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C h a p t e r 1

INTRODUCTION

This PhD is an interdisciplinary effort merging control engineering and glaciology. In this introductory
chapter we answer several questions about the motivations behind our efforts, as well as establish
the main topic.

In this chapter we:

Introduce the topic of this PhD

Talk about the motivations behind our work

Justify the use of control theory to solve a problem in geophysics

Introduce the main contributions of this work

Present the organization of this manuscript

Figure 1.1: Control and Glaciology "fusing" together to solve a problem.
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1.1 Main Topic

Through seasonal changes, our Earth experiences a diverse array of phenomena. Snowfall is one
of those events, and depending on how much snow falls, the temperatures of the oceans and at-
mosphere, these fresh layers of snow can either melt or freeze into ice. Over time, if there is more
freezing than melting, the layers can stack up. However, if more melting occurs, then layers of ice
are lost. On earth, this process has been going on for millions of years, covering large areas of the
planet with sheets of ice. Three major ice masses are present on the Earth’s surface: the Arctic ice
cap, and the Antarctic and Greenland ice-sheets. The last two holding more than 90% of the fresh
water on Earth.

Once ice-sheets have formed, they are anything but a static environment. Ice is a viscous fluid [1],
meaning that bodies of ice will continuously deform due to forces acting upon them. To visualize
this, imagine scooping honey out of a jar and pouring it on a piece of toast. The honey will gather
on the surface of the bread and slowly start to spread outwards. Here, gravity is pulling on the
honey causing it to deform. The exact same thing happens to ice-sheets, but at a much slower pace
of course. However, this is not the only reason driving ice-sheets to move. Due to their immense
weight, ice at the bottom of ice-sheets is subjected to high pressures lowering the melting point of
ice thus causing it to melt. A layer of water forms, lubricating the rocks and sediments, causing the
ice-sheets to slide. These processes are illustrated in Fig. 1.2.

Figure 1.2: Diagram of an ice-sheet showing how the ice flows towards the ocean. The ice-shelf is
the mass of ice floating on water. Seasonal changes can either cause the thickness of the ice-sheet
to increase or decrease. High pressures at the bottom of the ice-sheet lower the melting point of ice
causing it to melt.
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Another way to understand some of the dynamics of ice-sheets is to imagine a photographer taking
pictures in a studio. If you have ever been in one of those studios, you might remember seeing large
dark umbrellas with shiny and reflective undersides. Usually, photographers will place a light source
behind an umbrella. This way, light will reflect all over the underside, then diffuse within the studio.
This gives the impression of having more natural lighting. The process of having the light spread out
more evenly over space as opposed to coming from a more concentrated area, is called a diffusion
process. Ice-sheets undergo a similar process as the bulk of the ice seeks to spread evenly over its
underlying surface. However, this does not paint a full picture. Now, remember going to a park as a
child and sliding down a slide. The process of you being on the top of the slide then finding yourself,
unchanged, at the bottom of it, is an example of an advection process. You were transported from
one part of space to another. Ice-sheets undergo a similar thing, where masses of ice will flow from
higher places to lower ones around their domain causing visible changes to the surface topography
of ice sheets.

The variation over time of the surface elevation h of grounded ice-sheets can be written in the form of
a diffusion equation known as the ice thickness equation [2]. We assume that the bedrock elevation
b = h − H varies much slower than H, thus its variation over time is omitted:

∂H
∂t
= ∇ · D∇h + a (1.1)

where H is the ice thickness, a the mass balance (accounting for accumulation and ablation), and D

the diffusion coefficient. This type of equation falls into the family of parabolic differential equations
[3], the most famous of which is the heat equation. For ice-sheets, D is spatially varying in two
dimensions and depends on the ice viscosity, ice thickness and bedrock elevation (and their slopes),
temperature, and depending on the sliding law used, a sliding coefficient that we denote as As [2,
4, 5]. We can rewrite (1.1) to illustrate the effect of having a spatially varying diffusion coefficient:

∂h(t, x, y)
∂t

= ∇D(x, y) · ∇h(t, x, y) + D(x, y)∇2h(t, x, y) + a(x, y)

=
∂

∂x
(
D
∂h
∂x

)
+

∂

∂y

(
D
∂h
∂y

)
+ a =

∂D
∂x

∂h
∂x
+ D

∂2h
∂x2 +

∂D
∂y

∂h
∂y
+ D

∂2h
∂y2 + a

(1.2)

We see in (1.2) that because D varies through space, changes in h come from both D and its
variations. This coefficient dictates how ice tries to evenly spread out over its surface (D and the
second order partial derivatives of h), and how parts of the ice is transported along its slopes (the first
order partial derivatives of D and h). To describe sliding, one can use a sliding law. In our case, we
introduce this phenomenon through aWeertman sliding law [6]. This enables us to relate diffusion to
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basal sliding, which makes these two parameters dependant of each other. Detailed derivation of the
ice thickness equation along with the exact laws and assumptions required to do so are given in the
next chapter. The topic of this PhD is to estimate the values of these two coefficients for Antarctica.
In the next section, we justify why producing accurate estimates of D and As is important.

1.2 Motivations Behind the Work

When it comes to understanding a phenomena, researchers collect measurements, set up environ-
ments, change control variables and observe their effects, and use physical laws to come up with
mathematical models that can replicate reality. Simulating a system can offer a lot of insights into
the hidden mechanisms of that system.

Let’s go back to the honey pouring example. Maybe you have noticed, while pouring honey, the
different ways it behaves before spreading over a surface. Next time you have some, try the following:
scoop some of it and let it drip. Slowly, move your hand up or down and observe how the end of the
honey thread can either fall in random patterns or coil up before collapsing. This kind of behavior is
common to all viscous fluids, and was studied and simulated in [7, 8]. It was found that different flow
regimes exist, and that going from one regime to another depends on the fluid’s viscosity, density,
flow rate, the radius of the outlet, and the height of the fall. One might think that such behavior only
occurs on smaller scales, but it is not true. On a much bigger scale, in the Earth’s mantle, a similar
process can occur [9] when a plume of viscous matter descends through an environment with a
different viscosity, causing it to bend or fold.

Scientists have investigated ice-sheet dynamics since the 1950s, but it took a few decades before
numerical models emerged. These models depend on a set of parameters that determine the be-
havior of the model. For example, and without going into any technical details, let’s consider a
simple model that simulates how a specific ice-sheet evolves through time. Assume that our goal is
to replicate available measurements of its surface topography. Let’s also assume that the amount
of snowfall and melt are known quantities, and that the boundary conditions are well defined, but
that we do not know the geometry of the bedrock underneath the ice. This uncertainty in the bed’s
geometry will highly impact the results. It will not be possible to obtain the same results with a flat
bed, an inclined one, or one with a more complex geometry, let alone match real measurements.

Though all ice-sheet models stem from the same constitutive relationships, they differ in their de-
grees of complexity, physical assumptions and simplifications, incorporation of physical boundary
conditions, and numerical schemes. This causes their results to sometimes diverge even when
run under similar environmental and numerical conditions. Great effort was spent to systematically
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compare ice-sheet models. Starting with EISMINT (European ice-sheet Modelling INitiative) [10], a
series of experiments was proposed to highlight the most efficient and reliable numerical techniques,
as well as the pros and cons of the tested models. These experiments were set in three main cat-
egories. The first consists in fixing modelled processes and parameters and describing boundary
conditions with as much detail as possible. The aim is to set up experiments with known analytical
solutions, thus assessing the accuracy of the employed numerical schemes. Higher-order and full-
Stokes ice-sheet models were intercompared in [11], while marine ice-sheet models were studied
in [12, 13] to evaluate the accuracy in simulating grounding line migration (the line dividing ice in
contact with the bedrock and ocean).

The second type of experiments follows from the first, except that each model is allowed to incorpo-
rate additional processes deemed essential, as well as setting up its variables to preferred values.
Here, the goal is to assess the complexity of each individual model. Thermomechanical coupling
was investigated on ten different ice-sheet models in [14]. And large-scale ice-sheet instabilities
were studied on nine ice-sheet models in [15]. The focus in these kind of studies was on the nature
of the phenomena rather than the numerical features of the models. In [16] the set-up for three in-
terrelated model intercomparison projects was proposed. This set-up tackled the coupling between
ice-sheet and ocean models.

The third category of experiments focuses on real ice-sheets, like Antarctica or Greenland. One of
the major questions tackled in this category is the contribution large losses in ice masses have on
sea-level rise. In its fifth annual report [17], the IPCC (Intergovernmental Panel on Climate Change)
gave estimated ranges of global sea-level rise under different scenarios. By the year 2100, estimates
range from 0.26 m to 0.82 m across all scenarios. However, observations show a global acceleration
in mass losses for ice sheets. Because ice-sheet models cannot fully replicate these phenomena,
estimates remain conservative.

The interactions between ice sheets, the ocean and the atmosphere, attract much attention because
of the impact future predictions of sea level rise have on society. In [18] the sensitivity of ten ice-
sheet models to changes in surface mass balance, sub-ice-shelf melting and basal sliding was
studied. The researchers found that the responses, of the tested ice-sheet models, vary linearly
relative to the strength (measured as the change in the ice volume above flotation) of the imposed
conditions. Researchers also found that the results of different forcings can be linearly combined.
This meant that studies employing simple relationships between climate and ice sheets proved to
be adequate. However, refinement of the estimates is still needed. In [19, 20], several ice-sheet
models were subjected to atmospheric, oceanic and subglacial forcing scenarios, for both Antarctica
and Greenland. This body of work belongs to a series of research focusing on the sensitivity of
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models to combinations of changes in the atmosphere, basal sliding underneath the grounded ice
sheet, melting under floating ice. One of the researchers’ findings, was that basal sliding plays an
important role in the thinning of the Antarctic ice sheet. Regions of fast flow thin because of the
increased discharge of ice, and even though thinning decreases towards the interior of Antarctica,
it can still propagate over time. Improved understanding and estimation of the basal conditions
beneath the ice will greatly benefit such research.

The previously mentioned studies have played an important role in qualitatively and quantitatively
understanding the sensitivities of ice-sheet models, and in assessing why ice-sheet models can
diverge. Yet, another issue relative to ice sheet models is the impact the initialization has on the
end results [21]. Often, two main approaches can be identified. The first method relies on long
transient simulations from the last glacial maximum to present-day. This approach is successful in
capturing climate history but the produced present-day ice-sheet profiles can greatly differ from the
observations.

The second method uses data-assimilation techniques on present-day observations. While suc-
cessful in reproducing these observations, results from this approach do not reproduce well past
climate evolution. Predicting how much Greenland and Antarctica will contribute to sea level rise,
ice-sheet models must be able to reproduce present-day observations. We note that in the second
method, researchers often rely on techniques based on control engineering. In [22] spatial distri-
butions of basal drag were estimated by minimizing a cost function penalizing differences between
observed and simulated horizontal surface velocities. And in [23], researchers inverted for basal fric-
tion through a variational approach introduced in [24]. In [25], inversion for the basal drag coefficient
and ice stiffness parameter is carried using satellite observations of surface velocity, snow accumu-
lation rate, and rate of change of surface elevation. Here we begin to see that control engineering
is not foreign to glaciology.

All the previously mentioned works agree that an improved modelling of the physical processes and
a better understanding numerical characteristics of ice-sheet models will be highly beneficial. It is
clear that model initialization is a topic that requires extensive and multidisciplinary efforts. Our
contributions fall into the inverse problem category because we use measurements of the surface
elevation, bedrock topography, and mass balance for Antarctica to infer the basal sliding coefficient.
The choice of this coefficient comes from our problem formulation. We detail our choice and ap-
proach in the subsequent chapters. We also estimate the diffusion coefficient because it is closely
related to basal sliding, and inferring one of these two parameters can lead to the other.
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1.3 Control Theory as a Tool

Before answering how control theory can be used to solve a problem in geophysics, it is important to
understand what is control engineering. Inherently, control is an interdisciplinary science. Numerous
discussions with friends and colleagues have offered very different answers regarding the nature of
this science. Yet, the most elegant and simple description can be found in Stuart Benett’s book on
the early history of control [26] : "..engineers andmathematicians came together to create the control
engineer". Of course, the resourcefulness and ingenuity of an engineer was the dominant element
in the early days of control, mathematics gradually entered the scene as the field progressed and
more complex problems emerged.

Figure 1.3: Sketch of a vertical windmill, used for grinding grain, found in ancient Persia (modern
day Iran).

To start putting things into perspective, let’s explore how control evolved out of necessity by talking
about windmills. The earliest mention of windmills dates back to the 9th century. Vertical windmills
were used in Persia to grind grain [27]. Contrary to their modern cousins, they stood on vertical
shafts with sails that rotated parallel to the wind’s direction. Of course the design evolved over time,
and in the 18th century windmills were still a crucial element of human life. One major issue was
their irregularity of motion as it heavily depends on the speed and direction of the wind. A solution
was introduced by an English blacksmith in 1745. Edmund Lee [26, 27] placed a smaller windmill,
known as a fantail or fly, behind and perpendicular to the main sails to keep the windmill facing the
incoming wind. However, this did not regulate the speed of rotation of the main sails. Traditionally,
main sails were made of cloth. These had to be replaced with shutters that could be held closed
using weights. By adjusting these weights, one could choose how strong the wind needs to be
in order to blow them open, thus reducing the contact surface of the sails and slowing down their
rotation. In 1772, Andrew Meikle [28], a Scottish millwright, improved on that design by replacing
the weights with springs for each individual sail. The fantail reacted to the direction of the wind, the
shutters to its intensity, and both devices fed back into the windmill the necessary adjustments.
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Jumping to the early 20th century, control started to take its modern form [29]. The rush of industry
made it necessary for more elaborate methods to increase the efficiency and reliability of produc-
tion lines. All through the industrial spectrum, factories craved regulation. Production had to remain
ongoing and stable; this required regulating the used devices. For example, motor speeds, frequen-
cies, voltages, temperatures, flows, pressures had to be maintained at desired values [30, 31]. If the
desired performance was not achieved, engineers would work on redesigning the process or ma-
chines used, and of course this led to a lot of trial and error. One major obstacle was the absence of
a common language with which to communicate control engineering ideas and standards. Compet-
ing companies did innovate but many advancements were kept away from the public. However, and
for whatever reason, in the 1930s companies did allow their employees to start publishing technical
papers. This was of course a huge leap. And with the onset of World War II, the military relied on
the knowledge and expertise of tech companies and their engineers to meet requirements. Notions
of feedback, stability, tuning, frequency domain methods, all were introduced in that period [32, 33].

Control theory continued to evolve, and the 1950s-1960s are considered to be the classical years.
During this period a lot of the modern language of control was introduced. Abstract concepts and
theorems were established, and applications went beyond the industrial and military fields. In other
words, control was not limited in its applications [34]. If a concept can be reduced to its mathematical
essence, then control can be a viable approach. We previously mentioned that control methods were
already employed in [22, 23, 24, 25] to infer basal characteristics under ice sheets. We follow in this
tradition, and utilize a branch of control engineering known as Lyapunov theory [35, 36]. Control is
a toolbox offering its user a wide array of strategies to tackle a problem and approach a domain. In
our case, the domain is geophysics. With a background in control engineering, we offer a fresh set
of eyes. Hopefully our perspective will prove to be useful.

Figure 1.4: Control in its early days, playing with windmills.
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1.4 Main Contributions

The contributions of this PhD focus on estimating parameters relevant ice-sheet dynamics, in order
to replicate measurements of the Antarctic surface topography.

1.4.1 Part I: Estimating Basal Sliding

The first part of this PhD focuses of estimating basal sliding. This two-dimensional (2D) parameter is
spatially varying. The method proposed in this thesis is to derive an update or estimation formula for
this coefficient, while still ensuring that the simulations of ice-sheet dynamics tend to the available
measurements of surface topography. To test this strategy, we focus on a simplified version of the
problem. Simplifications came in two parts. First, by reducing the spatial dimensions. This meant
that 2D ice-sheets became one-dimensional (1D) flowlines. A flowline is simply the centerline of a
glacier along which ice flows from the inner parts towards the edges. Second, by adopting one of
the well known approximations in glaciology; the Shallow Ice Approximation (SIA). To understand
what it implies, remember that ice is a slow moving viscous fluid. Its dynamics are described by
the Stokes flow equations. One can exploit the fact that for large ice-sheets, the thickness to length
ratio is small, meaning that ice-sheets are much longer than they are thick. This allows us to neglect
some of the forces acting within the ice. This particular assumption works well for the interior of
ice-sheets where the ice is much slower than near the edges. Doing so simplified the equations
at hand and enabled us to obtain a new update law for the sliding coefficient. This law was tested
against case examples and real data.

1.4.2 Part II: Estimating Diffusion

The second part of this PhD emerged due to some of the difficulties encountered when trying to
scale up the previous efforts back to two dimensions. This pushed us to shift our perspective and
reformulate the problem. Instead of looking for basal sliding we look for the diffusion coefficient.
This perspective is rather new in glaciology as researchers rarely directly focus on this coefficient
as it is of a more abstract nature, focusing instead on variables that have a more explicit physical
meaning. However, this does not mean that estimating diffusion is useless. As will be apparent later,
the diffusion coefficient can in fact be used to find basal sliding. Rather than coming up with a new
update law, we used a pre-established one [37] and adapted it for Antarctica, because Antarctic data
needs to be handled with more care. Our method is again tested against 1D and 2D case examples,
as well as real data.
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1.5 Manuscript Organization

This manuscript is divided into five chapters.

Chapter 2 presents some of the theoretical background involved in this PhD, for both glaciology and
control. We start in Section 2.1 with concepts related to the physics of glaciers and their dynamics
obtained through conservation laws of mass and momentum. We do not dwell on conservation of
energy as thermodynamics is not explicitly involved in our work. The different forces acting within a
glacier are explained and illustrated. Depending on dealing with ice-sheets or ice-shelves, certain
forces dominate others. For ice sheets, the geometry can be exploited, allowing the omission of
certain stresses in the balance of forces, which give rise to SIA. In Section 2.2 we expand the balance
equations and define the boundary conditions that produce the ice thickness equation. Details of
SIA and the modified ice thickness equation are given in Section 2.3. We then move to control.
Convergence of simulations towards measurements and stability of the equations representing the
dynamics can be studied using Lyapunov theory. This is done in Section 2.4. We end the chapter
with Section 2.5 where we expand on relevant works in glacilogy and control.

Chapter 3 focuses on the estimation of basal sliding in a 1D model. The available measurements of
surface topography represent the steady-state of our system. Linearizing around this steady-state
allows us to focus on deviations away from it, thus we obtain the linearized 1D flowline model. This
process is described in sections 3.1 and 3.2. In Section 3.3 we conduct our Lyapunov analysis and
define a new update law that guarantees convergence of the simulated data towards the measure-
ments. In Section 3.4 we show how to iteratively implement this new update formula. In Section 3.5
we test this law in study cases for the linear model. In Section 3.6 we realize the same for the nonlin-
ear model and compare the results with another method already used in ice-sheet models inversion
for basal sliding. Then in Section 3.7 we validate our method on real data of the Antarctic ice-sheet.

In Chapter 4 we look for the diffusion coefficient in both 1D and 2D. In Section 4.1 we adapt the
method of adaptive distributed parameter systems identification for our 2D problem. Following this
method, the Lyapunov analysis is done in this section, we also introduce the notions of observer and
update law for diffusion. Due to the stiff nature of the problem we introduce Tikhonov regularization
in Section 4.2. This smoothing technique is used in the 1D study case. Numerical simulations
and results for 1D are shown in Section 4.3. To gain better insights into the employed method, we
study in this section the effects of changing some of the simulation variables. The same is done in
Section 4.4 for the 2D study case. And in Section 4.5 we apply the method to real measurements
of the Antarctic ice-sheet.
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C h a p t e r 2

THEORETICAL BACKGROUND AND STATE OF THE ART

In this chapter, we offer some background in glaciology and control topics pertinent to this PhD. We
start with a quick review of the balance equations and illustrate some of the forces acting within
ice sheets. We then review ice sheet dynamics and derive the equations describing them. This is
followed by a set of simplifications that will give us the main dynamical equation which is at the center
of our work. Moving to control, we explore the Lyapunov methods and justify why they fit within our
framework. We end the chapter with relevant advances in inverse problems done in glaciology and
control.

In this chapter we:

Introduce the balance laws equations

Derive ice sheet dynamics

Simplify the ice sheet dynamics

Introduce the Lyapunov method

Explain how inverse problems are relevant in glaciology and control

This manuscript mainly targets two different audiences: glaciologists and control engineers. The
first three sections of this chapter, 2.1, 2.2 and 2.3, address those interested in how to derive the
dynamics of ice sheets as it is through them that we obtain the partial differential equation describing
our system. Section 2.4 offers a simple introduction to Lyapunov theory as it is through it that we
constructed our estimationmethods. One of our motivations is to include all the technical background
necessary for the understanding of this manuscript. Readers will not have to look too far away for
explanations facilitating their understanding.
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2.1 Balance Equations

ice sheets are continent-wide masses of ice in contact with the ground. Their thickness can vary
from a few hundred to a few thousand meters and they typically cover areas larger than 50, 000 km2.
Ice-shelves are outward extensions of ice sheets, float on ocean water, and are fed by the outflow of
ice sheets. Due to gravity, these bodies of ice deform and flow as they tend to thin out and spread
horizontally. Snowfall can accumulate in the higher parts while the lower areas experience melting
and calving. In order to come up with the necessary dynamical equations, we offer here a brief
review of relevant principles in fluid mechanics. For a more detailed description, we refer the reader
to the following reference books [38, 39]. The following review is assembled using material from
[40].

