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R É S U M É

La fibronectine (FN) cellulaire, composante majeure de la matrice extracellulaire,
est organisée en réseaux fibrillaires de maniéré différente suivant les deux extra-
domaines EDB et EDA. Notre objectif a été le développement de biomarqueurs
quantitatifs pour caractériser l’organisation géométrique des quatre variants de
FN à partir d’images de microscopie confocale 2D, puis de comparer les tissus
sains et cancéreux. Premièrement, nous avons montré à travers deux pipelines de
classification fondés sur les curvelets et sur l’apprentissage profond, que les variants
peuvent être distingués avec une performance similaire à celle d’un annotateur
humain. Nous avons ensuite construit une représentation des fibres (détectées avec
des filtres Gabor) fondée sur des graphes. Les variantes ont été classés en utilisant
des attributs spécifiques aux graphes, prouvant que ceux-ci intègrent des informati-
ons pertinentes dans les images confocales. De plus, nous avons identifié différentes
techniques capables de différencier les graphes, afin de comparer les variants de
FN quantitativement et qualitativement. Une analyse des performances sur des
exemples simples a montré la capacité des méthodes fondées sur l’appariement de
graphes et le transport optimal, de comparer les graphes. Nous avons ensuite pro-
posé différentes méthodologies pour définir le graphe représentatif d’une certaine
classe. De plus, l’appariement de graphes nous a permis de calculer des cartes de
déformation des paramètres entre tissus sains et cancéreux. Ces cartes ont ensuite
été analysées dans un cadre statistique montrant si la variation du paramètre peut
être expliquée ou non par la variance au sein d’une même classe.

Mots clés: traitement d’images, apprentissage automatique, appariement de
graphes, cartes statistiques des parametres, matrice extracellulaire, fibronectine,
cancer.
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A B S T R A C T

A major constituent of the Extracellular Matrix is a large protein called the Fi-
bronectin (FN). Cellular FN is organized in fibrillar networks and can be assembled
differently in the presence of two Extra Domains, EDA and EDB. Our objective was
to develop numerical quantitative biomarkers to characterize the geometrical organi-
zation of the four FN variants (that differ by the inclusion/exclusion of EDA/EDB)
from 2D confocal microscopy images, and to compare sane and cancerous tissues.
First, we showed through two classification pipelines, based on curvelet features
and deep learning framework, that the FN variants can be distinguished with a
similar performance to that of a human annotator. We constructed a graph-based
representation of the fibers, which were detected using Gabor filters. Graph-specific
attributes were employed to classify the variants, proving that the graph represen-
tation embeds relevant information from the confocal images. Furthermore, we
identified various techniques capable to differentiate the graphs, allowing us to
compare the FN variants quantitatively and qualitatively. Performance analysis
using toy graphs showed that the methods, which are based on graph matching and
optimal transport, can meaningfully compare graphs. Using the graph-matching
framework, we proposed different methodologies for defining the prototype graph,
representative of a certain FN class. Additionally, the graph matching served as a
tool to compute parameter deformation maps between the variants. These defor-
mation maps were analyzed in a statistical framework showing whether or not the
variation of the parameters can be explained by the variance within the same class.

Keywords: image processing, machine learning, graph-matching, statistical para-
metric maps, extracellular matrix, fibronectin, cancer.
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I N T R O D U C T I O N

1.1 preface

Across biological systems, deciphering the molecular mechanisms of life remains
one of the main challenges to be faced by researchers. To unravel the function of
certain microscopic components, a thorough knowledge of their underlying com-
position is essential, along with the interactions within their micro-environment.
Nowadays, getting access to the molecular structure is facilitated by the develop-
ment of various imaging techniques. These are capable to provide an insight at a
molecular level, thus enabling a better understanding of key processes that occur
both in normal and disease states. Despite the ability of the dedicated imaging
instruments (microscopes, digital scanners, etc.) to generate vast amount of data at
high resolution, a full and comprehensive analysis is a laborious and difficult task,
even when performed by a trained specialist. Deciphering the role

of certain structures
within their
environment comes
down to
understanding their
structure.

The advances in digital image processing and modelling tools over the last years,
have proven their effectiveness in supplementing the human observer analysis,
through object detection, various structure segmentation and delineation, clas-
sification, statistical analysis, etc. The challenges, however, are numerous: from
identifying the most effective tools that can extract meaningful information for the
particular biological/biomedical context, designing specific approaches adapted to
a particular set of images, to dealing with a shortage of data due to experimental
constraints, etc.

This thesis, the result of a collaboration-based effort, attempts to bring forward
a set of methodologies inspired from the signal/image processing and computer
science fields. These approaches were adapted or developed specifically for the
analysis of a biological problem, in the hope to provide a numerical ground that
facilitates its analysis for potential clinical/therapeutical purposes.

1.2 general context

This thesis was funded through the SIGNALIFE Labex program, part of the French
governmental initiative "ANR - Investments for the Future", focused on the study of
biological systems, within an interactive network of regional Life Science Institutes,
in Nice, France.

Within this framework, the current project represents the product of a cooper-
ation between the Adhesion signaling and stromal reprogramming in the tumor
microenvironment team, from the Biology Institute (IBV) in Nice, and Morpheme
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(Computational morphometry and morphodynamics of cellular and supracellular
structures), a joint team between INRIA, CNRS and Université Côte d’Azur.

1.2.1 Brief introduction of biological aspects

The Extracellular Matrix (ECM) is a cell-produced micro-environment, responsible
for providing structural support for cells to undergo several functions related to
their survival, proliferation, motility, etc. Fibronectin (FN), a major constituent, is a
large protein which serves as a template upon which other components are attached
to from a functional ECM. It exists in two forms: plasma and cellular FN. Cellular
FN (cFN) is organized in fibrillar networks and can be assembled differently in the
presence or absence of two extra protein domains in the molecule, named EDB and
EDA.Cellular FN is a

major protein of the
extracellular matrix

that can take
multiple forms in the

presence of the
extradomains. The
role of these extra

domains has yet to
be full deciphered.

So far, a comparison among the FN variants (obtained through the inclusion/ex-
clusion of EDA/EDB) has been difficult to achieve. However, a better understanding
of the impact of EDA/EDB on the FN structure and functions, is essential to fully
describe the role of the FN in several processes linked to tissue repair, fibrosis and
tumor progression.

To generate the different FN forms, an experimental procedure was set up, leading
to the production of four recombinant FN variants (B-A, B+A-, B-A+, B+A+). The
resulting fibrillar structures were subsequently imaged with a confocal microscope
in a 2D acquisition.

Additionally, the variants were presented to cells in presence of a growth factor
that simulates an activated "tumor-like" state, resulting in the production of a
disease-like, fibrotic ECM. Understanding how the FN is assembled in a pathological
condition is critical for diagnostic and clinical applications.

1.2.2 Objective and motivations

The motivation behind this thesis, as introduced before, was provided by a biological
problem focused on the study of the different types of ECM assembly within the
tumor micro-environment (head and neck cancer). More specifically, the object
of interest is FN, a major constituent of the tumor ECM, and of its four different
forms that can be analyzed from a database of 2D confocal miscroscopy images.
Assessing how FN is assembled is crucial for understanding the structure-function
relationships operating in the tumor ECM and exploiting them for diagnostic and
therapeutic purposes.

Therefore, the focus of the thesis is the numerical characterization of the different
architectures of the FN networks, based on geometrical features of the fibrillar
structures (e.g. fiber length, thickness, orientation, etc.). The proposed set of com-
putational tools need to play a discriminating role to distinguish and significantly
compare the FN variants.

Throughout this thesis, we are mainly focused on the characterization of the four
"normal-state" forms, to determine whether the matrices are differently organized,
and, if so, identify the relevant attributes that help make the distinction. Addition-
ally, we were interested in the comparison of FN architecture between the normal
and pathological state conditions.
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The first step within this characterization has been the fiber detection with multi-
resolution techniques and subsequent classification of the extracted features (e.g.
curvelet features). After showing that the four variants can be discriminated by
a classification pipeline with a similar performance to that of a trained specialist,
we subsequently constructed a graph-based representation of the fibers previously
detected with a set of Gabor filters. Graph-specific attributes (geometrical and
topological) were computed, submitted to a PCA analysis and then employed for
the classification of the variants, proving that the graph representation embeds
the most relevant information provided by the confocal images. Additionally,
we performed a statistical analysis (based on Gaussian random fields as well
as empirical distributions) of the fiber parametric maps, in order to illustrate
quantitative and qualitative differences between the normal and tumoral state FN
networks.

The next part of the thesis was devoted to taking the first steps towards building
a numerical model of the FN variants, starting from the graph representations.
Therefore, we were interested in identifying the appropriate methods that can
provide a measure of similarity between the graphs, in order to obtain a quantitative
and qualitative comparison of the FN variants as well as a differentiation between
normal and tumour-like FN fibers.

Methods based on graph matching that provide a metric between graphs whilst
comparing their global structure, and alternatively, on optimal transport, were
selected for this purpose. In the hope of acquiring a better understanding of how
these two approaches can be adapted to compare the FN graph representations, we
proposed a preliminary analysis on randomly generated graphs, that showed the
capacity of two of those approaches to provide a meaningful distance between the
graphs.

Based on the metric provided by the chosen graph-matching framework, we
developed two different approaches for defining a prototype graph, representative
of a certain FN class. Additionally, since the graph matching serves as a registration
tool between the graphs, this enabled the computation of various fiber parameter
deformation maps between the variants (after matching). These deformation maps
were subsequently analyzed within the same statistical framework previously
employed for the analysis of parametric maps, showing here whether the variation
of the parameter (e.g. fiber length) can be explained by the variance within the
same class or not.

1.3 thesis organization

1.3.1 Main contributions

The main contributions of this thesis can be articulated as follows:

• A classification pipeline based on curvelet features invariant to rotation and
DAG-SVM for which results were compared to a trained specialist.

• Graph-based representation of the FN fibers constructed on top of Gabor
filters, using morphological-based operations that provide the fiber mor-
phological skeleton and its associated graph. Subsequently, an approach to
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reconnect the missing fibers in the skeleton to improve the representation of
the fiber graphs, was proposed.

• Local characterization of the fiber features based on their graph-based repre-
sentation (fiber length, proportion of node degree, median pore size, etc.) and
Gabor parameters (fiber width) with PCA analysis.

• Global characterization of the fiber features, e.g. fiber length trough a statistical
analysis framework based on Gaussian random fields and on the computation
of empirical distributions. Application for the comparison of parametric maps
for normal and tumoral-like FN.

• Preliminary analysis of graph matching performance between many-to-many
assignment framework and optimal transport approach (adapted to a graph
matching setting) on randomly generated graphs.

• Methodologies for the computation of the prototype graph using the many-to-
many assignment framework: the first approach is based on (edge) majority
voting after matching to a common reference graph and the second approach
uses a heuristic based on the longest chains of matched nodes.

• Statistical analysis (revisited) of the fiber deformation maps (after graph
matching) to study the variation of certain fiber parameters between normal
and tumoral-like conditions.

1.3.2 Manuscript organization

Part I introduces the main context and objectives of this thesis focused on the study
and numerical characterization of the FN variants. Main contributions as well as
publications are illustrated here. Part II (Chapter 2) focuses on the biological context
of the project, introducing the protocol for the confocal microscopy 2D image
acquisition. In Part III (Chapter 3) we present the proposed classification pipeline of
the FN confocal images, based on curvelet features and deep-learning framework.
Part IV describes the methodologies proposed to obtain a local characterization
(Chapter 5) of the fibers, starting from a graph-based representation built on top
of Gabor filters (Chapter 4). Additionally, it presents the statistical framework that
provides a global characterization of the fiber features (Chapter 6).

Part V introduces the set of approaches that were considered in order to take the
first steps toward the development of a numerical model of the FN variants, based
on graphs. Chapter 7 introduces the state of the art of the graph-matching methods
as well as the many-to-many assignment approach for graph comparison. Chapter 8
presents the state of the art of the discrete optimal transport framework, with a
focus on the Gromov-Wasserstein discrepancy for similarity matrices comparison.
Chapter 9 illustrates the proposed framework for a performance analysis between
the many-to-many assignment approach and the optimal transport for randomly
generated graphs. Chapter 10 describes two proposed methodologies for defining
the prototype for a set of graphs. Chapter 11 revisits the statistical framework
presented in (Chapter 6) for an analysis of the fiber deformation maps obtained
after matching of the corresponding graphs.
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B I O L O G I C A L B A C K G R O U N D

A cell is the basic structural, functional, and biological unit that contains all the
necessary information to build an organism, such as the human body. To correctly
build the organism, cells generate and sculpt a scaffold-like structure known as
the extracellular matrix (ECM), on which they grow, interact, and exert their var-
ious functions. A major component of this ECM is fibronectin (FN), a protein
indispensable for normal development, that regulates cell adhesion, motility, prolif-
eration, and differentiation, by forming fibrillar networks that provide lattices for
the assembly of a complex ECM.

This chapter begins with brief introduction to the ECM, before focusing on
different forms of FN networks, in health and disease. To study the different
networks of FN, tissue-like ECMs were generated in a cell biology laboratory, and a
series of confocal microscopy images was acquired, as described below. This image
dataset was used for characterization of the FN architecture with a longterm goal
of generating a prediction model of clinical significance. A representative set of
images showing different FN networks is shown at the end of this chapter.

2.1 extracellular matrix and components

The ECM is a complex and dynamic network of macromolecules that surrounds cells
in tissues. It represents a scaffold that provides structural and mechanical support,
and mediates diverse biological processes that are crucial for tissue formation
and function [MK13]. Over the years, it has been shown that the ECM plays
vital roles in the behaviour of the residing cells in terms of signaling, motility,
proliferation, survival, and function [Hyn09]. Furthermore, it has been shown that Extracellular matrix

is the scaffold that
provides the
mechanical support
and facilitates
cellular signalling,
motion and
proliferation.

ECM architecture undergoes significant remodelling in pathological conditions
(cancer, fibrosis, etc) that in turn influences the behaviour of surrounding cells.
Hence, there is an increased interest in the study of interactions between cells and
the ECM in development, tissue homeostasis and disease.

Structurally, the ECM is composed of various types of molecules (Figure 2.1),
namely proteins, carbohydrates, and collagens, as well as molecules with functional
roles rather than structural ones. The focus of this manuscript is the numerical
characterization of the networks of FN, a major glycoprotein (protein decorated
with carbohydrates) of the ECM, which serves as a template upon which collagen
and other components are attached and polymerized in order to form a mature and
functional ECM.
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Figure 2.1: Schematic representation of the extracellular matrix in relation to epithelial cells
and vascular endothelial cells. The basement membrane, a specialized ECM
rich in laminin, non-fibrillary collagen and proteoglycans, separates epithelial
cells and endothelial cells from underlying connective tissue. The connective
tissue ECM is rich in fibrillary collagen, fibronectin, other glycoproteins and
proteoglycans. Fibroblasts are the major producers of the interstitial ECM.

2.1.1 Fibronectin - Major Component of the ECM

Fibronectin is a glycoprotein found in the extracellular space, surrounding fibrob-
lasts, major ECM-producing cells of connective tissue (Figure 2.1). Two types of FN
exist:FN is a

macromolecule
involved in many
cellular processes,

including tissue
repair,

embryogenesis, blood
clotting, cell

migration, adhesion.

1. Plasma FN (pFN) is secreted by the liver, in a soluble form circulating through
the blood stream.

2. Cellular FN (cFN) is produced by fibroblasts. cFN is mainly found in the form
of an insoluble mesh around the cells secreting it, where it is assembled into
fibrils and fibers to form the ECM and its production is strictly regulated.

FN is assembled by fibroblasts 1 into a fibrillar network with a complex structure
and functions. It serves as a template for the deposition of other matrix components,
and possesses binding sites necessary for cell function regulation for cells and
growth factors that are, both in physiological and pathological conditions. Moreover,
the importance of FN in ECM generation has been underlined in several studies.
In an in vivo setting (e.g. mouse models), FN plays a vital role in embryonic
development [Dar+90], and it participates in early stages of wound healing [CM06].
In in vitro experimental approaches ("test-tube experiments"), removal of the FN
gene from fibroblasts, results in complete abolishment of ECM formation [Cse+10].

1 A fibroblast is a type of mammalian cell that is able to produce and assemble FN, as well as remodel
a pre-existing FN network. Fibroblasts in connective tissue support a wide range of functions: tissue
homeostasis, wound healing, pathological conditions.
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FN is a high-molecular-weight dimeric protein composed of two similar subunits
derived from a single gene. The linear structure of a FN subunit (Figure 2.2) is
characterized by a highly repetitive, modular structure composed of three distinct
domains termed FN type I, FN type II, and FN type III repeats. Both types of FN
(pFN and cFN) have a similar but not identical linear structure. The difference lies
in the presence in cFN of two FN type III repeats with similar but not identical
amino acid sequences, termed Extra Domain B (EDB) and Extra Domain A (EDA).

Figure 2.2: Linear structure of Fibronectin. Adapted from [OS+11].

The presence of either (or both) of these Extra Domains gives rise to different
forms of FN, collectively termed cFN. Four distinct Extra Domain-specific FN
variants exist, namely FN B-A-, FN B+A-, FN B-A+, and FN B+A+. Since the
Extra Domains are only present in cFN, and not pFN, the FN B-A- variant is the
equivalent of pFN, while FN B+A-, FN B-A+, and FN B+A+ are by definition cFN
variants. The inclusion of the

two alternatively
spliced extra regions
EDB/EDA gives rise
to different FN
variants bound to
have different
properties.

A role of these variants in development was suggested when it was shown
that the Extra Domains were present in embryonic tissues but absent in adult
organisms. Their importance was highlighted when experimental deletion of both
Extra Domains in a mouse model, resulted in early embryonic death [ELGH93].
Later it was demonstrated that FN containing EDB and EDA reappeared in the adult
organism in some pathophysiological situations such as wound healing and cancer
[Ven+10; al99]. Thus, the term oncofetal FN was used to describe these isoforms
reflecting the biological context in which they are found.

So far, the precise functional properties of EDB and EDA have yet to be fully
understood. Several lines of evidence have suggested roles for cFN in cell adhesion,
migration and differentiation [Cse+10]. Presence of the Extra Domains have recently
been found to enhance FN assembly and to differentially affect fiber organization by
cultured cells [Eft+]. cFN variants have also been reported to regulate inflammatory
responses, angiogenesis, and tumor progression [Ven+10]. Indeed, FN containing
EDB and/or EDA is highly upregulated in several tumor types, including head
and neck cancer, which is of particular interest in the context of my thesis project
[Gop+17].

ECM architecture is severely altered in the stroma of tumor tissue. The assembly
of tumor ECM is largely carried out by carcinoma-activated fibroblasts. Patterns
of fibrillar collagen organization called Tumor Associated Collagen Signatures (TACS
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1-3), have been defined to describe the structural changes in fiber arrangement
that accompany carcinoma progression. TACS 1 corresponds to curly/anisotropic
fibrils in normal tissue, whereas TACS 3 (advanced stage cancer) is characterized by
linearized and aligned collagen fibers oriented perpendicular to the tumor boundary.
In breast cancer, TACS 3 was found to be an independent prognostic indicator of
poor survival in breast cancer [Con+11]. As mentioned above, collagen type I
binds to FN and collagen type I deposition is primarily dependent on previously
assembled FN. Therefore, assessing how FN is assembled, which factors regulate its
assembly is crucial for understanding the structure-function relationships operating
in the tumor ECM and exploiting them for diagnostic and therapeutic purposes.Assessing how FN is

assembled is crucial
for understanding

the
structure-function

relationships
operating in the

tumor ECM and
exploiting them for

diagnostic and
therapeutic purposes.

2.1.2 Experimental procedure for FN matrix preparation

Since cFN is a major component of the ECM, an important goal is to understand
whether and how the ECM in development and disease, is differently organized
when the extra domains EDA/EDB are present in the molecule (together or sepa-
rately), compared to when they are absent. To achieve this, a set of biological tools
comprised of full-length human FN proteins was generated, containing either one,
both or none of the Extra Domains, resulting in four different FN variants.

With this toolset, we set out to elucidate how the presence of alternatively spliced
(EDA and EDB) domains affects the fibrillar assembly of FN at the surface of
assembly-competent fibroblasts. The steps (Figure 2.3) that were followed experi-
mentally, in the laboratory, to produce the variants are illustrated below:

1. FN-null fibroblasts were placed at a high density in tissue culture plates.

2. The next day, FN variants (FN B-A-, FN B+A+, FN B+A-, FN B-A+) were
added to the culture medium.

3. Cells were placed in an incubator for eight days in order for the matrix to be
generated.

4. In the end of the experiment, cells were removed from the tissue culture plates.
Matrices were fixed with chemicals and stained to allow the visualization of
FN variants with a confocal fluorescent microscope. Staining was performed
using an immune-based approach in which a fluorescent secondary antibody
is bound to a primary antibody that binds directly to FN fibrils.

5. Flouorescently-labeled FN in matrices were visualized using a confocal micro-
scope.

This experimental approach is designed for the study of FN networks in normal
tissue. However, the addition of tumor-/fibrosis-promoting growth factors to the cell
cultures during matrix generation leads to the assembly of an ECM that resembles
that observed in cancer or fibrotic tissue. To that end, we used a soluble growth
factor, namely Transforming Growth Factor β1 (TGF-β1) to induce a tumor-like
cellular state. In this way, we could examine not only the differences among FN
variant-specific matrices (normal-state), but also the differences between normal
and tumor-like matrices.
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(a) Addition of FN variants to mouse embryo fibroblasts in a cell culture setting

(b) Decellularization of the matrix with an appropi-
ate detergent

(c) 2D confocal microscopy acquisition of FN samples after FN immunofluorescent stain-
ing: The primary antibody recognizes and binds to the FN molecules. It is additionally
recognized by the second antibody, that in turn, is covalently bound to the fluorescent
molecule. This molecule is capable of emitting light of a certain colour when excited with
an appropriate wavelength.

Figure 2.3: Protocol for the production and 2D confocal image acquisition of FN variants

2.2 confocal image database

A microscope generates a magnified image of an object above the human eye
resolution ability [Mic]. There are several types of microscope technology based
on the information carrier (electron microscopy, photon or optical microscopy),
employed in various fields of science and medicine to study objects in great detail.
In cell biology, a frequently used microscopy technique is fluorescence microscopy,
the most popular optical technique in biology, that allows the visualization of a
specific molecule in cells by staining them with fluorescent dye. The fluorescence
combined with confocal microscopy, yields precise 3D imaging of the molecule of
interest in the sample.

In the following sections, we introduce the basic principles of microscopy and
subsequently define the confocal microscope which was used for the acquisition of
FN image samples.
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2.2.1 Fluorescence principle

Fluorescent staining combined with an appropriate imaging instrument, is widely
used in cell biology for a variety of experimental applications.

