
HAL Id: tel-03052249
https://theses.hal.science/tel-03052249

Submitted on 10 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptation and learning over multitask networks and
graphs
Fei Hua

To cite this version:
Fei Hua. Adaptation and learning over multitask networks and graphs. Signal and Image process-
ing. Université Côte d’Azur; Northwestern Polytechnical University (Chine), 2020. English. �NNT :
2020COAZ4037�. �tel-03052249�

https://theses.hal.science/tel-03052249
https://hal.archives-ouvertes.fr

Adaptation et apprentissage sur des

réseaux et des graphiques multitâches

Fei HUA
Laboratoire J.-L. LAGRANGE

Présentée en vue de l’obtention
du grade de docteur en Science pour l’ingénieur
d’Université Côte d’Azur
et de Northewestern Polytechnical University
Dirigée par :Cédric Richard

Haiyan Wang
Soutenue le :15/07/2020

Devant le jury, composé de :
David Brie, PU, Université de Lorraine
Paul Honeine, PU, Université de Rouen
Jie Chen, PU, Northwestern Polytechnical University
Jingdong Chen PU, Northwestern Polytechnical University
Yuantao Gu, PU, Tsinghua University
André Ferrari, PU, Université Côte d’Azur

 THÈSE DE DOCTORAT

Adaptation and Learning

over Multitask Networks and Graphs

Jury :

Rapporteurs
David Brie, PU, Université de Lorraine, France
Paul Honeine, PU, Grenoble-INP, France

Examinateurs
Jie Chen, PU, Northwestern Polytechnical University, China
Jingdong Chen, PU, Northwestern Polytechnical University, China
Yuantao Gu, PU, Tsinghua University, China
André Ferrari, PU, Université côte d’Azur, France

Directeurs
Cédric Richard, PU, Université côte d’Azur, France
Haiyan Wang, PU, Shaanxi University of Science and Technology, China

Adaptation and Learning over Multitask Networks and Graphs

Abstract: Multitask learning has received considerable attention in signal processing
and machine learning communities. It aims at simultaneously learning several related tasks
other than the traditional single-task problems. There also have witnessed a wide spectrum
of data processing problems that are network- or graph-structured and require adaptation
ability to streaming data and time-varying dynamics. Distributed adaptive learning strate-
gies over networks enable a collection of interconnected agents to accomplish a certain task,
such as parameter estimation, collaboratively through local computation and cooperation
among neighboring agents. Further, they endow the agents with continuous adaptation and
learning ability to track possible drifts in the underlying model. Despite the heterogeneous
nature and the fact that each agent may solve a different task in multitask network, it
could still benefit from a collaboration between agents to improve the estimation accuracy
by leveraging the relations and capitalizing on inductive transfer between them. The ob-
jective of this thesis is to devise and analyze multitask adaptive learning strategies over
networks and graphs. First, we consider multitask estimation problems where each agent is
interested in estimating its own parameter vector and where the parameter vectors at neigh-
boring agents are related linearly according to a set of constraints. Based on the penalty
method, an unconstrained optimization problem is reformulated and a distributed algo-
rithm is derived. The behavior of the algorithm in the mean and in the mean-square-error
sense is analyzed. Next, we relax the local constraints assumption and consider the multi-
task problem with non-local constraints. We devise the distributed algorithm by employing
a multi-hop relay protocol across the agents. We prove that the algorithm will continue to
converge and provide theoretical performance analysis. In the third part, we extend the
distributed learning strategies to the emerging graph signal processing applications where
the signal itself is network-structured. Several graph diffusion LMS strategies are proposed
to cope with streaming graph signals. We also extend the multitask model to graph filters
and propose an on-line clustering mechanism. Last, we consider the problem of modeling
graph signals by using a combination of multiple graph filters. An efficient algorithm is
proposed to simultaneously learn coefficients of multiple graph filters and perform model
selection. Simulation and numerical results are provided to illustrate the effectiveness of
all proposed algorithms and validate the theoretical analyses.
Keywords: Multitask networks, distributed estimation, adaptive algorithms, Diffusion
LMS, constraints, performance analysis, graph signal processing, graph filter, clustering,
parallel graph filters, model selection.

Adaptation et apprentissage sur des réseaux et des graphiques multitâches

Résumé: L’apprentissage multitâche a reçu une attention considérable dans les commu-
nautés de traitement du signal et d’apprentissage automatique. Au contraire du traite-
ment traditionnel des problèmes à tâche unique, il vise à apprendre d’une façon simultanée
plusieurs tâches connexes. Il y a également eu un large éventail de problèmes de traitement
de données qui sont structurés en réseau ou en graphiques et qui nécessitent une capacité
d’adaptation à la transmission de données en continu et à des dynamiques variant dans
le temps. Les stratégies d’apprentissage adaptatif réparties sur les réseaux permettent à
une collection d’agents interconnectés d’accomplir une certaine tâche, telle que l’estimation
des paramètres, en collaboration grâce au calcul local et à la coopération entre les agents
voisins. De plus, ils confèrent aux agents une capacité d’adaptation et d’apprentissage
continue pour suivre les dérives possibles dans le modèle sous-jacent. Malgré la nature
hétérogène et le fait que chaque agent peut résoudre une tâche différente dans un réseau
multitâche, il pourrait encore bénéficier d’une collaboration entre les agents pour améliorer
la précision de l’estimation en tirant parti des relations et en capitalisant sur le transfert
inductif entre eux. L’objectif de cette thèse est de concevoir et d’analyser des stratégies
d’apprentissage adaptatif multitâche sur des réseaux et des graphiques. Premièrement, nous
abordons les problèmes d’estimation multitâche où chaque agent est intéressé à estimer son
propre vecteur de paramètres et où les vecteurs de paramètres aux agents voisins sont liés
linéairement selon un ensemble de contraintes. Sur la base de la méthode des pénalités, un
problème d’optimisation non contraint est reformulé et un algorithme distribué est dérivé.
Le comportement de l’algorithme dans la moyenne et dans le sens de l’erreur quadratique
moyenne est analysé. Ensuite, nous assouplissons l’hypothèse des contraintes locales et
travaillons sur le problème multitâche avec des contraintes non locales. Nous concevons
l’algorithme distribué en utilisant un protocole de relais à sauts multiples entre les agents.
Nous prouvons que l’algorithme continuera de converger et fournira une analyse théorique
des performances. Dans la troisième partie, nous étendons les stratégies d’apprentissage dis-
tribué aux applications émergentes de traitement du signal graphique où le signal lui-même
est structuré en réseau. Plusieurs stratégies LMS de diffusion de graphe sont proposées
pour faire face aux signaux de graphe en streaming. Nous étendons également le modèle
multitâche aux filtres graphiques et proposons un mécanisme de clustering en ligne. Enfin,
nous nous penchons sur le problème de la modélisation des signaux graphiques en util-
isant une combinaison de plusieurs filtres graphiques. Un algorithme efficace est proposé
pour apprendre simultanément les coefficients de plusieurs filtres graphiques et effectuer la
sélection du modèle. Des résultats de simulation et numériques sont fournis pour illustrer
l’efficacité de tous les algorithmes proposés et valider les analyses théoriques.

Mots clés: Réseaux multitâches, estimation distribuée, algorithmes adaptatifs, LMS
de diffusion, contraintes, analyse des performances, traitement du signal graphique, filtre
graphique, clustering, filtres graphiques parallèles, sélection de modèle.

Dedicated to my family

Dedicated to J. Gao

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor Prof. Cédric
Richard for providing me an opportunity to study at Nice. Despite his own active research
schedule, he has given me sufficient daily guidance. His enthusiasm, knowledge, discipline
and high standard have inspired me to work on the right track. I have also been encouraged,
supported and tolerated by him. I am grateful to him for introducing me the fascinating
network topics and helping me build a collaboration network. I am also indebted to my
co-advisor Prof. Haiyan Wang for his continuous support and trust. I have learnt a lot
from his wisdom and advice. I am grateful for his generous financial support when I was
at Northwestern Polytechnical University (NPU). It is my great honor to work with them
during this journey.

I would like to thank Prof. David Brie and Prof. Paul Honeine for kindly reviewing
the manuscript and providing valuable comments and suggestions. I also appreciate Prof.
André Ferrari, Prof. Jingdong Chen, Prof. Yuantao Gu, and Prof. Jie Chen accepting to
be members of my thesis committee. Thanks for your time and efforts spending on my
thesis.

During my PhD studies, I am fortunate to work with some great minds. I would like to
thank Dr. Roula Nassif who was always there to lend me a hand. I appreciate her supports
in my research work. I would like to express my gratitude to Prof. Ali H. Sayed from the
Ecole Polytechnique Fédérale de Lausanne. His useful feedback, critical comments, and
thorough reading have greatly improved the quality of my work. I am much grateful to Prof.
Pierre Borgnat, Prof. Paulo Gonçalves from the Université de Lyon, Prof. Jie Chen, Prof.
Xiaohong Shen from the NPU, and Dr. Yongsheng Yan from the Nanyang Technological
University for their contributions in my research work. In particular, I would like to thank
Prof. Xiaohong Shen for her mentorship during my Masters studies.

I would like to thank other members of the Lagrange Laboratory for their kindness:
André Ferrari, Céline Theys, Rémi Flamary, Henri Lantéri, and Mamadou N’Diaye. I also
would like to thank my lab-mates Roula, Rita, Khalil, Ikram, Mircea, Elisson, and Jun for
your friendships. In addition, I am grateful to Ikram and Mircea for helping me to deal
with the daily routine when my French level was not adequate. I am also lucky to have met
some smart and interesting minds from other labs: Jiqiang, Zhiyan, Zhaoqiang, Shaoqin,
Chenmin, Jiao, Jie, Jiaxing, Jing, Furong, Xi, Pengfei. My thanks also go to Delphine
Saissi, Jocelyne Bettini, and Jérôme Mifsud for providing me with all possible convenience
in administrative affairs.

I am grateful to Prof. Jianguo Huang, Prof. Chengbing He, and Dr. Wei Gao from
the NPU who encouraged me to study abroad. Dr. Gao has also provided me many useful
suggestions that helped me to smoothly adapt to French lives. I would like to thank my

lab-mates at NPU: Jingjie, Weigang, Zhichen, Xiaobo, Haiyang, Wei, Yong, Muhang, Lei,
Haodi, and Tianyi. I also thank my friends Penghua, Jiangjian, Shuangquan, Bing, Hao,
Wei, Xin, Hang, Tao, Heting, Chao, and Lei for their occasionally greetings and chats when
I was at Nice.

I also acknowledge the financial support from the China Scholarship Council, and all
the support from the Lagrange Laboratory.

Last, I am deeply indebted to my parents for their endless love and support. I could
not have completed this without your encouragement. I would like to thank my brother
for his support.

Contents

List of figures . xi
List of notations . xiii
List of abbreviations . xv

1 Introduction 1
1.1 Adaptation and learning over networks . 1
1.2 Graph signal processing . 8
1.3 Organization of the contents . 11

2 Multitask networks with constraints 15
2.1 Introduction . 16
2.2 Problem formulation . 17
2.3 Centralized and distributed solution . 19

2.3.1 Centralized optimal solution and iterative solution 19
2.3.2 Penalty functions . 20
2.3.3 Penalty-based distributed solution 21

2.4 Performance analysis . 22
2.4.1 Error recursion . 23
2.4.2 Mean error behavior analysis . 25
2.4.3 Mean-square-error behavior analysis 26

2.5 Simulations . 31
2.6 Conclusion . 36
Appendix 2.A Block Kronecker product . 36
Appendix 2.B Evaluation of matrix F for zero-mean real Gaussian regressors . . 37
Appendix 2.C Proof of recursion (2.92) . 39

3 Multitask networks with non-local constraints 41
3.1 Introduction . 42
3.2 Problem formulation and penalty-based solution 43
3.3 Stochastic behavior analysis . 45

3.3.1 Extended error recursion . 46
3.3.2 Mean error behavior analysis . 48
3.3.3 Mean-square-error behavior analysis 49

3.4 Simulations . 54
3.5 Conclusion . 56
Appendix 3.A Kronecker product . 56

x Contents

4 Online distributed learning over graphs 59
4.1 Introduction . 60
4.2 Problem formulation and centralized solution 63

4.2.1 Graph filter and data model . 64
4.2.2 Centralized solution . 65

4.3 Diffusion LMS strategies over graph signals 67
4.3.1 Graph diffusion LMS . 67
4.3.2 Graph diffusion preconditioned LMS 68
4.3.3 Comparison with the graph diffusion LMS 70

4.4 Performance analysis . 70
4.4.1 Mean-error behavior analysis . 72
4.4.2 Mean-square-error behavior analysis 73

4.5 Unsupervised clustering for hybrid node-varying graph filter 76
4.6 Numerical results . 79

4.6.1 Experiment with i.i.d. input data . 79
4.6.2 Experiment with correlated input data 82
4.6.3 Clustering method for node-varying graph filter 83
4.6.4 Reconstruction on U.S. temperature dataset 86

4.7 Conclusion . 89
Appendix 4.A Block maximum norm . 90

5 Learning combination of graph filters 93
5.1 Introduction . 94
5.2 Parametric modeling via graph filters . 95
5.3 Jointly estimating the coefficients . 97

5.3.1 Solving w.r.t. h1,h2 . 99
5.3.2 Solving w.r.t. α . 99
5.3.3 Mixed-norm formulation . 100

5.4 Numerical results . 101
5.5 Conclusion . 103

6 Conclusion and future works 105
6.1 Summary . 105
6.2 Future works . 106

Bibliography 107

List of figures

1.1 Centralized and distributed networks. 3
1.2 Illustration of different distributed strategies. 4
1.3 Illustration of single task and multitask estimation networks. (a) In a single

task network, all agents are seek to estimate the same parameter w∗; (b)
In a clustered multitask network, agents are divided into different clusters,
agents in the same cluster (illustrated in the same color) estimate the same
task; (c) In a multitask network, each agent estimates distinct but related
parameters. 6

2.1 Multitask MSE network with local constraints. 32
2.2 Regression and noise variances. 32
2.3 MSD comparison of different algorithms for the perfect model scenario. . . . 33
2.4 MSD w.r.t. wo of different σ. 33
2.5 MSD w.r.t. wo(η) of different σ. 34
2.6 MSD w.r.t. w? of different σ. 34
2.7 MSD comparison with centralized CLMS for different σ. 35
2.8 MSD comparison for different µ, η. 35

3.1 Multitask MSE network with constraints. 54
3.2 Regressors and noise variances. 54
3.3 MSD comparison (perfect model scenario). 55
3.4 MSD comparison (imperfect model scenario). 55

4.1 Network MSD performance with the Erdős-Rényi graph. 79
4.2 Network MSD performance for different types of shift operators with the

sensor network. 80
4.3 Network MSD performance with a vertex domain correlated input signal. . . 82
4.4 Network MSD performance with input graph signal correlated over both

vertex and time domains. 83
4.5 Network MSD performance for different clustering algorithms. 84
4.6 Graph topology and clusters. 85
4.7 Network MSD performance with model change. 85
4.8 Network MSD performance with model and clusters change. 86
4.9 Ground truth cluster (Top). Inferred clusters at steady-state of a single

Monte Carlo run (Bottom). From left to right: Stage 1, Stage 2, Stage 3. . 86

xii List of figures

4.10 Graph topology for the U.S. temperatures dataset. Temperatures were sam-
pled at the red nodes in red. Data at the blue nodes were unobserved. (a)
37 sampled nodes. (b) 54 sampled nodes. 87

4.11 True temperatures and reconstructed ones at an unobserved node. µLMS =

10−5, µPLMS = µLMSN = 10−4. 88
4.12 U.S. temperature graph topology and learned clusters. 89
4.13 True temperatures and reconstructed ones at an unobserved node. For clarity

purposes, focus on the intervals (a) [4100, 4300] and (b) [8640, 8759]. 90

5.1 Denoising performance over Molène data set. 102
5.2 Reconstruction accuracy for different proportions of known labels of the

political blogs data. 103

List of notations

General notation and symbols

R Field of real numbers.

E Expected value operator.

0 Vectors or matrices containing all zero entries.

1M M × 1 column vectors with all its entries equal to one.

ek Column vector with a unit entry at position k and zeros elsewhere.

IM Identity matrix of size M ×M .

a Normal font letters denote scalars.

a Boldface lowercase letters denote column vectors.

A Boldface uppercase letters denote matrices.

A Calligraphy normal font uppercase letters denote sets.

A Calligraphy bold font uppercase letters denote block matrices.

[a]k or ak k-th entry of vector a.

[A]k,` or ak` (k, `)-th entry of matrix A.

[A]k,• k-th row of matrix A.

[A]•,` `-th column of matrix A.

(·)> Transpose of matrix or vector.

A−1 Inverse of matrix A.

A† Pseudo-inverse of matrix A

Tr(A) Trace of matrix A.

col{a, b} Column vector with entries a and b.

col{a, b} Block column vector with entries a and b.

vec(A) Vector obtained by stacking the columns of matrix A.

bvec(A) Vector obtained by vectorizing and stacking blocks of A.

A⊗B Kronecker product of matrices A and B.

xiv List of notations

A⊗b B Block Kronecker product of matrices A and B.

diag(a) Diagonal matrix containing the vector a along its main diagonal.

diag(A) Vector stores the diagonal entries of A.

bdiag{A,B} Block diagonal matrix with block entry B placed immediately
below and to the right of its predecessor A.

|a| Absolute value of scalar a.

‖a‖ or ‖a‖2 Euclidean norm of vector a.

‖a‖2Σ or ‖a‖2σ Weighted square value a>Σa.

‖A‖ or ‖A‖2 Spectral norm of matrix A.

‖A‖∞ Maximum absolute row sum of matrix A.

‖A‖b,∞ Block maximum norm of block matrix A.

A � 0 Matrix A is positive-definite.

ρ(A) Spectral radius of matrix A.

λ(A) Eigenvalues of matrix A.

λmin(A) Minimum eigenvalue of matrix A.

λmax(A) Maximum eigenvalue of matrix A.

|N | Cardinality of set N .

δij Kronecker delta function: δij = 1 if i = j, and zero otherwise.

max(a, b) Larger value in a and b.

List of abbreviations

Abbreviations

i.i.d. independent and identically distributed

s.t. subject to

w.r.t. with respect to

ADMM Alternating Direction Method of Multipliers

AR Autoregressive

ARMA Autoregressive Moving Average

APA Affine Projection Algorithm

ATC Adapt-then-Combine

BIBO Bounded Input Bounded Output

CLMS Constrained Least-Mean-Squares

CTA Combine-then-Adapt

EMSE Excess Mean Squared Error

FIR Finite Impulse Response

IIR Infinite Impulse Response

GFT Graph Fourier Transform

GSP Graph Signal Processing

GSO Graph Shift Operator

KKF Kernel Kalman Filter

KRR Kernel Ridge Regression

LCMV Linearly-Constrained-Minimum-Variance

LMS Least-Mean-Square

MSD Mean Squared Deviation

MSE Mean Squared Error

NLMS Normalized Least-Mean-Square

NMSE Normalized Mean Square Error

xvi List of abbreviations

QP Quadratic Programming

RHS Right-Hand Side

RLS Recursive-Least-Squares

RNMSE Root Normalized Mean Square Error

ULA Uniform Linear Array

VAR Vector Autoregressive

VARMA Vector Autoregressive Moving Average

Chapter 1

Introduction

With the advent of “Internet of Things”, pervasive sensors are deployed and can be con-

nected into networks to accomplish certain tasks collaboratively. There are a wide range

of applications are network oriented, such as sensor networks, smart grids, transportation

networks, communication networks, to name a few. Recently, the area of cooperative and

graph signal processing has received a lot of attention to deal with such complex net-

work systems described by interconnected agents [Djurić 2018]. One important direction

is studying and developing strategies that endow networks with adaptation and learning

ability. In this Chapter, we first review techniques for adaptation and learning over net-

works. Then we give a brief introduction of the concepts of graph signal processing. Last,

we provide an overview of the contents in this thesis.

1.1 Adaptation and learning over networks

We start with the single agent learning problem. Many learning problems can be interpreted

as stochastic optimization problems where the objective is to learn a parameter vector w

that minimizes a cost function J(w) : IRM → IR [Sayed 2014a]:

w∗ = arg min
w∈IRM

J(w) = arg min
w∈IRM

EQ(w;x) (1.1)

where the cost function is constructed as the expectation of some loss function, i.e. J(w) =

EQ(w;x), which is evaluated over the distribution of x. The gradient descent algorithm

can be used to solve the above problem

wi+1 = wi − µ∇J(wi), i ≥ 0 (1.2)

where i is an iteration index, µ > 0 is a small step-size, and ∇J(wi) is the gradient vec-

tor evaluated at wi. However, the distribution of x is usually unknown beforehand, the

expectation of EQ(w;x) can not be computed and therefore the true gradient is gener-

ally not available. Alternatively, if we replace the true gradient by some instantaneous

approximation ∇̂J(wi), we arrive at the stochastic gradient descent algorithm:

wi+1 = wi − µ∇̂J(wi), i ≥ 0. (1.3)

2 Chapter 1. Introduction

Note that, random perturbations are introduced due to approximation of gradient vec-

tors. Despite that, it can be established that (1.3) will converge to a small region around

the minimizer w∗ under reasonable conditions on the cost functions and gradient noises

[Sayed 2014a].

Let di denote a zero-mean real-value random variable realization at i, xi ∈ IRM denote

a regression vector with positive-definite covariance matrix Rx = E{xix>i } � 0. Let

rdx = E{dixi} denote the cross-covariance vector. The data {di,xi} are assumed to be

related via the linear regression model:

di = x>i w
∗ + vi (1.4)

where w∗ is some unknown vector to be estimated and vi is a zero-mean white noise. The

problem of learning w∗ can be formulated as minimizing the mean-square error cost:

J(w) = E(di − x>i w)2. (1.5)

Applying the gradient descent algorithm (1.2), we obtain

wi+1 = wi − µ∇J(wi) = wi − 2µ(Rxwi − rdx). (1.6)

The challenge here is that the statistical moments {Rx, rdx} may not be available before-

hand. Replacing them by instantaneous approximations at every time instant:

Rx ≈ xix>i , rdx ≈ dixi (1.7)

leads to the well-known least-mean-squares (LMS) algorithm [Widrow 1985, Haykin 2002,

Sayed 2008]:

wi+1 = wi + 2µxi(di − x>i wi). (1.8)

The LMS belongs to the class of stochastic gradient algorithm.

As noted before, recent years have witnessed a wide spectrum of data processing prob-

lems are network-structured [Newman 2010, Lewis 2011] and require adaptation to time-

varying dynamics [Sayed 2013, Sayed 2014b]. Sensor networks, social networks, vehicular

networks, communication networks, and power grids are some typical examples. These

networked systems consist of a collection of autonomous agents (sensors, processors, actu-

ators) linked together through a connection topology. Extending the single agent learning

methods to the networked problem, we associate with each node k with an individual cost

function Jk(w) : IRM → IR, the network learning problem can be casted as minimizing the

aggregate sum of cost functions:

w∗ = arg min
w∈IRM

N∑
k=1

Jk(w). (1.9)

1.1. Adaptation and learning over networks 3

There are basically two ways to solve the network optimization problem (1.9) collabora-

tively, namely, centralized and distributed solutions as shown in Figure 1.1. In the central-

ized mode of operation, there is a fusion center in the network that collects all the data

(raw data or processed data) from agents. The fusion center is assumed to have powerful

communication and computation ability to process the data centrally. Then, the fusion

center sent back the result to each agent when it is needed. Although the centralized

solution can be benefit more by collecting all the data, it still suffers from some limita-

tions [Sayed 2014a]: (1) The centralized solution is vulnerable since it highly depends on

the fusion center, any failure in the fusion center could lead collapses of network; (2) Ex-

changing information back and forth between agents and remote fusion center costs a lot

of communication resources which would be demanding in very large networks or in some

resource stringent applications; (3) In some sensitive applications, considering privacy and

secrecy issues, remote agents may be reluctant to sent their data to the fusion center. In

the distributed mode of operation, each agent can interact with localized neighbors and

perform an in-network processing. Such networks are scalable and more robust to node or

link failures.

1

3

k

7

2

4

6

8

5

(a) Centralized network

1

3

k

7

2

4

6

8

5

(b) Distributed network

Figure 1.1: Centralized and distributed networks.

Since distributed solution are more favorable for in-network processing, there are several

useful distributed strategies that have been proposed in the literature, such as incremental

strategies [Bertsekas 1997, Nedic 2001, Rabbat 2005, Lopes 2007, Blatt 2007], consensus

strategies [Xiao 2005, Olfati-Saber 2007, Braca 2008, Nedic 2009, Dimakis 2010, Kar 2011,

Kar 2012], and diffusion strategies [Lopes 2008, Cattivelli 2010a, Chen 2012]. As shown

4 Chapter 1. Introduction

in Figure 1.2(a), in the incremental strategy, an agent only communicate to one of its

neighbor and data are processed in a cyclic manner through the network until optimization

is achieved. However, it is known that finding a cyclic path that covers all nodes is an

NP-hard problem. On the other hand, this cyclic path is sensitive to the failures of nodes

or links. While in the consensus and diffusion strategies, agents are allowed to exchange

information with all their immediate neighbors which are more robust to node and link

failures. In the context of adaptation and learning ability in time-varying environments, it

has been shown in [Tu 2012] that diffusion strategy outperform consensus strategy where

the latter suffers from a stability issue with constant step-size. It is worth noting that, the

aforementioned strategies are primal methods, there are also primal-dual methods, such as

alternating direction method of multipliers (ADMM) [Boyd 2011, Barbarossa 2013], that

can be applied to distributed consensus optimization problems [Schizas 2009, Mateos 2009].

In [Towfic 2015], the authors reveal that the advantages of primal-dual methods in deter-

ministic optimization problems do not apply to stochastic optimization problems. On the

contrast, the primal-dual methods have narrower stability ranges and worse performance

than primal methods in adaptive networks.

1

3

k

7

2

4

6

8

5

(a) Incremental strategy

1

3

k

7

2

4

6

8

5

(b) Consensus and Diffusion strategies

Figure 1.2: Illustration of different distributed strategies.

With the attractive features of adaptation and learning ability, diffusion strategies have

been widely studied and developed in the literature. Diffusion recursive-least-squares (RLS)

[Cattivelli 2008], diffusion affine projection algorithm (APA) [Li 2009], diffusion Kalman

filter and smoother [Cattivelli 2010b], diffusion normalized LMS (NLMS) [Xie 2018] have

been developed. A diffusion Gauss-Newton method has been proposed to solve the non-

1.1. Adaptation and learning over networks 5

linear least-squares problem [Xiong 2019]. Distributed adaptive detection based on dif-

fusion strategy has been proposed in [Cattivelli 2011]. Diffusion strategies with noisy

links, link impairments, asynchronous events, and communication delays have been ex-

amined in [Khalili 2011, Abdolee 2016, Zhao 2012, Zhao 2015a, Zhao 2015b, Hua 2020a].

Algorithms for reducing communication costs of diffusion strategies have been proposed

in [Arablouei 2014, Harrane 2019]. Taking account the sparsity in the underlying system

model [Chen 2009], sparse diffusion LMS strategy has been proposed in [Di Lorenzo 2012].

Stability and performance analysis for diffusion LMS with correlated regressors are provided

in [Piggott 2016, Piggott 2017]. Affine combination of diffusion strategies are devised and

analyzed in [Jin 2020]. An exact diffusion strategy has been proposed in [Yuan 2019a] for

deterministic optimization problem which can achieve exact solutions, while its performance

in adaptive networks is analyzed in [Yuan 2019b].

Most of prior works on diffusion estimation assumed that all the agents in the network

seek to estimate the same parameter vector, as shown in Figure 1.3(a). Besides single-task

networks, there are also applications where it is desirable to estimate multiple parameter

vectors at the same time [Plata-Chaves 2017, Nassif 2020a]. The multitask optimization

problem can be formulated as:

min
{wk}Nk=1

Jglob(w1, . . . ,wN) ,
N∑
k=1

Jk(wk), (1.10)

where each agent has its own optimum w∗k to seek. This problem boils down to the single

agent problem (1.1) if all the agents run a stand-alone procedure and do not exchange infor-

mation with each other. It is shown in [Chen 2013a] that the diffusion strategy converges

to a Pareto solution corresponding to a multi-objective optimization problem. Despite the

heterogenous nature in multitask networks and the fact that each agent may solve a differ-

ent task, the agents could still benefit from a collaboration between them. It is shown in

[Chen 2015a] that, when the tasks are sufficiently similar to each other, the single-task dif-

fusion LMS algorithm can still perform better than non-cooperative strategies. The similar-

ities between tasks, if are known in prior, can be leveraged to devise multitask strategies to

improve the estimation performance. Distributed adaptive node-specific signal estimation

methods are proposed over fully connected network and tree networks in [Bertrand 2010]

and [Bertrand 2011], respectively. The node-specific signals were assumed to share a com-

mon latent signal subspace. In [Bogdanovic 2014, Plata-Chaves 2015, Plata-Chaves 2016],

distributed algorithms are derived to estimate node-specific parameter vectors where agents

are interested in estimating parameters of local interest and parameters of global interest.

Grouping strategy is proposed in [Chen 2016] where some group of entries are same for ad-

6 Chapter 1. Introduction

jacent agents. In other works [Chen 2014b, Chen 2017], the parameter space is decomposed

into two orthogonal subspaces, with one of the subspaces being common to all agents.

1

3

k

7

2

4

6

8

5

w⇤

(a) Single task network

1

3

k

7

2

4

6

8

5

w⇤
C2

w⇤
C1

w⇤
C3

(b) Clustered multitask network

1

3

k

7

2

4

6

8

5

w⇤
8

w⇤
7

w⇤
6

w⇤
5

w⇤
4

w⇤
3

w⇤
k

w⇤
2

w⇤
1

(c) Multitask network

Figure 1.3: Illustration of single task and multitask estimation networks. (a) In a single

task network, all agents are seek to estimate the same parameter w∗; (b) In a clustered

multitask network, agents are divided into different clusters, agents in the same cluster

(illustrated in the same color) estimate the same task; (c) In a multitask network, each

agent estimates distinct but related parameters.

Another useful way to model relationships among tasks is to formulate optimiza-

1.1. Adaptation and learning over networks 7

tion problems with appropriate regularizer between agents [Chen 2014c, Nassif 2016a,

Nassif 2016b, Wang 2017]. In this scenario shown in Figure 1.3 (b), the network are as-

sumed to be divided into several clusters and the clusters are known by agents, the agents

in the same cluster are assumed to estimate the same task while different clusters have dif-

ferent but similar tasks. The `1-norm and weighted `1-norm are employed as co-regularizer

to devise multitask strategies for solving problems where the optimal models of adjacent

clusters have a large number of similar entries [Nassif 2016b]. While a squared `2-norm is

used in [Chen 2014c, Nassif 2016a, Wang 2017] to promoted smoothness between parame-

ters. Graph spectral regularization was used to improve the multitask network performance

by leveraging the graph spectral information [Nassif 2019].

In some applications, it happens that each agent has its own parameter vector to esti-

mate, and these vectors are belong to a low-dimensional subspace [Nassif 2017b, Hua 2017b,

Hua 2017a, Alghunaim 2020, Nassif 2020c, Nassif 2020b, Di Lorenzo 2020]. Consider the

case where the vectors are coupled together through a set of linear constraints, examples in-

clude the network flow control problem [Bertsekas 1998], the interference management prob-

lem in communication networks [Shen 2012], and the basis pursuit problem [Mota 2012].

In Chapter 2 and 3, we consider multitask estimation problems where the parameter vec-

tors to be estimated at neighboring agents are related according to a set of linear equality

constraints. Therefore, the objective of the network is to optimize the aggregate cost across

all nodes subject to all constraints:

min
w1,...,wN

Jglob(w1, . . . ,wN) ,
N∑
k=1

Jk(wk), (1.11a)

s. t.
∑
`∈Ip

Dp`w` + bp = 0, p = 1, . . . , P (1.11b)

with N the number of agents in the network. Each agent k seeks to estimate its own

parameter vector wk ∈ RMk×1, and has knowledge of its local cost Jk(·) and the set of

linear equality constraints that it is involved in. Each constraint is indexed by p, and

defined by the Lp ×M` matrix Dp`, the Lp × 1 vector bp, and the set Ip of agent indices

involved in the p-th constraint. Total number of constraints in the network is denoted by

P .

There is another scenario in multitask network where the cluster structures are un-

known, the only available information is that clusters may exist in the network. Sev-

eral unsupervised clustering schemes have been proposed in [Zhao 2015c, Chen 2015a,

Plata-Chaves 2016, Khawatmi 2017] to extend the diffusion strategy. These methods en-

able agents to identify which neighbors are sharing a common learning task and which

8 Chapter 1. Introduction

neighbors should be ignored during cooperation step. We will examine this scenario in

Chapter 4.

1.2 Graph signal processing

In many network-structured applications, the data generated by agents are naturally

distributed and often exhibit non-Euclidean structures. The emergence of this kind

of data and applications has attracted much attention in signal processing community

[Shuman 2013, Sandryhaila 2014a, Bronstein 2017, Ortega 2018] as well as machine learn-

ing community [Zhang 2020, Wu 2020]. The relationships underlying these data can be

captured by a graph. Unlike the traditional signals, such as 1-dimensional time series

signal or 2-dimensional image signal, this irregular structured signal do not fall into the

scopes of traditional Discrete Signal Processing (DSP) techniques. Graph signal process-

ing (GSP) [Shuman 2013, Ortega 2018] allows us to develop signal processing techniques

for analyzing and processing signals that reside on networks, such as graph frequency

analysis [Shuman 2013, Sandryhaila 2014b], sampling [Chen 2015b, Wang 2015, Anis 2016,

Tsitsvero 2016], and filtering [Shi 2015, Segarra 2017, Isufi 2017b, Coutino 2019, Liu 2019].