This section is structured as follows:

1. Define the general balance law equation.

2. Define the mass balance (continuity) equation for an incompressible fluid.

3. Define the momentum balance equation.

To simplify further the readability of the chapter keep in mind the following: the mass balance and
the boundary conditions (at the top and base of the ice sheet) will be used to find the ice thickness
equation. The momentum balance equation and the shallow ice approximation will be used together
to modify the ice thickness equation, allowing us to rewrite it in its diffusive form.

2.1.1 The General Balance Law Equation

Consider some material volume ω with a boundary surface ∂ω. This material could be anything as
long as it has the same particles for all time t. For some point on ∂ω we consider a unit normal
vector n and a velocity field vector v. The orthonormal basis vectors are x, y and z. Let X be the
coordinates vector in material space. This setting is shown in Fig. 2.1. All vectors and matrices are
denoted with a bold font.

Let G(ω, t) be a physical quantity on the entirety of the material volume ω, and let g(X, t) be its
density. Assume that G is additive over subsets of ω. G can represent quantities like mass or
momentum. Over time, changes in G can occur due to three processes:

• A flux F(∂ω, t), with density φ(X, t), of G through the boundary ∂ω.
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• An internal production P(ω, t), with density p(X, t), of G within ω.

• An external supply S(ω, t), with density s(X, t), of G outside of ω.

Figure 2.1: A material volume ω with ∂ω as its boundary, n is a unit normal vector to the surface, v
is the velocity field, x, y and z are the orthonormal basis vectors.

We assign a positive flux for a flow outward from ω. We can now define changes in G with time as
the balance between F, P and S. We use the densities of these quantities to define this balance :

d
dt

∫
ω
g(X, t) dv = −

∮
∂ω
φ(X, t) • n da +

∫
ω

p(X, t) dv +
∫
ω

s(X, t) dv (2.1)

Where X is the position vector assigned to each particle in physical space, dv is a local volume
change, da is a scalar surface element, and "•" is the dot product.

When it comes to dealing with control volumes, one can define the rate of change of some property
of the fluid using Reynolds’ transport theorem:

Theorem 1. The temporal change of an arbitrary field quantity Γ over a material volume ω is com-
posed of two parts:

1. the local change ∂Γ/∂t within ω

2. the advective flux Γv in the normal direction n across ∂ω

Translating the above into an equation, we get:

d
dt

∫
ω
Γ(X, t) dv =

∫
ω

∂Γ

∂t
dv +

∮
∂ω
Γv • n da (2.2)

Before going further, we recall the divergence theorem (Gauss’s theorem or Green’s theorem):
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Theorem 2. The integral of the divergence of a vector field f over a volume ω is equal to the integral
of the flux of f through the surface ∂ω:∫

ω
div(f) dv =

∮
∂ω

f • n da (2.3)

Note that the divergence operator for some vector field a is:

div(a) =
∂ax

∂x
+
∂ay

∂y
+
∂az

∂z

This theorem enables us to replace surface integrals with volume integrals. More precisely, we will
replace the first term in the right-hand side of (2.1) and the second term in the right-hand side of
(2.2) by their equivalent volume integrals. Note that in (2.2) we replace Γ by g.∮

∂ω
φ(X, t) • n da =

∫
ω
div(φ) dv∮

∂ω
gv • n da =

∫
ω
div(gv) dv

(2.4)

We can now use (2.2) and (2.4) to replace terms in (2.1), and gathering all terms under the same
integral: ∫

ω

(∂g
∂t
+ div(gv) + div(φ) − p − s

)
dv = 0 (2.5)

As the above expression must remain true, the terms within the integral must be equal to zero. This
gives the general balance equation in local form:

∂g

∂t
= −div(gv) − div(φ) + p + s (2.6)

What (2.6) implies is that the changes in density g of a chosen material quantity G are balanced
with the densities of production P and supply S withinω, the negative divergences of the flux density
across the the boundary ∂ω, and the advective flux density in the normal direction n across ∂ω.

2.1.2 The Mass Balance Equation

Now, let us assume that the quantity G is the total mass M of the object with volume ω. We know
that mass will not change and that it has a density ρ. We can write an expression stating just that:

d
dt

∫
ω
ρ dv = 0 (2.7)
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If we compare (2.7) to the general balance equation in its integral form, we can identify all the
variables in (2.1). We find that g = ρ, and that φ, p and s are zero. This enables us to rewrite the
local balance equation thus obtaining the mass balance equation:

∂ρ

∂t
= −div(ρv) (2.8)

In the case of an incompressible fluid, which is a reasonable approximation for ice, the density does
not change over time, and (2.8) becomes:

div(v) = 0 (2.9)

From this point onward we only deal with an incompressible fluid.

2.1.3 The Momentum Balance Equation

The quantity G can also represent the total momentum P. We know that momentum is mass multi-
plied by velocity, thus, its density is mass density times velocity, and P is the integral of that over the
whole volume:

g = ρv

P =
∫
ω
ρv dv

(2.10)

Before we proceed to obtain the momentum balance equation, consider Fig. 2.2 where the different
forces acting on the material are shown. These forces can either be external forces f acting on
volume elements of ω, or internal forces, usually termed stresses, e acting on the boundary surface
∂ω.

Newton’s second law of motion states that the sum of all forces F on a body is equal to the rate of
change of momentum P of that body. This translates to:

d
dt

P = F

d
dt

∫
ω
ρv dv =

∮
∂ω

e da +
∫
ω
f dv

(2.11)

Similar to what we did earlier, we compare (2.11) to the general balance equation in its integral form
(2.1) and identify the variables. We obtain g = ρv, p = 0, s = f, and φ = −e. Where the stress e
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Figure 2.2: A cross section of a material with volume ω, surface ∂ω, internal forces e, and external
forces f.

is the dot product of two quantities, e and n. The term e is known as the Cauchy stress tensor. In
matrix form, and with the chosen orthonormal basis x, y and z this tensor is written as:

e =


exx exy exz

eyx eyy ezy

ezx ezy ezz

 (2.12)

The diagonal elements are known as the normal stresses, while the rest are the shear stresses.
They are all illustrated in Fig. 2.3 on each face of a cube. For each face, the element corresponding
to ekk (k = x, y, or z) points outward and dictates the direction of the other two components. For
example, take the bottom face, ezz has to point downwards, imposing a direction opposite to z, this
implies that exz must be opposite x, and eyz must be opposite y.

Having defined the terms for the momentum case, we can now plug them in (2.6) to obtain the
momentum balance equation (note that ρ is set as constant):

∂(ρv)
∂t
= −div(ρv v) + div(e) + f (2.13)

An equivalent form is:

ρ
dv
dt
= div(e) + f (2.14)

2.2 Dynamics

Having defined the mass balance (2.9) and momentum balance (2.14) equations, we can now move
on to finding the dynamical equation describing the evolution of ice thickness over time. In order to
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Figure 2.3: The Cauchy stress tensor.

achieve that, in this subsection we will:

1. Develop the mass balance equation (2.9).

2. Define the ice sheet boundary conditions at the top and bottom.

3. Define the ice thickness equation.

2.2.1 Deriving the ice sheet Mass Balance Equation

Recalling (2.9) and developing it into its three components gives:

div(v) =
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
= 0 (2.15)

From now on, the ice surface (or free surface) elevation is denoted as h(t, x, y), the ice base (or
bedrock) elevation as b(t, x, y), and the ice thickness as H(t, x, y). Of course, for a grounded ice
sheet (where the ice is in touch with the bedrock), it is evident that H = h − b. Figure 2.4 illustrates
these variables.

Taking (2.15) and integrating from b to h along the vertical z direction gives us:

∫ h

b

∂vx

∂x
dz +

∫ h

b

∂vy

∂y
dz +

∫ h

b

∂vz

∂z
dz = 0 (2.16)
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Figure 2.4: Cross section of an ice sheet with ice-shelf extending towards the ocean. The top surface
of the ice sheet (dotted red) has a surface elevation of h(t, x, y), its base in touch with the lithosphere
(dotted green) is the bedrock elevation b(t, x, y), while the base submerged by the ocean (dotted
black) is z′(t, x, y), and the sea level (dotted blue) is zs(t, x, y).

In order to obtain the ice thickness equation, the volume flux Q must appear in (2.16). This flux has
two components, one in the x direction, the other in y. Each component is the vertical integral of the
horizontal velocity vx or vy. We thus must move the derivatives out of the integrals using the Leibniz
integral rule, shown below for partial derivatives in x (the same principle applies for those in y):

∫ h(t,x,y)

b(t,x,y)

∂

∂x
f (t, x, y, z) dz =

∂

∂x

∫ h

b
f dz − f |z=h

∂h
∂x
+ f |z=b

∂b
∂x

(2.17)

Using (2.17) for the first two terms in (2.16), and expanding the third gives us:

∂

∂x

∫ h

b
vx dz − vx |z=h

∂h
∂x
+ vx |z=b

∂b
∂x

+
∂

∂y

∫ h

b
vy dz − vy |z=h

∂h
∂y
+ vy |z=b

∂b
∂y

+vz |z=h −vz |z=b= 0

(2.18)

The integral terms in (2.18) constitute the two components of Q. The rest are to be rewritten using
the boundary conditions that we define next.
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2.2.2 Boundary Conditions

The boundary conditions for the ice top and ice base are given in this section.

2.2.2.1 Ice Top

At the surface of an ice sheet, the ice is in contact with the atmosphere. Let’s consider a point on
this free surface now denoted by Fs, V to be the velocity of the free surface, U the velocity of the ice
on this surface, and n the unit formal vector to the surface at this point. These vectors are shown
in Fig. 2.5 (left). Remembering that z is an elevation above sea level and h(t, x, y) the height of the
surface topography of the ice sheet, we can write the free surface as:

Fs(t,X) = z − h(t, x, y) = 0 (2.19)

The time derivative of Fs following the motion of the free surface is:

dFs

dt
=
∂Fs

∂t
+ grad(Fs) • V = 0 (2.20)

We can also define a new variable, the ice volume flux through the free surface, also known as the
surface mass balance, a′s perpendicular to the free surface:

a′s = (V − U) • n (2.21)

Notice that accumulation occurs when as is positive, meaning that the normal component of V is
greater than that of U. A loss of ice occurs in the opposite case. We can also remark that the unit
normal vector n to the surface can be written as:

n =
grad(F)
| grad(F) |

(2.22)

where, from now on, | grad(F) | denotes the L2 norm. Using (2.21) and (2.22) in (2.20), we get:

∂Fs

∂t
+ grad(Fs) • U = − | grad(Fs) | a′s (2.23)

Replacing Fs by z − h in (2.23) gives:

∂h
∂t
+
∂h
∂x

Ux +
∂h
∂y

Uy −Uz = | grad(Fs) | a′s (2.24)
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2.2.2.2 Ice Base

A similar reasoning can be made for the ice base. We now consider a surface Fb, with the velocity
vectors U and V, and the unit normal vector n as shown in Fig. 2.5 (right). Some changes to the
equations of the free surface and mass balance are due:

Fb(t,X) = b(x, y, t) − z = 0

a′b = (U − V) • n
(2.25)

Figure 2.5: Illustrations of the top (left) and bottom (right) surfaces of an ice sheet, showing the
velocity vector U of the ice on the top or base surfaces, the velocity V of the top or base surfaces,
and the unit normal vector n.

Notice that for ab, if the normal component of V is bigger than that of U melt occurs. The kinematic
boundary condition at the base is:

∂b
∂t
+
∂b
∂x

Ux +
∂b
∂y

Uy −Uz = | grad(Fb) | a′b (2.26)

2.2.3 Ice Thickness Equation

Having found the boundary conditions (2.24) and (2.26), we can now use them to replace the non-
integral terms in (2.18):

−vx |z=h
∂h
∂x
− vy |z=h

∂h
∂y
+ vz |z=h =

∂h
∂t
− | grad(Fs) | a′s

and

vx |z=b
∂b
∂x
+ vy |z=b

∂b
∂y
− vz |z=b = −

∂b
∂t
+ | grad(Fb) | a′b

(2.27)
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Which gives us:

∂

∂x

∫ h

b
vx dz +

∂

∂y

∫ h

b
vy dz +

∂h
∂t
− | grad(Fs) | a′s −

∂b
∂t
+ | grad(Fb) | a′b = 0 (2.28)

To make (2.28) more compact, we can use the fact that, for a grounded ice sheet, the ice thickness H

is the difference between the surface elevation h and the bedrock elevation b (taken to be unchanging
in the considered time scale). Also, we define the volume fluxes Qx and Qy to be the vertical
integrals of the surface velocities vx and vy, respectively. The accumulation and ablation terms
can be projected onto the vertical direction z, simplifying the equations | grad(Fs) | a′s = as and
| grad(Fb) | a′b = ab, thus we obtain the ice thickness equation:

∂H
∂t
= −div(Q) + as − ab (2.29)

2.3 Shallow Ice Approximation

In the previous sections, we derived the mass balance (2.9), momentum balance (2.14), and ice
thickness (2.29) equations. These equations are descriptions of real physical phenomena. And
though we would like to be as close as possible to reality, one can exploit certain physical charac-
teristics in order to simplify them. One of these approximations is the Shallow Ice Approximation
(SIA) [1]. This approximation exploits the fact that a small aspect ratio exists between the thickness
of an ice sheet and its length, allowing us to neglect some of the components in the equations we
have seen. In a big part this assumption is true as ice sheets tend to be much longer than they
are thick. But the SIA fails in marginal regions [41] especially when acting forces become of equal
importance [42]. We did however base a good deal of our work on SIA as we are mostly interested
in the grounded ice sheet where this approximation can remain valid. The simplifications introduced
by SIA offer another advantage, as the balance equations can take practical forms that will allow us
to derive our estimation law in Chapter 3.

In the previous sections, we have illustrated some of the dynamics of the movement of ice sheets.
We know by now that ice will move and deform due to its own weight, causing it to flow. In this
section we need to modify the ice thickness equation (2.29) under SIA. The volume flux Q can be
replaced with horizontal velocities. In turn, these velocities can be deduced from the strain rate
which is introduced through Glen’s flow law [43, 44]:

ε = A′σn−1
e ed (2.30)
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where ε is the strain rate tensor, A′ a temperature dependant rate factor, σe the effective stress, ed

the Cauchy stress deviator, and n a constant. In our case, the normal stress deviators ed
xx , ed

yy and
ed

zz are neglected.

Before utilizing (2.30), we start by rewriting the momentum balance equation (2.14) in component
form, while neglecting the acceleration term and setting f = −ρgez:

∂exx

∂x
+
∂exy

∂y
+
∂exz

∂z
= 0

∂exy

∂x
+
∂eyy
∂y
+
∂eyz

∂z
= 0

∂exz

∂x
+
∂eyz

∂y
+
∂ezz

∂z
= ρg

(2.31)

We now consider that throughout the ice sheet, the gradients of the shear stresses exz and eyz are
negligible compared to that of the normal stress ezz. Also, because the slopes of the ice surface
and bed are considered to be small (due to the small aspect ratio), the gradient of the shear stress
exy is negligible too. Setting all normal stresses equal to the negative of the pressure p greatly
simplifies (2.31):

∂exz

∂z
= −

∂exx

∂x
=
∂p
∂x

∂eyz

∂z
= −

∂eyy
∂y
=
∂p
∂y

∂ezz

∂z
=
∂p
∂x
= ρg

(2.32)

The third equation in (2.32) can be integrated from z to h, giving p = ρg(h− z). We can now replace
p in the first two equations of (2.32):

∂exz

∂z
= ρg

∂h
∂x

∂eyz

∂z
= ρg

∂h
∂y

(2.33)

Due to the small aspect ratio, the surface derivatives are small, which sets the unit normal vector as
n = ez. This can cause the stress-free boundary condition for the free surface to become:

p |z=h= 0 , exz |z=h= 0 , eyz |z=h= 0 (2.34)
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Integrating (2.33) and using (2.34):

exz = −ρg(h − z)
∂h
∂x

eyz = −ρg(h − z)
∂h
∂y

(2.35)

We can now return to Glen’s flow law (2.30). By definition, the strain rate tensor can be written in
term of velocities:

ε =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 =


∂vx
∂x

1
2 (

∂vx
∂y +

∂vy
∂x )

1
2 (

∂vx
∂z +

∂vz
∂x )

1
2 (

∂vy
∂x +

∂vz
∂y )

∂vy
∂y

1
2 (

∂vy
∂z +

∂vz
∂y )

1
2 (

∂vz
∂x +

∂vx
∂z )

1
2 (

∂vz
∂y +

∂vy
∂z )

∂vz
∂z

 (2.36)

As we are only interested in the x-z and y-z components, we select εxz and εyz from (2.36) and
calculate them using (2.30):

εxz =
1
2

(∂vx

∂z
+
∂vz

∂x

)
= A′σn−1

e exz

εyz =
1
2

(∂vy
∂z
+
∂vz

∂y

)
= A′σn−1

e eyz

(2.37)

The two shear stresses exz and eyz were calculated just above in (2.35). The only missing term is
the effective stress σe which can be found using the trace of the deviatoric stress tensor ed :

σe =

√
1
2
tr
{
ed(ed)T

}
=

√
1
2
(
(ed

xx)
2 + (ed

yy)
2 + (ed

zz)
2) + e2

xy + e2
xz + e2

yz (2.38)

Note that (ed)T is the transpose of ed , and that ed
i j = ei j for i , j. Under SIA ed

xx , ed
yy, ed

zz and exy

can be neglected. Replacing (2.35) in (2.38):

σe =

√
e2

xz + e2
yz = ρg(h − z) | grad(h) | (2.39)

We can now substitute (2.35) and (2.39) in (2.37) to obtain:

1
2

(∂vx

∂z
+
∂vz

∂x

)
= −A′ρngn(h − z)n | grad(h) |n−1 ∂h

∂x
1
2

(∂vy
∂z
+
∂vz

∂y

)
= −A′ρngn(h − z)n | grad(h) |n−1 ∂h

∂y

(2.40)
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Due to the property of the aspect ratio, the horizontal derivatives of vertical velocities in (2.40) can
be neglected. However, the derivatives of vertical velocities can be integrated from the base z = b

to a height z:

vx = vbx − 2ρngn | grad(h) |n−1 ∂h
∂x

∫ z

b
A′(h − ζ)n dζ

vy = vby − 2ρngn | grad(h) |n−1 ∂h
∂y

∫ z

b
A′(h − ζ)n dζ

where vbx and vby are the velocities at the base.

(2.41)

SIA does not usually include sliding but due to our interest in this phenomena, we augment SIA with
a Weertman sliding law [6, 45] of the form:

vb = As | τb |
m−1 τb (2.42)

Three new terms are introduced in (2.42): the basal sliding coefficient As, the basal drag or basal
shear stress τb, and a constant basal sliding exponent m. Basal sliding describes how the ice slides
over the underlying bedrock, while τb represents the friction arising from such movement. Parallel
to the basal drag is the driving stress τd, which can be computed by evaluating (2.35) at the base
z = b, giving:

τd = −ρgHgrad(h) (2.43)

It was noticed in [23] that for a large portion of the Antarctic ice sheet the driving stress is balanced
by the basal drag. This is why, for our calculations we set τb = τd , and replace it in (2.42):

vbx = −Asρ
mgmHm | grad(h) |m−1 ∂h

∂x

vby = −Asρ
mgmHm | grad(h) |m−1 ∂h

∂y

(2.44)

Using (2.41) and (2.44), we can now calculate the volume flux Q:

Q =

[
Qx

Qy

]
=

[∫ h
b vx dz∫ h
b vy dz

]
Qx =

∫ h

b
−As(ρgH)m | grad(h) |m−1 ∂h

∂x
− 2(ρg)n | grad(h) |n−1 ∂h

∂x

∫ z

b
A′(h − ζ)ndζ dz

Qy =

∫ h

b
−As(ρgH)m | grad(h) |m−1 ∂h

∂y
− 2(ρg)n | grad(h) |n−1 ∂h

∂y

∫ z

b
A′(h − ζ)ndζ dz

(2.45)
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During our work, we decided to set constant some of the variables above. The exponent m in (2.42)
dictates how plastic sliding can be. In [46], friction laws and the effects of varying m are studied. This
exponent can vary from m = 1 for a linear viscous flow, to m → ∞ for a more plastic flow. For our
work, we set m = 2 [45]. As for the exponent in Glen’s law (2.30), it is often set to n = 3. Additionally,
the temperature dependant factor A′ usually varies with depth, however we set it constant. We can
now rewrite (2.45), keeping in mind that within the main integral the only term dependant on z is the
integral term:

Qx = −Asρ
2g2H3 | grad(h) |

∂h
∂x
− 2A′ρ3g3 | grad(h) |2

∂h
∂x

∫ h

b

∫ z

b
(h − ζ)3 dζ dz

Qy = −Asρ
2g2H3 | grad(h) |

∂h
∂y
− 2A′ρ3g3 | grad(h) |2

∂h
∂y

∫ h

b

∫ z

b
(h − ζ)3 dζ dz

(2.46)

Integrating the double integral gives:

∫ h

b

∫ z

b
(h − ζ)3 dζ dz =

1
5

H5 (2.47)

Replacing (2.47) in (2.46):

Qx = −Asρ
2g2H3 | grad(h) |

∂h
∂x
−

2
5

A′ρ3g3H5 | grad(h) |2
∂h
∂x

Qy = −Asρ
2g2H3 | grad(h) |

∂h
∂y
−

2
5

A′ρ3g3H5 | grad(h) |2
∂h
∂y

(2.48)

The expressions for the volume fluxes in the x and y directions are now complete and can be sub-
stituted into the ice thickness equation (2.29):

∂H
∂t
=

∂

∂x
(D
∂h
∂x
) +

∂

∂y
(D
∂h
∂y
) + as − ab

with D = Asρ
2g2H3 | grad(h) | +

2
5

A′ρ3g3H5 | grad(h) |2
(2.49)

The above equation is the ice-thickness equation in its diffusive form under SIA. We will adopt it
throughout our work. The variable D is the diffusion coefficient that will be the focus of Chapter 4.
Notice how this variable depends on basal sliding As.
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Before moving on to the next section, we recap below the set of equations and assumptions that
have enabled us to obtain (2.49):

• We began with the ice thickness equation as it was defined at the end of Section 2.2:

∂H
∂t
= −div(Q) + as − ab

• The volume flux Q was defined as in (2.45):

Q =

[
Qx

Qy

]
• We adopted the Shallow Ice Approximation which enabled us to neglect some of the stresses
in the balance of forces.