Traditional fluorescence microscopy relies on a physical process in which special
types of molecules called fluorophores, fluorochromes, or fluorescent dyes, when
illuminated with light (photons) of an appropriate wavelength, will absorb it and
emit light of a different wavelength (fluorescence). The basic principle is illustrated
in Figure 2.4. When fluorescent molecules are excited with photons, their energy
increases to a higher (less stable) level. Typically the molecule dissipates partially
the absorbed energy in thermal energy, and may subsequently lose the remaining
energy difference by emitting light of a longer wavelength. Finally, the emitted light
is captured by a detector and an image is created.

Figure 2.4: Fluorescence principle. Figure reproduced from [SW].

Except for cell expressing fluorescent proteins, the fluorophores are commonly
introduced artificially in the biological structures of interest. There are several
methods to accomplish this. Immunofluorescence [Imm] is such an approach that
relies on the characteristic of antibodies to bind specifically a protein of interest,
in order to add fluorescent dyes to the desired molecular target within the stained
specimen tissue.

2.2.2 Confocal microscopy

Confocal microscopy [Min] is nowadays, the most favourite technique in biology,
providing sharper images. Due to its ability of optical sectioning, it removes the
out of focus light, compared to widefield microscopy. In conventional widefield
microscopes, the entire specimen is flooded evenly with light from a light source
(Figure 2.5) acquiring simultaneously all pixels, while the confocal microscope scans
the sample pixel per pixel.

The modern confocal microscope consists of an optical microscope and an inte-
grated electronic system (similarly to any modern microscope), composed of one or
more electronic detectors, a computer (for image display, processing, output, and
storage), and a system of laser lines coupled to wavelength selection devices and a
beam scanning assembly.

Focusing the excitation light (using a laser to get enough power) on the sample
on the smallest volume (limited by optical resolution), the emitted light is then
collected through the pinhole which blocks the out of focus light (Figure 2.6). The
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Figure 2.5: For traditional widefield microscopes, all planes contribute to the image for-
mation, while in a confocal system, only the focal plane contributes to image
formation. Adapted from [Con].

setup then will scan all the sample using the excitation light, moved across the
specimen, by the oscillating mirrors.

As already mentioned, one of the most common techniques used by a confocal
microscope to produce images is by excitation of fluorescent dyes (fluorophores)
in the specimen. The secondary fluorescence emitted from the specimen passing
through the dichromatic mirror, is focused as a confocal point at the detector
pinhole aperture. There is a small part of the out-of-focus (above/below the focal
plane) fluorescence emission that reaches the pinhole aperture, hence it does not
contribute to the resulting image.

Figure 2.6: Basic setup of a confocal microscope. Light from the laser is scanned across the
specimen by the scanning mirrors. Optical sectioning occurs as the light passes
through a pinhole on its way to the detector. Adapted from [Con].
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For the present analysis, two dimensional (2D) confocal images (3128× 3128
pixels) of the four FN variant-specific matrices were acquired both for the normal
and tumor-like state. Acquisition was performed with a confocal microscope LSM
710 System by Zeiss, with a 10x/0.45 M27 objective lens. Fluorophore excitation
was done with an Argon laser at 488 nm. Pixel size was set to 0.27µm.

Due to computational constraints, the approaches developed within this manuscript
were applied to regions of 512× 512 pixels, as the information contained within
this area was shown to be representative for fiber characterization in all of the
four variants. Naturally, the pipelines can be applied to larger sized images to
incorporate more information for future analysis. We recall that a central question
of our work is to determine whether the confocal images can provide discriminant
features for the FN variants.

2.3 conclusions

Fibronectin is a major matrix protein that provides a template upon which other
matrix components attach to form the ECM. Expression of cFN harboring EDB
and/or EDA is upregulated in development and disease, yet the specific roles of
these domains are yet to be completely understood. cFN assembly by fibroblasts
was found to be differently assembled depending upon the presence of the extra
domains. Thus, an experimental procedure was designed to analyze these differ-
ences. To this end, a database of 2D confocal microscopy images was subsequently
generated for both normal and tumor-like conditions (Figure 2.7, 2.8, 2.9, 2.10).

Our overall objective is the numerical characterization of topological/geometrical
features of ECM landscapes of healthy and disease (fibrotic/tumoral) tissue. The
goal of my work was thus the development of algorithms that distinguish variant-
specific networks while extracting biologically relevant information to provide a
quantitative/qualitative analysis of the fibrillar FN parameters.
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Figure 2.7: FN confocal images - Normal ECM (top) and "Tumour-like" ECM (bottom) FN
B-A-. Image size : 3128× 3128 pixels. Pixel size is 0.27µm.
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Figure 2.8: FN confocal images - Normal ECM (top) and "Tumour-like" ECM (bottom) FN
B+A-. Image size : 3128× 3128 pixels. Pixel size is 0.27µm.
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Figure 2.9: FN confocal images - Normal ECM (top) and "Tumour-like" ECM (bottom) FN
B-A+. Image size : 3128× 3128 pixels. Pixel size is 0.27µm.
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Figure 2.10: FN confocal images - Normal ECM (top) and "Tumour-like" ECM (bottom) FN
B+A+. Image size : 3128× 3128 pixels. Pixel size is 0.27µm.
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C L A S S I F I C AT I O N O F T H E F N VA R I A N T S F R O M C O N F O C A L
I M A G E S

The mechanics and behaviour of the FN fiber networks is thought to have an impact
on the surrounding cell structure and dynamics. Through confocal microscopy, the
FN-specific fibers corresponding to the four different conformations, were acquired
at 0.27µm/pixel. A qualitative analysis of the confocal images allows a trained
specialist to detect differences in the fiber architecture for each variant.

An essential step in the methodology that provides the fiber numerical represen-
tation is the fiber detection. There are several image processing multi-resolution
analysis methods which are able to identify directional, anisotropic structures,
occurring at different resolutions. The extracted features, provided by the afore-
mentioned techniques, can subsequently be employed in discriminative models,
capable of measuring the extent of variability of certain parameters among and
within variants.

Across this chapter, we present a standard techniques that enables the detection of
anisotropic, oriented structures, namely discrete curvelets. We show the advantages
and inconvenients of using curvelets for feature extraction in a classification and
modelling context. Moreover, we present a classification pipeline based on curvelets
and SVM-type classifier to prove that curvelet features contain relevant information
to differentiate the FN variants (in normal state). Finally, we classify the confocal
images using a deep-learning approach (with a pretrained model network), to verify
whether the variants can be distinguished based on the information contained in
the confocal images.

3.1 fiber detection using discrete curvelets

Generally, the feature extraction is performed as a transformation of the images
into a characteristic space defined, for instance, (but not limited to) by "dictionary"
elements (atoms) with certain attributes. Within this space, the detected structures
will thus be characterized according to the specific attributes. Among the various
techniques, multi-resolution analysis provides the framework for various geomet-
rical feature detection in spatial and frequency domain. For the work presented
in this manuscript, we selected two of these methods that we have applied for
FN fiber detection and enhancement, the discrete curvelets [Can+05] and Gabor
filters [PK97]. In this chapter, we focus mainly on the first method, namely, discrete
curvelets.

25
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3.1.1 Fast Discrete Curvelet transform

In the field of image processing, multiscale/multiresolution tools have been exten-
sively used for anisotropic feature extraction (points, lines, edges) and detection,
compression etc.

Among existing methods, the wavelets form a basis (dictionary) of isotropic
elements occurring at all scales and locations but represented by a fixed number
of directional elements [FS09]. Wavelets can mostly detect features such as point
singularities, but do not constitute a well-suited techniques to represent curvilinear
features (e.g. such as those that describe the FN fibers).

The curvelet transform is a family of frames that is constructed to better identify
the anisotropy and curvilinear characteristic of certain structures of interest that
occur at various orientations. Among the different curvelet theoretical frameworks,
the second generation of curvelets is a multiscale pyramid allowing the repre-
sentation of a certain number of possible directions at multiple scales [FS09]. For
the analysis of the confocal images of FN fibers, we have chosen to work with
the implementation of the fast discrete curvelet transform found in the Curvelet
Toolbox [Can+05].

The output of the linear transform is a collection of coefficients cj,l,k evaluated
in Fourier domain (real-valued), indexed by discrete-valued scale j, orientation
l and location k. These coefficients can, in turn, be used to perform an analysis
of anisotropic objects (e.g. different parameter statistics, classification, etc.). An
important aspect resulting from the construction of the curvelets, is that a finer scale
is associated with a higher number of possible orientations. This property allows for
highly anisotropic elements to be represented at a fine scale. Another specificity is
given by the scaling property: at scale 2−j the length and the width of the envelope
of a specific curvelet obeys a consistent scaling (the length is approximately 2−j/2

and the width 2−j).

Figure 3.1: Frequency tiling of discrete curvelets of a 256× 256 image (grid): frequency
representation of the curvelet wedges (sectors) corresponding to different orien-
tations organized at different scales starting from the lowest scales (in the center),
up to (N− 3)-th scale, where N = log2(256). In this example, the wedges drawn
in red colour belong to the 4th scale, with 32 possible orientations.
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Formally, a curvelet can be represented as the product of a radial dyadic frequen-
tial window (bandpass filter) and an angular window in the frequency domain,
in a polar coordinate system. This representation provides the means to obtain a
directional analysis at different scales.

In practice, the window functions are built on trapezoids (as an adaptation of
the polar wedges to Cartesian arrays), so the frequency tiling is based on shears
(Figure 3.1). There are multiple options for the construction of Cartesian arrays,
instead of polar tiling, in the frequency plane. We chose the wrapping method
implemented in Curvelet Toolbox [Can+05] for its simplicity in the handling of
the discretization grid and for the fast computation algorithm of an otherwise
redundant transformation.

If we denote by φj,0,0 the basic "mother curvelet" at scale 2−j, j > 0 the family of
curvelets constructed via wrapping method ([Can+05]) at arbitrary angles (slopes:
tan θj,l = l · 2−bj/2c, l = −2bj/2c + 1, · · · 2bj/2c − 1), is obtained by shearing and
translation of this basic element on a discrete Cartesian grid, b ≈ (k12

−j,k22b−j/2c),
where k = (k1,k2) ∈ Z2 [Can+05]:

φj,l,k(x) = 2
3j/4φj,0,0(S

T
θl
(x− b)) (3.1)

where Sθ =

(
1 0

− tan(θ) 1

)
is the shear matrix. The family of curvelets is completed

by symmetry and rotation with ±π/2; the coarse curvelet elements for low frequen-
cies are non-directional. For more details regarding the discrete implementation
methodology, the reader is referred to [MP11; Can+05].

For the modelling perspective, an advantage of the discrete curvelet transform is
given by the fact that it implements a tight frame 1, meaning that every function
f ∈ L2(R2) can be represented [Can+05] as shown in Equation 3.2. An important
property of being a tight frame is that it can recover f from the coefficients cj,l,k the
L2 sense, (perfect reconstruction property of a frame).

f =
∑
j,l,k

cj,l,kφj,l,k (3.2)

where φj,l,k is the discrete curvelet waveform and the curvelet coefficients are
cj,l,k = 〈f,φj,l,k〉. The Parseval identity then holds:∑

j,l,k

cj,l,k
2 = ||f||2L2(R2), ∀f ∈ L2(R2) (3.3)

In Figure 3.1, the frequency representation of the decomposition of a 256× 256
image, is illustrated as a tiling of wedges (trapezoids) - curvelet support in the
frequency plane. The geometric pyramid structure is divided in dyadic scales, from
coarsest centre of the representation (with non-directional elements) to the finest
scale (higher frequencies), each with a different number of orientations. Usually
for this type of representation, the angular resolution commonly doubles when

1 A tight frame is different to an orthogonal basis in that it does not need to be linearly independent,
(such as the orthogonal basis). This means that a frame has some redundancy, the positive impact
being an increased selectivity in orientation, among others [Fuj19].
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Figure 3.2: Curvelets in spatial (left side) and frequency domain (corresponding right side)
at various scales and orientations: top-left, 3 curvelets at scale 2, top-right, 3
curvelets at scale 3, bottom-centre, 3 curvelets at scale 4.

passing at a finer scale. Figure 3.2 displays several examples of curvelets in spatial-
frequency domain at different scales with various orientations, corresponding to
the decomposition of a 256× 256 image.

3.1.2 Fiber detection using curvelets for classification

Each image of size N×N is decomposed into (log2(N) − 3) dyadic scales and the
number of angular sectors for each scale differs according to the following example:
for N = 512, the curvelet transform returns 6 scales with 1, 16, 32, 32, 64, 64 possible
orientations from coarse to fine scales respectively.

Figure 3.3 illustrates the curvelet coefficients amplitude matrices for 3 levels of
decomposition corresponding to coarsest scale 1, 2, and finest scale 6. The multiple
matrices at each level belong to different orientations. A certain fiber will be
reconstituted by a linear combination of curvelet coefficients at different scales and
orientations.

Related studies consider different statistical properties of the curvelet coefficients
for texture characterization, such as energy [SDL08], entropy or curvelet subband
distribution [GR11; IZ09]. As our main interest is to perform geometrical modeling
of the fibers rather than a pure assessment of their discriminative power, instead of
computing average statistical features to facilitate the classification, we have worked
with the coefficients themselves.

However, we chose to reduce the vast number of coefficients taken into account
for the classification, and thus keep the most significant ones. To do so, we selected
the largest curvelet coefficients that contain a suitable percentage of the total energy.
A percentage of 85% seems to be a good compromise between the speed of the
training and classification algorithm and the fidelity of image reconstruction, as
illustrated in Figure 3.4. Finally, the coefficients that belong to the finest scale,
susceptible of capturing the eventual acquisition noise present in the images, were
not taken into account.
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Figure 3.3: Curvelet scale decomposition of a sample image of 512× 512 pixels, at 3 scales,
from coarse to fine: 1, 2, 6.

(a) Input sample (b) Reconstructed Sample

Figure 3.4: Reconstruction of a sample image after keeping 85% of total curvelet coefficients
energy.

3.1.2.1 Invariance to rotation of curvelet coefficients

The curvelets that are described above are not invariant to rotation. In a discrimi-
nating context, this aspect can be quite problematic, as it can impact the accuracy
of the classification. What is important in the FN images is the presence of multiple
dominant orientations, relative to each other. During the acquisition process, the
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samples of the ECM may also be differently oriented. Hence we needed to ensure
that the images follow the same main privileged direction.

To do so, we estimated the dominant orientation of the fibers and rotated every
image according to its own dominant orientation. Since this information is hidden
in the energy distribution over the subbands, we opted for an estimation of the
dominant orientation using the gradient vector of the images.

For a function f ∈ R2, we consider its gradient vector ∇f = (fx, fy) with mag-

nitude defined by |∇f| = 2

√
f2x + f

2
y and orientation θ = arctan(fyfx ). We can now

estimate the dominant orientation Θ as:

Θ =

∑
i

|∇fi|2 θi∑
i

|∇fi|2
(3.4)

where |∇fi| is the magnitude and θi is the orientation of the image gradient at pixel
i.

Subsequently, the images were aligned to the same direction, after performing
a rotation by interpolation with the corresponding Θ. In order to validate the
assumption that curvelets can provide a suitable model for the characterization
of FN fibers, we first needed to show their ability to describe the fiber geometry
in terms of physical characteristics (e.g. scale, orientation, location). In addition to
that, we were interested in determining the discriminating capacity of the curvelet
features (i.e. ability to discriminate among the different FN variants). Therefore
a bag of features model [Csu+], adapted to our data, was developed in order to
analyze the classification results of the four FN variants, as detailed below.

3.2 fn fiber classification using curvelets

3.2.1 Bag-of-words and image signatures

The curvelet features that describe the fibers are the collection of coefficients cj,l,a
with scale j, orientation l and magnitude a. We performed a K-means clustering
of the curvelet coefficients after the curvelet decomposition of the image database,
referred to as the training dataset. In order to determine an appropriate number of
clusters, we used a heuristic elbow method [KM13] and found K = 400 number of
total clusters.

The normalized feature histogram was computed as the rate of the number of the
curvelet coefficients of an image, assigned to each cluster, as shown in Figure 3.5.
Also referred as image signature, it is stored as a K-dimension vector of real-positive
values. The image signature constitutes the input data for the chosen classifier.

The classification of the feature histograms is performed using a DAG-SVM
classifier, using LibSVM [CL01], as described below.
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Figure 3.5: Bag of features pipeline (from left to right): K-means clustering in curvelet
feature space, image signature (feature histogram) and classification of the
image signatures.

3.2.2 Classification using a DAG-SVM framework

Generally, a classification problem starts by separating the data into training and
test sets with class labels and several features (observations). The objective is to
predict the test class labels given the test data features.

Support vector machine (SVM) [Vap95], originally proposed for binary classifica-
tion, is a machine learning methodology, that seeks the optimal hyper-plane to best
separate the two classes from each other with the widest margin (Figure 3.6). It is
formulated as an optimization problem as illustrated below.

Given a training set of instance-label pairs (xi,yi), i = 1, · · · , l where xi ∈ Rn, (a
data vector), and y ∈ {1,−1}, (class label of xi), the support vector machines (SVM)
require the solution of the following optimization problem [Vap95; HL02] :

min(
1

2
wTw+C

l∑
i=1

ξi) s.t.

yi(w
Tφ(xi) + b) > 1− ξ, ξi > 0, i = 1, · · · l.

(3.5)

• xi, the training vectors, are mapped into a higher dimensional space by the
function φ.

• w (weights vector) is a normal vector to the hyper-plane wTx+ b = 0.

• K(xi, xj) = φ(xi)
Tφ(xj) is the kernel function. We consider here the radial

basis function kernel K(xi, xj) = exp(−γ||xi − xj||2), γ > 0.

• C > 0 is the penalty parameter of the error term that determines the trade-off
between the maximization of the margin and the minimization of the error
cost.

• ξi is called a slack variable, representing the distance from xi to the margin
plane wTx+ b = yi.

The parameters for the SVM model described above, are C and γ, which have
to be carefully selected for every given problem. In [HL02], the authors suggest
a grid-search of both parameters as follows: various pairs of (C, γ) from a given
range of values, are considered at a time. For each classifier defined by the pair
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Figure 3.6: Graphical representation of binary SVM: separation of two classes (features
(observations) represented by blue (one class) and red (second class). Figure
reproduced from [Bin].

of parameters, we perform a cross-validation during the training (learning) phase.
The pair of values for which the cross-validation accuracy is the highest, is kept as
the chosen classifier that will subsequently be used for the prediction phase (i.e.
prediction of the class labels for the test samples).

The problem of classifying the FN networks involves comparing more than two
classes, therefore we were interested in the possible ways of adapting the SVM
framework to a multi-classification context. Directed Acyclic Graph Support Vector
Machines (DAG-SVM) proposed in [PCST00] is one of the solutions that suggests
using several binary SVMs to classify multiple classes. It is known and proven a
superior algorithm comparing to other multiclass SVM techniques with respect to
the training, evaluation time, generalization capacity [PCST00].

Figure 3.7: DAG-SVM Decision scheme for finding the best class out of four classes. The
equivalent list state for each node is shown next to that node. Figure reproduced
from [PCST00].



3.2 fn fiber classification using curvelets 33

Typically, during the test phase, for a N-class problem, the DAG-SVM uses a
directed acyclic graph (DAG)2 with N(N − 1)/2 nodes which represent binary
classifiers, one for each pair of classes (Figure 3.7). The DAG is obtained by training
each i(vs)j-node only on the subset of training samples labeled by i or j [PCST00]. As
for the decision step, starting at the root node, the binary decision function evaluates
whether the next node to visit is at left or right. Finally, after N− 1 decision nodes,
the leaf node indicates the output class. Thus, an important advantage with respect
to other approaches (e.g. one-against-one method) is given by a smaller testing
time.

3.2.3 Application to FN images classification with DAG-SVM, using a curvelet based
representation

For the classification of the four FN variants, we deployed a database of 280 images
of 3128× 3128 pixels at 0.27µm/pixel, acquired with a Zeiss 710 confocal system.
Each class contains 70 images corresponding to the four FN variants. For speed
convenience, we selected a representative region of 512× 512 pixels from each
image and used those regions for feature extraction and classification. We decided
to use a non-exhaustive k-fold cross validation technique with k = 4 to evaluate the
classification performance and its generalization capabilities.

The classification results were compared to those of a trained specialist, in terms
of general classification accuracy, as well as confusion matrices.

Table 3.1 indicates the values of the confusion matrix for the automatic classi-
fication, while Table 3.2 shows the results of the specialist. The confusion matrix
indicates that the classifier is highly capable of distinguishing the FN images be-
longing to variant B-A- from the rest of the others. Additionally, the classifier
is presented with a greater challenge when it comes to distinguishing among
classes B+A- and B+A+. A similar pattern was noted in the confusion matrix that
corresponds to the classification performed by the specialist.

XXXXXXXXXXXXActual
Predicted

FN B-A- FN B+A- FN B-A+ FN B+A+

FN B-A- 90 0 0 10

FN B+A- 4.3 45.7 25.7 24.3

FN B-A+ 2.9 25.7 64.3 7.1

FN B+A+ 15.7 8.6 0 75.7

Table 3.1: Confusion matrix in percentage form of the DAG-SVM classification of FN
variants, using curvelets

The fiber geometry associated to the B-A- FN variant, characterized by short fila-
ments without a specific pattern, seems to be represented by a more discriminative
geometric model. On the other hand, the topological properties of the fibers corre-
sponding to FN A+, and FN B+ (i.e. fiber length and the presence of an apparent
directionality) are quite similar, thus increasing the difficulty in differentiating be-
tween them. FN variant that incorporate the B+ domain is the least distinguishable,

2 A DAG is a graph whose edges have an orientation and no cycles.
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XXXXXXXXXXXXActual
Predicted

FN B-A- FN B+A- FN B-A+ FN B+A+

FN B-A- 65.7 5.7 0 28.6

FN B+A- 0 48.6 34.3 17.1

FN B-A+ 0 18.5 77.2 4.3

FN B+A+ 5.7 37.2 2.9 54.2

Table 3.2: Confusion matrix in percentage form - Trained specialist

both in automatic and manual classification. Regarding the general accuracy of
classification, the classification scheme that is proposed in this chapter (68.92%)
outperforms the results obtained by a trained specialist (61.42%).

discussion : From a modelling perspective, the framework defined by the
discrete curvelets has the benefit of providing a mathematical setting which is
favourable to feature extraction and reconstruction from the coefficients. Anisotropic
features at different resolutions that exhibit different orientations can be successfully
detected through the curvelet transform. Moreover, the resulting curvelet coefficients
can be used directly or through statistical measures for classification, compression,
etc.

However, due to the specificity of the discrete frequency tiling methodology, the
wedges (sectors) in neighborhood locations have often different sizes, i.e. different
orientations at the same scale are captured by different number of curvelets. On
one hand, this fact impedes a proper direct manipulation of the coefficients in
the frequency domain (i.e shifting the curvelet coefficients from one wedge to
another so that rotation is achieved in spatial domain is difficult here because the
wedges have different dimension). On the other hand, curvelet representation in
the frequency domain of similarly-sized structures with different orientations may
be represented by different amount of energy per scale, although the difference
should be only illustrated by the wedge number.