Let G = {V, E} denote a graph, where V is a set of N vertices and E is a set of edges

such that {k, `} ∈ E if there is an edge from vertex k to vertex `. The edges may have

directions or not. The former type of graph is called a directed graph while the latter is

called an undirected graph. Graph G can be represented by its N × N adjacency matrix

W whose (k, `)-th entry wk` assigns a weight to the relation between vertices k and ` such

that:

wk` > 0, if {k, `} ∈ E , and wk` = 0, otherwise. (1.12)

For an undirected graph, matrix W is a symmetric matrix. Let D = diag{d1, . . . , dN}
denote the diagonal degree matrix whose k-th diagonal entry dk is the sum of the k-th row

entries of W :

[D]k,k = dk =

N∑
`=1

wk`. (1.13)

The combinatorial graph Laplacian matrix is defined as [Chung 1997]:

L = D −W . (1.14)

Matrix L is a symmetric positive semi-definite matrix for an undirected graph. The nor-

malized Laplacian matrix is defined as follows:

Lnorm = D−
1
2LD−

1
2 . (1.15)

1.2. Graph signal processing 9

For a directed graph, the random walk operator is a probability transition matrix defined

as [Lovász 1993]:

P = D−1W . (1.16)

If the random walk is irreducible, it has a unique stationary distribution π that satisfies

πP = π [Horn 2012]. Its time reversed ergodic random walk is given by [Aldous 1995]:

P ∗ = Π−1P>Π, (1.17)

where Π = diag{π}.
When the graph and edge weights are not given for an application, one can define the

weight wk` of an edge connecting k and ` based on their distance. To obtain an undirected

graph, a choice is to define the weight wk` via a Gaussian kernel [Shuman 2013]:

wk` =

e
− d

2
k`

2θ2 if dk` ≤ κ,

0 otherwise,
(1.18)

for some parameters θ, κ, and dk` may represent a physical distance between vertices k and

`, or the Euclidean distance between two feature vectors describing k and `. To construct a

directed graph, each vertex is connected to nearest K vertices with directed edges weighted

by the normalized inverse exponents of the squared distances [Sandryhaila 2013]:

wk` =
e−d

2
k`√∑

m∈Nk e
−d2km

∑
n∈N` e

−d2`n
. (1.19)

There are scenarios where it is desirable to learn a graph from given data sets, see

[Giannakis 2018, Dong 2019, Mateos 2019] and references therein. These approaches aim

to find a graph Laplacian or adjacency matrix that can capture the structure of data or

explain a data distribution [Zhang 2015].

A graph signal is defined as x = [x1, . . . , xN]> ∈ IRN where xk is the signal sample at

vertex k. One of key ingredients of GSP is the definition of the graph shift operator (GSO)

which provides a basic operation on a graph signal. A GSO S can be defined as an N ×N
matrix which captures the graph topology such that its entries satisfy:

sk` 6= 0, if {k, `} ∈ E or k = `, and sk` = 0, otherwise. (1.20)

Apparently, the adjacency matrix W , the Laplacian matrix L, and its normalized one

Lnorm can be adopted as the graph shift operator. They are common choices for GSP

analysis, e.g., the adjacency matrix W is analogous to the shift in classical time DSP

10 Chapter 1. Introduction

[Sandryhaila 2013], the Laplacian matrix L have been widely studied in the field of spectral

graph theory [Chung 1997]. However, there is no universal operator that is proper for all

applications. The choice of operators depends on the problem at hand. This has led

several authors to introduce specific ones. For instance, in [Girault 2015b], the authors

propose an isometric graph shift operator for stationary graph signals. In [Gavili 2017],

the authors introduce a set of operators preserving the energy content of graph signals in

the frequency domain. A unitary shift operator is proposed in [Dees 2019], which exhibits

property of energy preservation over both backward and forward graph shifts. The authors

in [Singh 2016] consider an extension for directed graphs of the symmetric Laplacian matrix.

Combination of operators has been considered in [Anis 2016, Sevi 2018a], we will discuss

more in Chapter 5 how to model graph signals with combination of operators.

Given a graph shift operator S, and assume that S is diagonalizable, such that

S = V ΛV −1, (1.21)

where V collects the eigenvectors of S as columns, and Λ = diag{λ1, . . . , λN} collects

the eigenvalues. In the view of graph spectral theory, the eigenvalues correspond to graph

frequencies and the eigenvectors correspond to frequency components. The graph Fourier

transform (GFT) x̂ of a graph signal x is defined as

x̂ = V −1x (1.22)

and the inverse GFT is

x = V x̂. (1.23)

The GFT projects the graph signal x into eigenvector basis and obtains the weights of

the frequency content. The inverse GFT reconstructs the graph signal by combining graph

frequency components weighted by the coefficients of the signal’s graph Fourier transform.

The polynomial shift-invariant graph filter can be defined as [Sandryhaila 2013]:

H ,
L−1∑
`=0

h`S
` (1.24)

where h` ∈ IR is the filter coefficient, L is called the order of the filter and L− 1 is called

the degree of the filter. Consider a graph signal defined as x = [x1, . . . , xN]> ∈ IRN where

xk is the signal sample at vertex k. The filtering process can be expressed as:

y = Hx =

L−1∑
`=0

h`S
`x (1.25)

with y the filter output vector.

1.3. Organization of the contents 11

Much of the GSP literature has focused on static graph signals, that is, signals that need

not evolve with time. However, a wide spectrum of network-structured problems requires

adaptation to time-varying dynamics. Prior to the more recent GSP literature, many

earlier works on adaptive networks have addressed problems dealing with this challenge

by developing processing strategies that are well-suited to data streaming into graphs as

reviewed in Section 1.1. We will consider the problem of adaptation and learning on

streaming graph signals in Chapter 4.

1.3 Organization of the contents

The objective of this dissertation is to contribute to the investigation of adaptation and

learning over multitask networks and graphs. The work in this dissertation is composed of

four main parts, as described below.

In Chapter 2, we consider the multitask problem over network (1.11) where each agent is

interested in estimating its own parameter vector and where the tasks are related according

to a set of linear equality constraints. We assume that each agent possesses its own cost and

that the set of constraints is distributed among the agents. Based on the penalty method,

we propose an adaptive multitask estimation algorithm in order to allow the network to

optimize the individual costs subject to all constraints. We derive conditions on the step-

sizes ensuring the stability of the algorithm and we carry out the theoretical performance

analysis in the mean and mean-square-error sense.

In Chapter 3, we continue to consider the multitask problem over network whereas

agents involved in the same constraint are not necessarily one-hop neighbors. In order to

devise a fully distributed algorithm, we employ a multi-hop relay protocol and the penalty

method. The resulting algorithm contains delayed intermediate estimates comparing with

the algorithm developed in Chapter 2. To see how these delays affect on the stability and

performance, we derive a detailed stochastic behavior in an alternative way compared to

Chapter 2. We show that the distributed algorithm can continue to converge by selecting

proper small step-size.

In Chapter 4, we consider the problem of adaptive and distributed estimation of graph

filter coefficients from streaming data. We first formulate this problem as a consensus esti-

mation problem over graphs, which can be addressed with single task distributed strategies.

Several diffusion based algorithms are proposed. Performance analysis in the mean and

mean-square sense is provided. Then, we extend the single task problem to multitask prob-

lem and consider a more general problem where the filter coefficients to estimate may vary

12 Chapter 1. Introduction

over the graph. To avoid a large estimation bias, we introduce an unsupervised clustering

method for splitting the global estimation problem into local ones. Numerical results show

the effectiveness of the proposed algorithms and validate the theoretical results.

In Chapter 5, we consider the problem of modeling graph signals with graph filters. In

order to enhance interpretability, we propose to use combination of graph filters where each

graph has its own graph shift operators. The objective is to learn multiple graph filters

coefficients. Due to their extra degrees of freedom, these models might suffer from over-

fitting. We address this problem through a weighted `2-norm regularization formulation

to perform model selection by encouraging group sparsity. We show that the proposed

formulation is actually a smooth convex optimization problem that can be solved efficiently.

Experiments on real-world data structured by undirected and directed graphs show the

effectiveness of this method.

Finally, the last Chapter concludes the thesis by summarizing main contributions of the

methods developed in the previous chapters and provides possible future research directions.

Several publications were presented during the preparation of this dissertation:

1. Fei Hua, Roula Nassif, Cédric Richard, Haiyan Wang and Ali H. Sayed. “Diffusion

LMS with communication delays: Stability and performance analysis.” IEEE Signal

Processing Letters, vol. 27, pp. 730–734, 2020.

2. Fei Hua, Roula Nassif, Cédric Richard, Haiyan Wang and Ali H. Sayed. “Online

distributed learning over graphs with multitask graph-filter models.” IEEE Transac-

tions on Signal and Information Processing over Networks, vol. 6, no. 1, pp. 63–77,

2020.

3. Fei Hua, Cédric Richard, Jie Chen, Haiyan Wang, Pierre Borgnat and Paulo

Gonçalves, “Learning combination of graph filters for graph signal modeling.” IEEE

Signal Processing Letters, vol. 26, no. 12, pp. 1912–1916, Dec. 2019.

4. Fei Hua, Roula Nassif, Cédric Richard, Haiyan Wang and Ali H. Sayed. “Decentral-

ized clustering for node-variant graph filtering with graph diffusion LMS.” in Proc.

52nd Asilomar Conference on Signals, Systems, and Computers (ASILOMAR), Pa-

cific Grove, CA, USA, Oct. 2018, pp. 1418–1422.

5. Fei Hua, Roula Nassif, Cédric Richard, Haiyan Wang and Ali H. Sayed. “A precon-

ditioned graph diffusion LMS for adaptive graph signal processing,” in Proc. 26th

European Signal Processing Conference (EUSIPCO), Rome, Italy, Sep. 2018, pp.

111–115.

1.3. Organization of the contents 13

6. Fei Hua, Roula Nassif, Cédric Richard and Haiyan Wang. “Penalty-based multitask

estimation with non-local linear equality constraints,” in Proc. IEEE 7th Interna-

tional Workshop on Computational Advances in Multi-Sensor Adaptive Processing

(CAMSAP), Curacao, Netherlands Antilles, Dec. 2017, pp. 1–5.

7. Fei Hua, Roula Nassif, Cédric Richard, Haiyan Wang and Jianguo Huang, “Penalty-

based multitask distributed adaptation over networks with constraints,” in Proc. 51st

Asilomar Conference on Signals, Systems, and Computers (ASILOMAR), Pacific

Grove, CA, USA, Oct. 2017, pp. 908–912.

8. Yongsheng Yan, Xiaohong Shen, Fei Hua, and Xionghu Zhong, “On the semidefi-

nite programming algorithm for energy-based acoustic source localization in sensor

networks,” IEEE Sensors Journal, vol. 18, no. 21, pp. 8835–8846, Nov. 2018.

9. Mircea Moscu, Roula Nassif, Fei Hua, and Cédric Richard, “Learning causal networks

topology from streaming graph signals,” in Proc. 27th European Signal Processing

Conference (EUSIPCO), A Coruña, Spain, Sep. 2019, pp. 1–5.

Chapter 2

Distributed adaptation over

multitask networks with constraints

Contents
2.1 Introduction . 16

2.2 Problem formulation . 17

2.3 Centralized and distributed solution 19

2.3.1 Centralized optimal solution and iterative solution 19

2.3.2 Penalty functions . 20

2.3.3 Penalty-based distributed solution . 21

2.4 Performance analysis . 22

2.4.1 Error recursion . 23

2.4.2 Mean error behavior analysis . 25

2.4.3 Mean-square-error behavior analysis 26

2.5 Simulations . 31

2.6 Conclusion . 36

Appendix 2.A Block Kronecker product 36

Appendix 2.B Evaluation of matrix F for zero-mean real Gaussian
regressors . 37

Appendix 2.C Proof of recursion (2.92) 39

Multitask distributed optimization over networks enables the agents to cooperate locally

to estimate multiple related parameter vectors. In this chapter, we consider multitask

estimation problems over mean-square-error (MSE) networks where each agent is interested

in estimating its own parameter vector, also called task, and where the tasks are related

according to a set of linear equality constraints. We assume that each agent possesses its

own cost and that the set of constraints is distributed among the agents. In order to solve

the multitask problem, a cooperative algorithm based on penalty method is derived. Results

16 Chapter 2. Multitask networks with constraints

on its stability and convergence properties are also provided. Simulations are conducted to

illustrate the theoretical results and show the effectiveness of the strategy. The material in

this chapter is based on the work [Hua 2017b].

2.1 Introduction

Distributed adaptive learning strategies over networks enable the agents to accomplish a

certain task such as parameter estimation collaboratively from streaming data, and endow

the agents with continuous adaptation and learning ability to track possible drifts in the

underlying model. Although a centralized strategy may benefit more from information

collected throughout the network, in most cases, distributed strategies are more attractive

since they are scalable and robust. There is an extensive literature on distributed adap-

tive methods for single-task problems, where all the agents over the network have a com-

mon parameter vector to estimate [Sayed 2014a, Sayed 2014b, Sayed 2014c, Towfic 2014].

However, many applications are multi-task oriented in the sense that the agents have

to infer multiple parameter vectors simultaneously. In this case, the agents do not

share a common minimizer. It is shown in [Chen 2013a] that the network converges

to a Pareto solution corresponding to a multi-objective optimization problem. Multi-

task diffusion strategies, by exploiting prior information about relationships between the

tasks, can let the agents or clusters of agents converge to their own respective models.

One useful way to model relationships among tasks is to formulate optimization prob-

lems with appropriate regularizer between agents [Chen 2014c, Nassif 2016a, Nassif 2016b].

In [Bogdanovic 2014, Plata-Chaves 2015, Plata-Chaves 2016], distributed algorithms are

derived to estimate node-specific parameter vectors where agents are interested in es-

timating parameters of local interest and parameters of global interest. In other

works [Chen 2014b, Chen 2017], the parameter space is decomposed into two orthogonal

subspaces. The relations among tasks are modeled by assuming that they all share one

of the subspaces. In [Yu 2017], it is assumed that each agent has only access to a subset

of the entries of a global parameter vector and only shares the common entries with its

neighbors.

In some applications, it happens that each agent has its own parameter vector to es-

timate and these vectors are coupled together through a set of linear constraints. Ex-

amples include the network flow control problem [Bertsekas 1998], the interference man-

agement problem in communication networks [Shen 2012], and the basis pursuit prob-

lem [Mota 2012]. In this work, we consider multitask estimation problems where the pa-

2.2. Problem formulation 17

rameter vectors to be estimated at neighboring agents are related according to a set of linear

equality constraints. Therefore, the objective of the network is to optimize the aggregate

cost across all nodes subject to all constraints:

min
w1,...,wN

Jglob(w1, . . . ,wN) ,
N∑
k=1

Jk(wk), (2.1a)

s. t.
∑
`∈Ip

Dp`w` + bp = 0, p = 1, . . . , P (2.1b)

with N the number of agents in the network. Each agent k seeks to estimate its own

parameter vector wk ∈ RMk×1, and has knowledge of its local cost Jk(·) and the set of

linear equality constraints that it is involved in. The dimension of the parameter vectors

can differ from one node to another. Each constraint is indexed by p, and defined by the

Lp ×M` matrix Dp`, the Lp × 1 vector bp, and the set Ip of agent indices involved in the

p-th constraint. It is assumed that each agent k in Ip can collect information from the

other agents in Ip, i.e., Ip ⊆ Nk for all k ∈ Ip where Nk denotes the neighborhood of agent

k. Total number of constraints in the network is denoted by P .

In [Nassif 2017b], the authors address (2.1) by combining diffusion adaptation with a

stochastic projection method. The nodes involved in several constraints are divided into

virtual sub-nodes in order to circumvent the problem of projecting their local parameter

vector onto several constraint subspaces simultaneously. In this work, we propose an al-

ternative method that consists of reformulating (2.1) as an unconstrained problem with

penalty functions. We devise a distributed learning strategy relying on an adaptation step

and a penalization step. Although we consider only the case of equality constraints, the

algorithm can be easily extended to solve problems with inequality constraints. We analyze

its behavior in the mean and mean-square-error sense. Simulations are conducted to show

the effectiveness of the proposed strategy.

2.2 Problem formulation

Consider a network ofN agents, labeled with k = 1, . . . , N . At each time instant i ≥ 0, each

agent k is assumed to have access to a zero-mean scalar measurement dk(i) and a real-valued

regression vector xk(i) ∈ RMk×1 with positive covariance matrix Rx,k = E{xk(i)x>k (i)}.
The data {dk(i),xk(i)} are assumed to be related via the linear regression model:

dk(i) = x>k (i)wo
k + zk(i) (2.2)

where wo
k is an unknown parameter vector, and zk(i) is a zero-mean measurement noise

with variance σ2
z,k assumed to be spatially and temporally independent.

18 Chapter 2. Multitask networks with constraints

Let wk ∈ RMk×1 denote the parameter vector associated with agent k. The objective

at agent k is to estimate wo
k by minimizing the cost function Jk(wk) given by:

Jk(wk) = E|dk(i)− x>k (i)wk|2 (2.3)

We assume that Jk(·) is strongly convex and second-order differentiable. In addition, we

consider that the optimum parameter vectors at neighboring agents are related according

to a set of linear equality constraints of the form (2.1b). Each agent k has knowledge of

its cost and the set of constraints that it is involved in. We use Jk to denote the set of

constraint indices involving agent k, i.e., Jk , {p|k ∈ Ip}.
We collect the parameter vectors wk and wo

k from across all nodes into the following

N × 1 block vectors:

w , col{w1, . . . ,wN}, wo , col{wo
1, . . . ,w

o
N}. (2.4)

The constraints in (2.1b) can be written more compactly as:

Dw + b = 0 (2.5)

where D is a P ×N block matrix, with each block Dp` having dimension Lp ×M` , and b

is a P × 1 block column vector with each block bp having dimensions Lp× 1. This leads to

the network constrained optimization problem:

min
w

N∑
k=1

E|dk(i)− x>k (i)wk|2

s. t. Dw + b = 0.

(2.6)

Let rdx,k , E{dk(i)xk(i)} and σ2
d,k , E|dk(i)|2. Problem (2.6) can be written equivalently

as:
min
w

w>Rxw − 2r>dxw + σ>d 1N×1,

s. t. Dw + b = 0
(2.7)

where the N ×N block diagonal matrix Rx , the N × 1 block vector rdx, and the N × 1

vector σd are given by:

Rx , diag{Rx,1, . . . ,Rx,N}, (2.8)

rdx , col{rdx,1, . . . , rdx,2}, (2.9)

σd , col{σ2
d,1, . . . , σ

2
d,N}. (2.10)

2.3. Centralized and distributed solution 19

2.3 Centralized and distributed solution

2.3.1 Centralized optimal solution and iterative solution

Because Rx is positive definite, problem (2.7) is a positive definite quadratic programming

problem with equality constraints which has a unique global minimum. We introduce a

Lagrange multiplier λ and study the Lagrange function

min
w,λ

L(w,λ) = w>Rxw − 2r>dxw + σ>d 1N×1 + λ>(Dw + b). (2.11)

Differentiating L(w,λ) w.r.t. w, we find its gradient vector:

∇wL(w,λ) = 2Rxw − 2rdx + D>λ. (2.12)

Let ∇wL(w,λ) = 0, we get:

w? = wo − 1

2
R−1
x D>λ. (2.13)

Since the optimum w? satisfies the constraints, namely Dw? + b = 0, we get:

Dwo − 1

2
DR−1

x D>λ+ b = 0. (2.14)

Then λ? can be obtained by solving the above equation:

λ? = 2(DR−1
x D>)−1(Dwo + b), (2.15)

substituting it into (2.13), the closed form of optimum solution for problem (2.7) is given

by:

w? = wo −R−1
x D>(DR−1

x D>)−1(Dwo + b). (2.16)

Let Ω denote the linear manifold:

Ω , {w : Dw + b = 0}. (2.17)

Observe that if wo ∈ Ω, i.e. Dwo + b, the optimum w? coincides with wo according

to (2.16). In order to solve the problem (2.7) iteratively, we can apply the gradient projec-

tion method [Bertsekas 1999] on top of a gradient-descent iteration

w(i+ 1) = PΩ

(
w(i) + µ(rdx −Rxw(i))

)
(2.18)

where w(i) denotes the estimate of w? at iteration i and PΩ denotes projection operation

onto Ω. The projection of any vector y ∈ IRM on Ω can be expressed as:

PΩ(y) = Py − f , (2.19)

20 Chapter 2. Multitask networks with constraints

where

P , IM −D†D, (2.20)

f , D†b, (2.21)

with D† denoting the pseudo-inverse of the matrix D given by D>(DD>)−1. Notice

that, the gradient projection iteration (2.18) requires the second-order statistical moments

{rdx,Rx} which are, however, usually unavailable beforehand. We can replace the compo-

nents of them by the instantaneous approximations Rx,k ≈ xk(i)x>k (i), rdx,k ≈ dk(i)xk(i).
To this end, we arrive at the stochastic-gradient algorithm:

w(i+ 1) = Pcol
{
wk(i) + µxk(i)(dk(i)− x>k (i)wk(i))

}N
k=1
− f (2.22)

which is refer to as the constrained least-mean-square (CLMS) algorithm, which was origi-

nally proposed in [Frost 1972] as an online linearly constrained minimum variance (LCMV)

filter for solving mean-square-error estimation problems subject to linear constraints in ar-

ray signal processing.

2.3.2 Penalty functions

The solutions given in last subsection require explicit projection operation onto the con-

straints. Considering the computational cost, we resort to augmentation-based meth-

ods, which offer a simple straightforward way for handling constrained problems. The

idea is to approximate the original constrained problem by an unconstrained prob-

lem. Basically, there are two alternative methods, called barrier method and penalty

method [Bazaraa 2013, Chap. 9], [Luenberger 2015, Chap. 13], to augment the original

objective function with a “penalty” term. Barrier method, also known as interior penalty

function method, augments the original objective function with a barrier penalty term that

prevents the points generated from leaving the feasible region. Penalty method, also known

as exterior penalty function method, adds a term to the objective function to penalize any

violation of the constraints. Barrier method requires a strictly feasible initialization and full

knowledge of feasible set, this makes it not suitable in distributed settings [Towfic 2014].

In the following, we will focus on the penalty method, which avoids this disadvantage.

To motivate penalty functions, consider the following problem having the single con-

straint h(w) = 0:

min
w

f(w)

s. t. h(w) = 0.
(2.23)

2.3. Centralized and distributed solution 21

This problem can be replaced by the following unconstrained problem,

min
w

f(w) + η(h(w))2, (2.24)

where η is a large number. We can see that an optimal solution to the above problem

must have (h(w))2 close to zero, otherwise, a large penalty η(h(w))2 will be incurred.

This indicates that for equality constraint, a possible choice of a continuous, convex, and

twice-differentiable penalty function is the quadratic penalty δSEP(x) = x2.

Consider the following problem having single inequality constraint g(w) ≤ 0:

min
w

f(w)

s. t. g(w) ≤ 0.
(2.25)

This problem can be replaced by the following unconstrained problem,

min
w

f(w) + ηmax{0, g(w)}, (2.26)

If g(w) ≤ 0, then max{0, g(w)} = 0 and no penalty is added. On the other hand,

if g(w) > 0, then max{0, g(w)} > 0 and the penalty term ηg(w) is incurred. No-

tice that max{0, g(w)} > 0 might not be differentiable. One continuous, convex, non-

decreasing, and twice-differentiable penalty function for inequality constraint could be

δSIP(x) = max{0, x3√
x2+ε2

} with ε > 0 a positive value.

2.3.3 Penalty-based distributed solution

By augmenting the objective function with a penalty term, problem (2.1) can be approxi-

mated into an unconstrained problem of the following form:

min
w1,...,wN

N∑
k=1

Jk(wk) + η
P∑
p=1

‖
∑
`∈Ip

Dp`w` + bp‖2 (2.27)

where η > 0 is a scalar parameter that controls the relative importance of adhering to

the constraints. The approximation (2.27) of (2.1) improves in quality as η increases

[Polyak 1987, Bazaraa 2013]. Problem (2.27) can be written alternatively as:

min
w

Jglob
η (w) , Jglob(w) + η‖Dw + b‖2 (2.28)

where Jglob(·) is given in (2.1a). The above problem is strongly convex for any η and its

closed form solution parameterized by η is given by:

wo(η) = (Rx + ηD>D)−1(Rxw
o − ηD>b). (2.29)

22 Chapter 2. Multitask networks with constraints

Node k can apply a steepest-descent iteration to minimize the cost in (2.27) with respect

to wk. Starting from an initial condition wk(0), we obtain the following steepest descent

iteration at node k:

wk(i+ 1) = wk(i)− µ
[
Rx,kwk(i)− rdx,k + η

∑
p∈Jk

D>pk
(∑
`∈Ip⊆Nk

Dp`w`(i) + bp
)]
. (2.30)

Replacing the second-order moments Rx,k, rdx,k by instantaneous approximations:

Rx,k ≈ xk(i)x>k (i), rdx,k ≈ dk(i)xk(i) (2.31)

and implementing the update iteration into two successive steps by introducing the inter-

mediate estimate φk(i+ 1), we obtain the following adaptive algorithm at agent k:

φk(i+ 1) = wk(i) + µxk(i)
(
dk(i)− x>k (i)wk(i)

)
, (2.32a)

wk(i+ 1) = φk(i+ 1)− µη
∑
p∈Jk

D>pk

(∑
`∈Ip⊆Nk

Dp`φ`(i+ 1) + bp

)
. (2.32b)

Note that in the second step (2.32b),w`(i) is replaced by the intermediate estimate φ`(i+1),

which is a better estimate for the solution at agent `. In the first step (2.32a), which

corresponds to the adaptation step, node k uses its data to update its estimate wk(i) to an

intermediate estimate φk(i+ 1). In the second step (2.32b), which is the penalization step,

node k collects the intermediate estimates φ`(i + 1) from its neighbors and moves along

the gradient of the penalty function. Note that, in this step, instead of sending φ`(i + 1)

to agent k, agent ` may send the vector Dp`φ`(i + 1). In this sense, our algorithm has

privacy-preserving property.

2.4 Performance analysis

We shall now analyze the mean and mean-square-error behaviors of the adaptive algo-

rithm (2.32) with respect to the optimal parameter vector wo, the solution w? of the

constrained optimization problem (2.7), and the solution wo(η) of the approximated un-

constrained optimization problem (2.28). Before proceeding, let us introduce the following

assumption.

Assumption 2.1 The regressor xk(i) arises from a stationary random process that is tem-

porally white and spatially independent with covariance matrix Rx,k = E{xk(i)x>k (i)} � 0.

This is the well-known Independence Assumption, which is commonly employed for ana-

lyzing adaptive filters and networks [Sayed 2003, Sayed 2008, Sayed 2014a]. Under this

2.4. Performance analysis 23

assumption, xk(i) is independent of w`(j) for all i > j and for all `. Although not true

in general, it simplifies the derivations without constraining the conclusions. Furthermore,

there are extensive results in the adaptive filtering literature indicating that the performance

results obtained using this assumption match well the actual performance for sufficiently

small step-sizes.

2.4.1 Error recursion

Let us introduce the error vector w.r.t. wo
k at node k and time instant i:

w̃k(i) , w
o
k −wk(i), (2.33)

and the intermediate error vector

φ̃k(i) , w
o
k − φk(i). (2.34)

We further collect them into the network block error vectors:

w̃(i) = col{w̃1(i), . . . , w̃N (i)}, (2.35)

φ̃(i) = col{φ̃1(i), . . . , φ̃N (i)}. (2.36)

LetM =
∑N

k=1Mk denote the length of the network error vector. Using similar arguments,

we define the block error vectors w.r.t. wo
k(η) and w?

k:

w̃′(i) = wo(η)−w(i) = wo −w(i) +wo(η)−wo = w̃(i) +wδ
η, (2.37)

w̃′′(i) = w? −w(i) = w? −w(i) +w? −wo = w̃(i) +wδ
?, (2.38)

with

wδ
η , w

o(η)−wo, (2.39)

wδ
? , w

? −wo. (2.40)

Observe that, the behaviors of algorithm (2.32) w.r.t. wo(η) and w? can be deduced from

its behavior w.r.t. wo using the relations (2.37) and (2.38). Therefore, in the squeal,

we first study the stochastic behavior of algorithm (2.32) w.r.t. wo and then extend its

behaviors w.r.t. wo(η) and w?.

Using the linear model (2.2), the estimation error in the adaptation step (2.32a) can be

written as:

dk(i)− x>k (i)wk(i) = x>k (i)(wo
k −wk(i)) + zk(i)

= x>k (i)(w̃k(i)) + zk(i). (2.41)

24 Chapter 2. Multitask networks with constraints

Subtracting wo
k from both sides of the adaptation step (2.32a) and using (2.41), we get

φ̃k(i+ 1) = [IMk
− µxk(i)x>k (i)]w̃k(i)− µxk(i)zk(i). (2.42)

Collecting the error vector φ̃k(i) into column block vector, we obtain:

φ̃(i+ 1) = [IM − µRx(i)]w̃(i)− µpzx(i) (2.43)

where

Rx(i) , bdiag
{
xk(i)x

>
k (i)

}N
k=1

, (2.44)

pzx(i) , col
{
xk(i)zk(i)

}N
k=1

. (2.45)

Observe that, Rx = E{Rx(i)} and E{pzx(i)} = 0.

Subtracting wo
k from both sides of the penalization step (2.32b), we obtain:

w̃k(i+ 1) = φ̃k(i+ 1) + µη
∑
p∈Jk

D>pk

(∑
`∈Ip

Dp`(w
o
` − φ̃`(i+ 1)) + bp

)
. (2.46)

Collecting into column block vector, we have:

w̃(i+ 1) = [IM − µηD>D]φ̃(i+ 1) + µηD>(Dwo + b). (2.47)

Combing error recursion (2.43) and (2.47), we obtain the network error vector evolves as

follow:

w̃(i+ 1) = [IM − µηD>D]
(
[IM − µRx(i)]w̃(i)− µpzx(i)

)
+ µηD>(Dwo + b). (2.48)

The above recursion can be rewritten in a more compact form:

w̃(i+ 1) = B(i)w̃(i)− µg(i) + µηfo (2.49)

by introducing the following notations

B(i) ,H[IM − µRx(i)], (2.50)

H , [IM − µηD>D], (2.51)

g(i) ,Hpzx(i), (2.52)

fo , D>(Dwo + b). (2.53)

Using the relations (2.37) and (2.38), the error recursion forms w.r.t. wo(η) and w? are

given by

w̃′(i+ 1) = B(i)w̃′(i)− µg(i) + µ(rη(i) + ηfη), (2.54)

w̃′′(i+ 1) = B(i)w̃′′(i)− µg(i) + µrs(i), (2.55)

2.4. Performance analysis 25

with

rη(i) ,HRx(i)wδ
η, (2.56)

fη , D>(Dwo(η) + b), (2.57)

rs(i) ,HRx(i)wδ
?. (2.58)

2.4.2 Mean error behavior analysis

Taking the expectation of both sides of recursion (2.48), using Assumption 2.1 and the

fact that Epzx(i) = 0, it can be verified that the network mean error vector Ew̃(i) evolves

according to:

Ew̃(i+ 1) = BEw̃(i) + µηfo, (2.59)

with

B , EB(i) = H[IM − µRx]. (2.60)

Similarly, we can find that the mean error vectors Ew̃′(i) and Ew̃′′(i) evolve according to:

Ew̃′(i+ 1) = BEw̃′(i) + µ(rη + ηfη), (2.61)

Ew̃′′(i+ 1) = BEw̃′′(i) + µrs, (2.62)

where

rη , Erη(i) = HRxw
δ
η, (2.63)

rs , Ers(i) = HRxw
δ
?. (2.64)

Theorem 2.1 (Convergence in the mean) Assume that data model (2.2) and Assump-

tion 2.1 hold. Then, for any initial condition, algorithm (2.32) converges in the mean, i.e.,

recursions (2.59), (2.61), and (2.62) converge as i → ∞, if matrix B given by (2.60) is

stable. A sufficient step-size condition for ensuring the stability of matrix B is:

0 < µ < min
{ 2

λmax(Rx,k)
,

2

η · λmax(D>D)

}
, k = 1, . . . , N. (2.65)

In this case, the asymptotic mean biases are given by:

Ew̃(∞) = lim
i→∞

Ew̃(i) = µη(IM −B)−1fo, (2.66)

Ew̃′(∞) = lim
i→∞

Ew̃′(i) = µ(IM −B)−1(rη + ηfη), (2.67)

Ew̃′′(∞) = lim
i→∞

Ew̃′′(i) = µ(IM −B)−1rs. (2.68)

26 Chapter 2. Multitask networks with constraints

Proof. The mean error recursions (2.59), (2.61), and (2.62) converge if the matrix

B is a stable matrix, which means its spectral radius is strictly less than 1, i.e., ρ(B) < 1.

