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École doctorale n◦574 École Doctorale de
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Abstract

Recent empirical analyses have revealed the existence of the Zumbach e�ect. This discovery
has led to the development of quadratic Hawkes processes, which are suitable for reproducing this
e�ect. Since this model is not linked with the price formation process, we extended it to order book
modeling with a generalized quadratic Hawkes process (GQ-Hawkes). Using market data, we showed
that there is a Zumbach-like e�ect that decreases future liquidity. Microfounding the Zumbach e�ect,
it is responsible for a destabilization of �nancial markets. Moreover, the exact calibration of a GQ-
Hawkes process tells us that the markets are on the verge of criticality. This empirical evidence
therefore prompted us to analyse an order-book model constructed upon a Zumbach-like feedback.
We therefore introduced the quadratic Santa Fe model and proved numerically that there is a phase
transition between a stable market and an unstable market subject to liquidity crises. Thanks to a
�nite size scaling we were able to determine the critical exponents of this transition, which appears to
belong to a new universality class. As this was not analytically tractable, it led us to introduce simpler
models to describe liquidity crises. Setting aside the microstructure of the order book, we obtain a
class of spread models where we computed the critical parameters of their transitions. Even if these
exponents are not those of the quadratic Santa Fe transition, these models open new horizons for
modelling spread dynamics. One of them has a non-linear coupling that reveals a metastable state.
This elegant alternative scenario does not need critical parameters to obtain an unstable market,
even if the empirical evidence is not in its favour. Finally, we looked at the order book dynamics
from another point of view: the reaction-di�usion one. We have modelled a liquidity that appears
in the order book with a certain frequency. The resolution of this model at equilibrium reveals that
there is a condition of stability on the parameters beyond which the order book empties completely,
corresponding to a liquidity crisis. By calibrating it on market data we were able to qualitatively
analyse the distance to this unstable region.

Keywords: liquidity crises, Hawkes process, market microstructure
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Résumé

De récentes analyses empiriques ont révélé l'existence de l'e�et Zumbach : la tendance des prix
passée augmente la volatilité future, indépendamment de son signe. Cette découverte a conduit à
l'élaboration des processus de Hawkes quadratique, adpatés pour reproduire cet e�et. Ce modèle ne
faisant pas de lien avec le processus de formation de prix, nous l'avons étendu au carnet d'ordres avec
un processus de Hawkes quadratique généralisé (GQ-Hawkes), en nous restreignant aux meilleurs prix
d'achat et de vente. En utilisant des données de marchés du future sur l'Eurostoxx, nous avons montré
que le couplage quadratique des prix passés existe et peut être décomposé en une contribution de la
volatilité et une contribution de type Zumbach qui est l'origine microscopique de l'e�et Zumbach. Ces
deux contributions diminuent la liquidité future et sont responsables d'une potentielle déstabilisation
des marchés �nanciers. De plus, la calibration exacte d'un processus GQ-Hawkes nous indique que
ces couplages sont longue portée. Pour étendre notre analyse au delà du meilleur prix d'achat et
de vente, nous avons introduit le spread e�ectif et analysé ses propriétés. Sa distribution en loi de
puissance suggère que les marchés sont aux bords de la criticité. Ces preuves empiriques nous ont
donc incité à faire une analyse d'un modèle de carnet d'ordres construit avec un couplage de type
Zumbach. Nous sommes donc partis du modèle de Santa Fe qui supposent que tous les événements
du carnet sont mutuellement indépendants et arrivent à taux constants. Nous avons introduit un
couplage quadratique de type Zumbach sur les annulations d'ordres limites pour donner naissance
au modèle de Santa Fe quadratique. N'ayant pas réussi à résoudre ce modèle analytiquement, nous
avons fait une analyse numérique rigoureuse et prouvé qu'il existe une transition de phase entre un
marché stable et un marché instable sujet à des crises de liquidité. Grâce à une analyse de taille
�nie nous avons pu déterminer les exposants critiques de cette transition, appartenant à une nouvelle
classe d'universalité. Dans le but d'avoir des résultats analytiques, nous nous sommes orientés vers
des modèles plus simples pour décrire les crises de liquidités. En mettant de côté la microstructure du
carnet d'ordres, nous obtenons une classe de modèles de spread. Ces modèles consistent à modéliser
le taux d'ouverture et de fermeture du spread. Nous avons analysé, d'un point de vue numérique et
théorique, les propriétés de ces modèles en considérant un couplage de type Hawkes linéaire sur le
taux d'ouverture du spread puis un couplage de type Hawkes quadratique. Ces modèles sont sujets
à des transitions de phase ne possédant pas les mêmes exposants de celle du Santa Fe quadratique.
Néanmoins ils ouvrent de nouveaux horizons pour explorer la dynamique de spread. De plus, en
introduisant un couplage non-linéaire, nous obtenons un dynamique métastable : si nous attendons
su�samment longtemps une crise de liquidité arrivera. Nous avons calculé ce temps analytiquement
et confronté nos résultats avec des donnés numériques. Ce scénario alternatif élégant n'a pas besoin de
paramètres critiques pour obtenir un marché instable, même si les données empiriques ne sont pas en
sa faveur. Pour �nir, nous avons regardé la dynamique du carnet d'ordres sous un autre angle: celui de
la réaction-di�usion. Nous avons modélisé une liquidité qui se révèle dans le carnet d'ordres avec une
certaine fréquence. La résolution de ce modèle à l'équilibre révèle qu'il existe une condition de stabilité
sur les paramètres au-delà de laquelle le carnet d'ordres se vide totalement, correspondant à une crise
de liquidité. En le calibrant sur des données de marchés nous avons pu analyser qualitativement la
distance à cette région instable. Au delà des crises de liquidité, ce modèle est aussi particulièrement
utile pour calculer l'impact des métaordres. Nous l'avons donc numériquement étudié et montré que
notre modèle reproduit bien la loi en racine i.e. l'impact est en racine du volume exécuté.

Mots clés: crises de liquidité, processus de Hawkes, microstructure de marché
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Foreword

During my Bachelor's studies at the École Normale Supérieure, I discovered the world
of statistical physics. In these academically transformative years, I became fascinated with
the breadth of possibilities encapsulated by applying advanced theoretical tools on real-
world physical systems. Quite naturally, the intersection between the theoretical and the
applied oriented me towards the �eld of Econophysics. Nonetheless, at the time I felt that
in order for me to truly rigorously research these topics, I should improve my theoretical
background as well as my pro�ciency in modeling tools. Hence, I completed my Master
in Financial Mathematics at École Polytechnique, which enabled me to develop expertise
in stochastic calculus and statistical methods. Consequently, I harnessed my newly gained
skillset and took a research-based internship at Capital Fund Management (CFM) in which
I could further enhance my knowledge by studying the microstructure of �nancial markets
and liquidity crisis. My experience in this internship led me to pursue a PhD under the
supervision of Michael Benzaquen, Jean-Philippe Bouchaud and Mathieu Rosenbaum at
LadHyx and CMAP.

During my PhD, I followed the footsteps of J. Donier and investigated the link between
price trends and liquidity, showing that they can destabilize the market. We also developed
�nancial supply and demand toy models which could answer these questions analytically. To
do so, we considered the existence of feedback loops in our models which, inevitably, led to a
high ratio of endogeneity that can trigger liquidity crises. Empirically, we examined �nancial
market data, that was generously provided by CFM. The superb quality of the data and more
importantly, the meaningful insights of CFM's researchers enabled us to analyze market
destabilization in great detail at the micro scale, using self-excited models. Furthermore,
addressing market stability conditions using other theoretical tools was critically important
to our work. With the much-appreciated help of my former intern Lorenzo Dall' Amico, we
applied a reaction-di�usion model and found critical market stability conditions. We also
developed a method to calibrate this type of model on empirical data.

On a personal note, I am greatly honored to have had the unique opportunity to take
part in the creation of the fantastic École Polytechnique & CFM's "Econophysics & Com-
plex Systems Chair". More broadly speaking, witnessing the recent growing popularity of
the Econophysics �eld thrills me as I am sure this expanding, such vibrant �eld will be a
signi�cant platform for cross-disciplinary cooperation that will lead to important �ndings.
In the spirit of Agent Based Modeling, my PhD colleague José Moran and I focused on var-
ious puzzles unrelated to �nance. One such case was solving the dynamics of Kirman's ants
model, aiming at reproducing spontaneous herding and sudden opinion shifts. Moreover,
thanks to the gracious help of Davide Luzzati and Pierre Lecointre, we analyzed a model
of habit formation by self-reinforcement memory e�ects. Later, we collaborated with Alan
Kirman, and together we extended his model by modelling �shers' decisions making.

I have chosen to put the �nance parts as the main corpus of the manuscript. My agent
based modeling work that is not directly related to �nance nor to liquidity crisis consequently
appears in the appendices. The manuscript's structure is as follows: Chapter 1 provides an
introduction to �nancial markets and liquidity crises. We start by presenting some previous
models on which we build our own. We especially focus on self-excited models which are
particularly suited for considering market endogeneity. In Chapter 2 we present a class of
models, namely General Quadratic Hawkes processes which we than calibrate on �nancial
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data. Chapter 3 is dedicated to theoretical and numerical analysis of an order book model
which is inspired by General Quadratic Hawkes process. In order to reduce the complexity
level, we introduce various spread models in Chapter 4, that are appropriate to analyze
market stability. Then, we model the latent order book's liquidity in Chapter 5. All the
technical details and mathematical proofs are provided inAppendix A, as well as additional
results and plots. Appendix B deals with Complex Systems and focuses on a model of habit
formation exhibiting self-trapping properties. In Appendix C, we fully solve the dynamics
of Kirman's ant model. Appendix D contains Kirman's extended model which we develop
by studying herding e�ects in the behaviour of �shermen.
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1
Introduction

1929's "Black Thursday" and 2010's "Flash Crash" left a deep scar in the history of
Finance. These events were the result of liquidity crises, which happen when buyers/sellers
are too afraid to buy/sell. Some of the most terrible liquidity crises were followed by dreadful
�nancial and economic consequences. In an attempt to better understand liquidity crisis, we
will try to model investorâs panic by extending existing models. We will �rst present several
price and order book models that reproduce important stylized facts, that could than help
us build a model that properly reproduce liquidity crises. We, therefore, start with general
descriptions of �nancial markets, of main market participants and of �nancial crises. We
than present several models of price and volatility. Finally, we introduce models of the limit
order book, in which trading occurs on electronic markets.

Panic on Wall Street in October 1907 after a price drop on commodities. Picture from [1]
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-

La science consiste à passer d'un étonnement à un autre.

Aristote

1.1 Financial markets & liquidity crises

Market participants

A market is a place where buyers meet sellers to execute transactions. The products they
can buy and sell are very diversi�ed: shares of stocks, indices, foreign exchange, derivative
products (futures, options, etc.), bonds, commodities, cryptocurrency. Even though each
product has its own speci�city, dynamics is mainly determined by the way agents interact.
Such dynamics is characterised by being very rich and complex due to the heterogeneity of
market participants. Indeed, the spectrum of the time horizon of their strategies is very
wide: from seconds or less for high-frequency agents to several years for low-frequency ones.
A presentation of the market ecology will help us to understand and study the dynamics of
the market. A full classi�cation of the market participants would be beyond the scope of
this work. Nevertheless , we can identify the following main types of agents:

• Market makers: they are liquidity providers. Tipically high-frequency agents, they
post passive orders at the buy and sell side, then, they wait for other participants
of the market to come and take their orders. As their name implies, they make the
market by intermediating between slower buyers and sellers that would not be able to
meet on the market at the same time. Essential to markets' ecology, some of them are
paid by the exchange to ensure su�cient liquidity. Otherwise, they make money from
the di�erence between their buying and selling quotes and are then very pro�table
when the price is mean-reverting. Their risk comes mainly from their inventory: if the
price trends in the opposite direction of their position they lose a lot of money. They
therefore adjust their price quotations to manage their risk as well as possible. The
capacity of their strategies is low, but they trade very frequently, which makes them
pro�table on average.

• Long investors: they take a position on the market and re-balance their portfolio
from time to time. The time horizon of their strategy is very long, around several
years, and their assets under management are huge. Thus, it can take them days
to buy/sell their market positions. Because of the long time horizon, executing their
transactions does not require sophisticated optimization techniques. They can use
di�erent types of strategies (momentum, ETF, fundamental etc.). They are usually
institutional investors or pension fund managers.

• Brokers: they give an access to the market to those who cannot. Their clients cannot
trade themselves on the market due to a technological gap, nor the best strategy to
execute large orders. Their goal is to minimize the transactions costs by splitting
smartly the orders of their clients.

• Banks: they o�er derivative products, that we can interpret as insurance contracts,
to their clients and manage their risks. They have teams working on elaborating such
products that will suit the needs of their clients. Nevertheless, they can also have
teams that do market-making, long term investment and brokerage.

• Other participants: other participants can play in between all the possible strategies,
on both short or long time scale.
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Although technological advances have reshaped the market by providing new opportunities,
the way agents trade and strategies are much the same. We can therefore say that this clas-
si�cation is stable over time. In what follows, we will keep in mind that market participants
are highly heterogeneous.

Electronic markets and the limit order book

Historically, agents were physically present in the stock exchange. Such vivid scenes were
well described by Emile Zola in his novel "L'Argent". Some movies also represent the market
at this stage, in the "Wolf of Wall Street" of Martin Scorsese for example. As previously
mentionned, the emergence of new technologies have deeply reshaped the markets. First,
the market switched to Over The Counter (OTC) markets where people negotiated products
via telephones. Then, the development of the internet enabled news possibilities: trading on
fully electronic markets. These markets are managed by a computer that matches the orders
of agents, under systematic rules. Even though some OTC markets remain, the majority are
electronic nowadays. Electronic markets are believed to be an optimal setting to allow fair
access to the market. It aims at a better spread of the information to everyone and reduces
insider trading. On the other hand, all the trades and intentions of trades of agents are stored
and the regulation uses this data to detect frauds and illegal actions. Market regulators are
therefore encouraging platforms to upgrade to such automated operation. From our point
of view, electronic markets have made it possible to record an incredible amount of data.
By dissecting this real treasure, we have the opportunity to understand the functioning of
markets in detail.

Since 2007, the emergence of Multilateral Trading Facilities has enabled agents to buy the
same contracts on di�erent electronic exchanges. Since then, electronic markets have become
fragmented. We can cite "Chi-X" or "Turquoise" as competitors of the classical exchanges
Euronext, NYSE, LSE etc. O�ering di�erent types of fees, their creation was made to
reduce trading costs for market participants. From our perspective, it may complicate our
modeling as we are interested in the aggregated market. By aggregate, we mean the sum of
what happens on all the exchanges where we can buy the same asset. Nevertheless, we �rst
need to understand what electronic markets are all about.

We chose to focus on a particular type of electronic markets: a double auction one. It
o�ers the possibility for an agent to trade passively or aggressively. With the �rst option,
an agent can post a buy or sell order, which consists in a number of shares at a given
price and wait for a counterpart. This passive order is called a limit order. Agents can
cancel their passive orders if no counterpart has yet been found. The second option, called a
market order, consists of matching an existing limit order. All these limit orders are stored
in the limit order book. A schematic describing it is displayed on Fig. 1.1. It represents the
interaction between supply and demand on �nancial markets, essential to understand the
price formation process. We refer to bid (resp. ask) side for the buy (resp. sell) side in the
following. An important notion emerges from the order book: the liquidity. It refers to the
quantity of shares available in the order book at a given time. Thus, posting a limit order
in the limit order book provides liquidity while posting a market order takes liquidity.
Note that some exchanges provide to their clients other fancy types of orders. More di�cult
to model, we restrict ourselves to exchanges and assets where only these three orders are
available. Concerning market fragmentation, we assume that either we have access to the
aggregated order book and if not that, the one we have is representative of the aggregated
one.

Let us focus on the quantities and concepts introduced in Fig. 1.1, that are key elements
for limit order book functioning. The prices on which market participants can place their
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Figure 1.1: De�nition of the limit order book.

orders are �xed: the quotation step is called the tick size. Fixed by the regulation, it
varies across assets. For example, it is 0.01$ for US stocks on NASDAQ and 1e for the
EUROSTOXX future contract. We call the best bid bt (resp ask at) the best price of the
bid (resp ask) side, at a time t. The spread St is de�ned as the di�erence between the two:

St = at − bt (1.1)

The spread is often given in tick units. We can classify assets by looking at their spread:

• Large tick stocks have an average spread almost equal to one, in tick units.

• Small tick stocks have an average spread equal to a few ticks.

The properties of the order book are di�erent for these two types of stocks. While large tick
stocks order book is full, small ticks stock order book looks sparse i.e some of the price levels
are empty.

The "price" of the asset is formed within the order book. But presented this way, it
suggests that there is one way to de�ne it, which is untrue. To illustrate our statement, we
provide a few de�nitions of prices that have interesting properties. First, we can de�ne the
price of the last transaction price. Not easy to use mathematically, the most common price
is the mid-price:

Pt =
at + bt

2
(1.2)

Let's note that the mid-price only changes when the best ask or best bid changes. If the
number of shares vb

t at the best bid and best ask va
t are bigger than the average size of

market orders, the time scale of price changes will be far bigger than the one between two
order book events. If we need a price that evolves on a faster time scale, we can introduce
the micro-price [2, 3] Pmicro

t that accounts for supply/demand interactions:

Pmicro
t =

va
t bt + vb

t at

va
t + vb

t

(1.3)

Whatever de�nition of the price we choose, it is the basic information on the asset coming
from the order book, that is available to all market participants. Its formation takes place
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through the order book, as a dynamical interaction of supply and demand.

As we wish to model the limit order book dynamics, we will look at the rates of order
book events. We de�ne a rate as the number of events per unit of time, typically seconds.
The output of an order book model will give us a dynamics of liquidity, spread and price,
hoping that they will reproduce the stylized facts we want to model.

Why study �nancial crises?

After brie�y describing markets' ecology, we ask ourselves the key question: why are �nan-
cial markets so prone to crashes? Indeed, in the past decades and century, �nancial markets
have episodically su�ered from a lack of stability. Important price drops, crashes happen too
frequently, shocking people's mind and sometimes leading to terrible economic outcomes.
Historical review of major crashes will certainly give us insights about the mechanisms of
crises. The 1920th decade was characterized by a huge growth of the economic production,
built on post-war optimism. During that period, stock prices dimbed too fast and became
too high relative to the underlying economic production, which caused overproduction. This
mechanism created a speculative bubble that was stopped by the very infamous "Black
Thursday" on October 24th 1929. On this very day, the Dow Jones su�ered of a 22.6% drop
at noon, followed by two consecutive drops the Monday and Tuesday after, starting then the
Great Depression. The analysis of what happened this day is very important to understand
the mechanism of �nancial crises. A great panic took the New York Stock Exchange and the
liquidity of buyers i.e. the number of buyers vanished: market participants were too afraid to
buy at any price. This mechanism made the price crash strongly. Unfortunately, this crisis
spread and hit the economic sector creating recession, abnormally high unemployment, etc.
The damages lasted several years, worldwide, and it took years for the economy to recover.
More recently, in October 1987, the US stock market su�ered from another crash of a huge
intensity: the price of the Dow Jones dropped of 22.6%. To prevent the �nancial crisis to
propagate into the real economy, the Fed injected liquidities in the �nancial sector. This
action avoided the emergence of a global crisis but the crash spread to other foreign markets
with huge drops on indices. But thanks to the Fed, this crash, called "Black Monday", was
just a "liquidity crisis" and not an economic one. It had another interesting consequence:
in 1998, the US government introduced a system of circuit-breakers to the stock markets.
It functions as follow: when the price moves more than a given threshold, market activity
halts. Unfortunately, these mechanisms could not fully prevent crises from occurring as the
21st century has already known a few, we can mention the �nancial crises of 2008 caused
by sub-prime mortgage backed securities, the Flash Crash on the S&P500 of 2010 [4] and
the Covid-19 crisis we are currently su�ering from. The origins of crises vary, depending on
the economic context, nevertheless, the crash itself seems universal. Panic takes the buyers
leading to liquidity dry out that makes the price crash.

An interesting observation is that some crises are not triggered by economic news. The
most striking example of it is the Flash Crash of the 6th of May 2010. The evolution of the
price of the future on S&P500 is displayed on Fig.1.2, the S&P500 is an index composed of
the 500 biggest US companies quoted on �nancial markets (NYSE or NASDAQ). A huge
drop of almost 10% hit this asset that was stopped by circuit-breakers. Surprisingly, the
price increased after market reopened with a much smaller daily price drop. No economic
crisis followed this �ash crash, but it spread to many other assets, where liquidity dried
out and price crashed. The origin of this �ash crash is due to an oversized sell order that
destabilized the market. The practices of High Frequency Traders were pointed out, and
they were accused of having worsened it. Other �ash crashes that happened in the last
decade include: the Treasury bond �ash crash the 15th of October 2014, the British pound
�ash crash the 7th of October 2016 on the pound/dollar rate and the Bitcoin �ash crash of
23rd October 2019 on the bitcoin/dollar rate for example. Nevertheless, �nancial markets
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have always been unstable. For example, on May 28th, 1962, the S&P500 su�ered a �ash
crash of severity similar to the that of May 6th, 2010 [5]. This happened with good old
market makers and, obviously, no HFT. Upon closer scrutiny one �nds that the frequency
of large price moves is remarkably stable over time, see e.g. [6]. Investigating those �ash
crashes may help to understand better market stability. Essential to fair trading to all market
participants, market stability is also indispensable for a stable economy. Past �nancial crises
have shown that destabilized markets could trigger economic ones. Thus, understanding the
mechanisms that lead to �ash crashes and liquidity crises is a core subject as it can help us
prevent dangerous panic on markets.
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Figure 1.2: Price of the future contract on S&P500 during the 6th of May 2010. The time
are displayed in GMT+1 i.e. French time.

The notion of panic, that remains over decades of �nancial industry, seems to be the key
of liquidity crises. This suggests that building a model for liquidity crises requires to model
the agents behind the market. The agent-based model (ABM) is actually designed for such
issues. The idea consists of modeling the behaviour of microscopic agents and extracting
the global behaviour of the system. This idea is very common in Statistical Physics and
has been applied to many systems such as gases or bird �ocks. Indeed, a gas is composed
of a huge number of particles that interact at the microscopic scale. The tools of statistical
Physics enable to derive the macroscopic behaviour from the microscopic ones. We wish
to do exactly the same thing: understand the microscopic scale by modeling the market
participants to get a macroscopic description of prices.

1.2 What drives price and volatility?

Modeling the price of an asset has been the center of interest for economists, mathemati-
cians and physicists for many decades. This di�cult challenge was the cause for the creation
of many interesting models. Modeling the price strongly depends on the scale we are looking
at: some people will be interested at the intraday scale while others will focus on longer
scales that can range from weeks to years. In this section we present some models that have
been introduced in the past. Even though some are far from accurately describing reality,
it is interesting to analyze the motivation behind them. We will be especially interested in
price models that can be micro founded i.e. that can be derived from a microscopic model.
For us, a good price model is micro-founded and can reproduce long term stylized facts.
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1

First draft of price models

Bachelier's price

The �rst major breakthrough in price process modeling was achieved by Louis Bachelier
in this thesis "Théorie de la spéculation" [7] at the very beginning of the 19th century. By
looking at the �uctuations of the price, he decided to use a very new mathematical object at
this time: the Brownian motion. The underlying idea was to model these �uctuations as in-
dependent and identically distributed random variables, with a �nite variance. Even though
these hypotheses seem too strong, the result has some interesting properties. Mathematically
speaking, we can write the price as:

Pt = P0 + rt+ σWt (1.4)

withWt a Brownian motion, r the local price trend and σ the volatility i.e. the amplitude of
the �uctuations of the price. One interesting property of this model is that the price without
its trend is martingale:

E [Pt+s − Pt − rs|Ft] = 0 (1.5)

where s > 0 and Ft denotes the available information1 at time t. In other words, we cannot
predict price changes from past price changes. This is relatively well veri�ed at large time
scale for the price process. On the other hand, such model predicts that the price changes
follow a gaussian distribution. Indeed, Pt+s − Pt is a gaussian distribution of mean rs ,
variance σ2s and thus a probability distribution function ρPt+s−Pt :

ρPt+s−Pt(x) =
e−

(x−rs)2

2σ2s√
2πσ2s

(1.6)

This fails to reproduce the empirical distribution of price changes, also called price returns,
for two reasons. First of all, it allows the price to be negative. The simplest modi�cation that
can be achieved is to consider that the logarithm of the price follows a Brownian motion, as
we will see later on. But it cannot explain the statistics of price changes on short time scales
as they are not well described by gaussian variables. Nevertheless, the model of Bachelier
was the precursor and the �nancial modelling that exploits Brownian motion and stochastic
calculus to build more realistic price models.

Log normal price

The model of Bachelier allows the price to be negative2, which makes his model not
suited for long-time behavior. The simplest way to bypass this problem is to consider that
the logarithm of the price is a Brownian motion:

Pt = P0e

(
r−σ2

2

)
t+σWt (1.7)

The price follows what we call a log-normal distribution. Fig. 1.3 displays two tests of such
model on the daily data of the S&P500 from 21/04/1982 to 04/06/2020. We de�ne the daily
return rd:

rd(t) =
Pt+1

Pt
− 1 ≈ ln

(
Pt+1

Pt

)
(1.8)

1Note that if Ft is not explicitely speci�ed, it refers to the information generated by the price process
itself.

2That situation could occur on commodities and energy markets after outsanding drops of demand, as a
consequence of storage costs.
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If we believe Eq.(1.7), then the daily returns should be gaussian. Fig. 1.3(a) checks if the
logarithm of the price follows a di�usion by looking at V (rd(·+ τ)− rd(·)) as a function
of the lag τ . When it behaves as a power law τ2H, the exponent H called Hurst exponent
determines the type of di�usion:

• H < 1/2: sub-di�usion.

• H = 1/2: normal di�usion.

• H > 1/2: super-di�usion.

Here we �nd H ≈ 0.48 in favour of a normal di�usion which is based on Brownian motion.
Nevertheless, Fig. 1.3(b) looks at the empirical distribution of the daily and compares it
with a gaussian with same mean and variance than rd. Not in agreement with the empirical
distribution, we see that large events are not taken into account at all by this model. Thus,
we will try to explain those large returns using other models.
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Figure 1.3: Properties of the daily price returns rd of the S&P500 from 21/04/1982 to
04/06/2020. (a) Scaling of V (rd(·+ τ)− rd(·)) and the a linear regression in loglog scale. τ
is given in trading days. (b) Probability distribution function (pdf) of the daily returns rd,
with a gaussian distribution with the same mean and variance.

E�cient price

The Bachelier's model and its extension have modeled price changes using a powerfull
mathematical tool, but they did not focus on why prices change in the �rst place. A simple
argument states that the large price changes could be explained by some external news.
Let's take a simple example, if a company that sells cellphones, announces that it has over-
performed by 20% more than the previous year, agents will reassess the value of the enterprise
making the price suddenly increase. In practice, news can create substancial price changes
if they are not expected. For example on May 1st 2020, Elon Musk tweeted that the price
of Tesla, his own company, was too high. The market reacted with a 10% drop of the price
during this day. An attempt of price model based on the idea asserts that the price is driven
by news. The economist Eugene Fama is famous for having highlighted this point. He
introduced the E�cient Markets Theory in the 1970's. His article "E�cient Capital Markets
: a Review of Theory and Empirical Works" [8] reviews all the theories that make the market
e�cient. This concept means that the market should fully re�ect the available information.
The price is, then, the rational anticipation of the future of an intrinsic value P∞. Calling
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Ft the available information until time t and Pt the price at time t, we can write:

Pt = E[P∞|Ft] (1.9)

We note that such dynamics de�nes a price that is a martingale for F . One important
remark we can address to this point is that the notion of information is unclear, as many
features can be taken into account. Nevertheless, the way it is formulated underlies that it
corresponds to news announcements that have a link with the asset. And so it does not take
into account volatility, trade imbalance, etc. According to this theory, the price should move
only when a piece of news appears and, in between, it should �uctuate around a constant
value. If we believe this dynamics, the amplitude of the �uctuations i.e. the volatility, and
the price changes should be explained only by the news.

Anomalous price returns: exogenous or endogenous?

The E�cient Markets Theory was �rst criticized by the economist Robert Shiller. His
works have shown that the volatility of the market is too high to be explained by rational
visions of the future. Well established in the literature [9] , this point is now considered
common fact. Agents are not rational and behave due to their emotions, fears and not
complex future expectations. This means that Eq. 1.9 is not well suited to describe the price
dynamics with Ft containing the exogenous news.

Previously, we gave examples of news that have a strong e�ect on the price. We would
like to reverse this analysis: considering large price changes, are they triggered by some
news? A recent study by Joulin et al [10] answered this question. They measured the
typical volatility σ on one minute and selected price changes bigger than 4σ. In a gaussian
world, those changes could not exist. But there �nancial markets are full of them. Then
the authors tried to link these large price changes with external news. They have drawn the
following conclusions: only 5% of such price changes are triggered by external news, meaning
that the other 95% are endogenous i.e. created by the market itself. The behavior of the
volatility around a piece of news or an endogenous event is di�erent. Indeed, while in both
cases it jumps right at the event and then relaxes to ito its preceding value, the way it relaxes
varies. In the �rst case the relaxation is a power law in time with exponent −1, whereas
in the second case, the exponent is −0.5. Note that, in both cases, the market takes some
time to digest the information but it takes more time for endogenous events. They lead to a
persistent high volatility regime that cannot be explained by any rational theory, providing
another evidence that justi�es Schiller's statement: agents in �nancial markets are far from
rational. We also note that modeling this high ratio of endogeneity will require to introduce
feedback in the dynamics in order to model agents' behavior.

Volatility is a complex process that has very interesting properties, not only around large
price returns. Fig. 1.4(a) shows volatility of the S&P500 over almost forty years. We have
estimated it with the Parkinson estimator [11]:

σ(t) =
1√

4 ln 2
ln

(
Hight
Lowt

)
(1.10)

where Hight (resp Lowt) is the highest (resp lowest) value of the price during the day
t. It reveals some clusters of high volatility regime and periods of lower volatility regime.
Fig. 1.4(b) displays the auto-correlation of the volatility in trading days, exhibiting a power
law like behavior. The auto-correlation is still relatively high after almost a lag of two years.
This property explains why volatility is described as persistent. By looking at Fig. 1.4(a),
the volatility seems to behave less regularly than a Brownian di�usion. In that sense, we can
say that volatility is rough. A characterisation of its roughness is related to the scaling of
V [σ(·+ τ)− σ(·)]. The Fig. 1.4(c) shows this scaling in a log-log scale, �tted by Aτ2H. The
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agreement with the �t is very strong, giving the value H = 6.7× 10−2. As we �nd H < 1/2,
the volatility is a sub-di�usive process. Gatheral et al [12] have done a full empirical
analysis of this roughness and have exploited these properties to construct a theoretical
framework compatible with this type of sub-di�usion. We are not going to go deeper into
this model as we will not use it later, even though it provides interesting elements.

Figure 1.4: Properties of the volatility of the S&P500 from 21/04/1982 to 04/06/2020. (a)
Volatility trajectory on which we have displayed four major crises: the "Black Monday" of
1987, the subprimes crisis of 2008, the Flash Crash of 2010 and the Covid-19 crisis of 2020.
(b) Auto-correlation of the volatility in trading days. (c) Scaling of V [σ(·+ τ)− σ(·)] with
τ �tted by Aτ2H, with H = 6.7× 10−2.

These two stylized facts show that the volatility and price dynamics are highly endogenous
and strongly correlated. Furthermore, the power law behavior of V [σ(·+ τ)− σ(·)] is an
indicator that the volatility process is critical i.e. it is constantly on the edge of instability.
The previous models of section 1.2 cannot capture any of such behaviors as their dynamics is
based on exogenous shocks only. In order to understand this near-criticality of the markets,
we need to look at endogenous dynamics at the micro-scale.

Self-excited models for price dynamics

The endogeneity of the volatility indicates the presence of feedback. To develop a con-
sistent volatility model, we can draw on what has been done in other areas of research.
For example, in Physics feedback mechanisms are used in many �elds: from electronics to
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�ocks of birds modeling. It gives birth to a wide range of models that are able to describe
non-trivial dynamics. More recently, an auto-excited model has become popular in �nance:
the Hawkes process. Introduced by Hawkes in 1971 [13], his �rst goal was to analyse and
predict replicas of earthquakes but it can be applied to many other �elds (population dynam-
ics, �nance, etc.) as long as we model one-time events with stochastic rates. The feedback
introduced by Hawkes is built on the following ideas:

• The more events happened in the past, the more likely a new one will happen.

• It takes the system some time to "forget" past events.

Before going into the details of mathematical modeling, intuition can help us to under-
stand properties of the dynamics. Indeed, such feedback is stable if one event triggers less
than one new event on average. Of course, this framework can be generalized to a multi-
dimensional process, involving di�erent types of events. We can give examples of events that
we will focus on:

• Best bid and best ask changes.

• Order book events: limit order depositions, limit order cancellations and market order
at a given price.

Let's turn to the mathematical presentation of this Hawkes process. We will use this formal-
ism for the rest of the thesis, so we detail it in this section. Let N be a multidimensional
counting process, N i

t counts the number of events i before time t. We call λ the stochastic
intensity of the process, which we can also call rate, and we can write:

λit = lim
dt→0

P
[
N i
t+dt −N i

t > 0
∣∣Ft]

dt
(1.11)

where Ft is the information generated by the process until time t. We can interpret this
intensity as the in�nitesimal probability of having an event at time t. One useful property is

that
(
M t = N t −

∫ t
0 λsds

)
t∈R+

is a martingale. Having introduced the formalism of point

process, we turn to explanation the feedback we have mentioned before:

λt = α0 +

∫ t

0
φ(t− s)dN s (1.12)

where α0 is a vector and φ is a matrix of functions. We can interpret the terms of the
right-hand side (RHS) of Eq. (1.12) as follow:

• α0 represents the exogenous rate of events.

• φ is the feedback kernel: an event of type j that occurred at time s contributes with
φij(t) to the intensity λit+s.

The condition of stability is obtained by looking at the spectral properties of the matrix
||φ|| =

(
||φij || =

∫
R+ φ

ij(s)ds
)
ij
. It is stable when its spectral radius ρsr (||φ||) i.e. the

maximum of the absolute values of the eigenvalues is strictly lower than one:

ρsr (||φ||) < 1 (1.13)

In the one dimensional case, this spectral radius is equal to ||φ11|| which is the average
number triggered by one event, justifying our simple argument. Once we verify this stability
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condition, we can show that:

lim
t→+∞

E [λt] = (I− ||φ||)−1α0 (1.14a)

lim
t→+∞

1

t
Cov (N t,N t) = (I− ||φ||)−1 Diag

(
(I− ||φ||)−1α0

)(
I− ||φ||†

)−1
(1.14b)

where I is the identity matrix, Diag is the diagonal matrix from a vector and the symbol †
represents the transpose of a matrix. Bacry et al in [14] have proved a functional central
limit theorem, under some hypotheses on the kernels. This means that the behaviour of the
Hawkes process at large time consists in a di�usion with constant trend Λ = lim

t→+∞
E [λt] of

Eq.(1.14a) and covariances ΣN = lim
t→+∞

Cov (N t,N t) /t given in Eq. (1.14b):

N t ≈
t→+∞

Λt+
√

ΣNW t (1.15)

where W is a vector of independent Browian motions.

For a literature dedicated for the calibration of Hawkes processes, see [15, 16, 17] for many
examples, with applications on �nancial modeling. Before going into a complex modeling,
some studies have focused on the estimating ρsr (||φ||) which can be interpreted as the ratio
of endogeneity of the market. Hardiman et al [18], used a Hawkes process to count mid-
price changes. After calibrating the model, they have shown that the price was critical as
ρsr (||φ||) ∼ 1. They have followed their analysis in second paper [19] where they have looked
at the in�uence of many parameters on the ratio of endogeneity. One crucial result for us
concerns the endogeneity during the Flash Crash of 2010: they showed that it corresponded
to a burst of endogeneity, con�rming the results of Filimonov et al [20]. Such a burst of
endogeneity corresponds to a market reaching criticality.

Hawkes based models for price dynamics will provide a di�usive behavior at a large time
scale, with constant volatility, incompatible with the intermittence of the volatility we see in
data. As data reveals that the price is critical from a Hawkes point of view, models should
take into account criticality. Jaisson et al have investigated in two papers [21, 22], the
behavior of a Hawkes process at a large time when it reaches criticality i.e. ρsr (||φ||)→ 1.
In the one dimensional case, the asymptotic behavior depends of the properties of the kernel:

• If
∫ +∞

0 tφ(t)dt < +∞, the intensity of the Hawkes process converges to a CIR process,
see [23] for details on the CIR model. It gives:

dλt = −C1(λt − α0)dt+ C2

√
λtdWt (1.16)

where C1, C2 are two constants and W a Brownian motion.

• If φ(t) ∼
t→+∞

t−1−H with 0 < H < 1, the intensity of the hawkes process converges to

a rough CIR process. If3 H > 1/2, we have:

λt = FH(t) + C1

∫ t

0
fH(t− s)

√
λsdWs (1.17)

where FH(t) =
∫ t

0 f
H(s)ds, fH(t) = C2t

H−1EH,H(−C2t
H), EH,H(x) =

∑
n≥0

xn

Γ(Hn+H)
and C1, C2 are two constants and W a Brownian motion. Γ denotes the Gamma
function.

The second result is quite technical but the function fH gives similar sub-di�usive results

3See [22] for the case H ≤ 1/2
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as observed on volatility data. Furthermore, calibrating Hawkes processes on �nancial data
usually gives power law kernels with exponents between one and two, see [16, 18], which
motivates to look at such scalings.

Zumbach e�ect and Q-Hawkes process

Financial series are well known to be not invariant by time reversal, meaning that running
�nancial series forward or backward in time does not lead to the same results. A glance at
Fig. 1.4(a) is probably convincing enough to justify this statement. Nevertheless, the most
common proof of this statement relies in the leverage e�ect: past large negative price returns
lead to more future volatility. But large past volatility does not lead to future large negative
price returns, see Bouchaud et al [24]. G.Zumbach has investigated other time reversal
asymmetries in �nancial time series [25, 26]. In these papers, he highlights the so-called
Zumbach e�ect: past price trend leads to future volatility, independently of its sign. This
e�ect was later on con�rmed by Chicheportiche et al. [27]. An example of the Zumbach
e�ect is displayed on Fig. 1.5, using daily price returns de�ned in Eq. (1.8) and volatility
de�ned in Eq. (1.10). We plot the correlation Cor

(
r2
d(·+ τ), σ(·)

)
with a lag τ . It reveals

that Cor
(
r2
d(·+ τ), σ(·)

)
> Cor

(
r2
d(· − τ), σ(·)

)
for τ < 0 meaning that the e�ect of past

square price trend on future volatility is stronger than the e�ect of past volatility on future
square price trend. This e�ect does not arise from the leverage e�ect as conditioning on
the sign of the daily return does not change this result. Note that we distinguish the weak
Zumbach e�ect when Cor

(
r2
d(·+ τ), σ(·)

)
> Cor

(
r2
d(· − τ), σ(·)

)
for τ < 0, from the

strong Zumbach e�ect when the conditional law of future volatility explicitly depends on
past returns trajectory. In the following, if not speci�ed, we are going to discuss about the
Zumbach e�ect for the strong Zumbach e�ect, by overuse of language.

100 75 50 25 0 25 50 75 100
 (days)
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100
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(

+
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Figure 1.5: Plot Cor
(
r2
d(·+ τ), σ(·)

)
with a lag τ in days, on the S&P500 from 02/01/1962 to

08/05/2020. This curve is not symmetric by a time reversal, emphasizing the weak Zumbach
e�ect.

Although theoretical models can reproduce the weak Zumbach e�ect, such as the rough
Heston model see [28], introducing a quadratic feedback term of past prices on volatility seems
the natural way to get the strong Zumbach e�ect. The quadratic ARCH framework seems
suited for this purpose, see [29, 27]. More recently, Blanc et al [30] coupled this framework
with Hawkes processes that gave birth to a very interesting process: the Quadratic Hawkes
process (Q-Hawkes). Let's consider a counting process N that counts the number of price
changes. At each price change, we draw a Bernouilli variable, independent of the past, to
choose the sign of the price change. Calling Tn the random times of price changes and εn
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the random sign of the price change, we can write the value of the price Pt:

Pt − P0 =
∑
Tn<t

εndNTn (1.18)

The intensity of the process N is given by the following equation:

λt = α0 +

∫ t

0

∫ t

0
K(t, s)dPsdPt (1.19)

with K a symmetric kernel. The last term of the RHS of Eq.(1.19) corresponds to the
quadratic feedback. In the special case where K(t, s) = Z(t)Z(s), we get:∫ t

0

∫ t

0
K(t, s)dPsdPt =

(∫ t

0
Z(s)dPs

)2

revealing the importance of the square trend on the intensity. Due to such feedback, we call Z-
Hawkes these processes. As dP 2

t = dNt, the stability condition is similar to a Hawkes process:
TrK =

∫
R+ K(t, t)dt < 1. In the Zumbach case, it reads to TrK =

∫
R+ Z(t)2dt = nZ . A

deep analysis of this model shows that it exhibits the strong Zumbach e�ect and that it
reaches a stationary state where the volatility has a fat-tailed distribution, in the case of
an exponential kernel. This fat-tailed property is a direct consequence of the Zumbach
component. Indeed, in this framework, the squared volatility is equal to the intensity of the
process and its distribution ρλ is such that:

ρλ ∼
λ→+∞

Cst λ
−
(

3
2

+ 1
2nZ

)

The strength of the Zumbach component diminishes the exponent of the volatility, making it
critical when nZ → 1. More results and details are displayed in the article [30], exploring the
interaction Hawkes with Zumbach and mathematical details are well explained in Dandapani
et al [31].

Market impact: how much do I move the price when I buy/sell?

In the past recent year, a new stylized fact has been highlighted by a broad community of
academics and practitioners. Known as the market impact, it is a consequence of interaction
between supply and demand on price formation. Let's start with a simple example to
understand what the market impact is: consider agents that want to buy a number Q
of shares of an asset over a time horizon T . We raise the following question: what is the
average price per share they will pay? Let's analyze the di�erent ways that they can buy
these shares and the costs associated with these strategies. They can decide to buy all the
shares instantaneously, but it may be possible that the best ask does not contain Q shares,
forcing the agents to go to the next price level which has to be higher, thus paying more than
the initial price. If this amount is smaller than the available quantity at the best ask, they
will pay the best ask. But, they will push the micro-price up. On average, with this strategy,
the agents are going to pay more than the best ask per share and causes the price increase.
They can be smarter and decide to split their order and execute a metaorder. Both ways
of trading (with limit orders and market orders) tend to increase the micro-price and force
the agents to pay more than the best price he could have on average. To conclude from this
example, executing a strategy changes the price due to the �nite liquidity of an asset, that
creates an additional trading cost. This change of price is called the market impact, that
shifts the price up (resp down) for buy (resp sell) orders.

Studying the market impact has been relevant not only for academics who wish to fully
understand price formation but only practionners who attempt to reduce trading costs. In
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fact, many empirical studies have focused on quantifying this market impact, converging to
a very robust result: the square root law. The average change of price Pt due to signed
executed volume Qt is:

E [Pt − P0|Qs, s ≤ t] ∝ σd sign (Qt)

( |Qt|
Vd

)δ
(1.20)

where σd is the daily volatility, Vd the daily traded volume and 0.4 < δ < 0.6 bears witness
of the concave nature of market impact. The robustness of this law is indisputable as it
holds on very di�erent types of markets, equity, derivatives, cryptocurrency, etc., and not
only for aggressive strategies, see [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. Such universality
across assets is a strong clue that this e�ect is created through interaction between supply
and demand. Even though, some price models presented above are satisfying, the need to
model supply and demand incite us to model the order book to get a joint price and liquidity
dynamics.

Figure 1.6: The impact of metaorders for CFM proprietary trades on futures markets, in the
period June 2007 â December 2010. This plot has been taken from Tóth et al [32]. We show
∆/σ vs. Q/V on a log-log scale, where ∆, σ and V are the market impact of a metaorder of
size Q, the daily volatility and daily volume measured the day the metaorder is executed.

1.3 Modeling the order book

Access to order book data started to be common with the development of electronic
markets, in the early 2000s, opening a new area of research. Practitioners and academics
have provided models of limit order book dynamics that can be tested on empirical data.
This challenge seems very di�cult: the order book can be seen as a multidimensional object
where every price level interacts with each other. Without any strong assumption on those
interactions, the curse of dimensionality will make any calibration impossible as well as model
simulations. As the main activity is concentrated on the best levels, one possible way to
avoid this curse consists in building a model on the best levels only, see [16] for example.
Nevertheless, we wish to have a global description to describe liquidity crises. We present
two order book models that do not su�er too much from dimensionality, on which we will
build our work.
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A discrete model: the Santa Fe model

The so-called Santa Fe model was introduced in [43, 44] by people working at the Santa
Fe Institute. It belongs to a discrete modeling of the order book: the price levels are discrete
as well as the number of limit orders stored in the book. The assumptions of the dynamics
are the following:

• Buy (resp. sell) limit orders arrive with constant rate λ for price levels p < Pt (resp.
p > Pt), where Pt is the mid-price.

• Market orders arrive with constant rate µ at best levels only. They match an existing
limit order of the opposite side and "consume" it through a transaction.

• Each limit order stored in the limit order book can be cancelled with constant rate ν.

• All the orders have the same size equal to one.

• All the events are mutually independent.

• When two orders of di�erent types meet it gives a transaction and the two orders are
annihilated through the reaction A+B → ∅.

These dynamics are presented in Fig.1.7(a). From the hypotheses, we note that the mid-
price is the reference price around which the dynamics is based. This zero-intelligence model
is hard to solve analytically. Nevertheless, some interesting quantities are tractable. Far
from the mid-price, we can show that the number of orders V (p) in a price level p follows a

Poisson distribution with parameters V ∗ = λ/ν: P (V (p) = V ) = e−V
∗ V ∗V

V ! . We notice that
this distribution is independent of the price level p. We also can show that, far from the mid-
price, gap between two occupied price levels are geometrically distributed with parameter
(eV

∗ − 1)−1, see [6] for more details. The behavior of the order book is di�erent depending
on the value of V ∗:

• V ∗ � 1, the order book is full. This case corresponds to large tick stocks.

• V ∗ � 1, the order book is sparse: many price levels are empty. This case corresponds
to small tick stocks.

Taking into account what happens near the price can be achieved by adding a correction in
V ∗ that takes into account the time spent at the best.

One major advantage of this model lies in its power of spread prediction. Indeed, the
predicted spread from the Santa Fe model with the �tted parameters matches well the
observed spread, see [6] for plots and more details. As the rates are assumed to be constant,
�tting λ, µ and ν on data is very simple and consists in counting the number of events over
the time of observation, as detailed in [6]. Not surprisingly, its predictive power fails for
volatility forecasting. Indeed, there is no feedback loop in the dynamics, essential to capture
the endogeneity of the volatility. We can exhibit other problems arising from this model
such as mean reverting prices and the existence of a pro�table market making strategies.
Nevertheless, its predictive power is still impressive in comparison to the simplicity of the
model. This new framework can be naturally extended in many possible ways. While state-
dependency has been investigated in Huang et al [45] , the in�uence of past prices has to be
answered.
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Figure 1.7: (a) Schematic of the Santa Fe model. (b) Schematic of the LLOB model.

