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RÉSUMÉ EN FRANÇAIS

Contexte et problématiques

La nouvelle génération mobile 5G s’accompagne de l’adoption de nouvelles technologies du
monde du cloud-computing, avec notamment l’introduction de fonctions réseau virtualisées
[79, 151], c’est-à-dire réalisées par du logiciel plutôt que par des machines spécialisées. Par
ailleurs, des milliards d’objets avec différents niveaux d’exigence seront à connecter. Ce nou-
vel environnement offre des services plus dynamiques et flexibles, tout en réduisant les coûts
de mise en œuvre et de maintenance. En outre et afin de bénéficier davantage de la virtual-
isation, les opérateurs partagent leurs ressources non occupées avec les clients. Ces clients
proviennent de différents secteurs avec des services de niveaux de priorité distincts (par ex-
emple un réseau hospitalier déployé sur l’infrastructure opérateur). Cela est rendu possible via
le concept de "multi-tenancy" qui permet la coexistence de plusieurs clients dans une même
infrastructure.

La fiabilité des services dans ce type d’environnement devient un enjeu primordial. Une
simple panne peut potentiellement engendrer des pertes humaines et monétaires conséquentes.
D’autant plus que le secteur touché est sensible tels que les véhicules connectés autonomes,
les processus industriels ou les robots chirurgicaux. Il est donc nécessaire de détecter et lo-
caliser rapidement les pannes, tout en progressant vers une auto-réparabilité.

Pour un opérateur réseau et cloud comme Orange, offrir des services dotés d’une forte
résilience et une garantie de recouvrement après panne, tout en optimisant l’usage des ressources,
sera un argument clé envers ses futurs clients. En effet, une panne d’un service peut engendrer
des pertes monétaires, incluant les coûts de réparation et de mobilisation humaine. D’un autre
côté, ces pannes peuvent toucher à l’image de qualité de services perçue par ses clients. Un
exemple d’une telle perte a été apportée en 2013 par IBM, où l’un de ses serveurs est tombé en
panne pendant une semaine causant l’arrêt d’un site web australien et une perte effective es-
timée à 31 millions de dollars [13]. Il est donc primordial de gérer les pannes, d’autant plus que
la virtualisation des services est un aspect émergeant dans le monde des télécommunications.

Alors que la gestion de pannes est une discipline déjà connue par les opérateurs et un prob-
lème adressé plusieurs fois par le passé, l’introduction de la virtualisation apporte un ensemble
de défis et de problèmes qui rendent obsolètes certaines approches de gestion et localisation
de pannes. Parmi ces défis, on peut notamment citer la topologie dynamique. En effet, le
changement de topologie constant des entités réseaux complique la localisation de la racine
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de la panne et peut engendrer de faux résultats.
L’objectif de cette thèse est de garantir la disponibilité des services de réseaux de télécom-

munications virtualisés en développant des mécanismes de suivi de causalité de fautes. Ces
mécanismes permettent la découverte des composants fautifs et ainsi d’atteindre l’isolation
des ressources et d’éviter la propagation de fautes à l’ensemble du système. Le travail de ma
thèse décrit dans ce manuscrit est structuré comme suit:

• Dans le chapitre 2, nous présentons le contexte générale de la thèse en expliquant la
composition et les caractéristiques des architectures de télécommunications virtualisées.
Nous décrivons le cas d’usage du "Virtual IP Multimédia Subsystem (vIMS)" [19] qui est
la version virtualisée du standard de communication multimédia: IMS.

• Le chapitre 3 présente notre première contribution qui est un état de l’art sur les ap-
proches classiques de gestions de pannes et les limitations de ces approches face aux
défis de l’environnement virtuel multi-tenant. Par la suite, nous décrivons des techniques
de gestion de pannes plus récentes proposées pour les réseaux virtuels et nous position-
nons notre travail de thèse par rapport a l’état de l’art. Ce chapitre 2 à fait l’objet d’une
publications dans journal IEEE Transaction [16].

• Dans le chapitre 4, nous proposons une plateforme de gestion de pannes globale qui
représente les différentes étapes de gestion de pannes: détection, localisation et répara-
tion de pannes, ainsi que l’ensemble des outils open source utilisés dans chaque étape.

• Le chapitre 5 décrit notre proposition d’auto-modélisation des réseaux virtuels. Le mod-
èle proposé est un graphe de dépendances logique avec les nœuds qui représentent des
variables booléennes. Cette proposition a été appliquée sur le use-case vIMS présenté
dans le chapitre 2. Nous utilisons la technique de gestion de pannes pour valider, cor-
riger et étendre le modèle. Une algorithmique d’auto-modélisation a été proposée pour
permettre de modéliser la topologie actuelle du réseau. Nous proposons a la fin des tests
de performance appliqués a l’algorithme d’auto-modélisation.

• Le chapitre 6 propose une procédure de diagnostic de pannes actif qui valide notre ap-
proche d’auto-modélisation. Cette procédure prend en considération le graphe de dépen-
dances produit par l’algorithme d’auto-modélisation et les observations (symptômes de
pannes) initiales pour retrouver les causes primaires des pannes. La procédure de diag-
nostic de pannes introduit le concept de tests qui permet de rajouter des observations au
fur et à mesure que le diagnostic avance. Pour valider la procédure de diagnostic, nous
avons appliqué cette procédure sur des scénarios de pannes réelles.

Dans ce qui suit nous allons présenter un résumé des résultats de la thèse.
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Limitation des approches de gestion de pannes face à la virtualisa-
tion des réseaux

Le diagnostic de panne est le processus de détection, localisation et résolution des pannes et
défaillances du réseau. La figure 1 illustre les différentes étapes et approches de gestion de
pannes. La première phase dans le diagnostic de pannes consiste a détecter que le système
est en état de défaillance. L’étape de détection de panne détermine si le système fonctionne
dans des conditions normales ou si une panne (ou faute) s’est produite. Une faute est la cause
primaire qui peut conduire le système à un état d’erreur. Un échec se produit lorsqu’une erreur
provoque un dysfonctionnement des périphériques réseau ou des logiciels, ce qui entraîne
des symptômes. Les symptômes sont des manifestations externes d’échecs, ils peuvent être
observés comme des alarmes, c’est-à-dire des notifications d’échecs potentiels [133].

Pour la détection de pannes, deux types de données sont collectées: les métriques et les
alarmes. Les métriques représentent un moyen quantitatif de vérifier les aptitudes souhaitées
et de mesurer les dégradations. Ils mesurent l’activité et l’état de fonctionnement de toutes les
couches du réseau. Les métriques du réseau comprennent: la gigue, le débit, l’utilisation du
réseau, la latence et les pertes de paquets. les alarmes représentent des manifestations ex-
ternes d’échecs. Ces notifications peuvent provenir d’agents de gestion comme le trap SNMP
[127], ou au format de journaux système générés par le protocole syslog (ou d’autres proto-
coles) [42].

La localisation des pannes (également appelée isolation des pannes) représente la procé-
dure permettant de déduire la cause racine exacte d’une panne. Dans le cadre de localisation
de pannes un certain nombre d’approches et méthodologies ont été développés [16]. Ces
approches apportent une automatisation de la procédure de gestion de pannes et sont ap-
pliquées pour la prédiction de pannes, localisation des composants fautifs ou encore l’analyse
de propagation de fautes. Une grande partie de ses approches sont des approches Machine
Learning (ML) avec une capacité d’inférer des résultats à partir des données ou modèles. On
peut classer ces approches en deux grandes catégories: boite blanche et boite noire.

Les boites blanches, telles que les réseaux bayésiens, sont des approches qui se basent
sur un modèle pour le diagnostic. Un modèle représente un ensemble de nœuds et dépen-
dances. Les nœuds représentent des composants réseau, évènements ou fautes. Les dépen-
dances entre nœuds représentent des liens causals, logiques ou probabilistes. Les approches
du type boite blanche offrent une meilleure explication du déroulement de la panne en se bas-
ant sur le modèle. Alors que les boites noires, telles que les réseaux de neurones, sont des
techniques qui apprennent sur un jeu de données un modèle sans vraiment apporter des expli-
cations à ce qui a été appris. Un exemple d’application des approches d’apprentissage, serait
de prédire si notre système se dirige vers un état de panne ou non en utilisant un modèle de
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classe binaire en sortie.

Figure 1 – Les étapes et approches de gestion de pannes.

Les problématiques classiques dans le monde des réseaux se heurtent à de nouveaux défis
apportés par la virtualisation, notamment en termes de fiabilité et de disponibilité.:

• Topologie de réseau dynamique: la 5G permettra le déploiement de services en temps
réel adaptés aux demandes des clients. cette reconfiguration en permanence rend l’évolution
de la topologie du réseau et des dépendances des entités sur le réseau imprévisibles. Le
système de gestion doit prendre en compte les modifications de la topologie en temps
réel pour identifier les composants fautifs et éviter les faux positifs.

• Manque de visibilité du réseau: La distribution des fonctions virtuelles sur plusieurs
sites offre plus de robustesse face aux pannes de services. Cependant, cela entraîne
une nouvelle préoccupation de gestion qui est: la distribution ou centralisation des logs.
En effet, les logs d’un même service peuvent être distribués dans plusieurs sites ce qui
implique un manque de visibilité et complique le diagnostic de pannes. Par conséquent,
pour gérer les services, une vue globale du réseau est nécessaire.

• Isolation de pannes: le partage de l’infrastructure entre plusieurs clients, nécessite une
isolation des fautes et une notification rapide des clients affectés.

• Croissance, ambiguïté et incohérence des alarmes: le nombre croissant de services
dans les réseaux virtuels implique davantage d’entités à gérer avec un nombre croissant
d’alarmes. Ces alarmes sont produites par diffèrents agents comme Syslog et dans les
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différentes couches du réseaux. De plus, une panne peut se propager à travers les
couches et les sites, augmentant le nombre d’alarmes. La provenance de ces alarmes
de différents sites et entités engendre une ambiguïté et une incohérence des alarmes.
Dans ce cas, la gestion des d’alarmes nécessite des techniques de stockage et de filtrage
modernes avec des notifications précoces d’échecs graves [45].

Dans le travail de ma thèse, nous optons pour une approche basée modèle. Ce type
d’approche offre une meilleure explication du diagnostic, mais souffre d’une limitation majeure
qui est la difficulté de définir le modèle appliqué pour le diagnostic. D’autant plus, que les
défis de la virtualisation cités précédemment compliquent la dérivation de ce modèle. En effet,
le modèle défini doit représenter les différentes couches du réseau virtuel (physique, virtuel,
application et service). le modèle doit aussi représenter les granularités les plus fines (par
exemple, les processus d’application). Ce modèle doit aussi s’adapter au changement de
topologie du réseau.

LUMEN: plateforme de gestion de pannes des réseaux virtuels

Afin de relever les défis liés à la virtualisation, nous proposons LUMEN: une plateforme globale
de gestion des pannes [17]. LUMEN est une architecture en quatre étapes, notamment :
Source, Puits, Extraction et Décision. Chacune des étapes récapitule les méthodes qui doivent
être déployées pour répondre aux différents défis de la virtualisation qui sont: l’isolation de
pannes clients, l’ambiguïté et la croissance des logs et le manque de visibilité du réseau.

La figure 2 illustre les phases de LUMEN. Les phases source, et puits représentent la partie
collecte, filtrage et stockage de données telles que les logs ou la description de topologie. Dans
cette phase les logs des différents clients sont centralisés pour résoudre le manque de visibilité
réseau. Ces logs sont aussi identifiés pour chaque client afin de les isoler. La phase extraction
permet d’extraire les données nécessaire selon les besoins de l’approche de décision. Par
exemple, seuls les logs qui indiquent un mal-fonctionnement du réseau sont récupérés pour le
diagnostic.

LUMEN s’appuie sur un ensemble d’outils open source, notamment Elastic Stack [31], pour
la partie stockage et filtrage des données. La contribution majeure de LUMEN est la prépa-
ration et extraction des données nécessaires pour les approches de diagnostic. Par exemple,
dans la partie collecte d’alarmes, un identifiant de client unique est rajouté pour classer les
évènements par client et ainsi répondre au besoin d’isolation de pannes clients.

VIII



Figure 2 – La platforme LUMEN.

Approche d’auto-modélisation et diagnostic actif

Après avoir défini les étapes de gestion de pannes à travers la plateforme LUMEN, nous avons
opté par la suite pour une approche boite blanche intégrant le mécanisme de suivi de causal-
ité de faute, étant donné que ces approches apportent des explications plus détaillées sur les
pannes et nous permettent ainsi d’effectuer une réparation ciblée. Notre motivation pour ce
choix malgré la difficulté de la définition du modèle, est l’existence de deux types de connais-
sances dans les réseaux virtuels : connaissances acquises et connaissances apprises. Les
connaissances acquises peuvent être récupérées des fichiers de description de réseau, des
protocoles ou même des experts. Dans un de nos papiers [18], nous avons présenté les dif-
férents types de données acquises des réseaux virtuels. D’un autre côté, les connaissances
apprises sont récupérées par un mécanisme d’injection de fautes qui consiste à injecter des
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pannes telles que la rupture d’un lien de connexion et la collecte d’évènements associés. Ce
mécanisme a été introduit par Netflix avec le projet ChaosMonkey pour tester la résilience de
leur plateforme [90]. Dans notre cas ce mécanisme a été utilisé pour apprendre les dépen-
dances du modèle.

Pour modéliser les réseaux virtuels nous avons défini un ensemble de "templates". Les tem-
plate définissent les composants du réseaux dans chaque couche du réseau virtuel. Une tem-
plate est un graphe orienté acyclique G = (V,E) avec V l’ensemble des nœuds qui représen-
tent des variables booléennes et E l’ensemble des liens logiques. Nous avons défini qua-
tre types de liens logiques entre un nœud et ses prédécesseurs: dv = {ET,OU,¬A =⇒
¬B,A =⇒ B}, où A et B sont deux nœuds du graphe.

L’approche de modélisation proposée se base sur le principe de la programmation ori-
entée objet. Les templates peuvent être considérés comme des "classes d’objets" dans le
paradigme orienté objet. Les règles de modélisation utilisées réassemblent ensuite un di-
agramme de classes. Le but des règles de modélisation est de construire un graphe de
variables booléennes et de dépendances logiques décrivant tous les composants du réseau
à l’aide des templates définis (un diagramme d’objet, suivant la métaphore de programma-
tion orientée objet). Le graphe résultant représente des instances assemblées de templates.
Les composants de même nature ont le même modèle avec des instances distinctes de ce
modèle. L’instanciation de ces templates est opérée par l’algorithme d’auto-modélisation.
L’algorithme d’auto-modélisation prend en considération les templates définis et la topologie
actuelle du réseau décrite dans un ficher YAML1. Les templates sont définis d’une manière
un peu générale qui répond a tous les use cases de réseaux de télécommunications virtuels.
Ces définitions intègrent plusieurs aspect commun entre ces use-case tels que le principe
d’élasticité des fonctions réseaux virtuelles et les mécanismes d’auto-réparation. Nous avons
par la suite appliqué cette approche d’auto-modélisation sur le use-case vIMS avec le projet
open source Clearwater en version Docker [120]. Docker étant une technologie de virtualisa-
tion plus performante et légère (moins d’overhead système) que les machines virtuelles [115].
Nous utilisons une procédure d’injection de fautes pour valider, corriger et étendre les tem-
plates définies. Le principe et de comparer la propagation de fautes dans un déploiement réel
contre la propagation dans le modèle.

La figure 3 illustre un exemple de propagation d’une faute dans un vrai déploiement contre
sa propagation dans le modèle de dépendances correspondant à l’architecture. L’architecture
de déploiement Clearwater vIMS est composée de cinq composants essentiels pour permettre
l’authentification des clients. Ces composant sont: Bono, Sprout, Homestead, Cassandre et
ETCD. Bono représente le premier point de contact des clients. Sprout permet de router les

1YAML est un format de représentation de données qui peut être utilisé pour la description et la configuration du
réseau [101].
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messages du type Session Initiation Protocol (SIP)2. Homestead est responsable de récupérer
et stocker les informations des clients tels que les mots de passe des clients, ces informations
sont stocker dans la base de données Cassandra. Finalement, ETCD permet le partage des
informations de configuration entre les fonctions de Clearwater. Dans cet exemple le Docker
Sprout est répliqué deux fois. Pour s’authentifier le client envoie une requête via Bono1. Dans
notre exemple le Docker Bono1 a été arrêté, ce qui implique une erreur au niveau de la requête
SIP avec un code "408" qui signifie un délai de demande écoulé sans réponse pour cette
requête. En plus de cette erreur, un autre type d’alarmes est notifié au niveau de Sprout11 et
Sprout12 qui n’arrivent pas a rejoindre Bono1.

Cette architecture est décrite dans un ficher YAML que l’algorithme d’auto-modélisation
prend en entrée pour générer le graphe de dépendances illustré dans la figure 3-droite.

En injectant la même faute dans ce graphe de dépendances (c’est à dire que l’état du
Docker Bono1 est défaillant val(DC_Bono1_status) = Faux), nous remarquons les mêmes
symptômes de propagation de cette faute dans le graphe. C’est à dire que les états du
service d’authentification Register et de la connexion entre Bono1 et le cluster de Sprout1
C_Bono1_Sprout1 sont faux. Le modèle est par la suite utilisé comme entrée pour une procé-

Figure 3 – Exemple de propagation de fautes.

dure de diagnostic qui se base sur le solveur logique de Microsoft Z3 [83]3. Une fois que la
faute est détectée avec les premières observations (ou alarmes), les étapes du diagnostic actif
sont les suivants:

1. Modéliser la topologie actuelle en graphe de dépendances global G.
2Session Initiation Protocol (SIP) est un protocole standard ouvert de gestion de sessions utilisé dans les com-

munications multimédia.
3est un solveur SAT(problème de satisfaisabilité booléenne) développé par Microsoft
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2. Extraire un sous graphe SG graphe de dépendance global G qui consiste en les nœuds
connues des observations et les prédécesseurs directes (parents) des nœuds qui ont un
état Faux.

3. Le graphe SG est par la suite traduit en un ensemble de contraintes logiques qui décrivent
les noeuds et leurs dépendances.

4. Ces contraintes avec les observations sont par la suite proposées au solveur pour obtenir
une solution. La solution obtenue contient le minimum nombre de Faux nœuds qui ex-
pliquent la faute.

5. Ces Faux nœuds passent par la suite par des tests si ils sont testables. Selon la valeur
obtenue ils sont classés en trois catégories :

• Innocent : si le nœud est testable et fonctionne (val(noeud) = V rai).

• Suspect : si le nœud est non testable, ou testable et sa valeur est inconnue.

• Défectueux : si si le nœud est testable et sa valeur est fausse.

• Coupable: si en plus d’être défectueux le nœud coupable est une cause primaire de
la panne.

6. Dans le cas innocent et suspect les valeurs de ces nœuds sont rajoutées aux observa-
tions.

7. Dans le cas défectueux pour que ce nœud soit une cause primaire il faut qu’il soit spon-
tané (c’est à dire peut tomber en panne tout seul) et sans prédécesseurs.

8. Si la cause primaire de la faute n’est toujours pas retrouvée, le processus de diagnostic
refait les mêmes étapes (2 à 7) avec une extension du graphe SG avec les nouvelles ob-
servations et les prédécesseurs directes des fausses observations. L’administrateur peut
changer les valeurs des noeuds "Suspects" pour les rendre "innocents" ou "coupables".

Résultats expérimentaux:
Pour tester l’algorithme d’auto-modélisation et diagnostic, nous avons implémenté les deux
algorithmes dans un projet hébergé dans le dépôt GitHub suivant: [119]. Pour cela, nous
revenons a l’exemple de la Figure 3, les premières observations sontO = {Register, C_Bono1_
Sprout1}. Le processus de diagnostic commence par extraire le sous graphe SG de ces nœuds
et leurs prédécesseurs. Les solutions proposées par l’algorithme de diagnostic qui sont présen-
tées dans la Figure 4, sont les suivants:

Scénario de faute: Arrêter le docker Bono1, DcBono1S:
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1. Première solution: Appbono1

2. Solutions et tests suivants:

• Test de l’application Bono1 (val(Appbono1) = Inconnue).

• Test de la connexion du Docker ETCD1 (val(DCE1C) = V rai).

• Test de connexion du Docker Bono1 (val(DCbono1C) = Faux).

3. Résultats: la connexion Docker Bono1 (DCbono1C) est une cause possible. Continuer?:
oui.

4. Solutions et tests suivants:

• Test du mécanisme de connexion local de Docker: "Network bridge" (val(NB1) =
V rai).

• Test de l’état du Docker Bono1 (val(DCbono1S) = Faux).

• Résultats: L’état du Docker Bono1 (DCbono1S) est une cause possible. Continuer?:
Non

Figure 4 – . Résultat du diagnostic.

En passant par plusieurs tests, l’algorithme de diagnostic détermine la cause primaire
DCbono1S et retourne comme résultat le dernier sous-graphe avec les résultat des tests et
la cause primaire et secondaire.
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Conclusion et perspectives

La virtualisation des réseaux de télécommunications offre des services plus dynamiques et
flexibles, tout en réduisant les coûts de mise en œuvre et de maintenance. En outre, et afin
de bénéficier d’avantage de la virtualisation, les opérateurs partagent leurs ressources non
occupées avec leurs clients. Néanmoins, ce paradigme de virtualisation engendre un certain
nombre de défis, notamment en termes de fiabilité et de disponibilité, tels que: la topologie
de réseau dynamique, hétérogénéité des composants du réseaux, manque de visibilité, le
problème d’isolation de pannes des différents clients partageant une même infrastructure. Ces
défis affectent les méthodes et approches classiques de gestion de pannes.

Pour répondre a ces défis, nous avons opté pour une approche de gestion de pannes basée
modèle qui permet de donner des explications aux pannes pour une auto-réparation ciblée.
Pour cela, nous avons d’abord proposé LUMEN, une plateforme qui se base sur des outils
open source qui permet de centraliser, filtrer et récupérer les logs nécessaires pour l’approche
de diagnostic. La centralisation et filtrage de logs permet de répondre au problème de manque
de visibilité et d’isolation des logs clients. Nous avons par la suite défini une approche d’auto-
modélisation pour les réseaux virtuels appliquée au use-case vIMS. Le modèle défini a été
ensuite validé par des scénarios de propagations de pannes et testé sur un processus de
diagnostic actif. Le processus de diagnostic se base sur des tests pour proposer des résultats
sous forme d’un graphe de dépendances avec les nœuds innocents, suspects et fautifs. Le
résultat proposé permet à l’administrateur de modifier certaines suppositions pour aller plus
loin dans le diagnostic. Les résultats de la thèse ont ouvert plusieurs perspectives possibles.

Perspectives :
La plupart des étapes composant les procédures d’auto-modélisation et de diagnostic ont été
automatisées. Cependant, d’autres étapes méritent d’être automatisées ou développées, tels
que:

• L’auto-apprentissage de "templates": l’extension des "templates" ont été réalisés par
un expert humain. Une perspective possible est de développer un algorithme d’auto-
apprentissage capable de déduire les dépendances apprises et de corriger ou d’étendre
ces "templates". Ces algorithmes appliqueront des scénarios d’injection de fautes à la
fois dans le déploiement réel et dans le modèle défini. L’algorithme d’auto-apprentissage
comparera ensuite les résultats de la propagation des défauts dans les deux cas.

• La création automatique du fichier YAML: dans notre travail, nous écrivons manuellement
le fichier YAML, nous n’avons pas développé la procédure de génération de ce fichier à
partir des différents déploiements. Cette procédure est facilement réalisable en interro-
geant les orchestrateurs de réseau déployés tels que OpenStack ou Docker dans notre
cas.
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• l’automatisation de tests: Pour améliorer l’efficacité du processus de diagnostic proposé,
une perspective possible est que le processus de diagnostic actif effectue les tests néces-
saires sans interroger l’administrateur du réseau. Pour ce faire, l’algorithme de diagnostic
actif doit être fourni avec les lignes de commande de test et les informations nécessaires
sur les composants du réseau afin d’effectuer ces tests. Par exemple, pour un test de
connexion, l’algorithme doit connaître l’adresse IP du nœud à tester.

En plus de ces perspectives, le graphe de dépendances logiques proposé peut être étendu en
un graphe probabiliste pour rependre à d’autre types de fautes qui dégradent le bon fonction-
nement du réseau, telle que la surcharge CPU d’un serveur hébergeant des fonctions virtuelles.
Une autre amélioration possible pour le processus de diagnostic est de capturer le change-
ment de topologie une fois le diagnostic lancé. Pour cela, l’algorithme d’auto-modélisation doit
a chaque fois mettre à jour le graphe de dépendances selon les changements de topologie.
Une étude que nous avons effectuée sur l’algorithme d’auto-modélisation a prouvé qu’il est
plus efficace de modéliser seulement les changements enregistrés sur le ficher YAML au lieu
de refaire tout le graphe. En plus de considérer les changements de topologie lors du diag-
nostic, le processus de diagnostic peut rajouter des actions d’auto-réparation pour avancer ses
résultats.

Finalement, nous avons prouvé l’efficacité de notre approche d’auto-modélisation et di-
agnostic sur le use-case Clearwter vIMS, une perspective est de tester notre approche du
d’autres use-cases en apprenant les dépendances spécifiques pour chaque use-case avec de
l’injection de pannes.
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CHAPTER 1

THESIS INTRODUCTION

1.1 Context

With the advent of 5G, present day Mobile Network Operators (MNOs) are occupied with a
large and growing range of proprietary hardware appliances and complex communication pro-
tocols and architectures that need to transition to a software model for network functions design
[55]. Consequently, adding a new network service often brings the need to deploy new hard-
ware servers, maintaining them and eventually replacing the malfunctioning servers when they
ultimately fail in order to keep the services running correctly.

Moreover, being one of the fastest growing sectors, the telecommunication industry is fac-
ing increased competition as new players are entering with emerging software technologies
and open source projects. One such project is the recent Telecom Infra Project [137], initi-
ated by Facebook and oriented towards an open source and general purpose hardware for a
new generation of MNOs. This approach to infrastructure is radically different from what the
telecommunication industry is used to. This has lead MNOs to invest in and adopt new tech-
nologies such as Software Defined Networking (SDN), Network Functions Virtualization (NFV),
cloud infrastructures, analytic and live monitoring technologies. Therefore, operators are in-
vesting a lot of energy in order to virtualize their hardware functions. For instance, Orange and
AT&T are joining open source software communities hosted by the Linux Foundation such as
OpenStack for infrastructure [105], OpenDayLight for SDN controllers [100], and Open Network
Automation Platform (ONAP) for network automation [97].

Software-based innovative technologies should be integrated in the design of the upcom-
ing 5G networks [66, 5]. 5G Infrastructure Public Private Partnership (5GPP) projects such as
norma [95], advocate for API-driven architectural openness, fueling economic growth through
over-the-top innovation. These projects propose adaptive decomposition and allocation of mo-
bile network functions, which flexibly decomposes the mobile network functions and places the
resulting functions in the most appropriate location. This comes down to defining a service-
oriented architecture for the 5G networks, which is disruptive in comparison to how the Long
Term Evolution (LTE) network has been designed and implemented. In this software service-
oriented paradigm, each service is implemented as a Virtual Network Function (VNF) defined
at ETSI [4] or as a Service Function (SF) defined at the Internet Engineering Task Force (IETF)
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[40]. These VNFs are chained or connected to each other to achieve an end-to-end 5G service.

Virtual IP Multimedia Subsystem (vIMS) is a representative example of the virtualization
of network functions. IMS is the standard architecture that has been adopted by telecom-
munication operators for the IP-based voice, video and messaging services, replacing legacy
circuit-switched systems [21]. The virtualization of IMS brings a number of benefits inherited
by the virtualization of network functions: the flexibility and the programmability of services and
the optimization of deployment cost and time. Thanks to the virtualization of IMS, operators will
be able to propose customized vIMS solutions for their clients. The clients will be able to deploy
a vIMS network in just few seconds. Moreover, NFV offers the flexibility to scale up and down
the services or reconfigure the network in response to the traffic demand and network state.

In addition to the software-oriented paradigm of the 5G architecture, MNOs are seeking
new revenue sources and models. One way proposed by the Next Generation Mobile Networks
(NGMN) forum [116], is to break the traditional business model of a single network infrastructure
ownership and introduce network-sharing or multi-tenancy. This approach has the potential to
recover up one fifth of the estimated operational costs for MNOs [124]. For instance, in 2010
Chinese telecommunication operators saved an investment of more than 12 billion dollars by
sharing their network infrastructure [75].

Network slicing is another alternative for sharing MNO Network Services (NSs). A slice
represents an isolated end-to-end tunnel tailored to achieve the requirements requested by a
particular service. Each client slice has specific requirements such as the network bandwidth.

In order to ensure the high availability and reliability of network services, one more impor-
tant aspect that MNOs cannot neglect is the management of Network Virtualization Ecosys-
tems (NVEs). The management procedures are often summarized as Fault, Configuration,
Accounting, Performance, and Security (FCAPS) management. Fault management represents
one of the most important X-management axes since a failure can cause important losses and
impact the business image and credibility. One example of recent cloud failures has been reg-
istered in 2013 within IBM. The monetary loss was estimated to 31 million Australian dollars
and it was due to IBM servers breakdown that brought down the website of major Australian
retailer "Myer" for one week during the Christmas period [13].

Fault management is divided into four major steps, namely: fault detection, identification,
localization and recovery. Fault detection is the step where the network is stated to be in a
faulty behavior. Fault identification identifies the type of faults and the affected components,
fault localization or Root Cause Analysis (RCA) is the procedure of pinpointing the root cause
i.e. the node (or nodes) responsible for the fault and finally recovery or healing is the procedure
of resorting normal working operations on the network.

In telecommunication, fault management is a well known field with many deployed tech-
niques often involving the Simple Network Management Protocol (SNMP) and software tools
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such as Nagios [87]. However, virtual networks brings new challenges and issues that change
the way fault management is performed. The NVE features, such as the dynamic network
topology, highlight the need to rethink the management procedures and adapt them to these
environments.

The main challenge (Ch0) introduced by the virtualization of telecommunication networks
is the automation of the fault management steps. In fact, the primary goal of network virtual-
ization is to automate network operations to remove the need for humans to manually deploy,
reconfigure and heal network services. The automation of recovery brings the necessity to
accurate Root Cause Analysis (RCA) or fault localization so that the healing actions target the
correct erroneous components.

A taxonomy of fault localization approaches and techniques were proposed for the fault
management of networks. Model-based techniques are fault localization approaches that pro-
vide explanations about faults and alarms propagation represented in an explicit model. They
use a model defined from the network components dependencies for diagnosis. However, build-
ing a model in virtual networks face a number of challenges and issues. The first challenge
(Ch1) is the dynamic network topology. The flexibility of virtual networks and the dynamicity of
VNFs in the network engender continuous changes of the network topology. The self-modeling
approach should adapt to the network topology changes to provide correct localization results.

A second challenge (Ch2) is the multi-layered aspect of virtual networks. The NFV ar-
chitecture is divided into four layers: the physical, the virtual, the application and the service
layer. The physical layer includes the physical servers, the virtual layer contains virtual hosts
such as VMs, the application layer is composed of the software running on the virtual hosts and
finally the service layer with the corresponding protocols. The multi-layered aspect of virtual
networks introduced the necessity of a multi-level management process. In fact the defined di-
agnosis model should consider each network level and the dependencies between layers (i.e.
inter-layer dependencies).

The third challenge (Ch3) is learning the novel dependencies from virtual networks that are
not described in the specification of telecommunication networks services such as the virtual
and physical dependency. This kind of dependencies should be included to the defined model.

The fourth challenge (Ch4) is the granularity level of the RCA process. In fact, virtual
networks introduced a heterogeneity of components including the virtual and the physical hosts
and links, and a more smaller granularity such as the host Central Processing Unit (CPU),
storage and network. The challenge is to chose the correct granularity level for the diagnosis
process and to refine the granularity if necessary.

The fifth challenge (Ch5) is the ambiguity and consistency of data. In fact, the scalability
and diversity of services in virtual networks will enable enormous types of data including logs
and metrics, service description files and topology information. Moreover, each service rep-
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resents a chain of connected VNFs hosted in distinct locations. Therefore, logs of the same
service will be distributed in distinct locations. This will create another challenge (Ch6) which
is the lack of visibility. In fact, the logs of the same service should be centralized to enable
a global view of faults propagation and their alarms. Furthermore, VNFs of each MNO may
be shared between different clients or tenants. This will create the necessity to separate the
tenants logs to isolate tenants faults and inform them (Ch7).

1.2 Thesis objectives

The aim of the thesis is to propose an accurate autonomic fault diagnosis procedure that pin-
points root cause(s) and provides explanation of faults propagation to ensure a targeted self-
healing actions. The challenges presented above brought a number of requirements for the
diagnosis system, that represents the objectives of the thesis :

1. Challenges (Ch5, 6 and 7) implies the necessity to propose a procedure to prepare data
for the diagnosis process. This procedure aims at collecting, filtering and centralizing
data. In addition to tenants faults isolation.

2. When applying a model-based approach for diagnosis, the defined model should adapt
to the dynamicity of network topology. We need to establish a self-modeling method-
ology that tracks the dynamic network topology (challenge (Ch1)). The self-modeling
approach should include most of the virtual network dependencies, we should find a way
to acquire the model knowledge (challenge (Ch3)). The self-modeling approach should
also consider the multi-layer aspect of virtual networks and the different granularity levels
(challenges (Ch2 and Ch4)).

3. Once the self-modeling approach is defined, we should apply it to a real world use-case
and prove it efficiency through a diagnosis process.

4. Finally, the automation of each procedure is necessary to keep the flexibility and pro-
grammability aspects of virtual networks (challenge (Ch0)).

1.3 Thesis methodology and scientific contribution

To answer to the thesis objectives, the adopted methodology was the following: first we ad-
dress the state of the art in both virtual networks ecosystem and fault management techniques
to identify the challenges and requirements of fault management in virtual networks. After iden-
tifying the main challenges that we wanted to respond to (i.e.Challenges CH0 to Ch7), the
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second step was to choose an appropriate use case that includes all the features of a telecom-
munication virtual network. After that we proposed a experimental test-bed composed of open
source tools for collecting and filtering data to learn about the chosen use case. The last task
was to define an appropriate self-modeling and diagnosis approach. The main contributions of
the thesis are presented as follows:

The first contribution of the thesis is a comprehensive survey of the state-of-the-art fault
management techniques and approaches and the impact of the virtualization of network func-
tions on fault management. In the first contribution, we also address the academic and open
source solutions for the fault management of virtual networks. We propose a new classifica-
tion of the current efforts that address fault localization challenges, and compare their major
contributions and shortcomings.

In the second contribution, we propose a global fault management framework LUMEN.
The LUMEN framework proposes the automation of the data collection and filtering of virtual
networks. LUMEN also provides tools to separate between tenants data. The second contri-
bution answers to challenges Ch0 and Ch5, 6 and 7.

In the third contribution, we proposed an experimental test-bed to learn about the chosen
use case (i.e. vIMS). We find it interesting to consider vIMS as a case study since it shows
many aspects of future virtual telecommunication architectures such as the multiple layers, the
elasticity and the dynamic topology. To define our model, we use two kind of knowledge: the
acquired knowledge that we get from service description files and the learned knowledge. The
learned knowledge is acquired by the fault injection procedure. In this procedure, we inject
faults ( e.g. stop a VM) and try to learn the dependencies between network components that
are not easy to extract from the acquired knowledge. In the experimental test-bed traffic and
fault injectors tools are applied. The third contribution, answers the to the third challenge
Ch3.

The fourth contribution consists on proposing a self-modeling approach for an end-to-
end virtual service chain. The proposed model is a dependency graph constituted of Boolean
variables with logical dependencies. The model is a multi-layer, multi-resolution graph that
represents the network from the physical to the application level. The model can be refined
to a smaller granularity level such as application’s processes. This contribution addresses the
second objective of the thesis that responds to challenges Ch2 and Ch4.