• The components of the surface velocity were given as in (2.41):

vx = vbx − 2ρngn | grad(h) |n−1 ∂h
∂x

∫ z

b
A′(h − ζ)n dζ

vy = vby − 2ρngn | grad(h) |n−1 ∂h
∂y

∫ z

b
A′(h − ζ)n dζ

• We used a Weertman sliding law to augment SIA, thus the components of the velocity at the
base were given as in (2.42):

vb = As | τb |
m−1 τb

• We assumed that for large portions of the Antarctic ice sheet the basal drag τb is balanced
by the driving stress τd given by (2.43):

τd = −ρgHgrad(h)

• The exponent m describing the plasticity of sliding was set equal to 2. Glen’s law exponent n

was set equal to 3. And the temperature dependant factor A′, which can vary with depth, was
considered to be constant.

• Combining all the above leads to the final diffusive form of the ice sheet dynamics and gives
the formula for the spatially varying diffusion coefficient as shown in (2.49):

∂H
∂t
=

∂

∂x
(D
∂h
∂x
) +

∂

∂y
(D
∂h
∂y
) + as − ab

with D = Asρ
2g2H3 | grad(h) | +

2
5

A′ρ3g3H5 | grad(h) |2
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2.4 Lyapunov Theory

In the introductory chapter of this manuscript, we described control as a toolbox mixing mathematics
and engineering, thus offering solutions for a large variety of problems. This is why a key element
of our work is in essence mathematical. Lyapunov theory [35] was established by the Russian
mathematician Aleksandr Mikhailovich Lyapunov in 1892 [47]. His original work focused on the
stability of motion. Through this method, one can study the stability of a system by looking at the
stability of some measure of the energy of that system. If that measure or norm is stable, meaning
it dissipates with time, then the system must be stable as well. This resonates with us because the
ice thickness equation (2.49) is highly non-linear and one of its parameters, the basal sliding As, is
unknown and non-measurable, causing the diffusion coefficient D to be unknown as well. The aim
of our work is to estimate those parameters by studying the stability of (2.49). We elaborate on our
methodology in chapters 3 and 4.

For an in depth description of Lyapunov theory we refer the reader to [48, 36]. We base our review
of the theory on one of the chapters in [49]. The first problem tackled by Lyapunov consisted in
investigating the possibility of choosing the initial values of differential equations small enough so
that for all subsequent time instants these equations remain bounded by arbitrarily small limits.

Consider a dynamical system:

ÛH =
dH
dt
= F(H, t) H(t0) = H0 H ∈ Rn (2.50)

In order for solutions to exist and be unique, the function F(H, t) needs to be Lipschitz continuous
[50] with respect to H, uniformly in t, and piece-wise continuous in t. In other words, and very
crudely, F has to be smooth. We also consider that H̄ ∈ Rn is an equilibrium point of (2.50) if
F(H̄, t) = 0 ∀ t. The origin of the system can be shifted towards the equilibrium point, so that
H̄ = 0. All the definitions regarding stability (locally or globally), equilibrium, continuity and the
behaviour of functions (strictly increasing, decreasing ...) can be found in chapter 4 of [49]. We do
however introduce one definition before stating Lyapunov’s basic theorem:

Definition 2.4.1. Given a system as in (2.50), the time derivative of a function V(H, t) along the
trajectories of the system is defined as:

ÛV
��
ÛH=F(H,t) =

∂V
∂t
=
∂V
∂H

F (2.51)

The basic theorem of Lyapunov, also known as Lyapunov’s direct method:
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Theorem 3. Let V(H, t) be a non-negative function with derivative ÛV along the trajectories of the
system.

1. If V(H, t) is locally positive definite and ÛV(H, t) ≤ 0 locally in H and ∀ t, then the origin of the
system is locally stable.

2. If V(H, t) is locally positive definite, decrescent and ÛV(H, t) ≤ 0 locally in H and ∀ t, then the
origin of the system is uniformly locally stable.

3. If V(H, t) is locally positive definite, decrescent and ÛV(H, t) is locally negative definite, then
the origin of the system is uniformly locally asymptotically stable.

4. if V(H, t) is positive definite, decrescent and ÛV(H, t) is negative definite, then the origin of the
system is globally asymptotically stable.

To be able to quantify the rate of convergence of a system, Theorem 3 can be modified. Below is
Lyapunov’s exponential stability theorem:

Theorem 4. H̄ = 0 is an exponentially stable equilibrium point of (2.50) if and only if there exist an
ε > 0 and a function V(H, t) which satisfy

α1 ‖ H ‖2≤ V(H, t) ≤ α2 ‖ H ‖2

ÛV
��
ÛH=F(H,t) ≤ −α3 ‖ H ‖2

‖
∂V
∂H
(H, t) ‖≤ α4 ‖ H ‖

with {α1, α2, α3, α4} > 0 and ‖ H ‖≤ ε

(2.52)

The last theorem describes Lyapunov’s indirect method where one can show local stability of the
original non-linear system by analyzing the stability of its linearization. Let the non-linear system be
as in (2.50). We define the Jacobian matrix of F(H, t) with respect to H evaluated at the origin, as:

A(t) =
∂F(H, t)
∂H

����
H=0

(2.53)

The linearization around the origin of (2.50) is subsequently:

ÛHL = A(t)HL (2.54)

The deviation of the linearized system away from the non-linear one is:

∆(H, t) = ÛH − ÛHL = F(H, t) − A(t)HL (2.55)
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For ∆(H, t) to approach zero uniformly, it is not enough for H to go to zero, but it requires the norm
of ∆ to approach zero faster than the norm of H for all time t:

lim
‖H‖→0

(
sup
t≥0

‖ ∆(H, t) ‖
‖ H ‖

)
= 0 (2.56)

Lyapunov’s indirect method can now be stated as:

Theorem 5. Consider a non-linear system as in (2.50) and assume (2.56) to be true. Also, let A(t)

as in (2.53) be bounded. If 0 is a uniformly asymptotically stable equilibrium point of ÛHL (2.54), then
it is a locally uniformly asymptotically stable equilibrium of (2.50).

2.5 Relevant Works

Readers of this manuscript can see that our work is situated between glaciology and control theory.
The dynamics that represent the main model come from the ice-thickness equation (2.49), while our
approach is based on Lyapunov theory. In general, models can be set-up with known parameters
and inputs, run forward in time, thus generating an output that can be analyzed. For example, a given
ice sheet model can run under various inputs to see how it might evolve with time. This is a forward
problem. However, in cases where parameters are unknown and observational data are available,
one can seek to estimate those parameters to fit the observations, this is an inverse problem [51].
For a survey of inversion methods and some of their applications we refer the reader to [52].

Our work falls within the category of inverse problems as we estimate basal sliding and diffusion to
match measurements [53] of the surface topography of the Antarctic ice sheet. Even though our
methodology is new, the question of such parameter inversion is not. A lot of research has been
devoted to tackling such issues in glaciology. In [24, 54] the authors sought to calculate basal fric-
tion in order to match measurements of the surface velocity of an Antarctic ice stream. They carried
out their inversion by defining a cost function dependant on the difference between simulated and
measured surface velocities. Their minimization method is detailed in [55]. The same method was
applied in [23] but on a continental scale and results were compared to that of [56]. The Pollard
and DeConto method [56] is a simple and elegant method where the misfit between observed and
simulated surface elevation of the Antarctic ice sheet are used to calculate a gain that will iteratively
update basal sliding. We offer a quick recap of this method in Chapter 3, and compare our method
to it. In [57] an inversion was done to find the distribution of the basal drag coefficient that can
reproduce measurements of ice thickness. The authors iteratively corrected this coefficient using
measurements and simulated values of sliding velocities. In [58], similar to the previously mentioned
works, the author inverted for basal friction but constructed a different cost function with a smoothing
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term based on Thikhonov regularization [59, 60]. In [61] both surface velocities and surface topogra-
phy are used to infer basal characteristics. Here the authors used a different approach. They based
their inverse method on non-linear probabilistic Bayesian inference [62, 63]. In this approach, a priori
information about the basal properties is expressed as a probability density function and combined
with the surface measurements to give a posteriori probability distribution describing the final uncer-
tainty of the estimate. The solution of the inverse problem provides a set of solutions from which
the most likely one corresponds to the maximum of the a posteriori probability. In [64], interest was
shown in inverting for bed topography. Here the authors were inspired by [56] as their simple iterative
scheme used misfit between observed and simulated surface topography to update bedrock eleva-
tion. But instead of doing their update in a multiplicative fashion as in [56], they introduce change in
an additive fashion while using a weight to scale the update.

Lyapunov methods are powerful tools when stability of systems are of concern. However one of the
main challenges facing these methods is the choice of the function V [65]. It is common practice
to usually start the search by writing down the energy within a system and to then use one of the
methods discussed in the previous section to prove stability. But this choice does not guarantee
success, and in our case, as we are dealing with ice sheets, such a concept is not clear cut. Another
strategy to find such functions is to define some generic form of V then try to resolve the conditions
that will guarantee stability [66, 67]. Also, we should keep in mind that the notion of stability is not
the same in glaciology and control. Whenever the stability of ice sheets is discussed it usually refers
to how ice sheets loose mass. While when we talk about instability, we mean that the given system
"blows-up". We decided to steer away from trying to find an elaborate Lyapunov function and instead
focused on the misfit between observed and simulated ice thickness and built our V around that.
Our choice is not only supported by its simplicity but by the fact that our ultimate goal is not actually
stability but parameter estimation. To our knowledge, basal sliding has not been estimated using
such an approach.

As for the diffusion coefficient, it is evident that properly defining it in a diffusive system, describing ice
sheets or otherwise, is important as this parameter dictates the dynamics of the system. Identifying
a varying parameter is a distributed parameter estimation problem [68]. In [69, 70], and much like
the previously cited works, the diffusion coefficient was estimated by minimizing a cost function while
imposing regularization to guarantee both stability and uniqueness of the solution. In the case of ice
sheets, one can infer the diffusion coefficient using both the surface elevation and ice thickness [71].
However, this comes with its own set of problems as certain parameters like Glen’s flow parameter
[72] heavily depend on ice temperature. We avoid such an issue and use the method introduced in
[37], which consists of using an observer and an update law that enable the estimation of unknown
spatially varying parameters, based on either on-line or steady-state measurements. This method
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was successfully applied to estimating the diffusion as well as the source term in a Tokamak heat
transport model [73]. We expand this method to the two-dimensional (2D) case and search for
the diffusion coefficient using measurements of the surface topography of the Antarctic ice sheet.
Estimating the diffusion coefficient for the Antarctic ice sheet has not been addressed in this fashion
before.

2.6 Conclusion

We finish this chapter with a quick recap of what was mentioned:

• In Section 2.1 a brief review of physics introduces the momentum balance and mass balance
equations. These equations are the basis upon which the dynamics of our system are built.

• In Section 2.2 we develop the balance equations and obtain the ice thickness equation in its
generic form.

• In Section 2.3 the shallow ice approximation is introduced. This approximation shapes the
dynamics of our system and transforms the ice thickness equation. We find that basal sliding
and diffusion are in fact dependant.

• In Section 2.4 the various necessary definitions and theorems pertinent to Lyapunov theory
are stated.

• In Section 2.5 a review of relevant topics and advancements related to our work are discussed.

In the next chapters we elaborate on our method and explain how to estimate basal sliding for a
one-dimensional model in Chapter 3, and diffusion for both one and two-dimensional models in
Chapter 4, as to replicate measurements of the surface topography of the Antarctic ice sheet.
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C h a p t e r 3

ESTIMATING THE BASAL SLIDING COEFFICIENT IN A 1D MODEL

Antarctica has been the subject of numerous studies as it encompasses a large variety of phenom-
ena that impact reality around us. The understanding and study of past and future behavior of the
Antarctic ice sheet requires a good initialization of the models used to simulate the dynamics of ice.
Initializing such models with the observed surface topography and velocity field requires the knowl-
edge of basal characteristics of the ice sheet. Such characteristics cannot be directly measured.
In this chapter, the focus is on the basal sliding coefficient, here denoted as As, which describes
the sliding of ice sheets over the basal bed. Using a constant As in ice sheet models forward in
time leads to a simulated ice sheet that is not in agreement with the observed one. Alternatively,
spatial variations of the basal sliding coefficient can be obtained through an iterative method, thus
guaranteeing a simulated ice sheet close to the observation. Our method utilizes the misfit between
the simulated and observed ice thickness in order to modify As. It will be compared to that of Pollard
and DeConto [56] as their method also uses such a misfit to iteratively update the basal sliding co-
efficient. This parameter can be constrained by noticing that it acts as a transport coefficient for the
ice thickness H, a quantity whose spatial distribution is measured for Antarctica. As we have seen
in the previous chapter, the evolution of H can be modeled by a diffusive nonlinear partial differential
equation (PDE) (2.49). This fact is exploited here using a Lyapunov-based technique to find the
distribution of As that ensures the stability and exponential convergence of the modeled H toward
its measured value.

ice sheet models can vary in complexity, frommodels solving the full Stokes equations [74] to simpler
models where the Shallow-Ice approximation (SIA) [1], the Shallow-Shelf approximation (SSA) [75],
or a combination of the two [76] is used. Such models can also vary in the number of spatial dimen-
sions considered, from spatially distributed depth-dependent 3D models [74] to depth-integrated 2D
models [77]. In this chapter we deal with the one dimensional (1D) case, and as we are interested
in the ice in contact with the bedrock, we decided to adopt the Shallow-Ice approximation. This
approximation does not include sliding, as the ice is considered to be frozen to the bedrock. In order
to induce sliding, a sliding law can be added by either choosing a nonlinear Weertman sliding law
[6] or a linear Coulomb friction law [78]; we decided to use the former.

We propose a law based on Lyapunov analysis that could pave the way to extend the study to hybrid
and two dimensional ice sheet models. It is worthy to mention that our approach does not imply
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finding a Lyapunov function that will prove convergence relative to a given control law. In fact, the
reverse is done as a simple Lyapunov function is chosen and an appropriate update law is calculated
in order to fulfill the required conditions for convergence. As a validation, the performance of our
proposed method is compared to the method of Pollard and DeConto [56] in terms of cumulative
absolute error, difference between the simulated and observed ice thickness, convergence time
and the estimated As. The robustness to the initial guess of basal sliding coefficient As0 is also
investigated.

The content of this chapter is based on our conference paper [79]. However, our findings are more
detailed here, including additional tests and simulations that further the understanding of our method.
It also shows the method’s capabilities using real data.

In this chapter we:

Introduce the 1D ice dynamics PDE under SIA

Linearize the PDE around a given equilibrium

Show the Lyapunov analysis and find the appropriate update law

Present the results of the linear and nonlinear models

Compare our method to that of Pollard and DeConto

Present the results on real data
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3.1 Reference Model and Problem Formulation

Recalling and dropping one of the dimensions in equation (2.49), the one-dimensional evolution of
ice thickness is described by the diffusive PDE:

Ht =
(
Dhx

)
x + a (3.1)

We remind the reader that all partial derivatives in x and t are denoted by subscripts.

In Section 2.3, we saw that SIA enables the use of some simplifying relationships, below we recall
them expressed in 1D:

D = −vHh−1
x

v = vb +
2A′

5
Hτ3

D

vb = Asτb | τb |

τb ≈ τd = −ρgHhx

(3.2)

Substituting (3.2) into (3.1) gives:

Ht =
(
ρ2g2 AsH3hx | hx |

)
x
+

(2
5

A′ρ3g3H5h3
x

)
x
+ a

∀ x ∈ [x1, x2] and t ∈ [0,T]

H(x1, t) = H̄(x1) and H(x2, t) = H̄(x2)

H(x, 0) = H̄(x) + ∆H

(3.3)

Our estimation problem is formulated as finding the distributed profile As(x) such that the solution
of (3.3) converges toward H̄ (considered to be an equilibrium). The nonlinear nature of (3.3) clearly
does not allow us to directly find an analytical solution, we thus propose to use As as a feedback
gain that stabilizes the linearized dynamics through an iterative method.

3.2 Linearized Dynamics

Linearizing the dynamics around an equilibrium point is a common practice when dealing with PDEs.
A first order Taylor series expansion around the equilibrium H = H̄ and As = Ās is carried out. A
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similar approach was done for another diffusive system in [80]. As previously stated, the aim of this
chapter is to find Ās. Expanding (3.3) gives:

Ht = f (As, Asx,H,Hx,Hxx)

= ρ2g2 (As xH3hx | hx | +3AsHxH2hx | hx | +2AsH3hxx | hx |
)

+
2
5
ρ3g3 A′

(
5HxH4h3

x + 3H5hxx h2
x
)
+ a

(3.4)

The linearization is carried out as follows:

Ht = f̄ + (As − Ās)
∂ f̄
∂ Ās
+ (As x − Ās x)

∂ f̄
∂ Ās x

+ (H − H̄)
∂ f̄
∂H̄

+(Hx − H̄x)
∂ f̄
∂H̄x

+ (Hxx − H̄xx)
∂ f̄
∂H̄xx

+ a
(3.5)

Where f̄ = f (Ās, Ās x, H̄, H̄x, H̄xx).

Denoting Ãs = As − Ās, Ãsx = As x − Ās x , H̃ = H − H̄, H̃x = Hx − H̄x and H̃xx = Hxx − H̄xx , and
noticing that H̃t = Ht (due to the fact that H̄t = 0 as it represents the equilibrium of the system) we
obtain the linearized dynamics as:

H̃t = c2 Ãs + c3 Ãs x + c4H̃ + c5H̃x + c6H̃xx (3.6)

With the following transport coefficients:

c1 = ρ
2g2

(
Ās xH̄3 h̄x | h̄x | +3ĀsH̄xH̄2 h̄x | h̄x | +2ĀsH̄3 h̄xx | h̄x |

)
+

2A′

5
ρ3g3

(
5H̄4H̄x h̄3

x + 3H̄5 h̄xx h̄2
x

)
+ a

c2 = ρ
2g2

(
3H̄xH̄2 h̄x | h̄x | +2H̄3 h̄xx | h̄x |

)
c3 = ρ

2g2H̄3 h̄x | h̄x |

c4 = ρ
2g2

(
3Ās xH̄2 h̄x | h̄x | +6ĀsH̄xH̄ h̄x | h̄x | +6ĀsH̄2 h̄xx | h̄x |

)
+

2A′

5
ρ3g3

(
20H̄xH̄3 h̄3

x + 15H̄4 h̄xx h̄2
x

)
c5 = ρ

2g2
(
2Ās xH̄3 | h̄x | +6ĀsH̄xH̄2 | h̄x | +2ĀsH̄3 h̄xx

| h̄x |

h̄x
+ 3ĀsH̄2 h̄x | h̄x |

)
+

2A′

5
ρ3g3

(
15H̄xH̄4 h̄2

x + 6H̄5 h̄xx h̄x + 5H̄4 h̄3
x

)
c6 = 2ρ2g2 ĀsH̄3 | h̄x | +

6A′

5
ρ3g3H̄5 h̄2

x

(3.7)
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Note that c1 = f̄ + a = H̄t = 0.