Since the spectral radius of a matrix is upper bounded by any of its induced norms, we

have the following relation in terms of the 2-induced norm:

ρ(B) ≤ ‖(IM − µRx)(IM − µηD>D)‖2 (2.69)

≤ ‖IM − µRx‖2 · ‖IM − µηD>D‖2 (2.70)

where the second inequality follows from the submultiplicative property of matrix norm.

In order to ensure ρ(B) < 1, a sufficient condition is to choose step-size µ such that

‖IM − µRx‖2 < 1 and ‖IM − µηD>D‖2 ≤ 1. Observe that IM − µηD>D is a symmetric

matrix, its 2-induced norm agrees with its spectral radius. It can be verified that ‖IM −
µηD>D‖2 ≤ 1 by choosing µ satisfies

0 ≤ µ ≤ 2

η · λmax(D>D)
. (2.71)

Observe that IM −µRx is a block diagonal symmetric matrix, its 2-induced norm is equal

to the largest spectral radius of its block components:

‖IM − µRx‖2 = ρ(IM − µRx)

= max
1≤k≤N

ρ(IMk
− µRx,k). (2.72)

The condition ‖IM − µRx‖2 < 1 is satisfied by choosing µ such that

0 < µ < min
{ 2

λmax(Rx,k)

}
, k = 1, . . . , N. (2.73)

Combing conditions (2.71) and (2.73) yields to the condition (2.65).

Provided matrix B is stable, recursions (2.59), (2.61), and (2.62) will converge. Taking

limitations of both sides of them, we can find the asymptotic mean biases (2.66), (2.67),

and (2.68). �

Observe that when wo satisfies the linear constraints, i.e., wo = wo(η) = w?, all the

biases reduce to zero. When wo does not satisfy the linear constraints, the algorithm will

converge with a bias to optimum in the mean. We can observe that this bias given by (2.68)

can be arbitrary small by choosing small step-size.

2.4.3 Mean-square-error behavior analysis

Ensuring the stability in the mean sense is not sufficient. Even the error vectors w̃k(i)

are converging on average, they may have large fluctuations around the steady-state values

2.4. Performance analysis 27

due to the effect of measurement noises. Therefore, it requires to examine the mean-square

analysis to evaluate how the variances E‖w̃k(i)‖2 evolve with time i and what their steady-

state values are.

To do so, we evaluate the mean-square quantity weighted by any positive semi-definite

matrix Σ. Let ‖a‖2Σ denote the weighted square quantity a>Σa, for any vector a and

matrix Σ. The freedom in selecting Σ allows us to extract various types of information

about the nodes or network. To see this, consider the excess-mean-square-error (EMSE) at

agent k and over network which are defined as [Sayed 2008]:

EMSEk(i) = E|x>k (i)w̃k(i− 1)|2 (2.74)

EMSEnetwork(i) =
1

N

N∑
k=1

E|x>k (i)w̃k(i− 1)|2 (2.75)

can be obtained from E‖w̃(i)‖Σ by selecting Σ as bdiag{0, . . . ,Rx,k, . . . ,0} and 1
NRx,

respectively. Matrix bdiag{0, . . . ,Rx,k, . . . ,0} represents a block diagonal matrix where

all blocks on the diagonal are zero except for Rx,k on the diagonal block of index k. Let us

consider the mean-square-deviation (MSD) at agent k and over network which are defined

as [Sayed 2008]:

MSDk(i) = E‖w̃k(i)‖2 (2.76)

MSDnetwork(i) =
1

N

N∑
k=1

E‖w̃k(i)‖2 (2.77)

can be obtained from E‖w̃(i)‖Σ by selecting Σ as bdiag{0, . . . , IMk
, . . . ,0} and 1

N IM ,

respectively. Therefore, in the following, we will focus on analyzing the weighted mean-

square-error E‖w̃(i)‖2Σ.

From error vector recursion (2.49) and Assumption 2.1, we obtain the weighted mean-

square-error relation:

E‖w̃(i+ 1)‖2Σ = E‖w̃(i)‖2Σ′ + µ2E‖g(i)‖2Σ + µ2η2‖fo‖2Σ + 2µηf>o ΣBEw̃(i), (2.78)

with Σ′ given by

Σ′ = E
{
B>(i)ΣB(i)

}
. (2.79)

It is also convenient to introduce the alternative notation ‖a‖2σ to refer to the weighted

square quantity ‖a‖2Σ, where σ , bvec(Σ). In the squeal, we will use these two no-

tations interchangeably to denote the same quantity. Note that, we use the block Kro-

necker product operator ⊗b [Koning 1991] instead of the Kronecker product ⊗, and the

28 Chapter 2. Multitask networks with constraints

block vectorization operator bvec(·) instead of the vectorization operator vec(·), see Ap-

pendix 2.A. These block operators preserve the locality of the blocks in the original matrix

arguments [Sayed 2014a, Zhao 2015b]. It will allow us to evaluate the exact expressions

of quantities involving fourth-order moments of the regression data. Consider the prop-

erty (2.110) of block matrices, we find that

σ′ , bvec(Σ′) = Fσ (2.80)

where F is the M2 ×M2 matrix given by:

F , E
{
B>(i)⊗b B>(i)

}
. (2.81)

Consider the sufficiently small step-size case where the influence of high-order terms of µ

can be neglected [Sayed 2008, Sayed 2014c], matrix F can be approximated as

F ≈ B> ⊗b B>. (2.82)

The first term on the RHS of relation (2.78) can be rewritten as

E‖w̃(i)‖2Σ′ = E‖w̃(i)‖2σ′ = E‖w̃(i)‖2Fσ. (2.83)

The second term on the RHS of relation (2.78) can be evaluated as

µ2E‖g(i)‖2Σ = µ2E{g>(i)Σg(i)} = µ2Tr(ΣG)
(2.110)

= µ2[bvec(G>)]>σ. (2.84)

where G is the M ×M matrix given by:

G , E{g(i)g>(i)} = Hbdiag{σ2
z,kRx,k}Nk=1H>. (2.85)

The third and fourth term on the RHS of relation (2.78) can be expressed as

µ2η2‖fo‖2Σ = µ2η2f>o Σfo = µ2η2Tr(Σfof
>
o) = µ2η2

[
bvec(fof

>
o)
]>
σ, (2.86)

2µηf>o ΣBEw̃(i) = 2µηTr(ΣBEw̃(i)f>o) = 2µη
[
bvec

(
f0Ew̃

>(i)B>
)]>

σ. (2.87)

Therefore, the weighted mean-square-error relation (2.78) can be rewritten as:

E‖w̃(i+ 1)‖2σ = E‖w̃(i)‖2Fσ + [bvec(Y(i))]>σ, (2.88)

where the matrix Y(i) is given by:

Y(i) , µ2G> + µ2η2fof
>
o + 2µηf0Ew̃

>(i)B>. (2.89)

2.4. Performance analysis 29

Theorem 2.2 (Mean-square stability) Assume that data model (2.2) and Assump-

tion 2.1 hold. Then, for any initial condition, algorithm (2.32) is mean-square stable if

the error recursion (2.59) is mean stable and the matrix F defined by (2.81) is stable.

Assume further that the step-size µ is sufficiently small such that approximation (2.82) is

justified by neglecting higher-order powers of µ, and relation (2.88) can be used as a rea-

sonable representation for the evolution of the weighted mean-square-error E‖w̃(i + 1)‖2σ
w.r.t. wo. Then, the mean-square stability of algorithm (2.32) is guaranteed by sufficiently

small step-size that also satisfies (2.65).

Proof. Iterating (2.88) starting from i = 0, we find that:

E‖w̃(i+ 1)‖2σ = E‖w̃(0)‖2F i+1σ
+

i∑
j=0

[bvec(Y(i− j))]>F jσ (2.90)

where w̃(0) = wo − w(0) is an initial condition. Provided that F is stable, the first

term on the RHS of (2.90) converges to 0 as i → ∞. The second term is related to Y(i)

given by (2.89), since µ, η, G, fo, and B are constant and finite terms, the boundedness

of Y(i) depends on the Ew̃(i) being bounded. Notice that (2.59) is a bounded-input

bounded-output (BIBO) stable recursion with a bounded driving term µηfo. It follows

that the sum appearing as the right-most term in (2.90) converges as i→∞. We conclude

that E‖w̃(i + 1)‖2σ converges to a bounded value as i → ∞ , and the algorithm is said to

be mean-square stable. Under sufficiently small step-size assumption, matrix F can be

reasonably approximated as (2.82). In this case, we have ρ(F) =
(
ρ(B)

)2 (c.f. (2.109)),

and therefore F will be stable if B is stable, which corresponds to condition (2.65). �

Theorem 2.3 (Transient performance) Assume the same settings as Theorem 2.2 and

sufficiently small step-size µ that ensures mean and mean-square stability. The learning

curve E‖w̃(i+ 1)‖2σ evolves according to the following recursion for i ≥ 0:

E‖w̃(i+ 1)‖2σ = E‖w̃(i)‖2σ +
[
bvec

(
w̃(0)w̃>(0)

)]>
(F − IM2)F iσ

+ [bvec(Y(i))]>σ + γ(i)σ
(2.91)

where w̃(0) is the initial condition and γ(i+ 1) is an M2 × 1 vector that can be evaluated

from γ(i) according to:

γ(i+ 1) = [bvec(Y(i))]>(F − IM2) + γ(i)F (2.92)

with γ(0) = 0M2.

30 Chapter 2. Multitask networks with constraints

Proof. Comparing the expression (2.90) at instant i+ 1 and i, we have:

E‖w̃(i+ 1)‖2σ = E‖w̃(i)‖2σ + E‖w̃(0)‖2
(F i+1−F i)σ

+

i∑
j=0

[bvec(Y(i− j))]>F jσ −
i−1∑
j=0

[bvec(Y(i− 1− j))]>F jσ
(2.93)

The last two terms on the RHS of (2.93) can be rewritten as:

i∑
j=0

[bvec(Y(i− j))]>F jσ −
i−1∑
j=0

[bvec(Y(i− 1− j))]>F jσ

= [bvec(Y(i))]>σ +

(i∑
j=1

[bvec(Y(i− j))]>F j −
i−1∑
j=0

[bvec(Y(i− 1− j))]>F j

)
σ.

(2.94)

Introducing the notation γ(i) leads to recursion (2.91):

γ(i) =

i∑
j=1

[bvec(Y(i− j))]>F j −
i−1∑
j=0

[bvec(Y(i− 1− j))]>F j . (2.95)

Note that, γ(i + 1) can be evaluated from γ(i) recursively according to (2.92), see

Appendix 2.C. �

The network MSD learning curve, defined as ζ(i) = 1
NE‖w̃(i)‖2, can be obtained by

replacing σ with 1
N bvec(IM) in (2.91):

ζ(i+ 1) = ζ(i)+
1

N

[
bvec

(
w̃(0)w̃>(0)

)]>
(F − IM2)F ibvec(IM)+

1

N
[bvec(Y(i))]>bvec(IM) +

1

N
γ(i)bvec(IM).

(2.96)

Theorem 2.4 (Steady-state performance) Assume the same settings as Theorem 2.3.

The steady-state performance limi→∞ E‖w̃(i)‖2σ of the algorithm (2.32) is given by

lim
i→∞

E‖w̃(i)‖2σ = [bvec(Y(∞))]>(IM2 −F)−1σ, (2.97)

where Y(∞) can be obtained from (2.66) and (2.89).

Proof. If the matrix F is stable, from the relation (2.88) and groupe the terms, we

obtain as i→∞ :

lim
i→∞

E‖w̃(i)‖2(IM2−F)σ = [bvec(Y(∞))]>σ, (2.98)

replacing σ by (IM2 −F)−1σ yields (2.97). �

2.5. Simulations 31

The steady-state network MSD is defined as ζ? = limi→∞
1
NE‖w̃(i)‖2. Replacing σ in

(2.98) by 1
N (IM2 −F)−1bvec(IM) we obtain:

ζ? =
1

N
[bvec(Y(∞))]>(IM2 −F)−1bvec(IM). (2.99)

Making use of the relations (2.37) and (2.38), the transient and steady-state behaviors

of E‖w̃′(i)‖2σ and E‖w̃′′(i)‖2σ can be derived from the model for w̃(i) according to:

E‖w̃′(i)‖2σ = E‖w̃(i)‖2σ + 2Ew̃(i)Σwδ
η + ‖wδ

η‖2Σ, (2.100)

E‖w̃′′(i)‖2σ = E‖w̃(i)‖2σ + 2Ew̃(i)Σwδ
? + ‖wδ

?‖2Σ. (2.101)

Remark 2.1 As the statement in Theorem 2.2, the algorithm (2.32) is mean-square stable

if F in (2.81) is stable. For sufficiently small step-size, matrix F can be approximated

by (2.82) and the mean-square stability is ensured by sufficiently small-step size that also

satisfies condition (2.65). It is worth noting that, from experiments, the theoretical anal-

yses (2.91) and (2.97) for the mean square error E‖w̃(i)‖2σ w.r.t. wo match well the

simulation results in both the cases of explicit F (2.81) and approximated F (2.82). While,

regarding the mean square errors E‖w̃′(i)‖2σ and E‖w̃′′(i)‖2σ, the performance evaluations

which can be deduced from (2.100) and (2.101) require explicit expression of F . We give

the explicit evaluation of matrix F in Appendix 2.B in the case of zero-mean real Gaussian

regressors.

2.5 Simulations

We shall now provide simulation examples to illustrate the behavior of algorithm (2.32).

We considered a network consisting of 15 nodes with connections shown in Fig. 2.1. The

regression vectors xk(i) were zero-mean Gaussian with covariance matrix Rx,k = σ2
x,kI2.

The noises zk(i) were zero-mean i.i.d. Gaussian random variables independent of any other

signal with variances σ2
z,k. The variances σ

2
x,k and σ2

z,k are shown in Fig. 2.2. We randomly

sampled 9 linear constraints of the form
∑

`∈Ip dp`w` = bp · 12×1, where the coefficients

dp` and bp were randomly chosen from {−2,−1, 1, 2}. The results were averaged over 200

Monte-Carlo runs.

In the first scenario, we considered the case of a perfect model where the parameter

vector wo satisfies the constraints, i.e. wo = w?. The step size µ was set to 0.02 for all

nodes. In Fig. 2.3, we compare three algorithms: the non-cooperative LMS algorithm, the

centralized CLMS algorithm [Frost 1972], and the proposed algorithm (2.32). We observe

that the simulation results match well the actual performance. Furthermore, compared to

32 Chapter 2. Multitask networks with constraints

11

22

33

I1I1

44

55

I2I2

66I3I3

77

88

I4I4

99

1010

I5I5

I6I6

1111 I7I7

1212

1313I8I8
I9I9

1414

1515

Figure 2.1: Multitask MSE network with local constraints.

2 4 6 8 10 12 14

1

1.1

1.2

1.3

1.4

2 4 6 8 10 12 14

0.1

0.11

0.12

0.13

0.14

0.15

Figure 2.2: Regression and noise variances.

the non-cooperative strategy, the network MSD is improved by the penalty term which, in

this case, promotes the relationship between tasks. Finally, our algorithm performs well

compared to the centralized solution and the gap w.r.t. centralized performance decreases

as η increases.

In a second scenario, we considered the case when wo does not satisfy the constraints.

We perturbed wo as wpert = wo + u. The entries of u were sampled from Gaussian

distribution N (0, σ2). We set µ = 0.02 and η = 8. The theoretical and simulated learning

curves with respect to wo, wo(η), and w? are depicted in Fig. 2.4, Fig. 2.6, and Fig. 2.6,

respectively. Although the performance with respect to wo deteriorates as σ increases, the

2.5. Simulations 33

0 100 200 300 400 500 600 700 800 900 1000

-35

-30

-25

-20

-15

-10

-5

0

5

10

795 800 805 810 815

-30.2

-30

-29.8

-29.6

-29.4

-29.2

-29

Figure 2.3: MSD comparison of different algorithms for the perfect model scenario.

0 100 200 300 400 500 600 700 800 900 1000

-30

-25

-20

-15

-10

-5

0

5

10

Figure 2.4: MSD w.r.t. wo of different σ.

algorithm performs well with respect to wo(η) and w?.

Next, we illustrate in Fig. 2.7 the MSD curves of the centralized algorithm and the

proposed algorithm w.r.t. w? for different values of σ. We set µ = 0.02 and η = 8. Observe

that the performance gap between the proposed distributed algorithm and the centralized

solution increases as the error vector wδ
? increases.

34 Chapter 2. Multitask networks with constraints

0 100 200 300 400 500 600 700 800 900 1000

-30

-25

-20

-15

-10

-5

0

5

10

Figure 2.5: MSD w.r.t. wo(η) of different σ.

0 100 200 300 400 500 600 700 800 900 1000

-30

-25

-20

-15

-10

-5

0

5

10

Figure 2.6: MSD w.r.t. w? of different σ.

Finally, we illustrate in Fig. 2.8 the influence of µ and η on the performance of the

proposed algorithm (2.32). For comparison purposes, we set σ = 1 for all the µ and η. We

observe that, as expected, the larger µ is, the faster the convergence rate is but the worse

2.5. Simulations 35

0 100 200 300 400 500 600 700 800 900 1000

-30

-25

-20

-15

-10

-5

0

5

10

Proposed Alogrithm

Centralized CLMS

Figure 2.7: MSD comparison with centralized CLMS for different σ.

0 100 200 300 400 500 600 700 800 900 1000

-30

-25

-20

-15

-10

-5

0

5

10

Figure 2.8: MSD comparison for different µ, η.

the MSD performance is. In addition, the performance improves by increasing η.

36 Chapter 2. Multitask networks with constraints

2.6 Conclusion

In this Chapter, we proposed a distributed multitask LMS algorithm for solving problems

that require the simultaneous estimation of multiple parameter vectors that are related

locally via linear equality constraints. We approximated the original constrained problem

by an unconstrained one based on the penalty method. The behavior of the algorithm in

the mean and in the mean-square-error sense was analyzed. Finally, the simulations showed

the efficiency of the proposed method. In the next Chapter, we will consider a more general

case of constraints that are not necessary local.

Appendices

2.A Block Kronecker product

Let A denote an N × N block matrix with blocks {Aij} of size P × P . Likewise, let B
denote an M ×M block matrix with blocks {Bij} of size P × P . The block Kronecker

product of these two matrices is denoted by C , A ⊗b B and is defined as the following

NMP 2 ×NMP 2 matrix [Koning 1991, Sayed 2014a]:

C , A⊗b B =


C11 C12 . . . C1N

C21 C22 . . . C2N

...
...

. . .
...

CN1 CN2 . . . CNN

 (2.102)

with each block Cij is MP 2 ×MP 2 and is constructed as:

Cij =


Aij ⊗B11 Aij ⊗B12 . . . Aij ⊗B1M

Aij ⊗B21 Aij ⊗B22 . . . Aij ⊗B2M

...
...

. . .
...

Aij ⊗BM1 Aij ⊗BM2 . . . Aij ⊗BMM

 . (2.103)

The bvec(A) operator vectorizes each block entry of the matrix A and then stacks the

resulting columns on top of each other, i.e.,

bvec(A) = col
{
vec(A11), vec(A21), . . . , vec(AN1),

vec(A12), vec(A22), . . . , vec(AN2),

...

vec(A1N), vec(A2N), . . . , vec(ANN)
}
.

(2.104)

2.B. Evaluation of matrix F for zero-mean real Gaussian regressors 37

For block matrices {A,B,C,D} with blocks of size P ×P , we have some useful properties

of block Kronecker products and block vectorization operations:

(A + B)⊗b C = (A⊗b C) + (B ⊗b C) (2.105)

(A⊗b B)(C ⊗b D) = (AC ⊗b BD) (2.106)

(A⊗B)⊗b (C ⊗D) = (A⊗C)⊗ (B ⊗D) (2.107)

(A⊗b B)> = A> ⊗b B> (2.108)

{λ(A⊗B)} = {λi(A)λj(B)}NP,MP
i=1,j=1 (2.109)

Tr(AB) = [bvec(B>)]>bvec(A) (2.110)

bvec(ACB) = (B> ⊗b A)bvec(C) (2.111)

bvec(xy>) = y ⊗b x. (2.112)

2.B Evaluation of matrix F for zero-mean real Gaussian re-

gressors

Without loss of generality, we assume that Mk = M0 for all k across the network. Re-

call (2.79), we have

Σ′ = E
{
B>(i)ΣB(i)

}
= E{(I − µRx(i))>H>ΣH(I − µRx(i))} (2.113)

= H>ΣH− µRxH>ΣH− µH>ΣHRx + µ2E{Rx(i)H>ΣHRx(i)}. (2.114)

Observe that, in order to evaluate Σ′, we need to evaluate the fourth item on the RHS

of (2.114). Let

V , E{Rx(i)URx(i)}, (2.115)

U ,H>ΣH. (2.116)

Note that, for any square matrix A and zero-mean Gaussian regressors {xk(i),x`(i)}, we
have [Sayed 2003, Petersen 2012]:

E{xk(i)x>k (i)Ax`(i)x
>
` (i)} = Rx,kARx,` + δk,`(Rx,kA

>Rx,k +Rx,kTr(Rx,kA)). (2.117)

Using the above equality, it can be verified that the (k, `)-th block of matrix V can be

evaluated as

[V]k,` = E{xk(i)x>k (i)[U]k,`x`(i)x
>
` (i)} (2.118)

= Rx,k[U]k,`Rx,` + δk,`(Rx,k[U]>k,`Rx,k +Rx,kTr(Rx,k[U]k,`)) (2.119)

38 Chapter 2. Multitask networks with constraints

then, matrix V can be written as

V = RxURx +
N∑
k=1

(
Sk(IN ⊗Rx,k)U>(IN ⊗Rx,k)Sk + Sk(IN ⊗Rx,k)ZkSk

)
,

(2.120)

where Sk , diag(e>k)⊗ IM0 is an N ×N block diagonal matrix and ek is an N × 1 column

vector with a unit entry at position k and zeros elsewhere. Zk is an N ×N block matrix

with the (k, `)-th block given by:

[Zk]k,` = [vec(Rx,k)]
>vec([U]k,`)IM0 . (2.121)

Applying the block-vectorization operator to V and using property (2.111), we obtain:

bvec(V) = (Rx ⊗b Rx)bvec(U) +
N∑
k=1

((
S>k (IN ⊗Rx,k)

)
⊗b
(
Sk(IN ⊗Rx,k)

))
bvec(U>)

+
N∑
k=1

(
S>k ⊗b

(
Sk(IN ⊗Rx,k)

))
bvec(Zk), (2.122)

where bvec(Zk) and bvec(U) given by:

bvec(Zk) =
(
IN2 ⊗ vec(IM0)⊗ [vec(Rx,k)]

>)bvec(U) (2.123)

bvec(U) = (H> ⊗b H>)bvec(Σ) = (H> ⊗b H>)σ. (2.124)

Combing (2.114), the explicit expression of F in (2.81) for zero-mean real Gaussian regres-

sors can be written as:

F = B> ⊗b B> + µ2
N∑
k=1

((
S>k (IN ⊗Rx,k)

)
⊗b
(
Sk(IN ⊗Rx,k)

))
(H> ⊗b H>)

+ µ2
N∑
k=1

(
S>k ⊗b

(
Sk(IN ⊗Rx,k)

))(
IN2 ⊗ vec(IM0)⊗ [vec(Rx,k)]

>)(H> ⊗b H>).

(2.125)

2.C. Proof of recursion (2.92) 39

2.C Proof of recursion (2.92)

Recall the expression (2.95) of γ(i), we find that γ(i+ 1) can be expressed as

γ(i+ 1) =
i+1∑
j=1

[bvec(Y(i+ 1− j))]>F j −
i∑

j=0

[bvec(Y(i− j))]>F j

=
i+1∑
j=1

[bvec(Y(i+ 1− j))]>F j −
(

[bvec(Y(i))]> +
i∑

j=1

[bvec(Y(i− j))]>F j

)
j′,j−1

======
i∑

j′=0

[bvec(Y(i− j′))]>F j′F −
(

[bvec(Y(i))]> +
i−1∑
j′=0

[bvec(Y(i− 1− j′))]>F j′F
)

=

(
[bvec(Y(i))]>F +

i∑
j′=1

[bvec(Y(i− j′))]>F j′F
)
−

(
[bvec(Y(i))]> +

i−1∑
j′=0

[bvec(Y(i− 1− j′))]>F j′F
)

= [bvec(Y(i))]>(F − IM2) +

(i∑
j′=1

[bvec(Y(i− j′))]>F j′ −
i−1∑
j′=0

[bvec(Y(i− 1− j′))]>F j′
)
F

= [bvec(Y(i))]>(F − IM2) + γ(i)F .

This concludes that γ(i+ 1) can be recursively evaluated from γ(i) according to (2.92).

Chapter 3

Distributed estimation over multitask

networks with non-local constraints

Contents
3.1 Introduction . 42

3.2 Problem formulation and penalty-based solution 43

3.3 Stochastic behavior analysis . 45

3.3.1 Extended error recursion . 46

3.3.2 Mean error behavior analysis . 48

3.3.3 Mean-square-error behavior analysis 49

3.4 Simulations . 54

3.5 Conclusion . 56

Appendix 3.A Kronecker product . 56

In Chapter 2, we considered distributed estimation over multitask networks where the

parameter vectors at distinct agents are coupled via a set of linear equality constraints.

However, the constraints were assumed to be local where the agents involved in the same

constraint are neighboring agents. In this Chapter, this assumption is relaxed such that

the agents are not necessarily one-hop neighbors. At each time instant, we assume that

each agent has access to the instantaneous estimates of its one-hop neighbors and the past

estimates of its multi-hop neighbors through a multi-hop relay protocol. A fully distributed

penalty-based algorithm is then derived. The result algorithm employs delayed intermediate

estimates comparing with the algorithm in Chapter 2. This makes the performance analysis

more sophisticated and requires to re-check the stability conditions. We prove that the

distributed algorithm can continue to converge by selecting proper step-size and provide

the stochastic behaviors in the mean and mean-square-error sense. Simulation results show

the effectiveness of the strategy and validate the theoretical models. The main results

established in this chapter were published in [Hua 2017a, Hua 2020a].

42 Chapter 3. Multitask networks with non-local constraints

3.1 Introduction

Distributed estimation is used in a wide range of applications including communication

[Barbarossa 2013], spectrum sensing [Zhang 2014], distributed localization [Meyer 2016],

and power system monitoring [Xie 2012]. Several useful distributed solutions, such as in-

cremental strategies [Bertsekas 1997], diffusion strategies [Cattivelli 2010a, Sayed 2014c,

Tu 2012, Towfic 2015, Sayed 2013, Sayed 2014a], and consensus strategies [Xiao 2005,

Olfati-Saber 2007] have been proposed in the literature to address single-task problems

where all agents in the network collaborate to estimate a common parameter vector from

noisy measurements. Among them, diffusion strategies are advantageous in terms of sta-

bility range, robustness, and performance [Tu 2012, Towfic 2015, Sayed 2013].

In many applications, however, it happens that the agents in the network have to

infer multiple parameter vectors simultaneously. Networks of this type are referred to

as multitask networks [Chen 2014c, Chen 2015a]. Multitask diffusion strategies were de-

rived by exploiting prior information on the relationships among tasks. For example,

appropriate regularization terms can be used to promote similarities between the tasks

[Chen 2014c, Wang 2017, Nassif 2016b]. In [Plata-Chaves 2015], a diffusion-based algo-

rithm is proposed to solve node-specific estimation problems where each node consists of a

set of local parameters and a set of network global parameters. In [Chen 2014b, Chen 2017],

the parameter space is decomposed into two orthogonal subspaces. The relations among

tasks are modeled by assuming that they all share one of the subspaces. In some ap-

plications, such as the network flow problem [Bertsekas 1998], the basis pursuit problem

[Mota 2012], and the interference management problem [Shen 2012], the parameter vec-

tors may be related via a set of linear equality constraints. Distributed projection-based

[Nassif 2017b] and penalty-based [Hua 2017b] estimation algorithms were proposed to solve

multitask estimation problems where each agent is interested in estimating its own param-

eter vector and where the parameter vectors at neighboring agents are related according

to a set of linear equality constraints. In the current work, we consider a more general

multitask scenario where each equality constraint involves agents that are not necessarily

one-hop neighbors.

Let N denote the number of agents in the network, and let P denote the total number

of constraints. We are interested in devising a distributed adaptive solution to solve the

3.2. Problem formulation and penalty-based solution 43

following optimization problem:

min
w1,...,wN

Jglob(w1, . . . ,wN) ,
∑N

k=1
Jk(wk), (3.1a)

s. t.
∑

`∈Ip
Dp`w` + bp = 0, p = 1, . . . , P (3.1b)

Each agent k seeks to estimate its parameter vector wk ∈ RMk×1, and has knowledge of

its local cost Jk(·) and the set of linear equality constraints that it is involved in. Each

constraint is indexed by p, and defined by the Lp ×M` matrices Dp`, the Lp × 1 vector

bp, and the set Ip of agent indices involved in the p-th constraint. The previous works

[Nassif 2017b, Hua 2017b] assumed that Ip ⊆ Nk for all k ∈ Ip with Nk denoting the one-

hop neighborhood of agent k that consists of all agents that are connected to k by an edge.

In this Chapter, we relax this assumption by considering scenarios where the constraints

involve agents that are not necessarily one-hop neighbors. In order to derive a distributed

solution relying solely on local interactions between neighbors, we shall employ multi-hop

relay protocols to enable non-neighboring agents to share their estimates in order to satisfy

their constraints. A penalty-based distributed estimation algorithm is derived and its

stochastic behaviors in the mean and mean-square-error sense are analyzed. Simulations

are conducted to illustrate the effectiveness of the proposed algorithm and validate the

theoretical models.

3.2 Problem formulation and penalty-based solution

Consider a connected network of N agents. At each time instant i, each agent k has access

to a zero-mean scalar observation dk(i), and a zero-mean regression vector xk(i) ∈ RMk×1

with positive covariance matrixRx,k = E{xk(i)x>k (i)} � 0. The observations {dk(i),xk(i)}
are assumed to satisfy a linear regression model:

dk(i) = x>k (i)wo
k + zk(i), (3.2)

where wo
k is an Mk× 1 unknown parameter vector to be estimated by agent k, and zk(i) is

a zero-mean noise with variance σ2
z,k assumed to be spatially and temporally independent.

In order to estimate wo
k, we associate with agent k the mean-square-error cost, which is

strongly convex and second-order differentiable :

Jk(wk) = E|dk(i)− x>k (i)wk|2. (3.3)

Let us collect the parameter vectors wk and wo
k from across the network into the

following vectors of length M =
∑N

k=1Mk:

w , col{w1, . . . ,wN}, wo , col{wo
1, . . . ,w

o
N}.

44 Chapter 3. Multitask networks with non-local constraints

Problem (3.1) can be written equivalently as:

min
w

∑N

k=1
E|dk(i)− x>k (i)wk|2, (3.4a)

s. t. Dw + b = 0. (3.4b)

where D is a P × N block matrix with block entries Dp` and b is a P × 1 block column

vector with block entries bp. We shall assume that (3.4b) has at least one solution.

The positive-definite quadratic problem (3.4) has a unique global minimum given by:

w? = wo −R−1
x D>(DR−1

x D>)−1(Dwo + b), (3.5)

where Rx , diag{Rx,1, . . . ,Rx,N}.
Instead of using (3.5), we are interested in an adaptive distributed solution that is able

to learn from streaming data, and relies on local interactions between neighboring agents.

Penalty methods offer a simple way for tackling constrained optimization problems. These

methods consist of approximating the constrained problem (3.4) into an unconstrained one

by adding to the objective function a penalty term that penalizes any violation of the

constraints:

min
w

Jglob
η (w) ,

∑N

k=1
Jk(wk) + η‖Dw + b‖2, (3.6)

with η > 0 a scalar parameter that controls the relative importance of adhering to

the constraints. Increasing η improves the approximation (3.6) in quality [Polyak 1987,

Bazaraa 2013, Luenberger 2015, Towfic 2014], i.e., wo(η) gets closer to w?. The above

problem is strongly convex for any η and its closed form solution parameterized by η is

given by:

wo(η) = (Rx + ηD>D)−1(Rxw
o − ηD>b). (3.7)

Applying a steepest-descent iteration to minimize the cost in (3.6) with respect to wk

and starting from an initial condition wk(0), we obtain the following algorithm at node k:

wk(i+ 1) = wk(i)− µ
[
Rx,kwk(i)− rdx,k + η

∑
p∈Jk

D>pk
(∑
`∈Ip

Dp`w`(i) + bp
)]
, (3.8)

where rdx,k , E{dk(i)xk(i)}, Jk denotes the set of constraint indices involving agent k,

i.e., Jk , {p|k ∈ Ip}. In order to evaluate
∑

`∈IpDp`w`(i) + bp in (3.8), agent k needs

the estimates w`(i) from all agents ` ∈ Ip. These agents are not necessarily in the one-

hop neighborhood of k, and need to employ multi-hop relay protocols to share their own

estimates. Since the network is connected, there is at least one path between any pair of

nodes k and `. We shall assume that the route from agent ` ∈ Ip to agent k with the smallest

number of relays or hops, which is often the most energy-efficient route [Dargie 2010], is

3.3. Stochastic behavior analysis 45

known. Instead of using w`(i) since it may not be available, agent k will use past estimate

w`(i− j) of agent ` where the delay j depends on the smallest number of hops from agent

` to agent k, denoted by h`k. In the sequel, we shall assume that j = h`k − 1. With this

multi-hop relay protocol, at each time instant i, agent k has access to w`(i+ 1− h`k).
Usually, the second-order moments Rx,k and rdx,k in (3.8) are not available beforehand.