The fifth contribution of the thesis consists on a self-modeling algorithm to face the dy-
namic network topology challenge Ch1. The self-modeling algorithm instantiates a dependency
graph using the defined modeling rules that fits to the current topology using a description file.

Finally, in the sixth and last contribution, we propose an active diagnosis process to
pinpoint the faulty network component(s). The active diagnosis process considers the logical
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assumptions defined in the model to infer the root cause(s). The diagnosis process is oriented
through the additional observations provided from tests. The result is a dependency graph that
indicates the status of components and the faults propagation.

These contributions are presented as follows:

• Chapter 2 entitled “programmable virtual networks", presents the virtual network ecosys-
tem and the NFV concepts and features. In this Chapter 2, we also depict the Clearwter
vIMS use case.

• Chapter 3 (first contribution) entitled “fault management", discusses the classical fault
localization approaches and their limitation. This Chapter 3 also addresses the recent
fault management techniques applied to virtual networks and positions the thesis work
with regards to the related work.

• Chapter 4 (second contribution) entitled “LUMEN global fault management framework"
depicts the global fault management framework LUMEN and the applied open source
tools in our test-bed.

• Chapter 5 (third, fourth and fifth contributions) entitled “self-modeling", presents the
self-modeling approach overview and the application of the self-modeling approach on
the vIMS use case. This chapter also presents the procedure of validating and extending
the model and depicts the self-modeling algorithm.

• Chapter 6 (sixth contribution) entitled “active fault localization", describes the active
diagnosis process and the results of the application of this process on real world faults.

• Chapter 7 “conclusions and future work”, outlines directions for future work, and con-
cludes the dissertation.

1.4 Thesis results

This work has produced the following publications so far:

1.4.1 Publications

International conferences:

• S. Cherrared, S. Imadali, E. Fabre and G. Goessler, "LUMEN: A global fault management
framework for network virtualization environments," 2018 21st Conference on Innovation
in Clouds, Internet and Networks and Workshops (ICIN), Paris, 2018, pp. 1-8.
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• Cherrared S, Imadali S, Fabre E, Goessler G. “Data transformation model for the fault
management of multi-tenant network”. 27th European Conference on Networks and Com-
munications (EUCNC), Ljubljana, 2018.

• S. Cherrared, S. Imadali, E. Fabre, and G. Gössler. 2019. SAKURA a Model Based
Root Cause Analysis Framework for vIMS (poster). In Proceedings of the 17th Annual
International Conference on Mobile Systems, Applications, and Services (MobiSys ’19).
ACM, New York, NY, USA, 594-595.

International Journals:

• S. Cherrared, S. Imadali, E. Fabre, G. Gössler and I. G. B. Yahia, "A Survey of Fault
Management in Network Virtualization Environments: Challenges and Solutions," in IEEE
Transactions on Network and Service Management, vol. 16, no. 4, pp. 1537-1551, Dec.
2019.

1.4.2 Proof of concepts:

• Monitoring the Clearwater vIMS docker logs and metrics with the Elastic stack [85]: this
project hosts the proposed LUMEN framework applied to Clearwater vIMS.

• A Model Based Root Cause Analysis Framework for vIMS [119]: an experimental frame-
work that contains the self-modeling and the active diagnosis process proposed in the
thesis.
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CHAPTER 2

PROGRAMMABLE VIRTUAL NETWORKS

2.1 Introduction

Nowadays, most traditional network infrastructures are composed of various proprietary hard-
ware appliances such as routers, load balancers and firewalls. Consequently, adding a new
network service often brings the need to deploy new devices, maintaining them and eventu-
ally replacing the malfunctioning servers when they ultimately fail in order to keep the services
running correctly. This procedure often associated with the network function life cycle, has
a high cost and is energy consuming. Moreover, buying new servers to replace the failed
ones may take a long time (i.e. months) before the demand is satisfied. Another often un-
derestimated part of the MNOs work, is the time spent in different standardization bodies,
such as Telecommunication Standardization Sector of the International Telecommunications
Union (IUT-T), European Telecommunications Standards Institute (ETSI), IETF, or recently
NGMN, to ensure compliance among the proprietary hardware devices and communication
protocols.

The Network Functions Virtualization (NFV) concept was proposed by the ETSI aiming at
addressing the drawbacks of using physical appliances in network service provisioning [51].
Virtualization or softwarization was first introduced by IBM with the concept of virtual machines
in the 1960s [88]. In telecommunications, NFV intends to decouple software components of
network functions from their respective dedicated hardware, resulting in Virtual Network Func-
tions (VNFs) [151]. Software-based innovative technologies bring a number of advantages to
MNOs [51]:

• Optimization of the deployment costs and time: NFV reduces time-to-market by min-
imising the classical network operator cycle of deploying new network services. Moreover,
energy and monetary economies are made regarding the investments in hardware-based
functionalities that are no longer applicable for software-based networks. Time of deploy-
ing new functions is reduced.

• Increasing the scalability: NFV allows MNOs to dynamically manage the life cycle of
virtual functions aiming at increasing the scalability. VNFs are scaled according to the
clients’ demands at run-time.
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• Programmability and flexibility of services: VNFs being simple programs enable flex-
ible reconfiguration in response to changes in the network state. NFV allows immediate
technology adoption and the flexibility on the design of new service features. Having the
ability to set up and reconfigure network services on the fly enables continuous deploy-
ment and integration.

• Resource sharing: Sharing their non-occupied physical resources with clients is highly
profitable for MNOs and allows for better resource utilization. Moreover, MNOs enable
clients to share the same VNFs with isolated traffic which maximizes the flexibility of
5G networks, optimizing both the utilization of the infrastructure and the allocation of
resources. This sharing procedure will also enable greater energy and cost efficiencies
compared to earlier mobile networks.

To illustrate the benefits made by the virtualization of networks, suppose that a telecommu-
nication service provider wants to virtualize a number of its physical functions. The procedure is
to deploy these functions as software hosted on a virtual host in physical servers. The services
definitions are done in a description file to make the deployment flexible and reproducible. If
the number of client demands increase, instead of deploying a new hardware appliance across
the network, the service provider can deploy the same service using the service description
on any server already in the network, provided that the underlying hardware has the capacity
to support the additional workload. Moreover, the service provider can share its non-occupied
hardware servers and create additional revenues. At any time, the provider can instantiate,
replicate, migrate or terminate a service according to the network traffic demand. In addition,
the service provider can propose specific Service Level Agreement (SLA) to the client’s service,
e.g., if the client is looking for more CPU capacity.

Figure 2.1 represents a high-level overview of the Network Virtualization Ecosystems (NVEs).
It illustrates the vertical and horizontal views of the related entities in a composed per-tenant 5G
service. The multi-layered architecture in Figure 2.1 includes a number of coexistent ecosys-
tems and concepts, namely: Software Defined Networking (SDN), NFV, multi-tenancy and
slicing. These virtual technologies are enabled by the virtualization layer including the Virtual
Infrastructure Manager (VIM) that manages virtual hosts. In this chapter, aiming at providing a
clear understanding of the challenges inherent to the fault management in NFV, we explain in
more details the entities composing the ecosystem of virtual networks. We depict the compo-
sition of an NFV chain supporting network services, and the composition of the infrastructure
enabling network function virtualization. We discuss the NFV features and scientific challenges
of virtual networks.
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Figure 2.1 – Network Virtualization Ecosystems [151][51]

2.2 Network virtualization ecosystems

The softwarization of networks enabled several network virtualization testbeds and diverse net-
work architectures to coexist in a single infrastructure without affecting production services
[32]. NFV is the concept of transforming pure hardware appliances hosting Network Func-
tions (NFs), (e.g. Network Address Translation (NAT), firewall, intrusion detection and Domain
Name System (DNS)), into software functions hosted on hardware servers. These functions
are decoupled from the underlying hardware and known as Virtual Network Functions (VNFs).
Figure 2.2, based on [ETSI-NFV-start], presents examples of network functions transition from
dedicated hardware to logical functions. For instance, the firewall network function is decou-
pled from its dedicated physical server, to be run as a separate virtual appliance hosted on
a virtual host. Compared to the traditional physical firewall, the virtualization brings the ease
of migration. A virtual firewall may fit smaller network architectures with flexible upgrade and
maintenance actions.

The ETSI and IETF standard organization bodies of the telecommunication industry cre-
ated two working groups: the ETSI-NFV and IETF-Service Function Chain (SFC), respectively.
The ETSI-NFV group is devoted to high-level standardization of interfaces among components
and sub-systems, while the IETF-SFC focuses on routing and data-plane protocol specification
(e.g., NSH). The ETSI-NFV and IETF-SFC working groups defined network services as a VNF
Forwarding Graph (VNF-FG) or Service Function Chain (SFC), respectively [35, 73, 53]. Each
of these groups has its own terminologies but there is a certain similarity between their NFV
architectures. Table 2.1 depicts the correspondence between terminologies to define NFV ser-
vices [80]. Note that most of the applied terminologies in this thesis are those of the ETSI-NFV
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Figure 2.2 – Network Function Virtualization vision [151][51]

organization.

ETSI-NFV IETF
Virtualized Network Function VNF Service Function SF
Connection Point CP Service Function Forwarder SFF
Virtual Link VL Virtual Link VL
VNF Forwarding Graph VNF-FG Service Function Chain SFC
Network Forwarding Path NFP Service Function Path SFP

Table 2.1 – ETSI and IETF Notations For virtual functions [80].

As presented in Table 2.1, the network virtualization ecosystem is composed of a number
of terminologies introduced by NFV that we define in the following:

• Physical Network Function (PNF): is the name given to the traditional physical appli-
ance, since it is closely coupled with the appliance.

• NFV: is the concept of applying virtualization to network functions.

• VNF: is the software for a network function application. This software is hosted in a virtual
host. VNF is enabled by NFV.

• Virtual Host : is the virtualization technology hosting the network applications. Virtual
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hosts are of distinct types, with different requirements. VMs and containers are examples
of virtual hosts.

• NFVI Point of Presence (NFVI-PoP): represents the physical resources (i.e. memory,
CPU and network). Each NFVI-PoP may host one or more VNFs, whereas a PNF is
coupled to one dedicated NFVI-PoP. The NFVI-PoP may also be named: physical host,
machine or server.

• Virtual Link (VL): represents the link between VNFs.

• Physical Link (PL): represents the link between the NFVI-PoPs. Note that two con-
nected VNFs hosted on a distinct NFVI-PoP communicate through the PL between the
NFVI-PoPs.

• Connection Point (CP): represents the interface that offers the network connections
between network functions and links. CP could be of virtual or physical type. Some
examples of CPs interfaces are: virtual or physical port and a virtual or physical Network
Interface Controller (NIC) address.

• Network Function Virtualization Infrastructure (NFVI): represents the infrastructure
hosting the VNFs. NFVI interconnects the computing and storage resources contained in
an NFVI-PoP. The NFVI-PoPs are connected through PLs.

• NCT: specifies the network topology among VNFs i.e. the connection between VNFs and
PNFs nodes that compose the global virtual network. In the NCT each VL connects two
VNFs through CPs that represent the VNF interfaces.

• VNF-FG: represents a sequence of VNFs interconnected to provide a complex network
service with specific functionalities.

• Network Forwarding Path (NFP): are subsets of the processing flows through the VNF-FG.
In fact, one VNF-FG can have multiple forwarding paths. For instance in Figure 2.3, the
VNF-FG-1 has two flows, traffic flow through NFP-1 and control flow through NFP-2.

• NS: represents a composition of one or more VNF-FGs. The NS is a complete solution
offering network services to clients such as Voice over IP (VoIP). The NS solution includes
a number of functions, such as security and monitoring. Each of these functions represent
a VNF-FG of connected VNFs. For instance, a video streaming service that applies a
security NFV chain composed of a Deep Packet Inspection (DPI) and a Firewall.

• VIM : represents the orchestrator for the deployment of VNFs.
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Figure 2.3 – Network Functions Virtualization

• Virtualization Layer : express the separation between the physical layer and the hosted
VNFs. The virtualization layer may include the VIM and the virtual hosts.

Figure 2.3, based on the use-case presented in [34], depicts an end-to-end network service
chain composed of four VNFs and a PNF. The VNFs are connected with virtual links defined
in the NCT. Each service traffic is routed through the VNF-FG. Moreover, the coexistence
between VNFs and PNF is likely to happen in production infrastructures since some functions
might still not be virtualized. For instance, a web Hypertext Transfer Protocol (HTTP) authenti-
cation request composed of a virtual webserver hosted in VNF-1, a virtual database hosted in
VNF-4 and a physical firewall hosted in the PNF. In addition to the NFV concept, a number of
ecosystems are included in the network virtualization architecture presented in Figure 2.1. We
depict these ecosystems in the following Sections 2.2.1, 2.2.2, 2.2.3.

2.2.1 Software Defined Networking (SDN)

SDN is an emerging network architecture that decouples the network control, management,
and forwarding functions, enabling the network control to become directly programmable and
the underlying infrastructure to be abstracted for applications and network services i.e. the
virtualization of network functions such as the virtual switches [69]. The abstraction consists
of separating data and control plane. The separation between control and data planes means
that the control plane, which contains the SDN controller, decides on behalf of the data plane
resources.
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In the SDN architecture the controller defines the control plane functions that include the
system configuration, management, and exchange of routing table information. The network
switches become then simple forwarding devices that are super efficient in blindly applying for-
warding rules and the control logic is fully delegated to the controller. This simplifies policy
enforcement and network reconfiguration, using OpenFlow protocol for example. The con-
struction of SDN enables the controller to directly interact with the forwarding plane of network
devices such as switches and routers.

The SDN architecture is generally divided into three layers: the infrastructure (or data
plane), the control plane, and the application layer (cf. Figure 2.4). The infrastructure layer also
known as data plane represents the layer holding the OpenFlow switches, the hosts/servers
acting as traffic sources and sinks and all the control and data links seen in the infrastructure.
The application layer hosts the NFs and communicates with the SDN control plane through the
northbound Application Programming Interface (API) regarding the status of the network and its
particular requirements. The controllers, situated in the control plane, dictate forwarding rules
to the data forwarding devices through the southbound API.

Figure 2.4 – SDN layered architecture.

Recently, open source communities proposed various SDN controllers with varying degrees
of maturity and functionalities. OpenDaylight [100] is an open source controller hosted by the
Linux foundation. OpenDaylight renamed recently as an OpenDaylight platform which is a
project enhancing the SDN community for the OpenDaylight Controller. The OpenDaylight
platform enables users to build an SDN controller to fit their specific needs. This platform is
multi-protocol by the mean that users can select multiple protocols (e.g., OpenFlow, NETCONF
and SNMP). Open Network Operating System (ONOS) [96], is another SDN controller project
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hosted by the Linux foundation. This project focuses more on the performance and the clus-
tering aspects to increase the availability and scalability. Finally, Opencontrail [99], is a Jupiter
Networks project and an open cloud network automation product that uses both SDN and NFV
technologies to orchestrate the creation of virtual networks.

2.2.1.1 SDN and NFV coexistence

SDN and NFV are two network architectures that might be used interchangeably in the litera-
ture, they are however independent concepts and arguably complementary. At their essence,
NFs can be virtualized and deployed without SDN technologies, and non-virtualized functions
can be controlled by an SDN. Meanwhile, both technologies can be complementary and mu-
tually beneficial; NFV is able to support SDN by providing the infrastructure upon which the
SDN software can run. For instance, we can consider the software of the SDN controller or the
function of the forwarding devices used in the SDN infrastructure plane as a VNF. Furthermore,
an SDN infrastructure can be used for the data forwarding between VNFs. From the Open
Networking Foundation (ONF) viewpoint, a VNF for an SDN controller is just another resource,
a node function in a network graph with known connectivity points [155].

Figure 2.5 – An example of NFV and SDN coexistence. The routing of VNFs traffic is enabled
by SDN. The SDN virtual switches and the controller are hosted in virtual hosts.

Combining NFV with SDN in one infrastructure makes sense from a network operator’s
standpoint, to reduce the costs of NF deployment and management. Moreover, the SDN scal-
ability and elasticity allows for a dynamic deployment of NFV that suits the on-demand NFV
chain placement and the communication requirements for both virtual and physical networking
infrastructures [155]. In addition,
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To illustrate the relationship between SDN and NFV, we added in Figure 2.5 an SDN cluster
to the example presented in Figure 2.3. The cluster is composed of three virtual switches and
one virtual controller. The traffic between the VNFs composing the NCT is routed through the
virtual switches with the instructions of the SDN controller. In this case, the network functions
are included in the SDN switching rules.

However, deploying SDN controllers in the NFV architecture remains an option. Some NFV
use-cases have their own ways to route the NS packets. For instance, the OpenStack open
source infrastructure project provides a networking module called Neutron [103]. Neutron is an
OpenStack module that provides networking services for OpenStack VMs. Further examples
of networking including Neutron are depicted in Section 2.2.4.2.

2.2.2 Multi-tenancy and slicing

To make a better use of virtualization, operators may share their non-occupied resources with
customers, who become tenants of the same infrastructure. The definition of multi-tenancy dif-
fers between vendors and entities. Generally speaking, it means that multiple tenants or clients
are sharing the same virtual compute, storage and network resources [124]. For instance, in
Figure 2.1, two tenants are sharing NSs in the same infrastructure. Tenant-1 owns the NS-1
and tenant-2 the NS-2 and NS-3. These NSs are running on the same physical infrastructure.

Multi-tenancy is enabled by the notion of slicing, which allows the traffic of multiple tenants
to be compartmentalized through the same infrastructure, with a tunnel representing the path
for data [2]. The network slice is composed of an independent set of software network func-
tions that support the requirements of a particular use-case. Slices are completely isolated so
that no slice can interfere with the traffic in another slice. Slices enables to deploy only the
functions necessary to support particular customers with a particular SLA. For instance, an
autonomous Vehicle to anything (V2X) car communication service requires low latency but not
a high throughput. While a streaming video in the car requires a high throughput and is suscep-
tible to latency. Both services could be delivered over the same shared physical infrastructure
but on different virtual network slices implementing different SLA.

Figure 2.6 – Multi-tenant cases for NFV SaaS. In case 1 tenant-A and tenant-B have different
VNFs, while in case 2, they are sharing the same VNFs with two different slices.
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MNOs open their infrastructure to clients with different levels of restrictions: they provide
software with no client control (SaaS), or software and data client control (Platform as a ser-
vice (PaaS)) or provide virtualization, storage, and processing and delegate the control of appli-
cations to clients (Infrastructure as a service (IaaS)). In the IaaS scheme, the client has access
to the whole shared infrastructure, while in the PaaS the infrastructure is managed by the MNO
and the client can deploy any service or application. In the SaaS scheme, MNOs can share
the whole VNF-FG representing a NS for a client or only a slice through the VNF-FG. In Figure
2.6, we depict both SaaS sheme two cases. In the first case, tenant-1 owns (VNF-1, VNF-2
and VNF-3), while the second tenant-2 owns different VNFs: VNF-4 and VNF-5. In the second
scheme both of the tenants share the same VNFs: VNF-1, VNF-2 and VNF3. However, their
traffic is routed in two different network slices.

2.2.3 Virtual Hosting Environment

Virtual functions are only software applications and operators should provide an appropri-
ate running environment. Virtual Machines (VMs), containers and unikernels provide virtual
compute and storage resources that are crucial to network function virtualization. Containers
emerged as a way of running applications in a more flexible and agile way. Containers existed
since 2006, but they became more popular with the arrival of Docker containers in 2013 [29].
Containers enable running lightweight applications directly within Linux Operating System (OS),
whereas each VM runs an independent OS. The VMs are logically isolated from one another.

A Virtual Machine (VM) hosts an operating system that runs on top of the hosting machine’s
OS. The hypervisor enables a single physical machine to run multiple VMs with different op-
erating systems. For example VMware, Xen and KVM represent one of the most popular
hypervisors. Unikernels are a lightweight alternative to VMs that packages the VNFs with their
required libraries; unlike VMs that provide an entire guest OS. Unikernels use a "library oper-
ating system" implementing only the kernel features compiled with the unikernel image code.
This makes the sizes of unikernel images similar to those of containers. The VMs and contain-
ers offer novel ways of virtualization discussed in [151]. One possible configuration is running
containers inside the same VM.

The NFV Research Group Internet Research Task Force (NFVRG-IRTF) [91], a research
branch of the IETF, focuses on longer term research issues related to NFV, presented in [89]
a comparison of VMs, containers and unikernels hosts for NFV. In terms of service agility that
represents the ability to migrate and spin up and down VNFs, container and unikernels come
first, since they are lightweight compared to VMs. Same goes for the memory consumption,
containers and not far behind unikernels and are less memory consuming. In terms of security
and isolation, VMs provide a better isolation compared to containers since VMs run on isolated
OSs. Finally, VMs and containers are more compatible with open source frameworks compared

17



Programmable virtual networks

to unikernels that are less present in open source communities [89].

However, the choice between the technologies depends on the network policy and require-
ments. It depends on how much value MNOs place on requirements such as strong isolation
eligibility, performance and compatibility with applications and management platforms [89]. In
fact, containers are used when the service provided need to be lightweight with a rapid exe-
cution time like microservices. VMs are usually applied to host containers or to deploy over
different OSs.

Figure 2.7, illustrates a comparison between the implementation of a VNF in a VM, a con-
tainer and a unikernel machine. VMs run a different OS on top of the physical server OS,
while LibOS or unikernels only select, from a modular stack, the minimal set of libraries which
correspond to the OS constructs required for their application to run. This makes unikernels
ligher than VMs. In the case of containers, the container engine uses the Linux host machine
resources through cgroups1 and namespace2.

Figure 2.7 – A simplified view of VNF deployment on virtual machines, containers, and uniker-
nels [89]. Containers are more lightweight for hosting VNFs than unikernels and VMs.

2.2.4 NFV Management and Orchestration (MANO)

The management and orchestration of virtual networks represent an essential part of the NFV
architecture to ensure a complete VNF life cycle starting from the deployment to the adminis-
tration, maintenance and provisioning, Orchestration is the process that enables autonomic
deployment, provisioning and configuration of network services. While the management pro-
cess considers the availability of VNFs and services by managing the life cycle of VNFs (i.e.
instantiate, scale, update and/or upgrade, and terminate VNFs). Management also includes
the traditional FCAPS functions.

1Cgroups provides a mechanism for partitioning sets of tasks, and all their future children, into hierarchical groups
with specialized behavior.

2Namespace abstracts the system resources to make it appear to the processes that they have their own isolated
instance of the global resource.
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A lot of standardization work has been done to define the most efficient NFV architectures.
The ETSI-NFV working group divides the NFV architectures into major components including
VNFs, NFV MANO, and NFVI on top of the traditional network components like Operation Sup-
port System (OSS) and Business Support System (BSS) [36]. The later includes the collection
of systems and management applications that a service provider uses to operate its business
such as VoIP. Figure 2.8 illustrates the NFV architectural framework of ETSI depicting the
main functional blocks and reference points. The reference points represent the connections
between the functional blocks as defined by ETSI. The execution connection point represents
the relation between the NFVI and the instantiated VNF. The NFVI includes both the hardware
and software environments in which the VNFs can be deployed, hosted and managed.

Figure 2.8 – ETSI NFV Architectural Framework [34].

The MANO manages the NFVI and orchestrates the allocation of resources needed by the
NSs and VNFs. The NFV-MANO is composed of three main blocks:

• The VNF Manager (VNFM): responsible for the life cycle management of the VNFs. The
VNFM life cycle operations for VNFs include: instantiating, scaling, updating and/or up-
grading and terminating VNFs.

• The NFV Orchestration (NFVO): manages and coordinates the life cycle of: NSs, VNFM
and NFVI devices, and ensures an optimized allocation of the necessary resources (i.e.
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computing, storage and network). The NFVO can interact directly with the NFVI re-
sources. It can either coordinate, authorize, release, and engage the resources without/or
by engaging a VIMs through the northbound API (i.e. the "Or-Vi" reference point shown
in Figure 2.8).

• The VIM: controls and manages the NFVI compute, storage and network resources, i.e.
the NFVI-PoPs.

In order to instantiate a network service in the NFV architecture, first the OSS/BSS sends a
service order to the NFVO described in a file such as OASIS Topology and Orchestration Spec-
ification for Cloud Applications (TOSCA) [142]3. The NFVO translates the order into resources
sent as output to the NFVI infrastructure to allocate the necessary resources (i.e. Compute,
storage and network) to instantiate that network service. The VNFM will then instantiate the
VNFs and the VIM allocates the necessary VNFs in the NFVI for each virtual link. Element
Managements (EMs) are responsible for the management of the functional behavior of VNFs,
such as a signalling issue in mobile core.

2.2.4.1 Virtual Infrastructure Manager (VIM)

The VIM represents an important part of the NFV-MANO architecture, and is critical to reach
the full benefits enabled by the NFV architecture. It coordinates physical resources to deliver
network services as defined in the virtualization layer. In the NFV market, many vendors pro-
pose VIMs solutions: OpenVIM, OpenStack and Kubernetes.

• OpenVIM : is a lightweight implementation of an NFV VIM supporting some of the Enhanced
Platform Awareness (EPA) features such as the support of memory huge pages [107].
EPA aims at facilitating decision making related to VM placement and improvement for
cloud clients. OpenVIM was created to represent an open source project providing a
practical implementation of the whole ETSI MANO architecture. In this project "OpenVIM"
is the project representing the VIM. OpenVIM is maintained nowadays by the opensource
MANO (OSM) project [37].

• Openstack : is an open-source software platform for cloud computing. It aims at running
a cluster of the devices executing different kinds of hypervisors and to manage the re-
quired storage facilities and virtual network infrastructures. The OpenStack architecture
is composed of multiple modules responsible of the compute, storage, and networking of
resources throughout a data center. It also provides a dashboard that gives administra-
tors control while empowering their users to provision resources through a web interface.

3TOSCA is a description language for cloud and network services developed by the Organization for the Ad-
vancement of Structured Information Standards (OASIS)
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A typical OpenStack cluster includes a controller node, a network node hosting the cloud
networking services, compute nodes (VMs) and storage nodes for data and VMs [12].
The OpenStack Heat module is responsible for creation, modification, rebuild and dele-
tion of the entire stack of VMs.

OpenStack offers a telemetry service, namely Ceilometer, for collecting measurements
of the utilization of physical and virtual resources [104]. Ceilometer can collect a number
of metrics across multiple OpenStack components, it can watch for variations and trigger
alarms based upon the collected data. In more recent OpenStack versions, containers
are considered to be deployed on top of OpenStack VMs.

• Kubernetes: is an open source container management and orchestration engine origi-
nally developed by Google [72]. Kubernetes aims at the automation of deployment, scal-
ing, and management of containerized applications. Kubernetes follows a master/slave
model, where a master node is deployed to manage Docker containers across multiple
Kubernetes nodes.

Another way to orchestrate containers without deploying a fully Kubernetes orchestrator is
to use the native Docker compose [30]. Docker compose is integrated to the Docker project. It
enables to run multi-container Docker applications. It also offers tools to scale and manage the
life cycle of containers.

2.2.4.2 NFV networking

Networking between VMs or containers in most of the VIMs presented in Section 2.2.4.1 could
be managed by an external SDN controller. However, each VIM project has its own default
integrated networking module. To manage its network, OpenVIM interfaces with a Openflow
controller such as OpenDaylight. The OpenStack VIM proposes the Neutron module for net-
working [103]. Neutron is a software module specifically dedicated to network service man-
agement. A centralized Neutron server stores all network-related information. It provides an
API that enables operators to define network connectivity and addressing in the cloud. Neutron
also provides a variety of network services such as NAT, load balancing and virtual private
networks. In the case of Docker, the Dockers running on the same physical host communicate
through a network called a "bridge" network. A bridge is a private, internal default Docker net-
work on the host. All containers are attached to this network by default with an internal Internet
Protocol (IP) address (Generally in the range of "170.17.x.x").

For example, suppose that we have a physical host (Host1) with a physical network inter-
face eth0 (Cf. Figure 2.9-a). Attached to that is a bridge network Docker0, and attached to
that is a virtual network interface veth0. In this example Docker0 is assigned 172.17.0.1 and
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is the default gateway for veth0, veth1 and veth2, with the following IP addresses: 172.17.0.2,
172.17.0.3 and 172.17.0.4, respectively. The processes inside each Docker see only the cor-
responding virtual Docker interface "veth", and communicate with the outside world through
Docker0 and eth0. Container1, container2 and container3 share the same logical network as
the bridge Docker0, so they can communicate through the bridge as long as they can discover
each others IP address. Note that a Docker can be isolated from the other Dockers on the
network with a "None" network type.

Figure 2.9 – (a): Three containers sharing the same host and communicating through a net-
work bridge "Docker0", (b): Two hosts communicating through an overlay network.

Now suppose that another physical host (Host2) is running two other containers (Cf. Figure
2.9-b). Each Docker host has its own internal private network in the "172.17.x.x range" allow-
ing the containers running on each host to communicate with each other. However, containers
across the host have no way to communicate with each other unless you create the "overlay"
network. An overlay network creates an internal private network that connects all the contain-
ers composing the same swarm cluster (i.e., the containers on the same swarm cluster are
authorized to communicate with each other).

Kubernetes networking is similar to Docker networking. Kubernetes defines communica-
tions between pods. Pods are the basic kubernetes application or service unit. A pod consists
of one or more containers that are hosted on the same physical host. Communication inside a
pod is enabled by the network "bridge" and the communication between pods is enabled by the
"overlay" network or an external router defined by Kubernetes.

2.2.4.3 NFV fault and performance management

The traditional FCAPS management tasks are outside the scope of the traditional MANO [94]
architecture, that focuses on development of configuration and the life cycle management.
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However, the ETSI GS for NFV takes into consideration the fault and performance manage-
ment of the VNFs life cycle. Additional components to the existent MANO blocks will ensure
the VNFs service availability and continuity with respect to the defined SLAs. One example
of the actions defined by the ETSI GS to ensure VNF availability is the distributed fault corre-
lation processing. Its scope is to avoid propagating large number of failure notifications to a
centralized entity by sending locally correlated reports [62].

Figure 2.10 – Fault Correlation schemes in the NFV Architecture, as represented by the ETSI
GS [62]. This architecture illustrates four local fault correlators and three external fault correla-
tors.

This example is depicted in Figure 2.10. In this example, potential placements of fault cor-
relators are illustrated. The fault correlators could be placed locally in each layer (i.e. hardware,
virtualization layer, VNFs and EMs) or externally. Local fault correlators collect failure alarms
within their layer. Each local fault correlator defines correlation rules to select the possible root
cause candidates that are responsible for the reported errors in their managed layer. The ex-
ternal fault correlators collect correlated reports from local correlators and/or the reports from
other external fault correlators then apply correlation rules based on a layered graph [62].

Other initiatives to build a unified management and orchestration platform were presented in
other working groups. For example the OPNFV4 project [98], created the Doctor project [109],
to build fault management and maintenance rules for the high availability of the NSs. This

4OPNFV aims at facilitating the development and evolution of NFV components across various open-source
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project focuses on immediate notification of unavailability of the virtual resources, to process
recovery actions on the affected VNFs.

2.3 A VNF chain: Clearwater vIMS

The Virtualisation trend poses to MNOs the challenge to be able to rapidly deploy and offer
new services. In essence, a number of use-cases were presented in the white papers [35, 73,
53], that represent the principal inspiration for most industries when deploying or illustrating
NFV solutions. Other industrial products and solutions of VNFs are summarized in the NFV
Survey [151]. The Virtual IP Multimedia Subsystem (vIMS)5 represents one example of VNF
solutions that enables MNOs not only to be more efficient and flexible, but also to offer more
advanced and reliable voice communication services. vIMS is the virtual solution of the clas-
sical IMS, which is an IETF and 3GPP standard for Voice over IP (VoIP) for 4G and 5G, and
an architectural framework for delivering IP multimedia services such as voice, video calling,
and messaging applications. These multimedia services are delivered through SIP. SIP is the
standard protocol for the telecommunication multimedia services signaling [58].

IMS provides a number of benefits for MNO including the efficient use of spectrum, elim-
inating the need to separate voice and data in two different networks and the interoperability
of multimedia services across operators such as video calling [21]. The virtualization of IMS
brings additional benefits to MNOs, inherited from NFV: scalability, programmability and flexi-
bility of services.

A number of open source organization proposed vIMS solutions: Oracle IMS Session De-
livery [110], open source IMS [102] and Clearwater vIMS [19]. In this section we present the
Clearwater vIMS use-case. Clearwater is an open source virtual implementation of the IMS
developed by Metaswitch [82]. Two versions of Clearwater vIMS are available: the Docker
version [138] and the VM OpenStack version [140]. The Clearwater vIMS implements the prin-
cipal standardized interfaces and functions of an IMS. It adapts the established design patterns
for building and deploying massively expandable virtual applications in cloud to meet the con-
straints of IMS, which enables industries to easily deploy, integrate and scale IMS functions.
Figure 2.12 presents the global architecture of the clearwater vIMS components and protocols.
To clarify this architecture we will first depict the traditional IMS architecture.

ecosystems. Its objective is to create a unified reference NFV platform to accelerate the transformation of enterprise
and service provider networks. This is enabled by combining multiple open source projects (e.g. OpenStack,
OpenDaylight and ONOS) to create a common ecosystem for NFV, through system level integration, deployment
and testing.

5vIMS stands for "virtual Ip Multimedia Subsytem" and not "Virtual Infrastructure Manager"!
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2.3.1 IP Multimedia Subsystem (IMS)

IP Multimedia Subsystem (IMS) vision is to integrate mobile/fixed voice communications and
internet technologies together. It enables a variety of IP-based Multimedia Telephony Ser-
vice (MMTel) services like voice, video, multiparty conferencing and instant messaging. The
architecture of IMS illustrated in Figure 2.11, provides a number of mechanisms for managing,
controlling and routing sessions, in addition to the authentication, authorization and account-
ing controls. The Call Session Control Function (CSCF) is the heart of the IMS architecture
responsible for regulating communications flows and controlling sessions between clients User
Equipments (UEs) (or terminals) and applications.

To enable the home network to control its communication in the case of roaming. The
CSCF function was divided into three main functions: Proxy-CSCF (P-CSCF), Serving-CSCF
(S-CSCF) and Interrogating-CSCF (I-CSCF) [141]. In fact, the P-CSCF, which is the client’s
initial contact point inside a local or visited operator IMS network, will either serve the client
request internally or forward it to other servers in the case of a client visiting another operator
network (i.e. roaming). The P-CSCF also forwards SIP messages from the CSCF functions to
the UE.

Figure 2.11 – Core IMS architecture.

The I-CSCF within an operator’s network is the contact point for all the requests destined to
a user of that network operator or a roaming user currently located within that network operator
service area. The I-CSCF is responsible for assigning the right S-CSCF to the UE performing a
SIP registration. To choose the appropriate S-CSCF to route the user’s request, the I-CSCF ob-
tains the S-CSCF address from the Home Subscriber Server (HSS). This address is then used
to route all the client’s requests in the same session from the P-CSCF to the chosen S-CSCF
directly. The S-CSCF is in charge of managing both client’s registration and service assign-
ment. The S-CSCF, validates the client’s authentication information from the profile in the HSS.
HSS is the master database that maintains all user profile information used to authenticate and
authorize subscribers. The HSS holds both static and dynamic client’s data. The static informa-
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tion concerns the client’s fixed information such as the IMS Public User Identities (IMPU). The
IMPUs are public identifiers that identify the client for originating and terminating multimedia
sessions. The dynamic data is the data that only last for one SIP session such as the S-CSCF
address assigned to a specific client’s UE.

All the MMTels such as voice and video calling, requested by a user are provided by the
IMS Application Server (AS). The Multimedia Resource Function (MRF) enhances multimedia
application provided by the AS. The MRF functionality is to control the media streams and
provide new functionalities to process it. MRF integrates advanced video conferencing features
and supports new audio and videos CODECs for conferencing and streaming. The MRF is
divided into a Multimedia Resource Function Controller (MRFC) and a Multimedia Resource
Function Processor (MRFP). The MRFP is responsible for managing the media streams, while
the MRFC controls the MRFP and forwards the S-CSCF requests addressed by the AS to the
be proceeded by the MRFP.