To illustrate this difficulty, let us analyse the following example: Figure 3.8
shows two line segments of 1 pixel width and different orientations. A vertical
and diagonal orientation can be represented by the curvelets occurring at two
neighboring sectors for each scale. The curvelet coefficients wedge plot at each
scale in Figure 3.9 show that for larger scales, i.e. 2,3 and 4, the amount of energy
corresponding to the vertical line is higher than the diagonal line’s one. We expected
the total energies at different scales to only differ by their location (corresponding
to a different wedge, i.e. different orientation).
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Figure 3.8: Vertical and diagonal line of 1 pixel width
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Figure 3.9: Curvelet coefficients energy distribution over the wedges (sectors) for each
scale numbered in an ascending order starting from the center (2,3,4,5). The
numbering of the wedges start from the upper left corner. Left side illustrations
correspond to the vertical line, right-side illustrations correspond to the diagonal
line. Only half of the sectors for each scale are illustrated here, since the energy
levels are symmetric for the other second half.

These aspects have encouraged us to consider an alternative technique of the
multiresolution approaches family, that has the potential of detecting "fiber atoms"
of different dimensions and orientations, providing a simpler characterization.
Gabor filters and their use for the FN fiber modelling is presented in the next
section Section 4.1.

3.2.4 Classification of the FN variants using Convolutional Neural Nets

The set of 280 gray-scale images (representative regions of 512× 512 pixels), were
additionally classified using a Convolutional Neural Net (CNN) [Cnn] architecture,
typically developed to perform classification, segmentation, object recognition tasks
by learning different features and pattern from images, text, sound, etc. In order
to classify the FN images database using the MATLAB Deep Learning Toolbox,
we have downloaded a pretrained model (i.e. previously trained on more than 1
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million images to classify them into 1000 object categories), provided by GoogLeNet
[Sze+14], a 22 layers deep network developed by Google.

A set of 196 images was used for the training of the algorithm, and the remaining
84 for testing it. The training image set was presented to the algorithm 25 times
(epochs), in order to improve classification accuracy.

The results (Table 3.3) show that the information in the FN images is relevant
enough in a CNN-based classification to distinguish FN variants better than curvelet-
based features.

XXXXXXXXXXXXActual
Predicted

FN B-A- FN B+A- FB B-A+ FN B+A+

FN B-A- 85.7 0 0 14.3

FN B+A- 0 80.9 14.3 4.8

FN B-A+ 0 9.5 90.5 0

FN B+A+ 9.5 14.3 0 76.2

Table 3.3: Confusion matrix in percentage form of the CNN classification of FN variant
confocal images. General mean accuracy of classification is 83.3%.

3.3 conclusions

FN network fibers exhibit local geometric properties that can be captured by curvelet
features. We can reconstruct the fibers as a linear combination of curvelet coefficients
at multiple scales and orientations. In addition, we are able to classify among the
four variants of interest (in normal state), with a similar performance to that of a
trained specialist.

FN-specific variant architecture is distinguishable in the confocal images, as
highlighted by the results of the CNN-based classification. As one of the central
questions throughout this work, was to determine whether the information con-
tained in the confocal images is sufficient to distinguish among the four classes,
the results of this type of classification enforced the idea that the FN variants are
organized differently upon inclusion/exclusion of EDA/EDB. However, since the
CNN-based architecture infers the features directly from the images, it is rather
difficult to determine which fiber characteristics are truly discriminant. This is the
reason why we adopted multiscale resolution techniques for feature extraction, such
as discrete curvelets and Gabor filters, as we are about to see in the next chapter.
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C O N S T R U C T I O N O F T H E G R A P H - B A S E D R E P R E S E N TAT I O N
O F F N N E T W O R K S

In this chapter, we illustrate an alternative (standard) technique for detection of
anisotropic, oriented structures, namely Gabor filters. We show that this choice can be
more appropriate for a future modelling context of fiber features, than the discrete
curvelets. We subsequently proceed to describe the pipeline that we have designed
to extract a graph-based description of the fibers from the confocal images. This
representation allows us to compute different statistics of FN fibrilar features and
thus, compare and distinguish the FN-specific variants architecture. Properties that
describe the geometry of the fibers, such as the general fiber orientation, thickness,
anisotropy, fiber/pore density are bound to provide a meaningful characterization
of the tissues.

4.1 gabor filters

Gabor functions can
be used to
numerically simulate
the ’simple cells’ of
the primary visual
cortex (mammalian
brain), as frequency
and orientation
representations of
Gabor filters are
similar to those of
the human visual
system [Pet95].
Besides, filter banks
are among the
biologically inspired
recognition systems
[Ham13].

Within the multi resolution methods, Gabor filters [Gab47] represent an alternative
technique to capture various structures, at different frequencies and orientations.
It belongs to the linear local filters category and has been extensively used for
edge detection [PK97], texture discrimination [Tur86], facial expression recognition
[SGP09], optical character recognition, etc.

In the spatial domain, a 2D Gabor filter is represented by an elliptic Gaussian
kernel function modulated by a sinusoidal function, see Figure 4.1. In order to detect
objects in an image that appear at various frequencies characterized by preferred
directionalities, one can typically proceed by constructing a set (bank) of filters
with the appropriate characteristics (given by the shape of the Gaussian kernel or
by the frequency of the sinusoidal wave). Subsequently, the image is filtered with
this set of Gabor kernels, the result of which can provide a feature database that
can be further used for analysis, classification, or segmentation [KPG02]. Fibrillar
structures were detected and enhanced with Gabor filters, such as defined in [Pet95;
Dau85], commonly employed in image processing for the detection of structures
with different frequencies, and certain directionalities.

4.1.1 Gabor kernels definition

The exponential term provides the shape of a bivariate Gaussian kernel (Figure 4.3),
and the cosine function (carrier) describes its oscillations in space, while v =

(x,y)T is the 2D coordinate vector, indicating pixel localization in a bi-dimensional
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Figure 4.1: Gabor filter 3D view: Top-left: Gaussian kernel, top-right: Cosine wave func-
tion, bottom-middle: Gabor kernel function obtained by the modulation of the
Gaussian kernel on the cosine carrier.

Cartesian coordinate system. One Gabor kernel gk is characterized by the following
formulation 1:The family of 2D

Gabor functions is
shown to achieve the

theoretical limit of
joint uncertainty of
spatial location and
frequency [Dau85].

gk = exp(−
1

2
vtΣ−1

θi
v) cos (2π

xθi
λj

+φ) (4.1)

where xθi = x cos θi + y sin θi and θi is the rotation angle (with respect to the
horizontal axis -x) of the Gaussian envelope.

Let Σ be the covariance matrix of the bivariate (anisotropic) Gaussian kernel.
σx and σy represent the standard deviations (in pixels) of the Gaussian function
along the two axes (x,y). Then Σ is a symmetric and positive definite matrix (that
consequently admits an inverse Σ−1). A counterclockwise rotation (Figure 4.2) in
the 2D Cartesian system with Rθ is applied to Σ−1. It follows that Σ−1

θi
, the inverse

of the covariance matrix of the bivariate Gaussian function, rotated with θi, has the
form in Equation 4.2.

Σ =

(
σ2x 0

0 σ2y

)
, Rθ =

(
cos θ − sin θ

sin θ cos θ

)
, Σ−1

θi
= RθiΣ

−1Rtθi (4.2)

Other specific parameters of the Gabor kernel are λj, the wavelength (in pixels)
of the cosine term and φ, which represents the phase of the (cosine) carrier.

1 Some works depict an alternative formulation of the Gabor kernel, which is based on a complex
sinusoidal wave that modulates the Gaussian function. The formulation in Equation 4.1 relies only on
the real part of this complex sinusoidal wave (shown to be an appropriate edge detector) to capture
the fibers.
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Figure 4.2: Counterclockwise rotation with an angle θi around the origin of a 2D Cartesian
plane of an elliptic Gaussian kernel

Figure 4.3: Gaussian kernels: variation of θi from 0 to 9π/10. σx = 5 pixels and σy = 3

pixels

Figure 4.4: Gabor kernels: column-wise: variation of λj from 6 to 8 pixels, row-wise: varia-
tion of θi from 0 to 9π/10, with a step-size of π/10. σx = 5 pixels and σy = 3

pixels.

4.1.2 Filtering of the FN confocal images using Gabor kernels

Using Gabor filters for feature detection is commonly performed by applying a
set of predefined filters to the input image: the filtered output provides the spatial
localization of the detected structures corresponding to the filter response. For
a given kernel having a certain shape in the spatial domain (see Figure 4.4), the
pixel intensity of the output is subsequently higher in the regions where there is a
positive correlation between the input image and the given kernel, in other words
where detection of the specific structure occurs. This practical aspect is formalized
as follows.
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If we consider I(x,y) the pixel intensity of 2D grayscale image defined on a
discrete grid, then the convolution of I with a Gabor filter whose kernel, denoted
gk, has the form of the Equation 4.1:

Ick(x,y) = (I ∗ gk)(x,y) (4.3)

In order to capture the various geometrical properties of the FN fibers using Gabor
filters, we have constructed a set of Gabor kernels gk, k ∈ {1, 2, · · · , 60} defined by
the following parameters:

• Fiber orientation is represented by θi, computed as θi = iπ
20 , where i =

{0, 1, 2, . . . , 19}.

• Fiber thickness is represented by λj, j = {1, 2, 3} that corresponds to the
wavelength (in pixels) of the cosine term, the values of which are equal to
λj/2 and vary between 3 and 5 pixels. The thinnest fibers are detected when
λj = 6 pixels, medium thickness fibers correspond to λj = 8 pixels, while the
thickest are characterized by λj = 10 pixels.

• For accurate localization of fibers the phase of the cosine function, φ, is set to
0.

• The spatial support of the kernels is given by σx = 5 pixels and σy = 3 pixels,
indicating an anisotropic filter that is appropiate for fiber detection.

At one specific location indicated by (x,y) within the maximum Gabor filtered
image MG, we retain the Gabor kernel (and its parameters) that returns the highest
coefficient among the predefined kernels set (Figure 4.5):

MG(x,y) = maxk(Ick(x,y)) (4.4)

Figure 4.5: Maximum Gabor filtered Image: FN B-A+ Sample of 512× 512 pixels (left) and
the representation of the detected fibers using Gabor kernels (right).

4.2 graph representation of the fn fibers- methodology

Since the pixel intensity of a detected fiber ofMG corresponds to the best-responding
Gabor filter, we are thus able to retain its specific parameters which can directly
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be linked to physical attributes, such as fiber thickness and local fiber orientation.
Gabor filters can provide a good descriptive characterization of the fiber geometry,
however, we are interested to extend this characterization to allow the inclusion of
supplementary parameter statistics e.g. fiber length, degree of fiber cross-links, etc,
into the general model.

The following subsections illustrate the methodology for deriving the FN graphs
starting from the images of detected fibers using Gabor filters.

4.2.1 Computation of the graphs associated to FN morphological skeletons

Fiber detection and enhancement with Gabor filters constitutes the first step of the
graph-based model that we intent to construct for fiber characterization. The images
of previous extracted fibers represent the "canvas" for the subsequent series of image
morphological transformations meant to simplify the fiber delineation and allow
the conversion to graphs. We managed to compute the morphological skeleton
of the FN detected fibers, i.e the medial axis, a complete shape descriptor, using
different morphological operations. Subsequently, the graph-based description of
fiber skeletons was obtained using a toolbox originally dedicated for generating
the network graph of a 3D skeleton voxel that we have adapted to the 2D setting
[Kol+17a].

First, we start by binarizing (using hysteresis thresholding) the gray-scale images
containing the FN detected fibers, previously obtained, to prepare the skeletoniza-
tion. Converting the fiber structure into a skeleton is useful to reduce the amount of
data to a representation that encapsulates the shape and preserves the connectivity
of the original region. The morphological skeleton is also defined as the loci of
centers of bi-tangent circles that fit entirely within the foreground region being
considered (see an example in Figure 4.6). Intuitive explanation

of the skeletonization
algorithm inspired
from [Ske]: consider
that the foreground
regions in the input
binary image are
made of some
uniform
slow-burning
material. Light fires
simultaneously at all
points along the
boundary of this
region towards the
interior. At the
points where the fire
traveling from two
different boundaries
meets itself, the fire
will extinguish itself
forming the skeleton.

Figure 4.6: Skeleton (black) of a (white) rectangle defined in terms of bi-tangent circles.
Figure reproduced from [Ske].

We subsequently chose to compute the morphological skeleton of the fibers using
the toolbox [Kol+17a] based on a homotopic (i.e. one object can be continuously
deformed into the other) thinning algorithm [Ta-94]. The underlying idea is to thin
the objects into skeletons whose thickness is one pixel in at least one of the two
dimensions. The thinning algorithm iteratively removes the border points of an
object, while preserving the end points of the line segments until no more thinning
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is possible, in other words, satisfying the following topological and geometrical
constraints:

• topological: preservation of the number of connected objects in the object
(fibers) (by respecting Euler’s constraint from digital topology that connects
the number of objects, cavities and holes in a consistent manner [Ta-94].)

• geometrical: ensure the desired width and location of the skeleton.

Finally, the network graph associated to the skeleton representation of the fibers,
(example illustrated in Figure 4.7) is the collection of nodes (fiber ends or fiber
crosslinks (such as they are perceived in the 2D representation 2 of various degrees
indicated by the number of adjacent fibers) that unite the fiber edges. This structure
has the advantage of providing the means to compute different parameters charac-
teristic of the (fiber) graph topology and geometry, such as the number of fibers,
the fiber lengths (in terms of number of (non-zero) pixels (from the corresponding
skeleton) between two given nodes), the degree of network connectivity based on
the different proportions of node degree, etc. Additionally, Gabor-based features
can be combined with the graph data to describe fiber density (in terms of local
fiber thickness coupled with fiber length), predominant fiber orientation, etc. The
analysis of the pore shape/size can be made starting from the fiber skeleton.

4.2.2 Post-improvement methodology for the FN graph-based representation

The skeletonization tool does not always manage to capture the fibers as desired
and thus, a post-improvement step was necessary to capture the fibers with a
higher degree of fidelity. The graph-based representation facilitates the set up of the
proposed method to reconstruct the missing fibers due to previous morphological
operations and noise in the data. We intend to reconnect the fibers within a prede-
fined area around the fiber extremities, i.e., degree 1 nodes, denoted nk, assuming
that there are more chances for a fiber to be reconnected in a surrounding area,
along the direction of the local orientation of nk.
In short, for an extreme node nk, predefined radius R and cone sector δc ∈ (0,π/2),
we search for the candidate pixels that can be reconnected with nk. Below we
describe the methodology that selects the set of eligible pixels as fiber ends (the
following steps were applied to every nk):

• Selection of the set of pixels intersecting a disk of radius R centered on
the pixel of index nk and within a cone sector δc around the local Gabor
orientation θi, where θi ∈ [0,π):

Sp = {(rx, ry) : r2x + r
2
y 6 R2, θi− δc/2 6 arctan(ry/rx) 6 θi+ δc/2} (4.5)

where (rx, ry) are the relative coordinates of pixels in the 2D Cartesian system
considering that (rx(nk), ry(nk)) = (0, 0).(Figure 4.8, a)

2 We note here, that the thickness of the matrix tissue is not taken into account when constructing the
graph representation, as we are mainly interested in describing the two dimensional aspect of the
FN fibers, corresponding to the available data. The microscope integrates the signal across the 3rd

dimension (tissue thickness is negligible here with respect to the microscope’s optical resolution in
z-axis) to obtain the 2D figure.
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(a) (b)

(c) (d)

Figure 4.7: Morphological skeletons of the FN fibers and the corresponding graphs: (a) FN
B-A+ confocal image sample mimicking a tumoral state of 784× 784 pixels, (b)
Fibers detection using Gabor filters, (c) Morphological skeleton of the extracted
fibers at (b), (d) Skeleton-associated graph illustration

• To narrow down the number of pixels in Sp, we proceed to select them as
follows:

1. for the pixels that correspond to degree 1 nodes, they will be con-
sidered eligible candidates only if nk ∈ Ssym, where we define by
Ssym = {(rsx, rsy) : θp − δc/2 − π 6 arctan(rsy/rsx) 6 θp + δc/2 − π} as
the set of pixels coordinates relative to np(0, 0) in the cone sector around
the local orientation θp of the candidate pixels in Sp. In other words, we
keep the candidate pixels for which nk belongs in the symmetric cone
around the local θp.(Figure 4.8, b,c)

2. for the pixels that correspond to the edges, the decision rule implies that
they are accepted only if nk ∈ Sort, where we define by Sort = {(rox , roy) :
θp − δc/2± π/2 6 arctan(roy/rox) 6 θp + δc/2± π/2} as the set of pixels
coordinates relative to np(0, 0) in the cone sector perpendicular on the
local orientation θp. (Figure 4.8, d).

• At this step, the feasible candidates were chosen. In order to reconstruct the
missing fibers we start by computing the minimal weighted paths from nk to
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all candidates, using Dijsktra’s shortest path algorithm.3 The weights account
for the image intensity, i.e. the reconnection is considered only on the paths
where fibers were "defined" in the original image (local intensity is above a
certain threshold), but not necessarily captured during skeletonization.

• Choose the path of minimal length among all possible paths and recompute
the weighted path from nk to the chosen pixel for reconnection, using as a
guideline the maximum Gabor filtered image MG (Figure 4.5).

4.3 conclusions

In this chapter, we have illustrated one of the main contributions of this thesis,
essential for FN characterization, which is the construction of a graph-based repre-
sentation of the fibers built on top of Gabor features.

Within the literature dedicated to the multiresolution analysis, the discrete
curvelets have earned a better reputation than Gabor filters when it comes to ap-
plications concerning anisotropic feature detection, classification, etc. The discrete
curvelet transformation is a tight frame with low redundancy, while Gabor filters,
(not built as orthogonal structures), fail to cover the entire frequency spectrum
(unlike curvelets) and present a higher redundancy.

However, the general context of the work presented in this manuscript is focused
on the design of meaningful modelling approaches to characterize the geometry
of the FN fibers. Thus, upon applying a multi-scale transformation based on
dictionary atoms with certain features, it is essential to be able to easily manipulate
the coefficients/parameters subsequently employed under different forms. In this
regard, we found that the curvelet coefficients are more difficult to operate with
(Chapter 3), while the Gabor-based detection provides a simple fiber delineation, (i.e.
for each pixel, we can access the corresponding Gabor parameters). Additionally,
the Gabor-detected fibers served as starting point for building a faithful graph
description of the fibrillar structures. This representation is built on top of Gabor
detected fibers, and employs morphological operators to extract the fiber skeleton
and subsequently associate the graph, as a collection of nodes (fiber crosslinks, or
fiber ends) that connect the edges.

A post-processing tool for the missing fibers (due to noise, skeletonization defects,
etc.) reconnection was proposed (see example in Figure 4.9), in order to capture
the information from the confocal images with a higher degree of fidelity. This
is a 2D graph-based representation of the available 2D data (Figure 4.10), which
is useful for extracting additional fiber features (e.g. fiber length, node degree,
etc). Furthermore, as we are about to see in the next chapters, it will also provide
the appropriate setting to extend the FN characterization model to compare FN
networks, (e.g.through matching their associated graphs), to classify the FN graphs,
to derive the graph barycenter for as the mean "individual" of a class, etc.

3 Dijkstra’s shortest path algorithm finds the shortest paths from the source node to all the other
nodes in the graph. In this setting, the source node is nk and the "destination nodes" represent the
candidate pixels. The "graph" in the algorithm’s context is constituted by pixels and the cost to move
from the current pixel Cp to the neighbouring pixels Vk is a function of image gray-level intensity:
∀k ∈ Z : 1 6 k 6 8, Cost(Cp,Vk) = 1

Intensit(Vk)+ε
.
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(a) (b)

(c) (d)

(e)

Figure 4.8: Methodology for morphological skeleton and graph improvement: (a) Selection
of pixels intersecting a disk of radius R centered on the pixel nk (yellow disk).
(b,c) Selection of pixels inside a cone sector around θi. (d) Eligible pixels on the
fibers define a cone sector perpendicular on the corresponding local orientation
θp.(e) The accepted pixel (green disk) has the minimal path length towards the
nk; the reconstructed fiber corresponds to the green path, which was computed
with Dijkstra’s weighted algorithm when the weights are proportional to the
pixel intensity in the image of detected fibers with Gabor kernels.
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(a) (b)

(c) (d)

(e)

Figure 4.9: Pipeline fiber detection and reconnection: (a) FN B-A+ confocal image sample
mimicking a tumoral state of 784× 784 pixels, (b) Fibers detection using Gabor
filters, (c) Morphological skeleton of the extracted fibers at (b), (d) Reconnected
skeleton of the extracted fibers at (b), (e) Final reconnected skeleton displayed
on top of the original confocal image (a).
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(a) FN B-A+ (b) Corresponding graph FN B-A+

(c) FN B-A- (d) Corresponding graph FN B-A-

(e) FN B+A- (f) Corresponding graph FN B+A-

(g) FN B+A+ (h) Corresponding graph FN B+A+

Figure 4.10: Reconnected graphs of the four FN-specific variants (normal state) correspond-
ing to images of 512× 512 pixels: (a,b) FN B-A+, (c,d) FN B-A-, (e,f) FN B+A-,
(g,h) FN B+A+.
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L O C A L C H A R A C T E R I Z AT I O N O F F I B E R F E AT U R E S U S I N G
T H E G R A P H - B A S E D R E P R E S E N TAT I O N

In this chapter, we establish a local characterization of the FN networks based on
local geometrical features, extracted from the graph representation (see Chapter 4
for details) (e.g. fiber network connectivity, fiber length, median pore dimension,
etc.), as well as Gabor features (e.g. fiber local thickness). We subsequently show that
the FN variants (normal state) can be compared and distinguished among them, first
after performing PCA analysis and computing local parameter distributions across
classes. Secondly, we classify the FN variants using the above features classified
by a DAG-SVM classifier. These results are bound to prove that the graph-based
representation contains relevant and meaningful information about the fibers.

5.1 feature extraction from graph-based fn representation

Features related to fiber thickness and connectivity were directly computed using
Gabor kernels and graph-specific parameters:

• connectivity was defined as the proportion of degree 1 nodes (those corre-
sponding to fiber ends) relative to the nodes with a degree higher than 2
(corresponding to branching and intersecting points). The variant-specific
connectivity distributions are shown in Figure 5.1 (a). Interestingly, B-A- fibers
are characterized by a higher abundance of fiber ends, delineating a low level
of connectivity, compared to the other variants, especially to B-A+. These
results reveal that the absence of Extra Domains leads to a less branched FN
fiber arrangement.

• Next, we considered fiber thickness by computing the proportion of thin to
thick fibers. As shown in Figure 5.1 (b), B-A- fibers display low proportion of
thin fibers, hence characterized by the presence of medium and thick fibers,
while the opposite is observed for B-A+.

• In order to analyze fiber thickness heterogeneity, or fiber diversity, we com-
puted the fiber thickness kurtosis, a parameter that indicates how outlier-prone
the fiber thickness distribution is relative to a normal distribution with identi-
cal variance. In terms of fiber thickness, B-A+ values are distributed around
the mean, suggesting a high homogeneity in fiber thickness, compared to B-A-
fibers which are highly heterogeneous (Figure 5.1 c).