The boundary and initial conditions become:

H̃(x1, t) = H̃(x2, t) = 0

H̃(x, 0) = ∆H
(3.8)

3.3 Lyapunov Analysis and Update Law

The parameter estimation problem is formulated as a stabilization problem by considering Ãs as the
controlled variable that should drive H̃ from ( 3.6) to zero. This is done using Lyapunov analysis
on our system. This Section is divided into two parts. The first part deals with the choice of an ap-
propriate Lyapunov function, and the second part focuses on finding As that guarantees the system
convergence.

3.3.1 Candidate Lyapunov Function

The Lyapunov function is often chosen to be an energy-like function [36] that needs to be dissipated
with time. In the case of the system described by (3.6)-(3.8), we would like the error H̃ between the
simulated and reference ice thickness to go to zero, thus a choice is the function:

V =
1
2

∫ x2

x1

H̃2dx (3.9)

Theorem 6. The time derivative Vt of the function V given by (3.9) verifies:

Vt =

∫ x2

x1

H̃(c3 Ãs)xdx +
1
2

∫ x2

x1

H̃2c4dx −
∫ x2

x1

c6H̃2
x dx (3.10)

∀ t ∈ [0,T] along the solutions of (3.6)-(3.8) with the transport coefficients (3.7).

Proof. Differentiating (3.9) with respect to time gives:

Vt =

∫ x2

x1

H̃H̃t dx = T1 + T2 + T3 + T4 (3.11)

where:
T1 =

∫ x2

x1

H̃
(
c2 Ãs + c3 Ãs x

)
dx T2 =

∫ x2

x1

c4H̃2dx

T3 =

∫ x2

x1

c5H̃H̃xdx T4 =

∫ x2

x1

c6H̃H̃xxdx
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Integration by parts is performed on T3 and T4 to allow H̃2 to appear inside the integrals.
First, T3 becomes:

T3 =

∫ x2

x1

c5H̃H̃xdx = −
1
2

∫ x2

x1

c5x H̃2dx (3.12)

Notice that due to the boundary conditions, terms like (c5H̄2)
���x2

x1
= 0. The same applies to all

subsequent integrations.
Second, T4 can be expressed as:

T4 =

∫ x2

x1

c6H̃H̃xxdx =
∫ x2

x1

(1
2

c6xx H̃2 − c6H̃2
x
)
dx (3.13)

Thus, (3.11) can be written as:

Vt =

∫ x2

x1

H̃
(
c2 Ãs + c3 Ãs x

)
dx −

∫ x2

x1

c6H̃2
x dx +

∫ x2

x1

H̃2 (c4 −
1
2

c5x +
1
2

c6xx
)
dx

=

∫ x2

x1

H̃(c3 Ãs)xdx +
1
2

∫ x2

x1

H̃2c4dx −
∫ x2

x1

c6H̃2
x dx

(3.14)

where the last equality is obtained by noticing that c4 −
1
2 c5x +

1
2 c6xx =

1
2 c4. Also note that c3x = c2

due to the linearization process. This can be obtained by recalling c6 and differentiating with respect
to x:

c6x = ρ
2g2

(
2Ās xH̄3 | h̄x | + 6ĀsH̄xH̄2 | h̄x | + 2ĀsH̄3(h̄)xx

| h̄x |

h̄x

)
+

2A′

5
ρ3g3

(
15H̄xH̄4 h̄2

x + 6H̄5(h̄)xx h̄x

) (3.15)

We introduce a new variable c7 by subtracting c5 from (3.15):

c7 = c6x − c5 = ρ
2g2

(
2Ās xH̄3 | h̄x | + 6ĀsH̄xH̄2 | h̄x | + 2ĀsH̄3(h̄)xx

| h̄x |

h̄x
− 2Ās xH̄3 | h̄x |

−6ĀsH̄xH̄2 | h̄x | − 2ĀsH̄3(h̄)xx
| h̄x |

h̄x
− 3ĀsH̄2 h̄x | h̄x |

)
+

2A′

5
ρ3g3

(
15H̄xH̄4 h̄2

x + 6H̄5(h̄)xx h̄x − 15H̄xH̄4 h̄2
x − 6H̄5(h̄)xx h̄x − 5H̄4 h̄3

x

)
= −3ρ2g2 ĀsH̄2 h̄x | h̄x | − 2A′ρ3g3H̄4 h̄3

x

(3.16)

Thus, it was found that c6x − c5 + c7 = 0 ∀ x, which consequently implies that c6xx − c5x + c7x = 0.
The next step is to find the value of c7x :

c7x = ρ
2g2

(
3Ās xH̄2 h̄x | h̄x | + 6ĀsH̄xH̄ h̄x | h̄x | + 6ĀsH̄2(h̄)xx | h̄x |

)
+

2A′

5
ρ3g3

(
20H̄xH̄3 h̄3

x + 15H̄4(h̄)xx h̄2
x

) (3.17)

From the above, we found that c7x = c4 which implies:

c4 −
1
2

c5x +
1
2

c6xx =
1
2

c4 (3.18)
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3.3.2 Design of the Update Law

Using the Lyapunov function discussed in Section 3.3, the convergence of (3.6)-(3.8) is ensured by
the following theorem.

Theorem 7. Choosing:

Ãs = −
1
c3

H̃
∫ x

x1

c4(l)dl (3.19)

guarantees the exponential convergence of (3.6)-(3.8) and:∫ x2

x1

H̃(x, t)dx ≤
∫ x2

x1

H̃(x, 0)dx e−γt (3.20)

where γ is a positive-definite constant.

Proof. Let Ãs be chosen as in (3.19) and replace it in (3.10). This gives:

Vt = −

∫ x2

x1

(
H̃2c4 + H̃H̃x

∫ x

x1

c4(l)dl
)
dx +

1
2

∫ x2

x1

H̃2c4dx −
∫ x2

x1

c6H̃2
x dx (3.21)

Using integration by parts, the first integral becomes:

−

∫ x2

x1

(
H̃2c4 + H̃H̃x

∫ x

x1

c4(l)dl
)
dx = −

1
2

∫ x2

x1

H̃2c4dx (3.22)

Replacing (3.22) in (3.21) gives:

Vt = −

∫ x2

x1

c6H̃2
x dx (3.23)

Notice that c6(x) ≥ 0 from (3.7). This enables the use of Wirtinger’s inequality [81] on the above
integral:

−

∫ x2

x1

c6H̃2
x dx ≤ −

c6min

C

∫ x2

x1

H̃2dx (3.24)

where c6min is the minimum of c6(x) and C = (x2−x1)
2

π2 . We now have:

Vt ≤ −γ

∫ x2

x1

H̃2dx

with: γ =
c6min

C
=

c6minπ
2

(x2 − x1)2
> 0

(3.25)

This concludes the proof.
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3.4 Iterative Calculation of the Sliding Coefficient

The results of Theorem 7 are used to iteratively calculate As. The main idea is that, starting from an
arbitrary guess on Ās, we iteratively update the equilibrium as Ās + Ãs until H̃ becomes as small as
possible and Ās becomes as close as possible to the ideal true As. Dividing c7 =

∫ x
x1

c4(l)dl by c3

gives:

1
c3

∫ x

x1

c4(l)dl =
3
h̄

Ās + 2A′ρgh̄|(h̄ + b)x | (3.26)

Equation (3.19) becomes:

Ãs = −H̃
( 3
H̄

Ās + 2A′ρgH̄ | h̄x |
)

(3.27)

Since Ās is our variable of interest and not known a priori, we consider an iterative update law that
will push the equilibrium of the linearized dynamics (3.6)-(3.8) toward a solution of the nonlinear
dynamics (3.3). Also, As is kept bounded between Āsmin = 10−10 m a−1 Pa−2 and Āsmax =

10−5 m a−1 Pa−2 which respectively represent the cold hard bedrock and the slipperiest deformable
sediment. The update is done with the following algorithm:

• Start with an initial guess of basal sliding As0 and initialize the nonlinear system with H = H̄.

• Run the system with the last calculated Ās to get close to an equilibrium (e.g. during a time
period sufficiently large with respect to γ) and obtain a new H.

• At iteration i calculate:
Ãs

i
= −H̃i ( 3

H̄
Ās

i
+ 2A′ρgH̄ | h̄x |

)
(3.28)

and update As using: 

Ās
i+1
= As

i − Ãs
i ∀ x ∈ [x1, x2]

if Ās
i+1
(x) < Āsmin then Ās

i+1
(x) = Āsmin

if Ās
i+1
(x) > Āsmax then Ās

i+1
(x) = Āsmax

As
i+1 = Ās

i+1

(3.29)

• Stop the simulation if
∫ x2

x1
|H̃ |dx ≤ ε , where ε > 0 is an arbitrarily small scalar constant.

Inverse problems can be ill posed as a unique solution might not exist [82]. It is a common practice
to add a regularizing term in order to impose some degree of smoothness to the solution [83]. In our
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case, all spatial derivatives are calculated using a Gaussian derivative operator, and all transport
coefficients (c2 to c6) are smoothed with a Gaussian filter. Additionally, every new As is a weighted
sum between smoothed and unsmoothed versions of it as shown in:

As = (1 − k) As + k As
∗

where k ≥ 0 is the weight assigned to the smoothed term As
∗

(3.30)

This filtering helps in rejecting high frequency variations and avoids numerical instabilities when
solving for H.

3.5 Linear Model Results

The general setup of the experiments consists of two phases. In the first phase a profile is built by
solving (3.3). This requires choosing a reference basal sliding coefficient Ās, a bedrock profile b,
and a profile of the input a. Then, starting from an initial ice thickness H0, the non-linear system is
allowed to relax until it reaches steady-state, thus giving us a reference ice thickness H̄ that we treat
as our observation in the linear system. Then in phase two, H̄ and (3.28)-(3.30) are used to estimate
Ās by updating the system after a fixed number of iterations. This process is shown in Fig.3.1.

The linear system must be initialized with some H̃. To do that we start with H̃ = 0 but allow the
system to run forward without any updates for some arbitrary number of iterations, this will generate
an H̃ , 0. Then, at every iteration we calculate sH̃ (the sum of the absolute error H̃) and its slope. If
the absolute value of the slope is less than a chosen ε > 0 the estimation is stopped and the system
is allowed to relax for a fixed number of iterations. We decided to use the slope of sH̃ as our criterion
to stop the estimation to be able to assess how fast the system converges. The last relaxation phase
is to show that the system does in fact converge to a stable state.

The linearized model (3.6)-(3.8) is discretized and solved using a fully implicit scheme. Four dif-
ferent profiles are tested against three initial conditions As0. The update step us (in steps) and the
smoothing weight k are kept constant. The setup of these experiments is detailed in Table 3.1 where
X can be one of four profiles A, B, C or D. Note that the values of As0 are chosen to reflect different
behaviors at the start of the simulations. A value of 10−5 means that the bottom of the ice is very
slippery thus sliding is at a maximum, the further this value drops sliding decreases.

The main aim of these tests is to show the capability of the method to retrieve a given profile, and to
be able to do so regardless of the choice of As0. Also, the updates are done at every step; this will
change, for reasons that will be detailed later when we test with the non-linear model in Section 3.6.
The results are presented and discussed below.
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Figure 3.1: Block diagram of the numerical experiment used to evaluate the estimation method on
fictitious data. The blocks in gray represent phase 1 (synthesis of fictitious data), while those in white
represent phase 2 (estimation).

Profile As0 us k

A, B, C or D 10−5 1 10−3

A, B, C or D 10−6 1 10−3

A, B, C or D 10−8 1 10−3

Table 3.1: Setup of linear model experiments.

3.5.1 Profiles A and B: Setup and Errors

We first start with profiles A and B as they are rather similar. Figures 3.2 and 3.3 contain the plots
of all the reference variables needed to setup these profiles: the reference ice thickness H̄ (dashed
blue) obtained after running forward the non-linear system, the bedrock elevation b (full brown), the
reference surface topography h̄ (full pink), the input mass balance a, and the reference basal sliding
coefficient Ās. Profile A represents the simplest of cases: a flat b, a constant input a, and a constant
Ās. Profile B is slightly different as it has an inclined bed. Note that in order to better visualize the
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profiles one needs to keep in mind the dimensions of the represented variables. At first glance it
might seem that the produced ice sheets have more thickness than width, but in fact they have a
maximum elevation of a few kilometers while being several thousand kilometers wide.

The second pair of figures shows the errors for profile A in Fig.3.4 and profile B in Fig.3.5. Each
figure contains the errors for each of the chosen initial guesses As

1
0 = 10−5 (full green), As

2
0 = 10−6

(dashed yellow), As
3
0 = 10−8 (dotted purple). Focusing on the evolution of the absolute cumulative

error sH̃ , we notice that for the case when the initial sliding is highest (As
1
0), the start of sH̃ is highest

as well. Remember that each simulation starts with H̃ = 0, and that the deviation of the system
depends on sliding. So, if sliding is high then deformation is fast, while if sliding decreases then the
ice will need more iterations to deform. This is why with As

3
0 the initial error is lower than for the other

two values. We also notice that for all three cases sH̃ converges to the same value, thus the obtained
misfits H̃ are all equal (right side of Fig.3.4 and Fig.3.5). This directly hints that the estimated As

are the same and that our estimation method is robust. However, an additional reason for having
such a consistent behavior is the fact that we are using a linear system operating around a given
equilibrium. The transport coefficients (3.7) dictate how the system is bound to evolve, prompting
the recalculation of these coefficients after every estimation. Once our method produces consistent
estimates, the system behaves in a physically consistent manner. In Section 3.3, we proved that the
error must go to zero, but in practice some error remains due to numerical integration. Most of the
error occurred at the boundaries, but H̃ is quite small compared to H̄; less than 0.3% of the peak
value.

3.5.2 Profiles C and D: Setup and Errors

Profiles C and D introduce some changes to A and B. First, the sliding coefficient As varies through-
out the domain, more so for profile D. The aim of choosing Ās as can be seen in figures 3.6 and 3.7 is
to test the capability of our method to estimate more complex distributions of basal sliding. Second,
while profile C still has an inclined bed b, undulations were added to that of profile D. And last, the
input a in profile D varies as well. All these changes ought to make the dynamics of the system more
complex and the job of estimation harder. Much like the two previous profiles, all errors converge
towards the same values as the misfits H̃ are all the same (Fig.3.8 and Fig.3.9). One striking differ-
ence however is that the behavior of sH̃ is different. We notice that the transient behavior of sH̃ is
not smooth. The reason for this is quite simple to explain. In order to obtain the given reference, the
ice had to slide unevenly across the domain. Transitioning from a constant profile to a varying one
is bound to cause sudden changes in H. More so, this sudden transition is visible in both figures
as peaks appear in sH̃ and the appearance of those peaks is delayed with slower moving ice. For
example, for As

2
0 the peak happens at around i = 103 iterations while for As

3
0 it occurs closer to
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Figure 3.2: 1D linear system, profile A: reference variables. On the left, the ice thickness H̄ (dashed
blue), surface elevation h̄ (full pink), bedrock b (full brown). On the top right, the surface mass
balance a. On the bottom right, the basal sliding coefficient Ās.

Figure 3.3: 1D linear system, profile B: reference variables. On the left, the ice thickness H̄ (dashed
blue), surface elevation h̄ (full pink), bedrock b (full brown). On the top right, the surface mass
balance a. On the bottom right, the basal sliding coefficient Ās.
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Figure 3.4: 1D linear system, profile A: errors. On the left, the evolution of the cumulative absolute
error sH̃ , and on the right the misfit H̃, for As

1
0 = 10−5 (full green), As

2
0 = 10−6 (dashed yellow),

As
3
0 = 10−8 (dotted purple).

Figure 3.5: 1D linear system, profile B: errors. On the left, the evolution of the cumulative absolute
error sH̃ , and on the right the misfit H̃, for As

1
0 = 10−5 (full green), As

2
0 = 10−6 (dashed yellow),

As
3
0 = 10−8 (dotted purple).
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i = 104. In a sense, more error implies more information for the update law to exploit, remember
that the update formula (3.28) depends on such an error. So, if the ice begins as slow moving, er-
ror/information needs time to build up, thus the update needs more time to enforce changes. This
particular issue is why when we will deal with the non-linear model updates are not at every step. In
fact we will allow longer relaxation times between updates, so that the non-linear system will have
time to adapt to changes in As. For both profiles, H̃ is higher at the boundaries and is orders of
magnitude less than H̄.

3.5.3 All Profiles: Estimation

Having discussed the setup of each profile and the obtained errors, we can move on to evaluating
the performance of the update law in the linear 1D case. Figure 3.10 shows the reference sliding
coefficient Ās (full blue), its estimate As (dashed brown), and LÃs

= log10(| Ãs |) (full pink), for
all profiles. We decided to plot only one of the estimates for each profile, as regardless of the
value of As0, the estimates are the same. Of course, this shows that our method is robust to initial
guesses. The estimates fit quite well their references, though some error is visible at the boundaries.
Profile C has a more pronounced estimation error on one of its boundaries. However, as we saw in
Subsections 3.5.1 and 3.5.2, these errors did not cause significant deviations in H.

We know by now that the error H̃ is needed for the update law to be effective. However, other factors

Figure 3.6: 1D linear system, profile C: reference variables. On the left, the ice thickness H̄ (dashed
blue), surface elevation h̄ (full pink), bedrock b (full brown). On the top right, the surface mass
balance a. On the bottom right, the basal sliding coefficient Ās.
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Figure 3.7: 1D linear system, profile D: reference variables. On the left, the ice thickness H̄ (dashed
blue), surface elevation h̄ (full pink), bedrock b (full brown). On the top right, the surface mass
balance a. On the bottom right, the basal sliding coefficient Ās.

Figure 3.8: 1D linear system, profile C: errors. On the left, the evolution of the cumulative absolute
error sH̃ , and on the right the misfit H̃, for As

1
0 = 10−5 (full green), As

2
0 = 10−6 (dashed yellow),

As
3
0 = 10−8 (dotted purple).
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can influence (3.28), namely h̄x and H̄x , the slopes of the surface topography and ice thickness
respectively. It is clear that in (3.28) if h̄x and/or H̄x approach zero less change will be done on
As. These slopes also heavily affect the transport coefficients (3.7). Since we linearized around an
equilibrium (3.5), points with low slopes will change slower relative to others, when the linearized
system is run forward in time. All these factors play an important role in the quality of the estimates.
For profiles A and B, we notice such an effect near the center of the domain. Referring back to
figures 3.2 and 3.3, we see that the top of the ice sheet occurs at these points. For profile C, h̄ is
somewhat flat at two points near X = 2 × 103 km and X = 4300 km, this is where LÃs

stands out.
As for profile D, it is harder to attribute the pattern of LÃs

to such reasons.

3.5.4 Conclusion of 1D Linear Results

We briefly recap the results and observations of this section. We saw that our method performed
well and was able to estimate basal sliding with various degrees of complexity. The obtained error
on ice thickness was found to be low and concentrated at the boundaries of the domain. We tested
against different values of initial guesses of basal sliding and our method proved to be robust in this
regard as all estimates were equal. However, the method and profile depend on the produced misfit
H̃ and the slopes of surface topography and ice thickness. This is why at points where H̃ and/or
these slopes are close to zero the method’s effectiveness slightly decreases.

3.6 Non-linear Model Results

The tests for the 1D non-linear model (3.3) are similar to those of Section 3.5. In addition to using
the same profiles, we compare our method (Method 1 or M1) to that of Pollard and DeConto [56]
(Method 2 or M2), and focus on the following aspects:

• robustness to As0 ;

• effects of changing the update step us;

• effects of changing the smoothing weight k;

• the performances of both methods.

Methods 1 and 2 are similar in that they both utilize the misfit in ice thickness to enforce changes
in the estimates of basal sliding. However, unlike Method 1 where the change in As is done in an
additive fashion, Method 2 seeks to iteratively apply a varying gain on As. At each update, every
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Figure 3.9: 1D linear system, profile D: errors. On the left, the evolution of the cumulative absolute
error sH̃ , and on the right the misfit H̃, for As

1
0 = 10−5 (full green), As

2
0 = 10−6 (dashed yellow),

As
3
0 = 10−8 (dotted purple).

Figure 3.10: 1D linear system, estimations of basal sliding for all profiles: log10 of the reference
coefficient Ās (full blue), the estimate As (dashed brown), and their absolute difference (full pink).
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point of the new As is calculated as the product of its current value and a gain dependant on H̃.
Thus at iteration i one can write:

Ai+1
s = Ai

s 10∆z

with ∆z = max[ −1.5 , min[ 1.5 , H̃/Hinv ] ]

where Hinv is a scaling factor

(3.31)

We see that in (3.31) 10∆z is limited by two values (0.03 and 30), the authors enforced such a
limit to avoid overshoots and ensure convergence of their method. Also, the scaling factor Hinv

reflects the weight with which the misfits influence the update. In other words, it affects the speed of
convergence, though a lower value of Hinv does not necessarily imply faster convergence. In fact,
increasingly lowering the scaling factor might cause numerical instabilities in the simulations.

