cas né-
cessaire d’écrire ses propres codes d’analyse et de visualisation à l’aide d’un langage
informatique adapté. Ici nous avons choisi Python®, un langage très simple, efficace et
avec une grande diversité de fonctions adaptées au traitement de données texte, pour
nous créer un ensemble de codes de traîtement de données constituant le « package »
UMD.
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Brief outline As mentioned before, we use here ab-initio molecular dynamics simu-
lations to perform our study of the three feldspar end-members. This chapter presents
you first a short explanation of the molecular dynamics (MD) process and the concept
of density functional theory (DFT) in section 2.1. Then the parameters and initial
structure used for the calculation on the three feldspar end-members are presented in
section 2.2. Finally the section 2.3 clarifies which energy is used in the following and
presents the post-processing package (UMD) our group developed during these years.
The figure 2.7 that concludes this chapter gives the working axis of this thesis, each one
of them defining a separate chapter.

2.1 The theory

2.1.1 Molecular Dynamics

Atoms are always in motion1, which is a combination of translations, rotations and
vibrations. MD simulations reproduce these movements over a short period of time, from
several picoseconds to nanoseconds by following the process summarized on figure 2.1.
First, from the atomic positions we compute the forces acting on each atom. This part
is done either using interatomic potential (in classical MD), or using DFT (in FPMD,
see next section for more information). Then, using Newton’s 2nd law of motion and the
Verlet algorithm, we obtain the atomic velocities and positions at one timestep dt later2.
From this point a new MD loop starts until the required number of loops is achieved.
At each timestep, all the results needed are written in the output file, including the
velocities and positions, so that new MD loop can be started at any timestep.

Each snapshot of the MD simulation is characterized by its configuration, in other
words the position and momentum of every particle in the system. In statistical physics,
a snapshot is called a microstate of the system. The collection of microstates is called
a statistical ensemble. The nature of the constraints imposed on the system defines the
type of statistical ensemble. For example, a system with a fixed number of particles N
(no creation of loss), a fixed volume V and a constant energy E, is called a microcanonical
NVE ensemble. When we force the average temperature T to be constant, we define the
canonical NVT ensemble. Likewise if we also force the average pressure to be constant
we define the isothermal-isobaric NPT ensemble. There are other statistical ensembles
we will not mention here.

Here, in order to obtain pressure-density isotherms for the spinodal analysis pre-

1even at 0 K there is a random motion coming from the zero-point energy
2This step requires the atomic velocities of the current time t. Since we do not have them for the first
loop, the MD code we use (VASP®) automatically choose them at random according to a Maxwell-
Boltzmann at the desired temperature.
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Figure 2.1 – Simplified schematics of the MD process. Starting from the atomic positions and
velocities, we compute each inter-atomic forces using interatomic potential or directly the total
force on each atom using the DFT. The total forces are used in the integration of Newton’s 2nd
law of motion to find the new velocities and atomic positions (at one timestep dt later), from
which a new MD loop can start.
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sented in section 6.1.3, we choose to use the canonical ensemble. N and V are mi-
croscopic parameters, then their constant value is directly defined in the input file. To
reproduce the behavior of real thermostats we allow the temperature to fluctuate around
a fixed average value. The temperature being a macroscopic concept, the kinetic the-
ory is used to have a microscopic and instantaneous description of this value using the
following equation:

1
2

N∑
i=1

mi|−→vi |2 = 3
2kBNdfT (t) (2.1)

with the number of degrees of freedom Ndf = 3N − 3 (fixed center of mass), mi and −→vi
the masses and velocities of individual atoms i and kB the Boltzmann constant (Frenkel
and Smit, 2002b). We usually use the Nosé-Hoover thermostat (Hoover, 1985; Nosé,
1984) to make the temperature fluctuate around the desired average. This is done by
adding a force inside the equation of motion in order to adjust the atomic velocities at
each MD loop to obtain the desired temperature fluctuations.

In MD simulation, the macroscopic values are obtained with a time average over all
the snapshots of the simulation (see section 6.1 for computational details). In statistical
physics, the value of a macroscopic property A is obtained by averaging the value Al
over all the microstates l weighted by their probability. In the ergodic hypothesis,
performing a time-average of the value A(t) is the same as an ensemble average. In
practice no system is fully ergodic, that is why we need a long enough MD simulation
in order to visit most of the different type of microstates. Hence, in the following we
use the ergodic hypothesis and the thermodynamic parameters are computed using time
average over the entire simulations.

2.1.2 Density Functional Theory

This section will not explain the whole theory around DFT, but only gives key points
to understand the process for computing the energy of a molecular system since many
books already explain it much better (e.g. Fiolhais et al., 2003; Martin, 2004).

The energy of an atomic system is exactly defined by the well-known Schrödinger
equation. The time-independent form is

Hψ(−→R ) = Eψ(−→R ) (2.2)

with H the Hamiltonian operator, −→R the position of all the particles in the system
(nuclei + electrons) and ψ the wavefunctions (nuclei + electrons). Unfortunately, it
is not possible to analytically solve this equation for molecular systems. The Born-
Oppenheimer approximation (Born and Oppenheimer, 1927) simplifies this equation
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by decoupling the dynamic of the electrons and the nuclei3. Then the total energy
of the system is found in two separate steps: considering the nuclei on one side and
the electrons on the other side. However, the second part (i.e. the purely electronic
Schrödinger equation), still cannot be easily solved. The solution is found using the
DFT, thanks to the work of Hohenberg and Kohn (1964), who replaced the electronic
wavefunctions by an electronic density. Shortly after, Kohn and Sham (1965) found a
practical application of this theory using a functional4 formulation of the electronic free
energy F for a fixed nuclei configuration:

homogeneous
e- gas

exchange
correlation

F [n(r)] = Ekin e−[n(r)]
+ e−

⋂
e−[n(r)]

+ ion
⋂
e−[n(r)]

− TSe−[n(r)]

+ Ekin e− unknown

+ e−
⋂
e− unknown

− TSunknown

(2.3)

with n(r) being the electronic density in a point r of space. The four energies on the
left side are the kinetic energy of non interacting electrons, the interaction energies be-
tween point charge particles and the electronic entropy of the homogeneous electron gas.
They are all exactly known as a function of the electronic density. But to describe real
systems there are remaining unknowns terms, which take into account electron corre-
lation (screening), and are grouped under the term "exchange-correlation free energy".
This term is solved numerically using an approximation function. The most common
approximations are the Local Density Approximation (LDA) and the Generalized Gradi-
ent Approximation (GGA). The LDA considers the exchange-correlation function varies
only with the electronic density, which is locally uniform, whereas the GGA also con-
siders the gradient of the electronic density in the exchange-correlation function. For
this reason it is thought to be more precise for systems with non-locally uniform elec-
tronic density. Now the equation 2.3 gives us a value for the system free energy as a
function of the electronic density. As stated by the principle of minimum energy, the
system is at the equilibrium when its energy reached a minimum. By changing sequen-
tially the electronic density and computing the related energy, we are able to find the
best electronic configuration when the energy is minimized. The electronic density is
represented here by a sum of periodic planewaves. Its shape is controlled by the ampli-
tude and wavevector of all the different planewaves, in other words their coefficients. In
order to accelerate the calculation, the core electrons are presumed to not participate
to the chemical bonds, and then are not represented by planewaves. They are instead
approximated by pseudopotentials, which pseudowavefunctions are simpler than the ac-
3the electrons instantaneously respond to the dynamic of nuclei
4in other words a "function of functions"
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Figure 2.2 – Simplified DFT flowchart. The coefficients mentioned in the coefficient matrix
diagonalisation steps are the amplitude and wavevectors of all the planewaves.

tual wavefunctions that would have been used otherwise. Finally, the DFT process can
be summarized by the flowchart in figure 2.2.

2.2 The process and parameters

2.2.1 Main study

Parameters

We perform first-principle molecular dynamics simulations as implemented in the Vi-
enna Ab-initio Simulation Package (VASP®) (Kresse and Furthmüller, 1996a,b; Kresse
and Hafner, 1993; Kresse and Joubert, 1999). We use the projector augmented-wave
(PAW) formulation (Blöchl, 1994) of the density functional theory (DFT) (Hohenberg
and Kohn, 1964; Kohn and Sham, 1965; Mermin, 1965) to compute energies and forces,
with the Perdew-Burke-Ernzerhof (PBE) parametrization of the generalized gradient
approximation (Perdew et al., 1996) for the exchange correlation functional. We employ
an energy cutoff of 550 eV for the plane waves and we sample the reciprocal space in the
Gamma point. Simulations are performed in the canonical NVT ensemble where the
temperature is controlled by the Nosé-Hoover thermostat (Hoover, 1985; Nosé, 1984)
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around an average fixed value. At each timestep the energy is converged to 1× 10−3 eV,
which corresponds to at least 7 representative digits in the absolute value of the energy.
All the calculations are performed on the supercomputers OCCIGEN and ADA (and
then Jean-Zay) from the CINES and IDRIS computing center respectively. You can find
a typical VASP® input file (INCAR) for the production run in annex page 144.

Initial structure

We model the feldspar end-members in a cubic cell with periodic boundary conditions
and containing 208 atoms (16 formula units). This totals 1024 or 1152 electrons for the
Na- and K,Ca-feldspars respectively (see table 2.1 for details).

We use the triclinic P-1 crystal structure of pure anorthite from Angel et al. (1990)
available on the American Mineralogist Crystal Structure Database (AMCSD database
code n°0001286). One conventional cell is made of 8 formula units and totals 104 atoms.
To obtain the final cubic cell of 208 atoms (figure 2.3 b) we add a second conventional
cell along the shortest axis (figure 2.3 a) and we force this supercell to a cubic shape
with 15Å side in VASP®. The resulting increase or decrease of lengths in the structure
is less than 17 %. This cubic supercell has a density of 2.19 g cm−3 and 2.06 g cm−3 for
the Ca,K and Na feldspars respectively.

To switch from the CaAl2Si2O8 structure to the (K,Na)AlSi3O8 structures we re-
placed the Al atoms which are labeled on the figure 2.3 by Si atoms and all the Ca
atoms are replaced by either K or Na. Since we melt the structure and we only work
with fully molten and well mixed material in this project, we consider that forcing the
initial structure to be cubic has no effect on the results we obtain.

Process

Production simulations are performed in the 2000–7500 K and 1–6 g cm−3 range. We
use a timestep of 1 fs in all simulations above 4500 K and 1.6 g cm−3 and of 2 fs below
these conditions. The initial liquid state is obtained by heating the initial supercell
described above up to 4000 K for 8 ps and let it equilibrate (thermalize) for 2 ps. The
other temperatures of interest are reached with one or more heating/cooling steps of
1000 K during 1 ps. At all temperatures and pressures we thermalize the fluids for at
least 1 ps. We record production runs of 15–20 ps length after the total equilibration and
we use the final state to compress or expand the cell in order to reach higher or lower
densities respectively. This heating and cooling process is summarized on figure 2.4.

For MD users interested in knowing the organization and naming rules I used for my
556 simulations, please refer to the annex A.3.1.
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Figure 2.3 – (a) Two conventional anorthite cells (along a axis) from Angel et al. (1990)
(AMCSD database code n°0001286) used to create the initial supercell of 208 atoms (b). To
switch from the CaAl2Si2O8 structure to the (K,Na)AlSi3O8 structures we replaced the labeled
Al atoms by Si atoms and all the Ca atoms by Na or K. Colors indicate elements: cyan - Ca,
pink - Al, yellow - Si, red - O.

Table 2.1 – Characteristics of the PAW-PBE pseudopotentials used in the
different studies.

element # valence valence outmost cutoff Type of study
electrons configuration radius

Ca 10 3s23p64s2 2.3 m, h2
Ca 8 3p64s2 3 l
K 9 3s23p64s1 2.3 m, h2
K 7 3p64s1 3.1 l
Na 1 3s1 2.2 m, l
Al 3 3s23p1 1.9 m, l, h2
Si 4 3s23p2 1.9 m, l, h2
O 6 2s22p4 1.52 m, h2
O 6 2s22p4 1.85 l
Na 9 3s1 1.45 h1
Al 3 3s23p1 1.7 h1
Si 4 3s23p2 1.5 h1
O 6 2s22p4 1.1 h1

m - main study of all feldspars
l - low density of all feldspars
h1 - high density NaAlSi3O8

h2 - high density CaAl2Si2O8 and KAlSi3O8
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Figure 2.4 – Schematics of the heating and cooling processes. Only the main temperatures are
displayed here. Each heating/cooling step or change in density is followed by a thermalization
of 1–2 ps.

2.2.2 Special cases

Low density study

In order to find the critical density we have to investigate densities below 1 g cm−3. The
computation time in FPMD rises with the volume of the simulation cell. Then to increase
the speed of calculations and be able to reach low densities, we use pseudopotentials
which require a lower plane wave energy cutoff. The value then used in the INCAR
is now 370 eV instead of 550 eV. The pseudopotentials used for this low density study,
between 0.5 and 2.5 g cm−3, are summarized in the table 2.1. They lead to a total
number of valence electrons of 1024 or 1120 for the Na- and K,Ca-feldspars respectively.
In this region, the production runs last about 4 ps, which is enough to estimate the
global pressure and temperature.

The complete temperature-pressure-density range investigated (main study + low
density study) is represented on figures 2.5 (a) and (b). Those who are not familiar
with the concept of negative pressures are invited to consult the review about cavitation
in water from Caupin and Herbert (2006). The process we use here to reach densities
lower than 2 g cm−1 is simply a stretching of the fluid, which allows us to reach negative
pressures.
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Figure 2.5 – Position of the data points obtained here for the main study and the low density
study in the (a) temperature-density and (b) temperature-pressure projections. Green lines are
solidus for silica from Tsuchiya and Tsuchiya (2011); Zhang et al. (1996) and for feldspars (and
jadeite above 2 GPa) from Bell and Roseboom Jr. (1969); Hariya and Kennedy (1968); Lindsley
(1966); Litvin and Gasparik (1993); Urakawa et al. (1994).

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



24 2.3 - The post-processing

High density study

For the study of the behavior of shocked feldspars, we have to investigate densities
above 3.5 g cm−3 and temperatures above 10 000 K. The pseudopotentials used for the
Ca- and K-feldspars are adapted to a complete study over the range 1–6 g cm−3 and up
to 20 000 K, which is not the case for the Na pseudopotential. Then for the Na- end-
member only, we use hard pseudopotentials in order to reduce the overlap of electronic
spheres, in particular for Na-Na pairs. They are summarized in the table 2.1. The
energy cutoff for this set of pseudopotentials is 950 eV and the total number of valence
electrons rises to 1152. This is due to the various semicore states that are now considered
as valence states and computed explicitely in the DFT step. Simulations run for about
5–10 ps for temperatures between 3000 and 6000 K. Above 10 000 K the timestep is set
to 0.5 fs and simulations run for about 2000 steps since such high temperatures lead to
very short equilibration times.

2.2.3 Tests and convergence

We carried out convergence tests using 416 atoms (instead of 208) for two density-
temperature couples (2.1 g cm−3 at 5000 K and 1.2 g cm−3 at 4000 K). We obtain a
pressure difference of less than 0.12 GPa and an internal energy difference of less than
10 meV/atom between the simulations with 416 atoms and those with 208 atoms. A
larger number of atoms would be preferable for the chemical analysis presented in chap-
ter 4, but the calculations with 416 atoms take more than four times longer to run than
those with 208 atoms. Then, it is not possible to perform them in a reasonable amount
of time.

The influence of the initial state on the pressure and energy of the final state is
tested and shown on figure 2.6. We used four different initial states of lower of higher
temperature or density. For each of them we followed the required process as described
in section 2.2.1 to reach the same density-temperature point of 1.55 g cm−3 and 5000 K.
Then we run each simulation for 17.5 ps and compute the average pressure and internal
energy displayed next to the corresponding initial state on figure 2.6. The difference
in internal energy is less than 20 meV/atom, and the difference in pressure is less than
0.11 GPa.

2.3 The post-processing

2.3.1 The output file

The output file (OUTCAR) that we obtain from VASP® is a huge source of information.
What one can find inside highly depends on the parameters and commands indicated in
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Figure 2.6 – Schematics and numerical re-
sults showing the influence of the initial state
(grey dot) over the pressure and energy of the
final state (red dot). The average pressure and
internal energy of each final state obtained
from each different initial state is displayed
next to the corresponding initial state.

the INCAR file. In this thesis we will work only with the thermodynamic parameters
(values of stress tensor, temperature and energies), and the position of atoms of the
materials at each timestep. The first and main step of the post-processing is to extract
and compute the right values. It is straightforward for the atomic positions and the
instantaneous temperature, the latter being computed using the formula 2.1 and directly
displayed in the OUTCAR. It is also easy for the instantaneous external pressure of the
simulation, obtained with the mean of the stress tensor diagonal coefficients. But it is
more complicated for the energy, since VASP® compute and displays several different
energies in the OUTCAR which links can be summarized as follow5:

ETOTAL = −TSe− + PE + EKINe− + EKINion + EKINlatt + ES + EPS

TOTEN
energy without

entropy

kinetic internal energy

total internal energy

thermostat

= 0 in
NVT

(2.4)

with Se− the electronic entropy, PE =ion
⋂
ion +ion

⋂
e−+e−

⋂
e−, the potential internal

energy (sum of interaction energies between every ions and electrons), EKINlatt the
kinetic energy of the lattice, and ES and EPS the kinetic and potential energy of the
thermostat respectively. In this equation, VASP® displays in the OUTCAR file the free
energy (ETOTAL), the blue terms and the last four terms. TOTEN is the free energy
minimized in the DFT loop. ETOTAL being the sum of all the energies involved in
the simulation, it is the value to use in order to check energy conservation. It is not
the real free energy of the system since we should remove the lattice and thermostat
contribution and also the entropic energy of the ions, which is unknown. For equation of
state and heat capacity calculation we need the total internal energy, which is the sum

5for the values that are directly given by VASP® we kept the same notations here
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of the potential and kinetic internal energies, the latter being divided into an electronic
and ionic contribution.

2.3.2 The UMD package

All the post processing was undertaken using the UMD package our group developed
these last years. Its goal is to give an extensive set of tools for the analysis of any
MD simulations, no matter the output file format. This is done through a parser
(VaspParser.py), which extract all the data of interest from the output file and creates
a .umd.dat file with a specific keywords-based format. Through these keywords, each
of the post-processing scripts can access the required data, even if additional lines of
data are added to the .umd.dat file after modifying the parser. This allows each user
to create its own parser for each different MD simulation package or specific use of the
simulations and save post-processing time (no need to read the whole output file each
time) or save storage space (for a 15 ps simulation OUTCAR files take around 2 GB each
compared to 0.5 GB for UMD files). For more information, the reader can refer to the
1st release of the package (Caracas et al., 2020c) or to the UMD article (Caracas et al.,
2020a).

As previously seen (section 1.4), this work is separated into four axis of study repre-
senting the different chapters: structure of the fluids, volatilization phenomenon, trans-
port properties and thermodynamics. Then, the methodology specific to each axis of
study is detailed in the related chapter. The box diagram figure 2.7 shows the main
steps of analysis for each axis of the study and underlines the chronological links between
them. Each analysis step (box) is done successively from top to bottom. A step with
several incoming line requires the results from each related previous step before it can be
started. Each step is completely described and explained in the chapter corresponding
to its axis of study. The complete post-processing is performed using Python® scripts
from the UMD package or from my personal library. The main ones are explained in the
following chapters, along with the options used at the moment of the script execution
in a shell6 environment. These scripts are launched using either:

python3 path/to/script/scriptname.py -option1 optionvalue -optionN optionvalue

or

scriptname.py -option1 optionvalue -optionN optionvalue

if the script has been changed to executable (chmod +x scriptname.py) and its direc-
tory path added to the PATH list in the .bashrc7 file. Each script contains a small
documentation summarizing the different options available. You can access it using the
option -h.
6for example the BASH environment available on most UNIX terminals
7configuration file usually located in your home directory on your computer
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All the scripts mentioned in this thesis are available either in the UMD Git Hub
repository (Caracas et al., 2020c) (or in the zenodo version Caracas et al. (2020b)) or in
my analysis repository (Kobsch, 2020). For user who are interested in data visualization,
all the scripts I made and used to create the figures presented here are also available in
my personal Git Hub repository with the associated figures.

$
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CHAPTER 3
STRUCTURE OF THE FLUIDS

"Comment sont organisés les atomes dans les feldspaths fluides ?"
S’ils le pouvaient c’est sans doute une question que se poseraient les atomes eux-mêmes lors de
leurs parties d’empilage de boules...
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30

L’art de placer ses billes (atomes) pour un feldspath fluide

Ce premier chapitre de résultats présente la structure des feldspaths fluides (liquides ou
gazeux), autrement dit, l’organisation dans l’espace des atomes constituant les fluides.
Pour analyser la structure on utilise ici un outil mathématique appelé « fonction de dis-
tribution de paires ». Cela consiste d’abord à compter le nombre d’atomes de chaque type
se trouvant dans une coquille sphérique centrée autour d’un atome en particulier. Ensuite
ce comptage est répété pour chaque atome de la simulation. Et enfin on moyenne les
résultats obtenus pour les différentes combinaisons {type d’atome central-type d’atome
autour}. On obtient ainsi une courbe qui nous donne ce qui pourrait s’apparenter à la
probabilité de présence des atomes voisins de type B en fonction de la distance à l’atome
central de type A (figure 3.1). Notons que les éléments notés A et B peuvent aussi être
identiques. La position du premier pic de cette courbe donne la distance séparant le plus
souvent les atomes de type A et B. Elle est donc utilisée comme estimation de la distance
moyenne de liaison entre les éléments A et B. La position du premier creux définit le
rayon de la première sphère de coordinence. Le nombre moyen d’atomes B situés dans
cette sphère donne le nombre de coordination de A avec B.

Quand la pression dans le fluide augmente, le nombre de coordination de Al, Si, Ca, K
ou Na avec O augmente (figure 3.9). Ce nombre de coordination est, comme sa définition
l’indique, une moyenne du nombre d’atomes entourant l’atome central. En réalité il y a
en général un mélange de différentes coordination. La figure 3.13 montre par exemple
que à 3000 K et 20 GPa, une valeur moyenne de 4.4 pour le nombre de coordination de
Si avec O correspond en réalité à environ 42 % de SiO4 (4 atomes O autour de Si) et
SiO5 (5 atomes O autour de Si) et environ 15 % de SiO6 (6 atomes O autour de Si).
Ces groupements {atome central entouré par X atomes O} sont appelés polyhèdres de
coordination. À 3000 K, on voit clairement une dominance par soit la coordination 4,
soit 6 à plus haute compression. À 6000 K on se retouve avec un mélange plus homogène
de différentes coordinations.

Pour chaque couple de pression-température analysé ici, autrement dit pour chaque
simulation, on peut ainsi obtenir quel est le polyhèdre de coordination majeur dans cha-
cun des feldspaths et l’indiquer dans un diagramme température-pression (figure 3.14).
On voit ainsi que le nombre de O autour de Al ou Si augmente continuement avec la
pression quel que soit la température, passant de 4 à 5, 6, 7 et même 8 au delà de
100 GPa. Au contraire dans les cristaux de feldspaths on retrouve uniquement soit 4
O autour de Al et Si soit 6 à hautes pressions. À très hautes températures et basses
pressions on voit qu’il n’y a plus que 3 O ou moins autour de Al ou Si, ce qui est sans
doute signe que de petites molécules sont formées. Cette hypothèse est à vérifier dans le
chapitre suivant.
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3.1 - Post Processing 31

Brief outline In this first analysis chapter we talk about the structure of the fluid,
in other words we look at the organization in space of all the atoms. First, section 3.1
presents the theory of atomic structure analysis and the corresponding computer codes
written to perform these analyses. This section is separated into two parts: subsec-
tion 3.1.1 about the classic analysis (bond distance and coordination number), widely
used in MD simulations works, and subsection 3.1.2 about a more advanced analysis
which requires additional post-processing (coordination polyhedra proportions). Sec-
tions 3.2 and 3.3 present the results and discussions relative to the analyses described
in subsections 3.1.1 and 3.1.2 respectively.

3.1 Post Processing

3.1.1 Pair distribution function, bond length and coordination number

The theory

The average bond length and coordination of each pair of elements are obtained with the
radial pair distribution function gAB(r), schematically drawn in figure 3.1 for a liquid.
It is the average number of atom of type B in a spherical shell of radius r and thickness
dr centered around each atom of type A, relative to the number of atoms at the same
distance in an ideal gas at the same density. Mathematically gAB(r) is defined as

gAB(r) = nB(r)
nidealB (r)

(3.1)

nidealB (r) = 4π
3 ρB

(
(r + dr)3 − r3) (3.2)

nB(r) = 1
NAτrun

τrun∑
τ=1

NA∑
A=1

NB∑
B=1

Π(r,r+ dr)(rAB), (3.3)

with ρB = NB
Vcell

being the atomic density of type B atoms in the simulation cell of
volume Vcell, NA and NB the number of atoms of type A and B in the cell, τrun the
total number of time steps and Π(r,r+ dr)(rAB) the gate function which is equal to 1 if
r ≤ rAB < r + dr (rAB being the distance between the center of atoms A and B) and
0 else. Likewise we define the cumulative integral in spherical coordinates of the pair
distribution function Int(g(r)) as

Int(gAB(r)) = 4πρB
∫ r

0
gAB(r′)r′2 dr′. (3.4)

Its value at the end of the first coordination sphere, defined by the first minimum of the
g(r) curve (xmin), gives the coordination number (CN) of A with B. For a CN value of
X, it means there is in average X B atoms around one A atom.
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32 3.1 - Post Processing

Figure 3.1 – Schematics of
the radial pair distribution
function gAB(r) for a liquid
and its cumulative integral
Int(gAB(r)), with A as the
central atom (green) and B
the surrounding atoms (yel-
low). The first coordina-
tion sphere is defined up to
the first minimum of the
g(r) curve. The coordi-
nation number (CN) corre-
sponds to the value of the
cumulative integral in spher-
ical coordinates (as defined
by the equation 3.4) at the
first minimum of the pair
distribution function.

The first peak of the g(r) (xmax) gives the highest probability bond length, and is
often taken as an approximation of the average bond length between A and B. But in
case of very a skewed distribution, we can question whether it is the best estimation of
the average bond length. We can, for example, compute the weighted average of the
g(r) up to the first minimum, also defined by

d1AB =
∫ xmin

0 gAB(r)r dr∫ xmin
0 gAB(r) dr

. (3.5)

Another estimation, which is considered in statistics to be less biased by extreme values,
is the median of the distribution up to the first minimum. An example of the differences
between these three estimations of the bond length for a very skewed distribution is
illustrated in figure 3.2.

Computer implementation details

The pair distribution function and its cumulative integral are both computed using the
script gofrs_umd.py from the UMD package, with a shell width of 0.05Å (option -d)
and a sampling every timestep (option -s). This python script creates one .gofr.dat file
per UMD file given as input. It is an implementation of the equations 3.1, 3.2 and 3.3:
it counts the atoms located at a certain distance and averages over all the atoms and
timesteps.

As shown in figure 3.1, we are interested in the location of the first peak and of
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Figure 3.2 – Schematics
of the different estima-
tion of bond length on a
skewed pair distribution
function. The "average"
(yellow dashed line) is the
weighted average defined
by the equation 3.5. CI(r)
is the cumulative integral
of the distribution g(r) as
defined in statistics, it is
not the same as in figure 3.1
and in equation 3.4. The
value r for which CI(r)
= CI(xmin)/2 gives the
"median" (light green dash-
dotted line) of the g(r)
distribution up to the first
minimum xmin.

the first minimum of the pair distribution for each file and pair of atoms. For this
purpose we developed tools to: 1) semi-automatically find these maxima and minima
for all the files we want at once (script analyze_gofr_semi_automatic.py), 2) check
the values automatically found (check_gofrs_analysis.py) and 3) correct the wrong
ones if necessary (analyze_1gofr_update.py).

analyze_gofr_semi_automatic.py is adapted to work for simulations of consecu-
tive pressure or density. For the best experience, we have to first sort all the .gofr.dat
files in separated folders, one for each different temperature, and make sure their pres-
sure or density change progressively when all the files are alphabetically sorted according
to their filename. Then, in the parent folder (the one in which we have all subfolders
per temperature), we analyze the pair distribution function of every atomic pair (de-
fault behavior of -a option) and print the additional .bonds.inp files (-b 1 option). The
following paragraph explains the principle of the analyze_gofr_semi_automatic.py

script, also summarized in the algorithm 1 in annex.
The script searches all the subfolders for .gofr.dat files. For each subfolder it al-

phabetically sorts them in a list of files. Then for each atomic pair AB we enter the
interactive part: the pair distribution function is displayed and we can manually click on
the first maximum and minimum to register their position along the x axis (xmax and
xmin respectively). This action does not require high precision from the user since it is
used only to have initial guesses for the third polynomial fit of the first peak and valley
which appear on the graph. These fits use only a small portion of the pair distribution
function to the left and to the right of the guesses, since a complete decomposition of the
pair distribution function into individual peaks is not easily possible. Neither the peaks
nor the valleys are third polynomial functions but to date it is the best and simplest way
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to fit them. If the fits are good we can click on the "Good" button and the maximum
and the minimum of the two fitted curves are stored in memory. If one or both of the
fits are not good, then we can click on the "Bad" button and only zeros are stored in
memory. Once this interactive step is done for each atomic pair, the script checks the
values registered. If they are non-zeros then they are used as initial guesses for the fits
of the next file and the script records automatically all the values for the files of this sub-
folder. If they are zeros then, for the atomic pair in question, the interactive part starts
for the next file. This is followed by the automatic part if the values are good, or a new
interactive part if not. In the best case scenario, the user only has to perform the manual
actions once per temperature and per AB atomic pair (without counting the reverse BA
pairs since they have the same pair distribution function), namely N2

typat+Ntypat

2 ∗ NT ,
with Ntypat the number of elements and NT the number of temperatures.

analyze_gofr_semi_automatic.py produces one output file per subfolder named
subfoldername_gofrs.txt. These files contain the following information for each AB
atomic pair (including the reverse BA pairs):

xmax the x coordinate of the g(r) first peak obtained with the 3rd order polynomial
fit if it was good, 0 else

ymax the corresponding y coordinate if the fit was good, 0 else

xmin the x coordinate of the g(r) first minimum obtained with the 3rd order polynomial
fit if it was good, 0 else

coord the corresponding y coordinate of the g(r) spherical integral if the fit was good,
0 else

bond the average bond length computed using the equation 3.5

It also produce one .bonds.inp file per .gofr.dat with three columns of 2Ntypat lines (Ntypat

being the number of atomic types). The third column gives the xmin value of the
corresponding atomic couple, whose elements are written in the two first columns. For
users who want to easily compare other estimations of the interatomic bond length (as
in figure 3.5), the script analyze_bond-length-estimators.py uses the values in the
gofrs.txt and all the .gofr.dat files to create one _bonds.txt file with xmax, weighted
average, median of the distribution and another calculation for test purposes.

In some cases, the automatic procedure may fail to correctly fit the maximum and
minimum of g(r), that is why we developed the check_gofrs_analysis.py script, which
goal is to plot the g(r) functions of all the atomic pairs selected (option -a), for every
.gofr.dat file in the subfolders (or in the selected subfolder with the option -d), and
to add on these vertical lines to indicate the xmin and xmax values as recorded in the
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gofrs.txt file (option -g). This way it is easy to identify which pairs of atoms for which
files may need to be reanalyzed. To update the data automatically we developed the
analyze_1gofr_update.py script, which requires the .gofr.dat file and a finite list of
atomic pairs to work. It uses the same Interac.Analysis procedure as before with
three decision buttons ("Fit", "Bad", "Click") instead of two ("Good", "Bad") which give
respectively in the output fitted, 0 and clicked values of the parameters for the current
atomic pair. This script is also very flexible in its use depending on the options and files
used:

-b .bonds.inp If indicated, it updates the values in the .bonds.inp file with the selected
xmin values.

-g gofrs.txt If the gofrs.txt file is indicated, it updates the values in the gofrs.txt file
with the selected results. This gofrs.txt can also be a concatenated version of all
the individual gofrs.txt files previously created (providing that only the first header
is kept), or even a modified version with lines added in the header (provided that
the two initial header lines remain unchanged and are located right before the first
data line).
If this option is not used, it creates by default a new gofr_[.gofr.dat filename].txt
file with two result lines for the fitted and clicked values.

-a O2 If "O2" is indicated in the atomic pair list and -g gofrs.txt is also indicated, then
it adds 5 columns (xmax,ymax,xmin,coord,bond) at the end of the file for O2,
allowing the analysis of the additional small peak that can appear in the gOO(r).
All the other lines (files) of the gofrs.txt file for these new columns are filled with
0. If the .bonds.inp file is also indicated, then the xmin value of O2 replaces the
one of O-O.

Once columns for O2 are added to the gofrs.txt file, it is possible to check the values with
the check_gofrs_analysis.py by selecting -a O2. This creates a plot of the gOO(r)
magnified on the O2 peak, making easier the values check.

3.1.2 Coordination polyhedra analysis

Definitions

The integral over gAB(r) up to its first minimum yields the CN of A with B. As said
before, it is the average number of atoms B around each atom A. But at each snapshot
there is often a mix of different coordinating polyhedra ABn (n atoms B located in the
first coordination sphere of A), each present in different proportions.

Every individual coordination polyhedra i is characterized by its composition, in
terms of atomic indexes (from 0 to 207), and by the time t (or snapshot number) when
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it appears (i.e. when the n atoms B are inside the 1st coordination sphere of the selected
atom A). We call "polyhedra ID" the atomic composition of the coordination polyhedra.
We can define the coordination polyhedra index i as the association {polyhedra ID,
appearance time}: i = [A,B1, ..., Bn, t]. Hence, we define the coordination polyhedra
species ABn,i as the coordination polyhedra with n atoms B around one atom A and with
the index i. The lifetime of this species, represented by Ln,i, is the difference between
its disappearance time (when at least one atom B left the 1st coordination sphere of A)
and its appearance time t.

In a given simulation, we compute the total lifetime of a coordination polyhedra
ABn, represented by Ln, as:

Ln =
∑
i

Ln,i (3.6)

Then, the proportion of a coordination polyhedra ABN , represented by RN is:

RN = LN∑
n Ln

(3.7)

Computer implementation details

In order to obtain the proportion, lifetime and composition of each coordination poly-
hedra ABn, we use the -r 0 option of the speciation_umd.py script from the UMD
package. Its process can be summarized by the flowchart in figure 3.3, while the ac-
tual computing process is summarized in the algorithm 2 in annex. We sample every
timestep (-s 1), with all the cations as central atoms (i.e. atoms inside coordination
polyhedra, option -c) and only O as vertices of coordination polyhedra (-a). We use
the first minimum of the g(r) for each atomic pair (-i .bonds.inp) as threshold to define
if two atoms are bonded or not: if their interatomic distance is smaller than this radius,
they are considered bonded. We let the minimum lifetime of the species being equal to
the timestep of the simulation (option -m 1 step).

As seen before, the analyze_gofr_semi_automatic.py script automatically creates
one .bonds.inp file per .gofr.dat. Then each .bonds.inp file can be individually updated
with the analyze_1gofr_update.py script. But in some cases, the xmin location is quite
uncertain, mainly due to small peaks appearing or disappearing in this region. A com-
plete decomposition of the g(r) function into individual peaks would allow a perfect loca-
tion of the xmin, since it would be defined as the intersection of the two first peaks. But
not only the peaks are incorrectly represented by functions like Gaussian or Lorentzian,
a decomposition of the g(r) signal leads to huge uncertainties on the peak tails, and
consequently on the xmin location. That is why we prefer to only slightly smooth the
xmin variations in order to reduce the effect of mislocating the xmin on the coordination
polyhedra proportions. This is done through the plot_distances+analysis_xmin.py
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Figure 3.3 – Simplified flowchart of the coordination polyhedra analysis from the
speciation_umd.py script (option -r 0). dt is the timestep used in the simulations, while
"sampling" is the sampling frequency value we indicate in the option -s. Here we choose 1 to
sample every step.
accronyms and definitions: xcart = cartesian coordinates; boolean bond presence matrix = matrix of
Ncentral atoms+Nsurrounding atoms atoms side filled with 0 (no bonds) and 1 (bonds between the atoms);
coordination polyhedra ID = string of atomic indexes present in the coordination polyhedra;
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Figure 3.4 – Radius of the 1st coordination sphere as a function of density and temperature
for CaAl2Si2O8. Colors represent temperatures: blue - 3000 K, green - 4000 K, yellow - 5000 K,
red - 6000 K, pink - 6500 K, magenta - 7000 K. We use third-order polynomial fits (solid lines)
to smooth the xmin values that appear in the .bonds.inp files.

script which uses a third-order polynomial fit when we have at least six data point, and
a linear fit else. As shown by figure 3.4, third-order polynomial fitting appears to be a
good and simple way to smoothen the data while keeping long range variations.