We replace them by the instantaneous approximations [Sayed 2008]:

Rx,k ≈ xk(i)x>k (i), rdx,k ≈ dk(i)xk(i), (3.9)

Replacing w`(i) in (3.8) by w`(i+ 1− h`k), and splitting the update iteration into two in-

cremental steps by introducing the intermediate estimate φk(i+1), we obtain the following

adaptive algorithm at agent k:

φk(i+ 1) = wk(i) + µxk(i)
(
dk(i)− x>k (i)wk(i)

)
, (3.10a)

wk(i+ 1) = φk(i+ 1)− µη
∑
p∈Jk

D>pk

(∑
`∈Ip

Dp`φ`(i+ 2− h`k) + bp

)
, (3.10b)

where in the second step (3.10b), we replaced w`(i+ 1− h`k) by the intermediate estimate

φ`(i+2−h`k)), which is a better estimate for the solution at agent `. We set φ`(i+2−h`k) =

0 if i + 2 − h`k < 0, and hkk = 1. In the first step (3.10a), which is the adaptation step,

node k uses its own data to update its estimate wk(i) to an intermediate estimate φk(i+1).

In the second step (3.10b), which corresponds to the penalization step, node k collects the

intermediate estimates φ`(i+ 2− h`k) from nodes ` ∈ Ip for all p ∈ Jk.

3.3 Stochastic behavior analysis

In this section, we study the mean and the mean-square-error behavior of algorithm (3.10)

w.r.t. wo(η) (3.7) and w? (3.5).

Remark 3.1 From the results in Chapter 2, we know that the penalty-based distributed

algorithm converges to the optimum in the perfect model scenario where wo = wo(η) = w?.

While in the imperfect model scenario, the algorithm will converge around wo(η) and w?

with biases but far away from wo. To this end, we will directly derive the performance

analysis w.r.t. wo(η) and w?.

To perform the theoretical analysis, we introduce the following assumption before pro-

ceeding.

Assumption 3.1 The regressor xk(i) arises from a zero-mean random process that is tem-

porally white and spatially independent.

46 Chapter 3. Multitask networks with non-local constraints

As already explained in Assumption 2.1, this assumption is commonly used in the adaptive

filtering literature. It helps to simplify the derivations without constraining the conclusions.

3.3.1 Extended error recursion

Let w̃k(i) , wo
k(η) −wk(i), φ̃k(i) , wo

k(η) − φk(i) denote the error vector and the error

vector w.r.t. wo
k(η) at agent k and time instant i. We further introduce the network N × 1

block error vectors:

w̃(i) = col{w̃1(i), . . . , w̃N (i)}, (M × 1) (3.11)

φ̃(i) = col{φ̃1(i), . . . , φ̃N (i)}. (M × 1) (3.12)

Let M =
∑N

k=1Mk, the length of the block error vectors is then M .

Subtracting wo
k(η) from both sides of the adaptation step (3.10a) and using the data

model (3.2), similar to the process in Chapter 2, it can be verified that

φ̃(i+ 1) = [IM − µRx(i)]w̃(i) + µRx(i)wδ − µpzx(i) (3.13)

where

Rx(i) , bdiag
{
xk(i)x

>
k (i)

}N
k=1

, (M ×M) (3.14)

wδ , wo(η)−wo, (M × 1) (3.15)

pzx(i) , col
{
xk(i)zk(i)

}N
k=1

. (M × 1) (3.16)

Note that, Rx = E{Rx(i)} and E{pzx(i)} = 0. However, the error relation between

w̃(i+1) and φ̃(i+1) cannot be obtained by subtractingwo
k(η) from both sides of (3.10b) due

to delayed information. In order to proceed, taking into account the delayed information

emerging from the multi-hop protocol, we introduce the following extended network error

vectors:

w̃e(i) , col
{
w̃1(i), . . . , w̃N (i), φ̃1(i), . . . , φ̃N (i), . . . ,

φ̃1(i−H + 2), . . . , φ̃N (i−H + 2)
}
, (MH × 1) (3.17)

φ̃e(i) , col
{
φ̃1(i), . . . , φ̃N (i), φ̃1(i− 1), . . . , φ̃N (i− 1),

. . . ,φ̃1(i−H + 1), . . . , φ̃N (i−H + 1)
}
, (MH × 1) (3.18)

where H = maxk,`{h`k}. It can be verified that, from (3.13), the extended block error

φ̃e(i+ 1) is related to w̃e(i) as

φ̃e(i+ 1) = [IMH − µRx,e(i)]w̃e(i) + µRx,e(i)w
δ
e + µpzx,e(i) (3.19)

3.3. Stochastic behavior analysis 47

where

Rx,e(i) , bdiag
{
Rx(i), 0M×M , . . . ,0M×M︸ ︷︷ ︸

in total H -1 block items

}
, (MH ×MH) (3.20)

wδ
e , 1H ⊗wδ, (MH × 1) (3.21)

pzx,e(i) , col
{
pzx(i), 0M×1, . . . ,0M×1︸ ︷︷ ︸

in total H -1 block items

}
. (MH × 1) (3.22)

The extended block error w̃e(i+ 1) can be verified to be related to φ̃e(i+ 1) as

w̃e(i+ 1) = Heφ̃e(i+ 1) + µηfη,e (3.23)

where

He , [I − µη CD,e] , (MH ×MH) (3.24)

I =

[
IM 0M×M(H−1)

IM(H−1) 0M(H−1)×M

]
, (MH ×MH) (3.25)

CD,e =

[
CD,1 CD,2 · · · CD,H

0M(H−1)×MH

]
, (MH ×MH) (3.26)

fη,e , col
{
D>(Dwo(η) + b), 0M×1, . . . ,0M×1︸ ︷︷ ︸

in total H -1 block items

}
. (MH × 1) (3.27)

and CD,h is an N ×N block matrix with (k, `)-th block given by:

[CD,h]k,` =


∑

p∈JkD
>
pkDp` if ` ∈ Ip ∩N (h)

k ,

0 otherwise.
(M ×M) (3.28)

Observe that
∑H

h=1CD,h = D>D. Note that matrix I given by (3.25) is neither an identity

matrix nor a symmetric matrix. The resulting extended matrix He given by (3.24) is not

a symmetric matrix, whereas H , [IM − µηD>D] (c.f. (2.51)) is a symmetric matrix.

Introducing the following notations

Be(i) ,He [IMH − µRx,e(i)] , (MH ×MH) (3.29)

ge(i) ,Hepzx,e(i), (MH × 1) (3.30)

rη,e(i) ,HeRx,e(i)w
δ
e, (MH × 1) (3.31)

the block vector w̃e(i) evolves according to the following form:

w̃e(i+ 1) = Be(i)w̃e(i)− µge(i) + µrη,e(i) + µηfη,e. (3.32)

48 Chapter 3. Multitask networks with non-local constraints

3.3.2 Mean error behavior analysis

Taking the expectation of both sides of (3.32), using Assumption 3.1 and the fact that

E{ge(i)} = 0, we obtain:

Ew̃e(i+ 1) = BeEw̃e(i) + µrη,e + µηfη,e, (3.33)

where

Be ,He [IMH − µRx,e] , (3.34)

rη,e ,HeRx,ew
δ
e, (3.35)

Rx,e , bdiag
{
Rx, 0M×M , . . . ,0M×M︸ ︷︷ ︸

in total H -1 block items

}
. (3.36)

Observe that, the mean error behavior depends on matrix Be. Let us introduce the following

Lemma:

Lemma 3.1 If ‖IM − µRx‖2 < 1, ‖H‖2 ≤ 1 and ‖He‖2 ≤ 1, then the matrix Be

in (3.29) is stable, i.e., its spectral radius ρ(Be) is less than 1.

Proof. The argument is similar of the proof for the Lemma 1 presented in [Hua 2020a].

The sketch is as follow: First, it is easy to verify that ρ(Be) ≤ 1 if ‖IM − µRx‖2 < 1 and

‖He‖2 ≤ 1. Then assume that Be has an eigenvalue equals to one, it will contradict the

condition ‖IM − µRx‖2 < 1 and ‖H‖2 ≤ 1. Finally, it can be concluded that the matrix

Be cannot have an eigenvalue equals to 1, i.e., ρ(Be) < 1. �

Remark 3.2 Notice that, the stability condition in Chapter 2 requires ‖IM − µRx‖2 < 1

and ‖H‖2 ≤ 1. In the non-local constraints case, in addition, it requires ‖He‖2 ≤ 1 where

He is a variant form of H due to delayed information. This indicates that the delayed

information has an impact on convergence condition, and it needs to be more careful to

choose proper step-size µ and parameter η to ensure stability. It is also worth noting that,

in other works, e.g. [Hua 2020a], where delayed information is also used but aggregated by

other forms, the delayed information there does not affect convergence condition.

Provided that Be is stable, we arrive at the following statement of convergence in the

mean sense:

Theorem 3.1 (Convergence in the mean) Assume that data model (3.2) and Assump-

tion 3.1 hold. Then, for any initial condition, algorithm (3.10) converges in the mean as

3.3. Stochastic behavior analysis 49

i→∞ if Be is stable. A sufficient step-size condition for ensuring the mean stability is:

0 < µ < min
{ 2

λmax(Rx,k)
,

2

η · λmax(D>D)

}
, k = 1, . . . , N (3.37)

and {µ, η} should also ensure ‖He‖2 ≤ 1.

In this case, the asymptotic mean bias is given by:

Ew̃e(∞) = lim
i→∞

Ew̃e(i) = µ(IMH −Be)
−1(rη,e + ηfη,e). (3.38)

Proof. The convergence of mean error recursions (3.33) requires the matrix B to be a

stable matrix. According to Lemma 3.1, a sufficient condition is to choose µ and η that

satisfy ‖IM − µRx‖2 < 1, ‖H‖2 ≤ 1 and ‖He‖2 ≤ 1. From the proof of Theorem 2.1,

step-size given by (3.37) ensures the first two conditions. However, for given {µ, η} which
ensure ‖H‖2 ≤ 1 may not ensure ρ(He) = ρ([I − µη CD,e]) ≤ 1, it further requires to

check that {µ, η} ensure the stability of He. �

Using similar arguments, we find that the mean error recursion with respect to w?

evolves according to:

Ew̃′e(i+ 1) = BeEw̃′e(i) + µrs,e. (3.39)

where w̃′e(i) is the extended error vector w.r.t. w∗ defined similarly as Ew̃e(i), and

rs,e ,HeRx,ew
δ′
e , (MH ×MH) (3.40)

wδ′
e , 1H ⊗wδ′, (MH × 1) (3.41)

wδ′ , w? −wo. (M × 1) (3.42)

When Be is stable, we obtain:

Ew̃′e(∞) = lim
i→∞

Ew̃′e(i) = µ(IMH −Be)
−1rs,e. (3.43)

We observe that, when wo satisfies the constraints, we have wo = wo(η) = w?, rη,e = 0,

fη,e = 0, and rs,e = 0. In this case, the asymptotic mean biases Ew̃e(∞) and Ew̃′e(∞)

reduce to zero.

3.3.3 Mean-square-error behavior analysis

We shall evaluate the weighted variance E{‖w̃e(i+1)‖2Σ} where Σ is a positive semi-definite

matrix that we are free to choose. Let σ , vec(Σ). In the following, we use the alternative

notation ‖w‖2σ to refer to the same weighted squared norm ‖w‖2Σ. Following the same

50 Chapter 3. Multitask networks with non-local constraints

line of reasoning as in [Sayed 2013, Sayed 2014c] for single-task diffusion strategies, and

extending the arguments to our multitask scenario, we find the variance relation:

E‖w̃e(i+ 1)‖2Σ = E‖w̃e(i)‖2Σ′ + µ2E‖ge(i)‖2Σ + µ2E‖rη,e(i)‖2Σ + µ2η2‖fη,e‖2Σ
+ 2µE{r>η,e(i)ΣBew̃e(i)}+ 2µηf>η,eΣBeEw̃e(i) + 2µ2ηf>η,eΣrη,e

(3.44)

with Σ′ given by

Σ′ = E
{
B>e (i)ΣBe(i)

}
. (3.45)

It can be verified that

σ′ , vec(Σ′) = Fσ (3.46)

where F is the (MH)2 × (MH)2 matrix given by:

F , E{B>e (i)⊗B>e (i)} (3.47)

≈ B>e ⊗B>e . (small step-size) (3.48)

As explained before, this approximation is reasonable by ignoring terms depending on

higher order power of the step-sizes. Moreover, the small step-size condition is prevalent

in the stochastic gradient approximation literature and diffusion strategies [Sayed 2003,

Sayed 2008, Chen 2015a, Plata-Chaves 2015, Nassif 2016b].

Remark 3.3 Note that, unlike Chapter 2, we use the traditional Kronecker product, see

Appendix 3.A. Recall that in Chapter 2, to deduce the mean-square performance w.r.t.

wo
η and w∗, it requires to evaluate the explicit expression of F which is of dimension

M2×M2. While in this Chapter, the matrix F is of dimension (MH)2× (MH)2, it would

be much more involved to evaluate in block Kronecker product. In the sequel, we show

that how to proceed the analysis by using traditional Kronecker product. Simulation results

in Section 3.4 will validate that the derived theoretical models match well the simulation

curves.

We move to evaluate each term on the RHS of (3.44). The first term can be rewritten as

E‖w̃e(i)‖2Σ′ = E‖w̃e(i)‖2Fσ. (3.49)

The second term can be evaluated as

µ2E‖ge(i)‖2Σ = µ2E{g>e (i)Σge(i)} = µ2Tr(ΣGe)
(3.84)

= µ2[vec(G>e)]>σ. (3.50)

3.3. Stochastic behavior analysis 51

where Ge is the H ×H block matrix whose each block is of dimension M ×M given by:

Ge , E{ge(i)g>e (i)} = Hebdiag
{
T , 0M×M , . . . ,0M×M︸ ︷︷ ︸

in total H -1 block items

}
H>e , (MH ×MH) (3.51)

T , bdiag{σ2
z,kRx,k}Nk=1. (M ×M) (3.52)

Similarly, the third term can be evaluated as

µ2E‖rη,e(i)‖2Σ = µ2E{r>η,e(i)Σrη,e(i)} = µ2Tr(ΣQe)
(3.84)

= µ2[vec(Q>e)]>σ. (3.53)

where Qe is given by:

Qe , E{rη,e(i)r>η,e(i)} = Hebdiag
{
T 1, 0M×M , . . . ,0M×M︸ ︷︷ ︸

in total H -1 block items

}
H>e , (MH ×MH) (3.54)

T 1 , E{Rx(i)K1Rx(i)}, (M ×M) (3.55)

K1 , w
δ(wδ)>. (M ×M) (3.56)

Notice that, the evaluation of T 1 depends on higher order moments of the regressors. In

the following, we shall evaluate T 1 when the regressors are zero-mean real Gaussian. Note

that, for any square matrix A and zero-mean Gaussian regressors, we have:

E{xk(i)x>k (i)Ax`(i)x
>
` (i)} = Rx,kARx,` + δk,`(Rx,kA

>Rx,k +Rx,kTr(Rx,kA)). (3.57)

Using (3.57), it can be verified that T 1 can be expressed as:

T 1 = RxK1Rx +
N∑
k=1

(
Sk(IN ⊗Rx,k)K>1 (IN ⊗Rx,k)Sk + Sk(IN ⊗Rx,k)ZkSk

)
,

(3.58)

where Sk is an N ×N block diagonal matrix whose k-th diagonal entry is IMk
and zeros

elsewhere, matrix Zk is an N ×N block matrix with the (k, `)-th block given by:

[Zk]k,` = [vec(Rx,k)]
>vec([K1]k,`)IMk

. (3.59)

The fourth term is:

µ2η2‖fη,e‖2Σ = µ2η2E{f>η,eΣfη,e} = µ2Tr(Σfη,ef
>
η,e)

(3.84)
= µ2η2[vec(fη,ef

>
η,e)]

>σ (3.60)

The fifth term 2µE{rη,e(i)>ΣBew̃e(i)} is evaluated as follows:

2µE{r>η,e(i)ΣBew̃e(i)} = 2µTr(ΣBeP(i)) = 2µ[vec(P>(i))]>σ (3.61)

52 Chapter 3. Multitask networks with non-local constraints

The time dependent H ×H block matrix P(i) is given by:

P(i) , E{Be(i)w̃e(i)r
>
η,e(i)} = Hediag

{
T 2(i), 0M×M , . . . ,0M×M︸ ︷︷ ︸

in total H -1 block items

}
H>e , (MH ×MH)

(3.62)

with

T 2(i) , E{Rx(i)K2(i)(IM − µRx(i))}, (M ×M) (3.63)

K2(i) , E{w̃(i)}(wδ)>. (M ×M) (3.64)

Note that, E{w̃(i)} can be obtained from the mean error recursion (3.33). Then T 2(i) can

be evaluated as it has been done for T 1. The last two terms on the RHS of (3.44) can be

evaluated as

2µηf>η,eΣBeEw̃e(i) = 2µηTr(ΣBeEw̃e(i)f
>
η,e) = 2µη[vec(fη,eEw̃

>
e (i)B>e)]>σ, (3.65)

2µ2ηf>η,eΣrη,e = 2µ2ηTr(Σrη,ef>η,e) = 2µ2[vec(fη,er
>
η,e)]

>σ. (3.66)

Let us define the MH ×MH time dependent matrix Ye(i) given by:

Ye(i) , µ
2G>e + µ2Q>e + 2µP>(i) + µ2η2fη,ef

>
η,e + 2µηfη,eEw̃

>
e (i)B>e + 2µ2ηfη,er

>
η,e,

(3.67)

therefore, the variance relation (3.44) can be expressed as:

E‖w̃e(i+ 1)‖2σ = E‖w̃e(i)‖2Fσ + [vec(Ye(i))]
>σ. (3.68)

Theorem 3.2 (Mean-square stability) Assume that data model (3.2) and Assump-

tion 3.1 hold. Assume further that the step-size µ is sufficiently small. Then, for any

initial condition, algorithm (3.10) is mean-square stable if the error recursion (3.33) is

mean stable and the matrix F defined by (3.47) is stable. Using the approximation (3.48)

and property (3.83), the condition for mean stability in Theorem 3.1 will also ensure mean-

square stability.

Proof. Iterating (3.68) starting from i = 0 and an initial condition w̃e(0) = 1H ⊗
(wo(η)−w(0)), we obtain:

E‖w̃e(i+ 1)‖2σ = E‖w̃e(0)‖2F i+1σ
+

i∑
j=0

[vec(Ye(i− j))]>F jσ. (3.69)

Similar with the proof in Theorem 2.2, the mean square error will converge when F is

stable and the mean error is bounded. When the step-size is sufficiently small, F can

3.3. Stochastic behavior analysis 53

be approximated as B>e ⊗ B>e , stabilty of F coincides to stabilty of Be, therefore mean

stability condition also ensures mean-square stability. �

Theorem 3.3 (Learning curve) Assume the same settings as Theorem 3.2. The learn-

ing curve E‖w̃e(i+ 1)‖2σ ends up evolving according to the following recursion:

E{‖w̃e(i+ 1)‖2σ} = E{‖w̃e(i)‖2σ}+
[
vec(w̃e(0)w̃>e (0))

]>
(F − I(MH)2)F iσ

+ [vec(Ye(i))]
>σ + γe(i)σ, (3.70)

where γe(i+ 1) is an (MH)2 × 1 vector that can be evaluated from γe(i) according to:

γe(i+ 1) = [vec(Ye(i))]
>(F − I(MH)2) + γe(i)F , (3.71)

with γe(0) = 0(MH)2×1.

Proof. The argument is similar to the proof in Theorem 2.3. �

Let

Σnet , bdiag{IM , 0M×M , . . . ,0M×M︸ ︷︷ ︸
in total H -1 block items

}, (MH ×MH) (3.72)

σnet = vec(Σnet). ((MH)2 × 1) (3.73)

The network MSD learning curve, defined as ζ(i) , 1
NE‖w̃(i)‖2 = 1

NE‖w̃e(i)‖2Σnet
, can be

obtained by replacing σ with σnet in (3.70):

ζ(i+ 1) = ζ(i)+
1

N

[
vec(w̃e(0)w̃>e (0))

]>
(F − I(MH)2)F iσnet

+
1

N
[vec(Ye(i))]

>σnet +
1

N
γe(i)σnet, (3.74)

Theorem 3.4 (Steady-state performance) Assume the same settings as Theorem 3.2.

The steady-state performance limi→∞ E‖w̃e(i)‖2σ of the algorithm (3.10) is given by

lim
i→∞

E‖w̃e(i)‖2σ = [vec(Ye(∞))]>(I(MH)2 −F)−1σ, (3.75)

where Ye(∞) can be obtained from (3.38) and (3.67).

Proof. The argument is similar to the proof in Theorem 2.4. �

Define steady-state network MSD as ζ? , limi→∞
1
NE‖w̃e(i)‖2 = limi→∞

1
NE‖w̃e(i)‖2Σnet

,

it can be obtained by:

ζ? =
1

N
[vec(Ye(∞))]>(I(MH)2 −F)−1σnet. (3.76)

54 Chapter 3. Multitask networks with non-local constraints

1

3
2

47

6

5

10

12
9

11

14
13

8

15

I1I1

I3I3

I2I2

I4I4

I5I5

I6I6

I7I7

I9I9

I10I10

I8I8

Figure 3.1: Multitask MSE network with constraints.

2 4 6 8 10 12 14

1

1.1

1.2

1.3

1.4

2 4 6 8 10 12 14

0.1

0.11

0.12

0.13

0.14

0.15

Figure 3.2: Regressors and noise variances.

The behavior in the mean and mean-square sense w.r.t. wo(η) can be predicted by the

theoretical findings (3.33), (3.38), (3.70), and (3.75). Finally, the transient and steady-state

behavior of E‖w̃′e(i)‖2σ w.r.t. w∗ can be derived from the following relation:

E{‖w̃′e(i)‖2σ} = E{‖w̃e(i)‖2σ}+ 2E{w̃e(i)}Σwd,e + ‖wd,e‖2Σ (3.77)

with wd,e = 1H ⊗ (w? −wo(η)).

3.4 Simulations

In this section, we provide experimental results to illustrate the convergence of algo-

rithm (3.10) and validate our theoretical models. We considered a network of 15 nodes

with the topology and the constraints shown in Fig. 3.1. We randomly sampled 10 linear

3.4. Simulations 55

0 100 200 300 400 500 600 700 800 900 1000
-35

-30

-25

-20

-15

-10

-5

0

5

10

Algorithm in Chapter 2 (local constraints)

Proposed algorithm (non-local constraints)

Centralized CLMS

Figure 3.3: MSD comparison (perfect model scenario).

0 100 200 300 400 500 600 700 800 900 1000
-20

-15

-10

-5

0

5

10

Proposed algorithm (non-local constraints)

Centralized CLMS

Algorithm in Chapter 2 (local constraints)

Figure 3.4: MSD comparison (imperfect model scenario).

constraints of the form
∑

`∈Ip dp`w` = bp · 12, where the coefficients dp` and bp were ran-

domly chosen from {−2,−1, 1, 2}. The regression vectors xk(i) were zero-mean Gaussian

with covariance matrix Rx,k = σ2
x,kI2. The noises zk(i) were zero-mean i.i.d. Gaussian

random variables independent of any other signal with variances σ2
z,k. The variances σ2

x,k

and σ2
z,k used in the simulations are shown in Fig. 3.2. The results were averaged over 200

56 Chapter 3. Multitask networks with non-local constraints

Monte-Carlo runs.

We considered two scenarios: i) the parameter vector wo = wo where wo satisfies the

constraints, i.e. wo = w?(Fig.3.3); ii) wo does not satisfy the constraints, specifically,

we perturbed it as wo = wo + u where u ∼ N (0, I) (Fig.3.4). The step-size µ was

set to 0.02. We compared our algorithm (3.10) with the centralized CLMS algorithm

[Nassif 2017b, Frost 1972]. Furthermore, for comparison purposes, we assumed additional

links connecting nodes 1 to 6, 5 to 12, 10 to 14, and 14 to 15. In this case, the constraints are

local and the algorithm derived in Chapter 2 [Hua 2017b] can be applied. We set µ = 0.018

for the centralized CLMS algorithm and for algorithm [Hua 2017b] (with additional links)

so that their steady-state MSD match. Observe that the simulation results match well

the theoretical models. Furthermore, our algorithm performs well in the mean-square-

error compared to the centralized solution. Finally, observe that, as expected, the delays

emerging from the multi-hop protocols required in non-local constraints scenarios will lead

to a slower convergence rate.

3.5 Conclusion

We proposed a distributed multitask algorithm for estimating multiple parameter vec-

tors that are coupled through non-local linear equality constraints. Based on the penalty

method, we solved the original constrained problem by approximating it into an uncon-

strained one. A multi-hop relay protocol was employed in order to deal with the non-local

constraints and to devise a distributed algorithm. The stochastic behavior of the algorithm

in the mean and in the mean-square-error sense was studied. Simulation results were con-

ducted to show the effectiveness of the proposed method and to validate our theoretical

performance analysis.

In Chapter 2 and 3, we considered multitask estimation problems where agents are

interested in estimating different but linearly related tasks. The relations between agents

are known beforehand. In next Chapter, we will consider the multitask estimation problem

in Graph Signal Processing (GSP) applications where the agents do not know in prior that

their neighbors are estimating the same task.

3.A Kronecker product

Let A and B be denote N×N andM×M matrices, respectively, whose individual (i, j)-th

entries are denoted by aij and bij . Their Kronecker product is denoted by A ⊗B and is

3.A. Kronecker product 57

defined as the NM ×NM matrix given by [Horn 2012]:

A⊗B =


a11B a12B . . . a1NB

a21B a21B . . . a2NB
...

...
. . .

...

aN1B aN1B . . . aNNB

 . (3.78)

For any two vectors {x,y}, we have:

vec(xy>) = y ⊗ x, (3.79)

where vec(·) operator transforms a matrix into a vector by stacking the columns of the

matrix on top of each other.

For matrices {A,B,C,D} with compatible dimensions and column vectors {x,y}, we
list some useful properties of traditional Kronecker products:

(A+B)⊗C = (A⊗C) + (B ⊗C) (3.80)

(A⊗B)(C ⊗D) = (AC ⊗BD) (3.81)

(A⊗B)> = A> ⊗B> (3.82)

{λ(A⊗B)} = {λi(A)λj(B)}N,Mi=1,j=1 (3.83)

Tr(AB) = [vec(B>)]>vec(A) (3.84)

vec(ACB) = (B> ⊗A)vec(C). (3.85)

Chapter 4

Online Distributed Learning

over Graphs

with Multitask Graph-Filter Models

Contents
4.1 Introduction . 60

4.2 Problem formulation and centralized solution 63

4.2.1 Graph filter and data model . 64

4.2.2 Centralized solution . 65

4.3 Diffusion LMS strategies over graph signals 67

4.3.1 Graph diffusion LMS . 67

4.3.2 Graph diffusion preconditioned LMS 68

4.3.3 Comparison with the graph diffusion LMS 70

4.4 Performance analysis . 70

4.4.1 Mean-error behavior analysis . 72

4.4.2 Mean-square-error behavior analysis 73

4.5 Unsupervised clustering for hybrid node-varying graph filter . . . 76

4.6 Numerical results . 79

4.6.1 Experiment with i.i.d. input data . 79

4.6.2 Experiment with correlated input data 82

4.6.3 Clustering method for node-varying graph filter 83

4.6.4 Reconstruction on U.S. temperature dataset 86

4.7 Conclusion . 89

Appendix 4.A Block maximum norm . 90

60 Chapter 4. Online distributed learning over graphs

In this chapter, we are interested in adaptive and distributed estimation of graph filters

from streaming data. We formulate this problem as a consensus estimation problem over

graphs, which can be addressed with diffusion LMS strategies. Most popular graph-shift

operators such as those based on the graph Laplacian matrix, or the adjacency matrix, are

not energy preserving. This may result in an ill-conditioned estimation problem, and reduce

the convergence speed of the distributed algorithms. To address this issue and improve

the transient performance, we introduce a preconditioned graph diffusion LMS algorithm.

We also propose a computationally efficient version of this algorithm by approximating

the Hessian matrix with local information. Performance analyses in the mean and mean-

square sense are provided. Finally, we consider a more general problem where the filter

coefficients to estimate may vary over the graph. To avoid a large estimation bias, we

introduce an unsupervised clustering method for splitting the global estimation problem

into local ones. Numerical results show the effectiveness of the proposed algorithms and

validate the theoretical results. The main results established in this chapter were published

in [Hua 2018a, Hua 2018b, Hua 2020b].

4.1 Introduction

Data generated by network-structured applications often exhibit non-Euclidean structures,

which make traditional signal processing techniques inefficient to analyze them. In con-

trast, graph signal processing (GSP) provides useful tools to analyze and process signals on

graphs. They represent them as samples at the vertices of a possibly weighted graph, and

use algebraic and spectral properties of the graph to study the signals. These graph repre-

sentations are useful in applications ranging from social and economic networks to smart

grids [Djurić 2018, Ortega 2018, Sandryhaila 2014a, Shuman 2013]. Recent results in the

area include sampling [Chen 2015b, Anis 2016, Tsitsvero 2016], filtering [Sandryhaila 2013],

and inference and learning [Nassif 2019, Defferrard 2016, Gama 2018b, Anis 2019], to cite

a few.

In order to cope with graph signals, GSP relies on two ingredients: the graph shift

operator (GSO) on one hand, which accounts for the topology of the graph, and the graph

Fourier transform (GFT) on the other hand, which allows to represent graph signals in

the graph frequency domain. Built upon the definition of the GFT, graph filters play

a central role in processing graph signal spectra by selectively amplifying or attenuating

frequency components. Various architectures of graph filters have been proposed in the

4.1. Introduction 61

literature, including finite impulse response (FIR) [Shuman 2013, Sandryhaila 2013] and

infinite impulse response (IIR) [Shi 2015, Liu 2019] filters. From a perspective of scal-

ability, and considering energy constraints and band-limited communications that may

be encountered in large networks of distributed nodes such as sensor networks, signif-

icant efforts have been made recently to derive distributed graph filters. These filter-

ing procedures allow each node to exchange only local information with its neighboring

nodes [Loukas 2015, Isufi 2017b, Segarra 2017, Coutino 2019, Shuman 2018].

Much of the GSP literature has focused on static graph signals, that is, signals that need

not evolve with time. However, a wide spectrum of network-structured problems requires

adaptation to time-varying dynamics. Sensor networks, social networks, vehicular networks,

communication networks, and power grids are some typical examples. Prior to the more

recent GSP literature, many earlier works on adaptive networks have addressed problems

dealing with this challenge by developing processing strategies that are well-suited to data

streaming into graphs; see, e.g., [Sayed 2013, Sayed 2014b, Sayed 2014c]. Several diffusion

strategies have been introduced, and their performance studied in various situations, such

as diffusion LMS [Lopes 2008], RLS [Cattivelli 2008], and APA [Li 2009]. By referring to

the problem of estimating an optimal parameter vector at a node as a “task”, and depending

on the relations between the parameter vectors across the entire network, adaptive networks

can be divided into single or multitask networks. In single-task networks, all nodes estimate

the same parameter vector. Typical works include [Sayed 2013, Sayed 2014b, Sayed 2014c].

With multitask networks, multiple but related parameter vectors are inferred simultane-

ously in a cooperative manner, so as to improve the estimation accuracy by using the

similarities between tasks [Chen 2015a, Chen 2014b, Nassif 2016a, Nassif 2016b].

In this Chapter, we are interested in online learning of linear graph models for repre-

senting streaming graph signals in a distributed manner. We focus on diffusion strategies

because they are scalable, robust, and enable network adaptation and learning. Recently,

some research works have considered time-varying graph signals. An adaptive graph signal

reconstruction algorithm based on the LMS is proposed in [Di Lorenzo 2016] but it operates

in a centralized manner. In [Mei 2017], the authors focus on estimating a network structure

capturing the dependencies among time series in the form of a possibly directed, weighted

adjacency matrix. A causal autoregressive process is introduced in the time series to capture

the intuition that information travels over the network at some fixed speed. In [Isufi 2019],

vector autoregressive (VAR) and vector autoregressive moving average (VARMA) models

are proposed for predicting time-varying processes on graphs. Joint time-vertex stationar-

ity is introduced for time-varying graph signals in [Loukas 2016, Loukas 2017], and a joint

62 Chapter 4. Online distributed learning over graphs

time-vertex harmonic analysis for graph signals is proposed in [Grassi 2018]. It is shown

that joint stationarity facilitates estimation or recovery tasks when compared to purely

time or graph methods.

All the aforementioned works focus on centralized solutions whereas distributed algo-

rithms may be more appropriate within the context of big data applications. In [Isufi 2016,

Isufi 2017c], the behavior of some distributed graph filters on time-varying graph signals

is studied. Considering graph signal sampling and reconstruction, several distributed

algorithms have been proposed to track time-varying band-limited graph signals, e.g.,

LMS-based algorithms in [Di Lorenzo 2017], RLS-based methods in [Di Lorenzo 2018],

Kalman-based methods in [Isufi 2017a], and kernel-based algorithms in [Romero 2017].