No. Profile Method As0 us k Hinv

1 A, B, C or D 1 10−6 102 10−3 -
2 A, B, C or D 1 10−8 102 10−3 -
3 A, B, C or D 2 10−6 102 10−3 4 × 103

4 A, B, C or D 2 10−8 102 10−3 4 × 103

5 A, B, C or D 1 10−8 5 × 102 10−3 -
6 A, B, C or D 2 10−8 5 × 102 10−3 4 × 103

7 A, B, C or D 1 10−6 102 5 × 10−3 -
8 A, B, C or D 1 10−6 102 10−2 -
9 A, B, C or D 2 10−6 102 5 × 10−3 4 × 103

10 A, B, C or D 2 10−6 102 10−2 4 × 103

11 A, B, C or D 2 10−6 102 10−3 2 × 103

12 A, B, C or D 2 10−6 102 10−3 8 × 103

Table 3.2: Setup of non-linear model experiments.

A total of 48 simulations are done as seen in Table 3.2. Experiments 1 and 2 are done on Method
1 to test the robustness to two different initial guesses, the same is done in experiments 3 and 4 for
Method 2. In 5 and 6 the effect of the update step is tested on both methods. In 7-8 and 9-10 we study
the effect of changing the smoothing weight k on Method 1 and 2 respectively. Experiments 11 and
12 focus only on Method 2 by varying the scaling factor Hinv. As these tests have many changing
variables, we name the variables as follows: As

1
0 = 10−6, As

2
0 = 10−8, u1

s = 102, u2
s = 5 × 102,

k1 = 10−3, k2 = 5×10−3, k3 = 10−2, H1
inv = 4×103, H2

inv = 2×103, H3
inv = 8×103. The non-linear

system was solved using the MATLAB solver ode23s [84].



50

3.6.1 Robustness to the Initial Guess

It was established in Section 3.5 that Method 1 is indeed robust to initial values of As0 . We now
show that it is still the case for the non-linear system. In this section we compare the results of
experiments 1-4. Between each experiment we have changed the value of As0, see Table 3.2. We
start by looking at Fig.3.11 where we show sH̃ for all profiles. We quickly notice that for both methods
the errors do not converge to the same value, as was the case for the linear system, though it is
clear that the errors have a decreasing trend. However, this does not imply that the methods are not
robust. In Fig.3.12 and Fig.3.13 we show the reference sliding coefficient Ās (full blue), its estimate
As (dashed brown), and log10 of their absolute difference when As

1
0 (full pink) and As

2
0 (dotted blue),

for methods 1 and 2 respectively. The estimation errors are low and quite close, this is why we plot
only one estimate for each reference.

Both methods performed well and prove to be robust to initial guesses. Contrary to the linear
case, the boundaries do not carry errors. In fact, for the non-linear case, the estimation errors
generally dropped for all profiles, except for profile C (M1) where some stiffness emerged around
X = 5300 km. The reason for its appearance is numerical as for later tests it is no longer present.
Moving to Fig.3.14, all the misfits for experiments 1-4 are plotted. Though all misfits are very low,
M1 is able to produce less error for profiles A, B and D. For profile C, M2 performed better. Also, the
effects of the slopes h̄x and H̄x (discussed in the Section 3.5) are no longer present as the non-linear
system does not depend on transport coefficients (3.7) to run forward in time.

3.6.2 Sensitivity to the Update Step

We now examine the effect of changing the update step us. In experiments 2 and 4, updates were
done after u1

s = 102 iterations, in experiments 5 and 6 we increase it to u2
s = 5×102 iterations. Doing

so will give the system more iterations to evolve, thus accumulating more H̃ before the next update.
Though this aides the estimation process and increases the numerical stability of the system, it
comes at the expense of prolonging the convergence time. This can be visible in Fig.3.15 where sH̃

of experiments 2,4,5 and 6 are plotted for all profiles. Comparing the plots of experiment 2 (u1
s , M1)

to those of 5 (u2
s , M1), and 4 (u1

s , M2) to 6 (u2
s , M2) we find that the increase in us did indeed increase

the convergence time. It might wrongly seem that this also caused both methods to produce more
error. If more time was given to experiments 5 and 6, by lowering ε (the stopping criterion in Section
3.4), each method would have reached more consistent error levels, just as was the case in the
previous set of experiments; see Fig.3.11.

Experiments 5 and 6 fulfilled the stopping condition before reaching lower error levels. More misfit H̃

is obtained, as can be seen in Fig.3.16 by comparing the misfit of experiment 5 (full blue) to that of 2
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Figure 3.11: 1D non-linear system, all profiles, experiments 1,2,3,4: evolution of the cumulative
absolute error sH̃ . Method 1: As

1
0 (full dark blue) and As

2
0 (full blue), Method 2: As

1
0 (dashed red)

and As
2
0 (dashed purple).

Figure 3.12: 1D non-linear system, all profiles, experiments 1-2: estimations of basal sliding. log10 of
the reference coefficient Ās (full blue), the estimate As (dashed brown), and their absolute difference
for As

1
0 (full pink) and As

2
0 (dotted blue).



52

Figure 3.13: 1D non-linear system, all profiles, experiments 3-4: estimations of basal sliding. log10 of
the reference coefficient Ās (full blue), the estimate As (dashed brown), and their absolute difference
for As

1
0 (full pink) and As

2
0 (dotted blue).

Figure 3.14: 1D non-linear system, all profiles, experiments 1,2,3,4: misfit H̃. Method 1: As
1
0 (full

dark blue) and As
2
0 (full blue), Method 2: As

1
0 (dashed red) and As

2
0 (dashed purple).
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Figure 3.15: 1D non-linear system, all profiles, experiments 2,4,5,6: evolution of the cumulative
absolute error sH̃ . Method 1: u1

s (full dark blue) and u2
s (full blue), Method 2: u1

s (dashed red) and u2
s

(dashed purple).

(full dark blue), and 6 (dashed purple) to 4 (dashed red). However, the more interesting comparison
is between methods. In the previous set of tests, M2 showed some advantage over M1 for profile
C. This is no longer the case once the update step was increased. Updating As using M1 appears
to be more aggressive than M2. Allowing the system to relax longer when using M1 will benefit the
estimation process.

Both methods produced good estimates, see Fig.3.17 for M1 and 3.18 for M2. The quality of those
estimates did not drastically change. Though for M1, the stiffness that appeared in the estimation of
profile C decreased. Hinting once again that increasing us can benefit the estimation.

3.6.3 Sensitivity to the Smoothing Weight

We now focus on the effect of changing the smoothing weight k. To do so we use the results from
experiments 2 (M1, k1 = 10−3), 4 (M2, k1 = 10−3), 7 (M1, k2 = 5 × 10−3), 8 (M1, k1 = 10−2), 9
(M2, k2 = 5 × 10−3), and 10 (M2, k3 = 10−2).

We start with the evolution of the cumulative error, seen in Fig.3.19. We have plotted sH̃ for all six
experiments and for both methods. We find that profiles A and B benefited from more smoothing.
This is due to the fact that Ās for these two profiles is constant across the domain, so with more
smoothing, the estimate As became more uniform and approached the reference. This of course is
no longer the case for profiles C and D as they have spatially varying sliding coefficients. Logically,
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Figure 3.16: 1D non-linear system, all profiles, experiments 2,4,5,6: misfit H̃. Method 1: u1
s (full

dark blue) and u2
s (full blue), Method 2: u1

s (dashed red) and u2
s (dashed purple).

Figure 3.17: 1D non-linear system, all profiles, experiments 5-2: estimations of basal sliding. log10 of
the reference coefficient Ās (full blue), the estimate As (dashed brown), and their absolute difference
for u1

s (full pink) and u2
s (dotted blue).
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Figure 3.18: 1D non-linear system, all profiles, experiments 6-4: estimations of basal sliding. log10 of
the reference coefficient Ās (full blue), the estimate As (dashed brown), and their absolute difference
for u1

s (full pink) and u2
s (dotted blue).

more smoothing will lower the variations in As, pushing the estimation away from the reference. The
effects are apparent as with a higher k the cumulative error increased. These observations are valid
for both methods. More light is shed on these observations in Fig.3.20, where the misfits H̃ for k2

and k3 are plotted for both methods and all profiles. It is useful to refer back to Fig.3.14 for the results
of experiments 2 and 4.

Figures 3.21 and 3.22 show the estimated coefficients for M1 andM2, respectively. In both figures we
show only As for experiments 7 and 9 as once again the values of LÃs

are close between experiments
7-8, and 9-10. The main comparison should be with experiments 2 (for M1) and 4 (for M2), whose
LÃs

is shown in dotted orange. Another confirmation that profiles A and B benefited from an increase
in k is the the fact that LÃs

decreases for experiments 7-8 and 9-10. Profiles C and D show the
opposite except at the region that showed stiffness for M1 (X = 5300 km) smoothing did indeed
remove the high variations in As.

3.6.4 Sensitivity of M2 to the Scaling Factor

The goal of this subsection is show that M2 is sensitive to the choice of scaling factor Hinv. This
sensitivity is however non-intuitive, as an increase in Hinv does not necessarily imply faster conver-
gence, lower errors hence better estimates. In Fig.3.23 the cumulative errors of experiments 3 with
H1

inv = 4× 103 (full red), 11 with H2
inv = 2× 103 (dotted purple), and 12 with H3

inv = 8× 103 (dashed
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Figure 3.19: 1D non-linear system, all profiles, experiments 2,4,7,8,9,10: evolution of the cumulative
absolute error sH̃ . Method 1: k1 (full dark blue), k2 (full blue), and k3 (full grey), Method 2: k1

(dashed red) and k2 (dashed purple), and k3 (dashed brown).

Figure 3.20: 1D non-linear system, all profiles, experiments 7,8,9,10: misfit H̃. Method 1: k2 (full
dark blue) and k3 (full blue), Method 2: k2 (dashed red) and k3 (dashed purple).
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Figure 3.21: 1D non-linear system, all profiles, experiments 2-7-8: estimations of basal sliding.
log10 of the reference coefficient Ās (full blue), the estimate As (dashed brown), and their absolute
difference for k2 (full pink), k3 (dotted blue), and k1 (dotted orange).

Figure 3.22: 1D non-linear system, all profiles, experiments 4-9-10: estimations of basal sliding.
log10 of the reference coefficient Ās (full blue), the estimate As (dashed brown), and their absolute
difference for k2 (full pink), k3 (dotted blue), and k1 (dotted orange).
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Figure 3.23: 1D non-linear system, all profiles, experiments 3-11-12: evolution of the cumulative
absolute error sH̃ . Method 2: H1

inv (full red) and H2
inv (dotted purple), and H3

inv (dashed brown).

brown) are shown. One might expect that the best results are obtained with H3
inv for all profiles. But

that was only the case with profile A. The other three profiles had more errors with H3
inv. Also, one

might expect M2 to be less effective with H2
inv as it is the lowest of the three chosen scaling factors.

But as clearly depicted in Fig.3.23 H2
inv produced the least errors for two of the four profiles. It was

shown in [56] that the quality of the results depends on the combination of both Hinv and us.

3.6.5 Conclusion of 1D Non-linear Results

The non-linear 1D case was tested much like the linear one. In addition to confirming the robustness
of our method to initial guesses As0 , we investigated the sensitivity to changes in update step us, and
to changes in the smoothing weight k. We also compare our method (M1) to an already established
one, that of Pollard and DeConto [56] (M2).

We stated at the start of Section 3.6 that the reason we chose to compare our method with M2 is
because they both utilise the misfit H̃ to update As. All along analyzing the non-linear results, M2
was present to mainly prove one thing, that if both methods behave in a similar fashion, then M1 is
a new valid approach.

Our method can introduce stiff changes into the system, and one way to deal with this is to allow
larger relaxation times between the updates by increasing the update step us. The obvious drawback
here is the need for longer runs. However, larger update steps have another benefit. As our update
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formula (3.28) depends on the misfit H̃, allowing the system to further run forward produces more
accurate misfits, thus more accurate estimations As. Another way of dealing with numerical stiffness
is filtering. We thus defined our new estimates as a weighted sum between smooth and non-smooth
terms (3.30). A trade-off arises between updating more frequently and smoothingmore, and allowing
the system to relax longer after each update (pushing for longer simulation times) and smoothing
less. We also briefly tested changing the scaling factor Hinv in M2. We noticed that M2’s results can
be improved by choosing a better combination of Hinv and us.

For all tests, M1 produced results close to or better than M2. This clearly implies that our method is
a new viable option for estimating basal sliding. In the next section we prove this point further as we
test the method on real Antarctic data.

3.7 Experimental Results

With the linear and nonlinear tests done in sections 3.5 and 3.6, we now carry tests on real data.
Early in our work, we selected cross-sections of the Antarctic ice sheet and tried to retrieve the
selected profiles of surface topography. For example, a 10 km data resolution holds the data in
matrices 561 × 561 large. To get a cross-section we could select the 280th row of the matrix and
simulations would be done to estimate the basal sliding distribution that could reproduce this profile.
This of course proved to be inaccurate because the Antarctic ice sheet does not flow along such
dimensions. This is why we turned our attention to flowlines as they are one-dimensional and within
them the ice flows following one direction. Flowlines can be useful to describe certain aspects of
glaciers [85, 86], and can be sometimes coupled to other geophysical models [87] or used to study
phenomena like flowstripes [88]. Our aim is not to model them but to utilize the concept of a flowline
in order to produce estimates of basal sliding along one dimension. We use the non-linear model
(3.3) and the data from the Bedmap2 data set [53].

To extract flowlines we select basins within the Antarctic map. These drainage systems are as
defined in [89] and are shown in Fig.3.24. We test our method on flowlines from basins 3, 10, 17, 21
and 22, noting that we treated basins 21 and 22 as one in order to cover a larger area of the map.

For each selected basin, and given a starting point on the map, we use measurements of the verti-
cally averaged surface velocities v and its spatial derivatives to extract the coordinates of the flowline
using the stream2 function in MATLAB. Then the corresponding surface elevation h, ice thickness
H, bed elevation b, and surface mass balance a are extracted from the map. The data had to be
interpolated in order to have evenly spaced data points. The data needs to be processed one more
time in order to remove repetitive points and those not belonging to the grounded ice sheet. Thus a
total of 10 flowlines are selected for each of the chosen basins.
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Figure 3.24: Antarctic drainage systems numbered from 1 to 27 and each represented by a different
color. The grounding line is highlighted by a white line.

The general setup of the simulations is similar to the previous sections. The update step us is fixed
at 5 × 102 iterations to give the system enough time to react to changes in As, and the value of the
smoothing weight k is slightly increased to 5 × 10−2. The main difference however is that the data
is of course not generated from the non-linear model (3.3). We focus on minimizing the generated
misfit H̃ and on the estimates of basal sliding. For each basin, we show the selected flowlines and
their mean absolute error H̃m, as well as a selection of individual lines in order to better understand
the outcome of our method: Fig.3.25-Fig.3.27 for basin 3, Fig.3.28-Fig.3.30 for basin 10, Fig.3.31-
Fig.3.33 for basin 17, and Fig.3.34-Fig.3.36 for basin 21/22. We set a threshold of 20 m for H̃m to
qualify the success of our method.

For basins 3, 17, and 21/22 the results are good as most of the obtained H̃m are below 20 m. This
is not the case for basin 10 for reasons that we are to discuss shortly. But first we look at the results
of the estimation of basal sliding for the prior three basins. We notice that in the cases of successful
estimation, like in Fig.3.26, the basal sliding profile always tends to increase from the left to the right
of the domain, keeping in mind that the leftmost point of the domain is the starting point of a flowline.

This feature is quite important as it indicates that points closer to the interior of the ice sheet are
slower than those closer to the boundary of the grounded ice sheet [90]. This is quite known and
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Figure 3.25: Antarctic basin 3, the chosen flowlines and their relative mean absolute errors. The
threshold of 20 m is shown in dotted green.

Figure 3.26: Antarctic basin 3, flowline 5. In the upper left, the reference ice thickness H̄, the
estimated ice thickness H, reference surface elevation h̄, estimated surface elevation h, and bedrock
b. In the upper right, the misfit H̃. In the lower left, the cumulative absolute error sH̃ . In the lower
right, the estimated basal sliding As.
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Figure 3.27: Antarctic basin 3, flowline 10. In the upper left, the reference ice thickness H̄, the
estimated ice thickness H, reference surface elevation h̄, estimated surface elevation h, and bedrock
b. In the upper right, the misfit H̃. In the lower left, the cumulative absolute error sH̃ . In the lower
right, the estimated basal sliding As.

Figure 3.28: Antarctic basin 10, the chosen flowlines and their relative mean absolute errors. The
threshold of 20 m is shown in dotted green.
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Figure 3.29: Antarctic basin 10, flowline 1. In the upper left, the reference ice thickness H̄, the
estimated ice thickness H, reference surface elevation h̄, estimated surface elevation h, and bedrock
b. In the upper right, the misfit H̃. In the lower left, the cumulative absolute error sH̃ . In the lower
right, the estimated basal sliding As.

Figure 3.30: Antarctic basin 10, flowline 4. In the upper left, the reference ice thickness H̄, the
estimated ice thickness H, reference surface elevation h̄, estimated surface elevation h, and bedrock
b. In the upper right, the misfit H̃. In the lower left, the cumulative absolute error sH̃ . In the lower
right, the estimated basal sliding As.
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Figure 3.31: Antarctic basin 17, the chosen flowlines and their relative mean absolute errors. The
threshold of 20 m is shown in dotted green.

Figure 3.32: Antarctic basin 17, flowline 3. In the upper left, the reference ice thickness H̄, the
estimated ice thickness H, reference surface elevation h̄, estimated surface elevation h, and bedrock
b. In the upper right, the misfit H̃. In the lower left, the cumulative absolute error sH̃ . In the lower
right, the estimated basal sliding As.
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Figure 3.33: Antarctic basin 17, flowline 8. In the upper left, the reference ice thickness H̄, the
estimated ice thickness H, reference surface elevation h̄, estimated surface elevation h, and bedrock
b. In the upper right, the misfit H̃. In the lower left, the cumulative absolute error sH̃ . In the lower
right, the estimated basal sliding As.

Figure 3.34: Antarctic basin 21/22, the chosen flowlines and their relative mean absolute errors.
The threshold of 20 m is shown in dotted green.
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Figure 3.35: Antarctic basin 21/22, flowline 1. In the upper left, the reference ice thickness H̄,
the estimated ice thickness H, reference surface elevation h̄, estimated surface elevation h, and
bedrock b. In the upper right, the misfit H̃. In the lower left, the cumulative absolute error sH̃ . In the
lower right, the estimated basal sliding As.

Figure 3.36: Antarctic basin 21/22, flowline 2. In the upper left, the reference ice thickness H̄,
the estimated ice thickness H, reference surface elevation h̄, estimated surface elevation h, and
bedrock b. In the upper right, the misfit H̃. In the lower left, the cumulative absolute error sH̃ . In the
lower right, the estimated basal sliding As.
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the fact that our method reproduces this phenomenon is a good indicator. Another interesting ob-
servation is in the case of basin 21/22. Here, not only are all the estimations successful, but they
are consistent as well in the sense that similar topographical characteristics will give results that are
close to each other. Looking at Fig.3.35 and Fig.3.36 we can see that the bedrock profiles are rather
similar and that the paths of flowlines 1 and 2 are indeed in close proximity, Fig.3.34. Because of this,
the two estimated basal sliding profiles have similar distributions. Basin 17 illustrates the limitations
of our method. Though most of the flowlines in this basin have a low H̃m, we see that the parts of the
domain with the larger misfits H̃ tend to correspond to those where the estimated basal sliding has
saturated at one of the two limits Āsmin = 10−10 m a−1 Pa−2 or Āsmax = 10−5 m a−1 Pa−2. This
is visible in Fig.3.33 as H̃ is high at two distinct regions where As saturated at Āsmin. Remember
that Āsmin implies that there is no or very little sliding occurring, in other words that the base of the
ice sheet is very cold. A very important point to make here is that this saturation always produces
a negative misfit, one where the estimated ice thickness is less than its reference. This deficit in
ice thickness in places where the ice base is supposed to be colder, pushing the ice sheet to move
more slowly thus allowing more accumulation at the top, strongly hints that lateral flows feed these
regions. However, in the model we used we do not account for such flows, hence the deficit that
causes our method to produce such saturated estimates. It is for this exact reason that the estimates
in basin 10 were unsuccessful. We do not show the plots for all the flowlines in basin 10, but in every
case the misfit H̃ is negative and As is stuck at Āsmin. We show the results of flowlines 1 and 4 in
Fig.3.29 and Fig.3.30. For flowline 1, the estimated As saturated for the left half of the domain, and
looking at the corresponding misfit, we see that it is indeed negative. The results of flowline 4 are
more extreme as As = Āsmin for the entirety of the domain, and once again H̃ is correspondingly
negative.

3.7.1 Conclusion of 1D Experimental Results

Having studied test cases in previous sections, wemoved on to test our method on real topographical
measurements of the Antarctic ice sheet ([53]). One-dimensional flowline data were extracted using
themeasured vertically averaged surface velocities. From a selection of four different basins Fig.3.24
we extracted ten different flowlines from each one of them and then proceeded to test our estimation
method. The update step us was fixed at 5 × 102 iterations, the smoothing weight k was constant
at 5 × 10−2. The method produced satisfying results as it highlighted both positive and negative
behaviours that were not obtained during the study cases (linear or non-linear).

