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Thèse de doctorat de l’Institut Polytechnique de Paris
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Professeur, Università di Siena Co-directeur de thèse
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Abstract

In recent years, there has been an increasing involvement of artificial intelligence and ma-
chine learning (ML) in countless aspects of our daily lives. In this PhD thesis, we study
how notions of information theory and ML can be used to better measure and understand
the information leaked by data and / or models, and to design solutions to protect the privacy
of the shared information.

We first explore the application of ML to estimate the information leakage of a system.
We consider a black-box scenario where the system’s internals are either unknown, or too
complicated to analyze, and the only available information are pairs of input-output data
samples. Previous works focused on counting the frequencies to estimate the input-output
conditional probabilities (frequentist approach), however this method is not accurate when
the domain of possible outputs is large. To overcome this difficulty, the estimation of the
Bayes error of the ideal classifier was recently investigated using ML models and it has
been shown to be more accurate thanks to the ability of those models to learn the input-
output correspondence. However, the Bayes vulnerability is only suitable to describe one-
try attacks. A more general and flexible measure of leakage is the g-vulnerability, which
encompasses several different types of adversaries, with different goals and capabilities. We
therefore propose a novel ML based approach, that relies on data preprocessing, to perform
black-box estimation of the g-vulnerability, formally studying the learnability for all data
distributions and evaluating performances in various experimental settings.

In the second part of this thesis, we address the problem of obfuscating sensitive infor-
mation while preserving utility, and we propose a ML approach inspired by the generative
adversarial networks paradigm. The idea is to set up two nets: the generator, that tries to
produce an optimal obfuscation mechanism to protect the data, and the classifier, that tries
to de-obfuscate the data. By letting the two nets compete against each other, the mechanism
improves its degree of protection, until an equilibrium is reached. We apply our method
to the case of location privacy, and we perform experiments on synthetic data and on real
data from the Gowalla dataset. The performance of the obtained obfuscation mechanism is
evaluated in terms of the Bayes error, which represents the strongest possible adversary.

Finally, we consider that, in classification problems, we try to predict classes observing
the values of the features that represent the input samples. Classes and features’ values can
be considered respectively as secret input and observable outputs of a system. Therefore,
measuring the leakage of such a system is a strategy to tell the most and least informative
features apart. Information theory can be considered a useful concept for this task, as the
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prediction power stems from the correlation, i.e., the mutual information, between features
and labels. We compare the Shannon entropy based mutual information to the Rényi min-
entropy based one, both from the theoretical and experimental point of view showing that, in
general, the two approaches are incomparable, in the sense that, depending on the considered
dataset, sometimes the Shannon entropy based method outperforms the Rényi min-entropy
based one and sometimes the opposite occurs.



Résumé

Ces dernières années, l’intelligence artificielle et l’apprentissage machine (ML) ont été de
plus en plus présents dans d’innombrables aspects de notre vie quotidienne. Dans cette thèse
de doctorat, nous étudions comment les notions de théorie de l’information et de ML peuvent
être utilisées pour mieux mesurer et comprendre les informations divulguées par les données
et/ou les modèles, et pour concevoir des solutions visant à protéger la confidentialité des
informations partagées.

Nous explorons d’abord l’application du ML pour estimer l’information leakage d’un
système. Nous envisageons un scénario black-box dans lequel les éléments internes du sys-
tème sont inconnus, ou trop compliqués à analyser, et les seules informations disponibles
sont des paires de données input-output. Les travaux précédents se sont concentrés sur le
comptage des fréquences pour estimer les probabilités conditionnelles d’input-output (fre-
quentist approach), cependant cette méthode n’est pas précise lorsque le domaine des out-
puts possibles est large. Pour surmonter cette difficulté, l’estimation par ML de l’erreur du
classificateur idéal (Bayes) a récemment été étudiée et sa précision supérieure, grâce à la ca-
pacité des modèles à apprendre la correspondance input-output, a été démontré. Cependant,
la Bayes vulnerability ne convient que pour décrire des attaques one-try. Une mesure plus
générale est la g-vulnerability, qui englobe plusieurs types d’adversaires, avec des objectifs
et des capacités différents. Nous proposons donc une nouvelle approche basée sur la ML,
qui repose sur le pre-processing des données, pour effectuer une estimation black-box de la
g-vulnerability, en étudiant formellement la capacité d’apprentissage pour toutes les distri-
butions de données et en évaluant les performances dans divers contextes expérimentaux.

Dans la deuxième partie de cette thèse, nous abordons le problème de l’obscurcissement
des informations sensibles tout en préservant leur utilité, et nous proposons une approche de
ML inspirée du paradigme generative adversarial nets. L’idée est de mettre en place deux ré-
seaux : le générateur, qui essaie de produire un mécanisme d’obscurcissement optimal pour
protéger les données, et le classificateur, qui essaie de désobstruer les données. En laissant
les deux réseaux se concurrencer, le mécanisme améliore son degré de protection, jusqu’à
ce qu’un équilibre soit atteint. Nous appliquons notre méthode au cas de la location privacy,
et nous effectuons des expériences sur des données synthétiques et sur des données réelles
provenant de le dataset Gowalla. La performance du mécanisme d’obfuscation obtenu est
évaluée en fonction de l’erreur de Bayes, qui représente l’adversaire le plus fort possible.

Enfin, nous considérons que, dans les problèmes de classification, nous essayons de pré-
voir les classes en observant les valeurs des caractéristiques qui représentent les échantillons
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d’entrée. Les valeurs des classes et des caractéristiques peuvent être considérées respective-
ment comme des inputs secrètes et des outputs observables d’un système. Par conséquent,
la mesure de information leakage d’un tel système est une stratégie permettant de distin-
guer les caractéristiques les plus et les moins informatives. La théorie de l’information peut
être considérée comme un concept utile pour cette tâche, car le pouvoir de prédiction dé-
coule de la corrélation, c’est-à-dire de l’information mutuelle, entre les features et les labels.
Nous comparons l’information mutuelle basée sur l’entropie de Shannon à celle basée sur
la min-entropy de Rényi, tant du point de vue théorique qu’expérimental, en montrant qu’en
général, les deux approches sont incomparables, dans le sens où, selon l’ensemble de don-
nées considéré, parfois la méthode basée sur l’entropie de Shannon surpasse celle basée sur
la min-entropie de Rényi et parfois le contraire se produit.
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CHAPTER 1
Introduction

1.1 Motivation

Nowadays, in the so called big data era, information represents one of the most valuable
assets. Improvements in data storage resources, advancements in communication and in-
formation sharing infrastructures, together with the development of increasingly powerful
hardware are the three pillars that have turned our society into a data-driven one.

The growth in the science and technology related to information storage has been expo-
nential since mankind’s first steps into this field. Let us consider that, while it took nearly
200 years from the first prototype of punching cards to their full adoption as the backbone
of the American industrial and governmental communications in the 1950s, within the next
forty years, both magnetic (tapes, floppy discs, etc.) and optical (compact disks, etc.) mem-
ory supports begun to take turns on the market. In the years 2000s flash drives have repre-
sented the best compromise between storage capabilities and compact dimensions. Today,
cloud storage services are gaining more and more ground, providing three main benefits: ac-
cessibility from anywhere, low risk of system failure, and the possibility to use and deploy
online services.

Moreover, the development of the internet, and especially the rise of the internet of things
(IoT), has been contributing to the birth of the so called “smart world” which is consistently
data-centered and relies on fast and stable connection infrastructures. Consequently, many
online services have been growing at a fast pace in the last decade. For instance, GitHub,
the famous repository-based cloud storage service, registered 10 million new users in 2019
alone1. Apple Music, one of the most popular music streaming services, has gone from
6.5 millions subscriptions in Q4 2015 to 68 millions in Q4 20192. Netflix, the worldwide
renowned movie and TV series streaming service, has grown from 21.6 millions subscribers
in Q1 2012 to more than 180 millions in Q1 20203. These are only some of the many possible

1According to a report on “The state of the octaverse”, GitHub official blog.
2According to a worldwide survey published in April 2020 available at https://www.statista.com/statistics/

604959/number-of-apple-music-subscribers/.
3According to a worldwide survey published in April 2020 available at https://www.statista.com/statistics/

250934/quarterly-number-of-netflix-streaming-subscribers-worldwide/.

1

https://www.statista.com/statistics/604959/number-of-apple-music-subscribers/
https://www.statista.com/statistics/604959/number-of-apple-music-subscribers/
https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-subscribers-worldwide/
https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-subscribers-worldwide/


2 Chapter 1. Introduction

examples, but they are up to the point in showing how the development of the internet
infrastructures has made it possible for services in the cloud to thrive. The new challenge
for the years to come is the large scale deployment of 5G connectivity infrastructures that
will allow us to move large amounts of data even faster than what we currently can4.

Last but not least, the increasing power, availability and affordability of hardware ded-
icated to computation tasks (CPUs, GPUs, FPGAs, etc.) have been fundamental to push
forward groundbreaking fields like machine learning (ML). Back in 1965, when Moore
published his forecast on the yearly increase of number of transitors in the integrated cir-
cuits in [Moo65], it was clear that new discoveries would improve the level of technology
and, in turn, this would make computational resources cheaper and sparkle new research as
well.

However, if on the one hand relying on a wide variety of online services is evidently
a benefit, on the other hand, threats to the privacy of users and their data have gradually
become an uncomfortable reality that customers and service providers must face more and
more frequently. In fact, once personal data is shared, it is no more exclusive property of the
users and service providers must be trusted with handling potentially sensitive information.
Therefore, companies that offer cloud services must provide guarantees such as the fact
that data will not be sold without the owner’s consent and also protection against malicious
hacks. Lately, malicious attacks to privacy have become quite frequent and some has lead
to huge scandals. Just to mention one, let us remind the case related to Facebook’s privacy
protection failure that in 2018 allowed Cambridge Analytica, a political consulting firm, to
harvest data from millions of Facebook users’ accounts data without consent. Prior to that,
Facebook’s weakness in preserving users’ privacy had already been exposed by researchers
at MIT who, back in 2005, managed to crawl and download personal data from several
profiles even before the company had decided to allow official search engines to surf through
their accounts. On top of this, similar scandals have involved many other big tech companies
all around the world: Linked In in 2012, Yahoo in 2013, and Sina Weibo in 2020 just to
mention a few.

Computer scientists have been focusing on exposing threats to privacy and weaknesses
in privacy protection mechanisms. Attacks can be divided into two main categories: attacks
against users’ identities and attacks against users’ data. The former aim at unveiling the
users’ real identities by linking the data related to an individual to real profiles. For instance,
de-anonymization attacks fall in this category and one example is described in [NS08] where
a de-anonymization algorithm is applied in order to link anonymous records (movie ratings
information of 500,000 individuals contained in the Netflix Prize Dataset) to known Netflix
users, using the information provided by IMDB.com. Attacks against users’ data aim at
increasing the attackers’ accuracy when guessing real data from the modified version that
is released by some protection mechanism. One example, related to location privacy, is
retrieving the real location of a user from an obfuscated reported one.

4Experts estimate that the 5G connection will allow a top speed of approximately 10 Gbps, against the
current state-of-the-art represented by LTE which tops at 300 Mbit/s (cfr. https://www.telekom.com/en/compa
ny/details/5g-speed-is-data-transmission-in-real-time-544498).

https://www.telekom.com/en/company/details/5g-speed-is-data-transmission-in-real-time-544498
https://www.telekom.com/en/company/details/5g-speed-is-data-transmission-in-real-time-544498
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Lately, the application of ML to many fields has exacerbated the problem by proving
that very powerful attacks can be modeled, especially via deep learning (cfr. [PSB`18]).
Moreover, due to the fact that ML models are the engines under the hood of many cloud
services, new attacks are possible. For instance, reconstruction attacks [GGH12] aim to
retrieve the original data from the information which has been memorized in trained models.
Model inversion attacks [FJR15] aim at collecting knowledge about the original data by
observing the way trained models respond to generated samples. Membership inference
attacks [SSSS17, PTC18, HMDC19, MSCS19] aim to determine whether a certain sample
was in the training set used to train some observable models.

More recently, a new research direction has been gaining ground, i.e. the study of how
notions of information theory and ML can be used to better measure and understand the in-
formation leaked by data and / or models, and to help design solutions to protect the privacy
of the shared information. This thesis represents a contribution along this line of research.
In particular, we focus on three aspects: how we can use ML to estimate the information
leakage of a system, how we can use information theory notions to design “smart” privacy
protection mechanisms and, finally, how measuring leakage can inform us about which fea-
tures of the system are more informative from the point of view of the learning.

1.2 Leakage estimation

The information leakage of a system is a fundamental concern of computer security, and
measuring the amount of sensitive information that an adversary can obtain by observing the
outputs of a given system is of the utmost importance to understand whether such leakage
can be tolerated or should be considered a major security flaw.

One important aspect to keep in mind when measuring leakage is the kind of attack that
we want to model. In the seminal paper [KB07], the authors identified various kinds of
adversaries and showed that they can be captured by known entropy measures. For instance,
the Shannon entropy represents the expected number of binary queries that the adversary
must submit to the system in order to fully determine the value of the secret.

In [Smi09], the Rényi min-entropy has been proposed to measure the system’s leakage
when the attacker has only one try at its disposal and attempts to make its best guess. The
Rényi min-entropy is the logarithm of the Bayes vulnerability, which is the expected proba-
bility of success of the adversary that has exactly one attempt at his disposal (one-try), and
tries to maximize the chance of guessing the right value of the secret. The Bayes vulnerabil-
ity is the converse of the Bayes error, which was already proposed as a measure of leakage
in [CPP08b].

A more general leakage measure should encompass many different adversaries, describ-
ing the attackers by means of a parametric function. An attempt to do so is represented by
the work in [ACPS12], where the authors generalized the notion of Bayes vulnerability to
that of g-vulnerability, by introducing a parametric term, i.e. the gain function g, that de-
scribes the adversary’s payoff. The g-vulnerability is the expected gain of the adversary in
a one-try attack. As we will explain in section 2.1, the notion of g-vulnerability implies a
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notion of leakage, the g-leakage, which is directly derived from it (provided some a priori
knowledge).

Much research effort has been dedicated to studying and proposing solutions to the
problem of estimating the information leakage of a system, see for instance the works
[CHM01, KB07, CPP08a, Bor09, Smi09, ACPS12, ACM`14, CFP19], just to mention a few.
So far, this area of research, known as quantitative information flow (QIF), has mainly fo-
cused on the so-called white-box scenario. Namely, all these works assume that the system’s
channel, i.e. the conditional probabilities of the outputs (observables) given the inputs (se-
crets), is known, or can be computed by analyzing the system’s internals. However, the
white-box assumption is not always realistic. In fact, sometimes the system is unknown, or
anyway it is too complex, so that an analytic computation becomes hard if not impossible
to perform. Therefore, it is important to consider also a black-box approach where we only
assume the availability of a finite set of input-output pairs generated by the system, possibly
obtained by submitting queries or provided by a third party.

The estimation of the internal probabilities of a system’s channel have been investigated
in [CG11] and [CKN14] via a frequentist paradigm, i.e. relying on the computation of the
frequencies of the outputs given some inputs. However, this approach does not scale to
applications for which the output space is very large since a prohibitively large number of
samples would be necessary to achieve good results and fails on continuous alphabets unless
some strong assumption on the distributions are made. In order to overcome this limitation,
the authors of [CCP19] exploited the fact that ML algorithms provide a better scalability to
black-box measurements. Intuitively, the advantage of the ML approach over the frequentist
one is its generalization power: while the frequentist method can only draw conclusions
based on counts on the available samples, ML is able to extrapolate from the samples and
provide better prediction (generalization) for the rest of the universe.

In the context of ML classification problems the classes can be considered secrets and the
observables are represented by features (descriptors). Measuring a system’s leakage can be
useful to understand which features, among those which can be observed by an adversary,
reveal more information about the classes. We could use this knowledge to select which
features a data obfuscation mechanism should mainly focus on, to avoid adding noise on de-
scriptors which already do not reveal much about the secrets. Otherwise this could also be
used to understand which features, within a set of sensitive ones, mostly influences an unfair
decision when those decisions are delegated to some automatic algorithm (cfr. [ABG`19]).
A problem of different nature, which can be addressed and solved in a similar way, is that of
data dimensionality reduction in classification problems. Among others approaches, filter
methods, which reduce the amount of features by choosing a subset of the initially available
ones, have been exploited in [Bat94, YM99, Fle04, PLD05, BHS15, BPZL12, VE14], just to
mention some of the most important contributions on the topic. A straightforward way to
measure the leakage of information between the classes and a set of features is computing
their mutual information, which can be defined trough the notion of entropy already intro-
duced at the beginning of this section. The idea is that the smaller is the conditional (aka
residual) entropy of the classes given a certain set of features, the more likely the classi-
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fication of a sample is to be correct. In principles, the set of features that maximizes the
mutual information with the secrets is also the set on which one should focus when building
a system for privacy protection.

1.3 Privacy mechanisms design

In the previous section, we have mentioned that measuring how much information is leaked
by a given system represents a very important step to asses whether we can tolerate it or
whether we should upgrade the current system to a more secure one. As we have seen so
far, information theory provides a wide set of metrics to measure leakage with respect to
different attack scenarios. Indeed, it is possible to model several adversaries and estimate
how much information each one of them can extract from the output released by the system.
We claim that this knowledge can be used to build and test privacy protection mechanisms so
to come up with solutions that can reduce the leakage against various threats. Many research
contributions have focused on mechanisms that create and release an obfuscated version of
the original data, which reduces the leakage with respect to the sensitive information that we
wish to conceal. Although, it is fundamental for the privacy mechanisms not to completely
destroy the information conveyed by the original data, in order to maintain a reasonably
good quality of the provided service (QoS). In other words, the utility loss of the designed
obfuscation mechanisms should remain below a given threshold.

One straightforward way to build a mechanism that maximizes privacy and maintains
a certain amount of utility is that of modeling the former as an objective function and the
latter as a set of constraints. If objective function and constraints are linear this can be
formulated in terms of linear programming. The works in [STT`12a, BCP14, OTPG17,
STT17] are based on this idea. On the one hand, if feasible solutions are available and
enough computational resources are available, linear programming, provides the optimal
mechanism(s). On the other hand, the number of involved variables is often huge and the
size of the corresponding linear programs limits the scalability of these methods to real
world applications.

In section 1.2, we have also mentioned that ML can provide better models than those
based on the system’s internal probabilities empirical estimation. Intuitively, ML models
can also be used to build privacy protection mechanisms. Recently, a new line of research
has been proposing solutions based on the efficient optimization process of neural networks
(the gradient descent) to retrieve a model that minimizes a loss function which encom-
passes both privacy and utility requirements. Among other works, [AA16,Ham17,HKC`17,
TWI17,RLR18] rely on the notion of adversarial networks competing in a mini-max game to
build privacy-protection mechanisms. In [JG18] an adversarial network framework is used
to design privacy a protection mechanism against attribute inference attacks. The authors
of [HO18] consider multi-party machine learning, and use adversarial training to mitigate
privacy-related attacks such as party membership inference of individual records. The au-
thors of [ES16] propose the minimax technique to remove private information from personal
images. using a stochastic gradient alternate min-max optimizer. The authors of [RLR18]
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consider personal images, and in particular the problem of preventing their re-identification
while preserving their utility.

Other popular privacy obfuscation mechanisms are the results of studies concerning top-
ics such as differential privacy (DP) [DMNS06], local differential privacy (LDP) [DJW13],
and d-privacy [CABP13]. Although some of these mechanisms have been proved to be op-
timal against a specific kind of queries (cfr. geometric mechanism and counting queries),
their main characteristic is that they are based on worst-case measures, ant therefore, they
are concerned with the protection of each individual datum, which, in general, makes it
harder to directly control the privacy-utility trade-off.

1.4 Goals

In this work, we are interested in investigating the application of information theory and ML
notions in order to tackle problems related to the fields of privacy and security. In particular,
we are interested in estimating the amount of information leaked by a given system, and
designing a protection mechanism which, by means of controlled noise injection, protects
sensitive data releasing an obfuscated version while maintaining the trade-off between the
obtained privacy and the required utility.

To address the first point, and inspired by the novelties introduced by [CCP19], we aim
at extending the leakage estimation to a framework that is concerned with a more general
definition of adversary than just the Bayesian one. In order to do so, we aim at finding a
way to estimate the g-leakage of a system and reducing this problem to that of approximat-
ing the error of the Bayes classifier without estimating the channel’s internal conditional
probabilities.

As to the second problem, inspired by previous work concerned with the use of adver-
sarial networks in privacy preserving applications, we aim at building a framework in which
a generative network enforces privacy protection via obfuscation by releasing a new version
of the original data according to a new convenient distribution while also taking care of
respecting the utility constraint imposed during the learning phase.

Finally, we consider the setting of a typical classification problem framework where the
knowledge about classes comes from observing features. We focus on the use of the mutual
information as a means to sort the features from the one that leaks the most information
about the right classification down to the least informative one. We aim at evaluating the
performances of a greedy algorithm that provides the aforementioned sort and is based once
on the notion of Shannon entropy and once on the notion of Rényi min-entropy, comparing
the outputs when the two different notions are applied. If on the one side we consider the
framework of the dimensionality reduction problem in ML, on the other side one can exploit
such an algorithm to see which features require more attention from the privacy defense
standpoint, i.e. which of them leak the most about the classes.
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1.5 Plan of the thesis and contributions

In this section we present a brief description of the content of the following chapters, high-
lighting the main contributions in each of them.

In chapter 2 we provide a review of the information theory and QIF notions that will be
used later on. In particular, we focus on the general definitions, leaving the specific case
related details to later on when they will be needed. We briefly recall notions about ML as
well.

In chapter 3 we propose a ML learning based solution for estimating the information
leakage of a system. Given its flexibility and capacity to encompass many different scenar-
ios of attacks against privacy, we consider the problem of estimating the g-vulnerability of a
system. We provide statistical guarantees showing the learnability of the g-vulnerability for
all distributions and we derive distribution-free bounds on the accuracy of its estimation. We
introduce two pre-processing methods that we use in the process of reducing the problem to
that of approximating the Bayes classifier, so that any universally consistent ML algorithm
can be used for the purpose. This reduction essentially takes into account the impact of the
adversary’s gain function in the generation of the training data. The last part of this chap-
ter shows several practical applications of the proposed estimation framework to different
privacy attacks scenario.

Chapter 4 is concerned with the design of a machine learning based privacy protection
mechanism. We propose a general approach based on adversarial nets to generate obfus-
cation mechanisms with a good privacy utility trade-off that can be directly controlled at
training time. The underlining idea is that reducing the mutual information between the
data released by the protection mechanism and the corresponding labels would reduce the
leakage of what an adversary can observe. For the experimental part, we focus on the loca-
tion privacy scenario, providing results for application to both synthetic and real data when
different utility constraints are required. We evaluate the privacy of the mechanism in terms
of the Bayes error, which represents the strongest possible adversary, and we compare the
privacy-utility trade-off of our method with that of the planar Laplace mechanism and the
optimal linear programming based solution (where possible).

In chapter 5, we present a framework to detect the most meaningful features in classifi-
cation problems where the aim is to predict classes observing the values of the features that
represent the input samples. Classes and features’ values can be considered respectively as
secret input and observable outputs of a system. Therefore, measuring the leakage of such a
system is a strategy to tell the most and least informative features apart. Information theory
can be considered a useful concept for this task, as the prediction power stems from the
correlation, i.e., the mutual information, between features and labels. Many algorithms for
feature selection in the literature have adopted the Shannon entropy based mutual informa-
tion. We explore the possibility of using Rényi min-entropy instead, given its strict relation
to the notion of Bayes error. We prove that in general the two approaches are incomparable,
in the sense that we show that it is possible to build datasets on which the Rényi-based al-
gorithm performs better than the corresponding Shannon-based one, and datasets on which
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the opposite occurs. We run experiments on three benchmark datasets and we observe that,
by selecting the most informative features through the Rényi min-entropy, we achieve better
classification performances.

Finally, in chapter 6, we present the concluding remarks of this work.

Publications from this dissertation

The content of this dissertation is based on the following publications:

• Chapter 3 is based on the results presented in Estimating g-leakage via machine
learning [RCPP20], that will appear in the proceedings of the 27th ACM SIGSAC
Conference on Computer and Communications Security (CCS 2020).

• Chapter 4 is based on the results presented in Generating optimal privacy-protection
mechanisms via machine learning [RCP20], that appeared in the proceedings of the
33rd IEEE Computer Security Foundations Symposium (CSF 2020). A short ver-
sion of this work has been presented at the 2nd Privacy Preserving Machine Learning
Workshop (PPML 2019) co-located with 26th ACM SIGSAC Conference on Computer
and Communications Security (CCS 2019).

• Chapter 5 is based on the results presented in Feature selection with Rényi min-
entropy [PR18], that appeared in the proceedings of the 8th International Associa-
tion for Pattern Recognition TC3 Workshop on Artificial Neural Networks in Pattern
Recognition (ANNPR 2018).

Other publications

Other works I have contributed to during my :

• Modern Applications of Game-Theoretic Principles (Invited Paper), that appeared
in the proceedings of the 31st International Conference on Concurrency Theory (CON-
CUR 2020).

• Derivation of Constraints from Machine Learning Models and Applications to
Security and Privacy that will appear in the proceedings of Recent Developments of
the Design and Implementation of Programming Languages 2020 (DIP 2020).