3.1.3 Future improvements of the UMD package

There are many other structural properties of interest other than the bond distance
or the coordination polyhedra proportion. We can cite for example the variation with
pressure and temperature of the angular distributions or the number of bridging and
non-bridging oxygens. These properties are not computed here because their calculations
are not yet implemented in the UMD package. They will be implemented in a future
version of the speciation_umd.py script.

3.2 Bond distance and coordination number

Bond distance

To date, there is no definitive and clear definition of the bond length. Experimentally
it is often measured through X-ray diffraction, but the results vary depending on the
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Figure 3.5 – Comparison
of the different bond length
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end-member with experi-
mental results (Angel et al.,
1990; Taylor and Brown,
1979) and simulations (de
Koker, 2010). The filled
regions represent the bond
length variation between
3000 and 7000 K. Colors
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selected crystal structure used in the refinement process. In the figure 3.5 we compare
each of the three average bond length calculations defined in section 3.1.1 for the Ca-
end-member with experimental results from Angel et al. (1990) and Taylor and Brown
(1979), and with simulations from de Koker (2010). The maximum of the peak is more
in agreement with experimental results, especially with the computational experiments,
than the weighted average or the median. The weighted average value appears to be
influenced a lot by the xmin location, which varies a lot with temperature as seen in
figure 3.4 and on the pair distribution functions displayed on figures 3.6 and A.3. The
median seems to be less influenced by the xmin location but still shows larger variation
than the xmax.

Figure 3.6 shows the pair distribution functions for each feldspar end-members at
2 g cm−1 as a function of temperature. At 2 g cm−1 and 2000 K, conditions that are close
to a hot magma at ambient pressure, the Si-O and Al-O pair distribution functions are
very close to 0 at the first minimum, a feature that is close to what we see in a solid.

The pair distribution function of O-O displays one main peak located around 2.7Å,
which represents the position of oxygens sharing the same edge of polyhedra around the
Al or Si cations. The peak is found at all densities and temperatures and its position
varies from below 2.2Å at high densities to about 2.8Å at low densities. For tempera-
tures above 4000 K, gO−O(r) exhibits a second smaller peak located around 1.4Å. Its

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



40 3.2 - Bond distance and coordination number

position varies from approximately 1.5Å around 3 g cm−3 to 1.3Å at 1.0 g cm−3. It is
presented for two representative densities: 2 g cm−3 that is in the fully fluid region on
figure 3.6 and 1.0 g cm−3 that is below the liquid-gas boundary density on figure A.3 (see
chapter 4 and 6 for the determination of the physical state of feldspars). We interpret
this peak as an indication of molecular O2 since the average bond distance in gaseous
dioxegene is 1.2074Å (Haynes, 2011). The O2 peak location can be quite imprecise
when the peak is very small, for example at high densities or at 4000–4500 K, which
may explain the fluctuations from one density to another.

We use the maximum of the first peak of the pair distribution functions to estimate
the average bond lengths. They are represented for each feldspar end-member at each
densities (or pressure) and temperatures on figures 3.7 and A.4. The three feldspars
display very similar behavior of their bond length variations. At 2 g cm−1 and 3000 K,
the Si-O, Al-O, Na-O, K-O and Ca-O average bond lengths are 1.64Å, 1.76Å, 2.31Å,
2.79Å and 2.27Å respectively. Below about 100 GPa, we notice very little influence of
the density and temperature on the average T-O bond distance (T being Al or Si): over
100 GPa pressure range the relative decrease is about 2 %. On the opposite, the relative
variation of the M-O bond distance (M being Na, K or Ca) over the same pressure range
is on the order of 10 and 20 % for {Na,Ca}-O and K-O respectively. In general the bond
lengths in the liquid at 3000 K are comparable to the values recorded in the solids at
ambient conditions.

Figures 3.8 and A.5 shows that the interatomic distances of O-O, T-O and M-O pairs
are always smaller than the interatomic distances of two cations. This is true for every
temperatures and densities studied. Moreover, the decrease of interatomic distances
is far greater for cation-cation pairs than for T-O pairs over the same pressure range.
Feldspars are tecto-silicates, their crystal structure is built of a polymerized framework
of SiO4 and AlO4 tetrahedra, in other words of · · · -T-O-T-O-· · · chains in the three
directions of space, with the cations (Na, K, Ca) distributed orderly in the pores of
this polymer. In the liquid state, the framework and polymerization are still present.
Thus, we consider there is not interatomic bonds between the cations. This will be of
importance in the chapter 4 for the search of chemical species in the fluids.

Coordination number

The density of solid feldspars ranges from 2.5 g cm−3 to 2.8 g cm−3 at ambient pressure
and temperature. In the liquid state, the framework and polymerization of SiO4 and
AlO4 tetrahedra are still present, but the dominant coordination changes as a function
of both pressure or density and temperature.

The coordination number of Si and of Al by O is very similar for the three feldspar
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Figure 3.6 – Pair distribution functions of X-O (X being Na, K, Ca, Al, Si and O) in NaAlSi3O8
(a,b,c,d), KAlSi3O8 (e,f,g,h) and CaAl2Si2O8 (i,j,k,l) at 2 g cm−1. Colors indicate temperatures.
The insert shows a zoom on the region 0.5–2.5Å. The small peak located around 1.4Å marks
the presence of O2 molecules. The same figure at 1 g cm−1 is available in annex, figure A.3.
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Figure 3.7 – Position of the first g(r) peak for each feldspar end-member (columns) as a
function of pressure and temperature (colors) for T-O and M-O pairs. O2 corresponds to the
small additional peak seen on the gO−O(r). The same figure as a function of density instead of
pressure is presented figure A.4.
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Figure 3.8 – Position of the first g(r) peak for each feldspar end-member (columns) as a
function of pressure and temperature (colors) for five cation pairs. The same figure as a function
of density instead of pressure is presented figure A.5.
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Figure 3.9 – Average coordination number of Ca, K, Na, Al and Si by O as a function of pressure
and temperature. Ca- (+ and dotted lines) and K- (x and dashed lines) are both compared with
Na-feldspar (solid lines). Colors indicate temperatures. The same figure as a function of density
is available in annex, figure A.6.
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Figure 3.10 – Compari-
son of the average coordi-
nation number obtained in
this study for the Na- end-
member (solid lines) with
the results previously ob-
tained by Spera et al. (2009)
and de Koker (2010) for
the Ca- end-member and by
Neilson et al. (2016) for the
Na- end-member. Colors in-
dicate approximate temper-
atures: green - 4000 K, yel-
low - 5000 K, red - 6000 K.
For clarity and since the two
plagioclase feldspars show
identical results, we only
plot our results for the Na-
end-member.

end-members (figure 3.9). For Si, it increases from about 4 at 7 GPa to more than 6
above 100 GPa. Above 7 GPa it is only weakly dependent on temperature. At lower
pressures the dependence is stronger with temperature: at 1 GPa it decreases from
about 3.8 at 4000 K to 3 at 7000 K. For Al, the coordination increases monotonously
from about 4.2 at 3 GPa to about 7 above 100 GPa. The spread of coordination numbers
due to temperature is less than 0.5 units between 3000 K and 6000 K at all pressures.

The coordination number of Al by O is larger than the coordination number of Si
by O at all pressures and temperatures. Regarding the interstitial cations environment,
the coordination number of Na and Ca by O are very similar, while K displays a larger
coordination number by O at all temperatures above 1 GPa.

For clarity and since our results for the two plagioclase feldspar are identical, we
compare only our results for the Na-end-member with other computational experiments
on plagioclase at similar temperatures (figure 3.10). In general we have a good agreement
between the results obtained with FPMD on the Ca- end-member (de Koker, 2010) and
also those obtained with classical MD on the Na- and Ca- end-member respectively
(Neilson et al., 2016; Spera et al., 2009). Nevertheless, in the anorthite melts we can
note larger values obtained by Spera et al. (2009) for the coordination of Si and Al with
O and lower values obtained by de Koker (2010) for the coordination of Ca with O.
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3.3 Coordination polyhedra

3.3.1 Coordination polyhedra SiOn and AlOn

Proportion

In terms of actual coordination polyhedra rather than average coordination numbers, the
three feldspar systems behave in a similar way to other silicate melts (Karki et al., 2018;
Solomatova and Caracas, 2019). The melt is dominated by SiO4 tetrahedra up to about
25 GPa at 3000 K and 20 GPa at 6000 K. SiO5 is present in the melt at low pressures at
all temperatures. SiO6 appears around 10 GPa at 3000 K and 5 GPa at 6000 K; it is the
dominant species above 70 GPa at 3000 K and above 50 GPa at 6000 K. This behavior
is different in liquid MgSiO3, where the coordination state increases more rapidly with
pressure: SiO5 is the dominant species above around 15 GPa and SiO6 becomes the
dominant coordination above 25 GPa Stixrude and Karki (2005). Upon decompression
below 2.2 g cm−3, the amount of under-coordinated Si and Al, i.e. SiOn and AlOn species
with n < 4, increases with decreasing density and increasing temperature.

As a general trend, at high temperature the speciation shows a more uniform distri-
bution between various coordination polyhedra. Figures 3.11, 3.12 and 3.13 shows the
proportion of the SiOn and AlOn species in the Na-, K- and Ca- end-members for two
relevant temperatures (3000 K and 6000 K) as a function of pressure. The same figures
as a function of density are available in annex figures A.7, A.8 and A.9. For the alkali
feldspars, we observe systematically that above 10 GPa the dominant species contains
more O atoms for Al than for Si (i.e. when AlO5 starts to be dominant). This is also
true for the anorthite melt at 6000 K, but at 3000 K we have to wait up to 150 GPa (i.e.
AlO7 to be dominant) to see the same behavior.

Figure 3.14 shows the change in the major coordination of Si and Al by O as a
function of pressure and temperature and the comparison between the fluids and the
solids (crystalline forms). The melts are characterized by a series of structural changes
where the dominant coordination goes as TO4→ TO5→ TO6→ TO7 (→ TO8), T being
Si or Al. This transition series follows closely the changes recorded in the solids, but
the sequence is generally shifted towards higher pressures. The increasing temperature
in the fluid shifts to larger pressure the change in dominant coordination. However
the solids, more precisely the crystalline forms, do no show five, seven or eight-fold
coordination. On the contrary, glasses show a behavior similar to those of liquids, with
the appearance of five-fold coordination (e.g. Li et al., 1995), even though not every
study succeed in observing this feature (e.g. Sykes et al., 1993).
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Figure 3.11 – Relative proportion of SiOn and AlOn coordination species in NaAlSi3O8 for
3000 K and 6000 K as a function of pressure. The same figure as a function of density is available
in annex, figure A.7.
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Figure 3.12 – Relative proportion of SiOn and AlOn coordination species in KAlSi3O8 for
3000 K and 6000 K as a function of pressure. The same figure as a function of density is available
in annex, figure A.8.
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Figure 3.13 – Relative proportion of SiOn and AlOn coordination species in CaAl2Si2O8 for
3000 K and 6000 K as a function of pressure. The same figure as a function of density is available
in annex, figure A.9.
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Figure 3.14 – Changes of the major coordination of T by O (T being Al, Si) for (a) Na-, (b)
K- and (c) Ca-feldspar compositions in the temperature-pressure projection plane. Background
color indicate the number of O atoms in the SiOx coordination polyhedra that dominates the
structure of our computed melt. The shape and color of symbols indicate the number of O
atoms in the AlOx coordination polyhedra that dominates the structure of our computed melt.
Dash-dotted lines are solidus (green) and coesite-stishovite phase transition (gray) for silica from
Tsuchiya and Tsuchiya (2011); Zhang et al. (1996). The other lines are solidus (green) and solid-
solid phase transitions (gray) for feldspars (and jadeite above 2 GPa) from Akaogi et al. (2004);
Bell and Roseboom Jr. (1969); Lindsley (1966); Litvin and Gasparik (1993); Newton and Smith
(1967); Urakawa et al. (1994). The subsolidus coordination indicated in this diagram (denoted
[4]T and [6]T for coordination number of T by O of 4 and 6 respectively) are for the crystalline
phases. They may differ from the glasses coordination. The gray area indicate the region of
K2Si4O9 wadeite-type mineral, with Si 4 and 6-fold coordinated to O.
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Lifetime

As explained in section 3.1.2, we obtain the lifetime of each coordination polyhedra
species that is formed in the simulation. One way to represent the individual lifetimes
for one simulation is using a bar plot: the height of each individual bar corresponds to
the lifetime of each individual cluster. Due to the large number of species among each
coordinating polyhedra, we display on figure 3.15 the outline of the initial bar plot at
about 2.2 g cm−3 for two temperatures of interest, 3000 K and 6000 K.

Figure 3.15 shows that the lifetime distributions are all very skewed: there are more
species with short lifetimes than species with very long lifetimes. Then, in order to
compare the different densities, temperatures and feldspars together, we use the median
of the lifetime distributions as an unbiased estimator or the mean lifetime. The max-
imum lifetime is also used to have an idea of the lifetimes range for each coordination
polyhedra. The figures 3.16 and 3.17 show respectively the median and maximum life-
time of AlOx and SiOx coordination polyhedra as a function of density at (a) 3000 K,
(b) 6000 K and as a function of temperature at (c) 1.02 g cm−3, (d) 2.29 g cm−3. Since
the three feldspar end-members show very similar evolution of their mean and median
lifetime, the same representation for the two other end-member are available in annex,
figures A.10, A.11, A.12 and A.13. The lifetime of the coordination polyhedra underlines
the long-lasting nature of the 4-fold coordination species SiO4 and AlO4 in the three
melts. For example, at low densities and 3000 K, the SiO4 tetrahedra live up to 10 ps,
and at 4000 K up to almost 4 ps. The very large maximum lifetimes, about 10 ps, may
be underestimated since the length of the simulations is only about 15 ps. Increasing
temperature leads to decreasing the maximum lifetime of all coordination polyhedra and
extending the tail of lifetimes, as the bonds form and break with higher frequency. The
lifetime decreases almost a factor 10 when the temperature rise from 3000 K to 6000 K.
The SiOn species tend to live longer than the AlOn species at the same density and
temperature.

3.3.2 Coordination polyhedra NaOn, KOn and CaOn

Na, K and Ca act as interstitial cations in the large Si-Al-O polymer that constitutes the
framework of the melt. For this reason their coordination polyhedra by O show a much
larger variability than their equivalent Si and Al (figures 3.18 and A.14). Below about
15 GPa (about 2.5 g cm−3), each coordination polyhedra becomes the major coordination
species one after another, following the same behavior as AlOn and SiOn coordination
polyhedra. On the contrary, at higher pressure the behavior is a bit more erratic: some
coordination polyhedra never becomes the major species (for example KO13 and KO14)
and some coordination polyhedra become the most abundant in the whole high pressure
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Figure 3.15 – Lifetime of SiOn and AlOn coordinating polyhedra at about 2.2 g cm−3 below
the critical temperature (blue - 3000 K) and around or above the critical temperature (red -
6000 K) for (a) Na- (b) K- and (c) Ca-feldspar fluids. Due to the large number of individual
species among each coordinating polyhedra, we display here the outline of the initial bar plot.
The height of the each individual bar corresponds to the lifetime of each individual cluster.
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Figure 3.16 – Median lifetime of AlOn and SiOn coordination polyhedra for NaAlSi3O8 as a
function of density at (a) 3000 K, (b) 6000 K and as a function of temperature at (c) 1.02 g cm−3,
(d) 2.29 g cm−3. Can be compared with the same representations for CaAl2Si2O8 (figure A.10)
or KAlSi3O8 (figure A.11).
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Figure 3.17 – Maximum lifetime of AlOn and SiOn coordination polyhedra for NaAlSi3O8 as a
function of density at (a) 3000 K, (b) 6000 K and as a function of temperature at (c) 1.02 g cm−3,
(d) 2.29 g cm−3. Can be compared with the same representations for CaAl2Si2O8 (figure A.12)
or KAlSi3O8 (figure A.13).

range studied here (for example CaO10).
Also the lifetime of the MOn coordination polyhedra (M being Na, K or Ca) is

considerably shorter than the SiOn and AlOn (figure 3.19). From the three interstitial
cations, Ca is the one with the highest coordination polyhedra lifetimes. This is possibly
explained by its considerably lower diffusion coefficient (see chapter 5).

$
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Figure 3.18 – Relative proportion of NaOn, KOn and CaOn coordination species for 3000 K
and 6000 K as a function of pressure. The same figure as a function of density is available
figure A.14.
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Figure 3.19 – Same as Fig. 3.15 for NaOn, KOn and CaOn coordinating polyhedra.
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CHAPTER 4
VOLATILIZATION

Si l’on porte à ébullition des feldspaths, les minéraux majeurs des croûtes lunaire et terrestre,
que se passe-t-il ? Il est probable que les bulles créées soient composées majoritairement de petites
espèces comme Na, K, SiO, SiO2 ou O2.
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Quand les feldspaths bullent...

Prenez une boîte hermétiquement fermée, maintenue à température constante et remplie
totalement d’un liquide quelconque. Si vous augmentez le volume de la boîte sans pour
autant qu’elle ne s’ouvre que se passe-t-il ? En général, le liquide entre en ébullition (des
bulles se forment) et une nouvelle phase apparaît : un gaz. Cela n’est cependant vrai
que pour des conditions expérimentales « ordinaires » : si la température dépasse une
certaine valeur, la température critique Tc (cf. chapitre 6), le fluide dans la boîte (alors
qualifié de supercritique) ne subit pas la transformation décrite ci-dessus. Visuellement,
aucune bulle ne se forme et le fluide reste constitué d’une seule phase homogène tout au
long de l’augmentation de volume.

Cette expérience de pensée illustre les expériences numériques réalisées ici. La boîte
est notre cellule de simulation contenant un feldspath liquide : en tout 208 atomes répar-
tis entre les éléments {Ca, K, Na}, Al, Si et O. Les vides qui apparaissent (figures 4.3,
4.4 et 4.5) représentent les bulles qui commencent à se former à l’échelle microscopique.
Indiquer qualitativement la présence de bulles permet de compléter le diagramme de
phases du chapitre 6. Les groupements d’atomes qui flottent à l’intérieur des bulles (fi-
gures 4.4 et 4.5) représentent les premières espèces gazeuses qui apparaissent au début
de l’évaporation du liquide.

La distribution des tailles des espèces chimiques figure 4.6 montre deux ensembles
bien séparés : les petites espèces chimiques en bas, formant le gaz et les grosses espèces
chimiques en haut, formant le liquide. Pour chaque simulation on a enregistré les temps
de vie de chaque petit groupement d’atomes formant le gaz. Ils sont représentés pour
CaAl2Si2O8 à une seule masse volumique et deux températures en figure 4.7. Chaque
sous-figure est un histogramme donnant le temps de vie (axe vertical) de chaque grou-
pement de même composition chimique (chaque barre individuelle). On considère ici
qu’un groupement d’atomes forme une espèce chimique gazeuse lorsque sa durée de vie
dépasse un certain seuil, fixé à 30 fs.

La proportion en chaque espèce chimique dans le gaz est le temps de vie total des
groupements de même composition chimique divisé par le temps de vie total de tous
les petits groupements. Représenté en figure 4.10, il montre que le tout premier gaz qui
apparaît est composé en majorité de Na, K, SiO, SiO2 et O2. On a même des molécules de
SiO3, confirmant ainsi l’observation faite au chapitre précédent. On remarque également
que l’élément Al est presque absent des espèces volatiles (qui passent dans la phase
gazeuse) à 4000 K et un peu plus présent à 6000 K. La proportion atomique en chacun
des éléments (figure 4.11), calculée elle aussi grâce aux temps de vie de chacune des
espèces, montre bien ce déficit en Al dans le gaz. La composition atomique du gaz n’est
pas la même que celle du liquide, on dit alors que l’évaporation est incongruente.
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Brief outline In the previous chapter, we were interested in the short-range structure
of the fluids. Now we are searching for the liquid-gas transition. As before, the first
section explains the theory and presents the computer codes used to find the individual
chemical species, defined in subsection 4.1.1 as the largest chains of connected atoms. It
also presents the parameters used to represent the atoms, bonds, etc. in the snapshots
(subsection 4.1.3). Then, section 4.2 gives a qualitative analysis of the vaporization
occurring in the simulations by means of snapshots. Before presenting the quantitative
results and associated discussions (section 4.4), section 4.3 highlights the limits of this
analysis and states the definitions used in the discussions that follow. After that, the
quantitative results part presents first the lifetime of chemical species (subsection 4.4.1)
and then the proportions of chemical species and elements (subsection 4.4.2).

4.1 Post Processing and visualization parameters

4.1.1 Definitions

In this chapter we are interested in the volatilization of the liquid, which includes the
chemistry of the liquid and gas phases. We define a chemical species as the largest 3D
chain of connected atoms. In a simulation we usually have a mix of chemical species with
different chemical compositions χ, each species present in different proportions. As for
the coordination polyhedra definition (section 3.1.2), every individual chemical species
i is characterized by its atomic composition, in terms of atomic indexes (from 0 to 207),
and by the time t (or snapshot number) when it appears (i.e. when the atoms that made
the species are in the 1st coordination sphere of their neighbor(s)). We call "chemical
species ID" the list of these atomic indexes. Likewise, we define the chemical species
index i as the association {chemical species ID,appearance time}: i = [A0, ..., Ax, t].
The lifetime of this species with chemical composition χ, represented by Lχ,i, is the
difference between its disappearance time (when at least one atom is no more inside the
1st coordination sphere of any atom of the current species) and its appearance time t.

Examples of chemical species indexes i along with a visual explanation of the rules
used to define a chemical species are presented in figure 4.1. Each part of the figure
correspond to the following rules and/or implications:

1. Atoms are bonded if they are in the 1st coordination sphere of its neighbors.

2. The periodic boundary conditions are used to link atoms across consecutive cells.

3. Two species made of the same atoms in two consecutive snapshots are the same,
no matter the bonds between the different atoms.
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Figure 4.1 – Rules of
species definition used in the
speciation_umd.py script
(option -r 1). The state-
ments 3 and 4 are implied by
the definition of individual
species based on the species
index i: {chemical species
ID,appearance time}: i =
[A0, ..., Ax, t]. Species with
different indexes i are differ-
ent.

Two species of the same chemical composition but not atomic composition are
different.

4. A species broken at a time t and reforming with the same atoms as before is not
the same anymore because of a different appearance time.

As said in section 3.2, we do not think there are bonds between the cations, then we
consider only the 1st coordination spheres of T-O and M-O pairs (M=Na,K,Ca;T=Al,Si)
for the definition and search of chemical species. For temperatures equal to and above
4000 K, we replace the 1st coordination sphere of O-O (two oxygens sharing the same
polyhedra edge) by the first coordination sphere of O2 (the small additional peak on
gO−O(r)).

In a given simulation, we compute the total lifetime of a species with chemical
composition χ, represented by Lχ, as:

Lχ =
∑
i

Lχ,i (4.1)

Then, the proportion of a given chemical composition X, represented by RX is:

RX = LX∑
χ Lχ

(4.2)
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Likewise, we compute the total lifetime of a chemical element elem as:

Lelem =
∑
χ

∑
i

Lχ,i ×Nχ,elem (4.3)

with Nχ,elem the number of atoms of this element type elem in the chemical composition
χ (for example there is 1 Si in SiO2). Then, the proportion of a given element A is:

RA = LA∑
elem Lelem

(4.4)

In the whole system, this proportion is simply equal to NA
Ntot

, with NA the number of
atoms of this element type A and Ntot the total number of atoms. For feldspars we
have: RNa=RK=RCa= 16

208=
1
13=7.7 %, RO=128

208=
8
13=61.5 %, RSi=RAl= 32

208=
2
13=15.4 %

in CaAl2Si2O8 and RSi=3RAl= 48
208=

3
13=23.1 % in NaAlSi3O8 and KAlSi3O8.

When we compute these proportions (RX and RA), if we only use the lifetimes Lχ,i of
species in a given phase, for example in the gaz phase, instead of inside the whole system,
then we obtain the proportions in this phase. If the elemental proportions RA are the
same in gaz phase than in the whole system for every elements, then the vaporization
is congruent.

4.1.2 Computer implementation details

We use the option -r 1 of the speciation_umd.py script from the UMD package. As
for the coordination polyhedra analysis, for a given simulation we record all the species
in each snapshot of the simulation (option -s 1). We search for species made of any
atoms in the simulation (option -a or -c followed by the complete list of elements in the
system). Nevertheless, we only allow bonds between the cations and oxygens or between
two oxygens: the .bonds.inp file has the values of the 1st coordination sphere for only
M-O, T-O and O-O pairs. For the simulations which display the small O2 peak, we use
a linear fit to smooth the xmin values. For each isotherm equal to or above 4000 K, we
use the xmin value of the highest density simulation with a visible O2 peak as the xmin
value for higher densities simulations.

The process of the script can be summarized by the figure 4.2, while the actual
computing process is summarized in the algorithm 3 in annex. The computational
method used to find the individual species in the simulation is based on the mathematics
graph theory. Mathematically we construct a finite simple graph, which means we use a
finite set of vertices - atoms - and edges - bonds and do not allow self-loop nor multiple
edges. In practice we use a recursive loop and the boolean bond presence matrix (a
matrix with 0 and 1 inside to indicate whether or not atoms are bonded) as follow.
At each snapshot, we first create the bond matrix and add all the isolated atoms to
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the cluster list (a list of every species ID at this snapshot). These isolated atoms form
the monoatomic gas of this snapshot. Then we enter the recursive search of all the
atoms that are linked together. To do this, each time we use a bond in the bond matrix
to create the list of linked atoms in the same species, we remove this bond from the
bond matrix. We have the complete species ID once every atom that constitute it are
link to nothing in the boolean bond matrix. This recursive step is indicated * on the
figure 4.2 and corresponds to the function Neighboring of the algorithm 3. When the
boolean bond presence matrix is filled with zeros it means we found all the species in
the snapshot.

4.1.3 Visualization

The visualization of atomic movements during the course of the simulation is the first
analysis step. We use the Visual Molecular Dynamics (VMD) software (Humphrey
et al., 1996) and two representation methods that are implemented in it. The atoms
are represented by spheres using the CPK representation: the radii of the spheres are
the scaled-down Van der Waals radii. The bonds are represented by the DynamicBonds
method: a bond is drawn if the atoms are within a distance cutoff of eachother.

Following the discussion about bond lengths in section 3.2, we would like to take
the 1st coordination sphere as distance cutoff for Si-O and Al-O bonds representation
(located around 2.5–2.9Å, see figure 3.4). Unfortunately the VMD selection panel for
representations does not allow the selection of bonds instead of atoms. Then when using
a value of about 2.7Å for Si-O and Al-O bonds representation, the software also uses
this value for O-O bonds representation. Since the maximum of the first gO−O(r) peak
is located around 2.7–2.8Å (see figure A.4), a lot of bonds between two oxygens sharing
the same polyhedra edge are represented and overload the figure. That is why, for more
clarity, we use the xmax as cutoff distance for bonds representation.

For bubble representation, we display the electronic density isosurface at 0.01 e/Å3.
This value, although arbitrary, provides a good representation of the bubble shape. The
electronic density is computed on the selected snapshots using the INCAR file available in
annex A.1.2. VASP® produces three charge density files named AECCAR0, AECCAR1
and AECCAR2. To obtain the correct total electronic charge density we use the script
chgsum.pl from the VASP Transition State Tools (VTST) package (Jónsson group and
Henkelman group) to sum the AECCAR0 and AECCAR2 which contained respectively
the core and valence electronic density.
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Figure 4.2 – Simplified flowchart of the speciation analysis from the speciation_umd.py script
(option -r 1). dt is the timestep used in the simulations, while "sampling" is the sampling fre-
quency value we indicate in the option -s. Here we choose 1 to sample every step. * corresponds
to the recursive function Neighboring of the algorithm 3. accronyms and definitions: xcart = carte-
sian coordinates; boolean bond presence matrix = matrix of N atoms side filled with 0 (no bonds) and
1 (bonds between the atoms); species ID = string of atomic indexes present in the chemical species;
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Figure 4.3 – Snapshot of
CaAl2Si2O8 at 4000 K and
1.81 g cm−3 (cell size of
16Å) with (b) addition of
iso-electronic density sur-
face at 0.01 e/Å3. Colors
indicate different elements:
cyan - Ca, pink - Al, yellow
- Si, red - O.

4.2 Qualitative analysis

As said in chapter 3, feldspar are tectosilicates. At normal to high density, the largest
chemical species found in the simulations involve forming chains and rings of alternating
cations and oxygens, in ... - oxygen - cation - oxygen - cation - oxygen - ... sequences.
At high density all 208 atoms are connected in one infinite cluster which constitutes the
liquid.

At low densities and below the critical temperature1, long lasting cavities appear in
the structure, where isolated atoms or clusters of atoms may freely float inside. As said
before, we display the electronic density isosurface at 0.01 e/Å3 in order to differentiate
interatomic voids from larger cavities. Figure 4.3 shows a typical snapshot of the first
visible cavities. We see all the interconnected atoms surrounding an ellipsoidal cavity
large enough to be seen with the iso-electronic density surface drawn. Due to the small
size of the cell and of the periodic boundary conditions this cavity appear as an infinite
cylinder. These cavities evolve with time. For example, figure 4.4 shows the evolution
of the cavity, from a cylinder shape to slab-like along two different axis, and even its
disappearance. They also evolve with density. On average we see more cavities with
a sphere or cylinder shape for densities close to the ambient one, and more slab-like
shapes for the lowest densities reached here. This behavior was also observed and well
described by Binder et al. (2012) for their study of the phase coexistence region using
Monte Carlo simulations (figure 3). Nevertheless, here we see an additional type of cavity
which appear after the cylinder type (i.e. for ρ < ρcylinder) and before the slab step (i.e.
for ρ > ρslab): two perpendicular cylinder cavities. We also notice that the liquid slabs
do not display a truly flat surface (figures 4.4 or 4.5) and tend to spontaneously change
shape. Xiao and Stixrude (2018) also noted a tendency of their liquid slab to split in
two in their ab initio MD simulations. While here we let the system evolve freely, they
try to prevent this behavior.

1see section 6.1.3 for definition of critical temperature
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Figure 4.4 – Snapshots of KAlSi3O8 at 4500 K and 0.61 g cm−3 for different times in the
simulation. Four simulations cells are represented here using the periodicity, the dashed square
indicate the limits of the 23Å side simulation box. Colors indicate different elements: purple -
K, pink - Al, yellow - Si, red - O.

Figure 4.5 – Snapshot of the iso-electronic
density surface at 0.01 e/Å3 in the simulation
cell of NaAlSi3O8 at 4500 K and 0.47 g cm−3

(cell size of 24.5Å). Four simulations cells are
represented here. We see a clear bubble with
two clusters inside: SiO and NaO2. Colors
indicate different elements: blue - Na, pink -
Al, yellow - Si, red - O.
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Depending on the simulation, the cavities can be empty (figure 4.3) or have some
small clusters floating inside (figures 4.4 or 4.5). We interpret then these cavities as the
nucleating gas bubble. Since there are not always clusters inside these cavities we cannot
define them as real (macroscopic) bubbles. That is why the free clusters represent only
the first volatile species and do not give the complete gas composition. Likewise, we
cannot define any partial pressure of the gas nor surface tension. A more realistic gas
bubble nucleation would require a much larger number of atoms, something which is not
yet possible in ab initio MD simulations.

At too high temperature we do not see bubbles anymore since the atoms are too
fast to keep a liquid-like structure. We distinguish cavities up to 6000, 6500 and 7500 K
for respectively K, Na and Ca-feldspar end-members at densities below 1 g cm−3. This
qualitative analysis will be useful for the construction of the phase diagram in chapter 6.

4.3 Gas, species... Some warnings

Before we perform any quantitative analysis of the speciation it is mandatory to specify
the limits of this study. First, as mentioned in the rule number 3 (section 4.1.1), the
species are defined by the atoms, not by the bonds. In this case, we can end up with a
SiO4 as in figure A.15, which is basically an O2 molecule too close to a SiO2 molecule.
A maybe more accurate speciation analysis should define a species by the bonds. This
way it would be possible to follow the lifetime of an O2 bond, from its formation to
its destruction, no matter the additional atoms that may cross its first coordination
sphere. One reason why we did not do that is the lack of time to implement this in the
speciation.py script.

Second, we have to define what is the minimum lifetime of a species. Here, the
speciation analysis allows to find all the species with a lifetime as small as the timestep
of the simulation, which is about 1 fs. This implies, for example, that a species can exist
only for the time an atom B needs to: 1) enter the first coordination sphere of another
atom A, 2) bounce on this atom and 3) leave the coordination sphere. In my opinion, if
there is a bond between the two atoms A and B, I expect the atom B to be captured by
the atom A attraction forces, and then stay longer in the first coordination sphere of A.
This idea is highly dependent on the velocity of atoms (and then of the temperature):
the faster atoms move, the stronger the attraction field of A should be to capture B
(i.e. the stronger a bond should be to form). In Raman spectroscopy, peaks indicate
bond vibrations, then we can assume a bond exist if it lasts at least for one vibrational
period. This idea was already used by one of the only other ab initio MD volatilization
study (Xiao and Stixrude, 2018). Here I only want to remove the species that exist only
because of the "bouncing" mechanism describe above. Then I want to use a minimum
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lifetime criterion as small as possible. In Raman spectra acquired at room temperature,
the fastest vibrations in feldspars are located between 900 and 1200 cm−1 and involve
stretching of Si-O bonds. Using the vibrational theory we can link the Raman shift ∆ν
to the vibration frequency ν:

Evib. = Elaser − Eemitted

⇔ hν = h
c

λlaser
− h c

λemitted
⇔ ν = c∆ν (4.5)

Applied to feldspars, we get a vibration period 1
ν of about 30 fs. Then for a first approx-

imation, in the chemical proportion analysis section 4.4.2 we will not count species that
live less than 30 fs. I admit that this criterion is arbitrary and has limits, for example the
influence of temperature on the vibration period. Nevertheless it is the only reasonable
one I can think about.

Figure 4.6 – Size distribution of all individual clusters of atoms in NaAlSi3O8 fluids as a
function of (a) density at 6000 K or (b) temperature at 1.02 g cm−3. Each point represents an
individual cluster of the corresponding size (y axis). Color scale indicates the lifetime of each
cluster. Clusters in the gas with size larger than 13 atoms have lifetimes shorter than 30 fs. In
every simulations there is a stable liquid part: big clusters (>200 atoms) living more than 30 fs.

Third, we have to define what is the so-called "gas phase". For each feldspar end-
member the distribution of the size of the atomic clusters is bimodal: the large poly-
merized melt that surrounds the cavities and the small atomic clusters that populate
these cavities. It is represented as a function of density for 6000 K (close to the critical
temperature) on figure 4.6 (a) and as a function of temperature for 1 g cm−1 (below the
liquid-gas boundary density) on figure 4.6 (b). We notice there is an upper limit in the
size of the small clusters that live more than one vibration period: they are usually made
of less than about 10 atoms below the critical temperature. In the speciation analysis,
all small clusters, for example with less than 100 atoms in their formula, are considered
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to be gas species, while all big clusters, with more than 100 atoms in their formula, form
the liquid part. This criterion has a sense only below the critical temperature, in the
liquid-gas dome. Above the critical temperature we should see a continuous distribu-
tion of cluster sizes. Here we still have a bimodal distribution, maybe due to the large
density fluctuations that occur around the critical temperature. We should also keep
in mind that due to size limitation of our simulations, the lists of volatile species we
will show in the following do not represent the real composition of the gas phase at the
same conditions. Nevertheless they give an overview of the composition and highlight
the first volatile species.

4.4 Quantitative analysis

4.4.1 Lifetime of species

Figures 4.7, 4.8 and 4.9 show the lifetime of each individual volatile species with less than
8 atoms in their composition in the Ca-, Na- and K-feldspar fluids at very low density
(1 g cm−3) and two reference temperatures: 4000 K and 6000 K. The same figures for
the species with 9 to 13 atoms in their formula are available in annex, figures A.16, A.17
and A.18.

Each bar of these bar plot represent an individual chemical specie. The height of
the bar is the associated lifetime of the species. We represented here all the individual
species, including those living less than a vibrational period (30 fs). We see that the
lifetime distributions are all very skewed toward short lifetimes, showing the importance
of a minimum lifetime for a quantitative analysis.

At 4000 K, during the entire simulations (about 15 ps), most of the species appear
less than 10 times. Nevertheless their individual apparition time is usually about 100 fs
and can be almost in the order of 500 fs for some species, for example SiO and SiO2.
The two alkali feldspars show more species than CaAl2Si2O8. They also show al lot of
free Na and K, whereas Ca appear only in three individual species of CaSiO3.

At 6000 K, there are almost no cavities in the alkali feldspar, so we cannot really
talk about a gas phase. The speciation becomes more diverse, with many more clusters
being composed of 4 to 13 atoms. But at a larger scale the melt is homogenous, as
these clusters have short lifetimes and very few occurrences. The major volatile species,
as SiO, SiO2, O2 and the free Na and K, have long lifetimes in the three feldspar end-
members. Free Ca appeared only once and Ca-bearing species are still rare. We can
also note some free Al in the two alkali feldspars.