First, we saw that for three of the four selected basins (basin 3, 17, and 21/22) the results were
mostly positive. The misfit in ice thickness was low and the reproduced topographies fit quite well
the measurements. An interesting feature is the consistency of the obtained basal sliding profiles
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for flowlines that are physically close to each other, like in flowlines 1 and 2 of basin 21/22 Fig.3.35-
Fig.3.36. Another feature is the tendency of the estimated basal sliding profiles to increase from left
to right of the physical domain. This happens because the staring point, which is the leftmost point
in each graph, is the one closer to the interior of the ice sheet where the ice moves slower. The
more we approach the edge of the domain the faster ice moves giving rise to higher values of As.
Second, we saw one limitation of our method. Whenever the obtained misfit in ice thickness was
high and negative (H < H̄) and the corresponding values of As were always equal to its minimum
Āsmin. In fact, the method tried to compensate the missing inflows of ice into the domain by forcing
As to be very low, which means that there is no sliding. Such flows were not introduced in the test
model used, thus the simulations failed in producing viable estimates of basal sliding.

3.8 Conclusion

In this chapter we have introduced a new inverse technique to retrieve the distribution of basal sliding
coefficients for 1D grounded ice sheets.

• In Section 3.1 the one-dimensional evolution of ice thickness equation (3.1) is set-up under
SIA (3.2) thus forming our non-linear system (3.3).

• In Section 3.2 the nonlinear system is linearized around an equilibrium. The linear system is
described by the equations (3.6)-(3.8).

• In Section 3.3 we carry a Lyapunov analysis and a new update law (3.27) is formulated such
that convergence of the linear system towards a given steady-state is guaranteed as is shown
in Theorems 6 and 7.

• In Section 3.4 we expanded on the way As is to be iteratively calculated.

• In Section 3.5 we tested our method on the linearized system (3.6)-(3.8). This was done
by choosing a profile for As and running forward in time the nonlinear system (3.3) until it
reached a steady-state. This generated our fictitious measurements. The procedure is ex-
plained through the block diagram in Fig.3.1. Four different profiles were chosen for As, and
our method was tested against different values of initial guesses of basal sliding As0 . For all
profiles and for all the different initial guesses, the estimates were exactly the same and fit well
the references of basal sliding.

• In Section 3.6 we carried out more extensive tests on the nonlinear system (3.3). Alongside
the initial guesses, the update step us, and the smoothing weight k were changed. We also
compared our method to that of Pollard and DeConto [56] as it also updates As based on the
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misfit H̃ (3.31). This set of tests is summarized in Table 3.2. Through these tests we saw
that both methods give similar results. Both are robust to initial guesses, though our method
is more aggressive in applying changes to As. This caused our method to produce slightly
better results but at the expense of some stiffness in the estimates. This can be countered
by allowing larger relaxation periods between the updates and/or smoothing further. In other
words, our method can benefit from larger us and k.
We summarize the results of this section in Table 3.3 where the comparisons between the
experiments are detailed, and in Table 3.4 to Table 3.7 we show the results for all experiments
and all profiles, more specifically we show the steady state cumulative error sH̃ , the average
percentage absolute error in ice thickness, and the average percentage absolute error in As.

• In Section 3.7 tests are done with real measurements of the Antarctic ice sheet [53]. In order
to reduce the 2D data into 1D we had to turn our attention to flowlines [85, 86]. However,
we had to first find such structures in the available data. We selected 10 flowlines for each
of four different basins. Representative samples to better evaluate the effectiveness of our
method were discussed. We saw that even though a large portion of the results generated
low errors, the main disadvantage was the saturation of As at one of its two predefined limits
Āsmin or Āsmax . The main reason this happened is due to the inability of the used model to
replicate some of the physics necessary to simulate lateral flows into flowlines. This pushed
our method to produce As at its limits. We propose that further simulations should be done
with more dedicated models.

In the next chapter we turn our attention to estimating the diffusion coefficient D in one and two
dimensions.
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Experiments Comparison
1 and 2 Method 1, initial guesses : As

1
0 and As

2
0

3 and 4 Method 2, initial guesses : As
1
0 and As

2
0

1 and 3 Method 1 and Method 2
2 and 4 Method 1 and Method 2
5 and 6 Method 1 and Method 2
2 and 5 Method 1, update step : u1

s and u2
s

4 and 6 Method 2, update step : u1
s and u2

s

1, 7 and 8 Method 1, smoothing weight : k1, k2 and k3

3, 9 and 10 Method 2, smoothing weight : k1, k2 and k3

Table 3.3: Comparison guide for the non-linear experiments.

Profile No. Method sH̃ Average % | H̃ | Average % | Ãs |

A

1 1 8.84 × 10−2 3.67 × 10−5 1.22 × 10−2

2 1 4.03 × 10−2 1.76 × 10−5 2.4 × 10−3

3 2 3.69 × 10−1 1.52 × 10−4 2.52 × 10−2

4 2 1.34 5.73 × 10−4 6.66 × 10−2

5 1 1.83 × 10−1 8.03 × 10−5 9.8 × 10−3

6 2 6.21 2.8 × 10−3 2.18 × 10−1

7 1 8.75 × 10−2 3.54 × 10−5 5.6 × 10−3

8 1 1.05 × 10−2 4.21 × 10−6 6.88 × 10−4

9 2 2.88 × 10−2 1.16 × 10−5 1.8 × 10−3

10 2 5.05 × 10−2 2.06 × 10−5 2.5 × 10−3

11 2 5.32 × 10−1 2.21 × 10−4 5.64 × 10−2

12 2 3.22 × 10−1 1.35 × 10−4 2.16 × 10−2

Table 3.4: Non-linear system, numerical results’ summary for profile A, all experiments. Showing
the steady-state error sH̃ , the average percentage absolute errors in ice thickness and estimated
sliding coefficient.
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Profile No. Method sH̃ Average % | H̃ | Average % | Ãs |

B

1 1 1.07 × 10−1 4.52 × 10−5 1.03 × 10−2

2 1 4.9 × 10−2 2.09 × 10−5 6.4 × 10−3

3 2 6.08 × 10−1 2.63 × 10−4 3.69 × 10−1

4 2 1.58 × 10−1 6.79 × 10−5 1.32 × 10−2

5 1 4.08 × 10−1 1.80 × 10−4 3.27 × 10−2

6 2 11.61 5.5 × 10−3 3.83 × 10−1

7 1 9.81 × 10−2 4 × 10−5 4.8 × 10−3

8 1 1.77 × 10−2 7.19 × 10−5 1.3 × 10−3

9 2 4.35 × 10−2 1.79 × 10−5 2.1 × 10−3

10 2 2.23 × 10−2 9.7 × 10−6 5.27 × 10−4

11 2 8.94 × 10−1 3.78 × 10−4 7.95 × 10−2

12 2 9.95 × 10−1 4.43 × 10−4 5.37 × 10−2

Table 3.5: Non-linear system, numerical results’ summary for profile B, all experiments. Showing
the steady-state error sH̃ , the average percentage absolute errors in ice thickness and estimated
sliding coefficient.

Profile No. Method sH̃ Average % | H̃ | Average % | Ãs |

C

1 1 4.73 2.1 × 10−3 3.31
2 1 4.38 2 × 10−3 3.20
3 2 4.35 2 × 10−3 4.7 × 10−1

4 2 4.18 1.9 × 10−3 4.8 × 10−1

5 1 11.54 5 × 10−3 1.5
6 2 26.6 1.23 × 10−2 1.18
7 1 8.36 3.4 × 10−3 5.23 × 10−1

8 1 16.45 6.5 × 10−3 5.24 × 10−1

9 2 20.21 8.8 × 10−3 4.1 × 10−1

10 2 40.35 1.76 × 10−2 7.5 × 10−1

11 2 2.95 1.5 × 10−3 1.46
12 2 8.08 3.6 × 10−3 2.6 × 10−1

Table 3.6: Non-linear system, numerical results’ summary for profile C, all experiments. Showing
the steady-state error sH̃ , the average percentage absolute errors in ice thickness and estimated
sliding coefficient.
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Profile No. Method sH̃ Average % | H̃ | Average % | Ãs |

D

1 1 3.33 1.6 × 10−3 7.71 × 10−1

2 1 2.96 1.4 × 10−3 7.71 × 10−1

3 2 10.34 5.4 × 10−3 9.2 × 10−1

4 2 9.87 5.2 × 10−3 9.4 × 10−1

5 1 6.03 2.8 × 10−3 1.14 × 10−1

6 2 33.16 1.83 × 10−2 2.48
7 1 15.03 7.3 × 10−3 1.3
8 1 29.93 1.44 × 10−2 2.21
9 2 44.92 2.37 × 10−2 2.75

10 2 86.56 4.54 × 10−2 5.49
11 2 4.72 2.5 × 10−3 6.8 × 10−1

12 2 21.40 1.11 × 10−2 1.47

Table 3.7: Non-linear system, numerical results’ summary for profile D, all experiments. Showing
the steady-state error sH̃ , the average percentage absolute errors in ice thickness and estimated
sliding coefficient.
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C h a p t e r 4

ESTIMATING THE DIFFUSION COEFFICIENT IN 1D AND 2D MODELS

In the previous chapter we described how we found and tested a new method for estimating basal
sliding in a 1D ice sheet. The natural follow-up was to expand the method into two dimensions (2D).
However, with our choice of Lyapunov function, and following the samemethodology, no new feasible
update formula was found. Two difficulties surfaced. First, using the same Lyapunov function, and
duplicating the update formula (3.27) by adding a new dimension, introduced new terms into Vt .
We were unable to get rid of those terms thus the conditions to prove convergence and stability
were not met. Second, seeking a new Lyapunov function that fits our needs then deduce a suitable
update law for As proved to be an arduous task in 2D. This is why our perspective had to change. A
more practical approach is to look for the diffusion coefficient. We saw in chapter 2 that, under SIA,
the diffusion coefficient D depends on the sliding coefficient As (2.49). In this chapter we seek to
estimate D. The diffusion coefficient is estimated using an observer and an update law, based on
adaptive distributed parameter identification. Study tests for the one and two dimensional cases are
done on fictitious data to illustrate the performance of the method. And like the previous chapter,
more tests are done on real measurements of surface topography of the Antarctic ice sheet.

In this chapter we:

Introduce the method of adaptive parameter identification

Justify why data regularization is necessary

Test adaptive parameter identification numerically

Present the results for the 1D and 2D test cases

Present the results for real data

Retrieve basal sliding from diffusion in 2D
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As previously mentioned, inverse problems emerge in a multitude of research topics as they consist
of estimating variables of interest using available data. This is particularly true for fields involving
natural phenomena as some measurements might not be available or impossible to gather. For
example, the friction or sliding coefficients of ice sheets over the underlying bed [40], the gravity
of planetary bodies [91], or aquifer parameters [92]. Identifying a diffusion coefficient is a classical
example of parameter inversion [93, 94, 95]. In chapter 2, we mentioned some methods developed
to solve such a problem. We base our approach on the method introduced in [37], which consists
of using an observer and an update law that enable the estimation of unknown spatially varying
parameters, based on either on-line or steady-state measurements.

In the previous chapter 3, we found the sliding coefficient using a Lyapunov-based technique for a
1D model. Scaling that technique for the 2D case proved to be particularly hard, this is why we shift
our focus to the diffusion coefficient D of the mass continuity equation 4.1. Calculating D can lead
back to finding As.

∂H
∂t
=

∂

∂x
(D
∂h
∂x
) +

∂

∂y
(D
∂h
∂y
) + a (4.1)

with:

D = Asρ
2g2H3 | grad(h) | +

2
5

A′ρ3g3H5 | grad(h) |2 (4.2)

When dealing with partial differential equations an important aspect is the stability of the system
they describe. One approach is based on Lyapunov stability. We used this method in the previous
chapter. Such techniques are widely used, for example in [96, 97] stability of 2D parabolic PDEs
with polynomial varying parameters was shown and estimates of the decay rate were given, and in
[98] a Lyapunov stability analysis was conducted on hyperbolic and parabolic PDEs. In our case,
stability is inherently addressed through the use of the method from [37] as a Lyapunov function is
shown to have a negative time derivative for all time. Often, Linear Operator Inequalities (LOIs) or
Linear Matrix Inequalities (LMIs) can be solved numerically in order to verify Lyapunov stability.

Another important issue when dealing with inverse problems and numerically calculating varying
parameters is that such problems are ill-posed [69], and that major oscillations in the estimated
coefficients must be avoided [99]. This is why in [69] a smoothing functional was added to the
cost function. In our case, as we do not explicitly minimize a cost function, a simple way to induce
some regularity into the estimates is to have a weighted sum between regularized and unregularized
versions of the coefficient. For the 1D case, we used Tikonov regularization [60] when calculating
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the diffusion coefficient; the details of this approach are presented in this chapter. As for the 2D
cases, we decided to use a low pass filter on the estimates.

4.1 Lyapunov Function and Update Law

We recall the 2D ice-thickness equation (2.49), set Dirichlet boundary conditions, and choose some
h0 as the initial condition :

∂H
∂t
=
∂h
∂t
=

∂

∂x
(D
∂h
∂x
) +

∂

∂y
(D
∂h
∂y
) + a

h(x, y, t) = hb ∀ x,y ∈ Ωb and t ≥ 0

h(x, y, 0) = h0 ∀ x,y ∈ Ω

(4.3)

Here x and y are the two spacial coordinates, Ω and Ωb are the spacial domain and its boundary,
respectively, t is time, H(x, y, t) is the ice thickness, h(x, y, t) is the surface topography, hb is the
value of h at the boundary, D(x, y) > 0 is an unknown diffusion coefficient, and a(x, y) is a known
source term. Just like previous chapters, in what follows all partial derivatives are denoted by sub-
scripts; e.g. ∂h

∂x = hx . As mentioned before, D is to be estimated in order to replicate as closely as
possible measurements of h. The method employed was introduce by Orlov [37], and consists of
introducing an observer with a correction term with gain v0, alongside an update law with gain v1 that
uses the gradients of the difference between the observer and the system. Also, we introduce either
Tikhonov regularization or a low pass filter into the estimates of D in order to guarantee a degree of
smoothness, thus keeping the numerical experiments stable.

Before discussing the adaptive identification process, it is important to note that all derivations, the-
orems and proofs can be scaled down to the 1D case without any loss of generality.

Themain purpose of an observer is to mimic a system and correct for differences caused by unknown
states [100, 101]. In our case, the state, which is the ice thickness, is known but we do not know D.
This is why for the system in (4.3) we introduce the following pair:

The observer:

ĥt =
(
D̂ ĥx

)
x
+

(
D̂ ĥy

)
y
+ a − v0(t)

(
ĥ − h

)
ĥ(x, y, t) = hb ∀ x,y ∈ Ωb and t ≥ 0

ĥ(x, y, 0) = ĥ0 ∀ x,y ∈ Ω

(4.4)
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and update law:

D̂t =
1

v1(t)

(
ĥ − h

)
x
ĥx +

1
v1(t)

(
ĥ − h

)
y
ĥy

D̂(x, y, 0) = D̂0(x, y)

D̂0 > 0 ∈ C1(Ω)

(4.5)

with v0(t) ≥ 0 ∀ t and 1
v1(t)

> 0 ∀ t as adaptation gains. Note that (4.4) and (4.5) can be used in
both cases when on-line or steady-state measurements are available. The only difference between
both cases is that during steady-state ∂h

∂t in (4.3) is set equal to zero, but this does not impact our
procedure as the right-hand side of (4.3) is still used in the proof (as will be seen next). Also, note
that our cases differ from those in [37] in that only one spatially varying parameter is being estimated
as opposed to two or three, and that v0 and v1 are functions of time. The authors of [37] do mention
that their method is scalable to more than one dimension. However, it is useful and necessary to
show the derivations in the context of our problem.

Before showing that (4.4) and (4.5) enable the convergence of D̂ towards D and ĥ towards h, some
deviation variables and their time derivatives must be introduced:

h̃ = ĥ − h (4.6)

D̃ = D̂ − D (4.7)

h̃t = ĥt − ht =
(
D̃ ĥx + h̃x D

)
x
+

(
D̃ ĥy + h̃y D

)
y
− v0 h̃ (4.8)

D̃t = D̂t − Dt = D̂t =
1

v1(t)
h̃x ĥx +

1
v1(t)

h̃y ĥy (4.9)

Now, consider the following Lyapunov function:

V =
1
2

∬
Ω

(
h̃2 + v1 D̃2

)
dx dy (4.10)

Theorem 8. The time derivative Vt of the function V given by (4.10) verifies:

Vt =

∬
Ω

(
− D h̃2

x − D h̃2
y − v0 h̃2 + v1 t D̃2

)
dx dy ≤ 0 (4.11)

∀ t ≥ 0 along the solutions of (4.3)-(4.5).
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In what follows, we assume that the terms within the double integrals are bounded and measurable.

Proof. Differentiating (4.10) with respect to time gives:

Vt = T1 + T2 + T3

where:

T1 =

∬
Ω

(
h̃t h̃

)
dx dy T2 =

∬
Ω

(1
2
v1 t D̃2

)
dx dy T3 =

∬
Ω

(
v1 D̃t D̃

)
dx dy

(4.12)

Integration by parts is performed on T1, yielding:

T1 =

∬
Ω

( (
D̃ ĥx

)
x h̃ +

(
h̃x D

)
x h̃ +

(
D̃ ĥy

)
y h̃ +

(
h̃y D

)
y h̃ − v0 h̃2

)
dx dy

Dealing with each term inside the double integral individually and denoting by Ωx, Ωy ∈ Ωb the x

and y boundaries on the domain respectively, we get:



∫
Ωx

(
h̃x D

)
x
h̃ dx = −

∫
Ωx

D h̃2
xdx

∫
Ωx

(
D̃ ĥx

)
x
h̃ dx = −

∫
Ωx

h̃x ĥx D̃dx

since ĥb = 0 (from the boundaries of (4.4)).

The same applies to the y direction; while keeping in mind that the double integral can be flipped
because the terms inside T1’s integral are bounded and measurable. T2 remains as in (4.12), while
T3 needs to be expanded as:

T3 =

∬
Ω

(
h̃x ĥx D̃ + h̃y ĥy D̃

)
dx dy

Replacing the above in (4.12) gives:

Vt = −

∬
Ω

(
D h̃2

x + D h̃2
y + v0 h̃2 −

1
2
v1 t D̃2

)
dx dy (4.13)

In order to guarantee that (4.13) is always ≤ 0, all we need to do is to choose v1(t) to be a decreasing
positive function.
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The condition on v1 can be satisfied by having v1 of the form:

v1 = α e−βt ; α, β > 0 (4.14)

This concludes the proof.

4.2 Regularization

A major issue in inverse problems is high variations in the estimates, which can lead to numerical
instability and leave artifacts in the estimated variables. In our case, and as the update law (4.5)
contains spatial derivatives of the difference between h and ĥ, oscillations in D̂ might appear due
to the amplification of the error. Many methods exist to overcome this issue [102]. A common one
would be to use Tikhonov regularization [60], or a smoothing filter for the estimates as they get
generated. In [45] a Savitsky-Golay filter [103] was used to remove high-frequency variations in
the basal sliding coefficients estimates. In [104] penalized least-squares are used to smooth 1D
data, and in [105] both 1D and 2D data are handled with P-splines. Even though [105] can handle
data stored in large matrices (500× 500), it still needs some computational time before producing a
smooth version of the original matrix. This is not feasible in our case as the smoothing needs to be
done frequently. In [106] total-variation regularization is used; even though this method proves to be
effective in denoising data and could be used in our case to directly regularize the spatial derivatives
in (4.5), the method requires a specified large number of iterations before reaching convergence.

An additional reason for seeking to regularize the estimates is that (4.5) depends on the spatial
derivatives of h̃, and if h and ĥ happen to have similar slopes around certain points then (4.5) will fail
to generate proper values at those points as identifiability is lost due to the underconstrained nature
of the problem. This particular issue was discussed in chapter 3. This is why, for the 1D case, we
consider such points as outliers, and smoothing is done by calculating regularized derivatives of D̂,
as defined in [102], then integrating back to obtain a smoothed version D̂∗. As an example, assume
that the regularized derivative yx of a function y needs to be calculated on a domain [x1, x2]. This
can be achieved by minimizing the functional:

E(yx) = ‖A1yx − ŷ‖2 + α‖A2 yx ‖ (4.15)

Where ŷ(x) = y(x)− y(x1), A1 is a discretized integration matrix, α is a regularization parameter, A2

is a differential operator, and ‖·‖ represents the Euclidean norm. Calculating the spatial derivative
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can thus be reduced to solving the system of linear equations below. Keeping in mind that for a
given α, the term multiplying yx must remain invertible.

(
AT

1 A1 + αAT
2 A2

)
yx = AT

1 y (4.16)

Using this method, yx can be integrated over [x1, x2] to obtain a smooth version of y. For the 2D
case, we opted for an averaging filter with a fixed window size. In both cases (as in Section 3.30) a
weighted sum of D̂ and D̂∗ is used to obtain the regularized estimate:

D̂ = (1 − k) D̂ + k D̂∗ (4.17)

where k ≥ 0 is the weight assigned to the smoothed term D̂∗.