CHAPTER 2
Preliminaries

In this chapter, we review some useful notions from QIF, such as g-leakage and g-vulnerability.
We then move on to recalling classical information theory notions such as Shannon entropy,
Rényi min-entropy, Bayes risk and mutual information. In doing so, we also introduce some
notation that will be used throughout the rest of this work, reserving the right to add specific
notation details on a case-by-case basis, where needed, in the following chapters. At the
end of this chapter we briefly discuss some ML related notions, in particular artificial neural
networks (ANN) and k-nearest neighbors (k-NN) algorithm.

2.1 Quantitative information flow notions: g-leakage and g-vulnerability

Let X be a set of secrets and Y a set of observations. The adversary’s initial knowledge
about the secrets is modeled by a prior distribution PpX q (namely PX , and often referred to
as ⇡). A system is modeled as a probabilistic channel from X to Y , described by a stochastic
matrix C, whose elements Cxy give the probability to observe y P Y when the input is x P X
(namely PY |X). Running C with input ⇡ induces a joint distribution on X ˆ Y denoted by
⇡õC.

In the g-leakage framework [ACPS12] an adversary is described by a set W of guesses
(or actions) that it can make about the secret, and by a gain function gpw, xq expressing
the gain of selecting the guess w when the real secret is x. The prior g-vulnerability is the
expected gain of an optimal guess, given a prior distribution on secrets:

Vgp⇡q
def
“ max

wPW

ÿ

xPX
⇡x ¨ gpw , x q . (2.1)

In the posterior case, the adversary observes the output of the system which allows to im-
prove its guess. Its expected gain is given by the posterior g-vulnerability, according to

Vgp⇡,C q
def
“

ÿ

yPY
max
wPW

ÿ

xPX
⇡x ¨ Cxy ¨ gpw , x q . (2.2)

9
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Finally, the multiplicative1 and additive g-leakage quantify how much a specific channel C
increases the vulnerability of the system:

LM
g p⇡,C q

def
“

Vgp⇡,C q

Vgp⇡q
, LA

g p⇡,C q
def
“ Vgp⇡,C q ´ Vgp⇡q . (2.3)

The choice of the gain function g allows to model a variety of different adversarial sce-
narios. The simplest case is the identity gain function, defined as

gidpw, xq “

#
1, iff x “ w

0, otherwise
(2.4)

and given by W “ X . This gain function models an adversary that tries to guess the secret
exactly in one try; Vgid

is the Bayes-vulnerability, which corresponds to the complement of
the Bayes error (cfr. [ACPS12]).

However, the interest in the g-vulnerability lies on the fact that many more adversarial
scenarios can be captured by a proper choice of g. For instance, taking W “ X k with

gidpw, xq “

#
1, iff x P w

0, otherwise
(2.5)

models an adversary that tries to guess the secret correctly in k tries. Moreover, guessing the
secret approximately can be easily expressed by constructing g from a metric d on X ; this
is a standard approach in the area of location privacy [STBH11,STT`12b] where gpw, xq is
taken to be inversely proportional to the Euclidean distance between w and x. Several other
gain functions are discussed in [ACPS12], while [ACM`16] shows that any vulnerability
function satisfying basic axioms can be expressed as Vg for a properly constructed g.

Note that, given Vgp⇡, Cq, estimating LM
g p⇡,C q and LA

g p⇡,C q is straightforward, since
Vgp⇡q only depends on the prior (not on the system) and it can be either computed analyti-
cally or estimated from the samples.

2.2 Information theory notions

We are going to we briefly cover some basic notions from the fields of information and
probability theory. i.e. entropy and mutual information. We refer to [CT91] for further
details.

Let X, Y be discrete random variables with respectively n and m possible values: X “

tx1, x2, . . . , xnu and Y “ ty1, y2, . . . , ymu. Let pXp¨q and pY p¨q indicate the probability dis-
tribution associated to X and Y respectively, and let pY,Xp¨, ¨q and pY |Xp¨|¨q indicate the joint

1In the original paper, the multiplicative version of g-leakage was defined as the log of the definition given
here. In recent literature, however, the log is not used anymore. Anyway, the two definitions are equivalent
from the point of view of comparing systems, since log is a monotonic function.
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and the conditional probability distributions, respectively. Namely, pY,Xpx, yq represents the
probability that X “ x and Y “ y, while pY |Xpy|xq represents the probability that Y “ y

given that X “ x. For simplicity, when clear from the context, we will omit the subscript,
and write for instance ppxq instead of pXpxq. Conditional and joint probabilities are related
by the chain rule

ppx, yq “ ppxq ppy|xq,

from which (by the commutativity of ppx, yq) we can derive the Bayes theorem:

ppx|yq “
ppy|xq ppxq

ppyq
.

The Rényi entropies ( [Rén61]) are a family of functions representing the uncertainty as-
sociated to a random variable. Each Rényi entropy is characterized by a non-negative real
number ↵ (order), with ↵ ‰ 1, and is defined as

H↵pXq
def
“

1

1 ´ ↵
log

˜
nÿ

i“1

ppxiq
↵

¸
. (2.6)

If pp¨q is uniform then all the Rényi entropies are equal to log |X|. Otherwise they are weakly
decreasing in ↵. Shannon and min-entropy are particular cases:

↵ Ñ 1 H1pXq “ ´
∞

x
ppxq log ppxq Shannon entropy,

↵ Ñ 8 H8pXq “ ´ logmaxx ppxq min-entropy.

Let H1pX, Y q represent the joint entropy X and Y . Shannon conditional entropy of X given
Y is the average residual entropy of X once Y is known, and it is defined as

H1pX|Y q
def
“ ´

ÿ

xy

ppx, yq log ppx|yq “ H1pX, Y q ´ H1pY q. (2.7)

Shannon mutual information of X and Y represents the correlation of information between
X and Y , and it is defined as

I1pX;Y q
def
“ H1pXq ´ H1pX|Y q “ H1pXq ` H1pY q ´ H1pX, Y q. (2.8)

It is possible to show that I1pX;Y q • 0, with I1pX;Y q “ 0 iff X and Y are independent,
and that I1pX;Y q “ I1pY ;Xq. Finally, Shannon conditional mutual information is defined
as:

I1pX;Y |Zq
def
“ H1pX|Zq ´ H1pX|Y, Zq, (2.9)

In the following chapters, we will use H and I instead of H1 and I1 when the context does
not require for order ↵ “ 1 to be specified.

Recently, some advances in the fields of security and privacy have revived the interest for
the Rényi min-entropy. However, Rényi did not define the conditional min-entropy. There-
fore, there have been various proposals, in particular those in [Ari75], [Sib69], and [Csi95].
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Moreover, [Cac97] defined the conditional min-entropy of X given Y along the lines of con-
ditional Shannon entropy, namely as the expected value of the entropy of X for each given
value of Y . Such definition, however, violates the monotonicity property. Namely, knowing
the value of Y could increase the entropy of X rather than diminishing it.

We use the version of [Smi09]:

H8pX|Y q
def
“ ´ log

ÿ

y

max
x

pppy|xqppxqq. (2.10)

This definition closely corresponds to the Bayes risk, i.e., the expected error when we try to
guess X once we know Y , formally defined as

BpX |Y q
def
“ 1 ´

ÿ

y

ppyq max
x

ppx|yq. (2.11)

The reason behind the importance of this notion is that it models a basic notion of attacker:
the (one-try) eavesdropper. Such attacker tries to infer a secret (e.g., a key, a password, etc.)
from the observable behavior of the system trying to minimize the probability of error.

The Rényi mutual information is defined as:

I8pX;Y q
def
“ H8pXq ´ H8pX|Y q. (2.12)

It is possible to show that I8pX;Y q • 0, and that I8pX;Y q “ 0 if X and Y are independent
(the reverse is not necessarily true). Contrary to Shannon mutual information, I8 is not
symmetric. The conditional mutual information is defined as

I8pX;Y |Zq
def
“ H8pX|Zq ´ H8pX|Y, Zq. (2.13)

2.3 Brief review of machine learning notions

General notions of learning theory

We give here a brief introduction about the learning process and the derivation of the model,
and we will focus on the supervised learning scenario in the context of classification prob-
lems. We describe the basic elements common to all learning algorithms, and to this purpose
we introduce a generic learner model based on a well established statistic framework.

A learning problem is defined by:

• a domain X of objects, represented as a vector of features (aka attributes) that we
would like to classify;

• a set of labels (aka classes) Y;

• a set of training data, i.e., a sequence S “ pp~x1; y1q . . . p~xm; ymqq of pairs in X ˆ Y;
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• a correct labelling function f : X Ñ Y , such that, for all i, yi “ fp~xiq;

• a distribution DX , according to which the samples are generated;

• the prediction rule or hypothesis h : X Ñ Y , that can be used to predict the label of
new domain points;

• a measure of success that quantifies the predictor’s error.

Ideally, the goal of the learning process is to select an h that minimizes the risk, defined as:

LD,f phq
def
“ P~x„D rhp~xq ‰ fp~xqs , (2.14)

which represents the probability (P) of a mismatch between h and f , measured with respect
to the distribution D. The quantity in eq. (2.14) is the error of a specific prediction rule h, or
as referred at in many context, it is its generalization error. This error can be computed on
the training set (training error) or on a test set of samples drawn from the same distribution
as the training set but never seen during the training phase (test error). If the error on
the training data is large, then this usually means that the model is “underfitting” the data
distribution. However, a negligible training error does not necessarily mean that our model
is good. Indeed, if the error on the test set is large, it is likely that the trained model overfits
the training data.

In practice, however, we cannot compute analytically the h that minimizes (2.14), be-
cause we do not have a mathematical description of D. What we can do, instead, is to use
the training set S , that, being generated from D, represents an approximation of it. Then h

is selected so to minimize the empirical risk over m samples, which is defined as:

LSphq
def
“

|ti P rms : hp~xiq ‰ yiu|

m
. (2.15)

This principle is called empirical risk minimization (ERM). The way this minimization is
achieved depends on the specific algorithm, and the function h that is derived is called model.

For an extended discussion of the topic as well as a more complete overview of the
learning problem we refer to [SSBD14, Val84]. For further information about ML and the
most popular algorithms and applications we refer to [GBC16], while for a more theoretical
and statistical background on the learning problem we refer to [DGL96, HTF09].

Artificial neural networks

We provide a short review of the aspects of ANN that are relevant for this work. Since a
thorough discussion would be beyond the scope of this work, we refer to ( [Bis07, GBC16,
HTF01] for an in-depth study. Neural networks represent an attempt to reproduce the be-
havior of the brain’s cells and are usually modeled as directed graphs with weights on the
connections and nodes that forward information through “activation functions”, often intro-
ducing non-linearity (such as sigmoids or soft-max). In particular, we consider an instance
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of learning known as supervised learning, where input samples are provided to the network
model together with target labels (supervision). From the provided data and by means of
iterative updates of the connection weights, the network learns how the data and respective
labels are distributed. The training procedure, known as back-propagation, is an optimiza-
tion problem aimed at minimizing a loss function that quantifies the quality of the network’s
prediction with respect to the data.

Classification problems are a typical example of tasks for which supervised learning
works well. Samples are provided together with target labels which represent the classes
they belong to. A model can be trained using these samples and, later on, it can be used to
predict the class of new samples.

The No Free Lunch theorem (NFL) [Wol96] holds for ANN as it does for all the ML
approaches. Therefore, in general, it cannot be said that ANN are better than other ML
methods. However, it is well known that the NFL can be broken by additional information
on the data or the particular problem we want to tackle, and, nowadays, for most applications
and available data, especially in multidimensional domains, ANN models outperform other
methods and therefore they represent the state of the art.

k-Nearest Neighbors

The k-NN algorithm is one of the simplest algorithms used to classify a new sample given
a training set of samples labelled as belonging to specific classes. This algorithm assumes
that the space of the features is equipped with a notion of distance. The basic idea is the
following: every time we need to classify a new sample, we find the k samples whose
features are closest to those of the new one (nearest neighbors). Once the k nearest neighbors
are selected, a majority vote over their class labels is performed to decide which class should
be assigned to the new sample. For further details, as well as for an extensive analysis of the
topic, we refer to the chapters about k-NN in [HTF01, SSBD14].



CHAPTER 3
Estimating g-Leakage via Machine

Learning

In this chapter, as introduced in section 1.2, we propose a ML based method to perform
black-box estimation of the g-vulnerability of a given system. We refer to section 2.1 for the
mathematical background behind the notions of g-vulnerability and g-leakage which can be
directly derived from the former provided some a priori knowledge about the distribution of
the secrets.

We take inspiration from [CCP19], where ML based leakage estimation has been pro-
posed for the first time. The authors show that the estimates based on ML algorithms tend
to converge to the real value faster than methods based on estimating the internal condi-
tional probabilities counting the frequencies of the outputs given some inputs (frequentist
approach). This happens especially when the space of the observables is large, given the
fact that, while the frequentist methods can only draw conclusions based on counts on the
available samples, ML methods are, in general, able to extrapolate from the samples and pro-
vide better prediction (generalization) for the rest of the universe. The authors rely on the
universally consistent k-NN rule1 and the fact that the error of a classifier selected according
to such a rule can be used for estimating the Bayes risk.

We improve on this by proposing to estimate the g-vulnerability which, given its flexi-
bility, encompasses the concept of Bayes adversary and allows us to model different kinds
of attacks. As anticipated in the introduction to this thesis, the idea is to reduce the problem
to that of approximating the Bayes classifier, so that any universally consistent ML algo-
rithm can be used for the purpose. This reduction essentially takes into account the impact
of the gain function in the generation of the training data, and we propose two methods to
obtain this effect, which we call channel pre-processing and data pre-processing, respec-
tively. We evaluate our approach via experiments on various channels and gain functions. In
order to show the generality of our approach, we use two different ML algorithms, namely
k-NN and ANN, and we compare their performances. The experimental results show that

1The k-NN has the smallest possible probability of error when the number of samples ns Ñ 8, k Ñ 8,
and k{ns Ñ 0. This has been proven in [Sto77].
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Symbol Description
x P X a secret
w P W a guess
y P Y an observable output by the system
X random variable for secrets, it takes values x P X
W random variable for guesses, it takes values w P W
Y random variable for observables, it takes values y P Y
|S| size of a set S
PpSq Distribution over a set of symbols S
H class of learning functions f

⇡, PX prior distribution over the secret space
⇡̂, pPX empirical prior distribution over the secret space
C Channel matrix

⇡õC joint distribution from prior ⇡ and channel C
PXY joint probability distribution
pPXY empirical joint probability distribution
PY |X conditional probability of Y given X

pPY |X empirical conditional probabilities
P probability measure

Er¨s expected value
gpw, xq gain function that takes a guess w and secret x as inputs

G gain matrix of size |W | ˆ |X | according to a specific g

Vg g-vulnerability
V pfq g-vulnerability functional
pVnpfq empirical g-vulnerability functional evaluated on n samples

Table 3.1 – Table of symbols for chapter 3.

our approach provides accurate estimations, and that, as expected, it outperforms by far the
frequentist approach when the observables domain is large.

3.1 Learning g-vulnerability: Statistical Bounds

This section introduces the mathematical problem of learning g-vulnerability. More specif-
ically, we address the problem of characterizing universal learnability in the present frame-
work, and to this end, we derive distribution-free bounds on the accuracy of the estimation,
implying statistical consistence of our estimator. Table 3.1 contains a summary of the most
frequently used symbols in the following sections of this chapter.
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3.1.1 Main definitions

We consider the problem of estimating the g-vulnerability from samples via ML models,
and we show that the analysis of this estimation can be conducted in the general statistical
framework of maximizing an expected functional using observed samples. The idea can be
described using three components:

• A generator of random secrets x P X with |X | † 8, drawn independently from a
fixed but unknown distribution PXpxq;

• a channel that returns an observable y P Y with |Y | † 8 for every input x, according
to a conditional distribution PY |Xpy|xq, also fixed and unknown;

• a learning machine capable of implementing a set of rules f P H, where H denotes
the class of functions f : Y Ñ W and W is the finite set of guesses.

Moreover let us note that
g : W ˆ X Ñ ra, bs (3.1)

for some finite real values a • 0 and b ° a, and X and W are finite sets. The problem of
learning the g-vulnerability is that of choosing the function f : Y Ñ W which maximizes
the functional V pfq, representing the expected gain, defined as:

V pfq
def
“

ÿ

px,yqPXˆY

g
`
fpyq, x

˘
PXY px, yq. (3.2)

Note that fpyq corresponds to the “guess” w, for the given y, in eq. (2.2). The maximum of
V pfq is the g-vulnerability, namely:

Vg

def
“ max

fPH
V pfq. (3.3)

3.1.2 Principle of the empirical g-vulnerability maximization

Since we are in the black-box scenario, the joint probability distribution PXY ” ⇡õC is
unknown. We assume, however, the availability of m independent and identically distributed
(i.i.d.) samples drawn according to PXY that can be used as a training set Dm to solve
the maximization of f over H and additionally n i.i.d. samples are available to be used
as a validation2 set Tn to estimate the average in eq. (3.2). Let us denote these sets as:
Dm

def
“

 
px1, y1q, . . . , pxm, ymq

(
and Tn

def
“

 
pxm`1, ym`1q, . . . , pxm`n, ym`nq

(
, respectively.

In order to maximize the g-vulnerability functional eq. (3.2) for an unknown probabil-
ity measure PXY , the following principle is usually applied. The expected g-vulnerability

2We prefer to call Tn validation set rather than test set, since we use it to estimate the g-vulnerability with
the learned f‹

m, rather than to measure the error in estimating the g-vulnerability.
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functional V pfq is replaced by the empirical g-vulnerability functional:

pVnpfq
def
“

1

n

ÿ

px,yqPTn
g

`
fpyq, x

˘
, (3.4)

which is evaluated on Tn rather than PXY . This estimator is clearly unbiased in the sense
that

E
“pVnpfq

‰
“ V pfq.

Let f ‹
m

denote the empirical optimal rule given by

f
‹
m

def
“ argmax

fPH
pVmpfq, pVmpfq

def
“

1

m

ÿ

px,yqPDm

g
`
fpyq, x

˘
, (3.5)

which is evaluated on Dm rather than PXY . The function f
‹
m

is the optimizer according to
Dm, namely the best way among the functions f : Y Ñ W to approximate Vg by max-
imizing pVmpfq over the class of functions H. This principle is known in statistics as the
Empirical Risk Maximization (ERM).

Intuitively, we would like f
‹
m

to give a good approximation of the g-vulnerability, in the
sense that its expected gain

V pf
‹
m

q “

ÿ

px,yqPXˆY

g
`
f

‹
m

pyq, x
˘
PXY px, yq (3.6)

should be close to Vg. Note that the difference

Vg ´ V pf
‹
m

q “ max
fPH

V pfq ´ V pf
‹
m

q (3.7)

is always non negative and represents the gap by selecting a possible suboptimal function
f

‹
m

. Unfortunately, we are not able to compute V pf
‹
m

q either, since PXY is unknown and
thus, eq. (3.7) cannot be measured in practice. In its place, we have to use its approximation
pVnpf

‹
m

q and eq. (3.7) should be replaced by Vg ´ pVnpf
‹
m

q which is not always non-negative.
By using basics principles from statistical learning theory, we study two main questions:

• When does the estimator pVnpf
‹
m

q work? What are the conditions for its statistical
consistency?

• How well does pVnpf
‹
m

q approximate Vg? In other words, how fast does the sequence
of largest empirical g-leakage values converge to the largest g-leakage function? This
is related to the so called rate of generalization of a learning machine that implements
the ERM principle.
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Auxiliary results

Before we move on to describing the bounds on the estimation accuracy, we would like to
recall two main results from the literature, namely proposition 1 and lemma 1, that we will
use for the proofs in the rest of the chapter.
Proposition 1 (Hoeffding’s inequality [BLM13]): Let Z1, . . . , Zn be independent bounded
random variables such that Zi P rai, bis almost surely and let Sn “

∞
n

i“1 Zi. Then, for any
t ° 0, we have the following inequalities:

P
`
Sn ´ ErSns • t

˘
§ exp

ˆ
´

2t2∞
n

i“1pbi ´ aiq
2

˙
, (3.8)

P
`
Sn ´ ErSns § ´t

˘
§ exp

ˆ
´

2t2∞
n

i“1pbi ´ aiq
2

˙
. (3.9)

Lemma 1: Let r ° 0 and let Z be a real-valued random variable such that for all t • 0,

PpZ • tq § 2q exp

ˆ
´
t
2

r2

˙
. (3.10)

Then, for q ° 1,

ErZs § r

ˆa
ln q `

1
?
ln q

˙
(3.11)

and for q “ 1,
ErZs §

?

2r. (3.12)

Proof.

ErZs “

ª 8

0

PpZ • tqdt

§

ª
r

?
ln q

0

PpZ • tqdt `

ª 8

r
?
ln q

2q exp

ˆ
´
t
2

r2

˙
dt

§ r

a
ln q `

ª 8

r
?
ln q

2q exp

ˆ
´
t
2

r2

˙
dt

§ r

a
ln q ` 2q

ª 8

r
?
ln q

t

r
?
ln q

exp

ˆ
´
t
2

r2

˙
dt

“ r

a
ln q `

2q

r
?
ln q

r
2

2
exp

ˆ
´

pr
?
ln qq

2

r2

˙

“ r

ˆa
ln q `

1
?
ln q

˙
.

Similarly, the second statement holds if q “ 1 and the integral is split between t P r0, rs and
t P rr,8q.
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3.1.3 Distribution-free bounds on the estimation accuracy

We start with the following lemma which is a simple adaption of the uniform deviations of
relative frequencies from probabilities theorems in [DGL96].
Lemma 2: The following inequalities hold:

Vg ´ V pf
‹
m

q § 2max
fPH

ˇ̌ pVmpfq ´ V pfq

ˇ̌
, (3.13)

ˇ̌ pVnpf
‹
m

q ´ V pf
‹
m

q

ˇ̌
§ max

fPH

ˇ̌ pVnpfq ´ V pfq

ˇ̌
. (3.14)

Proof. Recall the definition of f
‹
m

in eq. (3.5) and let f ‹
“ argmax

fPH V pfq. We first
observe that ˇ̌ pVnpf

1
q ´ V pf

1
q

ˇ̌
§ max

fPH

ˇ̌ pVnpfq ´ V pfq

ˇ̌

for all f 1
P H. Inequality eq. (3.14) follows by letting f

1
“ f

‹
m

. We now prove expression
eq. (3.13):

Vg ´ V pf
‹
m

q “ V pf
‹
q ´ pVmpf

‹
m

q ` pVmpf
‹
m

q ´ V pf
‹
m

q

§ V pf
‹
q ´ pVmpf

‹
m

q `

ˇ̌ pVmpf
‹
m

q ´ V pf
‹
m

q

ˇ̌
(3.15)

§ V pf
‹
q ´ pVmpf

‹
q `

ˇ̌ pVmpf
‹
m

q ´ V pf
‹
m

q

ˇ̌
(3.16)

§

ˇ̌
V pf

‹
q ´ pVmpf

‹
q

ˇ̌
`

ˇ̌ pVmpf
‹
m

q ´ V pf
‹
m

q

ˇ̌
(3.17)

§ max
fPH

ˇ̌ pVmpfq ´ V pfq

ˇ̌
` max

fPH

ˇ̌ pVmpfq ´ V pfq

ˇ̌
(3.18)

§ 2max
fPH

ˇ̌ pVmpfq ´ V pfq

ˇ̌
. (3.19)

The above lemma implies that maxfPH
ˇ̌ pVmpfq ´ V pfq

ˇ̌
and maxfPH

ˇ̌ pVnpfq ´ V pfq

ˇ̌

provide upper bounds for two deviations:

• the suboptimality of f ‹
m

learned using the training set and the class H, that is, how
large Vg ´ V pf

‹
m

q is;

• the estimation error
ˇ̌ pVnpf

‹
m

q ´ V pf
‹
m

q

ˇ̌
due to the use of a validation set instead of the

true expected gain V pf
‹
m

q, for the selected function f
‹
m

.

Next let us remind the reader of the fact that g : W ˆ X Ñ ra, bs for some finite real
values a • 0 and b ° a, and X and W are finite sets. This is important as it allows to
probabilistically delimit the bounds of eq. (3.13) and eq. (3.14) in terms of b´a, besides the
size n of the validation set Tn, as expressed by the following proposition.
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Proposition 2 (Uniform deviations): Assume that |H| † 8 and g : W ˆ X ›Ñ ra, bs, for
a, b real values such that a • 0 and b ° a. Then, we have for all " ° 0,

sup
PXY

P

´ˇ̌pVnpf
‹
m

q ´ V pf
‹
m

q

ˇ̌
° "

¯
§ 2 exp

ˆ
´

2n"2

pb ´ aq2

˙
(3.20)

and

sup
PXY

P pVg ´ V pf
‹
m

q ° "q § 2|H| exp

ˆ
´

m"
2

2pb ´ aq2

˙
. (3.21)

Proof. We first prove expression eq. (3.20). Notice that

P

´ˇ̌pVnpf
‹
m

q ´ V pf
‹
m

q

ˇ̌
° "

¯

“ EDm„P
m

XY
P

´ˇ̌pVnpf
‹
m

q ´ V pf
‹
m

q

ˇ̌
° " |Dm

¯
(3.22)

§ 2 exp

ˆ
´

2n"2

pb ´ aq2

˙
, (3.23)

where eq. (3.22) follows by conditioning on the training samples and then taking the prob-
ability on the validation samples, and eq. (3.23) follows by noticing that given the training
samples the function f

‹
m

is fixed by applying proposition 1 the inequality follows. The sec-
ond inequality in eq. (3.21) is a consequence of the following steps:

P pVg ´ V pf
‹
m

q ° "q § P

ˆ
max
fPH

ˇ̌ pVmpfq ´ V pfq

ˇ̌
° "{2

˙
(3.24)

“ P

˜
§

fPH

 ˇ̌ pVmpfq ´ V pfq

ˇ̌
° "{2

(
¸

(3.25)

§

ÿ

fPH
P

´ˇ̌pVmpfq ´ V pfq

ˇ̌
° "{2

¯
(3.26)

§ 2|H| exp

ˆ
´

2m"
2

4pb ´ aq2

˙
, (3.27)

where eq. (3.24) follows by applying the first inequality in lemma 2 and eq. (3.27) follows
from proposition 1 with an appropriate redefinition to "{2.