The IMS architecture allows different charging capabilities to be used, particularly, off-line
(or postpaid) and on-line (or prepaid) charging. The Charging Trigger Function (CTF) generates
charging events based on the observation of network resource usage and sends these charging
events towards the Charging Data Function (CDF) server via the interface called Reference
Point (Rf). It then uses the information contained in the charging events to produce the Charging
Data Records (CDRs) billing reports [14].

To enable interoperability with Public Switched Telephone Network (PSTN), the IMS core
interconnects to the PSTN through the Breakout Gateway Control Function (BGCF) and Media
Gateway Control Function (MGCF). The BGCF chooses the network where PSTN breakout
happens. The BGCF receives request from S-CSCF to select appropriate PSTN break out
point for the session. If the breakout is to occur in the same network as the BGCF then the
BGCF selects a MGCF which will be responsible for the interworking with the PSTN. For
destinations in peer IMS networks, the BGCF selects the appropriate Interconnection Border
Control Function (IBCF) to handle the interconnection to the peer IMS domain. The MGCF
ensures to convert SIP messages to ISDN User Part (ISUP) PSTN signaling.

2.3.2 Clearwater vIMS

The cloud-native Clearwater vIMS follows the classical IMS architectural specifications. It offers
a diversity of MMTels such voice and video calling services, including basic calling features such
as Call Forwarding. Clearwater offers the possibility to host other rich telephony services using
an external Telephony Application Server (TAS) like MetaSphere Multimedia [19]. MetaSphere
Multimedia is a Metaswitch solution that offers a sophisticated multi-service audio features [81].

As depicted in Figure 2.12, the main functions of IMS presented in Section 2.3.1 can be
virtualized. Each box represented in the architecture of Figure 2.12, implements one or more
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classical IMS functions. For instance the Sprout box contains the I-CSCF, S-CSCF, BGCF
and TAS. The defined architecture in Figure 2.12 only represents the main VNFs of IMS. The
deployment of the Clearwater vIMS project includes others functions such as ETCD, Astaire
and Chronos. The Cassandra database, represented in Figure 2.12, is deployed in a separate
virtual host than Homestead.

Figure 2.12 – clearwater vIMS architecture [19].

The main vIMS clearwater functions represented in Figure 2.12 are depicted as follows:

• Bono is the SIP proxy implementing the P-CSCF. Bono nodes provide the entry point for
the client’s UE connection to the clearwater system. Bono supports any client using the
SIP protocol or SIP over a Web Real-Time Communication (WebRTC) web socket. The
client is then attached to a particular Bono node for the duration of its registration, but can
switch to another Bono node if the connection fails. The client request is then routed to
the connected Sprout.

• Sprout implements both the S-CSCF and I-CSCF functions. Sprout nodes send requests
to Homestead and Homer interfaces to retrieve client configurations such as authentica-
tion data and MMTel settings that are stored in Cassandra. Sprout node hosts the MMTel
AS. In sprout, we found the TAS telephony service such as call waiting, call transfer and
call blocking services.

• Homestead represents an HTTP RESTful server that allows Sprout to retrieve authenti-
cation credentials and user profile information. It either stores users data in a Cassandra
database or requests data from an external HSS.
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• Homer is a standard XML Document Management Server (XDMS) used to store MMTel
settings documents for each client. Documents are manipulated using a standard XML
Configuration Access Protocol (XCAP) interface.

• Cassandra is a distributed No Structured Query Language (NoSQL) open source database
used by Homestead to store authentication credentials and profile information, and used
by Homer to store MMTel service settings [6]. Cassandra represents the HSS.

• Ralf enables both Bono and Sprout to report billable events. An external CDF to clear-
water could be deployed to connect to Ralf via the Rf interface.

• Ellis is a dashboard that simplifies the client’s MMTel services provisioning, providing
line management and control. Ellis enables the Clearwater ’s administrator to create SIP
profile users containing their authentication password and SIP numbers that enables them
to register to a Bono node for any vIMS MMTel service. The administrator can also
manage the client’s MMTel service setting such as the allocated MMTel services.

There exist Clearwater functions that are not mentioned in the architecture presented in Figure
2.12 and are present in the deployment of Clearwater :

• ETCD: is a distributed reliable key-value store [33]. In Clearwater vIMS, ETCD cluster is
used to share clustering and configuration information between nodes. ETCD is a crucial
node that enables sharing the networking configuration.

• Chronos: is a distributed timer function developed by Metaswitch. It is applied by Sprout
and Ralf, via an HTTP API, for example for the SIP Registration expiry.

• Memcached / Astaire / Rogers: This Memcached cluster is used by Sprout, Homestead
and Ralf for storing registration and session state. The Memcached cluster is synchro-
nized by Astaire and fronted by Rogers. Astaire enables a rapid scale up and down of
Memcached clusters. Rogers provides data replication between the Memcached nodes.

Other external functions could be added to Clearwater such as the ENUM for mapping
PSTN numbers to SIP Uniform Resource Identifier (URI) using DNS, the CDF for client charg-
ing and the MGCF to convert the SIP messages. In the more recent version of Clearwater, the
Ralf and Homestead nodes are hosted in a component called the diameter gateway Dime and
the distributed databases Cassandra and Memcached are stored in vellum [120]. In particular
Clearwater enables to scale services. Interfaces between Clearwater ’s components use sta-
tistical recycling of connections to ensure load is spread uniformly as components are added
and removed from the network.
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To illustrate the role of each Clearwater component, suppose a client wants to call an-
other user using a UE supporting SIP applications. The UE should first register or subscribe
to the nearest Bono node. To register, a node should provide its authentication information.
The Bono node sends the client request to the Sprout node. Sprout requests verification from
Homestead. Homestead retrieves the authentication information from Cassandra and com-
pares with the ones in the client request. If the authentication credentials are correct the node
will be registered. The clients can then access to SIP application provided by the AS. The
client’s billing information is managed by Chronos and Ralf.

2.4 Virtual Networks features and challenges

Network Virtualization Ecosystems (NVEs) enable distinct network architectures to coexist in a
single infrastructure. This architecture brings new features that are in the same time benefits
and challenges to the existing fault management procedures. In fact, virtualization offers a
number of benefits to MNOs including scalability, the reduction of management and deployment
costs, and the programmability and flexibility of services. One more important benefit expected
from NVE is the high availability and reparability of services. Virtualization offers the option
to heal service failures through automated reconfiguration in the case of software failures and
moving VNFs in the case of hardware failures or even moving traffic to new VNFs in the case
of VNF traffic load [144]. Moreover, the healing procedure could be autonomic with self-healing
that consolidates the necessity of diagnosis to enable targeted self-healing actions.

Traditional Networks Virtual Networks
Fixed topology Dynamic topology
One ownership Multi-tenancy

Physical server hosting
one application

Multiple VNFs in one server

Entities: dedicated servers
connected with PLs

Entities: VNFs, VLs, PLs,
servers, Virtual hosts

One management level Multi-layered management

Table 2.2 – Traditional vs virtual network architecture features.

The virtualization of networks made a radical change in the composition of the traditional
network components, topologies and architectures. Table 2.2 depicts the main NVE features
when compared to traditional networks. Most of these features are due to the architectural
aspects of virtual networks. In the following we describe main NVE features with regards to the
management of networks and in particular fault management.
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2.4.1 Virtual networks dependability

The virtualization of networks introduced new types of entities to be managed in the network
architecture. The managed entities have different granularity levels. Each layer of virtual net-
works hosts a number of components. These components can be classified in different ways
with regards to their functional type.

Figure 2.13 – Virtual network Components.

As depicted in Figure 2.13, NVEs entities are divided in two types, virtual or physical. The
managed target could be a node, a link, a network or a service. A node represents a PNF, a
VNF, a virtual host (e.g. container, VM or Unikernel), a site or a link. The network, as defined
in [32], monitors a set of connected virtual and physical nodes. A service is a network of VNFs
and PNFs offering a specific application such as VoIP. In the following we depict the different
entities of each network layer:

• Physical layer: contains the physical hosts. In virtual networks, servers are seen as a set
of physical resources: CPU, storage and network. Considering, each resource separately
is more efficient when smaller granularity is needed. For instance, in the case of CPU
load, considering the CPU entity separately when doing fault management provides more
accurate results. PNFs, Physical links and ports are also entities of this layer.

• Virtual layer: hosts two main entities: the virtual host and the VIM. For instance, a VM
virtual host and an OpenStack VIM entity. The hypervisors could also be considered as a
separated entity. Virtual links and ports are classified in this layer. We can also consider
a smaller granularity for the virtual host with the virtual computing, storage and network

• Application layer: contains the VNFs that represent applications. Each application in-
cludes a number of processes.

• Service layer: contains the NS that represents a chain of VNFs. Traffic slices and proto-
cols are also contained in this layer.
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2.4.2 Physical and virtual coexistence

In the foreseeable future, the most common deployment in telecommunication networks in-
cludes mixed VNFs and PNFs. This coexistence define a new kind of dependencies that should
be considered when managing virtual networks. A physical server can host a number of virtual
functions connected with virtual links. This implies the necessity to consider the management
of each VNF hosted in the server separately. Different types of physical and virtual coexistence
are possible: a physical server hosting a number of VNFs, a VNF-FG composed of VNFs and
PNF, virtual links on top of a physical link and virtual ports on top of a physical port.

2.4.3 Dynamicity of the network topology

The flexibility and programmability of NFV causes an excessive network topology changes.
The topological changes are due to network updates and re-configurations. The most common
changes are: migration of a VNF, replication of a VNF, instantiation and termination of a VNF.
In addition to the dynamicity of the virtual network topology, the network infrastructure is multi-
layered. As depicted in Figure 2.13, the NVE architecture is divided into four layers: physical,
virtual, application and service layer. Moreover, multi-tenancy implies different kind of mem-
bership in one infrastructure. A client can own a server, a VNF-FG or only slices of network
services. Which specifies an additional layer to be considered for network management in the
case where the network is shared. Figure 2.1 in Section 2.1 illustrates the multi-tenant layer. In
this example, two tenants owns different NSs in the same infrastructure. Each NS represents a
number of connected VNFs hosted in the physical server. The tenant’s NS availability depends
on the components composing the NS from the application layer to the physical layer.

2.5 Conclusion

The NVEs consists in a variety of architectures: SDN, NFV, and multi-tenant environments.
MNOs benefit from virtualization with the reduction of management and deployment costs, and
the programmability and flexibility of services. Moreover, virtualization enables the migration of
VNFs between physical servers with the same configuration and without interrupting services.
This facilitates the servers management and failure recovery, bringing more resilience to the
network. Thanks to virtualization, realistic implementations of hardware-based telecommuni-
cation deployments become possible. One example is the clearwater vIMS project that enables
to run locally an end-to-end service. This provides more flexibility to MNOs, especially if they
want to test the system resilience before deployment. However, the NFV architecture is charac-
terized with a number of features such as the dynamic network topology. These features open
up new fault management challenges and issues where classical fault management methods
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are limited. In the next chapter 3, we propose a comprehensive fault management survey and
discuss the issues engendered by the NVE architecture features.
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CHAPTER 3

A PROPOSAL FOR A COMPREHENSIVE

FAULT MANAGEMENT SURVEY

3.1 Introduction

Fault Management (FM) is the process of locating, analyzing, fixing and reporting network prob-
lems such as link failures and network overloads, which in turn makes the network more efficient
and productive. Figure 3.1 depicts the FM steps from detection to healing. Fault diagnosis aims
at achieving three complementary tasks: fault detection, localization and identification [152].

Figure 3.1 – The Fault Management Process.

The introduction of network softwarization enables more services to be deployed with dif-
ferent features and owners, which contributes significantly to the size and complexity of today’s
networks. In fact, softwarization introduced a number of features such as the network pro-
grammability and the dynamicity of network topology addressed in Chapter 2, Section 5.4.
Therefore, fault management is becoming increasingly challenging, requiring to early detect
faults, inform clients and adopt the necessary healing actions. This chapter addresses our first
contribution that represents a comprehensive survey of "traditional" approaches and "novel"
techniques to FM (Journal survey [16]). Section 3.2 covers the first part of state of the art,
related to the different steps of FM as applied to classical telecommunication networks. Sec-
tion 3.5 describes the FM issues and discusses the impact of virtualization on the classical
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techniques for fault management. Section 3.6 presents recent approaches to FM for virtual
networks. The last Section 3.7 positions the thesis work with respect to the presented state of
art.

3.2 Classical approaches to fault management overview

This section defines the FM steps. In each step we depict the techniques applied in traditional
telecommunication networks.

3.2.1 Fault detection and observation collection (logging)

The fault detection step determines whether the system works in normal conditions or whether
a fault has occurred. A fault is the root cause that may lead the system to an error state. A
failure occurs when an error causes a malfunctioning of network devices or software leading to
symptoms. Symptoms are external manifestations of failures. They can be observed as alarms,
i.e. notifications of a potential failures [133]. Alarms are notifications send by the system or
external agents to express a violation of a metric threshold or an event such as loss of signal.
Normal and faulty behaviors may depend on the SLA and the performance requirements of
each network service provider.

Faults can be classified in different types depending on their behavior and cause. Faults can
be permanent, transient for a short period or repetitive. They can be accidental faults made by
humans that are operating or maintaining a system or originate from configuration bugs, or
malicious intrusion [45]. Moreover, a fault could range from soft to harsh. Harsh faults lead
the system to a complete crash while the soft faults provoke degradation in one component or
more, in one layer or multiple layers. Network administrators use two kinds of data to determine
the state of the network: metrics and alarms.

1. Metrics: one way to detect a faulty behavior is by collecting network performance met-
rics. Metrics represent a quantitative way to verify desired aptitudes and to measure
degradations. They measure the activity and health of all the network layers. Network
metrics include: delay, jitter, throughput, network utilization, latency and packet losses.
For instance, jitter is the inter-packet delay variation, and network utilization is a measure
of how much of the capacity is currently in use. In the fault detection process, system
level metrics are continuously collected and compared to an acceptable quality level. If
the metric measures degradation or violation of SLA a notification is raised. Metrics are
present in each layer of the network such as the CPU load in the physical layer, packet
loss in the service layer, the connected users, the failed requests, data-base average
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response time, etc. Metrics collected in a specific layer may be due to a fault in lower lay-
ers. Therefore, metrics of the different layers should be considered jointly in the detection
process.

2. Alarms: are external manifestations of failures. These notifications may originate from
management agents like SNMP traps [127], or in the format of system log files generated
by the syslog protocol (or alternative protocols) [42]. The network components auto-
monitor their activity by systematically logging their events. Alarms are mostly generated
due to the metrics or SLA violations such as latency average passes threshold, packet
loss, timeout. Syslog allows devices to send event notification messages over networks
to any predefined collector [42]. The information carried within syslog messages may
include: the identity of the IP address of the object that generated the alarm, a timestamp,
an alarm identifier, a measure of severity of the failure condition and an additional textual
description of the failure. Syslog messages are generally stored in logs. These messages
contain important information about the health and operation of the system, some are
just informative and others present urgent notifications. However, even if alarms provide
precious clues about the root cause and the type of fault, some faults may be partially
observable, unobservable or hidden. Observable faults are faults that provide notifications
when they occur. Unobservable faults may be faults that are not notified due to the lack of
management functionality necessary to provide indications of their existence, such as a
crash of a physical server that is unable to notify the fault. Unobservable faults might also
be faults corrected through an auto-recovery mechanism that removes evidence of this
fault occurrence [133]. Hidden faults are masked faults due to other faults that provide
more notifications, for example a bug in the application hosted on a VM that is suffering
from high CPU load. Since the VM is slow then the packets are not treated by the VM,
which hides the fact that the application is erroneous.

Summary:
Fault detection is both an elementary and a difficult task. Metrics may be straightforward and
provide directly information about the malfunction. However, alarms are difficult to interpret
due to fault propagation. For instance, the root cause may be in an unsupervised part of
the network (e.g., lower layers). Moreover, maintenance operations, reboots, upgrades and
misconfigurations happen all the time, adding noise to logs, which makes it hard to detect
failures that require intervention.

3.2.1.1 Data Mining for detection

Log analysis was first performed by human experts, but due to the growing number of con-
nected elements that implies a large range of monitoring information, automation of log analyt-
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ics became crucial. Recently, with the growing capacity of servers and the distribution of data
in clouds, storing huge amounts of data — known as big data — became possible. The amount
of available data triggered data mining approaches to fault analysis. Data mining refers to the
action of extracting pertinent information from large data sets. In the data mining process, the
first three steps — data integration, cleaning and selection — are used to prepare the data to
apply data mining techniques.

First the data are collected from multiple distributed sources and combined into one data
set. Then, data are cleaned from noise and only useful data are stored for the mining proce-
dure. For example, Syslog messages that provide debugging information are neglected in the
case of fault diagnosis.

A number of efforts [131, 154, 143, 128] proposed ways to unify and exploit syslog logs. For
instance the work done in [143] and [128], proposes an organized and generalized way to store
syslog messages so that the information collected are used efficiently for the fault localization
process. Authors of [128] proposed to generalize the format of the received syslog messages.
They defined a number of agents that collect logs and realize the structure of the log collection
to finally store it.

Other papers [118, 117] proposed to improve the timeliness and reliability when transporting
syslog messages by using the Stream Control Transmission Protocol (SCTP) [93] instead of
User Datagram Protocol (UDP) in the earlier version of syslog [42] or Transmission Control
Protocol (TCP) proposed in RFC 3195 [93].

Once the data have been prepared, they can be transformed. This stage in the data
mining process involves transforming the selected data into appropriate formats (e.g. patterns,
features, Key Performance Indicators (KPIs), numerical values) for the mining procedure [122].
As a final step, data mining techniques like clustering and association analysis are de-
ployed to discover the interesting patterns and evaluate them to make final decisions. Several
efforts [150, 8] used this approach to extract interesting patterns for the anomaly detection in
virtualized environments. Yamanishi et al. [150] proposed a dynamic syslog mining methodol-
ogy in order to detect failures among computer devices. The solution took syslog logs as input
and used Hidden Markov Models (HMMs) to analyze the logs. HMM is a statistical Markov
model1 in which the system being modeled is assumed to be a Markov process with hidden
states. Before applying an HMM modeling, the collected syslog messages were divided into
sessions, where each session is a subsequence of events forming a time series. An event is a
syslog log line composed of an “Event Severity” that indicates the severity level of the message,
two attributes “Att1” and “Att2” that are fields for processes that generated the message, and a
“Message” that provides detailed information of the event [150]:

1A Markov model is a stochastic model used to model randomly changing systems, where future states depend
only on the current state.
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ID: Timestamp: Event Severity: Att1 Att2 Message
##: Nov 13 10:15:00: WARN: INTR: ether2atm: Eth Slot2L/1 Lock-Up

The syslog sessions are represented by an HMM mixture. An HMM mixture is a linear
combination of HMMs where each HMM component corresponds to a syslog behavior pattern
and a mixture of K components that represent the different patterns.

Baseman et al. [8], presented a method for anomaly detection based on syslog data col-
lected from VMs. They extract the Infomap clusters on textual data and relational features
on numeric data, and combine their features with keyword counts to create a single data set.
Infomap represents a hierarchical clustering algorithm based on the probability of a random
walker (presented in [121]) to transition between communities in the graph as well as the prob-
ability to stay within a community. Each message is assigned to a cluster according to the
percentage of its textual tokens contained in each Infomap cluster.

In the open source community the elastic stack [31] is a good reference for logs storing
and information extraction. The stack is composed of three main components: Logstash or
Beats for data collection, the Elasticsearch engine for data storing and Kibana for extraction
and visualization.

3.2.2 Fault localization and identification

After a faulty state has been detected due to an alarm notification or degradation in the system
performance, much ambiguity remains to be resolved. Log management in complex networks
raises several issues:

• A single failure may generate multiple alarms due to the connectivity and dependency of
devices, for instance, a high CPU load in a database generates a number of alarms from
all the hosts that try to reach the database. Operators drowned in alarms tend to ignore
them until the problem is reported by other measures such as a client complaining;

• False positives in the case of alarms generated during reconfiguration or maintenance
operations or caused by the network device state that takes a long time to stabilize (e.g.
after equipment reboot);

• Loss, delay, or different time formats of alarms that do not always respect the ISO8601
standard [63];

• The problem of clock synchronization in distributed systems that affects the order of the
received alarms. Causal observation is not always guaranteed (one may observe conse-
quences before causes);
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• Ambiguity due to the same alarms or symptoms stemming from two different failures.

• Repetitive alarms due to intermittent faults. This kind of alarms is mostly present in the
case of a fixed metric threshold. Since the flows vary in time, alarms are generated each
time the metric crosses the threshold.

• Alarm logs contain a lot of noise such as informative alarms and maintenance faults
alarms 2.

As the detection process provides only few indications, fault evidence may be inconclusive,
inconsistent and incomplete (see survey [133]). Fault localization (also named fault isolation
or RCA) represents the procedure of deducing the exact root cause of a failure from a set
of alarms, notifications and indications. Fault localization addresses several challenges and
issues caused by the ambiguity and inconsistency of alarms and errors propagation [133].
Moreover, fault localization should provide the human operator with clear explanations about
the (most likely) root causes and type of faults and their secondary effects (impact), whence
the name "alarm correlation and filtering", and should take into account the network topology,
the running services, the configuration, and ongoing maintenance operations.
White-box vs black-box approaches:
In Figure 3.2, we provide a new classification of network fault localization techniques. The
proposed classification complements the methods presented in survey [133]. Fault localiza-
tion techniques are classified into white-box and black-box techniques. Figure 3.2 depicts the
fault localization methods that have proven to be relevant for RCA of networks. As a defini-
tion, white-box techniques use an explicit model of supervised network or system, its topology,
service description, etc. The white-box techniques’ model can also be fitted to features ex-
tracted from data such as fault likelihoods. In black-box techniques, on the other hand, an
implicit representation is constructed through a learning process. White-box approaches give
an explanation of failures and aim at recovering the propagation of faults by modeling the re-
lationships between nodes, events, alarms and faults. Black-box methods learn a "function"
or a "model"3 associating observed symptoms (e.g. alarms) to failures from examples, but
the learned model is often difficult to understand and explain. Some techniques, such as BNs
could be used in both approaches since a learning process might be applied to learn the BN
parameters or even the stochastic dependencies from data.

Artificial Intelligence (AI) and particularly the ML branch is getting much attention in the
world of telecommunication management since it provides solutions to automatize some of the
management tasks. ML uses mathematical models trained on huge sets of labeled data to

2Maintenance faults alarms: false positives due to maintenance operations such as reloading a server.
3Note that the word "model" in black-box is different from white-box approaches. In white-box approaches the

model is an explicit structure or graph that express dependencies, while in black-box approaches the model is
generally a statistical function learned from data.
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Figure 3.2 – Fault localization approaches.

make decisions without being explicitly programmed to perform this decision task [123]. Black-
box ML methods address four main types of problems: clustering alarm patterns, classification,
regression and rule extraction [11].

• Classification aims at matching of large vectors of features (the "observations", e.g. alarms
and metrics) to a set of discrete output values (the "decision", e.g. fault nature and loca-
tion). A classification algorithm learns the function that allows classifying new observed
data into a set of classes. The input of a classification algorithm is the data features (e.g.
severity of a syslog message), the output is a specific class (e.g. faulty state).

• In clustering problems the goal is to gather data into groups for some measure of similar-
ity. A clustering algorithm partitions the input "observations", composed of a number of
features, into different clusters. In the clustering algorithm the resulting groups have no
classes (or are not labeled), in contrast to classification given to experts for interpretation.

• Rule extraction derives symbolic decision rules from data. This kind of approaches tries
to formalize the learned function into decision rules.

• Regression algorithms learn a function that predicts a real-valued variable from a set
of training data also under the form of numerical data for example, past values of this
variable. The output of regression algorithms is indeed a real number rather than a class
such as a linear function.

Methodologies for learning:
Figure 3.3 presents the two different ML methodologies, i.e. black-box and model-based meth-
ods. Model-based techniques such as BNs seek to construct an explicit model for the inference
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process, whereas black-box ML methods (e.g. NNs) learn the model from training data. The
data could be totally, partially, or not labelled, for supervised, semi-supervised and unsuper-
vised learning, respectively. In white-box techniques a model is an explicit representation of
the network dependencies that is used for the localization of faults. In the case of black-box
techniques it represents the association learned from examples.

Figure 3.3 – Black-box vs Model-based ML methods.

Techniques in both models (i.e. white-box and black-box) are classified into fixed and dy-
namic approaches or both of them. Static or fixed approaches consider a fixed snapshot of
the network state and reason on the state of network as described in the snapshot so the time
is assumed frozen, by construct dynamic approaches reason on sequences within a period of
time and consider all the events happening during that time. Dynamic methods thus model
network behaviors, state changes, or trajectories with stochastic/non stochastic, concurrent or
sequential automata. For static models, on the other hand, all consequences of a fault are
supposed to have occurred when a snapshot of the state takes place. For dynamic models one
may observe fault propagation as it progresses.

3.3 Black-box approaches

Black-box techniques are methods that do not require an explicit system model of the system
behavior. Rather, only the inputs (e.g. symptoms) and outputs (e.g. faults) are observed. In
the following rule-based and case-based reasoning, decision trees and NN are depicted.

3.3.1 Rule-based and case-based reasoning

Two of the first AI approaches to fault management were rule-based and case-based expert
systems. An expert system is a software that enables resolving problems of a specific domain
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that is usually performed by human experts. Expert systems consist of three main parts: the
working memory with the current input data, the control or inference engine, and a knowledge
base that stores the rules and cases. The rule-based techniques describe a number of rules
in form of conditions: if <symptoms> then <root cause> [23]. The basic architecture of a rule-
based expert system is shown in Figure 3.4-a [23].

Figure 3.4 – (a) Rule-based [23] and (b) case-based reasoning [1].

Rule-based expert systems perform reasoning using a set of rules derived from knowledge
and experience of the domain to be diagnosed. The expert knowledge is formalized as rules
stored in a knowledge base. The inference engine determines the best rules to apply consider-
ing the current symptoms described in the working memory. The inference engine first finds all
the rules that are satisfied by the current contents of working memory, then, determines what
are the best rules to apply. This cycle is repeated until no more matches are found.

Another type of expert systems are case based techniques. The case-based approach
consists on learning from past experience and past situations. Each time a problem case is
solved, the case and its solution are stored on the knowledge base for future use. As illustrated
in Figure 3.4-b, the new case solutions pairs are stored in a knowledge base and retrieved to
solve the new cases.

Application of rule-based reasoning in the diagnosis of telecommunication networks:
The Nokia Vitrage project [146] is an OpenStack RCA tool that applies a rule-based approach to
deduce faults alarms propagation. Vitrage applies a number of rules in a graph that represents
the network topology. This graph is constructed through a the Vitrage graph building module.
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Nodes of this graph represent: the servers or hosts, the VM instances contained in the hosts
and the switches attached to the hosts. The edges are expressions with distinct meanings:
"On", "Causes", "Contains" and "attached". The graph is updated through the Nova OpenStack
module responsible for provisioning and creating the OpenStack VMs.

Figure 3.5 – Vitrage switch alarm use case.

Figure 3.5 illustrates an example of the topology built by the Vitrage graph module. The
rules applied by Vitrage are designed by network experts. An example of Vitrage rules is
depicted in Figure 3.5. In this example, an alarm about a switch down is received. The rules
are represented as scenarios, each scenario is composed of a <condition> and <actions> to
apply for each condition. For instance, if an alarm is raised in "Switch-1" then an alarm is added
to all the hosts attached to "Switch-1" (scenario-I). The second action of scenario-I is to change
the status of "Host-1" to down. The third action is to add a causality link between the alarms.

In the second scenario (i.e. scenario-II), because Host-1 is down, then all the instances
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contained in Host-1 are down. In this scenario-II alarms are attached to instances and linked
with a causality relationship. The aim of Vitrage is to deduce alarms and rapidly notify faults.

Summary:
Rule-based and case-based techniques are capable of reproducing the cognitive mechanisms
of a human expert under the form of facts and rules with a clear separation between the data
and the control. However, in the case of a very large domain, the acquisition of the knowledge
necessary to constitute the facts and formulating rules can be very difficult and time consum-
ing. Moreover, the number of rules may increase drastically and it becomes very difficult to
maintain. Rule-based techniques are very suitable for fixed domains. However, if the domain
is very dynamic, certain rules can quickly become obsolete and the rule-based system will be-
come unable to solve certain problems. For instance, the application of rules to monitor virtual
networks ([146]), which are dynamic networks is not suitable, since the solution is enable to
solve novel types of faults.

In the case, of the case-based techniques the Knowledge acquisition is based on past situ-
ations, which enables to learn new cases and adapts the solution based on past experiences.
However, case-based techniques still need human expert in the learning loop, which reduces
the time efficiency of the process, specially in the case of real-time alarm correlation situations.

3.3.2 Decision trees

A decision tree is a supervised machine learning algorithm used for both classification and
regression problems. A decision tree uses a tree-like graph to model decisions and their con-
sequences. The decision tree structure is composed of nodes that denote a test on an attribute
of the element to classify, each branch represents an outcome of the test, and each leaf node
(terminal node) holds a class label. The paths from root to leaf represent classification rules.
The Decision graph is composed of:

• Root node: represents the entire population or sample.

• Decision node: the resulted node from splitting root node or sub-nodes.

• Leaf or terminal Node: are nodes that represent the decision.

• Branch or sub-tree: a subsection of the entire tree is called branch or sub-tree.

The construction of a decision tree is based on the idea of splitting the set of all possible
attributes values into subsets based on a membership test. In the beginning, all the attributes
of the source set are considered as root node. Suppose that we have the following binary set
(Cf. Figure 3.6):
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Figure 3.6 – a decision tree sample composed of class "1" and class "0".

The set is composed of two classes of values: class "1" and class "0". We want to separate
the class "0" from the class "1" using their attributes: circled or not, red or black. The features
are color (red vs black) and whether the observation is circled or not. Asking the question "is it
red ?" separates the set into two subsets, or two branches of the tree.

However, one of the decision nodes remains ambiguous since we don’t know the class yet.
Therefore, the question "is it circled?" in this case separates the two classes. We notice that
asking the question "is it circled ?" from the start provides quick results. Therefore, the primary
challenge in decision trees is to identify which are the best questions or attributes that we need
to consider to split nodes. This can be based on information theory, considering as first splitting
attribute the one that maximizes its mutual information with the class value Decision trees use
multiple algorithms for node splitting such as the ID3 algorithm.

The ID3 algorithm builds decision trees using a top-down greedy search approach through
the space of possible branches with no backtracking. A greedy algorithm, as the name sug-
gests, always makes the choice that seems to be the best at that moment. In each step of the
ID3 algorithm the attribute applied to split the set S is selected through the value of "the En-
tropy and Information gain" 4 of this attribute. It then selects the attribute which has the largest
Information gain on the class value to guess.

The construction of decision tree classifier does not require any domain knowledge or pa-
rameter setting, and therefore is appropriate for exploratory knowledge discovery. Decision
trees can handle high dimensional data. However, this method is prone to overfitting, which is
the phenomenon in which the learning system tightly fits the given training data so much that it

4The entropy is a measure of uncertainty of a random variable. Shannon’s entropy is a mathematical function,
intuitively corresponding to the amount of information contained or delivered by an information source. This source
can be a text written in a given language, an electrical signal or another arbitrary computer file (collection of bytes).
From the perspective of a receiver, the more different the source emits information, the more entropy (or uncertainty
about what the source emits) is large, and vice versa. The more we receive information on the transmitted message,
the more the entropy (uncertainty) with respect to this message decreases, and the information gain increase.
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would be inaccurate in predicting the outcomes of the untrained data.

To prevent overfitting, randomized decision trees or random forest are applied. A random
forest is an ensemble learning method for both classification and regression that operates by
constructing a multitude of decision trees of short depth, operating on a subset of attributes, at
training time. In random forest, a random subset of the features are applied in each decision
tree. Each decision tree gives a vote for the prediction of target variable. Random forest
chooses the prediction that gets the most votes.

Application of decision trees in the diagnosis of telecommunication networks:
Sauvanaud et al. [126], applied a random forest algorithm to predict the anomalous VMs.
Sauvanaud et al. [126] proposed an approach to detect SLA violations and preliminary symp-
toms to identify the anomalous VM at the origin of the detected SLA violation. The data set
was collected through fault injection applied on the Clearwater vIMS use case. Around 16500
observations for each VM (i.e. Bono, Sprout, and Homestead) are collected. Before the cre-
ation of models, the validation data set is shuffled and split into 60% of training data and 40%
of testing data. The VM observations are associated with 5 classes (normal behavior, heavy
workload, injections in Bono, injections in sprout, injections in homestead). The random forest
algorithm is used in order to classify the VNF behaviors. The algorithm is configured with ten
decision trees. Moreover, trained random forest models the probabilities of class membership
for an input observation. For example, a random forest can output that some feature vector
has a probability of 0.6 for it to be in the class "heavy behavior". Given the resulting probabili-
ties, it is then easy to set a threshold defining the limit probability above which an observation
corresponds to an "anomalous behavior".

Gonzalez et al. [46], used random forest for the automatic identification of dependencies
between system events in virtual networks. To do so, they used as inputs a data set that was
obtained from an industrial network composed of 21 devices. Each event is composed of an
event identifier, the date when this event is registered, the agent generating the event, its type,
description, and severity categorized into: “critical", “major", “minor", and “blank". Critical and
major events are more important in the analysis process, since they are the sign of the system
malfunctioning. The data set was transformed using a data windowing technique [15]. This
technique divides events into an "observation window" containing the observations before the
event happens and "prediction window" containing the event. Each moment of time when an
event happened is examined as follows: first an observation window is created for it, and the
event in question is assigned to the prediction window.

The sequence of events are stored in a table data set, where each row contained the input
variables (i.e. how many times each different event had happened on the observation window)
and the output variable, a Boolean value indicating whether the objective event had happened
in the prediction window. The output classes represent the appearance or absence of the
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objective event on the prediction window. For instance, one of the learned behavior between
events, is that the virtual switches seem to have a strong influence on themselves and on
several virtual machines. This can be explained by the network topology where the failed
switches affect the switches and VMs they are linked to.
Summary:
Decision trees are intuitive and straightforward graphical models. They can handle both con-
tinuous and categorical attributes and perform well on large data sets. However, decision trees
are subject to overfitting. Overfitting means that the model is learning the noise from the data
set and its ability to generalize the results is very low, which implies a high variance of errors for
new examples (tests). Variance is the variability of model prediction for a given data. Model with
high variance perform well on training data and does not generalize on the test data. Random
forests reduce the overfitting by using a random subset of features. However, random forests
are less interpretable than an individual decision tree since they represent a large number of
trees. Moreover, training a large number of deep trees can be costly in terms of CPU and
memory. Furthermore, both decision trees and random forests may not fit adapt to changing
systems, since the data set is exposed to constant changes.

3.3.3 Neural Network (NN)

Neural Networks (NNs) are composed of more than one layer of neurons which takes in an
input and provides an output (Cf. Figure 3.7). Inputs and outputs are variables (e.g. Boolean
variable with two values). For instance, inputs could represent symptoms and the outputs are
the type of faults that generate this symptoms. NN is composed of one input and one output
layer, and a number of hidden layers. The number of hidden layers depends on the complexity
of the problem to be solved. A NN having more than one hidden layer is called a DNN. DNNs
is defined by (Cf. Figure 3.7):

• L layers, including one input layer and one output layer,

• Each layer has a number of nodes n ∈ N ,

• A relation R ⊆ N → N for each connected nodes, R represent one of the activation
functions described above.

• A weight w(ni, ni+1) between nodes ni of layer (i) and ni+1 of layer (i+ 1),

• For an activation function f : Rn → R, the value of node ni+1 is v(ni+1) =
∑

iW(ni,ni+1)v(ni)

In NNs, an artificial neuron is the smallest processing unit. It receives one or more inputs.
The inputs are weighted and summed with a function called an "activation" or "transfer" function
to produce an output. An activation function is a non-linear function usually applied to a layer
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output. Its main role is to introduce non-linearity between layers, and thus to avoid factorizing
the whole network into a single linear operation. There exist a number of activation functions
used in neural networks: step, Rectified Linear Unit (ReLU), tanh, sigmoid and pooling [57].
An example of a neuron is illustrated in Figure 3.8. An artificial neuron considers a linear
combinations of the inputs xi that are transformed using an activation function f .