• Pore shape was measured through a circularity parameter and the average
pore size. Circularity measures pore anisotropy allowing us to distinguish

53
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circular and oval-like pores. Pore circularity was determined by the formula
4πArea/Perimeter2, the values of which vary between 0 (line) and 1 (perfect
circle). Figure 5.1 (d) shows that B-A- FN arrangements are characterized
by a high number of oval pores, while pores in B-A+ FN networks are
predominantly circular.

• The same pattern is observed in terms of pore size, a parameter whose values
were considered starting from the 90th percentile. Large pore sizes are found
within B-A- FN networks, while smaller pore size is observed in B-A+ FN
networks (Figure 5.1 (e)).

5.2 pca visualisation of the gabor and graph-based fn fiber fea-
tures

After establishing a faithful representation of the fibers by describing them in
terms of graphs, a set of features was selected to characterize fiber geometry and
to perform principal component analysis (PCA). The PCA method was used to
explore the relatedness between the different FN variants with respect to various
physical attributes, or features, including i) connectivity, ii) fiber thickness, iii) fiber
heterogeneity, iv) pore shape v) and pore size distribution. The PCA in Figure 5.2
was performed with the aforementioned features, by adopting the representation
provided by the first two principal components. The plot illustrates both the samples
(images) projected in a bi-dimensional space, and the five features represented by a
vector, the direction and length of which indicate the contribution of each feature
to the two principal components.

Figure 5.2: PCA Analysis of the Gabor and graph-based FN-specific fiber features: FN B-A-,
FN B+A-, FN B-A+, FN B+A+.



5.3 conclusions 55

Generally, the samples belonging to FN B-A- and FN B-A+ are concentrated in
non-overlapping areas, displaying the distinguishability of these two variant-specific
FN networks through the chosen features.

Altogether, these analyses demonstrate that B-A+ FN matrices feature highly
branched, homogeneous, thin fibers that form small pores. In contrast, B-A- FN
forms thicker, unbranched networks with larger more elongated pores. Interestingly,
the presence of EDB results in matrices (either B+A-, or B+A+) characterized by a
mixture of the attributes seen in B-A- and B-A+.

5.2.1 Classification of the Gabor and graph-based FN fiber features

The 280 set of 512× 512 pixels images represented by the Gabor and graph-based
features has been classified with a DAG-SVM multi classifier with 5-fold cross-
validation. The results in Table 5.1 illustrate that the five features help distinguish
the two varaints, FN B-A- and FN B-A+, the best out of the four variants, confirming
the observations made both in the PCA analysis and also during the classification
using discrete curvelets.

Concerning the general classification accuracy, the value of 66% is higher than
that obtained by the trained biologist and comparable to the curvelets performance,
indicating that the information captured by the graph description is relevant to
distinguish the FN fibers and meaningful for obtaining an appropriate geometrical
characterization.

XXXXXXXXXXXXActual
Predicted

FN B-A- FN B+A- FN B-A+ FN B+A+

FN B-A- 92.9 7.1 0 0

FN B+A- 7.1 43 21.4 28.5

FN B-A+ 0 28.5 71.5 0

FN B+A+ 7.1 35.7 0 57.2

Table 5.1: Confusion matrix in percentage form of the DAG-SVM classification of FN
variants, using Gabor and graph-based features

5.3 conclusions

This chapter illustrated an application of the graph representation of FN vari-
ants (normal state) for local fiber characterization, based on meaningful physical
attributes describing the fiber thickness, heterogeneity, pore shape and network
connectivity. These features are significant not just in a classification context, but
also for understanding which are the meaningful properties that determine the
structural differences within the FN fiber organization. We have thus shown that
the constructed graphs embed meaningful information of the FN networks.

In the following chapters, we extend this analysis to include differences on a
topological level between the graph-based fiber representations, using techniques
dedicated to graph comparison. Furthermore, the methodologies that we have
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identified as being relevant in this context, prove to be favourable for studying the
variation of certain fiber geometrical properties in a statistical analysis framework.
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(a) (b)

(c)

(d) (e)

Figure 5.1: Graph-based normalized feature distributions: (a) Proportion of degree 1 nodes
relative to the nodes of superior degree (connectivity), (b) Proportion of thin
fibers to thick fibers (fiber thickness), (c) Fiber thickness kurtosis (distribution
of fiber thickness values with respect to the mean), (d) Pore circularity average
value, (e) Pore size (mean of values superior to the 90th percentile)
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G L O B A L S TAT I S T I C A L C H A R A C T E R I Z AT I O N O F T H E F N
PA R A M E T E R M A P S

The graph-based FN fibers representation achieved following the pipeline presented
in Chapter 4, provides an appropriate setting for computing local characteristic fea-
tures (e.g. connectivity, fiber thickness, median pore shape, etc.), such as illustrated
in Chapter 5. These features were proven to be meaningful for differentiating the
four FN variants corresponding to "normal" state ECM.

Within this chapter, we are interested in the study of the parameter maps (e.g. fiber
length) in a statistical framework based on the random field theory, that can provide
a comparison between the "normal" and "tumour-like" state FN variants. Inspired
from the methodologies employed in the statistical mapping of the functional
images [Fri+94; Pol+97], we intend to model the "normal" images through Gaussian
Random Fields (GRF) and thus determine a set of probabilities that characterize a
degree of belonging to the Gaussian field of certain regions of the tumoral images.
More precisely, the purpose of the statistical analysis is to identify the foreign
regions with respect to the GRF within both normal and tumoral parameter maps
under the null hypothesis, and subsequently compare their properties (e.g. number,
size).

Here, we implement two methodologies, the first one based on the theory of GRF,
and the second relying on the computation of empirical distributions, and show
in both cases the differences between the 2 classes quantitatively and qualitatively
with respect to the fiber length, exemplified for one variant, FN B-A+.

6.1 gaussian random fields and decision testing of parametric

maps

definition random fields : Given a complete probability space (Ω,F,P), and
T a topological space, then a random field of real values is a measurable application
X : Ω 7→ RT . The finite-dimensional (Fd) distributions of X are defined as the set of
functions Ft1,··· ,tn , where Ft1,··· ,tn(B) = P((X(t1), · · ·X(tn)) ∈ B), ∀n > 0,∀B ∈ Bn,
B being the Borel set on R.

A particular class of random fields is represented by the Gaussian random
fields, whose marginal (Fd) distributions are Gaussian vectors X = (X(1), · · · ,X(n)),
characterized by the probability density function:

fX(x) = (2π)−n/2|V |−
1
2 exp[−

1

2
(x− µ)V−1(x− µ)T ] (6.1)
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where µ = (E(X(i)))i∈[1,n] is the expectation and V , the covariance matrix, V =

(E[(X(i) − µi)(X(j) − µj)])i,j∈[1,n]2 is the covariance matrix.
Within the statistical analysis framework applied to parameter maps, we intend

to model the images by approximating them as realisations of a GRF, thus we need
to "Gaussianize" its marginal distributions to be sure the hypotheses under which
we make this assumption are respected. In practice, we only Gaussianize the one
dimensional marginal distribution and consider that the parameter maps under
study are smooth enough.

statistical parametric maps (spm) are used to evaluate the probability of
change in every pixel [Pol+97] by using decision tests based on the magnitude of
the SPM values (i.e. the peak intensity of a cluster in SPM) and on the spatial extent
of these clusters formed at a certain threshold. For our application, we consider
that the parameter maps are described by the union of 2 classes of pixels: those
that appear as the realization of a GRF modeling the "normal-state" case, and
those that constitute foreign elements to the GRF. We expect these foreign elements
to occur in regions with very high intensity and/or in larger clusters taken at a
specific threshold. In the following, we briefly introduce the approach that allows
us to estimate whether the clusters (i.e. contiguous regions of pixels - connected
components) taken at a specific threshold of intensity, have a low probability of
belonging to a GRF, based on the maximum intensity of the cluster, or its spatial
extent. (Figure 6.1).

In order to estimate the likelihood of a certain cluster belonging to a GRF,
depending on the maximal intensity of this cluster, we will use the following
formulations taken from the theory of the random fields [Adl]. The expected (mean)
value of the number of clusters that appear at a threshold t, of an image modelled
by a zero-mean, homogeneous Gaussian field of dimension 2, is the following
[Laf+07]:

E[mt] = S(2π)
−3/2|Λ|1/2tσ−3 exp−

t2

2σ2
(6.2)

where:

• mt represents the number of clusters at a certain threshold t

• S is the number of pixels of the image

• Λ is the covariance matrix of partial derivatives of the GRF

• σ is the standard deviation of the GRF

Similarly, the mean value of the number of clusters at a threshold t+H0 can be
written as such:

E[mt+H0 ] = S(2π)
−3/2|Λ|1/2(t+H0)σ

−3 exp−
(t+H0)

2

2σ2
(6.3)

Considering x0 = t+H0 as the intensity peak of a cluster (at threshold t), one can
estimate the probability that a cluster (at a threshold t, having an intensity peak
equal to x0, denoted CH0t ) belongs to Gr, a realization of GRF. This probability can



6.1 gaussian random fields and decision testing of parametric maps 61

Figure 6.1: Connected components (clusters of pixels) of a 512× 512 image (displayed in a
3D plot - top) taken at an intensity threshold t equal to 60 (bottom), where x0
represents the maximum intensity of the cluster, and S0 represents its surface
(spatial extent).

be seen as the likelihood of a cluster (taken at threshold t) of having an intensity
peak higher or equal to t+H0:

P(CH0t ∈ Gr) =
E[mt+H0 ]

E[mt]
=
x0
t
σ−3exp

t2 − x20
2σ2

(6.4)

Next, we are interested in the estimation of the probability that a cluster (at a
threshold t) belongs to a realization of GRF, depending on its surface (spatial extent
- number of pixels). To estimate the number of pixels (nt) of a cluster at a threshold
t, we use the following equation [Fri+94]:

E[nt] =
E[Nt]

E[mt]
(6.5)

where Nt is the number of pixels at of higher intensity than t, and mt is the number
of clusters at the threshold t. Since the intensity values follow a normal (zero mean
value) distribution, the expectation of Nt is the following:

E[Nt] = S

∫∞
t

(2πσ2)−1/2 exp−
x2

2σ2
dx = SΦ(−t) (6.6)
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where Φ(−t) is the complementary cumulative distribution function (ccdf- tail
distribution). It follows, then, that one can approximate the mean value of nt,
accordingly:

E[nt] =
E[Nt]

E[mt]
=

Φ(−t)

(2π)−3/2|Λ|1/2tσ−3 exp− t2

2σ2

(6.7)

Furthermore, it has been experimentally proven [V.P69] that nt follows an exponen-
tial distribution law, which is commonly defined by a parameter λt, (the inverse
of the mean expected value of the random variable). Consequently, P(nt = x) =

λtexp(−λtx) , where λt =
(2π)−3/2|Λ|1/2tσ−3 exp− t2

2σ2

Φ(−t) .
It follows then that the approximation for the probability of a given cluster having

a spatial extent S greater than s0 is given by the following formulation:

P(CS0t ∈ Gr) = P(nt > S0) = exp(−λtS0) = exp
(2π)−3/2|Λ|1/2tσ−3 exp− t2

2σ2

Φ(−t)

(6.8)

6.2 application of the statistical analysis to the study of fn para-
metric maps

Having defined the two probabilities of a cluster belonging to a GRF in (6.4), that
will be denoted as PH, and (6.8), denoted as PS, we will illustrate an application
to the statistical study of parametric maps (e.g. fiber length) derived from the
graph-based representations of FN fibers, to further compare between normal state
and tumoral state. Figure 6.2 illustrates the proposed workflow that can generate
parametric maps of the FN fiber lengths:

• For any FN confocal image: computation of the morphological skeleton using
the pipeline defined within Chapter 4 .

• Simplification of the graph representation obtained by keeping the location of
the nodes (corresponding to the fiber ends or to the fiber crosslinks) and re-
placing the "body" of the fiber from the skeleton (if present) with a connecting
line. This representation can be subsequently encoded in adjacencies matrices
(indicating the presence/absence) of a certain edge between the nodes and
furthermore, will be employed in future chapters for FN fiber modelling and
comparison of the graphs.

• Identification of the 2D pixels coordinates that approximate the straight line
between the nodes (using Bresenham’s line algorithm [Bre]); replacement
of the pixels at the concerned locations with the length of the respective
connecting line.

• Extrapolation of the values [Ext] of the fiber length map and smoothing with
a Gaussian kernel.



6.2 application of the statistical analysis to the study of fn parametric maps 63

(a) Morphological skeleton of a "Tumour-
like" FN B-A+ sample of 512×512 pixels
obtained using the pipeline described in
Section 4.2.1.

(b) FN fibers corresponding graph (defined
as the set of nodes corresponding to
fiber crosslinks or fiber ends. The edges
between the nodes are represented as
connecting lines.)

(c) Fiber length map associated to the graph
representation: The lengths of the con-
necting lines are shown in different
colours.

(d) Smoothed fiber length map

Figure 6.2: Computation of parameter (fiber length) maps from graph-based fiber repre-
sentation: Top row illustrates the morphological skeleton (left) and associated
graph (right) of a FN B-A+ sample. Bottom row shows the characteristic fiber
length maps (the pixels intensity on the connecting lines is given by the specific
line length- left image). Extrapolated values of the lengths are then smoothed
out with a Gaussian filter to obtain the map on the right.



64 global statistical characterization of the fn parameter maps

6.2.1 Statistical analysis based on GRF

In the first setup, the fiber lengths maps, characterized by the presence of clusters
of different dimensions and intensities, corresponding to normal and tumoral-like
FN, are approximated by Gaussian fields. This approximation requires that the
marginal distributions of the GRF are Gaussian. Therefore, to render the images
more appropriate to this setting, for sake of simplicity, we decided that the image
intensity histogram is the only distribution variable to be Gaussianized. Thereby,
the resulting histogram of intensity follows a normal distribution (centered on 0)
with the same variance as the empirical native histogram.

The approach that was considered for map Gaussianization, is based on the
optimal transport framework, described in detail in a following chapter (Chapter 8).
More specifically, the problem of "converting" the empirical intensity distribution
of the fiber length map into a normal distribution with the same variance, can be
approached by performing the 1D optimal transport between the two distributions.
The reader is referred to Section 8.2.3 for details on how the 1D optimal transport
is accomplished.

Briefly, for a map I with an empirical mean and variance of intensity, we consider
a second image J, whose intensity pixels follow a normal distribution (Figure 6.3).
The 1D optimal transport problem will determine how to optimally permute the
pixels indices in J, to "recreate" the image I. Since the intensity of the pixels in the
permuted version of J does not change, the result will resemble I, but will have the
histogram of J (Figure 6.4).

learning phase : For all the images Ij (previously Gaussianized) in the learning
set:

• Compute Λj (empirical estimator of the covariance of partial derivatives
of Ij ). If for an image function f ∈ R2, we consider its gradient vector
∇f = (fx, fy) = ( ∂f∂x , ∂f∂y), then Λj = cov[fx, fy] = E[(fx − E[fx])(fy − E[fy])].

• Compute σj, as the Ij sample standard deviation.

Store the average Λm,σm of the learning dataset.

test phase : - decision on whether the clusters (blobs) taken at a certain thresh-
old ti are considered foreign to the GRF:

For all the images Ij in the test set:

• Gaussianize the image Ij, in order to make it more feasible to be approximated
by a realization of a GRF. The result is a new image Ig, whose histogram is
Gaussian with identical variance to that of Ij.

• For a given list of thresholds T = (t1, t2, · · · , tn) :

– Binarize the image Ig according to the threshold ti

– Find the list of connected components in the binary image resulted from
thresholding and for every (labeled) connected-component (l1, l2, · · · , lp) :
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Figure 6.3: Gaussianization of the parametric maps using optimal transport between the
empirical intensity distribution of the map (top row, left) and a Gaussian noise
image (top row right), whose intensity distribution centered on 0, has the same
variance as the first image.

Figure 6.4: Result of Gaussianization of the parametric map in Figure 6.3. The native
histogram of the map has been converted to a normal distribution defined by
the same variance as the original one, (and mean equal to 0).
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∗ Compute PH using the learnt model parameter σm. If its value is
lower than a chosen p-value (p), the cluster is considered a foreign
element to a GRF.

∗ Compute PS using the learnt model parameters Λm,σm. If its value
is lower than a chosen p-value (p), the cluster is considered a foreign
element to a GRF.

The methodology described above was applied for the quantitative and qualitative
comparison of differences with respect to the fiber length, for one variant FN B-A+,
in both normal and tumoral-like state, under the following conditions:

• Learning dataset : 50 parametric maps (Normal-like FN networks)

• Test set: 70 parametric maps (Tumoral) and 20 parametric maps (Normal)

• Thresholds of intensity T = [45 60 70 80 100]

• p = 0.05. Clusters are considered as foreign to GRF if either PS or PH are less
or equal than p.

The results in Table 6.1, Table 6.2 illustrate for every threshold, the average number
of identified foreign clusters, as well as the average cluster area per image. Within
the tumoral parametric maps of the test dataset, the method identifies a higher
average number of clusters per image having a higher average spatial extent, in
comparison to the normal parametric maps. The results in Figure 6.5, Figure 6.6
illustrate several example of detected clusters for a given p = 0.05.

Table 6.1: Average number and area of clusters per tumoral parametric map FN B-A+
512× 512 identified as foreign to a GRF (p= 0.05) based on either the maximum
intensity or cluster surface, taken at various thresholds

Thresholds 45 60 70 80 100

Max Intensity - Avg nb/im 1.00 0.80 0.46 0.33 0.16

Max Intensity - Avg area/im 2595.46 1063.85 728.68 460.55 196.91

Surface- Avg nb/im 1.30 0.99 0.69 0.39 0.20

Surface - Avg area/im 3939.29 3225.60 2119.56 2306.27 1562.82

Table 6.2: Average number and area of clusters per normal parametric map FN B-A+
512× 512 identified as foreign to a GRF (p= 0.05) based on either the maximum
intensity or cluster surface, taken at various thresholds

Thresholds 45 60 70 80 100

Max Intensity - Avg nb/im 0.2 0.1 0.1 0.05 0

Max Intensity - Avg area/im 159.65 10.4 1.15 0.05 0

Surface- Avg nb/im 0.4 0.15 0.1 0.05 0

Surface - Avg area/im 161.6 11.55 0.95 0.1 0
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6.2.2 Statistical analysis of the empirical distributions

The second setup for the statistical analysis and comparison of the FN variants
in normal vs tumoral state was motivated by the fact that upon Gaussianization
of the parametric maps (during the previous methodology), the higher intensity
clusters are smoothed out. Since Gaussianization is necessary when approximating
the parametric maps as realizations of GRF, we decided to take a different approach
to estimate the probabilities of clusters taken at different thresholds to be foreign
elements with respect to the maximum cluster intensity and surface.

The approach described below will compute, for a given threshold t, the empirical
cumulative histogram of maximum cluster intensities/surfaces for all the images in
the learning set. This, in turn, will provide a certain threshold regarding either the
cluster area (Sp) or the cluster intensity (Cp) that depends on the chosen p-value,
above which the clusters from the test set taken at threshold t, if they exist, will be
considered as foreign elements.

learning phase : For a given list of thresholds T = (t1, t2, · · · , tn) :

• For all the images Imj in the learning set:

– Binarize the image Imj according to the threshold ti

– Find the list of connected components in the binary image resulted from
thresholding and for every (labeled) connected-component (l1, l2, · · · , lm) :

∗ compute and store the area (total number of pixels) of lk in a vector
S

∗ compute and store the maximum intensity of lk in a vector C

• compute the cumulative histogram of S as Q(s) and set the area threshold Sp
according to a predefined p-value (p): Sp = argmins{Q(s) >= p}. Store the
resulted Sp for the current ti.

• compute the cumulative histogram of C as Q(c) and set the intensity threshold
Cp according to a predefined p-value (p): Cp = argminc{Q(c) >= p}. Store
the resulted Cp for the current ti.

test phase : decision on whether the clusters (blobs) taken at a certain threshold
ti are considered foreign to the empirical distributions of cluster surfaces and
maximum intensities. For a given list of thresholds T = (t1, t2, · · · , tn) :

• For all the images Ij in the test set:

– Binarize the image Ij according to the threshold ti

– Find the list of connected components in binary image resulted from
thresholding and for every (labeled) connected-component (l1, l2, · · · , lp) :

∗ compute the area (total number of pixels) of lk and compare it to the
already stored Sp (at ti, during the learning phase). If its value is at
least as high as the stored one, the cluster is considered a foreign
element.
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∗ compute the maximum intensity of lk and compare it to the already
stored Cp (at ti, during the learning phase). If its value is at least as
high as the stored one, the cluster is considered a foreign element.

The methodology described above was applied for the quantitative and qualitative
comparison of differences with respect to the fiber length for one variant FN B-A+
in both normal and tumoral-like state, under the following conditions:

• Learning dataset : 50 parametric maps (Normal)

• Test set: 70 parametric maps (Tumoral) and 20 parametric maps (Normal)

• Thresholds of intensity T = [95 105 115 120 127]

• p = 0.05 and 0.1.

The results in Table 6.3 illustrate for every threshold, the average number of identi-
fied foreign clusters per image as well as the average cluster area. By comparison,
within the normal parametric maps of the test dataset, the method does not identify
any foreign cluster when p = 0.05, however it manages to identify foreign clusters
(relatively low average number and area per image) for one given threshold upon
increasing the p-value p = 0.1 (Table 6.4).

Table 6.3: Average number and area of clusters per tumoral parametric map FN B-A+
512× 512 identified as foreign (p = 0.05) to the empirical distributions of clusters
(size and intensity) taken at various thresholds

Thresholds 95 105 115 120 127

Max Intensity - Avg nb/im 0.31 0.31 0.36 0.37 0.40

Max Intensity - Avg area/im 6913.33 5761.59 2777.69 2330.17 1723.45

Surface- Avg nb/im 0.04 0.09 0.13 0.23 0.37

Surface - Avg area/im 4922.07 4935.79 3019.36 2529.45 2075.28

Table 6.4: Average number and area of clusters per normal parametric map FN B-A+
512× 512 identified as foreign (p = 0.1) to the empirical distributions of clusters
(size and intensity) taken at various thresholds

Thresholds 95 105 115 120 127

Max Intensity - Avg nb/im 0.1 0 0 0 0

Max Intensity - Avg area/im 458.8 0 0 0 0

Surface- Avg nb/im 0 0 0 0 0

Surface - Avg area/im 0 0 0 0 0

6.3 conclusions

In this chapter we illustrated an analytic framework for the study of FN parametric
maps (namely the fiber length), in order to compare normal and tumor-like FN
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states. We managed to show, using both approaches (based on the GRF theory
and on the computation of empirical distributions), that the tumoral aspect can be
differentiated with respect to the normal-like state for one specific FN variant, and
statistically characterized, based on the fiber length. The quantitative analysis shows
that "normal" variants are well characterized by the both the GRF and empirical
model, and that differences with respect to the fiber length, between "normal"
and "tumoral" variants are statistically significant. These are promising results that
encourage us to extend this analysis for normal vs tumour FN-variant comparison.