Expression eq. (3.20) shows that the estimation error due to the use of a validation set
in pVnpf

‹
m

q instead of the true expected gain V pf
‹
m

q vanishes with the number of validation
samples. On the other hand, expression eq. (3.21) implies ‘learnability’ of an optimal f , i.e.,
the suboptimality of f ‹

m
learned using the training set pVmpf

‹
m

q vanishes with the number of
training samples. Both expressions toguether imply that the g-vulnerability is learnable for
all distributions (data sets) via the ERM principle introduced in eq. (3.4). In other words,
whenever the bounds indicate that we are close to the optimum f , we must at the same time
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have a good estimate of the g-vulnerability, and vice versa. Although the bound in eq. (3.21)
is in perfect agreement with the long-standing results from statistical learning theory which
show that learnability is equivalent to uniform convergence of the empirical risk eq. (3.5)
to the actual risk eq. (3.2), this distribution-free bound is rather pessimistic and cannot be
expected to predict the performance in practical scenarios.

We can now state the main result of this section, namely an upper bound on the average
estimation error of g-vulnerability.
Theorem 1: The averaged estimation error of the g-vulnerability can be bounded as fol-
lows:

E
ˇ̌
Vg ´ pVnpf

‹
m

q

ˇ̌
§ Vg ´ E

“
V pf

‹
m

q
‰

` E
ˇ̌
V pf

‹
m

q ´ pVnpf
‹
m

q

ˇ̌
,

where the expectations are understood over all possible training and validation sets drawn
according to PXY . Furthermore,

Vg ´ E
“
V pf

‹
m

q
‰

§

c
2pb ´ aq2

m

˜
a
ln |H| `

1a
ln |H|

¸
, (3.28)

E
ˇ̌
V pf

‹
m

q ´ pVnpf
‹
m

q

ˇ̌
§

c
pb ´ aq2

n
, (3.29)

independently of the specific underlying distribution PXY .

Proof. Observe that

E
ˇ̌
Vg ´ pVnpf

‹
m

q

ˇ̌
“ E

ˇ̌
Vg ´ V pf

‹
m

q ` V pf
‹
m

q ´ pVnpf
‹
m

q

ˇ̌

§ Vg ´ E
“
V pf

‹
m

q
‰

` E
ˇ̌
V pf

‹
m

q ´ pVnpf
‹
m

q

ˇ̌
,

which follows from the triangular inequality. We first bound the second term in the previous
inequality as follows:

E
ˇ̌
V pf

‹
m

q ´ pVnpf
‹
m

q

ˇ̌
§

c
pb ´ aq2

n
, (3.30)

where the claim in eq. (3.30) follows by applying proposition 2 and using expression eq. (3.20)
combined with Lemma lemma 1 choosing q “ 1 and r

2
“

pb´aq2
2n .

We now bound the first term. Notice that

P pVg ´ V pf
‹
m

q ° "q § 2|H| exp

ˆ
´

m"
2

2pb ´ aq2

˙
, (3.31)

where eq. (3.31) follows from inequality eq. (3.21) in proposition 2. By using again lemma 1
with q “ |H| and r

2
“

2pb´aq2
m

, we obtain

Vg ´ E
“
V pf

‹
m

q
‰

§

c
2pb ´ aq2

m

˜
a
log |H| `

1a
log |H|

¸
, (3.32)

which concludes the proof.
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Interestingly, the term corresponding to eq. (3.28) is the error induced when estimating
the function f

‹
m

using m samples from the training set while eq. (3.29) indicates the error in-
curred when estimating the g-vulnerability using n samples from the validation set. Clearly,
the scaling of these bounds with the number of samples are very different which can be
made evident by using the order notation:

sup
PXY

 
Vg ´ E

“
V pf

‹
m

q
‰(

” O
˜c

|Y | ln |W |

m

¸
, (3.33)

sup
PXY

E
ˇ̌
V pf

‹
m

q ´ pVnpf
‹
m

q

ˇ̌
” O

ˆ
1

?
n

˙
. (3.34)

These distribution-free bounds indicate that the error in eq. (3.34) vanishes much faster than
the error in eq. (3.33) and thus, the size of the training set, in general, should be kept larger
than the size of the validation set, i.e., n † m. However, the bound in eq. (3.33) is rather
pessimistic since it suffers from being independent of the underlying distribution and the
optimization method used to solve eq. (3.4). Tighter bounds can be derived but they would
require statistical knowledge of the data-generating distribution which is often not available
in real-world scenarios.

3.1.4 Sample complexity

We now study how large the validation set should be in order to get a good estimation. For
", � ° 0, we define the sample complexity as the set of smallest integers Mp", �q and Np", �q

sufficient to guarantee that the gap between the true g-vulnerability and the estimated pVnpf
‹
m

q

is at most " with at least 1 ´ � probability:
Definition 1: For ", � ° 0, let all pairs

`
Mp", �q, Np", �q

˘
be the set of smallest pm,nq sizes

of training and validation sets such that:

sup
PXY

P

”
|Vg ´ pVnpf

‹
m

q| ° "

ı
§ �. (3.35)

Next result says that we can bound the sample complexity in terms of ", �, and |b ´ a|.
Corollary 1: The sample complexity of the ERM algorithm g-vulnerability is bounded
from above by the set of values satisfying:

Mp", �q §
2pb ´ aq

2

"2
ln

ˆ
2|H|

� ´�

˙
, (3.36)

Np", �q §
pb ´ aq

2

2"2
ln

ˆ
2

�

˙
, (3.37)

for all 0 † � † �.
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Proof. We first notice that

P

´
|Vg ´ pVnpf

‹
m

q| ° "

¯
§ P pVg ´ V pf

‹
m

q ° "q

` P

´
|V pf

‹
m

q ´ pVnpf
‹
m

q| ° "

¯
, (3.38)

and thus from eq. (3.20) and eq. (3.21) in proposition 2, we have

P

´
|Vg ´ pVnpf

‹
m

q| ° "

¯
§ 2 exp

ˆ
´

2n"2

pb ´ aq2

˙

` 2|H| exp

ˆ
´

m"
2

2pb ´ aq2

˙
. (3.39)

Let us require:

2|H| exp

ˆ
´

m"
2

2pb ´ aq2

˙
§ p� ´�q, (3.40)

2 exp

ˆ
´

2n"2

pb ´ aq2

˙
§ �, (3.41)

which satisfies the desired condition:

P

´
|Vg ´ pVnpf

‹
m

q| ° "

¯
§ �, (3.42)

for any 0 † � † �. Finally, from the previous inequality we can derive lower bounds on n

and m:

m •
2pb ´ aq

2

"2
ln

ˆ
2|H|

� ´�

˙
, (3.43)

n •
pb ´ aq

2

2"2
ln

ˆ
2

�

˙
, (3.44)

which by definition of sample complexity shows the corollary.

The theoretical results of this section are very general and do not refer to any particular
model or data distribution. In particular, it is important to emphasize that the upper bounds
in eq. (3.13) and eq. (3.14) are independent of the learned function f

‹
m

, and thus they are
independent of the specific algorithm and training sets in used to solve the optimization
in eq. (3.5). Furthermore, the f maximizing |V pfq ´ pVnpfq| in those in-equations is not
necessarily what the algorithm would choose. Hence the bounds given in theorem 1 and
corollary 1 in general are not tight. However, these theoretical bounds provide a worst-case
measure from which learnability holds for all data sets.

In the next section, we will propose an approach for selecting f
‹
m

and estimating Vg.
The experiments in section 3.3 suggest that our method usually estimates Vg much more
accurately than what is indicated by theorem 1.
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3.2 From g-vulnerability to Bayes vulnerability via pre-processing

This is the core section of this chapter, where we describe our approach to select the f
‹
m

to
estimate Vg.

In principle one could train a neural network to learn f
‹
m

by using ´pVmpfq as the loss
function, and minimizing it over the m training samples (cfr. eq. (3.5)). However, this would
require pVmpfq to be a differentiable function of the weights of the neural network, so that
its gradient can be computed during the back-propagation. Now, the problem is that the
g component of pVmpfq is essentially a non-differentiable function, so it would need to be
approximated by a suitable differentiable (surrogate) function, (e.g., as it is the case of the
Bayes error via the cross-entropy). Finding an adequate differentiable function to replace
each possible g may be a challenging task in practice. If this surrogate does not preserve the
original dynamic of the gradient of g with respect to f , the learned f will be far from being
optimal.

In order to circumvent this issue, we propose a different approach, which presents two
main advantages:

1. it reduces the problem of learning f
‹
m

to a standard classification problem, therefore
it does not require a different loss function to be implemented for each adversarial
scenario;

2. it can be implemented by using any universally consistent learning algorithm (i.e., any
ML algorithm approximating the ideal Bayes classifier).

The reduction described in the above list (item 1) is based on the idea that, in the g-
leakage framework, the adversary’s goal is not to directly infer the actual secret x, but rather
to select the optimal guess w about the secret. As a consequence, the training of the ML
classifier to produce f

‹
m

should not be done on pairs of type px, yq, but rather of type pw, yq,
expressing the fact that the best guess, in the particular run which produced y, is w. This
shift from px, yq to pw, yq is via a pre-processing and we propose two distinct and systematic
ways to perform this transformation, called data and channel pre-processing, respectively.
The two methods are illustrated in the following sections.

We remind that, according to section 3.1, we restrict, without loss of generality, to non-
negative g’s. If g takes negative values, then it can be shifted by adding ´minw,x gpw, xq,
without consequences for the g-leakage value (cfr. [ACPS12, ACM`14]). Furthermore we
assume that there exists at least a pair px, wq such that ⇡x ¨ gpw, xq ° 0. Otherwise Vg would
be 0 and the problem of estimating it will be trivial.

3.2.1 Data pre-processing

The data pre-processing technique is completely black-box in the sense that it does not need
access to the channel. We only assume the availability of a set of pairs of type px, yq, sampled
according to ⇡õC, the input-output distribution of the channel. This set could be provided by
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Algorithm 1: Algorithm for data pre-processing
Input: Dm; Output: D1

m1 ;
1. D1

m1 :“ H;
2. For each x, y, let uxy be the number of copies of px, yq in Dm;
3. For each x, y, w, add uxy ¨ gpw, xq copies of pw, yq to D1

m1 .

a third party, for example. We divide the set in Dm (training) and Tn (validation), containing
m and n pairs, respectively.

For the sake of simplicity, to describe this technique we assume that g takes only integer
values, in addition to being non-negative.

The idea behind the data pre-processing technique is that the effect of the gain function
can be represented in the transformed dataset by amplifying the impact of the guesses in
proportion to their reward. For example, consider a pair px, yq in Dm, and assume that the
reward for the guess w is gpw, xq “ 5, while for another guess w1 is gpw

1
, xq “ 1. Then in

the transformed dataset D1
m1 this pair will contribute with 5 copies of pw, yq and only 1 copy

of pw
1
, yq. The transformation is described in algorithm 1. Note that in general it causes an

expansion of the original dataset.

Estimation of Vg

Given Dm, we construct the set D1
m1 of pairs pw, yq according to Algorithm algorithm 1.

Then, we use D1
m1 to train a classifier f ‹

m1 , using an algorithm that approximates the ideal
Bayes classifier. As proved below, f ‹

m1 gives the same mapping Y Ñ W as the optimal
empirical rule f

‹
m

on Dm (cfr. section 3.1.2). Finally, we use f
‹
m

and Tn to compute the
estimation of Vgp⇡, Cq as in eq. (3.4), with f replaced by f

‹
m

.

Correctness

Let us first introduce some notation. For each pw, yq, define:

Upw, yq
def
“

ÿ

x

⇡x ¨ Cxy ¨ gpw, xq , (3.45)

which represents the “ideal” proportion of copies of pw, yq that D1
m1 should contain (of

course, such proportion is only approximated in D1
m1 since it is generated from Dm rather

than according to the true distribution ⇡õC). From Upw, yq we can now derive the ideal
joint distribution on W ˆ Y and the marginal on W:

PWY pw, yq
def
“

Upw, yq

↵
, where ↵

def
“

ÿ

y,w

Upw, yq , (3.46)

(note that ↵ ° 0 because of the assumption on ⇡ and g),

�w

def
“

ÿ

y

PWY pw, yq. (3.47)
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The channel of the conditional probabilities of y given w is:

Ewy

def
“

PWY pw, yq

�w

. (3.48)

Note that PWY “ �õE. By construction, it is clear that the D1
m1 generated by Algo-

rithm algorithm 1 could have been generated, with the same probability, by sampling �õE.
The following theorem establishes that the g-vulnerability of ⇡õC is equivalent to the Bayes
vulnerability of �õE, and therefore that it is correct to estimate f

‹
m

as an empirical Bayes
classifier f ‹

m1 trained using D1
m1 .

Theorem 2 (Correctness of data pre-processing): Given a prior ⇡, a channel C, and a gain
function g, we have

Vgp⇡, Cq “ ↵ ¨ Vgid
p�, Eq ,

where ↵, � and E are those defined in eq. (3.46), eq. (3.47) and eq. (3.48), respectively,
and gid is the identity function (cfr. section 2.1), i.e., the gain function corresponding to the
Bayesian adversary.

Proof.

Vgid
p�, Eq “

∞
y

max
w

∞
w1
�w1 ¨ Ew1y ¨ gidpw,w

1
q

“
∞
y

max
w

p�wEwyq

“
∞
y

max
w

PWY pw, yq

“
∞
y

max
w

Upw,yq
↵

“
1
↵

¨
∞
y

max
w

∞
x
⇡x ¨ Cxy ¨ gpw, xq

“
1
↵

¨ Vgp⇡, Cq

The ↵ in the above theorem is only a scale factor, hence it does not influence the selec-
tion of f ‹

m
. Note that an alternative way to estimate Vgp⇡, Cq would be by computing the

empirical Bayes error of f ‹
m1 (using Vgid

p�, Eq) on a validation set T 1
n1 of type pw, yq gener-

ated from Tn by the same transformation as from Dm to D1
m1 . In this case the ↵ would be

necessary for converting the estimation of Vgid
p�, Eq into the estimation of Vgp⇡, Cq.
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General case: data pre-processing when g does not take integer values

Approximating g so that it only takes values P Q•0 allows us to represent each gain as a
quotient of two integers, namely NumeratorpGw,xq{Denominator pGw,xq. Let us also define

K
def
“ lcmwxpDenominatorpGw,xqq, (3.49)

where lcmp¨q is the least common multiple. Multiplying G by K gives the integer version of
the gain matrix that can replace the original one. It is clear that the calculation of the least
common multiplier, as well as the increase in the amount of data produced during the dataset
building using a gain matrix forced to be integer, might constitute a relevant computational
burden.

3.2.2 Channel pre-processing

For this technique we assume black-box access to the system, meaning that, although its
channel matrix C is unknown, we can execute the system while controlling each input, and
collect the corresponding output.

The core idea behind this technique is to transform the input of C into entries of type w,
and to ensure that the distribution on the w’s reflects the corresponding rewards expressed
by g.

More formally, let us define a distribution ⌧ on W as follows:

⌧w
def
“

∞
x
⇡x ¨ gpw, xq

�
where �

def
“

ÿ

x,w

⇡x ¨ gpw, xq , (3.50)

(note that � is strictly positive because of the assumptions on g and ⇡), and let us define the
following matrix R from W to X :

Rwx

def
“

1

�
¨
1

⌧w
¨ ⇡x ¨ gpw, xq . (3.51)

It is easy to check that R is a stochastic matrix, hence the composition RC is a channel. It
is important to emphasize the following:

REMARK In the above definitions, �, ⌧ and R depend solely on g and ⇡, and not on C.

The above property is crucial to our goals, because in the black-box approach we are not
supposed to rely on the knowledge of C’s internals. We now illustrate how we can estimate
Vg using the pre-processed channel RC.

Estimation of Vg

Given RC and ⌧ , we build a set D2
m2 consisting of pairs of type pw, yq sampled from ⌧õRC.

We also construct a set Tn of pairs of type px, yq sampled from ⇡õC. Then, we use D2
m2 to
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train a classifier f ‹
m

, using an algorithm that approximates the ideal Bayes classifier. Finally,
we use f

‹
m

and Tn to compute the estimation of Vgp⇡, Cq as in eq. (3.4), with f replaced by
f

‹
m

.
Alternatively, we could estimate Vgp⇡, Cq by computing the empirical Bayes error of f ‹

m

on a validation set Tn of type pw, yq sampled from ⌧õRC, but the estimation would be less
precise. Intuitively, this is because RC is more “noisy” than C.

Correctness

The correctness of the channel pre-processing method is given by the following theorem,
which shows that we can learn f

‹
m

by training a Bayesian classifier on a set sampled from
⌧õRC.
Theorem 3 (Correctness of channel pre-processing): Given a prior ⇡ and a gain function g,
we have that, for any channel C:

Vgp⇡, Cq “ � ¨ Vgid
p⌧, RCq for all channels C.

where �, ⌧ and R are those defined in eq. (3.50) and eq. (3.51).

Proof. In this proof we use a notation that highlights the structure of the preprocessing. We
will denote by G be the matrix form of g, i.e., Gwx “ gpw, xq, and by  ⇡ the square matrix
with ⇡ in its diagonal and 0 elsewhere. We have that � “ }G ⇡

}1 “
∞

w,x
Gwx⇡x, which is

strictly positive because of the assumptions on g and ⇡. Furthermore, we have

⌧
T

“ �
´1
G ⇡1 , R “ �

´1
p ⌧

q
´1
G ⇡

,

where 1 is the vector of 1s and ⌧
T represents the transposition of vector ⌧ . Note that p ⌧

q
´1

is a diagonal matrix with entries ⌧
´1
w

in its diagonal. If ⌧w “ 0 then the row Rw,¨ is not
properly defined; but its choice does not affect Vgid

p⌧, RCq since the corresponding prior is
0; so we can choose Rw,¨ arbitrarily (or equivalently remove the action w, it can never be
optimal since it gives 0 gain). It is easy to check that ⌧ is a proper distribution and R is a
proper channel:

∞
w
⌧w “

∞
w
�

´1
∞

x
Gwx⇡x “ �

´1
� “ 1 ,

∞
x
Rw,x “

∞
x

1
⌧w
�

´1
Gwx⇡x “

⌧w

⌧w
“ 1 .

Moreover, it holds that:

� ⌧
R “ � ⌧

�
´1 ⌧´1

G ⇡
“ G ⇡

.

The main result follows from the trace-based formulation of the posterior g-vulnerability
[ACPS12], since for any channel C and strategy S, the above equation directly yields

Vgp⇡, Cq “ max
S

trpG ⇡
CSq

“ � ¨ max
S

trp ⌧
RCSq

“ � ¨ Vgid
p⌧, RCq ,

where trp¨q is the matrix trace.
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Interestingly, a result similar to theorem 3 is also given in [BS16], although the context
is completely different from ours: the focus of [BS16], indeed, is to study how the leakage
of C on X may induce also a leakage of other sensitive information Z that has nothing to
do with C (in the sense that is not information manipulated by C). We intend to explore
this connection in the context of a possible extension of our approach to this more general
scenario.

3.2.3 Data and channel pre-processing: pros and cons

The fundamental advantage of data pre-processing is that it allows to estimate Vg from just
samples of the system, without even black-box access. In contrast to channel pre-processing,
however, this method is particularly sensitive to the values of the gain function g. Large gain
values will increase the size of D1

m1 , with consequent increase of the computational cost for
estimating the g-vulnerability. Moreover, if g takes real values then we need to apply the
technique described in section 3.2.1, which can lead to a large increase of the dataset as well.
In contrast, the channel pre-processing method has the advantage of controlling the size of
the training set, but it can be applied only when it is possible to interact with the channel by
providing input and collecting output. Finally, from the precision point of view, we expect
the estimation based on data pre-processing to be more accurate when g consists of small
integers, because the channel pre-processing introduces some extra noise in the channel.

3.3 Evaluation

In this section we evaluate our approach to the estimation of g-vulnerability. We consider
four different scenarios:

1. X is a set of (synthetic) numeric data, the channel C consists of geometric noise, and
g is the multiple guesses gain function, representing an adversary that is allowed to
make several attempts to discover the secret.

2. X is a set of locations from the Gowalla dataset [LK], C is the optimal noise of
Shokri et al. [STT`12b], and g is one of the functions used to evaluate the privacy
loss in [STT`12b], namely a function anti-monotonic on the distance, representing the
idea that the more the adversary’s guess is close to the target (i.e., the real location),
the more he gains.

3. X is the Cleveland heart disease dataset [DG17], C is a differentially private mecha-
nism [DMNS06,Dwo06], and g is a function that assigns higher values to worse heart
conditions, modeling an adversary that aims at discovering whether a patient is at risk
(for instance, to deny his application for health insurance).

4. X is a set of passwords of 128 bits and C is a password checker that leaks the time
before the check fails, but mitigates the timing attacks by applying some random delay
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and the bucketing technique (see, for example, [KD09]). The function g represents the
part of the password under attack.

For each scenario, we proceed in the following way:

• We consider 3 different samples sizes for the training sets that are used to train the
ML models and learn the Y Ñ W remapping. This is to evaluate how the precision
of the estimate depends on the amount of data available, and on its relation with the
size of |Y |.

• In order to evaluate the variance of the precision, for each size we create 5 different
training sets, and

• for each trained model we estimate the g-vulnerability using 50 different validation
sets.

3.3.1 Representation of the results and metrics

We graphically represent the results of the experiment as box plots, using one box for each
size. More precisely, given a specific size, let pV ij

n
be the g-vulnerability estimation on

the j-th validation set computed with a model trained over the i-th training set (where i P

t1, . . . , 5u and j P t1, . . . , 50u). Let Vg be the real g-vulnerability of the system. We define
the normalized estimation error �ij and the mean value � of the �ij’s as follows:

�ij
def
“

|pV ij

n
´ Vg|

Vg

, with �
def
“

1

250

5ÿ

i“1

50ÿ

j“1

�ij . (3.52)

In the graphs, the �ij’s are the values reported in the box corresponding to the given size,
and � is the black horizontal line inside the box.

We also consider the following quantities, which are typical measures of precision:

dispersion def
“

gffe 1

250

5ÿ

i“1

50ÿ

j“1

p�ij ´ �q2 , (3.53)

total error def
“

gffe 1

250

5ÿ

i“1

50ÿ

j“1

�
2
ij
. (3.54)

The dispersion is an average measure of how far the normalized estimation errors are from
their mean value when using same-size training and validation sets. On the other hand, the
total error is an average measure of the normalized estimation error, when using same-size
training and validation sets. In our experiments we will see that, as expected, the dispersion
and the total error tend to decrease when the amount of training samples increases.
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In order to make a fair comparison between the two presented pre-processing methods,
intuitively we need to train them on training sets of the same size, and evaluate them on
validation sets of the same size. For the validation part, since the best f function has been
already found and therefore we do not need any data pre-processing, this is easy to guar-
antee. But what does “same size” mean, in the case of training sets built with different
pre-processing methods? Consider the following situation: assume that we have a set of
data Dm coming from a third party collector (we recall that the index m represents the size
of the set), and let D1

m1 be the result of the data pre-processing on Dm. Now, let D2
m2 be the

dataset obtained drawing samples according to the channel pre-processing method. Should
we impose m

2
“ m or m2

“ m
1? We argue that the right choice is the first one, because

the main limiting constraint in our method is the amount of “real” data that we can collect,
one way or another. In case we cannot interact with the channel, the number of available
samples is controlled by the data provider. Indeed, D1

m1 is generated synthetically from Dm

and cannot contain more information about C than Dm, despite its larger size.
The nice feature of the normalized estimation error is that, thanks to the normalization,

it allows to compare the results among different scenario and different levels of (real) g-
vulnerability. Also, the error is more meaningful than the absolute value.

3.3.2 Learning algorithms

We consider two ML algorithms in the experiments: the k-Nearest Neighbors (k-NN) and
the Artificial Neural Networks (ANN). We have made however a slight modification of k-NN
algorithm, due to the following reason: recall that, depending on the particular gain function,
the data pre-processing method might create many instances where a certain observable y is
repeated multiple times in pair with different w’s. For the k-NN algorithm, a very common
choice is to consider a number of neighbors which is equivalent to natural logarithm of the
total number of training samples. In particular, when the data pre-processing is applied,
this means that k “ logpm

1
q nearest neighbors will be considered for the classification

decision. Since logpm
1
q grows slowly with respect to m

1, it might happen that k-NN fails
to find the subset of neighbors from which the best remapping can be learned. To amend
this problem, we modify the k-NN algorithm in the following way: instead of looking for
neighbors among all the m

1 samples, we only consider a subset of l § m
1 samples, where

each value y only appears once. After the logplq neighbors have been detected among the l

samples, we select w according to a majority vote over the m
1 tuples pw, yq created through

the remapping.
The distance on which the notion of neighbor is based depends on the experiments. We

have considered the standard distance among numbers in the first and fourth experiments,
the Euclidean distance in the second one, and the Manhattan distance between tuples of
numbers in the third one (where the distance between the components is the standard nu-
merical distance).