In [Qiu 2017], the authors are interested in time-varying graph signals with temporal

smoothness prior. They devise distributed gradient descent algorithms to reconstruct the

signals. Most of these works assume that the graph signals are band-limited. Another lim-

itation is that the graph Fourier decomposition (eigenvectors) is needed beforehand, which

is impractical for large networks.

Recently, several works successfully applied adaptive algorithms to graph signals. In

[Di Lorenzo 2016, Di Lorenzo 2017, Di Lorenzo 2018] for instance, graph Fourier coeffi-

cients are learned from streaming graph signals under band-limited assumption to perform

adaptive reconstruction and tracking of time-varying graph signals from partial observa-

tions. In this work, we are interested in online distributed learning of linear graph models

without assumption of band-limited processes. We use graph filter models in the time-

vertex domain where there is no need to decompose the graph shift operator. The formu-

lated optimization problem relies on minimizing a global cost consisting of the aggregate

sum of individual costs at each vertex. To address this problem, we blend concepts from

adaptive networks [Sayed 2014a] and graph signal processing to devise graph diffusion LMS

strategies. Considering that most popular shift operators are not energy preserving and

may result in a slow convergence speed, we introduce a preconditioned optimization strat-

egy to improve the transient performance. As this may lead to an increased computational

complexity, we further propose a computationally efficient algorithm. Explicit theoretical

performance analyses in the mean and mean-square-error sense are provided. We also give

alternative theoretical results that are tractable for large networks. Simulation results show

the efficiency of the proposed algorithms and validate the theoretical models. Finally, we

extend these node-invariant filter models to more flexible ones where each node in the graph

seeks to estimate a local node-varying graph filter. This allows us to exploit more degrees

of freedom in the filter coefficients to better model graph signals. We introduce an unsu-

4.2. Problem formulation and centralized solution 63

pervised clustering strategy to determine which nodes in the graph share the same graph

filter and may collaborate to estimate its parameters. Numerical results on a real-word

dataset illustrate the efficiency of the proposed methods.

The rest of this Chapter is organized as follows. Section 4.2 formulates the problem

and provides the centralized solution. Section 4.3 introduces the distributed algorithms,

namely, the graph diffusion LMS strategy and its preconditioned counterparts. Section 4.4

provides their theoretical analyses in the mean and the mean-square sense. A clustering

method is devised to estimate local node-varying graph filters in Section 4.5. Numerical

results in Section 4.6 show the effectiveness of these algorithms and validate the theoretical

models.

4.2 Problem formulation and centralized solution

We consider an undirected, weighted and connected graph G = (N , E ,W) of N nodes,

where N = {1, 2, . . . , N} is the set of nodes, and E is the set of edges such that if node

k is connected to node `, then (k, `) ∈ E . We denote by Nk the neighborhood of node k

including itself, namely, Nk = {` : ` = k∨ (`, k) ∈ E}. MatrixW ∈ RN×N is the adjacency

matrix whose (k, `)-th entry wk` assigns a weight to the relation between vertices k and `.

Since the graph is undirected,W is a symmetric matrix. The degree matrixD , diag(W1)

is a diagonal matrix whose i-th diagonal entry is the degree of node i, which is equal to

the sum of all the weights of edges incident at node i. The combinatorial Laplacian matrix

is defined as L , D −W which is a real, symmetric, positive semi-definite matrix. We

further assume that the graph is endowed with a graph shift operator defined as an N ×N
shift matrix S whose entry sk` can be non-zero only if k = ` or (k, `) ∈ E . Although

the shift matrix can be any matrix that captures the graph topology for the problem at

hand [Ortega 2018], popular choices are the graph Laplacian matrix [Shuman 2013], the

adjacency matrix [Sandryhaila 2013], and their normalized counterparts. A graph signal is

defined as x = [x1, . . . , xN]> ∈ RN where xk is the signal sample associated with node k.

Let x(i) denote the graph signal at time i. Operation Sx is called graph shift. It can be

performed locally at each node k by linearly combining the samples x` from its neighboring

nodes ` ∈ Nk.

64 Chapter 4. Online distributed learning over graphs

4.2.1 Graph filter and data model

In this Chapter, we focus on linear shift-invariant FIR graph filters H : RN×N → RN×N

of order M , which are polynomials of the graph-shift operator [Sandryhaila 2013]:

H ,
M−1∑
m=0

homS
m, (4.1)

where ho = {hom}M−1
m=0 are the scalar filter coefficients. With the definitions of graph signal

and graph shift operator, one common filtering model assumes that the filtered graph

signal y(i) is generated from the input graph signal x(i) as follows [Sandryhaila 2013,

Nassif 2017a]:

y(i) = Hx(i) + v(i) =
M−1∑
m=0

homS
mx(i) + v(i), (4.2)

where v(i) = [v1(i), . . . , vN (i)]> ∈ RN denotes an i.i.d. zero-mean noise independent of any

other signal and with covariance matrix Rv = diag{σ2
v,k}Nk=1. For each node k, the filtered

signal yk(i) can be computed by linearly combining the input signals at nodes located in an

(M −1)-hop neighborhood [Shuman 2013]. This model however assumes the instantaneous

diffusion of information over the graph since Smx(i) translates x(i) without time delay.

As this assumption may appear as a serious limitation, we consider the more general model

embedding the temporal dimension as follows [Isufi 2016, Nassif 2018]:

y(i) =

M−1∑
m=0

homS
mx(i−m) + v(i). (4.3)

Observe that the input signal x(i) in (4.2) has been replaced by x(i − m) in (4.3), i.e.,

the m-hop spatial shift Sm is now carried out in m time slots. This model implements an

FIR filter in both graph domain and temporal domain. By retaining the following shifted

signals that form the N ×M − 1 matrix:

Xr =
[
x(i− 1),Sx(i− 2), . . . ,SM−2x(i−M + 1)

]
, (4.4)

note that only one shift is required at time instant i to produce the filtered signal y(i).

This means that yk(i) can be computed using only local information available within the

one-hop neighborhood of node k. Let Z(i) denote the N ×M matrix given by:

Z(i) ,
[
x(i), Sx(i− 1), . . . ,SM−1x(i−M + 1)

]
, (4.5)

then model (4.3) can be written alternatively as:

y(i) = Z(i)ho + v(i) (4.6)

4.2. Problem formulation and centralized solution 65

From model (4.6), sample yk(i) at node k can be written as:

yk(i) = z>k (i)ho + vk(i), (4.7)

where z>k (i) is the k-th row of Z(i) given by:

zk(i) , col
{

[x(i)]k, [Sx(i− 1)]k, . . . , [S
M−1x(i−M + 1)]k

}
. (4.8)

Observe in (4.7) that each node shares the same filter coefficient vector ho. The corre-

sponding graph filter (4.1) is referred to as node-invariant graph filter. A more flexible

model was introduced in [Segarra 2017], and called a node-variant graph filter. It allows

the filter coefficients to vary across nodes as follows:

H ,
M−1∑
m=0

diag(h(m))Sm, (4.9)

with h(m) ∈ RN . If h(m) = hm1 for all m, model (4.9) reduces to the node-invariant model

(4.1). Otherwise, each node applies different weights to the shifted signal Smx. Then yk(i)

in (4.7) can be re-written as:

yk(i) = z>k (i)hok + vk(i), (4.10)

where hok ∈ RM is the filter coefficient vector at node k collected into h(m), i.e., [hok]m =

[h(m)]k. In this work, we seek to estimate hok from the filtered graph signal yk(i) and inputs

zk(i), in a distributed, collaborative and adaptive manner. Distributed algorithms such as

the diffusion LMS exist in the literature to address single-task and multitask inference

problems with similar data models as (4.7) or (4.10). In this work, however, regressors

zk(i) in (4.8) are raised from graph shifted signals. This Chapter aims to exploit the

graph shift structure in the regression data and incorporate it into the formulation of the

distributed algorithm – see expression (4.22) further ahead. In the sequel, first, we shall

study the case where the filter coefficients are common for all nodes, i.e. hok = ho, ∀k ∈ N .

We shall show how to estimate ho from streaming data {y(i),x(i)} in a centralized way and

then, in a distributed way. Next, we shall assume that there are clusters of nodes within the

graph, and each node in the same cluster uses the same filter. This model is called a hybrid

node-varying graph filter [Gama 2018a]. We shall introduce an unsupervised clustering

method to allow each node to identify which neighboring nodes it should collaborate with.

4.2.2 Centralized solution

Before introducing the distributed method, we first introduce the centralized solution.

Consider the data model (4.6) and assume that {y(i),x(i),v(i)} are zero-mean jointly

66 Chapter 4. Online distributed learning over graphs

wide-sense stationary random processes. Estimating ho from {y(i),Z(i)} can be performed

by solving the following problem:

ho = arg min
h
J(h), (4.11)

where J(h) denotes the mean-square-error criterion:

J(h) = E‖y(i)−Z(i)h‖2

= E{y>(i)y(i)} − 2h>rZy + h>RZh, (4.12)

and the M ×M matrix RZ and the M × 1 vector rZy are given by:

RZ , E{Z>(i)Z(i)}, rZy , E{Z>(i)y(i)}. (4.13)

By setting the gradient vector of J(h) to zero, the optimal parameter vector ho can be

found by solving:

RZh
o = rZy. (4.14)

It can be verified that the (m,n)-th entry of RZ is given by:

[RZ]m,n = Tr
(

(Sm−1)>Sn−1Rx(m− n)
)

(4.15)

where Rx(m) , E{x(i)x>(i−m)}. The m-th entry of the vector rZy is given by:

[rZy]m = Tr
(

(Sm−1)>Rxy(m)
)
, (4.16)

with Rxy(m) , E{y(i)x>(i −m)} denoting cross correlation function, which is assumed

independent of time i.

Instead of solving (4.14), ho can be sought iteratively by using the gradient-descent

method:

h(i+ 1) = h(i) + µ
[
rZy −RZh(i)

]
, (4.17)

with µ > 0 a small step-size. Since the statistical moments are usually unavailable before-

hand, one way is to replace them by the instantaneous approximations RZ ≈ Z>(i)Z(i)

and rZy ≈ Z>(i)y(i). This yields the LMS graph filter:

h(i+ 1) = h(i) + µZ>(i)
[
y(i)−Z(i)h(i)

]
. (4.18)

This stochastic-gradient algorithm is referred to as the centralized graph-LMS algorithm.

In this centralized setting, each node k at each time instant i sends its data {xk(i), yk(i)}
to a fusion center which will update h(i) according to (4.18). Note that the step-size µ

in (4.18) must satisfy 0 < µ < 2
λmax(RZ) in order to guarantee stability in the mean under

certain independence conditions on the data [Sayed 2008].

4.3. Diffusion LMS strategies over graph signals 67

4.3 Diffusion LMS strategies over graph signals

In this section, we seek to estimate the graph filter coefficients in a distributed fashion.

First, we review the graph diffusion LMS strategy [Nassif 2018]. Then, a preconditioned

algorithm is proposed to improve the transient performance. We also devise a computa-

tionally efficient counterpart of this algorithm.

4.3.1 Graph diffusion LMS

Consider the local data model (4.7) at node k. It is worth noting that, by retaining the past

shifted signals {[Sm−1x(i−m)]` : m = 1, . . . ,M − 1} at each node ` in the network from

previous iterations, zk(i) can be computed locally at node k from its one-hop neighbors

at each iteration i. Let Rz,k , E{zk(i)z>k (i)} denote the M ×M covariance matrix with

(m,n)-th entry given by [Nassif 2018]:

[Rz,k]m,n = Tr
(

[Sm−1)]>k,•[S
n−1]k,•Rx(m− n)

)
. (4.19)

Considering the local cost Jk(h) at node k:

Jk(h) = E|yk(i)− z>k (i)h|2, (4.20)

the global cost (4.12) is now the aggregation of the local costs over the graph:

J(h) =
N∑
k=1

Jk(h). (4.21)

In order to minimize (4.12) in a decentralized fashion, there are several useful techniques,

e.g., incremental strategy [Bertsekas 1997], consensus strategy [Xiao 2005] and diffusion

strategy [Sayed 2014c]. Diffusion strategies are attractive since they are scalable, robust,

and enable continuous learning and adaptation. In particular, the adapt-then-combine

(ATC) diffusion LMS takes the following form at node k [Nassif 2018]:

z>k (i) =
[
xk(i),

∑
`∈Nk

sk` [z`(i− 1)]1, . . . ,
∑
`∈Nk

sk` [z`(i− 1)]M−1

]
, (4.22a)

ψk(i+ 1) = hk(i) + µkzk(i)
[
yk(i)− z>k (i)hk(i)

]
, (4.22b)

hk(i+ 1) =
∑
`∈Nk

a`kψ`(i+ 1), (4.22c)

where µk > 0 is a local step-size parameter and {a`k} are non-negative combination coeffi-

cients chosen to satisfy:

a`k > 0,

N∑
`=1

a`k = 1, and a`k = 0 if ` /∈ Nk. (4.23)

68 Chapter 4. Online distributed learning over graphs

This implies that the matrix A with (`, k)-th entry a`k is a left-stochastic matrix, which

means that the sum of each of its columns is equal to 1. In the first step (4.22a), each

node k uses the first M − 1 entries of z`(i − 1) from its one-hop neighbors and its own

input sample xk(i) to compute zk(i). Note that the first M − 1 entries of zk(i) then need

to be retained for the next iteration. In the adaptation step (4.22b), each node k updates

its local estimate hk(i) to an intermediate estimate ψk(i + 1). In the combination step

(4.22c), node k aggregates all the intermediate estimates ψ`(i + 1) from its neighbors to

obtain the updated estimate hk(i+ 1).

4.3.2 Graph diffusion preconditioned LMS

The regressor zk(i) used in the adaptation step (4.22b) results from shifted graph signals

while the shift matrix S is not energy preserving in general [Gavili 2017]. This is due to the

fact that the magnitude of the eigenvalues of the shift operator S are not uniformly equal to

1; the energy of the shifted signal Smx changes exponentially with m. Thus, the eigenvalue

spread of Rz,k may be large and the LMS update may suffer from slow convergence speed

in this case [Sayed 2008]. To address this issue, albeit at an increased computational cost,

we resort to a form of Newton’s method. Focusing on the adaptation step, we have:

ψk(i+ 1) = hk(i)− µk[∇2
hJk(hk(i))]

−1[∇hJk(hk(i))], (4.24)

where ∇2
hJk(·) denotes the Hessian matrix for Jk(·) and ∇hJk(·) is its gradient vector, if

available.

For the quadratic cost function (4.20), expression (4.24) would lead to:

ψk(i+ 1) = hk(i) + µkR
−1
z,k

[
rzy,k −Rz,khk(i)

]
, (4.25)

where rzy,k = E{zk(i)yk(i)}. Note that the second term on the RHS of (4.25) requires

second-order moments. Since they are rarely available beforehand, we can replace rzy,k −
Rz,khk(i) by the instantaneous approximation:

rzy,k −Rz,khk(i) ≈ zk(i)ek(i) (4.26)

with ek(i) = yk(i)− z>k (i)hk(i). The adaptation step (4.25) becomes:

ψk(i+ 1) = hk(i) + µkR̂
−1

z,k(i)zk(i)ek(i), (4.27)

where R̂z,k(i) is an estimate for Rz,k(i), which can possibly be obtained recursively:

R̂z,k(i) = (1− µ) R̂z,k(i− 1) + µ
[
zk(i)z

>
k (i)

]
, i ≥ 1, (4.28)

4.3. Diffusion LMS strategies over graph signals 69

where µ is a small factor that can be chosen in (0, 0.1] in practice. It can be verified that

E{R̂z,k(i)} = Rz,k is an unbiased estimate when i→∞. As discussed before, S may not be

energy preserving and results in a large eigenvalue spread of Rz,k, which may even be close

to singular. The inverse R−1
z,k would then be ill-conditioned and lead to undesirable effects.

To address this problem, it is common to use regularization [Sayed 2008]. We obtain the

diffusion LMS-Newton algorithm:

ψk(i+ 1) = hk(i) + µk
[
εI + R̂z,k(i)

]−1
zk(i)ek(i), (4.29a)

hk(i+ 1) =
∑
`∈Nk

a`kψ`(i+ 1), (4.29b)

with ε ≥ 0 a small regularization parameter. Compared with the diffusion LMS algo-

rithm (4.22), algorithm (4.29) requires first to recursively estimate the Hessian matrix

according to (4.28) and then calculate
[
εI + R̂z,k(i)

]−1. This algorithm can lead to im-

proved performance as shown in the sequel, but at the expense of additional computation

cost.

In order to reduce the computational complexity of the LMS-Newton algorithm, we

propose to use a preconditioning matrix P k that does not depend on the graph signal x(i)

in the adaptation step, instead of the Hessian matrix Rz,k or its estimate R̂z,k. Since the

large eigenvalue spread of the input covariance matrix Rz,k results mainly from the shift

matrix S and the filter order M , we construct an M ×M preconditioning matrix P k as

follows:

P k , diag{‖[S(m−1)]k,•‖2}Mm=1. (4.30)

The rationale behind (4.30) is that, in the case where x(i) is i.i.d. with variance σ2, it

follows from (4.19) that Rz,k = σ2P k. According to (4.30), matrix P k does not depend

on x(i) and can be evaluated beforehand at each node k during an initial step. Each

node k only requires to know the edge weights in its M -hop neighborhood, which can be

performed in a decentralized manner. Interestingly, P k is a diagonal matrix, which means

that the matrix product in the adaptation step does not require expensive matrix inversion.

Following the same line of reasoning as for the Newton algorithm (4.29), a regularization

term εIM can be added to P k. This leads to:

Dk = (εIM + P k)
−1. (4.31)

We arrive at the following preconditioned graph diffusion LMS strategy:

ψk(i+ 1) = hk(i) + µkDkzk(i)ek(i), (4.32a)

hk(i+ 1) =
∑
`∈Nk

a`kψ`(i+ 1). (4.32b)

70 Chapter 4. Online distributed learning over graphs

At each iteration i, node k uses the local information to update the intermediate estimate

ψk(i + 1) in the adaptation step (4.32a). Then, in the combination step (4.32b), the

intermediate estimates ψ`(i + 1) from the neighborhood of node k are combined to get

hk(i + 1). Although the preconditioning matrix Dk is not the true Hessian matrix, we

prove in Section 4.4 that the algorithm converges to the optimal solution ho provided that

it is stable.

4.3.3 Comparison with the graph diffusion LMS

We explain how preconditioning with (4.30) improves performance. For comparison pur-

poses, let us first focus on the adaptation step of diffusion LMS. At each node k, the m-th

entry of hk(i) is updated as follows:

[ψk(i+ 1)]m = [hk(i)]m + µk
[
zk(i)ek(i)

]
m
. (4.33)

During the transient phase, the m-th entry [hk(i)]m exponentially converges to its optimal

value with a time constant [Sayed 2008]:

τ̃m ≈
1

2µkλm
(4.34)

where λm denotes the m-th eigenvalue of Rz,k. Given µk, the convergence rate of each

entry of hk(i) then depends on the corresponding eigenvalue. Disparity between entries

increases as the eigenvalue spread defined as λmax/λmin increases.

The preconditioning matrix Dk is diagonal at each node k, which means that the m-th

entry of hk(i) in (4.32a) converges to its optimal value with a time constant:

τ̃m ≈
1

2µkdk,mλm
(4.35)

where dk,m denotes the m-th diagonal entry of Dk. The convergence speed now depends

on dk,mλm. Considering the case where P k is proportional to Rz,k, then dk,m is inversely

proportional to λm, which mitigates the effects of the eigenvalues spread. We shall analyze

and illustrate in Section 4.4 and Section 4.6, respectively, how this preconditioning improves

convergence speed in more general cases.

4.4 Performance analysis

We shall now analyze the stochastic behavior of the diffusion preconditioned LMS (PLMS)

algorithm (4.32) in the sense of mean and mean-square error. We introduce the following

weight error vectors at each node k:

h̃k(i) = ho − hk(i), ψ̃k(i) = ho −ψk(i), (4.36)

4.4. Performance analysis 71

and we collect them across the nodes into the network weight error vectors :

h̃(i) , col{h̃1(i), h̃2(i), . . . , h̃N (i)}, (4.37)

ψ̃(i) , col{ψ̃1(i), ψ̃2(i), . . . , ψ̃N (i)}. (4.38)

We refer to mean stability of the error vector h̃(i) if the limit superior of Eh̃(i) is bounded.

Furthermore, we will claim that the algorithm converges in the mean to the optimum if

Eh̃(i) converges to zero as i tends to +∞ regardless of the starting point. Mean-square

stability refers to the case where the superior limit of E‖h̃(i)‖2 is bounded.

Let us introduce the following N × N block matrices with individual entries of size

M ×M :

A , A⊗ IM , (4.39)

M , bdiag{µkIM}Nk=1, (4.40)

D , bdiag{Dk}Nk=1. (4.41)

The estimation error in (4.32a) can be written as:

ek(i) = yk(i)− z>k (i)hk(i) = z>k (i)h̃k(i) + vk(i). (4.42)

Subtracting ho from both sides of (4.32a) and using the above relation, then stacking ψ̃k(i)

across the nodes, we obtain

ψ̃(i+ 1) = (INM −MDRz(i)) h̃(i)−MDpzv(i), (4.43)

where Rz(i) is an N ×N block matrix with entries of size M ×M define as:

Rz(i) , bdiag{zk(i)z>k (i)}Nk=1, (4.44)

and pzv(i) is an N × 1 block column vector with entries of size M × 1 given by:

pzv(i) , col{zk(i)vk(i)}Nk=1. (4.45)

Subtracting ho from both sides of (4.32b), we obtain the block weight error vector:

h̃(i+ 1) = A>ψ̃(i+ 1). (4.46)

Finally, combing (4.43) and (4.46), the network weight error vector h̃(i) of algorithm (4.32)

evolves according to:

h̃(i+ 1) = B(i)h̃(i)−A>MDpzv(i), (4.47)

with

B(i) = A>
(
INM −MDRz(i)

)
. (4.48)

To proceed with the analysis, we introduce the following assumption.

72 Chapter 4. Online distributed learning over graphs

Assumption 4.1 (independent inputs) The inputs zk(i) arise from a zero-mean ran-

dom process that is temporally white with Rz,k � 0.

A consequence of Assumption 4.1 is that zk(i) is independent of h`(j) for all ` and j < i.

This independence assumption is not true in the current work. Two successive regressors zk
involve common entries that cannot be statistically independent as in a conventional FIR

implementation. However, when the step-size is sufficiently small, conclusions derived un-

der this assumption tend to be realistic. For more details and discussions, see [Sayed 2008,

Section 16.4]. Since this assumption helps to simplify the derivations without constraining

the conclusions, it is widely used in the literature of adaptive filters and adaptive net-

works [Sayed 2014c, Sayed 2008]. We shall see in Section 4.6 that the resulting expressions

match well the simulation results for sufficiently small step-sizes.

4.4.1 Mean-error behavior analysis

Taking expectations of both sides of (4.47), using the fact that Epzv(i) = 0, and applying

Assumption 4.1, we find that the network mean error vector evolves according to:

Eh̃(i+ 1) = BEh̃(i), (4.49)

where:

B , EB(i) = A>(INM −MDRz), (4.50)

Rz , ERz(i) = bdiag{Rz,k}Nk=1. (4.51)

Theorem 4.1 (Convergence in the mean) Assume that data model (4.7) and Assump-

tion 4.1 hold. Then, for any initial condition, algorithm (4.32) converges asymptotically in

the mean toward the optimal vector ho if, and only if, the step-sizes in M are chosen to

satisfy:

ρ
(
A>(INM −MDRz)

)
< 1, (4.52)

where ρ(·) denotes the spectral radius of its matrix argument. In the case where the signal

x(i) is i.i.d, a sufficient condition for (4.52) to hold is to choose µk such that:

0 < µk <
2

λmax(DkRz,k)
, k = 1, . . . , N. (4.53)

Proof. The weight error vector h̃(i) converges to zero if, and only if, the coefficient

matrix B in (4.49) is a stable matrix, namely, ρ(B) < 1. Since any induced matrix norm

4.4. Performance analysis 73

is lower bounded by the spectral radius, we have the following relation in terms of block

maximum norm [Sayed 2014c]:

ρ(B) ≤ ‖A>(INM −MDRz)‖b,∞
≤ ‖A>‖b,∞ · ‖INM −MDRz‖b,∞
= ‖INM −MDRz‖b,∞, (4.54)

where the last equality follows from the fact that A is left stochastic, which implies that

‖A>‖b,∞ = 1 from Lemma D.4 of [Sayed 2014c]. Matrix Rz is block diagonal if x(i) is

i.i.d. Since D is also diagonal, their product is symmetric, and MDRz is a block diagonal

symmetric matrix. Then, following Lemma D.5 of [Sayed 2014c], its block maximum norm

agrees with its spectral radius:

‖INM −MDRz‖b,∞ = ρ(INM −MDRz). (4.55)

Combining (4.54) and (4.55), we verify that condition (4.53) ensures the stability of B. �

4.4.2 Mean-square-error behavior analysis

We shall now study the mean-square-error behavior of algorithm (4.32). Let Σ be any

NM × NM positive semi-definite matrix that we are free to choose. The freedom in

selecting Σ will allow us to derive different performance measures about the network and

the nodes. We consider the weighted mean-square error vector, i.e., E‖h̃(i)‖2Σ, where

‖h̃(i)‖2Σ , h̃
>

(i)Σh̃(i). From Assumption 4.1 and Epzv(i) = 0, using (4.47), we obtain

the following variance relation:

E‖h̃(i+ 1)‖2Σ = E‖h̃(i)‖2Σ′ + E‖A>MDpzv(i)‖2Σ, (4.56)

where Σ′ , E{B>(i)ΣB(i)}. Let σ denote the (NM)2 × 1 vector obtained by vectorizing

matrix Σ, namely, σ = vec(Σ). With some abuse of notation, we shall use ‖ · ‖2σ to also

refer to the quantity ‖ · ‖2Σ when it is more convenient. Let σ′ = vec(Σ′). Considering that

vec(UΣW) = (W> ⊗U)σ, it can be verified that:

σ′ = Fσ, (4.57)

where F is the (NM)2 × (NM)2 matrix given by

F ,E{B>(i)⊗B>(i)}

=
(
I(NM)2 − INM ⊗R>z DM−R>z DM⊗ INM +O(M2)

)
(A⊗A), (4.58)

74 Chapter 4. Online distributed learning over graphs

where O(M2) denotes E{R>z (i)DM⊗R>z (i)DM}, which depends on the square of the

step-sizes, {µ2
k}. While we can continue the analysis by taking this factor into account as

was done in other studies [Sayed 2003], it is sufficient for the exposition to focus on the

case of sufficiently small step-sizes where terms involving higher powers of the step-sizes

{µk} can be ignored. Following the same line of reasoning, for sufficiently small step-sizes

{µk}, F can be approximated by:

F ≈ B> ⊗B>. (4.59)

The second term on the RHS of (4.56) can be written as:

E‖A>MDpzv(i)‖2Σ = Tr(ΣG), (4.60)

where

G , A>MDSDMA, (4.61)

S , E{pzv(i)p>zv(i)} = bdiag{σ2
v,kRz,k}Nk=1. (4.62)

Using the property Tr(ΣW) = [vec(W>)]>σ, combining (4.57) and (4.60), the variance

relation (4.56) can be re-written as:

E‖h̃(i+ 1)‖2σ = E‖h̃(i)‖2Fσ + [vec(G>)]>σ. (4.63)

Theorem 4.2 (Stability in the mean-square) Assume that data model (4.7) and As-

sumption 4.1 hold. Algorithm (4.32) converges in the mean-square sense if the matrix F
in (4.58) is stable. Assume further that the step-sizes are sufficiently small such that (4.59)

is a reasonable approximation. In that case, the stability of F is ensured if B is stable.

Proof. Iterating (4.63) starting from i = 0, we obtain

E‖h̃(i+ 1)‖2σ = E‖h̃(0)‖2F i+1σ
+ [vec(G>)]>

i∑
j=0

F jσ, (4.64)

with initial condition h̃(0) = ho − h(0). Provided F is stable, F i → 0 as i → ∞, then

the first item on the RHS of (4.64) converges to zero and the second item converges to

a finite value. The weighted mean-square error converges to a finite value as i → ∞
which implies that the algorithm (4.32) will converge in the mean-square sense if F is

stable. Under the sufficiently small step-sizes assumption where the higher-order terms of

F in (4.58) can be neglected, approximation (4.59) is reasonable. The eigenvalues of F

4.4. Performance analysis 75

are all the products of the eigenvalues of B, which means that ρ(F) = [ρ(B)]2. It follows

that F is stable if B is stable. Therefore, when the graph signal x(i) is i.i.d, according

to Theorem 4.1, condition (4.53) ensures mean-square stability of the algorithm under the

assumed approximation (4.59). �

Theorem 4.3 (Network transient MSD) Assume sufficiently small step-sizes that en-

sure mean and mean-square stability. The network transient mean-square deviation (MSD)

defined as ζ(i) = 1
NE‖h̃(i)‖2 evolves according to the following recursion for i ≥ 0:

ζ(i+ 1) = ζ(i) +
1

N

(
[vec(h̃(0)h̃

>
(0))]>(F − I(NM)2) + [vec(G>)]>

)
F ivec(INM).

(4.65)

Proof. Comparing (4.64) at time i + 1 and i, E‖h̃(i + 1)‖2σ is related to E‖h̃(i)‖2σ as

follows:

E‖h̃(i+ 1)‖2σ = E‖h̃(i)‖2σ + [vec(G>)]>F iσ + [vec(h̃(0)h̃
>

(0))]>(F − I(NM)2)F iσ.

(4.66)

Substituting σ by 1
N vec(INM) leads to (4.65). �

Although expression (4.65) gives a compact form of the transient MSD model, it may not

be practical to use since F is of size (NM)2 × (NM)2 and may become huge for large

networks or high order filters. For example, in the simulation Section 4.6, we considered a

network consisting of N = 60 nodes and a graph filter of degreeM = 5. Matrix F is of size

90000×90000 and requires a prohibitive amount of computational time and memory space

(about 60GB in that case). To tackle this issue, we make use of the following properties of

the Kronecker product:

vec(XY Z) = (Z> ⊗X)vec(Y) (4.67)

Tr(XY) =
(
vec(Y >)

)>vec(X). (4.68)

This leads to:

Corollary 4.1 (Alternative network transient MSD expression)

ζ(i+ 1) = ζ(i) +
1

N
Tr
(
BiG(Bi)> + h̃(0)h̃

>
(0)
(

(Bi+1)>Bi+1 − (Bi)>Bi
))

. (4.69)

While the update with F has a computation complexity of order O((NM)2), using B only

requires matrix manipulations of order O(NM).

76 Chapter 4. Online distributed learning over graphs

Corollary 4.2 (Network steady-state MSD) Consider sufficiently small step-sizes to

ensure mean and mean-square convergence. The network steady-state MSD is given by

ζ? =
1

N
[vec(G>)]>(I(NM)2 −F)−1 vec(INM). (4.70)

Proof. The network steady-state MSD is defined as:

ζ? = lim
i→∞

1

N
E{‖h̃(i)‖2}. (4.71)

If F is stable, we obtain from (4.63) as i→∞:

lim
i→∞

E‖h̃(i)‖2(I(NM)2−F)σ = [vec(G>)]>σ. (4.72)

We obtain (4.70) by substituting σ in (4.72) by 1
N (I(NM)2 −F)−1 vec(INM). �

Following the same line of reasoning as for the transient MSD model, the steady-state

MSD given by (4.70) can be equivalently expressed as:

Corollary 4.3 (Alternative steady-state MSD expression)

ζ? =
1

N

∞∑
i=0

Tr
(
BiG(Bi)>

)
(4.73)

This expression is obtained by a series expansion of (4.70). In practice, a limited number

of iterations can be used instead of the upper limit index i → ∞ to obtain an accurate

result.

4.5 Unsupervised clustering for hybrid node-varying graph

filter

In Section 4.3, we investigated the scenario where the nodes in a graph share a common

filter coefficient vector. Now we extend this model to the more flexible case (4.10), which

allows the filter coefficients to vary across the graph. We further assume that the graph

is decomposed into Q clusters of nodes Cq and, within each cluster Cq, there is a common

filter coefficient vector hoq to estimate, namely,

hok = hoq, if k ∈ Cq. (4.74)

We assume that there is no prior information on the clusters composition and that the

nodes do not know which other nodes share the same estimation task. Applying the algo-

rithm (4.32) within this context may result a bias due to aggregate intermediate estimates

4.5. Unsupervised clustering for hybrid node-varying graph filter 77

from different data models. To address this issue, automatic network clustering strate-

gies may be used [Chen 2015a, Zhao 2015c, Plata-Chaves 2016, Khawatmi 2017] in order

to inhibit cooperation between nodes from different clusters. These methods are based on

local stand-alone estimation strategies that may not be efficient for the current context.

Basically, the polynomial form (4.1) of graph filters does not make the estimation of the

filter coefficients reliable enough for the higher degrees. In the following, we tackle this

problem by devising a clustering strategy based on the PLMS.