A continuous model: Latent Limit Order Book (LLOB)

Reproducing the square root law is a key challenge for �nancial modellers. As the Santa
Fe model predicts an impact roughly linear in the size of metaorders, academics have built
new agent-based models that advance the understanding of this law. What is missing from
the Santa Fe model is the possibility of agents to change the price of their order. Indeed,
agents cannot shift their order from a price level to its neighbours. The simplest way to
account for price revision consists in introducing di�usion between price levels. On the other
hand, the interaction between a buy (bid) and sell (ask) order produces a transaction that
deletes the existing orders in the order book. In the context of a chemical reaction, this
would be written as A + B → ∅. Literature on modeling these types of chemical reactions
is wide, providing the powerful framework of the reaction-di�usion equations. Donier et
al [46] have adapted this framework to model latent order books. The word latent stands
for all the unobserved orders, which are counted in the order book, even if they are not yet
placed in the real order book. Modeling the latent order book is much more convenient and
we implicitely assume that the latent and real order book coincide close to the mid-price.
Reaction-di�usion equations set a continuous description of order books, not suited for very
short time scale, but very powerful for analytical results. We expect such a model to be
e�cient on the intraday scale and to be able to model the market impact of metaorders.

Consider latent limit order densities for bid and ask side of the book ρB(t, x) and ρA(t, x)
at price x and time t. We call Pt the mid-price. The dynamics is based on the following
assumptions:

• Agents place bid (resp. ask) limit orders with rate λ when x < Pt (resp. x > Pt).
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• Agents can cancel existing limit orders with rate ν.

• Agents can shift an existing limit orders through di�usion of parameter D.

• Agents can trade with a market order �ux mt at the mid-price Pt.

• When two orders of di�erent types meet it gives a transaction, through the reaction
A+B → ∅.

The transactions are instantaneous in the market, making impossible any overlap between
the two densities4. Then, the variable φ` = ρB − ρA describes the whole dynamics as
ρB = max (0, φ`), ρA = max (0,−φ`) and Pt is the unique zero of this function: φ` (t, Pt) = 0.
The dynamics follows:

∂tφ` = D∂xxφ` + λ sign (Pt − x)− νφ` +mtδ (x− Pt) (1.21)

Note that we have assumed that the external news shift the order book and the mid-price
of the same quantity. At stationarity, when there is no market order, the shape of the book
is the following:

φst
` (ξ) = − sign(x)

λ

ν

(
1− exp

(√
ν

D
ξ

))
(1.22)

With ξ = x − Pt. The stationary latent order book is locally linear around the price
with slope L = λ/

√
νD. This property is essential to reproduce the square root law. Let's

consider an agent that trades instantly a quantity Q in a stationary order book, the shift
of price ∆x that matches the quantity is in book, giving L∆x2 = Q. This very simple
argument enables us to get to the square root law. As linear order book seems to be the
essential property to get the square root law, we decide to zoom around the price, by taking
λ, ν → 0 with L constant. Eq. (1.21) is modi�ed in:

∂tφ` = D∂xxφ` +mtδ (x− Pt) (1.23a)

lim
x→±∞

∂xφ` = −L (1.23b)

Fig. 1.7(b) represents the dynamics in this limit. In the absence of metaorder, the order
book is linear with slope L. In the general case, it is asymptotically linear with slope L
which means that there is a �ux of orders at in�nity J = LD. Thus, we expect to get
the square root law as explained above. To prove it, we solve Eq. (1.24), we apply Fourier
transformation, and get the following implicit equations:

φ`(t, x) = −Lx+

∫ t

0

ms√
4πD(t− s)

e
− (x−Ps)2

4D(t−s) ds (1.24a)

Pt =
1

L

∫ t

0

ms√
4πD(t− s)

e
− (Pt−Ps)

2

4D(t−s) ds (1.24b)

Eq. (1.24b) is a complex �xed-point equation that cannot be solved in the general case.
But we can prove that there is no price manipulation is this setup. Nevertheless, we can
develop Eq. (1.24b) in two asymptotic regimes. To determine in which regime we are, we

4Note that a market latency too high could occasionally lead to a reversal of the best bid and best ask.
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compare the market order rate mt with the �ux of orders at in�nity J . The results follow:

Pt =
1

L

∫ t

0

ms√
4πD(t− s)

ds if ∀t mt � J (1.25a)

Pt =

√
2

L

∫ t

0
msds if ∀t mt � J (1.25b)

As Qt =
∫ t

0 msds, we recognize the square-root law in the second regime. The �rst one
gives the propagator model that was introduced in [47], compatible with the square-root for
constantmt. Fig.1.8 displays examples of price trajectory for constant meta ordersmt = m0,
in the two regimes, that reproduces the theoretical predictions. Note that in this �gure, the
time t is a proxy for the Qt as the meta orders are constant.
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Figure 1.8: The impact of constant metaorders (mt = m0) from Eq.(1.24). As the rate is
constant, Qt is proportional to t plotted on the x axis. T denotes the time horizon of the
metaorders.

This model reproduces the square-root for metaorders, opening a new range of order book
models based on a reaction-di�usion framework. Indeed further extensions of this model have
been achieved so far. For example, introducing heterogeneity of agents has been done by
Benzaquen et al. [48]. Our last chapter will be devoted to the presentation of one of them.

1.4 Objectives of the manuscript

We now turn to our speci�c purpose: analysing liquidity crises. We address ourselves some
key questions that are relevant to our work. In all our manuscript, we will systematically
go from empirical investigations to numerical and analytical ones, then back and forth.
Empirically speaking:

• Can we �nd empirical evidence at the micro-scale i.e. the scale of order book events
that account for market destabilization?

• What are the micro foundation of the Zumbach e�ect?

• Can we �nd clues for near-critical markets?

Regarding modeling:
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• How can we construct a model that reproduces some key stylized facts, such as the
Zumbach e�ect, and that exhibits a condition for market stability?

• If there exists a transition in our model, can we characterize it by �nding the condition
of transition and the associated critical exponents?

• Can we calibrate our newly built model to �nancial data?

As we will see, the concepts and models of this introduction give us the appropriate tools
to tackle these questions. In particular, we will use linear Hawkes processes and quadratic
Hawkes processes to build self-excited models and the Santa Fe model or the LLOB model
to describe the order book. We now brie�y present our new results and explain how they
are linked with the concepts of this introduction.

Our data-driven approach starts in Chapter 2 with an empirical analysis of self-excited
models on order book dynamics. The dynamics of order book events (limit order depositions,
cancelations, market orders) are known to be extremely endogenous and thus it is natural to
describe them by Hawkes processes. In addition, the recent discovery of the Zumbach e�ect
has driven us to investigate the in�uence of past price feedback on order book events. We
expect to obtain similar e�ects at the scale of order book events. In terms of inference, this
means that we need to introduce a quadratic feedback of price changes on order book events,
in the spirit of Q-Hawkes processes. To do so, we extend the Q-Hawkes process into the
Generalized Quadratic Hawkes process (GQ-Hawkes) which is designed to explore such price
feedback on order book events. This self-excited process has a quadratic feedback component
on the price changes in addition to a Hawkes component. Then, we provide two calibration
procedures and apply them to tick-by-tick order book data from the EURO STOXX contract.
Both reveal a Zumback-like e�ect: past price trends decrease future liquidity, independently
of its sign, that we can interpret as a micro foundation of the Zumbach e�ect. Furthermore,
while using the most sophisticated one, we are able to emphasize the power law shape of the
kernels that leads us to the path of near-critical markets. This idea of near-critical markets
is then con�rmed by introducing and studying the speci�c notion of e�ective spread.

In Chapter 3, we provide a self-contained order book model that takes into account
quadratic feedback e�ects of the price process. As we focus on the dynamics of order book
events, we need to have a discrete description of the order book and so we are naturally
inspired by the Santa Fe model explained above. We add to this model a quadratic feedback
in the arrival rates of events, in the spirit of the Generalized Quadratic Hawkes process,
used in Chapter 2. For sake of simplicity, we only investigate the component where the price
feedbacks the most: on the cancelations. Our hypotheses ensure that our model reproduces
a Zumbach-like e�ect on the liquidity of the order book. Then we proceed to a numerical
analysis of the model. It appears that this Zumbach-like e�ect at the micro level can indeed
destabilize markets by drying up liquidity, if the feedback is strong enough. Then, using a
scaling procedure, we prove that our model exhibits a second order phase transition. We
also provide the critical exponents of this transition, revealing that it belongs to a new
universality class.

The Santa Fe model is very di�cult to solve analytically so it is obviously the same for our
quadratic Santa Fe model. As the main di�culties come from the intricate joint dynamics of
the order book events, we decide to focus on one given quantity in Chapter 4: the spread.
Our approach consists in modeling spread opening events and spread closing events. We use
the previously introduced self-excited models to build various dynamics for �rst ones, while
we assume that the rate of second ones is constant (as we focus on destabilising events).
Assuming that the events that open the spread follow a linear Hawkes process results in
a dynamics with a transition between stable and unstable spread. Furthermore, we derive
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1.4. Objectives of the manuscript

1

an explicit stability condition and numerically compute the equilibrium distribution of the
spread, in the stable phase, that appears to be exponential. Replacing the linear Hawkes
process by a Q-Hawkes process does not qualitatively change the results, except that the
equilibrium spread distribution is fat-tailed. Then, we investigate the e�ect of a non-linear
Hawkes process, providing a new and interesting tool to describe the dynamics of �nancial
markets. We show that the dynamics is meta-stable, leading to another scenario for liquidity
crises in which we compute the average time of the �rst crash.

Chapter 2 to 4 focus on discrete order book. In Chapter 5, we use the continuous
framework of the LLOB model. We introduce a liquidity revealing mechanism that links
the latent order book with the real one. This has two major implications. First, our new
model exhibits a stability condition above which lag e�ects due to the revealing rate is
responsible for liquidity evaporation. It provides an alternative scenario for liquidity crisis
as the Zumbach e�ect does not appear in the model. This stability condition enables us
to draw a stability map from the model parameters. Then, an important buy product of
our approach is that we are able to calibrate our model on �nancial data. More precisely,
we provide a numerical scheme that infers empirical order book shapes and apply it on
more than one hundred US stocks. To qualitatively quantify their stability, we display the
aforementioned �ts on the stability map. Finally, we numerically investigate the market
impact of metaorders in this framework and show that it reproduces the famous square root
law.

23



Take home message of Chapter 1

1. Liquidity crises. The liquidity dries out and consequently the price drops. The
most striking example is the "Flash Crash" the 6th of May 2010.

2. Limit order book. It stores the buy and sell orders, in double auction electronic
markets. Market participants can deposit such limit orders, cancel or execute an
existing limit order via a market order.

3. Endogenous market activity. Anomalous price changes are too frequent to
be explained by just a few pieces of news. Only ∼ 5% is attributed to news while the
others are endogenous i.e. created by markets themselves.

4. Hawkes process. It is a self-excited points process designed to study feedback
from past events onto future ones. They are perfectly suited to study price changes
and order book events.

5. Volatility. Volatility is intermittent, highly correlated and rough. These
characteristics can be reproduced by a critical Hawkes process.

6. Zumbach e�ect. The Zumbach e�ect asserts that past price trends increase
future volatility, independently of their sign. Quadratic Hawkes processes are
introduced to reproduce this e�ect.

7. Market impact. Market orders move the price proportionally to the square root
of the executed volume. Only some order book models can reproduce this stylized fact.

8. Santa Fe Model. Limit order depositions, cancellations and market orders are
independent, constant over time and price level. This simple framework can replicate
the dynamics of spreads, but not the one of the volatility.

9. LLOB. The Latent Limit Order Book model is based on a reaction-di�usion
framework with A+B → ∅. It reproduces the square-root law and opens a new �eld
of order book models.
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2
Empirical evidence of price

feedback

Empirical data reveals that the liquidity �ow in the order book (depositions, cancellations
and market orders) is in�uenced by past price changes. In particular, using a minimal setting,
we show that liquidity tends to decrease with the amplitude of past volatility and price trends.
Then, we propose an actionable calibration procedure for general Quadratic Hawkes models
of order book events (market orders, limit orders, cancellations). One of the main features
of such models is to encode not only the in�uence of past events on future events but also,
crucially, the in�uence of past price changes on such events. We show that the empirically
calibrated quadratic kernel is well described by a diagonal contribution (that captures past
realised volatility), plus a rank-one �Zumbach� contribution (that captures the e�ect of past
trends). We �nd that the Zumbach kernel is a power-law of time, as are all other feedback
kernels. As in many previous studies, the rate of truly exogenous events is found to be a
small fraction of the total event rate. These two features suggest that the system is close to
a critical point � in the sense that stronger feedback kernels would lead to instabilities.

From:
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Un problème sans solution est un problème mal posé

Albert Einstein

2.1 Introduction

The accumulation of empirical clues over the past few years provides mounting evidence
that most of market volatility is of endogenous nature [49, 50, 10, 51, 52]. This obviously
does not mean that signi�cant news, such as the very recent Covid-19 crisis, do not impact
�nancial markets, but rather that these only account for a small fraction of large price moves.
Think for example of the S&P500 �ash crash of May 6th, 2010 [4], see also [5], which has
not been triggered by any outstanding piece of news. Furthermore, while one may argue
that in some cases large drops are exogenously triggered, their ampli�cation is often due to
endogenous mechanisms [6].

The behaviorally supported idea that agents tend to overreact, especially during crises,
has driven the market modeling community to fall back on self-exciting processes, better
known as Hawkes processes [53]. The latter have proven to be extremely e�cient to tackle the
intricate dynamics of the order �ow and other self-excited e�ects in �nancial markets [54, 55,
56, 57, 58, 59, 60, 61, 18, 62, 45, 63, 64, 65, 66, 20, 67]. Nonetheless, linear Hawkes processes
are unable to account for an empirical �nding essential to our eyes to tackle endogenous
instabilities: the Zumbach e�ect [26, 27, 30, 28]. The latter states that past price trends
increase future activity, regardless of their sign. Quadratic Hawkes processes (Q-Hawkes),
inspired by quadratic ARCH processes [29, 27], were recently introduced to circumvent this
issue [30, 31], and have proven key to understand fat-tails in the distribution of returns, as
well as spread, volatility and liquidity dynamics [52].

The present chapter attempts to capture such feedback e�ects from empirical order book
data. In Section 2.2, we empirically show that event rates in the limit order book are indeed
a�ected by past volatility. Using tick-by-tick order book data from the EURO STOXX
contract, we calibrate, in a minimal setting, a generalisation of the self-exciting Hawkes
processes. In particular, we show that market orders and cancellations tend to increase
when recent price changes are large, in turn diminishing the available liquidity, much as
argued above. Then, we fully calibrate on real market data a version of the generalized Q-
Hawkes process. We provide convincing evidence for the price/liquidity feedback mechanism
described above and quantify its implications. In section 2.3 we brie�y recall the ingredients
of the model and present the non-parametric calibration procedure, inspired by the methods
introduced by Bacry et al. [17, 16, 15]. We apply such calibration to order book data on
the EURO STOXX and BUND futures contracts. In section 2.4 we present an alternative
method that needs fewer assumptions to compute the overall e�ect of past price moves on
future liquidity �ow. We introduce a low rank (Zumbach-like) approximation that allows us
to denoise the feedback kernels and separate the e�ects of trend and volatility and apply it
to our futures contracts. In section 2.5, we focus on the liquidity �ow and analyse spread
time series in relation with adequate trend and volatility signals. In section 2.6 we conclude.

2.2 Destabilizing Feedback E�ects: Empirical Analysis

In this section, we provide an empirical analysis of feedback e�ects within order book
dynamics. Consider an electronic market with three event types only: limit order deposition
(LO), limit order cancellation (C) and market orders (MO).

It is already well documented that these events strongly interact with one another. A
very useful framework to describe these interactions is provided by Hawkes self-exciting point
processes [53], which have already been applied to order book events in [65, 57, 45, 59, 56].
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2.2. Destabilizing Feedback E�ects: Empirical Analysis

2

Here we want to extend these studies to account not only for activity feedback but for price
feedback as well, in the spirit of the Quadratic Hawkes (Q-Hawkes) model of Blanc et al. [30].1

Order Book Data

In this subsection, we focus on describing the order book data we have. We have selected
the EUROSTOXX, BUND, BOBL and Schatz, well know for being liquid, large tick future
contract. We have selected data on regular trading hours (9a.m. to 16p.m.). The level
of precision is very high: we have every order book events with a time precision of 1µs =
10−6s. Note that at this scale, very few events are apparently synchronized without breaking
causality. It will not impact our future work as we wish to study larger time scales. We focus
on the best quotes in the following, where we have the biggest number of events. Fig. 2.1(a)
shows the pattern of the volatility of the EUROSTOXX and Fig. 2.1(b) displays the average
rate of events Λtot. Both plot, computed other a 5 minutes bins, reveal a typical U-shape. The
high activity around 2p.m. is due to the opening of the US market. Furthermore modeling
will not take into account intraday pattern. Thus, we will normalize time intervals between
two events by the average pattern: Λtot(t)dt/E[Λtot]→ dt.
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Figure 2.1: Intraday patterns exhibiting a U-shape, on the EURO STOXX contract between
2016/09/12 and 2020/02/07. (a) pattern of the 5 minutes volatility. (b) pattern of the rate
of events, estimated on a 5 minutes bins.

Average Event Rates

Figure 2.2 displays the average order size, frequency of events and order rate (= order
size × frequency) as function of the re-scaled volume at best for each event type, on the
EURO STOXX contract between 2016/09/12 and 2017/04/28. The volume at best has
been rescaled by the average limit order size in the same time bin, in order to eliminate
intraday seasonality. In terms of time scales, we �nd that for EURO STOXX the average
time between two events is τe = 0.03 s, whereas the average time between two price changes
is τp = 7 s. In addition to the expected bid-ask symmetry, Fig. 2.2(c) reveals that the total
rate of cancellations and market orders are roughly proportional to the size of the queue,
whereas limit order deposition does not show any appreciable dependence on the volume at
best. This observation motivates the speci�cation of the Q-Hawkes model that we calibrate
below.

A state dependent Generalized Q-Hawkes model

For the sake of simplicity, we focus on events (LO, C, MO) at the best quotes only, bid
(b) and ask (a) (we do not distinguish between limit order deposition at the current best or

1See also [68] for a recent analysis of the complex interplay between intraday volatility spikes and negative
stock market jumps.
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Figure 2.2: Average order size, frequency of events and order rate (= order size × frequency)
as function of volume at best rescaled by the average limit order size, on the EURO STOXX
contract between 2016/09/12 and 2017/04/28.

inside the spread). We therefore introduce the following six-dimensional process that counts
all such events:

N t =
(
NC,b
t , NLO,b

t , NMO,b
t , NMO,a

t , NLO,a
t , NC,a

t

)
.

We further assume that the time dependent intensities λt of these six processes follow the
following state dependent generalized Q-Hawkes dynamics:

λt = vt

(
α0 +

∫ t

0
φ(t− s) dN s +

∫ t

0
L(t− s) dPs +

∫ t

0

∫ t

0
K(t− s, t− u) dPsdPu

)
+

,

(2.1)

where dPs is the price change at time s in tick units, vt = Diag
(
vb
t , 1, v

b
t , v

a
t , 1, v

a
t

)
with vb/a

t

the volume at the best bid/ask in units of average limit order size. Equation (2.1) assumes
that cancellations and market orders are multiplicative while limit order event types are
additive, as mentioned above. Note that all kernels L,K are 6-dimensional vectors and φ a
6-dimensional matrix. We also assume that they ensure positive intensity whatever the past
trajectory of the price. The purpose of this section is to analyse the price in�uence on order
book event, setting aside state dependency that is fully explained in 2.2. Without a loss of
generality, we can forget the dynamics of vt and replace it by its average v, as long as vt
does not depend of the past price process. So we approximate the dynamics of Eq. (2.1) by
the following Generalized Q-Hawkes process (GQ-Hawkes process):

λt = α0 +

∫ t

0
φ(t− s) dN s +

∫ t

0
L(t− s) dPs +

∫ t

0

∫ t

0
K(t− s, t− u) dPsdPu, (2.2)

For simplicity, we have overated vα0 → α0, vφ→ φ, vL→ L and , vK →K.

The �rst term on the RHS of Eq. (2.2) accounts for a stationary exogenous intensity α0

and the second is the classical Hawkes kernel accounting for event interactions.2 The third
and fourth terms were introduced in [30] and are new in the context of limit order book
modelling. The third term is a linear feedback term from past price changes, modelling the
fact that up or down price moves directly impact the rate of cancellations, market orders
and limit orders. The fourth is a quadratic feedback term on the rate of order book events,
which does not depend on the sign of past price changes. In [30], it was proposed to write
the kernel as K(t− s, t− u) = Kdψ(t− s)δ(s− u) +K1Z(t− s)Z(t− u), with:

• a diagonal (in time) contribution ψ(t−s), which represents the feedback of past volatil-

2Whereas the Hawkes contribution is not the focus of the present paper, including it is essential to obtain
a reasonable explanatory power (see below).
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2

ity on current activity, since it can be written in terms of:

Σ2(t) =

∫ t

0
ψ(t− s) (dPs)

2,

• a rank-one contribution which amounts to coupling the square of past trends, as mea-
sured by:

R(t) =

∫ t

0
Z(t− s) dPs .

This is the so-called Zumbach e�ect: past trends, independently of their sign, lead to
an increase in future activity.

In the following of this section, we will choose ψ(s) = Z(s) = e−βs for simplicity. Note
that we have implicitly assumed that the shape of the diagonal contribution and rank-one
contribution is the same for all the event, that we will justify in Section 2.3. One of the
main empirical �ndings of the present study is that these two e�ects (volatility feedback and
Zumbach e�ect) are indeed present and large, and capture the destabilizing feedback loop

trends & volatility → lower liquidity → more trends & volatility

as surmised in the introduction.

Calibration Strategy in a Minimal Setting

The Hawkes contribution φ has been studied in several papers in the past (see e.g. [55])
and is now rather well understood. We �rst calibrate a Hawkes process without the price
feedback term, i.e. setting L and K to zero in Eq. (2.2). We use the non-parametric tech-
nique introduced in [65, 15], expecting bid/ask symmetry. This means that the coe�cients
α̃0 = (I − φ)Λ only depend on the type of events (and not their �sign�), and that the
matrix φ has a block-symmetry: the couplings of b→b are equal to those of a→a, and that
b→a is equivalent to a→b. Our results are qualitatively similar to those reported in the
literature [15, 55, 57, 65]. The matrix structure of the norm of the Hawkes feedback kernel
is shown in Fig. 2.5 for the EURO STOXX contract.

Reintroducing the quadratic coupling termK leads to a much more complicated structure
for the non parametric calibration problem (see [30]), in particular in the present multidi-
mensional setting. Before implementing the full calibration scheme, we devised a simpli�ed
protocol to get some partial information on the structure of the price feedback terms. The
idea is to capture the e�ect of local trends on the liquidity of the order book. Hence we
de�ne the net �ux of orders at the bid x = b or at the ask x = a as:

dJx
t := dNLO,x

t − dNMO,x
t − dNC,x

t .

From this we de�ne the total �ux and the signed �ux as:

dIb+a
t = dJa

t + dJb
t , dIb−a

t = dJb
t − dJa

t .

We also introduce the forward realized �ux and the forward Hawkes �ux on time scale β′−1:

F x
β′(t) =

∫ +∞

t
e−β

′(s−t)dIx
s , Hx

β′(t) =

∫ +∞

t
e−β

′(s−t)λH,xs ds ,

where x = (b + a, b − a) and λH,xs is the expected future activity, as predicted by the
Hawkes contribution.3 In the absence of other feedback mechanisms, one would expect any

3More explicitly, λH,xt := λH,LO,x
t −λH,MO,x

t −λH,C,x
t , where λH is the Hawkes intensity process calibrated
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Figure 2.3: Correlation between the trend and the total liquidity �ux (left) and signed liquidity
�ux (right) in the plane β, β′ for the EURO STOXX futures contract between 2016/09/12
and 2017/04/28. Note that the color scale is not the same in the left and in the right graph:
the directional e�ect is weaker than the impact on the total (unsigned) liquidity.

conditional expectation of F x
β′(t) should simply be Hx

β′(t).

This is what we test now, by considering two conditioning variables suggested by the
Q-Hawkes formalism, namely past trends and past realised volatility, as measured by the
following exponential moving averages:

Rβ(t) :=

∫ t

0
e−β(t−s)dPs︸ ︷︷ ︸
past trend

, Σ2
β(t) :=

∫ t

0
e−2β(t−s)(dPs)2︸ ︷︷ ︸
past volatility

.

By symmetry, we expect that the conditional expectations of F b−a
β′ (t) and F b+a

β′ (t) write:

Ec[β′F b+a
β′ (t)|R,Σ, H] = C0 + 2βC1R

2
β(t) + 2βC2Σ2

β(t) + β′Hb+a
β′ (t) (2.3)

Ec[β′F b−a
β′ (t)|R,Σ, H] =

√
βC3Rβ + β′Hb−a

β′ (t) , (2.4)

i.e. the asymmetric part of the liquidity �ow depends on the sign of the past trend, whereas
the symmetric part of the �ow depends both on the past volatility and on the past trend
squared (i.e. the Zumbach e�ect). C0, C1, C2 and C3 are numerical constants. The normali-
sation factor β comes from the fact that Rβ ∼ β−1/2 and Σ2

β ∼ β−1. Note that the regression
coe�cients in front of the calibrated Hawkes contribution are �xed to unity, as they should
be for consistency.

Results

We determine β and β′ by looking at the maximum absolute correlations of F b+a
β′ with

R2
β , see Fig. 2.3 and Appendix A.1. We �nd β = 0.001 and β′ = 0.02, corresponding to

a negative correlation ≈ −0.3, indicating that trends indeed reduce liquidity. Note that the
correlations between F b−a

β′ with Rβ are one order of magnitude smaller, and in fact change
sign depending on the time scales: the short time response to an up trend is adding liquidity
at the ask, but the long-time response is in fact removal of liquidity at the ask. This could

above. In order to speed up the computation of F x
β′ , we approximate the non-parametric Hawkes kernels by

sums of exponentials.
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Figure 2.4: Regressions of the incoming �ux with the trend and the volatility on the EURO
STOXX futures contract between 2016/09/12 and 2017/04/28. The red curves correspond to
the in-sample prediction of the linear regression. Each empirical point has a weight computed
from the fraction of time spent in the corresponding state.

re�ect the behaviour of di�erent actors in the market (high-frequency traders/market makers
vs. longer term traders).

Fixing β = 10−3 (i.e. trends measured over 1000 seconds, similar to the time scale found
in [30]) and β′ = 0.02 (market response over the next 50 seconds), we �nd the regression
coe�cients Ci given in Tab. 2.1 for several futures contracts, again using the period between
12/09/2016 and 28/04/2017. The quality of the regressions in the case of the EURO STOXX
is illustrated in Fig. 2.4 (similar plots are obtained for the BUND, BOBL and SCHATZ,
not shown). We see that both the trend (Zumbach) e�ect, parameterised by C1 and the
volatility e�ect, parameterised by C2, are both important to reproduce the future liquidity
�ow. The directional e�ect, measured by C3, is much weaker, as indeed suggested by Fig.
2.3, so we will neglect it in the following.

The conclusions of this calibration exercise are that:

• Large recent price trend and volatility indeed tend to increase the rate of market
orders and cancellations and lead to a decrease in liquidity. This is the main take-away
message of this section.

• The quadratic feedback terms K in Eq. (2.2) is the dominant e�ect.

C0 (10−2) C1 C2 C3

EUROSTOXX 78 −8.9 −6.7 −0.03

BUND 72 −1.7 −2.8 0.16

BOBL 13 −4.0 −0.29 0.29

SCHATZ 0.42 −2.5 0.001 0.50

Table 2.1: Values of the coe�cients C0, C1, C2 for the symmetric part of the liquidity �ow
and C3 for the antisymmetric part, as de�ned in Eqs. (2.3) and (2.4). We �xed β = 10−3

and β′ = 2× 10−2.
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2.3 Brute Force Calibration of a GQ-Hawkes Process

De�nition of the Model

We focus on a simpli�ed version of the Generalized Quadratic Hawkes process (GQ-
Hawkes) of Eq.(2.2), where the in�uence of the size of the queues on event rates is neglected.
Nevertheless, we do not make assumptions on the structure of kernels K. As pointed out
in [52, 30], assuming that Pt is a martingale makes analytical calculations and numerical
calibration, much more congenial. Finally, assuming as we shall do hereafter that a stationary
state is reached allows us to replace the lower bound of the integrals in Eq. (2.2) by −∞.

A Non-Parametric Calibration Procedure

Here we introduce a non-parametric scheme to calibrate Eq. (2.2) to real market data. Our
method is an extension of the second moment method introduced by Bacry et al. in [17, 16],
see also [27].

Covariances and Wiener-Hopf-like Equations

Before deriving the equations that will be used for the calibration, we introduce the
following averages and covariances:

∆kdt := E
[
(dPt)

k
]
, (2.5a)

Λidt := E
[
dN i

t

]
, (2.5b)

χijNN (t− s) dtds := Cov
(
dN i

t , dN
j
s

)
− Λjδijδ(t− s)dtds , (2.5c)

χiNP (t− s) dtds := Cov
(
dN i

t , dPs
)
, (2.5d)

χiNP 2(t− s) dtds := Cov
(
dN i

t , dP
2
s

)
, (2.5e)

χiNPP (t− s, t− x) dtdsdx := Cov
(
dN i

t , dPxdPs
)
, (2.5f)

χP 2P 2(t− s) dtds := Cov
(
dP 2

t , dP
2
s

)
−∆4δ(t− s)dsdt, (2.5g)

where we have assumed for simplicity that the jumps of P andN are not simultaneous. Note
that while price jumps can only occur if one order book event triggers them, the relative
frequency of the latter is so much larger that this approximation is fully justi�ed. Combining
Eq. (2.2) with Eqs (2.5) yields the following set of equations for the �rst and second moments
of the processes. Introducing the notations ||f || =

∫
R f(t)dt and Kd(t) := K(t, t) the
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2

diagonal part of K, one obtains for t, x > 0 with t 6= x:

Λi = αi0 +
∑
k

||φik||Λk + ||Ki
d||∆2, (2.6a)

χijNN (t) = Λjφij(t) +

∫
R+

∑
k

φik(s)χkjNN (t− s)ds

+

∫
R+

[
Li(s)χjNP (s− t) +Ki

d(s)χj
NP 2(s− t)

]
ds,

+

∫
[t,+∞[2

Ki(s, u)χjNPP (s− t, u− t)1{s 6=u}duds, (2.6b)

χiNP (t) =

∫
R+

∑
k

φik(s)χkNP (t− s)ds+ Li(t)∆2 +Ki
d(t)∆3, (2.6c)

χiNP 2(t) =

∫
R+

∑
k

φik(s)χkNP 2(t− s)ds+ Li(t)∆3 +Ki
d(t)∆4, (2.6d)

+

∫
R+

χP 2P 2(t− s)Ki
d(s)ds, (2.6e)

χiNPP (t, x) =

∫
R+

∑
k

φik(s)χkNPP (t− s, x− s)ds+ 2∆2
2K

i(t, x). (2.6f)

Provided the number of events generated by price �uctuations is small compared to that
generated by the linear Hawkes contribution, i.e.

∑
i,k ||φik||Λk �

∑
i ||Ki

d||∆2, Eq. (2.6b)
conveniently simpli�es to:

χijNN (t) = Λjφij(t) +
∑
k

∫
R+

φik(s)χkjNN (t− s)ds. (2.7)

This approximation is relatively well supported by real data for short enough times (see
below). It is essential at this stage as it allows us to decouple the estimation of the Hawkes
kernel from that of L and K: one can �rst estimate φ from Eq. (2.7) and then compute L
and K from Eqs. (2.6c), (2.6e) and (2.6f). The base rate is �nally obtained from Eq. (2.6a).
Note that while in principle an exact calibration of Eqs. (2.6) is possible, it does not perform
well on real data � but see section 2.4 below.

Micro-Price, Discretisation and Calibration Recipe

In section 2.3 we stressed that the point process Pt needs to be a martingale for Eqs. (2.6)
to be valid. Yet, it is well established that the mid-price in �nancial markets displays
substantial mean-reversion at short timescales. To circumvent this issue, we consider the
volume weighted mid-price, sometimes called the micro-price, Pmicro

t , known to be closer
to a martingale at high frequency [2, 3].4 It is de�ned as:

Pmicro
t =

va
t bt + vb

t at

va
t + vb

t

, (2.8)

where vb
t , v

a
t denote the available volume at the best bid bt and ask at respectively. To

enforce further the martingale property, we use the so-called surprise price, that we shall
henceforth denote by Pt, and which consists in subtracting to the price its (linear) statistical

4More re�ned de�nitions of the micro-price, even closer to a martingale, are discussed in [2].
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predictability. Mathematically speaking, this reads:

dPt = dPmicro
t −

∫ t−

−∞
CP (t− s)dPmicro

s , (2.9)

where CP (t− s) := Cor
(
dPmicro

t , dPmicro
s

)
denotes the price auto-correlation function.

In the previous section, we also have noted that the intensity of order book events exhibit
an intraday U-shape, very much like the well known U-shaped volatility pattern, see Fig. 2.1.
Computing the total intensity of events Λtot =

∑
i Λi over 5-min bins and averaging over

trading days, a U-shape is clearly visible. To avoid spurious e�ects related to these intraday
seasonalities, we rescale time �ow by this average pattern to enforce a constant rate of events
in the new time variable.

In order to estimate the kernels from real order book data, one must choose a time grid tHn
with weights wHn for kernel φ, such that ||φ|| ≈∑nφ(tHn )wHn . We decide to use quadrature
points [16] to ensure a good approximation of the integrals with a minimal number of points.
Further, given that we expect power-law kernels, see e.g. [18, 16, 30], we choose a linear
scale at short times that switches to logarithmic at longer times. Finally, given that typical
timescales are usually quite di�erent (see below), we choose a di�erent time grid tn, wn for
the kernels L and K. See Appendix A.1 for more details.

Finally, the empirical covariances are usually very noisy, so we choose to smooth them
using a convenient �tting function in order to obtain better behaved kernels. Concerning
the volatility covariance χP 2P 2 , it is found to behave like a power law at large times so the
chosen �tting function is5 A(1 + t/B)−C We also �t the logarithm of χNP (t), χNP 2(t) by
a polynomial in log t, and smooth the o�-diagonal kernel, see 2.4 for details. Plots of the
�raw� kernels obtained without smoothing �ts are provided in Appendix. A.1. Apart from
being more noisy, as expected, these raw kernels are very similar to the smoothed ones.

5For the EUROSTOXX, the �tting parameters are found to be A = 1.7 × 10−4 $4s−2, B = 81 s and
C = 0.71.
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Figure 2.5: Norms of the Hawkes kernel ||φij || for the EURO STOXX futures contract between
2016/09/12 and 2020/02/07, calibrated using Eq. (2.7).

The calibration recipe then amounts to the following steps.

• Compute the surprise price from the micro-price using Eqs (2.8) and (2.9).

• Rescale time by the typical daily pattern of Λtot =
∑

i Λi.

• Estimate ∆k, Λ and the covariances χP 2P 2 , χNN , χNP , χNP 2 and χNPP from the
data using Eqs (2.5),

• Use adequate �tting functions to smooth the empirical covariances (optional),

• Discretise and solve Eq. (2.7) to obtain the Hawkes kernel φ,

• Discretise and solve Eqs. (2.6c), (2.6e), and (2.6f) to obtain the kernels L and K,

• Discretise and solve Eq. (2.6a) to obtain the base rate α0.

Further details on how to solve these equations in practice are provided in Appendix A.1.

Empirical Results

We now apply the calibration procedure presented above to the EURO STOXX futures
contract in the period 2016/09/12 to 2020/02/07. For this contract, the average time between
two order book events is τe ≈ 0.03s, two orders of magnitude below the average time between
two price changes τP ≈ 7s, indicating that the range of the kernels L and K is likely to be
greater than that of φ, and allowing one to choose discretisation time grids accordingly. We
also apply the procedure to the BUND futures contract but do not show all the (redundant)
results for the sake of readability; summarising results are displayed in Fig. 2.9 and Tables 2.2,
A.1 and A.2.

As speci�ed in section 2.3, we start with the calibration of the Hawkes kernel φ. The
results are displayed in Fig. 2.5 for the norms of the kernels, and in Fig. A.1 in the Appendix
for the full time-dependence. The temporal decay of the kernels appears to be power law
with exponent ≈ −1.5, consistent with previous reports [18, 16, 30].
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Figure 2.6: Kernels resulting from the non-parametric calibration on the EURO STOXX
futures contract between 2016/09/12 and 2020/02/07. (a) Linear kernels L. Note that the
sign is such that an up (resp. down) trend increases all the event rates at the bid (resp. ask)
at short times. (b) Diagonal of quadratic kernels Kd. (c) Full quadratic kernels K(t, x).

The calibration leads to a stable Hawkes process with spectral radius of ||φ|| (computed
over 1000s) found to be ≈ 0.75 for the EURO STOXX contract and ≈ 0.74 for the BUND
[55, 54]. The results show that the expected bid-ask symmetry holds with a high level of
accuracy (see [52]), such that one can average the kernels accordingly to improve the statistics
without loss of information.

Plugging the obtained Hawkes kernels into Eqs. (2.6c), (2.6e) and (2.6f) allow us to
calibrate the kernels L andK, see Fig. 2.6. Again the expected bid-ask symmetry properties
hold rather well: while the linear kernel L is anti-symmetric (the e�ect of the positive trend
on the bid is the same as that of a negative trend on the ask), the quadratic kernel K
is bid-ask symmetric. We will therefore not distinguish further bid and ask events in the
following.

Figure 2.6(c) shows that the quadratic contribution cannot be reduced to the diagonal
partKd only. Indeed, the o�-diagonal contribution of the kernel is non-zero and rather long-
ranged. The decay of the diagonal contribution is a power law with exponent ≈ −1. Such
a decay is very slow and means that ||Kd|| is logarithmically sensitive to long timescales,
for which we do not have much information since we only use data belonging to the same
trading day to avoid the thorny discussion of overnight e�ects and how to treat them.

Finally, while the Hawkes and price feedback e�ects are di�cult to compare as they do not
operate on the same timescales, one can argue that the approximation presented at the end
of Sec. 2.3 is well supported by data: considering a cut-o� of 1000 seconds to compute the
norms, one �nds:

∑
i ||Ki

d||∆2/
∑

i,k ||φik||Λk ≈ 0.06. Another useful piece of information is
the global e�ect of the quadratic term on order book events, measured by

∑
i ||Ki

d||∆2, which
must be compared to the total activity

∑
i Λi. The ratio of these two quantities is found

to be 5% for the EURO STOXX and 7% for the BUND (see Table A.2 for more details).
Although not dominant, this feedback is clearly not negligible. Together with the standard
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2.4. A Simpli�ed Framework of a GQ-Hawkes Process

2

Hawkes contribution, this means that the exogenous contribution α to the total activity is
only 19% of the total for the EURO STOXX (17% for the BUND). Note that this fraction is
expected to decreases further as the upper cut-o� of the slowly decaying kernels is extended
beyond 1000 seconds (see e.g. [18]).

2.4 A Simpli�ed Framework of a GQ-Hawkes Process

Here we present a framework which improves the above calibration in a threefold manner.
As we shall see, (i) it allows to circumvent the approximation given in Eq. (2.7) which, we
recall, is not perfectly satis�ed by real data, (ii) it helps cleaning further the noisy o�-
diagonal contribution of the quadratic kernel, and (iii) it gives a more relevant measure of
the global e�ect of price �uctuations on event rates with no longer having to consider, nor
calibrate, the Hawkes contribution.

E�ective Kernels

Using the resolvent method, see [16, 21], one can rewrite Eq. (2.2) as:

λt = (I− ||φ||)−1α0+

∫ t

−∞
R(t−s) dM s+

∫ t

−∞
L̄(t−s) dPs+

∫ t

−∞

∫ t

−∞
K̄(t−s, t−u) dPsdPu,

(2.10)
with M a martingale satisfying dM t = dN t − λtdt, R =

∑
n≥1φ

∗n the resolvent, L̄ =

L +R ∗ L and K̄(t, s) = K(t, s) +
∫ +∞

0 R(u)K(t − u, s − u)du. The kernels L̄ and K̄
account for the overall feedback e�ect of Pt, including all subsequent Hawkes self-excited
events that are induced by price �uctuations. The remarkable property of such kernels is
that they solve a much simpler set of equations:

χiNP (t) = L̄i(t)∆2 + K̄i
d(t)∆3 (2.11a)

χiNP 2(t) = L̄i(t)∆3 + K̄i
d(t)∆4 +

∫
R
χP 2P 2(t− s)K̄i

d(s)ds (2.11b)

χiNPP (t, x) = 2K̄i(x, t)∆2
2, (2.11c)

where we have again enforced that K̄ is symmetric. The results obtained from the inversion
of Eqs (2.11) for the EURO STOXX futures contract are displayed in Fig. 2.7. These lead
to similar, though slightly cleaner, conclusions to Fig. 2.6. In particular, the values of∑

i ||K̄i
d||∆2 are compatible with those obtained above (taking into account the 1 − ||φ||

factor, see Table A.2).

The Zumbach Factorisation

Here we further dissect the results of the calibration presented in the previous section,
with the objective in particular of separating the contributions of trend and of volatility
to the quadratic feedback. A meaningful approximation for the quadratic kernel K̄ was
introduced in [30], as the sum of a purely diagonal matrix and a rank-one contribution:6

K̄i(t− s, t− u) := K̄i
dψ

i(t− s)1{s=u} + K̄i
1Z

i(t− s)Zi(t− u) . (2.12)

The �rst term on the right hand side of Eq. (2.12) re�ects feedback of past volatility on
current order book events. Its contribution in Eq. (2.10) can indeed be written as:

[
σi(t)

]2
:=

∫ t

0
ψi(t− s) (dPs)

2, (2.13)

6The the slight abuse of notation here since the diagonal part of K̄(s) is in fact K̄dψ(s) + K̄1Z
2(s).
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Figure 2.7: E�ective kernels resulting from the simpli�ed calibration on the EURO STOXX
futures contract between 2016/09/12 and 2020/02/07. (a) Linear kernels L̄. Note that the
sign is such that an up (resp. down) trend increases all the event rates at the bid (resp. ask)
at short times. (b) Diagonal of quadratic kernels K̄d. (c) Full quadratic kernels K̄(t, x).

The second term is in turn a re�ection of the e�ect of past trends, as measured in Eq. (2.10)
by [Ri(t)]2, where:

Ri(t) :=

∫ t

0
Zi(t− s) dPs. (2.14)

This last term is reminiscent of the so-called Zumbach e�ect: past trends, regardless of their
sign, lead to an increase in future activity. An alternative interpretation is that [Ri(t)]2 is
a local measure of a low-frequency volatility, to be contrasted with [σi(t)]2 which is a local
measure of high-frequency volatility. Note that the kernels ψ and Z are normalised:∫

ψi(s)ds =

∫
Zi(s)2ds = 1, (2.15)

such that the overall strength of the volatility contribution is K̄d while that of the trend
contribution is K̄1.

While in practice such an approximation is, of course, not perfect, one can check that in-
cluding higher rank contributions is unessential as the latter do not carry much additional sig-
nal. The rank-one kernel is obtained by minimizing

∫∫ (
K̄i(s, u)− K̄i

1Z
i(s)Zi(u)

)2
1{u6=s}dsdu,

which consists in �nding the �rst eigenvector of a well chosen linear map, see [69] for more
details. The ψ contribution is then obtained by taking the diagonal of K̄i and subtracting
K̄i

1Z
i(t)2. Figure 2.8 displays the kernels φ and Z as function of time for the EUROSTOXX

futures contract. As one can see, while the volatility kernel decays roughly as 1/t, although
some curvature can be observed. The Zumbach counterpart decays as 1/t, regardless of event
types (by that justifying the choice made in section 2.2, where the same functional form for
all event types was assumed).
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Figure 2.8: Zumbach approximation of the e�ective kernel K̄ on the EURO STOXX futures
contract between 2016/09/12 and 2020/02/07. (a) Zumbach kernel Z, (b) Volatility kernel
ψ. Both kernels are normalised such that ||ψ|| = ||Z2|| = 1, with a cut-o� in the time
integrals at 1000 secs.

2.5 Liquidity Dynamics & Crises

Quadratic Feedback on Liquidity

So far we have focused on the impact of past price moves one event rates. Here we wish
to go on step further and estimate the e�ect of past price changes on liquidity, i.e. volume
weighted events. For this one needs to consider order volumes. The average volumes are
given in Tab. 2.2 for the di�erent types of orders. Assuming bid/ask symmetry (consistent

V C,b V LO,b V MO,b V MO,a V LO,a V C,a

EUROSTOXX 10.1 9.2 7.2 8.2 9.2 10.0

BUND 4.5 4.8 4.4 4.2 4.8 4.5

Table 2.2: Average order volumes (in shares).

with the empirical results), Fig. 2.9 displays the amount of shares per second that can be
attributed to the quadratic e�ect (both volatility and Zumbach) for each event type, namely
K̄i

dV
i∆2 and K̄i

1V
i∆2 where K̄i

d, K̄
i
1 are obtained as explained in the previous section, V i

are given in Tab. 2.2, and ∆2 is de�ned in Eq. (2.5a).7

Introducing the overall average quadratic liquidity �ux as:

JK̄ :=
(
||K̄LO||V LO − ||K̄C||V C − ||K̄MO||V MO

)
∆2, (2.16)

one consistently �nds that the quadratic (price) feedback has an overall negative e�ect on
liquidity JK̄ < 0, most of it associated to volatility, see Fig. 2.9(c).8 In other terms, the
quadratic feedback tends to decrease liquidity on average. Figure 2.9(b) shows that both the
volatility and Zumbach terms have an average negative impact on liquidity (i.e. the green
bars represent less than 50% of the total contribution). The Zumbach term is responsible
for non-trivial long-range liquidity anomalies. In particular, Blanc et al. [30] showed that
the price process resulting from a quadratic Hawkes process follows is di�usive with fat
tailed stochastic di�usivity at large times, which can be attributed to the Zumbach e�ect,
rather than its volatility counterpart (see also the discussion in [31]). In any case, we believe
that the quadratic feedback of price trends on order book events is a crucial ingredient to
understand liquidity crises. In the next section we provide a direct test of this hypothesis.

7The normalisation of all kernels is computed with a time cut-of at 1000 seconds.
8Note that the linear terms give no net contribution, i.e. V LO||L̄LO||−V C||L̄C||−V MO||L̄MO|| ≈ 0, which

explains why we focus on the quadratic term). In other words, the trend has almost no linear e�ect on the
liquidity �ux at large time scales.
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Figure 2.9: Average quadratic contribution on the EURO STOXX and BUND futures con-
tracts between 2016/09/12 and 2020/02/07. (a) ∆2

∑
i V

i||K̄i|| and its decomposition into
∆2
∑

i V
iK̄i

d and ∆2
∑

i V
iK̄i

1. (b) Contributions of each order type to the latter quantities.
(c) Overall contribution of the quadratic e�ect to the liquidity �ow JK̄ (in shares per second),
and relative contribution of the volatility and Zumbach terms.