Figure 3.7 – DNN with two hidden layers.

Figure 3.8 – An artificial neuron composition.

NNs learn progressively by considering examples (i.e. inputs and outputs). The learning
system represents an association of neurons forming a less or more complex graph. Learning
is accomplished by adjusting the connection weights in response to input-output pairs, and
training can be done either offline, or online during actual use. The learning process objective
is to minimize the loss of a given architecture on the training set. To do so, batches of examples
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are processed, the loss function is computed on these examples, and the result gradient error
is back propagated throughout the whole architecture to update all weights concurrently. This
process is typically split into two main parts: feed forward (i.e. inference), where the output
is computed for each input, and back propagation, where the weights are updated. The loss
function (also referred to as cost function) evaluates how far the computed output is from the
expected one. Common loss functions used to train NNs are mean square error, cross entropy
and hinge loss. The trained NNs can then be used to provide outputs for real data (Cf. Figure
3.3).

Recurrent Neural Network (RNN) are a variant of NN designed to handle sequences of
feature vectors, for example to predict their next value. Long Short-Term Memory (LSTM) are
a special kind of RNN that have the same chain structure as RNN, but instead of having a
single neural network layer, there are four interacting layers. LSTMs use gated cells to store
information. With these cells, the network can manipulate the information in many ways, includ-
ing storing information in the cells and reading from them which provides the ability to retain
information for a long period of time.

Application of NN in the diagnosis of telecommunication networks:
A number of papers [154, 86, 153], applied NNs and their variants for the diagnosis of faults in
telecommunication networks. Zhaojun et al. [154], used NNs with the ReLU activation function
applied to syslog messages. The syslog message is split into fields such as "Time" and "IP
Address" and converted into numerical values to be used as inputs in the learning process.
The output layer has two cells corresponding to two output values: y1, y2, which denotes
whether a host performs well or not. The outputs are then interpreted with decision-making
rules.

Moustapha et al. [86], used RNN to detect faulty nodes in a wireless sensor networks
(WSN)5. WSN networks connect a wide range of sensors. The defined RNN model nodes
correspond to the nodes of WSN topology. The output of the RNN is an estimation of the
operation of the WSN that is compared with real WSN behaviors to achieve fault detection. In
fact, Sensor nodes can be viewed as dynamic systems with memory that forward information
from one node to the next node. Moustapha et al. [86], divided the modeling process into two
phases the learning phase where the RNN adjusts its weights to healthy or N-faulty models,
and the production phase that compares between the output of real WSN and RNN WSN
to measure the health status. In the case of new fault type the model is updated with the
corresponding parameters.

Zhang et al. [153], apply LSTM to predict faults in virtual networks. The input data represent

5WSN are self-configured wireless networks composed of spatially dispersed and dedicated sensors to monitor
physical or environmental conditions, such as temperature, sound, vibration and pressure.
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a vector of parameters:
X(t) = [XP (t)XF (t)XS(t)XT (t)]

P : Performance, F : Function, S : Statistical, T : Topology.

each of the defined vectors has a number of parameters. For instance, the performance XP (t)
vector is defined as the following:

XP (t) = XP
B (t), XP

D(t), XP
L (t), XP

S (t),

XP
B (t) : bandwidth,XP

D(t) : network delay,XP
L (t) : packet loss rate,XP

S (t) : transmission rate.

Figure 3.9 illustrates the relation between the network fault data defined as a matrix X(t)
and the fault label. At time t, a matrix X(t) which includes the data of time length"l". For history
data at time t − 1, the network fault is Y (t). Zhang et al. [153], simulated six types of faults
in OPNET network simulator [108]. Results showed that the more serious the faults, the more
accurate is the prediction. Prediction time was estimated to 800 s.

Figure 3.9 – Relation between the network data matrix X and the fault label Y [153].

Summary:
NNs generalize well without requiring a deep understanding of the knowledge domain. They
provide a fast and efficient method for patterns matching. However, in the case of RCA NNs can
only operate as pattern matching (e.g., match symptoms with fault types) and do not provide
explanations.
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3.4 White-box approaches

White-box methods can be characterized by four main ingredients, namely the modeling for-
malism, the modeling procedure, the model and the inference algorithm.

1. The modeling formalism represents the mathematical formalism in which the network
model will be expressed such as Petri nets, BN and causality graphs.

2. The modeling procedure builds one model instance in the appropriate formalism, that
matches the current network. It captures numerous aspects such as the network topology,
service descriptions, experts knowledge and the formalism applied to the model (e.g. in
the case of Bayesian networks we define probabilistic dependencies). The modeling
procedure can be extended by an expert, or be fully autonomous algorithm.

3. The model is one object in the modeling formalism. For example, a constraint graph. It
results from deploying the modeling procedure to a specific network instance. The model
relates faults (hidden) to their consequences (secondary faults) and to their symptoms
(alarms and metrics).

4. The inference algorithm (or solving method) is an event management algorithm used
to identify the root cause(s) of a system malfunctions. It uses the model to infer hidden
faults and explanations from symptoms.

White-box techniques provide explanations for their decisions and conclusions since each
stage in their analysis can be followed and understood. The model can be constructed from
different information sources: network resources, dependencies, events, etc. The model can
be extended and validated in an interactive way. In fact, explaining faults through an explicit and
human readable model enables experts to include observations during the diagnosis process.
Nevertheless, the model-based approaches face a number of challenges: the definition of the
model construction and its validation, the definition of the modeling algorithm, and the handling
of large scale complex networks with different granularity levels.

3.4.1 Causality/dependency graphs

The causality (or dependency) graph is an intuitive representation of the monitored system. It
represents the relationship between alarms, intermediate faults and the failures generated, up
to visible symptoms. The edges between the nodes represent a causality relation [59]. The
network topology and fault propagation knowledge comes from administrators expertise based
on hardware and software specifications. Causality dependency graphs are most of the time
performed in a static image of the network, also called a snapshot of the topology.

50



A proposal for a comprehensive fault management survey

Application of causality/dependency graphs in the diagnosis of telecommunication net-
works:
Many contributions [76, 56], were based on dependency graphs for the fault localization in
networks. The contributions propose variations of causal graphs that differ on the node types
and values, edge types and propagation modalities. Lu et al. [76], define a causal graph as a
Directed Acyclic Graph (DAG) G = (V ;E) with five types of nodes, presented in Figure 3.10:

• Primary cause nodes: have no predecessors (root node), are generally called a primary
cause and represent the failures one wishes to identify.

• Intermediates cause node: is a node with both predecessors and successors.

• Observations: have no successors (leaf nodes); they represent alarms.

• Test node: they are observations that are not automatically notified and need to be re-
trieved from the network components.

• Repair nodes: do not take part in the causal relation between causes and effects. Repair
actions only serve when the root cause has been localized.

Figure 3.10 – Causal dependency graph components [76].

Edges are causal relations that could be a "should cause" or a "could cause". A "should
cause" or a "must cause" is a deterministic cause, for instance if the connection cable between
two servers is disabled so the communication between the two servers is broken. A "could
cause" or a "may cause" is a possible cause to symptoms, that might happen or not, for instance
a high CPU load may lead to a system crash.

Authors of Lu et al. [76, 77], start the diagnostic process by involving all the available
observations, and determine, on the basis of these observations, the root causes. Each node
has a unique state as following: guilty, innocent, suspect and unknown (the default state). A
guilty node is a faulty node due to a test result or an active alarm or a proved cause. If the
guilty node is a root of the causality graph, then this node is the root cause. An innocent node
is a node working correctly and can be due to a test result. A suspect node is a suspected
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node to be the root cause (a test to run or an unknown cause to investigate). An unknown
state is the default state [77].

The guilty and innocent states can be provided by alarms and tests. Lu et al. [76, 77],
proposes a rule-based approach to infer faults from alarms. Rules are applied until stability of
nodes states. The rules are executed in the order of apparition (i.e. from R1, R1,’..,R6). Lu et
al. [76, 77], defines the propagation rules that follows [77]:
R1 : if a node is guilty, then all its “should cause” successors are guilty.
R1’ : if a node is guilty, at least one of its predecessors is guilty.
R2 : if a node is innocent, then all its “should cause” predecessors are innocent.
R2’ : if all the predecessors of a node are innocent, the node is innocent.
R3 : if a node is guilty, then all its predecessors become suspect.
R4 : if a node is suspect, then all its “should cause” predecessors are suspect.
R4’ : if a node is suspect, then all its “should cause” successors are suspect.
R5 : if a test node is suspect, then the test is performed. Depending of the result, the state
becomes guilty or innocent.
R6 : if a repairing action is guilty, then the corresponding repair should take place.

For example, Figure 3.11, illustrates an example of the causal graph of an IMS VoIP service
request. In this example, the clients IMPU is checked in the HSS through Subscriber Locator
Function (SLF) 6. In this case, if an unknown client IMPU alarm is received, three root causes
are possible: "SLF synchronization failure", "forbidden or baring client’s IMPU" or "unknown
client’s IMPU in the HSS". To find the root cause of the "alarm Unknown IMPU in SLF", the
propagation rules are executed as follows:

1. (R1’): As “Alarm unknown IMPU in SLF” is guilty (i.e. alarm present), then at least one of
the predecessors “IMPU unknown in SLF” or/and “IMPU barring in SLF” are guilty.

2. (R3): As “Alarm unknown IMPU in SLF” is guilty (alarm present), then “IMPU unknown in
SLF” and “IMPU barring in SLF” are suspect.

3. (R4): “IMPU unknown in SLF” is suspect, then its predecessor “Unknown client in SLF
(i.e. No account)” is set to suspect.

4. (R4): “Unknown client in SLF (No account)” is suspect, then “Unknown client in HSS (No
account)” is set to suspect.

5. (R4): “Unknown client in HSS (No account)” is suspect, then “Test of unknown client” is
set to suspect.

6. (R5) “Test of unknown client” is suspect, then the test is performed (in this example the
test is the state of “Unknown client in HSS (No account)” is set to guilty).

6SLF provides information about the HSS that is associated with a particular user profile.
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7. (R1) “Unknown client in HSS (No account)” is guilty, then its "should cause" successors
“Unknown client in SLF (No account)” and “Test of unknown client” are guilty.

8. (R1) “Unknown client in SLF (No account)” is guilty, then “IMPU unknown in SLF” is guilty.

9. Achieved stability of node states.

Figure 3.11 – An example of a client IMPU verification causal graph after stabilization of nodes
states [76, 77].

Figure 3.11, depicts the last result of the rules propagation. We notice in this example that
the failure to synchronize the SLF database and the unknown client failure has the same alarm
symptom (i.e. "unknown IMPU"). The distinction between these two causes will be based
precisely on the test available.

The separation between these two causes is important to identify the necessary healing
actions. For instance, in the case of the SLF synchronization failure a re-synchronization action
is needed. In this example, according to rule "R1’", if the alarm "unknown IMPU in SLF" is guilty,
then at least one of its predecessors "should cause" is guilty, so either the IMPU is unknown
or barring in SLF. If the test about the unknown IMPU is positive, so according to rule "R1" all
the “should cause” successors are guilty. In this case, the fault is due to the unknown IMPU,
but doesn’t innocent the SLF synchronization node, since there exist a "could cause" between
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the "IMPU unknown in SLF" and the "SLF synchronization" node, and according to the rule
"R3", if a node is guilty, then all its predecessors become suspect, so in this case, the SLF
synchronization remains suspect (Cf. Figure 3.11).

The solution proposed by Lu et al. [76, 77], applies an interesting feature in diagnosis by
including tests to get more observations. However, the proposed rules return only one possible
configuration. Moreover, we notice that, rules R3 and R1’ has the same condition and since R3
comes after R1’, the decision of R3 is the one considered in the end of the execution (i.e. rule
R3 overwrite the results of R1’).

Hasan et al. [56] defines the edges between the nodes as logical constraints. For instance,
Figure 3.12 illustrates eight nodes and their logical "And" relations. Hasan et al. [56] defines
causal event C by a set of events E, and a set of equations of the form e = φ where e ∈ E and
φ is an expression constructed using propositional Boolean operations and elements of E as
propositional symbols. Hasan et al. [56] translates the logical relations relating each node to its
successors into a collection of local inference rules that allow to determine the value of a node
from that of its successors. For instance, in Figure 3.12, the local inference rule for node "5" is:
5 = 1 ∧ 2 ∧ 3.

Figure 3.12 – An example of a logical causality graph. [76, 77].

In the work presented by Lu et al. [76] and Hasan et al. [56], the way of constructing the
causality dependency graph from real network topology was not deeply addressed. Lu et al.
[76], defines causality graphs for IMS, while Hasan et al. [56] does not relate its work to any
network use case.

Summary:
Dependency graphs are graphical models that enable operators to detect the root causes and
provide explanation of what is going on in the network by identifying the consequences of fail-
ures, allowing operators to choose best decisions to heal the network. The major difficulty of
this approach is the definition of the model for the given domain. Indeed, the construction of
the graph requires the acquisition of very precise knowledge about the domain components
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dependencies and faults propagation. Moreover, the dependency graph describes a frozen
image of the network and can become obsolete if the network is very dynamic.

Another form of reasoning about causation on dependency graphs is counterfactual rea-
soning [7], which is further discussed in the Appendix 7.2.4.

3.4.2 Constraint graphs

A constraint network R is represented as a triple R = (X,D, φ), with [26]:

• A finite set of variables X = {X1, . . . , Xn};

• A domain of values for each variable D = {DX1 , . . . , DXn};

• We denote by Dv = Xxi∈V DXi for a subset V ⊆ X of variables;

• A set of constraints φ = {φ1, . . . , φt}, each φj operates on subset Vj ⊆ X of variables and
specifies which values of DVj are allowed for the tuple (Xi)Xi∈Vj , one has φj ⊆ DVj .

A number of operations can be applied to constraints, we define the "projection" and "join"
relations as the following:

• A projection of a constraint φ operating on V onto a subet V ′ ⊆ V is obtained by restrict-
ing φ to variables in V ′.
For V = V ′

⊗
V ′′ ⊆ X, πV ′(φ) = {v′ ∈ DV ′ : ∃v′′ ∈ DV ′′ , (v′, v′′) ∈ φ}.

• The join operator (on) takes two constraints φ′ ∈ DV ′ and φ” ∈ DV ′′ and yields a new
constraint that consists of tuples of φ′ and φ′′ combined on all their common variables in
DV ′∪V ′′ . We have φ′ on φ′′ = {v ∈ DV ′∪V ′′ : v|V ′ ∈ φ′, v|V ′′ ∈ φ′′}, where v|V ′ = πV ′(v).

For instance, given three variables A, B, C with the associated domain values: DA =
{a1, a2, a3}, DB = {b1, b2, b3} and DC = {c1, c2, c3, c4}. Let φ1 ⊆ DA ×DB and φ2 ⊆ DB ×DC

defined as:
φ1 = {(a1, b2), (a1, b3), (a2, b1), (a3, b2)},

φ2 = {(b1, c1), (b2, c3), (b3, c1), (b3, c2)}.

The projection of φ1 onto A ∈ DA consists on the tuples in φ1, with only keeping the values
of variable A:

πA(φ1) = {a1, a2, a3} ⊆ DA.

The join of constraints φ1 and φ2 defined as φ3 = φ1 on φ2, with φ3 ∈ DA ×DB ×DC , consists
of a new constraint φ3 containing tuples that are combinations of pairs of tuples from φ1 and φ2

that share the common variable A.
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To do so, we combine each tuple in φ1 with all tuples in φ2 that agree on the values of
common variable B :

φ3 = φ1 on φ2 = {(a1, b2, c1), (a1, b3, c1), (a2, b1, c3), (a3, b2, c2)}

For instance, as illustrated in Table 3.1, tuple (a1, b2) ∈ φ1 agrees with the tuple (b2, c3) ∈ φ2

about he the value b2, resulting the tuple (a1, b2, c3) ∈ φ3.

φ1:

A B
a1 b2
a2 b3
a3 b2

φ2:

B C
b1 c1
b2 c3
b3 c1
b3 c2

φ3 = φ1 on φ2:

A B C
a1 b2 c3
a2 b3 c1
a2 b3 c2
a3 b2 c3

Table 3.1 – Example of a Join relation φ1 on φ2.

A constraint network could be represented in different ways: hypergraphs, primal, dual
graphs and trees; as illustrated in Figure 3.13-a, Figure 3.13-b and Figure 3.13-c, respectively.
An hypergraph is a generalization of a graph in which an edge can join any number of vertices.
An edge in an hypergraph is called an "hyperedge". An "hyperedge" in the constraint graph joins
the variables linked by a constraint, i.e. for each φi, Vi defines an hyperedge.

For instance, Figure 3.13-a shows four hyperedges with the following subsets:

{V1, V2, V3, V4} = {{F,A,E}, {A,B,C}, {C,D,E}, {A,C,D,E}}.

In the primal graph (Cf. Figure 3.13-b), each node represents a variable and the arcs
connect all nodes whose variables are included in some constraint scope Vi. So each Vi defines
a "clique" i.e. a complete sub-graph.
Dual graphs represent the hyperedges as vertices or clusters, i.e. each hyperedge is replaced
by a single node. Nodes are connected if they share variables and the arcs are labeled by
the shared variables. For instance, vertices 1 and 2 are linked with the variable "A". Trees are
acyclic graphs, in which any two vertices are connected by exactly one path (Cf. Figure 3.13-d).

A Constraint Satisfaction Problem (CSP) involves finding solutions to a constraint net-
work that satisfy all its constraints. The solutions are assignments of values to the constraint
network variables. The resolution of the constraint satisfaction problem, generally holds two
steps: a processing phase and a back-tracking procedure. The processing step establishes
the local constraints propagation, while the back-tracking procedure produces the appropriate
answers [27]. One of the efficient solutions applied to resolve constraint networks is the BP
algorithm [113]. In order for this algorithm to converge and work efficiently, it should be ap-
plied to tree shaped constraint graphs [27]. Since tree structures or acyclic representations
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Figure 3.13 – Different ways to represent constraint graphs [26].

of constraints are desirable to execute the Belief propagation algorithm, the first step consists
on transforming a constraint network into a tree. This procedure is called Join-Tree Cluster-
ing (JTC). The JTC is defined by the following algorithm:

Input: A constraint problem R = (X,D, φ) and its primal graph G = (X,E).
Output: An equivalent acyclic constraint problem and its join-tree: T = (X,D, φ′)
1. Select a variable ordering, d = (X1, ..., Xn).
2. Triangulation (create the induced graph along d and call it G∗):
For j = n to 1 by -1 do
E ← E ∪ {(i, k)|(i, j) ∈ E, (k, j) ∈ E}
3. Create a join-tree of the induced graph G∗:

• a. Identify all maximal cliques in the chordal graph (each variable and its parents is a
clique). Let C1, ..., Ct be all such cliques, created going from last variable to first in the
ordering.
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• b. Create a tree-structure T over the cliques:
Connect each Ci to a Cj(j < i) with whom it shares largest subset of variables to identify
one of its join trees.

4. Place each input constraint in one clique containing its scope, and let ψi be the constraint
sub-problem associated with the clique Ci.
5. Solve ψi to get cliques local solutions.
6. Return the new set of constraints and their join-tree, T .

We explain this algorithm with an example, given a CSP on variables A,B,C,D,E,F, defined
by the constraints: 

φ1 ∈ DA ×DC ,

φ2 ∈ DA ×DD,

φ3 ∈ DB ×DD,

φ4 ∈ DC ×DE ,

φ5 ∈ DE ×DD,

φ6 ∈ DC ×DF .

The primal graph of the constraint network is depicted in Figure 3.14, the first step (step-1)
of the JTC consists on selecting a random ordering. One possible ordering for the primal graph
is illustrated in Figure 3.14-b: d=E,D,C,A,B,F.

The triangulation algorithm [136], consists on choosing a random ordering (step-1) and
filling the edges recursively between any two non adjacent nodes that are connected via nodes
higher up in the ordering (step-2). In the example of Figure 3.14, the edge between (A,C) and
(A,D) fill-in the edge (C,D). The resulted chordal graph is illustrated in Figure 3.14-c. To create
the join-tree, we first identify the maximal cliques in the chordal graph (step-3.a) and create the
corresponding tree structure.

In the example of Figure 3.14, the maximal cliques are: (E,C,D), (C,D,A), (C,F), (D,B). When
connecting the cliques Ci with the ones that shares the maximal variables, we obtain the dual
graph in Figure 3.14-d, and the corresponding joint-tree in Figure 3.14-e. The last step of JTC
solves the constraints associated to the cliques. For instance, solving the constraint of clique
(E, C,D) means finding all the assignments to variables (E, C, D) which are consistent to the
input constraint φ4 and φ5 (i.e. solve φ4 on φ5).

Once a cluster tree has been derived, the inference problem can be solved by the BP
algorithm. Let us denote by (V1...Vn) the clusters (organized as tree (Cf. Figure 3.15)), each Vi

being the scope of constraint φi. The objective is to derive the φ′i (reduced constraints) defined
by φ′i = πVi(φ1 on φ2 on ... on φn). Each vi ∈ φ′i is thus the projection (restriction to Vi) of some
global solution x ∈ DX of the constraint set.

One can easily prove that φ′i = πVi(φi on onj∈N(i) φ′j), where N(i) denotes indexes j such
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Figure 3.14 – The join-tree clustering procedure.

that Vi and Vj are neighbors on the cluster tree. This fix point equation can be reduced into:
φ′i = φi on onj∈N(i) πVi(mj→i), where mj→i ⊆ DVi∩Vj is a message from cluster j to cluster i
summarizing constraints on their shared variables. mj→i =∆ πVi∩Vj (onk:i−j−k φk) ⊆ DVi∩Vj is the
"summary" of all the constraints in the clusters that are "behind j" in the tree from the point i.

One can prove that messages satisfy : mj→i = πVi∩Vj (φj ononk∈N(j)|i (mk→j). This yields
an iterative procedure to compute all messages (two per edge, one in each direction) starting
from the leaves of the cluster tree.

CSP instances can also be solved by state-of-the-art Boolean Satisfiability Problem (SAT)
solvers [78]. A SAT solver is the problem of determining if there exists an interpretation that
satisfies a given assumptions (i.e. a set of formula). Efforts [148, 135, 41] proposed transitions
from CSP to SAT. One direct transition is to define constraints on variables values as a formula.
We associate a propositional variable, zij with each value xij that can be assigned to the CSP
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Figure 3.15 – A constraint network.

variable Xi. For instance, if DA = {a1, a2} is a CSP variable, we assign to zA1 = a1 and
zA2 = a2. Then, for two varibales DA = {a1, a2} and DB = {b1, b2} a constraint φ1 = {(a1, b2)},
with zA1 = a1, zB1 = b1, is defined as follows: zA1 ∧ zB1. One of the powerful SAT solvers are
advanced Satisfiability Modulo Theories (SMT) solvers such as z3 [83] that can solve ten of
thousands of constraints and millions of variables [25].

Application of constraint graphs in telecommunication networks:
Few papers applied CSP for the RCA of telecommunication networks. We cite the work of
Gillani et al. [44]. Gillani et al. [44] proposed a fault diagnosis approach based on end-
user observations in an overlay network 7. The end-users share their network performance
information which is considered as negative symptoms, and is used to localize performance
anomalies and determine the packet loss contribution of each network component.

The problem is formulated as a constraint-satisfaction problem. The assumptions are made
of variables defined on overlay components and network paths. An overlay network illustrated
in Figure 3.16 [44], is a directed graph composed of overlay components cj (i.e. routers (r) or
overlays (v) ) and a path pk that consists of multiple overlay links. For instance, a path p1 be-
tween n1 and n3 is p1 = {v1, r1, v3} (Cf. Figure 3.16). Considering E as negative performance
evidences ei ∈ E and C as the collection of all components on the network cj ∈ C. For each
negative performance evidence ei, a bad label is assigned to the corresponding overlay path pk

and for each bad overlay path there is at least one anomalous component cj ∈ ei along the path
dropping packets. Gillani et al. [44] defined a model composed of a number of assumptions
deduced from the overlay network, we cite the Evidential Reasoning Invariant that repre-
sents an anomaly scenario. The anomaly scenario explicits a constrained logical relationship
between the negative performances E and all its components. The logical relationship implies
that there exists at least one bad component in each evidence ei and can be represented as a
Boolean function:

χ(ei) =
∨

cj∈ei

χ(cj)

7An overlay network is a computer network that is built on top of another network. Most of the time, an overlay
network is applied to run multiple separate, discrete virtualized network layers on top of the physical network, often
providing new applications or security benefits.
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Figure 3.16 – Example of an overlay network model [44].

So E is represented as a Boolean function as follows:

χ(E) =
∧

ei∈E

 ∨
cj∈ei

χ(cj)


The assumptions are solved by a Z3 SMT solver that generates a single satisfiable solution

and forced each time to get more solutions by asserting back the complement of the solution
to the model. The solutions represent the set of anomalous scenarios to a given observations.

3.4.3 Bayesian networks

A BN represents a probabilistic extension of constraints graphs, where "hard constraints" are
replaced by "soft constraints", weighted by a likelihood. A BN is a DAG that represents cause
to effect relationships between (observable or unobservable) events. When a set of symptoms
is observable, the most likely causes can be determined [9]. The nodes in the DAG are random
variables (e.g. the state of network elements, the occurrence or not of events and faults),
while the edges denote existence of statistical relations between the connected variables. The
strength of the causality is expressed with conditional probabilities. To construct a BN model a
deep human expert knowledge of the cause and effect relationships in the domain is required.
This allows humanly understandable RCA explanations compared to black-box techniques [59].

BNs is defined with a set of variables (X1...Xn) and a set of directed edges between vari-
ables organized as a DAG; each variable has a finite set of mutually exclusive states; to each
variable Xi is attached a conditional probability distribution: P (Xi|Xp(i)), where p(i) ⊆ {1, .., n}
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denotes indexes of (intermediate) parents of Xi. If p(i) is empty, this conditional probabil-
ity reduces to the marginal probability P (Xi). The overall joint distribution satisfies: P (X) =∆

P (X1, ..., Xn) = Πn
i=1P (Xi|Xp(i)).

Some of these variables maybe observable (alarms), others maybe non-observable (faults,
state variables). Denoting X = {X1, ..., Xn} the unknown variables and E = (E1, ..., Em) the
observed ones. Querying the BN consits either in computing posterior marginals P (Xi|E = e),
i = (1, .., n), i.e. P (Xi|E1 = e1, ..., Em = em) for an observed value e = (e1, , .., em), or better in
estimating the most likely value ofX for the posterior distribution: x∗ = argmaxx=(x1,...,xn)P (X1 =
x1, ..., Xn = xn|E1 = e1, .., Em = em).

These posteriors P (Xi|E = e) can be derived through a message passing algorithm that ex-
tends the one seen for constraint graphs, provided the DAG of the BN forms a tree. Specifically,
one has P (Xi|E = e) =∆ π(Xi).λ(Xi)). Where π(Xi)αP (Xi|E<i = e<i), and λ(Xi)αP (E>i =
ei|Xi). E>i denotes evidence variables in (E1, ..., Em) that are below i in the DAG, and E<i

denotes the complement E<i = E|E>i. The λ and π can be computed recursively by message
passing. Figure 3.17 illustrates an example of a node A that has two children C and D and a

Figure 3.17 – BP on a tree [70].

parent B. In this case:

P (e>A|A = a) = λ(a) =
∑
c,d

P (e>c|C = c)P (e>d|D = d)P (c, d|A = a)

=
∑
c,d

λ(c)λ(d)P (c, d|A = a).

P (A = a|e<A) = π(a) =
∑

b

π(b)P (a|b).

Application of BNs in telecommunication networks:

Some contributions [59, 71, 147] used BN for the RCA of telecommunications networks.
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Ktari et al. [71], proposed a Bayesian network modeling for Private Mobile Networks (PMR)
networks. PMR networks are designed with a range of protection and recovery capabilities
to maintain continuity of voice and data services even under multiple faults and natural disas-
ters such as fire or blackout. PMR networks are composed of different types of redundancy
schemes applied to components such as antennas and base station and links. These pro-
tection mechanisms cover active redundancy, standby redundancy, load balancing, one for n
redundancy, etc. Each of these protection schemes can be modeled simply as a local Bayesian
network, relating the probability of each component alone to fail to the probability that the re-
dundant service fails. By assembling the local models of protection mechanisms of all the
elements in a PMR, one obtains a larger Bayesian network (BN) model for the whole system.
Through classical inference algorithms, one can use this BN both for risk analysis (what is the
probability that the overall service fails if a single failure occurs) and for diagnosis (what is the
most likely component failure given that this service works and this other one does not).

As an illustration of this approach, one of the redundancy techniques applied in PMR is
the active/parallel redundancy. Active redundancy means that two redundant units are operat-
ing simultaneously in parallel, rather than having a spare component being switched-on when
needed (standby redundancy). Each of the redundant units is capable of handling the full load
without sharing with other units. If one of the units fails the other one takes over. Ktari et al. [71]
models this scheme in the case of two parallel components A and B, with two nodes A and
B, and one additional node S that represents the compound service system (Cf. Figure 3.18).
The CPT of node S is thus naturally represented as an OR gate, as shown in Figure 3.18.

Figure 3.18 – A Bayesian representation of the active redundancy scheme (left) and the CPT
of node S (right) [71].

To localize a faulty component, Ktari et al. [71] uses a Bayesian analysis. It is applied to the
global Bayesian network (BN) model obtained by assembling all the local protection models for
the functions of a PMR. Evidences correspond to the observed state of some functions (working
or not), and are propagated through the Bayesian network to resul in probability distributions for
each possible initial failure, assuming a single failure occurred. This allows one to deduce the
most probable fault. The fault diagnosis was applied on different PMR emergency scenarios
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with a high and low Common Cause Failure (CCF) 8. The results are applied to provide the
network administrator a priority checking and maintenance plan for PMR components.

Hounkonnou et al. [59], proposed a self-modeling and diagnostic engine based on the for-
malism of generic BNs for fault localization in IMS. Hounkonnou et al. [59], deal with two main
limitations: the generation of the dependency graph and the inference over large dependency
graphs. To deal with large dependency graphs the authors define generic Bayesian networks.
When a failure occurs in the IMSs service, the algorithm locates the on-line instances of that
model in a given network topology and generates the corresponding generic BNs instance.
Generic BN (GBN) allow one to build a large BN by assembling smaller (generic) patterns of
variables. Figure 3.19 depicts an example of a GBN and three instances sharing one variable
"X".

Figure 3.19 – An example of a GBN pattern (left) instantiated three times (right) [60].

For a malfunction of the userA IMS IP configuration service, illustrated in Figure 3.20.
The Dynamic Host Configuration Protocol (DHCP) sever assigns an IP address to a given
UE through two main procedures, involving the following entities: UE, Access Relay Func-
tion (ARF), Network Access Configuration Function (NACF), and Connectivity Location Func-
tion (CLF).

The self-diagnosis steps are defined as the following:

1. Generation of the generic BN describing the resources used in the IP configuration ser-
vice of userA .

2. Locate BN instances of the same generic model in the IMS network: identify the user’s
IP configuration service that share the same resources as the affected IP configuration.
Figure 3.20, depicts two users "A" and "B" sharing ressources.

8Common Cause Failure (CCF), Common Cause Failure, represents the case where a unique initial fault event
leads to two or more equipment failures at the same time. The CCF factor is high in the case of a disaster (e.g. fire)
where a number of components fail.
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3. Perform inference in the current BN instance: The conditional probability of a child given
one of its parent is P = 1 − q, with q = 0.1 is the probability of a node to fail by itself.
Given the observations the beliefs are propagated through the network.

4. If uncertainty is high explore and add other patterns: the authors of [60], calculate the
entropy of the a posterior distribution to quantify how uncertain the root cause is. If the root
cause previously calculated over the current BN is not pinpointed with enough confidence,
they propose to extend the BN with other IP configuration instances that share the same
resources as the failed instance) to the current BN, in order to collect more evidence
(observations, alarms) and solve the case.

5. Repeat the expansion until confidence in the explanation becomes sufficient.

Figure 3.20 – Two users BN instances for IP configuration procedure sharing resources [60].

Sánchez et al. [147], proposed a self-modeling based diagnosis approach using Bayesian
Networks for SDN. The proposed BN model defines the physical, logical, and virtual network
resources and their sub-components (i.e. CPU, ports, application, and its associated configura-
tion) as binary variables, with state (‘down’ or ‘up’) and the edges represent the dependencies
among network components. The authors of [147], applies the BP algorithm to propagate ev-
idence or observations on the defined BN model through the graph based on the CPT until it
reaches the root vertices. Figure 3.21 depicts an example of a failure in the SDN controller.
The SDN controller does not respond to the ping. Thus, the observations about the controller’s
ports down are added to the BN engine. The BN engine determines that the most probable
root cause is the controller with probability 94.2%, with an equal probability (31.4 %) for CPU,
the Floodlight SDN application and configuration. Which specifies three possible root causes
with no more details or explanations.
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Figure 3.21 – An example of a controller failure BN dependency graph [147].

3.4.4 Petri nets

Petri nets are a basic model of dynamic and distributed systems that describe state changes in
a system with transitions and places. Places allow you to represent the states of the system,
while transitions represent the set of events that change the system state. An ordinary Petri net
is a 4-tuple N = (P, T,W−,W+,m0), where:

1. P is a finite set of places;

2. T is a finite set of transitions;

3. P ∩ T = ∅, P ∪ T 6= ∅;

4. W− ∈ [P × T → N], W+ ∈ [T × P → N], are the pre and post arc weight mapping;

5. m0 ∈ [P → N], is a finite multi-set on P representing the initial marking of the Petri net,
i.e. the number of tokens that each place initially holds.

Each place p holds a number of tokens that specifies the state of the system. The occur-
rence of an event corresponds to a transition t. The transitions depend on the availability of
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input resources, in places connected to these transitions, transitions consume these ressources
and produce others in return.

A marking M is a function M : P → N, such as ∀p ∈ P , M(p) is the number of possible
tokens into place p. A transition t ∈ T is enabled (or activated) in marking M , iff ∀p ∈ P,M(p) ≥
W (p, t). Firing t from M yields the new marking M ′ such as that ∀p ∈ P,M ′(p) = M(p) −
W−(p, t) +W+(t, p).

The use of a Petri nets is very often associated with its marking graph. The graph of the
markings of a Petri net N , is a directed graph whose nodes are the markings of N , and each
arc links a marking to another which is immediately accessible by one transition firing. If a
transition tn causes the system to go from stateMn to stateMn+1, then an arc is added between
the markings Mn and Mn+1. However, the construction of the graph of markings requires an
exhaustive enumeration of all the possible system states.

Petri nets enable to define a step semantics, which better expresses the concurrent behav-
iors. In step semantics, one allows a multiset of transitions to fire simultaneously (i.e. a multiset
S is enabled in marking M if M contains enough tokens to fire all transitions in S).

Moreover, Petri net markings can be limited to no more than K tokens: let N be a Petri net,
N is said to be k-safe, if no reachable marking of N can contain more than k tokens in any
place (k ≥ 0).

Figure 3.22 illustrates a successive marking of a Petri net example. In this example, places
are represented as circles, and transitions as flat rectangles, while the arrows stand for W−

and W+. Tokens are represented as black dots places. The initial marking is represented on
the left, with a dot/token in both P0 and P3 : transitions t1, t2 can fire simultaneously, since they
don’t require the same resources. The result is the marking presented in the right. Observe
that t3 and t4 are then exclusive as they compete for the token in P3.

Figure 3.22 – An example of a Petri net with four transitions.