First, we introduce the N×N instantaneous clustering matrix Ei, whose (`, k)-th entry

shows if node k believes at time i that its neighboring node ` belongs to the same cluster

or not, namely,

[Ei]`k =

1, if ` ∈ Nk and k believes thathok = ho` ,

0, otherwise.
(4.75)

At each time instant i, node k infers which neighbors belong to its cluster based on the non-

zeros entries of the k-th column of Ei. We collect these entries into a set Nk,i, so that node

k only combines the intermediate estimates from its neighbors in Nk,i. Condition (4.23) on

the combination coefficients becomes:

a`k > 0,

N∑
`=1

a`k = 1, and a`k = 0 if ` /∈ Nk,i, (4.76)

Since the clustering information is unknown beforehand, we propose to learn Ei in an

online way by computing a Boolean variable b`k(i) defined as follows:

b`k(i) =

1, if ‖ψ`(i+ 1)− hk(i)‖2 ≤ β,

0, otherwise,
(4.77)

with β > 0 a preset threshold. Variable b`k(i) is defined from the `2-norm distance between

the estimates at two neighboring nodes. If this distance is smaller than the threshold β, the

two nodes are then assigned to the same cluster. Note that the distance between ψ`(i+ 1)

and hk(i) is used in (4.77), instead of the distance between h`(i+1) and hk(i+1), in order

to merge the learning and the clustering processes. Consider the learning process at any

node k defined in (4.32). Information about clusters is used in the combination step (4.32b),

where Nk now denotes the neighboring nodes of k that share the same estimation task as

node k. This information should be available as soon as possible in order to avoid estimation

bias. Considering the distance between h`(i + 1) and hk(i + 1) to decide if nodes k and

` are in the same cluster would allow to update the composition of sets Nk and N` in

78 Chapter 4. Online distributed learning over graphs

the combination step (4.32b) used to calculate parameter vectors h`(i+ 2) and hk(i+ 2).

This latency time can be shortened by considering the distance between ψ`(i + 1) and

hk(i) right after the adaptation step (4.32a), and using this information to define Nk in

the combination step.

This strategy usually fails if left as is, because the estimation of higher-order coefficients

is not reliable enough and results in bad clustering performance. We propose to estimate

this distance from Mk principal components of the estimates. Because Rz,k cannot be

reasonably used to perform a Principal Component Analysis (PCA) of the input data, as it

is rarely available beforehand and would involve significant additional computational effort,

we suggest instead using matrix P k. As for the PLMS, the rationale behind this is that

Rz,k = σ2P k when x(i) is i.i.d. with variance σ2. Another interest lies in that P k is a

diagonal matrix, which greatly simplifies calculations. Without loss of generality, consider

that the diagonal entries of P k are in decreasing order. Projecting data onto the first Mk

principal axes then reduces to selecting their first Mk entries and set the other entries to

zero. Dimension Mk can be determined by setting the ratio of explained variance to total

variance to some desired level τ as follows:

min Mk

s. t.

Mk∑
m=1

π̂k,m ≥ τ
(4.78)

with π̂k,m = [pk]m/Tr(P k) an approximation of the proportion of total vari-

ance [Jolliffe 2016]. In practice, we can use a predefined threshold τ ∈ [0.9, 1) to decide

how many entries should be retained. The Boolean variable (4.77) becomes:

b`k(i) =

1, if ‖ψ
′
`(i+1)−h′

k(i)‖2
‖h′

k(i)‖2 ≤ β,

0, otherwise,
(4.79)

with ψ′`(i+1) and h′k(i) the first Mk entries of ψ`(i+1) and hk(i) respectively. Compared

to (4.77), note that the distance in (4.79) that accounts for the similarity between ψ′`(i+1)

and h′k(i) has been normalized. We suggest to choose β ∈ (0, 0.01] to lower the false

detection rate. To reduce noise effects, we further introduce a smoothing step:

t`k(i) = νt`k(i− 1) + (1− ν)b`k(i), (4.80)

where t`k(i) is a trust level, and ν is a forgetting factor in (0, 1) to balance the past and

present cluster assignments. Once the trust level t`k(i) exceeds a preset threshold θ, which

4.6. Numerical results 79

can be chosen in [0.5, 1), node k concludes that node ` belongs to its cluster, that is,

[Ei]`k =

1, if t`k(i) ≥ θ,
0, otherwise.

(4.81)

Based on [Ei]`k, each node k determines at each time instant i those nodes ` that it believes

they belong to the same cluster, updates the combination coefficients according to (4.76),

and finally combines the estimates from its neighbors with (4.32b).

4.6 Numerical results

4.6.1 Experiment with i.i.d. input data

We first considered a zero-mean i.i.d. Gaussian graph signal x(i) with covariance Rx =

diag{σ2
x,k}Nk=1. Variances σ2

x,k were randomly generated from the uniform distribution

U(1, 1.5). In this setting, the graph signal sample xk(i) was independent of x`(j) for all

` and j ≤ i. We assumed the linear data model (4.7). The graph filter order was set

to M = 5 and the coefficients hom were randomly generated from the uniform distribution

U(0, 1). Noise v(i) was zero-mean Gaussian with covarianceRv = diag{σ2
v,k}Nk=1. Variances

σ2
v,k were randomly generated from the uniform distribution U(0.1, 0.15). We considered

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-35

-30

-25

-20

-15

-10

-5

0

5

Figure 4.1: Network MSD performance with the Erdős-Rényi graph.

this data model with an Erdős-Rényi random graph and on a sensor network graph. Both

80 Chapter 4. Online distributed learning over graphs

0 500 1000 1500 2000 2500 3000

-35

-30

-25

-20

-15

-10

-5

0

5

(a) Normalized Adjacency Matrix

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

(b) Normalized Laplacian Matrix

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-40

-35

-30

-25

-20

-15

-10

-5

0

5

(c) Adjacency Matrix

Figure 4.2: Network MSD performance for different types of shift operators with the sensor

network.

consisted of N = 60 nodes. The Erdős-Rényi random graph was generated in a similar

construction as in [Mei 2017]. Namely, it was obtained by generating an N ×N symmetric

matrix S whose entries were governed by the Gaussian distribution N (0, 1), and then

thresholding edges to be between 1.2 and 1.8 in absolute value. Then, the edges were

soft thresholded by 1.1 to be between 0.1 and 0.7 in magnitude. The shift matrix S was

normalized by 1.1 times its largest eigenvalue. The sensor network was generated by using

GSPBOX [Perraudin 2014]. Each node was connected to its 5 nearest neighbors. The shift

matrix was the normalized adjacency matrix, that is, S = W
1.1λmax(W) . In this case, all the

eigenvalues of S are smaller than 1 and the energy of the shifted signal Smx diminishes

for large m. The smallest eigenvalue λmin(Rz,k) was very small, and, for some node, it was

close to 0.

4.6. Numerical results 81

With this setting, we compared the diffusion LMS algorithm (4.22), the diffusion LMS-

Newton (LMSN) algorithm (4.29), and the diffusion preconditioned LMS (PLMS) algo-

rithm (4.32). Simulated results were averaged over 500 Monte-Carlo runs. For the LMSN

and PLMS algorithms, we set the regularization parameter as ε = 0.01. We ran algo-

rithms (4.22), (4.29) and (4.32) by setting a`,k = 1
|Nk| for ` ∈ Nk. We used a uniform

step-size for all nodes, i.e., µk = µ for all k. We also considered the ε-normalized LMS

(ε-NLMS) method for comparison purposes. In this case, the adaptation step (4.32a) is

substituted by:

ψk(i+ 1) = hk(i) +
µk

‖zk(i)‖2 + ε
zk(i)ek(i). (4.82)

With the Erdős-Rényi graph, we compared the performance of the LMS, PLMS, LMSN

and ε-NLMS algorithms. We set µ = {0.08, 0.008, 0.01, 0.05}, respectively. The network

MSD performance of each algorithm is reported in Fig. 4.1. The theoretical transient and

steady-state MSD are also reported. With the sensor network graph, we compared the

performance of the LMS, PLMS and LMSN algorithms. We set µ = {0.08, 0.005, 0.0055},
respectively. The performance of each algorithm is reported in Fig. 4.2(a). In Fig. 4.1, we

observe that the diffusion ε-NLMS converged slower than all other algorithms. Observe

that the diffusion LMSN and PLMS algorithms converged faster than the LMS algorithm

for both graphs, and the diffusion PLMS performed similarly compared with the LMSN in

terms of convergence rate. Also, note that the theoretical results match well the simulated

curves.

In a second experiment, we considered the normalized graph Laplacian matrix S =

D−
1
2LD−

1
2 , and the adjacency matrix W , as shift operators. For the normalized graph

Laplacian, λmax(Rz,k) was large for all nodes. Therefore, for the diffusion LMS al-

gorithm, the step-size was chosen relatively small to guarantee convergence. We set

µ = {0.004, 0.01, 0.008} for the LMS, LMSN and PLMS. The results are reported in

Fig. 4.2(b). For the adjacency matrix, we used uniform step-sizes µ = {0.02, 0.018} for

the LMSN and PLMS, respectively. The step-size was set to µk = 0.05 · 2
λmax(Rz,k) for each

node k for the LMS update in order to achieve the same steady-state MSD. The results

are reported in Fig. 4.2(c). We observe in Fig. 4.2 that the diffusion LMSN and PLMS

algorithms converged faster than the LMS algorithm with the three graph shift operators.

The PLMS algorithm achieved the same performance as the LMSN algorithm with a lower

computational complexity.

82 Chapter 4. Online distributed learning over graphs

4.6.2 Experiment with correlated input data

We tested the algorithms over the sensor network graph with correlated graph signals. We

first considered a zero-mean i.i.d. Gaussian graph signal driven by a non-diagonal covari-

ance matrix Rx. This means that the input data were correlated over the vertex domain,

but uncorrelated over time. Matrix Rx was generated as Rx = V diag{σ2
x,k}Nk=1V

>, with

σ2
x,k randomly chosen from the uniform distribution U(1, 1.5) and V is the graph Fourier

transform matrix. The graph shift operator was defined by the normalized adjacency ma-

trix. The filter degree was set asM = 3. We observe in Fig. 4.3 that the proposed diffusion

PLMS algorithm performed as well as the LMSN algorithm, and converged faster than the

diffusion LMS algorithm.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-35

-30

-25

-20

-15

-10

-5

0

Figure 4.3: Network MSD performance with a vertex domain correlated input signal.

Next, we considered a graph signal x(i) that was correlated over both vertex and time

domains. We assumed that x(i) is a Gaussian process with zero mean and covariance

matrix Rx satisfying the discrete Lyapunov equation:

SRxS
> −Rx + I = 0. (4.83)

Graph signal sample x(i) was related to x(i− 1) as follows:

x(i) = Sx(i− 1) +w(i) (4.84)

with S the normalized adjacency matrix and w(i) a zero-mean i.i.d. Gaussian noise with

covariance IN . It can be checked that x(i) is wide-sense stationary with E{x(i)} = 0,

4.6. Numerical results 83

and Rx(τ) = SτRx(0) for all τ > 0, where Rx(0) satisfies the Lyapunov equation (4.83).

The graph filter order was set as M = 3. The step-sizes were set to µ = {0.1, 0.038, 0.03}
for the LMS, LMSN and PLMS, respectively. The regularization parameter ε was set to

ε = 0.1. Fig. 4.4 depicts the simulated and theoretical MSD performance. We observe

that, due to correlation over time, the diffusion LMSN method converged faster than the

PLMS. However, the proposed PLMS algorithm still performed better than the diffusion

LMS method.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-35

-30

-25

-20

-15

-10

-5

0

Figure 4.4: Network MSD performance with input graph signal correlated over both vertex

and time domains.

4.6.3 Clustering method for node-varying graph filter

Finally, we considered a scenario where nodes do not share the same filter coefficients. We

assumed the linear data model (4.10). The graph shift operator was defined by the nor-

malized adjacency matrix, and the graph filter order was set as M = 3. The nodes were

grouped into three clusters: C1 = {1, . . . , 20}, C2 = {21, . . . , 40}, and C3 = {41, . . . , 60}.
The optimal graph filter coefficients hok were set according to [0.5 0.4 0.9]> if k ∈ C1,

[0.3 0.1 0.4]> if k ∈ C2, and [0.9 0.3 0.7]> if k ∈ C3. We considered for comparison pur-

pose the PLMS algorithm with clustering mechanism (4.78)-(4.81) , with basic clustering

mechanism (4.77) and Mk = M for all k, the oracle PLMS algorithm where the clusters

are assumed to be known a priori, the PLMS algorithm without clustering mechanism,

and the non-cooperative algorithm where a`k = 1 if k = ` and zero otherwise. All al-

84 Chapter 4. Online distributed learning over graphs

gorithms used the adaptation step (4.32a) with the same step-size µk = 0.01 for all k.

Parameters {τ, β, θ, ν} were set to {0.9, 0.01, 0.5, 0.98}, respectively. As shown in Fig. 4.5,

the non-cooperative method did not achieve acceptable MSD level. The main reason is

that, with the normalized adjacency matrix as graph shift operator S, the entries of zk(i)

in (4.8) corresponding to higher powers of S are significantly diminished, resulting in poor

estimation performance of filter coefficients when nodes cannot cooperate. The PLMS

algorithm without clustering mechanism did not achieve good performance too because

it has been designed to converge toward a consensual solution ho, which does not make

sense for this scenario. The PMLS with clustering mechanism (71) and Mk = M achieved

slightly improved performance because the estimation of higher-order coefficients in hk was

not reliable enough, leading to incorrect clustering. The proposed PLMS algorithm with

clustering mechanism (4.78)-(4.81) performed as well as the oracle algorithm. Fig. 4.6 (a)

shows the topology of the graph given by the adjacency matrix A (and the shift matrix S).

Fig. 4.6 (b) presents the clusters inferred by the proposed method. These clusters perfectly

match the ground truth clusters C1 to C3.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-30

-25

-20

-15

-10

-5

0

Figure 4.5: Network MSD performance for different clustering algorithms.

Next, we considered that optimal parameter vectors hok change over time while clusters

remain unchanged. Nodes were grouped into two clusters C1 = {1, . . . , 30} and C2 =

{31, . . . , 60}. The optimal parameter vectors changed for both clusters at time instant

i = 1000. Simulation results in Fig. 4.7 show that the proposed clustering method was able

to track well this change. Finally, we considered the scenario where clusters and models

4.6. Numerical results 85

10 20 30 40 50 60

10

20

30

40

50

60

(a) Adjacency Matrix

10 20 30 40 50 60

10

20

30

40

50

60

(b) Inferred clusters

Figure 4.6: Graph topology and clusters.

change simultaneously. At Stage 1, the nodes were grouped into two clusters defined

as C1 = {1, . . . , 30} and C2 = {31, . . . , 60}. Stage 2 started at time instant i = 1000

with three clusters C1 = {1, . . . , 20}, C2 = {21, . . . , 40}, and C3 = {41, . . . , 60}. Stage 3

started at time instant i = 2000 with two clusters C1 = {1, . . . , 25}, C2 = {26, . . . , 60}. At

each stage, the optimal parameter vectors hok changed accordingly. Ground truth clusters

for the three stages are depicted in Fig. 4.9 (Top). Parameters {µ, τ, β, θ, ν} were set to

{0.01, 0.9, 0.01, 0.5, 0.4}, respectively. Fig. 4.8 shows the simulated transient MSD of the

proposed PLMS algorithm with clustering mechanism. It is compared with the oracle

PLMS algorithm where the clusters are assumed to be known a priori. Fig. 4.9 (Bottom)

depicts the inferred clusters at i = 1000, 2000, 3000 during one Monte Carlo run. The

proposed algorithm was able to track changes in both clusters and models.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-30

-25

-20

-15

-10

-5

0

5

Figure 4.7: Network MSD performance with model change.

86 Chapter 4. Online distributed learning over graphs

0 500 1000 1500 2000 2500 3000

-30

-25

-20

-15

-10

-5

0

5

Figure 4.8: Network MSD performance with model and clusters change.

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

Figure 4.9: Ground truth cluster (Top). Inferred clusters at steady-state of a single Monte

Carlo run (Bottom). From left to right: Stage 1, Stage 2, Stage 3.

4.6.4 Reconstruction on U.S. temperature dataset

We considered a dataset that collects hourly temperature measurements at N = 109 sta-

tions for T = 8759 hours across the United States in 2010 [noa]. An undirected graph,

illustrated in Fig. 4.10, was constructed according to the nodes coordinates by using the

k-NN approach (k = 7) of GSPBOX.

In the first experiment, the dataset was divided into a training set containing Ttrain =

6570 hours data (about 75% of total). The remaining data were assigned to the test set.

The goal of this experiment was to learn a graph filter that minimizes the reconstruction

4.6. Numerical results 87

(a) (b)

Figure 4.10: Graph topology for the U.S. temperatures dataset. Temperatures were sam-

pled at the red nodes in red. Data at the blue nodes were unobserved. (a) 37 sampled

nodes. (b) 54 sampled nodes.

error over the training set, i.e.,

min

Ttrain∑
i=1

N∑
k=1

|yk(i)−
M∑
m=1

hm,k[S
mx(i−m+ 1)]k|2, (4.85)

where y(i) is the ground truth temperature at time i, and x(i) is the partial observation

given by x(i) = diag(1S)y(i). Here 1S denotes the set indicator vector, whose k-th entry

is equal to one if node k is sampled, and zero otherwise. The sampling set, illustrated

in Fig. 4.10 (a) was fixed over time in the first experiment. The normalized adjacency

matrix was set as graph shift operator. Graph filter degree was set to M = 4. Note that if

hm,k = hm for all k, problem (4.85) refers to the single-task problem where all the nodes seek

to find common graph filter coefficients; see model (4.1). Otherwise, problem (4.85) refers

to the multitask problem; see model (4.9). We ran different models and algorithms on the

training set to learn graph filter coefficients. In Fig. 4.11, we provide the true temperature

and the reconstructed ones obtained by the different algorithms at an unobserved node,

black circled in Fig. 4.10, over the last 120 hours samples of the test set. For comparison

purposes, reconstruction results of the Kernel Kalman Filter (KKF) and the Kernel Ridge

Regression (KRR) in [Romero 2017] are also reported in Fig. 4.11. We observe that the

single-task diffusion LMSN and multitask diffusion LMS were not able to reconstruct the

true temperature, whereas the multitask diffusion PLMS and the multitask diffusion LMSN

showed a good reconstruction performance, and performed better than the KKF and KRR

at the selected unobserved node. To evaluate the performance over all unobserved nodes

88 Chapter 4. Online distributed learning over graphs

on the test set, we considered the normalized mean square error (NMSE) defined as:

NMSE =

∑T
i=Ttrain+1 ‖diag(1S̄) (y(i)− ŷ(i)) ‖2∑T

i=Ttrain+1 ‖diag(1S̄)y(i)‖2
(4.86)

where ŷ(i) denotes the reconstructed estimate at time i, 1S̄ is the set indicator vector

whose k-th entry is equal to one if node k has not been sampled, and zero otherwise. The

results are reported in Table 4.1. We observe that the multitask diffusion PLMS performed

as well as the LMSN at a lower computational cost, and both performed better than the

KFF and KRR. Finally, Figure 4.12 reports the original topology and the clusters learned

by the multitask diffusion PLMS.

8639 8659 8679 8699 8719 8739 8759
-5

0

5

10

15

20

25

30
Truth

Single-task Diffusion LMSN

Multi-task Diffusion LMS

Multi-task Diffusion PLMS

Multi-task Diffusion LMSN

KKF

KRR

Figure 4.11: True temperatures and reconstructed ones at an unobserved node. µLMS =

10−5, µPLMS = µLMSN = 10−4.

Table 4.1: NMSE of different algorithms.

Algorithm NMSE

KKF 0.1093

KRR 0.0479

Multitask diffusion LMS 0.1152

Multitask diffusion PLMS 0.0090

Multitask diffusion LMSN 0.0031

4.7. Conclusion 89

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(a) Adjacency Matrix

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(b) Inferred clusters

Figure 4.12: U.S. temperature graph topology and learned clusters.

In the second experiment, we divided the dataset into two parts. The first part contained

the first 4200 hours sampled at the nodes showed in Fig. 4.10 (a), and the second part

contained the remaining hours sampled at the nodes showed in Fig. 4.10 (b). This means

that the sampling set abruptly changed at time t = 4201 (the black circled node was

unobserved in both case). We applied the multitask diffusion PLMS method over the entire

dataset. In Fig. 4.13 (a), the reconstructed temperature at the unobserved black circled

node is reported from time t = 4100 to t = 4300 by using the filter coefficients learned

up to time t = 4000. As expected, we can notice that the reconstruction performance was

successful from t = 4100 to t = 4200, and dramatically deteriorated after t = 4201. This is

due to the fact that the sampling set changed, which led to a drift in the filter coefficients

to estimate. Figure 4.13 (b) depicts the reconstruction behavior over last 120 hours using

the filter coefficients learned up to time t = 8600. It can be observed that the proposed

method was able to track the drift in the filter coefficients.

4.7 Conclusion

In this Chapter, diffusion LMS strategies were considered to estimate graph filter coeffi-

cients in an adaptive and distributed manner. A diffusion LMS with Newton-like descent

procedure was first proposed to achieve improved convergence rate, since usual algorithms

may suffer from ill conditioning effects due to the use of non-energy preserving graph shift

operators. A preconditioned diffusion LMS strategy, which does not require computation-

ally intensive matrix inversion and only uses local information, was then devised to reduce

the computational burden. Its convergence behavior was analyzed in the mean and mean-

square-error sense. Finally, for hybrid node-varying graph filters, a clustering mechanism to

90 Chapter 4. Online distributed learning over graphs

4100 4120 4140 4160 4180 4200 4220 4240 4260 4280 4300

20

25

30

35

40

45

50

Truth

Multi-task Diffusion PLMS

(a)

8639 8659 8679 8699 8719 8739 8759

0

2

4

6

8

10

12

14

16

18

20

Truth

Multi-task Diffusion PLMS

(b)

Figure 4.13: True temperatures and reconstructed ones at an unobserved node. For clarity

purposes, focus on the intervals (a) [4100, 4300] and (b) [8640, 8759].

be used with the preconditioned diffusion LMS was proposed. Simulation results validated

the theoretical models and showed the efficiency of the proposed algorithms.

4.A Block maximum norm

Let x = col{x1,x2, . . . ,xN} denote an N×1 block column vector with each block xk of size

M×1. The block maximum norm of x is denoted by ‖x‖b,∞ and is defined as [Sayed 2014c,

Appendix D]:

‖x‖b,∞ , max
1≤k≤N

‖xk‖ (4.87)

where ‖xk‖ is the Euclidean norm of xk. Let A denote an N × N block matrix whose

individual block entries are of size M ×M each. The block maximum norm of A can be

induced from the block maximum norm of vector, and is defined as:

‖A‖b,∞ , max
x6=0

‖Ax‖b,∞
‖x‖b,∞

. (4.88)

There are some useful properties of block maximum matrix norm. Let A be an N × N
matrix with bounded entries and introduce the block matrix

A = A⊗ IM . (4.89)

Then the block maximum matrix norm of A is equal to the maximum absolute row sum of

the matrix A [Sayed 2014c], i.e.

‖A‖b,∞ = ‖A‖∞. (4.90)

4.A. Block maximum norm 91

LetA denote an N×N left stochastic matrix, i.e., its entries are nonnegative and it satisfies

A>1 = 1. Let C denote an N ×N right stochastic matrix, i.e., its entries are nonnegative

and it satisfies C1 = 1. Let A = A⊗ IM and C = C ⊗ IM , it holds that [Sayed 2014c]:

‖A>‖b,∞ = 1, (4.91)

‖C‖b,∞ = 1. (4.92)

Let D = bdiag{D1, . . . ,DN} denote an N × N block diagonal symmetric matrix whose

each block Dk is an M ×M symmetric matrix. Then, we have [Sayed 2014c]:

‖D‖b,∞ = ρ(D) = max
1≤k≤N

ρ(Dk). (4.93)

Chapter 5

Learning Combination of Graph

Filters for Graph Signal Modeling

Contents
5.1 Introduction . 94

5.2 Parametric modeling via graph filters 95

5.3 Jointly estimating the coefficients 97

5.3.1 Solving w.r.t. h1,h2 . 99

5.3.2 Solving w.r.t. α . 99

5.3.3 Mixed-norm formulation . 100

5.4 Numerical results . 101

5.5 Conclusion . 103

In Chapter 4, we considered the problem of learning multitask graph filter coefficients.

The graph filter was based on the same graph shift operator, the individual node may apply

different coefficients. In this Chapter, to enhance interpretability, we consider the graph

filter with different graph shift operators, i.e., combination of graph filters. We study the

problem of parametric modeling of network-structured signals with graph filters. To benefit

from the properties of several graph shift operators simultaneously, we investigate combi-

nations of parallel graph filters with different shift operators. Due to their extra degrees

of freedom, these models might suffer from over-fitting. We address this problem through

a weighted `2-norm regularization formulation to perform model selection by encouraging

group sparsity. What makes this formulation interesting is that it is actually a smooth

convex optimization problem. Experiments on real-world data structured by undirected

and directed graphs show the effectiveness of this method. The material in this chapter is

largely based on the work [Hua 2019].

94 Chapter 5. Learning combination of graph filters

5.1 Introduction

The field of Graph Signal Processing (GSP) has been introduced to exploit the complex

data relations embedded in a graph, in the processing techniques. Similarly to filtering in

the time domain, but built upon the Graph Fourier Transform (GFT), graph filters process

graph signals by selectively amplifying and attenuating their graph Fourier coefficients.

This makes them central in a number of GSP applications such as sampling [Anis 2016],

modeling [Nassif 2018], reconstruction [Isufi 2018], denoising [Chen 2014d] and graph

clustering [Tremblay 2016b]. Moreover, graph filters are the fundamental building

block of graph wavelets and filter banks [Hammond 2011, Narang 2013, Tanaka 2014,

Tremblay 2016a], and graph neural networks [Defferrard 2016, Gama 2018b]. Several

architectures of graph filters have been proposed in the literature, including FIR fil-

ters [Shuman 2013, Sandryhaila 2013] and IIR filters [Shi 2015, Loukas 2015, Isufi 2017b].

Recently, several extensions have been introduced to fully exploit the structure in the

graph data, such as node-variant graph filters [Segarra 2017] and edge-variant graph fil-

ters [Coutino 2019]. Driven by the need to deal with big data, all allow nodes to exchange

only local information.

A key ingredient of GSP is the graph shift operator. It accounts for the topology of the

graph in the vertex domain, and provides a basis for the GFT. It is also involved in design-

ing, analyzing and implementing graph filters. The Laplacian matrix and the adjacency

matrix are typical choices of graph shift operators for undirected graphs [Shuman 2013],

and directed graphs [Sandryhaila 2013]. However, there is no consensus as to which opera-

tor should be considered for a given application. This has led several authors to introduce

specific ones. For instance, in [Girault 2015b], the authors propose an isometric graph

shift operator for stationary graph signals. In [Gavili 2017], the authors introduce a set of

operators preserving the energy content of graph signals in the frequency domain. The au-

thors in [Singh 2016] consider an extension for directed graphs of the symmetric Laplacian

matrix.

In order to benefit from the properties of several graph shift operators simultaneously,

and to enhance interpretability, some authors have experienced alternative strategies con-

sisting of combining several graph shift operators. In [Coutino 2019], the authors combine

edge-weighting matrices to obtain edge-variant graph filters. In [Anis 2016], the authors

study the problem of selecting the best sampling set for band-limited reconstruction of

signals on graphs. They define the Hub-authority operator as a convex combination of two

operators. This model distinguishes between two types of nodes, hub nodes and authority

5.2. Parametric modeling via graph filters 95

nodes, and allows to process specific directed graphs such as a hyperlinked environments.

In [Sevi 2018b, Sevi 2018a], for modeling signals over directed graphs, the authors consider

a convex combination of the random walk operator and its time reversed counterpart as a

graph shift operator. All these works show that combinations of shift operators can per-

form better than single shift operators, but no work has so far addressed the problem of

adjusting the balance between the shift operators in an optimal way.

In this chapter, we consider learning polynomial graph filters for graph signal modeling.

We investigate combinations of two graph filters, i.e., parallel graph filters [Isufi 2017b], with

different shift operators. Due to their extra degrees of freedom, these models might suffer

from over-fitting unless appropriate regularization is performed. We address the problem

of jointly estimating the coefficients of both filters and the combination coefficient through

a weighted `2-norm regularization formulation to perform model selection by encouraging

group sparsity. This helps to explain which shift operator contributes more to the com-

bination. What makes this formulation interesting is that it is actually a smooth convex

optimization problem, with connections with a mixed-norm regularization formulation.

5.2 Parametric modeling via graph filters

Let G = {V, E} denote a graph with V a set of N vertices and E a set of edges such that

{k, `} ∈ E if there is an edge from vertex k to vertex `. Graph G can be represented by its

N -by-N real-valued adjacency matrix W whose (k, `)-th entry wk` assigns a weight to the

relation between vertices k and ` such that:

wk` > 0, if {k, `} ∈ E , and wk` = 0, otherwise. (5.1)

Let D = diag{d1, . . . , dN} denote the diagonal degree matrix whose k-th diagonal entry

dk is the sum of the k-th row entries of W , and L = D −W the combinatorial Laplacian

matrix. Matrix L is a symmetric positive semi-definite matrix for an undirected graph. The

normalized Laplacian matrix is defined as follows: Lnorm = D−
1
2LD−

1
2 . For a directed

graph, the random walk operator is a probability transition matrix defined as P = D−1W .

If the random walk is irreducible, it has a unique stationary distribution π that satisfies

πP = π. Its time reversed ergodic random walk is given by P ∗ = Π−1P>Π, where

Π = diag{π1, . . . , πN}.
A graph shift operator S is defined as an N -by-N matrix that captures the graph

topology such that its entries satisfy:

sk` 6= 0, if {k, `} ∈ E or k = `, and sk` = 0, otherwise. (5.2)

96 Chapter 5. Learning combination of graph filters

In that sense, any matrix that satisfies condition (5.2) can be used as a graph shift operator.

This property of locality allows a distributed implementation [Segarra 2017, Coutino 2019,

Nassif 2018, Hua 2018b]. There are, however, other types of shift operators that do not

satisfy (5.2); see for instance the isometric operator in [Girault 2015b]. Given a graph shift

operator S, we can define a polynomial shift-invariant graph filter as follows:

H ,
L−1∑
`=0

h`S
` (5.3)

with h` ∈ IR the filter coefficients. Consider a graph signal defined as x = [x1, . . . , xN]> ∈
IRN where xk is the signal sample at vertex k. The filtering process can be expressed as:

y = Hx =

L−1∑
`=0

h`S
`x = Mh, (5.4)

with y the filter output vector,M the N -by-Lmatrix whose `-th column is [M]·,` = S`−1x,

and h = col{h`}L−1
`=0 where operator col{·} stacks its scalar arguments on top of each other.

We consider a graph where each vertex k has access to a measurement yk and a regression

data xk, assumed to be related by the linear model:

y = Hx+ e = Mh+ e (5.5)

for some unknown N -by-1 vector h, where e denotes an i.i.d. zero-mean Gaussian noise.

The model parameters h can be learned by minimizing the following cost function:

J(h) = ‖y −Mh‖2 =
N∑
k=1

(yk − h>mk)
2 (5.6)

withm>k the k-th row vector ofM . As there is no rule on how to choose S given x and y,

some recent studies have shown that using a convex combination of shift operators, namely,

S = αS1 + (1− α)S2, α ∈ [0, 1] (5.7)

instead of a single one can improve the performance and the interpretability of the regres-

sion function [Anis 2016, Sevi 2018b, Sevi 2018a]. Possible choices for S1 and S2 are, e.g.,

the adjacency W and the Laplacian L matrices for undirected graphs, and the random

walk matrix P and its time reversed counterpart P ∗ for directed graphs. In the same

spirit as multiple kernel learning [Rakotomamonjy 2008, Chen 2013b, Chen 2014a] in Ma-

chine Learning, one might want to simultaneously learn a valid graph shift operator of

the form (5.7) and the filter coefficients h, in a supervised learning setting. Nevertheless,

5.3. Jointly estimating the coefficients 97

considering the convex combination (5.7), and minimizing J(·) in (5.6) with respect to

variables h and α, gives rise to a non-convex optimization problem. For this reason, we

shall not pursue this idea further.

As an alternative to (5.7), this letter focuses on combinations of two graph filters, i.e.,

parallel graph filters [Isufi 2017b], which can also mix different graph shift operators. The

problem of jointly estimating the coefficients of both filters and the combination coefficient

is addressed in the next section, through an `2-norm regularization formulation that allows

us to perform model selection by encouraging group sparsity.