Supercritical state of feldspars during the Giant Impact Anaïs Kobsch



4.4 - Quantitative analysis 69

Figure 4.7 – Lifetime of each individual volatile species with less than 8 atoms in CaAl2Si2O8
fluids at 1.1 g cm−3 and (a) 4000 K, (b) 6000 K. The species with 8 to 13 atoms in their formula
are available in annex, figure A.16.
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Figure 4.8 – Lifetime of each individual volatile species with less than 8 atoms in NaAlSi3O8
fluids at 1.1 g cm−3 and (a) 4000 K, (b) 6000 K. The species with 8 to 13 atoms in their formula
are available in annex, figure A.17.
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Figure 4.9 – Lifetime of each individual volatile species with less than 8 atoms in KAlSi3O8
fluids at 1.1 g cm−3 and (a) 4000 K, (b) 6000 K. The species with 8 to 13 atoms in their formula
are available in annex, figure A.18.
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4.4.2 Proportions in the gas phase

As said in section 4.1.1, for each simulation we compute two different proportions: the
chemical (or species) proportion (equation 4.2) and the elemental proportion (equa-
tion 4.4). As explained before, we use only the individual species which live more than
30 fs in the calculation of these proportions. In section 4.3 we defined the gas phase as
all the chemical species which are made of less than 13 atoms. Then, we use only these
small species in the calculation of the proportions. In this way, the chemical and elemen-
tal proportions, presented in figures 4.10 and 4.11 respectively, represent the chemical
and elemental proportion in the gas phase only.

At 4000 K, a limited number of species appear in the gas bubbles. The gas is domi-
nated by free Na and K cations making up for at least half of the gas in alkali feldspar.
Second in importance are small volatile species, like O2, SiO, and SiO2. In CaAl2Si2O8

there is almost no volatilization of Ca, making SiO the major volatile species. Figure 4.11
shows that in every feldspars Al is (almost) not present, which makes the volatilization
of feldspars incongruent (see section 4.1.1 for the elemental proportions).

At 6000 K there are fewer isolated Na and K but more free O atoms. The proportion
in O2 is higher than at 4000 K whereas other small species, as SiO and SiO2, are a bit
less abundant. The composition of the "gas" phase is closer to a congruent composition,
with for instance the volatilization of Al-bearing species. The proportion of Al among
species of less than 100 atoms is now about 1 %.

Figures 4.10 and 4.11 show that Ca and Al-bearing species are much less volatile
than other species. This observation is consistent with the composition of the Moon
crust: anorthite (CaAl2Si2O8) is the major feldspar in the Moon crust and there is
almost no sign of albite (NaAlSi3O8).

Visscher and Fegley Jr. (2013) used the MAGMA code to calculate the composition
of the silicate gas phase in the protolunar disk. They explored temperatures from 1800
to 6000 K and included 32 gas species (mono to triatomic species) made of the elements
Si, Mg, Fe, Al, Ca, Na, K, Ti, Zn and O. The saturated silicate vapor they obtained is
dominated by SiO, O2 and O at temperatures above 3000 K, whereas it is dominated by
more volatile species as Na at lower temperatures. We observe the same phenomenon
but in our case it is at higher temperature: between 4000 and 6000 K (figure 4.10).
Likewise, they observe the volatilization of refractory elements, such as Al or Ca, when
the temperature increase above 3000 or 4000 K.

The mole fraction abundance of O2 obtained by Visscher and Fegley Jr. (2013)
is about 20–30 % of the silicate vapor at all temperatures. In our simulations of the
three feldpar end-members, O2 appears only at 4000 K and very low density. When it is
present, its proportion is also in the order of 20–30 %. The two previous FPMD, on pure
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SiO2 (Green et al., 2018) and MgSiO3 (Xiao and Stixrude, 2018), also observed free O2

above 4500–5000 K. These consistent results suggest that there is potential degassing of
O2 from the silicate melt at high temperatures, independently of the composition of the
melt. The process seems to start between 4000 and 4500 K for silicates.

The O=O pairs observed in silica (Green et al., 2018) survived for less than one
vibrational period according to the authors. For feldspars, O2 molecules live up to
650 fs. Although they do not spend the entire time in a bubble, they are still free
floating species that are not linked to the big cluster representing the melt. Likewise, in
MgSiO3, Xiao and Stixrude (2018) see O2 molecules live up to about 1000 fs. In both
cases this is considerably longer than the vibrational period. It is possible that cations
other than Al and Si, like Na, K, Ca or Mg, reduce the polymerization of the melt at
these conditions and then enhance the formation and survival of O2 groups.

$

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



74 4.4 - Quantitative analysis

Figure 4.10 – Proportion of chemical species in the "gas" phase (i.e. among all the isolated
clusters of length less than 100 atoms) as a function of density at 4000 K and 6000 K for the
three feldspar end-members. Species that represent more than 5 % of all the gas species for at
least one density point are labeled in the graph. The other species, found in trace amounts are
listed in annex A.3.3.
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Figure 4.11 – Proportion of each element in the "gas" phase (i.e. among all the species of
length less than 100 atoms) as a function of density at 4000 K and 6000 K for each feldspar end-
member. Colors indicate the element type: blue - Na, purple - K, cyan - Ca, pink - Al, yellow -
Si, red - O. The colored dotted horizontal lines indicate the congruent vaporization proportions:
RNa=RK=RCa=7.7 %, RO=61.5 %, RSi=RAl=15.4 % in CaAl2Si2O8 and RSi=3RAl=23.1 % in
NaAlSi3O8 and KAlSi3O8.
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CHAPTER 5
TRANSPORT PROPERTIES

Si les atomes participaient à un marathon, alors Na serait en tête, suivit par K et Ca. Loin
derrière, ralenti par tous les atomes d’oxygènes qui leur sont liés, Si et Al peinent à suivre le
rythme.
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Le déplacement des atomes vu de près

Les atomes et groupements d’atomes constituant la matière sont en permanence en
mouvement les uns par rapport aux autres. Dans ce chapitre nous étudions un type de
mouvement particulier, les translations, autrement dit le transport des atomes.

Pour analyser ce transport on utilise le "déplacement carré moyen" des atomes en
fonction du laps de temps écoulé. Pour chaque atome dans notre simulation on sait
ainsi quelle distance moyenne (au carré) il a parcouru en un certain temps donné (fi-
gure 5.1). Dans un fluide (liquide ou gaz), plus le temps attendu est long et plus les
atomes s’éloignent de leur position de départ (courbe croissante), alors que dans un
solide ils restent en moyenne autour de leur position d’équilibre (courbe presque hori-
zontale). Si en moyenne les atomes de silicium (Si) ont eu le temps de se déplacer de leur
position d’équilibre à une autre voisine (3Å plus loin) alors on considère la simulation
suffisamment longue pour représenter un fluide. C’est le cas de presque toutes nos simu-
lations au delà de 3000 K. On remarque que les atomes voyagent plus loin lorsque (1)
le fluide est moins dense, (2) la température est plus élevée et (3) les atomes sont isolés
ou composent de petites molécules. Ce dernier point se voit très bien sur le déplacement
carré moyen de chaque atome individuel d’oxygène (figure 5.2). Les atomes d’indice 92,
153 ou 156 (entre autres) se déplacent beaucoup plus loin que les autres. La figure 5.3
montre que ces atomes entrent en général dans la composition de O2, NaO2, SiO et
SiO2, de petites molécules formant le gas. Au contraire des atomes se déplaçant peu,
comme les numéros 93 ou 160, se trouvent exclusivement dans le liquide, liés à de gros
groupements d’atomes. De même, les cations interstitiels (Ca, K, Na) se déplacent en
moyenne plus loin que Al, Si ou O car ils sont en général seul à se déplacer, alors que
Al, Si et O forment de gros groupements (ils forment la structure des feldspaths).

Pour caractériser efficacement le transport des éléments on utilise le coefficient
d’auto-diffusion (en m2/s) qui se calcule à partir de la pente du déplacement carré
moyen. Plus un atome s’éloigne rapidement loin de sa position de départ et plus il aura
un coefficient de diffusion élevé. Ainsi il est aisé de comparer les coefficients de diffu-
sion de chaque élément en fonction de la pression et de la température (figure 5.4). Les
résultats que l’on obtient ici sont en général cohérents avec ceux obtenus dans d’autres
études d’expériences numériques sur les feldspaths ou d’autres minéraux.

Certaines études utilisent les coefficients d’autodiffusion pour calculer la viscosité du
minéral fondu, autrement dit la facilité avec laquelle il s’écoule. Par exemple l’eau a une
viscosité beaucoup plus faible que le miel. Cependant ces calculs impliquent de réaliser
des simulation au moins 100 fois plus longues que ce que nous avons ici. Ce serait bien
trop long à réaliser avec la technique utilisée ici, surtout dans le cadre d’une thèse limitée
à 3 ans, c’est pourquoi nous ne présentons que les coefficients d’auto-diffusion.
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Brief outline In this chapter we present the transport properties using the mean
square displacement (MSD) and the self-diffusion coefficients. First, section 5.1 explains
the theory, computer codes and parameters used. Then the results and discussions about
the MSD and diffusion coefficients are presented in the sections 5.2 and 5.3 respectively.

5.1 Post Processing

5.1.1 Mean square displacement of atoms

The MSD is at the basis of the self-diffusion coefficient calculation. For an atom with
index i and vector position −→ri (t) = xi.

−→x + yi.
−→y + zi.

−→z , it is written as

MSD(τ)i =
〈(−→ri (t)−−→ri (t+ τ)

)2〉

= 1
trun/2

trun/2∑
t=0

(−→ri (t)−−→ri (t+ τ)
)2

(5.1)

with 〈 〉 symbolizing the time average and trun the length of the simulation . τ ranges
from 0 to trun/2. Since the trajectories last at least 16 ps, we obtain mean square
displacements of more than 8 ps for each atom. In an orthonormal coordinate system,
this equation can be simplified into

MSD(τ)i =
〈(
xi(t)− xi(t+ τ)

)2
+
(
yi(t)− yi(t+ τ)

)2
+
(
zi(t)− zi(t+ τ)

)2〉
(5.2)

To obtain the MSD of an element type A we only have to average the equation 5.2 over
all atoms of the same element type:

MSD(τ)A =
〈 1
NA

NA∑
i=1

(−−→rA,i(t)−−−→rA,i(t+ τ)
)2〉

(5.3)

These two types of MSD are obtained with the scripts from the UMD package
msd_umd_all.py and msd_umd.py respectively. The main options are the "horizontal
jump" (-z) and the "vertical jump" (-v). They correspond to sampling frequencies, the
first for the sum over t and the second for the MSD output sampling (i.e. which τ are
used). We want these numbers to be not too large, in order to have enough data, but
also not too small in order to not make the calculations fast. We choose samplings in
the order of 10-20 fs. A quick test using several pairs of sampling frequencies reveals
almost identical results in the MSD and self-diffusion coefficient identical to the first
three significant figures. Here we used -z 11 and -v 13. Additional information about
the choice of these parameters can be found in annex A.3.2.
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5.1.2 Self-Diffusion

The MSD curves are usually composed of two distinct parts. The first section of the
curve, typical of a few hundred fs, corresponds to the ballistic part of the transport
and the second section to the diffusive part. The ballistic part corresponds to the short
period of time, right after atoms "bounce" on eachother, when they follow a ballistic
trajectory (like billiard balls). The slope of a linear regression over the second section
of the curve (diffusive part) is used in the Einstein relation to obtain the self-diffusion
coefficient of elements, DA:

DA = lim
τ→∞

1
6τ MSD(τ)A (5.4)

We perform linear regressions of the MSD curves without considering the first 500 fs.
The error on diffusion coefficients is estimated from the error on the slope of the linear
regression.

The self-diffusivities of every element of every simulation is computed with the script
analyze_msd.py, that gives also the error on the self-diffusion coefficient, the fitted pa-
rameters of the linear regression and the coefficient of determination r2. It also estimate
the time for the change of transport regime, from ballistic (D ∝ t2) to diffusive (D ∝ t)
regime. It simply fit a 2nd order polynomial (y = ax2 +bx, b = 0 by default) to the data
between 0 and about 60 fs, a straight line (y = αx+β) after 500 fs and finds the intersec-
tion of these two fitted curves. The time windows for the two fits can be modified with
the option -r, while the independent option -s is used to compute the self-diffusivities
with the deletion of the desired number of steps at the beginning of the data.

The self diffusivities can also be computed using the script vibr_spectrum_umd.py.
It uses the velocities written in the UMD files to compute the velocity-velocity auto-
correlation function along with their fast-Fourier transform for each element. From these
results the script extract the self-diffusivities of each element as explained in Caracas
et al. (2020a).

5.2 Mean Square Displacement

The MSD of all elements at every temperature and density is represented for the Na-
end-member on figure 5.1. The same figures for the two other end-members are available
in annex, figures A.19 and A.20. These log-log representation of the MSD highlight the
two transport regime. The first part, from 0 to less than 500 fs, corresponds to the
ballistic movement and display a bigger slope than the second part which corresponds
to the diffusion movement. We do not see any clear influence of the temperature over
the position of the inflection point. At very high density the inflection point, i.e. where
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there is a change of slope, is clearly visible around 40-50 fs. As the density decreases
the inflection point shifts toward higher times, around 100 fs at about 2.4 g cm−3. It is
not possible to estimate with precision the time of ballistic to diffusive regime change
at lower densities since the curve smoothen a lot and there is no inflection point visible
anymore.

At 5000 K and densities around 1 g cm−3 after 8 ps Al travels around 12–15Å while
Si and O travel 15–17Å, and {Na, K, Ca} travel 25, 22 and 18Å respectively. At about
2.2 g cm−3, the traveled distances over the same time decrease down to 9Å for Si, 9–10Å
for Al, 10–11Å for O, 12Å for {K, Ca} and 16Å for Na. At 3000 K and about 1 GPa all
atoms travel considerably shorter distances over the same amount of time, on the order
of 5–8 and 2–4Å for {K, Na, Ca} and {Al, Si, O} respectively.

Along the 2000 K and 3000 K isotherms we observe a strong decoupling between the
diffusion of {Na,K} and the diffusion of {Si, Al, O} with more than one order of mag-
nitude difference at 1.0 g cm−3. This decoupling is of lesser importance for Ca, meaning
it has more difficulties than the two other smaller interstitial cations to travel through
the fluid. For densities larger than about 1.7 g cm−3 diffusion is very sluggish for Al, Si,
and O. Some of the simulations at low temperature may be in the regime of undercooled
melt. Spera et al. (2009) suggested that in order to be accurate and meaningful, liquid
MD simulations must be performed for temperatures above the computer glass transi-
tion, estimated around 2800 K for CaAl2Si2O8, value that increases when the pressure
increases. Other works (e.g. Harvey and Asimow, 2015) suggest that minimum ergodic-
ity is achieved when all atoms in a melt change at least one crystallographic site. For a
polymerized silicate melt, this corresponds to a displacement of all Si atoms, the least
diffusive species, by at least 3Å according to the pair distribution function of Si-Si, or
a MSD of at least 9Å2 within the length of the production run. This value extends
beyond the first coordination sphere of Si by Si. This distance can be traveled only by
allowing for long simulation times, which is now tractable on the available computa-
tional resources. The list of all our simulation not long enough to meet this criteria is
indicated in annex A.3.4 and are also indicated on the phase diagrams 6.9 in chapter 6.
We took care in chapter 4 to not use them during the interpretation of species propor-
tions. Chapter 6 will show they are long enough to give accurate average values of the
pressure, energy and temperature.

The MSD of every feldspar end-member are almost linear with respect to time, with
some exceptions for the interstitial cations especially at low density. Unlike Si or Al,
they are not strongly linked to O atoms, which is why they move freely inside the melt,
from one empty site to another. At low density there is enough space in the structure
to allow most of the atoms to move freely outside of the 1st coordination spheres of the
atoms constituting the melt.
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Figure 5.1 – Mean square displacement of Na, Al, Si and O in NaAlSi3O8 at seven temperatures
between 2000 K and 7000 K and up to 15 densities between 1.0 g cm−3 and 4.0 g cm−3. The same
figure for the two other feldspar end-members are available in annex, figures A.19 and A.20.
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Figure 5.2 – Mean square displacement of
every O atom at 4500 K and 1 g cm−3 in
NaAlSi3O8. For clarity only some atomic in-
dex are indicated in blue. The red line indicate
the average MSD of O. Figure 5.3 shows that
some very diffusive atoms (e.g. indices 92, 153,
156, 200, 203) are part of the gas phase (they
constitute very small species) more often than
atoms with a low diffusivity (they are always
in the "melt", e.g. indices 132 and 160).
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Figure 5.3 – Localization of 14 O atoms in the different chemical species during the course
of the simulation of NaAlSi3O8 at 4500 K and 1 g cm−3. The appearance and existence times
of each individual chemical species (which composition is written on the left) are indicated by
small vertical bars, color-coded with the index of 14 O atoms (among the 128 in the simulation)
that form the species. All the species with more than 13 atoms are grouped under the name
"melt". Some very diffusive atoms (figure 5.2) are part of the gas phase more often than some
atoms with a very low diffusivity, but there are exceptions: e.g. index 128 is highly diffusive
even though it is always located in the "melt" (species with more than 13 atoms).
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When we look at the MSD of individual oxygen atoms (figure 5.2) we can distinguish
between very diffusive atoms (e.g. indices 92, 128, 153, 156, 200, 203) and all the others
with a lower diffusivity. Figure 5.3 shows in which species these atoms are located during
the simulation of NaAlSi3O8 at 4500 K and 1 g cm−3. All the species with more than
13 atoms are grouped under the name "melt". We see for example that atoms n°92 and
120 spend a lot of time as free O2 or NaO2 species compared to other atoms. Some
very diffusive atoms (e.g. indices 92, 153, 156, 200, 203) are part of the gas phase (they
constitute very small species) more often than atoms with a low diffusivity (they are
always in the "melt", e.g. indices 132 and 160). There are exceptions to this observation:
e.g. index 128 is highly diffusive even though it is always located in the "melt" (species
with more than 13 atoms). The high diffusivity of some O atoms in the gas phase only
weakly influence the average diffusion of O because most of the atoms are part of the big
slow cluster forming the melt. This is a good example of the limit of diffusion coefficient
determination in case of systems with two phases.

5.3 Self-Diffusion

As said before, the slope of the MSD yields the self-diffusivity coefficients, which are
shown in figure 5.4 for Al, Si, O and the interstitial cations Na, K and Ca as a function
of pressure for temperatures between 3000 K and 7000 K. The interstitial cations are
always the most diffusive elements at low densities. Ca is less diffusive than Na and K by
about half an order of magnitude. The self diffusivities of Al, O and Si are similar along
each isotherm, resulting from the polymerized character of the melt. The difference
between isotherms is reduced as the temperature increases. At high temperature and
low density, the self diffusivity of every element tends toward 1–2× 10−7 m2 s−1.

Figure A.22 shows that the self-diffusivities of Al and Si usually show the same trend
at each temperature and for each feldspar. Usually Al is slightly more diffusive than Si,
especially at 3000 K. Since the method used to obtain these values of self-diffusivities
is not very accurate, we cannot say if the variations of the curves are significant or not.
Then it seems the Al/Si ratio in the different plagioclase feldspars does not influence
the self-diffusivities of Al and Si.

The value for diffusion that we obtain from our simulations are on the same or-
der of magnitude as the values published previously on various other silicate melts.
For example DSi at 4000 K and 1 GPa is around 6× 10−9–1× 10−8 m2 s−1 in alkali
feldspars and anorthite respectively, compared to about 1.5× 10−9–1× 10−8 m2 s−1 in
anorthite using classical and ab-initio MD respectively (de Koker, 2010; Spera et al.,
2009), 1× 10−9 m2 s−1 in silica (Karki et al., 2007), and 8× 10−9 m2 s−1 in pyrolite
(Caracas et al., 2019).
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Figure 5.4 – Self-diffusion coefficients for every element as a function of pressure for each
feldspar end-member. Colors indicate temperatures. The black to light gray lines are results
from de Koker (2010) on CaAl2Si2O8 at 3000, 4000 and 6000 K and from Neilson et al. (2016)
on NaAlSi3O8 at approximately 3000, 4000 and 5000 K. The same figure as a function of density
instead of pressure is presented in annex, figure A.21.

The values of the self diffusivities obtained using vibrational spectrum are in great
agreement with those obtained with the MSD (figure 5.5). The largest uncertainty
between the two methods is obtained at 3000 K for Al and Si in the two alkali feldspars.
This shows that the two methods used to compute the self-diffusivities are correctly
implemented and that our simulation may be long enough to give accurate values of
the diffusion coefficients. The differences in the diffusion coefficient between the two
methods may be due to numerical errors in the calculation of the velocities that are
written in the UMD file.
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Figure 5.5 – Comparison of the self-diffusion coefficients obtained with two different methods:
from the slope of the MSD and from the vibrational spectrum. Colors indicate temperature.
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The pressure and temperature dependence of self-diffusivities are usually represented
by the Arrhenius equation:

D(P, T ) = D0 exp
[
− EA + PVA

RT

]
, (5.5)

with R the universal gas constant, EA and VA the activation energy and volume respec-
tively and D0 the pre-exponential factor corresponding to the diffusivity in the limit
T →∞.

We have enough data around 1 GPa to perform an Arrhenius fit as a function of
temperature. It is displayed on figure 5.6. When this fit is extrapolated to low tem-
peratures (below 2000 K), it yields diffusion coefficients similar to experimental value
obtained between 1000 and 2000 K in alkali feldspar melts (Freda and Baker, 1998).
The agreement between extrapolated values and experimental results is better for Na
than for K. On the contrary, all the experimental measurements of the self-diffusion
coefficient summarized by Cherniak (2010) are lower by several orders of magnitude.

Our simulations are performed in the NVT ensemble, which means we have several
isotherms and isochores. To perform an Arrhenius fit as a function of temperature
at other pressures we need several isobars, which are usually obtained using a NPT
ensemble1. Then we use an Arrhenius fit as a function of pressure to estimate the self-
diffusivities at 25 GPa, 50 GPa and 100 GPa for each element and temperature. For the
fits we only use data points between 25 and 150 GPa since they appear to be aligned on
a different line than data points below 25 GPa (see figures A.23 and A.24). This analysis
is not available for the Na-end-member because the simulations below and above 50 GPa
are performed with different sets of pseudopotentials (see section 2.2.2 in chapter 2). At
last, an Arrhenius fit as a function of the inverse temperature is performed at 1, 25, 50
and 100 GPa (figures A.25 and A.26). The slope fo the fit gives the activation energies.
The values estimated by this mean are indicated in table 5.1. The activation energy at
1 GPa is bigger than those at 25 or in some cases at 50 GPa. The activation energies
computed from self diffusivities estimated at 25, 50 and 100 GPa increase with increasing
pressure, their values double between 25 and 100 GPa. Every value computed here is
always much smaller than values obtained by the previous numerical and experimental
studies (e.g Adjaoud et al., 2008; de Koker, 2010; Karki et al., 2011; Spera et al., 2009).
It is most probable that the activation energies estimated here are not reliable, given the
uncertainty of the Arrhenius fits (see figures A.25 and A.26) and the use of estimated
diffusivities from a previous fit to obtain the pressure dependence of the activation
energy.

1Nevertheless in an NPT ensemble the calculation of the MSD as presented here is not correct anymore.
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Figure 5.6 – Self diffusion coefficients for (a) Na- (b) K- and (c) Ca-feldspar end-members at
1 GPa as a function of the inverse temperature (filled circles), and fit of the Arrhenius law (dashed
lines). Colors indicate elements: red - O, yellow - Si, pink - Al, blue - Na, purple - K, cyan -
Ca. The stars and crosses indicate results from classical MD simulations on respectively molten
albite (Neilson et al., 2016) and anorthite (Spera et al., 2009), and diamonds are experimental
results on albite-orthoclase melts Freda and Baker (1998). Empty circles are the extrapolated
diffusivities at the experimental temperatures using the Arrhenius fit of our data.
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Table 5.1 – Activation energies estimated at four different pressures in K- and Ca-feldspar
end-members.

EA (kJ/mol) EA (kJ/mol)
1 GPa 25 GPa 50 GPa 100 GPa 1 GPa 25 GPa 50 GPa 100 GPa

K 58 44 69 120 Ca 57 54 82 138
Al 97 53 76 123 Al 63 52 78 132
Si 103 53 73 112 Si 77 54 77 124
O 99 49 72 118 O 74 56 79 125

5.4 Viscosity

The viscosity of a melt with a given composition is a very important parameter in
hydrodynamics simulations, whether they are about convection in magma oceans or
evolution of the protolunar disk. The shear viscosity η is usually computed by the
Green-Kubo relation which is the integration over time of the autocorrelation function
of the stress tensor σij :

η = V

kBT

∫ tmax

0

〈
σij(t+ t0)σij(t0)

〉
(5.6)

with kB the Boltzmann constant. An accurate calculation of this parameters is possible
only for very long simulations, of at least 100 ps (e.g Adjaoud et al., 2008; Karki et al.,
2011) or on the order of several nanoseconds (e.g Spera et al., 2009). For our systems
of 208 atoms modeled by FPMD it is not possible to reach such long simulations in
a reasonable amount of time. Then we prefer to not compute the shear velocity of
feldspars.

$
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CHAPTER 6
THERMODYNAMIC PROPERTIES

Lorsqu’un feldspath est projeté sur une cible, autrement dit quand il subit un impact, il atteint de
hautes pressions et températures qui peuvent le faire changer d’état physique et devenir liquide
ou supercritique s’il est initialement assez chaud.
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La thermodynamique (des feldspaths) dans tous ses états

Après avoir étudié les propriétés microscopiques des trois feldspaths, passons maintenant
à l’étude des propriété macroscopiques, comme la masse volumique (ρ), la température
(T), la pression (P) et l’énergie (E). Au cours de nos simulations, ces trois dernières
fluctuent. D’après la physique statistique, la moyenne de ces fluctuations nous donne une
estimation correcte de ces grandeurs thermodynamiques. Les analyser va nous permettre
de répondre à certaines questions posées dans l’introduction, comme « où se trouve l’état
supercritique ? » ou bien « quel est l’état de la matière lors de l’Impact Géant ? ».

Pour répondre à la première question, traçons la pression au sein de notre fluide
en fonction de la masse volumique pour différentes températures (figure 6.7). Chaque
courbe, ensemble de points de température constante, est appelée isotherme. La théorie
prédit que ces isothermes montrent un minimum et un maximum en dessous d’une tem-
pérature, appelée température critique, autrement dit lorsqu’elles traversent un change-
ment de phase (figure 6.2). L’isotherme à la température critique est la seule à présenter
un point d’inflexion (en ce point la courbe admet une tangente horizontale qui la tra-
verse). Dans le cas présent du changement liquide vers gaz, nous identifions des minima,
aussi appelés spinodal liquides, jusqu’à 5000, 6000 et 7000 K pour les trois pôles purs
des feldspaths, respectivement K, Na et Ca. Pour les températures supérieures, les iso-
thermes ne montrent plus de minima et continuent uniquement de décroître quand la
masse volumique diminue. Ainsi pour chaque feldspath, la température critique est enca-
drée par l’isotherme avec et celle sans minimum, séparées de 500 K. La masse volumique
du point critique est encadrée par les masses volumiques du dernier maximum et du
dernier minimum visibles. Pour les feldspaths, cela correspond approximativement à
0.5-0.8 g cm−3.

La deuxième question trouve sa réponse en combinant les diagrammes de phases avec
les équations d’état des feldspaths. Un diagramme de phase est un graphique selon deux
grandeurs thermodynamiques (ex. P vs ρ, T vs ρ) dans lequel est indiqué l’état physique
de la matière (liquide, gaz...) pour chaque point, ainsi que les courbes délimitant les
zones de changement de phase. La figure 6.9 est un diagramme de phase indicatif car
nous n’avons pas pu obtenir la courbe délimitant la zone de mélange liquide-gaz. Une
équation d’état est une relation entre les grandeurs thermodynamiques nécessaires à la
description du système. Lors d’un impact (par exemple de météorite), l’état thermody-
namique de la surface de la planète est soumis à l’équation d’état appelée Hugoniot.
Selon la vitesse d’impact on obtient des températures, pressions et énergies au moment
du choc différentes. Pour des impacts très énergétiques, comme celui de l’Impact Géant,
on trouve par exemple des températures dépassant les 7500 K, garantissant la fonte des
feldspaths voire leur passage en état supercritique.
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Brief outline This chapter is about the thermodynamic properties of the fluids. Sec-
tion 6.1 gives the definitions, computer codes and theories behind the thermodynamic
concepts used in the results sections that follow. First section 6.2 presents some results
about equations of state. Then the main work of this thesis is presented in section 6.3
about the spinodal analysis. This leads to an attempt of phase diagrams shown in sec-
tion 6.4, which are used in the discussion about impacts and shock states described in
section 6.5.

6.1 Post Processing

6.1.1 Averages, standard deviation and errors

As said in section 2.1.1, we obtain the value of a macroscopic parameter A by performing
a time-average of the value A(t) over the entire MD simulation. This section explains
how the script fullaverages.py computes the averages, spread of the data and errors
on the means of the pressure (P), temperature (T) and energy (E) along with the heat
capacity for each .umd.dat file available.

Pressure, Temperature, Energy

We use the arithmetic average of all the instantaneous values X(t) as an estimator of
the expected value E(X), also represented by X. Likewise, we compute the spread of
the instantaneous values using the population standard deviation, σX . As explained in
section 2.2.1, we made sure each simulation was thermalized, i.e. reached equilibrium of
the thermodynamic parameters of interest (P, E, T). This is even true for simulations
which are not fully ergodic (see the list in annex A.3.4) or that are very short, as shown
in example figure A.27.

The statistical error on the mean, represented by σX , is computed using the blocking
method as described by Flyvbjerg and Petersen (1989). The core of the method can be
decomposed into two steps.

1. From a data set {x1, ..., xn} of length n we compute the quantity
√

V ar(X)
n−1 , with

V ar(X) being the variance of the data set.

2. We transform the data set into a new data set, of length n′ = n
2 if n is even, or

n′ = bn2 c + 1 if n is odd, bxc being the floor function of x. To do so, each new
data point is an average of two consecutive old data points, that is to say each xi′
of the new data set is defined by

xi′ = 1
2(x2i−1 + x2i). (6.1)

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



94 6.1 - Post Processing

Then we perform a loop on these steps 1 and 2, using each time the new data set to
replace the old one, until the data set has only two elements left. Finally we obtain
a sequence of all the quantities σX =

√
V ar(X)
n−1 as a function of the number of block

transformation. These values are represented in figure 6.1 with their associated error
bars drawn to ±1σerror =

√
1

2(n−1) . The first point (with its error bar) which is included
in the error bars of every following points is the value we choose to estimate the statistical
error on the mean σX . The length of our simulations is around 15 000 steps, which
corresponds to about 13 block transformations. Then, for the value of the error on the
mean σX , we choose to use the first point which is included in the error bars of the next
6 points (about half the number of maximal block transformations).

If we cannot find a point which is included in the error bars of at least 6 following
consecutive points, then we use the point with the highest value (i.e. the maximum
if the series

√
V ar(x)
n−1 ) to estimate the lower bound of the statistical error on the mean

σX . For example this is the case for the temperature on figure 6.11. In the result table
produced by the fullaverages.py script, the value σX is preceded by the sign ’>’.

Heat capacity

In the NVT ensemble and for insulators, the isochoric heat capacity (in J/K) can be
obtained by the equation

σ2
Etot = kBT

2
Cv, (6.2)

with T the average temperature, kB the Boltzmann constant and σ2
Etot being the stan-

dard deviation of the total internal energy. As presented in the equation 2.4, this energy
is the sum of the potential and kinetic energies. It is this quantity that is always used
in this thesis. In theory, the contribution of the kinetic part to the heat capacity should
equal 3

2NkB, with N the total number of atoms in the system (Allen and Tildesley,
1989). Then, for users who do not extract the kinetic energy of ions in their calculation
of the total internal energy, we implemented the following equation for the calculation
of the heat capacity

Cv = σ2
E

kBT
2 + 3

2NkB. (6.3)

To compute the statistical error on the heat capacity we need the statistical error
on the variance σ2

E . We choose to use the bootstrap method, described by Newman and
Barkema (1999). The core of this method can be decomposed again into two steps.

1. From the total internal energy data set of length n we create a sample of the same
length n with elements randomly drawn with replacement from the initial data set
of instantaneous values.

1figure created by the script fullaverages.py
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Figure 6.1 – Statistical error analysis applied to CaAl2Si2O8 at 3000 K and 3.36 g cm−3. The
values σX =

√
V ar(X)
n−1 (X being P, T or E) are represented as a function of the number of block

transformation. Their errors bars are drawn to ±1error =
√

1
2(n−1) . The selected values for

the errors on the mean σX are indicated by the red lines. The light red areas that surround
them indicate the range ±1σerror =

√
1

2(n−1) around this value. For this simulation, the values
selected for σP and σE are included in the error bars of the next 6 points. This was not the case
for the temperature, then σT >max(

√
V ar(X)
n−1 ).

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



96 6.1 - Post Processing

2. We compute the specific heat capacity of this sample. We call it Cv1.

We perform a loop on these steps 1 and 2 over more than a 1000 iterations. At each
iteration we save the specific heat capacity of the created sample. Finally we obtain
a set of values {Cv1, ..., CvB} of length B > 1000. From this set we can compute the
empirical mean

Cv = 1
B

B∑
b=1

Cvb, (6.4)

which is another estimator of the mean specific heat capacity. We choose to use this
estimation instead of the value obtained directly using equation 6.2. The error in the
value of Cv is the standard deviation of the distribution of Cvb, which is

σCv =
√
Cv2 − Cv2

. (6.5)

In the literature we can see reported the heat capacity in NkB units or the specific
heat capacity in R units. Annex A.3.5 explains the unit conversions and the link between
the two units.

6.1.2 Equations of state and compressibility

Equations of state

The thermodynamic behavior of material is characterized by its equation of state, which
relates at least two thermodynamic variables (P, V, E, T). Several types of equations
of state exist for solid materials and can describe their thermodynamic evolution quite
accurately in their range of application. Likewise, there is the ideal gas law

PV = nRT (6.6)

with R the gas constant to describe ideal gas and there is also the van der Waals equation

(
P + a

n2

V 2

)
(V − nb) = nRT (6.7)

based on a more realistic model of gas. Nevertheless, there is no equation of state that
is valid for every real fluids, either liquids or gases. In this section, we want to obtain
thermodynamic parameters, such as the compressibility, for the liquids only. Many
previous studies (e.g. Ghiorso et al., 2009; Karki et al., 2011; Neilson et al., 2016) used
equations of state developed for solids to fit their liquid simulation results. Then to
allow a comparison of the fitted parameters with those previously obtained, we use the
3rd and 4th order of the Birch-Murnaghan equations of state, respectively equations 6.8
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and 6.9.

P (ρ) = 3K0
2

[( ρ
ρ0

) 7
3 −

( ρ
ρ0

) 5
3

]{
1 + 3

4(K ′0 − 4)
[( ρ
ρ0

) 2
3 − 1

]}
(6.8)

P (ρ) = 3K0
2

[( ρ
ρ0

) 7
3 −

( ρ
ρ0

) 5
3

]{
1 + 3

4(K ′0 − 4)
[( ρ
ρ0

) 2
3 − 1

]

+3
8

[
K
′
0K

′′
0 + (K ′0 − 3)(K ′0 − 4) + 35

9

][( ρ
ρ0

) 2
3 − 1

]2}
(6.9)

To fit these equations to our liquid data, we first selected only the points with either
a pressure above 1 GPa or a density above 1.6 g cm−3 in order to have only the liquid
phase. No consistent thermodynamic parameters can be found when very high pressure
data are included. Then, the results presented in section 6.2 are obtained from the
data with a pressure below 100 GPa. The fitting step is performed using the orthogonal
distance regression (ODR) method from the Python® package scipy (Boggs et al., 1992).

Isobaric expansivity and isothermal compressiblity

Following the calculation process described by Spera et al. (2009), we use our pressure-
temperature-density data points to compute the thermal pressure coefficient (TPC),

∂P

∂T

)
V

= α

β
, (6.10)

which links the isobaric expansivity α = 1
ρ
∂ρ
∂T

)
P

to the isothermal compressibility β =

−1
ρ
∂ρ
∂P

)
T
. In a pressure-temperature diagram the isochores are close to straight lines.

We perform a linear fit to each individual isochore and extract the slope which is the
TPC. Then in a density-pressure diagram we plot each isotherm. We obtain β for each
temperature and density by performing central finite differences along each isotherm. For
the lowest and highest density-pressure data points (i.e. at the end of the isotherms), we
perform forward and backward difference respectively. Finally the isobaric expansivity
α is obtained using the equation 6.10. The complete analysis along with the figure and
table production is performed by the script analyze_compressibility.py.