Concerning the ANN models, their specifics are in section 3.4. Note that, for the sake of
fairness, we use the same architecture for both pre-processing methods, although we adapt
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number of epochs and batch size to the particular dataset we are dealing with.
Further details relative to the specific experiments are provided the following sections,

each of them discussing one of the above mentioned scenarios.

3.3.3 Frequentist approach

In the experiments, we will compare our method with the frequentist one. This approach
has been proposed originally in [CCG10] for estimating mutual information, and extended
successively also to min-entropy leakage [CKN13]. Although not considered in the liter-
ature, the extension to the case of g-vulnerability is straightforward. The method consists
in estimating the probabilities that constitute the channel matrix C, and then calculating
analytically the g-vulnerability on C. The precise definition is in section 3.4.

In [CCP19] it was observed that, at least in the case of the Bayes vulnerability3, the
frequentist approach performs poorly when the size of the observable domain |Y | is large
with respect to the available data. We want to examine whether this is the case also for other
vulnerabilities.

3.3.4 Experiment 1: multiple guesses

We consider a system in which the secrets X are the integers between 0 and 9, and the
observables Y are the integers between 0 and 15999. Hence |X | “ 10 and |Y | “ 16K. The
channel C adds noise to the elements of X according to the following geometric distribution:

Cxy “ PY |Xpy|xq “ � expp´⌫|rpxq ´ y|q , (3.55)

where:

• ⌫ is a parameter that determines how concentrated around y “ x the distribution is.
In this experiment we set ⌫ “ 0.002;

• r is just an auxiliary function that reports X to the same scale of Y , and centers X on
Y . Here we have rpxq “ 1000 x ` 3499.5;

• � “ e
⌫´1{pe⌫`1q is a normalization factor tuned so that eq. (3.55) is indeed a distribu-

tion.

fig. 3.1 illustrates the shape of Cxy. More precisely, it shows the distributions PY |Xp¨|xq for
two adjacent secrets x “ 5 and x “ 6. We consider an adversary that can make two attempts
to discover the secret (two-tries adversary), and we define the corresponding gain function
as follows. A guess w P W is one of all the possible combinations of 2 different secrets

3Strictly speaking, [CCP19] considered the estimation of the Bayes error, but the essence does not change
since Bayes vulnerability and Bayes error are complementary with respect to 1.
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Figure 3.1 – The channel of section 3.3.4. The two curves represent the distributions
PY |Xp¨|xq for two adjacent secrets: x “ 5 and x “ 6.

from X , i.e., w “ tx0, x1u with x0, x1 P X and x0 ‰ x1. Therefore |W | “
`
10
2

˘
“ 45. The

gain function g is then

gpw, xq “

#
1 if x P w

0 otherwise .
(3.56)

For this experiment we consider a uniform prior distribution ⇡ on X . The true g-vulnerability
for these particular ⌫ and ⇡, results to be Vg “ 0.892. For all the following experiments in
the multiple guesses scenario, the reported results are obtained evaluating the normalized
estimation error on 50 different validation sets of 50K samples of type px, yq drawn accord-
ing to ⇡ and to the channel distribution in eq. (3.55). The sample sizes for the training sets
(of the same type as Dm) that we consider are 10K, 30K and 50K respectively. As explained
before, for each size we use 5 different training sets where the samples are couples py, xq.

Data pre-processing

In this part of the experiment we transform the training data according to the data pre-
processing described in section 3.2.1. The result are sets of samples of type pw, yq of the
same type as D1

m1 . Then, we use the latter to learn the Y Ñ W remapping, and we do so
by using k-NN and ANN classifiers. The plot in fig. 3.2c shows the performances of the



3.3. Evaluation 35

k-NN and ANN models on the validation sets used to estimate the g-vulnerability in terms
of normalized estimation error, while fig. 3.2f shows the same performances compared to
those of the frequentist approach. As we can see, the precision of the frequentist is much
lower, thus confirming that the trend observed by [CCP19] for the Bayes vulnerability holds
also for other gain functions. Intuitively, this gap occurs especially when |Y | is high with
respect to the number of training samples, and it is due to the fact that with the frequentist
approach there is no real learning, so we cannot make a good guess with the observables
never seen before. In ML on the contrary we can still make an informed guess, especially
when the channel has a rather regular behavior, i.e., the noise expressed by the channel is
“smooth” (cfr. [CCP19]).

It is worth noting that, in this experiment, the pre-processing of each sample px, yq cre-
ates 9 samples (matching y with each possible w P W such that w “ tx, x

1
u with x

1
‰ x).

This means that the sample size of the pre-processed sets is 9 times the size of the original
ones. For functions g representing more than 2 tries this pre-processing method may create
training sets too large. In the next section we consider the alternative pre-processing method,
showing that it can be a good compromise.

Channel pre-processing

Let us now suppose it is possible to interact with the channel modified according to the
channel pre-processing method (cfr. section 3.2.2) so that we are able to sample data of
the type pw, yq from it. With these samples we form training sets (of the same type as
D2

m2) of size 10K, 30K, and 50K. Then we proceed with the learning and the g-vulnerability
estimation as before. The results are showed in fig. 3.2d. As we can see, the results are
worse than in the data pre-processing case, especially for the k-NN algorithm. This was to
be expected, since the random sampling to match the effect of g introduces a further level
of confusion, as explained in section 3.2.2. Nevertheless, these results are still much better
than the frequentist case, so it is a good alternative method to apply when the use of data
pre-processing would generate validation sets that are too large, which could be the case
when the matrix representing g contains large numbers with a small common divider.

Figure 3.3 shows the estimation performances of all the three methods considering both
pre-processing techniques. Table 3.2, table 3.3, table 3.4, and table 3.5 show the dispersion
and total error values for both the data and the channel pre-processing methods. For the
sake of simplicity, the values concerning the frequentist approach, which are not influenced
by the pre-processing are identically reported for both cases. We indicate the size of the
training set before the data pre-processing in table 3.2 and table 3.3.

3.3.5 Experiment 2: location privacy

In this section we estimate the g-vulnerability of a typical system for location privacy pro-
tection. We use data from the open Gowalla dataset [LK], which contains the coordinates of
users’ check-ins. In particular, we consider a square region in San Francisco, USA, centered
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(a) Vulnerability estimation for ANN and k-
NN with data pre-processing.

(b) Vulnerability estimation for ANN and k-
NN with channel pre-processing.

(c) Normalized estimation error for ANN and
k-NN with data pre-processing.

(d) Normalized estimation error for ANN and
k-NN with channel pre-processing.

(e) Vulnerability estimation for the frequen-
tist approach.

(f) Normalized estimation error for the fre-
quentist approach.

Figure 3.2 – Multiple guesses scenario: vulnerability estimation and normalized estimation
error plots.
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(a) Vulnerability estimation for ANN and k-
NN with data pre-processing, and for the fre-
quentist approach.

(b) Vulnerability estimation for ANN and k-
NN with channel pre-processing, and for the
frequentist approach.

(c) Normalized estimation error for ANN and
k-NN with data pre-processing, and for the
frequentist approach.

(d) Normalized estimation error for ANN and
k-NN with channel pre-processing, and for
the frequentist approach.

Figure 3.3 – Multiple guesses scenario: comparison plots.
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Estimation method
Tr. set size ANN k-NN FREQ
10000 0.005 0.002 0.004
30000 0.003 0.002 0.004
50000 0.002 0.002 0.003

Table 3.2 – Multiple guesses scenario,
data pre-processing: dispersion.

Estimation method
Tr. set size ANN k-NN FREQ
10000 0.022 0.026 0.483
30000 0.006 0.012 0.226
50000 0.004 0.007 0.133

Table 3.3 – Multiple guesses scenario,
data pre-processing: total error.

Estimation method
Tr. set size ANN k-NN FREQ
10000 0.012 0.003 0.004
30000 0.016 0.004 0.004
50000 0.006 0.003 0.003

Table 3.4 – Multiple guesses scenario,
channel pre-processing: dispersion.

Estimation method
Tr. set size ANN k-NN FREQ
10000 0.061 0.231 0.483
30000 0.048 0.203 0.226
50000 0.044 0.186 0.133

Table 3.5 – Multiple guesses scenario,
channel pre-processing: total error.

in (latitude, longitude) = (37.755, ´122.440), and with 5Km long sides. In this area Gowalla
contains 35162 check-ins.

We discretize the region in 400 cells of 250m long side, and we assume that the ad-
versary’s goal is to discover the cell in which a check-in is located. The frequency of the
Gowalla check-ins per cell is represented by the heat-map in fig. 3.4. From these frequencies
we can directly derive the distribution representing the prior of the secrets.

The channel C that we consider here is the optimal obfuscation mechanism proposed
in [STT`12b] to protect location privacy under a utility constraint. We recall that the frame-
work of [STT`12b] assumes two loss functions, one for utility and one for privacy. The
utility loss of a mechanism, for a certain prior, is defined as the expected utility loss of the
noisy data generated according to the prior and the mechanism. The privacy loss is defined
in a similar way, except that we allow the attacker to “remap” the noisy data so to maximize
the privacy loss. For our experiment, we use the Euclidean distance as loss function for the
utility, and the g function defined in the next paragraph as loss function for the privacy. For
further details on the construction of the optimal mechanism we refer to [STT`12b].

We define X ,Y and W to be the set of the cells. Hence |X | “ |Y | “ |W | “ 400.
We consider a gain function that represents the precision of the guess in terms of euclidean
distance: the idea is that the smaller is the distance between the real cell x and the guessed
cell w, the higher is the gain. Specifically, our g is illustrated in fig. 3.5, where the central
cell represents the real location x. For a generic “guess” cell w, the number written in w

represent gpw, xq. Thus for example we have gpx, xq “ 4, and gpw, xq “ 2 if w is an
immediate neighbor of x.4

4Formally, g is defined as gpw, xq “ tp� expp´↵dpw, xq{lqqs, where � “ 4 is the maximal gain, ↵ “ 0.95
is a normalization coefficient to control the skewness of the exponential, d is the euclidean distance and l “ 250
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Figure 3.4 – Heat-map representing the Gowalla check-ins distribution in the area of interest;
the density of check-ins in each cell is reported in the color bar on the side.

In this experiment we consider training set sizes of 100, 1k and 10K samples respectively.
After applying the data pre-processing transformation, the size of the resulting datasets

is approximately 18 times that of the original one. This was to be expected, since the sum
of the values of g in fig. 3.5 is 20. Note that this sum and the increase factor in the dataset
do not necessarily coincide, because the latter is also influenced by the prior and by the
mechanism.

Figure 3.6c and fig. 3.6d show the performance of k-NN and the ANN for the application
of both data pre-processing and the channel pre-processing methods in terms of normalized
estimation error. As expected, the data pre-processing method is more precise than the chan-
nel pre-processing one, although only slightly. The ANN model is also slightly better than
the k-NN in most of the cases. For this experiment, as one can see in fig. 3.7, the frequentist
approach outperforms the ML methods. Indeed this can be explained as follows: the ob-
servable space is not very large, which is a scenario where the frequentist approach can be
successful because the available data is enough to estimate the real distribution. Indeed the
ANN method performs quite well too, but the model we used is quite complex for this prob-
lem and therefore, we obtain a slightly worse performance than the frequentist approach.
This is indeed an example which shows that the frequentist approach can still work well
in certain scenarios. Although, as experimentally verified in all the other experiments, ML
techniques, and in particular ANN, easily outperforms the frequentist approach when large

is the length of the cells’ side. The symbol t¨s in this context represents the rounding to the closest integer
operation.
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Figure 3.5 – The “diamond” shape created by the gain function around the real secret; the
values represent the gains assigned to each guessed cell w when x is the central cell.

observable spaces are involved.
Table 3.6, table 3.7, table 3.8, and table 3.9 show the dispersion and total error values

for both the data and the channel pre-processing methods.

Estimation method
Tr. set size ANN k-NN FREQ
100 0.051 0.055 0.032
1000 0.031 0.014 0.008
10000 0.004 0.005 0.002

Table 3.6 – Location privacy scenario,
data pre-processing: dispersion.

Estimation method
Tr. set size ANN k-NN FREQ
100 0.379 0.357 0.318
1000 0.102 0.112 0.034
10000 0.024 0.053 0.004

Table 3.7 – Location privacy scenario,
data pre-processing: total error.

Estimation method
Tr. set size ANN k-NN FREQ
100 0.033 0.038 0.032
1000 0.032 0.016 0.008
10000 0.013 0.015 0.002

Table 3.8 – Location privacy scenario,
channel pre-processing: dispersion.

Estimation method
Tr. set size ANN k-NN FREQ
100 0.498 0.590 0.318
1000 0.283 0.278 0.034
10000 0.082 0.121 0.004

Table 3.9 – Location privacy scenario,
channel pre-processing: total error.
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(a) Vulnerability estimation for ANN and k-
NN with data pre-processing.

(b) Vulnerability estimation for ANN and k-
NN with channel pre-processing.

(c) Normalized estimation error for ANN and
k-NN with data pre-processing.

(d) Normalized estimation error for ANN and
k-NN with channel pre-processing.

(e) Vulnerability estimation for the frequen-
tist approach.

(f) Normalized estimation error for the fre-
quentist approach.

Figure 3.6 – Location privacy scenario: vulnerability estimation and normalized estimation
error plots.
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(a) Vulnerability estimation for ANN and k-
NN with data pre-processing, and for the fre-
quentist approach.

(b) Vulnerability estimation for ANN and k-
NN with channel pre-processing, and for the
frequentist approach.

(c) Normalized estimation error for ANN and
k-NN with data pre-processing, and for the
frequentist approach.

(d) Normalized estimation error for ANN and
k-NN with channel pre-processing, and for
the frequentist approach.

Figure 3.7 – Location privacy scenario: comparison plots.
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3.3.6 Experiment 3: differential privacy

In this section we consider a popular application of DP: individual data protection in medical
datasets from which we wish to extract some statistics via counting queries.

It is well known that the release of exact information from the database, even if it is only
the result of statistical computation on the aggregated data, can leak sensitive information
about the individuals. The solution proposed by DP is to obfuscate the released information
with carefully crafted noise that obeys certain properties. The goal is to make it difficult to
detect whether a certain individual is in the database or not. In other words, two adjacent
datasets (i.e., datasets that differ only for the presence of one individual) should have almost
the same likelihood to produce a certain observable result.

In our experiment, we consider the Cleveland heart disease dataset [DG17] which consist
of 303 records of patients with a medical heart condition. Each condition is labeled by an
integer number (label) that indicates how serious the disease is: from 0, which represents a
healthy patient, to 4, which represents a patient whose life is at risk.

We assume that, to help medical research, the hospital releases the histogram of these
labels, i.e., the counts of their occurrences in the database. We also assume that, for the sake
of protecting their patients’ privacy, the hospital sanitizes the histogram by adding geometric
noise, which is a typical DP mechanism, to each label’s count. More precisely, if the count
of a label is z1, the probability that the corresponding published number is z2 is defined by
the distribution in eq. (3.55), where x and y are replaced by z1 and z2 respectively, and r is
1. Note that z1 is the real count, so it is an integer between 0 and 303, while its noisy version
z2 ranges on all integers. Concerning the value of ⌫, in this experiment it is set to 1.

The secrets space X is set to be a set of two elements: the full dataset, and the dataset
with one record less. These are adjacent in the sense of DP, and, as customary in DP, we
assume that the record on which the two databases differ is the target of the adversary. The
observables space Y is the set of the 5-tuples produces by the noisy counts of the 5 labels.
W is set to be the same as X .

We assume that the adversary is interested especially in finding out whether the patient
has a serious condition. The function g reflects this preference by assigning higher value to
higher labels. Specifically, we set:

gpw, xq “

$
’&

’%

0, if w ‰ x

1, if w “ x ^ x P t0, 1, 2u

2, if w “ x ^ x P t3, 4u,

(3.57)

and W “ X .
For the estimation, we consider 50 different validation sets of 50K samples each drawing

them from the channel. The results reported below represent the estimation performance of
each model on these validation sets.

As training set sizes, we consider 10K, 30K and 50K samples, that we use to learn the
remapping from the obfuscated counts, Y , to the guesses about the diseases W . For each of
these sizes we consider 5 training sets. Again, as ML algorithms we use ANN and k-NN.
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For the latter we have to decide what kind of distance we use for evaluating the proximity
of the elements of Y . We choose the Manhattan distance, which seems the most natural in
this case5 In the case of data pre-processing the size of the transformed training sets (of the
same type as D1

m1) is about 1.2 times the size of the original training sets (of the same type
as Dm). The performance is shown in fig. 3.8c and fig. 3.8a. For the channel pre-processing
approach, the performance is shown in fig. 3.8d and fig. 3.8b. Surprisingly, in this case
the data pre-processing method outperforms the channel pre-processing one, although only
slightly. Additional plots, including the comparison to the frequentist approach, can be
found in fig. 3.9.

Estimation method
Tr. set size ANN k-NN FREQ
10000 0.032 0.006 0.004
30000 0.011 0.005 0.005
50000 0.010 0.004 0.004

Table 3.10 – Differential privacy sce-
nario, data pre-processing: dispersion.

Estimation method
Tr. set size ANN k-NN FREQ
10000 0.062 0.045 0.145
30000 0.021 0.030 0.104
50000 0.016 0.024 0.086

Table 3.11 – Differential privacy sce-
nario, data pre-processing: total error.

Estimation method
Tr. set size ANN k-NN FREQ
10000 0.025 0.006 0.004
30000 0.008 0.004 0.005
50000 0.003 0.005 0.004

Table 3.12 – Differential privacy sce-
nario, channel pre-processing: disper-
sion.

Estimation method
Tr. set size ANN k-NN FREQ
10000 0.059 0.040 0.145
30000 0.012 0.027 0.104
50000 0.005 0.022 0.086

Table 3.13 – Differential privacy sce-
nario, channel pre-processing: total error.

Table 3.10, table 3.11, table 3.12, and table 3.13 show the the dispersion and total error
values for both the data and the channel pre-processing methods.

3.3.7 Experiment 4: password checker

Table 3.14, table 3.15, represent the dispersion and the total error for section 3.3.7.
In this experiment we consider a password checker, namely a program that tests whether

a given string corresponds to the password stored in the system. We assume that string and
password are sequences of 128 bits, an that the program is “leaky”, in the sense that it checks
the two sequences bit by bit and it stops checking as soon as it finds a mismatch, reporting
failure. It is well known that this opens the way to a timing attack (a kind of side-channel
attack), so we assume that the system tries to mitigate the threat by adding some random

5The Manhattan distance on histograms corresponds to the total variation distance on the distributions
resulting from the normalization of these histograms.
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(a) Vulnerability estimation for ANN and k-
NN with data pre-processing.

(b) Vulnerability estimation for ANN and k-
NN with channel pre-processing.

(c) Normalized estimation error for ANN and
k-NN with data pre-processing.

(d) Normalized estimation error for ANN and
k-NN with channel pre-processing.

(e) Vulnerability estimation for the frequen-
tist approach.

(f) Normalized estimation error for the fre-
quentist approach.

Figure 3.8 – Differential privacy scenario: vulnerability estimation and normalized estima-
tion error plots.
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(a) Vulnerability estimation for ANN and k-
NN with data pre-processing, and for the fre-
quentist approach.

(b) Vulnerability estimation for ANN and k-
NN with channel pre-processing, and for the
frequentist approach.

(c) Normalized estimation error for ANN and
k-NN with data pre-processing, and for the
frequentist approach.

(d) Normalized estimation error for ANN and
k-NN with channel pre-processing, and for
the frequentist approach.

Figure 3.9 – Differential privacy scenario: comparison plots.
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Estimation method
Tr. set size ANN k-NN FREQ
10000 0.002 0.003 0.004
30000 0.002 0.002 0.003
50000 0.002 0.002 0.003

Table 3.14 – Password checker scenario:
dispersion.

Estimation method
Tr. set size ANN k-NN FREQ
10000 0.003 0.007 0.015
30000 0.003 0.004 0.007
50000 0.003 0.004 0.005

Table 3.15 – Password checker scenario:
total error.

delay, sampled from a Laplace distribution and then bucketing the reported time in 128 bins
corresponding to the positions in the sequence (or equivalently, by sampling the delay from
a Geometric distribution, cfr. eq. (3.55)). Hence the channel C is a 2128 ˆ 128 stochastic
matrix.

(a) Vulnerability estimation for ANN and k-
NN.

(b) Normalized estimation error for for ANN
and k-NN.

(c) Vulnerability estimation for the frequen-
tist approach.

(d) Normalized estimation error for the fre-
quentist approach.

Figure 3.10 – Password checker scenario: vulnerability estimation and normalized estima-
tion error plots.
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The typical attacker is an interactive one, which figures out larger and larger prefixes of
the password by testing each bit at a time. We assume that the attacker has already figured
out the first 6 bits of the sequence and it is trying to figure out the 7-th. Thus the prior
⇡ is distributed (uniformly, we assume) only on the sequences formed by the known 6-bits
prefix and all the possible remaining 122 bits, while the g function assigns 1 to the sequences
whose 7-th bit agrees with the stored password, and 0 otherwise. Thus g is a partition gain
function [ACPS12], and its particularity is that for such kind of functions data pre-processing
and channel pre-processing coincide. This is because gpw, xq is either 0 or 1, so in both cases
we generate exactly one pair pw, yq for each pair px, yq for which gpw, xq “ 1. Note that
in this case the data pre-processing transformation does not increase the training set, and
the channel pre-processing transformation does not introduce any additional noise. The RC

matrix (cfr. section 3.2.1) is a 2 ˆ 128 stochastic matrix.

(a) Vulnerability estimation for ANN, k-NN,
and the frequentist approach.

(b) Normalized estimation error for ANN, k-
NN, and the frequentist approach.

Figure 3.11 – Password checker scenario: comparison plots.

The experiments are done with training sets of 10K, 30K and 50K samples. The results
are reported in fig. 3.10. We note that the estimation error is quite small, especially in the
ANN case. This is because the learning problem is particularly simple since, by considering
the g-leakage and the preprocessing, we have managed to reduce the problem to learning a
function of type Y Ñ W , rather than Y Ñ X , and there is a huge difference in size between
W and X (the first is 2 and the latter is 2128). Also the frequentist approach does quite well,
and this is because Y is small. With a finer bucketing (on top of the Laplace delay), or no
bucketing at all, we expect that the difference between the accuracy of the frequentist and of
the ML estimation would be much larger.

Note that with a non-leaky password checker the observables are only fail or success .
In this case the size of Y would be 2, but since success would have an extremely small
probability (1{2128), the vulnerability would be negligible, and it would not be detected nei-
ther by our approach nor by the frequentist one, because a pair p¨, successq would never be
generated in practice. Hence both approaches would report vulnerability 0.
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3.4 Technical details

In this section we report a few technical details concerning the ANN models’ parameters
and the frequentist approach.

ANN parameters details

In table 3.16 we report the values assigned to the hyper-parameters for the models used in the
experiments above. We list here the specifics for the ANNs models used in the experiments.
All the models are simple feed-forward networks whose layers are fully connected. The
activation functions for the hidden neurons are rectifier linear functions, while the output
layer has softmax activation function.

The loss function minimized during the training is the cross entropy, a popular choice in
classification problems. The remapping Y Ñ W can be in fact considered as a classification
problem such that, given an observable, a model learns to make the best guess.

For each experiments, the models have been tuned by cross-validating them using one
randomly chosen training sets among the available ones choosing among the largest in terms
of samples.

Hyper-parameters
Experiment Pre-processing learning rate hidden layers epochs hidden units per layer batch size

Multiple guesses Data 10´3 3 700 r100, 100, 100s 1000
Channel 10´3 3 500 r100, 100, 100s 1000

Location Priv. Data 10´3 3 1000 r500, 500, 500s 200, 500, 1000
Channel 10´3 3 200, 500, 1000 r500, 500, 500s 20, 200, 500

Diff. Priv. Data 10´3 3 500 r100, 100, 100s 200
Channel 10´3 3 500 r100, 100, 100s 200

Psw SCA - 10´3 3 700 r100, 100, 100s 1000

Table 3.16 – Table with the hyper-parameters setting for each one of the experiments above.
When multiple values are provided for the parameters of an experiment it is to be intended
that each value corresponds to a specific size of the training set (sorted from the smallest to
the largest number of samples).

Frequentist approach description

In the frequentist approach the elements of the channel, namely the conditional probabilities
PY |Xpy|xq, are estimated directly in the following way: the empirical prior probability of x,
p⇡x, is computed by counting the number of occurrences of x in the training set and dividing
the result by the total number of elements. Analogously, the empirical joint probability
pPXY px, yq is computed by counting the number of occurrences of the pair px, yq and dividing
the result by the total number of elements in the set. The estimation pCxy of Cxy is then
defined as

pCxy “

pPXY px, yq

p⇡pxq
. (3.58)
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In order to have a fair comparison with our approach, which takes advantage of the fact
that we have several training sets and validation sets at our disposal, while preserving at the
same time the spirit of the frequentist approach, we proceed as follows: Let us consider a
training set Dm, that we will use to learn the best remapping Y Ñ W , and a validation set
Tn which is then used to actually estimate the g-vulnerability. We first compute p⇡ using
Dm. For each y in Y and for each x P X , the empirical probability pPX|Y is computed
using Dm as well. In particular, pPX|Y px|yq is given by the number of times x appears in
pair with y divided by the number of occurrences of y. In case a certain y is in Tn but not
in Dm, it is assigned the secret x1

“ argmax
xPX p⇡ so that pPX|Y px

1
|yq “ 1 and pPX|Y pxq “

0, @x ‰ x
1. It is now possible to find the best mapping for each y defined as wpyq “

argmax
wPW

∞
xPX pPX|Y px|yqgpw, xq. Now we compute the empirical joint distribution for

each px, yq in Tn, namely pQXY , as the number of occurrences of px, yq divided by the total
number of samples in Tn. We now estimate the g-vulnerability on the validation samples
according to:

pVn “

ÿ

yPY

ÿ

xPX
pQXY px, yqgpwpyq, xq. (3.59)

3.5 Final remarks

Our contribution

In this chapter we have presented a method to estimate the g-vulnerability in the black-
box scenario and relying on the generalization capabilities of ML models. By estimating
the g-vulnerability we can evaluate the leakage when a given system is attacked by many
adversaries whose targets are different.