Future perspectives can include a more comprehensive study that analyses larger
image samples and considers different FN fiber parameters.
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Figure 6.5: Detection of the clusters considered foreign elements to a Gaussian Random
Field when p = 0.05 (based on the maximum cluster intensity), within the Fiber
Length Map (left column) corresponding to Tumour-like FN B-A+ of 512× 512.
The right columns depicts the clusters at different thresholds (indicated in the
colorbar).
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Figure 6.6: Detection of the clusters considered foreign elements to a Gaussian Random
Field when p = 0.05 (based on the cluster surface), within the Fiber Length Map
(left column) corresponding to Tumour-like FN B-A+ of 512× 512. The right
columns depicts the clusters at different thresholds (indicated in the colorbar).
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Figure 6.7: Detection of the clusters considered foreign elements to the empirical distri-
butions of maximum cluster intensity p = 0.05 within the Fiber Length Map
(left column) corresponding to Tumour-like FN B-A+ of 512× 512. The right
columns depicts the clusters at different thresholds (indicated in the colorbar).



6.3 conclusions 73

Figure 6.8: Detection of the clusters considered foreign elements to the empirical distri-
butions of cluster surface p = 0.05 within the Fiber Length Map (left column)
corresponding to Tumour-like FN B-A+ of 512× 512. The right columns depicts
the clusters at different thresholds (indicated in the colorbar).
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7
G R A P H M AT C H I N G F O R G R A P H C O M PA R I S O N

In this chapter, we present the general background concerning the graph-matching
approaches for graph comparison. We focus on the presentation of inexact graph
matching techniques, and more precisely on the discrete problems reformulated
through continuous relaxations. Finally, we describe a relevant approach, namely,
many-to many assignment framework, proposed by [ZBV10], that we have selected
for the use in certain applications related to the matching of FN-specific networks,
within subsequent chapters.

7.1 graph matching general background

While the problem of comparing various structures via graphs was known from
the 50s in modern chemoinformatics, the use of graphs to characterize or classify
complex networks (such as visual patterns), dates back to the 70s [Ven15]. Intro-
duced in order to compensate the weaknesses of the vector-based representations,
which are not always adequate to capture patterns with an identifiable structures of
different sizes, nowadays, there is a variety of fields that rely on modelling specific
problems using graphs (i.e. pattern recognition [Con+07], computer vision [BBV01],
network monitoring [SK99], computational biology [YS07; Lia+09], etc.). This long
interest in graph-based approaches is not surprising, given the range of different
representations in terms of the graph topology, the nature of the nodes and edges
(deterministic or stochastic), the type of the attributes (numeric values, symbols,
probabilities) [Con+07; Yan+16].

Over the years, the advances in graph-based approaches have focused on a
few directions with specific dedicated algorithms such as graph-matching, graph
embedding, clustering, or learning. Often across the domains, graphs encode sets
of features connected by structural relationships. Most of the applications seek to
understand how similar these objects are, or whether equivalent patterns can be
found within them. In this regard, the question faced by the graph-based algorithm
community, when given two objects represented using graphs, is how best to
evaluate the distance between them in a way that reflects their structure in order to
either classify them, learn a model representative of a class based on graphs, or to
study the variation of certain parameters associated to the features.

This is commonly known as the graph-matching problem. Once a graph is associated
to the identifiable parts of those objects, comparing them can be achieved by
coupling their nodes accordingly, so that similar structures can be associated
together. It then becomes essential to develop the proper tools to achieve an accurate
matching between two graphs that reflects the structural differences.

77
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Evaluating the alignment or matching between graphs is considered challenging,
especially for large graphs, and hence approximate algorithms have been developed
to estimate the solution of these problems (hard-combinatorial problems) in a
reasonable time.

In order to define the framework of graph-matching, we start by illustrating the
following definitions and notations:

notations :

Let G be a graph, where G = (V ,E) is a set of nodes (vertices) connected by the set
of edges E ⊂ V × V . The structure of G can be encoded in a square adjacency
matrix, AG of size |V |× |V |, where (AG)ij is equal to 1 if node i is connected
by an edge to node j, and 0 otherwise, also called a binary adjacency matrix.

We refer to real-valued adjacencies matrices (weighted) if (AG)ij represents the weight
assigned to the edge between node i and j.

G is called an undirected graph when AG is a symmetric matrix, i.e. (AG)ij =
(AG)ji.

We refer to the matching between 2 graphs as the mapping that denotes the
assignment between the nodes: f : VG → VH. Denoting by NG = |VG| and by
NH = |VH|, the number of nodes of G and H, respectively, the assignment can
be encoded into a binary correspondence matrix P ∈ {0, 1}NG×NH , such that
Pi,j = 1 when the i-th node of G and the j-th node of H are matched and 0,
otherwise.

algorithmical aspects and notions

• Combinatorial optimization is a subset of mathematical optimization whose role
is to search for maxima (or minima) of an objective function whose domain
is a discrete but with large solution space where exhaustive search is not
commonly tractable.

• Hungarian algorithm is an instance of an assignment problem (e.g. assigning
tasks to agents such that the total cost of the assignment is minimized, know-
ing that each job is assigned to one worker and each worker is assigned one
job) [Hun].

• Linear programming [Lin] is a method employed for the modeling of various
types of problems (planning, scheduling, assignment) that seeks to optimize a
linear objective function under linear equality and linear inequality constraints,
formalized as:

maximize cTx s.t. Ax 6 b and x > 0 (7.1)

where x is the variable vector, c,b represent vectors, A is a matrix of known
coefficients.
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• Sinkhorn-Knopp algorithm [Sin] is an iterative method that shows that one can
obtain a double stochastic matrix 1 by alternating the rescaling of the rows
and columns of a nonnegative matrix.

• In computational complexity theory, NP (nondeterministic polynomial time)
represents the set of decision problems solvable in polynomial time by a
non-deterministic Turing machine. Non-deterministic machines are idealized
models of computation that have the ability to make perfect optimization.

7.1.1 Exact and inexact matching

A broad classification of the graph-matching problem distinguishes between two
main types of approaches: exact and inexact matching techniques. The exact graph
matching problem seeks the bijective node mapping that preserve the edges of both
graphs with zero distortion. It implies that there exists an exact correspondence
between the nodes and edges of the compared graphs. The term of graph isomorphism
is used to encompass the latter concept, namely whether two graphs are structurally
identical. It is known as a NP problem [GJ90], and several works have proposed
algorithms to solve the problem in polynomial time [Cor+04; Ull76]. An example
is illustrated in Figure 7.1, where the challenge is to determine that the two given
graphs with different node numbering, possess in fact, an identical structure.

Figure 7.1: Graph matching - Exact matching (Isomorphism) case: top row: two isomorphic
graphs, bottom row: adjacency matrices corresponding to the graphs above. Even
if the graphs are structurally identical, their adjacency matrices are different due
to the different numbering.

1 A double stochastic matrix is a square matrix of nonnegative real numbers, with the property that
each of its rows and columns sums to 1.
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Alternatively, inexact graph matching problems focus on finding a matching cost
as an indicator of similarity between graphs that are structurally different.

7.1.1.1 Edit distance

A class of approaches (optimal inexact matching) computes the edit distance [SF83]
to measure the distance between two graphs. The edit distance is the set of graph
edit operations with an assigned cost that consists of deletion, insertion and substi-
tution of nodes/edges. Hence the objective is to find the sequence of operations that
minimizes the cost of "converting" one graph to another (Figure 7.2). These kind of
minimization problems (hard combinatorial) are approached by searching for the
solution using a tree search [TF79] in the possible solutions space, e.g beam search
[NRB06], breadth-first, depth-first search, etc. The inconvenient of these methods is
the computational complexity, exponential in the number of vertices of involved
graphs, which makes it feasible in practice only for reasonably sized graphs.

Figure 7.2: Graph matching - Edit Distance obtained through the optimal sequence of the
operations (e.g. edge/node insertion/deletion) to "transform" one graph into
another

7.1.1.2 Spectral methods

The majority of algorithms for inexact graph-matching are sub-optimal that ensure
to reach a local minimum of a cost function and have a lower computational
cost [Ven15]. Some of these techniques rely on the reformulation of the discrete
optimization problem to a continuous optimization problem, while alternative
methods are based on spectral properties of the graphs (i.e. properties related
to the eigenvalues and eigenvectors of the adjacency matrix or of other matrices
characterizing the graph structure).

Regarding the spectral methods, the underlying concept is based on the fact that
the eigenvalues and eigenvectors of the adjacency matrix of a graph are invariant
with respect to the node permutations. Matching is done between the nodes of
similar spectral coordinates, i.e. rows of eigenvector matrices. Their computation is
performed in polynomial time [Ven15], however, a disadvantage of these methods
is the fact that the spectral embedding is not uniquely defined [Zas+10]. Some of
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the papers proposing algorithms for graph matching using spectral decomposition
of the adjacency matrices of the graphs are found in [Ume88; CK04].

7.1.1.3 Continuous relaxation of the objective function

Different approaches rely on the reformulation of the graph matching problem,
a discrete optimization one, into a continuous optimization problem that can be
efficiently solved. Once the solution is approximated in the continuous domain, it
has to be projected back into the discrete domain. Even if the algorithms ensure a
local optimum, due to the discretization step, the local optimality is not necessarily
guaranteed.

We note here two important contributions in the literature of weighted graph
matching, the problem of finding the matching matrix between the nodes of two
given graphs, where the objective is to optimize a function over this matrix so as
the sum of weights of the preserved edges is as high as possible.

The work in [AD93] proposes to linearize the objective quadratic function to solve
it with linear programming methods and then convert the approximate solution
back to the discrete domain form using the Hungarian assignment method [Hun]
for the assignment problem. Secondly, in [GR96], they employ methods inspired
from deterministic annealing to relax the discrete problem into a continuous one,
and use the efficient Sinkhorn’s algorithm [SK67] to ensure the constraints on the
matching (permutation) matrix.

The inexact graph matching problem (one-to-one matching) can be formulated
as a quadratic assignment problem [Loi+07; Law63], a NP-hard problem through
which combinatorial optimization problems (e.g travelling salesman) can be formu-
lated. Several works based on this formulation can be found at [GR96; ZDLT]. Being
a difficult combinatorial problem, the research has been devoted to creating the
appropriate algorithms to approximate the solution, which is a rather challenging
task due to the non-convexity of the objective function. A recent state of the art
paper [ZDLT] improves this formulation by incorporating geometric constraints
between nodes and by using better optimization strategies.

7.1.2 Graph kernels and graph embeddings

Alternative approaches to graph comparison are based on the so-called graph
embeddings and graph kernels. Graph embeddings (Figure 7.3) refer to techniques
that map the nodes of the graphs onto points in a vector space, in such a way to
preserve the structure (e.g. nodes that are found closer in a neighborhood will be
mapped to points that are close.) [FPV14]. In [LWH03], they resorted to spectral
graph methods and PCA or multi-dimensional scaling (MDS - whose purpose is to
reconstruct a map that preserves distances, given pairwise dissimilarities) based em-
bedding of the spectral features for graph clustering with the purpose of exploring
different patterns in graphs. In [BYH04], the authors have applied MDS to a matrix
of shortest distance between the graphs to embed them in an Euclidean space and
them perform the matching using simple point-pattern matching methods.

Graph kernels are functions that map graphs onto a real number (similar properties
with the dot product on vectors). The use of such kernels as a measure of similarity
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Figure 7.3: Graph embedding into a vector domain. Figure reproduced from [FPV14]

(positive-semidefinite), provides the access to classification tools (support vector
machine), clustering, principal component analysis.

There is a growing interest in these methods, for learning, classification, or
clustering problems or generally for pattern recognition. However, unlike graph-
matching, these approaches are more suitable for applications where there is no
direct need of knowing which part of a graph was matched to given nodes of
another graph.

7.2 formulation of the graph-matching problem

7.2.1 General matching

If the graph isomorphism problem verifies whether two given graphs are identical,
we are interested here in a more realistic setting that can evaluate how differen-
t/similar graphs are. Generally, this problem is formulated as an assignment task,
where in order to determine how similar two given graphs are, we seek to align
them, looking for a matching (assignment) between the nodes that achieves this
as closely as possible (see Figure 7.4). The graph-matching (GM) problem is gen-
erally classified into two general categories: exact matching and inexact matching
[Yan+16].

The first category groups the methods that require a bijective node mapping
between the two graphs, such as to preserve the edges with no distortion. Less
adapted to real settings, where exact matching might be difficult, or even impossible
to achieve, and computationally expensive (NP problem), our study was hence
motivated to focus on the second category of problems. More specifically, we
consider the class of inexact GM, tailored to real-world graphs where we allow a
less strict correspondence of the graph nodes.The least square

formulation can be
shown to be

equivalent to solving
an instance of

quadratic
assignment problem

formulated as :
maxP tr(GTPHPT )

subject to P ∈ P

[Zas+10].

As already outlined, the graph-matching problem between two given graphs
implies finding the assignment between the nodes of the graphs that aligns them
as closely as possible. To formalize this definition, we have introduced the concept
of a correspondence matrix P that encodes the matching between the graphs G,H,
such that Pi,j = 1 when the node Gi and the node Hj are matched and 0, otherwise.
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(a) Graph G assignment (b) Graph H assignment

(c) Matching matrix P

Figure 7.4: Graph matching principle colour coded: Nodes that are assigned together have
the same colour. The matching is represented in a binary matrix whose element
ij is 1 if node i of graph G is matched to node j of graph H.

For the sake of simplicity, we assume that the two graphs have equal size, given
by the nodes number, denoted by N. Thus, P ∈ {0, 1}N×N, is a permutation matrix,
indicating the matching with exactly one entry 1 on each row and column.

To further illustrate the general graph matching framework, we apply the permuta-
tion matrix P to the second graph H, hence obtaining a permuted graph, isomorphic
to H, whose adjacency matrix is given by PHPT (Figure 7.5).

Subsequently, we can evaluate the quality of the alignment resulted from P, by
computing the discrepancy between G and the adjacency matrix of the permuted
graph H. We denote ||·||F, the Frobenius norm of the matrices (defined as ||A||2F =
trATA = (

∑
i

∑
jA
2
ij), and compute the measure of discrepancy between the two

graphs after alignment as introduced in [Ume88] - least square formulation, as
follows:

F(P) = ||G− PHPT ||2F (7.2)

Understandably, the lower the discrepancy, the better the quality of the matching
is. This leads us to formulate the problem of graph matching as finding the optimal
permutation that minimizes the discrepancy between the graphs, as computed as
in (7.2). This combinatorial problem requires approximate methods to derive its
solutions, as it becomes unfeasible for large graphs. If we consider binary adjacency
matrices, then the quantity 0.5 · F(P) represents the number of non-overlapping
edges, regardless of the matrix norm employed lp(1 6 p 6∞) [Zas+10].
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(a) Graph G (b) Permuted H (c) Graph H

(d) Adjacency matrix of G (e) Adjacency matrix of H

Figure 7.5: Graph matching (to compare G and H), measures the discrepancy between one
graph (G) and the optimally permuted version of the second one (H).

7.2.2 Different instances of graph matching

There are different scenarios requiring the assignment to be either a one-to-one
correspondence between the graphs, or allowing multiple nodes to be matched to
another node (group of nodes). We mention the following cases:

one-to-one matching: We consider G and H the adjacency matrices of two
graphs, with NG,NH the number of nodes for each graph, respectively. Under one-

to-one constraints, NG = NH
def
= N and the matching matrix becomes a permutation

matrix.
The feasible set P, composed of all permutation matrices is defined as follows:

P = {P ∈ {0, 1}N×N : P1N = 1N,PT1N = 1N}, where 1N represents the constant
N-dimensional vector of all-ones.

Then, the graph matching problem in the one-to-one mapping framework, is de-
fined as a discrete optimization problem whose objective is to find the permutation
matrix P ∈ P for:

min
P∈P

||G− PHPT ||2F, s.t. P1N = 1N, PT1N = 1N (7.3)

One possible solution to account for the difference of sizes between G and H is to
insert dummy nodes, i.e. nodes without any connection to any other nodes in either
of the graphs, which formally translates to adding rows and columns of zeros in
the adjacency matrix.
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In practical applications, the concept of one-to-one matching can be restrictive,
either for situations where the dimensions of the graphs to be matched is different,
or for the situations where similar parts are represented through different number of
nodes in the two graphs. In those cases, it would be helpful to relax the constraints of
the original one-to-one matching problem, to allow multiple nodes from one graph
to be matched to one (many-to-one matching) or more (many-to-many matching).

many-to-one matching The formulation for assigning at most kmax nodes
from G to H in a many-to-one matching formulation (Figure 7.6) is based on the
optimization problem illustrated in Equation 7.3. We consider two undirected
graphs represented by their real-valued adjacency matrices G and H of size NG ×
NG and NH ×NH respectively. The objective is to find the permutation matrix
P ∈ {0, 1}NG×NH under the following constraints:

{PT1NG 6 kmax1NH , P1NH = 1NG , PT1NG > 1NH} (7.4)

where each constraint refers to the manner in which nodes can be matched together,
kmax representing the upper bound on the number of nodes of graph G, that can
be matched to a single node in the graph H.

• PT1NG 6 kmax1NH : at most kmax nodes of G can be matched to a single
node of H.

• P1NH = 1NG : all nodes belonging to G have to be matched to nodes of H, but
a single one of G can not be matched to multiple H nodes.

• PT1NG > 1NH : all H nodes have to be matched to G nodes.

(a) Graph G (b) Graph H

Figure 7.6: Many-to-one assignment between two graphs G and H, where multiple nodes
(here 2) of G can be assigned to the same node in H.

7.2.3 Many-to-many-assignment problem

The problem is defined in the following manner: the objective is to find the matrices
P1 ∈ {0, 1}NK×NG and P2 ∈ {0, 1}NK×NH (which can be regarded as matching matri-
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Figure 7.7: Many-to-many assignment between two given graphs seen as two many-to-one
matchings from either graphs towards an imaginary intermediate graph

ces between G, H, and a virtual intermediate graph for each matching (Figure 7.7),
of size NK, where NK is min {NG,NH}):

min
P1,P2

||P1G
TPT1 − P2HP

T
2 ||
2
F s.t.

P11NG 6 kmax1NK , PT11NK = 1NG

P21NH 6 kmax1NK , PT21NK = 1NG

(7.5)

where 1N represents the constant N-dimensional vector of all- ones. In our experi-
ments, we consider NG > NH. The maximal number of vertices merged together is
represented by kmax and the many-to-many matching matrix is given by P = PT1P2,
where P ∈ {0, 1}NG×NH is the matching matrix between G and H.

The difference between the graphs size (Figure 7.8) is handled either by setting
kmax > 2 (hence allowing at most kmax nodes to be merged), or by setting kmax =

1 (hence allowing the implicit choice of nodes that will be assigned as dummy,
within the graph having a larger dimension).

The authors in [ZBV10] propose an approximation of the final solution, using a
version of the conditional gradient algorithm, based on the continuous relaxation
of (7.5). They also reformulate the gradient minimization as a linear assignment
problem with a cubic complexity, hence making it feasible for high-dimension graph
matching.

7.2.4 Matching of weighted labeled graphs

There are numerous applications where nodes in a graph represent different features
(e.g. location) while the edges designate the relationships between those. In this
context, certain labels can be assigned to nodes, indicating an additional degree of
similarity. Let us consider that the matrix C ∈ RNG×NH incorporates the node-to-
node dissimilarities from G to H (i.e. the difference between node labels of G and
node labels of H). Then, the formulation that takes into account at the same time
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Figure 7.8: The effect of modifying the maximum number of nodes matched together. Top
row corresponds to the case where kmax is set to 1, so that one of the nodes in
the larger graph is assigned as a dummy node. Bottom row illustrates the case
where the value of kmax = 2 corresponds to the maximum number of nodes
merged together.

the label differences, and the graph structure (the influence of which is controlled
by λ ∈ [0, 1]), is the following:

min
P1,P2

(1− λ)||P1G
TPT1 − P2HP

T
2 ||
2
F + λtrC

TPT1P2 s.t.

P11NG 6 kmax1NK , PT11NK = 1NG

P21NH 6 kmax1NK , PT21NK = 1NG

(7.6)

While incorporating label (dis)similarities among the nodes is a common practice
for graph-matching techniques, our practical setting given by the matching of FN
variant graphs, does not include any label information at the nodes. Therefore,
for the rest of the applications presented in this manuscript, where the many-to-
many assignment framework is used, we consider that λ is 0, and thus rely on
Equation 7.5.

7.3 summary

Since we are interested in computing the global matching between the graph-based
representation of FN variants (for subsequent use in different applications), we were
motivated to explore the graph-matching techniques to identify an appropriate
methodology to compare graphs. Many-to-many assignment framework is capable
to evaluate the similarity with respect to the number of mismatched edges between
any two graphs and can be applied to reasonably-sized graphs (e.g. several hundred
nodes).

In the next chapters (Chapter 9), we compare the performances of the many-
to-many assignment framework to a different methodology that evaluates the
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local structural similarity between graphs, through optimal transport. Furthermore,
we rely on this formulation to propose various ways to define the representative
individual (Chapter 10) of a set of given graphs, to compute the "average" individual
of FN-specific variants in normal and tumoral cases. Finally, in Chapter 11, we show
an application of the graph-matching problem for statistical analysis of variation of
parameters through FN deformation maps.



8
O P T I M A L T R A N S P O RT T H E O RY - A P P L I C AT I O N T O
H I S T O G R A M A N D G R A P H M AT C H I N G

In this chapter, we provide general notions regarding the discrete optimal transport
theory. We focus on some algorithmic aspects, and subsequently, we describe a
methodology based on Gromov-Wasserstein discrepancy between similarity ma-
trices, introduced in [CSP16], that we have selected for the purpose of comparing
graphs. Not being explicitly constructed to match graphs, we illustrate the modifica-
tions that we proposed here in order to employ this approach in a graph-matching
context.

8.1 optimal transport general background

Optimal transport theory has been established as being a powerful tool in data sci-
ences, capable to compare distributions (expressed as features, descriptors, weights,
etc.) and to provide meaningful distances between them while reflecting their
underlying geometrical properties.

Dating back to the 18-th century with the Monge’s Mémoire sur la théorie des
déblais et des remblais [Mon81], the optimal transport (OT) has known significant
advancement with the contributions of Leonard Kantorovich [Kan06] in 1942 in
economics, on the resource allocation problem involving OT, and later, with the
works of Brenier [Bre91] showing there is a link to mathematical domains, such
as convexity, partial differential equations and statistics. A recent collection of
theoretical insights into the optimal transport framework [Vil03; Vil08; San15] is
considered a reference point for an expanding community working with optimal
transport.