6.1.3 Spinodal search

The figure 6.2 shows the isotherms of a real fluid on a pressure-density diagram spanning
the liquid and gas regions. The Van der Waals theory states that every state on the
isotherms is at the equilibrium, but it is an unstable equilibrium when the slope of the
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P-ρ isotherm is negative. The states with a zero slope, the maxima and minima of the
isotherms, define the vapor and liquid spinodal points respectively. When these points
are linked over all isotherms they define the vapor and liquid spinodal lines respectively.
They both meet at the critical point. When the complete isotherms, i.e. equations of
state, are known, the Maxwell construction can be used to determine the saturated liquid
and gas states. When linked over all isotherms they define the saturated liquid and vapor
curves respectively. Once again these two curves meet at the critical point and define the
binodal curve. The pressure-density states comprised between the saturated liquid and
the liquid spinodal or between the saturated vapor and vapor spinodal are metastable
states. In our simulations, we obtain states in the liquid, metastable and unstable
regions. We reach the vapor region only in the vicinity of the critical point. Therefore,
we cannot use the Maxwell construction to construct the binodal line. Nevertheless, we
obtain the liquid spinodal points and then an estimation of the critical point.

Figure 6.2 – Schematic of the pressure variations as a function of density for several isotherms in
a real fluid. The spinodal curve (dashed dark yellow) is found using the extrema of the isotherms,
whereas the binodal or saturation curve (dashed-dot yellow) is found using the Maxwell equal-
area construction (stripped areas). Both curves have the critical point as a common maximum.
The dark gray areas indicate the regions of metastable equilibrium.

To do so, we need to fit our data to a curve representing the isotherm. As said
before, there is no equation of state that is valid for every real fluids and even less for
a mixture of real fluids. Then, we decided to use a simple function to approximate the
isotherms and especially the minimum. The van der Waals equation (number 6.7) can
be written in the form P = f(ρ):

P =
ab
M3 ρ

3 − a
M2 ρ

2 + RT
M ρ

1− b
M ρ

(6.11)
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with M the molar mass of the material. When the density is small, i.e. b
M ρ � 1, this

equation can be approximated by a 3rd order polynomial with the constant coefficient
equal to 0. Nevertheless, since our fluid, as modeled by ab initio MD, is not a van
der Waals gas, we consider first a 3rd order polynomial with a non zero constant term.
If 0 is in the uncertainty range of this constant term obtained from the fit, then the
constrained polynomial fit would be a better choice. The fitting process and the choice
of polynomial fit is implemented in the script plot_thermo_rho.py.

This method to find the liquid spinodal is based on the theory of real fluid thermody-
namics. Binder et al. (2012) pointed out that the minima we see in the pressure-density
curves obtained via MD simulations are not the thermodynamic spinodals but are only
due to finite size effect and should correspond to the apparition of bubbles in our fluid.
Nevertheless, bubbles can only appear inside the binodal dome that is located below
the critical isotherm. Then the minima in the pressure-density isotherms still indicate
a two-phase region. Above the critical temperature, there is no minima anymore in the
isotherms and the pressure decreases continuously with the density. This method to find
the critical point was successfully used by Green et al. (2018) in the case of pure SiO2.
It is also the best approximation for the spinodal curve we have up-to-date.

6.1.4 Hugoniot equation of state and shock conditions

When a material is hit by another one, compression waves propagate into both materials
and change their thermodynamic properties as pressure, energy, density, etc. To estimate
the new values of these properties right after the impact we use the shock wave physics.
We explain here the basics and detail the equations used in this thesis. For a more
complete list of all the assumptions made and examples on shock wave treatment, the
reader can refer to the book by Forbes (2012).

We assume the shock waves are one-dimensional (1D) plane waves that propagate
into a continuum fluid. By definition, each point (of a material) hit by a shock wave
undergoes a change from low to high stress and compression level in an almost discon-
tinuous jump as a function of time. We assume then that the shocked material is in
thermodynamic equilibrium. For a 1D plane wave that travel through a material in the
+x direction with a velocity us as in figure 6.3a, we can define two states. The number 1
ahead of the shock wave, for the unshocked material and the number 2 behind the shock
wave, for the shocked material. The pressure (P), specific internal energy (e), density
(ρ) and particle velocity (up) in each state are linked by three conservation equations
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(a) General case. (b) Applied to the impactor with
initial state Pimp,ρimp and uimp.

(c) Applied to the crust with ini-
tial state P0,ρ0 and up0.

Figure 6.3 – Schematics of the pressure state of a material ahead and behind a 1D plane shock
wave for different cases. In the impedance match method, we consider the shock velocity (yellow)
to be equal in (b) and (c).

defining the Rankine-Hugoniot equations:

conservation of mass ρ1(us − up1) = ρ2(us − up2) (6.12)

conservation of momentum ρ1(us − up1)2 + P1 = ρ2(us − up2)2 + P2 (6.13)

conservation of energy e1 + (us − up1)2

2 = e2 + (us − up2)2

2 (6.14)

When we combine the conservation equation of mass (6.12) and momentum (6.13)
to eliminate the velocities in the conservation equation of energy (6.14), then we obtain
the Hugoniot equation

E1 − E2 + 1
2(P2 + P1)( 1

ρ1
− 1

ρ2
) = 0 .

Hg(ρ) (6.15)

For each temperature, we find the density ρ for which Hg(ρ) = 0. To obtain the pressure
corresponding to this density we need a second equation. We choose to fit a 3rd order
Birch-Murnaghan equation of state to the isotherm (equation 6.8) to obtain the pressure.
The energy can then be obtained from the Hugoniot relation (equation 6.15). For each
temperature of interest, the {P, ρ (, E)} ensemble verifying the Hugoniot equation 6.15
defines the thermodynamic shock state of the material (labeled 2 on figure 6.3a), for a
given initial state 1.

To obtain the shock state a material, for example a planet crust, as a function of the
impactor velocity uimp, we use the impedance match method as follow:

1. We obtain the {P, ρ} point verifying the equation 6.15 for the crust (figure 6.3c).
The initial pressure P0 and density ρ0 used in this calculation are detailed in
section 6.5.

2. Same process for the impactor (figure 6.3b), which is assumed to be made of the
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same material as the crust.

3. We assume that at the impact, two shock waves of the same velocity us appear
and travel on opposite direction, one in the crust, one in the impactor. Combining
the equations 6.12 and 6.13 with the notation in figures 6.3b and 6.3c, we obtain
the following equations for the particle velocities of the crust and the impactor
respectively:

crust up =
√

(P − P0)(ρ− ρ0)
ρρ0

(6.16)

impactor up = −
√
P

(ρ− ρimp)
ρρimp

(6.17)

4. We assume there is no discontinuity in the particle velocity on the two sides of
the impact interface, meaning up(crust) = up(impactor) at the impact time and
location. Then the intersection of the equations 6.16 and 6.17 gives the shock
pressure and particle velocity.

5. Using the Hugoniot equation of the crust we obtain the corresponding shock tem-
perature and density for the selected impactor velocity uimp.

The selection of the impactor velocities is detailed in section 6.5. The calculation of
Hugoniot curves is performed by the script analyze_Hugoniot.py and the impedance
match method is done by the script plot_Hugoniot_impedance-match.py.

6.2 Equations of state and thermodynamic parameters

Equations of state

In the liquid region, in other words approximately for densities larger than 1.6 g cm−3

and pressures below 100 GPa, we fit 3rd and 4th order Birch-Murnaghan equations of
state to the pressure - density points along each isotherm. We only present the results of
the fit for 3000 and 4000 K isotherms for the alkali feldspars since no consistent values
for the bulk modulus and its derivatives can be found at higher temperatures. For
CaAl2Si2O8, we can obtain results with both equations of state up to 5000 K and up to
6000 K with only the 3rd order equation. This is partly due to the inappropriateness
of the Birch-Murnaghan equations of state to describe the behavior of liquids at high
temperatures and low pressures where bulk modulus is small. Table 6.1 shows the
results and the comparison to existing data in the literature, both experimental Lange
(2007); Tenner et al. (2007) and calculated Bajgain and Mookherjee (2020); de Koker
(2010); Ghiorso et al. (2009); Karki et al. (2011). The ρ0 values extrapolated from our
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Table 6.1 – Parameters of 3rd order Birch-Murnaghan equations of state fitted to our com-
puted pressure-density values along the different isotherms and comparison with the available
experimental data or theoretical results (FPMD) from the literature. No consistent data for the
bulk modulus and its derivatives can be found at 5000 K and higher for alkali feldspars.

Temperature ρ0 K0 K
′
0 other studies

(K) (g cm−3) (GPa)

NaAlSi3O8 298 2.615 56.4 3.9 crystalline albite Tenner et al. (2007)
1373 2.326 17.5 11 liquid Tenner et al. (2007)
2500 2.31 12 5.3 FPMD Bajgain and Mookherjee (2020)
3000 2.01(7) 11(3) 4.9(5)
4000 1.82(3) 7(1) 5.8(2)

KAlSi3O8 295 2.554 57 4 crystalline sanidine Lange (2007)
1473 2.298 15.8 12 liquid Lange (2007)
3000 1.8(1) 5(2) 6.5(8)
4000 1.70(4) 5(1) 5.9(2)

CaAl2Si2O8 1830 2.56(7) 17.4(3) 3.18 FPMD de Koker (2010)
3000 2.13(3) 7(4) 8(2)

2.39(2) 11.5(3) 6.8(6) FPMD Karki et al. (2011)
3500 2.31 9.93 9.88 Classical MD Ghiorso et al. (2009)
4000 2.09(4) 11(2) 5.9(3)

2.27 10.40 9.47 Classical MD Ghiorso et al. (2009)
4500 2.21 9.82 9.27 Classical MD Ghiorso et al. (2009)
5000 1.85(3) 7(1) 6.1(2)

2.19 10.78 8.85 Classical MD Ghiorso et al. (2009)
5500 2.14 10.52 8.68 Classical MD Ghiorso et al. (2009)
6000 1.55(7) 3(1) 6.7(7)

10.19 8.55 Classical MD Ghiorso et al. (2009)

simulations using a second-order polynomial are 2.26 g cm−3 at 1373 K for NaAlSi3O8,
i.e. about 2.7 % smaller than the experimental values Lange (2007). As seen in chapter 3,
the major coordination polyhedra SiOx and AlOx become larger as the pressure increase,
starting from 4-fold coordinated at ambient conditions to up to 8 fold-coordinated above
200 GPa. Maybe it would be of importance to fit a different equation of state per region
of dominant coordination, i.e. per structure but we do not have enough data point per
region to do so.

Heat capacity

The specific heat capacity Cv is computed for each simulation using the equations 6.2
and 6.4. All the values are available in annex B.1.1. Nevertheless, these values can be
trusted only if the fluctuations of temperature are correct. For example, in a canonical
ensemble the relative variance should obey

σ2
T

T
2 = 2

3N (6.18)
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with N = 208 the number of particles in the system (Frenkel and Smit, 2002c). Fig-
ure 6.4 represents these relative variance for each simulation. In this figure, we computed
their statistical errors (SE) using the same bootstrap scheme as described in section 6.1.1.
About 30 % of the simulations obey the relation 6.18 within ±2 ∗ SE (and about 45 %
within ± 3 ∗ SE). They are plotted in bright colors in figures 6.4 and 6.5. Figure 6.5
shows all the Cv values as a function of density and temperature. They are similar to
those obtained by other ab-initio MD simulations on various silicates (e.g. de Koker,
2010; de Koker et al., 2008; Green et al., 2018; Stixrude and Lithgow-Bertelloni, 2005).
On the contrary, values obtained by classical MD are larger by a factor 10 (e.g. Morgan
and Spera, 2001; Neilson et al., 2016; Spera et al., 2009), even though they seem to be
consistent with old experiments (Richet and Bottinga, 1984; Stebbins et al., 1983).

Some studies found a linear temperature dependence of the isobaric and/or isochoric
heat capacity (e.g. Adjaoud et al., 2008; Lange, 2007), but our results do not display
such relationship. The heat capacities we obtain increase with temperature up to about
5000 K. Above this temperature it decreases to values sometimes even smaller than
those obtained at 3000 K. Nevertheless it is difficult to conclude on the temperature-
dependence of the heat capacity of feldspars since more than half of our data may not
be trusted.

Thermoelastic parameters

The isobaric expansivity α and isothermal compressibility β are displayed on figure 6.6.
The results previously obtained by two classical MD studies on the Na-feldspar (Neilson
et al., 2016) and on the Ca-feldspar (Spera et al., 2009) are also indicated for comparison
purposes. Our values are on the same order of magnitude as those obtained in the
classical MD simulations. We have a better agreement for β than for α and also for
the Na- end-member compared to the Ca- end-member. We see the same change in the
order of isotherms as observed by Neilson et al. (2016): at low pressures the isobaric
expansivity increase with increasing temperature while at high pressure it decreases with
increasing temperature. The pressure which delimits these two regimes is lower in our
study than for Neilson et al. (2016). This behavior is also seen in the two other feldspars
and in the study of Spera et al. (2009).

6.3 Spinodal and critical point

As seen before, we performed the calculations along several isotherms, ranging from
2000 K, corresponding to a hot magma, up to 7500 K. At each temperature we started
at high density and decreased the density of the melt by expanding the volume of
the simulation box. Since the pressure rises with the temperature of the isotherm, we
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Figure 6.5 – Specific heat capacity Cvm as a
function of density and temperature for the (a)
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Figure 6.6 – Isobaric expansivity α and isothermal compressibility β as a function of pressure
for the (a,d) Na-, (b,e) K- and (c,f) Ca-feldspar end-members. Colors indicate temperature.
Data previously obtained by two classical MD simulations on the same end-members (Neilson
et al., 2016; Spera et al., 2009) are also indicated for comparison. The same figure as a function
of density is available in annex, figure A.28.
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reach ambient pressure at lower and lower densities up to a temperature for which the
isotherm always displays positive pressures. The last ambient pressure is seen at 4500 K
and 1.3 g cm−3 for K-feldspars, 5000 K and 1.1 g cm−3 for Na end-member and 6500 K
and 1.0 g cm−3 for Ca-feldspars. At lower temperature, as we perform simulations at
lower densities we go into extension regime and the pressure drops below zero, where
the melts are metastable.

Figure 6.7 shows the variation of pressure as a function of density for the three
feldspar end-members along all computed isotherms. The statistical errors on the mean
are included in the size of the points. Due to the large number of steps in each simulation
runs, we obtain small uncertainties for the mean pressure even at very low densities.
These values, of the order of 10−3–10−2 GPa, are smaller or about the same order of
magnitude as those obtained by Green et al. (2018) who used the same method to
estimate them. The spread of the pressure values during the simulation is about 1.6 GPa,
which is typical for FPMD simulations. The numerical results for pressure, temperature,
density and internal energy are available in annex B.1.1.

As said in section 6.1.3, we approximate the P-T variation around the liquid spinodal
with 3rd order pressure-density polynomials. We perform the fits along each isotherm
with and without constraining the constant term to 0 (figures A.29 and 6.7 respectively).
The minima of these curves show the position of the liquid spinodals and the numerical
values can be found in annex B.1.2. As explained in section 2.2.2, we used two different
sets of pseudopotentials to perform the simulations: one set for densities above 1 g cm−3

("main study") and another set for densities between 0.5 and 2.5 g cm−3 ("low densities",
see table 2.1). Figure 6.8(a,b,c) shows the position of the minima obtained with both
datasets and type of fit. The two sets of pseudopotentials yield a slightly different
position of the liquid spinodal. The data sets down to 1.0 g cm−3 appear to have enough
data for a correct determination of spinodals located at density higher than 1.3 g cm−3.
This is the case for temperatures up to 3000, 4000 and 5000 K for respectively K, Na
and Ca-end-member. Above these temperatures we used the data sets extended to
low-enough densities to observe a local maximum, corresponding to the gas spinodal
(figures 6.7 and A.29 d, e and f). For the case of the 4000 K isotherm of Na, available
in both types of pseudopotentials, we choose to average the two values obtained for the
minima as an estimation of the liquid spinodal.

The position of the minima obtained by constrained fits are very similar to the
unconstrained ones except for the last values. For the alkali feldspars, the constrained fit
finds a minimum for the first isotherm which did not displayed one with unconstrained fit
(i.e. 6000 K for Na- and 5500 K for K-feldspars). Following the discussion in section 6.1.3,
we choose to use the spinodals given by the constrained fit when 0 is comprised in the
uncertainty range of the constant term of the unconstrained polynomial fit. This leads
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Figure 6.7 – Computed pressure as a function of density for the (a) Na-, (b) K- and (c) Ca-
feldspar end-members and their respective enlarged view on the low density region, (d), (e)
and (f). Open and solid symbols indicate values obtained with the two sets of pseudopotentials
described in table 2.1 ("low density" and "main study" respectively). Dashed and dotted lines
represent unconstrained 3rd order polynomial curve fits corresponding to the respective two sets
of pseudopotentials. The gray and black crosses indicate the liquid spinodals corresponding
respectively to the open and solid datasets. The statistical errors on the mean are included in
the size of the points. Numerical data are available in annexes B.1.1 and B.1.2. The same figure
for constrained fits is available in annex, figure A.29.
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Figure 6.8 – Liquid spinodals obtained for the (a,d) Na-, (b,e) K- and (c,f) Ca-feldspar end-
members using 3rd order polynomial fits. Colors indicate which equation is used for the fit.
The symbol and line types (solid/empty/dotted) indicate which set of simulations is used in the
fit (low density or above 1 g cm−3). The rectangles indicate the position of the critical points.
Subfigures (d), (e) and (f) summarize which spinodals and critical point estimations are selected
here, and compare these results with critical point previously obtained on silica (Green et al.,
2018) and MgSiO3 (Xiao and Stixrude, 2018). For numerical data, the reader can refer to the
annex B.1.2.

to slightly different values for the Na end-member at 2000 and 3000 K, but increases by
500 K the position of the last spinodal, now located at 6000 K and 0.62 g cm−3 instead of
5500 K and 0.83 g cm−3. All the selected values used as estimation of the liquid spinodals
are summarized in the table 6.2 and displayed on figure 6.8(d,e,f).

For each feldspar end-member, the minima are less and less pronounced as the
isotherms approach the critical temperature. Along the isotherms above this temper-
ature, the pressure only decreases monotonously. The position of the critical point
lies in density between the gas and the liquid spinodals and in temperature between
the last isotherm that shows minima and maxima and the first isotherm that shows a
monotonous decrease of pressure. The gas spinodals are estimated with the maxima of
the 3rd order polynomial fits. For information they are indicated in the phase diagrams
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Table 6.2 – Selected values for the estimation of the liquid spinodals in feldspars. The "origin"
column states which data set and fit is used to select the spinodal value. See text for selection
rules. NaN indicates that no minima could be found by the fitting process. These values are
displayed on figure 6.8(d,e,f).

NaAlSi3O8 KAlSi3O8 CaAl2Si2O8
T ρ P origin ρ P origin ρ P origin
(K) (g cm−3) (GPa) (g cm−3) (GPa) (g cm−3) (GPa)
2000 1.57 -2.17 cf; m
3000 1.45 -0.67 cf; m 1.55 -0.55 uf; m 1.78 -1 uf; m
4000 1.32 -0.33 uf; a 1.18 -0.27 uf; l 1.61 -0.71 uf; m
4500 1.14 -0.25 uf; l 0.97 -0.12 uf; l
5000 1.01 -0.08 uf; l 0.87 0.02 uf; l 1.39 -0.34 uf; m
5500 0.83 0.03 uf; l NaN NaN uf; l
6000 0.62 0.13 cf; l NaN NaN uf; l 1.11 -0.16 uf; l
6500 NaN NaN cf; l 1.01 -0.01 uf; l
7000 0.79 0.11 uf; l
7500 NaN NaN uf; l

cf: constrained fit; uf: unconstrained fit; l: low densities dataset (down to 0.5 g cm−3); m: "main study"
dataset (above 1 g cm−3); a: average of values from the two datasets

figure 6.9 but their values are not entirely reliable since we do not have data at low
enough density to obtain reliable fits of the maxima in this region (the values we have
now are highly dependent on the equation used for the fit). Hence using the selected
values for the liquid spinodals (table 6.2) we obtain the following ranges for the critical
point of the three feldspar end-members:

NaAlSi3O8 6000 ≤ Tc(K) ≤ 6500; 0.44 ≤ ρc(g cm−3) ≤ 0.62; 0.1 < Pc(GPa) ≤ 0.2

KAlSi3O8 5000 ≤ Tc(K) ≤ 5500; 0.56 ≤ ρc(g cm−3) ≤ 0.87; 0 < Pc(GPa) ≤ 0.1

CaAl2Si2O8 7000 ≤ Tc(K) ≤ 7500; 0.57 ≤ ρc(g cm−3) ≤ 0.79; 0.1 < Pc(GPa) ≤ 0.2

To date there are no experimental determinations of the position of the critical
point of feldspars. Recently, two studies computed the critical point of SiO2 (Green
et al., 2018) and MgSiO3 (Xiao and Stixrude, 2018) using FPMD. Green et al. (2018)
found a supercritical temperature located between 5000 and 6000 K, and a supercritical
density around 0.5–1.0 g cm−3 by searching for minima in the pressure-density curves.
The critical point of silica has been estimated before by Melosh (2007) to 5400 K and
0.55 g cm−3 based on thermodynamic calculations from ANEOS. Xiao and Stixrude
(2018) modeled a slab of liquid at the center of a very elongated empty simulation
box and computed the liquid and gas densities by locating the liquid-vapor interface.
They obtained a supercritical temperature around 6600±150 K and a supercritical den-
sity around 0.48±0.05 g cm−3.
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6.4 Phase Diagram attempt

With all the information gathered in the previous sections and chapters, we attempt to
build an indicative phase diagram, represented in figure 6.9. Each point corresponds to
one simulation at a fixed volume and temperature. For clarity purposes, the simulations
performed with two sets of pseudopotentials are represented by only one point with the
average pressure from the two sets. Simulations are sorted into two physical states,
fluid and mix liquid + gas, determined by visual analysis (see section 4.2). When the
simulation did not reach the minimum ergodicity (see section 5.2 and annex A.3.4) we
superimpose a gray cross to the simulation point. For long enough simulations, as for the
2000 K isotherm of NaAlSi3O8, we can consider this indicates a very viscous fluid. The
liquid spinodals selected in table 6.2 are also indicated in this diagram down to 2000 K.
We determine the position of the gas spinodals only for the isotherms with densities
down to 0.5 g cm−3. They are the maxima of the 3rd order fit used in the determination
of the liquid spinodals. The line which links all the spinodal points together is only a
guide to the eye for the spinodal curve. We place the critical point as the maximum of
the spinodal curve.

6.5 Behavior of a feldspathic crust during impacts

The early part of the Hadean was dominated by impacts as the main phase of the
accretion unfolded. The Giant Impact marked the end of this major part of the Earth
history; it happened not later than 100 million years after the formation of the solar
system. By this time, there could have been several partial melting and partial freezing
episodes, which could have led to the formation of some primitive crust. In a terrestrial-
like planet, even if we cannot know precisely what would have been the extent of the
crust nor the temperature at the surface of the proto-planet, feldspars must have been
one of the major components of this crust.

In order to model the behavior of the major feldspathic components of the crust
during shock as generated by large impacts we build the Hugoniot equations of state,
using our computed density-volume-temperature points. We consider three possible
thermal initial states: cold (0 K), warm (1932 K) and hot (3000 K).

For the first scenario, temperatures are close to ambient. The crust is solid, made of
feldspar crystals. As an extreme case, we infer a thickness of up to 50 km since current
values are an average of about 30 km for the Earth and about 50 km on the Moon
(Taylor and McLennan, 2008). According to the estimated variations of the pressure
as a function of depth inside terrestrial planets (Warren, 1985), the pressure at the
bottom of such a crust would be less than 2 GPa. This pressure corresponds to the
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Figure 6.9 – Phase diagram for the (a, d, g) Na-, (b, e, h) K- and (c, f, i) Ca-feldspar end-
members in the three different reference axis. Colors indicate the physical state of feldspars in the
simulation: blue - fluid, green - mixture of liquid and gas, gray crosses - viscous fluid/simulation
which did not reached the minimum ergodicity. The black crosses indicate the liquid spinodals
as summarized in the table 6.2. The dashed black line is a guide to the eye for the spinodal
curve. Critical point lies in the orange rectangles, see the previous section for numerical values.
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112 6.5 - Behavior of a feldspathic crust during impacts

2.5–2.7 g cm−3 density range for feldspars. We model the initial state using standard
static calculations on ideal triclinic feldspar crystals. The effect on the Hugoniot lines of
the temperature variations due to the thickness of the crust or to the possible presence
of a shallow atmosphere are negligible.

For the second scenario, we assume the surface temperature to be close to the melt-
ing temperature of feldspars, as if a magma ocean has just crystallized. The melting
temperature of feldspars varies with the composition. It ranges from 1383 K for albite
to 1823 K for anorthite (Bowen, 1913), and is around 1473 K for the K-end-member
(Lange, 2007). We choose to use 1932 K as initial temperature in order to compare our
results with those obtained experimentally by Asimow and Ahrens (2010) on anorthite.
This scenario is particularly relevant for the crystallization of the Moon. Feldspars float
in the lunar magma ocean but they may behave differently in magma oceans of other
terrestrial bodies (Taylor, 1982). For this scenario the Hugoniot curve lies at higher
temperatures and pressures than in the previous case.

For the third scenario, temperatures are similar to those at the surface of a hot
magma ocean, as covered for example by a thick silicate atmosphere. The density of a
liquid feldspar is much lower than its corresponding solid form. This effect combined
with the thermal expansion of liquids leads to a density of 2.26 g cm−3 at a temperature
of 3000 K in the case of the K-end-member (Lange, 2007). The calculated Hugoniot line
is the highest in both temperature and pressure from all the three scenarii.

As shown in figure 6.10(a,c), up to 5000 K the three feldspars have similar Hugoniot
equations of state. At higher temperatures the Hugoniot pressure of the Ca- and K-
feldspars deviates by up to 75 GPa above that of the Na-feldspar and the Hugoniot
temperature by about 5000 K above that of the Na-feldspar. For all feldspars, the
initial temperature has weak to moderate influence on the final Hugoniot pressure and
temperature respectively, but decreasing the initial density leads to considerably higher
Hugoniot temperatures. The pressure-density projection (figure 6.10b,d) shows that our
cold Hugoniot curves are shifted by at most 10 GPa towards higher pressures compared
to the experimental shock data on feldspars (Ahrens, 1973; Ahrens et al., 1969; Boslough
et al., 1986a,b; McQueen et al., 1967). The same observation can be made between the
shock experiments performed by Asimow and Ahrens (2010) after heating an anorthite
at 1932 K and our orange Hugoniot curve corresponding to the same thermal initial state
(1932 K). Like us, their data do not show any difference between the different feldspar
compositions. We do not capture the curve of the Hugoniot below 75 GPa (highlighted
by the experimental data and represented here with a cubic interpolation) since the first
high density isotherm we have is located at 3000 K.

We do not specifically calculate the Hugoniot equations of state beyond 20 000 K
since the pseudopotentials are missing electronic states that might be occupied at such
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Figure 6.10 – Hugoniot curves for each initial temperature and density of the crust (colors)
on several projections: (a) pressure-temperature, (b) pressure-density and their associated zoom
on the low pressure range (c) and (d). Data from experiments on feldspars are indicated by the
colored markers. The feldspars composition is represented by the line styles for the Hugoniot
curves and by the markers filling for the experimental data: solid symbols - NaAlSi3O8, half
transparent symbols - KAlSi3O8, open symbols - CaAl2Si2O8. A cubic interpolation is used to
smooth the Hugoniot curves in the pressure-density projection. The same figure for the last
projection (temperature-density) is available in annex, figure A.30.
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high temperatures. However we are able to provide an extrapolated estimate based on
the computed lower temperatures (see tables B.3, B.4 and B.5 in annex).

To infer the shock state under large impacts for the Earth crust we choose velocities
for the impactor of 12.9, 15.2 and 18.1 km s−1. These values correspond respectively
to the first, second and third quartile of the Earth impactor velocities obtained on a
basis of 1487 impacts generated for the Earth in the work of Raymond et al. (2013)
(personal communication) on planetary impacts during the late veneer (figure 6.11a).
We employ the formalism from Raymond et al. (2013) (Eq. 3, 4 and 5) to compute the
two-body escape velocities along with the impact velocities on the Moon from the same
impact distribution. Then, for the impacts on the Moon, we obtain velocities of 8.3,
11.5 and 15.2 km s−1 (figure 6.11b). We consider all the impactors to have a density of
3.0 g cm−3 regardless of their possible composition, as in Raymond et al. (2013), and 0 K
temperature.

Figure 6.11 – Impact distributions for (a) Earth and (b) Moon during the late veneer obtained
on a basis of 1487 impacts generated for the Earth in the work of Raymond et al. (2013) (personal
communication). The impact velocities used in the impedance match method figure 6.12 are the
first, second and third quartile of these distributions (yellow shades).

Then we compute the peak pressure at the moment of impact after the first shock
wave using the impedance match method (Forbes, 2012) presented in figure 6.12 and
described in section 6.1.4. For this we intersect the cold Hugoniot of the impactor,
computed using the results of this study, with the various Hugoniot equations of the
cold, hot, or molten feldspar crust, as described above. We consider the impact velocities
described before to anchor the state of the impactor. Figure 6.13 illustrates the results
of the different scenarios for each impactor velocity and feldspar.

For impact velocities lower than about 10 km s−1 in a cold crust the peak tempera-
tures would remain below 4500 K and pressures below about 125 GPa; at these conditions
the crust would enter a pre-melting regime or might even melt. At impact velocities
larger than 10 km s−1 but still in a cold crust, the peak conditions would exceed 7500 K
in temperature and about 200 GPa in pressure. At these conditions the crust would
melt to participate in local magma ponds or magma seas.
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Figure 6.12 – Example of impedance match method applied to CaAl2Si2O8. (a) shows the
construction of the P-up curves from the equations 6.16 and 6.17 using the Hugoniot points
(dots) for each impactor velocities and only one initial state of the crust. The intersection
between these curves gives the shock pressures and particle velocities, represented in (b) by the
colored symbols for every crustal initial state and impactor velocity.

However impacts in hot crust, or even where local magma ponds may exist, see a
very different outcome. In this case the temperatures can reach between 10 000 K and
up to 30 000 K depending on the impactor velocity. At these conditions the integrity of
the crust would be completely erased, as all materials would melt and reach supercritical
state. The crust would be entirely part of the protolunar disk, bringing a silica- and
alkali-rich contribution. This was the case of the Giant Impact.

$
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Figure 6.13 – Using the impedance match method (figure 6.12 and section 6.1.4), we represented
the peak conditions for each impactor velocity (symbol shapes) and initial temperature and
density of the crust (colors) on the pressure-temperature projection. For clarity only ranges of
the Hugoniot curves for the three feldspars are represented here for the three scenarios. The
filling of symbols correspond to each feldspar end-member: solid symbols - NaAlSi3O8, half
transparent symbols - KAlSi3O8, open symbols - CaAl2Si2O8. For individual Hugoniot lines
refer to the figure 6.10.
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CHAPTER 7
CONCLUSION

J’ai obtenu un grand nombre de données sur les feldspaths et en particulier la position du point
critique. Si les géophysiciens travaillant sur les simulations d’impacts géants utilisent mes don-
nées, peut-être pourront-ils améliorer leurs simulations.
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Un petit mot pour finir

Ce travail de thèse avait principalement deux buts : 1) améliorer notre connaissance des
propriétés des feldspaths dans une large gamme de masses volumiques et températures
typiques des impacts météoritiques et du disque protolunaire et 2) étudier l’état physique
des feldspaths pendant l’Impact Géant.

Les expériences par ordinateur réalisées entre 2000 et 7500 K et entre 0.5 et 6 g cm−3

nous ont ainsi permis d’obtenir un diagramme de phases indicatif des feldspaths, fi-
gure 7.1, autour de la transition liquide-gaz sur lequel on peut superposer les zones
indiquant combien d’atomes O se trouvent autour des atomes Si (la coordinence domi-
nante de Si avec O). Nous avons obtenu une estimation de la température (Tc), pression
(Pc) et masse volumique (ρc) du point critique (point de contact entre les zones "liquide",
"gaz" et "mélange liquide-gaz" dans le diagramme de phases) :

NaAlSi3O8 6000 ≤ Tc(K) ≤ 6500 ; 0.44 ≤ ρc(g cm−3) ≤ 0.62 ; 0.1 < Pc(GPa) ≤ 0.2

KAlSi3O8 5000 ≤ Tc(K) ≤ 5500 ; 0.56 ≤ ρc(g cm−3) ≤ 0.87 ; 0 < Pc(GPa) ≤ 0.1

CaAl2Si2O8 7000 ≤ Tc(K) ≤ 7500 ; 0.57 ≤ ρc(g cm−3) ≤ 0.79 ; 0.1 < Pc(GPa) ≤ 0.2

Nous avons vu, par exemple, la formation de bulles dans les feldspaths liquides en
dessous de la température critique et d’environ 1.5 g cm−3. Parfois, de petites espèces
chimiques flottent librement dans ces bulles et constituent un début de phase gazeuse.
On retrouve majoritairement des ions Na et K, mais aussi de petites molécules comme
SiO, SiO2 et O2. Il y a très peu, voire pas du tout, d’espèces chimiques contenant des
éléments Ca et Al dans la phase gazeuse. On dit alors que la vaporisation du liquide est
incongruente (le gaz n’a pas la même composition en éléments chimiques que le liquide).

L’étude des feldspaths à très hautes masses volumiques et températures (jusqu’à
20 000 K) nous permet d’estimer l’état physique qu’une croûte planétaire composée de
feldspaths pourrait avoir lors d’un impact météoritique. Lorsque l’impact se produit sur
une croûte froide (0 K) il pourrait au maximum faire fondre la croûte. Au contraire,
lorsque l’impact a lieu sur une croûte chaude (2000 K) voire sur un océan de magma
(3000 K), les températures atteintes lors d’un impact du type Impact Géant sont d’au
moins 10 000 K et peuvent monter jusqu’à 30 000 K. Dans ces cas, toute la partie de la
croûte composée de feldspaths serait transformée en fluide supercritique.

L’ensemble des données (thermodynamique, structure, etc.) produites dans cette
thèse seront disponibles en libre accès. Elle seront bientôt accompagnées de données sur
d’autres matériaux géologiques d’intérêt comme le fer, SiO2 ou MgO dans le cadre du
projet IMPACT de Razvan Caracas. Ainsi nous espérons que les géophysiciens pourront
améliorer leurs modèles d’impacts géants et de formation de la Lune à partir du disque
protolunaire.
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Brief reminder The goals of this thesis, presented in section 1.4, can be summarized
into two categories, each associated to one of the following sections:

1. Improve our knowledge of feldspar minerals properties (structure, thermodynam-
ics, etc.) over a wide range of temperatures and densities typical of meteoric
impacts and of the protolunar disc.

2. Investigate the physical state of feldspars during the Giant Impact.

7.1 Main results

We investigated feldspar properties between 2000 and 7500 K and between 0.5 and
6 g cm−3, which corresponds to a pressure range of about 300 GPa. Most of the main
results obtained in this thesis can be summarized in a single "phase diagram", shown in
figure 7.1.

The spinodal analysis was applied on our low densities data sets to obtain the fol-
lowing estimations for the position of the critical points:

NaAlSi3O8 6000 ≤ Tc(K) ≤ 6500; 0.44 ≤ ρc(g cm−3) ≤ 0.62; 0.1 < Pc(GPa) ≤ 0.2

KAlSi3O8 5000 ≤ Tc(K) ≤ 5500; 0.56 ≤ ρc(g cm−3) ≤ 0.87; 0 < Pc(GPa) ≤ 0.1

CaAl2Si2O8 7000 ≤ Tc(K) ≤ 7500; 0.57 ≤ ρc(g cm−3) ≤ 0.79; 0.1 < Pc(GPa) ≤ 0.2

Below the critical temperatures and at low densities (below about 1.5 g cm−3), we
identify the formation of cavities inside the big cluster of atoms forming the melt. We
also see small chemical species free-floating inside these cavities. We interpret this as
gas bubble nucleation. The very first gas is mostly made of free Na or K and of SiO,
SiO2 and O2 molecules. We see only very few species containing Al or Ca, which makes
the vaporization incongruent. The liquid is then enriched in Al and Ca relative to the
other cations. This may explain why the Na and K end-members are almost absent
of the Moon crust. The incongruent volatilization of feldspar also implies that the
search of spinodals and of the phase diagrams are more complex than initially thought,
since another dimension with composition should be taken into account. For the alkali
feldspars, about 50 % of the gas is made of the free floating interstitial cations at 4000 K,
whereas at 6000 K they only represent about 10 % of the gas species (i.e. small species
in the bimodal distribution of the species sizes). At high temperatures SiO, SiO2 and O2

become the major species. Visscher and Fegley Jr. (2013) observe the same phenomenon
but at lower temperatures. We notice also an O2 degassing of the fluids above 4000 K
at all densities, including in the liquid phase where no bubbles can be seen. When O2

appears, it represents about 20–30 % of the small species, which is consistent with the
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Figure 7.1 – Summary of most of the major results obtained here in the temperature-density
projection for the three feldspars. The symbols are our simulation points. They are green if
bubbles are visible in the simulation, blue else. The green and the gray regions respectively
represent all the feldspars solidus and the solid-solid phase transitions from Akaogi et al. (2004);
Bell and Roseboom Jr. (1969); Lindsley (1966); Litvin and Gasparik (1993); Newton and Smith
(1967); Urakawa et al. (1994). Dash-dotted lines are solidus (green) and coesite-stishovite phase
transition (gray) for silica from Tsuchiya and Tsuchiya (2011); Zhang et al. (1996). Background
colors indicate the number of O atoms in the SiOx coordination polyhedra that dominates the
structure of our computed melt. These regions are obtained by combining those presented in
figure 3.14 for the three end-members. The viscous simulations are those for which the least
diffusive element (Si) did not jump to the next crystallographic site withing the length of the
simulation, i.e. the MSD did not reach at least 9Å2 at the end of the simulation (see table A.5).
The shock states are obtained from figure 6.13.

mole fraction abundance of the silicate vapor obtained by Visscher and Fegley Jr. (2013).
This degassing is also seen in MgSiO3 (Xiao and Stixrude, 2018) and in silica (Green
et al., 2018) even though O2 molecules do not live more than tens of femtoseconds in
silica.