We provide a study of the learnability problem for the statistical point of view. We pro-
vide statistical guarantees showing the learnability of the g-vulnerability for all distributions
and we derive distribution-free bounds on the accuracy of its estimation.

Finally we validate the performance of our method via several experiments using k-NN
and ANN models. The code to run these experiments is available at the URL
https://github.com/LEAVESrepo/leaves.

Related work

Most of the literature related to what has been discussed in this chapter has been presented
in section 1.2. However, here, we would like to draw the reader’s attention to a work which
has been of fundamental importance in the study of the channel pre-processing approach,
i.e. [BS16]. In this work, the authors investigated the indirect leakage induced by a chan-
nel (i.e., leakage on sensitive information not in the domain of the channel), and proved
a fundamental equivalence between Dalenius min-entropy leakage under arbitrary correla-
tions and g-leakage under arbitrary gain functions. This result is similar to our Theorem 3,

https://github.com/LEAVESrepo/leaves
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and it opens the way to the possible extension of our approach to this more general leakage
scenario.

Summary

In this chapter, we have shown how ML can be used to model attacks and then study the
amount of information leaked by the system whose outputs can be observed by the attackers.
We have proposed the estimation of g-leakage for its flexibility and power to encompass
many different attacks.

In particular, we have introduced two techniques, the data and channel pre-processing
respectively, to reduce the problem of the g-vulnerability estimation to that of the Bayes risk
estimation.

Since for each px, yq all the possible correspondences pw, yq are created according to the
data pre-processing, in regimes where the amount of samples collected from the system is
small, it tends to outperform the channel pre-processing. However, in case the gain function
g take very high values, the data pre-processing might quickly create very large large sets
of samples. Moreover if the gain function takes non integer values, then for the data pre-
processing some approximations are needed as explained above.

In the next chapter we will investigate and discuss a ML based method to protect the
information via controlled noise injection in the original information input in the system.





CHAPTER 4
Privacy protection mechanisms design

via machine learning

In this section we thoroughly discuss our ML based framework that can be used to build
and deploy privacy protection mechanisms as anticipated in section 1.3. We focus on mech-
anisms that obfuscate the data by adding controlled noise. Usually the QoS that the user
receives in exchange for his obfuscated data degrades with the amount of obfuscation, hence
the challenge is to find a good trade-off between privacy and utility. Following the approach
of [STT17], we aim at maximizing the privacy protection while preserving the desired QoS1.
The framework that we develop is general and can be applied to any situation in which an
attacker might infer sensitive information from accessible data correlated with such infor-
mation. As a case study, we consider the problem of location privacy and in particular the
re-identification of the user from her/his location. In the location privacy scenario, utility is
typically expressed as a bound on the expected distance between the real location and the
obfuscated one2 [STT17, ABCP13, BCP14, CEP17], capturing the fact that location based
services usually offer a better QoS when they receive a more accurate location.

As already mentioned in the introduction, if both privacy and utility can be expressed
as a linear function, then the optimal trade-off can in principle be achieved with linear pro-
gramming [STT17, BCP14, Sho15, OTPG17]. The limitation of this approach, however, is
that it does not scale to large datasets. The problem is that the linear program needs one
variable for every pair pw, zq of real and obfuscated locations. Such variables represent the
probability of producing the obfuscated location z when the real one is w. For a 50 ˆ 50
grid this is more than six million variables, which is already at the limit of what modern
solvers can do. For a 260 ˆ 260 grid, the program has 4.5 billion variables, making it
completely intractable (we could not even launch such a program due to the huge memory
requirements). Furthermore, the background knowledge and the correlation between data
points affect privacy and are usually difficult to determine and express formally. Another

1Other approaches take the opposite view, and aim at maximizing utility while achieving the desired amount
of privacy, see for instance [BCP14].

2This notion is known as distortion in information theory [CT06].

53
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way to deal with the problem of finding a good trade-off between privacy and utility is using
analytic methods (such as the Planar Laplace mechanism), which is the typical setting in the
field of differential privacy.

We compare our proposed framework to both the linear programming based solution
(when the computation is feasible) and to the Laplace mechanism. From table 4.1, which
anticipates some of the experimental results in section 4.4.1 and section 4.5, we can see that
our mechanism compares the optimal solution both when the synthetic and real data from
the Gowalla dataset [LK] are involved. Likewise, we can asses that, in terms of Bayes error,
the solution we propose outperforms the Laplace mechanism. However, for the sake of fair-
ness, we must highlight that the planar Laplace was designed to satisfies a different notion of
privacy, called geo-indistinguishability [ABCP13] (see next paragraph). Our mechanism on
the contrary does not satisfy this notion. The main difference between the two approaches
is that the scenarios where the planar Laplace is involved are concerned worst-case mea-
sures, i.e. with the protection of each individual datum. Conversely, as we will explain in
the following sections, the mutual information and Bayes risk notions in our approach are
average, in the sense that they are concerned with the expected level of privacy over all sen-
sitive data. Clearly, the the former is a stronger notion of privacy, as proved in [AACP11]
and [De12]. Its relation with mutual information has been explored in [Mir13,CY16], while
its relation with the Bayes vulnerability has been investigated in [AAC`15]. In [CY16] it
has been has proved that a conditional version of mutual information correspond to a relaxed
form of differential privacy called p", �q-differential privacy. A natural development of the
current proposed framework will involve studying the possibility of generating worst-case
mechanisms via ML in future work.

From a practical point of view our method belongs to the local privacy category, like
LDP and geo-indistinguishability, in the sense that it can be deployed at the user’s end, with
no need of a trusted third party. Once the training is done the system can be used as a
personal device that, each time the user needs to report his location to a LBS, generates a
sanitized version of it by adding noise to the real location.

Synthetic data, low utility
Laplace Ours Optimal
0.39 0.74 0.75

Synthetic data, high utility
Laplace Ours Optimal
0.23 0.42 0.50

Gowalla data, low utility
Laplace Ours Optimal
0.33 0.80 0.83

Gowalla data, high utility
Laplace Ours Optimal
0.28 0.38 ?

Table 4.1 – Bayes error on synthetic and Gowalla data, for the Laplace mechanism, our
mechanism, and the optimal one, on a grid of 260ˆ260 cells. In the last table the Bayes error
of the optimal mechanism is unknown: the linear program contains 4.5 billion variables,
making it intractable in practice.



4.1. Game theoretic problem description 55

4.1 Game theoretic problem description

Inspired by the GAN paradigm [GPAM`14], we propose a system consisting of two ad-
versarial neural networks, G (generator) and C (classifier). The idea is that G generates
noise so to confuse the adversary as much as possible, within the boundaries of the utility
constraints, while C inputs the noisy locations produced by G and tries to re-identify (clas-
sify) the corresponding user. While fighting against C , G refines its strategy, until a point
where it cannot improve any longer. Note that a significant difference from the standard
GAN is that, in the latter, the generator has to learn to reproduce an existing distribution
from samples. In our case, instead, the generator has to “invent” a distribution from scratch.

The interplay between G and C can be seen as an instance of a zero-sum Stackelberg
game [STT17], where G is the leader, and C is the follower, and the payoff function f is
the privacy loss. Finding the optimal point of equilibrium between G and C corresponds to
solving a minimax problem on f with G being the minimizer and C the maximizer.

A major challenge in our setting is represented by the choice of f . A first idea would be
to measure it in terms of C ’s capability to re-associate a location to the right user. Hence we
could define f as the expected success probability of C ’s classification.

Such function f would be convex/concave with respect to the strategies of G and C
respectively, so from game theory we would derive the existence of a saddle point corre-
sponding to the optimal obfuscation-re-identification pair. The problem, however, is that it
is difficult to reach the saddle point via the typical alternation between the two nets. Let us
clarify this point by providing the following simple example3:
Example 1: Consider two users, Alice and Bob, in locations a and b respectively. Assume
that at first G reports their true locations (no noise). Then C learns that a corresponds to
Alice and b to Bob. At the next round, G will figure that to maximize the misclassification
error (given the prediction of C ) it should swap the locations, i.e., report a for Alice and b

for Bob. Then, on its turn, C will have to “unlearn” the previous classification and learn
the new one. But then, at the next round, G will again swap the locations, and bring the
situation back to the starting point, and so on, without ever reaching an equilibrium. Note
that a possible equilibrium point for G would be the mixed strategy that reports a for both
Alice and Bob4 (so that C could only make a bling guess), but G may not stop there. The
problem is that it is difficult to calibrate the training of G so that it stops in proximity of the
saddle point rather than continuing all the way to reach its relative optimum. The situation
is illustrated in table 4.2a.

In order to address this issue we adopt a different target function, less sensitive to the
particular labeling strategy of C . The idea is to consider not just the precision of the classi-
fication, but, rather, the information contained in it.

There are two main ways of formalizing this intuition: the mutual information IpX;Y q

3A similar example was independently pointed out in [AA16].
4There are two more equilibrium points: one is when both Alice and Bob report a or b with uniform

probability, the other is when they both report b. All the three strategies are equivalent.
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C
a�A

b�B

a�A

b�A

a�B

b�B

a�B

b�A

G

A�a

B�b
1 0.5 0.5 0

... ... ... ... ...

G
A�a

B�a
0.5 0.5 0.5 0.5

... ... ... ... ...
A�b

B�a
0 0.5 0.5 1

(a) f “ Expected success probability of the classification.
C

a�A

b�B

a�A

b�A

a�B

b�B

a�B

b�A

G

A�a

B�b
1 1 0 0.5 0 0.5 1 1

... ... ... ... ...

G
A�a

B�a
0 0.5 0 0.5 0 0.5 0 0.5

... ... ... ... ...
A�b

B�a
1 1 0 0.5 0 0.5 1 1

(b) Bold: f “ IpX;Y q. Hollow: f “ 1 ´ BpX|Y q.

Table 4.2 – Payoff tables of the games in example 1, for various payoff functions f . A stands
for Alice and B for Bob.

and the Bayes error BpX|Y q, where X, Y are respectively the random variable associated
to the true ids, and to the ids resulting from the classification (predicted ids). We recall that
IpX;Y q “ HpXq ´HpX|Y q, where HpXq is the entropy of X and HpX|Y q is the residual
entropy of X given Y , while BpX|Y q is the probability of error when we select the value of
X with maximum aposteriori probability, given Y .

Mutual information and Bayes error are related by the Santhi-Vardy bound [SV06]:
BpX|Y q § 1 ´ 2´HpX|Y q

. If we set f to be IpX;Y q or 1 ´ BpX|Y q, we obtain the payoff
table illustrated in table 4.2b. Note that the mimimum f in the first and last columns corre-
sponds now to a point of equilibrium for any choice of C . This is not always the case, but
in general it is closer to the equilibrium and makes the training of G more stable: training
G for a longer time does not risk to increase the distance from the equilibrium point.

In this chapter we introduce the use the mutual information to generate the noise, but
we evaluate the level of privacy also in terms of the Bayes error, which represents the prob-
ability of error of the strongest possible adversary. Both notions have been used in the
literature as privacy measures, for instance mutual information has been applied to quantify
anonymity [ZB05, CPP08b]. The Bayes error has been considered in [CPP08b, MMM10,
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Che17, ACM`16], and indirectly as min-entropy leakage in [Smi09]. In [OTPG17], the au-
thors claim that to guarantee a good level of location privacy a mechanism should measure
well in terms of both the Bayes error and the residual entropy (which is strictly related to
mutual information).

4.2 Our setting

We formulate the privacy-utility optimization problem using a framework similar to that
of [BWI16]. We consider four random variables, X, Y, Z,W , ranging over the sets X ,Y ,Z
and W respectively, with the following meaning:

• X: the sensitive information that the users wishes to conceal,

• W : the useful information with respect to some service provider and the intended
notion of utility,

• Z: the information made visible to the service provider, which may be intercepted by
some attacker, and

• Y : the information inferred by the attacker.

We assume a fixed joint distribution (data model) PX,W over the users’ data X ˆ W . We
present our framework assuming that the variables are discrete, but all results and definitions
can be transferred to the continuous case, by replacing the distributions with probability
density functions, and the summations with integrals. For the initial definitions and results
of this section X and Y may be different sets. Starting from section 4.3 we will assume that
X “ Y .

An obfuscation mechanism can be represented as a conditional probability distribution
PZ|W , where PZ|W pz|wq indicates the probability that the mechanism transform the data
point w into the noisy data point z. We assume that Z are the only attributes visible to
the attacker and to the service provider. The goal of the defender G is to optimize the data
release mechanism PZ|W so to achieve a desired level of utility while minimizing the leakage
of the sensitive attributes X . The goal of the attacker C is to retrieve X from Z as precisely
as possible. In doing so, it produces a classification PY |Z (prediction).

Note that the four random variables form a Markov chain:

X Ø W Ø Z Ø Y. (4.1)

Their joint distribution is completely determined by the data model, the obfuscation mecha-
nism and the classification:

PX,W,Z,Y px, w, z, yq “ PX,W px, wqPZ|W pz | wqPY |Zpy | zq.
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Symbol Description
C Classifier network (attacker).
G Generator network.

X,X Sensitive information. (Random var. and domain.)
W,W Useful information with respect to the intended notion of utility.
Z,Z Obfuscated information accessible to the service provider and to the attacker.
Y,Y Information inferred by the attacker.
P¨,¨ Joint probability of two random variables.
P¨|¨ Conditional probability.
PZ|W Obfuscation mechanism.
Bp¨ | ¨q Bayes error.

LrZ | W s Utility loss induced by the obfuscation mechanism.
L Threshold on the utility loss.

Hp¨q Entropy of a random variable.
Hp¨|¨q Conditional entropy.
Ip¨; ¨q Mutual information between two random variables.

Table 4.3 – Table of symbols for chapter 4

From PX,W,Z,Y we can derive the marginals, the conditional probabilities of any two vari-
ables, etc. For instance:

PXpxq “

ÿ

w

PX,W px, wq. (4.2)

PZpzq “

ÿ

xw

PX,W px, wqPZ|W pz | wq. (4.3)

PZ|Xpz|xq “

∞
w
PX,W px, wqPZ|W pz | wq

PXpxq
. (4.4)

PX|Zpx|zq “
PZ|Xpz|xqPXpxq

PZpzq
. (4.5)

The latter distribution, PX|Z , is the posterior distribution of X given Z, and plays an impor-
tant role in the following sections.

4.2.1 Quantifying utility

Concerning the utility, we consider a loss function ` : W ˆ Z Ñ r0,8q, where `pw, zq

represents the utility loss caused by reporting z when the true value is w.
Definition 2 (Utility loss): The utility loss from the original data W to the noisy data Z,
given the loss function `, is defined as the expectation of `:

LrZ | W, `s “ Er` | W,Zs “

ÿ

wz

PW,Zpw, zq`pw, zq. (4.6)
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We will omit ` when it is clear from the context. Note that, given a data model PX,W ,
the utility loss can be expressed in terms of the mechanism PZ|W :

LrZ | W s “

ÿ

xwz

PX,W px, wqPZ|W pz|wq`pw, zq. (4.7)

Our goal is to build a privacy-protection mechanism that keeps the loss below a certain
threshold L. We denote by ML the set of such mechanisms, namely:

ML

def
“ tPZ|W | LrZ | W s § Lu. (4.8)

The following property is immediate:
Proposition 3 (Convexity of ML): The set ML is convex and closed.

4.2.2 Quantifying privacy as mutual information

For the notions of entropy, residual entropy, and mutual information we refer to section 2.2
for a deeper discussion. We briefly recall the basic information-theoretic definitions of cross-
entropy that will be used in the next sections.
The cross-entropy between the posterior and the prediction:

CE pX,Y q “ ´

ÿ

z

PZpzq

ÿ

x

PX|Zpx|zq logPY |Zpy|zq. (4.9)

For the notion of entropy, residual entropy, and mutual information we refer to section 2.2
for a deeper discussion.

We recall that the more correlated X and Y are, the larger is IpX;Y q, and viceversa.
The minimum IpX;Y q “ 0 is when X and Y are independent; the maximum is when the
value of X determines uniquely the value of Y and viceversa. In contrast, CE pX, Y q, that
represents the precision loss in the classification prediction, is not related to the correlation
between X and Y , but rather to the similarity between PX|Z and PY |Z : the more similar they
are, the smaller is CE pX, Y q. In particular, the minimum CE pX, Y q is when PX|Z “ PY |Z .

The privacy leakage of a mechanism PZ|W with respect to an attacker C, character-
ized by the prediction PY |Z , will be quantified by the mutual information IpX;Y q. This
notion of privacy will be used as objective function, rather than the more typical cross en-
tropy CE pX, Y q. As explained in the introduction, this choice makes the training of G

more stable because, in order to reduce IpX;Y q, G cannot simply swap around the labels
of the classification learned by C, it must reduce the correlation between X and Z (via
suitable modifications of PZ|W ), and in doing so it limits the amount of information that
any adversary can infer about X from Z. We will come back on this point in more detail
in section 4.3.1.



60 Chapter 4. Privacy protection mechanisms design via machine learning

4.2.3 Formulation of the game

The game that G and C play corresponds to the following minimax formulation:

min
G

max
C

IpX;Y q (4.10)

where the minimization by G is on the mechanisms PZ|W ranging over ML, while the max-
imization by C is on the classifications PY |Z .

Note that PZ|W can be seen as a stochastic matrix and therefore as an element of a vector
space. An important property for our purposes is that the mutual information is convex with
respect to PZ|W :
Proposition 4 (Convexity of I): Given PX,W and PY |Z , let fpPZ|W q “ IpX;Y q. Then f is
convex.

Proof. Let us recall that
X Ø W Ø Z Ø Y. (4.11)

represents a Markov chain where:

• the relation between the two random variables X and W is defined by the data distri-
bution PX,W ,

• the relation between Z and Y depends only on the chosen classifier according to PY |Z ,

• the relation between Z and W can be described by the variable PZ|W

If we consider X as the secret input and Y as the observable output of a stochastic channel,
the mutual information between the two random variable can be expressed as

IpX;Y q “ gpPY |Xq. (4.12)

We know from [CT06] that gp¨q is a convex function with respect to PY |X . We can express
PY |X as:

PY |Xpy|xq “

∞
zw

PX,W px, wqPZ|W pz|wqPY |Zpy|zq∞
w
PX,W px, wq

. (4.13)

Equation (4.13) represents a linear function of the variable PZ|W (all the other probabilities
are constant). Hence fpPZ|W q “ gphpPZ|W qq where gp¨q is convex and hp¨q is linear. The
composition of a convex function with a linear one is a convex function and this concludes
the proof.

Proposition 3 and proposition 4 show that this problem is well defined: for any choice
of C, IpX;Y q has a global minimum in ML, and no strictly-local minima.
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On the use of the the classifier

We note that, in principle, one could avoid using the GAN paradigm, and try to achieve the
optimal mechanism by solving, instead, the following minimization problem:

min
G

IpX;Zq (4.14)

where minG IpX;Zq is meant, as before, as a minimization over the mechanisms PZ|W
ranging over ML. This approach would have the advantage that it is independent from the
attacker, so one would need to reason only about G (and there would be no need for a GAN).

The main difference between IpX;Y q and IpX;Zq is that the latter represents the in-
formation about X available to any adversary, not only those that are trying to retrieve X

by building a classifier. This fact reflects in the following relation between the two formula-
tions:

Proposition 5:
min
G

max
C

IpX;Y q § min
G

IpX;Zq

Proof. Given that eq. (4.1) represents a Markov chain, X Ø Z Ø Y represents one as well.
From the data processing inequality it follows that:

IpX;Y q § IpX;Zq . (4.15)

Hence we have:
max
C

IpX;Y q § IpX;Zq , (4.16)

and therefore:
min
G

max
C

IpX;Y q § min
G

IpX;Zq . (4.17)

Note that, since minG IpX;Zq is an upper bound of our target, it imposes a limit on
maxC IpX;Y q.

On the other hand, there are some advantages in considering minG maxC IpX;Y q in-
stead than minG IpX;Zq: first of all, Z may have a much larger and more complicated do-
main than Y , so performing the gradient descent on IpX;Zq could be infeasible. Second, if
we are interested in considering only classification-based attacks, then minG maxC IpX;Y q

should give a better result than minG IpX;Zq. In this work we focus on the former, and
leave the exploration of an approach based on minG IpX;Zq as future work.

4.2.4 Measuring privacy as Bayes error

As explained in the introduction, we intend to evaluate the resulting mechanism also in terms
of Bayes error. Here we give the relevant definitions and properties.
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Definition 3 (Bayes error): The Bayes error of X given Y is:

BpX | Y q “

ÿ

y

PY pyqp1 ´ max
x

PX|Y px | yqq.

Namely, the Bayes error is the expected probability of “guessing the wrong id” of an
adversary that, when he sees that C produces the id y, it guesses the id x that has the highest
posterior probability given y.

The definition of BpX | Zq is analogous. Given a mechanism PZ|W , we regard BpX | Y q

as a measure of the privacy of PZ|W with respect to one-try [Smi09] classification-based at-
tacks, whereas BpX | Zq is with respect to any one-try attack. The following proposition
shows the relation between the two notions.
Proposition 6: BpX | Zq § BpX | Y q

Proof.
BpX | Zq “

ÿ

z

PZpzqp1 ´ max
x

PX|Zpx | zqq

“ 1 ´

ÿ

z

PZpzqmax
x

PX|Zpx | zq

“ 1 ´

ÿ

y

PY pyq

ÿ

z

PZ|Y pz|yqmax
x

PX|Zpx | zq

§ 1 ´

ÿ

y

PY pyqmax
x

ÿ

z

PZ|Y pz|yqPX|Zpx | zq

“ 1 ´

ÿ

y

PY pyqmax
x

PX|Y px | yq

“ BpX | Y q

4.3 Proposed method

In this section we describe the implementation of our adversarial game between G and C in
terms of alternate training of neural networks.

The scheme of our game is illustrated in fig. 4.1, where:

• x, y, z and w are instances of the random variables X ,Y , Z and W respectively, whose
meaning is described in previous section. We assume that the domains of X and Y

coincide.

• s (seed) is a randomly-generated number in r0, 1q.

• g is the function learnt by G , and it represents an obfuscation mechanism PZ|W . The
input s provides the randomness needed to generate random noise. It is necessary
because a neural network in itself is deterministic.
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G C

cpz, yq

ppw, sq, xq pgppw, sqq, xq “ pz, xq

final gpw, sq

Figure 4.1 – Scheme of the adversarial nets for our setting.

• c is the classification learnt by C , corresponding to PY |Z .

Our paradigm has been inspired by the GAN [GPAM`14], but it comes with some fun-
damental differences:

• C is a classifier performing re-identification while in the GAN there is a discriminator
able to distinguish a real data distribution from a generated one;

• in the GAN paradigm the generator network tries to reproduce the original data distri-
bution to fool the discriminator. A huge difference is that, in our adversarial scenario,
G does not have a model distribution to refer to. The final data distribution only de-
pends on the evolution of the two networks over time and it is driven by the constraints
imposed in the loss functions that rule the learning process.

• We still adopt a training algorithm which alternates the training of G and of C , but as
we will show in Section section 4.3, it is different from the one adopted for GAN.

The evolution of the adversarial network is described in algorithm 2. C and G are trained
at two different moments within the same adversarial training iteration. In particular Ci is
obtained by training the network C against the noise generated by Gi´1 and Gi is obtained
by fighting against Ci .

Note that in our method each Ci is trained on the output of Gi´1 . This is a main dif-
ference with respect to the GAN paradigm, where the discriminator is trained both on the
output of the generator and on samples from the target distribution generated by an external
source. Another particularity of our method is that at the end of the i-th iteration, while
Gi is retained for the next iteration, Ci is discarded and the classifier for iteration i ` 1 is
reinitialized to the base one C0. The reason is that restarting from C0 is more efficient than
starting from the last trained classifier Ci . This is because Gi may have changed at step i the
noise mechanism PZ|W and therefore the association between X and Z expressed by PX|Z .
The predictions PY |Zpx | zq that Ci had produced during its training (trying to match the
PX|Zpx | zq previously produced by Gi´1 as closely as possible), not only is not optimal
anymore: for some z’s it may have become completely wrong, and starting from a wrong
prediction is a drawback that slows down the learning of the new prediction. There may
be several z’s for which the old prediction is a good approximation of the new one to be
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Algorithm 2: Adversarial algorithm with classifier reset.
Data: train_data // Training data
Models: Gi generator evolution at the i–th step;

Ci classifier evolution at the i–th step.

trainpn, dq trains the network n on the data d.
Gipdataq outputs a noisy version of data .

C0 = base classifier model
G0 = base generator model
i = 0
while True do

i += 1
// Train class. from scratch
Ci = trainpC0, Gi´1ptrain_dataqq

A “ Gi´1 and Ci in cascade
A = trainpA, train_dataq

Gi = generator layer in A

learned, but according to our experiments the net effect is negative: the training of the new
classifier is usually faster if we restart from scratch. It is worth noting that this is only a
matter of efficiency though: eventually, even if we started from Ci , the new classifier would
“unlearn” the old, wrong predictions and learn the correct new ones.

