Modeling, simulation, dynamic optimization and control of a plasma assisted reactive evaporation process for preparation of Zinc Oxide (ZnO) thin films - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Modeling, simulation, dynamic optimization and control of a plasma assisted reactive evaporation process for preparation of Zinc Oxide (ZnO) thin films

Modélisation, simulation, optimisation et commande d’un procédé d’évaporation réactive assistée par plasma pour la production de couches minces d’oxyde de zinc

Résumé

In this work the modeling, simulation, dynamic optimization and control of a Plasma Assisted Reactive Evaporation process (PARE) for the deposition of Zinc Oxide (ZnO) thin films are proposed. Initially, a dimensional unsteady-state model was developed for the process, this model apply dynamic material balances to the process and accounting for diffusive and convective mass transfer, and bulk and surface reactions in order to establish the space-time evolution of the concentration of the species (O_2(g) , O_((g))^., O_((g))^-, 〖Zn〗_((g)), 〖Zn〗_((g))^+ and 〖ZnO〗_((g))) present throughout the reactor and compute the final film thickness. The case of study corresponds to a pilot reactor operated by the Semiconductor Materials and Solar Energy Research Group (SM&SE) of the Universidad Nacional de Colombia where the ZnO thin films are used for the fabrication of different kind of solar cells (inverted inorganic solar cells, organic solar cells and perovskite based solar cells). The equations are spatially discretized using finite difference methods and then implemented and solved in time using Matlab®. The simulation results are validated by means of COMSOL MULTIPHYSICS® which computes the same results; However, to complete the others objectives of the project it will keep using the finite difference method under Matlab® because it offers more flexibility in the perspective of dynamic optimization and control of PARE process. To corroborate the model, experimental measurements of ZnO film thickness were carried out using a thickness monitor on a pilot reactor designed and implemented by the Semiconductor Materials and Solar-Energy (SM&SE) Research Group at Universidad Nacional de Colombia. After 90 min of deposition time the simulated results and the experimental measurements exhibit a very good agreement, just around 20 nm discrepancy in the final thin film thickness hence showing the high accuracy of the developed model. The dynamic optimization problem is transformed into a non-linear programming (NLP) problem using the CVP method, i.e. the control variables are approximated by means of piecewise constant functions. It is then implemented within Matlab and solved using fmincon optimizer. Two different optimization problems are proposed., in the first problem Zn flow rate (V_(w,Zn)) is considered as control or manipulated variables u(t) and in the second problem both Zn flow rate (V_(w,Zn)) and Oxygen flow rate 〖(V〗_(w,O_2 )) are considered as manipulated variables. Quality constraints are established according to experimental studies that were performed in order to determinate the final product properties such as Transmittance, Resistivity, Film thickness and reactor parameters. Two optimization problems are solved taking as control variable the Zn flow rate and Oxygen flow rate in order to minimize batch time while some thin film desired properties (transmittance, resistivity and thickness) satisfy the defined constraints. The batch time was reduced in a 15% with respect to the current operating conditions used by the Semiconductor Materials and Solar Energy research Group. Finally, the optimal profiles of the Zn flow rate and Oxygen flow rate that were obtained in the optimization part were used to develop and simulated a regulatory control algorithm using the Simulink toolbox of Matlab®. The results obtained in the simulation of the control algorithm show that the designed controller has an appropriate performance by following the optimal flow trajectories and the ideal ratio of Oxygen and Zinc.