Spread Dynamics and Liquidity Crises

We now focus on the analysis of spread dynamics. Since the EUROSTOXX futures is
a large tick contract (the spread is equal to one over 99% of the time and seldom higher
than two), we characterize the dynamics of liquidity using an e�ective spread Seff

t which is
de�ned as follows. Calling va

t (x) (resp vb
t (x)) the ask (resp bid) volume at price level x, we

construct cumulative volumes as Qa
t (x) =

∑
n≤x v

a
t (n) and Qb

t (x) =
∑

n≥x v
b
t (n). We then

choose the average volume at best Vbest as a reference volume, and de�ne:9

Seff
t := (Qa

t )
−1 (Vbest)−

(
Qb
t

)−1
(Vbest) , (2.17)

where
(
Q

a/b
t

)−1
denotes the inverse function of Qa/b

t . The e�ective spread is a natural proxy
for liquidity in the close vicinity of the midprice: when the liquidity is close to its average, the
e�ective spread coincides with the regular spread; but when liquidity is low, it can be much
larger as aggregating the volume of several queues is needed to recover the reference volume
Vbest. Figure 2.10(a) displays the survival function of the e�ective spreads, revealing that
P(Se�) ∼ (Se�)−5. This power-law tail is interesting for the following reason: the e�ective
spread can be seen as a proxy for the size of latent price jumps, i.e. the jumps that are likely
to happen if an aggressive market order hits the market. Hence, one expects the distribution
of e�ective spread is not far from the distribution of price returns r, which is well known to
decay as P(r) ∼ r−4.

Let us now study the relation between e�ective spread, square volatility σ2 and square
trend R2, as de�ned in Eqs. (2.13) and (2.14). Figures 2.10(b), (c) and (d) display the
correlation functions CR(τ) := Cor

[
R(t+ τ)2, Seff(t)

]
, Cσ(τ) := Cor

[
σ(t+ τ)2, Seff(t)

]
and

CT (τ) := Cor
[
T (t+ τ), Seff(t)

]
respectively, with T = R2/σ2. Note that a causal positive

impact of past trends on future spreads should translate as a strong contribution to CR(τ)
for negative τ . Interestingly, this is compatible with Fig. 2.10(b), which con�rms in a model-
free fashion that the Zumbach-like coupling is important: past square trends increase future
e�ective spread, or equivalently decrease future liquidity. While also slightly asymmetric,
the volatility/spread correlation Cσ(τ) does not reveal such a level of asymmetry (see Fig.
2.10(c)). Fig. 2.10(d) shows an even more pronounced asymmetry when we rescale the trend
by the local volatility: T is a proxy of the autocorrelation of returns, independently of their

9Changing the reference volume to 2Vbest or Vbest/2 does not change the qualitative conclusions below.
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Figure 2.10: (a) Survival function of the e�ective spread, showing that P(Seff > S) ∼ S−4

(b) Correlations between e�ective spread and past square trends (for τ < 0) and future
square trends (for τ > 0).(c) Correlations between e�ective spread and square volatility. (d)
Correlations between e�ective spread and T : the ratio square trend over square volatility.
EURO STOXX futures contracts between 2016/09/12 and 2020/02/07.

amplitude. In this sense, it is a better signature of trend behaviour, as the volatility aspect
of recent price changes is discarded.

2.6 Conclusion

Let us summarise what we have achieved in this chapter. We have proposed several
actionable procedures to calibrate general Quadratic Hawkes models for order book events
(market orders, limit orders, cancellations). One of the main features of such models is
to encode not only the in�uence of past events on future events but also, crucially, the
in�uence of past price changes on such events. We propose two methods for calibrating
those models: the �rst one consists in a minimal setting approach while the second one fully
calibrates QG-Hawkes process. Using tick-by-tick order book data on futures contracts,
we have shown that the empirically calibrated quadratic kernel (describing the part of the
feedback that is independent of the sign of past returns) is well described by the shape
postulated in [30, 31], namely:

• a diagonal contribution that captures past realised volatility, and

• a rank-one contribution that captures the e�ect of past trends.

The latter contribution can be interpreted as the microstructural origin of the Zumbach
e�ect: past trends, independently of their sign, tend to reduce the liquidity present in the
order book, and therefore increase future volatility. This, in turn, contributes to increasing
volatility, which may lead to a destabilising feedback loop and a liquidity dry-out.

One of the perhaps unexpected result of our calibration is that the Zumbach kernel is
found to be a power-law of time for the futures contracts studied here, and not an exponential
as was found in [30] for US stock prices. Hence, all Hawkes kernels in our study are found
to be power-laws of time. Furthermore, as in many previous studies [20, 18, 55], the rate
of truly exogenous events is found to be much smaller than the total event rate, typically
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1/5 when all kernels are truncated beyond 1000 seconds, and probably even smaller when
longer lags are taken into account, due to the slow decay of the kernels. These two features
suggest that the system is close to a critical point � in the sense that stronger feedback
kernels would lead to instabilities. In our setting, we have shown that the e�ective spread
(which is a measure of the (il-)liquidity of the order book) has itself a power-law tailed
distribution.Hence, we favour the scenario of markets poised close to a point of instability,
although the detailed mechanisms that lead to such a �ne tuning are still somewhat obscure.
We note that the near-criticality has also been argued to be crucial to understand the �rough�
nature of volatility [22, 70, 31]. We believe that understanding these mechanisms is probably
one of the most intellectually challenging (and exciting) issue for microstructure theorists.

Take home message of Chapter 2

1. State-dependency. Rates of order book events are state-dependent. Our
analysis reveals that limit order depositions do not depend on the number of orders
at their price level, while cancellations and market orders are roughly proportional to
it.

2. GQ-Hawkes process. The Generalized Quadratic Hawkes process can be
calibrated on order book data thanks to a second moment method.

3. Quadratic e�ects. The quadratic kernels are power laws, with exponent ≈ −1
for the volatility contribution and square trend contribution, and exponent ≈ −3/2
for the Hawkes kernels. These power laws are evidence of criticality.

4. Zumbach-like e�ect. The o�-diagonal quadratic contribution can be factorized
into a rank-one contribution, that corresponds to the feedback of the past square
price trend. Such feedback diminishes future liquidity and can be interpreted as the
micro-foundation of the Zumbach e�ect.
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3
A Quadratic Santa Fe Model

In the previous chapter, we have shown, using empirical data, that liquidity tends to
decrease with the amplitude of past volatility and price trends. Such a feedback mechanism in
turn increases the volatility, possibly leading to a liquidity crisis. Accounting for such e�ects
within a stylized order book model, we demonstrate numerically that there exists a second
order phase transition between a stable regime for weak feedback to an unstable regime for
strong feedback, in which liquidity crises arise with probability one. We characterize the
critical exponents, which appear to belong to a new universality class.
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Money, it's a gas
Grab that cash with both hands and make a stash

Pink Floyd

3.1 Introduction

It is now well established that market volatility is too high to be explained by �uctuations
of fundamental value. As seen in the general introduction, a large fraction of large price jumps
cannot been explained by signi�cant news. Spectacular �ash crashes, such as the infamous
S&P500 �ash crash of May 6th, 2010 [4], has led us to focus on a plausible general scenario
of destabilising feedback loops resulting in liquidity breakdown. The previous chapter was
dedicated to an empirical analysis that highlighted the feedback of square past trend and
past volatility on future liquidity. Both are responsible for a decrease of liquidity and the
�rst one micro found the Zumbach e�ect. To construct a possible scenario, imagine that the
price has recently experienced a burst of volatility or a large trend. This creates anxiety for
liquidity providers, who fear that some information about the future price, unbeknownst to
them, is the underlying reason for the recent price changes. The consequence is an increased
reluctance to provide liquidity: such liquidity providers become more likely to cancel their
existing limit orders and less likely to re�ll the limit order book with new limit orders. Less
liquidity is likely to amplify the future price moves, thereby creating an unstable feedback
loop which might result in a runaway trajectory.

The present chapter attempts to capture such feedback e�ects through a stylised model
for the dynamics of order books. To study the aggregate outcomes of such feedback in
a minimal setting, we consider an extended version of the Santa Fe order book model

[43, 44, 71].1 The original model consists in a collection ofN queues that evolve with constant
additive limit order and market order arrival probability rates, and a constant cancellation
rate per existing limit order. We introduce, in a minimal fashion, the e�ect of interest to
us by letting the event rates feedback on past prices changes. As the empirical results of
the previous chapter suggest, we use a Zumbach-like coupling as feedback from past price
changes. Our numerical results strongly suggest the existence of a genuine phase transition
occurs from a stable regime to an unstable regime in which liquidity crises arise, as feedback
intensity is increased. We perform a �nite size scaling and determine the corresponding
critical exponents.

3.2 An Agent-Based Model for Liquidity Crises

The so-called Santa Fe model [43, 44, 71] stands among the �rst purely stochastic order
book models, where zero-intelligence agents place their orders at random (see also [72, 45]).
It was shown that this model is able to reproduce some empirical properties of order books,
such as the mean bid-ask spread and mean volume pro�les near the best quotes. However,
the model fails to account for the empirical relation between spread and volatility (see [73, 74]
and [6], Ch. 8); in fact prices are found to be strongly mean reverting, partly because of
the absence of long-range correlations in the �ow of market orders in the model � see the
detailed discussion of this point in [32, 36, 6].

In spite of these shortcomings, the Santa Fe model is an interesting starting point for
modelling order book dynamics. It consists in a collection of queues that evolve with constant

1The Santa Fe model stands among the �rst zero intelligence order book models reproducing some
statistical properties, such as the mean bid-ask spread and mean volume pro�les near the best quotes. Note
however that the model is too simple to account for volatility levels, volume pro�le queues far from the best,
or to solve the di�usivity puzzle [6].
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3.2. An Agent-Based Model for Liquidity Crises

3

additive limit and market order arrival Poisson rates, and a constant cancellation rate per
existing limit order. Note that while real data is not fully consistent with additive depositions
and multiplicative cancellations (see Fig. 2.2) , this simplifying hypothesis allows for easier
analytical treatment, and leads to a well de�ned steady state order book where queues are
neither empty nor of in�nite size.

Here, we present an extension of the Santa Fe model where the feedback of past price
changes on event rates is taken into account. As suggested by the empirical results of the
previous chapter, we only retain, for simplicity, the quadratic feedback term on cancellations,
neglecting all others. We also keep the initial Santa Fe speci�cation of an additive (rather
than multiplicative) rate for market orders. Numerical simulations suggest that this brings
no qualitative changes to our main conclusions, which are as follows:

1. There exists a critical value of the feedback parameter αK such that for αK < α∗, an
in�nite size order book never empties, while for αK > α∗ such in�nite size order book
empties with probability 1.

2. The transition appears to be of second order nature, which means that as the transition
point is approached some scaling behaviour is observed. For example, the average
time τ̄ needed for the liquidity crisis to appear in an in�nite order book diverges as
(αK −α∗)−ζ with ζ ≈ 3 when αK ↓ α∗. For a book of �nite size N , this time is always
�nite, but diverges as Nη with η ≈ 3 when αK = α∗.

The Santa Fe Model with Feedback

Consider a grid of prices with unit tick size, with all orders of unit size.2 This grid is
divided into three parts: the bid side Bt = {p ≤ bt}, the ask side At = {p ≥ at} and the
spread St = {bt < p < at} where bt and at respectively denote the best bid and the best ask.
Market orders can only fall at the best bid and best ask; they do so with total rate 2µ, with
probability 1/2 to fall on the bid and 1/2 to fall on the ask.

Bid limit orders fall uniformly with rate λ per tick size in B+
t = {p ≤ min(bt + 1, at − 1)}

and ask limit orders uniformly with the same rate λ in A+
t = {p ≥ max(at − 1, bt + 1)}.

Orders cannot be placed inside the spread at a distance higher than one tick of the best
prices.

Cancellations occur with a rate νt per outstanding limit order, which means that the
probability that a given queue loses one order is proportional to the size of the queue. We
assume that νt is given by a GQ-Hawkes process of the type we considered in the previous
chapter, where we retain only the Zumbach term, i.e.

νt = ν0 + αK

(∫ t

0

√
2βe−β(t−s)dPs

)2

. (3.1)

The case αK = 0 recovers the Santa Fe speci�cation. Note that the dynamics of the di�erent
price levels are independent of one another, but described by the same parameters λ for the
deposition rate and νt for the cancellation rate. In other words, the speed-up of cancellations
when the price is trending a�ects all price levels, as empirical results of the previous chapter
tell us that αK > 0. Then, the feedback mechanism works as follow: local trends reduce
liquidity in the order book via a Zumbach-like e�ect. Then less liquidity not only increases
the probability of a new price change but also the size of price changes, that could lead to
bigger local trends. And so on and so forth. Fig. 3.1 displays a schematic that sums up this

2One could introduce a distribution of order size at the expense of extra complexity. We expect that if
this distribution is broad enough, the character of the phase transition could change.
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Figure 3.1: Sketch of the feedback mechanism based on Zumbach-like e�ect.

explanation. When αK < α∗, if the spread is greater than one, we expect that the average
probability of diminishing it remains higher than the one of opening it, preventing liquidity
crises to occur. But if αK > α∗, we expect the opposite and so the market to be unstable.

Numerical Simulations

To simulate the model, we take a price grid of size N ticks, and as initial condition, the
equilibrium order book provided by the Santa Fe model with αK = 0. Then, to make the
system evolve one can notice that, conditioned to the past, the system follows a multidi-
mensional, non-homogeneous Poisson process, which is well known and easy to implement.
Furthermore, for computing the integral

∫ t
0 e
−β(t−s)dPs =

∑
Tn≤t e

−β(t−Tn)∆PTn e�ciently,
we use the the usual recursive formula to speed up the algorithm, see [54].

Dynamics: stability or liquidity crises

Figure 3.2 displays typical results in the stable phase. Note that at some point the spread
opens and triggers a cascade of cancellations that empties the order book. At some point in
time denoted τc a liquidity crisis arises, that is here de�ned as the �rst time one side of the
order book is completely empty. Mathematically speaking it is de�ned as:

τc = min

inf

t, ∑
p∈Bt

vt(p) = 0

 , inf

t, ∑
p∈At

vt(p) = 0


 (3.2)

with vt(p) the number of orders at price p and time t. Using the �nite size of the order book,
we can rewrite the time of �rst liquidity crises as:

τc = min (inf {t, bt < 0} , inf {t, at > N}) (3.3)

Eq. (3.3) shows that liquidity crises coincide with spread explosion. Fig. 3.2(c) displays a
typical spread trajectory where a burst occurs. Not su�cient to trigger a liquidity crisis,
it gives a example of what happens while the order book is destabilized. Fig. 3.2(d) shows
the spread survival function that starts to be fat-tailed when one reaches the transition,
bolstering our qualitative interpretation of the time of liquidity crises.

On the other hand, close but below the instability transition, a spread explosion goes
with a sparser order book. Indeed, as the feedback from past price changes on cancellations
a�ects all price levels, liquidity is diminished everywhere. Quantifying liquidity far from the
mid-price can be achieved by computing the probability distribution function ρv(t, v) of the
variable vt(∞) conditioned to the past price information until time t: FP

t . Indeed, as we
are far from the mid-price, two consecutive levels have the same law. Thus, we can forget
about price changes and only focus on limit order depositions and cancellations. From these
remarks, we easily derive the Fokker Planck equation that follows ρv:

∂tρv(t, n) = λ(ρv(t, n− 1)− ρv(t, n)) + νt((n+ 1)ρv(t, n+ 1)− nρv(t, n)) (3.4)
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3.3. Phase Transition and Finite Size Scaling
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Figure 3.2: Properties of trajectories close to, but below the instability transition (λ = 10,
ν0 = 0.5 and µ = 20, and αK = 0.2, β = 1, T = 2000, N = 1000). (a) One trajectory
of the volatility exhibiting a cluster of high volatility. (b) Average maximum of the spread
S as a function of time and its �t by a power-law t1/η with η = 3 for t ≥ 100. (c) The
spread trajectory corresponding to (a). (d) The spread survival function (sf), also called
complementary cumulative probability distribution, decays as a power law S−κ, with a cut-o�
that diverges as one approaches the transition α∗. The dotted line corresponds to κ = 0.74.

Starting from the equilibrium of the Santa Fe model i.e. ρv(0, n) = e−V
∗
V ∗n/n! with

V ∗ = λ/ν0 , we can show that vt(∞)|FP
t still follows a Poisson distribution:

ρv(t, n) = e−V
∗
t
V ∗t

n

n!
(3.5)

with V ∗t = λ
ν0
e−
∫ t
0 νsds + λ

∫ t
0 e
−
∫ t
s νududs, see Appendix A.2 for details. V ∗t is the average

number of orders far away from the mid-price, conditioned to the price dynamics. Analyzing
what happens closer to the mid-price is not tractable, but the following inequality holds:
P
[
vt(p) = n

∣∣FP
t

]
≤ ρv(t, n) for any price level p and number of orders n. Thus, the dynamics

of V ∗t is a proxy for liquidity dynamics, coherent with the sketch presented in Fig. 3.1. This
variable V ∗t enables a qualitative analysis of a destabilization of the order book. When the
parameter αK is close to the transition but below, large trends lead to:

• St � 1: large spread.

• V ∗t � 1: sparse order book.

3.3 Phase Transition and Finite Size Scaling

Exploring the parameter space (αK , β) reveals that for αK & αm(β) liquidity crises arise
with high probability. Figure 3.3 displays the crisis probability, de�ned as P[τc ≤ T ], as
function of αK and β for Tν0 = 200 and N = 280. As expected, large feedback intensities
αK lead to unstable markets. The crossover value αm(β) decreases as β increases, i.e. when
the time scale over which trends are considered as dangerous by liquidity providers gets
shorter. As expected, longer integration timescales β−1 lead to more stable order book, or
in other terms, longer memory is a stabilising factor.

Although suggestive, Fig. 3.3 cannot be used to conclude on the existence of a true phase
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Figure 3.3: Stability map: Crisis probability P[τc ≤ T ] for T = 200, N = 280, λ = 10,
ν0 = 1 and µ = 20. The blue region correspond to a stable order book, whereas the red region
corresponds to liquidity crises. The crossover line αm(β) is the white sliver between the two.

transition in the model, between a phase where liquidity crises never happen from a phase
where liquidity crises always happen, provided one waits long enough. Mathematically, the
question is about the behaviour of P[τc ≤ T ] in the double limit N → ∞ and T → ∞.
Clearly, for �nite N , there is always a non-zero probability (perhaps very small) that the
order book completely empties if one waits long enough, even when αK = 0. Hence:

lim
N→∞

lim
T→∞

PN [τc ≤ T, αK ] = 1 , ∀αK .

If one the other hand the limit N → ∞ is taken �rst, one may be in a situation where, for
a �xed value of β

lim
T→∞

lim
N→∞

PN [τc ≤ T, αK ] =

{
1, when αK > α∗,
0, when αK < α∗,

(3.6)

where α∗ depends on the parameters of the model, in particular β.

Since numerical simulations can only be done for �nite N and T , a common strategy
is to use �nite size scaling to extrapolate to in�nite sizes and waiting times. If a genuine,
continuous phase transition occurs at some αK = α∗, one expects the following behaviour
to hold for large enough N and T :

PN [τc ≤ T, αK ] = F
(
T (αK − αm(T,N))ζ

)
; αm(T,N) = α∗ − 1

T 1/ζ
g

(
Nη

T

)
, (3.7)

with F (u) a monotonic regular function going from 0 for u → −∞ to 1 for u → +∞, and
g(v) another function that goes to a constant g∞ when v →∞ and to +∞ as v → 0. This
scaling form has the following interpretation:

• When 1 � T � Nη, αm ≈ α∗. As αK increases, PN [τc ≤ T, αK ] evolves from 0 (no
crises) to 1 (crises) in a region of width T−1/ζ around α∗.

• When T � Nη, αm becomes negative, meaning that PN [τc ≤ T, αK ] is close to 1 for
any αK if one waits long enough.
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3.3. Phase Transition and Finite Size Scaling

3

The comparison between T and Nη has the following interpretation: for T � Nη, the system
cannot �feel� the boundaries of the order book because the spread has never grown so large:
S(T ) � N . For T � Nη on the other hand, it is highly probable that the spread S has
been as large as size of the order book N , meaning that a liquidity crisis has taken place.
This suggests a direct way to measure η, from the dynamics of the spread that behaves as a
power-law of time (see Fig. 3.2), with an exponent which should equal 1/η for consistency.
This gives η ≈ 3, which is compatible with the �nite size scaling analysis reported in Fig.
3.4 (left inset).
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Figure 3.4: Left: Rescaling of PN [τc ≤ T, αK ] according to Eq. (3.7), for β = 0.5, λ =
10, ν0 = 1, µ = 20, N = Nmax = 240, and with ζ = 3 and η = 3. Inset: Numerical
determination of g(v), also well described by our scaling hypothesis with η = 3, giving α∗ ≈
0.063 and g∞ = lim+∞ g ≈ −1.8. Right: Finite size scaling of χ, with αm(T,Nmax) :=α

χ(αK , T,Nmax). Inset: Average pairwise distance between the di�erent curves as a function
of 1/ζ, showing a minimum for ζ ≈ 3 for both quantities P and χ.

A convenient method to pin down the values of α∗ and the exponent ζ is to study the
variance of the �rst crisis time, de�ned as

χ(αK , T,N) = V [min(τc, T )]

for a �xed value of β and di�erent values of αK , T and N . This quantity is expected to peak
close to the phase transition, since for small αK , τc is nearly always larger than T and χ→ 0,
whereas for large αK , τc is small and χ is also small. The �nite size scaling assumption for
this quantity amounts to:

χ(αK , T,N) = T γG
(
T (αK − αm(T,N))ζ

)
, (3.8)

where αm is given by Eq. (3.7) with α∗ ≈ 0.06 and G(u) is a humped function that goes
to zero for u → ±∞. The details and justi�cation of this procedure to �nd the di�erent
exponents is described in Appendix A.2. We �nd γ ≈ 2 and ζ ≈ η ≈ 3.3 Figure 3.4 shows
how all the di�erent curves re-scale on top of each other when these parameters are �xed.
We also show the quality of this rescaling as a function of ζ in the inset of Figure 3.4 (right),
clearly favoring the value ζ = 3.

We note that to the best of our knowledge, the numerical value of the exponents ζ, η do
not seem to relate to an identi�ed phase transition. It would be very interesting to explore

3Note that the value γ = 2 is not unreasonable since for αK = α∗ one expects that τc is larger than T
with some probability p ∈]0, 1[, leading to V [min(τc, T )] ∝ T 2.
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further the nature of this transition and (if possible) compute analytically the value of these
exponents.

Although not perfect, we consider the rescaling su�ciently convincing to support our
interpretation that the observed liquidity transition is a second order phase transition. This
interpretation is further supported by the fact that a similar �nite size scaling with the same
value of the exponents ζ, η (but di�erent values of α∗) holds for di�erent values of the time
scale β and rates λ, ν0 and µ, and is also robust against changes in the speci�cation of the
model. This universality is a landmark of second order phase transitions.

Although our numerical evidence for such a phase transition is satisfactory, we have not
found a way to bolster our results by a rigorous mathematical analysis. Indeed, even if highly
stylized, the Santa Fe model with feedback is in fact quite complex. Hence, the existence of
this phase transition and its second-order nature, can only be considered as conjectures at
this stage. In order to make some progress, we have studied even simpler models, where the
existence of a phase transition can be ascertained mathematically. This is what we discuss
in the following sections.

3.4 A scenario for liquidity crises

The empirical analysis on �nancial data reveals that a phase transition scenario would
explain liquidity crises. While the exact mechanism leading to instability is not well un-
derstood, our model can give a possible answer to this. To be relevant, markets have to
sit below, but very close to the critical point and that the critical point is an attractor
i.e. the parameter αK is driven toward α∗. This concept, called self-organized criticality
(SOC), was �rst introduced in [75] and developed by many in the context of game theory
[76] and �nancial markets [77, 78, 79]. We can try to explain how SOC can be applied to
this scenario. When a liquidity anomaly due to a large trend happens, the behaviour of
some market participants may be altered. Indeed, thoughts of the enormous loss they may
su�er increase their fears and thus their parameters αK . On the other hand, the actions
they take create arbitrages in the market, which are exploited by other market participants.
This new particular environment leads to an increase of αK with no internal mechanism
that stabilizes it. On the other hand, when a liquidity crisis is triggered, the exchange can
stop it using their circuit-breakers. This can be seen as a diminution of αK which tends to
stabilize the market. So when an liquidity anomaly combined with a large trend happens,
two phenomena can make the critical point an attractor:

• Fear and new arbitrages increase αK when αK < α∗.

• Circuit-breakings decrease αK when αK > α∗.

that gives a scenario for a liquidity crisis with SOC. Of course, this could be explained with
other arguments. The exact mathematical implementation of this mechanism is still unclear
but some very recent progress open new possibilities that can be tackled. Indeed, Buendía
et al [80] shows on one example how a dynamic system can self-organized to criticality.
Adapting their ideas to our transition would consist in introducing an additional dynamic
feedback onto the parameter αK itself that makes α∗ an attractor. As they deal with a
physical example their additional feedback results from energy conservation. In our case,
this feedback would be the consequence of P&L dynamics in agreement with our qualitative
arguments.
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3

3.5 Conclusion

Building on empirical evidence, we introduced an extension of the stylised Santa Fe model
which accounts for the feedback of past price changes on event rates. Numerical simulations
of our model revealed the existence of a second order phase transition, and more precisely
a critical value of the feedback parameter below which an in�nite size order book never
empties, and above which it empties with probability one. We performed a �nite size scaling
analysis in order to determine the critical exponents, which does not appear to be in any of
the known universality classes for 1D phase transitions.

We then pointed out that for this picture to be relevant, real �nancial markets would have
to sit below, but very close to the critical point, consistent with the idea of self-organised
criticality (SOC), a concept �rst introduced in [75] and developed by many in the context
of game theory [76] and �nancial markets [77, 78, 79]. Another option would be for the
feedback parameter to be itself time dependent and occasionally visit the unstable phase.

A deeper mathematical analysis aimed at deriving the critical exponents of the extended
Santa Fe model presented in Section 3.2 would be highly valuable to ascertain the new
universality class we exhibited numerically. For the sake of completeness, it would naturally
also be of interest to couple our second order phase transition scenarii to a mechanism that
draws the systems towards the critical point, building on ideas inspired e.g. by the Minority
Game, see [76].

The empirical study in chapter 2 reveals that memory timescales are broadly distributed
as kernels are power laws. Their e�ect is an important point on which we decided not to insist
too much in the present study. Indeed, as we will see in the last chapter, lag e�ects can be
extremely important destabilising factors that must be taken into account. Including these
lag e�ects within the present framework is certainly a relevant extension worth investigating.

Take home message of Chapter 3

1. Santa Fe model with quadratic feedback. We add to the Santa Fe model a
quadratic term of past price changes that feedbacks on cancellations rate.

2. Phase transition. Our model exhibits a second order phase transition that
separates stable and unstable markets. The critical exponents of this transition have
been characterized numerically, and it appears that this transition belongs to a new
universality class.

3. Self Organized Criticality. Real markets sit just below but close to the phase
transition. Simple arguments lead to think that the critical point is an attractor of
the system.
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4
Spread models: from Hawkes

dynamics to metastable dynamics

We propose a class of models for spread dynamics that are simpler than the Quadratic
Santa Fe Model. We have set aside the microstructure of the order book and focused on the
spread dynamics. We map those models onto Hawkes processes for spread opening events
and analyse several possibilities of feedback: linear Hawkes, quadratic Hawkes and non-linear
Hawkes. With a state dependent Poisson rate for spread closing events, we show that the
two �rst exhibit liquidity crises and we caracterize the transition. An alternative scenario
is provided by a class of non-linear Hawkes process that show occasional �activated� liquidity
crises, without having to be poised at the edge of instability.
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L'argent qu'on possède est l'instrument de la liberté, celui qu'on pourchasse est celui de la
servitude.

Jean-Jacques Rousseau

4.1 Introduction

In the previous chapter we have presented a Quadratic Santa Fe Model where Zumbach-
like e�ect induces liquidity crises, through a phase transition of second order. While a
numerical analysis fully characterizes this transition, we have not succeeded so far on the
analytical side. We wish to introduce a simpler framework that uses the key mechanism from
this feedback. An analysis of the Quadratic Santa Fe model shows that liquidity crises go
with spread explosion and sparse order book. While the micro-structure of the order book is
very interesting and provides a liquidity dynamics, it is responsible for the complexity of the
whole dynamics. In this chapter, we restrict our attention to the dynamics of the spread,
setting aside the dynamics of the microstructure of the order book. We introduce and discuss
a family of simple spread models for which the liquidity crisis transition observed within the
Quadratic Santa Fe model can be analyzed in more details.

We consider an order book �lled with limit orders of size unity that can be cancelled or
executed only at the best. As soon as a price slot is �lled, no further limit order can be
placed. Limit orders can thus only be placed in front of the best (inside the spread) provided
the spread is open, i.e. St := at − bt ≥ 2. Note that with such simplifying hypotheses, there
is no gap in the order book (apart from the spread itself) and market orders play the exact
same role as cancellations.

4.2 A State-Dependent Hawkes Model for Spread Dynamics

A Simple Model

The simplest class of models consists in retaining the feedback of the spread dynamics on
itself, forgetting about the price dynamics which is the main driver of the instability in the
context of the Santa Fe model. Hence we also move away from the Quadratic Hawkes model
we calibrated on real data in Chapter 2. The destabilizing mechanism we imagine is that
spread opening events are likely to lead to more spread opening events. A simpli�ed model
reinstating the price feedback mechanism is presented in section 4.3. The model can thus be
entirely characterized by the spread dynamics. We assume that the event intensities read:

λ+
t = λ+

0 + α

∫ t

0
βe−β(t−s)dS+

s (4.1a)

λ−t = 1{St≥2}λ
−
0 (4.1b)

where λ+ is the intensity of events that increase the spread, i.e. orders that are cancelled or
executed by a market order and λ− is the rate of limit orders reducing St by falling inside
the spread, see Fig.4.1. Only spread opening events contribute to the feedback on λ+, i.e.
dS+

t := max(dSt, 0). This highly stylized model has the advantage of being analytically
tractable, while giving valuable insights on the possible phase transitions that can take place
in order book models with feedback.

For α < 1, using linear Hawkes theory, one can show (see e.g. [15]) that there exists a
martingale process Mt such that:

St = S0 +

∫ t

0

[(
1− αe−(1−α)βs

) λ+
0

1− α − 1{Ss≥2}λ
−
0

]
ds+Mt . (4.2)
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Figure 4.1: Schematics of spread dynamics in the �at order book model.

Introducing the parameter αc = 1 − λ+
0 /λ

−
0 one can distinguish between the di�erent

regimes:1

• 0 ≤ α < αc � The system is Hawkes-stable and the spread has a stationary distribution.

• αc < α < α∗ = 1 � The system is Hawkes-stable but the spread increases on average
linearly with t.

• α ≥ α∗ = 1 � The system is Hawkes-unstable, or �explosive�.

The terminology Hawkes-(un)stable refers to the stability transition of a linear Hawkes pro-
cess, that is, the transition between a regime where the intensities reach a stationary state
from a regime where the number of events grows exponentially with time.

The Stable Regime

Let us �rst discuss the stable regime α < αc. In the stationary state, we can prove that
the probability for the spread to be open is given by:

P [S ≥ 2] =
1− αc
1− α ,

which goes to 1 as α ↑ αc. This result reproduces very well our numerical data. Although we
have not been able to prove the result mathematically, numerical simulations also suggest
that the full distribution of the spread is exactly geometric in this model:

P [S = n] =
1− αc
1− α (1− r)rn−2 ; n ≥ 2 ,

where r depends of α and β, see Fig. 4.2 (left). This result should in principle follow from
the following equation that describes the evolution of the two-dimensional density function
ρt
(
St, Xt =

∫ t
0 βe

−β(t−s)dS+
s

)
:

∂tρt = [λ+
0 + α(x− β)]ρt(S − 1, x− β)1{S≥2,x≥β} − [λ+

0 + αx]ρt(S, x)

+λ−0 ρt(S + 1, x)− λ−0 1{S≥2}ρt(S, x) + β∂x(xρt(S, x)) , (4.3)

see Appendix A.3. Setting the left-hand side to zero gives the stationary joint distribution of
S and X. However, we have not been able to make much analytical progress, except in the
limit β → 0 where a geometric distribution for S indeed follows with r = (1− αc)/(1− α).
Unfortunately, this approximation does not hold for β ∼ 1 but works well for small β.

1These results are general to any Hawkes kernel φ provided ||φ|| = α < 1.

55



Figure 4.2: Properties of the spread in the linear model for α < αc, using a set of parameters
λ+

0 = 1, λ−0 = 0.5 and β = 1. (a) Plot of α 7→ r(α, β) with β = 1 and the theoretical results
of the limit β → 0. (b) Log survival function (sf) of the spread for di�erent values of α,
suggesting an exact geometrical distribution for all α. The black curve corresponds to the
theoretical equilibrium distribution when α = 0.

Note that in the presence of a price feedback mechanism, the spread distribution acquires a
power-law tail as we observed within the extended Santa Fe model (see Appendix A.3).

Linear Spread Growth

In the interesting regime αc < α < α∗ = 1 phase, one �nds that the spread grows on
average linearly in time, with a drift V that vanishes when α ↓ αc:

lim
t→∞

1

t
E[St] = V ; V := λ+

0

α− αc
(1− α)(1− αc)

.

On top of this average drift, the spread has di�usive �uctuations with some di�usion constant
D de�ned as:

D(α) := lim
t→∞

1

t

[
E[S2

t ]− E[St]
2
]

= λ−0 +
λ+

0

(1− α)3
.

One can thus compute exactly the probability that the spread exceeds some threshold N
before time T , corresponding to an empty book in the Santa Fe model. Using standard �rst
passage time results for the one dimensional Brownian motion [81], one has, for large N and
T (and keeping the same notation as in Section 3.2):

PN [τc ≤ T, α] =

∫ T

0
du

N√
2πD(α)u3

e
− (N+V u)2

2D(α)u . (4.4)

While the spread will eventually exceed N for large enough time, it is easy to see that:

lim
T→∞

lim
N→∞

PN [τc ≤ T, α] = 0 ,

for all α < α∗ = 1. In other words, the second order transition observed in the Santa Fe
model with feedback is absent in the present setting. While a linear increase of the spread
is interesting, it can hardly be called a liquidity �crisis�. Similarly the susceptibility χ can
be easily computed using Eq. (4.4) and one �nds:

χ(α, T,N) = V [min(τc, T )] =

∫ T

0
du
N(T − u)2 e

− (N+V u)2

2D(α)u√
2πD(α)u3

−

∫ T

0
du
N(T − u) e

− (N+V u)2

2D(α)u√
2πD(α)u3

2

.

(4.5)
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This gives us the same result as above:

lim
T→∞

lim
N→∞

χ(α, T,N) = 0,

i.e. no liquidity �crisis�. Nevertheless, it is interesting to notice that χ can be written exactly
in the scaling form that we used to analyze the Sante Fe model. Indeed, the result of Eq. (4.5)
can be transformed into:

χ(α, T,N) = T γG
(
NT−1/η, T 1/ζ(α− αc)

)
,

with:

G(x, y) =x

∫ 1

0

du (1− u)2√
2πD(αc)u3

exp

(
− [x+ uyΛ]2

2D(αc)u

)

−
(
x

∫ 1

0

du (1− u)√
2πD(αc)u3

exp

(
− [x+ uyΛ]2

2D(αc)u

))2

,

Λ := λ+
0 (1−αc)−2 and γ = η = ζ = 2. These exponents should be compared with the values

found numerically for the generalized Santa Fe model: γ ≈ 2, η ≈ ζ ≈ 3.

The Explosive Regime

When α > α∗ = 1, the model becomes Hawkes unstable, which means in the present
context that the spread increases exponentially with time. Although formally the spread
never diverges in �nite time, in practice there is a �liquidity crisis� as soon as T (α − α∗) ∝
logN , i.e. when the spread reaches the boundary of the order book. This would look
numerically akin to a second order phase transition with exponents ζ = 1 and η = 0, quite
far from the results reported for the Santa-Fe model.

A Stabilizing Mechanism

One could expect some stabilizing mechanisms to arise when the spread becomes too
large. A way to include the latter in our simple setting by substituting Eq. (4.1b) with:

λ−t = λ−0 (St − 1) , (4.6)

meaning that there is an increased probability to introduce limit orders inside the spread
when it is large. The model remains analytically tractable; the bottom line is that the
Hawkes stable regime αc < α < 1 disappears: our speci�cation is indeed able to stabilise
the spread in the whole region α < 1. The Hawkes unstable regime α > 1 of course subsists
and is associated to liquidity crises in an otherwise stable market (α < 1). Using the same
framework as in Eq.(4.2), solving the models gives:

St =1 + e−λ
−
0 t(S0 − 1) + λ+

0

∫ t

0
dse−λ

−
0 (t−s)

[
1 +

∫ s

0
R(u)du

]
ds

+

∫ t

0
dse−λ

−
0 (t−s)

[
1 +

∫ t−s

0
R(u)eλ

−
0 udu

]
dM+

s −
∫ t

0
dse−λ

−
0 (t−s)dM−s

(4.7)
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with R(t) = αβe−(1−α)βt the resolvent. From which we get the asymptotic average spread
and its variance:

E [S] = 1 +
λ+

0

λ−0 (1− α)
(4.8a)

V [S] =
λ+

0

2λ−0 (1− α)

(
1 +

∫ +∞

0
e−2λ−0 s

[
1 +

∫ s

0
R(u)eλ

−
0 udu

]2

ds

)
(4.8b)

=
λ+

0

λ−0 (1− α)

(
1 +

αβ(2− α)

2(1− α)(λ−0 + β(1− α))

)
making clearly appear the only transition at α = 1. By computing the two-dimensional
density function ρt

(
St, Xt =

∫ t
0 βe

−β(t−s)dS+
s

)
, we get the following Fokker-Planck equation:

∂tρt = [λ+
0 + α(x− β)]ρt(S − 1, x− β)1{S≥2,x≥β} − [λ+

0 + αx]ρt(S, x)

+λ−0 Sρt(S + 1, x)− λ−0 (S − 1)ρt(S, x) + β∂x(xρt(S, x)) , (4.9)

While the variable X follows as the same stationary density than the one from the �rst
model 4.1, the spread follows a Poisson distribution in the limit β → 0:

P [S = n+ 1] = e−r
rn

n!
n ≥ 0 ,

with r =
λ+0

λ−0 (1−α)
. Unfortunately, we have not succeded in solving Eq.4.9 in the general case.

Nevertheless, techniques introduced by El Euch et al [82] enable us to solve the dynamics in
a more general case. We replace Eq. (4.1a) by:

λ+
t = λ+

0 +

∫ t

0
φ(t− s)dS+

s (4.10)

where φ is a kernel such that α = ||φ|| < 1. We can show that the Laplace transform of the
variables

(
S+
t , S

−
t

)
de�ned as:

D(x, y, t) = E
[
e−xS

+
t −yS−t

]
(4.11)

follows the equation:

D(x, y, t) = exp

(
λ+

0

[
e−(x+y)

∫ t

0
D(x, y, s)ds− t

])
× exp

(
λ+

0

λ−0
e−x

[
1− e−y

] [1− e−λ−0 t
t

]∫ t

0
D(x, y, s)ds

) (4.12)

where the function D is implicitly de�ned as the solution of:

D(x, y, t) = exp

(∫ t

0
φ(s)

[
e−(x+y)D(x, y, t− s)− 1

]
ds

)
× exp

(
e−x

[
1− e−y

] ∫ t

0
D(x, y, t− s)φ(s)ds

∫ t
0 e
−λ−0 (t−s)φ(s)ds∫ t

0 φ(s)ds

) (4.13)

All the technical details of the proofs are given in Appendix A.3. A very interesting extension
would be to compute the dynamics at criticality (α → 1). We already know the behaviour
of S+

t thanks to Jaisson et al [21, 22] but �nding the re-scaling of λ−0 has not been tackled
yet.
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Figure 4.3: Schematics of the �at order book dynamics with bid and ask. Note that the rate of
spread closing (resp opening) event is twice the rate of limit orders (resp cancellations/market
orders) because of bid/ask symmetry.

4.3 A Model with Price Feedback on the Spread

The model presented in Section. 4.2 displays a very simple destabilizing mechanism in
the mid-price reference frame, in which spread opening events trigger more spread opening
events. Here, we re-introduce price dynamics to illustrate the e�ects of "volatility" and
"trend" in the spread opening mechanism, bringing the model one step closer to the empirical
study presented in Chapter 2 and the Santa Fe model of Section 3.2. In order to do so, we
write the intensity of cancellations/market orders as:

λ+
t = λ+

0 + α

(∫ t

0

√
2βe−β(t−s)dPs

)2

(4.14a)

λ−t = λ−0 1{St≥2} . (4.14b)

Each event takes place with equal probability at the bid bt or the ask at. The dynamics of
the bid and ask are thus such that

E [dat|dat > 0,Ft] = −E [dbt|dbt < 0,Ft] = λ+
t dt/2

and
E [dat|dat < 0,Ft] = −E [dbt|dbt > 0,Ft] = −λ−t dt/2 .

Using the formalism introduced in [30] we are able to solve the dynamics of the system
and show that there exists a martingale Mt such that:

St = S0 +

∫ t

0

[ (
2− αe−(2−α)βs

) λ+
0

2− α −
1{Ss≥2}
2− α λ−0

(
2− 2α− αe−(2−α)β(t−s)

) ]
ds+Mt .

(4.15)
Calling again αc = 1−λ+

0 /λ
−
0 , one obtains the same regimes as in Section 4.2 only replacing

α∗ = 1 by α∗ = 2:

• 0 ≤ α < αc � The system is non-explosive and the spread has a stationary distribution.

• αc < α < 2 � The system is non-explosive but the spread increases on average linearly
with t.

• 2 ≤ α � The system is explosive.

Note that this transition is similar to the Z-Hawkes transition that was presented in [30]. In
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Figure 4.4: Properties of the spread for α < αc and β = 1, λ+
0 = 1, λ−0 = 0.5. (a)

Survival function (sf) of the spread. The black curve corresponds to the theoretical equilibrium
distribution when α = 0. For large α, the survival function decays asymptotically as a power-
law S−κ. (b) Tail exponent κ of the survival function, as a function of α. κ appears to
saturate around 2 when α→ αc.

the αc < α < 2 phase, the spread grows again linearly with time:

E[St] ∼ V t, V := 2λ+
0

α− αc
(1− αc)(2− α)

.

In the α < αc phase, one �nds again P [S ≥ 2] = (1− αc)/(1− α). Interestingly however,
simulating numerically Eq. (4.14) we observe that the spread distribution is asymptotically
fat tailed instead of geometric (see Fig. 4.4). Such a power law tail is also observed in
our extended Santa Fe model close to the critical point. We note that the mid-price Pt =
(at + bt)/2 behaves like a di�usion in the two phases, with an average di�usivity DP :

DP := lim
t→∞

1

t
E

[∑
s<t

(∆Ps)
2

]
=
λ−0 P [S ≥ 2] + λ+

0

2− α ,

One can also show that joint the probability density function ρ
(
t, St, Xt =

∫ t
0

√
2βe−β(t−s)dPs

)
now solves:

∂tρ =

[
λ+

0 + α
(
x− β̂

)2
]
ρ
(
t, S − 1, x− β̂

)
+

[
λ+

0 + α
(
x+ β̂

)2
]
ρ
(
t, S − 1, x+ β̂

)
+ λ−0

[
ρ
(
t, S + 1, x− β̂

)
+ ρ

(
t, S + 1, x+ β̂

)]
− 2

[
λ+

0 + αx2 + λ−0
]
ρ(t, S, x)

+β∂x (xρ) , (4.16)

where β̂ =
√
β/2 and with the boundary condition ∀S < 1, ρ(t, S, x) = 0.

4.4 Non-Linear Hawkes Models and Metastability

We have studied in the previous section a simple spread dynamics model that maps onto
a linear Hawkes process. In these models, the spread becomes unstable and grows linearly
in time before the Hawkes process (i.e. the activity of the process) becomes itself explosive.
One can stabilize the spread dynamics, as in the last subsection above, such that sudden
liquidity crises in this model are associated to the Hawkes explosive transition.

For this picture to be correct, however, real �nancial markets must sit below, but very
close to the Hawkes instability threshold α∗, or else one must argue that α itself is time
dependent, and occasionally visits the explosive region α > α∗ before decreasing back below
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Figure 4.5: Properties of the time of metastability when α = 0 and ε > 0. (a) Survival
function (sf) of the time before explosion for ε = 0.2, which is found to be exponential. (b)
Evolution of the average metastability time with ε. The dotted red curve is the continuous
time prediction given by Eq. (4.21). The plain red curve is obtained by multiplying the term
in the exponential by a empirical factor 2.5. (c) Typical metastable trajectory. The set of
parameters is the same that in (a): λ+

0 = 1, λ−0 = 0.5, β = 1 and ε = 0.2.

α∗, allowing the market to re-stabilise. The same remark in fact applies to the generalised
Santa Fe model studied in section 3.2: if liquidity crises are indeed related to the existence of
a second order phase transition, one must argue that �nancial markets are for some reason
close to the critical point � a phenomenon called �self-organized criticality� [75] � or that the
parameters �uctuate over time and occasionally push the system in the unstable phase.

Although many models in mathematical �nance are tweaked such that their parame-
ters become time dependent, we feel that this common procedure might in fact hide the
inadequacy of such models. In this section, we want to explore an alternative scenario. We
introduce a class of non-linear Hawkes processes that show occasional liquidity crises without
either being poised at the edge of instability (α ↑ α∗) or having a time dependent feedback
parameter α.

A Model with Quadratic Feedback

Let us consider again the simpli�ed framework of section 4.2 and generalize the feedback
on spread opening events as:

λ+
t = λ+

0 + αXt + εX2
t ; Xt :=

∫ t

0
βe−β(t−s)dS+

s . (4.17)

When ε = 0, this Hawkes process is non-explosive provided α < α∗ = 1. But as soon as
ε > 0, the process has a non-zero probability to explode, even when α < α∗. However,
interestingly, these �liquidity crises� only happen with a rate that is exponentially small in
1/ε, and therefore interrupt very long periods of apparent market stability � a phenomenon
called �metastability� in the physics literature. This is con�rmed by direct numerical sim-
ulations of the model Eq. (4.17) in Fig. 4.4. In the following section, we give an analytical
description of this phenomenon.
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A Continuous Time Description

In the �slow� limit β → 0 one can write an approximate SDE for Xt. Start from the
exact expression dXt = −βXt dt+βdS+

t . When β is small, λ+
t is slowly varying and one can

approximate dS+
t by λ+

t dt +
√
λ+
t dBt, where Bt is a Brownian motion (for more rigorous

statements, see [21]). Hence:

dXt = β
[
λ+

0 − (1− α)Xt + εX2
t

]
dt+ β

√
λ+
t (Xt) dBt. (4.18)

Let us write the deterministic part of this equation as minus the derivative of some �poten-
tial� V(X), to wit:

V(X) =
β(1− α)

2

(
X − λ+

0

1− α

)2

− βε

3
X3. (4.19)

Such a potential is drawn for α < 1, ε = 0 and α < 1, ε > 0 in Fig. 4.6. One clearly sees
that for ε = 0 the equilibrium Xeq = λ+

0 /(1− α) (that corresponds to the average intensity
of the Hawkes process) is stable. But as soon as ε > 0 the potential reaches a maximum for
some value X∗ beyond which it plunges towards −∞. In the limit ε→ 0, one �nds that X∗

is given by:

X∗ ≈ 1− α
ε

,

corresponding to:

V(X∗) ≈ β(1− α)3

6ε2
,

which diverges when ε→ 0. This picture allows one to describe the dynamics of the model
for ε > 0 in intuitive terms: for a very long time, Xt will oscillate around its equilibrium
value Xeq until some rare �uctuation of the Brownian noise dBt is able to bring Xt close to
the top of the high barrier X∗. In such rare circumstances, Xt escapes the stable valley and
runs all the way to +∞ in �nite time, corresponding to a �liquidity crisis�.