Application of Petri nets in telecommunication networks:

Petri nets were applied in the diagnosis of telecommunication networks. Boubour et al. [10],
applied 1-safe Petri nets to represent failure propagations in telecommunication networks. In
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the model defined by Boubour et al. [10], places represent failures occurence and the transition
of a failure to a secondary one is represented by a transition with the associated alarm pattern
so the nets are acyclic. The capacity of places is one token because of the nature of faults (i.e.
present or absent). Figure 3.23 illustrates the spontaneous and persistent faults modeled with
1-safe Peri nets. A spontaneous fault is not the result of a fault propagation phenomenon, so
it is represented with the first transition t0 with no input, while a persistent fault is a repeated
fault illustrated by a cycle, where P1 is the failure and t1 represents the transition of failure P1
to the same failure (i.e cycle) [10]. Boubour et al. [10], applied Petri nets to Synchronous Data

Figure 3.23 – Spontaneous and persistent faults modeled by Petri nets [10].

Hierarchy (SDH)9. An SDH signal is constructed from Synchronous Transport Module (STM)-1
frames. Figure 3.24 illustrates a part of an SDH data network and its associated management
network. The network is composed of three sensors (s1, s2, s3) associated to the SDH sites.
The network elements (i.e. STM-16, DG) are connected via bi-directional connections. Each of
these elements contains STM-1 ports. A number of components are associated to each port:
Synchronous Physical Interface (SPI), Multiplexage Section (MS), Administrative Unit (AU), etc.
In this example, the STM-1 port P in site DG is disabled. In this architecture, alarms go from
network components (SPI, MS, AU) through the sensors si to the supervisor "S".

Figure 3.25 shows the partial order propagation of faults and alarms due to the occurrence
of a LOSs on a port "P" of the STM-1 module, the corespondent Petri net is illustrated in Figure
3.26.

The detection of fault will then consists in matching alarm patterns to a given observation.
A diagnostic could be provided in the form of a backward tracing of the fault net according to
the alarm pattern.

Varga et al. [145], used Petri nets to detect network faults. Petri nets are applied in a
different way than Boubour et al. [10]. Varga et al. [145], defines Petri nets as action plans to
find the root cause of an alarm. Each alarm has its associated Petri net. An RCA scheduler
is applied to choose the appropriate Petri net model for scheduling the analysis based on

9SDH is a standardized protocol that transfers multiple digital bit streams synchronously over optical fiber using
lasers or highly coherent light networks
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Figure 3.24 – A signal loss failure propagation through port P of SMT-1 [10].

Figure 3.25 – A signal loss failure propagation through port P of SMT-1 [10].

Figure 3.26 – Petri nets modeling propagation of faults resulting from a LOS and the alarms
that results from these faults [10].
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the alarm type. In the defined Petri net model, the transitions are elementary investigation
checks (e.g. a port state check ), while the places represent the input and output results of an
elementary check.

Figure 3.27 – Connectivity failure Petri net model [145].

When an alarm is raised (e.g. a connectivity fault), the scheduler starts running the as-
sociated Petri net by adding a token marking in the appropriate place. For instance, Figure
3.27, depicts the Petri net model for an alarm indicating a loss of connectivity between two de-
vices. The scheduler starts running this Petri nets by adding a token in both "Alarm Notification
params" and "Start evaluation CFM alarm". In the upper branch of verification the CFM or IEEE
802.1ag Loopback (i.e. ping) and linktrace (i.e. traceroot) functions are used as RCA elemen-
tary checks, while in the lower branch a search for a Syslog event such as ”interface down"
errors is also launched. In this example, each port has Maintenance End Points (MEPs) and
Maintenance Intermediate Points (MIPs)10. The RCA decision result depends on the results
obtained from the transitions through "RCA decision". Once the Petri net in Figure 3.27 is ter-
minated the expert will get a number of checks such as the "list of unavailable ports", according
to this checks the expert will make decisions.

Variations of Petri nets were defined in previous works: Guerraz et al. [50], proposes timed
Petri nets. In timed Petri nets the form of partially ordered transition is related to time con-
straints, while Fabre et al. [38], proposes a distribution of the diagnosis procedures by modeling

10MIP and MEP - are software (or Hardware) entities applied for connectivity fault management
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the fault propagations as distributed Petri nets. This work is complementary to the work done
in Boubour et al. [10], with a distribution of the diagnosis of the alarms collected on different su-
pervisors that are communicating asynchronously. Aghasaryan et al. [3] proposed probabilistic
Petri nets to complement the work of Boubour et al. [10]. The use of probabilities enables to
deal with uncertainties due to poor knowledge such as loss of alarms and to provide robustness
in the diagnostic process based on an extension of the algorithm of Viterbi to calculate the most
likely path in the probabilistic Petri net.

Petri nets are dynamic systems that can only encode sequences of events. They have
the the advantage of being able to handle multiple operations to represent dynamic systems.
However, the application of Petri nets to model alarm propagation in networks suffer from alarm
loss. Moreover, the architecture of Petri nets is difficult to scale and generalize in the case of
large dynamic systems.

3.5 Limitations of classical fault management approaches

NVEs offer a number of benefits to MNOs including the reduction of management and de-
ployment costs and the programmability and flexibility of services. However, NFVs will in-
herit a number of vulnerabilities that limited the efficiency of the existing fault management
techniques. The requirements of fault management is remarkably changing, the management
system should take into consideration the various granularity including the logical and virtual
resources. But also the dynamic network topology, the distribution of the tenant resources in
different locations, and the hardware and software dependencies. In this section we describe a
number of NVE issues that we addressed in our survey [16].

1. Fault detection issues:
Fault detection facing alarm storms: the growing number of services in NFV implies
more entities to manage with a growing number of faults alarms. The alarms may origi-
nate from different network layers and resource types. For instance, these alarms can be
traditional OS Syslog messages or other specific alarms defined for each NFV service.
The distribution of VNFs over sites provides more robustness to the network. However,
this brings a new management concern: whether to distribute or centralize the logs and
the management system. Furthermore, in NFV a failure may propagate through layers
and sites, increasing the number of alarms. Dealing with alarm storms requires modern
storing and filtering techniques with early notifications of severe failures [45].

Distribution and consistency of logs: in the detection and localization process, events
in the form of logs or metrics are collected to identify the failures. These events contain
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important information about the health and operations of the system. However, the col-
lected data originate from distinct sources with different formats and are most of the time
ambiguous and full of insignificant information for the diagnosis of faults. In addition to this
complexity, in NVE the distribution of VNFs of the same service causes a lack of visibility
and implies the centralization of logs generated from the different infrastructures where
the VNFs are hosted. Moreover, sharing the MNOs architecture with clients arises chal-
lenging questions such as the separation of clients alarms, notification of tenants, lack
of visibility due to the clients’ access restriction to the owner infrastructure, and sharing
the management task between infrastructure owners and their clients [28]. Figure 3.28
illustrates the multi-tenant fault isolation issue. In this example, a hardware server crash
affects two VNFs (i.e. VNF1 and VNF2) of tenant T1 and T3 respectively. In this case, a
rapid isolation of faults and notification of the two tenants is crucial to provide necessary
recovery actions.

Figure 3.28 – Multi-tenant’s Fault notification ML methods.

2. Fault localization issues:
Table 3.2, depict the advantages, the disadvantages and the limitation of the application
of black-box and white-box approaches to virtual networks fault management. In the
following, we describe these limitations.

Fault localization white-box approaches issues: Model-based techniques use models
that fit the network topology, over accurate and wide range reasoning techniques to pro-
vide explanation about failures. These approaches have two weaknesses: deriving an
accurate model and dealing with huge models [60]. This two weakness became greater
when applied to virtual networks. In fact, the flexibility of NFV enables constant topol-
ogy changes and components relocation in the network. Considering the actual network
topology when a fault occurs is crucial to avoid false positives, i.e. pinpoint a faulty net-
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Approaches Advantages
disadvantages and limitations to
virtual networks fault localization

B
la

ck
-b

ox Rule-based

- Rules are easy to extract
for known problems
- Clear separation between
the data and the control

- System brittleness (no explanation
for novel virtual networks faults)
- Suitable only for fixed domain
- Rules or knowledge acquisition
bottleneck

Case-based
- Learn from experience
- Address novel problems

- No automation of learning loop
- Real-time alarm correlation

Decision trees/
Random Forest

- Interpretable but less explanations
than model-based
- Handle both continuous and
categorical attributes
- Perform well on large data sets

- Intensive training
- Overfitting
- Outdated data for virtual
networks dynamic topologies

NN/
RNN/
LSTM

- Fast and efficient
- Handle incomplete, ambiguous
and imperfect data

- Intensive training
- No explanation for the solution
provided
- Outdated data for virtual networks
dynamic topologies
- Learn known dependencies

W
hi

te
-b

ox

Causality/
dependency
graphs

- Capture the dependencies
between resources
- Explain what happened as
consequences of these failures

- Deterministic relations
- Additive effects of failures
- Difficult to model a complex multi-layer
architecture
-Fit the dynamic topology

Constraint
graphs
/ Bayesian
networks

- Provide explanation about
their solutions
- Classic inference algorithms
- Large scale models
- Possibility to learn and extend
the model

- Difficult to Model a complex
multi-layer architecture
- Fit the dynamic topology

Petri nets
- Handle multiple operations
to represent dynamic systems

-Difficult to scale and generalize in
the case of large dynamic systems

Table 3.2 – Advantages, disadvantages and limitations of classical fault localization approaches
to face virtual networks challenges.
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work component that is not running anymore in the network. Moreover, the coexistence
of physical and virtual entities in the NVE architecture entails new types of dependen-
cies that should be considered when building the model. In addition, in virtual networks
the topology is multi-layered. Therefore, while building the model, one should take into
consideration the different management levels and consider the dependencies between
layers. Moreover, for a good accuracy of fault localization, one should consider a finer
granularity (e.g. application processes) while defining the modeling rules.

Fault localization black-box approaches issues:

Black-box approaches learn fault-symptoms associations from data. For a good accuracy
of the learning process, the training data set must be consistent and contain most of
the system features. However, in virtual network, the dynamicity of the network topology
may obsolete the data set applied in the learning process. For instance, when applying
random forest to classify the states ( e.g. normal or faulty state), suppose that the data
set used for training consider a snapshot of the network topology, while in virtual networks
the components change constantly a replication of a network component may cause false
positives. Moreover, black-box techniques pinpoint faulty components without providing
explanations which are crucial for self-healing actions. For instance, a NN that pinpoints
a VM as faulty while only a process of the application hosted in this VM is in the "stopped"
status. In this situation a simple "run" of this process will solve the problem.

3.6 Novel fault management techniques

In this section we discuss current efforts to tackle the NVEs issues. The recent efforts in fault
management involve automatic actions in their solutions, introducing new concepts and reviving
old ones that became feasible and useful in NVEs.

3.6.1 Self-modeling

To perform fault detection in most of the model-based techniques building the model is an
important step toward fault diagnosis and healing. In earlier networks the construction of the
model was much easier; the network was much smaller with a fixed topology, only standards
and expert knowledge were sufficient to build the model. However, with virtualization, the
topology becomes dynamic which complicates the definition of a model that fits the network
topology. The defined model should be generic in a way that it can be instantiated automatically
to match the topological changes.
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In NVE, few efforts [134, 146] proposed to model virtual networks. Sánchez et al. [134]
proposed the use of the topology description extracted from the SDN controller. The defined
model is a dependency model that is applied for diagnosis using Bayesian networks (Cf. Sec-
tion 3.4.3). To model SDN components, Sánchez et al. [134], defines two types of templates:
the network node template (Nt) and link template (Lt). These templates represent the relation-
ships between virtual and physical sub-components (e.g. CPU and ports) inside each network
element.

Sánchez et al. [134], propose to build the network dependency graph with four steps: the
network topology interpreter, the dependency sub-graph instantiation algorithm, the topologi-
cal sorting algorithm and the edge addition algorithm. In the first step, the network topology
interpreter extracts the network topology from the SDN controller and generates descriptors
that classify the network nodes in the following types: controllers, switches, hosts, control links,
access links and inter switch links. The dependency sub-graph instantiation algorithm is
then used to model the network according to the network descriptor. The algorithm first Identi-
fies the type of network element (node or link) and then instantiates its corresponding template
according to the type of element. The dependency sub-graph of the instantiated network ele-
ment is added to the global network dependency graph. The last two steps (i.e. the topological
sorting algorithm and the edge addition algorithm) are applied to sort the dependency graph
to avoid repeated vertices between the connected sub-graphs and to add the missing edges
between sub-graphs.

Figure 3.29 depicts the different steps of generating a dependency graph. In Figure 3.29,
the Nt and Lt descriptors are modelled into a dependency graph.

Vitrage (addressed in Section 3.3.1) uses a rule-based technique applied on a topology
graph that represents the OpenStack resources. The topology graph is build by an entity graph
module as illustrated in Figure 3.30. In this topology graph (Figure 3.31), the VMs are con-
nected to the hosts with a "contains" relationship and switches to hosts with an "attached"
relationship. The information about the resources is extracted directly from the OpenStack
module Nova. Vitrage also represents the alarms and deduced alarms in the model. The notifi-
cation about an alarm is received from open source monitoring tools (Nagios and Zabbix). The
deduced alarms results from the rules defined by Vitrage templates and evaluated by the Eval-
uator module in Figure 3.30. The alarms are attached with a link "On" to the failed resources
and "causes" link type to indicate the propagation of faults.

Suppose that a new VM is instantiated. The procedure of adding this instance to the graph
is described as follows (Cf. Figure 3.31): first the Nova data source driver gets a message bus
notification about a new Nova instance. It then sends the corresponding event to the Entity
Graph. The Entity Graph returns a Vertex with an edge to the host Vertex in the graph and
notifies Nova through the Notifier module.
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Figure 3.29 – Top left: tree topology (D=2, F=2) and the sub-tree D composed of the switch
(Sw2) and hosts (H1, H2). Top right: The sub-tree D network (Nt) and (Lt) descriptor. Down
the corresponding dependency graph [147].

3.6.2 Self-healing

Self-healing represents the autonomic ability for a system to recover from failures. In NVE,
self-recovery reduces the time of healing and troubleshooting can occur while keeping the
services running. To achieve self-recovery in NVE, several mechanisms have been developed
and improved. Table 3.3 represents a taxonomy of possible self-healing actions according to
the type of faults. Faults can generate from the distinct virtual network layers. Faults could
be due to a server maintenance procedure. In this case a simple notification and migration of
VNFs hosted in the server under maintenance to another hosting server resolves the problem.
Other faults may be due to a network element crash or saturation, or due to a service mis-
configuration. Thanks to the NVE programmability, self-healing became possible. For instance,
in the case of a server crash, a simple VNFs migration resolves the problem. The OPNFV
DOCTOR use case in Figure 3.32, presents the different steps that should be followed for a
rapid fault detection and notification of the affected tenants [109]. In this use case, one of the
servers hosting the Openstack VMs is down. The fault propagates trough the virtualization
layer and affects the running VMs. Once the VIM has identified which VMs are affected, the
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Figure 3.30 – Vitrage architecture [146].

concerned client(s) will be informed to get recovery instructions. In this case, client-1 switches
to the standby VM-1.

In the following, important self-healing mechanisms and associated efforts are depicted:

Opensource recovery tools: OpenStack VIM offers some basic recovery actions when a
VM is down using the Heat module that tries to rebuild the non-responsive VMs. However, it
does not support any failover or redundancy mechanisms. Several solutions fill this gap by
adding OpenStack failover plug-ins like Pacemaker [111]. These failover plug-ins instantiate
redundant VMs to take over the failled ones. Moghaddam et al. [84], proposed to use a multi-
agents system to monitor the VMs in OpenStack. The idea is to apply both the functionalities
offered by PaceMaker and OpenStack modules. When a VM is down a new VM with the same
configurations and services runs instead while the agents recover the failed VM. This process
reduces considerably the recovery time to face the failover problem.

SDN controller failover: redundancy is also a way to secure the fault tolerance of the SDN
controllers. Indeed, OpenFlow, does not support the control plane restoration mechanism.
Moreover, to provide effective failover mechanisms, we should answer arising questions such
as: "which controller is the best replacement for the failed one(s)?", "how many redundant
controllers are needed?", or "how many updates are needed to keep the redundant controller
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Figure 3.31 – The procedure of adding a VM instance-3 before (1) and after (2) [146].

aware of the current network topology ?". However, redundancy or multi-controller architectures
implies dealing with controllers synchronization and network updates overhead [39]. Guo et
al. [52], propose to conduct effective state synchronizations among controllers only when the
load of a specific server exceeds a certain threshold to reduce the synchronization overhead
between controllers.

Channel or Link failover: in SDN, the OpenFlow-Switch can identify a failed link but have
to wait for the controller to establish alternative routes. Efforts [61, 43, 68], discussed the
possible link failure recovery schemes in SDN using protection 11 and restoration12 models.
Hwang and Tang [61], presented a failover solution for both the control and data channels. For
the data channel, both the restoration and protection mechanisms are used. In the restoration
process, the SDN controller computes backup paths based on the complete bipartite graphs of
the network topology, whereas, in the protection mechanism the controller configure the flow
entries of SDN switches. However, in restoration failover time increases proportionally with
the number of switches along the path, while protection has a weakness that it cannot deal
with dynamic changes of network states and may cause congestion due to links reservation.
To address the drawbacks, Ko et al. [68], combined both approaches in a dynamic network
hypervisor based framework. The proposed method consists in the calculation of backup paths

11Protection approach: the routing links are reserved and computed before a failure occurs.
12Restoration: the new links allocation happens after the failures.
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Figure 3.32 – OPNFV Server crash use case.

in a finer time frame (e.g. 5 seconds), and the recovery flow rules are configured only if a
real physical network failure occurs. Soualah et al. [132], proposed to minimize penalties
induced by service interruptions due to physical link failures. A decision tree approach is used
to select reliable paths to prevent link failures and reactively reorient impacted virtual links in
safer physical paths once an outage occurs.

NFV chain service failover: redundancy is also applied to Service Function Chains (SFCs).
When a Service Function (SF) fails, the SFC control plane provides an alternative SF. How-
ever, this procedure may delay the failure when waiting for the alternative SF. Lee and Shin
[74], addressed this problem by shifting the traffic in a case of a SF failure to another running
function stored in the Service Function Forwarding (SFF) list.

Rollback: one of the well known techniques to provide fault tolerance is the rollback ap-
proach. Rollback is a way to recover a system transparently using snapshots [24]. The snap-
shots represent the correct running state of a VM. This state is periodically recorded into a
stable storage to restore it when a failure occurs rather than restarting from the initial state.
This significantly reduces the amount of lost computation. However, rollback augments the ser-
vice down time comparing to normal system initialization. This is due to the huge size of the
snapshot which is proportional to the VM size. To reduce the rollback latency problem, Cui et
al. [24], proposed a rollback system which takes advantage of the similarity among VMs. The
proposed solution leverages multicast to transfer the identical pages across VMs to disperse
hosts with a single copy, rather than deliver them individually and independently.

3.6.3 Fault injection

The fault injection process consists on a number of defects injected on the network. Different
fault injection scenarios are possible depending on the injection target and the fault type. The
target represents the network element where the fault is injected. It could be a CPU usage
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of a VM, a process or a network link. The faults could be applied to stress the network (e.g.
CPU overload) or to completely disable the target (e.g. stop a physical server). Usually, the
fault injection process is applied to test the network robustness such as the chaos monkey
techniques used by Netflix [90]. The chaos monkey technique aims at collecting network per-
formance under faults and evaluating the network ability to provide and maintain an acceptable
SLA. Cotroneo et al. [22], also proposed to apply fault injection to evaluate virtual network use-
cases such as vIMS. The authors proposed a taxonomy of faults injected to these use-cases.
The aim is to provide a dependability benchmark to support NFV providers at making informed
decisions about which virtualization, management, and application solutions can achieve the
best dependability. Fault injection is also applied to provide the learning and validation data
set for ML methods. In fact, acquiring this data could take several days, for example Gonzalez
et al. [46] waited 206 days for around 21,442 network events. Efforts [126, 114], proposed
the use of fault injection models to shorten this time. Sauvanaud et al. [126], triggered two
methods of faults injection applied to vIMS: local fault injection applied in single VMs (increase
of CPU consumption, memory leaks, etc.) and global fault injection applied to the global vIMS
network (heavy workload). Pham et al. [114], applied faults injection to learn a set of fault-
symptoms combinations in OpenStack. The aim is to use this fault-symptoms combinations to
find the nearest fault type in the data-set that describes symptoms in the case of a network
malfunction.

3.6.4 Discussion

Most of the addressed efforts tend to use automation for the fault management steps. Thanks
to virtualization, a lot of efforts [84, 112, 61, 43, 68, 132, 74, 24, 129] apply self-healing and
failover mechanisms such as redundancy and rollback. In the fault localization process, black-
box ML approaches perform very well when it comes to extracting features from data and
predicting the future behavior of the network state [11]. However, the learned features should
provide a non-acquired knowledge (i.e. network components dependencies) and avoid learn-
ing knowledge that is easily extracted from data such as the dependencies due to network
topology. For instance, the dependency between a VM and the hosting server learned in the
work [46], is easily extracted from the network topology description. Furthermore, white-box
approaches provide better fault explanations and are able to consider smaller granularity since
sub-components such as processes can be considered in the model definition. However, due
to the virtualization challenges such as the dynamic network topology, few efforts [147, 146]
proposed white-box techniques in virtual networks. Moreover, fault localization proposals such
as [146, 46, 126], are focusing on the management of the virtual layer. Faults in application or
process levels that generate service alarms are not addressed.
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3.7 Positioning of the thesis work

To progress towards the more ambitious objectives mentioned above, one must adopt a model-
based approach, which provides explanations for their decisions and conclusions since each
stage in the analysis can be followed and understood. However, virtualization introduced a
number of issues and challenges for network fault management that we addressed in Section
3.5. Particularity, we refer to the challenges of model-based approaches: the lack of visibility on
a global scale, the complexity and heterogeneity of virtual networks, and the topology constant
changes and components relocation in the network. To face this issues, we propose three steps
described in Chapters 4, 5 and 6, respectively. In the first step (Chapter 4), we propose a fault
management framework to collect, centralize and filter logs for the fault localization process.
In the second and third step (Chapters 5 and 6), we propose a self-modeling and an active
diagnosis process. The position and contributions of our work compared to the existent fault
localization solutions in virtual networks are the following:

• We propose a self-modeling approach to provide explanation about the faults rather than
only pinpointing the faulty component such as in the case of [114]. The proposed self-
modeling process with the diagnosis approach enables to explain novel virtual networks
faults considering all the network layers (i.e. physical, virtual, application and service). In
fact, applying a model-based approach allows to detect novel faults and not only the ones
described in the diagnosis engine and rules such as the case of rule-based techniques
(vitrage [146]);

• We propose to use the existent languages and definitions to model the network and to
learn only the behaviors that are not easy to extract or deduce instead of learning already
known dependencies from data. For instance, learning dependencies that are due to
network topology links between components such as the case of [46]. We apply fault
injection in order to learn the dependencies that are not described by experts or service
description files and to extend and validate the defined modeling rules;

• The proposed model is a dependency graph (Section 3.4.1) with Boolean nodes and
logical dependencies extendable to a probabilistic graph (i.e. BNs Section 3.4.3). When
a fault occurs, the model can be instantiated to fit the current network topology using a
self-modeling algorithm and the topology description file. We consider alarms and logs
from service level. Till now, approaches [46, 146, 147, 126, 125], only consider virtual
infrastructure logs and alarms;

• The self-modeling approach gathers the main features of virtual network use-cases (i.e.
multi-layered, elasticity and auto-recovery). In our work, we apply this approach on the
real world Clearwater vIMS use-case;
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• The proposed diagnosis process is provided with observations through tests. We applied
a constraints solver (Section 3.4.2) in the dependency graph to pinpoint the root cause(s)
even when the root cause(s) has a smaller granularity such as application processes.
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CHAPTER 4

LUMEN: A GLOBAL FAULT

MANAGEMENT FRAMEWORK

4.1 Introduction

Virtualization of networks introduced a number of issues to fault management including: lack
of network understanding due to complex topologies of interconnected components, lack of
consistency and ambiguity of data and the dynamic network topology addressed in Chapter 3.
To accomplish our ambitious self-modeling approach of virtual networks, we worked on virtual
networks’ data types and virtual network components behaviors. This phase is a preliminary
step to the self-modeling procedure. In this phase, we defined a global fault management
framework, namely LUMEN, that defines the canonical steps of fault management [17]. We
highlighted the necessity to provide automation to the canonical fault management steps. LU-
MEN summarizes the fault management steps in four planes: source, sink, extraction and
decision. The first three planes compose the detection step. In these three phases, the data
is remodeled to prepare the decision plane where deduction methods can be deployed. The
word "data" is used to describe all the type of collected information in the network. It could be:
logs, components status, service and topology description files. These data are collected from
network components, orchestrators (e.g. OpenStack) and monitoring agents. In this chapter,
we will depict the LUMEN framework in Section 4.2 and illustrate its application to the Docker-
based Clearwater vIMS use case. This chapter also addresses the virtual networks data types
in Section 4.3 and the taxonomy of open source projects applied in our testbed to apply a
self-modeling approach for virtual networks.

4.2 LUMEN global fault management framework

LUMEN is a Global Fault Management Framework for NVE. Figure 4.1 illustrates the four
step architecture where each plane summarizes the methods to address the different NVEs
challenges. LUMEN addresses the challenge of lack of network visibility by centralizing the
collected data (i.e. logs and metrics) in one source plane. As depicted in Chapter 3 Section
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3.5, the distribution of VNFs composing a same network service in distinct locations causes a
lack of visibility, especially if each VNF is managed locally (i.e. logs of each location are treated
separately). Therefore, centralizing the logs of VNFs composing a same service is necessarily
to fault detection. Moreover, in LUMEN, we face the tenants faults isolation challenge by
filtering and separating each tenant logs.

Figure 4.1 illustrates the four steps of the LUMEN framework. In the "source" plane, we
showcase the different data types (logs, metrics, and network topology) that can be collected
from distinct virtual environments (e.g. SDN and NFV). In the "sink" plane this data is filtered,
organized and stored. The "extraction" plane depicts the procedure of data extraction according
to the formalism applied in the decision plane.

Figure 4.1 – LUMEN framework composed of four layers (source, sink, extraction and deci-
sion).

The objective of the LUMEN framework is to structure the different procedures applied
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to organize and prepare data (i.e. Logs, metrics and service descriptors) for the deductions
methods. The LUMEN framework leverages open source tools, namely the Elastic Stack [31].
The LUMEN framework can include different tools at each layer if necessary. The Elastic Stack
ensures a real time data collection, storage, search, analysis, and visualization. The Elastic
Stack is generally composed of four tools:

• Beats: are lightweight data shippers that can be installed as dedicated agents on man-
aged entities to send specific types of operational data.

• Logstash: allows larger data collection and enables filtering, enriching, and transforming
data from a variety of sources.

• Elasticsearch: is a search engine and analytics NoSQL database designed for storing
efficiently the gathered data.

• Kibana: is used for the data extraction and visualization.

Information about the network health and the topology changes are collected in the LUMEN
framework. However, this data is frequently noisy for the fault diagnosis process. For instance,
only syslog messages that have severity level from 0 to 4 (i.e. 0: emergency, 1: alert, 2: critical,
3: error and 4: warning) are considered for the RCA process, informative syslog messages are
not important in the case of a fault. The different LUMEN planes are depicted in the following
Section 4.2.1.

4.2.1 LUMEN Planes

LUMEN enables the autonomic collection and organization of data to prepare the fault manage-
ment decision process. The first three planes represent the detection step in fault management.
The fourth plane represents the localization and recovery step. The functions of the LUMEN
framework planes are described in the following.
I. Source Plane: the first step of our framework consists in gathering logs and metrics from
distinct entities and distributed locations. For example, the Beats agents of the Elastic Stack
can be deployed in every network entity to send real time alarms and metrics to Elasticsearch.
The gathered data depends on the deduction method and the process that will be deployed
in the decision plane. For instance, one way to answer the problem of dynamic topology for
the model-based technique is to model the network entities dependencies using the real time
network topology information extracted from files describing the deployed entities and their
connections. The network topology information can be found in SDN controllers or networking
modules like OpenStack Neutron [103]. Monitoring data such as logs and alarms are also
an important source of inputs. They generally contain relevant hidden information about the
network state, faults and root causes.
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In virtual networks, we can collect different types and formats of data that may originate
from distinct management levels:

• The type of data: if the collected data is syslog logs, metrics or topology information.
The types of data are further discussed in Section 4.3.

• The management entity: if the collected data concern a specific tenant or the whole
infrastructure.

• The granularity: if the collected logs and metrics concern a virtual host (e.g. a VM CPU
load) or a whole service (e.g. the number of packets).

When proceeding to collect information about virtual networks, we may face the following
questions: what is the type of data that we want to collect? at which level of granularity? and
where? The answer of these questions depends on the type of management and decision pro-
cedures. For instance, to monitor the performance of VMs in the virtual layer, we can proceed
by collecting VMs metrics such as CPU, memory, and disk utilization.

II. Sink Plane: Since the collected data originates from different sources, entities and ap-
plied technologies, the data will have different formats (e.g. syslog or JavaScript Object Nota-
tion (JSON) format for logs). Therefore, a unification of the data formats and the organization
of data is important to facilitate the next steps of fault management. Moreover, the data should
be filtered and the insignificant messages should be dropped. Filtering logs is the procedure
of keeping only significant logs for the decision process. Significant logs are the logs that are
useful for the decision procedure. For instance, if one wishes to monitor only logs of a specific
tenant-A that is sharing resources with other tenants in the same infrastructure, filtering logs in
this case consists in isolating the logs of tenant-A.

Figure 4.2-D presents an example of a controller syslog message structured by Logstash in
a JSON format. JSON is a lightweight file description format that uses human-readable text to
transmit data objects [64]. Logstash unifies messages from disparate sources and normalizes
the structure of the message before storing it in the sink. Figure 4.2-A and 4.2-B exposes
how Filebeat configuration files enables message filtering and dropping irrelevant information,
respectively. In Figure 4.2-A, a filter was added "include-lines" to consider the log line that has
the "ERR" for error and "WARN" for warning tags. In Figure 4.2-B, the log lines that has the
word "DBG" for debug messages are dropped. This way of filtering logs is necessary in fault
diagnosis, to keep only the critical messages that notify a fault in the network.

Adding additional indications before the storing process is also crucial to localize the tenants
and the network slices in further fault management steps. Filebeat transforms the data by
adding new fields (Figure 4.2-C). In fact, one way to separate the logs collected from distinct
tenants is to add a tenant identification field in the stored logs. For instance, in Figure 4.2-C an
additional field called "slice_id" was added to identify the log owner.
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Figure 4.2 – Elastic Stack Logs transformation

After the data transformation process is completed, the collected logs can be stored in
a sink, Elasticsearch for instance [31]. Elasticsearch is a robust search engine and NOSQL
database, that centralizes data and enables efficient extraction of features.

III. Extraction Plane: This step is highly dependent of the decision process. In fact, the
extraction of data depends on the inference engine used by the decision methods. For instance,
some KPIs such as VM CPU and disk load can be mined to calculate VNF SLA violations. APIs
of the sink plane can be used for the data extraction process.

IV. Decision Plane: In this step we create an educated guess through one or more de-
duction methods and diagnosis approaches. This step is enabled by the first three planes that
provide the necessary data in a unified and organized way for an efficient decision process.
Note that this is where the diagnosis algorithm that we will depict later in Chapter 6 is instanti-
ated. The visualization of logs and metrics is not depicted in the LUMEN framework. However,
a number of open source tools can be applied to visualize logs or metrics: Elastic Stack Kibana
[67], Grafana [49], etc.
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4.3 Virtual Networks data

The main observable facts/observation families in networks are: metrics, logs, traces, and
alerts. However, in virtual networks other types of data are necessary to apply a model-based
approach (e.g. the network topology and service specifications). The virtual network data
(or knowledge) are of two types: acquired and learned data (Cf Table4.1). The acquired
knowledge is the available knowledge collected from the network description files or logs. This
knowledge is applied to learn the building rules of the model, to define the current topology or
define the status of some network components. We call this data "knowledge" since it provides
information about the network dependencies, component status, network topology, services
description, etc. In virtual networks the acquired knowledge could be:

• Service specifications: the knowledge about the service component requirements and
capabilities that we can obtain from description languages and standards like TOSCA
[142], expert operators or network protocols.

• Observations: available in a running environment, observations represent the status of
the deployed services, the virtual and physical hosting environment, the network func-
tions’ connections and components. This knowledge can be collected from orchestra-
tors such as the Docker engine and OpenStack modules or open source tools (e.g.
Weavescope a monitoring tool for Docker and Kubernetes [149]).

• Network topology data: can be extracted from SDN controllers or VIMs such as Open-
Stack or the Docker engine. This type of data will provide a real time vision about the
location of the virtual network entities in physical servers and infrastructures.

On the other hand the learned knowledge is acquired by tests and fault injections. The tests are
performed to obtain information about the health of network components. While, fault injection
is conducted to learn about the components dependencies.

Table 4.1 – Acquired and learned knowledge

Acquired knowledge Learned knowledge
- The network service model
including the components
requirements and capabilities
(e.g TOSCA).
- The network topology, physical
and virtual dependencies.

- Tests (e.g ping)
- Fault injection (e.g link severing)
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4.4 Application of LUMEN to the vIMS use case

In our work, we applied the LUMEN framework for collecting and filtering the vIMS logs. We
also opensourced the code in our project stored in the GitHub repository [85]). The use case
applied in the LUMEN source plane is the Docker-based Clearwater vIMS use case [138]. The
Clearwater project defined its own logging procedure. Each Clearwater component (e.g. Bono,
Sprout) generates logs and stores them internally (i.e. inside the Docker volume attached to
the component that is running). So we proceeded to centralize the logs of all the Clearwater
components in one location using the open source Elastic stack. The procedures: vIMS de-
ployment, traffic generation, fault injection and log collection and filtering are depicted in the
following sections. These procedures represent the first three planes of LUMEN that prepare
the decision plane. The decision plane consists of the self-modeling procedure and active diag-
nosis algorithm that we will address in the next chapters. More technical details and examples
about the procedures depicted in the following are provided in the Appendix C 7.2.4.

4.4.1 Docker Clearwater vIMS deployment

The deployed vIMS is the open source project Clearwater. We were interested in the Docker
version of this project, since Dockers are lightweight and generate less overhead compared to
VMs. The original project is hosted in the GitHub repository [139]. This project builds the Docker
images in each execution. We modified the file containing the functions into a Docker-compose
to consider the already built images stored in the public Docker-hub, for a faster instantiating of
Docker images. The modified project is hosted in the GitHub repository: [138]. When deploying
Clearwater, we discovered a number of features that are crucial when constructing the modeling
rules. These features are depicted in the Appendix C 7.2.4.

4.4.2 Traffic generation

A number of SIP traffic generators exists: client SIP services (e.g Jitsi [65]) and Open source
test tools (e.g SIPp [130]). These solutions enables to generate SIP traffic through a bunch of
SIP clients. The Clearwater dashboard Ellis allows to create and modify the identity of the SIP
clients.

4.4.3 Fault injection procedure

Usually, fault injection is applied to test network robustness in order to increase its resilience,
such as the chaos monkey techniques used by Netflix [90], (Cf. Chapter 3, Section 3.6.3).
However, in our case, fault injection is applied to learn network dependencies in order to verify
and expand our knowledge about vIMS. This knowledge will be applied to define the modeling
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rules in the next chapter. These technique also provides a way to check the validity of the
diagnosis results.

Network layers Fault injection Reverse actions: healing

(1)
Physical
network

Disconnect physical servers. Connect physical servers.

Physical
hardware

Disable physical servers. Migrate network functions.

(2)

Local virtual
network

Disable the shared network bridge.
Enable the shared
network bridge.

Distant virtual
networks

Disable the overlay network. Enable the overlay network.

Virtual hosts

- Kill /Stop Dockers
(functions /recovery/ config).
- Disconnect Dockers from the
network bridge and overlay networks.

- Start new Dockers
/ Restart the old Dockers.
- Reconnect the same Dockers
or kill the old Dockers
and connect new Dockers.