At the end of each training iteration we evaluate the quality of the produced noise by
checking the performance of the C network. In particular we make sure that the noise
produced by the G network affects the training, validation and test data in a similar way. In
fact, in case the performances were good on the training data but not on the the other data,
this would be a result of over-fitting rather than of a quality indicator of the injected noise.

We describe now in more detail some key implementation choices of our proposal.

4.3.1 Mutual information vs cross entropy

Based on the formulation of our game eq. (4.10), the alternate training of both G and C

is performed using the mutual information IpX;Y q as the loss function. The goal of G is
to minimize IpX;Y q by refining the mechanism PZ|W , while C aims at maximizing it by
refining the classifier PY |Z .

We remark that the use of mutual information as loss function is not standard. A more
typical function for training a classifier is the cross entropy CE pX, Y q, which is more effi-
cient to implement. CE pX, Y q is minimized when PX|Z and PY |Z coincide. Such outcome
would correspond to the perfect classifier, that predicts the exact probability PX|Zpx|zq that
a given sample z belongs to the class x. One could then think of reformulating the game in
terms of the cross entropy CE pX, Y q, where C would be the minimizer (trying to infer prob-
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abilistic information about the secret x from a given observation z) and G the maximizer
(trying to prevent the adversary C from achieving this knowledge). However, as already
observed in example 1 in the introduction, training G via CE pX, Y q does not allow to reach
an equilibrium, because it takes into account only one adversarial strategy (i.e., one particu-
lar classification). Indeed, a maximum CE pX, Y q can be achieved with a PZ|W that simply
causes a swapping of the associations between the labels x’s and the corresponding noisy
locations z’s. This would change PX|Z and therefore fool the present classifier (because the
prediction PY |Z would not be equal anymore to PX|Z), but at the next round, when C will
be trained on the new data, it will learn the new classification PX|Z and obtain, again, the
maximum information about x that can be inferred from z. The possibility of ending up in
such cyclic behavior is experimentally proved in section 4.4.1. Note that this problem does
not happen with mutual information, because swapping the labels does not affect IpX;Y q

at all.
Since G can only change the mechanism PZ|W , the only way for G to reduce the mutual

information IpX;Y q is to reduce IpX;Zq by reducing the correlation between W and Z (X
is correlated to Z only via W ) . This limits the information about X that can be inferred
from Z, for any possible adversary, i.e., for any possible prediction PY |Z , hence also for the
optimal one. Still, if Z is very large IpX;Zq cannot be reduced directly in an efficient way,
and this is the reason why G needs the feedback of the optimal prediction PY |Z : in contrast
to IpX;Zq, minimizing IpX;Y q can be done effectively in neural networks via the gradient
descent when X (the domain of X and Y ) is “reasonably small”.

The above discussion about IpX;Y q vs CE pX, Y q holds for the generator G, but what
about the adversary C? Namely, for a given PZ|W , is it still necessary to train C on IpX;Y q,
or could we equivalently train it on CE pX, Y q? The following result answers this question
positively.

Proposition 7:
argmin

G
max
C

IpX;Y q “ argmin
G

IpX, Y
1
q ,

with Y
1 defined by PY 1|Z “ argmin

C
CE pX, Y

1
q “ PX|Z .

Proof. PXW is fixed, and therefore HpXq is fixed as well. Hence the goal of C of maxi-
mizing IpX;Y q reduces to maximizing ´HpX|Y q. Consider two mechanisms, PZ1|W and
PZ2|W , and the distributions induced on X by Z1 and Z2 respectively, namely PX|Z1 and
PX|Z2 . Consider the predictions PY1|Z1 and PY1|Z2 that C obtains by minimizing the cross
entropy with PX|Z1 and PX|Z2 respectively.

It is well known that argmin
Q
CE pP,Qq “ P , hence we have PY1|Z1 “ PX|Z1 and

PY2|Z2 “ PX|Z2 . (Note that X , Y1 and Y2 all have the same domain X .) Hence, taking into
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account that X Ø Z1 Ø Y1 and X Ø Z2 Ø Y2 (i.e., they are Markov chains), we have:

´HpX|Y1q § ´HpX|Y2q

iff
∞

z
PZ1pzq

∞
xy
PX|Z1“zpx|zqPY1|Z1“zpy|zq logPY1|Z1“zpy|zq

§∞
z
PZ2pzq

∞
xy
PX|Z2“zpx|zqPY2|Z2“zpy|zq logPY2|Z2“zpy|zq

iff
∞

z
PZ1pzq

∞
xy
PX|Z1“zpx|zqPX|Z1“zpy|zq logPX|Z1“zpx|zq

§∞
z
PZ2pzq

∞
xy
PX|Z2“zpx|zqPX|Z2“zpy|zq logPX|Z2“zpx|zq

iff

´HpX|Z1q § ´HpX|Z2q.

Finally, observe that

´ HpX|Z1q § ´HpX|Z2q implies max
PY1|Z

IpX;Y1q § max
PY2|Z

IpX;Y2q (4.18)

and recall that PYi|Z is the prediction produced by C.

Given the above result, and since minimizing CE pX, Y q is more efficient than maxi-
mizing IpX;Y q, in our implementation we have used CE pX, Y q for the training of C. Of
course, we cannot do the same for G: as discussed above, the generator needs to be trained
by using IpX;Y q.

A consequence of proposition 7 is that the adversary represented by C at the point of
equilibrium is at least as strong as the Bayesian adversary, namely the adversary that min-
imizes the expected probability of error in the 1-try attack (which consists in guessing a
single secret x given a single observable z [Smi09].) Indeed, from PY |Z one can derive the
following decision function (deterministic classifier) f˚ : Z Ñ X , which assigns to any z

the class y with highest predicted probability:

f
˚
pzq “ argmax

y

PY |Zpy|zq (4.19)

To state formally the property of the optimality of f˚ with respect to 1-try attacks, let us
recall the definition of the expected error Rpfq for a generic decision function f : Z Ñ X :

Rpfq “

ÿ

xz

PX,Zpx, zq1f px, zq (4.20)
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where

1f px, zq “

#
1 if fpzq ‰ x

0 otherwise
(4.21)

We can now state the following result, that relates the error of the attacker f˚ (induced by
the C at the equilibrium point) and the minimum Bayes error of any adversary for the G at
the equilibrium point (cfr. definition 3 and proposition 6):
Proposition 8: If PY |Z “ argminC CE pX, Y q, and f

˚ is defined as in eq. (4.19), then:

Rpf
˚
q “ BpX,Zq

Proof. Let PY |Z “ argminC CE pX, Y q and let f˚ be defined as in eq. (4.19). We note that,
for every z P Z:

ÿ

x

PX|Zpx|zq1f˚px, zq “

ÿ

x‰f˚pzq
PX|Zpx, zq

“

ÿ

x‰argmax
y
PY |Zpy|zq

PX|Zpx, zq

“1 ´

ÿ

x“argmax
y
PY |Zpy|zq

PX|Zpx, zq

“1 ´ PX|Zpargmax
x

PX|Zpx|zq | zqq

“1 ´ max
x

PX|Zpx | zqq

where the first equality is due to the definition of 1f˚ , the second one is due to the definition
of f

˚, and the last but one follows from the fact that PY |Z “ argminC CE pX, Y q and
therefore, by proposition 7, PY |Z “ PX|Z . Hence, we have:

Rpf
˚
q “

ÿ

xz

PX,Zpx, zq1
˚
f
px, zq

“

ÿ

xz

PZpzqPX|Zpx|zq1
˚
f
px, zq

“

ÿ

z

PZpzq

ÿ

x

PX|Zpx|zq1
˚
f
px, zq

“

ÿ

z

PZpzqp1 ´ max
x

PX|Zpx | zqq

“BpX | Zq (cfr. definition 3)
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4.3.2 Mutual information: implementation

In order to describe the implementation of the mutual information loss function, we will
consider the training on a specific batch of data. This technique is based on the idea that the
whole training set of cardinality N can be split into subsets of cardinality N

1 with N
1

§ N .
This is useful to make the data fit into the memory and, since during each epoch the network
is trained on all the batches, this corresponds to using all the training data (provided that the
data distribution in each batch is a high fidelity representation of the training set distribution,
otherwise the learning could be unstable).

To obtain the mutual information between X and Y we estimate the distributions PX ,
PY and PX,Y . Then we can compute IpX;Y q using eq. (2.8), or equivalently as the formula:

ÿ

x

PXpxq logPXpxq ´

ÿ

x,y

PX,Y px, yq log
PX,Y px, yq

PY pyq
. (4.22)

Let us consider a batch consisting of N
1 samples of type pz, xq in the context of the

classification problem, and let |X | represents the cardinality of X , i.e., the total number of
classes. In the following we denote by T and Q , respectively, the target and the prediction
matrices for the batch. Namely, T and Q are N

1
ˆ |X | matrices, whose rows correspond to

samples and whose columns to classes, defined as follows. T represents the class one-hot
encoding: the element in row i and column x, T pi, xq, is 1 if x is the target class for the
sample i, and 0 otherwise. Q , on the other hand, reports the probability distribution over the
classes computed by the classifier: Qpi, xq is the predicted probability that sample i be in
class x.

The estimation of PXpxq for the given batch can be obtained by computing the frequency
of x among the samples, namely:

PXpxq “
1

N 1

N
1ÿ

i“1

T pi, xq. (4.23)

Similarly, PY pyq is estimated as the expected prediction of y:

PY pyq “
1

N 1

N
1ÿ

i“1

Qpi, yq. (4.24)

The joint distribution PX,Y can be estimated by considering the correlation of X and Y

through the samples. Indeed, the probability that sample i has target class x and predicted
class y can be computed as the product T pi, xqQpi, yq, and by summing up the contributions
of all samples (where each sample contributes for 1{N 1) we obtain PX,Y px, yq.

More precisely, for a sample i P t1, ..., N 1
u let us define the |X | ˆ |X | matrix Ji as

Jipx, yq “ T pi, xqQpi, yq. Then we can estimate PX,Y px, yq as:

PX,Y px, yq “
1

N 1

N
1ÿ

i“1

Jipx, yq. (4.25)
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The estimation of the mutual information relies on the estimation of the probabilities,
which is based on the computation of the frequencies. Hence, in order to obtain a good esti-
mation, the batches should be large enough to represent well the true distributions. Further-
more, if the batch size is too small, the gradient descent is unstable since the representation
of the distribution changes from one batch to the other. In the ML literature there are stan-
dard validation techniques (such as the cross validation) that provide guidelines to achieve
a “good enough” estimation of the probabilities.

Base models

The base model C0 is simply the “blank” classifier that has not learnt anything yet (i.e. the
weights are initialized according to the Glorot initialization, which is a standard initialization
technique [GB10]). As for G0, we have found out experimentally that it is convenient to start
with a noise function pretty much spread out. This is because in this way the generator has
more data points with non-null probability to consider, and can figure out faster which way
to go to minimize the mutual information.

4.3.3 Utility

The utility constraint is incorporated in the loss function of G in the following way:

LossG “ ↵ ˆ Lossutility ` � ˆ IpX;Y q, (4.26)

where ↵ and � are parameters that allow us to tune the trade-off between utility and pri-
vacy. The purpose of Lossutility is to ensure that the constraint on utility is respected, i.e.,
that the obfuscation mechanism that G is trying to produce stays within the domain ML.
We recall that ML represents the constraint LrZ | W s § L (cfr. eq. (4.8)). Since we need
to compute the gradient on the loss, we need a derivable function for Lossutility . We pro-
pose to implement it using softplus, which is a function of two arguments in R defined as:
softpluspa, bq “ lnp1 ` e

pa´bq
q. This function is non negative, monotonically increasing,

and its value is close to 0 for a † b, while it grows very quickly for a ° b. Hence, we define

LossutilitypPZ|W q “ softpluspLrZ | W s, Lq. (4.27)

With this definition, Lossutility does not interfere with IpX;Y q when the constraint
LrZ | W s § L is respected, and it forces G to stay within the constraint because its growth
when the constraints is not respected is very steep.

4.3.4 On the convergence of our method

In principle, at a each iteration i, our method relies on the ability of the network Gi to
improve the obfuscation mechanism starting from the one produced by Gi´1, and given only
the original locations and the model Ci, which are used to determine the direction of the
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gradient for LossG . The classifier Ci is a particular adversary modeled by its weights and its
biases. However, thanks to the fact that the main component of LossG is IpX;Y q and not
the the cross entropy, Gi takes into account all the attacks that would be possible from Ci’s
information. We have experimentally verified that indeed, using the mutual information
rather than the cross entropy, determines a substantial improvement on the convergence
process, and the resulting mechanisms provide a better privacy (for the same utility level).
Again, the reason is that the the cross entropy would be subject to the “swapping effect”
illustrated by example 1 in the introduction.

Another improvement on the convergence is due the fact that, as explained before, we
reset the classifier to the initial weight setting (C0) at each iteration, instead than letting Ci

evolve from Ci´1.
The function that G has to minimize, LossG , is convex with respect to PZ|W . This

means that there are only global minima, although there can be many of them, all equivalent.
Hence for sufficiently small updates the noise distribution modeled by PZ|W converges to
one of these optima, provided that the involved network has enough capacity to compute
the gradient descent involved in the training algorithm. In practice, however, the network
G represents a limited family of noise distributions, and instead of optimizing the noise
distribution itself we optimize the weights of this network, which introduces multiple critical
points in the parameter space.

Number of epochs and batch size

The convergence of the game can be quite sensitive to the number of epochs and batch size.
We just give two hints here, referring to literature [KMN`16] for a general discussion about
the impact they have on learning.

First, choosing a batch too small for training G might result in too strict a constraint on
the utility. In fact, since the utility loss is an expectation, a larger number of samples makes
it more likely that some points are pushed further than the threshold, taking advantage of the
fact that their loss may be compensated by other data points for which the loss is small.

Second, training C for too few epochs might result into a too weak adversary. On
the other hand if it is trained for a long time we should make sure that the classification
performances do not drop over the validation and test set because that might indicate an
over-fitting problem.

4.4 Cross Entropy vs Mutual Information: experiments on synthetic
data

In this section we perform experiments on a synthetic dataset to obtain an intuition about
the behaviour of our method. The dataset is constructed with the explicit purpose of being
simple, to facilitate the interpretation of the results. The main outcome of these experiments
is confirming the fact that, as discussed in section 4.3.1, training the generator G wrt cross
entropy is not sound. Even in our simple synthetic case, training G with CE pX, Y q as
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the loss function fails to converge: G is just “moving points around”, temporarily fooling
the current classifier, but failing to really hide the correlation between the secrets and the
reported locations.

On the other hand, training G with mutual information behaves as expected: the resulting
network generates noise that mixes all classes together, making the classification problem
hard for any adversary, not only for the current one. Note that cross entropy is still used, but
only for C (cfr. section 4.3.1).

The dataset

We consider a simple location privacy problem; 4 users X “ Y “ tblue, red, green, yellowu

want to disclose their location while protecting their identities. Both the real locations W as
well as the reported locations Z are taken to be all locations in a squared region of 6.5ˆ 6.5
sq km centered in 5, Boulevard de Sébastopol, Paris. Each location entry is defined by a pair
of coordinates normalized in r´1, 1s.

The synthetic dataset consists of 600 real locations for each of the 4 users (classes), for
a total of 2400 entries. The locations of each user are placed around one of the vertices of
a square of 300 ˆ 300 sq meters centered in 5, Boulevard de Sébastopol, Paris. (Each user
corresponds to a different vertex.) They are randomly generated so to form a cloud of 600
entries around each vertex and in such a way that no locations falls further than about 45m
from the corresponding vertex. These sets are represented in fig. 4.2 ((a) and (b), left): it is
evident from the figure that the four classes are easily distinguishable; without noise a linear
classifier could predict the class of each location with no error at all.

Of the total 2400 entries of the dataset we use 1920 for training and validation (480 for
each user) and 480 for testing (120 for each user).

Network architecture

A relatively simple architecture is used for both G and C networks. They consist of three
fully connected hidden layers of neuron with ReLU function. In particular C has 60, 100
and 51 hidden neurons respectively in the first, second and third hidden layers. The G
network has 100 neurons in each hidden layer; such an architecture has proved to be enough
to learn how to reproduce the Laplace noise distribution (✏ “ lnp2q{100) with a negligible
loss.

Bayes error estimation

As explained in section 4.2, we use the Bayes error BpX | Zq to evaluate the level of
protection offered by a mechanism. To this purpose, we discretize Z into a grid over the
6.5 ˆ 6.5 sq km region, thus determining a partition of the region into a number of disjoint
cells. We will create different grid settings to see how the partition affects the Bayes error.
In particular, we will consider the cases where the side of a cell is 25m, 50m, 100m and
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500m long, which corresponds to 260ˆ 260 “ 67600, 130ˆ 130 “ 16900, 65ˆ 65 “ 4225
and 13 ˆ 13 “ 169 cells, respectively.

We run experiments with different numbers of obfuscated locations (hits). Specifically,
for each grid we consider 10, 100, 200 and 500 obfuscated hits for each original one.

Each hit falls in exactly one cell. Hence, we can estimate the probability that a hit is in
cell i as:

P pcelliq “
number of hits in celli

total number of hits
, (4.28)

and the probability that a hit in cell i belong to class j:

P pClassj|celliq “
number of hits of classj in celli

number of hits in celli
, (4.29)

We can now estimate of the Bayes error as follows:

BpX | Zq “ 1 ´

k´1ÿ

i“0

max
j

P pClassj|celliqP pcelliq (4.30)

where k is the total number of cells.
Note that these computations are influenced by the chosen grid. In particular we have

two extreme cases:

• when the grid consists of only one cell the Bayes error is 1 ´ 1{k “ k´1{k for any
obfuscation mechanism PZ|W .

• when the number of cells is large enough so that each cell contains at most one hit,
then the Bayes error is 0 for any obfuscation mechanism.

In general, we expects a finer granularity to give higher discrimination power and to decrease
the Bayes error, especially with methods that scatter the obfuscated locations far away.

We estimate the Bayes error on the testing data in order to evaluate how well the obfusca-
tion mechanisms protect new data samples never seen during the training phase. Moreover
we evaluate the Bayes error on the same data we used for training and we compare the results
with those obtained for the testing data. We notice that, in general, the difference between
the two results is not large, meaning that the deployed mechanisms efficiently protect the
new samples as well.

The planar Laplace mechanism

We compare our method against the planar Laplace mechanism [ABCP13], whose proba-
bility density to report z, when the true location is w, is:

L✏

w
pzq “

✏
2

2⇡
e

´✏ dpw,zq
, (4.31)
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where dpw, zq is the Euclidean distance between w and z.
In order to compare the the Laplace mechanism with ours, we need to tune the privacy

parameter ✏ so that the expected distortion of L✏ is the same as the upper bound on the utility
loss applied in our method, i.e. L. To this purpose, we recall that the expected distortion
LrZ | W s of the planar Laplace depends only on ✏ (not on the prior PW ), and it is given by:

LrZ | W s “
2

✏
. (4.32)

4.4.1 Experiment 1: relaxed utility constraint

As a first experiment, we choose for the upper bound L on the expected distortion a value
high enough so that in principle we can achieve the highest possible privacy, which is ob-
tained when the observed obfuscated location gives no information about the true location,
which means that IpX;Y q “ 0. In this case, the attacker can only do random guessing.
Since we have 4 users, the Bayes error is BpX | Y q “ 1 ´ 1{4 “ 0.75.

For the distortion, we take `pw, zq to be the geographical distance between w and z.
One way to achieve the maximum privacy is to map all locations into the middle point. To
compute a sufficient L, note that the vertices of the original locations form a square of side
300m, hence each vertex is at a distance 300 ˆ

?
2{2 « 212m from the center. Taking into

account that the locations can be as much as 45m away from the corresponding vertex, we
conclude that any value of L larger than 212 ` 45 “ 247m should be enough to allow us to
obtain the maximum privacy. We set the upper bound on the distortion a little higher:

L “ 270m, (4.33)

but we will see from the experiments that a much smaller value of L would have been
sufficient.

We now need to tune the planar Laplace so that the expected distortion is at least L. We
decide to set:

✏ “
ln 2

100
(4.34)

which, using eq. (4.32), gives us a value

LrZ | W s « 288m ° L. (4.35)

We have used this instance of the planar Laplace also as a starting point of our method:
we have defined G0 as L✏ with ✏ “ ln 2{100. For the next steps, Gi and Ci are constructed as
explained in Algorithm algorithm 2. In particular, we train the generator with a batch size
of 128 samples for 100 epochs during each iteration. The learning rate is set to 0.0001. For
this particular experiment we set the weight for the utility loss to 1 and the weight for the
mutual information to 2. The classifier is trained with a batch size of 512 samples and 3000
epochs for each iteration. The learning rate for the classifier is set to 0.001.
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(a) Iteration 30

(b) Iteration 40

Figure 4.2 – Using cross entropy to produce the noise does not make the system converge.
The left sides of fig. 4.2a and fig. 4.2b show the original synthetic data without noise. The
right sides show the noisy data at different iterations. L “ 270m.

Training G with the cross entropy

As discussed in Sec section 4.3.1, training G wrt CE pX, Y q is not sound. This is confirmed
in the experiments by the fact that G is failing to converge. Figure 4.2 shows the distribution
generated by G in two different iterations of the game. We observe that, trying to fool the
classifier C, the generator on the right-hand side has simply moved locations around, so that
each class has been placed in a different area. This clearly confuses a classifier trained on
the distribution of the left-hand side, however the correlation between labels and location is
still evident. A classifier trained on the new G can infer the labels as accurately as before.

As a consequence, after each iteration, the accuracy of the newly trained Ci is always
1, while the Bayes error BpX|Zq is 0. The generator fails to converge to a distribution that
effectively protects the users’ privacy. We can hence conclude that the use of cross entropy
is unsound for training G.

Training G wrt mutual information

Using now IpX;Y q for training G (while still using the more efficient cross entropy for C, as
explained in Sec section 4.3.1), we observe a totally different behaviour. After each iteration
the accuracy of the classifier drops, showing that the generator produces meaningful noise.
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Figure 4.3 – Synthetic testing data. From left to right: Laplace noise, no noise, our noise
produced using mutual information. L “ 270m.

Number of cells
13 ˆ 13 65 ˆ 65 130 ˆ 130 260 ˆ 260
0.75 0.00 0.00 0.00

(a) Training data.

Number of cells
13 ˆ 13 65 ˆ 65 130 ˆ 130 260 ˆ 260
0.75 0.00 0.00 0.00

(b) Testing data.

Table 4.4 – Estimation of BpX | Zq on the original version of the synthetic data.

Around iteration i “ 149 the accuracy of Ci becomes « 0.25 both over the training and
the validation set. This means that Ci just randomly predicts one of the four classes. We
conclude that the noise injection is maximally effective, since 0.75 is the maximum possible
Bayes error. Hence we know that we can stop.

The result of our method, i.e., the final generator Gi, to the testing set is reported
in fig. 4.3 (rightmost plot). The empirical distortion is « 219.26m. This is way below
the limit of 270m set in eq. (4.33), and it is due to the fact that to achieve the optimum pri-
vacy we probably do not need more than « 220m. In fact, the distance of the vertices from
the center is « 212m, and even though some locations are further away (up to 45m more),
there are also locations that are closer, and that compensate the utility loss (which is a linear
average measure).

For comparison, the result of the application of the planar Laplace to the testing set is
illustrated in fig. 4.3 (leftmost plot). The empirical distortion (i.e., the distortion computed
on the sampled obfuscated locations) is « 298.40m, which is in line with the theoretical
distortion formulated in eq. (4.35).

From fig. 4.3 we can see that, while the Laplace tends to “spread out” the obfuscated
locations, our method tends to concentrate them into a single point (mode collapse), i.e.,
the mechanism is almost deterministic. This is due to the fact that the utility constraint is
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Number of cells
13 ˆ 13 65 ˆ 65 130 ˆ 130 260 ˆ 260

Obf Lap Our Lap Our Lap Our Lap Our
10 0.60 0.75 0.40 0.75 0.38 0.75 0.35 0.73
100 0.60 0.75 0.41 0.75 0.40 0.75 0.39 0.74
200 0.60 0.75 0.41 0.75 0.40 0.75 0.39 0.74
500 0.60 0.75 0.41 0.75 0.40 0.75 0.40 0.74

(a) Training data.

Number of cells
13 ˆ 13 65 ˆ 65 130 ˆ 130 260 ˆ 260

Obf Lap Our Lap Our Lap Our Lap Our
10 0.59 0.75 0.38 0.75 0.36 0.75 0.26 0.73
100 0.60 0.75 0.40 0.75 0.39 0.75 0.37 0.74
200 0.60 0.75 0.41 0.75 0.39 0.75 0.38 0.74
500 0.60 0.75 0.41 0.75 0.40 0.75 0.39 0.74

(b) Testing data.

Table 4.5 – Estimation of BpX | Zq on synthetic data for the Laplace and our mechanisms,
with L “ 270m. The empirical utility loss for training and testing data is « 282.07m ´

298.40m respectively for the Laplace and « 219.70m ´ 219.26m for ours. The optimal
mechanism gives BpX | Zq “ 1 ´ 1{4 “ 0.75.

sufficiently loose to allow the noisy locations to be displaced enough so to overlap all in the
same point. When the utility constraint is stricter, the mechanism is forced to be probabilistic
(and the mode collapse does not happen anymore). For example, consider two individuals,
A and B, in locations a and b respectively, at distance 100m, assume that L “ 40m. Assume
also, for simplicity, that there are no other locations available. Then the optimal solution
maps a into b with probability 2{5, and into itself with probability 3{5 and vice versa for
b). Nevertheless, we can expect that our mechanism will tend to overlap the obfuscated
locations of different classes, as much as allowed by the utility constraint. With the Laplace,
on the contrary, the areas of the various classes remain pretty separated. This is reflected by
the Bayes error estimation reported in table 4.5.