5.3 Jointly estimating graph filters coefficients and the com-

bination coefficient

Before proceeding with parallel graph filters, for clarity, we begin with (5.6) where we

introduce an `2-regularization term:

Jreg(h) =
1

2
‖h‖2 +

1

2µ

N∑
k=1

(yk − h>mk)
2 (5.8)

with µ a small positive value to control the trade-off between the regularization and the

fitting terms. Indeed, as studied in [Hua 2018b], the problem of estimating graph filter

coefficients h in the mean-square error sense is inherently ill-conditioned. The reason is

that the shift operator S is not energy preserving in general [Gavili 2017], because the

magnitudes of its eigenvalues are not uniformly equal to 1; the energy of the shifted signal

S`x then changes exponentially with `. Thus the eigenvalue spread of matrix M>M is

usually large, which results in numerical instability and large sensitivity to noisy measure-

ments when estimating h from (5.6). Tikhonov regularizer in (5.8), which imposes penalty

on ‖h‖2, allows to address this issue. The closed-form solution of (5.8) is given by

h = (µI +M>M)−1M>y. (5.9)

While we can also derive the optimum h∗ alternatively in the dual domain. It can be

obtained by solving the following optimization problem:

h∗ =arg min
h∈IRL

1

2
‖h‖2 +

1

2µ

N∑
k=1

e2
k

s. t. ek = yk − h>mk, k ∈ {1, . . . , N}.
(5.10)

The dual problem can be derived by introducing Lagrange multipliers λk as follows:

L =
1

2
‖h‖2 +

1

2µ

N∑
k=1

e2
k −

N∑
k=1

λk(ek − yk + h>mk). (5.11)

98 Chapter 5. Learning combination of graph filters

The optimality conditions w.r.t. the primal variables lead to:

h∗ =
N∑
k=1

λ∗kmk, e∗k = µλ∗k (5.12)

where the dual variables are estimated by solving:

λ∗ = arg max
λ∈IRN

− 1

2
λ>(MM> + µI)λ+ λ>y (5.13)

which is a quadratic programming (QP) problem. Consider now two parallel graph filters

H1 and H2 defined w.r.t. shift operators S1 and S2. Model (5.5) becomes:

y = M1h1 +M2h2 + e (5.14)

with [Mp]·,` = S`−1
p x and hp , col{hp,`}L−1

`=0 the coefficients of filter Hp. We shall use

m>p,k to denote the k-th row vector of Mp.

Compared to (5.5), model (5.14) might suffer from overfitting due to extra degrees of

freedom, unless regularization is used. Jointly estimating the coefficients of both filters

and balancing their contributions through the weighted `2-norm regularization formula-

tion (5.15) shall allow us to perform model selection by encouraging group sparsity. More

precisely, let us consider now the following problem derived from the multiple kernel learn-

ing literature [Rakotomamonjy 2008, Chen 2013b, Chen 2014a]:

arg min
h1,h2,α

1

2

(‖h1‖2
α

+
‖h2‖2
1− α

)
+

1

2µ

N∑
k=1

e2
k

s. t. :

ek = yk − h>1 m1,k − h>2 m2,k, k ∈ {1, . . . , N}
0 < α < 1,

(5.15)

where α allows to adjust the balance between h1 and h2 via their norms. We show in

Subsection 5.3.3 that this formulation is equivalent to a mixed-norm penalization which

promotes sparsity at the group level. Indeed, the solution of problem (5.15) tends to that

of problem (5.8) with h2 (resp., h1) as α tends to 0 (resp., 1). Note that function ‖h‖2/α,
called the perspective function, is jointly convex w.r.t. h and α [Boyd 2004]. It follows

that problem (5.15) is jointly convex w.r.t. h1, h2 and α.

In order to solve problem (5.15), we consider the following constrained optimization

problem:

min
α

J(α)

s. t. 0 < α < 1
(5.16)

5.3. Jointly estimating the coefficients 99

where J(α) is given by

J(α) =


min

h1,h2∈IRL
F (α,h1,h2) = 1

2

(
1
α‖h1‖2 + 1

1−α‖h2‖2
)

+ 1
2µ

∑N
k=1 e

2
k

s. t. ek = yk − h>1 m1,k − h>2 m2,k, k ∈ {1, . . . , N}
. (5.17)

Problem (5.16) is an optimization problem that is jointly convex w.r.t. α,h1,h2. It

can be solved with a two-step procedure w.r.t h1,h2 and α successively.

5.3.1 Solving w.r.t. h1,h2

The Lagrangian of problem (5.17) can be written as:

L′ = 1

2

(
1

α
‖h1‖2 +

1

1− α‖h2‖2
)

+
1

2µ

N∑
k=1

e2
k −

N∑
k=1

λk

(
ek − yk + h>1 m1,k + h>2 m2,k

)
.

(5.18)

The optimality conditions for L′ w.r.t. the primal variables are:
h∗1 = α

∑N
k=1 λ

∗
km1,k

h∗2 = (1− α)
∑N

k=1 λ
∗
km2,k

e∗k = µλ∗k

. (5.19)

Note that coefficients h∗1 and h∗2 are coupled through α in the dual domain. Substitut-

ing (5.19) into (5.18) yields:

λ∗ = arg max
λ∈IRN

−1

2
λ>(Rα + µI)λ+ λ>y

with Rα = αM1M
>
1 + (1− α)M2M

>
2 .

(5.20)

Problem (5.20) is a QP problem which can be efficiently solved. Given λ∗, coefficients h∗1
and h∗2 can be computed with (5.19).

5.3.2 Solving w.r.t. α

First, note that function:

fp,q(α) =
p

α
+

q

1− α with p, q ≥ 0 (5.21)

is convex over 0 < α < 1. Its optimum is given by:

α∗ = (1 +
√
q/p)−1. (5.22)

100 Chapter 5. Learning combination of graph filters

Then, considering (5.17), and substituting h∗1, h
∗
2 from (5.19) in (5.21), the optimum value

α∗i at iteration i is provided by:

α∗i =

(
1 +

1− α∗i−1

α∗i−1

√
λ∗>M2M

>
2 λ
∗

λ∗>M1M
>
1 λ
∗

)−1

(5.23)

where α∗i−1 is the value obtained from the previous iteration. The algorithm can be stopped

based on Karush-Kuhn-Tucker conditions, or the duality gap, up to an error tolerance

provided by the user. The procedure is summarized in Algorithm 1.

Algorithm 1
Input: x,y,S1,S2, L.

Initialize: randomly choose 0 < α∗−1 < 1, compute M1,M2.

Repeat:

1: solve (5.20) with a generic QP solver to get λ∗

compute h∗1,h
∗
2 from (5.19),

2: update α∗i by using (5.23).

Until: stopping condition is satisfied.

Output: h∗1,h
∗
2, α
∗.

5.3.3 Mixed-norm formulation

Let us show now that (5.15) admits a mixed-norm equivalent form that is known to perform

model selection by encouraging group sparsity. By Cauchy-Schwartz inequality, we have:

(
‖h1‖+ ‖h2‖

)2 ≤ ‖h1‖2
α

+
‖h2‖2
1− α (5.24)

because

(
‖h1‖+ ‖h2‖

)2
=

(‖h1‖√
α

√
α+

‖h2‖√
1− α

√
1− α

)2

≤
[(‖h1‖√

α

)2

+

(‖h2‖√
1− α

)2
]

(α+ 1− α).

(5.25)

Equality is achieved when vectors
[
‖h1‖/

√
α ; ‖h2‖/

√
1− α

]
and

[√
α ;
√

1− α
]

are

collinear, i.e., α = ‖h1‖/
[
‖h1‖+ ‖h2‖

]
, which implies that:

min
α∈(0,1)

(‖h1‖2
α

+
‖h2‖2
1− α

)
=
(
‖h1‖+ ‖h2‖

)2 (5.26)

5.4. Numerical results 101

Problem (5.15) is then equivalent to:

min
h1,h2

1

2

(
‖h1‖+ ‖h2‖

)2
+

1

2µ

N∑
k=1

e2
k

s. t. ek = yk − h>1 m1,k − h>2 m2,k, k ∈ {1, . . . , N}
(5.27)

Regularizer
(
‖h1‖+‖h2‖

)2 is a mixed-norm penalization term that promotes sparsity at the

group level [Simon 2013]. That is, problem (5.27) performs model selection by encouraging

sparsity at the level of the two entire groups of variables defined by the entries of h1 and h2.

Unlike (5.15), the objective function in (5.27) is not smooth since ‖h‖ is not differentiable.

5.4 Numerical results

We considered the Molène temperature data set of hourly weather observations collected

during January 2014 in Brittany, France, [Girault 2015a] for undirected graphs, and the

data set of the political blogs of the 2004 US presidential election [Adamic 2005] for di-

rected graphs. We compared the performance of model (5.5), model (5.5) with mixed

operator (5.7), and model (5.14). On the one hand, problem (5.8) was considered to esti-

mate models (5.5), and (5.5) with operator (5.7). For the later, to determine the best α, we

followed the strategy in [Sevi 2018a], i.e., α was sampled over (0, 1) and problem (5.8) was

solved for each candidate value. On the other hand, problem (5.15) was solved to estimate

model (5.14). Operators S1 and S2 used for both experiments are provided in Table 5.1.

Note that W norm denotes the normalized adjacency matrix W norm = W /|λmax{W }|,
where λmax{·} denotes the maximum eigenvalue of its matrix argument. The graph filters

order was arbitrarily set to L = 10 after we observed that the performance of the compared

methods varied little for orders larger than 7. Parameter µ was arbitrarily set to 5 · 10−4.

Table 5.1: Shift operators used in the experiments.

Graph type S1 S2

Molène data (undirected) W norm Lnorm

Political blog (directed) P P ∗

Undirected graph: The Molène data set consists of 32 vertices, with 744 observations

each. The undirected graph was generated by using GSPBOX [Perraudin 2014]. Each

vertex was connected to its 6 nearest neighbors. We considered the following denoising

problem. Let x̃ = x + e be a noisy graph signal measurement, where x is the original

102 Chapter 5. Learning combination of graph filters

signal and e an additive noise. The goal was to learn a graph filter Ĥ that minimizes the

reconstruction error: ‖x −Hx̃‖2. For this purpose, we randomly selected one realization

in the Molène data set, and we corrupted it with an i.i.d. additive noise. Two noises were

experimented: Gaussian N (0, 102), and uniform U([−15, 15]). Then we learned the graph

filter Ĥ; the three models outlined above were considered. The other 743 observations

were also corrupted with the additive noise, and denoised with Ĥ. Figure 5.1 depicts the

reconstruction root normalized mean square error defined as:

RNMSE =

√
‖Ĥx̃− x‖2/‖x‖2. (5.28)

averaged over the 743 independent test observations. It can be observed that proposed

method provided the best performance.

RN
M

SE

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

m
od

el
 (

5)
, S

 =
 W

no
rm

m
od

el
 (

5)
, S

 =
 L

no
rm

m
od

el
 (5

),
S

is
 c

on
ve

x
co

m
b.

 (7
)

pr
op

os
ed

(a) Gaussian noise N (0, 102)

RN
M

SE

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

m
od

el
 (

5)
, S

 =
 W

no
rm

m
od

el
 (5

),
S

=
Ln

or
m

m
od

el
 (5

),
S

is
 c

on
ve

x
co

m
b.

 (7
)

pr
op

os
ed

(b) Uniform noise U(−15, 15)

Figure 5.1: Denoising performance over Molène data set.

Directed graph: The political blogs data set consists of 1224 blogs where each blog i

is either conservative and labeled as yi = +1, or liberal and labeled as yi = −1. This data

set can be represented by a directed graph where vertices represent blogs, and a directed

edge is considered to be present from vertex i to vertex j if there is a hyperlink from blog

i to j. We considered a strongly connected part of this graph composed of 793 blogs,

where 351 are liberal and the others conservative. The goal was to learn a graph filter Ĥ

that minimizes the reconstruction error ‖y −Hx‖2, where x is an input vector obtained

5.5. Conclusion 103

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Proportion of known labels

0.85

0.9

0.95

1

R
e

c
o

n
s
tr

u
c
ti
o

n
 a

c
c
u

ra
c
y

0.1 0.11
0.968

0.97

0.972

Figure 5.2: Reconstruction accuracy for different proportions of known labels of the political

blogs data.

by randomly setting part of the entries of y to zero. The reconstruction accuracy was

obtained by comparing y with reconstructed labels ŷ = sgn(Ĥx). Figure 5.2 reports the

reconstruction accuracy for different proportions of known labels. The results are based on

100 realizations of x for each proportion. Observe that the combination models performed

better than the filters based on W norm or P . The proposed model (5.14) also performed

slightly better than model (5.5) when the latter used the shift operator S defined as in (5.7).

5.5 Conclusion

In this Chapter, we considered the problem of learning parallel combinations of polynomial

graph filters for graph signal modeling, in order to benefit from the properties of several

graph shift operators simultaneously. The problem of jointly estimating the coefficients

of both filters and the combination coefficient was addressed through an `2-norm regular-

ization formulation that allows to perform model selection by encouraging group sparsity.

Numerical results on real-world data, for undirected and directed graphs, demonstrated the

efficiency and robustness of the proposed method.

Chapter 6

Conclusion and future works

We are living in a highly interconnected world. There are prevalent networked systems

collecting streaming data in a distributed fashion. This thesis focused on adaptation and

learning over networks and graphs which are able to deal with streaming data and time-

varying dynamics. In this Chapter, we briefly summarize the main results proposed in each

chapter and discuss some possible future directions.

6.1 Summary

We proposed a distributed adaptive estimation algorithm based on penalty method for solv-

ing constrained multitask problem in Chapter 2. We studied the performance of proposed

algorithm in the mean and mean-square sense. It was shown that the algorithm is able to

converge to the optimum with a bias, while the bias can be arbitrary small by choosing small

step-size (Theorem 2.1). The mean-square stability can also be ensured from sufficiently

small-step size (Theorem 2.2). The expressions of transient performance (Theorem 2.3)

and steady-state performance (Theorem 2.4) are provided as well.

In Chapter 3, in order to solve the multitask problem with non-local constraints in a

fully distributed manner, we proposed an adaptive algorithm based on penalty method and

multi-hop relay protocols. We derived a detailed performance analysis. We showed that

the delays indeed have impacts on stability condition, however, the algorithm can continue

to converge if a sufficient stability condition is satisfied (Theorem 3.1, Theorem 3.2). We

also provided closed form expressions to predict the learning behavior which can be used

to tune parameters.

In Chapter 4, we proposed a framework for adaptation of time-varying graph signals.

Diffusion LMS strategies were considered to estimate graph filter coefficients in an adap-

tive and distributed manner. A diffusion LMS with Newton-like descent procedure was first

proposed to achieve improved convergence rate. A preconditioned diffusion LMS strategy,

which does not require computationally intensive matrix inversion and only uses local in-

formation, was then devised to reduce the computational burden. Its convergence behavior

106 Chapter 6. Conclusion and future works

was analyzed in the mean and mean-square-error sense (Theorem 4.1, Theorem 4.2). Fi-

nally, for hybrid node-varying graph filters, a clustering mechanism to be used with the

preconditioned diffusion LMS was proposed. Simulation results validated the theoretical

models and showed the effectiveness of the proposed algorithms.

In Chapter 5, we proposed to use parallel combinations of polynomial graph filters

for graph signal modeling in order to benefit from the properties of several graph shift

operators simultaneously. To avoid over-fitting and ill-condition, we proposed to use an `2-

norm regularization formulation. We showed that weighted `2-norm regularization allows

to perform model selection by encouraging group sparsity. Numerical results on real-world

data, for undirected and directed graphs, demonstrated the efficiency and robustness of the

proposed method.

6.2 Future works

Throughout the thesis, we restricted ourself to linear models where each agent collects

data through a linear regression model. Learning nonlinear input-output relations via

kernel-based models or non-parametric methods [Richard 2009, Gao 2014, Koppel 2018,

Pradhan 2018] is a possible direction to be considered.

In Chapter 2 and Chapter 3, we considered the multitask problem where the parameters

are coupled through linear equality constraints. While, the global cost function is considered

to be sum aggregation of local cost functions which means they are separable. There are

applications where the global cost function is coupled as well, such as smart grid and

distributed sparse regression. Developing distributed algorithm to such non-separable costs

problem would be challenging but very useful in some applications.

One the other hand, the cost function considered in this thesis is convex. Never-

theless, many optimization problems in signal processing and machine learning are non-

convex [Vlaski 2019, Chang 2020]. Understanding the behavior of distributed multitask

algorithms in non-convex environments could be considered.

In this thesis, we assumed that the graph shift operator is known and time invariant. In

future, we could consider ways to estimate the graph shift operator and the filter coefficients

simultaneously. Moreover, taking into account the nonlinearity, kernel or non-parametric

methods could also be considered to be incorporated into GSP framework.

Bibliography

[Abdolee 2016] Reza Abdolee, Benoit Champagne and Ali H Sayed. Diffusion adaptation

over multi-agent networks with wireless link impairments. IEEE Transactions on

Mobile Computing, vol. 15, no. 6, pages 1362–1376, 2016. (Cited on page 5.)

[Adamic 2005] Lada A Adamic and Natalie Glance. The political blogosphere and the 2004

US election: divided they blog. In International workshop on Link discovery, pages

36–43, New York, USA, 2005. ACM. (Cited on page 101.)

[Aldous 1995] David Aldous and James Fill. Reversible markov chains and random walks

on graphs. Berkeley, Berkeley, USA, 1995. (Cited on page 9.)

[Alghunaim 2020] Sulaiman A Alghunaim, Kun Yuan and Ali H Sayed. A proximal diffu-

sion strategy for multi-agent optimization with sparse affine constraints. to apper

in IEEE Transactions on Automatic Control, 2020. (Cited on page 7.)

[Anis 2016] Aamir Anis, Akshay Gadde and Antonio Ortega. Efficient sampling set selec-

tion for bandlimited graph signals using graph spectral proxies. IEEE Transactions

on Signal Processing, vol. 64, no. 14, pages 3775–3789, Jul. 2016. (Cited on pages 8,

10, 60, 94 and 96.)

[Anis 2019] A. Anis, A. El Gamal, A. S. Avestimehr and A. Ortega. A Sampling The-

ory Perspective of Graph-Based Semi-Supervised Learning. IEEE Transactions on

Information Theory, vol. 65, no. 4, pages 2322–2342, Apr. 2019. (Cited on page 60.)

[Arablouei 2014] Reza Arablouei, Stefan Werner, Yih-Fang Huang and Kutluyıl Doğançay.

Distributed least mean-square estimation with partial diffusion. IEEE Transactions

on Signal Processing, vol. 62, no. 2, pages 472–484, 2014. (Cited on page 5.)

[Barbarossa 2013] Sergio Barbarossa, Stefania Sardellitti and Paolo Di Lorenzo. Distributed

Detection and Estimation in Wireless Sensor Networks. In Sergios Theodoridis and

Rama Chellappa, Editors, Academic Press Library in Signal Processing, volume 2,

pages 329–408. Academic Press, Elsevier, Cambridge, MA, USA, 2013. (Cited on

pages 4 and 42.)

[Bazaraa 2013] Mokhtar S Bazaraa, Hanif D Sherali and Chitharanjan M Shetty. Nonlinear

programming: theory and algorithms. JohnWiley & Sons, Hoboken, NJ, USA, 2013.

(Cited on pages 20, 21 and 44.)

108 Bibliography

[Bertrand 2010] Alexander Bertrand and Marc Moonen. Distributed adaptive node-specific

signal estimation in fully connected sensor networks–Part I: Sequential node updat-

ing. IEEE Transactions on Signal Processing, vol. 58, no. 10, pages 5277–5291, 2010.

(Cited on page 5.)

[Bertrand 2011] Alexander Bertrand and Marc Moonen. Distributed adaptive estimation of

node-specific signals in wireless sensor networks with a tree topology. IEEE Transac-

tions on Signal Processing, vol. 59, no. 5, pages 2196–2210, 2011. (Cited on page 5.)

[Bertsekas 1997] Dimitri P Bertsekas. A new class of incremental gradient methods for least

squares problems. SIAM Journal on Optimization, vol. 7, no. 4, pages 913–926, 1997.

(Cited on pages 3, 42 and 67.)

[Bertsekas 1998] Dimitri P Bertsekas. Network optimization: continuous and discrete mod-

els. Athena Scientific, Belmont, MA, USA, 1998. (Cited on pages 7, 16 and 42.)

[Bertsekas 1999] Dimitri P Bertsekas. Nonlinear programming. Athena Scientific, Belmont,

MA, USA, 1999. (Cited on page 19.)

[Blatt 2007] Doron Blatt, Alfred O Hero and Hillel Gauchman. A convergent incremental

gradient method with a constant step size. SIAM Journal on Optimization, vol. 18,

no. 1, pages 29–51, 2007. (Cited on page 3.)

[Bogdanovic 2014] Nikola Bogdanovic, Jorge Plata-Chaves and Kostas Berberidis. Dis-

tributed incremental-based LMS for node-specific adaptive parameter estimation.

IEEE Transactions on Signal Processing, vol. 62, no. 20, pages 5382–5397, Oct.

2014. (Cited on pages 5 and 16.)

[Boyd 2004] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge

University Press, Cambridge, U.K., 2004. (Cited on page 98.)

[Boyd 2011] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato and Jonathan Eckstein.

Distributed optimization and statistical learning via the alternating direction method

of multipliers. Foundations and Trends® in Machine learning, vol. 3, no. 1, pages

1–122, 2011. (Cited on page 4.)

[Braca 2008] Paolo Braca, Stefano Marano and Vincenzo Matta. Enforcing consensus while

monitoring the environment in wireless sensor networks. IEEE Transactions on

Signal Processing, vol. 56, no. 7, pages 3375–3380, Jun. 2008. (Cited on page 3.)

Bibliography 109

[Bronstein 2017] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam and Pierre

Vandergheynst. Geometric deep learning: going beyond euclidean data. IEEE Signal

Processing Magazine, vol. 34, no. 4, pages 18–42, 2017. (Cited on page 8.)

[Cattivelli 2008] F. Cattivelli, C. G. Lopes and A. H. Sayed. Diffusion recursive least-

squares for distributed estimation over adaptive networks. IEEE Transactions on

Signal Processing, vol. 56, no. 5, pages 1865–1877, May 2008. (Cited on pages 4

and 61.)

[Cattivelli 2010a] Federico S Cattivelli and Ali H Sayed. Diffusion LMS strategies for

distributed estimation. IEEE Transactions on Signal Processing, vol. 58, no. 3,

pages 1035–1048, Mar. 2010. (Cited on pages 3 and 42.)

[Cattivelli 2010b] Federico S Cattivelli and Ali H Sayed. Diffusion strategies for distributed

Kalman filtering and smoothing. IEEE Transactions on automatic control, vol. 55,

no. 9, pages 2069–2084, 2010. (Cited on page 4.)

[Cattivelli 2011] Federico S Cattivelli and Ali H Sayed. Distributed detection over adap-

tive networks using diffusion adaptation. IEEE Transactions on Signal Processing,

vol. 59, no. 5, pages 1917–1932, 2011. (Cited on page 5.)

[Chang 2020] Tsung-Hui Chang, Mingyi Hong, Hoi-To Wai, Xinwei Zhang and Songtao Lu.

Distributed Learning in the Non-Convex World: From Batch to Streaming Data, and

Beyond. IEEE Signal Processing Magazine, vol. 37, no. 3, pages 26–38, May 2020.

(Cited on page 106.)

[Chen 2009] Yilun Chen, Yuantao Gu and Alfred O Hero. Sparse LMS for system iden-

tification. In 2009 IEEE International Conference on Acoustics, Speech and Signal

Processing, pages 3125–3128, Taipei, China, 2009. IEEE. (Cited on page 5.)

[Chen 2012] Jianshu Chen and Ali H Sayed. Diffusion adaptation strategies for distributed

optimization and learning over networks. IEEE Transactions on Signal Processing,

vol. 60, no. 8, pages 4289–4305, 2012. (Cited on page 3.)

[Chen 2013a] Jianshu Chen and Ali H Sayed. Distributed Pareto optimization via diffusion

strategies. IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 2, pages

205–220, Apr. 2013. (Cited on pages 5 and 16.)

[Chen 2013b] Jie Chen, Cédric Richard and Paul Honeine. Nonlinear unmixing of hyper-

spectral data based on a linear-mixture/nonlinear-fluctuation model. IEEE Trans-

110 Bibliography

actions on Signal Processing, vol. 61, no. 2, pages 480–492, Jan. 2013. (Cited on

pages 96 and 98.)

[Chen 2014a] Jie Chen, Cédric Richard and Alfred O Hero. Nonlinear unmixing of hyper-

spectral images using a semiparametric model and spatial regularization. In IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 7954–7958, Florence, Italy, 2014. IEEE. (Cited on pages 96 and 98.)

[Chen 2014b] Jie Chen, Cédric Richard, Alfred O. Hero and Ali H. Sayed. Diffusion LMS

for multitask problems with overlapping hypothesis subspaces. In IEEE International

Workshop on Machine Learning for Signal Processing (MLSP), Reims, France, 2014.

IEEE. (Cited on pages 6, 16, 42 and 61.)

[Chen 2014c] Jie Chen, Cédric Richard and Ali Sayed. Multitask diffusion adaptation over

networks. IEEE Transactions on Signal Processing, vol. 62, no. 16, pages 4129–4144,

Aug. 2014. (Cited on pages 7, 16 and 42.)

[Chen 2014d] Siheng Chen, Aliaksei Sandryhaila, Jose M. F. Moura and Jelena Kovacevic.

Signal denoising on graphs via graph filtering. In IEEE Global Conference on Signal

and Information Processing (GlobalSIP), pages 872–876, Atlanta, Georgia, USA,

2014. IEEE. (Cited on page 94.)

[Chen 2015a] Jie Chen, Cédric Richard and Ali H Sayed. Diffusion LMS over multitask

networks. IEEE Transactions on Signal Processing, vol. 63, no. 11, pages 2733–2748,

Jun. 2015. (Cited on pages 5, 7, 42, 50, 61 and 77.)

[Chen 2015b] Siheng Chen, Rohan Varma, Aliaksei Sandryhaila and Jelena Kovačević. Dis-

crete Signal Processing on Graphs: Sampling Theory. IEEE Transactions on Signal

Processing, vol. 63, no. 24, pages 6510–6523, Dec. 2015. (Cited on pages 8 and 60.)

[Chen 2016] Jie Chen, Shang Kee Ting, Cédric Richard and Ali H Sayed. Group diffusion

LMS. In 2016 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 4925–4929, Shanghai, China, 2016. IEEE. (Cited on

page 5.)

[Chen 2017] Jie Chen, Cédric Richard and Ali Sayed. Multitask diffusion adaptation over

networks with common latent representations. IEEE Journal of Selected Topics in

Signal Processing, vol. 11, no. 3, pages 563–579, Apr. 2017. (Cited on pages 6, 16

and 42.)

Bibliography 111

[Chung 1997] Fan RK Chung. Spectral graph theory. In CBMS Regional Conference Series

in Mathematics 92, CA, US, 1997. American Mathematical Society. (Cited on

pages 8 and 10.)

[Coutino 2019] M. Coutino, E. Isufi and G. Leus. Advances in Distributed Graph Filtering.

IEEE Transactions on Signal Processing, vol. 67, no. 9, pages 2320–2333, May 2019.

(Cited on pages 8, 61, 94 and 96.)

[Dargie 2010] Waltenegus Dargie and Christian Poellabauer. Fundamentals of wireless

sensor networks: Theory and practice. John Wiley & Sons, 2010. (Cited on page 44.)

[Dees 2019] Bruno Scalzo Dees, Ljubisa Stankovic, Milos Dakovic, Anthony G Constan-

tinides and Danilo P Mandic. Unitary Shift Operators on a Graph. arXiv preprint

arXiv:1909.05767, 2019. (Cited on page 10.)

[Defferrard 2016] Michaël Defferrard, Xavier Bresson and Pierre Vandergheynst. Convolu-

tional neural networks on graphs with fast localized spectral filtering. In Advances

in Neural Information Processing Systems (NeurIPS), pages 3844–3852, Barcelona,

Spain, 2016. Curran Associates, Inc. (Cited on pages 60 and 94.)

[Di Lorenzo 2012] Paolo Di Lorenzo and Ali H Sayed. Sparse distributed learning based on

diffusion adaptation. IEEE Transactions on signal processing, vol. 61, no. 6, pages

1419–1433, 2012. (Cited on page 5.)

[Di Lorenzo 2016] Paolo Di Lorenzo, Sergio Barbarossa, Paolo Banelli and Stefania Sardel-

litti. Adaptive Least Mean Squares Estimation of Graph Signals. IEEE Transactions

on Signal and Information Processing over Networks, vol. 2, no. 4, pages 555–568,

Dec. 2016. (Cited on pages 61 and 62.)

[Di Lorenzo 2017] Paolo Di Lorenzo, Paolo Banelli, Sergio Barbarossa and Stefania Sardel-

litti. Distributed adaptive learning of graph signals. IEEE Transactions on Signal

Processing, vol. 65, no. 16, pages 4193–4208, Aug. 2017. (Cited on page 62.)

[Di Lorenzo 2018] P. Di Lorenzo, P. Banelli, E. Isufi, S. Barbarossa and G. Leus. Adaptive

Graph Signal Processing: Algorithms and Optimal Sampling Strategies. IEEE Trans-

actions on Signal Processing, vol. 66, no. 13, pages 3584–3598, Jul. 2018. (Cited on

page 62.)

[Di Lorenzo 2020] Paolo Di Lorenzo, Sergio Barbarossa and Stefania Sardellitti. Distributed

signal processing and optimization based on in-network subspace projections. IEEE

Transactions on Signal Processing, vol. 68, pages 2061–2076, 2020. (Cited on page 7.)

112 Bibliography

[Dimakis 2010] Alexandros G Dimakis, Soummya Kar, José MF Moura, Michael G Rabbat

and Anna Scaglione. Gossip algorithms for distributed signal processing. Proceedings

of the IEEE, vol. 98, no. 11, pages 1847–1864, 2010. (Cited on page 3.)

[Djurić 2018] P. Djurić and C. Richard. Cooperative and graph signal processing: Prin-

ciples and applications. Academic Press, Elsevier, Cambridge, MA, USA, 2018.

(Cited on pages 1 and 60.)

[Dong 2019] Xiaowen Dong, Dorina Thanou, Michael Rabbat and Pascal Frossard. Learn-

ing graphs from data: A signal representation perspective. IEEE Signal Processing

Magazine, vol. 36, no. 3, pages 44–63, 2019. (Cited on page 9.)

[Frost 1972] Otis Lamont Frost. An algorithm for linearly constrained adaptive array pro-

cessing. Proceedings of the IEEE, vol. 60, no. 8, pages 926–935, Aug. 1972. (Cited

on pages 20, 31 and 56.)

[Gama 2018a] F. Gama, G. Leus, A. G. Marques and A. Ribeiro. Convolutional Neural

Networks Via Node-Varying Graph Filters. In IEEE Data Science Workshop (DSW),

pages 1–5, Lausanne, Switzerland, Jun. 2018. IEEE. (Cited on page 65.)

[Gama 2018b] Fernando Gama, Antonio G Marques, Geert Leus and Alejandro Ribeiro.

Convolutional neural network architectures for signals supported on graphs. IEEE

Transactions on Signal Processing, vol. 67, no. 4, pages 1034–1049, Feb. 2018. (Cited

on pages 60 and 94.)

[Gao 2014] Wei Gao, Jie Chen, Cedric Richard and Jianguo Huang. Online dictionary

learning for kernel LMS. IEEE Transactions on Signal Processing, vol. 62, no. 11,

pages 2765–2777, 2014. (Cited on page 106.)

[Gavili 2017] Adnan Gavili and Xiao-Ping Zhang. On the Shift Operator, Graph Frequency,

and Optimal Filtering in Graph Signal Processing. IEEE Transactions on Signal

Processing, vol. 65, no. 23, pages 6303–6318, Dec. 2017. (Cited on pages 10, 68, 94

and 97.)

[Giannakis 2018] Georgios B Giannakis, Yanning Shen and Georgios Vasileios Karanikolas.

Topology identification and learning over graphs: Accounting for nonlinearities and

dynamics. Proceedings of the IEEE, vol. 106, no. 5, pages 787–807, 2018. (Cited on

page 9.)

Bibliography 113

[Girault 2015a] Benjamin Girault. Stationary graph signals using an isometric graph trans-

lation. In 23rd European Signal Processing Conference (EUSIPCO), pages 1516–

1520, Nice, France, 2015. IEEE. (Cited on page 101.)

[Girault 2015b] Benjamin Girault, Paulo Gonçalves and Eric Fleury. Translation on graphs:

An isometric shift operator. IEEE Signal Processing Letters, vol. 22, no. 12, pages

2416–2420, Dec. 2015. (Cited on pages 10, 94 and 96.)

[Grassi 2018] Francesco Grassi, Andreas Loukas, Nathanaël Perraudin and Benjamin Ri-

caud. A time-vertex signal processing framework: Scalable processing and meaningful

representations for time-series on graphs. IEEE Transactions on Signal Processing,

vol. 66, no. 3, pages 817–829, Feb. 2018. (Cited on page 62.)

[Hammond 2011] David K Hammond, Pierre Vandergheynst and Rémi Gribonval. Wavelets

on graphs via spectral graph theory. Applied and Computational Harmonic Analysis,

vol. 30, no. 2, pages 129–150, 2011. (Cited on page 94.)

[Harrane 2019] I. E. K. Harrane, R. Flamary and C. Richard. On Reducing the Commu-

nication Cost of the Diffusion LMS Algorithm. IEEE Transactions on Signal and

Information Processing over Networks, vol. 5, no. 1, pages 100–112, 2019. (Cited

on page 5.)

[Haykin 2002] Simon Haykin. Adaptive filter theory. Prentice-Hall, NJ, USA, 2002. (Cited

on page 2.)

[Horn 2012] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge University

Press, Cambridge, U.K., 2012. (Cited on pages 9 and 57.)

[Hua 2017a] Fei Hua, Roula Nassif, Cédric Richard and Haiyan Wang. Penalty-based multi-

task estimation with non-local linear equality constraints. In IEEE 7th International

Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAM-

SAP), pages 1–5, Curacao, Netherlands Antilles, Dec. 2017. IEEE. (Cited on pages 7

and 41.)