The theory of high barrier crossing under the in�uence of noise is very well understood.
In the present case, the �nal formula for the average �rst escape time τc (corresponding to
the �emptying of the book� as in section 3.2) is given by [83, 6]:

E[τc] ≈ 2π

(
D(Xeq)

D(X∗)|V ′′(X∗)V ′′(Xeq)|

)1/2

× exp

(∫ X∗

Xeq

dx
V ′(x)

D(x)

)
, (4.20)

with D(X) := β2

2

(
λ+

0 + αX + εX2
)
. The expansion to second order in ε gives:

logE[τc] ≈
ε→0


− 2

β

[
1− α+ logα

ε
+
λ+

0

α2
log

1

ε

]
− 1

2
log

1

ε
if α > 0

1

βε

(
log

1

ελ+
0

− 2

)
if α = 0 .

(4.21)

Hence, as announced, the time before a crisis is exponentially large in ε−1, with logarithmic
corrections for α = 0. Another prediction of this approach is that in the limit ε → 0, the
time-to-crisis becomes a Poisson variable with mean E[τc], as indeed found numerically (see
Fig. 4.5(a)).

Our analytical result compares well with our numerical results in terms of the overall
dependence on ε, but the numerical prefactor inside the exponential is o� by a factor ∼ 2.5.
This can be traced to the fact that our numerical simulations are in a regime where β/λ0 =
O(1), whereas the theoretical analysis is done in a regime where β/λ0 → 0. (see [84] and [6],
section 5.4, where a similar phenomenon is present).
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Figure 4.6: Plots of the potential as given by Eq. (4.19) with λ+
0 = 1 and α = 0.

4.5 Conclusion

In order to bolster the results of our previous chapters with analytical arguments, we then
considered a class of simple models, where the existence of a phase transition can be veri�ed
mathematically. Setting aside the dynamics of the order book, and focusing our attention to
the dynamics of the spread, we presented a model which can be mapped onto a linear Hawkes
process in which spread opening events are likely to lead to more spread opening events. We
exhibited three dynamic spread regimes as function of feedback intensity: stable, linearly
increasing, and exploding spread. We argued that the second regime could be stabilised
and that in such a case, and within some parameter range, a phase transition from stable
to unstable spread exists, much like in the Quadratic Santa Fe model presented before, but
with major quantitative di�erences. This simple model can be extended by introducing a
quadratic feedback from price changes, without qualitative change on the three dynamics.
This feedback only makes the distribution of the spread (and the volatility) fat-tails, closer
to the results of the Quadratic Santa Fe model.

Finally, we presented an alternative scenario which needs no a priori proximity to the
instability threshold, nor a time dependent feedback parameter. The model is a non-linear
Hawkes process for which liquidity crises are �activated" events within a metastable phase.
A continuous time description allowed us to derive the typical crisis frequency as function of
the model's parameters, and show that this time can be much longer than the microscopic
time of the model. Even if metastability is an elegant modeling for modeling liquidity crises,
it is not compatible with the calibration of GQHawkes on order book data that displays
power-law. The alternative �activated� scenario would rather suggest a bimodal distribution
with a hump at large e�ective spreads that we do not see on empirical data in Chap 4.
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Take home message of Chapter 4

1. Spread models. This class of models consists in a �at order book where limit
orders can be placed in front of the best, and cancellations can occur at the best only.

2. Spread opening events. Spread opening events are assumed to be a Hawkes
process: linear or quadratic in price changes or non-linear.

3. Spread closing events. Spread closing events rate depend on the state of the
spread as limit orders cannot be placed when the spread is closed.

4. Phase transition. These models feature di�erent phases (stable, unstable) that
are mathematically characterized.

5. Non linear Hawkes and metastability. A non-linear Hawkes process for
spread opening events results in metastable phases.
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5
Revealing liquidity in the latent

order book

Latent order book models have allowed for signi�cant progress in our understanding of
price formation in �nancial markets. In particular they are able to reproduce a number of
stylized facts, such as the square-root impact law. An important question that is raised � if
one is to bring such models closer to real market data � is that of the connection between
the latent (unobservable) order book and the real (observable) order book. Here we suggest a
simple, consistent mechanism for the revelation of latent liquidity that allows for quantitative
estimation of the latent order book from real market data. We successfully confront our results
to real order book data for over a hundred assets and discuss market stability. One of our key
theoretical results is the existence of a market instability threshold, where the conversion of
latent order becomes too slow, inducing liquidity crises. Finally we compute the price impact
of a metaorder in di�erent parameter regimes.
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5.1 Introduction

The recent discovery of the square root law has prompted the �nancial community to
propose new models for price formation. As presented in the general introduction 1.3, a new
class of agent based models (ABM) has become a very powerful tool to gain insight into its
origins. Given that the instantaneous liquidity revealed in the limit order book is very small
(less than 1% of daily traded volume), latent order book models [32, 36, 85] build on the idea
that revealed liquidity chie�y re�ects the activity of high frequency market makers that act
as intermediaries between much larger unrevealed volume imbalances. The latter are not
revealed in the limit order book in order to avoid giving away precious private information,
until the probability to get executed is large enough to warrant posting the order close to the
bid (or to the ask). Within this class of ABM, reaction-di�usion models (see e.g. [86, 46, 48])
have proved very successful at reproducing the square root law in a setup free of price manip-
ulation.However, one very important question is yet to be addressed if one is to connect such
models with real observable and quanti�able data: what is the relation between revealed
and latent liquidity and what are the mechanisms through which latent liquidity becomes
revealed? These issues are the subject of the present communication. We propose a simple
dynamic model to account for liquidity �ow between the latent and revealed order books.
We introduce two ingredients that are to our eyes essential to reproduce realistic limit order
book shapes: (i) the incentive to reveal one's liquidity increases with decreasing distance to
the trade price, and (ii) the process of revealing latent liquidity is not instantaneous and
lag e�ects may be an important source of instability, as real liquidity is found to vanish in
certain regions of parameters. In addition to providing an alternative scenario for liquidity
crises, we show that our framework allows one to infer the shape of latent (unobservable)
liquidity from real (observable) order book data. This is important because the concept of a
latent order book is sometimes criticized as a �gment of the theorist's imagination. Having
more direct indications of its existence is comforting.

In section 5.2 we present the model and derive the governing equations. In section 5.3
we compute the stationary states of the limit order book both analytically and numerically.
In section 5.4 we calibrate our model to the order books of over a hundred assets and
discuss market stability as function of incentive to reveal and conversion rate. In section 5.5
we compute the price impact of a metaorder and discuss its behavior. In section 5.6 we
conclude.

5.2 A mechanism for latent liquidity revealing

Our starting point is the reaction-di�usion latent order book model of Donier et al. [46]
(see also [44]). In their setup, the latent volume densities of limit orders in the order book
ρB(x, t) (bid side) and ρA(x, t) (ask side) at price x and time t evolve according to the fol-
lowing rules. Latent orders di�use with di�usivity constant D, are canceled with rate ν,
and new intentions are deposited with rate λ. When a buy intention meets a sell intention
they are instantaneously matched: A+B=∅. The trade price pt is conventionally de�ned
through the equation ρB(pt, t) = ρA(pt, t). Donier et al. showed that the resulting station-
ary order book is locally linear (around the price). In particular, in the in�nite memory
limit ν, λ → 0 while keeping L := λ/

√
νD constant, one obtains ρstA(ξ) = ρstB(−ξ) = Lξ for
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Figure 5.1: Schematics of the latent and revealed order books. Depositions, cancellations,
di�usion and liquidity �ow between the two books is signi�ed with arrows (see Sect. 5.2).

ξ = x−pt > 0.1 The parameter L was coined the latent liquidity. Here we choose to work
in such an in�nite memory limit. For an analysis of �nite memory e�ects ν, λ 6= 0 see [48].

With the intention of building a mechanism for latent liquidity revealing we de�ne the
revealed and latent order books (see Fig. 5.1), together with the revealed and latent limit

order densities for the bid and ask sides of the book ρ(r)A/B(x, t) and ρ(`)
A/B(x, t). We denote D`

and Dr the di�usion coe�cients in the latent and revealed order books respectively. While
di�usion in the latent book signi�es heterogeneous reassessments of agents intentions [46],
the idea of di�usion in the revealed order book certainly deserves a discussion. Once a limit
order is placed in the revealed order book, if one wants to change its position before it gets
executed, one has to cancel it and place it somewhere else. So one may argue that there
should be no di�usion in the revealed book such that revealed order reassessments must
go through the latent book before they can be posted again. However, we believe that (i)
unrevealing one's order because one is no longer con�dent about one's reservation price and
waiting for an arbitrary amount of time (of order (Γωr)

−1, see below) to reveal it back, and
(ii) canceling an order knowing that it will immediately be posted back at a revised price,
are in fact two distinct processes. We thus leave the possibility for a nonzero di�usivity Dr in
the revealed order book. In addition, note that trading fees and priority queues discourage
traders from changing posted orders. Indeed, when canceling a revealed order traders lose
their position in the priority queue which may result in harmful delays in the execution. One
is thus tempted to surmise that Dr < D` in the general case, but one might as well argue
that the presence of HFT can considerably increase the value of Dr thereby inverting such
an inequality. Be as it may, the limit Dr → 0 will very likely be an interesting one to address.

1Following [46] we are setting in the reference frame of the informational price component p̂t =
∫ t
0
ds Vs,

where Vt is an exogenous term responsible for the price moves related to common information.

67



Furthermore we posit that latent orders are revealed at a position dependent rate ωrΓr(kξ)
and unrevealed at rate ω`Γ`(kξ), where ξ = x−pt denotes the distance from the trade price,
k−1 is a characteristic price scale, and Γr and Γ` are functions taking values in [0, 1].2

Naturally, buy/sell order matching A+B → ∅ (with rate κ) only takes place in the revealed
order book. Assuming Γr/` to be continuous and su�ciently regular on R∗, one may write
for the ask side:

∂tρ
(r)
A = Dr∂xxρ

(r)
A + ωrΓr(kξ)ρ

(`)
A − ω`Γ`(kξ)ρ

(r)
A − κρ

(r)
A ρ

(r)
B (5.1a)

∂tρ
(`)
A = D`∂xxρ

(`)
A − ωrΓr(kξ)ρ

(`)
A + ω`Γ`(kξ)ρ

(r)
A , (5.1b)

and for the bid side:

∂tρ
(r)
B = Dr∂xxρ

(r)
B + ωrΓr(−kξ)ρ(`)

B − ω`Γ`(−kξ)ρ
(r)
B − κρ

(r)
A ρ

(r)
B (5.2a)

∂tρ
(`)
B = D`∂xxρ

(`)
B − ωrΓr(−kξ)ρ(`)

B + ω`Γ`(−kξ)ρ(r)
B . (5.2b)

In the limit κ→∞, ρ(r)
A (x, t) and ρ(r)

B (x, t) do not overlap such that one may instead consider

the di�erence function φr(x, t) := ρ
(r)
B (x, t)−ρ(r)

A (x, t) and absorb the reaction terms without
loss of information. Note however that the bid and ask sides of the latent order book are
perfectly allowed to overlap. The trade price pt is de�ned as the sign changing point of φr:

lim
ε→0

[φr(pt + ε, t)φr(pt − ε, t)] < 0 . (5.3)

For the sake of simplicity we shall set ωr = ω` = ω.3 We also set Γr = 1 − Γ` := Γ where
Γ is the conversion probability distribution function for which we impose Γ(y ≤ 0) = 1.
This implies that latent orders falling on the "wrong side" reveal themselves with rate ω.
One may rightfully argue that such orders should then be executed against the best quote,
consistent with real market rules for which the real order book cannot be crossed. However
this would prevent analytical progress. We ran numerical simulations (see section 5.3) in
which such revealed orders are properly located at the best quote and did not observe any
signi�cant impact on our main results.

Subtracting Eq. (5.1a) to Eq. (5.2a) and injecting ρ(r)
B = φr1{x<pt}, ρ

(r)
A = −φr1{x>pt},

one obtains the following set of equations, central to our study:

∂tρ
(`)
B = D`∂xxρ

(`)
B − ω

{
Γ(−kξ)ρ(`)

B − [1− Γ(−kξ)]1{x<pt}φr
}

(5.4a)

∂tρ
(`)
A = D`∂xxρ

(`)
A − ω

{
Γ(kξ)ρ

(`)
A + [1− Γ(kξ)]1{x>pt}φr

}
(5.4b)

∂tφr = Dr∂xxφr + ω
{

Γ(−kξ)ρ(`)
B − Γ(kξ)ρ

(`)
A − [1− Γ(k|ξ|)]φr

}
. (5.4c)

Equations (5.4) must be complemented with a set of boundary conditions. In particular we

impose that limx→∞ ∂xρ
(`)
A = − limx→−∞ ∂xρ

(`)
B = L (see [46]), and that ρ(`)

A when x→ −∞,

respectively ρ(`)
B when x → ∞, do not diverge. In addition, whenever Dr 6= 0,4 one must

impose that φr(0) = 0 and φr(x) does not diverge when |x| → ∞.

2While it may be reasonable that, when unrevealed, orders don't land on the same price x they took o�
from (by that moving away the earlier decision, say (x)r → (x+∆x)`, with sign(∆x) = sign(x−pt)), we shall
not consider such a possibility in the present study for reasons of analytical tractability (restrict to ∆x = 0).

3Note that relaxing this hypothesis is possible (see e.g. Sec. 5.3 for the case Dr = 0) but at the cost of
additional complexity. We checked that this point was without e�ect on our main qualitative results.

4While Dr = 0 is an interesting limit, D` = 0 does not seem to be particularly appealing on modelling
grounds. In section 5.3 we give a more solid theoretical argument to support this claim.
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5.3 Stationary order books

In this section we compute analytically and numerically the stationary order books as
function of the di�erent parameters, and discuss interesting limit cases. Setting ∂tρ

(`)
B =

∂tρ
(`)
A = ∂tφr = 0 in Eqs. (5.4) one obtains for all ξ ∈ R∗, ρ(`)

B (ξ) = ρ
(`)
A (−ξ) and φr(ξ) =

−φr(−ξ). This allows one to solve the problem on R+∗, with boundary conditions ρ(`)
B (0+) =

ρ
(`)
A (0+), ∂ξρ

(`)
B (0+) = −∂ξρ(`)

A (0+). The system one must solve for ξ > 0 reduces to:

0 = D`∂ξξρ
(`)
B − ωρ

(`)
B (5.5a)

0 = D`∂ξξρ
(`)
A − ω

{
Γ(kξ)ρ

(`)
A + [1− Γ(kξ)]φr

}
(5.5b)

0 = Dr∂ξξφr − ω
{

Γ(kξ)ρ
(`)
A + [1− Γ(kξ)]φr − ρ(`)

B

}
. (5.5c)

Analytical and numerical solutions

Here we provide a solution of Eqs. (5.5) for three distinct cases of interest Dr = 0,

Dr = D`, and Dr 6= D`. Note that for D` = 0, one can show that ρ(`)
B (ξ > 0) = 0, while

φr(ξ > 0) = aξ+ b with a and b two constants, and ρ(`)
A = φr[Γ(kξ)− 1]/Γ(kξ) ≈ −φr/Γ(kξ)

for ξ →∞, by assuming Γ to vanish at in�nity. Such solutions are not compatible with the
boundary conditions at in�nity and will therefore not be further inspected.

The limit case Dr = 0

Setting Dr = 0 in Eqs. (5.5) and introducing `` :=
√
D`/ω, on �nds that the stationary

order book densities are given by (see Fig. 5.2(a)):

ρ
(`)
B (ξ) =

L``
2
e−ξ/`` (5.6a)

ρ
(`)
A (ξ) = Lξ +

L``
2
e−ξ/`` (5.6b)

φr(ξ) =
L``
2
e−ξ/`` − LξΓ(kξ)

1− Γ(kξ)
. (5.6c)

Let us stress that the solution φr(ξ) is discontinuous in ξ = 0, consistent with no di�usion
in the revealed order book. More precisely, provided Γ′(0+) 6= 0, one has φr(0−)− φr(0+) =
−L [`` + 2/(Γ′(0+)k)]. While the solution for the case Dr = 0 can be expressed for an
arbitrary function Γ(y > 0), this is not the case for Dr 6= 0 and one must specify its shape.
In the following we choose to work with:

Γ(y) =

{
1 ∀y ≤ 0

e−y ∀y > 0 .
(5.7)

Note that studying the e�ect of a scale-invariant power law decaying Γ could also yield
interesting results.5
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Figure 5.2: Rescaled stationary order books as function of rescaled price for (a) Dr = 0, (b)
Dr 6= D` (Dr < D`), and (c) Dr = D`. Solid black lines indicate the rescaled theoretical
revealed order density kφr/L while dashed black lines signify the theoretical latent order
densities kρ(`)

A/B/L. The results of the numerical simulation presented in Sect. 5.3 are plotted
with color lines on top of the analytical curves, with k`` = 0.35 for (a) and (c), and `r/`` =
0.32 for (b).

The limit case Dr = D`

For Dr = D` and provided k`` 6= 1 the stationary books are given by (see Fig. 5.2(c)):

ρ
(`)
B (ξ) =

L
k
g(k``)e

−ξ/`` (5.8a)

ρ
(`)
A (ξ) = Lξ +

L
k
g(k``)e

−ξ/`` + φr(ξ) (5.8b)

φr(ξ) = L
(

1

(k``)2 − 1

[
ξ +

2k`2`
(k``)2 − 1

]
e−kξ +

g(k``)

k2``(k`` + 2)
e−(1/``+k)ξ

+

[
g(k``)

2k``
ξ − 2k`2`

[(k``)2 − 1]2
− g(k``)

k2``(k`` + 2)

]
e−ξ/``

)
, (5.8c)

where we introduced g(ζ) = 2ζ2(2 + ζ)2/[(1 + ζ)2(8 + 3ζ)]. For k`` = 1 the result can be
obtained by Taylor expanding Eqs. (5.8) about k`` = 1. Note that in this case the function
φr(ξ) is continuous in ξ = 0, consistent with nonzero di�usivity in the revealed order book.

The general case Dr 6= D`

ForDr 6= D` the set of Eqs. (5.5) must be solved numerically. Figure 5.2(b) displays a plot
of the stationary order books computed using a �nite di�erence method for Dr/D` ≈ 0.1,
that is ``/`r ≈ 3 where we introduced `r :=

√
Dr/ω. As one can see, in the situation

Dr < D` the revealed order book's shape is somewhat in between the cases Dr = 0 and
Dr = D`, that is continuous but with a steeper slope at ξ = 0. As expected, a little amount
of di�usion in the revealed order book su�ces to regularize the singularity at the trade price.

As it can be seen from Eq. (5.5a) (or from Eqs. (5.6a) and (5.8a) in the particular cases
Dr = 0 and Dr = D`), in all cases `` denotes the typical scale over which the latent books

5Also note that in this particular case, the solution for ω` 6= ωr can be easily expressed by substituting ``
by `

(r)
` =

√
D`/ωr into Eqs. (5.6a) and (5.6b), and replacing Eq. (5.6c) by:

φr(ξ) =
ωr
ω`

[
L`(r)`

2
e−ξ/`

(r)
` − Lξe

−kξ

1− e−kξ

]
.
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overlap. This is consistent with the idea that `` is the typical displacement by di�usion of a
latent order in the vicinity of the trade price during a time interval ω−1, that is before it gets
revealed. Also, it can be seen from Eqs. (5.6c) and (5.8c) in the particular cases Dr = 0 and
Dr = D` that the typical horizontal extension of the revealed order book, commonly called
order book depth, is given by max(k−1, ``), consistent with the decay of the conversion
probability function Γ and the horizontal extension of the latent books. Note however that,
as shall be argued in Sect. 5.4, k−1 must always be of order or larger than `` for stability
reasons, and therefore max(k−1, ``) ∼ k−1. In the following we shall thus call k−1 the order
book depth. Finally note that when `r (equivalently Dr) is decreased while keeping all other
parameters constant, the slope of the revealed order book around the origin increases, by
that concentrating further the available liquidity around the trade price.

The LLOB limit

Our model being built upon the locally linear order book model (LLOB) by Donier et al.
[46], we should be able to recover such a limit for certain values of the parameters. Since there
is only one di�usion coe�cient in the LLOB model, the latter should correspond to the Dr =
D` case. Then, the LLOB model assumes no lag e�ect, i.e. latent orders are immediately
executed when at the trade price. This translates into ω → ∞ or equivalently `` → 0,
that is no overlap of the latent books. More rigorously, nondimensionalizing Eqs. (5.8) as
{φ̃r, ρ̃(`)} = {kφr/L, kρ(`)/L} and ξ̃ = kξ, one can see that taking the limit k`` → 0 yields

for all ξ̃ > 0, ρ̃(`)
B (ξ̃) → 0, and ρ̃(`)

A (ξ̃) + ρ̃
(r)
A (ξ̃) = ξ̃ := ρ̃LLOB

A (ξ̃) that is precisely the LLOB
result. To summarize, provided the latent order book of Donier et al. is de�ned as the
sum of the latent and revealed books, the LLOB limit is recovered for k`` � 1. The latter
condition indicates that the typical displacement `` of latent orders in the vicinity of the price
must remain small compared to the order book depth k−1. Note that, despite what a �rst
intuition might suggest, the condition k →∞, that is no incentive to give away information
until absolutely necessary, is not required to recover the LLOB limit.

Numerical simulation

In order to test our results, we performed a numerical simulation of our model (see

Fig. 5.2) which proceeds as follows. We de�ne four vectors ρ(`)
A , ρ

(r)
A , ρ

(`)
B , ρ

(r)
B of size 2000

on the price axis (a good trade-o� between the continuous approximation of the model and
computational time cost). Each component of vectors stores the number of orders contained
at that price at a given time. At each cycle we draw the orders that shall di�use from
a binomial distribution of parameter p`/r, directly related to the di�usion constant in the
respective book by the relation D`/r = p`/r/(2τ) where τ denotes the time step. Some of the
orders (drawn from a binomial of parameter 1/2) will move to the left and the remaining to
the right. Re�ecting boundary conditions are imposed for revealed orders; the slope of the
latent book at the boundaries is ensured by an incoming current of particles J = D`L. Then,
some orders in the latent book are drawn from a binomial distribution of parameter ωτΓ(kξ)
for the ask side (resp. Γ(−kξ) for the bid side)) and moved to the revealed book. Here pt
denotes the mid-price. Equivalently revealed orders are moved to the latent book, only with
parameter ωτ(1− Γ(·)). Whenever bid and ask orders are found at the same price, they are
cleared from the book. Figure 5.2 shows that the results of the numerical simulations are in
very good agreement with the analytical solutions.

5.4 Market stability and calibration to real data

In this section, we address the important question of market stability, as given by the
amount of liquidity in the revealed order book. Clearly, when the conversion rate ω is low,
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the revealed liquidity is thin and prices can be prone to liquidity crises, even when the latent
liquidity is large. We calibrate our model to real order book data and discuss the results in
the light of the stability map provided by our model.

Market stability

Imposing that the order densities ρ(`)
A , ρ

(r)
A , ρ

(`)
B , ρ

(r)
B must be non negative, consistent with

a physically meaningful solution, restricts the possible values of `` :=
√
D`/ω for a given

order book depth k−1.

In the Dr = 0 case, combining Eq. (5.6c) with Eq. (5.7) yields φr(0+) = L [``/2− 1/k].

Restricting to φr(0+) ≤ 0 (which is tantamount to ρ(r)
A (0+), ρ

(r)
B (0+) ≥ 0) gives k`` ≤ 2. Note

however that this condition is not su�cient to say that the order densities are everywhere
positive, but that they are only positive around the origin. The necessary and su�cient
condition to ensure full positiveness reads k`` ≤ 1. For 1 ≤ k`` ≤ 2 the order book displays
a "hole" along the price axis, but is well de�ned around the origin. Since we are most
interested in the revealed liquidity in the vicinity of the trade price we will choose k`` ≤ 2
(or, in terms of ω, ω ≥ D`k

2/4) as our stability condition, with no qualitative and only
little quantitative e�ect on our main conclusions. The maximum amplitude of the real order
book density scales as:

max
ξ

∣∣φr(ξ)∣∣ = −φr(0+) =
L
k

(
1− k``

ζc

)
, ζc = 2 . (5.9)

For D` = Dr the stability condition is imposed by the sign of the slope at ξ = 0. One
�nds that the critical value of k`` for which the liquidity around the origin vanishes is given
by ζc = [−2 + (73 − 6

√
87)1/3 + (73 + 6

√
87)1/3]/3 ≈ 1.875.6 Arguing that in this case the

maximum of the density can be approximated by maxξ
∣∣φ′r(0+)ξe−kξ

∣∣ = |φ′r(0+)|/(ek) yields:

max
ξ

∣∣φr(ξ)∣∣ ∼ L
ek

ζc(3ζ
2
c + 4ζc − 3)

(1 + ζc)2(8 + 3ζc)

(
1− k``

ζc

)
, ζc ≈ 1.875 . (5.10)

Figure 5.3(a) displays −kφ′r(0+)/L as function of the dimensionless parameters k`` and
k`r. The dash-dotted line corresponding to φ′r(0) = 0 splits the parameter space into a
stable region (green) and an unstable region (red). We naturally checked that the analytical
values of ζc obtained above for `` = `r and `r → 0 are recovered. As one can see, while
the role played by `r with respect to the position of the critical line ζc is quite marginal
(quasi-vertical dash dotted line), the slope of the order book around ξ = 0 increases with
decreasing `r/``. More precisely, Fig. 5.3(c) displays the slope of the revealed book in the
vicinity of the transition and shows that, at given `r/``, the slope indeed scales linearly with
|k`` − ζc|. In addition the top right inset shows that the slope also scales as ``/`r, which
�nally leads to |φ′r(0+)| ∼ |k`` − ζc|(``/`r). The other insets show ζc as function of `r/``,
and the total revealed volume. For the sake of completeness, Fig. 5.3(b) displays a proxy of
the overlap between the latent bid and ask books in the parameter space (k``, k`r). While
vanishing in the region k`` � ζc, the overlap is quite large (of the order of k−1) in the
vicinity of the critical line k`` . ζc indicating a large volume of latent orders in the vicinity
of the price. Interestingly, combined with a vanishing level of liquidity, the increased level
of activity around the origin induces important �uctuations of the trade price. To illustrate
this, Fig. 5.3(d) displays the numerically determined squared volatility of the trade price pt

6Note that in this case the solution, provided k`` > 1, is also asymptotically unstable: limξ→∞ φr(ξ) =
Lg(k``)ξe

−ξ/``/(2k``) > 0, while for k`` = 1, limξ→∞ φr < 0.
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Figure 5.3: Parametric study of stationary order books. (a) Stability map. Density plot
(symlog scale) of the rescaled slope of the revealed order density at the origin, as function
of k`` and k`r. The dashed line indicates `r = ``, the dash-dotted line indicates the crit-
ical line φ′r(0) = 0. (b) Overlap of the latent order books. Density plot (log scale) of the
y-intercept of the latent order book densities at the origin. Note that such a quantity is
a direct measure of the overlap. The empirical order book data (US stocks, see Tab. A.3,
and Euro Stoxx, white star) are reported with a colormap scaling with their average spread
value (see (a)) and with their average daily traded volume (see (b)). (c) Plot of the slope of
the revealed order book at the origin as function of ζc − k``, for di�erent values of `r/``.
The top inset shows ζc as function of `r/``, and the center left inset displays the total
volume in the revealed order book Vr =

∣∣ ∫∞
0 dξ φr(ξ)1φr(ξ)<0

∣∣, as function of ζc − k``.
The right inset shows the angular coe�cient of the slope of the main plot at the origin.
(d) Numerical volatility. Plot of rescaled numerical squared volatility of the trade price
and the fair price (see Eq. (5.11)) in the `r = `` case. We display two di�erent estima-
tions: Rogers-Satchell, σ2

RS = E [(pH − pO)(pH − pC) + (pL − pO)(pL − pC)], and Parkinson,
σ2
p = 1

4 ln(2)E
[
(pH − pL)2

]
where pH, pL, pO, pC denote the high, low, open and close prices

respectively [87, 11].

as function of k`` in the `r = `` limit. For comparison, we also plotted the volatility of the
fair price pft, here de�ned as the value that equilibrates total (revealed and latent) supply
and demand: ∫ pft

0
dξ
[
ρ

(r)
A (ξ, t) + ρ

(`)
A (ξ, t)

]
=

∫ ∞
pft

dξ
[
ρ

(r)
B (ξ, t) + ρ

(`)
B (ξ, t)

]
. (5.11)

As one can see, for ω � ωc := D`k
2/ζ2

c the volatility of the trade price coincides with its
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Figure 5.4: Fit of the stationary revealed order book φr to the average Euro Stoxx futures
contract order book. The calibration yields L = 4599, k = 2.12, `` = 0.042 and `r = 0.0084.

fair price counterpart, consistent with the idea that for high conversion rates the coupling
between the revealed and latent books is almost instantaneous and therefore the mid-price
tends to follow the fair price. In the vicinity of the critical line the volatility of the fair
price slightly decreases. However, the volatility of the trade price strongly diverges as the
vanishing liquidity limit is approached, i.e. when the conversion rate ω decreases to ωc. Note
that while the trade price can no longer be de�ned when a liquidity crisis arises, the fair
price as de�ned in Eq. (5.11) remains well behaved. We also investigated the volatility in
the `r = 0 limit and obtained similar qualitative results, only with weaker overall volatility
levels consistent with liquidity concentration around the trade price.

At this point, let us summarise our results. The market is most stable when the conversion
rate is large and/or the latent orders di�usivity is small. In these cases, there is a good level
of revealed liquidity and the trade price follows the fair price. However, when lag e�ects
become important, and more particularly when the conversion time ω−1 becomes longer
than the typical di�usion time of a latent order across the revealed order book depth k−1,
the order book empties out and the trade price undergoes large excursions away from the fair
price. As for the e�ect of di�usion in the real order book, a small `r concentrates the liquidity
around the origin, therefore providing a wall to price �uctuations, while a large `r induces
a weaker revealed order book slope around the origin, facilitating larger price excursions.
Thus, our framework in the vicinity of the critical line could provide an interesting scenario
to understand the nature of liquidity crises in �nancial markets. One indeed expects that in
the presence of increased uncertainty, the conversion rate will decrease (as investors remain
on the sidelines) and latent orders di�usivity will increase, both e�ects driving the market
towards a liquidity crisis.

Order book data

To illustrate how our model allows one to calibrate latent parameters using visible order
book data, we calibrate it to the real order book of the Euro Stoxx futures contract and of
a set of over 100 large cap US stocks extracted from their primary market on the period
August 2017 to April 2018, see Table A.3. For each asset, we take a snapshot of the order
book every ten minutes (every minute for the Euro Stoxx contract), on regular trading hours.
We then fold the bid side onto the ask side, the origin being taken at the opposite best [6],
we average over the whole sample and rescale the x-axis by the average price taken over the
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(a) (b)

Figure 5.5: (a) Histograms of the �tted parameters k``, k`r and `r/`` for the US stocks
presented in Table A.3. (b) Average daily traded volume Vd as function of the liquidity
parameter L/k. The data points are colored by density (from yellow to dark blue).

sample period. Finally, �tting the stationary order book φr (see Figs. 5.4, A.4, A.5 and A.6)
outputs four parameters: L, k, `` and `r (see Table A.3). Note that k−1, `` and `r have units
of %p, and L is in shares per %p.

The �tted values of k`` and k`r for the Euro Stoxx contract and the US stocks presented
in Table A.3 are reported in Figs. 5.3(a) and (b). Figure 5.5(a) displays the statistics of
k``, k`r and `r/`` for the stocks. As one can see the values of k`` stand below the critical
line by typically one order of magnitude. Also most of the data is consistent with `r < ``.
More precisely, the ratio `r/`` is typically ≈ 3− 10, which is Dr/D` typically ≈ 0.01− 0.1,
consistent with our initial intuition that di�usivity is much smaller in the revealed order
book than in its latent counterpart. While not a strong e�ect, the `r/`` ratios are on average
slightly smaller for the small tick assets (Fig. 5.3(a)). The daily traded volume Vd does not
seem to play a notable role in the distribution of the data in the (k`r, k``) map (Fig. 5.3(b)).
However, L/k shows positive correlation with Vd (see Fig 5.5(b)), consistent with the inter-
pretation given to the liquidity parameter L in the latent order book models [46].

5.5 Price impact

In this section we study how liquidity reacts, in our model, to the presence of a metaorder,
namely a large trading order split into small orders executed incrementally. Following Donier
et al. [46] we introduce a metaorder as an additional current of buy/sell particles falling
precisely at the trade price. The system of equations governing the system in the presence
of a metaorder is left unchanged for the latent order book (Eqs. (5.4a) and (5.4b)), while
the RHS of Eq. (5.4c) must be complemented with the extra additive term + mtδ(x − pt)
representing the metaorder, wheremt denotes the execution rate. In the following we restrict
to buy metaorders with constant execution rates mt = m0 > 0, without loss of generality
since the sell metaorder m0 < 0 is perfectly symmetric. In order to extract the dimensionless
parameters governing the dynamic system, we introduce ξ̃ = kξ, t̃ = ωt, ρ̃ = kρ/L, φ̃r =
kφr/L and write the equations in a dimensionless form:

∂t̃ρ̃
(`)
B = (k``)

2∂x̃x̃ρ̃
(`)
B −

{
Γ(−ξ̃)ρ̃(`)

B − [1− Γ(−ξ̃)]1{x̃<p̃t̃}φ̃r
}

(5.12a)

∂t̃ρ̃
(`)
A = (k``)

2∂x̃x̃ρ̃
(`)
A −

{
Γ(ξ̃)ρ̃

(`)
A + [1− Γ(ξ̃)]1{x̃>p̃t̃}φ̃r

}
(5.12b)

∂t̃φ̃r = (k`r)
2∂x̃x̃φ̃r −

{
Γ(ξ̃)ρ̃

(`)
A − Γ(−ξ̃)ρ̃(`)

B + [1− Γ(|ξ̃|)]φ̃r
}

+ (m0/J )δ(ξ̃) ,(5.12c)

with J = Lω/k2 the typical scale of the rate at which latent orders are revealed (recall
that L/k2 is the typical available volume in the latent order book that have a substantial
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Figure 5.6: Price impact for `r = ``. (a) m0 � Jr (b) m0 � Jr. The dashed green lines
indicate the LLOB limits, ILLOB(t) =

√
αQt/(πL) with α = m0/Ju for the slow regime and

ILLOB(t) =
√

2Qt/L for the fast regime. The top left insets on each plot indicate the factor
c as function of k`` de�ned as I(t) = c ILLOB(t). The top right inset of subplot (a) shows an
extreme regime with very high execution rate, the dash-dotted line indicates the theoretical
prediction as given by the numerical inversion of Eq. (5.14). Subplots (c) and (d) display
relative price di�erence between the trade price and the fair price (see Eq. (5.11)). Subplots
(e) and (f) display the relative revealed volume imbalance.

probability to be revealed). Matching the �rst and third terms on the right hand side of
Eq. (5.12c) yields a relevant dimensionless number (m0/J )/(k`r)

2 = m0/Jr with Jr = DrL.
In the case `r = 0 the relevant dimensionless number is simply given by m0/J .

In order to compute the price impact I(Qt) = E[pt − p0|Qt = m0t], we performed nu-
merical simulations of our model in the presence of a metaorder in several limit cases. We
explored in particular `r = `` and `r = 0, in both high and low participation rate regimes,
for di�erent values of k`` (see Figs. 5.6 and 5.7).

Before presenting the results of the numerical simulations, note that there exists a regime
where the calculations can be brought a little bit further analytically, that is when we can
give a geometrical interpretation to the problem. When the book is almost static on the
time scale of the metaorder execution i.e. m0 � Jr (resp. m0 � J for `r = 0). One has∫ t

0 dsm0 = −
∫ pt

0 dξφstr (ξ) with ξ = x− p0. In particular for `r = 0 one obtains:

Qt = −L`
2
`

2

(
1− e−pt/``

)
+
Lpt
k

log
(

1− e−kpt
)
− L
k2

[
Li2(e−kpt)− Li2(1)

]
,(5.13)

where Li2(y) =
∑∞

k=1 y
k/k2 stands for the polylogarithm of order 2, and can be inverted
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numerically to obtain the price trajectory pt. Similarly, for `r = `` one has:

Qt =
Lα
k2

{
[k(pt + β) + 1]e−kpt − (kβ + 1)

}
− L``γ

1 + k``

(
1− e−(k+1/``)pt

)
+ L``δpte−pt/`` − L[δ`2` − ``(αβ + γ)]

(
1− e−pt/``

)
, (5.14)

where α = [(k``)
2 − 1]−1, β = 2αk`2` , γ = g(k``)[k

2``(k`` + 2)]−1, δ = g(k``)[2k``]
−1. In

the following we discuss the more general numerical results for both limit cases `` = `r and
`r = 0.

The case `` = `r

The main plots in Figs. 5.6(a) and (b) display robust square root price trajectories,
regardless of the values of k``. For m0 � Jr the price trajectory matches the theoretical
prediction given above inverting Eq. (5.14). As expected from the exponentially vanishing
liquidity when x − p0 > k−1, impact eventually diverges for very extreme regimes, see top
right inset in Fig. 5.6(a). For k`` � 1, one recovers the LLOB limit in both fast and
slow regimes, also as expected. For non vanishing values of k``, the impact increases with
increasing k``. In particular for m0 � Jr one obtains at short times (equivalently small
volumes):

pt =

√
2Qt

|∂xφr(0+)| ∼
√

2Qt

(
1− k``

ζc

)−1/2

. (5.15)

As expected, impact diverges when at the incipient liquidity crisis point. Figures 5.6(c) and
(d) display the relative distance between the trade price and the fair price as function of
time. In the fast execution regime all curves fall on top of each other and |pt − pft| ≈ |pt|,
consistent with the idea that the book (in particular latent) does not have time to reassess
during the execution, and as a consequence the fair price varies at a much slower rate than
the trade price. A di�erent scenario takes place in the small execution rate regime. We
observe that the relative distance between trade and fair prices stabilizes. In other terms,
the latent order book evolves at a speed that is comparable to that of the metaorder and
the fair price follows the trade price quite accurately.

The evolution of relative volume imbalance (see Figs. 5.6(e) and (f)) allows one to draw
similar conclusions. In the fast execution limit, the imbalance diverges as the latent order
book has no time to re�ll the revealed order book (this e�ect is all the more evident as
we approach the vanishing liquidity limit k`` → ζc), while in the slow execution limit the
imbalance is much smaller. Most importantly, note that in this limit the imbalance becomes
positive. This is consistent with the fact that when the trade price moves slowly, the con-
version probability Γ is shifted with it and new orders reveal on top of the existing ones to
supply the metaorder, while the orders left behind progressively unreveal.

The case `r = 0

The limit `r → 0 corresponds to m0/Jr → ∞, so in some sense one could say that we
are always in a high participation rate regime. However the absence of di�usion means that
the system can only evolve through the revealing and unrevealing currents. As mentioned
above, in this case the relevant dimensionless number becomes m0/J , that shall be referred
to as participation rate in the following.

Figure 5.7(a) displays price trajectories in the fast execution regime, here m0 � J . The
metaorder is faster than the revealing current and the price trajectory is given by inverting

77



Figure 5.7: Price impact for `r = 0. (a) and m0 � J (b) m0 � J . The top left insets on
subplot (a) indicates the factor c as function of k`` here de�ned as I(t) = ct for `r = 0. The
top right insets show an extreme regime with very high execution rate for which the impact
diverges. Subplots (c) and (d) display relative price di�erence between the trade price and the
fair price, see Eq. (5.11). Subplots (e) and (f) display the relative revealed volume imbalance.

Eq. (5.13). At short times, one obtains (see Eq. (5.9)):

pt =
kQt
L

(
1− k``

ζc

)−1

, (5.16)

which is linear impact, consistent with φr(0) 6= 0. Analogous to the case `` = `r, in extreme
regimes the impact eventually diverges (see top right inset of Fig. 5.7(a)). Regarding the
imbalance and the relative distance between the trade price and the fair price, the interpre-
tation is analogous to the `r = `` case.

Figure 5.7(b) displays the price trajectories in the low participation rate regime m0 � J .
Here the impact is genuinely linear at short times but crossovers to concave after a typical
time t? ∼ Vr/m0 with Vr the typical volume available in the revealed order book. This
interesting regime can be easily understood as follows. At short times the metaorder is exe-
cuted against the orders present in the stationary locally constant revealed order book (linear
impact), but after a while liquidity revealing from the linear latent order book takes over
(implying concave impact).7 More precisely, as k`` is increased, t? is decreased consistent
with the idea that: the larger k``, the smaller the revealed liquidity Vr and thus the sooner
it gets consumed. Note that linear impact at short times (equiv. small volumes) has been

7Note that recovering precisely the square root law in this regime is quite challenging because the numerical
simulation, by essence discontinuous, induces arti�cial spread e�ects: the spread widens and does not get
re�lled as fast as it should, due to limited resolution and vanishing liquidity in the price region. Obtaining
smooth results requires a lot of averaging.
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reported empirically in the literature [88]. An alternative theoretical framework to under-
stand linear impact at short times is provided in [48] with the introduction of two types of
agents, fast and slow. Our model, in its �nal version, should also include the possibility for
agents with di�erent timescales, possibly with di�erent conversion rates ω. In Fig. 5.7(d),
we observe that the relative distance between trade and fair prices stabilizes after the typical
time t?. In other terms, for t > t? the latent order book evolves at a rate comparable to
that of the metaorder, and the fair price follows the trade price with some constant lag.
Figure 5.7(f) displays similar conclusions.

5.6 Concluding remarks

We have proposed a simple, consistent model describing how latent liquidity gets revealed
in the real order book. As a �rst step in the rapprochement of latent order book models and
real order book data, our study upgrades the former from a toy model status to an observ-
able setup that can be quantitatively calibrated on real data. Although probably too simple
in its present form, our main contribution is to show how the latent order book could be
inferred from its revealed counterpart. One of our key theoretical result is the existence of a
market instability threshold, where the conversion of the trading intentions of market partic-
ipants into bona �de limit orders becomes too slow, inducing liquidity crises. Furthermore,
from a regulatory perspective, our model indicates how assets can be sorted according to their
position in the stability map, a proxy for their propensity to liquidity dry-ups and large price
jumps. In particular, our setup could constitute an insightful alternative to relate stability
and tick size, a subject that has raised the attention of many in the recent past (see e.g. [89]).

While providing quite satisfactory results on several grounds, our model lacks a number
of features that must be addressed in future work. In particular, being an inheritance of the
LLOB model [46], our model does not solve the so-called di�usivity puzzle (even persistent
order �ow lead to mean-reverting prices � see [36, 90, 48]). An interesting extension is sug-
gested by the stocks data presented in Figs A.4, A.5 and A.6. Indeed, some of the order
books display a bimodal shape indicating that they would be better �tted with a model in-
volving two conversion timescales (equivalently two price scales). The recent multi-timescale
liquidity setup (see [48]) allows for both a fast liquidity of high frequency market makers,
and a slow liquidity of directional traders, while resolving several di�culties of latent order
book models. Such a framework should output bimodal distributions and yield even better
�ts of the real order book, allowing one to infer di�erent liquidity timescales.
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Take home message of Chapter 5

1. Revealing liquidity. This mechanism is introduced in the LLOB framework via
an interaction between the real order book and the latent order book. It is based on
the following simple idea: an agent reveals its orders only if the corresponding price
is close to the mid-price.

2. Market stability. There is a stability condition that ensures that the order
books are not empty. Beyond this condition, lag e�ects are responsible for a liquidity
crisis.

3. Calibration. The stationary solutions are calibrated on the order book data
and the parameters displayed on a stability map.

4. Market Impact. This model numerically reproduces the square root law.
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Conclusion and future research

In this thesis we have studied liquidity crises utilizing various theoretical tools and em-
pirical evidence. Then, we were able to discuss the possible reasons which give rise to this
sort of systemic �nancial crises. Properly modeling liquidity crises is challenging, but it
is nevertheless critical in order to better understand its roots so that we can improve our
�nancial systems by preventing, or at least mitigating, such events.

The �rst step in modeling liquidity crises lies in understanding price volatility, and the
use of Q-Hawkes process to model such price dynamics served us well. In Chapter 2, we
introduced the generalized quadratic Hawkes processes and applied them to study order
book dynamics. The power of such models consists in encoding the feedback of past price
changes on order book events (limit order deposition, cancelations, market orders). Using
tick-by-tick data from four liquid futures contracts, we have started an empirical analysis
in a minimal framework, limiting ourselves to the best quotes. The results conclude on the
existence of a Zumbach-like e�ect: past price trends diminish future liquidity. Developing our
study further, we have set up a full calibration procedure of the GQ-Hawkes processes. This
calibration returns kernels which encode the weight of past price changes in the feedback.
We followed by applying it on empirical data of the Eurostoxx future data and by displaying
the obtained kernels we proved the existence of the Zumbach-like e�ect once again, that
can be interpreted as the microfoundation of the Zumbach e�ect. Furthermore, we have
seen that the kernels are power laws with critical exponents and that the total activity of
the market exhibits a high ratio of endogeneity. This accumulation of clues indicates that
markets are constantly close, but below, an instable phase. In other words, �nancial markets
are on the very edge of instability. Since we so far solely focused on best quotes, we turn
to a variable that accounts for the liquidity dynamics: the e�ective spread. Computing
empirical covariances with the squared past trend reveals that the Zumbach-like e�ect exists
not only at the best quotes, but that it also exists across the entire order book. The e�ective
spread also appears to be fat-tailed distributed, which is another piece of evidence of critical
markets.

In Chapter's 3 modelling section, we coupled GQ-Hawkes process with the Santa Fe
Model, thus, creating the Quadratic Santa Fe Model. Using rigorous numerical analysis, we
proved the existence of a second order phase transition. Then, using a �nite size scaling
procedure, we computed the exponents and found a transition of a new universality class.
This scenario is very appealing as the power law kernels found in chapter 2 are in agreement
with a phase transition scenario. Adding qualitative arguments of Self Organized Criticality,
which state that the critical point is an attractor of the system, gives a convincing explanation
for markets' criticality.

In order to circumvent analytical issues arising from the Quadratic Santa Fe Model, we
set aside the microstructure of the order book and introduced spread models in Chapter 4.
We only focus on events that changes the spread. Then, the dynamics consists in modeling
the rate of spread opening events and spread closing events. We provided many possible
scenarios that model spread opening events, such as a linear Hawkes process, a quadratic
Hawkes process and a non-linear Hawkes process. The �rst couple of the aforementioned
models hold in cases when the rate of spread closing events is constant but the spread is
opening. The two models have three phases, which we analyzed from a theoretical point
of view. The non-linear Hawkes process has a meta-stable behavior, when the non-linear
feedback is small enough, the spread is apparently stable. However, if we wait long enough
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it explodes and results in a liquidity crisis. From a physicist's perspective, this meta-stable
property can be interpreted as a particle trapped in a local minimum of potential energy
that than crosses an energy barrier. Having done this parallel with Physics, we derived
the average time of the �rst liquidity crisis and we than compared it to numerical results.
Nevertheless, this convincing scenario is not in agreement with empirical results, which
support phase transition. We also provided a scenario where the rate of spread closing
events is proportional to the spread. Combined with a linear Hawkes process for spread
opening events, we showed that the two phases exist. The main advantage of the linear
Hawkes model lies in its analytical solutions. Using it and Laplace transforms, we were able
to fully characterize the spread dynamics.