4.3 Results of the 1D Study Cases

The numerical tests for the 1D study cases are done to first illustrate the method, and second to
understand the the effects of changing some of the simulation variables. We focus on the adaptation
gain v1, the smoothing weight k, the regularization parameter α, and the correction gain v0. We kept
v0 = 0 for the first eight experiments as we would like to understand how the update law works and
how sensitive it is to the aforementioned parameters. From those eight experiments, we then select
the one with the best result and study the effect of changing v0 on it. Updates are done every 10
steps, the rest of the variables are set as shown in Table 4.1. A summary of the obtained mean
absolute error is shown in Table 4.2.

We use the same test profiles described in Section 3.5. One major change is that the system (4.3)
does not explicitly need As to run forward, but rather uses the diffusion coefficient D. This is why
the four profiles obtain their distributions of D by using (4.2). This equation requires distributions
of surface elevation h̄ and basal sliding Ās. We get this pair directly from the simulations done in
the previous chapter. We thus obtain a distribution D̄ for diffusion. However, we smooth D̄ because
of the influence of the slopes of surface elevation on the values of diffusion. As can be seen from
(4.2), the presence of the absolute value of the gradient of h̄ can cause sharp transitions in D̄, which
can lead to numerical complications. In Fig.4.2 we show D̄ and D, the distributions of diffusion
before and after smoothing respectively, for the four profiles A, B, C and D. We tackle the case of
on-line measurements. This means that both the system (4.3) and the observer (4.4) are running in
parallel forward in time. We show in Fig.4.1 bar graphs for the mean of the absolute error in surface
topography h̃m, and the sum of the absolute error in surface topography h̃ss at steady-state, for all
experiments and all profiles. It is clear that experiments 5 and 6 have the lowest errors.
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No. Profile v1 k α v0

1 A, B, C or D 10−9 10−4 10−1 0
2 A, B, C or D 10−9 10−4 1 0
3 A, B, C or D 10−9 10−3 10−1 0
4 A, B, C or D 10−9 10−3 1 0
5 A, B, C or D 10−10 10−4 10−1 0
6 A, B, C or D 10−10 10−4 1 0
7 A, B, C or D 10−10 10−3 10−1 0
8 A, B, C or D 10−10 10−3 1 0
9 A, B, C or D 10−10 10−4 10−1 10−7

10 A, B, C or D 10−10 10−4 10−1 10−5

11 A, B, C or D 10−10 10−4 10−1 10−3

Table 4.1: Setup of 1D diffusion experiments. Showing the adaptation gains v0 and v1, the smoothing
weight k, and the regularization parameter α.

No. A B C D
1 3.44 3.16 3.68 5.58
2 3.18 2.60 2.80 8.15
3 33.00 39.28 46.62 29.83
4 31.39 27.04 31.35 39.92
5 0.36 0.36 0.46 0.76
6 0.37 0.31 0.41 2.05
7 3.47 3.58 4.36 4.69
8 3.22 2.55 2.85 5.52
9 0.36 0.37 0.47 0.76
10 1.02 1.07 1.30 0.92
11 8.16 23.52 129.32 502.87

Table 4.2: Mean absolute error in m for 1D diffusion experiments.



81

Figure 4.1: 1D case, the mean of the absolute error in surface topography h̃m (blue) and the sum
of the absolute error in surface topography h̃ss (red) at steady-state, for experiments 1-8 and all
profiles.

Figure 4.2: 1D case, normalized distribution of diffusion for all profiles, before smoothing (D̄, blue)
and after smoothing (D, dashed orange).
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This is due to having a high value of v1 with a low value of k. In other words, higher reliance on
updates with less smoothing. We explain further the sensitivities of the results to the simulation
variables in the following subsections.

4.3.1 Sensitivity to the Adaptation Gain

In this subsection we focus on the sensitivity of the results to changes in the adaptation gain v1, and
test two values as noted in Table 4.1. In Fig. 4.3 we show the evolution of sh̃ through the simulations.
The full lines represent experiments 1 to 4, while the dashed lines represent experiments 5 to 8. We
notice that sh̃ is always lower for higher values of v1. The experiments can be grouped in the following
pairs for comparison: (1,5), (2,6), (3,7), and (4,8). To better illustrate the effect of changing v1 we
select the pair (1,5), but note that the same observations apply to the other three. We compare in
Fig. 4.4 the distributions of | h̃ |, and in Fig.4.5 the estimates of diffusion. We can see that the
estimates of experiment 5 fit better the chosen distribution of diffusion, thus causing less misfit. This
effect is more noticeable for profiles C and D. We also notice that for the two profiles (A and B) with
less variations in D, increasing v1 had less impact on the estimates. This hints that regularization
must play a part in the quality of the estimation. We look into this effect in the next subsection.

4.3.2 Sensitivity to the Smoothing Weight

In this subsection we focus on the sensitivity of the results to changes to the smoothing weight k.
This weight is varied as shown in Table 4.1. The experiments are grouped into the following pairs for
comparison: (1,3), (2,4), (5,7), and (6,8). As in the previous subsection 4.3.1, we start with Fig. 4.6
by looking at the evolution of sh̃ for the four experimental pairs. Once again, the results show a clear
distinction between the experiments with k = 10−4 and k = 10−3, with the lower value producing
less errors. In Fig.4.6, the dashed lines correspond to k = 10−3, while the full line to k = 10−3. We
select the pair (2,4) to display the misfits and estimations of diffusion. In Fig. 4.7 we plot the misfits
and notice that indeed for the smaller value of k the misfit h̃ is consistently lower for the four profiles.
This is due to the difference in the quality of the estimates between experiments 2 and 4. Increasing
k will produce smoother estimates but at the cost of losing detail. Profile D suffered the most as its
distribution of D is the one with most variations. In fact, for any of the profiles, the regions of misfit
directly correspond to those where the estimated diffusion deviated from D.
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Figure 4.3: 1D case, comparison of experiments based on value of v1. The evolution of sh̃, the sum
of the absolute misfit in h, for all profiles.

Figure 4.4: 1D case, comparison of misfits based on value of v1 for all profiles. The surface topog-
raphy h (light blue), bedrock b (dark blue) correspond to the left axis. The absolute misfits in surface
topography h̃1 for experiment 1 (dotted orange) and h̃5 for experiment 5 (dashed dark orange) cor-
respond to the right axis.
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Figure 4.5: 1D case, comparison of estimated diffusion coefficients based on the value of v1 for all
profiles. Showing the diffusion profile to estimate (full orange), the estimated profile D̂1 for experi-
ment 1 (dotted red), and the estimated profile D̂5 for experiment 5 (dashed blue).

Figure 4.6: 1D case, comparison of experiments based on value of k. The evolution of sh̃, the sum
of the absolute misfit in h, for all profiles.
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Figure 4.7: 1D case, comparison of misfits based on value of k for all profiles. The surface topogra-
phy h (light blue), bedrock b (dark blue) correspond to the left axis. The absolute misfits in surface
topography h̃2 for experiment 2 (dotted orange) and h̃4 for experiment 4 (dashed dark orange) cor-
respond to the right axis.

Figure 4.8: 1D case, comparison of estimated diffusion coefficients based on the value of k for all
profiles. Showing the diffusion profile to estimate (full orange), the estimated profile D̂2 for experi-
ment 2 (dashed blue), and the estimated profile D̂4 for experiment 4 (dotted red).
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4.3.3 Sensitivity to the Regularization Parameter

In this subsection, we turn our focus to the regularization parameter α. Note that this parameter first
appeared in the functional (4.15) which is to be minimized in the course of applying regularization.
In our case, derivatives of D are calculated, by the means of Tikhonov regularization [102], then
integrated to obtain smoothed estimates. Giving more weight to α means adding more penalty on
variations in the derivative. This implies that higher values of α will introduce more smoothing into
the estimates. However, as we will explain next, the effect is not exactly similar to increasing k. We
group the experiments into the following pairs: (1,2), (3,4), (5,6), and (7,8).

In Fig. 4.9 we plot the sum of absolute misfits sh̃ and focus on the iterations closer to the end of the
simulations (i ≥ 4000). We notice that, unlike the two previous subsections, the experiments cannot
be separated into two groups based on the value of α alone. Similarly looking at | h̃ |, in Fig. 4.10,
does not shed light on how α affects the experiments. The error is distributed similarly across the
profiles for the two values of α. However, when looking at the estimated diffusion, in Fig. 4.11, we
see that profile D was affected the most. We know that α penalises variations in the derivatives of
D̂. And from the four tested profiles, D is the one with the most variations, thus its derivatives will be
highly varying as well, this is why the increase in the regularization parameter affected it the most.
More so, it is the region of D with the higher slopes that was smoothed the most. While for the other
three profiles the effect is less noticeable.

4.3.4 Sensitivity to the Correction Gain

In this subsection we study the effect of the observer correction gain v0. In experiments 9-11, v0 was
increased from 10−7 to 10−5 then 10−3, while the rest of the variables were set as in experiment 5.
We chose experiment 5 as it is the one with the best results, thus it offers a good benchmark to
evaluate the effects of v0.

The main drawback of having v0 not equal to zero is the fact that part of the error, between the ob-
server and the system, will decrease independently of the estimated diffusion coefficient. Meaning,
that if no update was done and v0 > 0, then sh̃ can drop. Remembering that the update law (4.5) is
dependent on h̃, this implies that the misfit needed to produce good estimates of D will be absent.
Thus causing the update law to be less efficient.

In Fig. 4.12 we show the evolution of sh̃ for the selected four experiments. We also enlarge part of
the plots to focus on the end of the simulations. We do so because we have allowed some relaxation
period in order to see if changes might occur once correction within the observer and update of the
diffusion coefficient are stopped. We quickly notice that for experiment 11, after a quick initial drop
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Figure 4.9: 1D case, comparison of experiments based on value of α. The evolution of sh̃, the sum
of the absolute misfit in h, for all profiles.

Figure 4.10: 1D case, comparison of misfits based on value of α for all profiles. The surface topog-
raphy h (light blue), bedrock b (dark blue) correspond to the left axis. The absolute misfits in surface
topography h̃7 for experiment 7 (dotted orange) and h̃8 for experiment 8 (dashed dark orange) cor-
respond to the right axis.
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Figure 4.11: 1D case, comparison of estimated diffusion coefficients based on the value of α for all
profiles. Showing the diffusion profile to estimate (full orange), the estimated profile D̂7 for experi-
ment 7 (dashed blue), and the estimated profile D̂8 for experiment 8 (dotted red).

Figure 4.12: 1D case, comparison of experiments 5 (full light blue), 9 (dashed orange), 10 (dotted
green) and 11 (dash-dotted pink). The evolution of sh̃, the sum of the absolute misfit in h, for all
profiles. Zoom on figure for iteration i > 1e4.
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Figure 4.13: 1D case, comparison of estimated diffusion coefficients based on the value of v0 for all
profiles. Showing the diffusion profile to estimate (full black), the estimated profile D̂5 for experiment
5 (dotted light blue), D̂9 for experiment 9 (dashed orange), D̂10 for experiment 10 (dotted green),
and D̂11 for experiment 1 (dash-dotted pink).

in sh̃, the error evolves slowly as it needs a large number of iterations before reaching a value close
to the other three experiments. We saw in (4.11) that the derivative of the Lyapunov function has a
term dependant on h̃2 and v0. So, the rate at which the error decreases will increase depending on
the value of v0. This explains how the first dip in the error is due to the correction in the observer,
while the rest of the behavior of the error is due to the update law. Experiments 9 and 10 go through
the same phenomenon, though because of the lower values of v0, their errors evolve closer to that
of experiment 5, with experiment 9 being the closest.

Towards the end of the simulations, during the relaxation phase, we see that the errors start in-
creasing before they reach a steady-state. This increase diverges further from the steady-state of
experiment 5, with higher values of v0. This happens because too much correction was done in the
observer causing the update law (4.5) to be less effective. Looking at Fig.4.13, this effect becomes
more and more noticeable throughout the profiles and the experiments, until for profile D experiment
11, the estimate D̂11 is quite far from D. We notice that the effect of v0 is not the same for all profiles.
Though it became evident that having this correction does not necessarily benefit the estimation of
diffusion.
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4.3.5 Conclusion of 1D Study Cases

In this section we tested a method [37] to estimate one-dimensional diffusion coefficients. We con-
structed four different profiles of 1D ice sheets by choosing distributions of basal sliding As and
calculating the corresponding distributions of diffusion D using (4.2). Estimating D implies the pos-
sibility of retrieving As. The method consists of having an observer (4.4) to mimic the dynamics of
the system (4.3) and an update law (4.5) to produce estimate of D.

We set-up experiments by varying the adaptation gain v1, the smoothing weight k, the regularization
parameter α, and the correction gain v0. A summary of this set-up is shown in Table 4.1. Tests
were done on four profiles, A, B, C, and D. The diffusion coefficient to be retrieved for each profile is
shown in Fig. 4.2. Updates are done at fixed intervals of 100 steps. We saw that the used method
can produce better results by increasing v1 and lowering k. While increasing α will smooth parts of
the estimates with higher slopes. This happens because we implemented a Tikhonov regularization
[102] method to smooth the derivatives of the estimates. Varying k has a more global effect on the
estimated diffusion coefficients. Setting v0 > 0 did not provide any benefit to the estimation process,
as it made the update law less effective, and thus produced more errors during steady-state.

4.4 Results of the 2D Study Cases

Having studied the one-dimensional case in the previous section, we now carry similar tests with two
spatial dimensions. This section is kept brief as it mainly serves to show that the chosen method can
be used in 2D, and that the conclusions of the 1D case still hold. We start by choosing a diffusive
profile D and run both the system and observer in parallel. We then run a series of simulations by
varying the correction gain v0 and the smoothing weight k. The adaptation gain v1 is kept constant
as its effects are quite clear. And although v0 had no positive impact on the estimation process in
the 1D case, it is nonetheless tested here to confirm this point. Note that unlike the previous section,
the smoothing of the estimated diffusion coefficients is done using an averaging filter. After having
tried different 2D smoothing techniques, we noticed that the most straightforward and predictable
method is a simple low-pass filter. Table 4.3 shows the set-up for the 2D experiments.

No. Profile v1 k v0

1 X 10−11 1 0
2 X 10−11 0.5 0
3 X 10−11 1 10−4

Table 4.3: Setup of 2D diffusion experiments. X can be one of three profiles: A, B, C or D.
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Figure 4.14: 2D case, distribution of diffusion D for all profiles.

Figure 4.15: 2D case, distribution of estimated diffusion D̂ for all profiles.
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Figure 4.16: 2D case, the evolution of sh̃, the sum of the absolute misfit in h, for all profiles. Experi-
ment 1 in full light blue, experiment 2 in dashed orange, and experiment 3 in dotted green.

Figure 4.17: 2D case, the percentage of mean absolute error in surface topography (blue) and the
percentage of mean absolute error in diffusion coefficient (red) at steady-state, for experiments 1-3
and all profiles.
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Notice that the value of k is much larger than in the 1D case. For the 2D case, attempting to heavily
lower k can introduce artifacts or push the simulations to be numerically unstable. The four profiles
for diffusion are randomly generated, while keeping a degree of smoothness as we do not allow
sharp changes in D. The spatial domain for the simulations is square. These profiles are shown in
Fig 4.14. The diffusive profiles are varied in complexity in order to test the capability of the method
to retrieve details in D, within the proposed set-up. We also varied the bedrock b and the input a for
each profile. We show these variables in Appendix A.

In experiment 1, no correction was done in the observer, and smoothing was set to its maximum
with k = 1. Then in experiment 2, the smoothing weight was lowered to k = 0.5. And in experiment
3, we set k back to its maximum and introduce correction within the observer. We show in Fig. 4.16
the evolution of sh̃ for all experiments and all profiles, and in Fig. 4.17 we compare the percentages
of the absolute error in ice thickness and diffusion between experiments. It is abundantly clear now
that the correction term is of no positive use for our purposes. In both 1D and 2D this term lowered
the efficiency of the update law. Once again, when correction is stopped, during the end relaxation
phase of the simulations, the error sh̃ increased. While, in experiment 2, lowering the smoothing
weight did benefit the estimation as both the errors in ice thickness and in diffusion are lower than
in the other two experiments.

To better understand the results we look at the percentage errors in ice thickness and diffusion for
experiment 2, in Fig. 4.18 and Fig. 4.19 respectively. We observe that the percentages in h̃ are
always lower than D̃. This means that the system (4.3) is not very sensitive to changes in the
diffusion coefficient, and that more correction is needed in order to decrease h̃. This point becomes
important when no knowledge of the real diffusive profile is available, as will be the case with real
data. We also notice that most of the error is at the boundaries of the domain. This is to be expected
as we have applied Dirichlet boundary conditions on our system, which makes the estimation harder
due to the lack of error. In Fig. 4.15 we show the estimated diffusion coefficients D̂. They are in close
resemblance to the real distributions. The increased complexity of the profiles was not a problem,
though the smoothing did soften some of the sharper features of the profiles.

As a conclusion, we saw in the subsection results for the 2D study cases where four diffusive profiles
were randomly generated and tested, each with a varied level of complexity. Results were similar to
the 1D cases. The use of a correction term in the observer lowered the quality of the estimations as
it produced more error. And lowering the weight of the smoothing weight was beneficial.

Though in order to maintain numerical stability, k was set much larger than in the 1D cases. Also,
we decided to use a low-pass filter with a fixed window size to smooth the estimates. The estimated
diffusion coefficients are in close agreement with their true values. Having found that the chosen
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Figure 4.18: 2D case, experiment 2, percentage misfit in ice thickness h̃ for all profiles.

Figure 4.19: 2D case, experiment 2, percentage misfit in diffusion coefficient D̃ for all profiles.
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method if feasible to estimate diffusion in 2D, and having studied the sensitivity of themethod to some
of the simulation variables, we can move to estimating the distribution of the diffusion coefficient for
Antarctica.

4.5 Diffusion for Real Data

Estimating the diffusion coefficient using real data [53] is done in this section. We carry out the
estimation using adaptive distributed parameter identification [37]. This method was successfully
tested on 1D and 2D ice sheets in Sections 4.3 and 4.4. However, unlike the two previous sections,
the system 4.3 is considered to be in steady-state. The real data describe this steady-state. Hence,
we have distributions of the surface elevation h, the bedrock elevation b, the ice-thickness H, and
the input a. The estimated diffusion coefficient D̂ is calculated using these variables, the observer
(4.4), and the update law (4.5). Of course, the real diffusion coefficient D is not available.

Because we have already studied the sensitivity of the method to some of the simulation variables,
we do not repeat all the tests. Instead, we fix the update gain v1 and set the correction gain v0 = 0.
In 2D, a very influential factor is the smoothing of the estimates. In Section 4.4, a 2D low-pass filter
of fixed size w was used to smooth D̂. In this section, we investigate the effects of varying the size
of the filter. We saw that lowering the smoothing weight k is beneficial for the estimation, this is
why we illustrate this effect again in this section. The numerical set-up of the simulations is shown
in Table 4.4. The updates are fixed at every 250 iterations with a time step of 100 iterations. The
resolution of the data is 20 km. In Fig. 4.20 we show the system variables, we focus on the grounded
ice sheet.

No. v1 k v0 w

1 10−9 1 0 3 × 3
2 10−9 1 0 5 × 5
3 10−9 1 0 7 × 7
4 10−9 1 0 9 × 9
5 10−9 0.5 0 3 × 3

Table 4.4: Setup of real data experiments.

In Fig 4.21. we plot the sum of absolute error sh̃ for the experiments in Table 4.4. We can clearly see
that the error decreases when using a smaller window size for the filter, and with a lower smoothing
weight k. During these experiments, we did try lowering k further, but this introduced artifacts and
caused numerical problems. In addition, all the numerical derivatives within the observer and the
update law were taken as Gaussian derivatives in order to avoid stiff changes.
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Figure 4.20: 2D case, real data. Mask of grounded ice sheet is on the top left, surface topography h
on the top right, bedrock elevation b on the bottom left, and the mass balance a on the bottom right.

Figure 4.21: 2D case, real data. The evolution of sh̃, the sum of the absolute misfit in h, for ex-
periments 1 (full light blue), 2 (dashed orange), 3 (dotted green), 4 (dash-dotted pink), and 5 (full
violet).
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Figure 4.22: 2D case, real data. Distribution of estimated diffusion D̂ for all experiments.

Figure 4.23: 2D case, real data. Misfit in surface elevation h̃ for all experiments.
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The estimated diffusion coefficients D̂ are shown in Fig. 4.22, and the errors in surface elevation h̃ in
Fig. 4.23. More features of the diffusion coefficient become visible with lower filter window size. If we
expand the ice thickness partial differential equation (4.3), diffusion multiplies second derivatives of
h, while derivatives of diffusion multiply first derivatives of h. This means that, for any given area of
D̂, a high value implies a higher diffusion rate. While a higher variability in D̂ implies more transport
of ice. This is why regions of Antarctica subject to faster ice-flow, hence more transport of ice, exhibit
distributions of D̂ with both higher variations and amplitudes. The interior regions of the continent,
where the ice is slower, have D̂ with lower variations and lower amplitudes. The distribution of the
error h̃ appears to be higher for those same regions. This indicates that regions of fast ice flow must
have diffusion coefficients with more variations and that further estimation is required.

