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Résumé

Depuis le Big Bang jusqu’à nos jours, l’Univers subit deux grandes transitions de phase.
La première est la recombinaison : les ions et électrons du plasma primordial s’associent
pour former les premiers atomes neutres. Les photons, auparavant retenus dans ce même
plasma par leurs interactions avec les particules chargées, sont alors libérés, formant ainsi
le fond diffus cosmologique (CMB). La seconde grande étape de l’histoire de l’Univers est
la réionisation cosmique. Pendant les quelques milliards d’années que dure ce processus,
le rayonnement des premières étoiles ionise les atomes du milieu intergalactique (IGM).
Malgré son évidente importance, cette période est méconnue. Notamment, sa chronologie
et la nature de ses sources sont encore discutées. De nombreux projets observationnels
sont en cours pour répondre à ces questions, comme le SKA, le plus grand radio télescope
du monde, ou la prochaine génération d’observatoires du CMB. Les premiers résultats de
ces expériences devraient nous parvenir dans les années à venir, pourtant la communauté
scientifique n’est pas encore prête, à la fois à cause de limitations observationnelles, et car
le processus de réionisation en lui-même est mal modélisé.

Au cours de mes trois années de doctorat, j’ai développé des outils permettant d’améliorer
l’analyse et l’interprétation des observations dont on dispose.

M’intéressant dans un premier chapitre au processus dans sa globalité, c’est-à-dire
l’évolution de la fraction ionisée de l’IGM avec le temps, je donne un scénario de référence
pour la réionisation, mené par les galaxies, fondé sur quelques hypothèses simples à propos
de l’Univers jeune, et qui pour la première fois est en accord avec toutes les données
disponibles. Il s’agit de spectres de quasars, des fonctions de luminosité des galaxies, ainsi
que de l’épaisseur optique de Thomson, obtenue en observant le CMB. Dans ce scénario, la
réionisation est un processus asymétrique qui commence lentement, autour d’un redshift
z ∼ 15, puis accélère une fois que 20% de l’IGM est ionisé, et finit avant z = 5.

Cependant, la réionisation intervient également à de plus petites échelles, et la façon
dont les galaxies ionisent leur environnement immédiat nous renseigne sur leurs propriétés
physiques. C’est pourquoi dans un second chapitre, j’introduis des outils statistiques in-
novants, de complexité croissante et fondés sur une meilleure modélisation du processus,
qui pourront être appliqués à des cartes d’intensité du signal à 21cm, ou aux plus grand
multipoles observés dans le CMB. Pour ce dernier, je propose une nouvelle description du
spectre de puissance de l’effet Sunyaev-Zel’dovich cinétique, dont les paramètres sont reliés
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Chapter 0. Résumé

à la réionisation et aux propriétés ionisantes des sources. Cette méthode permettra, pour
la première fois, de mesurer non seulement l’amplitude mais aussi la forme de ce spectre
à partir de données CMB à petite échelle de qualité. En ce qui concerne le signal à 21cm,
j’introduis premièrement une fonction de corrélation à un point, qui utilise la variance
d’échantillon à notre avantage, puis une fonction de corrélation à trois points, conçue spé-
cialement pour caractériser la forme sphérique des bulles d’ionisation. Ces deux outils sont
construits dans l’objectif d’être robustes aux contraintes liées à l’observation du signal à
21cm.

Enfin, dans le dernier chapitre, je discute les limitations de ces outils, liées à la fois aux
méthodes d’observation elles-mêmes, ainsi qu’à des erreurs de modélisation. Je m’intéresse
par exemple à l’impact que peut avoir la valeur de certains paramètres mal connus, comme
la fraction de photons qui parviennent à s’échapper de leur galaxie hôte pour atteindre
l’IGM, sur nos contraintes actuelles.

Le résultat de ces trois années de doctorat est un modèle cohérent de la réionisation,
fondé sur toutes les observations disponibles, et dont les limitations sont comprises et
quantifiées. J’ai cherché à mieux comprendre et décrire ce processus en développant des
outils dédiés, robustes aux limitations spécifiques à l’étude de la réionisation et disponibles
publiquement. Avec ce travail, j’ouvre la voie à une analyse cosmologique cohérente des
données qui permettra d’obtenir, une fois que la nouvelle génération de télescopes aura
donné ses premiers résultats, une compréhension à la fois globale et locale de la réionisation,
c’est-à-dire nous renseignant sur l’Univers dans son intégralité, mais également sur la nature
de ses premières sources de lumière.

Ce travail a donné lieu à la publication de trois articles dans des journaux scien-
tifiques : Gorce et al. (2018), publié dans Astronomy & Astrophysics en août 2018; Gorce
& Pritchard (2019), publié dans MNRAS en août 2019; ainsi que Gorce et al. (2020), pub-
lié dans Astronomy & Astrophysics en août 2020. Un quatrième article est en cours de
rédaction. La plupart des programmes informatiques développés pendant mon doctorat
sont disponibles sur ma page GitHub1.

1Voir https://github.com/adeliegorce/tools4reionisation.
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Abstract

From the Big Bang to this day, the Universe goes through two main phase transitions.
The first is recombination, when Cosmic Microwave Background (CMB) photons are re-
leased as the ions and electrons of the primordial plasma recombine to form neutral atoms.
The second, which starts a few hundred million years later, is the Epoch of Reionisation
(EoR), when the first galaxies slowly ionise the atoms of their surrounding intergalactic
medium (IGM). Despite its importance regarding our knowledge of the young Universe,
little is known about this period, notably its timeline and the nature of its sources. Many
ambitious observational projects are ongoing to answer these questions, such as the SKA,
the largest radio telescope in the world, and next generation CMB observatories on small
and large scales. These experiments should give their first results in the coming years,
yet the scientific community is not ready, both because the observational limitations are
poorly known and because the reionisation process in itself is poorly modelled. During my
PhD, I have developed statistical tools to improve the analysis and interpretation of this
data.

In the first chapter of this work, I consider a large-scale approach. In order to overcome
individual sources of bias, I combine for the first time all the observational data currently
available, from quasar spectra and galaxy luminosity functions to the CMB optical depth,
in order to infer a comprehensive global history of reionisation. The resulting scenario,
based on a few reasonable assumptions about the high-redshift Universe, brings the data
back together in a simple history where reionisation is an asymmetric process driven by
galaxies, starting slowly around z = 15, before accelerating when 20% of the IGM is
ionised, and ending before z = 5.

However, reionisation is not only a large-scale process, and we can learn about the
properties of the first stars and galaxies when looking at how they ionise their immediate
surroundings, on scales of a few hundreds of megaparsecs. In this perspective, in a second
chapter, I introduce new statistical tools to be applied to small-scale data, from intensity
mapping of the 21cm signal of neutral hydrogen to high-multipole CMB observations. For
the latter, I formulate a new parameterisation of the patchy kinetic Sunyaev Zel’dovich
(kSZ) angular power spectrum in terms of reionisation. The complicated physics involved
in kSZ signal is summarised in this quick and easy-to-forward-model formalism, based on
two parameters, related to the underlying physics of the IGM and early galaxies. With this
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Chapter 0. Abstract

parameterisation, it will be possible to extract for the first time the accurate amplitude and
shape of the reionisation kSZ power spectrum from CMB data. Regarding 21cm intensity
mapping, I first introduce a one-point statistic which makes use of sample variance to our
benefit, and, secondly, an improved 3-point correlation function, optimised for the study
of the bubbly structure of the ionisation field during the EoR. These tools are designed to
be robust to some of the difficulties encountered when looking for the 21cm signal from
reionisation, such as thermal noise and instrument resolution.

In the last chapter, I discuss the observations- and model-related limitations of current
results, by looking at the way poorly known parameters impact our scenarios of reionisa-
tion and by proposing unbiased and efficient observational strategies.

In these three years of work, I have developed new tools, designed for the study of the
EoR, namely to overcome specific model- and observations-related limitations, and made
them available for the community. Doing so, I have paved the way for a clean cosmological
analysis of reionisation data. Once next-generation data is available, these methods will
give reliable constraints on the global and local history of cosmic reionisation, telling us
about the Universe as a whole and about the nature of its early light sources. Using the
data available today, I have provided a reference history of reionisation – confirming that
astrophysical and cosmological observations give a coherent picture, as well as a better
understanding of what limits current results.

These results were published in three journal articles: Gorce et al. (2018), published by
Astronomy & Astrophysics in August 2018; Gorce & Pritchard (2019), published by MN-
RAS in August 2019; and Gorce et al. (2020), published by Astronomy & Astrophysics in
August 2020. A final article is currently being written. Most of the computing programmes
developed during my PhD are available on my GitHub page2.

2See https://github.com/adeliegorce/tools4reionisation.
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Synthèse

Le fond diffus cosmologique, cliché de l’Univers alors vieux de seulement 380 000 ans,
est une source précieuse d’informations sur l’Univers jeune. A cette époque, il est suff-
isamment froid pour que les ions et les électrons du plasma primordial se recombinent et
donnent les premiers atomes neutres. Les photons, auparavant retenus par leurs interac-
tions avec les particules chargées, s’échappent, formant ainsi la première lumière visible
dans l’histoire de l’Univers. Les quelques milliards d’années qui suivent voient la naissance
des premières étoiles, trous noirs et galaxies, durant ce que l’on appelle le printemps cos-
mique et l’époque de la réionisation. A cette époque, les premières galaxies réchauffent
et ionisent les atomes d’hydrogène et d’hélium du milieu intergalactique (IGM) environ-
nant, tant et si bien qu’aujourd’hui, l’intégralité de l’IGM est ionisé. Améliorer notre
connaissance de l’époque de la réionisation est essentiel, non seulement car elle représente
une période centrale de l’histoire de l’Univers, mais également car elle peut nous appren-
dre de nombreuses choses sur la formation et l’évolution des premières galaxies, ainsi que
leurs propriétés physiques. Par exemple, suivre l’évolution des bulles d’ionisation formées
par ces galaxies nous renseignera sur la luminosité, l’âge et même la métallicité de ces
dernières. D’autre part, s’il s’avère que les galaxies ne sont pas suffisantes pour réioniser
l’IGM seules, cela sera un indice sur la densité de trous noirs à haut redshift. La chronolo-
gie de la réionisation cosmique et la nature de ses sources sont discutées car à ce jour,
peu d’observations sont disponibles pour contraindre cette période si éloignée. Elles sont
cependant suffisantes pour en donner une image globale, où les premières galaxies appa-
raissent à un redshift z ∼ 15, commencent à doucement ioniser l’IGM, avant d’accélérer
pour ioniser les 80% restants sur un intervalle 6 < z < 8, comme illustré sur la figure 1.

Le CMB et le signal 21cm sont deux observables cosmologiques essentielles dans l’étude
de la réionisation, et ont été au centre de mon travail de doctorat. En effet, l’interaction
des photons du CMB avec les électrons libérés par la réionisation laisse des traces dans
le spectre de puissance du CMB qui nous renseignent sur l’évolution et la distribution de
ces électrons. D’autre part, le signal de la raie à 21 centimètres correspond à la transition
atomique entre les deux sous-niveaux de la structure hyperfine du niveau fondamental de
l’atome d’hydrogène neutre. Ce signal est donc sensible aux variations de température, de
densité et d’ionisation du gaz intergalactique et nous renseigne directement sur la nature
de l’IGM à une fréquence – et donc redshift, donnés. Les bases nécessaires à l’analyse de
ces deux signaux, ainsi qu’une introduction générale à la cosmologie, sont données dans le
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Chapter 0. Synthèse

Figure 1: L’image de gauche présente l’idée que l’on a aujourd’hui de l’histoire globale de la
réionisation, grâce à des observations astrophysiques (points de données) et du CMB (zone bleue).
Les deux images de droite présentes les champs d’ionisation de la simulation rsage SFR à 10% et
90% d’ionisation (Seiler et al. 2019).

premier chapitre.

D’ambitieux projets sont en cours pour répondre aux questions posées par la réionisa-
tion, comme le Square Kilometre Array (SKA), le plus grand radiotélescope du monde, et
les expériences CMB de nouvelle génération, appelées CMB-Stage 4 ou CMB-S4. Elles de-
vraient donner leurs premiers résultats dans les années à venir et pourtant la communauté
scientifique n’est pas encore prête, non seulement car les limitations observationnelles sont
mal connues, mais également car le processus en lui-même est mal modélisé. Pendant mon
doctorat, je me suis attachée à améliorer ces deux aspects, afin de pouvoir donner une
image exhaustive de la réionisation quand les premières observations seront faites. Cette
image inclut la description du processus d’ionisation du milieu galactique dans sa globalité,
à des échelles cosmologiques, comme présenté sur la figure 1; mais également d’un point de
vue local. En effet, selon la nature et densité des premières sources de lumière, l’ionisation
de l’IGM se fera de façon plus ou moins homogène. Ces deux approches ont structuré mon
travail de doctorat et sont présentées dans les chapitres 2 et 3, respectivement. Le dernier
chapitre s’attache à étudier les limites des différentes méthodes développées au cours des
trois dernières années, ainsi qu’à proposer des outils permettant de les surmonter.

Dans le chapitre 2, je décris les différents types d’observations disponibles pour con-
traindre l’histoire globale de la réionisation. Il s’agit des dernières mesures du taux de
formation stellaire cosmique, qui donne une estimation du nombre de photons disponibles
à différents redshifts pour ioniser l’IGM; ainsi que du taux d’ionisation du milieu inter-
galactique, mesuré dans les spectres de quasars et galaxies à haut redshift. En combinant
pour la première fois ces observations astrophysiques à la valeur de l’épaisseur optique de
Thomson mesurée par Planck, j’obtiens un scénario cohérent où la réionisation commence
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Figure 2: Paramétrisation du spectre de puissance des fluctuations de densité des électrons libres
de l’IGM (ligne bleue), calibrée sur la simulation EMMA (points), et illustration de l’interprétation
physique des paramètres: la fréquence de coupure κ peut être reliée à la taille caractéristique des
bulles d’ionisation, tandis que α0 est la variance maximale du champ d’électrons libres, au début
du processus d’ionisation.

autour de z = 15 et finit avant z = 5, confirmant que malgré des origines très différentes,
toutes ces observations sont compatibles (Gorce et al. 2018).

Dans le troisième chapitre, je m’intéresse à la réionisation à une échelle locale, afin de
contraindre les propriétés physiques des premières galaxies. Les deux champs d’ionisation
présentés dans la figure 1 montrent que ces derniers ont une morphologie très spécifique,
avec des zones d’ionisation que l’on peut associer à des sphères, autour de chaque galaxie.
La forme et la densité de ces zones peut être reliée à la masse, composition et luminosité
des galaxies. Par conséquent, je propose un nouvel outil statistique simple, qui permet
de décrire ces différences morphologiques, appelé la variance locale. Fondé sur l’analyse
de tranches de champs d’ionisation obtenus à partir d’une simulation ou d’observations à
redshift donné, cet outil, qui s’assimile à une fonction de corrélation à un point, est très
rapide à calculer. Il est introduit dans Gorce et al. (in prep), en cours de rédaction.

Je m’intéresse ensuite aux fonctions de corrélation à deux points, et, plus particulière-
ment, au spectre de puissance de l’effet kSZ. Cet effet correspond à la diffusion Compton
inverse de photons du CMB, peu énergétiques, sur des électrons qui ont une vitesse propre
par rapport au CMB. Lors de cette interaction, les électrons transfèrent une partie de leur
énergie aux photons, ce qui se traduit par un excès d’amplitude du spectre de température
du CMB aux petites échelles. Durant la réionisation, ces électrons sont concentrés autour
des galaxies, et cet effet est donc sensible à la morphologie du champ d’ionisation, en plus
de son évolution globale. Dans ce chapitre, je propose une façon simple de paramétriser
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Chapter 0. Synthèse

Figure 3: Illustration de la fonction de corrélation triangulaire appliquée à un modèle simplifié.
La corrélation est maximale pour les modes correspondant aux triangles équilatéraux inscrits dans
les bulles d’ionisation (en bleu) et nulle pour un champ gaussien aléatoire (en rouge).

cette double dépendance, et la calibre sur différents types de simulations (Gorce et al.
2020). Cette paramétrisation concerne le spectre de puissance des fluctuations de densité
des électrons libres de l’IGM, et est illustrée en figure 2. Appliquée aux futures données
CMB, elle permettra pour la première fois d’obtenir l’amplitude et la forme du spectre
kSZ.

Enfin, la dernière partie de ce chapitre se concentre sur le bispectre, transformée de
Fourier inverse de la fonction de corrélation à trois points. Le bispectre permet d’étudier
la non-Gaussianité du signal à 21cm issu de la réionisation, là où le spectre de puissance
l’ignore. Je propose une approche qui permet de s’affranchir d’étapes de transformation
du signal qui ralentissent le traitement des données, tout en isolant la partie même du
signal qui nous donne des informations sur la structure du champ d’ionisation, les phases.
Cet outil, appelé la fonction de corrélation triangulaire des phases (TCF), est conçu de
manière à ce que les modes correspondant aux triangles équilatéraux inscrits dans les bulles
d’ionisation donnent le signal maximal, comme illustré sur la figure 3. On peut ainsi suivre
l’évolution du taux d’ionisation de l’IGM et l’augmentation de la taille des bulles ionisées
autour des premières galaxies à différents redshifts (Gorce & Pritchard 2019).

Enfin, dans le quatrième et dernier chapitre de cette thèse de doctorat, je présente les
différentes limitations dont souffre encore l’analyse de données sur la réionisation. Certaines
de ces limitations sont dues aux observations elles-mêmes, comme c’est le cas de la variance
cosmique et de la variance liée à la taille limitée des observations. Par ailleurs, dans le
cas du CMB comme du signal à 21cm, la modélisation et soustraction des avant-plans
des observations, afin d’accéder au signal cosmologique, est un problème central. Une
fois les avant-plans supprimés, une bonne connaissance de l’instrument est nécessaire pour
s’affranchir des systématiques comme le bruit thermique ou la résolution angulaire. Les
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outils présentés ici se trouvent être robustes à ces biais : je montre que la variance locale
et la TCF parviennent toutes deux à extraire des informations d’une carte bruitée ou lissée
avec la résolution angulaire de SKA1-Low.

D’autres limitations proviennent de la façon dont le processus de réionisation est mod-
élisé : la paramétrisation choisie pour analyser les données CMB va par exemple avoir un
fort impact sur la mesure de l’épaisseur optique τ et l’amplitude du signal kSZ. Par ailleurs,
nombre de paramètres utilisés pour convertir des données astrophysiques en observables
de la réionisation sont mal connus et corrélés. Dans ce chapitre, j’évalue le biais lié à
la modélisation de ces paramètres et prouve, par exemple, que la valeur exacte du taux
d’agrégation de l’hydrogène ionisé dans l’IGM n’a pas autant d’impact que ce à quoi l’on
pourrait s’attendre. La fraction de photons ionisants qui parviennent à s’échapper de leur
galaxie hôte pour atteindre l’IGM, en revanche, joue un rôle essentiel dans l’estimation
du taux d’ionisation : pour ioniser l’IGM en accord avec les données, une valeur moyenne
de 20% au cours de la réionisation est nécessaire. Cette valeur est cependant largement
dépendante de la façon dont les fonctions de luminosité des galaxies sont modélisées.

Le résultat de ces trois années de travail est un modèle cohérent de la réionisation,
fondé sur toutes les observations disponibles, et dont les limitations sont comprises et
quantifiées. De nouveaux outils, conçus pour étudier la réionisation, et notamment pour
surmonter des limitations spécifiques à celle-ci, sont disponibles et pourront être appliqués
aux futures observations du CMB et du signal à 21cm, afin de donner des contraintes
fiables sur l’histoire globale et locale de la réionisation.

xi
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Chapter 1

Introduction

As a snapshot of the sky about 380 000 years after the Big Bang, the Cosmic Microwave
Background (CMB) is a precious source of information about the very young Universe. At
this time, primordial ions and electrons recombined to form neutral atoms, freeing the
photons previously stuck in the primordial plasma by Thomson scattering. However, the
first billion years that follow, which are expected to see the birth of the first stars, black
holes and galaxies, are still widely unknown. During the Epoch of Reionisation (EoR),
these first galaxies heated and ionised the neutral atoms of hydrogen and helium in their
surrounding intergalactic medium (IGM), and eventually, all atoms. Despite its impor-
tance regarding our knowledge of the young Universe, both on small and large scales, little
is known about this period, notably its timeline and the nature of its sources. From the
modest amount of data available today, we know that the bulk of reionisation must have
occurred at redshifts z ∼ 7 − 8, and that the process in general was driven by galaxies
too faint and too distant to be observed directly. For example, looking at H i absorption
in the spectra of distant sources gives an idea of the reionisation timeline, weakened by
substantial error bars. However, improving our knowledge of reionisation is essential, not
only to learn more about the history of the Universe as a whole, but also to understand
galaxy formation and evolution, as the first galaxies are thought to have led the process.
Estimates of the speed of the ionisation front on 21cm images (the shape and growth of
the ’ionised bubbles’) can help place constraints on the properties of early galaxies, such as
their metallicity, brightness, or simply age. Additionally, if early galaxies are not sufficient
to fully ionise the IGM, the existence of early black holes might be required. Reionisation
studies are, therefore, essential to a wide range of cosmological and astrophysical subjects,
but substantial efforts are required to be able to interpret the data coming in the next few
years correctly and efficiently.

Many ambitious observational projects are ongoing to build on the 21cm signal and

1



Chapter 1. Introduction

CMB data, two essential cosmological sources of information about reionisation, and answer
the questions of the timeline and origin of reionisation.

The interaction of CMB photons with electrons freed during the EoR leaves imprints in
the primordial power spectrum which can tell us about the evolution of the distribution of
electrons in the IGM with time. These include measurements of the Thomson optical depth
and of the amplitude of the kinetic Sunyaev-Zel’dovich (kSZ) effect in CMB observations,
which give coarse constraints on reionisation as a whole, namely on parameters such as its
duration and endpoint. During my PhD, I have developed methods which, with sufficiently
precise observations, will take reionisation constraints from CMB data to the next level
by not only improving our current knowledge of the general reionisation timeline, but also
providing information about the nature of the first galaxies, such as their efficiency to
ionise neighbouring atoms. Such observations are expected in the coming years, first from
current experiments, such as the South Pole telescope (SPT, Ruhl et al. 2004) and the
Atacama Cosmology Telescope (ACT, Kosowsky 2003), and later from the CMB Stage-4
observatories (CMB-S4, Abazajian et al. 2016).

The 21cm signal corresponds to the spin-flip transition of neutral hydrogen, and is sen-
sitive to temperature and ionisation variations of the cosmic gas. As a line transition, it is
easy to relate observed frequency to emitted frequency, and we can map out the Universe
at any time. Radio interferometry is, therefore, another pillar of reionisation study. The
Square Kilometre Array (SKA, Koopmans et al. 2015), the largest radio telescope in the
world, will produce such images by 2029. Many methods have been proposed to extract
information about reionisation from these maps. However, due to the huge amount of data
these telescopes will produce (160TB, the world internet traffic in 2015, in one second for
SKA), data extraction must be efficient. During my PhD, I have designed time-saving
techniques, allowing to efficiently analyse this data, while being robust to instrumental
effects, that I will present in this work.

Reionising the IGM involves many different physical processes, from atomic to cosmo-
logical scales. This is both a curse, as it makes reionisation very difficult to simulate, and
a blessing, as many different types of observations can help constraining it. As part of my
doctoral work, I have shown that astrophysical observations, such as local measurements
of the ionisation of the IGM, or the star formation rate, were compatible with large-scale
CMB results, but also necessary to obtain robust constraints. Combining all the data
available, from astrophysics to cosmology, will be essential to the analysis of future EoR
observations, in the context of the James Webb Space Telescope (JWST, Gardner et al.
2006)1 launching within the next few years, of CMB-S4 observatories (Abazajian et al.
2016) coming online, and of radio interferometers such as the Hydrogen Reionization Ar-
ray (HERA, DeBoer et al. 2017) and the Murchison Widefield Array (MWA, Tingay et al.
2013) getting clean 21cm signal during reionisation in the coming months. In this per-
spective, I have looked during my PhD at improving the quality of the information we can

1See https://www.jwst.nasa.gov.
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recover from current and future observations, in a bid to make the most of them, and give
a comprehensive image of reionisation in the coming years. This doctoral thesis describes
this work, looking at reionisation as a global, cosmological process, before moving on to the
inhomogeneities of the IGM ionisation on more local scales. These methods are confronted
to their limitations, both observations- and model-related, in order to only pick the most
robust methods and develop efficient observational strategies. In this first chapter, we pave
the way for later results, introducing basic concepts of general cosmology, as well as the
physics underlying the study of the aforementioned CMB and 21cm signal. We also give a
description of the current status of what is known about reionisation, and of the different
questions still pending.
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1.1 Context

In this section, we give context for the rest of this work. We introduce basic principles
of cosmology, to place the Epoch of Reionisation in the general timeline of the Universe’s
history. We then give an overview of what is currently known of cosmic reionisation, and
of the possible answers to unsolved questions about this epoch, namely about its sources.

1.1.1 Cosmology 101

Cosmology is the study of the Universe as a whole. Satellites such as the Planck satellite
have investigated its first instants – here, meaning its first few hundreds of thousands
years, through the study of its first light, the CMB. The CMB tells us that the Universe is
extremely close to being isotropic and homogeneous, an image which has been confirmed by
large-scale galaxy surveys of the local Universe. This Cosmological principle suggests that
the Universe is the same everywhere, with no specific direction favoured, on scales larger
than about 300 Mpc. Such results are concordant with the formalism developed to describe
the dynamics of our Universe, general relativity, and in particular with the Friedmann-
Lemaître-Robertson-Walker (FLRW) space-time metric, given in spherical coordinates by

ds2 = c2dt2 − a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
, (1.1)

where ds, dt, and dΩ are intervals of space-time, time, and angle respectively and c is
the speed of light in vacuum. The parameter a(t) sets the scale of space at time t and
k describes the geometry of the Universe. An example of a negatively curved surface
(k = −1) would be the shape of a saddle; for k = 1, the Universe is spherical and closed;
for k = 0, it is flat. By convention, today, a(t0) = 1. a is related to the well-known
cosmological redshift via a = 1/(1 + z).

A solution to the Einstein’s equations involving the FLRW metric is the Friedmann
equation. It writes (

ȧ

a

)2

= H2(t) =
8πG

3
ρ− kc2

a2
, (1.2)

where we have defined the Hubble parameter H(t) ≡ ȧ/a, which describes the expansion
rate of the Universe. A positive value of H(t), as measured today, means the Universe is
expanding. Matter conservation is additionally ensured by

ρ̇+ 3H(t)(ρ+ P ) = 0, (1.3)

where ρ and P are the total energy density and pressure, respectively. If we consider that
the Universe is made of a few different components, each an individual perfect fluid with
equation of state Pi = wiρi, then they each verify this equation independently: ρ̇i + (1 +

wi)ρi = 0, solved by ρi = ρi,0(a0/a)3(1+wi). In this formalism, each of the Universe’s
components has its own equation of state: non-relativistic matter ρm (w = 0), radiation
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ρr (w = 1/3), and dark energy ρΛ (w = −1). These parameters are often constrained as
their ratio Ωm = ρm/ρc to the critical density of the Universe, that is the density obtained
when k is set to zero in Eq. (1.2) ρc = 3H2(t0)/8πG. We can then rewrite the Friedmann
equation as (

H(t)

H0

)2

= ΩΛ + Ωk

(a0

a

)2
+ Ωm

(a0

a

)3
+ Ωr

(a0

a

)4
, (1.4)

which shows the evolution of each Universe component with expansion. For example, cold
matter is only geometrically diluted (ρm ∝ a−3) while dark energy is pervasive and uniform
throughout the Universe (ρΛ ∝ a0). Here, a0 andH0 are the values of each parameter taken
today, at t = t0, and Ωk ≡ −k/a2

0H
2
0 . Note that Ωk + Ωr + Ωm + ΩΛ = 1. Observations

of the CMB have given constraints on these cosmological parameters: the latest release of
Planck’s data gives Ωbh

2 = 0.0224 ± 0.0001, Ωm = 0.315 ± 0.007, Ωch
2 = 0.120 ± 0.001,

Ωk = 0.001 ± 0.002, the dark energy equation of state w0 = −1.03 ± 0.03 and H0 =

67.4 ± 0.5 km s−1 Mpc−1 (Planck Collaboration et al. 2018), i.e. the Universe is close to
flat and expanding.

Resulting from the Friedmann equation, we have the ΛCDM model, which is today the
standard model of cosmology. In this model, the Universe goes through a period of hot big
bang and then cools down by adiabatically expanding, at exponential speed for the first few
10−32 seconds, during inflation. According to Eq. (1.4), at different times, the evolution of
the Universe is dominated by different components. At early times, radiation dominates,
then we go through a matter-dominated, and then dark energy dominated era2. If we
assume the Universe is filled by a perfect fluid, initially very hot and dense after the Big
Bang, the fact that the Universe expands with time means that it progressively cools down
until reaching TCMB = 2.72548± 0.00057 K today, as measured by the FIRAS experiment
on the Cosmic Background Explorer (COBE, Fixsen 2009). Additionally, all large-scale
structures observed today, such as galaxies, are seeded by initial quantum fluctuations that
exponentially grow during cosmic inflation. In this perspective, σ8 is another important
parameter of the ΛCDM model. By definition, σ8 measures the amplitude of the (linear)
matter power spectrum on the scale of 8 h−1Mpc, but intuitively it describes the growth
of fluctuations in the early Universe, and, in turn, the distribution of matter in the sky
today.

According to ΛCDM, the Universe is initially hot enough (kBT � 13.6 eV) to stay
ionised, and therefore for the thermal bath of photons to remain tightly coupled to the
ions through Thomson scattering. Around redshift z = 1 090, when the Universe is suffi-
ciently cool, protons pair with free electrons and neutrons to form neutral atoms, mostly
of hydrogen, in the so-called recombination era. This process also frees the photons from
their interactions with matter, and we see these photons today as the Cosmic Microwave
Background (CMB). Through these recombinations, the Universe ionisation level falls to
0.0001% and remains low for about a billion years (Peebles 1968; Zel’dovich et al. 1969;
Seager et al. 2000). Yet, observations of the Gunn-Peterson effect (Gunn & Peterson 1965)

2As experiments find Ωk ∼ 0, there will no be curvature-dominated epoch.
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in quasar spectra tell us that at z = 5.9, 96± 5 % of the IGM hydrogen atoms are ionised
(McGreer et al. 2015). What happened in the meantime, i.e. during the Epoch of Reion-
isation, is an essential source of information about the evolution of the young Universe,
the formation of large cosmic structures and the properties of early galaxies, to cite only
a few.

1.1.2 Sources of reionisation

The most commonly admitted scenario of reionisation is that, between z ∼ 20 and z ∼
6, star-forming galaxies ionised their surrounding neutral medium – mostly hydrogen and
helium, and the newly ionised regions then progressively overlapped (e.g. Aghanim et al.
1996; Becker et al. 2015), leading to a decrease in the neutral fraction of the Intergalactic
Medium (IGM). Finally, quasars took over to perform the second ionisation of helium
atoms around z ' 4 (Mesinger 2016). Yet, some doubts remain about the sources of
hydrogen reionisation: some consider that quasars could have led the process (Madau
& Haardt 2015; Grazian et al. 2018), although star-forming galaxies are often preferred:
Robertson et al. (2015) find the latter are sufficient to maintain the IGM ionised until
z ∼ 7 and no proof of the existence of a sufficient number of quasars at redshifts z ≤ 10

has been given yet. Ever lower values of the integrated Thomson optical depth given by
CMB observations reduce the need for a significant contribution of not-yet observed very
high-redshift galaxies (Planck Collaboration et al. 2016d).

Conversely, learning about reionisation tells us about the nature of its sources and
the evolution of galaxies. For example, the stellar mass and so ionising efficiency of a
newly born galaxy will depend on the mass of its host dark matter halo: a rule of thumbs
gives the galaxy mass to be about ten times lower that the mass of its host dark matter
halo (Zackrisson 2020). H2 cooling in low-mass halos (104 M� < M < 106 M�) leads
to the first generation of stars being born in about 150 Myr, but these masses are not
sufficient to host a galaxy. Heavier halos, of mass 107 M� < M < 109 M�, are expected
to have formed around z ∼ 15. In these, H i cooling allows efficient and prolonged star
formation and so the formation of the first galaxies. These will however not be long-
lived because of the gas potentially being blown out of the shallow gravitational potential
of the halo (Wise 2019). Most galaxies live in halos with mass M > 109 M�, and are
likely neighbours to a massive central black hole. Such galaxy masses allow for strong star
formation rates by avoiding major gas losses. It is these star-forming halos that we expect
to drive reionisation. The formation of dark matter halos is illustrated in Fig. 1.1. The
most distant high-redshift galaxy known today has a stellar mass of about 109 M� and
was observed at z = 11.1 (Oesch et al. 2016). High-redshift quasars could, if in sufficient
number, be a main contributor of reionisation. These quasars are expected to be extremely
rare, so that, despite their very high luminosity compared to same-redshift galaxies, only
a couple have been detected at z ≥ 7. The most distant quasar currently known was
observed at z = 7.5 and has a mass of 8 × 108 M� (Bañados et al. 2018). Other than

6



1.1. Context

Figure 1.1: The formation of dark matter halos.

being sources, studying these quasars is interesting for reionisation as their spectrum can
give us information about the ionisation level of the IGM between them and the observer.
This will be investigated in Sec.2.2. Finally, long-duration high-redshift gamma-ray bursts
(GRB), with a gamma-ray emission lasting over two seconds, leave afterglows which can
be as bright as same-redshift quasars in infrared or radio wavelengths for about a day.
These are not expected to contribute to reionisation, but because they are likely caused
by the death of massive stars, they are a good tracer of active star formation at high
redshift (Zackrisson 2020). Additionally, their spectrum can give information about the
nature of the IGM at the time of the burst. The most distant GRB known today was
observed at z = 8.2 (Tanvir et al. 2009), but the statistics are still very low. It is also
worth mentioning fast radio bursts (FRB), whose dispersion measure can tell us about the
density of free electrons at the time of emission (Cordes & Chatterjee 2019). In particular,
they are expected, once a statistical sample of events have been observed (thousands of
FRBs occur every day over the entire sky), to give constraints on the second reionisation
of helium in the IGM (Linder 2020).

The existence of other sources, at higher redshifts, has been postulated but these objects
are too distant and faint to be observed today. This category includes mini-quasars and
Population III stars and supernovae. Star populations are counted backwards in time, so
that Population III stars actually were the first stars, formed in mini-halos from primordial
elements only (hydrogen, helium and traces of lithium). Because of the cooling properties
of stars with a zero metallicity (Z = 0), these stars are expected to be very massive, hot
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Figure 1.2: Snapshots of the ionisation field in the rsage const simulation (see App. B.2) at
different phases in the reionisation process. Left panel: Pre-overlap: HII regions grow around each
isolated ionising source. Middle panel: Overlap: Galaxies form and remote ionised bubbles overlap.
Right panel: Postoverlap: IGM is fully ionised.

and short-lived: stars formed today have a characteristic mass of 0.5 M� whereas Pop III
stars likely had a characteristic mass of 101− 103 M� (Zackrisson 2020). Because of these
physical properties, they are also expected to have a very bright UV emission, and so to
have contributed to, if not the reionisation, the heating of the IGM. Simulations suggest
that these stars could form Pop III galaxies, not heavier that ∼ 106 M�, if the host halo
reaches the H i cooling mass (107 M�) without the help of any prior star formation or
metal pollution (Wise et al. 2012; Xu et al. 2016). Such galaxies would be brighter than
individual Pop III stars and so easier to observe, but still very faint: Most are expected
to have UV magnitudes in the range of MUV ∼ −5 to −12 (Xu et al. 2016), below the
observational limit of even the next-generation infrared instruments, such as JWST and
so would likely be more easily spotted in the 21cm power spectrum (Qin et al. 2020a).
Finally, high-redshift mini-quasars are the potential low-mass seeds for z > 7 supermassive
black holes. They could be the result of the direct collapse of Pop III stars, of primordial
black holes, or be Pop III remnants (Zackrisson 2020). Because of their potential hard
X-ray emission, they could also have contributed to IGM heating, and they are observable
with far-future X-ray telescopes such as NASA’s Lynx (Gaskin et al. 2019)3, up to z = 10.
One can also imagine contribution from Population III gamma-ray bursts or galaxies.

Reionisation of the IGM will happen once the first luminous objects appear in the sky,
emit photons with sufficient energy to ionise an hydrogen atom (E > 13.6 eV) and once
this radiation escapes from the halo hosting the source. If we consider that galaxies led
the reionisation process, in an inside-out scenario, we assume that ionised bubbles form
around each source and these bubbles grow in volume, eventually overlapping until they
cover the entire IGM. This is illustrated in Fig. 1.2 in the case of the rsage simulation
(Seiler et al. 2019). In this scenario, the densest regions of the IGM are the first ones to

3See https://www.lynxobservatory.com.
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1.1. Context

get ionised because they host the sources of reionisation. However, the high density of
these regions also means that recombinations are most likely to happen at a higher rate
in them. This can lead to newly formed ionised regions to recombine very quickly, and
the least dense regions of the IGM to be the first definitively ionised regions of the sky, in
a so-called outside-in scenario. Indeed, consider a source ionising its surrounding neutral
medium4. As mentioned above, recombinations compete with ionisations until reaching
an equilibrium in what we call a Strömgren sphere (Strömgren 1939). Cosmic expansion
and the non-steadiness of sources also play a part in this equilibrium so that the resulting
balance equation writes (Shapiro & Giroux 1987):

dNγ

dt
− αB〈n2

HII
〉V a−3 = a3n̄HII

dV

dt
, (1.5)

where Nγ is the total number of ionising photons produced by the source, n̄H is the comov-
ing mean number density of hydrogen atoms and V is the comoving volume of the bubble
considered. αB(T ) = 1.3 × 10−13 cm3s−1 (Osterbrock 1989) is the case B recombination
coefficient at a fiducial IGM temperature of T = 20 000 K, often considered as the mean
temperature around a newly ionised atom (Loeb & Furlanetto 2013; Wise 2019). Solving
this equation for the radius of the Strömgren sphere, we find that a larger radius will either
correspond to a more luminous source or to a smaller density of the surrounding medium.
We see that reionisation is not expected to be a homogeneous process, happening at the
same time and progressing at the same rate in the entire sky. This will be investigated in
Chapter 3. In particular, it shows that recombinations depend on the square of the hy-
drogen density and so happen preferably in a strongly heterogeneous IGM. To account for
this, a volume-averaged clumping factor CHII

is often introduced via CHII
= 〈n2

HII
〉/n̄2

HII
.

From Eq. (1.5), we can define the recombination time trec:

1

trec
= CHII

αB(T )

(
1 +

Yp

4Xp

)
〈nH〉 (1 + z)3, (1.6)

where Xp and Yp are the primordial mass fraction of hydrogen and helium respectively.
Generalising Eq. (1.5) to the entire IGM, we get the evolution of the ionised fraction of
the IGM xe with time:

ẋe =
ṅion

〈nH〉
− xe
trec

. (1.7)

xe is defined at the ratio of ionised hydrogen and helium atoms to the total number of
baryons in the IGM and will be a central parameter used in this work. ṅion is the cosmic
reionisation rate, in units of photons per unit time per unit volume, which depends on
the star formation rate density ρSFR, the escape fraction of ionising photons fesc and the
number of photons with sufficient energy to ionise hydrogen atoms. These results will be
detailed and discussed in details in Chapter 2, but one can already see that it is easy to
give a global description of the reionisation process. However, these simple equations also

4This formalism, originally derived in the case of a single star, is here generalised to a whole galaxy,
more relevant for cosmic reionisation.
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show that much smaller scales are involved in the process, from the clumpiness of baryons
throughout the IGM to the properties of early galaxies and the photons they produces.
Looking at reionisation on these two scales is, therefore, necessary to understand the pro-
cess, and is at the centre of this work.

Despite making up for a few billion years in the history of the Universe, the Epoch of
Reionisation is poorly known. As mentioned before, question marks remain on the nature
of the sources of reionisation (Was it star-forming galaxies alone or with the help of early
quasars?), and on its topology (Were the densest regions ionised first or last?). Even the
global picture is unclear, as it is yet not known when reionisation began and ended. An-
swering these questions will give us information about the formation of the first structures
and light sources in the Universe, as well as on the nature of these first sources – their
mass, their radiation. Conversely, it is interesting to know how did reionisation affect
galaxy formation, and, in general, galaxy properties.

According to the processes described above, signatures of cosmic reionisation can be
found in many different types of observations, and can be the focus of many different
types of simulations. Potential sources can be observed directly through spectroscopy or
photometry. Measuring the spectrum of a source is the most complete way to learn about
it but is very expensive; therefore photometry, that is measuring the flux received from
a source per (wide) frequency bin, is often favoured. This can be sufficient for example
when looking for Lyman-break galaxies, that is galaxies whose radiation is absorbed by the
surrounding neutral IGM, creating a sudden drop in their flux. Spectroscopic techniques
will be investigated in Sec. 2.2. JWST is expected to do photometry and imaging at
magnitudes5 mAB < 31 and spectroscopy of sources mAB < 28 (Gardner et al. 2006),
hence picking up z ∼ 7 quasars, which are expected to have magnitudes mAB ∼ 20. For
now, most results on high-redshift galaxies were obtained with the Hubble Extreme Deep
Field, which saw sources of magnitudes up to mAB = 30 after 23 days of exposure time,
both directly and through gravitational lensing. Results detailed in Sec. 2.2 are based on
these observations.

Because of the difficulty of such observations, simulations are used to complement ob-
servations and get information about the nature and physics of the sources. Reionisation
simulations require a good understanding of the formation of dark matter halos, of the
photon production within these halos and of radiative transfer in the IGM. They need to
cover huge dynamic ranges in length and in mass, from radiative transfer to cosmological
scales. Indeed, to compute star formation, the inner structure of galaxies, on scales of a
few parsecs, must be resolved, while the ionisation front propagates on scales of a few Gpc.
For computational reasons, it is not currently possible to resolve all these scales with good
accuracy, hence different types of simulations, of different levels of precision, exist. Fully

5The apparent AB magnitude at frequency ν is a log-measure of the flux fν compared to a reference
value: mAB(ν) ' −2.5 log fν + 8.90.
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numerical simulations consist of simulating a matter field, either through N -body or hydro-
dynamical methods, and adding radiative transfer to account for the radiation responsible
for the heating and reionisation of the IGM. They are limited to scales of 1− 10 Mpc but
can give information about radiative feedback, star formation or recombination clumps
(Xu et al. 2016); they can extend to scales of 100 Mpc but at the price of approximating
the physics, that is not resolving the ISM of galaxies or removing hydrodynamics and as-
signing galaxy properties as input (Ciardi et al. 2001; Finlator et al. 2012; Aubert et al.
2015). Post-processing cosmological hydrodynamical or dark matter only simulations with
radiative transfer is a cheaper alternative, as the required resolution can be coarser, and
allows to explore much larger box sizes L < 500 Mpc (Mellema et al. 2006; Trac & Cen
2007; Ciardi et al. 2012; Hutter et al. 2014; Iliev et al. 2014). Even larger box sizes, of a few
Gpc in size, can be reached with semi-numerical simulations. These rely on approximations
allowing to directly estimate the ionisation field from the matter distribution, using the
so-called excursion-set formalism (Furlanetto et al. 2004a) and, therefore, bypassing en-
tirely the expensive simulation of radiative transfer. The algorithm estimates the number
of ionising photons available in each grid cell and then distributes them by comparing the
number of ionisations and recombinations in decreasing sizes of spherical shells (Mesinger
& Furlanetto 2007; Zahn et al. 2007; Mesinger et al. 2011; Fialkov & Barkana 2014; Hut-
ter 2018b; Park et al. 2019). Alternatively, Thomas et al. (2009) or Ghara et al. (2015)
map previously computed one-dimensional ionisation profiles of sources to a grid. Other
works use simulations to derive a relation between the matter field and the corresponding
ionisation field (Battaglia et al. 2013), but such methods still need accuracy. We refer the
reader to Trac & Gnedin (2011) for a detailed review of reionisation simulations.

In this work, we have chosen to focus on two types of observations which can give
us information of reionisation: the power spectrum of the Cosmic Microwave Background
(CMB) and 21cm observations. We give the basics required to understand these two
observables in the following two sections.

1.2 A quick review of CMB cosmology

As mentioned before, shortly after the Big Bang, the Universe was composed of a hot
and dense plasma of hydrogen, helium and a bit of lithium nuclei, mixed with electrons and
photons, at temperatures higher than T ∼ 1 000 K. Mostly because of Thomson scattering,
this plasma is opaque, that is the mean path of a photon is much smaller than the Hubble
radius at that time. Later, the Universe expands and cools down, allowing neutral atoms
to form and photons to travel on larger scales, forming the Cosmic Microwave background
(CMB), an image of the Last Scattering Surface (LSS). If recombinations happened at the
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same time and in the same way everywhere on the LSS, the CMB should be uniform over
the sky. However, early experiments such as the Cosmic Background Explorer (COBE)
spacecraft, launched in 1989, noticed that the cosmic microwave radiation is a highly
isotropic black-body radiation at TCMB = 2.725 K, but not perfectly so. COBE operated
between 1989 and 1993. Its results include the first map of temperature anisotropies in
the CMB with a resolution of about 10 deg, and were rewarded with the 2006 Nobel Prize.
Later came the Wilkinson Microwave Anisotropy Probe (WMAP), and the Planck satellite,
reaching ever smaller scales.

The CMB temperature fluctuations ∆T are often represented in terms of a angular
temperature power spectrum. Because the LSS is considered a spherical surface, the power
spectrum is angular, and we use spherical harmonics Y`m such that

∆T

TCMB
=
∞∑
`=1

∑̀
m=−`

a`m Y`m(θ, φ), (1.8)

where ` is the angular multipole, proportional to the inverse of the angular scale θ. Accord-
ing to the cosmological principle, there should be no dependence on m in the equations,
and the power spectrum amplitude at multipole ` writes

C` =
1

2`+ 1

∑
m

|a`m|2. (1.9)

The contribution at ` = 1 is the dipole anisotropy, which was first measured in the seventies
to be (∆T/TCMB)`=1 ∼ 10−3 (Henry 1971; Smoot et al. 1977). We had to wait for the
launch of COBE in 1989 to observe for the first time anisotropies at the quadrupole level
(` = 2) and higher, as they are two orders of magnitude smaller than dipole anisotropies.
Today, the most recent observations come from the Planck satellite (Planck Collaboration
et al. 2018). Planck was a space mission launched in 2009 which operated until 2013. It
looked for anisotropies at microwave and infrared frequencies with high sensitivity and
small angular resolution, three times better than the one of WMAP, largely improving
constraints on cosmological parameters. For all these observations, it is important to note
that there is an irreducible source of error biasing results, the cosmic variance. Indeed,
there is a 1/

√
N uncertainty on each C`, whereN is the number of independent wave modes

probed at this scale. Because we can only observe one Universe, this number decreases,
and so the associated error increases, as scales increase. The relative uncertainty is given
by ∆C`/C` = 1/

√
2`+ 1 and dominates all others for ` < 1500 for Planck.

1.2.1 Temperature anisotropies

Primary temperature anisotropies, which are due to effects that occur at the surface of
last scattering and before, have three origins. The first stems from the inhomogeneities in
the distribution of matter in the Universe and is called the Sachs-Wolfe effect: a photon
coming from a denser than average region of the sky will be redshifted (Sachs & Wolfe
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1967). Anisotropies due to this process are dominant on large angular scales. Secondly,
because of gravity, baryons tend to collapse into overdense regions. Yet, photons, which
the baryons are strongly coupled to, resist the collapse and hence push baryons outwards.
The balance of these two forces creates oscillatory modes of compression and rarefaction of
matter called acoustic oscillations. These density fluctuations translate into temperature
fluctuations (Sakharov 1966), observed as peaks in the CMB temperature power spectrum
(Peebles & Yu 1970). Finally, because the surface of last scattering is not infinitely thin,
temperature fluctuations on scales smaller than its width, about 3 Mpc (` > 800), will be
dampened, in a process called Silk damping (Silk 1968).

Secondary anisotropies stem from CMB photons losing or gaining energy on their way
to us (Aghanim et al. 2008). For example, they can be gravitationally deflected by the
large-scale distribution of matter in the Universe. If CMB photons propagate through
a large overdense clump of matter on the line of sight, structures in the CMB at this
point get magnified and appear bigger on the sky. One can also mention the integrated
Sachs-Wolfe effect, describing the fact that photons exit potential wells with a higher
energy than they entered it. Indeed, the energy they gain by falling into the void will be
larger than the energy they lose exiting it: by this time, the Universe will have expanded
and the well will be more shallow because of the presence of dark energy. Secondary
anisotropies can also have an electromagnetic origin, and because reionisation releases
charged particles, such anisotropies will be our main focus. Indeed, Thomson scattering
between the free electrons from reionisation and the local CMB quadrupole will produce
linear polarisation, hence increasing the amplitude of the polarisation anisotropies on the
scales corresponding to the horizon then (` < 10). This will be seen as a ’reionisation
bump’ on the EE power spectrum, the amplitude of which scales as τ2, where τ is the
Thomson optical depth. Scatterings will also dampen temperature fluctuations on small
scales as e−2τ (` > 200). Conversely, CMB photons can get a kick of energy scattering
off high energy electrons. These electrons can be either hotter than the CMB, or have
a proper velocity with respect to the CMB rest-frame. The resulting effects are called,
respectively, thermal and kinetic Sunyaev Zel’dovich, and are most significant on small
scales (` > 1000, Zeldovich & Sunyaev 1969; Sunyaev & Zeldovich 1970). These three
imprints of reionisation on the CMB anisotropies were used simultaneously to constrain
reionisation for the first time in Planck Collaboration et al. (2016d) and will be described
in details in Sec. 2.1.

A final element one needs to understand to be able to analyse CMB data is the fore-
grounds. These are dominated by galactic emissions such as bremsstrahlung, synchrotron,
and dust that emit in the microwave band. Point sources are also an important contami-
nant, so that they, along with a mask of the Milky Way, are removed from CMB maps to
avoid any bias.
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1.2.2 Polarisation anisotropies

If temperature anisotropies are the most significant, the CMB also exhibits polarisa-
tion anistropies, which, again, can have a primary or secondary origin. Polarised CMB
radiation has two components: a curl-free component, called E-modes, and a divergence-
free component, called B-modes, by analogy with electrostatics. The corresponding auto-
and cross-spectra, also with temperature, are considered (TE, EE, BB,...)6. E-modes
stem from the Thomson scattering of CMB photons off free electrons in an heterogeneous
plasma. Polarised radiation was produced once the primordial plasma was sufficiently opti-
cally thin, while some free electrons were left, hence only during a very short period of time.
Therefore, only a small fraction of the CMB photons observed today are E-polarised. B-
modes can be produced by two different processes, either gravitational lensing of E-modes
along the line-of-sight, or primordial gravitational waves during cosmic inflation. If the first
type of B-modes has been observed since 2013 with SPT, the latter is still to be observed,
and highly anticipated as it could confirm cosmic inflation. The difficulty of observing this
signal comes from strong foregrounds and weak amplitude: if temperature anisotropies at
the quadrupole have an amplitude of about 10−5, E-modes and B-modes anisotropies are
respectively about 10−6 and 10−7/8 (Planck Collaboration et al. 2016c).

1.3 A quick review of 21cm cosmology

21cm cosmology is based on the observation of the redshifted 21cm line of neutral hy-
drogen, corresponding to the spin-flip transition of an electron between the two hyperfine
levels of the atom’s ground state. The astrophysical signal was first observed by Ewen &
Purcell (1951), who noticed a peak in the galactic spectrum at a frequency of 1420.405 MHz

or 21.106 cm, a result corroborated by Dutch astronomers Muller & Oort (1951). Today,
the emission frequency is measured in laboratories using the maser (Microwave Ampli-
fication by the Stimulated Emission of Radiation) technique, as less uncertainty on the
non-redshifted transition will allow a better determination of the redshift of an observed
astrophysical source. The 21cm transition is a forbidden transition with Einstein coeffi-
cient A = 2.85× 10−15 s−1, corresponding to a mean lifetime of the excited state of about
∼ 10 Gy for spontaneous emission. However, because hydrogen atoms represent about 75%

of the intergalactic gas, the signal is strong enough on cosmological scales to be observed
and used as an astrophysical probe. As a tracer of neutral hydrogen, the 21cm signal
is naturally a very interesting observable for the Epoch of Reionisation and, for the last
decades, many radio astronomy experiments have been designed to detect this signal, with
no confirmed detection to this day. Bowman et al. (2018) observed a flattened absorption
profile in the sky-averaged radio spectrum, centred at a frequency of 78 MHz and with an

6B-modes do not correlate with E-modes or temperature because of their handedness.
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amplitude of 0.5 K which they claim to be the first detection of the 21cm signal from the
first stars. However, this result needs confirmation. Because of redshift, a photon emitted
with a wavelength of 21cm about 100 million years after the Big Bang will reach us today
with a frequency of 30 to 200 MHz. This frequency range is targeted by the new gen-
eration of radio interferometers, such as the Murchison Widefield Array (MWA, (Tingay
et al. 2013)) and the Precision Array to Probe the Epoch of Reionization (PAPER) in
Australia (Parsons et al. 2010), the low frequency array (LOFAR) in the Netherlands (van
Haarlem et al. 2013b), the Square Kilometer Array (SKA) in South Africa and Australia
(Koopmans et al. 2015) and the Hydrogen Epoch of Reionization Array (HERA) in South
Africa (DeBoer et al. 2017).

1.3.1 The physics of the 21cm signal

The 21cm line of the neutral hydrogen atom corresponds to a transition from an excited
state 1 where the spins of the electron and the proton are parallel to a lower energy state
0 where the spins are antiparallel. The spin temperature TS is defined via the ratio of the
populations n of the two energy levels considered:

n1

n0
=
g1

g0
exp

[
−T21

TS

]
, (1.10)

where g1 and g0 are the statistical weights of both energy levels – respectively about
3 and 1. The 21cm emission temperature T21 = hν10/kB = 0.0681 K (with kB is the
Boltzmann constant, h the Planck constant and ν21 the 21cm rest-frame frequency) is very
small compared to the CMB temperature and the spin temperature. We will then write
n1/n0 ' 3 (1− T21/TS). This equation combined with the radiative transfer equation will
give the intensity Iν of the 21cm signal emerging from a clump of neutral hydrogen. In
radio astronomy, the signal intensity is often expressed in terms of a brightness temperature
Tb such that, in the Rayleigh-Jeans approximation for low frequencies hν � kBT (Rybicki
& Lightman 1986):

Tb(ν) ' Iνc
2

2kBν2
. (1.11)

Take the radiative transfer equation for a neutral cloud, considering both absorption and
emission:

dIν
dτν

= Sν − Iν , (1.12)

where τν is the optical depth and Sν the source function. We have emission at the bright-
ness temperature and absorption of the background radiation, taken to be the CMB7, so
that, in the Rayleigh-Jeans approximation, combining Eqs. 1.11 and 1.12 gives (Rybicki &
Lightman 1986):

dTb
dτν

= −Tb + TCMB. (1.13)

7Because its temperature fluctuates with a relative amplitude of 10−5, the CMB can be considered as
a background radiation.
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This can be solved easily to find the brightness temperature as measured by a telescope
on Earth8:

Tb(ν) (1 + z) = TS

(
1− e−τν

)
+ TCMBe−τν ' (TS − TCMB) τν , (1.14)

where the spin temperature is actually the brightness temperature in the cloud itself:
TS = Tb(τν = 0) (Zaroubi 2013). We now need an expression of the optical depth τν . It is
defined as

τν =

∫
hν

4π
φ(ν) (n1B10 − n0B01) dl, (1.15)

for φ(ν) the line profile (or broadening function) and B01 and B10 the stimulated Einstein
coefficients for the 21cm transition. From this definition, it is possible to derive a simpler
expression for the brightness temperature as measured today:

δTb = 27xHI
(1 + δb)

Ωbh
2

0.023

√
0.15

Ωmh2

√
1 + z

10

(
1− TCMB

TS

)
H(z)

∂rvr +H(z)
mK, (1.16)

where xHI
is the neutral fraction of hydrogen, δb the overdensity of baryons, ∂rvr the

comoving gradient of the line of sight component of the comoving velocity. This result was
first derived by Field (1958), but here it is updated to more recent values of cosmological
parameters (Pritchard & Loeb 2012; Zaroubi 2013). We often make the approximation
∂rvr � H(z), so we can write:

δTb = 27xHI
(1 + δb)

Ωbh
2

0.023

√
0.15

Ωmh2

√
1 + z

10

(
1− TCMB

TS

)
mK. (1.17)

If we consider only the global signal, i.e. if we neglect local baryon fluctuations, we can take
δb ∼ 0 and xHI

and TS drive the evolution of the signal. If the background temperature
is equal to the spin temperature, there is no signal. If δTb < 0, that is if TS < TCMB, the
signal will be seen in absorption. On the contrary, if δTb > 0, or TS > TCMB, the signal
is seen in emission. Looking at redshifts when X-rays have heated the gas sufficiently for
the spin temperature to be much larger than the CMB temperature, the equation further
simplifies to

δTb = 27xHI (1 + δb)
Ωbh

2

0.023

√
0.15

Ωmh2

√
1 + z

10
mK, (1.18)

which will be used throughout this work, as we are mostly interested in the redshift range
5 < z < 15. The evolution of the different temperatures involved in the Tb derivation will
determine the evolution of the signal with time.

Apart from the Epoch of Reionisation, 21cm observations can give us insights about
many other aspects of astrophysics and cosmology, like improving our measurements of
cosmological parameters, testing models of inflation or learning about the properties of

8The (1 + z) term is added to the basic solution of the differential equation to account for the effect of
redshift.

16



1.3. A quick review of 21cm cosmology

Figure 1.3: Evolution of the different temperature scales relevant to the 21cm brightness tem-
perature with redshift.

the first galaxies (See Pritchard & Loeb 2012, for a complete review of the cosmological
implications of measurements of the global 21cm signal). For about 20 years now, radio
telescopes, from simple dipoles to hundreds of thousands of dipoles combined into a wide
interferometer, have been designed in the hope to detect this signal, extremely faint and,
therefore, difficult to isolate from foregrounds. Low frequency radio-telescopes such as LO-
FAR, MWA, HERA and the SKA target observations of the 21cm brightness temperature
fluctuations to learn about the Epoch of Reionisation, through two different approaches:
using the sky-averaged signal to construct the 21cm power spectrum, or looking at spatial
fluctuations to map the ionisation level of the IGM at different times.