In Chapter 5, we proposed a mechanism for revealing liquidity in the order book, as an
extension of the Latent Limit Order Book Model. Based on a reaction-di�usion framework,
we analytically solved the shape of the stationary order book in some particular cases. In
the general case, we used a numerical scheme to compute these shapes. We have shown that
a condition for market stability exits, and that it is a condition which we can numerically
quantify. Furthermore, we proposed a stability map as a function of the model's parameters.
One key advantage of our model is the possibility to calibrate stationary order book shapes
on empirical data. We calibrated the model on more than one hundred US stocks and
have compared the obtained �ts with the original shapes. We later plotted the stocks on
the aforementioned stability map and con�rmed that the "distance" to criticality varies
according to the particular stock. We than quanti�ed market impact within this framework.
Impossible to solve analytically, we proposed a numerical approach, showing that the square
root law holds.

The results, while very gratifying, lead to several open-ended questions that need to be
resolved. On the empirical side, further research could be dedicated to calibrate GQ-Hawkes
processes on more assets. Indeed, we focused on only a few liquid future contracts in Chap-
ter 2 and it would be interesting to look at equities, FX, commodities, cryptocurrencies and
options as well. Nonetheless, this follow up research would require to adapt our calibration
recipe to small tick assets. The reason for that is that on large tick assets (such as the future
contracts presented in this work) the main activity is concentrated on the best quotes, but
this premise does not hold for small tick assets. We could bypass a possible curse of di-
mentionality by considering a region around the best quotes, of a typical size of the average
spread, and calibrate a GQ-Hawkes process on it. Since our calibrated kernels are power
laws, we would like to do this calibration on longer time scales that cannot be done without
dealing with overnight price changes. Concerning the e�ective spread, studying its dynamics
in more detail should provide interesting results. Indeed, its behavior will be special around
a liquidity crisis and will depend if this crisis is exogenous or endogenous. Understanding
the behavior of e�ective spread, volatility and square price trends around the liquidity crisis
point has not been tackled to date, and will give more results on the origins and causes
for liquidity crises. Such results could be of particular interest to regulators, as well as for
practitioners.

Introduced in Chapter 3, the Quadratic Santa Fe model opens many �elds of research.
First, we have had limited success in deriving the exponents we found. A simple mean-
�eld approach did not provide the right ones, meaning that a deeper investigation into the
dynamics is required. Further research should be devoted to computing them and it can also
give rise to more theoretical reasonings for our numerical results. To match this transition
with the near critical behavior of markets, we have brie�y mentioned self-organized criticality
without any theoretical justications. We believe that we can construct a model that mixes
the Quadratic Santa Fe model, or at least in a simpler setting, and a game that will give self-
organized criticality. Previous works have shown that introducing the appropriate dynamics
can lead to SOC in certain phase transition. We believe that this result can be generalized
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to our scenario. Further research should be devoted to this subject as there is a signi�cant
amount of empirical evidence pointing to the criticality of the market. On the empirical
side, studies have shown that liquidity crises can arise simultaneously on di�erent assets. For
example, during the Flash Crash of May 6th 2010, many stocks su�ered from a huge drop
of price with very few orders on the bid side. We could think of several multi-dimensional
extensions of the Quadratic Santa Fe Model that, by introducing the correct feedback, will
help explain how this happens.

Concerning the simpler class model introduced in Chapter 4, while Hawkes-based model
for price dynamics have been deeply investigated, coupling it with spread dynamics has not
yet been tackled to our knowledge. Unfortunately, we have not been able to solve all the
dynamics that we introduced above. Indeed, it seems that the asymptotic spread distribution
is geometric in the case of constant rate of spread closing events and a linear Hawkes for
spread opening events. We were not able to show it analytically, yet the numerical evidence
leads us to believe that it can be proved. More generally, deriving this distribution in
all cases will be very interesting. Another subject of interest would be to investigate the
asymptotic dynamics when the market tends to criticality. We hope that the asymptotic
spread distribution displays a non-trivial dynamics.

In Chapter 5, such development of latent limit order book models can lead to many
possible extensions. From a theoretical point of view, one hypothesis of this model consists
in a revealing an equal rate for all market participants, while in reality they are highly het-
erogeneous. Hence, an enhancement of this model would consider a distribution of revealing
rates to account for high frequency traders and for long term investors. We believe that
it will provide better �t of empirical order books. Concerning market impact, we have not
achieved an analytical proof of the square root law but numerical �ndings suggest that it
can be done. Further research could be dedicated to prove it analytically. One could also
introduce quadratic price coupled with the revealing rate, in the manner of the Quadratic
Santa Fe model, and then study the dynamics ofhow the market order �ows impact liquidity.
This model is not only interesting from an academic point of view but also from a practical
one. We believe that it will provide interesting answers to liquidity forecasting and help with
estimating trading costs.

We believe that all of these questions are both highly interesting as well as relevant. I
truly hope that these questions will be all answered. I also hope that this thesis will lead to
a better understanding of liquidity crises and perhaps even pave the way to reducing them
and their intensity in the future.
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A
Technical details and additional

results

We explain some technical details of Chapter 2, 3, 4 and 5. Concerning Chapter 2, we
provide additional tricks to data analysis as well as the "raw" kernels of the GQ-Hawkes
calibration. For Chapter 3, we explain the numerical procedure of the �nite size scaling.
Then we switch to the derivation of the probability density function of orders far from the
mid-price and give some conditions of stationarity in the lack of market orders. We also
detail all the computations of the analytical results of Chapter 4. We end by presenting
calibration results of Chapter 5.
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La di�érence entre l'amour et l'argent, c'est que si on partage son argent, il diminue,
tandis que si on partage son amour, il augmente. L'idéal étant d'arriver à partager son

amour avec quelqu'un qui a du pognon.

Philippe Geluck

A.1 Appendix of Chapter 2

Empirical Data and minimal setting calibration

We used tick-by-tick (or event-by-event) data for 4 futures contracts (EUROSTOXX,
BUND, BOBL & SCHATZ) over around 160 trading days provided by CFM. We have
chosen these assets because of their high liquidity and because they are all large tick (the
spread is equal to its minimal value of 1 tick more than 99% of the time). Before doing any
speci�c inference on the data, we preprocess it in the following way:

• We load data from 9am to 4pm.

• Separate events displaying the same timestamps are shu�ed within the microsecond
without breaking causality.

• We restrict to the best queues only.

• We use the mid-price changes in tick units.

The number of events after cleaning is of the order of one million per day for the most
liquid asset, and 50 000 for the least liquid. First, we perform a non-parametric Hawkes
calibration that gives the parameters α̃0 and φ, as de�ned in Chapter 2.Then, we turn
to the contribution of the trend and the volatility. To do so, we compute β′F b+a

β′ , β′Hb+a
β′ ,

β′F b−a
β′ , β′Hb−a

β′ , Rβ and Σ2
β , as de�ned in Section 2.2. For practical reasons, we approximate

the kernels with a sum of three exponentials, in the spirit of [91], which allows for a fast
algorithm thanks to the recursivity of the exponentially weighted moving averages. We
associate a weight to each of these quantities that is the fraction of inter-event time, and bin
the data in 100×100×100-sized windows for F b+a

β′ with Hb+a
β′ , Rβ , Σ2

β and F b−a
β′ with Hb−a

β′ ,

Rβ , Σ2
β . We aggregate the weights to get a weight for each bin, and perform the regressions

given in Eqs. (2.3) and (2.4) using a very standard generalised least square method [92]. We
take the values of β and β′ that maximise the absolute correlation Cor(F b+aβ′ , R2

β).

GQ-Hawkes Estimation procedure

Here we show how to practically estimate the kernels presented in section 2.3 from em-
pirical data. First, we detail the empirical estimators for averages and covariances, then
focus on the time grids used for estimation, and �nally discuss the numerical discretisation
of Eqs. (2.6).

Covariance estimators We assume that we have a sample of events of type i that happen
at times

(
T in
)
n
, with i = P for the price process. Calling T the total length of observation,

the estimators of the average intensities read:

Λi ≈ N i
T

T
(A.1a)

∆k ≈ 1

T

∑
n

(
∆TPn

)k
. (A.1b)
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A.1. Appendix of Chapter 2

A

For the covariance estimators, we use a classical approach for asynchronous data. Denoting
∆t, ∆x the time steps associated with times t and x, one has:

χijNN (t) ≈ 1

T∆t

∑
n,p

1{T in−T jp∈ [t−∆t/2,t+∆t/2]} − ΛiΛj (A.2a)

χiNP (t) ≈ 1

T∆t

∑
n

∆TPp
1{T in−TPp ∈ [t−∆t/2,t+∆t/2]} (A.2b)

χiNP 2(t) ≈ 1

T∆t

∑
n,p

(
∆TPp

)2
1{T in−TPp ∈ [t−∆t/2,t+∆t/2]} − Λi∆2 (A.2c)

χiNPP (t, x) ≈ 1

T 2∆t∆x

∑
n,p,q

∆TPp
∆TPq

1{T in−TPp ∈ [t−∆t/2,t+∆t/2], T in−TPq ∈ [x−∆x/2,x+∆x/2]}(A.2d)

χP 2P 2(t) ≈ 1

T∆t

∑
n,p

(
∆TPn

)2 (
∆TPp

)2
1{TPn −TPp ∈ [t−∆t/2,t+∆t/2]} −∆2

2. (A.2e)

Note that, as mentioned above, one can choose di�erent time grids for the Hawkes and price
contributions. Symmetry properties of the covariances enable us to estimate them only for
positive times:

• χijNN (−t) = χjiNN (t)

• χiNP (t) = 0 and χiNP 2(t) = 0 for t < 0

• χiNPP (t, x) = 0 for min(t, x) < 0

• χP 2P 2(−t) = χP 2P 2(t).

One can reasonably assume that the covariances are C1 except in zero.

Choice of time grids A good choice of time grid to estimate the kernels is provided in
[16]. Indeed, quadrature points in log-scale are well suited to accurately account for long
range behaviour in the norm of the kernels. Consistently, it is advised to have time intervals
increasing at the same rate as the grid of points we use. On the other hand, taking disjoint
intervals [t−∆t/2, t+ ∆t/2] enables fast computations of the covariances. To enforce all
of this, we compute the di�erences between the quadrature points, sort them and take the
cumulative sum. This gives the disjoint time intervals suited for fast computations. Then,
with linear interpolation, we obtain the �nal values on the quadrature points.

Discretisation Equations (2.6) can be discretised in two di�erent ways, using properties
of the covariances and time grids. To show how to approximate the integrals, we provide an
example of discretisation of

∫
R+ f(s)ds for an arbitrary function f using the time grid (tn).

The two possibilities are:

• The quadrature technique:
∫
R+ f(s)ds ≈∑n f (tn)wn.

• The piece-wise C1 approximation:
∫
R+ f(s)ds ≈ ∑n

tn+1−tn
2

[
f (t+n ) + f

(
t−n+1

)]
, with

f(x+) = lim
y→x
y>x

f(y) and f(x−) = lim
y→x
y<x

f(y).

The �rst approximation is very e�cient to compute TrK or ||φ|| using (thn) and (whn). The
second handles very well the behavior around zero and can be useful to solve Eq. (2.7).
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Low rank approximation

The Zumbach approximation consists in a rank one symmetric contribution of the o�-
diagonal part of a symmetric kernel. But if we estimate such kernels on data, we cannot
obtain a rank one kernel because of noise. So we present a method that cleans the quadratic
kernel by taking a low rank approximation. First we explain a theoretical result for the best
low rank approximation and then we discuss its numerical implementation.

A theoretical result

We choose a continuous symmetric kernel K such that
∫
R2 K(t, s)dtds < +∞. We would

like to �nd the best low rank symmetric function g such that
∫
R2 (K(t, s)− g(t, s))2 dtds is

minimum. For us, g is low rank symmetric if we can �nd k, (αi)1≤i≤k and (gi)1≤i≤k linearly

independent functions such that g(t, s) =
∑k

i=1 αigi(t)gi(s),
∫
gi(s)

2ds = 1 and αi 6= 0. In
that case the rank of g is k. Thanks to linear algebra theory, we can provide a solution to
this best low rank symmetric approximation.

We introduce the auto-adjoint operator LK de�ned as LK(f)(t) =
∫
RK(t, s)f(s)ds for

a continuous function f such that
∫
R f(s)2ds < +∞. In this appendix, we will restrict

ourselves to this set of functions. The spectral theory tells us that there exists a family of
eigenvalues and eigenvectors (En, Zn)n∈N such that LK (Zn) = EnZn,

∣∣∣∣Z2
n

∣∣∣∣ = 1 and that for
any function f we can write f =

∑
n c(f)nZn with c(f)n =

∫
R f(s)Zn(s)ds. For simplicity,

we assume that the eigenvalues are sorted such that |E1| ≥ |E2| ≥ . . . ≥ |En| ≥ . . .. From
this, we deduce that:

∀t, s K(t, s) =
∑
n

EnZn(t)Zn(s) (A.3)

We consider a symmetric rank k function g. Using the above considerations, we have gi
linearly independent functions such that g(t, s) =

∑k
i=1 αigi(t)gi(s) and then:

∀t, s g(t, s) =
∑
n,m

(
k∑
i=1

αic(gi)nc(gi)m

)
Zn(t)Zm(s) (A.4)

We call anm =
∑k

i=1 αic(gi)nc(gi)m. As the αi 6= 0 and (gi) linearly independent, we have
k coe�cients ann that are not equal to zero. A simple computation gives:∫

R2

(K(t, s)− g(t, s))2 dtds =
∑
n

(ann − En)2 +
∑
n6=m

a2
nm (A.5)

This quantity is minimal when ∀n 6= m, anm = 0 and ∀n > k, ann = 0, which corresponds
to g(t, s) =

∑k
i=1 EiZi(t)Zi(s).

How do we use it in practice?

We have an estimator of the symmetric kernel K and we would like to clean it by taking
a low rank approximation. To keep the same notation as before, (ti) is the grid of time and
(wi) are the weights used to discretise the integral. Then, we have several possibilities that
we can choose:

• Minimize
∑

i,j (K(ti, tj)− g(ti, tj))
2, this consists, as before, by taking the �rst k eigen-

values and eigenvectors of the matrix (K(ti, tj))i,j .
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A

• As
∫
R2 (K(t, s)− g(t, s))2 dtds ≈∑i 6=j (K(ti, tj)− g(ti, tj))

2wiwj we minimize this to
get the low rank approximation. Srebro et al [69] provides an algorithm that answers
this problem.

The second option captures well slowly decreasing kernels. Nevertheless, when the tails of
the kernels are noisy, it will give an important weight to noise and lead to incorrect results.
To avoid this issue, we use the �rst option.

Additional plots and tables
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Figure A.1: Hawkes kernels for the EURO STOXX futures contract between 2016/09/12
and 2020/02/07 (t in seconds).
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Figure A.2: Raw e�ective kernels resulting from the calibration on the EURO STOXX futures
contract between 2016/09/12 and 2020/02/07, without any smoothing procedure � compare
with Fig. 2.7. (a) Linear kernels L̄. (b) Diagonal of quadratic kernels K̄d. (c) Full quadratic
kernels K̄(t, x).
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Figure A.3: Zumbach approximation of the e�ective kernel K̄ on the EURO STOXX futures
contract between 2016/09/12 and 2020/02/07 � without any smoothing procedure � compare
with Fig. 2.8. (a) Zumbach kernel Z, (b) Volatility kernel ψ. Both kernels are normalised
such that ||ψ|| = ||Z2|| = 1, with a cut-o� in the time integrals at 1000 secs.
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A.2 Appendix of Chapter 3

Finite Size Scaling Method

Here, we discuss the method used to do the �nite size scaling in Section 3.3. First, let's
recall the framework. The susceptibility writes:

χ(αK , T,N) = T γG
(
T (αK − αm(T,N))ζ

)
= T γG

(
NT−1/η, T 1/ζ (αK − α∗)

)
, (A.6)

where the function G satis�es:

• lim|y|→+∞ G(x, y) = 0

• ∀x, y 7→ G(x, y) has a unique maximum, denoted y∗(x).

First, we determine γ. We introduce αm(T,N) =αK χ(αK , T,N) and we assume that
limT,N→∞ αm(T,N) = α∗. The idea is to look at maxαK χ(αK , T,N) = χ(αm(T,N), T,N):

χ(αm(T,N), T,N) = T γ max
y
G(NT−1/η, y) −→

N→+∞
T γ lim

x→+∞
max
y
G(x, y) . (A.7)

If Nη
max � T , then χ(αm(T,Nmax), T,Nmax) ≈ T γ lim

x→+∞
maxy G(x, y) on our range of

T . Note that the validity of such a hypothesis depends on the value of η, which we shall
determine and self-consistently validate below. Then we compute the value of γ ≈ 2 from a
linear regression of logχ(αm(T,Nmax), T,Nmax) vs. log T .

Then we determine ζ. If T,Nmax are large enough thatN
η
max � T , then T 1/ζ (αK − αm(T,Nmax)) ≈

T 1/ζ (αK − α∗) and χ(αK , T,Nmax) ≈ T γ limx→+∞ G(x, T 1/ζ(αK−α∗)). So we plot χ(αK , T,Nmax)
as a function of T 1/ζ (αK − αm(T,Nmax)) for di�erent values of T and α and we tune the
exponent ζ to make all the curves collapse together, see Fig. 3.4. We can do this experiment
numerically by minimising the distance between the curves as a function of ζ. Adding the
fact that we expect regular rational values we deduce the most likely exponent, ζ = 3, see
right inset of Fig. 3.4.

Finally, we compute α∗ and η. By de�nition of αm(T,N), one has T 1/ζ(αm(T,N)−α∗) =
y∗(NT−1/η). Thus, if one plots T 1/ζ(αm(T,N) − α∗) as a function of NT−1/η for di�erent
values of T and N , one should �nd a set of parameters η and α∗ such that all the curves
collapse together. This leads to α∗ ≈ 6.3 × 10−2 and η ≈ 3, which is compatible with the
direct result on the spread dynamics shown in Fig. 3.2, where one observes that S(t) ∼ t1/3.
But since the �nite size-�nite time crossover should occur when S(T ) ∼ N , one �nds that
T 1/3 ∼ N , again leading to η ≈ 3.

C LO MO

V Tr K̄∆2
EUROSTOXX 20.4 18.8 2.1

BUND 5.7 6.6 1.7

V K̄1∆2
EUROSTOXX 9.7 8.6 0.5

BUND 3.5 4.6 0.7

V K̄d∆2
EUROSTOXX 10.7 10.1 1.6

BUND 2.2 2.1 1.0

Table A.1: Quadratic, Zumbach and volatility contributions to the liquidity rate of events
(in shares per second).
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t (s) C LO MO

αi
0/Λ

i

10 0.25 0.14 0.29

100 0.24 0.14 0.27

1000 0.23 0.13 0.27

∆2 TrKi/Λi

10 0.04 0.03 0.03

100 0.05 0.03 0.04

1000 0.06 0.04 0.05

∆2 Tr K̄i/Λi

10 0.15 0.16 0.14

100 0.23 0.23 0.21

1000 0.28 0.28 0.24

αi
0/
∑

j ||φij ||Λj

10 0.35 0.17 0.42

100 0.34 0.17 0.40

1000 0.32 0.16 0.40

∆2K
i
1/
∑

j ||φij ||Λj

10 0.06 0.05 −0.01

100 0.06 0.05 −0.01

1000 0.06 0.05 −0.01

∆2K
i
d/
∑

j ||φij ||Λj

10 −0.01 −0.01 0.06

100 0.0 −0.01 0.08

1000 0.02 0.0 0.08

∆2K̄
i
1/Λ

i

10 0.13 0.13 0.05

100 0.13 0.13 0.05

1000 0.13 0.13 0.05

∆2K̄
i
d/Λ

i

10 0.02 0.03 0.09

100 0.10 0.11 0.16

1000 0.15 0.15 0.19

Table A.2: Di�erent ratios between the quadratic contributions, base rates and Hawkes
contributions, truncated at di�erent time scales t(s) for the EURO STOXX futures contract
between 2016/09/12 and 2020/02/07. The top three entries are the most important ones. For
sake of simplicity, we have here approximatedK1 as (1− ||φ||) K̄1 andKd as (1− ||φ||) K̄d.

Asymptotic properties of the Quadratic Santa Fe Model

We look at the distribution of number of orders far from the mid-price, as well as the gap
between two occupied price levels. Due to the past price coupling, conditioning on the price
information is the only way to have some tractable computations.

Law of vt(∞)|FP
t

We derive Eq. (3.5) using the master equation:

ρv(t+ dt, n) = P
[
vt+dt(∞) = n

∣∣FP
t+dt

]
(A.8)

= P
[
dvt(∞) = 1

∣∣FP
t , vt(∞) = n− 1

]
P
[
vt(∞) = n− 1

∣∣FP
t+dt

]
+P
[
dvt(∞) = −1

∣∣FP
t , vt(∞) = n+ 1

]
P
[
vt(∞) = n+ 1

∣∣FP
t+dt

]
+P
[
dvt(∞) = 0

∣∣FP
t , vt(∞) = n

]
P
[
vt(∞) = n

∣∣FP
t+dt

]
+ o(dt)

= λdtρv(t, n− 1) + νt(n+ 1)ρv(t, n+ 1) + (1− λdt− νtndt)ρv(t, n) + o(dt)

we take the limit dt→ 0 and get Eq. (3.5).

We can solve it by injecting the solution given in Eq.(3.5) and verifying that it works.
Here we are going to present a more general method that solves this equation for any initial
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solution. First we consider the generating function ρ̂v(t, z) =
∑

n≥0 z
nρv(t, n). By multiply-

ing Eq.(3.5) by zn and summing over n we get the following PDE:

∂tρ̂v = λ(z − 1)ρ̂v − νt(z − 1)∂zρ̂v (A.9)

We do a change of variable u = log(z − 1) and get:

∂tρ̂v = λeuρ̂v − νt∂uρ̂v (A.10)

Now we can apply the characteristic method: we look for a solution ρ̂v(t, u(t)). In order to
get rid of the term in ∂u we take u(t) = u0 +

∫ t
0 νsds and get:

ρ̂v(t, u(t)) = f(u0) exp

(
λeu0

∫ t

0
e
∫ s
0 νxdxds

)
(A.11)

where f is a function. We can rewrite it as:

ρ̂v(t, u) = f

(
u−

∫ t

0
νsds

)
exp

(
λeu

∫ t

0
e−
∫ t
s νxdxds

)
(A.12)

And switching back to the variable z:

ρ̂v(t, z) = f

(
log(z − 1)−

∫ t

0
νsds

)
exp

(
λ(z − 1)

∫ t

0
e−
∫ t
s νxdxds

)
(A.13)

By taking t = 0, we get the function f as a function of the initial condition. It reads:

ρ̂v(t, z) = ρ̂v

(
0, 1 + (z − 1)e−

∫ t
0 νsds

)
exp

(
λ(z − 1)

∫ t

0
e−
∫ t
s νxdxds

)
(A.14)

When the initial condition is a Poisson distribution of parameter V ∗, it gives ρ̂v(0, z) =
eV
∗(z−1) and so ρ̂v(t, z) = eV

∗
t (z−1).

Law of the gap between two occupied price level

We compute the law of the gap ∆Gt far from the mid price and conditioned to FP
t .

Let's consider an occupied price level. The probability of having a gap greater or equal
than n is the probability that the next n − 1 level are empty. As those levels are mutually
independent and follow a Poisson distribution of parameter V ∗t , we get that this probability
is e−(n−1)V ∗t . We immediately get that the gap is geometrically distributed with parameter
1− e−V ∗t , shifted by one:

P
[
∆Gt = n

∣∣FP
t

]
=
(

1− e−V ∗t
)
e−(n−1)V ∗t , n ≥ 1 (A.15)

A condition of transition when µ = 0

We decide not to take into account market orders (µ = 0) for simplicity. If we neglect
memory e�ects coming from spread insertions, the distribution of the gap holds for the whole
order book. In order to remain general, we assume that:

νt = ν0 +

∫ t

0

∫ t

0
K(t− s, t− u)dPsdPu (A.16)
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We can easily compute the probability that the spread changes and get:

P
[
dSt = n

∣∣FP
t

]
=

(
1− e−V ∗t

)
e−(n−1)V ∗t × νte−V

∗
t dt (A.17a)

P
[
dSt = −1

∣∣FP
t

]
= λP

[
St > 1

∣∣FP
t

]
dt (A.17b)

Then we deduce:

P
[
dSt
∣∣FP

t

]
=

νt
eV
∗
t − 1

− λP
[
St > 1

∣∣FP
t

]
(A.18a)

E
[
d[S]t

∣∣FP
t

]
=

νt
(
1 + e−V

∗
t
)

eV
∗
t − 1

+ λP
[
St > 1

∣∣FP
t

]
(A.18b)

where [S] is the quadratic variation of S i.e. d[S]t = (dSt)
2. A condition for equilibrium is

that, when t→∞, the spread is stable i.e. E[dSt] = 0. It gives:

λP [S > 1] = lim
t→+∞

E
[

νt
eV
∗
t − 1

]
(A.19)

The transition occurs when P [S > 1] = 1.

Let's turn to the dynamics of νt. Thanks to the bid/ask symmetry, we have that the
price is a FP-martingale. On the other hand, we have [S]t = 2[P ]t. Then it reads that:

E[νt] = ν0 +
1

2

∫ t

0
K(t− s, t− s)

(
E

[
νs
(
1 + e−V

∗
s
)

eV ∗s − 1

]
+ λP [Ss > 1]

)
ds (A.20)

Assuming equilibrium and calling αK = TrK, we have:

lim
t→+∞

E[νt] = ν0 +
αK
2

(
lim

t→+∞
E

[
νt
(
1 + e−V

∗
t
)

eV
∗
t − 1

]
+ λP [S > 1]

)
(A.21)

While using a mean-�eld approach seems to be natural, it will not give the good exponents.
A more rigorous approach of those equations is required to compute them.

A.3 Appendix of Chapter 4

More on the Linear Spread Model

Here, we focus on the linear case (ε = 0), see Eq. (4.15). In order to remain very general
we rewrite the equation as λ+

t = λ+
0 + (φ ∗ dS+)t = λ+

0 +
∫ t

0 φ(t − s)dS+
s . Point process

theory teaches us that there exists two independent martingales M−t and M+
t such that

S±t = λ±t dt+ dM±t . One can write:

λ+
t = λ+

0 +
(
φ ∗ λ+

)
t
+
(
φ ∗ dM+

)
t
. (A.22)

Assuming that ||φ|| < 1 one can de�ne the resolvent R =
∑

n≥1 φ
∗n, with φ∗(n+1) = φ ∗ φ∗n.

Note that (δ + R) ∗ φ = R with δ the Dirac function. This enables to invert the above
equation and obtain:

λ+
t =

(
1 +

∫ t

0
R(s)ds

)
λ+

0 +
(
ψ ∗ dM+

)
t
. (A.23)
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Combining the previous equations and introducing the martingale Mt with dMt = dM+
t −

dM−t + (R ∗ dM+)tdt, one gets:

St = S0 +

∫ t

0

[(
1 +

∫ s

0
R(u)du

)
λ+

0 − 1{Ss≥2}λ
−
0

]
ds+Mt . (A.24)

Equation (4.2) is the particular case with φ(t) = αβe−βt. Choosing such a kernel one
can derive the Fokker-Planck equation for the joint distribution of the variables (St, Xt =
β
∫ t

0 e
−β(t−s)dS+

t ) given in Eq. (4.3). While we did not manage to solve this equation, we
can compute the Laplace transform of the variable Xt at equilibrium:

E
[
e−uX

]
=

∫
R+

ρstX(x)e−uxdx = exp

(∫ u

0

λ+
0

(
1− e−βv

)
α (1− e−βv)− βvdv

)
, (A.25)

from which we can get the cumulants. In particular, one has: E[X] = λ+
0 /(1 − α) and

V[X] = βλ+
0 /(2(1 − α)2). Interestingly, we can get the full stationary solution ρst in two

simple limit:

• α = 0: ρst(S, x) = (1− r)rSρstX(x) with r = λ+
0 /λ

−
0 .

• β → 0: ρst(S, x) = δ
(
x− λ+0

1−α

)
(1− r)rS with r = 1−αc

1−α .

Note that the spread is geometrically distributed in both cases.

More on the Stabilizing Mechanism

Derivation of spread moments

We remain very general and follow the hypotheses of model in Appendix A.3 for λ+
t .

Keeping the same de�nition of resolvent, it leads to Eq. (A.23). Noticing that λ−t follows a
�rst order ODE:

λ−t = λ−0 (S+
t −M−t )dt− λ−0

∫ t

0
λ−s ds (A.26)

we can solve it easily. By combining it with Eq. (A.23), we get:

St =1 + e−λ
−
0 t(S0 − 1) + λ+

0

∫ t

0
dse−λ

−
0 (t−s)

[
1 +

∫ s

0
R(u)du

]
ds

+

∫ t

0
dse−λ

−
0 (t−s)

[
1 +

∫ t−s

0
R(u)eλ

−
0 udu

]
dM+

s −
∫ t

0
dse−λ

−
0 (t−s)dM−s

(A.27)

Computing the average spread at equilibrium is straight forward and the variance uses

the following properties E
[(∫ t

0 f(s)dM±s
)2
]

=
∫ t

0 f(s)2E [λ±s ] ds for some regular enough

function f and E
[∫ t

0

∫ t
0 dM

+
s dM

−
s

]
= 0.

Derivation of Laplace transform of (S+
t , S

−
t )

We split the proof in two parts: �rst we deal with the heterogeneous Poisson case and
then we tackle the general case.
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The heterogeneous Poisson case In this subsection only, we assume that S+ is a het-
erogeneous Poisson process of intensity λ̃(t). Then, we have:

de−xS
+
t −yS−t = e−xS

+
t −yS−t (e−x − 1)dS+

t + e−xS
+
t −yS−t (e−y − 1)dS−t (A.28)

Then:

E
[
de−xS

+
t −yS−t

]
= E

[
e−xS

+
t −yS−t (e−x − 1)λ̃(t)dt+ λ−0 e

−xS+
t −yS−t (e−y − 1)(S+

t − S−t )dt
]

(A.29)

And so we get, by calling D0
λ̃
(x, y, t) = E

[
e−xS

+
t −yS−t

]
, the following PDE:

∂tD0
λ̃

= λ̃(t)(e−x − 1)D0
λ̃

+ λ−0 (e−y − 1)
(
∂yD0

λ̃
− ∂xD0

λ̃

)
(A.30)

with initial condition D0
λ̃
(x, y, 0) = 1. Note that we have chosen to write in index the base

rate of the Poisson process. With a change of variable u = x+ y, v = ln (ey − 1) and using
the characteristic method we can solve this PDE and �nd:

D0
λ̃
(x, y, t) = exp

([
e−(x+y) − 1

] ∫ t

0
λ̃(s)ds+ e−(x+y) [ey − 1]

∫ t

0
λ̃(s)e−λ

−
0 (t−s)ds

)
(A.31)

The general case The setup is much more complex because of the Hawkes process: the
paper of El Euch et al [82] tells us how to deal with it. The Hawkes process can be seen as
a migrant process: each event gives birth to a heterogeneous poisson process of rate φ(t).
Calling S+,0

t the heterogeneous poisson process of rate λ+
0 (t) and T1, . . . , Tn, . . . its time of

events, we introduce S+,n
t the number of child events from the n−th event of S+,0

t . We have
the following equality in law:

S+
t = S+,0

t +

S+,0
t∑
n=1

S+,n
t = S+,0

t +

S+,0
t∑
n=1

S
+,n
t−Tn (A.32)

where S
+,n

are iid processes, independent of S+,0. Note that the processes S
+,n

are Hawkes
processes of base intensity φ(t) and kernel φ.

We apply the same idea on the joint process (S+, S−), we can write the following equality
in law:

S−t = S−,0t +

S+,0
t∑
n=1

S−,nt = S−,0t +

S+,0
t∑
n=1

S
−,n
t−Tn (A.33)

where the processes S−,nt have for stochastic intensity λ−0
(
S+,n
t − S−,nt

)
. And we have that(

S
+,n

, S
−,n)

are iid processes, independent of
(
S+,0, S−,0

)
. Then we have:

E
[
e−xS

+
t −yS−t

∣∣∣S+,0, S−,0
]

=e−xS
+,0
t −yS−,0t

S+,0∏
n=1

L (x, y, t− Tn) (A.34)

with D(x, y, t) = E
[
exSt

+,1
+ySt

−,1]
. Now, conditionally to S+,0

t , the variables (T1, ..., TS+,0
t

)

have the same law as (X(1), ..., X
(S+,0
t )

) the order statistics built from iid variables (X1, .., XS+,0
t

)

with density λ+
0 (s)/

∫ t
0 λ

+
0 (s)ds. We get then:

E
[
e−xS

+
t −yS−t

∣∣∣S+,0
t , S−,0t

]
=e−xS

+,0
t −yS−,0t

(∫ t

0
D (x, y, t− s) λ+

0 (s)∫ t
0 λ

+
0 (u)du

)S+,0
t

(A.35)
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And now we have:

D(x, y, t) = D0
λ+0

(
x− ln

(∫ t

0
D (x, y, t− s) λ+

0 (s)∫ t
0 λ

+
0 (u)du

ds

)
, y, t

)
(A.36)

We can do this analysis again to compute D using the decomposition of Eq.(4.1) and

Eq.(A.33) applied on
(
S

+,1
, S
−,1)

. What changes between those processes is the base rate.

Indeed, the base rate of S+,0 is λ+
0 while the base rate of S

+,1
is φ. So we deduce:

D(x, y, t) = D0
φ

(
x− ln

(∫ t

0
D (x, y, t− s) φ(s)∫ t

0 φ(u)du
ds

)
, y, t

)
(A.37)

We can rewrite those equations using Eq.(A.31):

D(x, y, t) = exp

(
λ+

0

[
e−(x+y)

∫ t

0
D(x, y, s)ds− t

])
(A.38a)

× exp

(
λ+

0

λ−0
e−x

[
1− e−y

] [1− e−λ−0 t
t

]∫ t

0
D(x, y, s)ds

)

D(x, y, t) = exp

(∫ t

0
φ(s)

[
e−(x+y)D(x, y, t− s)− 1

]
ds

)
(A.38b)

× exp

(
e−x

[
1− e−y

] ∫ t

0
D(x, y, t− s)φ(s)ds

∫ t
0 e
−λ−0 (t−s)φ(s)ds∫ t

0 φ(s)ds

)
that ends the proof.

More on the Model with Price Feedback on the Spread

The proof of such results uses the same techniques as in the previous appendix but is
slightly more complex. First of all, there exits four martingalesM−,bt ,M+,b

t ,M−,at andM+,a
t

such that:
db±t = λ±t dt/2 + dM±,bt , da±t = λ±t dt/2 + dM±,at (A.39)

Note that we have:

dSt = da+
t + db+t − da−t + db−t

dPt =
(
da+

t − da−t + db−t − db+t
)
/2 (A.40)

d[P ]t = (dPt)
2 =

(
da+

t + da−t + db−t + db+t
)
/4 .

We then use Eq. (4.14) in a more general framework:

λ+
t = λ+

0 +

∫ t

0

∫ t

0
K(t− s, t− u)dPsdPu , (A.41)

where K is symmetric. Calling α = TrK =
∫ +∞

0 K(t, t)dt, one can rewrite:

λ+ = λ+
0 +

∫ t

0
K(t−s, t−s)d[P ]s+M

P
t = λ+

0 +
(
φ ∗ (λ+ + λ−)

)
t
+

1

2

(
φ ∗ (M+ +M−)

)
t
+MP

t ,

(A.42)

where φ(t) = K(t, t)/2, M±t = M±,at + M±,bt and MP
t =

∫ t
0

(∫ s−
0 K(t− s, t− u)dPu

)
dPs,

that is a martingale. Introducing the resolvent R =
∑

n≥1 φ
∗n and the martingale:

dMt =
[(
R ∗ (M+ +M−)

)
t
/2 +

(
(δ +R) ∗MP

)
t

]
dt,
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we solve the equation:

λ+
t =

(
1 +

∫ t

0
R(s)ds

)
λ+

0 +
(
R ∗ λ−

)
t
+ dMt , (A.43)

and deduce the dynamics of the spread:

St = S0 +

∫ t

0

[
λ+

0

(
1 +

∫ s

0
R(u)du

)
− λ−0 1{Ss≥2}

(
1−

∫ t−s

0
R(u)du

)]
ds+Mt . (A.44)

This gives the condition of stability: if α < αc then P[S ≥ 2] = (1− αc)/(1− α). Then we
get the di�usivity of the price:

lim
t→+∞

1

t
E[[P ]t] = lim

t→+∞
1

2

(
E[λ+

t + λ−t ]
)

=
λ+

0 + λ−0 P[S ≥ 2]

2(1− ||φ||)

One can check that ||φ|| = α/2.

Metastability � some analytical results

In the "slow limit", the intensity is approximately constant and thus the point process
can be locally approximated by a poisson process. The time continuous version of it is the
CIR like process given in Eq. (4.18). The associated Fokker-Planck equation is:

∂tρ = ∂x
(
−V ′ρ

)
+ ∂xx(Dρ)

Proof of Eq.(4.20)

We derive this expression using the formalism explained in [83]. ρ does not reach a
stationary solution because of the expressions of V and D. The idea of this computation
consists in solving the stationarized equation:

− J∗ − V ′ρst + ∂x(Dρst) = 0 (A.45)

where J∗ is such that
∫
ρst = 1. Let's interpret the dynamics of the system to understand

why we solve Eq. (A.46). The potential interpretation of this dynamics tells us that the
particle is trapped in a local minimum Xeq and if we wait long enough it will escape it by
crossing an energy barrier V(X∗)− V(Xeq). So, we can interpret J∗ as the �ux of particles
that loops from X∗ to Xeq in order to make the dynamics stable.

The only stable solution of Eq. (A.46) is:

ρst(X) =
J∗

D(X)

∫ X

0
exp

(∫ X

x

V ′(y)

D(y)
dy

)
dx (A.46)

The average time to cross this energy barrier is given from the �ux J∗:

E[τc] = J∗−1 =

∫ +∞

0

1

D(X)

∫ X

0
exp

(∫ X

x

V ′(y)

D(y)
dy

)
dxdX (A.47)

Eq.(A.47) is tractable only in very special cases and unfortunately not in ours. Nevertheless,
we can do an expansion when the energy barrier is high using a saddle-point method. It
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reads that:∫ X

0
exp

(
−
∫ x

0

V ′(y)

D(y)
dy

)
dx ≈1{x>Xeq} exp

(
−
∫ Xeq

0

V ′(y)

D(y)
dy

)√
2πD(Xeq)

V ′′(Xeq)

+ 1{x>X∗} exp

(
−
∫ X∗

0

V ′(y)

D(y)
dy

)√
2πD(X∗)
V ′′(X∗)

(A.48)

Using it a second time gives:

E[τc] ≈ exp

(
−
∫ Xeq

0

V ′(y)

D(y)
dy

)√
2πD(Xeq)

V ′′(Xeq)

∫ +∞

0

1

D(X)
exp

(∫ X

0

V ′(y)

D(y)
dy

)
1{x>Xeq}dX

≈ 2π

(
D(Xeq)

D(X∗)|V ′′(X∗)V ′′(Xeq)|

)1/2

× exp

(∫ X∗

Xeq

dx
V ′(x)

D(x)

)
(A.49)

That proves Eq. (4.20).

Expansion of Eq.(4.20) in ε

Let's turn to the development with the coe�cients. First we can compute X∗ and Xeq:

X∗ =
1− α+

√
(1− α)2 − 4ελ+

0

2ε
, Xeq =

1− α−
√

(1− α)2 − 4ελ+
0

2ε

Then: ∫ X∗

Xeq

V ′(x)

D(x)
dx =

2

β

[
Xeq −X∗ +

∫ X∗

Xeq

x

λ+
0 + αx+ εx2

dx

]
The second part of the above equation is tractable, but its value depends on the values of
the parameters:

• If α2 − 4λ+
0 ε < 0:∫ X∗

Xeq

x

λ+
0 + αx+ εx2

dx =
1

2ε
log

(
X∗

Xeq

)
− α

2ε2C(α, ε)
arctan

(
C(α, ε)−1

(
Xeq +

α

2ε

))
+

α

2ε2C(α, ε)
arctan

(
C(α, ε)−1

(
X∗ +

α

2ε

))
with C(α, ε) =

√
ε−1

(
λ+

0 − α2/2ε
)
.

• If α2 − 4λ+
0 ε = 0:

∫ X∗

Xeq

x

λ+
0 + αx+ εx2

dx =
1

2ε
log

(
X∗

Xeq

)
−

√
λ+

0

ε

 1

X∗ −
√
λ+

0 /ε
− 1

Xeq −
√
λ+

0 /ε
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• If α2 − 4λ+
0 ε > 0:

∫ X∗

Xeq

x

λ+
0 + αx+ εx2

dx =
1

2ε

1− α√
α2 − 4λ+

0 ε

 log

(
X∗ −X+

Xeq −X+

)

1

2ε

1 +
α√

α2 − 4λ+
0 ε

 log

(
X∗ −X−
Xeq −X−

)

with X± =

(
−α±

√
α2 − 4λ+

0 ε

)
/2ε.

Using the equations, we can develop in ε for �xed α and we get:

• If α = 0: ∫ X∗

Xeq

V ′(x)

D(x)
dx ≈ 2

β

[
1

2ε

(
log

1

ελ+
0

− 2

)
+ λ+

0

]
.

• If α > 0:∫ X∗

Xeq

V ′(x)

D(x)
dx ≈ 2

β

[
λ+

0

α2
log

(
λ+

0 ε

α2(1− α)2

)
+

1

ε
log

(
1

α

)
− 1− α

ε
+
λ+

0 (1− 2α)

α2

]

We now have to develop the logarithm of the prefactor. Noticing that D(Xeq)/D(X∗) =
Xeq/X

∗, we have:

log

(
2π

√
D(Xeq)

D(X∗)

√
1

|V ′′(X∗)V ′′(Xeq)|

)
≈ 1

2
log ε+

1

2
log λ+

0 + log(2π)− 2 log(1− α)

Putting all together gives Eq. (4.21).

A.4 Appendix of Chapter 5

A trick for computing stationary order books

We recall the equations we need to solve numerically from section 5.3. The system one
must solve for ξ > 0 is:

0 = D`∂ξξρ
(`)
B − ωρ

(`)
B (A.50a)

0 = D`∂ξξρ
(`)
A − ω

{
Γ(kξ)ρ

(`)
A + [1− Γ(kξ)]φr

}
(A.50b)

0 = Dr∂ξξφr − ω
{

Γ(kξ)ρ
(`)
A + [1− Γ(kξ)]φr − ρ(`)

B

}
. (A.50c)

with boundary conditions ρ(`)
B (0+) = ρ

(`)
A (0+), ∂ξρ

(`)
B (0+) = −∂ξρ(`)

A (0+), lim
ξ→+∞

ρ
(`)
B (ξ) =

lim
ξ→+∞

φr(ξ) = 0, lim
ξ→+∞

∂ξρ
(`)
A (ξ) = L. We provide a smarter numerical scheme that solve
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those equations. Using linear combination of Eq.(A.50), one gets:

ρ
(`)
B (ξ) = ρ

(`)
B (0+)e−ξ/`` (A.51a)

B(`)(ξ)−A(`)(ξ) +
`2r
`2`
φr = −Lξ (A.51b)

Then plugging it into Eq.(A.50c) and the boundary conditions, we get:

0 =
2

``
ρ

(`)
B (0+)− 1− `2r

`2`
∂ξφr(0+) (A.52a)

∂ξξφr =
1

`2r

([
1 + Γ(kξ)

(
`2r
`2`
− 1

)]
φr + Γ(kξ)Lξ

)
(A.52b)

+
1

`2r
ρ

(`)
B (0+)e−ξ/`` (Γ(kξ)− 1)

that is a linear system in the variables (ρ
(`)
B (0+), φr). Unfortunately, we have not been able

to analytically solve these equations, but we can discretize it and numerically solve it to get
the solutions of Eq.(A.50). Note that such trick diminishes the time of computations by a
factor roughly equal to three.

Plots and �ts of US stocks

We display on Fig.A.4,A.4,A.4 the empirical average order books over one hundred US
stocks with the according �t of φr that were displayed on Fig.5.3(a).
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Figure A.4: Fit of the stationary revealed order book φr to the average order books of over
one hundred US stocks, see Table A.3.
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Figure A.5: Fit of the stationary revealed order book φr to the average order books of over
one hundred US stocks, see Table A.3.
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Figure A.6: Fit of the stationary revealed order book φr to the average order books of over
one hundred US stocks, see Table A.3.
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Table A.3: US stocks (large cap.) used for the empirical analysis of Sec. 5.4 (see also
Figs. A.4, A.5 and A.6). The average spread S has tick units, Vd denotes the average daily
traded volume (in shares), k−1, `` and `r are expressed in %price, and L is shares per unit
%price.