4.6 Retrieving Basal Sliding

Our main goal in estimating the diffusion coefficient is to use it to find basal sliding. To do so we
use (4.2), the estimated diffusion D̂ calculated using the observer (4.4) and update law (4.5), and
the measurements of ice thickness H and surface topography h. For a given simulation, at every
update iteration, we propose the following simple strategy to estimate As :

• Calculate D̂ using (4.5).

• Calculate As using :

As =
D̂ − 2
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Note that in order to do so v2 needs to be different than zero. This term can be zero if either the ice
thickness or the slopes of the surface topography are both zero, but in practice this is not a problem.

The models (system and observer) we run are based on solving (4.3) and (4.4) which rely on a
diffusion coefficient, this is why in our case we could have simply calculated As once at the end of
the simulation. However, for models that depend on explicitly finding As instead of D̂, the above
strategy can be used. In such experimental set-ups, an ice-sheet model is to replace the observer.
We illustrate this strategy in Fig.4.24.

In the previous sections, we set each new estimate of the diffusion coefficient to be a combination
of a smoothed version and an unsmoothed version of it (4.17). For the 2D test cases and for real
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Figure 4.24: Block diagram to estimate basal sliding.

data, we imposed the smoothing weight k to be a constant with more emphasis on the smoothed
part. Here we propose an alternative where k can vary through space and time, thus offering a new
degree of freedom. The way D̂ is smoothed does not change, however, the new smoothing weight
k′ is set to be bounded between two constants λ and 1 − λ, and is calculated as follows:

k′(x, y, t) =
| h̃ |

max | h̃ |
k′(k′ < λ) = λ and k′(k′ > 1 − λ) = 1 − λ

D̂ = (1 − k′) D̂ + k′ D̂∗

(4.19)

where 0 ≤ λ ≤ 1.

The new parameter is used as a weight to unevenly smooth the new estimates of diffusion. Areas
where error is high, thus k′ is high, are smoothed more, while areas where error is low, thus k′ is
low, are smoothed less. This allows to fine tune areas where the error is low while still enforcing
a satisfactory degree of smoothness in other areas. This ultimately produces less misfit and better
estimates of basal sliding. The numerical set-up for the new experiments is shown in Table 4.5. We
keep unchanged the adaptation gains v0 = 0, v1 = 10−9, the smoothing window w = 3 × 3, and the
update step us = 250. The time step is ∆t = 100, and the total number of updates is 500.
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No. k′ λ Sh̃ (m)
6 constant = 1 - 64.29
7 variable 0.1 44.77
8 variable 0.2 45.67
9 variable 0.3 48.02
10 variable 0.4 50.83
11 variable 0.5 51.11

Table 4.5: Setup of real data experiments with variable smoothing weight. The mean absolute error
Sh̃ is shown for each experiment.

In experiment 6, the smoothing weight k′ is kept constant and equal to 1, it is similar to experiment
1 in the previous section.

Figure 4.25: 2D case, real data. The evolution of Sh̃, the mean absolute misfit in h, for experiments
6 (blue), 7 (orange), 8 (green), 9 (gray), 10 (purple), and 11 (red).

We begin by showing the end part of the evolution of the mean absolute error Sh̃ in Fig.4.25. We
see that the best result was for experiment 7 with an average misfit of 45m. In general, using a
variable k′ did bring some improvement to the results compared to experiment 6. Next we compare
in Fig.4.26 the distribution of misfits between experiments 6 and 7.

We see a noticeable improvement throughout the map, even though there is some increase in the
error towards the center. We also notice, for either experiments, that the error branches out towards
the boundary. This is due to the fact that the adopted shallow-ice approximation cannot reproduce
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Figure 4.26: 2D case, real data. Misfit in surface elevation h̃ for experiments 6 and 7.

Figure 4.27: 2D case, real data. Estimated basal sliding from experiments 7.

the dynamics of fast ice flow near the boundary. We show the estimated basal sliding in Fig.(4.27).
Even though the used resolution is not high enough to show more details, the overall pattern fits with
the one obtained in [56, 23]. Though in [23], the inversion was for basal friction and not sliding, and
of course more accurate physics were taken into account when doing the inversion. A very important
point to keep in mind is that given any inverse problem, adopted simplifications and uncertainties
in the measurements, modelling parameters, and model used, will be thrown on the variables to be
estimated. We obtained relatively low misfits using a very simple diffusive model. These results can
be improved by testing our method with dedicated ice-sheet models.



102

4.7 Conclusion

In this chapter we have used adaptive parameter identification to find estimates of the diffusion
coefficient for 1D and 2D ice sheets.

• In Section 4.1 we reworked the proof for adaptive parameter identification [37] in two dimen-
sions and with time-varying adaptation gains. The method introduces an observer (4.4) and
an update law (4.5) to produce an estimate D̂ of the diffusion coefficient D. We also introduced
the possibility of having time-varying adaptation gains.

• Due to the stiffness of the problem at hand, regularization is needed to guarantee numerical
stability. Another reason to seek regularization is that D̂ needs to beC1 over its spatial domain.
This is why in Section 4.2 we proposed to smooth the estimates using Tikhonov regulariza-
tion [59, 102] for the 1D case. In this approach, we smooth the derivatives of the estimated
diffusion. We then integrate back over the domain to obtain the regularized coefficient.

• In Section 4.3 we tested the estimation method on 1D ice sheets. Four different profiles were
tested. These profiles were obtained using the coefficients of basal sliding from the previous
chapter and (4.2). The obtained diffusion coefficients D̄ are smoothed to avoid sharp changes
in the coefficient. We thus obtain the coefficient D which is to be estimated. Then the system
(4.3) and observer (4.4) are run together forward in time. We studied the sensitivity of the
results to the update law adaptation gain v1 in Section 4.3.1, to the smoothing weight in Section
4.3.2, to the regularization parameter α in Section 4.3.3, and to the observer correction gain
v0 in Section 4.3.4. We found that increasing v1 improves the results. This occurs because
the estimated diffusion is sensitive to changes in surface topography, while the reverse is not
true. Meaning, large changes in D are needed to have relevant changes in h. Thus, during the
updates, and with the decrease in error, a given value of v1 becomes less effective with time.
We also found that lowering the smoothing weight k better captures detail in the coefficient,
which produces less error. Adjusting the regularization gain α affects the smoothness of the
estimates, but in a different way than k. Increasing α smooths areas of the diffusion coefficient
with higher slopes. While k has a more global effect on the estimate. The correction gain
v0 has no positive effects on estimation. Introducing this parameter always produces less
accurate coefficients. This happens because, in our problem, the dynamics of the observer
and the system are identical. No hidden states exist, so there is no need for correction.

• In Section 4.4 we test the method in two dimensions. Four 2D profiles were tested. Unlike the
1D case, smoothing was done using a low-pass filter with a fixed window size. Each profile
had a diffusion coefficient with varying degrees of complexity. Observations similar to the 1D
case were obtained. Less smoothing and no correction produce better estimates.
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• In Section 4.5 we test themethod on real data of the Antarctic ice sheet. We did sensitivity tests
to changes in the smoothing weight k and the size of the smoothing window. We found that
lowering the smoothing weight and the smoothing window will produce less error in surface
topography.

• In Section 4.6 we proposed a variable smoothing weight dependant on the misfit in surface
elevation. We found that adopting a variable smoothing weight lowers the misfit. We also
proposed a strategy to retrieve the basal sliding coefficient from the estimated diffusion coef-
ficient. This strategy can be adapted to ice-sheet models by simply replacing the observer by
the chosen model. The obtained As showed an overall pattern that fits with other works.

In the next chapter we conclude this manuscript and end with propositions for future works.
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C h a p t e r 5

CONCLUSION AND PERSPECTIVES

This thesis represents an interdisciplinary effort merging control engineering and glaciology. The
aim was to estimate two spatially distributed parameters pertinent to ice sheet models. The first
parameter is the basal sliding coefficient As. It describes how ice sheets slide over the underlying
bedrock. The second is the diffusion coefficient D. It is of a more abstract nature though its dis-
tribution heavily influences the dynamics of ice sheets. This parameter describes how ice tries to
spread evenly over its spatial domain, and how ice will be transported from one area to another.
These two parameters are dependant, as the distribution of one can imply the other. This kind on
problem is generally known as an inversion process, because the estimation is done using available
measurements, as opposed to forward problems where a sets of variables are used to project a
model forward. The ultimate goal was to reproduce measurements of the surface topography of the
Antarctic ice sheet.

In Chapter 2, we offered the necessary theoretical background. We begun with a review of the
physics influencing the movement of grounded ice sheets. The conservation laws of mass and
momentum, along with the boundary conditions at the top and bottom of ice sheets, and the shallow
ice approximation, allowed us to obtain the main dynamical equation, known as the ice thickness
equation in diffusive form (2.49). We also defined the equation relating diffusion to basal sliding.
We then followed by stating the formal definitions and theorems from Lyapunov theory. This branch
of control is aims at studying the stability of systems by investigating the stability of some measure
of the internal energy of that system. In our case we set the integral (over the spatial domain) of
the squared difference between the simulated and measured ice thickness to be the measure of
stability. Through the proposed inversions, if this measure tends to zero, then the simulations match
the measurements, and the estimations of basal sliding and diffusion are considered valid. We
ended the chapter with a review of relevant works in parameter estimation in both glaciology and
control.

We offer two contributions laid out in chapters 3 and 4.

In Chapter 3, we proposed a new method to estimate basal sliding for one dimensional ice sheets.
We started by linearizing the nonlinear dynamics (3.3) around an equilibrium, represented by the
available measurements of surface topography. We showed that the chosen Lapunov function (3.9)
is proven to be always decreasing with time if the update of basal sliding is chosen as in (3.27). With
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the stability of the linear system (3.6)-(3.8) guaranteed, we applied the method to both the linear
and nonlinear systems. This new formula can be used iteratively (3.29) to continuously generate
better estimates of basal sliding during a simulation. We also introduced a smoothing effect through
a weighted sum combining smoothed and unsmoothed versions of the estimate.

To test our method we generated four different profiles. The profile generation was done by choosing
profiles of the bedrock, mass balance, and basal sliding, then running the nonlinear model forward
in time, thus offering the distribution of ice thickness. This set of variables was considered to be
the available measurements, at the exception of basal sliding. The estimation was done for the
four profiles in both the linear and nonlinear cases. An ensemble of tests was created by varying the
initial guess of basal sliding As0 , the update step us, and the smoothing weight k. We also compared
our method to another known method [56] which uses misfits between simulated and measured ice
thickness to update As. We chose the other method to validate ours. If both methods produce
relatively similar results, then our method is valid.

We found that our method is robust to initial guesses of basal sliding. The estimates were very
close no matter the value of As0 , in both the linear and nonlinear cases. We then investigated the
effect of changing the update step us for the nonlinear case. Increasing us gives the system more
time to relax between updates, thus generating more error, which influence the estimation of As.
The more error/information is available, the better are the estimates. Our method benefited from
allowing longer relaxation times. As for changing the smoothing weight k, our method produced
slightly better estimates with slightly higher k. This is because our method introduces stiff changes
into the estimates, due to the form of the update law. Here we found that a trade-off exists between
us and k. When compared to [56], our method generated similar results. All of these reasons clearly
show that our new method is a viable option for estimating basal sliding for 1D ice sheets.

To end Chapter 3, we tested our method on real data. One dimensional flowlines had to be extracted
from the map of surface topography of Antarctica. The continent can be divided into 27 different
drainage basins [89]. We selected a four different basins, set in three groups, and randomly chose
ten flowlines for each group. We found that for a basin with a lot of lateral flows, the estimation
technique did not work. However this is a limitation of the model used. The nonlinear model under
consideration does not account for flows other than in one direction. So, if ice was to move sideways
away from or into the 1D profile then a clear misfit will be seen between simulated and observed
ice thickness. Saturation of As occurred in regions where this phenomena is present. However,
for successful simulations, we saw that As will increase as we move away from the interior of the
ice sheet. We know that ice in the inner parts of Antarctica is slower than near the edges of the
continent. This was reflected in the estimated basal sliding coefficients.
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In Chapter 4, we use adaptive distributed parameter system identification [37] to find estimates of
the diffusion coefficient D in both 1D and 2D cases, and for study cases and real data. We started
by defining our problem and defining the system (4.3), the observer (4.4), and the update law (4.5).
The goal here is to find estimates of diffusion D̂, such that the misfit between the observer and the
system is zero. Two new variables are introduced. The first is the correction gain v0. It serves as a
gain to reduce the difference between the observer surface topography ĥ and the system’s h. The
second is the adaptation gain v1. This gain influences the weight of the corrections done to D̂. In
other words, the influence of each update. We lay out the proof for the Lyapunov theory as done in
[37], but in two spatial dimensions and time varying gains v0 and v1. Regularization was introduced
for both the 1D and 2D cases. Though for 1D we used Tikhonov regularization [102] to smooth
variations in D̂. This introduced a the regularization parameter α. And like the previous chapter,
smoothing is a weighted sum between smoothed and unsmoothed versions of D̂. The smoothing
weight is denoted by the variable k.

For the 1D study cases, we selected the same four profiles as in Chapter 3. The basal sliding
coefficients, bedrock and surface topography profiles were used to calculate diffusion. However,
we used an averaging filter to remove sharp changes in D and avoid numerical problems during
the simulations. For the tests we varied v1, k, α, and v0. We found that lowering v1 produced less
misfit for all profiles, and that the diffusion profiles were reproduced with good fidelity. Increasing k

caused the estimates to lose detail, as expected. This of course caused more error. Increasing α
had similar effects, though regions where the slopes of D̂ are highest were smoothed the most, as
opposed the more global effect k has. This is due to the employed Tikhonov regularization method.
The correction gain v0 had no positive impact. Because its presence inherently reduces the misfit h̃,
the more v0 increases the less effective is the update law. At the end of each simulation a relaxation
period, where v0 and v1 are set to zero, shows if the steady-state error remains constant. This was
not the case when v0 was used.

For the 2D study cases, a similar logic was followed. Four diffusive profiles were randomly generated
and were to be estimated. We did not repeat the whole ensemble of tests. Instead we focused on
the effects of changing k and v0. The same observations as the 1D case were noted. Increasing
k removed some of the finer variations in the diffusion coefficient. And including correction in the
observer generated more errors. Looking at the distribution of error in both D̂ and ĥ, we noticed
that though low, it was mostly concentrated at the boundaries of the domain, and at points were the
original coefficient D varied the most.

We then moved to the real data. Having found that smoothing is an important factor in the estimation
process, we focused solely on varying the window size of the low pass filter used to smooth D̂. It
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was clear that the results improved when the window size decreased. The estimated distribution of
diffusion revealed that for regions where the ice was fastest, not only did D̂ have a higher amplitude
but more spatial variation as well. This indicates, that for such regions, both diffusion and advection
are dominant. While for the interior of the ice sheet the opposite happened. The estimate showed
lower amplitudes and less variation. Most of the error in surface elevation was concentrated in
regions of fast moving ice.

We propose the following perspectives as a continuation of this work.

Regarding the 1D inversion for basal sliding, saturation occurred in regions where fast ice flow could
not be reproduced. This is why even when As was at its lowest, the misfit was often negative.
Testing this method on more accurate flowline models can potentially solve the saturation issue
in the estimates. This could push for a change in the Lyapunov function as more variables and
parameters become involved in the dynamics, this is why an updated version of the update law
should be investigated. Another interesting area of research is to test larger batches of flowlines
in the various basins of Antarctica. Aggregating the obtained basal sliding coefficients could reveal
interesting features for this parameter, especially that we saw that physically close flowlines generate
somewhat similar profiles of basal sliding.

Upgrading our basal sidingmethod from 1D to 2Dwas not achievedwith the same Lyapunov function.
This is why we propose to continue the search for an appropriate candidate Lyapunov function that
can lead the path to finding a new 2D update formula for As. However, great care should be given
to cross-terms that appear in the time derivative of the Lyapunov function. Getting rid of such terms
is not a trivial task. A reformulation of the problem could be necessary.

In Chapter 4, and for the 1D case, we inverted for the diffusion coefficient. The set of diffusion profiles
to be retrieved were obtained from the profiles of the test case in Chapter 3. This means that finding
the estimated diffusion coefficients can directly lead to those of basal sliding. One interesting test
is to estimate diffusion for Antarctic flowlines and then calculate the related profiles of basal sliding.
Less constraints are imposed when looking for diffusion, this is might avoid some of the saturation
issues.

Moving to the 2D cases, we found that major factors in estimating diffusion were the used smooth-
ing method and the smoothing weight. An important condition for the diffusion update law to work
is that D̂ ∈ C1(Ω), meaning that the distribution of diffusion must be smooth all over the spatial do-
main. This is why the estimates had to be filtered. It is very easy, though inadvertently, to introduce
numerical stiffness into the simulations. Great care should be taken when estimating diffusion or
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basal sliding. The filtering techniques were effective but rather simple, this is why we propose that
more elaborate smoothing methods should be investigated. When retrieving As from D̂, we tested a
variable smoothing weight dependant of the misfit h̃. This improved our results which suggests that
adopting such a strategy can indeed lead to further improvements. We also saw that our method
can be easily plugged into a dedicated ice-sheet model by simply replacing the observer with said
model. It is only natural that the next step here is to do exactly that. Testing on a higher resolution
is also a must. Combining these suggestions will surely produce distributions of basal sliding that
reveal more accurate and interesting details.
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A p p e n d i x A

2D STUDY PROFILES IN CHAPTER 4

Here we show the four profiles used for the 2D study cases in chapter 4. The surface topography h

is the steady-state obtained from running the system (4.3) forward in time.

Figure A.1: 2D case, profile A. Diffusion coefficient D is on the top left, surface topography h on the
top right, bedrock elevation B on the bottom left, and the mass balance a on the bottom right.
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Figure A.2: 2D case, profile B. Diffusion coefficient D is on the top left, surface topography h on the
top right, bedrock elevation B on the bottom left, and the mass balance a on the bottom right.

Figure A.3: 2D case, profile C. Diffusion coefficient D is on the top left, surface topography h on the
top right, bedrock elevation B on the bottom left, and the mass balance a on the bottom right.
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Figure A.4: 2D case, profile D. Diffusion coefficient D is on the top left, surface topography h on the
top right, bedrock elevation B on the bottom left, and the mass balance a on the bottom right.
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RÉSUMÉ / ABSTRACT

Lesmodèles décrivant certains phénomènes naturels peuvent dépendre de paramètres nonmesura-
bles, d’où la nécessité de les estimer par méthodes inverses. Notre objectif est d’utiliser de telles
techniques pour permettre une meilleure initialisation des modèles de simulations des calottes glaci-
aires en Antarctique. Cela permettra l’obtention de meilleures prévisions dans le cadre des études
climatiques. Nous nous intéressons au paramètre de glissement basale qui caractérise le contact
de la calotte glaciaire avec le socle rocheux. De même qu’au paramètre de diffusion qui dicte la
dynamique au sein de l’équation différentielle partielle de continuité de masse décrivant son mou-
vement. Une approche basée sur la théorie de Lyapunov est proposée pour contrôler la convergence
des modèles de transport inhomogènes 1D et 2D, vers un équilibre correspondant aux mesures de
la topographie de surface de la calotte glaciaire de l’Antarctique. Notre travail propose une nouvelle
loi pour l’inversion en 1D du coefficient de glissement basal. Nous utilisons également l’inversion
adaptative de paramètres distribués pour récupérer le glissement basal depuis le paramètre de dif-
fusion dans des modèles 1D et 2D. Ces deux méthodes sont testées sur des cas d’études et des
données réelles. Nos résultats montrent que les méthodes proposées réussissent à inverser les
paramètres de glissement et de diffusion tout en reproduisant les données disponibles.
Mots clés: équations aux dérivées partielles, Antarctique, glissement basal, diffusion, phénomènes
de transport inhomogènes, problème inverse.

Models describing natural phenomena can depend on parameters that cannot be directly measured,
hence the necessity to develop inverse techniques to determine them. Our goal is to utilize such
techniques to enable better initialization of ice sheet models for Antarctica. This will help such mod-
els to produce better forecasts as part of climate studies. The parameters of interest are the basal
sliding coefficient, which characterizes the contact of the ice sheet with the bed underneath, and the
diffusion coefficient which dictates the dynamics within the mass-continuity partial differential equa-
tion describing the movement of ice sheets. A Lyapunov based approach is proposed to control
the convergence of the 1D and 2D inhomogeneous transport models toward a feasible equilibrium
matching the measurements of surface topography of the Antarctic ice sheet. Our work offers a new
1D update law for the basal sliding coefficient inversion. We also use adaptive distributed parame-
ter inversion to retrieve basal sliding from diffusion in 1D and 2D models. These two methods are
tested on study cases and real data. Our results show that the methods proposed are successful in
inverting for sliding and diffusion while replicating the available data.
Keywords: partial differential equations, Antarctic, basal sliding, diffusion, inhomogeneous trans-
port phenomena, inverse problem.
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