1.3.2 Different types of observations

Global 21cm signal and power spectrum

In order to obtain the sky-averaged 21cm signal, an interferometer such as a simple
dipole is used to probe a sufficiently large portion of the sky for spatial fluctuations to
average away. The output is the evolution of the differential brightness temperature with
frequency (or redshift) δTb(z), which depends on the spin temperature and the CMB
temperature. Their evolution is illustrated in Fig. 1.3. Theoretical predictions find than on
average, the intensity of this signal varies between∼ −100 mK at minimum and∼ 30 mK at
maximum (Pritchard & Loeb 2012; Koopmans et al. 2015), following the global evolution of
the Universe: First, from recombination to z ∼ 200, Compton scattering of CMB photons
on the residual free electrons and a collisional coupling due to the high density of the gas
keeps atoms and photons in thermal equilibrium, so that no 21cm can be detected. During
the Dark Ages, i.e. until about z ' 200, the gas cools down adiabatically, as a function of
(1 + z)2, eventually becoming cooler that the CMB. Collisions keep the spin temperature
coupled to the gas until z ∼ 100, and we see a signal in absorption. As the Universe
expands, collisions become rare and radiative coupling to the CMB sets TS = TCMB. The
signal vanishes. During Cosmic Dawn, the first sources start emitting Lyα and X-ray
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photons and heat up the gas. The spin temperature is expected to be coupled to the cold
gas so that, at first, TS ∼ Tgas < TCMB. The gas keeps heating up until exceeding the CMB
temperature and we see signal in emission. As heating continues, the CMB temperature
becomes negligible compared to the spin temperature, and the last term of equation 1.17
can be dropped. The subsequent 21cm analysis is then greatly simplified. At this time, we
expect ionised regions to be significant so that ionisation fluctuations start to dominate the
21cm signal (Furlanetto et al. 2004b). At the end of reionisation (z ≤ 6), any remaining
signal comes from leftover neutral islands.

There is a lot of uncertainties in the exact chronology of these sequences, and they most
probably largely overlapped. Therefore observations, such as the 2018 claimed detection by
EDGES (Bowman et al. 2018), which has an absorption amplitude two times larger than
expected (Pritchard & Loeb 2012), need to be compared to theoretical predictions with
caution. This large amplitude could indeed mean either that the background temperature
is hotter than expected at that time, or that the IGM is cooler than expected, that is that
first stars formed much earlier than previously thought.

21cm intensity mapping

Another interesting object is the spatial fluctuations of the 21cm brightness temper-
ature. They can stem from dark matter or ionisation inhomogeneities and are extremely
interesting for the study of the early Universe in general, and the Epoch of Reionisation
in particular. One of the methods considered to analyse potential observations is called
intensity mapping, i.e. mapping the large-scale fluctuations of the 21cm signal using the
integrated radio emission from unresolved gas clouds rather than individual sources. From
this we can draw maps of the ionised IGM at different times: a cell with zero signal will
correspond to an ionised region, while non-zero signal stems from a combination of den-
sity fluctuations and the presence of neutral hydrogen. Interferometers are often easier to
calibrate and detect weaker galactic foreground emissions than global signal experiments
(Koopmans et al. 2015). However, fluctuations have a much smaller amplitude than the
global signal, and observing them requires long integrating times (∼ 1000 h). They addi-
tionally require to be deployed on very large areas to reach sufficient signal-to-noise ratio
and resolution: in order to get a signal-to-noise ratio lower than 1, collecting areas of the
order of 10 times the collecting area of LOFAR are required. This is what motivated the
SKA project, whose antennas will cover 419 000 m2 in Australia and 33 000 m2 in South
Africa, whereas LOFAR covers 52 000 m2.

1.3.3 Interferometry basics

We now cover the basics of how to observe the 21cm signal with an interferometer.
The signal is measured for pairs of antennae separated by a baseline D. The measurement
is made in terms of a complex visibility V (u, v), where u and v are the projection of the
baseline in wavelength units on the plane perpendicular to the vector s0 pointing to the
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phase reference position, the centre of the field to be imaged. In Eq. (1.18), the brightness
temperature depends on the position in the sky r where the signal is observed and on
the redshift z through xH i(r, z) and δb(r, z). We assume the instrument to have narrow
band-pass filters allowing to probe the intensity of the 21cm signal at exactly ν rather than
a frequency band centred on ν. If the interferometer probes a sufficiently small region of
the sky compared to the beam width of the antennae, we can approximate this region
by a flat plane. Then the source intensity distribution is a function of two real spatial
variables (l,m) and the van-Cittert theorem tells us that the complex visibility is the 2D
inverse Fourier transform of the intensity Iν , corrected by the normalised average effective
collecting area A(l,m) of the two antennae (Thompson et al. 2017):

A(l,m) Iν(l,m) =
√

1− l2 −m2

∫∫
V (u, v) e2iπ (ul+vm) dudv, (1.19)

that we can re-write as
V (u, v) = Â?(u, v) ∗ Îν(u, v) (1.20)

where ∗ denotes a convolution, Â and Îν are respectively the 2D Fourier transforms of A
and Iν and we define A? = A/

√
1− l2 −m2. Because A(l,m) is a measurable instrumental

characteristic, if we know our instrument sufficiently well, we can deconvolve the measured
complex visibilities by Â? and obtain, after correcting for the different pre-factors, the x̂(k)

terms.

The 21cm signal from reionisation suffer from many observational obstacles one needs
to overcome to make the first observations. For example, the limited number of modes
accessible in practice (see Fig. 4.3) will make reconstructing real-space images from (u,v)
observations challenging. Low instrument resolution and the increase of thermal noise with
frequency also pose the risk of washing out the cosmological signal from observations, and
so do the aforementioned foregrounds. One must then develop data analysis tools which
are robust to these different effects, and such a robustness will be investigated in Chapter 4.

***

In this chapter, we have introduced basic concepts of cosmology in general, and CMB
and 21cm cosmology in particular, as foundations for the methods described in the next
chapters. We have also introduced the Epoch of Reionisation, and the questions associated
with it, such as the nature of its sources. In this work, we will mostly focus on CMB and
21cm data. However, one must keep in mind that other types of observations are currently
available to constrain reionisation, and that simulations are also a useful tool to learn about
the physics of scales not reachable today. Ideally, all these sources of information will be
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used together to give a global and comprehensive history of reionisation.
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Chapter 2

Large-scale reionisation and global history

The Epoch of Reionisation is a global process, part of the history of the Universe as a
whole, as it describes the evolution of the total ionisation level of the intergalactic medium
(IGM) through times. In this perspective, currently available observations give global
constraints, either on the duration of the process, its rough endpoint zend or its midpoint
zre, that is when 50% of the IGM is ionised. These can be deduced from various sources,
including looking at the interaction of CMB photons with free electrons stemming from
reionisation; at the star formation history of the Universe, if galaxies are assumed to be
the primary source of IGM ionisation; or at the absorption of Lyman-α galaxies or quasars
radiation by surrounding neutral hydrogen. In Gorce et al. (2018), I showed that although
these constraints come from very different sources and do not give consistent constraints
when considered individually, when used simultaneously, they lead to a coherent storyline.
In this asymmetric scenario, ionisation starts with the first sources of light forming around
redshift z ∼ 15, i.e. 300 Myr after the Big Bang, and lasts for about 1 Gyr to end before
z = 5.

In this chapter, I first describe the different observational methods currently used to
improve our knowledge of reionisation history in this work: the CMB will help set the
value of the duration and midpoint of reionisation; observations of Lyman-α forests and
Gunn-Peterson troughs in quasar spectra will tell use about the population of H i regions
towards the end of the process; and galaxy densities about the available photon budget
throughout the reionisation epoch. Secondly, I perform an analysis similar to the one of
Gorce et al. (2018), but updated with new measurements.
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2.1 Integrated constraints from the CMB

From the launch of the Cosmic Background Explorer (COBE) in 1989 to the publication
of the latest results of the Planck satellite in 2018 (Planck Collaboration et al. 2018), the
study of the Cosmic Microwave Background (CMB) has triggered a tremendous amount of
research. Along the line-of-sight, the primordial CMB signal is largely modified by the in-
teraction of CMB photons with structures formed at later times. Notably, their interaction
with free electrons in the IGM modifies the shape and amplitude of the measured CMB
temperature and polarisation power spectra. In Sec. 1.2, we have briefly described how
temperature and polarisation anisotropies can be measured in the CMB. In this section,
we will focus on how these anisotropies can tell us about the EoR, firstly on large scales,
through measurements of the Thomson optical depth, and secondly on smalle scales, via
the kinetic Sunyaev-Zel’dovich effect.

2.1.1 The Thomson optical depth

The analysis of CMB observations include the estimate of the asymptotic value of the
Thomson optical depth τ , representing the fraction of photons scattered along the line-of-
sight by free electrons. By construction, it is a direct tracer of the global ionisation rate
of the IGM xe(z):

τ(z) = c 〈nH〉 σT

∫ z

0

xe(z
′)

H(z′)
(1 + z′)2 dz′, (2.1)

where c the speed of light in vacuum, σT the cross-section of Thomson scattering, 〈nH〉 the
mean hydrogen number density and H(z) the Hubble parameter. In practice, the value of
τ will be sensitive to baryon overdensities in the sky, and one should consider xe(1 + δb)

with δb the local baryon overdensity in Eq. (2.1) rather than xe alone. However, Planck
Collaboration et al. (2016d) find this term to have only a weak influence on integrated
results, so that we choose to keep the approximation of Eq. (2.1).

Figure 2.1 shows how the CMB TT temperature and EE polarisation power spectra,
as well as the TE cross-spectrum, vary with the value of the Thomson optical depth. The
temperature power spectrum is not very sensitive to the exact value of τ , whereas both the
amplitude and shape of the EE and TE power spectra on large scales (low `) are strongly
impacted. In practice, the EE power spectrum alone is sufficient to discriminate different
values of the optical depth from CMB polarisation measurements: its excess power around
` = 4−5 is referred to as the reionisation bump. This bump occurs on large scales because
CMB photons stream freely after decoupling on the LSS until they are scattered off newly
formed free electrons (Kaplan et al. 2003). To improve constraints on τ , Planck large-
scale observations can be combined with high-` data from SPT and ACT. When using
Planck EE low-` (hereafter called lollipop for low-` Planck polarised likelihood) and TT
2015 power spectra (Planck Collaboration et al. 2016b) and considering an instantaneous
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Figure 2.1: Theoretical temperature and polarisation CMB power spectra (respectively, TT , EE
and TE) for different values of the Thomson optical depth τ computed from a redshift-symmetric
parametrisation of the evolution of the IGM ionised fraction.

reionisation, Planck Collaboration et al. (2016d) find

τ = 0.058+0.012
−0.012 (PlanckTT + lollipop), (2.2)

which was the value used in Gorce et al. (2018). Adding constraints from SPT (George
et al. 2015) and ACT (Das et al. 2014), i.e. very high-` TT spectrum (hereafter called
VHL), reduces the value to

τ = 0.054+0.012
−0.013 (PlanckTT + lollipop + VHL). (2.3)

This result is close to the latest Planck results which find τ = 0.054 ± 0.007 (Planck
Collaboration et al. 2018). The left panel of Fig. 2.2 shows the evolution of measured τ
values, from the first results of WMAP to the final results of Planck.

In CMB data analysis, the Thomson optical depth is one of the many parameters
sampled via a Monte-Carlo Markov Chain (MCMC) algorithm, such as CosmoMC1 (Lewis
& Bridle 2002), to fit a theoretical expression of the temperature and polarisation power
spectra to data. Theoretical predictions are computed with a Boltzmann integrator such
as CAMB2 (Lewis et al. 2000; Howlett et al. 2012). Among the many parameters considered,
some are related to cosmology – such as ΩΛ and h, and some to observations, such as
instrument systematics or foreground amplitudes (see next Section). Eq. (2.1) shows that
the derivation of τ requires a model for the evolution of the IGM ionised fraction with
redshift xe(z). The model commonly used, notably in CAMB, is a step-like transition,
illustrated on the right panel of Fig. 2.2 as the dash-dotted line and given by:

xe(z) =
fH

2

[
1 + tanh

(
yre − y(z)

δy(z)

)]
. (2.4)

Here, y(z) = (1 + z)
3
2 and, at the midpoint zre, yre = y (z = zre). The parameter δy =

3
2 (1 + z)

1
2 δz is derived from δz, which characterises the duration of reionisation and is

1CosmoMC is available at https://cosmologist.info/cosmomc/.
2CAMB is available at https://camb.info.
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Figure 2.2: Left panel: Evolution of the τ measurements given by successive all-sky CMB exper-
iments. Right panel: Corresponding ionisation histories allowed by CMB constraints, compared
to direct xe measurements, detailed in Sec. 2.2.2. P16 corresponds to Planck Collaboration et al.
(2016d).

often set to δz = 0.5. fH is the number of free electrons per hydrogen nucleus. If one
assumes that helium is doubly ionised at z ≤ 4, then fH = 1 + ηYp/4Xp with η = 2 for
z ≤ 4 and η = 1 for z > 4. Following results from simulations and observations, Douspis
et al. (2015) recently suggested the more physical, redshift-asymmetric parameterisation

xe(z) =

 fH for z < zend,

fH

(
zearly−z

zearly−zend

)α
for z > zend,

(2.5)

shown as the dashed line on the right panel of Fig. 2.2. Here, zearly corresponds to the
redshift around which the first emitting sources form, and at which xe(z) is matched to the
ionised fraction left from recombination ∼ 10−4. In Planck Collaboration et al. (2016d),
it is taken to be zearly = 20, as the authors find that varying the value between 20 and 30
does not change the results significantly.

Although the EE spectrum allows to distinguish between different values of the Thom-
son optical depth, it cannot discriminate between different reionisation scenarios yielding
the same value of τ , for example, the two parameterisations mentioned above. Additionally,
as an integrated measurement of xe(z), it gives very weak constraints on the reionisation
history, as illustrated on the right panel of Fig. 2.2. On the figure, we show the 95%

confidence intervals resulting from fitting an asymmetric reionisation history (Eq. 2.5) to
the value of τ derived from WMAP (Hinshaw et al. 2013), Planck 2016 (Planck Collabo-
ration et al. 2016d) and Planck 2018 (Planck Collaboration et al. 2018) results. If zre is
well constrained, only an upper limit can be obtained without prior on the endpoint of
the EoR, hence the slightly distorted shape of xe(z) on the figure. For τ = 0.054 ± 0.07

(Planck Collaboration et al. 2018), we find zre = 6.4 ± 0.8 and zend < 6.9 at the 95%

confidence level. We see that the direct effect of successively lower τ values, from WMAP
to Planck, is to push reionisation to earlier times and speed up the overall process. We
will therefore need to supplement τ measurements with other types of observations, such
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as the amplitude of the kSZ effect, to improve these constraints.

2.1.2 The kinetic Sunyaev-Zel’dovich effect

The Sunyaev-Zel’dovich effect (SZ effect) is a distortion of the CMB spectral energy
distribution due to inverse Compton scattering of CMB photons off high energy electrons.
Rather than losing energy after the collision as they do in Thomson scattering, the photons
gain energy from the encounter (Sunyaev & Zeldovich 1970; Zeldovich & Sunyaev 1969).
When the energy of the scattered electrons comes from a high temperature, the process is
called thermal SZ (tSZ) effect. Such electrons can be found in large clouds of hot ionised
gas in galaxy clusters. Depending on the frequency of the incoming photon, the energy
transfer will differ and the CMB temperature power spectrum will be distorted. When
the energy of the scattered electrons comes from a proper velocity, the process is called
kinetic SZ (kSZ) effect, illustrated in Fig. 2.3. Such electrons include the ones contained
in intra-cluster plasma, which have the same proper motion relative to the CMB than
their host cluster. The photons will get blue- or redshifted depending on the direction
of this proper motion. Contrary to the tSZ effect, the kSZ effect will add power to the
CMB electromagnetic spectrum, mostly on small scales (` > 1000, a few arcminutes), but
not impact its shape. One must then remove the thermal distortion due to tSZ from the
spectrum before hoping to measure the amplitude of the kSZ effect.

Figure 2.3: Illustration of CMB photons scattering off high-energy electrons, leading to kSZ
effect.

The kSZ effect is often split between a homogeneous component, coming from the
Doppler shift of photons on free electrons homogeneously distributed throughout the IGM
once reionisation is over; and a patchy one, when CMB photons scatter off isolated ionised
bubbles with a proper motion around their source along the otherwise neutral line-of-sight
(Aghanim et al. 1996). The kSZ effect is thus a natural tracer of reionisation history and
morphology. The power spectra of the two components have a distinctive shape, illustrated
on Fig. 2.4. When extracting the kSZ signal from CMB observations, most authors consider
templates for both power spectra and fit their respective amplitudes at ` = 3000, Ah/pkSZ, to
the measured temperature power spectrum, along with various other foregrounds (Dunkley
et al. 2011; Reichardt et al. 2012; Planck Collaboration et al. 2018; Reichardt et al. 2020).
Shaw et al. (2012) and Battaglia et al. (2013) calibrate direct relations between cosmological
and reionisation parameters and Ah/pkSZ on simulations, which can then be used to constrain
the EoR (George et al. 2015; Planck Collaboration et al. 2016d; Reichardt et al. 2020).
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Figure 2.4: Theoretical kSZ angular power spectrum (following results in Gorce et al. 2020)
compared to the theoretical CMB temperature power spectrum derived with CAMB (Lewis & Bridle
2002).

With the best-fit cosmology obtained with Planck 2015 data (Planck Collaboration et al.
2016b), the relations write:

Ah
kSZ =

(
2.02 µK2

)
×
( τ

0.076

)0.44
,

Ap
kSZ =

(
2.03 µK2

)
×
[

1 + zre

11
− 0.12

](
z0.25 − z0.75

1.05

)0.51

,

(2.6)

where z0.25 and z0.75 are the redshifts at which xe = 0.25 and xe = 0.75, respectively.
For the patchy amplitude, Battaglia et al. (2013) use large dark matter simulations (L &
2 Gpc/h), post-processed to include reionisation, to construct light-cones of the kSZ signal
and estimate its patchy power spectrum. Very large box sizes are necessary to capture
the large-scale velocity flows contributing to the kSZ power spectrum at high-` and results
based on insufficiently large simulations will significantly underestimate the power at these
scales. Shaw et al. (2012) find that a simulation box of side length 100 Mpc/h would miss
60% of the kSZ power at ` = 3000. For their own work, Shaw et al. (2012) therefore choose
a completely different approach: they use hydrodynamical simulations to map the gas
density to the dark matter power spectrum and later include this bias in a purely analytical
derivation of the kSZ angular power spectrum. Because the non-linear dark matter power
spectrum can be computed using the HALOFIT procedure (Smith et al. 2003) and because
the velocity modes can be estimated fully from linear theory under a few assumptions, they
avoid the limitations caused by simulation resolution and size mentioned above. With this
method, the authors find the above power-law, giving Ah

kSZ as a function of zre and τ . For
τ = 0.058 (Planck Collaboration et al. 2016d) and a step-like reionisation, the scalings give
Ah

kSZ = 1.79 µK2 and Ap
kSZ = 1.01 µK2.

However, Park et al. (2013) and Gorce et al. (2020) show that these scalings are largely
dependent on the simulations they were calibrated on, and therefore cannot be used as a
universal formula to constrain reionisation. Notably, an asymmetric reionisation history
xe(z) naturally deviates from this relation. As will be demonstrated in Sec. 3.2, global
parameters such as ∆z and zre are not sufficient to accurately describe the patchy kSZ
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signal, and one needs to take the physics of reionisation into account to get an accurate
estimation of not only the shape, but also the amplitude of the power spectrum. A method
is proposed to answer these problems in Sec. 3.2.

Figure 2.5: 2D probability distribution of parameters τ and AkSZ using Planck 2015 and SPT
2015 data. Contours correspond to the 1- and 2σ confidence intervals.

Fig. 2.4 shows that the primordial power largely dominates kSZ at the scales probed
by Planck. On the contrary, foregrounds, including kSZ, dominate on small scales (` >
2000), where the efforts of ground-based telescopes such as the South Pole Telescope (SPT)
and the Atacama Cosmology Telescope (ACT) are focused. Using ACT observations at
148 GHz, Dunkley et al. (2011) find DSZ

3000 ≡ ` (`+ 1)CSZ
`=3000/2π = 6.8± 2.9 µK2 at 68%

confidence level (C.L.) for the sum of thermal and kinetic SZ. In a first analysis, Reichardt
et al. (2012) derive from the three frequency bands used by SPT DkSZ

3000 < 2.8 µK2 (95%

C.L.). This limit is however significantly loosened when anti-correlations between the
thermal SZ effect (tSZ) and the Cosmic Infrared Background (CIB) are considered. By
combining SPT results with large-scale CMB polarisation measurements, Zahn et al. (2012)
are subsequently able to constrain the amplitude of the patchy kSZ by setting an upper
limit Dpatchy

3000 ≤ 2.1 µK2 (95% C.L.) translated into an upper limit on the duration of
reionisation ∆z ≡ z (xe = 0.20) − z (xe = 0.99) ≤ 4.4 (95% C.L.), again largely loosened
when CIB×tSZ correlations are considered. More recently, adding new data from SPTpol3

to their previous results (George et al. 2015), Reichardt et al. (2020) claim the first 3σ

detection of the kSZ power spectrum with an amplitude DkSZ3000 = 3.0± 1.0 µK2, translated
into a confidence interval on the patchy amplitude DpkSZ

3000 = 1.1+1.0
−0.7 µK2 using the models of

homogeneous signal given in Shaw et al. (2012). These results are further pushed using the
scaling relations derived by Battaglia et al. (2013) to obtain an upper limit on the duration
of reionisation ∆z < 4.1. Finally, adding SPT 2015 and ACT very high-` (VHL) data to
Planck EE low-` and TT power spectra and considering an instantaneous reionisation of
duration δz = 0.5, (Planck Collaboration et al. 2016d) find AkSZ < 2.9 µK2 (95% CL) and
τ = 0.054± 0.012. Their results are reproduced using CosmoMC and the publicly available

3The second camera deployed on SPT, polarisation sensitive.
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data to derive the joint probability distribution of τ and AkSZ presented on the left panel
Fig. 2.5 for lollipop + PlanckTT + VHL.

Observations of CMB anisotropies can therefore constrain two parameters directly re-
lated to the Epoch of Reionisation, the Thomson optical depth and the amplitude of the
kinetic Sunyaev-Zel’dovich effect. However, because these two parameters can at the mo-
ment only give general information about the reionisation process, such as its duration or
midpoint redshift. Additionally, because the constraints obtained from CMB data are very
coarse (see the error bars on Fig. 2.2), it will be useful to combine them with astrophysical
data from galaxy observations.

2.2 Astrophysical data for reionisation

Reionisation is not only a cosmological process: astrophysical information such as the
number of light sources and their ionising properties tells us about the radiation available
to reionise the IGM at a given time. Additionally, the presence of neutral bubbles around
bright sources such as quasi-stellar objects (QSO) or gamma-ray bursts (GRB) can leave
imprints on their spectrum, allowing us to estimate the amount of neutral hydrogen left
around them, and to generalise to the whole IGM at this time. To see how this unfolds,
let us look at the equations behind the reionisation process as a whole.

Under the assumption that star-forming galaxies led the reionisation process, their
density measured at a given redshift can give a direct estimate of the photon budget for
reionisation then. The comoving ionisation rate ṅion(z) is derived from the number of
photons produced by star-forming galaxies per unit time and unit volume, keeping only
the ones with sufficient energy to ionise a neutral atom of hydrogen – those below the
Lyman-α limit and able to escape their host galaxy to reach the IGM. This writes

ṅion(z) =

∫ Mlim

−∞
φ(M, z) fesc(M, z) ξion(M, z) dM, (2.7)

whereM is the magnitude of the source and φ(M, z) the luminosity function or the number
of galaxies of magnitudeM at a given redshift. The quantity of Lyman continuum photons
produced per second by a galaxy of magnitude M is given by ξion. Often, the value used is
averaged per unit star formation rate density. Here, we use a value derived from rest-frame
UV spectral energy distribution of z ∼ 7 − 8 galaxies, so that ξion = 1053.14 s−1M−1

� yr

(Robertson et al. 2015). fesc is the fraction of photons escaping their host galaxy. An effec-
tive value of 20%, averaged over stochasticity, halo-mass dependence, redshift and sources
is often used as it is compatible with fiducial reionisation scenarios and data (Robertson
et al. 2015; Gorce et al. 2018, and see Sec. 2.3). This averaged value is however difficult
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to compare with observations of single galaxies or haloes, which give much lower values:
Steidel et al. (2001) and Iwata et al. (2009) estimate the escape fraction of some z ∼ 3

galaxies to be & 1%. Similarly, Gnedin et al. (2008) and Ma et al. (2015) find fesc ≤ 0.05.
Looking at the spectral energy distributions of high-redshift galaxies, Dunlop et al. (2013)
find fesc ≈ 0.1− 0.2. Averaged values can be derived from simulations but are still highly
uncertain: According to Finkelstein et al. (2015) and to agree with Lyman-α forests mea-
surements (Bolton & Haehnelt 2007), fesc should not be higher than 0.13. A simulation
from Yajima et al. (2014), on which assumptions of Robertson et al. (2015) are based,
shows that, amidst all types of photons produced in star-forming galaxies, the escape frac-
tion of ionising photons is the only one which seems to depend neither on the redshift
nor on the galaxy properties; it keeps a constant value of 0.2 with time. In the EAGLE
simulation, Schaye et al. (2014) and Crain et al. (2015) find fesc ≤ 0.05 − 0.20 at z > 6.
Similarly, Wise & Cen (2009) obtain fesc ∼ 0.5 for galaxies with halo masses lower than
108 M�. For now, we choose to fix fesc = 0.20. In Sec. 4.2, we will discuss how this choice
can impact our results.

From the ionising emissivity, we can deduce the redshift-evolution of the IGM ionisation
level xe(z) given in Eq. (1.7), where the evolution of xe depends on two contributions: a
source term, proportional to ṅion, and a sink term related to competing recombinations.
The mean hydrogen number density is defined by 〈nH〉 ≡ XpΩbρc/mH, with trec the IGM
recombination defined in Eq. (1.6). Here, Xp and Yp are the primordial mass fractions
of Hydrogen and Helium respectively; αB(T ) is the case B recombination coefficient at
a fiducial IGM temperature of T = 20 000 K, taken as the mean temperature around a
newly ionised atom. This value is consistent with measurements at z ∼ 2− 4 (Lidz et al.
2010) but has been estimated to T . 104 K at z ∼ 5 − 6 (Becker et al. 2011; Bolton
et al. 2012). It fluctuates by a factor between 1 and 2, depending on the spectrum of the
sources and on the time passed since reionisation (Hui & Haiman 2003). Yet, αB(T ) ≈
2.6×10−13 T−0.76

4 cm3 s−1 with T4 = T/104 K is a weak function of T so that variations of a
factor of a few in T will not have a significant impact on trec (Osterbrock 1989). Rather than
case A, we consider case B recombinations in order to exclude recombinations to the ground
state: we assume that ionisations and recombinations are distributed uniformly throughout
the IGM, so that each regenerated photon soon encounters another atom to ionise (Loeb &
Furlanetto 2013). The clumping factor CH ii describes how ions are distributed throughout
the IGM. CH ii and trec are inversely proportional as the more the matter is aggregated in
clumps, the easier it is for ionised atoms to recombine in these very same clumps. We will
discuss how we can assess its value, and the impact it has on reionisation scenarios, in Sec.
4.2. For now, we choose the fiducial value CH ii = 3 (Robertson et al. 2015; Gorce et al.
2018).

If we can measure the values of some of the parameters defined in the previous equa-
tions, we can therefore constrain the reionisation process as a whole, looking at the evolu-
tion of xe(z) with time.
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Figure 2.6: UV luminosity functions derived from the results of Bouwens et al. (2015b).

2.2.1 Star formation history

First, we can use star formation history to learn about the photon budget of reionisation
ṅion mentioned earlier, if we assume that star-forming galaxies are the main contributors
to hydrogen reionisation.

Galaxy luminosity functions

The luminosity function of star-forming galaxies is inferred from large and deep galaxy
surveys such as the various Hubble fields (Bouwens et al. 2015b; Ishigaki et al. 2015, 2018).
On Fig. 2.6, we show the UV luminosity functions measured by Bouwens et al. (2015b).
These data points are often fitted by the Schechter parameters φ?, L? (or M?) and α such
that

φ(L) dL = φ?
(
L

L?

)α
e−L/L?

dL

L?
, (2.8)

where L is the luminosity. This can be translated in terms of magnitude using M =

M� − 2.5 log(L/L�) to give

φ(M) dM = 0.4φ? ln 10
[
10−0.4(M−M?)

]α+1
exp

[
−10−0.4(M−M?)

]
. (2.9)

Because dim objects are more common than very bright galaxies, Schechter functions de-
crease as a power-law of slope α with decreasing magnitude (and so increasing luminosities)
until reaching a cut-off at L = L?. Some works suggest more elaborate parameterisations
such as double power-laws (Bowler et al. 2020), but because we care about the integrated
value of this function for reionisation, the precise shape of the function will not impact
results by more than 0.1%. Fitting Eq. (2.8) to data points obtained with the Hubble
telescope Legacy Fields, Bouwens et al. (2015b) find the functions represented as the solid
lines on Fig. 2.6, with associated error bars shown as a shaded area.
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From luminosity to mass

Integrating the UV luminosity function on a range of magnitudes at a given redshift, one
can derive the UV luminosity density at this time ρUV (z), expressed in ergs s−1Hz−1Mpc−3

i.e. unit energy per unit volume:

ρUV =

∫ Mlim

−∞
φ(MUV ) dMUV . (2.10)

However, as seen on Fig. 2.6, current observations hardly reach galaxies fainter than
M = −15. It is therefore necessary to extrapolate φ(M) to fainter magnitudes and choose a
reasonable upper limitMlim to the integral in Eq. (2.10). This problem will be investigated
in more details in Sec. 4.2; for now, we choose the conservative value of Mlim = −13 as
Robertson et al. (2013) showed that it was required to reionise the IGM by z = 6. We will
discuss this choice in Sec. 4.2.

From ρUV , one can derive the star formation rate density ρSFR, i.e. the stellar mass
produced per unit time and volume at a given redshift. In general, when integrating over
stellar population to find the overall stellar mass, low-mass stars, young and with a broad
spectrum, dominate. However, at high redshift, the luminosity is dominated by the UV
emission from massive stars (Madau & Dickinson 2014). Because these stars have short
lifetimes, the UV emission fades quickly and it gives a good estimate of the stellar mass.
Madau et al. (1997) give the conversion:

ρUV (z) = κ ρSFR(z), (2.11)

with κ = 8.0×1027 ergs s−1 Hz−1 and ρSFR expressed in solar masses per year. The emission
properties of galaxies evolve with redshift, namely because of their metallicity, and it is
unclear if κ should be redshift-independent, but the slow evolution of κ with redshift and
metallicity observed by Madau & Dickinson (2014) gives grounds to this choice. The value
of κ given above is the one used by Bouwens et al. (2015a), and a trade-off between the
results of Kennicutt (1998) and of Madau & Dickinson (2014), which differ by about 20%.
An implementation of the procedure of using fits on galaxy luminosity functions to derive
the star formation rate density is available on my GitHub page (link).

A simplified version of Eq. (2.7), where fesc and ξion are averaged over galaxy properties
and redshift, relates the ionising emissivity to the UV luminosity density:

ṅion ' fesc ξion

∫ Mlim

−∞
φ(MUV) dMUV = fesc ξionρUV . (2.12)

Therefore measurements of the galaxy luminosity functions can directly constrain the global
history of reionisation, by constraining its photon budget. Additionally, at low redshift
(z ≤ 6), ṅion(z) can be estimated using the Lyman-α forest (Kuhlen & Faucher-Giguère
2012; Bolton & Haehnelt 2007), as will be detailed in the next paragraph.
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Figure 2.7: Current constraints on the IGM global ionised fraction coming from different types
of observations (right panel) and on the star formation history (left panel), compared to the
comprehensive scenario obtained by Gorce et al. (2018) by combining all available data (details in
text).

The left-hand panel of Fig. 2.7 shows the star formation data points inferred from the
UV and infrared galaxy luminosity functions by Robertson et al. (2015). There is a clear
trend, visible in the global history proposed by Gorce et al. (2018) when combining these
observations with measurements of the IGM ionised fraction and with the Thomson optical
depth from Planck (Planck Collaboration et al. 2016d), and shown as the solid line. The
error bars on redshifts z > 6, which correspond to the Epoch of Reionisation, are wide,
mainly because of small sample sizes, and will largely limit the precision of reionisation
constraints we can obtain from star formation history alone.

2.2.2 HI absorption troughs

A useful complement to star formation history is the imprint of neutral regions, ab-
sorbing ionising radiation, in the spectra of various astrophysical sources.

Quasar spectra

In the 1960s, interest in quasi-stellar objects (QSO) was triggered when astrophysicists
such as Minkowski (Minkowski 1960) and Schmidt (Schmidt 1963) related lines in their
spectra to redshifted hydrogen Balmer series lines. Indeed, most spectra exhibit absorption
lines blueward of the quasar emission line, corresponding to the Lyman-α (Lyα) transi-
tions of neutral hydrogen present between the quasar and us, called the Lyα forest. The
idea is the following: consider a photon emitted at the QSO redshift, with wavelength λ
smaller than the Lyα wavelength λα = 1216 Å. As the Universe expands, the wavelength is
stretched to eventually reach λα at a given redshift z. If there is neutral hydrogen at that
position, there will be an absorption feature in the intrinsic quasar spectrum at λα(1 + z)

as illustrated on Fig. 2.8.

In 1965, Gunn and Peterson predicted that even with as few as a fraction of 10−4 of the
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Figure 2.8: Illustration of the origin of absorption features in the spectrum of a quasar.

IGM being neutral around a quasar, its spectrum would show not a forest of absorption
lines but a complete trough, now carrying their name (Gunn & Peterson 1965). Indeed, the
high optical depth of Lyα photons (about 105 xH i around z = 3) makes the IGM optically
thick to ionising radiation for neutral fractions as low as xH i = 10−4 (Wise 2019; Zaroubi
2013). Because of this low saturation limit, this method is limited to probing the very end
of the reionisation process. A Gunn-Peterson (GP) trough was observed for the first time
by Fan et al. (2001), about 40 years after its prediction, in the spectrum of a z = 6.28 quasar
(J1030+0534) observed by the Sloan Digital Sky Survey (SDSS). On Fig. 2.9, we present
its spectrum, showing a clear GP trough (Becker et al. 2001; White et al. 2003). Since
then, the spectra of many high-redshift quasars, increasingly opaque with redshift, have
given constraints on the ionisation level of the IGM. SDSS has discovered about 19 quasars
around z ∼ 6 (Fan et al. 2006b). From these spectra, the authors infer that reionisation is
over by z = 6, a result which was originally widely accepted, but is now questioned. Indeed,
the strong radiation surrounding the quasar means that nearby hydrogen atoms are more
likely to be ionised than other IGM atoms. This over-ionised zone, called the proximity
zone and illustrated on Fig. 2.9, can lead to overestimates of the global ionised level of
the IGM if one extrapolates ionisation level around the quasar to ionisation level in the
whole IGM carelessly (Wise 2019). Another risk of overestimate comes from the fact that
reionisation is expected to be a highly inhomogeneous process. Therefore, when looking at
a single quasar, we are likely to pick one whose spectrum goes through only ionised IGM,
encountering none of the scarce remote islands contributing to a global ionisation level
lower than 100%. The small sample of quasars available today limits constraints on xH i

to a 10% precision at z ∼ 6 (Mesinger 2010) but the improved precision of instruments,
as well as the improved efficiency of detection methods will lead to an increase in the pool
size. To this day, the furthest quasar observed sits at z = 7.5 and has a mass of about
8 × 108M� (Bañados et al. 2018); The most conservative constraint that can be derive
from its spectrum is xH i > 0.33 at the 68% confidence level.

GP troughs are not the only imprint neutral regions have on quasar spectra. Less
dense and more scarce H i regions at lower redshifts can lead to a forest of absorption lines,
called the Lyα forest. It is possible to see such a feature in a QSO spectrum for column
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Figure 2.9: Illustration of the impact of H i regions on the spectrum of the quasar J1030+0524
first observed by (Fan et al. 2001). Spectrum from (White et al. 2003), courtesy of D. Mortlock.

densities as low as NH i = 1012−16 cm−2 (Wise 2019). These low densities make the Lyα
clouds likely to get ionised or heated up by the ultraviolet background (UVB) following
the hydrogen ionisation rate

Γ(z) = 4π

∫ ∞
ν∞

Jν(z)σH i(ν)
dν

hν
. (2.13)

In this equation, σH i is the photoionisation cross-section, Jν the specific intensity and ν∞
is the rest-frame frequency of the Lyα limit (λ∞ = 91.2 nm). The photoionisation rate
Γ(z) can be estimated from the width of the Lyα forest lines (Rauch 1998). If we consider
the emissivity ṅion as the ratio of the intensity of the ionising background to the mean free
path of ionising photons, one can use the Lyα forest to estimate the reionisation photon
budget (Bolton & Haehnelt 2007). This method avoids two major caveats of ṅion estimation
through star formation as it includes contributions from all ionising sources, including very
faint ones, and does not depend on the values of the escape fraction (Kuhlen & Faucher-
Giguère 2012). Using SDSS data, Becker & Bolton (2013) found that if the ionisation rate
is first constant on 2 < z < 3, the production of ionising photons by galaxies is increased
by a factor of ∼ 3 between redshift 3 and 5. However, the ionising emissivity derived from
these measured values of the photoionisation rate are too low to be compatible with other
observables, in particular galaxy luminosity functions. As shown on Fig. 2.10, we find4 that
because there are not enough ionising photons at low redshift, reionisation needs to start
overall much earlier than fiducial models (around z = 20) for the IGM to be fully ionised
by z = 5.5 and the resulting τ to be compatible with Planck results (Planck Collaboration
et al. 2018). This result holds even when the escape fraction is allowed to vary with redshift
to compensate for the lack of ionising sources. Then, fesc saturates at 100% for z ≥ 15.
This discrepancy can be linked to the poor modelling of the physics of the Lyman-α forest
and of its redshift evolution.

4Details on the procedure can be found in the next Section.
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Figure 2.10: Results on global ionisation history when including constraints on ionising emissiv-
ity from the Lyman-α forest (blue regions) or ignoring them (red regions). Left panel: Ionising
emissivity. Middle panel: Global ionisation history. Right panel: Redshift-evolution of the escape
fraction. In each panel, the blue model includes ṅion constraints from Kuhlen & Faucher-Giguère
(2012), whereas the orange one ignores them. Shaded areas correspond to 68% confidence levels.

Gamma-ray bursts

Gamma-ray bursts (GRB) are the most energetic explosions observed in the Universe.
They consist of an initial burst of gamma rays followed by a long afterglow at longer
wavelengths. Because they are so bright and because time dilatation means that the
afterglow of high-z GRB will survive for longer than low-redshift ones, very distant (z > 10)
GRB can potentially be observed (Ciardi & Loeb 2000). When the Universe is still mostly
neutral, the optical afterglow spectrum of the GRB will present a damping wing redward
of the Lyα rest-frame emission of the host galaxy, related to H i absorption (Fan et al.
2006a). Proximity effects are not a problem for GRB spectra, however absorption from the
neighbouring dense and neutral ISM complicates the interpretation of the damping wing.
Fitting absorption models taking into account these two phenomena, one can place limits
on the neutral fraction of the IGM at the time of the explosion. For example, looking at
the spectrum of GRB080913, Patel et al. (2010) find xH i < 0.73 at z = 6.7 (90% confidence
level). Because of the small number of detected GRBs, the statistics are however still poor:
the furthest GRB observed to this day is a z = 8.2 event (Tanvir et al. 2009; Salvaterra
et al. 2009).

Lyman-α emitters

Lyman-α emitters (LAE) are young star forming galaxies in the distant Universe emit-
ting Lyα radiation, most likely because of recombinations taking place in the interstellar
medium (Partridge & Peebles 1967). The morphology and global history of reionisation
can be probed by LAE through the shape of the Lyα line luminosity function (LF) at high
redshift. Indeed, because increasingly numerous neutral hydrogen clouds will absorb the
ionising photons from LAE, the LF is expected to decline with increasing redshift. This has
been confirmed between redshifts z = 5.7 and z = 6.6 by the Subaru Deep Field project
(Kashikawa et al. 2006). From these measurements, the authors constrained the IGM neu-
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tral fraction at z = 6.6 to 0 ≤ xH i ≤ 0.45. Additionally, the morphology of ionised regions
will impact the distribution of LAE by enhancing their clustering (Furlanetto et al. 2004b).

Results from these different types of observations lead to a profusion of constraints on
the IGM ionised fraction at different redshifts. The right-hand panel of Fig. 2.7 shows some
of these results, chosen for their reliability. The error bars on each measurement are wide
and the different measurements do not seem compatible at first. However, on the figure,
they are compared to the global history of reionisation obtained by Gorce et al. (2018)
when combining this data with star formation history and the Thomson optical depth
from Planck (Planck Collaboration et al. 2016d), in a procedure detailed in the following
section.

2.3 A comprehensive reionisation history

From CMB measurements to observations of early astrophysical objects such as galax-
ies and quasars, many different options are available to constrain reionisation. Now that
each of those measurements are statistically significant, the right question to ask is if they
are coherent and can give a comprehensive picture of the reionisation history. Additionally,
combining data can tell us about poorly-known parameters: as we will see in Sec. 4.2, in
order to reionise the IGM according to xe measurements, constraints can be placed on
parameters such as fesc and Mlim, related to the properties of early galaxies. In order to
find a comprehensive model of reionisation, in agreement with all the data available today,
we choose an analytical expression for the redshift-evolution of the star formation rate
density ρSFR(z) and fit it to three sets of data: measurements of the IGM ionised fraction
from QSOs, Lyα emitters and GRB; star formation history from UV and IR luminosity
functions and the Thomson optical depth measured by Planck. The results presented here
are similar to those of Gorce et al. (2018), reproduced in Appendix A.1, but with the value
of τ used as constraint updated from τ = 0.058±0.012 (Planck Collaboration et al. 2016d)
to τ = 0.054± 0.008 (Planck Collaboration et al. 2018), and some data points on xe have
been added.

Aiming to reproduce observations on the star formation history from z ∼ 30 to z ∼ 1,
we choose the 4-parameter model suggested by Robertson et al. (2015), updated from
Madau & Dickinson (2014), and given below:

ρSFR(z) =
a(1 + z)b

1 + [(1 + z)/c]d
. (2.14)

This choice is motivated by the trend seen on Fig. 2.7: ρSFR(z) first follows a rising phase,
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over 3 . z . 15 (ρSFR(z) ∝ (1+z)b−d), up to a peaking point around z ∼ 1.8 i.e. when the
Universe was around 3.6 Gyr old, called cosmic noon. It then declines as ρSFR(z) ∝ (1+z)b

until z = 0. This evolution requires the priors b > 0 and b − d < 0 on our parameters.
Other authors have proposed different parameterisations, such as Ishigaki et al. (2015) who
focus on the redshift range z > 4: their analytical model

ρUV(z) =
2 ρUV(z = 8)

10a(z−8) + 10b(z−8)
(2.15)

reproduces the rapid decrease of ρUV(z) from z ∼ 4 towards higher redshifts but does
not consider the cosmic noon. This redshift range naturally corresponds to the core of
the reionisation process and should be sufficient to our analyses. However, Ishigaki et al.
(2018) show that data slightly favours the 4-parameter model of Eq. (2.14). Additionally,
as our aim is to obtain a comprehensive picture of reionisation and of the evolution of light
sources in the Universe, we prefer including low redshifts in our analysis.

We adopt this analytical expression of ρSFR(z) into a Monte Carlo Markov chain
(MCMC) approach, with convergence assessed using the Gelman-Rubin test (Gelman &
Rubin 1992). We perform a maximum likelihood (ML) determination of the parameter
values assuming Gaussian errors on a redshift range of [0, 30]. We fit to the star formation
data described in Sec. 2.2.1 and then compute the range of credible reionisation histories for
every value of the ρSFR model parameters by solving the differential equation of Eq. (1.7).
The resulting history is confronted to IGM ionised fraction data. Finally, we evaluate the
Thomson optical depth as a function of z via Eq. (2.1) and compare its asymptotic value
(taken at z = 30) to the reference value of Planck (Planck Collaboration et al. 2018). These
three data sets give three χ2 values which are added together to obtain the likelihood of
the corresponding parameters. We want to know what observable constrains reionisation
history the most, so we compare results from

– the all run, which uses all three data sets as constraints;

– the noq run, which skips xe data;

– the notau run, which skips τ constraints; and

– the orho run, which uses only star formation history.

We adopt the fiducial, constant with redshift values fesc = 0.2, log ξion = 53.14 Lyc pho-
tons s−1M−1

� yr and CH ii = 3 (Robertson et al. 2013, 2015), although this choice will be
later discussed in Sec. 4.2. The algorithm used to perform this analysis is available on my
GitHub page.

Results are summarised in Fig. 2.11, which shows the posterior distributions of our four
parameters and of the Thomson optical depth τ , for the all, noq and norho runs. The
maximum likelihood parameters for the all run are given in Table 2.1. Results obtained
when using the star formation history as only constraints (orho run) and using the three
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Figure 2.11: Results of the MCMC analysis for the all (blue), noq (green) and notau (red)
runs. The contours show the 1, 2, 3σ confidence levels for a, b, c, d. The insert shows the Thomson
optical depth probability distribution for the three runs.

Table 2.1: ML model parameters when using all three sets of constraints and resulting reionisation
history. Errors correspond to 1σ.

a b c d τ zre zend ∆z

0.0145 3.20 2.68 5.68 0.064 7.14 5.93 2.06
±0.001 ±0.22 ±0.15 ±0.19 ±0.005 ±0.32 ±0.23 ±0.17

Figure 2.12: Results of fitting Eq. (2.14) to data. ML model and 95% confidence intervals are
shown for the all (blue), noq (red) and notau (orange) runs. Left panel: Star formation history
ρSFR(z) with redshift. Right panel: IGM ionised fraction xe(z) with redshift. Inferences are
compared with results of Planck Collaboration et al. (2016d). The origin of data points is detailed
in Secs. 2.2.1 and 2.2.2.
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sets (all run) are almost identical, therefore we choose not to present results for orho.
Overall, the all and notau runs give similar results, whereas noq yields largely different
parameters, and in particular lower optical depths: τnoq = 0.049± 0.002 vs. τall = 0.064±
0.005. Fig. 2.12 shows resulting star formation history and reionisation history for the
three runs. For what we take to be the fiducial model, i.e. the best-fit model of the
all run, reionisation finishes at z = 5.93 ± 0.23 (1σ) and lasts on average ∆z = z(xe =

0.25)− z(xe = 0.75) = 2.06± 0.17 for a midpoint at zre = 7.14± 0.32.

Overall, it seems that the Planck 2018 value of τ is in tension with the two other data
sets: adding xe data to the fit leads to reionisation happening earlier than for notau,
and so to a larger τ . Additionally, adding τ as a constraint leads to a large increase
of the error. This was not observed in Gorce et al. (2018), as the optical depth used,
τ = 0.058 ± 0.012, was higher (Planck Collaboration et al. 2016d). This might be due
to the poor way reionisation is modelled and accounted for when deriving the value of
the Thomson optical depth from Planck 2018 data: reionisation is considered a redshift-
symmetric, quasi-instantaneous process and the impact of kinetic Sunyaev-Zel’dovich effect
from reionisation on CMB data is overlooked (see Sec. 2.1). Yet, all our current results
remain in the 1-σ confidence interval of τPlanck.

The method used here consists of minimising the sum of the χ2 value obtained for
each data set. Because there are more data points for xe and ρSFR than for τ , this sum
naturally skews results to be more sensitive to these two data sets. Additionally, as an
integrated constraint (see Sec. 2.1.1), the constraining power of τ is low compared to other
data types. In this perspective, and because they cannot reproduce the high τ value they
use as constraint (τ = 0.091 ± 0.013, Planck Collaboration et al. (2014)) with the sme
simple χ2 fit, Ishigaki et al. (2015) choose to use reduced χ2: for each data set, they di-
vide χ2 by the number of corresponding data points, so that all data sets are given equal
weights. They find that this approach leads to a large discrepancy between ρSFR(z) and
xe(z) data points, with the best-fit model giving a star formation history flat with redshift.
We therefore choose to keep raw χ2 here.

The fact that the all and orho runs give almost identical ρSFR(z) and xe(z) on the
range of redshifts considered seems to indicate that star formation history constrains reion-
isation the most. To confirm this, we perform a norho run, skipping constraints from star
formation history. Results are shown on Fig. 2.13 for star formation history and global
reionisation history. Interestingly, the constraints from star formation are dominated by
the data points at z ∼ 6− 8, which correspond to the midpoint of reionisation and to the
redshift range where we have the most xe data points. Naturally, the confidence intervals
on the fits are very wide at low redshift as no data is available to constrain it. In terms
of global reionisation history, the very beginning of the process is similar to what was
found for all and norho. The difference gets clearer for z < 9 and xe > 0.2 and increases
with time until giving two very different endpoints: respectively, zend,all = 5.93± 0.23 and
zend,norho = 5.62±0.04. Despite this discrepancy in therms of global history, the results are
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Figure 2.13: Results of fitting Eq. (2.14) to data. ML model and 95% confidence intervals are
shown for the all (blue) and norho (green) runs. Left panel: Star formation history ρSFR(z) with
redshift. Right panel: IGM ionised fraction xe(z) with redshift. Inferences are compared with
results of Planck Collaboration et al. (2016d). The origin of data points is detailed in Secs. 2.2.1
and 2.2.2.

still compatible with CMB data: we find τnorho = 0.062 ± 0.002. However, norho results
must be handled carefully as the MCMC algorithm does not fully converge and the result-
ing posterior distributions on the model parameters are extremely spread. This is likely
due to the chosen parameterisation being based on the evolution of ρSFR(z), especially the
bump in star formation at z ∼ 2 − 3. When star formation data is not considered, the
4-parameter analytical expression of ρSFR(z) is not a good choice. Two approaches could
be considered to solve this problem: firstly, to adopt a more simple parameterisation of
ρSFR(z), focused on its evolution at z > 5, as proposed in Ishigaki et al. (2015); secondly,
to use a parameterisation of xe(z) rather than ρSFR(z). However, the objective here be-
ing to combine a maximum amount of data to obtain the strongest possible constrain on
reionisation, we do not perform such an analysis.

***
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2.4 Chapter conclusion & discussion

Many different types of observations are available to constrain reionisation but, individ-
ually, they all have biases that prevent us from deriving a consistent history of reionisation:
galaxy density observations rely on not-yet-verified extrapolations that can lead to a large
overestimate of the photon budget for reionisation; measurements of the IGM ionised level
are flawed with large error bars and modelling uncertainties because of a small statistical
sample; and the model of reionisation included in CMB data analysis is very simplistic.
A way to overcome these individual biases is to combine these three data types to derive
a comprehensive history of reionisation. Using the latest results available on cosmic star
formation density, ionised fraction of the IGM and Thomson optical depth, and reasonable
assumptions about the high-redshift Universe, we find that reionisation is an asymmetric
process driven by galaxies. It starts slowly around z = 15, before taking off once 20% of
the IGM is ionised, and ends shortly after z = 6. Among all data, star formation history
seems to be the most constraining for the EoR. In Chapter 4, we will discuss the limitations
aforementioned, and how they can be overcome, in order to increase the precision of our
constraints.

An interesting prospect to improve current constraints are observations of the 21cm
signal from the Epoch of Reionisation, introduced in Sec. 1.3, with low frequency radio-
telescopes such as LOFAR, MWA, HERA and the SKA. Two different approaches can be
used: the first one consists of using the sky-averaged signal to construct the 21cm power
spectrum as a function of frequency and so redshift. Observations can be made with a
radio telescope as simple as a single dipole, looking at a sufficiently large portion of the
sky for spatial fluctuations to average away. It is clear from Eq. (1.18), giving the evolution
of the sky-averaged differential brightness temperature with frequency, that the shape of
xe(z) will strongly impact both the shape and amplitude of the 21cm power spectrum.
The second approach is to look at smaller areas of the sky to map spatial fluctuations
of the brightness temperature and from it, derive an estimate of the global IGM ionised
fraction. From such maps, we also get a direct image of the ongoing reionisation process
in the IGM and of growing ionisation bubbles around galaxies, that is of local reionisation.
In this perspective, accessing small-scale reionisation data, either through the 21cm signal
or CMB observations, will give us information about the physical properties of the early
IGM and light sources.
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Small-scale reionisation and local history

In the previous chapter, we have seen that reionisation as a global process, looking at
the evolution of the IGM ionised fraction with time, can be constrained by a variety of
cosmological and astrophysical observations. However, reionisation is an inhomogeneous
process: as discussed in Chapter 1, all regions of the sky have not been reionised simulta-
neously, and the densest regions, where the light sources sit, have likely been ionised first.
Depending on the nature of the IGM – notably its density, and on the nature of the sources
– for example, their mass and radiation, a given region of the sky will be ionised differ-
ently: the growth rate and shape of the H ii regions surrounding sources will vary. In this
perspective, in this chapter, we introduce efficient statistical tools which are able to char-
acterise the topology of reionisation on scales of a few hundreds of megaparsecs, in order
to, later, use this information to constrain the physics of the early Universe. We consider
two types of observations: high-multipole CMB data, with the kinetic Sunyaev-Zel’dovich
effect, and 21cm tomography. Observations of the spatial fluctuations of the 21cm signal
from EoR made by radiotelescopes such as HERA, MWA or the SKA are indeed expected
to give maps of the ionisation state of the IGM up to redshift 25. Developing novel and
efficient ways of extracting statistical information from radio observations is essential con-
sidering the amount of data that future interferometers will produce: HERA will generate
about 0.2 terabytes of raw data per day, and SKA about 160 terabytes per second, i.e. the
estimated global internet traffic in 2015.
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3.1 First statistical moment

Statistical methods are a useful way to extract meaningful information from a large
set of data but are often computationally expensive. In this first section, we consider
the easiest and quickest possible statistical function, the first moment, in the case of
filling fraction distributions. Depending on the ionising properties of light sources, the
morphology of reionisation will be different: bright sources will produce a ’Swiss cheese’
field, where large and well-defined ionising spheres are scarcely distributed throughout an
homogeneous neutral background, whereas faint sources will produce many small ionised
regions covering the neutral IGM.

This is illustrated in Fig. 3.1, presenting ionisation fields cut through three versions
of the rsage simulation. Each version relies on the same underlying dark matter field,
but models the relation between the physical properties of a star-forming galaxy and the
fraction of ionising photons escaping it in a different way (see App. B.2 or Seiler et al.
(2019) for details). In rsage const, the escape fraction is constant, equal to fesc = 20%;
in rsage fej, fesc is roughly inversely proportional to halo mass; and in rsage SFR, fesc

is proportional to star formation efficiency, and so to halo mass. These simulations were
kindly provided by Anne Hutter. The three snapshots considered in Fig. 3.1 are taken when
the simulations are 30% ionised and are made of either fully ionised (black) or fully neutral
(white) pixels. It is clear that three ionisation fields have a different morphology, and,
in particular, rsage SFR has the largest ionised bubbles1. Indeed, low-mass halos hardly
build up ionised regions around themselves and so there are only a few large ionised regions,
corresponding to high-mass halos with a high ionising emissivity. In the lower panels of
the figure, we show binary ionisation fields from three different runs of the 21CMFAST
simulation, corresponding to three different values of the turnover mass Mturn (Mesinger
& Furlanetto 2007; Mesinger et al. 2011). This parameter corresponds to the minimum
halo mass below which the number density of halos hosting star-forming galaxies drops
exponentially. The three runs have same dimensions and resolution as rsage – that is a
box length of L = 160 Mpc for 256 cells, and correspond to Mturn = 108 M�, 109 M�

and 1010 M�, dubbed respectively M8, M9 and M10 (see App. B.3). Despite having the
same underlying matter field, these three runs exhibit different sizes of ionised regions.
Similarly to what was found for rsage, the simulation where only the heaviest galaxies
contribute to reionisation, M10, shows the largest ionised regions on average, while M8
exhibits many small ionised regions distributed evenly throughout the neutral background.
However, here, H ii regions are far from spherical. Note that these six simulations will be
used and compared throughout this work.

1As shown in Hutter et al. (2020) using bubble size distributions, this is true at any point during
reionisation.
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Figure 3.1: Upper panels: Binary ionisation fields cut through the three simulations described
in Appendix B.2 at xe = 0.30 (Seiler et al. 2019), illustrating how different physics lead to a
different reionisation morphology. Courtesy of A. Hutter. Lower panels: Binary ionisation fields
cut through three runs of 21CMFAST for different values of the minimal halo mass require to ionise
(Mesinger & Furlanetto 2007; Mesinger et al. 2011).

3.1.1 Variance of the probability distribution of ionised pixels

The one-point statistic that comes immediately to mind when looking at the binary
ionisation fields of Fig. 3.1 is the distribution of ionised pixels throughout the 3D box. Such
statistics were used in Watkinson & Pritchard (2014) to compare inside-out vs. outside-in
models of reionisation within the 21CMFAST simulation framework. Here, we review the
results of this paper while applying the method to the rsage simulations2.

Consider a 3D ionisation field filled with either fully ionised or fully neutral pixels. Us-
ing the definition of the mean of the field x̄ (here, corresponding to the filling fraction or the
global ionisation level) and normalisation properties, we find the probability distribution
function of the ionised pixels to be

p(x) = (1− x̄)δ(x) + x̄δ(x− 1), (3.1)

where δ(x) is the Dirac delta function. From this we can easily derive a theoretical expres-
sion for the statistical moments and cumulants of the distribution. The n-th moment µn

2Note that rsage assumes inside-out reionisation.
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and the n-th central moment µ′n are given by:

µn =

∫
xnp(x) dx = x̄

µ′n =

∫
(x− x̄)np(x) dx = (−1)nx̄n(1− x̄) + (1− x̄)nx̄ = x̄(1− x̄)

[
(−1)nx̄n−1 + (1− x̄)n−1

]
(3.2)

These can be related to the well-known variance µ′2 = σ2, skewness µ′3/σ3 and kurtosis
µ′4/σ

4. The cumulants κn are derived from the moment-generating function and can be
derived using the following recursion relation:

κn = µn −
n−1∑
m=1

(
n− 1

m− 1

)
κmµn−m = x̄

[
1−

n−1∑
m=1

(
n− 1

m− 1

)
κm

]
.