Stock price $ S 10−6Vd 10−3L k `` `r
RIMM 10.03 1.003 0.87 602.0 4.71 0.0020 0.0059
BAC 28.66 1.007 15.62 34.3 2.50 0.0350 0.0033
AGNC 19.92 1.009 1.03 10.8 2.51 0.0165 0.0005
VOD 29.62 1.011 0.89 47.6 5.58 0.0230 0.0090
CSCO 38.57 1.012 7.17 26.7 3.64 0.0309 0.0027
CY 16.14 1.018 1.44 11.9 2.49 0.0195 0.0020
ABX 16.46 1.023 2.95 191.1 4.45 0.0031 0.0060
CMCSA 37.65 1.023 6.54 38.3 6.31 0.0230 0.0046
SBC 36.51 1.029 7.76 5.3 1.75 0.0417 0.0023
KFT 42.25 1.036 2.88 39.1 10.22 0.0131 0.0047
FCX 16.45 1.040 4.74 8.3 2.22 0.0201 0.0054
INTC 44.87 1.042 8.31 16.7 3.31 0.0318 0.0024
PBR 13.54 1.044 4.59 16.9 1.99 0.1284 0.0035
EBAY 39.12 1.052 2.73 28.1 7.71 0.0176 0.0037
SYMC 28.96 1.072 1.78 19.4 5.50 0.0227 0.0040
GSK 37.99 1.074 0.83 38.4 10.94 0.0084 0.0069
SBUX 57.01 1.076 2.95 9.4 4.53 0.0178 0.0009
WFC 56.31 1.082 5.37 25.6 11.02 0.0156 0.0057
NWS 33.21 1.100 2.55 18.7 5.74 0.0262 0.0065
DISCA 22.57 1.101 1.42 13.7 4.46 0.0247 0.0072
BEL 49.35 1.104 4.09 10.0 6.11 0.0278 0.0048
FD 23.44 1.117 2.46 3.9 2.26 0.0411 0.0093
BBBY 22.20 1.118 1.35 7.0 3.17 0.0178 0.0008
SO 44.21 1.143 1.69 5.2 4.87 0.0323 0.0060
GT 31.36 1.191 0.98 17.8 7.24 0.0169 0.0035
MRK 56.76 1.210 3.54 11.5 9.16 0.0209 0.0071
XOM 80.51 1.219 4.03 11.2 8.03 0.0231 0.0042
C 73.26 1.225 5.28 8.8 6.83 0.0261 0.0040
HAL 47.17 1.254 2.35 28.7 11.94 0.0117 0.0097
URBN 23.44 1.257 0.92 10.5 4.57 0.0123 0.0007
VIA 29.54 1.264 1.66 14.2 6.45 0.0127 0.0020
AMAT 53.43 1.315 3.53 5.6 3.23 0.0305 0.0021
PG 84.03 1.401 2.60 30.7 17.95 0.0098 0.0078
QCOM 59.38 1.416 3.30 4.0 3.25 0.0177 0.0006
MO 64.07 1.428 2.09 14.9 13.02 0.0143 0.0064
DOW 64.99 1.439 2.35 100.6 25.26 0.0015 0.0030
P 52.99 1.439 1.85 17.5 11.15 0.0149 0.0104
CSX 54.49 1.561 2.16 9.8 6.77 0.0199 0.0026
NKE 63.01 1.586 2.29 12.4 10.24 0.0191 0.0088
AIG 61.12 1.592 1.48 15.9 12.27 0.0168 0.0109
GIS 49.88 1.645 1.17 1.3 2.79 0.0431 0.0037
SLB 67.36 1.661 2.20 14.9 11.92 0.0167 0.0097
CMB 106.81 1.667 4.03 8.6 11.14 0.0199 0.0048
MYL 39.10 1.748 1.98 16.1 8.65 0.0184 0.0049
STX 45.28 1.822 1.48 4.6 4.09 0.0212 0.0013
WMT 90.73 1.884 2.59 8.3 10.61 0.0211 0.0055
AAPL 168.14 1.922 8.78 3.1 2.51 0.0107 0.0011
OXY 64.65 1.971 1.20 9.6 10.77 0.0191 0.0101
BMY 61.12 2.032 1.76 1.5 4.21 0.0372 0.0044
CTSH 75.94 2.129 1.27 23.7 17.41 0.0095 0.0040
LOW 81.69 2.204 1.61 6.9 11.71 0.0194 0.0078
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Stock price $ S 10−6Vd 10−3L k `` `r
WAG 71.64 2.298 2.25 10.3 9.79 0.0176 0.0032
HOLX 42.09 2.314 0.88 317.2 29.35 0.0008 0.0012
TGT 66.76 2.409 1.53 2.4 5.62 0.0320 0.0050
DIS 103.38 2.440 2.36 5.4 9.51 0.0236 0.0057
FAST 50.13 2.495 0.91 5.9 6.68 0.0213 0.0032
YHOO 71.07 2.649 2.55 21.6 8.05 0.0042 0.0043
DISH 48.54 2.671 0.82 3.3 5.53 0.0309 0.0059
HANS 59.37 2.751 0.84 13.8 11.79 0.0163 0.0047
GLNG 27.57 2.925 0.35 14.1 7.52 0.0187 0.0048

Stock price $ S 10−6Vd 10−3L k `` `r
PEP 112.52 3.009 1.42 5.3 8.42 0.0174 0.0020
ESRX 69.15 3.032 1.45 9.6 11.69 0.0137 0.0029
CERN 67.81 3.100 0.81 13.6 13.42 0.0134 0.0037
TXN 99.90 3.131 1.82 4.6 7.61 0.0200 0.0025
ROST 70.66 3.149 1.06 6.2 8.32 0.0198 0.0033
CREE 34.92 3.165 0.51 2.0 3.48 0.0322 0.0030
XLNX 70.21 3.199 0.93 4.0 7.34 0.0200 0.0026
CHV 116.12 3.867 1.95 16.8 19.58 0.0085 0.0108
IBM 152.11 3.917 1.29 3.9 11.96 0.0218 0.0083
CHRW 87.75 3.980 0.59 41.7 22.18 0.0075 0.0034
JNJ 131.86 4.007 2.07 6.9 15.56 0.0149 0.0098
MYGN 33.28 4.032 0.31 61.1 17.84 0.0019 0.0021
MCD 156.99 4.131 1.07 3.5 10.38 0.0276 0.0109
V 121.14 4.170 2.20 1.0 5.21 0.0381 0.0058
FISV 106.11 4.408 0.43 377.8 36.42 0.0008 0.0010
UPS 107.88 5.055 0.87 0.4 3.02 0.0566 0.0071
DLTR 97.27 5.124 0.86 2.0 6.07 0.0206 0.0019
CRM 116.98 5.563 1.22 0.5 4.61 0.0452 0.0074
HON 148.04 5.754 0.78 1.4 7.36 0.0365 0.0151
ERTS 116.94 5.872 1.07 220.6 34.96 0.0101 0.0641
HD 175.53 5.944 1.35 2.4 9.83 0.0275 0.0079
CHKP 104.95 6.161 0.38 1.3 7.57 0.0183 0.0020
CTAS 161.47 6.443 0.25 141.6 38.58 0.0038 0.0040
EXPE 124.49 6.716 0.83 0.8 4.82 0.0114 0.0006
CAT 153.78 6.934 1.10 1.2 6.78 0.0408 0.0106
ADSK 118.11 6.967 0.77 0.8 4.34 0.0181 0.0010
GS 230.09 6.976 0.76 30.5 27.22 0.0011 0.0038
DE 154.44 6.985 0.58 1.6 8.70 0.0338 0.0216
FFIV 128.76 7.457 0.30 4.9 15.98 0.0095 0.0016
AMGN 179.67 7.504 1.31 0.5 3.42 0.0187 0.0009
JAZZ 146.67 8.266 0.14 5.6 12.72 0.0064 0.0007
BRK 202.45 8.669 1.34 2.1 12.53 0.0257 0.0107
INCY 97.51 8.723 0.64 2.2 9.68 0.0095 0.0007
MMM 222.45 8.976 0.70 1.4 9.74 0.0334 0.0167
WYNN 162.67 9.496 0.76 0.2 2.17 0.0106 0.0004
ALXN 122.92 9.738 0.69 0.9 6.73 0.0154 0.0013
WPI 176.75 10.580 0.70 0.1 3.37 0.0575 0.0093
BA 297.60 10.630 0.97 0.2 3.31 0.0404 0.0037
VRTX 155.65 11.509 0.56 1.0 8.18 0.0105 0.0009
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B
By Force of Habit: Self-Trapping
in a Dynamical Utility Landscape

Historically, rational choice theory has focused on the utility maximization principle to
describe how individuals make choices. In reality, there is a computational cost related to
exploring the universe of available choices and it is often not clear whether we are truly maxi-
mizing an underlying utility function. In particular, memory e�ects and habit formation may
dominate over utility maximisation. We propose a stylized model with a history-dependent
utility function where the utility associated to each choice is increased when that choice has
been made in the past, with a certain decaying memory kernel. We show that self-reinforcing
e�ects can cause the agent to get stuck with a choice by sheer force of habit. We discuss
the special nature of the transition between free exploration of the space of choice and self-
trapping. We �nd in particular that the trapping time distribution is precisely a Zipf law at
the transition, and that the self-trapped phase exhibits super-aging behaviour.

From:
By force of habit: Self-trapping in a dynamical utility landscape

J. Moran, A. Fosset, D. Luzzati, J. P. Bouchaud, M. Benzaquen
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L'homme est une chose imparfaite qui tend sans cesse à quelque chose de meilleur et de
plus grand qu'elle-même.

Descartes

In modelling the behaviour of agents, the common view in standard economics

is that their actions are guided by the maximization of an utility function. For

convenience, the utility for each agent is often thought of as independent of the

actions of others, as well as static in time. A myriad of results in economic theory

actually rest upon this assumption. Complexity economics has recently begun

to tackle the issue of interactions between agents with analytical and numerical

tools, and we address here the possibility of reinforcement mechanisms that make

an agent's utility depend on his past. This simple toy model leads to non-ergodic

dynamics, where the agent's actions depend crucially on past decisions.

B.1 Introduction

A key assumption in rational choice theory is that individuals set their preferences ac-
cording to an utility maximization principle. Each choice an individual can make is assigned
a certain �utility�, i.e. a quantity measuring the satisfaction it provides to the agent and
frequently related to the dispassionate forecast of a related payo�. This framework is often
accompanied by the assumption that the agent considers all available choices present to
her/him, weighs their utilities against one another, and then makes her/his choice taking
into account possible constraints, such as a �nite budget.

A number of criticisms to this view of human behaviour have emerged, with e.g. Si-
mon [93] as a key �gure highlighting that individuals may be �satis�ers� rather than pure
optimisers, in the sense that there is both a computational cost and a cognitive bias related
to considering the universe of available choices. Sometimes �nding the optimum of the util-
ity function can itself be such a computationally hard problem that even the most powerful
computers would not be able to �nd it in a reasonable amount of time. This led to the
idea of bounded rationality as a way to model real agents [94, 95, 96, 97]. More recently,
Kahneman [98, 99] pointed at what he considers to be signi�cant divergences between eco-
nomics and psychology in their assumptions of human behaviour, with a special emphasis
on the empirical evidence of the cognitive biases, and therefore the irrationality, that guides
individual behaviour. A pervasive e�ect, for example, is that the utility of a certain choice
strongly depends on the choice made by others. These so called �externalities� can lead to
interesting collective e�ects, where choices made by agents synchronise and condense on a
small subset of choices, or lead to con�dence crises � see for example [100, 101, 102, 103, 104].

An interesting idea developed in [105] is the fact that the utility associated to a certain
decision may depend also on our memory if it has already been made in the past. Here
we propose a simple model that encapsulates this idea, and show that this too can lead to
choices that do not necessarily conform to their �objective� utilities, but are rather dominated
by past choices alone. This is related to what economists call �habit formation� [106, 107,
108, 109, 110, 111]. Memory e�ects chisel the utility landscape in a way that may render
objectively sub-optimal choices subjectively optimal. In the case of su�ciently long range
memory, agents may, in a self-ful�lling kind of way, become �trapped� forever in a certain
choice and stop exploring alternative choices.

As a practical example, one may imagine a situation where one must choose where to
have lunch every day. Standard rational theory dictates that we ought to scrutinize every
restaurant, eatery and cafeteria, taking into account our personal tastes and the costs asso-
ciated with going to any of these places. In contrast, we want to model the fact that habit
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may take over: instead of seeking to maximize a certain objective cost function, we are likely
to persist in going to a speci�c place just because we are used to it. Anecdotal evidence
shows that this is indeed what often happens in practice!

Our model assumes that the utility landscape is a�ected by past choices, with a memory
kernel that decays with time. Agents can change their decision using a logit (or Metropolis)
rule, parameterised by an �intensity of choice� β that plays the role of the inverse temperature
in statistical physics. This type of model belongs to a wide class of so-called �reinforcement�
models, which contains Polya Urns, Reinforced Random Walks, Elephant Walks, etc. � for
a review see [112] and references therein.1 Such models have also gained traction in the
economics literature, where positive reinforcement of certain choices made by agents are
shown to impact the emergence of certain macro outcomes and structures [115, 116].

After properly de�ning our model, we provide analytical arguments to con�rm the intu-
ition that su�ciently strong memory e�ects, coupled with the optimization of the subjective
memory-induced utility, can lead to �self-trapping�, i.e. the agent sticks to a choice whose
objective utility is not necessarily maximal, simply by force of habit. We con�rm our result
via numerical simulations that explore di�erent topologies for the space of di�erent choices.
We discover a particularly interesting dynamical transition when the memory kernel decays
as the inverse of time, with rather unusual scaling and super-aging properties. We �nally
propose possible extensions.

B.2 A Simple model

Consider a set of N discrete choices, labeled (xi)1≤i≤N , to which we assign an utility −
a measure of the value an individual assigns a given choice. The perceived utility of site xi
and time t is postulated to be:

U(xi, t) = U0(xi)

(
1 +

t∑
t′=0

φ(t− t′)1x(t′)=xi

)
, (B.1)

where the �rst term on the right-hand side is the intrinsic, or objective utility of the choice,
while the second accounts for memory e�ects, a�ecting the utility of that choice for the only
reason that the individual has picked it in the past.2 The decaying memory kernel φ encodes
that more recent choices have a stronger e�ect, and x(t) denotes the choice of the individual
at time t. Hence, past history �chisels� the utility landscape, in a way similar to ants leaving
a pheromone trace that guide other ants along the same path, or rivers creating their own
bed through erosion. Note that in most reinforcement random walk models reviewed in [112],
in�nite memory span is assumed, i.e. φ(t) = constant, while we will be mostly concerned
here with decaying memory kernels.

The sign of the kernel φ separates two di�erent cases: φ < 0 indicates a situation where
an individual grows weary of his past choices, while φ > 0 corresponds to the case where an
individual becomes increasingly endeared with them. In agreement with intuition, the former
case leads to an exploration of all the choices unless the optimal choice has an utility too far
apart from the rest to be su�ciently a�ected by the kernel. In all that follows we focus on
the more interesting case φ ≥ 0. The reason behind studying such utility reinforcement lies
in the behavioural idea that people tend to prefer what they already know, thus paving the
way for �habit formation" as in [117], see also [107, 108, 109, 110, 111] and [103]. We then
consider the following dynamics. An individual, standing by choice xi at time t, draws an

1For recent developments, see also [113, 114].
2One may also think, in the physicist's language, of an energy landscape (akin to minus the utility) where

the energy of a given site or con�guration increases or decreases if the system has already visited that site.
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Figure B.1: Schematic representation of our problem at a given time t. The plot on the top
depicts the case of random �objective� utilities U0(x), while the one on the bottom shows the
situation where they are uniform U0(x) = U0. In both plots, the solid black ball represents
the choice made at time t, while the empty ball represents the choice made at time t − 1.
Both correspond to a simulation run with a power-law kernel φ(t) ∝ (1 + t)−γ with γ = 1.5
and β = 0.2, on a fully connected graph.

alternative xj from a certain ensemble of �nearby choices� ∂i, e.g. the set of neighbors of i
in a graph G, with probability:

Txi→xj =
1xj∈∂i
Ni

, Ni :=
∑
j

1xj∈∂i , (B.2)

where Ni is the number of neighbours of i. Restricting to nearby choices is a parsimonious
way to model adaptation costs, that penalize large decision changes. However, our framework
is quite versatile since the topology of the graph G is arbitrary, and we will consider di�erent
cases below.

The target choice xj is then adopted with the logit probability, standard in Choice The-
ory [118]:3

p(xi → xj) =
1

1 + eβ[U(xi,t)−U(xj ,t)]
, (B.3)

where β is called the �intensity of choice� and accounts for the degree of rationality (it is the
analogue of the inverse temperature in statistical mechanics). Indeed, as long as 0 < β <∞,
the agent is more likely to switch whenever U(xj , t) > U(xi, t) (optimizing behaviour), but
the probability to pick a choice with a lower utility is non-zero, which encodes for bounded-
rationality (or uncertainty about the true utility) in the economics literature. In the β → 0
limit (equivalent to the in�nite temperature limit in physics) the agent explores the whole
space of possible choices without taking their utility into account. In the opposite limit
β →∞ (or zero temperature) the agent has a greedy behaviour and only switches to choices
with a higher utility, but this also implies that he/she may stay in a local maximum instead
of taking the chance to explore all available possibilities. An illustration of these dynamics
is given in Fig. B.1.

3For non-trivial trapping to emerge, we consider graphs without singletons, that is to say that all sites
have a non-empty set of neighbours that are di�erent to itself.
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When φ = 0, the dynamics is that of the Metropolis-Hastings algorithm used to sample
the Boltzmann-Gibbs distribution [119, 120]. The stationary state of the dynamics is such
that the probability to pick choice xi is proportional to NieβU0(xi). This can by itself lead
to interesting phenomena depending on the statistics of U0. For example the study of the
Random Energy Model [121, 122], for a �nite value of N and for Gaussian utilities of variance
σ2, shows that for β > βc =

√
2 lnN/σ, the probability measure condenses on a small number

of choices, much smaller than N .

B.3 Non-Ergodicity & Condensation of Choices

Adding the kernel introduces the possibility that the agent gets stuck in a non-optimal
choice exclusively through memory e�ects: staying a long time in a given choice self-reinforces
its utility, thereby increasing the likelihood to stay there and leading to non-ergodic dynam-
ics. To study the possible condensation or trapping induced by memory alone, we restrict
ourselves to the case where U0(xi) = 1, ∀i henceforth. (Any other value of U0 can be reab-
sorbed in β). The interplay between memory-induced trapping and utility heterogeneity is
quite interesting in itself, but we leave it to future investigations.

We consider an agent starting from a given choice x0 at time t = 0 and follow his/her
evolution for times t = 1, . . . , T with T su�ciently large. We then compute the empirical
state histogram pi =

∑
t 1x(t)=xi/T and de�ne the order parameter h, in a similar way to the

inverse participation ratio used in condensed matter physics [123, 124] or to the Her�ndahl
index in economics [125], as:

h :=

N∑
i=1

p2
i . (B.4)

This parameter indicates how the agent has explored the space of possible choices: if all
choices were visited with equal probability then one has immediately pi = 1/N and thus
h =

∑
i 1/N2 = 1/N . On the other hand if the agent was stuck in a single choice j, then

pi = δi,j and so h = 1. Therefore 1/h gives an order of magnitude of the number of di�erent
choices picked by the agent during time T . In practice, we average h over a large number of
trajectories and starting sites x0, to obtain an average parameter h. For a set of simulations
on a graph G with N choices and lasting a time T , we therefore de�ne the critical value βc,
de�ning the crossover between h = O(1/N) and h = O(1) as the value for β that maximizes
the variance of h over di�erent trajectories.

An important question is whether βc corresponds to a true transition or to a mere
crossover. This depends on the L1 norm of the memory kernel, φ =

∑∞
t=0 φ(t). Suppose

that this norm is �nite. Then if the agent has been stuck in a given site i for a time t� 1,
we can approximate its utility by (1 + φ). The di�erence in utility with the neighbouring
choices thus remains �nite. For any �nite value of β, the probability to leave that site is
non-zero, and therefore the individual will eventually pick a di�erent choice. The time for
this to happen is however of the order of exp(βφ). If this time is much longer than T , we
will in fact measure h ∼ 1, even though running the trajectory for a longer time would result
in h = O(1/N). Hence in this case βc is a crossover that depends on T as ln(T )/(φ).

A more interesting situation (at least from a theoretical point of view) is when φ = ∞.
As we will show below, there exists cases where βc corresponds to a true phase transition
and is independent of T (when T is large).

B.4 Mean Field Approximation

In order to draw further analytical features, we start by looking at a mean-�eld approxi-
mation. This means that we take the graph G to be fully connected with Txi→xj = 1/(N−1)
and in the limit N →∞.
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We now formalize the argument previously sketched. If the individual started �rst at a
given choice corresponding to node i, then the probability P>(τ) that he/she remains there
up to a time τ is given by the product over t ∈ 0, τ − 1 of the probabilities not to leave the
site between times t and t+ 1, pstay(t). Now, pstay(t) = 1− pleave(t) with:

pleave(t) =
∑
j∈∂i
Txi→xj

1

1 + eβ[U(xi,t)−U(xj ,t)]
. (B.5)

For the fully connected graph, this expression simpli�es to4 pstay(t) =
[
1 + e−βΦ(t)

]−1
, with

Φ(t) = sumt
0φ(s). It follows that:

P>(τ) =

τ∏
t=0

[
1 + e−βΦ(t)

]−1
≈ e−I(τ), (B.6)

with I(τ) :=
∫ τ

0 dt ln
[
1 + e−βΦ(t)

]
, where we have replaced discrete sums by integrals. Equa-

tion (B.6) determines the distribution of the �trapping� time τ that the agent spends stuck
on a certain choice. Its nature will entirely depend on the behaviour of the integral I(τ)
when τ →∞.

Short Term Memory

Consider �rst the case where limt→∞Φ(t) = φ < +∞. Then I(τ) ≈ λτ for τ →∞, with

λ := ln
[
1 + e−βφ

]
. (B.7)

This means that the trapping time distribution decays exponentially fast for large τ , with an
average trapping time 〈τ〉 approximately given by 1/λ. For su�ciently small λ, we recover
the qualitative criterion of the previous section by setting Tλ ∼ 1. But the dynamics remains
ergodic when T →∞.

Long Term Memory

Suppose now that φ(t) decays su�ciently slowly for large t for φ to diverge. For de�nite-
ness, we will focus on power-law kernels:

φ(t) =
C

(1 + t)γ
. (B.8)

When γ > 1, φ is �nite and we are back to the previous case. Hence we restrict to γ ≤ 1.
When γ < 1, one �nds that Φ(t) ∝ t1−γ for large t. Hence I(τ) converges to a �nite limit
I∞ for large τ . This means that there is a �nite probability P∞ = e−I∞ that the choice is
made forever. When γ = 1, Φ(t) ≈ C ln t for large t. This leads to three further sub-cases:

1. When βC > 1, I(τ) again converges to a �nite limit when τ → ∞, i.e. decisions
self-trap forever.

2. At the transition point, de�ned as β?c = C−1, one �nds that P>(τ) decays as τ−1,
i.e. the trapping time distribution is a Zipf law, τ−2. This is the marginal case that
appears in several models of aging in the literature [126, 127]. For a �nite observation
time T , the average trapping time grows like lnT .

4In the general case in which the agent started in a �site� di�erent from i and then got stuck in i, one
wants to replace the right-hand side by an average of the logit rule over the utility gaps U(xi, t)− U(xj , t).
However, as N →∞ it is very unlikely that a site that was previously picked is chosen again. We can thus
safely replace the average gap by the gap with the base level U0 = 1.
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3. When βC < 1, I(τ) behaves for large τ as τ b/b, where b = 1 − βC > 0. The average
trapping time 〈τ〉 is thus �nite. A careful analysis5 shows that 〈τ〉 diverges as b−1 when
b→ 0, but higher moments 〈τk〉 with k > 1 diverge much faster, as exp((k− 1)/b), i.e.
according to the so-called Vogel-Tamman-Fulcher law, see e.g. [128].

Let us summarize the above results. When the kernel φ decays fast enough, there is a
crossover regime in β between free exploration of the space of choice and trapping. The
crossover value of β depends on the observation time T and is given, using Eq. (B.7) for T
large, by

βc =
lnT

φ
. (B.9)

When memory is long ranged, and described by a power-law kernel with decay exponent
γ, there exists a genuine transition when γ = 1 between a free exploration regime and a
(non-ergodic) trapped regime at a T independent value of β that we shall henceforth call β?c .
When β > β?c or γ < 1, there is a non-zero probability to get trapped in the same decision
forever. The characteristic time for changing decision is of the same order of magnitude as
T itself, a phenomenon called �aging�, see e.g. [129, 127], on which we will comment further
below, see Fig. B.4. Note �nally that for γ = 1, our mean-�eld analysis predicts that while
the average trapping time diverges as (β?c − β)−1, all higher moments diverge much faster,
as ∼ exp(A/(β?c − β)).

B.5 Numerical results

We have conducted simulations using a long-range memory kernel given by Eq. (B.8) with
γ ∈ [1;∞[. For numerical convenience, we represent φ(t) as a superposition of exponentials
as done in [130]. We have considered a variety of di�erent graph topologies G: fully connected
graphs, one-dimensional chains, and �nally Watts-Strogatz small world networks. Without
loss of generality, we set again U0 = 1 as this simply corresponds to a rescaling of β.

Figure B.2 (Left) shows the value of βc, determined as the maximum of the variance of
h, as a function of T for two di�erent topologies (one-dimensional and fully connected) and
two di�erent values of γ ∈ {1, 1.5}. Our results show excellent qualitative agreement with
the theoretical prediction for the two topologies, in particular Eq. (B.9) in the γ > 1 case,
although there is an overall factor needed to account for the one-dimensional data.

One can actually interpolate between the two situations by considering Watts-Strogatz
small-world networks [131], with a rewiring parameter p such that p = 0 corresponds to
one-dimension chains and p = 1 to the fully connected graph. Figure B.2 (Right) shows
the value of β?c as a function of the rewiring parameter p of interpolating between one-
dimensional chains for p = 0 and the fully connected graph for p = 1. The parameter p
therefore allows to interpolate between a situation where one may only do local jumps to a
situation where one can go anywhere. As expected, β?c increases with p, as it is easier to get
trapped in less connected graphs, where the same choice is revisited more often.

We now study more carefully the behaviour of the order parameter h close to the transition
point β?c , when γ = 1, both for one-dimensional chains and for the fully connected graph.
We choose N = 105 henceforth, such that �nite size e�ects are negligible in the range of T
that we explore. Figure B.3 suggests that as T →∞, 〈h〉(β) appears to slowly converge to a
step function that is zero for β < β?c and unity when β > β?c , at least in the fully connected
case where the speed of convergence is found to be ∼ T−1/3. In the one-dimensional case,

5Indeed, a direct integration of the kernel yields P>(τ) = exp
[
1− (1 + τ)b/b

]
. As b → 0 this function

can be approximated by P>(τ) = (1 + τ)−1 up to a cuto� at τ ∼ e1/b. Direct integration then gives∫ e1/b
0

dτ τk−1/(1 + τ) ≈ exp((k − 1)/b) for k > 1 and ∼ 1/b for k = 1.
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one cannot exclude with the available data that this limiting function remains continuous
when T →∞.
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with N = 10000, with β?c ≈ 1.5 and β = 3.5. Eq. (B.10) predicts that P(t, T ) ≈ 1− t/T β/β?c
when t� T (dashed line).

B.6 Aging

Finally, let us be a little more speci�c about the meaning of self-trapping for �nite T when
β > β?c . The correct statement is that the system ages, in the following sense [129, 132]:
assume that the agent's choice at time T is a certain xi and ask: What is the probability
P(t, T ) that the agent has never changed his/her mind between T and a later time T + t?
In the free exploration phase β < β?c , this probability is, for large T , independent of T : the
process is time-translation invariant. In the trapped phase β > β?c , P(t, T ) can be estimated
by appropriately generalizing Eq. (B.6). The result takes the following aging form (see
Fig B.4):6

P(t, T ) ≈ exp

(
1

a(T + t)a
− 1

aT a

)
, a =

β

β?c
− 1 > 0, (B.10)

where the exponent a is equal to minus the exponent b characterizing the stretched expo-
nential distribution in the phase β < β?c (see Section B.4). Note that in the regime t � T ,
P(t, T ) is a function of t/T 1+a (precisely P(t, T ) ≈ 1−t/T 1+a, see dashed line in Fig. B.4), a
regime called super-aging [134] since the e�ective time for changing one's mind grows faster
than the age T itself. This is quite interesting since we are not aware of simple models lead-
ing to such a super-linear aging behaviour. Hence, memory e�ects of the type discussed here
might very well be an interesting lead to interpret experiments that show such a super-aging
behaviour, such as those reported in [135].

Right at the transition point β = β?c , one �nds simple aging, i.e. a scaling function of
t/T :

P(t, T ) ≈ 1

1 + t
T

, β = β?c . (B.11)

When the kernel has a �nite norm and leads to a crossover rather than a true transition,
aging will take place whenever T � eβφ but revert to a normal time translation dynamics
when T � eβφ (see [132] for a similar situation). When γ < 1, on the contrary, relaxation is
quasi-frozen for large T , in the sense that P(t, T ) ≈ 1− t exp(−βCT 1−γ) when t� T γ .

6Note that P(t, T ) can be written in the general form advocated by Cugliandolo and Kurchan [133]:
P(t, T ) = F (h(T )/h(T + t)), where F (u) = 1/u and h(x) is an e�ective clock.

117



Asymptotics

of
∑T

t=0 φ(t)
φ <∞ ln(T ) T 1−γ , γ < 1

Asymptotics

of P>(τ)

e−λτ with

λ = ln
[
1 + e−βφ

]
β > β?c (trapped regime): P∞ > 0

β = β?c (critical regime): τ−1

β < β?c (ergodic regime): exp(−τ b/b)
with b = 1− β/β?c

P∞ > 0

(trapped)

Aging P(t, T )
Trapping & aging

for T � eβ|φ|

β > β?c super-aging t ∼ T β/β?c
β = β?c normal-aging t ∼ T
β < β?c equivalent to φ <∞

Quasi-frozen

relaxation

Table B.1: Summary of the di�erent dynamical regimes.

B.7 Conclusion

Although quite simple, our model shows that non-trivial choice distortion e�ects can
emerge through memory or self-reinforcing mechanisms. Our main result is that the addition
of memory e�ects can hinder the full exploration of all choices by the agent, and it may even
cause him/her to leave a substantial number of possible options totally unexplored. The
emergence of aging properties also shows that including memory e�ects in agents' preferences
can lead to non-ergodic dynamics, when ergodicity is a crucial assumption to many models
in economics. Table B.1 summarises our results.

Several extensions can be thought of, and would be a sensible way to incorporate more
realism into the model. As we mentioned, we have explored here the case where the objective
utility landscape U0(x) is totally �at, in a way to highlight the e�ects induced by memory
alone. Reintroducing some heterogeneities in U0(x) would allow one to study the competition
between �landscape trapping� and �memory trapping�, with possibly interesting transitions
between the two. One could also imagine, along the lines of Ref. [136], a situation where an
agent is only sensitive to past extreme values of his/her utility.

Another direction is to introduce many agents with interactions between them, meaning
that the subjective utility may also depend on what others are doing. Here again, one expects
some interesting competition between herding induced condensation of choices and memory
e�ects. Steps in this direction, with agents interacting through a market and learning through
past experience, have already been taken in [137, 138]. In particular, the combined e�ect of
imitation of the past and imitation of peers may generate collective self-ful�lling prophecies.

One could also explore the case where the graph G de�ning the topology of the space
of choices is itself time dependent � see [139] for a step in this direction. For example, the
neighbourhood of each choice could be itself a�ected by past choices, or some new choices,
not present initially, could present themselves later in time (for example, the opening of a
new restaurant).

In all these cases, the basic question is whether memory e�ects, habit formation, or
herding completely distort the choices dictated by their objective utilities or not. Such
distortions may have very signi�cant economic consequences at the macro level.

From a purely theoretical point of view, revisiting reinforcement models considered in
the literature [112] with a power-law decaying memory kernel could lead to new interesting
transitions of the type discussed above. In particular, the super-aging behaviour reported in
the trapped phase might have applications much beyond the present setting.
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C
Schrödinger's ants: A continuous

description of Kirman's
recruitment model

We show how the approach to equilibrium in Kirman's ants model can be fully character-
ized in terms of the spectrum of a Schrödinger equation with a Pöschl-Teller (tan2) potential.
Among other interesting properties, we have found that in the bimodal phase where ants visit
mostly one food site at a time, the switch time between the two sources only depends on
the �spontaneous conversion� rate and not on the recruitment rate. More complicated cor-
relation functions can be computed exactly, and involve higher and higher eigenvalues and
eigenfunctions of the Schrödinger operator, which can be expressed in terms of hypergeometric
functions.

From:
Schrödinger's ants: A continuous description of Kirman's recruitment model

J. Moran, A. Fosset, M. Benzaquen, J. P. Bouchaud
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Science sans conscience n'est que ruine de l'âme.

François Rabelais

C.1 Introduction

Kirman's ant model [140] undoubtedly stands among some of the most inspiring toy
models in the behavioural economics literature. While initially inspired by the experiment
described below, its conclusions have implications much beyond collective animal behaviour,
and has been used to model shifts in sentiment of economic agents, trend reversal in �nancial
markets, herding and social in�uence, etc. Kirman's model is also akin to another famous
model in population dynamics with competing species: the Moran model [141].

Several decades ago entomologists were puzzled by the following observation [142, 143].
Ants, faced with two identical and inexhaustible food sources A and B, tend to concentrate
on one of them for a while, but occasionally switch to the other. Such intermittent herding
behaviour is also observed in humans choosing between equivalent restaurants [144], or in
�nancial markets [145, 146, 147] consistent with large endogenous �uctuations. Clearly the
asymmetric exploitation observed in ants does not seem to correspond to the equilibrium
state of an isolated representative ant with rational expectations. The phenomenon is rather
to be explained in terms of interactions between individual ants, or, as put by biologists,
recruitment dynamics. To account for such intricate behaviour, Kirman proposed a simple
and insightful model [140] based on tandem recruitment that we now recall.

Consider N ants and denote by k(t) ∈ [0, N ] the number of ants feeding on source A at
time t. When two ants meet, one of them converts the other with probability µ/N , but each
ant may in addition change its own mind spontaneously with probability ε. Within such
a simple setting, Kirman was able to show that, in the large N limit, the stationary state
depends only on a parameter α := ε/µ. When α > 1 the distribution is unimodal, with a
maximum at k = N/2, whereas for α < 1 the stationary distribution of k is bimodal, with
maximum probability for k = 0 and k = N (corresponding to the situation observed in the
experiments). It is remarkable that the interesting α < 1 regime can be obtained even for
weakly persuasive agents (µ small) provided self-conversion ε is itself low enough.

The most important point is that in the α < 1 regime no one of the k states is, in itself,
an equilibrium. Although the system can spend a long time at k = 0, N (local stationarity)
these states cannot be considered as such: all the states are always revisited and there is
no convergence to any particular state, discarding also the notion of multiple equilibria.
Rather, there is perpetual change, and the system's natural endogenous dynamics is only
in a statistical equilibrium. Most economic models focus on �nding the equilibrium to
which the system will �nally converge, and the system may only be knocked o� its path by
large exogenous shocks.

Yet �nancial markets, and even larger economic and social systems, display a number of
regular large switches (correlations, mood of investors etc.) which do not seem to be always
driven by exogenous shocks. In Kirman's stylised setting such switches can be understood
endogenously. Several extensions of the model have been proposed [147, 148, 149], and the
basic dynamics of imitation coupled with random switching can also be used to describe
agents making political choices � say voting to the left or to the right � while being in�u-
enced by their peers, as described in the so-called voter model, see e.g. [150]. In particular,
the original version of Kirman's model does take into account the heterogeneity in encounter
probabilities induced by the topology of the social network; but one can easily (at least
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numerically!) modulate the probability of encounters according to their distance along such
a network, for example restricting recruitments to nearest neighbours only.

In the present paper we present a continuous description of Kirman's ant model which
notably allows us to derive the typical switching time, using classical methods from statistical
physics and quantum mechanics.

C.2 Master Equation

As mentioned above the original model describes N ants faced with two identical food
sources, with the relevant dynamical variable being k, the number of ants feeding on � say
� source A. Each time step allows an ant to either switch randomly to the other food source
with probability proportional to ε, or get recruited by another ant from the other food source
with probability proportional to µ.

De�ning the unit of time as the time required for all the ants to make a decision, leads
to dt = 1/N as the in�nitesimal time step. It is also clear that, to remain intensive in the
large N limit, the probability to interact with another ant should be proportional to 1/N .
Altogether, we may write a Master equation for the evolution of the probability P(k, t) that
there are k ants feeding at source A at time t:

P

(
k, t+

1

N

)
−P(k, t) =

1

N

{
W (k + 1→ k)P(k + 1, t) +W (k − 1→ k)P (k − 1, t)

−
[
W (k → k − 1)−W (k → k + 1)

]
P(k, t)

}
, (C.1)

where the transition rates are given by:

W (k → k + 1) =

(
1− k

N

)(
ε+

µ

N

k

N − 1

)
(C.2a)

W (k → k − 1) =
k

N

(
ε+

µ

N

N − k
N − 1

)
. (C.2b)

Note that this speci�cation only di�ers from Kirman's original one in the rescaling of the
recruitment rate by N . With the notations of [140], 1− δ = µ/N .

C.3 Continuous description and Fokker-Planck equation

Here we follow Kirman's original paper [140] and derive a proper continuous-time Fokker-
Planck equation in the limit N →∞.

We de�ne the variable x = k
N ∈ [0; 1] together with its probability density function

f(x, t). Taking the continuous limit N → ∞ of Eq. (C.1) leads to the following Fokker-
Planck equation [151]:

∂tf = ∂xJ
f , with Jf (x, t) = −ε(1− 2x)f(x, t) + µ∂x [x(1− x)f(x, t)] , (C.3)

the probability �ux, see Appendix C.A for the details of the calculations and the �rst 1/N
corrections. The conservation of the number of ants in the model is ensured by the condition
Jf (x, t) = 0 at the boundaries x = 0 and x = 1 at all times. Equation (C.3) corresponds to
the following stochastic process for x:

ẋ = ε(1− 2x) +
√

2µx(1− x)η(t) , (C.4)
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Figure C.1: Simulations of the model in the continuous limit. The top plots correspond to
α = 0.1 < 1 while the bottom ones to α = 2 > 1. Both simulations were run with ε = 0.1.
The left panels display the evolution of x(t) as de�ned in Eq. (C.4). The right panels display
the corresponding stationary probability densities, as given by Eq. (C.5).

with η a Gaussian white noise with unit variance. One can note that while the drift term
ε(1− 2x) is maximal at the boundaries and tends to pull x towards 1/2, the noise term has
the opposite e�ect. The di�usion constant is proportional to

√
2µx(1− x) and is maximal

at x = 1/2 and so tends to push the system away from x = 1/2.

Note that this stochastic process is very similar to the Moran model of genetic population
dynamics [141] � with the same di�usion term ∝

√
x(1− x) � where the analogue of the

number of ants at each food source is the proportion of genes from two competing alleles
(A or B) [152]. The ε term corresponds to spontaneous mutations. When ε = 0, there is a
non zero probability that the whole population becomes of type A or B after a �nite time,
corresponding to δ(x) or δ(1− x) contributions to f(x, t) with a time dependent weight, see
[153], and [154] for a recent thorough discussion. It is also equivalent to a model describing
noise-induced bistability transitions in chemical reactions [155], as shown in [156], where
the equation describing the process is equivalent to Eq. (C.3). The same di�usion term
∝
√
x(1− x) also emerges naturally within the so-called voter model, that describes the

opinion dynamics of peer-in�uenced voters [150].

When ε > 0, one can check that the normalised stationary distribution f0(x), obtained
by setting Jf (x, t) = 0, writes:

f0(x) =
Γ(2α)

Γ2(α)

[
x(1− x)

]α−1
, with α :=

ε

µ
. (C.5)

This result is the same as that obtained by Föllmer and Kirman in [140].

Upon looking at the behaviour of the solution, shown in Fig. C.1, one can see that there
is a clear transition in the behaviour of the model at αc = 1. For α > αc, the stationary
density in Eq. (C.5) is maximal at x = 1/2, and the dynamics shows that x(t) �uctuates
around 1/2, corresponding to a situation where the ants are, on average, evenly distributed
across both food sources. For α < αc the density f0 diverges at the boundaries. The
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top left panel in Fig. C.1 shows that this corresponds to a very di�erent picture, in which
nearly all of the ants choose either one of the sources for a certain amount of time, un-
til a noise-induced �avalanche� causes a switch over to the other source. It is also easy to
check that in the absence of noise (and α→ 0) the long-time stationary density is given by
f0(x) = 1

2 [δ(x) + δ (x− 1)], a situation discussed at length in [154].

Having this in mind, a natural question to ask is: Given a certain initial condition
f(x, 0) = δ(x − x0), how long does it take for the system to converge to the stationary
state, or equivalently, how long does it take for the ants to switch from one source to the
other in the α < 1 regime?

C.4 Schrödinger's equation and general solution

Here we obtain a full dynamical solution in terms of the eigenvalues and eigenfunctions
of a certain quantum mechanical Hamiltonian.

Using the Itô rule [157], one can see that introducing a change of variables ϕ(x) in
Eq. (C.4) yields a noise term proportional to

√
x(1− x)ϕ′(x), and so motivates a choice

satisfying ϕ′(x) = 1/
√
x(1− x). We therefore de�ne a new, more convenient, variable

ϕ ∈ [−π/2, π/2] as:
sinϕ = 2x− 1. (C.6)

The corresponding Fokker-Planck equation for its probability density g(ϕ, t) writes:

∂tg = µ∂ϕJ
g, with Jg(ϕ, t) = 2β tanϕg(ϕ, t) + ∂ϕg(ϕ, t) , and β := α− 1

2
, (C.7)

where the probability �ux must now verify Jg(±π/2, t) = 0 at all times. Setting again Jg = 0
everywhere, one �nds the normalized stationary solution:

g0(ϕ) =
Γ
(
α+ 1

2

)
√
πΓ(α)

(cosϕ)2α−1. (C.8)

The advantage of this formulation in ϕ is that, in contrast with the former, the second order
derivative term ∂ϕϕ in Eq. (C.7) only depends on ϕ through g(ϕ, t). Standard techniques
for the resolution of Fokker-Plank equations, see e.g. [151], motivate the introduction of a
function Ψ such that:

g(ϕ, t) :=
√
g0(ϕ)Ψ(ϕ, t) , (C.9)

and Ψ(ϕ, t)→
√
g0(ϕ) when t→∞.

Combining Eqs. (C.7) and (C.9) one obtains a Schrödinger-like equation of the form [158]:

− 1

µ
∂tΨ = HΨ, (C.10)

where the Hamiltonian H is de�ned as:

H := −∂ϕϕ + V (ϕ), V (ϕ) := −β + β(β − 1) tan2 ϕ, (C.11)

and with boundary conditions given by:[
cosβϕ

(
β tanϕΨ(ϕ, t) + ∂ϕΨ(ϕ, t)

)]
ϕ=±π/2

= 0 . (C.12)

We have left the µ parameter out of the Hamiltonian H in order to ease the comparison
to the canonical form presented in [159, 160]. The tan2 term in Eq. (C.10) is known as
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the Pöschl-Teller potential [159], and appears in a similar context of social dynamics within
a version of the voter model in Ref [161]. The potential we have here was fully solved in
the case β > 0 with boundary conditions Ψ(±π/2, t) = 0 in [160]. To be applicable to our
framework, we shall verify that their solutions also satisfy Eq. (C.12) in the general case
β > −1/2. The Hamiltonian H is Hermitian (contrarily to the Fokker-Planck operator) and
has a discrete set of orthogonal eigenfunctions and eigenvalues, given by:

HΨn = EnΨn , (C.13)

where, splitting into even (n = 2k) and odd (n = 2k + 1) states:

En = n(2α+ n− 1) , (C.14a)

Ψ2k(ϕ) = A2k(β) 2F1

(
−k, β + k;β + 1

2 , cos2 ϕ
)

cosβ ϕ, (C.14b)

Ψ2k+1(ϕ) = A2k+1(β) 2F1

(
−k, β + k + 1;β + 1

2 , cos2 ϕ
)

sinϕ cosβ ϕ, (C.14c)

with 2F1 the ordinary hypergeometric function.1 The coe�cients An are set such as to ensure
normalisation,

∫
[−π/2,π/2] ΨnΨm = δn,m, and can be expressed as integrals of hypergeometric

functions. Note that the parity of n also de�nes the parity of the function Ψn with respect
to the y-axis. One can then easily check that for all n (both even and odd):

cosβϕ
[
β tanϕΨn(ϕ) + Ψ′n(ϕ)

]
∼

ϕ→±π/2

(π
2
∓ ϕ

)1+2β
, (C.15)

which, since β > −1/2, ensure that the boundary conditions given by Eq. (C.12) are satis�ed.
Noting that Ψ0 =

√
g0, the general solution of Eq. (C.10) then reads:

Ψ(ϕ, t) = λ0

√
g0(ϕ) +

∑
n>1

λnΨn(ϕ)e−µEnt, (C.16)

with λn given by the projections of the initial conditions on each mode n, namely λn =∫ π/2
−π/2 dϕ Ψn(ϕ)Ψ(ϕ, 0).

Back to the physical variable x, the initial condition f(x, 0) = δ(x−x0) becomes g(ϕ, 0) =
δ(ϕ − ϕ0) with ϕ0 = arcsin (2x0 − 1). Further using Eq. (C.9), it is easy to see that the
initial condition in turn translates into Ψ(ϕ, 0) = δ (ϕ− ϕ0)/

√
g0(ϕ). The full solution for

g(ϕ, t) follows:

g(ϕ, t) = g0(ϕ) +
∑
n>1

e−µEntΨn(ϕ0)
√
g0(ϕ)Ψn(ϕ) , (C.17)

with the orthogonality between Ψ0 =
√
g0 and Ψn for n > 1 ensuring that

∫ π/2
−π/2 dϕ g(ϕ, t) =

∫ π/2
−π/2 dϕ g0(ϕ) = 1,

or equivalently for f(x, t):

f(x, t) = f0(x) +
∑
n>1

e−µEntΨn(ϕ0)fn(x) , (C.18)

with:

fn(x) =

√
g0(ϕ(x)) Ψn(ϕ(x))

2
√
x(1− x)

, (C.19)

(see Appendix C.D for an explicit expression). Equation (C.18) is the central result of the
present communication.

1Here, the function 2F1 takes the form of a polynomial: 2F1 (−k, a; b, u) =
k∑
l=0

(
k

`

)
(−1)`

Γ(a+ `)

Γ(a)

Γ(b)

Γ(b+ `)
u` for any integer k.
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C.5. Relaxation towards the stationary state

C
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Figure C.2: A plot showing the shape of the �rst two modes f0(x) and f1(x). The top panel
corresponds to α = 0.1, while the one on the bottom corresponds to α = 2. f0(x) is the
stationary state, whereas f1(x) is the slowest decaying mode, that corresponds to hopping
between the two food sources.

C.5 Relaxation towards the stationary state

With the full dynamical solution of Eq. (C.18) at hand, one can see how long a system
initially prepared at an initial value x0 ≈ 0, for example, takes to explore the whole space.
In other words, one can ask how much time τ is required to reach, say, x(τ) ≈ 1 with a
reasonable probability.

Since the stationary distribution f0 has weight on the whole interval [0; 1], this time τ is
none other than the relaxation time (or ergodic time) τR required to converge to stationarity.
Owing to the form of Eq. (C.18) this convergence is asymptotically exponential, with the
slowest mode given by n = 1. Hence, we �nd:

τR :=
1

µE1
≡ 1

2ε
. (C.20)

Perhaps surprisingly, this relaxation time depends only on the noise intensity ε, but not on
the recruitment intensity µ. Since n = 1 corresponds to the slowest mode of the system, it
also governs the collective �switch time� between the two food sources, A and B � see Fig.
C.2.

We have checked our prediction for the switching time numerically by running trajectories
starting at x0 = ∆x � 1 and computing the probability P(x(t) > 1 −∆x). This quantity
should converge to

∫
[1−∆x;1] f0 at an exponential rate ∝ e−µE1t, which is in perfect agreement

with our simulations, see Figure C.3.

Similarly, given an initial condition x0 = 1/2 where the ants are initially distributed
evenly between the two sources, one may ask how long it takes for all the ants to �decide�
on concentrating on one of them. Since this condition is equivalent to ϕ0 = 0, and since
Ψ1 is an odd function of ϕ, it follows that Ψ1(ϕ0) = 0 in this case. The convergence to the
stationary distribution is then controlled by the second mode, with a much shorter relaxation
time given by:

τ ′R :=
1

µE2
≡ 1

4ε+ 2µ
. (C.21)

Directly applying tools from stochastic calculus on Eq. (C.4), one can obtain the following
correlation functions (see Appendix C.E):

Cov [σn(x(T + t)), σn(x(T ))] ∝ e−µEnt, (C.22)
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Figure C.3: Left: plot of ∆P(x(t) > 1 − 10−2), de�ned as the di�erence between P(x(t) >
1 − 10−2) and its stationary value, for ε = 0.1 and µ = 0.5. The initial condition is
x0 = 10−2. Right: plots of the covariances Cσn(t) = Cov [σn(x(T + t)), σn(x(T ))], computed
over simulations with ε = 0.1 and µ = 0.2. The agreement with theoretical predictions is
excellent.

where σn(x) are polynomials of degree n that allow one to �diagonalize� the evolution of the
correlations:

σ1(x) = x,

σ2(x) = x(1− x),

σ3(x) = (2x− 1)

[(
1 +

2α

3

)
(2x− 1)2 − 1

]
.

(C.23)

See Appendix C.E for further details and Figure C.3 for a comparison with numerical results.