In computer vision, the landmark paper [RTG00] on content-base image retrieval,
has introduced the notion of Earth Mover Distance, as a means to compare colour
histograms in a space endowed with a ground distance between the bins (i.e.
individual distance between the colours). The OT framework has subsequently been
used for solving a plethora of applications related to signal and image processing
(e.g. texture and colour modelling, shape and image registration), of which we
name a few that are relevant to the use of OT throughout this manuscript.

One of these applications concerns the color transfer between images, i.e. modify-
ing an image to match the color distribution of another one, while preserving its
geometry. The analogue problem for gray-scale images is the histogram matching
problem that corresponds to the application of the 1D optimal transport between
the gray levels of the pixels of the images [Del04]. The difficulties of color transfer
problem arise when the color distributions have different shapes and the transfer of

89
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colours, being sensitive to outliers, is incoherent for neighboring pixels [DRG09].
Therefore, efforts have been made in order to consider the spatial nature of images
in a regularized formulation of the optimal transport [RDG11; Rab+14]. In [Fer+13],
the relaxed and regularized transport (Figure 8.1) shares similarities with the graph
matching framework as the regularization takes into account the spatial information
provided by the cloud points represented using graphs (graph-based regularization
encodes neighborhood similarity).

(a) Classical setting of OT (with
mass relaxation)

(b) Regularized and relaxed setting
of OT

Figure 8.1: Relaxed and regularized OT, figure inspired from [Fer+13]: Given X and Y as 2
point clouds to be matched under the OT framework (with a mass relaxation
constraint, e.g. one can allow the mass from X to not entirely be transported to
Y). If there is no regularization on the classical formulation then the matching
occurs as in a), while introducing regularization in the transport formulation
(that takes into account the proximity of the points to one another), allows
clusters with similar shapes to be matched together.

Another line of applications concerns the point/cloud/mesh registration for
shape analysis and graphics. Shapes or objects (2D or 3D) are represented through
sets of cloud points endowed with metric properties. Within the optimal transport
methodology applied to compare or register images, it is common to enforce the
neighboring points to remain near to each other after the transformation. Often,
these methods rely on graph-based representations of the shapes, to embody the
structural relationships between the points [Mém11; Mém07; Sol+; CSP16] .

Optimal transport is additionally employed to perform texture synthesis and
mixing, image denoising and restoration, machine learning and statistics, etc. The
range of applications based on the optimal transport framework grows larger every
year considering its attractive properties, however, it is not the intention of this
work to cover them in detail. For a recent review of the computational properties
and applications of optimal transport theory, the reader is referred to [PC19] and
[Kol+17b].

One last relevant application of the OT framework concerns the computation
of the barycenter (weighted mean) of data points, that can be formulated once a



8.2 optimal transport for discrete domains 91

distance (e.g Wasserstein distance) is obtained. The barycenter provides a represen-
tation of the average individual of different sets of objects, shapes, etc, embedded in
a metric space. Aside for the shape analysis [CSP16], barycenters can also be found
in image processing for texture synthesis and mixing [Jul+11].

In this chapter, we introduce the general optimal transport framework for discrete
distributions, such as it is formulated by Monge and reformulated by Kantorovich
through linear programming. We then focus on some particular applications of
the discrete optimal transport, namely 1D OT for histogram equalization and an
extension to the OT theory, Gromov-Wasserstein distance for comparing topological
metric spaces.

8.2 optimal transport for discrete domains

notations :

Let SN = {s ∈ [0, 1]N,
∑
i si = 1} be a set of N-dimensional histograms (probability

vectors).

µ0 =
∑N
i=1 aiδxi and µ1 =

∑M
j=1 bjδyj where δx is the Dirac distribution at

the location x, be two discrete probability measures with (positive) weights
ai,bj, where a,b ∈ SN, on the support defined by {x1, . . . , xN} ∈ X and
{y1, . . . ,yM} ∈ Y.

Monge’s optimal transport problem between discrete measures [Mon81] searches for
the map T : {x1, . . . , xN} 7→ {y1, . . . ,yM} that will associate to each xi, a single yj, by
pushing mass from µ0 to µ1 in such a way so that the mass transportation cost
is minimized. If we consider the cost function c(x,y) defined for (x,y) ∈ X×Y,
then the optimal transport problem between discrete measures, under the mass
conservation constraint, is the following [PC19]:

minT {
∑
i

c(xi, T(xi)) : ∀j,bj =
∑

i:T(xi)=yj

ai} (8.1)

An intuitive way to interpret the mass conservation constraint is the following:
Firstly, the mass cannot be split, i.e. one xi cannot be matched to multiple yj, and
secondly, the surjectivity of the mapping implies that every yj needs to be associated
to another xi. Figure 8.2(a) illustrates an example of a mapping determined by
Monge’s optimal transport theory in a discrete case.

Defining σ as a permutation function, σ : {1, . . . ,N} 7→ {1, . . . ,M}, so that j = σ(i),
the mass conservation constraint can be re-written as:

bj =
∑

i∈σ−1(j)

ai (8.2)

If we consider the particular case where the discrete measures own a support
with equal dimension, N =M and ai,bj are uniform weights, ai = bj = 1/N, then
the transport map is bijective T(xi) = yσ(i). Additionally, we express the result of a
cost function c(x,y) as the element Cij of a matrix C ∈ (R+)N×N.
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(a) Monge Map (b) Monge Map Permutation

Figure 8.2: (a) Monge map T that associates µ0 to µ1 through the map T: T(x1) = T(x2) =
T(x3) = y1; T(x4) = y2; T(x5) = y3; T(x6) = T(x7) = y4. The size of the disks is
proportional to the corresponding weights ai,bi. (b) The weights are uniform
so the map is bijective. One possible map would be: T(xi) = yσ(i), where
σ{1,...,5} = {5, 4, 3, 2, 1}.

Thus the Monge formulation becomes the following optimal matching problem:

min
σ∈Perm(N)

1

N

N∑
i

Ci,σi (8.3)

This particular case is displayed in Figure 8.2(b), where for two given distributions
µ0,µ1, the weights ai,bj, associated to discrete measures with size N, are uniform
so the optimal transport problem can be formulated as a permutation problem.
Being formulated as a permutation problem, (a combinatorial problem), there
can be more feasible solutions; one direct application concerns the comparison of
equal-sized histograms, which is the subject of Section 8.2.3.Kantorovich’s ideas

have an economic
interpretation, that,

for the sake of
analogy, we shortly
illustrate here, as a
resource allocation

problem: Resources
found at xi in the

quantity defined by
ai, need to be

transported at the
warehouses at yi

that demand bj
resources. Knowing

the cost to move a
unit of resource from
ai to bj, as Cij, the

main idea is to
obtain a transport

plan (P), that
optimizes the total

cost of transport.

8.2.1 Optimal Transport with Linear Programming

Regarding the mass constraint, there are certain limitations when comparing dis-
crete probability measures with a different size of the support, i.e. M 6= N. More
specifically, if M < N, the fact that the mass cannot split is too restrictive, as in
this case, assignment maps between µ0 and µ1 cannot be derived. One illustrating
example is given in Figure 8.3, where µ0 = δx1 and µ1 = 1

2δy1 +
1
2δy2 . Under the

assumptions of the formulation in Equation 8.2, one can not find any feasible map
between µ0 and µ1.

In the next subsection, we present a relaxation of the mass constraint, an im-
portant contribution of Kantorovich [Kan06] to the optimal transport theory, with
a strong economical flavour. In the above example, this relaxation allows for the
mass at location x1 to be split towards y1,y2. As aleady mentioned, Kantorovich’s
contribution to optimal transport theory concerns the relaxation of the mass conser-
vation constraint. Under Monge’s formulation, this constraint states that a point at
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Figure 8.3: Monge mass splitting: no feasible transport map between µ0 and µ1.

location xi can only be assigned to another yi. Specifically, in his groundbreaking
work, Kantorovich proposes to have the mass at any location xi, potentially splitted
across various locations yj.

To formalize this aspect, in the framework of optimal transport between two
discrete probability measures µ0 and µ1, we define the transport matrix P ∈ RN×M,
whose element Pij indicates the amount of mass flowing from ai to bj.

Then, the Kantorovich optimal transport now reads:

FC = minP
∑
ij

CijPij (8.4)

where P1N = µ0, PT1N = µ1 and P > 0. Finding the optimal transport plan
denoted by P of the convex optimization problem in Equation 8.4, can be achieved
by solving a linear program, which is a method to obtain the best outcome given
constraints that are linear equations of the form: LQmin = {

∑
ijCijPij : Pij >

0,
∑
j Pij = µ0,

∑
i Pij = µ1} [San18]. As a matter of fact,

transportation
problems were
among the first
problems to be
approached with
linear programs;
optimal transport are
in fact equivalent to
an important class of
linear programs,
known as minimum
cost network flows
[KV00].

This formulation is analogue to the Earth Mover Distance, defined in [RTG00],
where it has been used in a content-based image retrieval task, leveraging the fact
that metric can provide a meaningful comparison between histograms, based on
the known distance between the individual bins (encoded in the cost matrix).

For the example above, where µ0 = δx1 and µ1 = 1
2δy1 +

1
2δy2 , the feasible

coupling (transport) matrix that respects the mass constraints of Equation 8.4 is
shown in Figure 8.4.

Figure 8.4: Kantorovich mass splitting

8.2.2 Metric properties of optimal transport

The question whether OT can provide a distance between histograms (probability
measures) has been studied and proven true [Vil03] as long as the cost matrix
satisfies certain properties. In [RTG00], the cost matrix C is associated to the ground
distance between the bins of the histograms µ0 and µ1. We can define Wp, the
p-Wasserstein distance on SN, as:

Wp(µ0,µ1)
def.
= FCp(µ0,µ1)1/p (8.5)
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8.2.3 Optimal transport 1D

1D optimal transport can be used to perform histogram equalization, with applica-
tions the histogram of a gray-scale images.

problem formulation : Let us consider f,g ∈ RN, where f = (fi)
N
i=1,g =

(gi)
N
i=1 correspond to pixel intensities of gray-scale images that are characterized

by the empirical intensity distributions: µ0 = 1
N

∑N
i=1 δfi and µ1 = 1

N

∑N
i=1 δgi ,

respectively.
Next, we define the "ground cost" between the sets of 2D pixel coordinates:
∀(x,y) ∈ R2 ×R2, as the Lp Euclidean-norm cost, C(x,y) = ||x− y||p, where p > 1.
An optimal matching (assignment) between f and g corresponds to the optimal
permutation σ∗ that minimizes the difference between f and the permuted (re-
ordered) version of g, as follows:

σ? ∈ arg min
σ∈SN

N∑
i=1

C(fi,gσ(i)) (8.6)

In order to compute σ∗, we follow the subsequent steps that are illustrated in
Figure 8.5:

1. Consider σf, the permutation that will sort the pixel indices (enumerated in
a predefined order, e.g. column-wise from 1 to N) of f, such that fσf(k−1) 6
fσf(k) 6 fσf(k+1), ∀k ∈ {2, ...,N− 1}. Analogously, we consider σg, such that
gσg(k−1) 6 gσg(k) 6 gσg(k+1),∀k ∈ {2, ...,N− 1}.

2. Denote σ−1f as the inverse permutation, such that σ−1f (σf) = Id.

3. Consider the mapping (assignment) fσf(k) ↔ gσg(k), ∀k ∈ {1, ...,N}, that
corresponds to an optimal assignment in the sense of the cost function C. It
follows that the optimal permutation that is applied to g to "reproduce the
closest as possible" the ordering of f is of the form: σ∗ = σg(σ−1f ).

The entropic
regularization of the
optimal transport is

inspired from
transportation

theory [Erlander and
Stewart][ES90],

where the properties
of entropy as a

dispersion measure
were considered for

traffic patterns
modelling. Using an
entropic term in the

optimal transport
problem (thus

mitigating sparsity
of the couplings) is

shown to describe
more realistically the

traffic patterns.

By applying the optimal permutation σ∗ to g, we obtain feq = g(σ∗), that rep-
resents the reordering of the pixel indices of g to match as closely as possible f,
or, alternatively, the histogram equalization of f, using the histogram of g. The
result for the histogram equalization of Image a in Figure 8.6 using the histogram
of Image b, is shown in Figure 8.7.

8.3 entropic regularization of the ot

The classical formulation of the optimal transport theory, such as it is formulated
in Section 8.2.1, is a combinatorial problem, and the algorithms that provide the
solution (e.g. network simplex or interior point methods) have a complexity of
at least O(N3 logN)1 for histograms of dimension N. The cost can be prohibitive
for histograms whose dimension exceeds a few hundreds. A regularization of the

1 Notation for describing the time complexity (in number of operations) of an algorithm being developed
to operate on a set of N elements.
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Figure 8.5: OT-1D: Permutation scheme and optimal assignment between f,g (top and
fourth rows correspond to pixel intensities of f and g, respectively, displayed in
a row enumerated from 1 to 9, starting from the upper-left corner), the middle
plots (second and third) correspond to pixel intensities sorted in ascending order
with σf,σg, respectively. When multiple pixels have the same intensity, the
permutation that orders the values is not unique. The assignment (that will instill
the optimal permutation upon g) is given by fσf(k) ↔ gσg(k),∀k ∈ {1, ..., 9}.
The scheme explicitly shows that the feq is formed by the g pixels intensities,
reordered (permuted) according to the optimal transport problem, to account
for "location" of the corresponding intensity value in f. In other words, feq
"reproduces" the ordering of the pixels in f as closely as possible to resemble f,
but with the intensities (hence histogram) belonging to g. f has inherited the
histogram of g.

formulation of Equation 8.4 can be proven useful for accelerating the computational
time.

The work of [Cut13] showed that by regularizing the classical optimal trans-
portation problem with an entropic term, one can obtain a distance, which can be
computed through algorithms that converge at several orders of magnitude faster
than the transportation solvers.

The entropy of the coupling matrix (a 1-strongly concave function [PC19]), is
defined as follows:

H(P) = −
∑
i,j

Pi,j(log(Pi,j) − 1) (8.7)

Regularizing the original formulation in Equation 8.4, with an entropic term, leads
to the following formulation of the regularized discrete optimal transport:

FεC = minP
∑
ij

CijPij − εH(P) (8.8)
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(a) Image a (b) Image b

(c) Intensity Histogram Image a (d) Intensity Histogram Image b

Figure 8.6: OT-1D: (a),(b) Gray-scale images f,gwith the corresponding intensity histograms
µ0,µ1 (10 equal-spaced bins within the range of the f,g) displayed below in
(c),(d).

(a) Image a (b) Intensity Histogram Image a

Figure 8.7: OT-1D: (a) Image a is enforced with the histogram corresponding to Image b (b),
as a result of mass transport OT -1D between their histograms. In other words,
Image a corresponds to the re-ordered (with the optimal permutation) version
of Image b.

The objective function in Equation 8.8 is a strongly convex function, that will thus
lead to a unique optimal solution. Increasing the value of ε will "diffuse" the
couplings, i.e, P becomes less sparse. The advantages of this behaviour relate to the
speed of convergence of the minimization algorithms, i.e. increasing ε and leads to
a faster convergence, as shown in [PC19]. Additionally, for a small regularization,
the solution converges to the maximum entropy optimal transport coupling, while
for a large regularization, the solution converges to the coupling with maximal
entropy between two prescribed marginals µ0, µ1, namely the joint probability
between two independent random variables distributed following µ0, µ1.

The entropic regularization formulation can be approximated with Sinkhorn’s
algorithm[SK67]. In [Cut13], it was showed that Sinkhorn-Knopp’s matrix scaling
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algorithm can perform significantly better on high-dimensional datasets (several
orders of magnitude faster) than the algorithms solving the classic formulation of
the optimal transport, making this framework feasible for the machine learning
community.

8.4 gromov-wasserstein discrepancy for optimal transport be-
tween structured objects

There are applications where it might be interesting to consider the optimal trans-
port framework for shape comparison (represented, for instance, by sets of points
embedded in a metric space). Discrete distributions would then be associated to
the sets of points. A weakness of the classic discrete formulation in Equation 8.4, is
that it doesn’t take into account the inner structural dependency of the objects (e.g.
neighboring points should stay together when transported/assigned to the other
shape).

Within the framework of structured optimal transport, several works [CSP16;
AMJJ18; Vay+18; Cou+17] have shown the advantage of incorporating additional
geometrical properties into the cost function, for tasks such as domain adaptation,
natural language processing, computing graph barycenters or graph clustering.
If the approach in [CSP16] includes the intrinsic structure of the objects in the
cost formulation, the authors in [Vay+18] present a new class of distances, that
incorporates both structural and feature information into its transport cost. They
focus on previously labeled structured objects, where for instance, graph edges
represent relationships between features (nodes).

(a) Graph G and its associated
mass distribution

(b) Graph H and its associated
mass distribution

Figure 8.8: OT-Gromov-Wasserstein: (a) Mass is associated to nodes in a graph G that are
transported to nodes of graph H (b), after finding the optimal assignment.

8.4.1 Gromov-Wasserstein discrepancy - adaptation to a graph-matching context

Throughout this manuscript, we are mainly interested in comparing unlabeled
graphs, where no previous pairwise correspondences between the nodes of two
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graphs are known beforehand. Therefore, we selected the work of [CSP16], where
the authors have considered a metric called Gromov-Wasserstein, capable of com-
paring objects (with a defined structure, given for instance by distance matrices)
that can lie in spaces with different dimensions. This discrepancy, formulated as a
minimization problem of a non-convex objective function, is computed with a fast
iterative algorithm based on an entropic regularization of the transportation matrix.

It is worth mentioning that the formulation [CSP16] for computing the Gromov-
Wasserstein discrepancy is conceived for similarity matrices, i.e. any matrices con-
taining pairwise relationships (not necessarily distance matrices). The change of
semantics to suit a graph comparison context is clear: similarity matrices become
graph adjacency matrices.

In the following, we consider (G,µ0) ∈ RNG×NG ×SNG and (H,µ1) ∈ RNH×NH ×
SNH , where G and H (Figure 8.8) encode the graphs’ structure given by either the
adjacency matrices, or the shortest path between the graph nodes, and µ0 and µ1
are the mass distributions associated to the graph nodes (e.g. uniform distributions,
µ0 = 1

NG
1NG and µ1 = 1

NH
1NH). The entropic Gromov-Wasserstein discrepancy

between (G,µ0) and (H,µ1) is defined as follows:

min
P ′

∑
i,j,k,l

L(Gi,k,Hj,l)P ′i,jP
′
k,l − εH(P

′) s.t.

P ′1NH = µ0, P ′
T
1NG = µ1

(8.9)

The transport matrix indicates the matching between the two graphs such as
if its term P ′(i, j) > 0, the node j of graph H is assigned to the node i of graph
G. The loss function L(u, v) can be taken as the quadratic loss (e.g. of the form
L(a,b) = 1

2 |a− b|
2) or Kullback-Leibler divergence.Considering a

quadratic loss for the
Gromov-Wasserstein

discrepancy, the
formulation can be

traced back to the
softassign quadratic
assignment problem

from the inexact
graph-matching
domain [GR96].

practical considerations : If the size of the graphs to compare is different,
i.e. NG 6= NH, the constraints of Equation 8.9 (that require all the mass from G to be
transported to H) will determine a "dispersion" of mass to compensate the difference
of mass between individual nodes of both graphs. Let us consider the following
example (Figure 8.9), where we are given two graphs with size NG > NH, and
uniform distributions µ0 = 1

NG
1NG and µ1 = 1

NH
1NH . It follows that µ0(i) < µ1(j),

implying that under the mass constraints of the problem, at least 2 nodes from H

have to "receive" the mass from G, or, in an assignment framework, that a behaviour
of many-to-one matching is being triggered. This behaviour is problematic as one
cannot control the dispersion of mass, or, analogously, the nodes assignment.

A second practical aspect results from the choice of regularizing the transport
of mass with an entropic term. As already pointed out in the previous section,
increasing the value of ε diffuses the couplings, which is equivalent to saying that
the each of the nodes from one graph, will potentially be assigned to all the nodes
from the second graph. Despite the algorithmical advantage of regularization, we
decide to set ε = 0 to favour one-to-one assignments, in which case the non-convex
optimization problem can approximated by a classical solver with supercubical
complexity.
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(a) Graph G and its associ-
ated mass distribution

(b) Dispersion of
mass

(c) Graph H and its associ-
ated mass distribution

(d) Graph H and its associ-
ated mass distribution af-
ter adding a "dummy"
mass

Figure 8.9: Mass dispersion-matching graphs using optimal transport framework with
Gromow-Wassertein discrepancy. The difference in size of two graphs G and H
triggers a mass dispersion, i.e. every node of H has to receive mass from 2 nodes
of G, to satisfy the mass conservation constraint. The workaround consists in
adding a dummy node to compensate for the difference of mass.

8.4.2 Gromov-Wasserstein barycenter

The work of [CSP16] defines Gromov-Wasserstein barycenters for a set of (similarity
matrices) that we consider here as graphs represented by the adjacency matrices
Gs ∈ RNs×Ns . If we denote by EG,H(P

′) the objective function in Equation 8.9,
then the barycenter graph of adjacency matrix G ∈ RN×N, where N is user-
determined and µ is the associated mass distribution, is determined by the following
formulation:

min
G,P ′s

∑
s

λs(EG,Gs(P
′
s) − εH(P

′
s)) (8.10)

where µs are the mass distributions associated to Gs.
The authors in [CSP16] have proposed an iterative minimization scheme, with

respect to G and alternatively to P ′s, and have subsequently shown that when using
a quadratic loss, the solution of Equation 8.10, with respect to G, converges to
1
µµT

∑
s λsP

′
s
T
GsP

′
s. P ′s ∈ RN×Ns are the transport matrices between the barycenter

and the similarity matrices set. λs are considered weights so that
∑
s λs = 1. The



100 optimal transport theory - application to histogram and graph matching

term λsP
′
s
T
GsP

′
s recovers a similarity to the formula of the permuted graph from the

graph-matching section Equation 7.3, indicating that the solution to the barycenter
based on Gromov-Wasserstein discrepancy converges to a sort of the average of
realigned matrices Gs.

8.5 summary

We have introduced the discrete optimal transport framework, and more precisely
the methodology based on the Gromov-Wasserstein discrepancy, that we have
adapted with the purpose of comparing graphs. An application of this can be found
in the next chapter (Chapter 9), where we perform an analysis of the performance
of the optimal transport using Gromov-Wasserstein and many-to-many assignment
framework, in a graph comparison context. We also employ an OT-based method,
1D OT transport for "Gaussianization" of an image (i.e. conversion of its native
intensity histogram into a normal distribution) (Chapter 6, Chapter 11). Lastly, the
formulation of the Gromov-Wasserstein barycenter serves as inspiration for one of
the methodologies proposed in (Chapter 10) for defining the representative graph
of a given set.



9
C O M PA R I S O N O F P E R F O R M A N C E S O F O P T I M A L T R A N S P O RT
A N D M A N Y- T O - M A N Y A S S I G N M E N T

In previous chapters, two approaches for graph comparison were described, namely
many-to-many assignment and optimal transport-based framework. Before deciding
upon the most appropriate method to use in a real setting, i.e. comparison of graph-
based FN networks or computation of prototype graphs (average individual of a
specific class), it was essential to perform a study of the algorithms’ behaviour in
a tractable and simpler setting, using a database of generated toy-graphs. In this
way, we are provided with a clear expectation of the desired result in terms of node
assignment, and subsequently, of the expected cost after graph matching.