For the first few, we find

κ1 = µ1 = x̄

κ2 = µ′2 = σ2 = x̄(1− x̄)

κ3 = x̄
(
1− 3x̄+ 2x̄2

)
κ4 = x̄

(
1− 7x̄+ 12x̄2 − 6x̄3

)
.

(3.3)

All these statistics tend to zero as x̄ → 0 and are symmetric under x̄ ⇔ 1 − x̄. The
four first theoretical cumulants are represented on Fig. 3.2 for 0 ≤ x̄ ≤ 1 as the solid
black lines. They are compared to the moments numerically computed on the different 3D
snapshots available for the three rsage simulations, in colour. As the difference between
the theoretical model and the simulations is very small in amplitude (about 0.005), we
add the results of a null test as a dashed line on the figure to assess the precision of the
algorithm used to numerically compute the cumulants. The null test consists of 3D boxes
of same dimensions randomly filled by zeros and ones in order to achieve the desired filling
fraction. We see this null test is much closer to the theoretical result than our simulations,
confirming that the differences observed have a physical and not numerical origin.

As the first cumulant is equal to the mean x̄, it is not surprising that all simulations
give a perfectly identical y = x curve for κ1. Results for the higher-order cumulants are
more interesting: there is a clear difference between the theoretical model and the rsage

simulations, averaging around 10% of the theoretical value, and reaching 20% for κ4.
Interestingly, the difference is more significant in the first half of the reionisation process.
In Watkinson & Pritchard (2014), the authors compare simulations with either outside-in or
inside-out models of reionisation which will result in dramatically different morphologies.
Here, despite having three scenarios of inside-out reionisation, we can still differentiate
rsage SFR from the two other simulations. When performing the same analysis on maps of
the differential 21cm brightness temperature computed with Eq. (1.18) for each simulation,
we find that each cumulant follows the same trend with xH ii but with a much larger
amplitude, therefore making this statistics a promising tool to constrain the escape fraction.
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3.1. First statistical moment

Figure 3.2: Evolution of different statistical cumulants κn with ionised fraction for the three
rsage simulations (upper panels) and absolute difference with a theoretical model (lower panels).

This enhanced amplitude is due to the fact that the Dirac distribution of ionised pixels in
Eq. (3.1) is now modulated by the Gaussian distribution of warm (partially neutral) pixels.

These results are all derived from 3D boxes but in practice, we will not observe 3D
boxes but either a 2D image of the sky at a given redshift, or a 3D light-cone covering a
range of redshifts. We do not expect these results to hold in 2D as the large uncertainty
on the filling fraction, if the image is too small (see Sec. 4.1), will wash out such a slight
difference in the cumulants. We therefore choose to now look at statistics based on 2D
images.

3.1.2 Filling fraction distributions & local variance

Take a 3D rsage const box at a given redshift of filling fraction x̄. We slice it into
N = 256 2D fields along a given direction, considered to be the line-of-sight, and compute
the average of each slice. We therefore end up with a distribution of N filling fractions
{xloc,i}. We repeat this process on all the snapshots available for the simulation, at different
stages in the reionisation process, and present the resulting distributions in the left panel
of Fig. 3.3. The distributions are initially very narrow, before getting wider as reionisation
progresses and as the bubble sizes and locations become more correlated. However, they
stay centred on the ionisation level of the whole box x̄, shown as a solid vertical line. For
x̄ > 80%, the distributions are again very narrow as most pixels are fully ionised. On the
right panel of Fig. 3.3, we summarise these results by plotting the evolution of the standard
deviation of the xloc distributions σloc as a function of global ionisation level x̄ (blue solid
line). We compare it with the evolution of the standard deviation of the 3D pixel distri-
bution σwhole described in the previous section, scaled by 1/10 (dashed black line). The
reionisation midpoint, where the theoretical σwhole(x) = x(1 − x) peaks, is shown as the
dotted vertical line. Interestingly, σloc(x) is slightly distorted compared to this parabola
and actually reaches its maximum a short time after the midpoint, when the box is 60%

ionised. This can be related to the percolation level reaching a limit point. As the distri-

47



Chapter 3. Small-scale reionisation and local history

Figure 3.3: Left panel: Distribution of the ionisation levels of the N slices that can be carved out
of the rsage const simulation along one direction, at different stages in the reionisation process.
The solid vertical lines are the means of the corresponding whole 3D boxes, considered to be the
’true’ values. Right panel: Evolution of the standard deviations of each distribution with global
reionisation history (blue solid line), compared to the standard deviation of the distribution of
ionised pixels throughout the whole box divided by 10 (dashed line).

butions at either end of the reionisation process are close to Dirac delta functions, σloc → 0

as x̄ → 0 and x̄ → 1. We also look at the kurtosis and skewness of the distributions to
asses their non-Gaussianity, which might be a tracer of clustering in the simulation. The
skewness ranges from 0 to 1 during most of the reionisation process, confirming that the
distributions are symmetric around the mean value then. However, it is very high (∼ 3)
at the very beginning and very low (∼ −2) at the very end, which corresponds to the
somewhat squashed distributions seen on Fig. 3.3. The kurtosis also has values close to
zero for the bulk of the process: there are fewer and less extreme outliers than there would
be in an equivalent normal distribution i.e. most slices are similar. The xloc distributions
are therefore close to Gaussian in the middle stages of reionisation, for 0.2 < x̄ < 0.8, and
looking at their standard deviation will be a sufficient source of information.

We now wonder what information we can get from the evolution of σloc with ionisation
level. We therefore compute the xloc distributions of the other two rsage simulations
to see if such a statistics can differentiate them. The resulting σloc(x) are shown in the
upper panels of Fig. 3.4. As for rsage const, σloc(x) reaches its maximum at around 60%

ionisation for the two additional simulations. On average, there is more variance between
the rsage SFR slices, which corresponds to the fact that the simulation has typically larger
ionised bubbles (Seiler et al. 2019). Indeed, for a given filling fraction, if the ionisation
field is made of a few scarce large ionised regions, two slices randomly picked in the box are
unlikely to be similar. On the contrary, if the field is made of many small ionised regions
covering the neutral background, slices are likely to be very similar, and, on average, a
better representation of the overall 3D field. Looking at the snapshots of Fig. 3.1, this
explains why rsage fej is found to have the smallest σloc. rsage const appears to be an
intermediary case.

In the lower panels of Fig. 3.4, we compare these results to what is obtained for three
21CMFAST simulations of same resolution and dimensions but different Mturn values,
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3.1. First statistical moment

Figure 3.4: Evolution of the standard deviation on global ionisation level measured in the set of
N slices that can be carved out of the simulation in one direction σloc with redshift (left panel)
and ionisation level (middle panel). Here, σwhole is the theoretical variance defined by σwhole(x) =
x(1−x). Right panel: Corresponding reionisation histories. Results for the three rsage simulations
(upper panels) and the three 21CMFAST runs (lower panels) are compared.

shown in the lower panels of Fig. 3.1 and described in the previous section. Note that
because of the very different ways reionisation physics is modelled in the two types of
simulations (see App. B), it is irrelevant to compare results from one simulation to another.
However, comparing within the same framework allows to test for the robustness of results.
M10, which has the largest ionised regions on average, gives the largest variance, similarly
to what we found for rsage SFR. On the contrary, M8 gives the lowest values of σloc

and, again, the three simulations are easily distinguished. Note that the variance of the
three 21CMFAST simulations also peaks around xH ii = 0.60. For reference, we compute
the local variance of a null test, consisting of a 3D box of same resolution and size as
our simulations, but randomly filled with ionised pixels to reach the considered ionisation
level. The resulting variance, close to zero and largely insignificant compared to what
was obtained for the simulations, is shown as the black solid line in the middle panels of
Fig. 3.4.

Here, in contrast to what was found with the standard deviation of pixel distributions
σwhole in the previous section, there is a clear difference between the rsage fej and rsage

const simulations. Indeed, when looking at the distribution of filling fraction between
slices, we introduce correlations between the ionised pixels of a given slice, which were
overlooked in σwhole. Let µα be the filling fraction of slice α cut through a box made of
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N3 cells of value xi such that3

µα =
1

N2

∑
i∈α

xi. (3.4)

Then the variances considered write

σwhole
2 = 〈x2

i 〉 − 〈xi〉2

σ2
loc = 〈µ2〉 − 〈µ〉2

(3.5)

where
〈µ〉 =

1

N

∑
α

µα =
1

N3

∑
α

∑
i∈α

xi =
1

N3

∑
i∈box

xi = 〈xi〉

is the filling fraction of the whole box. The second moment writes

〈µ2〉 =
1

N

∑
α

(
1

N2

∑
i∈α

xi

) 1

N2

∑
j∈α

xj


=

1

N

∑
α

 1

N4

∑
i∈α

∑
j∈α

xixj


=

1

N5

∑
α

 ∑
i=j∈α

x2
i +

∑
i∈α

∑
i 6=j∈α

xixj

 .

The first term is similar to 〈x2
i 〉, but the second term includes correlations between pixels

within a given slice. In σwhole, the correlations considered will be between two random
pixels throughout the box, and the structure information will be washed out.

In this section, we have introduced a new one-point statistics, σloc, based on the dis-
tribution of the means of slices in a simulation, quick to compute, and which can give us
information about the morphology of the ionisation field. The local variance makes use
of sample variance, which normally is an issue when observing, to differentiate between
different physical properties of ionising sources, such as the escape fraction of ionising pho-
tons or the minimal mass of star-forming galaxies. These results are pushed further in a
dedicated work (Gorce et al. in prep), where the method is applied to 21cm brightness tem-
perature maps in a bid to use these results observationally. In this work, we use 21CMMC
(Greig & Mesinger 2017) to constrain astrophysical parameters related to star formation
and ionising emissivity of galaxies, including Mturn. We show that, added to current ob-
servations such as galaxy luminosity functions and IGM ionised fraction estimated from
QSO spectra, σloc greatly improves constraints on these parameters. We also look at its
limitations. Indeed, because σloc is based on sample variance, small box sizes, that is small
fields of view, are required to achieve satisfying results. Additionally, the quality of the
constraints will depend on the resolution of the simulation (or the angular resolution of

3Because we are considering binary fields, xi = 0 or 1.
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the telescope) and on the number of slices available. We now turn to two-point statistics.

3.2 Second statistical moment: the kSZ power spectrum

When looking at extracting a maximum of information from a field, one does not stop
at one-point statistics. The next step is naturally the power spectrum, or inverse Fourier
transform of the two-point correlation function, a tool cosmologists are particularly fond
of. The power spectrum can indeed tell us a lot about a field, although it overlooks non-
Gaussian information, essential to the study of reionisation, as we will see in Sec. 3.3.

From the ionisation and density fields of the three rsage simulations presented above,
we can derive their 21cm brightness temperature fields δTb(x, z), according to Eq. (1.18).
On Fig. 3.5, we show the dimensionless 21cm power spectra computed from these boxes
at the 40% and 60% ionisation levels (corresponding to slightly different redshifts for
each simulation). It is defined as ∆2

21(k, z) = k3〈|δ21(k, z)|2〉/2π2, where δ21(x, z) =

δTb(x, z)/δT̄b(z) − 1. Despite being similar, the three spectra exhibit small differences
that can be related to the morphology of the ionisation field in each simulation (Mesinger
et al. 2011). However, the difference is maximal on large scales (or small wavenumbers),
where error bars will also be maximal because of sample variance4. Sample variance in
the case of 21cm observations will be discussed further in Sec. 4.1. Another tool, also cor-
responding to a two-point statistics, has been proven to be a good tracer of not only the
global history but also the morphology of reionisation: the kSZ angular power spectrum.
We have seen in Sec. 1.2 how the amplitude of this spectrum, related to the scattering of
CMB photons off high energy electrons, is currently used to constrain the duration and
midpoint of EoR. Here, we push the relation between kSZ power spectrum and reionisation
a step further by proposing a new parameterisation, not only of its amplitude, as done in
previous works (Shaw et al. 2012; Battaglia et al. 2013), but also of its shape, in terms of
reionisation parameters. To do so, we look at the different elements making up the kSZ
signal in a simulation, described in App. B.1, and draw a simple description of the most
significant elements, that we can later relate to reionisation. This work was the basis of
Gorce et al. (2020), reproduced in Appendix A.3.

3.2.1 Derivation of the kSZ angular power spectrum

When CMB photons scatter off clouds of free electrons with a non-zero bulk velocity v

relative to the CMB rest-frame, they generate temperature anisotropies along the line of

4Here, we only compute error bars corresponding to Poisson noise. They are too small to be visible on
the figure.
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Chapter 3. Small-scale reionisation and local history

Figure 3.5: Comparison of the dimensionless power spectra of the 21cm brightness temperature
fluctuations ∆2

21(k, z) at xH ii = 0.40 and xH ii = 0.60 for the three rsage simulations.

sight n̂ that write

δTkSZ(n̂) =
σT
c

∫
dη

dz

dz

(1 + z)
e−τ(z) ne(x, z)v · n̂ , (3.6)

with σT the Thomson cross-section, c the speed of light, η the comoving distance to redshift
z and τ the Thomson optical depth described in Sec. 1.2. We define the density contrast of
free electrons δe(x, z) = ne(x, z)/n̄e(z)− 1. Here, we will focus on the patchy component
of the kSZ signal, stemming from inhomogeneous reionisation, so we limit the integral in
Eq 3.6 to a redshift range z > zend. In practice, the upper bound corresponds to the
highest redshift considered in the simulation (here, zmax = 15), and we find the contribu-
tion from pre-reionisation era, when the only free electrons in the IGM are leftover from
recombination, to be negligible. We will now derive an expression of the angular power
spectrum associated with Eq. (3.6), in order to find an easy way to model its different
elements.

The density-weighted peculiar velocity of the free electrons q ≡ v(1 + δe) = v + vδe =

v+qe can be decomposed into a divergence-free qB and a curl-free qE components. In the
Fourier domain, q̃ = q̃E + q̃B. When projected along the line of sight, q̃E will cancel and
only the component of q̃ perpendicular to k, q̃B, will contribute to the kSZ signal (Jaffe
& Kamionkowski 1998). In the small angle limit, the Limber approximation gives

C` =
8π2

(2`+ 1)3

σ2
T

c2

∫
n̄e(z)

2

(1 + z)2
∆2
B,e(`/η, z) e−2τ(z) η

dη

dz
dz, (3.7)

for C` ≡ T 2
CMB |δT̃kSZ(k)|2 the amplitude of the kSZ angular power spectrum at the mul-

tipole moment ` such that k ≡ `/η. ∆B,e is defined by ∆2
B,e(k, z) ≡ k3PB,e(k, z)/(2π

2)

where PB,e is the power spectrum of the curl component of the momentum field such that
(2π)3PB,e δ(k− k′) = 〈q̃B,e(k) q̃∗B,e(k

′)〉. We want to expand this last term, so we write

q̃B,e(k) =

∫
d3k′

(2π)3
(k̂′ − µk̂) ṽ(k′) δ̃e

(
|k− k′|

)
, (3.8)
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where µ = k̂ · k̂′, so that

〈q̃B,e(k) q̃∗B,e(k
′)〉

(2π)3δD(|k− k′|)
≡2π2

k3
∆2
B,e(k, z)

=
1

(2π)3

∫
d3k′ [(1− µ2)Pee(|k− k′|)Pvv(k′)

− (1− µ2) k′

|k− k′|
Pev(|k− k′|)Pev(k′)],

(3.9)

where the z-dependencies have been omitted for simplicity. Pee(k, z) ≡ 〈|δ̃e(k, z)|2〉 is
the power spectrum of the free electrons density fluctuations and Pev is the free electrons
density-velocity cross-spectrum. In the linear regime, we can write v(k) = ik (fȧ/k) δ̃(k),
where a is the scale factor and f the linear growth rate defined by f(a) = dlnD/dlna for
D the growth function so that

Pvv(k, z) =

(
ȧf(z)

k

)2

P lin
δδ (k, z) (3.10)

where P lin
δδ is the linear total matter power spectrum. This expression allows us to compute

the velocity power spectrum fully from linear theory and not be limited by the simulation
size and resolution. We also assume for the cross-spectrum:

Pve(k, z) ' bδe(k, z)Pδv(k, z) =
fȧ(z)

k
bδe(k, z)P

lin
δδ (k, z), (3.11)

where the bias bδe is defined by the ratio of the free electrons power spectrum over the
non-linear matter power spectrum bδe(k, z)

2 = Pee(k, z)/Pδδ(k, z). Although coarse, this
approximation only has a minor impact on our results: it implies variations of ∼ 0.05 µK2

in the patchy kSZ amplitude (see also Alvarez 2016). The final expression of the power
spectrum of the curl component of the momentum field then writes

PB,e(k, z) =
1

(2π)3
f(z)2ȧ(z)2

∫
d3k′(1− µ2)×[

1

k′2
Pee(|k− k′|)P lin

δδ (k′, z) −bδe(k
′, z)

|k− k′|2
bδe(|k− k′|, z)P lin

δδ (|k− k′|, z)P lin
δδ (k′, z)

]
,

(3.12)
which we can plug into Eq. (3.7) to find the final expression for the kSZ angular power
spectrum.

3.2.2 The power spectrum of free electrons density contrast

The central component of this work is Pee(k, z), the power spectrum of the electron
contrast density field δe(x, z). To get an idea of the behaviour of this object, we look
at a reionisation simulation, ran according to the procedure detailed in Aubert et al.
(2015), previously used in Deparis et al. (2019) and described in App. B.1. The simulation
produces snapshots of the dark matter density, baryon density and ionisation fields at
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Figure 3.6: Snapshot of the electron density contrast field for the first of the six simulations, at
z = 7.15 and xe = 0.47 (left panel) and corresponding power spectrum (right panel). Additionally,
the spectrum at z = 11.9 is shown in purple.

different redshifts. The boxes have side length L = 128/h Mpc for 10243 cells. In the
left panel of Fig. 3.6, we show δe(x, z) for this simulation at z = 7.15, corresponding
roughly to the midpoint reionisation (xe = 0.47). The structure follows the distribution
of ionised regions, roughly similar to bubbles, on large scales, whereas the small-scale
structure seems closer to the underlying matter distribution. On the right panel, we show
the power spectrum of the same box as the blue solid line, compared to the spectrum of
an earlier snapshot (z = 11.9 and xe = 0.1%) as the purple line. Before the onset of
reionisation, despite the few free electrons left over after recombination, the amplitude of
Pee is negligible. In the early stages of the process (purple curve), the spectrum consists
of a plateau at low frequencies before the power drops off as k−3 on smaller scales. To
translate this behaviour, we empirically choose the following parameterisation:

Pee(k, z) =
α0 xe(z)

−1/5

1 + [k/κ]3xe(z)
. (3.13)

The constant amplitude on large scales corresponds to the parameter α0, weighted by a
power of the ionisation level. The amplitude will be maximal at the very start of reionisa-
tion, when the variance in the free electron field is also maximal. It then slowly decreases
as ionised regions grow and fill up the box. This constant power drops above a cut-off
frequency κxe

−1/3 which decreases with time, following the growth of ionised bubbles.
Indeed, there is no power above this frequency, meaning that there is no smaller ionised
region than rmin(z) ≡ 2πx

1/3
e /κ at this time.

In the later stages of reionisation, the power-law structure of early times is still visible,
although mixed with a shape similar to a biased matter power spectrum. Indeed, once
reionisation is over and all IGM atoms are ionised, the fluctuations in free electrons density
follow those of matter on large scales (k < 1 Mpc−1). On smaller scales, gas thermal
pressure induces a drop in Pee(k, z) compared to the dark matter. To describe this evolution
at low redshifts, we choose the same parameterisation as Shaw et al. (2012), given in
Eq. (3.14), to describe the gas bias bδe(k, z)2 = Pee(k, z)/Pδδ(k, z) but adapt the parameters

54



3.2. Second statistical moment

Figure 3.7: Results of fitting Eq. (3.15) to the Pee(k, z) spectra of our six simulations, shown
as the various colour lines. Best-fit result is shown as the black solid line, with associated 68%
confidence level as the shaded area.

to our simulation, which however do not cover redshifts lower than 5.5.

bδe(k, z)
2 =

1

2

[
e−k/kf +

1

1 + (gk/kf )7/2

]
(3.14)

We find kf = 9.4 Mpc−1 and g = 0.5, constant with redshift. Our values for kf and
g are quite different from those obtained by Shaw et al. (2012): for their simulations,
power starts dropping between 0.05 and 0.5 Mpc−1 compared to k ∼ 3 Mpc−1 here. This
can be explained by our simulations making use of adaptive mesh refinement, therefore
resolving very well the densest regions, so that our spectra are more sensitive to the thermal
behaviour of gas. This model, where kf and g are constant parameters, is a very basic
one. It will however be sufficient for this work since we focus on the patchy component
of the kSZ effect, at z ≥ 5.5. Additionally, the scales mostly contributing to the patchy
kSZ signal correspond to modes 10−3 < k/Mpc−1 < 1 where Pee follows the matter power
spectrum, so that a precise knowledge of bδe(k, z) is not required (Gorce et al. 2020).

To account for the smooth transition of Pee from the power-law of Eq. (3.13) to a biased
matter power spectrum, we write the final form for the free electrons density fluctuations
power spectrum as

Pee(k, z) = [fH − xe(z)]×
α0 xe(z)

−1/5

1 + [k/κ]3xe(z)
+ xe(z)× bδe(k, z)2Pδδ(k, z), (3.15)

for fH = 1 + Yp/4Xp ' 1.08, with Yp and Xp the primordial mass fraction of helium
and hydrogen respectively5. The total matter power spectrum Pδδ is computed using the
Boltzmann integrator CAMB (Lewis et al. 2000; Howlett et al. 2012) for the linear terms and
the HALOFIT procedure for the non-linear contributions (Smith et al. 2003).

We calibrate this expression on the six simulations available for this work: six simu-
lations with identical numerical and physical parameters are produced in order to make
up for the limited physical size of the box and the associated sample variance. They only
differ in the random seeds used to generate the initial displacement phases, resulting in six

5Note that originally our simulations only include hydrogen reionisation. To account for the potential
loss of kSZ power (Shaw et al. 2012), we scale the ionisation level of each snapshot by fH such that
xe(z) = fH xH ii(z).
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different configurations of structures within the simulated volumes. Eq. (3.15) is fitted to
the power spectra of the six simulations on a scale range 0.05 < k/Mpc−1 < 1.00, corre-
sponding to the scales which contribute the most to the signal at ` = 3000 (Gorce et al.
2020), and a redshift range of 6.5 ≤ z ≤ 10.0, corresponding to the core of the reionisation
process (0.07 < xe < 0.70). The diagonal of the covariance matrix derived from the sample
of six simulations is used as error bars for each Pee(k, z) data point. Details of the fitting
procedure can be found in Gorce et al. (2020). Fig 3.8 shows the result of the fit at a given
redshift (left panel) or a given scale (right panel). We further apply the fit to the power
spectra extracted from the three rsage simulations and the three 21CMFAST simulations
described in Sec. 3.1 in order to assess how robust this very simple parameterisation is to
different physics of reionisation. For the 21CMFAST simulations, we run twenty times each
simulation – corresponding to a value of Mturn, but for different initial conditions. From
these 20 realisations we derive relative error bars σ(k, z) on Pee(k, z) values, correspond-
ing to the 68% confidence level on the distribution of values for each bin. We generalise
these results to rsage: on the scales and redshifts range considered in this section, we
have σ(k, z)/Pee(k, z) = 10b (k/k0)a, where k0 = 1 Mpc−1. Values a = −1.12 ± 0.79 and
b = −1.74 ± 0.70 have been found by fitting the σ(k, z) values of the 60 simulations si-
multaneously. We then apply this expression to the spectra of the rsage simulations, as
an approximation of sample variance. Finally, a last simulation is generated, with same
resolution and box size as the six initial simulations but with twice as much star formation,
therefore reionising earlier (zre = 7.94) but on a similar redshift interval (∆z = 1.20). The
best-fit parameters, defined as the maximum likelihood parameters, are given in Table 3.1,
for each of these fits.

3.2.3 Patchy kSZ angular power spectra

Once we have a value of α0 and κ for each simulation, since we know their exact
reionisation histories, we can derive their patchy kSZ angular power spectrum according to
Eq. (3.7). These are shown in the middle panels of Fig. 3.8, along with the corresponding
reionisation histories (left panels). For each simulation, the 68% confidence interval on
the fit parameters is propagated to a 68% confidence interval shown as the shaded area
around the kSZ signal derived from the best-fit parameters. Inferences are compared to
the latest observational results on kSZ amplitude: using SPT data, Reichardt et al. (2020)
find Dpatchy

3000 = 3.0± 1.0 µK2. All our results are compatible with this detection.

We see that despite very similar reionisation histories, the three EMMA simulations and
the three rsage simulations give very different patchy kSZ spectra: the small error bars on
xe(z) translate into a 10% error bar on the kSZ amplitude at ` = 2000. Interestingly, the
six initial EMMA simulations, corresponding to a late reionisation scenario (zre ' 7.10),
give a very different kSZ spectrum to the early reionisation simulation one, despite similar
physics: not only the amplitude is impacted by the changed reionisation history, but also
the shape. Around ` ∼ 3000, the two spectra have similar values (the difference is about
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Figure 3.8: Comparison of results for the different simulations considered: respectively, EMMA,
rsage and 21CMFAST. Left panel: Reionisation histories. Middle panel: Patchy kSZ angular
power spectra. The data point corresponds to constraints from Reichardt et al. (2020). Right
panel: Minimal size of ionised regions. Shaded areas correspond to the 68% confidence level on
kSZ amplitude propagated from the probability distributions of the fit parameters.
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Table 3.1: Comparison of results for the different simulations considered. Dh
3000 and Dp

3000 are
given in µK2 and correspond to the amplitude of the, respectively, homogeneous and patchy kSZ
power spectrum at ` = 3000. ∆z is defined as ∆z = z(xe = 0.25)− z(xe = 0.75).

EMMA rsage 21CMFAST
Late Early const SFR fej M8 M9 M10

zre 7.10 7.94 7.45 7.56 7.37 9.45 7.56 5.84
zend 5.84 6.89 5.79 5.78 5.70 7.76 6.19 4.75
∆z 1.16 1.20 1.46 1.38 1.60 2.17 1.70 1.34
τ 0.054 0.062 0.058 0.060 0.058 0.085 0.062 0.044
logα0 3.93 4.10 3.12 3.47 2.87 3.30 3.58 3.79
/Mpc3 ±0.06 ±0.15 ±0.04 ±0.04 ±0.04 ±0.03 ±0.04 ±0.04
κ 0.084 0.076 0.164 0.123 0.205 0.130 0.108 0.093
/Mpc−1 ±0.003 ±0.009 ±0.005 ±0.005 ±0.007 ±0.003 ±0.004 ±0.003

Dh3000 3.39 3.86 3.57 3.57 3.56 3.58 3.21 2.84
Dp3000 0.80 0.74 0.83 0.95 0.78 1.43 1.23 0.97
`max 1800 1400 3100 2400 3700 2800 2300 2000

0.05 µK2, see Table 3.1). This confirms that looking at the amplitude of the kSZ signal at
` = 3000 to constrain reionisation history, as done in previous works, is far from sufficient
and can lead to substantial errors. One needs to not only adapt the amplitude of the
kSZ spectrum to CMB data, but also its shape. We can confirm a direct linear relation
between the amplitude of the spectrum at ` = 3000 and reionisation parameters such as
the midpoint zre or the duration ∆z, which explains the somewhat unexpected fact that
M8 exhibits much more kSZ power than M10. However, the parameters of this relation,
and particularly the slope, change from one simulation to another. Therefore, there cannot
be a relation giving D3000 from ∆z and zre and valid all the time, as suggested in Battaglia
et al. (2013). In Table 3.1, we give the multipole `max at which the kSZ spectrum reaches its
maximum for each simulation. In the past, this value has been related to the characteristic
size of ionised bubbles during reionisation (McQuinn et al. 2005; Iliev et al. 2007b; Mesinger
et al. 2012). Using the random mean free path algorithm to estimate the bubble sizes in
their simulations (Mesinger 2010), Hutter et al. (2020) confirm what we could already guess
from the ionisation fields shown in Fig. 3.1: at all times, rsage SFR exhibits larger ionised
bubbles on average than the other two simulations. Here, we notice that the rsage SFR

simulation has the smallest value of `max among the three rsage simulations, corresponding
to the largest angular scales: this seems to confirm the relation between `max and the bubble
sizes. Additionally, the same conclusion can be drawn from the 21CMFAST results: M10,
which shows the largest ionised bubbles compared to the two other runs (see Fig. 3.1),
also has the smallest `max value. In the past, this relation has been established in a purely
empirical way. In the next Section, we will look for a physical interpretation of this result.
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3.2.4 Physical interpretation

In this Section, we try to give a physical interpretation of the two parameters used to
derive the kSZ angular power spectrum and to describe the evolution of the power spectrum
of free electrons density contrast in terms of α0 and κ. To do so, we look at an analytical
derivation of Pee(k, z) for a toy model. Consider a box of volume V = L3 filled with n fully
ionised bubbles of radius R, randomly distributed throughout the neutral background, so
that their centres are located at ai for i ∈ {1, n}. The density of free electrons in the box
follows

ne(r) =
n̄e
f

n∑
i=1

Θ

(
|r − ai|
R

)
, (3.16)

where Θ (x) is the Heaviside step function, n̄e is the mean number density of electrons in
the box and f the filling fraction of the box (here, f = xe). n̄e/f is the number of electrons
in one bubble divided by its volume and, ignoring overlaps, f = 4/3πR3n/V . Consider
the electron density contrast field δe on which Pee(k, z) is built:

δe(r) ≡ ne(r)

n̄e
− 1 =

1

f

n∑
i=1

Θ

(
|r − ai|
R

)
− 1, (3.17)

represented on Fig. 3.6 for one of the six EMMA simulations used in this work. δe Fourier–
transforms into

δ̃e(k) =
L3

n
W (kR)

n∑
i=1

e−ik·ai , (3.18)

where W (y) = (3/y3) [sin y − y cos y] is the spherical top hat window function. Using this
expression, and following Bharadwaj & Pandey (2005), the power spectrum of the electron
density contrast field writes:

Pee(k) =
4

3f
πR3W 2(kR), (3.19)

which has units Mpc3. Fig. 3.9 gives an example of such a power spectrum. We have
generated an ionisation field made of enough bubbles of radius R = 15 px = 5.5 Mpc6 to
reach a filling fraction f = 1% in a box of 5123 pixels and side length L = 128/h Mpc. We
compare the expression in Eq. (3.19) with power spectrum values computed directly from
the 3D field and find a good match. The shape is very similar to the Pee(k, z) spectrum
shown in the right panel of Fig. 3.6 for EMMA at the early stages of reionisation: despite
its simplicity, this model seems to be a good description of Pee(k, z).

Let’s look into the structure of this spectrum in more details. On very small or very

6The bubble radii actually follow a Gaussian distribution centred on 15 px with standard deviation
2 px.
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Chapter 3. Small-scale reionisation and local history

Figure 3.9: Free electrons density contrast power spectrum for a box filled with enough bubbles
of radius R = 15 px = 5.5 Mpc to reach a filling fraction f = 1%. Points are results of a numerical
computation of the power spectrum, compared to the theoretical model (solid line). The dotted
vertical line corresponds to k = 1/R, the dashed vertical line to 91/4/R, the dashed horizontal line
to 4/3πR3/f and the tilted dashed line has slope k−4.

large scales, the window function behaves as:

W (y) ∼ 3

y3
× y3

3
= 1 as y → 0

W (y) ∼ 3

y3
× y =

3

y2
as y →∞.

(3.20)

Thus, on small scales, the toy model power spectrum decreases as k−4 (see tilted dashed
line on the figure). This is different to the evolution empirically chosen in Eq. (3.13), where
the power to decrease as k−3, because in our simulations small ionised regions will keep
appearing as new sources light up, maintaining power on scales smaller than the typical
bubble size. Additionally, in the simulations, the density resolution will allow correlations
between regions within a given bubble, as can be seen in the δe field of Fig. 3.6, which will
add power to the spectrum on small scales.

For k > 91/4/R, corresponding to the intersection point of the horizontal and tilted
dashed lines on Fig. 3.9, the power starts dropping. In the parameterisation given in
Eq. (3.13), the drop-off frequency roughly corresponds to κx−1/3

e , and we can therefore
draw the parallel κx−1/3

e ∝ 1/R. This confirms the intuition we had for a relation between
the cut-off frequency and the typical bubble size (as there is no power above κ, there
must be no ionised regions smaller than 1/κ). Interestingly, Xu et al. (2019) find a similar
feature, also related to the typical bubble size, in the bias between the H i and matter fields.
On the right panels of Fig. 3.8, we show the evolution or rmin(z) ≡ 2πxe(z)

1/3κ−1 as a
function of redshift for each simulation. Simulations with on average larger bubbles (rsage
SFR compared to rsage const, M10 compared to M8) also have higher values of rmin for
a given ionisation level, corresponding, in turn, to smaller κ values (see Table 3.1). Now,
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how can we relate κ to `max? Basic mathematics can give us a rough idea. By definition,
`max is the multipole at which C` is maximum, therefore its derivative dC`/d` = 0 for
` = `max. Ignoring the k = 0 cases, according to Eq. (3.7), this corresponds to k = `/η

such that ∂Pee(k, z)/∂k = 0, and so to scales k < κ. As a confirmation, we compute the
patchy kSZ power spectrum for fixed xe(z) and α0 but let κ values vary and find a clear
linear relation between κ and `max, shown on the left panel of Fig. 3.10. Previous results on
the six high-resolution simulations, rsage and 21CMFAST lie along this line; this relation
is therefore valid for all types of simulations. Such a relationship means that a detection
of the patchy power spectrum in CMB observations would give an estimate of `max, giving
access to κ and consequently to the evolution of the typical bubble size.

Let’s now turn to α0. On large scales, the toy model gives Pee(k) ∼ 4/3πR3/f , constant
with k (dashed horizontal line on Fig. 3.9). It is inversely proportional to the filling fraction
f and therefore has larger global amplitude earlier in reionisation. Drawing a parallel with
our parameterisation of Pee(k, z) in Eq. (3.13), we have α(z) ≡ α0x

−1/5
e ∝ R3/xe(z). This

equivalence is easy to interpret: as a measure of the amplitude of the power spectrum of
the contrast density, α is a measure of the variance in the field (remember that the contrast
field is defined as δe(r) + 1 = ne(r)/n̄e and n̄e ∝ f is the mean electron number density).
When the filling fraction is very small, only a very small numbers of ionised bubbles live in
an otherwise neutral box, and the variance is very high. On the contrary, when the filling
fraction is ∼ 50%, the box is filled in a rather homogeneous way, and the variance is very
low. Naturally, α0 will also depend on the bubble size: for a given filling fraction, many
small bubbles will cover the neutral background more homogeneously than a few large
bubbles and lead to a smaller variance, so a smaller α0 value. This idea is similar to what
was observed in Sec. 3.1 when defining σloc. This relation can also explain the correlation
observed between α0 and κ when fitting Eq. (3.15) to data (recall that R ∝ 1/κ).

Since α0 is independent of redshift, it will be a pre-factor for the left-hand side of
Eq. (3.12), and we therefore expect a strong correlation between this parameter and the
maximum amplitude reached by the spectrum Dmax. We confirm this intuition by fixing
the reionisation history and κ but varying α0 on the range 3.0 < logα0 < 4.4 and compar-
ing the resulting spectra. Results are shown on the right panel of Fig. 3.10: there is a clear
linear relation between these two parameters and α0, but in this case results for rsage and
21CMFAST do not follow the correlation. Interestingly, the shape of the different resulting
kSZ power spectra is strictly identical (namely, `max does not change when varying α0),
hinting at the fact that `max depends only on κ and not α0 or reionisation history. There-
fore it will be possible to make an unbiased estimate of κ from the shape of the measured
spectrum. The rsage simulations show that, for a similar reionisation history, a larger
value of α0 will lead to a stronger kSZ signal; but looking at 21CMFAST, we found that
an early reionisation scenario can counterbalance this effect and lead to high amplitude
despite low α0 values. This corroborates the results of Mesinger et al. (2012), which find
that the amplitude of the spectrum is determined by both the morphology (and so the α0

value) and the reionisation history. Therefore, fitting CMB data to our parameterisation
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Figure 3.10: Left panel: Evolution of the peaking angular scale of the patchy kSZ power spec-
trum `max for one given reionisation history but different values of the κ parameter. Right panel:
Evolution of the maximum amplitude of the patchy kSZ power spectrum Dmax for one given reion-
isation history but different values of the α0 parameter. On both figures, the red dotted line is the
result of a linear regression and inferences are compared to results for different simulations.

will likely lead to strongly correlated values of α0 and parameters such as ∆z or zre. Other
methods should be used to constrain the reionisation history and break this degeneracy,
such as constraints from the value of the Thomson optical depth, or astrophysical con-
straints on the IGM ionised level. Conversely, 21cm intensity mapping should be able to
give independent constraints on α0.

With this new formalism, it will be possible to derive for the first time the amplitude
and shape of the patchy kSZ power spectrum from CMB data. Here, the reionisation
history is included in the determination of the shape, giving more consistent results. In-
deed, currently, different prescriptions of xe(z) are used at different stages of the CMB
data analysis: one is included in the kSZ template, another in the scalings giving D3000

in terms of zre and ∆z, while the tanh parameterisation of Eq 2.4 is used to derive τ .
Reciprocally, measuring the kSZ signal will allow us to infer the values of the two parame-
ters of Eq. (3.13), providing detailed information about the physics of reionisation: κ will
constrain the growth of ionised bubbles with time and α0 the evolution of the variance
of the ionisation field during EoR, both being related to the ionising properties of early
galaxies. The complex derivation of the kSZ signal, based on a series of integrals, leads to
correlations between our parameters. For example, a high amplitude of the spectrum can
be explained either by a large value of α0 due to a high ionising efficiency of galaxies, or
by an early reionisation. Such degeneracies, however, could be broken by combining CMB
data with other observations: astrophysical observations of early galaxies and quasars will
help grasp the global history of reionisation and constrain parameters such as ∆z and
zre, while 21cm intensity mapping will help understand reionisation morphology, putting
independent constraints on α0 and κ.

However, power spectra overlook the non-Gaussianity of the signal they describe, and
the 21cm signal is expected to be significantly non-Gaussian during EoR, especially in the
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very early and very late stages (Watkinson et al. 2017; Majumdar et al. 2018; Hutter et al.
2020). In order to take non-Gaussianity into account, one needs to jump to the next order
of statistics and look at 3-point correlation functions or at their Fourier counterpart, the
bispectrum.

3.3 Third statistical moment: triangle correlations and other higher-order

statistics

A Gaussian random field (GRF) g(r) is fully described by its first and second-order
statistics, such as the mean and the variance. This is why cosmologists often look at the
power spectrum of its contrast field δ(r) = g(r)/〈g〉 − 1, which has mean zero, so that all
the information about the field is enclosed in its variance, and in turn, the power spectrum
of δ(r). However, the first and second statistical moments are not sufficient to describe
non-Gaussian fields such as 21cm brightness temperature maps during reionisation. In
fact, a GRF and a strongly non-Gaussian field can share the same power spectrum despite
having very different structures in real space. This is illustrated in Fig. 3.11, where we
show two ionisation fields, one with a clear bubble structure (upper panel) and a GRF
(lower panel).

Figure 3.11: Illustration of two fields having very different real-space structures (left panels) but
identical power spectra (right panels). The bottom field is a Gaussian random field.

3.3.1 The 21cm bispectrum

Some works have focused on the Fourier transform of the 3-point correlation function (3-
PCF), the bispectrum, to extract information about the non-Gaussianity of the 21cm signal
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during reionisation. Consider the spatial fluctuations of the 21cm brightness temperature
field, given in Eq. (1.18): δ21(r) = δTb(r)/〈δTb〉 − 1. The bispectrum B of this field is
defined as

〈δ21(k1) δ21(k2) δ21(k3)〉 = (2π)3 δ(k1 + k2 + k3)B(k1,k2,k3) (3.21)

where δ is the Dirac delta function and the brackets denote an ensemble average. Be-
cause the 21cm field is a real field, and due to parity invariance, the bispectrum is real
(Shimabukuro et al. 2016; Majumdar et al. 2018). It measures the excess probability be-
tween three points forming a triangle in Fourier space and will therefore, in contrast to the
power spectrum, depend not only on the amplitude of the k vectors but also their direction.
For this reason, it is difficult to represent, and different works have chosen different ap-
proaches. Most authors choose to separate the shapes of the triangle the wave-vectors form.

In their work, the first one to estimate the 21cm bispectrum, Shimabukuro et al. (2016)
choose to consider the amplitude of a normalised, dimensionless bispectrum k6|B(k)| where
the ratio of the amplitudes of the three wave-vectors varies: k1 = k2 = k3 gives equilateral
triangles, k1 = k2 = 2k3 gives folded triangles and k3 = 10k1 = 10k2 squeezed triangles.
The authors find that the main contribution to this bispectrum is matter fluctuations and
they are able to relate features in the 21cm power spectrum to some seen in the bispectrum.
For example, the squeezed bispectrum will give information about small scales, related to
the shorter side of the triangle; large scales, corresponding to the two larger sides; and about
the correlations between the two. Therefore, B(10k, 10k, k) combines the information
we can extract from P (10k) and P (k), and includes extra information about the cross
correlations between the two scales. In a follow-up paper, the authors further show that
combining bispectrum with power spectrum information can give improved constraints on
astrophysical parameters related to reionisation such as the virial temperature of halos
or the ionising efficiency of light sources, as well as reduce the degeneracy between them
(Shimabukuro et al. 2017).

However, because this approach considers the amplitude |B| of the bispectrum only,
it overlooks the information that its sign potentially carries. In their work, Majumdar
et al. (2018) therefore choose to look at the raw bispectrum, without any normalisation,
and consider three different shapes of triangles, according to the geometry illustrated in
Fig. 3.12. Let k3 = −k1 − k3 to satisfy the Dirac delta condition in Eq. (3.21) and θ the
angle between k1 and k2, then

• Stretched triangles are such that θ < 2π/3 (1 ≥ cos θ > 1/2),

• Equilateral triangles such that θ = 2π/3 (cos θ = −1/2) and

• Squeezed triangles have θ > 2π/3 (−1 ≤ cos θ < −1/2).

The authors find that the equilateral bispectrum is negative on a large k range during the
EoR, and that the negative amplitude increases with the ionised fraction during the core of
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Figure 3.12: Geometry of the bispectrum in Fourier space.

the process, as the field gets further and further from a GRF. The authors further confirm
that the bispectrum of isosceles triangles, mainly squeezed ones, captures correlations
between small and intermediate scales, that they relate to the presence of neutral bridges
or ionised tunnels in the field. For all triangle shapes, positive values of the bispectrum
seem to stem from matter fluctuations, or cross correlations between the ionisation field
and the matter field. Therefore during reionisation, most of the bispectrum signal stems
from H i fluctuations rather than matter ones (Majumdar et al. 2018; Hutter et al. 2020).

The sign of the bispectrum is essential because it tells us about the structure of the
underlying field. It can be interpreted in terms of inference patterns: in two dimensions, the
bispectrum of three k-vectors forming an equilateral triangle is built upon the inference
pattern of three waves with equivalent configurations, that is a spherically symmetric
concentration of signal (see Lewis (2011) and Watkinson et al. (2019) for an enlightening
illustration of this). In 3D, a strong signal from the equilateral bispectrum will stem from a
field made of filaments with circular cross-section. Filaments with an above-average density
will yield a strong positive signal, whereas under-dense filaments will yield a negative
bispectrum (Watkinson et al. 2019). Similarly, the bispectrum of flattened triangles will
be enhanced in the presence of filaments with an ellipsoidal cross section, that tend towards
planes.

Further works choose to focus on a dimensionless bispectrum, normalised by the power
spectrum in order to isolate the non-Gaussianity:

b(k1, k2, k3) =
B(k1, k2, k3)√

k1k2k3P (k1)P (k2)P (k3)
. (3.22)

This new bispectrum is very efficient at tracing the morphology of the underlying field and
can so be used to estimate the contribution of QSOs and X-ray binaries to X-ray heating
during the cosmic dawn (Watkinson et al. 2019) or the morphology of ionised regions dur-
ing EoR (Hutter et al. 2020). In particular, it is possible to relate the scale at which the
equilateral bispectrum changes sign to the typical size of ionised bubbles at this time.

These results are very interesting prospects for future 21cm intensity mapping observa-
tions but are still mainly theoretical and some further work is required to understand how
exactly a tool such as the bispectrum can be used with interferometric observations (Trott
et al. 2019). In particular, one needs to understand the impact of foreground removal
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on the non-Gaussianity of the signal (Watkinson et al. 2020). The main disadvantage of
the bispectrum is its interpretation: because it is a function of three three-dimensional
parameters and because it has a complex structure which holds most of the physical infor-
mation, it is difficult to get a simple picture of it. In this perspective, we will now look at
a custom version of its real-space counterpart, the 3-point correlation function, modified
in order to be easily read and to pick up the bubbly structure of the ionisation field during
reionisation.

3.3.2 The triangle correlation function of phases: definition

Let a 3D real ionisation field x(r) of volume V and its direct Fourier transform x̂(k) =

|x̂(k)| eiφ, which is a complex number with an amplitude and a phase φ = arg [x̂(k)]. The
power spectrum of this field is defined by

P (k) = x̂(k) x̂(−k) = x̂(k) x̂?(k) = |x̂(k)|2 (3.23)

where the asterisk denotes the complex conjugate and we have used the symmetry of the
Fourier transform of a real field. Because of this very symmetry, when computing the
power spectrum of a field, we lose the information carried in the phase of the Fourier
transform. Yet, phases are essential to characterise the structure of a field. Consider
the two field presented in Fig. 3.11. They have the same power spectrum, meaning that
the amplitude of their Fourier transforms are identical. However, the second field (lower
panel) was obtained by shuffling the Fourier phases of the first one: randomising the phases
removes the geometrical structure of the field. In other words, the Fourier phases of a field
characterise its non-Gaussianity. In the rest of this section, we therefore choose to focus
on what we call the phase factor of our field, defined by:

ε̂(k) =
x̂(k)

|x̂(k)|
= ei arg [x̂(k)]. (3.24)

By construction, the phase factor will have an amplitude of one, so that its 2-point corre-
lation function (2-PCF) – and consequently its power spectrum, will vanish. The simplest
statistics related to ε̂(k) we can find is then its 3-PCF, which is the inverse Fourier trans-
form of the bispectrum, defined by:

B(k, q) = x̂(k) x̂(q) x̂(−k− q), (3.25)

and in particular for the phase factor:

Bε(k, q) = ε̂(k) ε̂(q) ε̂(−k− q) =
B (k, q)

|B (k, q) |
. (3.26)

Note that for a mildly non-Gaussian field, it is possible to relate the bispectrum of the
phase factor with the normalised bispectrum defined in Eq. (3.22) (Wolstenhulme et al.
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x(r) ε(r)

Figure 3.13: Examples of phase information in real space. Left panels represent the ionisation
field x(r) and the right panel the inverse Fourier transform of the corresponding phase factor ε̂(k).
Top row: Toy model with randomly distributed ionised bubbles. Bottom row: Output of the
21CMFAST simulation. Both boxes have 5122 pixels and side length L = 400 Mpc.

2015). Fig. 3.13 illustrates how phases carry structure information by comparing a field to
the inverse Fourier transform of its phase factor ε(r), a tracer of phase information in real
space. The two fields considered are first an ionisation field made of randomly distributed
ionised disks on a neutral background (top panels) and second the ionisation field extracted
from a run of 21CMFAST at z = 7.8 and global ionised fraction xH ii = 0.54. We see that
phases mostly preserve the edges of the ionised regions.

The 3-point correlation function of the phase factor ε(r) is defined by

Ξ (r, s) =
V 2

(2π)6

∫ ∫
d3k d3q ei(k·r+q·s) B (k, q)

|B (k, q) |
. (3.27)

Previous works have used modified versions of this function, for two vectors r = −s, in a
bid to characterise the filamentary structure of the cosmic web (Obreschkow et al. 2013;
Eggemeier et al. 2015; Wolstenhulme et al. 2015). Here, conversely, we target the bubbly
structure of the ionisation field during reionisation, and therefore consider two vectors r

and s forming an equilateral triangle, as it is the three-point shape closest to a sphere. In
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this case, s is just r rotated by an angle π/3 so that, in 3D:
sx =

1

2
rx −

√
3

2
ry

sy =

√
3

2
rx +

1

2
ry

sz = rz

where the 2D case is limited to the first two equations7. If we define a new vector p

according to

p =

kx + 1
2qx +

√
3

2 qy

ky −
√

3
2 qx + 1

2qy

kz + qz

 ,

we can rewrite k · r + q · s = p · r in Eq. (3.27). By taking the rotational average of this
equation, we find in dimension D (D = 2 or D = 3)

ξ∗3(r) ≡ V 2

(2π)2D

∫ ∫
dDk dDq ω (pr)

B (k, q)

|B (k, q) |
, (3.28)

where ω is the window function corresponding to the rotational average of the exponential
factor:

ω(x) =


sin (x)

x
if D = 3,

J0(x) if D = 2,

for J0(x) the Bessel function of the first kind of order 0. Numerically, we will need to
discretise the integrals so that

ξ∗3(r) =
∑
k

∑
q

ω (pr)
B (k, q)

|B (k, q) |
, (3.29)

where we have considered our density field as a periodic 2D or 3D box with physical side
length L, divided into ND cells. Each cell has a width ∆x = L/N . In Fourier space, this
box transforms into a box of same dimensions (ND) but of side length 2πN/L and spacing
∆k = 2π/L. The largest mode k = 2π/∆x has the smallest wavelength. If we assume
phases are uncorrelated below a given scale, then the modes whose wavelengths are smaller
than this scale will have random phases. When the resolution is improved, i.e. ∆x reduced,
the number of such modes increases and random phase terms are added to Eq. (3.29) so
that the signal eventually diverges. Following Obreschkow et al. (2013), we introduce a cut-
off k ≤ π/r on the sums of Eq. (3.29) to limit this number. Similarly, when increasing the
size of the box L, we add modes with wavelength larger than the largest correlation scale
within the box, and therefore add random phase terms to the sum. Because ∆k = 2π/L,
the number of modes scales as LD and s(r) diverges as L3D/2. As discussed in Obreschkow

7Note that in the actual computation of the triangle correlations function, we will consider rotations
not only around the z-axis but also around the other two axes.
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et al. (2013), we introduce the pre-factor (r/L)3D/2 to Eq. (3.29) to remove this divergence.
These changes applied to the isotropic modified 3-PCF ξ∗3(r) define the triangle correlation
function of phases (TCF):

s(r) =
( r
L

)3D/2 ∑
k,q≤π/r

ω (pr)
B (k, q)

|B (k, q) |
. (3.30)

s(r) is a complex function but, similarly to the bispectrum, its imaginary part will sum
to zero. This object was first introduced in Gorce & Pritchard (2019), reproduced in
Appendix A.2. The code developed to compute the TCF is available on my GitHub page.

All these derivations have been done with x(r) being the ionisation field xH ii. If we
consider the neutral field xH i, we have xH ii = 1 − xH i and x̂H ii(k) = −x̂H i(k) which
we can plug back into the equations above to find sH ii(r) = −sH i(r). Therefore, when
applied to a mostly ionised field containing a few remote neutral islands, the correlations
dominating the signal will be related to H i regions and the signal will be negative. In
particular, because 21cm interferometric images trace the neutral gas in the sky, if we
apply our method on 21cm brightness temperature maps, we obtain a negative signal.
This also implies that during the middle stages of the reionisation process, positive and
negative (respectively, H ii and H i) correlations overlap, and the TCF flattens to zero.

3.3.3 The triangle correlation function of phases: application

Now that we have derived our new statistics, we will test it on ionisation fields and see
what information we can extract from it. We start with toy models, where fully ionised
bubbles are randomly distributed on an homogeneous neutral background, to characterise
the function. Then we move on to actual reionisation simulations, such as 21CMFAST and
rsage.

Proof of concept on toy models

We generate boxes of dimension N2 filled with randomly distributed disks with pixel
value 1 corresponding to H ii regions. Because the UV photons emitted by early galaxies
have a very short mean free path in the surrounding neutral IGM, the boundary between
ionised and neutral regions is expected to be sharp (Liu et al. 2016), so that a binary model
where ionised bubbles have xH ii = 1 and neutral regions xH ii = 0 is a good transcription
of the reality of the IGM ionisation field8. Generated bubbles are allowed to overlap, and
periodic boundary conditions are respected throughout the box. We then compute the
triangle correlation function (TCF) in Eq. (3.30) for different correlation scales and plot
the result on Fig. 3.14 for 20 realisations of a box filled with 70 binary bubbles of radius
10 (in pixel units), equivalent to R = 7.8 Mpc, so that the global ionised fraction of the

8Note that we have also tried the case where the ionised regions are 2D Gaussian distributions, in order
to account for partially ionised regions. The structure of the resulting signal is roughly the same, but with
weaker amplitude.
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Figure 3.14: Triangle correlation function for a box of 5122 pixels and side length L = 400 Mpc
filled with 70 binary bubbles of radius R = 10 px (in blue) or filled with a Gaussian random field
(in red). The shaded areas correspond to the 95% confidence interval as the function was computed
for 20 different realisations of the same box.

Figure 3.15: Illustration of basic geometry to understand the triangle correlation function. The
right-hand sketch is adapted from Watkinson et al. (2019).

box is xH ii = 8%. The TCF of this field is compared to the signal obtained for 20 boxes
of same dimensions but filled with a Gaussian random field.

We see a strong peak in the signal at scales r ' 7 Mpc, i.e. smaller than the radius size.
We would expect the TCF to peak at

√
3R as it probes equilateral triangles inscribed in the

binary disks of the box, which have a side length of
√

3R, as illustrated on the left panel
Fig. 3.15. However, the wave-vectors which give signal are the ones whose wavelength
is large enough to cover a whole bubble, as illustrated on the right panel of Fig. 3.15.
Such waves have k = 2π/D with D = 4R, thus we probe Fourier modes with wavelength
twice larger than expected, corresponding to real-space scales twice smaller than expected
(Watkinson et al. 2019). The peak is therefore observed at

√
3R/2 (dash-dotted line on the

figure). Conversely, the signal computed for the Gaussian random fields is close to zero,
confirming that the TCF is an efficient tracer of non-Gaussianity, and that is because it is
based on the phases of the signal.

Indeed, let’s take our toy moddel and compute its 2-point correlation function, its TCF
and a modified version of the TCF, which uses the full bispectrum, phases and amplitude
included:

Ξ
(1)
3 (r) =

( r
L

)3D/2 ∑
k,q≤π/r

ωD (pr) B (k, q) . (3.31)
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Figure 3.16: Comparison of results on phase correlations for two ionisation fields with identical
power spectra and dimensions (N = 512, L = 400 Mpc) but different phase information: lower
panels correspond to the field from upper panels after having reshuffled the Fourier phases. Left
panels show the 2D ionisation field in real space, middle left, middle right and right panels respec-
tively show the corresponding 2-PCF ξ2(r), the scaled modified 3-PCF Ξ

(1)
3 (r) (see Eq. 3.31), and

the triangle correlation function s(r). The vertical line marks
√

3R/2.

We then shuffle the Fourier phases of the toy model, that is replace them by random values
between 0 and 2π, and compute the corresponding 2-PCF, TCF and modified 3-PCF Ξ

(1)
3 .

Results can be seen on the upper and lower panels of Fig. 3.16 for the toy model and its
Gaussian counterpart respectively. The left panels are identical to Fig. 3.11: we see that
reshuffling the phases has made the field lose all its structure and there are no bubbles
any more. Because we kept the absolute value of the field unchanged, the 2-PCF in the
second column are exactly identical. The modified 3-PCF of Eq. (3.31) is shown in the
third column. As a statistics of order three, it includes non-Gaussian information and
we can see for the toy model a slight bump at scales corresponding to the TCF bump in
the fourth column. However, this information is washed out by Gaussian information, so
that the 3PCF of the two fields are only slightly different. Conversely, when normalising
the bispectrum by its amplitude and using the phase factor, we have kept only the non-
Gaussian information so that the TCF is close to zero for the Gaussian field, but has a
clearly defined structure, related to the bubbles forming the field, for the toy model.

From these preliminary results, we can already see some limitations in the use of the
TCF. First, for both the toy model and the GRF, the signal is very similar for all realisations
of the box at small scales, but the confidence intervals become wider at larger scales. This
will remain true for any size of box, any resolution and any filling fraction. Second, we
observe that the higher the filling fraction or the higher the radius, the flatter the TCF
signal: bubbles overlap more and more and locating them individually to get a clear signal
becomes difficult. The TCF will therefore be better at identifying bubble sizes in the very
early or very late stages of reionisation, as we will see in the next paragraph.
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Applications to simulations

Now that we have characterised the TCF on toy models, we apply it to more physical
ionisation fields: firstly runs of the semi-numerical simulation 21CMFAST, and secondly
the three rsage simulations used earlier in this chapter (see App. B for details). In these
simulations, the bubbles are no longer randomly distributed throughout the box and cor-
relations between the locations of ionised regions will appear in the signal. Additionally,
the ionised regions will not have the perfect spherical shape they had in the toy model.