(3)

Application
processes

Kill / Stop processes.
Start new / Restart the processes
if auto-recovery disabled.

auto-recovery
processes

Kill/Stop auto-recovery
processes (e.g. Monit)

Start new/Restart the auto-recovery
processes e.g. Monit.

Configuration
management

processes
Kill/Stop ETCD Client processes. Start new /Restart ETCD processes.

(4) Services
Increase the number of

clients registration requests.
Decrease the number of clients

or add resources (e.g Bono).

Table 4.2 – Overview of the fault injection model in each layer: (1) Physical, (2) virtual, (3)
application and (4) service.

To inject faults, two methods are possible. The first method consists in stressing the net-
work by injecting more traffic. The second method consists in crashing network components,
processes and links. In our testbed we mostly apply the second type of faults while trying each
time to target a different network layer. Table 4.2 summarizes a number of faults injected in
the vIMS Clearwater environment and the reverse actions that represent the healing of each
fault injection to regain the network health. Note that theses faults are injected separately and
manually to the deployed vIMS. Moreover, the "kill" and " Stop" fault are different. The "Kill"
fault means that the target where this fault is injected die and can not return to the "run" state,
while a "Stop" fault only suspends the target and can be restarted.
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4.4.4 Logs collection and filtering

In this step we deployed a number of monitoring tools to collect observations about the network
before and after fault injection. The observations consist of:

• The alarms and logs of the Clearwater components that we collect from each network
function and filter and store in the Elasticsearch sink.

• The real-time status of components from Weave Scope and Docker engine.

• The network health reports collected from the Clearwater -live-test.

4.5 Conclusion

This chapter 4 addresses the first challenges of virtual networks: lack of network visibility,
isolation of tenants faults and the consistency and ambiguity of data. This allows us to prepare
the fault localization step. In the next Chapter 5, we will depict the self-modeling procedure and
illustrate how each of the steps addressed in this chapter are useful when defining the modeling
rules and validating them.
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CHAPTER 5

SELF-MODELING

5.1 Introduction

Model-based approaches are knowledge-based systems which reason about a system from an
explicit representation of its structure and functional behavior. Model-based techniques solve
novel diagnosis problems and provide explanations for their decisions. However, current Model-
based methods suffer some limitations, since virtual networks bring new challenges such as
their complex multi-layer nature, the coupling of physical and virtual behaviors, the lack of
network visibility due to the distribution of VNFs in distinct sites, the dynamic topology and the
elasticity of services. Those limitations raise the difficulty of obtaining a reliable and up-to-date
model.

To face those limitations, we propose a self-modeling approach and illustrate it on the vIMS
use-case. The vIMS use-case includes most of the infrastructure and service specifications
that we can identify in a virtual telecommunication environment. The proposed model is a
multi-resolution directed acyclic graph that represents the intra-layer and inter-layer logical de-
pendencies with fine grain and coarse grain variables.

5.2 Self-modeling approach overview

The main weaknesses of model-based diagnosis methods is the derivation and the validation of
a suited model for the diagnosis process, in particular if one wishes to capture several network
layers and segments with different granularity. Another difficulty is that the defined model should
follow the network updates. Our goal is to define a generic modeling methodology and an
online reconfigurable model. We understand by "generic model", the ability to instantiate the
model no matter the elasticity of services and dynamicity of the network topology; and by an
online reconfigurable model the fact that our model captures the topology changes such as the
migration, elasticity and scalability of VNFs. However, we assume that the topology changes
are slow compared to the faults and alarms propagation, so the diagnosis will be performed on
a fixed and supposedly up to date model. Moreover, the model should represent the network
components from the physical level up to the service layer.
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Our main motivation in deriving such a model regarding the number of challenges intro-
duced by the virtual networks is the existence of a double nature of knowledge (Table 4.1):
acquired and learned knowledge, presented in Chapter 4, Section 4.3. We understand by
"knowledge" an expertise about the network that enables us to build the model. This knowl-
edge is usually extracted from experts or network description files (i.e. acquired knowledge).
However, this knowledge can also be directly inferred from the network using fault injections
(i.e. learned knowledge), such as described in the previous Chapter 4, Section 4.3.

Figure 5.1 illustrates the two steps of the global self-modeling approach: the construction of
the building rules and the self-modeling procedure. The first step consists in defining the build-
ing rules for the use-case we want to monitor using the two types of knowledge (i.e. acquired
and learned knowledge). These rules are then validated and stored in a knowledge base. The
second step represents the self-modeling procedure that builds a model instance fitting the cur-
rent network topology and following the building rules. The first step is described in Section 5.3
that describes the modeling or building rules and in Section 5.6 that showcases the validation
of the defined building rules. The self-modeling algorithm, depicted in the bottom part of Figure
5.1, is defined in Section 5.5.

Figure 5.1 – Model construction and self-modeling Process

5.3 Modeling rules derivation

To define the modeling rules, we process with the first step represented in Figure 5.1 (top).
Our modeling rules represent a number of generic network components and their possible
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dependencies represented as generic templates. A network component could be a VNF, a
connection, or a service. For each network layer a number of templates are defined for com-
ponents. For instance, servers or sites in the physical layer, the Dockers or VMs in the virtual
layer, the VNFs and their processes in the application layer and finally the services running on
top of the network under the form of requests sent between VNFs. Templates can be thought of
as "object classes" in the object-oriented paradigm. Used modeling rules will then reassemble
a class diagram. The aim of the modeling rules is to construct a graph of Boolean variables
and logical dependencies describing all the network components using the defined component
templates (i.e. an object diagram, following the object oriented programming metaphor). The
resulting graph represents assembled instances of templates describing the network compo-
nents. Components of the same nature have the same template with distinct instances of this
template. The instantiation of these templates is operated by the self-modeling algorithm that
we will define in Section 5.5.

A template represents a generic description of a network component defined as a Directed
Acyclic Graph (DAG): G = (V,E), with a set of nodes V and a set of edges E ⊆ V × V . The
nodes represent Boolean state variables for this component type and the edges are logical rela-
tions. Each template (class) can have multiple instances (objects) in the network model. Each
node is "labeled" with a unique name in each template instance. The nodes’ unique labeling
enables the assembling of the different template instances to construct the global model. Fig-
ure 5.2-a illustrates a model example based on three distinct templates. Each of the templates
Template_1 and Template_2 has two instances. Template_3 has only one instance. These
instances are assembled through the labels of nodes such as depicted in Figure 5.2-b.

Nodes V are Boolean variables with value True for an "Up" status and False for a "Down"
status for the component state it represents. We define for each node v ∈ V a number of
attributes represented as a tuple `(v) = (lv, tv, SFv) where lv is the network layer to which the
node belongs:

lv =


0 if physical layer
1 if virtual layer
2 if application layer
3 if service layer

tv ∈ {true, false} indicates whether the state of node v is directly testable from the network
(tv = true, means testable), and SFv indicates if the nodes can represent spontaneous fault or
not (i.e. the node can be "Down" regardless of the value of its predecessors in the graph G).
SFv can take three different values:

SFv =
{

0 if non spontaneous node
1 if spontaneous node
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Figure 5.2 – Example of assembling templates instances.

Relation between a node and its predecessors:

We label each edge E(v′, v) with a type of the logical relationship defined as: d(v′,v) ∈
{AND,OR,⇒,⇐}. The {⇐,⇒} are an implicit way to represent the logical edge types ¬A =⇒
¬B and {B =⇒ B}, respectively.

We define a "valuation" on G as a function val : V → {true, false} be a function that indi-
cates, at a given time, the state of each node v ∈ V , where for nodes representing an entity of
the network, val(v) tells us whether node v is up.

op constraint on val
AND val(v) =

∧
v′:d(v′,v)∈{AND}

val(v′)
OR val(v) =

∨
v′:d(v′,v)∈{OR}

val(v′)
⇒ ∃!v′ : d(v′,v)∈{⇒} ∧

(
val(v′) =⇒ val(v)

)
⇐ ∃!v′ : d(v′,v)∈{⇐}

(
¬val(v′) =⇒ ¬val(v)

)
Intuitively, nodes v′ that have d(v′,v) = {AND} (resp. d(v′,v) = {OR}) means that node v is up
if and only if nodes v′ are up (resp. at least one of the nodes v′ is up). The dependency types
⇒ and⇐ means that node v is up at least when its predecessor v′ is up (resp. down when its
predecessor is down).

Figure 5.3 shows the five possible dependencies configurations in our current model. In the
first four cases, the dependencies between a node v and its parents v′ ∈ (v1, .., vm) are of the
same type d(v′,v) = ”⇒ ”, d(v′,v) = ”⇐ ”, d(v′,v) = ”OR”, d(v′,v) = ”AND”. Notice that the case
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d(v′,v) = ” ⇒ ” is equivalent to the case d(v,v′) = ” ⇐ ”. However, we represent both cases to
express the causality relation between nodes that is necessary to the diagnosis process that
we will present in Chapter 6. The only case where we have two different types is represented in
the last configuration. These case is present generally due to the inter-layer dependencies of
type⇐. In this case, the node vk is in a the upper layer than v (i.e. an inter-layer dependency).
This dependency is translated separately (Figure 5.3 in blue).

val(v) =
∧

v′:d(v′,v)∈{AND}
val(v′) val(v) =

∨
v′:d(v′,v)∈{OR}

val(v′)

v′ : d(v′,v)∈{⇐} ∧
(
¬val(v′) =⇒ ¬val(v)

)
∃!v′ : d(v′,v)∈{⇒} ∧

(
val(v′) =⇒ val(v)

)

{
val(v) =

∨
v′:d(v′,v)∈{AND}

val(v′)
v′ : d(v′,v)∈{⇐} ∧

(
¬val(vk) =⇒ ¬val(v)

)
Figure 5.3 – Possible dependencies and their associated assumptions

To construct this templates we leverage both types of knowledge:

1. The acquired knowledge: this type of knowledge is applied to construct a first representa-
tion of the relations constituting the templates such as the relation deduced from the fact
that if a Docker is down, the VNF hosted on the affected Docker is down.

2. The learned knowledge: this type of knowledge provides dependencies that are difficult
to obtain from the network environment and that can only be discovered experimentally.
We learn these dependencies by injecting a failure in a node, a process or a link; and
observe the behaviors of the connected components. For instance, while injecting faults,
we may notice the existence of an auto-recovery procedure that should be considered in
the modeling rules. This part is further depicted in Section 5.6.

Deployed virtual network services may differ in the type of applied virtualization technologies
(i.e. Docker or VMs OpenStack.), the deployed VNFs and protocols. However, a number of
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common features and components between these virtual network services exist and can be
incorporated to the defined templates.

Figure 5.4, illustrates a generic structure of virtual networks. Virtual networks are structured
into multiple layers (i.e. physical, virtual, application and service layer). In each layer a number
of components are present (e.g. servers and physical links in the physical layer). Other aspects
such as elasticity (or replication) of VNFs and auto-recovery mechanisms are possible. Each of
these features are defined in "templates" described in the following. Note that these is a general
description of possible templates in virtual networks. These templates can be extended with
other nodes and dependencies that are specific to the use-case we want to model. To represent

Figure 5.4 – Virtual networks global architecture.

the features of virtual networks, we divide the templates into five groups:

• Network elements templates: gather the templates that define the network components
composing each layer. For instance, sites for the physical layer. The network connections
are not described in this group.

• Network connections templates: group the templates that describe the network con-
nections in each layer.

• Aggregated node templates: describe two templates for aggregated nodes in the phys-
ical and virtual layer.

• Auto-recovery and elasticity templates: gather the templates that define two features
of virtual network: the auto-recovery mechanism and the elasticity of VNFs.

• Inter-layer templates: describe the templates that link the four layers of virtual networks.

Network elements templates:
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Figure 5.5 – Network elements templates.

• Site template (T.site), (Figure 5.5-a): defines a physical site. Each physical site is a
sub-graph composed of two nodes: a status Si and a connectivity node Cij . The status
node Si is a Boolean variable that expresses the status of the physical server (i.e. Up or
down). The Cij node represents the status of the physical connectivity between sitei and
sitej . Nodes Si and Cij are linked with a relationship type "A =⇒ B". If a site is isolated
from the other sites, then the physical connectivity node is omitted.

• Virtual host template (T.V H), (Figure 5.5-b): describes the virtual hosting nodes (i.e.
Dockers or VMs). Each V H has a status node V HS and a connectivity node V HC , linked
with a relationship type "A =⇒ B". The node V H is related with V HS and V HC with an
"AND" relationship.

• VNF application template (T.APP ), (Figure 5.5-c): defines the global VNF application
template. VNFs are software programs with a number of processes. A general view of the
VNF template is illustrated in Figure 5.5-c. The application depends on process status.
Thus the relationship "And", between the application and its processes. However, each
VNF has its own template composition depending on the code of the application. We will
depict further examples of VNFs composing the vIMS use-case in Section 5.4.

• Service template (T.service), (Figure 5.5-d): defines the service dependencies. A ser-
vice is composed of a set of connected VNFs. Therefore, we define the service template
with an "AND" relationship between a set of VNFs nodes and the logical connection be-
tween them.
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Network connections templates:

Figure 5.6 – Network connections templates.

• Physical Connectivity template (T.PC): is represented by the variables Cij between
Sitei and Sitej defined in the site template as depicted in Figure 5.6-a.

• Local Virtual Connectivity template (T.LV C) description differs from one virtual-
ization technology to another. It could be an SDN controller and switches or a Docker
bridge network. We give a general view of the local virtual network variable and its de-
pendencies in Figure 5.6-b. A local virtual connectivity is represented as a virtual network
node linked with an "A =⇒ B" relationship with the virtual hosts connectivity nodes
V HC . In other words, if a virtual network node is "down" than all the virtual hosts con-
nected to that network are disconnected to the local network so their connections status
are "down".
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• Distant Virtual Connectivity template (T.DV C): represents a virtual connection
between two distinct sites (e.g. an overlay network in Docker). It generally depends on
its status and the synchronization of the virtual network mechanism of the two sites (Cf.
Figure 5.6-c).

• Local Logical Connectivity (T.LLC) and Distant Logical Connectivity (T.DLC):
represent the status of the connection between two applications. In fact, the connec-
tion between two applications depends generally on the status of the two applications.
However, some connectivity mechanisms such as DNS may also be related to these
templates. The logical connectivity can be between two local applications (i.e. both ap-
plications are hosted by the same servers), or distant (hosted by different servers). The
local logical Connectivity (T.LLC) and distant logical connectivity (T.DLC) are illustrated
in Figure 5.6-d and Figure 5.6-e, respectively. The two kinds of logical connectivity are
defined in the same way, the difference appears in the inter-layer templates.

Aggregated nodes templates: (towards a multi-resolution model)

Figure 5.7 – Aggregated nodes template.

Aggregated nodes are introduced to abstractly represent a set of atomic nodes in order to
enable diagnosis on multiple levels of abstraction. For instance, if we want to suppose that the
virtual and physical layer are "up", we only have to set the aggregated variables of sites and
virtual layers to "up". In fact, all the nodes of templates that have successors (i.e. not leaves) are
considered as aggregated nodes. Moreover, two global aggregated node templates have been
defined for sites and virtual environments. These nodes enable to separate the management
with the application and service layers when necessary.
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• Aggregated node template for sites (T.AnS), (Figure 5.7-a): describes an aggre-
gated node S for sites. It aggregates all the status and connection site variables to
express the server availability 1.

• Aggregated node template for virtual hosts (T.AnVi), (Figure 5.7-b): describes an
aggregated node Vi for the virtual environment. It aggregates all the virtual hosts variables
contained in the same site Si and the local virtual network that connects the virtual nodes.
The T.AnVi is only instantiated when the number of virtual environment of the same site
are greater than 1.

Auto-recovery and elasticity templates:
Virtual network service use-cases such as vIMS, have two specific features: auto-recovery
and elasticity. Auto-recovery are mechanisms defined to auto-monitor the system. They are
responsible for checking the status of the monitored components and restart these components
in the case of their failure. For instance, an auto-recovery mechanism to check the status of
VMs. In the other hand, the elasticity aspect of network components means that the same

Figure 5.8 – Auto-recovery (T.AR) and elasticity (T.EL) templates.

component is replicated to ensure a coverage in the case of a failure or huge service request
1Note that the aggregated node for sites is only instantiated when the number of sites that we want to model is

greater than 1
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load. The auto-recovery and elasticity templates are illustrated in Figure 5.8 and defined as
follows:

• Auto-recovery template (T.AR): the auto-recovery node is linked with a "A =⇒ B"
relationship with the components that are monitored by this node. Figure 5.8-a showcases
an example of an auto-recovery node template applied to a set of VMs. These node
recovers the VMs in the case of a failure.

• Elasticity template (T.EL): this template defines an aggregated node that gathers the
replicated nodes with an "OR" relationship. It means that all the replicated nodes must be
"down" for the replicated function to be "down".

Figure 5.8-b illustrates a replication of a virtual host offering the same application. In this
example V H1 status depends on the status of (V H11 OR V H12). Note that if a virtual
host is replicated, its application template is also updated with an aggregated node that
represents the elasticity in the application layer. This case is illustrated in Figure 5.8-c.

Inter-layer dependencies:
The inter-layer dependencies (T.inter) represent the relationships between the different layers
nodes and are of two types: inter-layer dependencies on components status and inter-layer
dependencies on connectivity as illustrated in Figure 5.9.

Figure 5.9 – Inter-layer dependencies.

In fact the status of an application depends on the hosting environment that depends on its
turn on the server status. The inter-layer connectivity relationships differ in the case where the
logical connectivity node is between two local applications (i.e. the applications are running in
the same server) or distant ones. In the first case the connectivity depends on the local network
and the virtual hosts. In the second case it depends on the distant virtual connectivity that in
turn depends on the physical connectivity node Cij .
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5.4 Real world application: Clearwater vIMS self-modeling

In this section, we present an application of our building rules in the Docker Clearwater vIMS
use-case. As mentioned in the definition of the templates in Section 5.3, the model of virtual
networks captures four layers: physical, virtual, application and service layer. This structur-
ing also allows one to model each layer by progressive refinements, thus selecting the finest
granularity to manage the network.

In the self-modeling procedure of Clearwater, we only consider the central Clearwater
vIMS functions namely: Bono, Sprout, Homestead, Homer and Cassandra. We omit Ralf and
Chronos that are responsible for billing the clients communications and Ellis that represents the
Clearwater dashboard. The deployed functions are hosted in Docker containers. Figure 5.10
illustrates an example of a deployment use-case of the Clearwater vIMS. In this architecture,
the IMS functions Sprout and Bono are hosted in a separate distinct physical server from the
Homestead, Cassandra and Homer functions.

Figure 5.10 – vIMS two sites architecture use-case

In order to model the dependencies between the Clearwater vIMS components, we started
by defining the associated templates. Most of the dependencies can be deduced from the
expert knowledge and the IMS standard descriptions. These acquired knowledge enables us
to define the first guesses about the definition of templates. However, some dependencies
composing these templates are not easy to infer from the network and should be learned. One
way to discover them is the fault injection process. The aim of the fault injection process is
to verify that the described modeling rules or templates give correct explanation about failures
injected in a real deployment. Otherwise, other hidden dependencies should be deduced. We
will further discuss the learning of templates dependencies in Section 5.6.
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5.4.1 Clearwater vIMS templates description

In this section, we describe the knowledge base that stores the defined templates for the Docker
version of the Clearwater vIMS use-case. These templates have been deduced from the ac-
quired knowledge extracted from description files and deployment (Cf. Chapter 4, Section 4.4),
and learned knowledge provided from faults injection that we will depict in Section 5.6. These
templates complement the global templates for virtual networks defined in Section 5.3 with
additional dependencies that are specific to the Clearwater use-case. The Clearwater vIMS
templates are described in the following. Each time, we showcase the additional dependencies
that are specific to Clearwater.
Network elements templates description:
Figure 5.11 illustrates the distinct Network elements templates for the Clearwater vIMS use-
case. The site (T.site) and virtual host (T.V H) defined for the Clearwater use-case are similar
to the global templates of Section 5.2.

Figure 5.11 – Clearwater vIMS Network elements templates.

VNF application template (T.APP ): differs between the Clearwater functions. Each func-
tion (i.e. Bono or Sprout) has its own definition that corresponds to the processes of each
application. The general dependencies are similar to the one presented in Figure 5.11-c. The
difference is in the type of processes. In Figure 5.12, we present the Bono and Sprout appli-
cation templates.The Bono application template (T.APP_Bono) has two main process a pro-
cess called Bono (Proc_Bono) and a process ETCD client (Proc_Bono_ETCD_Client) that
enables the exchange with the master ETCD node. Whereas, Sprout has a Sprout process
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(Proc_Sprout) and the same type of process for ETCD client (Proc_Sprout_ETCD_Client).

Figure 5.12 – BONO and Sprout application templates (T.APP_Bono, T.APP_Sprout).

Service template (T.service): defines the service dependencies. To model vIMS services,
we should first learn and define the service dependencies. Clearwater provides a number of
services such as registration of clients, texting, calls and video calls. In the following we depict
the modeling procedure of a registration service.
Registration service modeling:

The client registration service represents an important and basic IMS service. The SIP
registration service is a regular procedure for each client’s terminal before initiating or receiving
any other SIP signaling. The IMS registration procedure allows the IMS network to authenticate
the client and authorize the establishment of sessions. The procedures required to meet the
above prerequisites are defined in the SIP protocol and the Clearwater architecture [58].

The SIP registration process goes through two steps as depicted in Figure 5.13 and Figure
5.14. In the first step the subscriber’s UE tries to make a first contact with the corresponding
P-CSCF/Bono node. In this case, the UE sends a SIP register to the attached P-CSCF/Bono
node. In this first step, the SIP register message doesn’t contain any subscriber authentica-
tion information. The P-CSCF/Bono forwards the message to the Sprout node. Sprout node
forwards the message to the Homestead node that verifies from the HSS/Cassandra database
the subscriber credentials. Since the client doesn’t send the authentication information, Sprout
refuses the requests with a SIP code 400 (i.e. Unauthorized) through Bono. In the second step
the subscriber’s UE sends the SIP register message with authentication information. This time
the request will be accepted if authentication credentials are correct with a SIP code "200".

As depicted in Figure 5.15, the registration procedure depends on the performance of each
of: Bono, Sprout, Homestead and Cassandra applications and the connections between these
applications. Note that each of the variables depicted in Figure 5.15, are represented in the
application level (i.e. the layer just above the service layer), these variables have other inter-
layer dependencies with the virtual layer that are not showed in Figure 5.15.

Network connections templates description:
In Clearwater Docker, the physical connectivity template (T.PC) illustrated in Figure 5.16-a
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Figure 5.13 – The first SIP registration trial to the Clearwater vIMS [19].

Figure 5.14 – The second SIP registration trial to the Clearwater vIMS [19].
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Figure 5.15 – vIMS SIP register service modeling.

is similar to the global template defined in Section 5.2. In the local virtual connectivity tem-
plate (T.LV C) (Figure 5.16-b), the local network node is replaced with the network bridge (Nb).
In fact, Docker engine connects the local Dockers with a shared network bridge. This network
bridge has a status defined in the Boolean node Nbi for each aggregated virtual environment
Vi. The Nbi node affects the Dockers connectivity DC − Name_connect with a dependency
type "¬A =⇒ ¬B".

The distant virtual connectivity template (T.DV C) is described in Figure 5.16-c. In this
template, the distant network node between sitei and sitej is replaced with the overlay network
aggregated node (OVij) that is related with an "AND" logical relation to a node representing its
status (OVstatus), the Docker ETCD of each sites (DC_ETCDi, DC_ETCDj) and the conver-
gence between the ETCD Dockers of both sites. In the Docker technology the overlay network
is defined to connect distant Dockers. Clearwater defines a mechanism of sharing the network
identities between the different components (i.e. IP addresses) through ETCD. The aim is to
enable the different Clearwater functions to connect between each other even if they are dis-
tributed in distant servers. ETCD is a key-value store that forms a cluster with the Clearwater
functions to share the network configuration files.

The local logical connectivity template (T.LLC) and distant logical connectivity tem-
plate (T.DLC) are described the same way as in the global templates definitions. Since the
network mechanism is ETCD in the case of Clearwater, node App_ETCD is added to the tem-
plates. In the case where the applications are hosted in distinct sites, the ETCD applications of
both sites are added to the T.DLC template.

Auto-recovery and elasticity:
Clearwater functions have the ability to scale. Each function such as Bono can be replicated.
These functions share the SIP requests equally and if one replicate node is down, the traffic
sent to this replica will be forwarded to the other replicas.
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Figure 5.16 – clearwater vIMS network connections templates.

Figure 5.17 describes the elasticity template (T.El) of a Clearwater function in the virtual
and application layer. The replicas in the case of virtual layer are Dockers: DC_name_1 and
DC_name_2. They are linked with an "OR" relation to an aggregated node ClusterD_name.

Same procedure for the elasticity in the application layer, illustrated in Figure 5.17-(right),
the aggregated node is called ClusterA_name. In this Figure 5.17, we illustrate the templates
of two replicas of a Docker VNF in the virtual and application layer.

The auto-recovery mechanism in Clearwater was discovered while injecting faults to the
network. We will depict this auto-recovery template in Section 5.6.
Aggregated nodes templates:
Aggregated nodes for sites (T.AnS) and virtual environment (T.AnVi) are similar to the global
templates definition. We depict these templates in Figure 5.18. In the aggregated template for
virtual environment (T.AnVi), the local virtual network is the network bridge node NB.
Inter-layer dependencies:
Figure 5.19 shows the links between the network layers. The application status is related to the
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Figure 5.17 – Clearwater vIMS network elasticity modeling.

Figure 5.18 – Clearwater vIMS aggregated nodes templates (T.AnS , T.AnV i).

Docker status which is in turn related yo the site or server status. This dependency is repre-
sented by the "¬A =⇒ ¬B" type. In the case of elasticity of Dockers, each Docker replicas
status affects the associated application status node such as illustrated in Figure 5.20. The
local logical connectivity (connect_AppA_AppB) between two applications "A" and "B" hosted
in the same site is related to the virtual connectivity of the Docker hosting the application "A"
(i.e. DCA_connect) and the one hosting the application "B" (i.e. DCB_connect). For applica-
tions from distant sites, their logical connectivity depends on the overlay node that depends
on its turn to the physical connections between the sites. In the case of elasticity of Dockers,
an aggregated node ClusterC is instantiated to aggregated the Dockers virtual connections.
Figure 5.20 depicts this case with the elasticity of the application named "A".
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Figure 5.19 – Inter-layer dependencies.

Figure 5.20 – Inter-layer dependencies with elasticity.

5.5 Self-modeling algorithm

Self-modeling represents the procedure of instantiating the defined templates in order to fit the
current network topology. The dependency graph is constructed based on both the topology
description and the knowledge base of templates (building rules). The self-modeling procedure
is called in each failure detection to create the model that corresponds to the current network
topology. The network topology could be retrieved by interrogating the orchestration platforms
(e.g. Docker daemon) or through open source monitoring tools. We defined an YAML2 file to
describe the network topology. For instance, the YAML file for the architecture illustrated in
Figure 5.10, is described in Figure 5.21. In this file we try to capture the network components
and elasticity in order to instantiate them correctly. We have defined for each physical sitei

two fields: "V NFs" and "Networks". The "V NFs" field represents the VNFs hosted in each
physical sitei and are described as follows:

2YAML is a human-readable language for description and configuration files [101]
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Figure 5.21 – The YAML file for the architecture depicted in Figure 5.10.

• "Name": the name of the Clearwater VNF that enables to choose the appropriated tem-
plates for each VNF. Each VNF has a unique name that refers to its function (e.g. the
first Bono in the network is bono1).

• "nb": represents the number of elasticity of the VNF.

• "monit": to define the presence of the auto-recovery node, since this mechanism can be
disabled.

• "nb_V Dcon" and "nb_V Lcon": represent the number of the distant and the local virtual
connections, respectively.

• "V Dcon" and "V Lcon": represent the distant and local virtual connections, respectively.
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• "Type": defines the type of the virtualization technology (e.g. Docker).

The "Networks" filed is composed of the following attributes:

• "Network_bridge": defines the name of the local virtual network mechanism applied in
the site. We suppose that we have one Network_bridge in one site. Otherwise, each
Network_bridge will be represented separately with the correspondent VNFs connected
to this network.

• "etcd": defines the name of the ETCD function in this site or "None" for other types of
network configuration sharing.

• nb_Pcon: number of physical connections.

• Pcon: the physical connection.

Note that the defined YAML file is a unified way to describe the current network topology.
This file can be constructed from the Docker engine or monitoring projects such as Weave
Scope in the case of Docker. In our work, we supposed that we have this file. The modeling
process takes as entry the YAML topology file and defines the corresponding dependency
graph, as represented in the modeling process Algorithm 1. Note that Pcon, Network_bridge
and etcd are lists of all the physical connections, network bridges and etcd present in the site,
respectively. V Dcon and V Lcon fields are a list of all the distant and local connections of this
VNF to the other VNFs in the network.

Algorithm 1: Self-modeling
Input: Topology: { Sites: list of sites
Sitei = [ Network_bridge, etcd, nb_Pcon, Pcon]
nb.Sites: number of sites
V NFs(i): list of VNFs in a sitei

V NF = [ name, type, nb, nb_V Lcon, nb_V Dcon, V Lcon, V Dcon,monit ]
nb.V NFs(i) : Number of VNFs in sitei }

113



Self-modeling

Input: Register_list: list of registration nodes
Input: Knowledge base templates:{T.site, T.V H, T.App, T.AnS , T.AnVi , ;
T.service, T.EL, T.PC, T.LV C, T.DV C, T.LLC, T.DLC, T.Inter}
Output: Global Dependency Graph G = (V,E)

1 for each sitei in Sites do
2 → Instantiating T.site(i) ;
3 → Instantiating T.PC(nb_Pcon, Pcon);
4 → Instantiating T.DV C(sitei, P con);
5 for each V NF in sitei do
6 → Instantiating T.V H(name, type);
7 → Instantiating T.App(name) ;
8 → Instantiating T.LLC(nb_V Lcon, V Lcon);
9 → Instantiating T.DLC(nb_V Dcon, V Dcon)

10 if nb > 1 then
11 → Instantiating T.EL(name, nb)

12 if (nb.V NFs(i) > 1) OR (nb.V NFs(i) == 1 AND V NF [nb] > 1) then
13 → Instantiating T.LV C(V NFs(i), Network_bridge) ;
14 → Instantiating T.AnVi(V NFs(i))

15 → Instantiating T.Inter(sitei, V NFs(i))

16 if nb.Site > 1 then
17 → Instantiating T.AnS(nb.Sites)

18 for each Registeri in Register_list do
19 → Instantiating T.service(Registeri)

The self-modeling algorithm starts by instantiating for each sitei: the site template T.site(i),
the physical connectivity template T.PC(nb_Pcon, Pcon) that generates the instances accord-
ing to the list of physical connections to the sitei: "Pcon" with a length of nb_Pcon , and the
distant virtual connectivity template T.DV C(sitei, P con) that models the overlay network in the
case of docker from sitei to the sites of the list of Pcon with the corresponding etcd list if it is
not empty.

In the second for-loop, the algorithm instantiates for each V NFj in sitei: the virtual host tem-
plate T.V H(name, type) that takes as inputs the name of the VNF and the type (i.e. Docker in
our case), the application template T.App(name), the local T.LLC(nb_V Lcon, V Lcon), and dis-
tant T.DLC(nb_V Dcon, V Dcon) connectivity templates that takes as inputs the list of of all the
local and distant connections of V NFj and their lengths. The elasticity template T.EL(name, nb)
of VNFs is instantiated when the number of replication of the same VNF exceeds one. The local
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virtual connectivity template T.LV C(V NFs(i), Network_bridge) and the aggregated template
for virtual hosts T.AnVi are instantiated when there is at least two distinct or replicated VNFs.
If there is only one VNF in one site, there is no need to model the local virtual connectivity or
aggregate the virtual hosts.

The T.LV C template takes as input the name of the network_bridge and the connected
V NFs(i) to this bridge. Once all the VNFs of the same sites has been instantiated the inter-
layer template T.Inter(sitei, V NFs(i)) is instantiated to model the inter-layer dependencies.
The same procedure in the case where the number of sites exceeds one, the aggregated
template for sites T.AnS(nb.Sites) is instantiated. In the end of the algorithm, the services
are instantiated according to the list of register services that exist in the topology. This list is
extracted from the network topology. We explicit this procedure in the next Section 5.5.1.

5.5.1 Procedure for listing registration services

For each vIMS network architecture there exists a number of possible registration services
depending on the number of deployed vIMS functions. To define all the registration services
and instantiate them in the model, we proposed the procedure depicted in Algorithm-2.

Algorithm 2: Defining the Registration service list
Input: Topology YAML file TOPO
Input: List of registration services Register_list

1 → Get V NF_list , V NFi_Connections, List_Bono, List_Cassandra from TOPO ;
2 → Create the NCT graph from (V NF_list, V NFi_connections);
3 → Remove("ETCD", "Homer") from NCT for each bonoj in List_Bono do
4 for each cassandrak in List_Cassandra do
5 → Get path from (bonoj to cassandrak);
6 if path exists then
7 → Add path to Register_list

The procedure to define the registration list that contains all the possible registration ser-
vices, consists in first creating the Network Connectivity Topology (NCT) graph that corre-
sponds to the topology described in the current YAML topology file. This graph is constructed
through the V NFi ∈ V NF_list and the local and distant connections of each V NFi. The
second step is to remove from this graph the functions that are not related to the registration
service (i.e. Homer and ETCD). The third step consists in retrieving all the paths from each
root bonoj ∈ List_Bono to each leaf cassandrak ∈ List_Cassandra. Each path represents
a register service. Each register service is stored in the Register_list and will be modeled
through the T.service template such as depicted in Algorithm I. To illustrate this procedure, we
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suppose that we have the architecture, in Figure 5.22. In this architecture we have two Bono
proxy nodes "Bono-1" in "Site-1" and "Bono-2" in "site-2".

Figure 5.22 – a vIMS architecture use-case composed of three sites.

Figure 5.23 – The NCT graph for the vIMS architecture of Figure 5.22

The correspondent NCT graph is represented in Figure 5.24. The graph is represented
following the VNFs and the connections described in the topology YAML file. After removing
the "ETCD" and "Homer" nodes from the NCT, we extract each path from bono to cassandra that
contains the following combination of nodes (Bono-Sprout-Homestead-Cassandra) (Cf. Figure
5.25). Each extracted path is a register service composed of a number of nodes that would be
represented with the T.service template as illustrated in Figure 5.25.
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Figure 5.24 – The register services paths in the NCT graph

Figure 5.25 – Modeling of register services and their dependencies

5.5.2 The dynamicity of topologies

In order to illustrate how the self-modeling algorithm captures the network updates using the
YAML file, we propose the following network update scenario:

To reduce the size of the dependency graph, we consider an example of two deployed
VNFs (i.e. Bono and Sprout) hosted in one site. The YAML file that describes this example
is depicted in Figure 5.26. In this YAML file only one site is defined. The site contains two
VNFs (i.e. Bono1 and Sprout1). The local virtual network is "NB1". The physical connectivity
Pcon and the etcd attributes are set to "None". Now suppose that due to traffic congestion, we
scale the Sprout1 function to split the traffic through the Sprout replicas. At this moment, the
new YAML file describing the current topology will change in the value of the attribute nb of the
Sprout VNF that will be equal to "two": (nb : 2) (C.F. Figure 5.26).

The dependency graph generated before and after the update is illustrated in Figure 5.27-
a and 5.27-b, respectively. The changes are emphasized with in "orange". The elasticity of
Sprout changes the dependency graph in both the virtual and the application layer. In addi-
tion, the self-modeling algorithm instantiates the cluster aggregated nodes: ClusterD_Sprout1,
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Figure 5.26 – Topology network update captured in the YAML file: (left) before and (right) after
the update.

ClusterC_Sprout1 and ClusterA_Sprout1.

Summary:

Capturing the network topology in the YAML file enables us to model the current network
elements efficiently. This will help us consider the actual network elements in the RCA process
and avoid false positives when pinpointing the root cause. However, once the RCA process
is launched we consider that the network topology is the one captured when the failure to be
explained by the process was detected.