In the liquid state, the three-dimensional framework of AlOn and SiOn polyhedra,
inherited from the crystal structure, is conserved. Around 3000 K and 1 GPa, close to
the conditions of a hot magma, the coordination of the melt is dominated by tetrahedra
of AlO4 and SiO4. The coordination increases continuously with pressure and the melts
are dominated by AlO6 and SiO6 around 100 GPa. Below 2.5 g cm−3 and at 3000 K, in
other words in the extension regime corresponding to negative pressures (not shown on
figure 7.1) we see AlO3 and SiO3 appear. Around or above the critical temperature we
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also see AlO3 and SiO3 and even smaller coordination polyhedra.
The self-diffusion coefficients show the same temperature and density dependence

as seen before with several numerical experiments (e.g de Koker, 2010; Neilson et al.,
2016): the self-diffusivity of feldspars increases as temperature increases and density
decreases. Below about 3 g cm−3, interstitial cations are more diffusive than the other
elements, especially at 3000 K. Ca is the less diffusive of the three interstitial cations and
even shows a decrease of its self-diffusivity below 5000 K as the system enters the two-
phases region (about 2 g cm−3 at 3000 K and 1.5 g cm−3 at 4000 K). Around the critical
temperature this decreases of self-diffusivity disappear. The very viscous simulations, i.e.
those for which the least diffusive element (Si) did not jump to the next crystallographic
site withing the length of the simulation, seem to approximately follow the solidus. They
may indicate a transition zone between the solid and the liquid state, especially if the
simulations are long enough.

We performed additional simulations at very high densities and temperatures (up
to 20 000 K) in order to obtain the shock state of feldspars, modeled by Hugoniot equa-
tions of state. We considered three initial thermal states of a planetary crust made of
feldspars: cold (0 K), warm (1932 K) and hot (3000 K). We obtained the shock pressure,
temperature and density for several impact velocities typical of meteoric impacts during
the late veneer. We combined these data with the indicative phase diagrams of feldspars
we produced in order to obtain the physical state of a feldspathic crust during impacts.
This shows that impacts in a cold crust would at most locally melt the crust. On the
contrary, impacts in a hot crust or where magma ponds may exist would bring the crust
into supercritical state.

7.2 Implications for the Giant Impact

The Giant Impact is usually thought to have happened in the early history of Earth, after
the differenciation started and with an initial surface temperature of about 2000 K (e.g
Canup, 2004). Recently, a global magma ocean was even assumed to exist at the surface
of the proto-Earth at the moment of impact (Hosono et al., 2019). This corresponds
to the second and third scenarii (warm and hot crust) we used to compute the shock
state of feldspars. For an initial impact velocity around Earth’s escape velocity this
leads to shock temperatures of about 10 000 K for the second scenario and up to about
15 000 K for the third scenario. In these cases, the feldspathic part of the crust would be
totally molten and even in a supercritical state. Recent studies on MgSiO3 (Xiao and
Stixrude, 2018) and silica (Green et al., 2018) showed critical temperatures similar to
those obtained for feldspars. Thus, it is likely that a substantial part of the crust would
have been in a supercritical state. This particular state of the matter may have played
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a key role in the evolution of the protolunar disk or the synestia (Lock et al., 2018).
On the density profiles of the protolunar disk obtained by smooth particle hydro-

dynamic (SPH) simulations (e.g Canup, 2012; Canup and Asphaug, 2001) we see that
most of the disk has a density smaller than the critical density estimated here. This
means the disk is mainly only made of one phase, which is either gas or supercritical
depending on the temperature profile. To say more about the physical state of the disk
we would need both density and temperature profile in the disk.

7.3 To be continued...

Even if the crusts of the two proto-planets constitute the protolunar disk, they would
represent only a very small portion. Most of the material from the protolunar disk
came from the mantles of the proto-planets and in a lesser amount from the core of the
proto-Earth. That is why it is important to perform similar studies as this one on many
other materials, typical of the whole planet. This is already an on-going work with
the IMPACT project (see Razvan Caracas webpage). Following this work on feldspars,
studies on other material such as pyrolite, iron, silica with water or MgO will soon be
completed. We trust that all the data that will be available in open access will help
geophysicists improving impact simulations and disk accretion models.

Supercritical state of feldspars during the Giant Impact Anaïs Kobsch



BIBLIOGRAPHY

O. Adjaoud, G. Steinle-Neumann, and S. Jahn. Mg2SiO4 liquid under high pressure
from molecular dynamics. Chemical Geology, 256(3–4):185–192, 2008.

T. J. Ahrens. A shock-induced phase change in orthoclase. Journal of Geophysical
Research, 78(8):1274–1278, 1973.

T. J. Ahrens, C. F. Petersen, and J. T. Rosenberg. Shock compression of feldspars.
Journal of Geophysical Research, 74(10):2727–2746, 1969.

M. Akaogi, N. Kamii, A. Kishi, and H. Kojitani. Calorimetric study on high-pressure
transitions in KAlSi3O8. Physics and Chemistry of Minerals, 31(2):85–91, 2004.

M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids
(Oxford Science Publications). Clarendon Press, 1989.

D. L. Anderson. 2 Earth and Moon. In Theory of the Earth, pages 27–45. Boston, MA,
blackwell scientific publications edition, 1989. ISBN 0-86542-335-0.

R. J. Angel. Feldspars at High Pressure. In I. Parsons, editor, Feldspars and Their
Reactions, NATO ASI Series, pages 271–312. Springer Netherlands, Dordrecht, 1994.
ISBN 978-94-011-1106-5.

R. J. Angel, M. A. Carpenter, and L. W. Finger. Structural variation associated
with compositional variation and order-disorder behavior in anorthite-rich feldspars.
American Mineralogist, 75:150–162, 1990.

R. M. G. Armytage, R. B. Georg, H. M. Williams, and A. N. Halliday. Silicon isotopes
in lunar rocks: Implications for the Moon’s formation and the early history of the
Earth. Geochimica et Cosmochimica Acta, 77:504–514, 2012.

123



124 BIBLIOGRAPHY

P. D. Asimow and T. J. Ahrens. Shock compression of liquid silicates to 125 GPa:
The anorthite-diopside join. Journal of Geophysical Research: Solid Earth, 115(B10),
2010.

E. Asphaug. Impact Origin of the Moon? Annual Review of Earth and Planetary
Sciences, 42(1):551–578, 2014.

S. K. Bajgain and M. Mookherjee. Structure and Properties of Albite Melt at High
Pressures. ACS Earth and Space Chemistry, 4(1):1–13, 2020.

A. C. Barr. On the origin of Earth’s Moon. Journal of Geophysical Research: Planets,
121(9):1573–1601, 2016.

P. M. Bell and E. H. Roseboom Jr. Melting relationships of jadeite and albite to 45
kilobars with comments on melting diagrams of binary systems at high pressures.
Mineralogical Society of America Special Paper, 2(Pyroxenes And Amphiboles: Crys-
tal Chemistry And Phase Petrology):151–162, 1969.

M. Benoit, S. Ispas, and M. E. Tuckerman. Structural properties of molten silicates from
ab initio molecular-dynamics simulations: Comparison between CaO-Al2O3-SiO2 and
SiO2. Physical Review B, 64:224205–224205, 2001.

A. B. Binder. On the origin of the moon by rotational fission. The moon, 11(1):53–76,
1974.

K. Binder, B. J. Block, P. Virnau, and A. Tröster. Beyond the Van Der Waals loop:
What can be learned from simulating Lennard-Jones fluids inside the region of phase
coexistence. American Journal of Physics, 80(12):1099–1109, 2012.

P. E. Blöchl. Projector augmented-wave method. Physical Review B, 50:17953–17979,
1994.

P. T. Boggs, R. H. Byrd, J. E. Rogers, and R. B. Schnabel. User’s Reference Guide
for ODRPACK Version 2.01 Software for Weighted Orthogonal Distance Regression,
1992.

M. Born and R. Oppenheimer. Zur Quantentheorie der Molekeln. Annalen der Physik,
389(20):457–484, 1927.

M. B. Boslough, T. J. Ahrens, and A. C. Mitchell. Shock temperatures in anorthite
glass. Geophysical Journal of the Royal Astronomical Society, 84(3):475–489, 1986a.

M. B. Boslough, S. M. Rigden, and T. J. Ahrens. Hugoniot equation of state of anorthite
glass and lunar anorthosite. Geophysical Journal of the Royal Astronomical Society,
84(3):455–473, 1986b.

Supercritical state of feldspars during the Giant Impact Anaïs Kobsch



BIBLIOGRAPHY 125

N. L. Bowen. The melting phenomena of the plagioclase feldspars. American Journal
of Science, Series 4 Vol. 35(210):577–599, 1913.

A. G. W. Cameron and W. R. Ward. The Origin of the Moon. In Abstracts of Papers
Submitted to the Seventh Lunar Science Conference, volume 7, page 120, 1976.

R. M. Canup. Dynamics of Lunar Formation. Annual Review of Astronomy and
Astrophysics, 42(1):441–475, 2004.

R. M. Canup. Forming a Moon with an Earth-like Composition via a Giant Impact.
Science, 338(6110):1052–1055, 2012.

R. M. Canup and E. Asphaug. Origin of the Moon in a giant impact near the end of
the Earth’s formation. Nature, 412(6848):708–712, 2001.

R. Caracas. Giant Impact project. razvancaracas.info/impact/.

R. Caracas, K. Hirose, R. Nomura, and M. D. Ballmer. Melt–crystal density crossover
in a deep magma ocean. Earth and Planetary Science Letters, 516:202–211, 2019.

R. Caracas, A. Kobsch, N. V. Solomatova, Z. Li, F. Soubiran, and J.-A. Hernandez.
Analyzing melts and fluids from ab initio molecular dynamics simulations. Journal of
Visualized Experiments, accepted, 2020a.

R. Caracas, A. Kobsch, N. V. Solomatova, Z. Li, F. Soubiran, and J.-A. Hernan-
dez. rcaracas/umd_package 1.0.0, 2020b. URL https://doi.org/10.5281/zenodo.

3710978.

R. Caracas, A. Kobsch, N. V. Solomatova, Z. Li, F. Soubiran, and J.-A. Hernandez.
UMD package. github.com/rcaracas/UMD_package/releases/tag/1.0.0, 2020c.

Frédéric Caupin and Eric Herbert. Cavitation in water: A review. Comptes Rendus
Physique, 7(9):1000–1017, 2006.

S. Charnoz and C. Michaut. Evolution of the protolunar disk: Dynamics, cooling
timescale and implantation of volatiles onto the Earth. Icarus, 260:440–463, 2015.

D. J. Cherniak. Cation Diffusion in Feldspars. Reviews in Mineralogy and Geochemistry,
72(1):691–733, 2010.

M. Ćuk and S. T. Stewart. Making the Moon from a Fast-Spinning Earth: A Giant
Impact Followed by Resonant Despinning. Science, 338(6110):1047–1052, 2012.

G. Darwin. On the Bodily Tides of Viscous and Semi-Elastic Spheroids, and on the
Ocean Tides upon a Yielding Nucleus. Philosophical Transactions of the Royal Society
of London, 170:1–35, 1879.

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact

https://doi.org/10.5281/zenodo.3710978
https://doi.org/10.5281/zenodo.3710978


126 BIBLIOGRAPHY

N. de Koker. Structure, thermodynamics, and diffusion in CaAl2Si2O8 liquid from first-
principles molecular dynamics. Geochimica et Cosmochimica Acta, 74(19):5657–5671,
2010.

N. P. de Koker, L. Stixrude, and B. B. Karki. Thermodynamics, structure, dynamics,
and freezing of Mg2SiO4 liquid at high pressure. Geochimica et Cosmochimica Acta,
72(5):1427–1441, 2008.

T. S. Duffy and R. F. Smith. Ultra-High Pressure Dynamic Compression of Geological
Materials. Frontiers in Earth Science, 7, 2019.

C. Fiolhais, F. Nogueira, and M. A. L. Marques, editors. A Primer in
Density Functional Theory. Lecture Notes in Physics 620. Springer-Verlag Berlin Hei-
delberg, first edition, 2003. ISBN 978-3-540-03083-6.

H. Flyvbjerg and H. G. Petersen. Error estimates on averages of correlated data. The
Journal of Chemical Physics, 91(1):461–466, 1989.

J. W. Forbes. Shock Wave Compression of Condensed Matter: A Primer. Shock Wave
and High Pressure Phenomena. Springer, Heidleberg, 2012. ISBN 978-3-642-32534-2.

C. Freda and D. R Baker. Na-K interdiffusion in alkali feldspar melts. Geochimica et
Cosmochimica Acta, 62(17):2997–3007, 1998.

D. Frenkel and B. Smit. Chapter 2 - Statistical Mechanics. In D. Frenkel and B. Smit,
editors, Understanding Molecular Simulation (Second Edition), pages 9–22. Academic
Press, 2002a.

D. Frenkel and B. Smit. Chapter 4 - Molecular Dynamics Simulations. In D. Frenkel
and B. Smit, editors, Understanding Molecular Simulation (Second Edition), pages
63–107. Academic Press, 2002b.

D. Frenkel and B. Smit. Chapter 6 - Molecular Dynamics in Various Ensem-
bles. In D. Frenkel and B. Smit, editors, Understanding Molecular Simulation
(Second Edition), pages 139–163. Academic Press, 2002c.

M. S. Ghiorso, D. Nevins, I. Cutler, and F. J. Spera. Molecular dynamics stud-
ies of CaAl2Si2O8 liquid. Part II: Equation of state and a thermodynamic model.
Geochimica et Cosmochimica Acta, 73(22):6937–6951, 2009.

E. C. R. Green, E. Artacho, and J. A. D. Connolly. Bulk properties and near-critical
behaviour of SiO2 fluid. Earth and Planetary Science Letters, 491:11–20, 2018.

A. N. Halliday. The Origin of the Moon. Science, 338(6110):1040–1041, 2012.

Supercritical state of feldspars during the Giant Impact Anaïs Kobsch



BIBLIOGRAPHY 127

Y. Hariya and G. C. Kennedy. Equilibrium study of anorthite under high pressure and
high temperature. American Journal of Science, 266(3):193–203, March 1968.

W. K. Hartmann and D. R. Davis. Satellite-sized planetesimals and lunar origin. Icarus,
24(4):504–515, 1975.

J.-P. Harvey and P. D. Asimow. Current limitations of molecular dynamic simulations
as probes of thermo-physical behavior of silicate melts. American Mineralogist, 100:
1866–1882, 2015.

W. M. Haynes, editor. CRC Handbook of Chemistry and Physics. Taylor and Francis
Group, LLC, ninety-second edition, 2011. ISBN 978-1-4398-5511-9.

E. R. Hernández, J. Brodholt, and D. Alfè. Structural, vibrational and thermodynamic
properties of Mg2SiO4 and MgSiO3 minerals from first-principles simulations. Physics
of the Earth and Planetary Interiors, 240:1–24, 2015.

P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Physical Review, 136:B864–
B871, 1964.

W. G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Physical
Review A, 31(3):1695–1697, 1985.

N. Hosono, S. Karato, J. Makino, and T. R. Saitoh. Terrestrial magma ocean origin of
the Moon. Nature Geoscience, page 1, 2019.

W. Humphrey, A. Dalke, and K. Schulten. VMD – Visual Molecular Dynamics. Journal
of Molecular Graphics, 14:33–38, 1996.

Jónsson group and Henkelman group. Transition State Tools for VASP. the-
ory.cm.utexas.edu/vtsttools/index.html.

B. B. Karki, D. Bhattarai, and L. Stixrude. First-principles simulations of liquid silica:
Structural and dynamical behavior at high pressure. Physical Review B, 76(10):
104205, 2007.

B. B. Karki, B. Bohara, and L. Stixrude. First-principles study of diffusion and viscosity
of anorthite (CaAl2Si2O8) liquid at high pressure. American Mineralogist, 96(5-6):
744–751, 2011.

B. B. Karki, D. B. Ghosh, and S. K. Bajgain. Chapter 16 - Simulation of Silicate Melts
Under Pressure. In Y. Kono and C. Sanloup, editors, Magmas Under Pressure, pages
419–453. Elsevier, Amsterdam, 2018. ISBN 978-0-12-811301-1.

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



128 BIBLIOGRAPHY

A. Kobsch. Complements to the UMD package.
github.com/Astranais/MD_postprocessing, 2020.

A. Kobsch and R. Caracas. Thermodynamics data of Alkali Feldspars from FPMD
simulations, 2020. URL https://doi.org/10.5281/zenodo.3860527.

W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation
Effects. Physical Review, 140:A1133–A1138, 1965.

R. G. Kraus, S. T. Stewart, D. C. Swift, C. A. Bolme, R. F. Smith, S. Hamel, B. D.
Hammel, D. K. Spaulding, D. G. Hicks, J. H. Eggert, and G. W. Collins. Shock
vaporization of silica and the thermodynamics of planetary impact events. Journal of
Geophysical Research: Planets, 117:E09009–E09009, 2012.

G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals
and semiconductors using a plane-wave basis set. Computational Materials Science,
6(1):15–50, 1996a.

G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Physical Review B, 54(16):11169–11186,
1996b.

G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Physical
Review B, 47(1):558–561, 1993.

G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-
wave method. Physical Review B, 59:1758–1775, 1999.

R. A. Lange. The density and compressibility of KAlSi3O8 liquid to 6.5 GPa. American
Mineralogist, 92(1):114–123, 2007.

Dien Li, R. A. Secco, G. M. Bancroft, and M. E. Fleet. Pressure induced coordination
change of Al in silicate melts from Al K edge XANES of high pressure NaAlSi2O6-
NaAlSi3O8 glasses. Geophysical Research Letters, 22(23):3111–3114, 1995.

D. H. Lindsley. Melting relations of KAlSi3O8: Effect of pressures up to 40 kilobars.
American Mineralogist, 51(11-12):1793–1799, 1966.

Y. A. Litvin and T. Gasparik. Melting of jadeite to 16.5 GPa and melting relations on
the enstatite-jadeite join. Geochimica et Cosmochimica Acta, 57(9):2033–2040, 1993.

S. J. Lock, S. T. Stewart, M. I. Petaev, Z. M. Leinhardt, M. T. Mace, S. B. Jacobsen, and
M. Ćuk. The origin of the Moon within a terrestrial synestia. Journal of Geophysical
Research: Planets, 123(4):910–951, 2018.

Supercritical state of feldspars during the Giant Impact Anaïs Kobsch

https://doi.org/10.5281/zenodo.3860527


BIBLIOGRAPHY 129

S.-N. Luo, J. A. Akins, T. J. Ahrens, and P. D. Asimow. Shock-compressed MgSiO3

glass, enstatite, olivine, and quartz: Optical emission, temperatures, and melting.
Journal of Geophysical Research: Solid Earth, 109(B05205):1–14, 2004.

R. M. Martin. Electronic Structure: Basic Theory and Practical Methods. Cambridge
University Press, 2004. ISBN 978-0-511-80576-9.

W. F. McDonough. Earth’s Core. In W. M. White, editor, Encyclopedia of
Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth,
Encyclopedia of Earth Sciences Series, pages 418–429. Springer International Pub-
lishing, 1st edition, 2018. ISBN 978-3-319-39311-7 978-3-319-39312-4.

R. G. McQueen, S. P. Marsh, and J. N. Fritz. Hugoniot equation of state of twelve
rocks. Journal of Geophysical Research, 72(20):4999–5036, 1967.

H. J. Melosh. A hydrocode equation of state for SiO2. Meteoritics & Planetary Science,
42(12):2079–2098, 2007.

N. D. Mermin. Thermal Properties of the Inhomogeneous Electron Gas. Physical
Review, 137(5A):A1441–A1443, 1965.

N. A. Morgan and F. J. Spera. Glass transition, structural relaxation, and theories
of viscosity: A molecular dynamics study of amorphous CaAl2Si2O8. Geochimica et
Cosmochimica Acta, 65(21):4019–4041, 2001.

R. T. Neilson, F. J. Spera, and M. S. Ghiorso. Thermodynamics, self-diffusion, and
structure of liquid NaAlSi3O8 to 30 GPa by classical molecular dynamics simulations.
American Mineralogist, 101(9):2029–2040, 2016.

H. Nekvasil. Ternary Feldspar/Melt Equilibria: A Review. In Ian Parsons, editor,
Feldspars and Their Reactions, NATO ASI Series, pages 195–219. Springer Nether-
lands, Dordrecht, 1994. ISBN 978-94-011-1106-5.

M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in Statistical Physics.
Clarendon Press; Oxford University Press, 1999. ISBN 0-19-851797-1 978-0-19-851797-
9 978-0-585-48400-6 0-19-851796-3.

R. C. Newton and J. V. Smith. Investigations concerning the Breakdown of Albite at
Depth in the Earth. The Journal of Geology, 75(3):268–286, 1967.

S. Nosé. A unified formulation of the constant temperature molecular dynamics methods.
The Journal of Chemical Physics, 81(1):511–519, 1984.

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



130 BIBLIOGRAPHY

J. A. O’Keefe and E. S. Sullivan. Fission origin of the Moon: Cause and timing. Icarus,
35(2):272–283, 1978.

K. Pahlevan and D. J. Stevenson. Equilibration in the aftermath of the lunar-forming
giant impact. Earth and Planetary Science Letters, 262(3):438–449, 2007.

Kaveh Pahlevan, David J. Stevenson, and John M. Eiler. Chemical fractionation in the
silicate vapor atmosphere of the Earth. Earth and Planetary Science Letters, 301
(3–4):433–443, 2011.

J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made
Simple. Physical Review Letters, 77(18):3865–3868, 1996.

M. Perfit. Earth’s Oceanic Crust. In W. M. White, editor, Encyclopedia of
Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth,
Encyclopedia of Earth Sciences Series, pages 430–438. Springer International Pub-
lishing, 1st edition, 2018. ISBN 978-3-319-39311-7 978-3-319-39312-4.

S. N. Raymond, H. E. Schlichting, F. Hersant, and F. Selsis. Dynamical and collisional
constraints on a stochastic late veneer on the terrestrial planets. Icarus, 226(1):671–
681, 2013.

A. Reufer, M. M. M. Meier, W. Benz, and R. Wieler. A hit-and-run giant impact
scenario. Icarus, 221(1):296–299, 2012.

P. Richet and Y. Bottinga. Glass transitions and thermodynamic properties of amor-
phous SiO2, NaAlSinO2n+2 and KAlSi3O8. Geochimica et Cosmochimica Acta, 48
(3):453–470, 1984.

A. B. Ronov and A. A. Yaroshevsky. Chemical Composition of the Earth’s Crust. In The
Earth’s Crust and Upper Mantle, pages 37–57. American Geophysical Union (AGU),
1969. ISBN 978-1-118-66897-9.

S. Root, L. Shulenburger, R. W. Lemke, D. H. Dolan, T. R. Mattsson, and M. P. Desjar-
lais. Shock Response and Phase Transitions of MgO at Planetary Impact Conditions.
Physical Review Letters, 115(19):198501, 2015.

E. L. Ruskol. The Origin of the Moon. I. Formation of a Swarm of Bodies Around the
Earth. Soviet Astronomy-AJ, 4:657, 1960.

S. K. Saxena and Y. Wang. Chapter Thirteen - Determintation of Pressure-Dependent
Phase Diagrams. In J. C. Zhao, editor, Methods for Phase Diagram Determination,
pages 412–441. Elsevier Science Ltd, Oxford, 2007. ISBN 978-0-08-044629-5.

Supercritical state of feldspars during the Giant Impact Anaïs Kobsch



BIBLIOGRAPHY 131

S. F. Singer. Origin of the moon by tidal capture and some geophysical consequences.
The moon, 5(1):206–209, 1972.

J. V Smith and W. L Brown. Feldspar Minerals. Springer-Verlag, Berlin; New York,
1988. ISBN 978-0-387-17692-5 978-3-540-17692-3.

J. V. Smith, A. T. Anderson, R. C. Newton, E. J. Olsen, P. J. Wyllie, A. V. Crewe,
M. S. Isaacson, and D. Johnson. Petrologic history of the moon inferred from pet-
rography, mineralogy, and petrogenesis of Apollo 11 rocks. In A. A. Levinson, editor,
Proceedings of the Apollo 11 Lunar Science Conference, pages 897–925. Pergamon
Press, New York, NY, 1970. ISBN 978-0-08-016392-5.

N. V. Solomatova and R. Caracas. Pressure-induced coordination changes in a pyrolitic
silicate melt from ab initio molecular dynamics simulations. Journal of Geophysical
Research: Solid Earth, 124(11), 2019.

F. J. Spera, D. Nevins, M. Ghiorso, and I. Cutler. Structure, thermodynamic and
transport properties of CaAl2Si2O8 liquid. Part I: Molecular dynamics simulations.
Geochimica et Cosmochimica Acta, 73(22):6918–6936, 2009.

J. F. Stebbins, I. S. E. Carmichael, and D. E. Weill. The high temperature liquid and
glass heat contents and the heats of fusion of diopside, albite, sanidine and nepheline.
American Mineralogist, 68:717–730, 1983.

D. J. Stevenson. Origin of the Moon-The Collision Hypothesis. Annual Review of Earth
and Planetary Sciences, 15(1):271–315, 1987.

L. Stixrude and B. Karki. Structure and Freezing of MgSiO3 Liquid in Earth’s Lower
Mantle. Science, 310(5746):297–299, 2005.

L. Stixrude and C. Lithgow-Bertelloni. Thermodynamics of mantle minerals — I. Phys-
ical properties. Geophysical Journal International, 162(2):610–632, 2005.

A. Stracke. Mantle Geochemistry. In W. M. White, editor, Encyclopedia of
Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth,
Encyclopedia of Earth Sciences Series, pages 867–877. Springer International Pub-
lishing, 1st edition, 2018. ISBN 978-3-319-39311-7 978-3-319-39312-4.

N. Sun, L. Stixrude, N. de Koker, and B. B. Karki. First principles molecular dy-
namics simulations of diopside (CaMgSi2O6) liquid to high pressure. Geochimica et
Cosmochimica Acta, 75(13):3792–3802, 2011.

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



132 BIBLIOGRAPHY

D. Sykes, B. T. Poe, P. F. McMillan, R. W. Luth, and R. K. Sato. A spectroscopic inves-
tigation of anhydrous KAlSi3O8 and NaAlSi3O8 glasses quenched from high pressure.
Geochimica et Cosmochimica Acta, 57(8):1753–1759, April 1993.

M. Taylor and G. E. Brown. Structure of mineral glasses—I. The feldspar glasses
NaAlSi3O8, KAlSi3O8, CaAl2Si2O8. Geochimica et Cosmochimica Acta, 43(1):61–
75, 1979.

S. R. Taylor. Planetary Science: A Lunar Perspective. Lunar and Planetary Institute,
Houston, 1982.

S. R. Taylor. The unique lunar composition and its bearing on the origin of the Moon.
Geochimica et Cosmochimica Acta, 51(5):1297–1309, 1987.

S. R. Taylor and S. McLennan. A primary crust: The highland crust of the Moon. In
Planetary Crusts: Their Composition, Origin and Evolution, Cambridge Planetary
Science, pages 32–60. Cambridge University Press, 2008.

S. R. Taylor and S. M. McLennan. The geochemical evolution of the continental crust.
Reviews of Geophysics, 33(2):241–265, 1995.

T. J. Tenner, R. A. Lange, and R. T. Downs. The albite fusion curve re-examined:
New experiments and the high-pressure density and compressibility of high albite and
NaAlSi3O8 liquid. American Mineralogist, 92(10):1573–1585, 2007.

S. L. Thompson and H. S. Lauson. Improvements in the CHART D radiation-
hydrodynamic code III: Revised analytical equation of state. Technical Report SC-
RR-710714, Sandia National Laboratories, Albuquerque, 1972.

J. H. Tillotson. Metallic equations of state for hypervelocity impact. Technical Report
GA-3216, General Dynamics San Diego Ca General Atomic Div, 1962.

Taku Tsuchiya and Jun Tsuchiya. Prediction of a hexagonal SiO2 phase affecting stabil-
ities of MgSiO3 and CaSiO3 at multimegabar pressures. Proceedings of the National
Academy of Sciences, 108(4):1252–1255, 2011.

S. Urakawa, T. Kondo, N. Igawa, O. Shimomura, and H. Ohno. Synchrotron radiation
study on the high-pressure and high-temperature phase relations of KAlSi3O8. Physics
and Chemistry of Minerals, 21(6):387–391, 1994.

C. Visscher and B. Fegley Jr. Chemistry of Impact-generated Silicate Melt-vapor Debris
Disks. The Astrophysical Journal Letters, 767(1):L12–L12, 2013.

Supercritical state of feldspars during the Giant Impact Anaïs Kobsch



BIBLIOGRAPHY 133

J. T. K. Wan, T. S. Duffy, S. Scandolo, and R. Car. First-principles study of density,
viscosity, and diffusion coefficients of liquid MgSiO3 at conditions of the Earth’s deep
mantle. Journal of Geophysical Research: Solid Earth, 112(B03208):1–7, 2007.

W. R. Ward. On the vertical structure of the protolunar disk. The Astrophysical Journal,
744(2):140, 2012.

P. H. Warren. The Magma Ocean Concept and Lunar Evolution. Annual Review of
Earth and Planetary Sciences, 13(1):201–240, 1985.

J. A. Wood. Moon over Mauna Loa: A review of hypotheses of formation of Earth’s
moon. In W. K. Hartmann, R. J. Phillips, and G. J. Taylor, editors, Origin of the
Moon, pages 17–56. Lunar & Planetary Institute, Houston, 1986. ISBN 978-0-942862-
03-4.

B. Xiao and L. Stixrude. Critical vaporization of MgSiO3. Proceedings of the National
Academy of Sciences, 115(21):5371–5376, 2018.

T. Yagi, T. Sakai, H. Kadobayashi, and T. Irifune. Review: High pressure generation
techniques beyond the limit of conventional diamond anvils. High Pressure Research,
40(1):148–161, 2020.

J. Zhang, B. Li, W. Utsumi, and R. C. Liebermann. In situ X-ray observations of
the coesite-stishovite transition: Reversed phase boundary and kinetics. Physics and
Chemistry of Minerals, 23(1):1–10, 1996.

J. Zhang, N. Dauphas, A. M. Davis, I. Leya, and A. Fedkin. The proto-Earth as a
significant source of lunar material. Nature Geoscience, 5(4):251–255, 2012.