With 21CMFAST, we generate a dark matter box with sufficient resolution to obtain
a H ii field of 5123 pixels and side length L = 400 Mpc with Planck Collaboration et al.
(2016b) cosmology. The resulting reionisation history, shown in Fig 3.18, has its midpoint
at z = 7.9 for a duration of ∆z = z (xH ii = 0.10) − z (xH ii = 0.99) = 4.9 and gives
τ = 0.067. The output of the simulation is a 3D H i field but we choose to analyse 2D
slices to be closer to actual observations. We also convert the given H i field into a binary
H ii field in order to get positive triangle correlations when most of the field is ionised
and negative correlations when the sky is mainly neutral, as explained earlier. Fig. 3.17
presents the TCF of single 2D slices at redshifts z = 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.4 and 6.2

corresponding to global ionisation levels of xH ii = 0.09, 0.10, 0.18, 0.29, 0.49, 0.80, 0.97 and
0.99 respectively, along with a picture of the corresponding H ii field. For each snapshot,
results are shown with variance estimated from the TCF of 20 Gaussian random fields of
same dimensions: again, the signal is more significant on small scales. These errors give
an idea of the reliability of the signal depending on the scale but they are incomplete.
Indeed, the TCF signal will be strongest for very non-Gaussian fields at the very early or
very late stages of reionisation, when isolated features such as a small number of purely
ionised regions or a few leftover neutral islands are present. Consider the z = 6.2 slice on
Fig. 3.17: the strong signal comes from the remote neutral islands seen in the field. These
islands are isolated features specific to this region of the simulation and if we compute the
TCF from averaging the signal over the N slices of the box, it will likely be washed out by
the overall homogeneously neutral field. This prevents us from putting error bars on our
results, an issue that will be further discussed in Sec. 4.1.

At high redshift, before ionised regions start percolating, we see on Fig. 3.17 that
the TCF has more power at small scales but no clear peak. This is likely due to the
variety of H ii regions: many small ionised regions around young sources cover the neutral
background relatively homogeneously and there is no typical bubble size. By looking at the
signal-to-noise ratio (SNR), we can infer an upper limit on the sizes of the ionised regions:
at z = 13, scales smaller than 8.9 Mpc contribute for 80% of the cumulative SNR; at
z = 12 and z = 11, this upper limit increases respectively to 10.8 Mpc and 11.2 Mpc. The
structure of the ionisation field at high redshift directly relates to the way the 21CMFAST
algorithm is constructed. The angular structure of the ionised regions can be related to
the use of excursion-set theory: as soon as a region has produced enough photons to ionise
all its baryons, then it is considered ionised. The fact that there are many small ionised
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Figure 3.17: Triangle correlations for 2D slices of our simulation at various redshifts. Error bars
correspond to the variance estimated from a Gaussian random field of same dimensions.
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Figure 3.18: Reionisation history of our simulation. The dotted line corresponds to the midpoint
of reionisation, i.e. z = 7.9, and the shaded region to global ionised fraction between 25% and
75%. The starred points are the stages of reionisation represented above.
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Figure 3.19: Triangle correlations for individual 2D slices of the rsage const simulation at
various redshifts.

regions rather than a few large ones is related to the value of the Mturn parameter used,
108 M�. Now let’s turn to the rsage const simulation: Fig. 3.19 shows the TCF of
individual slices taken at xH ii = 0.05, 0.10, 0.90 and 0.99. Here, the high-redshift signal is
still low because of the variety of ionised region sizes, but there is a visible preferred scale
at xH ii = 5%, around r ∼ 3 Mpc. It could also be interesting to look at simulations where
reionisation is led by Active Galactic Nuclei (AGN): ionising sources are more scarce and
have a better ionising efficiency, leading to a topology more similar to the toy models used
above.

Later on, when the global ionisation fraction reaches values between 25% and 75%,
negative signal coming from neutral regions overlaps with the positive signal from ionised
regions. The TCF of our 21CMFAST simulation flattens, and cannot give information
about the morphology of the field anymore. However, measuring a flat signal from actual
data could be interpreted as the reionisation process being in its middle stages. For rsage,
the signal is still mostly flat for xH ii = 0.90, but slightly negative because the field is now
mostly neutral. For z > 7, most of the 21CMFAST simulation is ionised and only a few
remote neutral islands remain. We see on Fig. 3.17 that the sizes of these neutral islands
are efficiently picked up by the TCF. For z = 6.2, there is a very clear negative peak
at scales r = 7.7 Mpc which correspond to a radius size of R = 9.2 Mpc, once rescaled
by
√

3/2, corresponding to the size of the neutral zone when we estimate it by eye. For
z = 6.4, we see two clear peaks in the signal, corresponding to the two sizes of ionised
regions seen in the corresponding real space field. Indeed, when we artificially cover one
of the two neutral zones, and compute the TCF of the modified field, we find that the
corresponding peak disappears. The first peak is spread over scales 4.6 < r < 7.8 Mpc i.e.
5.5 < R < 9.3 Mpc, while the second one is more narrow, centred around 20.2 Mpc. For
comparison, we empirically find that we can sieve the two larger neutral islands in the field
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Figure 3.20: Triangle correlations averaged over 60 slices cut through the three rsage simulations
at xH ii = 0.10. Figure never published.

with disks of radius ∼ 23 px ∼ 18 Mpc; whereas the smaller ones can fit in disks whose
radii range from 7 Mpc to 12 Mpc. We observe a similar behaviour in the TCF of rsage
const at xH ii = 99%. However, because of the lower resolution of the simulation, the
neutral islands are square-shaped and the TCF signal is noisy. This motivates a further
study of how well the TCF performs compared to common BSD algorithms, presented in
Gorce & Pritchard (2019).

We saw on Fig. 3.1 that the three rsage simulations have a very distinct morphology,
with spherical ionised regions, more or less large depending on the model of fesc used. If
our previous interpretation of the TCF as a bubble size algorithm is right, these differences
should be traceable with the TCF. We therefore compute the triangle correlations of 60
random slices cut through the three rsage simulations at xH ii = 0.10 and show on Fig. 3.20
the mean signal for each simulation. The signal is very noisy on scales larger than 15 Mpc

and identical for the three simulations, confirming that it is a numerical effect due to box
size and resolution. Conversely, on correlation scales smaller than 15 Mpc, the three sim-
ulations give very different signals: rsage SFR, which has the largest bubbles on average,
has a TCF which bumps at the largest scales (r ∼ 5 Mpc). Then comes rsage const and
finally rsage fej, similarly to what was found in the previous two sections. Interestingly,
all three signals exhibit a bump in amplitude around r ∼ 1.5 Mpc, which we interpret
as the size of newly formed ionised regions. These results are given without error bars
for clarity. Indeed, including the variance between the signal measured in the 60 different
slices, the TCF of the three simulations overlap. That is because the box is too small and
the sample variance too large. This result is a proof-of-concept, but a confirmation using
a larger simulation would be useful.

In this section, we have seen that non-Gaussian information is essential to understand
the reionisation process in its entirety, and in particular its morphology. Third-order
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statistics, such as the 21cm bispectrum and the triangle correlation function, are an efficient
tool to extract this type of information from data as they are computed directly from
observed visibilities, in Fourier space. As we will explain in Sec. 4.1, because it is based
on closed triangles made of the phases of the signal, the TCF in particular will benefit
from reduced observational errors due to the closure phase relation. This will be a clear
advantage compared to usual bubble size distribution algorithms, which require good-
quality real-space data. Indeed, in the very early or very late stages of EoR, the TCF can
be used to infer a typical size of ionised bubbles or neutral islands. The shape and sign
of its signal can also be used to follow the global reionisation process: it will be strongly
positive at high redshift, flat and close to zero in the middle stages of EoR and peaking at
negative values at low redshift. If it is robust to instrumental effects such as instrument
noise and resolution, was we will investigate in the next chapter, it will be an ideal tool to
apply to 21cm intensity maps.

***
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3.4 Chapter conclusion & discussion

In this chapter, we have seen how CMB and 21cm data can be used to learn about the
morphology of reionisation and, in turn, about the physical properties of early galaxies,
here represented by different versions of the rsage and the 21CMFAST simulations. On
21cm intensity mapping data, sample variance can be used to our benefit in a tool as
simple as a one-point statistic to constrain the emissivity of light sources. More complex
statistical objects, designed for the study of reionisation with interferometric data, such as
the triangle correlation function of phases, can tell us about the IGM global ionisation level
and typical bubble sizes. However, if 21cm observations are an exciting prospect to learn
about local reionisation, it is not the only one. Small-scale CMB data, and in particular
the new parameterisation of the patchy kSZ signal introduced in this chapter, can tell us
about the astrophysics of the early Universe. Additionally, we have shown in Chapter 2
that observations of high-redshift galaxies and quasars, supplemented by large-scale CMB
data, are essential to place constraints on the IGM ionisation level.

Another promising perspective is cross-correlations of the 21cm signal with other high-
redshift data sets (Furlanetto & Lidz 2007). Indeed, cross-correlations can reduce system-
atic uncertainties, a major issue of 21cm observations, help confirming the cosmological
origin of the signal and provide an additional insight on the nature of the sources. Many
works have already focused on two-point cross-correlations between the 21cm signal and
galaxy surveys such as surveys of Lyman-α emitters (LAEs). LAEs being reionisation
sources, they should sit in ionised regions and have negative correlations with the 21cm
signal (Vrbanec et al. 2016; Sobacchi et al. 2016). Additionally, LAE surveys, which are
booming in numbers, offer precise redshift measurements (Hutter et al. 2017). Others have
considered cross-correlations between the kSZ and 21cm signal, which should similarly be
negative (Tashiro et al. 2011). In this case, the squared kSZ field needs to be considered
to avoid signal suppression due to the random direction of the electrons proper velocities
around their host cluster. This issue can be overcome by looking at the next order, fore
example kSZ-kSZ-21cm correlations (La Plante et al. 2020). The increased sensitivity of
futuristic small-scales CMB experiments such as CMB-S4 should also give access to spatial
fluctuations in the Thomson optical depth, which could in turn be cross-correlated with
the 21cm signal (Dvorkin & Smith 2009).

Nevertheless, all these new methods require good-quality 21cm data, which will be
difficult to obtain because of thermal noise and instrument resolution, but also because
of the poorly known foregrounds hiding the cosmological signal. Additionally, sample
variance, which was used to our benefit in Sec. 3.1, will add errors to any result inferred
from interferometric observations because of the limited field of view of the instrument.
Finally, many model uncertainties, either on the sources of reionisation or the nature of the
IGM at high redshift, can impact the constraints on the process we obtained in Chapter 2.
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Limitations and prospects of reionisation
study

There are many exciting prospects for the study of reionisation. To only name a few,
improved sensitivity in CMB-S4 experiments will allow a spotless detection of the kSZ
power from reionisation, giving access to crucial information about the morphology and
the timeline of the process. Additionally, current 21cm global experiments are giving the
first constraints on the 21cm power spectrum and future intensity mapping experiments
will give direct maps of the ionisation state of the IGM throughout cosmic history. We
have seen in the previous chapter that, in order to make the most out of the upcoming
data, one needs to develop new and clever statistical tools, able to handle the large amount
of data produced by these experiments. However, the high degree of precision of future
observations means that model uncertainties, which were previously washed out by low
statistics, will now be a limiting factor in our analyses. For example, we have seen that
making good use of high-` observations of the kSZ power spectrum to constrain EoR re-
quires an improved modelling of its shape and amplitude. Moreover, as these experiments
are pushing their resolution to an extreme point, and looking at very faint and distant
objects, instrumental effects will be a major obstacle to overcome in order to use their
data.

In this chapter, we focus on the observations- and then model-related limits of the
methods described in previous sections. On the observations side, we focus on the prob-
lem of sample variance for 21 observations, as well as on the impact of foregrounds and
instrumental effects. We show that the tools introduced in the previous chapter, such as
the triangle correlation function, are robust to some of these effects and therefore are a
strategical choice for future data analysis. However, more work is still required in this
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direction. We finally consider model-related uncertainties, highlighting the way the value
of the Thomson optical depth measured from CMB varies depending on the nature of the
data used and on the prescription chosen for the reionisation history xe(z). We come back
to the results of Sec. 2.3, which combined currently available data on reionisation to give
a comprehensive scenario, and assess their dependence on the poorly-known parameters
used to derive a history of reionisation, such as the escape fraction of ionising photons.
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4.1 Observations-related limits

In this section, we are interested in how reionisation constraints can be impacted by
observational biases. They can be intrinsic biases – such as sample variance or foregrounds,
or instrumental biases – such as sensitivity and resolution. We will focus on such limits
in the case of 21cm observations, both because they are the most anticipated EoR-related
results and because they have gigantic challenges to overcome. This does not mean however
that other observations are not impacted. We have seen in Sec. 2.3 that estimating the
photon budget for reionisation relied heavily on measuring the density of light sources in
the early Universe and, in particular, of star-forming galaxies. Too faint and too distant
objects cannot yet be observed: there are only a few points in the galaxy luminosity
function at z ≥ 10 and magnitudes fainter than M = −15 are not visible with current
telescopes. Until the new generation of telescopes, such as the James Webb telescope,
comes online, extrapolations need to be made – they will be investigated in Sec. 4.2.

4.1.1 Super-sample covariance

Sample variance is the error that comes from making a cosmological measurement from
a limited region of the sky. Because this region is not representative of the whole Universe –
it can be over-dense or under-dense compared to the mean for example, the corresponding
measurement will be over- or under-estimated. Reproducing the same measurement on
a sky patch of the same size but at a different location will lead to a different value.
Reproducing the measurement on a sky patch of same size and location but different
depth in redshift will lead to a different value. In other words, the density fluctuations
with wavelengths larger than the size of the sky patch will not be captured.

In the case of galaxy surveys, this observational bias will translate into larger error bars
on cosmological parameters. Similarly, the amplitude of the 21cm power spectrum or of the
global signal will be impacted, for example if the field of view of the interferometer is too
narrow (Muñoz & Cyr-Racine 2020; Kaur et al. 2020). Here, I will describe super-sample
covariance (SSC) in the case of galaxy surveys, because it is the subject for which this
problem has been investigated in most depth and the underlying formalism is very similar
to the one dedicated to 21cm observations. Additionally, as part of the Euclid summer
school I attended in 2019, I have been involved in a project aiming at evaluating the im-
pact of sample variance on cosmological parameter estimations with the Euclid satellite
(Laureijs et al. 2011), which introduced me to the problem.

Hu & Kravtsov (2003) first introduced the concept of SSC for galaxy surveys and
found that the associated error on σ8 and w was generally comparable to or greater that
the shot-noise. Notably, the statistical uncertainty on w is doubled in SZ surveys limited
to z ≤ 1. In this work, the authors consider a full-sky survey and focus on the bias stem-
ming from the limited redshift depth of the survey. Indeed, because the sky is observed in
redshift bins of finite width, some large-scale modes along the line-of-sight will be missed
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by observations. They do not take the limited sky coverage of the survey into account
as they find that the amplitude of the bias is only weakly dependent on the survey vol-
ume. However, the increased sensitivity of future surveys, such as Euclid, will lead to a
shot-noise small enough for the SSC to be the main source of error on cosmological pa-
rameters. Recent works have therefore focused on finding an efficient way to compute this
deeply non-linear effect (Lacasa & Grain 2019a). The Euclid group project I am part of
aims at giving a precise estimate of the SSC associated to the limited size of the survey,
as until now only rough approximations were used (Lacasa et al. 2018). Firstly, we have
derived the analytical expression of the partial sky SSC and implemented it in an exist-
ing fast and efficient SSC estimator, PySSC, developed by Fabien Lacasa (Lacasa & Grain
2019b)1. The next paragraph outlines the derivations and first results obtained. Secondly,
we will use this covariance matrix to see the impact of associated errors on cosmological
parameter estimations with Euclid. Final results are to be published by the end of the year.

Take two observables O1 and O2, which correspond to the integral over the line-of-
sight of, respectively, o1 and o2, such that O1 =

∫
dV1 o1 for V1 the comoving volume per

steradian. We define the super-sample covariance for these observables by (Lacasa & Grain
2019a):

CovSSC (O1, O2) =

∫∫
dV1dV2

∂o1

∂δb
(z1)

∂o2

∂δb
(z2)σ2 (z1, z2) . (4.1)

σ2(z1, z2) is the variance of the background density field defined as

σ2(z1, z2) = 〈δb(z1)δb(z2)〉 =

∫
d3k

(2π)3
W̃ (k, z1) W̃ ∗ (k, z2)Pm(k|z12), (4.2)

where W̃ is the Fourier transform of the survey window function. Its expression will vary
if we are looking at full- or partial-sky coverage. ∂o1/∂δb(z1) describes how O1 varies
with changes in the background density δb. We take O1 (resp. O2) to be the angular
power spectrum cross-correlating two LSS tracers A and B (resp. C and D) – typically,
galaxy clustering and galaxy shear. Each is measured in a redshift bin (respectively iz,
jz, kz and lz) of variable width. Let PAB(k`|z) the 3D power spectrum at k` ≡ (` +

1/2)/dc(z). By definition, oAB = WA
iz

(z)WB
jz

(z)PAB (k`|z) (resp. oCD), and if we assume
that the derivatives ∂oi/∂δb vary slowly with redshift compared to σ2(z1, z2), we can rewrite
Eq. (4.1) for the two power spectra as

CovSSC(PAB,PCD) ' ∂PAB
∂δb

(z1)
∂PCD
∂δb

(z2)×∫∫
dV1 dV2 W

A
iz (z1)WB

jz (z1)WC
kz(z2)WD

lz (z2)σ2 (z1, z2) ,

(4.3)

where WA
iz

(z) is the window function of observable A corresponding to redshift bin iz. It

1Available at https://github.com/fabienlacasa/PySSC. The partialsky branch gathers the results
of this project.
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is non-zero over the width of the redshift bin, and has unit [probe unit] · sr/(Mpc/h). We
have

∂PAB
∂δb

(z) =

∫
dV WA

iz
(z)WB

jz
(z) ∂PAB/∂δb (k`|z)

IAB(iz, jz)
(4.4)

where IAB(iz, jz) ≡
∫

dV WA
iz

(z)WB
jz

(z). Let RAB` the effective relative response of the
considered power spectrum:

∂PAB
∂δb

(k) ≡ RAB(k)PAB(k). (4.5)

For the matter power spectrum, R is constant with redshift and can be computed from
perturbation theory or estimated from simulations (Lacasa & Grain 2019a). Then

∂PAB
∂δb

(z)× IAB(iz, jz) =

∫
dV WA

iz (z)WB
jz (z) ∂PAB/∂δb (k`|z)

=

∫
dV WA

iz (z)WB
jz (z)RAB(k`)PAB(k`, z)

≡ RAB` CAB` (iz, jz)

where in the last step we used the Limber approximation, wich gives

CAB` (iz, jz) =

∫
dV WA

iz (z)WB
jz (z)PAB (k`|z) . (4.6)

Finally, we define the matrix SA,B;C,D
iz ,jz ;kz ,lz

which is the dimensionless volume-averaged (co)variance
of the background matter density contrast by

SA,B;C,D
iz ,jz ;kz ,lz

≡
∫

dV1dV2

WA
iz

(z1)WB
jz

(z1)

IAB (iz, jz)

WC
kz

(z2)WD
lz

(z2)

ICD (kz, lz)
σ2 (z1, z2) (4.7)

and the covariance simply rewrites

CovSSC

(
CAB` (iz, jz) , C

CD
`′ (kz, lz)

)
≈

RAB` CAB` (iz, jz)×RCD`′ CCD`′ (kz, lz)× SA,B;C,D
iz ,jz ;kz ,lz

.
(4.8)

Full sky coverage In the case of full sky coverage, the variance of the background density
field is simply (Lacasa & Rosenfeld 2016):

σ2(z1, z2) =
1

2π2

∫
k2dk Pm(k|z12) j0(kr1) j0(kr2), (4.9)

where ri is the comoving distance to redshift zi and j0 the spherical Bessel function. Given
that the angular matter power spectrum can be written as

Cm` (z1, z2) =
2

π

∫
k2dk Pm(k|z12) j`(kr1) j`(kr2), (4.10)
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Figure 4.1: Sij matrices for DES and top-hat redshift bins. Left panel: Result for a full-sky
coverage, rescaled by fSKY . Right panel: Results for a partial-sky coverage with the correct
survey mask.

we can write σ2 as its monopole

σ2 =
1

4π
Cm`=0(z1, z2). (4.11)

By injecting this expression in Eq. (4.7), we have

SA,B;C,D
iz ,jz ;kz ,lz

=
1

4π
C`=0(X,Y ), (4.12)

where

X(n̂) =

∫
dV WA

iz
(z)WB

jz
(z) δm(rn̂)∫

dV WA
iz

(z)WB
jz

(z)
(4.13)

so that

C`=0(X,Y ) =

∫
dV1dV2 k

2dk
WA
iz

(z1)WB
jz

(z1)∫
WA
iz

(z1)WB
jz

(z1)

WC
kz

(z2)WD
lz

(z2)∫
WC
kz

(z2)WD
lz

(z2)

× Pm(k|z1, z2) j0(kr1)j0(kr2).

(4.14)

Here, n̂ is a unit vector describing the position on the sky plane. An example of such
a matrix is shown on the left panel of Fig. 4.1. The survey considered here is the Dark
Energy Survey (DES, The Dark Energy Survey Collaboration 2005), for top-hat redshift
bins spanning the range 0.1 ≤ z ≤ 1.5 with width 0.1. We only show correlations between
auto-spectra (A = B, Sij), compared to the general case of the Sijkl matrix defined above.
Lacasa & Grain (2019b) find that, for Euclid specifications, when looking at photometric
galaxy clustering in a redshift bin 0.9 < z < 1.0, all cosmological constraints are heavily
impacted by the SSC, σ8, nS and w in particular, adding a 5% bias to their estimated
value. Barreira et al. (2018) find similar results for weak lensing.
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Figure 4.2: Left panel: Photometric redshift bins for Euclid specifications. Right panel: Corre-
lation matrix corresponding to the super sample covariance for the Euclid survey mask.

Partial sky coverage In previous works, the impact of partial sky coverage on the SSC was
estimated by rescaling the full-sky covariance by a factor f−1

SKY , where fSKY ≡ ΩS/4π

is the fraction of the sky covered by the survey and ΩS its solid angle. In Fig. 4.1, we
compare the Sij matrices obtained when considering a full-sky coverage rescaled by fSKY
and when accurately estimating the partial sky SSC using the survey mask, in the case of
DES. Despite the fact that in both matrices, auto-correlations between redshift bins (along
the diagonal) dominate, the structure is very different. Averaged over all the bins, the
relative difference between the two matrices is about 6% and culminates on the diagonal,
where it reaches 10%. The corners, corresponding to correlations between the highest and
lowest redshifts, present a difference of about 12%. Dividing the full-sky SSC by fSKY will
therefore lead to underestimating cross-bins correlations.

Consider a survey with partial sky coverage. Its mask is represented by a window
functionM, which has zero value outside the survey and is independent of redshift. It is
split into a radial and an angular part, such that M(x) = Mr(z)M(n̂). The covariance
of the background mode is (Lacasa et al. 2018):

σ2 (z1, z2) =
1

Ω2
S

∑
`

(2`+ 1)C`(M)Cm
` (z1, z2) ,

where Cm
` is the matter angular power spectrum and ΩS = 4πfSKY the survey solid angle.

As for the full-sky case, we can see the Sijkl matrix as a C` of a non-physical field X, which
kernel is the product of the window functions WAWB. This time, however, multipoles
larger than 0 will contribute to the SSC:

SA,B,C,Diz ,jz ,kz ,lz
=

1

Ω2
S

∑
`

(2`+ 1)C`(X,Y )C`(M). (4.15)

When considering the full-sky limit of Eq. (4.15) (fSKY → 1 and C`>0(M) = 0), we
retrieve the full-sky matrix given in Eq. (4.12).

We compute the partial sky SSC for the Euclid mask, and the redshift bins corre-
sponding to its photometric instruments. Results are shown on Fig. 4.2, in terms of the
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correlation matrix Cij = Sij/
√
SiiSjj . It is interesting to see that correlations exist be-

tween the different redshifts bins, and that the structure of the correlation matrix is very
different from the one obtained for the full-sky SSC. Despite Euclid’s mask covering a
large fraction of the sky (about 50%), going from full-sky to partial-sky SSC increases the
associated errors on w, Ωm and σ8 by 20% to 115%, depending on the tracer used (weak
lensing or galaxy clustering). At this level, the SSC bias is comparable to the shot-noise.

In Sec. 3.1, we have made use of the sample variance to learn about the physics under-
lying reionisation. We have looked at deliberately small simulation sizes and found that,
for statistically larger ionised bubbles during reionisation, corresponding to more ionising-
efficient sources, the variance in the filling fractions measured in 2D slices throughout a
3D box was larger. However, this variance can be an issue when trying to estimate pa-
rameters such as the global IGM ionised fraction from a limited field of view. Using very
large simulations (of side length L = 1.8 Gpc), Muñoz & Cyr-Racine (2020) show that the
global signal measured from 2D slices T obs

21 (z) fluctuates at the percent level around the
true value T̄21(z), averaged over the entire 3D simulation. Since, in practice, only one of
these slices will be available at a given frequency, the SSC will bias measurements of the
global signal. The authors derive a theoretical sample variance, similar to the one defined
in Eq. (4.2), and given by

σ2
21(z) = 〈|T obs

21 (z)|2〉 − T̄21(z)2 =

∫
d3k

(2π)3
P21(k, z)W 2

z (k), (4.16)

where P21 is the power spectrum of the 21cm brightness temperature fluctuations δTb.
This variance is similar to the σloc, defined empirically and introduced in Sec. 3.1, but
additionally accounts for the error due to the depth of observations. Muñoz & Cyr-Racine
(2020) choose to focus on this latter contribution and find that, in an extreme case designed
to reproduce the amplitude of the EDGES signal (Bowman et al. 2018), σ21 can exceed
the thermal noise. For fiducial models, the SSC-related error is σ21(z = 16.8) = 0.03 mK

– about 10 times below the thermal noise. This error on the 21cm global temperature
propagates to parameter estimations to the same level of precision. Looking at correlations
between different redshift bins, they find that the sample variance-induced error is halved
for a distance of 60 Mpc between bins, hinting that observations should be limited to
lightcones of similar depth. When considering the impact of the limited field of view, scaled
to their simulation side length, the variance increases ten-fold to σ21(z = 16.3) = 0.6 mK,
in agreement with our previous results. Such an error is much more concerning for the
precision of measurements. This could be an issue for experiments such as LOFAR, which
has a field of view of 5×5 deg2, corresponding to about 900 Mpc at z = 16.3 and SKA, which
field of view of 327 arcmin at a nominal frequency of 110 MHz corresponds to L ∼ 1 Gpc,
both smaller than the simulation used in Muñoz & Cyr-Racine (2020). When looking at
lower redshifts, corresponding to the core of the reionisation process, the sample variance
will be even larger and must therefore not be ignored (Gorce et al. in prep). However,
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we expect this result to be largely dependent on the cell resolution of the simulation
considered. Therefore we generate a 21CMFAST simulation box for Mturn = 109 M�,
side length L = 480 Mpc and cell size ∆x = 0.625 Mpc, closer to the specifications of
SKA-Low. At a nominal frequency of 110 MHz, the telescope is indeed expected to have
an angular resolution of 11 arcsec, i.e. between 0.45 and 0.55 Mpc on the redshift range
5 ≤ z ≤ 13. We divide this initial large simulation into subcubes of decreasing size, until
L = 15 Mpc. We compute the local variance obtained from the ionisation and 21cm
brightness temperature fields of all the subcubes and compare their values. The maximum
signal is reached for the smallest box size, and reaches values as high as ∼ 6 mK. The
maximum amplitude, taken at xe = 0.60, decreases drastically with box size. In the case
of 21cm fluctuations, the decrease follows

σloc,δTb ∼ 1.3 mK×
(

L

100 Mpc

)−0.8

. (4.17)

The field of view of SKA-Low corresponds to L = 760, 840, 900, 940 and 970 Mpc at,
respectively, z = 5, 7, 9, 11 and 13. For z = 7, this gives ∼ 0.24 mK.

From an empirical point of view, looking at 21CMFAST boxes of increasing size, Kaur
et al. (2020) find that box sizes of at least 200 Mpc are necessary to estimate the power
spectrum of 21cm fluctuations during the EoR without bias, after including thermal noise
for 1000 hours of observations with SKA-Low and removing foregrounds. At earlier times,
however, corresponding to the Cosmic Dawn and in which the redshift z = 16.8 considered
by Muñoz & Cyr-Racine (2020) lies, simulations of up to L = 300 Mpc underestimate the
power on large scales by ∼ 8% on average. It therefore seems that the power spectrum
is less sensitive to sample variance than the global signal. In general, to be conservative,
box sizes not smaller than 1 Gpc, or corresponding fields of view, should be used to reach
sufficient precision on both estimators.

4.1.2 Impact of foregrounds and instrumental effects on 21cm observations

The 21cm signal is a forbidden transition of the neutral hydrogen atom, however signif-
icant on cosmological scales because of the abundance of hydrogen in the Universe. At low
redshift, it is mostly visible inside galaxies. At higher redshift, it can help trace the Epoch
of Reionisation, as the IGM transitions from mostly neutral to ionised. However, because
of the distance, the signal observed today from EoR is very faint, of the order of a few tens
of mK. Instrumental effects, such as thermal noise, will greatly temper with this signal.
The distance also means that many objects standing between the neutral atoms emitting
21cm radiation and us will interfere with our detection of the signal. These foregrounds,
expected to have a brightness temperature of a few K, are made of several components
which we will outline below. A detailed review of such foregrounds is beyond the scope of
this work, but we refer the interested reader to Jelić et al. (2008) and Chapman & Jelić
(2019) for more details.
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Figure 4.3: Illustration of the foreground wedge in the (k⊥, k‖) plane.

Foregrounds

Emissions within the Milky Way are expected to be the main contributor to fore-
grounds. Galactic synchrotron emission, which arises from the interaction between rela-
tivistic free electrons from the interstellar medium (ISM) and the Galactic magnetic field,
has the most significant contribution. It is expected to have a smooth dependence with
frequency, determined empirically using galactic radio surveys (Jelić et al. 2008). Another
1% of the total foregrounds will stem from the bremsstrahlung due to the scattering of
ions off each other inside the Milky Way. The resulting emission spectrum, corresponding
to thermal emission from an optically thin region, is well modelled by a spectral index of
2.1 (Westerhout 1958; Bennett et al. 1992). Another contribution comes from synchrotron
emission of supernovae remnants (Alfvén & Herlofson 1950). Despite their large ampli-
tude, the problem posed by galactic foregrounds can be overcome by carefully choosing the
area of the sky targeted by the interferometer, for example, outside the galactic plane. As
these foregrounds smooth spectral dependency is well understood, in contrast to the 21cm
signal from reionisation, their spectrum will be easy to subtract. Extragalactic foregrounds
represent the remaining 27% of the total foregrounds and are more difficult to model (Jelić
et al. 2008). They include radio galaxies, observed as very bright point sources in the
sky (Fanaroff & Riley 1974) and emission from the intercluster medium of galaxy clusters,
expected to be high at the low frequencies considered for EoR because of a steep spectrum
(Feretti 2005; Feretti et al. 2012).

Different methods can be used to remove or at least reduce the contribution of these
foregrounds to the observed signal. The first one, called ’foreground avoidance’, relies on
the fact that the combination of the spectrally smooth structure of the foregrounds and
of chromaticity leads to the foregrounds mostly contaminating a wedge-like region of the
cylindrical (k⊥, k‖) plane. This is the plane formed by wave-vectors perpendicular and
parallel to the line of sight, respectively. This structure is illustrated on Fig. 4.3. At low
k⊥, errors increase because of the limited field-of-view of the instrument, while frequency
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resolution limits the sensitivity at large k‖. Cosmic variance limits access to the smallest
k‖ modes, as well as the limited bandwidth and foregrounds. Moving towards higher k⊥,
the foregrounds leak out to higher k‖ in a wedge-like shape. The rest of the Fourier plane
allows a clean measurement of the 21cm signal in what is called the ’EoR window’ (Datta
et al. 2010; Liu et al. 2014). This method is currently used by experiments such as HERA.
It has the advantage of not requiring an advanced modelling of foregrounds, but as our
knowledge of foregrounds improves, more and more are included to models, leading the
EoR window to shrink and significantly limiting the modes that can be used.

The second technique used falls under the name of ’foreground removal’ techniques.
Parametric methods rely on the smooth frequency dependence of foregrounds compared to
the cosmological signal and look to fit spectra indices to data (Jelić et al. 2008). However,
as the cosmological signal is very weak relative to the contamination of foregrounds, poly-
nomials of a too high order are likely to over-fit the data and suppress the residual signal.
Conversely, if the order of the polynomial is too low, foregrounds will contaminate the
residual signal. Non-parametric methods can avoid this caveat, with the added advantage
that they make no assumption on the shape of the foregrounds signal as they allow the data
to dictate their functional form. Examples of such methods include FastICA (Chapman
et al. 2012) and GMCA (Chapman et al. 2013), the latter being used by LOFAR to recover
upper limits on the 21cm power spectrum (Patil et al. 2017). The collaboration has now
switched to another method, called GPR for Gaussian process regression, and based on
Bayesian optimisation. It was used in their latest results, giving ∆2

21 < (73)2 mK2 (2σ) at
k = 0.075 hcMpc−1 (Mertens et al. 2020). One of the lowest upper limits on the cylindrical
21cm power spectrum so far is given by Trott et al. (2020), finding 1.8× 103 mK2 (2σ) at
k = 0.14 hMpc−1 and z = 6.5 with 110 hours of MWA data. In this work, the authors use
CHIPS (the Cosmological HI Power Spectrum estimator, Trott et al. 2016). CHIPS uses
realistic instrumental and foreground models to form an optimal estimator of the power
spectrum, weighting the data in order to maximise the likelihood of unbiased signal.

If these methods have been tested and approved when applied to the 21cm power spec-
trum, their impact on the non-Gaussianity of the signal is still discussed. Some works have
looked at recovering maps of the ionisation field after removing foregrounds, confirming
that we should be able to recover the phases of the signal, especially with the GMCA algo-
rithm (Chapman et al. 2013). However, the recent works of Watkinson et al. (2020) show
that on large scales, EoR structures are completely swamped by those of the foregrounds,
preventing us from applying foreground avoidance techniques to recover the 21cm bispec-
trum but giving reasonably good results with non-parametric techniques. Instrumental
errors, on the other hand, are found to largely corrupt the observed bispectrum, question-
ing its potential use for parameter estimation. In the following paragraph, we assume that
foregrounds have been efficiently removed from the signal, and look at the impact of effects
such as thermal noise and resolution on non-Gaussian estimators.
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Instrumental effects

Consider 2D ionisation maps similar to the ones studied in Sec. 3.3, but with added
beam smoothing and noise corresponding to observations by the core of SKA1-Low, its
central area (with larger baselines), and by LOFAR. We want to know if it is still possible
to recover the triangle correlations signal, presented in Sec. 3.3. We pick three simulated
fields: the first is a toy model made of 70 bubbles of radius R = 10 px, assumed to
correspond to a redshift z = 9. The two others are extracted from the 21CMFAST runs
considered in Sec. 3.3 at redshifts z = 6.2 and 6.4, where the triangle correlation function
(TCF) signal gave a good estimation of the sizes of neutral islands. The clean maps are
shown, in this order, on the left panels of Fig. 4.4. We convert each one of them into a
brightness temperature map according to Eq. (1.18) with Planck 2016 cosmology (Planck
Collaboration et al. 2016b).

The resolution of 21-cm tomographic data will be first limited by the angular resolution
of the interferometer considered. The full width at half maximum (FWHM) of the point
source function of an interferometer is given by (in radians)

θ = 1.22× λ

bmax
, (4.18)

where λ = 21cm × (1 + z) is the redshifted 21cm wavelength and bmax is the maximum
baseline of the interferometer. For LOFAR, SKA1-Low core and SKA1-Low central re-
spectively, we take bmax = 3.5, 1.0 and 3.4 km. We convolve the clean δTb maps with
a Gaussian kernel of FWHM θ dc(z) for dc(z) the comoving distance at the redshift (i.e.
frequency) considered. The resulting images for SKA central are shown in the second
column of Fig. 4.4. Because they have similar maximum baselines, the angular resolution
of SKA central is close to the one of LOFAR. For SKA core, much smaller baselines lead
to the smoothing blurring the shape of the ionised bubbles to an extreme point, and our
method will perform poorly. Finally, realistic thermal noise is simulated with the OSKAR2

software, courtesy of Emma Chapman. This noise is added to our three fields, and results
for SKA core, SKA central are LOFAR are shown, respectively, in the last three columns
on the figure. We choose 1000 hours of integration time, but recent works have shown that
as few as 324 hours of observations with SKA can be sufficient to differentiate between
different reionisation models (Binnie & Pritchard 2019). Note that these results have been
previously published in Gorce & Pritchard (2019).

The lower panels of Fig. 4.4 present the signal resulting from computing the TCF of
each of the fields, with different levels of instrumental effects considered. The error bars
correspond to the variance of the TCF computed for a Gaussian random field of same
dimensions. The first column, corresponding to triangle correlations for a clean field, gives
the reference signal in which we identify the reference peaking scale, shown as a dotted blue
line on each plot3. It will later be compared to the scale picked up on corrupted data. As

2https://github.com/OxfordSKA/OSKAR
3For the z = 6.4 21CMFAST field (lower row), there are two scales picked up. The larger one is well
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Figure 4.4: Comparison of phase correlations for a 2D brightness temperature map with dimen-
sions N = 512, L = 400 Mpc for different types of thermal noise. From left to right: the clean
signal, the field smoothed by a Gaussian beam corresponding to the angular resolution of SKA
central, and the clean field with added smoothing and noise from, respectively, SKA1-Low core,
SKA1-Low central and LOFAR. The dotted blue lines (regions) indicate the peaking scale found
on the clean field (left panel) and the purple dash-dotted lines the smoothing scale of the corre-
sponding experiment. From top to bottom: toy model, 21CMFAST simulation at z = 6.2 and
z = 6.4. Error bars correspond to the variance estimated from a Gaussian random field of same
dimensions.
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Table 4.1: Peaking scales (Mpc) for a toy model with different types of observational effects:
smoothing due to angular resolution and noise.

True Clean Smoothed Smoothing Smoothing
radius signal signal + noise scale

LOFAR 7.8 6.7 6.6 7.4 4.5
SKA1-Low core 7.8 6.7 8.2 – 17.0
SKA1-Low central 7.8 6.7 6.7 6.9 5.3

can be seen on the images, the beam smoothing introduces a pattern that could be picked
up by the TCF, we therefore show as dash-dotted lines on each plot the smoothing scale of
the corresponding experiment. Values for the toy model are given in Table 4.1. The TCF
obtained on the field corresponding to SKA core observations is almost flat because of the
low angular resolution that blurs the ionised regions edges. It actually seems to peak at the
smoothing scale. On the other hand, instrumental effects from SKA central and LOFAR
applied to the toy model still allow the TCF to exhibit a clear peak at a scale close to the
one found with clean signal (see Table 4.1 for details): we can recover the bubble size with
a 1 Mpc precision. Naturally, increasing the integration time improves results further. For
21CMFAST maps, the LOFAR sensitivity is not sufficient to recover the TCF signal: at
z = 6.2 the signal is mostly flat, and although there is a clear peak for the z = 6.4 map, it
cannot resolve the two characteristic scales. SKA central gives better results, with the two
peaks visible. Applying the same tests to 21CMFAST boxes at higher redshifts, we find
that, because there is no clear characteristic scale in the field (see Sec. 3.3), the TCF peaks
at the smoothing scale corresponding to the telescope considered. The sign of the signal,
which traces the advancement of the reionisation process, is however well recovered.

Instrument calibration

Precise radio observations suffer from requiring a good instrumental calibration to
separate the 21cm signal from foregrounds. This is one of the main challenges of upcoming
experiments. Using the TCF can however allow to overcome this issue, because it is
based on the phases of the measured visibilities4. Consider the visibility V m

ij measured
between two antennae i and j at a given frequency ν. It will have contributions from the
cosmological signal V true

ij , but also from the amplitude and phase errors of each antenna,
modelled by a complex gain Gi = |Gi| eiφi , such that:

V m
ij = GiG

∗
j V

true
ij = |GiGj | ei(φi−φj) V true

ij , (4.19)

where ∗ denotes a complex conjugate. The amplitude of this gain stems from beam specific
effects such as mirror reflectivity, detector sensitivity or local scintillation whereas the
phase term can originate either from telescope errors or from external effects such as

defined, but we use an interval 6.2± 1.6 Mpc for the smaller one.
4We have seen in Sec. 1.3 that, in the flat-sky approximation, the visibilities are a direct image of the

Fourier transform of the sky patch observed.
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atmospheric turbulence (Levrier et al. 2006; Monnier 2007). If we combine the signal from
three antennae forming a closed triangle to form a bispectrum, we avoid this phase error
and we will be left only with the phases of the true signal. Indeed, consider now three
baselines ij, jk and ki observing at ν, the bispectrum of their complex visibilities is

Bijk = V m
ij V

m
jk V

m
ki

= |GiGjGk|2 ei(φi−φj) ei(φj−φk) ei(φk−φi) V true
ij V true

jk V true
ki

= |GiGjGk|2 V true
ij V true

jk V true
ki .

(4.20)

The different phase terms cancel each other out, so that the phase of the measured bis-
pectrum is the phase of the true bispectrum. This is called the closure phase relation. In
our previous results, we worked in two dimensions, so that the three vectors considering
to form a triangle lie in the same plane on the sky, perpendicular to the line-of-sight, and
are measured at the same frequency: the closure relation holds. This means that we will
be able to apply the TCF to observational data without worrying about calibration errors.
For an example of the use of bispectrum closure phases in interferometry, we refer the
reader to Thyagarajan et al. (2018). In this work, the authors compare the bispectrum
phase spectra – the phases of Bijk, coming from different components of a simulated signal:
a single point-source, diffuse foregrounds and H i fluctuations from the EoR. They show
that a quantitative relationship exists between the EoR signal strength and the whole
bispectrum phase power spectra.

In practice, there are some limitations to the use of the closure relation. First, only a
limited number of triangles can be constructed from the array of antennae of a telescope,
therefore some information will be lost compared to simple baseline measurements. This
should be easy to overcome as Monnier (2007) show that with as little as 40 antennae,
we are able to recover 95% of the phase information. The 296 antennae of the SKA1-Low
central array and the 48 antennae of LOFAR allow to recover respectively 99.3% and 95.8%

of it. Additionally, keeping only the modes forming closed triangles in data analysis will
worsen the sparsity of observations and discarding amplitude information will lead to higher
noise levels: Readhead et al. (1988) find that the noise level of a phase-only observation
will be at least twice higher than a map made from full visibility data. The authors also
show that, because the bispectrum is a triple product, there will be additional noise terms
compared to single baseline observations, corresponding to cross-products. Indeed, if the
same signal is measured on different time intervals, the observed bispectrum will not only
be the product of three complex numbers Vij anymore, but of the sum of each observation
on each time interval. Then the cross terms combining signals integrated on different time
intervals will give incoherent phase terms that can be assimilated to noise. This extends
to the spatial domain: in a redundant array there will be contributions not only from the
baselines chosen to form a closed triangle, but also from identical (parallel) baselines which
are not part of a triangle. This noise can however be reduced to a good signal-to-noise ratio
if enough frames are used in the integration. Finally, polarisation leakage or cross coupling
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of antennae, called closure errors, can lead to a departure from the closure relation (Carilli
et al. 2018).

Despite these limitations, closure phases are a major advantage of the TCF compared
to other solutions found in the literature to analyse the non-Gaussianity of the 21cm signal,
and in particular estimate the characteristic size of ionised regions from 21cm maps. In
contrast to ordinary bubble size algorithms such as granulometry (Kakiichi et al. ????),
Minkowski functionals (Gleser et al. 2006; Chen et al. 2018; Bag et al. 2018), or the friend-
of-friends (Iliev et al. 2007a) and spherical average (Zahn et al. 2007) algorithms which
require to reconstruct real-space images, the TCF is built on Fourier data and so can make
direct use of measured visibilities.

At the moment, many effects stand between us and a clean detection of the 21cm sig-
nal, both for Gaussian and non-Gaussian components. This explains why the current best
constraints on the 21cm power spectrum are only upper limits: they are noise-limited.
Improving our knowledge of foregrounds is essential to be left only with the cosmological
signal, but a precise simulation of instrumental effects is also necessary. The observational
strategies used to gather data will also be essential to tackle issues such as sparsity, cor-
responding to the fact that being able to measure only a discrete range of modes reduces
data quality. A huge amount of work is put into answering these questions at the moment,
and developing data analysis tools which take these issues in consideration, such as the
TCF, is essential if one wants to be able to use them.

4.2 Model-related limits

Reionisation is a process difficult to model and simulate because of the numerous pa-
rameters and scales involved. If the process starts on atomic scale, through the simple
ionisation of a neutral atom by a photon with sufficient energy, it ends up reaching cos-
mological scales, until the ionisation front covers the entire IGM. We have seen in Sec. 2.2
that, if only a few equations are sufficient to describe the evolution of the ionisation level
of the IGM with time, they rely on many different parameters, most of them being poorly
defined or constrained. We have also seen that current constraints depend on these models:
from the Gunn-Peterson troughs observed in a series of z ∼ 6 quasars, Fan et al. (2006b)
were quick to conclude that the IGM had to be about 99.98% ionised at the time. However,
later works have questioned these results, pointing at the existence of a proximity zone
around the quasar, more ionised than the global IGM, and at the danger of generalising
results obtained around a single quasar, likely sitting inside an over-dense region of the
IGM, to the entire Universe (Mesinger 2010). Additionally, constraining the photon budget
for reionisation by looking at Lyα forests in quasar spectra requires a detailed modelling

94



4.2. Model-related limits

of the underlying physics, which is not yet achieved (Wise 2019).
In this section, we first look at the impact a rough description of the reionisation process

can have on CMB results. Then, we look at more detailed model uncertainties, related to
the parameters used in Sec. 2.2, such as the escape fraction of ionising photons.

4.2.1 Different data and different parameterisations in CMB analysis

For now, the way CMB data is mainly used to constrain reionisation is through the
Thomson optical depth τ , which is an integrated measurement of the density of free elec-
trons along the line-of-sight. It is considered homogeneous on the sky plane, and therefore
constrained as a single parameter, in addition to the other cosmological parameters of the
base Λ-CDM model such as Ωb, Ωc or nS . The inferred value of τ will depend on the data
used to constrain it: using the temperature and E-mode polarisation anisotropies, auto- and
cross-spectra (TT, TE, EE + lowE), Planck Collaboration et al. (2018) find τ = 0.054±0.07

while including BAO leads to a marginally higher value of τ = 0.056±0.007. Even if these
variations are small, they lead to significant changes in resulting reionisation histories, with
derived parameters such as the redshift midpoint moving from zre = 7.10+0.87

−0.73 for TT, TE,
EE + lowE to zre = 7.82 ± 0.71 when adding BAO. The baseline results are TT, TE,
EE + lowE + lensing as adding the lensing information allows to break the degeneracy
between the normalisation of the initial power spectrum AS and τ (Planck Collaboration
et al. 2016a). This data set gives τ = 0.054 ± 0.07 and zre = 7.67 ± 0.73. To reduce
these uncertainties, Liu et al. (2016) suggest using 21cm power spectrum measurements
to infer an independent value of τ and break the degeneracy, allowing an improved preci-
sion on the other cosmological parameters, mainly AS itself and the sum of neutrino masses.

The fact that a small difference in τ leads to a difference of a few hundred thousand
years on zre is to be related to the underlying xe(z) parameterisation used. Indeed, to
compute τ , one needs to assume a reionisation history xe(z) (see Eq. 2.1). In standard
Boltzmann solvers used to compute theoretical predictions in CMB data analysis such as
the CAMB code5 for Planck (Lewis et al. 2000; Howlett et al. 2012), the reionisation scenario
used is a step-like transition, given in Eq. (2.4), where the global ionised fraction jumps
from 10% to 75% over a (fixed) redshift interval of ∆z = 1.73 (Planck Collaboration et al.
2016b). As the shape is fixed, the only parameter allowed to change is zre, corresponding
to a shift in the reionisation history. Because τ is derived as an integral of xe(z), a small
variation in its value will require a large shift in zre. However, this step-like transition, that
we will refer to as the tanh parameterisation thereafter, does not match simulations and
observations well. Instead, according to QSO and galaxy luminosity function observations,
as well as to simulations, we expect the ionisation fraction to slowly rise when the first
sources light up, before taking off as soon as about 20% of the IGM is ionised (Robertson
et al. 2015; Gorce et al. 2018; Aubert et al. 2018). This evolution is better transcribed by

5Available at https://camb.info.
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Figure 4.5: Results when fitting a symmetric (blue) and asymmetric (green) model of reionisation
to CMB data (TT + TE + EE + lowE + lensing + BAO). Left panel: Posterior distribution for
the Thomson optical depth. Right panel: Resulting reionisation histories.

a redshift-asymmetric parameterisation such as the power-law given in Eq. (2.5) (Douspis
et al. 2015). Actually, an asymmetric reionisation history seems to also be favoured by
CMB data: Miranda et al. (2017) and Heinrich & Hu (2018) actually find that Planck 2015
EE data favours an extended ionised tail at z > 15, incompatible with the tanh model.
These results extend to Planck 2018 EE data, however to a weaker level (Qin et al. 2020b).

Naturally, the choice of the xe(z) parameterisation used will impact the inferred value
of τ . With Planck 2018 data (Planck Collaboration et al. 2018), we modify CAMB to use
the asymmetric parameterisation of xe(z)6 and find, using TT + TE + EE + lowE +
lensing + BAO data, τ = 0.056± 0.007 in contrast to τ = 0.057± 0.007 obtained with the
native hyperbolic tangent. These results translate to, respectively, zre = 7.60 ± 0.54 and
zre = 7.96 ± 0.64, as can be seen on Fig. 4.5. Similarly, Qin et al. (2020b) confront the
results of using the tanh model on Planck 2018 low-` EE data, to a non-parametric one (the
reionisation history resulting from a 21CMFAST run). They add as a constraint an upper
limit on the neutral hydrogen fraction at z = 5.9, xH i < 0.06± 0.05 (1σ), measured from
the dark fraction in QSO spectra (McGreer et al. 2015). They find τ = 0.053+0.008

−0.007 for tanh
and τ = 0.055+0.008

−0.006 for the astrophysical model. The asymmetric distribution of the latter
corresponds to asymmetric reionisation histories: they have, respectively, xH i > 0.925 (1σ)

and xH i > 0.849 (1σ) at z = 10. The authors argue that the difference is too small to
be significant, so that using the symmetric model, and then τ as a summary statistics to
constrain EoR history and astrophysical parameters is sufficient. In other words, there
is no need to include a better parameterisation of xe(z) in CosmoMC. However, their very
results show that when allowing an asymmetric parameterisation, CMB data can help
constrain the onset of reionisation and therefore tell us about the birth of light sources.
Additionally, the kSZ effect is an important source of information about reionisation found
in CMB data: Planck Collaboration et al. (2016d) show that adding high-` data from SPT
to Planck 2015 data shifts the inferred optical depth from 0.058± 0.012 to 0.054± 0.012.
We have seen in Sec. 3.2 that the measured kSZ power will be sensitive to the details

6Note that zend is fixed to 5.5 and only zre varies.
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of reionisation history, therefore requiring a precise modelling of reionisation within the
theoretical framework.

The choice made by Qin et al. (2020b), that is using an empirical xe(z), derived from a
simulation, avoids the limitations due to the choice of a parameterisation, namely its lack
of flexibility. However, current data on IGM neutral fraction does not justify the use of
non-parametric reconstructions of the ionisation history, and, in particular, not the ones
based on redshift bins (Hazra et al. 2019). Planck Collaboration et al. (2016d) showed
that a model as extreme as a double reionisation (where xe goes through two phases of
increase and decrease) leads to differences on the EE spectrum that are washed out by cos-
mic variance. Similarly, the two xe parameterisations mentioned above tuned to match the
same τ value, lead to differences of less than 4% at ` < 10. Allowing too many parameters
to vary in these models will therefore lead to poorly constrained parameters: using CMB
data alone, Planck Collaboration et al. (2016d) only obtain upper limits on the duration
of reionisation7 ∆z.

This shows again that the key to break the degeneracies and reduce error bars on
reionisation parameters is to combine data from different sources. For example, if the value
of τ is mostly sensitive to the temperature and polarisation power spectrum on very large
scales (` < 30), the kSZ power spectrum will be constrained by the information contained
at high multipoles (` > 1000), providing an additional and independent constraint. So far,
τ and the amplitude of the kSZ power at ` = 3000 D3000 are derived with independent
reionisation models. The former is derived from the tanh parameterisation of CAMB and
the latter is based on a template derived from a specific simulation with a completely
different reionisation history. Current results therefore show no correlation between the two
parameters, despite the fact that they are made of the same ingredient – the distribution
of free electrons along the line-of-sight. Until now, data did not allow for better than
upper limits on D3000 but SPT recently claimed the first detection of the signal (Reichardt
et al. 2020), showing that statistical uncertainties are decreasing and will soon allow us to
constrain the amplitude and shape of the spectrum – following, for example, the framework
described in Sec. 3.2. This new precision will let us not only increase the precision on
inferred reionisation parameters, but also uncover the physical correlations relating them
and that were, until now, missed.

It is useful to mention that τ is actually not homogeneous throughout the sky as cur-
rently assumed when deriving its averaged value. The inhomogeneity of cosmic reionisation
means that there will be small variations in the optical depth along different lines of sight:
this related to the xe(1 + δb) term in its derivation (see Eq. 2.1). These variations impact
the CMB temperature and polarisation anisotropies, namely correlating polarised E and
B-modes (Roy et al. 2020a) and impacting the relation between the optical depth and the
reionisation parameters (Liu et al. 2016). If the related error is too small to impact cur-
rent constraints on parameters such as zre from τ , these fluctuations should be measurable

7Corresponding to the redshift interval when the IGM goes from 10% to 99% ionised.
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with CMB-S4 experiments (Dvorkin & Smith 2009). Given the faintness of the signal, one
needs to develop robust estimators to observe it, for example, cross-correlations with 21cm
mapping to improve the signal-to-noise ratio (Meerburg et al. 2013). So far, only toy mod-
els have been used to forecast observations (Roy et al. 2020b) and these forecasts need to
be pushed further, using more accurate models and simulations of reionisation, as well as
looking into the impact of foregrounds removal techniques on the potential measurements.

4.2.2 Galaxy physical properties: The escape fraction of ionising photons

Let’s now turn to astrophysical considerations. In Sec. 2.2, we have outlined how one
can derive a reionisation history from a star formation history and a few simple param-
eters. Some of these parameters were related to cosmology, such as the number density
of hydrogen nuclei at a given redshift, and some others were related to the nature of the
ionising sources themselves. When looking at the global ionisation rate, one needs first to
know the density of existing galaxies and how luminous they are. Because current observa-
tions do not allow us to see the faintest galaxies and the highest redshifts, extrapolating is
inevitable. In particular, the luminosity function of galaxies is extrapolated up to a mag-
nitude Mlim, above which we expect a drop in number. Mlim corresponds to the faintest
galaxies that have not been observed but that we expect to contribute to reionisation. It
will by definition have a very arbitrary value, with big consequences on the reionisation
photon budget. The second question to answer to derive the ionisation rate is what types
of photons early galaxies emit: Do these photons have sufficient energy to ionise an hy-
drogen atom? Are they likely to reach the neutral atoms of the IGM? The parameter fesc

characterises the answer to the latter. Its value will depend on the nature of the galaxies
– for example, their mass or their star formation rate. The nature of the IGM at this time
is also an important factor: if it is dense, that is if its clumpiness CH ii is large, the ionising
front is likely to stall.

Because they are defined as averaged values, we do not expect observations to give
precise estimates of the parameters fesc and CH ii. While high-resolution numerical simula-
tions can help, the required scales to resolve all their physical dependencies simultaneously,
along with a potential redshift evolution, is for now unrealistic. It is therefore essential to
provide self-consistent constraints on them, analyse their joint dependencies, and evaluate
their impact on our current models of reionisation. Conversely, reionisation observables
such as the Thomson optical depth or the ionisation level of the IGM, may be able to
constrain these parameters and tell us about the physics of the early Universe. Unless
stated otherwise, the results of the two following sections were published in Gorce et al.
(2018).

The escape fraction of ionising photons

An essential parameter when looking at how early galaxies reionised the IGM is the
fraction of ionising photons that escape their host galaxy and reach the surrounding neu-
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tral IGM fesc. In Sec. 2.2, we have introduced this parameter as constant, equal to 20%,
independent of the galaxy properties, their age, and redshift. We have however pointed
out that, if this value is compatible with current data, it might be over simplistic, and
in particular is much larger than the escape fractions measured in low-redshift galaxies
(Steidel et al. 2001; Iwata et al. 2009). Additionally, the example of the three rsage

simulations considered throughout this work demonstrates that different prescriptions for
the halo-mass or star-formation dependency of fesc impact the reionisation history and
morphology. Reciprocally, because the escape fraction can vary with metallicity or stel-
lar binary interactions, constraining fesc(z) could improve our knowledge of high-redshift
stellar population models (Price et al. 2016). In this perspective, we will complement the
analysis done in Sec. 2.3 by now allowing the escape fraction to vary when fitting the
4-parameter model of the star formation history ρSFR(z) in Eq. (2.14) to astrophysical
constraints from quasar spectra and Lyα galaxies, the Thomson optical depth measured
by Planck (Planck Collaboration et al. 2018) and galaxy luminosity functions.

Let’s first consider fesc constant with redshift, and add it as a fifth parameter of the fit,
free to vary between 0 and 1. As before, we use the Gelman-Rubin test to check the conver-
gence of our sampling chains (Gelman & Rubin 1992). All following values are given with
a 1σ confidence interval. Fig. 4.6 shows the best-fit reionisation histories, when all con-
straints are considered or when xe data from quasar spectra and Lyα galaxies is skipped,
along with the resulting posterior distributions for fesc. The former is in good agreement
with data: we find zre = 6.88± 0.21 and zend = 5.69± 0.10, leading to τ = 0.060± 0.002.
The resulting escape fraction is fesc = 0.17 ± 0.03, showing that data is compatible with
a value of the escape fraction slightly lower than the commonly used value of 20%. When
xe data is not used to constrain the fit, the required value of the escape fraction is lower
(fesc = 0.14± 0.07) in order to slightly delay reionisation and achieve smaller values of τ ,
in better agreement with Planck data (τ = 0.056± 0.08). fesc is only involved in the ṅion

calculation of Eq. (2.7) and not in the one of star formation rate. The four parameters of
the ρSFR model will therefore be fixed by star formation history data while fesc will vary
to match the xe data and the Thomson optical depth. This is why we find a best-fit star
formation history similar to what was obtained when fesc was fixed. However, the star
formation rate largely depends on what is assumed for galaxy luminosity functions, and
in particular the limit magnitude Mlim to which they are extrapolated. If it is too low,
it will need to be balanced by a high escape fraction in order to achieve reionisation. We
therefore consider correlations between Mlim and fesc in the following paragraph.