We note that the Bayes error of the planar Laplace tend to decrease as the grid becomes
finer. We believe that this is due to the fact that, with a coarse grid, there is an effect of
confusion simply due to the large size of each cell. We remark that the behavior of our
noise, on the contrary, is quite stable. Note that, when the grid is very coarse (13 ˆ 13 cells)
the Bayes error is 0.75 already on the original data (cfr. table 4.4), which must be due to the
fact that all the vertices are in the same cell. While the Bayes error remains 0.75 also with
our obfuscation mechanism, with Laplace it decreases to 0.60. The reason is that the noise
scatters the locations in different cells, and they become, therefore distinguishable.
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Figure 4.4 – Synthetic testing data. From left to right: Laplace noise, no noise, our noise
produced using mutual information. L “ 173m.

Number of cells
13 ˆ 13 65 ˆ 65 130 ˆ 130 260 ˆ 260

Obf Lap Our Lap Our Lap Our Lap Our
10 0.64 0.74 0.26 0.45 0.23 0.43 0.22 0.41
100 0.64 0.74 0.26 0.45 0.24 0.43 0.23 0.42
200 0.64 0.74 0.26 0.45 0.24 0.43 0.24 0.42
500 0.64 0.74 0.26 0.45 0.24 0.43 0.24 0.42

(a) Training data.

Number of cells
13 ˆ 13 65 ˆ 65 130 ˆ 130 260 ˆ 260

Obf Lap Our Lap Our Lap Our Lap Our
10 0.63 0.74 0.25 0.44 0.23 0.42 0.19 0.39
100 0.64 0.74 0.26 0.45 0.24 0.43 0.23 0.42
200 0.64 0.74 0.26 0.45 0.23 0.43 0.23 0.42
500 0.64 0.74 0.26 0.45 0.23 0.43 0.23 0.42

(b) Testing data

Table 4.6 – Estimation of BpX | Zq on the synthetic data for the Laplace and for our
mechanisms, with L “ 173m. The empirical utility loss for training and testing data is
« 170.53m – 172.35m respectively for the Laplace and « 166.78m – 171.50m for ours. The
optimal mechanism gives BpX | Zq “ 0.50, since the utility bound is large enough to let
mixing the red and blue points, as well as the green and the yellow, but does not allow more
confusion than that.

4.4.2 Experiment 2: stricter utility constraint

We are now interested in investigating how our method behaves when a stricter constraint
on the utility loss is imposed. In order to do so, we run an experiment similar to the one
in section 4.4.1. We repeat the same steps but now we set L and the privacy parameter (and
consequently the distortion rate) of the planar Laplace as follows:

L “ 173m ✏ “
ln 2

60
LrZ | W s « 173.12m (4.36)
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Similarly to the previous section, training G with the cross entropy fails to converge,
producing generators that achieve no privacy protection. As a consequence, we only show
the results of training G with respect to mutual information.

The result of the application of the Laplace mechanism is illustrated in fig. 4.4 (leftmost
plot). The empirical distortion is « 172.35m.

Following the same pattern as in Section section 4.4.1, we train G and C . The training
of G is performed for 30 epochs during each iteration with a batch size of 512 samples and
a learning rate of 0.0001.

The classifier C is trained for 3000 epochs with a batch size of 512 samples and 0.001 as
the value for the learning rate during each iteration. We are particularly interested in the 24th
iteration where C ’s performance is degraded by the obfuscation performed by G trained
during the previous iteration. Training C with 32 samples batch size and learning rate set
to 0.001 for 100 epochs with the obfuscated data gives the results reported in table 4.7. In

Data Accuracy F1_score
Training data « 0.55 « 0.54

Validation data « 0.53 « 0.53
Test data « 0.52 « 0.51

Table 4.7 – Summary of the experiment with the the noise produced by the proposed method.

this case, increasing the number of epochs does not improve the classification precision and
makes C more prone to over-fitting.

The obfuscation provided by G at the 24th iteration produces the distributions on the
testing illustrated in fig. 4.4 (rightmost plot). The empirical distortion is « 171.50m. The
estimated Bayes error for the two mechanisms is reported in table 4.6.

4.5 Experiments on the Gowalla dataset

In the previous section we saw that our method behaves as expected in a simple synthetic
dataset, producing an obfuscation mechanism that is close to the optimal one (when G is
trained wrt mutual information). We now study the behaviour of our method to real location
data from the Gowalla dataset. Since cross entropy was shown to be unsound, we only
present results using mutual information for training G.

The dataset

The dataset consists of data extracted from the Gowalla dataset [LK], a collection of check-
ins made available by the Gowalla location-based social network. Among all the provided
features, only the users’ identifiers (classes), the latitude and longitude of the check-in loca-
tions are considered.

The data is selected as follows:
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Figure 4.5 – Gowalla testing data. From left to right: Laplace noise, no noise, our noise
produced using mutual information. L “ 1150m.

1. we consider a squared region centered in 5, Boulevard de Sébastopol, Paris, France
with 4500m long side;

2. we select the 6 users who checked in the region most frequently, we retain their loca-
tions and discard the rest;

3. we filter the obtained locations to reduce the overlapping of the data belonging to
different classes by randomly selecting for each class 82 location samples for training
and validation purpose, and 20 samples for the test.

We obtain 492 pairs plocations , idq to train and validate the model, and 120 to test it. For
each of these, the generator creates 10 pairs with noisy locations using different seeds. As
usual, G0 does it using the Laplace function, the other Gi’s use the mechanism learnt at the
previous step i ´ 1. Thus in total we obtain 4920 pairs for training and 1200 for testing.
Figure 4.5 shows the result of the mechanism applied to the testing data, where each color
corresponds to a different user.

Number of cells
13 ˆ 13 65 ˆ 65 130 ˆ 130 260 ˆ 260
0.12 0.06 0.04 0.03

(a) Training data.

Number of cells
13 ˆ 13 65 ˆ 65 130 ˆ 130 260 ˆ 260
0.11 0.04 0.03 0.03

(b) Testing data.

Table 4.8 – Estimation of BpX | Zq on the original version of the data from Gowalla.

4.5.1 Experiment 3: relaxed utility constraint

In this experiment we study the case of a large upper bound on the utility loss, which would
potentially allow to achieve the maximum utility. We set L and the privacy parameter (and
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Number of cells
13 ˆ 13 65 ˆ 65 130 ˆ 130 260 ˆ 260

Obf Lap Our Lap Our Lap Our Lap Our
10 0.56 0.83 0.37 0.83 0.19 0.82 0.06 0.80
100 0.57 0.83 0.53 0.83 0.46 0.82 0.31 0.81
200 0.57 0.83 0.55 0.83 0.50 0.82 0.40 0.81
500 0.57 0.83 0.56 0.83 0.54 0.82 0.48 0.81

(a) Training data.

Number of cells
13 ˆ 13 65 ˆ 65 130 ˆ 130 260 ˆ 260

Obf Lap Our Lap Our Lap Our Lap Our
10 0.51 0.83 0.18 0.82 0.07 0.80 0.01 0.79
100 0.56 0.83 0.45 0.82 0.30 0.81 0.13 0.80
200 0.56 0.83 0.49 0.82 0.38 0.81 0.21 0.80
500 0.56 0.83 0.53 0.82 0.46 0.81 0.33 0.80

(b) Testing data.

Table 4.9 – Estimation of BpX | Zq on the Gowalla data for the Laplace and for
our mechanisms, with L “ 1150m. The utility loss for training and testing data is
« 1127.83m ´ 1132.63m respectively for the Laplace and « 961.38m ´ 979.40m for ours.
The optimal mechanism gives BpX | Zq “ 1 ´ 1{6 “ 0.83.

Figure 4.6 – Gowalla testing data. From left to right: Laplace noise, no noise, our noise
produced using mutual information. L “ 518m.

consequently LrZ | W s) of the planar Laplace as follows:

L “ 1150m ✏ “
ln 2

400
LrZ | W s « 1154.15m (4.37)

The results for the Laplace and our method are illustrated in fig. 4.5. As we can see, the
utility constraint is relaxed enough to allow our method to achieve the maximum privacy.
As reported in table 4.9, indeed, the Bayes error is close to that of random guess, namely
1 ´ 1{6 « 0.83. Table 4.8 shows the part of the Bayes error due to the discretization of the
domain Z . The planar Laplace, on the other hand, confirms the relatively limited level of
privacy as observed in the synthetic data.
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Number of cells
13 ˆ 13 65 ˆ 65 130 ˆ 130 260 ˆ 260

Obf Lap Our Lap Our Lap Our Lap Our
10 0.38 0.50 0.29 0.42 0.20 0.37 0.27 0.08
100 0.39 0.51 0.36 0.44 0.34 0.43 0.27 0.40
200 0.39 0.51 0.36 0.44 0.35 0.43 0.31 0.41
500 0.38 0.51 0.37 0.44 0.36 0.43 0.34 0.42

(a) Training data.

Number of cells
13 ˆ 13 65 ˆ 65 130 ˆ 130 260 ˆ 260

Obf Lap Our Lap Our Lap Our Lap Our
10 0.34 0.47 0.20 0.36 0.08 0.35 0.03 0.12
100 0.37 0.49 0.32 0.41 0.25 0.38 0.15 0.32
200 0.37 0.48 0.33 0.41 0.30 0.39 0.21 0.35
500 0.37 0.49 0.35 0.42 0.32 0.40 0.28 0.38

(b) Testing data.

Table 4.10 – Estimation of BpX | Zq on the Gowalla data for the Laplace and for our
mechanisms, with L “ 518m. The utility loss fort training and testing data is « 523.40m ´

535.21m for the Laplace and « 487.34m ´ 502.89m for ours. We could not compute the
optimal mechanism.

4.5.2 Experiment 4: stricter utility constraint

We consider now a much tighter utility constraint, and we set the parameters of the planar
Laplace as follows:

L “ 518m ✏ “
ln 2

180
LrZ | W s « 519.37m (4.38)

The results of the application of the Laplace and of our method to the testing data are shown
in fig. 4.6, and the Bayes error is reported in table 4.10. As the grid becomes finer, both
the planar Laplace and our method become more sensitive to the number of samples, in
the sense that the (approximation of) the Bayes error grows considerably as the number of
samples increases. This is not surprising: when the cells are small they tend to have a limited
number of hits. Therefore the number of hits whose class is in minority (in a given cell), and
hence not selected as the best guess, is limited. Note that these minority hits are those that
contribute to the Bayes error.
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4.6 Final remarks

Related work

For a detailed discussion of the the literature concerning the application of linear program-
ming and adversarial ML to the problem of building the optimal obfuscation mechanisms
which guarantee a trade-off between privacy and utility, we refer to section 1.3. How-
ever we would like to add a few remarks on the most important among the works that
inspired ours. One important contribution on the topic of the application of adversarial
networks to privacy-protection mechanisms design have been also proposed by the authors
of [TWI17, HKC`17]. They have developed a theoretical framework similar to ours. From
the methodological point of view the main difference is that in the implementation they use
as target function the cross entropy rather than the mutual information. Hence in our setting
the convergence of their method may be problematic, due to the “swapping effect” described
in example 1.

One of the side contributions of this work is a method to compute mutual information in
neural network (cfr. section 4.3). Recently, Belghazi et al. have proposed MINE, an efficient
method to neural estimation of mutual information [BBR`18], inspired by the framework
of [NCT16] for the estimation of a general class of functions which can be represented as
f -divergences. These methods work also in the continuous case and for high-dimensional
data.

In our case, however, we are dealing with a discrete domain, and we can compute directly
and exactly the mutual information. Another reason for developing our own method is that
we need to deal with a loss function that contains not only the mutual information, but also
a component representing utility, and depending on the notion of utility the result may not
be an f -divergence.

Summary

We have proposed an approach based on adversarial nets to generate obfuscation mecha-
nisms with a good privacy-utility trade-off. The advantage of our method is twofold: with
respect to the linear programming methods, we can work on a continuous domain instead of
a small grid; with respect to the analytic methods (such as the Planar Laplace mechanism)
our approach is data-driven, taking into account prior knowledge about the users. However
we recall that strong privacy properties such as differential privacy (and derived notions, e.g.
geo-indistinguishability) are not guaranteed by our approach and the comparison to linear
programming based solutions mainly concerns the performances. In fact, we remind that un-
der certain hypothesis, guarantees of (universal) optimality can be proven by modeling the
privacy mechanism design as a linear programming optimization problem [KM17, KM18].

Although our approach is inspired by the GAN paradigm, it departs significantly from
it: in our case, the distribution has to be “invented” rather than “imitated”. Hence we need
different techniques for evaluating a distribution. To achieve our goal, we propose a new
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method based on the mutual information between the supervised and the predicted class
labels.

We explain that the use of the use of mutual information (instead of the cross entropy)
for the generator is crucial for convergence. On the other hand for the classifier it is possible
to use cross entropy and it is more efficient.

We evaluate the obfuscation mechanism produced by our method on real location data
from the Gowalla dataset. We compare our mechanism with the planar Laplace [ABCP13]
and with the optimal one, when it is possible to compute or determine theoretically the latter.

We show that, taking into account the different notions of privacy embodied by our
proposed mechanism and the Laplace method, the performance of the former is better than
the that of the latter, and, also, not so far from the optimal. We have made publicly available
the implementation and the experiments at https://gitlab.com/MIPAN/mipan.

So far we have analyzed how ML techniques and notions from information theory can
help us deal with leakage estimation and privacy protection mechanism design. In the next
chapter we focus on the study of a particular notion of entropy from the information the-
ory field, i.e. the Rényi min-entropy, and how it can help improve, at least under certain
conditions, the solutions to the problem of dimensionality reduction via feature selection in
ML.

https://gitlab.com/MIPAN/mipan




CHAPTER 5
Feature selection in machine learning:

Rényi min-entropy vs Shannon entropy

In this chapter, we consider the typical scenario of classification problems and we propose
an algorithm to sort features from those which are the most informative with respect to
the class (label) to those which are less informative, as introduced in the final paragraphs
of section 1.2. We address the problem from the data dimensionality reduction standpoint.
Among the works concerned with this topic, we cite [JDM00, GE03, LY05, BPZL12, VE14,
BHS15,SSGC17,Nak18,CLWY18,LLWW18]. The identification of the “best” features for
classification is indeed very helpful in order to avoid too high a training complexity and,
in many cases, it has been shown to improve the accuracy of the classification. However,
we claim that a similar reasoning can be applied to fields of privacy and security as well.
In fact, if we consider the classes as what we would like to keep secret, knowing which
features leak more information about them can help to understand what part of the data a
privacy protection mechanism should mainly defend against exposure.

The known methods for reducing the dimensionality can be divided in two categories:
those which transform the feature space by reshaping the original features into new ones
(feature extraction), and those which select a subset of the features (feature selection). The
second category can in turn be divided in three groups: wrapper, embedded, and filter meth-
ods. The last group has the advantage of being classifier-independent, more robust with
respect to the risk of over-fitting, and more amenable to a principled approach. In particular,
several proposals for feature selection have successfully applied concepts and techniques
from information theory [Bat94, YM99, Fle04, PLD05, BPZL12, VE14, BHS15].

The underlining idea is that the smaller the conditional (aka residual) entropy of the
classes given a certain set of features is, the more likely the classification of a sample is to
be correct. Finding a good set of features corresponds therefore to identifying a subset of
the initial one, as small as possible, for which such conditional entropy is below a certain
threshold. More formally, the problem of feature selection can be stated as follows: given
the random variables F and C, modeling respectively a set of features and a set of classes1,

1When clear from the context, we will use the same notation to represent both the random variable and its

85
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find a minimum-size subset S Ñ F such that the conditional entropy of C given S is below
a certain threshold. Namely:

S “ argmin
S1

t|S
1
| | S

1
Ñ F and HpC | S

1
q § hu (5.1)

where h is the given threshold, |S
1
| is the number of elements of S 1, and HpC | S

1
q is the

conditional Shannon entropy of C given F .
All the information-theoretic approaches to feature selection that have been proposed

are based, as far as we know, on Shannon entropy, with the notable exception of [EK13]
that considered the Rényi entropies H↵, where ↵ is a parameter ranging over all the positive
reals and 8 (cfr. section 2.2 for a detailed analysis). We remind that the Shannon entropy is
represented by the symbols H1. We use H instead when the context does not require for the
parameter value ↵ “ 1 to be specified.

In this work, we develop an approach to feature selection based on the particular case of
the Rényi min-entropy H8, and we compare it with the one based on Shannon entropy. Our
approach and analysis actually depart significantly from [EK13]; the differences between
their solution and the one that we propose will be explained in section 5.4.

The starting point for an approach based on the min-entropy is to use the conditional
min-entropy in eq. (5.1). As already discussed in section 2.2, we adopt the conditional
min-entropy definition introduced in [Smi09]. More specifically, this notion captures the
(converse of) the probability of error of a rational attacker who knows the probability distri-
butions and tries to infer a secret from some correlated observables. “Rational” here means
that the attacker will try to minimize the expected probability of error, by selecting the secret
with highest posterior probability. Note the similarity with the classification problem, where
the decisions are made by choosing a class on the basis of the observable features, trying to
minimize the expected probability of classification error (misclassification). It is therefore
natural to investigate the potentiality of this notion in the context of feature selection. More-
over, it is worth noticing that, since we assume that the attacker is rational and knows the
probability distributions, we are considering the Bayes attacker and, correspondingly, the
classifier is the (ideal) Bayes classifier.

By replacing the Shannon entropy H with the Rényi min-entropy H8, the problem de-
scribed in eq. (5.1) becomes:

S “ argmin
S1

t|S
1
| | S

1
Ñ F and H8pC | S

1
q § hu (5.2)

where H8pC | S
1
q is the conditional min-entropy of C given F . Because of the correspon-

dence between H8p¨ | ¨q and the Bayes error, we can interpret eq. (5.2) as stating that S is
the minimal set of features for which the (ideal) Bayes classifier achieves the desired level
of accuracy.

supporting set.
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5.1 Problem definition

In this section we state formally the problem of finding a minimal set of features that satisfies
a given bound on the classification’s accuracy, and then we show that the problem is NP-
hard. More precisely, we are interested in finding a minimal set with respect to which the
posterior Rényi min-entropy of the classification is bounded by a given value. We recall that
the posterior Rényi min-entropy is equivalent to the Bayes classification error.

The corresponding problem for Shannon entropy is well studied in the literature of fea-
ture selection, and its NP-hardness is a well known theorem in the area. However for the
sake of comparing it with the case of Rényi min-entropy, we restate it here in the same terms
as for the latter.

In the following, F stands for the set of all features, and C for the random variable that
takes value in the set of classes.
Definition 4 (MIN-SET): Let h be a non-negative real. The minimal-set problems for Shan-
non entropy and for Rényi min-entropy are defined as the problems of determining the set
of features S such that

Shannon MIN-SET1 S “ argmin
S1

t|S
1
| | S

1
Ñ F and H1pC | S

1
q § hu,

Rényi MIN-SET8 S “ argmin
S1

t|S
1
| | S

1
Ñ F and H8pC | S

1
q § hu.

We now show that the above problems are NP-hard
Theorem 4: Both MIN-SET1 and MIN-SET8 are NP-hard.

Proof. Consider the following decision problem MIN-FEATURES: Let M be a set of exam-
ples, each of which is composed of a a binary value specifying the value of the class and a
vector of binary values specifying the values of the features. Given a number n, determine
whether or not there exists some feature set S such that:

• S is a subset of the set of all input features.

• S has cardinality n.

• There exists no two examples in M that have identical values for all the features in S

but have different class values.

In [DR94] it is shown that MIN-FEATURES is NP-hard by reducing to it the VERTEX-
COVER problem, which is known to be NP-complete [Kar72]. We recall that the VERTEX-
COVER problem problem may be stated as the following question: given a graph G with
vertices V and edges E, is there a subset V 1 of V , of size m, such that each edge in E is
connected to at least one vertex in V

1?
To complete the proof, it is sufficient to show that we can reduce MIN-FEATURES to

MIN-SET1 and MIN-SET8. Set h “ 0, and let

S “ argmin
S1

t|S
1
| | S

1
Ñ F and H↵pC | S

1
q “ 0u,
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where ↵ “ 1 or ↵ “ 8. Note that for both values of ↵, H↵pC | Sq “ 0 means that the
uncertainty about C is 0 once we know the value of all features in S, and this is possible
only if there exists no two examples in that have identical values for all the features in S

but have different class values. Hence to answer MIN-FEATURES it is sufficient to check
whether |S| § m or |S| ° m.

Given that the problem is NP-hard, there is no “efficient” algorithm (unless P = NP) for
computing exactly the minimal set of features S satisfying the bound on the accuracy. It
is however possible to compute efficiently an approximation of it, as we will see in next
section, where we propose a linear “greedy” algorithm which computes an approximation
of the minimal S.

5.2 Proposed algorithm

Let F be the set of features at our disposal, and let C be random variable ranging on the set of
classes. Our algorithm is based on forward feature selection and dependency maximization:
it constructs a monotonically increasing sequence tS

t
ut•0 of subsets of F , and, at each step,

the subset St`1 is obtained from S
t by adding the next feature in order of importance (i.e.,

the informative contribution to classification), taking into account the information already
provided by S

t. The measure of the “order of importance” is based on conditional min-
entropy. The construction of the sequence is assumed to be done interactively with a test
on the accuracy achieved by the current subset, using one or more classifiers. This test will
provide the stopping condition: once we obtain the desired level of accuracy, the algorithm
stops and gives as result the current subset ST . Of course, achieving a level of accuracy 1´"

is only possible if BpC | F q § ".

Definition 5: The series tS
t
ut•0 and tf

t
ut•1 are inductively defined as follows:

S
0 def

“ H

f
t`1 def

“ argmin
fPF zSt H8pC | f, S

t
q

S
t`1 def

“ S
t

Y tf
t`1

u

The algorithms in [BPZL12] and [VE14] are analogous, except that they use Shannon
entropy. They also define f

t`1 based on the maximization of mutual information instead
of the minimization of conditional entropy, but this is irrelevant. In fact I1pC; f | S

t
q “

H1pC | S
t
q ´ H1pC | f, S

t
q, hence maximizing I1pC; f | S

t
q with respect to f is the same

as minimizing H1pC | f, S
t
q with respect to f .

Our algorithm is locally optimal, in the sense stated by the following proposition.
Proposition 9: At every step, the set St`1 minimizes the Bayes error of the classification
among those which are of the form S

t
Y tfu, namely:

@f P F BpC | S
t`1

q § BpC | S
t

Y tfuq
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Proof. Let ~v, v, v1 represent generic value tuples and values of St, f and f
t`1, respectively.

Let c represent the generic value of C. By definition, H8pC | S
t`1

q § H8pC | S
t

Y tfuq,
for every f P F . From eq. (2.10) we then obtain

ÿ

~v,v

max
c

ppp~v, v|cqppcqq §

ÿ

~v,v1
max

c

ppp~v, v
1
|cqppcqq

Using the Bayes theorem section 2.2, we get
ÿ

~v,v

pp~v, vqmax
c

ppc|~vq §

ÿ

~v,v1
pp~v, v

1
qmax

c

pp~v, v
1
|cq

Then, from the definition eq. (2.11) we deduce

BpC | S
t

Y tf
t`1

uq § BpC | S
t

Y tfuq

In the following sections we analyze some extended examples to illustrate how the algo-
rithm works, and also compare it with the ones of [BPZL12] and [VE14].

5.2.1 An example in which Rényi min-entropy gives a better feature selection than
Shannon entropy

Let us consider the dataset in table 5.1, containing ten records labeled each by a different
class, and characterized by six features (columns f1, . . . , f5). We note that f0 separates the
classes in two sets of four and six elements respectively, while all the other columns are
characterized by having two values, each of which univocally identify one class, while the
third value is associated to all the remaining classes. For instance, in column f1 value A
univocally identifies the record of class 0, B univocally identifies the record of class 1, and
all the other records have the same value along that column, i.e. C.

The last five features combined are necessary and sufficient to completely identify all
classes, without the need of the first one. Note that the last five features can be replaced by
f0 for this purpose. In fact, each pair of records which are separated by one of the features
f1, . . . , f5, have the same value in column f0.

If we apply the discussed feature selection method and we look for the feature that
minimizes HpC|fiq for i P t0, . . . , 5u we obtain that:

• The first feature selected with Shannon is f0, in fact H1pC|f0q « 2.35 and
H1pC|f‰0q “ 2.4. (The notation f‰0 stands for any of the fi’s except f0.) In gen-
eral, indeed, with Shannon entropy the method tends to choose a feature which splits
the Classes in a way as balanced as possible. The situation after the selection of the
feature f0 is shown in fig. 5.1(a).
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Class f0 f1 f2 f3 f4 f5

0 A C F I L O
1 A D F I L O
2 A E G I L O
3 A E H I L O
4 B E F J L O
5 B E F K L O
6 B E F I M O
7 B E F I N O
8 B E F I L P
9 B E F I L Q

Table 5.1 – The dataset for the example in section 5.2.1.

f0

0, 1, 2, 3 4, 5, 6, 7, 8, 9

paq Selection with Shannon.

f1

0 1 2, 3, 4, 5, 6, 7, 8, 9

pbq Selection with Rényi.

Figure 5.1 – Classes separation after the selection of the first feature.

f1

0 1

f2

2 3 4, 5, 6
7, 8, 9

H8pC|f1f2q “ 1.

f1

0 1

f0

2, 3 4, 5, 6
7, 8, 9

H8pC|f1f0q « 1.32.

f4

0 1

f0

0, 1
2, 3

6, 7
8, 9

H8pC|f4f0q « 1.32.