5.6 Validation of the vIMS model

The defined templates stored in the knowledge base should be validated. To do so, fault injec-
tion scenarios are deployed. A fault injection scenario consists in a number of actions applied
to the network. The actions represent a list of injected faults and healing actions. While building
the templates of vIMS, we started by constructing a first representation of the templates with
the knowledge we had from the description files of Clearwater. We then added new dependen-
cies to these templates by learning (i.e. extending) and correcting the defined ones with fault
injection.
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Figure 5.27 – The dependency graph of the YAML file in Figure 5.26 (before (a) and after (b)
the update).
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5.6.1 Templates validation

Table 5.1 depicts two examples of templates validation. The first fault injection scenario enabled
us to learn new dependencies and the second fault injection scenarios allowed us to correct
presumed dependencies. In the first scenario, we learned a new dependency for the appli-
cation template. After stopping the Sprout process (Proc_Sprout) inside the Sprout Docker
and tested the call and register services, both services was successful. We deduced from this
fault injection, that an auto-recovery mechanism existed. This auto-recovery mechanism is a
process called Monit that is present in every Clearwater Docker node.

Monit is responsible for restarting every defected process in the application level. Therefore,
in the case of the presence of Monit (i.e. Monit − Status = True) the processes constituting
the application must all be up. This relation is represented with the logical link type "A =⇒ B".

In the second scenario, we showcase a correction of the local logical connection template
(T.LLC). In our first representation of the local logical connection template (T.LLC), the con-
nection between the two applications depended on the presence of ETCD that shares the
network configuration to the Clearwater functions.

However, in this scenario when we stopped the ETCD node, the call and register services
was still functioning, even when we stopped the Sprout Docker and restarted it. The only
case, where the services failed was when we killed the Sprout Docker and started a new one
with a new network IP address. We discovered that, this is due to the presence of a memory
cache where the network IP addresses are stored in each Clearwater function. If the network
IP addresses of Clearwater Dockers don’t change, the Dockers can still communicate even
if ETCD is down. This fact is not represented in the old T.LLC template. To correct the
template, we define amemory node. memory is a Boolean variable that represents the network
connection updates. For instance, in the case of a node "A" connected to "B", the Boolean
"memory" variable between the nodes "A" and "B" is defined as the following:

val(memory) =
{
True if no network connection update
False if network connection update

Where "network connection update" between a node "A" and "B" happens when one of
the nodes changes its IP address due to a migration or re-instantiation of the node. The new
T.LLC template illustrated in Table 5.1 is defined as the following:

val(connect_A_B)) = App_A ∧App_B ∧ cluster_Event_ETCD.

val(cluster_Event_ETCD) = App_ETCD ∨memory.

Where cluster_Event_ETCD is an aggregated node that links both the App_ETCD and
memory nodes with an "OR" logical relation. The "OR" relation represents the fact that the con-
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nection between nodes A and B is "down" if both ETCD is down (i.e. val(App_ETCD) = False)
tan the IP address of A or B changes (i.e. val(memory) = False). Given the Boolean value of
"False" or "down status" is "0" and he Boolean value of "True" or "up status" is "1", the logical
values for the aggregated node cluster_Event_ETCD are defined in the following table:

memory = 0 memory = 1
App_ETCD=0 0 1
App_ETCD=1 1 1

Note that the dependencies added in the local logical connectivity template T.LLC is also
applicable in the case of the distant logical connectivity T.DLC. We illustrate this in Figure
5.28.

Figure 5.28 – The correction of the distant logical connectivity template.

Another, interesting result about this scenario is that the proposed self-healing action in the
case where a vIMS Docker (e.g. Bono) and the ETCD connected to this Docker are down,
would be rather restarting the old Docker to keep the same IP address than starting new one.

5.6.2 Validation of the model through a fault propagation use-case

In this section, we will showcase a validation of the global dependency graph representing the
four layers of the model and not only a validation of a template. To do so, we propose the fault
propagation use-case illustrated in Figure 5.29.

To capture a real fault propagation use-case, we followed these steps:

1. We deployed the Clearwater vIMS topology depicted in Figure 5.29.

2. We injected in this use-case a fault in the virtual layer by stopping the Bono1 Docker.

3. We injected a SIP register traffic through Bono1.

4. We collected two types of alarms: the SIP protocol code error 408 that indicates a request
timeout and an alarm in the Docker Sprout1 that indicates that Bono1 is unreachable.
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Figure 5.29 – Clearwater vIMS fault injection and propagation use-case.

The collected alarms indicate that the injected fault in the virtual layer affected the logical
connection between Bono1 and Spout1 and the service register through Bono1. Which means
that the fault propagated from the virtual layer to the application and service layer. Figure 5.30
depicts the dependency graph that represents the topology of Figure 5.29.

Figure 5.30 – The self-modeling resulted dependency graph that illustrates the fault propaga-
tion of the fault injection use-case in Figure 5.29.

In this dependency graph, we represent the injected fault in the DC_Bono1_status variable
with a "False" status. The fault then propagated to other non-faulty components via inter-layers
and intra-layer interactions.

We notice that the collected alarms matches the propagation in the defined graph. The
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Docker Sprout1 alarm indicates that the status of the logical connection between Bono1 and
Sprout1 is down (i.e. node connect_Bono1_Sprout1 is False), and the SIP register alarm indi-
cates that the register service failed (i.e. node Register is False). The dependency graph also
illustrates the propagation of this fault from the Bono1 Docker status to the Bono1 application.
Summary: The defined dependency graph represents the multiple layers of virtual networks
with the intra-layer and inter-layers dependencies. This graph enables as to provide an explicit
presentation of a real world fault propagation use-cases. However, the main goal of the self-
modeling algorithm is to use the derived dependency graph to pinpoint the root cause(s) of a
network fault and to provide explanations about faults. This will be addressed in Chapter 6.

5.7 Experimental evaluation of the self-modeling algorithm

In this section, we evaluate the performance of the self-modeling algorithm. The first perfor-
mance test studies the scalability of the generated dependency graph compared to the number
of sites and VNFs in the network topology. The second performance test evaluates the self-
modeling algorithm execution time. To evaluate the self-modeling algorithm, we implemented
this algorithm in a python code using Networkx Python project [92]. The NetworkX library is
applied to define and visualize the resulted dependency graph. The templates are defined in a
knowledge base python file. The self-modeling algorithm and the knowledge base are stored
in the following Github repository: [119]. The self-modeling algorithm evaluation tests was
performed in a Intel Core i7-6500U CPU computer, with 8 GB of RAM.

5.7.1 Evaluation of the dependency graph scalability

In this evaluation, we study the behavior of the defined dependency graph with regards to the
scalability of network topology. A dependency graph represents a number of vertices connected
with a number of dependencies.

To study the evolution of the number of vertices and dependencies and the performance of
the self-modeling algorithm when increasing the number of sites and VNFs, we propose the
following topology configurations. We define two types of sites: "access" and "control" site.
The "access" site contains the functions that enable a client to connect and to route the vIMS
network, namely, Bono and Sprout. The "control" site contains the storing Cassandra database
and the controlling homestead and homer functions. In both sites an ETCD node is deployed.
These sites are depicted in Figure 5.31.

we have defined five examples of topology configurations by increasing the number of sites
each time:

• Topo A: composed of two sites: one "access" and one "control".
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Figure 5.31 – Access and control sites.

• Topo B: composed of three sites: two "access" and one "control".

• Topo C: composed of four sites: three "access" and one "control".

• Topo D: composed of five sites: four "access" and one "control".

• Topo E: composed of ten sites: eight "access" and two "control".

Table 5.2 depicts the number of VNFs in each topology configuration. We increase the number
of VNFs in each topology scheme addressed above with two different ways. The first manner
is to replicate each Clearwater function. For instance "Topo*5" means that each function in
the topology file is replicated five times and the five functions run in a redundant way. While
"Topo**5" means that for each function there is five VNFs that are separated from each other
and might be allocated to distinct tenants.

Topo/nb-VNF A B C D E F G
Topo*1 7 10 13 16 32 48 64
Topo*5 / Topo**5 35 50 65 80 160 240 320
Topo*10 / Topo**10 70 100 130 160 320 480 640

Table 5.2 – Number of VNFs in each topology scheme.

The topology configurations described above have been implemented in separated YAML
files. We then executed the self-modeling algorithm for each topology configuration defined
in YAML files. Each time, we captured the number of vertices and dependencies using the
Networkx library and the time of execution of self-modeling algorithm. The results are depicted
in Figures 5.32, 5.33 and 5.34.

Figure 5.32 and 5.33 illustrate how the number of vertices and dependencies in the depen-
dency graph increases when the numbers of deployed sites and VNFs augments. For instance,
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Figure 5.32 – Evolution of the Number of vertices according to the number of the deployed
sites and VNFs.

for the topology "E" with 10 sites and 10 times the number of each VNF (i.e. TOPO**10) the
number of vertices is around 3000 and the number of dependencies is around 8000.

We notice that even if topologies of type "Topo*i" and "Topo**i" with the same number of
sites has the same number of VNFs, the number of vertices and dependencies is a little bit
higher in the case where the multiplied VNFs are separated functions (i.e. "Topo**i") and not
replicas (i.e. "Topo*i"). This is due to the additional vertices and dependencies in the "Topo**i"
case. These dependencies are the logical connections between the different applications. In
the case of replication only one connection node between the replicated application is consid-
ered.

5.7.2 Evaluation of the self-modeling algorithm performance

Figure 5.34 shows the evolution of the execution time of the self-modeling algorithm with re-
gards to the different topology configurations. We notice that the execution time is less than 1
second whatever the number of sites we had in the case of replications (i.e.Topo*i). However,
it increases due to the multiplied VNFs in the Topo**i configuration.

From the previous results in Figure 5.33 and 5.32, we noticed a small difference between
the number of vertices and dependencies between the two configurations Topo*i and Topo**i.
However, this small difference doesn’t explain the considerable difference between the execu-
tion time of these two configurations.

In fact, this is due to the time that the self-modeling algorithm spend on reading the YAML
file. The topology YAML file is much longer in the case where we define multiple VNFs. In the
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case of replicas, we only change the nb attribute of a VNF that represents its elasticity which
explains the reduced YAML lines in this case.

5.8 Summary and conclusion

The evaluation of the performance of the self-modeling algorithm shows that the time for mod-
eling a network topology described in the YAML is not negligible in the case when the network
scales up. Scalability may cause the YAML file lines to grow which increases the self-modeling
execution time while reading this file in order to model the network. This result showcases the
importance of considering only the network updates to re-model the dependency graph.

However, in the diagnosis process that we will depict in Chapter 6, we assume that the
topology changes are slow compared to faults and alarms propagation, so we don’t change
the YAML file, once the diagnosis process is launched. We only keep the last updated file.
Therefore, this result is to be considered in the thesis perspectives, if one wishes to update the
network during the diagnosis process, it would be more efficient to only model the changes.

Moreover, the size of the dependency graph might also affect the execution time of the
diagnosis process due to the huge number of dependencies. To do so, in the next Chapter 6,
we propose an active RCA process that reasons in on small portions of the dependency graph.

128



CHAPTER 6

ACTIVE FAULT LOCALIZATION

6.1 Introduction

In the previous chapter, we proposed multi-resolution and multi-layer logical templates for Clear-
water vIMS. We defined the self-modeling process to enable the autonomic modeling and
tracking of components in the network topology. However, to validate and showcase the value
of the proposed modeling rules, we define in this chapter an active Root Cause Analysis (RCA)
or diagnosis process.

The proposed diagnosis process is "active" and "interactive". Active because the diagnosis
can incorporate new observations resulting from test results and "interactive" because the di-
agnosis process provides results under the form of a sub-graph that explains the propagation
of the faults and the associated alarms. These propagation graphs enable the administrators
to propose changes on the values of nodes and to introduce new observations in order to get
more accurate results. The active diagnosis process takes into consideration as starting point
the dependency graph resulting from the self-modeling process, and the initial observations. At
each step/stage the result of the diagnosis algorithm is verified with tests. These tests orient
the diagnosis process to the root cause. The diagnosis process returns an explicit dependency
graph to the administrators with possible root causes. The diagnosis process reasons on por-
tions of the global dependency graph to reduce the complexity of the constraints it resolves.

6.2 Definitions and notations

In the following, we describe the global definitions and notations applied in the active diagnosis
process.

6.2.1 Global dependency graph and sub-graph

In Chapter 5 Section 5.3, we defined the different templates that compose the self-modeling
approach. Each template is a directed graph composed of Boolean nodes and a set of directed
edges. When a failure occurs, the self-modeling algorithm assembles instances of these tem-
plates according to the current network topology defined in the YAML description file, to form a
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graph representing the network resources and their logical dependency relations. We call this
graph, the global dependency graph G = (V,E), with V as set of nodes V and E ⊆ V × V
as the set of directed edges. The nodes represent Boolean (state) variables and the edges es-
tablish logical relations, as we recall below. We labeled each node v ∈ V with several features
`(v) = (lv, tv, SFv) where lv ∈ {0, 1, 2, 3, 4} is the network layer to which the node belongs:
(0: physical, 1: virtual, 2: application, and 3: service), tv ∈ {True, False} indicates whether
the state of node v is directly testable from the network (tv = true, means testable), and SFv

indicates if the nodes can represent spontaneous fault or not. (SFv = 0) for non-spontaneous
node, (SFv = 1) for a spontaneous node. We labeled each arc (v′, v) from v′ to v with a logical
type d(v′,v) satisfying d(v′,v) ∈ {AND,OR,⇒,⇐}. The arc types on graph G must satisfy local
patterns, which are guaranteed by the self-modeling algorithm. Only five possible dependency
configurations are allowed between node v and its predecessors, as illustrated in Figure 5.3 of
Chapter 5. For example, the OR (resp. AND) type expresses that the logical variable v is the
OR (resp. AND) of all its predecessors v′. Similarly, d(v′,v) = “ ⇒ ” stands for v′ ⇒ v (and in
that case v′ is the unique predecessor of v), and d(v′,v) = “ ⇐ ” stands for ¬v ⇒ ¬v′ (and in
that case v can have several predecessors). Further, for a node v that represents a possible
spontaneous fault (SFv = 1), the above local logical dependencies must account for this extra
degree of freedom (under the form of an "AND no spontaneous fault on v").

Given a dependency graph G(V,E) for each node v ∈ V , we define:

• S(v): the set of children of node v, i.e. its immediate successors in G,

• P (v): the set of parents (immediate predecessors) of node v,

• Ŝ(v): the set of all successors of node v, so S(v) ⊆ Ŝ(v),

• P̂ (v) the set of all predecessors of node v, so P (v)] ⊆ P̂ (v).

We defined a "valuation" on G as a function val : V → {False, True} that assigns a logical
value to each node v ∈ V of graph G, and that satisfies all logical relations expressed by G.
For node v representing some entity in the network modeled by G, val(v) = True (resp False)
expresses that the network entity modeled by v is up (resp down).

Later our diagnosis process will focus on a subset V ′ ⊆ V of variables of G, defining a sub-
graph SG of the global dependency graphG as follows: the extracted dependency sub-graph
SG associated to nodes V ′ ⊆ V is defined as SG = (V ′, E′) where the edge set E′ ⊆ V ′ × V ′

is the restriction of E to variables V ′, i.e. E′ = E ∩ (V ′ × V ′). The choice of nodes V ′ will be
explained later.

In our diagnosis process, when a spontaneous fault node v is suspected to be faulty, we will
start by checking if that node is actually down (i.e. test the value of the node v). In the case
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where it is confirmed that the fault is due to a propagation from lower layers in the graph, the
predecessors of v will be investigated.

In the active diagnosis process a node v may be stated as:

• Innocent: if its value is known to be True from the initial observations or tests (i.e.
val(v) = True).

• Faulty: if its value is known to be False from the initial observations or tests (i.e. val(v) =
False).

• Suspect: if the node is suspected to be faulty (value False is compatible with initial
observations and tests performed so far) but the node is not testable (tv = False) or
a test over its value was not conclusive and returned "unknown". The suspect nodes
indicate a possible root cause and should be tested first by the administrator.

• Guilty/root cause: if its value is known to be False from the initial observations or tests
(i.e. val(v) = False) and the node is a spontaneous fault node (SFv = 1) with no pre-
decessor or with predecessors and this node is confirmed by the administrator to be the
cause of the failure.

6.2.2 Diagnosis engines

In this section, we present the different diagnosis engines that we will apply in the active diagno-
sis process. Given a dependency graph G = (V,E), the nodes V are partitioned into observed
and unobserved nodes: V = O ] U . An observation is a partial valuation over V that assigns
a value to nodes of O only, i.e. obs : O → {False, True}. We say that a failure occurs when
at least one of these observed variables takes value False. We are interested in deriving all
valuations val : V → {False, True} that are consistent with G = (V,E) and that match/extend
this observation, i.e. val|O = obs. To discover the value of the unobserved nodes U , we will
proceed progressively, by considering only relevant subsets of U . Specifically, we are going to
focus on a subset of nodes V ′ ⊆ V , such that O ⊆ V ′ (all observations are considered), and
on partial valuations val : V ′ → {False, True}, matching obs and consistent with the sub-graph
G′ : G|V ′ = (V ′, E′ = E|V ′×V ′).

The method consists in propagating/solving the logical constraints defined by G′, starting
from the value over observed nodes O given by obs. In practice, constraint propagation/solving
determines uniquely the value of some unobserved nodes, for example when the edge (v, v′) ∈
O × U is of "⇒" type, and obs(v) = True. Other unobserved nodes may not assume a unique
value, i.e. there may exist two valuations val and val′ that both match observation obs, and for
some v′ ∈ U yield val(v′) = True and val′(v′) = False.
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Formally, performing a diagnosis would consist in exploring valuations val over V that both
match observation obs and have a minimal number of root causes, that is nodes able of spon-
taneous failure, and then checking whether these faults are actually present in the network, in
order to further eliminate possible explanations, until the true fault propagation pattern is dis-
covered. To do so, one can focus on a subset of variables V ′, namely the predecessors P̂ (O)
of the observed nodes O. But unless if one has access to parsimonious SAT solvers that would
minimize the number of faulty nodes, numerous partial valuations over V ′ might be returned.
So we rather propose below an active and recursive procedure that will progressively explore
G towards the predecessors (causes) of faulty nodes, to reveal and check possible causes, in
order to keep under control the number of possible explanations to handle. In other words, we
will not introduce right away in V ′ all variables of P̂ (O), but will increase V ′ progressively.

In practice, to extend an observation obs : O → {False, True} into valuation(s) val : V ′ →
{False, True}, we will rely on a number of computation engines (sub-routines). These engines,
structure the diagnosis process and their algorithms are defined later. To illustrate the use of
these engines, we depict in the following the reasoning of the active diagnosis procedure that
will be detailed in Section 6.4.

When a failure occurs, the active diagnosis procedure will follow the principles below.

1. Starting from an initial set O0 of observed variables, with values defined by obs0 : O0 →
{False, True}, we extract a sub-graph SG of G (where again G results from the self-
modeling algorithm, implemented in the Self −modeler engine, fed by the current topol-
ogy Topo). To do so, we select as variables in V ′ the observed nodes in O0 plus the
parents of faulty nodes in O0. So SG = G|V ′ with V ′ = O0 ∪ P (obs−1

0 (False)). This
procedure is performed by the Extractor engine.

2. The Diagnoser engine is then applied on the sub-graph SG. Diagnoser relies on two
main sub-functions, the Translator and the Solver, and returns one valuation s : V ′ →
{True, False} (among possibly many) that matches the observation obs0. To do so, the
Translator engine first translates the sub-graph SG into a set of constraints (logical for-
mulae). The result is fed to Solver, which performs logical inference and returns a first
possible "solution" s that explains the observed failures. The Diagnoser then extracts
from this solution the possible root cause(s) by R0 = s−1(False) ∩ (V ′ \O0) ⊆ U .

3. The possible root causes in R0, i.e. nodes suggested as down by solution s, are then
tested (provided they are testable). Then these nodes are incorporated in the set of
observed variables through O1 = O0 ∪ R0, and the observed values on R0 (either False
or True) is positioned to form the extended observation obs1 : O1 → {False, True}.
The whole process can start again (at point 1 above), with this larger observation set O1

replacing O0, in order to explore further (backwards) the propagation path of failures.
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4. When checking the actual value of nodes in R0, one may find some node v that either
is not testable, or the test on its value returns "unknown". In such a situation, node v is
tagged as suspect. The Diagnoser keeps looking for larger solutions s until a sponta-
neous fault node is tested to be down. The actual value of node v may change in the next
(extended) solutions found by Solver, or node v may remain suspect. Alternatively, one
may also ask the administrator for an assumption about the value of this node v, as it is a
possible root-cause or an intermediate fault propagation node.

5. The diagnosis process stops when the administrator is satisfied with the proposed root
cause or when no more solution is proposed by the Solver. The result of the diagno-
sis process is a sub-graph with the last observations and the nodes stated as innocent,
suspect, faulty and guilty.

In summary, our algorithm uses the following functions.

• Self −modeler : (Topo, Templates)→ G: takes as inputs the templates and the topology
YAML file "Topo", and outputs a dependency graph G = (V,E).

• Extractor : (G, obs,O) → SG: takes as inputs the global dependency graph G and the
observed nodes O and return a sub-graph SG = (V ′, E′), with V ′ = O∪P (obs−1(False)).
P (obs−1(False)) are the immediate predecessors (parents) of nodes assuming value
False.

• Translator : (SG, obs,O) → A: takes as inputs the sub-graph SG and the observed
nodes O, and generates a set of logical relations A(v) translated from the SG dependen-
cies and observations. For eacn node v ∈ V ′ of graph SG, we build a logical formula
A(v) connecting the value of node v to the value of its predecessors.

• Solver : A→ solution: takes as inputs all the logical relations and provides one possible
solution s, i.e. a valuation over V ′ that satisfies all logical relations A.

• Tester : V → {True, False, Unknown}: provides the value of a node v ∈ V ′ through
testing the network (e.g. a Ping test). The test is possible only if the node is labeled
as testable tv = True. The selection of nodes to test is defined in the active diagnosis
process.

• Diagnoser : (SG, obs,O)→ s: is the procedure that includes both the Translator(SG,O)
and the Solver engines. It takes as inputs the sub-graph SG and the observed nodes O
and outputs a partial valuation s : V ′ → {False, True}, that represents a partial expla-
nation (or “solution") to the observation of faulty nodes in obs. Diagnoser is the central
engine of the diagnosis process, and is recursively called to extend/refine the valuation s
until the root cause of the observed failure is correctly identified.
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6.3 Diagnosis in a sub-graph

In this section, we depict the Diagnoser engine. The Diagnoser provides a valuation s : V ′ →
{False, True} that satisfies the observations. The node(s) proposed to be False in this valua-
tion (i.e. s−1(False) ∩ U ) are possible root cause(s) and need to be checked. This engine will
be applied in the active diagnosis process detailed in Section 6.4. The algorithm describing the
Diagnoser is defined as follows:

Algorithm 3: Diagnoser
Input: Dependency sub-graph SG = (V ′, E′)
Input: a set O of observed variables through valuation obs : O → {False, True}
Output: a valuation s : V ′ → {False, True}

1 begin
2 A = Translator(SG, obs) ;
3 s = Solver(A) ;
4 return s

To translate the sub-graph and the observations into logical relations the Translator(SG,O)
proceeds as follows: each dependency sub-graph SG = (V ′, E′) consists of a set V ′ of nodes
and a set E′ ⊆ V ′ × V ′ of edges. The V ′ nodes are Boolean variables and the typed edges
E′ define logical dependencies. The Translator defines for each node v ∈ V ′ a logical relation
using the type of link d(v′,v) relating v to each of its predecessor v′. The values of the observed
nodes are then added to these logical relations. The logical relations are stored in a file called
the SMT file. The Translator engine is detailed in Algorithm 4.

To illustrate the operation of the Diagnoser engine, we assume that we have the sub-graph
SG = (V ′, E′) of Figure 6.1. In this sub-graph, variables v′1 and v′2 are observed as faulty. The
status of this nodes v′1 and v′2 depends on the status of their parents P̂ (v′1). In this example,
either the failure of v′1 is spontaneous, or it results from a fault propagation pattern from its
predecessors P̂ (v′1). The objective is thus to estimate a valuation val : V ′ → {False, True}.
In order to estimate this valuation, the first step consists in defining the correspondent logical
relations to the dependencies presented in Figure 6.1. The Translator algorithm 4 starts by
adding the initial observations:

{
v′1 = False

v′2 = False

The Translator algorithm 4 then adds the logical relations for the nodes that have at least
one predecessor. In our example, nodes v′1 and v′2 have more than one predecessor with a link
type AND and OR, respectively. The logical relations A of the example in Figure 6.1 are the
following:
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Algorithm 4: Translator
Input: Dependency sub-graph SG = (V ′, E′)
Input: a set of O ⊆ V ′ with a partial valuation obs : O → {False, True}
Input: a global valuation : val : V ′ → {False, True}
Output: Logical relations A

1 begin
2 // Initializing the constraints A with the observations ;
3 A := obs ;
4 // Adding the sub-graph dependencies to the file A ;
5 for v ∈ V ′ do
6 PAND := {v′ ∈ P (v); d(v′,v)=AND} ;
7 POR := {v′ ∈ P (v); d(v′,v)=OR} ;
8 P⇐ := {v′ ∈ P (v); d(v′,v)=”⇐”} ;
9 P⇒ := {v′ ∈ P (v); d(v′,v)=”⇒”} ;

10 if PAND 6= ∅ then
11 A := A ∪

{
val(v) =

∧
v′∈PAND

val(v′)
}

12 if POR 6= ∅ then
13 A := A ∪

{
val(v) =

∨
v′∈POR

val(v′)
}

14 if P⇒ 6= ∅ then
15 A := A ∪ {val(v′) =⇒ val(v), v′ ∈ P⇒}
16 if P⇐ 6= ∅ then
17 A := A ∪ {¬val(v′) =⇒ ¬val(v), v′ ∈ P⇐}

18 return A

Figure 6.1 – An example of a sub-graph representing the nodes V-1 and V-2 failures and their
predecessors
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A :


v′1 = v′3 ∧ v′4 ∧ v′2
Not(v′5) =⇒ Not(v′1)
v′2 = v′6 ∨ v′7

The next step of the Diagnoser engine is to solve the logical relations A. The solver should
return a solution (a valuation) with a minimum of False nodes. To do so, we obtain all the
possible solutions of a configuration of assumptions and choose the solution with the minimum
number of False nodes. The Solver takes as inputs the following logical relations A:

A :



V ′1 = False

V ′2 = False

V ′1 = V ′3 ∧ V ′4 ∧ V ′2
Not(V ′5) =⇒ Not(V ′1)
V ′2 = V ′6 ∨ V ′7

The following s : V ′ → {False, True} represents one possible valuation that solves the
logical relations A:

s :



v′1 = False

v′2 = False

v′3 = False

v′4 = True

v′5 = True

v′6 = False

v′7 = False

In this result, the False unobserved nodes are R0 = s−1(False)∩ (V ′ \O0) ⊆ U = {v′6, v′7}.
So both v′6 and v′7 are suspected to be the root cause(s) of the fault. The active diagnosis
process that we will present in Section 6.4, operates a number of tests to check these nodes
and extends the graph SG if necessary.

6.4 Active diagnosis process

The active diagnosis process starts after an anomaly has been detected. The network fail-
ure generates a number of alarms that generally state a failure of a network component,
connection or service. These events or observations are considered as inputs to the diag-
nosis process. For instance, an alarm in the Sprout application that states that the Bono
Docker is unreachable means that the logical connection between Sprout and Bono is down
(i.e. "Connect_Bono_Sprout = False"), and is added to the observations O.
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When the failure is detected in the network, the observations and the current network topol-
ogy YAML file are the first inputs of the diagnosis process. The diagnosis process starts by
generating the global dependency graph from the YAML file using the self-modeling algorithm
(Self −modeler). The second step consists in extracting a sub-graph from the global depen-
dency graph that represents the observations and the parents of the observations O. This step
is operated by the Extractor engine defined as follows:

Algorithm 5: Extractor
Input: Global dependency graph G = (V,E); set O of observations, with a valuation obs
Output: Dependency sub-graph SG with valuations val

1 begin
2 val := obs ;
3 V ′ := O ∪ P ({v ∈ O | obs(v) = False}) ;
4 E′ := (V ′ × V ′) ∩ E ;
5 return (V ′, E′)

In the third step, the Diagnoser engine is applied. In this step, the sub-graph with the ob-
servations are translated into constraints (logical relations). The constraints are then resolved
by the Solver. The Solver provides one possible valuation with nodes stated to be faulty (i.e.
False value). The active diagnosis process then checks their values and extend the sub-graph
if necessary, each time, by considering the Diagnoser solution and the additional observations
obtained by tests until one gets a sufficient explanation to the detected failure.

The different steps of the active diagnosis process with the extension of the graph are
illustrated in the flowchart of Figure 6.2. In the active diagnosis process a node v may be
stated as: innocent, suspect, faulty or guilty. Note that the faulty and guilty nodes both have a
down status and the guilty node is responsible for the failure.

The steps of the flowchart in Figure 6.2 are detailed below:

• Step 0: model the global dependency graph G using the Topo file and the templates
Self −modeler(Topo, Templates).

• Step 1: extract the sub-graph SG from the global dependency graph that represents the
observed nodes and the predecessors of False nodes Extractor(G,O).

• Step2 Diagnoser:

– Step 2.1: define the SMT file that contains the logical constrains A of the sub-graph
SG with the values in the observations Translator(SG,O).

– Step 2.2: apply the SMT Solver(A) to get a valuation s : V ′ → {False, True}, S ⊆
U . With Ri = s−1(False)∩ (V ′ \Oi) ⊆ U . If no more solutions are possible then step
5.
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• Step 3: For each node v∗ ∈ Ri do:

– Step 3.1: if the proposed root cause v∗ is not testable (i.e. tv∗ = False), or testable
(i.e. tv∗ = True) with an unknown value, then the node v∗ will be marked as suspect.

– Step 3.2: if the proposed root cause is testable with a True value, then the node v∗
will be marked as innocent (val(v∗) = True) and added to the set of observations
v∗ ∈ O, s(v∗) = True.

– Step 3.3: if the proposed root cause is testable with a False value:

* If the node v∗ is not a spontaneous fault (i.e. SFv∗ = 0), then the node v∗ will be
marked as faulty and added to the set of observations v∗ ∈ O, s(v∗)−1 = False.

* If the node v∗ is a spontaneous fault (i.e. SFv∗ = 1) and has no predecessors
(i.e. P (v∗) = ∅), then the node v∗ is a root cause (guilty).

* If the node v∗ is a spontaneous fault (SFv∗ = 1) and has at least one predeces-
sor (i.e. P (v∗) ≥ 1), then the node v∗ is a possible root cause. The administrator
can order to continue (step 1) or to exit (step 4).

– If no more nodes in s−1(False) go back to step 2 to check another valuation.

• Step 4: exit with a sub-graph with the nodes marked as "guilty", "suspect", "faulty" and
"innocent".

If we go back to the example of Figure 6.1, the results obtained from the Diagnoser is the
set s−1(False) = {v′6, v′7}. The next step following the diagnosis flowchart in Figure 6.2 applied
in this example are resumed as follows :

• If the nodes v′6 and v′7 are testable and spontaneous fault so if they are roots of the graph
(i.e. number of predecessors equals to 0) and the test is "Down or False", so both of
nodes v′6 and v′7 are root causes, if they are not roots or not spontaneous fault, we extend
the graph to the predecessors of node v′6 and v′7 and repeat the same procedure.

• If they are not testable or testable and the test is "unknown", so both of them are suspects.
The same reasoning is applicable in the case where the values of Tv∗ and SFv∗ for nodes
v′6 and v′7 are different. For instance, node v′6 is tested "False" and spontaneous fault and
node v′7 is tested "False" and not spontaneous fault, so node v′6 is a root cause if it has
no predecessors and the fault in v′7 is due to its predecessors.
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Figure 6.2 – Active Diagnosis process flowchart
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6.5 Discussion

In our diagnosis process, we opted for a method that reasons on a portion of the dependency
graph composed of the observations and of the parents of nodes observed to False. The aim is
to reduce the number of unknown nodes to the immediate possible causes of a malfunction, in
order to minimize the number of solutions proposed by the Solver, that must then be validated
through testing. However, limiting the extension of the graph to only the parents of False
nodes has some drawbacks, as some useful logical constraints could be ignored. In particular,
some observations assuming the value True might exonerate a suspected node through a long
causality chain. Our choice thus possibly increases the number of suspects.

Figure 6.3, illustrates an example of a dependency graph composed of nodes {v1, ..., v10}
with nodes {v1, v5} are the first observations. The extracted sub-graph SG with the initial ob-
servations is composed of nodes {v1, v2, v3, v5} (circled in blue in Figure 6.3). These nodes are
the initial observations nodes Oo = {v1, v5} and the parents of False nodes P (obs−1(False)) =
P (v1) = {v2, v3}. In one of the solutions proposed by the Solver given the sub-graph SG, v2 is
proposed to be False. In the case where v2 is not testable or the test is "Unknown", this node
will be stated as suspect.

However, from the successors of node v2, we notice that node v5 ∈ Ŝ(v2) is True. This
node will innocent v2 since the logical dependencies are of type ("AND" and implication). Since
this kind of situation is not captured in the proposed sub-graph, we propose two possible im-
provements to the diagnosis process.

Figure 6.3 – An example of a dependency graph with 10 nodes and two initial observations
obs(v1) = False, obs(v5) = True and the node v2 stated as suspect.

140



Active Fault Localization

1. The first method consists in a preliminary procedure that deduces all the True nodes from
the True observations obs−1(True). To do so, we look in the predecessors of True nodes
P̂ (obs−1(True)) if there are nodes that can be deduced as True from the dependencies
(i.e. AND and implication types). The deduced nodes are then added to the observations
before launching the Diagnoser and thus included into the sub-graph SG. This enables to
reduce the number of suspected nodes and minimises the number of solutions proposed
by the Solver.

We illustrate this method in Figure 6.4 with the same previous example. With the pre-
liminary procedure the node v5 will innocent nodes v7, v6, the node v6 will innocent in
its turn nodes v4, v8, and finally node v4 will innocent node v2. All the innocent nodes
will be included to the observations O1 = O0 ∪ {v2, v4, v6, v7, v8} and obs(v) = True, v ∈
{v2, v4, v6, v7, v8}. Once the nodes are added to the observations, the extracted sub-graph
will include this nodes. In this case, node v2 is stated as innocent and will not appear in
the suspected nodes. This method will increase the sub-graph with the new observed
nodes and decrease the number of suspects.

Figure 6.4 – The first method applied to the example of Figure 6.3.

2. The second method proceeds in the reverse way. Instead of introducing extra observa-
tions to SG beforce computations start, SG remains unchanged and one rather validates
a posteriori the explanations proposed by Solver. This consists in checking the succes-
sors of a suspected node v before stating that this node is indeed suspect. Specifically, if
node v has one or more of its successors displaying a True value, this might exonerate
node v.

We illustrate this method in Figure 6.5 with the same previous example. In this case,
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when the node v2 is suspected the next step is to check the successors of node v2:
Ŝ(v2) = {v4, v5, v6}. From the successors of node v2, node v5 ∈ Ŝ(v2) is True. This will
innocent nodes v6, v4 and v2. In this case, node v2, will be stated as innocent and the new
sub-graph will only include the successors of node v2 that are True: O1 = O0∪{v2, v4, v6}
and obs(v) = True, v ∈ {v2, v4, v6}.

Figure 6.5 – The second method applied to the example of Figure 6.3.

6.6 Experimental results

To validate the proposed diagnosis methodology, we implemented the knowledge base, the
self-modeling module and the active diagnosis process in a Python3 environment. The pro-
posed RCA framework depicted in Figure 6.6 is hosted on the GitHub project: [119]. The
applied SMT Solver is the Z3 logical modeling and solving project developed by Microsoft Re-
search [83]. Z3 resolves a number of logical constraints or assumptions defined in a file called
the SMT file.