Photons from different ranges of energy are subject to different physical phenomena
and thus escape more or less easily from their host galaxy. For instance, dust extinguishes
ionising, Lyα and UV continuum photons similarly, but only ionising photons are also
absorbed by neutral hydrogen clumps. Thus, at high redshift, when there is few dust
around the galaxy, photons of all energy ranges escape as easily; on the contrary, at low
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Figure 4.6: Results when fitting a constant fesc to data. Left panel: Reionisation history. Data
points come from quasars and Lyα emitters constraints (see Sec. 2.2). Right panel: Posterior
distribution for fesc. ML models (continuous lines) are shown for the case where all constraints
are used (blue), and when xe constraints are skipped (green). Shaded areas correspond to the 95%
confidence intervals.

redshift, ionising photons experience more difficulties to escape than others (Yajima et al.
2014). Previous works have looked at ways to constrain a redshift-evolution of fesc with
data, using parametric (Kuhlen & Faucher-Giguère 2012) or non-parametric (Mitra et al.
2012; Price et al. 2016) methods. Here, we choose the following power-law:

fesc(z) = α

(
1 + z

8

)β
. (4.21)

α is the value of fesc at z = 7, where most of the xe data points are located. We take β > 1

to ensure an increase with redshift and set a maximum of 1 for the fesc value, corresponding
to the extreme case of all ionising photons escaping. We perform an MCMC maximum
likelihood sampling of the 2 parameters of Eq. (4.21), the convergence being ensured by
the Gelman-Rubin test. As mentioned before, the star formation history plays no role in
constraining fesc and when the four parameters of the ρSFR(z) model are included in the
fit, their resulting posterior distributions are the same for all our runs. In the following
results, we therefore fix a = 0.0145, b = 3.20, c = 2.63 and d = 5.69, their maximum
likelihood value when they are included in the fit.

When considering xe data points and τ as constraints, we find α = 0.15 ± 0.007 (1σ)
and β < 1.83 at 95% confidence. Fig. 4.7 shows results for the reionisation history (left
panel) and fesc(z) (right panel), for a fit using xe data and one ignoring them. Overall, the
low τ value given by Planck does not require a high ionising emissivity and so, when all
constraints are considered, fesc ranges from 5% to 30% throughout the reionisation process
for a mean of 0.20± 0.02, to compare to what was obtained when fesc was considered con-
stant with redshift (fesc = 0.17± 0.03). The best-fit reionisation history is more extended
than it was for our fiducial model (here, ∆z = 2.74± 0.24; it was ∆z = 2.00± 0.11 when
fesc was fixed) because large values of fesc at high redshift allow for reionisation models
to start earlier and get closer to xe data points but still end by z = 5. High-redshift data
points, on the star formation history or the IGM ionisation level, for instance given by

100



4.2. Model-related limits

Figure 4.7: Results when fitting fesc to data. Left panel: Reionisation history. Right panel: Best-
fit models for fesc with redshift. ML models (continuous lines) are shown for the case when all
constraints are used (blue) and when xe constraints are skipped (green). Shaded areas correspond
to the 95% confidence intervals.

JWST, will therefore be necessary to constrain the value of fesc and its potential evolution
with redshift. An extended reionisation yields larger τ values (τ = 0.067 ± 0.003), still
within the 95% confidence interval of Planck. As before, ignoring priors on the IGM ioni-
sation level delays reionisation to reach values of the optical depth closer to Planck results,
and a lower escape fraction is then sufficient. However, the difference is of order only 0.05.
This corroborates the results of Price et al. (2016), stating that fesc is not very sensitive
to the value of the Thomson optical depth. Using a similar power-law to model fesc(z)

and allowing CH ii and ξion to vary while skipping constraints on the IGM ionisation level
from quasar spectra and Lyα galaxies, Price et al. (2016) find slightly smaller values of
the escape fraction (fesc(z = 8) < 0.10) but which show a steeper increase with redshift
(β > 3). This is because of the high values of τ the authors use as constrain, which trigger
an early reionisation (zre ∼ 8) and because most of the constraints are absorbed by ξion

rather than fesc. This shows that, again, our results must be considered with caution as
we expect a correlation between the escape fraction and other parameters. In particular,
we look at the joint dependency of fesc and the star formation rate amplitude, via the
parameter Mlim, in the next paragraph.

Influence of the magnitude limit

In order to study the influence of the choice of magnitude limit on our results, we adopt
a modified version of the parameterisation of the UV luminosity density ρUV (z) given in
Eq. (2.15):

ρUV(z) =
2 ρUV(z = z?)

10a(z−z?) + 10b(z−z?)
(4.22)

We choose this parameterisation instead of the one previously used for ρSFR(z) because
the galaxy luminosity functions used here are limited to redshifts 3.8 ≤ z ≤ 10.4, after
cosmic noon and a simple double power-law will be enough to describe the decrease in star
formation on z > 3. The inflexion point chosen is z? = 7.9, which corresponds to one of
the redshifts where we have galaxy luminosity data, with reasonable error bars, and to the
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core of the reionisation process8. We sample the two parameters a and b, along with fesc

and Mlim. For each iteration of the fit, we compute ρUV (z) for the sampled value of Mlim

from the Schechter parameters derived in McLure et al. (2013); Schenker et al. (2013);
Bouwens et al. (2015b); Ishigaki et al. (2015); Oesch et al. (2015); Livermore et al. (2017)9,
fixing the value of ρUV (z = z?). The ρUV (z) model corresponding to the sampled values of
a and b is then compared to these data points and combined with the sampled fesc value
to compute xe(z) and confront it to the xe data points and Planck’s τ . We end up with
three χ2 values which are summed to give the final χ2 that the algorithm is looking to
minimise. fesc is allowed to vary between 0 and 1 andMlim between -17 to -10, where -16 is
the detection limit of current observations (Bouwens et al. 2015b; Ishigaki et al. 2018) and
-10 is the magnitude of the smallest haloes forming stars (Faucher-Giguère et al. 2011).
Mlim = −17 is therefore a very conservative case, with very few ionising photons produced,
whereasMlim = −10 is a very optimistic case, leading to a very comfortable photon budget
for reionisation. Note that these results have never been published, and aim at further the
results of Gorce et al. (2018), presented in Appendix A.1.

The best-fit parameters, yielding the smallest χ2, are a = 0.05± 0.03, b = 0.42± 0.07,
log ρUV (z = z?)/ergs s−1Hz−1Mpc−3 = 26.1± 0.2, fesc = 0.21± 0.10 and Mlim = −13.1±
1.7, so that τ = 0.055 ± 0.001. Freeing Mlim allows to reconcile xe data and Planck’s
τ value compared to the previous paragraph. Fig. 4.8 shows the resulting reionisation
histories on the left panel, and the joint posterior distribution of fesc and Mlim with 1, 2
and 3σ contours, confirming the assumed strong correlation between these two parameters.
In order to match observations, a low value of the escape fraction will require extrapolating
galaxy luminosity functions to faint luminosities. This corroborates the results of Gorce
et al. (2018), where we found, confronting our fits to data derived for typical values of
the magnitude limit (Mlim = −17, -13 and -10), that the most conservative case required
extremely large values of the escape fraction (fesc ∼ 0.6 − 0.8 for Mlim = −17). In
particular, values such as fesc = 20% require Mlim ≥ −14 (remember, Mlim = −13, shown
as a black cross on the figure, was used in the previous sections). Similarly, considering
a varying value of Mlim with redshift, Price et al. (2016) find that it varies in order to
balance the increasing value of fesc with redshift allowed by their model and give optical
depths compatible with Planck. Current observations do not go to fainter luminosities that
M ∼ −15, we therefore still require galaxies that have not been yet observed to derive a
consistent history of reionisation. Observations of faint and high-redshift galaxies by the
James Webb Space Telescope (JWST, Gardner et al. 2006) are highly anticipated, in order
to confirm or infirm the contribution of these galaxies to reionisation.

Ishigaki et al. (2018) find a similarly shaped 2D distribution function of fesc, log ρUV (z =

z?) and Mlim, leading to Mlim < −14 and fesc = 0.17+0.07
−0.03. In their work, the authors fit

a, b, z?, fesc and Mlim to their own data on luminosity density. They also add the optical
depth from the previous Planck results (τ = 0.058 ± 0.012, Planck Collaboration et al.

8When z? is added as a free parameter, we obtain very similar results on xe(z).
9This corresponds to 24 data points on the range 3.8 ≤ z ≤ 10.4.

102



4.2. Model-related limits

Figure 4.8: Results of adding the magnitude limit Mlim and the escape fraction fesc to our fits.
Left panel: Reionisation histories. The best-fit scenario when all constraints are used is shown as
the solid blue line, along with its 95% confidence interval. Right panel: 2D posterior distribution of
Mlim and fesc with 1, 2 and 3σ confidence levels. The cross shows fiducial values used in Sec. 2.3.

(2016d)) and xe measurements from quasar spectra and Lyα galaxies as constraints. Here,
combining different datasets on luminosity functions allows to give more than an upper
limit on Mlim.

As mentioned before, these results depend on the value assumed for ξion, the Lyman
continuum photons production efficiency, which is used with fesc to derive the IGM ionisa-
tion rate ṅion(z) from UV luminosity densities. Here, we have used ξion = 1053.14 s−1M−1

� yr

(Robertson et al. 2015) and we consider that the uncertainties obtained for fesc include
those on ξion. We expect that, once data on star formation history at earlier times is
available, we will be able to improve constraints on the magnitude limit.

4.2.3 IGM physical properties: The clumping factor of ionised hydrogen

Another key-parameter of the reionisation process is the clumping factor of ionised
hydrogen in the IGM CH ii. It is related to the characteristic recombination time: the
more matter is aggregated in clumps, the easier for ionised atoms to recombine in these
very same clumps. However, as mentioned in Sec. 2.2, a precise estimate of its value is
difficult to obtain. On the simulation side, estimating CH ii requires getting a sufficient
precision for the gas distribution, a correct topology of ionised and neutral matter, and an
accurate model of the evolution of gas clumps themselves during the reionisation process
(Mao et al. 2020; Chen et al. 2020). Most recent studies use values ranging from 1 to 6 at
the redshifts of interest, i.e. for 6 . z . 30 (Sokasian et al. 2003; Iliev et al. 2006; Raičević
& Theuns 2011; Shull et al. 2012; Robertson et al. 2015; Finkelstein et al. 2015; Bouwens
et al. 2015a). Other works look at a redshift-dependent evolution (Iliev et al. 2007a; Paw-
lik et al. 2009; Haardt & Madau 2012; Finlator et al. 2012; Sobacchi & Mesinger 2014),
because at low redshift, most of the ionised hydrogen is located in matter haloes, whose
increasing overdensity implies a large CH ii (Furlanetto & Oh 2005; Sobacchi & Mesinger
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Figure 4.9: Results when considering a 2-parameter model for CH ii. Left panel: Reionisation
history. Right panel: Redshift-evolution of CH ii(z). Best-fit models, along with their 95% confi-
dence intervals, are shown when all data sets are used as constraints for the redshift-evolution (in
blue) or when CH ii is constant (in black).

2014). Because CH ii is closely related to the physics of the IGM, it is not only interesting
to see the impact of its value on our models of reionisation, but also to see what we could
learn about the properties of the high-redshift IGM with precise reionisation observations.

In this perspective, we now add the clumping factor as a fifth parameter to the ρSFR(z)

fit, free to vary between 0 and 100. Because CH ii is involved only in the calculation
of the evolution equation of the ionisation level (Eq. 1.7) as the competing term related
to recombinations, star formation history data points do not constrain its value signif-
icantly, but rather a, b, c and d. Results are shown, for the posterior distributions of
xe(z) and CH ii, on Fig. 4.9 in green. When all data sets are included in the fit, we find
CH ii = 4.98± 1.97, which is within the range of values used in the literature. Despite this
wide posterior distribution, the corresponding range of reionisation histories is quite nar-
row with zre = 6.86± 0.10. It seems that the exact value of CH ii only slightly impacts the
reionisation history and, conversely, it will not be possible to constrain the clumpiness of
the IGM from global reionisation constraints. Additionally, the resulting Thomson optical
depths are very close to the distribution obtained when CH ii is fixed to 3: τ = 0.060±0.001

to be compared with τCH ii=3 = 0.064 ± 0.001. Because the Thomson optical depth only
sets loose constraints on reionisation history, we find that xe measurements are essential
to constrain CH ii. When skipped, because of the wide error bars on ρSFR(z) at high red-
shift, the only constrain ensuring reionisation to happen is the Thomson optical depth.
Therefore CH ii is poorly constrained: the peak likelihood corresponds to CH ii = 17.0 but
with a tail extending to 100 (3σ). These high values lead to a high recombination rate,
which is not balanced sufficiently by star formation, so that reionisation happens later
(zre = 5.82 ± 0.75), leading to τ = 0.047 ± 0.008. Conversely, skipping or keeping the τ
constraint gives almost identical results as long as xe data is used.

We now model a redshift-evolution of CH ii with a simple power-law inspired by the
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results of Haardt & Madau (2012):

CH ii(z) = 1 + a
(z

7

)b
, (4.23)

where 1 + a is the value of CH ii at z = 7, that is around the midpoint of reionisation. It is
generally admitted that the clumping factor only decreases with z, so we set the uniform
priors a > 0 and b < 0. Addtionally, its formal definition is CH ii = 〈n2

H ii〉/〈nH ii〉2 =

1 + δH ii, if we define the overdensity of ionised hydrogen as δH ii = (nH ii − 〈nH ii〉) /〈nH ii〉.
Before the onset of reionisation, most of the hydrogen is neutral so that H ii fluctuations
are very weak: δH ii(z → ∞) = 0: b < 0 ensures that CH ii → 1 as z → ∞. Finally,
according to this definition, CH ii(z) is infinite at z = 0. If it reaches too large values at low
redshift, recombinations will take over ionisation and the IGM will be either never fully
ionised or xe will reach 1 and then decrease again. To avoid these unphysical behaviours,
we require H i reionisation to end before the one of He ii, therefore before z = 4. Because
CH ii is not involved in the calculation of ρSFR but only of the recombination time, star
formation history data have no influence over its value so we constrain our runs by xe and
τPlanck only – the ρSFR parameters are fixed to their best-fit values in Sec. 2.3.

The maximum likelihood is reached for a = 3.49± 0.49 and b = −0.87± 0.43, resulting
in τ = 0.061± 0.002. The best-fit CH ii(z) and xe(z) are shown on Fig. 4.9 in blue. We see
the redshift-evolution of CH ii allows an even better constrained reionisation history, with
zre = 6.88 ± 0.26. However, data does not require a strong evolution during reionisation:
it increases from 2.5 at z = 15 to 10 at z = 4. In fact, the slope b is poorly constrained
and values ranging from −1.5 to 0 lead to similar reionisation histories. We note a strong
correlation between the parameter a in the model, which corresponds to CH ii(z = 7) − 1

and τ : higher values of a, and therefore of CH ii at the midpoint of reionisation, lead to
lower τ values, as a higher recombination rate delays reionisation. This is a promising way
to constrain CH ii independently of other parameters. Interestingly, there was no correla-
tion noted between τ and CH ii when the latter was taken constant with redshift.

Data seems to require values of the IGM clumping factor larger than the constant
CH ii = 3, often used in the literature, mainly to match the low Thomson optical depth
measured by Planck. However, this value relies on an outdated model of reionisation
included in CosmoMC, and correctly including reionisation within the CMB data analysis
framework will likely lead to larger optical depths (see Planck Collaboration et al. 2016d,
and previous section). Values CH ii ≤ 10 all yield similar reionisation histories, in good
agreement with measurements of the global IGM ionisation level from quasars and Lyα

galaxies, and within the confidence intervals of Planck results. Therefore any CH ii on this
range will be a good first approximation. If a redshift-evolution is not favoured, it can still
be useful to include it to our models because of the high correlation noted between the
value of CH ii around the midpoint of reionsation and τ .
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Figure 4.10: Posterior distribution for fesc and CH ii when they are added to the fit on ρSFR(z).
Contours correspond to the 1-, 2- and 3− σ confidence levels. The cross shows the fiducial values
used in Sec. 2.3.

Joint dependency of fesc and CH ii

Now that we have studied the impact of fesc and CH ii separately, we look at how
their values are correlated and add them to the four parameters of the ρSFR(z) model in
Eq. (2.14). In agreement with previous results that showed data only weakly favours a
redshift-evolution for these two parameters, we take them constant. fesc is allowed to vary
between 0 and 1, and a flat prior CH ii ∈ [0, 10] is added on CH ii

10. The six parameters
have maximum likelihood values similar to previous results: we find a = 0.0145, b = 3.21,
c = 2.62 d = 5.68, fesc = 0.22± 0.06 and CH ii = 5.73± 2.81. The larger error bars on CH ii

seem to indicate that the uncertainty on fesc has been absorbed by them. We show the
2D posterior distribution of fesc and CH ii on Fig. 4.10, when all three data sets are used.
Ishigaki et al. (2015) find a similar behaviour, with however fesc values larger by about
0.10 for all CH ii, resulting into low τ values, around 0.040. Here, the resulting ionisation
histories are also close to what was obtained when fesc and CH ii were fixed. In particular,
the evolution of the ionised level of the IGM and thus the derived value of τ remain quite
well constrained (τ = 0.060± 0.002) and in agreement with Planck.

As a conclusion, we have seen that the quality of the observations currently available, as
well as the high number of parameters involved when deriving a model reionisation history
do not allow to derive clear joint dependencies between the astrophysical parameters at
stake. We have found that for the escape fraction, a value fesc ' 20% is sufficient to
achieve reionisation, in good agreement with data, as long as Mlim > −13. The clumping
factor is loosely constrained by data, and any value on the range 1 < CH ii < 10 will lead to
reionisation histories in good agreement with data. Indeed, all our analyses, where different
sets of parameters were allowed to vary, led to similar reionisation histories, confirming the
validity of a model where reionisation starts around z = 15 and is ended by zend = 5.5, with

10When CH ii is allowed to take any value between 0 and 100, the preferred value is about 40 and the
recombination rate is so high that an escape fraction of 80% is required to achieve reionisation.
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a midpoint around zre = 7.5. Improved observations, namely at high redshift, should allow
to reduce the observed degeneracies and to use reionisation observables to learn about the
physics of the early Universe.

***
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4.3 Chapter conclusion & discussion

This chapter has highlighted the model- and observations-related issues we encounter
with current data, as well as the ones we will have to overcome with future data, in partic-
ular 21cm. For each of the problems listed, we have assessed the related error and found
that, sometimes, for example for astrophysical parameters such as the IGM clumpiness,
their impact on EoR constraints was only weakly significant. This will be useful as it is
currently not possible to run simulations of sufficient precision, or to observe a sufficient
number of high-redshift objects, to know these parameters well. It will, however, also be
problematic, since the information we can get on the nature of the IGM at high redshift
from global reionisation observations is consequently limited.

Considering high-impact factors, we have looked for ways to avoid or suppress the as-
sociated errors and some of the statistical tools introduced in Chapter 3 are found to be
particularly robust to instrumental effects. The triangle correlation function, for instance,
benefits from reduced calibration errors thanks to the use of closure phases, and is found
to be weakly sensitive to the instrumental resolution and thermal noise of experiments
such as SKA. Additionally, some of the model-uncertainties mentioned in this chapter are
expected to be lifted with future observations. With the sensitivity of JWST, we expect to
observe the faint-end of galaxy luminosity functions, therefore avoiding unphysical extrap-
olations and confirming their anticipated contribution to reionisation. JWST’s deep-sky
observations should also tell us about the density of galaxies at redshifts z > 10, which, as
we have seen, will in turn help constrain a potential evolution of the escape fraction with
redshift. Increased simulation sizes and resolution, accounting for more and more physical
effects, will also tell us about objects that are not currently observable, and improve our
global picture of EoR.

Finally, the sample variance, which was used to our benefit in Sec. 3.1, is an intrinsic
observational issue that one cannot avoid, and must therefore be modelled. In this per-
spective, we have introduced the super-sample covariance, a theoretical derivation of the
impact of sample variance on cosmological parameter inference. This derivation, which for
the first time accounts for the limited size of surveys such as Euclid, can be extended to
observations of the 21cm global signal.
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Conclusions

In this thesis, I have looked at reionisation history, from a global and then local per-
spective. At both levels, I have developed, and made available for the community, analysis
methods robust to model- and observations-related limitations, specific to the study of the
Epoch of Reionisation (EoR). Indeed, despite this period covering a few billion years of
the history of the Universe, it is poorly known and a lot of work is required before being
able to use the next generation of observational data. Once this data is available, my tools
will give reliable constraints on reionisation in general, and on the physical properties of
the high-redshift IGM and galaxies in particular.

As the second major phase transition of the Universe after recombination, the EoR is
firstly interesting as a global process. In this work, I have given a reference, comprehensive
history where reionisation is an asymmetric process, starting slowly around z = 15, before
accelerating when 20% of the IGM is ionised, and ending before z = 5. In this simple
scenario, based on a few reasonable assumptions about the high-redshift Universe, reioni-
sation is driven by galaxies. This result is obtained by combining, for the first time, all the
observational data available today, from quasar spectra and galaxy luminosity functions
to CMB optical depth. Despite very different cosmological and astrophysical origins, these
observations are consistent and give a coherent picture of the process. However, fully reion-
ising the IGM requires high-redshift and faint galaxies which have not yet been observed.
In this perspective, the deep-sky observations of the James Webb Space Telescope (JWST,
Gardner et al. 2006) are highly anticipated. These results are essential for reionisation
study as star formation is a direct tracer of the ionising photon budget with cosmic time.
Additionally, the quality of current data on the IGM ionised fraction xe is low, both be-
cause of modelling uncertainties on the nature or environment of the source, and because
of the small size of the data sample. Wide surveys such as the space-based Euclid (Laureijs
et al. 2011) and Nancy Grace Roman telescopes (previously named WFIRST, Green et al.
2012)1, or the ground-based Vera Rubin telescope (previously name LSST, LSST Science

1Euclid will cover about seven times larger sky area than the Roman telescope, while the imaging of
the latter will be about 2.5 magnitudes deeper than Euclid.
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Collaboration et al. 2009), will provide an unprecedented amount of imaging data for stud-
ies of faint light sources: together, these telescopes will cover about 2 200 deg2 of deep
observations of the sky. Simulations estimate that the Rubin telescope alone will discover
about 1 000 quasars at z > 7 (Ivezić 2018), while the fifth phase of the Sloan Digital Sky
Survey (SDSS, York et al. 2000) will target over 400 000 sources, primarily black holes.
Follow-ups by JWST will, in turn, give their optical and infrared spectra, from which we
can infer xe. Observations of a wide number of luminous objects by these telescopes will be
helped by improved methods to locate quasars in large data sets, such as Bayesian model
comparison and machine learning techniques (Mortlock 2014; Richards et al. 2015). The
number of observed Lyman-α galaxies is also expected to be greatly improved.

Deriving a global reionisation history from astrophysical observations includes mod-
elling a number of astrophysical objects and processes which are not always well under-
stood. In this work, I have given a clear picture of what information is missing, and what
type of observations will be needed to improve results. For example, JWST’s sensitivity,
limited to a handful of narrow but deep fields, will allow observations of dim objects and
tell us about the high-z and faint-end of galaxy luminosity functions. This, in turn, will
constrain the value of a global escape fraction of ionising photons fesc, averaged over galaxy
properties, as well as its potential redshift-evolution. Conversely, the global reionisation
history seems to be only weakly sensitive to the nature of the IGM during the process,
and in particular to averaged parameters such as its overall clumpiness CH ii. To further
constrain such parameters, as well as the properties of early galaxies, we will need to turn
to more local measurements, such as 21cm intensity mapping.

In this perspective, I have introduced tools designed to efficiently extract information
about reionisation from 21cm intensity mapping data. Efficient analysis methods are essen-
tial considering the amount of data 21cm experiments produce: the Hydrogen Reionization
Array (HERA, DeBoer et al. 2017) will generate about 0.2 terabytes of raw data per day,
and the Square Kilometre Array (SKA, Koopmans et al. 2015) about 160 terabytes per
second, the estimated global internet traffic in 2015. I have presented a quick and easy-
to-compute one-point statistic, dubbed local variance. Applied to narrow lightcones, it
can tell us both about the global reionisation history and the physical properties of early
galaxies while making use of what is normally considered an observational bias: the sam-
ple variance. A more complex object described here is the triangle correlation function of
phases (TCF), based on the phases of the 21cm bispectrum, and benefiting from reduced
calibration errors thanks to the closure phase relation. The TCF is designed to trace the
shape and evolution of H ii regions during reionisation. Because these two objects are
robust to instrumental effects such as the angular resolution and thermal noise of, for ex-
ample, SKA1-Low, they are not limited to theoretical studies and can be used on actual
observations. However, a limitation not investigated in details here is foreground removal.
Indeed, observations of the cosmological 21cm signal are likely to be spoilt by foregrounds
10 to 100 times larger in amplitude. More work is required to improve our modelling of
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these foregrounds and, in turn, remove them accurately from data. In the case of intensity
mapping, the impact of foregrounds on the non-Gaussian part of the 21cm signal needs to
be assessed, despite pessimistic first works (Watkinson et al. 2020). A way to overcome
poor signal-to-noise ratios and to confirm the cosmological origin of a measured signal is
to use cross-correlations, for example between 21cm and kSZ (Jelić et al. 2010; Tashiro
et al. 2011; La Plante et al. 2020), 21cm and τ (Meerburg et al. 2013; Roy et al. 2020b), or
21cm data and Lymanα emitters (Carucci et al. 2017; Hutter et al. 2017). If these cross-
correlations can be computed at the power spectrum level, higher-order statistics such as
the TCF are also an interesting prospect.

On a shorter timescale, clean measurements of the 21cm power spectrum are expected
in the coming years. Lowest upper limits, noise- and systematics-limited, are currently
bouncing back and forth between the Low Frequency Array in the Netherlands (LOFAR,
van Haarlem et al. 2013a) and the Murchison Widefield Array in Australia (MWA, Tin-
gay et al. 2013). Results from HERA in South Africa and the Giant Metrewave Radio
Telescope in India (GMRT, Paciga et al. 2011), are also highly anticipated. Additionally,
the sky-averaged global 21cm signal will give us information about the global history of
the process, and in particular its onset via the birth of the first stars. It is targeted by
single antenna experiments such as the Experiment to Detect the Global EoR Signature
(EDGES, Bowman et al. 2008), the Shaped Antenna measurement of the background RA-
dio Spectrum 2 (SARAS 2, Singh et al. 2018). EDGES, in particular, has claimed the
first detection of this signal in 2018 (Bowman et al. 2018). Although not yet confirmed, if
true, this result would require us to rethink our picture of the Cosmic Dawn (Barkana 2018).

Improved observations of the CMB, both on large and small scales, are also an exciting
perspective for learning about the EoR. Satellites such as LiteBird (Hazumi et al. 2012),
scheduled to launch in 2027, should reach the cosmic variance limit on the Thomson opti-
cal depth σ(τ) = 0.002 – today, Planck’s results have a precision of σ(τ) = 0.007 (Planck
Collaboration et al. 2018). The primary target of LiteBird is the polarisation B-modes of
the CMB, which will be contaminated by secondary anosotropies stemming from patchy
reionisation (Mukherjee et al. 2019). Observing this polarised signal is also the aim of, for
example, the Background Imaging of Cosmic Extragalactic Polarization (BICEP, Keating
et al. 2003) and POLARBEAR (Kermish et al. 2012). Because of the very high sensi-
tivity required to observe B-modes on large scales, these experiments will also improve
reionisation constraints based on the low-` parts of the TT , TE and EE spectra.

To this day, small-scale CMB observations essentially allow to constrain reionisation as
a whole, and in an inconsistent manner: different prescriptions are used to describe reion-
isation at different stages of the analysis, and the main model is a step-like reionisation
history, very different from the results of observations and simulations (Aubert et al. 2015;
Gorce et al. 2018). I have therefore introduced a new parameterisation of the patchy ki-
netic Sunyaev Zel’dovich (kSZ) angular power spectrum in terms of reionisation which can
be directly added to the CMB data analysis pipeline. The complicated physics involved in
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the kSZ signal are summarised in this quick and easy-to-forward-model formalism, based
on two parameters related to the nature of the IGM and of early galaxies. With this
parameterisation, it will be possible to measure for the first time the accurate amplitude
and shape of the kSZ power spectrum from reionisation. However, extracting informa-
tion about reionisation from high-` CMB data requires a good knowledge of the late-time,
homogeneous part of the kSZ signal, as well as an efficient removal of foregrounds with
multi-frequency analysis. Current data, obtained with the latest generations of the Ata-
cama Cosmology Telescope (ACT, Kosowsky 2003) and the South Pole Telescope (SPT,
Ruhl et al. 2004), and combined with Planck large-scale data, have mostly given upper
limits on the amplitude of the patchy kSZ signal and rely on inconsistent and outdated
models of reionisation. After 5 years of observations of 1 500 deg2 of the sky with the
SPT-3D camera, the noise levels are expected to be significantly reduced, resulting in sub-
stantially lower uncertainties on the measured temperature power spectrum for ` > 1000.
Additionally, the Simons Observatory (SO, Ade et al. 2019) and CMB-S4 experiments
(Abazajian et al. 2016) will extend these measurement to larger sky areas, with reduced
noise, and on more frequency bands, improving foreground removal. Forecasts therefore
expect a detection of the amplitude of the patchy kSZ signal at ` = 3000 at the 0.2 µK2

level with SO (Ade et al. 2019), whereas the most recent claimed detection by SPT has a
1.0 µK2 uncertainty (Reichardt et al. 2020). Depending on its mean value, future CMB
experiments should also be able to detect spatial fluctuations in the Thomson optical depth
τ (Roy et al. 2018), allowing cross correlations with 21cm data (Meerburg et al. 2013; Roy
et al. 2020b).

Reciprocally, a better knowledge of reionisation will allow to put strong priors on τ

or xe(z) in CMB analysis and reduce the remaining degeneracies between cosmological
parameters and τ . A high precision measurement of the reionisation bump will also help
in detecting potential B-modes, once systematics and foregrounds are removed.

Other observational probes of the EoR exist and have not been used in this work. We
have mentioned in Sec. 2.2 the possibility of constraining the ionising rate of the IGM
using the luminosity functions (LF) of Lyα emitters. If the experiments described above
will push the observed LF to fainter magnitudes and higher redshift, there is still a lot of
uncertainty on the underlying modelling of the physics involved (Santos 2004). Another
option is to look at the evolution of the IGM thermal state. Indeed, the IGM will be photo-
heated to a few 104 K by reionisation2, before gradually cooling with expansion. Because
of this slow cooling process, the low density IGM gas retains some thermal memory of when
and how it was ionised (Miralda-Escudé & Rees 1994). Different models of reionisation
will lead to different thermal histories: for example, earlier reionisation scenarios lead to
a cooler IGM at low redshift. Most current measurements of the IGM temperature are
obtained by analysing the shapes of the absorption lines in the Lyα forest of quasar spectra

2T = 2 × 104 K is considered to be the mean temperature around a newly formed atom (Loeb &
Furlanetto 2013).
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(Hiss et al. 2018), but newer methods, using the Lyα flux power spectrum, have recently
been proposed (Boera et al. 2019). New observations of quasars and Lyα galaxies by
the experiments mentioned above will therefore also help increase the significance of such
measurements.

Finally, simulations are an ideal way of reaching scales and redshifts which are not ac-
cessible through observations. Today, most simulations, of different degrees of complexity,
vary the physical properties and density of early light sources in order to reproduce obser-
vations. Models which match the observations will therefore tell us what is required for
reionisation to happen the way we observe it today. However, the most complex and phys-
ically accurate simulations are limited by computing power, and do not reach scales larger
than a few hundreds of megaparsecs (Gnedin 2014; Ocvirk et al. 2016; Pawlik et al. 2017).
Post-processing cosmological hydrodynamical or dark matter only simulations with radia-
tive transfer is a cheaper alternative, as the required resolution can be coarser (Mellema
et al. 2006; Trac & Cen 2007; Ciardi et al. 2012; Hutter et al. 2014; Iliev et al. 2014).
On the other hand, semi-numerical simulations, despite making coarse approximations,
can reach gigaparsecs sizes (Furlanetto et al. 2004a; Mesinger & Furlanetto 2007; Thomas
et al. 2009; Ghara et al. 2015). Because they are quick to compute, it is possible to sam-
ple various realisations, corresponding to different astrophysical parameters, and confront
them to data in an MCMC approach (Greig & Mesinger 2017). All these methods are
expected to make a lot of progress in the coming years, as computational power will be
greatly improved.

Reionising the IGM involves many different physical processes, on a wide range of
scales. This is both a curse, since it makes it difficult to have a comprehensive picture of
the process, and a blessing, since many different types of observations can help constraining
it. The EoR is related to many fundamental questions about the high-redshift Universe,
from the density and clumpiness of the IGM to the astrophysics of luminous objects, such as
the formation of the first stars, the impact of radiative feedback on star formation or black
hole growth, and the nature of early galaxies and (mini-)quasars. Indeed, constraining the
onset of reionisation tells us about the properties of these galaxies, which are the building
blocks of galaxies observed today and hence can confirm, or infirm, current models of
galaxy formation and evolution. All of this makes the study of reionisation a priority
of cosmology, with many observational and modelling challenges to overcome, that I am
happy to have contributed to and excited to keep doing so.
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Appendix A

Published journal articles

A.1 Observational constraints on key-parameters of cosmic reionisation

history

This article was the result of a work started as a Master student. It aims at combining
all the data currently available to constrain the reionisation process as a whole and derive
a comprehensive scenario. A similar approach is adopted in Sec. 2.3, however, the results
are not the same as the ones of the paper as the observational data used has been updated.
This work also investigates the impact of the exact value of some parameters used when
deriving reionisation history from measurements, which are poorly known. These results
make up most of Secs. 4.2.2 and 4.2.3. All the results presented in this article, and the
ones related to the article presented in this thesis, are the result of my personal work. It
was published in August 2018 in Astronomy & Astrophysics.
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ABSTRACT

We discuss constraints on cosmic reionisation and their implications on a cosmic star formation rate (SFR) density ρSFR model; we
study the influence of key-parameters such as the clumping factor of ionised hydrogen in the intergalactic medium (IGM) CH ii and
the fraction of ionising photons escaping star-forming galaxies to reionise the IGM fesc. Our analysis has used SFR history data from
luminosity functions, assuming that star-forming galaxies were sufficient to lead the reionisation process at high redshift. We have
added two other sets of constraints: measurements of the IGM ionised fraction and the most recent result from Planck Satellite about
the integrated Thomson optical depth of the cosmic microwave background (CMB) τPlanck. Our analysis shows that a reionisation
beginning as early as z ≥ 14 and persisting until z ∼ 6 is a likely scenario.
We also considered various possibilities for the evolution of fesc and CH ii with redshift, and confront them with observational data
cited above. We conclude that, if the model of a constant clumping factor is chosen, the fiducial value of three is consistent with
observations; even if a redshift-dependent model is considered, the resulting optical depth is strongly correlated with CH ii mean value
at z > 7, an additional argument in favour of the use of a constant clumping factor. Similarly, a constant value of the escape fraction
is favoured over a redshift-dependent model. When added as a fit parameter, we find fesc = 0.19 ± 0.04. However, this result strongly
depends on the choice of magnitude limit in the derivation of ρSFR. Our fiducial analysis considers faint galaxies (Mlim = −13) and the
result is a well constrained escape fraction of about 0.2, but when Mlim = −17, the number of galaxies available to reionise the IGM
is not sufficient to match the observations, so that much higher values of fesc, approaching 70%, are needed.

Key words. Cosmology: dark ages, reionisation, first stars – Cosmology: cosmic background radiation – Galaxies: high-redshift –
Galaxies: evolution – Galaxies: formation

1. Introduction

Around redshift z ' 1090, during the recombination era, pro-
tons paired with free electrons to form neutral atoms: the ionisa-
tion level of the intergalactic medium (IGM) fell to 0.0001 % and
remained at this level for several billions of years (Peebles 1968;
Zel’dovich et al. 1969; Seager et al. 2000). Nevertheless, obser-
vations of the Gunn-Peterson effect (Gunn & Peterson 1965) in
quasar spectra inform us that at z ∼ 6, 99.96 ± 0.03 % of the
IGM hydrogen atoms are ionised (Fan et al. 2006). What hap-
pened in the meantime, during the Epoch of reionisation (EoR),
is an essential source of information about the evolution of the
Universe, the formation of large cosmic structures and the prop-
erties of early galaxies, to cite only a few. Thanks to improved
observations of the cosmic microwave background (CMB), lu-
minosity functions of galaxies, damping wings of quasars and
Ly-α emissions (e.g. Schenker et al. 2013; Schroeder et al. 2013;
Madau & Dickinson 2014; Planck Collaboration et al. 2016b),
more and high quality data are available. Now the generally ac-
cepted scenario is that first star-forming galaxies reionised neu-
tral regions around them between z ' 12 and z ' 6 and then
the ionised regions progressively overlapped (e.g. Aghanim et al.
1996; Becker et al. 2015) so that IGM neutral hydrogen fraction
rapidly decreased until quasars took over to reionise helium from
z ' 3 − 4 (Mesinger 2016).
Yet, some doubts remain about the sources of reionisation: some

support the hypothesis that quasars could have led the pro-
cess (Madau & Haardt 2015; Khaire et al. 2016; Grazian et al.
2018) but star-forming galaxies are often preferred. For instance,
Robertson et al. (2015) argue that they were sufficient to main-
tain the IGM ionised at z ∼ 7. The most recent value of the inte-
grated Thomson optical depth, deduced from observations of the
CMB, equals τPlanck = 0.058±0.012 and is obtained considering
an instantaneous reionisation at zreio = 8.8 ± 0.9 ended by z = 6
(Planck Collaboration et al. 2016b). It is much lower than previ-
ous observations by the Wilkinson Microwave Anisotropy Probe
(WMAP) τWMAP = 0.088±0.014 for zreio = 10.5±1.1 (Hinshaw
et al. 2013). This decrease, according to Robertson et al., reduces
the need for a significant contribution of high-redshift galaxies
and allows them to extrapolate galaxies luminosity functions for
10 . z ≤ 30.
Like Robertson et al. (2015), a number of recently published pa-
pers assume redshift-independent values of the escape fraction of
ionising photons fesc and of the clumping factor CH ii (Bouwens
et al. 2015a; Ishigaki et al. 2015; Greig & Mesinger 2017), which
is a questionable hypothesis. The escape fraction depends on nu-
merous astrophysical parameters and, for this reason, it is of-
ten a generalised, global and redshift-independent value that is
used, for an order of magnitude of 0.1. Some simulations give
expressions of fesc as a function of redshift (Haardt & Madau
2012; Kuhlen & Faucher-Giguère 2012) or of various parame-
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ters such as halo mass or star formation rate (Wise et al. 2014;
Paardekooper et al. 2015), but these models are rarely combined
with observational constraints, aiming to deduce a certain his-
tory of reionisation. The situation is similar for the clumping fac-
tor: its evolution with redshift can be considered in simulations
through various models (e.g. Mellema et al. 2006; Pawlik et al.
2009; Sobacchi & Mesinger 2014), but these are rarely compared
with observations. We must, however, refer to Price et al. (2016)
who constrain parametrised models of the escape fraction fesc (z)
with Thomson optical depth and low multipole E-mode polari-
sation measurements from Planck Collaboration et al. (2016b),
SDSS BAO data and galaxy observations for 3 . z . 10.
We first describe in Sect. 2 the observables of the reionisation
process we will use throughout the analysis: the cosmic star
formation rate density, the ionised fraction of the IGM and the
Thomson optical depth, for which observational data is available
– described in Sect. 3; as well as the two key-parameters of this
study, the escape fraction of ionising photons and the clumping
factor of IGM ionised hydrogen. Then we look in Sect. 4 for
the redshift-evolution we will further consider for the star for-
mation rate (SFR) density, extrapolating luminosity functions at
z & 10. Doing this, we study the impact of our observational
constraints on ρSFR. Investigations are then made on the escape
fraction value and on how observations can constrain it: we try
several parametrisations out – a redshift-independent one, where
fesc is free to vary in [0.1, 0.4], and a power-law function of z.
We proceed the same for CH ii, but this time considering several
possible parametrisations of its evolution with redshift, mainly
from Iliev et al. (2007) and Pawlik et al. (2009). We conclude
with a discussion of our results in Sect. 5, including a test of dif-
ferent values for the magnitude limit, and a summary in Sect. 6.
Throughout this paper, all cosmological calculations assume
the flatness of the Universe and use the Planck cosmological
parameters (Planck Collaboration et al. 2016a): h = 0.6774,
Ωm = 0.309, Ωbh2 = 0.02230 and Yp = 0.2453. Unless oth-
erwise stated, all distances are comoving.

2. Observables of reionisation

2.1. Drawing the history of reionisation

Clues about the reionisation process can be derived from var-
ious observables. Under the assumption that star-forming galax-
ies provided the majority of the photons which ionised the IGM,
the star formation rate density, ρSFR, can logically give precious
information about the EoR. Values of SFR density with red-
shift are deduced from luminosity functions (LF) of star-forming
galaxies. LF can be observed down to a certain magnitude, but
needs to be extrapolated to consider the contribution of unob-
served fainter galaxies. Equation 1 shows how the comoving ion-
isation rate ṅion is computed from the LF.

ṅion =

∫ ∞

Mlim

φ(MUV) fesc(MUV) ξion(MUV) dMUV

' 〈 fesc ξion〉
∫ ∞

Mlim

φ(MUV) dMUV

' fesc ξion ρSFR. (1)

The final expression directly relates ρSFR to the cosmic reioni-
sation rate ṅion, in units of photons per unit time per unit vol-
ume, and is the version we will use in our models. We see
that the choice of Mlim is fundamental as it directly impacts the
value of ρSFR. Bouwens et al. (2015a) state that faint galaxies

must contribute to the total UV radiation from galaxies but, as-
suming they do not form efficiently for lower luminosities (see
Rees & Ostriker 1977; Mac Low & Ferrara 1999; Dijkstra et al.
2004), Robertson et al. choose to use Mlim = −13 rather than
Mlim = −17, a choice we will discuss in this paper.

Two important parameters are used in Eq. 1: fesc and ξion.
They describe the fact that only a limited amount of the pho-
tons produced by star-forming galaxies eventually end up ionis-
ing the IGM: first, they need to have sufficient energy – above the
Ly-α limit, and second, they must escape their host galaxy and
reach the IGM. The first condition is conveyed by ξion, the quan-
tity of Lyman continuum photons produced per second and per
unit SFR for a typical stellar population. According to Robert-
son et al. (2015), we take ξion = 1053.14 Lyc photons s−1 M−1

� yr.
The second condition is conveyed by fesc, the fraction of ionising
radiation coming from stellar populations which is not absorbed
by dust and neutral hydrogen within the host galaxy and so does
contribute to the process. We note that in Eq. 1 we chose to con-
sider values of fesc and ξion averaged over magnitude, i.e. the
effective values.

Aiming to reproduce observations on the star formation his-
tory from z ∼ 30 to z ∼ 1, we choose the four-parameter model
suggested by Robertson et al. (2015), updated from Madau &
Dickinson (2014, Sect. 5, Eq. 15) and described in Eq. 2 be-
low. According to data, ρSFR(z) follows a first rising phase, over
3 . z . 15, which is expressed in our parametrisation by an evo-
lution ρSFR(z) ∝ (1 + z)b−d, up to a peaking point around z ∼ 1.8
, that is, when the Universe was around 3.6 Gyr old. It then de-
clines as ρSFR (z) ∝ (1 + z)b until z = 0. To stay consistent with
observations, we set b > 0 and b − d < 0.

ρSFR(z) = a
(1 + z)b

1 +
(

1+z
c

)d . (2)

In order to put our results in perspective, we consider differ-
ent values of the magnitude limit for our study and therefore use
another parametrisation of the star formation history, suggested
by Ishigaki et al. (2015) and designed to reproduce the rapid de-
crease of ρUV(z) from z ∼ 8 towards higher redshifts and but not
the bump on luminosity density observed around z ∼ 2

ρUV(z) =
2 ρUV(z = 8)

10a(z−8) + 10b(z−8) . (3)

Here, ρUV(z = 8) is a normalisation factor, and a and b char-
acterise the slope of ρUV(z). This model is more adapted to the
study of reionisation in itself, as the process is known to end
before z = 4 and so before the star formation bump. However
we cannot limit our analysis to this late-redshift model since the
former carries more information about the reionisation history
and is therefore more interesting when considering a large
amount of free parameters. We note that for Mlim = −10 and
Mlim = −17, we use ξion = 1025.2 erg−1 Hz, following Ishigaki
et al. (2015).

Other observations can lead to estimations of the fraction of
ionised IGM QH ii, also called filling factor, which relates to the
SFR density via Eq. 4. In this equation, the time-related evolu-
tion of QH ii depends on two contributions: an ionisation source
term, proportional to ṅion, and a sink term due to the competition
of recombination. trec is the IGM recombination time defined in
Eq. 5 and 〈nH〉 is the mean hydrogen number density, defined by
〈nH〉 =

XpΩbρc

mH
, with ρc the critical density of the Universe.

Q̇HII =
ṅion

〈nH〉 −
QH ii

trec
, (4)

Article number, page 2 of 14



A. Gorce et al.: Observational constraints on key-parameters of cosmic reionisation history

1
trec

= CH ii αB(T )
(
1 +

Yp

4Xp

)
〈nH〉 (1 + z)3. (5)

In Eq. 5, Xp and Yp are the primordial mass fraction of Hydro-
gen and Helium respectively. αB(T ) is the case B recombination
coefficient at a fiducial IGM temperature of T = 20 000 K, of-
ten considered as the mean temperature around a newly ionised
atom. This value is consistent with measurements at z ∼ 2 − 4
(Lidz et al. 2010) but has been estimated to T . 104 K at z ∼ 5−6
(Becker et al. 2011; Bolton et al. 2012). It fluctuates by a fac-
tor of between one and two, depending on the spectrum of the
sources and on the time passed since reionisation (Hui & Haiman
2003). Yet, αB is expressed as αB(T ) ≈ 2.6×10−13 T−0.76

4 cm3 s−1

with T4 = T/104 K (Osterbrock 1989), in other words, it is a
weak function of T so that its variations do not affect our results
significantly. We note that, rather than case A, we considered
case B recombinations in order to exclude recombinations to the
ground state and because we consider that ionisations and re-
combinations are distributed uniformly throughout the IGM, so
that each regenerated photon soon encounters another atom to
ionise (Loeb & Furlanetto 2013, Sect. 9.2.1). The clumping fac-
tor CH ii expresses how ionised hydrogen nuclei are distributed
throughout the IGM. CH ii and trec are inversly proportional: the
more the matter is aggregated in clumps, the easier for ionised
atoms to recombine in these very same clumps.
To compare with the evolution derived from Eq. 4, we consid-
ered two parametrisations of the time evolution of the filling fac-
tor QH ii, that we will then use to calculate the integrated Thom-
son optical depth from data. The first depicts the reionisation
process as a step-like and instantaneous transition with a hyper-
bolic tangent shape (Eq. 6). The second is a redshift-asymmetric
parametrisation, described in Eq. 7, inspired by Douspis et al.
(2015). It uses a power-law defined by two parameters i.e. the
redshift at which reionisation ends zend and the exponent α:

QH ii(z) =
fe
2

[
1 + tanh

(
y − yre

δy

)]
, (6)

QH ii(z) =


fe for z < zend,

fe
(

zearly−z
zearly−zend

)α
for z > zend.

(7)

where y (z) = (1 + z)
3
2 , yre = y (z = zre) for zre the redshift

of instantaneous reionisation and δy = 3
2 (1 + z)

1
2 δz. zearly

corresponds to the redshift around which the first emitting
sources form, and at which QH ii (z) is matched to the residual
ionised fraction (x = 10−4). To be consistent with observations,
which give QH ii (z ≤ 6.1) ' 1 with very low uncertainty
(McGreer et al. 2015), we choose zend = 6.1. Furthermore, when
comparing our findings with the Planck results we set zre at
equal to 8.8, zearly = 20, and also α = 6.6 (Planck Collaboration
et al. 2016b).

Observations of CMB satellites allow us to estimate the
Thomson optical depth τ, integrated over the electron column
density to the last scattering surface. It expresses the fraction of
photons scattered along the line of sight by free electrons and
thus is a direct indicator of the global ionisation rate of the IGM.
It is related to the two previously described observables QH ii
and ρSFR via Eq. 8, where c is the speed of light in vacuum, σT
the Thomson scattering cross-section, H(z) the Hubble constant
and fe the number of free electrons per Hydrogen nucleus. We

have assumed that Helium is doubly ionised at z ≤ 4 (Kuhlen
& Faucher-Giguère 2012) and thus have fe = 1 + ηYp/4Xp with
η = 2 for z ≤ 4 and η = 1 for z > 4.

τ(z) = c 〈nH〉 σT

∫ z

0
fe

QH ii(z′)
H(z′)

(1 + z′)2 dz′ (8)

2.2. Configuring the key-parameters of reionisation

Among the various parameters cited in Sect. 2.1, two key-
parameters of the reionisation history are still under a lot of
investigations: the escape fraction and the clumping factor. As
mentioned before, fesc expresses the fraction of the ionising ra-
diation produced by stellar populations which is not absorbed
by dust and neutral hydrogen within its host galaxy, and thus
contributes to the ionisation of the IGM. In our approach, it is
an effective value, averaged over stochasticity, halo mass depen-
dencies in the source populations and, most importantly, over
all sources considered in the Universe. This averaged value is
hard to compare with observations of lone galaxies or haloes,
which usually give much lower values. For instance, Steidel et al.
(2001) and Iwata et al. (2009) estimate the escape fraction of
some z ∼ 3 galaxies to be & 1%. On the contrary, overall val-
ues of fesc can be derived from simulations but are still highly
uncertain. According to Finkelstein et al. (2015) and to agree
with Ly-α forests measurements (Bolton & Haehnelt 2007), it
should not be higher than 0.13; Fernandez et al. (2013) use a
value of 0.1 from a simulation; Robertson et al. (2015) deduce
from their analysis that, in order to have star-forming galaxies
driving the reionisation process at high redshift, fesc must equal
at least 0.2; Inoue et al. (2006) find that, if recent values of the
escape fraction can be as low as fesc = 0.01 at z ∼ 1, fesc in-
creases quickly with redshift to reach 10% at z & 4. Finally,
Dunlop et al. (2013) assure that, considering the spectral energy
distributions observed from high-redshift galaxies, it should be
≈ 0.1 − 0.2. Yoshiura et al. (2017) summarise results on fesc by
saying that if it is generally acknowledged that, among all de-
pendencies, the escape fraction decreases with the mass of the
galaxy, there is a variance within one or two orders of magni-
tude among simulations results. For instance, a simulation from
Yajima et al. (2014), on which assumptions of Robertson et al.
(2015) are based, shows that, amidst all types of photons pro-
duced in star-forming galaxies (Ly-α, UV-continuum and ionis-
ing photons), the escape fraction of ionising photons is the only
one which seems to depend neither on the redshift nor on the
galaxy properties: it keeps a constant value of 0.2 with time, that
we use for our first analysis.

However, photons from different ranges of energy are sub-
ject to different physical phenomena and thus escape more or less
easily from their host galaxy. For instance, dust extinguishes ion-
ising, Ly-α and UV continuum photons similarly, but only ionis-
ing photons are also absorbed by neutral hydrogen clumps. Thus,
at high redshifts, when there is little dust around the galaxy, pho-
tons of all energy ranges escape as easily; on the contrary, at low
redshift, ionising photons experience more difficulties to escape
than others (Yajima et al. 2014). We can then infer an increase of
fesc with redshift that we parametrise in Eq. 9, defined for z ≥ 4
and inspired by Kuhlen & Faucher-Giguère (2012); Chisholm
et al. (2018). This evolution corresponds to either an evolution
of the SFR of galaxies themselves and its associated feedback, or
by a redshift evolution in the make up of the galaxy population.
Here, owing to the UV spectral slope constraints, we set a max-
imum of 1 for the fesc value, corresponding to a situation where
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all ionising photons escape.

fesc(z) = α

(
1 + z

5

)β
. (9)

In this parametrisation, also close to the one used in Price et al.
(2016), α is the value of fesc at z = 4 and αβ/5 of its derivative
at z = 4, redshift at which we expect the hydrogen ionising
background to be dominated by star-forming galaxies (Kuhlen
& Faucher-Giguère 2012). We take β positive in order to have
an increasing escape with redshift, as anticipated earlier.

The second key-parameter of the reionisation process which
we are going to investigate is the clumping factor of ionised hy-
drogen in the IGM CH ii, used in Eq. 5. It expresses how ionised
hydrogen nuclei are gathered in heaps throughout the IGM. This
parameter is essential because it is the growth of these clumps
that allows the reionisation front to progress in the IGM and be-
cause competing recombinations will predominantly take place
there. A precise estimate of CH ii can be difficult to obtain. Sim-
ulations do indeed have several obstacles to overcome: getting
a sufficient precision for the gas distribution, a correct topology
of ionised and neutral matter, and an accurate model of the evo-
lution of gas clumps themselves during the reionisation process.
Besides, CH ii is often first defined on a single ionisation bub-
ble and then summed on all bubbles to get the global volume-
averaged value used here: the simulation must consider an ex-
tremely wide range of scales (Loeb & Furlanetto 2013, Sec. 9.2).

Most recent studies use values ranging from one to six at
the redshifts of interest, i.e. for 6 . z . 30 (Sokasian et al.
2003; Iliev et al. 2006; Raičević & Theuns 2011; Shull et al.
2012; Robertson et al. 2015; Finkelstein et al. 2015; Bouwens
et al. 2015a). Other studies predict a redshift-dependent evo-
lution (Iliev et al. 2007; Pawlik et al. 2009; Haardt & Madau
2012; Finlator et al. 2012; Sobacchi & Mesinger 2014), justified
by the fact that during the late stages of EoR, ionisation fronts
penetrate into increasingly overdense regions of the IGM, which
have higher recombination rates and so drive a rapid increase
of CH ii (Furlanetto & Oh 2005; Sobacchi & Mesinger 2014).
In our study, besides constant values of CH ii, we consider two
parametrisations son the redshift range 3 ≤ z ≤ 301 :

CH ii(z) = α + a
( z
8

)b
, (10)

CH ii(z) = a e b (z−8) + c (z−8)2
. (11)

The first expression comes from Haardt & Madau (2012). We
update it in order to have a = CH ii (z = 8) − α because QH ii
is close to 0.5 at z = 8. The second one comes from Mellema
et al. (2006) and Iliev et al. (2007) and shows a different be-
haviour: it is convex and has a minimum at zmin = −b/2c. As
explained earlier, it is generally admitted that the clumping fac-
tor only decreases with z, and therefore we set zmin & 30 so that
CH ii does not reach its minimum on our analysis range. For the
same reason, a and b from Eq. 10 have to be of opposite signs
and more precisely we take a > 0 and b < 0 in order to have
CH ii(z) −→

z→0
+∞.

The formal definition of the clumping factor is (Bouwens
et al. 2015a; Robertson et al. 2015): CH ii = 〈n2

H ii〉/〈nH ii〉2 =
1 + δH ii, if we define the overdensity of ionised Hydrogen as

1 We assume that CH ii is the same for H ii and He iii on this range.

δH ii = (nH ii − 〈nH ii〉) /〈nH ii〉. Long before the EoR, most of the
Hydrogen was neutral so that fluctuations in the ionised Hydro-
gen overdensity were very weak. In this perspective, we consider
in our models that δH ii(z → ∞) = 0 and so take CH ii(z = 100) =
1.

3. Data

The SFR density can be estimated via the observed infrared
and rest-frame UV LFs. We use the luminosity densities and SFR
densities compiled by Robertson et al. (2015), computed from
Madau & Dickinson (2014), Schenker et al. (2013), McLure
et al. (2013), Oesch et al. (2015) and Bouwens et al. (2015a).
Robertson et al. also use HST Frontier Fields LF constraints at
z ∼ 7 by Atek et al. (2015) and at z ∼ 9 by McLeod et al. (2015).
Estimates of Madau & Dickinson (2014) derived from Bouwens
et al. (2012) are updated with newer measurements by Bouwens
et al. (2015a). For the calculation of ρSFR, as a start, luminosity
functions of star-forming galaxies are extended to UV absolute
magnitudes of Mlim = −13. Then we compared this with re-
sults for minimal and maximal magnitude limits Mlim = −17
and Mlim = −10. We note that if Robertson et al. (2015) express
ρSFR in M� yr−1 Mpc−3, Ishigaki et al. (2015) use UV luminosity
units, i.e. ergs s−1 Hz−1 Mpc−3. In order to compare results, we
used the conversion factor used in Bouwens et al. (2015a) and
first derived by Madau et al. (1998):

LUV =
SFR

M� yr−1 × 8.0 × 1027 ergs s−1 Hz−1.

UV luminosity densities used in this work are the ones de-
tailed in Ishigaki et al. (2015), namely they come from Schenker
et al. (2013); McLure et al. (2013); Bouwens et al. (2007, 2014,
2015b); Oesch et al. (2015).
Observations related to the ionised fraction of the IGM QH ii
used as constraints to our fits include the Gunn-Peterson opti-
cal depths and the dark-gap statistics measured in z ∼ 6 quasars
(McGreer et al. 2015), damping wings measured in z ∼ 6 − 6.5
quasars (Schroeder et al. 2013) and the prevalence of Ly-α emis-
sion in z ∼ 7−8 galaxies (Schenker et al. 2013; Tilvi et al. 2014;
Faisst et al. 2014). We note that in the figures, further data points,
not used as constraints in the fit, are displayed to use as compar-
ison. These include observations of Lyman-α emitters (Konno
et al. 2017; Ouchi et al. 2010; Ota et al. 2008; Caruana et al.
2014), of near-zone quasars (Mortlock et al. 2011; Bolton et al.
2011) and of a gamma-ray burst (Chornock et al. 2014).
Last, we consider estimations of the Thomson optical depth de-
rived from Planck Satellite observations: τPlanck = 0.058± 0.012
for a redshift of instantaneous reionisation zreio = 8.8 ± 0.9
(Planck Collaboration et al. 2016b). We compare it to the asymp-
totic value τ obtained from our model calculations at high red-
shift.