In this chapter, we describe our contribution in terms of the analytic framework,
that is able to provide a comparison of the performances of the many-to-many
assignment and optimal transport-based approach, upon matching randomly gen-
erated graphs.

9.1 toy graphs generation

In order to analyse the the behaviour of the many-to-many assignment and optimal
transport frameworks, we have generated a database of graphs, following the steps
that we describe here (an illustration of the steps is also shown in Figure 9.1):

1. Generation of a uniform Poisson point process 1 with average intensity λ on
a bounded rectangle region of size N×M pixels: the number of points is a
Poisson random variable with mean λMN distributed uniformly in the 2D
cartesian coordinate system.

2. The previously generated points constitute the seeds of Voronoi diagrams
(the partitioning of a plane with N points into convex polygons such that
each polygon contains exactly one generating point and every point in a given
polygon is closer to its generating point than to any other).

3. Derivation of the skeleton-graph-based of the Voronoi images and modify the
intensity λ to change the graph dimension as desired.

1 Poisson point process [Poi] is characterized by the Poisson distribution: consider N(B), a random
variable, as the number of points of a point process N in a region B ⊂ R2. The probability that n
points belonging to a homogeneous Poisson point process with intensity λ, exist in B, is given by:
P{N(B) = n} =

(λ|B|)n

n! e−λ|B|, where |B| is the area of B. A uniform Poisson point process is of the
form Λ = νλ, where ν is a Lebesgue measure and λ is related to the expected number of Poisson
points existing in some bounded region.
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(a) (b)

(c) (d)

Figure 9.1: Methodology for generating graphs with Voronoi cells and Poisson point process:
Uniformly distributed points (◦), displayed as a Poisson point process on a
rectangle of size 100× 100 pixels and mean intensity λ = 0.009 (a,b) and λ = 0.03
(c,d). Figures (c,d) illustrate the graphs associated to the Voronoi diagram
structure built from the seeds-Poisson points.

Following the above graph-generation methodology, we have first generated
random graphs of different size (i.e. 16 vertices and 181 vertices), as illustrated in
Figure 9.2. These graphs describe thus the structure of Voronoi diagrams, generated

(a) (b)

Figure 9.2: Generated toy-graphs: (a) 16 nodes and (b) 181 nodes

from seeds uniformly distributed on a bounded region.
For the purpose of graph matching between pairs of test graphs, several spatial

transformations were applied to the previously generated samples:
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• Rotation: In order to test the ability of the methods to detect the isomorphic
graphs, the first modification is related to the rotation (permutation) on
the set of nodes. Therefore, the size remains unchanged when applying the
modification and the challenge of the matching technique is to detect the
isomorphism case (thus, the matching cost should be 0).

• Dimension change: Subsequently, we chose to modify the size of the graphs by
removing nodes of various degrees (the node degree is given by the number
of incident edges). In this case, the expected cost depends on the number of
removed edges, as a consequence of the node degree of the extracted nodes.

(a) (b) (c)

(d) (e) (f)

Figure 9.3: Modified toy-graphs: (a,d) Rotation of the node indexes (b,e) Removal of one-
degree node, (c,f) Removal of higher-order degree

9.2 methodology for establishing a common framework for com-
parison

For each case determined by the aforementioned spatial modifications, we have, in
turn, represented the two graphs to compare, G and H, (see Figure 9.2, Figure 9.3)
by the binary adjacency matrix, or by the length of shortest path between the nodes
up to different depths: 2-nd degree, 3-rd degree, and total. Technically, for a k-th
(k ∈ Z,k > 2) degree, an element of the adjacency matrix is either 0, if the length
of the shortest path between node i and node j is greater than k, or a value from
the set {1, 2, · · · ,k}, otherwise. Additionally, we considered the integer values of
the shortest path between nodes as well as the subunitary values (i.e. replacing the
integer value by its inverse).
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(a) (b) (c)

Figure 9.4: Adjacency matrix type for a 4-nodes graph example: (a) binary adjacency matrix,
(b) adjacency matrix representing the length (natural integer) of the shortest
path between nodes up to the 2nd degree, (c) adjacency matrix representing the
length (natural integer) of the shortest path between nodes up to the 2nd degree

9.2.1 Many-to-many assignment framework parameter selection

Denoting by F the objective function in Equation 7.5 and by J1, J2 as all-ones
matrices of size NK ×NG, and NK ×NH, the actual algorithm seeks the matching
matrices P1,P2 that satisfy:

minP1,P2{F− λs(||P1 − 0.5J1||2F + ||P2 − 0.5J2||2F + c)} (9.1)

where λs is a sparsity penalization parameter and c is depending on the graphs
size. The constraints are identical to those in Equation 7.5. We tested the method
for various values of λs in the [0, 1] interval, and chose the parameter configuration
that resulted in the best matching.

The difference between the graphs size is handled either by setting kmax > 2

(hence allowing at most kmax vertices to be merged), or by setting kmax = 1 (hence
allowing the implicit choice of nodes that will be assigned as dummy, within the
graph having a larger dimension). Setting kmax > 2 requires careful tuning of λs,
and doesn’t always guarantee a good matching quality, therefore, we kept kmax =

1.
The initialization of the P1 and P2 matrices is extremely important as the

non-convex problem is sensitive to it. In our experiments, we kept the initial-
ization proposed by the authors, shown empirically to be a reasonable choice:
P1 =

1
NH

1NG1
T
NH

and P2, the identity matrix I.

9.2.2 Optimal transport framework parameter selection

For the loss function L(u, v), we considered the quadratic version defined in [CSP16],
and uniform weights associated to the graph vertices (i.e. a = 1

NG
1NG and b =
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1
NH

1NH). We assume that a vertex i of graph G is matched to a vertex j of graph H,
if its entire weight is transported to that of vertex j.

Regularizing the problem with an entropy term is shown to lead to a faster
iterative algorithm. However, this also leads to a spread of mass from vertex i from
graph G to multiple vertices of graph H. In order to recast this approach in the
framework of graph-matching problems, we set ε = 0.

Moreover, to avoid the mass spreading as a consequence of the different dimen-
sions of the two graphs (e.g when removing vertices), we added a dummy vertex
(with no connection) to the graph with lower dimension (e.g. graph H) to which we
assigned a mass that compensates the mass difference of vertices between the two
graphs. Hence, this weight is equal to 1− NH

NG
.

9.3 results and interpretation of the comparative performance

analysis on toy-graphs

In order to evaluate the performances of the two chosen methods (whose im-
plementations are found online 2 3) in a graph matching setting, for each of the
previous pairs of graphs (G−H), we ran the algorithms for graph matching us-
ing many-to-many graph matching and structured optimal transport. In order to
compare the performances of the two methods, we computed the cost of matching
given by the difference between G, the adjacency matrix of the first graph, and
PHPT , the adjacency matrix of the matched graph, as ||G− PHPT ||1, where ||A||1 =
(
∑
i

∑
j|Aij|).

Since we already know which is the expected assignment between the vertices
of the simulated graphs, we computed the cost of the perfect matching for all of
the cases mentioned above. Table 9.1 and Table 9.2 contain the matching cost and
execution time in the case of the perfect matching (PM), many-to-many method
(MM), and the optimal transport (OT).

We notice in the case of many-to-many assignment, that for both graphs, the
rotation is handled perfectly for most cases, except when G and H are binary
adjacency matrices. Additionally, removal of one degree node returns the expected
assignment, while removal of a higher degree node is correctly handled only in the
case of larger graphs.

In the case of the approach based on the optimal transport, the results indicate
that similarly to the first method, the rotation of the graphs is handled well,
except for the case when G and H are the adjacency matrices. A higher order of
the shortest-path distance provides a more faithful representation of the graph
adjacencies. However, in the case of larger-size graphs, increasing the order might
also increase the time needed for the algorithm to converge to an optimal solution.
This leads us to believe that a compromise (e.g. consider a 3rd order) might work
best, as confirmed by the results.

Generally, the optimal transport fails to provide the expected matching in far
more scenarios than the many-to-many assignment. For most of the experiments
nonetheless, the OT method finds the result in a shorter time, corresponding to
one order of magnitude for the smaller graphs, and up to two orders of magnitude

2 http://projects.cbio.mines-paristech.fr/graphm/mtmgm.html

3 https://github.com/gpeyre/2016-ICML-gromov-wasserstein

http://projects.cbio.mines-paristech.fr/graphm/mtmgm.html
https://github.com/gpeyre/2016-ICML-gromov-wasserstein
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Table 9.1: Maching cost for the perfect matching (PM), many to-many matching (MM) and
optimal transport (OT). Graphs have 16 nodes and the 3 transformations are:
rotation, removal of one-degree node, removal of multiple-degree node. G and
H have the following representations: binary adjacency matrices (Int 1), shortest
path integer values and subunitary values at order 2,3, total (Int 2, Int 3, Int T,
Sub 2, Sub 3, Sub T).

Graph PM MM OT

Transf G,H Cost Cost Time(ms) Cost Time(ms)

Int 1 0 16 70 52 30

Int 2 0 24 50 0 5

Int 3 0 0 20 0 4

IntT 0 0 20 0 2

Sub 2 0 0 20 0 4

Sub 3 0 0 20 0 3

SubT 0 0 10 0 2

Int 1 2 2 20 58 70

Int 2 10 10 20 86 7

Int 3 34 34 20 186 6

IntT 102 142 40 118 4

Sub 2 4 4 30 32 5

Sub 3 6.7 6.7 20 18 4

SubT 10.4 10.4 20 17.5 2

Int 1 6 14 60 58 40

Int 2 42 82 90 114 5

Int 3 124 196 100 232 3

IntT 538 546 100 550 2

Sub 2 15 29 60 67 5

Sub 3 23.6 39 70 44.3 4

SubT 40.2 50 40 57.6 2

for the largest ones. This may be a considerable advantage over the many-to-many
graph matching technique, if considered for the modeling of real graph-networks.

9.4 conclusions

Generally, when it comes to comparing undirected and unlabeled graph networks in
an assignment framework, the shortest path seems to be a better choice compared
to the binary adjacency matrix (G - H representation), as it incorporates more
information about their topological structure. In terms of the matching cost, many-
to-many matching performs better, as highlighted by the results. However, we
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Table 9.2: Maching cost for the perfect matching (PM), many-to-many matching (MM) and
optimal transport (OT). Graphs have 181 nodes and the transformations are:
rotation, removal of one-degree node (Remove A), removal of multiple-degree
node (Remove B). G and H have the following representations: binary adjacency
matrices (Int1), shortest path integer values and subunitary values at order 2,3,
total (Int2, Int3, IntT, Sub2, Sub3, SubT).

Graph PM MM OT

Transf G,H Cost Cost Time(ms) Cost Time(ms)

Int 1 0 424 5600 1048 100

Int 2 0 0 1800 0 80

Int 3 0 0 1500 0 30

IntT 0 0 2700 0 20

Sub 2 0 0 2000 384 100

Sub 3 0 0 1500 14.7 50

SubT 0 0 1700 0 20

Int 1 2 2 2300 1054 100

Int 2 14 14 1900 4074 100

Int 3 50 50 1500 50 40

IntT 3766 3766 3000 5006 30

Sub 2 5 5 5900 1000 100

Sub 3 9 9 2000 29.7 80

SubT 45.9 45.9 1900 105.2 40

Int 1 8 8 4800 1044 100

Int 2 56 56 2800 4324 90

Int 3 196 196 2000 196 70

IntT 4928 4928 2900 5916 30

Sub 2 20 20 18600 108 20

Sub 3 34.7 34.7 3000 552 100

SubT 94 94 2900 662 90

found that having to set a sparsity penalization parameter to trigger the expected
solution as well as the sensitivity of the non-convex problem to the initialization, to
be important drawbacks. The method by optimal transport performs significantly
faster. Adding a dummy node to avoid mass splitting allows us to employ this
formulation as a one-to-one graph matching problem.

The results that we have obtained have a preliminary character, as we intend
to explore these observations for further development of a computational model
that is able to compare biological networks. Since the many-to-many assignment
framework is more reliable in terms of the assignment quality for most of the
scenarios, which is essential for the next steps, we decided to select this method
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for further development. More specifically, we intend, based on the many-to-many
assignment framework, to propose different methodologies to compute and define
the prototype of a given set of graphs (Chapter 10). Additionally, the graph matching
setting will be used within an analytic framework, to study the variation of certain
fiber parameters between classes, where the matching (registration) of graphs
mitigates the impact of the variability within the tissues (Chapter 11).
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M E T H O D O L O G I E S F O R D E R I V I N G T H E R E P R E S E N TAT I V E O F
A S E T O F G R A P H S

In machine and object prototype learning, median computation (estimation) is an
important technique for capturing the representative model of a given set of objects
(patterns). Such principles are already found in machine learning methods, e.g. clus-
tering algorithms, (k-means clustering, nearest-centroid classification, etc.). These
approaches are based on the computation of centroids of sample sets represented as
points in a vector space, and require the notion of distance or similarity between the
samples to evaluate the dataset centroids. A generalization of these techniques is
based on the computation of the Fréchet mean defined as an estimate of the "mean"
or barycenter for objects situated in various metric spaces.

When the objects are modeled through graph representations, one of the main
concerns becomes the learning of a representative (prototype model) of a set of
graphs associated to objects belonging to the same class. For example, in applications
where multiple different instances of the same objects are available, the task is to
build a model prototype that describes the best the collection of samples.

Generalized median graphs were introduced in [Jia+01] and are defined as the
graphs that have the smallest sum of distances to all the graphs in the set. If the
previously defined graph is, in turn, a member of the set, then the median graph
becomes the set median. The computation of the median is generally exponential in
terms of the size of the input graphs (set median) and in terms of the input number
of graphs (generalized median). In [Jia+01], the solution of the generalized median
graph problem was based on a genetic search algorithm 1 relying on the graph-edit
distance between the graphs. A different algorithmic approach (based on the edit
distance) was adopted in [Muk+07], for the computation of the generalized median
graph in the biological image analysis context, and for building a topological map
of all pairs of the human chromosome.

We reiterate some notations in order to formalize the median graph problem:

notations :

Let G be a graph, where G = (V ,E) is a set of nodes (vertices) connected by the set
of edges E ⊂ V × V . The structure of G can be encoded in a square adjacency
matrix, AG of size |V |× |V |, where (AG)ij is equal to 1 if node i is connected
by an edge to node j, and 0 otherwise, also called a binary adjacency matrix.

1 Genetic search algorithms [Gen] are used to model optimization problems, in a framework inspired
by the process of natural selection (population fitness corresponds to the objective function) relying
on bio-inspired operations: mutations, crossover, selection.
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We refer to real-valued adjacencies matrices (weighted) if (AG)ij represents the weight
assigned to the edge between node i and j.

G is called an undirected graph when AG is a symmetric matrix, i.e. (AG)ij =
(AG)ji.

We refer to the matching between 2 graphs as the mapping that denotes the
assignment between the nodes: f : VG → VH. Denoting by NG = |VG| and by
NH = |VH|, the number of nodes of G and H, respectively, the assignment can
be encoded into a binary correspondence matrix P ∈ {0, 1}NG×NH , such that
Pi,j = 1 when the i-th node of G and the j-th node of H are matched and 0,
otherwise.

[ ] the Iverson [Ive] bracket defined as:

[P] =

{
1 if P is true

0 otherwise.

problem formulation : Let G = (G1,G2, . . . ,Gn) be a set of weighted undi-
rected and unlabeled graphs, with different dimensions. Given a distance function
d(·, ·), the generalized median graph Ĝ minimizes the sum of distances towards
each graph Gi as follows:

Ĝ = argmin
n∑
i

d(Ĝ,Gi) (10.1)

An alternative representation is given by the set median graph which is the result of
the same formulation in Equation 10.1, with the additional constraint that Ĝ ∈ G.
d(·, ·) is often considered to reflect a similarity measure between a pair of graphs
(e.g. the cost of matching provided by graph matching algorithms).

A different line of work (that was previously defined in Section 8.4.2) based
on optimal transport [CSP16] defines barycenters for a set of pairwise similarity
matrices (not explicitly graphs) using the Gromov-Wasserstein metric to compare
and average point clouds. For the sake of completeness, we reiterate that if we
consider graphs instead of similarity matrices, represented by the adjacency ma-
trices Gs ∈ RNs×Ns , then the solution of the problem determining the barycenter
graph of adjacency matrix G ∈ RN×N, where N is user-determined and µ is the
associated mass distribution, converges to 1

µµT

∑
s λsP

′
s
T
GsP

′
s, where µs are the

mass distributions associated to Gs. P ′s ∈ RN×Ns are the transport matrices between
the barycenter and the similarity matrices set. λs are considered weights so that∑
s λs = 1.
This formulation returns (even when considering graphs as inputs) a "pairwise

similarity matrix" - richer representation of the connection between the nodes which
can potentially link all nodes together by weights, rather than an adjacency matrix
for describing the graph, so additional steps need to be taken on the generated result
to decide how to convert it to a binary adjacency matrix . However, interestingly,
the term λsP

′
s
T
GsP

′
s recovers a similarity to the formula of the permuted graph

from the graph-matching section Equation 7.3, indicating that the solution to the
barycenter based on Gromov-Wasserstein discrepancy converges to a sort of the
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average of realigned matrices Gs. This idea serves thus as inspiration for the first
approach proposed here to define the representative graph.

Finally, the authors in [Vay+18] show how barycenters of labeled graphs (e.g.
recovering the barycenter of a set of noisy graphs) can be obtained, using a different
metric, Fused Gromow-Wasserstein, that takes into account the node label infor-
mation within its objective function. Our interest throughout this manuscript has
been however focused on comparing and computing representative for unlabeled
graphs, as the node labels for FN graphs are not explicitly defined.

10.1 methodology based on a majority voting after matching to a

common graph

The present methodology to construct a prototype graph Gb for a given collection of
graphs, is based on the many-to-many assignment framework, defined in Section 7.2.3.
We need to ensure equal dimension for the graphs, therefore, for the sake of
simplicity, we added the necessary number of dummy nodes to each graph from G.

The basic principle is to start by matching the sequence of graphs in G to one
of the graphs Ginit, where Ginit ∈ G (e.g. the set median graph), using the many-
to-many matching technique. This will result in a collection of permuted graphs
Mi (isomorphic to Gi, but with permuted nodes to match Ginit). Subsequently, for
every possible edge [Gb(jl) = 1] between two nodes (j, l), a decision on whether
to preserve it is performed, based on the number of appearances of the same edge
Mi(jl) within the permuted graphs.

In algorithm 1, the decision is made following a majority voting rule: if the edge
Gb(jl) is found in at least half of the permuted graphs Mi, Gb(jl) is set to 1.

Algorithm 1: Representative graph methodology I
Result: Barycenter Gb
initialization Gb = Ginit; i = 1;
while i 6 n & i 6= init do

matching Gi to Ginit : Mi = P
TGiP;

i = i+ 1;
end
Gb(jl) = [

∑
iMi(jl) >

n+1
2 ];

The algorithm 1 provides a representative graph Gb for a given set of graphs
G. We consider that G is embedded in a 2D Cartesian space, i.e. nodes are located
at positions indexed by 2D coordinate vector v = (x,y)T , on a rectangular grid
of size M×N. In order to consider the spatial localisation of the nodes for the
prototype graph development and, thus, assign Gb a localisation, there are several
alternatives.

We can, for instance, after having established the structure of Gb, to consider for
every node Gb{k}, the list of matched nodes (excepting dummy nodes), composed of
one corresponding node for each Gi. Essentially, for a given node of the barycenter
Gb{k},k ∈ {1 · · ·N2G}, the list of nodes of Gi that were matched to it, is represented
as a one-dimensional vector Nk, whose element Nk(m) contains the index of the
matched node in the m-th graph, where m ∈ {1, · · · ,n}. The spatial localisation can
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thus be evaluated, as the median value (2D) of the spatial coordinates assigned to
the matched nodes (e.g. for Gb(k) : vGb(k) = median(vNk)).

However, it is relatively easy to see why such a formulation may lead to incoherent
physical representations. The matching problem (Section 7.2.3) does not explicitly
take into account the physical localisation of the nodes, it only considers the
graph structure in the formulation. Hence, for an example where the graphs to
be matched are isomorphic, but the corresponding nodes are found at different
locations, the physical embedding of the barycenter resulted from the methodology
illustrated above, tends to "cluster" the nodes towards the center of the spatial grid
(Figure 10.1).

To overcome this shortcoming, instead of directly computing the median value
of the spatial coordinates, one can resort to performing a registration of the node
locations with respect with respect to Ginit, prior to an evaluation of the median
value. Algorithms such as Procrustes analysis [Pro], are able to determine a linear
transformation (translation, reflection, orthogonal rotation, and scaling) of the
coordinates of Nk lists, in order to register them with respect to the nodes of
Ginit, once the graph matching is obtained (hence correspondence node-to-node
is known). Such a linear transformation is performed in an attempt to optimize a
goodness-of-fit criterion (the sum of squared errors between the location of Ginit{i}

and corresponding node of G{i}). Consequently, registering the coordinates of the
matched nodes in the graph set onto the initial graph Ginit mitigates the problem
of different spatial localisations when producing the physical embedding of the
prototype graph in the 2D space (Figure 10.1).

discussion : The quality of the representative graph can be linked to the match-
ing quality and several examples (Figure 10.2, Figure 10.3, Figure 10.4, Figure 10.5)
illustrate this fact. As resulted from Section 9.3, the many-to-many assignment
framework is preferred here, as it takes into account the global structure of the
graphs during matching, and additionally, provides overall better results during
the tests scenarios illustrated in Chapter 9. Regarding the estimation of the spatial
localisation of the representative graph, it is important to register the positions of
the matched nodes with respect to the initial graph Ginit before computing their
average or median positions. Intuitively, this methodology expresses the representa-
tive graph as a subset of Ginit, or alternatively, the cluster of connected edges from
Ginit that are matched in the other graphs from G. Inevitably, the structure and
shape of Gb depends on that of Ginit (Figure 10.6, Figure 10.7).
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Figure 10.1: Prototype for isomorphic toy-graphs with different spatial localisation: First
two rows: set of 5 toy-graphs. 3rd and 4th rows illustrate the toy-graphs
matched onto the initial graph, which is the set median marked in a green
rectangle. The nodes that are assigned together have the same colour. Last row
(left) shows the prototype graph after physical registration of the nodes, the
right side shows the same graph with a different physical embedding due to
not having registered the nodes localisations onto the initial one. For a node
marked with magenta rectangle, the localisation of its corresponding matching
across the graphs is different, thus computing the median value returns a
location towards the center.
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Figure 10.2: Prototype for random toy-graphs: First row: set of 5 toy-graphs. The second
rows illustrates the toy-graphs matched onto the initial graph, which is the
set median marked in a green rectangle. The nodes that are assigned together
have the same colour. Last row shows the prototype graph after physical
registration of the nodes. Parameters: λ = 0, λs = 0.5, sparsity penalization
parameter, adjacency matrices are binary. Matching cost between Gi and Gb:
6, 14, 28, 22, 28.
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Figure 10.3: Prototype for random toy-graphs: First row: set of 5 toy-graphs. The second
rows illustrates the toy-graphs matched onto the initial graph, which is the
set median marked in a green rectangle. The nodes that are assigned together
have the same colour. Last row shows the prototype graph after physical
registration of the nodes. Parameters: λ = 0.5, λs = 0.5, sparsity penalization
parameter, adjacency matrices are binary. Matching cost between Gi and Gb:
6, 22, 32, 34, 32.