$

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



134 LIST OF FIGURES

List of Figures

1.1 Timeline of the main Moon formation scenarii. . . . . . . . . . . . . . . 4
1.2 Schematic T-ρ phase diagram showing the physical state of a protolunar

disk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Pie charts of the Earth and Moon crusts compositions. . . . . . . . . . . 10

2.1 Simplified schematics of the MD process. . . . . . . . . . . . . . . . . . . 16
2.2 Simplified DFT flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Initial anorthite cell and supercell construction. . . . . . . . . . . . . . . 21
2.4 Schematics of the heating and cooling processes. . . . . . . . . . . . . . 22
2.5 Temperature-pressure-density range investigated. . . . . . . . . . . . . . 23
2.6 Schematics and numerical results of the initial state test. . . . . . . . . . 25
2.7 Box diagram of OUTCAR files post processing. . . . . . . . . . . . . . . 28

3.1 Schematics of the radial pair distribution function and its cumulative
integral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Schematics of the different estimation of bond length on a skewed pair
distribution function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Simplified flowchart of the coordination polyhedra analysis. . . . . . . . 37
3.4 Radius of the 1st coordination sphere as a function of density and tem-

perature for CaAl2Si2O8 and smoothing fits. . . . . . . . . . . . . . . . . 38
3.5 Comparison of the different bond length calculations for the Ca- end-

member with experimental and simulation results. . . . . . . . . . . . . 39
3.6 Pair distribution functions at 2 g cm−1. . . . . . . . . . . . . . . . . . . . 41
3.7 Position of the first g(r) peak for T-O and M-O pairs. . . . . . . . . . . 42
3.8 Position of the first g(r) peak for the cations pairs. . . . . . . . . . . . . 43
3.9 Average coordination number of Ca, K, Na, Al and Si by O as a function

of pressure and temperature. . . . . . . . . . . . . . . . . . . . . . . . . 44
3.10 Comparison of the average coordination number obtained in this study

for the Na- end-member with results previously obtained in litterature. . 45
3.11 Relative proportion of SiOn and AlOn coordination species in NaAlSi3O8

for 3000 K and 6000 K as a function of pressure. . . . . . . . . . . . . . . 47

Supercritical state of feldspars during the Giant Impact Anaïs Kobsch



LIST OF FIGURES 135

3.12 Relative proportion of SiOn and AlOn coordination species in KAlSi3O8

for 3000 K and 6000 K as a function of pressure. . . . . . . . . . . . . . . 48
3.13 Relative proportion of SiOn and AlOn coordination species in CaAl2Si2O8

for 3000 K and 6000 K as a function of pressure. . . . . . . . . . . . . . . 49
3.14 Changes of the major coordination of T by O (T being Al, Si) for the

three feldspar compositions in the temperature-pressure projection plane. 50
3.15 Lifetime of SiOn and AlOn coordinating polyhedra at about 2.2 g cm−3

and two temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.16 Median lifetime of AlOn and SiOn coordination polyhedra for NaAlSi3O8. 53
3.17 Maximum lifetime of AlOn and SiOn coordination polyhedra for NaAlSi3O8. 54
3.18 Relative proportion of NaOn, KOn and CaOn coordination species for

3000 K and 6000 K as a function of pressure. . . . . . . . . . . . . . . . . 55
3.19 Same as Fig. 3.15 for NaOn, KOn and CaOn coordinating polyhedra. . 56

4.1 Rules of species definition. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Simplified flowchart of the speciation analysis. . . . . . . . . . . . . . . . 63
4.3 Snapshot of CaAl2Si2O8 at 4000 K and 1.81 g cm−3. . . . . . . . . . . . . 64
4.4 Snapshots of KAlSi3O8 at 4500 K and 0.61 g cm−3 for different times in

the simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Snapshot of the iso-electronic density surface at 0.01 e/Å3 in the simula-

tion cell of NaAlSi3O8 at 4500 K and 0.47 g cm−3. . . . . . . . . . . . . . 65
4.6 Size distribution of all individual clusters of atoms in NaAlSi3O8 fluids. 67
4.7 Lifetime of each individual volatile species with less than 8 atoms in

CaAl2Si2O8 fluids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.8 Lifetime of each individual volatile species with less than 8 atoms in

NaAlSi3O8 fluids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.9 Lifetime of each individual volatile species with less than 8 atoms in

KAlSi3O8 fluids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.10 Proportion of chemical species in the "gas" phase as a function of density

at 4000 K and 6000 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.11 Proportion of each element in the "gas" phase as a function of density at

4000 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Mean square displacement of Na, Al, Si and O in NaAlSi3O8. . . . . . . 82
5.2 Mean square displacement of every O atom at 4500 K and 1 g cm−3 in

NaAlSi3O8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Localization of 14 O atoms in the different chemical species during the

course of a simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Self-diffusion coefficients for every element as a function of pressure. . . 85

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



136 LIST OF FIGURES

5.5 Comparison of the self-diffusion coefficients obtained with two different
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Self diffusion coefficients of feldspars at 1 GPa as a function of the inverse
temperature and fit of the Arrhenius law. . . . . . . . . . . . . . . . . . 88

6.1 Statistical error analysis applied to CaAl2Si2O8 at 3000 K and 3.36 g cm−3. 95
6.2 Schematic of the pressure variations as a function of density for several

isotherms in a real fluid. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Schematics of the pressure state of a material ahead and behind a 1D

plane shock wave for different cases. . . . . . . . . . . . . . . . . . . . . 100
6.4 Relative temperature variance as a function of density. . . . . . . . . . . 104
6.5 Specific heat capacity Cvm as a function of density and temperature. . . 104
6.6 Isobaric expansivity α and isothermal compressibility β as a function of

pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.7 Computed pressure as a function of density and unconstrained 3rd order

polynomial fits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.8 Liquid spinodals obtained using 3rd order polynomial fits. . . . . . . . . 108
6.9 Phase diagram attempt in the three reference axis. . . . . . . . . . . . . 111
6.10 Hugoniot curves on several projections. . . . . . . . . . . . . . . . . . . . 113
6.11 Impact distributions for Earth and Moon during the late veneer. . . . . 114
6.12 Impedance match method applied to CaAl2Si2O8. . . . . . . . . . . . . . 115
6.13 Hugoniot curves and peak conditions on the pressure-temperature pro-

jection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1 Summary of most of the major results obtained here in the temperature-
density projection for the three feldspars. . . . . . . . . . . . . . . . . . 120

A.1 Simplified directories tree used for organization of computational experi-
ments here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.2 least common multiple (LCM) for each pair of sampling frequencies be-
tween 10 and 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.3 Pair distribution functions at 1 g cm−1. . . . . . . . . . . . . . . . . . . . 159
A.4 Position of the first g(r) peak for T-O and M-O pairs. . . . . . . . . . . 160
A.5 Position of the first g(r) peak for the cations pairs. . . . . . . . . . . . . 161
A.6 Average coordination number of Ca, K, Na, Al and Si by O as a function

of pressure and temperature. . . . . . . . . . . . . . . . . . . . . . . . . 162
A.7 Relative proportion of SiOn and AlOn coordination species in NaAlSi3O8

for 3000 K and 6000 K as a function of density. . . . . . . . . . . . . . . 163

Supercritical state of feldspars during the Giant Impact Anaïs Kobsch



LIST OF FIGURES 137

A.8 Relative proportion of SiOn and AlOn coordination species in KAlSi3O8

for 3000 K and 6000 K as a function of density. . . . . . . . . . . . . . . 164
A.9 Relative proportion of SiOn and AlOn coordination species in CaAl2Si2O8

for 3000 K and 6000 K as a function of density. . . . . . . . . . . . . . . 165
A.10 Median lifetime of AlOn and SiOn coordination polyhedra for CaAl2Si2O8.166
A.11 Median lifetime of AlOn and SiOn coordination polyhedra for KAlSi3O8. 167
A.12 Maximum lifetime of AlOn and SiOn coordination polyhedra for CaAl2Si2O8.168
A.13 Maximum lifetime of AlOn and SiOn coordination polyhedra for KAlSi3O8.169
A.14 Relative proportion of NaOn, KOn and CaOn coordination species for

3000 K and 6000 K as a function of density. . . . . . . . . . . . . . . . . 170
A.15 Snapshot of "SiO4" in CaAl2Si2O8 at 6000 K and 1.2 g cm−3. . . . . . . . 171
A.16 Lifetime of each individual volatile species with 8 to 13 atoms in their

formula in CaAl2Si2O8 fluids. . . . . . . . . . . . . . . . . . . . . . . . . 171
A.17 Lifetime of each individual volatile species with 8 to 13 atoms in their

formula in NaAlSi3O8 fluids. . . . . . . . . . . . . . . . . . . . . . . . . . 172
A.18 Lifetime of each individual volatile species with 8 to 13 atoms in their

formula in KAlSi3O8 fluids. . . . . . . . . . . . . . . . . . . . . . . . . . 173
A.19 Mean square displacement of K, Al, Si and O in KAlSi3O8. . . . . . . . 174
A.20 Mean square displacement of Ca, Al, Si and O in CaAl2Si2O8. . . . . . . 175
A.21 Self-diffusion coefficients for every element as a function of density. . . . 176
A.22 Self-diffusion coefficients for Al and Si as a function of density. . . . . . 177
A.23 Self-diffusion coefficients in KAlSi3O8 as a function of pressure and Ar-

rhenius fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A.24 Self-diffusion coefficients in CaAl2Si2O8 as a function of pressure and

Arrhenius fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
A.25 Self-diffusion coefficients in KAlSi3O8 as a function of the inverse tem-

perature and Arrhenius fit. . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.26 Self-diffusion coefficients in CaAl2Si2O8 as a function of the inverse tem-

perature and Arrhenius fit. . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.27 Instantaneous pressure, temperature and energy in the short simulation

of CaAl2Si2O8 at 15 000 K and 8.23 g cm−3. . . . . . . . . . . . . . . . . 182
A.28 Isobaric expansivity α and isothermal compressibility β as a function of

density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
A.29 Computed pressure as a function of density and constrained 3rd order

polynomial fits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
A.30 Hugoniot curves on the temperature-density projection. . . . . . . . . . 185

$

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



138 LIST OF TABLES

List of Tables

1.1 Approximate comparison of the two main Giant Impact models. . . . . . 5

2.1 Characteristics of the PAW-PBE pseudopotentials. . . . . . . . . . . . . 21

5.1 Activation energies estimated at four different pressures in K- and Ca-
feldspar end-members. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 Parameters of 3rd order Birch-Murnaghan equations of state fitted to our
computed pressure-density values. . . . . . . . . . . . . . . . . . . . . . 102

6.2 Selected values for the estimation of the liquid spinodals in feldspars. . . 109

A.1 Example of the snapshot number used in the MSD calculation. . . . . . 152
A.2 List of species in the "gas" phase of Na-feldspar which amount is always

below 1 % in the density range studied at 6000 K. . . . . . . . . . . . . . 153
A.3 List of species in the "gas" phase of K-feldspar which amount is always

below 1 % in the density range studied at 6000 K. . . . . . . . . . . . . . 154
A.4 List of species in the "gas" phase of Ca-feldspar which amount is always

below 1 % in the density range studied at 6000 K. . . . . . . . . . . . . . 154
A.5 Simulations which do not have reached the minimum ergodicity. . . . . . 155

B.1 Minima of the 3rd order polynomial curves fitted to our P-ρ data for the
two datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B.2 Minima of the constrained 3rd order polynomial curves fitted to our P-ρ
data for the two datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.3 Shock states parameters for five different ground states and impactor
velocities for the Ca-feldspar. . . . . . . . . . . . . . . . . . . . . . . . . 191

B.4 Shock states parameters for five different ground states and impactor
velocities for the K-feldspar. . . . . . . . . . . . . . . . . . . . . . . . . . 192

B.5 Shock states parameters for five different ground states and impactor
velocities for the Na-feldspar. . . . . . . . . . . . . . . . . . . . . . . . . 193

$

Supercritical state of feldspars during the Giant Impact Anaïs Kobsch



GLOSSARY

.bonds.inp Bonds file used as input in the speciation_umd.py script and containing
the first coordination sphere radius for each pair of atoms in the simulation. Is
obtained by one of the following scripts: analyze_gofr_semi_automatic.py or
plot_distances+analysis_xmin.py.

.gofr.dat Output file of the gofrs_umd.py script giving the pair distribution function
of each atomic pair for the input UMD file.

1D one-dimensional

CN coordination number

DAC diamond anvil cell

DFT density functional theory

FPMD first principles molecular dynamics

g(r) Pair distribution function.

gofrs.txt Output file of the analyze_gofr_semi_automatic.py script giving the val-
ues of xmax,ymax,xmin,coord,bond for each atomic pair selected and each .gofr.dat
file located in the corresponding subfolder.

INCAR VASP input file.

LCM least common multiple

MD molecular dynamics

MSD mean square displacement
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NPT ensemble Isothermal-isobaric ensemble (the number of atoms N, the average
pressure P and the average temperature T are kept constant).

NVE ensemble Microcanonical ensemble (the number of atoms N, the volume V and
the energy E are kept constant).

NVT ensemble Canonical ensemble (the number of atoms N, the volume V and the
average temperature T are kept constant).

ODR orthogonal distance regression

option Option of a python script as defined in section 2.3.2.

OUTCAR VASP ouput file.

SPH smooth particle hydrodynamic

UMD Name for the post-processing package of molecular dynamics simulations devel-
opped by our team (Caracas et al., 2020c). Also refers to the .umd.dat files created
from the OUTCAR file with the VaspParser.py script.

VASP® Vienna Ab-initio Simulation Package

VMD Visual Molecular Dynamics

VTST VASP Transition State Tools
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GLOSSAIRE FRANÇAIS

diagramme de phases Graphique selon au moins deux grandeurs thermodynamiques
(ex. P vs ρ, T vs ρ) dans lequel est indiqué l’état physique de la matière (liquide,
gaz...) pour chaque point, ainsi que les courbes délimitant les zones de changement
de phase.

disque Disque protolunaire = disque de débris en orbite autour de la proto-Terre formé
à la suite de l’Impact Géant.

feldspath Minéral de formule générale (Ca,K,Na)(Al,Si)2O8 (aluminosilicate de cal-
cium, potassium ou sodium) très présent dans les croûtes lunaire et terrestre.

Impact Géant Scénario communément accepté par les scientifiques pour expliquer la
formation de la Lune impliquant l’impact géant d’une planète en formation, ap-
pelée Théïa, avec la Terre en cours de formation, appelée Gaïa. Suite à cet impact
un disque de débris provenant des deux planètes est mis en orbite autour de la
proto-Terre. C’est l’agglomération (accrétion) des débris de ce disque qui forme la
Lune.

K Unité de température appelée le Kelvin. Pour obtenir la température en degrés
Celcius (°C) il suffit de retrancher 273.25 à la température exprimée en Kelvins
(K).

masse volumique Masse par unité de volume. Masse que possède un matériau qui
occupe un certain volume unitaire. Généralement exprimée en kg m−3 ou g cm−3.
Exemple : l’eau a une masse volumique de 1000 kg m−3 soit 1 g cm−3.

moment angulaire Grandeur physique quantifiant la rotation d’un système (vitesse,
axe...). Il est l’analogue de la quantité de mouvement pour la rotation.
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supercritique État de la matière existant à des températures et pressions supérieures
aux température et pression critiques (Tc,Pc) et ayant les propriétés d’un fluide
intermédiaire entre liquide et gaz.

$
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A.1 INCAR files

A.1.1 Production run

The following file shows the parameters used for a typical production run. When all the
MD steps are completed, the same input file can be reused to continue the production
run from the last position of atoms.

SYSTEM = fe ldspar_long−run

ISTART = 1
ISYM = 0
ENCUT = 550 #change depending on the pseudopotent i a l s e t
ENAUG = 800 #change depending on the pseudopotent i a l s e t

ALGO = Very_Fast
EDIFF = 1.0E−03
LREAL = Auto
PREC = High

NSW = 5000 #change depending on the s imu la t i on
IBRION = 0
SMASS = 4
ISMEAR = 1
TEBEG = 4000 #change depending on the s imu la t i on
TEEND = 4000 #change depending on the s imu la t i on
SIGMA = 0.3447 #change depending on the s imu la t i on
POTIM = 1 #change depending on the s imu la t i on
ISIF = 2
MDALGO = 2

NSIM = 4
NPAR = 16

LWAVE = .TRUE.
LCHARG = .FALSE.

A.1.2 Electronic density calculation

The following input files gives the typical parameters used in the electronic density
calculations which produces three AECCAR files. The AECCAR0 and AECCAR2 con-
taining respectively the core and valence electron charge density, can be summed by the
script chgsum.pl (Jónsson group and Henkelman group). The produced output file can
be imported into VMD to plot the electronic density isosurface of our choice.
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SYSTEM = f e l d s p a r_e l e c t r o n i c_den s i t i e s

ISTART = 1
ISYM = 0
ENCUT = 550 #change depending on the pseudopotent i a l s e t
ENAUG = 800 #change depending on the pseudopotent i a l s e t

ALGO = Very_Fast
EDIFF = 1.0E−04
LREAL = Auto
PREC = High

NSW = 1
IBRION = 0
ISMEAR = 1
SMASS = 4
TEBEG = 4000 #change depending on the s imu la t i on
TEEND = 4000 #change depending on the s imu la t i on
SIGMA = 0.3447 #change depending on the s imu la t i on
POTIM = 1 #change depending on the s imu la t i on
ISIF = 2
MDALGO = 2

NSIM = 4
NPAR = 16

#El e c t r on i c d e n s i t i e s c a l c u l a t i o n
LORBIT = 11
LWAVE = .FALSE.
LCHARG = .TRUE.
LAECHG = .TRUE.
NGXF = 150
NGYF = 150
NGZF = 150
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A.2 Algorithms

Here are presented simplified algorithms for some python scripts used in the post pro-
cessing of our MD simulations.

Algorithm 1 analyze_gofr_semi_automatic.py (simplified version). "atompairs"
(-a) is the list of atomic pairs (e.g. ‘Si-O,O-O’) we want to analyze. -b takes the
value 1 or 0 whether we want to write .bonds.inp files or not.
procedure main(b,atompairs)

for all directories ∈ current_directory do
files← list of sorted .gofr.dat files
allatomicpairs← list of all the atomic pairs from one .gofr.dat file
if atompairs is empty then B default behavior =⇒ take all atomic pairs

atompairs← allatomicpairs− reversepairs B without the reverse pairs
end if
create the new directory_gofrs.txt file
initialize the guesses variable for all pairs B dictionary with xmax, xmin∀AB
for all gofr_file ∈ files do

initialize the results variable for all pairs
for all AB ∈ atompairs do

if file = files[0] then
results, guesses← Interact.Analysis(file, AB, results, guesses)

else
results, guesses← Auto.Analysis(file, AB, results, guesses)

end if
end for
complete the results with [0,0,0,0,0] for each AB (and BA) pairs not analyzed
add a line with the results to the directory_gofrs.txt file
if b = 1 then B if we want to print .bonds.inp files

create the filename.bonds.inp file with the selected results
end if

end for
end for

end procedure
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Functions algorithm for analyze_gofr_semi_automatic.py.
procedure Interac.Analysis(file,AB,results,guesses)

extract r, gAB(r), Int(gAB(r)) and Int(gBA(r)) from file
xmax_click ← r value of the mouse when clicked on 1st peak
select a portion of gAB(r) data around xmax_click
fit a 3rd order polynomial in this portion using xmax_click as initial guess
xmin_click ← r value of the mouse when clicked on 1st min
select a portion of gAB(r) data around xmin_click
fit a 3rd order polynomial in this portion using xmin_click as initial guess
show the fits and decision buttons
if click on "Good" button then

results, guesses← fitted xmax, ymax, xmin for AB,BA and computed coord, bond
else

results, guesses← 0 for AB and BA
end if

end procedure

procedure Auto.Analysis(file,AB,results,guesses)
if guesses = 0 for AB then

Interact.Analysis(file, AB, results, guesses)
else

extract r, gAB(r), Int(gAB(r)) and Int(gBA(r)) from file
select a portion of gAB(r) data around guesses[AB][xmax]
fit a 3rd order polynomial in this portion using guesses[AB][xmax] as initial guess
select a portion of gAB(r) data around guesses[AB][xmin]
fit a 3rd order polynomial in this portion using guesses[AB][xmin] as initial guess
results, guesses← fitted xmax, ymax, xmin for AB,BA and computed coord, bond

end if
end procedure

Algorithm 2 speciation_umd.py with option -r 0 (simplified version). "cations" (-c)
and "anions" (-a) are lists of element symbols for atoms inside and on the vertices of
the coordination polyhedra respectively. "sampling" (-s) is the sampling frequency of
snapshots.
procedure main(cations,anions,sampling,.umd.dat,.bonds.inp)

AllSnapshots← Cartesian coordinates of all atoms and snapshots from .umd.dat file
Timestep← timestep written in .umd.dat file
BondTable← matrix of xmin2 for every bond defined in .bonds.inp
CentralAtoms← list of cations atom indices
OuterAtoms← list of anions atom indices
ligands← list of cations + anions atom indices, each only once
for all 0 ≤ istep× sampling ≤ τrun do

BooleanMap← ComputeBondMap(AllSnapshots[istep], ligands,BondTable)
clusters

append←−−−− ClusteringNoRings(BooleanMap,CentralAtoms,OuterAtoms)
end for
AnalysisClusters(clusters, ligands, sampling, T imestep)

end procedure
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Functions algorithm for speciation_umd.py with option -r 0 and -r 1.
procedure ComputeBondMap(AllSnapshots[istep], ligands,BondTable) B create the
boolean matrix of bond presence using atom indices

initialize BooleanMap matrix with 0
for all i ∈ ligands do

for all i+ 1 ≤ j ∈ ligands do
compute d2

ij

if d2
ij < xmin2

ij then
BooleanMapij = BooleanMapij = 1

end if
end for

end for
end procedure

procedure AnalysisClusters(clusters, ligands, sampling, T imestep)
initialize the population dictionary to store every information of all clusters
for all istep ∈ AllSnapshots do B this is also the clusters matrix line #

for all j ∈ clustersistep do B for every coordination polyhedra (or chemical species)
at timestep istep

ClusterName←formula_PolyhedraID
ClusterIndex← formula_PolyhedraID_istep
flagalive = 0 B indicate if we add the cluster to the population dictionary
for all index ∈ population do B for every entry in dictionary

if ClusterName = clustername of populationindex then
if istep− 1 = cluster end-life step of populationindex then B this cluster

already existed at the previous timestep
+1 to end-life step of populationindex
+1 to lifetime of populationindex
flagalive = 1

end if
end if

end for
if flagalive = 0 then B this is the first time we see this cluster

add ClusterIndex to population dictionary and initialize lifetime, start-life and
end-life step to 1

end if
end for

end for
for all index ∈ population do

lifetime ×sampling × Timestep, start-life and end-life step ×sampling
write this line to .popul.dat file

end for
sum lifetime of every cluster with same formula
sum all lifetimes
compute presence ratio for every cluster formula
write .stat.dat file

end procedure
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Function algorithm for speciation_umd.py with option -r 0.
procedure ClusteringNoRings(BooleanMap,CentralAtoms,OuterAtoms) B add the
coordination polyhedra list for the current istep to the clusters list

initialize AllPolyhedra list
for all i ∈ CentralAtoms do B create its coordination polyhedra (PolyhedraID)

initialize PolyhedraID list and add i atomic index
for all j ∈ OuterAtoms do

if BooleanMapij = 1 then
add index j to the PolyhedraID list

end if
end for
if PolyhedraID has more than one atom then

add this PolyhedraID to the AllPolyhedra
end if

end for
end procedure

Algorithm 3 speciation_umd.py with option -r 1 (simplified version). For this ver-
sion, we indicate with "ions" the list of element symbols in the simulation (without
duplicates) either using -a or -c option. "sampling" (-s) is the sampling frequency of
snapshots.
procedure main(ions,sampling,.umd.dat,.bonds.inp)

AllSnapshots← Cartesian coordinates of all atoms and snapshots from .umd.dat file
Timestep← timestep written in .umd.dat file
BondTable← matrix of xmin2 for every bond defined in .bonds.inp
ligands← list of ions atom indices, each only once
for all 0 ≤ istep× sampling ≤ τrun do

BooleanMap← ComputeBondMap(AllSnapshots[istep], ligands,BondTable)
clusters

append←−−−− Clustering(BooleanMap, ligands)
end for
AnalysisClusters(clusters, ligands, sampling, T imestep)

end procedure
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Function algorithm for speciation_umd.py with option -r 1.
procedure Clustering(BooleanMap, ligands) B add the ClusterID list for the current
istep to the clusters list

initialize AllClusters list
for all i ∈ ligands do B find monoatomic gas species

if
∑
j BooleanMapij = 0 then

add this monoatomic species i to the AllClusters
end if

end for
for all i ∈ ligands do B find all other species and remove used bonds in BooleanMap

if
∑
j BooleanMapij > 0 then

initialize NewCluster list
ClusterID ← Neighboring(BooleanMap, ligands, i,NewCluster)
sort by numbers the atomic indexes in ClusterID
if ClusterID has more than one atom then

add this ClusterID to the AllClusters list
end if

end if
end for

end procedure

procedure Neighboring(BooleanMap, ligands, i,NewCluster) B graph creation: recur-
sive search of all atoms linked together

add current atom index i to the NewCluster list
for all j ∈ ligands do

if BooleanMapij = 1 then
BooleanMapij = BooleanMapji = 0 B remove bond between i and j
NewCluster ← Neighboring(BooleanMap, ligands, j,NewCluster)

end if
end for

end procedure
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A.3 Additional text

A.3.1 Methodology

Part of the post-processing, especially when it comes to produce figures, is facilitated
by a good choice of naming the different output files. It is even more crucial here
since there are 3 feldspar compositions, between 10 and 13 different temperatures and
up to 18 cell size per temperature. The choice we made for naming the output file
is mineralname_TY_nvt_aX.outcar, replacing Y by the temperature in thousands of
degrees (for ex. 3 for 3000 K, 4.5 for 4500 K), and replacing X by the size of the cubic
simulation cell in angstroms (for ex. 15.0, 12.85 etc.). Figure A.1 is a simplified version
of the directories tree used for performing the calculations here.

Figure A.1 – Simplified directories tree used for organization of computational experiments
here.
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A.3.2 MSD sampling

The MSD is computed using the equations 5.2 or 5.3 with two sampling frequencies,
over t and τ . This means first not all the snapshots are used in the calculation, and
second we cycle through the same snapshot for the calculation of the MSD at different
values of τ . For example we represented in the table A.1 the snapshot number that are
used in the calculation of the five first values of the MSD for a UMD file made of 100
snapshots with sampling parameters of -z 3 and -v 5. We see the same snapshot are
used again beyond τ = 16 . This is because the least common multiple (LCM) of 3 and
5 is 15, i.e. every 15 snapshots the same snapshots are used. Of course each calculation
−→ri (t)−−→ri (t+ τ) will be different, but I wanted to see if using more different snapshots
in the MSD calculation influence the final results. The figure A.2 represent the LCM
values for each pair of sampling frequencies between 10 and 20. The highest multiples
are located for sampling frequencies of 11, 13, 17 or 19. At fixed 1st sampling frequency,
the LCM increase linearly with the 2nd sampling frequency. To compare the effect of
the LCM value on the MSD I computed the MSD of the same UMD file using sampling
frequencies with very different LCM: 15,10 (LCM = 30) ; 15,13 (LCM = 195) ; 15,19
(LCM = 285). No difference in the MSD can be seen, and the self-diffusion coefficient
are the same within three significant figures. The influence is negligible.

Table A.1 – Example of the snapshot number used in the MSD calculation for the first five τ
and an initial UMD file of 100 snapshots. The sampling frequencies used are -z 3 and -v 5.

H
HHHHτ

t
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 · · · 100

1 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54
6 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59
11 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64
16 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69
21 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74
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Figure A.2 – Left: LCM values for each pair of sampling frequencies between 10 and 20. Right:
variation of LCM values with the sampling frequency.
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A.3.3 Trace amount chemical species

The speciation analysis performed in chapter 4 allows to find every isolated species that
appear in the simulations. For clarity we represented on figure 4.10 only the proportions
for species which represent at least 1 % of all the small isolated species in one or more
of the simulations studied. At 4000 K, the Na-feldspar end-member shows presence of
Na2SiO3 and Si2O5. For the K-feldspar end-member we have more species: KSi2O4;
KSi2O5; K2Si3O7; K3SiO3; O; Si2O4. The tables A.2, A.3, and A.4 list all the species
which amounts are always below 1 % in the density range studied at 6000 K.

Table A.2 – List of species in the "gas" phase of Na-feldspar which amount is always below 1 %
in the density range studied at 6000 K.

NaxSiyOz

@
@
@x
y

0 1 2 3 4

0 O4 Si; SiO4; SiO5 Si2O2; Si2O5; Si2O6 Si3O4; Si3O5; Si3O6;
Si3O7; Si3O8

1 NaO; NaO4 NaSiO4; NaSiO5;
NaSiO6

NaSi2O2; NaSi2O3;
NaSi2O4; NaSi2O5;
NaSi2O6

NaSi3O5; NaSi3O6;
NaSi3O7; NaSi3O8

NaSi4O8

2 Na2O3 Na2SiO4 Na2Si3O8

NaxAlSiyOz

@
@
@x
y

0 1 2 3 4

0 Al; AlO;
AlO2; AlO4

AlSiO; AlSiO2;
AlSiO3; AlSiO4;
AlSiO5

AlSi2O4; AlSi2O5;
AlSi2O6

AlSi3O6; AlSi3O7

1 NaAlO2;
NaAlO3

NaAlSiO3;
NaAlSiO4

NaAlSi2O4;
NaAlSi2O6; NaAlSi2O7
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Table A.3 – List of species in the "gas" phase of K-feldspar which amount is always below 1 %
in the density range studied at 6000 K.

KxSiyOz

@
@
@x
y

0 1 2 3 4

0 SiO4; SiO5 Si2O2; Si2O5; Si3O5; Si3O6;
Si3O7

Si4O7

1 KO; KO2; KO3 KSiO2; KSiO4 KSi2O4; KSi2O5;
KSi2O6

2 K2O2; K2SiO3; K2SiO5 K2Si3O6

KxAlSiyOz

@
@
@x
y

0 1 2 3 4

0 Al; AlO3 AlSiO2; AlSiO3;
AlSiO4; AlSiO5

AlSi2O4; AlSi2O5;
AlSi2O6

AlSi3O6

1 KAlO2 KAlSiO2; KAlSiO3;
KAlSiO4; KAlSiO5

KAlSi2O5;
KAlSi2O6

Al2O5, Al2SiO5

Table A.4 – List of species in the "gas" phase of Ca-feldspar which amount is always below 1 %
in the density range studied at 6000 K.

CaxSiyOz

@
@
@x
y

0 1 2 3 4

0 O4 Si; SiO4 Si2O2; Si2O4;
Si2O5

1 Ca; CaO2; CaSiO2; CaSiO6 CaSi3O5

2 Ca2Si2O5;

CaxAlSiyOz

@
@
@x
y

0 1 2 3 4

0 AlO3; AlSiO; AlSiO3; AlSiO4 AlSi2O5;
AlSi2O6;
AlSi2O7

1 CaAlO2; CaAlSiO3; CaAlSi2O5;
CaAlSi2O7

2 Ca2AlSi2O6 Ca2AlSi3O7

Al2O2; Al2O3; Al2SiO5
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A.3.4 Not ergodic simulations

After the discussion in section 5.2, we stated a simulation has reached the minimum
ergocity when the MSD of Si reached at least 9Å2 within the length of the production
run. In the table A.5 are listed all the simulations which do not fulfill this requirement,
along with the last value of MSD and the corresponding time.

Table A.5 – Simulations which do not have reached the minimum ergodicity, i.e. with a
maximal Si MSD value of less than 9Å2. They are indicated by a gray cross in the phase
diagrams figure 6.9.

Simulation name MSD duration (fs) max MSD (Å2)

NaAlSi3O8_T1.932_nvt_rho2.585_hard 2210 0.5
NaAlSi3O8_T2_nvt_a15.0 30654 0.5
NaAlSi3O8_T2_nvt_a15.5 7891 0.4
NaAlSi3O8_T2_nvt_a16.0 5850 0.7
NaAlSi3O8_T2_nvt_a16.5 18356 0.9
NaAlSi3O8_T2_nvt_a17.0 17680 1.4
NaAlSi3O8_T2_nvt_a17.5 17004 0.9
NaAlSi3O8_T2_nvt_a18.0 16640 0.7
NaAlSi3O8_T2_nvt_a18.5 23504 1.3
NaAlSi3O8_T2_nvt_a19.0 18408 0.6
NaAlSi3O8_T3_nvt_a10.5_hard 4589 0.2
NaAlSi3O8_T3_nvt_a10.75_hard 3900 0.3
NaAlSi3O8_T3_nvt_a11.0_hard 4550 0.4
NaAlSi3O8_T3_nvt_a11.5_hard 3575 0.4
NaAlSi3O8_T3_nvt_a11.75_hard 4771 1.2
NaAlSi3O8_T3_nvt_a12.0_hard 2678 1.5
NaAlSi3O8_T3_nvt_a12.0 5746 2.9
NaAlSi3O8_T3_nvt_a12.25_hard 3471 1.9
NaAlSi3O8_T3_nvt_a12.5_hard 2639 2.7
NaAlSi3O8_T3_nvt_a12.5 8749 7.8
NaAlSi3O8_T3_nvt_a13.0 8749 6.3
NaAlSi3O8_T3_nvt_a13.5 8749 3.9
NaAlSi3O8_T3_nvt_a14.0 8567 4.7
NaAlSi3O8_T3_nvt_a14.5_hard 3133 2.3
NaAlSi3O8_T3_nvt_a14.5 10270 3.5
NaAlSi3O8_T3_nvt_a14.6_hard 1625 1
NaAlSi3O8_T3_nvt_rho2.246_hard 1079 1.2
NaAlSi3O8_T3_nvt_a15.0 13364 6
NaAlSi3O8_T3_nvt_a15.5 8138 4.6
NaAlSi3O8_T3_nvt_a16.0 15574 7.3
NaAlSi3O8_T4_nvt_a10.5_hard 4381 0.5
NaAlSi3O8_T4_nvt_a10.75_hard 4043 0.7
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Table A.5 – (continued)

Simulation name MSD duration (fs) max MSD (Å2)

NaAlSi3O8_T4_nvt_a11.0_hard 3614 2
NaAlSi3O8_T4_nvt_a11.5_hard 2652 2.5
NaAlSi3O8_T4_nvt_a11.6_hard 3029 3.8
NaAlSi3O8_T4_nvt_a11.75_hard 3146 5.4
NaAlSi3O8_T4_nvt_a12.0_hard 2691 7
NaAlSi3O8_T4_nvt_a12.25_hard 2860 6.8
NaAlSi3O8_T4_nvt_a12.5_hard 2626 8.2
NaAlSi3O8_T4_nvt_a13.0_hard 2496 6.8
NaAlSi3O8_T5_nvt_a10.5_hard 4251 2
NaAlSi3O8_T5_nvt_a10.75_hard 3744 3
NaAlSi3O8_T5_nvt_a11.0_hard 3653 4.4
NaAlSi3O8_T5_nvt_a11.35_hard 2418 5.3
NaAlSi3O8_T5_nvt_a11.5_hard 2535 6.3
NaAlSi3O8_T5_nvt_a11.6_hard 2743 8.4
NaAlSi3O8_T6_nvt_a10.5_hard 4108 5.7
NaAlSi3O8_T6_nvt_a10.75_hard 3627 6.2
NaAlSi3O8_T6_nvt_a11.0_hard 2782 6.7
NaAlSi3O8_T10_nvt_a10.18_hard 559 4.6
NaAlSi3O8_T10_nvt_a10.5_hard 559 5.8

KAlSi3O8_T1.932_nvt_rho2.585 2496 0.4
KAlSi3O8_T3_nvt_a11.0 4615 0.3
KAlSi3O8_T3_nvt_a11.5 13039 0.6
KAlSi3O8_T3_nvt_a11.75 6448 0.8
KAlSi3O8_T3_nvt_a12.0 9243 2.3
KAlSi3O8_T3_nvt_a12.5 11856 6.2
KAlSi3O8_T3_nvt_a12.6 5863 2
KAlSi3O8_T3_nvt_a12.75 8788 6.8
KAlSi3O8_T3_nvt_a13.0 9880 6.4
KAlSi3O8_T3_nvt_a13.5 8463 5
KAlSi3O8_T3_nvt_a14.0 8320 4.6
KAlSi3O8_T3_nvt_a14.5 8749 2.3
KAlSi3O8_T3_nvt_rho2.26 3406 1.1
KAlSi3O8_T3_nvt_a15.0 8268 3
KAlSi3O8_T3_nvt_a15.5 10764 5.2
KAlSi3O8_T3_nvt_a16.0 9178 4.7
KAlSi3O8_T4_nvt_a11.0 4667 1.2
KAlSi3O8_T4_nvt_a11.5 9438 1.1
KAlSi3O8_T4_nvt_a11.75 6214 2.4
KAlSi3O8_T4_nvt_a11.9 6253 4.3
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Table A.5 – (continued)

Simulation name MSD duration (fs) max MSD (Å2)

KAlSi3O8_T4_nvt_a12.35 2743 5.6
KAlSi3O8_T5_nvt_a11.0 1989 1.2
KAlSi3O8_T5_nvt_a11.65 3744 7.9
KAlSi3O8_T5_nvt_a11.75 2743 6.9
KAlSi3O8_T5_nvt_a11.85 2392 6.7
KAlSi3O8_T10_nvt_a09.65 968 3.4
KAlSi3O8_T10_nvt_a10.9 474 4.1
KAlSi3O8_T10_nvt_a11.5 474 8.4
KAlSi3O8_T10_nvt_a11.85 474 8.2
KAlSi3O8_T15_nvt_a09.65 474 6.4

CaAl2Si2O8_T1.932_nvt_rho2.585 10842 0.5
CaAl2Si2O8_T2_nvt_a14.0 9750 1.2
CaAl2Si2O8_T2_nvt_a15.0 9087 1.4
CaAl2Si2O8_T2_nvt_a16.0 10920 0.7
CaAl2Si2O8_T2_nvt_a17.0 12792 2.3
CaAl2Si2O8_T3_nvt_a10.5 12922 0.1
CaAl2Si2O8_T3_nvt_a11.0 8749 0.4
CaAl2Si2O8_T3_nvt_a11.5 19591 0.6
CaAl2Si2O8_T3_nvt_a12.0 15015 2.6
CaAl2Si2O8_T3_nvt_a12.5 8684 5.7
CaAl2Si2O8_T3_nvt_a14.5 8164 8.1
CaAl2Si2O8_T3_nvt_a15.0 8281 6.5
CaAl2Si2O8_T4_nvt_a10.5 11336 0.8
CaAl2Si2O8_T4_nvt_a11.0 13949 1.1
CaAl2Si2O8_T4_nvt_a11.5 15626 5.6
CaAl2Si2O8_T5_nvt_a10.5 9763 1.7
CaAl2Si2O8_T5_nvt_a11.0 8684 5.3
CaAl2Si2O8_T6_nvt_a10.5 10478 4.3
CaAl2Si2O8_T10_nvt_a09.65 1001 2
CaAl2Si2O8_T15_nvt_a09.65 721 7.8

A.3.5 Unit conversion for the heat capacity

We can compare the heat capacity of different systems using the specific heat capacity
(in J/K/g), or the molar heat capacity (in J/K/mol) defined respectively by

Cvmass = Cv
m = Cv

NA
MN

(A.1)

Cvmolar = Cv
n = Cv

NA
N

(A.2)
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with NA the Avogadro constant and m, M and n the mass, molar mass and amount of
substance of the material respectively. The isochoric heat capacity Cv can be expressed
in NkB units, while the molar heat capacity Cvm can be expressed in R units (with R
the ideal gas constant equal to the product of NA and kB). This means we only have to
multiply by NkB and R the values obtained in these units to convert them to J/K and
J/K/mol respectively. Then, by combining these conversions with the equation A.2 we
find that both units give the same numerical value, and then can be directly compared
together.
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A.4 Additional figures

A.4.1 Structure

Figure A.3 – Pair distribution functions of X-O (X being Na, K, Ca, Al, Si and O) in NaAlSi3O8
(a,b,c,d), KAlSi3O8 (e,f,g,h) and CaAl2Si2O8 (i,j,k,l) at 1 g cm−1. Colors indicate temperatures.
The insert shows a zoom on the region 0.5–2.5Å. The small peak located around 1.4Å marks
the presence of O2 molecules. The same plot at 2 g cm−1 is available in figure 3.6.
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Figure A.4 – Position of the first g(r) peak for each feldspar end-member (columns) as a
function of density and temperature (colors) for T-O and M-O pairs. O2 corresponds to the
small additional peak seen on the gO−O(r). The same figure as a function of pressure instead of
density is presented figure 3.7.
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Figure A.5 – Position of the first g(r) peak for each feldspar end-member (columns) as a
function of density and temperature (colors) for five cation pairs. The same figure as a function
of pressure instead of density is presented figure 3.8.
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Figure A.6 – Average coordination number of Ca, K, Na, Al and Si by O as a function of density
and temperature. Ca- (+ and dotted lines) and K- (x and dashed lines) are both compared with
Na-feldspar (solid lines). Colors indicate temperatures. The same plot as a function of pressure
is displayed figure 3.9.
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Figure A.7 – Relative proportion of SiOn and AlOn coordination species in NaAlSi3O8 for
3000 K and 6000 K as a function of density. The same figure as a function of pressure is displayed
figure 3.11.

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



164 A.4 - Additional figures

Figure A.8 – Relative proportion of SiOn and AlOn coordination species in KAlSi3O8 for
3000 K and 6000 K as a function of density. The same figure as a function of pressure is displayed
figure 3.12.