4. Results

4.1. Cosmic star formation history

Since we are interested in the reionisation history both up to
and beyond the limit of the current observational data, we adopt
the four-parameter model from Eq. 2 into a Monte Carlo Markov
chain (MCMC) approach. We perform a maximum likelihood
(ML) determination of the parameter values assuming Gaussian
errors on a redshift range of [0, 30], extrapolating current obser-
vations on star formation history from z = 10.4 to z = 30. We
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fit to the star formation data described in Sect. 3 and then com-
pute the range of credible reionisation histories for every value
of the ρSFR model parameters by solving the differential equation
of Eq. 4. Filling factor data is used as an additional observational
prior for the fit. Finally, we evaluated the Thomson optical depth
as a function of z via Eq. 8 and compare its ‘asymptotic’ value,
at z = 30, to τPlanck = 0.058 ± 0.012 (Planck Collaboration et al.
2016b) as a last constraint on the fit. Because we want to know
what observable constrains reionisation history the most, all con-
straints are not always used: the run ALL uses all three sets of
data as constraints; NOQ skips QH ii data; NORHO skips star
formation data, and ORHO uses only star formation history in
the fit.

In this first step, we adopt the fiducial, constant with redshift
values fesc = 0.2, log10 ξion = 53.14 [Lyc photons s−1M−1

� yr]
and CH ii = 3 (e.g. Pawlik et al. 2009; Shull et al. 2012; Robert-
son et al. 2013, 2015). Results are summarised in Fig. 1 and
in Table 1. Fig. 2a shows resulting star formation history and
Fig. 2b resulting reionisation history. We find that star forma-
tion history constrains reionisation the most: both figures show
that ALL and ORHO runs give similar evolutions and close ML
values for a, b, c, and d (see Table 4). We note that our con-
straints with ORHO and ALL are dominated by the ρSFR data
points at a redshifts of approximately five and the fixed func-
tional form assumed for ρSFR(z); they are fully consistent with
Robertson et al. (2015). On the contrary, for NORHO, the shape
of ρSFR(z) is changed and reionisation begins much later, around
z ∼ 12 rather than z ∼ 15 for other runs. NORHO results must
be handled carefully as its parameters probability density func-
tions (PDFs) are extremely spread-out; the NORHO line drawn
on figures corresponds to the median values of parameters. All
we can conclude is that, when star formation history constraints
are skipped, there is a much wider range of possible scenarios.

Interestingly, Fig. 2b shows that for each run considering
star formation history constraints, the process begins as early
as z = 15. This is hardly compatible with WMAP results which
stated that, if we consider reionisation as instantaneous, it should
occur at zreio ' 10.5 ± 1.1 (Hinshaw et al. 2013) and so cannot
begin before z = 12. Observations also have an influence on the
Thomson optical depth values, as NORHO gives a slightly lower
value of τ (0.053 ± 0.003 compared to 0.061 ± 0.001 for ALL).
Yet, all results remain in the 1-σ confidence interval of τPlanck.

In the rest of the study we used the ALL run as our definitive
parametrisation for ρSFR evolution with redshift: definitive pa-
rameters for Eq. 2 are (a = 0.146, b = 3.17, c = 2.65, d = 5.64)
from Table 1. ML parameters for other runs can be found in Ta-
ble 4.

Table 1: ML model parameters for a model using all three sets
of constraints.

a b c d τ
0.146 3.17 2.65 5.64 0.0612
±0.001 ±0.20 ±0.14 ±0.141 ±0.0013

4.2. Escape fraction of ionising photons fesc

In order to study the role of the escape fraction in this
analysis we chose, as detailed in Sect. 2.2, to first consider it
as a fifth parameter of the fit – on top of (a, b, c, and d) from
Eq. 2, free to vary between 0 and 0.4. We name ALL the run
which uses ρSFR, QH ii and τ constraints, and NOQ the one that

Fig. 1: Results of the MCMC analysis for the ALL case. The
contours show the 1, 2, 3 σ confidence levels for a, b, c, d and
the derived parameter τ.

skips ionisation level constraints. fesc is involved only in the
ṅion calculation of Eq. 1 and not in the one of ρSFR so that star
formation history takes no part in the computation of fesc. This
explains why for all runs, results on the SFR density are close
to the ones of Sect. 4.1 (see Tables 4 and 5 for details). For
ALL, we get ML parameters (a = 0.0147, b = 3.14, c = 2.69,
d = 5.74). Figure 3 shows that QH ii constraints have a strong
influence on fesc: confidence intervals are much wider for NOQ
than for ALL (see Table 5). Besides, the NOQ PDF of fesc is
almost flat: standard deviation is equal to 0.079, that is, around
30% of the mean value and two times more than for ALL. For
now, we chose to use fesc = 0.19 ± 0.04, in other words, the
median value of the escape fraction for the ALL run, when a
redshift-independent value is needed for fesc. The full triangle
plot for the ALL case is shown Fig. A.1 in Appendix.

We now turn to the possibility of a redshift evolution in fesc
for z ∈ [4, 30]. We perform an MCMC maximum likelihood
sampling of the two-parameter parametrisation described in Eq.
9. For the reasons explained above on the lack of relation be-
tween ρSFR and fesc, we do not use star formation data as a con-
straint any more and assume that the time evolution of the SFR
density follows Eq. 2 using parameters (a, b, c, d) resulting from
Sect. 4.1. We used parameters corresponding to the set of con-
straints that is used on fesc: if only τ priors are considered here,
we use (a, b, c, and d) resulting from a NOQ run (see Table 4
for values).
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(a)

(b)

Fig. 2: (a) Star formation rate density ρSFR with redshift. Data
points are determined from infrared (plotted in red) or ultravio-
let (in grey) luminosity densities (Sect. 3). Maximum likelihood
parametrisations (continuous lines) are shown for various set of
constraints: blue when all constraints are used; coral when only
data on star formation are used; green when τ and reionisation
history data are used. The 68% confidence interval on ρSFR (light
blue region) is drawn for the blue model. We note that the in-
terval, corresponding to statistical uncertainties, is very narrow.
These inferences are compared with a model forced to reproduce
results from Robertson et al. (2015), cited as R15 in the legend,
drawn as the purple dotted line. The horizontal dashed-dotted
line corresponds to the upper limit on a hypothetical constant
value of ρSFR for z > 10.4 (Section 5.2). (b) Ionised fraction of
the IGM QH ii with redshift for same models as (a). Details on the
origin of data points are given in the legend and Sect. 3. Infer-
ences are also compared with the two evolutions used in Planck
Collaboration et al. (2016b, cited as P16) to model the reioni-
sation process: a redshift-symmetric hyperbolic tangent as the
brown dashed-dotted line and a redshift-asymmetric power-law
in black.

We find that priors on the IGM ionisation level have a much
stronger influence on results than the Thomson optical depth.
Indeed, Fig. 4 shows that ML evolutions using both QH ii and
τ constraints or only QH ii are very similar: mean values for
z ≥ 4 are similar by ∼ 3% and in both cases, the evolution with

Fig. 3: Ionised fraction of the IGM QH ii with redshift when fesc
is introduced as a parameter. Details on the origin of data points
are given in the legend. ML models (continuous lines) are shown
for various set of constraints: blue when all constraints are used,
coral when QH ii constraints are skipped, for which the 68% and
95% confidence intervals are drawn in salmon. These inferences
are compared with a model forced to reproduce results from
Robertson et al. (2015, R15, purple dotted line) and with the
two evolutions used in Planck Collaboration et al. (2016b, P16):
redshift-symmetric as the dashed-dotted brown line and redshift-
asymmetric in black.

Fig. 4: Possible evolutions of fesc with redshift. ML models are
shown for various set of constraints: blue when all constraints are
used; coral when τ constraints are skipped; green when QH ii con-
straints are skipped. Horizontal dotted lines represent the mean
value of fesc over 4 ≤ z ≤ 30 for the model of the corresponding
colour.

redshift is rather weak, as values range from 0.15 around z ∼ 4
to 0.24 around z ∼ 30. We note that if Mitra et al. (2015) draw a
similar conclusion of an almost constant fesc value with redshift
from their modelling, they obtain lower values of the escape
fraction with an average of about 10% in the redshift range six to
nine. For NOQ, the optical depth remains surprisingly close to
other models and to τPlanck = 0.058 ± 0.012, around 0.061. The
difference is apparent in the evolution of the ionised fraction,
as reionisation begins and ends later, around z = 6 rather than
z = 6.4 in this case; on the contrary, when QH ii data is used,
the history tends to be the same as in previous analysis. Our
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results when only τPlanck constraints are considered are quite
similar to those of Price et al. (2016) in which authors study the
evolution of fesc with redshift. They mainly use constraints from
τPlanck, concluding to a strong increase of fesc from about 0.15
to about 0.55, depending on the observational constraints used.
ML parameters for Eq. 9 when all constraints are considered are
(α = 0.14 ± 0.02, β = 0 ± 0.3) and give a mean value for fesc of
about 0.20, which is extremely close to the 0.19 ± 0.04 found
when considering the escape fraction constant with redshift (see
Table 5 for details).

4.3. Clumping factor of ionised hydrogen in the IGM CH ii

Following the definition of Sect. 2.2, we now investigate
the constraints on CH ii set by observations. As we did in Sect.
4.2 for fesc, we added CH ii as a fifth parameter of the fit on
ρSFR using Eq. 2, apart from (a, b, c, d). It is free to vary
between zero and ten, the order of magnitude of fiducial values
most commonly used in publications (e.g. Shull et al. 2012;
Robertson et al. 2013, 2015). Here again, we call ALL the run
using all constraints in the fit, and NOQ the one that skips QH ii
constraints.
After performing the MCMC ML sampling of the five param-
eters (see Table 4 for details), we get a quite spread PDF for
CH ii with ALL: the standard deviation is equal to 1.85 for a
median value of 4.56. Even with such a wide range of possible
values, the range of possible reionisation histories remains very
narrow and the Thomson optical depth PDF is almost exactly
the same as when we take CH ii = 3: τALL = 0.0570 ± 0.0019
to be compared with τCH ii=3 = 0.0612 ± 0.0013 (see Table 2
and Fig. A.2 in Appendix). Besides, for NOQ, the range of
possible reionisation histories is wider than for ALL: the width
of the 95% confidence area is about 0.6 when ML reionisation
model is halfway through (QH ii = 0.5) for NOQ but 0.16
for ALL. We also note that for NOQ τ takes lower values
(τNOQ = 0.0561 ± 0.0064) but remains, as others, in the 1-σ
confidence interval of τPlanck. This confirms that IGM ionisation
level data are compatible with Planck observations and that the
value of CH ii constrains only slightly the reionisation history.

We now successively test the two redshift-dependent mod-
els of the clumping factor given in Eq. 10 and 11. CH ii is not
involved in the calculation of ρSFR but only of the recombina-
tion time. Thus, as for fesc, star formation history data have no
influence over it: the ALL run is now constrained by QH ii and
τPlanck only. We also note that, for low values of z (precisely for
z ≤ 6.8), QH ii becomes higher that 1 in our calculations, which
is physically irrelevant so we ignore results in this range.

Once again, IGM reionisation level data constrain results
more than τPlanck. The redshift-evolution of CH ii and QH ii for the
two parametrisations presented in Sect. 2.2 and for ALL runs
are shown in Figs. 5a and 5b. We see on the left panel that there
are a lot of possible output evolutions for both models but this
does not translate in significant variations of QH ii(z) whose 68%
confidence intervals are found to be very narrow. All scenarios
remain quite close, with reionisation beginning around z = 16
and ended by z = 6. This means that, as in previous paragraph
where CH ii was assumed constant with redshift, its exact value
has no significant impact on the reionisation history. In fact,
variations in CH ii have some impact on the computed Thomson
optical depth: as seen in Table 2, higher values of CH ii allow
for a lower value of τ – consistent with Eqs. 5 and 8. All values

(a)

(b)

Fig. 5: (a) Possible evolutions of CH ii with redshift. ML models
are shown for the two models of Sect. 2.2: blue for the first, coral
for the second. Dotted horizontal lines correspond to the mean
value of CH ii(z) for z > 6.8, where outputs of the model are used
in calculations, for the model of the corresponding colour. The
vertical line is located at z = 6.8. Lines of lighter colours repre-
sent various outputs of the sampling of the corresponding model.
(b) Redshift evolution of QH ii for the same models of CH ii(z).
Inferences are compared to a result with CH ii(z) = 3 in purple
dashed line, and to the theoretical models of Planck Collabora-
tion et al. (2016b): a redshift-symmetric model in black and a
redshift-asymmetric model in brown.
References. HM12: Haardt & Madau (2012) or Eq. 10. I07: Iliev
et al. (2007) or Eq. 11.

remains in the 1-σ confidence interval of τPlanck.

Finally, it seems that the fiducial constant value often used
in papers,CH ii = 3, and which lies between the mean values
of our models (∼ 3 for HM12, 1.8 for I07, and 4.5 for Free),
is a reasonable choice. More generally, and in accordance with
Bouwens et al. (2015a), as long it remains in a range of [1.4,8.6],
which is the 95% confidence interval of CH ii from first paragraph
(Free fit), results are consistent with the three sets of constraints
available. This result corroborates the work of Price et al. (2016),
who also note that their analysis is almost completely indepen-
dent of the clumping factor over the prior range 1 < CH ii < 5.
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Table 2: Resulting Thomson optical depths for various evolu-
tions of CH ii with redshift.

Model 〈τ〉 σ
CH ii = 3 0.0612 0.0013

Free 0.0570 0.0019
HM12 0.0604 0.0020

I07 0.0579 0.0027

References. Free: Model with CH ii as a fifth parameter, varying in
[1, 10]; HM12: Haardt & Madau (2012), Eq. 10; I07: Iliev et al. (2007),
Eq. 11.

4.4. Varying both fesc and CH ii

Now we have studied the impact of fesc and CH ii separately,
we set the evolution of ρSFR(z) according to Eq. 2, using param-
eters a, b, c, and d resulting from the analysis of Sect. 4.1. We
performed an MCMC maximum likelihood sampling of the two
parameters fesc and CH ii, considered constant with redshift. The
first is allowed to vary between 0.001 and 1, the other between
one and seven. We show parameter distributions for fesc and CH ii
in Fig. 6. We constrain the fit with all three data sets.

If we consider the median value of each parameter distribu-
tion as its maximum likelihood value, we find fesc = 0.193 ±
0.026 and CH ii = 4.43±1.11. We see results are pretty similar to
the previous analysis: if the escape fraction is well constrained,
with a standard deviation of about 13%, the clumping factor can
take a much wider range of values, between 3 and 5.5. We note
that there seems to be a strong upper bound for the escape frac-
tion around 0.26, which we can compare to the asymptotic value
of fesc when it is allowed to change with redshift (see Fig. 4).
Because parameters take values close to previous results, the re-
sulting ionisation histories are also close to the ones observed in
Fig. 2b and are hence in good agreement with observations.

Finally, we considered the case when the four parameters de-
scribing the evolution of ρSFR(z) are set free in the same time
as fesc and CH ii, using all datasets. We assumed the same prior
as Price et al. (2016) on CH ii considering values between one
and five. The full triangle plot is shown in Fig. A.3 and best
fit parameters are reported in Table 4. The values found are in
agreement with previous runs, with an undetermined value of
CH ii at the 2σ level. As in Price et al. (2016) the degeneracy be-
tween fesc and CH ii and the current data do not allow to constrain
strongly all free parameters. However the evolution of the filling
factor (Fig. 7) and thus the derived value of τ remain quite well
constrained (τ = 0.058 ± 0.002) and in agreement with Planck
(τPlanck = 0.058 ± 0.012).

5. Discussion

5.1. Influence of the magnitude limit

In order to study the influence of the choice of magnitude
limit on our results, we adopt the model of Eq. 3 into an MCMC
approach similar to Sect. 4. We fit the model to our three data
sets adapted to the corresponding magnitude limit as described
in Section 3. Mlim = −17 and Mlim = −10 correspond to the
analysis performed in Ishigaki et al. (2015), and Mlim = −13
corresponds to Robertson et al. (2015).

We compute the star formation and reionisation histories
compatible with the three sets of observational data, for the
maximum likelihood parameters (here, median values) of the
parametrisation in Eq. 3 and for the three Mlim values. Results

Fig. 6: MCMC distribution for fesc and CH ii when both are taken
as fit parameters (other parameters fixed). The escape fraction is
allowed to vary between 0.1% and 100%, the clumping factor
between one and seven.

Fig. 7: Redshift evolution of QH ii when all parameters
(a, b, c, d, fesc,CH ii) are free and all datasets used. Fig. A.3 show
the corresponding constraints on assumed parameters.

can be found in Figs. 8a and 8b where two cases have been con-
sidered: fesc fixed, taken to have the value used in corresponding
references (left panels) and fesc allowed to vary between 0 and 1
(right panels). In both cases, the effect of the two additional sets
of data used as constraints here, QH ii and τPlanck, which were not
used in Ishigaki et al. (2015), is to lower the quantity of ionising
sources needed at high redshift to reach a fully ionised IGM by
z ∼ 6. We note, however, that here the values of some parame-
ters were taken from Ishigaki et al. (2015) and hence quite differ-
ent from the ones used in Sect. 4.1. For instance, Ishigaki et al.
found CH ii values of 1.9 and 1.0 for respectively Mlim = −17 and
Mlim = −10 whereas we used CH ii = 3 before and consequently
in the analysis for Mlim = −13.

However this comparison illustrates the systematic uncer-
tainties on reionisation history due to the choice in the mag-
nitude limit, but also in fesc and CH ii values. We see these are
much wider than the statistical uncertainties observed in Fig. 2b
while still being reasonable. In particular, they mainly concern
high redshifts. Indeed, we see in Fig. 8b that the 68% confidence
interval on star formation histories widens with redshift. How-
ever, few observations are available on this redshift range so we
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(a)

(b)

Fig. 8: (a) Redshift evolution of QH ii for various choices of the magnitude limit in luminosity data: brown for Mlim = −10, orange for
Mlim = −13 and beige for Mlim = −17. The light orange region represents the 68% confidence level for the worst case scenario, i.e.
Mlim = −17. Left panel: escape fraction fixed to the values used by corresponding references. Right panel: escape fraction varying
between zero and one. (b) UV luminosity density ρUV with redshift in logarithmic scale for three values of the magnitude limit:
Mlim = −10 in the upper panel, Mlim = −13 in the middle panel and Mlim = −17 in the lower panel. Data points are from Ishigaki
et al. (2015) or adapted from Robertson et al. (2015). Maximum likelihood parametrisations corresponding to Eq. 3 (continuous
lines) are shown for fits using all observational constraints. The 68% confidence interval is represented as the light blue region.
These results are compared with a model forced to reproduce results from corresponding references, drawn as the purple lines. Left
panel: escape fraction fixed. Right panel: escape fraction allowed to vary between zero and one.

may expect that once data on earlier times is available, we will
be able to improve constraints on the magnitude limit. In this

perspective we can mention the work of Mason et al. (2018),
who derived a new constraint on reionisation history from sim-
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Fig. 9: Result of the MCMC analysis for the parametrisation described in Eq. 3 with fesc added as a fitting parameter. Here, all
three sets of observational data were used as constraints. The contours show the 1-, 2- and 3 − σ confidence levels for log(ρz=8),
fesc and the derived parameter τ. Colours correspond to the different values of the magnitude limit used in the analysis: purple for
Mlim = −10, blue for Mlim = −13 and orange for Mlim = −17. These results can be compared to reionisation histories displayed in
Fig. 8a and 8b.

ulations and models of the effects of IGM radiative transfer
on Lyman-α emissions. They find an IGM ionised fraction at
z ∼ 7 of xH ii = 0.41+0.15

−0.11 in better agreement with our model for
Mlim = −17 (see Fig. 8a).

From a different point of view, Price et al. (2016) consider
a varying value of Mlim with redshift, and find that Mlim varies
in order to match the value of τPlanck and to balance the increas-
ing value of fesc with redshift allowed by their model. Here we
find that, overall, the model combines star formation history and
ionised fraction with difficulties when Mlim = −17. Indeed, Fig.
9 shows the probability distribution functions of the parameters
log(ρSFR) and fesc and the corresponding distribution of derived
optical depths for the three choices of magnitude limit. We see
that for Mlim = −17 the value of fesc is not well constrained
and tends to be high. For lower values of the escape fraction, the
reionisation process needs to start way earlier than in most of
our results in order to have enough radiation to fully ionise the
IGM and to reach a sufficient value of τ. In fact, leaving the es-
cape fraction as a free parameter balances the uncertainty in the
choice of Mlim: Fig. 8a shows a narrower range of uncertainties
when we do not fix fesc, confirming the correlation mentioned in
Price et al. (2016).

5.2. Reionisation sources at z > 10

Some doubts remain about the sources of reionisation: if
Robertson et al. (2015) found that star-forming galaxies are
sufficient to lead the process and to maintain the IGM ionised
at z ∼ 7 – assuming CH ii = 3 and fesc = 0.2, their analysis

extrapolates luminosity functions between z ' 10 and z ' 30,
overlooking the possibility that other sources may have taken
part in the early stages of reionisation process. Besides, they
argue that low values of the Thomson optical depth reduce the
need for a significant contribution of high-redshift galaxies and
Planck Collaboration et al. (2016b) give much lower values than
WMAP did (Hinshaw et al. 2013): τPlanck = 0.058 ± 0.012 vs.
τWMAP = 0.088 ± 0.014. Thus, now that we have investigated
the possibility of this extrapolation, we chose to try the one of a
constant SFR at z & 10.

We performed an MCMC maximum likelihood sampling of
the 4-parameter model of ρSFR (z) in Eq. 2 and add as a fifth pa-
rameter the the value of SFR density at z > 10.4, our last data
point corresponding to a redshift of 10.4. We refer to it as ρasympt
and chose to use all observations cited in Sect. 2.1 as constraints.
Final values of parameters a, b, c, and d are close to the ones
from Sect. 4.1. We find that there is a strong correlation between
ρasympt and τ, because of the direct integration in Eq. 8 and so ex-
pect higher values of the optical depth for high values of ρasympt.
Yet, τ values are limited by QH ii data points and they have more
impact on the global scenario. Indeed, models where QH ii equals
30% as soon as z = 10 are allowed, whereas it is closer to 20%
at the same redshift when ρSFR is extrapolated. The correlation
observed in our model parameters likelihood functions between
ρasympt and τ had already been noticed by Robertson et al. (2015),
as a correlation between τ and the averaged value of ρSFR for
z > 10. A linear regression gives

〈ρSFR〉z>10.4 = 0.51 τ − 0.026 [M� yr−1 Mpc−3], (12)
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Fig. 10: Evolution of fesc with redshift when ṅion data points
are used. ML models are shown for various set of constraints:
blue when all constraints are used (NION); coral when ṅion con-
straints are skipped (FREE). Horizontal dashed lines represent
the mean value of fesc over 4 ≤ z ≤ 30 for the model of the cor-
responding colour. Inferences are compared to results of Kuhlen
& Faucher-Giguère (2012, KFG12, purple dashed line).

with a correlation coefficient r = 0.98.
In this parametrisation, ρasympt can take very low val-

ues (down to 10−4 [M� yr−1 Mpc−3]) meaning that reionisation
sources are almost completely absent at z > 10. It also has an up-
per limit of 0.016 [M� yr−1 Mpc−3]. This is close to the redshift-
independent evolution of ρSFR (' 10−1.5 [M� yr−1 Mpc−3]) con-
sidered by Ishigaki et al. (2015) for z > 3 in order to reproduce
τ2014 = 0.091 +0.013

−0.014 (Planck Collaboration et al. 2014), when
usual decreasing models only gave them τ ' 0.05. We can com-
pare Sect. 4.1 results with this upper limit in Figure 2a. Despite
the wide range of possible values for ρasympt, all results are con-
sistent with our data and in particular, optical depths always re-
main in the 68% confidence interval of τPlanck.

5.3. How are fesc, ṅion and ρSFR correlated?

We expect a correlation between the amplitude a of the star
formation rate density parametrisation Eq. 2 and the escape frac-
tion. Indeed, fesc takes no part in the estimation of ρSFR but they
both take part in the calculation of ṅion in Eq. 1 and then in the in-
tegration of QH ii in Eq. 4. Thus, they must be constrained by the
same data, so that the parameter a can be a proxy for variations
in the escape fraction value. To investigate this possible corre-
lation, we plotted the distributions of a × fesc for various sets
of constraints and in different models: with (PAR) and without
(CST) the escape fraction as a fifth fit parameter and with all
constraints.We find that CST gives a lower value than PAR with
a relative difference of 2.8%. This hints at a correlation between
a and fesc but more tests are needed to confirm or infirm this
result.

To further investigate the link between fesc, ṅion and ρSFR,
we considered values of the reionisation rate at various red-
shifts, used in Kuhlen & Faucher-Giguère (2012) and Robert-
son et al. (2013), and inferred from measurements and calcula-
tions of Faucher-Giguère et al. (2008); Prochaska et al. (2009);
Songaila & Cowie (2010). We call NION the run using these
new constraints – in addition to the others – and FREE the one
skipping them, corresponding to ALL from Sect. 4.2.

Table 3: Comparison between our results and data points on the
cosmic reionisation rate from Kuhlen & Faucher-Giguère (2012,
KFG12).

z ṅion [ 1050 s−1 Mpc−3 ]
KFG12 NION FREE

4.0 3.2+2.2
−1.9 3.9 ± 0.7 13.7+3.9

−5.1
4.2 3.5+2.9

−2.2 4.0 ± 0.7 12.6+3.5
−4.5

5.0 4.3 ± 2.6 4.1 ± 0.5 9.3+2.3
−2.6

We compare in Table 3 values of the reionisation rate at var-
ious redshifts for NION, FREE and Kuhlen & Faucher-Giguère
(2012). NION gives results close to data points, increasing with
z, whereas FREE values are significantly higher and decrease
with redshift. This difference in the evolutions of ṅion (z) is di-
rectly linked to fesc (z). We see in Fig. 10 that fesc,FREE is al-
most constant with redshift and therefore ṅion (z) decreases on
this redshift range: because fesc values remains quite high, there
is no need for many ionising sources at high redshift. On the
contrary, when the constraints on ṅion are included in the fit, the
reionisation rate takes overall lower values (see Table 3) so that
fesc,NION has to take higher values at high redshift (saturating to 1
for z ≥ 15) to compensate for the lack of ionising sources. How-
ever, this is still hardly sufficient and we find that for NION,
the reionisation process needs to start as early as at z = 8 to
fully ionise the IGM, with QH ii = 1 being reached later than
others models, around z = 5.5. This behaviour leads to a high
value of τ = 0.082, at the edge of the 3-σ confidence interval of
τPlanck and therefore hardly compatible with observational results
(Planck Collaboration et al. 2016b). Removing the constraints
on the filling factor, fesc remains low on the whole redshift range
(< 20). We then get values of the optical depth in agreement
with Planck (0.058 ± 0.011) but reionisation does not end be-
fore z ∼ 4. Thus, the estimations on the reionisation rate from
Faucher-Giguère et al. (2008); Prochaska et al. (2009); Songaila
& Cowie (2010) are compatible with one observable at a time:
either the ionisation level – leading to a higher value of τ –, or the
Thomson optical depth – so that reionisation ends around z ∼ 4
– , but cannot match all observations in a coherent way.

6. Conclusions

We used the latest observational data available on reionisa-
tion history, i.e. cosmic star formation density, ionised fraction
of the IGM and Thomson optical depth derived from Planck ob-
servations to find that they are all compatible with a simple and
credible scenario where reionisation begins around z = 15 and
ends by z = 6. Among all data, star formation history seems to
be the most constraining for the EoR.

An investigation of various parametrisations of the escape
fraction of ionising photons has lead us to conclude that it is
very well constrained by observations: when considered constant
with redshift, values allowed by the fit range from 20% to 28%;
when considered redshift-dependent, from fesc (z = 4) ' 17% to
fesc (z = 30) ' 26% following a low increase with z. The fidu-
cial constant value of 20% often used in papers seems then to
be perfectly consistent with our data. However, one must keep
in mind that these results strongly depend on the hypothesis we
make about the magnitude limit as a lower value of Mlim will re-
quire higher values of fesc and vice versa. While the constraints
on τ are unaffected by the assumption on Mlim, the confidence
range on fesc is enlarged for Mlim = 10. Furthermore, our differ-
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Table 4: ML parameters from the fit on ρSFR with various parameters and constraints.

Ref. Constraints ρSFR parameters Other parameters
ρSFR QH ii τPlanck a b c d fesc CH ii

ALL 3 3 3 0.0146 ± 0.0011 3.17 ± 0.20 2.65 ± 0.14 5.64 ± 0.14 – –
3 7 7 0.0145 ± 0.0011 3.20 ± 0.22 2.63 ± 0.15 5.68 ± 0.19 – –

NORHO 7 3 3 0.0129 ± 0.343 0.458 ± 0.970 5.69 ± 1.65 7.14 ± 1.90 – –
3 3 7 0.0147 ± 0.0011 3.17 ± 0.21 2.66 ± 0.14 5.63 ± 0.14 – –

NOQ 3 7 3 0.0145 ± 0.0011 3.22 ± 0.22 2.61 ± 0.15 5.66 ± 0.19 – –
ALL 3 3 3 0.0147 ± 0.0011 3.14 ± 0.21 2.69 ± 0.15 5.74 ± 0.19 0.193 ± 0.037 –
NOQ 3 7 3 0.0146 ± 0.0011 3.18 ± 0.21 2.65 ± 0.15 5.70 ± 0.19 0.213 ± 0.079 –
ALL 3 3 3 0.0146 ± 0.0011 3.18 ± 0.21 2.65 ± 0.15 5.67 ± 0.19 – 4.56 ± 1.85
NOQ 3 7 3 0.0145 ± 0.0012 3.20 ± 0.22 2.63 ± 0.15 5.69 ± 0.19 – 5.10 ± 2.74
ALL∗ 3 3 3 0.0147 ± 0.0011 3.14 ± 0.21 2.69 ± 0.15 5.75 ± 0.19 0.20 ± 0.05 3.50 ± 1.10

Notes. ∗: Prior on fesc and CH ii are different for comparison with Price et al. (2016) – see text for details.

Table 5: ML parameters for the fits on fesc(z) and CH ii(z) in, respectively, Sect. 4.2 and 4.3.

Model Reference QH ii τPlanck Model parameters

fesc(z) KFG12

α β
3 3 0.14 ± 0.02 0 ± 0.29
3 7 0.15 ± 0.02 0 ± 0.30
7 3 0.11 ± 0.09 0 ± 0.78

CH ii(z)

α a b c

HM12 3 3 0.74 ± 0.29 5.74 ± 1.07 −1.21 ± 0.58 –
3 7 0.79 ± 0.29 5.56 ± 1.09 −1.30 ± 0.69 –

I07 3 3 – 7.29 ± 1.63 −0.042 ± 0.030 0 ± 2.4 × 10−4

3 7 – 7.11 ± 1.17 −0.046 ± 0.058 0 ± 6.3 × 10−4

References. KFG12: Kuhlen & Faucher-Giguère (2012); HM12.1 & HM12.2: Haardt & Madau (2012); I07: Iliev et al. (2007).

ent sets of observations seem to be in tension with each other for
Mlim = −17 or for values of fesc . 10%.

On the contrary, the clumping factor of ionised hydrogen in
the IGM can take a wide range of different values without im-
pacting the reionisation observables significantly. For instance,
when take CH ii as a redshift-independent parameter, its rela-
tive standard deviation is 41% whereas it is at most 7.6% for
QH ii (z)2. The result is the same when we consider that CH ii de-
pends on redshift: a great variety of possible evolutions gives the
same scenario in terms of ionisation level. There is no greater im-
pact on Thomson optical depth values, which vary of a maximum
of a few percent compared to 〈τ〉CH ii=3 and always remains in
the 1-σ confidence interval of τPlanck. Observational constraints
are thus extremely robust to variations of the clumping factor.
We nevertheless find a correlation between the averaged value
of CH ii for z ∈ [6.8, 30] and τ: the linear fit

〈CH ii〉z>6.8 = −350 τ + 24.4 (13)

provides a good description of their connection3. This supports
the use of a redshift-independent clumping factor to study the
EoR. A possible choice, consistent with observations, would
then be CH ii = 3, the fiducial value often used in papers, be-
cause it lies in the range of the ML CH ii values found in Sect.
4.3.

Last, a quick study on the possible reionisation sources at
z & 10 showed that there is no need for exotic sources such as
early quasars (Madau & Haardt 2015) or for an artificial increase
in star formation density at high redshift (Ishigaki et al. 2015).

2 Reached at z = 6.2.
3 Here, the model from Eq. 10 was considered.

When their luminosity functions are extrapolated, a hypothesis
still recently strongly supported by Livermore et al. (2017), star-
forming galaxies provide enough photons to have a fully ionised
IGM at z = 6.
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Fig. A.1: Results of the MCMC analysis for the ALL case when
fesc is added as a free parameter. The contours show the 1, 2, and
3 σconfidence levels for a, b, c, d, fesc, and the derived parameter
τ.

Appendix A: MCMC multidimensional plots

We show in this appendix the additional triangle plots of the
runs ALL corresponding to the studies with fesc as additional
free parameter (see Section 4.1), with CHII as additional free pa-
rameter (see Section 4.3), and finally with both free (see Section
4.4).
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Chapter A. Published journal articles

A.2 Studying the morphology of reionisation with the triangle correlation

function of phases

This article looks at making use of the phases of the 21cm signal, which are overlooked
when the power spectrum is considered. It introduces a new statistical tool, the triangle
correlation function (TCF), based on these phases and build in order to pick up the spheri-
cal structure of ionised regions during reionisation. Sec. 3.3 summarises most of the results
of this paper, with a discussion about the robustness of the TCF to instrumental effects
such as noise and resolution in Sec. 4.1. In this article, you will find two discussions that
were not included in the thesis: a comparison of the TCF as a bubble size estimator to
other bubble size distribution algorithms, and a detailed discussion of the choice of phase
information with respect to full (amplitude and phase) information. All the results of this
paper are the product of my work. The runs of OSKAR used to simulate instrumental
effects were kindly provided by Emma Chapman. This article was published in August
2019 in the Monthly Notices of the Royal Astronomical Society.
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ABSTRACT
We present a new statistical tool, called the triangle correlation function (TCF), in-
spired by the earlier work of Obreschkow et al. (2013). It is derived from the 3-point
correlation function and aims to probe the characteristic scale of ionised regions during
the Epoch of Reionisation from 21cm interferometric observations. Unlike most works,
which focus on power spectrum, i.e. amplitude information, our statistic is based on
the information we can extract from the phases of the Fourier transform of the ion-
isation field. In this perspective, it may benefit from the well-known interferometric
concept of closure phases. We find that this statistical estimator performs very well
on simple ionisation fields. For example, with well-defined fully ionised disks, there
is a peaking scale, which we can relate to the radius of the ionised bubbles. We also
explore the robustness of the TCF when observational effects such as angular resolu-
tion and noise are considered. We also get interesting results on fields generated by
more elaborate simulations such as 21CMFAST. Although the variety of sources and
ionised morphologies in the early stages of the process make its interpretation more
challenging, the nature of the signal can tell us about the stage of reionisation. Finally,
and in contrast to other bubble size distribution algorithms, we show that the TCF
can resolve two different characteristic scales in a given map.

Key words: methods: statistical – cosmology: dark ages, reionization, first stars –
theory – large-scale structure of Universe

1 INTRODUCTION

During the Epoch of Reionisation (EoR), from z ∼ 20
to z ∼ 6, early light sources ionised the hydrogen and he-
lium atoms of the Intergalactic Medium (IGM). The infor-
mation currently available on this period comes from indi-
rect observations such as the redshift evolution of the den-
sity of star-forming galaxies, thought to be a major source of
reionisation and estimated through UV luminosity densities
(Bouwens et al. 2015; Ishigaki et al. 2015; Robertson et al.
2015); the integrated Thomson optical depth from Cosmic
Microwave Background (CMB) observations (Planck Collab-
oration et al. 2016b, 2018); and from estimates of the aver-
aged neutral fraction of the IGM obtained via the damping
wings of quasars (Greig et al. 2017, 2018), surveys of Lyman-
α emitters (Konno et al. 2014; Schenker et al. 2014; Mason
et al. 2018) or gamma-ray bursts afterglows (Totani et al.
2014). Although these observations keep improving, in terms
of both redshift and precision, they are still not sufficient to

? E-mail: aeg15@ic.ac.uk (AG)
† E-mail: j.pritchard@imperial.ac.uk (JRP)

draw a precise history of reionisation. Many uncertainties
remain on various aspects of the reionisation process such
as the emissivity of early galaxies or the level of clumpi-
ness in the IGM (Bouwens et al. 2017; Gorce et al. 2018).
Interferometric measurements of the 21cm signal will poten-
tially allow for maps of H i regions in the sky to give us a
sense of both the topology and morphology of the reioni-
sation process. To optimise the signal-to-noise ratio of cur-
rent radio interferometers such as the Murchison Widefield
Array (MWA)1, the Precision Array to Probe the Epoch
of Reionization (PAPER)2 and the Low Frequency Array
(LOFAR)3, many works focus on statistical estimators such
as the n-point correlation functions (n-PCF) and in partic-
ular the power spectrum (n = 2). To make the most out
of upcoming observations, especially of 21cm tomographic
imaging – a key science goal of the future Square Kilometer
Array (SKA)4, it is useful to look at higher-order statistics.

1 http://www.mwatelescope.org
2 http://eor.berkeley.edu
3 http://www.lofar.org
4 http://www.skatelescope.org/

© 2019 The Authors
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2 A. Gorce & J. R. Pritchard

Previous works have focused on the use of the bispectrum,
i.e. the Fourier transform of the 3-PCF to learn about the
non-Gaussianity of the reionisation signal (Watkinson et al.
2017; Majumdar et al. 2018; Watkinson et al. 2019; Trott
et al. 2019). Because they include both amplitude and phase
information, the n-PCF (n ≥ 3) will not complement the
information carried by the 2-PCF as well as a correlation
function solely based on the Fourier phases, such as the one
we describe in this paper.

1.1 Phase information

Consider an ionisation field x(r) with values ranging
from 0 (neutral) to 1 (fully ionised). The visibilities observed
by radio interferometers give information in Fourier space,
so it is useful to expand x(r) with a Fourier series,

x(r) =
∑

x̂(k) e i k ·r . (1)

Each x̂(k) is a complex number which can be decomposed
into an amplitude | x̂(k)| and a phase term Φk , so that
x̂(k) = | x̂(k)| eiΦk . When the power spectrum P(k) = | x̂(k)|2
of the field is considered, all the information contained in the
phases is lost. If x(r) is a pure Gaussian random field (GRF),
then the phases are uniformly distributed on the interval
[0, 2π] (Watts et al. 2003) and the power spectrum is suffi-
cient to fully describe the field. Conversely, non-Gaussianity
is traceable to the phases. In this work, we estimate the
amount of information that can be extracted from phases
to add to the usual power spectrum studies. Eventually, we
want to use phases to learn about the structure of an ioni-
sation field and extract a characteristic length, such as the
average radius of ionised bubbles. In this perspective, we de-
velop a new statistical estimator, derived from the 3-point
correlation function and solely based on phases, called the
triangle correlation function (TCF). It is similar to the line
correlation function introduced by Obreschkow et al. (2013)
to study elongated structures in dark matter fields. To con-
sider phase information only, we compute statistics from the
phase factor ε̂(k) defined as

ε̂(k) = x̂(k)
| x̂(k)| = eiΦk . (2)

By construction, the phase factor has an amplitude of one, so
that its 2-PCF and power spectrum will vanish. The simplest
correlation function related to ε̂(k) is then its 3-PCF.

The top left panel of Fig. 1 shows an ionisation field
made of randomly distributed ionised discs on a neutral
background. The top right panel corresponds to the inverse
Fourier transform of its phase factor ε̂(k), a tracer of phase
information in real space. We see that phases mostly pre-
serve the edges of the ionised regions: they will provide infor-
mation about the structure of the field. The same exercise is
done in the lower panels of Fig. 1 but for an ionisation field
extracted from the semi-numerical 21CMFAST simulation
(Mesinger & Furlanetto 2007) at z = 7.8 and global ionised
fraction xH ii = 0.54 (details on the simulation parameters
can be found in Section 4.3). We see that the more complex
structure of the ionisation field in this simulation is reflected
in a more complex phase map. The boundaries between neu-
tral and ionised regions are not as definite as they were for
the toy model above. It will therefore be more difficult to

x(r) ε(r)

Figure 1. Examples of phase information in real space. Left pan-

els represent the ionisation field x(r) and the right panel the in-

verse Fourier transform of the corresponding phase factor ε̂ (k).
Top row: Toy model with randomly distributed ionised bubbles.

Bottom row: Output of the 21CMFAST simulation. Both boxes
have 5122 pixels and side length L = 400 Mpc.

extract information about the structure of this field from its
phases.

To this day, little work has been done regarding phase
information in the EoR, mostly because of the lack of a solid
statistical framework to do so. Thyagarajan et al. (2018)
have shown that the 21cm signal from EoR can be detected
in bispectrum phase spectra, and mention a potential use of
their results for H i intensity mapping experiments. Most of
the existing work is related to the study of galaxy cluster-
ing: although the initial conditions to matter distribution in
the Universe are Gaussian, the growth of cosmic structures
will lead to some non-linearity and the distributions of both
amplitudes and phases will be altered (Watts et al. 2003;
Levrier et al. 2006). By characterising this alteration, one
hopes to learn about the formation of cosmic structures and
possibly about the properties of dark matter (Obreschkow
et al. 2013, see also follow-up papers Wolstenhulme et al.
2015; Eggemeier et al. 2015; Eggemeier & Smith 2017). We
will discuss the benefits of phases compared to amplitude
information in more details in Section 6.

1.2 Current estimators of the size of ionised
regions during reionisation

Characterising the morphology and topology of H ii
regions at different times through 21cm tomography is
essential to the study of reionisation. For now, two types of
metrics have been proposed to do so: Minkowski functionals
(Gleser et al. 2006; Lee et al. 2008; Bag et al. 2018; Chen
et al. 2018) and bubble size distributions (BSD). Using

MNRAS 000, 1–18 (2019)



The triangle correlation function of phases 3

Minkowski functionals on tomographic images, one can
learn about the topology of the reionisation process at a
given time, for example the level of percolation or the shape
of ionised regions. When the ionised regions largely overlap,
there will likely form a unique extended percolated zone
pierced by neutral tunnels (Bag et al. 2018; Elbers & van
de Weygaert 2018). Bubble size distributions allow for more
quantitative results as they give a direct estimate of the size
of ionised regions. To derive BSD, three main methods can
be found in the literature: the friend-of-friends algorithm
(FOF), based on the connections between ionised regions
(Iliev et al. 2006); the spherical average method (SPA),
which looks for the largest spherical volume which can cover
an ionised region and exceed a given ionisation thresh-
old (Zahn et al. 2007); and the mean-free-path method
(RMFP), based on Monte-Carlo Markov Chain (MCMC)
techniques and implemented in the semi-numerical simu-
lation 21CMFAST (Mesinger & Furlanetto 2007; Mesinger
et al. 2011). The RMFP algorithm proceeds as follows:
it picks a random ionised pixel, stores its distance to the
closest neutral pixel in a random direction and stack these
distances, measured for many pixels, in a histogram. A
thorough comparison of these methods is made in Lin et al.
(2016) for simulated clean 21cm maps and in Giri et al.
(2018a) for maps including observational effects. A new
method, which the authors call granulometry, has been
recently presented in Kakiichi et al. (2017). The idea is to
successively sieve a binary field with a spherical hole of
increasing radius R. Depending on how many ionised pixels
are sieved, one can build the probability distribution of H ii
regions sizes. In their work, the authors prove that granu-
lometry should perform well on future SKA observations, as
long as the correct observing strategies are chosen. Lin et al.
(2016) have also extended to 3D the well-known watershed
algorithm: it connects same value pixels to find isodensity
lines which they interpret as the edges of characteristic
structures. Note that all these methods require real space
data whereas the TCF can be used directly in Fourier space.

We first describe in Section 2 the 21cm signal, on which
the simulated observations we use are based. In Section 3,
we develop the mathematical formalism leading to the def-
inition of the triangle correlation function, and in particu-
lar the definitions of n-point correlation functions and poly-
spectra. In Section 4, we apply the TCF to simulated ioni-
sation fields,from toy models to outputs of the 21CMFAST
simulation. We relate our method to observations, and in
particular to the closure phase relation, in Section 5. Fi-
nally, we discuss various aspects of our results: we first give
evidence for the benefits of phase information in Section 6
and then consider computational performance in Section 7.
Conclusions can be found in Section 8.

2 THE 21CM SIGNAL

The neutral hydrogen 21cm line corresponds to the spin-
flip transition of an electron between the two hyperfine levels
of the ground state of the H i atom. As a tracer of neutral hy-
drogen, it is naturally a very interesting observable to learn
about the EoR. For the last decades, many efforts have been
made to design experiments capable of detecting this signal,

despite its low amplitude, the presence of strong foregrounds
and huge calibration challenges. Seen with respect to a ra-
dio background, the CMB, the evolution of the observed
differential 21cm brightness temperature writes (Pritchard
& Loeb 2012):

δTb = 27mK × xH i (1 + δb)
Ωbh2

0.023

√
0.15
Ωmh2

√
1 + z

10

(
1 − TCMB

TS

)

' 27mK xH i (1 + δb)
Ωbh2

0.023

√
0.15
Ωmh2

√
1 + z

10

(3)

where δb is the baryon overdensity and TS the spin tempera-
ture, which characterises the relative populations of the two
spin states. During the late stages of reionisation, it is ex-
pected that the spin temperature will dominate the CMB
temperature because of its coupling to the kinetic temper-
ature of the gas, and we can make the approximation of
the second line. With this approximation, we can map the
21cm signal on the sky and, thanks to Eq. 3, interpret cold
spots, i.e. regions where the signal is weaker than average,
either as ionised or underdense regions; and hot spots as neu-
tral or overdense regions. Being able to differentiate under-
dense from ionised regions in brightness temperature mea-
surements is a major challenge of 21cm tomography (Giri
et al. (2018a), see also Giri et al. (2018b) for an efficient
way to do so). In this work however, we consider segmented
data, converted into binary ionisation fields. Because of red-
shift, a photon emitted with a wavelength of 21cm during
the EoR (6 . z . 35) will reach us today with a frequency
40 . ν . 200 MHz i.e. the frequency range that the new
generation of radio interferometers, such as MWA, PAPER,
LOFAR and SKA, are expected to probe.

3 THE TRIANGLE CORRELATION
FUNCTION OF PHASES

For a real ionisation field x(r) of volume V in dimen-
sion D, the n-point correlation function (n-PCF) measures
the correlations between n points, described as n − 1 vectors
{ri}, i = 1, . . . n − 1. It is defined as:

Ξn(r1, ..., rn−1) =
1
V

∫
V

dDr
n−1∏
j=1

x(r + r j ), (4)

where rn = 0. If we average this definition over all possible
rotations, we obtain the isotropic n-PCF ξn. As can be seen
in Eq. 4, the n-PCFs are convolutions and it will be easier
to compute them in Fourier space. The Fourier transform of
the n-PCF is called the nth poly-spectrum Pn such that

Pn (k1, . . . kn−1) = x̂(k1) . . . x̂(kn−1) x̂
(−Σk j ) (5)

and

Ξn (r1, . . . rn−1) =
[

V
(2π)D

]n−1 ∫
dDk1 eik1 ·r1 . . .

×
∫

dDkn−1 eikn−1 ·rn−1 Pn (k1, . . . kn−1) .
(6)

MNRAS 000, 1–18 (2019)



4 A. Gorce & J. R. Pritchard

For n = 2, P2 is called the power spectrum P(k) and for
n = 3, we have the bispectrum B(k, q) such that

P(k) = x̂(k) x̂(−k) = | x̂(k)|2, (7a)

B(k, q) = x̂(k) x̂(q) x̂(−k − q), (7b)

where in the first equation we have used the fact that,
because x (r) is a real field, its Fourier transform verifies
x̂(−k) = x̂∗(k). Note that we can also write the bispectrum
in terms of three k-vectors (k1, k2, k3) forming a closed tri-
angle i.e k1 + k2 + k3 = 0.

Consider the 3-point correlation function (3-PCF), i.e.
the inverse Fourier transform of the bispectrum:

Ξ3 (r, s) =
V2

(2π)2D
∬

dDk dDq ei(k ·r+q ·s) B(k, q). (8)

To study filamentary structures in matter fields, Obreschkow
et al. (2013, hereafter O13) consider the 3-PCF in Eq. 8
for r = −s i.e. three equidistant points forming a straight
line. Because here we look for spherical structures, we will
consider two vectors r and s forming an equilateral triangle,
as it is the three-point shape closest to a sphere. In this case,
s is just r rotated by an angle π/3:




sx =
1
2

rx −
√

3
2

ry

sy =

√
3

2
rx +

1
2

ry

sz = rz

(9)

where the 2D case is limited to the first two equations5. Let

p =
©­­«
kx + 1

2 qx +
√

3
2 qy

ky −
√

3
2 qx + 1

2 qy
kz + qz

ª®®¬
, (10)

then we can write k · r + q · s = p · r in Eq. 8. If we choose
to consider the phase factor of the bispectrum rather than
its full form (see Eq. 2), we find the modified 3-PCF in
dimension D

Ξ∗3(r) =
V2

(2π)2D
∬

dDk dDq eip ·r B (k, q)|B (k, q) | . (11)

Note that, according to Eggemeier et al. (2015), the phase
factor of the bispectrum can be directly related to the nor-
malised bispectrum defined in Watkinson et al. (2017) and
later used in Watkinson et al. (2019) and Trott et al. (2019).
Assuming ergodicity, a rotational average of the above ex-
pression gives the isotropic modified 3-PCF:

ξ∗3 (r) ≡
V2

(2π)2D
∬

dDk dDq ωD (pr) B (k, q)|B (k, q) | , (12)

where ωD is the window function defined by

ωD(x) =



sin (x)
x

if D = 3,

J0(x) if D = 2,
(13)

5 Note that in the actual computation of the triangle correlation
function, we will consider rotations not only around the z-axis

but also around the other two.

for J0(x) the Bessel function of the first kind and order 0.
Numerically, we will need to discretise the integral as

ξ∗3 (r) =
∑
k

∑
q

ωD (pr) B (k, q)|B (k, q) | , (14)

for a periodic box with physical side length L, divided into
ND cells. Each cell has a width ∆x = L/N. In Fourier space,
this box transforms into a box of same dimensions (ND) but
of side length 2πN/L and spacing ∆k = 2π/L. The largest
mode k = 2π/∆x has the smallest wavelength. If we as-
sume phases are uncorrelated below a given scale, then the
modes whose wavelengths are smaller than this scale will
have random phases. When the resolution is improved, i.e.
∆x reduced, the number of such modes increases and random
phase terms are added to Eq. 14 so that the signal eventu-
ally diverges. Following O13, we introduce a cut-off k ≤ π/r
on the sums of Eq. 14 to limit this number. Similarly, when
increasing the size of the box L, we add modes with wave-
length larger than the largest correlation scale within the
box, and therefore add random phase terms to the sum. Be-
cause ∆k = 2π/L, the number of modes scales as LD and s(r)
diverges as L3D/2. As discussed in O13, we introduce the pre-
factor (r/L)3D/2 to Eq. 14 to remove this divergence. These
changes applied to the isotropic modified 3-PCF ξ∗3 (r) define
the triangle correlation function of phases:

s(r) =
( r

L

)3D/2 ∑
k,q ≤ π/r

ωD (pr) B (k, q)|B (k, q) | . (15)

The imaginary part of s(r) is zero therefore we only consider
its real part in the following sections.

All these derivations have been done with x(r) being the
ionisation field xH ii. If we consider the neutral field xH i, we
have xH ii = 1 − xH i and x̂H ii(k) = −x̂H i(k) which we can
plug back into the equations above to find sH ii(r) = −sH i(r).
Therefore when applied to a mostly ionised field containing
a few remote neutral islands, the correlations dominating
the signal will be related to H i regions and the signal will
be negative. In particular, because 21cm interferometric im-
ages trace the neutral gas in the sky, if we apply our method
on 21cm brightness temperature maps, we obtain the exact
same signal as for the corresponding ionisation field, but
with a reversed sign. This also implies that during the mid-
dle stages of the reionisation process, positive and negative
(respectively, H ii and H i) correlations overlap, and the TCF
flattens down.

4 APPLICATION TO SIMULATED
IONISATION FIELDS

We generate boxes of N2 cells filled with randomly dis-
tributed ionised disks. Although the derivations performed
in Section 3 are valid for a two or three-dimensional ion-
isation field, we now limit our work to 2D boxes, as they
are closer to what one would observe with a radiotelescope.
These boxes are binary: an ionised region will have pixels
of value 1, whereas a neutral zone will be filled by zero
pixels. Because the UV photons emitted by early galaxies
have a very short mean free path in the surrounding neutral
IGM, the boundary between ionised and neutral regions is
expected to be sharp, and such a binary model is acceptable
(Furlanetto et al. 2004a). Each simulated box has periodic
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Figure 2. Triangle correlation function for a box of 5122 pixels

and side length L = 400 Mpc filled with 70 binary bubbles of ra-
dius R = 10 (pixel units). The shaded area corresponds to the

95% confidence interval as the function was computed for 30 dif-

ferent realisations of the same box. The triangle correlations of 30
Gaussian random fields of same dimensions are represented as the

red line (mean value) and matching shaded area (95% confidence

interval).

boundary conditions and ionised regions are allowed to over-
lap6. In a more realistic field, we would expect the ionised
bubbles to be clustered around overdense regions rather than
randomly distributed but we choose to first ignore this ef-
fect, as we will later consider it when applying our method
to the 21CMFAST simulation. For each box, we compute
the triangle correlation function as defined in Eq. 15 for a
range of correlation scales r. We compare the resulting plot
with the known size of the ionised bubbles filling the box.
The programme we developed to compute these correlations
is publicly available online7.

4.1 Picking up characteristic scales

Fig. 2 shows the TCF computed for 30 realisations of a
2D box of 5122 pixels and side length L = 400 Mpc filled with
70 binary bubbles of radius R = 10 (in pixel units) i.e. about
7.8 Mpc. The solid line is the mean value for all 30 boxes,
and the shaded area represents the 95% confidence interval.
Although the signal is very similar for all realisations of the
box at small correlation scales, there is more variance at
larger scales, as r gets closer to L. To see if this scattering is
a numerical or physical effect, we compute the triangle cor-
relations of 30 boxes of same dimensions, but with random
Fourier phases; the result is added in red to the figure. In
this case, the mean signal is close to zero but variance can
still be seen at large scales. Interestingly, Eggemeier & Smith
(2017) note the same scatter in the line correlation function
`(r) of density fields. The line correlation function is the 3-
PCF of Fourier phases for three equidistant points aligned

6 When they overlap, the maximum pixel value is set to 1, since
it is a proxy for ionised level.
7 https://github.com/adeliegorce/Triangle_correlations

in real space (Obreschkow et al. 2013). Through its analyt-
ical derivation, they trace this scatter back to the Gaussian
part of the covariance matrix of `(r). From another point of
view, we see that the mean signal flattens out when many
realisations of the same box are considered. This suggests
that the power seen on large scales corresponds to correla-
tions between three points located in separate bubbles and
so traces a form of correlation in the bubble locations. Be-
cause our simulation randomly distributes bubbles in the
box, it is then only natural that these correlations would
average out. The remaining non-zero value on large scales
decreases as we increase the number of bubbles in the box
and therefore can be assimilated to shot noise. Note that the
oscillations on the left side of the peak are due to the sharp
edges of the bubbles: when symmetrical Gaussian distribu-
tions are used instead of binary bubbles, or once the field
is smoothed by a given angular resolution, they vanish. We
refer the interested reader to Watkinson et al. (2017) and
Majumdar et al. (2018), where the authors discuss the var-
ious problems induced by solid spheres in the bispectrum.
Finally, a comparison of numerical results with an analytical
derivation of the TCF for a similar toy model can eb found
in Appendix A.

The triangle correlation function probes equilateral tri-
angles inscribed in the ionised discs of the box, and simple
geometry shows that these have a side length of

√
3R, a scale

at which we would expect s(r) to peak. On Fig. 2, there is
a clear peak in the signal, but at r ' 6.7 Mpc <

√
3R. To

check the physical meaning of this peak, we generate many
boxes of same dimensions and fill each one of them with 50
binary bubbles of a given radius. Results are gathered in the
upper panel of Fig. 3: the TCF peak shifts to larger scales
as bubbles increase in size. We plot the peaking scale rpeak
as a function of the bubble radius R in the lower panel of
Fig. 3, where the error bars correspond to the 95% confi-
dence interval for 10 realisations of the same box. Points are
closely aligned, and a MCMC fit to a linear relation gives
the following results, where both rpeak and R are in Mpc and
the uncertainty corresponds to the standard deviation on
sampled parameters:

rpeak = (0.838 ± 0.015) R + (−0.028 ± 0.099) . (16)

We trace this shift between the peaking scale and the ex-
pected peak (

√
3R) back to the window function: when we

take ωD(x) = 1 in Eq. 15 to compute the TCF, the signal
has a shape similar to what is found for the correct window
function, but is stretched over the x-axis, so that it peaks at
a scale R ≤ rpeak ≤

√
3R.

Here, we chose to work with a binary field, with no par-
tially ionised regions where 0 < xHII < 1. To see if our results
hold when such regions exist, as there would be if X-ray pho-
tons significantly contributed to reionisation (Visbal & Loeb
2012) or if some observed regions are unresolved, we perform
the same test but for symmetric 2D Gaussian distributions
centred on the bubble radius R. The box dimensions are the
same as before. As for binary bubbles, we observe a peak
in the triangle correlation function at scales slightly smaller
than

√
3R. A linear relation can still well describe the corre-

lation between rpeak and R but there is more scatter around
the model. This is mostly due to the peaks being difficult
to locate: on average, the signal is much flatter for Gaussian
than for binary bubbles.
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Figure 3. Upper panel: Triangle correlation function for 2D boxes

512 pixels, with box side length L = 400 Mpc and filled with 50 bi-
nary bubbles of different radii (see legend, in pixel units). Vertical

lines are R for the box of the corresponding colour. Lower panel:

Relation between the scale at which the triangle correlation func-
tion peaks rpeak and the size of the bubbles in the corresponding

box R. The dotted line the maximum likelihood linear relation
between the two with 95% confidence interval as the shaded area.