Figure 5.2 – Selection of the second feature with Rényi.

• The first feature selected with Rényi min-entropy is either f1 or f2 or f3 or f4 or f5, in
fact H8pC|f0q « 2.32 and H8pC|f‰0q « 1.74. In general, indeed, with Rényi min-
entropy the method tends to choose a feature which divides the classes in as many sets
as possible. The situation after the selection of f1 is shown in fig. 5.1(b).

Going ahead with the algorithm, with Shannon entropy we will select one by one all the
other features, and as already discussed we will need all of them to completely identify all
classes. Hence at the end the method with Shannon entropy will return all the six features
(to achieve perfect classification). On the other hand, with Rényi min entropy we will select
all the remaining features except f0 to obtain the perfect discrimination. In fact, at any stage
the selection of f0 would allow to split the remaining classes in at most two sets, while any
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f1

0 1

f2

2 3

f3

4 5

f4

6 7

f5

8 9

Figure 5.3 – Sequence of class splitting with Rényi.

other feature not yet considered will split the remaining classes in three sets. As already
hinted, with Rényi we choose the feature that allows to split the remaining classes in the
highest number of sets, hence we never select f0. For instance, if we have already selected
f1, we have H8pC|f1f0q « 1.32 while H8pC|f1f‰0q “ 1. If we have already selected f4,
we have H8pC|f4f0q « 1.32 while H8pC|f4f‰0q “ 1. See fig. 5.2.

At the end, the selection of features using Rényi entropy will determine the progressive
splitting represented in fig. 5.3. The order of selection is not important: this particular ex-
ample is conceived so that the features f1, . . . , f5 can be selected in any order, the residual
entropy is always the same.

Discussion It is easy to see that, in this example, the algorithm based on Rényi min-entropy
gives a better result not only at the end, but also at each step of the process. Namely, at
step t (cfr. definition 5) the set St of features selected with Rényi min-entropy gives a better
classification (i.e., more accurate) than the set S 1t that would be selected using Shannon
entropy. More precisely, we have BpC | S

t
q † BpC | S

1t
q. In fact, as discussed above

the set S 1t contains necessarily the feature f0, while S
t does not. Let St´1 be the set of

features selected at previous step with Rényi min-entropy, and f
t the feature selected at

step t (namely, St´1
“ S

t
ztf

t
u). As argued above, the order of selection of the features

f1, . . . , f5 is irrelevant, hence we have BpC | S
t´1

q “ BpC | S
1t

ztf0uq and the algorithm
could equivalently have selected S

1t
ztf0u. The next feature to be selected, with Rényi, must

be different from f0. Hence by proposition 9, and by the fact that the order of selection of
f1, . . . , f5 is irrelevant, we have: BpC | S

t
q “ BpC | pS

1t
ztf0uq Y tf

t
uq † BpC | S

1t
q.

As a general observation, we can see that the method with Shannon tends to select the
feature that divides the classes in sets (one for each value of the feature) as balanced as
possible, while our method tends to select the feature that divides the classes in as many sets
as possible, regardless of the sets being balanced or not. In general, both Shannon-based
and Rényi-based methods try to minimize the height of the tree representing the process of
the splitting of the classes, but the first does it by trying to produce a tree as balanced as
possible, while the second one tries to do it by producing a tree as wide as possible. Which
of the method is best, it depends on the correlation of the features. Shannon works better
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Figure 5.4 – Features F (left) and F
1 (right).

when there are enough uncorrelated (or not much correlated) features, so that the tree can
be kept balanced while being constructed. Next section shows an example of such situation.
Rényi, on the contrary, is not so sensitive to correlation and can work well also when the
features are highly correlated, as it was the case in the example of this section.

The experimental results in section 5.3 show that, at least in the cases we have con-
sidered, our method outperforms the one based on Shannon entropy. In general however
the two methods are incomparable, and perhaps a good practice would be to construct both
sequences at the same time, so to obtain the best result of the two.

5.2.2 An example in which Shannon entropy may give a better feature selection than
Rényi min-entropy

Consider a dataset containing samples equally distributed among 32 classes, indexed from
0 to 31. Assume that the data have 8 features divided in 2 types F and F

1, each of which
consisting of 4 features: F “ tf1, f2, f3, f4u and F

1
“ tf

1
1, f

1
2, f

1
3, f

1
4u. The relation between

the features and the classes is represented in fig. 5.4.
Assume that the features of type F , and their relation with C are as follows: Given the

binary representation of the classes b4b3b2b1b0, f1 consists of the bits b1b0, f2 consists of the
bits b2b1, f3 consists of the bits b3b2, and f4 consists of the bit b4 only. All the vij values
allow to identify exactly one class. Concerning the features of type F

1, assume that each
of them can range in a set of 9 values, and that these sets are mutually disjoint. We use the
following notation: for 1 § i § 4 f

1
i

“ tviu Y tvij | 0 § j § 7u. For instance, if in a
certain sample the f

1
1 value is v10, it means that the sample can be univocally classified as

belonging to class 0. If the f
1
2 value is v22, it belongs to class 9, etc. As for the vi’s, each of

them is associated to a set of 24 classes, with uniform distribution. For instance, the value
v1 is associated to classes 1, 2, 3, 5, . . . , 29, 30, 31. The situation is represented in fig. 5.4.

Let us select the first feature f in order of importance for the classification. We will
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consider at the same time our method, based on Rényi min-entropy, and the method of
[BPZL12] and [VE14]. In both cases, the aim is to choose f such that it maximizes the mu-
tual information I↵ “ H↵pCq ´ H↵pC | fq, or equivalently, that minimizes the conditional
entropy H↵pC | fq, where ↵ is the entropy parameter (↵ “ 1 for Shannon, ↵ “ 8 for Rényi
min-entropy).

For the features of type F we have:

H1pC | f1q “ H1pC | f2q “ H1pC | f3q “ 3

while
H1pC | f4q “ 4 ° 3

On the other hand, with respect to the features of type F
1, we have

H1pC | f
1
1q “ H1pC | f

1
2q “ H1pC | f

1
3q “ H1pC | f

1
4q « 3.439 ° 3

So, the first feature selected using Shannon entropy would be f1, f2 or f3. Let us assume
that we pick f1. Hence with Shannon the first set of the series is S1

1 “ tf1u.
Let us now consider our method based on Rényi min-entropy. For the F feature the condi-
tional entropy is the same as for Shannon:

H8pC | f1q “ H8pC | f2q “ H8pC | f3q “ 3

H8pC | f4q “ 4 ° 3

But for the F
1 features Rényi min-entropy gives a different value. In fact we get:

H8pC | f
1
1q “ H8pC | f

1
2q “ H8pC | f

1
3q “ H8pC | f

1
4q « 1.83 † 2

So, the first feature selected using Rényi min entropy would be f
1
1, f 1

2, f 1
3, or f 1

4. Let us
assume that we pick f

1
1. Hence with our method the first set of the series is S1

8 “ tf
1
1u.

For the selection of the second feature, we have

H1pC | f1, f2q “ H1pC | f1, f4q “ 2

while
H1pC | f1, f3q “ 1

H1pC | f1, f
1
1q “ H1pC | f1, f

1
2q “ H1pC | f1, f

1
3q “ H1pC | f1, f

1
4q ° 2

Hence the second feature with Shannon can only be f3, and thus the second set in the se-
quence is S2

1 “ tf1, f3u.
With Rényi min-entropy we have:

H8pC | f
1
1, f4q ° H8pC | f

1
1, fiq for i “ 1, 2, 3

H8pC | f
1
1, fiq ° H8pC | f

1
1, f

1
j
q for i “ 1, 2, 3 and j “ 2, 3, 4
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Hence with our method the second feature will be f
1
2, f 1

3, or f
1
4. Let us assume that we

choose f
1
2. Thus the second set of the series is S2

8 “ tf
1
1, f

1
2u. At step 3 one of the possible

outcomes of the algorithm based on Shannon is the set of features S
3
1 “ tf1, f3, f4u, and

one of the possible outcomes of the algorithm based on Rényi is S
3
8 “ tf

1
1, f

1
2, f

1
i
u where

i can be, equivalently, 3 or 4. At this point the method with Shannon can stop, since the
residual Shannon entropy of the classification is H1pC | S

3
1q “ 0, and also the Bayes

risk is BpC | S
3
1q “ 0, which is the optimal situation in the sense that the classification

is completely accurate. S
3
8 on the contrary does not contain enough features to give a

completely accurate classification, for that we have to make a further step. We can see
that S4

8 “ F
1, and finally we have H8pC | S

4
8q “ 0.

5.3 Evaluation

In this section we evaluate the method for feature selection that we have proposed, and we
compare it with the one based on Shannon entropy by [BPZL12] and [VE14].

To evaluate the effect of feature selection, some classification methods have to be trained
and tested on the selected data. We used two different methods to avoid the dependency of
the result on a particular algorithm. We chose two widely used classifiers: the Support
Vector Machines (SVM) and the Artificial Neural Networks (ANN).

Even though the two methods are very different, they have in common that their ef-
ficiency is highly dependent on the choice of certain parameters. Therefore, it is worth
spending some effort to identify the best values. Furthermore, we should take into account
that the particular paradigm of SVM we chose only needs two parameters to be set, while
for ANN the number of parameters increases (at least four).

It is very important to choose values as robust as possible for the parameters. It goes
without saying that the strategy used to pick the best parameter setting should be the same
for both Shannon entropy and Rényi min-entropy. On the other hand for SVM and ANN we
used two different hyper-parameter tuning algorithms, given that the number and the nature
of the parameters to be tuned for those classifiers is different.

In the case of SVM we tuned the cost parameter of the objective function for margin
maximization (C-SVM) and the parameter which models the shape of the RBF kernel’s bell
curve (�). Grid-search and Random-search are quite time demanding algorithms for the
hyper-parameter tuning task but they’re also widely used and referenced in literature when
it comes to SVM. Following the guidelines in [CL11] and [Ped11], we decided to use Grid-
search, which is quite suitable when we have to deal with only two parameters. In particular
we performed Grid-search including a 10 folds CV step.

Things are different with ANN because many more parameters are involved and some of
them change the topology of the network itself. Among the various strategies to attack this
problem we picked Bayesian Optimization [SLA12]. This algorithm combines steps of ex-
tensive search for a limited number of settings before inferring via Gaussian Processes (GP)
which is the best setting to try next (with respect to the mean and variance and compared to
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the best result obtained in the last iteration of the algorithm). In particular we tried to fit the
best model by optimizing the following parameters:

• number of hidden layers

• number of hidden neurons in each layer

• learning rate for the gradient descent algorithm

• size of batches to update the weight on network connections

• number of learning epochs
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Figure 5.5 – Accuracy of the ANN and SVM classifiers on the Basehock dataset.

To this purpose, we included in the pipeline of our code the Spearmint Bayesian op-
timization codebase. Spearmint, whose theoretical bases are explained in [SLA12], calls
repeatedly an objective function to be optimized. In our case the objective function con-
tained some tensorflow machine learning code which run a 10 folds CV over a dataset and
the objective was to maximize the accuracy of validation. The idea was to obtain a model
able to generalize as much as possible using only the selected features before testing on a
dataset which had never been seen before.

We had to decide the stopping criterion, which is not provided by Spearmint itself. For
the sake of simplicity we decided to run it for a time lapse which has empirically been
proven to be sufficient in order to obtain results meaningful for comparison. A possible
improvement would be to keep running the same test (with the same number of features) for
a certain amount of time without resetting the computation history of the package and only
stop testing a particular configuration if the same results is output as the best for k iterations
in a row (for a given k).
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Another factor, not directly connected to the different performances obtained with dif-
ferent entropies, but which is important for the optimization of ANN, is the choice of the
activation functions for the layers of neurons. In our work we have used ReLU for all lay-
ers because it is well known that it works well for this aim, it is easy to compute (the only
operation involved is the max) and it avoids the sigmoid saturation issue.

Experiments

As already stated, at the i-th step of the feature selection algorithm we consider all the
features which have already been selected in the previous i ´ 1 step(s). For the sake of
limiting the execution time, we decided to consider only the first 50 selected features with
both metrics. We tried our pipeline on the following datasets:
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Figure 5.6 – Accuracy of the ANN and SVM classifiers on the Gisette dataset.

• Basehock dataset: 1993 instances, 4862 features, 2 classes. This dataset has been
obtained from the 20 newsgroup original dataset.

• Semeion dataset: 1593 instances, 256 features, 10 classes. This is a dataset with
encoding of hand written characters.

• Gisette dataset: 6000 instances, 5000 features, 2 classes. This is the discretized ver-
sion of the NIPS 2003 dataset which can be downloaded from the site of Professor
Gavin Brown, Manchester University.

We implemented a bootstrap procedure (5 iterations on each dataset) to shuffle data and
make sure that the results do not depend on the particular split between training, validation
and test set. Each one of the 5 bootstrap iterations is a new and unrelated experimental run.
For each one of them a different training-test sets split was taken into account. Features were
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selected analyzing the training set (the test set has never been taken into account for this part
of the work). After the feature selection was executed according to both Shannon and Rényi
min-entropy, we considered all the selected features adding one at each time. So, for each
bootstrap iteration we had 50 steps, and in each step we added one of the selected features,
we performed hyper-parameter tuning with 10 folds CV, we trained the model with the best
parameters on the whole training set and we tested it on the test set (which the model had
never seen so far). This procedure was performed both for SVM and ANN.
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Figure 5.7 – Accuracy of the ANN and SVM classifiers on the Semeion dataset.

in all cases to the Semeion dataset, the features selected by the two metrics are not so
different and we get similar results. Nonetheless the small differences reveal that with the
Rényi min-entropy we achieve better results with the same number of features.

In the case of the Basehock dataset, where the nature and the amount of features are very
different from those of the Semeion dataset, the advantage of the method using the Rényi
entropy, with respect to the one which uses Shannon entropy, is even more pronounced.

We computed the average performances over the 5 iterations and the results are in fig. 5.5,
fig. 5.6, and fig. 5.7. In all cases the feature selection method using Rényi min-entropy usu-
ally gave better results than Shannon, especially with the Basehock dataset.

5.4 Final remarks

Related work

Some of the works related to feature selection methods which are based on information
theory have been already mentioned at the beginning of this chapter. In this section, we
further comments on the those contributions and we cite new ones as well. For a more
complete overview we refer to [BHS15], [VE14] and [BPZL12].
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The approach most related to our proposal is that of [BPZL12] and [VE14]. We have
already discussed and compared their method with ours earlier in this chapter. As to the
work in [EK13], where the authors considered the Rényi entropies, it is important to notice
that they used the notion of min-entropy defined in [Cac97]. This notion, as anticipated
in section 2.2, has the unnatural characteristic that a feature may increase the entropy of
the classification instead of decreasing it. It is clear, therefore, that basing a method on this
notion of entropy could lead to strange results. Moreover, the results reported in [EK13] are
relative to orders of Rényi entropies which are different from the min-entropy.

Another body of literature focuses on the two key concepts of relevance and redundancy.
Relevance refers to the importance for the classification of the feature under consideration
f
t, and it is in general modeled as I1pC; f t

q. Redundancy represents how much the infor-
mation of f t is already covered by S. It is often modeled as I1pf

t
, Sq. In general, we want

to maximize relevance and minimize redundancy.
One of the first algorithms ever implemented was the MIFS algorithm proposed by

[Bat94], based on a greedy strategy. At the first step it selects f 1
“ argmax

fiPF I1pC; fiq,
and at step t it selects f t

“ argmax
fiPF zSt-1rI1pC, fiq´�

∞
fsPSt-1 I1pfi, fsqs where � is a pa-

rameter that controls the weight of the redundancy part. The mRMR approach (redundancy
minimization and relevance maximization) proposed by [PLD05] is based on the same strat-
egy as MIFS. However the redundancy term is now substituted by its mean over the elements
of the subset S so to avoid its value to grow when new attributes are selected. In both cases,
if relevance outgrows redundancy, it might happen that many features highly correlated and
so highly redundant can still be selected. Moreover, a common issue with these two methods
is that they do not take into account the conditional mutual information I1pC, f

t
| Sq for the

choice of the next feature to be selected f
t.

More recent algorithms involve the ideas of joint mutual entropy I1pC; fi, Sq (JMI,
[BHS15]) and conditional mutual entropy I1pC; fi | Sq (CMI, [Fle04]). The step for choos-
ing the next feature with JMI is f t

“ argmax
fiPF zSt-1

 
min

fsPSt-1 IpC; fi, fsq
(

, while with
CMI is f

t
“ argmax

fiPF zSt-1
 
min

fsPSt-1 IpC; fi | fsq
(

. In both cases the already se-
lected features are taken into account one by one when compared to the new feature f

t.
The correlation between JMI and CMI is easy to prove [YM99]: I1pC; fi, Sq “ H1pCq ´

H1pC | Sq ` H1pC | Sq ´ H1pC | Sq “ I1pC;Sq ` IpC; fi | Sq.

Summary

We have proposed and formalized a method for feature selection based on a notion of con-
ditional Rényi min-entropy. We have shown that the problem of selecting the optimal set
of features with respect to the min-entropy, namely the S that satisfies (5.2), is NP-hard.
Therefore, we have proposed an iterative greedy strategy of linear complexity to approx-
imate the optimal subset of features with respect to the min-entropy. This strategy starts
from the empty set, and adds a new feature at each step until we achieve the desired level of
accuracy.

We have shown that our strategy is locally optimal, namely, at every step the new set of
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features is the optimal one among those that can be obtained from the previous one by adding
only one feature. (This does not imply, however, that the final result is globally optimal.)
We think that leaves room for future implementations based on different notions of entropy
which are the state-of-the-art in security and privacy, like the notion of g-vulnerability, which
seems promising for its flexibility and capability to represent a large spectrum of possible
classification strategies.

We have compared our approach with that based on Shannon entropy, and we have
proven a negative result: neither of the two approaches is better than the other in all cases.
We have used the Basehock, Semeion, and Gisette datasets and, although the two methods
are, in general, incomparable, in the experiments we run, our method has always achieved
better results.





CHAPTER 6
Conclusion

In this thesis, we have investigated how notions from information theory and ML can be
utilized in the context of security and privacy, both in order to quantify the leakage of a
given system and to build privacy protection mechanisms.

In the first presented contribution, we have proposed an approach to estimate the g-
vulnerability of a system under the black-box assumption, using machine learning. We
have introduced two pre-processing techniques to reduce the problem to that of learning
the Bayes classifier on a set of pre-processed training data. Considering the applicability
of our solution to real problems a matter of primary importance, we have proposed several
experiments and we have compared our framework the frequentist approach, showing that
the results are comparable when the observable domain is small, while our approach does
much better on large observable domains. This is in line with what already observed in
[CCP19] for the estimation of the Bayes error.

We have then moved on to study the problem of designing an obfuscation based pri-
vacy protection mechanism using an adversarial network paradigm inspired by the GAN
paradigm. We have proposed a method based on adversarial nets to generate obfuscation
mechanisms with a good trade-off between privacy and utility. The crucial feature of our
approach is that the target function to minimize is the mutual information rather than the
cross entropy. The applicability of our solution is an important aspect of our contribution.
Therefore, we have shown applications to the case of location privacy, and experimented
with a set of synthetic data and with data from Gowalla.

As to the third contribution, we have proposed a method for feature selection based on a
notion of conditional Rényi min-entropy.

The line of research we have pursued in this work offers many opportunities for future
work. For instance, as to the leakage estimation topic, we plan to thoroughly study how
our framework adapts to specific real-life scenarios which have been subject of research in
the last few years. For instance, we are interested in fingerprinting attacks [Che17, CHJ17]
and the AES cryptographic algorithm [dCGRP19]. We also would like to consider the
more general case, often considered in Information-flow security, of channels that have both
“high” and “low” inputs, where the first are the secrets and the latter are data visible to, or
even controlled by, the adversary.
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A more ambitious goal would be to use our approach to minimize the g-vulnerability
of complex systems, using a GAN based approach, along the lines of what has been dis-
cusses in chapter 4. Moreover, investigating ways to improve our current privacy protection
mechanism based on the adversarial networks paradigm would be worthwhile. In general,
using different loss functions would allow us to deploy mechanisms which are concerned
with different notions of privacy.

A very important challenge is represented by the extension of the framework we pre-
sented to worst-case notions of privacy, such as differential privacy and geo-indistinguishability.
To this end, it could be worth studying results obtained by applying a variant of differ-
ential privacy called Rényi differential privacy [Mir17], which is formulated in terms of
divergence, and explore the applicability of the learning-based method for estimating f -
divergences proposed in [RBD`19].

A direct extension of the current implementation would be introducing a surrogate func-
tions to deal with the estimation of the mutual information using losses which are more
suitable for neural networks training in order to reduce the computational burden.

Moreover we plan to enhance the flexibility of the constraint on distortion (in the loss
function), by requiring it to be per user rather than global. More specifically, we aim at pro-
ducing obfuscation mechanisms that satisfy constraints stating that the expected displace-
ment for each user is at most up to a certain threshold. The motivation is that different users
may have different requirements. Another potential application is to encompass a notion of
fairness, that can be obtained by requiring that the threshold is the same for everybody.
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Titre : Méthodes d’apprentissage machine pour la protection de la vie privée: mesure de leakage et design
des mécanismes

Mots clés : Estimation des fuites, protection de la vie privée, apprentissage machine

Résumé : Dans cette thèse de doctorat, nous
étudions comment les notions de théorie de l’infor-
mation et de ML peuvent être utilisées pour mieux
mesurer et comprendre les informations divulguées
par les données et/ou les modèles, et pour conce-
voir des solutions visant à protéger la confidentialité
des informations partagées. Nous explorons l’appli-
cation du ML pour estimer la fuite d’informations d’un
système dans le scénario black-box où les seules in-
formations disponibles sont des paires input-output.
Les travaux précédents se sont concentrés sur l’esti-
mation des fréquences conditionnelles d’entrée-sortie
et, plus récemment, l’estimation de l’erreur de Bayes
a été étudiée à l’aide de modèles ML et s’est avérée
plus précise. Nous proposons une nouvelle approche
basée sur la ML, qui repose sur le pre-processing
des données, pour effectuer une estimation de la
g-vulnerability, une mesure plus souple de la fuite,
qui englobe l’attaquant Bayes et plusieurs autres
types d’adversaires. Nous étudions formellement la
capacité d’apprentissage pour toutes les distributions
de données et évaluons les performances dans di-
vers cadres expérimentaux. Ensuite, nous nous atta-

quons au problème de l’obscurcissement des infor-
mations sensibles tout en préservant leur utilité, et
nous proposons une approche ML inspirée du para-
digme GAN pour produire un générateur d’obscur-
cissement optimal pour protéger les données, alors
que classificateur essaie de désobstruer les données.
Nous appliquons notre méthode au cas de la pro-
tection de la vie privée en matière de localisation.
La performance du mécanisme d’obfuscation obtenu
est évaluée en fonction de l’erreur de Bayes, qui
représente l’adversaire le plus puissant possible. En-
fin, nous considérons que, compte tenu des valeurs
des classes (secrètes) et des caractéristiques (obser-
vables) dans les problèmes de classification, la me-
sure de la fuite d’un tel système est une stratégie
visant à distinguer les caractéristiques les plus et
les moins informatives. Nous comparons l’informa-
tion mutuelle basée sur l’entropie de Shannon à celle
basée sur la min-entropie de R’enyi, tant du point
de vue théorique qu’expérimental: selon l’ensemble
de données considéré, parfois la méthode basée sur
l’entropie de Rényi est plus performante que l’autre,
et parfois le contraire se produit.

Title : Machine Learning methods for privacy protection: leakage measurement and mechanism design

Keywords : Leakage estimation, privacy protection, machine learning

Abstract : In this PhD thesis, we study how notions
of information theory and ML can be used to better
measure and understand the information leaked by
data and / or models, and to design solutions to pro-
tect the privacy of the shared information. We first ex-
plore the application of ML to estimate the informa-
tion leakage of a system in the the black-box scenario
where the only available information are pairs of input-
output data samples. Previous works focused on es-
timate the input-output conditional frequencies, and,
more recently, the estimation of the Bayes error was
investigated using ML models and it has been shown
to be more accurate. We propose a novel ML based
approach, that relies on data preprocessing, to per-
form black-box estimation of the g-vulnerability a more
flexible measure of leakage, which encompasses the
Bayes attacker and several other types of adversaries.
We formally study the learnability for all data distri-
butions and evaluate performances in various expe-
rimental settings. Secondly, we address the problem
of obfuscating sensitive information while preserving
utility, and we propose a ML approach inspired by the
GAN paradigm. The generator net tries to produce an

optimal obfuscation mechanism to protect the data,
and the classifier tries to de-obfuscate the data. By
letting the two nets compete against each other, the
mechanism improves its degree of protection, until an
equilibrium is reached. We apply our method to the
case of location privacy. The performance of the ob-
tained obfuscation mechanism is evaluated in terms
of the Bayes error, which represents the strongest
possible adversary. Finally, we consider that, given
classes (secrets) and features’ values (observables)
in classification problems, measuring the leakage of
a system is a strategy to tell the most and least in-
formative features apart. The prediction power stems
from the correlation, i.e., the mutual information, bet-
ween features and labels. We compare the Shan-
non entropy based mutual information to the Rényi
min-entropy based one, both from the theoretical and
experimental point of view showing that, depending
on the considered dataset, sometimes the Shannon
entropy based method outperforms the Rényi min-
entropy based one and sometimes the opposite oc-
curs.

Institut Polytechnique de Paris
91120 Palaiseau, France
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