Supercritical state of feldspars during the Giant Impact Anaïs Kobsch



A.4 - Additional figures 165

Figure A.9 – Relative proportion of SiOn and AlOn coordination species in CaAl2Si2O8 for
3000 K and 6000 K as a function of density. The same figure as a function of pressure is displayed
figure 3.13.

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



166 A.4 - Additional figures

Figure A.10 – Median lifetime of AlOn and SiOn coordination polyhedra for CaAl2Si2O8 as a
function of density at (a) 3000 K, (b) 6000 K and as a function of temperature at (c) 1.08 g cm−3,
(d) 2.19 g cm−3. Can be compared with the same representation for NaAlSi3O8 in figure 3.16.
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Figure A.11 – Median lifetime of AlOn and SiOn coordination polyhedra for KAlSi3O8 as a
function of density at (a) 3000 K, (b) 6000 K and as a function of temperature at (c) 1.08 g cm−3,
(d) 2.19 g cm−3. Can be compared with the same representation for NaAlSi3O8 in figure 3.16.
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Figure A.12 – Maximum lifetime of AlOn and SiOn coordination polyhedra for CaAl2Si2O8
as a function of density at (a) 3000 K, (b) 6000 K and as a function of temperature at (c)
1.08 g cm−3, (d) 2.19 g cm−3. Can be compared with the same representation for NaAlSi3O8 in
figure 3.17.
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Figure A.13 – Maximum lifetime of AlOn and SiOn coordination polyhedra for KAlSi3O8 as a
function of density at (a) 3000 K, (b) 6000 K and as a function of temperature at (c) 1.08 g cm−3,
(d) 2.19 g cm−3. Can be compared with the same representation for NaAlSi3O8 in figure 3.17.
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Figure A.14 – Relative proportion of NaOn, KOn and CaOn coordination species for 3000 K
and 6000 K as a function of density. The same figure as a function of pressure is presented
figure 3.18.
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A.4.2 Volatilization

Figure A.15 – Snapshot of "SiO4" in CaAl2Si2O8 at
6000 K and 1.2 g cm−3.

Figure A.16 – Lifetime of each individual volatile species with 8 to 13 atoms in their formula
in CaAl2Si2O8 fluids at 1.1 g cm−3 and (a) 4000 K, (b) 6000 K. The species with less than 8
atoms in their formula are available in figure 4.7.

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



172 A.4 - Additional figures

0 10
0

120 NaSi2O5

8

0 10
0

20 AlSi2O5

0 10
0

10 NaAlSiO5

0 10
0

30 NaSiO6

0 10
0

10 NaSi3O4

0 10
0

30 Si2O6

0 10
0

80 Si3O5

0 10
0

10 AlSi2O6

9

0 10
0

10 AlSi3O5

0 10
0

30 NaAlSi2O5

0 10
0

30 NaSi2O6

0 10
0

30 NaSi3O5

0 10
0

10 Na2SiO6

0 10
0

30 Na2Si3O4

0 10
0

20 Si2O7

0 10
0

20 Si3O6

0 10
0

10 AlSi2O7

10

0 10
0

40 AlSi3O6

0 10
0

70 NaAlSi2O6

0 10
0

10 NaAl2Si2O5

0 10
0

10 NaSi2O7

0 10
0

80 NaSi3O6

0 10
0

10 Na2AlSi2O5

0 10
0

10 Na2Si2O6

0 10
0

50 Si3O7

0 10
0

10 Si4O6

0 10
0

10 AlSi3O7

11

0 10
0

20 NaAlSi2O7

0 10
0

60 NaSi3O7

0 10
0

10 Na2Si2O7

0 10
0

10 Si3O8

0 10
0

30 AlSi3O8

12

0 10
0

10 AlSi4O7

0 10
0

10 NaAlSi3O7

0 10
0

20 NaSi3O8

0 10
0

10 NaSi4O7

0 10
0

20 Na2AlSiO8

0 10
0

10 Na2Si3O7

0 10
0

20 NaSi4O8

13

0 10
0

10 Na2AlSi2O8

0 10
0

40 Na2Si3O8

0 10
0

10 Na3AlSi2O7

Number of species occurence

Li
fe

ti
m

e 
(f

s)

b

Figure A.17 – Lifetime of each individual volatile species with 8 to 13 atoms in their formula in
NaAlSi3O8 fluids at 1.0 g cm−3 and (a) 4000 K, (b) 6000 K. The species with less than 8 atoms
in their formula are available in figure 4.8.
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Figure A.18 – Lifetime of each individual volatile species with 8 to 13 atoms in their formula
in KAlSi3O8 fluids at 1.1 g cm−3 and (a) 4000 K, (b) 6000 K. The species with less than 8 atoms
in their formula are available in figure 4.9.
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A.4.3 Transport
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Figure A.19 – Mean square displacement of K, Al, Si and O in KAlSi3O8 at six temperatures
between 3000 K and 7000 K and more than 20 densities between 1.1 g cm−3 and 5.6 g cm−3.
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Figure A.20 – Mean square displacement of Ca, Al, Si and O in CaAl2Si2O8 at seven temper-
atures between 2000 K and 7000 K and up to 18 densities between 1.1 g cm−3 and 6.4 g cm−3.
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Figure A.21 – Self-diffusion coefficients for every element as a function of density for each
feldspar end-member. Colors indicate temperatures. The black to light gray lines are results
from de Koker (2010) on CaAl2Si2O8 at 3000, 4000 and 6000 K and from Neilson et al. (2016) on
NaAlSi3O8 at approximately 3000, 4000 and 5000 K. The same figure as a function of pressure
instead of densities is presented figure 5.4.
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Figure A.22 – Self-diffusion coefficients for Al and Si as a function of density for (a) Na- (b)
K and (c) Ca-feldspar end-members. Colors indicate temperatures.
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Figure A.23 – Self-diffusion coefficients in KAlSi3O8 as a function of pressure and Arrhenius
fit in the 25–150 GPa range. Colors indicate temperatures. Crosses indicates the diffusion values
estimated from the fit at 25, 50 and 100 GPa.
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Figure A.24 – Self-diffusion coefficients in CaAl2Si2O8 as a function of pressure and Arrhenius
fit in the 25–150 GPa range. Colors indicate temperatures. Crosses indicates the diffusion values
estimated from the fit at 25, 50 and 100 GPa.
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Figure A.25 – Self-diffusion coefficients in KAlSi3O8 as a function of the inverse temperature
and Arrhenius fits to the data estimated in figure A.23 at 25, 50 and 100 GPa (colors).
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Figure A.26 – Self-diffusion coefficients in CaAl2Si2O8 as a function of the inverse temperature
and Arrhenius fits to the data estimated in figure A.24 at 25, 50 and 100 GPa (colors).
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A.4.4 Thermodynamics
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Figure A.27 – Instantaneous pressure, temperature and energy in the short simulation of
CaAl2Si2O8 at 15 000 K and 8.23 g cm−3. The red line indicates the arithmetic average of the
thermodynamic parameters and the numerical value of the average are indicated ±σ, σ being
the population standard deviation.
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Figure A.28 – Isobaric expansivity α and isothermal compressibility β as a function of density
for the (a,d) Na-, (b,e) K- and (c,f) Ca-feldspar end-members. Colors indicate temperature.
Data previously obtained by two classical MD simulations on the same end-members (Neilson
et al., 2016; Spera et al., 2009) are also indicated for comparison. The same figure as a function
of pressure instead of density is presented figure 6.6.
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Figure A.29 – Computed pressure as a function of density for the (a) Na- (b) K- and (c)
Ca-feldspar end-members and their respective enlarged view on the low density region, (d), (e)
and (f). Open and solid symbols indicate values obtained with the two sets of pseudopotentials
described in table 2.1 ("low density" and "main study" respectively). Dashed and dotted lines
represent constrained 3rd order polynomial curve fits corresponding to the respective two sets
of pseudopotentials. The gray and black crosses indicate the liquid spinodals corresponding
respectively to the open and solid datasets. The statistical errors on the mean are included in
the size of the points. Numerical data are available in annexes B.1.1 and B.1.2. The same figure
for unconstrained fits is presented in chapter 6, figure 6.7.
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Figure A.30 – Hugoniot curves for each initial temperature and density of the crust (colors)
on the temperature-density projection and its associated zoom on the low temperatures range
(b). Data from experiments on feldspars are indicated by the colored markers. The feldspars
composition is represented by the line styles for the Hugoniot curves and by the markers filling
for the experimental data: solid symbols - NaAlSi3O8, half transparent symbols - KAlSi3O8,
open symbols - CaAl2Si2O8. A cubic interpolation is used to smooth the Hugoniot curves. The
other projections are presented in figure 6.10.

$

Anaïs Kobsch Supercritical state of feldspars during the Giant Impact



186 A.4 - Additional figures

Supercritical state of feldspars during the Giant Impact Anaïs Kobsch



APPENDIX B
TABLES OF DATA

Heureusement que l’on imprime pas réellement tous les résultats de nos simulations, sinon il
faudrait plus que quelques cartons pour les stocker !

B.1 Thermodynamics data . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.1.1 Averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.1.2 Spinodal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B.1.3 Hugoniot equation of state and shock conditions . . . . . . . 191
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B.1 Thermodynamics data

B.1.1 Averages

The data on alkali feldspar are already available in the Zenodo repository "Thermody-
namics data of Alkali Feldspars from FPMD simulations" (Kobsch and Caracas, 2020).
There are five .txt files corresponding to different datasets (see below for descriptions).
Each file contains the following information:

Thermodynamic properties (pressure, temperature, internal energy, heat capacity)
and thermoelastic coefficients (isobaric expansivity, isothermal compressibility, thermal
pressure coefficient) computed from our ab-initio molecular dynamics simulations.

Arithmetic time averages of the pressure (P), temperature (T) and internal energy
(E) are performed over the entire simulations. The standard deviation of the data to
the mean is indicated by stdev_X, where X is P, T or E. The statistical error to the
mean (err_X) is computed using the blocking method as described by Flyvbjerg and
Petersen (1989). The sign ’>’ is indicated before the value of the statistical error when
no convergence was reached during the estimation of this error. The heat capacity Cv is
computed using fluctuations on both potential and kinetic energies Allen and Tildesley
(1989) and its statistical error stdev_Cv is computed using the bootstrap method.

We computed the thermoelastic coefficients only for densities above 1.5 g cm−3. The
thermal pressure coefficient (TPC = ∂P

∂T |V ) is the slope of linear fit of P vs. T isochores.
The isothermal compressibility (β = −1

ρ
∂ρ
∂P |T ) is computed using central finite differences

on our P vs. ρ isotherms. The isobaric expansivity (α = 1
ρ
∂ρ
∂T |P ) is computed using the

previously computed β and TPC.

kobsch-ds01.txt Simulations on NaAlSi3O8 with the standard set of pseudopotentials
("main study" in table 2.1)

kobsch-ds02.txt Simulations on NaAlSi3O8 with pseudopotentials which require a
lower plane wave energy cutoff, set to 370 eV ("low density" in table 2.1)

kobsch-ds03.txt Simulations on NaAlSi3O8 with hard pseudopotentials in order to
reduce the overlap of electronic spheres, in particular for Na-Na pairs. The energy
cutoff for this set of pseudopotentials is 950 eV ("high density (h1)" in table 2.1)

kobsch-ds04.txt Simulations on KAlSi3O8 with the standard set of pseudopotentials
("main study" in table 2.1)

kobsch-ds05.txt Simulations on KAlSi3O8 with pseudopotentials which require a lower
plane wave energy cutoff, set to 370 eV ("low density" in table 2.1)

Data on CaAl2Si2O8 are not yet published online.
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B.1.2 Spinodal

Table B.1 – Minima of the 3rd order polynomial curves fitted to our P-ρ data for the two
datasets (down to 0.5 g cm−3 and above 1 g cm−3). d and σd are the constant term and its
standard deviation obtained after the least square fit.

Main data set (above 1 g cm−3) Low densities data set (down to 0.5 g cm−3)
T ρ P reduced d σd ρ P reduced d σd

(K) (g cm−3) (GPa) χ2 (GPa) (GPa) (g cm−3) (GPa) χ2 (GPa) (GPa)

N
aA

lS
i 3
O

8

2000 1.52 -2.14 0.189 8.223 10.752
3000 1.53 -0.64 0.026 -4.72 3.319
4000 1.33 -0.27 0.003 -4.416 1.259 1.31 -0.39 0.003 -0.997 0.237
4500 1.18 -0.15 0.002 -0.612 1.753 1.14 -0.25 0.004 -0.296 0.086
5000 NaN NaN 0.003 -3.333 1.294 1.01 -0.08 0.005 -0.317 0.096
5500 0.83 0.03 0.005 -0.23 0.102
6000 NaN NaN 0.001 -2.35 0.594 NaN NaN 0.003 -0.099 0.076
6500 NaN NaN 0.003 -0.157 0.08
7000 NaN NaN 0 -1.746 0.509

K
A
lS
i 3
O

8

3000 1.55 -0.55 0.039 -8.165 4.04
4000 NaN NaN 0.003 -5.044 1.221 1.18 -0.27 0.005 -0.427 0.116
4500 NaN NaN 0.001 -4.634 0.948 0.97 -0.12 0.005 -0.183 0.059
5000 NaN NaN 0.002 -4.044 1.129 0.87 0.02 0.003 -0.339 0.102
5500 NaN NaN 0.004 -0.33 0.107
6000 NaN NaN 0.002 -2.348 1.129 NaN NaN 0.008 -0.343 0.155
7000 NaN NaN 0 -2.898 0.78

C
aA

l 2
Si

2O
8

3000 1.78 -1 0.012 -7.784 2.254
4000 1.61 -0.71 0.001 -4.604 0.585
5000 1.39 -0.34 0.001 -2.518 0.736
6000 1.17 -0.01 0.002 -1.795 1.031 1.11 -0.16 0.01 -0.656 0.273
6500 NaN NaN 0.001 -4.338 1.264 1.01 -0.01 0.004 -0.333 0.091
7000 NaN NaN 0 -2.996 0.99 0.79 0.11 0.004 -0.266 0.107
7500 NaN NaN 0.004 -0.403 0.103
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Table B.2 – Minima of the constrained 3rd order polynomial curves (constant term set to 0)
fitted to our P-ρ data for the two datasets (down to 0.5 g cm−3 and above 1 g cm−3).

Main data set (above 1 g cm−3) Low densities data set (down to 0.5 g cm−3)
T ρ P reduced χ2 ρ P reduced χ2

(K) (g cm−3) (GPa) (g cm−3) (GPa)

N
aA

lS
i 3
O

8

2000 1.57 -2.17 0.176
3000 1.45 -0.67 0.03
4000 1.32 -0.33 0.008 1.2 -0.37 0.012
4500 1.19 -0.15 0.002 1.06 -0.23 0.009
5000 1.11 0 0.004 0.91 -0.09 0.01
5500 0.78 0.01 0.008
6000 0.86 0.35 0.002 0.62 0.13 0.003
6500 NaN NaN 0.004
7000 NaN NaN 0

K
A
lS
i 3
O

8

3000 1.49 -0.63 0.054
4000 1.32 -0.19 0.009 1.07 -0.24 0.014
4500 1.16 -0.02 0.003 0.88 -0.11 0.009
5000 1.12 0.17 0.006 0.79 -0.01 0.008
5500 0.64 0.08 0.009
6000 0.69 0.42 0.003 NaN NaN 0.012
7000 NaN NaN 0.001

C
aA

l 2
Si

2O
8

3000 1.68 -0.97 0.029
4000 1.55 -0.74 0.006
5000 1.39 -0.38 0.002
6000 1.23 -0.01 0.002 1.03 -0.18 0.017
6500 1.13 0.17 0.003 0.94 -0.03 0.009
7000 0.99 0.29 0.002 0.77 0.08 0.007
7500 NaN NaN 0.013
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B.1.3 Hugoniot equation of state and shock conditions

Table B.3 – Shock states parameters for five different ground states and impactor velocities
for the Ca-feldspar. All the results with a temperature higher than 20 000 K are extrapolated
from fits of the Hugoniot data points. We choose velocities for the impactor of 12.9, 15.2 and
18.1 km s−1 for the impacts with the Earth, and of 8.3, 11.5 and 15.2 km s−1 for the impacts with
the Moon. These values correspond respectively to the first, second, and third quartile of the
1487 impacts generated for the Earth in the work of Raymond et al. (2013) on planetary impacts
during the late veneer. All their impactors had a density of 3.0 g cm−3. Without information on
their composition we consider them to be made of the same material as the crust.

Uimpactor ρ0 T0 ρ T P Up

(km s−1) (g cm−3) (K) (g cm−3) (K) (GPa) (km s−1)

8.3 2.26 3000 4.34 9458 101 4.66
8.3 2.585 1932 4.68 7185 113 4.4
8.3 2.5 0 4.80 5255 107 4.53
8.3 2.6 0 4.88 4856 111 4.45
8.3 2.7 0 4.95 4534 114 4.38

11.5 2.26 3000 4.76 15995 175 6.38
11.5 2.585 1932 5.13 12105 193 6.07
11.5 2.5 0 5.19 10165 185 6.21
11.5 2.6 0 5.28 9533 190 6.11
11.5 2.7 0 5.36 9001 196 6.02

12.9 2.26 3000 4.93 19890 213 7.13
12.9 2.585 1932 5.32 15006 234 6.8
12.9 2.5 0 5.34 13231 225 6.94
12.9 2.6 0 5.45 12342 232 6.84
12.9 2.7 0 5.54 11547 238 6.74

15.2 2.26 3000 5.28 26699 284 8.36
15.2 2.585 1932 5.61 21257 311 7.99
15.2 2.5 0 5.59 19669 300 8.14
15.2 2.6 0 5.71 18264 308 8.03
15.2 2.7 0 5.82 16984 316 7.92

18.1 2.26 3000 5.79 36640 387 9.91
18.1 2.585 1932 6.08 29870 423 9.5
18.1 2.5 0 5.98 28574 409 9.65
18.1 2.6 0 6.10 26829 420 9.53
18.1 2.7 0 6.21 25307 430 9.41
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Table B.4 – Same as in Table B.3 for the K-feldspar.

Uimpactor ρ0 T0 ρ T P Up

(km s−1) (g cm−3) (K) (g cm−3) (K) (GPa) (km s−1)

8.3 2.26 3000 4.38 8663 102 4.65
8.3 2.585 1932 4.71 6732 115 4.37
8.3 2.5 0 4.81 4631 107 4.54
8.3 2.6 0 4.88 4371 111 4.46
8.3 2.7 0 4.94 4141 114 4.38

11.5 2.26 3000 4.81 14804 176 6.38
11.5 2.585 1932 5.15 11665 194 6.05
11.5 2.5 0 5.20 9577 185 6.21
11.5 2.6 0 5.29 8987 190 6.12
11.5 2.7 0 5.38 8401 196 6.03

12.9 2.26 3000 4.95 18892 214 7.13
12.9 2.585 1932 5.34 14524 236 6.78
12.9 2.5 0 5.36 12477 225 6.95
12.9 2.6 0 5.46 11658 232 6.85
12.9 2.7 0 5.56 10902 238 6.75

15.2 2.26 3000 5.27 25714 284 8.36
15.2 2.585 1932 5.62 20968 312 7.97
15.2 2.5 0 5.60 18854 300 8.15
15.2 2.6 0 5.73 17312 308 8.04
15.2 2.7 0 5.82 16382 316 7.93

18.1 2.26 3000 5.74 35753 387 9.91
18.1 2.585 1932 6.06 29764 423 9.48
18.1 2.5 0 5.98 27825 408 9.66
18.1 2.6 0 6.11 25846 419 9.53
18.1 2.7 0 6.19 24698 429 9.41
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Table B.5 – Same as in Table B.3 for the Na-feldspar.

Uimpactor ρ0 T0 ρ T P Up

(km s−1) (g cm−3) (K) (g cm−3) (K) (GPa) (km s−1)

8.3 2.26 3000 4.35 8029 102 4.65
8.3 2.585 1932 4.70 6200 114 4.39
8.3 2.5 0 4.80 4552 107 4.54
8.3 2.6 0 4.87 4278 111 4.46
8.3 2.7 0 4.94 3994 114 4.38

11.5 2.26 3000 4.78 12621 175 6.38
11.5 2.585 1932 5.16 9933 193 6.06
11.5 2.5 0 5.19 8522 185 6.21
11.5 2.6 0 5.28 8024 190 6.12
11.5 2.7 0 5.38 7507 196 6.02

12.9 2.26 3000 4.95 15179 213 7.13
12.9 2.585 1932 5.32 12253 234 6.79
12.9 2.5 0 5.36 10681 225 6.94
12.9 2.6 0 5.47 10000 231 6.84
12.9 2.7 0 5.56 9391 237 6.74

15.2 2.26 3000 5.20 20292 283 8.36
15.2 2.585 1932 5.59 16650 310 7.98
15.2 2.5 0 5.61 15089 299 8.14
15.2 2.6 0 5.72 14214 307 8.03
15.2 2.7 0 5.82 13389 315 7.92

18.1 2.26 3000 5.61 27502 385 9.92
18.1 2.585 1932 5.97 23142 420 9.48
18.1 2.5 0 5.92 22008 406 9.65
18.1 2.6 0 6.03 21087 417 9.52
18.1 2.7 0 6.13 20106 427 9.4

$
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Abstract14

The position of the vapor-liquid dome and of the critical point determine the evolution15

of the outermost parts of the protolunar disk during cooling and condensation after the16

Giant Impact. The parts of the disk in supercritical or liquid state evolve as a single ther-17

modynamic phase; when the thermal trajectory of the disk reaches the liquid-vapor dome,18

gas and melt separate leading to heterogeneous convection and phase separation due to19

friction. Different layers of the proto-Earth behaved differently during the Giant Impact20

depending on their constituent materials and initial thermodynamic conditions. Here we21

use first-principles molecular dynamics to determine the position of the critical point for22

NaAlSi3O8 and KAlSi3O8 feldspars, major minerals of the Earth and Moon crusts. The23

variations of the pressure calculated at various volumes along isotherms yield the posi-24

tion of the critical points: 0.5–0.8 g cm−3 and 5500–6000 K range for the Na-feldspar, 0.5–0.9 g cm−325

and 5000–5500 K range for the K-feldspar. The simulations suggest that the vaporiza-26

tion is incongruent, with a degassing of O2 starting at 4000 K and gas component made27

mostly of free Na and K cations, O2, SiO and SiO2 species for densities below 1.5 g cm−3.28

The Hugoniot equations of state imply that low velocity impactors (< 8.3 km s−1) would29

at most melt a cold feldspathic crust, whereas large impacts in molten crust would see30

temperatures raise up to 30 000 K.31

Plain Language Summary32

The Moon was formed after the cooling and aggregation of the debris disk produced33

by the Giant Impact between a small planet in formation and the early Earth. To un-34

derstand completely this process of cooling and aggregation we need thermodynamic in-35

formation about the constituents of the disk, like the position of the liquid-vapor dome36

and also of the critical point, located at the top of this dome. Here we use a technique37

called first-principles molecular dynamics and based on quantum chemistry to perform38

computational experiments on NaAlSi3O8 and KAlSi3O8 feldspars, major minerals of39

the Earth and Moon crusts. We performed calculations of the fluids evolution at tem-40

peratures typical of those of the debris disk (from 2000 to 7000 K) and at densities cov-41

ering the liquid-gas transition for these temperatures. We find the position of the crit-42

ical points: 0.5–0.8 g cm−3 and 5500–6000 K range for the Na-feldspar, 0.5–0.9 g cm−343

and 5000–5500 K range for the K-feldspar. The simulations suggest that the liquid and44

the gas have different compositions, mainly due to a degassing of O2 starting at 4000 K,45

and free components like Na, K, O2, SiO and SiO2 which go preferentially inside the gas46

phase. The behavior of liquid feldspars at high density shows also that impacts from a47

low-velocity object would at most melt a cold crust, whereas impacts in molten crust would48

see temperatures raising up to 30 000 K.49

1 Introduction50

For more than twenty years, the simulations of formation of the Moon from an impact-51

generated disk have made huge progress and went through many different models, from52

the canonical impact (Canup & Esposito, 1996) to the high-energy high-angular-momentum53

impact (Ćuk & Stewart, 2012; Canup, 2012) and more recently to the formation of a synes-54

tia (Lock et al., 2018). They tend to reproduce better and better the observed features55

of the actual Earth-Moon system, like the angular momentum or the fractionation of some56

isotopes and elements. Even if each simulation uses different parameters, they all model57

the mantle and the core using respectively particles of dunite or forsterite and of iron,58

with the equations of state provided by the M-ANEOS package (Melosh, 2007).59

For many years shock experiments improved equations of state, which are major60

parameters of the hydrodynamics simulations, on a variety of major geological materi-61

als, like MgSiO3 glass, enstatite and olivine (Luo et al., 2004), silica (Kraus et al., 2012)62

and MgO (Root et al., 2015). These experiments sample points along the shock Hugo-63
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niot equations of state, at high temperatures and pressures, typical for the peak condi-64

tions attained during the shock. In the laboratory their timescales are on the order of65

nanoseconds, which makes many measurements hard to realize. Moreover, they can rarely66

follow the evolution of the sample after the shock release, when the pressure and tem-67

perature decrease along quasi-isentropic lines over time scales on the order of minutes.68

Combined with long sample and apparatus preparation times and few available shock69

facilities, such experiments are relatively scarce. Here we take a numerical approach and70

employ first-principles molecular dynamics (FPMD) simulations. We study the behav-71

ior of two feldspar end-members terms in this regime.72

Feldspars are aluminosilicates with general formula (Ca,Na,K)(Al,Si)4O8. Based73

on the major-element composition of the current terrestrial bulk continental crust, its74

normative mineralogy would consist of 58.9 % feldspars by weight. The Moon highland75

crust is made of at least 80 % of ferroan anorthosite, a rock composed almost entirely76

of Ca-end-member plagioclase (Taylor & McLennan, 2008). On Venus spectroscopic stud-77

ies show the presence of a mixture of phases that includes albite. This should be a rel-78

atively stable phase compared to Ca-bearing minerals, like anorthite, which would eas-79

ily react with the atmosphere (Gilmore et al., 2017). Surface models of Mercury show80

the presence of up to 70 % of Na-rich plagioclase feldspar (Warell et al., 2010). Feldspar81

minerals are also widely present in eucrites, on Vesta, etc. (e.g. Szurgot, 2014). Thus82

feldspars represent major mineral components of the crust of terrestrial bodies.83

Because of their importance, feldspars have been widely studied for more than a84

century. The first melting experiments were done in the beginning of the last century85

on plagioclase feldspars (Bowen, 1913), in which Ca- and Na- end-members melted at86

about 1823 and 1373 K respectively. Ever since a plethora of experiments, e.g. Bell and87

Roseboom Jr. (1969); Newton and Smith (1967); Urakawa et al. (1994); Lindsley (1966);88

Akaogi et al. (2004), determined the melting curves of the entire series, investigated the89

behavior of the melt in various assemblages and analyzed the compressibility of felds-90

pathic glasses up to at least 128 GPa.91

The Hugoniot equations of state for the three end-members and several interme-92

diate compositions were investigated through shock experiments (e.g. McQueen et al.,93

1967; Ahrens et al., 1969; Asimow & Ahrens, 2010).The maximum shock conditions reached94

in these experiments were about 120 GPa and 6000 K.95

More recently, molecular dynamics (MD) simulations gave access to a series of ther-96

modynamic properties, including the structure and the dynamics of the melts over a large97

range of temperatures (2500–6100 K) and pressures (0–160 GPa), using either classical98

MD (e.g. Spera et al., 2009; Neilson et al., 2016) or FPMD (e.g. Karki et al., 2011). How-99

ever, despite all this effort at high pressures and temperatures, to date, no experiment100

nor simulation has been done on feldspars in the low-pressure and high-temperature re-101

gion, which is of interest for the evolution of the protolunar disk.102

Here we investigate the two alkali feldspar end-members, NaAlSi3O8 and KAlSi3O8,103

in the low density region by performing FPMD simulations. We compute thermodynamic104

data as well as transport and structural properties over a wide range of densities and tem-105

peratures that are relevant for the synestia or the protolunar disk, as suggested by smooth106

particle hydrodynamics (SPH) simulations.107

2 Material and Methods108

2.1 Computational Parameters109

We perform first-principle molecular dynamics simulations as implemented in the110

Vienna ab initio simulation package (VASP) (Kresse & Hafner, 1993; Kresse & Furthmüller,111

1996a, 1996b; Kresse & Joubert, 1999). We use the projector augmented-wave (PAW)112

–3–



manuscript submitted to JGR: Planets

formulation (Blöchl, 1994) of the density-functional theory (DFT) (Hohenberg & Kohn,113

1964; Kohn & Sham, 1965; Mermin, 1965) to compute energy and forces, with the Perdew-114

Burke-Ernzerhof parametrization of the generalized gradient approximation (Perdew et115

al., 1996) for the exchange correlation term. We employ an energy cutoff of 550 eV for116

the plane waves and of 800 eV inside the augmentation sphere; we sample the recipro-117

cal space in the Gamma point. Simulations are performed in the canonical NVT ensem-118

ble where the temperature (T ) is controlled by the Nosé-Hoover thermostat (Nosé, 1984;119

Hoover, 1985) around an average fixed value, and the volume (V ) and the number of par-120

ticles (N ), are kept constant. At each timestep the energy is converged to 1× 10−3 eV,121

which corresponds to at least 7 representative digits in the absolute value of the energy.122

We model the feldspar end-members in cubic cells containing 208 atoms (16 for-123

mula units) and 1024 or 1152 electrons for the Na- and K-feldspars respectively. A cu-124

bic cell of 14 Å side (volume of V0=2744 Å
3
) corresponds to a density of 2.54 g cm−3 for125

the Na feldspar and of 2.69 g cm−3 for the K-feldspar. The size of our simulations cells126

is typical for such FPMD studies on silicates. The relatively small number of atoms is127

compensated by the long trajectories, which allows for a good sampling of the config-128

urational space. Chemical species have the time to form and break several times dur-129

ing the same simulation. Convergence tests carried out using 416 atoms for two temperature-130

density couples (5000 K–2.1 g cm−3 and 4000 K–1.2 g cm−3) give a pressure difference of131

less than 0.12 GPa and a difference in the internal energy of less than 10 meV/atom be-132

tween the two cell sizes. The pair distribution functions are invariant when changing be-133

tween the simulations cells with 208 and 416 atoms. The relative proportions of coor-134

dination polyhedra remain constant within 1-2% between the two cells.135

Production simulations are performed in the 2000–7000 K range and 1–6 g cm−3136

range in order to bracket the critical temperature and density. This also spans both liq-137

uid and liquid-gas regions. This corresponds to a ρ/ρ0 range of about 2.4–0.4, ρ0 being138

close to ambient density (corresponds to V0=2744 Å
3
). We use a timestep of 1 fs in all139

simulations above 4500 K and 1.6 g cm−3 and of 2 fs below these conditions. The initial140

liquid state is obtained by heating a static configuration up to 4000 K for 8 ps and ther-141

malizing it for 2 ps. This time lapse is enough to equilibrate the velocities of the atoms142

and to reduce the energy fluctuations. The other temperatures of interest are reached143

with one or more heating/cooling steps of 1000 K during 1 ps. Then at all temperatures144

and pressures we let the fluids equilibrate for at least 1 ps. We record production runs145

of 15–20 ps length after the total equilibration and we use the final state to compress or146

expand the cell in order to reach respectively higher or lower densities.147

To increase the speed of calculations and be able to reach low densities down to148

0.5 g cm−3, we use pseudopotentials which require a lower plane wave energy cutoff, set149

to 370 eV. In this region, the production runs last about 4 ps, which is enough to esti-150

mate the global pressure and temperature. For the simulations above 3.5 g cm−3, we use151

hard pseudopotentials in order to reduce the overlap of electronic spheres, in particu-152

lar for Na-Na pairs. The energy cutoff for this set of pseudopotentials is 950 eV.153

2.2 Post Processing154

The post-processing was realized using the UMD package (Caracas et al., 2020).155

The reported values of the thermodynamic potentials, i.e. pressure and internal energy,156

are arithmetic time averages over the entire simulation, the spread in values is given by157

the standard deviation and the statistical error on the mean is computed using the block-158

ing method (Flyvbjerg & Petersen, 1989).159

The radial distribution function (g(r)) is the primary tool to analyze the structure160

of the fluids. It gives the average number of atoms of type B in a spherical shell of ra-161

dius r and thickness dr centered around each atom of type A, relative to the number of162
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atoms at the same distance in an ideal gas at the same density. Mathematically gAB(r)163

is defined as164

gAB(r) =
nB(r)

nidealB (r)
(1)165

nidealB (r) =
4π

3
ρB
(
(r + dr)3 − r3

)
(2)166

nB(r) =
1

NAτrun

τrun∑

τ=1

NA∑

A=1

NB∑

B=1

Π(r,r+ dr)(rAB) (3)167

with ρB = NB

Vcell
being the atomic density of type B atoms in the simulation cell of vol-168

ume Vcell, NA and NB the number of atoms of type A and B in the cell, τrun the total169

number of time steps and Π(r,r+ dr)(rAB) the gate function which is equal to 1 if r ≤170

rAB < r + dr (rAB being the distance between the center of atoms A and B) and 0171

else.172

We use dr = 0.05 Å as the discretization step of the computed g(r). The first peak173

of the g(r) offers a good approximation to the average bond length, representing the high-174

est probability bond length. The first minimum of the g(r) function yield the radius of175

the first coordination sphere. It is this radius that we use as threshold to define if two176

atoms are bonded or not: if their interatomic distance rAB is smaller than this radius,177

they are considered to form a chemical bond. Note that the chemical bonds do not have178

a temporal minimum limit, but only a maximal spatial extent. As such the minimum179

lifetime of a bond is the timestep of the simulation.180

The integral over g(r) up to its first minimum yields the average coordination num-181

ber. The coordinating polyhedra are defined by the atoms that are found inside the first182

coordination sphere. Actually, the average coordination number corresponds to the sum183

of the order of the coordinating polyhedra weighed by their relative concentrations. In184

a more general way, the chemical species can be defined as the largest chains of connected185

atoms. At high pressure, as the fluid is compact this actually corresponds to an infinite186

polymer.187

The self-diffusion coefficient, D, is obtained from the Einstein relation:188

DA = lim
t→∞

1

6t

〈
1

NA

NA∑

i=1

|−−→rA,i(t+ t0)−−−→rA,i(t0)|2
〉
, (4)189

where the term between brackets is the mean square displacement (MSD) for a time win-190

dow with width t. The first part of the MSD, typical of a few hundred femtoseconds, cor-191

responds to the ballistic part of the transport and the second part to the diffusive part.192

193

Finally, we characterize the shocked state of the feldspars, in terms of pressure (P),194

density (ρ) and internal energy (E), according to the Hugoniot equation:195

E − E0 +
1

2
(P + P0)(

1

ρ
− 1

ρ0
) = 0 (5)196

To obtain the Hugoniot we perform simulations at several temperatures and find the vol-197

ume for which the pressure and internal energy values satisfy the Hugoniot equation.198

2.3 Finding the Critical Point199

Figure 1 shows a model for the pressure variation as a function of density for var-200

ious isotherms. The local maximum and minimum of the isotherms define, respectively,201

the vapor and the liquid spinodal points. When these points are linked over all isotherms202

they construct the vapor and liquid spinodal lines. They both meet at the critical point.203
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Figure 1. The analysis of the variation of the pressure as a function of density along different

isotherms gives the stability domains for liquid, gas, and supercritical fluid. For a given isotherm,

the extrema of the pressure correspond to the liquid and gas spinodal points; joining them yields

the spinodal lines. The Maxwell equal-area construction (hatched areas) yields the binodal line.