The lower panel gives the relative distance to this result for each

point.

Note that we checked that these results are independent
of the number of bubbles in the box. Similarly to what O13
find, the number of bubbles (or filling fraction) will only im-
pact the amplitude of the signal, not its shape. Indeed, for a
given radius, the amplitude of the signal will decrease as the
number of bubbles – and so the filling fraction of the box,
increases. This is likely due to the fact that increasing the
number of bubbles increases the number of different transla-
tions between objects within the box and so randomises the
phase terms (Eggemeier et al. 2015). In general, we find that
as long as the filling fraction does not exceed 60%, there is
still a clear peak in the signal and we can infer a charac-
teristic scale. This corresponds to the fact that in the late
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Prolateness q
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Figure 4. Evolution of the integral of the line (dashed purple)

and triangle (solid blue) correlation functions with the prolateness
of shapes filling up the considered box. Dimensions of studied

boxes are again N = 512 and L = 400 Mpc.

stages of the reionisation process, the ionised regions have
largely overlapped and they have no characteristic shape
and size anymore. We can compare these results to those of
Bharadwaj & Pandey (2005) who, through a more observa-
tional approach, relate the bispectrum of H i fluctuations to
the correlations between the visibilities measured at three
different baselines of an interferometer. They generate the
same kind of toy models as us and find that their signal
increases with the size of the ionised regions, but overlaps
prevent their method from being used in the mid-stages of
reionisation (xH ii ≥ 0.5).

4.2 Further tests

The TCF seems to correctly pick up the characteristic
scale of spherical regions in an ionisation field. Because we
want to use this method directly on Fourier data, for which
no real space image will be available, we need to ensure that
the peaking scale corresponds to spherical regions only. In
their work, O13 define the line correlation function (LCF),
which is analogous to our triangle correlation function but
for two vectors r and s aligned (s = −r). Therefore `(r)
probes elongated rather than spherical structures and writes:

`(r) =
( r

L

)3D/2 ∑
k,q ≤ π/r

ωD (|k − q |r) B (k, q)|B (k, q) | , (17)

where the window function has not changed compared to
our expression but is now a function of |k − q |r. O13 find the
LCF to be close to flat when there are only spherical struc-
tures in the field considered (see their Figs. 3 and 4). To
check the significance of each correlation function, we com-
pute both of them for fields filled with bubbles of various
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Figure 5. (a) Triangle correlation function for 10 realisations of a box filled with 20 binary bubbles of radius 14 and 60 of radius 4 (in

pixel units). Box dimensions are N = 5122 and L = 400 Mpc. Vertical dashed-dotted lines correspond to the two bubble radii, the vertical

dotted lines to the radii scaled by the linear relation from Eq. 16. Triangle correlations for 60 binary ellipses of the same dimensions
are represented by the orange dashed line. (b) Triangle correlation function for 10 realisations of boxes filled with binary bubbles whose

radii are selected from a log-normal distribution to reach a filling fraction of x̄H ii = 0.09. Box dimensions are N = 5122 and L = 400 Mpc.

The TCF (scaled to 1, solid lines) is compared to the actual distribution of radii, extracted directly from the simulation and shown as
a histogram. Hatched areas correspond to R ± σ. Vertical solid (resp. dotted) lines correspond to the radius (resp. radius scaled by the

linear relation from Eq. 16).

sizes and compare the results. We find that the LCF also
picks up the bubble size, with a peak located at roughly the
same correlation scales as for triangle correlations, but with
a much weaker amplitude. To push the comparison further,
we compute the TCF and the LCF for 2D boxes filled with
more or less stretched binary ellipses. We define the prolate-
ness q of an ellipse as the ratio of its semi-minor axis to its
semi-major axis so that an ellipse with prolateness q = 1 is
a flat disk. Fig. 4 shows the evolution of the integral of the
two correlation functions as a function of the prolateness of
the objects in the box 8. As q→ 1, the triangle correlations
signal increases, while the line correlations signal decreases,
even reaching negative values for q > 0.4. On the contrary,
for q = 0.1, the TCF is close to zero and the LCF shows very
strong signal. This confirms that the TCF mostly picks up
spherical structures and therefore can safely be used to infer
characteristic bubble sizes directly from Fourier data.

In reality, the reionisation process will not be as ho-
mogeneous as our toy models: it is unlikely that all ionised
bubbles should have the same radius at a given redshift. It
would therefore be useful if the triangle correlation function
could differentiate between bubbles of different radii. To test
for this, we generate a box of 5122 pixels and side length
L = 400 Mpc, filled with 20 binary disks of radius 14 px and
60 of radius 4 px. Results are displayed on Fig. 5a for 20 re-
alisations of this box. We can clearly distinguish two peaks,
which seem to match the bubble radii (dash-dotted vertical
lines), once scaled by the coefficients of Eq. 16 (dotted ver-
tical lines). Note that this result holds when we replace the
binary bubbles by Gaussian disks. To ensure that the scales
picked up by our function correspond to two different sizes
of bubbles and not to the length and width of elongated
structures, we compute the triangle correlations of a box

8 Note that we integrate only on the correlation range 0.5 Mpc ≤
r ≤ 20 Mpc where the signal is more reliable (see Sec. 4.1).

filled with 60 binary ellipses of the same dimensions as the
bubbles above i.e. a semi-major axis α = 14 px and a semi-
minor axis β = 4 px. The resulting TCF, shown as an orange
dashed line on the figure, differs largely from the TCF of
discs. There is only one clear peak, corresponding to scales
close to the semi-minor axis: because it probes equilateral
triangles, the function seems to pick up elongated ellipses
as rows of discs of radius β. The possibility to discern two
peaks in the TCF in the presence of different bubble sizes
will be limited by two factors. First, the number of bubbles,
as we have seen that too many or too few objects leads to
a weak signal. We find that when the ratio of large over
small bubble numbers exceeds 10 or drops below 0.1, one of
the two peaks flattens out. Second, the separation between
the two radii: the TCF peaks of bubbles with R = 6 px and
R = 10 px will overlap into one single wide peak and we will
not be able to differentiate them anymore.

Analytic derivations predict a log-normal distribution
for the bubble sizes during reionisation, which becomes in-
creasingly peaked as bubble grow and merge (Furlanetto
et al. 2004b). This first result has been confirmed by many
authors looking at simulations (McQuinn et al. 2007; Zahn
et al. 2007; Lin et al. 2016). Let two boxes where the bubble
centres are randomly distributed, but the radius sizes are
sampled from a log-normal distribution. Because we gener-
ate the box, we know the exact distribution of bubble radii
within and we want the TCF to trace it. On Fig. 5b, we
compare the TCF (solid line) with the actual radius distri-
bution (histogram) for 2 different bubble size distributions:
on centred on R = 5 px with variance 2 px, corresponding
to the early stages of EoR, and one with R = 11 px with
variance 1 px, corresponding to later stages. The number of
bubbles is adjusted to reach a filling fraction xH ii = 0.09.
Overall, there is a reasonably good match between the two.
We see that as the mean radius increases, the discrepancy
between peaking scale and real bubble size grows in a way
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that the linear relation of Eq. 16 cannot fully compensate
for. Note that results are similar for a Gaussian distribution
of the bubble sizes.

4.3 Results on 21CMFAST simulation

Now that our method has been tested and characterised
on toy models, we apply it to more physical ionisation fields,
extracted from the semi-numerical simulation of reionisa-
tion 21CMFAST9 (Mesinger & Furlanetto 2007; Mesinger
et al. 2011). We choose 21CMFAST because, thanks to rel-
atively short executing times, it gives a large flexibility in
parametrisation. It also includes an implementation of the
random mean free path algorithm to estimate the bubble
size distribution of data cubes, which we can compare to our
estimator. Note that an important difference with the toy
models is that the bubble locations are no longer random,
and the TCF might pick up correlations between the bubble
centres on large scales. The 21CMFAST code first generates
a high-redshift linear density field which is then evolved to
lower redshifts using linear theory and the Zel’dovich ap-
proximation. The ionisation field is extracted from this den-
sity field using excursion-set theory for haloes with virial
temperature T > 104 K. We use this code to generate a
box with sufficient resolution to obtain a H i field of 5123

pixels and side length L = 400 Mpc for the following cosmol-
ogy: Ωm = 0.308, Ωb = 0.049 and H0 = 67.74 km.s−1Mpc−1

(Planck Collaboration et al. 2016a). The resulting reionisa-
tion history has its midpoint at z = 7.9 for a duration of
∆z = z (xH ii = 0.10) − z (xH ii = 0.99) = 4.9 and gives an inte-
grated Thomson optical depth of τ = 0.067 (see Fig. 7).

The output of the simulation is a 3D H i field but we
choose to analyse 2D slices to be closer to actual observa-
tions. We also convert the given H i field into a binary H ii
field in order to get positive triangle correlations when most
of the field is ionised and negative correlations when the
sky is mainly neutral (see Eq. 7b for xH i = 1 − xH ii and
discussion at the end of Sec. 3), in continuity with previous
sections. Fig. 6 presents the TCF of 2D slices at redshifts z =
12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.4 and 6.2 corresponding to global
ionisation levels of xH ii = 0.09, 0.10, 0.18, 0.29, 0.49, 0.80, 0.97
and 0.99 respectively, along with a picture of the correspond-
ing H ii field. For each simulation, results are shown with
variance estimated from the TCF of 20 Gaussian random
fields (GRF) of same dimensions. This indicates that the
signal is more significant at small scales, a point already
mentioned in Section 4.1 and gives an idea of how well this
field differs from a GRF. However, these errors will not take
into account the non-Gaussian nature of the field if the 2D
slice considered is not representative of the overall field,
especially at high redshifts where the signal is highly non
Gaussian. Indeed, consider the z = 6.2 slice on Fig. 6: the
small ionised regions seen in the field are isolated features.
If we compute triangle correlations for more realisations of
this simulation, it is unlikely that the exact same feature
will appear in the field and so in the TCF. Therefore there
will be more variance on small scales than the error bars on
the Figure. Ideally, one would find a theoretical expression

9 http://github.com/andreimesinger/21cmFAST

for the covariance of the TCF, but we keep this derivation
for future work.

At high redshift, in what is often referred to as the pre-
overlap phase, we see on the TCFs of Fig. 6 that there is
more power at small scales but no clear peak. This is likely
due to the variety of H ii regions: many small ionised re-
gions around young sources parcel the neutral background
out. However, by looking at the signal-to-noise ratio (SNR),
we can infer an upper limit on the sizes of the ionised re-
gions: at z = 13, scales smaller than 8.9 Mpc (after con-
version with Eq. 16) contribute for 80% of the cumulative
SNR; at z = 12 and z = 11, this upper limit increases re-
spectively to 10.8 Mpc and 11.2 Mpc. The structure of the
ionisation field at high redshift directly relates to the way
the 21CMFAST algorithm is constructed and particularly
to the use of excursion set theory. In excursion-set theory,
when the average density of a region exceeds a given thresh-
old, it collapses to form a halo. When applied to reionisa-
tion, the threshold additionally considers ionising photons
production: if the region has produced a sufficient number
of ionising photons with respect to its mass and volume,
then it is considered ionised. Because of this, the ionisation
field in the early stages of reionisation will have many very
small sources rather than a few efficient sources. It would be
interesting to compute the TCF of other reionisation simu-
lations, in particular simulations with more efficient escape
fractions (Seiler et al. 2019). This also includes simulations
where reionisation is led by Active Galactic Nuclei (AGN):
ionising sources are more scarce and have a better ionising
efficiency, leading to a topology more similar to the toy mod-
els used in Sec. 4.1. In this perspective, our method may be
able to differentiate between different reionisation scenarios.
Such a study goes beyond the scope of this work but we refer
the interested reader to Watkinson et al. (2019), where the
authors use the bispectrum as a probe for non-Gaussianities
due to X-ray heating.

Later on, when the global ionisation fraction reaches
values between 25% and 75%, negative signal coming from
neutral regions overlaps with the positive signal from ionised
regions. The TCF flattens, and therefore cannot give infor-
mation about the morphology of the field. However, mea-
suring a flat signal from actual data could be interpreted as
the reionisation process being in its middle stages. For z > 7,
most of the sky is ionised and only a few remote neutral is-
lands remain. This is the post-overlap phase. We see on Fig.
6 that the sizes of these neutral islands are efficiently picked
up by the TCF. For z = 6.2, there is a very clear negative
peak at scales r = 7.7 Mpc which correspond to a radius size
of r ′ = 9.2 Mpc once the linear relation in Eq. 16 is applied
as a correction. If we roughly estimate the size of the neutral
zones, we find that they are about ∼ 11 px ∼ 8.6 Mpc in ra-
dius, which is very close to the estimation given by triangle
correlations. For z = 6.4, we see two clear peaks in the signal,
corresponding to the two sizes of ionised regions seen in the
corresponding real space field. The first peak is spread over
scales 4.6 < r < 7.8 Mpc i.e. 5.5 < r ′ < 9.3 Mpc, while the
second one is more narrow, centred around 20.2 Mpc. For
comparison, we find that we can sieve the two larger neutral
islands in the field with disks of radius ∼ 23 px ∼ 18 Mpc;
whereas the smaller ones can fit in disks whose radii range
from 7 Mpc to 12 Mpc. This motivates a further study of

MNRAS 000, 1–18 (2019)



The triangle correlation function of phases 9

400Mpc

0 1
xHII 5 10 15 20 25 30

r (Mpc)
0.2

0.1

0.0

0.1

0.2

0.3

s(
r)

5 10 15 20 25 30 35
r′ = (r + b)/a (Mpc)

z = 12.00, xHII = 0.062

400Mpc

0 1
xHII 5 10 15 20 25 30

r (Mpc)
0.2

0.1

0.0

0.1

0.2

0.3

s(
r)

5 10 15 20 25 30 35
r′ = (r + b)/a (Mpc)

z = 11.00, xHII = 0.104

400Mpc

0 1
xHII 5 10 15 20 25 30

r (Mpc)
0.2

0.1

0.0

0.1

0.2

0.3

s(
r)

5 10 15 20 25 30 35
r′ = (r + b)/a (Mpc)

z = 10.00, xHII = 0.175

400Mpc

0 1
xHII 5 10 15 20 25 30

r (Mpc)
0.2

0.1

0.0

0.1

0.2

0.3

s(
r)

5 10 15 20 25 30 35
r′ = (r + b)/a (Mpc)

z = 9.00, xHII = 0.294

400Mpc

0 1
xHII 5 10 15 20 25 30

r (Mpc)
0.2

0.1

0.0

0.1

0.2

0.3

s(
r)

5 10 15 20 25 30 35
r′ = (r + b)/a (Mpc)

z = 8.00, xHII = 0.493

400Mpc

0 1
xHII 5 10 15 20 25 30

r (Mpc)
0.2

0.1

0.0

0.1

0.2

0.3

s(
r)

5 10 15 20 25 30 35
r′ = (r + b)/a (Mpc)

z = 7.00, xHII = 0.802

400Mpc

0 1
xHII 5 10 15 20 25 30

r (Mpc)

1.50

1.25

1.00

0.75

0.50

0.25

0.00

s(
r)

5 10 15 20 25 30 35
r′ = (r + b)/a (Mpc)

z = 6.40, xHII = 0.971

400Mpc

0 1
xHII 5 10 15 20 25 30

r (Mpc)

1.50

1.25

1.00

0.75

0.50

0.25

0.00

s(
r)

5 10 15 20 25 30 35
r′ = (r + b)/a (Mpc)

z = 6.20, xHII = 0.994

Figure 6. Triangle correlations for 2D slices of our simulation at various redshifts. The upper x-axis is the lower one scaled by the linear
relation in Eq. 16. Error bars correspond to the variance estimated from a Gaussian random field of same dimensions.
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Figure 8. Comparison of different methods to estimate the size of neutral (for z = 6.2 and 6.4) or ionised (z ≥ 11) regions in our
21CMFAST simulation. Error bars correspond to the variance estimated from a Gaussian random field of same dimensions.

Table 1. Peaking scale (in Mpc) for different methods to obtain

the bubble size distribution of realisations of the 21CMFAST sim-

ulation at different redshifts.

z xH ii TCF RMFP SPA

13.0 0.036 < 8.9 2.01 < 5.9
12.0 0.062 < 10.8 2.34 < 7.4

11.0 0.010 < 11.2 3.12 < 8.9

6.4 0.971 6.2 & 20.2 7.0 13.9
6.2 0.994 7.7 7.0 9.4

how well the TCF performs compared to common BSD al-
gorithms.

Let’s consider the spherical average (SPA) and the ran-
dom mean free path (RMFP) methods. Note that these two
algorithms need to be applied to real space images whereas
the TCF is used on Fourier data. We choose not to com-
pare our results to the friend-of-friends algorithm (Iliev et al.
2006) because it considers overlapping bubbles as a unique
large ionised region, which is fundamentally different from
our approach. We use versions of SPA and RMFP imple-
mented by the authors of Giri et al. (2018a)10. Recall that
the SPA algorithm looks for the largest sphere around each
ionised region whose ionisation level exceeds a given thresh-
old, here chosen to be xH ii = 0.5. RMFP, on the other
side, relies on MCMC: it looks for the first neutral cell en-
countered in a random direction starting from an ionised
pixel and records the length of the ray to build a histogram.
The SPA and RMFP outputs are probability distributions
of radii.Results can be seen on Fig. 8 for z = 6.2, 6.4, 11.0 and
12.0 and are detailed in Table 1. For clarity, we plot −s(r) in
the first two panels to have a positive signal for all redshifts.
At low redshift, our method mostly agree with the other
BSDs, although the TCF exhibits a narrower peak; we are
also able to clearly distinguish between two characteristic
scales for z = 6.4, whereas SPA et RMFP only give one most
likely scale, apparently corresponding to the smaller neutral
regions. At higher redshift, the SPA distributions tend to
r ∼ 0 Mpc and we choose to compare values of quantiles
rather than maximum likelihood values: at z = 11, accord-
ing to SPA, there is a 80% probability that the ionised re-
gions have a radius smaller than 13.3 Mpc; similarly, scales

10 tools21cm are found on https://github.com/sambit-giri/

tools21cm.

< 11.2 Mpc represent 80% of the cumulative SNR for the
TCF. These upper limits, computed for both z = 11 and
z = 12, are shown as vertical lines on Fig. 8. RMFP gives
a maximum likelihood radius of 3.12 ± 0.78 Mpc (the error
corresponding to the bin size), therefore the most quantita-
tive result. For all three methods, the upper limit increases
as redshift decreases, which corresponds to ionised regions
growing with time. Note that the upper limit given by SPA is
the lowest: our results corroborate those of Lin et al. (2016),
who argue that SPA is heavily biased towards smaller bub-
ble radii than the actual bubble sizes. Indeed, they find that
for a single bubble of radius R, the SPA probability distri-
bution peaks at R/3. On the contrary, they find the RMFP
method to be unbiased and to peak at the correct bubble
size. Note that on the two right panels of Fig. 8, we see some
signal at large scales. This can be related to statistical noise
on one side – we analyse a unique slice of the simulation;
and to the potential correlations between separate bubbles,
which are not randomly distributed anymore.

Overall, our estimator performs well with respect to
comparable BSD algorithms. However, for this method to
be an useful tool in the analysis of upcoming radio obser-
vations, a deeper analysis, including the study of different
types of reionisation simulations, would be required. In prac-
tise, we would also use this method as a forward modelling
process, and compare triangle correlations from observations
to a set of predicted signals for different types of ionisation
fields. We keep the construction of such a database for future
work.

5 RELATION TO OBSERVATIONS

5.1 Visibilities and closure phases

When gathering data with an interferometer, the sig-
nal will be measured for pairs of antennae separated by a
baseline D. The measurement is made in terms of a com-
plex visibility V(u, v), where u and v are the projection of
the baseline in wavelength units on the plane perpendicu-
lar to the vector s0 pointing to the phase reference posi-
tion, i.e. the centre of the field to be imaged. In Eq. 3, the
brightness temperature depends on the position in the sky
r where the signal is observed: δTb(r, z) ∝ xH i (r, z). δTb is
the intensity Iν of the 21cm signal observed through the
interferometer for a given frequency ν (i.e. for a given red-
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shift, since ν = ν21cm/(1 + z))11. In what follows, we will
use Iν(r) = Īν xH i(r, z) and δTb(r, z) interchangebly. If the
interferometer probes a sufficiently small region of the sky
compared to the beam width of the antennae, we can approx-
imate this region by a flat plane. Then the source intensity
distribution is a function of two real spatial variables (l,m)
and the van-Cittert theorem tells us that the complex vis-
ibility is the 2D inverse Fourier transform of the intensity,
corrected by the normalised average effective collecting area
A(l,m) of the two antennae (Thompson et al. 2017):

A(l,m) Iν(l,m) =
√

1 − l2 − m2
∬

V(u, v) e2iπ (ul+vm) du dv,

(18)

that we can re-write as

V(u, v) = Â?(u, v) ∗ Îν(u, v) (19)

where ∗ denotes a convolution, Â and Îν are respectively
the 2D Fourier transforms of A and Iν and we define A? =
A/
√

1 − l2 − m2. Note that this approximation introduces a
phase error that may need to be taken into account when
applying our method, based on phase information. Because
A(l,m) is a measurable instrumental characteristic, if we
know our instrument sufficiently well, we can deconvolve
the measured complex visibilities by Â? and obtain, after
correcting for the different pre-factors, the x̂(k) terms to
compute the triangle correlation function.

One of the interests methods based on phase informa-
tion is that the phases of the measured visibilities, combined
in a bispectrum, will not be sensitive to errors related to cal-
ibration (Jennison 1958; Monnier 2007). Consider the visi-
bility Vm

i j measured between two antennae i and j at a given

frequency ν. It will have contributions from the true visibil-
ity V true

i j
, coming from the cosmological signal, but also from

the amplitude and phase errors of each antenna, modelled
by a complex gain Gi = |Gi | eiφi , such that:

Vm
i j = GiG∗j V true

i j ,

= |GiG j | ei(φi−φ j ) V true
i j ,

(20)

where ∗ denotes the complex conjugate. The amplitude of
this gain will come from beam specific effects such as mir-
ror reflectivity, detector sensitivity or local scintillations
whereas the phase term can originate either from telescope
errors or from outside effects such as atmospheric turbulence
(Levrier et al. 2006; Monnier 2007). If we combine the sig-
nal from three antennae forming a closed triangle, we can
avoid this phase error and we will be left only with what is
called the closure phase. Indeed, consider three baselines i j,
j k and ki observing at the same given frequency ν. We can
write the bispectrum of their complex visibilities as

Bi jk = Vm
i j Vm

jk Vm
ki

= |GiG jGk |2 ei(φi−φ j ) ei(φ j−φk ) ei(φk−φi ) V true
i j V true

jk V true
ki

= |GiG jGk |2 V true
i j V true

jk V true
ki ,

(21)

11 We assume the instrument to have narrow bandpass filters and

so to probe exactly ν rather than a frequency band centred on ν.

where in the last step, the different phase terms cancel each
other out: the phase of the measured bispectrum is the phase
of the true bispectrum. By construction, the bispectrum
B(k, q) in Eq. 7b considers a closed triangle configuration,
for three vectors k, q and −k− q. Because we choose to work
in two dimensions, the three vectors lie in the same plane on
the sky, perpendicular to the line-of-sight, and are measured
for the same frequency so that the closure relation holds. We
will then be able to use our method on observational data
without worrying about calibration errors. For an example
of the use of bispectrum closure phases in interferometry, we
refer the reader to Thyagarajan et al. (2018). In this work,
the authors compare the bispectrum phase spectra, i.e. the
phases of the bispectrum Bi jk in Eq. 21, coming from dif-
ferent components of a simulated signal, i.e. a single point
source, diffuse foregrounds and H i fluctuations from the EoR
and demonstrate that a quantitative relationship exists be-
tween the EoR signal strength and the whole bispectrum
phase power spectra.

These properties are a major benefit of our technique
compared to other solutions found in the literature to es-
timate the characteristic size of ionised regions from inter-
ferometric data as these always require to reconstruct the
real-space image corresponding to observations. Indeed, our
method can directly use as input the complex visibilities ob-
served by an interferometer, and if we choose to use closure
phases, results will be independent of antenna-based calibra-
tion and calibration errors. However, in practise, there are
some limitations to the use of the closure relation.

First, only a limited number of triangles can be con-
structed from the array of antennae of a telescope, therefore
some information will be lost compared to simple baseline
measurements. Monnier (2007) count that for an array made
of N antennae, there are n =

(N
3
)
= N(N −1)(N −2)/6 possible

closed triangles,
(N

2
)

independent Fourier phases and
(N−1

2
)

independent closure phases. Therefore the amount of phase
information recovered from closure phases is(N−1

2
)

(N
2
) = (N − 1)(N − 2)

2
× 2

N(N − 1) =
N − 2

N
= 1 − 2

N
. (22)

With as little as 40 antennae, we are able to recover 95% of
the phase information but 1000 antennae are not enough to
reach 99.9%. Note that for the 296 antennae of the SKA1-
Low central array and the 48 antennae of LOFAR, we re-
cover respectively 99.3% and 95.8% of the phase information
from closure phases. However, even if almost all the phase
information is recovered, Readhead et al. (1988) find that
the noise level of a phase-only observation will still be at
least twice higher than a map made from full visibility data,
because when ignoring amplitudes, half of the signal is lost.
Additionally, Readhead et al. (1988) show that because the
bispectrum is a triple product, there will be new sources
of noise compared to single baseline observations. First, if
the same signal is measured on different time intervals, the
observed bispectrum will not only be the product of three
complex numbers Vi j anymore, but of the sum of each ob-
servation on each time interval:

Bi jk =
(∑
m

Vi j,τm

)
×

(∑
m

Vjk,τm

)
×

(∑
m

Vki,τm

)
, (23)

where Vi j,τm is the visibility measured for baseline i j on time
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Figure 9. Example of a redundant array of antennae.

interval τm. Then the cross terms combining signals inte-
grated on different time intervals (e.g. Vi j,τm and Vjk,τl ) will
give incoherent phase terms that can be assimilated to noise.
The second potential source of noise mentioned by Readhead
et al. (1988) corresponds to the same kind of reasoning, but
in the spatial domain: if we consider the triangle formed by
three baselines (i j, ik, kl), then on a redundant array there
will be contributions not only from the i j + j k + kl = 0 tri-
angles but also from identical baselines who are not part
of a triangle. See the example on Fig. 9 of a redundant ar-
ray: all numbered vectors correspond to the same baseline
but only 1, 2 and 4 form triangles. When probing i j k tri-
angles, the measured bispectrum will take the sum of the
four signals as the visibility corresponding to this baseline
(e.g. Vi j = V1 +V2 +V3 +V4) and additional cross terms, irrel-
evant to closure phases because they include V3, will arise.
Readhead et al. (1988) show however than these two types
of noise can be reduced to a sensible signal-to-noise ratio if
enough frames are used in the integration. Similarly, Carilli
et al. (2018) mention that some instrumental effects such
as polarisation leakage or cross coupling of antennae, called
”closure errors” can lead to a departure from the closure re-
lation.

Finally, the limited number of triangles one can con-
struct from N given antennae will limit the sampling of (u, v)
space and worsen the sparsity of observations. Applying our
method to sparse data goes beyond the scope of this work,
but it would be interesting to see how triangle correlations
perform with this additional difficulty. For now, we will limit
ourselves to noisy data sets. We refer the interested reader
to Trott et al. (2019), where the authors compute the nor-
malised bispectrum defined in Watkinson et al. (2019) from
the closed triangle visibilities of MWA Phase II.

5.2 Instrumental effects

To see how our method performs when applied to ac-
tual observations, we now add instrumental effects to our
ionisation maps: beam smoothing and noise corresponding
to observations by the core of SKA1-Low, its central area,
and by LOFAR. We pick three simulated ionisation fields:
the first comes from the toy models described in Section 4.
It is made of 70 bubbles of radius R = 10 px, and assumed
to correspond to a redshift z = 9. The two others are ex-
tracted from 21CMFAST at redshifts z = 6.2 and 6.4. They
are shown, in this order, on the left panels of Fig. 10. We
first convert each one of them into a brightness tempera-
ture map according to Eq. 3 with the following cosmology:
Ωm = 0.309, Ωb = 0.049 and H0 = 67.74 km.s−1Mpc−1.

Table 2. Peaking scales (Mpc) for a toy model with different

types of observational effects: smoothing due to angular resolution

and noise for an integration time of 1000 h. Actual radius size is
7.8 Mpc.

Clean Smoothed Smoothing Smoothing

signal signal + 1000h scale

LOFAR 6.7 6.6 7.4 4.5

SKA1-Low core 6.7 8.2 – 17.0
SKA1-Low central 6.7 6.7 6.9 5.3

The resolution of 21-cm tomographic data will be first
limited by the angular resolution of the interferometer con-
sidered. The full width at half maximum (FWHM) of an
interferometer is given by (in radians):

θAR =
λ

bmax
, (24)

where λ is the redshifted 21cm wavelength i.e. λ = 21cm×(1+
z) and bmax is the maximum baseline of the interferometer.
We have bmax = 3500, 1000 and 3400 m for LOFAR, SKA1-
Low core and SKA1-Low central respectively. To account for
this effect, we convolve the δTb map with a Gaussian kernel
of FWHM θARdc(z), with dc(z) the comoving distance at the
redshift (i.e. frequency) considered. For SKA central, we get
the second-to-left panels on the figure – note that because
they have similar maximum baselines, the angular resolu-
tion of SKA central is close the one of LOFAR. For SKA
core, because bmax is much smaller, the smoothing blurs the
shape of the ionised bubbles to an extreme point, and our
method will perform poorly. Finally, we simulate realistic
instrumental noise by using the measurement equation soft-
ware OSKAR12.

Fig. 10 presents the results: the first column corresponds
to triangle correlations for a clean field. We identify the
peaking scale for this clean field in order to compare it to
the scale picked on corrupted data later on and indicate it
as a dotted blue line on each plot. Note that for the third
field (21CMFAST at z = 6.4), there are two scales picked
up. The larger one is well defined, whereas we use an in-
terval 6.2 ± 1.6 Mpc for the smaller one. On the figure, the
second column is for the field smoothed with the angular
resolution of SKA1-Low central; and the last three for the
smoothed signal with instrumental noise from each of the
three experiments considered (respectively SKA1-Low core,
central and LOFAR) and 1000 hours of integration time. We
choose 1000h as it is the most commonly used value in the
literature, but recent works have shown that as few as 324h
of observations with SKA can be sufficient to differentiate
between different reionisation models (Binnie & Pritchard
2019). The dash-dotted lines on each plot mark the smooth-
ing scale of the corresponding experiment, whose values are
given in Table 2. One can see that results with SKA core are
not satisfying because of a too low angular resolution that
blurs the edges of the ionised regions: the signal is mostly
flat or seems to pick up the smoothing scale. However, re-
sults for SKA central and LOFAR prove very satisfactory on
the toy model (first row), with a clear peak at a scale close

12 https://github.com/OxfordSKA/OSKAR
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Figure 10. Comparison of phase correlations for a 2D brightness temperature map with dimensions N = 512, L = 400 Mpc for different
types of instrumental noise. From left to right: the clean signal, the field smoothed by a Gaussian beam corresponding to the angular

resolution of SKA central, and the clean field with added smoothing and noise from each experiment, respectively SKA1-Low core,

SKA1-Low central and LOFAR. In each case, the integration time is 1000 hours. Note that s(r) was computed on δTb maps, derived
from the neutral field, hence the signal is mostly negative; for readability here we have represented −s(r). The dotted blue lines (regions)

indicate the peaking scale found on the clean field (left panel) and the purple dash-dotted lines the smoothing scale of the corresponding

experiment. From top to bottom: toy model of 70 R = 10px binary bbbles, 21CMFAST simluation at z = 6.2 and z = 6.4 respectively.
Error bars correspond to the variance estimated from a Gaussian random field of same dimensions.
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to the one found with clean signal (see Table 2 for details):
applying the linear relation of Eq. 16 to the peaking scale
could give a good approximation of the actual size of ionised
regions in the image. When the integration time is increased,
we get for both LOFAR and SKA1-Low central a peaking
scale even closer to the one found for clean signal. Unfor-
tunately, the LOFAR sensitivity does not allow to extract
much information from the 21CMFAST maps: at z = 6.2
the signal is mostly flat, and although there is a clear peak
for the z = 6.4 map, it cannot resolve the two characteristic
scales, however picked up when accounting for SKA central
sensitivity. Note that for each plot, the error bars correspond
to the variance of the TCF computed for a GRF of same di-
mensions. We have also tried our statistic on 21CMFAST
boxes at higher redshifts, and we find that, because there
is no clear characteristic scale in the field (see Section 4.3),
the TCF peaks at the smoothing scale corresponding to the
telescope considered (listed in Table 2). There is however no
risk of misinterpretation of this peak since real data would
be deconvolved from telescope properties such as angular
resolution before being analysed.

In all the work above, we assumed that foreground pol-
lution was completely removed from the data cubes: Chap-
man et al. (2015) presented efficient foreground removal
techniques that will produce good quality 21cm maps. How-
ever, foreground residuals could still impact our results. A
precise instrumental calibration is usually required to sepa-
rate the 21cm signal from foregrounds and is one of the main
challenges of upcoming experiments although as mentioned
before, it seems that bispectrum phases and therefore our
results would be unaffected by calibration errors (Thyagara-
jan et al. 2018).

6 WHY PHASE INFORMATION?

In order to see if our phase-only estimator truly supple-
ments power spectrum information, we generate a 2D ioni-
sation field made of 70 binary disks of radius R = 10 px =
7.8 Mpc and compute its 2-point correlation function and its
TCF. We then shuffle its Fourier phases – replace them by
random phases ranging from 0 to 2π, and compute the corre-
sponding 2-PCF and TCF. Results can be seen on the upper
and lower panels of Fig. 11 respectively. On the left panels,
we see that reshuffling the phases has made the field lose
all its structure: there are no bubbles any more. Because we
kept the absolute value of the field unchanged, the 2-PCFs in
the second column are exactly identical. However, the extra
information carried by phases is clearly visible when com-
paring the TCFs on the right-hand panels: there is almost
no signal for the field with random phases whereas the field
with structured phases exhibits a clear peak.

For completeness, we compute three different types of
triangle correlations encompassing more or less phase infor-
mation and compare results on Fig. 12. We do so for three
boxes filled with 70 binary bubbles: the first (upper panel)
with bubbles of radius R = 7, the second (middle panel)
R = 9 and the third (lower panel) R = 12.

(i) The first type of triangle correlations considered is the
one we have used so far, defined in Eq. 15 as a modified in-
verse Fourier transform of the phase factor of the bispectrum
(blue solid line on Fig. 12).

(ii) The second uses the full bispectrum, amplitude in-
cluded (purple dashed line on Fig. 12):

Ξ
(1)
3 (r) =

( r
L

)3D/2 ∑
k,q ≤ π/r

ωD (pr) B (k, q) . (25)

(iii) The third only uses the amplitude of the bispectrum
(green dotted line on Fig. 12):

Ξ
(2)
3 (r) =

( r
L

)3D/2 ∑
k,q ≤ π/r

ωD (pr) |B (k, q) |. (26)

We see that the main advantage of the phase-only TCF is
that, compared to statistics using bispectrum amplitude, the
peaking scale is much better defined. It is also less sensitive
to the filling fraction than the two other functions: in the
bottom panel, where bubbles are larger and the filling frac-
tion higher, phase correlations still exhibit a well-defined
peak whereas the other two flatten.

7 COMPUTATIONAL PERFORMANCE

In Sec. 4.3 we compared the results of different methods
to derive a bubble size distribution or equivalent, but we did
not mention computational performance. Note that our code
has been parallelised via OpenMP (OpenMP Architecture
Review Board 2013) in order to reduce computing times:
because most of the code consists of sums, i.e. nested loops,
the parallelisation is very efficient. Three parameters will
play an essential role in determining the computing time
necessary to evaluate triangle correlations:

(i) The number N of pixels in the box.
(ii) The range of correlations scales r for which we com-

pute the triangle correlations: because of the limits of our
sum (

∑
k≤π/r , see Eq. 15), there will be more terms to sum

over for smaller scales. Therefore, in this work, we have
chosen to compute triangle correlations for 0.5 Mpc ≤ r ≤
30 Mpc.

(iii) The box side length L, because it determines the sam-
pling of k-cells: for smaller ∆k, there will be more modes with
norm smaller than π/r and hence more terms to sum over.

Most of the boxes analysed in this work had 5122 pixels for
a side length L = 400 Mpc and triangles correlations were
computed for r/Mpc ∈ [0.5, 30], for an average computation
time of 180 minutes on 20 cores. For comparison, the SPA
algorithm, as implemented by Giri et al. (2018a), takes about
half an hour to run on a 3D box with same side length and
sampling; whereas RMFP, as implemented in 21CMFAST,
only takes a couple minutes. Therefore more work is required
to improve the computational efficiency of our algorithm
further and so its usability. An approach similar to the one
presented in the Appendix of Eggemeier et al. (2015), where
the nested sums in Eq. 15 are replaced by rotational averages
in real space, could greatly improve computation times.

8 CONCLUSIONS

Following the work of O13, we have constructed a new
statistical tool, based on phase information only and called
the triangle correlation function (TCF), which can be used
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Figure 11. Comparison of results on phase correlations for two ionisation fields with identical power spectra and dimensions (N = 512,
L = 400 Mpc) but different phase information: lower panels correspond to the field from upper panels after having reshuffled the Fourier

phases. Left panels show the 2D ionisation field in real space, middle left, middle right and right panels respectively show the corresponding

2-PCF ξ2(r), the scaled modified 3-PCF Ξ
(1)
3 (r) (see Eq. 25), and the triangle correlation function s(r).

to determine the characteristic scale of ionised regions on
21cm interferometric data from the Epoch of Reionisation.
Indeed, if we plot this function over a range of correla-
tion scales for simple fields, made of perfectly spherical fully
ionised regions on a neutral background, we find a peaked
signal, and the peaking scale can be directly related to the
actual size of the bubbles. From such toy models, we have
derived important properties for the TCF: it can differenti-
ate between ionised regions of different sizes, and distinguish
spherical from elongated structures. We have also found its
results to be more reliable on scales smaller than about a
twentieth of the physical side length of the field studied, as
the finite size of the box implies more sample variance at
larger scales. To see if our method can be applied to obser-
vational data, we have confronted the TCF with ionisation
fields corrupted by instrumental noise or angular resolution
from LOFAR or SKA, and we have found that it still per-
forms well at giving the characteristic scale of ionised re-
gions, as long as the integration time is sufficient – here, we
have worked with 1000 hours. By comparing results for 3-
PCF including amplitude information to s(r), we also proved
that a statistical tool using phase information only will be
more efficient at picking up the characteristic scale of spher-
ical structures in a field than a correlation function also us-
ing information from the bispectrum amplitude. Indeed, the
phase-only function is more peaked, allowing a better iden-
tification of the characteristic scale. Moving on to the more
elaborate reionisation simulation 21CMFAST (Mesinger &
Furlanetto 2007), we have found that our method gives a
good estimation of the size of remote neutral islands at the
very end of the reionisation process. In particular, and con-
trarily to other BSD algorithms such as RMFP and SPA, it is
able to resolve two characteristic scales in a field. In the early
stages of the simulation, because there are many very small
ionised regions covering the neutral background, the signal
is dominated by Poisson noise, and there is no clear charac-
teristic scale to pick up. Therefore, for fields with a very low

global ionised fraction, we rather use our method to infer an
upper limit on the size of ionised regions. Note that during
the overlap phase, positive correlations from ionised regions
overlap with negative signal from neutral zones and the sig-
nal flattens out: an absence of signal can be interpreted as
reionisation being in its middle stages and so we can learn
about the duration of the process. In general, it will be more
difficult to extract phase information from non binary ion-
isation field because of the more complex structure of the
field, which is reverberated in the phase information: Fig. 1
compares the real-space phase information of one of our toy
models with ε(r) for one of our 21CMFAST boxes. These re-
sults, on both toy models and more elaboration simulations,
hold when instrumental effects such as telescope angular res-
olution and instrumental noise are added to clean maps.

Apart from noise and instrumental resolution, there will
be some other important questions to solve before applying
our method to true 21cm tomographic data. Kakiichi et al.
(2017) proved that the cold spots in 21cm tomographic im-
ages trace H ii regions more efficiently at low redshift (z ≤ 7)
and high filling fraction (xH ii ≥ 0.4): earlier in the reionisa-
tion process, cold spots due to a local underdensity rather
than ionisation are more frequent (see Sec. 2). Corroborated
with the fact that the TCF performs well on remote neutral
islands at the end of the reionisation process, we can expect
to get good results on low redshift data. However, correctly
identifying ionised regions in 21cm observations i.e. trans-
forming a map of the differential brightness temperature δTb
into a binary field made of fully ionised and fully neutral re-
gions remains a challenge – for an extended discussion of this
issue, see Giri et al. (2018a). Note that this is not an issue
for the friends-of-friends (Iliev et al. 2006; Friedrich et al.
2011) and watershed methods (Lin et al. 2016) since they
segment the data themselves. Additionally, it remains to be
seen exactly how to exploit closure phases, and what is the
effect of the quality of the data, especially its sparsity, on
our results. We would also need to see how foreground re-
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Figure 12. Triangle correlations computed on a box with dimen-
sions N = 512 and L = 400 Mpc, filled with 50 binary bubbles of

radius R. Upper panel corresponds to R = 7 px, middle to R = 9 px
and lower to R = 11 px. Each time, the vertical lines correspond to
R and

√
3R. The blue solid line is the triangle correlation function

as defined before. The purple dashed line corresponds to a triangle
correlation function computed for the full bispectrum rather than

only its phase factor Ξ
(1)
3 (r) and the green dotted line to triangle

correlations computed from the amplitude of the bispectrum only

Ξ
(2)
3 (r) (see text for details).

moval techniques impact the non-Gaussianity of the signal,
and therefore our results. Finally, the practical application
of triangle correlations to observational data would require
forward-modelling i.e. comparing measurements to the sig-
nal obtained for a number of simulations corresponding to
various parametrisations of reionisation to infer the reion-
isation scenario corresponding to the observation. In this
perspective, one would need to compute the triangle corre-
lations of many more simulations.
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APPENDIX A: ANALYTICAL DERIVATION
FOR A TOY MODEL

Consider a 2D box of volume V = L2 filled with n fully
ionised bubbles of radius R, randomly distributed through-
out the box so that their centres are located at ai for

i ∈ {1, n}. The ionisation field of the box is then

xH ii(r) =
n∑
i=1
Θ

( |r − ai |
R

)
, (A1)

where Θ (x) is the Heaviside step function worth 1 if x ≤ 1
and 0 otherwise. We need to take the Fourier transform of
this field, derived as follows:

x̂(k) = 1
V

∬ n∑
i=1
Θ

( |r − ai |
R

)
e−ik ·rd2r

=
1
V

n∑
i=1

e−ik ·ai

∫ R

r=0
rdr

∫ 2π

θ=0
dθ e−ikrcosθ

=
1
V

n∑
i=1

e−ik ·ai

∫ R

r=0
rdr

∫ π

−π
dθ eikrcosθ

=
1
V

n∑
i=1

e−ik ·ai

∫ R

r=0
rdr × 2πJ0(kr)

=
2π

k2V

n∑
i=1

e−ik ·ai

∫ kR

0
zJ0(z) dz

=
2πR
kV

J1(kR)
n∑
i=1

e−ik ·ai .

(A2)

where to go from the first to the second line, we have used
the change of variables r = r − ai . From the fourth to the
fifth, we have let z = kr to be able to use:∫ v

0
wJ0(w) dw = vJ1(v). (A3)

If we define W(y) = J1(y)/y, the Fourier transform of the
top-hat window function in 2D, we have the final expression
of the Fourier transform of our ionisation field:

x̂(k) = 2πR2

V
W(kR)

n∑
i=1

e−ik ·ai ' 2x̄H ii

n
W(kR)

n∑
i

e−ik ·ai .

(A4)

Indeed, if we let ρ the mean number density of ionised bub-
bles such that ρ = n/V and ignore overlapping13, x̄H ii =

πR2ρ. From this we deduce analytic expressions for the
power spectrum

P(k) = | x̂(k)|2

= 4π2 W(kR)2
(

R
L

)4 n∑
i, j=1

e−ik ·(ai−a j )

= 4π2 W(kR)2
(

R
L

)4
× 2

∑
i≤ j

cos
[
k · (ai − a j

) ]
,

(A5)

which is a real number; and the bispectrum of the box

B(k, q) = x̂(k) x̂(q) x̂(−k − q) . . .

= 8π3 W(kR)W(qR)W (|k + q |R)
(

R
L

)6

×
n∑

α,β,γ=1
e−i[k ·(aα−aγ)+q ·(aβ−aγ)].

(A6)

13 This will be a reasonable assumption for the filling fractions

considered.
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Figure A1. Triangle correlation function computed from the nu-

merical expression of the bispectrum in Eq. 7b (solid line) and
from the analytic expression of the bispectrum for a known bub-

ble distribution as in Eq. A6 (dotted line) for 20 realisations a box
of 1002 pixels and side length L = 80 Mpc filled with 20 binary

bubbles of radius R = 3 px = 2.4 Mpc. Vertical lines correspond to

R and
√

3R.

To find the analytic expression of our triangle correlations
function for this toy model, we then plug Eq. A6 into Eq.
15.

In Fig. A1, we compare the result of a numerical inte-
gration of the triangle correlation function computed from
the bispectrum in Eq. 7b with a version where we compute
analytically the triangle correlation function, knowing the
locations of the ionised bubbles and the size of the box only,
according to Eq. A6 and detailed above. We consider 20 re-
alisations of a box of dimensions L = 80 Mpc for 1002 pixels,
filled with 20 bubbles of radius R = 3 px = 2.4 Mpc14. We
see that there is a good match between both computational
methods: we have the confirmation that our estimator in-
deed traces the bubble distribution in the ionisation field
considered.

This paper has been typeset from a TEX/LATEX file prepared by

the author.

14 The choices of box size and bubble number are limited by the

computational cost of the analytic method.
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A.3 Improved constraints on reionisation from CMB observations: A pa-

rameterisation of the kSZ effect

This article introduces a novel way to parameterise the kSZ power spectrum in terms
of reionisation history and morphology, in order to make better use of current and future
small-scale CMB observations. It is the product of a collaboration between our group
at IAS and Dominique Aubert, from Strasbourg Observatory, who kindly provided the
simulations used in this work, and Stéphane Ilic, from IRAP, who wrote the first version of
the code used to compute the kSZ power spectrum from CAMB and a given Pee. I must also
mention Jacob Seiler and Anne Hutter, who produced the rsage simulations and kindly
let me use them for this work. All the other results are the product of my work – even if,
of course, they would have never formed the paper you can read below without the help of
my co-authors. This article has been published in Astronomy & Astrophysics in August
2020.
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ABSTRACT

We show that, in the context of patchy reionisation, an accurate description of the angular power spectrum of the kinetic Sunyaev-
Zel’dovich (kSZ) effect is not possible with simple scaling relations between the amplitude of the spectrum and global parameters,
such as the reionisation midpoint and its duration. We introduce a new parameterisation of this spectrum, based on a novel description
of the power spectrum of the free electrons density contrast Pee(k, z) in terms of the reionisation global history and morphology. We
directly relate features of the spectrum to the typical ionised bubble size at different stages in the process and, subsequently, to the
angular scale at which the patchy kSZ power spectrum reaches its maximum. We successfully calibrated our results on a custom set of
advanced radiative hydrodynamical simulations and later found our parameterisation to be a valid description of a wide range of other
simulations and, therefore, reionisation physics. In the end, and as long as the global reionisation history is known, two parameters
are sufficient to derive the angular power spectrum. Such an innovative framework applied to cosmic microwave background data and
combined with 21cm intensity mapping will allow a first consistent detection of the amplitude and shape of the patchy kSZ signal,
giving in turn access to the physics of early light sources.

Key words. Cosmology: dark ages, reionization, first stars – cosmic background radiation – Methods: analytical

1. Introduction

From the launch of the Cosmic Background Explorer
(COBE) in 1989 to the publication of the latest results of the
Planck satellite in 2018 (Planck Collaboration et al. 2018), the
study of the cosmic microwave background (CMB) has trig-
gered a tremendous amount of research. Cosmological parame-
ters have been estimated with exquisite precision and our knowl-
edge of cosmic inflation has been greatly improved. Along the
line of sight, the primordial part of the CMB signal is largely
modified by the interaction of CMB photons with structures that
formed later in the Universe. Notably, their interaction with free
electrons in the intergalactic medium (IGM) modify the shape
and amplitude of the measured CMB temperature and polarisa-
tion power spectra. The presence of these electrons is the result,
in particular, of cosmic reionisation, an era potentially extending
from a redshift of z ∼ 15 to z ∼ 5 when the first galaxies are
thought to have ionised the neutral hydrogen and helium in the
surrounding IGM.

CMB photons lose energy from scattering off low-energy
electrons. In CMB data analysis, this effect is accounted for
when computing the Thomson optical depth. To do so, one needs
to assume a global history of reionisation, that is, a redshift-
evolution for the IGM global ionised fraction xe(z). In stan-
dard Boltzmann solvers which are used to compute theoreti-
cal predictions in CMB data analysis such as the CAMB code

(Lewis et al. 2000, Howlett et al. 2012)1, the reionisation sce-
nario used is a step-like transition of xe(z), where the global
ionised fraction jumps from 10% to 75% over a (fixed) redshift
interval of ∆z = 1.73 (Planck Collaboration et al. 2016a). How-
ever, this parameterisation does not match simulations and ob-
servations well since we expect the ionisation fraction to slowly
rise when the first sources light up, before taking off as soon as
about 20% of the IGM is ionised (Robertson et al. 2015, Greig &
Mesinger 2016, Gorce et al. 2018). This minimal model can have
a huge impact on reionisation constraints: The value of τ inferred
from Planck 2016 data varies from 0.066 ± 0.016 for a step-like
process to 0.058 ± 0.012 for a more accurate description (Dous-
pis et al. 2015; Planck Collaboration et al. 2016b). It is therefore
essential to take the asymmetric evolution of xe(z) into account
when trying to accurately constrain reionisation, and global pa-
rameters such as the reionisation midpoint zre and duration ∆z
are not sufficient.

CMB photons can also gain energy from scattering off elec-
trons with a non-zero bulk velocity relative to the CMB rest-
frame in a process called the kinetic Sunyaev-Zel’dovich effect
(hereafter kSZ effect, see Zeldovich & Sunyaev 1969; Sunyaev
& Zeldovich 1980). This interaction adds power to the CMB
temperature spectrum on small angular scales (` & 2000, that is
smaller than about 5 arcminutes), where secondary anisotropies,

1 Available at https://camb.info.
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including kSZ, dominate the signal. The impact of kSZ on the
CMB power spectrum is often split between the homogeneous
kSZ signal, which come from the Doppler shifting of photons
on free electrons that are homogeneously distributed throughout
the IGM once reionisation is over, and the patchy kSZ signal,
when CMB photons scatter off isolated ionised bubbles along the
otherwise neutral line of sight. Therefore, the kSZ power spec-
trum is sensitive to the duration and morphology of reionisation
(McQuinn et al. 2005, Mesinger et al. 2012). For example, the
patchy signal is expected to peak around ` ∼ 2000, correspond-
ing to the typical bubble size during reionisation (Zahn et al.
2005; Iliev et al. 2007).

Secondary anisotropies only dominate the primordial power
spectrum on small scales, where existing all-sky surveys such as
Planck perform poorly. The observational efforts of the ground-
based Atacama cosmology telescope (ACT)2 and the South Pole
telescope (SPT)3 have allowed upper constraints to be put on
the amplitude of the kSZ power spectrum at ` = 3000. Us-
ing ACT observations at 148 GHz, Dunkley et al. (2011) find
DSZ

3000 ≡ ` (` + 1) CSZ
`=3000/2π = 6.8 ± 2.9 µK2 at the 68% con-

fidence level (C.L.) for the sum of thermal and kinetic SZ. In a
first analysis, Reichardt et al. (2012) derive from the three fre-
quency bands used by SPT DkSZ

3000 < 2.8 µK2 (95% C.L.). This
limit is however significantly loosened when anti-correlations
between the thermal SZ effect (tSZ) and the cosmic infrared
background (CIB) are considered. By combining SPT results
with large-scale CMB polarisation measurements, Zahn et al.
(2012) are subsequently able to constrain the amplitude of the
patchy kSZ by setting an upper limit Dpatchy

3000 ≤ 2.1 µK2 (95%
C.L.) translated into an upper limit on the duration of reionisa-
tion ∆z ≡ z (xe = 0.20) − z (xe = 0.99) ≤ 4.4 (95% C.L.), again
largely loosened when CIB×tSZ correlations are considered. Us-
ing Planck’s large-scale temperature and polarisation (EE) data,
combined with ACT and SPT high-` measurements, and taking
the aforementioned correlations into account, Planck Collabo-
ration et al. (2016b) find a more constraining upper limit on
the total kSZ signal DkSZ

3000 < 2.6 µK2 with a 95% confidence
level. Finally, adding new data from SPTpol4 to their previous
results (George et al. 2015), Reichardt et al. (2020) claim the
first 3σ detection of the kSZ power spectrum with an amplitude
DkS Z

3000 = 3.0±1.0 µK2, translated into a confidence interval on the
patchy amplitude DpkS Z

3000 = 1.1+1.0
−0.7 µK2 using the models of ho-

mogeneous signal given in Shaw et al. (2012). These results are
further pushed using the scaling relations derived by Battaglia
et al. (2013) to obtain an upper limit on the duration of reionisa-
tion ∆z < 4.1.

Previous works have focused on relating the amplitude of
the kSZ power spectrum at ` = 3000 to common reionisation
parameters such as its duration and its midpoint. Battaglia et al.
(2013) use large dark matter simulations (L & 2 Gpc/h), post-
processed to include reionisation, to construct light-cones of the
kSZ signal and estimate its patchy power spectrum. The au-
thors find the scalings DkSZ

3000 ∝ z̄ and DkSZ
3000 ∝ ∆z0.51 where

z̄ is approximately the midpoint of reionisation and here ∆z ≡
z (xe = 0.25) − z (xe = 0.75). Very large box sizes are necessary
to capture the large-scale velocity flows contributing to the kSZ
power spectrum at high-` and results based on insufficiently
large simulations will significantly underestimate the power at
these scales. Shaw et al. (2012) find that a simulation box of
side length 100 Mpc/h would miss about 60% of the kSZ power
2 https://act.princeton.edu
3 http://pole.uchicago.edu
4 The second camera deployed on SPT, polarisation sensitive.

at ` = 3000. For their own work, Shaw et al. (2012) there-
fore choose a completely different approach: they use hydrody-
namical simulations to map the gas density to the dark matter
power spectrum and later include this bias in a purely analyti-
cal derivation of the kSZ angular power spectrum. Because the
non-linear dark matter power spectrum can be computed using
the HALOFIT procedure (Smith et al. 2003) and because the ve-
locity modes can be estimated fully from linear theory under
a few assumptions, they avoid the limitations caused by simu-
lation resolution and size mentioned above. With this method,
the authors find a power-law dependence on both the reionisa-
tion midpoint zre and the optical depth τ for the homogeneous
signal. For their most elaborate simulation, dubbed CSF, the
cosmology-dependent scaling relations write DkS Z

3000 ∝ τ0.44 and
DkS Z

3000 ∝ zre
0.64 but are independent since one parameter is fixed

before varying the other. The authors note that the current uncer-
tainties on cosmological parameters such asσ8 will wash out any
potential constraint on zre and τ obtained from the measurement
of the kSZ spectrum.

In this work, we choose to follow a similar approach. We
build a comprehensive parameterisation allowing the full deriva-
tion of the kSZ angular power spectrum from a known reionisa-
tion history and morphology. In Sec. 2, we review the theoretical
derivation of the kSZ power spectrum and propose a new param-
eterisation of the power spectrum of free electrons density con-
trast, based on the shape of the power spectrum of a bubble field.
In Sec. 3, we present the simulations we later use to calibrate
this parameterisation. In Sec. 4, we use the resulting expression
of Pee(k, z) to compute the patchy kSZ angular power spectrum
of our simulations and later apply the same procedure to dif-
ferent types of reionisation simulations. Finally, in Sec. 5, we
discuss the physical meaning of our parameters and conclude.
All distances are in comoving units and the cosmology used
is the best-fit cosmology derived from Planck 2015 CMB data
(Planck Collaboration et al. 2016a): h = 0.6774, Ωm = 0.309,
Ωbh2 = 0.02230, Yp = 0.2453, σ8 = 0.8164 and TCMB =
2.7255 K. Unless stated otherwise, Pδδ describes the non-linear
total matter power spectrum, xe(z) is the ratio of H ii and He ii
ions to protons in the IGM, and the reionisation duration is
defined by ∆z = z (xe = 0.25) − z (xe = 0.75). The code used
to compute the kSZ power spectrum can be found at https:
//github.com/adeliegorce/tools4reionisation.

2. Derivation of the kSZ angular power spectrum

2.1. Temperature fluctuations

The CMB temperature anisotropies coming from the scatter-
ing of CMB photons off clouds of free electrons with a non-zero
bulk velocity v relative to the CMB rest-frame along the line of
sight n̂ write

δTkSZ(n̂) =
σT

c

∫
dη
dz

dz
(1 + z)

e−τ(z) ne(z) v · n̂ , (1)

with σT being the Thomson cross-section, c the speed of light,
η the comoving distance to redshift z and v · n̂ the compo-
nent of the peculiar velocity of the electrons along the line of
sight. As mentioned before, τ is the Thomson optical depth,
τ(z) = cσT

∫ z
0 ne(z′)/H(z′) (1 + z′)2 dz′. ne is the mean free elec-

trons number density at redshift z from which we derive the den-
sity contrast δe via ne = n̄e(1 + δe). We choose the limits of the
integral in Eq (1) depending on the type of signal we are inter-
ested in: for homogeneous kSZ, we integrate from 0 to zend, the
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redshift when reionisation ends; for patchy kSZ, the main focus
of this work, we integrate from zend to the highest redshift consid-
ered in the simulation (here, zmax = 15). The contribution from
redshifts larger than the onset of reionisation, when the only free
electrons in the IGM are leftovers from recombination, is found
to be negligible.