This result actually hides a deeper interpretation of the di�erent modes fn. In the case
described above, one can surmise that the dynamics of the moments E[x], E[x2] and E[x3]
are determined exclusively by the modes f1,f2 and f3. In fact, focusing on any moment
E [xm], it is possible to prove that:

∀n > m, Bn,m =

∫ 1

0
dx fn(x)xm = 0 , (C.24)

as well as for all values n that do not have the same parity as m. This implies in fact that
the dynamics of the moments E [xm] are fully described by the modes (f1, . . . , fm), with only
even values of n contributing to even moments m and vice-versa. For example, for m = 3
with the initial condition x(0) = x0 we can compute:

E[x3(t)] = B1,3Ψ1(ϕ0)e−2εt +B3,3Ψ3(ϕ0)e−3(2ε+2µ)t, (C.25)

where the exact expression of Bn,m is given in Appendix C.D, Eqs. (C.61) and (C.62). Mind
that B0,m is the stationary value of moment E[xm(t)] for all moments.

C.6 Conclusion

In this work, we have shown how that the approach to equilibrium in Kirman's ants model
can be fully characterized in terms of the spectrum of relaxation times, itself computable as
the eigenvalues of a Schrödinger equation with a Pöschl-Teller (tan2) potential. Note that
similar techniques have been recently applied to discuss the dynamics of wealth inequality
in Ref. [162]. Among other interesting properties, we have found that in the bimodal phase
where ants visit mostly one food site at a time, the switch time between the two sources
only depends on the �spontaneous conversion� rate ε and not on the recruitment rate µ. This
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C.6. Conclusion

C

means that a single ant deciding on its own to explore an alternative food source can trigger
an �avalanche� where the whole colony follows suit. More complicated correlation functions
can be computed exactly, and involve higher and higher eigenvalues and eigenfunctions of
the Schrödinger operator.

The possibility to solve exactly the dynamics of Kirman's model is of course intellectually
satisfying. It is also important in view of the number of possible applications of such a model,
recalled in the introduction, and which has reappeared recently in the context of self-ful�lling
prophecies in a simple economic model [163] and in the empirical study of the dynamics of
�shers seeking to exploit �shing zones with �nite resources [164]. Our analytical approach,
while similar to the techniques used in [161], can also be easily generalized to other models of
genetic population or social dynamics, such as the general setting discussed in [154], as the
change of variable we introduce always leads to a Schrödinger equation with a trigonometric
potential provided the drift is linear in x. These equations may then be solved using known
analytical tools [165].
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Appendix C.A Derivation of the Fokker-Planck equation and
stationary solution

We de�ne the continuous distribution f(x, t) as:

f(x, t) = lim
N→∞

N∑
k=0

δ

(
x− k

N

)
P(k, t) , (C.26)

which amounts to replacing k
N by x in Eqs. (C.1) and (C.2). In this case, and to leading

order in 1
N , the term e.g. W (k + 1→ k)P(k + 1, t) reads:(

1−
(
x+

1

N

))(
ε+

µ

N

(
x+

1

N

))
f

(
x+

1

N
, t

)
. (C.27)

We proceed similarly for all terms in the right-hand side of Eq. (C.1), and Taylor-expand
the left-hand side to leading order in the time variable, to obtain:

∂tf(x, t) = ε
∆

[
(x+ ∆)f(x+ ∆, t)− xf(x, t)− (1− x)f(x, t) + (1− (x−∆)) f(x−∆, t)

]
+ µ

∆2

[
(x+ ∆) (1− (x+ ∆)) f(x+ ∆, t) + (x−∆) (1− (x−∆)) f(x−∆, t)

− 2x(1− x)f(x, t)
]
,

(C.28)

where ∆ = 1
N for simplicity. We next Taylor-expand the right-hand side terms, such as

e.g. (x+ ∆)f(x+ ∆, t) ≈ xf(x, t) + ∆∂x [xf(x, t)] +O(∆2), to order ∆ for the terms with
prefactor ε/∆ and to order ∆2 for the terms with prefactor µ/∆2. Gathering everything, we
obtain the Fokker-Planck equation:

∂tf(x, t) = −ε∂x [(1− 2x)f(x, t)] + µ∂xx [x(1− x)f(x, t)] , (C.29)

the same as given in Eq. (C.3). This equation can be written as ∂tf(x, t) = ∂xJ
f (x, t),

where Jf is the probability �ux, a function such that Jf (x)∆ corresponds to the probability
mass �owing from x+ ∆ to x. To ensure the conservation of probability in [0; 1], we impose
Jf = 0 at the boundaries, meaning that no probability mass comes in or goes out during
the dynamic evolution of the process.

In other words, writing If (t) =
∫ 1

0 dx f(x, t), direct integration of Eq. (C.29) leads to
İf (t) = Jf (1, t)− Jf (0, t) = 0, ensuring that If (t) = 1 at all times. Keeping the next term
of order ∆ only slightly alters the equation:

∂tf(x, t) = −ε∂x [(1− 2x)f(x, t)] + ∂xx [(µx(1− x) + ε∆) f(x, t)] . (C.30)

Recalling now that a Fokker-Planck equation of the form

∂tp(y, t) = −∂y [a(y, t)p(y, t)] + ∂yy [b(y, t)p(y, t)] (C.31)

corresponds to the Itô stochastic di�erential equation

ẏ = a(y, t) +
√
b(y, t)η(t) (C.32)

where η is a brownian white noise, one readily recovers Eq. (C.4). Physically, the 0-�ux
boundary condition corresponds to a re�ecting boundary condition: a �wall� that prevents
x from getting out of [0; 1].
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C.B. Change of variables under an SDE

C

Determining the stationary solution

Looking for a stationary solution, one sets the right-hand side of Eq. (C.29) to 0, looking
to solve

f ′0(x)

f0(x)
= (α− 1)

1− 2x

x(1− x)
with α :=

ε

µ
(C.33)

which, after direct integration, yields f0(x) ∝ (x(1− x))α−1. Integrating for x ∈ [0; 1] allows
one to �nd the normalisation constant in terms of the Beta function, or equivalently as a
ratio of Gamma functions, to get Eq. (C.5).

Appendix C.B Change of variables under an SDE

Obtaining Eq. (C.7) and understanding the rationale behind the change of variables of
Eq. (C.6) is easier by starting from Eq. (C.4).

Imposing a change of variables x → ϕ(x) leads to a new stochastic di�erential equation
for ϕ, which after applying the Itô rule for di�erentiation reads

dϕ(x)

dt
= ε(1− 2x)ϕ′(x) + µx(1− x)ϕ′′(x) +

√
2µx(1− x)ϕ′(x)η(t), (C.34)

which is still di�cult to interpret because of the dependence on x of the term in front of the
white noise η.

Picking however ϕ′(x) = 1√
x(1−x)

amounts to ϕ(x) = arcsin(2x − 1) and rids us of

this dependence. Computing the derivatives ϕ′ = 2/ cosϕ and ϕ′′ = −4 tanϕ/ cos2 ϕ and
replacing in Eq. (C.34):

ϕ̇ = − (2ε− µ) tanϕ+
√

2µη(t), (C.35)

which because of the equivalence between stochastic di�erential equations and Fokker-Planck
equations discussed in Appendix C.29 leads to Eq. (C.7). As before, imposing the re�ecting
boundary conditions Jg(±π/2, t) = 0 ensures conservation of probability.

Keeping instead the term of order ∆ given in Eq. (C.30) leads �rst to the Langevin
equation

ẋ = ε(1− 2x) +
√

2µx(1− x) + 2ε∆η(t), (C.36)

which leads to the change of variables

φ = arctan

(
2x− 1

2
√
x(1− x) + α∆

)
, (C.37)

where now φ ≤ arctan
(

1/
√

2α∆
)
≈ π

2 − 2
√
α∆, and naturally one can check that the

de�nition of φ corresponds to ϕ as ∆→ 0, with φ ≈ ϕ− 2α∆ tan(ϕ) to leading order in ∆.
The analysis in the limit N →∞ therefore holds only in the limit tan(ϕ)� N

2α .

This new variable actually veri�es the very same SDE, Eq. (C.34), but with a di�erent
boundary.

Appendix C.C Schrödinger from Fokker-Planck

The following is a common �trick� to transform a non-hermitian dynamic evolution com-
ing from a Fokker-Planck equation with drift into a hermitian evolution determined by a
Schrödinger equation. We start from a generic Fokker-Planck equation such as the one de-
�ned in Eq. (C.31), but with constant b(y, t) = 1 and time-independent drift, which we
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represent with the derivative of some function A, a(y, t) = −A′(y). The resulting Fokker-
Planck equation reads

∂tp(y, t) = ∂y
[
A′(y)p(y, t)

]
+ ∂yyp(y, t) (C.38)

and has a stationary solution that can be written as a Boltzmann distribution p0(y) =
e−A(y)/Z, where Z is a constant ensuring normalisation.

We next introduce a function Ψ verifying p(y, t) = e−A(y)/2/
√
ZΨ(y, t). We can compute

derivatives to �nd

∂y
[
A′(y)p(y, t)

]
= e−A(y)/2/

√
Z

[(
A′′(y)− A′(y)2

2

)
Ψ(y, t) +A′(y)∂yΨ(y, t)

]
∂yyp(y, t) = e−A(y)/2/

√
Z

[
−1

2

(
A′′(y)− A′(y)2

2

)
Ψ(y, t)−A′(y)∂yΨ(y, t) + ∂yyΨ(y, t)

]
.

(C.39)

Adding these terms and simpli�ng, we �nd the following Schrödinger's equation for Ψ:

− ∂tΨ(y, t) = HΨ, (C.40)

where the Hamiltonian is here de�ned as

H = −∂yy + V (y), V (y) = −1

2

(
A′′(y)− A′(y)2

2

)
. (C.41)

Equation (C.10) simply uses this substituion, with
∫

dϕ tanϕ = log cosϕ playing the role
of A(y) (up to a multiplicative constant).

Appendix C.D Properties of the solution

We take the solutions in Eq. (C.14) as those given in [160]. We �rst check that they
satisfy the boundary condition.

Checking the boundary condition

We recall that

2F1 (−k, a; b, u) =

k∑
l=0

(
k

`

)
(−1)`

Γ(a+ `)

Γ(a)

Γ(b)

Γ(b+ `)
u`. (C.42)

In this case, direct di�erentiation in Eq. (C.14) for e.g. even modes n = 2k in the limit
ϕ→ ±π

2 leads to

d

dϕ

(
2F1

(
−k, β + k;β +

1

2
, cos2 ϕ

))
= 2 sinϕ cosϕ

k(β + k)

β + 1/2
+O(cosϕ)

≈ ±2
(π

2
∓ ϕ

) k(β + k)

β + 1/2
.

(C.43)

With this one can directly compute, with 2F1

(
−k, β + k;β + 1

2 , 1
)

:= c1 and for ϕ→ ±π
2 :

β tanϕΨ2k(ϕ) + Ψ′2k(ϕ) ≈ β tanϕ cosβ ϕ c1 − β tanϕ cosβ ϕ c1 ± 2 cosβ ϕ
(π

2
∓ ϕ

) k(β + k)

β + 1/2

≈ ±2
k(β + k)

β + 1/2

(π
2
∓ ϕ

)1+β
,

(C.44)
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C.D. Properties of the solution

C

which after multiplication with cosβ ϕ ≈
(
π
2 ∓ ϕ

)β
proves Eq. (C.15) for n = 2k. The

proof for odd n = 2k + 1 is strictly equivalent. It therefore follows that the solutions of
[160], although found initially for vanishing boundary conditions, also satisfy the boundary
condition given in Eq. (C.12).

Explicit expressions

In this section we discuss the explicit expressions of the functions fn and the constants
An.

The constants An are set so that
∫ π/2
−π/2 ΨnΨm = δn,m, and therefore implies, in terms of

the variable α,

A2k(α) =

(∫ π
2

−π
2

dϕ cos2α−1 ϕ 2F1

(
−k, α+ k − 1

2
;α, cos2 ϕ

)2
)−1/2

A2k+1(α) =

(∫ π
2

−π
2

dϕ cos2α−1 ϕ sin2 ϕ 2F1

(
−k, α+ k +

1

2
;α, cos2 ϕ

)2
)−1/2

.

(C.45)

To substitute and �nd the expressions of fn(x), we recall that

sinϕ = 2x− 1, cosϕ = 2
√
x(1− x) (C.46)

and get, using Eq. (C.14) and replacing into fn(x) =

√
g0(ϕ(x))Ψn(ϕ(x))

2
√
x(1−x)

, the explicit expression

f2k(x) = A2k(α)

√
Γ(α+ 1/2)√

πΓ(α)
2F1

(
−k, α+ k − 1

2
;α, 4x(1− x)

)
(4x(1− x))α−1 (C.47)

f2k+1(x) = A2k+1(α)

√
Γ(α+ 1/2)√

πΓ(α)
2F1

(
−k, α+ k +

1

2
;α, 4x(1− x)

)
(4x(1− x))α−1(2x− 1).

(C.48)

Computing the moments of the distribution

To understand the dynamics of the moments of the distribution

E [xm(t)] =

∫ 1

0
dx f(x, t)xm (C.49)

it is necessary to understand the behaviour of Bn,m =
∫ 1

0 dx fn(x)xm. Owing to the parity
of fn(x) with respect to x = 1/2 it is clear that for even moments m = 2p only even modes
n = 2k will be non zero, and vice versa for odd moments and modes.

We therefore develop the computation of even moments only, as the extension to odd
moments is direct. We wish to evaluate the integral

∫ 1
0 dx f2k(x)x2p = 2

∫ 1/2
0 dx f2k(x)x2p,

after changing variables as t = 4x(1− x), it is clear that this integral is proportional to

I2p,2m =

∫ 1

0
dt 2F1

(
−k, α+ k − 1

2
;α, t

)
tα−1(1− t)p−1/2. (C.50)

After expanding the hypergeometric function and integrating explicitly, we �nd

I2k,2p =
Γ(α)Γ(1/2 + p)

Γ(β + k)

k∑
l=0

(
k

l

)
(−1)l

Γ(β + k + l)

Γ(β + 1 + l + p)
=

Γ(α)Γ(1/2 + p)

Γ(β + k)
S2k,2p (C.51)
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requiring then the explicit computation of the sum S2k,2p.

Mind that for m = 2p + 1 the only modes that contribute are n = 2k + 1, and the
equivalent of the previous integral is

I2k+1,2p+1 =
Γ(α)Γ(3/2 + p)

Γ(β + k + 1)

k∑
l=0

(
k

l

)
(−1)l

Γ(β + 1 + k + l)

Γ(β + 2 + l + p)
=

Γ(α)Γ(3/2 + p)

Γ(β + k + 1)
S2k+1,2p+1

(C.52)
We discuss this for k ≥ 1 in two situations, k > m and k ≤ m.

First case: k > m

We can then write the sum S2k,2p as

k∑
l=0

(
k

l

)
(−1)l

k−1∏
i=p+1

(β + l + i), (C.53)

which, written as such, leads us to introduce the function

P (X) =
k∑
l=0

(
k

l

)
(−1)lXβ+l+k−1 = Xβ+k−1(1−X)k. (C.54)

Applying the generalized Leibniz rule to compute the k−p−1-th derivative of this function,
we obtain directly that S2k,2p = P (k−p−1)(1) = 0 in this case. A similar calculation can be
done for S2k+1,2p+1, and it follows therefore that∫ 1

0
dx fn(x)xm = 0 for n > m. (C.55)

Second case: k ≤ m

In this case, we now write the sum as

k∑
l=0

(
k

l

)
(−1)l

p∏
i=k

1

β + l + i
, (C.56)

which can instead be seen as the result of successive integrations on the function de�ned in
Eq. (C.54).

To compute it, we de�ne the functions 0(t; a, b) = ta−1(1 − t)b−1 and n+1(t; a, b) =∫ t
0 du n(u; a, b), with 1 corresponding to the standard incomplete Beta function. With this
de�nition, the sum reads

S2k,2p =

∫ 1

0
du p−k(u;β + k + 1, k + 1), (C.57)

while on the other hand successive integration by parts gives

n(1; a, b) =

n−1∑
j=0

(−1)j+1 (t− 1)j+1

Γ(j + 2) n−j
(u; a, b)

1

0

+ (−1)n
∫ 1

0
du

(t− 1)n

Γ(n+ 1)0

(u; a, b)

=
1(n+ a, b)

Γ(n+ 1)
.

(C.58)
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Finally, gathering everything we get

S2k,2p =
Γ(p+ β + 1)Γ(k + 1)

Γ(p+ β + k + 2)Γ(p− k + 1)
, (C.59)

while replacing β → β + 1 gives the similar expression

S2k+1,2p+1 =
Γ(p+ β + 2)Γ(k + 1)

Γ(p+ β + k + 3)Γ(p− k + 1)
. (C.60)

The �nal result follows,

Bn,m =

∫ 1

0
dx fn(x)xm = An(α)

√
Γ(α+ 1/2)√

πΓ(α)
In,m1 (n ≤ m) (C.61)

with

I2k,2p+1 = 0

I2k,2p =
Γ(α)Γ(1/2 + p)Γ(p+ β + 1)Γ(k + 1)

Γ(β + k)Γ(p+ β + k + 2)Γ(p− k + 1)

I2k+1,2p+1 =
Γ(α)Γ(3/2 + p)Γ(p+ β + 2)Γ(k + 1)

Γ(β + k + 1)Γ(p+ β + k + 3)Γ(p− k + 1)
,

(C.62)

allowing then for explicit computation of the dynamics of E [xm(t)].

Appendix C.E Stochastic calculus techniques

In this Appendix, we shall directly integrate stochastic di�erential equations describing
the model to obtain information on the covariances of moments xn(t). We begin by looking
at the covariance Cov(x(t+ T ), x(T )).

A direct integration of Eq. (C.4) leads to

x(t+ T ) = x(T ) + εt− 2ε

∫ t+T

T
ds x(s) +

∫ t+T

T
ds
√

2µx(s)(1− x(s))η(s). (C.63)

Taking now the covariance with x(t) and using linearity,

Cov(x(t+ T ), x(T )) =Cov(x(T ), x(T ))− 2ε

∫ t+T

T
ds Cov(x(s), x(T ))

+

∫ t+T

T
ds E

[√
2µx(s)(1− x(s))x(T )η(s)

] (C.64)

with the last integral being equal to 0, as

E
[√

2µx(s)(1− x(s))x(T )η(s)
]

= E
[√

2µx(s)(1− x(s))x(T )
]
E [η(s)] = 0. (C.65)

Taking �nally the derivative with respect to t and solving the resulting di�erential equation
we �nd

d

ds
Cov(x(T + s), x(T )) = −2εCov(x(T + s), x(T ))

Cov(x(t+ T ), x(T )) ∝ e−2εt.
(C.66)

Similarly, one can derive the stochastic di�erential equation followed by σ2(x) = x(1 − x)
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using the di�erentiation rule exempli�ed in Eq. (C.34), namely

d[x(1− x)]

dt
= ε− (4ε+ 2µ)x(1− x) +

√
2µx(1− x)(1− 2x)η(t), (C.67)

and as before, we can take the covariance Cov(σ2(x(t + T )), σ2(x(T ))), di�erentiate with
respect to t and �nd that it satis�es a di�erential equation, which after integrating reads

Cov(σ2(x(t+ T )), σ2(x(T ))) ∝ e−(4ε+2µ)t. (C.68)

This method can be extended to computing Cn,k(t + T, T ) = Cov
(
x(t+ T )n, x(T )k

)
. Ap-

plying Itô calculus as before, one can show that these functions satisfy the following ODE
system:

d

ds
[Cn,k(T + s, T )] = −µEnCn,k(T + s, T ) + µn(n− 1 + α)Cn−2,k(T + s, T ). (C.69)

Owing to its triangular structure, it can be diagonalized iteratively to �nd functions σn,
such that σn(x) is a polynomial of degree n and that the covariances Cσn(T + s, T ) =
Cov [σn(x(T + s)), σn(x(T ))] satisfy

d

ds
Cσn(T + s, T ) = −µEnCσn(T + s, T ). (C.70)

Knowing that σ1(x) = x and σ2(x) = x(1 − x), it is possible to �nd the third combination
σ3(x) = (2x− 1)

[(
1 + 2α

3

)
(2x− 1)2 − 1

]
. Integrating the equations in Eq. (C.70), one �nds

then that
Cσn(t+ T, T ) ∝ e−µEnt. (C.71)

These results can also be obtained directly from the eigenvalues and eigenfunctions of the
Schrödinger problem.
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D
From Ants to Fishing Vessels: A
Simple Model for Herding and

Exploitation of Finite Resources

Empirical data reveals that the fraction of �shermen �shing in the zone they are based in
is well approximated by a Beta distribution. Furthermore its auto-correlation appears to be
exponential, similar to the famous Kirman's ants recruitment model. This piece of evidence
has led us to extend such model to two asymmetric zones with �nite resources. We show
that, in the mean-�eld regime, our model exhibits the same properties that the empirical
data: asymmetric Beta distribution for the fraction of �shermen �shing in their zone and
exponential auto-correlations. From those results, we draw a phase diagram that separates
high and low herding but also �sh extinction.
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La plus belle de toutes les sciences, celle du nombre

Eschyle

D.1 Introduction

A problem of general interest is that of the individual and collective exploitation of a
resource. Depending on the particular context, the dynamics can be very di�erent. A crucial
factor is the e�ect of the behaviour of individuals on the collective outcome. In �nancial
markets for example, the decision to buy may enhance the value of the resource for others
as the price of an asset may increase as the demand for it grows. This positive feedback can
lead to �herd behaviour� and to creation of �bubbles�. If, on the other hand, the resource is
in �xed supply or can only generate a limited �ow, as in the case of agricultural production,
over exploitation can lead to its exhaustion when individuals do not take account of the
overall consequences of their actions. This leads to what has been called �The Tragedy of
the Commons� [166].

In this paper we will use a version of a model which was developed in the context of
�nancial markets, but we modify it to look at a problem of exhaustible resources, in particular
that of �sheries. There is a substantial literature on �shing management which analyses the
causes of over exploitation and the behaviour that leads to this. Much of that literature
was based on understanding the strategies that individual boats use to decide when and
where to �sh. The simplest idea is that the individuals base their decisions on Catch per
Unit E�ort (CPUE), see [167]. This suggests that boats �sh until their catch falls below
a certain threshold and then move on. This is a purely individualistic model and argues
that past individual experience is an adequate basis for decision making. Two questions
arise here. Firstly, can one deduce the behaviour from the observed behaviour of individual
vessels and secondly does the behaviour of other vessels in�uence the choices of a particular
boat? The answer to the �rst question is that with the development of satellite technology
individual vessels can be identi�ed and followed, and this provides a basis for analysing the
individual and collective behaviour of �shing �eets. It was, of course, known that vessels
do not act in total isolation and a model using tracking data for New Zealand �sheries was,
for example, studied in Ref. [168]. This came to the conclusion that âthere is evidence that
vessels make decisions about where to �sh based on both their own recent catch history and
on observation about the location and aggregation of other vessels. There is no evidence
that there is enough information transfer for vessels to make decisions on the basis of catch
rates of the other vessels in the �eetâ. While the in�uence of other players is taken into
account, it is not the major driving in�uence for collective behaviour.

However, a more radical approach, abandoning a simple optimization approach had been
developed earlier by Allen and McGlade [169]. They developed models in part based on the
Lotka-Volterra equations which already incorporated recent advances in the understanding of
the evolution of complex systems. They studied herd behaviour and simulations a dynamic
model of a Nova Scotia �shery. Their analysis revealed that human responses ampli�ed
rapid random �uctuations in recruitment and excite strong Lotka-Volterra type oscillations
in a system that would normally settle to a stable stationary state. Their dynamic, multi-
species, multi-�eet spatial model was calibrated to the Nova Scotian ground�sh �sheries.
They examined the role of �exploration� and �exploitation�. They identi�ed two types of
hunters, �stochasts� or high-risk takers, and �cartesian� followers, or low risk takers. The
result of the interaction between the two reveals, as they say, �the `out of phase' relationship
between abundance and the ease with which �shermen locate a highly sought species and
its converse�. They emphasize, contrary to more conventional analysis, �the importance of
information exchange in de�ning the attractivity of a particular �shing zone to di�erent �eets
and the ability of the model to take into account coded information, misinformation, spying
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and lying; and the fact that models based on global principles, such as `optimal e�ciency'
or `maximum pro�t', are clearly of dubious relevance to the real world. �

Our approach is in this spirit and is based on a model in which agents are �recruited� to a
source of pro�t by those already bene�ting from that source. The actors follow simple rules,
but their interaction can produce interesting dynamics. A related approach by computer
scientists [170] suggested that the result might be that of a uniform distribution across the
space in which the resource is found. We show that vessels can typically operate near to their
home port with excursions to another area, but that changing the parameters of the model
can lead to a persistent mixing of the two �eets recalling a result of Allen and McGlade in
which the survival of the �shery was dependent on the existence of some vessels which chose
the place to �sh at random.

D.2 Empirical �shing data

As mentioned above, while applicable to a wider range of situations, our work was origi-
nally inspired by imitation and herding e�ects in �shing areas. Here we present the data we
use together with some stylized facts, both quantitative and qualitative.

Description of the data

We use the Fishing Vessels Dataset from Global Fishing Watch [171] from Octobre 2012
to December 2016. Since our aim is to analyse the behaviour of �shermen seeking to exploit
clearly distinguishable �shing areas, we geographically focus on the Adriatic Sea and specif-
ically on the area encompassing the Italian cities of Ancona and Pescara in which two of the
largest �shing harbours and �sh markets are set (see for example [172] for a detailed study
and description of the Ancona �shing market). The two cities are separated by a reasonable
distance of about 150 km, meaning that boats based in one city can easily �nd themselves
�shing close to the other. Further, the existence of large and comparable �sh markets in both
cities hints the possibility of matching �shing activity to market data, provided of course
one has access to the latter. Note that while another city, San Benedetto del Tronto, lies
between Ancona and Pescara, it is responsible for a rather negligible amount of the activity
in the area.

We have also restricted our analysis to the behaviour of trawlers. These boats have a low
cruise speed and �sh in shallow waters close to the coast. A reasonable hypothesis, which
we've con�rmed with the local market authorities, is that trawlers �shing in the area are
based in either one of the two cities and go out for a short amount of time before coming
back to sell their catch on the local market. In particular we were told that, due to the
policy of the market to sell fresh local �sh, vessels (almost) always get back to the port after
24 hours. We were also told that while there is no ban for a boat registered in a given port
to land his �sh elsewhere, this seldom happens.1 In other words, one expects trawlers based
in, say, Pescara to leave port, �sh for at most a day or two and then come back to sell their
catch.

The reduced data set consists of daily tracking of these trawlers, identi�ed by their 9-digit
Maritime Mobile Service Identity (MMSI) number. Each vessel is tracked on a latitude-
longitude grid with resolution 0.1.1 squared degrees. At Ancona and Pescara's latitude
(≈ 43◦ North), this implies a spatial resolution of ≈ 11 × 8 km2 (latitude by longitude).
Finally, a preliminary study of the data shows that there is a signi�cative reduction of
�shing activity from Friday to Sunday, consistent with markets being open Monday through

1According to the director of the Ancona �sh market, there are no relationships with nearby wholesale
markets (Pescara and San Benedetto del Tronto)and two or three times a year, it happens that a boat based
in the nearby port in the north (Fano or Cattolica) comes to sell.
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Figure D.1: Various Figures depicting the data. Blue curves and markers correspond to
data related to the area of Ancona, while red curves and markers correspond to Pescara. (a)
Plot of the fraction ni(t) as de�ned in Eq. (D.2) (b) Plot of the total number of active boats
through time NA + NP . (c) Satellite view of the Adriatic Sea along with the areas DA and
DP de�ned in Eq. (D.1). (d) and (e) Autocorrelation plots C1−ni(τ) de�ned in Eq. (D.3) for
both zones. For Ancona we �nd an exponential �t with a decay rate of ≈ 11 days, while for
Pescara we �nd a decay of ≈ 33 days.

Thursday only. We have thus dropped the former from our data set, keeping only trading
days to ensure signi�cant �shing activity.

De�ning �shing areas

To assign each trawler with its base port (Ancona or Pescara), we use the following
heuristic procedure, which we then cross-validate with MMSI data provided by the Ancona
market authorities. We introduce the notations:

• hi(x, t) the time spent by trawler i �shing at grid-point x on day t,

• wi(x) :=
∑

t h
i(x, t)/

∑
y,s h

i(y, s), for the average fraction of time spent by trawler i
�shing at point x,

• dA(x) the distance between point x and Ancona, and d the distance between the two
cities,

• diA :=
∑

xw
i(x)dA(x), the average distance separating trawler i and Ancona when it

is �shing,
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Figure D.2: Cumulative distribution function (cdf) of the fractions nA and nP as de�ned in
Eq. (D.2). The solid red curves correspond to a �t with a generalized Beta distribution, which
has a cdf given by P>(n) = C

∫ n
0 dx xγ0−1(1− x)γ1−1 with C a normalization constant. The

parameters for Ancona are γ0 = 18.48 and γ1 = 0.82, while those for Pescara read γ0 = 17.73
and γ1 = 1.27.

• Di
A :=

∑
xw

i(x)[dA(x)]2, the average square distance between trawler i and Ancona.

and of course symmetrically for Pescara with index P. We then de�ne the neighborhood of
Ancona and Pescara as the pseudo-ellipsoid with focal points the two ports, i.e. the set
{x | dA(x)2 + dP(x)2 ≤ 2d2}, of course excluding land, see Fig. D.1(c). We restrict our
analysis to trawlers evolving within this area, namely {i | Di

A +Di
P ≤ 2d2}. We then assign

the trawlers to one of the two ports according to their average distance to each of them.
De�ning two distinct areas as:

DA =
{
x | dA(x) ≤ dP(x) and dA(x)2 + dP(x)2 ≤ 2d2

}
(D.1a)

DP =
{
x | dP(x) < dA(x) and dA(x)2 + dP(x)2 ≤ 2d2

}
, (D.1b)

a given trawler is assigned to, say, Pescara if its �shing time-weighted average position lies
in DP. In other words i ∈ Pescara (resp. Ancona) if diP ≤ diA (resp. diA < diP). To validate
our method of home port identi�cation, we were able to confront our classi�cation to the list
of the Ancona-based trawlers, kindly provided by the Ancona �sh market authorities. Up to
a few minor errors, notably related to having identi�ed as Ancona-based a few vessels based
in the much smaller San Benedetto del Tronto, the cross-check was successful. Over the
whole period we counted NA = 108 Ancona-based and NP = 118 Pescara-based trawlers.

Stylized facts

Having tagged each boat to either Ancona or Pescara, we now turn to studying the
dynamics of �shing within the two areas DA and DP. We de�ne the fraction nA(t) of time
spent by Ancona-based vessels �shing in DA namely:

nA(t) =

∑
x∈DA,i∈Ancona h

i(x, t)∑
y,i∈Ancona h

i(y, t)
, (D.2)

and vice-versa nP(t) for Pescara. Figure D.1(b) displays the evolution of nA(t) and nB(t)
throughout the period of interest. While these fractions are most often very close to 1,
indicating as one would intuitively expect that trawlers spend most of their time �shing near
their home port, one can see that they regularly undergo persistent excursions, revealing
that a sizeable fraction of the vessels in each area decide collectively to go elsewhere.

To evaluate the typical length of such excursions, Figs. D.1(d) and (e) display the auto-
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correlation functions:
C1−n(τ) := Cor (1− n(t+ τ), 1− n(t)) , (D.3)

for both nA(t) and nP(t). These are well �tted by the sum of a delta-peak at 0, which can
be attributed to measurement noise and other exogenous factors such as the weather,and
an exponentially decaying function with typical timescale ranging from ≈ 11 to ≈ 30 days.
Interestingly enough, Fig. D.2 reveals that the empirical distributions of nA and nP are
remarkably well �tted by a Beta distribution.This is exactly what one obtains in Kirman's
ant recruitment model [140, 173], in which the Beta distribution emerges as the stationary
distribution describing a colony of ants preying on two distinct food sources. Such a distribu-
tion also emerges as the stationary distribution describing genetic populations between two
competing alleles[141, 152]. The key ingredient in these models is the competition between
two di�erent entities, be they food sources or genetic alleles. In Kirman's ant model however,
the two food sources are strictly equivalent and the resulting Beta distribution describing the
fraction of ants at each source necessarily symmetric, at odds with the results obtained in
the present setting. This motivates the asymmetric zones model introduced below. Another
signi�cant di�erence with Kirman's original model is that the "food sources" here are not
inexhaustible, as �shes do not have the ability to reproduce at an in�nite rate.

These empirical results and observations motivate us to introduce a model extending
Kirman's original ant recruitment model to our context. In essence, one can think of the two
cities as two distinct ant colonies that can prey on any of the two zones. For each colony,
the further �shing area is necessarily less attractive, allowing for the asymmetric character
of the distribution. In addition, at odds with Kirman's model, we are not in a setting with
unlimited resources, and our model should take into account the fact that over-�shing may
deplete the sea.

D.3 A Simple Model

Kirman's original ant-recruitment model [140] was successful at explaining a rather puz-
zling fact well known to entomologists [142, 143]. Ants, faced with two identical and inex-
haustible food sources tend to concentrate on one of them and occasionally switch to the
other. Such intermittent herding behaviour is observed in a variety of settings including
choosing between equivalent restaurants [144], or �nancial markets [145, 146, 147] consis-
tent with large endogenous �uctuations. In Kirman's model, at each time step a given ant
may either (i) encounter another ant from the other inexhaustible food source and decide to
switch to her peer's source (be recruited), or (ii) spontaneously decide to switch food sources
without interacting. The driving mechanism of the dynamics results from the trade-o� be-
tween the intensity of the noise-term ε (spontaneous switching), and that of the interaction
term µ, see also Appendix C.

Here we present an extension of Kirman's original model to account for non-inexhaustible
and asymmetric sources, notably aimed at accounting for some of the stylized facts presented
in the previous section for �shing areas. Seeking to model �shermen exploiting a set of �sh-
ing areas, we imagine that boats follow the same basic dynamics as the ants: if they initially
�sh within a certain zone, they may decide to move elsewhere either because they see their
peers �shing there, deciding to imitate them because they assume that their yield is good or
spontaneously decide to move elsewhere randomly for the sake of exploration.

Our model has two major di�erences that depart from the original ant-recruitment model.
First, we consider that a �shing area has �nite resources: �sh reproduce until reaching
a certain �nite capacity but they are also depleted by �shermen in the area (as in e.g.
MacArthur's models [174, 175]). As a consequence, we decide for the random switching rate
at which �shermen decide to depart from a given area depends on the �sh population of
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that area. Note that this is very close in spirit to the modelling done in Ref. [169], albeit
our model takes into account imitative behaviour in �shermen. The second di�erence with
the ant model is that we imagine two �colonies� instead of just one, corresponding to vessels
based at the two di�erent �shing ports of Ancona and Pescara. Guided by the idea that
�shermen prefer to go to areas close to their own home port, we introduce an asymmetry
between the �shing areas for each food source.

The two ports, labelled A and P , have two distinct populations of �shermen, which may
decide to exploit two �shing areas, S1 and S2, with the �shermen from A preferring to �sh
at S1 and vice versa. One may of course reasonably argue that this view is far too coarse-
grained, and that there may be, for example, many di�erent �shing areas that are available
close to each port. It is however possible to show under mild hypotheses that the two zones
S1 and S2 in the model can be seen as the aggregation of a large number of smaller areas,
with the same dynamics, see Appendix D.B for details. For clarity, we shall de�ne the model
in discrete time, before moving into continuous time for analytical convenience.

Without loss of generality, we focus only on the dynamics of �shing vessels at one of the
two ports, say Ancona, as we assume that �shermen only interact with boats coming from
the same city2. We de�ne now NA and NP as the number of boats based at Ancona and
Pescara respectively, and let each of them decide to go to any of the two areas S1 and S2. We
denote mi(t), with i = 1, 2, their respective �sh populations at time t, and further assume
that:

• Boats only �sh in one area each day (consistent with discussions with port authorities)
and come back to that area if they don't decide to switch to another one for the next
day.

• A vessel's daily catch ci(t) is proportional to the amount of �sh available in the area:
ci(t) = β

NA
mi(t) with β/NA ∈ [0; 1].3

• Fish reproduce at a multiplicative rate νi, which we will take to be equal to ν for both
areas.

• As a �rst approximation, �sh do not travel from one area to the other.4

• The �sh population within any area cannot exceed a carrying capacity Ki, which is
the maximal population that can be present within an area in the absence of �shing.
This carrying capacity is the same for all areas, as we have taken all of them to be
equivalent. Without loss of generality, we take K1 = K2 = 1 in all that follows.

Note that these de�nitions, which also amount to thinking of the �sh population as consisting
of the same species in both areas, are partially justi�ed by our considering only trawlers,
that therefore �sh only very speci�c, shallow water dwelling species.f

We further de�ne NA,i(t) the number of vessels from port A �shing at zone i at time t
(and NP,i(t) respectively). The number of �shing vessels in each port is �xed, implying for

2Anecdotal evidence suggests indeed that the main interaction between people working in di�erent boats
happens at port in the �shing market or during informal conversation.

3Without changing our main conclusions, one could also allow for noise by drawing ci(t) from a given
distribution centred about βmi(t)/N . This would allow introducing randomness into the �shing e�ciency of
each trawler, an interesting extension that we leave to further work.

4This constraint can be easily relaxed by e.g. adding a migration term where �shes from 2 move to 1 at a
certain rate and vice-versa. In practice, this would only tend to prevent the di�erence between the two �sh
populations from �uctuating too wildly.
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all t: NA,1(t) + NA,2(t) = NA. Our assumptions translate into following evolution for the
�sh population:

mi(t+ 1)−mi(t) = mi(t) [νg(mi(t))− β (NA,i(t) +NP,i(t))] , (D.4)

where the function g must satisfy g(0) = 1 and g(1) = 0. The simplest assumption one can
make is that of logistic growth, leading to g(mi(t)) = 1 − mi(t). It follows that mi(t) ∈
[0; 1], ∀t, where m = 1 corresponds to a �shing area at full capacity and m = 0 corresponds
to a depleted area. Under these assumptions, the evolution of the �sh population is of the
Lotka-Volterra type, as advocated in [169]5.

Furthermore, we assume that a �shing vessel based at A �shing at i can randomly decide
to go elsewhere with probability εA,if(mi(t)), where the function f satis�es f(1) = 1 and
f(0) = 1 + κ. Here, εA,i controls the base intensity of the noise, that can take a maximal
value εA,i(1 + κ) when the zone is depleted. Fishermen have then a higher incentive to go
elsewhere as their �shing yield decreases, and we highlight the preference of �shermen from
A for zone 1 by setting ε := εA,1 = εA,2/Cd with Cd > 1 a parameter controlling the degree
of asymmetry between zones S1 and S2 for a �sher from A. This allows us to have a larger
spontaneous switching rate S2 → S1 for �shermen from A.

Besides this random switching rate, we add in the crucial element in our model, which
is that agents imitate each other. Each day, a �sher randomly picks one of his peers at
random and decides to imitate him/her with probability µ/N , so that µ is the fraction of
boats deciding to take an imitation strategy at each step. In this case, the probability that
a boat from A initially at zone Si decides to move to zone Sj is given by:

PA(Si → Sj) = εA,if(mi(t)) +
µ

NA

NA,j(t)

NA − 1
. (D.5)

Writing then nA,i = NA,i/NA and taking the limit NA, NP → ∞ with NP /NA = CN
�xed, it is possible to write the following Fokker-Planck equation for the probability density
ρ(nA,nP ,m), where nA = (nA,1, nA,2) and m = (m1,m2),

∂tρ =− ε∂nA,1 [Cdf(m2)− nA,1 [Cdf(m2) + f(m1)]] ρ+ µ∂2
nA,1,nA,1

[nA,1(1− nA,1)] ρ

+ [(nA,1,m1)↔ (nP,2,m2)]

− ∂m1 [ν(1−m1)− β (nA,1 + CN (1− nP,2))]m1ρ

+ [(m1, nA,1, nP,2)↔ (m2, 1− nA,1, 1− nP,2)] ,

(D.6)

where the bracket [x↔ y] is shorthand for the same expression where one replaces x by y.

These equations fully close the model, which in our view represent the simplest setting
for a system with limited resources exploited by entities with a myopic exploration/imitation
strategy. As they stand, however, they cannot be solved analytically. We shall now resort
to a mean-�eld approximation to �nd a solution.

5As an interesting anecdote, we learned in [176] that �Vito Volterra was born in the Jewish ghetto of
Ancona in 1860, shortly before the uni�cation of Italy, when the city still belonged to the Papal States�, and
that �in 1925, at age 65, Volterra became interested in a study by the zoologist Umberto DâAncona, who
would later become his son-in-law, on the proportion of cartilaginous �sh (such as sharks and rays) landed
in the �shery during the years 1905â1923 in three harbours of the Adriatic Sea: Trieste, Fiume and Venice.
DâAncona had noticed that the proportion of these �sh had increased during the First World War, when
the �shing e�ort had been reduced�. This led him to take interest in models that Alfred Lotka had �rst used
to model very general population dynamics, and that we now apply, without knowing any of this at �rst, to
the �sh population dynamics at the ports of Ancona and Pescara.
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D.4. Mean-�eld approximation

D

D.4 Mean-�eld approximation

The mean-�eld approximation in our setting amounts to replacing the behaviour of the
�sh populations mi with their long-term averages. The evolution of the �sh population of,
e.g., zone 1 follows:

dm1

dt
= m1(t) (ν(1−m1(t))− β (nA,1 + CN (1− nP,2))) . (D.7)

Taking the average of this equation and setting dm1
dt = 0 yields:

m1 =

[
1− β

ν
(nA,1 + CN (1− nP,2))

]
+

, (D.8)

where [x]+ = x1x>0 denotes the positive part of x. In particular, one can see that there
exists an extinction line for the �sh population for:

ν = β [nA,1 + CN (1− nP,2)] , (D.9)

corresponding to the case where the reproductive rate of �sh corresponds exactly to the rate
at which they are �shed.

We then insert Eq. (D.8) into the vessels' dynamics by replacing the argument of f(mi)
by the average, as f(mi) := fi. Choosing, for the sake of de�niteness, a linear function for
f , i.e. f(x) = 1 + κ(1− x), the average nA,1 can now be easily computed from Eq. (D.6) by
setting the drift term to 0, as:

nA,1 =
Cdf2

Cdf2 + f1
=

Cd (1 + κ(1−m2))

2 + κ [1−m1 + Cd (1−m2)]
. (D.10)

Stationary solutions

Consistent with our mean-�eld approximation, we set m1 = m1 (resp. m2 = m2) in
Eq. (D.6) to obtain a single Fokker-Planck equation where we have decoupled the two vari-
ables nA and nP , as:

∂tρ = ∂nA,1J1 + ∂nP,2J2, (D.11)

where:
J1 = −ε [Cdf2 − nA,1 [Cdf2 + f1]] ρ+ µ∂nA,1 [nA,1(1− nA,1)] ρ, (D.12)

and where the transposition to �nd the de�nition of J2 is transparent. The stationary state
is found by setting J1 = 0 and J2 = 0 and solving for ρ. The decoupling of the two variables
allows one to write:

ρ(nA,1, nP,2) = ρ1 (nA,1) ρ2 (nP,2) , (D.13)

with:

ρ1(nA,1) = C1n
γA,0−1
A,1 (1− nA,1)γA,1−1 , ρ2 (nP,2) = C2n

γP,0−1
P,2 (1− nP,2)γP,1−1 , (D.14)

where C1 and C2 are normalisation constants and the γ parameters for the ρ1 distribution
(the parameters for ρ2 can be easily deduced) read:

γA,0 =
ε

µ
Cdf2, γA,1 =

ε

µ
f1. (D.15)

Note also that full dynamical solutions ρ(nA,1, t), ρ(nP,2, t) can be obtained in terms of
hypergeometric functions, in the same spirit of [173], see Appendix D.A.

Our model thus successfully replicates the observed distributions shown in Figure D.2,
and captures the qualitative behaviour from Figure D.1. An example of simulation from the
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Figure D.3: A simulation of our model. We have chosen the di�erent parameters as to obtain
the same stationary Beta distribution as observed in Fig. D.2. Note also the similarity of
the Figure on the left with plot (a) in Figure D.1. We have used the parameters ε = 0.69,
ν = 10, β = 5, CN = 1, Cd = 26.5 for Ancona and 15.7 for Pescara and κ = 0.1. The
upper panel shows the two trajectories nA,1(t) and nP,2(t) and the middle panel shows the
�sh populations m1(t) and m2(t), while the bottom left panel shows the cumulative density
function for nA,1 along with a Beta distribution �t, and the bottom right panel shows the
empirical correlation function as de�ned by Eq. (D.17) along with an exponential �t. Note
that the �sh populations oscillate around the theoretical mean-�eld value m = 0.5, and that
large oscillations coincide with large collective movements of the �shermen in both areas.

model is provided in Figure D.3. For this Figure, we have set µ = 1 as it only amounts to a
certain choice of the time-scale, while picking a small value κ = 0.1 to keep f2, f1 ≈ 1 and
we have then picked ε and Cd as to obtain the values for γ0 and γ1 from Figure D.2.

Dynamics and correlation functions

Within the mean-�eld model above, it is straightforward to show (see the appendices in
Ref [173]) that the variable nA,1 follows the following stochastic evolution:

dnA,1
dt

= µ (γA,0 − (γA,0 + γA,1)nA,1) +
√

2µnA,1 (1− nA,1)η(t), (D.16)

with η a gaussian white noise of unit variance. Using standard tools from stochastic calculus
it is then possible to compute the auto-correlation of 1 − nA,1, de�ned as in Eq. (D.3), to
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D

�nd
C1−nA,1(τ) = exp (−µ (γA,0 + γA,1) τ) , (D.17)

which is exactly what one sees from the data in Fig. D.1 (d) and (e), provided one interprets
the delta-peak at τ = 0 as the result of exogenous noise, e.g. weather conditions.

Indeed, if one considers that the measured signal is in fact a noisy signal,

ñ(t) = (1− σ)n(t) + σξ(t), (D.18)

where n(t) is the �true� process and ξ(t) is a gaussian white noise of unit one, then one can
show directly that the measured correlation function reads

C1−ñ(τ) = δ (τ) +
(1− σ)2

σ2
C1−n(τ). (D.19)

We have checked for this in our simulations as well, with the results shown in the bottom
right panel in Figure D.3. Again, the agreement is excellent both with the theory and the
data, meaning that our model can correctly replicate the main dynamical features of real
data from �shing dynamics.

Furthermore, one can deduce the value of µ from the values of γ0, γ1 and the decay
factor in the exponential, that should match µ (γ0 + γ1). Using this formula, we �nd µ =
4.3 · 10−3 day−1 for Ancona and µ = 1.7 · 10−3 day−1 for Pescara.

More complicated correlation functions can also be computed, along the lines of [173],
although they are more prone to statistical noise. For example, using stochastic calculus
techniques described in detail in Appendices B and E of Ref. [173], one can show that the
polynomial de�ned by

σA(nA,1) = n2
A,1 −

2(γA,0 + 1)

γA,0 + γA,1 + 2
nA,1 (D.20)

has an autocorrelation function that is exponential, meaning that CσA(τ) de�ned by

CσA(τ) = Cor (σA (nA,1(t+ τ)) , σA (nA,1(t+ τ))) (D.21)

veri�es
CσA(τ) = exp (−2µ(1 + γA,0 + γA,0) τ) , (D.22)

and the same de�nition can of course be transposed to the variables indexed by P .

We have tested this prediction, with the results shown in Fig. D.4. This correlator is
necessarily more a�ected by noise, because it is of order two in the n variables and because
it depends on a reliable estimation of the γ and µ variables. Despite these limitations, the
theoretical prediction is satisfactory when compared with the data, especially in the case of
Pescara.