At equilibrium, a liquid with density ρeql is in equilibrium with a gas with density ρeqg ; they are

both at the same equilibrium pressure Peq. Both lines have the critical point as a common max-

imum. The liquid and the gas are stable in the light gray areas and metastable in the dark gray

areas, at respectively higher and lower density. The coexistence of gas and liquid is stable in the

region between the two spinodals. The supercritical fluid is stable above the critical isotherm

line.
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The states between the two spinodal lines are unstable as a single phase, i.e. liquid or204

gas; only the mixture of the two is stable between the spinodals.205

The Maxwell construction allows to find the equilibrium pressure and densities of206

the liquid and gas at a given temperature. Its derivation originates from equating the207

free energies of the liquid and the gas it can be constructed graphically from the pressure-208

density relations along isotherms. In Figure 1, the equilibrium isobar is found when the209

area above it and below the P-ρ curve on the gas side is equal to the area below it and210

above the P-ρ curve on the liquid side. The intersection of the equilibrium isobar with211

the P-ρ curve at a given isotherm defines the equilibrium liquid and gas density points,212

ρeql and ρeqg respectively. They correspond to the limit of the stability domains: liquids213

are stable at densities higher than ρeql , and gases are stable at densities lower than ρeqg .214

The spinodal points mark the limit of the metastability region. Liquids are metastable215

between the ρeql and the liquid spinodal, gases are metastable at densities between the216

ρeqg and the gas spinodal. When connected at all temperatures, the equilibrium points217

define the liquid-gas dome, also called the vapor-liquid dome. Its importance comes from218

the role it plays during cooling and depressurization of a hot dense liquid or during con-219

densation of a gas phase. Gas and liquid separate only when the temperature and den-220

sity fall inside the dome; outside of it the thermodynamic stable state is monophasic: ei-221

ther as a liquid, a gas, or a supercritical fluid.222

At low densities and low temperatures the configurational space of the vapor might223

not be fully sampled by the MD simulations, which prevents us from correctly describ-224

ing the vapor structure and thus from using the Maxwell construction to obtain the full225

liquid-gas dome. Nevertheless, we may explore the higher density region and compute226

the liquid spinodal points. We may sample the vapor region only in the vicinity of the227

critical point. Then we can estimate the position of the critical point. This method was228

successfully used in previous theoretical identification of critical points for SiO2 (Green229

et al., 2018) and Al (Faussurier et al., 2009). Binder et al. (2012) showed the presence230

of finite-size effects in classical MD simulations using hard spheres interacting via Lennard-231

Jones potentials. However to date, the location of the minimum in the pressure-density232

curves is the best method for obtaining the spinodal curve (Green et al., 2018; Faussurier233

et al., 2009). The absence of minima in pressure above the critical temperature enforces234

the validity of the method.235

3 Results236

3.1 The Critical Points237

We perform the calculations along several isotherms, ranging from 2000 K, corre-238

sponding to a hot magma, up to 7000 K, corresponding to the supercritical fluid. At each239

temperature we start at high density and decrease the density of the melt by expand-240

ing the volume of the simulation box. Depending on the temperature, we reach ambi-241

ent pressure at densities of around 2.2 g cm−3 at 2000 K, 1.9 g cm−3 at 3000 K, 1.7 g cm−3242

at 4000 K, 1.5 g cm−3 at 4500 K and 1.3 g cm−3 at 5000 K for the Na-feldspar, and of around243

1.9 g cm−3 at 3000 K, 1.6 g cm−3 at 4000 K and 1.3 g cm−3 at 4500 K for the K-feldspar.244

As we perform simulations at lower densities we go into extension regime and the pres-245

sure drops below zero, where the melts are metastable (i.e. the dark grey area in Fig-246

ure 1).247

The general equation of states (EoS) describing the liquid, liquid+vapor, and va-248

por states is the van der Waals EoS, which is a third order expansion of pressure in terms249

of density, spanning the entire liquid and gas stability regions. As we do not sample the250

vapor state we approximate the P-ρ variation around the liquid spinodal with third or-251

der pressure-density polynomials. We perform the fits along each isotherm. The min-252

ima of these curves show the position of the liquid spinodals as defined in the method-253
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ology section. The position of the critical point lies in density between the gas and the254

liquid spinodals and in temperature between the last isotherm that shows minima and255

maxima and the first isotherm that shows a monotonous decrease of pressure.256

The Na-feldspar shows pressure minima along isotherms up to 5500 K. The K-feldspar257

shows minima for isotherms up to 5000 K. In both cases, the minima are less and less258

pronounced as the isotherms approach the critical temperature. For these temperatures259

we extend the simulations to low-enough densities to observe a local maximum, corre-260

sponding to the gas spinodal (Figure 2 a and b). There are no local minima for the 6000 K261

isotherm and above for the Na-melt, and for the 5500 K and above for the K-melt. Along262

these isotherms the pressure only decreases monotonously. As the liquid and the gas spin-263

odal converge into the critical point, the liquid and the gas spinodals on the last isotherm264

bracket the density of the critical point. The isotherms with and without local minima265

and maxima bracket the temperature of the critical point. Hence using our fitted val-266

ues in the polynomial form, we obtain for the Na-feldspar the critical point in the 0.5-267

0.8 g cm−3 and in 5500–6000 K range. For the K-feldspar the critical point lies in the 0.5-268

0.9 g cm−3 and 5000–5500 K range.269

Recently, two studies computed the critical point of SiO2 (Green et al., 2018) and270

MgSiO3 (Xiao & Stixrude, 2018) using FPMD. They found a supercritical temperature271

located between 5000 and 6000 K for SiO2, and around 6600±150 K for MgSiO3, and a272

supercritical density respectively around 0.5–1.0 g cm−3 and 0.48±0.05 g cm−3. The crit-273

ical point of silica has been estimated before by Melosh (2007) to 5400 K and 0.55 g cm−3274

based on thermodynamic calculations from ANEOS. The critical temperatures for two275

feldspar systems that we report here are similar to the critical temperature of SiO2 but276

all lower than the critical temperature of MgSiO3. The differences might arise from the277

degree of polymerization of the silica in the fluid.278

Figure 2 shows the variation of pressure as a function of density for the Na- and279

K-feldspar end-members along all computed isotherms. The two sets of pseudopoten-280

tials yield a slightly different position of the liquid spinodal at low temperatures. As we281

approach the critical point these differences considerably decrease. The statistical errors282

on the mean are included in the size of the points. Due to the large number of steps in283

each simulation runs, we obtain small uncertainties for the mean pressure even at very284

low densities. These values, of the order of 10−3–10−2 GPa, are smaller or about the same285

order of magnitude than those obtained by Green et al. (2018) who used the same method286

to estimate them. The spread of the pressure values during the simulation is about 1.6 GPa,287

which is typical for first-principles molecular-dynamics. The supplementary references288

the numerical results for pressure, temperature, density, and internal energy in the Data289

Sets S1 to S5.290

3.2 Compressibility and Structure of the Fluids291

In the one-phase region, for pressures above 0, we fit third-order Birch-Murnaghan292

equations of states to the pressure-density points along the 3000, 4000, 5000 and 6000 K293

isotherms. They are shown in Figure 2 (c) and (d). Table 1 shows the results and the294

comparison to existing data in the literature, both experimental (Lange, 2007; Tenner295

et al., 2007) and calculated (Bajgain & Mookherjee, 2020). The ρ0 values extrapolated296

from our simulations using a second-order polynomial are 2.26 g cm−3 at 1373 K for NaAlSi3O8,297

i.e. about 2.7 % smaller than the experimental values (Lange, 2007).298

The isobaric expansivity α = 1
ρ
∂ρ
∂T

∣∣
P

and the isothermal compressibility β = − 1
ρ
∂ρ
∂P

∣∣
T

299

are computed from our pressure-temperature-density points using the same method as300

described by Spera et al. (2009). The values are available in the Data Sets S1 to S5. At301

3000 K and about 2.6 g cm−3, we obtain α = 4× 10−5 K−1 for alkali feldspars, while Neilson302

et al. (2016) obtained about 5× 10−5 K−1 with their classical MD simulation of liquid303
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Figure 2. Computed pressure as a function of density around the spinodal part of the phase

diagram for the (a) Na- and (b) K-feldspar end-members and their respective view on the com-

plete density range studied here, (c) and (d). Colors indicate temperature.Open symbols indicate

values obtained with pseudopotentials which require a lower plane wave energy cutoff than those

used to obtain the data set of solid symbols. Solid and dotted lines represent the third order

polynomial curve fits corresponding to the respective two sets of data. The open and solid crosses

indicate the liquid spinodals corresponding to the minima of the two sets of curves respectively.

The dashed curves in (c) and (d) are third-order Birch-Murnaghan equations of state fitted to

our data. The statistical errors on the mean are included in the size of the points. For numerical

data, the reader can refer to the Data Sets S1 to S5 in supplementary.
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Table 1. Parameters of third-order Birch-Murnaghan equation of state fitted to our computed

pressure-density values at high temperature and comparison with the available experimental data

or theoretical results (FPMD) from the literature.

Temperature ρ0 K0 K
′
0 source

(K) (g cm−3) (GPa)

NaAlSi3O8 298 2.615 56.4 3.9 crystalline albite Tenner et al. (2007)

1373 2.326 17.5 11 liquid Tenner et al. (2007)

2500 2.31 12 5.3 FPMD Bajgain and Mookherjee (2020)

3000 2.01 11 4.9

4000 1.82 6.5 5.8

5000 1.3 0.8 11

6000 0.9 2 × 10−3 7 × 102

KAlSi3O8 295 2.554 57 4 crystalline sanidine Lange (2007)

1473 2.298 15.8 12 liquid Lange (2007)

3000 1.8 5 6.5

4000 1.69 4.5 6.1

5000 1.3 0.9 9

6000 0.80 2 × 10−3 5 × 102

albite at the same conditions. An intermediate value of 4.7× 10−5 K−1 was obtained by304

Stein et al. (1986) for liquid albite.305

Figure 3 shows the pair distribution functions for the Na-feldspar at two densities306

as a function of temperature stemming from our simulations. At 2 g cm−3 and 3000 K,307

conditions that are close to a hot magma at ambient pressure, the Si-O, Al-O, Na-O and308

K-O average bond lengths are 1.64 Å, 1.76 Å, 2.31 Å and 2.79 Å respectively. The T-O309

bonds (T being Al or Si) vary weakly with both pressure and temperature; over 100 GPa310

pressure range the relative decrease is about 2 %. However the decrease of the Na-O and311

K-O average bond lengths over the same pressure range is on the order of 10 and 20 %312

respectively. In general the bond lengths in the liquid at 3000 K are comparable to the313

values recorded in the solids at ambient conditions. The radius of the first coordination314

sphere for the T-O bonds decreases by about 10 % over 100 GPa pressure range, while315

the radius for the M-O (M being Na or K) follows the trend of the average bond lengths316

with a decrease of about 20 %.317

As tectosilicates, the structure of the solid feldspars is built of a polymerized frame-318

work of SiO4 and AlO4 tetrahedra with the alkali cations distributed orderly in the pores319

of this polymer. In the liquid state, the framework and polymerization are still present,320

but the dominant coordination changes as a function of both pressure or density and tem-321

perature.322

The average coordination number of Si and of Al by O in the computed fluids is323

similar for the two feldspar end-members (Figure 4). For Si, it increases from about 3.8324

at 2.2 g cm−3 to more than 5 above 4 g cm−3; it is only weakly dependent on tempera-325

ture. At lower densities the dependence is stronger with temperature: at 1 g cm−3 it de-326

creases from 3.8 at 3000 K to 2.9 at 7000 K. For Al, the coordination increases monotonously327

from about 3.7 at 1 g cm−3 to about 6 above 4 g cm−3 (corresponding to about 50 GPa).328

The spread of coordination numbers due to temperature is less than 0.5 units between329

3000 K and 6000 K at all densities. The coordination number of Al by O is larger than330

the coordination number of Si by O at all densities and temperatures.331
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Figure 3. Pair distribution function of X-O (X being Na, Al, Si and O) in NaAlSi3O8 at

1.02 g cm−3 (a,b,c,d) and 2.06 g cm−3 (e,f,g,h). Colors indicate temperatures. The insert shows

a zoom on the region 0.5–2.5 Å. The small peak located around 1.4 Å marks the presence of O2

molecules.
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Figure 4. Average coordination number of Na, K, Al and Si by O for the Na- (stars and con-

tinuous lines) and K-feldspar (crosses and dashed lines). At ambient conditions the solid or glass

feldspars have NaO6−9, KO9, AlO4, and SiO4 coordination polyhedra (Ribbe, 1984; Jackson et

al., 1987; Xue & Stebbins, 1993; Muller et al., 1993). Colors indicate temperature.
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Figure 5. Relative proportion of SiOx and AlOx coordination species in NaAlSi3O8 for

3000 K and 6000 K as a function of density.

In terms of actual species rather than average coordination numbers, the two feldspar332

systems behave in a similar way to other silicate melts (Karki et al., 2018; Solomatova333

& Caracas, 2019). Figs. 5 and 6 show the proportion of the SiOx and AlOx species in334

the NaAlSi3O8 and KAlSi3O8 systems respectively for two relevant temperatures below335

(3000 K) and above (6000 K) the critical temperature as a function of density. In gen-336

eral the dominant species contains more O atoms for Al than for Si. At densities below337

2.2 g cm−3, the amount of under-coordinated Si and Al, i.e. SiOx and AlOx species with338

x < 4, increases with decreasing density and increasing temperature. This comes from339

the decrease of the coordination of cations by oxygen at the interface between the voids340

and the melt, as the system becomes metastable at lower densities.341

At densities above 2.2 g cm−3, under compression, the melt is dominated by SiO4342

tetrahedra up to about 25 GPa at 3000 K and 20 GPa at 6000 K. SiO5 is present in the343

melt at low pressures at all temperatures. SiO6 appears around 10 GPa at 3000 K and344

5 GPa at 6000 K; it is the dominant species above 70 GPa at 3000 K and above 50 GPa345

at 6000 K.346

Figure 7 shows the change in the major coordination of Si and Al by O as a func-347

tion of pressure and temperature and the comparison between the fluids and the solids348

(crystalline forms). The melts are characterized by a series of structural changes where349
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Figure 6. Relative proportion of SiOx and AlOx coordination species in KAlSi3O8 for 3000 K

and 6000 K as a function of density.
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the dominant coordination goes as TO4 → TO5 → TO6 → TO7 (→ TO8), T being Si350

or Al. This transition series follows closely the changes recorded in the solids, but the351

sequence is generally shifted towards higher pressures. The increasing temperature in352

the fluid shifts to larger pressure the change in dominant coordination. However the solids353

do no show five, seven or eight-fold coordination.354

The lifetime of the coordination polyhedra underlines the long-lasting nature of the355

4-fold coordination species SiO4 and AlO4 in the melts below the critical temperature.356

For example at low densities and 3000 K, the SiO4 tetrahedra live up to 10 ps, and at357

4000 K up to almost 4 ps. Increasing temperature leads to decreasing the maximum life-358

time of all coordination polyhedra and extending the tail of lifetimes, as the bonds form359

and break with higher frequency. The SiOx species tend to live longer than the AlOx360

species at the same density and temperature. Figs. S1 (a) and (b) in supplementary dis-361

play the lifetime of each type of coordination polyhedron at 3000 K and 6000 K for re-362

spectively Na- and K-feldspar melt at about 2.2 g cm−3.363

Na and K act as interstitial cations in the large Si-Al-O polymer that constitutes364

the framework of the melt. For this reason their coordination polyhedra by O show a365

much larger variability than their equivalent Si and Al. Also the lifetime of the NaOx366

and KOx coordination polyhedra (Figure S2 in supplementary) is considerably shorter367

than the SiOx and AlOx.368

3.3 Volatilization369

The largest chemical species found in the simulations involve forming chains and370

rings of alternating cations and oxygens, in ... - oxygen - cation - oxygen - cation - oxy-371

gen - ... sequences. At high density all 208 atoms are connected in one infinite cluster,372

like an infinite polymer, which constitutes the liquid.373

At low densities and below the critical temperature, long lasting cavities appear374

in the simulations, where isolated atoms or clusters of atoms may freely float inside. They375

represent the nucleating gas bubbles. Figure 8 shows a typical snapshot of the simula-376

tion cell of NaAlSi3O8 at 4000 K and 1.02 g cm−3 with the electronic density isosurface377

at 0.01 e/Å
3

drawn to indicate the different clusters. We see a large interconnected atomic378

polymer, forming the melt, and one NaSiO3 cluster isolated from the rest of the atoms;379

this represents one of the first gas components in the nucleating bubbles. The distribu-380

tion of the size of the atomic clusters is bimodal: the larger polymerized melt that sur-381

rounds the cavities and the smaller atomic clusters that populate these cavities (Figure 9).382

We notice that in all simulations, most of the species above 200 atoms or below 13 atoms383

live more than 30 fs.384

In the melt at 4000 K, a limited number of species appear in the gas bubbles, with385

average lifetimes between 60 and 300 fs. The gas is dominated by free Na and K cations386

making up for at least half of the gas. Second in importance are small volatile species,387

like O2, SiO, and SiO2. In both feldspars Al is present in the gas phase only as traces388

as AlO or more complex species involving K, Na, Si and O. The volatilization of both389

feldspars is incongruent, mainly due to this lack of Al in the gas phase (see Figure S3390

in supplementary). Between 1.4 g cm−3 and 1 g cm−3 the molar proportion of K and Na391

in the gas almost double with respect to the total available K and Na in the system, while392

Al remains almost entirely in the melt.393

In the supercritical fluid at 6000 K there are no cavities, so we cannot talk about394

a gas phase: the species are all in a single fluid phase. The speciation becomes more di-395

verse, with many more clusters being composed of 4 to 13 atoms. These clusters have396

short lifetimes and high mobility, inducing density fluctuations in the fluid over short time397

scales, which is characteristic of supercritical fluids. But at larger time and length scales398

the melt is homogeneous. In parallel there are fewer isolated Na but more isolated O atoms.399
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Figure 7. Changes of the major coordination of T by O (T being Al, Si) for (a) NaAlSi3O8

and (b) KAlSi3O8 compositions in the temperature-pressure projection plane. Background color

indicate the number of O atoms in the SiOx coordination polyhedra that dominates the structure

of our computed melt. The shape and color of symbols indicate the number of O atoms in the

AlOx coordination polyhedra that dominates the structure of our computed melt. Dashed lines

are solidus (green) and coesite-stishovite phase transition (black) for silica from Zhang et al.

(1996); Tsuchiya and Tsuchiya (2011). Solid lines are solidus (green) and solid-solid phase tran-

sitions (black) for alkali feldspars (and jadeite above 2 GPa) from Bell and Roseboom Jr. (1969);

Litvin and Gasparik (1993); Newton and Smith (1967); Urakawa et al. (1994); Lindsley (1966);

Akaogi et al. (2004). The subsolidus coordination indicated in this diagram (denoted [4]T and

[6]T for coordination number of T by O of 4 and 6 respectively) are for the crystalline phases.

They may differ from the glasses coordination. The gray area indicate the region of K2Si4O9

wadeite-type mineral, with Si 4 and 6-fold coordinated to O. The orange rectangle indicate the

estimated location of the critical point as computed in part 3.1.
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Figure 8. Snapshot of the iso-electronic density surface at 0.01 e/Å
3

in the simulation cell at

4000 K and 1.02 g cm−3 created with VMD (Humphrey et al., 1996). We see a clear bubble with

a NaSiO3 cluster inside. Colors indicate elements: red - O, yellow - Si, pink - Al, blue - Na.

Figure 9. The size of all individual clusters of atoms in NaAlSi3O8 simulations as a function

of (a) density at 6000 K or (b) temperature at 1.02 g cm−3 follow a bimodal distribution. The

larger clusters polymerize to form the melt and the smaller clusters are separated, forming the

gas phase. The analysis of the speciation takes into account the periodic character of the simula-

tions. Each circle represents an individual cluster of the corresponding size (y axis). Color scale

indicates the lifetime of each cluster. Clusters in the gas with size larger than 13 atoms have life-

times shorter than 30 fs, with the large majority even shorter than 10 fs. In all simulations there

is a stable liquid part, with big cluster above 200 atoms living more than 30 fs.
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Figure 10. Lifetimes of isolated atomic clusters with less than 13 atoms at 1.02 g cm−3 and

4000 K.

The O2 molecules live up to 550 fs. Figure 10 illustrates the lifetime of the isolated species400

with less than 13 atoms in the simulation of Na-feldspar end-member at 1.02 g cm−3 and401

4000 K. Figure 11 shows the relative proportion of species with less than 13 atoms. Visscher402

and Fegley Jr. (2013) obtained the same major species using the MAGMA code (Fegley403

& Cameron, 1987; Schaefer & Fegley, 2004), but their species are more abundant, espe-404

cially O2 which is present in their estimations at all temperatures.405

3.4 O2 Behavior406

A characteristic feature occurring at high temperatures is the presence of free O2407

molecules in the fluid. Figure 3 (d,h) shows the evolution of the pair distribution func-408

tion of O-O with temperature for two representative densities: 1.0 g cm−3, that is below409

the liquid-gas boundary density and 2.1 g cm−3, that is in the fully fluid region. At low410

temperatures, the pair distribution function of O-O displays one main peak located around411

2.7 Å, which represents the position of oxygens sharing the same edge of polyhedra around412

the Al or Si cations. The peak is found at all densities and temperatures and its posi-413

tion varies from 2.5 Å at high densities to 2.8 Å at low densities. At high temperatures414

the pair distribution function exhibits a second smaller peak located around 1.4 Å. This415

represents the O-O bond in a O2 molecule. This peak can be seen at almost all densi-416

ties above 3.5 g cm−3 only for temperatures higher than or equal to 4500 K, and only at417

very low densities at 4000 K. Its position varies from approximately 1.5 Å around 3 g cm−3418

to 1.3 Å at 1.0 g cm−3.419

We find O2 molecules in both feldspar compositions studied here. This was also420

observed in previous simulations on pure SiO2 (Green et al., 2018) and MgSiO3 (Xiao421

& Stixrude, 2018). These consistent results suggest that there is potential degassing of422

O2 from the silicate melt at high temperatures, independently of the composition of the423

melt. The process starts between 4000 and 4500 K.424

According to Green et al. (2018), O=O pairs in silica survive for less than one vi-425

brational period. For feldspars we observe speciation lifetimes on the order of several hun-426

dreds of femtoseconds, which is considerably longer than the vibrational period. It is pos-427

sible that cations other than Al and Si, like Na and K, reduce the polymerization of the428

melt at these conditions and then enhance the formation and survival of O2 groups.429

3.5 Transport Properties430

The MSD of all atoms at every temperature and density display a ballistic part,431

which corresponds to the conservation of the velocity of atoms after collisions, which last432
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Figure 11. Proportion of all the isolated clusters of length less than 13 atoms as a function

of density at 4000 K for (a) Na- and (b) K-feldspar end-members. Species that represent more

than 5 % of all the gas species for at least one density point are labeled in the graph. The other

species, found in trace amounts are the following (a): AlO, NaO, Si2Oz (z ∈ J3, 5K) and some

species among NawSixOz (w ∈ J1, 3K, x ∈ J1, 2K, z ∈ J1, 5K), (b): O, Si2O3, Si2O4, KwAlO2

(w ∈ J0, 1K) and some species among KwSixOz (w ∈ J1, 3K, x ∈ J1, 3K, z ∈ J3, 7K).
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on the order of 100 fs, followed by a fully diffusive part, which corresponds to the scat-433

tering of the velocity of atoms after collisions (Figures S4 and S5 in supplementary).434

Along the 2000 K isotherm we observe a strong decoupling between the diffusion435

of Na or K and the diffusion of Si, Al, and O, with more than one order of magnitude436

difference at 1.0 g cm−3. At 3000 K and about 1 GPa, all atoms travel considerably shorter437

distances on the order of 7–8 and 2 Å for respectively K, Na and Al, Si, O over the same438

amount of time. At 5000 K and densities around 1 g cm−3, after 8 ps Al travels around439

12–14 Å while Si and O travel 16–17 Å, and Na, K travel respectively 25 and 22 Å. At440

about 2.2 g cm−3, the traveled distances over the same time decrease down to 9 Å for Si,441

9–10 Å for Al, 10–11 Å for O, 12 Å for K and 16 Å for Na. There is no abrupt change in442

the mobility of the atoms during the passage from the hot magma to the supercritical443

fluid.444

Figs. S4 and S5 in supplementary show the MSD for all the temperatures and den-445

sities studied here. They are almost linear with respect to time, with some exceptions446

for Na and K especially at low density. Since free cations move further away than big447

clusters of atoms, these variations in the curve slopes can be explained by the volatiliza-448

tion of isolated Na and K. Indeed, this is seen in the analysis of the MSD for individ-449

ual atoms, as the free cations have larger MSD and distinguish themselves from the cations450

in the melt.451

The slope of the MSD yield the self-diffusivity coefficients, which are shown in Fig-452

ure 12 for Al, Si, O and the cations Na and K as a function of density for temperatures453

between 3000 K and 7000 K. Na and K are always the most diffusive elements at low den-454

sities. Their diffusion coefficients decrease by about one order of magnitude over the 2.0–4.0 g cm−3455

density range. The self diffusivities of Al, O and Si are similar along each isotherm, re-456

sulting from the polymerized character of the melt. Their diffusion coefficient is about457

half an order of magnitude smaller than for the Na and K cations, which occupy the in-458

terstitial space between the silica and alumina polymers. The difference in diffusion co-459

efficients correlates well with the difference in lifetimes of coordination polyhedra of the460

different species, the NaOx and KOx species having shorter lifetimes than the SiOx and461

AlOx. The difference between isotherms is reduced when the temperature increases. At462

high temperature and low density, the self diffusivity of every element tends toward 1–2× 10−7 m2 s−1.463

The values for diffusion coefficients that we obtain from our simulations are on the464

same order of magnitude as the theoretical values published previously on various other465

silicate melts. For example DSi at 4000 K and 1 GPa that we obtain in hot liquid feldspars466

is around 6× 10−9 m2 s−1, compared to about 1× 10−8 m2 s−1 in anorthite (de Koker,467

2010), 1× 10−9 m2 s−1 in silica (Karki et al., 2007), and 8× 10−9 m2 s−1 in pyrolite (Caracas468

et al., 2019). An Arrhenius fit to the theoretical values of diffusion extrapolated to low469

temperatures, yields diffusion coefficients similar to experimental values obtained between470

1000 and 2000 K in alkali feldspar melts (Freda & Baker, 1998). The agreement between471

extrapolated values and experimental results is better for Na than for K. Figure 13 shows472

our theoretical results at low pressure, compared to the available experimental data (Freda473

& Baker, 1998).474

At 2000 K and 3000 K for densities larger than about 1.7 g cm−3 diffusion is very475

sluggish for Al, Si, and O. Indeed, some of the simulations at low temperature are in the476

regime of undercooled melt, laying below the melting lines. Spera et al. (2009) suggested477

that in order to be accurate and meaningful, liquid MD simulations must be performed478

for temperatures above the computer glass transition, estimated around 2800 K for CaAl2Si2O8,479

a value that increases when the pressure increases. Other works (Harvey & Asimow, 2015)480

suggest that sufficient sampling of the configuration space is achieved when all atoms in481

a melt change at least one crystallographic site. For a polymerized silicate melt, this cor-482

responds to a displacement of all Si atoms, the least diffusive species, by at least 3 Å ac-483

cording to the pair distribution function of Si-Si, or a mean square displacement of at484
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Figure 12. Self-diffusion coefficients for every element as a function of density. The black to

light gray lines are theoretical results from Neilson et al. (2016) on NaAlSi3O8 at approximately

3000, 4000 and 5000 K.
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Figure 13. Self diffusion coefficients for (a) Na- and (b) K-feldspar end-members at 1 GPa as

a function of the inverse temperature (filled circles), and fit of the Arrhenius law (dashed lines).

Colors indicate elements: red - O, yellow - Si, pink - Al, blue - Na, purple - K. The stars indicate

results from a classical MD simulation on molten albite (Neilson et al., 2016), and diamonds are

experimental results on albite-orthoclase melts (Freda & Baker, 1998). Empty circles are the

extrapolated diffusivities at the experimental temperatures using the Arrhenius fit of our data.
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least 9 Å
2

within the length of the production run. This value extends beyond the first485

coordination sphere of Si by Si. This distance can be traveled only by allowing for long486

simulation times, which is now tractable on the available computational resources. In487

the large majority our simulations are long enough to show a MSD of Si larger than 9 Å
2
.488

4 Behavior of a Feldspathic Crust During Impacts489

The early part of the Hadean was dominated by impacts as the main phase of the490

accretion unfolded. Many could have generated partial melting and partial freezing episodes491

(e.g. Elkins-Tanton, 2012), which in turn could have led to the formation of some prim-492

itive crust. The giant impact marked the end of this major part of Earth’s history. From493

the subsequent protolunar disk the Earth condensed and differentiated into the central494

liquid core enveloped by the magma ocean, i.e. the molten state of the entire mantle.495

The crust eventually separated from cooling of the magma ocean. In a terrestrial-like496

planet, even if we cannot know precisely what would be the extent of the crust nor the497

temperature at the surface of the proto-planet, feldspars must have been one of the ma-498

jor components of this crust, because of their buoyancy and their early position in the499

crystallisation sequence.500

In order to model the behavior of the major alkali feldspathic component of the501

crust during shock as generated by large impacts we build the Hugoniot equations of state,502

using our computed density-pressure-temperature points. Using the computed Hugoniot503

equations of state we can infer the shock state after large impacts for the Earth and the504

Moon crusts using the impedance match method (Forbes, 2012) presented in Figure 14505

(a).506

We consider three possible initial thermal states, which we denote as cold, warm507

and hot; for the cold state we further consider three densities at ambient pressure, cor-508

responding to the range found in the continental crust. The Hugoniot equations of state509

obtained for the different initial states are represented in Figs. 14 (b,c).510

For the first scenario, temperatures are considered to be close to the ambient tem-511

perature of today. This case is relevant for shock experiments or crustal impacts on cold512

astronomical bodies, for example depleted of atmosphere. The crust is solid, made of feldspar513

crystals. As an extreme case, we infer a thickness of up to 50 km (current values are an514

average of about 30 km for the Earth and about 50 km on the Moon (Taylor & McLen-515

nan, 2008)). According to the estimated variations of the pressure as a function of depth516

inside terrestrial planets (Warren, 1985), the pressure at the bottom of such a crust would517

be less than 2 GPa. This is translated in densities in the 2.5–2.7 g cm−3 range for the two518

feldspars. We consider three density points in this range, at 2.5, 2.6, and 2.7 g cm−3 and519

model the initial state using standard static calculations on ideal triclinic feldspar crys-520

tals. We find that the thickness of the crust or the possible presence of a shallow atmo-521

sphere have a weak effect on the Hugoniot equations of state (blue curves and areas in522

Figs. 14 b,c).523

For the second scenario, we assume the surface temperature to be above the melt-524

ing temperature of feldspars, as if a magma ocean has just crystallized. The melting tem-525

perature of feldspar varies with the composition. It ranges from 1383 K for Na compo-526

sition to 1823 K for Ca composition (Bowen, 1913), and is around 1473 K for K end-member527

(Lange, 2007). We choose to use 1932 K as initial temperature in order to compare our528

results with those obtained experimentally by Asimow and Ahrens (2010) on anorthite.529

This scenario is particularly relevant for the crystallization of the Moon. In a dry lunar530

magma ocean, feldspars float whereas they sink in a terrestrial wet magma ocean (Taylor,531

1982). For this case the Hugoniot curve lies at higher temperatures and pressures than532

in the previous case (orange curves and area in Figs. 14 b,c).533
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For the third scenario, temperatures are similar to the surface of a hot magma ocean,534

as covered for example by a thick silicate atmosphere. The density of a liquid feldspar535

is much lower than its corresponding solid form. This effect combined with the thermal536

expansion of liquids leads to a density of 2.26 g cm−3 at a temperature of 3000 K in the537

case of the K end-member (Lange, 2007). The calculated Hugoniot line is the highest538

in both temperature and pressure from all the three cases (red curves and area in Figs. 14539

b,c).540

Up to 5000 K the two feldspars have similar Hugoniot equations of state. At higher541

temperatures the pressure along the Hugoniot of the K-feldspar deviates by up to 75 GPa542

above that of the Na-feldspar and the temperature by about 2000 K above that of the543

Na-feldspar. For both feldspars, the initial temperature has weak influence on the final544

temperature and pressure, but decreasing the initial density leads to considerably higher545

Hugoniot temperatures and lower pressures. We do not specifically calculate the Hugo-546

niot equations of state beyond 20 000 K since the pseudopotentials are missing electronic547

states that might be occupied at such high temperatures. However we are able to pro-548

vide an extrapolated estimate based on the computed lower temperatures (see Tables S1549

and S2 in supplementary).550

For the impedance match method we make the approximation of planar waves gen-551

erated by the impacts, which propagate in the two bodies after the initial shock. Then552

equating the pressure in the dynamic impactor and the static target yields the peak shock553

conditions.554

We choose velocities for the impactor of 12.9, 15.2 and 18.1 km s−1 for the impact555

with the Earth and 8.3, 11.5 and 15.2 km s−1 for the impact with the Moon. These val-556

ues correspond respectively to the first, second and third quartile of the Earth and Moon557

impactor velocities obtained on a basis of 1487 impacts generated for the Earth in the558

work of Raymond et al. (2013) on planetary impacts during the late veneer (personal com-559

munication). We employ the formalism from Raymond et al. (2013) (Eq. 3, 4 and 5) to560

compute the two-body escape velocities along with the impact velocities on the Moon.561

We consider all the impactors to have a density of 3.0 g cm−3 regardless of their possi-562

ble composition, as in Raymond et al. (2013), and 0 K temperature.563

We obtain the peak shock conditions by intersecting the cold Hugoniot of the im-564

pactor with the various Hugoniot equations of the cold, hot, or molten feldspar crust (Fig-565

ure 14 a). The results are shown in Figure 14 (b,c) for the various possible thermal and566

dynamical scenarios for both the target and the impactor (for numerical values see Ta-567

bles S3 and S4 in supplementary).568

Our results show that for velocity impacts lower than about 10 km s−1 in a cold crust569

the peak temperatures would remain below 4500 K and pressures below about 100 GPa;570

at these conditions the crust would enter a pre-melting regime or might even melt. At571

impact velocities larger than 10 km s−1 but still in a cold crust, the peak conditions would572

exceed 7500 K in temperature and about 200 GPa in pressure. This suggests that the peak573

conditions of the impacts that produced the large basins on the Moon were energetic enough574

to have brought the crust into supercritical state. The lava then condensed along the liquid-575

vapor equilibrium lines, which implies that a large part of the volatile components would576

have been lost into space.577

In the case of early Earth, hot crust or local magma ponds likely existed and im-578

pacts into these structures would have had a very different outcome. In this case the tem-579

peratures can reach between 10 000 K and up to 30 000 K depending on the impactor ve-580

locity. At these conditions the integrity of the crust would be completely erased, as all581

materials would melt and reach supercritical state. The crust would then be integral part582

of the protolunar disk, bringing a silica- and alkali-rich contribution. This was the case583

of the Giant Impact.584
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Figure 14. Peak shock conditions are obtained at the intersection between the cold Hugoniot

curve of the impactor and the Hugoniot curves of the crust (a). For the crust we consider various

initial temperatures and densities, represented by different colors. We consider several possible

impactor velocities. The peak conditions are then represented with different symbol shapes in

several projections: (b) temperature-density and (c) pressure-temperature. Open and filled sym-

bols for the K and Na-feldspar respectively. Numerical values for the Hugoniot curves and peak

shock condition are available in supplementary, Tables S1, S2, S3, S4.
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5 Conclusions585

We computed the critical point of alkali feldspars, using first-principles molecu-586

lar dynamics calculations. We find that two critical points lie at similar thermodynamic587

conditions: 0.5-0.8 g cm−3 and 5500–6000 K range for the Na-feldspar, 0.5–0.9 g cm−3 and588

5000–5500 K range for the K-feldspar.589

We determine a number of physical properties of the Na- and K- fluids and find590

them remarkably similar. The speciation shows increasing coordination to be the favorite591

mechanism for accommodating compression. At low pressure, the melt is dominated by592

polymerized silica and alumina tetrahedra; a five-fold coordination component is already593

present at 0 GPa. As pressure increases, above about 10 GPa, SiO6 and AlO6 appear in594

the melt. Their lifetime is on the order of 30 fs at 3000 K and decreases drastically down595

to 15 fs at 6000 K. SiO6 becomes the dominant silica species above 70 GPa at 3000 K and596

50 GPa at 6000 K. SiO7 species appear at around 40 GPa at 6000 K. In general Al shows597

a larger coordination than Si at any given pressures and temperatures.598

Our FPMD simulation suggest that there is potential degassing of O2 from the sil-599

icate melt starting between 4000 and 4500 K independently of the composition of the melt.600

They also shows that the vaporization at constant temperature is incongruent, the gas601

being dominated by free Na and K cations and then, second in importance, small volatile602

species like O2, SiO, and SiO2. Vaporization leaves behind a melt that is enriched in Al603

and Si.604

Compared to other available rock-forming minerals, we find that both Na- and K-605

feldspars have critical temperatures located in the estimated range for silica, and below606

the critical temperature of MgSiO3. At the moment of a giant impact, materials can at-607

tain much higher temperatures, as observed in our Hugoniot equations of state, reach-608

ing a complete supercritical phase. Upon cooling of the disk, the MgSiO3 fluid would609

be the first to hit the liquid-vapor dome if allowed to decompress, and start to separate610

into two phases, liquid and vapor. The Na-feldspar, closely followed by the K-feldspar,611

will remain in the supercritical state for a longer time. When these phases hit the liquid-612

vapor dome they would exhibit a strong chemical incongruent behavior and enrich the613

gas in alkalis.614

Finally, our simulations suggest that impacts on a cold crust could melt the crust615

and lead to the formation of local magma lakes, like on the Moon. However, large and616

very large impacts on warm or even molten crust could have pushed the temperature in617

the first stages of the protolunar disk to extreme values, on the order of 20 000 K–30 000 K.618

In this case previous giant impact simulations that consider hot or even molten initial619

states for the proto-Earth might need to be revisited using these new Hugoniot equa-620

tions of state.621
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