We define q ≡ v(1 + δe) = v + vδe ≡ v + qe the density-
weighted peculiar velocity of the free electrons. It can be decom-
posed into a divergence-free qB and a curl-free qE components.
We write their equivalents in the Fourier domain as q̃ = q̃E + q̃B.
As pointed out by Jaffe & Kamionkowski (1998), when pro-
jected along the line of sight, q̃E will cancel and only the com-
ponent of q̃ perpendicular to k, that is q̃B, will contribute to the
kSZ signal. We want an expression for the kSZ angular power
spectrum CkSZ

`
≡ T 2

CMB| ˜δT kSZ(k)|2 where k ≡ `/η is the Limber
wave-vector and ` is the multipole moment, which can be related
to an angular scale in the sky. In the small angle limit, the kSZ
angular power spectrum can be derived from Eq. (1) using the
Limber approximation:

C` =
8π2

(2` + 1)3

σ2
T

c2

∫
n̄e(z)2

(1 + z)2 ∆2
B,e(`/η, z) e−2τ(z) η

dη
dz

dz, (2)

with ∆2
B,e(k, z) ≡ k3PB,e(k, z)/(2π2) and PB,e the power spec-

trum of the curl component of the momentum field defined by
(2π)3PB,e δD(k − k′) = 〈q̃B,e(k) q̃∗B,e(k′)〉 where δD is the Dirac
delta function, the tilde denotes a Fourier transform and the as-
terisk a complex conjugate.

Expanding 〈q̃B,eq̃∗B,e〉, we obtain:

q̃B,e(k) =

∫
d3k′

(2π)3 (k̂′ − µk̂) ṽ(k′) δ̃e
(|k − k′|) , (3)

where µ = k̂ · k̂′, so that

〈q̃B,e(k) q̃∗B,e(k′)〉
(2π)3δD(|k − k′|) ≡

2π2

k3 ∆2
B,e(k, z)

=
1

(2π)3

∫
d3k′

[
(1 − µ2) Pee(|k − k′|) Pvv(k′)

− (1 − µ2) k′

|k − k′| Pev(|k − k′|) Pev(k′)
]
,

(4)

where the z-dependencies have been omitted for simplicity.
Pee(k, z) is the power spectrum of the free electrons density
fluctuations and Pev is the free electrons density - velocity
cross-spectrum. In the linear regime, we can write v(k) =
ik ( f ȧ/k) δ̃(k), where a is the scale factor and f the linear growth
rate defined by f (a) = dlnD/dlna for D the growth function.
With this we can compute the velocity power spectrum fully
from linear theory and not be limited by the simulation size and
resolution:

Pvv(k, z) =

(
ȧ f (z)

k

)2

Plin
δδ (k, z) (5)

where Plin
δδ is the linear total matter power spectrum. We also

assume for the cross-spectrum:

Pve(k, z) ' bδe(k, z)Pδv(k, z) =
f ȧ(z)

k
bδe(k, z)Plin

δδ (k, z), (6)

where the bias bδe is defined by the ratio of the free elec-
trons power spectrum over the non-linear matter power spectrum

bδe(k, z)2 = Pee(k, z)/Pδδ(k, z). Although coarse, this approxima-
tion only has a minor impact on our results: it implies variations
of ∼ 0.05 µK2 in the power spectrum amplitude (see also Al-
varez 2016). The final expression of the power spectrum of the
curl component of the momentum field then writes

PB,e(k, z) =
1

(2π)3 f (z)2ȧ(z)2
∫

d3k′(1 − µ2)×
[

1
k′2

Pee(|k − k′|) Plin
δδ (k′, z)

−bδe(k′, z)
|k − k′|2 bδe(|k − k′|, z) Plin

δδ (|k − k′|, z) Plin
δδ (k′, z)

]
,

(7)

which we can plug into Eq. (2) to find the final expression for
the kSZ angular power spectrum.

2.2. The power spectrum of free electrons density contrast

In Shaw et al. (2012), the authors choose to describe the be-
haviour of the free electrons power spectrum in terms of a biased
matter power spectrum: they take Pee(k, z) ≡ bδe(k, z)2Pδδ(k, z)
and calibrate bδe(k, z) on their simulations, either extrapolating
or assuming a reasonable behaviour for the scales and redshifts
not covered by the simulations. However, because Pee describes
the free electrons density fluctuations, it has a relatively simple
structure, close to the power spectrum of a field made of ionised
spheres on a neutral background, shown in Fig. 1, and using a
bias is not necessary.

Consider a box of volume V = L3 filled with n fully ionised
bubbles of radius R, randomly distributed throughout the box so
that their centres are located at ai for i ∈ {1, n}. The density of
free electrons in the box follows

ne(r) =
n̄e

f

n∑

i=1

Θ

( |r − ai|
R

)
, (8)

where Θ (x) is the Heaviside step function, n̄e is the mean num-
ber density of electrons in the box and f the filling fraction of the
box (here, f = xe). n̄e/ f is the number of electrons in one bubble
divided by its volume and, ignoring overlaps, f = 4/3πR3n/V .
Consider the electron density contrast field δe on which Pee(k, z)
is built:

δe(r) =
ne(r)

n̄e
− 1 =

1
f

n∑

i=1

Θ

( |r − ai|
R

)
− 1, (9)

represented on Fig. 2 for one of the simulations used in this work.
δe(r) Fourier–transforms into

δ̃e(k) =
L3

n
W(kR)

n∑

i=1

e−ik·ai , (10)

where W is the spherical top-hat window function W(y) =
(3/y3)

[
sin y − y cos y

]
. Using this expression, and following

Bharadwaj & Pandey (2005), the power spectrum of the electron
density contrast field writes:

Pee(k) =
4
3
πR3 1

f
W2(kR), (11)

which has units Mpc3. Fig. 1 gives an example of such a power
spectrum. We have generated an ionisation field made of enough
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Fig. 1. Free electrons density contrast power spectrum for a box filled
with enough bubbles of radius R = 15 px = 5.5 Mpc to reach a filling
fraction f = 1%. Points are results of a numerical computation of the
power spectrum, compared to the theoretical model (solid line). The
dotted vertical line corresponds to k = 1/R, the dashed vertical line to
91/4/R, the dashed horizontal line to 4/3πR3/ f and the tilted dashed line
has slope k−4.

bubbles of radius R = 15 px = 5.5 Mpc5 to reach a fill-
ing fraction f = 1% in a box of 5123 pixels and side length
L = 128/h Mpc. We compare the expression in Eq. (11) with
power spectrum values computed directly from the 3D field and
find a good match. On very small or very large scales, the win-
dow function behaves as:

W(y) ∼ 3
y3 ×

y3

3
= 1 as y→ 0

W(y) ∼ 3
y3 × y =

3
y2 as y→ ∞

(12)

so that Pee(k) ∼ 4/3πR3/ f is constant (see dashed horizontal line
on the figure) on very large scales and has higher amplitude for
smaller filling fractions. On small scales, the toy model power
spectrum decreases as k−4 (see tilted dashed line on the figure).
The intersection point of the horizontal and tilted dashed lines
on the figure corresponds to k = 91/4/R (dashed vertical line),
hinting at a relation between the cut-off frequency and the bubble
size. Interestingly, Xu et al. (2019) find a similar feature, also
related to the typical bubble size, in the bias between the H i and
matter fields.

This behaviour is close to what we observe in the free elec-
trons density power spectra of the custom set of simulations used
in this work in the early stages of reionisation, as can be seen on
the right panel of Fig. 2. Therefore, we choose in this work to
use a direct parameterisation of the scale and redshift evolution
of Pee(k, z) during reionisation and calibrate it on our simula-
tions. The parameters, α0 and κ, are defined according to:

Pee(k, z) =
α0 xe(z)−1/5

1 + [k/κ]3xe(z)
. (13)

In log-space, on large scales, Pee has a constant amplitude which,
as mentioned above, depends on the filling fraction and there-
fore reaches its maximum α0 at the start of the reionisation

5 The bubble radii actually follow a Gaussian distribution centred on
15 px with standard deviation 2 px.

process, when the variance in the free electron field is maxi-
mal (see Sec. 5.1). It then slowly decreases as xe(z)−1/5. Be-
fore the onset of reionisation, despite the few free electrons
left over after recombination, the amplitude of Pee is negligible.
This constant power decreases above a cut-off frequency that in-
creases with time, following the growth of ionised bubbles, ac-
cording to κxe(z)−1/3. There is no power above this frequency,
that is on smaller scales: there is no smaller ionised region than
rmin(z) = 2πx1/3

e /κ at this time. For empirical reasons, we choose
the power to decrease as k−3 and not k−4 as seen in the theo-
retical power spectrum on small scales. This difference can be
explained by the fact that in our simulations, small ionised re-
gions will keep appearing as new sources light up, maintaining
power on scales smaller than the typical bubble size. Addition-
ally, the density resolution will allow correlations between re-
gions within a given bubble, whereas in the toy models ionised
bubbles are only filled with ones. The complexity of the electron
density contrast field is illustrated for one of the six simulations
used in this work on Fig. 2: the underlying matter field is visible
within the ionised regions.

Once reionisation is over and all IGM atoms are ionised, the
fluctuations in free electrons density follow those of dark matter
on large scales (k < 1 Mpc−1). On smaller scales, gas thermal
pressure induces a drop in Pee(k, z) compared to the dark mat-
ter. To describe this evolution at low redshifts, we choose the
same parameterisation as Shaw et al. (2012), given in Eq. (14),
to describe the gas bias bδe(k, z)2 = Pee(k, z)/Pδδ(k, z) but adapt
the parameters to our simulations, which however do not cover
redshifts lower than 5.5:

bδe(k, z)2 =
1
2

[
e−k/k f +

1
1 + (gk/k f )7/2

]
. (14)

We find k f = 9.4 Mpc−1 and g = 0.5, constant with redshift.
Our values for k f and g are quite different from those obtained
by Shaw et al. (2012), as in their work power starts dropping
between 0.05 and 0.5 Mpc−1 compared to k ∼ 3 Mpc−1 for our
simulations. This can be explained by our simulations making
use of adaptive mesh refinement, therefore resolving very well
the densest regions, so that our spectra are more sensitive to
the thermal behaviour of gas. This model, where k f and g are
constant parameters, is a very basic one. It will however be suf-
ficient for this work since we focus on the patchy component
of the kSZ effect, at z ≥ 5.5. Additionally, as shown later, the
scales mostly contributing to the patchy kSZ signal correspond
to modes 10−3 < k/Mpc−1 < 1 where Pee follows the matter
power spectrum, so that a precise knowledge of bδe(k, z) is not
required. In the future, if we want to apply our results to con-
strain reionisation with the measured CMB temperature power
spectrum, we will need a better model as the observed signal
will be the sum of homogeneous and patchy kSZ, with the for-
mer dominating on all scales.

To account for the smooth transition of Pee from a power-law
to a biased matter power spectrum, illustrated in the right panel
of Fig. 2, we write the final form for the free electrons density
fluctuations power spectrum as

Pee(k, z) =
[
fH − xe(z)

] × α0 xe(z)−1/5

1 + [k/κ]3xe(z)
+ xe(z) × bδe(k, z)2Pδδ(k, z),

(15)

for fH = 1 + Yp/4Xp ' 1.08, with Yp and Xp the primordial mass
fraction of helium and hydrogen respectively. The total matter
power spectrum Pδδ is computed using the Boltzmann integra-
tor CAMB (Lewis et al. 2000; Howlett et al. 2012) for the linear
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Fig. 2. Left panel: Snapshot of the electron density contrast field for the first of the six simulations, at z = 7.2 and xe = 0.49. Right panel: Free
electrons power spectrum of the same simulation at fixed redshifts (fixed ionised levels). The shaded area corresponds to scales contributingDpatchy

3000
the most (see Sec. 3.2) and the solid black line to the field shown in the left panel.

terms and the HALOFIT procedure for the non-linear contribu-
tions (Smith et al. 2003).

3. Calibration on simulations

3.1. Description of the simulations

The simulations we use in this work were produced with the
EMMA simulation code (Aubert et al. 2015) and previously used
in Chardin et al. (2019). The code tracks the collisionless dynam-
ics of dark matter, the hydrodynamics of baryons, star formation
and feedback, and the radiative transfer using a moment-based
method (see Aubert et al. 2018; Deparis et al. 2019). This code
adheres to an Eulerian description, with fields described on grids,
and enables adaptive mesh refinement techniques to increase the
resolution in collapsing regions. Six simulations with identical
numerical and physical parameters were produced in order to
make up for the limited physical size of the box and the associ-
ated sample variance. They only differ in the random seeds used
to generate the initial displacement phases, resulting in 6 differ-
ent configurations of structures within the simulated volumes.
Each run has a (128 Mpc/h)3 volume sampled with 10243 cells
at the coarsest level and 10243 dark matter particles. Refinement
is triggered when the number of dark matter particles exceeds 8,
up to 6 refinement levels. Initial conditions were produced using
MUSIC (Hahn & Abel 2013) with a starting redshift of z = 150,
assuming Planck Collaboration et al. (2016a) cosmology. Simu-
lations were stopped at z ∼ 6, before the full end of reionisation.
The dark matter mass resolution is 2.1 × 108M� and the stellar
mass resolution is 6.1×105M�. Star formation proceeds accord-
ing to standard recipes described in Rasera & Teyssier (2006),
with an overdensity threshold equal to 20 to trigger the gas-
to-stellar particle conversion with a 0.1 efficiency: such values
allow the first stellar particles to appear at z ∼ 17. Star par-
ticles produce ionising radiation for 3 Myr, with an emissivity
provided by the Starburst99 model for a Top-Heavy initial mass
function and a Z = 0.001 metallicity (Leitherer et al. 1999). Su-
pernova feedback follows the prescription used in Aubert et al.
(2018): as they reach an age of 15 million years, stellar particles
dump 9.8 × 1011 J per stellar kg in the surrounding gas, 1/3 in
the form of thermal energy, 2/3 in the form of kinetic energy. Us-
ing these parameters, we obtain a cosmic star formation history
consistent with constraints by Bouwens et al. (2015) and end up
with 20 millions stellar particles at z = 6. The simulations were
produced on the Occigen (CINES) and Jean-Zay (IDRIS) super-

Table 1. Characteristics of the six high resolution simulations used. zre
is the midpoint of reionisation xe(zre) = 0.5 fH, zend the redshift at which
xe(z) (extrapolated) reaches fH and τ is the Thompson optical depth. ∆z
corresponds to z0.25 − z0.75.

zre zend τxe ∆z
1 7.09 5.96 0.0539 1.17
2 7.16 5.92 0.0545 1.19
3 7.16 5.67 0.0544 1.16
4 7.05 5.60 0.0532 1.16
5 7.03 5.56 0.0531 1.15
6 7.14 5.79 0.0543 1.16

Mean 7.10 5.84 0.0541 1.16

computers, using CPU architectures : a reduced speed of light of
0.1c has been used to reduce the cost of radiative transfer.

Table 1 gives the midpoint zre and end of reionisation zend for
each simulation, as well as the duration of the process, defined
as the time elapsed between global ionisation fractions of 25%
and of 75%6. The upper panel of Fig. 5 shows the interpolated
reionisation histories, where data points correspond to the snap-
shots available for each simulation. Originally, our simulations
do not include the first reionisation of helium. We correct for this
by multiplying the IGM ionised fraction of hydrogen xH ii mea-
sured in the simulations by fH = 1 + Yp/4Xp ' 1.08. Because
we limit our study to redshifts z > 5.5, the second reionisation
of helium is ignored. Fig. 2 shows the electron density contrast
field for the first of our six simulations, close to the midpoint of
reionisation. The complexity of the structure of this field is sum-
marised in its power spectrum, shown in the right panel. Fig. 3
compares the Pee(k, z) spectra of the six simulations, taken either
at fixed redshift (first column) or fixed scale (right column). De-
spite identical numerical and physical parameters and very sim-
ilar reionisation histories, the six simulations have different free
electrons density power spectra, which translates into different
kSZ power spectra.

3.2. Calibration procedure

We simultaneously fit the power spectra of the six simula-
tions to Eq. (15) on a scale range 0.05 < k/Mpc−1 < 1.00
(20 bins), corresponding to the scales which contribute the most
to the signal at ` = 3000 (see next paragraph), and a redshift

6 Some of our simulations end before reionisation is achieved, there-
fore we extrapolate xe(z) to find the zend value.
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Fig. 3. Result of the fit of Eq. (15) on the free electrons power spectrum of our six simulations, for three redshift bins (left panels) and three
scale bins (right panels). The best-fit is shown as the thick black line with the accompanying 68% confidence interval, and the spectra of the six
simulations as thin coloured lines. Error bars on data points are computed from the covariance matrix (see text for details).

range of 6.5 ≤ z ≤ 10.0 (10 bins), corresponding to the core
of the reionisation process (0.07 < xe < 0.70).7 We sample the
parameter space of α0 and κ on a regular grid (with spacings
∆ logα0 = 0.001 and ∆κ = 0.0001) for which we compute the
following likelihood:

χ2 =

6∑

n=1

∑

zi

∑

k j

1
σ2

e

[
Pdata

ee (k j, zi) − Pmodel
ee (k j, zi)

]2
, (16)

where {zi} and {k j} are the redshift and scale bins and the first
sum is over the six simulations. Because our sample of six simu-
lations is not sufficient to derive a meaningful covariance matrix,
we choose to ignore correlations between scales across redshifts
and use the diagonal of the covariance matrix to derive error bars
σe for each data point. We refer the interested reader to a dis-
cussion of this choice in Appendix A. We choose the best-fit as
the duplet (α0, κ) for which the reduced χ2 reaches its minimum

7 Because the snapshots of each simulation are not taken at the same
redshifts or ionisation levels, we interpolate Pee(k, z) for each simulation
and then compute the interpolated spectra for a common set of ionisa-
tion levels, with less elements than the original number of snapshots.
Note that the original binning in scales for Pee(k, z) is the same for the
six simulations but reduced from 38 to 20 bins.

value of 1.058. The best-fit values, with their 68% confidence
intervals are

logα0/Mpc3 = 3.93+0.05
−0.06

κ = 0.084+0.003
−0.004 Mpc−1.

(17)

We note a strong correlation between the two parameters due to
both physical – see Sec. 5.1 – and analytical reasons. Indeed, the
value of κ impacts the low-frequency amplitude of the Pee(k, z)
model. The best-fit model, compared to the Pee(k, z) spectra of
the six simulations Eq. (15) is fitted on, can be seen in Fig. 3
for three different redshift bins (left-hand column) and three dif-
ferent scale bins (right-hand column). Overall, we see a good
agreement between the fit and the data points on the scales of
interest, despite the simplicity of our model.

Given the large number of Pee(k, z) data points originally
(∼ 3500) and the complexity of the evolution of Pee with k and
z, we must limit our fits to given ranges. In order to assess what
scales and redshifts contribute the most to the final kSZ signal,
we look at the evolution of the integrand on z in Eq. (2) with
time and at the evolution of the integral on k in Eq. (7) with
scales. The results are shown in Fig. 4. The left (resp. right) up-
per panel presents the evolution of Pee(k, z) with scales (resp.
8 The raw value is χ2 ∼ 2500.
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Fig. 4. Upper panels: Pee(k, z) as fitted on spectra from the fourth simulation, as a function of scales (left panel) and of redshift (right panel). For
reference, the fit is compared to data points for z = 7.8 (xe = 0.26) and k = 0.14 Mpc−1 respectively, with corresponding colour. The width of
each line represents the contribution of the redshift (resp. scale) of the corresponding scale (resp. redshift) to the final patchy kSZ amplitude at
` = 3000. Lower panels: Corresponding probability densities (dashed lines) and cumulative distributions (solid lines). Shaded areas correspond to
the first 50% of the signal. The dotted vertical line on the lower right panel marks the midpoint of reionisation.

redshift) after applying the fitting procedure described above.
The width of each line represents the contribution of the red-
shift (resp. scale) of the corresponding colour to the final patchy
kSZ amplitude at ` = 3000. The lower panels present the cor-
responding probability density and cumulative distribution func-
tions. We find that redshifts throughout reionisation contribute
homogeneously to the signal, since 50% stems from redshifts
z ≤ 7.2, slightly before the midpoint zre = 7.0. Redshifts on the
range 6.5 < z < 8.5 contribute the most as they represent about
75% of the final kSZ power. Conversely, redshifts z > 10 con-
tribute to only 0.4% of the total signal. On the lower panel, we
see that scales outside the range 10−3 Mpc−1 < k < 1 Mpc−1 con-
tribute very marginally to the final signal (about 0.2%), whereas
the range 10−2 < k/Mpc−1 < 10−1 makes up about 70% of
D3000. Therefore, we choose to only keep data within the red-
shift range 6.5 < z < 10.0 (i.e. 7% < xe < 70%) and the scale
range 10−3 < k/Mpc−1 < 1 to constrain our fits. For reference,
on Fig. 4, we compare the fit to data points at z = 7.8 (xe = 0.26)
and k = 0.14 Mpc−1 for the first simulation, and find an overall
good match.

4. Propagation to the kSZ power spectrum

4.1. Results on our six simulations

Now that we have a fitted Pee(k, z), we can compute the kSZ
angular power spectrum using Eq. (2). We find:

Dp
3000 = 0.80 ± 0.06 µK2 (18)

and the angular scale at which the patchy angular spectrum
reaches its maximum is `max = 1800+300

−100. The angular patchy

power spectrum is shown on the lower panel of Fig. 5. The er-
ror bars correspond to the propagated 68% confidence interval
on the fit parameters. The amplitude of the homogeneous sig-
nal largely dominates that of the patchy signal, being about 4
times larger. The total kSZ amplitude reaches D3000 = 4.2 µK2

and so slightly exceeds the upper limits on the total kSZ am-
plitude given by SPT and Planck when SZxCIB correlations are
allowed (resp. Reichardt et al. 2020; Planck Collaboration et al.
2016b) but is however within the error bars of the ACT results
(Sievers et al. 2013). With respect to the patchy signal, the am-
plitude is in perfect agreement with the claimed detection by the
SPT at Dpatchy

3000 = 1.1+1.0
−0.7 µK2 (Reichardt et al. 2020), noting that

our simulations reionise in a time very close to their constraint
∆z = 1.1+1.6

−0.7. The spectrum exhibits the expected bump in am-
plitude, here around ` ∼ 1800, corresponding to larger scales
than those found in other works (Iliev et al. 2007; Mesinger
et al. 2012), hinting at larger ionised bubbles on average. Fig. 5
gives an idea of the variance in the kSZ angular power spectrum
for given physics – in particular a given matter distribution, and
very similar reionisation histories: the distribution among simu-
lations gives a reionisation midpoint defined at zre = 7.10±0.06,
corresponding to a range of kSZ power spectrum amplitude
D3000 = 0.80 ± 0.06 µK2 (at 68% confidence level). Part of
this variance can be related to sample variance, since our sim-
ulations have a too small side length (L = 128 Mpc/h) to avoid
it (Iliev et al. 2007). We compare in Fig. 5 the kSZ power spec-
trum resulting from fitting Eq. (15) on our six simulations si-
multaneously to the six spectra obtained when interpolating the
Pee(k, z) data points available for each simulation: the six inter-
polated spectra lie withing the confidence limits of our best-fit.

Article number, page 7 of 14



A&A proofs: manuscript no. main

Fig. 5. Results for our six simulations. Upper panel: Global reionisa-
tion histories, for H ii and He ii. The dotted horizontal line marks the
reionisation midpoint zre. Lower panel: Angular kSZ power spectrum
after fitting Eq. (15) to the Pee(k, z) data points from our six simulations
(thick solid line) compared to the spectra obtained when interpolating
the data points for each simulation (thin solid lines). Error bars cor-
respond to the propagation of the 68% confidence interval on the fit
parameters. The data point corresponds to constraints from Reichardt
et al. (2020) at ` = 3000.

Fixing the fit parameters to their most likely value for the
fourth simulation, we artificially vary the reionisation history
and compute the corresponding power spectrum. We succes-
sively fix the reionisation redshift but increase its duration ∆z
or fix the duration but shift the midpoint zre. This corresponds
to a scenario where the reionisation morphology is exactly the
same, but happens later or earlier in time. We find clear scal-
ing relations between the amplitude of the signal at ` = 3000,
D3000, and both the reionisation duration ∆z and its midpoint zre.
However, they are sensibly different from the results of Battaglia
et al. (2013) as can be seen in Fig. 6. Even after rescaling to their
zre = 8 and cosmology, we get a much lower amplitude. Note
also that their patchy spectra bump around ` = 3000, whereas
in our simulations the power has already dropped by ` = 3000
(Fig. 5), hinting at a very different reionisation morphology from
ours. When we vary κ and α0 artificially, by fixing logα0 = 3.54
instead of 3.70 as before, there is still a scaling relation, but
both the slope and the intercept change. All of this demonstrates
that the amplitude of the patchy signal largely depends on the
physics of reionisation (here via the κ and α0 parameters) and
∆z and zre are not sufficient to derive D3000. Simulations closer
to those used in Battaglia et al. (2013) would likely give larger
values for κ and α0, therefore increasing the amplitude to val-
ues closer to the authors’ results. To confirm this, we generate
a new simulation, with same resolution and box size but with

Fig. 6. Evolution of the amplitude of the patchy power spectrum at
` = 3000, D3000 with the reionisation duration (upper panel) and the
reionisation midpoint zre (lower panel), for different values of our pa-
rameters. Error bars correspond to the dispersion of kSZ amplitude at
` = 3000 (68% confidence level) propagated from errors on the fit pa-
rameters. The diamond data point corresponds to a seventh simulation,
with reionisation happening earlier. In both panels, results are compared
to those of Battaglia et al. (2013), rescaled to our cosmology.

twice as much star formation as in the six initial simulations,
therefore reionising earlier (zre = 7.94) but on a similar redshift
interval (∆z = 1.20). Applying the fitting procedure described
above, we find logα0 = 4.10 and κ = 0.08 Mpc−1. The resulting
patchy kSZ power spectrum can be seen in Fig. 7, along with
the reionisation histories and the evolution of the typical bubble
size rmin = 2π/κxe(z)1/3. Results for this simulation are com-
pared with what was obtained for our six simulations. The kSZ
spectrum corresponding to an early reionisation scenario bumps
at larger scales (`max = 1400) with a much larger maximum am-
plitude (Dmax = 0.98 µK2) but interestingly the amplitudes at
` = 3000 are similar. This suggests that focusing onD3000 is not
sufficient to characterise the kSZ signal.

These results corroborate the work of Park et al. (2013), who
found that the scalings derived in Battaglia et al. (2013) are
largely dependent on the simulations they were calibrated on,
and therefore cannot be used as a universal formula to constrain
reionisation. Notably, an asymmetric reionisation history xe(z)
naturally deviates from this relation. Global parameters such as
∆z and zre are not sufficient to accurately describe the patchy kSZ
signal, and one needs to take the physics of reionisation into ac-
count to get an accurate estimation of not only the shape, but
also the amplitude of the power spectrum. Additionally, limiting
ourselves to the amplitude at ` = 3000 to constrain reionisation
can be misleading.
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Fig. 7. Comparison of results for our six initial simulations, corresponding to a late reionisation scenario, and for an additional seventh simulation,
corresponding to an early reionisation scenario. Left panel: Reionisation histories. Middle panel: Patchy kSZ angular power spectra. The data
point corresponds to constraints from Reichardt et al. (2020). Right panel: Minimal size of ionised regions as a function of global ionised level.
Shaded areas correspond to the 68% confidence level on kSZ amplitude propagated from the probability distributions of the fit parameters.

4.2. Tests on other simulations

We now look at the rsage simulation, described in Seiler
et al. (2019), to test the robustness of our parameterisation.
This simulation starts off as an N-body simulation (Seiler et al.
2018), containing 24003 dark matter particles within a 160 Mpc
side box, resolving halos of mass ∼ 4 × 108 M� with 32 par-
ticles. Galaxies are evolved over cosmic time following the
Semi-Analytic Galaxy Evolution (SAGE) model of Croton et al.
(2016), modified to include an improved modelling of galaxy
evolution during the Epoch of Reionisation, including the feed-
back of ionisation on galaxy evolution. The semi-numerical
code cifog (Hutter 2018a,b) is used to generate an inhomoge-
neous ultraviolet background (UVB) and follow the evolution of
ionised hydrogen during the EoR. Three versions of the rsage
simulation are used, each corresponding to a different way of
modelling the escape fraction fesc of ionising photons from their
host galaxy into the IGM. The first, dubbed rsage const, takes
fesc constant and equal to 20%. The second, rsage fej, con-
siders a positive scaling of fesc with fej, the fraction of baryons
that have been ejected from the galaxy compared to the num-
ber remaining as hot and cold gas. In the last one, rsage SFR,
fesc scales with the star formation rate and thus roughly with
the halo mass. Because they are based on the same dark mat-
ter distribution, the three simulations start reionising at simi-
lar times (z ∼ 13), but different source properties lead to dif-
ferent reionisation histories, shown in the left upper panel of
Fig. 8. In rsage SFR, the ionised bubbles are statistically larger
than the other two simulations at a given redshift: this results
into rsage SFR reaching 50% of ionisation at zre = 7.56 vs.
zre = 7.45 and zre = 7.37 for rsage const and rsage fej
respectively, and the full ionisation being achieved in a shorter
time. For more details, we refer the interested reader to Seiler
et al. (2019). Applying the fitting procedure to the three simula-
tions, we find that the parameterisation of Eq. (15) is an accurate
description of the evolution of their Pee(k, z) spectra (detailed
fit results are given in App. B.2). Resulting patchy kSZ angular
power spectra are shown in the upper middle panel of Fig. 8.
First, we find that rsage fej has the smallest α0 value, with
logα0 = 2.87 ± 0.04. Because α0 is the maximum amplitude of
the Pee(k, z) spectrum, built upon the free electrons density con-
trast field δe(r) = ne(r)/n̄e − 1, it will scale with the variance

of the ne(r) field. Therefore a smaller α0 value is equivalent to
a smaller field variance at all times. This is consistent with the
picture of the different rsage simulations we have: as presented
in Seiler et al. (2019), rsage fej exhibits the smallest ionised
bubbles on average. For a given filling fraction, a field made of
many small bubbles covering the neutral background rather ho-
mogeneously will have smaller variance than one made of a few
large bubbles. This in turn explains why rsage SFR gives the
largest α0 value (logα0 = 3.47 ± 0.04), and, later, the largest
kSZ amplitude (Fig. 8). Second, the rsage SFR simulation has
the smallest value of κ (κ = 0.123±0.004 Mpc−1): the upper right
panel of Fig. 8 shows the evolution of rmin = 2π/κx1/3

e with ion-
isation level for the three models. Because rsage SFR has the
largest ionised bubbles on average (Seiler et al. 2019), this result
confirms the interpretation of 1/κ as an estimate of the typical
bubble size during reionisation. Additionally, the patchy power
spectrum derived from rsage SFR peaks at larger angular scales
(`max ∼ 2400) than for the other simulations, as can be seen in
the upper middle panel of the figure. Interestingly, the largest α0
value leads to the strongest kSZ signal and the smallest κ value to
the spectrum whose bump is observed on the largest scales (the
smallest `max). We investigate these potential links in the next
section.

We now turn to three 21CMFAST (Mesinger & Furlan-
etto 2007; Mesinger et al. 2011) simulations with dimensions
L = 160 Mpc for 2563 cells (same box size and resolution as
rsage). Between the three runs, we vary the parameter Mturn,
the turnover mass, which corresponds to the minimum halo mass
before exponential suppression of star formation. For Mturn =
108M�, the box is fully ionised by zend = 6.25 and the mid-
point of reionisation is reached at zre = 8.92 for a process lasting
∆z = 1.91. For Mturn = 109M�, we find zend = 4.69, zre = 7.11
and ∆z = 1.66, which is closest to rsage and our initial six sim-
ulations. Finally, Mturn = 1010M� yields zend = 3.37, zre = 5.41
and ∆z = 1.47. Indeed, the point of these simulations is not only
to test the sensitivity of our approach to astrophysical param-
eters, but also to see the impact of very different reionisation
histories on the patchy kSZ power. We find that Eq. (15) again
nicely fits the evolution of the Pee(k, z) spectra of these simu-
lations, as shown in App. B.1. The resulting reionisation his-
tories, patchy kSZ spectra and rmin(xe) are shown in the lower
panels of Fig. 8. For Mturn = 108M�, many small-mass halos
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Fig. 8. Comparison of results for the three rsage simulations (upper panels) and the three 21CMFAST runs (lower panels) considered. Left panels:
Reionisation histories. Middle panels: Patchy kSZ angular power spectra. The data point corresponds to constraints from Reichardt et al. (2020).
Right panels: Minimal size of ionised regions as a function of global ionised level. The shaded areas correspond to the 68% confidence interval
propagated from the 68% confidence intervals on the fit parameters.

are active ionising sources, resulting in an ionising field made
of many small bubbles at the start of the process. This translates
into this simulation having the largest best-fit κ value of the three
(κ = 0.130 ± 0.003 Mpc−1) and so the smallest rmin(xe). Natu-
rally, the resulting kSZ spectrum peaks at smaller angular scales.
For the other extreme case Mturn = 1010M�, because the minimal
mass required to start ionising is larger, the ionising sources are
more efficient and the ionised bubbles larger. Indeed, we find a
smaller value of κ = 0.093 ± 0.003 Mpc−1. With larger bubbles,
we also expect the variance in the ionisation field at the start of
the process to be higher than if many small ionised regions cover
the neutral background. This corresponds to the larger value of
logα0 = 3.79 ± 0.04 found for this simulation, compared to
3.30± 0.03 for the first one. However, this larger value of α0 this
time does not result into the strongest kSZ signal because of the
very different reionisation histories of the three simulations. As
we have seen in the previous section, the amplitude of the signal
is strongly correlated with the duration and midpoint of reioni-
sation, resulting in the first simulation (Mturn = 108M�), corre-
sponding to the earliest reionisation, having the strongest signal.
This again emphasises how essential it is to consider both reion-
isation morphology and global history to derive the final kSZ
spectrum.

These results show that our proposed simple two-parameter
expression for Pee(k, z) can accurately describe different types of
simulations, that is different types of physics, further validating

the physical interpretation of the parameters α0 and κ detailed in
the next Section.

5. Discussion and conclusions

5.1. Physical interpretation of the parameters

Many previous works have empirically related the angular
scale at which the patchy kSZ power spectrum reaches its maxi-
mum `max to the typical size of bubbles during reionisation (Mc-
Quinn et al. 2005; Iliev et al. 2007; Mesinger et al. 2012). To test
for this relation, we compute the patchy kSZ power spectrum for
a given reionisation history xe(z) and α0 but let κ values vary.
We find a clear linear relation between κ and `max as shown in
Fig. 9. Despite very different reionisation histories and physics
at stake, previous results on the six high-resolution simulations,
on 21CMFAST, and on rsage, roughly lie along this line. This
means that a detection of the patchy power spectrum in CMB ob-
servations would make it possible to directly estimate `max, giv-
ing access to κ without bias from reionisation history, and to the
evolution of the typical bubble size. As the growth of ionised re-
gions depends on the physical properties of early galaxies, such
as their ionising efficiency or their star formation rate and on the
density of the IGM, constraints on κ could, in turn, give con-
straints on the nature of early light sources and of the early IGM.

Additionally, we can link the theoretical expression of the
large-scale amplitude of the bubble power spectrum in Eq. (11)
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Fig. 9. Evolution of the peaking angular scale of the patchy kSZ power
spectrum for one given reionisation history but different values of the κ
parameter. The red dotted line is the result of a linear regression. Infer-
ences are compared to results for different simulations.

with our parameterisation of Pee(k, z) in Eq. (13): α0x−1/5
e ↔

4/3πR3/xe(z). Because of the simplicity of the toy model, this
relation is not an equivalence. For example, contrary to the toy
model, in our simulations, the locations of the different ionised
bubbles are correlated, following the underlying dark matter dis-
tribution and this correlation will add power to the spectrum on
large scales. This analogy can however explain the correlation
observed between α0 and κ when fitting Eq. (15) to data (recall
that R ∝ 1/κ). Finally, since α0 is independent of redshift, it
will be a pre-factor for the left-hand side of Eq. (7), therefore
we expect a strong correlation between this parameter and the
amplitude of the spectrum at ` = 3000 and with the maximum
amplitude reached by the spectrum. We confirm this intuition by
fixing the reionisation history and κ but varying α0 on the range
3.0 < logα0 < 4.4 and comparing the resulting spectra: there is
a clear linear relation between these two parameters and α0, but
in this case results for rsage and 21CMFAST do not follow the
correlation. Interestingly, the shape of the different resulting kSZ
power spectra is strictly identical (namely, `max does not change
when varying α0), hinting at the fact that `max depends only on κ
and not α0 or reionisation history. Therefore it will be possible to
make an unbiased estimate of κ from the shape of the measured
spectrum. The rsage simulations show that, for a similar reion-
isation history, a larger value of α0 will lead to a stronger kSZ
signal; but looking at 21CMFAST, we found that an early reion-
isation scenario can counterbalance this effect and lead to high
amplitude despite low α0 values. This corroborates the results of
Mesinger et al. (2012), which find that the amplitude of the spec-
trum is determined by both the morphology (and so the α0 value)
and the reionisation history. Therefore, fitting CMB data to our
parameterisation will likely lead to strongly correlated values of
α0 and parameters such as ∆z or zre. Other methods should be
used to constrain the reionisation history and break this degen-
eracy, such as constraints from the value of the Thomson opti-
cal depth, or astrophysical constraints on the IGM ionised level.
Conversely, 21cm intensity mapping should be able to give in-
dependent constraints on α0.

5.2. Conclusions & prospects

In this work, we have used state-of-the-art reionisation sim-
ulations (Aubert et al. 2015) to calibrate an analytical expression

of the angular power spectrum of the kSZ effect stemming from
patchy reionisation. We have shown that describing the shape,
but also amplitude of the signal only in terms of global param-
eters such as the reionisation duration ∆z and its midpoint zre
is not sufficient: it is essential to take the physics of the pro-
cess into account. In our new proposed expression, the parame-
ters can be directly related to both the global reionisation history
xe(z) and to the morphology of the process. With as few as these
three parameters, we can fully recover the patchy kSZ angular
power spectrum, in a way that is quick and easy to forward-
model. Our formalism contrasts with current works, which use
an arbitrary patchy kSZ power spectrum template enclosing an
outdated model of reionisation. Applying it to CMB data will re-
sult in obtaining for the first time the actual shape of the patchy
kSZ power spectrum, taking consistently into account reionisa-
tion history and morphology. In future works, we will apply this
framework to CMB observations from SPT and, later, CMB-S4
experiments. Then, the inferred values of α0 and κ will provide
us with detailed information about the physics of reionisation:
κ will constrain the growth of ionised bubbles with time and α0
the evolution of the variance of the ionisation field during EoR,
both being related to the ionising properties of early galaxies.
The complex derivation of the kSZ signal, based on a series of
integrals, leads to correlations between our parameters. For ex-
ample, a high amplitude of the spectrum can be explained ei-
ther by a large value of α0 due to a high ionising efficiency of
galaxies, or by an early reionisation. Such degeneracies, how-
ever, could be broken by combining CMB data with other obser-
vations: astrophysical observations of early galaxies and quasars
will help grasp the global history of reionisation and constrain
parameters such as ∆z and zre, while 21cm intensity mapping
will help understand reionisation morphology, putting indepen-
dent constraints on α0 and κ. The main challenge remains to sep-
arate first the kSZ signal from other foregrounds, and then the
patchy kSZ signal from the homogeneous one. To solve the first
part of this problem, Calabrese et al. (2014) suggest to subtract
the theoretical primary power spectrum (derived from indepen-
dent cosmological parameter constraints obtained from polarisa-
tion measurements) from the observed one so that the signal left
is the kSZ power spectrum alone. Secondly, one would need a
good description of the homogeneous spectrum, similar to the
results of Shaw et al. (2012) but updated with more recent simu-
lations, in order to estimate how accurately one can recover the
patchy signal. Additionally, this result sheds light on the scaling
relations observed in previous works by giving them a physical
ground. For example, features in the free electron contrast den-
sity power spectrum explain the relation between the amplitude
at which the patchy kSZ spectrum bumps `max and the typical
bubble size, which was observed empirically in many previous
works (McQuinn et al. 2005; Iliev et al. 2007; Mesinger et al.
2012).

On average, our results are in good agreement with previous
works, despite a low amplitude of the patchy kSZ angular power
spectrum at ` = 3000 (∼ 0.80 µK2) for our fiducial simulations.
There is undoubtedly a bump around scales ` ∼ 2000 that can
be related to the typical bubble size and the amplitude of the to-
tal (patchy) kinetic SZ spectrum ranges from 4 to 5 µK2 (0.5 to
1.5 µK2, respectively) for plausible reionisation scenarios, there-
fore lying within the error bars of the latest observational results
of ACT (Sievers et al. 2013) and SPT (Reichardt et al. 2020). We
have found that the majority of the patchy kSZ signal stems from
scales 10−3 < k/Mpc−1 < 1 and from the core of the reionisation
process (10% < xe < 80%), ranges on which we must focus our
efforts to obtain an accurate description. This analysis does not
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consider third- and fourth-order components of the kSZ signal,
which can represent as much as 10% of the total signal (Alvarez
2016), and uses a coarse approximation for the electrons den-
sity - velocity cross spectra. In contrast to previous works, these
results are not simulation-dependent as we have tested the ro-
bustness of our model by confronting it to different types of sim-
ulations, capturing different aspects of the process. However, the
analytic formulation of our derivations was calibrated on a rela-
tively small simulation, of side length 128 Mpc/h, which could
bias our results. To further support our approach, using a larger
radiative hydrodynamical simulation would be useful. Addition-
ally, one could derive the kSZ power from lightcones constructed
with our simulation, but the limited size of the simulation might
lead to a significant underestimate of the kSZ power (Shaw et al.
2012; Alvarez 2016).
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Table A.1. Results obtained when fitting Eq. 15 to the six simulations
separately. Maximum likelihood parameters are given with 68% confi-
dence intervals.

Sim logα0 [Mpc3] κ [Mpc−1] Dp
3000 [µK2] `max

1 3.86 ± 0.08 0.093 ± 0.006 0.75 µK2 1900
2 3.85 ± 0.08 0.094 ± 0.006 0.81 µK2 1900
3 3.80 ± 0.08 0.098 ± 0.007 0.86 µK2 1900
4 3.78 ± 0.08 0.100 ± 0.007 0.82 µK2 1900
5 3.91 ± 0.08 0.089 ± 0.007 0.82 µK2 1800
6 3.87 ± 0.08 0.093 ± 0.006 0.83 µK2 1900

Fig. A.1. Comparison of the patchy kSZ power spectra resulting from
one fit on the six simulations (black solid line, with 68% confidence
interval as the shaded area) or from six fits (coloured solid lines). The
data point corresponds to constraints from Reichardt et al. (2020).

Appendix A: Variations on the fit

Appendix A.1: Six fits for six simulations

Instead of fitting the six simulations simultaneously, we
choose to fit each simulation individually to Eq. 15 with the
same error bars as the fitting procedure described in Sec. 4. This
allows to use the original Pee(k, z) data points from each simu-
lation, without interpolating them, and the original reionisation
history rather than an averaged one. The results are shown in Ta-
ble A.1, where the maximum likelihood parameters, along with
their 68% confidence intervals, and the corresponding values of
D3000 and `max are given. The six maximum likelihood values of
α0 and κ lie within the 95% confidence interval of the parameter
distributions obtained in Sec. 4 and so do the resulting patchy
kSZ spectra, as shown in Fig. A.1.

Appendix A.2: Attempt at deriving a covariance matrix from a
sample of six

Because of the very insufficient number of simulations avail-
able to derive a covariance matrix, even when bootstrapping, we
choose to average covariance matrices over bins.

Average over z-bins First, we choose to ignore correlations be-
tween scales over redshifts and use a covariance matrix C, aver-
age of the 6 × 10 covariance matrices obtained for each simula-

tion and each redshift bin. C has therefore dimensions (20, 20)9.
We fit Eq. 15 to the six simulations, trying to minimise:

χ2 =
∑

zi

XT
i C−1 Xi, (A.1)

where Xi = Pdata
ee ({k j}, xi)−Pmodel

ee ({k j}, xi). We find a minimal re-
duced χ2 of 125, reached for logα0 = 4.12 and κ = 0.078 Mpc−1

and giving Dp
3000 = 0.97 µK2 and `max = 1500. This differ-

ence comes from a poor match between the maximum likelihood
Pee(k, z) and the data points on scales 0.1 < k/Mpc−1 < 0.3.
These scales correspond to the power cut-off, so that the value
of κ is poorly constrained and, later, the kSZ power spectrum is
distorted.

Average over k-bins Secondly, we choose to ignore correla-
tions between redshifts over scales and use a covariance ma-
trix C, average of the 6 × 20 covariance matrices obtained for
each simulation and each scale bin. C has therefore dimensions
(10, 10). Comparing the correlation coefficients obtained for the
two approaches, we note that the correlations are higher for this
approach. We fit Eq. 15 to the six simulations, trying to min-
imise:

χ2 =
∑

ki

XT
i C−1 Xi, (A.2)

where Xi = Pdata
ee (ki, {x j})−Pmodel

ee (ki, {x j}). We find a minimal re-
duced χ2 of 4.46, reached for logα0 = 3.65 and κ = 0.135 Mpc−1

and givingDp
3000 = 1.46 µK2 and `max = 2700. The excess power

comes from the fact that the fit systematically overestimate the
Pee power on small scales (k > 0.3 Mpc−1).

Appendix B: Detailed results on rsage and
21CMFAST

Appendix B.1: Fits on 21CMFAST

We now fit Eq. (15) to the power spectra of our three 21CM-
FAST runs. To account for sample variance, we perform 20 re-
alisations of each simulation – the choice of 20 being motivated
by Kaur et al. (2020) and computational limitations. From these
20 realisations we derive relative error bars on Pee(k, z) values,
corresponding to the 68% confidence level on the distribution
of values for each bin. The results obtained for 21CMFAST and
their interpretation are consistent with what is obtained for the
other simulations. The upper panel of Fig. B.1 shows the best-fit
model for Pee(k, z), along with snapshot values, for the second
simulation.

Appendix B.2: Fits on rsage

Because we only have one realisation of each rsage sim-
ulation, we apply the relative error bars derived from 21CM-
FAST to the rsage Pee(k, z) data points. On the scales and red-
shifts range covered by the fit, the error bars σ(k, z) derived from
the 20 realisations of each of the three 21CMFAST simulations
follow σ(k, z) = 10bPee(k, z)ka, where a = −1.12 ± 0.79 and
b = −1.74 ± 0.70 have been found by fitting the σ(k, z) values
of the 60 simulations simultaneously. We then apply this expres-
sion to the spectra of the rsage simulations, a reasonable first

9 Recall we have 10 redshift bins and 20 scale bins after interpolating
the spectra.
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Fig. B.1. Result of fitting Eq, (13) to the spectra of the 21CMFAST run for Mturn = 109 M� (upper panel) and of rsage fej (lower panel). The
error bars correspond to the 68% confidence level on the spectra of 20 realisations of the same 21CMFAST run.

approximation of cosmic variance. We fit Eq. (15) to the spec-
tra of the three simulations. The lower panel of Fig. B.1 shows
the best-fit model for Pee(k, z), along with snapshot values, for
rsage fej. Note that here, we only show the spectra on the
redshift range used for the fit, where the power-law structure is
not as striking as for higher redshifts.
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Appendix B

Simulations

Many simulations of the 21cm signal have been developed in the recent years in order
to efficiently prepare for forthcoming observations from, for instance, the SKA. However,
reionisation simulations are difficult to write, for many different reasons. The main issue is
that a large variety of scales is relevant to the study of reionisation, as well as a large variety
of physical processes need to be considered: small-scale physics, via radiative transfers,
governs the propagation of the ionising front – but we also need to have an image of
the IGM on large scales to statistically sample the distribution of ionised regions during
reionisation. Here, we present the different simulations used in this work.

B.1 EMMA

The EMMA simulation code Aubert et al. (2015) tracks the collisionless dynamics of
dark matter, the hydrodynamics of baryons, star formation and feedback, and the radiative
transfer using a moment-based method (see Aubert et al. 2018; Deparis et al. 2019). This
code adheres to an Eulerian description, with fields described on grids, and enables adaptive
mesh refinement techniques to increase the resolution in collapsing regions. Six simulations
with identical numerical and physical parameters were produced in order to make up for
the limited physical size of the box and the associated sample variance. They only differ in
the random seeds used to generate the initial displacement phases, resulting in 6 different
configurations of structures within the simulated volumes. Each run has a (128 Mpc/h)3

volume sampled with 10243 cells at the coarsest level and 10243 dark matter particles.
Refinement is triggered when the number of dark matter particles exceeds 8, up to 6
refinement levels. Initial conditions were produced using MUSIC (Hahn & Abel 2013) with
a starting redshift of z = 150, assuming Planck Collaboration et al. (2016b) cosmology.
Simulations were stopped at z ∼ 6, before the full end of reionisation. The dark matter
mass resolution is 2.1 × 108M� and the stellar mass resolution is 6.1 × 105M�. Star
formation proceeds according to standard recipes described in Rasera & Teyssier (2006),
with an overdensity threshold equals to 20 to trigger the gas-to-stellar particle conversion
with a 0.1 efficiency: such values allow the first stellar particles to appear at z ∼ 17.
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Table B.1: Characteristics of the six EMMA simulations. zre is the midpoint of reionisation
xe(zre) = 0.5fH, zend the redshift at which xe(z) (extrapolated) reaches fH and τ is the Thompson
optical depth. ∆z corresponds to z0.25 − z0.75.

zre zend τxe ∆z

1 7.09 5.96 0.0539 1.17
2 7.16 5.92 0.0545 1.19
3 7.16 5.67 0.0544 1.16
4 7.05 5.60 0.0532 1.16
5 7.03 5.56 0.0531 1.15
6 7.14 5.79 0.0543 1.16

Star particles produce ionising radiation for 3 Myr, with an emissivity provided by the
Starburst99 model for a Top-Heavy initial mass function and a Z = 0.001 metallicity
(Leitherer et al. 1999). Supernovae feedback follows the prescription used in Aubert et al.
(2018): as they reach an age of 15 million years, stellar particles dump 9.8×1011 J per stellar
kg in the surrounding gas, 1/3 in the form of thermal energy, 2/3 in the form of kinetic
energy. Using these parameters, we obtain a cosmic star formation history consistent with
constraints by Bouwens et al. (2015b) and end up with 20 millions stellar particles at
z = 6. The simulations were produced on the Occigen (CINES) and Jean-Zay (IDRIS)
supercomputers, using CPU architectures : a reduced speed of light of 0.1c has been used
to reduce the cost of radiative transfer.

Table B.1 gives the midpoint zre and end of reionisation zend for each simulation, as
well as the duration of the process, defined as the time elapsed between a global ionisation
fraction of 25% and of 75%. The mean values are zre = 7.10, ∆z = 1.16 and zend = 5.75

giving a mean Thomson optical depth for H ii and He ii τ = 0.0539. Fig. B.1 shows the
interpolated reionisation histories, where data points correspond to the snapshots available
for each simulation. Note that the simulations stop before the reionisation process is fully
over, therefore we need to extrapolate xe(z) to find the zend value given in Table B.1.
Additionally, the simulations originally do not include the first reionisation of helium. We
correct for this by multiplying the IGM ionised fraction of hydrogen xH ii measured in the
simulations by fH = 1 + Yp/4Xp ' 1.08 where Yp and Xp are the primordial mass fraction
of helium and hydrogen respectively. Because we limit our study to redshifts z > 5.5, the
second reionisation of helium is ignored.

B.2 RSAGE

The rsage simulations were introduced in Seiler et al. (2019). They start off as a
N -body simulation (Seiler et al. 2018), containing 24003 dark matter particles within a
160 Mpc side box, resolving halos of mass ∼ 4 × 108 M� with 32 particles. The galaxies
are evolved over cosmic time following the Semi-Analytic Galaxy Evolution (SAGE) model
of Croton et al. (2016), modified to include an improved modelling of galaxy evolution
during the Epoch of Reionisation, including the feedback of ionisation on galaxy evolution.
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Figure B.1: Global reionisation histories of the six EMMA (left panel) and three rsage (right
panel) simulations used throughout this work. The solid line is the result of interpolating between
the available snapshots, shown as filled circles.

The semi-numerical code cifog (Hutter 2018a,b) is used to generate an inhomogeneous
ultraviolet background (UVB) and follow the evolution of ionised hydrogen during the
EoR. Three versions of the rsage simulation exist, each corresponding to a different way
of modelling the escape fraction fesc of ionising photons from their host galaxy into the
IGM. The first, dubbed rsage const, takes fesc constant and equal to 20%. The second,
rsage fej, considers a positive scaling of fesc with fej, the fraction of baryons that have
been ejected from the galaxy compared to the number remaining as hot and cold gas. In
the last one, rsage SFR, fesc scales with the star formation rate and thus roughly with
the halo mass. Because they are based on the same dark matter distribution, the three
simulations start reionising at similar times (z ∼ 13), but different source properties lead
to different reionisation histories, shown on Fig. B.1. In rsage SFR, the ionised bubbles
are statistically larger than the other two simulations at a given redshift: this results into
rsage SFR reaching 50% of ionisation at zre = 7.56 vs. zre = 7.45 and zre = 7.37 for rsage
const and rsage fej respectively, and the full ionisation being achieved in a shorter time.
For more details, we refer the interested reader to Seiler et al. (2019).

B.3 21CMFAST

21CMFAST is a publicly available simulation (Mesinger & Furlanetto 2007; Mesinger
et al. 2011) based on a semi-numerical code using excursion-set formalism (Furlanetto et al.
2004a): starting off a matter overdensity field, it assumes a cell ionised if there are at least
enough photons to ionise all the baryons in it. Different parameters of the simulation can
be varied to vary the physics at stake and result in different reionisation histories and
morphologies. Here, we choose to vary the parameter Mturn, the turnover mass, which
corresponds to the minimum halo mass before exponential suppression of star formation.
For example, Mturn = 108M� corresponds to a virial temperature of 104 K, allowing Lyα
cooling. We generate three simulations, of same dimensions and resolution as rsage, for
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Mturn = 108M�, 109M� and 1010M�, dubbed respectively M8, M9 and M10. Snapshots
of the ionisation fields of the three simulations for a global ionisation level of xe = 30% can
be seen in the lower panels of Fig. 3.1. We see that despite having the same underlying
matter field, the three runs exhibit different sizes of ionised regions. Contrary to rsage,
the ionised regions are not spherical, but we can notice that M8 shows many small ionised
regions distributed throughout the neutral background, whereas the ionised regions are
concentrated in large clumps in M10. The corresponding global reionisation histories are
shown in Fig. B.2. The high number of sources in M8 leads to an earlier reionisation than
for the other two runs. Despite starting at different times, the duration of the process is
similar for the three simulations.

Figure B.2: Global reionisation histories of the three 21CMFAST simulations used throughout
this work. The solid line is the result of interpolating between the available snapshots, shown as
filled circles.
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Titre: Signatures cosmologiques de l’époque de la réionisation

Mots clés: cosmologie – réionisation, premières étoiles – fond diffus cosmologique – signal à 21cm

Résumé: La réionisation cosmique, pendant laque-
lle les premières étoiles ionisent les atomes du milieu
intergalactique, est encore méconnue. Dans ce tra-
vail, je développe des outils permettant d’améliorer
l’analyse et l’interprétation des données pour mieux
comprendre cette époque. M’intéressant au proces-
sus global dans un premier temps, je donne un scé-
nario de référence pour la réionisation, fondé sur
quelques hypothèses simples à propos de l’Univers
jeune, mené par les galaxies, et qui pour la première
fois est en accord avec toutes les données disponibles.
Cependant, la réionisation intervient également à de
plus petites échelles, et s’intéresser à la façon dont
les galaxies ionisent leur environnement immédiat
peut nous renseigner sur leurs propriétés physiques.
C’est pourquoi dans un second chapitre, j’introduis
des outils statistiques innovants qui pourront être

appliqués à des cartes d’intensité du signal à 21cm
et aux observations à petites échelles du fond dif-
fus cosmologique. Ces méthodes sont conçues spé-
cialement pour l’étude de la réionisation, et plus
particulièrement pour être robustes aux contraintes
liées à l’observation du signal 21cm. Elles sont
disponibles publiquement. Enfin, je présente les lim-
ites de mes différents outils, liées à la fois aux méth-
odes d’observation elles-mêmes, ainsi qu’à des er-
reurs de modélisation. Avec ce travail, j’ouvre la
voie à une analyse cosmologique cohérente des don-
nées qui permettra d’obtenir, une fois que la nouvelle
génération de télescopes aura donné ses premiers ré-
sultats, une compréhension à la fois globale et locale
de la réionisation, c’est-à-dire nous renseignant sur
l’Univers dans son intégralité, mais également sur la
nature de ses premières sources de lumière.

Title: Cosmological signatures of the Epoch of Reionisation

Keywords: cosmology – dark ages, reionization, first stars – cosmic background radiation – 21cm signal

Abstract: The Epoch of Reionisation, when the
first galaxies slowly ionise the atoms of their sur-
rounding intergalactic medium is still poorly known.
During my PhD, I have developed new ways to con-
strain reionisation, in order to improve the analy-
sis and interpretation of current and future observa-
tions. Choosing an outside-in approach, I first give a
simple, comprehensive history of reionisation, finally
able to fit all the available data, where few galax-
ies perform the full IGM reionisation and based on
reasonable assumptions on the nature of the high-
redshift Universe. However, reionisation is not only
a large-scale process, and we can learn about the
properties of the first stars and galaxies when look-
ing at how they ionise their immediate surroundings,
on scales of a few hundreds of megaparsecs. In this
perspective, in a second chapter, I introduce new
statistical tools to be applied to small-scale data,
from intensity mapping of the 21cm signal of neu-

tral hydrogen to high-multipole CMB observations.
These methods are designed to study reionisation,
and in particular to be robust to instrumental ef-
fects, a central issue of 21cm observations. In the
last chapter, I discuss the observations- and model-
related limitations of current results, by looking at
the way poorly known parameters impact our cur-
rent scenarios of reionisation and by proposing unbi-
ased and efficient observational strategies. In these
three years of work, I have developed new tools, de-
signed for the study of the EoR, namely to overcome
specific model- and observations-related limitations,
and made them available for the community. Doing
so, I have paved the way for a clean cosmological
analysis of reionisation data. Once next-generation
data is available, these methods will give reliable
constraints on the global and local history of cos-
mic reionisation, telling us about the Universe as a
whole and about the nature of its early light sources.
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