[Hua 2017b] Fei Hua, Roula Nassif, Cédric Richard, Haiyan Wang and Jianguo Huang.

Penalty-based multitask distributed adaptation over networks with constraints, 2017.

51st Asilomar Conference on Signals, Systems, and Computers (ASILOMAR).

(Cited on pages 7, 16, 42, 43 and 56.)

114 Bibliography

[Hua 2018a] Fei Hua, Roula Nassif, Cédric Richard, Haiyan Wang and Ali H Sayed. Decen-

tralized clustering for node-variant graph filtering with graph diffusion LMS. In 52nd

Asilomar Conference on Signals, Systems, and Computers (ASILOMAR), pages

1418–1422, Pacific Grove, CA, USA, Oct. 2018. IEEE. (Cited on page 60.)

[Hua 2018b] Fei Hua, Roula Nassif, Cédric Richard, Haiyan Wang and Ali H Sayed. A

Preconditioned Graph Diffusion LMS for Adaptive Graph Signal Processing. In 26th

European Signal Processing Conference (EUSIPCO), pages 111–115, Rome, Italy,

Sep. 2018. IEEE. (Cited on pages 60, 96 and 97.)

[Hua 2019] Fei Hua, Cédric Richard, Jie Chen, Haiyan Wang, Pierre Borgnat and Paulo

Gonçalves. Learning Combination of Graph Filters for Graph Signal Modeling. IEEE

Signal Processing Letters, vol. 26, no. 12, pages 1912–1916, Dec. 2019. (Cited on

page 93.)

[Hua 2020a] Fei Hua, Roula Nassif, Cédric Richard, Haiyan Wang and Ali H. Sayed. Diffu-

sion LMS with Communication Delays: Stability and Performance Analysis. IEEE

Signal Processing Letters, vol. 27, pages 730–734, 2020. (Cited on pages 5, 41

and 48.)

[Hua 2020b] Fei Hua, Roula Nassif, Cédric Richard, Haiyan Wang and Ali H. Sayed. Online

distributed learning over graphs with multitask graph-filter models. IEEE Transac-

tions on Signal and Information Processing over Networks, vol. 6, no. 1, pages 63–77,

2020. (Cited on page 60.)

[Isufi 2016] Elvin Isufi, Geert Leus and Paolo Banelli. 2-dimensional finite impulse response

graph-temporal filters. In IEEE Global Conference on Signal and Information Pro-

cessing (GlobalSIP), pages 405–409, Greater Washington, D.C., USA, 2016. IEEE.

(Cited on pages 62 and 64.)

[Isufi 2017a] Elvin Isufi, Paolo Banelli, Paolo Di Lorenzo and Geert Leus. Observing and

Tracking Bandlimited Graph Processes. arXiv preprint arXiv:1712.00404, 2017.

(Cited on page 62.)

[Isufi 2017b] Elvin Isufi, Andreas Loukas, Andrea Simonetto and Geert Leus. Autoregres-

sive moving average graph filtering. IEEE Transactions on Signal Processing, vol. 65,

no. 2, pages 274–288, Jan. 2017. (Cited on pages 8, 61, 94, 95 and 97.)

Bibliography 115

[Isufi 2017c] Elvin Isufi, Andreas Loukas, Andrea Simonetto and Geert Leus. Filtering Ran-

dom Graph Processes Over Random Time-Varying Graphs. IEEE Transactions on

Signal Processing, vol. 65, no. 16, pages 4406–4421, Aug. 2017. (Cited on page 62.)

[Isufi 2018] Elvin Isufi, Paolo Di Lorenzo, Paolo Banelli and Geert Leus. Distributed wiener-

based reconstruction of graph signals. In IEEE Workshop on Statistical Signal Pro-

cessing (SSP), pages 21–25, Freiburg, Germany, 2018. IEEE. (Cited on page 94.)

[Isufi 2019] E. Isufi, A. Loukas, N. Perraudin and G. Leus. Forecasting Time Series With

VARMA Recursions on Graphs. IEEE Transactions on Signal Processing, vol. 67,

no. 18, pages 4870–4885, Sep. 2019. (Cited on page 61.)

[Jin 2020] Danqi Jin, Jie Chen, Cedric Richard, Jingdong Chen and Ali H Sayed. Affine

combination of diffusion strategies over networks. IEEE Transactions on Signal

Processing, vol. 68, pages 2087–2104, 2020. (Cited on page 5.)

[Jolliffe 2016] Ian T. Jolliffe and Jorge Cadima. Principal component analysis: a review and

recent developments. Philosophical Transactions of the Royal Society A, vol. 374,

no. 2065, pages 1–16, 2016. (Cited on page 78.)

[Kar 2011] Soummya Kar and José MF Moura. Convergence rate analysis of distributed

gossip (linear parameter) estimation: Fundamental limits and tradeoffs. IEEE Jour-

nal of Selected Topics in Signal Processing, vol. 5, no. 4, pages 674–690, 2011. (Cited

on page 3.)

[Kar 2012] Soummya Kar, José MF Moura and Kavita Ramanan. Distributed parameter

estimation in sensor networks: Nonlinear observation models and imperfect commu-

nication. IEEE Transactions on Information Theory, vol. 58, no. 6, pages 3575–3605,

2012. (Cited on page 3.)

[Khalili 2011] Azam Khalili, Mohammad Ali Tinati, Amir Rastegarnia and Jonathon A

Chambers. Steady-state analysis of diffusion LMS adaptive networks with noisy

links. IEEE Transactions on Signal Processing, vol. 60, no. 2, pages 974–979, 2011.

(Cited on page 5.)

[Khawatmi 2017] Sahar Khawatmi, Ali H Sayed and Abdelhak M Zoubir. Decentralized

Clustering and Linking by Networked Agents. IEEE Transactions on Signal Process-

ing, vol. 65, no. 13, pages 3526–3537, Jul. 2017. (Cited on pages 7 and 77.)

116 Bibliography

[Koning 1991] Ruud H. Koning, Heinz Neudecker and Tom Wansbeek. Block Kronecker

products and the vecb operator. Linear Algebra and its Applications, vol. 149, pages

165–184, 1991. (Cited on pages 27 and 36.)

[Koppel 2018] A. Koppel, S. Paternain, C. Richard and A. Ribeiro. Decentralized Online

Learning With Kernels. IEEE Transactions on Signal Processing, vol. 66, no. 12,

pages 3240–3255, Jun. 2018. (Cited on page 106.)

[Lewis 2011] Ted G Lewis. Network science: Theory and applications. John Wiley & Sons,

Hoboken, NJ, USA, 2011. (Cited on page 2.)

[Li 2009] L. Li and J. Chambers. Distributed adaptive estimation based on the APA al-

gorithm over diffusion networks with changing topology. In IEEE Workshop on

Statistical Signal Processing (SSP), pages 757–760, Cardiff, UK, 2009. (Cited on

pages 4 and 61.)

[Liu 2019] J. Liu, E. Isufi and G. Leus. Filter Design for Autoregressive Moving Aver-

age Graph Filters. IEEE Transactions on Signal and Information Processing over

Networks, vol. 5, no. 1, pages 47–60, Mar. 2019. (Cited on pages 8 and 61.)

[Lopes 2007] Cassio G Lopes and Ali H Sayed. Incremental adaptive strategies over dis-

tributed networks. IEEE Transactions on Signal Processing, vol. 55, no. 8, pages

4064–4077, 2007. (Cited on page 3.)

[Lopes 2008] C. G. Lopes and A. H. Sayed. Diffusion least-mean squares over adaptive

networks: Formulation and performance analysis. IEEE Transactions on Signal

Processing, vol. 56, no. 7, pages 3122–3136, Jul. 2008. (Cited on pages 3 and 61.)

[Loukas 2015] Andreas Loukas, Andrea Simonetto and Geert Leus. Distributed Autoregres-

sive Moving Average Graph Filters. IEEE Signal Processing Letters, vol. 22, no. 11,

pages 1931–1935, Nov. 2015. (Cited on pages 61 and 94.)

[Loukas 2016] Andreas Loukas and Nathanaël Perraudin. Stationary time-vertex signal

processing. arXiv preprint arXiv:1611.00255, 2016. (Cited on page 61.)

[Loukas 2017] A. Loukas, E. Isufi and N. Perraudin. Predicting the evolution of stationary

graph signals. In 51st Asilomar Conference on Signals, Systems, and Computers

(ASILOMAR), pages 60–64, Pacific Grove, CA, USA, Oct. 2017. IEEE. (Cited on

page 61.)

Bibliography 117

[Lovász 1993] László Lovászet al. Random walks on graphs: A survey, 1993. (Cited on

page 9.)

[Luenberger 2015] David G Luenberger and Yinyu Ye. Linear and nonlinear programming,

volume 228. Springer Cham, Cham, Switzerland, 2015. (Cited on pages 20 and 44.)

[Mateos 2009] Gonzalo Mateos, Ioannis D Schizas and Georgios B Giannakis. Distributed

recursive least-squares for consensus-based in-network adaptive estimation. IEEE

Transactions on Signal Processing, vol. 57, no. 11, pages 4583–4588, 2009. (Cited

on page 4.)

[Mateos 2019] Gonzalo Mateos, Santiago Segarra, Antonio G Marques and Alejandro

Ribeiro. Connecting the dots: Identifying network structure via graph signal pro-

cessing. IEEE Signal Processing Magazine, vol. 36, no. 3, pages 16–43, 2019. (Cited

on page 9.)

[Mei 2017] Jonathan Mei and José MF Moura. Signal processing on graphs: Causal mod-

eling of unstructured data. IEEE Transactions on Signal Processing, vol. 65, no. 8,

pages 2077–2092, Apr. 2017. (Cited on pages 61 and 80.)

[Meyer 2016] Florian Meyer, Ondrej Hlinka, Henk Wymeersch, Erwin Riegler and Franz

Hlawatsch. Distributed localization and tracking of mobile networks including non-

cooperative objects. IEEE Transactions on Signal and Information Processing over

Networks, vol. 2, no. 1, pages 57–71, Mar. 2016. (Cited on page 42.)

[Mota 2012] João FC Mota, João MF Xavier, Pedro MQ Aguiar and Markus Puschel.

Distributed basis pursuit. IEEE Transactions on Signal Processing, vol. 60, no. 4,

pages 1942–1956, Apr. 2012. (Cited on pages 7, 16 and 42.)

[Narang 2013] Sunil K Narang and Antonio Ortega. Compact support biorthogonal wavelet

filterbanks for arbitrary undirected graphs. IEEE Transactions on Signal Processing,

vol. 61, no. 19, pages 4673–4685, Oct. 2013. (Cited on page 94.)

[Nassif 2016a] Roula Nassif, Cédric Richard, André Ferrari and Ali H Sayed. Multitask

Diffusion Adaptation Over Asynchronous Networks. IEEE Transactions on Signal

Processing, vol. 64, no. 11, pages 2835–2850, Jun. 2016. (Cited on pages 7, 16

and 61.)

[Nassif 2016b] Roula Nassif, Cédric Richard, André Ferrari and Ali H Sayed. Proximal mul-

titask learning over networks with sparsity-inducing coregularization. IEEE Trans-

118 Bibliography

actions on Signal Processing, vol. 64, no. 23, pages 6329–6344, Dec. 2016. (Cited

on pages 7, 16, 42, 50 and 61.)

[Nassif 2017a] Roula Nassif, Cédric Richard, Jie Chen and Ali H Sayed. A graph diffusion

LMS strategy for adaptive graph signal processing. In 51st Asilomar Conference on

Signals, Systems, and Computers (ASILOMAR), pages 1973–1976, Pacific Grove,

CA, USA, Oct. 2017. IEEE. (Cited on page 64.)

[Nassif 2017b] Roula Nassif, Cédric Richard, André Ferrari and Ali H Sayed. Diffusion LMS

for Multitask Problems with Local Linear Equality Constraints. IEEE Transactions

on Signal Processing, vol. 65, no. 19, pages 4979–4993, 2017. (Cited on pages 7, 17,

42, 43 and 56.)

[Nassif 2018] Roula Nassif, Cédric Richard, Jie Chen and Ali H Sayed. Distributed Diffusion

Adaptation Over Graph Signals. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 4129–4133, Calgary, AB, Canada,

Apr. 2018. IEEE. (Cited on pages 64, 67, 94 and 96.)

[Nassif 2019] R. Nassif, S. Vlaski, C. Richard and A. H. Sayed. A Regularization Framework

for Learning Over Multitask Graphs. IEEE Signal Processing Letters, vol. 26, no. 2,

pages 297–301, Feb. 2019. (Cited on pages 7 and 60.)

[Nassif 2020a] Roula Nassif, Stefan Vlaski, Cédric Richard, Jie Chen and Ali H Sayed.

Multitask Learning over Graphs. IEEE Signal Processing Magazine, vol. 37, no. 3,

page 14–25, May 2020. (Cited on page 5.)

[Nassif 2020b] Roula Nassif, Stefan Vlaski and Ali H Sayed. Adaptation and learning over

networks under subspace constraints Part II: Performance Analysis. IEEE Transac-

tions on Signal Processing, 2020. (Cited on page 7.)

[Nassif 2020c] Roula Nassif, Stefan Vlaski and Ali H Sayed. Adaptation and learning over

networks under subspace constraints—Part I: Stability analysis. IEEE Transactions

on Signal Processing, vol. 68, pages 1346–1360, 2020. (Cited on page 7.)

[Nedic 2001] Angelia Nedic and Dimitri P Bertsekas. Incremental subgradient methods for

nondifferentiable optimization. SIAM Journal on Optimization, vol. 12, no. 1, pages

109–138, 2001. (Cited on page 3.)

[Nedic 2009] Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for

multi-agent optimization. IEEE Transactions on Automatic Control, vol. 54, no. 1,

pages 48–61, 2009. (Cited on page 3.)

Bibliography 119

[Newman 2010] Mark Newman. Networks: An introduction. Oxford University Press,

Oxford, U.K., 2010. (Cited on page 2.)

[noa] 1981-2010 U.S. climate normals. [Online]. Available:

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-

datasets/climate-normals/1981-2010-normals-data. (Cited on page 86.)

[Olfati-Saber 2007] Reza Olfati-Saber, J Alex Fax and Richard M Murray. Consensus and

cooperation in networked multi-agent systems. Proceedings of the IEEE, vol. 95,

no. 1, pages 215–233, Jan. 2007. (Cited on pages 3 and 42.)

[Ortega 2018] Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura and

Pierre Vandergheynst. Graph Signal Processing: Overview, Challenges, and Appli-

cations. Proceedings of the IEEE, vol. 106, no. 5, pages 808–828, May 2018. (Cited

on pages 8, 60 and 63.)

[Perraudin 2014] Nathanaël Perraudin, Johan Paratte, David Shuman, Lionel Martin, Vas-

silis Kalofolias, Pierre Vandergheynst and David K Hammond. GSPBOX: A toolbox

for signal processing on graphs. arXiv preprint arXiv:1408.5781, 2014. (Cited on

pages 80 and 101.)

[Petersen 2012] Kaare Brandt Petersen and Michael Syskind Pedersen. The Matrix Cook-

book, 2012. (Cited on page 37.)

[Piggott 2016] Marc James Piggott and Victor Solo. Diffusion LMS with correlated re-

gressors Part–I: Realization-wise stability. IEEE Transactions on Signal Processing,

vol. 64, no. 21, pages 5473–5484, Jun. 2016. (Cited on page 5.)

[Piggott 2017] Marc James Piggott and Victor Solo. Diffusion LMS with correlated

regressors–Part II: Performance. IEEE Transactions on Signal Processing, vol. 65,

no. 15, pages 3934–3947, May 2017. (Cited on page 5.)

[Plata-Chaves 2015] Jorge Plata-Chaves, Nikola Bogdanović and Kostas Berberidis. Dis-

tributed diffusion-based LMS for node-specific adaptive parameter estimation. IEEE

Transactions on Signal Processing, vol. 63, no. 13, pages 3448–3460, Jul. 2015.

(Cited on pages 5, 16, 42 and 50.)

[Plata-Chaves 2016] Jorge Plata-Chaves, Mohamad Hasan Bahari, Marc Moonen and

Alexander Bertrand. Unsupervised diffusion-based LMS for node-specific parame-

ter estimation over wireless sensor networks. In IEEE International Conference on

120 Bibliography

Acoustics, Speech and Signal Processing (ICASSP), pages 4159–4163, Shanghai,

China, 2016. IEEE. (Cited on pages 5, 7, 16 and 77.)

[Plata-Chaves 2017] Jorge Plata-Chaves, Alexander Bertrand, Marc Moonen, Sergios

Theodoridis and Abdelhak M Zoubir. Heterogeneous and multitask wireless sen-

sor networks—algorithms, applications, and challenges. IEEE Journal of Selected

Topics in Signal Processing, vol. 11, no. 3, pages 450–465, 2017. (Cited on page 5.)

[Polyak 1987] Boris T Polyak. Introduction to optimization. Optimization Software, New

York, USA, 1987. (Cited on pages 21 and 44.)

[Pradhan 2018] H. Pradhan, A. S. Bedi, A. Koppel and K. Rajawat. Exact nonparametric

decentralized online optimization. In IEEE Global Conference on Signal and Infor-

mation Processing (GlobalSIP), pages 643–647, Anaheim, CA, USA, 2018. IEEE.

(Cited on page 106.)

[Qiu 2017] Kai Qiu, Xianghui Mao, Xinyue Shen, Xiaohan Wang, Tiejian Li and Yuantao

Gu. Time-varying graph signal reconstruction. IEEE Journal of Selected Topics in

Signal Processing, vol. 11, no. 6, pages 870–883, Sep. 2017. (Cited on page 62.)

[Rabbat 2005] Michael G Rabbat and Robert D Nowak. Quantized incremental algorithms

for distributed optimization. IEEE Journal on Selected Areas in Communications,

vol. 23, no. 4, pages 798–808, Apr. 2005. (Cited on page 3.)

[Rakotomamonjy 2008] Alain Rakotomamonjy, Francis R Bach, Stéphane Canu and Yves

Grandvalet. SimpleMKL. Journal of Machine Learning Research, vol. 9, pages

2491–2521, 2008. (Cited on pages 96 and 98.)

[Richard 2009] Cédric Richard, José Carlos M Bermudez and Paul Honeine. Online pre-

diction of time series data with kernels. IEEE Transactions on Signal Processing,

vol. 57, no. 3, pages 1058–1067, 2009. (Cited on page 106.)

[Romero 2017] Daniel Romero, Vassilis N Ioannidis and Georgios B Giannakis. Kernel-

based reconstruction of space-time functions on dynamic graphs. IEEE Journal of

Selected Topics in Signal Processing, vol. 11, no. 6, pages 856–869, Sep. 2017. (Cited

on pages 62 and 87.)

[Sandryhaila 2013] Aliaksei Sandryhaila and José MF Moura. Discrete signal processing

on graphs. IEEE Transactions on Signal Processing, vol. 61, no. 7, pages 1644–1656,

Apr. 2013. (Cited on pages 9, 10, 60, 61, 63, 64 and 94.)

Bibliography 121

[Sandryhaila 2014a] Aliaksei Sandryhaila and Jose MF Moura. Big data analysis with

signal processing on graphs: Representation and processing of massive data sets

with irregular structure. IEEE Signal Processing Magazine, vol. 31, no. 5, pages

80–90, Sep. 2014. (Cited on pages 8 and 60.)

[Sandryhaila 2014b] Aliaksei Sandryhaila and Jose MF Moura. Discrete signal processing

on graphs: Frequency analysis. IEEE Transactions on Signal Processing, vol. 62,

no. 12, pages 3042–3054, 2014. (Cited on page 8.)

[Sayed 2003] A.H. Sayed. Fundamentals of adaptive filtering. Wiley, Hoboken, NJ, USA,

2003. (Cited on pages 22, 37, 50 and 74.)

[Sayed 2008] Ali H Sayed. Adaptive filters. John Wiley & Sons, Hoboken, NJ, USA, 2008.

(Cited on pages 2, 22, 27, 28, 45, 50, 66, 68, 69, 70 and 72.)

[Sayed 2013] Ali H Sayed, Sheng-Yuan Tu, Jianshu Chen, Xiaochuan Zhao and Zaid J

Towfic. Diffusion strategies for adaptation and learning over networks: an exami-

nation of distributed strategies and network behavior. IEEE Signal Processing Mag-

azine, vol. 30, no. 3, pages 155–171, May. 2013. (Cited on pages 2, 42, 50 and 61.)

[Sayed 2014a] Ali H Sayed. Adaptation, learning, and optimization over networks. Foun-

dations and Trends® in Machine Learning, vol. 7, no. 4-5, pages 311–801, 2014.

(Cited on pages 1, 2, 3, 16, 22, 28, 36, 42 and 62.)

[Sayed 2014b] Ali H Sayed. Adaptive networks. Proceedings of the IEEE, vol. 102, no. 4,

pages 460–497, Apr. 2014. (Cited on pages 2, 16 and 61.)

[Sayed 2014c] Ali H Sayed. Diffusion adaptation over networks. In Sergios Theodoridis and

Rama Chellappa, Editors, Academic Press Library in Signal Processing, volume 3,

pages 322–454. Academic Press, Elsevier, Cambridge, MA, USA, 2014. (Cited on

pages 16, 28, 42, 50, 61, 67, 72, 73, 90 and 91.)

[Schizas 2009] Ioannis D Schizas, Gonzalo Mateos and Georgios B Giannakis. Distributed

LMS for consensus-based in-network adaptive processing. IEEE Transactions on

Signal Processing, vol. 57, no. 6, pages 2365–2382, 2009. (Cited on page 4.)

[Segarra 2017] Santiago Segarra, Antonio G Marques and Alejandro Ribeiro. Optimal

graph-filter design and applications to distributed linear network operators. IEEE

Transactions on Signal Processing, vol. 65, no. 15, pages 4117–4131, Aug. 2017.

(Cited on pages 8, 61, 65, 94 and 96.)

122 Bibliography

[Sevi 2018a] Harry Sevi, Gabriel Rilling and Pierre Borgnat. Harmonic analysis on di-

rected graphs and applications: from Fourier analysis to wavelets. arXiv preprint

arXiv:1811.11636, 2018. (Cited on pages 10, 95, 96 and 101.)

[Sevi 2018b] Harry Sevi, Gabriel Rilling and Pierre Borgnat. Modeling signals over directed

graphs through filtering. In IEEE Global Conference on Signal and Information

Processing (GlobalSIP), pages 718–722, Anaheim, CA, USA, 2018. IEEE. (Cited

on pages 95 and 96.)

[Shen 2012] Chao Shen, Tsung-Hui Chang, Kun-Yu Wang, Zhengding Qiu and Chong-

Yung Chi. Distributed robust multicell coordinated beamforming with imperfect CSI:

An ADMM approach. IEEE Transactions on signal processing, vol. 60, no. 6, pages

2988–3003, Jun. 2012. (Cited on pages 7, 16 and 42.)

[Shi 2015] Xuesong Shi, Hui Feng, Muyuan Zhai, Tao Yang and Bo Hu. Infinite Impulse

Response Graph Filters in Wireless Sensor Networks. IEEE Signal Processing Let-

ters, vol. 22, no. 8, pages 1113–1117, Aug. 2015. (Cited on pages 8, 61 and 94.)

[Shuman 2013] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega and

Pierre Vandergheynst. The emerging field of signal processing on graphs: Extending

high-dimensional data analysis to networks and other irregular domains. IEEE Sig-

nal Processing Magazine, vol. 30, no. 3, pages 83–98, May 2013. (Cited on pages 8,

9, 60, 61, 63, 64 and 94.)

[Shuman 2018] David I Shuman, Pierre Vandergheynst, Daniel Kressner and Pascal

Frossard. Distributed Signal Processing via Chebyshev Polynomial Approximation.

IEEE Transactions on Signal and Information Processing over Networks, vol. 4,

no. 4, pages 736–751, Dec. 2018. (Cited on page 61.)

[Simon 2013] Noah Simon, Jerome Friedman, Trevor Hastie and Robert Tibshirani. A

Sparse-Group Lasso. Journal of Computational and Graphical Statistics, vol. 22,

no. 2, pages 231–245, 2013. (Cited on page 101.)

[Singh 2016] Rahul Singh, Abhishek Chakraborty and BS Manoj. Graph Fourier transform

based on directed Laplacian. In IEEE International Conference on Signal Processing

and Communications (SPCOM), pages 1–5, Bangalore, India, 2016. IEEE. (Cited

on pages 10 and 94.)

Bibliography 123

[Tanaka 2014] Yuichi Tanaka and Akie Sakiyama. M -channel oversampled graph filter

banks. IEEE Transactions on Signal Processing, vol. 62, no. 14, pages 3578–3590,

Jul. 2014. (Cited on page 94.)

[Towfic 2014] Zaid J Towfic and Ali H Sayed. Adaptive penalty-based distributed stochastic

convex optimization. IEEE Transactions on Signal Processing, vol. 62, no. 15, pages

3924–3938, Aug. 2014. (Cited on pages 16, 20 and 44.)

[Towfic 2015] Zaid J Towfic and Ali H Sayed. Stability and performance limits of adaptive

primal-dual networks. IEEE Transactions on Signal Processing, vol. 63, no. 11,

pages 2888–2903, Jun. 2015. (Cited on pages 4 and 42.)

[Tremblay 2016a] Nicolas Tremblay and Pierre Borgnat. Subgraph-based filterbanks for

graph signals. IEEE Transactions on Signal Processing, vol. 64, no. 15, pages 3827–

3840, Aug. 2016. (Cited on page 94.)

[Tremblay 2016b] Nicolas Tremblay, Gilles Puy, Rémi Gribonval and Pierre Vandergheynst.

Compressive spectral clustering. In International Conference on Machine Learn-

ing (ICML), pages 1002–1011, New York City, NY, USA, 2016. IMLS. (Cited on

page 94.)

[Tsitsvero 2016] M. Tsitsvero, S. Barbarossa and P. Di Lorenzo. Signals on Graphs: Un-

certainty Principle and Sampling. IEEE Transactions on Signal Processing, vol. 64,

no. 18, pages 4845–4860, Sep. 2016. (Cited on pages 8 and 60.)

[Tu 2012] Sheng-Yuan Tu and Ali H Sayed. Diffusion strategies outperform consensus

strategies for distributed estimation over adaptive networks. IEEE Transactions on

Signal Processing, vol. 60, no. 12, pages 6217–6234, Dec. 2012. (Cited on pages 4

and 42.)

[Vlaski 2019] Stefan Vlaski and Ali H Sayed. Distributed Learning in Non-Convex

Environments–Part I: Agreement at a Linear Rate. arXiv preprint arXiv:1907.01848,

2019. (Cited on page 106.)

[Wang 2015] Xiaohan Wang, Pengfei Liu and Yuantao Gu. Local-set-based graph signal

reconstruction. IEEE Transactions on Signal Processing, vol. 63, no. 9, pages 2432–

2444, 2015. (Cited on page 8.)

[Wang 2017] Yuan Wang, Wee Peng Tay and Wuhua Hu. A multitask diffusion strategy

with optimized inter-cluster cooperation. IEEE Journal of Selected Topics in Signal

Processing, vol. 11, no. 3, pages 504–517, 2017. (Cited on pages 7 and 42.)

124 Bibliography

[Widrow 1985] Widrow, Bernard, Stearns and SamuelD. Adaptive signal processing.

Prentice-Hall, NJ, USA, 1985. (Cited on page 2.)

[Wu 2020] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang and

S Yu Philip. A comprehensive survey on graph neural networks. IEEE Transactions

on Neural Networks and Learning Systems, 2020. (Cited on page 8.)

[Xiao 2005] L. Xiao, S. Boyd and S. Lall. A scheme for robust distributed sensor fusion

based on average consensus. In International Symposium on Information Processing

in Sensor Networks (IPSN), pages 63–70, Boise, ID, USA, 2005. IEEE. (Cited on

pages 3, 42 and 67.)

[Xie 2012] Le Xie, Dae-Hyun Choi, Soummya Kar and H Vincent Poor. Fully distributed

state estimation for wide-area monitoring systems. IEEE Transactions on Smart

Grid, vol. 3, no. 3, pages 1154–1169, Sep. 2012. (Cited on page 42.)

[Xie 2018] Siyu Xie and Lei Guo. Analysis of distributed adaptive filters based on diffusion

strategies over sensor networks. IEEE Transactions on Automatic Control, vol. 63,

no. 11, pages 3643–3658, 2018. (Cited on page 4.)

[Xiong 2019] Naixue Xiong, Mou Wu, Victor CM Leung and Laurence T Yang. The Ef-

fective Cooperative Diffusion Strategies With Adaptation Ability by Learning Across

Adaptive Network-Wide Systems. IEEE Transactions on Systems, Man, and Cyber-

netics: Systems, 2019. (Cited on page 5.)

[Yu 2017] Chung-Kai Yu and Ali H Sayed. Learning by Networked Agents under Partial

Information. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 3874–3878, New Orleans, LA, USA, 2017. IEEE, IEEE.

(Cited on page 16.)

[Yuan 2019a] K. Yuan, B. Ying, X. Zhao and Ali H. Sayed. Exact diffusion for distributed

optimization and learning–Part I: Algorithm development. IEEE Transactions on

Signal Processing, vol. 67, no. 3, pages 708–723, Feb. 2019. (Cited on page 5.)

[Yuan 2019b] Kun Yuan, Sulaiman A Alghunaim, Bicheng Ying and Ali H Sayed. On

the performance of exact diffusion over adaptive networks. In 2019 IEEE 58th

Conference on Decision and Control (CDC), pages 4898–4903, Nice, France, 2019.

IEEE. (Cited on page 5.)

Bibliography 125

[Zhang 2014] Yi Zhang, Wee Peng Tay, Kwok Hung Li and Dominique Gaïti. Distributed

boundary estimation for spectrum sensing in cognitive radio networks. IEEE Journal

on Selected Areas in Communications, vol. 32, no. 11, pages 1961–1973, Nov. 2014.

(Cited on page 42.)

[Zhang 2015] Cha Zhang, Philip Chou and Dinei Florencio. Graph signal processing–a

probabilistic framework. Rapport technique MSR-TR-2015-31, Microsoft Research,

WA, USA, April 2015. (Cited on page 9.)

[Zhang 2020] Ziwei Zhang, Peng Cui and Wenwu Zhu. Deep learning on graphs: A survey.

IEEE Transactions on Knowledge and Data Engineering, 2020. (Cited on page 8.)

[Zhao 2012] Xiaochuan Zhao, Sheng-Yuan Tu and Ali H Sayed. Diffusion adaptation over

networks under imperfect information exchange and non-stationary data. IEEE

Transactions on Signal Processing, vol. 60, no. 7, pages 3460–3475, 2012. (Cited on

page 5.)

[Zhao 2015a] Xiaochuan Zhao and Ali H Sayed. Asynchronous adaptation and learning

over networks–Part I: Modeling and stability analysis. IEEE Transactions on Signal

Processing, vol. 63, no. 4, pages 811–826, Feb. 2015. (Cited on page 5.)

[Zhao 2015b] Xiaochuan Zhao and Ali H. Sayed. Asynchronous Adaptation and Learn-

ing Over Networks–Part II: Performance Analysis. IEEE Transactions on Signal

Processing, vol. 63, no. 4, pages 827–842, Feb. 2015. (Cited on pages 5 and 28.)

[Zhao 2015c] Xiaochuan Zhao and Ali H Sayed. Distributed clustering and learning over

networks. IEEE Transactions on Signal Processing, vol. 63, no. 13, pages 3285–3300,

Jul. 2015. (Cited on pages 7 and 77.)

	modele_couv_these_SFA2
	MyThesis
	List of figures
	List of notations
	List of abbreviations
	Introduction
	Adaptation and learning over networks
	Graph signal processing
	Organization of the contents

	Multitask networks with constraints
	Introduction
	Problem formulation
	Centralized and distributed solution
	Centralized optimal solution and iterative solution
	Penalty functions
	Penalty-based distributed solution

	Performance analysis
	Error recursion
	Mean error behavior analysis
	Mean-square-error behavior analysis

	Simulations
	Conclusion
	Appendix Block Kronecker product
	Appendix Evaluation of matrix F for zero-mean real Gaussian regressors
	Appendix Proof of recursion (2.92)

	Multitask networks with non-local constraints
	Introduction
	Problem formulation and penalty-based solution
	Stochastic behavior analysis
	Extended error recursion
	Mean error behavior analysis
	Mean-square-error behavior analysis

	Simulations
	Conclusion
	Appendix Kronecker product

	Online distributed learning over graphs
	Introduction
	Problem formulation and centralized solution
	Graph filter and data model
	Centralized solution

	Diffusion LMS strategies over graph signals
	Graph diffusion LMS
	Graph diffusion preconditioned LMS
	Comparison with the graph diffusion LMS

	Performance analysis
	Mean-error behavior analysis
	Mean-square-error behavior analysis

	Unsupervised clustering for hybrid node-varying graph filter
	Numerical results
	Experiment with i.i.d. input data
	Experiment with correlated input data
	Clustering method for node-varying graph filter
	Reconstruction on U.S. temperature dataset

	Conclusion
	Appendix Block maximum norm

	Learning combination of graph filters
	Introduction
	Parametric modeling via graph filters
	Jointly estimating the coefficients
	Solving w.r.t. h
	Solving w.r.t. α
	Mixed-norm formulation

	Numerical results
	Conclusion

	Conclusion and future works
	Summary
	Future works

	Bibliography