Dans ce travail, la modélisation, la simulation, l'optimisation dynamique et le contrôle d'un processus d'évaporation réactif assisté par plasma (PARE) pour le dépôt de couches minces d'oxyde de zinc (ZnO) sont proposés. Initialement, un modèle dimensionnel à l’état instable a été développé pour le processus. Ce modèle applique des équilibres dynamiques des matériaux au processus et tient compte du transfert de masse par diffusion et convection, ainsi que des réactions en masse et en surface, afin de déterminer l’évolution temporelle de la concentration de l'espèce (O_2(g) , O_((g))^., O_((g))^-, 〖Zn〗_((g)), 〖Zn〗_((g))^+ and 〖ZnO〗_((g))) présente dans l’ensemble du réacteur et calcule l’épaisseur finale du film. Le cas d'étude correspond à un réacteur pilote exploité par le groupe de recherche sur les matériaux semi-conducteurs et l'énergie solaire (SM & SE) de l'Université nationale de Colombie, où les couches minces de ZnO sont utilisées pour la fabrication de différents types de cellules solaires (cellules solaires inorganiques inversées, cellules solaires organiques et cellules solaires à base de pérovskite). Les équations sont discrétisées spatialement en utilisant des méthodes de différences finies, puis mises en œuvre et résolues dans le temps en utilisant Matlab®. Les résultats de la simulation sont validés au moyen de COMSOL MULTIPHYSICS® qui calcule les mêmes résultats. Cependant, pour compléter les autres objectifs du projet, il continuera à utiliser la méthode des différences finies sous Matlab® car elle offre plus de flexibilité dans la perspective de l'optimisation dynamique et du contrôle du processus PARE. Pour corroborer le modèle, des mesures expérimentales de l'épaisseur du film de ZnO ont été effectuées à l'aide d'un moniteur d'épaisseur sur un réacteur pilote conçu et mis en œuvre par le groupe de recherche sur les matériaux semi-conducteurs et l'énergie solaire (SM & SE) de l'Université nationale de Colombie. Après 90 minutes de temps de dépôt, les résultats simulés et les mesures expérimentales montrent un très bon accord : une différence d'environ 20 nm autour de l'épaisseur finale du film mince, montrant ainsi la grande précision du modèle développé. Le problème d'optimisation dynamique est transformé en un problème de programmation non linéaire (PNL) à l'aide du procédé CVP, c'est-à-dire que les variables de contrôle sont approximées à l'aide de fonctions constantes par morceaux. Il est ensuite implémenté dans Matlab et résolu à l’aide de fmincon optimizer. Deux problèmes d’optimisation différents sont proposés. Dans le premier problème, le débit de Zn (V_(w,Zn)) est considéré comme une variable de contrôle ou manipulée u(t) et dans le deuxième problème, le débit de Zn (V_(w,Zn)) et le débit d'oxygène 〖(V〗_(w,O_2 )) sont considérés comme des variables manipulées. Les contraintes de qualité sont établies en fonction des études expérimentales réalisées afin de déterminer les propriétés du produit final telles que la transmittance, la résistivité, l’épaisseur du film et les paramètres du réacteur. Deux problèmes d’optimisation sont résolus en prenant comme variable de contrôle le débit de Zn et le débit d’oxygène afin de minimiser le temps de traitement par lot, tandis que certaines propriétés souhaitées du film mince (transmittance, résistivité et épaisseur) satisfont aux contraintes définies. Le temps de traitement par lot a été réduit de 15% par rapport aux conditions de fonctionnement actuelles du groupe de recherche sur les matériaux semi-conducteurs et l’énergie solaire. Enfin, les profils optimaux du débit de Zn et du débit d'oxygène obtenus dans la partie optimisation ont été utilisés pour développer et simuler un algorithme de contrôle réglementaire à l'aide de la boîte à outils Simulink de Matlab®. Les résultats obtenus dans la simulation de l’algorithme de contrôle montrent que le contrôleur conçu a une performance appropriée en suivant les trajectoires d’écoulement optimales et le rapport idéal Oxygène / Zinc.
Fichier principal
Vignette du fichier
DDOC_T_2019_0348_RAMIREZ_BOTERO.pdf (2.49 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

tel-03051488 , version 1 (10-12-2020)

Identifiants

  • HAL Id : tel-03051488 , version 1

Citer

Asdrúbal Antonio Ramírez Botero. Modeling, simulation, dynamic optimization and control of a plasma assisted reactive evaporation process for preparation of Zinc Oxide (ZnO) thin films. Chemical and Process Engineering. Université de Lorraine; Universidad nacional de Colombia, 2019. English. ⟨NNT : 2019LORR0348⟩. ⟨tel-03051488⟩
120 Consultations
251 Téléchargements

Partager

Gmail Facebook X LinkedIn More