To showcase the validation of our fault localization process, we propose three types of faults
with different granularity levels.

1. Docker disconnect: in this fault scenario, the Docker is disconnected. The root cause is
the Dc_name_C.

2. Docker status stop: in this fault scenario, the Docker is stopped. The root cause is the
Dc_name_S.

3. VNF process stop: in this fault scenario, One important process of the VNF application
is stopped. The root cause is the Pname.
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Figure 6.6 – Self-modeling and RCA Framework

vIMS test architecture: We apply the proposed fault scenarios in the architecture depicted in
Figure 6.7. This architecture contains three sites. Site-3 hosts common functions between site
1 and site-2 i.e. Homestead, Homer and Cassandra. Site-1 and site-2 hosts the proxy Bono
and the router Sprout. A client can register from the Bono-1 of site-1 or Bono-2 of site-2. This
enables two Register services. one through site-1 and the second through site-2. The self-
modeling algorithm takes as inputs the YAML file that describes this topology and generates
the global dependency graph G.

6.6.1 Diagnosis of faults with identical symptoms

In this Section, we depict the results obtained from the application of the active diagnosis pro-
cess on the different fault scenarios. The three different fault scenarios was injected on the
Bono1 Docker (i.e. disconnect Bono1, stop Docker Bono1 and stop process Bono1). These
faults when injected to the Clearwater deployment provided similar alarms (or symptoms) de-
scribed in the following:

• Sprout1 could not reach Bono1: obs(Cbono1sprout1) = False.

• The Register service through Bono1 returns SIP code error 408 (i.e. request timeout):
obs(Register11) = False.

• The Register service through Bono2 is correct: obs(Register21) = True.
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Figure 6.7 – Experimental vIMS architecture

These alarms are considered as initial observations O0 = {Cbono1sprout1, Register11,
Register21}. Figure 6.8 illustrates the initial observations nodes and their predecessors in
the first sub-graph generated from Extractor(G, obs,O). The active diagnosis process takes
as inputs the global dependency graph G describing the topology of Figure 6.7 and the initial
observations and generates the sub-graph depicted in Figure 6.8. Since the three scenarios
have same symptoms, the first solution provided by the Solver(A) is similar between the fault
scenarios. With A representing the assumptions translated from the generated sub-graph in
Figure 6.8.

Scenarios I, II and III provides the results depicted in Figures 6.9, 6.10 and 6.11, respec-
tively. Note that these Figures are snapshot of the resulted dependency graph modeled in our
python code with the NetworkX library. While labeling the templates nodes, we tried to match
the theoretical definition in Chapter 5. However, some nodes labels might be resumed in our
implementation for better readability of graph nodes labels. We explicit the defined templates
nodes’ labels in the Appendix 7.2.4. The results of the three scenarios are depicted in the
following:

Scenario I: disconnect Bono1, DcBonoC:

1. Initial Observations: (Cf. Figure 6.8)

2. First proposed root cause: Appbono1
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Figure 6.8 – . The initial observations sub-graph for Scenarios I, II and III.

3. Next proposed root cause(s) and Tests results:

• Test of the Bono1 application (val(Appbono1) = Unknown.

• Test of the ETCD1 Docker connectivity (val(DCE1C) = True.

• Test of the Bono1 connectivity (val(DCbono1C) = False.

4. Results:

Bono1 Docker connectivity (DCbono1C) is a possible root cause. Continue?: No, (Cf.
Figure 6.9).

Scenario II: stop Docker Bono1, DcBono1S:
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Figure 6.9 – . Result sub-graph of fault scenario I

1. Initial Observations: (Cf. Figure 6.8)

2. First proposed root cause: Appbono1

3. Next proposed root cause(s) and Tests results:

• Test of the Bono1 application (val(Appbono1) = Unknown).

• Test of the ETCD1 Docker connectivity (val(DCE1C) = True).

• Test of the Bono1 Docker connectivity (val(DCbono1C) = False).

4. Results: Bono1 Docker connectivity (DCbono1C) is a possible root cause. Continue?:
Yes.

5. Next solutions and Tests results:

• Test of the network bridge status (val(NB1) = True).

• Test of the Bono1 Docker status (val(DCbono1S) = False).

• Results: Bono1 Docker status (DCbono1S) is a possible root cause. Continue?: No
(Cf. Figure 6.10).

Scenario III: stop Bono1 process, Pbono1:

1. Initial Observations: (Cf. Figure 6.8)

2. First proposed root cause: AppBono1
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Figure 6.10 – . Result sub-graph of fault scenario II

3. Next proposed root cause(s) and Tests results:

• Test of the Bono1 application (val(Appbono1) = False).

• Test of the Bono1 ETCD connectivity process (val(Pbono1EC) = True).

• Test of the Bono1 ETCD connectivity process (val(Pbono1) = False).

4. Results: Process Bono1 (Pbono1) is the root cause, please check the auto-recovery node
(i.e. Monit). (Cf. Figure 6.11)

6.6.2 Summary

As illustrated in the proposed fault scenarios, the diagnosis process starts with an initial sub-
graph of the first observations (Cf. Figure 6.8) and collects observations through tests. We
notice that the three fault scenarios have the same initial observations. In each scenario, the
diagnosis process is oriented differently with the results of tests. Our diagnosis process is able
to detect the root cause and explain the fault even with few initial observations and is able to
separate faults with identical symptoms.

Moreover, the diagnosis process detects the faults that occur at a finer granularity level
such as the case of the fault scenario III, where the fault was within the process of the Bono1
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Figure 6.11 – . Result sub-graph of fault scenario III

application. This enables providing effective self-healing actions. For instance, in the case of
the fault scenario III, the self-healing action consists in restarting the Bono1 process and the
auto-recovery nodes instead of restarting the same Docker or starting a new Docker, which
might be time consuming and might either not solve the problem.

6.6.3 Diagnosis of multiple faults

To evaluate the performance of the active diagnosis process in the case of multiple faults, we
propose a fault scenario with two faults (f1 and f2). f1 is a fault in the virtual connection of the
Bono1 Docker in site1 (disconnect Docker Bono1) and the f2 is a fault in the virtual connection
of the Homestead Docker in site3 (disconnect Docker Homestead). The faults are injected in
the same deployed three sites architecture of Figure 6.7. The first alarms considered as initial
observations are depicted as follows:

• Sprout1 could not reach Bono1: obs(Cbono1sprout1) = False.
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• Sprout1 could not reach Homestead: obs(Csprout2homestead) = False.

• The Register service through Bono1 returns SIP code error 408 (i.e. request timeout):
obs(Register11) = False.

The first sub-graph generated by the Extractor and the initial observations is illustrated in
Figure 6.12.

Figure 6.12 – . Initial observations generated sub-graph of multiple fault scenario in Bono1 and
Homestead virtual connections.

The active diagnosis process may suggest different tests each time we launch it. In fact,
it depends on the proposed solutions by the Z3 solver. However, in the end, the diagnosis
process is able to pinpoint the correct root causes. We will illustrate in the following two different
executions that differ on the proposed tests.

Execution I:
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1. Initial Observations: (Cf. Figure 6.12)

2. Tests and results:

• Node ClusterCsprout1 suspect.

• Node ClusterEventE1 suspect.

• Test of the Bono1 application (val(Appbono1) = True) and Node OV 13 suspect.

• Test of the Docker ETCD1 virtual connectivity (DCE1C = True) and test of the
logical connectivity between Homestead and Cassandra (Chomesteadcass = False)
and ClusterEventEM suspect.

• Test of the Bono1 virtual connectivity (DCbono1C = False) and test of the Home-
stead virtual connectivity (DChomesteadC = False).

3. Results: DCbono1C and DChomesteadC possible root causes continue? No, (Cf. Figure
6.13).

Figure 6.13 – . Results of execution I.

Execution II:

1. Initial Observations: (Cf. Figure 6.12)

2. Tests and results:
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• Node ClusterCsprout1 suspect.

• Node ClusterEventE1 suspect.

• Test of the sprout1 apllication status "unknown": val(Appsprout1) = True.

• Test of the Bono1 application (val(Appbono1) = True) and Node OV 13 suspect.

• Test of Homestead application (Apphomestead == True), test of the logical connec-
tivity between Homestead and Cassandra (Chomesteadcass = False) and test of
the Bono1 virtual connectivity (DCbono1C = False).

3. Results: DCbono1C is a possible root causes continue? Yes, (Cf. Figure 6.14).

4. Next tests:

• Test of the Homestead virtual connectivity (DChomesteadC = False) and test of the
Docker Bono1 status (DCbono1S = False).

5. Results: DChomesteadC is a possible root causes continue? No, (Cf. Figure 6.15).

Figure 6.14 – . Results of execution II, detecting the first root cause DCbono1C.

6.6.4 Summary

When diagnosing multiple faults such as the example discussed above and illustrated in Figure
6.12, we notice that the active diagnosis process tries each time to satisfy both faults by pin-
pointing parents of False nodes in the observations that explain the symptoms. For instance,
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Figure 6.15 – . Results of execution II, detecting the second root cause DChomesteadC.

in the first solution proposed by the Solver, node ClusterCsprout1 is proposed as a root cause
(i.e. False). This node is a common predecessor between all the False observed nodes
{Cbono1sprout1, Csprout1homestead,Register11}. We presented two distinct executions of
the Solver. In the first execution, the Solver proposed in the end both of the root causes, so
the diagnosis process was able to pinpoint both faults at the same time. In the second exe-
cution, the last proposition was DCbono1C, Apphomestead and Chomesteadcass that explains
all the symptoms. DCbono1C explains the Cbono1sprout1 and Register11, Apphomestead ex-
plains the Csprout1homestead and Register11, and Chomesteadcass explains the Register11.
However, only DCbono1C was a real root cause proved by a test. The result was proposed
to the administrator that decided to continue the diagnosis with the same values of known
nodes, since healing DCbono1C didn’t resolve the failure. The diagnosis provides then the
DChomesteadC and DCbono1S as possible root cause(s). The DChomesteadC is then de-
tected as a second root cause. Note that the value of DCbono1S was provided because the
administrator left the DCbono1C = False, so this node was pinpointed to explain the fault in
DCbono1C.
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6.7 A qualitative comparison with related works

In this Section 6.7, we present a qualitative comparison of the proposed self-modeling and
active diagnosis algorithm (SAKURA framework) with existent efforts and techniques applied
to virtual networks.

6.7.1 A qualitative comparison with classical telecommunications monitoring
routines

our active diagnosis compared to classical routines of monitoring in telecommunication net-
works such as syslog and performance monitoring, provides automation, fault explanation and
accuracy. In fact, most of the performance and syslog monitoring techniques (e.g. Nagios) rises
alarms to the administrator if a warning or a critical syslog message is received or a degrada-
tion of the network performance is noticed. These, alarms provide few indications about the
fault and enable the administrator to guess the fault without any automation or by applying
rules. These monitoring tools might detect some faults such as a docker down. However in the
case of faults with a smaller granularity, multiple faults or faults with similar symptoms, where
more explanations are needed these techniques are limited. Our diagnosis process goes be-
yond providing only alarms to faults. It provides explanation to the administrator with an explicit
graph.

6.7.2 A qualitative comparison with black-box approaches

As presented in Chapter 3, black box approaches are provide less explanations about their
solutions, and in particular about the propagation of faults in case of multiple faults.

Approach
Explanation
of solutions

Dependencies Layers Granularity
Adaptability

to new use cases

Gonzalez et al. [46]
Random
Forest

No

Learn from data
known/ unknown
dependencies
(e.g. topology relations)

Physical and Virtual
layers

VM is the smallest
granurality

No
(need to learn from new data)

Sauvanaud et al. [126]
Random
Forest

No
Learn from data
known/unknwon
dependencies

Physical and Virtual
layers

VM is the smallest
granurality

No
(need to learn from new data)

SAKURA
Dependency
Graph

Yes
Learn only
unknown dependencies

From physical to
service layer

Peocesses are the
smallest granularity

Yes
(extention of the model)

Table 6.1 – A qualitative comparison of SAKURA with black-box approaches.

Moreover, most of the learned knowledge is already acquired knowledge as in the case
of [46, 126] (Table 6.1), where most of the learned dependencies could be extracted from the
network topology. Furthermore, our model captures smaller granularity (such as application
processes) which enables to provide targeted self-healing actions. In addition, the defined
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model can be extended to other virtual networks use cases by keeping the common dependen-
cies and learning the unknown ones. While in black-box approaches such as in efforts [46] and
[126], the diagnosis of a novel use case requires learning from new data all the dependencies
of this new use-case.

6.7.3 A qualitative comparison with model-based approaches

In addition to the localization and explanation of faults, our diagnosis framework SAKURA has
a number of advantages compared to the existent model-based efforts [106, 146], applied to
virtual networks (Table 6.2). The defined model includes the application and service layers
in addition to the layers addressed in [106, 146]. Moreover, the proposed model includes a
number of dependencies not addressed by other efforts such as the auto-recovery and elasticity
mechanisms. In addition to these dependencies, the model can be extended and validated
through fault injection learning.

Dynamic
topology

Layers

Auto-
recovery
/elasticity

mechanisms

Model
learning

/validation

Additional
observations

(tests)
and interactive

diagnosis

Use case

Sánchez et al. [134] yes
virtual
layer no no no SDN

Vitrage [146] yes
virtual
layer elasticity no no Open Stack VMs

SAKURA yes
service
layer yes yes yes

SFC (vIMS) possible
extension to other use cases

Table 6.2 – A qualitative comparison of SAKURA with model-based approaches

6.8 Conclusion

We proposed an active diagnosis process to validate our self-modeling approach. The diag-
nosis process receives as inputs the model defined by the self-modeling algorithm and the
observations. The observations are nodes status collected from alarms and logs. The diag-
nosis process reasons on small parts of the global dependency graph to reduce the number
of assumptions introduced to the Solver, and thus the number of provided explanations. The
defined diagnosis process proposes a number of tests to be performed on the real deployment
in order to get new observations and progressively pinpoint the true fault propagation pattern.
The result is a dependency sub-graph that reveals the innocent, faulty and suspected nodes.
The advantage of presenting results as a dependency graphs is first to explain the results of
inferences to the network administrator, and mostly to enable an interactive reasoning incorpo-
rating human knowledge: the operator is then able to correct or add new observations about
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known, unknown or suspected nodes to get more elaborate or alternative explanations. We
finally showcased the efficiency of the diagnosis process on real vIMS fault scenarios. We
proved that our diagnosis process can handle single faults scenarios with identical symptoms,
as well as multiple faults scenarios. It is also able to detect faults with finer granularity in the
network such as application processes.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Results obtained during the thesis

Virtualization of networks is a considerable driving force behind the design process of 5G ar-
chitectures for both computing and networking. Specifically, virtualization enabled the flexibility
of telecommunication network services by facilitating the dynamic VNFs creation, adaptation
and termination. Moreover, virtualization introduced new features to the telco world such as the
dynamic network topology, the distribution of VNFs through distinct sites and the coexistence
between physical and virtual entities. In such a context, management of virtual networks is a
core feature to be addressed at an early stage to enable applications and services to take full
benefits of the virtualization. The fault management process includes three main tasks: de-
tection, localization (RCA or diagnosis), and healing. A taxonomy of approaches were applied
in each fault management step. However, the introduction of virtualization brought new issues
that limited the existent state of the art fault management approaches and techniques.

To study the classical fault management techniques and their limitation when applied to
virtual networks, we proposed a comprehensive survey in Chapter 3, that reviews the canon-
ical fault management steps and efforts applied to classical telecommunication networks. We
highlighted significant issues to be considered in the fault management of virtual networks and
described the recent research achievements to face these limitations.

In the taxonomy of approaches discussed in Chapter 3, we focused on white-box or model-
based techniques that are able to solve novel problems and provide explanations for the diagno-
sis decisions and conclusions through an explicit representation of the network dependencies.
This kind of techniques are the key to an autonomous management of network malfunctions.
They are adaptable to network components, over accurate and range reasoning methods and
can go as far as suggesting the best self-healing actions.

However, to realize this ambitious objective, we had to face the challenges of virtual net-
works: the multi-layered architecture and complexity of virtual networks and the dynamic net-
work topology. Our motivation to define this model was the existence of two types of knowledge
in the network: the learned and the acquired knowledge. The acquired knowledge is the avail-
able knowledge collected from the network description files, expert knowledge, logs and net-
work data. This knowledge is applied to learn the building rules of the model, define the current
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topology or define the network element status to be considered as observations for the diag-
nosis process. On the other hand, the learned knowledge is provided through targeted faults
injected to the network. To collect these data such as logs and network topology description,
we proposed LUMEN, the global fault management framework in Chapter 4. The aim of this
framework is to prepare the data for the self-modeling and diagnosis process. The proposed
framework solved the lack of network visibility by centralizing the logs. Moreover, a number of
open source tools were applied to generate traffic, inject faults to collect, filter and store logs.

In Chapter 5, we proposed our self-modeling approach that solves the burden of model
construction and boils it down to the design of generic templates of the model, exploiting two
types of knowledge: the acquired and learned knowledge. To face the dynamic topology issue,
we proposed to model the real topology through a YAML file. The defined model includes the
virtual networks granularity and the multi-layers aspect. The proposed self-modeling approach
was applied to the vIMS use-case. One important aspect of the proposed self-modeling ap-
proach is that the defined templates can be validated and extended through fault injections in
a real platform. Basing the modeling on generic templates allows one to address a wide range
of use-cases, as templates can be combined in numerous ways. The performance of out self-
modeling algorithm was then evaluated through two tests. The first performance test studies
the scalability of the generated dependency graph compared to the number of sites and VNFs
in the network topology. The second performance test evaluates the self-modeling algorithm
execution time. The results showed the importance of remodeling only the network topology
changes to avoid the considerable time spent on reading the YAML file.

To validate the efficiency of the self-modeling approach, the best way is to prove that the
model obtained with this approach is able to provide correct and accurate explanations about
faults through the diagnosis process. Therefore, we proposed in Chapter 6, an active diagnosis
process that reasons on portions of the global dependency graph. This graph is derived from
the self-modeling algorithm of the monitored network topology. The active diagnosis process
applies a Translator to translate the graph into logical dependency relations between network
entities. These relations are then “solved” through a logical Solver to discover the value of
unobserved variables. The active diagnosis process is combined with online test operations,
and provides explanations as sub-graph of relevant network resources with the identification of
guilty, faulty, innocent and suspect nodes, that make explicit the fault propagation scenario. The
network administrator has the ability to change or correct the values of some nodes at any time
to get new results and confirm/reject his own interpretations. To demonstrate the relevance of
the proposed active diagnosis approach, we applied it to a real world Docker-based Clearwater
vIMS architecture subject to real fault injections.
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7.2 Perspectives

This thesis opens up several research directions worth exploring in the future. We explain each
direction in the following.

7.2.1 Automation of other steps composing the self-modeling and diagnosis
procedures

We propose self-modeling and diagnosis procedures that respond to the challenges of virtual
networks. These procedures enable an autonomous management of network malfunctions.
Most of the steps composing the self-modeling and diagnosis procedures were automated.
However, other steps are worth to be automated or further developed:

• Autonomic creation of the YAML topology file: we proposed in Chapter 5 Section
5.5, a self-modeling algorithm that takes as inputs an YAML topology file. We defined
this YAML file to unify the description of the deployed network topology. It contains the
information necessary to instantiate the defined templates. This file captures the current
network topology to enable instantiating an up to date model. However, in our work, we
manually write this YAML, we didn’t develop the procedure for generating these models
from different deployments. This procedure is easily doable by interrogating the deployed
network orchestrators such as OpenStack or Docker daemons in our case.

• Automation of tests in the active diagnosis process: the active diagnosis process
presented in Chapter 6 identifies a number of tests to perform in order to progressively
pinpoint the cause of a malfunction. To improve the efficiency of this procedure, an ob-
vious direction is to automate the necessary tests, to releave the (human) network ad-
ministrator. To do so, the active diagnosis algorithm should be provided with the test
command lines and the necessary information about the network components in order to
perform these tests. Connectivity tests, for example, are easy to automate as soon as the
algorithm should know the IP address of the node to ping.

• In addition to automation, a number of other improvements to the diagnosis process re-
main possible. For example, the use of a Solver minimizing the number of nodes assigned
to "False" would simplify the recursive tests. One can also imagine the selection of the
most informative test to perform, or the choice of their ordering, in order to progress more
quickly to the true root cause, or also considering a specific granularity of the model to
run the diagnosis process and refine this granularity if necessary, as the diagnosis pro-
gresses.
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• Self-learning algorithm: we proposed in Chapter 5 Section 5.6 a procedure for the vali-
dation and refinement of our templates using fault injections. This procedure was applied
using fault injection scripts. However the comparison between real world observations
and predictions provided by our templates, and the derivation of necessary changes in
our templates to match real life behaviors, were all done by a human expert. An ambi-
tious perspective would be to automate this task through self-learning techniques, with
the objective to identify component dependencies, propose templates, design validation
procedures and correct/extend the templates. This algorithm would apply fault injection
scenarios in both a real deployment and its corresponding model. The self-learning algo-
rithm would then compare the results of the fault propagation of both sides. The result of
this algorithm in case a mismatch is detected could be: in a template "y" there might be
a node "x" linked with nodes of template "y" with a dependency type dv. After that, it is
up to the human expert to identify the correspondence of the added node X in the real
network.

7.2.2 Probabilistic dependency graph

We proposed in this thesis a self-modeling approach and validated it with the active diagnosis
process. The resulting model is a logical dependency graph with Boolean variables and logical
dependencies. To relax this model a direct extension is to keep the Boolean variables and relax
the logical (hard) dependencies into probabilistic (soft) dependencies. So instead of hard and
certain propagation patterns, we allow for randomness. For example, a direct way to do so is
to replace the OR by a noisy OR, the AND by a noisy AND, etc. This enables the introduction
of likelihoods for spontaneous faults, some being more frequent. This flexibility also allows one
to improve the robustness of models to modeling errors, as more valuations become possible
compared to logical dependencies, but may simply become less likely. Naturally, this model
extension requires to replace logical solvers by Bayesian inference algorithms. But, again, the
resource is abundant on this side. The main difficulty of model-based approaches lies in the
derivation of an accurate model.

Pushing further the modeling capabilities, while we have focused on hard failures, resulting
in Boolean variables in our models, one can imagine addressing softer failures. For example
system degradations like a high CPU load, a low bandwidth, a high latency, or at service levels
higher disconnection rates, long connection procedures, etc. It is likely that part of the struc-
tural/logical dependencies we have identified can carry over to such softer degradations, which
could make our approach extensible to capturing a wider range of malfunctions.
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7.2.3 Dynamic diagnosis

In the present work, we have assumed that the diagnosis was performed on a static model,
although the model may change from one call of the diagnoser to the next. In other words,
we reasoned on a snapshot, or a picture, of the network, assuming a fault is fully deployed
in all its consequences. A first extension would be to model dynamic behaviours to network
element, in order to observe and diagnose a malfunction as it is propagating (providing time
scales are relevant). That would mean performing diagnosis on a movie of a dynamic systems.
This is a classical topic, that has been already addressed for Bayesian inference, including
for network diagnosis (see Dynamic Bayesian Networks for example). However, so far, this
was never mixed with the fact that the model changes! As we are fully equipped for capturing
dynamic changes in a network topology, one can wonder whether it would be meaningful to
design diagnosis algorithms for systems that change structure over time. This would allow one,
for example, to incorporate in the inference engines the self-healing mechanisms of our models,
or the scaling up/down mechanisms, or VM migration phenomena, etc.

7.2.4 Application of the self-modeling approach to other use-cases

We proposed in Chapter 5 Section 5.3, a self-modeling approach that could be applied to a
wide range of virtual network use-cases. This approach captures the most common features of
virtual networks such as the multi-layered, the elasticity and auto-recovery aspects. Moreover,
the learning of templates dependencies with fault injections could be applied to learn specific
dependencies of each use-case. We proved the correctness of the defined templates by the
application of this model to a real world use-case: Docker-based Clearwater vIMS VNF chain.
This approach could be applied to other telecommunication virtual network use-cases. The
definition of the templates could be extended by fault injection to fit the corresponding use-
cases. The YAML file could also be adjusted to the use-case if necessary.
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APPENDIX A

Counterfactual analysis

Many variants of causality have been proposed in the literature and used in different disciplines.
It is questionable that one single definition of causality could fit all purposes. It may be useful
to ask different questions, such as: “could event A have occurred in some cases if B had not
occurred?” (1) [47]. Recent definitions of actual causality [54] and fault ascription [48] use coun-
terfactual analysis in order to pinpoint the events or components responsible for the violation of
a safety propriety, for instance, defined by VNF requirements.

Two definition of causality relationships namely necessary and sufficient causality have
been formalised in [47] in order to identify the component responsible for a failure of the system,
or, the occurrence of a given event. The input to the problem is:

• A set L of logs Li;

• A sequence of events observed for each component Ci;

• A number of specifications Si for each component Ci;

• A global property P such that ∧i∈[1,n]Si =⇒ Pi;

• A set of assumptions BHi on the behaviour of Ci;

• The set of logs L is assumed to be faulty and not consistent with the required property P .

Given the availability of the correct model for the component Ci, what would have been
the course of events if Ci had behaved correctly?. To answer this question, [47] proposed to
perform the following causality analysis and then check whether the hypothetical logs L′i meet
the property P :

ObservedlogsLi → PotentialbehavioursBhi

↓
HypotheticallogsL′i → HypotheticalbehavioursBh′i

WithBhi ∈ BHi are the behaviours of the components that are consistent with the observed
logs Li, and theBh′i ∈ BHi are modifications of behavioursBhi in which a number of erroneous
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behaviours are replaced by correct behaviors. The Bh′i behaviours produce the hypothetical
logs L′i.

According to [47], for this type of causality analysis eight possible forms of causality can be
noted. Among the proposed choices, the "Necessary∀,∀" choice corresponds to the following
definition:

Considering the evidence provided by the set of logs L, ComponentCi is aNecessary∀,∀

cause for the failure of the system if for all potential behaviors Bh of the system con-
sistent with L, all behaviors Bh′ similar to Bh except for the behavior of Ci which is
made correct, lead to correct execution logs.

This reasoning was applied on an example composed of a database system consisting of
three components communicating by message passing with First In First Out (FIFO) buffers.
The components are: a client C1, a database server C2, a journaling system C3. A client
C1 that wants to modify data in the database C2, starts by locking the data and then modifies
the data, the database sends a "Journ" to save the modification in the journal C3 and inform
a client with the modification (i.e. ACK OK). The correct flow of messages represents three
specifications (S1, S2, S3) defined in Figure 1. Figure 2 represents a Log ~tr = (tr1, tr2, tr3),
where: "!" stands for the emission messages and "?" for received messages, a,b are events.
"x" is an event that appears when a lock message is missing. In the log, tr1 violates S1 at event
"a" and tr3 violates S3 at "b".

Figure 1 – The procedure of data modification in a data base.

In order to analyze which component(s) caused the violation of the property P that mod-
els the absence of a conflict event "x", using a counterfactual approach, we obtain: If C1 had
worked correctly, it would have produced the trace tr

′
1 = lock!.m!. This gives us the coun-

terfactual scenario consisting of the traces tr
′
1 = (tr′

1, tr2, tr3). However, this scenario is not
consistent as C1 now emits lock, which is not received by C2 in tr2, and since in the FIFO
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Figure 2 – Log ~tr and the corresponding specifications [47].

buffers there is no message losses. To correct the global traces a projection of the counter-
factual traces is illustrated in Figure 3. The projection on the unaffected components by the
failures. The set of counterfactuals is the set of system-level traces whose projections on the
components extend the unaffected prefixes with correct behaviors. The blue prefixes in Figure
3-a and Figure 3-b represent the unaffected components of the failure of the client and Journal,
respectively.

Figure 3 – The counterfactual scenarios to the failure of client (a) and journal (b) [47].
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Docker Clearwater vIMS deployment features

The deployed Clearwater vIMS differs in many ways from the architecture presented in Chapter
2, Section 2.3.2. Figure 4 represents a Weave Scope screenshot of Docker Clearwater deploy-
ment. Weave Scope is an open sources project that enables to detect automatically the running
Dockers and processes in the server where it is deployed [149]. In this Figure 4, the Clearwater
functions are deployed in separated Dockers running in the same server. Each Docker holds
an IP address and a Clearwater function name (e.g. Bono). The links illustrated in Figure 4
represent the communications between Clearwater Dockers.

Figure 4 – A deployment of DockerClearwater vIMS.

In Figure 4, we can notice that Clearwater has a number of features that we should consider
when building the model. These features are deduced from acquired knowledge extracted from
description files [138] and from the deployment.
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• Each Clearwater application (e.g. Bono or Sprout) is deployed in a separate Virtual
Docker host.

• All Clearwater components are horizontally scalable using simple, stateless load-balancing.

• Clearwater vIMS allows its Dockers to automatically connect to the correct Dockers and
share configuration with each other. This feature uses Master ETCD as a decentralized
data store and ETCD clients installed in each vIMS Clearwater node.

• Databases such as Cassandra are implemented in a separate Virtual host.

• Clearwater enables online elastic scaling of its functions. Functions could be replicated,
without disrupting calls or losing data. The traffic is distributed equally between the scaled
functions. In fact, the interfaces between the different vIMS Dockers use connection pool-
ing with statistical recycling of connections to ensure load is spread evenly as Clearwater
Dockers are scaled and removed from each layer.

• The existence of the homestead-prov Docker that provides a programmable interface to
create new clients. It does the same work as the Ellis dashboard but it uses a pro-
grammable interface.

• Failure alarms and logs can be collected from the Clearwater components and from the
SIP test application.

Traffic generation

A number of SIP traffic generators exists: client SIP services (e.g Jitsi [65]) and Open source
test tools (e.g SIPp [130]). These solutions enables to generate SIP traffic through a bunch of
SIP clients. The Clearwater dashboard Ellis allows to create and modify the identity of the SIP
clients. Figure 5 illustrates an example of two SIP clients. Each SIP client has a SIP number
(e.g. 6505550760) and a password that enables him to register to the Clearwater SIP base, in
this case its: example.com.

Jitsi is an open source SIP application that enables clients to connect to the base using
their SIP number and password and benefit from the vIMS multimedia services [65]. Figure
6, showcases a connected client through the SIP identifier 6505550760@example.com that
tries to call the first client in the Ellis dashboard (Figure 5). Jitsi enables to generate traffic
between clients. However, it is difficult to increase the number of connected clients since each
client should be connected to its own application running on a distinct server with a distinct SIP
identifier. Therefore, we opted for the Clearwater-live-test project that includes a number of
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Figure 5 – The Ellis dashboard screenshot where two clients were created.

SIP traffic scenarios and reports the network health in each test [20]. The Clearwater-live-test
represents a suite of live tests that can be run over a deployment to confirm if the high level
network functions are working correctly. Traffic scenarios or tests in the framework are scripted
using short Ruby programs that can be extended. These programs use the Quaff library for
SIP calls, and the rest-client library to communicate with Ellis for provisioning. For instance,
one example of the performed tests is to create two SIP clients, create a SIP call between the
two clients, and report the received SIP response codes. Figure 7, illustrates three possible
Clearwater-live-test tests described as follows:

• Basic call (TCP)- (number1,number2): generates a basic SIP call using TCP in the trans-
port layer between the two clients with the associated SIP numbers: number1 and num-
ber2.

• Basic call- unknown number (TCP)- (number1, number2): test if the Clearwater, (i.e. the
Homestead node that checks the numbers in the Cassandra data base), recognizes the
case where a client with "number1" tries to connect to an unknown number "number2"
that is not defined in any base.

• Basic Registration (TCP)-(number1): test a SIP authentication of a client with number1 to
the Clearwater vIMS.
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Figure 6 – A connected Jitsi client to the "example.com" base trying to call the client with the
SIP number 6505550223.

Figure 7 – Three tests generated from the Clearwater-live-test applied to the Clearwater de-
ployment. The green "Passed" means that the test is successful.

Fault injection procedure

Figure 8 and Figure 9 illustrate an example of a fault injection in the virtual layer. In this example,
we stopped the Sprout Docker with the command line in Figure 8, the result of this command
is stopping the Docker Sprout that disappeared from the Weave Scope dashboard illustrated
in Figure 9. Note that with this command line the Docker Sprout is not destroyed and can be
restarted.

Logs collection and filtering

The logs generated by the Clearwater components are structured as the following:

Filtering the logs enabled us to keep only significant log lines. To do so, we drop the lines
of logs that are only informative such as the first log in Table 1. We only keep the "warning"
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Figure 8 – The command line for stopping the Sprout Docker.

Figure 9 – The Weave Scope screenshot after stopping the Sprout Docker.

log lines. The "warning" log lines inform us about the type of alarms. For instance, the second
log line in Table 1, represents a loss of connection between the component raising the alarm
and the component with the IP address 172.18.0.4. This log line inform us about a connectivity
failure. The generated alarms are then considered as initial observations to the diagnosis
algorithm in the decision plane.
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Timestamp Type and identification Descriptive message
11-01-2020 15:51:32.510 UTC Status pluginloader.cpp:150 Finished loading plug-ins
10-01-2020 02:48:10.062 UTC Warning pjsip: tcpc0x7fa8c405 Unable to connect to

172.18.0.4:5052

Table 1 – Two log lines generated by the Clearwater components. The first part of the log
represents the time and date of the alarm . The second part is the type of alarm (i.e. "Status"
and "Warning") with a specific identification defined in the alarming program of Clearwater
such as "pluginloader.cpp:150" in the first log line. The last part of the log line is a message
describing the alarm.
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List of vIMS implemented Templates Nodes

Physical layer

S aggregated node for sites
Si status of sitei

Cij physical connectivity between sitei and sitej

Virtual layer

Vi aggregated node for the virtual environment
DC_name aggregated node for a Docker status and connectivity

DC_name_C the Docker connectivity
DC_name_S the Docker status

ClusterC_name the virtual connectivity of the cluster of Dockers "name"
ClusterS_name the status of the cluster of Dockers "name"

ClusterEvent_(ETCD_name) the status of the cluster of ETCD and Memory
NBi the network bridge of sitei

OVij aggregated node for overlay network
OV _Sij status of the overlay network
OV _Cij convergence of ETCDi of sitei and ETCDj of sitej

Application layer

App_name aggregated node for an application status
C_name1_name2 logical connection between App_name1 and App_name2

P_name a process status
P_name_M the auto-recovery Monit process
P_name_EC the status of the ETCD client process

Service layer

Register the register service status
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Titre: Gestion des fautes dans les réseaux multi-tenants et pro-
grammables

Mot clés : Gestion de pannes, réseaux virtuels, Approches basées modèles, auto-modelisation,
diagnostic actif.

Resumé : La virtualisation est une tenta-
tive prometteuse pour résoudre certains dé-
fis de la 5G. La virtualisation consiste à exé-
cuter des fonctions réseaux en tant que logi-
ciels sur une infrastructure physique partagée.
Cela optimise les coûts de déploiement et
simplifie la gestion, mais il introduit de nou-
veaux défis tels que la topologie de réseau dy-

namique et le manque de visibilité. Dans cette
thèse, nous proposons un algorithme d’auto-
modélisation et un processus de diagnostic
actif pour relever ces défis. Nous apprenons
et validons le modèle défini par injection de
pannes. Nous appliquons notre approche au
use-case "virtual Ip Multimedia (vIMS)".

Title:Fault management of programmable multi-tenant networks

Keywords : Fault management, Network Functions Virtualization, Model-Based approaches,
self-modeling, active diagnosis.

Abstract : Network Functions Virtualiza-
tion (NFV) is one promising attempt at solv-
ing some of the 5G challenges. NFV is about
running network functions as virtualized work-
loads on commodity hardware. This may opti-
mize deployment costs and simplify the lifecy-
cle management, but it introduces new chal-
lenges such as the dynamic network topology

and the lack of visibility. In this thesis, we pro-
pose a self-modeling algorithm and an active
diagnosis process to face these challenges.
We define a dependency model learned from
faults injection. The self-modeling and the ac-
tive diagnosis approach was applied to the
real-world virtual Ip Multimedia Subsystem
(vIMS) use-case.
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