D.5 The Symmetric Limit

In general, the �xed-point equations de�ned at the beginning of Section D.4 linking the
averages mi with the averages n1 cannot be solved directly. Nonetheless, if one takes CN = 1
to have completely symmetric �shing areas, then the equations simplify considerably as this
immediately implies f1 = f2, with then Eq. (D.10) becoming

nA,1 = nP,2 =
Cd

Cd + 1
. (D.23)
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Figure D.4: Empirical correlation function Cσ(τ) as de�ned in Eqs. (D.20) and (D.22).
The solid black line is the theoretical prediction given the estimations of γ0 and γ1 from
the empirical probability distribution in Figure D.2 and from the subsequent estimation of µ
using the exponential decay factor from Figure D.1. The reliable computation of σ depends
of course on the proper estimation of these parameters, and we expect them to be noisy.
Nonetheless, the agreement with theory, especially in the case of Pescara, is good.
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Figure D.5: Left: simulation results with the same parameters as previously. The simulation
was run for T = 105 steps and with ν = 10. Note that the convergence of the simulation to
the mean-�eld results from Eq. (D.24) is better as T or ν grow larger. Right: phase diagram
of the model.

One can then write Eq. (D.8) more explicitly, to obtain the following extinction line,

m1 = m2 =

{
1− β

ν if β < ν
0 if β ≥ ν , (D.24)

which has the intuitive interpretation that the population within a given area goes extinct
if the �shing rate is larger than the reproduction rate of the �sh there. We have shown in
Figure D.5 that the agreement of simulations with our mean-�eld analysis is excellent. One
should note however that this convergence may be slow as ν → 0, as this parameter controls
the global time-scale of the �shes.

Note also that in this case, one can directly compute f1 = f2 = 1 + κβ
ν . In this case, the

parameters in Eq. (D.15) simplify to yield

γ0 =
ε̃

µ
Cd, γ1 =

ε̃

µ
. (D.25)

where we've dropped the A index as the parameters for both areas A and P are identical,

and where we've set ε̃ = ε
(

1 + κβ
ν

)
.
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Figure D.6: Plot of our simulations in the case γ1 > 1. The parameters are the same as
that of Figure D.3, but with κ = 10 instead. The �t gives γ0 = 220 and γ1 = 20, while the
predicted theoretical values from Eq. D.25 are γ0 = 220 and γ1 = 11. Note that, contrary to
Figure D.2, we show the density directly instead of the cumulative density function.

In this limit it is then clear that our mean-�eld model amounts to a modi�cation of
the original ant model [140], where the noise ε is augmented because of the sensitivity of
the �shermen to the local �sh population by the factor given above, and where we have
introduced an asymmetry between the two areas/food-sources through the parameter Cd.

One would then typically expect that γ0 > 1 always because of the strong preference for
the �shing area closest to one's port. However, if ε or κ are strong, one can have a crossover
at γ1 = 1. The simulations on Figure D.3 correspond both to γ < 1, the empirical data
shown in Figures D.1 and D.2 has γ1 < 1 for Ancona, and γ1 ' 1 for Pescara. When γ1 > 1
the behaviour is qualitatively di�erent: instead of having the majority of the boats nearly
always �sh at the closest area, with occasional �jumps� to go to the neighbouring zone, there
is always a degree of �mixing�, as at any given time there is always a fraction ≈ 1− nA,0 of
�shermen from Ancona �shing near Pescara. We show a simulation of this case, with γ1 well
above 1, in Figure D.6.

D.6 Conclusion

In this paper, we have empirically analysed �shing vessels in the two areas nearby Ancona
and Pescara. By detecting to which area a vessel belongs, we have computed the fraction of
�shermen �shing in their own zone and looked at their statistical properties. It reads that
the empirical distribution functions are well approximated by asymmetric Beta distributions
and their auto-correlations look exponentials. Inspired by such evidence, we have extended
the famous Kirman's ants recruitment model to �nite and asymmetric resources. Thanks to a
numerical and theoretical analysis, we have derived the auto-correlations and the stationary
distribution of the fraction of �shermen that appears to be respectively exponential and Beta
distributed. Then we have drawn the phase diagram that separates a high herding phase
with a low one but also �sh extinction.

We have tested our dynamics by looking at higher order correlations that can be empir-
ically computed. This signal appears to be very noisy and of low intensity but compatible
with an exponential decay. Its time scale is of the same order of magnitude than the one pre-
dicted by our model. On the other hand, there could exist other models that can reproduce
the stylized facts we have exposed. Thus, we should design a test that could discriminate
whether �shermen follow the dynamics of our model or not. Nevertheless, we have been
very surprised to see how well such a simple model reproduces the stylized facts we have
highlighted.
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One major drawback of our model relies on the fact that it does not take into account
essential parameters that rule vessels activity such as weather. We believe that a full model
for �shermen's behavior should consider this point. Indeed, we should understand its impact
on herding and exploration and incorporate it in the model. Having access to weather data
could also have helped us in the cleaning procedure and hopefully given us cleaner results,
especially for higher correlations.

Appendix D.A Full dynamical solution

The goal of this section is to sketch a full dynamical solution for the dynamics of
Eq.(D.16). We drop indices A or P for clarity, obtaining:

dn

dt
= µ (γ0 − (γ0 + γ1)n) +

√
2µn(1− n)η(t), (D.26)

a stochastic di�erential equation that corresponds to the following Fokker-Planck equation
[151],

∂tρ = µ∂nn (n(1− n)ρ)− µ∂n ((γ0 − (γ0 + γ1)n) ρ) , (D.27)

with re�ecting boundary conditions in n = 0 and n = 1.

As in Ref. [173], we can �diagonalize� this equation. Indeed, writing it as

∂tρ = Aρ, (D.28)

with A a Fokker-Planck operator that gives the right-hand side of Eq. (D.27) when applied
to ρ. It is in principle possible to apply the same techniques as in Ref. [173] to obtain a
Schrödinger's equation for an alternative function Ψ, that one could then use to compute ρ
explicitly.

On the other hand, we can directly solve the eigenvalue problem

AρE = EρE , (D.29)

so that the general solution reads

ρ(n, t) =
∑
E
λEρE(n)e−Et. (D.30)

In this setting, E and ρE are respectively the eigenvalues and eigenvectors of the operator A.
These eigenvectors should also be normalized so that their integral is equal to 1.

Therefore, the problem translates into �nding functions ρE and numbers (or �energies�)
E that satisfy

µEρE = µ∂nn (n(1− n)ρE)− µ∂n ((γ0 − (γ0 + γ1)n) ρE) (D.31a)

JE(0) = JE(1) = 0 (D.31b)∫ 1

0
dn ρE(n) = 1, (D.31c)

with JE(n) = µ∂n (n(1− n)ρE)− µ (γ0 − (γ0 + γ1)n) ρE .

In order to solve Eq.(D.31a), we rewrite it as.

n(1− n)ρ′′E + (2− γ0 − (4− γ0 − γ1)n) ρ′E − (2 + E − γ0 − γ1) ρE = 0 (D.32)
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D

The solutions of this di�erential equation are given in terms of the hypergeometric function,

2F1(a, b; c;n) =
∑
k

(a)k(b)k
(c)k

nk

k!
, (a)k =

k−1∏
i=0

(a+ i) (D.33)

Here the two linear independent solutions well de�ned around zero, see e.g.[177], are

2F1(a, b; 2− γ0;n) and nγ0−1
2 F1(a+ γ0 − 1, b+ γ0 − 1; γ0;n), where a, b are the solutions of:

a+ b = 3− γ0 − γ1 (D.34a)

ab = 2 + E − γ0 − γ1. (D.34b)

Only the second solution cited above veri�es the boundary condition at n = 0. Applying
then an Euler transformation6 on this solution leads to

ρE(n) = CEnγ0−1(1− n)γ1−1
2F1(1− a, 1− b; γ0;n), (D.35)

which is well de�ned at n = 1 and also veri�es the boundary condition. Note that CE is a
constant. We now need to check the integrability condition. We can compute explicitly∫ 1

0
dn ρE(n) = CE

∑
k

(1− a)k(1− b)kΓ(γ0 + k)Γ(γ1)

(γ0)kΓ(γ0 + γ1 + k)k!
, (D.36)

with Γ the Gamma function. If 1 − a is a non-negative integer7 all the terms in the series
are non-zero. Using then (x)k ∝ Γ(x + k) together with the Stirling formula Γ(x + 1) ≈

x�1√
2πxx+1/2e−x, we �nd that the general term of the series converges to a constant when

k → +∞ and therefore that
∫ 1

0 dn ρE(n) = +∞.

This entails that there exists a positive integer k such that 1− a = −k, and so also that
b = 2− k − γ0 − γ1 and E = −k(γ0 + γ1 + k − 1).

In conclusion, the eigenvectors ρk and eigenvalues Ek are discrete and given by

Ek = −k(γ0 + γ1 + k − 1) (D.37)

ρk(n) = Ckn
γ0−1(1− n)γ1−1

2F1(−k, γ0 + γ1 + k − 1; γ0;n), (D.38)

which allows then for a solution of the form given in Eq. (D.30). The only remaining part is
to �nd the coe�cients λE that depend on the initial condition. This can be done by trans-
forming the Fokker-Planck equation into a Schrödinger's equation as in Ref. [173], noticing
that the solutions to said Schrödinger equation can be found in terms of the eigenvalues and
eigenvectors ρk, and one can therefore �nd the coe�cients λE by projecting the initial condi-
tion on the orthogonal set of eigenvectors of the Schrödinger operators, see the Appendices
in Ref. [173] for a detailed technical explanation.

Appendix D.B A symmetric multizones extension

We now present a very natural extension of our model to the general case ofM symmetric
zones with �nite resources. Without loss of generality we set Cd = 1 to have lighter notations,
but this doesn't change our main message. We also introduce the vector notations n(t) =
(n1(t), . . . , nM (t)) and m(t) = (m1(t) . . . ,mM (t)), where the index accounts for the zone,
and call pj→i(n(t),m(t)) the in�nitesimal probability that an agent initially present in zone

6The Euler transformation states that 2F1(a, b; c;n) = (1− n)c−a−b2 F1(c− a, c− b; c;n).
7As the hypergeometric function is symmetric with respect to its two �rst arguments, we restrict our

analysis to the �rst one only.
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j at time t moves to zone i at t+ dt. It follows that the evolution of n and m is given by

dmi(t) = mi(t)(ν(1−mi(t))− βni(t))dt (D.39)

pj→i(n(t),m(t)) =
nj(t)N

M − 1
[εf (mj(t))] + µN2ni(t)nj(t). (D.40)

Introducing for simplicity h(n,m) = m(ν(1−m)−βn), the joint density ρ of the variables(n(t),m(t))
evolves according to the following Fokker-Planck equation,

∂tρ(n,m) =−
∑
i

∂mi (h(ni,mi)ρ) +
∑
i 6=j

(
∂ni − ∂nj

)(εf (mj)

M − 1
njρ

)
+ µ

∑
i 6=j

(
∂nini − ∂njni

)
(ninjρ) .

(D.41)

Owing to the symmetry of the problem, one may generalize the argument used in Section D.4
to obtain the stationary averages

ni =
1

M
, mi =

(
1− β

Mν

)
+

(D.42)

with (x)+ the positive part of x. This again shows the existence of an extinction regime
whenever β = Mν. In what follows we assume that β/ν < 1/M , to study the behaviour of
the system outside of extinction.

When κ = 0 the density of n is a Dirichlet distribution with all parameters equal to (ε/δ),
namely:

ρn(n1, . . . , nM ) =

(
M∏
i=1

n
ε/µ
i

)
1{∑M

i=1 ni=1}. (D.43)

As argued previously, whenever the noise-level is coupled to the �sh population with κ > 0,
we postulate that the solution can be approximated by a Dirichlet distribution with all
parameters set to (ε̃/µ) with ε̃ = f(1− β

Mν )ε.

The Dirichlet distribution has one key property:
∑

i≥k ni follows a Beta distribution
with parameters (kε̃/µ, (M − k)ε̃/µ), corresponding to the stationary state of our two-zone
model. We have also checked that the mean-�eld approximation of Eq.D.39 follows the same
type of property: the variable

∑
i≥k ni(t) is ruled by the mean-�eld approximation of D.6.

This result gives solid micro-foundations to our approach and justi�es our looking at two
aggregated zones for empirical analysis. This may explain the agreement between empirical
results and our model.

150



References

E

References

[1] https://en.wikipedia.org/wiki/Panic_of_1907.

[2] Sasha Stoikov. The micro-price: a high-frequency estimator of future prices. Quanti-
tative Finance, 18(12):1959�1966, 2018.

[3] Martin D Gould and Julius Bonart. Queue imbalance as a one-tick-ahead price predic-
tor in a limit order book. Market Microstructure and Liquidity, 2(02):1650006, 2016.

[4] Andrei Kirilenko, Albert S Kyle, Mehrdad Samadi, and Tugkan Tuzun. The �ash crash:
High-frequency trading in an electronic market. The Journal of Finance, 72(3):967�
998, 2017.

[5] Jason Zweig. Back to the future: lessons from the forgoten "�ash crash" of 1962. Intell
Invest, 2010.

[6] Jean-Philippe Bouchaud, Julius Bonart, Jonathan Donier, and Martin Gould. Trades,
quotes and prices: �nancial markets under the microscope. Cambridge University
Press, 2018.

[7] Louis Bachelier. Théorie de la spéculation. In Annales scienti�ques de l'École normale
supérieure, volume 17, pages 21�86, 1900.

[8] Burton G Malkiel and Eugene F Fama. E�cient capital markets: A review of theory
and empirical work. The journal of Finance, 25(2):383�417, 1970.

[9] Robert J Shiller. Do stock prices move too much to be justi�ed by subsequent changes
in dividends? Technical report, National Bureau of Economic Research, 1980.

[10] Armand Joulin, Augustin Lefevre, Daniel Grunberg, and Jean-Philippe Bouchaud.
Stock price jumps: news and volume play a minor role. Wilmott Magazine,
September/October:1�7, 2008.

[11] Michael Parkinson. The extreme value method for estimating the variance of the rate
of return. Journal of business, pages 61�65, 1980.

[12] Jim Gatheral, Thibault Jaisson, and Mathieu Rosenbaum. Volatility is rough. Quan-
titative Finance, 18(6):933�949, 2018.

[13] Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes.
Biometrika, 58(1):83�90, 1971.

[14] Emmanuel Bacry, Sylvain Delattre, Marc Ho�mann, and Jean-Francois Muzy. Some
limit theorems for hawkes processes and application to �nancial statistics. Stochastic
Processes and their Applications, 123(7):2475�2499, 2013.

[15] Emmanuel Bacry, Khalil Dayri, and Jean-François Muzy. Non-parametric kernel esti-
mation for symmetric hawkes processes. application to high frequency �nancial data.
The European Physical Journal B, 85(5):157, 2012.

[16] Emmanuel Bacry, Thibault Jaisson, and Jean-François Muzy. Estimation of slowly
decreasing hawkes kernels: application to high-frequency order book dynamics. Quan-
titative Finance, 16(8):1179�1201, 2016.

[17] Emmanuel Bacry and Jean-François Muzy. First-and second-order statistics charac-
terization of hawkes processes and non-parametric estimation. IEEE Transactions on
Information Theory, 62(4):2184�2202, 2016.

151

https://en.wikipedia.org/wiki/Panic_of_1907


[18] Stephen J Hardiman, Nicolas Bercot, and Jean-Philippe Bouchaud. Critical re�exivity
in �nancial markets: a hawkes process analysis. The European Physical Journal B,
86(10):442, 2013.

[19] Stephen J Hardiman and Jean-Philippe Bouchaud. Branching-ratio approximation for
the self-exciting hawkes process. Physical Review E, 90(6):062807, 2014.

[20] Vladimir Filimonov and Didier Sornette. Quantifying re�exivity in �nancial markets:
Toward a prediction of �ash crashes. Physical Review E, 85(5):056108, 2012.

[21] Thibault Jaisson, Mathieu Rosenbaum, et al. Limit theorems for nearly unstable
hawkes processes. The annals of applied probability, 25(2):600�631, 2015.

[22] Thibault Jaisson, Mathieu Rosenbaum, et al. Rough fractional di�usions as scaling
limits of nearly unstable heavy tailed hawkes processes. The Annals of Applied Prob-
ability, 26(5):2860�2882, 2016.

[23] John C Cox, Jonathan E Ingersoll Jr, and Stephen A Ross. A theory of the term
structure of interest rates. In Theory of valuation, pages 129�164. World Scienti�c,
2005.

[24] Jean-Philippe Bouchaud, Andrew Matacz, and Marc Potters. Leverage e�ect in �nan-
cial markets: The retarded volatility model. Physical review letters, 87(22):228701,
2001.

[25] Gilles Zumbach. Time reversal invariance in �nance. Quantitative Finance, 9(5):505�
515, 2009.

[26] Gilles Zumbach. Volatility conditional on price trends. Quantitative Finance,
10(4):431�442, 2010.

[27] Rémy Chicheportiche and Jean-Philippe Bouchaud. The �ne-structure of volatility
feedback i: Multi-scale self-re�exivity. Physica A: Statistical Mechanics and its Appli-
cations, 410:174�195, 2014.

[28] Omar El Euch, Jim Gatheral, Rado² Radoi£i¢, and Mathieu Rosenbaum. The zumbach
e�ect under rough heston. Quantitative Finance, 20(2):235�241, 2020.

[29] Enrique Sentana. Quadratic arch models. The Review of Economic Studies, 62(4):639�
661, 1995.

[30] Pierre Blanc, Jonathan Donier, and J-P Bouchaud. Quadratic hawkes processes for
�nancial prices. Quantitative Finance, 17(2):171�188, 2017.

[31] Aditi Dandapani, Paul Jusselin, and Mathieu Rosenbaum. From quadratic hawkes
processes to super-heston rough volatility models with zumbach e�ect. arXiv preprint
arXiv:1907.06151, 2019.

[32] Bence Tóth, Yves Lemperiere, Cyril Deremble, Joachim De Lataillade, Julien Kock-
elkoren, and J-P Bouchaud. Anomalous price impact and the critical nature of liquidity
in �nancial markets. Physical Review X, 1(2):021006, 2011.

[33] Nicolo Torre. Barra market impact model handbook. BARRA Inc., Berkeley, 1997.

[34] Robert Almgren, Chee Thum, Emmanuel Hauptmann, and Hong Li. Direct estimation
of equity market impact. Risk, 18(7):58�62, 2005.

152



References

E

[35] Engle Robert, Ferstenberg Robert, and Russell Je�rey. Measuring and modeling exe-
cution cost and risk. The Journal of Portfolio Management, 38(2):14�28, 2012.

[36] Iacopo Mastromatteo, Bence Toth, and Jean-Philippe Bouchaud. Agent-based models
for latent liquidity and concave price impact. Physical Review E, 89(4):042805, 2014.

[37] Xavier Brokmann, Emmanuel Serie, Julien Kockelkoren, and J-P Bouchaud. Slow
decay of impact in equity markets.Market Microstructure and Liquidity, 1(02):1550007,
2015.

[38] Emmanuel Bacry, Adrian Iuga, Matthieu Lasnier, and Charles-Albert Lehalle. Market
impacts and the life cycle of investors orders. Market Microstructure and Liquidity,
1(02):1550009, 2015.

[39] Nataliya Bershova and Dmitry Rakhlin. The non-linear market impact of large trades:
Evidence from buy-side order �ow. Quantitative �nance, 13(11):1759�1778, 2013.

[40] Jonathan Donier and Julius Bonart. A million metaorder analysis of market impact
on the bitcoin. Market Microstructure and Liquidity, 1(02):1550008, 2015.

[41] Emilio Said, Ahmed Bel Hadj Ayed, Alexandre Husson, and Frédéric Abergel. Market
impact: A systematic study of limit orders. Market Microstructure and Liquidity,
3(03n04):1850008, 2017.

[42] Bence Tóth, Zoltán Eisler, and J-P Bouchaud. The square-root impace law also holds
for option markets. Wilmott, 2016(85):70�73, 2016.

[43] Marcus G Daniels, J Doyne Farmer, László Gillemot, Giulia Iori, and Eric Smith.
Quantitative model of price di�usion and market friction based on trading as a mech-
anistic random process. Physical review letters, 90(10):108102, 2003.

[44] Eric Smith, J Doyne Farmer, L Gillemot, Supriya Krishnamurthy, et al. Statistical
theory of the continuous double auction. Quantitative �nance, 3(6):481�514, 2003.

[45] Weibing Huang, Charles-Albert Lehalle, and Mathieu Rosenbaum. Simulating and an-
alyzing order book data: The queue-reactive model. Journal of the American Statistical
Association, 110(509):107�122, 2015.

[46] Jonathan Donier, Julius Bonart, Iacopo Mastromatteo, and J-P Bouchaud. A fully con-
sistent, minimal model for non-linear market impact. Quantitative �nance, 15(7):1109�
1121, 2015.

[47] Jean-Philippe Bouchaud, Yuval Gefen, Marc Potters, and Matthieu Wyart. Fluctua-
tions and response in �nancial markets: the subtle nature of ârandomâprice changes.
Quantitative �nance, 4(2):176�190, 2004.

[48] Michael Benzaquen and J-P Bouchaud. Market impact with multi-timescale liquidity.
Quantitative Finance, 18(11):1781�1790, 2018.

[49] D M Cutler, J M Poterba, and L H Summers. What moves stock prices? Journal of
Portfolio Management, 15(3):4�12, 1989.

[50] Ray Fair. Events that shook the market. The Journal of Business, 75(4):713�732,
2002.

[51] Jean-Philippe Bouchaud. The endogenous dynamics of markets: price impact and
feedback loops. arXiv preprint arXiv:1009.2928, 2010.

153



[52] Antoine Fosset, Jean-Philippe Bouchaud, and Michael Benzaquen. Endogenous liquid-
ity crises. Available at SSRN 3496148, 2019.

[53] Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes.
Biometrika, 58(1):83�90, 1971.

[54] Ioane Muni Toke. An introduction to hawkes processes with applications to �nance.
Lectures Notes from Ecole Centrale Paris, BNP Paribas Chair of Quantitative Finance,
193, 2011.

[55] Emmanuel Bacry, Iacopo Mastromatteo, and Jean-François Muzy. Hawkes processes
in �nance. Market Microstructure and Liquidity, 1(01):1550005, 2015.

[56] Maxime Morariu-Patrichi and Mikko S Pakkanen. State-dependent hawkes processes
and their application to limit order book modelling. arXiv preprint arXiv:1809.08060,
2018.

[57] Marcello Rambaldi, Emmanuel Bacry, and Fabrizio Lillo. The role of volume in or-
der book dynamics: a multivariate hawkes process analysis. Quantitative Finance,
17(7):999�1020, 2017.

[58] Giacomo Bormetti, Lucio Maria Calcagnile, Michele Treccani, Fulvio Corsi, Stefano
Marmi, and Fabrizio Lillo. Modelling systemic price cojumps with hawkes factor mod-
els. Quantitative Finance, 15(7):1137�1156, 2015.

[59] Peng Wu, Marcello Rambaldi, Jean-François Muzy, and Emmanuel Bacry. Queue-
reactive hawkes models for the order �ow. arXiv preprint arXiv:1901.08938, 2019.

[60] Emmanuel Bacry and Jean-François Muzy. Hawkes model for price and trades high-
frequency dynamics. Quantitative Finance, 14(7):1147�1166, 2014.

[61] Emmanuel Bacry, Sylvain Delattre, Marc Ho�mann, and Jean-François Muzy. Mod-
elling microstructure noise with mutually exciting point processes. Quantitative �-
nance, 13(1):65�77, 2013.

[62] Marcello Rambaldi, Paris Pennesi, and Fabrizio Lillo. Modeling foreign exchange mar-
ket activity around macroeconomic news: Hawkes-process approach. Phys. Rev. E,
91:012819, Jan 2015.

[63] Aurélien Alfonsi and Pierre Blanc. Extension and calibration of a hawkes-based optimal
execution model. Market Microstructure and Liquidity, 2(02):1650005, 2016.

[64] Aurélien Alfonsi and Pierre Blanc. Dynamic optimal execution in a mixed-market-
impact hawkes price model. Finance and Stochastics, 20(1):183�218, 2016.

[65] Massil Achab, Emmanuel Bacry, Jean-François Muzy, and Marcello Rambaldi. Analy-
sis of order book �ows using a non-parametric estimation of the branching ratio matrix.
Quantitative Finance, 18(2):199�212, 2018.

[66] Lucio Maria Calcagnile, Giacomo Bormetti, Michele Treccani, Stefano Marmi, and
Fabrizio Lillo. Collective synchronization and high frequency systemic instabilities in
�nancial markets. Quantitative Finance, 18(2):237�247, 2018.

[67] Shinsuke Koyama and Shigeru Shinomoto. The statistical physics of discovering ex-
ogenous and endogenous factors in a chain of events. arXiv preprint arXiv:2003.00659,
2020.

154



References

E

[68] David S Bates. How crashes develop: intradaily volatility and crash evolution. The
Journal of Finance, 74(1):193�238, 2019.

[69] Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In Pro-
ceedings of the 20th International Conference on Machine Learning (ICML-03), pages
720�727, 2003.

[70] P. Jusselin and M. Rosenbaum. No-arbitrage implies power-law market impact and
rough volatility. Available at SSRN 3180582, 2018.

[71] J Doyne Farmer, Paolo Patelli, and Ilija I Zovko. The predictive power of zero in-
telligence in �nancial markets. Proceedings of the National Academy of Sciences,
102(6):2254�2259, 2005.

[72] Rama Cont and Adrien De Larrard. Order book dynamics in liquid markets: limit
theorems and di�usion approximations. Available at SSRN 1757861, 2012.

[73] Ananth Madhavan, Matthew Richardson, and Mark Roomans. Why do security prices
change? a transaction-level analysis of nyse stocks. The Review of Financial Studies,
10(4):1035�1064, 1997.

[74] Matthieu Wyart, Jean-Philippe Bouchaud, Julien Kockelkoren, Marc Potters, and
Michele Vettorazzo. Relation between bid�ask spread, impact and volatility in order-
driven markets. Quantitative Finance, 8(1):41�57, 2008.

[75] P Bak, C Tang, and K Wiesenfeld. Self-organized criticality: an explanation of 1/f
noise, 1987. Phys. Rev. Lett, 59:381.

[76] Damien Challet and Yi-Cheng Zhang. On the minority game: Analytical and numerical
studies. Physica A: Statistical Mechanics and its applications, 256(3-4):514�532, 1998.

[77] Irene Giardina and J-P Bouchaud. Bubbles, crashes and intermittency in agent based
market models. The European Physical Journal B-Condensed Matter and Complex
Systems, 31(3):421�437, 2003.

[78] V Al�, Matthieu Cristelli, L Pietronero, and A Zaccaria. Minimal agent based model
for �nancial markets i. The European Physical Journal B, 67(3):385�397, 2009.

[79] Alessio Emanuele Biondo, Alessandro Pluchino, and Andrea Rapisarda. Modeling
�nancial markets by self-organized criticality. Physical Review E, 92(4):042814, 2015.

[80] Victor Buendía, Serena di Santo, Juan A Bonachela, and Miguel A Muñoz. Feedback
mechanisms for self-organization to the edge of a phase transition. arXiv preprint
arXiv:2006.03020, 2020.

[81] Sidney Redner. A guide to �rst-passage processes. Cambridge University Press, 2001.

[82] Omar El Euch and Mathieu Rosenbaum. The characteristic function of rough heston
models. Mathematical Finance, 29(1):3�38, 2019.

[83] Peter Hänggi, Peter Talkner, and Michal Borkovec. Reaction-rate theory: �fty years
after kramers. Reviews of modern physics, 62(2).

[84] C Godreche, JP Bouchaud, and M Mézard. Entropy barriers and slow relaxation
in some random walk models. Journal of Physics A: Mathematical and General,
28(23):L603, 1995.

155



[85] Charles-Albert Lehalle, Olivier Guéant, and Julien Raza�nimanana. High-frequency
simulations of an order book: a two-scale approach. In Econophysics of Order-driven
Markets, pages 73�92. Springer, 2011.

[86] Per Bak, Maya Paczuski, and Martin Shubik. Price variations in a stock market with
many agents. Physica A: Statistical Mechanics and its Applications, 246(3-4):430�453,
1997.

[87] Leonard CG Rogers, Stephen E Satchell, and Y Yoon. Estimating the volatility of
stock prices: a comparison of methods that use high and low prices. Applied Financial
Economics, 4(3):241�247, 1994.

[88] Elia Zarinelli, Michele Treccani, J Doyne Farmer, and Fabrizio Lillo. Beyond the square
root: Evidence for logarithmic dependence of market impact on size and participation
rate. Market Microstructure and Liquidity, 1(02):1550004, 2015.

[89] Khalil Dayri and Mathieu Rosenbaum. Large tick assets: implicit spread and optimal
tick size. Market Microstructure and Liquidity, 1(01):1550003, 2015.

[90] Michael Benzaquen and Jean-Philippe Bouchaud. A fractional reaction�di�usion de-
scription of supply and demand. The European Physical Journal B, 91(2):23, 2018.

[91] Thierry Bochud and Damien Challet. Optimal approximations of power laws with ex-
ponentials: application to volatility models with long Quantitative Finance, 7(6):585�
589, 2007.

[92] KV Mardia, JT Kent, and JM Bibby. Multivariate analysis. 1979. Probability and
mathematical statistics. Academic Press Inc.

[93] Herbert A. Simon. A behavioral model of rational choice. The Quarterly Journal of
Economics, 69(1):99�118, 1955.

[94] Herbert A Simon. Theories of bounded rationality. Decision and organization,
1(1):161�176, 1972.

[95] Reinhard Selten. Bounded rationality. Journal of Institutional and Theoretical Eco-
nomics (JITE) / Zeitschrift fÃ1

4r die gesamte Staatswissenschaft, 146(4):649�658,
1990.

[96] W. Brian Arthur. Inductive reasoning and bounded rationality. The American Eco-
nomic Review, 84(2):406�411, 1994.

[97] Gerd Gigerenzer and Reinhard Selten. Bounded rationality: The adaptive toolbox. MIT
press, 2002.

[98] Daniel Kahneman. A psychological perspective on economics. American Economic
Review, 93(2):162�168, April 2003.

[99] Daniel Kahneman and Richard H. Thaler. Anomalies: Utility maximization and ex-
perienced utility. Journal of Economic Perspectives, 20(1):221�234, March 2006.

[100] William A. Brock and Steven N. Durlauf. Discrete choice with social interactions. The
Review of Economic Studies, 68(2):235�260, 2001.

[101] Steven N Durlauf and H Peyton Young. Social dynamics, volume 4. Mit Press, 2004.

[102] Christian Borghesi and Jean-Philippe Bouchaud. Of songs and men: a model for
multiple choice with herding. Quality & Quantity, 41(4):557�568, March 2007.

156



References

E

[103] Jean-Philippe Bouchaud. Crises and collective socio-economic phenomena: Simple
models and challenges. Journal of Statistical Physics, 151(3-4):567�606, January 2013.

[104] Federico Guglielmo Morelli, Michael Benzaquen, Marco Tarzia, and Jean-Philippe
Bouchaud. Con�dence collapse in a multi-household, self-re�exive dsge model. 2019.

[105] Daniel Kahneman. Experienced utility and objective happiness: A moment-based
approach. In Choices, Values, and Frames, pages 673�692. Cambridge University Press,
September 2000.

[106] John Y. Campbell and John H. Cochrane. By force of habit: A consumptionâbased
explanation of aggregate stock market behavior. Journal of Political Economy,
107(2):205�251, 1999.

[107] Andrew Abel. Asset prices under habit formation and catching up with the joneses.
Technical report, March 1990.

[108] George M. Constantinides. Habit formation: A resolution of the equity premium
puzzle. Journal of Political Economy, 98(3):519�543, 1990.

[109] Christopher D. Carroll, Jody Overland, and David N. Weil. Saving and growth with
habit formation. American Economic Review, 90(3):341�355, June 2000.

[110] Je�rey C. Fuhrer. Habit formation in consumption and its implications for monetary-
policy models. American Economic Review, 90(3):367�390, June 2000.

[111] Robert A. Pollak. Habit formation and dynamic demand functions. Journal of Political
Economy, 78(4):745�763, 1970.

[112] Robin Pemantle. A survey of random processes with reinforcement. Probab. Surveys,
4:1�79, 2007.

[113] Denis Boyer, Andrea Falcón-Cortés, Luca Giuggioli, and Satya N Majumdar.
Anderson-like localization transition of random walks with resetting. Journal of Sta-
tistical Mechanics: Theory and Experiment, 2019(5):053204, may 2019.

[114] Robert L. Jack and Rosemary J. Harris. Giant leaps and long excursions: �uctuation
mechanisms in systems with long-range memory, 2020.

[115] W. Brian Arthur, Yu.M. Ermoliev, and Yu.M. Kaniovski. Path-dependent processes
and the emergence of macro-structure. European Journal of Operational Research,
30(3):294�303, June 1987.

[116] W. Brian Arthur. Positive feedbacks in the economy. Scienti�c American, 262(2):92�
99, 1990.

[117] Alan P. Kirman and Nicolaas J. Vriend. Evolving market structure: An ACE model of
price dispersion and loyalty. Journal of Economic Dynamics and Control, 25(3-4):459�
502, March 2001.

[118] Simon P. Anderson, Andre de Palma, and Jacques-Francois Thisse. Discrete Choice
Theory of Product Di�erentiation (The MIT Press). The MIT Press, 1992.

[119] Nicholas Metropolis and S. Ulam. The Monte Carlo method. Journal of the American
Statistical Association, 44(247):335�341, September 1949.

[120] W. K. Hastings. Monte carlo sampling methods using markov chains and their appli-
cations. Biometrika, 57(1):97�109, April 1970.

157



[121] Bernard Derrida. Random-energy model: An exactly solvable model of disordered
systems. Phys. Rev. B, 24:2613�2626, Sep 1981.

[122] Jean-Philippe Bouchaud and Marc Mézard. Universality classes for extreme-value
statistics. Journal of Physics A: Mathematical and General, 30(23):7997�8015, dec
1997.

[123] F. Wegner. Inverse participation ratio in 2 + ε dimensions. Zeitschrift für Physik B
Condensed Matter and Quanta, 36(3):209�214, September 1980.

[124] R. J. Bell and P. Dean. Atomic vibrations in vitreous silica. Discussions of the Faraday
Society, 50:55, 1970.

[125] Marshall Hall and Nicolaus Tideman. Measures of concentration. Journal of the
American Statistical Association, 62(317):162�168, March 1967.

[126] E Bertin and J-P Bouchaud. Dynamical ultrametricity in the critical trap model.
Journal of Physics A: Mathematical and General, 35(13):3039�3051, mar 2002.

[127] Ariel Amir, Yuval Oreg, and Yoseph Imry. On relaxations and aging of various glasses.
Proceedings of the National Academy of Sciences, 109(6):1850�1855, 2012.

[128] Pablo G. Debenedetti and Frank H. Stillinger. Supercooled liquids and the glass tran-
sition. Nature, 410(6825):259�267, March 2001.

[129] J. P. Bouchaud. Weak ergodicity breaking and aging in disordered systems. Journal
de Physique I, 2(9):1705�1713, September 1992.

[130] Thierry Bochud and Damien Challet. Optimal approximations of power-laws with
exponentials. 2006.

[131] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of `small-world' net-
works. Nature, 393(6684):440�442, June 1998.

[132] Cécile Monthus and Jean-Philippe Bouchaud. Models of traps and glass phenomenol-
ogy. Journal of Physics A: Mathematical and General, 29(14):3847�3869, jul 1996.

[133] L F Cugliandolo and J Kurchan. On the out-of-equilibrium relaxation of the
sherrington-kirkpatrick model. Journal of Physics A: Mathematical and General,
27(17):5749�5772.

[134] J-Ph Bouchaud. Aging in glassy systems: new experiments, simple models, and open
questions. Soft and Fragile Matter: Nonequilibrium Dynamics, Metastability and Flow,
pages 285�304, 2000.

[135] Luca Cipelletti, S. Manley, R. C. Ball, and D. A. Weitz. Universal aging features in
the restructuring of fractal colloidal gels. Phys. Rev. Lett., 84:2275�2278, Mar 2000.

[136] Rosemary J Harris. Random walkers with extreme value memory: modelling the peak-
end rule. New Journal of Physics, 17(5):053049, may 2015.

[137] Aleksandra Alori¢, Peter Sollich, and Peter McBurney. Spontaneous segregation of
agents across double auction markets. In Lecture Notes in Economics and Mathematical
Systems, pages 79�90. Springer International Publishing, October 2014.

[138] Aleksandra Alori¢ and Peter Sollich. Market fragmentation and market consolidation:
Multiple steady states in systems of adaptive traders choosing where to trade. Physical
Review E, 99(6), June 2019.

158



References

E

[139] Codina Cotar and Vlada Limic. Attraction time for strongly reinforced walks. The
Annals of Applied Probability, 19(5):1972�2007, October 2009.

[140] Alan Kirman. Ants, rationality, and recruitment. The Quarterly Journal of Economics,
108(1):137�156, 1993.

[141] P. A. P. Moran. Random processes in genetics. Mathematical Proceedings of the
Cambridge Philosophical Society, 54(1):60�71, 1958.

[142] J. L. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels. The self-organizing exploratory
pattern of the argentine ant. Journal of Insect Behavior, 3(2):159�168, March 1990.

[143] R. Beckers, J. L. Deneubourg, S. Goss, and J. M. Pasteels. Collective decision making
through food recruitment. Insectes Sociaux, 37(3):258�267, September 1990.

[144] Gary S Becker. A note on restaurant pricing and other examples of social in�uences
on price. Journal of political economy, 99(5):1109�1116, 1991.

[145] David S Scharfstein and Jeremy C Stein. Herd behavior and investment. The American
economic review, pages 465�479, 1990.

[146] Robert J Shiller and John Pound. Survey evidence on di�usion of investment among
institutional investors. Technical report, National Bureau of Economic Research, 1986.

[147] Thomas Lux. Herd behaviour, bubbles and crashes. The economic journal,
105(431):881�896, 1995.

[148] Alan Kirman and Gilles Teyssiere. Microeconomic models for long memory in the
volatility of �nancial time series. Studies in Nonlinear Dynamics & Econometrics,
5(4), 2002.

[149] Manfred Gilli and Peter Winker. A global optimization heuristic for estimating agent
based models. Computational Statistics & Data Analysis, 42(3):299�312, 2003.

[150] R. Lambiotte and S. Redner. Dynamics of vacillating voters. Journal of Statisti-
cal Mechanics: Theory and Experiment, 2007(10):L10001�L10001, Oct 2007. arXiv:
0710.0914.

[151] Hannes Risken. Fokker-planck equation. In The Fokker-Planck Equation, pages 63�95.
Springer, 1996.

[152] Sewall Wright. Statistical genetics and evolution. Bull. Amer. Math. Soc., 48(4):223�
246, 04 1942.

[153] M. Kimura. Stochastic processes and distribution of gene frequencies under natural
selection. Cold Spring Harbor Symposia on Quantitative Biology, 20(0):33�53, January
1955.

[154] A.J. McKane and D. Waxman. Singular solutions of the di�usion equation of popula-
tion genetics. Journal of Theoretical Biology, 247(4):849�858, August 2007.

[155] Kristen Fichthorn, Erdogan Gulari, and Robert Zi�. Noise-induced bistability in a
monte carlo surface-reaction model. Physical Review Letters, 63(14):1527�1530, Oct
1989.

[156] D. Considine, S. Redner, and H. Takayasu. Comment on "noise-induced bistability
in a monte carlo surface-reaction model". Physical Review Letters, 63(26):2857�2857,
Dec 1989.

159



[157] Kiyosi Itô. On stochastic di�erential equations. Number 4. American Mathematical
Soc., 1951.

[158] Claude Cohen-Tannoudji, Bernard Diu, and Frank Laloe. Quantum Mechanics. Wiley,
Jan 1991.

[159] Michael Martin Nieto and L. M. Simmons. Coherent states for general potentials. ii.
con�ning one-dimensional examples. Phys. Rev. D, 20:1332�1341, Sep 1979.

[160] H. Ta³eli. Exact analytical solutions of the hamiltonian with a squared tangent poten-
tial. Journal of Mathematical Chemistry, 34(3/4):243�251, November 2003.

[161] F. Vazquez and S. Redner. Ultimate fate of constrained voters. Journal of Physics A:
Mathematical and General, 37(35):8479�8494, Sep 2004. arXiv: cond-mat/0405652.

[162] Xavier Gabaix, Jean-Michel Lasry, Pierre-Louis Lions, and Benjamin Moll. The dy-
namics of inequality. Econometrica, 84(6):2071�2111, 2016.

[163] Jean-Philippe Bouchaud and Roger Farmer. in preparation.

[164] José Moran, Antoine Fosset, Alan Kirman, and Michael Benzaquen. in preparation.

[165] Hakan Ciftci, Richard Hall, and Nasser Saad. Exact and approximate solutions of
schrödinger's equation for a class of trigonometric potentials. Open Physics, 11(1),
January 2013.

[166] Garrett Hardin. The tragedy of the commons. Science, 162(3859):1243�1248, 1968.

[167] Stratis Gavaris. Use of a multiplicative model to estimate catch rate and e�ort from
commercial data. Canadian Journal of Fisheries and Aquatic Sciences, 37(12):2272�
2275, 1980.

[168] Marianne Vignaux. Analysis of vessel movements and strategies using commercial catch
and e�ort data from the new zealand hoki �shery. Canadian Journal of Fisheries and
Aquatic Sciences, 53(9):2126�2136, 1996.

[169] Peter M Allen and Jacqueline M McGlade. Dynamics of discovery and exploitation:
the case of the scotian shelf ground�sh �sheries. Canadian Journal of Fisheries and
Aquatic Sciences, 43(6):1187�1200, 1986.

[170] Sorin Dascalu, Tudor Scurtu, Andreea Urzica, Mihai Trascau, and Adina Magda Flo-
rea. Using norm emergence in addressing the tragedy of the commons. In International
conference on computational collective intelligence, pages 165�174. Springer, 2013.

[171] Global Fishing Watch, Fishing Vessels Dataset,
https://globalfishingwatch.org/datasets-and-code/vessel-identity, 2020.

[172] Mauro Gallegati, Gianfranco Giulioni, Alan Kirman, and Antonio Palestrini. Whatâs
that got to do with the price of �sh? buyers behavior on the ancona �sh market.
Journal of Economic Behavior & Organization, 80(1):20�33, 2011.

[173] José Moran, Antoine Fosset, Michael Benzaquen, and Jean-Philippe Bouchaud.
Schrödinger's ants: A continuous description of Kirman's recruitment model. arXiv
preprint arXiv:2004.06667, 2020.

[174] Robert MacArthur. Species packing and competitive equilibrium for many species.
Theoretical population biology, 1(1):1�11, 1970.

160

https://globalfishingwatch.org/datasets-and-code/vessel-identity


References

E

[175] Robert Mac Arthur. Species packing, and what competition minimizes. Proceedings
of the National Academy of Sciences, 64(4):1369�1371, 1969.

[176] Nicolas Bacaër. Lotka, volterra and the predator�prey system (1920�1926). In A short
history of mathematical population dynamics, pages 71�76. Springer, 2011.

[177] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with
formulas, graphs, and mathematical tables, volume 55. US Government printing o�ce,
1948.

161



Titre : Crises de liquidité endogènes dans les marchés financiers

Mots clés : microstructure, carnet d’ordres, instabilités, métastabilité, processus de Hawkes

Résumé : De récentes analyses empiriques
ont révélé l’existence de l’effet Zumbach. Cette
découverte a conduit à l’élaboration des processus de
Hawkes quadratique, adpaté pour reproduire cet effet.
Ce modèle ne faisant pas de lien avec le processus
de formation de prix, nous l’avons étendu au carnet
d’ordres avec un processus de Hawkes quadratique
généralisé (GQ-Hawkes). En utilisant des données de
marchés, nous avons montré qu’il existe un effet de
type Zumbach qui diminue la liquidité future. Microfon-
dant l’effet Zumbach, il est responsable d’une poten-
tielle déstabilisation des marchés financiers. De plus,
la calibration exacte d’un processus GQ-Hawkes nous
indique que les marchés sont aux bords de la criticité.
Ces preuves empiriques nous ont donc incité à faire
une analyse d’un modèle de carnet d’ordres construit
avec un couplage de type Zumbach. Nous avons donc
introduit le modèle de Santa Fe quadratique et prouvé
numériquement qu’il existe une transition de phase
entre un marché stable et un marché instable sujet à
des crises de liquidité. Grâce à une analyse de taille
finie nous avons pu déterminer les exposants cri-
tiques de cette transition, appartenant à une nouvelle
classe d’universalité. N’étant pas analytiquement so-

luble, cela nous a conduit à introduire des modèles
plus simples pour décrire les crises de liquidités. En
mettant de côté la microstructure du carnet d’ordres,
nous obtenons une classe de modèles de spread
où nous avons calculé les paramètres critiques de
leurs transitions. Même si ces exposants ne sont pas
ceux de la transition du Santa Fe quadratique, ces
modèles ouvrent de nouveaux horizons pour explorer
la dynamique de spread. L’un d’entre eux possède
un couplage non-linéaire faisant apparaı̂tre un état
métastable. Ce scénario alternatif élégant n’a pas be-
soin de paramètres critiques pour obtenir un marché
instable, même si les données empiriques ne sont
pas en sa faveur. Pour finir, nous avons regardé la
dynamique du carnet d’ordres sous un autre angle :
celui de la réaction-diffusion. Nous avons modélisé
une liquidité qui se révèle dans le carnet d’ordres
avec une certaine fréquence. La résolution de ce
modèle à l’équilibre révèle qu’il existe une condition
de stabilité sur les paramètres au-delà de laquelle le
carnet d’ordres se vide totalement, correspondant à
une crise de liquidité. En le calibrant sur des données
de marchés nous avons pu analyser qualitativement
la distance à cette région instable.

Title : Endogenous liquidity crises in financial markets

Keywords : market microstructure, limit order book, instability, metastability, Hawkes process

Abstract : Recent empirical analyses have revealed
the existence of the Zumbach effect. This discovery
has led to the development of quadratic Hawkes pro-
cesses, which are suitable for reproducing this effect.
Since this model is not linked with the price forma-
tion process, we extended it to order book modeling
with a generalized quadratic Hawkes process (GQ-
Hawkes). Using market data, we showed that there is
a Zumbach-like effect that decreases future liquidity.
Microfounding the Zumbach effect, it is responsible
for a destabilization of financial markets. Moreover,
the exact calibration of a GQ-Hawkes process tells us
that the markets are on the verge of criticality. This
empirical evidence therefore prompted us to analyse
an order-book model constructed upon a Zumbach-
like feedback. We therefore introduced the quadratic
Santa Fe model and proved numerically that there is a
phase transition between a stable market and an uns-
table market subject to liquidity crises. Thanks to a fi-
nite size scaling we were able to determine the critical
exponents of this transition, which appears to belong
to a new universality class. As this was not analytically

tractable, it led us to introduce simpler models to des-
cribe liquidity crises. Setting aside the microstructure
of the order book, we obtain a class of spread models
where we computed the critical parameters of their
transitions. Even if these exponents are not those of
the quadratic Santa Fe transition, these models open
new horizons for modelling spread dynamics. One of
them has a non-linear coupling that reveals a metas-
table state. This elegant alternative scenario does not
need critical parameters to obtain an unstable mar-
ket, even if the empirical evidence is not in its favour.
Finally, we looked at the order book dynamics from
another point of view : the reaction-diffusion one. We
have modelled a liquidity that appears in the order
book with a certain frequency. The resolution of this
model at equilibrium reveals that there is a condition
of stability on the parameters beyond which the order
book empties completely, corresponding to a liquidity
crisis. By calibrating it on market data we were able
to qualitatively analyse the distance to this unstable
region.
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