116 methodologies for deriving the representative of a set of graphs

Figure 10.4: Prototype for random toy-graphs: First row: set of 5 toy-graphs. The second
rows illustrates the toy-graphs matched onto the initial graph, which is the set
median marked in a green rectangle. The nodes that are assigned together have
the same colour. Last row shows the prototype graph after physical registration
of the nodes. Parameters: λ = 0.5, λs = 0.5, sparsity penalization parameter,
adjacency matrices are represented as the length of she shortest path of 3rd
order. Matching cost between Gi and Gb: 0, 8, 58, 8, 10.
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Figure 10.5: Prototype for random toy-graphs: First row: set of 5 toy-graphs. The second
rows illustrates the toy-graphs matched onto the initial graph, which is the set
median (fifth graph). The nodes that are assigned together have the same colour.
Last row shows the prototype graph after physical registration of the nodes.
Parameters: λ = 0, λs = 0.5, sparsity penalization parameter, adjacency matrices
are represented as the length of she shortest path of 3rd order. Matching cost
between Gi and Gb: 10, 2, 68, 54, 4..
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10.2 methodology based on a heuristic derived from the longest

chains of matched nodes

The literature dedicated to matching multiple graphs among them, contains various
methods that are bound to search for global consistent correspondences across the
graph set [Yan+]. These methods have certain applications in shape matching, object
recognition, etc. The principle of the present proposed heuristic aims at finding
consistent mappings across the graphs with the purpose of defining a "median"
graph. Therefore the objective is to find chains (cycles) of nodes that are connected to
each other and furthermore, to nodes in the prototype, once the matching between
every pair of graphs, individually and independently, is performed. We illustrate an
alternative approach for the computation of the prototype graph, which similarly to
the first method, is based on the many-to-many assignment framework, which serves
as a tool to match every graph from G, to each other.

(a) Graph G1 (b) Graph G2 (c) Graph G3

(d) Chains of matched nodes (each of them among
G1,G2,G3) (left) correspond to nodes of the proto-
type graph (right)

Figure 10.8: Methodology for deriving the representative graph based on chains of nodes
connected among them across graphs G1G2,G3 (a,b,c): the nodes that are
matched together between graphs have the same colour. The chains of nodes
that are matched together, are pictured in (d): each chain corresponds to one
node in the prototype graph. Edges are assigned if they are found in the
majority of graphs between the corresponding nodes. Finally, the prototype
graph of G1,G2,G3 is displayed in (d) right.

The basic principle relies on identifying the longest chains of nodes (a chain has
maximum one node per graph) (Figure 10.8) such that each node is connected to
the others in the chain. For instance, if we consider the following 3-nodes sequence
{Gi(a),Gj(b),Gk(c)}, where (Gi,Gj,Gk) ∈ G, if the result of graph matching indi-
cates the following assignment: Gi(a) is matched to Gj(b),Gk(c) and Gj(b) is in
turn matched to Gk(c), then the sequence becomes a chain.
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Once the complete list of chains is obtained (of length greater than 2 nodes,
and in which nodes appear only once in the list of chains), the next step is to
consider that each found chain will correspond to a node belonging to Gb, the
representative graph of the set. Consequently, the dimension of the prototype graph
can be determined as the total number of chains (in decreasing order of length) that
are deemed characteristic enough (e.g. whose length is greater than 2 nodes).

The next steps are devoted to deciding the structure of this depicted median
graph (i.e. the adjacencies between the nodes) followed by an assignment of the
physical localisation to the nodes. Regarding the structure of the prototype graph,
at this stage it is only defined through the presence of nodes corresponding to the
selected chains. In order to assign the edges, a decision for a possible connection
between 2 given nodes [Gb(jl) = 1] is taken, based on the number of appearances
of this edge among the chains’ nodes attributed to Gb(j) and Gb(l). In other words,
for two given nodes, one needs to check if the nodes in the chains are themselves
matched by an edge in the respective graphs, and if so, they are counted as one.
Finally, the edges that are found in the majority of occurrences are kept as valid for
determining the prototype structure. This procedure ensures a certain consistency
with respect to the nodes and the edges of the collection of graphs.

As for the localization of the graphs’ nodes, we proceed similarly as in the
previous representative graph methodology, by performing a registration of the
node locations with respect to Ginit, (Ginit ∈ G is the set median graph, for instance).
To produce the physical embedding of the representative graph, a final step is the
evaluation of the median value of the node localisations after their registration.

discussion : This methodology that essentially seeks to capture consistent
chains of nodes across a given set of graphs, in order to represent the class prototype,
is sensitive for graphs that present symmetries in their structure (Figure 10.9). It
can, however, detect isomorphic graphs and provide the expected barycenter, as
illustrated in (Figure 10.10).

10.3 conclusions

Based on the many to many assignment framework, we proposed two different
approaches to define and compute the prototype individual of a given set of graphs.
The first one relies on the matching of all the graphs from the set to an initial one
(e.g. set median), by keeping the edges that are matched in the majority of the
graphs. This methodology provides satisfactory results even for FN-specific graphs,
but is strongly dependant upon the choice of the initial graph.

The second methodology explores a different idea, so that the result is not
dependant anymore on a certain graph. Briefly, it associates the nodes of the
prototype graph, to the sequences of nodes that are matched together across graphs.
This approach can construct a relevant prototype for isomorphic and relatively small-
sized graphs. The main drawback is represented by its sensitivity to symmetries in
graphs, therefore its adaptation to larger graphs remains still a work in progress.

Future perspectives include the classification of FN tissues, based on their graph
representation, after defining a relevant prototype graph. Classifying a new FN
sample would, in this case, involve a comparison (matching) to the different variants
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representative individuals, and deciding, based on the similarity measure obtained
after matching, the class to which the new sample will belong.
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Figure 10.9: Prototype for random toy-graphs -Man Outline- Method based on the longest
chains of matched nodes: First 2 rows: set of 5 toy-graphs. The third and fourth
rows illustrate the chains of nodes that are matched all together (having the
same colour across the graphs. Black nodes are either dummy or not part of
any chain longer than 2 nodes). These chains have been selected after previous
graph matching of every independent pair. The last row shows the prototype
graph corresponding to the longest chains of nodes. Node registration was
performed with respect to the first graph. Parameters for matching: λ = 0,
λs = 0.5, sparsity penalization parameter, adjacency matrices are represented
as the length of she shortest path of 3rd order.
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Figure 10.10: Prototype for random toy-graphs - Method based on the longest chains of
matched nodes: First 2 rows: set of 5 toy-graphs. The third and fourth rows
illustrate the chains of nodes that are matched all together (having the same
colour across the graphs. Black nodes are either dummy or not part of any
chain longer than 2 nodes). These chains have been selected after previous
graph matching of every independent pair. The last row shows the prototype
graph corresponding to the longest chains of nodes. Node registration was
performed with respect to the first graph. Parameters for matching: λ = 0,
λs = 0.5, sparsity penalization parameter, adjacency matrices are represented
as the length of she shortest path of 3rd order.
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S TAT I S T I C A L A N A LY S I S O F PA R A M E T R I C D E F O R M AT I O N
M A P S

In this chapter, we revisit the statistical framework based on the random field theory,
that can provide a comparison between the "normal" and "tumour-like" state FN
variants, detailed in Chapter 6, in the scope of studying deformation maps between
the two classes. We remind the reader that the objective of the statistical analysis
is to identify the foreign regions with respect to the GRF within both normal and
tumoral deformation maps under the null hypothesis, and subsequently compare
their properties (e.g. number, size).

The difference within this context, is that instead of studying the absolute para-
metric map (e.g. fiber length), we are interested in the analysis of fiber deformation
maps that indicate the local differences between pairs of registered fibers (the
result of matching their graph representations), with respect to their properties (e.g.
length). The reason is that the relative analysis based on matching can lessen the
impact of the existing variability within the same tissue.

Similarly to the approaches Chapter 6, we implement two methodologies de-
scribed in the referred chapter, the first one based on the theory of GRF, and the
second relying on the computation of empirical distributions and showing the
differences between the two classes, quantitatively and qualitatively.

11.1 deformation maps based on graph matching

An interesting application of the graph-matching framework described in Chapter 7,
which provides a means to realign the fiber graphs upon matching of the nodes,
is the possibility to compare the properties of the "matched fibers" between the
realigned graphs. The graph matching technique that was used for this purpose is
the many-to-many assignment framework.

We illustrate the methodology for computing the deformation maps between any
2 given FN specific graphs, in the simplified form (collection of nodes connected by
edges) derived from the morphological skeleton extracted from the confocal images
(see Chapter 4 for further details on how to obtain this representation).

• Perform the graph matching between G and H, that will return a matching
matrix P.

• If we consider {k, l} two random nodes in H, such that Hkl is an edge (i.e.
Hkl = 1) and {i, j} the two corresponding matched nodes in G (not dummies),
such that P(i,k) = 1 and P(j, l) = 1:

125
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– if Gij ∈ {1, 2, 3} (upon considering the shortest path of order 3 between
the nodes), we can compute the deformation dl in terms of edge lengths
as : dl = length(Hkl) − length(Gij) (see Figure 11.1).

– if Gij > 3, or in the case of matching to dummy nodes, we set dl = 0.

• Identification of the 2D pixel coordinates that approximate the straight line
between the nodes and replacement of the pixels at the concerned locations
with dl.

• Extrapolation of the values of the length deformation map and smoothing
with a Gaussian kernel (Figure 11.2, Figure 11.3).

(a) Graph G (b) Graph H

Figure 11.1: Computation of the fiber length difference after graph matching between G
and H graphs: Nodes that are matched together have the same colour. The
edge denoted as h1 in the graph H, is thus matched to the edge g1 in the graph
G and the pixels corresponding to h1 will be set to the value that is equal to
length(h1) - length(g1).

11.2 statistical framework to quantify the parameter variation

11.2.1 Statistical analysis of the deformation maps based on GRF

The methodology described in Section 6.2.1 was applied for the quantitative and
qualitative comparison of the fiber length deformation map, for one variant FN
B-A+ in both normal and tumoral-like state, under the following conditions:

• The matching is performed for both the normal FN and the tumour-like FN,
between the corresponding graphs and one "Normal" FN graph sample, the
result of which leads to the generation of the deformation maps (Normal-
Normal and Normal-Tumoral).

• Learning dataset : 30 deformation maps (Normal)

• Test set: 60 fiber deformation maps (Tumoral) and 20 (Normal)

• Thresholds of intensity T = [45 60 70 80 100]

• p = 0.05. Clusters are considered as foreign to GRF if either PS or PH are less
than equal to p.
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Figure 11.2: Computation of the fiber length difference after graph matching between graph
representations of Normal-Normal FN B-A+ (left-right) of 512× 512 pixels.
Nodes that are matched together have the same colour. Nodes that are assigned
as dummy (no connection) are set in black. The deformation map (whose
legend is displayed in µm, pixel size is 0.27µm), is displayed in the right
column.

The results in Table 11.1 and Table 11.2 illustrate for every threshold, the average
number of identified foreign clusters per image as well as the average cluster area.
By comparison, within the normal-normal deformation maps of the test dataset, the
method identifies less (foreign) clusters per image with a smaller average surface.
The results in Figure 11.4 and Figure 11.5 illustrate several examples of detected
clusters for a given p-value equal to 0.05.

Table 11.1: Average number and area of clusters per normal-tumoral deformation map FN
B-A+ 512× 512 identified as foreign to a GRF (based on the maximum intensity
and cluster surface)(p = 0.05), taken at various thresholds

Thresholds 45 60 70 80 100

Max Intensity - Avg nb/im 1.18 0.92 0.57 0.38 0.15

Max Intensity - Avg area/im 2949.90 1174.49 735.80 487.83 246.65

Surface- Avg nb/im 1.63 1.07 0.75 0.50 0.22

Surface - Avg area/im 2553.49 1134.85 729.10 479.16 246.37
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Figure 11.3: Computation of the fiber length difference after graph matching between graph
representations of Normal-Tumoral FN B-A+ (left-right) of 512× 512 pixels.
Nodes that are matched together have the same colour. Nodes that are assigned
as dummy (no connection) are set in black. The deformation map (whose
legend is displayed in µm, pixel size is 0.27µm), is displayed in the right
column.

Table 11.2: Average number and area of clusters per normal-normal deformation map FN
B-A+ 512× 512 identified as foreign to a GRF (based on the maximum intensity
and cluster surface) (p = 0.05), taken at various thresholds

Thresholds 45 60 70 80 100

Max Intensity - Avg nb/im 0.70 0.35 0.30 0.10 0.10

Max Intensity - Avg area/im 1570.56 558.55 255.00 123.95 19.70

Surface- Avg nb/im 1.30 0.50 0.35 0.20 0.10

Surface - Avg area/im 1483.13 556.28 244.03 117.08 19.00

11.2.2 Statistical analysis of the deformation maps based on the empirical distributions

The methodology, fully described in Section 6.2.2, will compute, for a given thresh-
old t, the empirical cumulative histogram of maximum cluster intensities/surfaces
for all the images in the learning set. This, in turn, will provide a certain threshold
regarding either the cluster area or the cluster intensity that depends on the chosen
p-value, above which the clusters from the test set taken at threshold t, if they exist,
will be considered as foreign elements.
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The results in Table 11.3 and Table 11.4 illustrate a similar pattern observed in
the previous methodology: there is a higher number of detected clusters per image
with a larger average area within the normal-tumoral deformation maps than in
normal-normal.

• The matching is performed for both the normal FN and the tumour-like FN,
between the corresponding graphs and one "Normal" FN graph sample, the
result of which leads to the generation of the deformation maps (Normal-
Normal and Normal-Tumoral).

• Learning dataset : 30 deformation maps (Normal)

• Test set: 60 fiber deformation maps (Tumoral) and 20 (Normal)

• Thresholds of intensity T = [69 79 89 94 99]

• p = 0.05.

Table 11.3: Average number and area of clusters per normal-tumoral deformation map FN
B-A+ 512× 512 identified as foreign (p = 0.05) to the empirical distributions of
clusters (size and intensity), taken at various thresholds

Thresholds 69 79 89 94 99

Max Intensity - Avg nb/im 0.35 0.35 0.37 0.33 0.33

Max Intensity - Avg area/im 5303.18 4538.89 2568.84 2306.27 1562.82

Surface- Avg nb/im 0.38 0.48 0.40 0.33 0.33

Surface - Avg area/im 3939.29 3225.60 2119.56 2306.27 1562.82

Table 11.4: Average number and area of clusters per normal-normal deformation map FN
B-A+ 512× 512 identified as foreign, (p = 0.05) to the empirical distributions of
clusters (size and intensity) taken at various thresholds

Thresholds 69 79 89 94 99

Max Intensity - Avg nb/im 0.15 0.15 0.15 0.15 0.05

Max Intensity - Avg area/im 2470.40 2050.78 1403.03 1046.23 653.85

Surface- Avg nb/im 0.15 0.15 0.15 0.15 0.05

Surface - Avg area/im 2470.40 2050.78 1403.03 1046.23 653.85

11.3 conclusions

In this chapter we illustrated an application of the analytic framework described in
Chapter 6, for the study of FN fiber deformation maps (with respect to the fiber
length) between normal and tumor-like FN states. We managed to show using
both approaches (based on the GRF theory and on the computation of empirical
distributions), that the tumoral aspect can be differentiated with respect to the
normal-like state for one specific FN variant, and statistically characterized based
on the fiber length.
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The matching (alignment) between the images and the relative analysis are
important to mitigate the effect of non-stationarity in different tissues (variability
within the tissues). Future perspectives can include a more comprehensive study
that analyses larger image samples and considers different FN fiber parameters.
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Figure 11.4: Detection of the clusters considered foreign elements to a Gaussian Random
Field when p = 0.05 (based on the maximum cluster intensity), within the
Fiber Length Deformation Map Normal-Tumoral (left column) corresponding
to Tumour-like FN B-A+ of 512× 512. The right columns depicts the clusters at
different thresholds (indicated in the colorbar).
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Figure 11.5: Detection of the clusters considered foreign elements to a Gaussian Random
Field when p = 0.05 (based on the surface of the cluster), within the Fiber
Length Deformation Map Normal-Tumoral (left column) corresponding to
Tumour-like FN B-A+ of 512× 512. The right columns depicts the clusters at
different thresholds (indicated in the colorbar).
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C O N C L U S I O N S A N D P E R S P E C T I V E S

This manuscript presented our contributions in terms of computational approaches,
designed in order to address a biological problem. These contributions were thus
developed as the result of a collaboration within an interdisciplinary context.

More specifically, we have presented a set of numerical approaches that provide
visual and quantitative characterization of FN variant-specific matrix architecture,
in normal and tumor-like states. This image analysis approach is not only important
for understanding the dynamics of matrix assembly and remodeling during tumor
progression but it lays the foundation for development of improved diagnostic and
predictive models of stromal features of tumor tissue for clinical purposes.

Fiber-specific attributes concerning the geometry and topology of the FN net-
works were extracted from the confocal images. Having derived a graph-based fiber
representation, enabled a powerful characterization both locally (through features
extracted from the graphs), as well as on a global level. Concerning the latter, a
global characterization was obtained using a statistical analytic framework for FN
class comparison (between normal and tumoral state) through a parameter variation
map study. Additionally, a similar analysis was performed to study the parameter
variation across deformation maps, facilitated by a graph-matching setting.

In the following sections, we present in detail our contributions that have, in
turn, generated new perspectives and ideas that we briefly attempt to summarize
subsequently.

12.1 conclusions

classification : First, we showed through a proposed classification pipeline
based on curvelet features and alternatively, using a deep-learning method, that
the confocal images contain enough information of the FN variants to be able to
differentiate them. The performances were similar to that of a trained specialist,
validating the choice of curvelets as feature extractors. A part of these results were
published in [Gra+18] and [Eft+].

graph-based fiber representation : We constructed a graph-based rep-
resentation of the FN networks, based on Gabor filter detection and subsequent
morphological operations that resulted in a fiber skeleton. We additionally proposed
an approach to improve the graph representation, by reconnecting the missing fibers
in the skeleton due to image noise or imperfect skeletonization.

135
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local characterization of the fn features : We established a character-
ization of the FN networks based on local geometrical features, extracted from the
graph representation (e.g. fiber network connectivity -node degree, fiber length, me-
dian pore dimension, etc.), Gabor features (e.g. fiber local thickness), showing that
the FN variants can be compared and distinguished both from the PCA analysis and
local parameter distributions across classes, as well as feature classification. Indeed,
the graph-based representation embeds relevant and meaningful information about
the fibers. These results were integrated in a biology-related article [Eft+].

global characterization of the fn parametric maps : To study the
variation of certain parameters within a given FN class (e.g. fiber length) both in
normal state and tumour-like state, we applied a statistical analysis framework
based on Gaussian random fields. We managed to show the differences between
the two classes, quantitatively and qualitatively.

comparison between two approaches for graph matching : Meth-
ods based on the many-to-many assignment framework and the discrete optimal
transport were identified as being relevant to our graph comparison/alignment
purpose. Therefore, we conducted a performance analysis of these approaches,
adapted to a graph matching setting, and using randomly generated graphs. The
results, which are relevant for understanding how these methods can be used for
FN graph comparison, were published in [Gra+19].

prototype (representative) graph : Based on the many-to-many assign-
ment framework, two different methodologies for defining and computing the
prototype of a given set of graphs were proposed, in the hope of defining the
representative graph for a given FN class. Although the proposed methods pro-
vide a schematic for a relevant prototype graph, the question of determining the
representative graph remains largely a work in progress.

global characterization of the fn deformation maps : Under the
same statistical framework used for the study of FN parametric maps, we ana-
lyzed the variation of a given parameter, e.g. fiber length between the variants in
normal and tumour-like states. Graph matching was performed before to account
for the variability of fiber organization within the same image. We obtained quan-
titative/qualitative differences between normal-normal and normal-tumoral FN
deformation maps with respect to the fiber length, illustrating that the variability
of the fiber length is mostly due not to variance within the same class, but to the
differences between the classes.

12.2 perspectives

graph-based representation The methodology follows a certain pipeline
starting with fiber detection, morphological skeletonization, graph-association and
missing fiber reconnection. Visually, the graphs seems to extract the architecture
of the 2D fibers, without taking into account the 3D structure (as the depth of the
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tissue is not relevant here). That generates a representation that is not completely
accurate for a 3D structure, that will, in turn affect the fiber reconnection.

On one hand, since the confocal microscope is capable of accessing the 3D
structure, new ideas could be envisaged for building a 3D model of the fibers,
and adapt the whole pipeline to 3D images. On the other hand, for the 2D model,
the graph representation might be further improved in the post-processing step,
by designing better thresholds when deciding to reconnect the fibers, taking into
account the local average orientation of the fibers, image gradient magnitude
(smoothed) instead of image local intensity as guideline for reconstruction, etc.

local and global characterization of parametric maps The results
of the statistical analysis of parametric maps (fiber length) were encouraging with
respect to both qualitative and quantitative differences among FN variants in normal
and tumor-like cases. However, a more comprehensive analysis would be interesting,
by extending this study to the analysis of larger samples, and considering other
local parameters specific of fibers (e.g. average fiber thickness).

graph matching The literature concerning graph matching contains approaches
(that were not yet investigated during this thesis) that are promising with respect
to the computational time and matching quality [ZDLT]. An exhaustive study of
graph matching methods could be envisaged to choose the most suitable technique
for FN graph-based comparison.

prototype graph Several works in a biomedical/biological context have al-
ready proposed various methodologies [Jia+01; Muk+07] based on different graph-
matching distances, that might be explored or adapted to the problem of deter-
mining the prototype graph of a given set of FN graphs. Once a good model is
determined, deformation maps can be computed with respect to this representative
graph. Additionally, graph classification can be envisaged (by comparison of the
test samples to the prototype graph).

other applications of fiber network modelling The set of methodolo-
gies presented in this manuscript have the potential to be applied for the analysis
and numerical characterization of different types of fibrilar networks encountered
in various fields (biology, material science, etc.), and thus compared to existing
methods analysing properties of fibrillar networks in biomedical sciences ([SB09],
[Bou+14], [Hot+15]). Depending on the specific application, or image dataset type
(acquisition mode, dimension), some steps of the pipeline need to be better adapted
to construct a representation that captures relevant information (e.g. Gabor filtering
might need to be preceded by extra-filtering, binarization, skeletonization and fiber
reconnection tool steps have to be properly adjusted, etc.).
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